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Abstract 


To identify design errors that escape pre-silicon verification, post-silicon validation is 

becoming an important step in the implementation fl.ow of digital integrated circuits. 

While many debug problems are tackled on testers, there are hard-to-find design er­

rors that are activated only in-system. A key challenge during in-system debugging 

is to acquire data from internal circuit's nodes in real-time. In this thesis, we pro­

pose several techniques to address this problem, ranging from resource-efficient and 

programmable trigger units to automated selection of trace signals to a distributed 

architecture for embedded logic analysis. 

Deciding when to acquire data on-chip is done using trigger units. Because there is 

an inherent tradeoff between the size of the trigger units and the types of events that 

can be programmed into them, we first explore a resource-efficient and programmable 

trigger unit implementation. We show how the on-chip buffers used for data acqui­

sition can be leveraged to store information regarding the logic functions that are 

programmed at runtime as the trigger events. This reduces the requirement in terms 

of logic resources for the trigger unit, while enlarging the set of programmable trigger 

events supported by these resources. We also propose a new algorithm to automati­

cally map trigger events onto the proposed trigger unit. 

Next we shift the focus from the trigger units to the sample units available on­

chip. Once the real-time debug experiment has been completed, the amount of data 

available to the user is limited by the capacity of the on-chip trace buffers. For logic 

bugs, where the circuit implementation matches the physical prototype, we show how 

the structural information from the circuit netlist can be leveraged to expand the 

amount of data made available off-line to the user. To ensure that data expansion 
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can scale as the amount of debug data that is acquired increases, we propose a fast 

algorithm that leverages the bitwise parallelism of logic operations available in the 

instruction set of microprocessors. In a follow-up chapter, we also discuss how trace 

signals can be automatically selected in order to improve the amount of data that 

can be restored off-line. To achieve this objective, we propose two new metrics and 

two new algorithms for automatically identifying the circuit nodes which, if traced, 

will aid data expansion for the neighboring nodes in the circuit. 

The last contribution of this thesis is concerned with managing multiple trace 

buffers in complex designs with many logic blocks. We propose a new distributed 

embedded logic analysis architecture that can dynamically allocate the trace buffers 

at runtime based on the needs for debug data acquisition coming from multiple logic 

blocks. We also leverage the real-time offload capability through high-speed trace 

ports in order to extend the duration of a debug experiment. It is shown how with 

little investment in on-chip debug logic resources, the length of debug experiments 

can be expanded for multi-core designs without increasing the number of on-chip 

trace buffers. 
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Chapter 1 

Introduction 

Modern process technologies enable very large scale integrated (VLSI) circuits to 

be built with multi-million transistors. This increased design complexity is one of 

the main reasons why existing verification techniques are insufficient for eliminating 

design errors (or bugs) before the design is manufactured (i.e., pre-silicon)[69]. The 

aim of the work described in this thesis is to provide new structured methods for 

assisting designers to identify design errors after the design is manufactured (i.e., 

post-silicon). To better illustrate how the proposed methods can be beneficial in 

the development of VLSI circuits, it is essential to understand the design flow and 

the state-of-the-art verification techniques. The VLSI design flow will be outlined in 

Section 1.1. The verification techniques, pre-silicon verification, manufacturing test 

and post-silicon validation, used in the VLSI design flow will be discussed in Sections 

1.2, 1.3 and 1.4 respectively. Finally, the contribution and organization of this thesis 

will be given in Section 1.5. 

1.1 VLSI design flow 

The design flow of VLSI circuits is broken down into three stages: specification, im­

plementation and manufacturing as shown in Figure 1.1. The specification gives the 

expected functionalities of the design. It can be described using high-level description 
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Pre-silicon verification: 
- simulation 

Manufacturing test: 
- automatic test pattern generation 

- formal verification - scan 

Specification: 
design documentation 

behavioral reference model 

Implementation: 
full custom, semi-custom 

·Post-silicon VCJ.Hdation.: 

------""'"----~, 

Manufacturing: i 
complementary metal-oxide ! 
semiconductor technology i 

---- ---- --­---- -------------- -----. 

····-.physical probing ·~·~; .~ ;~ . 

.:·;;~t~'.~~~!~~~~~~1~~:~,J:••i;\•,t.·• 
--------~ 

Circuit bugs: 
physical electrical errors 

System bugs: 
bugs among cores 

on a single chip 

Figure 1.1: VLSI design flow and verification techniques 

languages such as SystemC [36]. At this level of design abstraction, the circuit is de­

scribed as a set of operations using data computations and transfers without detailing 

the actual implementation of the main components, such as processors, memories and 

buses in the design. Thus, the size and complexity of the specification is reduced. 

To give more detail about the implementation of a circuit, the specification can be 

given in hardware description languages (HDLs) like VHDL [84], Verilog [85] or Sys­

tem Verilog [104]. vVhen using HDLs, the register-transfer level (RTL) abstraction 

is used to describe the expected functionalities as a set of transfer functions, which 

detail the flow of data between registers. Any logical operations performed on the 

data in-between registers are also specified. Using the RTL description of a design, 

logic synthesis can be performed to transform and optimize the transfer functions 
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into logic equations evaluated by gate-level components available from the targeted 

technology library [108]. These logic equations (i.e., implementation of the design) 

are then recorded in the gate-level netlist [79]. 

As shown in Figure 1.1, a digital circuit can be implemented using different de­

sign methodologies such as full custom and semi-custom using cell libraries and gate 

arrays. In the full custom design methodology, the designer creates a custom layout 

of the gate-level components, as well as the interconnect of these components in order 

to maximize circuit performance and minimize area. However, the amount of time 

required to create full custom designs becomes unreasonably long for complex designs. 

On the other hand, the circuit can be implemented using gate-level components found 

in standard cell libraries or gate arrays. This is done by using computer-aided design 

(CAD) tools to transform the RTL description into gate level netlist. These tools 

also translate the gate level netlist into the physical layout [23]. Although these tools 

help reduce design time, the synthesized circuits may not have optimal performance 

with minimum area. 

Using the information in the physical layout, the integrated circuit can be manu­

factured [13]. The fabrication process gradually creates the integrated circuit through 

a sequence of photographic and chemical processing steps on a wafer made of semi­

conducting material and/or mixture of other metals. While silicon is the most com­

monly used semiconducting material in VLSI circuits and complementary metal-oxide 

semiconductor (CMOS) is the main type of transistors, different semiconductor tech­

nologies create transistors in specific geometries (e.g., 90 nm) [30]. 

To ensure the fabricated circuit operates correctly according to the specification, 

various checkpoints are placed in the design flow as shown in Figure 1.1. Within each 

checkpoint, different verification techniques are employed as will be detailed in the 

following three sections of the thesis. 
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1.2 Pre-silicon verification 


To ensure the implemented circuit behaves correctly according to the specification, 

pre-silicon verification techniques are used extensively to eliminate design errors be­

fore the design is manufactured. The two main types of pre-silicon verification tech­

niques are simulation and formal verification [69]. 

The most commonly used simulation technique is the event-based simulator. It 

operates by taking events one at a time and propagating them through the design. 

However, the problem with all the simulation techniques is that in order to conclude 

that the simulated design is 100% error-free, the simulation will have to take all pos­

sible behaviors of the system into consideration. As the number of possible behaviors 

increases exponentially with the number of inputs and the number of circuit states, 

exhaustive simulation becomes impractical for circuits of moderate size [91]. Thus, 

simulation techniques have evolved to use testbenches that drive the design-under-test 

with constrained-random or coverage-driven input stimuli. These testbenches target 

to verify a design only up to an acceptable simulation coverage. Recently, assertions 

are being increasingly used to verify the intended behaviors of a design. 

Formal verification has emerged as a supplementary approach to simulation by 

making propositions with regard to the complete behavior of the design using mathe­

matical proofs [54, 67]. There are two main methods of formal verification techniques: 

formal model checking and formal equivalence checking. While formal model check­

ing uses mathematical techniques to verify behavioral properties of a design, formal 

equivalence checking uses mathematical techniques to verify equivalence of a refer­

ence design and a modified design. These designs may be obtained from the circuit 

descriptions from different levels of design abstraction (i.e., RTL or gate level) [107]. 

As formal verification techniques gain more attention in the verification community 

of VLSI designs, techniques for automating this process have emerged [31]. However, 

there is one key limitation with formal verification techniques: the design is only 

verified against the specification from which the circuit model is derived. Thus, the 

correctness of the verification will be compromised if the specification is faulty itself. 
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Using simulation and formal verification techniques together has proven signifi­

cant in eliminating design errors during pre-silicon verification. However, error-free 

first silicon still cannot be guaranteed using only pre-silicon verification techniques 

due to the inherent tradeoffs between verification time and state coverage, and the 

limitations on modeling all physical characteristics of the design at higher levels of 

design abstraction [46]. 

1.3 Manufacturing test 

Fabrication anomalies of integrated circuits in the manufacturing process may cause 

some circuits to behave erroneously. Manufacturing test helps to detect the physical 

defects that lead to faulty behaviors of the fabricated circuits. Thus, manufacturing 

test is the verification of circuit fabrication against its intended implementation in 

the VLSI design flow [79]. 

Manufacturing test checks for the proper operation of a fabricated circuit by test­

ing the internal chip nodes using input vectors. The corresponding circuit responses 

are then compared to the expected responses for pass/fail analysis. If the circuit fails 

the test, the fault diagnosis process can be started to identify the root cause of the 

failure. The process of applying the input vectors and comparing the corresponding 

responses for the circuit-under-test (CUT) is usually controlled by an automatic test 

equipment (ATE). The input vectors and expected responses are generated according 

to the two types of test methods: functional test and structural test. 

Functional tests verify the functionality of the CUT by exercising all the circuit 

functions. Similar to performing exhaustive simulation during pre-silicon verification, 

this requires a complete set of test patterns on all the circuit inputs. For a circuit with 

n inputs, the number of input vectors will be 2n. For example, a 64-bit ripple-carry 

adder will have 2129 input vectors. To apply the complete test set to the CUT using an 

ATE, it would take 2.158x1022 years, assuming that the tester and circuit can operate 

at 1 GHz [20]. Due to the exhaustive nature of complete functional tests, testing 

time is prohibitively large for logic blocks, which makes them infeasible for testing 

complex digital integrated circuits. As a result, proposals on applying functional test 
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at operational speed for testing parts of a circuit were recently introduced [21, 113]. 

On the other hand, structural tests depend on the netlist structure of a design. 

Depending on the logic and timing behavior of electrical defects, different fault models 

are introduced to allow automatic test pattern generation (ATPG) algorithms to be 

developed for test generation, test application and test evaluation. Some typical fault 

models are single stuck-at fault model, bridging fault model and delay fault model. 

These fault models capture the behaviors of physical defects on silicon into the logic 

domain, such that they can be detected using structural tests. The most commonly 

used fault model is the single stuck-at fault model [89]. It assumes a single line of 

the logic network to be stuck at a logic 0 (s-a-0) or logic 1 (s-a-1). When using the 

single stuck-at fault model for the 64-bit ripple-carry adder, only 1728 stuck-at faults 

would need to be excited with 1728 test patterns in the worst case scenario [20]. 

It is common for VLSI designs today to have internal state signals which cannot 

be easily controlled from primary inputs or observed at primary outputs. As a re­

sult, to achieve high fault coverage during manufacturing test, design-for-test (DFT) 

circuitries are inserted to improve controllability and observability of internal nodes 

in the CUT. The most common DFT methodology used is the scan method, whose 

infrastructure is shown in Figure 1.2. Using this method, all or parts of the internal 

state elements (i.e., flip-flops) are replaced with scan flip-flops (SFFs) by inserting a 

multiplexer at the input of each flip-flop. During normal functional operations, the 

scan_enable signal is inactive and the circuit data flows in-between the state elements 

and combinational logic normally as shown in Figure 1.2(a). When in the test mode, 

the scan_enable will be set to connect the SFFs together to form one or more shift 

registers called scan chains, as illustrated in Figure 1.2(b). During test application, 

input test vectors are shifted into the scan chains serially through the scan inputs to 

initialize the CUT into a known state, while circuit responses in the internal states 

are shifted out of the scan chains via the scan outputs for analysis [20]. Due to 

the ability to provide controllability and observability of internal state elements, test 

generation for a circuit with scan allows the use of the simpler combinational ATPG, 

which also generates a smaller number of test patterns, when compared to sequential 

ATPG. This indirectly reduces the cost of manufacturing test. As a result, a number 

6 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

of improvements on how scan chains are built have been proposed in the literature 

[25, 82, 94]. Also, scan chains have been adopted for performing structural tests with 

various fault models [86, 97, 121]. Although it is not the focus of this thesis, the 

author had also published three papers on building scan chains at the RTL ([55, 59] 

during his master studies) and ([65] during his doctoral studies). He had also pub­

lished four papers on creating power-constrained scan chains for the delay fault model 

[60-63] during his early doctoral studies before he switched his research focus. 

Manufacturing test has been established to be an essential stage in the VLSI de­

sign fl.ow for verifying the fabricated circuit against the implemented design. However, 

manufacturing test relies on the circuit netlist as the reference for detecting physical 

defects that lead to faulty behaviors in the fabricated circuit. If design errors escape 

the pre-silicon verification stage, they will also exist in the circuit netlist, and thus, 

cannot be detected by using only manufacturing test. As a result, it must be aug­

mented by post-silicon validation techniques to identify these escaped errors in the 

fabricated circuit. 

1.4 Post-silicon validation 

The limited accuracy in circuit modeling and the exponential size of state spaces are 

the main reasons why pre-silicon verification is insufficient in eliminating all the design 

errors before tape-out. This problem is further aggravated by the increasing number 

of on-chip logic blocks and the complex transactions between them, as well as the 

continuous growth of embedded software as the product differentiating component in 

system-on-a-chip (SOC) designs. In order to reduce the cost of re-spins (both mask 

costs and the implementation time), it is essential to identify the escaped bugs as 

soon as the first silicon is available [119]. We call this step in the implementation fl.ow 

post-silicon validation and it is focused on identifying and localizing bugs in silicon. 

However, the inability to access internal signals in the silicon, which results in limited 

observability of the circuit, becomes the major obstacle in post-silicon validation. 

Hence, a number of proposed solutions in this area focus on addressing this obstacle. 

It is important to note that depending on the type of errors one is trying to locate, 
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Figure 1.2: Scan infrastructure for manufacturing test 
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different information should be acquired from the design. Thus, we introduce three 

types of bugs that are concerned during post-silicon validation. They are circuit bugs, 

logic bugs, and system bugs as shown in Figure 1.1. 

1.4.1 Circuit bugs 

We define circuit bugs as errors that arise from the mismatches between circuit models 

in different design abstraction levels, as well as the effects from the use of deep 

sub-micron technologies on signal integrity and semiconductor manufacturing process 

variations. To tackle these circuit bugs, which are mainly electrical bugs that drive 

the yield to an unacceptably low level, physical probing techniques such as [12, 83, 

88, 99, 100] can be used to probe the internal wires to extract their electrical behavior 

in the silicon. However, due to the rising complexity of current SOCs, a localization 

step, which compares the simulation data and the information acquired in the silicon 

using design-for-debug (DFD) hardware, is needed to identify the subset of circuit 

nodes that should be physically probed [114]. 

1.4.2 Logic bugs 

In addition to localization, the data acquired by the DFD hardware can also be used 

to identify logic bugs, which are functional errors that have escaped the pre-silicon 

verification stage. One technique for acquiring functional data in the silicon is the scan 

chain-based technique, which will be introduced in SubSection 1.4.6. One drawback 

with the scan chain-based debug technique is that the circuit has to be stopped when 

data is shifted out of the scan chains. This prevents data to be acquired in real-time. 

As functional bugs can span thousands of clock cycles [51], it is beneficial to maintain 

circuit operation during scan dumps. Although double buffering the scan cells (which 

may incur unacceptable area [52]) can achieve this goal, data sampling at consecutive 

clock cycles, which is essential for timing-related bugs, is still not possible. In this 

case, the trace-based technique, which employs on-chip memories for at-speed data 

sampling, can be used. Details on the trace-based technique, and the various proposed 

methods for enhancing such a technique will be discussed later in this thesis. 
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1.4.3 System bugs 


Finally, system bugs are errors that exist among multiple cores in a SOC. As multiple 

cores interact with each other when software is executed on the system, identifying 

such bugs requires acquisition of data among the interrelated cores. This poses a 

different set of challenges in the design of DFD hardware for the system when com­

pared with locating circuit bugs or logic bugs in a single core. For instance, the DFD 

infrastructure has to be designed while taking into consideration triggering multiple 

cores at the right time, and acquiring data both in the cores and on the interconnects 

between cores. 

It should be noted that techniques for detecting logic bugs can aid the localization 

of errors in the design such that physical probing techniques can be effectively applied 

for the detection of circuit bugs. Also, system bugs in multiple cores cannot be tackled 

unless the infrastructure for locating logic bugs in a single core is in-place. Thus, in 

this thesis, we focus our contributions to aid data acquisition for detecting logic bugs 

during post-silicon validation. 

To better understand the contributions of the works presented in this thesis, it is 

essential to first define the terminologies verification, test, validation, debug and diag­

nosis used in the context of VLSI design. Also, the two main phases of experiments 

called non-deterministic replay and deterministic replay performed during post-silicon 

validation should be explained. After that, the two most commonly used DFD tech­

niques: scan chain-based and trace-based technique during post-silicon validation will 

be briefly introduced. 

1.4.4 Terminology definitions 

The five terms that are widely used in different contexts in the VLSI design flow are: 

verification, test, validation, debug and diagnosis. 

Verification The task of verifying a VLSI design is to check whether the behaviors 

of the design match with the functionalities defined in the specification. Thus, 

verification deals with functional errors that reside in the logical domain. For 

10 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

instance, as discussed in Section 1.2, pre-silicon verification techniques are used 

to check the implemented design against the specification for logic errors. 

Test 	When testing an integrated circuit, the implemented design is used as a golden 

reference model to check whether there are any physical defects caused by fab­

rication anomalies in the manufacturing process. This is done usually in the 

manufacturing test stage of the VLSI design flow using structural tests accom­

panied by the insertion of DFT hardware, as elaborated in Section 1.3. 

Validation When the final design is put to the actual operating environment, it is 

validated to see if the design performs what it is intended to do. This is where 

post-silicon validation techniques and the inclusion of DFD hardware can help. 

When erroneous behaviors are detected, the debug process can be started to 

locate the bugs in the design. 

Debug The notion of debug can be further divided into pre-silicon debug and post­

silicon debug. In pre-silicon debug, the circuit description is checked against the 

specification to identify the location of the bugs in the design using pre-silicon 

verification techniques. In post-silicon debug, DFD hardware can be used to 

gather information about the operation of the design in order to localize the 

bugs within the design. 

Diagnosis When a bug has been localized, diagnosis helps to identify the root­

cause of the bug. In pre-silicon diagnosis, the information from pre-silicon 

techniques such as simulation is analyzed to determine whether the failure is 

caused by incorrect implementation of the specification, or if it results from 

incomplete specification. On the other hand, when a design fails in post-silicon 

validation, the problem can be caused by functional errors that have escaped 

pre-silicon verification. Another reason for having misbehaviors in the silicon 

can be the presence of electrical errors or fabrication defects that have escaped 

manufacturing test. They can also be system errors that arise when the chip 

is put to the actual operating environment under specific voltage, temperature 

and/or frequency. 
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1.4.5 Non-deterministic and deterministic replay experiments 

The post-silicon validation process consists of two main phases. 

Non-deterministic replay In the first phase, the error manifests itself on the ap­

plication board and its occurrence cannot be reproduced immediately in a de­

terministic environment. This happens when the error is triggered by non­

deterministic input sources of the design. Two examples of these input sources 

are asynchronous interfaces between buses and interrupts from peripherals [96]. 

In this phase, the objective is to understand and isolate the input behaviors 

that cause the bug. 

Deterministic replay After the behaviors are isolated, the error can be triggered 

in a controlled environment and the post-silicon validation process can move 

on to the next phase. In this controlled environment, the input behaviors are 

reproduced on the ATE or the application board to trigger the error determin­

istically. This allows the debug experiment to be run repeatedly in order to 

locate the root cause of the bug. 

In either phase of the post-silicon validation process, it is important for one to be 

able to gather as much data as possible from the design in order to gather information 

for understanding the nature of the error. This is especially important for non­

deterministic replay experiments since one may not be able to reproduce the erroneous 

behavior again. As a result, in this thesis, we focus on the techniques for improving 

observability of a design during post-silicon validation for non-deterministic replay 

experiments. The increased observability resulted from the use of DFD hardware 

can help engineers to be more confident in concluding if an erroneous behavior has 

occurred, as well as to help locate the bug during the debug process. In the next two 

subsections, the two most commonly used DFD techniques will be briefly discussed. 

1.4.6 Scan chain-based technique 

Reusing the internal scan chains, which is the most widely used technique to in­

crease observability of a circuit during manufacturing test, is the primary goal in 
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scan chain-based technique. It first captures all the internal state elements using the 

scan technique in a design when a specific breakpoint condition occurs. After that, the 

captured data can then be offloaded through the scan chains for failure analysis. One 

problem with scan chain-based technique is that it will not be able to acquire data in 

real-time during post-silicon validation. This is because the circuit has to stop and 

then resume its execution during scan dump. Since functional bugs can sometimes 

appear in circuit states that may be exercised thousands of clock cycles apart [51], it 

is therefore desirable to maintain circuit execution during scan dumps. Although this 

can be overcome by double buffering the scan elements, it will lead to a substantial 

area penalty [52]. Even if this penalty would be acceptable, data sampling in consec­

utive clock cycles using only the available scan chains will not be possible. However, 

this ability to acquire data continuously is an essential requirement for identifying 

timing-related problems in a design during post-silicon validation. 

1.4.7 Trace-based technique 

To be able to acquire data in real-time during post-silicon validation, one can connect 

the signals of interest directly to the device pins so that it can be monitored by 

external logic analysis equipments [39, 40]. However, the difficulty of driving device 

pins with high internal clock frequencies and the limited number of available pins used 

only for the purpose of post-silicon validation makes external logic analysis insufficient 

for complex SOC designs. As a result, internal/embedded logic analysis has emerged 

as a complement to the scan chain-based technique. 

Integrating the functionalities of logic analyzers into the CUD using additional 

hardware is the idea behind embedded logic analysis. Inside embedded logic analyzers 

(ELAs), a trigger unit can be programmed to monitor desired trigger conditions to 

determine when to initiate data sampling on a small set of internal signals in real-time 

using on-chip trace buffers. The acquired data can then be transported through low 

bandwidth device pins, such that post-processing algorithms can analyze the acquired 

data and identify design errors off-chip [72]. When data on more signals from a 

different number of clock cycles can be obtained through the scan-based technique in 
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the same experiment, the two sets of data can better aid the identification of logic 

bugs during post-silicon validation. As a consequence, embedded logic analysis has 

emerged as a popular solution for debugging microprocessors [43, 105], designs on 

field programmable gate arrays (FPGAs) [6, 110, 122], application specific integrated 

circuits (ASICs) and complex SOCs [3, 44, 72]. 

1.5 Contributions and organization of the thesis 

In this section we summarize the main contributions of this thesis, by outlining its 

organization. We have tackled four complementary problems: improving the effective­

ness of triggering in embedded logic analysis (Chapter 3); speeding up the expansion 

of the acquired debug data (Chapter 4); providing automated techniques to guide 

the selection of signals that should be traced (Chapter 5); and understanding how to 

manage multiple on-chip trace buffers dynamically at runtime (Chapter 6). 

Before introducing the contributions done by the author, Chapter 2 provides the 

background material on scan chain-based and trace-based techniques employed for 

post-silicon validation. A review of the related works focused on the use of ELA for 

improving real-time observability for in-system debugging will also be given in this 

chapter. 

During post-silicon validation a mechanism must be provided to control the ac­

quisition of debug data. As a result, additional hardware has to be inserted in the 

CUD for detecting any specific events to determine when data should be sampled. 

However, due to the limited real estate available on the silicon, the inserted hardware 

has to be simple and small, which limits the amount of functionalities one can make 

available in the trigger unit. In Chapter 3, we investigate how to reduce the amount 

of logic in the trigger unit for ELA, without compromising its ability to monitor com­

plex trigger conditions. This is achieved by a resource-efficient architecture which, in 

order to reduce the number of events checked concurrently, monitors simplified logic 

conditions on trigger signals that include both true and false trigger events. When 

false trigger events are identified through on-chip trigger analysis, the false decisions 

can be reverted in real-time. The contribution from this chapter will appear in [5~]. 
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Despite the numerous DFD techniques that have been proposed in the literature 

on improving the ability to acquire data on-chip, only a small amount of data can 

be captured either by using scan chains, or stored in on-chip trace-buffers such that 

the data can be transferred off-chip later for data analysis. This limited observability 

of internal signals may lengthen the post-silicon validation process. In Chapter 4, 

a technique to better utilize the limited storage available during data acquisition is 

introduced. By consciously selecting the trace signals when designing the ELA, we 

will show how one can restore a significant amount of missing data from the state 

elements that are not traced. 

The decision on which signals should be hardwired to the trace buffers has to be 

made when designing the ELA at design time. However, it is not always possible for 

the designer to predict which signals may help provide more information about the 

design during post-silicon validation. As a result, Chapter 5 introduces algorithmic 

solutions for trace signal selection. By analyzing structural information of a design, 

we will show how metrics can be developed to guide the selection of trace signals. 

When coupled with the technique from Chapter 4, the sampled data from these chosen 

signals can better help reconstruct missing information in the CUD. The contributions 

from Chapters 4 and 5 are jointly published in two papers [56, 64]. 

