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Abstract 


Neural correlates of visual object learning 


Jesse S. Husk 


Doctor of Philosophy 


Department of Psychology, Neuroscience and Behaviour 


McMaster University 


2009 


Faces are often deemed special objects because they are associated with behavioural and 

physiological characteristics that differ from those of other objects. These characteristics 

may indicate that faces are processed with separate mechanisms than other objects. 

On the other hand, these characteristics may be the result of our extensive experience 

with faces. If so, other objects should exhibit these same characteristics with sufficient 

exposure. This prediction has begun to be addressed both from studies of real-world 

experts and from studies that explicitly manipulate experience with non-face objects in 

the lab. 

Contributing to this larger framework, here we demonstrate that : (1) large inversion 

effects can be obtained through training alone, therefore large face inversion effects are 

insufficient evidence of specialized face-processing mechanisms; (2) house-identification 

training substantially improves behavioural performance but has minimal impact on 

fMRI activity recorded in areas that preferentially respond to houses or faces, nor in 

retinotopically-defined early visual areas. (3) house-identification training systematically 

reduces the amplitude of late ERP components in the range of 200-300 ms, and (4) the 

relative patterns of ERP responses to faces and houses remain quite stable after house­

identification training, with faces continuing to exhibit larger, earlier Nl responses than 

houses. 

Together, these results suggest that, although some behavioural characteristics at­

tributed to specialized face processing can be adequately explained through experience 

alone, training of non-face objects does not readily reduce existing differences in the fMRI 

and EEG signatures of face and object processing. 
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Chapter 1 

General Introduction 

1.1 Overview 

Face perception research has become a dominant domain of research in the field of 

visual pattern perception, occupying large volumes of yearly publications and conference 

presentations. At the heart of much of this research are the questions: Are faces special 

objects? And, does the brain process faces differently than it processes other object 

classes? 

This thesis is not directly about face processing, and will employ face stimuli only 

occasionally for purpose of control, but the projects that make up this thesis exist within 

the context of recent increased interest in face processing, and many of the questions 

addressed by these projects arise in direct response to the face processing literature. In 

particular, these projects examine the development of expertise with sets of novel objects. 

The purpose of this introduction, therefore, is to ground this body of research within the 

framework of the face perception literature. 

The aim of this thesis is to explore the properties associated with the development 

of visual object expertise across short-term in-lab training of young adult subjects, both 

behaviourally and physiologically. The experiments reported here not only contribute to 

an understanding of visual pattern learning, but also, by comparison with the existing 

face literature, address questions about how faces are processed differently from other 

objects. Specifically, this thesis: considers whether the inversion effect is a valid indicator 

of face-specific processing (Chapter 2), tests existing models of object-organization within 

the ventral temporal cortex (Chapter 3), and re-examines electrophysiological markers 

1 




2 CHAPTER 1. GENERAL INTRODUCTION 

of face processing and expertise (Chapters 4 & 5). 

1.2 Faces as special objects 

Humans, as a social species, spend much of their time in social groupings, from 

family settings to school or work settings. The ability to differentiate among people, and 

to quickly recognize those individuals that we regularly encounter, are critical parts of 

daily life. Faces do not only provide information about the identity of a person, but also 

provide information about a person's emotional and cognitive state, age, gender, and 

attractiveness. Other facial cues (such as the direction of eye-gaze) provide information 

about salient events in the near environment. For these reasons, efficient face processing 

presumably is important for successfully maneuvering through social encounters. Due to 

their familiarity and behavioral relevance, it is intuitively appealing to assume that faces 

may have acquired some special status during our evolutionary and/or developmental 

history, and that humans may be predisposed to attend to faces, to process faces with 

special efficiency, and might be equipped with neural circuitry designed to facilitate the 

processing of faces. 

The face perception literature has been mainly dominated by three major questions. 

First: Is face processing qualitatively different from the processing of other objects? 

Second: If faces are processed differently, in what way does the processing differ from 

that of other objects: how does the processing differ mechanistically, and how is that 

implemented cortically? Third: If face and object processing differ, how did this differ­

ence arise? Is there an innate predisposition to treat faces as special objects, or did the 

differences arise due to a high level of experience with face processing (perhaps due to 

the prevalence and social importance of faces)? The following sections briefly review the 

dominant points that have arisen within the field. 

1.3 Mechanisms of face perception 

One of the earliest suggestions that face perception might differ from the perception 

of other classes of objects arose from the inversion paradigm. It has been long known that 

object processing is impaired by picture-plane rotation (e.g., Jolicoeur, 1985). Recogni­

tion and identification of common objects is more difficult (i.e., accuracy decreases and 

response latency increases) when the objects are rotated away from their standard, or 

canonical, orientation. Yin (1969) noticed that this effect was larger for faces. Yin com­
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pared the reaction times for recognition upright and inverted presentations of a variety 

of stimuli, including faces, person stick-figures, and costumes. Face recognition was par­

ticularly impaired by inversion, more so than for other tested classes. This result was not 

related to task difficulty, as the face task was not the most difficult of discriminations 

subjects were asked to perform. Importantly, Yin (1969) noted that the subjects reported 

processing the faces with a different strategy than the other objects: they seemed to see 

the faces as a single whole, rather than through the piecemeal extraction of features: 

[Subjects] seemed to use two alternative strategies, either searching for some 

distinguishing feature or attempting to get a general impression of the whole 

picture. The first tended to be used mostly for materials; the second was 

used mostly for faces .... None of the subjects, however, reported being able to 

use the second strategy when looking at the inverted face. - (Yin, 1969, page 

145) 

1.3.1 Featural and configural processing 

Yin's work sparked a massive line of research on the mechanisms underlying face 

inversion that continues to this day. Consistent with Yin's original speculation, it is now 

widely held that face and object processing differ qualitatively. Specifically, that object 

recognition primarily relies on featural processing, but that face recognition relies on 

both featural and configural processing. It is worth taking care to define featural and 

configural processing because both the terms configural and featural have been applied 

loosely, and sometimes inconsistently, within the field (Maurer et al., 2002). 

Featural processing generally refers to the separate processing of individual features, 

a definition that is complicated by the difficulty of defining which aspects of a face should 

be labeled as features. In most cases, features refer to the nameable parts of a face (e.g. 

eyes, nose, mouth, eyebrows) 1 . A challenge for this dichotomy between features and 

configurations is to demonstrate that the visual system recognizes the nameable parts as 

features, and gives them special preference as features over other parts of the face that 

could equally be considered so. For example, there is no inherent reason that the space 

between the eyes or between the nose and upper lip could not, themselves, be treated as 

features; However, they are rarely (if ever) defined as such. 

1Note that this definition also has problems because many nameable parts of faces (e.g., cheek, 
forehead) generally are not considered to be "features" . 
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Configural processing is a term that sometimes refers to holistic processing (the qual­

ity of perceiving the face as a united whole, with a corresponding deficit in the ability to 

process subsections of the face independently), and other times refers to the processing of 

first- and second-order spatial relations among the nameable parts (Maurer et al., 2002). 

In the case of faces, the first-order relations refer to the consistent vertical structure of 

faces: eyes are above the nose which is above the mouth. Second-order relations, how­

ever, refer to the metric distances among nameable parts. Because first-order relations 

are similar in all human faces, such information may be useful for detecting faces but 

would not be useful for discriminating among faces. Therefore, second-order relations 

are thought to be the configural information that contributes most significantly to face 

discrimination and identification. 

Generally, it is assumed that faces engage a combination of featural and configural 

processing, whereas objects engage only featural processing. Furthermore, inverting a 

face by 180 deg typically is thought to disrupt configural processing more than featural 

processing, rendering the processing of inverted faces more similar to that of upright or 

inverted objects. Objects, in this view, are less impacted by inversion because object 

processing does not engage configural processing, even in the upright orientation. When 

reduced to featural processing due to inversion, there is little deficit because the objects 

were already processed featurally, when upright. This explanation of the inversion effect 

implies that when inversion effects are observed for non-face objects, these objects must 

also be processed configurally (perhaps to a lesser degree than for faces), or that featural 

processing is also somewhat impaired by inversion. 

1.3.2 Evidence for configural processing 

Where, then, is the evidence that faces are processed configurally? The evidence 

comes predominantly from three experiment paradigms: the part/whole effect and the 

composite face effect (both of which investigate holistic configural processing), and second­

order relation manipulations. 

The part/whole effect refers to the observation that subjects are poorer at recognizing 

facial features in isolation than features presented within the context of the face (Tanaka 

and Farah, 1993). For example, Tanaka and Farah found that subjects were more accurate 

in a task that required them to discriminate two schematic faces that differed only in 

terms of the nose, than in a task that required them to discriminate two noses presented 

in isolation. Tanaka and Farah interpreted this result as showing that faces are processed 
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and learned holistically, so that the features, in isolation, are not recalled as readily as 

when presented in the context of the face. Further, when subjects are required to learn 

either features in isolation or whole faces, only those required to learn whole faces later 

exhibit inversion effects (for whole faces, at test); those trained (and tested) on isolated 

features did not exhibit inversion effects for these features (Farah et al., 1995). Farah 

et al. interpreted these results as indicating that inversion effects are not obtained for 

featural processing. 

The composite face effect (Young et al., 1987) is tested by presenting subjects with 

two faces, each of which is the composite of two face-halves: the top of one face and the 

bottom of a different face. In one common version of this task, the bottom half always 

differs across the pair. Subjects are asked to judge whether the top halves are the same 

or different, when the faces are presented aligned (fused to appear to be a single face) 

or misaligned (so that the division between the face halves is clearly visible). Typically, 

in the "same" condition, where the face tops are identical, subjects are more likely to 

judge the face tops as different (presumably, influenced by the presence of the different 

bottoms) when the faces are aligned than when misaligned. This result is interpreted 

as implying that when faces are presented as a unit (with the top and bottom halves 

aligned), subjects are unable to avoid perceiving the face holistically, and therefore, 

incorrectly perceive the top halves as differing, even though only the bottom half differs. 

When misaligned, subjects are not forced to process the stimuli holistically, and can 

adequately perform the task. The strength of the composite face effect is interpreted as 

a measure of holistic processing. 

In second-order relation spacing tasks, subjects are provided with a set of faces that 

share a common base-face and differ only in terms of either features or the spacing of those 

features. For example, in the Jane face task, subjects are presented with two versions of 

Jane and asked to identify whether the faces are the same or different (LeGrand et al., 

2001; Maurer et al., 2002). In one condition, the examples of Jane differ only by their 

internal features (eyes, nose, mouth); In a separate condition, the examples of Jane differ 

only by the spacing between the eyes and/or the spacing between the nose and upper lip. 

Subjects are better at recognizing spacing changes when the faces are presented upright 

than when presented inverted, but do not differ in their accuracy at recognizing featural 

set changes across orientations (Freire et al., 2000; LeGrand et al., 2001; Maurer et al., 

2002). This is interpreted as evidence that configural processing (recognition of spacing 

changes) is superior with upright faces, relative to inverted. 
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The part/whole effect, the composite face effect, and second-order spacing tasks each 

represent artificial contexts in which faces are easier to discriminate upright than inverted, 

and are assumed to identify the source of the better performance with upright faces across 

contexts. The logic, simply put, is as follows: (1) Face recognition suffers when inverted; 

(2) Detection of configural changes suffers when inverted; (3) Therefore, inverted face 

recognition suffers because it is dependent on configural processing, which is disrupted 

by inversion. Unfortunately, the face perception literature rarely recognizes that there is 

a logical fallacy in this reasoning: it is equally possible that inversion separately disrupts 

both face recognition and these configural processing tasks. In fact, there is little known 

about how performance in these configural tasks is related to other measures of face 

processing. What little work that has been done on this issue suggests that there is 

only a weak association between configural processing and face recognition. Konar et al. 

(VSS 2008), for example, found the magnitude of the composite face effect accounts 

for less than 10% of the variation in face identification accuracy among a large sample 

of young adults. If upright face processing is reliant on configural processing, a much 

stronger relation between the composite face effect and face identification would have 

been expected. 

Thus, despite their extensive use in the face perception field, it is worth emphasiz­

ing that these configural processing tasks do not provide direct evidence that faces are 

processed configurally, let alone provide direct evidence that a deficit in configural pro­

cessing is at the root of the face inversion effect. Nonetheless, these and other similar 

manipulations have had great weight in the field. This is troubling, in part because 

some counter evidence is beginning to emerge, questioning the assumption that upright 

and inverted faces are processed using qualitatively different mechanisms. For example, 

Sekuler et al. (2004) used classification images to map the portions of faces used in up­

right and inverted face discrimination tasks. Subjects made use of a small portion of 

the face around the eye/eyebrow region (contrary to holistic models of face perception), 

and most importantly, these regions did not differ significantly from upright to inverted 

face discrimination. Because the classification image analysis assumes that subjects used 

a linear strategy, Sekuler et al. (2004) also examined the extent of unexplained subject 

performance from their linear template model. The linear model accounted for nearly 

the entirety of subject performance. This result suggested that if other more complex 

modes of processing are engaged (such as configural processing), the contribution of these 

other forms of processing must be quite minimal, and thus, are unable to account for 

the substantial loss of performance caused by inversion. These results, amongst others 
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(Gaspar et al., 2008b; Martelli et al., 2005; Riesenhuber et al., 2004; Troje and Westhoff, 

2006), caution against employing inversion as a method to tap into configural or featural 

processing. These results also suggest a more general caution: it is not yet clear that 

faces and objects are indeed processed by separate mechanisms. 

The face literature has been largely focused on the featural/configural distinction. 

However, a few other important characteristics of face processing have been noted. For 

example, faces are processed using a spatial frequency filter that responds to 1-2 octave 

range of frequencies centered approximately on 10 cycles per face, tuned, surprisingly, 

to the object size rather than to the retinal size: faces are processed using a narrow 

band of information around 10 cycles per face (e.g., Nasanen, 1999; Gold et al., 1999a; 

Gaspar et al., 2008a). Object processing may also be spatial frequency specific. For 

example, letter identification relies on spatially tuned filters as well, though the tuning 

differs from that of faces (Gold et al., 1999b). Face recognition is also strongly reliant 

on information around the eye region: recognition of famous faces is disproportionately 

impaired by the removal of eyes and eyebrows, relative to other features (Sadr et al., 

2003), and classification studies reveal that when distinguishing between a pair of faces 

across many trials, subjects rely almost entirely on this same small region around the 

eyes and eyebrows (Gold et al., 1999b; Sekuler et al., 2004; Gaspar et al., 2008b; Gosselin 

and Schyns, 2001; Schyns et al., 2002). These findings do not necessarily imply that faces 

are processed in a manner that is fundamentally different from other object classes, but 

they do, at minimum, suggest that observers make use of fairly consistent and reliable 

strategies when processing faces. 

1.4 Neural mechanisms of face processing 

Single-unit neural recordings in monkeys have revealed cells, in inferotemporal (e.g., 

Gross et al., 1972) and superior temporal cortex (e.g., Rolls and Baylis, 1986; Bruce 

et al., 1981), that respond preferentially to faces over other object classes. The responses 

of these face cells often remain invariant despite changes in low-level stimulus properties 

such as size and contrast (e.g., Rolls and Baylis, 1986). Although face cells often respond 

selectively to particular head viewpoints (Perrett et al., 1992), some cells respond to 

particular face identities across a wide range of viewpoints and photographic contexts 

(Quiroga et al., 2005). 
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1.4.1 Functional neuroimaging (f.MRI) 

Functional neuroimaging (fMRI) studies with humans have revealed several regions 

that respond more to faces than to other object classes or to scrambled versions of faces 

(Kanwisher et al., 1997; Puce et al., 1996). One region in particular, in the ventr.al 

temporal cortex has received more attention than most because of the consistency with 

which the area has been identified across experiments: the fusiform face area (FFA) 

(e.g. Kanwisher et al., 1997, 1999; Pourtois et al., 2005; Tong et al., 2000; O'Craven and 

Kanwisher, 2000; Grill-Spector et al., 2004). Although the FFA responds quite strongly 

to faces, it also responds to objects of other categories (e.g. Tong et al., 2000; Joseph and 

Gathers, 2002), leading to uncertainty about whether the FFA is truly a face selective 

region. Further, it is unclear whether the FFA is best thought of as an isolated region, 

or as part of a larger network because voxels that define regions of interest (ROis), like 

the FFA, often have considerable overlap. In fact, the areas responsive to faces, chairs, 

and houses show a great deal of overlap, and are best separated by the relative patterns 

of activations across the voxels, rather than by differences in the voxels themselves (Ishai 

et al., 1999, 2000). The overlap between areas responsive to different object classes may 

imply that the object responsive regions of the brain are better understood as a collection 

of neurons that are responsive to a wide range of stimuli and object classes, but whose 

relative activations define the boundaries of object categories. Together, these studies 

imply that regions in the fusiform gyrus are involved in the processing of faces, but 

whether the FFA is an isolated face processing area or an integrated part of a larger 

network of visual object processing areas remains heavily debated. 

1.4.2 Event-Related Potentials (ERPs) 

Cortical markers of face processing in humans have also been explored using tech­

niques that are more sensitive to the timing of neural events. Electroencephalography 

(EEG) records the activity at the cortex that results from the synchronized firing of large 

batches of neurons. EEG activity is often analysed by way of event related potentials 

(ERPs): By collecting EEG recordings across many trials and temporally aligning the 

trials to the stimulus onset, the activity across the trials can then be averaged together 

to reduce noise and reveal the signal related to the stimulus of interest. The resulting 

ERP should approximate an isolated signal produced by the stimulus alone. 

Jeffreys and Tukmachi (1992) and Bentin et al. (1996) identified ERP signals associ­

ated with the presentation of faces, identifying patterns of ERP components that have 

http:ventr.al
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since been replicated and studied across many experimental contexts (e.g., Botzel et al., 

1995; Itier and Taylor, 2004; Rousselet et al., 2005, 2007, 2008). Faces reliably produce 

a complex of ERP components. When recording from electrodes above the right and left 

occipital cortex, a large positivity (Pl) arises about 100 ms after stimulus onset. This 

positivity is followed by a large negativity (Nl) approximately 170 ms after stimulus 

onset, and a second positivity (P2) around 250 ms post stimulus. These components are 

observable after the presentation of a range of objects and scenes, but the Nl tends to 

be larger for faces than for other object classes (Jeffreys and Tukmachi, 1992; Bentin 

et al., 1996; Eimer, 2000a). The dynamics of the Nl response remain poorly understood. 

Various manipulations affect the size and timing of the resulting Nl response. For ex­

ample, the Nl is increased by stimulus inversion (e.g., Itier et al., 2006; Rossion et al., 

2002; Rousselet et al., 2008), and by the presentation of eyes in isolation (Bentin et al., 

1996; Taylor et al., 2001), but is insensitive to face familiarity (Eimer, 2000b; Bentin and 

Deouell, 2000), implying that the Nl is more responsive to face structure than to indi­

vidual face identity (although see Caharel et al., 2009). The Nl may be more generally 

involved in the processing of object structure where clear contours and boundary infor­

mation is available, because the strength of these components is systematically reduced 

when object phase is scrambled (Guillaume et al., 2009). 

The existence of face cells, the reliability of activity in the fusiform gyms, and the 

unusual strength of the Nl to faces are routinely interpreted as evidence for special 

cortical mechanisms for face processing. However, these findings need not indicate that 

faces are processed differently from other objects. The fusiform face area may be one 

part of a larger object complex, and the strength of the Nl may be a matter of scale 

rather than indicative of a qualitative difference in processing. Similarly, the behavioural 

findings that faces have large inversion effects point to an unusual susceptibility of faces 

to the effect of distortion or modification from typical viewing conditions. Yet, there is 

again debate about whether these differences reflect differences in degree or differences in 

kind. Is face processing genuinely qualitatively different from the processing of objects, or 

only quantitatively so? These interesting questions continue to be debated within the face 

literature. Yet regardless of one's position on these matters, there is agreement that face 

processing possesses these unusual behavioural and neural signatures. Explaining why 

faces seem to be processed differently from other objects (be that by degree or by kind) 

remains an interesting question. To this end, studies in both infants and adults have been 

conducted to determine the extent to which the characteristics of face processing can be 

explained by either an innate face processing mechanism or by extensive experience with 
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faces across the lifespan. 

1.5 Innateness and Expertise 

Humans seem to be innately predisposed toward face processing. Even within hours 

of birth, infants preferentially orient toward faces, spending more time viewing faces than 

other control stimuli (e.g., Goren et al., 1975; Johnson et al., 1991). Neonatal infants also 

can discriminate faces: for example, newborns prefer to look at their mother's face over 

other faces (e.g., Pascalis et al., 1995), and more attractive faces over less attractive faces 

(Slater et al., 1998). The immediacy of these face preferences seems indicative of innately 

acquired face processing mechanisms, though some have argued that these results might 

be accounted for by cross-modal face learning, via tactile and proprioceptive inputs within 

the womb (Quinn and Slater, 2003). Regardless, learning begins to play a role in face 

processing early in life: young infants have the ability to discriminate both human and 

monkey faces, and faces across different human races, but gradually develop adult-like 

specificity for face discrimination within their own species (Pascalis et al., 2002) and race 

(Kelly et al., 2007). 

Rather than trying to establish whether face processing itself is innate, expertise 

studies investigate whether non-face objects exhibit common behavioural and neural sig­

natures of face processing after a sufficient degree of expertise has been acquired. These 

studies have made use of two main approaches: either studying object perception in real 

world experts (e.g., expert chess players, bird watchers, etc.), or studying how object 

perception is affected by expertise acquired over the course of several days of practice 

in laboratory experiments. For example, several studies have focused on whether large 

inversion effects are found only with faces or if they can be found with very familiar 

non-face stimuli. Diamond and Carey (1986), for example, measured recognition accu­

racy in a task that used upright and inverted pictures of dogs. For subjects who had 

expertise at identifying dogs, large inversion effects were obtained with pictures of the 

particular breeds of dogs with which the experts were familiar. Importantly, the size of 

this expertise-related inversion effect did not differ significantly from the inversion effect 

obtained with faces. Diamond and Carey interpreted these findings as evidence that 

faces are not unique in their sensitivity to inversion, and speculated that inversion effects 

might emerge any time expertise is obtained for a class of objects that share a common 

configuration. Consistent with this interpretation, large inversion effects have also been 

found for bird and car experts, both of whom show larger inversion effects for their own 
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class of expertise, than for the other non-expertly processed category (Gauthier et al., 

2000), though Chapter 2 of this thesis will demonstrate that large inversion effects can 

also be obtained after training with textures that do not share a common configuration. 

Recently, Robbins and McKone (2007) reported an experiment that failed to replicate 

Diamond and Carey's results, leading the authors to speculate that Diamond and Carey's 

large inversion effect for dogs was caused by the experts being familiar with the particular 

stimuli used in that experiment, rather than their expertise per se. Even if Robbins and 

McKone's interpretation of Diamond and Carey's results is correct, it remains interest­

ing that pictographic learning can result in inversion effects of the same magnitude as 

observed for faces. 

