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Abstract 

Perceptual learning of complex patterns 


Zahra Hussain 


Doctor of Philosophy 


Department of Psychology, Neuroscience and Behaviour 


McMaster University 


2009 


Practice improves sensory perception, a phenomenon known as perceptual learning. Per­

ceptual learning is interesting because it reflects plasticity in the brain where none was 

imagined, and because of its enormous applied potential. In vision, learning of simple 

discriminations is well-described. Here, I study the learning of two complex visual tasks, 

texture- and face identification, using a ten-alternative forced-choice procedure. The 

data are clear: learning of complex patterns is much like learning of simple patterns in 

its specificity, stability and time-course. Therefore, learning obeys similar rules at several 

levels in visual processing. The characteristics of learning, in particular the specificity 

and stability of learning, affect inherent aspects of object recognition. 
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Chapter 1 

General Introduction 

Practice improves sensory perception: where initially oblivious, we can learn to per­

ceive subtle distinctions in auditory, tactile and visual information. The improvements 

on sensory tasks thus brought about are called perceptual learning, and occur through 

changes in the brain. Therefore, the most basic aspects of behaviour, such as seeing, are 

affected by the brain's capacity to be shaped by experience. Barlow recently wrote: "It 

is a mistake to consider perception and learning separately because what one learns is 

strongly constrained by what one perceives, and what one perceives depends on what 

one has experienced" (Barlow, 1990). Here, I consider the role of experience in the visual 

identification of complex visual objects. 

In vision, there are numerous demonstrations of perceptual learning of basic discrim­

inations involving simple stimuli (McKee and Westheimer, 1978; Fiorentini and Berardi, 

1981; Ball and Sekuler, 1987; Schoups et al., 1995; Fahle et al., 1995; Kami and Sagi, 

1993). Practice improves detection of offsets between lines (McKee and Westheimer, 

1978), discrimination of Gabor orientation (Schoups et al., 1995), and discrimination of 

dot motion direction (Ball and Sekuler, 1982, 1987). A robust characteristic of perceptual 

learning with simple stimuli is stimulus-specificity: the effects of learning vanish when 

the stimuli are altered (Schoups et al., 1995; Ball and Sekuler, 1987), or shifted to a 

different location in the visual field (Fahle et al., 1995; Schoups et al., 1995; Kami and 

Sagi, 1991; Crist et al., 1997). This type oflearning has been attributed to changes in the 

response properties of cells in primary visual areas, where elemental stimulus properties 

such as orientation are encoded, and where cells are retinotopically organized. In other 

words, stimulus-specific learning of simple visual discriminations is taken as evidence for 
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2 CHAPTER 1. GENERAL INTRODUCTION 

plasticity of brain regions that represent basic attributes of the visual world (Kami and 

Bertini, 1997; Gilbert, 1994). 

Perceptual learning has a distinct time-course that involves two components. Rapid 

within-session improvements occur early and are attributed to generalizable learning of 

task-demands; Gradual across-session improvements are measured between sessions and 

are thought to represent stimulus-specific processes, such as the structural modification 

of cell ensembles that encode the stimuli (Kami and Bertini, 1997). In certain cases, 

it has been shown that sleep must intervene between sessions to consolidate what has 

been learned (Karni et al., 1994; Stickgold et al., 2000). Learning is often stable across 

time, with the improvements intact several months to years later, which suggests lasting 

modifications to the neural networks recruited during the task (Ball and Sekuler, 1982; 

Fiorentini and Berardi, 1981; Karni and Sagi, 1993). Therefore the hallmarks of percep­

tual learning of most simple visual tasks are the specificity, time-course and stability of 

improvements. 

Complex visual stimuli can also be learned, and there are several reasons to study 

this type of learning: 

1. Objects with multiple features that vary about several dimensions are behaviourally 

relevant. We rarely interact with isolated dots, lines and bars. Therefore, it is worth 

knowing how complex patterns are learned. On the one hand, the type of learning found 

in reduced contexts might be unique to reduced conditions. On the other, the principles 

of learning might be similar across a range of stimulus and task complexities. Are the 

hallmarks of perceptual learning uniform across a variety of conditions? 

2. Learning of complex objects, as with simple patterns, tells us about how those 

objects are represented. Improvements on simple discriminations are usually constrained 

to the trained values of a given dimension, implying unique encoding of those values. 

For example, practice-related benefits at detecting the leftward motion of dots, do not 

transfer to the rightward direction (Ball and Sekuler, 1987). This means that leftward 

and rightward motion are encoded by unique cells in that region of visual space. There 

are many other examples of specificity of learning of simple patterns, all of which have 

helped illuminate the resolution and range of low-level visual representations (Schoups 

et al., 1995; Kami and Sagi, 1991; Crist et al., 1997). Recognition of complex objects is 

robust to many of the variations that affect processing of simple stimuli. We know that 

a car is a car regardless of its size, orientation or viewpoint. This means that learning 

could transfer across changes to the size, orientation or viewpoint of a complex object, 
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but does it? 

3. Certain classes of objects, faces for example, are thought to be treated preferentially 

by the brain. A massive literature on face processing has yielded many behavioural and 

neural indices of supposedly face-specific processing: the face-inversion effect (Yin, 1969; 

Farah et al., 1995), the composite-face effect (Young et al., 1987; Rossion and Boremanse, 

2008; Mondloch and Maurer, 2008), the part-whole effect (Tanaka and Farah, 1993), the 

Thatcher illusion (Lewis and Johnston, 1997; Carbon et al., 2007), the Nl70 (Bentin et al., 

1996; Carmel and Bentin, 2002), and activation in a brain region termed the fusiform 

face area (Kanwisher et al., 1997; Tong et al., 2000). These effects are attributed either 

partly or wholly, to the innate significance of faces (Slater and Kirby, 1998; Carmel and 

Bentin, 2002; Dekowska et al., 2008), to their inherent spatial properties (Diamond and 

Carey, 1986; McLaren, 1997), or to extensive experience with viewing faces in a particular 

orientation (Gauthier and Tarr, 1997; Gauthier et al., 1998; McLaren, 1997). To the 

extent that faces are treated preferentially because they are overlearned, the hallmarks 

of face-processing should be elicited after training for non-face objects. What is the role 

of learning in enabling objects to be treated preferentially by the brain, and how does it 

interact with the spatial properties of those objects? 

4. Visual expertise, for example expertise in identifying breeds of dogs, is thought 

to engage a special type of processing: experts apprehend objects holistically, whereas 

novices analyze by parts (Tanaka and Farah, 1993; Bukach et al., 2006; Gauthier et al., 

1998; Gauthier and Tarr, 2002; Busey and Vanderkolk, 2005). Expert object processing 

is the outcome of prolonged experience with - i.e., learning of - many examples of an 

object class. But it is also true that expertise can be limited within the object class to 

a subset of objects - to a particular breed of dogs, for example (Diamond and Carey, 

1986), or to a particular race of faces (i.e., the other-race effect) (Valentine, 1991; Byatt 

and Rhodes, 2004). This implies that the generalization of expertise to novel conditions 

is constrained by the variation of examples used in training, and that the involvement 

of 'special' (holistic) processes might vary across exemplars. The study of learning of 

complex patterns can illuminate whether visual processing changes qualitatively after 

expertise, and how such a shift is brought about. It can also tell us how best to train 

people and robots to recognize, identify and classify images. There is practical value to 

this knowledge: accurate image classification is essential to many professional domains, 

such as medical diagnosis, surveillance and the fashion industry. 

The approach taken in this dissertation is to address some of the above issues by 
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Figure 1.1: Examples of the stimulus conditions used in the experiments: a given face 
and texture, presented in each of three levels of external noise (increasing from top to 
bottom), at each of seven contrasts (increasing from left to right). The seven contrasts 
were unique at each noise level. Higher contrasts were used for the textures. 
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Figure 1.2: A schematic illustration of the trial sequence in the lOAFC identification 
task. 

studying the learning of two kinds of complex patterns: faces, an object class with 

which we are already hugely familiar, and arbitrary texture patterns, with which we 

have no experience. Similar to other frequently encountered object classes, both faces 

and textures comprise multiple features. These stimuli afford a comparison of learning in 

already well-formed representations (faces), with representations that must be built from 

scratch (textures). Identification of both faces and textures does improve (Gold et al., 

1999, 2004). When presented with a noisy face or texture, and asked to identify which of 

ten items it was, people reliably improve over time despite how good or bad they initially 

are at the task. The task involves extracting a signal from noise, and matching it to 

a noiseless exemplar, therefore the task challenges perception, and learning within this 

context is perceptual learning. In all the experiments reported, the signal (face or texture) 

is presented, in one of three levels of external noise (i.e., random perturbation of the 

luminance values of every stimulus pixel), at one of seven different contrast values. These 

21 stimulus conditions are designed to probe the system across a range of difficulty levels 

(see Figure 1.1), and identification immediately post-presentation is designed to eliminate 

the effects of memory that might confound interpretation in a delayed recognition task 

(see Figure 1.2 for a schematic illustration of the task). 
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Chapter 2 (Inversion), identifies two ways in which learning of face- and texture 

identification is stimulus-specific, and relates this stimulus-specific learning to an index 

of face-specific processing known as the face-inversion effect. This chapter is in press in 

the journal Vision Research. 

Chapter 3 (Contrast Reversal), looks at what in the image is learned, and identifies 

a third type of stimulus-specificity in learning of textures. This chapter is published in 

the Journal of Vision. 

Chapter 4 (Sleep), examines the time-course of learning, and the contribution of sleep 

to the overall improvements on face identification. This chapter is published in Vision 

Research. 

Chapter 5 (How much practice?), determines whether learning can be induced with 

small amounts of practice. This chapter is accepted pending revisions in Vision Research. 

Chapter 6 (Retention), assesses whether the improvements on both tasks are intact 

a year later. This chapter is ready for submission. 

Chapter 7 (Summary and the Future): as the title suggests. 

Note that there is some redundancy in the introductions to each chapter, because 

these chapters were submitted for publication independently. In almost all chapters, the 

introduction will define perceptual learning and highlight some of the primary charac­

teristics of learning. As a whole, these chapters cover the essential characteristics of 

learning of face- and texture identification. Learning of other complex visual tasks has 

been studied: visual search (Sireteanu and Rettenbach, 1995; Lobley and Walsh, 1998; 

Sigman and Gilbert, 2000), letter identification (Chung et al., 2006), object identification 

(Furmanski and Engel, 2000), and object categorization (Tanaka et al., 2005), but none 

have received the comprehensive treatment given to the tasks studied here. 
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Chapter 2 

Perceptual learning modifies 

inversion effects for faces and 

textures 

2.1 Abstract 

We trained subjects to identify either upright or inverted faces in a lOAFC task 

and measured performance subsequently in four conditions: same- and different-upright 

faces, and same- and different-inverted faces. Performance improved for both the upright­

trained and the inverted-trained groups. The improvements were highly specific to the 

trained face exemplars, and largely specific to the trained face orientations. This pattern 

of results yielded an increase in the face-inversion effect after upright training, and a 

decrease in the inversion effect after inverted training, but only for the trained set of 

faces in both groups. A similar pattern of results was found for phase-scrambled faces in 

which the configural structure of faces had been removed: Although there was no baseline 

inversion effect for the scrambled stimuli, inversion effects emerged after training. We 

consider the implications of this pattern of learning for current views on the face-inversion 

effect, and face-encoding more generally. 

Citation: Hussain, Z., Sekuler, A. B., & Bennett, P. J. Perceptual learning modifies 

inversion effects for faces and textures. Vision Research, In Press. 
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2.2 Introduction 

Repeating a perceptual task improves the ability to detect, discriminate, and identify 

stimuli, a phenomenon known as perceptual learning (Ball and Sekuler, 1987; Fiorentini 

and Berardi, 1981; Rubin et al., 1997; Sigman and Gilbert, 2000; Yi et al., 2006). Often 

the benefits of perceptual learning are found only for the particular stimuli used during 

training. For example, practice improves sensitivity in a spatial frequency discrimination 

task, but the effects of practice are abolished by changing the target's spatial frequency by 

an octave, or its orientation by 90 deg (Fiorentini and Berardi, 1981). Similar specificity 

is found after training on visual tasks such as motion direction discrimination, contour 

perception, and figure-ground segmentation (Ball and Sekuler, 1987; Fiorentini and Be­

rardi, 1981; Rubin et al., 1997; Sigman and Gilbert, 2000; Yi et al., 2006). The specificity 

of perceptual learning in these tasks has lead some researchers to suggest that the effects 

of learning alter the properties of low-level visual mechanisms (Kami and Bertini, 1997; 

Gilbert, 1994; Crist et al., 1997; Fahle, 2004). 

Learning also occurs in more complex visual tasks. For example, accuracy in a face 

identification task improves significantly with practice (Dolan et al., 1997; Elliott et al., 

1973; Gold et al., 1999b, 2004; Goldstein and Chance, 1985; McKone et al., 2007). Despite 

these demonstrations that laboratory-based practice improves performance, it generally 

is thought that a lifetime of perceiving faces has helped most human adults to become 

face identification experts. Indirect support for this view comes from the other-race ef­

fect, in which people are better at recognizing and identifying faces from their own racial 

group than faces from other groups (Valentine and Bruce, 1986; Tanaka et al., 2004; By­

att and Rhodes, 2004), and from many demonstrations that face identification is poorer 

for inverted faces than upright faces (Yin, 1969; Valentine, 1988). These effects can be in­

terpreted as evidence for limited generalization of face expertise to unfamiliar exemplars 

and orientations, and they resemble, at least qualitatively, the stimulus-specific effects 

found in many studies of perceptual learning (Fiorentini and Berardi, 1981; Furmanski 

and Engel, 2000; Sigman and Gilbert, 2000). However, we know of no direct demonstra­

tion of exemplar- and orientation-specific effects of perceptual learning with faces. The 

current experiments examine whether such effects can be induced by practice. 

A second goal of the current experiments is to investigate the stimulus conditions 

needed to produce orientation-specific effects of learning. McLaren (1997) theorized 

that perceptual learning produces orientation-specific effects only when the object class 

contains average, or prototypical, structure that resembles individual exemplars of that 
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class (see also Diamond and Carey 1986). Frontal views of faces comprise an object class 

with such prototypical structure, because the average of a large set of faces resembles a 

typical face. Scrambling the phase spectra of a set of faces produces a set of textures 

that do not have prototypical structure, because the average of a large set of textures will 

be (approximately) a uniform field. Hence, McLaren's theory predicts that orientation­

specific effects of learning should be obtained with faces but not textures. The current 

experiments tested this prediction. 

This study consists of three experiments. The first examines whether learning of 

upright faces generalizes to a novel set of upright faces. The second experiment tests 

whether learning of upright or upside-down faces generalizes to faces that have been 

rotated by 180 deg. The third experiment compares the effects of learning obtained with 

faces to those obtained with textures. The results indicate that learning with faces is, 

in part, both exemplar- and orientation-specific, and that that the effects of learning are 

similar with faces and textures. 

Figure 2.1: Examples of the face stimuli (Experiments 1 and 2), and the phase-scrambled 
stimuli (Experiment 3) used for the lOAFC identification task. 
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2.3 Methods 

2.3.1 Subjects 

Forty-seven subjects between the ages of 18-32 years (M = 19.9 years) took part 

either for remuneration ($10/hour) or for partial course-credit. All subjects had normal 

or corrected-to-normal visual acuity as measured by the Snellen acuity chart. Twenty­

four subjects were in the same-face group, and 23 subjects were in the different-face 

group. 

2.3.2 Apparatus and Stimuli 

Stimuli were generated on a Power Mac G4 computer using Matlab (The Mathworks, 

version 5.2.1) and the Psychophysics and Video Toolboxes (Brainard, 1997; Pelli, 1997). 

They were displayed on a Sony Trinitron GDM-F520 monitor set to a resolution of 1024 x 

768 pixels and a frame rate of 85 Hz (non-interlaced). Average luminance was 49 cd/m2 
. 

The monitor calibration data were used to build a 1779-element lookup table (Tyler 

et al., 1992), and customized computer software constructed the stimuli on each trial by 

selecting the appropriate luminance values from the calibrated lookup table and storing 

them in the display's eight-bit lookup table. 

The methods used to create the face stimuli have been described previously (Gold 

et al., 1999a). Twenty faces - 10 male and 10 female - were cropped to display only 

internal features within an oval subtending 190:140 pixels (subtending 3.6 x 2.6 deg at 

the viewing distance of 114 cm), and equated in terms of their amplitude spectra. Faces 

were presented in a square frame (256 x 256 pixels, or approximately 4.8 x 4.8 deg). The 

20 faces were randomly divided into two sets (sets A and B), with the constraint that 

each set of ten faces comprised five male and five female faces (see Figure 2.1). During 

the experiment, stimulus contrast was varied across trials using the method of constant 

stimuli. Seven levels of contrast were spaced approximately equally on a logarithmic scale, 

and spanned a range that was sufficient to produce significant changes in performance 

in virtually all subjects (see Table 2.1). The images were shown in three levels of static 

two-dimensional Gaussian noise, created by sampling from distributions with contrast 

variances of .001, .01, and .1. Hence, there were a total of 21 stimulus conditions (seven 

contrast levels x three external noise levels) that allowed subjects to view each face at a 

variety of signal-to-noise ratios. 
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Table 2.1: RMS contrasts of the upright faces. Contrasts of the inverted faces and phase­
scrambled stimuli used in Experiments 2 and 3 were 1.5 times greater than the values 
shown here. 

Low Noise Medium Noise High Noise 
.0049 .0154 .0487 
.0059 .0186 .0226 
.0071 .0226 .0715 
.0087 .0273 .0866 
.0105 .0332 .1049 
.0127 .0401 .1269 
.0154 .0487 .1539 

2.3.3 Procedure 

Subjects viewed the monitor binocularly from a distance of 114 cm. Viewing position 

was stabilized with a chin/forehead rest. The stimulus display was the only source of 

illumination in the testing room. A testing session began with a 60 s adaptation period 

during which time the subject viewed a uniform field set to the average luminance of 

the stimulus display. Following adaptation, each trial began with the presentation of a 

central fixation point for approximately 100 ms (black spot, 0.15 x 0.15 deg), followed 

by a randomly selected face presented for approximately 200 ms at the center of the 

screen. The stimulus conditions were intermixed, so the target face on each trial was 

selected from one of the 21 conditions (i.e., 7 contrasts x 3 noise levels). After the face 

disappeared, the entire set of 10 faces was presented as noiseless, high-contrast thumbnail 

images each subtending approximately 1.7 x 1.7 deg. Five thumbnails were presented on 

the top half of the screen, and five on the bottom half, and the location of specific face 

identities was constant across trials and across subjects. The subject's task was to decide 

which of the 10 faces had been presented during the trial, and to respond by clicking 

on the chosen face with the mouse. Auditory feedback was provided after each response 

(high- and low-pitched tones for correct and incorrect responses, respectively), and the 

next trial began one second after feedback. 

All subjects participated in the experiment on two consecutive days. On Day 1, each 

subject performed the face identification task with one of the two sets of 10 faces. On Day 

2, subjects in the same-face group performed the identification task with the same faces 

they saw on Day 1, but subjects in the different-face group performed the task with the 
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set of 10 faces that they had not seen on Day 1. The order of sets was counterbalanced 

across subjects. 

On both Days 1 and 2, subjects performed 40 trials per stimulus condition for a total 

of 840 trials (40 trials x 21 stimulus conditions), which were completed in approximately 

one hour. Each face was selected randomly (with replacement) on each trial, such that 

on average each face was shown approximately 84 times during the entire session. 

2.4 Results 

Among the statistical analyses described here and in subsequent Results sections are 

comparisons of i) average performance on Days 1 and 2; ii) performance in different bins 

of trials on Day 1; and iii) performance in different bins of trials on Day 2. Many of these 

comparisons are mutually orthogonal, and therefore provide independent estimates of the 

effects of practice on performance. Furthermore, the effect of learning measured across 

days depends in part on the definition of baseline performance. Instead of selecting one 

baseline arbitrarily, we have used different definitions of baseline performance to reveal 

different aspects of learning. In particular, it will be shown that using different baselines 

provides different estimates of the amount and generalization of learning. 

For the purpose of the analyses, the 840 trials on each day were divided into eight 

blocks of 105 sequential trials (trial bins 1-8). For each bin, the proportion of correct 

responses was calculated after collapsing across all levels of stimulus contrasts and noise. 

Proportion correct at each bin within the session on Day 1 and Day 2 is plotted for 

both groups in Figure 2.2. On Day 1, performance increased across bins but was similar 

in the both groups: a 2 (Group) x 8 (Bin) ANOVA found a significant effect of Bin 

(F(7, 315) = 62.2, p < .0001), but the main effect of Group (F(l, 45) = 0.38, p = .54) 

and the Bin x Group interaction (F(7, 315) = .89, p = .51) were not significant. The lack 

of an interaction suggests that accuracy improved at similar rates in both groups. On 

Day 2, there also was a main effect of Bin (F(7, 315) = 24.89, p < .0001), which indicates 

that performance generally improved during the session. However, unlike what was found 

on Day 1, there was a significant effect of Group (F(l, 45) = 11.01, p = .002), indicating 

that response accuracy was lower in the different-face group, and a significant Bin x 

Group interaction (F(7, 315) = 6.56, p < .0001), indicating that the increase in accuracy 

during Day 2 was greater in the different-face group than in the same-face group. 

Overall proportion correct was calculated for each group by collapsing responses across 
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all levels of stimulus contrast and external noise. In the same-face group, overall pro­

portion correct was 16% higher on Day 2 than Day 1, a difference that was statistically 

significant (t(23) = 11.09, p < .0001, one-tailed). In the different-face group, proportion 

correct also was 4% higher on Day 2, a difference that was significantly greater than 

zero (t(22) = 1.92,p = .034, one-tailed) but significantly less than the improvement in 

accuracy attained by the same-face group (t(45) = 5.34,p < .0001, one-tailed). A slightly 

different perspective on the between-day effect is gained by comparing performance in 

Bins 8 and 9. In the same-face group, accuracy in Bin 9 was 53 higher than accuracy in 

Bin 8. In the different-face group, on the other hand, accuracy was 14% lower in Bin 9 

than in Bin 8. This difference between groups was confirmed by at-test on the difference 

scores between Bins 8 and 9 (t(45) = 5.420,p < .0001). These analyses suggest that 

the performance of both groups improved across days, but that the improvement was 

significantly greater in the same-face group. 

We calculated the difference in accuracy between Bin 9 and Bin 1 for both groups. 

Performance in these bins represents initial performance on Days 1 and 2. The same 

group was 293 more accurate in Bin 9 than in Bin 1 (t(23) = 13.83,p < .0001), and the 

different group was 73 more accurate in Bin 9 than in Bin 1 (t(22) = 13.83,p < .0001). 

The group difference in the difference scores between Bins 9 and 1 was also significant 

(t(44) = 6.71,p < .0001). The 7% improvement in Bin 9 relative to Bin 1 shown by the 

different face group can be thought of as the component of learning that is not stimulus 

specific. We will refer to this effect as the task-general component of learning 

2.5 Discussion 

The group differences in performance on Day 2 make clear that the same-face group 

was at an advantage compared to the different-face group. Improvement across sessions 

was greater when the same stimuli were viewed on both days, and the different-face 

group, despite greater amounts of learning on Day 2 did not, on average, achieve the 

level of performance of the same-face group. Thus, the major part of what was learned 

did not transfer across stimulus sets, but a small proportion (7%) did. This transfer was 

indicated by the increased accuracy for the different face group in Bin 9 relative to Bin 

1, which we consider the task-general component of learning. 

Although previous work has shown that face identification can be improved by prac­

tice (Dolan et al., 1997; Elliott et al., 1973; Gold et al., 1999b; Goldstein and Chance, 

1985; McKone et al., 2007), exemplar-specific improvements in face perception have not 
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Figure 2.2: The results of Experiment 1. Proportion correct of responses, collapsed across 
levels of stimulus contrast and noise, calculated for successive bins of 105 trials on Days 
1 and 2. Solid traces represent performance of the group (N = 24) that did the task 
with the same faces on both days. Dashed traces represent performance of the group 
(N = 23) that did the task with different faces on Day 1 and Day 2. 
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been reported previously. The perceptual learning literature is replete with examples of 

stimulus-specificity for tasks involving discriminations along a single stimulus attribute, 

such as spatial frequency or motion direction (Ball and Sekuler, 1987; Fiorentini and 

Berardi, 1981). In these cases, learning effects are minimized or abolished after changes 

to, for example, the trained motion direction or the trained stimulus orientation, sug­

gesting plasticity at early visual sites that code basic stimulus properties (Kami and 

Bertini, 1997; for a different interpretation, see Mollon and Danilova, 1996). For com­

plex perceptual tasks, learning is thought to modify sites where stimulus representations 

are transformation-invariant (Kami and Bertini, 1997), consistent with the study finding 

generalization of learning across face viewpoints (Moses et al., 1996). Nevertheless, learn­

ing in some complex visual tasks does exhibit stimulus-specificity: For example, there 

is no transfer of learning from contrast- to luminance-defined letters during letter iden­

tification, across shapes in a figure-ground segmentation task, or across object identity 

in an object identification task (Chung et al., 2006; Furmanski and Engel, 2000; Sigman 

and Gilbert, 2000). And recent work has found evidence for face-specific adaptation. 