As complexity of SOC designs continues to increase, data acquisition using one 

centralized trace buffer inside the ELA becomes insufficient. For instance, when 

multiple cores in the system notify that their trigger conditions are met and data 

acquisition should be started for all these cores, a centralized trace buffer will not be 

able to satisfy the high data acquisition bandwidth requirement for core-based SOCs. 

In Chapter 6, a novel methodology for improving the real-time observability when 

distributed ELAs will be introduced for SOCs with an increasing number of internal 

cores. In addition, when high-speed trace ports are made available, the proposed 

methodology can utilize these trace ports to further improve real-time observability 

during post-silicon validation. The work from this chapter of the thesis is published 

in [66]. 

Finally, Chapter 7 summarizes the contributions of this research and provides 

directions for future work. 

15 




Chapter 2 

Background and related work 

To address the problem of limited observability during data acquisition when per­

forming post-silicon validation, a number of solutions had been developed. In this 

chapter of the thesis, the advantages and disadvantages of some of these solutions 

will be discussed. Section 2.1 details the scan chain-based technique. Section 2.2 

elaborates on the trace-based technique. Finally, Section 2.3 gives the related works 

on embedded logic analysis, which is the DFD technique on which the work in this 

thesis was built. 

2 .1 Scan chain-based technique 

Reusing the internal scan chains, which is the most widely used technique to increase 

observability of a circuit during manufacturing test, is the primary goal in scan chain­

based technique [29, 37]. To reuse the scan chains for acquiring data during post­

silicon validation, additional hardware is inserted to allow the scan infrastructure to 

support three basic features: scan for access, breakpoints and clock control. 

2.1.1 Scan for access 

During manufacturing test, the SFFs are connected together to one or multiple shift 

registers called scan chains. When test is applied in the test mode, the input test 

16 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

co neat concat 
TDI TOI 

lnput1 lnput1 

lnput2 lnput2 

lnputn lnputn 

(a) Scan access during manufacturing test 

Figure 2.1: Scan infrastructure for manufacturing test and post-silicon validation 
based on [115] 

vectors are shifted into the scan chains through scan input pins. At the same time, the 

circuit responses are shifted out of the scan chains via scan output pins for pass/fail 

analysis, as shown in Figure 2.l(a). In order to keep testing time short, multiple scan 

chains are shifted simultaneously. When more scan chains are available, a smaller 

number of SFFs will be in a chain, and thus, takes less time to be scanned. However, 

the decision of how many scan chains should be employed is limited by the available IO 

pins. As a result, in order to reduce pin usage, the scan pins are usually time-shared 

with the functional pins on the chip. This is because during scan in manufacturing, 

the CUT will be stopped and functional data will not be supplied to the circuit [92]. 

On the other hand, functional data needs to be supplied to the CUD during post­

silicon validation. As a result, the access mechanism of the scan infrastructure has 

to be modified as shown in Figure 2.1 (b). In this infrastructure, the scan chains 

are concatenated to form a single scan chain. This chain is accessed through low 

bandwidth dedicated pins such as the test data in (TDI) port in the JTAG interface 

[47]. Whenever data is captured into the scan chain, they can be offloaded via the 

Circuit-under-debug (concat = 1) 

Output1 

Output2 

(b) Scan access during post-silicon validation test 
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test data out (TDO) port for data analysis using techniques such as latch divergence 

analysis [28] or failure propagation tracing [24] to identify the failing state elements. 

This information can then be further analyzed for finding the root-cause of the error. 

2.1.2 Breakpoints 

It is obvious that using the scan chain-based technique, debug data should only be 

captured into the scan chains and subsequently offloaded when a particular event 

of interest has happened. This is because it would require multiple clock cycles to 

offload the data from the SFFs, and thus, consecutive data acquisition can only be 

initiated after each successful offload. 

To reuse the scan chains for post-silicon validation, additional hardware needs to 

be inserted into the CUD in order to monitor the single event or the sequence of 

events so that data acquisition can be initiated at the right time. An example of 

such hardware called the breakpoint control unit is shown in Figure 2.2. It usually 

comprises one or more comparators that monitor a set of trigger signals. Examples 

of such trigger signals can be the program counters and the internal instruction/ data 

buses [119]. When the values on the trigger signals match with the desired breakpoint 

conditions specified in the programmable registers, the breakpoint controller will be 

notified. To support more complex breakpoint conditions, different logical operators 

controlled by the breakpoint controller can be used with the comparators. When 

counters and/or sequencers are employed, the breakpoint controller will decide if 

the detected condition has happened a sufficient number of times according to the 

counters, or if the appropriate sequence of conditions has occurred as indicated by the 

sequencers. When the breakpoint controller concludes that the breakpoint condition 

is reached, the breakpoint flag will be raised. 

The programmable registers that store the desired breakpoint conditions, and 

the configuration registers in the breakpoint controller for setting up the the logical 

operators, counters and sequencers are connected to a serial interface such as JTAG 

[47]. During post-silicon validation, different configurations can be programmed into 

the breakpoint control unit to acquire different sets of data in multiple experiments. 
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Connection to external serial interface 

Figure 2.2: Example of a breakpoint control unit 

2.1.3 Clock control 

After the breakpoint control unit detects the desired breakpoint condition and has 

raised the flag, the circuit has to be stopped in order to preserve the current state 

of operation and wait for further instruction. This can be done by providing a clock 

control unit which provides explicit controls to the clock signal that drives the state 

elements of the circuit. An example of a clock control unit is shown in Figure 2.3(a). 

The inputs to the clock control unit are control signals that indicate what functions 

are to be performed. The output of the unit is the gated clock signal that drives 

the circuit. By controlling the gated clock, the clock control unit should provide at 

least the following three functions during post-silicon validation [119] as illustrated 

in Figure 2.3(b): 

• 	 Halt: stop the on-chip clocks when the breakpoint is reached; 

• 	 Scan: the test/debug clock is passed to the gated clock for unloading the scan 

chains; 

• 	 Single step: generate one clock pulse at a time using the reference clock to step 

through the execution of the chip; 
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(b) Timing diagram of the clock control unit in different operating modes 

Figure 2.3: Example of a clock control unit and its timing diagram for different 
operating modes 

When none of the control signals are activated, the output of the clock control unit 

should be the same as the functional clock to facilitate normal circuit operations. 

Although there are proposals for improving controllability and observability of 

internal state elements using the scan chain-based techniques during post-silicon val­

idation (e.g. [115]), one will not be able to acquire data in real-time using this 

technique during post-silicon validation. This is because the circuit has to stop and 

then resume its execution when offloading the contents from the scan chains. Since 

logic bugs can sometimes appear in circuit states that may be exercised thousands of 

clock cycles apart [51], it is therefore desirable to maintain circuit execution during 
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scan dumps. Although this can be overcome by double buffering the scan elements, it 

will lead to a substantial area penalty [52]. Even if this penalty would be acceptable, 

data sampling in consecutive clock cycles using only the available scan chains will not 

be possible. This is because multiple clock cycles are required for the data in the shad­

owed buffers to be scanned out before they can be used for capture again. However, 

this ability to acquire data continuously is an essential requirement for identifying 

timing-related problems during post-silicon validation. 

2. 2 Trace-based technique 

The ability to acquire data on internal signals using trace buffers without interrupt­

ing circuit execution is key to enable real-time data acquisition using the trace-based 

technique. It has been used successfully for performing software debug with micro­

processors in the past. This idea is extended for digital circuits by acquiring data 

through the circuit pins using external logic analyzers. However, as design complexity 

increases, circuit performance improves, and logic-to-pin ratio rises, the functionalities 

provided by external logic analyzers are being embedded into the design. 

2.2.1 Software debug using traces 

The goal in software debug is to identify errors in the software. There are two com­

monly used techniques as shown in Figure 2.4. The first technique (Figure 2.4(a)) is 

based on controlling the execution of the program through the use of breakpoints sim­

ilar to the scan chain-based technique discussed previously for post-silicon validation. 

Using this technique, the debug engineer iteratively sets custom breakpoints to stop 

the program and examines the state of the application until the bugs are understood. 

One disadvantage with this technique is the difficulty for debugging real-time systems. 

This is because stopping the system may be insufficient for detecting timing-related 

bugs for which it is important to capture data in consecutive clock cycles. 

An alternative technique (Figure 2.4(b)) is based on real-time software trace, in 

which the sequence of instructions and data accesses of the running application are 
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Figure 2.4: Software debug fl.ow 

captured after a certain triggering condition has occurred. The sampled data can then 

be compared against the expected outcome of the program. Since the execution of 

program during data capture is not interrupted, real-time debugging can be facilitated 

using this software trace technique. This technique is not only essential for debugging 

embedded systems [74], but also for performance analysis of microprocessors [103]. 

During the debug process, the debug engineer will have three parameters that can 

be changed to collect different information about the bug. The three parameters are 

sampling frequency, triggering condition, and the amount of data to be acquired. The 

sampling frequency determines how often data is acquired during debug (e.g., sam­

pling at each clock cycle, or every other cycle). The triggering condition determines 

the point when acquisition of a trace should be started. The amount of data that 

should be acquired is limited by the size of the trace buffer that is used. It should 

be noted that the first two parameters are traditionally determined manually by the 
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debug engineer. On the other hand, the capacity of the trace buffer can be enlarged 

by utilizing automated software trace compression techniques [19, 50, 73]. 

It is interesting to note that the identification of logic bugs during post-silicon 

validation follows a similar approach as real-time debug of software using trace. For 

instance, to understand bugs in a SOC, the debug engineer will also like to acquire as 

much data as possible on the silicon after a specific event has occurred on the chip. 

To provide controllability and observability of internal signals in the silicon during 

the debug process, logic analysis has emerged as a popular solution for debugging 

microprocessors [43, 68, 105, 120], designs on FPGAs [6, 41, 110, 122], ASICs and 

complex SOCs [3, 44, 72]. 

2.2.2 External logic analysis 

When extending the trace-based technique from software debug to digital circuits 

during post-silicon validation, instruments called logic analyzers can be used. It pro­

vides controllability and observability by accessing and monitoring the CUD through 

physical connections to the device pins. Inside the logic analyzer, storage space is 

provided for storing the input patterns to control the CUD, and for depositing the 

sampled data obtained from the chip. As digital circuits become more complex, capa­

bilities of logic analyzers also improve. By using a modular approach in maintaining a 

common mainframe, engineers have the flexibility to specify different test systems and 

apply various algorithms for analyzing the acquired data [39, 40]. Also, by combin­

ing multiple modules in the logic analyzer, simultaneous data acquisition on multiple 

data sources with speed up to lOOMHz, asynchronous timing analysis at lGHz and 

parametric analysis using the oscilloscope module for standalone or built-in analogue 

circuitries can be performed [26]. 

To obtain meaningful data through the limited number of device pins using logic 

analyzers, additional effort is required from the designer to plan ahead on determining 

which control and data signals should be connected to the device pins. In the case 

when there are not enough pins available, data will have to be formatted in order 

to be passed into/out of the CUD for complex designs during post-silicon validation. 
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Figure 2.5: Example of an embedded logic analyzer 

There is another problem when controlling and observing the CUD directly from 

device pins using logic analyzers. As the performance of digital circuits improves, it 

becomes increasingly difficult to drive the device pins at a high operating frequency. 

As a result, the idea of embedding the functionalities of logic analysis on-chip emerges 

[5, 27, 74, 75, 117]. 

2.2.3 Internal/embedded logic analysis 

Integrating the functionalities available in external logic analyzers into the CUD is 

the idea behind embedded logic analysis. An example of an ELA is shown in Figure 

2.5. The ELA can be divided into four components: control unit, trigger unit, sample 

unit, offload unit. 

The control unit monitors the trigger unit, sample unit and offload unit during 

post-silicon validation. It contains one or more finite state machines (FSMs) with 

programmable registers. The programmable registers can be configured using a serial 

interface like JTAG [47] for receiving control instructions. This allows the FSMs 

to control the other units in the ELA to gather different sets of data in multiple 

experiments during post-silicon validation. The trigger unit has one or multiple event 
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Figure 2.6: Debug fl.ow when using the trace-based technique with embedded logic 
analyzer 

detectors and/or event sequencers for detecting desired trigger conditions on the set 

of connected trigger signals. When the trigger conditions are matched, the control 

unit will be notified. To allow different trigger conditions to be detected in multiple 

experiments, the event registers can be configured by the control unit during post­

silicon validation. The sample unit is responsible for acquiring data when it is notified 

by the control unit. To provide real-time observability, the sample unit contains an 

internal trace buffer such as embedded memories that can be clocked at the same 

operating frequency of the circuit. It acquires data on a subset of internal signals 

called trace signals. When the trace buffer is full, the control unit will be notified. At 

which point, the offload unit can be told to initiate data transfer for unloading the 

sampled data. This can be done by using a serializer to reformat the data such that 

low-bandwidth device pins can be used [81]. 

The debug fl.ow for using the trace-based technique with ELA is shown in Figure 

2.6. The first step of this approach is to design the ELA during the chip realization 

process. This includes determining the types of event detectors (bitwise, comparison, 

logical operations) to be used and designing the event sequencers in hardware. Also, 

the decision on which signals should be monitored by the trigger unit as the trigger 

signals, and which signals should be connected to the sample unit as the trace signals 

has to be made at this time [6, 122]. When the circuit manufactured with the ELA 
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is being validated under actual operating conditions, the debug engineer initiates the 

debug cycle by first setting up the trigger conditions. Then, the CUD can be put 

into the operational mode, and the ELA will monitor the trigger events, upon when 

data will be sampled in real-time into the on-chip trace-buffers. The sampled data is 

then subsequently transferred off the chip via a low bandwidth interface to a post­

processing stage [81]. This stage includes organizing the sampled data such that it can 

be fed to a simulator, where the debug engineer can analyze the data to identify logic 

bugs. It has been shown in [95] that a complex design can contain tens to hundreds 

of bugs. As a result, it is very likely that the debug engineer will have to iterate steps 

2 to 7 in Figure 2.6 during debug to gather the additional data for identifying all the 

concerned bugs. Also, since the set of trigger signals and trace signals in the ELA are 

determined at design time, it is not uncommon that the debug engineer will have to 

redesign the ELA and manufacture the modified CUD such that different data can 

be acquired for debug. However, this will require the debug engineer to perform more 

iterations of the entire debug fl.ow, and thus, lengthening the total debug time. 

2.2.4 Basic features in embedded logic analysis 

In the ELA shown in Figure 2.5, the three components: trigger unit, sample unit 

and offload unit, affect the total debug time. This is because these three components 

together control what data, and how much data can be obtained in one iteration of 

the debug fl.ow. The trigger unit helps by identifying only the important data that is 

of interest. The sample unit can be modified to use larger buffers to store more data. 

And the offload unit can employ faster or more trace ports to unload more data from 

the trace buffer, so that storage space can be reclaimed for further data acquisition 

within a single experiment during post-silicon validation. 

To help better utilize the limited storage space in the sample unit for improving 

real-time observability during post-silicon validation, the design of ELA should sup­

port the following basic features: level-sensitive trigger event detection, edge-sensitive 

trigger event detection, event sequencing, sample before triggering, segmentation in 

trace buffer, and streaming of data from trace buffer. 
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Figure 2. 7: Level-sensitive trigger event detection 

Level-sensitive trigger event detection 

Level-sensitive trigger event detection requires the trigger unit to notify the control 

unit in the ELA when the trigger signals reach a specified value in any clock cycle. 

This can be explained using Figure 2.7, where Figure 2.7(a) shows the implementa­

tion of the ELA, and Figure 2. 7(b) gives the timing diagram of the signals during 

triggering, sampling and offloading of data. In this ELA, the event detector can be 

implemented using a simple equality comparator between the event register and the 
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trigger signals. When the value on the trigger signals matches with the event register, 

write enable to the trace buffer is asserted and the write address will be updated by 

the control unit for data sampling as indicated by the grey area in Figure 2.7(b). 

When the trace buffer is full, write enable will be reset, and the sampled data can be 

offloaded serially. It should be noted that if a match is detected between the trigger 

signals and the event register during serial offload, data acquisition will not be initi­

ated in order to prevent the sampled data from the previous match to be corrupted. 

This is illustrated in Figure 2. 7(b) in the grey area when the value on the trigger 

signals matches with the event register for the second time. 

Edge-sensitive trigger event detection 

The implementation of the ELA for edge-sensitive trigger event detection is given in 

Figure 2.S(a). It is very similar to the implementation for level-sensitive trigger event 

detection. However, instead of using an event detector, an edge detector is used in 

this case. Each edge detector should be implemented to monitor one trigger signal for 

two clock cycles to detect the occurrence of a rising/falling edge. When the desired 

edge comes on the trigger signal, data acquisition will be started until the trace buffer 

is full as indicated in the grey area in Figure 2.S(b). After that, sampled data can be 

offloaded serially. 

Event sequencing 

When data acquisition should only start after a sequence of events occurs, the imple­

mentation of ELA in Figure 2.9(a) can be used. In this implementation, the ELA can 

accommodate two events using two sets of event registers and event flags. When the 

first event is detected, the first event flag will be set. When the second event comes, 

the second event flag will be set, and data acquisition will be initiated as illustrated in 

Figure 2.9(b). It should be noted that the second event flag will only be set after the 

previous event in the sequence has been detected as indicated with the first grey area 

on the trigger signals in Figure 2. 9 (b). Also, when a longer event sequence is desired, 

the ELA has to be re-designed with more hardware to accommodate the extra events. 
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Figure 2.8: Edge-sensitive trigger event detection 

Sample before triggering 

The three features explained above are concerned about acquiring data after the 

desired trigger condition has been detected. As a result, the sampled data does not 

show the activities in the CUD that lead to the occurrence of the events. This is why 

the feature sample before triggering can be useful. The implementation and the timing 

diagram of the signals in the ELA that facilitate this feature are shown in Figure 2.10. 

As shown in Figure 2.lO(b), the writing address is continuously incremented while 
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Figure 2.9: Event sequencing 


the write enable is asserted in order to acquire data into the trace buffer before the 

desired trigger condition occurs. Note that the sample unit treats the trace buffer as 

a circular buffer by resetting the write address to the starting address during data 

acquisition. This will overwrite the old data that is captured in the trace buffer with 

the new data that was acquired more recently. When the desired trigger condition 

occurs, write enable is cleared and the address of the last written data will be stored 

into the address buffer. This address can be offloaded together with the sampled data 

30 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

Embedded logic analyzer 

Trigger 
signals 

Trace 
Serial out 

signals 

(a) Implementation of ELA 

Clock~--- --- Lf1_JI_ 
Event register _____v_____ y y 

Trigger signals~ - - ­ -- - 'jJAYJ,~X V XW 

Write enable ---~ 

R 

Write address~ - - -

Address buffer _____x_x_____ 

63 

Figure 2.10: Sample before triggering 

such that when analyzing the offloaded data, the behaviors of the CUD just before the 

occurrence of the trigger event can be observed. It should be noted that this feature 

can be further improved to acquire data sampling before and after the occurrence of 

an event. This can be done by allowing data acquisition to be continued for a short 

period of time after an event occurs. 
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Figure 2.11: Segmentation in trace buffer 

Segmentation in trace buffer 

It is sometimes not necessary to acquire data using the whole trace buffer for the 

occurrence of only one trigger event. As a result, the trace buffer can be divided into 

multiple segments such that less data will be acquired for each event occurrence, while 

multiple sets of data for different appearances of the same event can be acquired as 

illustrated in Figure 2.11. Each time a match is detected between the trigger signals 

and the event register, data will only be acquired for a number of clock cycles defined 

by the user in the control unit. When enough data is stored, write enable will be 
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Figure 2.12: Streaming of data from trace buffer 

reset and the write address will be kept constant. This allows data to be acquired in 

the following segment of the buffer when the desired trigger event occurs next time. 

Streaming of data from trace buffer 

When the trace buffer has an extra read data port that is controlled by a separate read 

address, writing and reading from different addresses can be performed simultaneously 

in the trace buffer. This allows sampled data in the trace buffer to be offloaded while 
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data acquisition is done in different segments of the trace buffer as illustrated using 

the ELA in Figure 2.12(a) and the timing diagram given in Figure 2.12(b). This 

capability to stream data from trace buffer can be beneficial because it helps reclaim 

valuable storage space from the trace buffer. This recovered space can then be used 

to acquire more data in the same experiment. 

It is obvious that employing one or more of the above basic features in the ELA 

can help improve observability of internal signals in the CUD during post-silicon val­

idation. However, in addition to providing more features in the ELA, other solutions 

that target a similar goal have been proposed in the literature. In the next section, 

the solutions most relevant to the contributions of this thesis will be discussed. 

2.3 Related work on embedded logic analysis 

In the ELA shown in Figure 2.5, the three components (i.e., trigger unit, sample unit 

and offload unit) affect the total debug time by controlling what data, and how much 

data can be obtained during post-silicon validation. As a result, different solutions 

that target various components in the ELA for improving observability of internal 

signals in the CUD are proposed. 

2.3.1 Programmable trigger engines 

For FPGAs, the user can redesign the FSM and its surrounding logic in the trigger 

unit based on the desired trigger conditions [122]. Therefore, any trigger events can 

be programmed. This gives the user the ability to only acquire the necessary data in 

each experiment during post-silicon validation. So long as the recompilation time is 

acceptable, full flexibility on designing the ELA can be achieved using FPGAs. 

On the other hand, one will not have the freedom to modify the design with a 

new debug module for each experiment in ASICs. Instead, the debug engineer can 

only reprogram the configuration registers in the control unit and the event registers 

in the ELA shown in Figure 2.5. In this case, the set of trigger events that can be 

programmed is limited by the available hardware in the trigger unit. 
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In order to address this problem for ASICs, [3] introduced the idea of programmable 

trigger engines (PTEs). Instead of providing the full flexibility to redesign the FSMs 

as in an FPGA, small portion of logic with limited programmability called PTE can 

be placed onto the ASIC. The input to the PTEs can be a multiplexer network that 

is connected to different groups of trigger signals. The limited programmability of 

the PTE comes from the fact that it is a specialized instrument that can implement 

only one FSM of certain types. However, it also contains built-in counters, timers and 

comparators, so that it can be configured to detect more complex trigger conditions 

on a different set of signals for each experiment. Due to the smaller size and higher 

performance of the PTE, one can afford to employ one or more PTEs in a design for 

controlling data acquisition in various parts of the CUD simultaneously. The results 

of various PTEs may also be combined in order to describe trigger conditions that 

are based on different parts of the CUD. 

To reduce manual effort being spent during post-silicon validation, automated 

solutions for generating the hardware of the trigger unit based on given trigger con­

ditions were introduced [1, 118]. In [118], the trigger conditions are specified by the 

user using concise descriptions. These descriptions explain the trigger conditions in 

terms of a set of exact behaviors on the selected trigger signals. On the other hand, 

these behaviors are specified by the user through a graphical user interface based on 

a selection of available operations in [1]. The automated solutions then analyze the 

behaviors and translate them into boolean relations which can be implemented using 

the available hardware such as counters and comparators in the PTEs. 

2.3.2 Assertion checkers in hardware 

Another technique to monitor a design to detect incorrect behavior at runtime is 

using assertion. An assertion is a statement about a design's intended behavior (i.e., 

property), which must be verified. The hardware associated with an assertion should 

not be considered part of the design, as its sole purpose is to ensure consistency 

between the intended behaviors and what is actually created in the design (33]. 
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Assertion-based verification has been extensively used during pre-silicon verifica­

tion [33, 111]. The intended behavior specified by an assertion can be described using 

languages like Property Specification Language (PSL) [49] or SystemC [48] using a 

library called Open Verification Library (OVL) [4]. It can also be written in hardware 

description languages like VHDL [84], Verilog [85] and System Verilog [104], which 

can be embedded into the design during simulation in pre-silicon verification. 

The benefits of using assertions for verification is multifold. Since assertions are 

embedded in the code, they help improve observability inside the design. In this case, 

the detection of misbehavior can be caught closer to the source of the bug. Thus, using 

assertions can help pinpoint the time and the location of the bug faster. And this 

eventually leads to reduced debug time and faster time-to-market. Another benefit 

of embedding assertions in a design is that they work simultaneously all the time, 

which is unlike conventional verification methods that require designers to modify 

their test cases to catch various incorrect behaviors. This is especially useful when 

developing and integrating intellectual property (IP) components. This is because 

the IP components can be self-checked by the assertions, and the user of the IP 

can quickly identify whether a problem belongs to the IP itself, or from incorrect 

usage of the IP. In addition, as assertions can be described using generally accepted 

design languages such as System Verilog, they are supported by various commercial 

simulators [22, 78, 106]. 

These benefits from assertions are being recognized and carried towards the pro­

cess of post-silicon validation recently [15, 70, 111]. Since assertions can be described 

using various design languages for detailing the intended behaviors of a design, auto­

mated techniques were introduced to translate and implement assertions in hardware 

[14, 16, 17]. Using assertion checkers in hardware, the CUD can be monitored in 

real-time using real-time input stimuli. When combining assertion checkers and ELA 

as shown in Figure 2.13, the output of the assertions can be used to trigger data 

acquisition in the sample unit. When an assertion is violated, data can be captured 

in real-time traces for failure analysis. 

Although hardware implementation of assertions helps improve observability in­

side the CUD during post-silicon validation, the cost of employing them can be quite 
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Figure 2.13: ELA using outputs of assertion checkers for triggering 

high [34]. This is because it is usually desirable to employ multiple assertions for mon­

itoring different behaviors in various parts of a design. Also, when multiple assertions 

are violated at the same time, there must be a mechanism present to decide which 

data sources associated with the individual assertions should be selected. Thus, addi­

tional silicon area, as well as design effort must be put in when employing assertions 

in hardware for post-silicon validation [34]. 