The effects of expertise on physiological markers of face processing also have been 

explored. As described earlier, fMRI studies have identified a region of cortex that is 

reliably activated more strongly by faces than by other stimulus classes (Kanwisher et al., 

1997). Subsequently, researchers proposed the possibility that this region might more 

generally code for within-category discriminations of expertly-processed object classes 

(Gauthier and Tarr, 1997). Support for this hypothesis has been mixed: An initial study 

examining real-world experts (bird experts, and car experts) found somewhat stronger 

FFA activity for the class of expertise (birds, for bird experts) (Gauthier et al., 2000). 

Attempts to replicate this study have been mixed (Xu, 2005; Rhodes et al., 2004; Grill­

Spector et al., 2004), but those studies that failed to replicate (Rhodes et al., 2004; Grill­

Spector et al., 2004) had serious design flaws: the experimental tasks were poorly matched 

to the expertise of the real-world experts, such that the experts did not outperform 

the novices in the experimental context. Similarly, training on a set of novel objects 

(Greebles) increased activity in the right FFA (Gauthier and Tarr, 1997), but training 

on a separate set of novel objects was unable to replicate these findings (Op de Beeck 

et al., 2006). Similar studies have been conducted to examine the role of expertise in EEG 

markers of face and object processing. For example, faces exhibit larger Nl responses 

for inverted than upright faces, an EEG inversion effect that is less prominent with 

other object classes (Rossion et al., 2000). Real-world fingerprint experts exhibit this 

Nl inversion effect for fingerprints (Busey and Vanderkolk, 2005), as do Greeble experts 

after in-lab training (Rossion et al., 2002). Overall Nl amplitude is larger for faces than 

for other objects (Bentin et al., 1996; Eimer, 2000a; Rossion et al., 2000), and both in lab 

training with cars and with owls has resulted in an amplitude increase for these object 

classes (Scott et al., 2006, 2008). Together, these findings tentatively suggest that some 

of the cortical signatures of face processing may be affected by expertise. 
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i.6 Summary and Conclusions 

This chapter has provided a brief overview of some of the principal questions within 

the face perception literature. Specifically, the chapter identified some common be­

havioural measures (e.g., the inversion effect) that have been used to highlight differences 
' between face perception and the perception of non-face objects; reviewed evidence for 

and against the existence of face-specific perceptual processing that has been offered as 

an explanation for these differences in perception; and outlined the ongoing attempts to 

determine whether face-specific perceptual processing can be explained by innate face 

mechanisms or experience-driven modification to more general object processing mecha­

nisms. 

The following chapters focus largely on the extent to which the characteristics of face 

processing can best be understood as the result of a lifetime of experience perceiving faces. 

Following in the footsteps of earlier research, I have approached this question indirectly, 

specifically by considering how controlled in-lab experience with non-face objects modifies 

the processing of these objects. By examining how experience shapes the processing 

of non-face objects, I can determine whether characteristics that are currently deemed 

face-specific can arise in other object classes in response to training. Specifically, the 

following chapters will consider: (1) whether the larger size of the face inversion effect is 

an indicator of specialized face processing mechanisms; (2) whether the cortical regions 

involved in the processing of faces and houses modify their relative activity after house 

discrimination training; and (3 & 4) how the early EEG components of face and object 

processing alter with systematic house discrimination training. 
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Chapter 2 

Inverting houses and textures: 

Investigating the characteristics of 

learned inversion effects 

2.1 Abstract 

Faces, more than other objects, are identified more accurately when upright than 

inverted. This inversion effect may be linked to differences in expertise. Here, we ex­

plore how stimulus characteristics and expertise interact to determine the magnitude of 

inversion effects. Observers were trained to identify houses or textures. Inversion effects 

were not found with either stimulus before training, but were found following 5 days of 

practice. Additionally, the learning-induced inversion effects showed partial transfer to 

novel exemplars. Although similar amounts of learning were observed with both types of 

stimuli, inversion effects were significantly larger for textures. Our results suggest that 

the size of the inversion effect is not a reliable index of face-specific processing. 

Reference: Husk, J.S., Bennett, P.J., & Sekuler, A.B. (2007). Inverting houses and 

textures: investigating the characteristics of learned inversion effects. Vision Research, 

47, 3350-3359. 
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2.2 Introduction 

Objects are recognized more rapidly at their canonical orientations than when ro­

tated within the picture plane (e.g., Jolicoeur, 1985), or in depth (Lawson et al., 2000). 

However, rotation (inversion) seems to impair face processing with particular severity, 

both in terms of accuracy and reaction time (e.g., Yin, 1969; Diamond and Carey, 1986, 

for a more extensive review, see Valentine (1988)). The impairment is so much more pro­

nounced for faces than for other objects, that the inversion effect has become a hallmark of 

hypothesized face-specialized processing, particularly configural processing mechanisms 

(e.g., Tanaka and Farah, 1993; Farah et al., 1995; Moscovitch and Moscovitch, 2000; 

Leder and Bruce, 2000; Rhodes et al., 2004). 

However, recent research suggests that the difference between upright and inverted 

face processing may be quantitative in nature, rather than qualitative. For example, 

studies using the classification image and bubbles techniques have shown that observers 

rely heavily on the eye and eyebrow region when identifying both upright (Gosselin and 

Schyns, 2001; Schyns et al., 2002; Gold et al., 2004; Sekuler et al., 2004) and inverted 

(Sekuler et al., 2004) faces, but the efficiency with which observers use available infor­

mation in this region is reduced when faces are inverted (Sekuler et al., 2004; Gaspar 

et al., 2008). This difference in processing efficiency between upright and inverted faces 

mirrors the change in processing efficiency for objects seen as a result of practice (Gold 

et al., 1999b, 2004), suggesting that the superiority of upright processing may reflect 

greater practice identifying upright faces than inverted ones. Consistent with this idea, 

sizeable inversion effects have been observed for other non-face objects, when observers 

have developed expertise with that object class. For example, Diamond and Carey (1986) 

found that dog experts exhibited inversion effects when discriminating amongst breeds 

for which they had developed expertise (an effect that did not generalize to dogs in gen­

eral), whereas novices did not perform significantly differently across orientations (but 

see Robbins and McKone, 2007). Similarly, inversion effects have been reported for body 

position discrimination (Reed et al., 2003), and inversion effects were larger when discrim­

inating amongst bodies in biologically possible positions than in biologically impossible 

positions. Because observers likely have far more exposure to biologically possible po­

sitions than impossible ones, these results are consistent with the notion that inversion 

effects emerge for expertly-processed stimuli. 

Furthermore, there is some evidence that practice can induce inversion effects. The 

most compelling evidence comes from (McLaren, 1997), who trained observers to discrim­
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inate amongst checkerboard patterns, and demonstrated a strong inversion effect after 

practice: not only was upright performance greater for familiar than unfamiliar checker­

boards, but inverted performance was actually impaired for familiar checkerboards rela­

tive to unfamiliar exemplars. Practice-induced inversion effects also have been reported 

for Greebles (a specially designed class of novel stimuli; Gauthier and Tarr, 1997). Ob­

servers who had been trained previously to recognize upright Greebles discriminated 

configural changes faster (though not more accurately) for upright stimuli than for in­

verted stimuli; observers who received no previous experience with Greebles did not differ 

in their performance across orientations. Similarly, in a separate task involving Greeble 

recognition (Gauthier et al., 1998), both novices and experts initially showed a small RT 

advantage for upright Greebles (relative to Greebles misoriented by 60, 120 & 180 deg). 

Recognition became faster with practice on the task for both experts and novices, but 

upright performance benefited disproportionately for experts, such that the inversion ef­

fect was enhanced for experts but lost for novices. Moreover, practice-induced inversion 

effects do not seem to be limited to the visual modality, because face perception and 

training of pattern discrimination in the tactile domain also can induce inversion effects 

(Newell et al., 2001; Behrmann and Ewell, 2003; Kilgour and Lederman, 2006). Taken to­

gether, these results show that inversion effects are present for expertly-processed stimuli, 

and can be induced through laboratory training tasks with novel stimuli. 

However, many of the characteristics of practice-induced inversion effects remain 

largely unexplored. For example, it is not clear whether the size of trained inversion 

effects depends on prior knowledge brought to the task, such as knowledge about the 

canonical orientation of the object class. Further, the limited number of studies that 

have induced inversion effects through practice have not examined whether these inver­

sion effects transfer to novel members of that class (a characteristic of face inversion 

effects). Finally, there is a suggestion within this body of research that the size of the 

inversion effect is a direct indicator of expertise (for faces or other highly trained ob­

ject classes). Yin (1969), for example, emphasized the greater size of inversion effects for 

faces relative to other object classes, and studies of expertise generally have demonstrated 

larger inversion effects for experts than for novices (Diamond and Carey, 1986; McLaren, 

1997; Gauthier et al., 1998; Behrmann and Ewell, 2003; Reed et al., 2003). The extent to 

which inversion effects differ across object sets with an equal extent of practice remains 

unknown. 

The following experiments explore some of the characteristics of learned inversion 

effects by comparing face inversion effects to inversion effects generated before and after 
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practice on house and texture discrimination tasks. If knowledge of the canonical ori­

entation is sufficient to induce an inversion effect, then houses, but not textures, should 

exhibit inversion effects prior to practice. Further, practice with upright houses might be 

expected to induce larger inversion effects than practice with inverted houses. If inversion 

effects that are induced by training are qualitatively similar to face inversion effects, then 

these inversion effects should, like faces, transfer to novel houses. Finally, if the size of the 

inversion effect is a direct indicator of expertise, then equivalent amounts of training on 

house and texture discrimination tasks should result in similarly sized inversion effects. 

2.3 Experiment 1 

Experiment 1 examined whether practice on a house discrimination task would be 

specific to the trained orientation. Different sets of observers were trained across eleven 

days to differentiate either amongst 10 upright houses or amongst 10 inverted houses, 

and both sets of observers subsequently were tested at both orientations. 

2.3.1 Methods 

2.3.1.1 Subjects 

Twelve observers (mean age= 25.6 years; range: 19-45) were recruited from McMaster 

University's Vision and Cognitive Neuroscience Lab participant pool. Observers were 

undergraduate and graduate students at McMaster University, and received $10/hour 

for their participation. All observers had normal or corrected-to-normal visual acuity, 

and all were naive with respect to the purpose of the study. 

2.3.1.2 Stimuli 

Object classes differ in their degree of structural homogeneity. For example, faces are 

a highly homogenous stimulus category: the relative locations of eyes, nose and mouth 

are consistent across all exemplars. By contrast, houses are far more heterogeneous: the 

numbers and locations of doors and windows usually vary significantly across exemplars. 

Different strategies may well be needed to differentiate members of homogenous and 

heterogeneous classes, because the demands are likely to differ. For example, the most 

distinctive differences between the stimuli are more likely to be in a spatially predictable 

location in a homogenous class, than in a heterogeneous class. For these reasons, despite 

the typical heterogeneity of houses in the real world, the ten houses used in this exper­
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iment (Figure 2.1) were constructed to tap into strategies used to learn to discriminate 

homogenous stimuli. This was accomplished by constructing all houses with a single 

shared template: Each house possessed a door to the lower left, a large window to the 

lower right, and two small windows to the upper left and right. Individual houses could 

be differentiated on the basis of any one of these components (as with the features in 

faces), but the house background was identical for all stimuli. The house background 

and the individual windows and doors were cropped (in Adobe Photoshop 7.0) from 

photographs of local houses, taken with a digital camera at a front-view angle. Finally, 

the spatial frequency content of the images was equated by applying the average ampli­

tude spectrum to each house, ensuring that the stimuli differed only in terms of their 

global phase spectra. Because the structure of images is carried largely by the global 

phase spectrum (Oppenheim and Lim, 1981; Sekuler and Bennett, 1996), this manipu­

lation preserves the discriminability of the stimuli while ensuring that observers could 

not rely upon differences in overall contrast, or relative contrast differences across spatial 

frequencies and orientations, to perform the task. Despite the structural homogeneity of 

the house stimuli, these stimuli display typical EEG and fMRI markers of house process­

ing: the Nl 70 component of the event-related potential has reduced amplitude for these 

houses relative to faces (Rousselet et al., 2005, 2007), and maximal BOLD responses are 

located in the parahippocampal place area (Husk et al., VSS 2006). 

All stimuli were displayed on a Sony Trinitron GDM-F520 monitor (800 x 600 pixels, 

21 pixels/cm, refresh rate 85 Hz) and viewed from a distance of 1 meter. The target 

houses (subtending 5 x 7 degrees) were presented centrally on an otherwise uniform 

screen. On the selection screen, the 10 houses (the target plus nine distractors) were 

presented in two rows above and below fixation, each house subtending 3.4 x 4.8 degrees. 

The position of each individual house in the selection screen was held constant across all 

trials, and was the same for all observers. Throughout the experiment, all stimuli were 

presented at a fixed contrast variance of 0.0015. Background luminance equaled 15.85 

cd/m2 and was held constant throughout the experiment. 

2.3.1.3 Procedure 

Observers completed eleven sessions on consecutive weekdays (with most sessions 

separated by 24 hrs, but some as much as 72 hrs when crossing a weekend). The first 

session consisted of a pre-test followed by the first practice session. Sessions 2-10 each 

contained a single practice session, and session 11 consisted solely of a post-test. The 

general procedure employed during all phases of the experiment was a 10-alternative 
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. , .. 

Figure 2.1: House set employed in Experiment 1. These images are displayed in the 
same order as presented on the selection screen. However, during actual presentation the 
images were of lower contrast, and the size and spacing of the images were greater than 
displayed here. 

forced choice discrimination task. Each trial began with a fixation point, presented for 1 

second, after which a house was presented for 500 ms. The selection screen, consisting of 

an array of 10 houses, was presented immediately afterward, and remained on the screen 

until t he observer made a response. The observer responded by using the computer 

mouse to select the target house. Auditory feedback was provided during all phases of 

the experiment (pre-test, training, and post-test): a high-pitch tone indicated a correct 

selection, and a low-pitch tone, an incorrect selection. The next trial was automatically 

started immediately following t he auditory feedback. 

Pre-test To obtain an initial comparison of upright and inverted discrimination perfor­

mance, observers partook in a pre-test composed of 200 trials (100 trials each of upright 

and inverted stimuli) separated into 10 blocks of 20 trials. The upright and inverted 

blocks were alternated across the session, with the order counterbalanced across ob­

servers. All houses were presented equally often in each block, and at each orientation 

across blocks. 
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Practice Observers then were trained across 10 sessions to discriminate amongst the 

10 houses (half were trained on upright houses, and half on inverted houses). For those 

trained in the inverted condition, the target and distractors on the selection screen were 

.also inverted. Each practice session consisted of 400 trials ( 40 presentations with each 

10 houses serving as a target, randomly intermixed). 

Post-test Observers were re-tested on upright and inverted performance. The post­

test procedure was the same as that of the pre-test, and observers maintained the same 

order of exposure to upright and inverted blocks as in the pre-test. 

2.3.2 Results 

In the pre-test, observers assigned to the inverted practice condition outperformed 

those assigned to the upright practice condition (Figure 2.2a). Despite this difference, 

neither group showed an initial inversion effect: performance with upright and inverted 

stimuli did not differ either in the upright practice group (t(5) = 0.15,p = .89), or in 

the inverted practice group (t(5) = 0.48,p = .65). As seen in Figure 2.3, although per­

formance in both groups was significantly greater after training than before (main effect 

of Session: F(l, 10) = 118.95, p < .001), the improvement in the upright group was 

somewhat greater, so that the difference in performance between the groups was smaller 

by the tenth day of practice than it was on the first day (Group x Session interaction: 

f(l, 10) = 6.0l,p < .05). Following practice with upright houses, a significant inversion 

effect was observed (Figure 2.2b): upright houses were identified with 143 greater accu­

racy than inverted houses (t(5) = 8.37,p < .001). Practice with inverted houses induced 

a reversed inversion effect of approximately the same magnitude: inverted houses were 

identified with 133 greater accuracy than upright houses (t(5) = -3.62, p < .02; Figure 

2.2b). 

Because the upright and inverted groups performed differently at pre-test, Figure 2.2c 

represents the performance on upright and inverted houses before and after learning in 

terms of improvement (i.e., the change from baseline performance), illustrating the strik­

ing cross-over Group x Orientation interaction (F(l, 10) = 14.73,p < .01): Perform~nce 

was better with the trained orientation, regardless of whether observers were trained with 

upright or inverted stimuli. It is important to note, though, that performance improved 

substantially from baseline for both the trained and untrained orientations. Thus, there 

seems to be partial, but incomplete, transfer of learning across orientations. Practice im­
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Figure 2. 2: Results of Experiment 1. Error bars represent +/- 1 standard error of the 
mean. (a) Pre-test (b) post-test, and (c) learning-related improvement in accuracy on 
upright and inverted house discrimination for observers trained on upright or inverted 
house discrimination. 
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Figure 2.3: Learning curves for observers trained on upright or inverted houses in Ex­
periment 1. Error bars represent +/- 1 standard error of the mean. 

proved performance in both groups. Hence, it is possible that the inversion effects that 

were found after practice were associated with a change in task difficulty (i.e., response 

accuracy), rather than practice per se. We evaluated this possibility by testing eight 

novice observers with upright and inverted houses at five different levels of contrast vari­

ance (0.001, 0.0015, 0.003, 0.01, 0.02). By varying stimulus contrast, it was possible to 

manipulate task difficulty independently of the amount of practice. Observers completed 

a single session consisting of 5 blocks of 80 trials. Each block presented houses at a dif­

ferent contrast level, with order counterbalanced across observers. The results are shown 

in Figure 2.4: Response accuracy increased monotonically with contrast and, averaged 

across contrasts, was 3.43 higher for upright than inverted houses. A repeated-measures 

ANOVA found significant main effects of contrast (F(4, 28) = 34.39,p < .001) and stim­

ulus orientation (F(l, 7) = 8.81,p < .05). Importantly, however, the interaction between 

contrast and orientation was not significant (F(4, 28) = 0.65,p = .56), so the effect of 

stimulus orientation did not depend on contrast or on overall accuracy. These results 

suggest that the change in the inversion effect produced by practice was not simply due 

to a change in task difficulty, but rather reflects an effect of practice per se. 
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Figure 2.4: Accuracy on a single session of upright and inverted house discrimination as 
a function of contrast variance (plotted on a logarithmic scale). Error bars represent.+ / ­
1 standard error of the mean. In the absence of training, the inversion effect size does 
not vary with accuracy. 

2.4 Ex periment 2 

Face inversion effects are notable for their generalization to novel stimuli. Indeed, 

most studies examining the face inversion effect use face stimuli that are unfamiliar to 

the participants, yet face inversion effects are pronounced despite the unfamiliarity of 

the individual faces. Experiment 1 demonstrated that practice with houses at a given 

orientation can produce performance that , like faces , is impaired at novel orientations, 

but it is not clear whether such inversion effects generalize to novel exemplars. If so, this 

would suggest that observers have not only learned to recognize the individual exemplars, 

but have also learned characteristics about the set of stimuli that can then be applied 

to novel exemplars. Further, comparing the degree of impairment due to changes in 

orientation versus changes in exemplars can provide insight into the relative extents of 

stimulus-specific versus category-specific learning. 
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Figure 2.5: House-sets A and Bused in Experiment 2. Within each house set, the items 
are displayed in the same order as presented on the selection screen. However , during 
actual presentation the images were of lower contrast, and the size and spacing of the 
images were greater than displayed here. 

2.4.1 Methods 

2.4.1.1 Subjects 

Sixteen new observers (mean age = 19.4 years; range: 18-22) were recruited from 

the McMaster Undergraduate Psychology participant pool (and received partial course 

credit for their participation) or from the Vision and Cognitive Neuroscience Lab partic­

ipant pool (and received $10/hour for their participation) . All observers had normal or 

corrected-to-normal vision, and all were naive with respect to the purpose of the study. 

2.4.1.2 Stimuli 

Two sets of 10 houses were employed in this experiment. Sets A and B were each 

composed of five houses from Experiment 1 plus an additional five novel houses (Figure 

2.5b). As with Experiment 1, all houses had the same amplitude spectrum. 

2.4.1.3 Procedure 

Observers were trained to discriminate amongst upright presentations of ten houses 

using the same training procedure described in Experiment 1. To ensure that observers 

had no prior experience with inverted stimuli prior to testing, the pre-test was eliminated 

(although preliminary data on 20 additional observers confirmed t hat no initial inversion 

effect was present at t he training contrast for either house set: see ,, pre-test,, group in 

Figure 2.6a. Half the observers were trained for five sessions on Set A, and half on Set 
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B. In the sixth session, upright and inverted performance was tested for both trained 

and untrained house sets (orientation and house-set order were counterbalanced across 

observers) .. 

2.4.2 Results 

The results are presented in Figure 2.6. Practice resulted in a statistically significant 

increase in accuracy of 29% across the 5 days of training (t(15) = 15.35, p < .001, Figure 

2.6b). As seen in Figure 2.6a, after practice, accuracy was greater for trained than 

untrained houses, (F(l, 15) = 43.38,p < .001). Consistent with the earlier experiments, 

a significant inversion effect was generated after practice, (F(l, 15) = 59.80,p < .001). 

Moreover, the size of the inversion effect did not differ from the inversion effect obtained 

in Experiment 1 after 10 practice sessions with upright houses ( t (14. 33) = 1.81, p = 

0.092). Inversion effects were observed for both trained (t(15) = 6.113,p < .001) and 

untrained (t(15) = 2.66, p < .02) houses, but the size of the inversion effect was marginally 

greater for trained (10% greater accuracy for upright than inverted) than untrained 

(4% greater accuracy for upright than inverted) houses, (F(l, 15) = 3.96,p = .065). 

The superior performance for upright novel houses, compared to inverted novel houses, 

suggests that the advantage for upright houses is, at least in part, due to the learning of 

factors that are common to both sets of houses, and not specific to the individual learned 

houses. However, the somewhat greater magnitude of the inversion effect for the trained 

houses suggests some orientation-specific learning at the level of the individual houses, 

as well as at the level of the category. Note that the inverted familiar houses were also 

novel in the sense that observers had never before viewed those specific stimuli in that 

orientation. Nevertheless, performance on inverted familiar houses was superior to that 

of upright novel houses (t(15) = 3.536,p < .01), suggesting that learning transfers more 

to the familiar exemplars in novel orientations than it does to novel exemplars in familiar 

orientations. 

