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Abstract 

Let K = (K, v, ... ) be a model of a model-complete theory, T of valued fields. We 
characterise, for certain definable subsets S of J(n, the collections of S-T-integral 
definite and S-T-infinitesimal definite rational functions. Specifically, we consider 
subsets S defined by both integrality and infinitesimality conditions for the theories of 
algebraically closed valued fields, p-adically closed fields, two model-complete theories 
of valued D-fields and in two model-complete theories of henselian residually valued 
fields. 
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Introduction 

1. Hilbert's Seventeenth Problem 

In his seminal address to the International Congress of l\fathematicians in 
1900, David Hilbert proposed a list of twenty-three then unsolved problems intended 
to promote the development of various fields of mathematics throughout the twentieth 
century. Work on these problems was deemed of great importance. Of the twenty
three problems, the majority have been resolved or partially resolved. (The most no
table exception is Hilbert's 8th Problem, the Riemann Hypothesis. whose affirmative 
solution would have many practical and important number-theoretic implications.) 
However, aspects of even the resolved problems hold interest for mathematicians to
day. 

In the published list of the twenty-three problems [13], Hilbert's 17th Problem 
is stated as follows: 

A rational integral function or form in any number of variables with 
real coefficient such that it becomes negative for no real values of these 
variables, is said to be definite. The system of all definite forms is 
invariant with respect to the operations of addition and multiplication, 
but the quotient of two definite forms, in case it should be an integral 
function of the variables, is also a definite form. The square of any form 
is evidently always a definite form. But since not every definite form 
can be compounded by addition from squares of forms, the question 
arises whether every definite form may not be expressed as a quotient 
of sums of squares of forms. 

Hilbert's 17th Problem asks for a characterisation of the functional property of a 
polynomial over the real numbers being everywhere nonnegative in terms of the alge
braic property of being a sum of squares of rational functions over the real numbers. 
This conjecture seems simplistic. It posits that the definite forms are exactly those 
forms that are obviously definite. The conjecture is, however, true in any real closed 
field. Artin provided the affirmative answer in 1927. 
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THEOREM 0.1 (Artin's Nichtnegativstellensatz, (1]). Let R be any real closed 
field and f E R[X1, ... , Xn]· If f is nonnegative on Rn, then f is a sum of squares 
in the field of rational Junctions R(X1 , ... , Xn)· 

As Artin's methods rely on an application of Zorn's Lemma, the result is 
nonconstructive. We will give a model-theoretic proof of this in Section 3 of this in
troduction, which, too, is nonconstructive. Thus the solution leads to more questions. 
Given a polynomial with real coefficients, is there an algorithm to determine whether 
it is definite? If so, is there an algorithm to determine its representation as a sum of 
squares? How many squares are needed? Are there bounds on the degrees? See [7) 
for an account of the literature on these questions. 

Hilbert's 17th Problem can be seen, also, as part of a larger problem to con
struct a correspondence between algebra and geometry akin to the correspondence 
between algebraic subsets of en and radical ideals of C[X] = C[X1 , ... , Xn]· This 
theory was developed by Stengle [24] and others in the second half of the twentieth 
century. A lovely survey of their results can be found in [16]. 

Here, we prove analogues in valued fields of Artin's solution to Hilbert's 17th 
Problem with an eye toward developing an algebro-geometric correspondence in this 
setting. Our methods, too, are nonconstructive and, hence, will give rise to questions 
analogous to those discussed above. 

2. Valued Fields 

By a valued field, we shall always mean a field K together with a map 

v:K--+fU{oo} 

where r is an ordered abelian group written additively. This map is called the valu
ation on K and must satisfy 

v(O) = oo, 

v(xy) = v(x) + v(y), 

v(x + y) 2: min{ v(x), v(y)} 

for all x, y E K. This third condition is the strong triangle inequality. It is important 
to note that this inequality becomes an equality whenever v(x) -=/= v(y). To see this, 
suppose there are x, y E K with v(x) < v(y) but v(x + y) > min{ v(x), v(y)} = v(x). 
Certainly, 

v(x) = v((x+y) + (-y)) 2: min{v(x+y),v(-y)}. 

However, since v(x + y) > v(x) and v(-y) = v(y) > v(x), we have min{v(x + 
y), v( -y)} > v ( x). This is a contradiction. 
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The valuation on a valued field is analogous to the ordering on the real field. 
Hence, we may reformulate Hilbert's 17th Problem in the valued field setting by 
replacing the notion of being nonnegative with the notion of having nonnegative 
valuation. 

We fix some notation. The set of elements of nonnegative valuation, 

Ov,K = {x EK: v(x) 2: O}, 

is the valuation ring of (K, v). Moreover, Ov is a local ring whose maximal ideal is 
precisely the elements of positive valuation, 

Mv.K = {x E K: v(x) > O}. 

Then the group of units, o:, consists exactly of the elements of valuation zero. The 
quotient Ov.K / Mv.K is the residue field of ( K, v) and is denoted kv,K. The canonical 
map Ov,K ---> kv.K is called the residue map and is denoted resv.K. \Ve shall often 
write Ov, Mv, kv and resv for the valuation ring, maximal ideal, residue field and 
residue map, respectively, when the valued field K is clear from context. 

Then given a valued field (K,v), we shall say that a rational function J(X) E 
K(X) = K(X1 , ••. , Xn) is integral at b E Kn if f(b) is defined and J(b) E Ov. \Ve 
shall say that J(X) is infinitesimal at b E Kn if f(b) is defined and f(b) E Mv· 
Furthermore, given a subset S ~ Kn, we say that J(X) is S-integral definite if f(X) 
is integral at each b E S. Similarly, we say f (X) is S-infinitesimal definite if f (X) is 
infinitesimal at each b E S. 

Notice that, as v(O) = oo, elements with large valuation are "close" to zero, 
motivating our choice of the term infinitesimal for these elements. Further, notice 
that these definitions explicitly require that a function f (X) be defined at any point 
where it is integral or infinitesimal. In Chapter 3, we shall refine our notions of 
integrality and infinitesimality to allow certain functions to be considered integral or 
infinitesimal even where not defined. 

The analogue of Hilbert's 17th Problem in valued fields, then, asks for an 
algebraic characterisation of the functional properties of being S-integral and S
infinitesimal definite. We provide this in the form of algebraic characterisations of 
the collections of S-integral definite and S-infinitesimal definite rational functions 
for certains sets S as in (1) below. We denote these sets O(S) and M(S), respec
tively. We will refer to these types of results as Stellensatze after the Nullstellensatz, 
Positivstellensatz and Nichtnegativstellensatz of real algebraic geometry. 

Our method is model-theoretic in nature. Formally, we work throughout (with 
the exception of in the following section) in expansions of the language of valued fields 
£div =£rings U {div} where the binary predicate div is defined by div(x, y) +-t v(x) :S 
v(y). Then we may axiomatise valued fields in £div by the axioms for fields together 
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with 

\f X[div(X, X)) 

\f X\fY[div(X, Y) V div(Y, X)] 

\f X\fY\fZ(div(X, Y) /\ div(Y, Z) ---t div(X, Z)] 

\fX\fY\fZ[div(X, Y) f-t div(XZ, YZ)) 

\fX\fY[div(l,X) /\div(l, Y) ---t div(l,X + Y)] 

We denote the above £div-theory of valued fields by VF. We shall, however, often 
use the notation v(X) ~ v(Y) and v(X) < v(Y) with the understanding that these 
are abbreviations of the appropriate £div-formulae. The sets S we consider are the 
£div-definable subsets of the form 

(!) S ~ { x EK":~ v(f;(x)) 2: v(J(x)) & [;; v(g;(x)) > v(g(x))} 

for some f, Ji, g, gj, hk E K[X). 
Our model-theoretic method requires that the valued fields in which we formu

late our Stellensatze be models of model-complete theories. Recall that an £-theory 
Tis model-complete if whenever A and Bare models of T such that A<;;;_; B then for 
each quantifier-free £-formula cp(X, a) with parameters a E An for some n E N, we 
have 

BI= 3Xcp(X,a) if and only if A I= 3Xcp(X,a). 

Moreover, T is the model-companion of T' C T if T is model-complete and every 
model A of T' can be extended to a model of T. For background on these and other 
model-theoretic notions, we direct the reader to [14) or [18). 

In particular, if an £div-theory, T, admits quantifier elimination in Ldiv, then 
Tis model-complete in Ldiv· In this case, the sets S as in (1) are almost completely 
general as every definable subset of a model of T is a finite union of sets defined by 
formulae 

cp5 (X) := (\ v(fi(X)) ~ v(f(X)) & (\ v(gj(X)) > v(g(X)) & (\ hk(X) = 0 
iEJ jEl kEK 

for some f, fi, g, gj, hk E K[X). The zero conditons above introduce new compli
cations that we will not address here. Thus, we restrict ourselves to sets S as in 
(1). 

Kochen first studied the question of integral definite rational functions in the 
p-adic case. In [15), the globally integral definite functions over a p-adically closed 
field are characterised. Moreover, Lemma 5 of (15] is the foundation of all further 
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results in this area. Indeed, it is an extension of this lemma (Theorem 1.2) that 
is critical to our results. Belair, in (3], obtains a similar result characterising the 
globally integral definite functions in the case of wittian difference fields. Prestel 
and Roquette in [19] extend Kochen's result with a characterisation of the S-integral 
definite rational functions for sets S defined by integrality conditions. In [12], Haskell 
and Yaffe formalise a framework for proving Stellensatze in valued fields and carefully 
consider the question of whether a rational function might be considered integral at 
a point where it is not defined. In particular, they characterise the S-integral definite 
rational functions for sets S defined by integrality conditions in D-Henselian fields 
(as in [22]) and real closed valued fields. Further, in [11], Guzy introduces the notions 
of henselian residually p-adically closed field and characterises the globally integral 
definite rational functions in this setting. 

The contribution of this manuscript is to extend all of these results by charac
terising in each case the integral definite and infinitesimal definite rational functions. 
Using similar model-theoretic methods, recent work of Yaffe and Lavi follows that of 
Dickmann [8) to obtain results on the integrality of rational functions on sets defined 
by positivity conditions in the real closed setting. 

\Ve shall proceed as follows. In the following section we briefly describe Artin's 
solution to Hilbert's 17th Problem. In Chapter 1, we prove the extension of Kochen's 
Lemma (Theorem 1.2) that is the foundation for the results in the remainder of the 
manuscript. In Chapter 2, we consider the problem of integral definite and infini
tesimal definite rational functions in the pure valued field setting. Specifically, we 
characterise the S-integral definite and S-infinitesimal definite rational functions for 
subsets of algebraically closed valued fields (Theorem 2.1) and p-adically closed fields 
(Theorem 2.3) defined by integrality and infinitesimality conditions. In Chapter 3, 
we consider valued fields with additional structure. When new function or relation 
symbols are added to the language, we must refine our notions of integrality and in
finitesimality. We use the notions of T-integrality (see (12]) and T-infinitesimality to 
obtain Stellensatze in D-henselian fields (Theorem 3.5), a model-complete theory of 
wittian difference fields (Theorem 3.8) and real closed valued fields (Theorem 3.10). 
In Chapter 4, we use the terminology of Delon in [6] to introduce the notion of a 
henselian residually valued field. We then obtain Stellensatze in two model-complete 
theories of henselian residually valued fields: henselian residually p-adically closed 
fields (Theorem 4.7) and henselian residually real closed valued fields (Theorem 4.9). 
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3. A Model-Theoretic Proof of Artin's Nichtnegativstellensatz 

In order to make transparent the analogy to our own results, we provide here 
a model-theoretic proof of the the real Nichtnegativstellensatz that is Artin's solution 
to Hilbert 17th Problem. 

