
THE DESIGN AND IMPLEMENTATION

OF AN

INCREMENTAL ASSEMBLER

By

JAMES ALAN FORRESTER, B.Sc.

A Project

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

May 1974

MASTER OF SCIENCE (1974) McMASTER UNIVERSITY
(Computation) Hamilton, Ontario.

TITLE: The Design and Implementation of a Simple
Incremental Assembler on the Hewlett Packard
2100A Computer

AUTHOR: James Alan Forrester, B.Sc. (McMaster University)

SUPERVISOR: Dr. Nicholas Solntseff

NUMBER OF PAGES: xv, 444

ii

ABSTRACT

The basic concepts of batch, conversational, and

incremental computing are presented along with a brief discussion

on their influence on computing.

The design and implementation consideration for the

assembly language implementation of a simple incremental

assembler is presented. An assembler, to accept simple assembly

language programs which are scanned as they are received and

assembled into machine code, has been implemented on the Hewlett

Packard 2100A computer and is discussed in full detail. The

assembler has been designed to execute incomplete programs such

that debugging print out of registers and specified core

locations is possible. The assembler also provides an editor

to perform delete, insert and replace operations on user programs

input to the assembler.

The assembler is oriented for the naive user, but it

assumes the user has a small knowledge of assembly language

programming. Important considerations in writing interactive

programs are also discussed.

iii

ACKNOWLEDGEMENTS

At this time I would like to thank Dr. Nicholas Solntseff

for his patient and helpful guidance throughout the implementation

of the project and for his many comments and suggestions

regarding the form and content of this report.

I would like to express my appreciation to the Applied

Mathematics Department at McMaster Univers1ty for giving me the

opportunity to attend graduate school and for the privilege of

using the departmental computer for my Master's project.

I would also like to express my appreciation to the

National Research Council of Canada for the research support.

I am grateful to Dr. G.L. Keech and Dr. R.A. Rink for

readinq my project.

Special thanks must be given to Mr. Chris Bryce whose

advice and suggestions were very valuable in the implementation

of the project, Dr. Khursheed Ahmend for the use of his Hewlett

Packard cross-assembler during the implementation of the project,

and to all the students and friends at McMaster University with

whom I have been associated.

Lastly, I would like to thank Mrs. Jane Fabricius for

the meticulous typing of the project report.

iv

TABLE OF CONTENTS

CHAPTER I: INCREMENTAL ASSEMBLY, CONCEPTS

Page.

1

AND CONSEQUENCES

Assemblers 1

Batch, Conversational and Incremental Systems 2

Basic Definitions 2

Batch Environment 2

Conversational Concepts 3

Incremental System Overview 5

Incremental Execution 7

Sununary 8

Considerations for Interactive Programming 9

Interactive Utilization to Users 11

Programming Process 12

Conclusions 13

CHAPTER II: IMPLEMENTATION - BASIC CONCEPTS 14

Introduction 14

Standard Assembly 15

Simple Incremental Assembly 16

Forward References 17

Defined Memory Reference Instructions 18

Introductory Text 18

System Directives 18

:DUMP 19

:EDIT 19

v

:LIST (,M (, N)

Page

20

:SEQUENCE,M,N 20

:XECUTE 20

CHAPTER III: ASSEMBLER IMPLEMENTATION 22

Introduction 22

Source Program Assembly 22

Mnemonics and Pseudo Operations 23

Assembler Control Statement 27

Instruction Modifications 27

Assembler Tables 28

Instruction Table 28

User Program Tables 29

Main Symbol Table 30

Special Symbol Table 31

Program Location Counter Table 32

The Source Code Block 32

Free Space Table 34

User Program Areas 34

Instruction Assembly 35

Forward References 36

Program Segments 38

Error Message Processor 39

Subroutine ERROR 40

ClL~PTER IV: INITIALIZATION 44

Introduction 44

vi

Page

Program Initialization 44

INPUT/OUTPUT PACKAGE

Subroutine I.ON SB

Initialization Subroutines 47

Subroutine CNFIG 48

Subroutine GRTIO 48

Disc Input Driver 49

CHAPTER V: THE SYSTEM CONTROLLER AND THE 51

The System Controller 51

Introduction 51

Program Control Transfers 51

Source Program Entry 53

System Controller Modifications 54

Subroutine Requests 55

The Input/Output Package 55

Introduction 55

Output Control 56

Subroutine TTY.P 57

Subroutine !NIT 57

Subroutine GETCH 57

Interrupt Control 58

Subroutine I.OFF 58

Subroutine I.STP 59

Carriage Control 59

Subroutine CRT~FD 59

vii

Subroutine NWLNS

Page

59

Input Control

MANIPULATION

59

Subroutine DATIN 59

Subroutine TTY.I 60

Subroutine PROCS 60

Binary to Ascii Conversion 61

Subroutines CNOCT and CNDEC 61

CHAPTER VI: LEXICAL SCAN AND NUMBER 66

· Lexical Scan 66

Introduction 66

Subroutine LEX 67

Introduction 67

Source Statement Scan 68

Program Modicications 72

Character Manipulation Subroutines 74

Subroutine BCKSP 74

Subroutine GETCR 74

Subroutine NTBLK 74

Subroutine RDCOM 75

Subroutine TRMCK 75

75
Lexical Support Routines

Subroutine LABRD 75

Subroutine LETPR 76

Subroutine LOKUP 76

viii

Page

Subroutine FIND 76

Subroutine MNEM 77

Subroutine RANGE 79

Subroutine OPREC 79

Subroutine STDAT 79

Subroutine LABCK 80

Subroutine DATRG 80

Subroutine VAL 80

Number Manipulation 82

Introduction 82

Octal Integers - Subroutine OCTIN 82

Subroutine OCTCK 83

Operand Integers - Subroutine NUMBR 83

Subroutine DECHK 84

Dec Pseudo Op 85

Subroutine CONST 85

Subroutine NUMCK 85

Decimal Integers 86

Subroutine TYPCK 86

Subroutine !FIX 87

Subroutine GTNUM 87

Subroutine TWINT 87

Summary

CHAPTER VII: ASSEMBLY AND STORAGE 100

Introduction 100

ix

Instruction Assembly

Subroutine SETCD

Data Definitions

Machine Instructions

Memory Reference Operand Evaluation

Assembly Routines

Subroutine DETLN

Subroutine STRCD

Subroutine DTSET

Subroutines STRCK and DATFL

Subroutine STLBL

Subroutine STPLC

Statement Storage

Introduction

Subroutine ASMBL

Subroutine STSCB

Subroutine LBDEF

Subroutine FWDRF

CHAPTER VIII: SYSTEM DIRECTIVES

Introduction

ABORT

DUMP

DUMP Subroutines

EDIT

HALT

Page

100

100

101

101

101

104

104

104

104

104

105

105

105

106

106

107

108

108

110

110

110

110

112

112

112
x

LIST

Subroutine LIST

SEQUENCE

Subroutine SQNCE

XECUTF:

Xecute Subroutines

Subroutine PLCDF

Subroutine SSTDF

Subroutine FNDAD

Subroutine CDSCN

Subroutine SAVR

Conclusions

CHAPTER IX: THE EDITOR

Introduction

Edit Instruction Scan

Overview

Source Program Edit

Subroutine DSCB

Subroutine ISCB

Subroutine RSCB

Data Edit Operations

Subroutine DTEDD

Subroutine DTEDI

Subroutine SCSYM

Machine Code Edit Operations

Page

113

114

115

115

116

118

118

119

120

121

121

121

124

124

125

128

128

129

129

130

130

130

131

131

132

xi

Introduction

Single and Multiple Delete

Single and Multiple Insert

Replace

Edit Subroutines

Subroutine PREPR

Subroutine DELTE

Subroutine CMOVE

Subroutine CASCD

Subroutine JMPAF and JMPBF

Subroutine JMPS

Subroutine JMPEl

Subroutine STFSP

Subroutine SNGDL

Subroutine XDEL

Subroutine XINS

Subroutine YINS

Subroutine MULIN

Subroutine ENDMI

Subroutine EDIPT

Edit Subsystems

Introduction

Si.ngle Delete

Multiple Delete

Single Insert

Page

132

134

136

137

138

138

138

139

139

140

140

140

140

140

141

141

142

143

143

143

144

144

144

145

147

xii

Multiple Insert

Replace

End

Conclusions

APPENDIX A: Assembler Machine Instructions
and Pseudo ops

APPENDIX B: The Introductory Text

APPENDIX C: Direct Memory Access

APPENDIX D: Non-Interrupt Transfer Routines

APPENDIX E: Dump and List Output

APPENDIX F: Memory Map and Functional
Unit Relation Chart

APPENDIX G: Source Program Listing

APPENDIX H: Bibliography

Page

147

149'

150

150

153

162

194

197

200

205

218

443

xiii

LIST OF TABLES

Page

Table 3.1 The User Program Tables 41

Table 3.2 Forward Reference Linkage 42

Table 3.3 Base Page Error Messages 43

Table 5.1 Input/Output Subroutines in 62
Functional Groups

Table 6.1 Lexical Error Messages 89

Table 6.2 Character Manipulation Subroutines 91

Table 6.3 Lexical Support Routines 92

Table 6.4 Error Messaqes for Lexical 93
Support Routines

Table 6.5 Number Program Error Messages 94

Table 7.1 Auxiliary Assembly Subroutines 109

Table 8.1 Dump Error Messages 122

Table 8.2 List and Sequence Error Messages 123

Table 9.1 Editor Error Messages 152

xiv

LIST OF FIGURES

Page

Figure 5.1 System Controller Flow Diagram 63

Figure 6.1 Subroutine Lex Flow Diagram 95

xv

CHAPTER I

INCREMENTAL ASSEMBLY, CONCEPTS AND CONSEQUENCES

___,___ASSEMBLERS

When computers first began to be used it was realized

that programming in machine language was an extremely tedious

process. One of the most important steps taken to make

programming easier was to introduce mnemonic codes in place of

machine operation codes and addresses. The use of mnemonic

codes leads to a programming language almost equivalent to

machine language but very much easier to read. A program for

translating from such a language into the corresponding machine

language is called an assembler.

The main task of an assembler is to translate assembly

language instructions into machine language instructions that

correspond almost one-to-one with what appears in the assembly

language program. The assembler uses a table to determine the

appropriate operation codes. Also it must assign and keep

track of addresses as well as oseudo operation codes of the

assembly language.

The advantage of an assembler arises when a program

is being tested. It is often useful to output intermediate

results, as well as the required answers, to follow the course

of calculations in full detail. Extra output instructions

must obviously be inserted to provide this information.

1

2

These additional instructions can be easily removed from the

program once the program is working properly. The assembler

can create a new machine language version without any further

effort on the part of the programmer. On the other hand, to

remove extra instructions directly from a machine language

program and include the necessary adjustments is tedious and

likely to introduce new program errors.

The difficulty in writing an assembler is not so much

in developing one that translates assembly language programs

correctly but in producing one that is able to handle incorrect

programs in some sensible way.

BATCH, CONVERSATIONAL AND INCREMENTAL SYSTEMS

BASIC DEF'INITIONS

Of prime importance are the definitions of source

and object program. The source program is the program written

by the programmer whether it is coded in symbolic form like

punched cards or typed in at terminal. The object program is

the assembled code which is recognized by the computer as

executable instructions.

BATCH ENVIRONMENT

The term batch processing implies a programmer sub­. .

mitting his job and receiving his results at a later time.

Several jobs are accumulated and the batch then presented to

the computer system on an input tape. To the programmer the

most important point is that he has no contact with his job

3

between the time the job is submitted until he receives his

output.

The most significant aspect of batch processing is

that the entire source program is available initially and all

output can be postponed until a later phase. Declarative

statements are processed in an initial phase with storage

allocated immediately. In-the same pass statement labels are

recognized and entered into the symbol table; then in a later

phase decisions regarding statements using labels can be made

immediately on the basis of table entries. In addition

source program error diagnostics can be postponed and the

object code may be suppressed.

CONVERSATIONAL CONCEPTS

Compared to the batch environment where the user has

no contact with his job after submission a conversational

environment provides the exact opposite. In a batch environ­

ment a user may have to make several runs to eliminate syntax

and logic errors with the intervening time ranging from

minutes to days. But in the conversational mode the user

can interact with the computer to define his program on a

statement by statement basis. After each statement has been

entered the conversational assembler will respond to the

user so that syntactic errors can be eliminated in one

terminal session and execution time debuqging is possible on

a dynamic basis.

Conversational programming places a heavy load on the

4

overall system: the magnitude of the load is reflected in the

additions necessary to support the conversational environment.

Basically the conversational assembler or com~iler is very

similar to the conventional batch processor containing special

features for conventional, terminal-oriented operation.

Conversational assembly involving two passes assembles each

statement conditionally with the source program residing on

external storage.

Conversational assembly offers significant advantages

over batch processing which are inherent in the interactive

mode of operation. The conversational mode is similar to

the batch mode in that the entire source program must be

defined before execution but differs from batch processing

in that the user has control over the input/output functions

in the conversational mode. Ultimately one would like the

flexibility of a language interoreter with the performance

of a batch or a conversational assembler.

The incremental mode of operation is a refinement

of the conversational mode. Like the conversational mode,

user-system interaction on a statement by statement entry

is inherent to incremental assembly but the possibility of

line by line execution or the execution of incomplete programs

is inherent in an incremental system and not in batch or

conversational operations.

5

INCREMENTAL SYSTEM OVERVIEW

An interactive programming environment should achieve

the speed factors inherent in assembled proqrams and the

flexibility of interpretive systems. Incremental systems are

an attemp~ to achieve these goals.

In order to achieve such goals the following features

are required:

1. 	The abilitv to execute a source program as it'is
being input;

2. 	The ability to edit prior statements without.re-entry;

3. 	The ability to execute selected portions of a program;

4. 	The ability to function in the batch mode.

To achieve these above requirements a highly sophis­

ticated operating system is required. Some of the features

would possibly be:

1. 	A dynamic loader for hand coded subroutines;

2. 	A memory relocation feature for changing virtual
addresses to actual machine addresses;

3. 	A high level language beyond standard FORTRAN or
assembly language for implementation to enable a
significant amount of computation per interaction.

Incremental assembly permits two modes: batch and

incremental. The batch mode allows the user to assemble

prestored source programs but does not allow program editting

during assembly. Incremental mode. used normally conversationall1

permits execution and edit operations during assembly.

The incremental assembler accepts statements on a

6

statement by statement basis with inunediate assembly once the

statement is received. Code generated is immediately avail­

able for execution with a link maintained between the source

program statement and the assembled code to permit edit

operations to both the source and assembled code. The user

is able to assemble, modify and execute the program on a

statement by statement basis otherwise only available with an

interpreter. But with an interpreter each statement must be

processed each time it is executed. In an incremental system

the statement is processed once, when it is entered initially.

There exist two different types of control statements,

transient statements and commands. A transient statement is

a statement in the source language which is assembled and

discarded immediately. This may allow the user perhaps to

preset registers or core. Commands permit system activity

outside the scope of the source language. An example would

be the command to change statement s~quencinq.

Four basic blocks of any incremental system are:

Program Structure Routines: The program structure

routines maintain the source program and manage a

program structure table which contains an entry for

each source statement. The Program Structure Table

indicates the relationship of statements and the

static properties of the program. Table elements

are generated as the source language statements

are processed.

7

Controller: To provide the interface between the user

and the assembler and to direct control flow

according to the input.

Execution Monitor: To control program execution as

determined by the established mode of operation.

Command Controller: To analyse and dispatch command

requests.

By the nature of incremental assembly and the Program

Structure Table it is not always necessary that code reside

in ·contiguous core locations. Although this is a conceptual

difference it poses no serious problems.

Source statements available at entry to an incremental

assembler may range from a single statement to a whole program.

The source may also be a group of statements to be inserted

into the existing program or replacement statements which must

be incorporated into the Program Structure Table.

INCREMENTAL EXECUTION

Due to the incremental process there are four possible

modes of execution:

1. 	Automatic: Each statement is executed im..~ediately
after assembly.

2. 	Controlled: Execution only occurs when explicitly
requested.

3. 	Block Step: Controller pauses for user intervention
after the execution of each block or
subroutine within the program.

4. 	Step: Execution is suspended after each
statement.

8

SUMMARY

Batch techniques were developed out of necessity and

when these techniques gained acceptance the batch mode was

the only operation procedure. Programming in the batch mode

may not be the most natural or optimum method, but conver­

sational techniques do not offer a complete solution in that

partial program execution is not permitted. Clearly, language

and syntax errors are quickly eliminated but if a programmer

must fully develop an algorithm before assembly he might as

well as assemble in batch mode and rely on execution time

debugging.

Therefore some kind of incremental assembly seems

necessary to develop algorithms in an interactive computing

environment. To execute a program as it is being assembled

is a natural way and may well be the optimum from a development

point of view. Incremental interaction is useful when hunting

for errors caused by mispunching or when exploring a family of

algorithms. It remains to be seen if the gains justify the

complexity of incremental assembly.

This report is concerned with an attempt to design

and implement a simple incremental assembler for teaching

assembly language programming. Before describing design

considerations and implementation, considerations for inter­

active programming and the net effect of online utilization

are discussed.

9

CONSIDERATIONS FOR INTERACTIVE PROGRAMMING

"An interactive system is only useful it it satisfies

7the users' needs. 11 < > Depending on the type of person for

which the system is designed, various features can be implemented

to achieve successful user orientation. The following list

includes features used in the project and mentions others

which could be used for similar programs.

The system should consist of smoothly linked steps.

No gaps should occur in its flow which require the user to

consult outside references. Ancillary information should be

stored to be produced on request rather than routinely within

the program unit.

All input should be completely checked, and both

lexical and logical errors, if possible, should be flagged.

Diagnostic messages should clearly indicate user remedial

action. Errors can be reduced if the user can see his input

after he enters it but before it is processed -- an echo check.

Responses to prompts should be as simple as possible

so that control alternates frequently between the user and

the program: although the computer accomplishes much more

during its section of the input/output cycle, the user should

feel he is participating as an equal.

If the occurrence of the user's response is more

important than the contents of the response, e.g., if the

response is simply a proceed command, then input checking can

10

be relaxed; this prevents a delay when an unimportant spelling

or other error is made.

It may be that the user should be forced to select

an option rather than simoly be given the opportunity to specify

an option. (This is equivalent to requiring that every field

on a control card be specified, even if zero; the chance of

an option being forgotten is eliminated.) This feature is not

used in this project but changes could be introduced to

implement such a system feature.

The availability of a record of the user's experience

with the system is helpful when the normal output device does

not produce a hard copy.

It may be feasible to include two or more levels of

complexity within a system. Once the beginner becomes

acquainted with the rules and concepts he can step up to a

more advanced system. Storage requirements could therefore

be kept to a minimum until the functions and messages of the

higher level are required; processing time might increase but

user response time should decrease.

The user could earn the right to increased control

over the program flow as he learns; he could skip certain steps

which he no longer finds interesting or alter certain variables

in the midst of execution.

Lastly, the system could be designed to accept

criticism. Users would be asked to make comments or otherwise

rate the program: on the basis of the response the program can

11

be modified.

INTERACTIVE UTILIZATION TO USERS- .

The differences between batch and interactive

programming lies in the "entire programming practice 11
(
6).

The user can direct the run without concern for optimum

computer utilization. The interactive environment implies

certain conditions different from those of a batch environment;

the following is a brief list of some of these features.

A complete plan is not necessary; techniques of trial

and error solutions requiring human assistance are all

permissible. In program debugging one need not fear that a

small omission causes a lost run as in a batch environment.

In a good online system program errors should not cause any

problem; immediate discovery and correction of program errors

should be inherent in an interactive system.

Input/Output devices with the exception of display

scopes are generally quite slow restricting the volume of

output that can be presented in a given time period. Even

if terminals were faster it is unlikely that a user would

make much use of the soeed for he does not always take the time

to absorb much output.

In the interactive mode the user generally enters

commands or programs by keyboard devices, which are not intended

for rapid or high vol~~e input. The means of expression must

be concise to accomplish a maximum and minimize input errors.

i2

Unlike batch or off-line processing the user is

spending his own time during the entire programming practice.

Some people would prefer to deliver their jobs and retire to

their home or office until the job is run and collect their

results at.a later time. Most people feel their time is worth

the gain of interactive programming but people become annoyed

when some error such as a system malfunction causes lost time

at a terminal.

PROGRAMMING PROCESS

One apparent difference is that interactive proqrarnming

favours small program modules which can be connected to form

large programs. Small routines are easily and quickly entered

and .tested for the rapid turnaround time far outweiqhs the

time spent in finding few or no errors.

The language should provide concise powerful state­

ments that allow a dialogue between the user and the program.

Editting techniques modify existing proqrams or

merge keyboard input with other routines at assembly time.

Such editors may edit lines by line number or by more advanced

methods which edit by context rather than line number.

Lastly, interactive program..~ing is valuable in

permitting interaction between the user and the assembler;

the assembler may query the user regarding error conditions

permitting changes before the assembly is complete. This

may be extended to compilers which include questions to aid

the compiler to p~oduce better code.

13

CONCLUSIONS

The most obvious advantage of interactive programming

is the time saving. The whole process from coding to final

execution can be repeated several times within a relatively

short time span. But without the existence of support the

mere existence of an interactive terminal will not assist the

user very much. In providing such a system one must consider

both the methods of operation forced on the user and those

which should be present to take full advantage of the situation.

CHAPTER II

IMPLEMENTATION - BASIC CONCF.PTS

INTRODUCTION

Initial considerations affecting the assembly language

implementation of an incremental assembler are:

1. 	The basic inherent assumotions about the user;

2. 	The ultimate goal of the project;

3. 	To a much lesser extent the facilities of the

installation.

The purpose of this project was to design and implement

an incremental assembler on the Hewlett Packard 2100A computer

to accept simple programs which are scanned as they are received

and assembled into machine code. Aopropriate error messages

are output if necessary. It should be possible to execute

parts of a program; debugging orintout of registers and core

locations should also be possible. In addition, an editor

to delete, insert and replace source and object programs

should be available.

An inherent basic assumption is that anyone using the

assembler has a small knowledge of assembly language program­

ming. The user who has not had experience with assembler

languages may have some difficulty but a brief look at the.

assembler mnemonics in the Hewlett Packard 2100A Reference

Manual(S) or the Assembler Manua1< 9> should provide the user

14

15

with enough information to use the assembler. ~or anyone

proficient in assembler language programming this assembler is

too elementary.

The installation offers a Hewlett Packard 2100A

computer with 12K (12288 words) of core, supported by

perepheral I/0 devices. Of interest are the Olivetti teletype

machine and the Data Point 3300 terminal, hard and soft copy

devices respectively which lend themselves to interactive

input/output activity.

The core size is 12K but it should be pointed out

that the last 1008 words of core contains the hardware ­

protected basic binary loader and is not available for users'

programs.

Since this assembler is an incremental assembler,

assembly occurs immediately after statement entry. The

assembler does not wait until the proqram is fully defined.

The remainder of this chapter briefly discusses the

standard assembly nrocess and mentions some of the important

differences required to implement a simple incremental assembler.

Also included is a very brief discussion of the introductory

text and System Directives: neither of these are features of

a standard assembler but have been included to acquaint the

user with the. system and to make the assembler more like an

incremental system.

STANDARD ASSEMBLY

An assemhler normally begins assembly once the program

16

has been thoroughly defined. Such an assembler has two or

three passes, if punch and list output are requested. In the

first pass the assembler creates a symbol table from the names

used in the source statements. It also checks for certain

possible error conditions and generates diagnostic messaqes,

if necessary.

During pass two the assemb.ler aqain examines each

statement in the source program along with the symbol table

and produces the binary program and program listing.

Additional diagnostic messaqes may also be produced. If both

punch and list output are requested, the list function may be

deferred to the third pass.

References to undefined instructions or data will

cause the printing of diagnostic messages and may halt further

system activity after assembly.

SIMPLE INCRE~-mNTAL ASSEMBLY

After the lexical scan of each statement, the assembled

instruction and any symbol table entry must both be stored in

their appropriate location before reading in the next program

statement. A progra.m statement having a lexical error initiates

the :i:rintinq of an error messaqe and a request to re-enter the

statement. No attemot is made to assemble such a statement

thus the program need not be reassembled for a lexical error.

Assembly time oseudo operations become meaningless in

an incremental system. In particular, the Assembly Listing

Control pseudo ops listed in the Hewlett Packard Assembler

17

Manua1< 9 >, allowinq the user to control assembly listinq during

pass two or three of the assembly process, are meaningless.

Since the prpgram is defined statement by statement,

the proqram may be executed statement by statement, by

specifying program execution after each statement entry.

·However, the assembler is intended for the inexperienced

programmer to develo~ oroqrams in steps and blocks. It seems

reasonable that a user would enter his oroqram in blocks or

groups of statements and check out each block by program

execution.

The most important difference between standard assembly

and incremental assembly is the handlinq of forward references

and the .assembly of ~~emory Reference instructions.

FORN"l'.RD REFERENCES

During the first pass of a standard assembly, references

to undefined instructions or data are referred to as forward

references.

In a one pass system Memory Reference instructions

having forward references, involving an undefined symbol in

the operand, are retained by linking the undefined assembled

code of t.he Memory Reference instruction to the symbol position

in the Symbol Table by means of special pointers. The design

and manipulation of forward reference oointers for direct and

indirect Memory Reference onerandsare discussed in Chapter III

and VII.

An undefined symbol in an Input/Out~ut instruction

http:FORN"l'.RD

18

operand causes the statement to be ignored; this is discussed

fully in Chapter VI in the lexical scan of program statements.

An undefined symbol in an ABS or BSS pseudo instruction operand

is treated in an entirely different manner; operand handlinq

in this case is ex~lained in Chapter III under the topic of

assembler mnemonics and in Chapter VI in the lexical scan of

program statements.

DEFINED ME~10RY REFERmJCE INSTRUCTIONS---------------···-----------­
In order to distinquish Memory Reference inst~uctions

having defined operands from 1·1emory Reference instructions

havinq a forward reference we employ a special assembly of the

instruction using one level of indirect addressing and a special

table to hold MBmorv Reference operands.

Instruction assembly techniques used in this assembler

are discussed fully in Chapter III following the discussion

on program tables.

INTRODUCTORY TEXT

Eleven pages of introductory text are printed to

provide some background information and acquaint the user with

the system features, in particular the System Directives.

SYSTE~1 DIRECTIVES

There are seven System Directives all beginning with a

colon and all are recognized by their first letter

19

:ABORT Discontinue proqram entry, start over
:DU~1P Dump register contents ·
: EDI'I' Edit the existing source and object program
:HALT Halt the computer, nress run to continue
:LIST List all or part of the user program
:SEQUENCE Change the sequencing, then list the program
:XECUTE Execute the user's program

The commands resemble the control statements in the

incremental system described in Chapter I, for they are

intended to give the user control beyond the program level.

All but the Halt directive are presented to the user

for a halt instruction is more imoortant to someone exhibiting

such a program rather than using it. Of these directives

presented to the user all are explained in some detail with the

exception of the Abort which is fully explained in a single

statement, when listed with the others.

:DUMP

After execution register contents will be saved. It

will be possible to dump these register contents as well as

data address values as an alternative to using output instructions

in the user program.

:EDIT

"The process of editting code online is considered by

some to be the heart on an online system".(?) The editor is

by far the most complicated feature of the program and will

only be discussed briefly in this section.

The editor will allow the user

to delete anv number of proqram statements,

to insert statements between any two program statements,

and to replace a single statement by another single statement.

20

Editor restrictions will be discussed in the section

dealing with the detailed program description.

:LI~(,N))

A list option is another inherent feature to permit

listing of all or part of the program anytime, except during

an edit.

Mand N, if present, specify the first and last lines

to be listed. If N is absent then all statements from M on

are listed. If neither M nor N are present then the whole

program is listed. It was decided that all listing would be

surpressed if M was greater than N.

:SEQUEN~

Change the program sequencing such that M is the first

statement number with N being the increment. Following

completion, the whole program_ is listed.

Restrictions on M and N are that both are positive

integers. M must not exceed 1000 while N must be greater than

zero and not exceed 25. Some unper bounds on M and N ·.rere

necessary and these seem reasonable iri relation to more

important user restrictions.

The se~uence oution mav seem unnecessary but may be of

great importance when insertinq many statements between two

successive statements or realigning statement numbers after a

series of deletes or inserts.

21

XECUTE is resoonsihle for the execution of the user

program. Incomplete programs may be partially executed but

execution will immediately halt with a \·;rarning rnessaqe printed

for attempting to execute a machine instruction having a for:.vard

·reference.

Im.rnediatelv after successful execution or after

encountering a forward reference the contents of the A, B, E,

and o registers will he saved in special store variables.

CHAPTER III

ASSEMBLER IMPLEMENTATION

INTROCUTION

The maior design and implentation considerations are

presented in Chapter III. Also included is a discussion on

program segments and error message handling.

SOURCE PROGRAM ASSEMBLY

The operating system of the Hewlett Packard 2100A, the

Moving Head Disc Operating System (DOS-M), offers relocatable

and absolute assembly options; relocatable assembly permits

the user programs to take advantage of all operating system

features such as external subroutine calls to library programs.

One very obvious advantage is that relocatable assembly requires

that the program be written dependent upon operating system

features. To implement the assembler using relocatable assembly

would require program segments all be dependent on the DOS-M

system.

To avoid such dependence on the operating system the

source program has been assembled as an absolute program. In

an absolute program the addresses generated by the assembler

are to be interpreted as absolute locations in memory.

One minor exception is the instructional text stored

on the cartridge disc. This data has been stored on the disc

using the DOS-M facility to write onto a user disc file

22

23

(EXEC Call, Request Code 15). Storing the data in this manner

is for ease of .programming.

Core normally occupied by system routines during

execution after relocatable assembly will now be available

to the assembler after absolute assembly. However, base

.page linkage, external subroutine calls, literals, or any

other inherent feature of the relocatable assembler and loader

are not available, nor will they be available in any user

program input to the incremental assembler.

MNEMONICS AND PSEUDO OPERATIONS

All machine instructions and the arithmetic subroutine

requests for hardware multiply/divide operations listed in the

9
Hewlett Packard Assembler Manual < > arc available to the user

but not floating point operations.

Scanning Hewlett Packard System listings for the

frequency of Register Reference and Alter Skip multiple

instructions, it was found that multiple instructions do not

constitute a significant proportion of the overall instructions.

The Reverse Skip Sense, RSS, instruction was the most common

.instruction involved in the multiple instructions. An

inexperienced programmer may be aware of multiple instructions

but will not have much use for them and consequently they will

not be made available.

Memory Reference instruction operands have also been

restricted to the form:

(+) (symbol) (± inteqer) (,I) •

24

A symbol may have one to five characters consisting

of A through Z,. 0 through 9 or a period: the first character

cannot be 0 through 9. The symbol may be replaced by an

asterisk (*) siqnalling the present program location. A

symbol may be preceded by a positive sign or a blank.

The integer may be an octal or decimal value. If

there is no symbol in the operand this value must be positive

but not greater than 7.7 8 ; the user is allowed to access the

first 1008 words of base page. An inteqer and symbol together

must not exceed the bounds of the user program area.

The indirect reference indicator causes the address

value of the operand to access any other word in the user

program which is taken as the new memory reference for the

same instruction.

The introductory text warns the user that the assembler

is restricted in size but does not discuss user program location.

To the user the assembler is a virtual address program, the

user is not aware of where and, in some cases, how his

program is stored in memory. Thus, many of the pseudo

operations instructions listed in the Hewlett Packard Assembler

Manua1< 9> are excluded.

All Assembler control pseudo ops with the exception

of the END pseudo-op are excluded. The REP pseudo op, to

"repeat the statement immediately following by the number

specified in the operand 11 is described as an Assembler Control

pseudo op. Although it does not influence program positioning

25

it has been excluded for it exists as a convenience to

experienced proqrammers.

Object Program Linkage pseudo ops are concerned with

relocatable assembly; accordingly, they have been excluded.

As discussed in Chapter II the Assembler Listing Control

·pseudo ops have been excluded.

The Constant Definition pseudo ops ASC, DEC and

OCT have been included and implemented in strict accordance

with Hewlett Packard definition. Appendix A lists and defines

all machine instructions and available pseudo ops.

The DEX pseudo o~ to generate extended precision

constants has been excluded.

The BSS pseudo op for storage allocation has been

included but its defintion has been altered. The format

BSS m

normally restricts m to be any expression that evaluates to

a non-zero, positive integer. Due to space limitations an

upper bound of 128 has been imposed. The definition has been

expanded to initialize program storage to zero.

Address and Symbol Definition pseudo ops ABS, DEF,

and EQU have been included. Operands for these instructions

must evaluate to a value within the program data area bounds.

For ABS and EQU pseudo oos the operand is of the form

(+) (svmbol) (± integer) •

The operand may also evaluate to an address on the available

base paqe area.

26

In 	the case of an EQU a label must precede the pseudo

op and an undefined symbol may not be present in the operand.

An undefined symbol in an ABS or BSS operand is permitted but

will initiate a request to the user to enter a temporary value

for the symbol. Further reference to this symbol will not

necessarily Y'ield this value.

The DEF pseudo op operand is restricted to a data

address symbol and an optional indirect flag. Undefined

operands will not be permitted during an edit, but during

normal program definition the user is requested to define

the symbol on the next statement entry. If the next data

entry does not define the symbol or if a data edit operation

alters the data area holding the DEF pseudo op, then the

address value will be incorrect.

The END pseudo op has been redefined to halt program

entry and advance to execute the user program. It wi.11 not be

stored in the user program; any label preceding or any operand

following is ignored. END will not be permitted during an

edit operation.

Altogether there are 86 machine instructions and pseudo

ops which have been divided up into fifteen different categories

depending upon the instruction type and the operand expected.

Appendix A has a list of:

1. 	The available machine code instructions and pseudo ops
and their definition.

2. 	The instruction type number.

3. 	The machine instructions according to their instruction
number. ·

27

ASSEMBLER CONTROL STATEMENT

The Assembler Control Statement normally beginning

user programs has been excluded. Since the source program

is in absolute format a user program input to the incremental

assembler will then be an absolute program.

The program list option is meaningless but a list of

the source program can be taken at almost.any time using the

List Directive. Other assembler options like binary output

or a cross reference table will not be available or needed.

Since most of the options normally associated with the

Assembler Control .Statement have been excluded or redefined,

the inexperienced user is not expected to enter an Assembler

Control Statement.

INSTRUCTION MODIFICATIONS

Although the instruction set has been restricted, the

user is expected to have only a small knowledge of assembler

language programming. The available 86 mnemonics are ample

for learning purposes.

Changes that could be made for an advanced user would

be the inclusion of the REP pseudo op and floating point

operations. These extra instructions would provide further

assembler versatility. To include any other pseudo ops is

questionable for the users' expectations are apt to change

significantly. Once a user has mastered the techniques of

assembler language programming, the pseudo ops should be

easily understood.

28

It may be possible to include features like a cross

reference table, conditional assembly or some other feature

normally associated with the Assembler Control Statement. The

user is apt to benefit from the inclusion of such changes but

the overall influence of such program improvements on the

user require serious consideration before implementation.

The remainder of Chapter III is a discussion on:

Assembler Tables,
Instruction Assembly,
Forward References,
Program Segments and a list of the Assembler
Functional Units,
Error Message Handling.

This material is of particular interest to anyone

wishing to alter or extend the assembler but not to those

interested in understanding the basic concepts.

ASSEMBLF.R TABLES

Storage has been allocated for system and user tables

beginning at address 15200 to the last available word in

memory. These tables are as follows:

The Instruction Table,
The Main Symbol Table,
The Special Symbol Table,
The Program Location Counter Table,
The Free Space Table,
The Source Code Block,
The User Program Table for machine instructions
and data.

INSTRUCTION TABLE

This is a system table for instruction look up. This

table is not initialized for each new user program; all other

29

tables are initialized for each new user program and set during

program definition.

The 86 machine instructions and pseudo ops have been

arranged alphabetically for a binary search table look up.

The table 402 (3x86) words in length has been divided into8

three separate sections. The first section holds the first

two of the three letters of the alphabetic list of mnemonics •.

Each word in the second section holds the third letter of the

mnemonic and the instruction type number in the format:

Bits 0- 3 Instruction type number
8- 15 Third letter of mnemonic name

The third section holds the skeleton of the assembled

instruction; the pseudo ops are assigned a (-1) minus one value

in this section. The skeleton code of a pseudo instruction is

ignored throughout the assembler.

USER PROGRAM TABLES-·----------­
Unlike the Instruction Table these tables are

initialized for each new program. The Main Symbol Table and

Special Symbol Table must also be set with special pointers

for direct and indirect forward references used by the assembled

instructions.

With the exception of the Free Soace Table an attempt

to make an entry to a User Program Table will terminate all

user-assembler activity with the user program being lost.

However, all user tables, with the exce~tion of the Free Space

Table have a built in warning to the user if the table is

30

about to overflow and a request to begin execution to obtain

final program results before table overflow occurs.

MAIN SYMBOL TABLE

The Symbol Table can accommodate up to 125 different

symbols, each symbol requiring six words of storage. The

format for symbol storage is:

Word 1 First two characters of symbol name
Word 2 Third and fourth characters
Word 3 Bits 8- 15 Last character of S~'Itlbol

Bit 0 = 1 Defined symbol
= 0 Undefined symbol

Wor·a 4 and 5 have different uses depending on whether the

symbol is defined or not.

Undefined Word 4 Address of last direct forward reference
Word 5 Address of last indirect forward reference

Defined Word 4 Symbol address in assembled code
Word 5 Symbol address in source code storage

Word 6 Linkage to Special Symbol Table (see below)

Symbol positioning in the table will be determined by

a hash code which takes the arithmetic sum of the words holding

the symbol name and divides the value by 125. The remainder

yields a relative position in the table to begin a linear

search for the next free area to store the symbol. The hash

code was tested and found to distribute the symbols throughout

the table. This is the only table using a hashing function

for all other tables use strictly a linear search and storage

procedure.

Each entry to the Symbol Table will be counted by the

subroutine for storing symbols while overflow will be determined

. .31

by the subroutine that applies the hash code function to the

symbol and finds thesymbol oosition.

SPEC IAJ.J SYMBOL TABLE ~

The Special Symbol Table, SST, is for compound operands,

i.e. Memory Reference operands having a symbol and an integer

value. The SST will hold up to 75 different cornoound operands

with each entry requiring four words as follows:

Word 1 The integer value
Word 2 Bits 0-14 Source code address of the

instruction
Bit 15 = 0 Direct reference

= 1 Indirect reference
Word 3 Address of last forward reference
Word 4 Link to further entries in SST

For each Memory Reference operand combination an entry

to the SST is made. Symbols having more than one entry in the

SST will be linked by Word 4 with a zero in Word 4 terminating

the list. Word 6 of the symbol entry in the Symbol Table

will hold the address of the first SST entry.

Before actual user program execution special routines

will scan the SST and the Program Location Counter Table, a

table used to hold similar operands where the asterisk term

replaces the symbol, to calculate operand addresses, provided

such addresses are within the bounds of the program. This

allows edit ooerations to occur after instruction entry and

before execution in order to preserve operand addresses.

By initiating execution as many addresses as possible

are defined; the table area used by these address pointers is

. 32

cleared for further use. Further editting of these

instructions after the address has been set is at the users'

peril for the address cannot be altered.

PROGRA?-'t LOCATION COU~!TER TABLE

The PLC table will hold uo to 50 memory reference

operands involving the asterisk with the table format being:

Word 1 Bits 0-14 Source code storage address of
statement

Bit 15 = 1 Indirect reference
= O· Direct reference

Word 2 Integer value in operand

The PLC table holds these operands until the user

wishes to execute his program at which time the assembler

will attempt to define all operand references in the PLC table.

THE SOURCE CODE BLOCK

All incremental systems should allow the user

to make corrections to his program and list the updated

source program. An incremental assembler can be implemented

in several ways; the two means considered for this project

were:

1. 	The user proqram could be assembled to some intermediate
form from-which the source program can be recreated.

2. 	The user program can be assembled into object code.
Since the assembly process is not normally one-to-one,
it is not usually possible to recreate the source
program from the assembled version. The assembler
rnust maintain two copies of the program, one in source
form and one in assembled form.

The first approach offers the advantage of not having

. 33

two copies of the program at the expense of slower running.

Using the first approach it was felt that the user might be

slightly alarmed if the interpreter were to remove redundant

blanks and reformat his output for a list command. It was

also found. that the trade off between the simplicity in

storing source code along with a simple listing program, and

the complexity required in the implementation of an inter­

mediate code algorithm from which the source or assembled

code could be generat~d justified storing the source code

along with the assembled code.

The Source Code Block, SCB, is 5700 words in length8

and will retain six words of information concerning each

statement as well as the source statement. The format for a

source statement entry is:

Word 1 Address of the next statement
(O for the last statement)

Word 2 Address of the previous s·tatement
(-1 for the first statement)

Word 3 Statement number
Word 4 Bits 0- 7 Number of words in SCB en~ry

Bits 8-15 Number of characters in source
statement

Word 5 Bits 0-14 Address of assembly
(O for a comment statement)

Bit 15 = 1 Data definition
= 0 Machine code instruction

Word 6 Length of assembly

The source program statement will be stored two

characters per word beginning in the first character·position

(Bits 8-15) of the first word to follow Word 6 in the SCB.