2.5 Experiment 3 

If expertise is the determining factor of inversion effect size, we should expect similarly 

sized inversion effects across stimulus sets, as long as observers are trained to the same 

extent. On the other hand, if the effect of inversion depends on stimulus structure, 

we should find that inversion effect size can vary across stimulus sets, even with equal 

training. To examine this issue, Experiment 3 replicates the house-training procedure 
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Figure 2.6: Results of Experiment 2. (a) The Pre-test condition shows the average 
proportion correct for upright and inverted houses for a group of 20 observers. There was 
no significant effect of orientation. The Trained condition shows the average proportion 
correct for a second group of 16 observers using the same stimuli that they had viewed 
during five days of practice in an identification task using upright houses. The Untrained 
condition shows post-practice performance in the same 16 subjects using stimuli that they 
had not viewed during practice. (b) Learning curve for the 16 observers who received 
practice with one of two sets of upright houses. Error bars represent +/- 1 standard error 
of the mean. 

with a different non-face stimulus: texture patches. To compare both texture- and house­

training results to inversion effects typically observed for face stimuli, Experiment 3 also 

tested a separate set of observers (without prior practice) on upright and inverted face 

discrimination. 

2.5.1 Methods 

2.5.1.1 Subjects 

Twenty-six new observers (mean age = 21.1 years; range: 17-26) were recruited from 

the Vision and Cognitive Neuroscience Lab participant pool and received $10/hour for 

their participation. Eight observers were tested in a single session of upright and inverted 

texture discrimination to obtain a pre-test measure of the texture inversion effect. An 

additional eight observers were trained on upright texture discrimination for 5 days then 

tested on upright and inverted textures. The final ten observers participated in the face 

discrimination task. All observers had normal or corrected-to-normal vision, and all were 

naive with respect to the purpose of the study. 
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2.5.1.2 Stimuli and Procedure 

Observers in the texture training task were trained for five days on a set of 10 textures 

(Figure 2.7a-). Because the textures have no canonical orientation, the training orientation 

was assigned arbitrarily. At post-test, textures were presented both upright and inverted 

(relative to the training orientation). To ensure that there was no initial advantage for 

either orientation, a separate group of 8 observers performed the" pre-test" on a single 

session of upright and inverted textures. The pre-test, training, and post-test followed the 

same procedures used in Experiment 1, with the exception that the texture pre-testing 

was conducted on separate observers. The textures were constructed by generating 10 

Gaussian white noise patterns, then band-pass filtering each stimulus to pass only 2-4 

cycles per image (the construction of these stimuli is described in more detail elsewhere.: 

Gold et al. (1999b,a, 2004)). At the viewing distance of 100 cm, target texture stimuli 

subtended 5 deg x 5 deg, and stimuli in the selection array each subtended 3.5 deg x 

3.5 deg. Despite the apparent difficulty of identifying individual stimuli when one first 

views the stimulus set, pilot testing indicated that this task was actually slightly easier 

than the house identification task. Therefore, the contrast variance of the textures was 

reduced to 0.0005 to approximately equate the pre-practice performance on the textures 

to that previously obtained for houses. A separate set of observers performed a face 

discrimination task, in which performance was tested on upright and inverted faces in 

a single session without prior training. The procedure was identical to that used in the 

pre- and post-tests of Experiment 1. The faces (Figure 2.7b; see Gold et al. (1999b,a), 

for more details about the construction of the face stimuli) subtended 5.2 deg x 5.2 deg 

in the target screen, and 3.5 deg x 3.5 deg in the selection screen. The contrast variance 

of the faces was equated to that used in Experiments 1 and 2. 

2.5.2 Results 

Practice on the texture discrimination task resulted in a statistically significant im­

provement in accuracy of 353 for upright textures on the final day of testing, compared 

to the initial day (t(7) = 8.67,p < .001, Figure 2.7e), which is similar to the amount of 

improvement (293) observed for the equivalent amount of training on houses in Exper­

iment 2. Pre-testing (with separate observers) indicated no initial significant difference 

in discriminating amongst upright and inverted texture patches, (t(7) = .56,p = .59). 

However, after practice, a large inversion effect emerged, (t(7) = 7.18,p < .001). Up­

right performance was 283 greater than inverted performance (Figure 2.7d). In fact, 
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inverted performance after practice did not differ significantly from upright performance 

on the initial day of practice, (t(7) = -l.44,p = .19), indicating that, unlike what was 

found in Experiment 2 with houses, there was no significant transfer of learning across 

orientations. The inversion effects obtained with textures, faces, and houses were submit­

ted to a one-way, between-subjects ANOVA. The effect of stimulus type was significant 

(F(2, 31) = 28.58,p < 0.001, w2 = 0.618). Differences among the three sets of inversion 

effects were evaluated by using Tukey's HSD to construct 95% confidence intervals: The 

difference between faces and houses (C.95 = 0.35,0.17) and textures and houses (C.95 = 
0.28,0.09) were both significant, but the difference between faces and textures (C.95 = 
0.18, -0.03) was not. 

The results of practicing with textures suggest that the size of the inversion effect is 

neither a good indicator of the extent to which stimulus processing is "face-like," nor of 

the familiarity with the stimuli. Subjects received equal amounts of practice with textures 

and houses, and the amount of learning, as measured by changes in response accuracy, 

did not differ significantly for observers trained on houses (M = 29.2, SEM = 1.9) and 

textures (M = 33.9, SEM = 3.2, t(22) = 1.36, p = .19). Nevertheless, the size of the 

inversion effect was larger for textures than for houses (Figure 2. 7 c). Although overall 

accuracy was greater on the texture discrimination task than on the house task, this 

difference is unlikely to account for the difference in the inversion effects because the 

contrast control study in Experiment 1 established that there was no relation between 

overall accuracy and the size of the inversion effect for houses. Moreover, the magnitude of 

the inversion effect did not differ between those trained on upright and inverted houses 

in Experiment 1, despite the overall accuracy difference between these groups. Thus, 

the current findings suggest that similar practice effects can induce different inversion 

effects with different classes of stimuli. After just five days of practice, the inversion 

effect obtained with textures did not differ from the inversion effect obtained with faces, 

and both of these inversion effects were significantly larger than the one obtained after 

practice with houses. Note that there is no a priori reason to expect that learned textures 

are processed more configurally than learned houses, and response classification results 

suggest that observers rely primarily on local features for texture discrimination (Gold 

et al., 2004; Nagai et al., 2007), thus the size of the inversion effect may not be a reliable 

index of configural processing. Rather, we suggest that the magnitude of an inversion 

effect indicates the efficiency with which a stimulus is processed in a preferred orientation 

(Riesenhuber et al., 2004; Sekuler et al., 2004; Martelli et al., 2005; Troje and Westhoff, 

2006; Gaspar et al., 2008). 

http:0.28,0.09
http:0.35,0.17
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Figure 2.7: Results of Experiment 3. Texture (a) and face (b) sets employed in Experi­
ment 3. Both sets are displayed in the same order as presented on the selection screen. 
However , during actual presentation the images were of lower contrast, and the size and 
spacing of the images were greater than displayed here. ( c) Comparison of inversion ef­
fects for untrained faces (Exp3), trained houses (Exp2), and trained textures (Exp3) . The 
data shown for houses and textures was obtained after observers had received five days 
of practice with upright stimuli. ( d) Accuracy on texture discrimination before and after 
practice on upright texture discrimination (Exp3) . Pre-training results are presented for 
upright textures only, because trained observers were not exposed to inverted textures 
until the post-test. Post-training results were obtained for both upright and inverted tex­
tures. (e) Learning curve for observers trained on upright texture discrimination (Exp3). 
Error bars represent + /- 1 standard error of the mean. 
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2.6 General Discussion 

In accord with other studies that have generated inversion effects through training 

(e.g., Diamond and Carey, 1986; Gauthier et al., 1998; McLaren, 1997; Behrmann and 

Ewell, 2003; Reed et al., 2003), we have demonstrated that inversion effects can be 

generated with relatively small amounts of practice. Training on house and texture 

discrimination tasks for as little as five days was sufficient to induce substantial differences 

in identification accuracy for upright and inverted stimuli. Furthermore, the inversion 

effect induced after five days of training with upright houses in Experiment 2 (103) 

did not differ significantly from the inversion effect obtained after 10 practice sessions in 

Experiment 1 (143). Thus, although training induced an inversion effect, the cumulative 

effect of training appeared to diminish after approximately five days. This result does not 

imply, however, that an existing inversion effect cannot be altered by practice: Hussain 

et al. (VSS 2006) showed that the face inversion effect obtained with a particular set 

of faces does increase significantly with practice, and that the effect of practice did not 

generalize to a novel set of faces. 

2.6.1 Inversion effects and configuration 

The face inversion effect often is attributed to differences in the kind of information 

that observers use to discriminate amongst upright and inverted stimuli. Although indi­

vidual faces vary along many potential dimensions, much of the face literature has come 

to dichotomize these dimensions into two overarching sets of changes: featural changes 

(based on the shape or appearance of the nameable face parts), and configural changes 

(based on variations in the spatial arrangement of nameable parts within the face). Sev­

eral studies report that observers are more accurate at identifying upright faces that differ 

in terms of the spatial arrangement of features, but that accuracy does not differ across 

stimulus orientation when faces differ in terms of the individual parts (e.g., Freire et al., 

2000; LeGrand et al., 2001). These and similar findings are frequently regarded as a 

demonstration that configural information strongly influences the perception of upright, 

but not inverted, faces (e.g., Tanaka and Farah, 1993; Farah et al., 1995; Moscovitch and 

Moscovitch, 2000; Leder and Bruce, 2000; Rhodes et al., 2004). However, the evidence 

supporting a qualitative, featural vs. configural, distinction between processing of up­

right and inverted faces is decidedly mixed (for reviews, see Rakover, 2002; Valentine, 

1988). Furthermore, not all studies have found larger inversion effects for configural than 

parts-based manipulations (e.g., Yovel and Kanwisher, 2004), nor is the size of the in­
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version effect associated with configural manipulation consistent across the face (Barton 

et al., 2001; Malcolm et al., 2004; Rutherford et al., 2007). Classification image studies 

(Sekuler et al., 2004) have not found qualitative differences in the information used to 

discriminate upright and inverted faces. Finally, the difference in inversion effect size 

for featural versus configural sets can be eliminated by intermixing the two trial types 

(Riesenhuber et al., 2004). For these reasons, we suggest that the role of configural 

information in generating inversion effects in faces and other objects remains an open 

question. 

2.6.2 Inversion effects and canonical orientation 

Familiar objects often have a canonical orientation. That is to say, we often have prior 

knowledge about an object class that permits us to identify whether a new exemplar of 

that class is upright or inverted. It is reasonable to suppose that having knowledge of 

an object's canonical orientation may lead to a processing advantage when encountering 

objects in their upright (or most familiar) orientation (Palmer et al., 1981). However, 

the results of this study indicate this is not always the case. Faces and houses both 

have canonical orientations; textures do not. Yet, whereas faces resulted in an inversion 

effect with novel exemplars (i.e., without any specific training for these particular faces), 

neither houses nor textures displayed an initial upright advantage for novel exemplars. 

The absence of an initial inversion effect for houses is not specific to the house stimuli 

used in the current experiments, as a similar finding has recently been reported for other 

house stimuli (Leder and Carbon, 2006). Having a life-time of prior exposure to upright 

houses apparently does not give observers an advantage when processing upright, as 

opposed to inverted, houses, so knowledge of canonical orientation alone does not seem 

to result in inversion effects. Clearly, something more specific to the individual exemplars 

or to the object set must be learnt before inversion effects arise. 

2.6.3 Face specificity of inversion effects 

In the current study, the inversion effect varied substantially between houses and 

textures, but very little between textures and faces. Differences between the size of 

inversion effects obtained with faces and other objects have often been attributed to 

the effects of face-specific processing. Where substantial inversion effects have been 

demonstrated for non-face stimuli (e.g., Greebles or dogs), critics have suggested that 

these results may indicate that these stimuli are too "face-like" (e.g., Kanwisher, 2000), 
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and therefore, might come to be processed by face mechanisms after training. The 

current results do not support the claim that inversion effects are the result of a switch 

from face-specific to object-general processing. House and texture training not only 

induced an inversion effect, but the size of this effect for textures was large, and did 

not differ significantly from the effect measured with faces. Because textures bear no 

resemblance to faces, it is clear that large inversion effects are not restricted to stimuli 

that look like faces. Moreover, quantitative changes within a linear template can account 

for the learning of these textures (Gold et al., 2004), suggesting that practice increases 

the efficiency of a single processing strategy, rather than leading to a qualitative switch 

from featural to configural processing. Accordingly, the large inversion effect typically 

obtained with faces may not reflect a qualitative change in the types of mechanisms used 

to identify upright and inverted stimuli (Sekuler et al., 2004; Ikeda et al., 2005; Troje 

and Westhoff, 2006; Gaspar et al., 2008). 

2.6.4 Conclusions 

Large inversion effects are neither specific to faces nor are they likely the result of 

face-specific mechanisms, as they can be induced with non-face stimuli, even when no 

prior canonical orientation is known. Some minimal level of expertise is necessary for 

inversion effects to emerge, yet there does not appear to be a simple relationship between 

degree of training and the size of the inversion effect. 

2. 7 Acknowledgements 

This work was supported by NSERC Discovery Grants 42133 and 105494, Canada 

Research Chairs to P JB and ABS, and an NSERC PGS-D award to JSH. We thank 

Donna Waxman for assistance with the data collection, and Carl Gaspar and Daphne 

Maurer for their helpful comments on the manuscript. 

References 

Barton, J., Keenan, J., Bass, T., 2001. Discrimination of spatial relations and features 

in faces: Effects of inversion and viewing duration. Br J Psychol 92 Part 3, 527-549. 

Behrmann, M., Ewell, C., 2003. Expertise in tactile pattern recognition. Psychol Sci 

14 (5), 480-486. 



38 CHAPTER 2. INVERTING HOUSES AND TEXTURES 

Diamond, R., Carey, S., 1986. Why faces are and are not special: an effect of expertise. 

J Exp·Psychol Gen 115(2),107-117. 

Farah, M. J., Tanaka, J. W., Drain, H. M., 1995. What causes the face inversion effect? 

J Exp Psychol Hum Percept Perform 21 (3), 628-634. 

Freire, A., Lee, K., Symons, L. A., 2000. The face-inversion effect as a deficit in the 

encoding of configural information: direct evidence. Perception 29 (2), 159-170. 

Gaspar, C. M., Bennett, P. J., Sekuler, A. B., 2008. The effects of face inversion and 

contrast-reversal on efficiency and internal noise. Vision Res 48 (8), 1084-1095. 

Gauthier, I., Tarr, M. J., 1997. Becoming a "greeble" expert: exploring mechanisms for 

face recognition. Vision Res 37 (12), 1673-1682. 

Gauthier, I., Williams, P., Tarr, M. J., Tanaka, J., 1998. Training 'greeble' experts: a 

framework for studying expert object recognition processes. Vision Res 38 (15-16), 

2401-2428. 

Gold, J., Bennett, P. J., Sekuler, A. B., 1999a. Identification of band-pass filtered letters 

and faces by human and ideal observers. Vision Res 39 (21), 3537-3560. 

Gold, J., Bennett, P. J., Sekuler, A. B., 1999b. Signal but not noise changes with per­

ceptual learning. Nature 402 (6758), 176-178. 

Gold, J., Sekuler, A., Bennett, P., 2004. Characterizing perceptual learning with external 

noise. Cognitive Science 28 (2), 167-207. 

Gosselin, F., Schyns, P. G., 2001. Bubbles: a technique to reveal the use of information 

in recognition tasks. Vision Res 41 (17), 2261-2271. 

Husk, J. S., Betts, L. R., O'Craven, K. M., Bennett, P. J., Sekuler, A. B., VSS 2006. 

House training: Neural correlates of object learning. Journal of Vision 6 (6), 664a 

(Abstract). 

Hussain, Z., Bennett, P. J., Sekuler, A. B., VSS 2006. Face-inversion effects flex with 

perceptual learning. Journal of Vision 6 (6), 153a (Abstract). 

Ikeda, H., Blake, R., Watanabe, K., 2005. Eccentric perception of biological motion is 

unscalably poor. Vision Res 45 (15), 1935-1943. 



39 REFERENCES 

Jolicoeur, P., 1985. The time to name disoriented natural objects. Mem Cognit 13 (4), 

289-303. 

Kanwisher, N., 2000. Domain specificity in face perception. Nat Neurosci 3 (8), 759-763. 

Kilgour, A. R., Lederman, S. J., 2006. A haptic face-inversion effect. Perception 35 (7), 

921-931. 

Lawson, R., Humphreys, G. W., Jolicoeur, P., 2000. The combined effects of plane dis­

orientation and foreshortening on picture naming: one manipulation or two? J Exp 

Psychol Hum Percept Perform 26 (2), 568-581. 

Leder, H., Bruce, V., 2000. When inverted faces are recognized: the role of configural 

information in face recognition. Q J Exp Psychol A 53 (2), 513-536. 

Leder, H., Carbon, C.-C., 2006. Face-specific configural processing of relational informa­

tion. Br J Psychol 97 (Pt 1), 19-29. 

LeGrand, R., Mondloch, C. J., Maurer, D., Brent, H. P., 2001. Neuroperception. Early 

visual experience and face processing. Nature 410 (6831), 890. 

Malcolm, G. L., Leung, C., Barton, J. J. S., 2004. Regional variation in the inversion 

effect for faces: differential effects for feature shape, feature configuration, and external 

contour. Perception 33 (10), 1221-1231. 

Martelli, M., Majaj, N. J., Pelli, D. G., 2005. Are faces processed like words? A diagnostic 

test for recognition by parts. J Vis 5 (1), 58-70. 

McLaren, I. P., 1997. Categorization and perceptual learning: an analogue of the face 

inversion effect. Q J Exp Psychol A 50 (2), 257-273. 

Moscovitch, M., Moscovitch, D., 2000. Super face-inversion effects for isolated internal 

or external features, and for fractured faces. Cognitive Neuropsychology 17 (1-3), 201­

219. 

Nagai, M., Bennett, P. J., Sekuler, A. B., 2007. Spatiotemporal templates for detecting 

orientation-defined targets. J Vis 7 (8), 11. 

Newell, F. N., Ernst, M. 0., Tjan, B. S., Bulthoff, H. H~, 2001. Viewpoint dependence in 

visual and haptic object recognition. Psychol Sci 12 (1), 37-42. 



40 CHAPTER 2. INVERTING HOUSES AND TEXTURES 

Oppenheim, A., Lim, J., 1981. The importance of phase in signals. Proceedings of the 

IEEE 69 (5), 529-541. 

Palmer, S. E., Rosch, E., Chase, P., 1981. Canonical perspective and the perception of 

objects. Attention and Performance 9, 135-151. 

Rakover, S. S., 2002. Featural vs. configurational information in faces: a conceptual and 

empirical analysis. Br J Psychol 93 (Pt 1), 1-30. 

Reed, C. L., Stone, V. E., Bozova, S., Tanaka, J., 2003. The body-inversion effect. Psychol 

Sci 14 (4), 302-308. 

Rhodes, G., Jeffery, L., Watson, T. L., Jaquet, E., Winkler, C., Clifford, C. W. G., 2004. 

Orientation-contingent face aftereffects and implications for face-coding mechanisms. 

Curr Biol 14 (23), 2119-2123. 

Riesenhuber, M., Jarudi, I., Gilad, S., Sinha, P., 2004. Face processing in humans is 

compatible with a simple shape-based model of vision. Proc Biol Sci 271 Suppl 6, 

S448-50. 

Robbins, R., McKone, E., 2007. No face-like processing for objects-of-expertise in three 

behavioural tasks. Cognition 103 (1), 34-79. 

Rousselet, G. A., Husk, J. S., Bennett, P. J., Sekuler, A. B., 2005. Spatial scaling factors 

explain eccentricity effects on face ERPs. J Vis 5 (10), 755-763. 

Rousselet, G. A., Husk, J. S., Bennett, P. J., Sekuler, A. B., 2007. Single-trial EEG 

dynamics of object and face visual processing. Neuroimage 36 (3), 843-862. 

Rutherford, M. D., Clements, K. A., Sekuler, A. B., 2007. Differences in discrimination 

of eye and mouth displacement in autism spectrum disorders. Vision Res 47 (15), 

2099-2110. 

Schyns, P. G., Bonnar, L., Gosselin, F., 2002. Show me the features! Understanding 

recognition from the use of visual information. Psychol Sci 13 (5), 402-409. 

Sekuler, A. B., Bennett, P. J., 1996. Spatial phase differences can drive apparent motion. 

Percept Psychophys 58 (2), 174-190. 

Sekuler, A. B., Gaspar, C. M., Gold, J. M., Bennett, P. J., 2004. Inversion leads to 

quantitative, not qualitative, changes in face processing. Curr Biol 14 (5), 391-396. 



41 REFERENCES 

Tanaka, J. W., Farah, M. J., 1993. Parts and wholes in face recognition. Q J Exp Psychol 

A 46 (2), 225-245. 

Troje, N. F., Westhoff, C., 2006. The inversion effect in biological motion perception: 

evidence for a "life detector"? Curr Biol 16 (8), 821-824. 

Valentine, T., 1988. Upside-down faces: a review of the effect of inversion upon face 

recognition. Br J Psychol 79 ( 4), 4 71-491. 

Yin, R. K., 1969. Looking at upside-down faces. Experimental Psychology 81 (1), 141­

145. 

Yovel, G., Kanwisher, N., 2004. Face perception: domain specific, not process specific. 

Neuron 44 (5), 889-898. 



·. 


Chapter 3 

House learning alters neural 

signatures of house processing, not 

FFA 

3.1 Abstract 

The cortical mechanisms of object learning are not well understood. Several studies 

have examined the fusiform face area (FFA) as a potential expertise area with mixed 

results (e.g., Gauthier et al., 1999; Op de Beeck et al., 2006), while other studies have 

found training-induced changes in the lateral occipital gyrus, a generic object processing 

region (e.g., Grill-Spector et al., 2000; Kourtzi et al., 2005). However, there has been 

little focus on the effect of learning within areas that, before learning, respond preferen­

tially to the trained object class. Given that training can alter the tuning properties of 

task-responsive neurons (Schoups et al., 2001), the strongest effects of learning might be 

expected in regions that respond preferentially to the trained object class prior to train­

ing. The current fMRI experiment focuses on houses, which preferentially activate three 

cortical regions (e.g., Epstein et al., 2007a): the parahippocampal place area (PPA), the 

retrosplenial cortex (RSC), and the temporal occipital sulcus (TOS). Houses also elicit 

strong behavioural perceptual learning (Husk et al., 2007). BOLD responses to house 

stimuli were measured during a 1-back matching task before and after 5 days of prac­

tice in a house identification task. No significant differences were observed in 1-back 

activity levels across sessions, nor were there any significant correlations between perfor­

mance on the training task and changes in activity across sessions. However, evidence 
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of learning-related changes was observed in association with learning in the 1-back task 

itself: Behavioural improvement in the 1-back matching task correlated significantly with 

increases in PPA and RSC, but not TOS, activity. No such correlations were observed 

for activity within FFA or any retinotopically-defined visual areas. These results sug­

gest that object discrimination training modifies activity within existing object-selective 

cortical networks without recruiting additional regions. 