Recall that a field is formally real if -1 is not a sum of squares. In this case, 
we can define an ordering < on K so that (K, <) is an ordered field. A formally 
real field is real closed if it has no formally real algebraic extensions. We work in the 
language of ordered rings £< = { +, -, ·, 0, 1, < }. It is routine to axiomatise ordered 
fields in £<. \Ve shall denote the £<-theory of ordered fields by OF. We may further 
axiomatise real closed fields by the axioms for OF together with 

2n 

\f Xo ... 'v'X2n:3Y(Y2
n+l + L Xi Yi= 0). 

i=O 

We shall denote the above Le theory of real closed fields by RCF. 
It is well-known that the theory RCF is model-complete as RCF admits elim

ination of quantifiers in the language of ordered fields £<. The quantifier elimination 
is originally due to Tarksi, but a modern treatment of this result can be found in [18]. 
Moreover, RCF is the model companion of OF, since every ordered field (K, <) can 
be extended to a real closed field, its real closure. 

Let (K, <) be a model of RCF and let J(X) E K(X) = K(X1 , ... , Xn)· Now 
the property of being nonnegative is £<-definable by the universal £<-formula 

Thus its negation is existentially definable by 

By the model-completeness of RCF, to show that f (X) is not nonnegative, it will 
suffice to witness the above existential formula in any real closed field extending 
(K, <). In particular, the field of rational functions K(X) can be made into a model 
of OF, (K(X), <'),extending (K, <). Then, as RCF is the model-companion of OF, 
we may further extend to some model of RCF. However, the ordering<' on K(X) is 
by no means unique. Thus some information regarding the possible orderings <' on 
K(X) is needed. 

Given an ordered field (K, <), let 

P< := {x EK: x 2 O} 

6 
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be the positive cone of the ordering <. Further, let 

LK
2 

= {L:ai: ai E K,I finite} 
iEJ 

be the subsemiring of sums of squares in K. Finally, let 

q(LK2
) = {x EK: ax E LK2 for some a E LK2 ,a f=-0}. 

The following is true for any field extension L of K. We are, of course, interested in 
the case where L = K(X). 

LEMMA 0.2 (Artin's Criterion). Let (K, <) be an ordered field and let L be an 
extension field of K. Then q(l: £ 2

) is the intersection of all the positive cones P<' of 
orderings <' on L that extend the ordering on K. 

The utility of Artin's Criterion comes from the contrapositive: given a f/. 
q(l: £ 2

), there is an ordering<' on L extending the ordering on K such that a <' 0. 

THEOREM 0.3 (Artin's Nichtnegativstellensatz). Let (K, <) be a real closed 
field. Then f(X) E K(X) is positive semidefinite if and only if f E q(L K(X)2

). 

A MODEL THEORETIC PROOF. The right-to-left direction is clear as every square 
is certainly nonnegative and the property of being nonnegative is preserved under mul
tiplication, addition and division by positive elements. For the converse, assume for 
a contradicition that f(X) = ~~i~~ f/. q(L K(X)2). Then, as in the remarks after 
Lemma 0.2, there is an ordering <' on K(X) such that f(X), as an element of the 
ordered field (K(X), <'), is negative. In particular, we have 

(K(X), <') F 3X [(f1(X) < 0 v h(X) < 0) & --Ui(X) < 0 /\ h(X) < O)]. 

Now (K(X), <') is a model of OF but is not, in general, real closed. However, since 
RCF is the model companion of OF, we may extend (K(X), <')to a real closed field, 
say (L, <'). Then, in particular, (K, <) ~ (L, <') and 

(L, <') F 3X [(f1(X) < 0 v !2(X) < 0) & -.(J1(X) < 0 /\ h(X) < O)]. 

By the model-completeness of RCF, we have that 

(K, <) F 3X [(!1 (X) < 0 v !2(X) < 0) & -.(fl (X) < 0 /\ h(X) < O)]. 

This contradicts that f(X) is positive semidefinite. D 
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CHAPTER 1 

A Key Lemma 

When we work in the valued field setting, the general idea of the proof will 
resemble the proof in the real algebraic setting. Given a model of VF, (K, v). and 
f(X) E K(X) = K(X1, ... , X11 ), the properties of being S-integral definite and S
infinitesimal definite are £div-definable by the universal formulae 

VX1 ... \:/X11 [v(f(X1, ... , X11 )) 2: OJ 

and 

VX1 ... \:f X11 [v(f(X1, ... , X11 )) >OJ. 

Thus, the properties of not being S-integral definite and of not being S-infinitesimal 
definite are existentially £div-definable. If ( K, v, ... ) is, in fact, a model of a model
complete theory of valued fields, T, then it will suffice to witness these existential 
formulae in any model of T extending (K, v, ... ). In particular, we will be concerned 
with the case where we have a model of T extending (K(X), v, ... ) with v extending 
v. Thus, as in the real setting, we will require information regarding the possible 
extensions of the valuation v to K(X). In particular, we require a generalisation of 
the following lemma of Kochen. 

LEMMA 1.1 (Kochen's Lemma, Lemma 5 of [15]). Let (K, v) be a valued field 
with extension field L and let A be a subring of L such that A n K = Ov. Let 
T = { 1 + ma : m E Mv, a E A}. Then the {ring-theoretic) integral closure of 
Ar = { x E L : tx E A for some t E T} is the intersection of all valuation rings Ou 
of valuations v on L extending the valuation v on K such that A~ 0 11 • 

This is an analogue for valued fields of Artin's Criterion. Again, its utility lies 
in the contrapositive: given x E L not integral over Ar, Kochen's Lemma implies the 
existence of a valuation v on L extending v and such that v( a) 2: 0 for each a E A but 
v(x) < 0. We will generalise this lemma to include information about infinitesimal 
elements. 

We first fix some notation. Given a subring A of a field L and a proper ideal 
B of A, the set T = { 1 + b : b E B} is a multiplicative subset of A. Thus the set 

Ar = { x E L : tx E A for some t E T} 

8 
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is just the localisation of A at T and is a subring of L. Moreover, the set 

Br = { x E L : tx E B for some t E T} 

is the image of the ideal B under the localisation. In particular, Br is a proper 

ideal of Ar. Let iy'AL and i\/BL denote the integral closures in L of Ar and Br, 
respectively. We shall omit the superscript whenever the context permits. 

THEOREM 1.2. Let (K,v) be a valued field, Lafield extension of K, AC L 
a subring such that An K = C:\ and B a proper ideal of A such that B n K = Mv· 
Let T = {1 + b: b E B}. 

(i) The set i\YA is the intersection of all valuation rings Ou of valuations v on 
L with maximal ideals Mv- such that A<;;;; 0 11, B <;;;; Mv- and v extends v. 

(ii) The set i\/B is the intersection of all maximal ideals Mv- of valuation rings 
0 11 of valuations v on L such that A<;;;; 0 11, B <;;;; Mv- and v extends v. 

Before we prove Theorem 1.2, we will need an easy corollary to the standard 
valuation theoretic result known as Chevalley's Theorem. 

THEOREM 1.3 (Chevalley's Theorem, Theorem 3.1.1 of [9), for example). Let 
K be a field and let R be a subring of K with prime ideal p. Then there is a valuation 
v on K such that R <;;;; Ov and Mv n R = p. 

Given a valued field (K,v) and an extension field L of K, the following corol
lary tells us when a subring of L can be extended to a valuation ring of L whose 
corresponding valuation extends the valuation v. 

COROLLARY 1.4. Let (K, v) be a valued field. Let L be an extension field of 
K, let A be a subring of L such that An K = Ov, and let I be a proper ideal of A 
such that I n K = Mv. Then A can be extended to a valuation ring 0 11 on L with 
maximal ideal M 11 extending I. In particular, v extends v. 

PROOF. Let M be any maximal ideal of A containing I. Then, in particular, M 
is prime and, by Chevalley's Theorem, there is a valuation v on L with A <;;;; 0 11 and 
M11 n Ov = M. Then I<;;;; M 11• Moreover, 0 11 n K = Ov, for x E 0 11 n K but x rf. Ov 
we have x- 1 E Mv· Hence, x- 1 EM <;;;; M 11• This is a contradiction as x E 0 11• Thus 
v extends v. 0 

We are now ready to proceed with the proof of Theorem 1.2. 

PROOF OF THEOREM 1.2. Let v be a valuation on L such that A<;;;; 0 11, B <;;;; M 11 

and 0 11 n K = Ov· We first show that i\YA <;;;; 0 11 and iV'B <;;;; M 11• First, observe 
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that each element of T has valuation zero, since v(b) > 0 for each b E B so that 
v(l) < v(b) and, hence, v(l + b) = v(l) = 0. Then, since for any valuation v, 

v (;) = v(x) -v(y), 

the properties of being integral and infinitesimal are preserved by localisation at this 
multiplicative set. Thus Ar ~ Ov and Br ~ Mv. Now suppose a is integral over 
Ar. That is, set p(Y) = yn + 'E~:-0

1 aiYi with ai E Ar for each i = 0, L ... , n - 1, 
and suppose that p(a) = 0. Assume, for a contradiction, that v(a) < 0. Now 

and we have equality if the minimum value occurs uniquely. Since v(ai) 2 0 for each 
i, we find that 

v(an) = nv(a) < v(ai) +iv( a)= v(aiai). 

Thus v(p(a)) = nv(a) < 0. This is a contradiction as v(p(a)) = v(O) > 0. Thus 
iy/A c Ou· 

Now suppose a is integral over Br. Set p(Y) = yn + "E::=-01 biYi with bi E Br 
for each i = 0, 1, ... , n - 1, and suppose that p(a) = 0. Since bi E Br, we have 
v(bi) > 0 for each i. Thus we may apply the residue map, resv-. In the residue field 
kv-, 

0 = resv-(0) = resv-(p(a) 
n-l 

= resv-( a r + I: resv-( bi) reSv( a) i 
i=O 

Thus resv-( a) = 0 and it follows that v( a) > 0. Thus iV'B ~ Mv-. 
For the reverse inclusions, we first consider a not integral over Br and show 

that there is a valuation, v, on L extending v on K such that v(A) 2 0 and v(B) > 0 
but v(a) < 0. 

Observe that if a E L \K is not integral over Br then the ideal generated 
by Br and a-1

, M = Br[a-1
], is a proper ideal of Ar [a-1). To see this, suppose 

M =Ar [a-1
). Then 

r 

-1 = L:: ,eia-i 
i=O 

10 
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for some r EN and /3i E Br. Multiplying by ar, we get 
r 

i=l 

Now /30 = 1 !~2 for some b1 , b2 E B. Thus multiplying by 1 + b2 , we obtain 
r 

i=l 

Since (1 + b2 + b1 ) ET we may divide by it to see that a is integral over Br. This is 
a contradiction, so we must have that M = Br[a-1

] is a proper ideal. 
Then, by Corollary 1.4, for a not integral over Br, Ar [a-1

] can be extended 
to a valuation ring Ov of L with maximal ideal Mv extending Br [a- 1

] such that v 
extends v. 