Like the main Symbol Table space in this table cannot

be reclaimed by qn execution.

34

FREE SPACE TABLE

The Free Space Table holds the length and address of

deletions from the SCB after an .edit operation. Each deletion

from the SCB will be recorded in two words in the Free Space

Table in the following format:

Word 1 Length of the deletion,
Word 2 Address of the deletion.

Unlike the other tables, entries to a full table will

not cause program termination. The entry will be retained,

if the length of the deletion is larqer than the smallest

deletion and the smallest deletion will be discarded.

Before storing any statement the assembler will scan

the FREE SPACE for an isolated SCB location before allocating

the next free area in the SCB. This is a reclamation procedure

to make use of all available SCB space for statement storage.

USER PROGRA-~ AREAS

The last two tables are the user program areas for

data definitions and machine instructions having 400 8 and

340 8 .words respectively for assembled code. The Dump Directive

has been included as an alternative to using output instructions

in the user proqram. For this reason the data area was set

larger than the proqram area.

The overall program area could be~t be fitted into the

last page where 17008 locations were available for the user

program (700 8 words) and the data area (1000 8 words).

Table 3.1 lists the layout of the user program and

35

data table areas.

The structure of both these tables is very inefficient

and space consuming for each table requires a corresponding

address field for each data and machine instruction location,

i.e. two locations are required for each word of assembled

instructions and each word of data definitions.

In the case of data definitions, the address block

is necessary to maintain an address pointer to each data item

for reference by a machine instruction and for shifting data

on an edit operation.

INSTRUCTION ASSEM!3T.1Y

The Memory Reference instructions require the address

field so that forward references can be easily distinguished

from defined Memory Reference instructions.

All machine· instructions other than Memory Reference

instructions are assembled in much the same manner as in the

standard assembly nrocess. Memory Reference instructions use

the address table to hold a 15 bit ooerand address.

Normally, assembly of a simple· Memory Reference instruction

has a 10-bit address, a current page bit and an indirect bit

to be set according to the operand. The incremental assembler

sets the 15-bit operand address in the program address table

correspondinq to the position of the instruction in the user

proqram area. l\n indirect reference indication in the operand

is handled by setting bit 15 of the operand address in the

proqram address area. The Memory Reference instruction is set

http:ASSEM!3T.1Y

36

into the user program area with the 10-bit address pointing to

the 15-bit address stored in the address table position. The

current page and indirect hits are set so that the instruction

involves an indirect reference to the address through the

address table.

An Extended Arithmetic Memory Reference instruction

assembles into two words: the second word of the assembly is

a 15-bit address to the program address table with an indirect

reference specified.

All defined Memory Reference instructions with the

exception of valid user references to the base page will have

the indirect bit and the current paqe bit set for simple ~1emory

Reference instructions. Forward references will appear as a

direct reference to base page.

The assembly is definitely no longer a one-to-one

transformation from source to object code because of the

particular means adopted for implementation. This is

further justification for having two copies of the program.

FORWARD REFERENCES

Forward reference addresses are combined with the

instruction skeleton on a Memory Reference instruction: the

instruction will appear like a direct reference to base page.

Such an address must be greater than 1008 else the instruction

is regarded as a valid user reference to the available base

page area. For this reason the user program area was arranged

with the program address table preceding the user program area.

. 37

From Table 3.1 Symbol Table entries pointing to user oroqram

instructions having forward references will be in the range

341 to 677 •8 8

During initialization Symbol Table entries for forward

referenceswere set to a value greater than 700 8 • Forward

reference indicators in the Symbol Table begin at 701 8 for

direct references and 1076 8 for indirect references. Each

symbol position has a separate pointer for direct and indirect

references separated ,by 175 8 (125). The SST has its forward

references beginning at 1273 •8

During proqram definition the forward reference

indicator in the symbol tables is re9laced by a pointer to the

last forward reference. Forward references to the same operand

are linked into a chain with a reference greater than 7008

signalling the end of the chain and a pointer to the symbol

tables.

Program location counter references in the user program

are also treated as forward references. The PLC table is

bounded by address XPLC, 17634 and YPLC, 17777 such that PLC

forward references would range from 1634 8 to 17778 and not

conflict with symbol table references.

~o linkage techniques are used with the PLC table for ·

each PLC reference is regarded as a separate forward reference.

Table 3.2 offers a diagram of forward reference linkage

in the main Symbol Table.

. 38

PROGHAM. SEG~·1ENTS

Program Segments may be described in terms of

functional units or segments of storage. In planning the

overal program an attempt was made to design each segment as

a self-contained orogram unit so that each functional unit

could be regarded as a particular block of computer storage.

However, as the complexity, of a program unit increases

there is a tendency for the segment to become fragmented. A

very obyious e~rnmple is the editor; due to its complexities

it became far too large to store on one page such that editor

subroutines were allocated to three different pages of memory.

It is also convenient for two different proqram functions to

share common subroutines rather than permit duplication. In

such a case progrrun segments ·will not remain self-contained

units. Sharing of common subroutines by several program units

will conserve storage snace and due to the limited storage

size it was necessary for program units to share common sub­

routines rather than maintaining self-contained program units

which may involve subprogram duplication.

In terms of functional units the program may be

segmented as follows:

Initialization,
System Controller,
Input/Output Packaqe,
Lexical Scan,
Number Manipulation Package,
Statement Assembly and Storage,
Systems Directives excepting the Editor,
Editor.

. 39

A description of program segmentation in relation to

the dynamic storage allocation becomes difficult to follow

or remember for the text becomes an enumeration of subroutines

·or program units followed by a brief discussion on each.

Such a discussion is not presented but 'Appendix F does offer

a listing of program units in relation to their storage with

a brief program discussion.·

Following a brief discussion on the error message

processing the following six chapters offer a detailed program

discussion of the functional seqments.

ERROR MESSP..GE PROCESSOR

Normally an error message follows the program which

uncovered the error condition with the error message output

programs resident on base page. There are some minor

exceptions in the positioning of error messaqes; the most

obvious exception in the presence of nine error messages on

base page to avoid unnecessary duplication. These messages

are listed in Table 3.3.

Since most error messages concern user input it seems

that there should be an automatic return to the System Controller

yet avoid duplication of return instructions. For this reason

there is a base page entry point, label ERCAL, which initiates

a jump to subroutine ERROR followed by an indirect jump to the

System Controller. Any error condition followed by an input

40

operation will initiate a jump to ERCAL.*

Subroutine ERROR

Calling Sequence
LDA < Character length of the error message >
LDB < Address of error message >

Subroutine ERROR calls subroutine BPLN to print the

error message on a newline and subroutine REENT to print the

re-entry request

PLEASE RE ENTER STATEMENT

on the next line following the error message. BPLN and REENT

use the Input/Output package presented in Chapter V, to output

the error messages.

* There are two exceptions.
Within subroutine nATIN, which prompts the inout operation,

a buff.er overflow error message is printed if necessary but
control does not leave DATIN.

On an input error in a sequence request the Seauence flag
is set after calling ERROR and before returning to the System
Controller.

..41

TABLE 3.1 THE USER PROGRAM TABLES

ADDRESS

026001

026337

026340

026341

026677

026700

026701

027277

027301

027677

ADDRESS
NA.ME

PROG

XUSRP

YUSRP

XDATA

PURPOSE

First address of program address table
correspondinq to first address of the
user program area

Last address of proqram address table
corresponding to the last address of the
user program area

Entry/Exit point for executing the user
program

First address of user program area

Last address of user program area

Return jump from user program to calling
point

First address of data address area

Last address of data address area

First address for data value storaqe

Last address for data value storaqe

42

TABLE 3.2 FORWARD REFERENCE LINKAGE

This example of forward reference linkage uses the

first symbol position of the Symbol Table havinq an undefined

s'ymbol ·with direct and indirect references to that symbol.

A diagram of the linkage of the forward references in

the user program area shows the address pointer combined with

XX, or XXX denoting the skeleton assembly of a ~emery Reference

instruction. The pointers linking back to the Symbol Table

are also presented.

Symbol Table Address Contents

Word 1

Word 2 Symbol name stored as Ascii characters

Word 3

Word 4 341 Paqe address of first direct and

Word 5 353 indirect forward references

Word 6

Memory Address

026341 XXX372

026353 [XXX364

026364 XX1076 Return pointer for indirect reference

026372 ;:::==xXX417

026417 XXX701 Return pointer for direct reference

.43

TABLE 3.3 BASE PAGE ERROR MESSAGES

LABEL ERROR MESS.7\GE

ERRl BAD DATA INPUT

ERR2 STATEMENT NUMBER OUT OF RANGE

ERR3 OPERAND VALUE OUT OF RANGE

ERR4 ILLEGAL OPERAND TERMINATION

ERRS ILLF.G2\L CHARACTER BE".;INS LABEL

ERR6 NO OPERAND FOUND

ERR7 OPERAND IS UNDEFINED

ERRS UNDEFINED LABEL IN OPERAND

ERR9 NO LADEL FOUND

CHAPTER IV

INITI])..LIZATION

INTRODUCTION

The initialization program is called for each new

user program after one of the following conditions.

Recognition of the Abort Directive
Abort request from the System Controller
Abnormal abort due to a program tahle overflow
Operator intervention by.. setting the Program Location
Counter register on the computer front panel

PROGRAM INITIALIZATION

The first task is to turn off all I/O activity and

enable the interrupt system for the assembler and user program

use. A call to subroutine CNFIG will configure the input/

output package to direct all user-system communication through

the teletype machine for a hard copy cutout.

Besides the last 1008 words holding the basic binary

loader the first 1008 words are also reserved locations.

Though not considered core storage the A and B registers

occupy the first two memory locations. Memory locations 00002

and 00003 are exit points if the A and B register contents

should he used as executable instructions. The program was

initially assembled with these locations holding indirect

jumps to the forward reference warning program as part of the

execution routines, if the user should attempt to execute the

contents of A or B.

Location 00004 and 00005 are the Power fail and

44

45

Memory Protect/Parity Error interrupt locations each holding

halt instructions.

All other main frame interrupt locations, address

00006 to 00025,are assembled to zero. Address 00026 to 00077

are the remaining interrupt locations; these addresses are

not initialized. By giving the user access to the first 1008

words allows the user to alter these locations; it is necessary

to restore these locations for each new user program.

Into memory locations 00006, 00011 and 00012 are

stored subroutine jump instructions to three base page

interrupt subroutines used by the disc input driver.

Using the disc input driver the eleven pages of

introductory information will be read in. Appendix B has a

brief discussion on the text and a listing of the program to

store this data as well as a listing of the actual text.

Length and address pointers are stored in two tables following

the initialization program.

All disc data inout/outout ooerations will be initiated
~ ~.

by subroutine G"R.TIO which initializes the disc read, calls the

disc input driver, and prints the data using the system I/O

package. Disc input operations will be handled using Direct

Memory Access, DMA, a facility to provide a direct data path

software ~ssignable between memory and a high speed peripheral

output device. A full discussion of DMA is given in Appendix C.

After the first page has been printed the user is

requested to type S to transfer all I/O activity to the CRT

46

screen or C to continue. This is the first instance where

input checking is relaxed for any response other than S is

accepted as a continue com.mand. Although, a particular

character has been requested as a response to a prompt

virtually any other character will be accepted to avoid the

generation of an error message.

The S response will cause the I/O package to be

configured for soft copy output on the Data Point 3300 CRT

screen.

By default proqram statements are sequenced by beginning

at ten and incrementing each statement by ten. The second page

advises the user that he may specify alternate sequencing by

typing S followed by the first statement number and an increment.

After printing the second page and before reading the

user response, all system variables and user tables are

initialized. It is not possible to initialize program tables

before printinq the second page for the length of the first

two pages is greater than the length of the buffer area

available to store the disc input. An attempt to store either

of the first two pages in this area would overwrite part of the

Instruction Table. The remaining pages of the introductory

text will fit into this buffer area. The first two pages are

stored in the core normally used by the program tables: once

the second page has been printed, the user tables are initialized.

All user program tables are initialized to zero with

the forward reference pointers stored in .the symbol tables. All

47

program control flags used in the System Controller and all

system variables are set to their initial value. Temporary

values used throughout the assembler will not be initialized.

One special variable which must be set is GRTFG,

the program flag to signal that the program is in the

initialization phase. GRTFG must be set before a user

sequence request is read so that program c-ontrol will return

to the calling point within the initialization program rather

than the System Controller on an error condition.

The third page offers an option. For the user aware

of the assembly features program entry may begin immediately.

Any response other than L, the learning option, for presentation

of the remaining text is accepted as a siqnal to begin program

entry.

After the last page has been output and before reading

the first user program statement all main frame locations

beginning at address 00006 to 00025 are cleared to zero along

with the initialization flag, GRTFG. After the user entry has

been read in proqram control transfers to the System Controller

to call the main lexical routines.

INITIALIZATION SUBROUTI!'!ES

Three subroutines from the input/output package are

called by the initialization program:

DATIN Read user input,
I.OFF Turn off output device interrupt,
TTY.P Perform output operation. ·

48

These subroutines are presented as part of the I/O package

in Chapter v.

Subroutine SQNCE reads in the statement numbers for

the sequence request. SQNCE is also used for the Sequence

Directive introduced in Chapter II: SQNCE is discussed in

·Chapter 	VIII with the discussion of System Directives.

The remaining subprograms CNFIG, GRTIO and the disc

input driver are used strictly for initialization purposes.

Subroutine CNFIG

Calling Sequence

LDB < Channel number of I/O device >

CNFIG will configure the I/O package to direct all

user-system communication through the device referenced by

the channel number. All input/output instructions in the

I/O package will be set with a new channel number. As

well the Memory Reference instructions referring to the devicE~

interrupt location must have a new address to ?Oint to a new

interrupt location.

Subroutine GRTIO

Calling Sequence

LDA < Disc address of input >

LDB < Input length (word.s) >

GRTIO will call the disc input driver to read in a

page of the introductory text and call subroutine TTY.P to

print the text.

49

DISC INPUT DRIVER

The disc in~ut driver is comprised of eight subroutines:

three interrupt service subroutines and five subroutines taken

from the disc I/O driver used in the DOS-M System generator

program. Minor changes were made to the five disc driver

subroutines but the proqram structure is unchanged.

The interrupt subroutines are needed after a DM.~

interrupt to address 00006, a disc Data Channel interrupt to

address 00011 and a disc Control Channel interrupt to address

00012. These service routines will clear the control flag of

their resoective channel and return program control to the

location causinq the interrupt.

The disc input program has been written by professional

programmers understanding the interface between the disc

controller and the computer. A program description of the disc

driver could be presented but it was felt that such a description

requires too much additional background information for a

program which is not part of the assembly process.

This program is a tested program. Nevertheless, in

order to trace most disc read problems that might arise, it

was decided to include three halt conditions for:

Ten unsuccessful read attempts (HLT 22B) ,
Address error, abnormal halt (HLT 24B) ,
Disc not ready (HLT 26B) •

With. the pr~sent implementa.tion knowledge of the disc

input driver would not be necessary for changing the overall

program features. The disc driver is required to retrieve

50

binary data to be printed as introductory text. Changing the

assembler might require the disc to input assembler programs.

Again the circumstances would not require that the mechanics

of the disc be known, since the disc driver operates

independently of the assembly process. However, changing the

disc driver hardware unit would probably require a totally new

disc driver program.

CHAPTER V

THE SYSTEM CONTROLLER A.ND THE I~/OUTPUT PACKAGE

THE SYSTEM CONTROLLER

INTRODUCTION

After initialization, program control is directed to

the first of two secondary entry points to the System Controller

at which point the input is treated as a source program

statement entry. The initialization program is the only

program to use this entry point to the System Controller.

The other secondary entry point is a return from an editor

insert or replace operation. Both these operations involve

the inclusion of source statements in the program and the SCB

storage of such statements is carried out in the System

Controller.

Program control is directed to the main entry point

of the System Controller for any program situation requiring

user input, with the exception of:

the user responses when printing the introductory text,
the user responses to an edit-veto request.

After the inout operation is complete the System

Controller is intended to direct program control in any one

of eight directions depending on the first character of the

input and the status of five different system variables.

PROGR'!\M CONTROL TRANSFERS

After initialization any response beginning with an

equal sign is interpretted as a request to abort the current

51

52

user program and prepare for another user program.

If this test fails, interrupt mode on the output device

is enabled, after being disabled for an input operation. Now

five different svstem vari~bles are examined; if one of ·these

variables is set to a non-zero value, control will be transferred

to the program unit requiring the inout.

The first variable tested is the ARS/BSS flaq. After

a prompting message is printed, the ABS/BSS flag is set followed

by a return to the Svstem Controller. The user is expected

to enter a temporary value to define an undefined symbol in

an ABS or BSS instruction operand. Program control returns

to the ABS/BSS routine, subroutine VAL, to examine the input.

If the ABS/BSS flag had not been set subroutine CLEAR

is called to initialize all lexical variables in preparation

of a source program statement either during an edit operation

or normal program definition or in preparation of a data

address for a Dump operation.

The Dump Directive offers an option of displaying data

addresses: the user is requested to type in a response either to

end the Dump operation or to dumo data address contents. The

Duron flaq is set in anticipation of such a resoonse to return

control to the Dump routine.

Prior t6 setting the Sequence flaq a user sequence

request is not accepted. After an error messaqe and re-entry

rerruest are nrinted, the Seouence flag is set to direct proqram

53

control to the Sequence Directive routine with new statement

sequencing data.

Two different system variables involved with edit

operations are examined. The flag signalling source statement

entries during an editor replace or insert operation -will

direct program control to subroutine EDIPT, which originally

requested the input.

The other editor flag examined is the main edit flag,

signalling an edit operation is in progress. Program control

is directed to the edit instruction scan program to interpret

and execute what should be an edit instruction request.

The seventh and last test is applied to the first

character of the input; a colon beginning the entry signals

a System Directive. After the colon has been recognized control

branches to the program which interprets and channels the

System Directives.

..
SOURCE PROGRAM ENTRY

Failure to satisfy any of the seven tests results in

the assembler treating the input as a source program statement.

It should be noted that this is the first secondary entry

point.to the System Controller at which point control branches

to the main lexical scan routine, subroutine LEX. Following

successful. completion of the lexical scan control branches to

subroutine l~SMBT..1 to allocate space in the SCB to store the

program statement.

Data definitions and machine code instructions will be

http:point.to

54

assembled into their appropriate location by subroutine SETCD

while comment statements are ignored.

The next instruction, a call to subroutine STSCB to

store all statements in the Source Code Block, is the last

entry point to the System Controller. Edit operations involved

with the insertion of source statements have already performed

the lexical scan, the SCB space alloment and the assembled

code storage independently of the System Controller.

After the statement has been stored in the SCB, symbols

are defined and entered into the Symbol Table. In most cases,

program control loops back to the beginning of the System

Controller except during an insert involving the entry of more

·than one program statement where control will return to the

insert subsystem.

SYSTEM CONTROLLER MODIFICATI0NS

The System Controller is primarily intended to direct

the input to the proqram unit requiring the inout. The overall

structure of the unit is very simple and could easily be

expanded or modified to include transfers to different program

units requiring user input.

Changes to source program definition or storaqe are

more likely to he introduced in the subroutines called by the

System Controller rather than within the System Controller.

55 .

SUBROUTINE RE0UF.STS

After entry to the System Controller and during exam­

ination of the different branch conditions the System Controller

calls two I/O subroutines :

DATIN Request and read user innut,
I.ON Turn on output device interrupt.

Both these subroutines are discussed in the following section

on the I/O packaqe.

One other subroutine called is subroutine CLEAR to

initialize all variables used in the lexical scan of source

proqram statements or in the scan of an address for a data

address dump.

The subroutines called in the section on the source

program entry are as follows:

LEX The main lexical scan program,
·ASMBL Prepare SCB area for statement storage,

SEri:'CD The main assembly program,
STSCB Store statement in SCB,
LBDEF Define label beqinninq statement.

These subroutines will be discussed in their respective program

unit in the next two chapters.

INTRODUCTION

The Input/Output Package is comprised of fifteen sub­

routines to oerform five different interrelated input/output

functions:

1. Request and read in an input string,
2. Output Ascii records,
3. Interrupt control and service routines,

56

4. Carriaqe control orograms,
5. Binary to Ascii octal or decimal conversion.

These fifteen different subroutines, which are listed

in Table 5.1 in their functional grouns form a self-contained

unit: program modifications would nbt likely involve changing

the I/O package for it exists as a unit almost totally

independent of other assembler features, yet used by almost

all assembler features. Subroutine GETCR is normally used for

scan purposes, but it is also called in DATIN to retrieve the

first character from the input buffer to ensure at least one

character has been read before returninq from DATIN.

On scanning the program listing it may seem haphazard

to arrange subroutines TTY.I, TTY.P, I.ON and I.OFF one after

the other not according to functional group. This arranaement

within the I/O packaqe is convenient to subroutine CNFIG for

all I/O machine instructions reside within these four sub­

routines.

With the exception of the binary to Asciiconversion

all other I/O functions have been designed around the I/O

facility of the Hewlett Packard Basic compiler for the 2100A

computer: also they are in some way reliant on the output

function. For this reason the output unit is discussed first.

OUTPUT CONTROL

The output function is called from various points

throughout the program; Subroutine TTY.P is the main driver

program calling subroutines INIT and GETCH.

57

Subroutine TTY.P

Calling Sequence

LDA < Character lenqth of outout >

LDB < The address of the output buffer >

On entry if

(A) 	 > 0 then print (A) characters followed by a carriage
return and line feed,

(A) ::: 0 	 then print onlv a carriage return and line feed,
(A) < 0 	 then print - {A-) characters only.

TTY.P will output each character using the non-interrupt

transfer routines discussed in Appendix D. By typing any key

on the keyboard the user may interrupt his program if ·the

interrupt mode had been enabled before the input operation.

Interrupt mode is disabled during the printing of the

introductory text. Cutout operations in non-interrupt mode

cannot be interrupted. Interrupt mode is enabled in the Svstem
'· ~

Controller after the Abort test. On an interrupt the control

flag is cleared to turn off device activity before calling the

interrupt service subroutine.

On a normal completion a carriage return and line feed

are output if requested earlier.

Subroutine INIT

Calling Sequence
LDA <-Character length of output>
LDB < The address of the output buffer >

INIT saves the register contents and sets a pointer

depending on the sign of {A) on input to TTY.P.

Subroutine GETCH

Return P+l Buffer emoty
P+2 Character in (A)

58

GETCH retrieves the next character, removes the parity

bit and returns the character in (A) to the second return

address. The first return address indicates that the text has

been output.

INTERRUPT CONTROL ---·-·---·--­
An interrupt is a user initiated action to halt some

present activity. For the purposes of the assembler the

interrupt mode is used primarily to interrupt the printing of

warning messages to the user.

The interrupt service subroutines are called from

several locations in the assembler. Subroutine I.OFF and I.ON
-

are both very straightforward and not apt to be altered.

Subroutine I.STP uses a very simple handling of an interrupt

condition. The subroutine could easily be changed to treat

the interrupts in a different manner.

Subroutine I.OFF

I.OFF turns off the device interrupt mode by setting a

NOP, a no operation instruction, into the device interrupt

location and clears the device control flag to turn off read

mode.

Subroutine I.ON

I.ON turns on the device interrupt by storing a jump to

the interrupt service subroutine in the device interrupt

location. The device is set to read mode and set to look for

input.

: 59

Subroutine I.STP

I.STP is the actual interrupt service subroutine; it

will call I.OFF to turn off interrupt mode and then call

TTY.P to print STOP before returning to the System Controller.

CARRIAGE CONTROL

The carriage control calls are also called throughout

the assembler; often they precede a call to the output function

to print the output on a new line.

Subroutine CRLFD

CRLFD will clear the A register and call TTY.P to output

a carriage return and line feed.

Subroutine NWJ....NS

Calling Sequence
LDA < Two's complement number of CR-LF >

NWLNS will out?Ut the two's complement number of

carriage return-line feeds as specified in (A) by successive

calls to CRLFD.

INPUT CONTROL

Subroutine DATIN is the main input subroutine calling

TTY.I to perform the input operation and PROCS to store each

character in the input buffer.

Subroutine DATIN is primarily called from the System

Controlier but there are separate calls from the initialization

program and for a response to the edit-veto request.

Subroutine DATIN

Return (A) First character of input

DATIN outputs the read prompt, the @ and the bell

characters before calling subroutine TTY.I. On returning from

TTY.I length and address pointers for character retrieval and

statement storage are set. A call to subroutine GETCR will

return the first character of the input in (A).

Subroutine TTY.I

Calling Sequence
LDA < Length of the in~ut buffer, 72 characters >
LDB < Address of the input buffer >

Return (A) The number of characters input or -1 on
buffer overflow

TTT.I saves the length and address pointers and sets

the device to input mode. Usinq the non-interrupt request

routines presented in Appendix D, each character is read in,

immediately after each character is read in subroutine PROCS

is called to store each character in the buffer.

Before returning to DATIN, TTY.I turns off the inout

device read mode.

Subroutine PROCS

Calling Sequence
LDA < Character to be stored >

Return P+l Get next character

P+2 (A). Character count

(B) Minus one value on buffer overflow

PROCS will ignore superfluous characters, in particular

the line feed and null character, and pack all valid characters

into the input buffer. The back space character, the left

arrow, permits the back up of one character. Any number of

back space entries are permitted but multiple back spacing

61

cannot backup beyond the original buffer address.

Buffer overflow will be flagged in PROCS but is not

acted on. The second return address is set after recognition

of a carriage return character to end the input string.

BINARY TO ASCII CONVERSION

Although, not directly related to the other I/O

functions the binary to Ascii conversion facility is used

in the List µroqram to convert the statement nurnher to Ascii

characters and in the Dumn oroaram to convert the register

contents, after execution.

Subroutines C"'m:Sc, Cl'!OCT, c~.::rRIN, and DVUKN are all

Hewlett Packard library nroarams which have been modified

slightly to simnlify storaqe and output.

Subroutines CNOCT and CNDEC,

Calling Sequence

LDA < Value to be converted >

Return (A) The least two significant digits

(B) The address of the most significant digits

CNDEC and CNOCT specify ten and eight decimal,

respectively for the conversion. The address returned in (B)

will be used as input to subroutine TTY.P.

62

TABLE 5.1

1. 	INPUT:
DATIN Reqtiest and read user input
TTY.I Perform input operation
PROCS Character processinq for input

2. 	OUTPUT:
TTY.P Perform output operation
GETCH Character processing for output
INIT Initialize for outout

3. 	 INTERRUPT CONTROL:
I.ON Turn on interrupt
I.OFF Turn off interrupt
I.STP Interruot service

4 • CARRIAGE CONTROJ_,:
CRLFD Output carriaqe return-line feed
NWLNS Outnut multiple CR-LF

5. 	BINARY TO ASCII CONVERSION:
CNOCT Convert to Ascii octal
CNDEC Convert to Ascii decimal
CNBIN Stored converted value
DVUKN Divide value to be converted

63
FIGURE 5.1 SYSTEM CONTROLLER FLOW DIAGRAM

MAIN ENTRY POINT

READ

INPUT

e>--1---- INITIALIZATION
PROGRAM

y 	 LEXICAL SCAN
SUBROUTINE VAL

yN ~~~--tDUMP DIRECTIVE

INITIALIZE

LEXICAL

64

LEXICAL SCENTRY FROM
INITIALIZATION_____ OF PROGRAM
PROGRAM STATEMENT

y

y SEQUENCE

---DIREC'rIVE

y --1 SUBROUTINE
/--- EDIPT

y EDIT INSTRUCTION
---"""'SCAN

y SYSTEM DIRECTIVE
SCAN

ASSEMBLE

STATEMENT

65

ENTRY AFTER EDIT STORE
REPLACE OR INSERT ---_,.STATEMENT
OPERATION IN SCB

MULTIPLE
y INSERT

PROGRAM

CHAPTER VI

LEXIC.'l'\L SCA}J }\Nn 1\mMBER MANIPULATION

LEXICAL SCAN

IN'J:'RODUCTION

Subroutine LEX is the main lexical scan program used

to analyse source program statements. LEX is called from

three different locations in the assembler:

The Svstern Controller,

Subroutine EDIPT,

Subroutine DELTE.

A call from the System Controller is for the analysis

of source program statements entered during the normal program

definition. Subroutine EDIPT will call LEX to scan source

program statements involved in an edit insert or replace

operation.

DELTE is an edit subroutine for deleting statements

from the assembled program. On an edit operation involving

the deletion or replacement of a program statement, the lexical

scan is necessary to return statement label information and

Memory Reference operand information. A label beginning a

statament to be deleted is no lonqer defined after the edit

operation~ Subroutine LEX returns information used to locate

the symbol in the Symbol Table. Operand analysis is unnecessary

except for Memory Reference instructions; operand information

must be returned to adjust forward reference pointers, if

necessary, after an edit operation.

The section "Subroutine LEX" describes the lexical

66

67

scan and emohasizes some of the chanqes required in the

instruction scan for the instructions which are not implemented

in accordance with the standard Hewlett Packard assembly

language.

Following the section "Subroutine LEX" is a discussion

on changes which could be implemented. The remainder of

Chapter VI is a detailed discussion of the imoortant lexical

routines. This group of subroutines may be further divided

into three grouos, those involved with character manipulation,

the lexical s~pport routines used in instruqtion analysis and

the number forming subroutines.

Subroutine LEX

INTRODUCTION

The available assembler instructions have been divided

into fifteen different groups for operand analysis~ these

fifteen groups and their operands have been described in Appendix

A. After the group type has been established the program falls

through a logical cascade operation which eventually locates

the value of the grouo number by comparing the group type value

with all possible group number values. Following the comoarison

test for each group type is the program unit to interpret the

operand for the particular operand type.

Exceoting Memory Reference instructions, all operand

recognition and evaluation is within the lexical programs.

Memory Reference operands will be examined but not evaluated

until the instruction is about to be assembled.

. 68

SOURCE STATEMENT SCAN

LEX begins a character by character scan to analyse

the statement entry. The first character must be one of:

a blank,
a letter or a period,
an asterisk.

·Any other character will result in a call to a lexical error

message; all lexical error messages are listed in Table 6.1.

An asterisk signals a comment statement; no further

scan is necessarv. The assembly flag has been set for a comment

statement by suhroutine CLEAR; LEX returns to the calling program.

A blank signals th~t no lahel is present; the program

continues by advancing to the next non-blank character in

preparation for the instruction mnemonic.

An alphabetic character or a period signals a label

is present. Using subroutine LABRD the label is read into the

temporary buffer for statement labels. Conventional Hewlett

Packard assembly will truncate any label greater than five

characters and issue a warning message. For this assembler

at least one blank terminator character must follow the fifth

or last label character or an error message will be printed

with the statement being ignored.

A label flag is set for the presence of a statement

label with an error message being orinted for a doubly defined

label and the statement aqain being ignored.

The instruction mnemonic is packed into a two-word

buffer to facilitate instruction look up by subroutine MN.EM.

69

After returning from ~~"t-mi,1, the program begins the logical

cascade of the different instruction types.

On matching the instruction type number, operand

analysis may begin. Generally, the scan of ·machine code

instructions adheres to standard Hewlett Packard definition.

The restrictions pertaininq to Memory Reference instructions

have already been discussed. One further deviation from

standard assembly is the use of a symbol in an Input/Output

onerand in the place of a channel number value.

Normally the channel number is in the ranqe 0 to 63

but it may be eauated to a symbol such that a symbol replaces

the integer in the operand. It was decided that an I/O

instruction with an undefined operand would not be accepted.

This is the first instance of statements with undefined

operands not being accented. Memory reference instructions

having undefined operands will be accepted and retained for the

symbol tables have been specially desiqned to hold such

references. The Memory Reference instruction offers a 10 bit

address field to link forward references while an I/O instruction

has only a six bit field for the channel number. This is

intended to discourage the use of I/O instructions for the user

program area is restricted in size~ it should encourage the

use of the Dump Directive after execution.

On recognition of the END instruction control branches

to the execution programs, exceot during an edit oneration
v• - ~

which must be completed before beginning execution.

70

Data definitions have been discussed in Chapter III

in the section on mnemonics and pseudo ops. One important

restriction is that the data definition may be no longer than

28 words in length. The only exception is the BSS pseudo op

which may be 128 words.

Before scanning any data defintion the 28-word data

.buffer is cleared. As the instruction is scanned each data

value is stored in the buffer~ this is particularly relevant

to the ASC, DEC, and OCT pseudo ops which may involve more than

one word in the definition. An error in the data entry will

cause the whole statement to be ignored. LEX will call

subroutines to input numeric terms for OCT and DEC but the

terminator character after each value is checked within LEX.

The remaining pseudo ops are at most a one~word entry

to the buffer. The BSS and EQU pseudo ops do not use the data

buffer.

Any symbol in a pseudo op operand is restricted to a

data address symbol. This is important in the scan of the ABS,

BSS, EQU and DEF pseudo ops. The ABS and BSS pseudo ops have

been discussed in Chapter· III and Appendix A and need not be

dealt with any further.

The EQU pseudo op is regarded as a data definition of

length zero but an aosembly address must be set to store a

Symbol Table address for the label which must precede the

instruction. The operand address is stored in the last position

of the data table area with the assembly address corresponding

~l

to this location. Before returning, the upper bound of the data

table is decremented to prevent an overwrite of this instruction.

The EQU instructions is another instance of a statement

being ignored due to an undefined operand symbol but in this

case it is.in accordance of the Hewlett Packard definition.

An undefined symbol in a DEF pseudo op operand is again

handled in a different manner as presented in Chapter III.

The DEF pseudo op is the last instruction type.

Failure by the program to match the instruction type number

within LF.X signals a program error. An error messaqe is

printed followed by a computer halt (HLT 33B): a re-entry

request is not oresented. Ooerator intervention is reauired

to correct the program fault. This intervention would probably

involve referring to an assembler listing of the program to

determine core addresses of the variables involved in the

lexical scan and examining actual core locations to determine

the error. To correct the program fault, it would probably be

necessary to change some mernorv locations to restore their

proper value and reset the proaram location counter either

to continue assembler activity on the current user program

or to abort the current program and initialize for a new user

program.

72

PROGRAM MODIFICATIONS

In considering the implementation of any changes the

overall program changes must be weighed against what advantaqes

could be gained.

The DEC and OCT pseudo ons instructions are totally

rejected if any part of the statement is in error. Changes

could be made strictly within LEX to ignore any data item in

error and print a warning messaqe pointing to the ignored value.

To ignore the data item in error is trivial and presumably

to point to the data item in error is also trivial. But would

such a chan~e be advantaqeous?

A user entering several data values in one statement

usually would not want an item excluded due to an error. With

the present implementation a user has greater control over the

program structure by the rejection of the statement on a single

error.

It, therefore, seems best to assume that changes to the

lexical scan would have to be implemented as a result of

expanding the set of available instructions or relaxing the

restrictions on the present instruction set.

Relaxing some user program restrictions would definitely

be significant within LEX. Operands for the DEF pseudo op

could be expanded to resemble a Memory Reference operand or

undefined references during an edit operation may be permitted.

Changes rec:rarding Memory Reference operands or undefined

symbols in I/O instructions could be con~ddered.

73

However, the program modifications necessary would

probably far outweigh the advantages of such changes.

Expanding the instruction set to include the REP

pseudo op or floating point arithmetic requests would require

changes throughout the assembler. Allowing the user to enter

multiple instructions would require a much more thorough scan.

Such a change would necessarily involve a distinction between

Alter Skip, and Shift Rotate instructions in the Instruction

Table and a provision for the instructions which belong to

both instruction groups. Subroutine LEX would be responsible

for scanninq these instructions and forming the multiole

instruction.

Seemingly storage allocation would have to be rearranqed.

The available storage size does not permit these inclusions

without usage of the disc input driver to load either ancillary

subroutines or program segments as needed. It would probably

be best to leave all assembler and program tables in memory at

all times and rely on the controller unit to manaqe disc transfers

of program s~gments.

In the long run, the advantages of such changes should

far outweigh the work involved in implementing such a change.

Such changes would probably be beneficial to a more experienced

user without defeating the oriqinal purpose of the assembler.

74

CHARACTER MANIPULATION SUBROUTINES

The remainder of Chapter VI is devoted to the discussion

of the different subroutines used in the lexical scan and for

number handling purnoses. Some of these subroutines have

important uses outside the lexical scan but their primary

·function is as part of the lexical scan.

The subroutines involved with character manipulation

are listed in Tahle 6.2 and will be discussed first.

Subroutine BCKSP

BCKSP will back up the scan of the input huffer by

one character by adjusting the one's com?lcment word count

and the address word to the next character in the buffer. No

check is needed for backing up beyond the original buffer

address for the situation never occurs.

Subroutine GBTCR

Return P+l
P+2

Buffer empty
Next character from input buffer in (A)

GETCR is the only subroutine to retrieve a character

from the innut buffer. For each call to GETCR the one's

complement character count is incremented~ when this value goes

to zero the buffer has been fully scanned. The second return

address returns the character in (A).

Subroutine ~TBLK

Return P+l Non-blank character not found
P+2 Next non-blank character in (A)

Using GETCR, NTBLK will search for the next non-blank

character in the buffer.

75

Subroutine RDC0'1

Return P+l No comma found in buffer
P+2 Comma read

Using GETCR, RDCO~~ will 'QOSition the buffer pointers to

retrieve the first character after the comma on the next call

to r,ETCR.

Subroutine TRMCK

Return P+l Valid termination
P+2 Invalid termination, character in (A)

TR!1CY- uses GETCR, but it has a different function in

that it is examining the character to be a terminator, either

the blank character or the end of line connition. The first

return address siqnals valid termination~ the second return

exits with the character in (A) for further analysis.

LEXICAL SUPPORT RETURNS

The lexical support subroutines will be described in

their approximate order of occurrence in LP.X. Table 6.3 lists

these subroutines; error messages associated with these subroutines

are listed in Tahle 6.4.

Subroutine I.JAB~D

Calling Sequence

LDA <.First character of symbol, (A) > O >

< First character not read, (A) < 0 >

LDB < Address of symbol buffer >

Return P+l First character not a letter or a period,
character in (A)

P+2 Symbol read

LABRD is the symbol reading subroutine for reading

statement labels ~nd operand symbols. The first return address

76

is applicable if on entry (A) signals that the first character

has not been read. Normally, no error message is qenerated

unless nothing was read.

Ordinarily LABRD will read up to five characters into

the symbol. buffer. Numeric characters will be stored as Ascii

characters so that these characters can be output if the symbol

must be ~rinted separately.

Subroutine LBTPR

Callinq Sequence
LDA < character to be examined >

Return P+l Character in (A) not alphabetic or a period
P+2 Alphabetic or period character in (A)

LETRP is called hy LEX and LABRD to examine a character

to be alphabetic or a period.

Subroutine LOKUP

Callinq ~equehce
LDR < Address of the svmbol buffer >

Return (A) > 0 The program address of the symbol
(A) = 0 Symbol not found in Symbol Table
(A) < 0 Undefined symbol

(B) Symbol Table address of symbol

Given the symbol buffer address LOKUP calls subroutine

FIND to locate the symbol position in the Symbol Table. An

undefined symbol has had previous references but has not been

defined as a statement label.

Subroutine FPJD

Calling Sequence

LDB < 1\ddress of the symbol buffer >

Return (A) = 0 Symbol not in Symbol Table

(P.) ·symbol Table address of symbol

77.

FIND applies the hashing function to yield the relative

table position to begin a linear search. The relative table

position is converted to an actual storage address to begin

the search for the next free area to store the symbol or the

symbol position in the table.

If the table area is not occupied, the symbol has not

.been previously entered: control returns to LOKUP. A symbol

entry in this location will be checked word hy word with the

symbol being souqht.

Reaching the end of the table will immediately cause

the search to continue at the beginning of the table in a

circular fashion. Failure to find the symbol or a free position

for the symbol indicates the Symbol Table is full and results

in an abnormal program abort.

Subroutine MNEM

Subroutine ~1NE'111 finds the assembly skeleton of the

instruction mnemonic from the Instruction Table. Using the

mnemonic which has been packed into a two-word buffer by

subroutine LEX, .MNEM performs a binary search with the first

section of the Instruction Table for the first two characters

of the mnemonic.

After finding the instruction position in the first

section of the Instruction Table, this position pointer is

adjusted to reference the corresponding position in the

second section of the Instruction Table.

Further corrections may be included to the position

78

pointer if there is more than one mnemonic in the Instruction

Table beginning with the same first two letters. The pointer

is set to reference the position of the first mnemonic is such

a case.

Us.inq the position information, a linear search is

set to match the third character of the mnemonic with the

characters stored in the second section of the Instruction

Table. Since six different mnemonics may begin with the same

two letters, the linear search is attempted six times.

Failure to match either the first two characters or

the third character of the mnemonic with the aoprooriate

entry in the Instruction Table will signal an undefined

mnemonic which results in an error messaqe and return to the

System Controller.