3.2 Introduction 

The impact of visual experience on the organization of human cortical object regions 

remains poorly understood. Studies that have examined this question often focus on 

the middle fusiform gyrus, particularly the portion known as the Fusiform Face Area, or 

FFA. The FFA is reliably activated more strongly by faces than by many other stimuli, 

leading to the suggestion that this region is a specialized face-processing module (e.g., 

Kanwisher et al., 1997; Tong et al., 2000). However, the FFA is also activated by non­

face objects, including houses, chairs, and a wide variety of other object classes (Haxby 

et al., 2001; Ishai et al., 1999; Joseph and Gathers, 2002), though not as strongly as by 

faces. Explanations for the differences in activation within the FFA remain varied, with 

some researchers favouring the original view of the FFA as a face module (Kanwisher, 

2000), others proposing a model of overlapping distributed regions of object processing 

(Haxby et al., 2001), and still others suggesting that the fusiform gyrus is responsible 

for the discrimination of expertly-processed object classes (Gauthier et al., 1999). This 

last view rests on the idea that, unlike non-face objects, humans have a lifetime of 

experience with faces, and therefore are face experts. According to this theory, the 

apparent preference of the FFA for faces may be better understood as a more general 

preference for expertly-processed object classes. To test this idea, recent investigations 

of the effects of learning on visual cortical mechanisms have focused primarily on changes 

that occur in the fusiform gyrus. 

Investigations of the role of the FFA in expert object processing have produced con­. ' 

fiic~ing results. Training subjects on novel objects (Gr:eebles) seems to. modify FFA 

activity (Gauthier et al., 1999). However, Greebles have been criticized for their poten­

tially "animate" or "face-like" quality (Kanwisher, 2000), and more importantly, were 

associated with quite subtle changes in FFA activity, detectable only when analyses were 

limited to a small, central subsection of the right FFA. Bird and car experts also exhibit 

expertise-related differences in right FFA activity (Gauthier et al., 2000; Xu, 2005), but 
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these learning effects also were small. More recent studies with Lepidoptera (butterfly 

and moth) experts (Rhodes et al., 2004) and car experts (Grill-Spector et al., 20~4) have 

both failed to show increased FFA activity for experts relative to novices. However, these 

findings are difficult to interpret because experts failed to outperform novices on the be­

havioural tasks, indicating that these studies may not have tapped into the expertise of 

theif participants. More convincingly, Op de Beeck et al. (2006) found no changes in 

activations of the right FFA after extensive training with novel, synthetic object classes. 

Relatively few studies have examined the effects of object learning on regions be­

yond the FFA. Kourtzi et al. (2005) found that perceptual learning of contours defined 

by collinear Gabor patches induced learning-specific changes not only in the posterior 

fusiform region, but also in other sub-regions of the object-selective lateral occipital com­

plex (LOC), such as LO, and in early retinotopic visual areas. These results suggest that 

a distributed network of regions in visual cortex mediates the perceptual learning of 

shape information. In another study, Op de Beeck et al. (2006) trained participants to 

discriminate between exemplars of synthetic object classes: Learning produced increased 

BOLD activation in the LOC, but no learning-related changes were evident in the FFA. 

Together, these two studies provide evidence of cortical plasticity in the visual system 

after extensive training in regions distinctly separate from the face-selective regions in 

the fusiform gyrus. Rather than recruiting new cortical areas, practice with a partic­

ular object category may alter the responses of neurons within cortical networks that 

are already involved in the processing of these objects. This hypothesis is consistent 

with evidence that, in primary visual cortex, orientation discrimination learning alters 

the orientation tuning of neurons already responsive to the task (Schoups et al., 2001). 

It also is consistent with psychophysical investigations showing that perceptual learning 

does not qualitatively change the nature of object processing, but instead results in a 

quantitative enhancement of the efficiency with which objects are processed (Gold et al., 

1999b, 2004). Learning effects in the brain may therefore emerge as a modification of 

existing mechanisms, rather than the introduction of processing in new modular regions, 

as suggested by the FFA expertise hypothesis. Surprisingly, this hypothesis has not been 

examined carefully in neuroimaging studies with non-face objects that preferentially ac­

tivate cortical areas outside of the FFA. 

Houses, as a stimulus class, are ideal for addressing this issue. There is a solid 

evidence that at least three regions consistently respond more to houses and scenes than to 

faces and other objects: the parahippocampal place area (PPA), the retrosplenial cortex 

(RSC), and the temporal occipital sulcus (TOS) (Aguirre et al., 1998; Epstein et al., 1999; 
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Epstein and Kanwisher, 1998; Epstein et al., 2007a,b; O'Craven and Kanwisher, 2000; 

Grill-Spector, 2003). Before and after five days of training on a house discrimination 

task, we collected functional responses to the trained houses and to two control object 

sets (an untrained house set and a face set). Functional activity was examined within 

the house-responsive regions (PPA, RSC, and TOS), as well as within the FFA and early 

visual areas. To complement our ROI analysis, we also used a multivariate analysis 

technique, Partial Least Squares (Mcintosh et al., 1996; Mcintosh and Lobaugh, 2004; 

Bennett et al., 2001), to investigate learning effects across the whole brain. If object 

learning is driven primarily by changes within those areas most involved in processing 

the object class in question in the absence of learning, we should expect learning-related 

changes to be most pronounced in regions that respond preferentially to houses, with 

lesser changes expected in the fusiform gyms, where houses elicit weaker responses. In 

contrast, if the FFA generally is recruited when object classes become learned, we would 

expect increased activation in the FFA following learning, even if that area was not 

preferentially activated by the object class before learning. 

3.3 Method 

3.3.1 Participants 

Fourteen observers (mean age: 28 years; range: 18-36 years), recruited from McMaster 

University, completed a screening form to ensure that they met the necessary safety 

conditions (e.g., no metal implants) required for exposure to the strong magnetic field 

in the scanning room. Where necessary, vision was corrected by fitting observers with 

MRI-safe plastic frames and lenses: Snellen near-acuity ranged from 20/12.5 to 20/25 

after correction (viewing distance in the scanner was 30 cm, in near-acuity range). All 

observers were paid $25 per scanning session and $10/hr for training sessions. The data 

from two observers were excluded due to excessive head motion (see Procedure for more 

detail). Of the remaining 12 observers, 8 were female (7 right-handed) and 4 were male 

(3 right-handed). Twelve additional observers (mean age:l9; range: 18-23 years) were 

assigned to a control group. Snellen near-acuity ranged from 20/12 to 20/16, and far­

acuity ranged from 20/10 to 20/20. All observers were paid $10/hr. Eight were female 

(all right-handed) and 4 were male (3 right-handed). 
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Figure 3 .1: Training house set 

Experimental Stimuli Localizer Stimuli 

Figure 3.2: Example stimuli. From left to right: Experimental stimuli (Trained houses, 
untrained houses, and faces), and Localizer stimuli (Faces, houses, and objects). 

3.3.2 Stimuli 

3.3.2.1 Behavioural training stimuli 

The behavioural training stimuli consisted of a set of eight houses that were derived 

from front-view photographs of houses (Figure 5 .1), modified to include the same class 

of basic internal features (two upper windows, a lower right-hand window, and a lower 

left-hand door), with individual exemplars differing in the identity of each of the internal 

features. A more detailed description of the stimulus generation procedure is given 

by Husk et al. (2007). The house stimuli were presented on a Sony Trinitron GDM­

F520 monitor (800 x 600 pixels, 21 pixels/cm). At the viewing distance of 100 cm, 

the target houses subtended a visual angle of 5 deg x 7 deg, and the selection-screen 

houses subtended a visual angle of 3.4 deg x 4.8 deg. Mean luminance was 54.4cd/m2, 

and images were presented with a contrast variance of 0.001. The stimulus presentation 

was controlled by a Macintosh G4 computer running Matlab v5.2, with software from 

the Psychophysics and Video Toolboxes (Brainard, 1997; Pelli , 1997). Responses were 

recorded on a standard QWERTY Macintosh keyboard. 
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3.3.2.2 Pre-testing and Post-testing stimuli 

The experimental stimuli consisted of three sets of eight images: two house sets 

and one face set (example stimuli are presented in Figure 5.2). The first experimental 

house set was the same set employed during the training task. The second experimental 

house set was a different set of exemplars constructed in the same manner as the first 

experimental house set. The experimental faces were grayscale front-view photographs 

of faces with hair and external contours of the faces removed by placing each face within 

an oval mask, as originally described by Gold et al. (1999a). The amplitude spectra of 

the experimental faces and houses were equated separately within their object classes. 

This process ensures that observers cannot use global spatial frequency differences to 

identify individual objects. Because the structure of an image is carried largely by phase 

information (Oppenheim and Lim, 1981; Sekuler and Bennett, 1996), observers can still 

easily categorize and discriminate stimuli with averaged amplitude spectra. 

Three additional sets of eight images (houses, faces, and objects; see Figure 5.2 for 

example stimuli) were used in ROI analyses to localize regions preferentially active for 

faces or houses. The localizer stimuli consisted of grayscale faces complete with hair and 

external contours, houses placed within their local scenic contexts, and objects isolated 

on a uniform background. The localizer face and house images were originally used by 

O'Craven and colleagues (e.g., O'Craven et al., 1999), and the objects were drawn from 

a database provided by Michael J. Tarr (Brown University, http://ww.tarrlab.org/). All 

images (experimental and localizer stimuli) were equated for average contrast. 

Visual presentation of stimuli and collection of behavioural responses within the scan­

ner were controlled by the MRIX Technologies Synchronization Control System (Thul­

born Associates, Inc.). The visual stimuli were rendered as movie files, displayed through 

Windows Media Player (v9.0), and projected through the MRix system to a front­

projection screen mounted on a hood that was placed over the head coil within the 

magnet bore. Observers viewed the screen by a mirror mounted inside the hood. The 

effective viewing distance, the sum of the distance from the viewer's eye to the mirror 

and the distance from the mirror to the hood screen, was approximately 30 cm, but 

varied slightly according to the size of the participant's head. At this viewing distance, 

the visual angle of the stimuli subtended approximately 10.7 deg. 

http:http://ww.tarrlab.org
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3.3.3 Procedure 

3.3.3.1 Overview 

The experimental procedure was designed to test whether neural processing would be 

altered after an intensive period of visual house discrimination training. The experiment 

consisted of seven sessions: a pre-testing session in the fMRI scanner, five training sessions 

outside the fMRI scanner, and a final post-testing session in the fMRI scanner. The 

procedures employed during the pre-test and post-test sessions were the same: Observers 

completed six functional scans in which they were asked to perform a 1-back matching 

task with each of the object categories shown in Figure 5.2. All six object-categories 

were present in each functional scan, as further detailed below. In the pre-training 

session only, observers also completed an additional functional scan designed to map the 

retinotopic organization of the cortex (e.g., Engel et al., 1997). Observers completed a 

high-resolution anatomical scan at the end of each session. 

We chose to use a 1-back matching task during pre- and post-testing because this 

task has been used regularly when functionally identifying ventral temporal regions such 

as the FFA and PPA. Similar sequential matching tasks have been employed in earlier 

expertise studies (e.g., Gauthier et al., 1999, 2000). However, because the 1-back task 

differed from the training task, we also collected behavioural data for the training task 

during the pre- and post-testing sessions to ensure that the performance improvements 

on the training task were also present in the context of scanning sessions. These data 

were collected in a shortened version ( 104 trials) of the house discrimination training 

task that was performed during the anatomical scan. This shortened training task was 

designed only to obtain a behavioural measure of performance in the context of the 

scanning session; no functional data were acquired during this scan. 

3.3.3.2 Behavioural Training Procedure 

Observers were trained across five sessions. When possible, sessions were scheduled 

on consecutive days, and all training sessions were completed within a 10-day window. 

At the start of each session, observers were adapted to the lighting conditions of the 

testing room for 90 seconds. The training task was composed of 400 trials. Each trial 

began with a fixation point, presented for 1 s, followed by a house (randomly selected 

from the set of 8 possible houses) for 500 ms. Four alternatives were then presented in an 

array on the screen: the correct item and three other randomly selected items from the 
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remaining seven houses. The observer pressed one of four keys to identify the presented 

stimulus. The selection process was self-paced, and the stimulus array remained on the 

screen until the observer made a response. Once a house was selected, auditory feedback 

was provided: a high-pitched (600 Hz) tone in response to a correct selection, and a 

low-pitched (200 Hz) tone in response to an incorrect selection. Immediately after the 

presentation of the tone, the next trial began. Response accuracy was recorded as the 

proportion of correct responses. 

All observers received training on the same house set (Fig. 5.1), and were exposed to 

tl~e second (untrained) house set (Fig. 5.2 only during the functional imaging sessions. 

Previous experiments (Husk et al., 2007), where training was counterbalanced across 

these two sets, revealed no significant differences in the discrimination difficulty of the 

two experimental house sets either before (t(14) = l.57,p = .14) or after (t(14) = 
1.06, p = .31) training, and no significant differences in the amount of learning across 

these two house sets (t(14) = 0.47,p = .65). 

3.3.3.3 Functional Imaging Procedure 

MRI data were acquired on a 3T short bore GE Excite-HD equipped with a cus­

tomized 8-channel head coil. One-back functional scans consisted of anywhere from 33 

to 37 axial slices (4 mm slice thickness, 3.75 x 3.75 in-plane resolution), depending on the 

number of slices required to achieve full-brain coverage. We used T2* weighted gradient 

echo EPI scans (TE = 35 ms; TR = 3 s; flip angle = 90 deg; FOY = 24 cm; sequential 

acquisition; zero gap). The retinotopic scan consisted of 22 slices positioned to cover 

the entire occipital and most of the temporal lobes (TE = 22 ms; TR = 2 s; the other 

parameters were the same as those used in the 1-back functional scans). High-resolution 

(0.5 x 0.5 x 0.8 mm) 3D anatomical images were acquired in the axial plane using a 

FastIR preparation, SPGR whole-brain anatomical scan (Zip512; Tl weighted; flip angle 

= 12 deg; FOY = 24 cm; TE = 2.1 ms). 

3.3.3.4 1-back Functional scans 

The experimental and localizer stimuli were intermixed in a block randomized order 

within each of 6 functional runs. Figure 3.3 illustrates an example run. Each single run 

was composed of 12 epochs (2 epochs per object category). These epochs were blocked 

into 2-pseudo-randomized sequences of 6 epochs each, with a long fixation period of 24 s 

marking the beginning, middle, and end of the run. Epochs consisted of 24 trials, each of 
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Epochs (I -back task) 

/l\ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

GJr:lQDGJGJ DGJQQGJGJ 

24s 6s 6s 6s 6s 6s 24s 6s 6s 6s 6s 6s 24s 

Total run duration \f / 
 = 420 s (7 min}
TrH Trained Houses Fixation 

UtrH Untrained Houses 

F Faces 

LH Localizer Houses 

LF Localizer Faces 

LOb Localizer Objects 


Figure 3.3: Example time-course of a single 1-back functional run. Task epochs (24 s 
each) were separated by 6 s fixation blocks (with longer 24 s fixation blocks at the start, 
end and middle of the run). Each epoch consisted of 24 trials of a 1-back task for a single 
object category. Each object category was presented twice during each run (once in the 
first half, and once in the second half of the run). Localizer epochs and experimental 
epochs were randomly intermixed within the run. 
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which was composed of 500 ms of fixation, followed by 500 ms of stimulus presentation. 

The total scan time for a complete run was seven minutes. Observers were required to 

perform a 1-back matching task to ensure that observers remained alert and attentive 

throughout the scanning session, and to ensure that stimuli were processed at the level of 

individual identity. Immediate stimulus repetitions occurred on one-quarter of the trials 

in each epoch. 

3.3.3.5 Retinotopic Functional scans 

All subjects completed a retinotopic scan (duration 520 s) during the pre-test scanning 

session. The scan consisted of a wedge stimulus (angular width: 45 deg; radius: 6.5 deg) 

that rotated around a central fixation point (diameter: 0.46 deg). The wedge changed 

location every 8 seconds, and covered a complete 360 rotation across eight 45 degree 

steps (0, 45, 90, etc.). Within the contour of the wedges, high-contrast greyscale images 

were presented. The image presentation alternated between a static condition and a 

dynamic condition, and each condition lasted for a complete wedge rotation. In the static 

condition, the presented images were fragments of artworks (by Escher, Brooker, Dali, 

Kandinsky, Vasarely, Muche, Klimt, and Klee) that changed once per second, cycling 

through all eight artwork fragments at each wedge position. In the dynamic condition, 

the images were plaids, random noise, polar gratings, and random gabor patches that 

cycled through six phase positions (3 times per second) to induce apparent motion. 

All four image-types were presented at each wedge location (2 seconds for each motion 

sequence). 

Subjects were instructed to maintain fixation on the central fixation point. To encour­

age compliance, subjects were given a central distractor task: The centre of the fixation 

point contained a coloured segment (diameter: 0.3 deg) that flickered on and off at a 

rate of 1 Hz. This coloured segment was red 95% of the time, and green 5% of the time. 

Subjects were required to indicate whenever the coloured segment turned green with a 

button press. 

3.3.3.6 Region of Interest Analysis 

The experimental scans were imported into Brain Voyager 4.0. In-plane anatomical 

reference files were created from the first four volumes of each functional scan. T~mporal 

low-frequency drifts were removed through high-pass filtering (3 cycles per time-course). 

Slice-scan time correction and 3D motion correction processing were also performed. Fol­
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lowing a motion analysis, data runs that were contaminated by excessive motion (motion 

spikes > lmm) were removed. When more than half the runs were contaminated in ei­

ther the first or second fMRI session, the observer's data were removed entirely from the 

study. These criteria resulted in the exclusion of two observers. The anatomical images 

were transformed into standardized Talairach coordinates, and the position coordinates 

of the anatomical and functional data were co-registered. 

The primary regions of interest (PPA, RSC, TOS, and FFA) were defined by applying 

a general linear model analysis contrasting the activity associated with houses to that 

associated with faces and objects (PPA, RSC, and TOS), and the activity associated 

with faces to that associated with houses and objects (FFA) with a p-value threshold 

of 8.51x10 - 7. These contrasts resulted in several patches of activity across the cor­

tex. Consistent with earlier studies, the FFA (mean Talairach coordinates: 38, -50, -18 

(R. hem.); -35, -47, -18 (L. hem.)) was identified as a region of contiguous voxels 

located in the fusiform gyrus. The PPA (mean Talairach coordinates: 25, -44, -10 

(R. hem.); -26,-46,-9 (L. hem.)), RSC (mean Talairach coordinates: 17,-52,12 (R. 

hem.); -19, -58, 11 (L. hem.)) and TOS (mean Talairach coordinates: 31, -78, 13 (R. 

hem.); -30, -80, 9 (L. hem.)) were similarly identified as regions of contiguous voxels 

whose Talairach coordinates coincided with previous reports of these regions. For some 

subjects, house-related activity in the parahippocampal and neighbouring gyri merged. 

To maintain a consistent definition of the PPA across subjects, the activity in the neigh­

bouring gyrus was excluded from the PPA definition, despite the contiguity of the voxel 

activations. 

The time courses of activity for the experimental houses and faces were extracted 

within the predefined regions. Activity at each time point was calculated as the percent 

signal change for each condition relative to baseline (24 s blocks of fixation at the be­

ginning, middle and end of each run). Baseline corrections were calculated individually 

for each voxel within the region of interest, and the percent signal change was averaged 

across voxels, time points (24 s blocks), and runs for each condition in all ROis. 

3.3.3.7 Retinotopic Analysis 

Retinotopic mapping was carried out on an inflated map of the cortex (e.g., Engel 

et al., 1997; Sereno et al., 1995). To prepare for inflation, white matter was distinguished 

from grey matter in the anatomical images using Brain Voyager's automatic segmentation 

procedure, along with manual corrections where visual inspection indicated errors in the 



53 3.3. METHOD 

(a) Behavioural Training (b) Behavioural Improvement 

0.30.8 
...... ...-.u ....­(!) 
...... ...... ~ 0.2 
0 
u 0.7 0 

I 
LO 

c: >. 
0 e. 0.1·.;:::; 
...... 0.60 >c.. 0 
0 a. 0.0 ...... 

CL E 
0.5 


-0.1 


0.4 
Dayl Day2 Day3 Day4 Days 

-0.2 
Tr House Untr House 

Figure 3.4: (a) Mean accuracy for 12 subjects as a function of learning across 5 days of 
discrimination training. (b) Transfer data from a subset of 6 subjects who were recalled 
for an additional experimental session approximately one week after the fifth day of 
training. Shown is improvement in accuracy for the trained and untrained house-sets 
relative to accuracy with the trained house set on Day 1. 

automated solution. Functional activation was correlated with the position of the rotating 

wedge stimulus. These correlations were overlaid on the inflated cortex, and the borders 

between adjacent visual areas were manually defined by observing the phase reversals of 

the BOLD activation. 

3.3.3.8 Partial Least Squares Analysis 

The Talairach-transformed functional and structural data were converted from Brain 

Voyager format to ANALYZE format, and then imported into Matlab 7 and the toolbox 

PLSgui v5.0609151 (Mcintosh et al., 1996). PLS performs a singular value decomposition 

of the cross-correlation between the design matrix of conditions and functional activity 

to derive a set of condition latent variables (each of which is a linear contrast across the 

design conditions) and a corresponding set of brain latent variables (each of which is a set 

of voxel weights). PLS is described more fully elsewhere (Mcintosh et al., 1996; Mcintosh 

and Lobaugh, 2004), but, briefly, PLS determines the unique patterns of activity across 

all voxels that best correspond to commonalities and differences among the experimental 

conditions. 
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3.4 Results 

3.4.1 Behavioural Results 

Accuracy on the 4AFC task increased from the first to the last training session (Figure 

3.4a), with mean accuracy on training day 5 significantly greater than that of day 1 

(t(ll) = 11.24,p < .001). A subset of 6 subjects returned approximately one week after 

the final fMRI session to be tested on both trained and untrained houses. Performance 

on trained houses at post-test was not significantly different from the mean performance 

of these 6 subjects on the 5th day of training (t(5) = l.06,p = .34), consistent with 

the notion that learning for this stimulus set asymptotes after approximately 5 days of 

training (Husk et al., 2007). Performance on the untrained house set was significantly 

worse than on the trained house set (t(5) = 4.25,p = .008), and did not significantly 

exceed Day 1 performance on the trained house set, suggesting no transfer of learning 

across sets (Figure 3.4b). The lack of set transfer observed here is inconsistent with an 

earlier experiment using these same stimuli (Husk et al., 2007); in that case, limited, 

but partial, transfer was observed across sets, but consistent with highly specific learning 

seen for other complex stimuli (Hussain et al., 2009) 

To ensure that performance benefits incurred during training outside the scanner were 

exhibited in the context of the scanning sessions, a measure of accuracy on the training 

task was also evaluated during the pre-testing and post-testing in the fMRI scanner. 