Finally, if ex is not integral over Ar, then, in particular, a is not integral over 
Br and the argument above yields a valuation v on L extending v on K such that 
v(A) ~ O and v(B) > O but v(a) < 0. 0 

Again, the utility of Theorem 1.2 lies in its contrapositive. Given x E L not 
integral over Ar, there is a valuation v on L such that v(a) ~ 0 for each a E A and 
v(b) > 0 for each b EB, but v(x) < 0. Similarly, for x EL not integral over Br there 
is a valuation v on L such that v(a) ~ 0 for each a EA and v(b) > 0 for each b EB, 
but v(x):::; 0. 

Notice that we recover Kochen's Lemma as the special case of Theorem 1.2 
where B = Mv ·A. 

11 



CHAPTER 2 

Pure Valued Fields 

By a pure valued field, we mean a model of a theory of valued fields in a 
language [, that is an expansion of [,div with no new function or relation symbols. As 
we shall see in Chapter 3, interactions between additional functions or relations and 
the valuation require us to re-evaluate our notions of integrality and infinitesimality. 
Our pure theories are likely those with which the reader is most familiar: the theories 
of algebraically closed valued fields and p-adically closed fields. The results in alge
braically closed valued fields build on the work of Haskell and Yaffe in [12). While the 
results in p-adically closed fields have been known for some time (see [15] and [19]), 
we have included them here for the sake of completeness and to better illustrate our 
method of proof. 

1. Algebraically Closed Valued Fields 

A valued field (K, v) is an algebraically closed valued field if the field K is 
algebraically closed. We can easily axiomatise algebraically closed fields in [,div by 
the axioms for valued fields and axioms 

\l'Xo, ... , \f Xn3Y (t Xi Yi= o) 
i=O 

for each positive integer n. We denote the [,div-theory of algebraically closed valued 
fields by ACVF. 

That ACVF is model-complete in the language [,div is shown in [21). In fact, 
ACVF admits quantifier elimination. Moreover, ACVF is the model-compnaion of 
the theory of valued fields, VF. To see this, one need only verify that given a valued 
field (K, v), the valuation can be extended to the algebraic closure of K (see (9) or 
[20), for example). 

It follows from quantifier elimination that every definable subset of an alge
braically closed valued field, ( K, v), is a finite Boolean combination of sets defined by 
formulae 

'Ps(X) := f\ v(fi(X)) 2: v(f(X)) & f\ v(gj(X)) > v(g(X)) & f\ hk(X) = 0 
iEl jEJ kEK 

12 
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for some f, Ji, g, gj, hk E K[X]. Notice that for g(x) =f. 0, we have 

v(J(x)) 2: v(g(x)) if and only if v (;~:?) = v(J(x)) -v(g(x)) 2: 0. 

Thus we will often abuse our notation slightly and write 

iEJ jEJ kEK 

with fi, gi E K(X). 
Given any subset S ~Kn, let O(S) denote the collection of S-integral definite 

rational functions. Let M(S) denote the collection of S-infinitesimal definite rational 
functions. Our goal is to characterise 0(5) and M(S) for sets S of the above form. 
However, as remarked earlier, the zero conditons introduce new difficulties that we 
choose not to address here. Thus, throughout this thesis, we shall restrict ourselves 
to subsets defined by 

(2) 'Ps(X) := f\ v (Ji(X)) 2: 0 & f\ v (gi(X)) > O 
iEJ jEJ 

where li, gi E K(X). 
The approach is simple and similar to Hilbert's approach in conjecturing the 

Nichtnegativstellensatz. We collect all of the forms which are obviously definite and 
prove, with the help of Theorem 1.2, that there are no others. 

Given a set as in (2), it is clear that the Ji and the gi are S-integral definite. 
Moreover, we may take products and sums of these as well as multiply by elements of 
the ring of integral constant functions Ov. Thus the Ov-subalgebra of K(X) generated 
by the Ji and the gi is a subset of O(S). Now since the product of an infinitesimal 
element and an integral element yields an infinitesimal element, M(S) is an ideal of 
O(S). Further, the gi as well as the constant infinitesimal functions, Mv, are clearly 
S-infinitesimal definite. Then the ideal generated by Mv and the gi is a subset of 
M(S). Finally, as in Theorem 1.2, the properties of being S-integral definite and S
infinitesimal definite are preserved under division by elements of valuation zero and 
taking integral closures. This motivates the first of our main results. 

THEOREM 2.1. Suppose (K,v) is a model of ACVF and S is a nonempty 
subset of Kn defined by a formula t.ps as in (2). Let A be the Ov-subalgebra of K(X) 

generated by {fi, 9i }{~j. Let B be the ideal of A generated by Mv and {gi hEJ. Let 
T = {1 + b: b E B}. Then h E K(X) is S-integral definite if and only if h is integral 
{in the ring-theoretic sense) over Ar, and h is S-infinitesimal definite if and only if 
h is integral over Br. That is O(S) = ;VA and M(S) = i'ifii. 

13 
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Recall that Ar is just the localisation of the ring A at the multiplicative set 
T and Br is the image of B under this localization. 

PROOF. The right-to-left implication is clear as each element of A is S-integral 
definite, each element of B is S-infinitesimal definite and the properties of being S
integral and S-infinitesimal definite are preserved under localisation at T and under 
taking integral closures. To see this, we apply the argument in the proof of Theorem 
1.2 to each point b E S. 

We prove the converse by contradiction. Suppose that h(X) E K(X) is S
integral definite, but that h(X) is not integral over Ar. Then, by Theorem 1.2, there 
is a valuation v on K(X) such that v(f (X)) ~ 0 for each J(X) EA and v(g(X)) > 0 
for each g(X) E B, but v(h(X)) < 0. In particular, v(fi(X)) ~ 0 for each i E I and 
v(gj(X)) > 0 for each j E J. Then 

(K(X), v) f= 3X (~ v(f,(X)) :> 0 & {>, v(g1(X)) > 0 & v(h(X)) < 0) 
witnessed by the element X E K(X). That is, 

(K(X), v) f= 3X [cps(X) & v(h(X)) < O]. 

Now K(X) is not, in general, algebraically closed so we may not yet apply model
completeness. However, since ACVF is the model companion of VF, we may extend 
(K(X), v) to an algebraically closed valued field, say (L, w). Then (K, v) <:::;: (L, w) 
and 

(L, w) f= 3X ['Ps(X) & v(h(X)) < O]. 

By the model-completeness of ACVF, 

(K, v) f= 3X ['Ps(X) & v(h(X)) < O]. 

This contradicts that h(X) is S-integral definite. 
Similarly, suppose h(X) E K(X) is S-infinitesimal definite but h(X) is not 

integral over Br. Then, by Theorem 1.2, there is a valuation v on K(X) such that 
v(f(X)) 2: Oforeachf(X) E Aandv(g(X)) > Oforeachg(X) EB, butv(h(X))::::; 0. 
Then 

(K(X), v) f= 3X [(fJs(X) & v(h(X)) ::::; O]. 

Again, as ACVF is the model companion of VF, we may extend (K(X), v) to a model 
of ACVF, (L, w), satisfying the same condition. In particular, (K, v) <:::;: (L, w) and 

(L, w) f= 3X [cps(X) & v(h(X)) ::::; O]. 

Then ,by the model-completeness of ACVF, (K, v) satisfies this formula as well. This 
contradicts that h(X) is S-infinitesimal definite. D 

14 
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This result extends Theorem 2.5 of [12], firstly, by considering sets S defined 
by both integrality and infinitesimality condiions and, secondly, by characterising 
both O(S) and M(S). In fact, Theorem 2.5 of [12] is the special case of Thorem 2.1 
where the set J is trivial so that B = Mv · A. 

2. p-adically Closed Fields 

A valued field (K, v) is p-valued if v(p) is minimal positive in the value group 
and kv = IFP. We can axiomatise p-valued fields in Ldiv by the axioms for valued fields 
together with 

--, div(p, 1) 
p 

div(I,p)---+ V div(p, x - i). 
i=l 

We denote this theory pVF. A p-valued field is p-adically closed if the value group, 
f v, is a Z-group (i.e. f vis a model of Th(Z)) and Hensel's Lemma is satisfied. 

Now, although we may axiomatise p-adically closed fields in Ldiv, this Ldiv
theory does not eliminate quantifiers. It is shown in [17] that one needs predicates Pn 
for then-th powers in order to obtain quantifier elimination. Thus we work in Lmac, 
the expansion of Ldiv by these predicates. The Lmac-theory of p-adically closed fields 
admits quantifier elimination. We denote this theory by pCF. Moreover, pCF is the 
model-companion of the theory of p-valued fields, pVF, as any p-valued field can be 
extended to a p-adically closed field, namely, its p-adic closure. 

Kochen first characterised the globally integral definite functions for p-adically 
closed fields in [15] and later Prestel and Roquette characterised the S-integral definite 
rational functions for sets S defined by integrality conditions [19]. Since the valuation 
is discrete we have 

v(g1(x)) > 0 +--+ v(p- 1g1(x)) 2: 0. 

Hence, we need only consider sets S defined by integrality conditions. However, we 
continue to work with subsets S defined as in the previous section, 

(3) f.Ps(X) := (\ v (Ji(X)) 2: 0 & (\ v (g1(X)) > 0, 
iEJ jEJ 

in order to better illustrate our method. Since pCF does not eliminate quantifiers 
in the pure language of valued fields, the Boolean combinations of sets defined by 
formulae of type (3) do not constitute all of the definable subsets of a p-adically 
closed field. Ultimately, one would want to consider sets S defined also by zero 
conditions and n-th power conditions. However, here we shall restrict ourselves to 
sets S as above. 

15 
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Now we would like to proceed as in the case of algebraically closed valued 
fields. However, first we examine more closely a key step in the proof of Theorem 2.1. 
Given the set A, the Ov-subalgebra of K(X) generated by the Ji and gj, and the set 
B, the ideal of A generated by Mv and the gj, we applied Theorem 1.2 to obtain a 
valuation v on K(X) with v(A) 2:: 0, v(B) > 0 and v(h) < 0. Since any valuation 
won K(X) makes (K(X), w) a model of VF, in particular, (K(X), v) is a model of 
VF. Then, as ACVF is the model companion of VF, we could extend to a model of 
ACVF. In order to use this method to obtain Kochen's and Prest.el and Roquette's 
results, we must ensure that the valuation obtained by applying Theorem 1.2 makes 
( K ( X), v) a model of p VF. To this end, we must introduce the Kochen operator. 

Let (K, v) be any valued field with char(K)-/=- p. For any x EK we set 

1 ( xP - X ) 
/p(x) = p (xP - x)2 - 1 · 

PROPOSITION 2.2 (Lemma 2 of [15]). A valued field (K, v) is p-valued if and 
only if rp(K) <;;;;; Ov. 