2.3.3 Trace compression 

In addition to the techniques for improving the trigger units to better filter out 

unwanted data, a number of solutions have been proposed to improve the sample unit 

such that more data can be acquired. Inside the sample unit, the major component 

that consumes most of the silicon real estate is the trace buffer. When more real estate 

is allocated for the inclusion of trace buffers, more data can be acquired and thus, real­

time observability of the CUD is improved. However, as the trace buffers are only 

employed for the purpose of post-silicon validation, there is a constant reluctance 

to invest additional silicon area for large trace buffers. As a result, techniques for 

compressing data in real-time before they are stored into trace buffers are proposed. 
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Trace compression techniques can be divided into two categories: microprocessor 

and random logic. When compressing trace data for microprocessors, [19] discussed 

a technique to implement value prediction-based compression (VPC) algorithms in 

software. [9, 87, 101] provide additional hardware to compress trace data before 

being stored in the trace buffer in real-time. Trace compression techniques for mi­

croprocessors exploit the unique characteristics of running programs. For example, 

the VPC algorithms predict values in program traces and values stored in registers 

by identifying patterns in value sequence from the past executed instructions on the 

processor. If the current value matches with any of the predicted values, a smaller 

encoded symbol for the current value will be stored instead [19]. On the other hand, 

[9] introduces additional hardware into the microprocessor to provide features such 

as trace filtering to eliminate unwanted data from the address and data buses. For 

example, if the data appears on the bus is a sequence of continuous addresses, one 

can filter out the sequential addresses and only store the non-sequential addresses. 

[7, 8] provide two methods for compressing data traces in real-time for random 

logic circuits when using ELA during post-silicon validation. In this case, a real-time 

compressor is added into the sample unit of the ELA as shown in Figure 2.14. In 

[8], dictionary-based lossless compression algorithms are implemented using efficient 

hardware. When the current value can be matched with any of the values from 

the dictionary, the corresponding code will be stored into the buff er. Otherwise, the 

dictionary can be updated with the new value using various replacement schemes such 

as first-in-first-out (FIFO) or least recently used (LRU). In order to further extend the 

amount of data that can be stored on the trace buffer for random logic circuits that 

may have only a small amount of correlations between the data on trace signals, [7] 

introduces a signature-based lossy compression algorithm. Instead of storing every 

data into the trace buffer, their technique uses a multiple input signature register 

(MISR) to combine multiple sample data into a single signature. The generated 

signature will then be compared against a reference signature for failure analysis. 

If the signatures are not matched, a second experiment can be run with a different 

configuration to obtain only the data associated with the failed signature, and thus, 

effectively zooming into the failing data region. However, this technique requires the 
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Figure 2.14: ELA with real-time trace data compression 

debug experiments to be repeatable that when the same input stimuli are applied, 

the same behaviors will be observed in multiple experiments. 

Although using any trace compression technique can increase the number of sam­

ples stored for each trace signal, the amount of signals that can be monitored by the 

trace buffers is still limited. As a result, important information on the signals that 

are not traced will be lost. To address this problem, it is desirable to find a way 

to reconstruct the missing data from those signals using the acquired data and the 

structural information of the CUD. 

2.3.4 Data restoration in combinational circuits 

When using the scan chain-based technique for capturing information in every state 

element and offloading them during scan dump for data analysis, observability of 

the CUD can be improved during post-silicon validation as discussed in Section 2.1. 

However, even if full scan (i.e., all state elements can be scanned) is employed, infor­

mation on signals in the combinational logic between fiip-fiops is not acquired. This 

information may be able to help pinpoint problems in the CUD. To recover the infor­

mation in the combinational logic gates, [44] proposed a technique to automatically 
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reconstruct the value on the signals using the sampled data from the state elements. 

This can be done by exploiting the logic behavior of the boolean gates. 

It is noted that the combinational logic part of any digital circuit can be decom­

posed into a network of two input primitive gates (e.g. AND, OR, XOR, NOT). By 

exploiting the logic behaviors of these logic gates, two principal operations can be 

applied for data restoration. We call them forward and backward operations, and 

they are illustrated in Figure 2.15. These operations are very simple and have been 

discussed before in different perspectives (e.g. for ATPG) [20]. However, the descrip­

tions of the operations are provided here as they are crucial for understanding the 

contribution of the works in this thesis. 

A forward operation is applied to a gate when the input values to the gate are 

known, and it will try to determine the output value of the gate using boolean algebra. 

This is similar to what is normally done in functional simulators. An example is shown 

in Figure 2.15(a) using an AND gate and an OR gate. In the case of an AND gate, 

when one of the inputs is logic 0, the output can be concluded as logic 0 without 

analyzing the other input of the gate. On the other hand, when the output value of a 

gate is known, the backward operation can be applied to determine the values on the 

inputs of a gate. This is similar to backward justifying data in ATPG as elaborated 

with two examples in Figure 2.15(b). When the output of an AND gate is logic 1, 

both of its inputs can be immediately justified to be logic 1. Likewise, the inputs of 

an OR gate evaluate to logic 0 if the output is logic 0. In the case when the forward 

and backward operations are not sufficient, a combined method, during which both 

the known input and output values are evaluated, can be employed to reconstruct 

the missing value. This operation, which is explored for ATPG, is shown in Figure 

2.15(c). In the AND gate, when the output and one of the inputs is known to be 

logic 0 and 1 respectively, the remaining input can be set to logic 0. The similar 

behavior can also be observed for the OR gate. Note that the same principles from 

boolean algebra on the forward and backward operations can also be applied to other 

primitive gates (i.e. NAND, NOR, XOR, XNOR and NOT). It is obvious that the 

principal operations from Figures 2.15(a), 2.15(b) and 2.15(c) will not always be able 

to reconstruct the missing values of a gate. For example, as shown in Figure 2.15(d), 
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Figure 2.15: Principal operations for data restoration 

when the output and the known input of an AND gate are both logic 0, there is 

insufficient information to conclude the missing value on the unknown input. 

By applying the principal operations recursively, the data in the state elements can 

be forward propagated or backward justified among the logic gates in a circuit. This 

allows information to be reconstructed on signals in the combinational circuit. This 

recursive approach for data restoration using the principal operations is illustrated in 

Figure 2.16. In this figure, a 2-to-1 multiplexer is used as an example. The inputs s, 

wO and wl, as well as the output J of the multiplexer are from flip-flops, which are 

scanned. However, the signals a, band c in the combinational logic are not sampled. 

Using the forward operation and the data from the input signals, the value of signal 

a can be found to be 0. Using this new value on a, the forward operation can be 

applied again to conclude the value of b is 0 through the AND gate. The value of c 

can also be obtained from input wl to be 0 using the same operation. On the other 

hand, the values of b and c can also be backward justified using the data from output 

f. The value of a can also be reconstructed using the combined operation with the 

value of wO and the new value of b. 

It can be seen that when full scan is employed for the CUD, the values of all the 

signals can be reconstructed through multiple paths in the combinational logic since 

the inputs and outputs of the circuit are known. As a result, [44] introduced the 

idea of identifying the essential signals in the circuit. When only the essential signals 

are scanned, data from these signals can be used to restore values on all the other 
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wO = 1 
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w1 = 0 -------1 
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Figure 2.16: Example for data restoration in combinational logic 

signals during data restoration. This maintains full observability of the design, while 

reducing the amount of data to be offloaded since less scan flip-flops will be employed. 

One problem associated with the scan chain-based technique for post-silicon vali­

dation is the inability to capture data over consecutive clock cycles during post-silicon 

validation. This limits the acquisition of data in real-time for the identification of 

timing-related problems. As a result, the trace-based technique may be used for sam­

pling data in real-time using trace buffers in the ELA as discussed in Section 2.1. In 

this case, the technique proposed in [44] will not be able to reconstruct real-time data 

for internal signals in multiple clock cycles. This is because their technique is only 

able to restore data for signals within the combinational logic of the CUD. 

2.3.5 	 Centralized/distributed trace buffers for core-level data 

acquisition 

The development of SO Cs has evolved based on the design reuse philosophy, where two 

parties called core providers and system integrators are involved [53]. Core providers 

create pre-designed and pre-verified building blocks known as embedded cores, and 

system integrators can reuse these cores together with custom user-defined logic to 
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create SOCs [38]. As design complexity continues to increase, in order to include 

additional functionalities to satisfy consumers' needs, it is expected the number of 

cores in an SOC will keep on rising in the foreseeable future [11, 123]. 

Core-based design SOCs introduce new challenges in using ELA during post-silicon 

validation [42]. This can be illustrated using Figure 2.17. In this figure, a generic 

DFD architecture for using the trace-based technique on an SOC with four cores is 

given. As pointed out by Label 1 in the figure, trace buffers are used to capture 

debug data at the operating frequency. Also, trigger units are employed to detect 

the occurrence of specific events and notify the sample units when data should be 

sampled [6, 57, 122]. The sampled data can then be offloaded through a low-speed 

trace port for data analysis. When only one core is present in the SOC, the single 

data source can occupy one trace buffer in the sample unit continuously (Label 2). 

To deal with concurrent activity in multiple cores in SOCs, the idea of distributed 

triggering was discussed in [3, 90]. By placing trigger units, which are based on 

assertion checking and/or advance triggering conditions [17] (Label 3), in different 

parts of a design, different cores can be monitored simultaneously. This concept was 

put into practice in the Cell Broadband Engine, which has nine processor cores on a 

single chip [93]. Note, more advanced features, such as cross-triggering (Label 4) can 

be used [72]. Whenever the specified trigger event occurs, [93] employs a centralized 

trace buffer to store data (Label 5). In this case, when multiple trigger events occur 

simultaneously in multiple cores, it is unclear how data from different sources of the 

circuit can be acquired at the same time. As a result, the idea of static allocation 

of trace buffers among data sources are discussed in [76, 77, 98] (Label 6). However, 

since the trace buffers can only sample data from their dedicated sources, one may 

not be able to efficiently utilize the available storage space in all the trace buffers. For 

instance, consider that Core 1 in Figure 2.17 generates sample requests frequently, 

while the other cores are rarely triggered. Since data from Core 1 can only be sampled 

using Trace buffer 1, even if the other buffers have storage space available due to 

the inactivity of other cores, data from Core 1 will still be lost when Trace buffer 1 

is full. At the end of each experiment, the trace buffers can be offloaded through a 

trace port such as the JTAG interface (Label 7) for post-processing. 
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Figure 2.17: DFD architecture for trace-based technique on core-based SOCs 
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2.3.6 System-level debug techniques 

In addition to gathering data at the core level, challenges also arise when debugging 

multi-core SOCs at the system level. For instance, since embedded cores communicate 

with each other during normal operation, gathering data for one core at a time will not 

be able to help tackle problems related to the entire system. In this case, concurrent 

data sampling on multiple cores, as well as monitoring the interactions among cores 

is crucial for system-level debug. However, it is very difficult to acquire and analyze 

such hugh amount of data. As a result, techniques such as trace qualification, trace 

filtering and trace compression can be incorporated into the debug architecture. These 

techniques are utilized in the debug platform introduced in [102] for structured ASICs, 

while [112] proposed another architecture for network-on-chip (NOC) designs. 

In [102], dedicated on-chip instrumentation ( OCI) blocks are inserted into the 

individual component cores. These OCI contain different trigger units tailored to the 

specific core. They can also include small OCI embedded trace for data sampling from 

the attached core. These embedded traces can then be channeled to a bigger trace 

memory located internally (on-chip memories) or externally (off-chip memories). 

The platform in [112] focuses on debugging the interactions between cores m 

NOCs. In addition to individual core trace modules used for buffering data within 

the core, they employ core-level debug probes (DPs) in between every core and the 

network interface. The DPs will then monitor and record the transactions between 

cores at real-time. These components are controlled by a system-level debug agent 

(DA) using off-chip debug controller for data acquisition and data offloading through 

the available trace ports. 

It should be noted that these system-level debug techniques suffer the same prob­

lem as what was mentioned in the previous subsection for core-level data acquisition 

using distributed trace buffers. This is because these techniques employ individual 

trace modules dedicated for each core or for interconnect between cores. In this case, 

if the amount of data generated for each trace module is not balanced, it is unclear 

how extra storage space can be allocated from other trace buffers to store the excess 

amount of data generated by the separate core. As a result, storage space on all the 

trace buffers are not utilized efficiently. 
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2.3. 7 Concluding remarks on related works 

To improve real-time observability of internal signals, ELA has become one of the 

most widely studied DFD techniques. Although recent advancements in the design 

of trigger units help better utilize the limited storage space in the trace buffer by 

identifying only the wanted data, the implementation of these complex trigger units 

results in a high investment in silicon area. As a result, it is desirable to develop 

efficient hardware that is still able to support complex trigger conditions. 

To better utilize the trace buffer in the ELA, trace compression can be used. After 

the sampled data is offloaded, it can be used to restore information on signals that 

are never traced. However, the existing techniques can only reconstruct data within 

the combinational logic of the CUD. 

The set of data one can acquire using ELA during post-silicon validation depends 

on which signals are connected to the trace buffer. This decision on how the trace 

signals should be wired in the ELA has to be made at design time. However, there 

are no existing techniques available to recommend which signals should be traced. 

When multiple data sources are presented on a SOC, using one centralized trace 

buffer results in loss of information when more than one trigger unit request data 

acquisition simultaneously. Although using distributed trace buffers can be used to 

address this problem, the connections between data sources and trace buffers are 

predefined during design time. As a result, one may not be able efficiently utilize all 

the available space in the trace buffers during post-silicon validation. 

In the remaining chapters of this thesis, the four contributions focus on the prob­

lems related to different challenges when using ELA during post-silicon validation 

will be discussed. 

46 




Chapter 3 

Resource-efficient and 

programmable trigger units 

The decisions on when to acquire debug data during post-silicon validation are de­

termined by trigger events that are programmed into on-chip trigger units. In this 

chapter of the thesis, we first show how trigger events are mapped onto available hard­

ware using examples in Section 3.1. We then investigate how to design trigger units 

that are both resource-efficient and runtime programmable. To achieve these two 

goals, we introduce new architectural features in Section 3.2, as well as algorithms for 

automatically mapping trigger events onto trigger units in Section 3.3. Experimental 

results for area analysis on the proposed architecture and analysis on the algorithm 

for trigger event mapping are given in Section 3.4, followed by concluding remarks in 

Section 3.5. 

3.1 Preliminaries 

For FPGAs, the debug flow using ELAs shown in Figure 3.1 can be employed [6, 122]. 

The user can redesign the trigger unit based on the desired trigger events. Therefore, 

any trigger event can be programmed, so long as the recompilation time is acceptable. 

On the other hand, one will not have the freedom to modify the design with a new 

debug module for each debug experiment in ASICs. Instead, the debug engineer can 
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Recompile and then program the design 
with the new debug module 

Put the design in functional mode until 
trigger event occurs 

Offload and analyze the acquired data 
resulting from the desired trigger event 

If more data is required 

Figure 3.1: Debug flow in FPGAs 

only reprogram the event registers in the trigger unit of the ELA shown in Figure 

2.5. In this case, the set of trigger events that can be programmed during post-silicon 

validation is limited by the available hardware in the trigger unit. 

3.1.1 Trigger event mapping with comparators 

Figure 3.2 shows how a trigger event is mapped to a trigger unit with two comparators. 

The trigger event in Figure 3.2(a) is described by the user as a logic condition on the 4­

bit trigger signals TS. The trigger unit given in Figure 3.2(b) monitors TS using two 

comparators. Using this trigger unit, the desired trigger event can be programmed 

into the event registers using the values in Figure 3.2(c). These values will configure 

the trigger unit to behave according to the timing diagram shown in Figure 3.2(d). 

When the value on TS is between 2 and 5 inclusive, the output of the trigger unit z 

will be active. This signals the control unit in the ELA to initiate data acquisition. 

3.1.2 Trigger event mapping with equality units 

When the provided hardware in the trigger unit is changed, the same trigger event 

will be mapped differently onto the event registers. This is shown in Figure 3.3 using 
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2:S::TS:s;5 

(a) Desired trigger event 

Trigger signals TS 

z 
(b) Trigger unit with two comparators 

event_regl 0010 
event_reg2 0101 

(c) Mapped trigger event 

Clock 

event_reg1 2 
~----------------------------~ 

event_reg2 5 
~----------------------------~ 

Trigger signals TS 

z_______, 

(d) Timing diagram 

Figure 3.2: Example of trigger event mapping with comparators 
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a trigger unit with equality units. The trigger unit given in Figure 3.3(b) monitors 

TS using two equality units. For each equality unit, a mask register and an event 

register can be programmed at runtime to monitor one prime implicant on TS. For 

instance, if the value in the mask register is 0011 and the value in the event register 

is 0010, the prime implicant XXlO, where X represents a don't care value, will be 

monitored by the equality unit. In this case, the equality unit can be used to monitor 

four minterms {0010, 0110, 1010, 1110}. Thus, the implementation of this equality 

unit may become more resource efficient than using the comparators when the set of 

values that need to be monitored are disjointed. 

In this example for mapping trigger events onto equality units, we use the same 

trigger event as the one used in the previous example with comparators and is shown 

in Figure 3.3(a). When expressing this trigger event using logic conditions, the set of 

minterms that is covered by the event is: {0010, 0011, 0100, 0101}. We call this the 

ON-set minterms. This is because when any one of the minterms in the set is detected 

by the equality unit, the output z should be activated to initiate data acquisition. 

These minterms can be formulated into the following logic function with four input 

variables named {A, B, C, D}: 

z =A.BCD+ A.BCD+ A.BCD+ A.BCD 

This logic function can then be minimized using known two-level logic synthesis tech­

niques [79]. For illustrative purpose, Figure 3.4 uses the Karnaugh map (K-map) 

for performing the minimization. By minimizing the number of prime implicants in 

the logic function, the number of equality units required to describe the logic func­

tion can also be reduced. In this case, the resulting ON-set prime implicants are 

{OOlX, OlOX}, which gives the minimized logic function 

z =ABC +ABC 
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2::;rs::;s 
(a) Desired trigger event 

Trigger signals TS 

z 
(b) Trigger unit with two equality units with masking 

maskl 1110 event_regl 0010 
mask2 1110 event_reg2 0100 

( c) Mapped trigger event 

Clock 

mask1 1110 

event_reg1 0010 

mask2 1110 

event_reg2 0100 

Trigger signals TS 

z 

(d) Timing diagram 


Figure 3.3: Example of trigger event mapping with equality units 
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B 
prime implicant 2: 01 OX 

~~~- minterm 3: 0100 
M-l::H--H+-- minterm 4: 0101 

lf:!tt:~=:!t-- minterm 2: 0011 
~~i++--+++- minterm 1 : 001 O 

prime implicant 1: 001 X 

Figure 3.4: Example on minimization of logic function using K-map 

These two prime implicants can then be monitored by the two equality units using 

the mask registers and event registers with values shown in Figure 3.3(c). And the 

trigger unit should behave according to the timing diagram given in Figure 3.3(d). 

For more complex trigger events, more equality units may be required in the 

trigger unit. Consider the following trigger event: 2 ::; TS ::; 5 or TS = 10, where 

the values on the 4-bit TS signal are given in the unsigned decimal format. For this 

event, three equality units will be required to detect the three prime implicants OOlX, 

OlOX, and 1010 in order to cover all the minterms of TS in the ON-set. 

When performing post-silicon validation in ASICs, one will not be able to redesign 

the trigger unit to support any custom trigger events. If only the trigger unit shown in 

Figure 3.3(b) is given, the question is how to setup the mask and event registers in the 

two equality units to detect the three prime implicants OOlX, OlOX, and 1010 on TS? 

There are two ways to tackle this problem and we define them as under-triggering 

and over-triggering. 

3.1.3 The concept of under-triggering and over-triggering 

Under-triggering 

For under-triggering, multiple debug experiments are required. Using the trigger unit 

from the previous example, the timing diagram of the two debug experiments for the 
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Clock 

mask1 1110 

event_reg1 0010 

mask2 1110 

event_reg2 0100 

Trigger signals TS 

z 

(a) Debug experiment 1 

Clock 

mask1 1111 

event_reg1 1010 

mask2 1111 

event_reg2 1010 

(b) Debug experiment 2 

Figure 3.5: Timing diagram for under-triggering 

trigger event 2 :::; TS :::; 5 or TS = 10 is shown in Figure 3.5. First, the mask and 

event registers are programmed in order to cover the first part of the desired trigger 

event (2 :::; TS :::; 5) as given in Figure 3.5(a). In the next debug experiment, the 

registers are re-programmed to cover the remaining conditions as illustrated in Fig­

ure 3.5(b). Using under-triggering, all the debug data for the complex trigger event 

can be obtained in multiple iterations of the same debug experiment by reconfiguring 

the trigger unit. A key requirement for under-triggering to work is to have repeat­

able debug experiments, which is not always the case. For example, asynchronous 

peripherals may cause different execution traces in different debug experiments [8]. 

Trigger signals TS 

z 
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Clock 

mask1 0110 

event_reg1 0010 

mask2 1110 

event_reg2 0100 

Trigger signals TS 

z 

Figure 3.6: Timing diagram for over-triggering 

Over-triggering 

Alternatively, one can setup the mask and event registers with the following values 

to over-trigger the design: 

maskl 0110 event_regl 0010 

mask2 1110 evenLreg2 0100 

Using this configuration, the prime implicants XOlX and OlOX are monitored by the 

trigger unit . In this case, the trigger will happen not only for TS = { 0010, 0011, 0100, 

0101, 1010} (the ON-set minterms) , but also for the false triggers (e.g., TS= 1011, 

which belongs to the OFF-set) as illustrated in the timing diagram from Figure 3.6. 

Hence, when a false trigger occurs, the data which has been acquired in the trace 

buffer will be of no interest. Therefore, we propose a solution that enables over­

triggering while reducing the impact of false triggers. The key to our approach is to 

identify the false triggers in real-time without stopping the debug experiment. When 

false triggers are detected (using resource-efficient equality units), trace buffer space 

wasted by false triggers can be reclaimed for usage in the same debug experiment. 
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3.2 	 New architecture of a resource-efficient pro­

grammable trigger unit 

Before we introduce the proposed architecture, we re-iterate the three types of trigger 

events that are commonly used during post-silicon validation as discussed earlier in 

Section 2.2.4 of the thesis. 

Level sensitive trigger events - The example shown in Figure 3.3 is a typical 

scenario where level sensitive trigger events are involved. When the trigger signals 

reach a specified value in any clock cycle, the trigger unit will notify the debug control 

unit to initiate data acquisition. In this case, event detection happens only in one 

time frame. 

Edge sensitive trigger events - It is also common to initiate data acquisition 

when a transition on the trigger signals is detected. For example, it may be desirable 

to acquire data when one of the trigger signals have a rising or falling edge. In this 

case, the event detector has to be capable of monitoring the trigger signals in two 

consecutive time frames in order to identify the signal transitions. 

Trigger event sequencing - When sequencing is used, data acquisition starts 

when a sequence of trigger events occurs in a predefined order. For example, when 

debugging a design that contains a control bus, only when the sequence of events that 

define the bus protocol has occurred debug data needs to be acquired. To support 

sequencing, the trigger unit has to monitor the trigger signals in multiple time frames 

as defined by the sequence length. 

Figure 3. 7 shows the trigger unit that supports the detection of level sensitive 

trigger events with real-time trigger analysis. By programming the mask and event 

registers in the k equality units, k prime implicants can be monitored on the n­

bit trigger signals TS simultaneously. Whenever the output of any equality units 

becomes 1, the FSM will be notified and debug data will be acquired in a segment of 

the trace buffer indicated by the write address on one of the two ports of the trace 

buffer. To detect complex trigger events that may need more than k equality units, 

the mask and event registers can be programmed to also cover some minterms from 

the OFF-set (in addition to all the ON-set values) to facilitate over-triggering. 
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Since over-triggering the debug module during post-silicon validation may risk fill­

ing the trace buffer only with data associated to the OFF-set minterms (as discussed 

in the previous section), real-time trigger analysis is performed in the proposed archi­

tecture. Whenever false triggering is identified, data acquisition is stopped and the 

segment of trace buffer used to store the corresponding debug data will be marked 

as invalid and thus, be reused for future trigger events. This is illustrated by the 

examples given in Figure 3.8. In these examples, the equality unit is setup to monitor 

the prime implicant {OXXX}, which covers the ON-primes {OOXX, OllX} as well 

as the OFF-prime {OlOX}. When the value on TS is 1000 as shown in Figure 3.8(a), 

it does not match with the programmed prime implicant, and thus, will not activate 

the output of the equality unit. In Figure 3.8(b), the value on TS becomes 0111, 

which belongs to one of the ON-primes. As a result, the output z is activated. When 

the value on TS comes up to be 0101, the output z is also activated, since it matches 

with the programmed prime implicant on the equality unit. However, the output 

of the trigger analyzer will also be activated since the minterm 0101 belongs to the 

OFF-prime {OlOX}, which is retrieved from a designated portion of the trace buffer. 

This concludes it is a false trigger, and thus the sample address of the trace buffer is 

reverted so that the storage space can be reused later. The real-time trigger analysis 

is done by employing only one additional equality unit, as shown in the lower right 

corner of Figure 3.7. 

Whenever data acquisition starts, the value on TS corresponding to the particular 

trigger event will be buffered (using the evenLbuf_XX from Figure 3. 7). Concurrently 

with data acquisition, the FSM will retrieve the prime implicants of the OFF-set 

(called 0 FF primes) one at a time from the trace buffer. The buffered event is 

checked against each OFF prime sequentially by the additional equality unit. False 

triggering is concluded if the buffered TS matches any of the OFF primes. At this 

point, data acquisition may be interrupted if there are no other triggers in the event 

buffers. On the other hand, if the buffered TS does not match any of the 0 FF 

primes, a valid trigger will be concluded and data acquisition will not be interrupted. 

However, any further triggering will be ignored until a segment of trace buffer has 

been filled in order to preserve the sampled data of the related trigger. 
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On-primes: TS = OOXX or TS = 011 X 

Off-prime: TS = 01 OX 


TS= 1000 
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Over-triggerTS =OXXX Trace buffer 
analyzer 
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Figure 3.8: Example of trigger event analysis 
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Level of event buffers (m) = 2 Missed trigger 
Number of clock cycle between triggers (F) = 3 

Number of OFF-primes (N) = 5 

~~~..:=.::::....i 
clock cycle O 1 2 3 4 5 6 7 

Figure 3.9: Example of trigger event being missed 

As will be discussed in the next section, the OFF primes can be computed off-line 

when the trigger event is specified. Then they are uploaded in an unused region in 

the trace buffer at the same time when the trigger unit is programmed at runtime. 