Note that direct comparisons of absolute performance levels from the training sessions 

(outside the scanner) to the scanner sessions are not meaningful, as viewing conditions 

(e.g., stimulus contrast) in the scanner could not be equated to conditions outside the 

scanner. As expected, performance on the house training task rose significantly (t(lO) = 
3.881,p = .003) from pre-test (M = 0.70, SE = 0.03) to post-test (M = 0.82, SE = 
0.02). The significant effect of training observed across the scanning sessions confirms 

that the differing environmental conditions (scanner noise, potential subject discomfort, 

etc.) did not interfere with exhibition of learning achieved outside the scanner. 

Behavioural performance measures were also collected during the 1-back task in the 

two functional imaging scans (Figure 3.5. The 1-back task was intended primarily to 

ensure that subjects paid attention to the stimuli while performing a task that required 

them to differentiate the objects at an individual exemplar level (as in the training 

task). The 1-back task was not intended to be difficult, and therefore learning across 

sessions was not necessarily expected in all conditions. Repeated measures analyses of 
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Figure 3.5: 1-back behavioural performance for 12 subjects during pre-training and post­
training fMRI sessions. Performance is plotted for Experimental stimuli: Trained houses, 
untrained houses, and faces; and Localizer (Loe) stimuli: localizer faces , localizer houses, 
and localizer objects. Statistical analyses were restricted to the three experimental condi­
tions, but behavioural performance on the localizer conditions is included here for visual 
comparison. Example stimuli are presented beneath each stimulus label. 
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variance ·(Greenhouse-Geisser corrected) were conducted separately on the reactJon time 

and accu~:acy behavioural data. Each ANOVA was run with a 3 (stimulus condition) x 2 

(session) design. Reaction times did not change significantly across sessions in any of the 

three experimental conditions (Session: F(l, 11) = 0.00,p = .992; Condition: F(2, 22) = 
0.46,p = .594; Session x Condition: F(2, 22) = 0.62,p = .537). By contrast, accuracy 

increased overall across sessions (F(l, 11) = 16.54,p = .002), and varied significantly 

across stimulus conditions (F(2, 22) = 9.05,p = .007). ANOVA also revealed a significant 

interaction between session and stimulus condition (F(2, 22) = 11.80, p = .004), with 

performance increasing significantly across sessions for the house sets (trained house set: 

t(ll) = -4.07,p = .002; untrained house set: t(ll) = -4.06,p = .002), but not for 

the face set (t(ll) = -0.23,p = .82). Despite the extensive practice on the intervening 

training days between the two 1-back sessions, subjects performed only slightly ·better on 

the trained house set (M = .91, SE = .07) than the untrained set (M = .90, SE = .06) 

in the final 1-back session (t(ll) = 2.84,p = .016). 

To determine whether the increased accuracy observed in the 1-back task depended 

upon the intervening house-discrimination training sessions, a control group of 12 sub,. 

jects performed the 1-back task in two sessions separated by one week, without per­

forming intervening training sessions. Both the experimental and control groups im­

proved by approximately 103 across sessions. This improvement was not significantly 

different between the two groups for the trained (t(22) = 0.733,p = .471) or untrained 

( t(22) = 0.137, p = .892) houses, suggesting that the cross-session improvements in accu­

racy observed in the experimental subject group can be largely accounted for by learning 

within the 1-back task itself. However, the control subjects were not more accurate on 

the trained than untrained houses in the final 1-back session ( t (11) = 0 .14, p = .892), 

unlike the experimental subjects who showed a small but significant increase of 13 for 

the trained relative to untrained houses. Together, these results suggest that, for the 

experimental subjects, much of the learning observed in the 1-back task was due to prior 

experience with the 1-back task itself, but that some small additional gains were observed 

from the intervening house-training sessions. 

3.4.2 Region of Interest Results 

Region of interest analyses were conducted to determine whether training on house 

discrimination was associated with changes in activation within regions primarily respon­

sive to houses (PPA, RSC, & TOS). Activity was also examined within FFA to further 

examine its role in object learning. BOLD activity was quantified as the percent signal 
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Figure 3.6: Mean percent signal change for regions FFA, TOS, PPA, and RSC (right 
hemisphere in all cases) in response to trained- and untrained-house, and face conditions 
before (light bars) and after (dark bars) 5 days of training on the trained house set. 
Sagittal image slices of right hemisphere of a typical observer is presented above the 
mean activity plots. In the sagittal image slices, regions of interest are indicated by 
circled regions within each slice. Note that the region colours represent correlations with 
GLM linear contrasts (red = positive correlations; blue = negative correlations) , so for 
FFA, red= faces ; blue= houses and objects; but for TOS, PPA, and RSC, red= houses; 
blue= faces and objects. 
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ROI Source Statistic p 
Session F(l, 10) = 0.000, p = .986 ns 
Object Class F(2, 20) = 94.481,p < .001 *** 

FFA (n=ll) 
Session x Obj. 
Face vs. Tr H 
Face vs. Untr H 

F(2, 20) = 0.443, p = .618 
t(lO) = 9.751,p < .001 
t(lO) = 10.487, p < .001 

ns 
*** 
*** 

Tr H vs. Untr H t(lO) = 0.697, p = .502 ns 
Session F(l, 9) = 2.060, p = .185 ns 
Object Class F(2, 18) = 50.747,p < .001 *** 

TOS (n=lO) 
Session x Obj. 
Face vs. Tr H 
Face vs. Untr H 

F(2, 18) = 0.307, p = .662 
t(9) = 8.222, p < .001 
t(9) = 6.992, p < .001 

ns 
*** 
*** 

Tr H vs. Untr H t(9) = 0.801,p = .444 ns 
Session 
Object Class 

F(l, 11) = 
F(2, 22) = 

0.023, p = .883 
248.929, p < .001 

ns 
*** 

PPA (n=12) 
Session x Obj. 
Face vs. Tr H 
Face vs. Untr H 

F(2, 22) = 0.291, p = .698 
t(ll) = 17.901, p < .001 
t(ll) = 16.718, p < .001 

ns 
*** 
*** 

Tr H vs. Untr H t(ll) = 0. 795, p = .444 ns 
Session F(l, 6) = 4.485, p = .079 * 
Object Class F(2, 12) = 93.414, p < .001 *** 

RSC (n=7) 
Session x Obj. 
Face vs. Tr H 
Face vs. Untr H 

F(2, 12) = 0.294, p = .629 
t(6) = 11.361, p < .001 
t(6) = 9.523, p < .001 

ns 
*** 
*** 

Tr H vs. Untr H t(6) = 1.452,p = .197 ns 

Table 3.1: Results of repeated-measures ANOVAs (2 sessions x 3 object sets), for each 
ROI. Results of paired comparisons (dependent t-tests) are displayed following main 
effect and interaction terms. 
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change relative to a baseline measure collected during fixation intervals. Examples of the 

locations of the regions of interest for one subject, and average percent signal change for 

each condition and ROI are shown in Figure 3.6. Because there was high inter-subject 

variability in the presence of the individual regions (all four regions were clearly identifi­

able in only six of the twelve subjects), separate statistical analyses were conducted for 

each region to maximize the number of subjects included in each analysis (Table 3.1). 

As expected, there were significant effects of object-class in all four regions, with 

greater activity for faces than for both house sets in the FFA, and greater activity for both 

house sets than faces in TOS, RSC, and PPA. Activity did not differ significantly between 

house sets in any area. Most importantly, activity levels did not change significantly after 

training in any region for any condition (no significant effects of session, nor session by 

object-class interactions). There was a trend toward an overall increase in activity from 

session 1 to session 2 in region RSC; however this trend did not interact with object-class. 

This small increase was present for faces as well as for houses, suggesting that the session 

effect was not specifically due to training of an object-class. 

3.4.3 Retinotopic Analyses 

We also looked for effects of training within retinotopically-defined early visual areas. 

Activity in these regions was similarly defined in terms of percent signal change relative to 

baseline fixation intervals, and these activity levels were compared across the two imaging 

sessions. No evidence for training effects was found in any early visual area (Figure 

3.7). This was confirmed with a repeated measures analysis of variance (6 regions x 2 

sessions x 3 object-sets) where neither the effect of session (F(l, 11) = 0.524,p = .484), 

nor any of the session interaction terms were significant (Region x Session x Object 

interaction: F(lO, 110) = 1.669, p = .195; Session x Object interaction: F(2, 22) = 
0.759,p = .480; Session x Region interaction: F(5, 55) = 0.46,p = .657). Learning effects 

might also be reflected in greater differences between the two house sets in post-test than 

in pre-test. To examine this hypothesis, difference scores for the two house sets were 

compared across sessions and visual areas. Neither the main effect of session (F(l, 11) = 
1.27, p = .28) nor the session x visual area interaction (F(5, 55) = 1.33, p = .29) were 

significant, indicating that there was no significant effects of learning on the activity 

difference between trained and untrained houses. Finally, to ensure that subtle effects 

from individual regions were not being masked by these analyses, we also conducted 

repeated-measures ANOVAs (2 conditions (trained vs. untrained houses) x 2 sessions) 

separately on each early visual area. No evidence of learning was observed: There were 
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Figure 3.7: Mean percent signal change for early visual areas Vl, V2, V3, V3a, V4v, and 
VP in response to trained houses, untrained houses and faces before (light bars) and after 
(dark bars) training. All regions were identified using retinotopic mapping. Error bars 
represent+/- 1 standard error of the mean. None of the cross-session paired comparisons 
reached significance. 



61 3.4. RESULTS 

0.6 40 . 
0.4 30 0 • 

" 
0.2 20 • 

0 .. 

81 
0 • 

81 

~ '
g 0 g 10 
(/) (/) 
c c 

-~ ·O 2 ~ 0 ; I 0 
en • g 

-10 l • •-0 4 
• 8 

0 
-0 .6 -20 0 

-0 8 -30 
F Tr H UntrH F Tr H UntrH -0 .8 -0 6 -0 4 -0 .2 0 2 0 4 0 6 

Sessoo 1 Sessoo 2 Design Scaes 

Figure 3.8: Results from partial least squares analysis. (a) The linear contrast that best 
describes the activity at the voxels. This latent variable contrasts house activity (trained 
and untrained) against face activity and has similar contributions from sessions 1 and 
2, suggesting little effect of training. (b) Brain scores versus design scores (condition 
weights) for all subjects. Brain scores are summary values that reflect the weights across 
the brain voxels for each subject. In this case, negative brain scores are associated with 
the face condition (regardless of session), and positive brain scores are associated with the 
two house conditions in both sessions. Blue= faces; dark red= trained houses; light red 
=untrained houses. Circles= Session 1 and plusses =Session 2. (c) The voxel weights 
that contribute to the final brain scores. These voxel weights represent all subjects, but 
are overlayed on the anatomical scan for a single sample subject. Brain voxels coloured 
in red indicate regions that are positively correlated with house activity, while blue are 
positively correlated with face activity. 

no significant interactions between session and house condition for any of the early visual 

areas (all p's > . 23). Nor was the main effect of session significant in any early visual 

area (all p's > .39). 

3.4.4 Partial Least Squares Analysis 

To examine the effects of learning more broadly across the cortex as a whole, we used 

a data-driven, multivariate technique: partial least squares (PLS; Mcintosh et al., 1996; 

Mcintosh and Lobaugh, 2004). We conducted a task-based PLS analysis that included 

three experimental conditions (trained houses, untrained houses, and faces) before and 

after learning. The PLS analysis identified only one significant latent variable, which 

is shown in Figure 3.8. The design scores plotted in Fig. 3.8a can be understood as 

a linear contrast across experimental conditions: The height of the bars indicate the 

weight associated with the particular condition. The latent variable described the differ­
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ence between the face and house stimuli. Trained and untrained houses were weighted 

approximately equally, and their relative weightings did not differ before or after learn­

ing. The similar contributions of condition weightings across the two sessions suggests 

that learning had very little effect on the patterns of activity described by this latent 

variable. The relation between the brain scores and design scores (Fig. 3.8b) indicates 

the relation between the brain voxel weights (which combine to form a single brain score 

for each subject) and the condition weights (the design scores displayed in Fig. 3.8a). 

In this case, faces are associated with negative brain weights, and houses are associated 

with positive brain weights. The singular image in Fig. 3.8c shows the weights of the 

voxels that, across subjects, covary across experimental conditions. The brain regions 

reliably associated with this latent variable include coordinates that agree with reports 

of the FFA (Talairach coordinates for right hemisphere: [39 -60 -15) and left hemisphere: 

[-30 -66 -15]) and PPA (Talairach coordinates for right hemisphere: [27 -45 -9) and left 

hemisphere: -24 -45 -9]). 

Task Hemisphere FFA TOS PPA RSC 
r p r p r p r p 

Training task Right 0.06 .87 0.32 .36 0.01 .99 0.22 .63 
(tr. houses) Left -0.72 .07 0.28 .43 0.00 .99 -0.11 .84 
1-back Right -0.14 .68 0.13 .71 0.33 .29 0.40 .37 
(tr. houses) Left -0.46 .30 -0.11 .75 0.11 .74 0.30 .57 
1-back Right 0.16 .65 0.03 .94 0.59 .04* 0.92 .004** 
(untr. houses) Left -0.36 .43 -0.15 .68 0.26 .41 0.36 .48 
1-back Right -0.18 .60 0.33 .35 0.41 .18 -0.09 .84 
(faces) Left 0.05 .92 -0.31 .39 0.22 .48 0.68 .14 

Table 3.2: Correlations between behavioural improvements in both the training and 
1-back tasks and functional BOLD activity increases across scanning sessions (Post­
Pre). For the training task, behavioural improvements were measured as the difference 
between the final training session and the initial training session, and were compared to 
the functional activity difference for the same trained house set (collected in the context 
of the 1-back task). For the 1-back task, correlations were computed separately for 
functional and behavioural improvements for each of the trained house, untrained house, 
and face conditions. 

3.4.5 Behavioural correlations 

The behavioural results suggested some variability in the amount of learning observed 

across subjects. These individual differences might mask learning related changes in 
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Figure 3.9: Scatter plots display the relation between improvement on the 1-back be­
havioural task and increases in BOLD activity in FFA, TOS, PPA, and RSC across 
sdmning sessions. Data points are individual subject data. Data and lines of best-fit 
for faces (blue circles), trained houses (light red squares) and untrained houses (dark 
red diamonds) are displayed. Corresponding Pearson correlation coefficients are listed in 
T~ble 3.2. 

BOLD activation that were not observable in comparisons of mean functional activity 

adross sessions. Therefore, correlations were examined between the amount of learning 

in both the training and 1-back tasks, and changes in mean functional activation within 

our regions of interest from pre-test to post-test. The amount of learning was defined 

as the accuracy difference from the first to last day of training. However , no significant 

correlations were observed between activity levels in any region and the extent of learning 

on the training task (Table 3.2). 

Because the behavioural analysis of the 1-back task also suggested that learning of 

the experimental house sets had occurred between pre-test and post-test, we examined 

correlations learning on the 1-back task (i.e., accuracy difference between pre-test and 

post-test) and the change in functional activation across these two sessions. Interest­

ingly, despite the relatively constant level of mean activity across sessions in all regions 

of interest , significant correlations between the amount of learning and the change in 

activation were found in RSC and PPA (Table 3.2; Figure 3.9). These correlations were 

significant only for houses not used in the training task, although the trends were similar 

with the other house set. Although it may seem surprising that the correlations were 

significant only for the untrained house set, it is important to note that much of the 



64 CHAPTER 3. HOUSE LEARNING ALTERS NEURAL SIGNATURES 

learning in the 1-back task was due to learning in the context of the 1-back task itself. In 

that context, the two experimental house sets received equal training (from the 1-back 

practice at pre-test), so larger effects for the "trained" experimental house set would not 

necessarily be expected here. Correlations between 1-back improvement and behaviour 

were also measured for the faces. Although subjects did not show significant learning 

for faces from pre-test to post-test, there was enough variability in performance change 

across sessions to permit this comparison; nevertheless, significant correlations were not 

observed for the faces in any region. 



w 
Task Hem. Vl V2 V3 V3a V4v VP ~ 

r p r p r p r p r p r p ~ 
Training task Right 0.40 .19 0.33 .29 0.46 .13 0.45 .14 0.29 .36 0.30 .35 trl 

UJ 

(tr. houses) 
1-back 

Left 
Right 

0.39 
-0.02 

.22 

.94 
0.54 
-0.13 

.07 

.68 
0.10 
-0.30 

.76 

.34 
0.25 
-0.26 

.43 

.42 
0.43 
-0.17 

.16 

.60 
0.42 
-0.18 

.18 

.58 

c: 
S3 
UJ 

(tr. houses) Left -0.25 .42 -0.15 .64 0.05 .87 0.06 .85 -0.19 .56 -0.34 .28 
1-back Right -0.04 .91 -0.01 .98 -0.12 .72 -0.09 .78 0.12 .71 0.06 .85 
( untr. houses) Left -0.26 .41 -0.12 .71 -0.02 .94 -0.13 .70 -0.25 .44 -0.33 .29 
1-back Right 0.60 .04* 0.47 .12 0.31 .32 -0.20 .53 0.05 .88 0.28 .37 
(faces) Left 0.26 .42 0.23 .47 0.18 .58 0.30 .35 0.42 .18 0.41 .18 

Table 3.3: The relation between improvement on the 1-back behavioural task and increases in BOLD activity in early visual 
areas Vl, V2, V3, V3a, V 4v, and VP across scanning sessions. Data points are individual subject data. 

O'l 
C,Y1 
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Correlations between improvement on both the training task and the 1-back task 

and differences in the BOLD signal across sessions were also examined within retinotopic 

visual areas. No significant correlations were observed for either experimental house 

set in any of these areas. Improvements in face performance on the 1-back task were 

moderately correlated with changes in Vl activity across sessions (Table 3.3). 

3.5 Discussion 

Five days of training on a house 4AFC discrimination task was sufficient to produce a 

substantial change in behavioural performance, with accuracy in the training task rising 

23% relative to baseline performance on the first day of training. This result is consistent 

with previous behavioural experiments examining training with the same stimuli (Husk 

et al., 2007). These earlier behavioural experiments also demonstrated the emergence of 

strong inversion effects with the same amount of training, suggesting that five days of 

training is sufficient to induce at least some characteristics of expertly processed object 

classes (Husk et al., 2007). Previous experiments also demonstrated that additional days 

of training beyond five days provide only minimal additional increases in performance 

(Husk et al., 2007, Exp 1). Despite the substantial behavioural learning in the 4-AFC 

training task, no corresponding significant functional changes were observed in our fMRI 

measures: No significant activation differences were observed across sessions within the 

whole-brain multivariate analyses, nor within the more localized ROI analyses of face 

preferential areas (FFA), house preferential areas (PPA, RSC, & TOS), or retinotopically­

defined early visual areas. Nor were there any significant correlations between behavioural 

performance (or improvement) in these tasks and changes in activation within these areas. 

The functional activity in these ROis appeared quite stable across sessions and minimally 

influenced by the training task. 

Because the 1-back task was performed both at pre-test and at post-test, there was 

opportunity for learning to occur within the context of this task as well, and performance 

did improve for both experimental house sets across sessions. Significant correlations 

were observed between the amount of improvement on the 1-back task across sessions 

and activity increases in both the RSC and PPA for one of the two experimental house 

sets: those subjects who showed the greatest improvement in the identification of the 

experimental house sets across sessions exhibited the largest changes in activity within 

both the house responsive regions PPA and RSC, with the strongest effects in the RSC. 

No such correlations were observed in either TOS or FFA, nor in any of the early visual 
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areas. 

The regions that emerged in the current study as particularly responsive to houses 

(PPA, RSC, & TOS) have been previously implicated, more generally, as important for 

tasks involving scene processing (Aguirre et al., 1998; Epstein et al., 1999; Epstein and 

Kanwisher, 1998; Epstein et al., 2007a,b; O'Craven and Kanwisher, 2000; Grill-Spector, 

2003), and the sensitivity of RSC and PPA to learning is consistent with some previous 

reports of the effect of familiarity in scene processing (Epstein et al., 2007 a, b). Of these 

regions, RSC seems to be reliably more responsive to familiar scenes than unfamiliar 

scenes (Epstein et al., 2007 a, b), consistent with the stronger effect of learning in the 

RSC observed in the current study. The effect of familiarity on PPA activity is less clear, 

as effects of familiarity have been observed (Epstein et al., 2007a), but not consistently 

(Epstein et al., 2007b). Epstein has suggested that the stronger effect of familiarity on the 

RSC than PPA is indicative of differences in the areas' relative roles in scene processing. 

He proposed that the RSC is associated with retrieval of topographical memory, whereas 

the PPA is responsible for visual representations of spatial structure. Our findings suggest 

that RSC shows greater sensitivity to learning than PPA, with larger RSC activation 

changes for those who demonstrated the most task-learning. Thus, even in the context 

of a task where all stimuli were familiar to the subjects, RSC activity changes scaled 

with degree of learning. However, note that the stronger correlations we observed for the 

untrained house-set pose a challenge to this interpretation: subjects had greater exposure 

to the trained houses (across tasks). If the RSC is responsive to familiarity, one would 

expect stronger activity for the trained house set. Nonetheless, if Epstein's interpretation 

of the role of RSC is correct, the correlations between behavioural learning and RSC may 

reflect changes in memory retrieval for the house exemplars with learning. 

The current study found no clear evidence for the involvement of FFA in learning 

under the conditions of this study, despite the large behavioural improvements in the 

task, and the presence of markers of expertise, such as the emergence of an inversion 

effect after training of these stimuli (Husk et al., 2007). These results, combined with 

other contradictory reports of FFA's role in learning suggest that, although the fusiform 

may play a role in the learning of some object classes under some conditions, the FFA 

seems not to be universally involved in object learning. Unfortunately, the broad diversity 

in methodology across all previous studies, in terms of the type of object classes studied, 

the stimulus set-sizes, and the duration and method of training, makes it difficult to 

pinpoint those conditions under which the fusiform may be involved in object learning. 

This will be an important goal for future studies aimed at characterizing the function of 
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the fusiform gyrus in object learning. 

Early visual areas were also unresponsive to learning of this task. This is interesting 

given that learning in the context of contour completion tasks does produce changes in 

early visual areas (Kourtzi et al., 2005; Li et al., 2008). However, other studies examining 

object recognition have also failed to find early visual differences in object learning (Op de 

Beeck et al., 2006). Contour completion learning tasks may tap into lower-level processes 

than object learning tasks. The greater involvement of high-level areas (such as RSC) 

over lower-level visual areas is consistent with the reverse-hierarchy model of learning 

(Ahissar and Hochstein, 1997; Ahissar, 1999). Overall, these results, combined with those 

of previous studies, suggest that there is no single common neural area that represents 

all aspects of visual learning. The areas involved in visual learning likely depend both on 

the stimulus and the type of training employed. The role of FFA may be more limited 

than previously thought, and other areas may play larger roles in different contexts. 