For example, face adaptation aftereffects only occur along the geometric trajectory of 

the exposed face identity (Leopold et al., 2001), and these distortions do not transfer 

across viewpoint (Anderson and Wilson, 2005; Jeffery et al., 2006). In our experiment, 

we found relatively little transfer of learning to novel face exemplars. Thus, the present 

results support stimulus-specificity as a characteristic of learning even for complex tasks, 

such as face-identification, with which we have expertise. 

2.6 Experiment 2 

The goal of Experiment 2 was to determine if the learning shown in Experiment 1 was 

orientation-specific. Specifically, we asked whether learning transfers from faces trained 

in the upright orientation to the same faces viewed in the inverted orientation, and vice 

versa. Earlier work showing some transfer of learning across face viewpoints (Moses et al., 

1996), indicates some potential for learning to generalize beyond the particular images 

viewed during training. And, a recent study using a set of houses with similar spatial 

configurations, showed that learning partially generalized to untrained orientations, sug­

gesting that with such stimuli some proportion of learning is orientation invariant (Husk 

et al., 2007). On the other hand, if learning of faces is like most other low-level tasks, 

then the effects of practice should be specific to the trained orientations. Additionally, 

we consider the consequences of specificity of learning for the size of the face-inversion 

effect. 
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2.7 Methods 

2.7.1 Subjects 

Thirty-two subjects (18 female) between the ages of 18-32 years (M = 20.5 years) 

participated either for partial course credit or remuneration ($10/hour). All had normal 

or corrected-to-normal visual acuity as measured by the Snellen acuity chart, and none 

had participated in Experiment 1. Sixteen subjects were assigned to the upright-training 

group, and 16 to the inverted-training group. 

2. 7.2 Apparatus and Stimuli 

The apparatus and two sets of faces were the same as in Experiment 1. The inverted 

faces were displayed at higher contrasts than the upright faces (see Table 1) because 

pilot work showed that performance on inverted-face identification with the contrasts 

used for the upright faces was below chance (consistent with the face-inversion effect: 

Farah et al., 1995; Friere et al., 2000; Tanaka et al., 2004; Valentine and Bruce, 1986; 

Yin, 1969; Sekuler et al., 2004; Gaspar et al., 2008a). The contrast variances used for the 

upright faces at each noise level are shown in Table l.Contrast variances of the inverted 

faces were 1.5 times those of the upright faces. 

2.7.3 Procedure 

All subjects participated in the experiment on two consecutive days. On Day 1, 

subjects were randomly assigned to train on the face identification task with one set 

of faces either in the upright or inverted orientation. The task protocol was the same 

as described for Experiment 1. On Day 1, subjects performed 40 trials per stimulus 

condition for a total of 840 trials at the training orientation. On Day 2, all subjects 

performed the identification task with both sets of faces in both orientations. Thus, 

all subjects performed the task in four experimental conditions on Day 2, and only one 

of those conditions was identical to training Day 1. The four experimental conditions 

(upright/inverted x same/different) were blocked on Day 2, with the order of blocks 

counterbalanced across subjects. For each experimental condition, subjects performed 

10 trials per stimulus condition for a total of 210 trials per block. Thus, all subjects 

performed a total of 840 trials across the entire session (210 trials/block x 4 blocks). 
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Figure 2.3: Identification performance (overall proportion correct) on Day 1 and Day 
2 for faces measured in Experiment 2. Day 1: upright-trained (dark) versus inverted­
trained (light) group. Day 2: upright versus inverted faces (dark versus light bars); same 
versus different faces (solid versus striped bars). 

2.8 Results 

2.8.0.1 Overall accuracy: Upright-trained faces 

We first consider the effects of learning obtained with the group of subjects who were 

trained with upright faces on Day 1 (i.e., the upright-trained group; dark bar in the 

leftmost panel, and all the bars in the middle panel, Figure 2.3). We defined baseline 

performance as response accuracy measured on Day 1. Proportion correct in the same­

upright condition on Day 2 was 133 greater than baseline performance, indicating that 

performance improved across days (t(15) = 8.67, p < .0001). Performance with different­

upright faces on Day 2 did not differ from baseline performance (t(15) = 1.39, p = .18), 

and was 16% lower than accuracy obtained with same-upright faces on Day 2 (t(15) = 

8.62, p < .0001). These results show that the effects of practice with upright faces on 

Day 1 did not generalize to novel upright faces on Day 2. Response accuracy measured 

on Day 2 with the same faces viewed upside-down (i.e., the same-inverted condition) and 

with novel inverted faces (i.e., the different-inverted condition), did not differ significantly 

from performance measured with inverted faces in a different group of subjects on Day 

1 (same-inverted condition: t(30) = .95, p = .35; different-inverted condition: t(30) = 
1.05, p = .30), which indicates that learning was orientation-specific. However, response 

accuracy on Day 2 was significantly greater in the same-inverted condition than in the 

different-inverted condition (83 advantage, t(15) = 3.54, p = .003), which suggests that 

within the familiar set of faces, some benefits of practice with upright faces on Day 1 did 

generalize to the opposite orientation on Day 2. 
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2.8.0.2 Inverted-trained faces 

Next, we consider the effects of learning obtained with the group of subjects who 

were trained with inverted faces on Day 1 (i.e., the inverted-trained group; light bar in 

the leftmost panel, and all bars in the rightmost panel, Figure 2.3). As before, baseline 

performance was defined as response accuracy measured on Day 1. Proportion correct in 

the same-inverted condition on Day 2 was 133 better than baseline performance (t(15) = 

9.39, p < .0001), indicating that performance improved across days. Performance with 

different-inverted faces on Day 2 did not differ from baseline performance (t(15) = .481, 

p = .64), and was 123 lower than accuracy with same-inverted faces on Day 2 (t(15) = 
4.12, p < .001). These results show that, as was found with upright faces, the effect 

of practice with inverted faces did not generalize to novel inverted faces. Response 

accuracy measured on Day 2 with the same faces viewed in a new, upright orientation 

(i.e., the same-upright condition) and with novel, upright faces (i.e., the different-upright 

condition) did not differ significantly from baseline performance measured with upright 

faces in a different group on Day 1 (same-upright: t(30) = 1.14,p = .26; different-upright: 

t(30) = .19,p = .85), which shows that learning of inverted faces was orientation-specific, 

as was the case with upright faces. The difference between response accuracy in the 

same-upright and different-upright conditions on Day 2 was numerically less than that 

found in the complementary conditions in the upright-trained group, only approached 

significance (43 difference, t(15) = 1.70,p = .10). 

We tested whether the amount of transfer across orientations was greater from the 

upright to inverted orientation than vice versa by comparing the difference between the 

same- and different-faces viewed in the untrained orientation in the two groups of sub­

jects: the 83 advantage reported above for the upright-trained group versus the 43 

advantage reported for the inverted-trained group. This comparison was not significant 

(t(30) = 1.33, p = .19), which suggests that there was no obvious advantage in transfer­

ring learning from upright to inverted stimuli, or vice versa. 

2.8.1 Time-course of learning 

We calculated proportion correct in eight consecutive bins of 105 trials on Day 1. On 

Day 2, each condition was separated into two bins - A and B - of 105 trials. Figure 2.4 

shows that proportion correct improved on Day 1 for both tasks. From the first bin to 

the final bin on Day 1, proportion correct for upright face identification increased by 223 

(t(15) = 5.92, p < .0001 one-tailed ), and for inverted face identification it increased by 
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20% (t(15) = 5.66, p < .0001 one-tailed). Clearly, there was substantial within-session 

learning on Day 1 for both groups. For the following analyses, performance in Bin 1 on 

Day 1, which represents completely naive performance, is treated as baseline. As the 

analyses show, using this measure as baseline reveals transfer of learning on Day 2 that 

was not evident in the average response accuracy reported in the previous sections. 
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Figure 2.4: Time-course of learning for faces in Experiment 2. Left panel shows per­
formance on Day 1. Right panels show performance in all four conditions on Day 2 
separately for each group. Dark vs. Light: Upright vs. inverted stimuli; Solid vs. 
Dashed: Same vs. Different stimuli as those shown on Day 1. Each bin comprised 105 
trials. 

The upright-trained group's initial performance on Day 2 (Bin A) in the same-upright 

and different-upright conditions was, respectively, 29% better than baseline (t(15) = 
10.45, p < .00001), and 10% better than baseline (t(15) = 3.57, p = .0014). Therefore, 

relative to completely naive performance, there was some transfer of learning to novel 

exemplars. Initial performance of the upright-trained group with inverted faces on Day 

2 indicates that there was also some transfer across orientation: Proportion correct for 

same-inverted faces measured in Bin A was 16% higher than the baseline measured 

in Bin 1 from the inverted-trained group (t(30) = 4.12, p = .0004), and proportion 

correct for different inverted faces in Bin A was 9% better than baseline (t(30) = 2.79, 

p = .01). These comparisons indicate that the effects of training with upright faces 

partially transferred to inverted faces. Additionally, performance with the same-inverted 

faces in Bin A was 7% better than with different-inverted faces (t(15) = 3.26, p = .005), 
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which reflects the effect of familiarity at the untrained orientation, over and above the 

task-general advantage that we describe in Experiment 1. 

The upright-trained group's performance in Bin A was compared to its performance 

in Bin 8 the previous day (i.e., performance at the end of Day 1). Accuracy in the 

same-upright and different-upright conditions in Bin A were respectively 6% better than 

Bin 8 (t(15) = 2.96, p = .009) and 12% worse than Bin 8 (t(15) = 3.76,p = .001). 

Therefore, relative to accuracy at the end of the session on Day 1, there was a drop in 

performance with novel exemplars, whereas performance with the same exemplars im­

proved. Proportion correct in Bin 8 did not differ from performance in Bin A in the 

same-inverted condition (t(28.751) = .96,p = 0.34), but was 12% higher than perfor­

mance in the different-inverted condition (t(29.625) = 2.75,p = .009). These results are 

consistent with those described in the previous paragraph, and indicate that the effects 

of training with upright faces partially transferred to the same inverted faces but not 

to different inverted faces (i.e., over and above the task-general transfer indicated by 

comparison to bin 1, preceding paragraph). 

The rightmost panel of Figure 2.4 shows performance of the inverted-trained group. 

For this group, initial performance on Day 2 in the trained condition (same-inverted, 

Bin A) was 26% higher than the Bin 1 baseline (t(15) = 9.166,p < .0001), which is 

equivalent to the amount learned in the trained condition by the upright-trained group. 

Initial performance with different-inverted faces on Day 2 was 15% better than baseline 

t(15) = 4.67, p = .0003), indicating that some learning transferred to novel stimuli in the 

same orientation, as was the case with the upright-trained group. There was also some 

transfer across orientation: performance in Bin A with same upright faces on Day 2 was 

18% better than the Bin 1 baseline measured from the upright-trained group (t(30) = 5.4, 

p < .0001), and performance with different upright faces was about 13% better than the 

Bin 1 baseline (t(30) = 3.05, p = .004), indicating that, as was the case with the upright­

trained group, learning transferred to the opposite orientation. Also, performance with 

same-upright faces in Bin A was 5% higher than performance with different-upright faces, 

a difference which approached significance (t(15) = 1.97, p = .068), and which reflects the 

effect of familiarity at the untrained orientation, as was found with the upright-trained 

group. 

For the inverted-trained group, proportion correct in the same-inverted and different­

inverted conditions in Bin A were respectively, 5% better than in Bin 8 (t(15) = 2.322,p = 
.03), and no different than in Bin 8 (t(15) = 1.5,p = .14). Therefore, performance in 
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conditions using inverted faces improved relative to Bin 8 only when the faces were the 

same ones seen on Day 1. Proportion correct in the same-upright condition in Bin A 

was not significantly different than performance of the upright-trained group in Bin 8 

(t(22.34) = .96,p = .34), and proportion correct in the different-upright condition was 

103 worse than performance of the upright-trained group in Bin 8, a difference than 

approached significance (t(28.59) = 1.9,p = .06). These two comparisons suggest that 

practice with inverted faces on Day 1 generalized to the same faces presented upright, 

and are consistent with the effects of familiarity at the untrained orientation reported in 

the preceding paragraph. 

Overall, transfer of learning across orientations was greater in the same-face condition 

than in the different-face condition. Additionally, we found that comparisons of average 

accuracy (Figure 2.3) were less sensitive tests of generalization of learning across exem­

plars and across orientations. Generalization becomes apparent when Day 2 performance 

is compared to performance during the first 105 trials on Day 1 (Figure 2.4). The transfer 

effects found with novel faces at the trained orientation are similar to the small amount 

of transfer found across stimulus sets in Experiment 1 in the comparison between initial 

trial bins on each day, which we attributed to task-general learning. The advantage of 

trained over novel faces at the untrained orientations reflects additional transfer beyond 

task-general transfer, i.e., it reflects transfer of learning across orientation. 

2.8.1.1 Inversion effect 

The inversion effect on Day 1, or baseline inversion effect, was defined as the between­

group difference in response accuracy. Performance with upright faces was 193 better 

than performance with inverted faces on Day 1 (t(30) = 4.76, p < .0001, one-tailed). 

This difference in proportion correct occurred even though stimulus contrast was higher 

for inverted faces. Therefore, this inversion effect, although quite large, actually under­

estimates the inversion effect that would have been obtained had the stimulus contrasts 

been identical in both orientations. 

On Day 2, the inversion effect was calculated within each group, separately for the 

trained and novel sets (i.e., the difference in proportion correct between the upright and 

inverted conditions, for the trained and novel sets). The inversion effects before and after 

training, for both training groups, are shown in Figure 2.5. Separate t tests were used to 

compare each inversion effect measured on Day 2 to the baseline inversion effect. For the 

upright-trained group, the size of the inversion effect in the same-face condition increased 



26 CHAPTER 2. INVERSION 

Day 1 Day2 
............................................ 

liiZll same 
tl 

0.4 

D different 
Q) 0.3 
~ 
c:: 
0 0.2 
·u;.... 
Q) 

0.1 
..5
> 

0.0 
Baseline Upright-trained Inverted-trained 

Figure 2.5: Face-inversion effect (upright minus inverted) measured in Experiment 2. The 
Baseline inversion effect measured on Day 1 was calculated by comparing performance of 
different groups of subjects; the error bar represents the standard error of the difference 
between means. On Day 2 the inversion effect was calculated by comparing performance 
within each subject in the upright-trained and inverted-trained groups. Error bars on 
Day 2 represent ±1 standard error of the mean. 

significantly by 8% relative to baseline due to improved performance with the same 

upright faces (t(15) = 2.79, p = .01). However, the inversion effect in the different-face 

condition on Day 2 did not differ from baseline (t(15) = .02,p = .97). For the inverted­

trained group, the inversion effect in the same-face condition decreased significantly by 

103 relative to baseline due to improved performance with the trained upside-down faces 

t(15) = 3.93, p = .001). As with the upright-trained group, the inversion effect measured 

in the different-face condition did not differ from baseline (t(15) = .19, p = .84). Hence, 

practicing with upright faces on Day 1 produced a greater inversion effect on Day 2, but 

practicing with inverted faces on Day 1 produced a smaller inversion effect on Day 2. 

The magnitude of the learning effect was approximately equal (though of opposite sign) 

in the two groups, and was restricted to the trained faces. 

2.9 Discussion 

Experiment 2 showed that, in addition to being exemplar-specific, perceptual learning 

of faces is largely, though not entirely, orientation-specific, regardless of whether faces 

were trained in the upright or upside-down orientation. These instances of specificity are 

similar to those found with low-level tasks, suggesting that specificity is a general principle 

of learning across a range of tasks. The results also show clearly that the face-inversion 

effect can be modified selectively with experience. In the current experiment, practice 

improved the identification of inverted faces by the same amount as identification of 

upright faces. Although prior research has shown that practice improves the identification 
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of upright faces (Dolan et al., 1997; Elliott et al., 1973; Gold et al., 1999b; Goldstein and 

Chance, 1985; McKone et al., 2007) and inverted faces (Robbins and McKone, 2003), this 

is the first demonstration that the effect of familiarity on the inversion effect is confined to 

the exposed set of faces. The pattern of results we find is at odds with an early report of 

no effect of familiarity on the inversion-effect (Scapinello and Yarmey, 1970), which could 

be accounted for by methodological differences. Scapinello and Yarmey (1970) measured 

errors made in an old-new recognition paradigm, while manipulating the number of item 

exposures; additionally, the inverted stimuli were not exposed during the study phase. 

In the current study, it is noteworthy that although the inversion effect decreased for 

the inverted-trained group, performance with upright faces on average was unaffected for 

this group. Thus, the size of the inversion effect can be altered by changes in the way 

inverted faces alone are encoded and/or represented. 

2.10 Experiment 3 

Experiment 2 found evidence for partial transfer of learning across orientation: on 

Day 2, performance with familiar stimuli shown in the opposite orientation was better 

than performance with novel, inverted stimuli. Additionally, when completely naive per­

formance (Bin 1) was treated as baseline, both groups showed generalization of learning 

to novel exemplars and to the opposite orientation. 

All faces share the same first-order structure (eyes-over-nose-over-mouth), which con­

fers on them a clearly distinguishable canonical orientation. This type of structure has 

also been described as prototypical or average, wherein the pixel-wise average of a set of 

face exemplars could itself be considered a member of that set (McLaren, 1997). It is 

possible that transfer across orientation was facilitated by the presence of such structure 

in the stimuli, which is consistent with the transfer of learning across orientation found 

with houses but not band-limited textures by Husk et al. (2007). The houses used by 

Husk et al (2007), shared the same first-order structure, however the band-limited tex­

tures did not. Additionally, it has been proposed that inversion effects are contingent on 

prototypical structure within a stimuli class (McLaren, 1997). McLaren (1997) showed 

that inversion effects arise after familiarization with checkerboards that contain average 

structure, whereas checkerboards without average structure do not yield inversion effects. 

In Experiment 3 we examined inversion effects and transfer of learning for patterns in 

which the structure present in faces is diminished by virtue of phase-scrambling. Phase­

scrambling removes the first-order structure present in faces, however it preserves the 
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spatial frequency content of faces (Figure 1). The design used was identical to Experi­

ment 2. 

2.11 Methods 

2.11.1 Subjects 

Forty-eight subjects (12 males; 36 females) between the ages of 18-32 years (M = 20.5 

years) participated in the experiment either for partial course credit or remuneration 

($10/hour). None of the subjects had participated in the previous experiments. All had 

normal or corrected-to-normal Snellen acuity. Twenty-four subjects were assigned to the 

upright-training group, and 24 to the inverted-training group. 

2.11.2 Apparatus and Stimuli 

The apparatus was the same as the one used in Experiments 1 and 2. Two sets 

of phase-scrambled images were created from the sets of faces used in Experiments 1 

and 2 by combining the average Fourier amplitude spectrum of the faces with 20 phase 

spectra derived from different samples of white, Gaussian noise. These stimuli have 

no canonical orientation, therefore upright and inverted were arbitrary labels for the 

presented orientations. Stimulus contrasts were the same as those used for the inverted 

faces in Experiment 2. 

2.11.3 Procedure 

The procedure was identical to that in Experiment 2 except that subjects were told 

that the task was pattern identification rather than face identification. 

2.12 Results 

2.12.1 Overall accuracy 

Proportion correct for this experiment, calculated exactly as was done for Experiment 

2, is shown in Figure 2.6. Performance for upright and inverted stimuli was the same 

on Day 1 (t(46) = 0.6,p = .55), indicating that there was no baseline inversion effect 

consistent with the fact that these stimuli did not have a canonical orientation. 

We first consider the effects of practice obtained with subjects who were trained with 
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so-called upright textures on Day 1 (i.e., the upright-trained group; Figure 2.6 middle 

panel). Proportion correct for same-upright textures on Day 2 was approximately 10% 

higher than baseline (i.e., performance on Day 1), indicating that there was significant 

learning in this condition (t(23) = 6.7, p < .0001). Performance in the different-upright 

condition on Day 2, however, was no different than baseline (t(23) = .63, p = .54), and 

was 11% lower than accuracy in the same-upright condition on Day 2 (t(23) = 3.79, 

p = .0005). These results indicate that the effects of practice did not generalize to novel 

textures. Accuracy in the same-inverted condition and the different-inverted condition 

on Day 2 did not differ from baseline accuracy measured in the inverted-trained group 

on Day 1 (same-inverted: t(46) = .59, p = .56; different-inverted: t(46) = .68, p = .50), 

which indicates that the effects of learning did not generalize to the opposite orientation. 

Additionally, there was no difference between accuracy for same-inverted and different­

inverted textures (t(23) = 0, p = 1), which indicates that unlike what was found with 

faces, there was no transfer of learning across orientation within the familiar stimulus 

set. 
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Figure 2.6: Identification performance (overall proportion correct) on Day 1 and Day 
2 for phase-scrambled faces measured in Experiment 3. Note that the textures did not 
have a canonical orientation, so classification as upright and inverted was arbitrary. Day 
1: upright-trained (dark) versus inverted-trained (light) group. Day 2: upright versus 
inverted faces (dark versus light bars); same versus different faces (solid versus striped 
bars). 

Next, we consider the results obtained from subjects who were trained with so-called 

inverted textures on Day 1 (i.e., the inverted-trained group; Figure 2.6, right-most panel). 

Given that there was no effect of orientation on Day 1, it was not surprising to find that 

the pattern of results obtained from the inverted-trained group was the same as that 

obtained from the upright-trained group. Performance in the same-inverted condition on 

Day 2 was 8% higher than baseline (t(23) = 5.71, p < .0001), indicating that learning 
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occurred. However, proportion correct in the different-inverted condition on Day 2 did not 

differ from baseline (t(23) = 0.49, p = .63), and was 8% lower than in the same-inverted 

condition on Day 2 (t(23) = 4.89, p < .0001). Both of these comparisons demonstrate 

that the effects of practice did not generalize to new textures. As with the upright-trained 

textures, there was no generalization of learning to the opposite orientation. Accuracy in 

the same-upright condition, and the different-upright condition on Day 2 did not differ 

from baseline accuracy measured with the upright-trained group on Day 1 (same-upright: 

t(46) = 1.1,p = .28; different-upright: t(46) = .35,p = .73). Also, there was no difference 

in accuracy for the same-upright and different-upright textures for this group on Day 2 

(t(23) = 1.03,p = .32), indicating no transfer of learning across orientation within the 

familiar set of textures. 

Day 1 Day2 

2 3 4 5 6 7 8 A B A B 
Trial bin 

Figure 2.7: Time-course of learning for phase-scrambled faces in Experiment 3. Left 
panel shows performance on Day 1. Right panels show performance in all four conditions 
on Day 2 separately for each group. Dark vs. Light: Upright vs. inverted stimuli; Solid 
vs. Dashed: Same vs. Different stimuli as those shown on Day 1. 

2.12.2 Time-course of learning 

Figure 2. 7 shows within-session performance on Days 1 and 2 for both groups, calcu­

lated as in Experiment 2. The traces on Day 1 confirm the absence of any orientation 

bias in the stimuli. In both groups, response accuracy increased significantly from the 

start to the end of the Day 1 session: by 12% in the upright-trained group (t(23) = 3.89, 
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p < .0001), and 143 in the inverted-trained group (t(23) = 7.85, p < .0001). The middle 

and right-hand panels of Figure 2.7 shows performance on Day 2, separately for each 

group, with each of the four conditions represented as in Figure 2.4. As was the case in 

Experiment 2, the time-course of learning reveals some generalization that could not be 

discerned in the average data. For the analyses below, performance in Bin 1 is considered 

baseline, as was done for time-course analyses in Experiment 2. 

In the upright-trained group, initial performance on Day 2 (Bin A) in the same­

upright condition was 173 better than baseline (t(23) = 6.25,p < .0001). Performance 

in Bin A did not differ across conditions that used novel stimuli (i.e., different-upright, 

same-inverted, different-inverted; F(2, 46) = .336, p = .72). Therefore, the average 

performance in these three conditions in Bin A was compared to baseline performance to 

assess whether there was any generalization of learning. A t test indicated that average 

performance in the untrained conditions was 73 better than the baseline measured from 

this group (t(23) = 3.27, p = .004), indicating that some of the benefits of learning 

transferred to the untrained exemplars and orientations. However, performance in Bin A 

in the same-upright condition was 103 better than performance in Bin A of the untrained 

conditions combined (t(23) = 4.67, p < .0001), so although some task-general advantage 

transferred, a large proportion of what was learned was exemplar-specific. 

Proportion correct in Bin A in the same-upright condition was 53 higher than it 

was in Bin 8 the previous day (t(23) = 2.98,p = .006), whereas proportion correct in 

the different-upright condition in Bin A was 53 lower than in Bin 8, a difference that 

approached significance (t(23) = l.69,p = .10). These comparisons show that there was 

a setback in learning relative to performance in Bin 8, when novel exemplars were used. 

Since performance in Bin A did not differ in the different-upright, same-inverted and 

different-inverted conditions, it can be inferred that learning also did not transfer to the 

opposite orientation. Exactly the same pattern of results was found with the inverted 

trained group. 