On successful recognition, the instruction number

and skeleton assembly code are retrieved from the Instruction

Table.
,

For the simple task of determining the type of

assewbly an assembly flaq variable is used rather than making

reference to the assembly skeleton. Initialized to zero by

subroutine CLEAR, the assembly flag is used to denote:

pseudo operation (data definition) (-1) ,

comment statement (0) ,

machine code instruction (1).

79

Subroutine RANGE

Calling Sequence
LDA < Value in operand >
LDB < Two's complement of upper bound value >

Return 	 P+l Valid termination

P+2 Invalid termination

I

RANGE is intended to examine the operand values for

the Input/Output and Extended Arithmetic Register Reference

instructions. RANGE checks the operand value to be positive

and within range and includes the operand value with the

assembly skeleton.

Subroutine TR~CK is called to check for valid

termination: RANGE uses the two return addresses depending on

TRMCK.

Subroutine OPREC

All Memory Reference ooerands, some pseudo-op operands

and data addresses to be output by the Dump Directive will be

read in and retained. OPREC calls BSKSP, TRMCK, LABRD, and

NUMBR. NUMBR reads in decimal or octal inteqers. OPREC does

not rely on RANGE to check operand values for RANGE will include

the operand value with the assembly skeleton and include a

separate call to TRMCK.

·suhroutine STDAT

Calling Sequence

LDA < Data value to be stored > .

Before any data definition is scanned, the data buffer

is cleared and a counter is set. STDAT will store data values

from the data buffer during the scan of the pseudo on.

. 80

Data definitions usino the buffer have an imnosed

bound of 28 words since this is only a temporary huffer.

Failure to comply with this restriction results in a warning

message with the statement being ignored. This data is held

in the buffer to be assembled after the lexical scan.

Subroutine LABCI\

Return P+l No operand symbol
P+2 Onerand svMbol is not defined
P+3 Onerand svmbol defined, address in (A)... '· .

Using OPREC, LABCK will read in the operand fQr pseudo

ops having address operands and data addresses for the Dump

Directive. With three different return addresses operand

recognition and analysis for the different instruction types

is easier.

Subroutine DATR~

Callinq Sequence
LDA < Address to be examined >

DATRG checks the address to be within bounds of the

program data area or the available base page area. DATRG is

?rimarily a lexical support ~outine but is also required by

the Dump Directive.

Subroutine VAL

.2\fter a prompt from VAL the user is to type in a

temporary value for an undefined symbol in an ABS or BSS operand.

The ABS/BSS flag is set followed by a return to the

System Controller to input a 'value. The System Controller

will return program control to VAr, to clear the ABS/BSS flag

and suhstitute the·value for the undefined symbol.

.81

Reading in a value as such requires several

precautionary steps; the original statement entry resides in

the input buffer and the statement length in a special variable.

Both of these must be retained if the statement is to be stored

in the Source Code Block after assembly.

After each input operation the character length of the

input is stored in a special input variable. Before reading

in a temporary value the character length of the original

program statement must be stored in a temporary location, not

involved with an input operation so that this value may be

retrieved after the temporary value is input: the input buffer

address is altered so that an auxiliary-buffer is used to input

the value. Pointers must be retained to scan the buffer.

After the input operation is complete the input buffer address

and the statement length are then restored to their proper

variable.

An error in the entry of a temporary value results

in the original program statement being ignored.

82

NUMBER M..Z'\NIPULATION

______c ___INTRODUCTION

The' number handling subroutines are used throughout

the assembler but are primarily called by the lexical routines.

'rhere are four major categories with which number usage is

associated:

Octal integers for the OCT pseudo op;

Octal and decimal integers for ooerand exnressions,

Floatinq point numbers and decimal integers for the DFC

pseudo op-,

Decimal integers generally involved with statement numbers.

Before discussino the four different number types it

should he pointed out that there are eight error messages,

listed in Table 6.5, shared by the number forming subprograms.

In the event of an error, su~routine ERR0R is called to print

the error message and re-entry request. During initialization

program control returns to the calling noint but normallv

control passes to the Svstem Controller.

OCTAL IMTEGERS - Subroutine OCTIN

Return (A) Octal integer

Suhroutine OCTIN is called strictly by LEX to form

octal integers for the OCT pseudo op. The next non-blank

character is examined to be a sign with the sign flag set

accordingly. Failure to locate any data or a solitary sign

necessitates a branch to the appropriate error routine.

Initially a zero value is set into a temporary

variable. i·1hile constructing the value each new digit will

be added into the previous value after the value has been

83

shifted three times to the left. The shift used is a left

circular shift with overflow checked after each shift hy

examining hit n.

On finding a character which is not an octal digit

OCTIN checks that at least one valid octal digit has been

input. If so, OCTIN assumes that this character is the

terminator and that the value !'las·heen defined. Like all

other numher routines a terminator is returned to the buffer

and not checked in OCTI~.

Before returning one last check for a negative sign

is taken with the two's complement value returned if necessary.

If no valid octal digits were input before encountering

the terminator an error message is output.

Subroutine OCTCT:\

Calling Seauence
LDA < Character to be examined >

Return P+l Character in (A)

P+2 Octal digit in (A)

OCTCK is the only subroutine called by OCTIN to examine

each character to be an octal digit.

OPEl:{.2\ND INTEGERS - Subroutine HUMBR

Return P+l First character not a number
P+2 Decimal or octal inte9er in (A)

Subroutine NU~BR is called to read in operand inteqers,

either decimal integers or octal integers flagged by a B,

immediately following the value. NUMBR will form an octal and

decimal value from the inout until it can determine which value

to return.

84

Like OCTIN, NUMBR will check for no operand data,

a solitary sign and retain siqn information. Each character

will be examined by subroutine DECHK to be a decimal digit

but a separate internal check is required to test a decimal

digit to be an octal digit as well.

Before includinq a new decimal digit the previous

value is multiplied by ten using shifts and additions. A

valid octal digit is included after three shifts. In each

case overflow will he checked before accenting the new diqit.

Any character which does not satisfy the octal digit

test results in an error flag being set; the scan must continue

for this number is apt to be a decimal value. The first

character rejected by DECHK is tested to be the character B

siqnallinq an octal diait. If this character is a B and

the octal error flaq is clear, the octal value is returned,

but if the error flag is set there will be an error message.

Any character other than B is assumed to be a terminator

and is returned to the buffer: a decimal value is returned.

Subroutine DECHK

Return P+l Character in (A)
P+2 Decimal digit in (A)

All number forminq subroutines involved with decimal

values will use DECHK to check each character being scanned.

DECHK examines the character to be in the range of decimal

digit characters and returns the character if the test fails.

. 85

DEC PSEUDO OP

The DEC pseudo op may have floating point, or decimal

integer operand values even though floating point arithmetic

is not available. Subroutine CONST will initiate the input

of floating point constants.

Subroutine CONST

Return (A) and (B) Floating point constant

CONST advances up to the next non-blank character,

sets the sign flag and checks for a solitary sign. CONST

calls NUMCK which controls the Ascii to binary conversion.

Subroutine NUMCK

Return (A) and (B) Floating point constant

NUMCI< is very similar to the subroutine NUMCK is the

Hewlett Packard Basic compiler for Ascii to binary conversion

of floating point numbers. Changes have been made to ignore

leading zeros in an exponent ~erm and error handling has been

altered. As part of the number input NUMCK calls:

.PACK To normalize and pack a floating point constant,

NORM.L To normalize a value with its exponent,

MPY To multiply an unpacked number by ten,

DBY To divide an unpacked number by ten,

MPY To multiply an integer by ten.

The program logic has not been changed from the program

listings of the Hewlett Packard Basic compiler. Since these

programs are available in Hewlett Packard system listings and

since they exist as support programs they will not be discussed

any further.

. 86

DECIMAL I?'1TEGERS

The DEC pseudo O?, by definition, may have decimal

integer operand values. Rather than write an additional

program for strictlv decimal inteqer inout it became necessary

to provide a real to integer conversion.

The presence of subroutine IFIX in the Hewlett Packard

system listings provided the necessary conversion as well as

a check on the exnonent of a floating point number.

All that remained was to write a simole subroutine to

determine a real or integer value from the floating point

number stored in {l\) and (n) • Two variables DPP.LG, the decimal

point flaq and EFLG, the exponent flaa, have the format.

DPFLG = 0 No decimal ooint present

= 1 Decimal point nrcsent

EFLG = -1 No exoonent term

= 0 Exoonent term

Subroutine TYPCK

Calling Sequence

LDA < Floatinq point number >

LDB < Floating point nu~her >

Return P+l Floating point number in (A) and (B)
·p+2 Integer in (A)

TYPCK examines the decimal point flag and the exponent

flag and will call subroutine !FIX if neither of these variables

were set in NUMCK.

-87

Subroutine !'PIX

Calling Sequence
I.DA < Floating ooint nu.mber >
LDB < Floating noint number >

Return {A) Integer value

!FIX converts the floating ooint value to a single word

integer.

Subroutine GTNUM

GTNUM calls CONST to input a positive decimal integer

value. G'I'NW1 will not accent negative or real number values.

Subroutine TNINT

Return P+l One integer valid termination
P+2 One integer invalid termination
P+3 Two integers valid termination
P+4 Two integers invalid termination

TWINT is set to call GTNUM twice to innut one or two

positive integers. The different return conditions are

imoortant when examining the veto flag on an edit request.

Normally, the third return is the only acceptable return for

statement number input. Termination is checked by TRMCK and

as in all other cases the terminating character is returned

to the buffer by BCKSP.

SUP..1.MARY

The number handling subroutines and the main features

of the lexical scan have been presented. Programs to input

and store floating point numbers have been successfully

implemented. Further implementation of floating point arith­

metic subroutine requests is definitely possible.

88

Once the lexical scan is completed control returns to

the calling proqram. In the case of a call from the System

Controller statement assembly and storage follow immediately.

89

TABLE 6.1 LEXICAL ERROR MESSAGES----..--,----..---··--·------­

Error rnessaqes with an alternate label, i.e., (ERR6),

signal base

LABEL

LXRl

LXR2

LXR3

LXR4

LXRS

LXR6
(E~R6)

LXR7

LXRB

LXR9
(ERRS)

LXRlO
(ERR8)

LXRll
(ERR4)

.LXR12

LXR13
(ERR3)

LXR14

LXRlS

r..XR16

LXR17
(ERR7)

LXR18

paqe error messaqes.

ERR.OR MP.SSl\.GE

FIRST CHARACTER NOT FOUND

ILLEGAL FIRST CHARACTER

BAD DATA FOLLOWS LABF.L

DOURLY DBFINED LABEL

INSTRUC'J'ION NOT FOU~m

NO OPE~ND POUND

BAD DATA FOI,LOl:V'S OP CODE

BAD DATA IN OPERAND FIELD

ILLEGAI, CHAR7\CT:SR BEGI~TS LABEL

UNDEFINED LABF.L IN OPERAND

ILLEGAL OPF.RA.ND '!'ERJ.,UNATION

ILLEGAL INSTRUCTION DURING EDIT

OPERZ\ND VALUE OUT OF RANGE

NO LABEL PRECEDES EOU PSEUDO OP

ADDRESS MUST BE POSITIVE

INSTRUCTION NOT FOUND

OPEU.AND IS U".'-!DEF'I!'Um

UNDEFINED LABEL NOT PF.R~·UTTF.!) WITH DBF DURING EDIT

http:OPF.RA.ND
http:MP.SSl\.GE

90

LADEL ERROR MF.SSZ'i.GB

LXR19 OPP.R1\.ND VALUE !1UST BB GREATER TJT.AN ?:ERO

http:OPP.R1\.ND
http:MF.SSZ'i.GB

.91

TABLF: 6. 2 CHARACTER MA~HPULATION SUB~OUTINES
--------------·~-

SUBROUTINE

BCKSP

GETCR

NTBLK

RDCOM

TRi111CK

FUT\lCTION

Back space one character in the input buffer

Retrieve the next character from the input
buffer

Get the next non-blank character from the
input

Read up to a comma in the buffer

Check for a termination character

92

TABLE 6.3 LF.XICAL SUPPORT ROUTINES

SUBROUTINE FUNCTION

DATR~ Check for data address

FIND ~ind Syrnbol Table address of symbol

LABCK Read in operand, examine symbol

LABRD Read a syTIL':lol

LETPR Check for period or a letter

LOKUP Look up Symbol Table address

Find assem~led instruction from mnemonic

OPREC Read in and interoret onerand

r.heck Channel Number and Shift Count range

STDAT Store data value in temporary data buffer

Vl\L Prompt definition of undefined ABS or BSS symbol

93

TABLE 6.4 F.RROR MESSAGES FOR LEXICAL SUPPORT ROUTINES

SUBROUT I:"TR

DATRG

FIND

LABRD

MNEM

OP REC

RANGE

STDAT

ERROR MESSAGE

.A.DDRESS BEYOND PROGRA!\1 BOUNDS

SY~1BOL TABLE OVERFLOW

NO LABEJ_, FOUND

ILLEGAL ASSEMBLER INSTRUCTION

OPEJU\~m VAI,UE OUT OF RANGE

ILIJF.GAL ()PFRAND TERMINATION

HINUS SIGN PRECEDES LABEL

MINUS SIG~J P~CED:RS J\.ST'8RISK

INDIRECT REFER'S~CB PER\1ITTE1) ONLY WITH
MEMORY REFERENCE AND DBF I~lSTRUCTIONS

OPERAND VALUE OUT OF RANGE

DATA INPUT EXCEEDS IMPOSED LIMIT

.g 4

TABLF. 6.5 NUMBER PR08RA.M ERROR MESSAGES

LABEL ERROR MESSAGE

NUMRl NO OPE'P-AND DATA FOUND

NUMR2. SOT.,IT.'l\.RY SIGN

NUMR3 BAD DATA INPUT
(ERRl)

NUMR4 ERROR IN EXPONENT

NUMR5 INTEGER OVERFj.,OW

NUMR6 POSITIVE INTEGF.R EXPECTED

BAD DATA FOLLOWS PJTEGER

NU~R8 REAL UUMBI:R OUT OF RA~TGE

http:SOT.,IT.'l\.RY

95

FIGURE 6. 1

SUBROUTINE LEX FLOW DIAGRAM

Lexical Errors have not been included. The term "INTR NUM"

is used to represent Instruction Number.

cENTER)

RETRIEVE

FIRST

CHARACTER

ALPHA NUMERIC

READ LABEL

READ MNEMO IC
LOOK UP
INSTRUCT IO

_)
B

L

A
N

K

>-y-(RETURN)

96

N

CLEAR FLAG
Y MAY ·BE
~PRESENT

y CHANNEL
NUMBER

y

I
SHIFT

>--.COUNT

y

N

')

MASK OPERAN
INTO ASSEMB
SKELETON

RETURN

Y

97

INCREMENT
ASSEMBLY
LENGTH

y

INITIALIZE
DATA BUFFE
AND POINTE S

(RETURN)

EXECUTE USER
----tPROGRAM

SYSTEM

CONTROLLER

98

'>-~~~--.~~~~-tDATE BUFFER

READ OPERAN
STORE IN

cRETURN)

AD OPERAN
ET BSS FLA RETURN

99

l
SYSTEM

CONTROLLER

,.N
READ OPERA D

__ 	STORE IN
DATA BUFFE

RETURN

CHAPTER VII

ASSE!1BLY AND STORAGE

INTRODUCTION

Durinq proqram definition after control returns from

subroutine LEX, subroutine ASMBL is called to prenare pointers

and allot snace to store the statement in the Source Code

Block. During an edit operation E~IPT calls ASMBL.

After calling :n.mmL the System Controller loads the

assembly flaq into the ~ reaister and will call SETCD unless

(A) is a zero, a comment statement. SETCD is also called from

various places in the editor for storing edit entries.

Table 7.1 lists seven of the auxiliary assembly

subroutines called hy SETCD. Of that list subroutine D~TLN,

DTSFT and STRCD do not have error conditions while subroutines

STLBL, S~RCK,. DATFL and STPL~ ~ave error messaaes. These

suhroutines will be discussed following the discussion on

subroutine SETCD.

Subroutine SI:';'CD

Callinq Seauence
LDA <.?\ssemblv flaa >

The ~ssemhly flag is examined and control hranches

accordingly; data definitions were treated first for they are

less comnlicated than machine code entries.

100

1.01

DATA DEFP.H':r.'I();-,!S

For an ?0U pseudo op the assembly address has been set;

SBTCD returns to the calling program.

Otherwise, the assembly address is set the next free

area in the data table: data table pointers are set t6 check

for a data table overflow, by calling subroutine n2\TF'L. Once

it has been ascertained that the data table will not overflow,

the data is assembled he~ore returninq to the calling program.

l'~ll machine instructions other than ?1emory Reference

instructions have already heen scanned and prenared for assembly

and will be immediately stored in the next location in the user

!lrogram area.

Memory Reference operand evaluation and storage now

become the sole function of SETCD.

ME1fl..ORY REF'EREN~F. OP~R:z\.ND :C~TALU~...'l'I0N

?1emorv Reference onerands not having a symbol or an

asterisk term are evaluated first. The operand integer becomes

the address by a simole addition to the assembly skeleton.

After checking for an indirect reference the instruction is

stored in the user program area.

Operands involvinq the PLC symbol, the asterisk, are

assembled next. The SCR address of the proqram statement with

a bit flag for an indirect reference and the operand integer

are stored in the PLC table. The relative paqe address of

http:OP~R:z\.ND

102

the entry to the PLC table becomes the forward reference

pointer to the instruction.

The remaining ooerand expressions involve symbols

either defined or undefined with or without inteqer terms.

For each symbol there is a call to subroutine LOKUP returning

the Symbol Table address as well as a pointer for a defined

or undefined symbol or a symbol not found in the Symbol Table.

A defined symbol without an operand integer can be

assembled immediately. A data address must be adjusted for

the address to reference the data value and not the data

address location. The instruction is assembled as discussed

in Chapter III by referring to the onerand through one level

of indirect addressina.

Symbols which were not found in the Symbol Table are

entered into the table hy a call.to S~LBL. These symbols can

now be regarded as undefined symbols.

The address of the last direct and indirect forward

reference will be held in Word 4 and 5 respectively in the

Symbol Table entry of undefined symhols. The address of the

last reference will be taken from the Symbol Table and combined

with the assembly skeleton to be stored with the user proqram.

The instruction will appear as a.direct reference to base cage

but will be recognized as a forward reference using the address­

linkage techniques presented in Chapter III.

Each Memory Reference operand having a symbol and an

integer is referred to as a compound operand and will be stored

103

in the Special Symbol Table, SST. Word 6 of the Symbol~Table

entry for any symbol is a link to the first compound operand

for that symbol. Word 4 for each compound operand entry is

a link to further cornoound operands with a zero in Word 4

being the terminator.

For each different operand combination there will be

a new entry to the SST. Second and subsequent entries of

identical compound operands will not require a new entry but

will be linked in the same manner as forward references for

undefined symbols.

A zero in Word 6 of the symbol involved in the compound

operand necessitates a linear search through the SST until the

next free area is found. Entries to the SST have been presented

in Chapter III. The address of the SST entry is set into

Word 6 of the Symbol Table entry. The instruction is stored

like any forward reference: in this case, the address term

is a pointer to the SST.

If Word 6 has a link to the SST then each SST entry

associated with the symbol will be examined for an identical

compound operand. Failure to find a match requires a linear

search throuqh the SST for the next free area. In this case,

the link pointer is set to Word 4 of the last SST entry.

· Within SETCD there is a check for SST overflmv or

the apT)roach to overflow concUtions with the appropriate

wa:rninqs.

104

ASSEMBLY R0U'I'INF.S

Subroutine T)Bri:'I]T

Return (A) = 0 Two-·word assemblv
(A) -:/- 0 One-word assembly

DETL~J determines the assembly length of Memory Reference

instructions. On a two-word assembly the first word is stored

in the user program area. For a one~word assembly the assembly

skeleton is returned in (A).

Subroutine STRCD

Callinq Senuence

LDA < Assemhled instruction >

Each instruction is stored in the next free location

in the user program area. The pointer to the user ~roqram

area is advanced by one and a call to subroutine STRCK will

check for proqram area overflow.

Subroutine D'f'SE'r

Calling Sequence

LDR < Address for first data term >

DTSET will prepare the address pointers and store the

data addresses and values. The BSS instruction uses an indirect

reference to non-existant memory to return a zero to be used

as the data value~ all other nseudo ops, excepting EQU, have

the data values stored in a temoorary data buffer.

Subroutines STRCK and DATFL

These subroutines simply check the pos.i tion pointers

of the user proqram area and the data area respectively.

Overflow of either table will result in an abnormal abort

condition. A warn~ng message is orinted if either table

105

approaches an overflow condition.

Subroutine S~LBL

Calling Sequence

LDA < A > O, Defined svmbol >

< A= O, Symbol not in table >

LDB < Symbol Table address of symbol >

STLBL will copy the symbol name into the Symbol Table,

for a defined symbol the program address and the SCB address

will also be included. For undefined symbols the forward

reference pointers have already been set.

STLBL also counts the number of symbol entries to the

Symbol Tahle and will nrint a warning messacre if the tahle is

nearly full. Overflow is detected in subroutine FIND when

a symbol cannot be stored or located in the table.

Subroutine STPLC

Calling Sequence

LDA < SCB address of statement >

All PLC references are stored in the PLC table. No

attempt will he made to define such references until execution.

Like the other program tables a warning is presented if the

table is nearly full or the user ~rogram.will be lost if the

table is allowed to overflow.

106

INTRODUCTION

Four different subroutines are responsible for state­

ment storage in the Source Code Block and the definition of

statement labels in the user program. They are:

ASMBL To allocate SCB snace to store a proqram statement,
STSCB To store the nroqram statement,
LBDF.F To define a statement label,
FvIDRF To define previous references to a statement label.

ASMBL is called from the Svstem Controller and

subroutine EDIPT. STSCB and LBDEP are strictly called from the

System Controller. Subroutine ?t·IDR'I:' is called from LBDBF and

the XF.CUT~ Directive.

These subroutines are called in the order nresented

and once complete the System Controller loo:os hack to its

main entry point or to the multinle insert module if a multiole

insert operation is in nrogress.

The remainder of Chanter VII is a discussion of these

four subroutines.

Subroutine AS~BL

The character length of the prooram statement and the

word length of the entry to the SCB will be saved in a temporary

variable. The Free Snacc table is scanned for an area larqe

enouqh to hold the stateMent entry.

The scan of the ~ree Space table will cease when the

first area large enough to hold the SCB entry is found. The

table entrv mav be <leened large enough to hold further entries~

107

it was arbitrarily decided that any isolated area in the SCB

larger than twelve words in length would be retained after part

of this isolated area ~ad been allocated for the current

statement; remaininq entries smaller than twelve words would be

ignored.

Failure to find an entry in the Free Space table large

enough to hold the statement entry requires that the next avail­

able area in the SC3 be allotted. The sen address is retained

for statement storaqe after assembly.

A test is made for the SCB tahle being full or nearly

full with the aoorooriate action taken in each case.

Subroutine STSCn

STSCB stores the six \•.1ords of information pertaininq

to each statement along with the source statement in the SCB

buffer. Edit instructions involving source statement entries

will handle the storaqe of the address of the previous and next

statements as well as statement numbers but require STSCB to

complete the sen entry •

. During ~roqram definition the address of the next and

previous sta~ements are readily set but a back un must be included

if the.instruction should be stored in an area that was referenced

by the Free Space table. A correction must be introduced to link

the nrevious instruction with the current instruction.

The statement number is easily calculated and saved. Word 4

becomes t'.11.e temnorary, set in ASMBL, holdinq the character-lenqth

of the sta.ternent and the word-length of the SCB entrv.

108

Word 5 is the assembly address with bit 15 set to one for a

data definition. A comment statement is represented by a zero

value. Nord 6 is the assembly length of the statement.

Beginninq with the first word to follow lvord 6 the

source statement is copied into the Source Code Block.

Subroutine LBD~F

Subroutine LP.DEF initiates· Symbol Table definition of

all statement labels. If there has not been previous reference

to the svrnbol STLBL is called to store the svnbol in the table

and signify that the symbol has been defined.

A svmbol having had a orevious reference has forward

references associated with it. By checkinq the direct and

indirect forward reference pointers any value less than 700 8

signals a forward reference. By setting a flaq for either a

direct or indirect reference these forward references will be

defined by a call to subroutine F~·IDRF.

Subroutine FWDRF

Each forv1ard reference is split into the assembly

skeleton and the address nointer. Using the assembly skeleton

and the assembly address, each instruction will be defined in

the same manner as a Memory Reference instruction having an

operand symbol. Once the address pointer becomes greater than

1008 , all forward references have been defined; F.WDRF may return

to the calling proqram.

109

SUBROUT I'l\!~

D1\TFL

DETLN

DTSET

STLBL

STPLC

STRCD

STRCI<

TABLE 7.1 AUXILIARY ASSEMBLY SUBROUTIN:PS--- --·----··-·--------------·-------­

FU1\!CTION

Check data table area for overflow

Determine assembly length of ~·'emery Reference
instruction

Assemble data definition

Store symbol in Symbol Table

Store program location counter reference

Store assembled instruction in user program area

Check user program area for overflow

CHAPTER VIII-------..--­
SYSTE~1 DIRECTIVF.S

INTRODUCTION

After the colon, signalling a System Directive, is

recognized there is a transfer to the program module to interpret

and channel the System Directives. The next non-blank character

following the colon is required for directive identification.

Failure to find a non-blank character or failure to match the

character to one of A, D, E, H, L, S, or X will resul~ in an

error message and a return to the System Controller.

Using a logical cascade the character is tested with

the above characters in the order presented until a match is

found.

ABORT

The Abort Directive will initiate an unconditional

jump to the initialization program.

DUMP

On recoqnition of a D, program control branches to the

Dumo program to print the reqister names and contents in octal

and decimal format. numn will print the register contents as

they appeared after the nrevious execution by using the specj.al

store variables holding such values.

The binary to Ascii section of the I/O package is used

solely to convert the reaister values to Ascii characters for

output. One furth~r feature is the binary to Ascii decimal

110

http:specj.al

- -

ill

subroutine ASCDC which will convert binary to Ascii using

subroutine CNDEC but also include a minus sign preceding the

value if negative.

After the register contents have been presented a

reauest is presented to the users to type either R to return

or D followed by a data address to be output. The Dumo flag

is set before proqram control returns to the System Controller

to input the user response. Program control returns to the

next location in the Dumn nrogram.

Any response beginning with a character other than

a D is accented as a reauest to terminate all Dump operations.

The Dump flag is cleared and control pas$eS back to the System

Controller.

Otherwise, the data address is read in by LABCK. The

operand must have a data address symbol and be within data

table bounds. Failure to satisfy these conditions generates an

error message and a re-entry request~ Dump error messages are

listed in Table 8.1. It should be noted that these are base

page error messages used for operand errors elsewhere in the

assembler.

Successful entrv of a valid data address will result

in the corresponding value being printed first as a decimal

value then as an octal value. The message requesting a data

address dumo will be nresented after each address dump until

the user signals he is finished.

Dump outnut is nresented in Appendix E.

.112

DUMP SUBROUTINES

There are five subroutines called strictly within the

Dump Directive.

EODMP To prepare to display (E) or (0)
RGDPl To display (A) or (B)
RGDP2 To display (B) or (0)
RGDP3 To orint the reqister name
ASCDC To convert binary to Ascii decimal with a minus

sign preceding a negative value

These suhroutines rely on the binary to Ascii conversion

facility in the I/0 package to prepare the values before calling

subroutine TTY.P.

Subroutine ASCDC calls subroutine CNDEC in the I/O

package: a negative number is converted to a positive before

calling CNDEC and a minus sign character will be stored in the

buffer holding the Ascii output.

Three lexical scan subroutines are required to read in

and examine the data address.

RDCOM Read uo to the comma before the data address
LABCK Read the operand and examine the symbol term
DATRG Check for a data address

EDIT

Even thouqh Edit is the next directive in the logical

sequence of System Directives, it will not be discussed since

Chapter IX is a detailed discussion of the editor.

HAT..T

Recognition of the H character will halt the computer

with instruction IILT 77B and 102077 8 will appear in the display

register on the computer front panel. By pressing the run

.113

switch assembler operations may continue.

LIST

The List Directive will list the user proqram statement

by statement. Unlike the System Directives already presented

_List requires a scan of the comnand to establish the oresence

of statement numbers.

The format for the list instruction is:

:L(IST) {,M(,N)).

M and ~, if oresent, S?ecify the first and last state­

ments to be listed. If N is absent then all statements from

M on are listed. If neither ~ nor N appear the whole pro~ram

is listed.

If a comma is not encountered in the scan, it is

assumed the whole program should he listed. The first and

last statement numbers are set as parameters to subroutine LIST.

On recognition of a comma it is assumed that statement

numbers follow. Suhroutine T~'!I:r'TT ,,Till read in these statement

numbers; the second and fourth return addresses from TWINT

involve invalid termination and result in an error messaqe

warning.

If N is absent then statement number 11'1 is examined to

be less than the largest nu.~ber else an error message for

statement numbers out of ranqe. Statement numher ~'1. and the

last statement number \•!ill be set as parameters to subroutine

r_,rsT.

If both M and !'·! are present, ~1 and !J will be the

.11·1

statement number parame.ters to LIST. N must be greater-than·

the first statement number and ~ must be less than the last.

If N is less than ~ no error warning is printed.

List error messaqes are presented in Table 8.2, these

are base page error messages which are used by the Sequence

·Directive as well.

Sample LIST ouput is presented in Appendix E.

Subroutine LIST

Calling Sequence

LOA < Positive value, call from System Directive >

< -1, call from editor >

Beqinninq with the first statement entry in the SCB

and continuing for all entries LIST will save the address of the

next instruction.

For each statement LIST scans it retrieves the statement

number, Y'7ord 3 of the SCB entry. LIST is looking for the first

statement number not less than the first statement numher

~arameter. But before any statement will be printed the

statement number must also be less than or equal to the second

statement number parameter.

Using the binary to Ascii subroutine CUDEC the state­

ment number is converted to .7\scii data and printed ·with leading

zeros. A blank character is then printed. Word 4 of the SCB

entry holds the length of the source statement: now with the

SCB address of the statement the source statement can be listed.

When either statement number bounds or the terminator

in the SCB are encountered all listing ceases. On a call from

115

the System Directives module the message *LIST ENDS* ~s

presented. On a call from the editor the message is surpressed.

SEQUENCE

The format for the Sequence Directive is:

:S(EOUENCE) ,M,N.

Sequence will change statement sequencinq such that

M becomes the first user program statement number and N is the

increment for successive statement numbers. Following completion

the whole program will be listed hy a call to subroutine LIST.

Subroutine SONCE ,. called for seauencing information in

the initialization program, is also called by the Sequence

Directive.

Bad input data or a ranqe error will cause the Sequence

flag to be set before returninq to the System Controller for

new values of ''1 and N. Once the Sequence Directive has been

requesteo, and an error has occurred valid data must be entered

before the Sequence flaa will be cleared.

With the new seauencinq information there is a cascade

through the SCB with a new statement number assigned to each

statement.

Subroutine SQNCE
--------------~--

Return P+l Error, Re-enter statement
P+2 Statement numbers accepted and stored

Calling subroutine TWP1T, SQNCE will read in two

statement numbers, two integer values for ?\~ and N. M is

restricted to be a 6ositive value less than or equal to 1000

116

while N must be positive, non-zero and less than or equal to·

25.

On a data innut or range error the error rnessaae is

printed before proaram control is directed to first return

address.

If both numbers are in range the values are stored and

proqram control returns throuah the second return address .

XECUTE

Before heginning the execution of a user program, XECUTE

subroutines PLCDF and SSTDF will attempt to define all PLC

references and entries to the SST table.

Subroutine CT)SCT'l will scan the user program and replace

the first 99 forward references with a jump to the XRCUTE

warning message reqardinq undefined forward references.

The ~ain input buffer, the auxiliary input buffer for

the temporary definition of undefined ABS or BSS operand

symbols and the data store buffer toaether form a 100-word

buffer. CDSCN will clear this buffer area to zero and store

the first 99 forward references. Even thouqh the buffer can

hold un to 100 forward references only the first 99 are held

so that a zero will siqnal the last forward reference.

It is definitely possible that there may be more than

99 forward references and it is definitely nossible to define

a proqram which will skip around the first 99 forward references

and yield incorrect results by executing instructions which are

forward reference indicators.

117

But if these conditions should arise the user is not'

using the assembler as it was intended and/or the user's

requirements are beyond the scope of t~e assembler.

The assembler •.vas intended for inexperienced nrogrammers

to develon nroqrams in stens and blocks so that the user can

check his oroqram hv executing an<l <lumping the results. To

accumulate over 99 forward references shows that the user is

enterinq a loncr complicated nrogram ~ithout testing it in

steps, in which case the user is probably too exocrienced to

'Jenefit from usina the assembler. But if these 99 forward

references are such that thev are intended to reference an

address beyond the bounds of the program, because of an ooerand

inteqer term, then the user .is 'being foolish and •·mstinq his

time for he should know that the assembler is restricted in

prooram size.

Thus, it seemed reasonable to ston at 99 forward

references being renlaced l::Jy a jum? instruction to t11e forward

reference warninq.

This special iumo instruction has also been nlaced in

locations 00002 and 00003 if the user should attemµt to execute

the contents of the A or B reqisters.

The user program may now be executed. After successful

execution the reqister contents are specially saved by

subroutine SAVR and all for1;.,rard references are returned to the

proqram.

The user nroaram is scanned for the occurrence of the

118

particular iump to the fort•mrd reference ·warning. Each- of

these jumps will be reolaced by the next fonJard reference

stored in the buffer before execution. Once a zero is

encountered all forward references have been restored to the

program: control returns to the Svstem Controller.

During the execution of a user proqram if control

·should nass to the forwaro reference warnina execution of the

user oroaram ~ill cease at that ooint: register contents will

he saved for dumn purooses.

Before printing the warning messagei the interrupt

facilitv on the outnut device must he disabled. This is

extremely important for once the warninq message is orinted

the fon·rard references are returned to the program. Inter­

runtinq the printina of the warning message will return control

to the System Controller before the forward references can be

restored to the user proqram.

There are five execution subroutines, PLCDF, SSTDF,

FNDAD, CNSCN and SAVR which are all strictly called from the

XECUTE routine.

·subroutine PLCnP

PLCD? will make a linear search through the PLC table

to define as many PLC references as possible. Given the SCB

address of the PLC reference and the integer value in the

operand, PLCDF calls subroutine FNDAD to calculate the address

referenced.

119

FNDAD returns the address in (A) or sets (A) to -1 if

the address referenced by the operand expression is beyond

program range. If this address is out of range the PLC

reference will not be removed from the table.

A defined address will be retained. Using the SCB

'address the assembly address is retrieved and retained7 also

the corresnondinq address in the address table is ·required.

The forward reference pointer is senarated from the instruction

skeleton and usinq this data the instruction is assembled like

any other Memory Reference instruction.

Using the forward reference oointer, the forward reference

area in the PLC table is reclaimed for further use by clearing

the address area to zero.

Subroutine SSTDF

SST will attemot to define compound operands. The

Symbol Table is examined for defined symbols with references to

the SST.

Taking the sen address of the symbol and the integer

value SSTDF' calls F~mAD to calculate the address of the compound

operand. Usinq subroutine F'WDR.F to advance through the forward

references, all forward references will be defined with new

addresses.

All compound operand references for each defined symbol

will be innut to FNDAD. After all SST entries for any one

symbol have been tested the links between the Symbol Table entry

and all remaining SST entries must be adjusted. After an address

120

is defined the SST entry will be cleared to reclaim table

area for further use. The relative position of the entry in

the table is found and used to calculate a forward reference

pointer to be ~laced in its appropriate table-entry position.

Subroutine l='N1),7\D

Calling Secruence
LDA < 0perand inteqer value >
LDB < SCR ad<lress of svmbol or PLC reference >

Return (A) = -1, .l\ddress not found
?' -1, .?\ddress calcuJ.:"l.tec1

Starting at the SCB address in the B register on input,

F~DAD will scan through the SCB using the assembly length of

each statement to fin<l the operand address.

FNDAD will have to search in two directions for positive

ana negative operand inteqers. In scanninq throuah the SCB,

program termination must be checked for each statement. On a

search hackwards, due to a neqative integer value, program

termination is flagqed by a -1 value in Word 2 of the SCB entry.

For each search ahead, program termination is established when

Word 1 of the SCB entry noints to the next free address in the

SCR.

As the program advances ahead the assembly lenqth of

each statement is suhtracted from the inteqer until the value is

zero or less than ~era. The assembly address of this instruction

is the address sought with a correction term included if the

integer value is less than zero. A search involvinq a negative

value is simila~ for the operand inteqer is converted to a

positive value.

121

In either case the address is returned in the A register

with a -1 value returned if the termi~ator was encountered.

Subroutine CDSC:"J

Subroutine CDSCN clears the 100-word buffer area to zero

and stores the first 99 forward references in the buffer.

Since the first 1n08 words of riase naae are available

to the use~ ·~mory Reference instructions making reference to

this area must not be reqard~d as forward references. All

'
forward reference ?Ointers will be removed and renlacAd by an

unconditional jump to the forward reference warning program.

Extended Arithmetic ~1ernory Reference instructions

must not be confused with I/O instructions or Extended 1'1.rithmetic

Register Reference Instructions. In such a case the first word

of the two-word assembly is replaced.

Subroutine SJ\VR

SAVR will save the contents of the A, B, E and O registers

in special store variables after execution.

CONCLUSIONS

With the exception of the XECUTE Directive all System

Directives discussed are all fairly straightforward and would

probably not require further modifications.

The XECUTE program could be expanded to resemble a

totally incremental system. Specifically, this would entail

the provision for user defined single or multiple step execution

options to be implemented using micro-programming.

122

TABLE 8 .1 nur.1p ERROR ~1BSSAGES
--,--------~----'

LABEL ERROR, ~1.F.SSA<";F:

DPERl no OPE!',_2\ND F'OlPJT)

DPER2 NO LABEL FOUND

DPER3 UNT:YSPINED LABEL IN OPF.PJ\ND

DPER4 OPERAHD IS UNT)f:FINBD

123

T.ARLE 8. 2 r~IST AND SEOtm1'JCF. RRROR '1ESSAGES

LABEL ERROR MESSAGE

ERRl BAD DATA. INPUT

F.RR2 STATEMENT NUMBERS OUT OF.RANGE

CHAPTER IX

THE EDITOR

INTRODUCTION

After recognition of the Edit Directive and before

returning to the System Controller in anticipation of an

edit instruction, the edit flag and address pointers are set.

A message requesting the user to begin edit operations is

printed.

The Editor will allow the user to:

Delete any number of statements in the program,
Insert statements between successive statements,
Replace any statement with another statement.

The following instruction causes statements M through

N to be deleted:

/D(ELETE),M(,N) (,V).

If only M is specified only that one statement will be

deleted. If M is greater than N the instruction is ignored.

V is the veto flag. When specified, all statements

involved in the edit are printed; the user is prompted to

respond:

Y(ES) to delete the program statements.

Any other response causes the instruction to be ignored.

The following instruction permits insertions between

successive statements:

/I(NSERT),M(,N).

If only M is specified, then only statement M will be

124

125

inserted. N is a statement number increment for more than one

insertion between successive statements.

On a multiple insert, N is defined and greater than

zero, it is not possible to enter both data and machine code

type statements. A multiple insertion will be automatically

ended if the statement number of the statement to be inserted

exceeds the statement number of the instruction which follows

the insert.

To replace a single statement the edit instruction is:

/R (EPLACE) ,M (,V) •

A machine instruction statement cannot be replaced by

data nor can data be replaced by a machine instruction.

However, it is possible either to replace a data definition or

a machine instruction by a comment statement or to replace a

comment statement by a machine instruction or data definition.

A multiple replace operation is not permitted since

sequencing information is not available.

To end the current edit operation, the instruction format

is:

/E(ND).

EDIT ~NSTRUCTION SCAN

All edit operations begin with a slash and the first

non-blank character is used to identify the edit instruction.

All following characters up to the comma are ignored.

Failure to detect a slash in the first character

position will result in an error message: a list of all editor

126

error messages is presented on Table 9.1. If_a multiple insert

has just been completed a call to subroutine ENDMI must be

made to end the multiple insert at the assembled code level.

All edit variables are initialized by subroutine EDCLR.

The program performs a logical cascade on the next

non-blank character to test for the characters D, E, I, or R

and set an instruction number for each except for E which

transfers control to finish the edit operation.

Using subroutine TWINT the statement numbers will be

read in. The second and fourth return from TWINT signal an

illegal terminal character. On such a condition subroutine

VETCK will continue the scan for a veto request. If the

terminal characters are a comma immediately followed by a V,

the veto flag is set; any other combination results in the

instruction being ignored and an error message being printed.

The third and fourth return from TWINT signal a multiple

edit operation. A multiple delete or insert is valid but a

multiple replace results in an error message being printed.

There are now five different edit instructions:

1. Single Delete,
2. Multiple Delete,
3. Single Insert,
4. Multiple Insert,
s. Replace.

The number preceding the instruction corresponds to the edit

instruction number.