The RSC and PPA, in particular seem to play an important role in the learning of house 

discrimination tasks, acting in the context of a larger, more distributed, cortical network. 
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Chapter 4 

House-identity training 

systematically decreases strength of 

late ERP components 

4.1 Abstract 

Experts differ from novices in their ERP responses (Tanaka and Curran, 2001; Gau­

thier et al., 2003). In particular, the Nl, a component often associated with face process­

ing, is larger for experts than novices when viewing objects drawn from their classes of 

expertise. This component is also larger following explicit training of object recognition 

(Scott et al., 2006, 2008). However, few studies have tracked the emergence of ERP 

training across multiple training sessions. We trained subjects on a house discrimination 

task across 5 sessions. ERP recordings were collected during all training sessions. ERP 

activity declined significantly across sessions, particularly in the time-range of 200-300 

ms. Throughout all sessions, reaction time was correlated with the amplitude of early 

time-ranges, and accuracy was correlated with the amplitude in later time-ranges. These 

results imply that training can have strong, systematic effects on the strength of the ERP 

response. However, training does not always increase the strength of the Nl component. 

4.2 Introduction 

Event-related potentials (ERPs) permit the precise investigation of the timing of 

events, and therefore may provide important insights about how the development of 
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expertise alters the timing of neural processing. Interestingly, although a growing number 

of studies have addressed questions of how processing differs for familiar versus unfamiliar 

stimuli (e.g., Guillaume and Tiberghien, 2001; Itier and Taylor, 2002), or have compared 

the EEG signatures of real world experts to novices (e.g., Tanaka and Curran, 2001; 

Gauthier et al., 2003), few studies have directly tracked the emerging changes in neural 

processing across a series of consecutive training sessions. 

Training modifies several ERP components including the Nl (e.g., Scott et al., 2006, 

2008) the N250 (Tanaka et al., 2006) and the N400 (Speer and Curran, 2007). Most of the 

expertise research has focussed on the Nl, a component that occurs around 150-200 ms 

after stimulus onset, which has a particularly large amplitude following the presentation 

of faces relative to the presentation of other classes of objects (Bentin et al., 1996; Eimer, 

2000a; Itier and Taylor, 2004; Jeffreys and Tukmachi, 1992). Because faces frequently 

are encountered in the environment, and often are presumed to be expertly processed, 

the sensitivity of the Nl to faces has resulted in a wealth of interest in the sensitivity of 

this component to other expertly-processed object classes. 

Expertise in a variety of areas has been linked to changes in the Nl. In some cases, 

expertise has been linked to an increase in the amplitude of the Nl. For example, dog and 

bird experts (Tanaka and Curran, 2001) and car experts (Gauthier et al., 2003) produce 

larger Nl responses to stimuli depicting objects drawn from their respective classes of 

expertise. Similarly, English readers exhibit larger Nl responses to Roman lettering 

than to Chinese characters, while English/Chinese bilinguals produce similarly sized Nl 

responses to both character sets (Wong et al., 2005). In other cases, expertise has been 

linked to changes in the strength of the Nl inversion effect. For faces, the Nl component 

is both larger and delayed when faces are presented inverted relative to upright (e.g., 

Rossion et al., 2000; Itier et al., 2006; Rousselet et al., 2007, 2008), and this sensitivity to 

stimulus inversion has become a hallmark of expert processing. Both fingerprint experts 

(Busey and Vanderkolk, 2005), and subjects trained with novel objects (Rossion et al., 

2002) exhibit Nl inversion effects similar to those observed for faces. 

Nl responses have also been compared across varying degrees of expertise within the 

category of faces. For example, humans exhibit larger Nl responses to human than ape 

faces (Carmel and Bentin, 2002) and monkeys exhibit the reverse pattern of larger Nl 

and P2 responses to monkey faces than to human faces (Peissig et al., 2007). Similarly, 

humans may have differential levels of experience discriminating amongst faces of one's 

race relative to those of other races. There is some evidence that the Nl may be larger 
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for own-race faces (Ito and Urland, 2005), however race effects on the Nl appear to 

be highly variable: Some studies have found exactly the opposite effect of smaller Nl 

in response to own race faces (Stahl et al., 2008), while others have failed to find any 

significan~ effect ofrace (Ito et al., 2004). It may be that some of the discrepancies across 

studies of race-effects could be explained by differential exposure to faces of other races 

across subject groups. Surprisingly few studies have examined changes in Nl produced 

by carefully controlled amounts of training. The most direct testing involved training 

on owls (Scott et al., 2006) and cars (Scott et al., 2008), wherein both the Nl and 

N250 components were enhanced by in-lab training (with the N250 sensitive only to 

subordinate-level training, in the case of owl training). The effect of training on the 

N250 amplitude was robust, persisting for at least one week after training, but the effect 

on Nl amplitude disappeared following the week delay. Training subjects to categorize 

novel objects also results in earlier and larger Nl responses to both trained objects and 

objects derived from the same prototype as the trained objects (Curran et al., 2002 Mar). 

The current study tracked EEG signatures of training across each of five consecutive 

days of training on a house discrimination task, which will enable us to examine changes 

in the Nl and other components across the gradual process of training a visual discrim­

ination task. In addition to standard ERP analyses, global changes across time and 

space will be examined through partial least squares, a data-drive multivariate statistical 

analysis. 

4.3 Methods 

4.3.1 Subjects 

Eight subjects (M = 23.1 years; range = 20-27) were drawn from the McMaster 

University Vision and Cognitive Neuroscience Lab subject pool. All were right-handed, 

and six were male. All subjects had normal or corrected-to-normal acuity. Subjects were 

paid $10/hr for participating in the experiment. 

4.3.2 Stimuli 

The training stimuli were a set of 8 houses (Figure 4.1). The individual houses in 

the training set were visually similar, and were constructed by selecting a single house to 

act as a common frame. House exemplars were differentiated on the basis of the doors 

and windows, with each individual house having a unique door, lower window and upper 
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Figure 4.1: Training houses. 

window pair (see Husk et al. , 2007, for additional details). Target stimuli were presented 

at low contrast (contrast variance = 0. 001) and were sized to 7. 3 x 5.2 deg visual angle. 

Target and distractor stimuli were presented at higher contrast on the response screen 

(contrast variance= 0.5), and were reduced in size to 3.7 x 2.6 deg visual angle. 

4.3.3 Apparatus 

All stimuli were presented on a Sony Trinitron GDM-F520 monitor (resolution: 800 

x 600 pixels; 20 pixels/cm; refresh rate: 85 Hz) . The experiment was conducted within 

a dimly-lit sound-attenuated booth. Viewing distance (1 m) was controlled by use of a 

chin rest. Average luminance was 41.84 cd/m 2
. 

Electrophysiological recordings were collected using the 256 channel Geodesic sensor 

net system (Electrical Geodesics Inc., Eugene, Oregon; Tucker, 1993) and acquisition 

software NetStation 4.2.4. The ground electrode was located along the midline, anterior 

to Fz. Electrode impedances were maintained within 50 micro-ohms. The analog signal 

was digitized at 500 Hz and band-pass filtered between 0.1 and 200 Hz. EEG signal was 

referenced online to Cz, but re-referenced offiine to t he average across electrodes. The re­

referenced EEG was band-pass filtered between 1 and30 Hz. Bad channels were identified 

using routines in BESA 5.0, then removed from further processing. Baseline correction 

was performed using a baseline of 300 ms, and artifacts were rejected, removing any 

trials where the amplitude exceeded ±100 microvolts, or ~ny trials wherein the amplitude 

changed by more than 75 microvolts across two consecutive time points. Only correct 

trials were retained for further analysis . 

EEG analyses were performed using EEGLAB (Delorme and Makeig, 2004) with 

extraction of ERPs and additional statistical testing conducted with additional in-lab 

Matlab routines. Partial least squares analyses were performed with Matlab routines 

PLSgui (Mcintosh and Lobaugh, 2004). 
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4.3.4 Procedure 

Subjects completed five sessions of a 4-AFC house discrimination training task, with 

no more than one session per day and all sessions occurring within a two-week interval. 

Training sessions consisted of four blocks of 104 trials each, with each trial composed 

of approximately 1.5 s of fixation (range: 1.14-1.85 s), followed by a 500 ms stimulus 

presentation, after which a response screen was presented. The response screen displayed 

the target stimulus along with three distractor stimuli. The target and distractors were 

randomly selected from the set of eight houses, with the constraint that each house was 

presented an equal number of times per session. The target position was randomized 

within the response array across trials. This screen remained in place until a response 

was made. Subjects were instructed to respond by pressing one of four keyboard buttons 

to indicate the location of the target image on the response screen. High- ( 600 Hz) and 

low-pitched (200 Hz) tones followed each correct and incorrect response, respectively. 

At the start of each session, subjects were instructed to minimize blinking and head 

movements. 

4.4 Results 

4.4.1 Behavioural results 

The behavioural training task improved house-discrimination performance both in 

terms of accuracy and reaction time for all subjects (Figure 4.2). Mean accuracy on the 

house discrimination task rose significantly from the first day (M = 0. 72, SEM = 0.03) 

to the final day (M = 0.93, SEM = 0.01) of training (t(7) = 8.60, p < .001). In concert 

with the change in accuracy, reaction time fell from the first (M = 1799, SEM = 121) 

to last (M = 1035, SEM = 44.8) day of training (t(7) = 7.811, p < .001). One subject 

performed substantially worse than the others (both in terms of lower accuracy and 

longer reaction times). Nonetheless, exclusion of this subject had minimal impact on the 

results of both behavioural and electrophysiological analyses, therefore, this subject was 

not excluded from any of the presented analyses. 

4.4.2 Event-related Potentials Analysis 

Our first analysis compared trial-averaged ERPs measured during the five training 

sessions. Figure 4.3 plots ERPs across sessions for four representative subjects. Most 

subjects exhibited clear Pl-Nl-P2 responses. As identified by peak analyses, the exact 

http:1.14-1.85
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Figure 4.2: Behavioural training results on the 4-AFC house training task: (a) Accuracy 
(b) Reaction time across training sessions. Thin lines (open symbols) reflect individual 
subject data, while thick lines (filled symbols) reflect the mean across subjects. 

Peak Hemisphere Amplitude Latency 
Day5-Dayl t p Day5-Dayl t p 

Pl Right -0.09 -0.38 .71 -4.5 -1.03 .34 
Left -0.92 -0.99 .35 0.25 0.09 .93 

Nl Right -0.45 -1.06 .32 1.75 0.30 .77 
Left 0.29 1.43 .19 7.25 2.01 .08 

P2 Right -0.6 -1.09 .31 -1. 75 -0.37 .72 
Left -0.18 -0.34 .75 -2.75 -1.01 .35 
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Table 4.1: Comparison of peak amplitude and latency for Pl, Nl, and P2 components 
from Day 1 to Day 5 of training. 
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Figure 4.3: Training data: ERPs (averaged across trials) in response to house stimuli for 
5 training sessions (Line colours from first to last session: Red, Orange, Green, Blue, & 
Black) for four representative subjects (left panel = left hemisphere; right panel = right 
hemisphere). 
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Figure 4.4: Results of t-tests that compared whether difference ERPs (Avg Days 4-5 
minus Avg Days 1-2) were significantly greater than zero (at each electrode and time­
point). Red = large positive t-scores; Blue = large negative t-scores; green = non­
significant t-scores 
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Figure 4.5: Sample electrodes from left hemisphere (left panel) and right hemisphere 
(right panel). ERPs of average of Days 1-2 (green solid lines) and Days 4-5 (blue dashed 
lines) are plotted as the average across subjects. Difference waves (Avg Days 4-5 minus 
Avg Days 1-2) are plotted (black solid lines). Time-points where the difference waves 
differ significantly from zero are plotted as red dots. 
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timing of these peaks varied across subjects and sessions. The Pl was generally located 

in the time-range of 130-170 ms, the NI in the time-range of 170-238 ms, and the P2 in 

the time-range of 206-260 ms. The N250 component was not consistently present across 

subjects and sessions, so was not systematically investigated. Neither the amplitude nor 

the latency of any of any of the Pl- NI- or P2- peaks differed significantly from the first 

to last session of training (Table 4.1). 

Although the peak analysis did not reveal any significant effects of training, Figure 

4.3 hints that amplitude in late parts of the ERP (i.e., > 200 ms) declined with training, 

particularly in the right hemisphere. To examine changes across the entire time-range of 

the ERP traces, the difference between the average of the first two training sessions and 

the average of the last two training sessions was calculated at each electrode and time­

point. These differences were tested to determine whether they differed significantly from 

zero. The resulting t-values are presented in Figure 4.4. This figure presents topographic 

maps of the significant t-test values (p < .01) across the scalp plotted at 20 ms time 

intervals from 0-380 ms after stimulus onset. Values range from red (positive t-values) to 

blue (negative t-values). Training is associated with significant changes predominantly 

in the time-range of 200-320 ms. These differences are expressed as increases in the 

amplitude of left frontal electrodes, and decreases in the amplitude of right posterior 

electrodes. An additional early difference is visible as a decrease in the right frontal 

electrodes at approximately 40 ms after stimulus onset. To examine the time-course of 

these session differences in more detail, Figure 4.5 illustrates these differences at three 

electrodes in the posterior left and right hemispheres. These electrodes were chosen 

because they fall within the region of peak posterior activity for the Pl-Nl-P2 complex. 

The ERP and difference waves for these electrodes indicate a fall-off in amplitude after 

training that differs significantly (as indicated by red dots along x-axis) from zero at right 

hemisphere electrodes between approximately 200 and 300 ms after stimulus onset. The 

early part of this time-range overlaps with the peak of the NI in some subjects. This 

time-range also overlap with the peak of the P2 for all subjects. 

4.4.3 Partial Least Squares 

To complement the ERP analysis, changes across the five training sessions were ex­

amined with partial least squares (PLS) (Mcintosh et al., 1996; Mcintosh and Lobaugh, 

2004). PLS is a multivariate technique that determines the sets of weights that maximize 

the covariance between ERP activity and task conditions. The output of a PLS analysis is 

a series of latent variables, each of which corresponds to sets of weights (saliences) applied 
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to both the conditions (in this case, the training sessions) and the ERP responses (across 

time). The significance of each latent variable was assessed using permutation tests (500 

samples). The reliability of the saliences for significant latent variables were assessed 

with bootstrap estimates of the standard error around the saliences (500 samples). 

A PLS analysis that included each training session as a separate condition revealed 

a single significant latent variable (p = .006). This latent variable contrasted activity 

during the first two sessions of training against activity in the last two sessions (Figure 

4.6). Activity on the third (middle) session contributed minimally to the contrast. These 

condition weights (design scores) are suggestive of a linear trend across sessions. Figure 

4. 7 illustrates the electrode saliences for this latent variable at two electrodes from the 

left and right hemispheres that typically form the focal points of Nl activity. The red 

dots along the x-axis indicate time-points that are reliable. Because these estimates 

of reliability are not the result of hypothesis tests, they have not been corrected for 

multiple comparisons. The plotted salience values in Figure 4. 7 indicate the relative 

contribution of the ERP activity across time to the condition difference illustrated in 

Figure 4.6. For the right-hemisphere electrodes, the difference between the early and late 

sessions is maximal around 300 ms after stimulus onset. A summary of the electrode 

saliences across the entire scalp is shown in Figure 4.8, which plots the sum of the 

significant electrode salience time-points in 25 ms windows ranging from 0-400 ms after 

stimulus onset. Scalp points plotted in red indicate electrodes that strongly express the 

condition weights described in Figure 4.6 (i.e., electrodes where the amplitude falls of 

with progressive sessions). Scalp points plotted in blue indicate electrodes that strongly 

express the inverse of the condition weights (i.e., electrodes where amplitude increases 

with progressive sessions). The effect described by this latent variable appears to be 

concentrated in the posterior right hemisphere. Thus, both the ERP and PLS analyses 

suggest that training causes a decline in amplitude starting about 200 ms after stimulus 

onset. 

Because ERP responses vary in both amplitude and latency across subjects, a second 

PLS analysis was conducted that factored out these cross-subject differences. Difference 

ERP waves were calculated relative to the first training session, for each of the subsequent 

training sessions. A PLS analysis was then conducted with training sessions 2-5 as con­

ditions, and the difference waves (always relative to training session 1) as brain activity. 

Even more clearly than the results of the first PLS analysis, the condition weights for 

this latent variable (Figure 4.9) describe a decreasing linear trend across sessions, indi­

cating that the amplitudes of the difference ERPs declined approximately linearly across 
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Figure 4.6: PLS analysis: Training sessions. Condition weights for the significant latent 
variable: The bars represent weights in a linear contrast that best distinguish between 
the five conditions (sessions). 
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Figure 4. 7: PLS analysis: Training sessions. Saliences at two electrodes that typically 
exhibit large Nl 70 amplitudes in the left (1st column) and right (2nd column) hemi­
spheres. Red dots indicate time-points where saliences have reliably non-zero values (as 
assessed by a 500 sample bootstrap). 
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Figure 4.8: PLS analysis: Training sessions. A summary of electrode saliences across 
the scalp. The time points at which the salience was reliably non-zero were summed 
within 25 ms windows (from 0-400 ms) for each electrode. The resulting window sums 
are plotted across the scalp: red values indicate electrodes that strongly exhibit the 
pattern of the condition weights in the given time-window (i.e., where amplitude falls off 
with training); blue values indicate electrodes that strongly exhibit the reverse pattern 
of condition weights during the time-window (i.e. , where amplitude rises with training). 
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Figure 4.9: PLS analysis: Difference from first day of training. Condition weights for 
the significant latent variable: The bars represent weights in a linear contrast that best 
distinguish between the five conditions (sessions). 



87 4.4. RESULTS 

u L':> !:>U I':> 

0 ~ 
1UU 1L!:> 1 !:>U 1 I':> 

@ @ 
LUU a':> 

.G ~ 
::JUU :.:JL':> ::J!:>U ::JI':> 

~ ~ 
Figure 4.10: PLS analysis: Difference from first day of training. To summarize the 
corresponding electrode saliences across the scalp, the time points at which the salience 
was reliably non-zero were summed within 25 ms windows (from 0-400 ms) for each 
electrode. The resulting window sums are plotted across the scalp: red values indicate 
electrodes that strongly exhibit the pattern of the condition weights in the given time­
window (i.e. , where amplitude falls off with training); blue values indicate electrodes that 
strongly exhibit the reverse pattern of condition weights during the time-window (i.e. , 
where amplitude rises with t raining). 
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Figure 4.11: PLS analysis: Difference from first day of training. Electrode saliences for 

latent variable 1 for the left (1st column) and right (2nd column) hemispheres. Electrodes 

are typical peak N 1 70 electrodes. 
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training sessions. Figure 4.10 indicates the electrodes and time window within which 

these effects are reliable. The strongest effects (as depicted by regions of red on the 

scalp) are centered around the right posterior electrodes in the time window of 200-300 

ms, which is consistent with the results obtained with the previous PLS analysis. Figure 

4.11 illustrates the time-course of the latent variable for sample posterior electrodes in 

the left and right hemisphere. Note that saliences are again, more reliable for right than 

left-hemisphere electrodes. 

Training effects on the ERP signatures may be modulated by the amount of learning 

exhibited by subjects. To examine this possibility, we employed behavioural PLS analy­

ses. Unlike Task PLS analyses that contrast brain activity (ERPs) across experimental 

conditions (sessions), behavioural PLS analyses contrast the correlation between brain 

and behaviour across different experimental conditions (Mcintosh and Lobaugh, 2004). 

Separate behavioural PLS analyses were performed on the accuracy and RT data. Figure 

4.14 plots the design scores across sessions, as well as the correlations across sessions. 

The design scores indicate the strength of the expression of the task/behaviour correla­

tions across sessions, and can be thought of as contrasts across the conditions. In this 

case, the design scores are positive for all sessions, indicating that a similar correlation 

is being expressed across sessions (note: unlike Task PLS, Behavioural PLS analyses are 

not mean-centred, therefore the design scores do not necessarily sum to zero). In partic­

ular, both the accuracy and reaction time correlations appear to change only moderately 

across sessions (Figure 4.14), with correlations dropping off somewhat by the last day of 

training. Like the task PLS results, the correlations between ERP and accuracy (Figure 

4.12) were most reliable in the time range of 200-300 ms in the posterior right hemi­

sphere. By contrast, the ERP reaction time correlations (Figure 4.13) were most reliable 

at earlier latencies, centred around 100 ms, and most strongly evident in the posterior 

left hemisphere. 

4.5 Discussion 

Five days of training on a visual house discrimination task resulted in substantial 

learning as measured by both accuracy and reaction time measures. Both response 

measures changed substantially across the first couple sessions, and then continued to 

change at a slower rate for the remaining training sessions. These behavioural changes 

were accompanied by changes in the ERP traces: amplitude within a time window of 

200-300 ms after stimulus onset decreased significantly from early to late sessions. This 
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Figure 4.12: Behavioural PLS analysis (Accuracy): Difference from first day of training. 
To summarize the corresponding electrode saliences across the scalp, the time points 
at which the salience was reliably non-zero were summed within 25 ms windows (from 
0-400 ms) for each electrode. The resulting window sums are plotted across the scalp: 
red values indicate electrodes that strongly exhibit the pattern of the condition weights 
in the given time-window (i.e. , positive correlations with accuracy); blue values indicate 
electrodes that strongly exhibit the reverse pattern. 
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Figure 4.13: Behavioural PLS analysis (RT): Difference from first day of training. To 
summarize the corresponding electrode saliences across the scalp, the time points at 
which the salience was reliably non-zero were summed within 25 ms windows (from 0­
400 ms) for each electrode. The resulting window sums are plotted across the scalp: red 
values indicate electrodes that strongly exhibit the pattern of the condition weights in the 
given time-window (i.e., negative correlations with reaction time); blue values indicate 
electrodes that strongly exhibit the reverse pattern. 
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Figure 4.14: Behavioural PLS analysis (Accuracy & RT): Difference from first day of 
training. The latent variable is described by condition weights and electrode saliences 
across time. 
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decrease was approximately linear across training sessions, particularly when measured 

relative to performance on the first day of training. Throughout training, changes in the 

early components ERP activity (i.e., ~ 100 ms after stimulus onset), measured relative 

to the first session, were correlated with decreased reaction time, whereas changes in the 

later components (i.e., 200-300 ms) were correlated with increased response accuracy. 

We did not find any evidence that Nl amplitude increased across training sessions. 