The right-most panel of Figure 2. 7 shows the performance of the inverted-trained 

group, whose pattern of performance was identical to the upright-trained group. In the 

inverted-trained group, performance in the same-inverted condition in Bin A was 173 

better than baseline (t(23) = 6.881,p < .0001). In Bin A, there was no difference in 

performance among conditions that used novel stimuli (F(2, 46) = 1.86, p = .17), so the 

average of those three conditions was compared to baseline to test for generalization of 

learning. The average was 93 greater than baseline, a difference that was statistically 
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significant (t(23) = 5.32, p < .0001), which shows that there was some generalization of 

learning relative to naive performance. However, performance in the same-inverted condi­

tion - i.e., the condition that used familiar stimuli - was superior to average performance 

in the other three conditions (t(23) = 4.47, p < .0001), indicating exemplar-specificity of 

learning. 

Overall, although there was modest transfer across conditions, the trained conditions 

were at a clear advantage relative to the other conditions on Day 2 for both groups, 

confirming the pattern shown in Figure 2.6. In this experiment, generalization to novel 

stimuli is consistent with the task-general learning that we found in Experiment 1. The 

generalization across orientation that was shown in Experiment 2, in the comparisons 

between old and novel faces at the untrained orientation, was absent with the phase­

scrambled stimuli used here. This result suggests that familiar (or regular) stimulus 

structure might play a role in facilitating transfer of learning across orientation. 
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Figure 2.8: Inversion effect (upright minus inverted) for the phase-scrambled faces mea­
sured in Experiment 2. The Baseline inversion effect measured on Day 1 was calculated 
by comparing performance of different groups of subjects; the error bar represents the 
standard error of the difference between means. On Day 2 the inversion effect was 
calculated by comparing performance within each subject in the upright-trained and 
inverted-trained groups. Error bars on Day 2 represent ±1 standard error of the mean. 

2.12.3 Inversion effects 

One consequence of the stimulus- and orientation-specificity of learning was the emer­

gence of an inversion effect for the trained textures (Figure 2.8). On Day 1, there was no 

inversion effect, because performance in the upright-trained and inverted-trained groups 

did not differ (t(47) = .60,p = .55). This result is not surprising because the stimuli 

did not have a canonical orientation. On Day 2, in the same-texture condition, there 

was a positive inversion effect for the upright-trained group (t(23) = 4.51, p = .0001), 

and a negative inversion effect for the inverted-trained group (t(23) = 5.51, p < .0001). 



33 2.13. DISCUSSION 

The size of the inversion effect was the same for both groups (10%). Again, this result 

is not surprising because the original classification of the stimuli as upright and inverted 

was arbitrary, and therefore we expected any induced inversion effects for the two groups 

to have opposite sign but approximately equal magnitude. For both groups, the inver­

sion effect in the different-texture condition did not differ from zero (upright-trained: 

t(23) = 1.06, p = .29; inverted trained: t(23) = .04,p = .96). Hence, inversion effects on 

Day 2 were obtained only with textures that were seen on Day 1. 

2.13 Discussion 

Perceptual learning of textures was specific to the trained exemplars and orienta­

tions. Unlike what was found with the faces, there was virtually no transfer of learning 

across orientation except where Bin 1 was used as baseline. These results suggest that 

abolishing the spatial structure in faces precluded transfer of learning across orienta­

tion. Exemplar- and orientation-specificity of learning produced an inversion effect for 

the trained textures, consistent with what was found by Husk et al (2007) using specially 

derived house stimuli and band-pass limited noise stimuli. A positive inversion effect 

emerged after upright-training, and a negative inversion effect emerged after inverted 

training. The inversion effects generated despite the absence of prototypical structure 

in the textures argue against the proposal that such structure is essential for inversion 

effects (McLaren, 1997). These results indicate that canonical structure notwithstand­

ing, familiarity with the stimulus set in whichever orientation, is the driving factor in 

generating an identification advantage for the given orientation. 

2.14 General Discussion 

The overall effects of practice on a face identification task were largely constrained to 

the trained exemplars and orientation, although there was some generalization of learn­

ing across orientations. This pattern of specificity suggests it is possible to fine tune the 

representations of individual upright and inverted faces. Greater specificity of learning 

was obtained with textures in which the first-order structure of normal faces had been 

removed. With textures, transfer across items and orientations was absent, except for 

when completely naive performance (Bin 1) was treated as baseline. The larger general­

ization across orientation found with faces relative to textures suggests that the familiar 

structure in faces may have facilitated some transfer across orientation. Despite the os­

tensibly different strategies involved in learning faces and textures, exemplar-specificity 
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emerges as a reliable characteristic of performance improvements. Apparently, general­

ization of learning is limited even for expert visual tasks such as face-identification (but 

see Tanaka et al. (2005) for an example of generalized learning across exemplars of an­

other expert object class using a different training paradigm). Additionally, the same 

amount of practice yielded equivalent changes in the size of the inversion effect both with 

faces and textures (i.e., after training, the inversion effect changed by 10% for all groups 

tested). 

The extent of generalization across exemplars and orientations was influenced by the 

choice of baseline. When overall accuracy on Day 1 was considered baseline (Figures 3 and 

6), there was no generalization across exemplars or orientation on Day 2, both with faces 

and with textures. However, when Bin 1 was treated as baseline, (Figures 4 and 7), there 

was evidence for generalization across exemplars and orientations for all groups. Overall 

accuracy on Day 1 includes the improvements that occurred across all 840 trials on Day 1, 

whereas accuracy at Bin 1 represents completely naive performance because it was based 

on the first 105 trials performed on the task. Relative to completely naive performance, 

accuracy at Bin A on Day 2 was about 103 better in the untrained conditions. However, 

accuracy in the trained conditions was 20-30% better than completely naive performance. 

We therefore interpret the generalization relative to Bin 1 as the task-general component 

of learning, which is obscured when overall accuracy on Day 1 is considered baseline. 

Evidently, generalization of learning is clearer when performance is examined at a fine 

resolution. Additionally, with faces, there was evidence for generalization beyond the 

task-general component of learning. Namely, there was generalization across orientation 

revealed by the advantage of old over new faces at the untrained orientation. This result 

was not found with textures, suggesting that transfer across orientation may have arisen 

due to the structural differences between faces and textures, or due to familiarity with 

faces more generally. In future experiments, textures with varying degrees of prototypical 

information (e.g., see Rousselet et al. 2008) could be used to test whether transfer across 

orientation increases with the amount of spatial regularity within the object 

The substantial within-session learning in these tasks differs from the minimal within­

session effects reported in many studies of perceptual learning. For example, negligible 

amounts of within-session learning, but significant between-session learning, has been 

found in experiments using texture discrimination (Mednick et al., 2005) and orientation 

discrimination (Schoups et al., 1995) tasks. However, not all studies have failed to find 

within-session learning effects: Poggio et al. (1992), for example, reported that accuracy 

in a hyperacuity task increased significantly over the course of a few hundred trials 
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(also see Fahle et al. 1995). Hussain et al. (2008) speculated that differences in the 

time-course of learning could be due to differences in the experimental methods used 

in different experiments (e.g., method of constant stimuli in the present experiments 

versus method of descending limits in the texture discrimination task). However, the 

factors contributing to the relative magnitudes of within- and between-session perceptual 

learning are poorly understood. Also unknown, is whether the stimulus-specific and task­

general components of learning share a similar time course in these tasks, or whether the 

earlier improvements are purely task-related. Future experiments may address this issue 

by examining stimulus-specificity of learning after varying amounts of practice. 

2.14.1 Orientation-specific learning of complex stimuli 

Orientation-specificity, where found in perceptual learning, has been taken as evi­

dence for the fine-tuning of early visual mechanisms (Kami and Bertini, 1997). Studies 

reporting orientation-specificity typically use simple visual stimuli that vary along a sin­

gle dimension (e.g., spatial frequency). For example, orientation-specific learning has 

been reported for discrimination of sinusoids (Fiorentini and Berardi, 1981), orientation 

discrimination of tilted Gabors (Schoups et al., 1995), and acuity judgements of vernier 

targets (Poggio et al., 1992). In such cases, it may be plausible to localize learning to 

cells in early cortical areas that encode the relevant properties of the stimuli. However, 

the physiological substrate of learning that occurs with complex patterns like faces and 

textures is less obvious. It is possible that orientation-specificity is a property of learning 

throughout the visual hierarchy, even in higher areas such as inferior temporal cortex 

(IT), which encode entire objects as well as their individual attributes (Logothetis et al., 

1995; Desimone et al., 1984). Indeed, areas such as IT have been implicated in visual 

learning of complex tasks (Jagadeesh et al., 2001). We have recently reported how learn­

ing of textures, in addition to orientation, is specific to contrast polarity (Hussain et al., 

2009), which is consistent with the interpretation that learning of textures engages higher 

visual areas. 

2.14.2 Perceptual learning and configural processing 

It has been proposed that expertise with a given object class enhances sensitivity to 

spatial configurations of features, engaging mechanisms that are not typically used for 

other objects (Gauthier and Tarr, 1997). Although some evidence supports this pro­

posal in humans (Gauthier and Tarr, 1997; Tanaka et al., 2004), and in monkeys (Baker 
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et al., 2002), other evidence does not (Robbins and McKone, 2007). In the current study, 

it is difficult to attribute better performance with the trained faces to increased con­

figural processing because of the similar pattern of results found with textures. With 

textures, there is no common configuration of features, so it is not clear how learning 

could enhance configural processing for the scrambled stimuli in a manner analogous 

to the oft-hypothesized configural processing of faces. The alternative, which is that 

subjects simply get better at discriminating individual features during learning, is con­

sistent with a report that dog experts do not show an increased reliance on configural 

information relative to non-experts (Robbins and McKone, 2007), and that training on 

inverted face identification does not yield a greater use of configural cues (Robbins and 

McKone, 2003). This alternative is also consistent with the results of experiments that 

measured classification images in face and texture discrimination tasks during the course 

of training (Gold et al., 2004). The classification images show that with practice, an 

increased stimulus area is used to discriminate faces and texture patterns. However, the 

increases in information-use are restricted to the local stimulus regions used initially by 

each subject before learning, rather than spanning across the stimulus extent. Perhaps 

more importantly, the relative weights of information within the local regions seem to 

shift with learning, so that observers become more "ideal" in their use of information. 

This type of local information-use might underlie the specificity of learning observed in 

the current experiments with upright and inverted faces, and phase-scrambled faces. 

2.14.3 Perceptual learning and the face-inversion effect 

The face-inversion effect has been taken as a measure of special processes engaged 

only by faces (Scapinello and Yarmey, 1970), namely configural encoding (McKone et al., 

2007; Collishaw and Hole, 2000). Our results suggest caution with such an interpretation, 

as has been suggested elsewhere (Maurer et al., 2002; Sekuler et al., 2004; Husk et al., 

2007; Gaspar et al., 2008a; Jiang et al., 2006; Gaspar et al., 2008b ). First, we found 

that the decrease in the size of the inversion effect after training with inverted faces was 

coupled with no increase in performance with upright faces for that group. A smaller 

inversion effect typically would be taken to indicate less configural processing, but in 

this case performance with upright faces was unchanged relative to baseline. Second, 

as mentioned earlier, we obtained an inversion effect with textures, which have no clear 

configural structure. The diminished inversion effect after training with inverted faces, 

and the emergence of an inversion effect for the textures show that there is nothing special 

in the configuration of upright faces per se that elicits the inversion effect more generally. 
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One might still argue that the inversion effects found with faces are qualitatively 

different than those that arise with learning of arbitrary texture stimuli. Faces exhibit 

a baseline inversion effect not found with textures, or for that matter houses, prior to 

training. This raises the question of whether a baseline effect could be generated after 

training for texture patterns in which some average structure has been introduced, an 

issue for future studies to address. 

2.14.4 Perceptual learning and norm-based coding 

Another way to conceptualize improved face identification is in terms of norm-based 

coding (Rhodes and McLean, 1990; Rhodes and Jeffery, 2006; Rhodes et al., 2004; Bur­

ton et al., 2005). According to this framework, faces are distinguished by virtue of their 

position and distance from each other, or from the average face, and the average face is 

the accumulation of all faces in one's experience. Faces that are closely clustered resem­

ble each other, and distance from the average enhances the distinctiveness of each face. 

This framework has been used to explain, for example, the other-race effect (Byatt and 

Rhodes, 1998). It has been suggested that perceptual learning calibrates the face-space 

to optimize differentiation by capturing the variance in faces that have been experienced 

in the subject's lifetime (Valentine, 1991). In effect, perceptual learning increases the 

inter-stimulus distance (and/or the distance of each face from the average), which dis­

ambiguates the faces, and improves identification. According to this scheme, inverting a 

face merely increases task difficulty due to larger error associated with correctly locating 

the face in face-space (Valentine, 1991). In this respect, inverting a face is no differ­

ent than any other transformation that increases task difficulty (e.g., contrast reversal). 

Indeed, classification images show that similar regions of the face are used in upright 

and inverted face identification, but subjects are simply less efficient at extracting the 

information from those regions when the faces are inverted (Sekuler et al., 2004), and the 

level of inefficiency for inverted faces is similar to that of contrast-reversed faces (Gaspar 

et al., 2008a). It is now clear that inverted face identification can be made more effi­

cient, implying that inverted face representations are refined with practice. We also show 

some cross-orientation transfer of learning in overall accuracy from upright to inverted 

faces, suggesting that upright and inverted representations are interdependent, contrary 

to the suggestion that upright and inverted faces are represented independently (Rhodes 

et al., 2004). Our experiments do not directly address the status of the average face, 

but the results with textures suggest that inter-item distance is sufficient to character­

ize performance improvements, because the textures do not conform to a clear average. 
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Exemplar-based models of face coding that do not incorporate the average have been 

discussed elsewhere (Valentine, 1991). 

2.14.5 Learning of images in naturalistic conditions 

Does learning in the real world differ from that found in the fairly reduced conditions 

used in these experiments? In naturalistic conditions, objects are typically viewed in 

a variety of viewpoints and illuminations, which might produce more generalization of 

learning across variations in the image. Furthermore, identification in naturalistic con­

ditions could expose differences in the way images with differing spatial characteristics 

(such as faces and textures) are learned. These possibilities can, in fact, be explored 

in the lab: future experiments might test generalization of learning after observers have 

been exposed to several variations of a set of exemplars. 

2.14.6 Conclusions 

Perceptual learning of face- and texture-identification is largely orientation-specific 

and exemplar-specific, although faces, but not textures, show some generalization of 

learning across orientation. The net effect of such learning is to increase the face-inversion 

effect after practice with upright faces and decrease the effect after practice with inverted 

faces; in both cases the changes are confined to the trained face set. With textures, which 

have no baseline inversion effect due to the absence of a canonical orientation, the above 

pattern of learning yields a positive inversion effect after upright training, and a negative 

inversion effect after inverted training, again only for the trained stimulus set. Inversion 

effects appear to be driven more by familiarity than by the spatial structure of the stimuli. 

References 

Anderson, N. D., Wilson, H. R., 2005. The nature of synthetic face adaptation. Vision 

Res 45 (14), 1815-1828. 

Baker, C. I., Behrmann, M., Olson, C. R., 2002. Impact of learning on representation of 

parts and wholes in monkey inferotemporal cortex. Nat Neurosci 5 (11), 1210-1216. 

Ball, K., Sekuler, R., 1987. Direction-specific improvement in motion discrimination. 

Vision Res 27 (6), 953-965. 

Brainard, D. H., 1997. The psychophysics toolbox. Spat Vis 10 (4), 433-436. 



39 REFERENCES 

Burton, A. M., Jenkins, R., Hancock, P. J. B., White, D., 2005. Robust representations 

for face recognition: the power of averages. Cognit Psychol 51 (3), 256-284. 

Byatt, G., Rhodes, G., 1998. Recognition of own-race and other-race caricatures: impli­

cations for models of face recognition. Vision Research 38, 2455-2468. 

Byatt, G., Rhodes, G., 2004. Identification of own-race and other-race faces: implications 

for the representation of race in face space. Psychon Bull Rev 11 (4), 735-741. 

Chung, S. T. L., Levi, D. M., Li, R. W., 2006. Learning to identify contrast-defined 

letters in peripheral vision. Vision Res 46 (6-7), 1038-1047. 

Collishaw, S., Hole, G., 2000. Featural and configurational processes in the recognition 

of faces of different familiarity. Perception 29, 893-909. 

Crist, R., Kapadia, M., Westheimer, G., Gilbert, C., 1997. Perceptual learning of spatial 

localization: Specificity for orientation, position and context. Journal of Neurophysi­

ology 78 (6), 2889-2894. 

Desimone, R., Albright, T., Gross, C., Bruce, C., 1984. Stimulus-selective properties of 

inferior temporal neurons in the macaque. The Journal of Neuroscience 4 (8), 2051­

2062. 

Diamond, R., Carey, S., 1986. Why faces are and are not special: an effect of expertise. 

J Exp Psychol Gen 115 (2), 107-117. 

Dolan, R. J., Fink, G. R., Rolls, E., Booth, M., Holmes, A., Frackowiak, R. S., Friston, 

K. J., 1997. How the brain learns to see objects and faces in an impoverished context. 

Nature 389 (6651), 596-599. 

Elliott, E., Wills, E., Goldstien, A., 1973. The effects of discrimination training on the 

recognition of white and oriental faces. B Psychonomic Soc 2, 71-73. 

Fahle, M., 2004. Perceptual learning: A case for early selection. Journal of Vision 4 (10), 

879-890. 

Fahle, M., Edelman, S., Poggio, T., 1995. Fast perceptual learning in hyperacuity. Vision 

Res 35 (21), 3003-3013. 

Farah, M. J., Tanaka, J. W., Drain, H. M., 1995. What causes the face-inversion effect? 

J Exp Psychol Human 21 (3), 628-634. 



40 CHAPTER 2. INVERSION 

Fiorentini, A., Berardi, N., 1981. Learning in grating waveform discrimination: specificity 

for orientation and spatial frequency. Vision Research 21 (7), 1149-1158. 

Friere, A., Lee, K., Symons, L. A., 2000. The face-inversion effect as a deficit in the 

encoding of configural information: Direct evidence. Perception 29, 159-170. 

Furmanski, C. S., Engel, S. A., 2000. Perceptual learning in object recognition: object 

specificity and size invariance. Vision Res 40 (5), 473-484. 

Gaspar, C., Bennett, P., Sekuler, A., 2008a. The effects of face inversion and contrast­

reversal on efficiency and internal noise. Vision Research 48 ( 8), 1084-1095. 

Gaspar, C., Sekuler, A., Bennett, P., Oct 2008b. Spatial frequency tuning of upright and 

inverted face identification. Vision Research. 

Gauthier, I., Tarr, M. J., 1997. Becoming a "greeble" expert: exploring mechanisms for 

face recognition. Vision Res 37 (12), 1673-1682. 

Gilbert, C., 1994. Early perceptual learning. Proceedings of the National Academy of 

Sciences of the Unites States of Americe 91, 1195-1197. 

Gold, J., Bennett, P. J., Sekuler, A. B., 1999a. Identification of band-pass filtered letters 

and faces by human and ideal observers. Vision Res 39 (21), 3537-3560. 

Gold, J., Bennett, P. J., Sekuler, A. B., 1999b. Signal but not noise changes with per­

ceptual learning. Nature 402 ( 6758), 176-178. 

Gold, J.M., Sekuler, A. B., Bennett, P. J., 2004. Characterizing perceptual learning with 

external noise. Cognitive Sci 28, 167-207. 

Goldstein, A., Chance, J., 1985. Effects of training on japanese face recognition: Reduc­

tion of the other-race effect. B Psychonomic Soc 23, 211-214. 

Husk, J. S., Bennett, P. J., Sekuler, A. B., 2007. Inverting houses and textures: investi­

gating the characteristics of learned inversion effects. Vision Res 47 (27), 3350-3359. 

Hussain, Z., Sekuler, A., Bennett, P., 2008. Robust perceptual learning of faces in the 

absence of sleep. Vision Research 48 (28), 2785-2792. 

Hussain, Z., Sekuler, A., Bennett, P., 2009. Contrast reversal abolishes perceptual learn­

ing. Journal of Vision 9 (4), 1-8. 



41 REFERENCES 

Jagadeesh, B., Chelazzi, L., Mishkin, M., Desimone, R., 2001. Learning increases stimulus 

salience in anterior inferior temporal cortex of the macaque. Journal of Neurophysiology 

86, 290-303. 

Jeffery, L., Rhodes, G., Busey, T., 2006. View-specific coding of face shape. Psychol Sci 

17 (6), 501-505. 

Jiang, X., Rosen, E., Zeffiro, T., VanMeter, J., Blanz, V., Riesenhuber, M., April 2006. 

Evaluation of a shape-based model of human face discrimination using fmri and be­

havioral techniques. Neuron 50, 159-172. 

Kami, A., Bertini, G., 1997. Learning perceptual skills: behavioral probes into adult 

cortical plasticity. Curr Opin Neurobiol 7 (4), 530-535. 

Leopold, D. A., O'Toole, A. J., Vetter, T., Blanz, V., 2001. Prototype-referenced shape 

encoding revealed by high-level aftereffects. Nat Neurosci 4 (1), 89-94. 

Logothetis, N., Pauls, J., Poggio, T., 1995. Shape representation in the inferior temporal 

cortex of monkeys. Current Biology 5 (5), 552-563. 

Maurer, D., Le Grand, R., Mondloch, C., 2002. The many faces of configural processing. 

Trends Cogn Sci 6 (6), 255-260. 

McKone, E., Brewer, J. L., MacPherson, S., Rhodes, G., Hayward, W. G., 2007. Familiar 

other-race faces show normal holistic processing and are robust to perceptual stress. 

Perception 36 (2), 224-248. 

McLaren, I. P., 1997. Categorization and perceptual learning: an analogue of the face 

inversion effect. Q J Exp Psychol A 50 (2), 257-273. 

Mednick, S. C., Arman, A. C., Boynton, G. M., 2005. The time course and specificity of 

perceptual deterioration. Proc Natl Acad Sci US A 102 (10), 3881-3885. 

Mollon, J. D., Danilova, M. V., 1996. Three remarks on perceptual learning. Spat Vis 

10 (1), 51-58. 

Moses, Y., Ullman, S., Edelman, S., 1996. Generalization to novel images in upright and 

inverted faces. Perception 25 (4), 443-461. 

Pelli, D. G., 1997. The videotoolbox software for visual psychophysics: transforming 

numbers into movies. Spat Vis 10 (4), 437-442. 



42 CHAPTER 2. INVERSION 

Poggio, T., Fahle, M., Edelman, S., 1992. Fast perceptual learning in visual hyperacuity. 

Science 256 (5059), 1018-21. 

Rhodes, G., Jeffery, L., 2006. Adaptive norm-based coding of facial identity. Vision Res 

46 (18), 2977-2987. 

Rhodes, G., Jeffery, L., Watson, T. L., Jaquet, E., Winkler, C., Clifford, C. W. G., 2004. 

Orientation-contingent face aftereffects and implications for face-coding mechanisms. 

Curr Biol 14 (23), 2119-2123. 

Rhodes, G., McLean, I. G., 1990. Distinctiveness and expertise effects with homogeneous 

stimuli: towards a model of configural coding. Perception 19 (6), 773-794. 

Robbins, R., McKone, E., 2003. Can holistic processing be learned for inverted faces? 

Cognition 88 (1), 79-107. 

Robbins, R., McKone, E., 2007. No face-like processing for objects-of-expertise in three 

behavioural tasks. Cognition 103 (1), 34-79. 

Rousselet, G. A., Pernet, C. R., Bennett, P. J., Sekuler, A. B., 2008. Parametric study 

of eeg sensitivity to phase noise during face processing. BMC Neurosci 9, 98. 

Rubin, N., Nakayama, K., Shapley, R., 1997. Abrupt learning and retinal size specificity 

in illusory-contour perception. Curr Biol 7 (7), 461-467. 

Scapinello, K., Yarmey, A., 1970. The role of familiarity and orientation in immediate 

and delayed recognition of pictorial stimuli. Psychonomic Science 21 (6), 329-331. 

Schoups, A. A., Vogels, R., Orban, G. A., 1995. Human perceptual learning in identifying 

the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol 

483 ( Pt 3), 797-810. 

Sekuler, A. B., Gaspar, C. M., Gold, J. M., Bennett, P. J., 2004. Inversion leads to 

quantitative, not qualitative, changes in face processing. Curr Biol 14 (5), 391-396. 

Sigman, M., Gilbert, C. D., 2000. Learning to find a shape. Nat Neurosci 3 (3), 264-269. 

Tanaka, J. W., Curran, T., Sheinberg, D. L., 2005. The training and transfer ofreal-world 

perceptual expertise. Psychol Sci 16 (2), 145-151. 

Tanaka, J. W., Kiefer, M., Bukach, C. M., 2004. A holistic account of the own-race effect 

in face recognition: evidence from a cross-cultural study. Cognition 93 (1), Bl-9. 