The left-to-right implication is clear as, if (K, v) is a p-valued field, then the 
rational function /p(X) is globally integral definite. To see this let x E K. Suppose 
v(x) 2:: 0. Then we may apply the residue map to the xP - x. Since the residue field 
has characteristic p, res(xP - x) = 0. Hence, v(xP - x) > 0 

v ( (xP ~ ::;: _ 
1

) = v(xP - x) - v((xP - x) - 1) 

= v(xP - x) - min{2v(xP - x), O} 

= v(xP - x) > 0. 

If v(x) < 0, then v(xP) < v(x). Thus v(xP - x) = pv(x) < 0. Then 

v ( xP - x ) = v(xP - x) - v((xP - x) - 1) 
(xP - x)2 - 1 

= v(xP - x) - min{2v(xP - x), O} 

= v(xP - x) - 2v(xP - x) > 0. 

For the right-to-left implication, we evaluate /p(X) at any element x EL with v(x) > 
0. Then, as in the calculations above, v(xP - x) = v(x) and v Cx:~zj;_ 1 ) = v(xP -

16 
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x) - v((xP - x) - 1) = v(x). It follows that v(p) must be minimal positive as 

(1 ( xP - x ) ) ( 1) ( xP - x ) 
v p (xP - x)2 - 1 = v p + v (xP - x)2 - 1 

= v (~) + v(x). 

Then for any subset S ~ Kn we should have /p(K(X)) ~ O(S) and Mv · 
''ip(K(X)) ~ M(S). 

THEOREM 2.3. Suppose (K, v) is a model of pCF and Sis a nonempty subset 
of Kn defined by 

iEJ jEJ 

for some k gj E K(X). Let A be the Ov-subalgebm of K(X) generated by {k gj }{~f 
and /p(K(X)). Let B be the ideal of A generated by Mv and {gjhEJ· Let T = {l+b: 
b E B}. Then h E K ( X) is S-integral definite if and only if h is integral over Ar, and 
h is S-infinitesimal definite if and only if h is integral over Br. That is CJ(S) = jVA 
and M(S) = jV'B. 

PROOF. As in the proof of Theorem 2.1, the right-to-left implication follows from 
the fact that the properties of being S-integral and S-infinitesimal definite are pre
served by localisation at T and by taking integral closures. For the left-to-right impli
cation, the proof also proceeds similarly. First, suppose h(X) E K(X) is S-integral 
definite but not integral over Ar. Then, by Theorem 1.2, there is a valuation v on 
K(X) such that v(f(X)) ;::: 0 for each f(X) E A, v(g(X)) > 0 for each g(X) E B, 
but v(h(X)) < 0. In particular, 

(K(X), v) F =ix ['Ps(X) & v(h(X)) < O). 

Now since rp(K(X)) ~ A ~ Ov-, (K(X),v) is a p-valued field and, since pCF is 
the model companion of pVF, we may extend (K(X), v) to a p-adically closed field, 
(L,w). In particular, (K,v) ~ (L,w) and 

(L, w) F 3X ['Ps(X) & v(h(X)) <OJ. 

Then by model-completeness (K, v) satisfies the same formula. This contradicts that 
h(X) is S-integral definite. 

We could repeat the same argument for the S-infinitesimal definite case, how-
ever, as the valuation is discrete, this is immediate as M(S) = Mv · CJ(S). D 
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CHAPTER 3 

Valued Fields with Additional Structure 

We now investigate theories of valued fields in which new function or relation 
symbols are added to our language£. For example, a valued D-field is a valued field 
(K, v) together with an additive map D: K--+ K satisfying the twisted Leibniz rule 
D(xy) = xD(y) + yD(x) + eD(x)D(y) where e is a distinguished element of positive 
valuation. vVe further require a strong interaction between the valuation and the 
operator Din the sense that v(D(x)) 2 v(x) for each x EK. 

Here we work in a language LvDF = LdivU{D, e}. In LvDF, we can axiomatise 
valued D-fields by the axioms for valued fields together with 

\IX[v(DX) 2 v(X)). 

We denote the Lvop-theory of valued D-fields by VDF. 
The terms in our language LvDF are the D-polynomials over K, K[X]v. These 

are the polynomials in the variables { DkXi}~~?<n with coefficients in K. In particular, 
we will consider the ring of D-polynomials as the ring of polynomials in the variables 
Y _ {',,. _ DkX }k?.O d f t . .t ya c ilo::;k::;r ya;,k I - Ii,k - i I<i<n an , or any r x n manx o:, wn e 1or l<i<n ik . n 
particular, for any p-E K[X)v we may write p = La Paya where the size or' O' will 
depend on the degree of p. We shall also speak of the field of D-rational functions, 
K(X)v, whose elements are quotients of D-polynomials. 

Now DJ is a D-rational function. For each x E K, v ( r~n = v(Dx) - v(x), 
which is always non-negative as v(Dx) 2 v(x). Hence, DJ should be considered 
globally integral, even at x = 0. This differs from our previous notion of integrality 
where we required a rational function to be defined in order to be considered integral 
or infinitesimal. To remedy this, we will generalise our notion of integrality to that 
of T-integrality as in [12). We will define T-infinitesimality similarly and proceed. 

1. Refining Integrality 

In [12), Haskell and Yaffe extend the notion of integrality to a more general 
notion, that of T-integrality, which will allow us to consider some rational functions 
integral even where not defined. This notion takes into account any interaction be
tween the valuation and new functions and relations in our language. 
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Fix a language £ expanding the language of valued fields and an £-theory T 
of valued fields. Let T be a model-companion of T and let K, = (K, v, ... ) be a model 
of T. Denote by K[X)7 the collection of £-terms with parameters from K. This is 
the ring of T-polynomials. The T-rational functions are quotients of T-polynomials. 
We shall denote this field by K(X)T. 

DEFINITION 3.1. With the notation above, let v be a valuation on K(X)T. 

i) We say that v is a T-valuation if there is an expansion of (K(X)r, v) to a 
model of T extending K. 

ii) The T-valuation v is said to be given by evaluation near b or a T-valuation 
near b E Kn iffor any 1:::; i:::; n and every c E Kx we havev(Xi-bi) > v(c). 

iii) For f E K(Xh and b E Kn, we say that f is T-integral at b if for every T
valuation v on K(X)r which is given by evaluation near b we have ii(!) 2': 0. 
vVe say f is T-infinitesimal at b if for every T-valuation f1 near b we have 
v(f) > o. 

Under this definition, the function Df is surely globally VDF-integral as any 
T-valuation near a point b E K must satisfy v(Db) 2': v(b). 

Of course, we would like to know that the notions of T-integrality and T
infinitesimality extend our more naive notions. That is, in order for our proofs to work, 
it must be the case that a T-rational function, f, is T-integral (or T-infinitesimal) 
if and only if it is integral (or infinitesimal) wherever f is defined. This, however, is 
not a priori true. 

DEFINITION 3.2. We say that a theory of valued fields, T, is conservative if 
whenever a function f E K(X)T is defined at a point b E Kn then f is T-integral 
at b if and only if f is integral at b and f is T-infinitesimal at b if and only if f is 
infinitesimal at b .. 

As in the remarks following Definition 2.15 of [12] we observe that the existence 
of a T-valuation near b for every b E Kn is sufficient for the conservativity of a theory 
T. This follows from the observation that for any T-valuation near b, v(f - f(b)) > 
v(f(b)). Thus if f is defined at b then v(f) = v(f(b)) and conservativity follows. 

2. D-Henselian Fields 

In this section, we consider a model-complete theory of valued D-fields of 
equicharacteristic zero. In the formulation of Scanlon in [22], a D-Henselian field is 
a valued D-field satisfying certain conditions; in particular, char{K) = char(kv) = 0 
and D-Hensel's Lemma, a version of Hensel's Lemma for D-polynornials. 
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DEFINITION 3.3 (D-Hensel's Lemma). Let (K, v, D) be a valued D-field. Let 
Ov[X]D be the subring of K[XJD consisting of D-polynomials with coefficients from 
Ov. We say that (K, v, D) satisfies D-Hensel's Lemma if whenever P E Ov(X)D, 
a E Ov and v(P(a)) > 0 = v( 8~iP(a)) for some i = l, ... ,n, then there is some 
b EK with P(b) = 0 and v(a - b) ~ v(P(a)). 

Scanlon axiomatises D-Henselian fields in a 3-sorted language extending LvDF· 
Moreover, Scanlon shows that this theory has quantifier elimination. In particular, 
the theory of D-Henselian fields is model-complete, and is the model companion of 
the theory of valued D-fields, VDF. 

We now consider sets S of the form 

iEJ jEJ 

with the Ji, gj E K(X)D· However, as the language in which D-Henselian fields 
admits quantifier elimination is somewhat larger, these sets do not constitute all the 
definable subsets of a D-Henselian field. 

Now, in order to apply our method as before, we will need to determine whether 
a valuation v on K(X) obtained by applying Theorem 1.2 is a VDF-valuation so that 
we may extend (K(X)D, v) to a model of VDF. Let 

I Iv ~ { ~ : p E K[X]v, PT~ 0} I 
Then the following is immediate. 

LEMMA 3.4. Let (K, v, D) be a model of VDF. Then a valuation v on K(X)D 
is a VDF-valuation if and only if ID ~ 0-v. 

PROOF. The forward direction is immediate from the definition of a valued D
field. If ID ~ 0-v, then the standard interpretation of D on K(X)D, where we set 
D(Dk Xi)= Dk+1 Xi) for each i = 1, ... , n, will make (K(X)D, v, D) a model of VDF 
extending (K, v, D). D 

Further, we need VDF to be a conservative theory. Haskell and Yaffe show 
in [12] that VDF is conservative by constructing a VDF-valuation near any point as 
follows. Let (K, v, D) be a model of VDF with value group r. By translating, we 
may assume that b = 0 = (0, ... , 0). Fix an element 8 > I for each 1 E r and let 
f' = f EB Z8. Then, writing each D-polynomial p E K[X}D as p = 2.::

0 
p0Y 0

, we 
define 

v(p) =min{ v(po) + lal8} 
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where lad = L~~~Z~ o:i,k· We then extend v canonically to K(X)v. This is clearly a 
VDF-valuation ~e~r bas each Dk Xi becomes a new infinitesimal element and v(Dp) 2 
v(p) for each p E K(X)v. 

We are now ready to prove our Stellensatz. 

THEOREM 3.5. Let (K, v, D) be a D-henselian valued field and Sis a nonempty 
subset of Kn defined by 

cps(X) := f\ v (fi(X)) 2 0 & f\ v (gi(X)) > 0 
iE/ jEJ 

with fi, gi E K(X)v. Let A be the Ov-subalgebra of K(X)v generated by {fi, gi H:f 
and Iv. Let B be the ideal of A generated by Mv and {gj}jEJ· Let T = {l+b: b EB}. 
Then h E K(X) is S- VDF-integral definite if and only if h is integral over Ar, 
and h is S- VDF-infinitesimal definite if and only if h is integral over Br. That is, 
O(S) = i\YA and M(S) = i\/B. 