The trigger analysis for one trigger event is done in multiple clock cycles, because 

the OFF primes are checked sequentially (they are extracted from the trace buffer 

one at a time). Since valid trigger events can occur in consecutive clock cycles as 

they are checked simultaneously using k equality units, m levels of event buffers 

may be needed for storing individual trigger events for trigger analysis. However, 

no matter how many levels of event buffers are employed, so long as the number of 

OFF primes that need to be checked (NoFF-primes) is larger than the number of clock 

cycles between consecutive trigger events (Ftrigger), eventually the event buffers will 

be filled and further trigger events will be missed. This is illustrated in Figure 3.9. In 

this example, two levels of event buffers are employed (m = 2). The number of OFF 

primes that need to be checked is five (NoFF-primes = 5). But the number of clock 

cycles between consecutive trigger events is three (Ftrigger = 3). This means that a 

new trigger will come at clock cycles 0, 3, 6 and 9. Each of these new triggers has to 

be buffered for five clock cycles to perform false trigger analysis on five OFF primes. 

This means only one buffer will be emptied every five clock cycles (i.e., clock cycles 5 

and 10 in Figure 3.9). As a result, when the fourth new trigger arrives at clock cycle 

9, the two event buffers will be full and this trigger will be missed. 

There are three parameters one can manipulate to prevent trigger events to be 

missed using the proposed architecture. Since one cannot control how often do trigger 
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events occur ( F _trigger) during post-silicon validation, many levels of event buffers 

(m) can be used. However, this will increase the area of the trigger unit. As a result, 

in the next section, we introduce an efficient algorithm for mapping trigger events 

with a large number of ON primes to the limited number of equality units with only 

a small number of OFF primes (NoFF-primes)· This ensures trigger analysis can be 

done in a low number of clock cycles. 

In order to support edge sensitive trigger events, two equality units can be used 

to detect one type of transition on the trigger signals. For example, to detect a rising 

edge on the first bit of TS, the following values can be programmed into the trigger 

unit: 

maskl 1000 evenLregl 0000 

mask2 1000 evenLreg2 1000 

For this purpose, the FSM should be modified to monitor the two equality units 

in two consecutive clock cycles for detecting edge sensitive trigger events. However, 

the hardware for trigger analysis will not be modified. This is because the sequence 

of two events for edge detection are correlated to each other (i.e., the occurrence of 

the first event is guaranteed when an edge is detected upon the arrival of the second 

event). As a result, false triggering can be concluded only by checking the value of 

TS of the second event with the OFF primes. 

For trigger event sequencing, the equality units can be divided into g groups to 

detect g distinct events in an event sequence as shown in Figure 3.10. In this case, 

each event group will require m levels of event buffers for storing trigger events as­

sociated with the individual group. Also, a counter with g programmable registers 

is added to indicate when each event is expired after it is detected. This is useful 

for event sequences, such as a bus protocol, where each event in the sequence should 

come within a specific interval. Finally, the FSM will be modified to monitor dif­

ferent groups of equality units in different timeframes, as well as for retrieving the 

appropriate OFF primes to identify the false event sequences. 
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3.3 Algorithm for trigger event mapping 

As mentioned previously, it is important to include only a small number of OFF 

minterms when mapping the ON primes onto the equality units during over-triggering. 

This prevents all the event buffers to be filled and valid trigger events to be missed. 

As a result, an efficient algorithm for this purpose is proposed in Algorithm 3.1. 

Algorithm 3.1 Trigger event mapping algorithm 

1: Perform logic minimization on ON implicants to get ON primes 
2: LargePrimes = GetLargerPrimes(ON primes) 
3: OldPrimes =ON primes 
4: while (NumOldPrimes > NumEqUnit) do 
5: CurPrime = Get Best Gain( LargePrimes) 
6: while (Cur Prime = NULL) do 
7: LargePrimes = GetLargerPrimes(LargePrimes) 
8: CurPrime= GetBestGain(LargePrimes) 
9: end while 

10: Put CurPrime into OldPrimes 
11: Perform logic minimization on OldPrimes to get NewPrimes 
12: if (NumNewPrimes >= NumOldPrimes) then 
13: Backtrack over line 5 to new choice of CurPrime 
14: else 
15: OldPrimes = N ewPrimes 
16: U pdateOffl\1intermList( CurPrime) 
17: end if 
18: end while 
19: Perform logic minimization on 0 FF minterms to get 0 FF primes 
20: return NewPrimes and OFF primes 

The inputs to the algorithm include the width of trigger signals (TSWidth), the 

number of equality units in the trigger unit (NumEqUnit), and the minterms in 

the ON set (ON minterms) from a trigger event. When the algorithm finishes, it 

returns the set of primes ( N ewPrimes) which gives information about how the mask 

and event registers should be programmed for the particular trigger event, and the 

set of OFF primes (OFF primes), which should be stored in the trace buffer for 

trigger analysis. The algorithm starts by first performing logic minimization on the 

ON minterms that described the trigger event, in order to obtain the ON primes (line 
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ON primes: 
001X 010X X010 

(a) K-map of ON primes 

prime: gain 
X01X:2 
OX1X:O 
OOXX: 0 

prime: gain 
XX10: 0 
XOXO:O 
X01X:2 

Solution: 010X, X01X 

(b) K-maps of 1st set of larger primes with OFF minterms 

OlOX, XOlX 

(c) Solution 

Figure 3.11: Example of mapping three ON primes to two equality units 

1). Using these ON primes, larger primes can be obtained by gradually increasing 

the number of don't cares (X) in each ON prime (function GetLargerPrimes in line 

2). This process of enlarging primes can be explained in Figure 3.11, using K-maps 

for illustrative purposes. 

In Figure 3.ll(a), the K-map of the three ON primes are shown for the desired 

trigger event 2 :::;; TS :::;; 5 or TS = 10. For each of these ON primes, three new primes 

that cover some ON minterms and their adjacent OFF minterms can be obtained 

by injecting one don't care (X) on each bit of one ON prime, as shown in Figure 

3.ll(b). A gain is then calculated by subtracting the number of OFF minterms 

from the number of ON minterms covered by each of the enlarged primes. Note, 
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when creating the enlarged primes, the same prime may result from different ON 

primes (e.g., the prime XOlX in Figure 3.ll(b)). These duplicated primes should be 

eliminated to reduce runtime. When mapping the three ON primes in Figure 3.ll(a) 

to two equality units, the final primes shown in Figure 3.11 ( c) should be used to cover 

the ON minterms {0010, 0011, 0100, 0101, 1010} and one OFF minterm 1011. 

When the number of ON primes (NumOldPrimes) exceeds NumEqUnit, Al­

gorithm 3.1 iteratively (line 4) tries to replace one original prime with one of its 

associated enlarged primes (line 10). To ensure that only a small number of OFF 

minterms is included, Algorithm 3.1 will greedily select an enlarged prime that has 

the highest gain as a candidate (function GetBestGain in line 5). It then performs 

logic minimization with the chosen prime and the original primes to see if they can 

be reduced (line 11). If the number of new primes (NumNewPrimes) is not re­

duced, the choice will be reverted (line 13) and Algorithm 3.1 will repeat and try 

another enlarged prime. Otherwise, the chosen enlarged prime will be included and 

the covered OFF minterms will be identified (function UpdateOff MintermList in 

line 16). When Algorithm 3.1 has tried all the enlarged primes in the candidate list, 

it will further enlarge the existing primes by injecting more don't cares to obtain new 

primes that cover more OFF minterms (lines 7-8). Finally, when all the new primes 

can be fit into the available equality units, logic minimization will be performed on 

the newly included OFF minterms to obtain the OFF primes (line 19). 

One interesting point to note is that in [57], an algorithmic solution was intro­

duced to identify the ON minterms on the available trigger signals from a trigger event 

that is described by signals that are not connected to the trigger unit. Afterwards, 

they showed how the problem of mapping this set of ON minterms to the available 

equality units by adding OFF minterms can be solved by quantified boolean formu­

lation (QBF). However, their QBF solution does not scale well when the number of 

available trigger signals increases. By replacing their QBF solution with our trigger 

event mapping algorithm, which has a faster runtime, one can set up the equality 

units to trigger on events from signals that are not connected to the trigger unit. 
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Figure 3.12: Area investment analysis when varying the number of equality units 

3.4 Experimental results 

In this section, we discuss the area for the control features in the new architecture of 

the resource-efficient trigger unit in SubSection 3.4.1. The results on analyzing the 

proposed trigger mapping algorithm is given in SubSection 3.4.2. Finally, SubSection 

3.4.3 shows the miss trigger analysis when employing the proposed solution. 

3.4.1 Area analysis on the proposed architecture 

Figure 3.12 shows the area of the trigger units with 4, 8, 16, 24 and 32 equality units 

with 4, 8 and 16 trigger signals, when using 7 levels of event buffers. For trigger units 

with event sequencing, one equality unit is assigned to one group of trigger events in 
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the sequence (i.e. g = k from Figure 3.10). In our experiments, a third party tool 

[108] is used to synthesize our designs for area estimation. 

It can be seen that when the number of equality units increases, the area of the 

trigger unit rises accordingly. However, the growth of area for the trigger units that 

support event sequencing is worse than trigger units that support only level sensitive 

trigger events. This is because when supporting event sequencing in our experiments, 

increasing the number of equality units means the number of trigger event groups 

in an event sequence also grows (i.e., since g = k as mentioned). Thus, when more 

equality units are used, more event buffers will also be employed. Also, the area of 

the trigger units that support only level sensitive trigger events are smaller than the 

trigger units with event sequencing for the same number of equality units. This is 

due to the addition of the expiration counter and event buffers for each trigger event 

group in the sequence, and the increased complexity of the FSM. When the number 

of trigger signals rises, the size of the trigger units grows accordingly. This is because 

increasing the number of trigger signals requires the width of all registers and equality 

units to be enlarged. 

When the level of event buffers increases for trigger units with 32 equality units, as 

shown in Figure 3.13, the area of the trigger units that support level sensitive trigger 

events is only affected slightly. This is because varying the level of event buffers for 

this type of trigger unit only requires a few buffers to be added together with a small 

modification to the FSM for controlling these buffers. However, for trigger units with 

event sequencing, the effect of the expansion in level of event buffers is multiplied 

with the number of trigger event groups in the sequence. 

3.4.2 Analysis on the proposed algorithm 

Table 3.1 gives the results for the proposed trigger event mapping algorithm when 

mapping trigger events with different numbers of ON primes with varying number of 

equality units when the number of trigger signals is eight. In our implementation of 

Algorithm 3.1, the logic minimization tool espresso [79] is employed, and the program 

is written in ANSI C and executed on a computer with dual-Xeon processors at 2.4 
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Figure 3.13: Area investment analysis when varying the level of event buffers 

GHz with lGB of RAM. In the column labeled Area (%),the area of the trigger unit 

that supports only level sensitive trigger events with four equality units and seven 

levels of event buffers is used as the basis for showing the tradeoff between increasing 

the number of equality units and the growth in number of OFF primes for trigger 

analysis. Note, when the number of ON primes is smaller than or equal to the number 

of available equality units, no OFF primes will be required. 

From Table 3.1, it can be seen that the number of OFF minterms grows as the ratio 

between the ON primes and equality units increases. However, when the number of 

OFF minterms decreases, the number of OFF primes may not be reduced accordingly 

(e.g., mapping trigger events with 28 and 33 ON primes onto 4 equality units). This 

is because even if less OFF minterms are used, if they cannot be grouped together, 
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Table 3.1: Results for analyzing the trigger event mapping algorithm 
Num of 
EQ unit 

4 

8 

16 

24 

32 

Area 
3 

100 

134 

202 

269 

338 

Num of 
ON primes 

8 
13 
18 
23 
28 
33 
13 
18 
23 
28 
33 
18 
23 
28 
33 
28 
33 
33 

Num of 
OFF minterms 

13 
58 
54 
85 
96 
79 
6 
14 
52 
50 
55 
2 
5 
13 
25 
2 
7 
1 

Num of 
OFF primes 

5 
10 
13 
20 
24 
26 
4 
7 
17 
19 
23 
2 
4 
8 
15 
2 
7 
1 

Runtime 
(sec) 
0.02 
0.05 
0.21 
0.22 
0.26 
0.26 
0.03 
0.03 
0.20 
0.22 
0.22 
0.02 
0.02 
0.05 
0.06 
0.02 
0.06 
0.01 

the number of OFF primes can increase. The main point here is that with a relatively 

low set of false triggers (related to the number of OFF primes), which are checked 

in real-time on-chip, we can afford implementing trigger units with less comparators 

(and hence less area). The key to success, however, is a fast heuristic algorithm that 

can determine the OFF primes as soon as the trigger conditions are specified. 

3.4.3 Miss trigger analysis for the proposed solution 

When employing the proposed resource-efficient programmable trigger units, false 

triggers are analyzed in real-time in order to avoid storage space in the trace buffer 

being wasted. However, since false trigger analysis is done sequentially, when there 

are more than one OFF prime needing to be checked, multiple clock cycles will be 
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Figure 3.14: Miss trigger analysis when varying the number of equality units with 
frequent triggering 

required to determine the validity of each trigger event. As a result, if a new trigger 

event comes when the trigger analysis engine is busy, this new event will have to be 

stored in the event buffer. However, when the event buffers are full, this new event 

will have be discarded. In order to determine how often trigger events will be missed, 

random simulation experiments are performed and their results are analyzed. 

Figures 3.14 and 3.15 show the results on miss trigger analysis when the number of 

equality units increases. In these experiments, three levels of event buffers are used. 

It should be noted that the number of trigger events that will be missed during post­

silicon validation depends not only on the configuration of the proposed architecture, 

but also on the input stimuli and the desired trigger conditions, which invoke various 

trigger events at random point of time during a debug experiment. To account for 
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Figure 3.15: Miss trigger analysis when varying the number of equality units with 
non-frequent triggering 

this randomness, in these experiments, three different sets of trigger conditions with 

32, 64 and 128 ON minterms are used. There are five different trigger conditions with 

varying number of OFF minterms in each of these sets. Also, for each condition, 10 

sequences of trigger events are randomly generated over the period of 10 million clock 

cycles. The number of trigger events that are missed due to overflow of event buffers 

is counted for each of these sequences by simulating the application of the trigger 

sequence onto each configuration of the proposed architecture. This number is then 

divided by the total number of trigger events in the sequence to obtain the miss rate. 

The calculated miss rates for all the trigger sequences are then averaged to obtain 

the overall miss rates in the figures. For Figure 3.14, an average of four clock cycles 

between the occurrence of two consecutive trigger events is used to simulate frequent 
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Figure 3.16: Miss trigger analysis when varying the level of event buffers with frequent 
triggering 

appearances of trigger events. This generates trigger events more frequently than the 

experiments in Figure 3.15, which use an average of 12 clock cycles when the trigger 

sequences are randomly generated. 

It can be seen from both figures that when the number of equality units increases, 

the overall miss rate decreases. This is because when more equality units are available, 

less number of OFF minterms will be used for describing the trigger events. This 

results in less number of false triggers, and thus reducing the overall number of triggers 

that will occur during a debug experiment. It is also noted that the overall miss rates 

in both figures become close to 0 when employing 32 equality units. However, they 

become 0 in our experiments because the chosen trigger conditions tend to have a 

very small number of OFF minterms. Thus, this does not mean that employing 32 
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Figure 3.17: Miss trigger analysis when varying the level of event buffers with non­
frequent triggering 

equality units will always be able to avoid trigger events being missed for any trigger 

condition, since there could be trigger conditions that require more equality units to 

keep the number of OFF minterms small. 

Figures 3.16 and 3.17 give the results on miss trigger analysis when varying the 

level of event buffers. While Figure 3.16 contains the results for experiments with 

frequent trigger occurrences, the experiments in Figure 3.17 are performed with non­

frequent trigger occurrences. The trigger sequences used in the experiments for these 

figures are the same as the ones described previously for Figures 3.14 and 3.15. How­

ever, these sequences are applied with different configurations of the architecture in 

terms of level of event buffers, while the number of equality units is set to four. 
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It can be seen that by increasing the level of event buffers, the overall miss rate 

decreases in both figures. This is because having more buffers will allow more trigger 

events to be buffered during trigger analysis. Thus, reducing the likelihood that a 

trigger event to be missed due to buffer overflow. 

It is also noted from Figures 3.15 and 3.17 that the overall miss rate decreases 

more rapidly when compared to that of Figures 3.14 and 3.16. This is because when 

trigger events are not occurring frequently, depending on when each trigger event 

arrives, more clock cycles may be passed between consecutive trigger events. This 

may give the trigger analysis engine more time to empty the event buffers between 

consecutive trigger events. As a result, increasing the number of equality units or 

level of event buffers will produce a more effective result in reducing the number of 

missed trigger events when they do not occur frequently. Moreover, non-frequent 

triggering also produces less number of trigger events during the considered time 

period of 10 million clock cycles. This reduced number of total trigger events also 

decreases the load on the trigger analysis engine. Thus, as shown in the figures, the 

overall miss rates are always lower when the experiments are run with non-frequent 

trigger occurrences. 

The results from Figures 3.14, 3.15, 3.16 and 3.17 have shown that the miss rate 

can be reduced by either increasing the number of equality units or the level of event 

buffers. However, as pointed out earlier in SubSection 3.4.1, employing more equality 

units incurs more area in terms of logic resources due to the added hardware and 

complexity of the FSM, when compared to using more event buffers, for which case 

the added area is lower. As a result, it may be desirable to utilize more event buffers 

even though they may not help reduce the miss rate as rigorously when compared to 

employing more equality units. 
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3.5 Summary 

In this chapter of the thesis, we have investigated how to design programmable trigger 

units that enable real-time debug data acquisition during in-field/ at-speed post-silicon 

validation. In our solution, we map the user-programmable trigger conditions onto a 

lower number of comparators than the number of prime implicants in the condition 

function. We mitigate false triggering by using an efficient approach for checking 

on-chip if the event that triggered data acquisition is valid. 
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Chapter 4 

Algorithms for state restoration 

The previous chapter has discussed how to improve the programmability of trigger 

units without an excessive cost in hardware. This will provide the user with the 

ability to better decide when to start data acquisition in the trace buffer. However, 

the amount of data that can be acquired is still limited by the trace buffer depth, 

which limits the number of samples to be stored, and its width, which limits the 

number of trace signals sampled in each clock cycle. In this chapter we investigate 

a post-processing step that can be applied to the acquired data in order to improve 

the observability before the user explores it in a simulation window. 

To the best of the author's knowledge, the only solution available in the public 

domain with a similar goal is [44]. However, their algorithm restores data only in the 

combinational logic nodes of the circuit as discussed in Section 2.3.4. In this chapter 

of the thesis, we show an automated algorithm in Section 4.1 for restoring data in 

state elements (called state restoration) for enlarging the set of debug data during 

post-silicon validation. Moreover, in order for the state restoration algorithm to be 

applicable to large circuits, it is essential for the algorithm to be compute-efficient. 

As a result, a technique for enhancing the performance of the algorithm is presented 

in Section 4.2. The proposed algorithmic solution can help restore missing data on 

other signals as supported by the results shown in Section 4.3. Finally, a summary 

of the contributions is provided in Section 4.4. 
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Figure 4.1: Sample circuit for state restoration 

4.1 Algorithmic solution for state restoration 

It has been shown in SubSection 2.3.4 how the principal operations in Figure 2.15 can 

be used to reconstruct data on the signals in the combinational logic of a circuit. In 

Figure 4.1, an example is given to demonstrates how these principal operations can be 

applied to a circuit that has both combinational and sequential elements. As Figure 

4.l(a) shows the simple circuit with five flip-fl.ops (FFs), Figure 4.l(b) gives the data 

in the state elements after the restoration algorithm is applied. In this example, only 

F FC is sampled during clock cycles 0 - 3. It should be noted that the X s in the 

table in Figure 4.1 (b) refer to values that cannot be restored using only the available 

sampled data. 

Before applying the state restoration algorithm shown in Algorithm 4.1, the circuit 

netlist is translated into a graph where the nodes represent logic gates, state elements, 
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primary inputs and outputs; the directed edges represent signal dependencies. For 

example, given a two-input logic gate, it will be translated into a single node, with 

two directed edges connecting from its parent nodes, which represent the two circuit 

elements that drive the logic gate. Likewise, a directed edge will be added from the 

newly created node to each of its child nodes, which represent the circuit elements 

that it drives. 

With the translated circuit graph, the principal operations will be applied to each 

node repeatedly until no more data can be reconstructed for all signals from the 

given subset of data. This can be shown by applying Algorithm 4.1 to the circuit in 

Figure 4.l(a). Using backward justification (line 5), whenever a logic 1 is captured 

in F FC, the values of FFA and FFB can be evaluated as logic 1 and 0 respectively 

in the previous clock cycle. In addition, the inverted values of F FC can be forward 

propagated to be the values of FFDin the following clock cycles (line 11). For FFE, 

its values in the current clock cycles can only be reconstructed when the values of 

FFB and F FC are known in the previous clock cycles. This will be done by the 

next iteration of the loop (line 2) with the updated information on FFB. Note 

that whenever the BackwardOperation or the ForwardOperation is applied to a 

node, the operation will try to perform state restoration from that node for all the 

considered clock cycles. The reason for this is to lower the number of times a node 

has to be re-visited, and thus, reducing the CPU runtime of the state restoration 

algorithm. As will be discussed in the following subsection, bitwise parallelism can 

also be exploited when using this implementation. 

By forward propagating and backward justifying known data between gates in the 

circuit, data can be restored for other state elements one clock cycle at a time. It is 

essential to note that our proposed algorithm aims at restoring data for sequential 

elements across multiple time frames, which is different to [44] where only values 

in the combinational logic are reconstructed with the known data in the sequential 

elements. When comparing the amount of data that is available before and after 

state restoration, fourteen data will be available in the entire circuit after applying 

the restoration process on only four initial data from F FC. This gives a restoration 

ratio of 14/4 = 3.5X for the elaborated example. It should be noted that the amount 
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of data that can be reconstructed using state restoration greatly depends on the initial 

set of sampled data. For instance, if only FFE is sampled in Figure 4.l(a), no new 

data can be reconstructed for any state elements in the circuit. The computation time 

for the state restoration algorithm is proportional to the amount of nodes presented 

in the circuit graph. In addition, unlike ATPG, when restoring state data for a 

circuit, a large number of clock cycles will have to be considered. This affects the 

CPU runtime for reconstructing the missing data. Although bitwise parallelization 

has been explored to speed up logic simulation across multiple clock cycles, it is 

only performed for the forward operation [45]. As a result, in the following section, 

we introduce how bitwise parallelization is exploited by eliminating any branching 

decisions in the state restoration process for all the principal operations introduced 

in Figure 2.15. 

Algorithm 4.1 Algorithm for state restoration 

1: seaTch_list = Trace_Signal_List 
2: while seaTch_list is not empty do 
3: cuT_node = first node in seaTch_list 
4: for (each paTenLnode of cuT_node) do 
5: BackwardOperation(cuT_node, paTenLnode) 
6: if (new data is restored for paTenLnode) then 
7: Put paTenLnode at end of seaTchJist 
8: end if 
9: end for 

10: for (each child_node of CUT _node) do 
11: ForwardOperation(cuT_node, child_node) 
12: if (new data is restored for child_node) then 
13: Put child_node at end of seaTch_list 
14: end if 
15: end for 
16: end while 
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4. 2 Exploiting bitwise parallelism for state restora­


tion 

In order for the state restoration algorithm to be applicable to large circuits, it is 

essential for the state restoration algorithm to be compute-efficient. This is because 

the designer may need to test the circuit with different stimuli when iterating through 

steps 2 to 7 in Figure 2.6 during the debug process. Thus, it is desirable to restore 

data as fast as possible for each stimulus to reduce debug time. In order to reduce 

computation time for the state restoration algorithm, we explore two facts when 

applying the principal operations on a node. Firstly, to restore data for one clock 

cycle in a given node, a branch decision will have to be made to see if the data can 

be reconstructed. Thus, the computation time for restoring data across all the circuit 

nodes for a large number of clock cycles depends on how well these decisions are 

made during program execution. Also, one can parallelize the algorithm by allowing 

multiple branch decisions to be evaluated at the same time. This is feasible for state 

restoration because when performing principal operations on a node for multiple clock 

cycles, the results are independent of each other for each data point in different clock 

cycles. This idea can be better explained using the example shown in Figure 4.1. In 

order to restore data for the circuit for five clock cycles, one can iteratively apply the 

principal operations to each node in each clock cycle. However, the same outcome can 

be achieved by allowing five different branch decisions to be evaluated at the same 

time with the corresponding data for the specific clock cycles. Nevertheless, since 

a debugged circuit can contain tens of thousands of logic gates, and data is usually 

restored over thousands of clock cycles, speeding up the algorithm by parallelizing 

the branch decisions may still incur large computation time due to the high execution 

penalty from mispredictions. As a result, we derive new logic operations such that 

the principal operations can be applied concurrently at a node across multiple clock 

cycles, without the need to evaluate any branch decisions during state restoration. 