43 REFERENCES 

Tyler, C. W., Liu, H. C. L., McBride, B., Kontsevich, L., 1992. Bit-stealing: How to 

get 1786 or more gray levels for an 8-bit color monitor. In: Rogowitz, B. E. (Ed.), 

Proceedings of SPIE: Human vision, visual processing and digital display III. Vol. 

1666. pp. 351-364. 

Valentine, T., 1988. Upside-down faces: A review of the effect of inversion upon face 

recognition. British Journal of Psychology 79, 471-491. 

Valentine, T., 1991. A unified account of the effects of distinctiveness, inversion, and race 

in face recognition. Q J Exp Psychol A 43 (2), 161-204. 

Valentine, T., Bruce, V., 1986. The effect of race, inversion and encoding activity upon 

face recognition. Acta Psychol (Arnst) 61 (3), 259-273. 

Yi, D.-J., Olson, I. R., Chun, M. M., 2006. Shape-specific perceptual learning in a figure­

ground segregation task. Vision Res 46 (6-7), 914-924. 

Yin, R. K., 1969. Looking at upside-down faces. J Exp Psychol 81 (1), 141-145. 



Chapter 3 

Contrast-reversal abolishes 

perceptual learning 

3.1 Abstract 

We tested the effects of contrast reversal on perceptual learning in a lOAFC texture 

identification task. Four groups of subjects performed the task on two consecutive days. 

One group saw the same textures on both days, whereas three other groups saw novel, 

rotated (180 deg), or contrast-reversed textures on the second day. Response accuracy 

improved during the first day in all groups. Accuracy decreased significantly at the start 

of Day 2 in the groups who saw novel, rotated or contrast-reversed textures, but not in 

the group who saw the same textures. Moreover, the drop in performance was the same in 

the groups who saw novel, rotated, and contrast-reversed textures. Control experiments 

showed that making subjects aware of the stimulus transformations at the start of either 

the first or second day did not alter the results. Hence, the effects of contrast-reversal 

and 180 deg rotation on the generalization of learning were the same as the effect of 

using novel stimuli, and knowledge of the stimulus transformation did not reduce their 

effects. We consider the implications of this pattern of results for the neural mechanisms 

recruited during the identification and learning of two-dimensional visual patterns. 

Citation: Hussain, Z., Sekuler, A. B., & Bennett, P. J. (2009). Contrast-reversal 

abolishes perceptual learning. Journal of Vision, 9(4):20, 1-8, http://journalofvision.org/9/4/20/ 
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3.2 Introduction 

Practice improves performance in a variety of visual tasks. With basic low-level 

tasks, which require simple stimuli to be discriminated about a single attribute such 

as orientation or spatial frequency, the effects of practice typically are specific to the 

trained items (Fiorentini and Berardi, 1981; Matthews et al., 1999; Ball and Sekuler, 

1987; Schoups et al., 1995; Fahle and Morgan, 1996; Crist et al., 1997), and, in those 

situations where it has been tested, to the particular locations of the items during training 

(Sowden et al., 2002; Kami and Sagi, 1991; Fahle et al., 1995; Schoups et al., 1995). These 

behavioural effects suggest that perceptual learning may alter the response properties of 

early visual areas, where cells are retinotopically organized and encode basic attributes 

of visual stimuli (Gilbert, 1994; Kami and Bertini, 1997; Crist et al., 1997; Fahle, 2004). 

Indeed, physiological and neuroimaging studies reveal changes to response properties of 

neurons in primary visual cortex (Vl) after training on low-level tasks (Pourtois et al., 

2008). Similarly, the behavioural effects obtained with complex patterns offer potential 

insights to the visual mechanisms that encode those patterns, and are engaged during 

learning. 

Set A 

Arev 

Arot 

Figure 3.1: Examples of the texture stimuli. Each texture was created by applying an 
isotropic, band-pass (2-4 cy /image) ideal spatial frequency filter to gaussian white noise. 
The first row shows five of the ten textures from Set A. The second row shows the same 
five textures reversed in contrast. The third row shows the textures from the first row 
after being rotated by 180 deg. 

Complex visual patterns can be discriminated on the basis of more than one attribute, 

such as the shape, location and orientation of features. As with simple stimuli, practice 
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improves the discrimination and identification of complex, and even completely unfamiliar 

objects. For example, practice significantly improves response accuracy on a 10-AFC 

texture identification task (Gold et al., 1999, 2004), and the effects of practice are much 

greater for familiar textures (i.e., those seen during practice) than novel textures with 

similar spatial properties as the trained items (Hussain et al., 2005). In other words, 

perceptual learning in a texture identification task exhibits stimulus-specificity that is 

similar to the specificity reported for the aforementioned low-level tasks. With simple 

visual tasks, the effects of learning are clearly restricted to the single attribute of the 

stimulus that is being discriminated, with relatively straightforward inferences regarding 

the neural representation. With the identification of complex patterns such as two­

dimensional textures, it is less clear what is being learned. Learning of complex patterns 

could involve changes at the earliest neural levels, where simple stimulus attributes are 

coded, or later in the visual pathway, where entire objects are represented (Desimone 

et al., 1984; Logothetis et al., 1995), or both. In this paper we investigate the question 

of what subjects learn about a given set of textures, and use the pattern of learning to 

consider the possible neural representations. 

Response classification studies have shown that learning increases the efficiency with 

which subjects extract information from localized regions within the textures (Gold et al., 

2004). One possibility is that subjects learn the locations and/or shapes of the most in­

formative blobs within each texture. By examining the extent to which learning transfers 

across various stimulus transformations, we can gain insight into the learned represen­

tations. If the learned representation codes for shape and location, performance after 

learning should be invariant to image transformations such as contrast-reversal that pre­

serve the locations and shapes of the texture blobs (see Figure 3.1, Set A vs. Arev). This 

manipulation leaves intact the spatial distribution of information within the image, with 

the contrast-defined features remaining in the same location across all images. Similarly, 

if the learned representation codes for global shape in an orientation-invariant manner, 

then we should expect performance after learning to be invariant to image transforma­

tions such as 180-deg rotations (see Figure 3.1, Set A vs. Arot). Here, we assess the 

effects of such image transformations on perceptual learning of texture identification. 
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3.3 Methods 

3.3.1 Subjects 

Fifty-six McMaster University undergraduate students participated in this experi­

ment. All subjects had normal or corrected-to-normal Snellen visual acuity. The mean 

age and years of education were, respectively, 19.48 (SD = 2.59) and 15.37 (SD = 2.54). 

All subjects were compensated for their participation with a small stipend ($10/hour) 

or partial course credit for participating in the experiment, and all subjects were naive 

with respect to the aims of the experiment and had no previous experience in this task. 

3.3.2 Apparatus and Stimuli 

Stimuli were generated in Matlab (v. 5.2) using the Psychophysics and Video Tool­

boxes (Brainard, 1997; Pelli, 1997), and displayed on a 21" Sony Trinitron monitor 

(1024 x 768 pixels) at a frame rate of 85 Hz. Average luminance was 62.5 cd/m2 
. Display 

luminance was measured with a PhotoResearch PR650 photometer, and the calibration 

data were used to build a 1779-element lookup table (Tyler et al., 1992). Customized 

computer software constructed the stimuli on each trial by selecting the appropriate lumi­

nance values from the calibrated lookup table and storing them in the display's eight-bit 

lookup table. 

The textures were band-limited noise patterns created by applying an isotropic, ideal 

band-pass (2-4 cy/image) spatial frequency filter to white gaussian noise (Figure 3.1). 

Stimulus size was 256 x 256 pixels, subtending 4.8 x 4.8 deg of visual angle from the 

viewing distance of 114 cm. Two sets (A and B) of ten textures were created, as well as 

contrast-reversed (Arev, Brev) and 180 deg rotated (Arat, Brat) versions of each set. During 

the experiment, stimulus contrast was varied across trials using the method of constant 

stimuli. Seven levels of contrast were spaced equally on a logarithmic scale across a range 

that was sufficient to produce significant changes in performance in virtually all subjects. 

The textures were shown in one of three levels (low, medium and high) of static two­

dimensional Gaussian noise (contrast variance= .001, .01, or .1). Hence, subjects viewed 

each texture at a signal-to-noise ratio that varied significantly across trials. There were 

21 different stimulus conditions (seven contrast levels x three external noise levels), and 

these 21 conditions were randomly intermixed within a session. 
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3.3.3 Procedure 

All subjects performed two sessions of a texture identification task at the same time 

on consecutive days. There were four groups, each consisting of 14 subjects. The Same 

group saw the same set of ten textures on both days: Seven subjects saw set A on both 

days, and seven subjects saw set B on both days. The Novel group transferred across 

sets A and B from one day to the next: From Day 1 to Day 2, seven subjects transferred 

from Set A to Set B, and seven subjects transferred from Set B to Set A. The Contrast­

Reversed group performed Day 1 with one set of textures (i.e., A, B, Arev, or Brev) and 

Day 2 with the same set of ten textures reversed in contrast polarity. At least three 

subjects were assigned to each order (e.g., A-Arev, B-Brev, Arev-A, or Brev-B), with an 

additional two subjects randomly assigned to one of the four orders. Finally, the Rotated 

group performed Day 1 with one set of textures (A, B , Arot, Brot) and Day 2 with that 

same set rotated by 180 deg. At least three subjects were assigned to each order (e.g., 

A-Arot, B-Brot, Ar0 rA, or BrorB), with an additional two subjects randomly assigned to 

one of the four orders. Subjects in the Novel, Contrast-Reversed, and Rotated groups 

were not informed that the stimuli on Day 2 differed from those seen during Day 1. 

Subjects were seated in a darkened room 114 cm away from the monitor. Viewing 

was binocular, and viewing position and distance were stabilized with an adjustable chin­

rest. The experiment started after a 60 s period during which the subject adapted to the 

average luminance of the display. A trial began with the presentation of a black, high­

contrast fixation point (0.15 x 0.15 deg) in the center of the screen for 100 ms, followed by 

a texture, selected randomly from one of the 21 stimulus conditions, presented for 200 ms 

at the center of the screen, i.e., foveally. After the texture disappeared, the entire set of 

10 textures was presented as noiseless, high-contrast thumbnail images, each subtending 

1.7 x 1.7 deg of visual angle. Five thumbnails were presented on the top half of the screen, 

and five on the bottom half, and the location of each texture in the response window 

was constant across trials and days. The subject's task was to inspect the thumbnail 

images, and decide which one of the 10 textures had been presented during the trial by 

clicking on the chosen texture with a computer mouse. Auditory feedback in the form of 

high-pitched (correct) and low-pitched (incorrect) tones informed the subject about the 

accuracy of each response, and the next trial began one second after presentation of the 

feedback. Sessions on both days comprised 40 trials per stimulus condition for a total of 

840 trials. The duration of each session was 60 minutes. 
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3.4 Results 

We calculated average proportion correct (collapsed across noise and contrast levels) 

on Days 1 and 2 for each of the four groups (Figure 3.2). The groups did not differ 

in overall accuracy during Day 1, F(3, 52) = 1.26, p = .3, but there was a significant 

difference across groups on Day 2, F(3, 52) = 2.99, p = .039. Between-session learning, 

defined as the difference between proportion correct on Days 1 and 2, also differed sig­

nificantly across groups, F(3, 52) = 7.10, p = .0004. A Tukey HSD test (p < .05) on 

between-session learning indicated that the Same group differed from all of the other 

groups; none of the other differences were significant. Therefore between-session learn­

ing was greatest in the Same group, and did not differ among the other three groups. 

This latter result suggests that contrast-reversal and rotation had the same effect on the 

generalization of learning as replacing the textures with a novel set. 

o Day 1 
·· • Day 2······ 

t5 0.6 
~ 

8 0.4c: 
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Same Novel Contrast-rev Rotated 

Figure 3.2: Proportion correct on Day 1 and Day 2 for each of the four groups. 

The time-course of within-session learning was examined by measuring the proportion 

of correct responses in eight separate bins of 105 trials on Days 1 and 2 (Figure 3.3). 

An ANOVA on response accuracy scores measured on Day 1 yielded a significant main 

effect of Bin, F(7, 364) = 91.02, p < .00001. The main effect of Group was not significant 

F(3, 52) = 1.25,p = .297, nor was the Group x Bin interaction, F(21, 364) = .98, p = .48. 

Within-session learning, defined as the difference between response accuracy in the first 

and last bins, also did not differ across groups, F(3, 52) = 1.62, p = .195. However, an 

ANOVA on response accuracy scores measured on Day 2 did find a significant main effect 

of Group, F(3, 52) = 2.98, p = .039, indicating that response accuracy was higher in the 

Same group than the other groups. As was found with the Day 1 data, the main effect 

of Bin was significant F(7, 364) = 61.35, p < .00001, but the Group x Bin interaction 

was not, F(3, 364) = 1.30, p = .167. Finally, within-session learning on Day 2 did not 
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vary across groups, F(3, 52) = .70, p = .55. These analyses suggest that within-session 

learning was similar across groups on both days. 

Figure 3.3 shows there was a drop in performance from Bin 8 to Bin 9 (across days) 

for three of the four groups. The drop in performance was significant for the Novel, 

t(13) = -3.81, p = .002, Contrast-Reversed, t(13) = -2.81, p = .01, and Rotated, 

t(13) = -6.37, p < .0001, groups, but not for the Same group, t(13) = .71, p = .487. 

Relative to Bin 1 (i.e., initial accuracy on Day 1), performance in Bin 9 (i.e., initial 

accuracy on Day 2) was 83 higher for the Novel group, t(13) = 2.98, p = .01, 113 higher 

for the Contrast-Reversed group, t(13) = 3.64, p = .002, and 93 higher for the 180 deg 

rotation group, t(13) = 2.75, p = .01. For the Same group, performance at Bin 9 was 

30% higher than at Bin 1, t(13) = 7.29, p < .0001. Therefore, although performance at 

Bin 9 was much greater for the Same group, the other groups did show some transfer-of­

learning relative to completely naive performance. A one-way ANOVA on the difference 

scores between Bin 9 and Bin 1 indicated a significant effect of Group, F(3, 52) = 8.39, 

p < .001, and a Tukey HSD test indicated that the difference scores for the Same group 

were significantly greater than each of the other groups (p < .01), whereas none of the 

other groups differed from each other. 
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Figure 3.3: Time-course of learning on Day 1 and Day 2 for the four groups. Proportion 
correct is calculated at eight bins within each session, with each bin comprising 105 trials. 

0.1 



51 3.4. RESULTS 

<X> 
ci 

(;' 
~ 
::J co 
0 ci0 
cu 

N 
>­cu ~ 
0 ci 

N 
d 

,, 
,,,,,, 

, 
, 

,,... , 
, 

, 

,,/,' 
,,,,,,,,,,, 

,,,,,,, r = .88, p < .00001, 

0.2 0.4 0.6 0.8 

Day 1 accuracy 

(a) 

<X> 
ci 

(;' 
~ 
::J 
0 
0 
cu 

co 
ci 

Ill 

N 

,,,,,,,<X> ,,ci ,,, 
,(;' 

~ 
::J co ,,,, . , 
8 ci 

cu 
 ..... ,,.,' 

N A.-'• IA/>­cu ~ ,,.;a.,.0 d , ·~ 
,,'l(.t. 

,~/',,.
N r = .78, p < .0001 
ci 

0.2 0.4 0.6 0.8 

Day 1 accuracy 

(b) 
,, 

, 
, 

, 

,,'!'', 


,,~,' 
, 

, , 

,,,'JJJ',>­cu ~ , ill0 ci ;i' 
,,,;"' 

/,'a
N ,· r = .86, p < .0001 
ci 

0.2 0.4 0.6 0.8 

Day 1 accuracy 

(c) 

Figure 3.4: Response accuracy for individual stimuli during Days 1 and 2. a) Circles: 
Same textures group, b) Triangles: Contrast-Reversed group, c) Squares: Rotated group. 
Each point shows accuracy for a given texture, averaged across seven subjects. The 
dashed line in each panel represents equal performance in both sessions; the solid line 
is the best-fitting (least-squares) line. The Same group is the only group for which all 
points are above the dashed line: response accuracy for every texture increased across 
sessions. However, all groups show a significant positive correlation between Days 1 and 
2. 
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For each subject, response accuracy was calculated for each texture during each ses­

sion. In each group, proportion correct for each item was then averaged across subjects. 

Because two sets of ten items were presented to each group, this procedure yielded twenty 

averaged values, each based on the results from seven subjects, for each session. These 

values are shown in Figure 3.4 for the Contrast-Reversed, Rotated, and Same groups. 

In the Same group, response accuracy for individual textures was correlated strongly 

across sessions, r(18) = .88, p < .0001, indicating that the relative difficulty of correctly 

identifying individual textures was consistent across sessions. Moreover, this plot also 

indicates that accuracy for every texture in the Same group improved across sessions. 

In the Contrast-Reversed and Rotation groups, the between-session improvement was 

smaller and less consistent across stimuli (i.e., there was less learning). Nevertheless, 

response accuracy for individual items was strongly correlated in both of these groups 

(Contrast-Reversed: r(18) = .77,p < .0001; Rotated: r(18) = .86,p < .0001). In other 

words, contrast-reversal and rotation reduced learning but did not alter the relative dif­

ficulty of correctly identifying individual textures. 

3.4.1 Effect of prior instructions 

We examined the possibility that explicit awareness of the stimulus transformations 

might overcome the drop in performance from Day 1 to Day 2 found with the contrast­

reversal and the rotated groups. Two control groups were tested in each condition. 

The Post-training Control groups were shown a printed examples of a texture stimulus 

and the contrast-reversed (or rotated) version of that stimulus prior to the start of the 

session on Day 2, after having trained with the textures on Day 1. They were told 

that the textures they had learned the previous day were now altered according to the 

shown example. Therefore, this group was aware that the textures they were seeing 

on Day 2 were not completely novel. The Pre-training Control groups were shown the 

same examples prior to training on Day 1. These subjects were told that the textures 

that they would see during the first session would be thus altered when they returned 

to perform the task the next day. Therefore, this group had the opportunity to adapt 

their initial learning strategy to compensate for the expected stimulus change. Care 

was taken to ensure that the control subjects understood the stimulus transformations. 

The stimuli and procedures used were the same as those described earlier. Thirty-three 

subjects participated in these control conditions: eight subjects in each of the two contrast 

reversal control groups and the rotated Post-training Control group, and nine subjects 

in the rotated Pre-training Control group. 
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Figure 3.5 shows the effect of prior instructions. We analyzed whether the instruc­

tions affected learning by separately comparing the three contrast-reversal groups (no 

instructions, Pre-training Control Group and Post-training Control Group), and the 

three rotated groups. Between-session learning (Average Day 2 - Average Day 1) did 

not differ across the three contrast-reversal groups, F(2, 27) = .46, p = .633, nor did 

the difference between response accuracy in bins 8 and 9, F(2, 27) = .46, p = .633. 

Comparisons of performance in the three rotated stimuli groups (i.e., no instructions, 

Pre-training Control Group and Post-training Control Group) yielded similar results: 

neither between-session learning, F(2, 28) = .98,p = .38, nor the difference between bins 

8 and 9, F(2, 28) = 1.626, p = .21, varied significantly among the groups. Hence, there 

was no evidence that the effect of contrast-reversal and rotation was reduced in either 

of the control groups who were instructed as to the stimulus transformations on Days 1 

and 2. 
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Figure 3.5: Effect of prior instructions on the drop in performance across days. Top panel: 
Difference between average accuracy on Day 1 and Day 2. Bottom panel: Difference 
between accuracy at Bin 9 and Bin 8. Data are shown for the Same group, and the 
three groups tested each in the Contrast-reversal and the Rotated conditions. Error bars 
represent ±1 standard error. 
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3.5 Discussion 

We found that perceptual learning of texture identification did not generalize across 

contrast-reversal or 180 deg rotation. The large between-session learning found for the 

Same group (19%), was not found with the Novel, Rotation and Contrast-reversal groups; 

between-session learning for these three groups (approximately 5%), did not differ. Also, 

there was a significant, and equivalent drop in performance between Bins 8 and 9 for 

the Novel, Rotation, and Contrast-Reversal groups, unlike the Same group, whose per­

formance did not decrease. These findings suggest that the effects of contrast-reversal 

and 180 deg rotation on the generalization of learning were similar to the effect of using 

a novel set of textures. In addition, the fact that performance of the control groups did 

not differ from that of the Contrast-Reversal and Rotation groups means that knowledge 

of the transformations applied to the textures did not alter their effects on generalization 

of learning, even when observers had an opportunity to alter their learning strategies in 

advance of training. Note that where performance dropped in Bin 9, it was still about 

10% higher than that measured in Bin 1. That is, transforming the stimuli, or using a 

novel set of textures did not reduce performance to that measured initially on Day 1. 

We attribute the 10% savings to familiarization with the task demands, and the type of 

stimuli used in these experiments, with which the subjects had absolutely no experience 

in Bin 1. The difference between the Same group, and the other three groups in Bin 9 

represents the stimulus-specific component of learning. 

The effects of 180 deg rotation on the identification of similar texture patterns as the 

ones used here have been shown previously (Husk et al., 2007; Hussain et al., 2006). It 

is known from these studies that perceptual learning of textures is orientation-specific, 

although slight benefits do transfer to novel textures. The current experiment confirms 

this result, and shows that in addition to being orientation- and exemplar-specific, per­

ceptual learning of texture patterns is sensitive to contrast polarity, suggesting that the 

learned representation includes information that goes beyond simply the shape and lo­

cation of features, and that the nature of the learned representation is not altered by the 

introduction of prior knowledge about potential image transformations. 

From previous work we know that with learning, the templates used in texture identi­

fication gradually become more ideal, i.e., observers use more of the available information 

(Gold et al., 2004), which can also be modeled as better extraction of the relevant signal 

(Gold et al., 1999). We now know that the optimization of templates due to learning 

is precise to the exposed version of the items, even when the location of differentiating 
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features is unchanged within the stimulus set. An ideal observer would attain equal sen­

sitivity for a given set of textures and its contrast-reversed version because the relative 

discriminability of items within the set is unchanged after contrast reversal. Although 

human performance does confirm that the relative discriminability of the stimuli is intact 

after rotation and contrast reversal (Figure 4), the transformed items must nevertheless 

be re-learned. 

The current results are inconsistent with recent claims that the detrimental effects of 

contrast-reversal on identification are unique to faces (Nederhouser et al., 2007). Based on 

experiments comparing perceptual matching of faces with perceptual matching of shaded 

three-dimensional objects that were designed to have the same surface properties as faces, 

Nederhouser et al. suggested that "the representation that mediates the recognition of 

faces, unlike those for any other class of objects, is uniquely sensitive to contrast polarity. 

Human recognition of non-face objects is not sensitive to changes in contrast polarity ... " 

(p. 2141). Our results are inconsistent with this claim, and show that the effects of 

contrast-reversal can be obtained with two-dimensional patterns that share neither the 

surface properties of faces nor the within-object class structural homogeneity of faces. 

Thus, neither the presence of contrast-reversal effects nor inversion effects are behavioural 

markers of face-specific perceptual processes. 

Contrast-reversal and stimulus rotation have also been shown to disrupt the learning 

of texture segregation, where the task required subjects to detect the presence of a single 

counterphase gabor element embedded within a grid of 16 gabor elements (Grieco et al., 

2006). In the segregation task used by Grieco et al. (2006), the contrast-polarity of the 

target was the only discriminating feature, making the task a relatively-low level task. 

Grieco et al. (2006) showed that perceptual learning of the segregation task was specific 

to the contrast polarity and orientation of the target and background, leading the authors 

to infer that the neural locus of learning to be odd-symmetric simple cells early in the 

visual pathway. Such an inference is less straightforward with respect to the present data, 

because the task used here was a high-level task involving complex patterns that can be 

identified on the basis of multiple attributes. The representation of complex patterns is 

thought to occur later in the visual pathway, beyond area Vl, where cells are selective 

for the entire object in addition to single attributes of the object such as orientation 

(Logothetis et al., 1995; Desimone et al., 1984; Tanaka et al., 1991; Sary et al., 1995). In 

monkeys, cells from higher areas such as inferotemporal cortex (IT) are recruited during 

learning of unfamiliar two-dimensional patterns, and the responses of these cells are view­

dependent, but invariant to changes in scale or location (Logothetis et al., 1995). The 
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properties of these cells accord with the object-specificity and scale-invariance of object 

learning shown in humans (Furmanski and Engel, 2000), and with the item-specificity of 

texture learning shown here and elsewhere (Hussain et al., 2005). Additionally, studies 

with behaving monkeys have shown that although cells sensitive to contrast polarity are 

present in Vl, the proportion of such cells is much larger beyond area Vl (Zhou et al., 

2000; Ito et al., 1994). At least one study has explicitly suggested the involvement of 

inferotemporal cortex (IT) in coding the contrast polarity of complex patterns (Ito et al., 

1994). Therefore, although the present results are consistent with those of Grieco et al 

(2006) in implicating even- and odd-symmetric simple cells in texture learning, we differ 

in suggesting that learning of this task could just as well be mediated by neurons later 

in visual processing, in areas such as IT. 