Since v(Dx) 2 v(x) for all x EK, one would expect we need require that the 
ring A and its ideal B be closed under the operator D. However, since ID ~ A this 
is already the case. For each f E A, o/ E A. Since A is closed under products, we 

get D f E A. Similarly, for each f E B, ~! E A. Since B is an ideal of A, B is closed 
under multiplication by elements of A. Thus we get D f E B. 

PROOF. For the right-to-left implication we need only verify that the properties 
of being VDF-integral and VDF-infinitesimal are preserved by localisation at T and 
by integral closure. However, this is clear as Ov and Mv are closed under these 
properties for each VDF-valuation v. (See the proof of Theorem 1.2 for details.) For 
the left-to-right implication, the proof also proceeds much as before. First, suppose 
h(X) E K(X) is S-VDF-integral definite but not integral over Ar. Then, by Theorem 
1.2, there is a valuation v on K(X)v such that v(f(X)) 2 0 for each f(X) EA and 
v(g(x)) > 0 for each g(X) E B, but v(h(X)) < 0. In particular, v(fi(X)) 2 0 for 
each i EI and v(gi(X)) > 0 for each j E J. Then 

(K(X)v, v) f= 3X [cps(X) & v(h(X)) <OJ, 

witnessed by the element X E K(X)v. Since Iv ~ Ov, vis a VDF-valuation and 
interpreting Din the standard way makes (K(X)v, v, D) a valued D-field extending 
(K, v, D). Then, as the theory of D-Henselian fields is the model companion of VDF, 
we may further extend (K(X)v, v, D) to a D-Henselian field, (L, w, D). In particular, 
(K, v, D) ~ (L, w, D) and 

(L, w, D) f= 3X [cps(X) & v(h(X)) < O). 
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Then, by the model-completeness of the theory of D-Henselian fields, (K, v, D) sat
isfies the same formula. This contradicts that h(X) is S-VDF-integral definite. 

Similarly, suppose h(X) is S-VDF-infinitesimal definite but not integral over 
Br. Then, by Theorem 1.2, there is a valuation v on K(X)v such that v(f (X)) ~ 0 
for each f(X) E A and v(g(X)) > 0 for each g(X) E B, but v(h(X)) :S 0. In 
particular, v(fi(X)) ~ 0 for each i EI and v(gj(X)) > 0 for each j E J. That is, 

(K(X)v, v) f= 3X ['Ps(X) & v(h(X)) :SO], 

witnessed by the element X E K(X)v. Since Iv ~ Ov-, (K(X), v, D) is a valued 
D-field. Then we may extend (K(X), v, D) to a D-Henselian field, (L, w, D). In 
particular, (K, v, D) ~ (L, w, D) and 

(/C, v) f= 3X ['Ps(X) & v(h(X)) < O]. 

Then, by model-completeness, (K, v, D) satisfies the same formula. This contradicts 
that his S-VDF-infinitesimal definite. 0 

This result extends that of [12] by considering sets S defined by both integrality 
and infinitesimality conditions and characterising both O(S) and M(S). In fact, 
Theorem 3.2 of [12] is the special case of Theorem 3.5 where the indexing set J is 
trivial so that B = Mv · A. 

3. Witt Vectors 

We now consider a theory of valued D-fields of mixed characteristic. We first 
remind the reader of the construction of Witt vectors. 

A field k of characteristic pis perfect if the Frobenius endomorphism <Jp : x f-7 

xP is an automorphism on k. We shall say that a ring 0 is a local p-ring if 0 is a 
complete local ring with maximal ideal M = pO and perfect residue field. Moreover, 
we shall call such a ring a strict local p-ring if pn # 0 for each n E N. The rings 
7l/p27l and 7lp are examples of a local p-ring and a strict local p-ring, respectively. 

Two difficulties arise when working in a local p-ring 0. The first is that as 0 
has no subfields, the residue field may not be lifted as in the characteristic zero case. 
Thus it is necessary to devise a canonical system of representatives for the residue 
field. The second difficulty is that, for example, under the standard bijection 

IFN ~ 7l 
p p 

{Xi hEN f-7 L XiPi 

iEN 
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the addition and multiplication in Zp do not correspond to natural operations on 
IF;. One motivation for Witt vectors is to find a bijection under which addition and 
multiplication correspond to explicit polynomial maps IF; x IF; -+IF;. 

A canonical system of representatives always exists for a complete local ring 
('.)with perfect residue field of characteristic p. In this case, there is, in fact, a unique 
map T: k-+ ('.)satisfying res(T(x)) = x and T(xP) = T(x)P. Moreover, if pn f= 0 but 
pn+l = 0 in 0, then for every a E ('.) there is a unique tuple (x0, ... , Xn) E kn+l such 
that 

n 

i=O 

If('.) is a strict local p-ring, then there is a unique sequence { xn} E kN such that 
00 

n=O 

The sequence { Xn} is called the Teichmiiller vector of a. We may then define the 
Witt vector of a E ('.) as the unique sequence { Xn} E e~ such that 

00 

n=O 

The map that assigns each a E ('.) to its Witt vector is a bijection ('.) -+ kN. Under 
this bijection, addition and multiplication in ('.) correspond to explicit polynomial 
operations on e~. Taking these operations as addition and multiplication makes kN 
a strict local p-ring with residue field isomorphic to k. Moreover, there is only one 
such ring, up to isomorphism. We shall denote this ring W[k]. Its field of fractions 
W(K) is then a p-valued field. For more details on Witt vectors, see [23]. 

The model theory of Witt vectors is studied in detail in [2]. In particular, the 
~heory WF= Th((W(lFp), aP, vp)) is model-complete in the language LvDFU{p}. Here 
IFP denotes the algebraic closure of IFP and aP denotes an extension of the Frobenius 
automorphism. Moreover, WF is the model companion of the theory, WVDF, of 
wittian valued difference fields. A wittian valued difference field is a valued difference 
field (K, v, a) such that (K, v) is a p-valued field, v(a(x)) = v(x) for each x E K 
and v(a(x) - xP) > 0 for each x E K with v(x) 2: 0. We can axiomatise wittian 
valued difference fields in LvDF (replacing for convenience the symbol D with a) by 
the axioms for p-valued fields together with 

VX[v(a(X)) = v(X)] 

\f X[v(a(X) - XP) > O]. 
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In [3], Belair characterises those CJ-rational functions that are integral or not 
defined wherever some finite collection S C K(X)a of CJ-rational functions are either 
integral or not defined. This essentially characterises the S-integral definite functions 
for sets S defined by 

<ps(X) = /\ v(fi(X)) ~ 0 
iEJ 

with fi(X) E K(X)a. but with no special attention paid to the undefined case. The 
valuation is discrete, so, as in the p-adic case, we need not consider the case where 
S is defined by both integrality and infinitesimality conditions. However, we shall 
continue to consider infinitesimality conditions for uniformity of results. 

To proceed as before, we need to determine when a valuation v on K(X) 
obtained by applying Theorem 1.2 is compatible with the automorphism CJ so that 
(K(X), v) can be extended to a model of WVDF. For this, we need a modified version 
of the Kochen operator, given by 

~r(x)=-
1 ( CJ ( X) - xP ) 

a p (CJ ( x) - xP) 2 - 1 · 

Then we have an analogue of Proposition 2.2. indeed, the proof of the following is 
identical. 

PROPOSITION 3.6 (Lemma 2.3 of [3]). Let (K, v, CJ) be a valued difference 
field of characteristic zero with v(p) > 0. Then (K, v, CJ) is wittian if and only if 
la(K) ~ Ov. 

All that remains, before we proceed to our Stellensatze, is to show that WVDF 
is conservative. We do this, as before, by constructing a WVDF-valuation near each 
point b of a model of WVD F. 

LEMMA 3.7. The theory WVDF is conservative. 

PROOF. It suffices to show that for any model (K, v, CJ) of WVDF and any b E K 
there is a WVDF-valuation near b on K(X)a· Further, we may assume b = 0 as we 
may translate to any other b. Then let r be the value group of (K, v, CJ) and fix 8 
such that 8 >/for each/Er and let f' = f EB Z8. Then for q(X) E K[X)a write 

q(X) = Lq0 Y 0 

where ya = nk2'0 (CJk(X·)) 0 i.k Define I::;i::;n i · 

v(q) = min{v(qa) + lal8} 
Q 
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where lo:I = "I:,:z~ o:i,k· We extend this canonically to K(X)a and claim that this is 
a WVDF-valuatTon. Extending a to K(X)a in the standard way, we observe that 

k2:0 

a(Ya) = a( IT ak(Xi)a;,k) 

k2:0 II ak+l(Xi)a;,k. 
1'.'S:i'.'S:n 

Hence, if y/3 = a(Ya) then l,6\ = lo:\. Thus we get 

v(a(q)) v(a(L qaYQ)) 

v(I: a(qa)a(Ya)) 

rnin{ v(a(qa)) + \o:\5} 
Q 

min{v(qa) + \o:\5} 
Q 

v( q). 

This shows that (K(X), v, a) is a valued difference field. Then we need only verify 
that (K(X), v, a) is wittian. Let q E K(X)a such that v(q) 2: 0. Notice that since 
v(Ya) > r for each a, for any q E K(X)a, if q has nonzero constant term then 
v(q) = v(q0 ). Now a(q(x)) - q(x)P has constant term a(q0 ) + <fo. If this is nonzero. 
then v(a(q) - qP) = v(a(qo) + qg) > 0 since (K, v, a) is wittian. On the other hand, 
if q has trivial constant term, then so does a(q) - qP. In this case, v(a(q) - qP) > r 
and so, in particular, v(a(q) - qP) > 0. Thus (K(X)a, v, a) is wittian and v is a 
WVDF-valuation near b = 0. D 

We are now ready to prove the main result of this section. 

THEOREM 3.8. Suppose (K, v, a) is a model of WF and Sis a nonempty s1Lbset 
of Kn defined by 

<ps(X) := f\ v (fi(X)) 2: 0 & f\ v (gj(X)) > 0. 
iEl jEJ 

for some li, gj E K(X)a· Let A be the Ov-subalgebra of K(X)a generated by {Ji, gj }{!/, 
Ia and /a(K(X)a)· Let B be the ideal of A generated by MK and {gj}jEJ· Let 
T = { 1 + b : b E B}. Then h E K (X)a is S- WVDF-integral definite if and only if h is 
integral over Ar, and h is S- WVD F-infinitesimal definite if and only if h is integral 
over Br. That is, O(S) = i\YA and M(S) = ;\IB. 
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PROOF. The right-to-left implication is once again clear as the properties of being 
S-WVDF-integral and S-WVDF-infinitesimal definite are preserved by localisation 
at T and by taking integral closures. For the left-to-right implication, we proceed as 
before. First, suppose h(X) E K(X)(]" is S-WVDF-integral definite but not integral 
over Ar. Then, by Theorem 1.2, there is a valuation v on K(X)(]" such that v(f(X)) 2 
0 for each f(X) E A and v(g(X)) > 0 for each g(X) E B, but v(h(X)) < 0. In 
particular, v(fi(X)) 2 0 for each i EI and v(gj(X)) > 0 for each j E J. Then 

(K(X)(]", v) f= =ix [<t?s(X) & v(h(X)) < O] 

witnessed by the element X E K(X)(]". Since I(]" ~ Ov-, v is a VDF-valuation by 
Lemma 3.4 and interpreting CJ in the standard way makes (K(X)(]", v, CJ) a valued 
difference field extending (K, v, CJ). Moreover, since /O"(K(X)(]") ~ Ou-, (K(X), v, CJ) is 
a model of WVDF. Then, as WF is the model companion of WVDF, we may further 
extend (K(X), v) to a model of WF, say, (L, w, CJ) .. In particular, (K, v, CJ) ~ (L, w, CJ) 
and 

(L, w, CJ) f= =ix [<t?s(X) & v(h(X)) < O]. 