We exploit the integer data type in ANSI C on a 32-bit platform to enhance the 

performance of our algorithm by storing data for 32 consecutive clock cycles in two 

integers (8 bytes) for each node. For example, to represent the data [O, 1, 1, 0, X] for 
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Table 4.1: Two bit codes for data representation 
Logic value Two bit code 

0 00 
1 11 

undefined 01, 10 

clock cycles 0-4 for FFC in Figure 4.l(a), using the two-bit codes in Table 4.1, we 

can store the data for F FC using two integer variables as follows: 

into= o, 1, 1,0,1, ... , 1 

intl = 0, 1, 1,0,0, ... ,0 

In these equations, the first 5 bits of the two variables store the data for clock cycles 

0-4 for F FC, and the remaining 27 bits store the code for undefined data. By working 

with two integer variables, the algorithm can restore data for 32 consecutive clock 

cycles at a time using a sequence of logic equations based on the bitwise operations 

provided by ANSI C for each of the primitive gates. For each principal operation, 

two different equations (one for each integer) will be developed in such way that 

the number of 2-operand bitwise operations are minimized. Although the formalism 

of multi-valued logic and input/output encoding from logic synthesis can be used to 

derive these systems of equations [79], the following discussion relies on the illustrative 

advantage of the K-map representation. 

Figures 4.2(a) and 4.2(b) show the K-maps for deriving the logic equations for the 

forward operation at the output z, while Figures 4.2(c) and 4.2(d) give the K-maps 

for the backward equations at the input a of a two-input AND gate. Note that the 

inputs of the AND gate are labeled a and b, and since two bits are needed for data 

representation, the variables for the logic equations are labeled a0 , a 1 , b0 , b1 for the 

inputs, and z0 , z1 for the output. From boolean algebra we know that when any 

input of an AND gate is 0, the output should also be a 0. This is why the entries 

are set to 0 on the first rows and the left-most columns of the K-maps for z0 and z1 

in Figures 4.2(a) and 4.2(b). Also, when both inputs are logic 1, z0 and z1 are both 
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Figure 4.2: Derivation of forward and backward equations for the AND gate 

set to 1 to represent a logic 1 on the output of the AND gate. The shaded regions 

of the K-maps in the Figures 4.2(a) and 4.2(b) represent that the output port of the 

AND gate is inconclusive due to the insufficient data from the input ports. In these 

regions, the values of z0 and z1 can be filled in such way that the resulting code is 

01 or 10 (in order to represent the undefined values according to the two-bit codes 

in Table 4.1) and, at the same time, the number of bitwise operations is minimized. 

The K-maps for deriving the logic equations for the backward operation can also be 

constructed using the same principle. For instance, as can be seen in Figures 4.2(c) 

and 4.2(d), when the output of the AND gate is logic 1, the inputs of the gate can 

be justified to logic 1. Also, input a can be concluded as logic 0 when the output z 

is 0, and the other input b is 1. In any other cases, the value for a is inconclusive, as 

indicated by the shaded regions in Figures 4.2(c) and 4.2(d). Note that for backward 

operation, four logic equations (two equations for each input port) will be derived. 

However, the variables in the logic equations among input ports will be exchanged. 
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In this example for an AND gate, the equations for forward and backward operations 

are: 

Zo aoa1 bob1 

Z1 (ao + a1)(bo + b1) 

ao zo + (z1 + bob1) 

a1 Z1 

bo zo + (z1 + aoai) 

b1 Z1 

Using these logic equations, if the input ports of an AND gate have the following 

data for 32 clock cycles: 

a O,)(, 1, ... , 1,)(, ... ,)( 

b )(,1,l, ... ,1,0, ... ,0 

Using our two-bit code in Table 4.1, the input to the logic equations will be 

translated into four integer variables as: 

a0 0, 1, 1, ... , 1, 1, ... , 1 

a1 o,o,1, ... ,1,0, ... ,0 

b0 1, 1, 1, ... , 1, 0, ... , 0 

b1 0,1,1, ... ,1,0, ... ,0 

The output z of the AND gate can then be obtained by applying the ao, a1, b0 

and b1 data into the forward operation: 

Zo 0, 0, 1, ... , 1, 0, ... , 0 

Z1 0,1,1, ... ,1,0, ... ,0 

Referring back to the two-bit code, the output z of the AND gate for the 32 clock 

cycles can be found as: 

z O,)(,l, ... ,l,0, ... ,0 
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In the above equations, if the values of the output variables are known, these 

values will be overwritten by the results of the equations. For example, in the forward 

equations introduced for z0 and z1 , if z0 and z1 are known from sampling the circuit, 

while a0 , a 1 , b0 and b1 are not known, applying the forward equations will overwrite 

the sampled values in z0 and z1 with unknowns. This is because the existing values 

in the output variables are not considered in the equations. As a result, additional 

operations will have to be added to preserve the existing values in the output variables 

if they are known. The modified forward and backward equations for the AND gate 

will then become: 

zo (zo EB z1)zo + (zo EB z1)(aoa1bob1) 


z1 (zo EB z1)z1 + (zo EB z1)(ao + ai)(bo + b1) 


ao (ao EB a1)ao + (ao EB ai)(zo + (z1 + bob1)) 


a1 (ao EB a1)a1 + (ao EB a1)z1 


bo (bo EB b1)bo + (bo EB b1)(zo + (z1 + aoai)) 


b1 (bo EB b1)b1 + (bo EB b1)z1 


Note that the EB symbol represents the XOR operation. With these equations, the 

values of the output variables will only be overwritten when the existing values are 

unknown (i.e., the variable pair has a value of 01 or 10 as defined in Table 4.1). 

By replacing the implementation of the BackwardOperation and ForwardOperation 

in Algorithm 4.1 with these logic equations to restore data in 32 clock cycles, the total 

number of bitwise operations for the AND gate can be calculated as follows. For z0 , 

one operation will be needed for the X 0 R between its previous values. Note that 

the result of this X 0 R can be reused to reduce the number of bitwise operations 

in the equations. In addition, one inversion is needed for the X N 0 R, five bitwise 

AND operations and one bitwise 0 R operation are needed. On the other hand, 

three bitwise AND operations and three bitwise 0 R operations are required for z1 . 

Thus, 14 bitwise operations will be performed for forward propagating data in the 

AND gate. For backward justifying data in the AND gate, there are one X 0 R, two 

NOT, three AND and three OR bitwise operations for a0 , while a 1 requires only 

two AND and one OR operations. Together, 12 bitwise operations will be needed 
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to backward justify data for one input. Thus, a total of 24 bitwise operations are 

necessary for backward justifying data on a0 , a 1, b0 and b1 for the AND gate. Al­

though the derivation of forward and backward equations for other primitive gates 

are not shown, they can be obtained using similar concepts from the above elaborated 

example. They range from 10 bitwise operation for forward operations of NOT, to 33 

bitwise operations for backward operations of XOR as shown in Table 4.2. It should 

be noted that the proposed method requires multiple CPU instructions to restore 

data for 32 clock cycles. In fact, the proposed method will need 33 CPU instructions 

if the 32 data are reconstructed using the backward operation on the X 0 R gate. On 

the other hand, one can implement only 32 if-then-else instructions to reconstruct the 

same amount of data. However, these 32 if-then-else instructions do not necessarily 

translate to only 32 CPU instructions since mispredictions during branching incur ex­

ecution penalty. As will be discussed in the experimental results, using the proposed 

method, which eliminates branching, can reduce execution time of the state restora­

tion algorithm. Moreover, the proposed method can further scale down the execution 

time when the executing platform has higher bitwidth (e.g., 64-bit CPUs). This is 

because the number of CPU instructions required to perform the principal operations 

with the proposed method will not change, while the number of clock cycles in which 

one can reconstruct data increases with the bitwidth of the platform. It should also 

be emphasized that digital circuits often involve more complex logic gates, or logic 

gates with higher fan-in. These complex gates can be either decomposed into a hier­

archy of two-input primitive gates (such that the derived operations can be applied 

on the circuit graph that has more nodes, and thus prolongs the computation time), 

or additional equations specific to their behavior can be generated. 

4.3 Experimental results 

Experimental studies from [2] indicate that trace buffers of size lk x 8 (i.e., depth 

of 1024 and width of 8 bits) to 8k x 32 are acceptable in the practice today. If one 

needs to debug larger logic blocks, it is common that the trace buffer is used as a 

time-shared resource [93]. Time sharing is also justified by the fact that if at most 
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Table 4.2: Number of bitwise operations for the two-input primitive gates 
Logic 

operation 
# of bitwise operations 
Forward Backward 

NOT 10 10 
AND 14 24 

NAND 16 25 
OR 14 24 

NOR 16 25 
XOR 17 33 

XNOR 16 32 

32 bits per sample are acquired, it is difficult to restore values to more than 2,000 

FFs (which normally belong to a logic block in the range of 50 thousand gates). 

Given this expected logic block size, we perform our experiments on the three largest 

ISCAS89 benchmark circuits [18] (i.e. s38584, s38417 and s35932), which fit the 

gate count range for acceptable trace buffer sizes as of today. Moreover, since the 

ISCAS89 benchmark circuits are publicly available, we hope that future proposals on 

this emerging area can benchmark their algorithms against ours. For our experiments, 

the state restoration algorithm is implemented using ANSI C and executed on a PC 

with dual-Xeon processors at 2.4 GHz with 1 GB of RAM. Also, all the high fan-in 

gates are decomposed into two-input logic gates when translating the ISCAS circuits 

into circuit graphs for the state restoration algorithm. 

There are two sets of experimental results for the state restoration algorithm 

discussed in this chapter of the thesis. The first set of results shown in SubSection 

4.3.1 is based on randomly generated stimuli on all primary inputs of the circuits. 

And the second set of results discussed in SubSection 4.3.2 is based on randomly 

generated stimuli on the data inputs, and the values supplied to the control inputs 

are constrained. Note that for all of these experiments, the trace signals are selected 

randomly. 
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For each set of input stimuli 
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Circuit Netlist 

l 
Obtain data of circuit 

nodes from simulation 

...!. 

l" 

Identify trace signals 
Extract data for the 

selected trace signals 

...!.Randomly generate 
Restore data for five sets of input I circuit nodes that are 

not sampled 
stimuli for all primary 

inputs J 

Figure 4.3: Experimental flow for randomly generated input stimuli 

4.3.1 Experiments with randomly generated stimuli on all 

inputs 

Experimental setup for randomly generated input stimuli 

The experimental flow for generating random stimuli on all primary inputs for state 

restoration and trace signal identification algorithms, which will be discussed in the 

following chapter of the thesis, is shown in Figure 4.3. In order to obtain the set of 

debug data on which state restoration will be applied during the experiment, input 

stimuli for all the primary inputs of the circuit are randomly generated and then fed 

to a simulator for a number of clock cycles (the clock cycle count depends on the 

trace buffer depth). The results from these experiments with random input stimuli 

are then used for evaluating the state restoration algorithm. 

Results with randomly generated stimuli on all primary inputs 

Tables 4.3, 4.4 and 4.5 show the state restoration ratio and the data reconstruction 

time between the implementation exploiting the bitwise parallelism as discussed in 

Section 4.2 (columns labeled Non-branching), and the if-then-else implementation 
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Table 4.3: State restoration results for s38584 when trace signals are selected ran­
domly and control signals are driven randomly 

Buffer 
depth 

Buffer 
width 

Seed Ratio Time (sec) 
Non-branching Branching 

8192 8 1 1.00 0.02 0.13 
1000 1.00 0.03 0.11 
10000 1.00 0.02 0.07 
50000 2.75 0.04 0.21 
100000 2.75 0.03 0.15 

16 1 1.00 0.04 0.18 
1000 1.00 0.04 0.17 
10000 1.00 0.03 0.14 
50000 3.31 0.18 0.91 
100000 3.25 0.17 0.84 

32 1 4.16 0.09 0.42 
1000 3.01 0.08 0.33 
10000 3.50 0.09 0.37 
50000 8.27 0.23 1.11 
100000 7.21 0.20 0.96 

Table 4.4: State restoration results for s38417 when trace signals are selected ran­
domly and control signals are driven randomly 

Buffer Buffer Seed Ratio Time (sec) 
depth width Non-branching Branching 
8192 8 1 12.00 0.84 3.71 

1000 6.83 53.49 259.85 
10000 14.25 1.09 5.06 
50000 8.72 0.82 3.82 
100000 1.38 0.03 0.12 

16 1 6.75 0.73 3.60 
1000 7.62 49.66 294.26 
10000 10.00 0.95 4.40 
50000 7.05 1.01 4.34 
100000 4.88 0.18 0.70 

32 1 6.97 1.38 6.02 
1000 5.43 53.20 261.28 
10000 6.81 1.21 4.53 
50000 6.22 1.02 4.70 
100000 4.21 0.28 1.24 
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Table 4.5: State restoration results for s35932 when trace signals are selected ran­
domly and control signals are driven randomly 

Buffer Buffer Seed Ratio Time (sec) 
depth width Non-branching Branching 
8192 8 1 1.70 0.01 0.03 

1000 1.88 0.01 0.03 
10000 3.27 0.23 2.40 
50000 1.78 0.01 0.03 
100000 2.57 0.85 3.95 

16 1 27.30 2.40 6.77 
1000 9.14 1.60 6.59 

10000 15.00 1.63 5.82 
50000 108.03 2.48 6.55 
100000 43.88 2.67 7.18 

32 1 24.62 2.66 7.23 
1000 20.27 4.07 10.81 

10000 22.41 2.75 7.61 
50000 54.51 2.45 6.57 
100000 28.99 3.17 8.13 

(columns labeled Branching) for s38584, s38417 and s35932 respectively. In these 

tables, the trace signal selection was done randomly by using five different seeds for 

the pseudo-random generator in ANSI C. Also, fifty different sets of random data are 

generated for all the primary inputs (both control and data inputs) of the circuits. 

The random data on the primary inputs will then be fed to a simulator to obtain the 

debug data on the trace signals for state restoration as illustrated in Figure 4.3. 

As shown in these tables, the computation time for the data restoration algorithm 

using the parallel equations is on average about four to five times less than the non­

accelerated method. The speedup falls short of the theoretical upper bound of 32X 

(since the accelerated algorithm restores data for 32 clock cycles at a time on a 32-bit 

machine). This is because restoring data in 32 clock cycles using the accelerated 

method involves more than one CPU instruction as shown in Table 4.2. On the other 

hand, the non-accelerated method will need one if-then-else statement to perform the 
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principal operations for each data point. This results in 32 if-then-else statements to 

restore data for 32 clock cycles. However, the number of CPU instructions executed 

to restore each data with the non-accelerated method depends on how a branch is 

taken during program execution. As verified by the results, the total number of CPU 

instructions required to perform data restoration across multiple clock cycles using 

the non-accelerated method is higher than that of the accelerated method. Moreover, 

as machines with higher bitwidth become available, the accelerated method can better 

scale to utilize the larger bitwidth and further speed up the state restoration process 

when compared with the if-then-else implementation, as discussed in Section 4.2. 

Another interesting point to note is that in Table 4.4, with the same trace buffer 

depth and width, by randomly selecting different trace signals, the restoration time 

increases significantly even though the restoration ratio decreases (which indicates 

less data to be restored). This is because if the sampled signal resides in a sequential 

loop, and the missing data in the loop cannot be reconstructed by the side signals 

that are connected to the gates from this loop, the restoration algorithm may have 

to iterate in the loop to restore data one clock cycle at a time. In this case, more 

decisions will need to be made by the algorithm to check if the newly restored data 

can help reconstruct any other data in the neighboring nodes in every clock cycle, and 

thus, increasing the runtime. It is also interesting to note that with the same trace 

buffer depth and width, sampling different signals varies the amount of data that can 

be reconstructed even if the input data is identical. This is why in the next chapter 

of the thesis, an algorithmic solution for selecting trace signals will be detailed. 

4.3.2 	 Experiments with constrained generated stimuli for con­

trol inputs 

In practice, the circuit is exercised with real-time stimuli coming from the environ­

ment. However, for benchmarking purposes, the experimental results from the pre­

vious subsection relies on random input stimuli. While it is important to provide 

random stimuli for benchmarking purposes on the data inputs, there may be excep­

tions on control inputs that do not need to always be random. For example, the 
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values on bus control signals or signals that setup the circuit's mode of operation or 

synchronous resets/enables, will not be updated randomly during the normal circuit 

operation. Rather, they will follow pre-defined protocols based on how the chip is 

supposed to operate in the native mode. As a result, using random stimuli on these 

types of control signals for benchmarking purposes may not reflect how the circuit 

behaves in a field debug experiment. 

The focus of this subsection of the thesis is to first provide a method for auto­

matically identifying signals that need to have constrained input values during the 

normal circuit operation. Then, we elaborate on the experimental fl.ow for providing 

a constrained-random benchmarking experiment to evaluate the state restoration al­

gorithm and the trace signal selection algorithms presented in the following chapter 

of the thesis. We do recognize that this type of constrained-random experiments have 

little significance in a practical debug setup (because the data will come from the real­

life sources). Nonetheless, developing experimental flows for generating constrained­

random experiments is essential for researchers to benchmark, as well as for designers 

to evaluate in more depth, the proposed algorithm. 

Identification of constrained signals 

Figure 4.4 shows the procedure for identifying the control signals and its constrained 

value by using an ATPG tool. Note, the circuit is considered to have full scan and 

the ATPG tool generates patterns only for combinational logic. Hence, fault effects 

are observed at both primary outputs and pseudo-outputs (i.e., scan flip-flops). The 

generated test cubes are not compacted nor compressed in order to preserve don't 

care (X) bits in the patterns. Then test cubes are analyzed to identify the signals 

that have high care bit density (i.e., for most of the patterns the value is not an 

X). When a signal has high care bit density, this signal must be controlled in order 

for faults to be detected and propagated during test. For example, if a synchronous 

reset signal is used, then the ATPG patterns will drive it to its non-controlling value 

because this is the only way how the fault-effects from the circuit will be propagated 

to the observable outputs (i.e., scan flip-fl.ops). 

When a signal that has high care bit density is identified, it should be checked 
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Circuit Netlist For each primary input 

Run ATPG for 
stuck-at fault 

without pattern 
compaction or 
compression 

Calculate care 
bit density of 
each primary 
input from the 
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can be 

generated 
random I 

A different 
experiment 

should be run 
for each value 

of the input 

Value of this 
· signal should be 

constrained to 
the specified 
value for all 
experiments 

Figure 4.4: Procedure for identifying signals with constrained value 

whether the signal is constrained to the same value all the time. If that is the case, the 

generated input stimuli for such signals should be a constant value over the number of 

clock cycles considered during the debug experiment. For example, the input stimuli 

for a global active-high reset signal should be 0 in order to avoid over-resetting the 

circuit during the experiment. On the other hand, a primary input used for mode 

selection will also have high care bit density from the test patterns, but it will not be 

forced to be a constant value for every single clock cycle. In this case, the experiment 

should be run with different sets of input stimuli such that the effectiveness of the state 

restoration algorithms can be benchmarked for every mode of the circuit operation. 

The benefit of employing ATPG at the core of our flow is threefold. First, ATPG 

tools are available both commercially and in the public domain; hence no specialized 

algorithms need to be developed and shared by the researchers who work on identi­

fication of trace signals for debug. Second, ATPG results provide explicitly not only 

which signals need to be constrained, but they also indicate the values to which these 

signals need to be constrained. Third, the existing ATPG tools are optimized for 

runtime. Even if generating test cubes that are not compacted nor compressed may 

seem intractable, for the purpose of identifying the constrained signals it is sufficient 
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Figure 4.5: Revised experimental flow 

to generate only a few hundreds to thousands of patterns. The entire test set is not 

required and, more importantly, the abort time for identifying untestable faults can 

be set to a low value. 

New setup for constrained-random benchmarking experiments 

The revised experimental flow for generating constrained-random benchmarking ex­

periments for state restoration and trace signal identification algorithms that will 

be discussed in the following chapter of the thesis is shown in Figure 4.5. Instead 

of generating input stimuli randomly for all the primary inputs, the stimuli for the 

constrained-signals should be generated according to the information provided by the 

ATPG engine, as explained in the previous section. 

It should be noted that randomness is still employed for all the data-intensive 

inputs that have very low care-bit density in the ATPG test set. Based on this 

new experimental flow, we expect the trace signal identification and state restoration 

algorithms presented in this thesis to be evaluated in a virtual environment that 

better matches a practical setup for post-silicon validation. 
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Table 4.6: Signals with constrained values 
Circuit Signals with Signals with 
name constant value high care bit 

name value density 
s38584 g35 1 
s35932 RESET 1 TMO 

TMl 

Results with deterministically driven control inputs 

The new experimental fl.ow has been applied to the ISCAS89 benchmark circuits [18] 

to re-evaluate the algorithms presented in this chapter of the thesis with constrained­

random input stimuli. We have applied the ATPG fl.ow using a third party ATPG tool 

[109] for identifying constrained signals on s38584 and s35932. Table 4.6 shows the 

identified signals that have constant constrained value and signals with high care bit 

density. It should be noted that the results for s38417 with deterministically driven 

control inputs are not reported here. This is because after applying the procedure 

for identifying the signals that have constrained value on s38417, we have found out 

that there are no signals which needed to be constrained. 

It can be seen from Table 4.6 that for s38584, the primary input g35 should 

be constrained to have a value of 1 during native mode since it is an implied reset 

that is active-low. With this constrained value of g35, five different sets of stimuli 

are generated randomly for all the other primary inputs (that have low care bit 

density). Similarly, the signal RESET in s35932 is an active-low reset and should be 

constrained to be 1. In addition, the signals T MO and T Ml together act as mode 

selection signals for s35932. Thus, in the new experimental fl.ow described in the 

previous subsection, four sets of experiments are run using values {TMO, T Ml} = 
{00, 01, 10, 11}, while for each combination of the TMO and TMl values, five different 

sets of random stimuli are generated for all the other primary inputs. The results 

from the 4 x 5 = 20 sets of input stimuli are then averaged for providing the results 

on the presented algorithms. 
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Table 4. 7: State restoration results for s38584 when trace signals are selected ran­
domly and control signals are driven deterministically 

Buffer Buffer Seed Ratio Time (sec) 
depth width Non-branching Branching 
8192 8 1 1.00 0.04 0.12 

1000 1.00 0.04 0.11 
10000 1.00 0.03 0.07 
50000 2.75 0.06 0.20 
100000 2.75 0.05 0.14 

16 1 1.00 0.05 0.17 
1000 1.00 0.05 0.16 

10000 1.00 0.04 0.14 
50000 3.31 0.26 0.91 
100000 3.25 0.24 0.82 

32 1 1.14 0.11 0.39 
1000 1.83 0.46 1.68 
10000 2.32 0.44 1.63 
50000 3.53 0.68 2.47 
100000 3.82 0.64 2.31 

Table 4.8: State restoration results for s35932 when trace signals are selected ran­
domly and control signals are driven deterministically 

Buffer 
depth 

Buffer 
width 

Seed Ratio Time (sec) 
Non-branching Branching 

8192 8 1 1.13 0.09 0.46 
1000 1.09 0.10 0.74 
10000 2.13 0.07 0.40 
50000 1.13 0.09 0.46 
100000 1.89 0.11 0.73 

16 1 2.06 0.06 0.39 
1000 2.46 0.12 0.76 

10000 3.56 0.12 0.52 
50000 2.07 0.07 0.40 
100000 3.05 0.14 0.78 

32 1 2.91 0.15 0.62 
1000 3.14 0.18 0.66 

10000 3.53 0.19 0.71 
50000 3.03 0.15 0.63 
100000 3.26 0.18 0.70 
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Tables 4. 7 and 4.8 show the state restoration ratio and the data reconstruction 

time using enhanced state restoration algorithm discussed in Section 4.2 for s38584 

and s35932 respectively. In these tables, the trace signal selection was done randomly 

by using five different seeds for the pseudo-random generator in ANSI C. Also, five 

different sets of random data are generated for all the data inputs, while the values 

on the control inputs are constrained according to the results reported in Table 4.6. 

The generated data on the primary inputs will then be fed to a simulator to obtain 

the debug data on the trace signals for state restoration as illustrated in Figure 4.5. 

It can be seen that the restoration ratios obtained using the new experimental fl.ow 

are lower than what was provided in SubSection 4.3.1. This is because the results 

for those experiments are performed with randomly generated stimuli for all primary 

inputs, and thus, did not provide any constraints on what the value should be on 

the reset signals for both s38584 and s35932. In this case, every time the circuits are 

reset, the state restoration algorithm will be able to reconstruct the values of all the 

circuits' nodes easily. 

It should be noted that although the restoration ratios are lower when signals 

with constrained values are considered, it does not mean that the benefit from em­

ploying the state restoration algorithm is diminished. In fact, the new results actually 

strengthen the ability of the proposed algorithm in improving observability of inter­

nal signals during post-silicon validation. This is because it is currently proven that 

debug data in circuit nodes that are not monitored by trace buffers can actually be 

restored under realistic input stimuli. 