Before the edit operation can begin, several program

checks and further preparatory work are required. The value of

127

statement number M must obviously be within the bounds of the

user program.

The Source Code Block address of the statements

immediately preceding and following the statements involved in

the edit must be found by a search through the SCB. Delete

instructions require special attention: A delete instruction

referring to the last statement in the user program has a

special flag set. A multiple delete instruction requires an

extended search through the SCB to find the SCB address of the

statement following the last deletion.

A multiple insert will allow several statements to be

inserted between successive statements. The sum of M and N must

not be greater than or equal to the statement number following

the insert.

If this is the case, the multiple insert is converted

to a single insert instruction by changing the edit instruction

number from four to three and by printing a warning message to

the user.

If M and N are within range, the first statement number

is prepared for the first and subsequent entries by subtracting

the value of N from M so that each statement number of the

multiple insert can simply be calculated by adding N to the new

value of M.

The veto flag, if set, requests the printing of all

statements involved in the edit. Statement numbers of the lines

to be listed are parameters to subroutine LIST. As well the

128

address of the statement before the edit will also be set as

a special variable used by LIST to scan only those statements

involved in the edit. Immediately following, the user is

asked if these are the statements to be editted. The lexical

scan of the response is relaxed and only the first character

is examined. Any response other than Y(ES) is regarded as a

signal to veto the edit operation.

Subroutine ASMAD retrieves the assembly address of the

instruction preceding and following the edit instruction and

the assembly address of the instruction involved in a·delete or

replace operation.

OVERVIEW

The Introduction and the Edit Instruction Scan sections

introduce the editor operations but only offer a brief discussion

on part of the edit operation.

Before discussing each of the edit subsystems further

background information is required to understand edit operations.

SOURCE PROGRAM EDIT

Since two copies of the user program, the source and

object program, are maintained by the assembler both must be

treated separately by an edit operation. For each of the three

operations it was necessary to write separate subroutines to

manage next and previous statement pointers as well as the

statement number entry in the SCB, Word 1, 2, and 3 of each

statement entry in the SCB. Subroutines DSCB, ISCB, and RSCB

129

were written to handle the case of delete, insert and replace

operations.

Subroutine DSCB

If the whole program is to be deleted then the system

pointer to the first statement is set to the next free area in

the SCB while the system address of the previous statement is

reinitialized to negative one. If the first program statement

is to be deleted the system pointer to the first statement is

altered and the SCB address of the previous instruction for the

new first statement must be set to the terminator value, -1.

On deleting the last statement the system address pointer of

the previous statement is reset.

For a deletion preceded and followed by program state­

ments, the successor address pointer of the statement before

the delete must point to the first statement after the delete

and the previous address pointer of the statement after the

delete must be reset to point to the statement preceding the

delete.

Subroutine ISCB

By definition an insert is an inclusion between

successive statements such that no program check is required

for operations involving the first or last statement. The

appropriate pointers of the statements following and preceding

the insert must be reset. The next and previous pointers as

well as the statement number of the insertion are set by ISCB.

On a multiple insert, each inserted statement can be

130

included so that the multiple insert can be terminated after

any number of insertions.

Subroutine RSCB

On replace operation not involving the first or last

statement R~CB calls subroutine ISCB to link up the edit entry.

Replacements involving the first or last statement require

special attention.

On replacing the first program statement the first

three pointers of the edit entry to the Source Code Block must

be set. The system variable pointing to the address of the first

statement is set to point to the new first statement.

On replacing the last statement the first three pointers

of the SCB entry are set. As well the successor address of the

previous statement must be changed and the system variable

pointing to the previous statement must now point to the

replacement.

DATA EDIT OPERATIONS

Editor operations at the assembly code level manage data

and machine instructions separately. To edit a machine code

instruction is a far more complicated procedure than a data edit

operation. There are three subroutines,DTEDD, DTEDI and SCSYM,

directly involved with the manipulation of the user program and

data area on a data edit operation.

Subroutine DTEDD

With the length and address of the data to be deleted

DTEDD shifts the da±a area by moving data addresses and data

131

values to fill the gap left by the deleted data. Actually,

there is no gap for the deleted data is overwritten; afterwards

vacated data areas are cleared. For each data address moved

the address area in the data table must be altered to compensate

for the shift.

No data shift is necessary when an EQU pseudo op is

deleted since the reference will be cleared in the Symbol

Table such that the symbol is flagged as undefined for future

references.

Subroutine DTEDI

Data insert operations also shift the data table to

insert the data in its proper position. Beginning with the

last data item and continuing to the first data item after

the insert both the data address and value are moved with the

address pointer adjusted to compensate for the shift. The

program checks for data table overflow before calling subroutine

DTSET to store the data.

EQU instructions, having had their assembled code

address set during the lexical scan, do not require data

shifting.

Shifting data will upset the program address of the

shifted data. DTEDI as well as DTEDD call subroutine SCSYM to

adjust data addresses after a shift operation.

Subroutine SCSYM

Calling Sequence

LDA < Correction value for address >

LDB < Test address >

132

The A register holds a correction term to be added to

any address greater than or equal to the test address in the

B register. Program area addresses will not be altered for

the core location of the data table follows the program area,

hence the data addresses will always be greater than any

address referring to the user program area.

Subroutine SCSYM first scans the Symbol Table for

defined symbols and compares the test address with the assembly

code address, Word 4 of the symbol entry. The correction term

is added to all addresses greater than or equal to the test

address, but a special check is set to ignore EQU instructions

which are stored at the end of the data table.

The user program address area is next scanned for data

addresses. The test address is adjusted so that this address

points to the data value rather than the data address. The

same test is applied using the address of the data value.

Lastly the data definition instructions in the Source

Code Block which follow the insert must have the assembly

address adjusted to compensate for the edit. Again, EQU

instructions in the SCB must not have the assembly address

changed. An EQU instruction in the SCB is recognized as a data

definition with an assembly length of zero.

MACHINE CODE EDIT OPERATIONS

INTRODUCTION

Before discussing the edit of machine code instructions

in full detail an ~nderstanding of the basic concepts involved

133

in a machine code edit is needed.

Editting the assembled machine code entails moving

assembled code involved in the edit operation and the use of

unconditional jump instructions to link together the edit

entries and the existing user program. It was decided to

place these edit entries immediately after the existing user

program. However, once all edit operations are complete,

program definition must be able to continue such that the

main user program defined before the edit operation is linked

with the program entered after all edit operations are

complete.

A two-word buffer is used to separate the first edit

entry from the existing program. After all edit operations

have been completed these two locations are used to hold two

unconditional jump instructions to the next two free areas in

the user program area for program definition. These two jump

instructions will maintain the link between the program entered

before and after the edit.

This technique in using two jump instructions is used

in linking the program and most of the edit entries.

It would seem that only one jump instruction is required

to link the program units but two jump instructions are required

due to skip instructions.

To avoid using two jump instructions would require a

bit pattern check on the assembled instruction which immediately

precedes the jump instructions. Such a bit pattern test to

134

seek out all the different skip instructions ~s apt to be a

fairly large program. It was believed that the difficulty in

implementing such a feature would far outweigh the apparent

gain.

With these concepts in mind the machine code edit

.operations are discussed.

SINGLE AND MULTIPLE DELETE

All instructions being deleted must be examined for a

Memory Reference instruction with a forward reference pointer.

All other instructions, including Memory Reference instructions

with defined operands may be deleted immediately.

Instructions with a reference to the PLC table must

first clear the entry to the PLC table before being deleted.

But for instructions with forward references pointing to the

symbol tables or linking to references which point to the

symbol tables, it is necessary to adjust such pointers to

exclude the reference.

A machine code delete operation depends upon the length

of the deleted code. If more than one word of the assembly

code is to be deleted the assembly code involved is cleared to

zero. Two jump instructions are placed after the assembly code

which precedes the delete to point to the instructions which

immediately follow the delete. A delete operation involving

only one word of assembly code may not simply be cleared to

zero. If a skip instruction should proceed the assembled

instruction to be deleted the program logic will be altered by

135

simply clearing the instruction to be deleted.

In the location occupied by the single word to be

deleted a jump instruction is set to point to the next free

program area for storing the edit entry. Since two jumps

must be used to link all edit entries the next assembly

instruction must be moved into the next free program area.

Moving an assembled instruction involves some of the

problems similar to deleting. Changing the assembly address

in the Source Code Block is simple enough but instructions

having forward references must have the list, linking the

forward references, changed to point to the new position of the

forward reference.

In the place of the assembled instruction following the

deletion is stored the second jump. Two jumps following the

edit entry will link the edit entry back to the next assembled

instruction in the program.

If no assembled instructions follow the deletion, the

address of the delete becomes the address used to hold jumps

linking the user program, entered before the edit operation,

to the next free program location, after all edit operations

are complete.

136

SINr,LE AND MULTIPLE INSERT

An assembly code insert preceded and followed by

assembled instructions is fairly straightforward. The

instruction which precedes the insert is moved to the next free

program area: the assembly code to be inserted is stored

immediately following. The assembly instruction which

logically follws the insert is moved to the next program area.

Jumps are appropriately placed to link the program and edit

entry.

Complications develop if there is no assembly code

which either precedes and/or follows the insert.

If no assembled code precedes, then all insertions will

be stored in the next free program area. On completion, the

instruction occupying the first location in the user program

is moved and stored immediately after the insert. In the place

formerly occupied by the first instruction is stored a single

jump instruction to the insertion. Two jumps following the

insert will link the insert to the instructions which logically

follow.

If no assembly code follows the insert the program

handles the situation similar to the case where no assembly

code follows an instruction to be deleted. In this case the

two locations following the insert will be used to link the

program with the next free program location after all edit

operations are complete.

137

Should assembly code neither precede nor follow the

insertion the program pointers must be arranged so that the

pointers, normally used to link the program to the next free

program area once an edit operation is ended, are not going

to branch arount the insertion. Once the insert is complete

·program pointers will be set to reference the insertion as

the main user program and treat any further edit entries

appropriately.

REPLACE

A one-word machine code instruction can be replaced by

a one-word instruction in the same storage location. The same

is true for a two-word assembly being replaced by another two­

word assembly instruction.

Replacing a two-word assembly by a one-word assembly

requires that the replacement be stored in the next free program

area with jumps in the position of the deleted two-word assembly

pointing to the edit entry and jumps from the edit entry back

to the user program.

A one-word assembly replaced by a two-word assembly

is similar to a delete for the replacement is stored in the

next available program area. The next instruction in the

assembled code is moved to be stored after the replacement entry

with the appropriate linkage provided.

A machine code instruction replaced by a comment is

treated as a single delete while a comment statement replaced

by a machine code instruction is treated as a single insert

138

at the assembly code level.

EDIT SUBROUTINES

With an understanding of the basic edit operations

it is now possible to discuss the subroutines concerned with

machine code edit operations. These subroutines are presented

in the approximate order in which they are called.

Subroutine PREPR

Calling Sequence
LDB < Address of statement to be deleted >

Return (A) Assembly flag/Assembly address of instruction
to be deleted

Subroutine PREPR prepares some pointers before scanning

an instruction to be deleted.

Subroutine DELTE

Calling Sequence
LDB < Address of statement to be deleted >

DELTE initiates the lexical scan of the statement to

be deleted and after the scan is complete, DELTE begins analysis

of the results to delete the statement.

If a statement label is present, the symbol involved

is set as undefined in the Symbol Table. Using the symbol

address, forward reference pointers are calculated and stored

in their appropriate Symbol Table position.

On a data delete operation subroutine DTEDD is called

but a machine code deletion is handled within DELTE.
I

Machine instructions excluding Memory Reference

instructions with forward reference pointers may be deleted

139

immediately. Instructions involving PLC references can be

deleted once the PLC reference is cleared from the PLC table.

The remaining instructions will be Memory Reference instructions

involving references to the symbol tables. The address pointer

of the deleted instruction will be set as input to subroutine

.CASCD to remove the forward reference from the linked list of

forward references.

Subroutine CMOVE

Calling Sequence

LDA < Assembly address of instruction to be moved >
LDB < SCB address of instruction to be moved >

CM0'1E is needed to moved assembled instructions before

.and after instructions involved in an edit operation.

Before moving the assembled code CMOVE will change the

assembly address location in the Source Code Block to account

for the move. The assembled code is moved into the next free

area of the user program area~ the words which previously held

the instruction area cleared. After moving each instruction

there is call to subroutine STRCK to check for program overflow.

If a moved instruction has a forward reference pointer

to the symbol tables, address pointers are set as input to

subroutine CASCD to change the forward reference of the

instruction pointing to the moved instruction.

Subroutine CASCD

CASCD performs a cascade through the forward references
\

beginning at an address specified by an input variable until

the required pointer is found. The forward reference pointer

140

is changed to compensate either for a deleted instruction

or for the movement of an instruction with a forward reference.

Failure to find the forward reference signals a

program error. A warning message is printed followed by a

halt (HLT, 33B) •

Subroutines ,JMPAF and JMPBF

JMPAF and JMPBF both call subroutine JMPS to place

jump instructions to link the edit entry with the user program

and to link the user program with the edit entry respectively.

Subroutine JMPS

Calling Sequence

LDA < Address where jump references >

I,DB < Address to store jump instruction >

JMPS forms the jump instructions from the address

reference and the instruction skeleton and stores two jump

instructions to link the editted code.

Subroutine JMPEl

Calling Sequence
LDA < Address whe~e jump reference >
LDB < Address to store jump instruction >

JMPEl inserts one jump instruction to link the editted

code.

Subroutine STFSP

For every deletion STFSP is called to clear the entry

from the Source Code Block and store the length and address of

the deletiton in the Free Space Table.

Subroutine SNGDL

SNGDL is strictly a delete subroutine to delete a

single machine code instruction. Subroutine SVPSN is called

141

to find the next free program area to store the edit entry.

Subroutine DELTE will examine the statement to be deleted.

Subroutine XDEL will find the location of the instruction after

the deletion, to be moved by CMOVE. Subroutines JMPAF and

JMPBF will place jumps to link the edit entry.

Subroutine XDEL

Return (A) t~ssembly address of instruction after
deletion

(B) SCB address of instruction after deletion

XDEL is strictly a delete subroutine to find the first

machine instruction after a deletion. Using information from

the instruction scan and beginning with the instruction after

the delete, the SCB address and assembly address of the next

machine code instruction will be returned.

If no assembly code follows the delete then the program

pointers are set to link the user program with the next free

program area after the edit operations.

Subroutine XINS

XINS is an insert subroutine, for a single insert

instruction, to find the SCB and assembly addresses of the

machine instruction which logically precedes an insert.

Failing to find any machine code before the insert, XINS

calls subroutine YINS to find the instruction in the assembled

code which logically follows the insert.

If assembled code neither precedes nor follows the insert,

XINS stores the assembled code insert and resets program pointers

to treat the entry like the user main program. For a multiple

142

insert, subroutine MOLIN will handle this situation.

If machine code instructions follow but do not precede

the insert, the insert is stored and the assembly instruction,

which logically follows the insert, is moved and placed after

the insert. Using JMPEl one jump is set to point to the insert

entry and JMPAF stores two jumps back to the main user program.

Subroutine YINS

Return P+l Edit entry linked with program

P+2 (A)

(B)

Assembly address of instruction after
insert
SCB address of instruction after
insert

By scanning through the SCB, YINS returns the SCB and

assembly addresses of the instructions which logically follows

the insert.

If the insert follows the last machine code instruction,

program activity varies depending on the calling program: On

a call from XINS, YINS returns such information to XINS.

Usually, the inserted code is linked with the main program.

YINS returns to the first return address.

There is one other secondary call to YINS for a machine

code replacement of a one-word assembly by a two-word assembly.

Norma~ly, YINS will return the SCB and assembly address of the

instruction which follows the replacement but if no assembly

code follows the replacement, YINS sets up the linkage of the

two-word replacement to the user program and advances the

program location counter to include the replacement.

143

Subroutine MULIN

Like XINS and YINS, MULIN scans the Source Code Block

for the SCB and assembly addresses which precede and follow ·

a multiple insert operation with the appropriate pointers set.

MULIN initiates storage of the first statement to be

inserted and branches to the last entry point to the System

Controller to finish statement storage.

Subroutine ENDMI

A multiple insert operation can be terminated any time

by the user entering a new edit instruction: termination may

also occur on a statement number violation. Using the pointers

set in MULIN, ENDMI stores the appropriate jump instructions

to link the multiple insert and ENDMI clears all the multiple

insert pointers.

Subroutine EDIPT

EDIPT handles the input of source program statements

during an edit. The special flag for source statement input

is set before jumping to the System Controller.

The System Controller returns control to EDIPT to

examine the input. If a slash begins the input it is assumed

the slash signals an edit instruction and in such cases a

multiple insert is terminated. If the user inadvertantly

enters the slash the multipie insert will still be terminated.

The program branches to scan the instruction.

For a source statement entry subroutine LEX is called

to scan the input. Any lexical errors are treated in the

144

usual manner with control returning to the System Controller.

Subsequent statement re-entry returns control to EDIPT for the

edit input flag has not been cleared.

Input for replace operations is examined for an assembly

flag match between the deleted and the replacement statement;

comment statements do not require an assembly flag match.

The statement number for a multiple insert is

calculated. On a statement number error, the calculated

statement is greater than that of the next statement; the

multiple insert is terminated by a call to ENDMI. A warning

message is printed and the edit input flag is cleared before

returning to the System Controller.

If the statement number is in range, the edit input

flag is cleared and subroutine ASMBL is called to allocate

space to store the statement in the SCB.

EDIT SUBSYSTEMS

INTRODUCTION

After gathering all information that is requested from

the instruction scan, the editor uses the instruction number in

a logical cascade to find the appropriate edit subsystem.

SINGLE DELETE

An undefined statement number in the edit instruction

results with the instruction being ignored but a warning

message is printed.

Otherwise subroutine DSCB handles the delete of the

145.

source program. PREPR prepares some pointers in anticipation

of an assembled code edit and returns the assembly flag/assembly

address word before scanning the instruction to be deleted.

A conunent statement being deleted does not require

a lexical scan of the statement; the Source Code Block

length and address of the delete are retained in the Free

Space Table by calling subroutine STFSP.

For both data and machine instructions subroutine

DELTE is called; DELTE calls DTEDD to delete a data definition

or DELTE returns information on a machine code instruction

and if necessary adjusts forward reference pointers to exclude

the deleted instruction.

Using the assembly length of the deleted machine code

the deleted area is replaced by jump instructions for a two­

word assembly or subroutine SVPSN is called to delete a single­

word assembly.

Before returning to the System Controller a record of

the deletion is stored in the Free Space Table by subroutine

STFSP.

MULTIPLE DELETE

A multiple delete is somewhat more complicated than

a single delete. A counter is first set to hold the assembly

length of all deleted machine code instructions. DSCB is called

to perform the edit on the source program.

For each statement being deleted not only is the SCB

address of the statement retained but also the link to the next

146

statement else it will be lost calling subroutine STFSP.

Like the single delete there is a call to PREPR for

each statement to be deleted. For both data defintions and

machine instructions code subroutines DELTE and STFSP are

called: for a comment statement only subroutine STFSP need

be called. The deletion of a comment or data definition is

complete; the next statement may now be deleted.

On a machine code delete the address of the first

machine code deleted must be retained. The address of the

last machine code instruction deleted is advanced for each

delete with the deleted area cleared. The second word of a

two-word assembly must also be cleared; the length of the

deleted code is advanced by the assembly length for each

deletion.

After scanning all statements to be deleted, the

length of the deleted assembly code is examined. If no assembly

statements have been deleted, the multiple delete is finished.

If only one word in the assembled code is to be deleted then

the situation resembles a single delete at the machine code

level; subroutine SNGDL is called to perform a single machine

code delete. If more than one word in the assembled code is

to be deleted, then a pair of jumps stored in the first two

words beginning the delete point to the first two assembled

instructions after the delete.

147

SINGLE INSERT

'

If the statement number specified by the insert

instruction is a defined statement, the error message labelled

EDR7 is printed with the re-entry request.

Before beginning a single insert, subroutine EDIPT will

input the statement to be inserted and examine the assembly

flag to determine the nature of the insert.

Regardless of the assembly the SCB pointers must be set

by a call- to ISCB. For a comment statement program control

may branch to the last entry point of the System Controller to

complete statement storage in the SCB. For a data insert

subroutine DTEDI is called to store the data in its appropriate

data table position before returning to the System Controller.

On a machine code insert the assembly code before and

after the insert is sought: the insert is stored depending

upon its logical position in the assembled program.

MULTIPLE INSERT

Like the single insert there is a call to error message

EDR7 for a defined statement number on an insert operation.

Otherwise, the multiple insert flag is set. All source

statements in the insert are input by a call to EDIPT. After

a statement has been fully stored in the SCB in the System

Controller, program control returns to the multiple insert

program. This call to EDIPT, in the multiple insert program

is the return point from the System Controller for further

input.

148

Since both data and machine code cannot both be

entered interchangeably the assembly flag of each statement

to be inserted is compared with the flag denoting either a

data or machine code insert. On an assembly flag clash the

edit flag signalling source statement entry is set before

printing an error message so that control will return to

EDIPT following statement re-entry.

A comment statement requires a call to ISCB. A data

definition requires calls to DTEDI and ISCB. On the first

machine code instruction to be inserted a call to MULIN

prepares address pointers and stores the first machine code

insert. A flag is set to signal the second and subsequent

machine code entries which are stored in the next user program

area similar to any other assembled instruction.

The multiple insert operation is terminated by a call

to subroutine ENDMI from the instruction scan section of the

editor on recognition of a new edit instruction or from EDIPT

on a statement number violation.

149

REPLACE

Using the delete subroutines PREPR, DELTE and STFSP

the instruction to be replaced is deleted. EDIPT inputs the

replacement statement and checks for an assembly flag clash

between the deleted and replacement statements. RSCB sets the

SCB pointers before storing the instruction.

For machine code instructions replaced by machine code

instructions of the same assembly length the replacement is

stored in the deleted area. To store the replacement it is

necessary to save the user program location pointer in a

temporary variable. The program location of the replacement

is set as the program area pointer used by SETCD, to store the

replacement instruction. After the replacement has been stored

the user program location counter is restored.

Any other machine code replace operations have already

been discussed in the section on machine code replace operations.

Data deletions are handled in DELTE. Data replacements

are easily included by calling DTEDI.

After all replacement operations are complete control

returns to the last entry point of the System Controller to

complete SCB entries for the replacement.

150

END

The End request first adjusts the SCB successor

address pointer of the last program statement to point to the

next free location in the SCB. The successor address pointer

of the last program statement may point to edit entries in

the SCB which have been stored immediately after the last

program statement. Changing the successor address pointer

will by bypass any possible edit entries in the SCB and

maintain the proper source program linkage.

Two jump instructions are set to link the main user

program with the next free program area in the user program

area. These jumps are to reside in the two words set aside

after recognition of the Edit Directive.

Lastly, the main edit flag is cleared before returning

to the System Controller.

CONCLUSIONS

The Editor is restricted to the three main edit

operations which are adequate for a beginner's use. Multiple

skip instructions or subroutine calls which pick up arguments

from subsequent locations would not be handled correctly.

Fortunately, multiple skip instructions are not available~ the

people for whom the assembler is intended are not expected to

employ such argument linkage techniques, but the possibility

exists. The only alternative seems to be complete reassembly

which defeats the purpose of the assembler.

However, the Editor will handle patches made over

151

patches: although the object program may come to look rather

peculiar, the source program will always be readable. Before

changing the editor serious consideration should be given to

all editor features in the light if possible changes to any

other assembler features.

152

TABLE 9.1 EDITOR ERROR MESSAGES

LABEL

EDRl

EDR2

. EDR3

EDR4

EDRS
{ERR2)

EDR6

EDR7

EDR8

EDR9

ERROR MESSAGE

ILLEGAL DATA PRECEDES F.DIT INSTRUCTION

UNDEFINED EDIT INSTRUCTION

BAD DATA FOLLOWS EDIT INSTRUCTION

VETO NOT PERMITTED ON AN INSERT.

STATEMENT NUMBER OUT OF RANGE

ILLEGAL SOURCE TYPE ENTRY DURING EDIT

STATEMENT NUMBER ALREADY DEFINED

STATEMENT NUMBERS MUST ACCOMPANY EDIT INSTRUCTION

STATEMENT NUMBER IS NOT DEFINED

153

APPENDIX A

ASSEMBLER MACHINE INSTRUCTIONS AND PSEUDO OPS

154

Assembler machine code instructions are:

ADA Add to (A)
ADB
ALF

Add to
Rotate

(B)
(A) left 4

ALR Shift (A) left 1, clear sign
ALS Shift (A) left 1
AND And to (A)
ARS Shift (A) right 1, carry sign
ASL Arithmetic long shift left
ASR Arithmetic long shift right
BLF Rotate (B) left 4
BLR Shift {B) left 1, clear sign
BLS Shift (B) left 1
BRS Shift (B) right 1, carry sign
CCA Clear and complement (A)
CCB Clear and complement {B)
CCE Clear and complement (E) set (E) = 1
CLA Clear (A)
CLB Clear (B)
CLC Clear I/O control bit
CLE Clear (E}
CLF Clear I/O flag
CLO Clear overflow bit
CMA Complement (A)
CMB Complement (B)
CME Complement (E)
CPA Compare to (A), skip is unequal
CPB Compare to (B), skip if unequal
DIV Divide
OLD Double load
DST Double store
ELA Rotate (E) and (A) left 1
ELB Rotate (E) and (B) left 1
ERA Rotate (E) and (A) right 1
ERB Rotate (E) and (B) right 1
HLT Halt
INA Increment (A) by 1
!NB Increment (B) by 1
IOR Inclusive or into (A)
ISZ Increment, then skip if zero
JMP Jump
JSB Jump to subroutine
LDA Load into (A)
LOB Load into (B)
LIA Load into (A) from I/O channel
LIB Load into (B) from I/O channel
LSR
MIA

Logical long shift right
Merge (or) into (A) from I/O channel

MIB Merge (or) into (B) from I/O channel
MPY Multiply
NOP No operation
LSL Logic&! long shift left

155

OTA Output from (A) to I/O channel
OTB Ouptut from (B) to I/O channel
RAL Rotate {A) left 1
RAR Rotate {A) right 1
RBL Rotate (B) left 1
RBR Rotate (B) right 1
RRL Rotate {A) and (B) left
RRR Rotate {A) and {B) right
RSS Reverse skip sense
SEZ Skip if (E) = 0
SFC Skip if I/O flag = 0 (clear)
SFS Skip if I/O flag = 1 (set)
SLA Skip if LSB of (A) is zero
SLB Skip is LSB of (B) is zero
soc Skip if overflow bit = 0 (clear)
sos Skip if overflow bit = 1 (set)
SSA Skip if sign bit of (A) = 0
SSB Skip if sign bit of (A) = 0
STA Store (A)
STB Store {B)
STC Set I/O control bit
STF Set I/O control flag
STO Set overflow bit
SWP Switch {A) and {B)
SZA Skip if {A) = 0
SZB Skip if (B) = 0
XOR Exclusive or to (A)

Assembler Pseudo Operation instructions are limited to:

ABS Define absolute value
ASC Generate Ascii characters
BSS Reserve Block of storage
DEC Define decimal constants
DEF Define address
END Terminate program (begin execution)
EQU Equate symbol
OCT Define octal constants

156

ASSEMBLER INSTRUCTIONS

LEXICAL GROUP NUMBER CLASSIFICATION

GROUP
.NtfMBER

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

INSTRUCTION
TYPE

ALTER SKIP
REGISTER REFERENCE

INPUT/OUTPUT

INPUT/OUTPUT

INPUT/OUTPUT

EXTENDED ARITHMETIC
REGISTER REFERENCES

MEMORY REFERENCE
EXTENDE!) ARITHMETIC
MEMORY REFERENCE

PSEUDO

END

ASC

DEC

OCT

EQU

ABS

BSS

DEF

OPERAND REQUIRED

NO OP.ERAND REQUIRED

CLEAR FLAG may BE PRESENT

CHANNEL NUMBER EXPECTED

CHANNEL NUMBER EXPECTED
CLE~R FLAG MAY BE PRESENT

NUMBER OF SHIFTS

SYMBOL (ASTERISK)

INTEGER

INDIRECT FLAG

OPS

NO OPERAND REQUIRED

LENGTH AND LIST OF ASCII DATA

REALS OR DECIMAL INTEGERS

OCTAL INTEGERS

ADDRESS

ADDRESS VALUE

VALUE

ADDRESS DEFINITION

157

MACHINE INSTRUCTIONS

MNEMONIC CLASSIFICATION BY GROUP NUMBER

GROUP 1 ALF
BRS
CLO
ERB
RBR
STO

ALR
CCA
CMA
INA
RSS
SWP

ALS
CCB
CMB
INB
SEZ
SZA

ARS
CCE
CME
NOP
SLA
SZB

BLF
CLA
ELA
RAL
SLB

BLR
CLB
ELB
RAR
SSA

BLS
CLE
ERA
RBL
SSB

GROUP 2 soc sos

GROUP 3 CLF SFS SFS STC

GROUP 4 CLC
OTB

HLT LIA LIB MIA MIB OTA

GROUP 5 ASL ASR LSL LSR RRL RRR

GROUP 6 ADA
JMP

ADB
JSB

AND
LDA

CPA
LDB

CPB
STA

IOR
STB

ISZ
XOR

GROUP 7 DIV DLD DST MPY

158

MACHINE INSTRUCTION OPERAND TYPES

GROUP 2

GROUP 3

GROUP 4

GROUP 5

GROUP 6

GROUP 7

SOC (C)

The clear flag if present will clear the overflow bit
after exeoution of the instruction.

CLF (+)integer

SFS (+)symbol

The integer must be a positive value less than 64
signifying the channel number to make the instruction
apply to one of up to 64 I/O devices or functions.
The operand may also be a symbol which has been
equated to an I/O channel address by an EQU pseudo op.
An optional plus sign may precede the channel number.

CLC (+)integer(,C)

HLT (+)symbol(,C)

Group 4 instruction operands are similar to Group 3
except that they may_ be followed by, C to clear the
device flag after execution of the instruction.

ASL (+)integer

The integer operand must be a positive value from one
to sixteen to specify the number of shifts on the
combined contents of (B) and (A).

ADA (+)(symbol) (±integer) (,I)

DIV (+)(symbol) (±integer) (,I)

The memory reference operand has been restricted to a
symbol, integer and indirect flag combination. The
symbol may be preceded by a blank or a + sign; any
other character will generate an error message.
An integer operand without a symbol must be a positive
·integer less than 64 for reference to the base page: any
other value will not be accepted. A symbol-integer
combination must be within bounds of the user's program
area.
The indirect flag allows the value of the operand to
access another word in the user program area which is
taken as the new memory reference for the instruction.

159

PSEUDO OPERATIONS

The ASC, DEC and OCT data definitions have been

implemented in accordance with Hewlett Packard definition.

ASC n, < 2n characters >

ASC generates a string of 2n alphanumeric characters in
Ascii code into n consecutive words. One character is
right justified in each 8 bits~ the m6st si~nificant bit is
zero. n must be a positive decimal integer- in the range
1 to 28*. If any number less than 2n characters are
?resent before the end of the statement, the remaining
characters are assumed to be blanks and stored as such.
Anything after 2n characters in the operand field is
treated as a comment.
To enter the code for Ascii symbols which perform some
action like carriage return or line feed, the OCT pseudo
op must be used.
A label preceding represents the address of the first two
characters.

DEC records a string of decimal constants into consecutive
words. The constants may be integer or real (floating
point) and positive or negative. If no sign is specified,
positive is assumed. The decimal number is converted into
its . binary equivalent by the assembler. The label, if.
present, serves as the address of the first word occupied
by the constant. 15
A decimal integer must be in the range 0 to 2 -1 (32767)
which may assume positive, negative or zero values. It
is converted into one binary word and appears as follows.

15 14 	 0

number

sign

A floating point number has two components a fraction and
an exponent which specifies the power of ten by which the
fraction is multiplied. The fraction is a siqned or unsigned
number which may be written with or without a decimdl point.

* 	By Hewlett Packard definition n may be any expression
resulting in a decimal value in the range 1 to 28 but the
implementation has been restricted to strictly decimal integers.

160

The exponent is indicated by the letter E and precedes a
signed or unsigned decimal integer. A floating point
number may have any of the following formats:

±n.n, ±n., ±.n, ±n.E±e, ±n.nE±e, ±n.E±e, ±.nE±e

The number is converted to binary, normalized and stored in
two computer words. If either of the fraction or the
exponent is negative that part is stored in two's complement
form.

15 14 Word 1

S Fraction (most significant bits)
\'

sigi}---binary point

Word 2
15 8 7

[fraction exponent

sign of exponent_J

The floating point number is made up of a seven bit exponent
with a sign bit and a 23 bit fraction with a sign bit. The

. -38number must be in the approximate range of 10 to zero.

· OCT stores one or more octal constants in consecutive words
of the object program. Each constant consists of one to six
octal digits (0 to 17777). If no sign is given the sign
is.assumed to be positive. If the. sign. is neqative, the
two's complement binary equivalent is stored. The constants
are separated by commas with the last constant terminated
by a space. If less than six digits are specified for a
constant the data is right justified in the word. The
letter B must not be used after the constant.

The remainder of the pseudo operations, ABS, BSS, DEF,

END, and EQU have been altered from the Hewlett Packard definition.

161

ABS ±(symbol) (±integer)

ABS will define a data address or a base page address
within the user proqram bounds. Undefined symbols in the
operand will be accepted but a temporary value must be
entered to define the symbol

BSS (+) (symbol) (±integer)

BSS advances the program location counter according to the
value of the operand and initializes the data area to zero.
The operand value has been restricted to the range of 1 to
128. As undefined symbol in the operand will be accepted
but a value must be entered to define temporarily the
symbol.

DEF symbol(,!)

DEF generates one word of core as a 15 bit data area address
which may be used as the object of an indirect address found
elsewhere into the source program. The address may be
referenced indirectly through the label preceding. The
operand field must be a data symbol which may be followed
by an indirect flag.

END

END does not require an operand for it is a command to begin
execution of the user's proqram.

EQU (+) (symbol) (±integer)

EQU assigns to a symbol a value other than one normally
assigned by the program location counter. A label must
precede the EQU pseudo op to be assigned the value
represented by the operand field.
The operand must be an address in the user program data
area or in the base page area available to the user. A
symbol in the operand must have been previously defined.

162

APPENDIX B

THE INTRODUCTORY TEXT

163

THE INTRODUCTORY TEXT

The data has been stored as binary data packed two

characters per word beginning on the first sector of the

first track of a removable cartridge disc by.the DOS. -M System

facility to write onto user files, EXEC call, Request code 15.

Every page of information starts on a disc sector boundary

but no page of information will be allowed to cross a track

boundary. This restriction is imposed by the disc controller

which requires additional head positioning and read commands

to read across a track boundary. The special positioning of

each page has been incorporated into the disc address table,

in the initialization program, according to the format:

Bits 0 - 7 Sector number,
8 - 15 Track number.

This arrangement of the introductory text removes the necessity

for using a disc file directory or search program.

The following is a list of the page names used in the

program to store the text on disc and the names used in the

address table in the initialization program.

PAGE 1 Introductory information

PAGE 2 Introductory information

PAGE 3 User option to begin program entry or continue
presentation of text

PAGE 4 List of the System Directives excluding the Halt
Directive

DUMP Explanation of Dump Directive

LIST Explanation of List Directi•.ie

SEQUENCE Explanation of Sequence Directive

164

XECUTE Explanation of Xecute instruction

EDIT 1 Explanation of Editor and edit instructions

EDIT 2 Explanation of Editor and edit instructions

LAST Warning to
to begin

user about program size and prompt

The remainder of Appendix B is a listing of the program

used to store the text on disc followed by a listing of the

eleven pages of the text.

"t1

~
Gl

~
8
0
CJ)

8
ASMP,R~L 0

::ti
EJlJ_F,J< EJ:..._____________
N!\M JF?

~ ,,.
H...
~ ,,..,. STO~F P~A!) ONLY INTPOO!lCTARV T~xr ON nrsc CARTP!!)Gt:'
::ti

>;t 0
0STAPT MOP c:::,,. ()
8--------- !..._f>-A.GE--1..___,,. 0
,::ti

LOB =~1111 :i<
STR ~UFL Li::NGTH OF f)l\T~ I

L'.1A PAGEi P~rr.RAM A~nR~ss o~ nATn 8
~CLA Rt="LATtVF ~E~TO~ ~UM~FP

JSR owoIT,,.
0--------,,. o .A.GLZ-----------· -------------­

>;< z
lDR =~?sn v
STB gqi:-L H

enUJA OAGE2 ()LOR =ns
JSR OW'-UT

-----·--·----··

.....
U1 °'

166

N !": I­
....-1...JW H

,C'Jt.;. ~ C"'CY
lcr::::;c:::rc:~

11 C-'C II C

1roc::cc::rrrc:::
iv;. !CH-CCVl

_iv _;_i...,
l.t'
~
c:r

0

.:t

w
~
<[

0

it'- ..:t I-
ilf\..Jl,i ,....,H
:..:tu L'.'~C"
it':'":=c::";"C::S:
lllC"O.llC

ICf' n;) Cl C' 1O:.:
;c1-ccv•i,_1(/1 ..J_J...,
I

0
y
::'.)

c
I.!'\

li
l!)
er
a.

I.fl U\
..:t u.::IH
r-Jl.D~CL
r!'· 1.J. <r C'::;::
II ::JQ I! C

0:
ro <:er er
c: cr-ce:cr
..JI--l..J..,

VJ

http:r-....Jl

167

1­
(f
.,_..
-'
\.0

N ..C• 1­
..-._,11,.1 .. U:lH
MU..L'.l...;c
C'::J<C 3:
11 Cf'O ti 0

er er c:r a- c
C: 1-C'O lf'
_.J v: -'-' ..,

LL
(."
Z
1,.1_:
'.:)
C
~!

(/)

,._

u: ,.__ 1­
-..Ju·CCH
.:tu l.!:· .,....,,
Cf :::- c:r c 3:
11 cc n 11 C"

CJ' (!' c:r c. a:
Cl-CCJV
_itr _i..,1-;

w
I.:
<l'.
0

!.!'\ cc 1­
..:t .Jl.L..-;H
I"~ Lt l." C\J 0
C"'.:'c::r03:

'' e-a 11 o
en c:· c:::: er: er
C 1-CC(ll
_.J(/) _i _,...,

,,.
,,. 0 AGE g ~OTT 1
~

LOB =RS4?

<::TB ~UFL

L!"lA pf.\r,fq

LOfl =l"J24

Jsg ownr ...

,,. PAGi: 10 E'fflT 2
--~-- -~~ -----------·"'" LOB =q44 7
STq ql!Fl

LnA or;r.10

Lf)8 =f1?7
JSP OW 1?IT,,.

,,. PAG'=. 11 LA<::T,,.
-------·~-

Lf18 =95~'?
S T1 9tJi.:"L
LllA "'.>t;rtt
LD'3 =03r
JS1 'lHPIT..

..,,. STOD P POGO I\ t-4
-------------- ---­
JSR EXEC
DEF ~+2

O::F ""+?

~!OP
DEC 6

~
0\
CX>

""'
""' -~"'-C!lP-"L-E-I--"lA-R'LnATA_ _QNJ1LJ1 rsc________..
:it- ENTER (IU PROGR/\M AnDPFSS oi:: '1ATI\
,,_ <Bl PfL/\TI\fE SF,...T'JR N!J~i!lt:R ...
Jf.

OWP!T NOP
STA nnnR

________ 	sra_s~-~TP~-------------·
JS~ EXFC
f)CF 'l'-+7
nFF Qr,no~ RcouF~T conE 15 FnR nrsr. w~ITE
oi=-i:- r.o~iwn
ncF A1~R,I PPOGPA~ nonocss
OEF ~UFl L€NGTH ni:- qqfi:-e-o
OfF FNB~E FTLE NAME

----------DEL SEC J?_____RELAT! VE-S1:.CIOR_________
JMP !)t.-JDIT,t

Jf. ..

A!J'1P riss 1
SECTP ~SS 1
PC()Of rn=r, 1.13
CONwn OCT 11'l2

---------"f'WFL---9-S S-L- ---------------- ----· ----·------­
FNAME.,. ASC ~,JFCAO RJNGPV FILF ON USE~ OISG A~EA

..
SUP

.....
\0°'

PAGF1 nc-F ""*"1

----""-·--------------------------- --------·--·-· -----------------­
,,.,,. PAGf 1 INTROnur,TTON

ASC 16, YOU llP~ COMMUNI~ATTNG WTTH

A~C 12,A HEWLFTT PACKAR~ 210"A

nr,r 1".16612
ASC 16,C~MPLJTC"Q THAT HAS qecM PREO~R~n

ASr 12,rn DEAD IN AND ASSFMqLe

________	Qf'T.1J1ofl12 _ -------- __ _ _ _______ ----------·­
llSC t7 ,r0'1PUTi::-Q PPOGPAMS WHil"'.H YOU PHEo.
O~T 1nGh12,106S12
ASC 18, A Cf'MP!JTC"P 00 or. 0 A"I IS II SERIES
ASC 11,0F CO~MnNns 'TO OIDErr
(H'"T 106!;12

~~c ir;, Tl-l= co·'ln!!rcp rN A STE 0 n.v ~TEI'.'