Indeed, we found the opposite: that amplitude decreased in the time range of the Nl 

and P2. This result is surprising in the context of previous studies that have reported an 

increase in the Nl with the acquirement of task expertise (Gauthier et al., 2003; Tanaka 

and Curran, 2001; Wong et al., 2005; Scott et al., 2006, 2008), and in some cases, with 

an increase in the N250 (Scott et al., 2006, 2008). Scott et al. (2006) found the N250 

component was especially sensitive to the training of individual exemplars, therefore, we 

might have expected similar findings in the context of learning to discriminate amongst 

houses. We were unable to explicitly examine training effects on this component because 

most subjects in the current study did not elicit clear N250 responses. However, our 

results are inconsistent with an increase in the N250 with training, as we found that 

amplitude decreased universally within the time window of 200-300 ms. 

The current study differed in at least two potentially important ways from those 

studies that reported increased Nl and N250 responses with training. The first difference 

was stimulus set size: the current study examined the effects of training subjects to 

become highly familiar with a small number of stimuli, rather than the approach taken 

in these other expertise studies of presenting a larger number of less-familiar stimuli 

from a highly trained class. This explanation would be consistent with previous reports of 

decreased Nl amplitudes for familiar relative to novel stimuli (Guillaume and Tiberghien, 

2001; Itier and Taylor, 2002), and of decreased Nl responses after immediate stimulus 

repetitions (e.g., Campanella et al., 2000; Reisz et al., 2006). 

The current study also differed from most other expertise studies in making use of 

a single 4-AFC visual discrimination task. By contrast, Scott et al. (2006, 2008) had 

subjects learn names for individual items and Gauthier et al. (2003) trained subjects in 

several cognitive tasks. The type of training can have a substantial impact on whether the 

Nl is modulated by training. For example, in a visuo-tactile task, subjects were either 

trained to pantomime interactions with the objects, or to point at the action-regions 

(e.g., handles) of the object (Kiefer et al., 2007). Only the pantomime training group 

resulted in larger Nl responses to objects that shared common functional interactions 
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(e.g., placement of handles), than objects that shared a common overall shape. No effect 

of training was observed for the pointing group. 

The use of a single, repetitive, visual training task is more commonly employed. in 

lower-level perceptual learning studies, and EEG changes with learning have also been 

examined i.n the context of this type of training task. For example, EEG training effects 

have been studied in the context of vernier acuity judgments (Skrandies et al., 1996: 

Ludwig and Skrandies, 2002; Skrandies et al., 2001; Shoji and Skrandies, 2006), and 

judgments of line orientation (Ding et al., 2003; Song et al., 2005), grating orientation 

(Song et al., 2007), and arrow direction (Song et al., 2002, 2005). Our results are consis­

tent with reports of decreased Nl amplitude in the context of learning line and grating 

orientation judgments, and arrow direction judgments (Song et al., 2002; Ding et al., 

2003; Song et al., 2005), but are inconsistent with learning in the context of vernier acu­

ity judgments, where negative components occurring around 200-300 ms increased with 

learning (Skrandies et al., 1996). Later positive components have generally also exhib­

ited an increase in amplitude with training (Song et al., 2002; Ding et al., 2003; Shoji 

and Skrandies, 2006; Landis et al., 1984), but a decrease similar to that observed in the 

current study has been reported in the context of line orientation judgments (Song et al., 

2005). 

We also found correlations between behaviour and ERP amplitude: early time ranges 

were related to reaction time, while later time ranges were related to response accuracy. 

These relations held true throughout training. The differential timing of the reaction 

time and accuracy correlations suggests the strength of early neural responses contribute 

to the speed of object recognition, while later time ranges (corresponding typically to 

the P2/P3 components) contribute more to task accuracy. The late effects of accuracy 

are consistent with other findings that stimulus familiarity tends to have greater impacts 

on later components (e.g., Eimer, 2000b; Bentin and Deouell, 2000, but see Jacques and 

Rossi on ( 2006)). 

We know of no other studies that have examined these types of accuracy /RT correla­

tions across training sessions, however a similar correlation between behaviour and Pl/Nl 

strength has been reported in the context of change detection task (Curran et al., 2009). 

In that case, an amalgamated measure of the Pl and Nl components was correlated with 

accuracy. It is interesting to note that the correlations reported by Curran et al. (2009) 

were similarly unaffected by expertise: the relation between accuracy and signal strength 

was comparable across both expert image analysts and novice participants. Thus, while 
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training affects overall signal strength, it does not appear to alter the relation between 

signal strength and behavioural measures. 

The current results contribute to a growing literature examining electroencephalo­

graphic changes across training, and is the first that we know of to track ERP responses 

across a large sequence of training sessions. The amplitude decrease with learning that we 

have reported here is consistent with some reports from other visual training paradigms, 

but inconsistent with the typical reports of increased amplitude responses for field experts 

compared to novices, a discrepancy that might be explained by differences in familiarity 

with the presented stimuli between lab-trained experts and real-world experts. 
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Chapter 5 

ERP differences between faces and 

houses are unaffected by 

house-identity training 

5.1 Abstract 

Previously we demonstrated that training subjects to identify houses decreases the 

amplitude of the ERP signals in the time-range of 200-300 ms. Here, we present data 

collected before and after these training sessions that compare the ERP responses to the 

trained houses and other object classes (including untrained houses, faces and objects). 

Session differences were observed for all classes of stimuli. Amplitude increased across 

sessions at late time ranges, selectively for the untrained stimuli, resulting in an increase in 

the difference between the ERP signatures of the trained houses and faces after training. 

No training-related amplitude changes were observed in the time-range of the Nl, however 

the Nl response decreased marginally in latency in the right hemisphere for trained 

houses, suggesting that training resulted in slightly faster processing of the stimuli. 

5.2 Introduction 

Faces elicit a large negative event-related potential response about 170 ms after stim­

ulus onset (e.g., Bentin et al., 1996; Eimer, 2000a; Itier and Taylor, 2004; Jeffreys and 

Tukmachi, 1992). Despite the reliability of this Nl response, its function remains unclear. 

The Nl can be elicited by a wide range of scenes and objects, in addition to faces, but 
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tends to be larger and earlier for faces than for other object categories. An interesting 

exception to this general trend is the NI response to eyes presented in isolation, which 

actually is larger than the NI produced by whole faces (Bentin et al., I996; Taylor et al., 

2001). Despite the amplitude and latency differences between the NI for objects and 

for faces, there is some evidence that the NI responses elicited by objects are produced 

by the same mechanisms that produce the NI responses evoked by faces (Rossion et al., 

2007, 2004). If the same mechanisms are responsible for both the face NI and the object 

NI, then the face NI may only differ quantitatively, not qualitatively, from the object 

NI. For example, the face NI and object NI might differ only as a function of expertise. 

Early studies found that similar NI responses were evoked by unfamiliar and famous 

faces (Eimer, 2000a,b; Bentin and Deouell, 2000), which suggested that the NI is not 

affected by stimulus familiarity. More recent findings challenge this view. For example, 

observers exhibit larger NI responses to human faces than to ape faces (Carmel and 

Bentin, 2002), and experts exhibit larger NI responses to objects drawn from their area 

of expertise (Tanaka and Curran, 200I; Gauthier et al., 2003). Other studies have shown 

that practice in object categorization tasks can alter the NI evoked by objects drawn from 

the class of objects seen during training (Scott et al., 2006, 2008), although it is unclear 

if such training results in NI responses that are as large as those produced by faces. 

If larger, earlier NI responses are produced as a result of expertise, one might expect 

the ERP response of trained objects to similarly increase in amplitude and decrease in 

latency, reducing the difference between the face and object NI responses. 

We recently demonstrated that five days of practice in a house discrimination task 

systematically alters the amplitude of the ERP response evoked by houses (Chapter 4). 

Specifically, training reduced the amplitude of the ERP 200-300 ms after stimulus onset, 

and the effect increased approximately linearly across the five days of practice. Unlike 

previous training studies (Scott et al., 2006, 2008), we found no evidence for an increase 

in NI amplitude. However, the training task we employed was unusual for ERP studies. 

For example, the stimuli were presented at low contrast, and contrast is known to affect 

the strength of ERP signals (Mace et al., 2005). Furthermore, the ERP measurements 

were made in the context of a 4-AFC discrimination task, rather than a matching task 

with simpler go/no-go response demands, as is more typically employed in ERP studies. 

Here, we examine the effects of training on performance in a one-back matching task 

that was administered before and after the previously-reported house-training sessions. 

Unlike the 4-AFC task used during training, the one-back task used high-contrast pat­
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Figure 5.1 : Training houses. 

terns drawn from several sets of stimuli. If the larger Nl response to faces is a result 

of expertise, we would expect that Nl responses to the trained houses should increase 

with training, and that the difference ERP between faces and houses should decrease 

after training. Previous work has shown that the effects of training in a house discrim­

ination task partially transfer to novel exemplars of the training set (Chapter 2). Here, 

ERP effects of learning might also be expected to show partial transfer of learning to the 

untrained similar houses. 

5.3 Methods 

5.3.1 Subjects 

Eight subjects (mean age= 23 .1; range= 20-27) participated in this experiment. All 

subjects were right handed and had normal or corrected-to-normal acuity. Six of the 

subjects were male. Subjects were paid $10/h for participating in the experiment. 

5.3.2 Stimuli 

The training stimuli were a set of 8 houses (Figure 5.1). All of the houses consisted 

of a single door , a single lower window, and a pair of upper windows, all placed within a 

common outer frame taken from one house. Individual houses were constructed by using 

different doors and windows for each exemplar , and the resulting items were visually 

similar. See (Chapter 2) for additional details about the stimuli . Training stimuli were 

presented at low contrast (contrast variance = 0. 001). 

The pre-training and post-training one-back task used six stimulus sets (see examples 

in Figure 5.2): the training house set, consisting of items that were seen during training, 

an untrained house set consisting of novel exemplars of houses that were similar to the 

trained set , a second set of untrained houses that differed greatly in appearance from 

the trained set (from Chapter 2) , two sets of faces (one that retained external feat ures 
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Figure 5.2: Example stimuli from the one-back task. From left to right: Tuained houses, 
similar untrained houses, faces 1, faces 2, dissimilar untrained houses, objects. 

such as hair and original face contour (from O'Craven et al., 1999), and another set of 

different faces that excluded these features by cropping the faces within a common oval 

frame (from Gold et al., 1999), and a set of miscellaneous common objects (drawn from an 

online database provided by Michael J. Tarr (Brown University, http://ww.tarrlab.org/) . 

These six stimulus sets were selected to parallel the experimental paradigm employed in 

a complementary functional magnetic resonance imaging analysis of this training task 

(see Chapter 3). One-back stimuli were presented at high contrast (contrast variance = 
0.01). 

5.3.3 Apparatus 

All stimuli were presented on a Sony Tuinitron GDM-F520 monitor (resolut ion: 800 

x 600 pixels; 20 pixels/cm; refresh rate: 85 Hz) in a dimly-lit , sound-attenuated booth . 

Average luminance was 41.8 cd/m2 
. Subjects viewed the display binocularly from a 

distance of 1 m. A chin rest was used to stabilize the viewing position. 

Electrophysiological recordings were collected using t he 256 channel Geodesic sensor 

net system (Electrical Geodesics Inc., Eugene, Oregon; Tucker , 1993) , and acquisition 

software NetStation v4.2.4. The ground electrode was located along the midline, anterior 

to Fz. Electrode impedances were maintained within 50 micro-ohms. The analog signal 

was digit ized at 500 Hz and band-pass filtered between 0.1 and 200 Hz. EEG signal 

was referenced online to Cz, but re-referenced offiine to the average across electrodes. 

The re-referenced EEG was band-pass filtered between 1 and 30 Hz. Bad channels were 

identified using routines in BESA 5.0 , then removed from further processing. Baseline 

correction was performed using a baseline of 300 ms, and artifacts were rejected, removing 

any trials where the amplitude exceeded +/- 100 microvolts, or any trials wherein the 

amplitude changed by more than 75 microvolts across two consecutive time points. Only 

correct trials were retained for further analysis. 

http:http://ww.tarrlab.org
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EEG analyses were performed using EEGLAB (Delorme and Makeig, 2004) with ex~ 

traction of ERPs and additional statistical testing conducted with additional in-lab Mat­

lab routines. Partial least squares (PLS) analyses were performed with Matlab routines 

PLSgui (Mcintosh and Lobaugh, 2004). 

5.3.4 Procedure 

5.3.4.1 Experiment Overview 

The data reported in this study were collected in the context of a 7-session training 

study. During the first and last session subjects completed the one-back matching task, 

and during the intervening five sessions they completed the 4-AFC house discrimination 

training task. The current paper presents the data from the first and last session of the 

7-session study (for detailed methods and results from the intervening training sessions, 

see Chapter 4). At the start of each session, subjects were instructed to minimize blinking 

and head movements. 

5.3.4.2 Training Procedure 

The training procedure has been described in detail elsewhere (Chapter 4) , but will 

be summarized here briefly. The training task was a 4-AFC discrimination task. The 

target house was presented for 500 ms, after which subjects were given unlimited time 

to select amongst four house exemplars, one of which was a target-match. On each trial , 

the target and distractors were chosen randomly from the set of eight houses, with the 

constraint that each of the eight houses were viewed an equal number of times within each 

session. Task difficulty was controlled by presenting the target houses at low contrast 

(contrast variance = 0.001). Subjects completed 416 trials with auditory feedback on 

each of five days. 

5.3.4.3 One-back Procedure 

The one-back matching task was designed to allow comparison of EEG signals across 

object categories before and after the training sessions. As such, the task used the training 

stimuli (houses) and comparison stimuli from a variety of other object categories. The six 

conditions were block randomized, with 10 blocks per condition for a total of 60 blocks per 

session. Each block comprised 24 trials, wherein each trial started with approximately 1.5 

second of fixation , followed immediately by the 500 ms stimulus presentation. The exact 
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duration of the fixation period was jittered randomly from 1.14 to 1.85 s to ensure some 

unpredictability in the appearance of the stimulus, resulting in a total trial duration of 

1.64-2.35 s. Within each block, target events (i.e., immediate repetitions of the previous 

stimulus) occurred on one quarter of the trials. Subjects were instructed to press a key to 

indicate the presence of these target events. Responses were accepted between stimulus 

onset and the onset of the following stimulus (i.e. responses were still accepted through 

the fixation period leading to the following stimulus; there was no inter-stimulus interval 

aside from fixation), and a failure to respond during this interval was recorded as a miss. 

http:1.64-2.35
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5.4 Results 

5.4.1 One-back behaviour 

As expected, performance in the one-back task was near ceiling for nearly all sets of 

stimuli in both the pre- and post-test sessions (Figure 5.3a). Accuracy for the trained 

houses and the similar untrained house set was lower than for the other sets, though 

accuracy was still quite high (i.e.,~ 903 correct for both sets in the pre-training session). 

For these two sets of houses, accuracy increased significantly from pre-test to post-test 

(trained houses: t(7) = 2.43,p = .045; untrained houses: t(7) = 2.98,p = .021; Figure 

5.3c) and reaction time decrease significantly from pre- to post-test (trained houses: 

t(7) = -2.44,p = .045;t(7) = -4.61,p = .002; Figure 5.3b). The decrease in reaction 

time was larger for the trained house set than for the untrained house set (t(7) = 2.37, p = 
.049; Figure 5.3d). 
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Figure 5.4: ERPs for pre-training (left column) and post-training (right column) for four representative subjects. Legend: Red 
= trained houses; orange = untrained similar houses; pink = untrained dissimilar houses; Blue/green = faces, and black = 
objects. 
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Peak Hemisphere Amplitude Latency 
Post-Pre t p Post-Pre t p 

Pl Right :0.22 -0.51 .62 1.75 1.43 .19 
Left -0.52 -1.21 .27 -0.25 -0.24 .81 

Nl Right -0.61 -1.50 .18 -3.50 -2.14 .06 
Left -0.25 -0.52 .62 -1. 75 -0.86 .41 

P2 Right -0.06 -0.13 .90 7.00 1.21 .27 
Left 0.31 0.56 .59 3.50 0.37 .73 

Table 5.1: Comparison of peak amplitude and latency for Pl, Nl, and P2 components 
for trained houses from Pre-training to Post-training. 

5.4.2 ERP responses 

Activity associated with each of the stimulus conditions and sessions was averaged 

across trials. Figure 5.4 presents these trial-averaged ERPs for four representative sub­

jects. A peak analysis identified Pl, Nl, and P2 components for all subjects and condi­

tions. The N250 could not be isolated in the context of this task, so this component was 

not explicitly analyzed. The Pl was identified in the time-range of 88-132 ms, the Nl was 

identified in the time-range of 160-210ms, and the P2 was identified in the time-range 

of 226-284ms. The obseved ERP patterns are typical of other results reported in other 

studies (e.g., Rousselet et al., 2007, 2008): The Nl in response to faces was similar across 

both face sets, and, in both cases, larger and earlier than Nl responses to the house sets. 

The responses to the mixed object set were fairly similar in amplitude and latency to 

that of faces. 

To examine session-differences for each object condition, t-tests were performed to 

test whether session differences for each condition were significantly different from zero. 

Table 5.1 lists the results of these session differences for the peak locations of the Pl, 

Nl, and P2. Neither amplitude nor latency varied significantly across sessions for any 

peak. However, in the right hemisphere, the Nl peak was marginally earlier after training 

(p = .06), suggesting that training may have some impact on the speed of neural object 

processing. 

In addition to the peak analysis, session differences were examined systematically 

across electrodes and time-points. T-tests were performed to determine where session 

differences differed significantly from zero. Figure 5.5 plots the significant t-values (p < 
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Figure 5.5: Results oft-tests that compared whether difference ERPs (post-training ­
pre-training) were significantly greater than zero (at each electrode and time-point) for 
each of the six object conditions. Red = large positive t-scores; Blue = large negative 
t-scores; green = non-significant t-scores 
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.01) across the scalp. Significant session differences are present, in varying amounts, for 

all object conditions. Surprisingly, the trained houses do not appear to exhibit greater 

session differences than other object conditions. In fact, the faces and objects appear to 

exhibit greater session differences than any of the house sets. T-test results for example 

electrodes (right hemisphere only) from frontal, mid, and posterior scalp locations are 

presented in Figure 5.6. Late signficant session differences are present in the time range 

of 300-400 ms for all conditions except the trained houses and untrained similar houses. 

It is apparent, both from the overall scalp patterns, and from the example electrodes, 

that the trained houses, and the untrained similar houses are the only two object sets 

that do not exhibit an increase in amplitude in the range of 300-400 ms after stimulus 

onset. 

Finally, we examined whether the differences between the trained houses and faces 

were affected as a result of training. If training of houses increases the similarity of 

their ERP signatures to that of faces, we should expect smaller differences between faces 

and houses across sessions. Figure 5.7 illustrates changes in the difference ERPs be­

tween houses and faces across sessions. Difference waves were calculated between faces 

(no hair) and the trained houses. These difference waves were calculated both pre- and 

post-training (displayed in top and middle panels), and t-tests were conducted to de­

termine whether these difference waves differed across sessions. The bottom panel of 

Figure 5.7 plots only the significant differences across sessions. The topographic distri­

butions indicate that differences between faces and houses increased after training. This 

was especially prominent in late time-periods (between 300-360 ms). This increase in 

differences between the faces and houses is likely a result of the cross-session increase in 

amplitude observed for faces, but not for houses. In earlier time-ranges, no significant 

differences were observed across sessions. Thus, we found no evidence that differences 

between faces and houses lessened after training in the time-range of the Nl. 
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5.4.3 PLS analyses 

In addition to the ERP analyses, a series of partial least squares (PLS) analyses were 

conducted to examine the effects of training on ERP activity across sessions and object 

conditions. PLS is a multivariate statistical technique, giving it an advantage over more 

traditional univariate ERP analyses in identifying patterns of activation across electrodes 

and conditions. We employed PLS to determine whether training effects might be present 

for the trained houses that were missed by more traditional univariate analyses. 

PLS determines the sets of weights that maximize the covariance between ERP ac­

tivity and task conditions (Mcintosh et al., 1996; Mcintosh and Lobaugh, 2004). The 

output of a PLS analysis is a series of latent variables that correspond to sets of weights, 

or saliences, across both the experimental conditions (in this case, the object condi­

tions and sessions) and the ERP responses across time. The significance of each latent 

variable was assessed with permutation tests (500 samples), and the reliability of non­

zero saliences were determined through bootstrap estimates (500 samples) of the salience 

standard errors. 

Because PLS is a data-driven technique (unlike analyses of variances, where contrasts 

of interest are explicitly chosen), the resultant latent variables must be interpreted post­

hoc, and do not always correspond to simple experimental factors. Figure 5.8 illustrates 

two hypothetical PLS results that would be indicative of training effects. In the first 

example (top panel), the contrast formed by the design saliences (condition weights) il­

lustrates a case where both trained- and untrained-houses are initially differentiated from 

faces in Session 1 (left side), but only the untrained-houses are differentiated from faces 

in Session 2 (right side). This pattern ofresults might be expected if house-identification 

training increased the amplitude of house ERP activity so that it differed less from that 

of faces, after training. In this example, the effect of training on the ERP was assumed 

not to transfer to the untrained house set. In the second example (bottom panel), the 

design saliences illustrate a case where the effect of session is equal and opposite for 

the houses and faces. This pattern of results might be expected in house-identification 

training increased the amplitude of house ERP activity, while face ERP activity declined 

across sessions. This example also illustrates a case of transfer of learning from the 

trained houses to the untrained houses. 

The subsequent PLS analyses will contrast the activity of trained and similar-untrained 

houses first, with each other, and then with each of: dissimilar-untrained houses, objects, 
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and faces. If training effects were present, we would expect results similar to those illus­

trated in Figure 5.8. 

5.4.3.1 Untrained vs Trained Houses 

The first PLS analysis was designed to determine whether any changes occurred 

across sessions for the trained houses, and whether such effects generalized to the similar 

untrained houses. In previous studies, we found that training with these same houses 

increases identification accuracy on the trained house set and that the effect partially 

generalizes to untrained houses (Chapter 2). Learning-related changes in ERP activity 

for the trained houses might also be expected to transfer to the untrained house set. 

This first PLS analysis revealed only one significant latent variable (LVl; p < .016). 

The design saliences for this latent variable (Figure 5.9) contrast the pre-training and 

post-training sessions, indicating that ERP activity differed across sessions. The timing 

of the session effect is indicated in the left-hand panel of Figure 5.10, which shows the 

ERP saliences (weights) for several frontal, central, and posterior electrodes from the 

left and right hemisphere. Time-points where the non-zero saliences are reliable are 

indicated by red dots. The right hand panel of this figure presents a topography of the 

ERP saliences that was created by first summing reliable saliences within 25 ms windows 

(from 0-400 ms) for each electrode, and then plotting the sums across the scalp: In each 

time window, red values indicate electrodes where responses varied across conditions in 

a way that matched the design saliences (i.e., post-training activity was greater than 

pre-training activity), and blue values indicate electrodes where responses varied in the 

opposite way. The topography of LVl suggests that the session difference was expressed 

most strongly in central electrodes starting around 100 ms after stimulus onset and 

persisting through 400 ms after stimulus onset. 