3.6 Conclusion 

Stimulus-specific effects of perceptual learning, when found with simple visual stimuli, 

are typically interpreted as indicating the involvement of early visual areas in tasks 

that require subjects to discriminate stimuli that vary along a single attribute such as 

orientation, spatial frequency, or direction of motion (Gilbert, 1994; Kami and Bertini, 

1997; Crist et al., 1997; Fahle, 2004). Here, we show two types of specificity in learning 

of complex patterns: orientation specificity and contrast polarity specificity, and discuss 

how, aside from ostensible changes in early visual cortex such effects could arise from 

learning in later visual areas, such as inferotemporal cortex. The principle of stimulus 

specificity in learning clearly manifests itself across a range of stimulus complexities, 

and the specificity of coding serves as a constraint even for stimuli as complex as two­

dimensional textures. 
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Chapter 4 

Robust perceptual learning of faces 

in the absence of sleep 

4.1 Abstract 

This study examines the effects of sleep on learning in a face identification task. Five 

groups of subjects performed a 1-of-10 face identification task in two sessions separated 

by 3, 12, and 24 hours. Session 1 consisted of four blocks of 105 trials each; Session 

2 consisted of eight blocks of trials. All groups exhibited significant improvement in 

response accuracy within each session. Furthermore, between-session learning - defined 

as the difference in proportion correct between sessions 1 and 2 - was significant for all 

groups. Between-session learning was greater in groups that slept between sessions, but 

the effect was small and affected performance only in the first block of trials in Session 

2. Overall, we find that sleep's contribution is a small proportion of the total amount 

learned in face identification, with improvements continuing to accrue in its absence. 

Citation: Hussain, Z., Sekuler, A. B., & Bennett, P. J. (2008). Robust perceptual 

learning of faces in the absence of sleep. Vision Research, 48(28), 2785-2792. 

4.2 Introduction 

Perceptual and motor skills typically improve with practice over a time-course that 

consists of at least two components: a fast component in which performance improves 

during a practice session (Fiorentini and Berardi, 1981; Poggio et al., 1992; Fahle et al., 

1995; Fahle, 1994; Kami et al., 1998; Kami and Sagi, 1993), and a slow component 

60 
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in which the benefits of practice accumulate across sessions (McKee and Westheimer, 

1978; Brashers-Krug et al., 1996; Fahie, 1994; Kami et al., 1998; Kami and Sagi, 1993; 

Press et al., 2005). This second, slow component, sometimes referred to as latent, or 

offiine, learning, is affected by sleep (Atienza et al., 2004; Fenn et al., 2003; Fischer et al., 

2002; Gottselig et al., 2004; Kami et al., 1994; Stickgold et al., 2000a,b; Walker et al., 

2003). Results from Siegel (2001) and Walker and Stickgold (2004), for example, suggest 

that the REM and SWS stages of sleep are important for consolidating newly-acquired 

information into long-term memory (but see Song et al. 2007; Vertes and Eastman 2000; 

Vertes 2004). Sleep is thought to be important for establishing the stimulus-specific 

benefits of perceptual learning (Kami and Bertini, 1997; Kami et al., 1998; Kami and 

Sagi, 1993), rather than general benefits that presumably can transfer across experimental 

conditions (but see Fenn et al. 2003). Sleep's distinct contribution to latent learning is 

supported by a study of motor learning, which found that the substantial improvement 

in performance that is observed across days of testing - i.e., after a night's sleep - is 

uncorrelated with within-session effects (Walker et al., 2003). However, sleep is not 

necessary for latent learning, which can occur in the absence of sleep if the gap between 

testing sessions exceeds 4-6 hours (Fischer et al., 2002; Gottselig et al., 2004; Robertson 

et al., 2004; Roth et al., 2005). 

In the visual domain, most demonstrations of sleep-related benefits have used a par­

ticular kind of texture discrimination task. For example, Kami and Sagi (1991) measured 

thresholds for discriminating peripherally-viewed horizontal and vertical textured targets, 

which were embedded in an array of short line segments, by varying the SOA between 

the offset of the target array and the onset of a mask. Using this task, Kami and Sagi 

(1993) found that sensitivity in a texture discrimination task increased only after at least 

eight hours elapsed after the initial training session. Subsequently, it was shown that the 

effects of practice were abolished by the interruption of sleep, with both REM and SWS 

contributing to the overall amount learned (Kami et al., 1994; Stickgold et al., 2000a,b). 

Finally, a nap taken in-between successive practice sessions reverses the deterioration 

that otherwise occurs with repeated testing during the same day (Mednick et al., 2003, 

2002, 2005). Using a different task, Schoups et al. (1995) reported that practice lowered 

orientation discrimination thresholds measured with circular noise fields rotated about 

the oblique axis, but only when subjects slept between sessions. Learning in both the 

texture discrimination task and the orientation discrimination task was specific to the 

trained location in the visual field and, in the orientation discrimination task, to the ori­

entations used during training. For both tasks, within-session gains were only observed 
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early within the first session, after which performance saturated. Further improvements 

in performance only occurred across sessions, i.e., the improvements were latent. 

The role of sleep in consolidation is yet to be demonstrated for the remaining variety 

of visual tasks amenable to learning. We have previously shown that performance on a 

one-of-ten forced choice face-identification task improves substantially across days (Gold 

et al., 1999b), and that the improvements are specific to the trained face exemplars and 

orientations (Hussain et al., 2005). Here we assess the contribution and sleep-dependence 

of latent learning to the overall improvement found with this task, and examine whether 

the amount of latent learning is associated with within-session learning. 

4.3 Methods 

4.3.1 Subjects 

One hundred and three McMaster University undergraduate students participated in 

the experiment. All subjects had normal or corrected-to-normal Snellen visual acuity. 

The mean age and years of education were respectively 20.9 (SD= 3.31) and 16.9 (SD= 

2.30). All subjects received a small fee ($10/hour) or partial course credit for participating 

in the experiment, and were naive with respect to the task. All subjects provided informed 

consent prior to the start of the experiment. Seventy-four of the subjects were female; 

the remaining 29 were male. 

4.3.2 Apparatus and Stimuli 

Stimuli were generated in Matlab (The Mathworks, v. 5.2) using the Psychophysics 

and Video Toolboxes (Brainard, 1997; Pelli, 1997). Stimuli were displayed on a 21" Sony 

Trinitron monitor at a resolution of 1024x768 pixels, which at the viewing distance of 

114 cm translated to 26.7 pixels per cm. Frame rate was 85 Hz. Average luminance was 

62.51 cd/m2 
. The monitor calibration data were used to build a 1779-element lookup 

table (Tyler et al., 1992) and customized computer software constructed the stimuli on 

each trial by selecting the appropriate luminance values from the calibrated lookup table 

and storing them in the display's eight-bit lookup table. 

The stimuli were faces of five males and five female faces cropped to show only internal 

features and equated for spatial frequency content. The methods used to create the 

stimuli have been described previously (Gold et al., 1999a,b). Stimulus size was 256 x 

256 pixels, subtending 4.8 x 4.8 degrees of visual angle from the viewing distance of 114 
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cm. During the experiment, stimulus contrast was varied across trials using the method of 

constant stimuli. The seven levels of contrast were spaced equally on a logarithmic scale, 

and spanned a range that was sufficient to produce significant changes in performance 

in virtually all subjects. The images were shown in three levels (low, medium and high) 

of static two-dimensional Gaussian noise, created by sampling from distributions with 

variances of .001, .01, and .1. Hence, there were a total of 21 stimulus conditions (seven 

contrast levels x three external noise levels) that allowed subjects to view each face at a 

variety of signal-to-noise ratios. 

•9AM 9PM 

9PftlSLEEP 
9AM 9PM 9PM 

12HR SLEEP 
9AM 9PM 9AM 9PM 

12HR NO SLEEP 
9AM 9AM 9PM 

3HRNOSLEEP 
9AM 12PM 9PM 9AM 9PM 

OVERNIGHT 

24HRS 

Figure 4.1: Illustration of the experimental design. Placeholders indicate the time of 
testing for each group across two consecutive days. 

4.3.3 Procedure 

All subjects performed a face identification task in two sessions (Figure 4.1). Subjects 

in the 12HR-Sleep group (n = 24) performed Session 1 at 9pm and Session 2 at 9am the 

next day. Subjects in the 12HR-No-Sleep group (n = 24) performed Session 1 at 9am 

and Session 2 at 9pm on the same day. Thus, there was a 12-hour interval between 

sessions in both the 12HR-Sleep and 12HR-No-Sleep groups. In the 9AM-Sleep group (n 

= 24), subjects performed Sessions 1 and 2 at 9am on Days 1 and 2. In the 9PM-Sleep 
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group (n = 24), subjects performed Sessions 1 and 2 at 9pm on Days 1 and 2. Therefore, 

there was a 24-hour interval between sessions in both the 9AM-Sleep and 9PM-Sleep 

groups. Subjects in the sleep groups were instructed to sleep normally overnight (between 

sessions), whereas subjects in the 12HR-No-Sleep group were instructed to not sleep or 

nap between sessions. An additional group of seven subjects in the 3HR-No-Sleep was 

tested with a three-hour interval between sessions (Session 1 at 9am and Session 2 at 

noon on the same day), with instructions not to nap between sessions. 

During each session, subjects were seated in a darkened room 114 cm away from the 

monitor. Viewing was binocular, and viewing position and distance were stabilized with 

an adjustable chin/forehead rest. The experiment started after a 60 s period during 

which the subject adapted to the average luminance of the display. A trial began with 

the presentation of a fixation point - a black high-contrast spot (0.15 x 0.15 deg) ­

in the center of the screen for 100 ms, followed by a randomly selected face presented 

for approximately 200 ms at the center of the screen. After the face disappeared, the 

entire set of 10 faces was presented as two rows of five noiseless, high-contrast thumbnail 

images, each subtending approximately 1.7 x 1.7 deg. The subject's task was to decide 

which one of the 10 faces had been presented during the trial by selecting one of the 

thumbnail images with a computer mouse. The location of each face in the response 

window was constant across subjects, trials, and sessions. Auditory feedback in the form 

of high-pitched (correct) and low-pitched (incorrect) tones informed the subject about 

the accuracy of each response, and the next trial began one second after presentation of 

the feedback. Session 1 comprised 20 trials per stimulus condition for a total of 420 trials. 

Session 2 comprised 40 trials per stimulus condition for a total of 840 trials. Sessions 1 

and 2 lasted approximately 30 and 60 minutes, respectively. 

Subjects completed the Morningness-Eveningness questionnaire (Horne and Ostberg, 

1976), which assesses the time of day at which the subjects perform optimally. The 

questionnaire was completed prior to the start of the experiment in Session 1. 

4.4 Results 

Statistical analyses were done with R (R Development Core Team, 2007). All t tests 

were two-tailed and assumed unequal group variances. Where appropriate, we report 

95% confidence intervals (95%CI) for estimated parameters and Cohen's fas a measure 

of effect size (Cohen, 1988). 
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Figure 4.2: a) Proportion correct during Session 1. 
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Performance did not vary signifi­
cantly across groups. b) Proportion correct during Session 2. Performance did not vary 
significantly across groups. c) A scatter plot shown the association between proportion 
correct in Sessions 1 and 2. The diagonal line indicates equal performance in both ses­
sions. Note that all points are above the line - indicating that all subjects showed some 
improvement across sessions. The correlation between sessions was 0.89. d) The amount 
learned, defined as the difference between response accuracy in Sessions 1 and 2, for each 
group. There was a significant interaction between Group and the amount learned. 
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Due to experimenter error, seven subjects did not complete the Morning-Eveningness 

questionnaire. Analysis of the completed questionnaires showed that subjects were unbi­

ased as to their preferred time of day (M = 46, SD= 9.18), and that the preferred time 

of day did not vary across the five groups, F(5, 90) = .8275, p = .53. Preliminary analyses 

also indicated that questionnaire scores were not associated with task performance, and 

therefore we did not include them in subsequent analyses. 

Figures 4.2a-b show proportion correct (collapsed across stimulus contrast and noise 

levels) in each session. In Session 1, the average proportion correct was 0.44 and did not 

vary significantly across groups, f = 0.11, F(4,98) = 1.32, p = .267, indicating that 

the time of day did not affect initial performance. In Session 2, the average proportion 

correct was 0.59, and also did not vary significantly across groups, f = 0.18, F(4, 98) = 

1.85, p = 0.13. Response accuracy in Session 1 was highly correlated with accuracy in 

Session 2, r = 0.89, t(101) = 19.82, p < 0.0001, demonstrating that our measures were 

reliable (Figure 4.2c). 

Between-session learning - defined as the difference between response accuracy in 

Sessions 1 and 2 - is plotted in Figure 4.2d for each group. The increase in response ac­

curacy across sessions was significant, 95%CI=(0.144, 0.170), t(102) = 23.2, p < .0001) 

and was highly reliable across subjects. Indeed, every subject showed an increase in 

response accuracy across sessions (see Figure 4.2c). There was a significant effect of 

Group, f = 0.25, F(4, 98) = 2.55, p = .044, indicating that some groups improved 

more than others. t tests were used to conduct orthogonal comparisons that evalu­

ated the effects of sleep, interval between sessions, and time of day on the amount 

learned. A t-test that compared the groups that slept (9AM, 9PM, 12HR) to the 

groups that did not sleep (12HR, 3HR) found a marginally significant effect of sleep: 

the amount of learning was slightly greater in the sleep groups than in the no-sleep 

groups, 95%CI=(-0.002, 0.052), t(101) = 1.97, p = .052. A second t-test found that 

more learning occurred in the 12HR-Sleep group than in the two 24 hour sleep groups, 

95%CI=(0.006, 0.071), t(70) = 2.375, p = .021. A third t-test that compared the 9AM­

Sleep group to the 9PM-Sleep group found no effect of time-of-day on the amount learned, 

95%CI=(-0.02, 0.058), t(46) = 1.093, p = .28. These analyses suggest that learning was 

slightly greater in subjects that slept between experimental sessions, and that the ben­

efits of sleep were greater when the sessions were separated by twelve hours instead of 

twenty-four hours. 

The time-course of within-session learning was examined by measuring the proportion 

http:95%CI=(-0.02
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Figure 4.3: Time-course of learning across both sessions for all groups. The proportion 
of correct responses, averaged across subjects, is plotted for bins of 105 trials. Bins 1-4 
are from Session 1, whereas bins 5-12 are from Session 2. The filled and unfilled symbols 
represent data from Sleep and No Sleep groups, respectively. Error bars represent ±1 
standard error. For clarity, error bars are shown for four bins only. Error bars in other 
bins were similar to the ones shown in the figure. 

of correct responses that occurred in separate bins of 105 trials. This procedure yielded 

four bins of trials within Session 1 and eight bins within Session 2. Figure 4.3 shows 

proportion correct for all groups plotted as a function of bin number. During Session 1, 

performance improved on average by 0.18 from bin 1 to bin 4. An analysis of variance 

revealed found a significant main effect of Bin, f = 1.02, F(3, 294) = 143.43, p < 
.0001, but the main effect of Group, f = 0.05, F(4, 98) = 1.32, p = 0.27, and the 

Group x Bin interaction, f = 0.04, F(12, 294) = 1.05, p = 0.40, were not significant. 

Further analyses showed that the linear, F(l, 98) = 256.98,p < .0001, and quadratic, 

F(l, 98) = 22.90,p < .0001), trends across bins were both significant, and that neither 

trend interacted with Group (Group x Linear Trend: F(4, 98) = 1.02,p = 0.4; Group 

x Quadratic Trend: F(4, 98) = 0.53,p = 0.71). During Session 2, proportion correct 

increased by 0.1 from bin 5 to bin 12. An analysis of variance revealed a significant main 

effect of Bin, f = 0.54, F(7, 686) = 36.1, p < .0001, but the main effect of Group, f = 
0.06, F(4, 98) = 1.85, p = 0.13, and the Bin x Group interaction, f = 0, F(28, 686) = 
0.89, p = 0.62, were not significant. Furthermore, the linear, F(l, 98) = 78.5,p < .0001, 

and quadratic, F(l, 98) = 52.4,p < .0001, trends were both significant, and neither trend 

differed significantly across groups (Group x Linear Trend: F(4, 98) = 1.48,p = 0.21; 

Group x Quadratic Trend: F(4, 98) = 0.74,p = 0.57). We also conducted a more 

focussed test of the effect of sleep on Day 2 by combining all subjects in the three sleep 
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groups into one group, and all subjects in the two no-sleep groups into another group. 

An ANOVA on these new groups (sleep vs. no-sleep) found the same, significant main 

effect of Bin that was found in the previous ANOVA, a non-significant main effect of 

Sleep, f = 0, F(l, 101) = 0.2, p = 0.65, and a non-significant Sleep x Bin interaction, 

f = 0, F(28, 686) = 0.89, p = 0.62. Hence, the overall trends were similar in Sessions 1 

and 2: performance improved significantly within each session, the time-course of within­

session learning did not vary across groups, and there was no indication that performance 

differed significantly between sleep and no-sleep groups. 

A close examination of Figure 4.3 suggests that the presence or absence of sleep 

affected performance at the start of Session 2. Specifically, performance in the No Sleep 

groups was less accurate in bin 5 than bin 4 (bin5 - bin4 = -0.03), and then increased in 

bin 6 (bin6 - bin5 = 0.07). In the sleep groups, on the other hand, performance increased 

monotonically across bins 4 through 6 (bin5 - bin4 = 0.01; bin6 - bin5 = 0.05). A 

trend analysis confirmed that the quadratic trend in performance across bins 4-6 differed 

significantly across groups, F(l, 98) = 5.52, p = 0.02. The origin of this effect is shown 

in Figure 4.4, which plots difference scores calculated for response accuracy in bins 4 and 

5. The boxplots indicate that response accuracy was not higher in bin 5 than bin 4 in a 

substantial proportion of subjects in each group, and that the median difference scores 

were close to zero for all groups. However, the difference scores were slightly lower in the 

No Sleep groups. Hence, the data suggest that sleep, rather than boosting performance, 

prevented a slight deterioration in performance at the start of Session 2. 

A global measure of within-session learning was defined as the difference between 

proportion correct measured in the first and last bins: for example, learning during 

Session 1 was the difference between proportion correct in bins 4 and 1. Surprisingly, 

estimates of within-session learning from Sessions 1 and 2 were not correlated, but each 

measure of within-session learning was correlated with between-session learning (Figure 

4.5). To determine if the association of within- and between-session learning varied across 

groups, we evaluated the interaction term in linear models of the form 

b = w+G+wG (4.1) 

where bis between-session learning (see Figure 4.2d), w is within-session learning, G is a 

factor representing Group, and wG is the w x G interaction. The analyses indicated that 

the association between learning during Session 1 and between-session learning did not 

vary across groups, f = 0, F(4, 93) = 0.62, p = 0.69. Likewise, the association between 
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Figure 4.4: Boxplots illustrating the changes in response accuracy (i.e., bin 5 minus bin 
4) for five groups. In each boxplot, the box depicts the interquartile range (IQR), the 
horizontal line indicates the group median, and the whiskers extend to the most extreme 
data points that are within 1.5 x IQR. The unfilled symbols represent outliers. 
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Figure 4.5: Scatter plots showing the association between learning in Sessions 1 and 
2. Within-session learning was defined as the difference between proportion correct in 
the first and last bins of a single session. Between-session learning was defined as the 
difference in the proportion correct between Sessions 1 and 2. Solid lines in each panel 
represent the best-fitting (least-squares) fit to the data. a) Within-session learning from 
the two sessions was not correlated (r = 0.14, t(101) = 1.42,p = 0.16). b) Within­
session learning from Session 1 was significantly correlated with between-session learning 
(r = 0.23, t(101) = 2.35,p = 0.02). One subject, indicated by the solid symbol, was 
an outlier: excluding that subject increased the correlation to 0.34, t(lOO) = 3.61, p = 
0.0005. The dashed line is the regression line computed after excluding the outlier. c) 
Within-session learning from Session 2 was significantly correlated with between-session 
learning (r = 0.34, t(101) = 3.71,p = 0.0003). 
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learning during Session 2 and between-session learning did not differ across groups, f = 

0.04, F(4, 93) = 1.40, p = 0.24. Hence, the analyses show that the magnitudes of 

within- and between-session learning were correlated, and that correlation was similar 

across groups. 

Hauptmann et al. (2005) reported that between-session learning in a letter enumer­

ation task was larger in subjects whose performance had reached an asymptotic value 

during the first session. To determine whether a similar effect held in the current ex­

periment, we first examined how proportion correct varied across bins 1-4 in individual 

subjects. We identified 45 subjects whose proportion correct was approximately constant 

or declined in bins 2-4; response accuracy in the remaining 58 subjects increased in bins 

2-4 and showed no signs of reaching an upper asymptote. These two groups of subjects 

were represented by a binary classification factor that indicated if a subject did or did 

not reach an upper limit during Session 1. Finally, this classification factor was added 

to a model that predicted between-session learning from within-session learning during 

Session 1, Group membership, and the interaction between those two predictor variables 

(Equation 4.1). Adding the binary classification factor did not improve the model's fit 

significantly, f = 0, F(l, 92) = 0.38, p = 0.54. Hence, there was no evidence that the 

predictability of between-session learning from learning during Session 1 differed between 

subjects whose performance did and did not reach an upper asymptote during the first 

session. 

4.4.1 Face Identification Thresholds 

Our experiment used a fixed set of contrasts for all subjects, and therefore was not 

optimized to measure thresholds accurately in individuals. Nevertheless, it was pos­

sible to fit psychometric functions to all but eight of the 618 individual sets of data. 

The resulting thresholds, defined as the rms contrast that corresponded to 50% correct 

responses, exhibited significant positive skew and contained several outliers in each con­

dition. Therefore, we used an M-estimator of central tendency, rather than the mean, 

to represent the "typical" threshold in each condition (Wilcox, 2005). Figure 4.6 shows 

the M-estimator of threshold (Huber's '11; Huber, 1981) measured in each group at each 

noise level on both days of testing. 

A percentile bootstrap procedure (Wilcox, 2005, page 310) was used to assess group 

differences in the M-estimator of threshold at each level of noise on each day of testing. 

The familywise probability of a Type I error was set to a= 0.05 for each session. None 
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Figure 4.6: Log-transformed threshold, expressed in terms of rms contrast, for each 
group in each condition on Day 1 (a) and Day 2 (b) of testing. Each bar represents 
the M-estimator of threshold measured with low (unfilled bars), medium (grey bars), or 
high (black bars) levels of external noise. M-estimators are robust measures of central 
tendency: in cases where the data are skewed, as was the case in the current experiment, 
an M-estimator is better than the mean at providing an estimate of a "typical" value 
(Wilcox, 2005). The particular M-estimator used here is Huber's '11. The error bars 
represent ±1 standard error of the M-estimator. 
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of the bootstrap tests was significant on Session 1 or Session 2. To compare thresholds 

in subjects who did and did not sleep between sessions, we combined thresholds from 

each of the three no-sleep groups into a single sleep group, and thresholds from the two 

no-sleep groups into a single no-sleep group. M-estimators of thresholds in the combined 

groups were then compared at each level of noise. Again, none of the comparisons was 

significant on either day. In summary, we did not obtain clear evidence that thresholds 

varied across the experimental groups, or between subjects that did or did not sleep 

between sessions, in Session 1 or 2. 

The log-difference between thresholds in Sessions 1 and 2 was calculated for each 

subject in each condition. The M-estimator of the log-difference between thresholds was ­

0.27, -0.62, and-0.56 in the low, medium, and high external noise conditions, respectively. 

All three of these M-estimators differed significantly from zero (p < .05), which shows 

that thresholds decreased significantly at all levels of noise. To determine if the decrease 

in threshold varied across groups, a percentile bootstrap was used to compare the M­

estimators measured for each group at each level of noise. None of the bootstrap tests 

was significant (p > .05). Next, the log-difference scores for subjects in the three no-sleep 

groups were combined into a single sleep group, and the scores from the remaining groups 

were combined into a single no-sleep group. Again, a percentile bootstrap performed 

on the M-estimators of the log-difference between thresholds found no significant (p > 
.05) difference between the combined sleep and no-sleep groups at any level of external 

noise. These analyses indicate that the difference between thresholds measured in the 

two sessions did not vary significantly across groups or between subjects that did or did 

not sleep. 

In summary, we did not obtain clear evidence that thresholds in Session 1 and 2, 

or the difference between thresholds in the two sessions, varied across the experimental 

groups or was associated with the presence or absence of sleep. In this regard, these 

analyses of thresholds are consistent with the previous analyses on overall proportion 

correct. 

4.5 Discussion 

Using a 1-of-10 face identification task, we found that the proportion of correct re­

sponses increased by 0.17 and 0.1 during the first and second testing sessions, respectively. 

The difference between overall response accuracy in the two sessions was approximately 

0.15, and therefore the magnitude of within-session and between-session learning effects 

http:and-0.56
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was nearly the same. Between-session learning was significantly higher in groups that 

slept in-between sessions, but the effect of sleep on proportion correct was small (i.e., 

~ 0.026) and was restricted to performance in the first 105 trials in Session 2. 