4.4 Summary 

The limited storage space available from trace buffers inside ELAs constrains how 

much data can be acquired from the CUD during a post-silicon validation and debug 

experiment. In this chapter of the thesis, we have shown how the acquired data can be 

used to reconstruct missing information on signals that are not traced. For logic bugs 

for which the circuit implementation matches its physical prototype, our algorithmic 

solution effectively helps improve observability of the CUD. 
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We have first discussed a sequential algorithm for restoring data in state elements 

over multiple time-frames. We have defined a state restoration metric (called restora­

tion ratio) to assess the effectiveness of the algorithm. Then we have shown how the 

state restoration algorithm can be sped up by exploiting the bitwise parallelism inher­

ent in data representation in computers. Because conditional instructions are avoided 

(and hence execution time penalty due to branch mis-prediction is eliminated), the 

objective is to minimize the number of bitwise logic operations that manipulate the 

restored data over multiple time-frames. It was shown how concepts from two-level 

logic synthesis can be leveraged for this purpose. This parallel algorithm is approxi­

mately four to five times faster than its sequential counterpart. 
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Chapter 5 

Automated trace signal selection 

When designing the debug infrastructure, the designer will decide which key signals 

will be traced in silicon. However, it is often the case that the width of the trace 

buffer is larger than the number of the key signals known by the designer. Hence, a 

question faced by designers is which other signals are most suitable to be connected 

to the trace buffer? For example, if the trace buffer width is 32 bits and only 10 

signals are key signals selected manually by the designer, then which other 22 signals 

should be fed into the trace buffer. Because the problems that will be examined 

in silicon will obviously not be known at design-time, we advocate that the state 

restoration ratio introduced in the previous chapter can be used as a driving metric 

that can assist designers with the decision on which signals to trace. This is because 

the signals which will lead to an improved restoration ratio will also improve the 

real-time observability by providing more data to the user at the same hardware cost. 

In this chapter, two new metrics that will influence the selection of trace signals 

will be presented. The first metric discussed in Section 5.1 accounts for the topology of 

the CUD, while the second metric detailed in Section 5.2 considers the logic behavior 

in addition to the circuit topology. These metrics help identify trace signals that 

should be sampled such that high state restoration ratio can be achieved as supported 

by the experimental results given in Section 5.3. Finally, Section 5.4 summarizes the 

contribution of this work. 
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5.1 Trace signal selection using circuit topology 

The first metric for aiding the selection of trace signals utilizes the information ob­

tained by analyzing the topology of a circuit. If a trace signal has large input and 

output logic cones (i.e., if the trace signal is driven by a large number of signals or if 

it drives a large number of other signals), it is obvious that the likelihood of restoring 

data for other signals through forward and backward operations on this signal will be 

higher. This is because when the circuit netlist is translated into a graph as described 

in Section 4.1, the number of parent and child nodes that can be reached from the 

trace signal is higher. As a result, by analyzing the topology of a circuit, one can 

select a set of trace signals that can help restore a significant amount of missing data 

for other signals. This observation is captured by the equations shown in Figure 5.1 

for calculating the restorability of all the nodes in a circuit when a particular signal 

is monitored by the DFD hardware. We define the forward restorability of a node to 

be the likelihood of restoring data of that node through forward propagation (Figure 

2.15(a)), while backward restorability represents the chance of restoring data of the 

node from backward justification (Figure 2.15(b)) or the combined operation (Figure 

2.15(c)). When a node can be fully restored through forward (backward) operations, 

the forward (backward) restorability will be 1. If data cannot be reconstructed, the 

restorability will then be 0. 

In Figure 5.1, the equations for calculating the forward restorability of the output, 

as well as the backward restorability of the inputs of a gate are shown. Although it 

is shown with an AND gate in the figure, it should be noted that the same set of 

equations are applied to all the gates in a design. The forward restorability of a gate 

is calculated by summing the forward restorability of its inputs, then dividing the 

sum by the number of inputs of the gate. This is because the more parent signals of 

a node are monitored, the higher chance the data for that node can be restored by 

the proposed state restoration algorithm through forward operations. On the other 

hand, the backward restorability of an input of a gate is calculated by first finding the 

maximum backward restorability from its children, since it can be restored through 

any one of its fan-out branches (as indicated in Figure 5.1 with the term max{B(z)} 
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a=B- F(z) = (F(a) + F(b)) /2
AND Z 

b ·... , B(a) = (max{B(z)} + F(b)) /2 

Figure 5.1: Equations for restorability calculation using only topology 

in the equations). The result is then added with the forward restorability of other 

inputs of the gate. This is because it is sometimes insufficient to restore the input 

values from only the output values of a gate. However, if the values of the output 

and the other inputs are known, the chances of restoring values of the targeted input 

will be higher. The sum from the equation is then divided by the number of inputs 

of a gate to normalize the restorability to 1. 

After defining the equations that look at the topology of a circuit for calculating 

restorability of a node, Algorithm 5.1 can be used to show how these equations are 

applied to aid the selection of trace signals. The algorithm uses a breadth-first-search 

approach to calculate restorability values for all the nodes. The calculation starts by 

first computing the forward restorability of all the child nodes of the first node in 

the search list (line 8). It then works out the backward restorability of all the parent 

nodes of the same node (line 14). When sequential loops are found in a circuit, the 

algorithm will iterate the forward and backward calculations for the nodes in the 

loop. This is because the state restoration algorithm may be able to restore data for 

multiple clock cycles by iterating in the loop. 

Figure 5.2 can be used to explain the greedy nature of the algorithm when trying to 

select the first trace signal using Algorithm 5.1 for the circuit shown in Figure 4.l(a). 

In the figure, the F and B values represent the forward and backward restorability of 

each flip-flop respectively for three iterations. Note that for the sake of clarity, only 

the restorability values of the flip-flops are shown, but in fact, the restorability for 

the logic gates between flip-flops are also calculated. 

In Figure 5.2(a), the restorability values of all the signals in the circuit when FFE 

is selected as the trace signal using Algorithm 5.1 are shown. In the first iteration, 

all the F and B values of the signals are set to 0, except for FFE, for which the 
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Algorithm 5.1 Algorithm for identifying trace signals incrementally 

1: while cur_width < T B_width do 
2: while not all nodes in Circuit are calculated do 
3: search_list = Get chosen nodes 
4: Set initial values for chosen nodes 
5: while searchJist is not empty do 
6: cur_node = first node in search_list 
7: for (each child_node of cur _node) do 
8: CalculateForward(child_node) 
9: if (new_value - old_value ;::: Threshold) then 

10: Put child_node at end of searchJist 
11: end if 
12: end for 
13: for (each parenLnode of cur _node) do 
14: CalculateBackward(parenLnode) 
15: if (new_value - old_value ;::: Threshold) then 
16: Put parenLnode at end of search_list 
17: end if 
18: end for 
19: end while 
20: Sum the restorability of all nodes in the circuit 
21: end while 
22: Select the node with highest restorability 
23: cur_width++ 
24: end while 
25: return signaLselectionJist 
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values are set to 1 since it is traced. In the second iteration, the backward restorability 

values of F FC and FFB are calculated to be 0.5 according to the backward equation 

in Figure 5.1. It should be noted that although the forward restorability values of 

F FC and FFB should be 0 according to the forward equation, the values will be 

updated to be 0.5 at the end of the iteration. This is to reflect that no matter if data 

is restored through forward or backward operation, the restored data can still be used 

for state restoration in the next iteration. The updated values will then be used in 

the third iteration of Algorithm 5.1 for further calculation. 

It can be seen in Figure 5.2 that as the algorithm iterates further to propagate 

the metric, the restorability value of each node either stays the same or it gradually 

increases (it never decreases). As a result, a user-defined parameter Threshold is 

provided to control the amount of metric propagation among circuit nodes, and to 

limit computation time for the trace signal selection algorithm (lines 9 and 15). This 

threshold is used to check the newly computed values against the ones from the 

previous iteration. It is obvious that the lower the threshold, the more effort the 

algorithm will spend on calculating the restorability of each signal in the circuit. 

After the restorability of all nodes are calculated and the Threshold parameter 

is satisfied, the calculated values are summed together to give the restorability of 

the circuit given that a certain FF was selected as the trace signal (line 20). To 

decide which node to select as the trace signal, the algorithm will calculate the circuit 

restorability for when each node is selected, it will then choose the node that produces 

the highest circuit restorability as the trace signal (line 22). To select the targeted 

number of trace signals, Algorithm 5.1 incrementally calculates circuit restorability 

to select one signal at a time in a greedy manner. Using the circuit in Figure 4.1 (a) 

as an example when choosing two signals, and assuming signal FFEis chosen in this 

iteration, Algorithm 5.2 will then select the second trace signal by trying to select 

signals in this sequence: FFE & FFA, FFE & FFB, ... , until all other signals are 

selected together with FFE as trace signals. It will then choose the signal pair that 

will produce the highest restorability values across the circuit as trace signals. This 

gradual approach for trace signals selection follows the same philosophy on how new 

states are chosen to be probed during microprocessor debug, when signals are also 
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Circuit restorability 
FFA FFB FFC after three iteration if 

.---:F=-[=o-,o=-,-=o-=.5::-:-]---. •-=F"'""[o=-,-=o-=.5=-,..,,.o-=. 1 FFE is traced 7=51,...., r-=F..,...,[0-,-0.-=5-,o=-.7=5=-]-. 
B [O, 0, 0.5] B [O, 0.5, 0.75] B [O, 0.5, 0.75] =(0.5+0.5) 

FFD FFE +(0.75+0.75) 
F [O, 0, 0.5] F [1, 1, 1] +(O.75+0. 75) 
B [O, 0, 0.5] B [1, 1, 1] +(0.5+0.5) 

+(1+1) 
=7 

(a) Circuit restorability when FFE is selected 

(b) Circuit restorability when F FC is selected 

Figure 5.2: Restorability calculation for three iterations using the topology metric 

selected incrementally to determine what additional data can be gathered from the 

microprocessor. 

Although Algorithm 5.1 can identify the trace signals that would give high restora­

tion ratio by propagating the restorability metric over and over with each incremen­

tal signal selection, this could lead to prohibitively high computation time for large 

circuits. Thus, we introduce Algorithm 5.2, which greedily selects trace signals by 

estimating how much data from other signals can be restored when each signal is 

chosen as a trace signal. 

To estimate how much data can be restored when a signal is traced, Algorithm 5.2 

first sets the restorability value of the selected signal to 1 (line 3). It then employs 

a breath-first-search approach to propagate the restorability value using the equa­

tions in Figure 5.1 to its child nodes and parent nodes through forward propagation 
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Algorithm 5.2 Algorithm for selecting trace signals using coverage estimation 

1: while not all signals in Circuit are evaluated do 
2: search_list = one of the non-evaluated signal 
3: Set initial values for chosen signal 
4: while search_list is not empty do 
5: cur_node = first node in search_list 
6: for (each child_node of cur _node) do 
7: 	 if (number of parent nodes with non-zero restorability values has increased 

since the last visit) then 
8: CalculateForward(child_node) 
9: Put child_node at end of search_list 

10: 	 end if 
11: end for 
12: for (each parenLnode of cur_node) do 
13: 	 if (number of child nodes with non-zero restorability values has increased 

since the last visit) then 
14: CalculateBackward(parenLnode) 
15: Put parenLnode at end of search_list 
16: 	 end if 
17: end for 
18: end while 
19: Record restorability values of all nodes in the circuit for current signal selection 
20: end while 
21: cur_high_value = 0.9 
22: while 	(cur _width < TB_width) do 
23: chosen_signal = FindMaxCover(cur _high_value) 
24: if (chosen_signal ==NULL) then 
25: cur _high_value =cur_high_value - 0.1 
26: else 
27: Put chosen_signal in signal_selection_list 
28: cur _width++ 
29: end 	if 
30: end while 
31: return signal_selection_list 
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(line 8) and backward justification (line 14) respectively in the same way as Algo­

rithm 5.1 propagates the restorability metric among circuit nodes for calculating the 

restorability values of the circuit when selecting the first signal. However, instead of 

using a custom parameter, another mean is provided to control the amount of metric 

propagation among circuit nodes to limit computation time. Whenever a node is 

being visited, the algorithm will only proceed to update the restorability value of the 

current node through forward propagation when the number of parent nodes that 

have non-zero restorability values has been increased since the last time the current 

node has been visited (line 7). Likewise, the restorability values of its child nodes will 

be checked to determine if backward justification will be performed (line 13). These 

checks ensure that a node will only be revisited if the changes of the restorability 

value come from a different circuit path when compared to its previous visit. 

Algorithm 5.2 selects trace signals based on how many other signals will likely be 

covered after state restoration. Using the restorability values in Figure 5.2(b) as an 

example, when selecting F FC as the trace signal, FFD will also be covered since 

data for FFD can be fully reconstructed during state restoration as indicated with 

a restorability value of 1 in FFD. As a result, although both F FC and FFD will 

likely help reconstruct data for other signals if any of them is selected as a trace 

signal, the two signals together will not help reconstruct more data if they are both 

selected as trace signals for the circuit shown in Figure 4.1 (a). This is why Algorithm 

5.2 analyzes how many signals will be covered at line 23 and will greedily select trace 

signals so that the maximum amount of signals can be covered in order to achieve 

high restoration ratio. 

It should be noted that it is not necessary for the restorability value of a signal 

to be 1 before it can be classified as covered. For example, FFD is the only signal 

that will achieve a restorability value of 1 when F FC is selected as the trace signal 

as shown in Figure 5.2(b). In this case, Algorithm 5.2 will gradually decrease the 

requirement by lowering the targeted restorability value used for classifying signal 

coverage when no signal can be found to cover additional signals (25). 
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This technique on selecting trace signals based on signal coverage in Algorithm 5.2 

differs from the incremental trace signal selection technique by re-calculating restora­

bility values of the circuit with each additional signal selection in Algorithm 5.1. As 

will be shown by the experimental results, although the signal selection method in Al­

gorithm 5.1 may be able to select trace signals that yield higher restoration ratio, the 

computation time for calculating restorability values repeatedly for each incremental 

signal selection can become prohibitively high with large circuits. On the other hand, 

by selecting trace signals that give high coverage for restoring data in other signals 

without re-evaluating the restorability values of the circuit, a good restoration ra­

tio can still be achieved, while the computation time for Algorithm 5.2 falls into an 

acceptable range. 

5.2 	 Trace signal selection using topology and logic 

gate behavior 

To further refine the equations for calculating the restorability of a node, the logic 

behavior of each gate can be taken into consideration. The new metric that considers 

both the topology and the logic behavior of a gate is given in Figure 5.3. In the 

new equations, the restorability is further divided into FO and Fl, which represent 

the likelihood of restoring a logic 0 and 1 respectively on the output of a gate using 

forward operations. Likewise, BO and Bl depict the chance of restoring a logic 0 

and 1 respectively on the input of a gate using backward operations. Note that the 

equations for the AND gate, the OR gate and the XOR gate are different as shown 

in Figure 5.3 due to their different logic behaviors. For the AND gate, when any of 

the inputs is logic 0, the output can be concluded as logic 0, whereas to restore a 

logic 1 on the output through forward operations, both inputs have to be logic 1. 

On the other hand, an input of an AND gate can be justified as logic 1 whenever 
/ 

the output is also logic 1. In order to evaluate the input of an AND gate to logic 0, 

the output of the gate has to be logic 0, and other inputs have to be logic 1. The 

equations for other primitive gates are derived using similar reasoning. It should be 
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FO(z) max{FO(a), FO(b)} 


Fl(z) (Fl(a) + Fl(b))/2 


BO(a) (max{BO(z)} + Fl(b))/2 


Bl(a) max{Bl(z)} 


FO(z) 	 (FO(a) + FO(b))/2 

max{Fl(a), Fl(b)}a~ 	Fl(z)OR Z 
b 	 . BO(a) max{BO(z)} 


Bl(a) (max{Bl(z)} + FO(b))/2 


(FO(a) + FO(b)) + (Fl(a) + Fl(b))
FO(z) 

4 
(FO(a) + Fl(b)) + (Fl(a) + FO(b)) 

a~ 	Fl(z) 4 
b -t-0 z (max{BO(z)} + FO(b)) + (max{Bl(z)} + Fl(b))

· BO(a) 
4 

(max{BO(z)} + Fl(b)) + (max{Bl(z)} + FO(b))
Bl(a) 

4 

Figure 5.3: Equations for restorability calculation using topology + logic 

noted that although both Algorithms 5.1 and 5.2 can be used to select trace signals 

with both of the proposed metrics, the CPU runtime increases when choosing signals 

using the second metric. This is due to the fact that the restorability equations are 

more complex for each node, due to the increased accuracy of the metric. 

Figure 5.4 shows the restorability values calculated using the equations from Fig­

ure 5.3 for all the FFs in the circuit from Figure 4.l(a) for three iterations. It can be 

seen from Figures 5.2 and 5.4 that F FC should be chosen as the trace signal, since in 

both cases it covers more signals with higher restorability values in the circuit. Note 

the differences between restorability values in other signals in Figures 5.2 and 5.4 

when using the two proposed metrics for signal selection. This is due to the further 

refinement in the equations that consider topology and logic behavior of the circuit 

for restorability calculation. When working with large circuits, this refinement can 

help better evaluate the signal coverage when choosing the trace signals. 
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FFA FFB FFC 
FO [O, 0, 0.5) FO [O, 0.5, 0. 75) FO [O, 0.5, 0.75] Circuit restorability after 
F1 [O, 0, 0.5) F1 [O, 0.5, 0. 75] F1 (0, 0.5, 0.75] three iterations if FFE is 
BO (0, 0, 0.5] BO (0, 0.5, 0.75] BO [O, 0.5, 0.75] traced 
B1 [O, 0, 0.5] B1 [O, 0.5, 0.75) B1 [O, 0.5, 0.7~ = (0.5+0.5+0.5+0,5) 

FFD 
FO [O, 0, 0.5) 

FFE 
FO [1, 1, 1] 

+(0.75+0.75+0.75+0.75) 
+(0.75+0.75+0.75+0.75) 

F1 [O, 0, 0.5) F1 (1, 1, 1] +(0.5+0.5+0.5+0.5) 
BO (0, 0, 0.5) BO (1, 1, 1] +(1+1+1+1) 
B1 (0, 0, 0.5] B1[1,1,1] =14 

(a) Circuit restorability when FFE is selected 

(b) Circuit restorability when F FC is selected 

Figure 5.4: Restorability calculation for three iterations using the topology + logic 
metric 

One may argue that the proposed restorability equations that consider both topol­

ogy and behavior of logic gates (shown in Figure 5.3) resemble the SCOAP control­

lability/ observability concept that guides the ATPG process for manufacturing test 

[35]. There is, however, a fundamental difference between the proposed restorability 

metrics and the SCOAP metrics. SCOAP captures the controllability/ observability 

of the internal circuit nodes by measuring how the assignments on neighboring signals 

will affect the targeted signal. Thus, the controllability/observability of a node does 

not give any information on how the specific value obtained for the targeted node 

can help restore data for other circuit nodes. For instance, for the circuit in Figure 

4.l(a), the SCOAP measure will identify FFE as a hard to control signal due to the 
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presence of the X 0 R gate. However, tracing only FFE will not be able to restore 

data for any other signals in the circuit. Unlike SCOAP, the proposed restorability 

metrics capture how the data acquired on a node during a debug session will give 

more information about the internal state of the circuit. 

5.3 	 Experimental results 

Based on the same reasonings on the expected logic block size for the experimental 

setup discussed in Section 4.3, the experiments for evaluating the trace signal selec­

tion algorithms are also performed on the three largest ISCAS89 benchmark circuits 

[18] (i.e. s38584, s38417 and s35932). For these experiments, the state restoration 

algorithm detailed in the previous chapter is used to obtain the restoration ratios 

for evaluating the two trace signal selection algorithms. These algorithms are imple­

mented using ANSI C and executed on a PC with dual-Xeon processors at 2.4 GHz 

with 1 GB of RAM. Also, in our experiments, all the high fan-in gates are decomposed 

into two-input logic gates when translating the ISCAS circuits into circuit graphs for 

both the state restoration algorithm, and the trace signal selection algorithm. 

There are two sets of experimental results discussed in this chapter of the thesis. 

The first set of results shown in SubSection 5.3.1 is based on randomly generated 

stimuli on all primary inputs of the circuits using the experimental flow shown in 

Figure 4.3. While the second set of results discussed in SubSection 5.3.2 is based on 

randomly generated stimuli on the data inputs, and the values on the control inputs 

are constrained as explained in the experimental flow given in Figure 4.5. 

5.3.1 	 Experiments with randomly generated stimuli on all 

inputs 

Tables 5.1, 5.2 and 5.3 give the state restoration ratio and the restoration time for 

s38584, s38417 and s35932 respectively for comparing different signal selection meth­

ods using the topology only metric. Similarly, Tables 5.4, 5.5 and 5.6 give the same 

type of results for s38584, s38417 and s35932 respectively for comparing the signal 
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Table 5.1: State restoration results for s38584 when all primary inputs are driven 
randomly and trace signal are selected using the topology-only metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select Ratio Restore Select Ratio Restore 

time time time time 
(min) (sec) (min) (sec) 

1024 8 221 3.51 0.00 11 83.48 9.00 
16 425 2.26 0.00 11 43.17 9.00 
32 828 1.82 0.00 11 21.89 9.00 

4096 8 221 3.52 0.00 11 82.38 52.00 
16 425 2.26 0.00 11 43.72 52.40 
32 828 1.82 0.00 11 22.16 52.00 

8192 8 221 3.52 0.00 11 84.79 134.30 
16 425 2.26 0.00 11 44.05 134.40 
32 828 1.82 0.00 11 22.33 133.20 

Table 5.2: State restoration results for s38417 when all primary inputs are driven 
randomly and trace signal are selected using the topology-only metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select 

time 
(min) 

Ratio Restore 
time 
(sec) 

Select 
time 
(min) 

Ratio Restore 
time 
(sec) 

1024 8 294 16.75 0.00 10 16.34 0.00 
16 604 8.48 0.00 10 8.17 0.00 
32 1227 6.73 0.00 10 4.10 0.00 

4096 8 294 16.75 0.00 10 16.33 0.00 
16 604 8.54 3.20 10 8.17 0.00 
32 1227 6.72 7.40 10 4.09 0.00 

8192 8 294 16.75 0.00 10 16.33 0.00 
16 604 8.59 8.80 10 8.17 0.00 
32 1227 6.81 4.20 10 4.08 0.00 
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Table 5.3: State restoration results for s35932 when all primary inputs are driven 
randomly and trace signal are selected using the topology-only metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select Ratio Restore Select Ratio Restore 

time time time time 
(min) (sec) (min) (sec) 

1024 8 266 29.31 0.00 29 216.41 0.00 
16 598 86.58 0.80 29 108.29 0.00 
32 1255 44.05 0.00 29 54.23 0.00 

4096 8 266 31.87 2.00 29 215.86 1.00 
16 598 89.06 2.00 29 108.01 1.00 
32 1255 44.98 1.40 29 54.09 1.00 

8192 8 266 32.31 4.00 29 216.19 2.00 
16 598 90.82 4.60 29 108.17 2.00 
32 1255 45.79 3.60 29 54.17 2.00 

Table 5.4: State restoration results for s38584 when all primary inputs are driven 
randomly and trace signal are selected using the topology+logic metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select Ratio Restore Select Ratio Restore 

time time time time 
(min) (sec) (min) (sec) 

1024 8 574 124.34 18.00 60 85.43 6.60 
16 1225 64.08 21.00 60 42.95 6.60 
32 2493 36.59 28.80 60 23.57 7.40 

4096 8 574 126.92 125.80 60 86.52 39.20 
16 1225 65.43 164.60 60 43.50 39.20 
32 2493 37.27 255.20 60 23.90 43.80 

8192 8 574 127.20 345.80 60 87.18 101.20 
16 1225 65.57 470.00 60 43.83 101.20 
32 2493 37.36 834.40 60 24.08 114.80 
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Table 5.5: State restoration results for s38417 when all primary inputs are driven 
randomly and trace signal are selected using the topology+logic metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select 

time 
(min) 

Ratio Restore 
time 
(sec) 

Select 
time 
(min) 

Ratio Restore 
time 
(sec) 

1024 8 470 19.67 0.00 19 17.15 0.00 
16 1151 12.16 0.80 19 9.01 0.00 
32 2499 7.00 0.80 19 6.60 0.00 

4096 8 470 19.62 1.00 19 17.15 0.00 
16 1151 11.22 10.60 19 9.01 0.00 
32 2499 6.73 10.60 19 6.61 0.00 

8192 8 470 19.64 2.00 19 17.14 0.20 
16 1151 10.01 2.00 19 9.01 0.20 
32 2499 6.40 2.00 19 6.59 1.00 

( 

Table 5.6: State restoration results for s35932 when all primary inputs are driven 
randomly and trace signal are selected using the topology+logic metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select 

time 
(min) 

Ratio Restore 
time 
(sec) 

Select 
time 
(min) 

Ratio Restore 
time 
(sec) 

1024 8 524 255.11 9.00 53 255.13 6.80 
16 1145 127.89 8.60 53 127.56 7.00 
32 2380 64.64 8.60 53 63.77 7.00 

4096 8 524 254.90 52.80 53 254.91 45.60 
16 1145 127.80 52.40 53 127.45 46.40 
32 2380 64.59 50.80 53 63.72 46.00 

8192 8 524 254.85 132.20 53 254.85 115.60 
16 1145 127.77 130.40 53 127.43 116.40 
32 2380 64.58 126.40 53 63.71 116.80 
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selection methods using the topology+logic metric. For the results generated using 

Algorithm 5.1, a threshold parameter of 0.1 is used. In these tables, the restoration 

ratios are obtained by comparing the total number of restored values versus the num­

ber of trace signals allowed on-chip. It is obvious that with lower number of trace 

signals, more data will need to be restored. The experiments are carried out for trace 

buffer depths of lk, 4k and 8k, and trace buffer widths of 8, 16 and 32. 

The reported results in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 stand for five different 

sets of debug data obtained by simulating the randomly generated data on all primary 

inputs. Although using random data on the primary inputs for obtaining the debug 

data on the trace signals in the experiments is sufficient for evaluating the proposed 

metrics and algorithms for trace signal selection, one might argue that during an 

actual debug experiment, the global control signals of a circuit will not be driven 

randomly. For example, a global reset signal that is active low should be driven by 

a zero for a few clock cycles for bringing the CUD into a known state. After that, 

a constant 1 should be asserted to the reset signal for the remaining part of the 

debug experiment. This is why in the next subsection, the experimental results with 

constrained values on the control inputs will be discussed. 