Because the session effect represented by LVl was present for both trained and un­

trained houses, it is not clear whether this effect is a result of training that generalized 

from trained to untrained houses (Chapter 2). The effect could, for example, repre­

sent a generalized increase in activity for all classes of stimuli. Additional PLS analyses 

presented in the following sections address this question. 
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Figure 5.11: PLS analysis: All houses. Design saliences for latent variables LVl (p < 
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5.4.3.2 All Houses 

We next compared activity across all three house sets (i.e., trained, untrained-similar, 

and untrained-dissimilar houses). This analysis was designed to help clarify the interpre­

tation of the session effect observed in the first PLS analysis. If the cross-session increase 

in activity observed for the trained and untrained houses in the first PLS analysis was due 

to learning that generalized from the trained to the untrained houses, we might expect 

this effect to be weaker for the dissimilar house set. On the other hand, if activity was 

universally higher during the second session (and unrelated to the intervening training), 

the session effect might be present for all three house sets. 

This analysis produced one significant latent variable (Figure 5.11), LVl (p < .001), 

that distinguished between the dissimilar houses and the other two house sets. This 

difference among stimulus categories was expressed in the late components of the ERPs 

(i.e., ::::::; 350 ms after stimulus onset): responses to dissimilar houses had higher amplitude 

on bilateral posterior electrodes and lower amplitude on frontal electrodes (Figure 5.12). 

A similar, but left lateralized effect is observable around 250 ms. The second latent 

variable, LV2, was marginally significant (p < .08), and replicates the session effect 

observed in the first PLS analysis. Just as observed in the first PLS analysis, the ERP 

activity of central electrodes increased from pre- to post-training (Figure 5.13), with 

no interaction across conditions. The third latent variable represents exactly the type 

of training-related interaction that would clearly indicate a training effect, with ERP 

activity increasing for dissimilar houses, but decreasing for trained and similar houses 

in the range of 200-400 ms for central electrodes (Figure 5.14). However, LV3 was not 

statistically significant (p < .82). 
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5.4.3.3 Houses vs. Objects 

The first two PLS analyses indicated that the ERP activity in central electrodes 

increased during the post-training session for both the trained and untrained houses, and 

marginally, for all three house sets. We ran two additional PLS analyses to compare 

the activity of the trained and similar-untrained houses to increasingly different stimulus 

types: a class of mixed objects, and a class of faces. The trained and similar-untrained 

house sets were first compared with the mixed class of objects. This analysis resulted in 

only one significant latent variable (LVl; p < .001) that indicated that ERPs for mixed 

objects differed from ERPs for houses (Figure 5.15). In particular, objects induced 

stronger posterior (and weaker frontal) activity than houses, between 200-300 ms after 

stimulus onset. As in the previous analysis, LV2 corresponded to a marginally significant 

(p < 0.12) effect of session that did not differ across conditions. However, the topography 

of this session effect differed from that obtained in the first two PLS analyses (Figure 

5.17): The session effect was associated with lower activity at post-training in the frontal 

electrodes approximately 300 ms after stimulus onset. Interestingly, the third latent 

variable, though non-significant, represented the same form of interaction observed when 

comparing the three house sets, with a similar topography (Figure 5.18). Although the 

session-difference observed in the trained- and similar-untrained houses is weakened by 

the addition of the object condition, this analysis still provides no firm evidence of a 

training effect because no clear interaction term between session and object-class was 

observed. 

5.4.3.4 Houses vs. Faces 

The final PLS analysis, comparing the trained and untrained houses to faces also 

produced two significant latent variables (Figure 5.19). LVl (p < .001) contrasted the 

ERP activity for faces with houses, particularly in 125-150 ms after stimulus onset, when 

activity for faces was higher at frontal electrodes and lower at posterior electrodes, and 

again at 200 ms after stimulus onset, when activity for faces was lower at frontal electrodes 

and frontal electrodes and higher at posterior electrodes (Figure 5.20). LV2 (p < .02) was 

a non-specific session effect, similar to those found in the previous PLS analyses. This 

session effect corresponded to a decrease in frontal activity in the post-training session 

for both houses and faces, starting approximately 275 ms after stimulus onset (Figure 

5.21). Finally, the third, non-significant LV (LV3, p < .79) represented an increase in 

activity at central electrodes for the trained and untrained houses after 250 ms, with a 
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corresponding decrease in activity for faces (Figure 5.22) 

This analysis, more clearly than the last two, indicates that the session effect observed 

with the trained- and similar-untrained houses was not unique to these two conditions, 

as similar effects were observed with faces in this analysis, and marginally observed 

with both dissimilar-untrained houses and objects in the previous PLS analyses. This 

generalized session effect, combined with the failure to find significant interaction terms 

in all of the analyses, suggests that although session effects were present, they were 

unrelated to training in the house-identification task. 

5.5 Discussion 

The aim of this study was to compare the relative ERP activity induced by houses 

and other object classes (including faces) before and after training on a house discrimi­

nation task. Five days of training on a house discrimination task is sufficient to induce 

substantial improvement in accuracy and reaction time across subjects, and to induce a 

house inversion effect (improved performance on upright versus inverted stimulus presen­

tations), a phenomenon frequently attributed to expert processing (Chapters 2, 3, and 

4). 

Here, we proposed that house discrimination training might alter the ERP signature 

to the trained houses, and that such effects might generalize to similar houses, though 

untrained. ERP analyses revealed a marginal decrease in Nl latency with training, sug­

gesting that house-discrimination training may increase the speed of processing associated 

with these houses. Session differences in the amplitude of responses circa 300-400 ms were 

present for all conditions except the trained and untrained houses. The absence of an 

amplitude increase across sessions in this task could be a result of the overall decrease 

in amplitude for these houses observed during the training sessions (Chapter 4). This 

would be consistent with previous reports of decreased amplitude of late components 

with increased stimulus familiarity (Eimer, 2000b; Bentin and Deouell, 2000). 

PLS analyses revealed session differences for the trained and untrained houses missed 

by the univariate ERP analyses, however subsequent PLS analyses indicated that these 

session differences were not isolated to these conditions. Similar session effects were 

observed for the dissimilar houses, objects, and faces. Because the observed session dif­

ferences were universal across conditions, they are unlikely to reflect an effect of house 

training. These session differences were consistent across subjects, therefore, it is unlikely 
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that they were due to random day effects in ERP strength, however, they could reflect 

more general changes associated with task and stimulus familiarity in the one-back task 

itself. In a previous study that employed this same one-back task (Chapter 3) we ob­

served that a control group that performed the one-back task across two sessions without 

intervening: training sessions, increased in accuracy across sessions. This suggests that 

session effects, non-specific to the trained houses, might reflect learning effects within the 

one-back task itself. We did not observe any conclusive evidence of a selective change 

for the trained houses, that might be indicative of an effect of the intervening training 

sessions. However, it is interesting to note that we consistently observed, across three 

separate analyses, a non-significant latent variable that was indicative of a selective ses­

sion change for the trained (and similar) houses. Although these LVs did not approach 

significance, it is tempting to wonder whether these effects might have emerged more 

reliably with a greater sample size. 

Although we observed session effects for both houses and faces, we observed no ev­

idence that the difference between ERP signatures for houses and faces was decreased 

from pre-training to post-training. Rather, the only change across sessions was an in­

crease in the difference between faces and houses, as a result of a selective amplitude 

increase for faces in late time-windows around 300-400 ms. We found no evidence that 

earlier time-windows, such as those including the Nl and N250, were modified by training 

in tl;iis task. This is consistent with earlier reports that the face Nl is not noticeably 

affected by the familiarity of the presented faces (Eimer, 2000a,b; Bentin and Deouell, 

2000), but in contrast to reports of greater Nl strength for cars than faces in car experts 

(Gauthier et al., 2003) and of greater Nl strength for birds than dogs in bird experts and 

the reverse for dog experts (Tanaka and Curran, 2001). 

As we were unable to clearly identify the N250 for our subjects, we were unable to di­

rectly test the involvement of this component in our task. Previous reports have indicated 

that this component is involved in learning to differentiate between individual exemplars 

(Scott et al., 2006, 2008), thus an increase in N250 amplitude would be expected in the 

context of training individual house-discrimination. The PLS analyses did identify some 

session differences that appeared as early 250 ms after stimulus onset, overlapping with 

the typical timing of the N250, however, these session differences were not specific to the 

trained conditions, so it is unlikely that these differences reflect training effects. 

In sum, we found no evidence of selective session differences for trained stimuli, in 

contrast to previous reports of increased Nl amplitude with expertise (Gauthier et al., 
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2003; Tanaka and Curran, 2001). Real world expertise presumably involves training that 

is both longer in duration and more varied in context relative to the house training 

our subjects received, where training was restricted to a single visual perceptual task. 

Future research will need to determine whether either of these factors might account 

for the difference between the sensitivity of the Nl to expertise in real-world contexts, 

relative to the stability of the Nl in the current context. 
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c·hapter 6 

General Discussion 

6.1 Overview 

As outlined in Chapter 1, the purpose of this thesis is not only to learn more about the 

effect of experience on object processing, but also, by extension, to consider the extent 

to which the processing of faces differs from that of other object classes. To achieve this 

aim, three studies were conducted: 

The first study, summarized in Chapter 2, examined the inversion effect, a behavioural 

phenomenon that has been studied extensively in the context of face perception. Our 

study demonstrated that inversion effects can be generated in stimuli that initially do not 

exhibit this effect, with as little as five days of in-lab training. Importantly, we demon­

strated that these inversion effects, like those found with faces, generalize to members of 

the object class that were not seen during training. Finally, we demonstrated that in-lab 

training produces an inversion effect that is statistically equivalent (in magnitude) to 

that observed with faces. We concluded that inversion effects can be obtained as a result 

of greater experience with a particular stimulus orientation, the benefits of which transfer 

only partially to other orientations. In addition, the size of the resulting inversion effect 

is affected both by the characteristics of the object set and by the amount of exposure 

to that set. Finally, we argued that the results implied that the absolute size of the face 

inversion effect is insufficient evidence to conclude that faces are processed ?Y a separate 

mechanism from other objects. 

The second study, described in Chapter 3, explored the specificity of .the fusiform 

gyrus to face processing, by attempting to replicate earlier reports of increased fusiform 
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activity in response to in-lab training with non-face objects (Gauthier and Tarr, 199?). 

We extended this earlier paradigm by making use of a stimulus class (houses) that is 

associated with a pre-existing cortical area (the parahippocampal gyrus), in order to 

consider how experience affects the FFA and other surrounding areas, including the PPA 

and lower visual areas. In addition, by making use of a multivariate statistical technique, 

Partial Least Squares (PLS), we were able to look for changes in the global patterns of 

activity across the whole cortex. Despite behavioural evidence for substantial learning 

across the five days of training, we found that the degree of FFA activation by the trained 

houses did not change reliably across training. Moreover, activity in so-called house areas, 

including the PPA, TOS, and RSC, as well as activity in early visual areas, also were 

unaffected by training on the house task. The whole-brain PLS analyses confirmed that 

global patterns of cortical activity were unaffected by the intervening training sessions. 

Nonetheless, the small amount of training obtained on the scanning task derived during 

the pre-test session was associated with changes in cortical activation in two of the house 

areas (PPA and RSC) for one of the two house sets. Thus, like Op de Beeck et al. (2006), 

we were unable to replicate the original finding by Gauthier and Tarr (1997) of increased 

activity in the right FFA following in-lab training with novel stimuli. These results, in 

conjunction with those of Op de Beeck et al. (2006), suggest, at minimum, that there 

may be constraints on the type of stimulus or training that produces greater fusiform 

involvement after training. More surprisingly, we found that in-lab training on a visual 

discrimination task also had minimal, if any, effect on activation in early (i.e. retinotopic) 

visual areas or areas already involved in processing the houses. 

The third study, presented in Chapters 4 and 5, adapted the design from the fMRI 

house training study to examine the effect of training on Event-Related Potentials (ERPs). 

Recording ERPs permitted us to examine the effect of training on the timing of process­

ing and the amplitude of the Nl, an ERP component that is particularly large for faces 

(e.g., Bentin et al., 1996; Eimer, 2000a; Itier and Taylor, 2004; Jeffreys and Tukmachi, 

1992), and which previous studies have shown to be affected by experience (Tanaka and 

Curran, 2001; Gauthier et al., 2003; Scott et al., 2006, 2008). The two previous stud­

ies that directly compared Nl amplitude from pre-test to post-test (Scott et al., 2006, 

2008), found training resulted in an increase in Nl amplitude across learning sessions. 

Unlike these previous studies, we found that training in our task significantly decreased 

the amplitude of the house ERP across sessions. This decrease was especially evident 

around 200-300 ms after stimulus onset, corresponding approximately to the onset of the 

P2 and P3 components. Additional analyses comparing the ERP responses associated 
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with these trained houses to those of other object classes indicated that training had 

minimal impact on the relative ERP responses across object classes. 

In Chapter 1, I reviewed several focal issues that have arisen in the face processing 

literature: (1) whether face processing differs qualitatively from object processing (and 

if so, how); (2) whether face and object processing rely on different cortical structures; 

and (3) whether the observed behavioural differences between face and object processing 

can be attributed to a face-specific system or to the cumulative effect of experience on 

a more generalized object-processing system. The results of the studies in this thesis 

address these issues by suggesting that the face inversion effect is best understood as 

a more general inversion effect that can be observed in other classes of objects once 

sufficient experience has been attained. Inversion effects, therefore, are unlikely to be 

the result of qualitatively different processing, nor the result of a face-specific processing 

system. Nonetheless, training subjects to discriminate amongst these houses does not 

seem to dramatically affect the cortical organization of face or object processing, nor 

cause the ERP or fMRI signatures of these houses to more closely resemble those of 

faces. 

One interesting, and surpnsmg, result obtained in the fMRI experiment concerns 

how training in a 4AFC task affected performance in a one-back matching task. In that 

experiment, subjects performed a one-back task both before and after several days of 

practice in a 4AFC house identification task. The data from the fMRI and EEG exper­

iments raise important questions about the transfer of learning across the behavioural 

tasks that we employed. The one-back matching task was selected because it engages 

a subject's attention without being overly demanding, and it often is used in fMRI ex­

periments. Because the one-back task involves discrimination of objects at an individual 

exemplar level - i.e., subjects are required to press a button only when two consecutive 

items are identical - we assumed that the learning obtained in a 4AFC identification 

task would transfer to the one-back task. Yet, the data from the fMRI experiment did 

not fully support this assumption. Subjects demonstrated an increase in accuracy in 

the o'ne-back task of approximately 103 on both experimental house sets from pre-test 

to post-test, with no increases in accuracy on any of the other object condit.ions. They 

also performed slightly, but significantly, better on the trained house set (a difference 

of 13 across house sets). However, similar changes in accuracy were found i.n a con­

trol group of subjects who performed the one-back task in two sessions (separated by 

a week) without any intervening 4AFC training sessions: Accuracy increased for the 

traineq and untrained house sets relative to other objects, although, unlike subjects in 
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the fMRI experiment, there was no accuracy difference between trained and untrained 

houses. Together, these results suggest that most of the learning observed in the flv1RI 

subjects was not due to the intervening training on the 4AFC task, as initially assumed. 

Results from the EEG experiment were more consistent with the idea that learning in a 

4AFC task should transfer to a one-back matching task: Reaction time on the one-back. ' 

task decreased significantly more for the trained than untrained houses, a result that was 

not observed in the control subjects from the fMRI study. Overall, however, training in 

a 4AFC task - which produced significant improvement in that task - had surprisingly 

small effects on performance in the one-back task. 

6.2 Future Directions 

Clearly, further work to clarify the degree to which learning transfers between one­

back and nAFC tasks would be an important pre-condition of employing these tasks 

together in future experimental designs. Indeed, this question is interesting in and of 

itself, from the perspective of better understanding the nature of learning in these tasks. 

Learning often is highly specific to stimulus factors such as direction of motion (e.g., Ball 

and Sekuler, 1982), orientation (e.g., Schoups et al., 1995, 2001; Crist et al., 1997; Husk 

et al., 2007; Hussain et al., 2008) or retinotopic position (e.g., Schoups et al., 1995; Crist 

et al., 1997). In some cases, transfer is also quite specific to the trained task. For example, 

subjects tested on auditory frequency and intensity discrimination following auditory 

frequency training exhibit less evidence of learning for the untrained intensity judgments 

than for the trained frequency judgments (Hawkey et al., 2004). In another case, Ahissar 

and Hochstein (1993) trained subjects with rectangular arrays of oriented lines. Subjects 

were either instructed to discriminate the orientation of the entire rectangular array 

(global orientation) or to discriminate the orientation of the local line elements (local 

orientation). Local orientation training did not transfer to global judgments; and global 

orientation training transfered only partially to local orientation judgments, despite the 

use of identical stimuli for both tasks. However, in other cases, mere exposure to the 

relevant stimuli can lead to perceptual learning in the context of later discrimination 

tasks (Dinse et al., 2006). Additional studies are needed to identify the conditions under 

which learning transfers across tasks. 

Because of the uncertainty about the degree of learning transfer across the tasks 

employed in the fMRI and EEG experimental designs, some follow-up studies with a 

simplified design would be useful, particularly for the fMRI experiment. The complexity 
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of the design was less of a concern for the EEG experiment, because EEG data was col­

lected throughout the training sessions, enabling us to examine training-related changes 

during the training sessions, in addition to pre- and post-testing with the one-back task. 

On the other hand, the fMRI design was less flexible: the cortical data was collected only 

in the context of the one-back task, so that it was not possible to examine cortical changes 

directly in the context of the 4AFC task. It would be useful to conduct an experiment 

in which scanning data was collected in the context of the same task as employed during 

training (ideally, performing the training in the context of the fMRI scanning sessions, as 

was possible in the EEG design). Such a replication would more convincingly determine 

whether the null results observed in the fMRI experiment were due to a genuine lack of 

training-induced cortical reorganization, or whether these results were due, merely, to 

a mismatch between the training and scanning tasks. If the results of this replication 

were consistent with the data presented in this thesis, then some additional experiments 

would be useful to determine why we were unable to replicate the reported expertise 

effect in the FFA. A replication of the original greeble study using a training paradigm 

more closely matched to Gauthier et al. (1998) would be quite instructive. Gauthier 

et al. trained subjects with a highly varied training paradigm that involved learning the 

objects across a large battery of tests, whereas the house training in the current study 

involved training on a single visual discrimination task. Although Op de Beeck et al. 

(2006) note that their training task was longer than that employed by Gauthier et al., 

the length of the training period may not be as important as the variability of training 

tasks: like our own study, Op de Beeck et al. employed a single training task. It may 

be that the training of greebles across a wide range of task contexts resulted in more 

extensive cortical modification. Unfortunately, because no one has directly replicated 

Gauthier et al. 's original experiment, it is difficult to determine whether those results are 

a case of Type 1 error or indicate the importance of the training paradigm necessary to 

invoke fusiform involvement. 

The learning task we employed in these experiments could be exploited to explore 

other questions that relate to object learning. For example, how does stimulus use 

change over time? The house stimuli employed in most of these studies were intentionally 

designed to be distinguishable on the basis of any one featural difference (subjects could 

rely upon the upper windows, lower window, or door), however these features were not 

equated in variability. Visual inspection of the stimulus sets suggest that there was 

minimal variability in the doors, and greatest variability in the lower window across 

exemplars. Reports from a subset of subjects in the fMRI experiment suggested at least 
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two separate strategies were being employed across subjects: subjects relied either on 

the upper windows or the lower window. It would be interesting tq examine such feature 

reliance more carefully, and to determine whether reliance on stimulus regions altered 

over time with learning. For example, eye-tracking could be employed to more preci&ely 

determine the reliance on particular features. One aspect of the learning involved in this 

task might be the identification of features that best differentiate the task exemplars. In 

this case, one might expect to see the pattern of eye fixations narrow across training, 

with less random searching over time. Eye-tracking, although a useful tool, suffers from 

the problem that subjects are capable of using information outside the focus of fixation. 

Ideally, it would be useful to complement eye-tracking studies with classification images 

(Murray et al., 2002). Classification images identify the locations within a stimulus that 

are consistently used to differentiate between exemplars. When derived using the reverse­

correlation method, where images are presented in visual noise that changes randomly 

from trial to trial, classification images represent those locations where the added noise 

reliably and consistently biases the decision of the observer. Currently, this technique is 

readily applied to 2AFC tasks but is more difficult to adapt to the more complex 4AFC 

and lOAFC designs employed in this thesis. The classification image technique has been 

previously applied to study learning in the context of 2AFC face and texture learning 

(Gold et al., 2004). Because classification images generally require a great number of 

trials, Gold et al. were only able to compare learning in the first half and last half of 

trials, averaging across the first and last 6 training sessions in the process. Nonetheless, 

their results demonstrated that subjects adopt consistent strategies by the end of training. 

For faces, these strategies were not only internally consistent, but also consistent across 

subjects, with strong reliance on the eye-region. For textures, the strategies adopted by 

subjects were more idiosyncratic, with different observers relying on different parts of the 

images. Since the publication of this work, new methods of reducing the number of trials 

necessary for clear classification images have been explored (e.g., Nagai et al., 2008), 

increasing the potential temporal resolution of classification images across learning. In 

light of these advances, it would be interesting to extend this earlier learning work to 

look more closely at the time course of learning across sessions. 

6.3 Conclusions 

The studies that compose this thesis share a common underlying logic. As noted in 

Chapter 1, this thesis addresses questions about the extent to which faces are special 

objects by examining the training of expertise for classes of non-face objects. This ap­
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proach is based on the following assumption: If we can induce, through training alone, 

phenomena that normally occur only with faces, then it is not necessary to interpret 

these phenomena as being the result of face-specific perceptual processing. For example, 

if training of non-face objects produces inversion effects that bear the same qualities as 

face inversion effects, then it is not necessary to assume that a special face processor 

produces the face inversion effect. It is important to note that this approach cannot 

rule out the existence of a special face processor. Demonstrating that characteristics 

of face processing can be elicited by non-face objects implies only that a special face 

processor is not necessary to elicit these characteristics, but it remains possible that the 

same phenomena can be separately induced by a specialized face processor and by a more 

generalized object processor. Face inversion effects and trained non-face inversion effects 

may share many of the same qualities yet arise from different underlying mechanisms. 

How, then, has this work advanced our understanding of face processing? I have pointed 

out that the existence of parallel face and object processing cannot be ruled out by show­

ing that training alone can induce face-like processing. Nonetheless, I would argue that 

it is more parsimonious to assume a single underlying process. The existence of a special 

face processor was first posited because faces and objects exhibit different behavioural 

phenomena: by showing that these behavioural differences disappear with training, the 

onus is placed on those that argue for a specialized face mechanism to demonstrate that 

such mechanisms are necessary to understand face processing. 
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