Then, by model-completeness of WF, (K, v, CJ) satisfies the same formula. This con
tradicts that h is S-WVD F-integral definite. 

We could now repeat the above argument for the S-WVDF-infinitesimal defi
nite functions, however, as in pCF, since the valuation is discrete we need only observe 
that M(S) = Mv · O(S). D 

4. Real Closed Valued Fields 

An ordered valued field is a valued field (K, v) equipped with an ordering <. 
We require that the ordering exhibit a strong interaction with the valuation in the 
sense that 

(4) 0 < x < y---+ v(x) 2 v(y) 

for every x, y E K. Then the rational function xf;y2 should be considered integral 
even at the origin as 0 < x2 < x2 + y 2 ---+ v(x2 ) 2 v(x2 + y2

) for any x, y E K. 
Thus we must frame our results within the context of OVF-integrality and OVF
infini tesimality. 

An ordered valued field (K, v, <)is a real closed valued field if, not surprisingly, 
K is real closed as a field. We then work in the language Lovf = Lvf U { <}. In Lovf we 
can axiomatise ordered valued fields by the axioms for ordered fields and the axioms 
for valued fields together with 

VXVY(O < X < Y---+ v(X) 2 v(Y)]. 
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We denote this .C0 vr-theory by OVF. Further, we can axiomatise real closed valued 
fields by the axioms for real closed fields and the above axiom. We denote this .C0 vr
theory by RCVF. 

As one might expect, RCVF is the model companion of the theory of OVF, [5]. 
In (12), Haskell and Yaffe characterise the S-OVF-integral definite rational functions 
for sets S defined by integraliity conditions. We extend these results to sets S defined 
by both integrality and infinitesimality conditions. 

The method of proof will again be similar. Once again, we must ensure that 
the valuation v on K(X) obtained by applying Theorem 1.2 will be compatible (in 
the sense of ( 4)) with some extension of the ordering< to K(X) so that (K(X), v, <) 
is a model of OVF. 

In general, given an ordered valued field (K, v, <), we shall say that a valued 
field extension (L,w) of (K,v) is formally real over (K,v,<) if there is an extension 
of the ordering < to ( L, w) that makes ( L, w, <) an ordered valued field. Now for any 
valued field ( K, v) define 

IImd(K) ~ h-h: r ELK'} I 

Then the following is implicit in the remarks after Proposition 4.1 of [12]. 

PROPOSITION 3.9. Let (K, v, <) be a model of OVF. Let (L, w) be a valued 
field extension of (K, v). Then (L, v) is formally real over (K, v, <) if and only if 
Ioro(L) ~ Ov-. 

Let (L, v) be formally real with ordering<. Then for each any sum of squares 
r in L, we have 0 < 1 < 1 + r so that v(l + r) :S v{l). For the converse, we remark 
that each ordering < on (L, v) is induced by an ordering on lw. If no ordering exists, 
then lw is not formally real. Then there are a0, ... , ak E lv- such that "L:=o ai = -1. 

Choosing ai E L such that resv-( ai) = ai we have 1 + "L:=o ai = 0 E Mv-. This 
contradicts that l=I:Loa; E Ov-. 

All that remains before we proceed to our theorem is to observe that RCVF 
is conservative. As noted at the end of Section 1, it suffices to construct an OVF
valuation on K(X) near any point b E Kn. This is done in Proposition 4.2 of 
[12}. Given an ordered valued field, (K, v, <), with value group r, fix new elements 
b1, ... , bn with bi > r for each r E f and let f' = f EB Zb1 EB··· EB Zbn. Then for any 
polynomialp E K[X], writep= LaPa(X-br where (X-b)a = Ili<i<n(Xi-bi)a;. 
Define - -

v(p) = min{v(pa) + I: aibJ 
l:S;i:S;n 
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and extend to K(X). This will be an OVF-valuation if there is a compatible extension 
of< to K(X). From this definition it is clear, that every monomial in K(X) has a 
different valuation. Then for p E K(X), let Pa(X - br be the monomial of p with 
least valuation. Define p > 0 if and only if Pa > 0. This ordering extends the ordering 
on Kand makes (K(X), fJ, <) a model of OVF. Hence f; is an OVF-valuation near b 
and OVF is, indeed, conservative. 

We are ready to prove our Stellensatz. 

THEOREM 3.10. Suppose (K, v) is a model of RCVF and S is a nonempty 
subset of Kn defined by 

'Ps(X) := /\ v(fi(X)) ~ 0 & /\ v(gi(X)) > 0 
iEJ jEJ 

for some fi,gj E K(X). Let A be the Ov-subalgebra of K(X) generated by {fi,gj}{~f 
and Iord· Let B be the ideal of A generated by Mv and {gj}JEJ· Let T = {1 + b : 
b EB}. Then h E K(X) is S-OVF-integral definite if and only if h is integral over 
Ar, and h is S-0 VF-infinitesimal definite if and only if h is integral over Br. That 
is 0( S) = i\YA and M ( S) = i'iflj. 

PROOF. For the right-to-left implication is, again, clear as the properties of being 
S-OVF-integral definite and S-OVF-infinitesimal definite are preserved by localisation 
at T and by taking integral closures. For the left-to-right implication, the proof also 
proceeds as before. First, suppose h(X) E K(X) is S-OVF-integral definite but 
not integral over Ar. Then, by Theorem 1.2, there is a valuation v on K(X) such 
that v(f(X)) ~ 0 for each f(X) E A and v(g(X)) > 0 for each g(X) E B, but 
v(h(X))) < 0. In particular, v(fi(X)) ~ 0 for each i E I and v(gJ(X)) > 0 for each 
j E J. Then 

(K(X), v) f= 3X ['Ps(X) & v(h(X)) < O], 
witnessed by the element X E K(X). Since Iord ~ Ov, (K(X), v) is formally real (i.e. 
vis an OVF-valuation) and there is an ordering< on K(X) such that (K(X), v, <)is 
an ordered valued field extending (K, v, <). Then, as RCVF is the model companion 
of OVF, we may further extend (K(X), v, <) to a real closed valued field, (L, w, <). 
In particular, (K, v, <) ~ (L, w, <) and 

(K, v, <) f= 3X ['Ps(X) & v(h(X)) < O]. 

Then, by the model-completeness of RCVF, (K, v, <)satisfies the same formula. This 
contradicts that h(X) is S-OVF-integral definite. 

Similarly, suppose h(X) is S-OVF-infinitesimal definite but not integral over 
Br. Then, by Theorem 1.2, there is a valuation v on K(X) such that v(f (X)) ~ 0 for 
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each f(X) E A and v(g(X)) > 0 for each g(X) E B, but v(h(x)) .S 0. In particular, 
v(fi(XO) 2: 0 for each i EI and v(gj(XO) > 0 for each j E J. That is, 

(K(X), v) F :ix ['Ps(X) & v(h(X)) .S OJ, 
witnessed by the element X E K(X). Since Iord s::;; Ov, (K(X), v) is formally real 
so there is an ordering< on K(X) that makes (K(X), v, <) a model of OVF. Then 
we may extend (K(X), v, <) to a real closed valued field, (L, w, <). In particular, 
(K, v, <) s::;; (L, w, <) and 

(K, v) F :ix [1Ps(X) & v(h(X)) < O]. 

Then by model-completeness (K, v. <) satisfies the same formula. This contradicts 
that h(X) is S-OVF-infinitesimal definite. D 

5. VF-integrality and p VF-integrality 

The astute reader may be wondering whether our refined notions of integrality 
and infinitesimality will force us to rework our results from Chapter 2. Fortunately, 
in [12] it is shown that VF-integrality is the same as the naive notion of integrality. 
That. is, given a pure valued field (K, v) and a rational function J(X) E K(X), f(X) 
is VF-integral at a point b E Kn if and only if f(X) is integral at b. In particular, 
this means that in a pure valued field no function is VF-integral at point where it is · 
undefined. We give a similar result for p-valued fields. The proof is nearly identical 
to the proof of Theorem 2.16 of [12]. 

PROPOSITION 3.11. A function h(X) E K(X) is p VF-integral at b E Kn if 
and only if h(X) is integral at b. 

PROOF. First we observe that pVF is conservative. Once again, it suffices to 
construct a pVF-valuation near b = 0 E Kn. The construction is similar. Given a 
p-valued field, (K, v), with value group f, fix an element 8 > / for each / E f and 
let f' = f EB Z8. \Vrite p(X) E K(X) as l:nPnXn. Define 

v(p(X)) = min{v(pn) + lo:l8}. 
Q 

This is a p-valuation on K(X) near b = 0, as v(p) = v(p) = 1 is minimal positive and 
v(Xi) = 8 > r for each i = 1, ... , n. This shows that pVF is conservative. 

Now it will suffice to show that whenever h(X) E K(X) is pVF-integral at bit 
is defined at b. As in the proof of Proposition 2.16 of [12], let A be the Ov-subalgebra 
of K(X) generated by the set { c(Xi - bi) : c E K, 1 .S i .S n }. Then each f E A is 
defined at b. Moreover, for each f E {1 +ma: m E Mv, a EA}, we have v(f(b)) = 0 
so that, in particular, f(b) =I- 0. Thus each f E ;\YA is defined at b. It will suffice to 
show that his integral over Ar. 
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Suppose, for a contradiction, that this is not the case. Then, by Theorem 
1.2, there is a valuation v on K(X) extending v on K with v(f(X)) ~ 0 for each 
f(X) EA, but v(h) < 0. Then v(Xi - bi)> v(~) = v(~) for each c E Kx. It follows 
that vis a pVF-valuation near b. Since his pVF-integral at b, we must have v(h) ~ 0. 
This is a contradiction. Then we have h integral over Ar and, thus, defined at b. D 
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CHAPTER 4 

Residually Valued Fields 

It is well-known that the structure of a valued field (K, v) is in some sense 
controlled by the structure of its residue field and the structure of its value group. 
Nowhere is this more explicit than in the case of a henselian field of residual charac
teristic zero where we have the classical Ax-Kochen-Ershov Theorem. 

THEOREM 4.1 (Theorem 5.4.12 of [4], for example). Let (K. v) and (L, w) be 
henselian fields with char(kv) = char(lw) = 0. Then (K, v) - (L, w) if and only if 
kv = lv and r v - r w. 