A~r 14, P~nnLC"M SOLVING PR~cc1uqi::-.

_____	QI'.T. 1C6n 12, 10r-,t;12 ... --- . . --- . __ - ------- ____
llSC ?R, SUCH COMMANnS RECOGNTZED RY THF COMPUTER llPE IN THi::­
01"'.T 1C6n12
ASC ?~,FO?M oc MACHINE LANGUaG~, ~UT P~OGRAMMING IN MACHIN~
nr,r 1csi;12 ·
ASC 1S,LANGUAG~ rs A TFDIOUS OOOCFSS
ASC 1S '11~11 OME OF rw:- MOST !MPOOT A~T
orT 106612

_______	JlS.C: 1~. sr-os IN TRY ING TO MAKE !'.'ROG 0_A.M:1INu----------------------­
llSC 11,Fn~IER IS Tn TNToonu~~
nrr 106612

---------·---------·-----·--·--------- - - --·------- ---- ---------­

~
...J
0

ASr iS 1 TNST~UCTION C10ES IN PLAC~ or

ftSC 15,MACHTN~ CODES A~O nnoo~ss~s.

------~£L_iuS61Z ______ __________ ____ _____ _ __ ____ _
ASr 1. 4~ THE use rr INSTOUCTTO~ ""CTnc:-s
ASC ih• L~AOS TO A PROGRAMMING lANGUAGr
f"~T 106f-~2
~SG ?8,AtMnST CQUIVALENT TO MACHINE roo~ BUT EASJEO Tn prary. ~
nr:T 1H)Fi12
A S l, 1 8 , P RCJ t, R A M T 0 P~ I\ "! S L A T c- <::: !Jr, H A L A NG U I\ G F
ASf' 1.2, PHO THE Cl1RPCSP'11't!)p1G

______	Df"L 105612 _ ___ _ __ _ __ _ _ __ _ __________
A<::;r; 2,,,....,~C:HINC Ll\NGUAGE TS r,llLLFD l\N ASSt::MBLEJ:?.
nr:T tUG612,1°6h12
ASr 27, THE TASK OF AN A~SEMRLC:-R TS TO TRANSLATE ~ssrHgLY
OCT 106t;12
ASC 17,INSTPll~'rIONS INTO Ml'ICHINf l~NGUaGE
ASr t4, INSTPUr:TTn~s r0~PCSPO~OIN~
nrr 106612

------· 	l\SC .25, \.!ITH HH!l. T Aef'.EAo__$_ __I.N.__THE 1lSSE+-~f3LY__ LAtl_GUAG£_2PO_G..~AJ1.___
OCT 106612,106612
ASr 1~, TT T~ NOW POSSTqLc TO TPftNSFrP
ASC 1~,r0NTPOL T~ THE ~RT S~ 0£EN.
~~T 106612,10hS12
ASC 21, rvo~ ST~ PDINT 0UT 0 UT ON CRT SC?E~N
0~T 10Fi~1?,1~6n12

0Asr. 17, 0TYE~wrsc TY ~ ~ ro ~nNTTNUF

------ DCJ_J.Q6&i2,.1C5512. __________________________ ··-·-·-····------------·

.nc:;c 23' <TYPE PETUr>N KE'f TO ENTE? l\LL r"ESPON~rs)

t\!QP

-·

PnGE2 OE!=' "'+1 ,,..
___Y:._E.Al;F_.?__HHJWDll!'.I!QN_______

'I·

n,r,r 11s&~7
ns~ 17~ A~ ASSEH8L~R NORMALLY 1EGINS
l\SC 13,ASSEMBLY ONCE THc P~O~?A~
nr.T 1()6F,12
ASC 1A,H8S P~FN l='ULLY OEFINEn. RfFEPENr.FS
As;. 13,TO UMf)Ft:"TNf'O INST 0 ur.TI')NS
DCT.-1 Gfl612 .. -----·------- -- -- - ----- ---------··-------------------·--­
ASC 1B,0~ OATA WTLL TERMINATc TH~ AS~F~~LY
AS~ 11,0R HALT FUPTYCO svsfcM
nr.T 10SFi12
ASC 12,ACTI~ITY AFTE? Assr.~QL~.

OCT 1n&F,12,1r.n612

ftSC 1g, THIS Assr-MQLCR IS AN INCOt:"MFNTftL

~SC 11,ASSEM~Lcp FOR ASSF~PLY

o~L-t '.1ont2 . ______ _____ _ __ --·

nsc ?~,nr.r.URS IMMr-nrATELY nFTEO STQTl='M~NT ENTRY. THE .~S<:.'P1~Lf~

1V~T 11)61;12

ASC ts,nn,cs MOT WftTT UNTTL THC PRnGDA~

l\Sr:: 14,TS FULL'f Dl=FIN".'."IJ. !JNni:;:r.tNF!)

"'GT 1DS612

ASC ?~,RrcEPfNCES ARF prTAI~co UNTIL O~t:"!NtTtON occuos.

.....

......
"'

http:RfFEPENr.FS

nr,T 106612,1n5s12

~SC 16, ~ACH ST&TEM~MT TS SEnUEN~E~

_______A.SC-13 ,__ ANfl_A_SS-1G1JEQ _ _A __s_J_ltIEi1£NT____

OST 1r16h12

ASr 1~,NU~nEP. ny D~FDULT TH: t:'JOST

A~C ih.STATfMCNT NUMBER TS tn HTTH EAGY

nr:r 106612
Asr ?3,SUCr~ssrvc STftTF~ENT NUM"rR INr.?EMENT~" Py 1".
nrr 1osi;1?,1~S612
ASr 1~, T'1 sor::-crcy ALT!='RMATF SEQt!F\lr.TNG _______	nsc __ 12, TYPF s FOLLOW£Q__J3Y_T!-!E __ _
OST 106612
ASC 2q,FI?S'l" STATFMC:NT NUM!"\E? TJ.lr:-N A VALllE !="OR THE INrPcMFNT.
nr,r 106i;12
ASC ?6,usc COM~AS (,) TO ~EPrRATE THE s AN1 TME Twn VALUE~.
nrr 10h612,1~6612
ASC 1?, c')R FXA~nlc1s,12,6
n~T 106Fi12

-----ASC- 17, ~ESULTS_ WITH TJ-!E FIRST_ INSI~U".:'TI_QN______________________
ASG 13, ASSIGNEO THE STATCMC'NT
O~T 1Ji;c;12

nsc z~,NUMqER 12 WJTH THF FOLLOWING STAfcMC'NTS AOVAN~cn RY ~.

ncr 106612,106512
8SC 13, 	 o~ TYPE G Tn ~O~TTNUF
NOP

....
-..J
w

PAGE3 OFF ~+1
JI..

---~"'"--2AC>-E-L!.J.!I.R!lCJlUCJ-l...Ql,L_J:_Q_-USCPS-
JI..

f'JCT 1165~7

nrr 10'JFi12

ncr 1rs212,1os212
OCT 105212,105?12
ASC 1~, TF vouo A~~ rAMIL!AR WTTH
ASr 1S, THF F~QTUPES nc TH~ ASSEMALE 0
nr:r _10561 2 ______ _________________________ _ __________________________
Asr ?7,VOU MAY RCGIN ENTRY nc AN Ass~HOLY LANGUAGE P?OGPAM.
n~T 106612,1nF,F,j2
A<::C 12, 	 ryoi::- C TO CONTTNUE
rir,r 1osh12,100612
ASr 15, WAIT rnR SYST~M nESPONSF

n~T 10~612,10S612

ASC 12, ~~~J~ PROGPnM =NTQY

_______	Qf:.T-1n5Fi12' 1nSS12_____ --- ---- ----­ . -----------·----­
A~C 27,ELSE TV 0 f L TO LEARN O~OUT THE VAPIOUS SYSTEM cEnTUP~S
NOP

....

..J
~

PAGt4 f)£1:" •+:t ,,.
'f.

~ PAG!: 4
'f.

ncr 116637,11~?.12

ASC 17, THERE ftRE 6 sv~rr~ ryIR~~TIV~S

ASC 1~, WHICH MAY ~E t~T~o~n GNY

nr:r 106612

ASC 28,TIME WHTLE OEFININ~ YOUP PROGOAM, EXCEPT nUoING AN C"QTT. ______ o.c:r__ -1~6s1z___
ASC 1S,THcv ALLOW YOU ~orAT~P CONT?OL

ASC 14, OVER THF ASSEM~LE~ AM~ TH~

nr,r 1061=,12
ASC 12,nESIGN OF YOUD noasoAM.
n~r 1or;~12,1"6612
ftSC ?4,THc~F DJDrrTIVES ARE ftll PRFCEOE~ qy A COLON ('}•
Qr,T 10661?,10(;612
As c ? '7 ' -- - ! A '10 R J _____ I] I sc_o NTJNUL_PRO G".!AJi_____E 'lL~)'_,_ __BEG L'J___JLG A__I_N_
nr:r 1css12,11Gs12
ASC 1n, ·~u~P au~P RE~JST~P CONTENTS

OCT 10661?,1"6612

ASC ?.1, :r:!JIT c'lIT THl?: EXIST!t\JG PRQG!';'>AM
n~T 10661?,106612
ASC '4, 'LTST LIST ftll np DART OF Y1Uo P~0GO"M
0CT 106612,1M6612

_Asc__ 1_ 9 _, __ - ________ l S1:QUE-NC£________ CHANGE THL SE!')LJ!::NCtNG, ----­
ASC 11, THEN LTST THE P~OGPBM
nr:r 106612,1~s~12
nsc 18, !X~rijT~ EXEGUT~ YOUR PDOGRA~
OCT iD6~12,106512,106612
ASC 1g, TYD~ c TO C~NTTNU~
l'IQD

.....

......
U1

http:116637,11~?.12

OAGE5 DFF" ~+1
Jf.

----~r:w ~~;P____
>Jo

ncr 116637
0r,r 106612~1~5?12,1D5?12
nsc ?~, AFTfP EXEGUTION rye CONTENTS nF THE A, R, ~ ANn 0
O~T t0n612
ASr, 12,PEGISTF.RS WTLL RE SAVc~.

n~r 1~ss12,1~n612

____.ASr~.1 fi ,, ______ ___ _ ___ 1.J.U_~p___________________
O~T 106612,10nG12
A~C 15,WTLL nTSPLnY THE p~~Tsrcos ~s
ASC 13,nCTAl ~NO ~fCI~AL ~DLUES.
OCT 1 'H>fi1 2
ASC 18,INSTPUCfTONS WILL ~lSO nc o~ESENTED
Asr 12,ro nrsnLAV nnrn nnoocss
nr;r 1rfs12

_______	ASC 5, CO!'JTO.ff S. _
nr,r 106612,1Q6612
ASC 17,AS AM ALTFRNATIV~ TO USTNG ournur
A SI'"'. 1 2 , T N <: T PU": T In NS W I T 1-H N Y n !J<::>
nr:r 1oss12
ASr, 16, PPOG~AM, P~SULTS rAN R~
ASI. 14, STOR~D IN THE R~GISTcRS oc
nl":T 106612

_______	Ase "5' ------ --- -- _/\S_...DAI ,L.AN.Q ___IHEN._QUMPElLAEI.!::R_EXECUI__LQ..N.._____
nGT 1P6612,1~5212
ASC g, TYP':: C TO rQNTTNIJ':
NOP

~

°'

http:CO!'JTO.ff
http:12,PEGISTF.RS

DJlGf6 D>'.:F >1-+1
~

---~-.LIS~-----­ ·-------· ,,.
n~T 116637.,10;512

nr,T 1os212,1~s~12

A<:)C 1g, 1L TSTC.,~C,N>)

nr,r 1nos12,1ins12

ASC ?8,10 LIST vnuR PROG9AM ~E9UCNTTOLLY STAT~MENT RY ST~T~MEN'

orr 1osG12,1os~12 .

___.____	JtSC-28 ,.M --~ND_JJ, __I.E_f>2£SE.NI_SPE.C.1FY__TH.£_E.IRS..I_ANOLA.S.I_s.IAil:'M£.tJJ
ncr 10'1612
n~c ?7, TO RE LISTEn. IF N TS AAS~NT THEN ALL STATF­
nr,T 106612
ASC ?g, MENTS F~0M M ON APE LTST~D. IF N~ITMEo APPc~p
OCT 106512
asc 21, THEN THE WHOL~ PROGPAM IS LIST~n.
O~T 10~512,106h12

------AS'."'-??,_____··----·-·······r~ur __IF...N.--IS...LESS__JHAN .~LIS.I.ING ..IS.SU£2ESS.£.n.._
OCT 1G6h1?,j0S2j2
ASC g,TYPF C TO CONTTN\Ji:­
NOP

.........,,

PAGE7 OEF ""+1
~

----~--SEOUDJ....C,,_,_F____________________
...

OCT 116637,105212,1Dn612

ASC 2~, W~IlE ENTEOING YOUR URnGRA~ YOU ~AV WANT T" CHnN~F
OCT 101)1;12
ASC 2?,STATEME~T SEQUENCT~G.
ncr 1~sh12,1anc=,12
ASC 1~, tsrouENrE,M,N

______QCL-.1Ono12,i f! 661Z- -- -------- ----------------------­
0. SC 1«=i,rs V[PY STMTLAR TO THr:" S£n!JE!\Jri:"
ASC 14,0PTION DPESFNTEn EADLIER FOP
nr,T 1Q6~12 ·
ASC 2?,M ANO N A~E TWO POSTTIVE INTEGfRS SUCY THAT
nr.T 10661?,1C6«=i12
ASr ?4, M B~COMES THE rrosf STAT~MENT NUM~EQ
()!"'.T 1{}1;1;:12

A~~----tS., ----- __________ N, ___ J$_THL.1NCt:>EMENL ___ _

ASr 14, FOR sucr~ssr~F STATEM~NTS.

OCT 11n&12,1rsG12

ASC 2?,0N COMPLETION, THE WHOL~ PPQ~oaM IS LTSTEO.
nrr 1061;1?,1Q6612
ASS 16,PESTPTrTI"NS ON M ANO N ARi:- THAT
ASC 14, ·~ MUST NOT Evcr~n 1aory ANO

nr, T 1 0 6 f, ~. 2

_______,.,.Sf:.17, _ _____ _ _____N__MU$_J___ NDT _EXCEED_25_.___
nrT 106h1?,1PS212

ASC g,TYPF c TO cnNTTNU~

MOP

1-..J
-.J
00

____ ____ _

oAGEP nEF ~+1 ,,.
---~-XECJJ.!£___________________________

,,,.

n~T 1156~7,105?12,105212
ASC 17, t xr:~urr:
n~T i0~~12,106S12
ASC ~~,WILL INITIATE TH~ FXECUTTON OF YOUR
f'lr::T 106()12
A~r 15,PR1GRA~s MAY ALSO gc rxcrurr:n
!lSC -15 ,!1UL-EXECUTIQN_WILL-IMMED.I/tir:::LY.
l"\l"'T 1f1f°:>612

A~C 14,HALT, WITH A WARNTNG MESSAG~

ASC 16, PDINTF1, IF THfRF TS A M"CHTNF
f'l":T 106612
ASC "f!,TNSTRUCTION HAi!Tl\JG A FClt?WARO REFEQENCF:.
OCT 106612,10h~12
ASC ?q, TMuFDTATFLY AFTEQ FX~CUTION QQ acrER
n~L1os1112 ______ __ .. _ _ _________ ___ _

PROGRAM. TN~OMPLcrc

----··----­

ENC0UNTFOIN~ a
ASC 15,FOOWARn prF~RENrF THE ~nNTFl\JTS
ASC 1G, OF THF A, 9, ~ ANn 0 RF~T~Jros
nr::T t1J6i:.t2
ASC 7,WTLL ~F SAvFn.
n~T 106612,10?212
ASC ?4, TYOE C TO CONTTNU~
~JOP

-------------------·-----------------·-- --- -----­
......
l.O

http:t1J6i:.t2

-·----------------·---·---..--~-

PAGt:o n£F ,,.._1

'1UFF Or;T 11S637

A..s:.c_1s • ---- _iEflLI_
nr:r 1~6612,1~6612
A~C 9,Will ALLOW YOU Tl')
n~r 1066t2,10~s12
ASG 27, DELETE ANY NUMBE~ OF STAT~H~NTS IN YOUR ?QO~RAM
nr,T 106612
ASG 21~ INSfDT BETWEEN sucr.~sstvr STATEMENTS
O~T 10S612

________,AS r,__ t 4 • __ ----·-? £ 0 l ACE--ANY_$I.1\T£.MEN t •-----------·--------·------------­
0 r: T 105612,106612
ASC ?3,ALL ~nrr TN~TRUCTIONS RrGIN WITH A SLAS4 (/).
orT 1ns612,1ns612
A~r: ?~, TH~ FOLLOWING QOfRATION CAUS~S STATFM~NTS M THPOUGH
nr:r i'H>n12
ASC 14,N, INCLUSTVF~ TO 9~ nrLETrn

.....
co
0

_________ " _____

OCT 106612,106&12
A~f", 14, /nELET!=,M(,~J) f,Vl

OGT_J..fl.6612 ,.1G..66t2_______ .. _ -----------·----------· ----··-···------------­
~SC ??,TF ONLY M IS SPE~IFI~O ONLY THQT ONE STATF~ENT HILL 9E

O~T 1CS~12

Asr, 4 9 fJl="Li::rt:'"'.
or,r 10661?,1"5612
asc 1~,v, THi:: VFTO FLAG, wHi::N SPECTFTrQ

n~c 13, TNITI~TES TH~ PRINTING nr

f")r".T 1~6F:i12

.ASC .2?, . _____ ---------------------~L_STATE~ENJS. ...1.NV.OLVE.D__ .!JL.J_YE_EOii_.____
l'"lf'T 10661.2
asc ?6, TYPE TN yrs TO CONTINUE THE rnTT
nr,r 106F-12
AS!-: 2 7 , 0" NO TO VF.TO THr: rnIT OPERATTON.
nrT 1~6612,1"6512

A~C 2t.., TYPE C TO C0NTT"J!JI':"

NOP

....

<X>

http:OGT_J..fl

·~-~---·------------···~·-------~-.-· -----" - ~~--

PGE11'.' nEF >t-+1.,.
--- .\'-_.£.nLL-2--------------------·,,.

OCT 1166~7,106612
Ase 22, TO INS~R.T ~~TWEEN SUCCESSIVE STftTEMENT~
nrr 116612,106612
Asr; 12, IINsrrT,M(,'-l)
OCT 106n1?,106;12
Ase 14,IF ONLY M IS SPEr:TFTEO ONLY
AS ~--15 , ST AT L~ff:: NL M__J...J I LL B£ __ IN SE~TED --------·--·----­
n r: r "~6612
Asr; "7,N IS AN PH".'PE~1ENT FOR. !10Ri:: THllN ONi:" INSF.RTION ~ETWErN
n~T 1Cnn12
asc 11,sucr:FSSIVE STATEMENTS.

nrr 1~~n12,106612

AS~ 17, ~y ~rANS OF AN EDIT OPERATTON

------·---·-----·--·-- ·-------·-··

1--'
co

""

ASr 10, STAT~~ENT M r.nN nr

nr:r 1risEi12

--A-~C--1S,_RE?LACED__RY_A__.SINGL£:_SIAI£MENL
~~T 116612,105612
ASC 12, /PEPLAcr,Mt.vi
nr,T 1os612,1no~12
~SC 17,A MArHI~F rnoE I~STPUGTTON CAN~OT
ASG 12,RE PFPLAC~O RY DATA NO~
OST U.'1Fifi12

0ASC 1~,~AN A nATA STOTCM~NT ~ prPLAGEQ
____ __AS C_i 3 , !3 'f ___ A_ M.I\ CH I NE _INS Tl"l UC lTQ N_. _______________

nrr 1"661~,1"6612
~SC 7, 1rNo
o~r 1nn~12,1n~s12
AS~ 15,THE £N1 INSTQUGTION TERMIN~TF~
ASr 14, T~r ~U~PrNT ~OIT OP~~~TION.
nr.r 1oho12,1os?12
!\SC '24, TYPE C TO CONTTN!H:":

-------MOP -------------­

~
CX>
w

http:PEPLAcr,Mt.vi

PGE11 DEC- ""+1..
----'• LAST_T?..A.GE____________ ,,.

nr,r 1165.,.7
r'll"T 11'15212
ASC 23, NOTE THAT THIS IS A SMALL nss~MBLER NOT CAPA"LE nF
nr,r 1.ons12
ASC ?7,HANDLING lAPGE o~nGPAMS. ~R"G~AM A~EA nvrRFlOW WTLL
0~r 1nsi:;12

--11SC-17,TER"'11Nl\TE.ALL ASSEM?LY._P_A'L..CLQSE_________________
ASC 12, ATTFNTION FOR 01~PFLnw
"CT 10Sfi12
ASr q,WARNIN~ ~ES~DGES.
O~T 116h1?,1QS512
ASC 27, ~N~ IMPOOTANT DRnG~A~MING ~nNSinERATTON INVOLVC-S
nrr 1oss12
/\SS 1Pi,TH!:'.: nEF psc-uno OP 11si::n FO~ i)E!="IN'P.-!G

.....
~
00

Asr, 11,AnO~ESS~S. ITS usnr,~

nr,r 1!J6512

------ASC-1n' IS- Ri:=:STr::>_LC_!ED 10__ nAT.n. __ AD!1RE:.SSES ..
or,r 106G12,1~so12

0A~C ?A, HOOF IMPORT~NTLV, THE OFF PSEUDO 0P SHOULO PEC~OE
OCT 106fJ12
ASC 1s,ntL DATA WHtCH ~AY 9~ INVOLv~n

ASC 1~, T~ ANY DATA EDIT OP~PATTnNs

nrr 1066t2

nsc ?3,no FOLLOW ftll DATA OEFtMITTn~s ftFTER TH~ tAST DATA ~arr

_____	c~ T-"1CSf:i1 2 --- - "" -"-------------- """_____ - - ---"- """·-·-----".. "_" ____"_ -""·--·-"""""""""--·---"·-------"·"-------·--------­
AS C 2q,nP~RATION. FftILUPE TO DO ~0 MAY RESULT IN AN INCnRQ~r,r
nr"'.T 106i:.12
nSC ~5,AnOP~S~ RFFFRrN~~ nNO MrANINGLESS PDQGRAM DESULTS.
ncr 1G&G12,1~6512
A~C ?1~ YOU MAY NOW ~EGIN PROGRftM FNTDY
rrr 10G612,10G~12
nSC 1q, TYPE IN Y~uo FTOST ST~T'-MrNT

----- Ot':T--106&12----------­
f\tQP
ENfl STl\PT

....

U'I
00

http:106i:.12

186

PAGE 1

YOU ARE COMMUNICATING WITH A HEWLETT PACKARD 2100A
COMPUTER THAT HAS BEEN PREPARED TO READ IN AND ASSEMBLE
COMPUTER PROGRAMS WHICH YOU ENTER.

A COMPUTER PROGRAM IS A SERIES OF COMMANDS TO DIRECT
THE COMPUTER IN A STEP BY STEP PROBLEM SOLVING PROCEDURE.

SUCH COMMANDS RECOGNIZED BY THE COMPUTER ARE IN THE
FO~M OF MACHINE LANGUAGE, BUT PROGRAMMING IN MACHINE
LANGUAGE IS A TEDIOUS PROCESS AND ONE OF THE MOST IMPORTANT
STEPS IN TRYING TO MAKE PROGRAMMING EASIER IS TO INTRODUCE
INSTRUCTION CODES IN PLACE OF MACHINE CODES AND ADDRESSES.
THE USE OF INSTRUCTION CODES LEADS TO A PROGRAMMING LANGUAGE
ALMOST EQUIVALENT TO MACHINE CODE BUT EASIER TO READ. A
PROGRAM TO TRANSLATE SUCH A LANGUAGE INTO THE CORRESPONDING
MACHINE LANGUAGE IS CALLED AN ASSEMBLER.

THE TASK OF AN ASSEMBLER IS TO TRANSLATE ASSEMBLY
INSTRUCTIONS INTO MACHINE LANGUAGE INSTRUCTIONS CORRESPONDING
WITH WHAT APPEARS IN THE ASSEMBLY LANGUAGE PROGRAM.

IT IS NOW POSSIBLE TO TRANSFER CONTROL TO THE CRT SCREEN.

TYPE S TO PRINT OUTPUT ON CRT SCREEN

OTHERWISE TYPE C TO CONTINUE

(TYPE RETURN KEY TO ENTER ALL RESPONSES)

187

PAGE 2

AN ASSEMBLER NORMALLY BEGINS ASSEMBLY ONCE THE PROGRAM
HAS BEEN FULLY DEFINED. REFERENCES TO UNDEFINED INSTRUCTIONS
OR DATA WILL TERMINATE THE ASSEMBLY OR HALT FURTHER SYSTEM
ACTIVITY AFTER ASSEMBLY.

THIS ASSEMBLER IS AN INCREMENTAL ASSEMBLER FOR ASSEMBLY
OCCURS IMMEDIATELY AFTER STATEMENT ENTRY. THE ASSEMBLER
DOES NOT WAIT UNTIL THE PROGRAM IS FULLY DEFINED. UNDEFINED
REFERENCES ARE HC1AiNlD UNTIL DEFINITION OCCURS.

EACH STATEMENT IS SEQUENCED AND ASSIGNED A STATEMENT
NUMBER. BY DEFAULT THE FIRST STATEMENT NUMBER IS 10 WITH EACH
SUCCESSIVE STATEMENT NUMBER INCREMENTED BY 10.

TO SPECIFY ALTERNATE SEQUENCING TYPE S FOLLOWED BY THE
FIRST STATEMENT NUMBER THEN A VALUE FOR THE INCREMENT.
USE COMMAS (.) TO SEPARATE THE SAND THE TWO VALUES.

FOR EXAMPLE:S, 12,6

RESULTS WITH THE FIRST INSTRUCTION ASSIGNED THE STATEMENT
NUMBER 12 WITH THE FOLLOWING STATEMENTS ADVANCED BY 6.

OR TYPE C TO CONTINUE

188

PAGE 3

IF YOUR ARE FAMILIAR WITH THE FEATURES OF THE ASSEMBLER
YOU MAY BEGIN ENTRY OF AN ASSEMBLY LANGUAGE PROGRAM.

TYPE ·c TO CONTINUE

WAIT FOR SYSTEM RESPONSE

BEGIN PROGRAM ENTRY

ELSE TYPE L TO LEARN ABOUT THE VARIOUS SYSTEM FEATURES

PAGE 4

THERE ARE 6 SYSTEM DIRECTIVES WHICH MAY BE ENTERED ANY
TIME WHILE DEFINING YOUR PROGRAM. EXCEPT DURING AN EDIT.
THEY ALLOW YOU GREATER CONTROL OVER THE ASSEMBLER ANO THE
DESIGN OF YOUR PROGRAM.

THESE DIRECTIVES ARE ALL PRECEDED BY A COLON (:)

:ABORT DISCONTINUE PROGRAM ENTRY. BEGIN AGAIN

:DUMP DUMP REGISTER CONTENTS

:EDIT EDIT THE EXISTING PROGRAM

:LIST LIST ALL OR PART OF YOUR PROGRAM

:SEQUENCE CHANGE THE SEQUENCING. THEN LIST THE PROGRAM

:XECUTE EXECUTE YOUR PROGRAM

TYPE C TO CONTINUE

189

DUMP

AFTER EXECUTION THE CONTENTS OF THE A, B, E AND 0
REGISTERS WILL BE SAVED.

:DUMP

WILL DISPLAY THE REGISTERS AS OCTAL AND DECIMAL VALUES.
INSTRUCTIONS WILL ALSO BE PRESENTED TO DISPLAY DATA ADDRESS
CONTENTS.

AS AN ALTERNATIVE TO USING OUTPUT INSTRUCTIONS WITHIN YOUR
PROGRAM, RESULTS CAN BE STORED IN THE REGISTERS
AS DATA AND THEN DUMPED AFTER EXECUTION.

TYPE C TO CONTINUE

LIST

:LIST(,M(,N))

TO LIST YOUR PROGRAM SEQUENTIALLY STATEMENT BY STATEMENT

M AND N, 	 IF PRESENT SPECIFY THE FIRST AND LAST STATEMENT
TO BE LISTED. IF N IS ABSENT THEN ALL STATE­
MENTS FROM M ON ARE LISTED. IF NEITHER APPEAR
THEN THE WHOLE PROGRAM IS LISTED.

BUT IF N 	IS LESS THAN M LISTING IS SUPRESSED.

TYPE C TO CONTINUE

190

XECUTE

:XECUTE

WILL INITIATE THE EXECUTION OF YOUR PROGRAM. INCOMPLETE
PROGRAMS MAY ALSO BE EXECUTED BUT EXECUTION WILL IMMEDIATELY
HALT. WITH A WARNING MESSAGE PRINTED. IF THERE IS A MACHINE
INSTRUCTION HAVING A FORWARD REFERENCE.

IMMEDIATELY AFTER EXECUTION OR AFTER ENCOUNTERING A
FORWARD REFERENCE THE CONTENTS OF THE A. B. E AND 0 REGISTERS
WILL BE SAVED.

TYPE C TO CONTINUE

SEQUENCE

WHILE ENTERING YOUR PROGRAM YOU MAY WANT TO CHANGE
STATEMENT SEQUENCING.

:SEQUENCE.M.N

IS VERY SIMILAR TO THE SEQUENCE OPTION PRESENTED EARLIER FOR
M AND N ARE TWO POSITIVE INTEGERS SUCH THAT

M BECOMES THE FIRST STATEMENT NUMBER
N IS THE INCREMENT FOR SUCCESSIVE STATEMENTS.

ON COMPLETION. THE WHOLE PROGRAM IS LISTED.

RESTRICTIONS ON M AND N ARE THAT M MUST NOT EXCEED 1000 AND
N MUST NOT EXCEED 25.

TYPE C TO CONTINUE

191

EDIT 1

:EDIT

WILL ALLOW YOU TO

DELETE ANY NUMBER OF STATEMENTS IN YOUR PROGRAM
INSERT BETWEEN SUCCESSIVE STATEMENTS
REPLACE ANY STATEMENT.

ALL EDIT INSTRUCTIONS BEGIN WITH A SLASH (/).

THE FOLLOWING OPERATION CAUSES STATEMENTS M THROUGH
N. 	 INCLUSIVE. TO BE DELETED

/DELETE.M(.N)(.V)

IF ONLY M IS SPECIFIED ONLY THAT ONE STATEMENT WILL BE
DELETED.

V. 	 THE VETO FLAG. WHEN SPECIFIED INITIATES THE PRINTING OF
All STATEMENTS INVOLVED IN THE EuIT.
TYPE IN YES TO CONTINUE THE EDIT
OR NO TO VETO THE EDIT OPERATION.

TYPE C TO 	 CONTINUE

192

EDIT 2

TO INSERT BETWEEN SUCCESSIVE STATEMENTS

/INSERT.M(.N)

IF ONLY M IS SPECIFIED ONLY STATEMENT M WILL BE INSERTED.
N IS AN INCREMENT FOR MORE THAN ONE INSERTION BETWEEN
SUCCESSIVE STATEMENTS.

BY MEANS OF AN EDIT OPERATION STATEMENT M CAN BE
REPLACED BY A SINGLE STATEMENT

/REPLACE.M(.V)

A MACHINE CODE INSTRUCTION CANNOT BE REPLACED BY DATA NOR
CAN A DATA STATEMENT BE REPLACED BY A MACHINE INSTRUCTION.

/END

THE END INSTRUCTION TERMINATES THE CURRENT EDIT OPERATION.

TYPE C TO CONTINUE

193

LAST

NOTE THAT THIS IS A SMALL ASSEMBLER NOT CAPABLE OF
HANDLING LARGE PROGRAMS. PROGRAM AREA OVERFLOW WILL
TERMINATE ALL ASSEMBLY. PAY CLOSE ATTENTION FOR OVERFLOW
WARNING MESSAGES.

ONE IMPORTANT PROGRAMMING CONSIDERATION INVOLVES
THE DEF PSEUDO OP USED FOR DEFINING ADDRESSES. ITS USAGE
IS RESTRICTED TO DATA ADDRESSES.

MORE IMPORTANTLY, THE DEF PSEUDO OP SHOULD PRECEDE
ALL DATA WHICH MAY BE INVOLVED IN ANY DATA EDIT OPERATIONS
OR FOLLOW ALL DATA DEFINITIONS AFTER THE LAST DATA EDIT
OPERATION. FAILURE TO DO SU MAY RESULT IN AN INCORRECT
ADDRESS REFERENCE AND MEANINGLESS PROGRAM RESULTS.

YOU MAY NOW BEGIN PROGRAM ENTRY

TYPE IN YOUR FIRST STATEMENT

194

APPENDIX C

DIRECT MEMORY ACCESS

195

DIRECT MEMORY ACCESS

Disc input operations will be ~andled by Direct

Memory Access, DMA, a facility to provide a direct data path

software assignable between memory and a high speed peripheral

device.

DMA transfers are accomplished in blocks which are

initiated by an initialization routine and from then on

operation is under automatic control of the hardware. The

initialization tells DMA which direction to transfer the data,

which I/O channel is involved and'how much data to transfer.

Completion will be signalled by an interrupt to the DMA

channel address, address 00006.

The information required to initialize DMA is given

by the control words which must be specifically addressed to

the DMA interface card.

Control Word 1 identifies the I/O channel in bits

0 - 5 and offers two options

Bit 15 = 1 Give STC to I/O channel at end of each DMA
cycle (except last cycle if input operation)

= 0 No STC

Bit 13 = 1 Give CLC to I/O channel at end of block
transfer

= 0 No CLC

The disc data channel specified on Control Word 1 is

118 : the disc command channel is 128 • Both STC and CLC options

were selected.

Control Word 2 gives the star.ting memory address for

196

the block transfer. Bit 15 determines whether the data is to

go into memory (=1) or out of memory (=O).

Control Word 3 is the two's complement of the number

of words to be transferred into or out from memory. The disc

controller will transfer the data in 128 word blocks but this

is not intended to imply that DMA transfers must be in multiples

of 128. DMA may transfer any number of words within the bounds

of available memory. Any buffer less than 128 words will be

zero filled.

One important difference should be noted when doing a

OMA input operation from a disc. Due to the asynchronous

nature of disc storage and the design of the interface, the

order of staring must be reversed, thus start the D~t~ first

then the disc.

197

APPENDIX D

NON-INTERRUPT TRANSFER ROUTINES

198

NON-INTERRUPT TRANSFER ROUTINES

It is possible to transfer data without using the

interrupt system which involves a "wait-for-flag" method in

which the computer commands the device to operate and then

waits for the completion response. It is assumed that

computer time is relatively unimportant.

INPUT

The operation begins with a program instruction to set

the control and clear the flag on the addressed interface card.

In this example, it will be assumed that the interface card is

in the slot for select code 16, thus the instruction STC 16,C.,

The computer goes into a waiting loop, repeatedly checking the

status of the flag bit. If the flag is not set the JMP *-1

instruction causes a jump back to the SFS instruction. When

the flag is set the skip condition for a SFS is met and the

JMP instruction is skipped. The computer thus exists from the

waiting loop and the LIB 16 loads the device input data into

(B) •

INSTRUCTIONS COM..""1ENTS

STC 16,C
SFS 16
JMP *-1
LIB 16

Start device
Is input ready
No, repeat previous instruction
Yes, load input into {B)

OUTPUT

The first step is to transfer the output to the inter­

face buffer: the OTB 16 instruction does this. Then STC 16,C

commands the device to operate and accept the data. The computer

199

then goes into the waiting loop, the same as described for an

input operation. When the flag is set indicating the device

has accepted the data, the computer exits from the loop.

(In the example, the final NOP is for illustration purposes

only).

INSTRUCTIONS COM..\1ENTS

OTB
STC

16
16,C

Output (B) to buffer
Start device

SFS
JMP
NOP

16
*-1

Has device accepted data
No, repeat previous instruction
Yes, proceed

200

APPENDIX E

DUMP AND LIST OUTPUT

201

:LIST PROGRAM

000010 *
000020 * SAMPLE PROGRAM FOR LIST AND DUMP OUTPUT
000030 *
000040 CLA CLEAR A REGISTER
000050 CCB CLEAR AND COMPLEMENT B REGISTER
000060 STD SET OVERFLOW REGISTER

LIST ENDS

@ :XECUTE PROGRM1
@:DUMP PROGRAM RESULTS

A REGISTER 	 OCTAL 000000
DECIMAL 000000

8 REGISTER 	 OCTAL 177777
DECIMAL -00001

E REGISTER 	 1

0 RE.GISTER 	 1

TYPE R TO RETURN
ELSE TYPE D. FOLLOWED BY OPERAND TO BE DUMPED

@R ..

202

:L(IST)

000005 *

000010 * SAMPLE PROGRAM FOR LIST AND DUMP OUTPUT

000015 *

000020 CLA CLEAR A REGISTER

000025 CCB CLEAR AND COMPLEMENT B REGISTER

000030 STD SET OVERFLOW R~GISTER

000035 LOA ALPHA+1 LOAD A AND B REGISTERS

000040 LOB BETA

000045 *

000050 ALPHA DEC 11 0 12.13 DECIMAL CONSTANTS

000055 BETA OCT 11.12.-13 OCTAL CONSTANTS

000060 *

LIST ENDS

203

@:X(ECUTE)
@:D(UMP)

A REGISTER OCTAL
DECIMAL

000014
000012

B REGISTER OCTAL
DECIMAL

000011
000009

E REGISTER 1

0 REGISTER 1

TYPE
ELSE

R TO
TYPE

RETURN
D. FOLLOWED BY OPERAND TO BE DUMPED

@D .•ALPHA
DECIMAL
OCTAL

000011
000013

TYPE
ELSE

R TO
TYPE

RETURN
D. FOLLOWED BY OPERAND TO BE DUMPED

@D .BET A-1
DECIMAL 000013
OCTAL 000015

TYPE
ELSE

R TO
TYPE

RETURN
0, FOLLOWED BY OPERAND TO BE DUMPED

@D.BETA+1
DECIMAL 000010
OCTAL 000012

TYPE
ELSE

R TO
TYPE

RETURN
D, FOLLOWED BY OPERAND TO BE DUMPED

@R

204

@:LIST .·5. 30

000005 *
000010 * SAMPLE PROGRAM FOR LIST AND DUMP OUTPUT
000015 *
000020 CLA CLEAR A REGISTER
000025 CCB CLEAR AND CUMPLD!.Ef·n U HECIS.f[R
000030 STD SET OVERFLOW REGISTER

LIST ENDS

@:LIST .·28. 32

000030 STD SET OVERFLOW REGISTER

LIST ENDS

205

@:LIST •135

000035 LOA ALPHA+1 LOAD A AND B REGISTERS
000040 LOB BETA
000045 *
000050 ALPHA DEC 11.12.-13 DECIMAL CONSTANTS
000055 BETA OCT 11.·12.13 OCTAL CONSTANTS
000060 *

LIST ENDS

http:11.�12.13

206

APPENDIX F

MEMORY MAP AND FUNCTIONAL UNIT RELATION CHART

207

INTRODUCTION

The Memory Map offers a through listing of all the

program units. The address of almost every subroutine as

well as a brief description of the subroutine has been

included.

Immediately following the Memory Map is a chart to

display the relationship between the program units on each

page. For each program unit there is a list of the units

called and also a list of the different program units which

call each particular unit. The number following each entry

in the chart refers to the page on which the unit resides.