There are several important points to be noted. First, using any of the proposed 

metrics for trace signal selection gives higher restoration ratios when compared with 

the results based on random signal selection. Secondly, using the metric that considers 

both circuit topology and logic behavior (Figure 5.3) helps Algorithms 5.1 and 5.2 

to select trace signals that give higher restoration ratio when compared with the 

less sophisticated metric that considers only circuit topology (Figure 5.1), except 

when selecting 16 trace signals for s38584 using Algorithm 5.2. This is because when 

selecting 16 signals for s38584 using either of the proposed metrics, the differences 

in signal coverage between each candidate signals are very small. In this case, the 

algorithm may conclude that the coverage from each candidate signal is virtually the 

same, and thus, the greedy nature of the algorithm will not help select the proper 

trace signals. On the other hand, when the topology and logic behavior-based metric 

yields higher variation for the calculated restorability values (as in the case of s35932), 

Algorithm 5.2 will be able to identify the high coverage signals, and thus select a set 
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of trace signals that will yield high restoration ratios. Another interesting point that 

should be noted is that with s38584, even though when restoration ratios are lower, 

which indicate less data to be restored, the restoration times are actually longer. 

This is due to the same reason discussed above on the variations in restoration time 

in Table 4.4 from the previous chapter of the thesis that if the chosen trace signals 

reside in sequential loop, it may require data to be reconstructed one step at a time. 

It is also interesting to note that increasing the trace buffer depth for s35932 does 

not help improve the restoration ratios due to the low sequential depth of the circuit. 

This is unlike s38584 where the sequential depth is larger and it is visible from the 

results that as the trace buffer depth increases, better ratios are achieved for the 

same trace buffer widths. This obviously comes at the expense of higher restoration 

time which is still within an acceptable range of a few minutes. Another factor that 

significantly contributes to high restoration ratio is the presence of large fan-ins, as 

in the case of s35932. When using the metric that only considers the topology of 

a circuit for signal selection, one can already improve the restoration ratios when 

compared to the random signal selection. Another interesting point is that when the 

trace buffer width is increased, more data will be restored. However, at a lower rate 

than the increase in the number of trace signals. One notable exception is s35932 

when increasing the number of trace signals from 8 to 16 and driving the global 

control inputs deterministically. 

When comparing the restoration ratios between the trace signal selection algo­

rithms, it can be seen that the results from Algorithm 5.1 are better when the metric 

that considers both the circuit topology and logic behavior is used. This is because 

when setting the threshold parameter to 0.1, Algorithm 5.1 spends more effort on re­

calculating the restorability values whenever a new trace signal is selected. This gives 

a more accurate evaluation on how much data may be restored with the chosen trace 

signals. However, this increased accuracy comes with two limitations. Firstly, when 

the less accurate metric that considers only the circuit topology is used for signal 

selection, Algorithm 5.1 does not perform well against Algorithm 5.2 for s38584 and 

s35932. This is because when combining the monotonically increasing nature of the 

113 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

metric and the high computation effort, Algorithm 5.1 may over-evaluate the restora­

bility values for the signals placed in sequential loops. On the other hand, Algorithm 

5.2 only calculates the restorability values once; thus it is not prone to inflating the 

restorability values in sequential loops. The second limitation of Algorithm 5.1 is the 

prohibitively high computation time, which is in the range of tens of hours for s35932 

when selecting 32 trace signals. This is significantly larger than Algorithm 5.2 that 

only calculates restorability values once, and then selects trace signals by evaluating 

how many signals will be covered during state restoration. When Algorithm 5.2 is 

used to select 32 trace signals, the runtime is reduced to within one hour. Another 

interesting note when comparing runtime for the two trace signal selection algorithms 

is that the runtime scales proportionally with the number of trace signals when using 

Algorithm 5.1, while the runtime stays the same for Algorithm 5.2. This is because 

Algorithm 5.1 selects signals incrementally by re-evaluating the restorability metrics 

during each selection, while Algorithm 5.2 only calculates the restorability values once 

no matter how many trace signals are being selected. 

One last important point to discuss is the runtime for the state restoration al­

gorithm. Unlike the trace signal selection algorithm, which is run only once during 

implementation, the state restoration algorithm is run repeatedly after each debug 

session, as illustrated in Figure 2.6. Thus, it is important for the state restoration 

algorithm to be compute-efficient. As shown in Tables 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6, 

the runtime for this algorithm is in the range of a few seconds to minutes. These 

results have been obtained using the bitwise parallelism exploited by the technique 

from Section 4.2. Note, the state restoration runtimes are greater than the ones ob­

served for the same trace buffer capacity in Tables 4.3, 4.4 and 4.5. However, this 

increase in runtime is due to larger restoration ratios caused by the improved choice 

of trace signals, where the random trace signals selection has been replaced by the 

deterministic Algorithms 5.1 and 5.2. Having more useful debug data extracted from 

the circuit obviously causes the state restoration algorithm to process more circuit 

nodes over the same number of clock cycles. Nonetheless, despite this increase, the 

runtime is practical and the state restoration algorithm fits seamlessly between the 

data acquisition step and the data analysis step. 
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Table 5. 7: State restoration results for s38584 when the control inputs are driven 
deterministically and trace signal are selected using the topology-only metric 

Algorithm 5.1Buffer Algorithm 5.2 
depth width Ratio RestoreSelect Select Ratio Restore 

time time time time 
(min) (sec) (min) (sec) 

2.981024 221 0.00 11 19.00 0.008 
16 425 1.87 0.00 11 0.0010.57 

1.3232 828 0.00 11 6.29 0.00 
2.994096 221 0.00 11 19.00 0.008 

0.00 0.0016 425 1.87 11 10.57 
32 828 1.32 0.00 11 6.29 0.00 

8192 221 2.98 0.00 11 19.00 0.008 
0.00 0.0016 425 1.87 11 10.57 

32 828 1.32 0.00 11 6.29 0.00 

5.3.2 	 Experiments with constrained generated stimuli for con­

trol inputs 

Tables 5.7, 5.8, 5.9 and 5.10 compare the results that were generated using Algorithms 

5.1 and 	5.2 for s38584 and s35932 with the experimental flow described in Figure 

4.5. Note that no results for s38417 have been reported because as mentioned in 

SubSection 4.3.2, there are no signals need to be constrained in this circuit. While 

Tables 5.7 and 5.8 show the results when trace signal selection is performed using the 

metric that concerns only about circuit topology, Tables 5.9 and 5.10 give the results 

for when the metric that considers both circuit topology and logic behaviors of logic 

gates is used. In these tables, the results obtained using Algorithm 5.1 are performed 

with a threshold parameter of 0.1. The results on trace signal selection time in these 

experiments are the same as the ones shown in the previous experiments. This is 

because no changes have been made to the trace signal selection algorithm with these 

new experiments. 

The restoration ratios obtained using the new experimental flow are lower than 

what was provided in SubSection 5.3.1. This is due to the same reasons discussed in 
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Table 5.8: State restoration results for s35932 when the control inputs are driven 
deterministically and trace signal are selected using the topology-only metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select 

time 
(min) 

Ratio Restore 
time 
(sec) 

Select 
time 
(min) 

Ratio Restore 
time 
(sec) 

1024 8 266 6.68 0.00 29 2.08 0.00 
16 598 8.39 0.00 29 2.05 0.00 
32 1255 9.24 0.00 29 3.15 0.00 

4096 8 266 6.76 0.00 29 2.08 0.00 
16 598 8.48 0.25 29 2.05 0.00 
32 1255 9.35 0.50 29 3.17 0.00 

8192 8 266 6.77 0.25 29 2.08 0.00 
16 598 8.50 0.50 29 2.05 0.00 
32 1255 9.37 1.00 29 3.17 0.25 

Table 5.9: State restoration results for s38584 when the control inputs are driven 
deterministically and trace signal are selected using the topology+logic metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select 

time 
(min) 

Ratio Restore 
time 
(sec) 

Select 
time 
(min) 

Ratio Restore 
time 
(sec) 

1024 8 574 10.13 0.00 60 3.13 0.00 
16 1225 5.75 0.00 60 2.06 0.00 
32 2493 6.32 0.00 60 1.53 0.00 

4096 8 574 10.13 0.00 60 3.13 0.00 
16 1225 5.75 0.00 60 2.06 0.00 
32 2493 6.32 0.00 60 1.53 0.00 

8192 8 574 10.13 0.00 60 3.13 0.00 
16 1225 5.75 0.00 60 2.06 0.00 
32 2493 6.32 0.00 60 1.53 0.00 
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Table 5.10: State restoration results for s35932 when the control inputs are driven 
deterministically and trace signal are selected using the topology+logic metric 

Buffer Algorithm 5.1 Algorithm 5.2 
depth width Select Ratio Restore Select Ratio Restore 

time time time time 
(min) (sec) (min) (sec) 

1024 8 524 41.66 0.25 53 40.39 0.25 
16 1145 39.48 0.25 53 36.69 0.50 
32 2380 24.79 0.25 53 18.35 0.50 

4096 8 524 41.45 0.25 53 40.38 0.25 
16 1145 39.31 0.75 53 36.69 0.50 
32 2380 24.76 1.00 53 18.34 0.50 

8192 8 524 41.41 0.75 53 40.38 0.70 
16 1145 39.28 1.50 53 36.69 1.00 
32 2380 24.75 2.00 53 18.34 1.00 

SubSection 4.3.2 that when the experiments are run using randomly generated stimuli 

for all primary inputs, no constraints have been provided on the reset signals for both 

s38584 and s35932. Thus, the state restoration algorithm will be able to reconstruct 

the values of all the circuits' nodes easily every time the circuits are reset. 

It is also noted that the restoration ratios for both circuits is lower when Algo­

rithm 5.2 is used with deterministically driven control inputs. This is because when 

compared with Algorithm 5.1, which selects trace signals by propagating the metrics 

thorough the logic gates, Algorithm 5.2 only chooses trace signals based on signal 

coverage. As a result, it is more likely for Algorithm 5.2 to select control signals as 

the trace signals since they usually drive more signals in a circuit. Since some of 

these control signals are now driven deterministically to their non-controlling values, 

the sampled data will not help reconstruct data for other signals. However, when 

the trace signals are selected using the topology-only metric for s38584 as shown in 

Table 5. 7, Algorithm 5.2 gives better restoration ratios than Algorithm 5.1. This is 

because when the less accurate metric is used, Algorithm 5.1 tends to over-evaluate 

the restorability values when sequential loops are presented in s38584. 
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Another observation on the results from the new experimental flow is that the 

results state restoration time are very small when compared to that in the results 

from the previous experimental flow. This is due to the lower amount of data that 

can be restored when the control inputs are constrained. 

We do recognize that there is no practical value of this new experimental flow 

when debugging circuits on an application board. However, we want to emphasize 

that during the design phase, it is essential to decide which signals are to be traced 

during post-silicon validation. Therefore, in addition to aiding researchers with bench­

marking their algorithms under practical conditions, setting up an experimental flow 

can also better assist the decision-making process on which trace signals should be 

hardwired to the trace buffers. As a result, the flow is designed in such way that 

it relies on third party tools and simple algorithms with small runtime; thus fitting 

seamlessly in the current implementation flows for digital integrated circuits. 

5.4 Summary 

Chip designers traditionally rely primarily on design knowledge and intuition to de­

cide which signals to probe and how many state elements to observe. Because the de­

sign complexity will continue to increase, structured debug methods with automated 

support will become crucial for decreasing the length of the debug cycle during post­

silicon validation. In this chapter of the thesis, we have presented two new metrics 

and two algorithms for automatically selecting the trace signals. These algorithms 

show how by consciously choosing only a small number of signals to be probed in 

real-time, the observability of the CUD can be improved through the algorithmic 

solutions on state restoration presented in the previous chapter of the thesis. 
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Chapter 6 

Distributed embedded logic 

analysis 

So far we have presented techniques that can be used to improve post-silicon validation 

for a single block (or logic core) in a complex design. In multi-core designs, distributed 

ELAs with multiple trigger units and trace buffers can be placed on-chip. This brings 

the new challenge on how to connect the various units together in such way that 

the limited storage space in the trace buffers can be used efficiently. Although there 

are existing techniques that detail how the trace buffers are connected for various 

industrial designs (as discussed in SubSection 2.3.5), they are mainly ad-hoc and use 

static connections to the trace buffers. As a result, when the number of available 

trace buffers is smaller than the number of simultaneous sample requests coming 

from different trigger units, information from some of the data sources will have to be 

dropped. This results in loss of debug information and hence reduced observability. 

In this chapter of the thesis, we explore the consequences of two assumptions that 

we anticipate will become common in future complex SOCs. These assumptions are 

summarized in Section 6.1. Motivated by this, we propose a new methodology based 

on distributed ELAs in Section 6.2. The accompanying hardware is detailed in Section 

6.3. Experimental results given in Section 6.4 shows that real-time observability can 

be improved using only small amounts of logic hardware while avoiding excessive 

storage on-chip. Finally, Section 6.5 summarizes the contributions from this chapter. 
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6.1 Motivation 


Our work is motivated by the following two assumptions that we anticipate will 

become common in future SOCs. 

Assumption 6.1: Growing number of cores in future SOCs 

Recent research has shown that the number of cores in a design will continue 

to increase while incorporating even more distributed embedded memories, whose 

integration costs are decreasing [11, 116]. Thus, finding a way to automatically control 

the acquisition of bursts of high-bandwidth debug data on-chip in a user-defined and 

prioritized manner will be key to improving the real-time observability during post­

silicon validation. This motivates us to investigate a scalable DFD architecture that 

better utilizes the available on-chip storage by automatically allocating the trace 

buffers to handle concurrent sample requests. 

Assumption 6.2: Adoption of high-speed trace ports 

It has been reported that high-speed trace ports are used for streaming data 

to external memories during software debug [10, 32, 71, 77, 80]. We expect this 

technology to gain a wider adoption with the proliferation of high-speed I/Os in future 

SOCs. As we will show later, the ability to offload debug data while maintaining the 

real-time execution can further enhance real-time observability. 

Based on these two assumptions, we explore how a new debug methodology can 

be developed. This methodology should improve real-time observability during post­

silicon validation for multi-core SOCs that utilize distributed ELAs. Also, the amount 

of accompanying hardware for the architecture in this methodology should be small. 

6.2 Proposed design-for-debug methodology 

Unlike pre-silicon verification, where any number of data sources in a design can be 

sampled at the same time in the testbench, the number of available trace buffers limits 

how many data sources can be captured simultaneously during post-silicon validation. 
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To exploit the technology trends captured in the assumptions stated in the previous 

section, in this section we discuss the challenges and proposed debug architecture that 

can help bridge the gap between pre-silicon verification and post-silicon validation. 

6.2.1 Challenges 

As described in Assumption 6.1, designs with an increasing number of cores are 

expected to come in the foreseeable future. For example, [116] demonstrated a mi­

croprocessor with 80 cores and is capable of achieving a peak performance of over 

one terafiop at an operating frequency of 4GHz. Meanwhile, [11] introduces the idea 

of manycore designs, which can contain in excess of 1000 heterogeneous cores in a 

design. To debug these complex designs, we expect that the role of distributed em­

bedded logic analysis will be of increasing importance. By placing standalone trigger 

units in various parts of the design, concurrent executions in the cores can be mon­

itored. Moreover, as data sources can be scattered in various locations, debugging 

such a design also requires a way to acquire a large amount of debug data from these 

data sources at any given time. To sustain this high bandwidth requirement, the 

trace buffers should be distributed across different corners of the design. 

As stated in Assumption 6.2, the use of trace ports for streaming data off the chip 

has been explored for debugging microprocessors-based systems [10, 32, 71, 80]. As 

the adoption of high-speed I/Os gains wider acceptance, we investigate the use of these 

high-speed I/Os as trace ports to stream data off the chip during debug. Although 

it has been mentioned in [10] that the bandwidth of one such trace port can go up to 

10 Gbit/s, this is still a fraction of the rate at which data is acquired (e.g., 128-bit 

samples@ 1.6 GHz [93]). However, it should be noted that with the advancement in 

the design of trigger units, debug engineers will be able to better control what data 

to acquire on-chip. Unless one would require data from all the data sources in every 

clock cycle, trace buffers will only be used for data acquisition in a fraction of the 

debug time. Thus, its content can be offloaded through the available trace ports, such 

that storage space can be reclaimed for future data acquisition. 
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Under the expectation of having a growing number of cores to be monitored and 

the ability to stream debug data off-chip using high-speed trace ports, we argue that 

the tasks of allocating the available trace buffers for data sampling from different 

data sources, as well as assigning trace ports to idle trace buffers, should be done 

automatically by intelligent control on-chip. The controller should be built in such a 

way that the following scenarios are considered. 

Scenario 6.1: When there are multiple trigger events occurring simultaneously, 

how to choose trace buffers to sample data from different data sources? 

Scenario 6.2: When some of the trace buffers are already occupied, is it 

necessary to re-allocate the trace buffers when a new trigger event from a 

different data source occurs? 

Scenario 6.3: How to allocate trace buffers when the number of sample requests 

is more than the number of available trace buffers? 

Scenario 6.4: How to allocate trace buffers for data sampling before knowing 

when trigger events from multiple data sources will happen? 

Scenario 6.5: How to decide which trace buffers to offload first when multiple 

trace buffers are idle? 

Scenario 6.6: How to balance the sampled data among trace buffers such that 

more trace buffers will have available space for fulfilling upcoming data 

acquisition requests? 

Scenario 6. 7: In the case when debug experiments are repeatable, can the 

controller be re-programmed to acquire different sets of debug data during 

each re-run of the experiment? 
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Figure 6.1: The proposed design-for-debug architecture based on distributed embedded logic analysis 
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6.2.2 Architecture 

To address the various scenarios presented in the previous subsection, Figure 6.1 

illustrates the proposed debug architecture with seven new features, discussed next. 

It is important to emphasize that these features are not meant to be seen as the only 

solutions for addressing the mentioned scenarios. Rather, they are given as examples 

on how the proposed architecture provides a hardware framework for tackling the 

previously discussed scenarios when employing distributed embedded logic analysis 

and high-speed trace ports in an SOC during post-silicon validation. Thus, it is up 

to the designers to further improve the hardware of each feature for their problems 

at hand. 

Feature A: Handling simultaneous trigger requests 

Feature B: Handling overlapping trigger requests 

Feature C: Deciding which sample requests to be ignored when there are not 

enough idle trace buffers 

Feature D: Sample before triggering for multiple trace buffers connected to 

multiple data sources 

In this architecture, trigger units, which can be programmable trigger engines [3] 

or hardware assertions [17], are distributed within each core, while cross-trigger units 

can be setup among cores to monitor multiple trigger events across the design at 

the same time. To address Scenarios 6.1-6.4, we introduce Features A - D in the 

Allocation unit (new hardware circuits needed to make this Allocation unit efficient 

are given in the following subsection). When one or more specified trigger events 

occur, the allocation unit will be notified and will automatically decide where the 

debug data should be stored among the available trace buffers. Also, the decisions 

should be made according to a user-defined priority scheme that needs to reflect the 

importance of the debug data from various data sources. 

Because the on-chip area used for debug is dominated by trace buffers, as will be 

discussed in the experimental results, it is essential to leverage their capacity across 
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Trace buffer 1 Time 1 Trace buffer 2 

Data segment 
1-1 Time 2 

Control data 1-1 Time 3 
Time4 

Time5 
Data segment 

1-2 

Control data 1-2 

Timestamp 

Figure 6.2: Sampled data organization in trace buffers using multiple segments 

multiple data sources and reconfigure their usage on-the-fly based on the bandwidth 

requirements in different areas of the chip. Figure 6.2 shows how the data can be 

organized in the trace buffers. It should be noted that different amounts of debug 

data may be generated from different data sources each time they are triggered. To 

deal with this problem, one can insert control information such as Source ID and 

Timestamp for every data sample that is acquired. This is obviously inefficient , as it 

requires a huge amount of storage. Thus, we introduce the use of a Control data field 

that will be appended at the end of a sampling cycle such that the debug dat a can 

be grouped together into segments in the trace buffers. As the communication fabric 

can connect any data sources to the available trace buffers, data acquired from the 

same source at different times can be stored in separate trace buffers. This allows the 

allocation unit to better utilize the trace buffers, as discussed next. 

Figure 6.2 uses two segments of data from Source 1 (Data segment 1-1 triggered 

at Time 1, and Data segment 1-2 triggered at Time 4). In this example, when the 

request for capturing Data segment 1-2 comes at Time 4, Trace buffer 1 is already 

occupied by Source 2. In this case, the Allocation unit can allocate Trace buffer 2 to 
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capture Data segment 1-2, while Trace buffer 1 can be used to store Data segment 

3-2 starting at Time 5. As a result, using the same amount of storage space, the 

proposed architecture will be able to acquire more debug data since no data will need 

to be dropped and the load on multiple trace buffers is balanced. 

Feature E: Handling for out-of-order offloading of data samples 

When high speed trace ports are available, the allocation unit can utilize any idle 

trace ports to offload the sampled data from the trace buffers for off-chip analysis. 

As data is being offloaded, spaces in the trace buffers can be reused. To deal with 

Scenario 6.5, the same priority scheme defined in the Allocation unit can be used 

when allocating trace ports for data offload. Hence, Feature E is included in the 

proposed DFD architecture. 

Feature F: Transfer data between buffers 

The proposed DFD architecture also includes the hardware for supporting Feature F 

in Figure 6.1 in order to address Scenario 6.6. By allowing data to be transfered be­

tween idle trace buffers, the available storage space can be better balanced among 

trace buffers. This helps maintain the high bandwidth requirement when multiple 

data acquisition requests arise during post-silicon validation. 

Feature G: Programmable priority 

To deal with Scenario 6.7, the user should be able to modify the priority scheme 

for each debug experiment. This is because the priority scheme directly affects how 

the Allocation unit arranges the trace buffers when sample requests arise and data 

is offloaded through the trace ports. Thus, changing the way different data sources 

are prioritized enables the allocation unit to acquire distinct sets of data when the 

experiment is repeated. As a result, we incorporate Feature Gin the Allocation unit. 

The Allocation unit also provides the appropriate control signals to the Commu­

nication fabric that carries the data transport between data sources, trace buffers 

and trace ports. In our current implementation, the communication fabric uses a 
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pipelined multiplexer network. It should be noted however that the functionality of 

the communication fabric can also be provided by other means, such as a data bus, or 

a network-on-chip. Although this would incur more complex control from the alloca­

tion unit when configuring the communication fabric, the hardware for deciding how 

trace buffers are allocated for data acquisition in real-time would still be the same. 

As the number of data sources and available trace buffers increases, one may argue 

that providing a communication fabric (i.e., a pipelined multiplexer) that can allow 

any data sources from the different cores to be connected to any trace buffer can 

potentially lead to large area. As it will be shown in our experimental results, when 

compared with the area of the distributed trace buffers, the communication fabric 

only contributes to a small portion of the total area for the proposed architecture. 

It is obvious that the implementation of the allocation unit closely impacts how the 

trace buffers would be selected to acquire data from multiple cores, while at the same 

time utilizing the available trace ports to stream debug data off the chip in an auto­

mated manner. As a result, in the following section, we detail new hardware circuits 

that should be incorporated into the Allocation unit for supporting Features A-G. 

6.3 	 New on-chip hardware circuitry for enabling 

the proposed methodology 

The Allocation unit presented in the proposed architecture in Figure 6.1 is the key to 

efficiently utilize the available trace buffers and trace ports for acquiring debug data 

in real-time during post-silicon validation for future core-based designs. In Figure 

6.3, the implementation of the allocation unit is shown. It contains an Allocation 

FSM that gathers information from all the trace buffers and trace ports. Using 

this information, it makes real-time decisions on where debug data should be stored 

whenever sample requests come from the trigger units, as well as how the trace ports 

should be used to offload the captured debug data. After a decision has been made, it 

updates the status registers that control the read/write operations of the trace buffers, 

as well as providing the appropriate controls to the Communication fabric to facilitate 
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Figure 6.3: The allocation unit 

data acquisition and offloading. In addition to the allocation FSM, extra hardware is 

introduced in the allocation unit to support the features that are discussed. 

6.3.1 	 Handling of simultaneous, overlapping, and overflow · 

sample requests (Features A-C) 

In pre-silicon verification, any number of data sources can be monitored and displayed 

simultaneously during simulation. However, during post-silicon validation, when the 

number of sample requests exceeds the number of available trace buffers, it is im­

perative that some of these requests will have to be ignored and debug data will be 

lost. In this case, the designer will have to provide priority information for the data 

sources to the Allocation FSM so that only sample requests from low priority data 

sources should be ignored. 
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Figure 6.4: Example of overwriting low priority data during overflowing of trigger 
events 

The limited storage spaces provided by the trace buffers also constrains debug 

data to be dropped when sample requests come after the trace buffers have been 

filled. However, instead of dropping all the sample requests when the buffers are full, 

it may be desirable to accept data from high priority data sources by overwriting low 

priority data in the trace buffers. To keep track of where the different segments of 

prioritized debug data are stored in the trace buffers, a queue, which is maintained 

by a Queue FSM, is introduced for each trace buffer in the allocation unit. 

Figure 6.4 shows how the information from the queue can help the allocation unit 

decide how data should be overwritten in the trace buffers. It may seem that having 

a separate queue for each trace buffer requires significant area investment. However, 
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one should note that the length of the queues is small since only one entry will be 

created for each segment of data in the trace buffer. Also, for each entry in the queue, 

only simple information such as priority and the starting address of a data segment 

is stored. Thus, the queue can either be embedded in its corresponding trace buffers, 

or a dedicated embedded memory can be used to store the information for all the 

queues in the design. 