In particular, the Ax-Kochen-Ershov principle implies that certain properties 
(model-completeness, for example) can be lifted from the residue field and value group. 
The work of Delon concerning fields with many valuations,[6], gives us a framework 
for developing such theories. Let .Ck a language extending { +, - , ·, 0, 1} by adding 
only new relation symbols. Let Ti.: be an Ck-theory extending the theory of fields of 
characteristic zero. Similarly, let L:r be a language extending { +, 0, :S} by adding 
only new relation symbols. Let Tr be an Cr-theory extending the theory of ordered 
abelian groups. Let £(.Ck, L:r) = Ldiv U {R' : R E £k - { +, -, ·, 0, 1}} U {R' : R E 
L:r - { +, 1, :S} }. This is a one-sorted language in which we can axiomatise valued 
fields with residue field a model of Ti.: and value group a model of Tr. We denote this 
theory T(T,,;, Tr). This is axiomatised by the axioms for valued fields together with 

n 

R'(X1, ... , Xn) ~ /\ v(xi) ::'.'.: 0 
i=l 
n 

[R'(X1, ... 'Xn) & /\ v(Xi - Yi) > O] ~ R'(Y1, ... 'Yn) 
i=l 

for each n-ary predicate R of £k. Then, given a model (K, v) of T(T,,;, Tr), we can 
define an £k structure on kv by setting 
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We require that kv be a model of Ti.. Similarly, we have axioms 
r 

i=l 
n 

i=l 

for each n-ary predicate R of .Cr - {:::;} and we may induce an .Cr-structure on r v by 
setting 

rv F R(v(X1), ... 'v(Xn))) <-t (K, v) F R'(X1, ... , Xn) 

and require that r v be a model of Tr. Further, let 7h('Ti., Tr) be the theory of henselian 
models of T(Ti., Tr). 

In this framework, we have the following strong Ax-Kochen-Ershov principle. 

THEOREM 4.2 (Theorem 1 of [6)). Using the notation above, ifik is the model
companion of Ti. and Tr is the model-companion of Tr then Th(ik, Tr) is the model
companion ofT(Ti., Tr). 

This gives a framework for constructing model-complete theories of valued 
fields. 

1. Henselian Residually Valued Fields 

We consider first the general theory Th(VF, OAG) where OAG is the theory of 
ordered abelian groups in the language { +, 0, :::;}. As neither VF nor OAG is model
complete, this theory is not model-complete either. However, all our other theories 
shall extend this one. 

We shall refer to models of this theory as henselian residually valued fields. 
This is motivated by the fact that any model of Th(VF, OAG) can be interpreted as a 
henselian valued field (K, vh) equipped with a second nontrivial valuation v' satisfying 

(5) v'(x) ~ v'(y)-----+ vh(x) ~ vh(y). 

When this condition is satisfied, we shall say that vh is compatible with v'. This 
notion of compatibility is known as coarsening or refinement and is well-studied in 
valuation theory. See [9] for more details. The valuation v' is just a valuation on K 
induced by a valuation v on kvh. Moreover, given a vh compatible with v', we can 
recover the valuation v on kvh by setting 

v(O) = oo 

v(x) = v'(y) for y E o:h such that resvh (y) = x. 
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This is well-defined as the compatibility condition (5) implies v'(O;J < v'(Mvh) so 
that given y E o;h, v'(y + m) = v'(y) for any m E MVh. 

In the following sections, we will assume further that the value group of the 
henselian valuation, fvh' is discrete. That is, we consider 7h(VF, DOAG) where 
DOAG is the theory of discrete ordered abelian groups with minimal positive element 
a in the language { +, 0, a, :s;}. Models of this theory are precisely henselian residually 
valued fields (K, v, vh, a) with vh(a) minimal positive. 

These are, in fact, natural objects to study as the theory has the following 
canonical models. Given a valued field (k, v), let (K, v', Vt, t) denote the field of 
Laurent series K = k( ( t)) equipped with the usual henselian t-adic valuation, Vt, 

and the following natural valuation on K. For f E k((t)), write f = 'Ei>n aiti and 
define v'(f) = (n, v(an)) E Z x f v ordered lexicographically. Then the valuation v' 
is compatible with Vt· In particular, this is a model of 'Jh(VF, Th(Z)). Moreover, 
if (k,v) is, say, a model of pCF then (K,vtiv',t) is a model of 'Jh(pCF, Th(Z)). If 
(k, v) is a model of RCVF then (K, Vt, v', t) is a model of 'Jh(RCVF, Th(Z)). As 
the theories pCF, RCVF and Th(Z) are all model-complete, 'Jh(pCF, Th(Z)) and 
7h(RCVF, Th(Z)) are also model-complete. 

Now, in a henselian residually valued field we have access to two valuations: 
the henselian valuation vh on K and the valuation v' induced by the valuation v on 
the residue field kVh. Thus the meanings of integrality and infinitesimality must be 
clarified. Throughout the following sections we shall take our notions of integrality 
and infinitesimality with respect to the valuation v' coming from the valuation v on the 
residue field. Specifically, we consider the model-complete theories 'Jh(pCF, Th(Z)). 
and 7h(RCVF, Th(Z)). For sets S defined by 

1Ps(X) := /\ v'(fi(X)) :_::: 0 & /\ v'(gj(X)) > 0. 
iEJ jEJ 

we characterise 

O(S) = {f(x) E K(X): v'(f(x)) 2:: 0 for all x ES} 

and 

M(S) = {f(x) E K(X) : v'(f(x)) > 0 for all x ES}. 

These characterisations essentially lift the results of Sections 2.2 and 3.4 from the 
residue field of a henselian residually valued field. 

Then, as before, we need to gather information regarding extensions of the 
valuation v' to K(X). In particular, given (K(X), v) with v extending v', we will 
need to determine whether (K(X), v) can be extended to a model of 7h(VF, DOAG). 
We say that a valued field extension (L, w) of (K, v) is formally 'Jh(VF, DOAG) over 
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(K, v, vh, a) if there is a valuation wh on some valued field extension (L', w) of (L, w) 
that extends vh and makes (L', w, wh, a) a model of 'Jh(VF, DOAG). This is analogous 
to saying that a field K is formally real if there is at least one ordering < on K that 
makes ( K, <) an ordered valued field. 

To obtain a result analogous to Proposition 2.2. we require the operator, /a, 
defined by 

(6) 

The operator /a is similar to the Kochen operator /p in the sense that it allows us to 
determine for an element a E Mv whether vh(a) is minimal positive. 

PROPOSITION 4.3 (Lemma 2.3 of [10]). Let (K, v) be a valued field and a E Kx. 
Then v(a) = 1 if and only if a E Mv and /a(K) <;;;; Ov. 

The left-to-right implication is clear. Suppose v(a) = 1 and x E K. If v(x) :::::; 0, 
we have v(x2 

- a)= 2v(x) so that 

v ( 
2 

x ) = v(x) - v(x2 
- a) 

x -a 

= v(x) - 2v(x) ?:: 0. 

If v(x) > 0, then v(x2
) > v(a) = 1 so that v(x2 

- a)= 1. Then 

v( 2 x )=v(x)-v(x2 -a) 
x -a 

= v(x) - 1 ?:: 0. 

The converse is also clear as for any x E K with v(x) > 0, 

v ( 
2 

x ) = v(x) - v(x2 
- a)> 0 

x -a 

implies that v(a) < 2v(x). In particular, if v(x) = 1 then we must have v(a) = 1. 
For any valued field (K, v) and any a E KX, let Ta(K) be the subring of K 

generated by 1a(K). Further, let Ma(K) = Mv · Ta(K). 

PROPOSITION 4.4. The valued field (L, w) is formally 'Jh(VF, DOAG) over 
(K, v, vh, a) if and only if Ov[Ma(L)] <;;;;Ow. 

PROOF. The left-to-right direction follows from Proposition 4.3. For the converse, 
suppose Ov[Mh,K ·Ia] <;;;; Ov. Then the set 

B = {x EL: w(c):::::; w(x) for some c E Mh,K ·Ia} 
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is a valuation ring of L. Let wh be the associated valuation on L so that Oh,L = B. 
It is clear from the definition of B that wh is compatible with w, thus we have the 
valuation ii) on lh· Now w(Mh,K ·I) 2: 0 and a E Mh,K· By the definition of B, we 
must have a- 1 rf_ B and hence a E Mh,L· Moreover, since 'Ya(L) ~ I ~ B, we have 
wh(a) = 1. Furthermore, since Oh,K ~ Oh,L and Mh,K = aOh,K ~ aOh.L = Mh,L, wh 
extends vh. While the valuation wh may not itself be henselian, we may now easily 
extend (L, w, wh, a) to a model of 'Jh(VF. DOAG). D 

2. Residually p-adically Closed Fields 

We now turn our attention to the theory 'Jh(pVF, DOAG). A model of this 
theory is a henselian residually valued field, (K, v', vh, a), where v' = v; is a p-valuation 
on K. In this case, v; is induced by a p-valuation v = Vp on kh. If (kh. vp) is, in fact, 
a p-adically closed field and the value group r h is a Z-group, then ( K, v', vh, a) is 
a model of 1/i(pCF, Th(Z)). This theory coincides with Guzy's henselian residually 
p-adically closed fields of [ll]. 

As the theory of p-adically closed fields is the model-companion of the theory 
of p-valued fields and the theory Th(Z) is the model-companion of DOAG, we get 
the following as a direct consequence of Theorem 4.2. 

COROLLARY 4.5. The theory'Jh(pCF, Th(Z)) is the model-companion of'Jh(pVF, DOAG 

In proving our Stellensatze, we need to be able to extend a model ( K, v;, vh, a) 
of 'Jh(pVF, Th(Z)) to a model (K(X), vP, vh, a) of 'Jh(pVF, DOAG). In particular, we 
will need to determine when (K(X), v), with v obtained by applying Theorem 1.2, is 
p-valued. Recall the Kochen operator 

1 XP-X 
/p(X) = p (XP - X)2 - 1 · 

Then Proposition 2.2 asserts that a valued field (K, v) is p-valued if and only if 
lv(K) ~ Ov. Once we have (K(X), v) a p-valued field, Proposition 4.4 determines 
when there is a compatible henselian valuation. 

Finally, before proceeding to the Stellensatze, we show that the theory 'Tt,,(pVF, DOAG) 
is conservative .. 

PROPOSITION 4.6. The theory 'Jh(pVF, DOAG) is conservative. 

PROOF. Given (K, vP, vh,a) a modelof 'Jh(pVF, DOAG), we construct an 'Jh(pVF, DOAG). 
valuation near b = 0 on K ( X). Let r p be the value group r Vp,K' fix 8 such that 8 > I 
for each/ E f p and let r~ = fv EB Z8. Then for q E K[X) write 

q = LqaX0 
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and define 
vp(q) =min{ vp(qa) + lal8}. 

Q 

This is the pVF-valuation on K(X) from Proposition 3.11. 
It remains only to show that there is a compatible henselian valuation. We 

may construct one in the same manner. Fix an element E such that / < E for each 
IE rh. Let r~ = rh EB ZE and define 

Vh(q) = min{vh(qa) + lalE}. 
Q 

Now, notice that if vp(q) = v(q00 ) + laolb, then for any a with !al < lnol we must 
have q0 = 0 and, moreover, the same must hold for vh(q) = vh(qf30 ) + l,Bo!E. Thus we 
must have laol = l,60 1. Further, since Vv and vh are compatible 

Vp(qao) ~ Vp(qa)---+ Vh(qa0 ) ~ Vh(qa) 

for each a with !al = laol· Then if 'Vp(f) = vp(q00 ) + laolb, we must have fJh(f) = 
vh(q00 ) + laolE and the compatibility of Vv and vh follows from the compatibility of Vv 
and vh. 