208

ADDRESS

00000

00001

00002
00003

00004

00005

00006

00011

00012

00101

00103

00172

00211
00313
00343

00365
00416
00427

00511

00516

00532
00576
00642

00677

00714

MEMORY MAP

PAGE 0

A REGISTER

B REGISTER

EXIT SEQUENCE TO FORWARD REFERENCE WARNING IF A AND
B CONTENTS ARE USED AS EXECUTABLE INSTRUCTIONS

POWER FAIL INTERRUPT HALT

MEMORY PROTECT/PARITY ERROR HALT

DIRECT MEMORY ACCESS CHANNEL

DISC DATA CHANNEL

DISC CONTROL CHANNEL

JUMP TO INITIALIZATION

BASE PAGE LINKAGE OF SYSTEM_ SUBROUTINES

ASSEMBLER TABLE ADDRESSES

CONSTANTS
Decimal constants
Octal constants
Alphabetic constants

VARIABLES
System variables
Temporary variables
Edit variables

CONSTANTS AND VARIABLES FOR DISC INPUT DRIVER

CHARACTER CONSTANTS

BUFFERS
Input buffer

Auxiliary input buffer

Data store buffer

OCTAL CONSTANTS

INTERRUPT HALTS

209

00717 INTERRUPT SERVICE SUBROUTINE CALLS

00727 ERROR MESSAGE OUTPUT

ERROR MESSAGE SUBROUTINES
00724 ERROR Call BPLN and REENT
00730 REENT Print re-entry request
00753 BPLN Print error message

00763 BASE PAGE ERROR MESSAGES

01131 TABLE OVERFLOW WARING

INTERRUPT SERVICE SUBROUTINES
01154 DMASS Clear control flag on DMA channel
01157 DCSS Clear control flag on disc data channel
01162 ccss Clear control flag on disc control

channel

INITIALIZATION SUBROUTINE
01165 CNFIG Configure I/O package

LEXICAL SCAN SUBROUTINES
01234 GETCR Get next character from input buffer
01253 NTBLK Get next non blank character
01262 RDCOM Read upto a conuna in buffer
01272 BCKSP Back up one character in buffer
01304 TRMCK Check for valid terminator character
01313 SAVEE Save present contents of (E)
01317 RSTRE Resore contents of (E)

ASSEMBLY SUBROUTINES
01323 WMOVE Move N words
01340 DATAD Adjust address for data address
01350 IDRCT Mask on indirect reference bit

EXECUTION SUBROUTINE
01355 SAVR Save register contents after execution

EDIT SUBROUTINES
01365 EDTAD Prepare address pointer for edit
01374 PRE PR Prepare to scan editted text
01411 DSCB Delete from Source Code Block
01450 SNGDL Delete a single machine code instruction
01457 XDEL Find assembled instruction after deletion
01504 SVPSN Save user program position before edit
01510 JMPEl Insert one jump during edit
01515 JMPAF Place return after edit entry
01525 JMPBF Place link to edit entry
01532 JMPS Store two jump instructions to link edit

entry

210

DISC INPUT DRIVER SUBROUTINES
01543 D::ESKI Disc input controller
01562 DISKD Disc input driver
01607 SEEK Output disc head positioning commands
01652 RSEEK Output disc seek after ten read errors
01662 STAT Retrieve disc status word

PAGE 1

ADDRESS

02000 SYSTEM CONTROLLER

INPUT/OUTPUT PACKAGE
02041 DATIN Request input
02103 TTY.I Preform input operation
02122 TTY.P Preform output operation
02165 I.OFF Turn off interrupt mode
02172 I.ON Turn on interrupt mode
02202 PROCS Character processing for input
02252 GETCH Character processing for output
02266 INIT Initialize for output
02300 I.STP Interrupt service
02312 NWLNS Output multiple carriage return line

feed
02320 CRLFD Output carriage return line feed
02324 CNDEC Binary to Ascii decimal
02330 CNOCT Binary to Ascii octal
02334 CNBIN Store converted value
02370 DVUKN Divide value to be converted

STATEMENT STORE
02410 STSCB Store statement in Source Code Block
02457 LBDEF Define label beginning statement

02526 SYSTEMS DIRECTIVE CONTROLLER
02530 ABORT Abort program
02632 DUMP Branch to Dump routine
02534 EDIT Prepare for an edit operation
02567 HALT Halt the computer
02574 LIST Interpret and execute List request
02643 SEQUENCE Branch to sequence routine
02645 XECUTE Branch to execute user program

02676 SEQUENCE DIRECTIVE EXECUTION

DUMP DIRECTIVE EXECUTION
02721 Dump register contents
02756 Dump data address contents

211

03030
03040
03061
03072
03103

03123

03211

03231

03257

03334
03446

03535

03625

03671

ADDRESS

04000

04517

05174
05212
05245

05237

05350
05401
05416
05550

05672

DUMP SUBROUTINES
EODMP Prepare to dump either (E} or (O}
RGDPl Dump (A) or (B)
RGDP2 Dump (E) or (0)
RGDP3 Print register name
ASCDC Convert binary to Ascii decimal with

minus sign if needed

TEXT FOR DUMP OUTPUT

DUMP ERROR MESSAGES

USER PROGRAM EXECUTION

FORWARD REFERENCE EXECUTION WARNING

EXECUTION
SSTDF
PLCDF

FNDAD

FWDRF

SUBROUTINES
Define compound operands
Define Program Location Counter (PLC)
references
Find address for PLC or compound
operands
Define forward references

LIST SUBROUTINE

PAGE 2

LEXICAL SCAN
LEX Main lexical scan subroutine to scan all

source program statements

LEXICAL ERROR MESSAGES

LEXICAL
RANGE
STDAT
VAL

LABCK

CLEAR
LOKUP
FIND
MNEM

DATFL

SUBROUTINES
Check range of operand value
Store data in temporary buffer
Input temporary value for undefined
symbol
Read in and examine operand for data
definition
Initialize all variables in lexical scan
Syrr~ol Table look up
Find symbol address in Symbol Table
Look up mnemonic in Instruction Table

Check for data table overflow

212

ADDRESS

06000
06020
06227
06302
06336
06367
06423
06461
06500
06515
06553
06607
06616
06662

07000

07155
07435
07501

07516

07561

07657

ADDRESS

10000

10327

10336

PAGE 3

NUMBER MANIPULATION SUBROUTINES
CONST
NUMCK
.PACK
NORML
MBYlO
DBYlO
MPY
DECHK
TYPCK
IFIX
TWINT
GTNUM
OCTIN
OCTCK

Input a decimal constant
Fetch number and convert to binary
Normalize and pack floating point number
Normalize value and exponent
Multiply unpacked number by ten
Divide unpacked nurr~er by ten
Multiply integer in (A)
Examine character to be decimal digit
Determine real or integer
Convert real to integer
Input one or two decimal integers
Input a positive decimal integer
Input an octal integer
Examine decimal or octal operand integer

ERROR MESSAGES FOR NUMBER ROUTINES

LEXICAL AND

OPREC
LABRD
LET PR

DATRG

EXECUTION
CDSCN

SEQUENCE
SQNCE

DUMP SUBROUTINES
Read in operand
Read a symbol
Check character to be alphabetic or
period
Check address to be in program data
table range

SUBROUTINE
Scan user program for forward references

SUBROUTINE
Read in user defined statement numbers

.PAGE 4

INSTRUCTION ASSEMBLY

ASSEMBLY SUBROUTINES
SETCD Set and store instructions in appropriate

program area
Evaluate and store all memory reference
operands

DETLN Determine assembly length for a Memory
Reference instruction

ASMBL Allocate space in Source Code Block for
storing statement

213

10511

10535
10622
10627
10664

11000
11066

11210
11332
11405
11475
11623

11727

ADDRESS

12000

12267
12323
12437
12476
12542
12651

12661
12701

12726

13207

13305
13325

13412

13462

DTSET

STLBL
STRCD
STRCK
STPLC

Store data definition in program data
area
Store symbol in Sywbol table
Store instruction in program area
Check user program area for overflow
Store Program Location Counter reference

EDIT SUBROUTINES

CMOVE

CASCD

DELTE
D'l'EDD
DTEDI
SCSYM
STFSP

ASMAD

Move assembled code
Adjust forward reference pointers of
statements involved in an edit
Delete statement from assembled code
Delete data definition
Insert data definition
Adjust data address after an edit
Store length and address of deletion
from Source Code Block
Retrieve asserr~ly addresses of instruc­
tions involved in an edit

PAGE 5

EDIT CONTROLLER (INSTRUCTION SCAN)

EDIT SUBSYSTEMS
Single Delete
Multiple Delete
Single Insert
Multiple Insert
Replace
End

EDIT SUBROUTINES
EDCLR Initialize edit variables
VETCK Check for a veto request

EDI'l'OR ERROR MESSAGES

EDIT SUBROUTINES
EDIPT

ISCB
XINS

YINS

MULIN

Source code input during an edit opera­
tion
Link insert with Source Code Block
Find assembled instruction which
precedes insert
Find assembled instruction which
follows insert
Prepare for and begin machine code
multiple insert

214

13544

13603

ADDRESS

14000

14340

ADDRESS

15200
15602
17160
17634
20000
25700
26001
26701

ENDMI End a multiple insert operation
RSCB Link replacement with Source Code Block

PAGE 6

INI'IIALIZATION PROGRAM

DISC INPUT STORE BUFFER

ASSEMBLER TABLES

INSTRUCTION TABLE
SY:f\o~BOL TABLE
SPECIAL SYMBOL TABLE (SST)
PROGRAM LOCATION COUNTER TABLE
SOURCE CODE_ BLOCK (SCB)
FREE SPACE TABLE
USER PI<OGRAM AREA
PROGRAM DATA TABLE

215

PROGRAM UNIT INTERRELATION

PAGE 0

ERROR MESSAGE
PROCESSOR

INTERRUPT SERVICE
SUBROUTINES

INITil,LIZATION
SUBROUTINE

LEXICAL SCAN
SUBROUTINES

ASSEMBLY
SUBROUTINES

EXECUTION
SUBROUTINE

EDIT
SUBROUTINES

DISC INPUT
DRIVER

PAGE l

SYSTEM CONTROLLER

I/O PACKAGE

STATEMENT STORAGE

SYSTEM DIRECTIVE
CONTROLLER (SDC)

CALLING PROGRAM PROGRAM CALLED

THROUGHOUT THE
PROGRAM

I/O PACKAGE (1)

DISC INPUT
DRIVER (0)

INITIALIZATION
PROGRAM (6)

LEXICAL SCAN (2)
SYSTEM DIRECTIVE
CONTROLLER (1)
EDIT CONTROLLER (5)

STATEMENT ASSEMBLY (4)

XECUTE DIRECTIVE (1)

EDIT SUBSYSTEMS (5)
EDIT SUBROUTINES (5)
EDIT DIRECTIVE (1)

INITIALIZATION (6) 	 INTERRUPT SERVICE
SUBROUTINES (0)

CALLING PROGRAM

I/O PACKAGE (1)
LEXICAL ROUTINES (O)
STATEMENT ASSEMBLY (4)
STATE~1ENT STORJ'.,GE (1)

THROUGHOUT THE
PROGRAM

SYSTEM CONTROLLER (1)

SYSTEM CONTROLLER (1) LEXICAL ROUTINE (O)

216

PAGE 1

DUMP
'

EDIT

LIST

SEQUENCE

XE CUTE

PAGE 2

MAIN IEXICAL
SCAN SUBROUTINE

;r..EXICAL SCAN
SUBROUTINES

PAGE 3

NUMBER l1ANIPULATION
ROUTINES

LEXICAL Ji.ND DUMP
SUBROUTINES

CALLING PROGRAM

SDC (1)

SDC (1)

SDC (1)

SEQUENCE DIRECTIVE

(1)
EDIT CONTROLLER (5)

SDC (1)

SDC (1)

LEXICAL SCAN (2)

CALLING PROGRAM

SYSTEM CONTROLLER

(1)

EDIT SUBROUTINES
(4 I 5)

MAIN LEXICAL SCAN
SUBROUTINE (2)

CALLING PROGRAM

LEXICAL SCAN
SUBROUTINES (2,3)
EDIT CONTROLLER (5)
SDC (1)

LEXICAL SCAN (2)
DUMP DIRECTIVE (1)

PROGRAM CALLl~D

DUMP SUBROUTINES (1)
LEXICAL AND DUMP
SUBROUTINES (2,3)

EDIT SUBROUTINES (0)

LIST SUBROUTINE (1)
NUMBER MAN"IPULl\TION
SUBROUTINES (3)

STA,TEMENT NUMBER
SUBROUTINE (3)
LIST DIRECTIVE (1)

XECUTE SUBROUTINES
(1,3)

PROGRAM CALI.ED

LEXICAL ROUTINES
(0,2,3)

NUMBER MANIPULATION
ROUTINES (3)

LEXICAL SUBROUTINES
(O)

NUMBER MANIPL'LA'l'ION
ROUTINES (3)

PROGRAf1 CALLED

LEXICAL SUBROUTINES
(0)

LEXICAL SCAN (O)
NUMBER :t-1ANIPULA'l'ION
ROUTINES (3)

EXECUTION XECUTE DIRECTIVE (1)
SUBROUTINE

217

PAGE 3 	 CALLING PROGRAM PROGRAM Cl~LLED

SEQUENCE SEQUENCE DIRECTIVE NUMBER MANIPULATION

SUBROUTINE (1) ROUTINES (3)

(STATF:.V.:.ENT NUMBER INITIALIZATION (6)

INPU'l')

PAGE 4 	 CALLING PF.OGRAM :fROGRAM. CALLED

INSTRUCTION ASSEMBLY 	 SYSTEM CONTROLLER ASSEMBLY SUBROUTINES
(1) (0)

EDIT SUBSYSTEMS (5)
EDIT SUBROUTINES (4,5)

EDIT SUBROUTINES 	 EDIT CONTROLLER (5) LEXICAL SC~N (2)
EDIT SUBSYSTEMS (5) ASSEMBLY SUBROUTINE

(4)

PAGE 5 	 CALLING PROGRAM PROGRA.r-i CALLED

EDIT CONTROLLER 	 SYSTEM. CONTROLLER EDIT SUBSYS':f'F:HS (5)
(1) 	 EDIT SUBROUTINES

(4,5)
LEXICAL SUBROUTINES

(O)

EDI'l' EUBSYSTEM.S EDIT CONTROLLER (5) EDIT SUBROUTINES
{0,4,5}

PAGE 6 	 CALLING PROGRAM PROGRAM CALLED

INI'I'IALIZATION 	 SYSTEM. CONTROLLER INI'l'IALIZATION
(1) 	 SUBROUTINE (0)

DISC INPUT DRIVER
(0)

STATEMEN'I' NUMBER
INPUT (3)

218

APPENDIX G

SOURCE PROGRAM LISTING

•ASM9,A,L,,. . ..
• 	 PURPOSE

--,,.--~,;;;~-~~----

•
• TO ASSEMBLE ANO EXECUTE HE~LETT PACKARD ASSEMBLER
• LANGUAGE PROGRAMS•• INPUT SOURCE CODE WILL BE ASSEMBLED IMMEDIATELY AFTER
• ENTRY FORWARD REFERENCES WILL BE RETAINED UNTIL
• DEFINITION. EXECUTION MAY BE SPECIFIED ANY NUMBER ___	"'___OF TI MES--ONCt-ALL_OR_-P.1rn.1-ur·THt -PROGR1n1-H~-BTEN___________
• DEFINED ••••
• 	 IMPLEMENTATION HEWLETT PACKARD 2100A.. ..

----- .,------·------------------CUMPUTERl:ABURITOZV­
• 	 DEPARTMENT OF APPLIED MATHEMATICS
• 	 MCMASTER UNIVERSITY..
• 	 DIRECTOR! DR. N. SOLNTSEFF..
•..

----\C""·---s TororGc-RE t1 u I RE MEN Ts. 	------- -----------­•
• THE PROGRAM USES ALL AVAILABLE COMPUTER STORAGE.
• (12K OR 12288 WORDS>..
• IN ADDITION, TWO TRACKS BEGINNING A DISC CARTRIDGE HAVE
• BEEN ALLOCATED TO HOLD READ ONLY DATA. THE DATA IS SYSTEM
• -IN FORMAT! ON -PRES ENTEU-----rn--TRFlJSER. 	 ----------­,,..
• EACH TRACK IS 3072 WORDS UNDER THE PRESENT DOS H OPERATING
• SYSTEM •..

N
I-'
\.0

""'·-·<~·--:·7"":-,--,,,_,.., ·'1•f'-"'~' '.'- '-;."-'-"'"'"'°~ ,q­

...

...

... PROGRAM RESTRICTIONS ...
¥

TAS-St.Mlrl ERFTATURE S-~TIM~ BY!"Hr-STORA"Gt"C7i1~ACTTYlfF
• THE COMPUTER. ALL ASSEMBLER PROGRAMS AND TABLES ARE CORE
• RESIDENT WHICH LIMITS THE AVAILABLE AREA FOR USER PROGRAM
... TABLES CTHIS rs DISCUSSED AT LENTH IN THE SECTION ON USER
•PROGRAM ~ESTRICTIONS> •.. ..
• TWO TRACKS ON A CARTRIDGE DISC ~OLD READ ONLY DATA FOR

---.---rrI SP[A'r-As-rfHROD OCT ll. P.y--TNFOK. M7\T roN-Tn-- r!fE--USER;--THERCAR.E
• ELEVEN PAGES OF INFORMATION STO~~D SO THAT NO PAGE OF
• INFO~MATION GROSSES A TRACK BOUNDARY. THIS rs PARTICULARLY
• IMPO~TANT FOR THE DISC INPUT DRIVER USED TO INPUT THIS DATA
.. CANNOT c~oss TRACK BOUNDS.
• PROG~AM AOOqESS TABLES ARE SET FOR THE DATA BEGINNING ON
• THE FIRST SECTOR OF THE FIRST T~ACK. THE DATA WAS STORED
• USING THE MOVING HEA1 DISC OPERATING SYSTEM <DOS ~>

-~.. TAG ILTTY---T n---w KTTE" -- 0 Nr·o---u SER- ""FIL"ES___ rEXE c -c A"Lr,-~-REQUES,---C-OUE
... 15)..
• MOVING THE DISC RESIDENT DATA RE~UIRES THAT THE ADDRESS
• TAJLE <LAST TABLE IN LISTING) BE UPDATED TO COMPENSATE FOR
• THIS CHANGE •..
:,.

N

N

0

..
1lf. PROGRAMMING LANGUAGE....
..,. HEWLETT PACKARD ASSEM8LY LANGUAGE FOR THE 2100 SERIES

--~-(ff-CUHPU TERS-TA13 SOCUTc-.lrSSEM13TYf ---------­... PRIMARY STORAGE
If. ,,.
" XOPCO OPERATION CODE TA8LE FOR INST~UCTION LOOK UP

----.. --------TSYSTEM-TA°ff[t. NOTACC ES I BLTt31Tff£--USER-r--~-----·---

.. "" "' XSTBL MAIN SYMBOL TABLE

• XSST SPECIAL TABLE FOR COMPOUND OPERANDS
"" (OPERAND WITH A LABEL AND NUMERIC VALUE)...

"" XPLC PROGRAM LOCATION COUNTER TABLE

__."'________----rHOLD-~LT-·Prc-REFERENCTS-To·-·BtUEFTffETJ
"" IMMEDIATELY BEFORE EXECUTION>..
..,. XSCB SOURCE CODE TABLE
"" <STORE SOURCE PROGRAM ALONG WITH ALL
..,. NECESSARY INFORMATION)..
• XFRSP FREE SPACE IN SOURCE CODE BLOCK

---~ {STO~E .LENGTf-r·AmrATIDRESS--UF_D_E~L-E-1-r·UNs FROM SCB>..
..,. XUSRP USER PROGRAM AREA FOR MACHINE CODE INSTRUCTIONS..
• XDATA USER PROGRAM AREA FOR DATA..

--~~UTHOR --JAMES-~TORRESTER .. -----­.. MASTER S DEG~F.E PROJECT.. MCMASTER UNIVERSITY, HAMILTON ONTARIO.... NOVEMBER, 197 3 ..
!V.. N
1--'

..
• USER PROGRAM RESTRICTIONS... ---- ------- -----------­

__--;-_L_A2-S.Eti8_L.ER..__CD1~tIR_QLSIAJIJ:1..,._,__,_T"--------------------­
• IS NOT NECESSARY ANO ANY ATTEMPT TO ENTER ONE WILL
• ONLY RESULT IN A LEXICAL ERRO~ •..
• THE ASSEMBLER IS DESIGNED TO ASSEMBLE A PROGRAM
• ASSUMING ASM8,A,L HERE TO BE THE ASSEMBLER CONTROL
• STATEMENT •..

--;v;-·oTHrrt="tl\TURES LIKEiHfU'fRYlJUTPUT OR A-C'CRDSS REFERENCE
• TABLE ARE NOT AVAI.LA9LE •..
•• 2 PROGRAM SIZE..
• PROGRAMS ARE RESTRICTED TO SMALL LEARNING PROGRAMS FOR
• STORAGE BUFFERS ARE NOT LARGE.

-----~VERFLOR-BY-ANY--oF-TFJE----rO[TOHTf'rb'-USE R I A BL ES ..
• THE MAIN SYMBOL TABLE
• THE SPECIAL SYMBOL TAOLE
• THE PROGRAM LOCATION COUNTER TABLE
• THE SOURCE CODE BLOCK .
• OR THE USER PROGRAM AREAS <EITHER DATA OR MACHINE
• INSTRUCTION}------... '· ------ ... ­- -~· --..---~-

.. HILL IMM£0IATELY HALT ASSEMgLY WITH NO RECOVEqY
• PROCEDURE. WITH THE EXCEPTION OF THE SYMBOL TABLE, A
• WARNING IS pqINTEO IF A TABLE IS CLOSE TO OVERFLOWING
• WITH INSTRUCTIONS TO BEGIN EXECUTION.

1\.1
!>,)

t-.J

http:L_A2-S.Eti8_L.ER

•• BEGINNING EXECUTION IS APT TO FREE AREA IN THE PLC TABLE
• AND THE SST AREA AS OPERANDS ARE DEFINED 9EFO~E EXECUTION.
• SPACE IN THE OTHER TABLES CANNOT BE REPRIEVED.,,...
.. 3 PROGRAM STRUCTURE•• THE USER PROGRAM WLL BE TREATED AS AN ABSOLUTE PROGRAM••THERE WILL NOT BE ANY..
• LITERALS

---~---EXTERNAL-SUEffi!TGTIN!:rATI:l
• O~ ANY FEATURES ~VAILABLE USING THE OPERATING SYSTEM
• OR RELOCATA8LE ASSEMBLY,,.
•• MULTIPLE INSTRUCTIONS ARE NOT PERMITTED..
,,. THE OPERAND TERM FOR MEMORY REFERENCE OR EXTENDED ARITH

-----11--MEMORY-REFERENCC-TNSTRUCTIONS-I-S-TIBTIED~CJ --~---------

•
• (+LABEL> (+/-VALUE> C,I>
•• THE PROGRAM LOCATION COUNTER REFERENCE <•> MAY REPLACE
• THE Ul.BEL • •..

--- ~--SE VER~--PSF.UDCf 0 PS A~~Ul1iV1rTilffiT~
• CA LIST OF AVAILA9LE ASSEMBLER INSTRUCTIONS AND PSEUDO OPS
• FOLLOWS>..

N
N
w

,,,.

,,,. FOUR OF THE AVAILABLE PSEUDO OPS HAVE 3EEN ALTERED FROM

• THE STANDARD HEWLETT PACKARD DEFINITION. ,,,.
• A 3 S A_DDRES_S_DE£I Mil IQ_N_MU SI_J3E JUT!::Ul:i_9_Q_U_NUS__O_E_Ilf_E______
,,,. USER PROGRAM AREA OR THE FIRST 100 (OCTAL>
,,,. WORDS OF COMPUTER STORAGE •..
t WILL INITIALIZE N CO<N~128l STORAGE LOCATIONS TO
• ZERO AS WELL AS ADVANCE THE LOCATION COUNTER N
• TIMES •
• ,,,. DEF IS STRICTLY RESTRICTED TO DATA ADDRESS DEFINITION
~ N---uNOEFTNEl:f-OPERAND-rs---PERMrTTEO-EXGEPITITJRTN-~~-----

• AN EDIT, BUT THE USER WILL IMMEDIATELY BE
,,,. REQUESTED TO DEFINE THE LABEL ON NEXT ENTRY. ,,,.
• DEF INSTRUCTIONS SHOULD NOT BE WITH EDIT
• OPERATIONS NOR SHOULD THEY FOLLOW DATA INVOLVED
• IN AN EDIT OPERATION OTHERWISE THE DEF POINTER
,,,. WJJ,J,.___f! L~_k_T E8.E_Q_.

• ENO WILL SIGNAL ENO OF PROGRAM ANO ADVANCE TO EXECUTION
• ROUTINES.
,,,. IT HILL NOT BE STORED WITH THE USER PROGqAH
• IN THE SOURCE CODE BLOCK AND ANY LABEL PRECEDING
• OR ANY OPERAND FOLLOWING WILL BE IGNORED.
• END IS NOT PERMITTED DURING AN EDIT OPERATION •..

N
N
.r;..

••• ASSEMBLER MACHINE conE INSTRUCTIONS AREt
•

---: ~B~-----~88-l8 rn~ ------­
• ALF ~OTATE CA> LEFT 4
• ALR SHIFT <A> LEFT 1, GlEAR SIGN
• ALS SHIFT (A) LEFT 1
• ANO ANO TO <A>
• ARS SHIFT <A> RIGHT 1, CARRY SIGN
• ASL ARITHMETIC LONG SHIFT LEFT
• ASR ARITHMETIC LONG SHIFT RIGHT---,,;--- BL ROTATE-TBl-lEF~ - --'----------------­
• BLR SHIFT LEFT 1, CLEAR SIGN
• BLS SHIFT CAl LEFT 1
• BRS SHIFT <A> RIGHT 1L CARRY SIGN
• CCA CLEAR ANO COMPLEM~NT CA>
• CCB CLEAR ANO COMPLEMENT (8)
• CCE CLEAR AND COMPLEMENT CE) SET CE> = 1
• CLA CLEAR <A>

-----~ CLB CLEAR-tsr--------­
• CLC CLEAR I/O CONTROL BIT
• CLE CLEA~ CE>
• CLF CLEAR I/O FLAG
• CLO CLEAR OVERFLOW BIT
• CMA COMPLEMENT <A>
• CMB COMPLEMENT CB)

N
N
Ul

• CME COMPLEMENT <E>
• CPA COMPARE TO <A>, SKIP IF UNEQUAL
• CPS COM~ARE TO CB>, SKIP IF UNEQUAL
• DIV DIVIDE
• QLO_____OOU1LE_LOAQ_____
• DST DOUBLE STORE
• ELA ROTATE (£) AND <A> LEFT 1
• ELS ROTATE CE) ANO LEFT 1
• ERA ROTATE <E> AND (A) ~IGHT 1
• ERB ROTATE (£) ANO (8) RIGHT 1
• HLT HALT
• INA INCREMENT CA> BY 1
• !NB INC~EMENT {8) 9Y 1

-~ OR 1 NC LU SI VE--o-R--IN TO-TA-1
• ISZ INC1EMENT, THEN SKIP IF ZERO
• JMP JUMP
• JSB JUMP TO SUBROUTINE
• LOA LOAD INTO <A>
• LOB LOAD INTO
• LIA LOAO INTO <A> FROM I/O CHANNEL
• LIB LOAD INTO CB> FROM I/O CHANNEL

--~ i_-sR LOGICAL TONG-SHIFT-RIGHI-- =-----------­.. MIA MERGE <OR> INTO CA> FROM I/O CHANNEL.. MIB MERGE COR> INTO CB) FROM I/O CHANNEL.. MPY MULTIPLY.. NOP NO OPE~ATION.. OTA OUTPUT FROM CA> TO I/O CHANNEL.. OTB OUTPUT FROM (8) TO I/O CHANNEL

N
N

°'

.. RAL ROTATE CA> LEFT 1.. RAR R.OTATE <A> RIGHT 1.. Rl3L ROTATE CB> LEFT 1.. RBR ROTATE (8) RIGHT 1.. R.Rl ROTATE <A> AND (8) LEFT-----.- RRR- t<OT ATE___CA l-ANO--(B~rGHI.. RSS REVERSE SKIP SENSE.. si::z SKIP IF CEl = 0 si=-c SKIP IF I/O FLAG = n <CLEAR>
SFS SKIP IF I/O FLAG = 1 CSET>.. SLA SKIP IF LSB OF CA> IS ZERO.. SLB SKIP IF LS8 OF (8) IS ZERO.. soc SKIP IF OVER~LOW BIT = 0 <L CE AR>---:ff. sos -s KI p --1 F-ov ER FLow--ffI T-=-1--rsrn .. SSA SKIP IF SIGN BIT OF CA> = 0.. SSB SKIP IF SIGN BIT OF = 0.. STA STO~E (A>.. sre ST011E (3).. STC SET I/O CONTROL BIT.. STF SET I/O CONTROL FLAG.. STO SET OVERFLOW BIT--,,. SHP SWITCH--(A1 --AND-cur­.. SZA SKIP IF (A) = 0.. SZB SKIP IF (8) = 0.. XOR EXCLUSIVE OR TO CA>•

N

N

-..J

•• ASSEMBLER PSEUDO OP INSTRUCTIONS ARE LIMITED TOI
..• ABS DEFINE ABSOLUTE VALUE.. ASC GENERATE ASCII CHARACTERS
Jf --SSS RESERVE___BLOCIC(ff-STORAGE_________
• DEC DEFINE O~CIMAL CONSTANTS.. DEF DEFINE AOD~ESS
• ENO TER~INATE PROGRAM C9EGIN EXECUTION>.. EQU EQUATE SYM80L.. OCT DEFINE OCTAL CONSTANlS..
• ­-~---~-----··--um;-2

SUP PRESS LISTING OF EXTENDED CODE LINES
JMP MPPE,I UNDEFINED OPERAND IN USER PROGRAM
JMP MPPE,I
HLT 4,C HALT ON A POWER FAIL
HLT 5 MEMORY PROTECT/ PARITY ERROR HALT

•
• NOP ALL MAIN_F_!S_AHLL~J_{RRltP_l~_LOCATIONS..

OCT o,o,o,o,o,o,o,o
OCT o,o,o,o,o,o,o,o

..
• FIRST 100 <OCTAL> LOCATIONS AVAILABLE TO USER• ORG 1018
•
• JOAP-10---TNITrITT...TLATTO~..
START JHP •+1,I

DEF GREET..

N
N
CX)

...
• BASE PAGE LINKAGE OF SYSTEM SUBROUTINES ...

WRITE DEF TTY.P TTY OUTPUT LINK

--.~~~~---B~~--ls~~r--~I~~--~56~efE-cb6~K!31.-~1'A-OlYRtS-S-__________
ASMO DEF ASMAO AOOR OF ASSEMBLED CODE IN EDIT
CLER DEF CLEAR INITIALIZE VARIABLES FOR LEXICAL SCAN
CMVE DEF CMOVE MOVE ASSEMBLED CODE
CNST DEF CONST REAL OR DECIMAL INTEGER
OATN DEF OATIN REAQ INPUTL RETURN FIRST CHARACTER
DLTE DEF DELTE DELETE ASStMBLED CODE
OTED OEF OTEDD DELETE DATA DURING EDIT

----OTO r-- DEF-DTE fl r--INSf:Rr-OATA--D URING--ED!T
OTFL DEF OATFL CHECK DATA AREA OVERFLOW
OTRG DEF OATRG CHECK ADDRESS RANGE IN BUFFER
OTST DEF DTSET STO~E DATA
GTN~ DEF GTNUM INPUT POSITIVE INTEGER
IMON DEF I.ON TURN ON TTY INTERRUPT
IOFF DEF I.OFF TURN OFF INTERRUPT
ISTP DEF I.STP INTERRUPT SERVICE

--TBCK ____DEF-CABCK--REAO -- IN--OPF.RAND--CHt.ClCLmrr
LBRD DEF LABRD REAQ LABEL
LEXI DEF LEX LEXICAL SCAN OF SOURCE CODE
LISTI DEF LIST LIST PROGRAM
LOKP DEF LOKUP
LTPR DEF LETPR LETTER OR PERIOD CHECK
NMBR DEF NUMBR INPUT DECIMAL OR OCTAL INTEGER
NWLN DEF CRLFD OUTPUT CR-LF

---Nwcs--DEF-Nl-l[t\1S___OUTUT-11ULTIPC~~;;;;-u---

OCTN DEF OCTIN OCTAL INTEGER INPUT
OPRC DEF OPREC OPE~ANO RECOGNITION

l\J
l\J
\.0

SCNCD DEF COSCN SCAN ASSEM8LED CODE FOR FWD REF
SFSP DEF STFSP LENGTH ANO ADDR OF DELETE IN FR SP
SLBL DEF STLBL STORE LA9LE IN SYM90L TABLE
SQNC DEF SQNCE READ IN STATEMENT NUMBERS

_____SlCO__ DE:F__ SEJCO __SET_ ANO STORL_CODE__________
STCK DEF STRCK CHECK PROGRAM AREA OVERFLOW
TWNT DEF TWINT INPUT TWO POSITIVE INTEGERS
TPCK DEF TYPCK DETERMINE INTEGER OR REAL..
ASME DEF ASMEO EDIT VARIABLE ADDRESSES
SCBE DEF SCBEO

""
A8SSR DEF LXRTN RETURN TO ABS/BSS PROGRAM --cNTR[-0 EF-CMAN o--crNI(-ro-s YS Tr M-·c ONT ROLLER
DMPRT DEF OMP2 RETURN TO DUMP AFTER USER INSTR
EOTR. DEF EDIT LIN~ TO EDIT SUPERVISO~
EDLEX DEF EDXRT LINK TO EDIT FOR SOURCE INPUT
GRTER DEF GRT8
I.O DEF TI.1 ADDR OF FIRST I/O INSTR
INT1 DEF I.OFF+2
INT2 DEF I.ON+2

----IN T3--0E FIP ~ 3:;; r---­
I NT 4 DEF TTY.P+2
LXANL DEF LXSCN LINK TO LEXICAL ROUTINE
MIRTI DEF MIR.T RETURN DURING MULTIPLE INSERT
MPPE DEF MPPET WARNING ABOUT UNDEFINED OPERANDS
SC8I DEF EORTN RETURN FROM EDIT TO STORE IN SC9
,,.XEQ DEF XEQI LINK TO EXECUTE ROUTINE

,,.

N
w
0

-·--- -- - ------- -- ··----------· ·--------------------- ------------------­

.. ,,..

A EQU 0 REGISTER REFERENCE ADDRESSES

B EQU 1

---8{--~~~-+~~ 8}~g--g~~~R-§~~-~~~~NIT
TTY EQU 17B CHANNEL NUMBER IIO DEVICE
XOPCD DEF 152003 OPCODE TABLE
xsrqL OEF 156028 SYM30L TAELE
XSST DEF 171608 AUXILIARY SYMBOL TA8LE
XPLC DEF 176348 UNDEFINED PLC REFERENCE STORE
XSC8 DEF 200008 SOURCE CODE BLOC
XFRSP DEF 257009 TABLE OF FREE ~PACE

---xusR.P--CJEF-2634TTI--USER. PR-OGR!\ M-- ~----------·

XDATA DEF 267018 PROGRAM DATA..
•
YSTBL DEF 171578
YSST DEF 176338
YPLG DEF 177778
YSCB OFF 256778

------YFRSP -TJEF-?5 7778___
YUSRP DEF 266778•
PROG DEF 0263408 ADDR FOR SUBR JUMP TO USER PRGRM

N
w
......

•
• DECIMAL CONSTANTS•..

____l_ERO__DEC O_____________________________
.1 DEC 1
.2 DEC 2
.3 DEC 3
• Y· DEC 4
.5 DEC 5
.6 OEC 6
.7 DEC 7
.8 DEC 8

-~.g--DEC ~g~--------------
.10 DEC Ul
.11 DEC 11
.12 DEC 12
.13 DEC 13
.14 DEC 14
.15 DEC 15
.16 DEC 16---.T8-----UEC-1-a------------------------------­
• 20 DEC 20

.22 DEC 22

.24 DEC 24

.26 DEC 26

.28 DEC 28

.. 30 DEC 30
.32 DEC 32----;'3li-DEC--34-----------------------------­
• 38 DEC 38
.40 DEC 40

----~-·

N
w
N

.48 DEC 48 ASCII ZERO

.50 OEC 50

.52 DEC 52

.64 DEC 64

.72 DEC 72
--"'7_5___0EC_ _?2_ ----------------------------­

• 86 DEC 86
.115 DEC 115
.125 DEC 125

M1 DEC -1

M2 DEC -2
M3 DEC -3
H4 DEC -4
M5 DEC -5---H6___0EC-,,;;;o--------------­
M7 OEC -7
M8 DEC -8
Mg DEC -9
M10 DEC -10

M12 DEC -12

M16 DEC -16

M19 DEC -19
---H20--uEc-:.;2---------------------------------­
M2s DEC -25

H26 DEC -26

M28 DEC -28

M29 DEC -29

M72 DEC -72

M86 DEC -86

M75 DEC -75

--M101l-DEC--;;;;.Ton
M125 DEC -125

M129 DEC -129

M256 DEC -256

M750 DEC -750

M1001 DEC -1001

N
w
w

,,. ..

• OCTAL CONSTANTS..

•
--a13,--oc-r--r-3,­

--a101--ocr-1or-------------------------·--­

s111 OCT 177
8200 OCT 2UO
8337 OCT 337
8376 OCT 375
8377 OCT 377
9400 OCT 400
8700 OCT 700

e100 o OCT 1000
B1200 OCT 12iHJ
81273 OCT 1273
81600 OCT 16!10
81777 OCT 1777
82000 OCT 2000
82400 OCT 2400

---- B 0 7 0 0 .. 0 C T --o 7 0 OU-0
81760 OCT 176000
'f
... ..

070 OCT -70
072 OCT -72
0100 OCT -100- ·0133---oc1;:;13~3------·-------------------------

0337 OCT -337
0340 OCT -340
0700 OCT -700
0701 OCT -701

----·- ~--------·

N
w
~

,,.

•

• ALPHABETIC CONSTANTS,,.
,,.

__	A_Y_ ---llC T 1O1
BE OCT 102
C OCT 103
0 OCT 104
E OCT 105
H OCT 110
I OCT 111
L OGT 114

-~--o-cr-11-5--------------------------------

0 OCT 117
R OCT 122
S OCT 123
T OCT 124 v ocr 126
X OCT 130
Y OCT 131

N
w
V1

,,.
,,.
,,. VARIABLES,,.

----;i,
..

frS-ST9SS- 1 A8--s?BS-s p s Eu DQQ-pf°l_A(;
BAOOR BSS 1 CURRENT BUFFER ADDRESS
CCNT ass 1 CHA~ACTER COUNT
COUNT 3SS 1 HOLDS RECORD LENGTH
CUSTN SSS 1 CURRENT USER STATEMENT NUMBER
OMPFG BSS 1 DUMP FLAG
EOTFG BSS 1 EDIT FLAG
FIRST BSS 1 FIRST ENTRY IN SOURCE CODE BLOCK---FSTM r Bss---1 lRST-S TATEMENl-NUMB!rR_____ ~~---------
GRTFG ass 1 FLAG SET DURING INTROOUCTARY TEXT.
LBCNT BSS 1 LABEL COUNTER IN SYMBOL TABLE
NEXT 3SS 1 ADDR OF NEXT ENTRY IN SOURCE CODE
PREV BSS 1 PREVIOUS ENTRY IN SOURCE CODE BLOCK
SAVA 1SS 1 STORAGE FOR CA>
SAVB BSS 1 STO~AGE FOR CB)
SAVED BSS 1 STORAG~ FOR <E> ANO (0)

--- SEQF G- qss- r -EQUENCE--DTRECTIVE-TNDTC7rTOR
SRCNT BSS 1 BUFFER LENGTH FOR CODE STORAGE
STING BSS 1 STATEMENT NUMBER INCREMENT
TEMPI NOP TTY INTERRUPT STORE
YOATA 3SS 1 UPPER BOUND OF USER DATA AREA
ZDATA BSS 1 NEXT LOCATION IN DATA AREA
ZFRSP 9SS 1 NEXT OPENING IN FREE SPACE
ZPLC ass 1 NEXT LOCATION FOR UNOEF PLC REFERENCE

--zusRP--as~ TIEXT LOCATTOR-TN-U-SER-PRffGRA11 ~----------,,,.

N
w
°'

.y.