The finding that sleep had very small effects on learning differs from results obtained 

in several studies that used the texture discrimination task (e.g., Kami and Sagi 1991; 

Kami et al. 1994; Kami and Sagi 1993). Kami and Sagi (1991), for example, found that 

thresholds declined by approximately 22% between the first and second days of testing 

(see Figure 2 in Kami and Sagi, 1991). Censor et al. (2006) found that the size of sleep­

related improvement in the texture discrimination task was a non-monotonic function 

of the number of trials used in the first session, with 26 trials per block (3-4 blocks per 

testing session) producing more overnight learning than 50 and 12 trials per block. Based 

on Censor et al. 's findings, it is tempting to attribute the small sleep effect found in the 

current experiment to the relatively large number of trials (i.e., 420) used in Session 1. 

However, using the same task and methods as in the current experiment, Hussain et al. 

(2003) found that reducing the number of practice trials in Session 1 does not result 

in greater amounts of between-session learning: during Session 2, subjects who received 

420-840 trials during Session 1 performed significantly better than subjects who received 

received 21-210 trials during Session 1. Therefore we think it is unlikely that reducing 

the number of trials in Session 1 would increase the effect of sleep. 

Mednick et al. (2002) reported that repeated, within-day testing on the texture dis­

crimination task resulted in progressively higher thresholds (also see Mednick et al. 2003, 

2005; but see Figure 2 in Stickgold et al., 2000a for a different result obtained with sim­

ilar procedures). Between Sessions 1 and 2, for example, thresholds increased by 17% in 

Mednick et al. (2002) and 15% in Mednick et al. (2005). Some studies have also reported 

that performance deteriorates within a single session (Mednick et al., 2005; Ofen et al., 

2007). Ofen et al., for example, found that performance with a single, above-threshold 

stimulus in the texture discrimination task decreased from 90% correct to 70% during 

the course of 8 blocks in a single test session (see Figure 4, in Ofen et al., 2007). In the 

current experiment, both No Sleep groups did exhibit a drop in performance at the start 

of Session 2, but the effect was small and was restricted to the first bin of 105 trials. 

Instead of decreasing, overall accuracy increased across sessions in both No Sleep groups 

(see Figure 4.2d). Furthermore, we found no evidence of performance decreasing within 

a session; in fact, response accuracy increased within each session in all groups. 

The current experiment differs in several ways from previous studies that found larger 
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effects of sleep or within-day deterioration. One potentially important difference concerns 

the psychophysical methods used to assess performance. Previous studies that measured 

learning with the texture discrimination task have obtained thresholds by adjusting the 

stimulus level using a variation of the traditional descending method of limits. With this 

method, increasing the number of trials per block, as was done by Censor et al. (2006) 

and Ofen et al. (2007), would necessarily reduce the variety of signal-to-noise ratios 

presented to the subject over the course of several trials or minutes. In contrast, the 

current experiment presented stimuli that varied significantly in terms of signal-to-noise 

ratio in a random order. This randomization procedure may minimize the adaptation 

that is thought to be important for generating within-session deterioration (Of en et al., 

2007). 

Another obvious difference between studies is that the current experiment used a face 

identification task rather than the texture discrimination task. Face identification may 

depend on higher-level mechanisms that differ significantly from the mechanisms tapped 

by the texture discrimination task used in previous studies. It is possible, therefore, that 

learning in a face identification task differs qualitatively from the learning that is found 

with simpler perceptual tasks. However, results from other experiments are inconsistent 

with this hypothesis. For example, learning in a face identification task is specific for both 

the orientation and identity of the trained items (i.e., there is little generalization to new 

stimuli, Hussain et al., 2005). Furthermore, the benefits of face identification learning 

are long lasting, persisting for at least 9-18 months after the training sessions have ended 

(Hussain et al., 2007). Finally, face identification learning exhibits a fast within-session 

component and a slow between-session component (Figure 4.3), as has been found with 

simpler tasks (e.g., Kami and Sagi, 1993). Hence, the available evidence indicates that 

learning of the face identification task exhibits many of the characteristics of learning 

found with simpler perceptual tasks. 

Nevertheless, the relative complexity of the neural network underlying face processing 

may alter the effects of sleep on learning. Sleep-dependent consolidation is thought to 

require the reactivation, during sleep, of cells engaged during the task. For example, 

consolidation of spatial learning has been linked to the reactivation of cells in the hip­

pocampus (Wilson and McNaughton, 1994), and consolidation of visual conditioning is 

contingent on reactivation of visual cortex (Amzica et al., 1997). Indeed, some suggest 

that cortical activity in Vl is required during sleep for learning-related plasticity to be 

enabled (Jha et al., 2005). For the texture task, an imaging study indicates that Vl is 

the locus of practice effects (Schwartz et al., 2002), and the consolidation of such learn­
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ing may depend on the reactivation of Vl during sleep. The learning we find with more 

complex stimuli may involve more than one cortical locus (such as IT), possibly diluting 

the effects of sleep if the entire network engaged during training is not reactivated during 

sleep. 

Our results are consistent with the sustained improvements found in the absence of 

sleep for auditory and motor tasks, with mere passage of time after training ( Gottselig 

et al., 2004; Robertson et al., 2004; Roth et al., 2005). In Roth et al. (2005), improve­

ments on a verbal identification task emerged after at least six hours had elapsed. In 

Robertson et al. (2004), there was improvement on a finger-tapping task twelve hours 

after practice with no sleep between sessions. In Gottselig et al. (2004), restful waking, 

but not busy waking was equivalent to sleep in promoting learning of an auditory pattern 

discrimination task, suggesting that the key to consolidation might be the absence of in­

terference from other tasks during the interim period (i.e., the interference hypothesis). 

However, performance on this auditory task also improved with no break between ses­

sions, suggesting that the benefits from consolidation may be superfluous to those gained 

from continuous task performance. Likewise, face-identification requires little latent pro­

cessing, as is clear from the performance of the 3hr-No sleep group, which improved 

despite the small time-window between sessions. These results are also consistent with a 

recent study showing negligible effects of sleep in face memory task (Sheth et al., 2008). 

We found that within- and between-session learning were correlated positively for all 

groups (Figure 4.5). This finding is at odds with the results of Walker et al. (2003), 

who reported that sleep-dependent and within-session improvements on a motor task 

were uncorrelated. It should be pointed out, however, that although we found that the 

correlation was significant, within-session learning accounted for only a small proportion 

of the variance in between-session learning (i.e. r 2 = 0.342 = 0.11). It is unlikely 

that this relatively weak association is due to low reliability of our dependent measure, 

because the correlation between performance in Session 1 and 2 was 0.89 (Figure 4.2c). 

Instead, it appears that between-session learning depends substantially on factors that 

are not correlated with within-session learning. Stated this way, the current findings are 

similar to those reported by Walker et al. but, in addition, suggest that their conclusion 

that within- and between-session learning are mediated by "distinct and independent 

processes" (page 281, Walker et al., 2003) is too strong. 

Overall, our results show that robust perceptual learning for a face identification task 

can be obtained in the absence of sleep, and that sleep has very little effect on between­
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session learning. The time-course of learning within each session was also unaffected by 

the presence or absence of sleep between sessions. These results are inconsistent with the 

notion that the bulk of perceptual learning is a latent, across-session phenomenon. It 

is commonly assumed that the latent gains are the basis of stimulus-specificity typically 

found in perceptual learning studies (Kami and Bertini, 1997; Kami et al., 1998; Kami 

and Sagi, 1993). The present findings, combined with other results from our lab indicating 

exemplar- and orientation- specificity of face learning (Hussain et al., 2005), suggest that 

stimulus-specificity of learning could just as well emerge from the improvements that 

occur within the training session. 
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Chapter 5 

How much practice is needed to 

produce perceptual learning? 

5.1 Abstract 

We examined the amount of practice needed to improve performance on lOAFC face­

and texture identification. On Day 1, subjects were grouped by amount of practice: a 

control group had zero trials of practice, and several experimental groups had practice 

that ranged from one to 40 trials per condition. On Day 2, all groups performed 40 trials 

per condition of the trained task. The effect of practice was estimated by comparing 

performance across groups on Day 2. In both tasks, increasing practice was associated 

with greater learning, but surprisingly small amounts of practice were required to improve 

performance. In the face identification task, for example, only one trial per condition on 

Day 1 was required to increase performance relative to the control group at the start of 

testing on Day 2. In the texture identification task, five trials per condition on Day 1 

were required to increase performance relative to the control group. In both tasks, the 

advantage associated with small amounts of practice declined during the Day 2 session 

due to larger within-session learning in the control group. 

Citation: Hussain, Z., Sekuler, A. B., & Bennett, P. J. How much practice is needed 

to produce perceptual learning? Vision Research, In Revision. 
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5.2 Introduction 

Perceptual learning refers to improvements on sensory tasks brought about through 

practice (Ball and Sekuler, 1987; Fiorentini and Berardi, 1981; Matthews et al., 1999; 

Schoups et al., 1995; Sigman and Gilbert, 2000). The improvements - often stimulus­

specific and long-lasting - are evidence for plasticity of the brain regions engaged by the 

sensory tasks (Kami and Bertini, 1997). There have been a number of investigations into 

the specificity (Ball and Sekuler, 1982; Sireteanu and Rettenbach, 1995; Furmanski and 

Engel, 2000; Sigman and Gilbert, 2000; Sowden et al., 2002; Yi et al., 2006; Hussain et al., 

In Press), and neural correlates of perceptual learning (Schoups et al., 2001; Schwartz 

et al., 2002; Rainer et al., 2004; Maertens and Pollmann, 2005; Kourtzi et al., 2005; 

Raiguel et al., 2006; Pourtois et al., 2008; Yotsumoto et al., 2008), but the amount of 

practice needed to produce learning has been rarely been examined directly (Wright and 

Sabin, 2007). 

How much practice is needed to produce the long-lasting and stimulus-specific effects 

that are the hallmark of perceptual learning? In the auditory domain, one study directly 

examined how much practice is needed to produce learning in temporal and frequency 

discrimination tasks (Wright and Sabin, 2007). Participants were given either 360 or 900 

practice trials per day for six days. Temporal discrimination improved with 360 trials per 

day, but frequency discrimination did not, a result that suggests that a critical amount 

of practice, which varies across tasks, may be needed for learning to occur. Consistent 

with this idea, Hauptmann et al. (2005) showed that between-session improvements on 

a letter enumeration task do not emerge unless subjects have reached asymptote within 

the first training session. Finally, the critical amount of practice also may depend subtle 

aspects of the experimental procedure: For example, Hawkey et al. (2004) - using a 

task that differed from the one used by Wright and Sabin - found that stimulus-specific 

improvements in frequency discrimination could be obtained with fewer than 200 practice 

trials. 

Thus, although the few studies addressing the issue suggest that there may be critical 

levels of practice, the amount needed to improve performance on the remaining variety of 

perceptual tasks, particularly in the visual domain, is not known. In the visual domain, 

improvements in perception are frequently measured after providing observers with ex­

tensive practice, up to and even exceeding 4000-10,000 trials over the course of 2 to 18 

days (Gold et al., 1999b; Furmanski and Engel, 2000; Sigman and Gilbert, 2000; Gold 

et al., 2004; Chung et al., 2006; Richards et al., 2006; Husk et al., 2007). Large amounts 
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of practice reveal within-session improvements and ensure asymptotic performance, but 

do not address whether performance improves when practice is restricted to a few trials. 

Here, we ask whether small amounts of practice can elicit improvements on two tasks 

known to be amenable to the effects of training, and for which stimulus-specific effects 

of practice previously have been shown: 10-AFC texture identification and face identi­

fication (Gold et al., 1999b, 2004; Hussain et al., In Press, 2005). These tasks enable 

the comparison of learning of frequently encountered objects versus novel objects, where 

both object classes comprise multiple features that differentiate exemplars within the 

class. 

Table 5.1: Number of subjects run in each practice condition in the face- and texture 
identification tasks. 

Trials per condition Face Texture 
0 20 23 
1 25 21 
5 19 22 
10 20 16 
20 10 -

40 27 28 

5.3 Methods 

5.3.1 Subjects 

Two hundred and thirty-one McMaster University undergraduate students partic­

ipated in this experiment (mean age = 21.21, SD = 3.66). All subjects had nor­

mal or corrected-to-normal Snellen visual acuity. All subjects received a small stipend 

($10/hour) or partial course credit for participating in the experiment, and were naive 

with respect to the task. 

5.3.2 Apparatus and Stimuli 

Stimuli were generated in Matlab (v. 5.2) using the Psychophysics and Video Tool­

boxes (Brainard, 1997; Pelli, 1997). Stimuli were displayed on a 21" Sony Trinitron moni­

tor with 1024 x 768 pixels at a frame rate of 85 Hz. Average luminance was 73.12 cd/m2 
. 

The monitor calibration data were used to build a 1779-element lookup table (Tyler 

et al., 1992) and customized computer software constructed the stimuli on each trial by 
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selecting the appropriate luminance values from the calibrated lookup table and storing 

them in the display's eight-bit lookup table. 

The face stimuli were faces of five males and five female faces cropped to show only 

internal features. All of the faces had the same global amplitude spectrum, see Gold 

et al. (1999a) for a more detailed account of the stimuli. The textures were band­

limited noise patterns created by applying an isotropic, band-pass (2-4 cy /image) ideal 

spatial frequency filter to gaussian noise (see Figure 1). The faces and textures subtended 

4.8 x 4.8 deg of visual angle from the viewing distance of 114 cm. During the experiment, 

stimulus contrast was varied across trials using the method of constant stimuli. Seven 

levels of contrast were spaced equally on a logarithmic scale, and spanned a range that 

was sufficient to produce significant changes in performance in virtually all subjects. The 

stimuli were shown in one of three levels (low, medium and high) of static two-dimensional 

Gaussian noise, created by sampling from distributions with variances of .001, .01, and .1. 

Hence, subjects viewed each stimulus at a signal-to-noise ratio that varied significantly 

across trials. Thus there were 21 different stimulus conditions (seven contrast levels x 

three external noise levels). The contrasts used for the textures at the low noise level 

were 4 times higher than the contrasts used for the faces. 

5.3.3 Procedure 

Each subject was tested on two consecutive days, at roughly the same time each day. 

On Day 1, observers were assigned to one of the practice groups (see Table 5.1). The 

different practice groups saw either 0, 1, 5, 10, 20 or 40 trials per stimulus condition 

(henceforth referred to as the 1-, 5-, 10-, 20- and 40-trials groups) which corresponds to 

a total of 0, 21, 105, 210, 420 and 840 trials per session. The 20-trials condition was only 

run for the face identification task. Importantly, the average stimulus contrast presented 

at each noise level was constant across the different practice conditions. On Day 2, all 

subjects were tested in the 40 trials/condition (i.e., a total of 840 trials). 

All subjects were seated in a darkened room 114 cm away from the monitor. Viewing 

was binocular, and viewing position and distance were stabilized with an adjustable chin­

rest. The experiment started after a 60-second period during which the subject adapted 

to the average luminance of the display. A trial began with the presentation of a fixation 

point in the center of the screen for 100 ms (black high-contrast spot; 0.15 x 0.15 deg), 

followed by a randomly selected face/texture, presented for approximately 200 ms at the 

center of the screen in one of 21 stimulus conditions. After the face/texture disappeared, 
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stimulus 200ms 

thumbnails\ IS:IOOm• until response 

Figure 5.1: Stimuli used in the face and texture identification tasks, and a schematic 
representation of the trial sequence in the identification task. 

the entire set of 10 faces/textures was presented as noiseless, high-contrast thumbnail 

images, each subtending 1.7 x 1. 7 deg. Five thumbnails were presented on the top half 

of the screen, and five on the bottom half. The subject's task was to decide which one 

of the 10 faces/textures had been presented during the trial, and to respond by clicking 

on the chosen face/texture. The location of each face/texture in the response window 

was constant across subjects, trials, and sessions. Auditory feedback in the form of 

high-pitched (correct) and low-pitched (incorrect) tones informed the subject about the 

accuracy of each response, and the next trial began one second after presentation of the 

feedback. Figure 1 shows a schematic illustration of the task. 

The duration of the practice session (Day 1) for the 40-trials group was approximately 

one hour, and correspondingly shorter in the other groups. To equate time spent in the 

laboratory, subjects who received fewer than 40 trials per condition performed an addi­

tional task after the completion of the experimental task. The additional task measured 

the accuracy of memory for the orientation of a high-contrast line and was designed 

to differ significantly from the face- and texture-identification tasks (see Bennett et al., 

2007, page 803, for a detailed description of this task). Subjects performed the orienta­

tion memory task until the total duration of the experimental session was approximately 

one hour, and therefore the total time spent in the laboratory on Day 1 was equated 

across groups. 
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5.4 Results 

Statistical analyses were performed in R (R Development Core Team, 2007). Multiple 

comparisons were done using the R package multcomp (Hothorn et al., 2008). Effect size 

is expressed in terms of Cohen's f (Cohen, 1988). 

5.4.1 40-trials Groups 

We first examined whether 40 trials per condition were sufficient to produce significant 

learning. The responses obtained from the 40-trials groups on each day were divided into 

eight bins of 105 trials each (Figure 5.2). Proportion correct in the texture and face 

groups was then analyzed separately with a 2 (Day) x 8 (Bin) within-subjects analysis of 

variance (ANOVA). In the texture identification task, the ANOVA revealed significant 

main effects of Day, F(l, 27) = 123, p < .0001, f = 0.52, and Bin, F(7, 189) = 50.56, 

p < .0001, f = 0.88, and a significant Day x Bin interaction, F(7, 189) = 7.54, < .0001, 

f = 0.32. The interaction was analyzed by evaluating the simple main effect of Day 

at each Bin. The difference between accuracy on Days 2 and 1 was largest in Bin 1 

(D = 0.29, CI953 = [0.23, 0.35]) and declined to an average of 0.17, CI953 = [0.14, 0.19], 

in Bins 6-8. Nevertheless, response accuracy measured on Day 2 was higher than on Day 

1 in all Bins (t(27) 2: 6.45, p < .0001 in all cases). These results also suggest that there 

was more within-session learning for the 40-trials group on Day 1 than on Day 2. 

In the face identification task, the ANOVA found significant main effects of Day, 

F(l, 26) = 254, p < .0001, f = .76, and Bin, F(7, 182) = 28.5, p < .0001, f = .67, as 

well as a significant Day x Bin intertaction, F(7, 182) = 6.97, p < .0001, f = .31. The 

difference between days was largest in the initial bin ( D = 0.26, CI953 = [0.21, 0.31]) and 

declined to an average of 0.13, CI953 = [0.11, 0.15] in the last three bins. Nevertheless, 

as was the case with textures, the simple main effect of Day was significant at each Bin 

(t(26) 2: 5.42, p < .0001 in all cases). Also, the analyses suggest that there was more 

within-session learning on Day 1 than on Day 2 for this group. 

Inspection of Figure 5.2 shows that average response accuracy on Day 1 was signifi­

cantly greater in the face condition than in the texture condition ( CI953 = [0.02, 0.16], 

t(53) = 2.49, p = 0.015). Average performance with faces also was better than with 

textures on Day 2, but the difference between groups was not statistically significant 

(CI 953 = [-.03, .14], t(53) = 1.24, p = 0.22). 

The current results are consistent with previous reports that 40 trials per condition 
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on Day 1 are sufficient to produce learning in these texture and face identification tasks 

(Hussain et al., 2005, 2009, In Press). 
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Figure 5.2: Proportion correct on Days 1 and 2 for the 40-trials groups in the face- and 
texture-identification tasks. Data from each day have been divided into eight bins of 
105 trials each. The symbols represent average proportion correct. Error bars represent 
±1 SEM. 

5.4.2 Comparison of Groups on Day 2 

In this section we compare response accuracy measured in all groups on Day 2. The 

analyses addressed whether exposure to textures or faces on Day 1 improved perfor­

mance relative to the zero-trials groups, and whether groups that received 1-20 trials per 

condition performed worse than the 40-trials groups. 

5.4.2.1 Texture identification 

Responses obtained from subjects in the texture identification task were divided into 

eight bins of 105 trials each. Proportion correct in each bin is plotted as a function of 

bin number in Figure 5.3. Note that the bins are numbered 9-16 to differentiate them 
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from the eight bins of trials presented to the 40-trials group on Day 1. Figure 5.3 clearly 

shows that the 10- and 40-trials groups performed better than the zero-trials group. The 

evidence of learning in the 5-trials group is mixed: response accuracy in that group was 

higher than in the zero-trials group in Bins 9-12, but there was no difference between 

groups in Bins 13-16. There was no evidence of learning in the 1-trial group, and therefore 

the zero-trials and 1-trial group were pooled into a single baseline group in some of the 

following analyses to increase statistical power. 

Response accuracy was analyzed with a 5 (Group) x 8 (Bin) ANOVA. The main 

effects of Bin, F(7, 735) = 144, p < .0001, f = 1.02, and Group, F(4, 105) = 4.84, p = 
.0012, f = 0.13, were significant, as was the Group x Bin interaction, F(28, 735) = 3.11, 

p < .0001, f = 0.25. The main effect of Bin reflects the fact that proportion correct 

increased across Bins in every group. The main effect of Group is illustrated in the 

bottom part of Figure 5.3, which shows proportion correct averaged across bins for each 

Group. Pairwise differences between groups were evaluated using the method described 

by Westfall (1997), which adjusts alpha to control for family-wise error: Only differences 

between the 40-trials group and the zero-, 1-, and 5-trials group were significant (adjusted­

p < .02). 

The Group x Bin interaction was analyzed by evaluating the simple main effect of 

Group at each Bin, while using the while using the Holm-Bonferroni adjustment (Holm, 

1979) to maintain a familywise Type I error rate of .05 across all eight tests. The simple 

main effect of Group was significant at only Bins 9-12 (F(4, 105) 2: 3.91, adjusted­

p :S .026, f 2: 0.33). Next, each significant simple main effect of Group was analyzed 

with five contrasts that tested the hypotheses that i) response accuracies in each of the 40­

, 10-, and 5-trials groups was greater than accuracy in a baseline group that was created 

by pooling the zero- and 1-trials groups; and ii) accuracies in both the 5-, and 10-trials 

groups were less than accuracy in the 40-trials group. For each set of five contrasts, the 

familywise Type I error rate was set to .05 (Westfall, 1997). In Bin 9 (i.e., the first bin of 

trials on Day 2), all contrasts were significant: response accuracy in each of the 40-, 10-, 

and 5-trials groups was greater than in the baseline group, and accuracy in the 5-, and 

10-trials groups was less than the 40-trials group. The results in Bin 10 were the same as 

in Bin 9, except that the 5-trials group did not differ significantly from the baseline group. 

The results in Bin 11 were the same as in Bin 10, except that the 10-trials group did not 

differ from the baseline group. Hence, in Bin 11 response accuracy in the 40-trials group 

was significantly greater than in the baseline, 5-trials, and 10-trials groups. Finally, in 

Bin 12 the 40-trials group was significantly greater than the baseline and 5-trials groups. 
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Figure 5.3: Top: Proportion correct on Day 2 for all groups tested with textures. The 
data have been divided into eight bins of 105 trials each. The bins are numbered 9-16 
to differentiate them from the eight bins presented on Day 1. The symbols represent 
average proportion correct. Error bars represent ±1 SEM. Standard errors were nearly 
constant across bins. For clarity, therefore, only error bars in Bins 9 and 16 are shown. 
Bottom: Proportion correct - averaged first across all trials and then across subjects ­
on Day 2. Error bars represent ±1 SEM. 
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Within-session learning from Bins 9-12 was compared between the baseline group and 

the 5-, 10- and 40-trials practice groups combined, all of which differed from the baseline 

group at least in Bin 9. On average, the 5-, 10- and 40-trials groups improved by 143 

from Bin 9 to Bin 12, whereas the baseline group improved by 223. The 83 difference 

in amount of within-session improvement between the practiced and baseline groups was 

significant (t(78.238) = 3.3089,p = .001). 

These analyses suggest that 40-, 10- and even 5 trials of practice per condition on 

Day 1 were sufficient to increase response accuracy relative to subjects who received zero 

or one trial of practice per condition, at least at the start of the testing session on Day 2. 

However, larger amounts of within-session learning in the baseline groups reduced that 

advantage by the end of Day 2. 

5.4.2.2 Face identification 

Proportion correct from subjects in the face identification task is plotted as a func­

tion of bin number in Figure 5.4. Figure 5.4 clearly shows that there was virtually no 

difference in performance between the 20- and 40-trials groups, and that both groups 

performed significantly better than the zero-trials group. There also is some suggestion 

that performance in the 1-, 5-, and 10-trials groups was worse than the 40-trials group 

but better than the zero-trials group, at least at the beginning of the test session. A 

6 (Group) x 8 (Bin) ANOVA found significant main effects of Bin, F(7,805) = 58.85, 

p < .0001, f = 0.65, and Group, F(5, 115) = 5.01, p = .0003. f = 0.14, and a significant 

Group x Bin interaction, F(35, 805) = 2.85, p < .0001, f = 0.26. As was the case 

with textures, the main effect of Bin reflects the fact that proportion correct increased 

across Bins in every group. The main effect of Group is illustrated in the bottom part 

of Figure 5.4, which shows proportion correct averaged across bins for each Group. Pair­

wise differences between groups were evaluated using the method described by Westfall 

(1997). Average response accuracy in the zero-trials group differed from accuracy in the 

40- and 20-trials groups. In addition, the 1- and 10-trials groups both differed from the 

40-trials group. Differences between the 20-trials group and the 1- and 10-trials groups 

approached significance (p = .06). 