It should be noted that in order to provide real-time observability during post­

silicon validation, the allocation unit has to reach its decision on trace buffer assign­

ment in the same clock cycle as the arrival of any sample requests. By using these 

queue FSMs to organize prioritized data in the trace buffers, the complexity of the 

allocation FSM can also be reduced since the queue FSMs can operate in the back­

ground to prepare all the necessary information (e.g., amount of available space in 

trace buffers, distribution of prioritized data among buffers) for the allocation unit. 

6.3.2 Data sampling before trigger (Feature D) 

Another powerful feature that will aid identifying root-cause of a bug is to acquire 

data that precedes the triggering of specific events. Although this capability to sample 

data before trigger events occur has been explored, this ability is only implemented for 

designs with only one trace buffer [6, 122]. When multiple data sources are connected 

with distributed trace buffers, it is not obvious how one should allocate the available 

trace buffers to allow a continuous sampling of data before the trigger event arrives. 

To efficiently utilize the limited storage in the trace buffers, while supporting 

data sampling before trigger, two status registers called Window size and Window 

position are introduced in the allocation unit in Figure 6.3. In this case, continuous 

data sampling is only allowed within the allocated window in a trace buffer as shown 

in Figure 6.5(a). When the trigger event occurs, these sampled data are marked 

by appending a control data at the end of the segment, and the Window position 

register will be updated such that a different part of the buffer will be used (Figure 

6.5(b)). This ability to reposition the sampling window among trace buffers provides 

further flexibility to the allocation unit to free up trace buffers from continuous data 

130 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

Sampling Continue Source 1 
before trigger sampling triggered, data 
from source 1 from source 1 

for the next 
trigger 

captured 
previously 

should be kept 

Trace buffer 1 Trace buffer 1 

Empty space 
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Figure 6.5: Example of using windows to support sampling before trigger 

sampling and assign them to service upcoming data acquisition requests. It is obvious 

that the amount of sample-before-trigger data that can be acquired is limited by the 

size of the window. However, this can be changed during post-silicon validation by 

programming at runtime the Window size register. 

6.3.3 Out-of-order data offloading (Feature E) 

As previously mentioned, when high-speed trace ports are available, debug data can 

be offloaded from the trace buffers to regain valuable storage space for any upcoming 

sample requests. Figure 6.6 can be used to show how the information from the queue 

can be used to decide which segment of data should be offloaded. When data segments 

with different priorities are stored in the trace buffer, the queue FSM uses the priority 

information in the queue to inform the trace ports to offload all the high priority data 

segments before servicing the data segments with lower priorities. In the example 

Data segment 
1-1 

(b) After triggering 
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Figure 6.6: Out-of-order offloading 

shown in Figure 6.6, Data segment 1-2 is offloaded before Data segment 2-1, even 

though Data segment 2-1 is acquired into the trace buffer before Data segment 1-2. 

This ensures that high priority data will be offloaded before being overwritten, and 

guarantees high observability to the data sources that are of significant importance. 

6.3.4 Data transfers between buffers (Feature F) 

In the case when the trace buffers have more than one access port, one can chain 

the trace buffers together such that while one port is used to acquire debug data, 

the other port can be used to transfer the sampled data between trace buffers. This 

feature of being able to transfer data between trace buffers provides three benefits. 

Firstly, by balancing the amount of stored data among trace buffers, empty spaces 

can be fairly distributed among trace buffers. This allows the allocation unit to allo­

cate these partially empty trace buffers to service more simultaneous sample requests. 

This is shown in Figure 6. 7. If the empty space is only concentrated in Trace buffer 

2, when new sample requests from Data source 2 and Data source 3 come simulta­

neously, due to the low priority of Data source 3, its request will be dropped and 

only data from Data source 2 will be stored as shown in Figure 6.7(a). However, if 

the empty space is fairly distributed among the buffers, as in Figure 6. 7(b), the two 
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sample requests can be satisfied. Secondly, if the amount of debug data that will be 

generated from a data source is known, the allocation unit can move data between 

trace buffers so that sufficient space can be reserved for this data source in order to 

reduce data segmentation. 

Moreover, when data can be offloaded in an out-of-order fashion using Feature E, 

transferring data between trace buffers helps de-fragment the empty space within each 

trace buffer. This can be shown using the example in Figure 6.8. When Data segment 

3 arrives, fragmented empty spaces among the trace buffers will force the new data 

to be segmented with their corresponding control data (Data segment 3-1 and Data 

segment 3-2 in Figure 6.8(a)). If the data is re-organized using this feature, the new 

data can be stored in just one data segment (Data segment 3-1 in Figure 6.8(b)). 

Recall that control data will have to be appended to each segment of debug data, 

thus, de-fragmenting empty space can help reduce data segmentation, which in turns 

decreases the amount of control information being stored in the trace buffers. 

To support this feature, the trace buffers can be daisy-chained together using the 

Communication fabric in the Offioad unit in Figure 6.1. Moreover, additional control 

such as the preparation of read/write addresses and write enables to the appropriate 

trace buffers must be included in the trace buffer control unit as shown in Figure 6.3. 

6.3.5 Programmable priority (Feature G) 

In the case when the debug experiment is deterministic (i.e., the debug experiment 

can be regenerated with the same set of input stimuli), it may be beneficial to gather 

different sets of debug data each time the experiment is run. Thus, we introduce 

a programmable register for each data source and additional control logic in the 

allocation unit such that the user can re-arrange the priority scheme. When the new 

priority information is uploaded to the priority registers, the decision made by the 

allocation unit for Features A - E will be changed, resulting in a different set of 

debug data to be captured into the trace buffers. 

Figure 6.9 shows how different priority settings will affect data acquisition. In 

Figure 6.9(a), Data source 1 has the highest priority. When a new sample request from 
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Figure 6.9: Example of data sampling with different priority settings 

that data source arrives, the queue FSM will notify the allocation unit to overwrite 

part of the low priority Data segment 3-1 with the new Data segment 1-2. On the 

other hand, when Data source 3 is given the highest priority in Figure 6.9(b), part of 

Data segment 1-1 will be overwritten instead. 

One may argue that by only changing the priority setting, the amount of distinct 

debug data that will be gathered between different experiments may be very small. 

For example, when comparing the amount of distinct debug data obtained in Figure 

6.9 between the two priority settings, only the small amount of Data segment 3-1 that 

was overwritten with the first priority setting is recovered from the second run of the 

debug experiment. However, one should note that without programmable priority, it 
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will be impossible to retrieve this small set of Data segment 3-1, and thus, may lose 

valuable debug information during post-silicon validation. 

6.4 Experimental results 

Three types of experiments are covered in this section. First we present two case 

studies on a digital video decoder (shown in Figure 6.10) implemented at McMas­

ter University, which illustrates how the discussed features were used in a practical 

environment in SubSection 6.4.1. Then, we investigate how different configurations 

of the proposed DFD architecture tradeoff between area investment and debug data 

acquisition in SubSections 6.4.2 and 6.4.3 respectively. 

6.4.1 Case studies 

Figure 6.10 shows the organization of the MPEG-2 audio/video decoder used in the 

case studies presented below. 

Case Study 1: During digital video decoding, starvation of the audio or video 

decoder may occur during extended idle periods which are interrupted by bursts of 

activity across the 3 interacting clock domains of 25 MHz, 54 MHz and 27 MHz. 

While concurrent monitors in pre-silicon verification (for instance on the Bitstream 

Parser, Video Shift Controller and Audio Shift Controller from Figure 6.10) can in­

deed identify these corner cases, it can take extensive time for them to arise. Using 

the proposed architecture, we are first capable (by cross triggering) to identify which 

domain starves and with how much time before the next data would have arrived. 

Out-of-order offloading (Feature E) lets the user balance offload bandwidth against 

acquisition bandwidth (video will produce more samples than audio) and transfer­

ring data between trace buffers (Feature F) gives more capacity for capturing video 

samples, thus improving the real-time observability of the debug experiment. Finally, 

sample before trigger (Feature D) allows us to identify the sequence of events that 

lead up to the starvation, by which we can assess buffering requirements. 

137 




f--' 
w 
00 

Completed 
Image Data I 

Prediction Framestore I Bltstream Buffering 
External RAM Access Arbitration 

--•·····R-~~-----·--
Bank 4 

CASESTUDY1 
·Incoming Bitstream . 

54 MHz ,_ for 720X4so 

Dequantlzatlon/ 
Denormalization 

Prediction 1. ·--·----.. ,, 
Formation 

FWD/BWD Prediction Data 

Data 
CASE STUDY2 

Output Sync 

Figure 6.10: MPEG-2 decoder implementation for case studies 

>-1j 

b 
~ 

i-3 
~ 
(D 
Ulu;· 

P=1 
0 

~ 
~ 
0 

8:: 
(") 

8::,,, 
Ul 
rt 
(D..., 
e 
~ 

~-
..., 
Ul 

rt 
'< 

tr:J 
Ci) 
(") 
rt...,
0· 
~ 
go 
0 
0 
8 

"O 
i:: 
rt 
(D..., 
M 
~ 

aci
5· 
(D 
(D..., 
5· 

()q 



Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

Case Study 2: This case study deals with the difficulty of synchronizing the out­

put audio and video streams (as shown to the right of Figure 6.10). Having distributed 

embedded logic analyzers with cross triggering helps us zoom in on regions of interest, 

such as transitions from one batch of output samples to another (audio/video frame 

crossings), as these transitions provide points of reference for synchronization. Giv­

ing highest priority to temporally proximal transitions among the streams (Features 

A-C and G) allows us to sample continuously without fear of exhausting the trace 

buffers before reaching a more informative scenario (such as when transitions on both 

streams occur close to one another). This gives a better picture of the synchronization 

status of the audio and video streams. As before, sampling before trigger also enables 

obtaining synchronization status information both before and after transition points. 

In both case studies, the concurrency and high data acquisition bandwidth inherent 

to pre-silicon verification are made possible during post-silicon validation due to the 

proposed DFD features. 

6.4.2 Analyzing area investment of the proposed architecture 

In this subsection, the experimental results on area investment for the DFD hardware 

required to support all the features discussed in Section 6.2.2 under different architec­

tural setups are shown. These area results are obtained using a 90nm standard cell 

library and a third party synthesis tool [108]. Figures 6.11, 6.13 and 6.15 show how 

the proposed architecture scales in terms of area when the number of cores, trace 

buffers, and trace ports change respectively. For the bar charts shown in Figures 

6.12, 6.14 and 6.16, the columns are broken down into various sections. This helps 

better understand how much each part of the inserted DFD hardware contributes 

to the overall area. The Top control unit oversees the entire architecture and com­

municates with the JTAG port for controlling the DFD hardware during post-silicon 

validation. The Communication fabric for sampling connects the data sources to the 

trace buffers as shown in Figure 6.1. The Data source select unit provide control to 

the communication fabric for connecting the data sources to trace buffers. The FSM 

for real-time decisions determines how the trace buffers and trace ports are utilized. 
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Figure 6.11: Area investment analysis when varying the number of cores 

It also communicates with the top control unit. The Queue control unit controls the 

queue, whose area estimation is not included in the results since the queue can be 

embedded into the trace buffers. The Trace buff er control unit provides the write 

address and activates the write enable for individual trace buffer during data acqui­

sition, and supplies the read address during data offload. The Offioad management 

unit provides control to the communication fabric to connect the trace buffers to 

the trace ports, as well as activating the trace ports when needed. These units just 

mentioned reside in the Allocation unit shown in Figure 6.3. Finally, the Communi­

cation fabric for offioading connects the trace buffers to the trace ports. Note that in 

our implementation, the communication fabrics are implemented using multiplexer 

networks. 

Figures 6.11 and 6.12 show the area investment for the DFD hardware required to 

support all the features discussed in Section 6.2.2 when varying the number of cores 

in an SOC. The DFD hardware for these experiments contains one 16 KB trace buffer 

and one trace port. It can be seen from Figure 6.11 that when the number of cores in 
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Figure 6.12: Area distribution among hardware components when varying the number 
of cores 

an SOC increases, the area of the DFD hardware scales accordingly. The reason for 

this can be found in Figure 6.12. When the number of cores increases, the size of the 

communication fabric between data sources and the single trace buffer, and the data 

source select unit, also grow in order to provide the proper connections and control 

between the data sources and the trace buffer. When the number of cores rises, the 

FSM for making real-time decision on trace buffer allocation becomes more complex, 

and thus, enlarging the FSM for real-time decisions. 

Figure 6.13 analyzes the area investment in the DFD architecture when the size, as 

well as the number of on-chip trace buffers varies. In this figure, all features discussed 

in Section 6.2.2 are supported for an SOC with 32 data sources and one trace port. 

As shown in Figures 6.1 and 6.3, a major part of added hardware comes with the 

Allocation unit and Communication fa bric for controlling and transporting debug 

data among trace buffers and trace ports. As a result, the communication fabric will 

have to be expanded and the control logic in the allocation unit will be modified to 

incorporate the added flexibility to manage sampling and offloading of debug data 
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when more trace buffers are available. However the depth of the trace buffers does 

not have a visible impact on logic area because it is only the bitwidth of address 

registers that scales logarithmically with the trace buffer depth. It is important to 

note that even with 16 trace buffers and all the features considered, the logic area of 

the proposed DFD architecture it is still below 303 of the total area of the on-chip 

debug resources (i.e., the embedded memories dominate the total area). It will be 

shown in the later discussion on experimental results for data acquisition how this 

303 area from the control logic enables acquisition of more useful data over the case 

where it is used simply for more storage capacity. 

In order to show how the area investment scales when the number of trace buffers 

increases, while the size of the trace buffers in terms of storage capacity remains the 

same in Figure 6.14, the experiment was conducted with 32 data sources connected to 

five different arrangements of trace buffers: 1x16KB, 2 x 8KB, 4 x 4KB, 8 x 2KBand 

16 x lKB using one trace port. It can be seen that with the same storage capacity, 

the additional area required varies with the arrangement of trace buffers. This is 
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Figure 6.14: Area investment analysis when varying the organization of trace buffers 

because as the number of trace buffers increases, the two communication fabrics have 

to be extended to provide the necessary connections between the data sources, trace 

buffers and the trace ports. Also, extra hardware will be required for the added 

complexity in the FSM for making real-time decisions, as well as in the control units 

(i.e. , Data source select unit, Trace buffer control unit and Offload management unit) 

for providing control to the trace buffers and the expanded communication fabrics . 

When the number of trace ports increases, the area investment scales up linearly 

as shown in Figure 6.15. In this figure , as well as in Figure 6.16, which gives the 

distribution of additional hardware among different components, there are 32 data 

sources and 16 lKB trace buffers. As can be seen in Figure 6.16, the increase in area 

when the number of trace ports rise is contributed from the larger communication 

fabric between the trace buffers and the trace ports, as well as from the offload 

management unit for providing controls to the fabric. 

143 




54000 

Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of trace ports 

c 
0

·,i: 53000 

"' E 52000 
:c: 
"' QI 51000 
"' QI... 50000"'... c 
QI 49000
ni 
>
·:; 48000 
C'" 
QI 

0 47000 
z 
ex: 46000z 

45000 

Figure 6.15: Area investment analysis when varying the number of trace ports 
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Figure 6.17: Impact of various features on acquisition of debug data 

6.4.3 	 Analyzing data acquisition of the proposed architec­

ture 

Figure 6.17 shows data captured for an experiment consisting of the MPEG hardware 

discussed earlier, with 5 data sources (cores), three 16-bit trace buffers of depths lK, 

2K and 4K, and a trace port with bandwidth 1 Mb/s and 5 Mb/s. The first two 

columns show debug data obtained with static connections between the data sources 

and trace buffers. The next two columns show the improvement obtained by adding 

the communication fabric, and the last two columns show the benefit of having pro­

grammable priority. It can be seen that when programmable priority is supported, 

the proposed DFD architecture can gather the most amount of debug data. The 

improvement is not as significant when the bandwidth of the trace port is 5 Mb/s 

because the ratio between offload bandwidth and acquisition bandwidth is close to 1. 

However, when the acquisition bandwidth surpasses the offload bandwidth (as in the 

case when a trace port with only 1 Mb/sis available), a significant amount of previ­

ously lost data can be recovered by adjusting the priority settings during the debug 

145 




Ph.D. Thesis - Ho Fai Ko McMaster University - Electrical & Computer Engineering 

..... Data source 1 

._..Data source 2 

"*"Data source 3 

'*"Data source 4 

.,.Data source 5 

2nd 3rd 4th 5th 

Priority arrangement for each core 

100 


90 


80
"Cl 

.. C1I... 
::J 70 
Q. 
nl 60 
nl.. u 

nl so 
"Cl.. 40c 

C1I 
~ 30
C1I 
Q. 

20 


10 


0 +­
1st 

Figure 6.18: Effect of programmable priority on data loss 

experiments. Although there is a noticeable initial area investment when supporting 

the programmable priority feature, if this area is used merely for deeper buffers, data 

loss can still occur. In this way, a high ratio between offload and acquisition band­

width justifies the need for programmable priority. Despite the availability of higher 

bandwidth trace ports [10], off-chip bandwidth can never keep pace with on-chip sig­

nal density, especially when acquiring signals for use in software debug. Thus there 

will always be need for selective acquisition via programmable priority. 

Finally, Figure 6.18 further illustrates how programmable priority functions when 

data acquisition rate exceeds offload bandwidth under the same architectural setup 

used for the experiment shown in Figure 6.17. Based on a rotating priority scheme, 

a data source will always acquire the most data when having the highest priority. 

Beyond highest priority, the amount of data captured is heavily dependent on the 

sampling behavior of other sources with higher priority, and when the offload band­

width is much less than the acquisition rate, the amount of captured data can fall 

steeply when the data source is not at the top of the priority list. 
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6.5 Summary 

In this chapter of the thesis, we have introduced a new design-for-debug architecture 

for distributed embedded logic analysis that enables real-time observability. Using two 

case studies on a digital video decoder we have presented its advantages in improving 

real-time observability of the design. This helps bridge the gap between pre-silicon 

verification and post-silicon validation. We have also analyzed the costs of managing 

on-chip distributed trace buffers. Because the area for on-chip real-time debug is 

dominated by embedded memories, we have learned that the area investment for the 

proposed architectural features and intelligent control is below 103 of the total area 

required for debug. 
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Chapter 7 

Conclusion and future work 

As the complexity of integrated digital circuits and systems continues to grow, it is 

increasingly difficult to guarantee error-free first silicon. In order to shorten time-to­

market and avoid escalating fabrication costs due to design re-spins, DFD techniques 

have been experiencing a growing acceptance for reducing the burden of post-silicon 

validation. 

Among the numerous DFD techniques that have been proposed in recent years, 

embedded logic analysis has received increased attention due to its ability to acquire 

debug data in real-time in-system. However, the amount of data one can acquire is 

limited by the capacity of the on-chip trace buffers in the ELAs. In this dissertation, 

we have proposed novel architectures and algorithmic solutions to address the chal­

lenges on various parts of the ELA, as well as when multiple ELAs are employed for 

utilizing the limited storage space more efficiently. 

The rest of this chapter is organized as follows. Section 7.1 summarizes the con­

tributions in this thesis. Section 7.2 discusses the direction for possible future work. 

7 .1 Summary of dissertation contributions 

The decisions on when to acquire debug data during post-silicon validation are deter­

mined by trigger events that are programmed into on-chip trigger units. In Chapter 3 

of this thesis, we investigate how to design trigger units that are both resource-efficient 
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and runtime programmable. To achieve these two goals, we introduce new architec­

tural features, as well as an algorithm for automatically mapping trigger events onto 

trigger units. In this new architecture, we allow the user to program trigger condi­

tions onto a lower number of comparators than the number of prime implicants in 

the condition function. We then perform real-time false trigger analysis to conclude 

if the event that triggers data acquisition is valid. Also, to maintain the efficiency 

of the false trigger analysis, an algorithm is introduced to map the trigger events 

onto trigger units with only a small number of false events. Together, the proposed 

architecture and algorithm improve controllability of the CUD by allowing more com­

plex trigger events to be programmed onto an existing trigger unit, while preserving 

precious storage space through false trigger analysis during post-silicon validation. 

Despite the recent advancement in the design of ELAs, the reluctance to invest 

additional area for large trace buffers only for the purpose of post-silicon valida­

tion limits the amount of available data that can be acquired on-chip. This indirectly 

translates into a more time-consuming process for identifying the design errors. Thus, 

it is desirable to find a way to better utilize the acquired data on the trace signals, 

such that as much missing data (for other internal signals) as possible can be recon­

structed. This goal is achieved in Chapter 4 by introducing automated solutions for 

state restoration in the CUD. Using the proposed algorithm, data in state elements 

across multiple time frames can be restored using debug data from the trace signals. 

Also, in order for the state restoration algorithm to be applicable to large designs and 

data to be restored over thousands of clock cycles, a compute-efficient version of the 

same algorithm that exploits bitwise parallelism is introduced. 

The decisions on which signals should be hardwired to the trace buffers of the ELA 

are made during the design cycle early in the design flow. However, it is not known 

a-priori what types of bugs should be expected, and thus, it is impossible to predict 

which signals will provide more information during post-silicon validation. In Chapter 

5, two metrics are introduced for analyzing the topology as well as the logic behaviors 

of circuit nodes in a design. The result of the analysis is then used by the proposed 

algorithms for selecting the trace signals automatically. One of the two proposed 

algorithms provides a more detailed analysis during signal selection, while the other 
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algorithm performs a good estimate on which signals should be traced with reasonable 

runtime. vVhen performing state restoration on the debug data acquired from the 

suggested trace signals, a significant amount of data can be reconstructed, and thus, 

effectively improving the observability of the CUD during post-silicon validation. 

To deal with concurrent activity in multi-core SOCs, the idea of distributed trig­

gering is introduced. However, this brings in new challenges on how to effectively 

utilize the limited storage space among all the trace buffers when multiple data 

sources are presented. Motivated by the assumptions that the number of cores in 

future SOCs will continue to increase, and high-speed trace ports will gain a wider 

adoption with the proliferation of high-speed I/Os, Chapter 6 introduces a new DFD 

architecture for core-based SOCs. In this resource-efficient and scalable architecture, 

intelligent control is placed on-chip to automatically allocate distributed trace buffers 

to handle debug data acquisition from multiple data sources located in different cores 

in real-time. At the same time, any idle high-speed trace ports will be allocated to 

stream the sampled data off-chip to reclaim the valuable storage space in the on-chip 

trace buffers. The proposed architecture also complements existing system-level de­

bug techniques as it provides a means to transport debug data in an efficient manner, 

without concerning whether the debug data has been pre-processed using techniques 

such as trace filtering and trace compression. 

7 .2 Possible future research directions 

A few possible future research directions have been identified and they are outlined 

in this subsection. 

The proposed triggering methodology (architecture and algorithm) from Chapter 

3 could be extended to allow trigger events based on different groups of signals, 

which may or may not be connected directly to the trigger unit, to be programmed 

at runtime. For example, due to space limitations only 32 signals can be connected 

to the trigger unit. However, these signals are logically related (in both space and 

time) to a larger pool of signals from the design. It would be useful to facilitate the 

description of logic conditions for triggering on the signals that are related, but not 
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necessarily connected directly, to the trigger unit. In this case, the proposed trigger 

event mapping algorithm will have to be modified accordingly. 

The continuous improvement on the design of ELAs together with the use of the 

proposed state restoration algorithms discussed in Chapter 4 will enlarge the amount 

of available debug data during post-silicon validation. Although having more data 

helps provide more information to understand the errors, analyzing and isolating only 

the useful data is very time consuming and in the current state-of-the-art it is done 

using manual techniques. As a result, it will be beneficial to introduce algorithmic 

solutions to analyze and identify these useful data so that they can be presented to 

the debug engineer in a more meaningful way. This can help speed up the debug 

process and thus, reduce the overall time spent on post-silicon validation. 

The metrics proposed in Chapter 5 for trace signal selection only provide a rough 

estimate on the restorability of each signal by analyzing the structure of a design. 

When more information such as the expected behavior of the design is available, 

these metrics can be refined and thus help produce more accurate measure on the 

influence of tracing each signal. Another interesting research direction is on mixing 

complementary debug techniques to gain the benefits of both worlds. If the trace 

buffer-based technique is combined with scan chain-based technique (for example a 

scan dump is done at the end of a debug session when the trace buffer is filled), new 

metrics and algorithms for selecting the trace signals will need to be investigated. 

The future generation of SOCs is likely to have more cores that operates at differ­

ent frequencies and have more complex interactions among them. Moreover, depend­

ing on the functionalities of these cores, they may be grouped together into smaller 

clusters to resemble a hierarchical structure in order to reduce the complexity of the 

communication channels on the chip. In this case, instead of utilizing one unit to allo­

cate trace buffers in the proposed architecture in Chapter 6, it may be worth studying 

the advantages and disadvantages on employing a hierarchical allocation unit. This 

is done by using multiple simpler allocation units for each cluster of cores. These 

simpler allocation units will then be monitored by a global controller for transporting 

data between clusters to balance the acquisition bandwidth available from the trace 

buffers in each cluster. 
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In summary, post-silicon validation is a key step in the implementation flow of 

integrated circuits and systems. Although many ad-hoc techniques exist in practice, 

the escalating complexity of the state-of-the-art designs, combined with the emerging 

business models in the semiconductor industry based on core providers and system 

integrators, motivate the need for structured and algorithmic solutions in the future. 

This thesis has investigated several key research problems for the design of the de­

bug infrastructure for post-silicon validation. New algorithmic solutions have been 

proposed and analyzed. Although not a single solution in the field of post-silicon 

validation is one-fit-all, the work from this thesis is an important step toward the 

adoption of more structured and algorithmic methods in the field. 
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