ADDR1 ass 1 ADDRESS IN SOURCE CODE BLOCK
AODR2 ass 1 TEMPORARY STORAGE VARIA3LE
ADOR3 BSS 1
ASMBY 9SS 1 SKELETON OF ASSEM INTRUCTION

--ASS-EM8CY~F-C_1'_G_____ ~~---------------,s,SffFG-Ts-s-1
OATPT 9SS 1 DA TA BUFFER POINTER
OPFLG ass 1
EDINT 9SS 1 EDIT INSTRUCTION TYPE
EFLG ass 1 EXPONENT E FLAG
EXP BSS 1
EXPON 1'.3SS 1
INSNM BSS 1 INSTRUCTION NUMBER--LB[Ao---gss-1 [ABEC-ADDRESS___ --------~---------
L8LFG BSS 1 LABEL FLAG
LENTH SSS 1 LENGTH OF ASSEMBLY
LMTFG BSS 1 CONTROL IN SYH TBL SEARCH
LNTH2 ass 1 DATA COUNTER
MANTt BSS 1 MANTISSA TERMS, TEMPORARY STORAGE
MANT2 ass 1
NUMFG 3SS 1 OPERAND NUMBER FLAG

--NUMf--Bss--i HOLff NUMBERSj-TEffPCJ~y--sroRAGE
NUMZ ass 1
OPL9L 8SS 1 OPERAND LABEL
OPNUM BSS 1 OPERAND INTEGER VALUE
SIGN BSS 1 NUMBER SIGN
STORE SSS 1
TEMP BSS .1

---·--~-----·

w ""

00

---~- --- ---------------..--­

TEMP1 ass 1
TEMP2 8SS 1
.TEMP3 ass 1
TEMP4 9SS 1
TEMP? BSS 1

--·-l"EMP6 '.3SS--1
TEMP? ass 1
ZADD BSS 1..
LA81 DEF LA9l1
LAB2 DEF LA8L2
LABL1 EQU TEMP5

___L ABL2_EQU__TE11P
MNMNC DEF MNC..
ADDR EQU EXP
ENOFG E1.U ADOR3
HOLDA EQU MANT1
HOLDB EQU MANT2
IDRCT EQU EFLG

--1~~~ D-~a8-~5~~N
MNC EQU MANT1
MORG EQU EXPON
OPADD EQU NUM1
SORCE EQU STORE
STNUM EQU EFLG
UNDEF EQU SIGN

__l!f>.RJ.HL_f:Q_ll___ NU112.

TEMPORARY STORAGE

ADDRESS IN ASSEMBLED CODE

AOOR OF LABEL BEGINNING STATEMENT
AOOR OF OPERAND LABEL

. . _ . _
ADDRESS OF MNEMONIC BUFFER

TEMPORARY USED IN BUFFER STOREAGE

INDIRECT BIT
r-5~~R:F ~§u2&M-~~U~~&b~fal!~-~ AR" H
OP CODE aUFFER
MEMORY ORIGIN
OP CODE ADDRESS STORE
SOURCE ADORES OF DATA TO SE MOVED
STATEMENT NUMBER IN LIST OPERATION
UNDEFINED POINTER
UPJ:J:R 1lO_ll_l'JQ_VLMNEM_O_N_I~C_S_E~A_R_C_l-f___________

I\.)
w
\0

•
• EDIT VARIABLES..
ASMEO 3SS 1

ASME1 9SS 1 __A SS EM EH.._L~_OllR_~_S_S_E=S'------------·
------ASME 2---a s-s--1
OADR1 ass 1 ASSEMBLY CODE ADDRESSES ON A
OADR2 BSS 1 MULTIPLE DELETE OPERATION
OL TUl CJSS 1 DELETE LAST LINE
EOLMT BSS 1 STAT NUH LIMIT ON MULT INSERT
EDNUM 3SS 1 INSTRUCTION NUM9ER
EOTSV 3SS 1 ADDRESS FOR MOVING CODE
ELNTH '3SS 1 LENGTH OF DELETED conE

·--ENExr-a ss-1 ----iNEXrTREE--~ RE A--rl\1-SG3 tJEFOR E ED If
ENM1 ass 1 STATEMENT NUMBER
ENM2 !3SS 1
EUSRP 9SS 1 LOCATION STORE TO LINK EDIT
EXPEC 8SS 1 INPUT EXPECTATION FLAG
MIIP 13SS 1 MULTIPLE INSERT IN PROGRESS
MCMI? 3SS 1 MACHINE CODE MULT INSERT
SCBEO 9SS 1-----scBET sss-r SOURCt-COOE-·sccK--ADURES-SES
SCBE2 SSS 1
VETO ass 1 VETO FLAG..
AHEAD EQU ASHEO LOOK AHEAD POINTER IN SCB
BACK EQU ASME1 LOKK BACK POINTER IN SCB
EOLX EQU OADR1 SOURCE INPUT FLAG DURING EDIT
LKPSN E~U OADR2 LINK POSITION

----lNTH3-EQU-tONUM___lENGTW-OF-ASSB'IBLr
POSN E?U ENEXT POSITION OF SEACRCH IN SST
SSTAD EQU ENM1 SST ADDR~SS
SUCAD E~U VfTO POINTE~ FOR LISTING PURPOSES
VALUE EQU SCGEO TEMPORARY TO HOLD NUMBER IN OPERAND

IV
ti:>.
0

..
,.. DISC INPUT DRIVER VARIABLES..
DREAD OCT 020000 DISC READ COMMAND

__SEE '<_X_QGJ_Q~O_O_O O_____________________ _
TR202 OCT 145000 DISC ADDR OF LAST f~ACV.•
LSTAC DEC 204 LAST TRACK ACCESSED..
DSIPT OCT 14340 MEMORY ADDRESS FOR DISC INPUT

"'
OCMND E~U EFLG DISC ADDRESS
DOTA EOU EXP READ COMMAND--osrA r -i::o:u--ExPon--rnsc-sr 1Hus-­
HDMSK EQU INSNM DISC HEAD MASK
MADOR EQU LBLFG MEMORY AODR~SS FOR INPUT..
....
• CHARACTER CONSTANTS.. ..

----BL/.\NlClJ CT-4 U Bt:: A f\JK_______ --­
C Ol ON OCT 72 COLON PRECEDES SYSTEM DIRECTIVES
COMMA OCT 54 COMMA
EOUAL OCT 75 ~QU~l SIGN, UNIVERSAL ABORT
MINUS OCT 55 MINUS SIGN
PLUS OCT 53 PLU~ SIGN
PRIOO OCT 56 PERIOD
SLASH OCT 57 SLASH PRECEDES EDIT DIRECTIVES----sTAR·--ocT-·sz-----ASTERrSK ------------­
•• INPUT STORE BUFFERS..
9UF.l\ DEF •+3 INPUT BUFFl='R
BUFB DEF •+38 AUXILIARY IN°UT BUFFER
DATBF DEF -"'+73 DATA STORE BUFFER

ass 100------'3ss· 1-----DATJ\--OVERFLO\rlJUFF!:R

I\.)

.i::..

.......

.. ,,,.

.,.
• OCTAL CONSTANTS ...

----cRT___llC T 177 z+lnr F IRSl~RA cTE R---VOS IT I ON
CLRTB OCT -12500 CLEAR TA9LES
CPIB OCT 102000 CURRENT PAGE INDIRECT BIT
OMAGH OCT 120011 OMA CONTROL HORD
IMOQE OCT 160000 INPUT MOOE FLAG FO~ TTY
LMOD£ OCT 120000 OUTPUT FLAG ON TTY
MSIGN OCT 026400 MINUS SIGN FOR ASCII OUTPUT
JMP OCT 026000 JUMP INSTRUCTION SKELETON----MSKz+------ocT---77&0!J __

MNEG OCT 100000 BIT 15 FOR INDIRECT REFERENCES
TENTH OCT 63146
YOAT OCT 27300 UPP~R LI~IT OF USER DATA AREA
XRTRN OCT 126340 EXECUTION RETURN..
• INTERRUPT HALTS..

-------HLTz+ --Hl r 4,-c-------- RAt.T----mr-ir-PowEKFATL
HLT5 HLT 5 PARITY ERROR I MEMORY PROTECT ...

MPPEX JMP MPPE,I USER WARNING FOR FORWARD REFERENCES
..
• INTERRUPT SERVICE SUBROUTINE CALLS..
OMAI JSB OMASS---ucr-Jss----ucss -----------------------------­
ccr Jsa ccss

I\.)

ti:..
I\.)

• •
• •
• • •

• •

•
• CALL TO 	 ERROR MESSAGE OUTPUT

___ERC AL 	 J_S_B____ERRQR_ __E_RINL_ERR_O_R_JiE.S.SAG_C'___________
JMP CNTRL,I

• SUBROUTINE TO PRINT ERROR MESSAGES

ERROR NOP---·--·---JSOBPLN
JS9 REENT REQUEST RE-ENTRY
JMP ERROR,!

• PRINT MESSAGE REQUESTING USER RE-ENTER STATEMENT AFTER ERROR
•..

--~ENT NcrP
LOA .26 MESSAGE LENGTH
LOB RENT
JSB HRITE,I PRINT MESSAGE
JMP REENT,I

•RENT DEF •+1 MESSAGE TO REQUEST RE-ENTRY
-~------'-'Ase 13,PLEASE RE-EN~T~E~R-'---'S~T_A__T~E~M~E~N~T_________________

•
• PRINT MESSAGE ON NEW LINE ...
•
BPLN NOP

STA HOLDA PRESERVE POINTERS TO ERROR MESSAGE
STB HOLDS

----JsB-NWLN··--i--auTT5ITT~~

LOA HOLDA RESTORE CA) ANO (8)
LOB HOLOB
JSB WRITEf I PRINT MESSAGE
JMP BPLN,

l'V
~
w

,,.
,,,.

• BASE PAGE ERROR MESSAGES..
.

--tRTn--~c-7--ITT\-rr-·rrATAINPUT

ERR2 ASC 1~ STATEMENT NUMBER OUT OF RANGE
ERR3 ASC 13,0PERAND VALUE OUT OF RANGE
ERR4 ASC 14,ILLEGAL OPERAND TERMINATION
ERR5 ASC 15,ILLEGAL CHARACTER BEGINS LABEL
~~~~ ~~g ~~~gp~~~~~N~sFS~~~FINED
EQR8 ASC 13~UNO~F..INEO LABEL IN O?ERAND--E.RR9-ASC-7,-NG- CA BEl.-F-OUNT) ----·-----------­,,. .. 
• PRINT MESSAGE ON TABLE OVERFLOW WITH RESTART INSTRUCTIONS ,,,. 

TBLOV JSB BPLN NEW LINE ERROR MESSAGE 


LOA .24 
LOB "'+4 

---~---.JSB -HRITE;-r-----------·­
HL T 55f3 . ' 
JMP ST ART.. 
DEF •+1 
ASC 12,PRESS RUN TO START AGAIN 

.... 
,,,. 

.. ---nITERROPT-SERVICE SOBROU I INES
,,. 
~ 

,,,. OMA INTERRUPT SERVICE ROUTINE.. .. 
OMASS NOP 

CLC 6 CLEAR CONTROL AFTER OMA TRANSFER COMPLETE
-----JMP---uffl{SS, I 

N 
~ 
~ 



,,. 
,,. 
• DATA CHANNEL INTERRUPT••
bCSS NOP 

CLC OC CLEAR CONTROL ON DATA CHANNEL 
,,. JMP DCSS,I 
,,. 
• CONTROL CHANNEL INTERRUPT.. 
.y. 

C~SS-~UP 
CLC CC CLEAR CONTROL ON CONTROL CHANNEL 

,,. JHP ccss,r 
.. 
• CONFIGURE I/O SUBROUTINES••---.,.--·mER-\9) CAANNtL f\fURBER OF 170 DEVICE
•.. 
CNFIG NOP 

LOA 072
STA TEMP2 
LOA I.O AOOR OF FIRST I/O INSTR 
STA TEMP1 

------cNn;r·Lmr IEMP-r;r-TNSTRUC f I 0 N IN (Ar­
ST A TEMP3 
SSA,RSS BIT 15 SET 
JMP CNFG2 NO 
ANO 80700 MEMORY REFERENCE 
SZA 
JMP CNFG2 YES 
LOA TEMP3 RESTORE INSTRUCTION 

--~------- --·----------~- -- -------------· 

!\.) 

.i::. 
U1 



AND 82000 YES BIT 10 SET
SSA 
JMP CNFG2 NO 
LOA TEHP3 YES, RETRIEVE INSTRUCTION 

____JSB CNFG.3 
ST A TEMPf ,-I 

CNFG2 ISZ TEMP1 ADVANCE ADDRESSES 
ISZ TEMP2 
JMP CNFG1 
LOA INTit.I 
JS9 CNFGs CHANGE ADDRESSES FOR STORING 
STA INT1,I AND CLEARING INTERRUPT LOCATIONS 
LOA INT2z..I-----JSB-CNFGs ·---------------------­
STA INT2 I 
LOA INT3;I 
JS9 CNFG3 
STA INT3 I 
LOA INT4~I 
JSB CNFG3 
STA INT4 I---- JH p -CNFI G_,_______________... ' 


"' REMOVE CHANNEL NUMBER AND REPLACE WITH NEW ONE
.. .. 
CNFG3 NOP 

ANO 0100 
---~--.,;!OR-~ ·--~A-~o~o~I~N.-.-N'-E~w~v~A~L~u~E~-------------------

JMP CNFG3,I 

N 
,j:l. 

°' 



.. 
'f 

• GET NEXT CHARACTER FOH INPUT BUFFER• 
__,,.._RLtuRJ:LP+_i__Q_N __EtiL__ 

• P+2 CHARACTER IN A ... 
... 

GETCR NOP 


ISZ CCNT ANY CHARACTERS LEFT 
RSS 
JMP GETCR,I NO, ENO OF FILE EXIT 

JSB SAVEE SAVE CE) REGISTER......-----·------------·
---------i 0 a--B AD 0 R TOA '.:>-BUFF ER--AD ORES S 
ISZ AADDR UPDATE FOR NEXT TIME 
CLE,ER8 SET CHARACTE~ FLAG 
LOA B1 I LOAD CUR~FNT BUFFER WORD 
SEZ,R~S FIRST CHARACTER 
ALF,ALF YES, POSITION IT 
ANO 8177 MASK EXTRANEOUS BITS 

----~JSB RSTRE RESTORE <E> REGISTER.~------------------sz- GETC~--UPOATE-~ETURN-ADDRESS 
JMP GETCR,I•.. 

• GET NEXT NON BLANK CHARACTER•
• RETURN P+i ON EOL 
• P+2 NON BLANK CHAR IN A 

~~.. -~----------------.. 
NTBLK NOP 
NT8l1 JSB GETCR 

JMP NTBLK,I
CPA BLANK CHARACTER BLANK 
JMP NT3l1 YES, GET NEXT CHARACTER 
ISZ NT3LK 
J HP-NTB [ K ,--.....I..----~R~E~TOR.11 

1'J 
ii::. 
.....J 



,,. 
,,. 
• READ UP TO COMMA IN 3UFFER,,. 
• RETURN P+1 NO COMMA FOUND _______if___________fq.-z-c OMMA-REXO----~---

'f
• 
RDCOH NOP 

JSB GETCR 
JMP RDCOM,I
CPA COMMA 
RSS 

--JMP--~~--

ISZ ROCOM 
JHP RDCOM,I

• 
~ 

• BACKSPACE OVER ONE CHARACTER,,. 

•
---8CKSP--no p 

JSB SAVEE SAVE <E> 
CCA 
ADA CCNT BACKSPACE OVER LAST 
STA CCNT CHARACTER IN INPUT BUFFER 
CGA 
ADA BADDR 
STA qAODR

------JS 0-~sTRt--RESTORr\El 

JMP BCKSP,I 


l'V 
ti:>. 
00 



.. .. 
• CHECK TERMINATOR OF INPUT STRING.. 

-~!__REIURJi_J>_:!-_l___VJ\ L_I_D_IER~lN_AI_.QR_____ _ _ 
• P+2 NON TERMINAL CHARACTER.. .. 
TRMCK NOP 

JSB GETCR 
RSS END LF LINE 
CPA BLANK BLANK CHARACTER 
JMP TRMCK__,__I_YE'.h RETURM VALID TERMINATOR 

------1s-z-rR~-CR 1-JU, NOr'rTERRTf\fl'iL CAARACfER ------------­
JMP TRMCK,I.. .. 

• SAVE ANO RESTORE CONTENTS OF <E>.. .. 
SAVEE NOP

_RB______ SHIFT CE) INTCr---nu--­
STB ERROR STORE <B> 

,JMP SAVEE, I 

RSTRE NOP 
LD8 ERROR
CLE,ELB CLEAR THEN RESTORE CE> 
JMP RSTRE,I 

N 
.i:=. 
~ 

http:L_I_D_IER~lN_AI_.QR


.. 

.. 
• MOVE N WORDS FROM <A> TO CB>.. 
·• ENTER <A> = FWA OF ORIGIN

---..----\ff) :: -FrfA-O~ESTTITTITTON.. .. 
WMOVE NOP 

STA MORG SET FWA OF ORIGIN 
LOA SORCE WORD COUNT 
CHA, INA 
STA TEMP4

--------r-D A--MORb,r-
ST A B,I STORE A WORD 
INB 
ISZ MORG ADVANCE COUNTERS
ISZ TEMP4 
JMP •-5 
ADB Mi REFERENCE LAST WORD MOVED 
JMP WMOVE,I-----,...------- -·---­ ~-------------.. 

• DETERMINE DATA OR MACHINE INSTRUCTION ADDRESS 
• ANO MAKE CORRECTION FOR DATA ADDRESS 
>J. 

• ENTER CA> ADDRESS TO BE EXAMINED
•
• RETURN MACHINE CODE ADDRESS OR UPDATED DATA ADDRESS 

-~---

... 

DATAD NOP 


LOB XDATA FIRST ADDRESS IN DATA AREA 
CMB,INB
ADB A 
SS8 

-------r8~--~A_fAD, I ~~f~I~~rrJ~~puc_JT_!ON_;_:_A-=-0=0.:._;,R=E-=-~-s.::..____________ 
JMP oATAD,I RETRIEVE ADDRESS REFERENCE 

N 
U1 
0 



•
.. 

• MASK ON INDIRECT 3IT If REQUESTED.. 
• ENTER CA) INSTRUCTION OR ADDR=E~SS~----------------~ 

•
!DIRT NOP 

LOB IDRCT INDIRECT FLAG
SZB 
IOR MNEG MASK ON BIT 15 
JMP IDIRT,I.. 

~ 

• SAVE REGISTER CONTENTS AFTER EXECUTION ..
•SAVR NOP 

STA SAVA SAVE CA)
STB SAVB SAVE (9)
ERA,ALS __SHIFT CE> 

-----so~-

INA 
STA 
JMP.. .. 

• PREPARE.. ... 
EOTAD NOP 

LOA 
STA 
ADA 
STA 
JSB 

_____ JMP 

SET BIT 0 
SAVEO SAVE <E> 
SAVR,I 

INTO CA>, CLEAR_8_I_T_O__________ 

IF OVERFLOW SET
ANO (Q) 

ADDRESS POINTERS FOR EDIT OPERATION 


ZUSRP NEXT FREE AREA IN PROGRAM 
EUSRP SAVE FO~ FDIT LINK PURPOSES 
• 2 AOVQNCE FOR EDIT ENTRIES 
ZUSRP 
STCK,I CHECK FOR PROGRAM AREA OVERFLOW 
EOT~A_O~'=I_____________._______________ 

U1 

I-' 


IV 



____ _ 

... .. 

.. PREPARE SOME POINTERS FOR SCAN OF SOURCE CODE TEXT.. .. 
----,..-t'.NTER(Bl SCB ADDRESS OF INSTRUCTION TO 3E DELETED.. 

• RETU~N <A> ASSEMBLY FLAG, ADDRESS OF ASSEMBLY OF 
• INSTRUCTION TO 9E DELETED.... 
PREPR NOP 

ADS .3 ADDR OF LENGTH 


1ff~ ~!~7 NUMBER OF WORDS IN SCB ENTRY 

STA CNFG3 

k~~'~tt
AND 8177 NUM3ER OF CHARACTERS 
CMA CONTROL VARIABLE USED IN GETTING 
STA NEXT CHARACTER FROM BUFFER------NB CCNT 

-~-----------~ 

LOA 8 I ASSEM FLAG, ADDR OF ASSEMBLY 
JMP PREPR,I 

N 
U1 

N 




---------------------- ----------·--"-~----- ---------- ---------·--·---- -··-·-­

.,. 
'f 

.,. CLEAR UP LINKAGE IN SOURCE CODE BLOCK ON A DELETE 
• OPERATION.. 
OSCB NOP 

LOA SCBEO 
SZA DELETE FIRST LINE 
JMP DSC92 NO 
LOB DLTLN YES, DELETE LAST LINE 
SZB,RSS 

~~JMP DSC81 NO 
CC](-------~tsJLJFLETE l'fHOLE PROGR!Uf 
STA PREV 
LOA NEXT NEXT AREA IN SCB WILL BE ADDR 
STA FIRST OF FIRST STATEMENT IN SCB 
JMP DSCB,I... 


OSCB1 LOA SCBE2 DELETE FIRST LINE 

STA FIR.ST

----------CCB ------~SET-TERRTffATOrrN PREVIOUS 
LOA SCBE2 
INA 
j~~ gses,r

OSCB2 LOA OLTLN DELETE LAST LINE 
SZA,RSS
JMP OSC83 NO

------[Dff--sc BE 0 Aum~--oF-TNSTRtJEF 0 RE -0 ELE r Io~ 
STB PREV RESET ?OSITION OF LAST INSTR 
JMP OSGB,I BEFORE EDIT 

OSCB3 LOA SC3EO 
LOB SCBf 2 
STB SC9EO,I STORE SUCC ADDR IN PREV INSTR 
INB 
STA B I -~S.ET PREV AOOR IN SUCC INST~

--JM p- DSCff,-1 

N 

U1 

w 



.. 
•
• SINGLE MACHINE CODE INSTRUCTION DELETE
•• DELETE A MACHINE CODE INSTR OF LE~N~G~T~H~~O~N~E~W~O~R=D____________.. ­

.. 

SNGDL NOP SINGLE DELETE 


JSB SVPSN SAVE NEXT LOCATION IN PROGRAM 
JSB XOEL MOVE CODE AFTER DELETED CODE 
JSB CMVE,I.. 

• PLACE JUMPS TO LINK PROGRAM AND EDIT ENTRI_E~S~--~---------
-~. ­

JS8 JMPBF
• 

JSB JMPAF 
JMP SNGDL,I.. ,,. 

• FIND NEXT MACHINE CODE INSTRUCTION IN ASSEMBLED 
-- -rt'RO~AM-Tff- FINI-SHDEITTE---0-PERATTIJW ------------­

..• 
XDEL NOP 

LOB SCBE2 
RS-S 

XDEL1 LOB B,I AODR OF NEXT ENTRY IN sea 
CPB ENEXT END OF SOURCE CODE 8LOCK 
JMP--XDE[2 YES 
ADB .4 ADD OF ASS~M ADOR, ASSEM FLAG 
LOA B,I
AOB M4 RESTORE SCB ADDRESS 
SSA ASSr:MBLY 
JMP XDEL1 DATA 
SZA,R.SS
JHP XOEL1 COMMENT----sr A "1\SMEZ ---------------,------­
JMP XDEL,I 


N 
U1 
~ 

http:SZA,R.SS


.. 
• DELETE LAST LINE.. 
XDEL2 LOA ASME1 ADDR OF DELETED HORO SNGL DLTE 

LD3 EDNUM EDIT INSTRUCTION NUMBER--------c-i:j_B_ -.-2- ---l1UlrTPLE----Ol: u:-r E---- -- . ~------
LDA DADR1 YES, AODR OF SINGLE DELETE 
STA EUSRP 
JM? CNTRL,I.. .. 

• SAVE POSITION IN USER PROGRAM AREA FORPOSITIONING 
• LINK INSTRUCTIONS AFTER AN EDIT OPERATION--,,.----------------------- ------- -------~------------.. 
SVPSN NOP SAVE POSITION 

LOB ZUSRP NEXT LOCATION IN PROGRAM 
STB EOTSV SAVE POSITION 
JMP SVPSN,I.. .. 

--..---rNSE Rr--.zr-s rnGCtJUMP--i:rmnNG-EITIT .. 
• ENTER <A> ADDRESS WHERE JUMP RESULTS 
• (9) ADDRESS WHERE JUMP ORIGINATES.. .. 
JMPE1 NOP 

AND 81777 GET RELATIVE ADDRESSADJ'\Jffp-- ~~-~--~~---------------

STA B,I STORE JUMP 
JMP JMPEi,I 

l\J 
U1 

U1 




... .. 
~ PLACE JUMP AFTER EDIT ENTRY 
.. .. 

JRP1f~N~ JUMP AFTER 
LOB ZUSRP NEXT AREA IN USER PROGRAM
LOA ASME2 
INA 
JSB JMPS PLACE JUMPS 
STB ZUSRP 
JSB STCKiI PROGRAM AREA OVERFLOW

--,,--_:l_M_P_,,}MPA !-_~,_!_____________________________ 

.. 
• PLACE JUMPS TO CONNECT MAIN USER PROGRAM WITH 
• BEGINNING OF EDIT ENTRY ... .. 
JMPBF NOP JUMP BEFORE 

LOB ASMfi ADDR WHERE JUMP ORIGINATES 
-----Lff~--EUTsv--ADD~--HRERE--JUMP-~ESu·~~-------· 

JSB JMPS PLACE TWO JUMP INSTRUCTIONS 
JMP JMP9F,I.. .. 

• STORE JUMPS TO LINK EDITTEO CODE 
Jf. 

• ENTER (A) ADDRESS WHERE JUMP RESULTS 
--~-----i-BTAUDRESS WHERE--JUMP--O"RrGTTlfATFS.. .. 

JMPS NOP 
CLE 
AND 81777 GET ADDRESS
ADA JMP ADD IN JMP INSTRUCTION SKELETON 
ST A-1!_, I STORE 

------rNJ\ - ATIVANctl'OTNTERS TO INCLUDE 
SEZ,CME,IN3,RSS SECOND JUMP 
JMP •-5 
JMP JMPS,I 

N 
U1 

°' 



.. .. 
• SUBROUTINE DISKI CONTROLS INPUT FROM THE DISC. IT ADDS 
• THE DIRECTION BIT lBIT 15=1> TO THE CORE ADDRESS AND HAS 
• AN E~~OR RECOVERY PROCEDURE IF REAO PARITY OR DECODE---·;y;-·-F.RROR--s--·-A-R"E•- "OETEc-rrn-;,.---·--F·o~L-L_O_ffIN"G--u-E-TECTitJ~---o-F·--s·uc·H-----A-N_________ 
• ERROR1 g ADDITIONAL ATTEMPTS WILL 3E MADE. IF THESE FAIL 
• THE DISC ADDRESS AND THE DISC STATUS ARE DESPLAYEO IN <A> 
• AND CB) THE THE COMPUTER HALTS 3Y PRESSING RUN, 13 
• ADDITIONAL READS WILL BE ATTEMPTED •.. 
• ENTER CA> DISC ADDRESS
• <B> CO~E ADDRESS 

-~ ---------"-"---------~---..-" ---­.. 
DISKI NOP 

AOB MNEG DIRECTION FOR READ 
STA DCMND SAVE DISC ADDRESS 
STB MADOR MEMORY ADDRESS 

DISK1 LDA M10 DISC READ ERROR COUNT 
STA TEMP ERROR COUNTER

--ffISKT-JSB___!JISKTI-------rNPUT-TROMuTSC-­

1~~ ~E~~I,I ~5~~~8E COUNTER 
JMP DISK2 TRY AGAIN 
LOA OCMNO DISC ADDRESS 
LOB OSTAT DISC STATUS 
HLT 228 
JSB RSEEK 

--"----:)flp-n I SRr-~T'"'"'RY-1\~""AT~Tu-~ORE TI MEs 

-------~"~~~--~----~~-~~~~--~~~-~~~~~~-~~~~~~~~~~~~-~~--~~~~~~~--~~~~~--~~~~~- N 
U1 
-...] 



.. .. 
• SUBROUTINE DISKO IS THE DISC INPUT DRIVER. IT SETS UP THE 
• MEMORY ADDRESS REGISTERt THE HORD COUNT REGISTER1 ANO THE 

--~-2~ 5-c wi~f~~a-~-r-rL F_~h~ 0~k~Ms-~~~-s-l+~ o~~-ftf~lz~-,1-~~Et-'~~-~~F~-~ 
•DISC STATUS WORD). READ PARITY AND DECODE ER~ORS WILL BE 
,,. TESTED •.. 
"' RETURN P+i SUCCESSFUL READ 
• P+2 ERROR IN READ.. .. 

--OTSRU-t'fCJP 
LOB MADOR CORE ADDRESS 
CLC 2 PREPARE TO SET MEMORY AODR REG 
OTB 2 SET MEM ADDRESS IN MAR 
STC 2 PREPARE TO SET WORD COUNT REGISTER 
LOB LENTH NEGATIVE WORD COUNT 
OTB 2 SET WORD COUNT IN WCR 
LOA DCMND DISC ADDRESS-----Js a--sEEr ------------­
JM P OSKD1 
LOA OOTA DISC READ COMMAND 
OTA CC OUTPUT TO COMMAND CHANNEL 
STC OC,C SET CONTROL ON DATA CHANNEL 
CLC CC 
STC 6 C INITIATE OMA 
STC CC~ INITIATE OMA TRANSFER------sFs-cc WAIT-TD"R__________ --------------· 
JMP •-1 COMPLETE TRANSFER 
JS8 STAT CHECK STATUS 

OSKD1 ISZ OISKD 
.JMP DISKD,I 

N 

U1 

<Xl 



lf 

lf 


... OUTPUT SEEK COMMAND ALONG WITH TRACK ANO SECTOR NUMBER TO 
"" THE DISC.. 

-~,..tNTETr-rAl-TITS-"C--.AllURES-S 
,.. BITS 0- 8 SECTOR NUMBER 
• 9ITS 8-15 TRACK NUMBER.. 
• RETURN P+i STATUS ERROR 
,,.• P•2 DISC READY, INITIATE DATA TRANSFER 

SEEK NOP 
------~LF;-nr ~UTATE'-TKJrcx--NUITTJER t 0 LOW BI J s 

ANO 3377 ISOLATE TRACK NUMBER 
OTA DC OUTPUT TRACK NUMBER 
[6~ ~~E~X ~~E~A~~M~~~~NEL 
CPA LSTAC cuRqENT TRACK = LAST TRACK ACCESSED 
ADA MNEG YES, ALTER TO ADDRESS COMMAND 
STA LSTAC UPDATE LAST TRACK ACCESSED--- cLc--cc-· ---------------------- ---------------­
ors cc OUTPUT SEEK AODR COMMAND 
STC CC,C TO COMMAND CHANNEL 
LOA DREAD READ COMMAND 
STA DOTA SAVE READ COMMAND 
LOA OCMNO DISC ADDRESS 
AND B377 ISOLATE SECTOR.. 

.., COMPUTE-PHYSICAL READTSECTUR-TRITTT-TUGICAL SECTO'R 
• NUMBER AND HEAO MASK.. 

CL9,RSS
!NB 
ADA M12 
SSA,RSS
JMP •-3 

.. AD A-·-;rz---~1Z-'SFC'UTRS p ER 1 RACK 
BLF,9LF 

N 
(JI 
\.0 



.. 

ADB HDMSK 
!OR 8
SFS DC 
JMP •-1 
QJA_QG__ 
src oc,c
SFS CC 
JMP •-1 
JSB STAT 
R.SS
ISZ SEEK 
JMP SEEK,! 

WAIT FOR OMA TO ACCEPT TRACK 
O_UJ:P_U_l_HEAD_SEClQR____
TO DATA CHANNEL 
WAIT FOR SEEK COMPLETION 

CHECK STATUS 

NUMBER 

" •
• OUTPUT SEEK COMMANDS TO FIRST ANO LAST TRACKS 
• FOLLOWING 10 UNSUCCESSFUL READ ATTEMPTS •.. 

ON DISC 

.\< 

RSEEK NOP 
CLA----JS-8-SEEK 
NOP 
LOA TR202 
JSB SEEK
NOP 
JMP RSES::K,I 

N 
O"I 
0 



.. ... ,,. 
• CHECK DISC STATUS BEFORE ANO AFTER DATA TRANSFER 
• <CHECK FOR COMPLETION WITH DISC STATUS WORD>---..-----------------------------· ------------~-----

... RETURN P+l DISC STAUS E~ROR 

.,. P+2 SUCCESSFUL STATUS CHECK.. 

... 

STAT NOP 


STF 6 
LIB 2---src--rrc-;-c­
cLA ' DRIVE NUMBER, STATUS CHECK 
CLC CC 
OTA CC OUTPUT STATUS COMMAND 
STC CC,C TO COMMAND CHANNEL 
SFS DC WAIT UNTIL DATA 
JMP •-1 CHANNEL CLEAR 
CLC CC CLEAR COMMAND CHANNEL-----·r:r A -oc l.OA u-sTAus- FROli-DATA~NNEl: 


STA OSTAT DISC STATUS 

CLE,SLA1RSS ERROR
.JMP STAf 1 NO 
RAL,ARS
SSA,RSS FIRST SEEK 
RAR,SLA,RAR DATA ERROR 

N 

°' ..... 



JMP STAT1+1 YES
RAL SLA
JMP'STAT2 FALG, CYLINDER ERROR 
JMP STAT3 · DISC NOT READY 

STAT1 15Z__S TAT__
JMP STAT,I... 


STAT2 R.AL,SLA

JMP •-2.. 

• WRITE ERROR ABNORMAL HALT.. 
HLT 24B 
J-Mp--nrsK~1--~3l:GTfrl'{EAO AGAIN.. 

S.TAT3 JSB NWLN, I 
LOA .14 
LOB STATR DISC NOT READ MESSAGE
JSB HRITE,!
HLT 268 
JMP DISK1 BEGIN READ CYCLE AGAIN 

-~-------~·-----

ST ATR DEF •+1 
ASC 7 7 0ISC NOT READ 

.... 

N 

O"\ 

N 




... 

.,,. 
ORG 20008.. 

• SYSTEM CONTROLLER_____lf:_____ -·--------------··---- =-'--------­.. 
• THE SYSTEM CONTROLLER DIRECTS THE PROGRAM IN ANY ONE 
• OF EIGHT DIRECTIONS DEPENDING ON THE FIRST CHARACTER 
• OF THE USER RESPONSE ANO/OR FIVE SYSTEM VARIAaLES •.. 
• ALL INPUT OPERATIONS WILL BE HANDLED WITHIN THE SYSTEM 
• CONTROLLER WITH THE EXCEPTION OF:--.------·-·----·-·- ·----------·---------------------­

.. USER RESPONSES WHEN PRINTING INTROOUCTARY TEXT.. .. USER RESPONSE TO AN EDIT VETO OPERATION •.. .. 
• THERE ARE UP TO SEVEN DIFFERENT TESTS TO DIRECT USER 
• ENTRIES TO THE APPROPRIATE PROGRAM LOGIC. 

--~-. ·----··· --- ··-- ---·-·---- --·---- - ··---·-- - ·-----·----·-·----·--- -·· ----------· --··-· 

• ONE& ANY RESPONSE BEGINNING WITH AN EQUAL SIGN IS 
• INTERPRETED AS A REQUEST TO ABORT THE PROGRAM •.. ,,. RETRUN TO THE INITIALIZATION ROUTINE IF ~N.. EQUAL SIGN 9EGINS THE RESPONSE.. .. 

---,,.--TFST S TWU-TO-STX-TNVOCVE-EX7H'1 INiffb"""STS TEMllA"R.TA""BLES l 0 
• BE SET C=-1> TO TRANSFER PROGRAM CONTROL •.. 
... 
~ TWO& ABS/SSS FLAG <ABSSF> ... 

"' RETURN TO ABS/8SS ROUTINE FOLLOWING USER 

• RESPONSE TO PROMPT fOR TEMPORARY DEFINITION 

--... ------ OF-UNDEFTNED-ABs-·oR-ass·-oPERANo-;------- ~----'---------.. 

N 

°' w 



.. 
• THREE& DUMP FLAG CDMPFG>.. .. RETURN TO DUMP ROUTINE WITH USER RESPONSE.. EI TJiER_I_a_J:N_Q__JJiE_J1U1'1 P 0 PERA_I_lQJ:LQ~R~D~U~M~P___________..-----­ OATA ADDRESS CONTENTS •..
•
• FOURI SEQUENCE FLAG CSEQFG>.. .. RETURN TO SEQUENCE ROUTINE WITH STATEMENT.. NUMBER. DATA •.. .. 
• FIVEI EDIT SOURCE CODE INPUT FLAG CEOLX>.. .. RETURN WITH SOURCE INPUT DURING EDIT OPERATION •.. .. 
• SIXI EDIT FLAG CEOTFG> .. 

.. RETUITTrTu-RJITf'rt:"ffITUR-R:OO I !NE I a IN I ERPRE T 

• AND EXECUTE EDIT REQUEST •.. 
,,. SEVENt A COLON BEGINNING A USER ENTRY SIGNALS A.. SYSTEM DIRECTIVE. AFTER RECOGNIZING A COLON.. BRANCH TO T~E ROUTINE TO INTERPRET ANO.. CHANNEL SYSTEM DIRECTIVES • .... 
• FAILURE TO SATISFY ANY ONE OF THESE TESTS RESULTS IN 
• THE ASSEMBLER TREATING THE INPUT AS A SOURCE PROGRAM 
• STATEMENT
• THE CODING WILL FALL THROUGH TO THE HAIN LEXICAL 
• ROUTINE.. .. 

I\.) 

°' ~ 



CMAND JSB 	 OATIN READ INPUT, FIRST CHAR IN <A> 
CPA EQUAL ABORT 
JMP START YES 
JSB I.ON NO, ENABLE INTERRUPT 
LOB ABSSF ABS/ass FLAG-----------Cs-z tr - -- -- --------- -------- ------ ·--­
~MP ABSSR 1I RETURN TO LEXICAL ROUTINE 
JSB CLER,1 CLE~R LEXICAL POINTERS 
LOB DMPFG DUMP FLAG 
SZB 
JMP OMP2 RETURN TO DUMP ROUTINE 

,LOB SEQFG SEQUENCE FLAG 
______ 	SZB 

JM P-SEQ-~tTUim-To--SEQUEf\rerRCHTITNE 
LOB EOLX SOURCE INPUT DURING EDT 
SZB 
JMP EDLEX,I RETURN TO EDIT INPUT CONTROL 
LOB EDTFG EDIT FLAG, EDIT INSTRUCTION 
SZB 
JMP EOTR,I PROCESS EDIT COMMAND 
CPA COLON COLON PRECEDES SYSTEM COMMANDS------JMP -SYS TM______________________________________ ----------­

•
• ENTRY POINT TO MAIN PROGRAM AFTER INITIALIZATION
•
LXSCN JSB 	 LEXI,! LEXICAL ANALYSIS 

JSB ASSM 1 I PREPARE FOR STORAGE 
LOA ASMFG COMMENT STATEMENT 
SZA 	 YES

----Js a--sTcn,-r---sT OR E----C-ODt
•"' RETURN AFTER COMPLETION OF AN EDIT OPERATION 
• INVOLVING PROGRAM INPUT.. 
EDRTN JSB 	 STSCB STO~E IN SOURCE CODE BLOCK 

JSB LBDEF DEFINE LABEL IF PRESENT 
LOB MIIP MULTIPLE INSERT-------szg-,-R.ss--- --------­ ~~-------------------

JMP CMAND 
JMP MIRTI,I RETURN TO MULTIPLE INSERT 

I\) 

O"\ 
U'1 

http:szg-,-R.ss


.. .. 
• SUBROUTINE TO REQUEST INPUT ANO CALL INPUT ROUTINE ... .... 
D~A~T~I~N~N~O~P=--------------------

J SB CRLFD OUTPUT CR/LF
LOA M2 
LOB ROSYM OUTPUT DATA REQUEST PROMPT
JSB TTY.P 
JSB I.OFF TURN OFF TTY 
LOA .72 BUFFER LENGTH 
LOB BUFA SUFFER ADDRESS 

------Jsff-TTY-~-r RE"AD -------------------­
STA SRCNT LENGTH FOR SOURCE CODE RETENTION 
CMA,SSA,RSS CHECK FO~ BUFFER OVERFLOW 
JMP DAT1 RECORD TOO LONG 
STA CCNT RETAIN NUM9ER ~F CHARACTERS 
LOA BUFA 
CLE,ELA SHIFT guFFFR ADDRESS LEFT 
STA BAODR ODO/EVEN WORD 
"JSB-·GETC~--RETUR.N" CffARACTElrTN (A J 
JMP DATIN+l REQUEST RE-ENTRY 
JMP DATIN,I... 

RDSYM DEF •+1 
OCT 40007 INPUT PROMPT•

• MESSAGE ON BUFFER OVERFLOW. -----------------~--~ 

OAT1 LOA .16 
LOB DAT2 
JSB ERROR 
JHP DATIN+1 ... 

OAT2 DEF •+1 
-----~~SG_~~U-'-F_FE=--R--=---.::._O..c._V:::-E_R~F'--L=-=-O~W______________________ 

N 

°' 
°' 




... .. 
• INPUTS FROM TELETYPE OR CRT SCREEN.. 
• tA> = MAXIMUM NUM8~R OF CHARACTERS IN RECORD-------,,.--rar =--BUFFER--STARTIN~AOL)TffSS---~- ~-----------

..• 
• RETURN CA) = NUMBER OF CHARACTERS IN RECORD• 	 = -1 ON BUFFER OVERFLOW ... .. 
• THE CHARACTERS ARE PACKED TWO TO A WORD IN THE BUFFER. 

----~---~-- -------	 --------­

... ALL RECORDS HUST BE TERMINATED WITH A LINE FEED. 
• THE NULL AND CARRIAGE RETURN CHARACTERS ARE IGNORED •.. 
• THE LEFT ARROHCS) DELETE THE PREVIOUS CHARACTER<S> •.. .. 
TTY.I NOP-------------- ---STA----C-OUNT ___--s7.(vtCTf'IGTH­

STB BAODR SET BUFFER ADDRESS 
CLB 	 SET CHARACTER COUNTER 
LOA !MODE

TI.1 OTA 	 TTY SET TTY TO INPUT MODE
TI.2 STC 	 TTY,C REQUEST CHARACTER 

SFS TTY 
_____	JMP •-1 WAIT FOR CHARACTER INPUT______________ 

LI .A--TTY L DAD-CHARACTER 
JSB PROCS PROCESS CHARACTER 
JMP TI.2 GET NEXT CHARACTER 
CLC TTY
JHP TTY.I,! RECORD COMPLETE RETURN 

N 

Ct\ 

'1 



____ 

~~~~--~~~~~~~~~~-· 

..

,,,. ..
If.