The Group x Bin interaction was analyzed by evaluating the simple main effect 

of Group at each Bin, using the Holm-Bonferroni adjustment (Holm, 1979) to control 

familywise Type I error rate. The simple main effect of Group was significant at all 

bins except 14 and 15 (F(4, 105) ~ 2.98, adjusted-p::; .043, f ~ 0.29). Each significant 
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simple main effect of Group was analyzed with nine contrasts that tested the hypotheses 

that i) response accuracies in each of the 1-40 trials groups was greater than accuracy 

in the zero-trials group; and ii) accuracies in each of the 1-20 trials groups was less than 

accuracy in the 40-trials group. Familywise Type I error rate for each set of contrasts was 

controlled using the method described by Westfall (1997). In Bin 9, all of the contrasts 

were significant (adjusted-p :::; .017) except for the one comparing accuracy in the 20­

and 40-trials groups. The same results were obtained in Bin 10, except that the 1- and 5­

trials groups no longer differed significantly from the zero-trials group (adjusted-p = .06 

in both cases). The results in Bin 11-13 were the same as in Bin 10, except the difference 

between the 5- and 40-trials groups was not significant. Finally, in Bin 16 the only 

significant differences were between the 40-trials group and the 0- and 10-trials groups. 

Within-session learning from Bins 9-13 was compared between the zero-trials group 

and the 1-, 5- and 10-trials groups combined. On average, the 1-, 5- and 10-trials groups 

improved by 13% from Bin 9 to Bin 13, whereas the zero-trials group improved by 21%. 

The 7% difference in amount of within-session improvement between the practiced and 

zero-trials groups was significant (t(33.626) = 2.822, p = .007). 

These analyses suggest that all groups that received some practice (even the most 

minimal levels), with face stimuli on Day 1 performed better than the zero-trials group, 

at least at the start of the testing session on Day 2. However, larger amounts of within­

session learning by the zero-trials group from bins 9-13 reduced the advantage of the 

practiced groups. 

5.4.3 Contrast thresholds 

Psychometric functions were fit to the data from individual subjects on Day 2 to 

calculate identification thresholds, defined as the rms contrast needed to attain 50% 

correct. The experiments used the same fixed set of stimulus contrasts for all subjects, 

and therefore reliable thresholds could not be obtained for every subject. Furthermore, 

the fact that we were studying learning meant that subjects did not receive practice to 

stabilize performance. Consequently, approximately 3% of the thresholds - or 14 of 462 in 

the texture identification conditions, and 19 of 534 in the face identification conditions ­

were impossible values (i.e., rms contrasts less than 0). Even after removing these values, 

the log-transformed thresholds contained outliers and were strongly positively skewed 

in each condition. For data exhibiting these characteristics, the Modified One-step M­

estimator (MOM) is a better index of a typical score than the sample mean. Furthermore, 



93 5.4. RESULTS 

CD 
0 ci 
~ 
I... 
0 10 
(.) ci 
c: 
0 

:.e ""'" 0 ci 
c.. e 
a_ M 

ci 

N 
ci 

Day 2 (Faces) $ r·----­
~o---<>---~o~--~-06.---::::;:R.DJ::::::::::-twl 
--~~fl...--~~~------

, 

----0 __ /
--~----'Y' 

,---- Trials/Condition 

/ • 
J/ $ 
I D 

o 
6 
'Y 

40-trials 
20-trials 
1 a-trials 
5-trials 
1-trials 
0-trials 

9 10 11 12 13 14 15 16 

Bin 

0 
~ 
8 ~ 
c: 

:.e0 


'<I' 
0 ci 
c.. e 
a.. <'! 
Q) 0 
C> 
~ 
Q) 0 


~ ci 


Figure 5.4: Top: Proportion correct on Day 2 for all groups tested with faces. Bottom: 
Proportion correct averaged across all trials on Day 2. Plotting conventions are the same 
as in Figure 5.3. 
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analyses of group MOMs are more sensitive than standard ANOVA methods when the 

data are skewed and contain outliers (Wilcox, 2005). Therefore, the following analyses 

were conducted on the MOMs of the log-transformed thresholds in each condition. 
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Figure 5.5: Texture identification thresholds measured on Day 2 plotted as a function of 
external noise. Threshold was defined as the rms contrast needed to attain 503 correct 
responses. The same levels of external noise were used in all conditions: the symbols 
are displaced, slightly, along the horizontal axis to make it easier to discriminate among 
conditions. Error bars represent ±1 standard error. 

Texture identification thresholds on Day 2 are shown in Figure 5.5. The threshold-vs­

noise curves are qualitatively similar to those obtained in previous studies (Gold et al., 

1999b, 2004). A percentile-bootstrap method (Wilcox, 2005, page 368) found that the 

MOM of threshold - averaged across the three noise levels - varied significantly across 

groups (p = .01), and that MOMs, averaged across groups, varied significantly across 

noise levels (p < .001). Hence, the main effects of Group and Noise were significant. 

However, the Group x Noise interaction was not significant (p = 0.52). These results 

are consistent with the idea that learning shifted the threshold-vs-noise curve vertically 

in the log-log plot (Gold et al., 1999b, 2004). The main effect of Group was analyzed by 

conducting multiple, pairwise comparisons, which found that thresholds in the 40-trials 



95 5.4. RESULTS 

group were significantly lower than thresholds in the 0-trials and 1-trial groups (p < .05). 

Face identification thresholds on Day 2 are shown in Figure 5.6. As in the texture 

conditions, face identification thresholds increased with increasing levels of noise. How­

ever, the quadratic component of the threshold-vs-noise curve is less noticeable in the 

face conditions than in the texture conditions. As was the case with texture identifica­

tion thresholds, a percentile-bootstrap method (Wilcox, 2005, page 368) found significant 

main effects of Group (p = .02) and Noise (p < .001), but the Group x Noise interaction 

was not significant (p = .31). Hence, the results are consistent with the hypothesis that 

learning shifted face identification thresholds vertically in the log-log plot (Gold et al., 

1999b, 2004). The main effect of Group was analyzed by conducting multiple, pairwise 

comparisons, which found that thresholds in the 40- and 20-trials groups were both sig­

nificantly lower than thresholds in the 0-trials group, and that thresholds in the 40-trials 

group also were lower than thresholds in the 1-trial group (p < .05). 
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Figure 5.6: Face identification thresholds measured on Day 2 plotted as a function of 
external noise. Threshold was defined as the rms contrast needed to attain 503 correct 
responses. The same levels of external noise were used in all conditions: the symbols 
are displaced, slightly, along the horizontal axis to make it easier to discriminate among 
conditions. Error bars represent ±1 standard error. 
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5.5 Discussion 

Small amounts of practice on texture- and face identification on Day 1 benefitted 

accuracy at the start of the session on Day 2 relative to a zero-trials group who did not 

practice the identification task. For face identification, there was an advantage with just 

one practice trial per condition (i.e., practice with only 21 trials on Day 1). The best 

performance on Day 2, across all bins, both with faces and textures, was achieved with 

larger amounts of practice (i.e., 40 trials per condition, a total of 840 trials on Day 1). 

The benefits of small amounts of practice were diminished in the latter part of the session 

due to substantial within-session learning by the zero-trials groups. The results point to 

the importance of within-session learning in the overall gains with practice on texture­

and face identification; for these tasks, more practice clearly is better even though some 

improvements can be detected after limited amounts of practice. 

The benefits of small amounts of practice on accuracy were not reflected in contrast 

thresholds. This failure to find a difference in thresholds is probably due to the fact 

that small amounts of practice benefited performance only at the start of the Day 2 

session, whereas the thresholds were based on all trials in the session. An adaptive 

procedure (e.g., staircase), rather than the method of constant stimuli may have been 

better suited to capture the early effects of training on thresholds. However, even with 

the methods used in the current experiments, thresholds in the 40- and 20-trials groups in 

the face identification task were equivalent on Day 2, indicating that substantial threshold 

reductions can be obtained with a fraction of the amount of practice used in other studies 

of face learning (Gold et al., 1999b, 2004). 

Overall, the critical amount of practice needed to raise performance is larger for 

texture- than for face identification, a result that complements data from the auditory 

domain showing differences across tasks in the critical amount of practice needed to 

improve performance (Wright and Sabin, 2007). In the next section we discuss what 

might account for differences in the critical amount of practice needed for faces versus 

textures 

5.5.1 Face- versus texture identification 

One trial per condition raised performance on face- but not texture-identification. 

This may have been due to differences in task difficulty arising from the unfamiliar quality 

of the texture stimuli, which required observers to develop an identification strategy for 
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the textures. Two aspects of the data support this possibility: i) accuracy in all bins 

on Day 1 was lower in the texture- than in the face identification task (Figure 2); ii) 

accuracy of all practice groups in the face identification task, including the 1-trial group, 

was equivalent in Bin 1 on Day 1, whereas accuracy of the 1-trial group in the texture 

identification task, was lower than that of the other groups, see Figure 5.7. Classification 

images have shown that subjects consistently use the same stimulus regions to distinguish 

faces, whereas the regions used with textures are idiosyncratic across observers (Gold 

et al., 2004), which confirms the idea that observers must develop identification strategies 

for textures but not for faces. We suggest that brief exposure facilitates learning when 

the stimulus properties are known in advance, as was the case with faces, but not with 

textures. Future studies investigating the role of differential strategy on the minimum 

number of trials should ensure that task difficulty is equated across tasks. 
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Figure 5.7: Proportion correct on Day 1 for all groups tested with faces and textures. 
There was no group difference in Bin 1 for faces (F(4, 96) = .48,p = .75), but there was 
a group difference in Bin 1 for textures (F(3, 83) = 5.55,p = .001). A TukeyHSD test 
confirmed that the 1-trial group differed from the other groups in Bin 1, and that none 
of the other groups differed from each other. 

In other respects, we have elsewhere found perceptual learning of face- and texture­

identification to be remarkably similar: in both cases learning is exemplar-specific (Hus­

sain et al., 2005), orientation-specific (Hussain et al., 2009, In Press) and long-lasting 

(Hussain et al., 2007). As well, both tasks exhibit partial transfer of learning to novel 

stimuli when the time course of learning is examined at a fine scale. The only other dif­

ference between the two tasks is that there is a small amount of transfer of learning across 

orientation with faces but none with textures (Hussain et al., In Press), which we have 

speculated as arising from differences in the structural regularities between the stimuli 
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(i.e., average spatial structure in objects like faces versus the lack thereof in objects like 

textures). Therefore the structural regularities in objects, aside from facilitating transfer 

of learning across conditions, might also hasten learning relative to objects without this 

property. 

5.5.2 Within-session learning versus perceptual deterioration 

Interestingly, some studies have suggested that it is possible to receive too much 

practice on certain tasks: increasing the number of practice trials per day beyond some 

upper limit either leads to no further improvement on certain tasks (Ofen-Noy et al., 2003; 

Savion-Lemieux and Penhune, 2005; Wright and Sabin, 2007) or it interferes with learning 

(Censor et al., 2006; Mednick et al., 2005; Ofen et al., 2007). For example, performance 

on a texture discrimination task has been reported to get worse when practice sessions 

comprising large numbers of trials are conducted within the same day, unless subjects 

rest or sleep between sessions (Mednick et al., 2005). The tendency for practice to worsen 

performance within the same session (aka perceptual deterioration) is thought to be due 

to an adaptation-like process dependent on the frequency of repetitions of the same type 

of trial (Censor et al., 2006; Ofen et al., 2007). Perceptual deterioration is in marked 

contrast to the within-session improvements reported for a number of tasks (Fiorentini 

and Berardi, 1981; Poggio et al., 1992; Kami and Sagi, 1993; Beard et al., 1995; Matthews 

et al., 1999), and to the robust-within session learning found here. Indeed, there was 

no evidence of perceptual deterioration in the current tasks, either with small or large 

amounts of practice within the session. Instead, performance steadily increased during 

the session. The factors that produce deterioration rather than learning within a session 

need to be clarified. 

5.5.3 Amount versus distribution of practice 

Some have suggested that distributed practice is more beneficial for perceptual and 

motor learning than massed practice (Savion-Lemieux and Penhune, 2005; Ofen-Noy 

et al., 2003), consistent with research on learning in memory tasks (Woodsworth and 

Schlosberg, 1956). Ofen-Noy et al. (2003) showed that increasing the amount of train­

ing from four to eight blocks did not enhance performance on a mirror reading task, 

and that the data were better described by a power function constrained by the time 

schedule of training, than by a function constrained by the number of trial repetitions. 

Savion-Lemieux and Penhune (2005) also showed that distribution of practice over sev­



99 5.5. DISCUSSION 

eral days was the critical factor in learning and retention of a timed motor sequence task. 

Here, many practice trials closely spaced within the training session resulted in better 

performance on Day 2 relative to groups that received fewer practice trials. Further­

more, an additional analysis showed no group difference in average accuracy of 840 trials 

conducted within a session versus 840 trials conducted across the two sessions (i.e., 40­

and zero-trials groups versus the remaining groups), which confirmed that there was no 

advantage from a gap between sessions. We suggest that for certain tasks, overall perfor­

mance is determined by the sheer amount practice than by the distribution of practice 

across time. 

5.5.4 Rapid learning versus one-trial learning 

Rapid improvements in performance have been shown in the time-course of learning 

for several visual tasks, usually within the first 100 trials on the first day of training 

on the task (Poggio et al., 1992; Fahle et al., 1995; Kami and Sagi, 1993; Tovee et al., 

1996; Sireteanu and Rettenbach, 1995; Beard et al., 1995). These rapid improvements are 

thought to reflect procedural learning that differs from the stimulus-specific gains that 

arise from better representation of the relevant stimulus properties (Kami and Bertini, 

1997). Yet, highly specific learning can be obtained with a single target exposure, (i.e., 

the phenomenon of one-trial learning; Sahley et al., 1981). One-trial learning typically 

has been demonstrated with animals in the context of associative learning (Chang and 

Gelperin, 1980; Balderrama, 1980; Sahley et al., 1981; Brandon and Coss, 1982; Malin 

et al., 1986; Armstrong et al., 2006; Cook and Fagot, 2009), but there are examples 

of one-trial learning in humans as well (Rozin, 1986; Taieb-Maimon, 2007). Indeed, 

some researchers have shown that stimulus-specific perceptual learning can occur early 

in training, within the first 200 trials (Fahle et al., 1995; Hawkey et al., 2004). In the 

current tasks, there was rapid within-session learning, as well as a benefit from one trial 

per condition for face identification. We have elsewhere shown that learning of texture­

and face identification is stimulus-specific (Hussain et al., 2005, 2009, In Press); whether 

stimulus-specificity of learning of these tasks can emerge from brief practice is an open 

question. 

5.5.5 Conclusions 

Small amounts of practice can improve accuracy on texture- and face identification, 

but large amounts of practice are better. Faces but not textures can be learned with as 
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little as one trial per condition. The benefits from small amounts of practice are evident 

early in the test session, but more difficult to discern in average performance pooled over 

many trials due to the substantial influence of within-session learning by the relatively 

naive groups. Performance does not deteriorate across trials for these tasks. Instead, 

learning is an incremental function of practice. 
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Chapter 6 

Superior identification of familiar 

visual patterns a year after learning 

6.1 Abstract 

We examined whether learning in face and texture identification tasks is stable across 

long periods of time. Subjects completed lOAFC identification tasks on two consecu­

tive days and returned for a follow-up session 10-18 months later. Response accuracy 

improved significantly across the first two days of training, and most of the benefits of 

practice remained in the follow-up session approximately one year later. The learning 

and retention was largely stimulus-specific: novel exemplars from the trained category 

did not exhibit all the benefits found with the trained set. Individual differences in 

performance observed during the first two days were preserved at the follow-up session. 

The relative difficulty of identifying individual stimuli was stable across testing sessions. 

These results are similar to the stability of learning found with low-level visual tasks. We 

conclude that perceptual learning of complex visual tasks endures over time. 

6.2 Introduction 

It is well known that practice improves visual performance on simple tasks such 

as the discrimination of spatial frequency, orientation, direction of motion and curvature 

(Fiorentini and Berardi, 1981; Kami and Sagi, 1993; Ball and Sekuler, 1982; Maertens and 

Pollmann, 2005). Practice also improves contrast sensitivity in amblyopes (Zhou et al., 

2006), and grating acuity and figure-ground segregation in typical observers (Beard et al., 
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1995; Yi et al., 2006). Improvements on these tasks are specific to the trained stimuli 

(Ball and Sekuler, 1982; Fiorentini and Berardi, 1981; Yi et al., 2006), and endure over 

long periods of time without intervening training (Fiorentini and Berardi, 1981; Beard 

et al., 1995; Ball and Sekuler, 1982; Kami and Sagi, 1993; Zhou et al., 2006; Yi et al., 

2006; Maertens and Pollmann, 2005). These specific, enduring improvements with simple 

tasks suggest the permanent alteration of early visual areas where the stimuli used are 

sufficiently represented (i.e., areas Vl-V 4). Practice also improves performance in more 

complex visual tasks. For example, practice improves reading of inverted text, visual 

search, and face- and texture identification (Kolers, 1976; Sigman and Gilbert, 2000; 

Sireteanu and Rettenbach, 1995; Gold et al., 1999b, 2004). As with simple tasks, the 

benefits of practice in complex tasks can be stimulus-specific (Kolers, 1976; Sigman and 

Gilbert, 2000; Hussain et al., 2005), suggesting that learning in complex situations shares 

some of the characteristics of learning found in reduced contexts. 

Do the stimulus-specific effects of training persist for complex tasks? In one striking 

example, subjects reread inverted text encountered a year earlier more rapidly than novel 

pages of inverted text (Kolers, 1976), indicating a selective, persisting improvement of 

the encoding operations involved. We have obtained similar specificity of learning in the 

short-term, with face- and texture identification: improvements in identifying faces and 

textures are largely confined to the trained items; at test, trained items are identified 

at an advantage relative to novel items (Hussain et al., 2005, In Press). Here, we test 

whether this type of stimulus-specificity endures. It could be that the learning is entirely 

transient and all improvements vanish with time, or some generalized benefits might be 

retained, such as those found in learning of visual search (Sireteanu and Rettenbach, 

1995), and useful field of view (Richards et al., 2006). Alternately, learning of faces 

and textures could resemble that found with simple tasks, with stimulus-specific benefits 

persisting up to a year later. 

6.3 Methods 

6.3.1 Subjects 

Nine subjects performed a face-identification task, and six subjects performed a 

texture-identification task on two occasions: an initial learning and test phase in ex­

periments that were conducted with a larger sample of observers (168 and 158, for faces 

and textures, respectively), and a follow-up test phase 10-18 months after initial training 

(henceforth referred to as "l year later"). This subset of observers was selected not on the 
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(a) 

(b) 

Figure 6.1: Examples of the faces (a) and textures (b) used in the experiments. 

basis of any performance criterion, but on availability to return at the time the follow-up 

study was conducted. On average, subjects in the face- and texture identification task 

performed the follow-up session respectively 13 (SD = 3.4) and 15 months (SD =1.6) af­

ter the initial test session. Subjects were between the ages of 17 and 32 years (M = 19.26 

SD = 2.18) and had normal or corrected-to-normal Snellen acuity. All subjects received 

a small fee ($10/hour) or partial course credit for participating in the experiment. 

6.3.2 Apparatus and Stimuli 

Stimuli were generated in Matlab (v. 5.2) using the Psychophysics and Video Tool­

boxes (Brainard, 1997; Pelli, 1997), and displayed on a 21" Sony Trinitron monitor 

(1024 x 768 pixels) at a frame rate of 85 Hz. Average luminance was 62 cd/m2 
. Display 

luminance was measured with a PhotoResearch PR650 photometer, and the calibration 

data were used to build a 1779-element lookup table (Tyler et al., 1992). Customized 

computer software constructed the stimuli on each trial by selecting the appropriate lumi­

nance values from the calibrated lookup table and storing them in the display's eight-bit 

lookup table. 

Figure 6.1 shows examples of the face and texture stimuli presented to subjects. The 
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methods used to create face stimuli have been described previously (Gold et al., 1999a,b) 

and therefore only the main points are listed here. Faces were cropped to show only 

internal features and equated in terms of their amplitude spectrum. The textures were 

band-limited noise patterns created by applying an isotropic, ideal band-pass spatial 

frequency filter (2-4 cy/image) to white Gaussian noise. Stimulus size for both stimulus 

classes was 256 x 256 pixels, subtending 4.8 x 4.8 deg of visual angle from the viewing 

distance of 114 cm. Two sets of 10 faces (five female and five male in each set) and 

two sets of 10 textures were created. During the experiment, stimuli were presented in 

low, medium, or high levels of static two-dimensional Gaussian noise (contrast variance 

= 0.001, 0.01, or 0.1), and stimulus contrast was varied across trials using the method 

of constant stimuli. Seven levels of contrast that were spaced equally on a logarithmic 

scale were chosen at each noise level, such that the contrasts spanned a range that was 

sufficient to produce significant changes in performance in virtually all subjects. The 

combination of stimulus contrast levels and noise levels yielded 21 different stimulus 

presentation conditions. Hence, subjects viewed each face/texture at a signal-to-noise 

ratio that varied significantly across trials. 

6.3.3 Procedure 

All subjects performed two sessions of the face- or texture identification task at the 

same time on consecutive days (Days 1 and 2). Observers then were tested in a final 

session approximately one year later with two sets of stimuli: one that contained the 

same stimuli viewed in the first two sessions, and another that contained items that they 

had not not seen previously. The same and different sets of stimuli were presented in 

separate blocks of trials, and the order was roughly counterbalanced across subjects. 

Subjects were seated in a darkened room 114 cm away from the monitor. Viewing 

was binocular, and viewing position and distance were stabilized with an adjustable chin­

rest. The experiment started after a 60 s period during which the subject adapted to the 

average luminance of the display. A trial began with the presentation of a black, high­

contrast fixation point (0.15 x 0.15 deg) in the center of the screen for 100 ms, followed 

by a face/texture, selected randomly from one of the 21 stimulus conditions, presented 

for 200 ms at the center of the screen. After the face/texture disappeared, the entire 

set of 10 faces/textures was presented as noiseless, high-contrast thumbnail images, each 

subtending 1.7 x 1.7 deg of visual angle. Five thumbnails were presented on the top half 

of the screen, and five on the bottom half, and the location of each face/texture in the 

response window was constant across trials and days. The subject's task was to decide 



109 6.4. RESULTS 

which one of the 10 faces/textures had been presented during the trial by clicking on the 

chosen texture with a computer mouse. Auditory feedback in the form of high-pitched 

(correct) and low-pitched (incorrect) tones informed the subject about the accuracy of 

each response, and the next trial began one second after presentation of the feedback. 

On each of Days 1 and 2, observers performed 40 trials per stimulus condition for a 

total of 840 trials per day (40 trials x 21 stimulus conditions), which were completed in 

approximately one hour. Stimulus sets remained the same for an individual across Days 

1 and 2. Each face/texture was selected randomly (with replacement) on each trial, such 

that on average each face/texture was shown approximately 84 times during the entire 

session. The follow-up session (1-year later) consisted of 420 trials with the trained 

stimulus set, and 420 trials with the novel stimulus set for the same stimulus class (faces 

or textures). The trained and novel stimuli were shown in separate blocks in an order 

roughly counterbalanced across subjects (full counterbalanced for the six subjects in the 

texture identification task, and the almost fully counterbalanced for the nine subject in 

the face task). 

6.4 Results 

For the purpose of the analyses, the 840 trials on Days 1 and 2 were divided into four 

blocks of 210 sequential trials (Trial bins 1-8), and the 420 trials for each of the stimulus 

sets tested a year later were divided into two blocks of 210 trials (Bins A and B). For each 

bin, the proportion of correct responses was calculated after collapsing across all levels 

of stimulus contrasts and noise. Results for face- and texture-identification are shown in 

Figures 6.2 and 6.3. 

The face identification task showed significant within-session improvement on Day 1, 

evidenced by a 20% increase in accuracy from Bin 1 to Bin 4 (t(8) = 9.54, p < .00001). 

There was also significant within-session improvement on Day 2, with performance im­

proving by 10% from Bin 5 to Bin 8 (t(8) = 4.54, p < .01). Overall accuracy - i.e., 

averaged across bins -was 18% higher on Day 2 than on Day 1, (t(8) = 11.36, p < .0001). 

A year later, performance in the first trial bin (Bin A) in the same-face condition was 

18% better than in Bin 1 (t(8) = 7.883, p < .0001), no different than performance in 

Bin 4 (t(8) = 1.054, p = .322), but 15% lower than performance in Bin 8 (t(8) = 7.17, 

p < .0001). Therefore, performance in the follow-up session in the same-face condition 

was equivalent to that achieved at the end of the first, but not the second, session. In 

the different-face condition, performance in Bin A was no different than performance 
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Figure 6.2: Proportion correct on Day 1, Day 2, and 1 year later for 9 subjects in the face­
identification task. Each session comprised 840 trials, therefore each trial bin represents 
210 trials. Performance a year later was measured both with the same faces shown on 
Days 1 and 2 (black circles), and with different faces that subjects had not seen before 
(gray circles). 

in Bin 1 (t(8) = 1.8,p = .10) and 153 lower than performance in Bin 4 (t(8) = 4.05, 

p = .0036). Additionally, performance in the same-face condition was better than per­

formance in the different-face condition in Bin A (143; t(8) = 3.57, p = .007) and Bin B 

(203; t(8) = 4.81, p = .001). A two-way ANOVA on the follow-up data, with Bin (A vs. 