Thus Vp is an 'Jh(pVF, DOAG)-valuation and the theory is, conservative. D 

We are now ready to prove the main result of this section. 

THEOREM 4.7. Suppose (K,vv,vh,a) is a model of'Jh(pCF,Th(Z)) and Sis 
a subset of Kn defined by 

'f?s(X) := (\ vp(fi(X)) ~ 0 & (\ vv(gj(X)) > 0. 
iEJ jEJ 

Let A be the Ov-subalgebra of K(X) generated by {Ji, gj H:f, A1a(K(X)) and /p(I<(X) ). 
Let B be the ideal of A generated by Mv and {gj ho. Let T = { 1 + b : b E B}. Then 
h(X) E K(X) is S-'Jh(pVF, DOAG)-integral definite if and only if h is integral over 
Ar, and h is S-'Jh(pVF, DOAG)-infinitesimal definite if and only if h is integral over 
Br. That is O(S) = ;\YA and M(S) = ivrti. 

PROOF. As usual, the right-to-left implication is clear as the properties of being 
S-'Jh(pVF, DOAG)-integral definite and S-'Jh(pVF, DOAG)-infinitesimal definite are 
preserved by localisation at T and by integral closure. For the left-to-right implication, 
we proceed as before. First, suppose h(X) E K(X) is S-'T,;(pVF, DOAG)-integral 
definite but not integral over Ar. Then, by Theorem 1.2, there is a valuation vv 
on K(X) such that vv(f(X)) ~ 0 for each J(X) E A and vv(g(X)) > 0 for each 
g(X) E B, but vv(h(X)) < 0. In particular, vp(Ji(X)) ~ 0 for each i E I and 
vv(gj(X)) > 0 for each j E J. That is, 

(K(X), vv) f= 3X ['l?s(X) & v(h(X)) < O], 
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witnessed by the element X E K(X). Since /p(K(X)) ~ Ovp' Vp is a p-valuation. 
Moreover, since Ma(K(X)) s:;; Ovp' Vp is an 'Jh(pVF, DOAG)-valuation, so there is a 
henselian valuation vh on K(X) that makes (K(X), vP, vh, a) a model of 'Jh(pVF, DOAG). 
Then, as 'Jh(pCF, Th(Z)) is the model companion of 'Jh(pVF, DOAG), we may further 
extend (K(X), vp) to a model of 'Jh(pCF, Th(Z)), say, (L, wP, wh, a). In particular, 
(K, Vp, vh, a) ~ (L, Wp, wh, a) and 

(L, wP, wh, a) f= :3X [cps(X) & v(h(X)) < OJ. 

Then, by model-completeness of HrpCF, (K, Vp, vh, a) satisfies the same formula. This 
contradicts that his S-'Jh(pVF, DOAG)-integral definite. 

For the infinitesimal case, it suffices to observe that the valuation vP is discrete 
so that M(S) = Mvp · O(S). D 

3. Residually Real Closed Valued Fields 

We now turn our attention to the theory 'Jh(OVF, DOAG). A model of this 
theory is a model of henselian residually valued field (K, v', vh, a) equipped also with 
an ordering<' that makes (K, <', v) an ordered valued field. In particular, this means 

(7) 1 < x < y __, v'(x) 2: v'(y) 

The ordering <' is induced by the ordering on the residue field (kh, v, <) which is a 
model of OVF. If (kh, v, <) is, in fact, a real closed field and the value group rh is 
a Z-group, then (K, v', vh, <',a) is a model of 7h(RCVF, Th(Z)). These are similar 
to the chain-closed fields of [10], except that we have an explicit valuation v on the 
residue field. In particular, we get the following as a corollary to Theorem 4.2. 

COROLLARY 4.8. The theory Th(RCVF, Th(Z)) is model-complete and is the 
model-companion of 7h(OVF, DOAG). 

As before, to obtain our Stellensatz, we wish to extend a model (K, v', vh, <',a) 
of 'Jh(RCVF, Th(Z)) to a model (K(X), v, vh, <,a) of 'Jh(OVF, DOAG). Recall from 
Section 3.4, for any field L we define the set 

Iord(L) = {-
1
-: f is a sum of squares in L}. 

l+r 
Proposition 3.9 states that a valued field extension (L, w) is formally real over (K, v, < 
) if and only if Iord(L) ~ Ow. Then Proposition 4.4 determines when there is a 
compatible henselian valuation. 

Finally we show that 'Jh(OVF, DOAG) is conservative by constructing an 
'lh(OVF, DOAG)-valuation near b = 0. In fact, we may use the same construc
tion as in Section 3.4. Given a model of 'Jh(OVF, DOAG) (K, <, v, vh, a) with value 
group r = r Vl fix new elements 61, ... 'bn with bi > / for each / E r and let 
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f' = fEBc5iZEB· · ·EBbnZ. Then for any polynomial p E K[X), write p = 2=aPa(X -b)a 
where (X - br = ITi::;i::;n(Xi - bi)a;. Define 

v(v) = min{v(va) + 2: aioi} 
l:Si:Sn 

and extend to K(X). To see that this is an 'Jh(OVF, DOAG)-valuation we need 
only construct a compatible henselian valuation vh. We may, in fact, use the same 
construction. Fix elements E 1, ... En such that / < Ei for each / E r h and each 
i = 1, ... 'n. Let r~ = rh EB EiZ EB ... EB EnZ and define 

vh(P) = min{vh(Pa) + L aiEi}. 

l:Si:Sn 

An argument similar to the one in the proof of Proposition 4.6 shows that vh is, 
indeed, compatible with v. This shows that 'Jh(OVF, DOAG) is conservative and we 
are ready to prove our Stellensiitze. 

THEOREM 4.9. Suppose (K, <, v, vh, a) is a model of'Jh(RCVF, Th(Z)) and S 
is a nonempty subset of Kn defined by 

'Ps(X) := /\ v(fi(X)):::: 0 & /\ v(gJ(X)) > 0. 
iEJ jEJ 

Let A be the Ov-subalgebra of K(X) generated by {fi,gj}, Ma(K(X)) and Lord· Let 
B be the ideal of A generated by Mv and {gJ}· Let T = {1 + b : b E B}. Then 
h(X) E K(X) is S-1h(OVF, DOAG)-integral definite if and only if h is integral over 
Ar, and h is S-'Ih(OVF, DOAG)-infinitesimal definite if and only if h is integral over 
Br. That is O(S) = iVA and M(S) = i'V'B. 

PROOF. As usual, the right-to-left implication is clear as the properties of being 
S-'Ih(OVF, DOAG)-integral definite and S-'Ih(OVF, DOAG)-infinitesimal definite are 
preserved by localisation at T and by integral closure. For the left-to-right implication, 
we proceed as before. First, suppose h(X) E K(X) is S-'Jh(OVF, DOAG)-integral 
definite but not integral over Ar. Then, by Theorem 1.2, there is a valuation v on 
K(X) such that v(f(x)) :::: 0 for each f(X) EA and v(g(X)) > 0 for each g(X) EB, 
but v(h(X)) < 0. In particular, v(fi(X)) :::: 0 for each i E I and v(gJ(X)) > 0 for 
each j E J. That is, 

(K(X), v) ~=ix [cp5 (X) & v(h(X)) < o), 

witnessed by the element X E K(X). Since Lord ~ Ov-, vis an OVF-valuation and 
extend the ordering < to (K(X), v) to get a model of OVF (K(X), <, v). Moreover, 
since Ma(K(X)) ~ Ov-, vis an 'Ih(OVF, DOAG)-valuation , so there is a henselian 
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valuation fh on K(X) that makes (K(X), <, v, vh, a) a model of 'Jh(OVF, DOAG). 
Then, as 'Jh(RCVF, Th(Z)) is the model companion of 'Jh(OVF, DOAG), we may fur
ther extend (K(X), <, v, vh, a) to a model of 'Jh(RCVF, Th(Z)), say, (L, <, w, wh, a). 
In particular, (K, <, v, vh, a) ~ (L, <, w, wh, a) and 

(L, <, w, wh, a) f= 3X ['Ps(X) & v(h(X)) < O]. 

Then, by model-completeness of 'Jh(RCVF, Th(Z) ), (K, <, v, vh, a) satisfies the same 
formula. This contradicts that h is S-v-integral definite. 

Similarly, if h(X) E K(X) is S-1h(OVF, DOAG)-infinitesimal definite but 
not integral over Br. Then, by Theorem 1.2, there is a valuation v on K(X) such 
that v(f(X)) 2': 0 for each J(X) E A and v(g(X)) > 0 for each g(X) E B, but 
v(h(X)) ~ 0. In particular, v(fi(X)) 2': 0 for each i E I and v(gj(X)) > 0 for each 
j E J. Then 

(K(X), v) f= 3X ['Ps(X) & v(h(X)) < O], 
witnessed by the element X E K(X). Since Iord ~ Ov-, v and Ma(K(X)) ~ Ov-, vis 
an 'Jh(OVF, DOAG)-valuation, there is a henselian valuation vh on K(X) that makes 
(K(X), <, v, vh, a) a model of 'Jh(OVF, DOAG). Then we extend (K(X), <, v, vh, a) 
to a model of 'Jh(RCVF, Th(Z)), say, (L, <, w, wh, a). In particular, (K, <, v, vh, a) ~ 
(L, <, w, wh, a) and 

(L, <, w, wh, a) f= 3X ['Ps(X) & v(h(X)) <OJ. 

Then, by the model-completeness of 'Jh(RCVF, Th(Z)), (K, <, v, vh, a) satisfies the 
same formula. This contradicts that h is S-'Jh(OVF, DOAG)-integral definite. D 
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A Final Remark 

We conclude by pointing out an interesting feature of our results. In each 
case, our algebraic characterisations of O(S) and M(S) a priori depend on the chosen 
definition of the set S. On the other hand, the sets O(S) and M(S) are independent 
of the formula chosen to define S. Thus our Stellensiitze characterise also the possible 
definitions for S. 

For example, let (K, v) be a model of ACVF. Let S be the subset of Kn defined 
by 

;ps(X) := /\ v(fi(X)) ;:::: 0 & /\ v(gj(X)) > 0. 
iEJ jEJ 

By Theorem 2.1, we have that O(S) = i'V'A and M(S) = i~ when~ A is the Ov
subalgebra of K(X) generated by the fi and gj and B is the ideal of A generated by 
Mv and the gj. If 

;p~(X) := /\ v(f;(x)) ;:::: O & /\ v(gj(X)) > 0. 
iEJ' jEJ' 

is another formula defining S, then, again by Theorem 2.1, we have O(S) = i'V'A' 
and M(S) = i\(lji where A' is the Ov-subalgebra of K(X) generated by the J; and 
gj and B' is the ideal of A generated by Mv and the gj. Then, in particular, we must 
have iVlf = i'V'A' and i~ = i•~[Jfi. 
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