B), and Condition (Same vs. Different), as repeated measures, yielded a main effect of 

Condition (F(l, 8) = 23.86,p = .001), and a main effect of Bin (F(l, 8) = 6.11,p = .038); 

the interaction between Bin and Condition was not significant (F(l, 8) = 2.37,p = .161). 

This analysis confirms that accuracy in the follow-up session was higher in the same-face 

than in the different-face condition, and that accuracy increased from Bin A to Bin B; 

however the amount of improvement from Bin A to Bin B did not differ across conditions. 

The texture-identification task also showed significant within-session learning on Day 

1: accuracy increased by 253 from Bin 1 to Bin 4 (t(5) = 5.070, p = .003). There also 

was significant within-session learning on Day 2, by 163 from Bin 5 to Bin 8 (t(5) = 2.96, 

p = .03). Averaged across bins, response accuracy on Day 2 was 213 higher than on 

Day 1 (t(5) = 8.18, p = .0004). Approximately one year later, accuracy in Bin A in 

the same-texture condition was 353 higher than in Bin 1 (t(5) = 15.70, p < .0001) and 

93 higher than in Bin 4 (t(5) = 2.68, p = .04), and did not differ significantly from 



111 6.4. RESULTS 

0.8 
Day 1 

0.7 

t5 0.6~ 
0 
u 
c 0.50 

..E 
0 
c.. e 0.4 a. 

0.3 

0.2 

~J·--'~ 

+Z 
2 3 

Day 2 

~L v 
~ 

""I 

4 5 6 

..... 

7 8 

1 year later 

.......... same 

.....,_different 

A B 
Trial bin 

Figure 6.3: Proportion correct on Day 1, Day 2 and 1 year later for 6 subjects in the 
texture-identification task. Each session comprised 840 trials, therefore each trial bin 
represents 210 trials. Performance a year later was measured both with the same faces 
shown on Days 1 and 2 (black triangles), and with different faces that subjects had not 
seen before (gray triangles). 

accuracy in Bin 8 (t(5) = 1.54, p = .18). In the different-texture condition, accuracy 

in Bin A was 18% better than in Bin 1 (t(5) = 6.41, p = .001), no different than in 

Bin 4 (t(5) = 1.87, p = .11), and 24% lower than in Bin 8 (t(5) = 4.88, p = .004). 

Therefore, there was partial generalization to novel items, but performance was not as 

good as that achieved with the same items. Performance in the same-texture condition 

was better than in the different-texture condition in Bin A (16% difference; t(5) = 6.44, 

p = .0013) and Bin B (10% difference; t(5) = 3.29, p = .02), indicating that a substantial 

proportion of the improvements was stimulus-specific. A two-way AN OVA on the follow­

up data, with Bin (A vs. B), and Condition (Same vs. Different), as repeated measures, 

yielded a main effect of Condition (F(l, 5) = 34.32,p = .002), and a main effect of Bin 

(F(l, 5) = 14.103, p = .01); the interaction between Bin and Condition was not significant 

(F(l, 5) = 2.17,p = .20). This analysis confirms that as with faces, accuracy was higher 

in the same-texture than in the different- texture condition, accuracy increased from Bin 

A to Bin B, and the amount of improvement from Bin A to Bin B did not differ across 

conditions. 

To test whether the amount of transfer to novel items differed for faces and tex­

tures, the difference between Bin 1 and Bin A was compared in the different-texture and 
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different-face conditions. There was a significant difference between faces and textures 

in the amount of transfer to novel items (faces: 43 versus textures: 183; t(l0.873) = 

3.79,p = .003). However, the advantage of same over different items in Bin A did not 

differ between faces and textures (faces: 143 versus textures: 163; t(12.637) = .55, p = 

.58), and neither did the advantage of same over different items in Bin B (faces: 193 ver­

sus textures: 113, t(12.998) = l.69,p = .11). These analyses show that there was more 

generalization to novel items with the texture stimuli, nevertheless the stimulus-specific 

advantage did not differ between faces and textures. 
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Figure 6.4: Individual performance on the face and texture identification tasks on Day 
1, Day 2, and during the follow-up session about one year later. Each symbol represents 
a subject. 

Figure 6.4 shows the average performance of each observer on each session. Despite 

the large variability in performance across observers, the rank orders of individuals was 

relatively stable across sessions in both tasks. For subjects who were tested with faces, 

the Spearman rank-order correlation was significant for all pairs of test sessions (p ~ .96, 

p < .001). For subjects who were tested with textures, the rank-order correlations were 

all positive, but, perhaps due to the small sample size (n = 6), only the correlation 

between Day 1 and the follow-up session was significant (Days 1 & 2: p = 0.60, p = .24; 

Day 1 & follow-up: p = .94, p = .015; Day 2 & follow-up: p = .71, p = .13). 

To examine whether the effects of practice reflected improved performance on just a 

few items, we calculated the mean response accuracy for individual faces and textures 

during each test session. The results for faces are shown in Figure 6.5. Each symbol in 
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Figure 6.5 represents the response accuracy for a single face averaged across subjects. 

Three sets of ten faces are shown by different symbols, because average accuracy for 

each set was calculated with different numbers of subjects; the face sets shared the same 

stimulus characteristics, but were used in different experiments. Figures 6.5a and 6.5b 

show that relative to Day 1, accuracy was higher for 29 out of 30 faces on Day 2, and 

27 out of 30 faces during follow-up. Accuracy during follow-up was no different than 

accuracy measured on Day 2 (Figure 6.5c), confirming that the benefits of learning were 

intact during the follow-up session. The variation among all faces remained constant 

across all sessions (all r's 2: .90, p < .001), implying that learning did not change the 

relative discriminability of the faces. 

Figure 6.6 shows the effects of practice on response accuracy for individual textures. 

As in Figure 6.5, each symbol represents the accuracy (averaged across subjects) for a 

single texture. Compared to Day 1, response accuracy was higher for every texture on 

Day 2 (Figure 6.6a) and for 19 out of 20 textures on the 1-year follow-up (Figure 6.6b). 

Accuracy during follow-up was no different than that measured on Day 2. Hence, practice 

improved performance for all textures, and the benefits relative to Day 1 were retained 

for nearly all items. Finally, the variation among textures remained stable across all 

sessions (all r's 2: .68, p < .001). This result is consistent with the idea that learning (or 

forgetting) did not produce qualitative changes in the way these items were represented. 

6.5 Discussion 

Even for complex visual tasks such as face- and texture identification, the effects of 

perceptual learning were remarkably stable over long periods of time. The lasting effects 

were largely specific to the trained stimuli (although there was some generalization with 

the textures), similar to the specificity of learning observed a day after training with faces 

and textures (Hussain et al., 2005, In Press, 2009). In addition to the stimulus-specificity 

of learning, individual differences from the initial sessions were preserved a year later, 

and so were inter-item differences in accuracy. Item-accuracy was positively correlated 

across days, and during the follow-up session, indicating that training did not alter the 

relative discriminability of the stimuli i.e., enhance the representation of a subset of the 

exposed items. Instead, learning resulted in a uniform increase in performance for all 

trained items. This result constrains models of learning that alter the stimulus space 

after training. 

It is striking that the enduring benefits for these stimuli were at all item-specific. 
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Figure 6.5: Scatter plots showing accuracy for three sets of ten faces used in the face 
identification task; the sets were used in separate experiments, and are shown by sep­
arate symbols. Black circles, open circles and stars respectively represent the average 
performance of four, two and three subjects with a given face. Area above the solid line 
indicates improvement. Dashed line indicates the least squares fit. a) Day 1 vs. Day 
2. b) Day 1 vs. 1 year later c) Day 2 vs. 1 year later. All correlations are positive, 
and significant. Learning is retained a year later relative to performance on Day 1 (b), 
however there is a drop relative to performance on Day 2 (c). 
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Figure 6.6: Scatter plots showing accuracy for each of twenty textures used in the texture 
identification task. Each point represents the average performance of three subjects with 
a given texture. Area above the solid line indicates improvement. Dashed line indicates 
the least squares fit. a) Day 1 vs. Day 2. b) Day 1 vs. 1 year later c) Day 2 vs. 1 
year later. All correlations are positive, and significant. Learning is retained a year later 
relative to performance on Day 1 (b), and some improvement relative to performance on 
Day 2 is also evident ( c). 
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The textures are unfamiliar stimuli without the spatial characteristics found in everyday 

objects, and without any obvious semantic content. Nevertheless, performance with 

trained items a year later was superior to novel items, indicating that familiarity with 

the object class is not essential for long-term retention. The enduring specificity of 

learning found with faces is also notable given the large amount of exposure to other faces 

that presumably occurred for all participants in natural contexts during the intervening 

period; Evidently, exposure to other faces does not dilute the specific effects of perceptual 

learning up to a year later. 

Textures evidenced more generalization of learning to untrained items than did faces. 

Specifically, performance with different textures (but not faces) in the 1-year follow-up 

was superior to performance measured in the first trial bin on Day 1. Previously we 

have found small amounts of generalization to novel items both with faces and with 

textures, and attributed the effect to a task-general component of learning (Hussain 

et al., In Press), consistent with the mixture of specificity and transfer reported in other 

perceptual learning studies (Yi et al., 2006; Beard et al., 1995). Presumably, the larger 

amounts of transfer found with textures is due to subjects becoming accustomed in the 

initial trial bin to the arbitrary quality of the texture patterns. 

Lasting, stimulus-specific effects of learning on simple visual discriminations have been 

attributed to changes early in the visual pathway, particularly, to the primary visual area 

(Kami and Bertini, 1997; Schoups et al., 1995; Maertens and Pollmann, 2005). Clearly, 

similar learning is possible for high-level visual tasks that in all likelihood, engage brain 

regions beyond the primary visual area. Complex objects composed of multiple stimulus 

features, such as faces and textures, are coded in entirety by neurons in higher visual 

areas such as inferotemporal cortex (IT) (Desimone et al., 1984; Logothetis et al., 1995). 

Neurons in IT are highly stimulus selective, yet the selectivity of these neurons can 

be profoundly affected by learning (Cox and DiCarlo, 2008; Li and DiCarlo, 2008). IT 

neurons are also involved in the formation of visual memory (Desimone, 1996). Stimulus­

selective coding of objects could be an outcome of repeated exposure, and a factor in the 

stable effects of training that we show here for faces and textures. 

Although one might infer that long-lasting perceptual improvements are the result 

of neural changes that are irrevocable, a recent report suggests otherwise: increased 

activation in Vl was associated with stimulus-specific improvements on a texture dis­

crimination task, but performance remained stable while activation in the corresponding 

regions returned to baseline (Yotsumoto et al., 2008). This finding implies the involve­
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ment of additional neural regions in enabling the long-term effects of learning, besides 

the neurons that code immediate properties of the trained stimuli. It could be that task 

context activates a larger neural network that re-instantiates the effects of learning long 

after the initial training experience. 

6.6 Conclusions 

Perceptual learning of face- and texture-identification endures over long periods of 

time, here measured as 10-18 months after initial training. The retained improvements 

were largely specific to the trained items, and thus cannot be considered as the retention 

of task-general skills, although some generalized benefits were also evident during follow­

up, particularly for texture-identification. Individual differences, as well as inter-item 

differences in accuracy were intact during follow-up, indicating that learning did not 

qualitatively alter the representations of the learned items. The long-term, specific effects 

of perceptual learning for complex patterns suggest similar principles of stimulus coding 

in higher visual areas as in earlier visual areas typically associated with the learning of 

reduced stimuli. 
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Chapter 7 

Summary & the Future 

Perceptual learning of faces and textures shows the hallmarks of learning found with 

simple visual tasks. The hallmarks are stimulus-specificity, a time-course comprising 

rapid and gradual improvements, and long-lasting stability of learning. Similarities in 

learning of simple and complex visual patterns suggest common principles of learning 

throughout the hierarchy of visual processing. Overall, the experiments show that expe­

rience elicits significant and stable improvements in the quality of complex visual repre­

sentations. 

7 .0.1 Specificity 

Stimulus-specific learning permeates aspects of object recognition thought to be in­

herent, such as the face-inversion effect. Chapter 2 showed that orientation-specific learn­

ing contributes significantly to the inversion effect, which either increases or decreases, 

depending on the orientation of the trained faces. Furthermore, practice generates inver­

sion effects where none exist: in textures with no canonical orientation, and without the 

prototypical structure present in faces. Clearly, the face inversion-effect is not entirely 

inherent, and other supposedly inherent effects could be labile. Chapter 2 also identifies 

learning as largely exemplar-specific, which makes perceptual learning a likely mechanism 

for phenomena in which certain visual exemplars from an object class are distinguished 

better than others - for instance, the 'other-race effect', where own-race faces are rec­

ognized better than other-race faces (Valentine and Bruce, 1986; Goldstein and Chance, 

1985). Stimulus-specific perceptual learning of face- and texture identification is consis­

tent with the view that the 'special effects' found with faces are largely the product of 
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expertise after a lifetime of exposure (Gauthier et al., 1998; Bukach et al., 2006). 

Chapter 3 showed that perceptual learning of textures was contrast polarity-specific. 

Learning was abolished when textures were reversed in polarity, even though the shape 

and location of the telling features within the image had not been altered. Learning was 

abolished even when observers were shown the type of change the stimuli had undergone, 

and when they were given the opportunity to modify their learning strategies to anticipate 

the change. These experiments provide the most vivid demonstration of specificity of 

learning to the exact properties of the stimuli, and they show how stimulus-driven effects 

on learning can be robust to cognitive, 'top-down' control. 

Specificity of learning has been used to infer where in the brain learning occurs (Kami 

and Bertini, 1997). In simple cases, stimulus- and position-specific learning is associated 

with changes in the primary visual area, which is retinotopically organized, and which 

fully represents the relevant stimulus features (Kami and Sagi, 1991; Gilbert, 1994; Sig­

man and Gilbert, 2000; Fahle, 2005; Yi et al., 2006). In line with this logic, one inter­

pretation of stimulus-specific learning of faces and textures might be that practice alters 

the most initial encoding of the stimuli, in primary visual cortex. However, the features 

of complex patterns, as well as entire patterns are well-represented in higher visual areas 

such as inferotemporal cortex (IT) (Desimone et al., 1984; Tanaka et al., 1991; Logothetis 

et al., 1995). Learning of complex patterns affects the responses of IT neurons (Logo­

thetis et al., 1995; Jagadeesh et al., 2001), and the effects have been shown as item- and 

location-specific (Cox and DiCarlo, 2008; Li and DiCarlo, 2008). Also, polarity-sensitive 

cells are profuse in IT (Ito et al., 1994). For these reasons, an equally likely interpreta­

tion of the stimulus-specific effects of learning found with faces and textures, is that the 

substrate of learning is higher in the visual stream. Generally, stimulus-specificity should 

be taken to indicate early neural changes only when the stimuli are highly reduced and 

the task is confined to a single stimulus dimension. In all other cases, the substrate of 

learning must be confirmed physiologically. 

It is worth noting that some recent studies challenge the traditional inference that 

specificity of learning reflects modifications in primary visual areas even in highly re­

duced cases. Law and Gold (2008) reported significant changes in macaque area LIP 

with improvements on a motion discrimination task, and negligible changes in area MT; 

whereas area MT encodes motion, area LIP enables decision-making, suggesting that 

learning involves better sampling of the relevant encoding neurons, rather than better 

encoding itself. This report is consistent with the alternate, but less predominant sug­
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gestion in the literature that stimulus-specificity could correspond with a central rather 

than early neural substrate (Mollon and Danilova, 1996). Intriguingly, stimulus-specific 

perceptual learning in the auditory domain, of a challenging and complex linguistic task 

has recently been linked to changes outside the neocortex - in the auditory brainstem 

(Song et al., 2008) - raising the possibility that the neural substrate of other types of 

perceptual learning might also not be confined to the neocortex. 

7.0.2 Time-course 

Face- and texture identification are m the category of tasks showing substantial 

within-session effects of practice (Fiorentini and Berardi, 1981; Poggio et al., 1992; Beard 

et al., 1995; Matthews et al., 1999). Certain tasks do not exhibit within-session learn­

ing, and the improvements measured across sessions are attributed to consolidation that 

occurs during sleep (Schoups et al., 1995; Mednick et al., 2005). Chapter 4 showed that 

sleep had almost no impact on learning of face identification: within-session improve­

ments were robust in the absence of sleep, and there were significant across-session gains 

for groups that did not sleep between sessions. These findings suggest that rather than 

being the outcome of a latent period of consolidation as has sometimes been proposed 

(Kami and Bertini, 1997), specificity of learning may emerge during training. It is not 

clear why within-session learning is negligible for certain tasks, and sleep's role in percep­

tual learning remains to be shown for the remaining variety of cases where across-session 

improvements have been measured. 

The total amount learned on these tasks is a cumulative function of practice: for both 

face- and texture identification, more practice resulted in better performance, and the 

best performance was obtained with large amounts of practice (Chapter 5). Nevertheless, 

there were measurable benefits from small amounts of practice - one trial per condition in 

the case of face identification. The effects of small amounts of practice were evident only 

early in the session, because within-session learning enabled the unpracticed groups to 

catch up with the practiced groups. These data, as well as data from Chapter 2, show how 

the subtle effects of practice can be detected when performance is analyzed at a fine scale. 

In Chapter 2, average accuracy across trial bins obscured transfer of learning that was 

obvious when the early bins were inspected; in Chapter 5, average accuracy concealed the 

effects of small amounts of practice received the previous day. Whether the subtle effects 

of practice really matter when they're washed out in the average is another question, but 

the subtle effects are there. Overall, the amount learned in the tasks studied here was 

dictated by the sheer amount of practice, rather than the distribution of practice across 
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days, or some optimal amount of practice within a day. 

7.0.3 Stability 

Remarkably, practice on the lOAFC task leaves permanent impressions of the images 

on the brain (permanent up to 18 months later, anyhow). Chapter 6 showed long-lasting 

effects of practice that were exemplar-specific: observers performed better with only those 

ten faces or textures that they saw months earlier, so it was not mere experience with 

the task that was recalled. Long-term, exemplar-specific retention of faces and textures 

is all the more uncanny because of the tremendous intervening exposure that subjects 

presumably had to other faces, and because of the meaningless, arbitrary quality of the 

texture patterns. One way to interpret these results is that the neural substrates of 

perceptual learning and long-term visual memory are the same. Indeed, IT neurons, 

speculated above as the substrate of learning for these tasks, show item-specific learning, 

and are thought to be involved in at least short-term visual memory (Desimone, 1996). 

With both faces and textures, the relative discriminability of items was unchanged 

after learning. Accuracy increased uniformly for all trained items, rather than for a select 

number of items, as shown by the high correlations across days in Chapter 3 (Figure 3.4), 

and across months in Chapter 6 (Figures 6.5 and 6.6). The high correlations imply that 

the perceptual space was qualitatively unaltered after learning; differences in discrim­

inability were highly reliable even when there was a large interval between measurements. 

Models of learning describe how practice refines the initial representation to have higher 

fidelity to the actual stimulus (Saksida, 1999; McLaren and Mackintosh, 2000). One con­

sequence of the refinement of representations with learning, is the separation of initially 

clustered representations (e.g., Saksida, 1999). Where models of learning predict that 

practice teases apart similar representations, the present data add that given a roughly 

equal number of exposures for each item, practice uniformly increases the distance be­

tween item representations. Note however, that we did not manipulate the perceptual 

similarity of the faces or textures, and similarity is known to influence both the amount 

oflearning and generalization between items (e.g., McLaren and Mackintosh, 2002). Fu­

ture experiments could confirm whether the perceptual similarity of faces (or textures) 

affects the relative degree of improvement across items. 
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7.0.4 Faces versus textures 

The preceding paragraphs summarized the similarities in learning of faces and tex­

tures: stimulus-specificity, some task-related transfer, long-term retention, a combination 

of within- and across session learning, and uniform increases in accuracy for all items. 

There were also some differences in learning between the two types of stimuli. For one, 

there was partial transfer of learning across orientation with faces, but not with tex­

tures (Chapter 5). Another difference: one practice trial per condition was enough to 

improve performance with faces, but not with textures. Two immediate stimulus-related 

factors might account for these differences: i) familiarity and ii) image properties. Faces 

are a highly familiar object class, whereas the textures are novel patterns. Knowing 

where to look in the image could speed up the learning process, and facilitate transfer 

to untrained views. Faces also have a clear canonical orientation, which in part is due 

to their prototypical structure (i.e., the average of many faces looks like a face); tex­

tures lack this property. Therefore, in addition to familiarity, the spatial regularities in 

faces might promote transfer of learning to other orientations. Future experiments might 

separate the influences of object familiarity and spatial structure on learning, and exam­

ine whether transfer of learning across orientation increases with the degree of spatial 

regularity within the object. 

More transfer of learning across orientation with faces but not with textures is consis­

tent with the proposal that task difficulty predicts transfer of learning, with more transfer 

under easy than difficult conditions (Ahissar and Hochstein, 1997; Liu and Weinshall, 

2000; McLaren and Mackintosh, 2002). Texture identification was more difficult than 

face identification: accuracy in the initial trial bins was consistently lower on Day 1. The 

increased difficulty of texture identification relative to face identification was presumably 

due to the aforementioned differences in similarity and image properties, but this needs 

to be confirmed. 

7.0.5 The future 

An issue that has not been discussed is how to improve the learning itself. Better 

learning could mean faster learning, more efficient learning, or more generalization of 

learning. To the extent that generalization of learning is 'better', we can fiddle with 

the paradigm to see which one produces the best results. An intuitive prediction is that 

greater variation during practice will increase generalization to novel exemplars. One 

way to test this idea is by manipulating the standard deviation of a fixed number of 
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Figure 7.1: Effects on accuracy of three different types of training (Days 1 and 2). On 
Days 3 & 4 (test) all groups performed the task with a fixed set of textures; half the 
subjects performed the task with the same fixed set of textures on both days (black), 
and the other half transfered from a fixed set to a novel set from Day 3 to Day 4 (grey). 
Top panel: Subjects practiced with the same fixed set of 10 textures on Days 1, 2, & 3. 
Middle panel: Subjects practiced with a novel set of 10 textures on every trial on Days 
1 & 2, therefore they never saw the same texture twice, and viewed in all, 840 sets of 
10 textures during the first two days. Bottom panel: Subjects switched between a fixed 
set of textures from Day 1 to Day 2, and from Day 2 to Day 3; this group therefore had 
prior experience in switching between a fixed set of textures, and viewed three sets of 10 
textures prior to test 
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TRAINING TEST 
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Figure 7.2: Effects on response time of three different types of training (Days 1 and 2). 
See previous figure for details on the training conditions. 
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training items. Another way is to increase the sample size of the training items. 

Does transfer of learning increase when the sample size of the training set is increased? 

From the most recent experiment in this series, the answer is yes. When subjects prac­

tice lOAFC texture identification in a condition in which a novel set of ten textures is 

generated on every trial (i.e., when they view a very large pool of textures, and no tex­

ture more than once, here called the Unlimited texture condition), they become adept at 

transferring from one fixed set of textures to another (Figures 7.1 and 7.2, gray trace in 

middle panels,). Therefore, one way to increase generalization of learning is to increase 

the sample size of the practice items. The performance of a different group indicates that 

the previous experience of switching between fixed sets (here called the Switch condition), 

also facilitates transfer of learning on subsequent occasions (bottom panels, Figures 7.1 

& 7.2). Although the Unlimited and Switch conditions produce better generalization 

of learning, the highest accuracy is achieved by subjects who identify the same set of 

fixed textures throughout (Fixed condition; black trace in top panels, Figures 7.1 & 7.2). 

Hence, with high accuracy as a criterion, performance is best after training with a small 

sample size, but with versatility as a criterion, performance is best after training with a 

large sample size. 

It is interesting that learning occurs at all when no texture is shown more than once. 

For other tasks, it has been reported that learning in roving conditions - conditions in 

which several types of stimuli are interleaved during the session - is either abolished (e.g., 

Adini et al., 2004; Yu et al., 2004; Kuai et al., 2005; Otto et al., 2006), or very gradual, re­

quiring as many as 18,000 trials for any measurable improvements to emerge (Parkosadze 

et al., 2008). On the other hand, consistent with what we find here, Xiao et al. (2008) re­

cently reported that a double-training paradigm induced complete transfer of perceptual 

learning across the trained retinal location for the tasks of contrast-discrimination and 

orientation-discrimination. Paradigm effects on perceptual learning are probably based 

in perceptual decisions or strategies, but changes to the stimulus representations cannot 

be entirely ruled out. To address this type of issue, we are now conducting experiments 

to test whether improved detection of the stimulus affects identification and vice versa. 
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