----~-CllJ-1l'JJT..
• <A>
•
If. ..
• IF <A>

ASC I I _RFC ORS TH RO UG l:Llti__E_IilEI'fff-~P~R~I~N~T~E~R~------·
= NUM9ER OF CHARACTERS TO BE OUTPUT
= STARTING ADD~ESS OF BUFFER

>= 0 THEN OUTPUT <A> CHARACTERS
• FOLLOWED 8Y A CARRIAGE RETURN LINE FEED ••
~

• IF CA> < 0 THEN PRINT -<A> CHARACTERS ONLY.
If.

• BUFFER CONTAINS ASCII CHA~ACTERS PACKED TWO PER WORD •..
• IF <A> = 0 ON ENTRY ONLY A CR/LF IS OUTPUT •
..•
TT'f.Pr'fffP

TP.3

JSB
LOA
STA
LOA
OTA
sra
JSB

INIT
TTY
TEMPI
LMODE
TTY
TTY
GETCH

JM PIP~-8
OTA TTY
STC TTY,C
SFS TTY
JMP •-1
LOA TEMPI
SZA,RSS
JME___Tp.3

INITIALIZE ANO SET UP
SAVE TTY INTERRUPT INSTR

SET TTY TO OUTPUT MOOE
PUT NOP INTO INTERRUPT
GET NEXT CHARACTER
3UFFTR1:MPTY
LOAD TTY BOARD BUFFER
GIVE PRINT COMMAND
WAIT FOR FLAG

IS INTERRUPT ENABLED
NO

CELL

N

O'\

00

----------------------- --------------------- ------------------------------------

.y. •

..,. THIS SECTION CHECKS IF A CHARACTER HAS BEEN TYPED FROM THE
• KEYBOARD DURING OUTPUT ON TELETYPE •..

LIA TTY LOAD FROM BOARD BUFFER----cMA_______ FIR-sr-a-·a-rrs-SHOULO-BE-----..-o..N-E~s-------------
AND 8177
SZA,RSS
JMP TP.3 NO KEY STRUCK, CONTINUE
LDA IOR.I
STA FINSH+1 RESTORE IOR INSTRUCTION
CLC TTY TURN OFF TTY
JSB I.STP GO TO STOP---r-p-;g-ccc-TTY______TURN-u FF--TT y---­
LD A TEMPI
CPA TT.II IS INTERRUPT MOOE SET
JSB I.ON YES, RE-ENABLE KEY90ARO
LOA IOR.I
STA FINSH+1 RESTORE IOR INSTRUCTION
SEZ,CLE,RSS RECORD COMPLETE CLEAR E
JMP TTY.P I (f) = 0 RECORD OUTPUT COMPLETE

----.--- LDA--Mz- ---'-------CE >--=-1.--1\'0D--lf-'RETURN-A'NIY-l..~rru-

••

LDB CRLFA LOAD ADDRESS OF CR
JMP TTY.P+1 DO CR/LF

• THIS ROUTINE TURNS OFF THE TELETYPE

ANO LF

INTERRUPT MODE
.y.

I.OFF NOP
cr~
STA TTY SET NOP INTO INTERRUPT CELL
CLC TTY TURN OFF READ MODE
JMP I.OFF,! RETURN..

• THIS ROUTINE TURNS ON THE TELETYPE INTERRUPT MOOE
.y.

I.ON NOP -- --cns--n--;TT
STB TTY SET JSB INTO INTERRUPT CELL
LOB !MOOE
OTB TTY SET TTY TO INPUT MODE
STC TTY,C SET TTY TO LOOK FOR INPUT
JMP I.ON,I N

'-0 °'

..
TT.II JSB ISTP,I INTERRUPT LOCATION CODE..
"" CHARACTER PROCESSING SECTION FOR TTY.. ..
• ENTER <A> HOLDS CHARACTER.,.
"" RETURN P+1 GET NEXT CHARACTER
• P+2 RECORD CO~PLETE..

-~

PROCS NOP
ANO 8177 STRIP BIT 7
SZA RSS NULL
JMP'PROCS,I YES, IGNOR~
CPA LNFD NO LINEFEED
JMP PROCS,I YE~, IGNORE
CPA CRTN NO CARRIAGE RETURN--JHP___CHPCT--YES)___COMP-l ~~

CPA 13177

JMP TI.2
8t~ COUNT ~~s, 9~bb~RFg~E~~~~~AGE RETURN

SSB LOOKING FOR CARRIAGE RETURN

JHP PROCS,I YES, RETURN
CPA LFTAR NO LEFT ARROW----j}fp·-ocETE------YEs-,--DECCTE--PREVIUUS-CrrA-.-A'"'"R,.-A....-C.....T....E....-R-----.,------­
SLB, IN8 NO, CHECK 000/EVEN FLAG

JMP PROC2 80 = O, EVEN CHARACTER

PROC1 ALF,ALF BO = 1 7 000 CHARACTER
STA 3ADDR I
JMP PRocs:r RECORD HIGH CHARACTER AND RETURN

PROC2 IOR BADDR,I PAC~ TWO CHARACTERS
STA BADDR I PUT IN RUFFER
~ S7-·BA ODR'------rNDEX-B UFFER--f(OITRES-S-PUTN...........~------------
J MP PROCS,I

N
-....J
0

,,. .

+ THIS SECTION DELETES PREVIOUS CHARACTER<S>•
DLETE SZB,RSS IS BUFFER EMPTY

---------~·~h__.PRQC_SJ___ ~5s ,~_REJ_U-'SJL__________

ADB A DECREMENT CHARACTER COUNT
SLS,RSS LOW CHARACTER
~~~ ~~gg~,I ~~SOECREMENT ADDRESS POINTER 
STA BAOOR 
LOA RAODR,I GET LAST TWO CHARACTERS 
ALF ALF-----AND-'BT77 BEl~Trl.AST~R](RACTER .. 

JMP PROC1 STORE NEXT-TO-LAST CHARACTER
,,. 

• THIS SECTION PUTS COUNT IN A AND RETURNS TO P+2•CMPLT LOA B PUT CHARACTER COUNT IN <A> 
ISZ PROCS 

~-----J.M P_PRQ_C S__,~I___ 
,,. 
•
• SUBROUTINE GETCH..,. 
,,. RETURN P+1 BUFFE~ EMPTY 
• P+2 CHARACTER IN <A>,,. 

---,,;­

GET CH NOP 
CPB COUNT 
JMP GETCH,I BIFFER EMPTY! P+1 RETURN 
LOA BADDR,I GET TWO CHARACTERS 
SLB,RSS
ALF,ALF CB> EVEN, POSITION CHA~ RIGHT 
SL3 INS CHECK O/E AND INDEX COUNT 

---TS7' Bl\ DOR rn r---nuu-:_fncREMEfrr-AUUR-POI NrER 
FINSH AND 8177 STRIP LEFT CHARACTER 

!OR 8200 ADD BIT 7 
rsz GETCH 
JMP GETCH,I RETURN ON P+2 

r-J 

I-' """ 



.. .. 
,,. INITIALIZES FOR OUTPUTTING A RECORD.. 

"'\L 

INT! NOP 
CCE,SSA SET <E> = 1, CHECK FOR CA> < 0 
CMA,CLE,INA SET <E> = 0 CA> =-<A>
STA COUNT SAVE CHARACfER COUNT 
STB BADOR SET BUFFER STARTING ADDRESS 
CLB INITIALIZE OUTPUT COUNT 
JMP INIT,I.. 

y: ,,. 

LNFO EQU .10 LINE FEED 

CRTN EQU .13 CARRIAGE RETURN 
LFTAR EQU 8137 
CLAI EQU 82400 
TORI IOR 8200 ADD IN BIT 7 
""----ciu::nurr-cRrr 
CRLF OCT 106612.. .. 

••·
• STOP COMMAND SERVICE,,. 

---~ 

I.STP NOP 
JSB I.OFF TURN OFF KEYBOARD INTERRUPT 
JSB CRLFO NEW LINE 
LOA .4 
LDiJ STOPA PRINT STOP 
JSB TTY.P 

,,.. ___.J}1f__l; MAN O___ 

STOPA DEF •+1 
ASC 2,STOP.. 

I\) 


I\) 

.....i 



,,. . .. 
,,. TO OUTPUT MULTIPLE CR-LF•
• ENTRY -CA> CONTAINS THE NUMBER OF CR-LF TO BE OUTPUT 

--~--------------·------------· . .. 
NWLNS NO? 

STA TEMP 
JSB CRLFO 
ISZ TEMP 
JMP •-2 

~-;y;--__JMp__N1'1LNS_,_,=I__.___________ 
.. 
,,. SUBROUTINE TO OUTPUT CARRIAGE RETURN - LINE FEED.. .. 
CRLFO NOP 

CLA 
JSB TTY.P OUTPUT CR-LFi-,--------JM P-C-RCFD, I .. 

I 
' 

,,.. 

i • CONVERT BINARY TO ASCII OCTAL OR DECIMAL 
I .. 
1 

• ENTER CA) = VALUE TO BE CONVERTED.. 
• RETURN CA) CONTAINS LEAST TWO SIGNIFICANT DIGITS 

~-~.. -------rBTt'DTITTS-TO--A DlJRESS-Tir"ffffSISTG NI FI CA~r.-r-......OC'PI-...G-.I......t .....s~------.. ,,. 

CNDEC NOP BINARY TO DECIMAL ASCII 


LOB M10 
JSB CNBIN 
JMP CNOEC,I.. 

~ 

CNOCT NOP BINARY TO OCTAL ASCII 
LOB M8 
JS8 
JMP 

CN9IN 
CNOCT,I 

N 
-.-.] 

w 



•.. 
CNBIN NOP 

STB TEMP5 
LDB AOOS_T_B_TEl1P 
sra TEMP! 
STB TEMP2 

CNBN1 

LOB 
STB 
JSB 
ADS 
STB 

CNMAR 
TEMPJ 
DVUKN 
TEMP3,I
TEMPI,._I 

DIVIDE BY 8 OR 10 

----~s~z1r;~ss- ~---------

JMP CNBN2 
JSB OVUKN DIVIDE av 8 OR 10 
BLF,8LF
ADS TEMP3,I
STB TEMP3,I
ISZ TEMP3 
SZA

----JMP--CN3NI 
CNBN2 LOA TEMP 

LOB TEMP2 
STB TEMP SWAP FOR OUTPUT PURPOSES 
STA TEMP2 
LOB CNMRR 
.JMP CNBIN,I.. 


--~----------

AO O ASC 1 00 
CNMBR DEF TEMP 

-..J 
~ 

IV 



.. 
•
OVUKN NOP 

CLB CLEAR LOOP COUNTER = QUOTIENT + 1 
--ovuK1-~f~-~-~Melt_________ --------------------­

ovuK2 ADA TEMPS DIVIDE BY SUCCESSIVE SUBTRACTION 
ISZ TEMP4 
SSA,RSS DONE IF <A> IS NEG AND CB> IS POS 
JMP OVUK1 CLEAR CB) TO ALLOW EXIT 
SSB EIXIT IF POSITIVE 
JMP OVUK2 ORIG NUMBER TO CONVERT WAS NEG 

____LOB TEMPS DON~ 
CMa;·IN~r --~-

ADB A REMAINDER TO (8)
LOA TEMP4 
ADA M1 
JtiP OVUKN,I 

N 
....J 
U1 



.. .. 
•.. 
• SET SOURCE___C_QD..E__BLOCK ENTRIES.. .. 
:.. ~~6~~~~R~Tf~~~~Mx~~o~T~~6~jNfH~N~~XfE~~~Tws.~~~ ~~l~~~~ 
~ THE FORMAT FOR THESE SIX WORDS !SI.. 

-~•~W.ORD 1 ADDRESS OF NEXT STATEMENT ENTRY IN SCB.. . . - . . -----------­
.. WORD 2 ADDRESS OF PREVIOUS STATEMENT ENTRY
• <-1 FOR THE FIRST STATEMENT)
•
• WORD 3 STATEMENT NUMBER.. 
• WORD 4 BITS o- 7 NUMBER OF WORDS IN sea ENTRY.. ~I_L~- 8-1 ~..J-ilL!if3J:_!i__OE_~!:Lt1g~ QI~3? ..!N_§P.U_g_C_L!.NPUT _____.. 
+ WORD 5 BITS 0-14 ADDRESS OF ASSE~9LY ... (0 FOR A COMMENT STATEMENT>.. BIT 15 0 MACHINE CODE INSTRUCTION.. 1 DATA DEFINITION.. 
• WORD o LENGTH OF ASSEMBLY.. 

--... 
• THE USER SOURCE STATEMENTS WILL BE STORED TWO CHARS 
• PER WORD BEGINNING I~ THE FIRST CHARACTER POSITION 
• <BITS 8-15) OF THE FIRST WORD TO FOLLOW WORD o IN THE 
• SOURCE CODE BLOCK TABLE •.... 

"-> 
-....] 

"' 




STSCB NOP
LOA EDTFG EDIT OPERATION 
SZA 
JMP SC81 YES 
LOB AOOR1 NO ADDRESS OF ENTRY IN SCB----·-----sr B--PRE:\r;-I -'-----------------·-·-----~--------· 

LOA NEXT SUCCESSOR ADDRESS 
SfA B,I STORE SUCCESSOR ADDRESS 
INB 
LOA PREV ADDRESS OF PREVIOUS INSTRUCTION 
STA B,I
LOA CUSTN PREVIOUS STATEMENT NUMBER 
ADA STING STATEMENT NUMBER INCREMENT 

------srA-·cusrN CURREN'T--(JSER STATEMENT NUM8TR 
!NB 
STA B,I STORE STATEMENT NUMBER 
LOB AODR1 
STB PREV AODR OF PREVIOUS FOR NEXT ENTRY 

SCB1 LOB AOORl 
ADS • 3 
LOA LNTH2 WORD HOLDING LENGTHS---·-------ST A.. B, r· -- --·----­
IN B 
LOA ASMFG ASSEMBLY FLAG 
SZA,RSS
JMP SCB2 COMMENT STATEMENT 
CLE,ELA STORE ASSEMBLY INFORMATION IN <E> 
LOA ZADD ADDRESS OF ASSEMBLY 

-~.................--RAL 7 ERA ASSEMBLY INFORMATION IN BIT 15___________
SCBZ ·srA B'I ----------------· 

INB

LOA LENTH LENGTH OF ASSEMBLY 
STA B,I
INB 
LOA SRCNT NUMBER OF WORDS IN SOURCE INPUT 
STA STORE 
LOA BUFA INPUT 3UFFER ADDRESS------JSB Wt1DVE ·-----------------­-MOVE--TNT~SCB 

JMP STSCB,I 

l\J 

....J 
....i 



.,. 

... 

.,. DEFINE LABEL PRECEDING MNEMONIC ..,. .. 
--re-ou frOP 

LOB LBLFG LABEL FLAG 
SZB,RSS LABEL PRESENT 
JMP LBOEF,I NO RETURN 
LD9 LBLAD LABEL ADDRESS 
LOA B,I PREVIOUS REFERENCE TO LABEL 
SZA 
JMP LBDF1 YES

------TIAZ ADD N-O­
CLE 
JSB SLBL,I STORE LABEL IN SYMBOL TABLE 
JMP LBOEF,I.. 

l\J 
...J 
co 



LBOF1 CLA 
STA !ORCT DIRECT REFERENCE 
ADS .3 
STB RSTRE 

~k-&~--a?B O UN_D~ I NE_Q_Q_IfilC T REFER=E--'--'N-"'-C-=E_____________ 

SSA FORWARD qfFERENCE
JSB FWORF YES, CLEAR UP All DIRECT REFS 
ISZ RSTRE 
LOA RSTRE,I LOOK FOR INDIRECT FWD REFS 
STA IDRCT SET INDIRECT POINTER 
ADA 0700 • 
SSA FORWARD REFERENCES----]SB-TWD RF YES_______________ ~'-=-''--------------------
l DB LBLAD LABEL ADDRESS 
ADB .2 
LOA 9,I LAB~L INFORMATION 
AND CH1 SAVE LAST CHA~ACTER OF LABEL 
ADA .1 DEFINED LABEL 
STA B,I
INB 

----LDA-ZJTDU AUURESs-nr~-SSIBBLEO COUE 
STA B,I STORE WITH LABEL 
INB ADVANCE ADDRESS 
LDA ADOR1 ADDRESS IN SOURCE CODE 

STA 8.tI

JMP ltjDEF,I 

.....:i 
-------- \.0 

IV 



• • 

..
•
• INTERPRET AND CHANNEL SYSTEM DIRECTIVES 

• 
.. 

-----~ERE ARE SEVEN SYSTEM DIRECTIVES WHICH MAY BE ENTERED 
• ANY TIME EXCEPT 1 DURING AN EDIT. THESE DIRECTIVES 
• WITH THE EXCEPTION OF THE HALT ARE PRESENTED TO THE 
• USER IN THE INTRODUCTARY TEXT • 

• tABORT DISCONTINUE PROGRAM ENTRY,START AGAIN 
SDUMP DUMP REGISTER CONTENTS 

---tTDI TDITIHE-tXTSTING-PROGl{A"H----.• • IHALT HALT THE COMPUTER ,,,. PRESS RUN TO START AGAIN
• SLIST LIST ALL OR PART OF USER PROGRAM• :SEQUENCE CHANGE THE SEQUENCING
• THEN LIST THE PROGRAM 
..• fXECUTE EXECUTE USER PROGRAM 

• THE COLON FLAGGING DIRECTIVES HAS BEEN RECOGNIZED 
Jf. 


Jf. 


SYSTM JSB NTBLK NEXT NON BLANK CHARACTER 
JMP SYST5 NO CHARACTER FOUND 
CPA AY A80RT DIRECTIVE 
JMP START YESL BEGIN PROGRAM ONCE AGAIN 

~--~ . ­.. .. JOCUMP) 
.. 
• WILL DISPLAY THE REGISTERS AS OCTAL ANO DECIMAL 
• VALUES. INSTRUCTIONS WILL ALSO BE PRESENTED TO 
• DISPLAY DATA ODRESS CONTENTS• 

CPA 0 NOL DUMP DIRECTIVE 
JMP DUMP YE~ 

!:\.) 

00 
0 



If 

If 
.. IE<DIT>.. 
• PREPARE SOME POINTERS AND PROMPT USER TO BEGIN--..------­ ------···· --------··-----··------·--·----~--· ~------.. 

CPA E NO, EDIT DIRECTIVE 
CCB, RSS YES 
JMP SYST1 NO 
STB EDTFG SET EDIT FLAG 
JSB EDTl\O SET ADDRESS POINTERS 
LOA NEXT

--srA--ENEXT 
ISZ NEXT ADVANCE FOR TEST ADOR FOR INSERTS 
LOA M8 
JSB NWLNS OUTPUT 6 CR-LF 
LOA .20 
LOB EDMSG 
JS9 TTY.P PRINT EDIT PROMPT 
LOA M2 

--·--·----Jsa··m~urs-

.. J MP CMANO RETURN TO CONTROLLER 

EOMSG 
.. 

DEF 
ASC 

"'+1 
10,BEGIN EDIT OPERATION 

.. 
• 

-----...-·----
lH(ALT>

---··------·-··--·~---

.. STOP THE COMPUTER.. 
.. 

SYST1 CPA H HALT DIRECTIVE 

RSS YES
JMP •+3 NO 
HLT 778 YES STOP---·-----JMP--CMAND _____PREWRUmNc--1'T...... I~N~U-E~----------------O.--..C~O..,..N~f..... .... 

CX) 

...... 
IV 



• • 

.. .. 
ll<IST> <,M<,N» 

~_!__Ll_ST THE PRQ~RAM SEQUENTIALLY STATEMFNT a~f.AifM~~T·--~-------•
• M ANO N, IF PRESENT SPECIFY THE FIRST ANO LAST STATEMENT . 
• TO SE LISTED •• IF N IS ABSENT THEN ALL STATEMENTS 
• FROM M ON A~E LISTED •• IF NEITHER APPEA~ THE
• WHOLE PROGRAM IS LISTED •.. 
• IF N < M LISTING IS SUPPRESSED .. 

---..------------~· 
CPA L LIST DIRECTIVE 
RSS YES 
JMP SYST4 NO 
JSB ROCOM R~AD UP TO COMMA
JMP SYST3 LIST WHOLE PROGRAM 
JSB TWNT,I READ STATEMENT NUMBERS 
JMP SYST2 ONE NUMBER FOUND 

~SS-______ ERROR------·-·· -------------------­
RS S TWO NUMBERS FOUND 
JMP SYST6 ERROR 
LOB NUM1 

N 


N 

00 



CMB,!N9
ADB NUM2 FIRST NUMBER GREATER THAN SECOND 
SSB 
JMP CMAND YES, IGNORE LIST INSTRUCTION 
LOA FSTMT CHECK RANGE OF SECOND STATEMENT----------CMA,TN_A"______NUHBER_______________________________,_______ 

ADA NUM2 
SSA TOO SMALL 
Jt·tP SYST7 YES 
JMP •+3 

SYST2 LOA CUSTN 
STA NUM2 SET TERMINATOR 
LOA NUM1
CMA-,-INA=---­
ADA CUSTN CHECK RANGE OF FIRST NUMBER 
SSA IN ~ANGE 
JMP SYST7 NO, TOO RIG 
J~~p •+5 

SYST3 LOA FSTMT SET PARAMETERS FOR COMPLETE LISTING 
STA NUM1 
LOA CUSTN----------STA -NUM2- -­
LO A M10 OUTPUT 10 CR-LF 
JSB NHLNS 
JSB LIST CALL LIST ROUTINE 
LOA M10
JSB NWLNS 
JMP CMAND RETURN TO CONTROLLER 

N 
co 
w 



.... 
• IS<EQUENCE>,M,N• 

~~"'-CJ:lAlli.iE PROGRAM SEQUENCING SUCl::L_I_HA.~~~~~~~~--~~~~~~~~-• .. M BECOMES THE FIRST STATEMENT NUMBER

• 
•• N IS THE THE INCREMENT FOR SUCCESSIVE STATEMENTS 

• RESTRICTIONS ON M AND N ARE THAN M MUST NOT EXCEED 1000•,,. AND N MUST NOT EXCEED 25 • 

.­
SYSTI+ CPA S SEQUENCE DIRECTIVE 

JMP SEQ RESEQUENCE SOURCE CODE BLOCK..
•.. ZX<ECUTE>
• ,,. WILL INITIATE THE EXECUTION OF THE USER PROGRAM •.­.. 

CPA X NOi EXECUTE DIRECTIVE 
JMP XEQI YES

••• ERROR MESSAGES
• 

-~ 

SYST5 

.. 
LOA 
LOB 
JMP 

.22 
•+2 
ERCAL 

.. 
DEF 
ASC 

•+1 
11,UNDEFINEO INSTRUCTION 

I\.) 

.i:o. 
00 

http:CJ:lAlli.iE


•• 

•
SYST6 LOA .14 

LOB •+2 
JMP ERCAL 


DEF ERR1 BAD OAlA INPUT 

JI. ,,. 
SYST? LOA .30 

LOB •+2 
JMP ERCAL.. 
DEF ERR2 STATEMENT NUMBERS OUT OF RANGE .. ---­--~ 

SEQ JSB SQNC,I
CCA,RSS STATEMENT NUMBER INPUT ERROR 
JMP SEQ1.. 

• SET SEQUENCE FLAG 
• RETURN TO SYSTEM CONTROLLER FOR INPUT--..----·- -"-'-----------------­

STA SEQFG SET SEQUENCE FLAG 
JMP CHAND.. 

SEQ1 CLA 
STA SEQFG CLEAR SEQUENCE FLAG 
LOB FIRST ADDRESS OF FIRST STATEMENT 

__J)_E_Q~-~¥i-l~f1\0 ~Ru~s~ao~t~~J<...o...T_S=..T~AT.::...:E=..;Mc.::..:E::....:N..:...T:......__________~· 
ADB .2 ADDRESS OF STATEMENT NUMBER 
LOA CUSTN CURRENT STATEMENT NUMBER 
ADA STING ADO INCREMENT 
STA CUSTN 
STA B,I
LOB AHEAD 
CPB NEXT TERMINATION

-----JMP -SYST3 LTSITHtPRCYGRl:1""H 
JMP SEQ2 NO, CONTINUE 

N 
co 
l11 



.. .. 
• DUMP REGISTER CONTENTS ANO DATA ADDRESSES.. ,,. 
DUMP-- LOA 	 SAVA 

LOB DUMP1 
JSB RGDP1 DUMP <A> 
LOA SAVB 
LOS OUMP1+1 
JSB RGOP1 DUMP <B>
LOA S~VEO 
LOB OUMP1+2 

·---Jsa--·EbDMPo---='-----..D-..0',..M""'P---.(-E~}-----------------------­
LO A SAVEO 
RAR 	 POSITION FOR <O> 
LOB OUMP1+3 ADDRESS OF REGISTER NAME
JSB EOOMP DUMP (Q).. 

DMP1 	 LOA M2 
.JSB NWLNS-----'-LDA-.-10-----------------------------­
LDB RGOM4 RETURN INFORMATION 
JSB TTY.P 
LDA .46
LOB RGDH5 OPERAND DUMP INSTRUCTION 
JSB TTY.P.. 

• 	 SET F_!.,_AG_.1__J UMP TO SY ST EH CON TR OL=L=E'-R,___________________ 


CCB

STB OMPFG SET DUMP FLAG 
JMP CMANO READ RESPONSE•

• RETURN POINT FROM SYSTEM CONTROLLER.. 
___oM_P2___	g~~--2T!+ ~~~RA N.~o=---eo=-U~MCC-P'----O~I~R_,_E~C~T-'--=-IV"--E=---------------­

CL B NO 
STB OMPFG CLEAR FLAG 
JMP CMANO RETURN TO CONTROLLER 

!\.) 

O'\ 
00 



------ --- -----·----------­

•
• DUMP DATA ADDRESS CONTENTS
• 

JSB RDCOM READ UP TO COMMA 

---------j~ ~-- -~ ~~~~r--·~ g-Ag~J~-:~ ~5:~S~EF~L!-~ ~l R_LLGLI oN 

JMP OPER3 LABEL IS UNDEFINED 
JSB OTRG,I CHECK LABFL RANGE 
ADA OPNUM OPERAND NUMBER IF PRESENT 


~~~ ~6i¥! 1 2~~~KF~~~GBATA AREA 

CMB !NB-----ADB~ A--- ­ ADD-nro ATA--~DDRtS-stfE~G s OUGtIT
SS9,RSS
JMP DPER4 ADDRESS UNDEFINED
LOB A,I CONTENTS OF ADDRESS
LOA B,I VALUE
STA TEMP7
JSB CRLFD
LOB RGDM3---------LOA M? ---------·
STA TEMP!
INS CHANGE MESSAGE ADDRESS
ISZ TEMP! TO IGNORE BLANKS
JMP •-2
LOA M9
JS8 TTY.P
JSB ASCDC BINARY TO ASCII DECIMALIDA" Mi-------~--· -~~----------------

LOB RGDM3
JSB TTY.P
LOA M8
LOB RGOM2
JSB TTY.P
LDA TEMP7
JSB CNOCT BINARY TO ASCII OCTAL-·-----i:.DA ~s···--------· --~---------------

JSB TTY.P OUTPUT OCTAL
JMP DMP1 PRINT PROMPT

N
CX>
-.)

.. ..
DUMP1 DEF AY

DEF BE ADDRESS Of REGISTER NAMES
---·-___OE.E_E__

DEF 0
DUMP2 DEF TEMP7.. ..
• PREPARE TO DUMP EITHER <E> OR (0)..
• ENTER CA) REGISTER STATUS IN BIT 15

·~~•~ CB> ADORES O_F~R=E~G~I~S_T~E_R~N~A~M~E~~~~~~~~~~~~~~~-

•EOOMP NOP
CLE,ELA HOVE BIT FLAG IN TO <E>
LOA .48 ASCII ZERO
SEZ
INA
ALFLALF SHIFT TO FIRST CHARACTER POSITION

---~SB RG"DP"C-OURP~EGTSTER
JMP EODMP,I

N
00
00

.. ..
• DUMP CA> OR CB)..

-----:i~J"£jLf~-}-X8b~~~Qo~ER~-~~~-f~AH.~E------------------
•...

RGDP1 NOP

JSB RGDP3 PRINT REGISTER NAME
LOA M10
LOB RGOM1
JSB TTY.P·-------iLDA--H8 -------­
L08 RGOM2
JSB TTY.P
LOA TEMP?
JSB CNOCT BINARY TO OCTAL ASCII
LOA .6
JSB TTY.P PRINT OCTAL VALUE
LOA Mig

---- LDB-RGOM3
JSB TTY.P
JSB ASCOC CONVERT BINARY TO ASCII DECIMAL
JMP RGDP1,I•..

• DUMP <E> OR CO)..
~

RGDP2 NOP
JSB RGDP3
LOA M10
LD9 RGOM1
JSB TTY.P
LOA .1
LOB DUMP2

------~s fJ-TTY ;p-­
JM P RGOP2,I

PRINT

PRINT

REGISTER

REGISTER

NAME

N
co
l.O

• •
·• PRINT REGISTER NAME.. ..

---RGDP 31\fOl'
STA TEMP? VALUE TO BE CONVERTED
STB TEMP6 ADDRESS OF REGISTER NAME
LOA M2 TWO NEW LINES
JSB NWLNS
LOA M2
LOB TEMPo
JSB TTY.P PRINT REGISTER NAME

-----:JMP-~GUP3, I --~-------------------,,. ,,.
• CONVERT 8INARY TO ASCII DECIMAL WITH MINUS SIGN
,,. PRECEDING VALUE <WHEN NEEDED> AND PRINT VALUE.. ,,.
ASCDC NOP

--- l:U"A-.EflP7 VA[UE ro·--m:i;oNVERI ED
SSA,RSS NEGATIVE VALUE
JMP ASCD1 NO
CMA,INA CONVERT TO POSITIVE INTEGER
JSB CNDEC BINARY TO ASCII DECIMAL

k2~ ~!~7 SAVE MOST SIGNIFICANT CHAR

IOR MSIGN INCLUDE MINUS SIGN----s1 -------------------­~~-u-r

~ss '
ASC01 JSB CNDEC CONVERT POSITIVE ·NUMBER TO ASCII

LOA • 6
JSB TTY.P PRINT DECIMAL VALUE
JMP ASCDC,I..

N
\.0
0

.. ..
RGOM1
.. ------...

DEF
ASC

•+1
5, REGISTER

RGDM2
..

DEF
ASC

•+1
4,0CTAL

..
RGOH3
,,.

DEF
ASC

•+1
10, DECIMAL

--~

RGOM4 OEF 1
ASC 8,TYPE R TO RETURN•..

RGOMS DEF •+1
ASC 23,ELSE TYPE O, FOLLOWED BY OPERAND TO BE DUMPED..

~-oulW-~R~CW.-lfESS AG ES..
OPER1 LOA .16

LOB •+2
,JMP ERCAL..
DEF ERRo NO OPERAND FOUND

... t-...>
\0
I-'

--

....
OPER2 LOA .11+

LOB "'+2
JMP ERG_AL..
DEF EPR9.. ..

OPER.3 LOA .26
LOB "'+2
JMP ERCAL ...

--uEFTRR.-S.. ..
DPER.4 LOA .20

L08 .. +2
JMP ERCAL..
DEF ERR7

NO LABEL FOUND

UNDEFTNEDL~ErEC- IN OPrnmTI

OPERAND IS UNDEFINED

N
l.O
N

.. ..
• EXECUTE USER PROGRAM.. ..

------XtQT-JS1r---PC"C1JF DEFTNt~-C-?<EFERFNCcS
JSB SSTDF DEFINE SST ENTRIES
JSB SCNCD 1 I SCAN COOE FOR FORWARD REFERENCES
JSB PROG,1 EXECUTE USER PROG~AM
JS3 SAVR SAVE REGISTER CONTENTS..

• RESTORE FORWARD REFERENCES TO USER PROGRAM ...
XtlU L 0 AXUSRP FTRSri:-o CATTON!f'rVSE~---P"RO~

STA TEMP
LOB RUFA ADDRESS OF UNDEFINED REFERENCES
STB TEMP1

XEQZ ~~~ ~~~b1 ' 1 ALL UNDEF REF RETURNED TO PROGRAM

JMP XEQ4 YES

XEQ3 LOA TEMP I NO
--- ---CPA--HPPEl---spc:cTJR~--.rNTERRUP r Ex~~~....---------

JM P •+3 YES
ISZ TEMP NO, NEXT LOCATION IN PROGRAM
JMP XEQ3
STB TEMP,I RFTURN FORWARD REFERENCE TO
ISZ TEMP USER PROGRAM
ISZ TEMP1
JMP XEQ2

-~x~E_,,,Q.-..-4-JMP--CMANO-___RFfURl~- Io CUNTROLLER

!\.)

l..O
w


~~~~----~-~~~~~- -~~-

.. .. .. .. .. 
---.._,,. UNDEFINED (FORWARD REFERENCE> WA-RNING 

.. 
MPPET JSB SAVR SAVE REGISTER CONTENTS.. 
• PREVENT INTERRUPT 8EFORE PROGRAM IS RESTORED.. 

~~~~~JSB I.OFF TURN OFF INTERRUPT 
LffA--:-za MEHORV-PROTE'.Cr"ERITTJR
LOB MPT1
JSB qPLN PRINT EXPLANATION OF ERROR
LOA .40 TO USER
L013 MPT2
JS8 TTY.P
JMP XEQ1

\'­
JI:

MPT1 DEF •+1
ASC 14,UNDEF!NEO OPERAND IN PROGRAM.. ..

MPT2 DEF •+1
ASC 20,EXECUTION CEASES, CONTINUE PROGRAM ENTRY

N
\0
~

Jf.

If.

• DEFINE COMPOUND OPERAND REFERENCES..
If.

--ssTLJFNO-P
LOA XSTBL ADDRRSS OF SYMBOL TABLE
JMP •+3

SST! LOA RSTRE RETRIEVE ADDRESS
ADA .6
STA RSTRE SAVE PRESENT POSITION IN SYM TBL
LOB YSTBL UPPER BOUND OF SYMBOL TABLE

·---~B~_!_I_~: ~
SSB,RSS WHOLE TABLE SCANNNEO
JMP SSTOF,I YES, RETURN
ADA .2 EXAMINE LABEL INFORMATION
~e~,~R§
SEZ,RSS LABEL DEFINED
JMP SST! NO·--·----AOA--;z 'fE~---·

LOB A~I AOO~ESS IN SOURCE CODE BLOCK
STB ADDR1 SAVE ADDRESS
ADA .1
STA LKPSN SAVE LINK POSITION
LOB A I LINK TO SST
SZB,R~S SST ENTRIES

!\,)

\0
Ul

__ _

JMP
SST2 STB

LOA
STA

---~Hrn
LOA
SSA

SST1
SST AO
B,I
OPNUM

B,I

CCA,R.SS
CLA
STA IDRCT
STB POSN
LOA OPNUM
LOB ADD~1

--JSEr-HFNDAO
SSA
JMP SST4
f~~ ~~~2
~8~ b~~~,I
SSA

---·--JSs-nmRF--YFs-;~cCE.l'(RuP-FWU-~

rsz PosN
LOB POSN,I
STB LKPSN,I
LOA SSTAD
STA TEMP
LDA M4

NO~ EXAMINE NEXT AREA IN SYM TBL
YE~, SAVE ADDRESS IN SST

LINK BACK TO SYMBOL TABLE
INDIRECT BIT SET
YES
NO
SET INDICATION
SAVE PRESENT POSITION IN SST
OPERAND NUMBER VALUE
SC8 ADDRRSS OF LABEL
FINff-u~DORES-S ----------------­
AOD~RSS FOUND
NO
~~~t [g~~T~82R~~SSST 
FORWARD REFERENCES 

ADDRESS oF LINK IN ssr 
VALUE OF LINK 
STORE IN NEW LOCATION 
ADD~RSS OF ENTRY IN SST 
SAVE AOORfSS 

N 
l.O 
O'I 

http:CCA,R.SS


------- ----

STA TEMP! 
CLA
STA TEMP,I CLEAR ENTRY IN SST 
!SZ TE~P 
rsz TEMP! ADVANCE ADDRESS POINTER------JMP-.,;_-3------------··----··----- ·--~~-----·----· 

LDA M2 
ADA TEMP 
STA TEMP ADDRESS OF FORWARD REFERENCE 
LOA XSST SASE ADDRESS OF SST 
CMA,INA 
ADA SSTAD 

A-B}S9~~~J RESTORE FOR~-----------------
sr A TEMP,!

SST3 SZB LINK TO FURTHER ENTRIES 
JMP SST2 YES 
JMP SST1 NO, EXAMINE NEXT LABEL ... .. 

• NOT FOUND FOR SST ___________________EN_T_R~Y
-----,,;--ADDRESS 

SST 4 LOA POSN 
ADA .2 POSITION OF LINK 
STA LKPSN NEW LINK ADDRESS POINTER 
LOS A I EXAMINE LINK 
JMP SST3 

r-.> 
\0 
.....i 



.. 
• 
~ DEFINE PLC REFERENCES BEFORE BEGINNING EXECUTION.. ,,. 
~--EACH PrCREFERENCE IS -~TifRED-rNlwo WORDS-IN THE PLC 

.. TABLE
.. 
• WORD 1 SC3 ADDRESS WITH BIT 15 SET FOR INDIRECT.. REFERENCE
• 
• WORD 2 NUMERIC VALUE IN OPERAND
• 

--~--No--.zrTTEMPT wrrr-Er~1'Tir-To DEFINE THE PLC REFERENCE 
,,. UNTIL EXECUTION. BEFORE EXECUTION THE PLC TABLE 
,,. HILL BE SCANNED AND ALL POSSIBLE REFERENCES WILL 9E 
• DEFINED. THE SPACE OCCUPIED BY THE ADDRESS WILL 9E 
• CLEARED TO ZERO. 
¥ 

• A WARNING IS PRESENTED IF THE PLC TA9LE IS NEARLY FULL 
• THE EXISTING USER PROGRAM IS LOST IF THE TA9LE IS 
~--1n:r::OWEUIOuVERFCOW-. -----------­
•.. 

l\J 
\.0 
(X) 



PLCOF NOP
LDB XPLC BASE ADDRESS OF PLC TABLE 
JMP •+3 

PLC1 LDB 
lDB 

STORE 
.2 NEXT AREA IN PLC TABLE-·----sra ·sroRE___SAVE-.AOORESs----·--···· 

LOA YPLG UPPER BOUND OF TABLE 
CMA,INA
ADA B 
SSA,RSS TABLE FULLY SCANNED 
JMP PLCDF,I YES 1 RETURN 
LOA B1I ENTKY 
SZA,R~S

-----JMP P[G~1---tro1 LOUl< AT NEXT A'REA IN 11Lc-TI1!LE 
SSA YE~, INDIRECT REFERENCES 
CCA,RSS YES 
CLA NO 
STA IDRCT SET POINTER
LOA 8,I RESTORE ADDRESS 
ELA,CLE,ERA CLEAR BIT 15 
STA AODR1 SAVE ADDRESS-IN B------------· -------·----------·------------------­
LOA B1 I OPERAND NUMBER VALUE 
LD9 AuDR1 SGB ADDRESS 
JSB FNDAD FINO ADDRESS 
SSA AODRRSS FOUND 
.JMP PLC1 NO 
STA ZADD YES, SAVE ADDRESS 

rv 
l.O 
l.O 



LOA ADOR1 . SCB ADDRESS
ADA .4 ADDRESS OF ASSEMBLY 


~~~ ~~BR1 SAVE ADDRESS 

----~ADS 0340 CORRESPONDING ADDRRSS IN~-------------ST a--AffDR-1!--ADDRESS- erocic-­

LD A ZADD

JSB DATAD DETERMINE ADDRESS TYPE
JSB IDIRT CHECK FOR INDIRECT REFERENCE
STA ADDR2,I STORE ADDRESS
LOB AODR1,I INSTRUCTION SKELETON
SSB TWO HORD ASSEMBLY
JMP PLC3 YES

-i::OAAODR2 . ---­
AND 81777 GET RELATIVE AQDRESS

IOR CPI8 CURRENT PAGE INDIRECT BIT
SWP STO~E ADDRESS IN C8>
ANO 81760 SAVE INSTRUCTION SKELETON
ADA 9

PLC2 STA AODR1,I RETURN INSTRUCTION
CL .0.

-----sTA--STffRE, I Cl:m-ttRIT--rw·-rCCIITTH:E s I ORE
JMP PLC1

•
,,. TWO WORD ASSEMBLY ...

PLC3 ISZ AODR1

LOA ADOR2 POSITION IN ADDRESS BLOCK
IOR HNEG INDIRECT BIT

-----JMP--P[CZ

w
0
0

/

....
• FIND ADDRESS FOR COMPOUND OPERAND..
• ENTER <A> OPERAND NUMSER VALUE

--~ cer-s-crURt;~--i;oor-ffLUClC ADtm:ESS OF LAtJIT.. ..
• RETURN (A) = -1 ADDRESS NOT FOUND
• ADDRESS IN ASSEM9LED CODE.. ..
FNDAD NO?

srA~VATUE
SSA DETERMINE DIRECTION OF SEARCH
JMP FNDD5

FND01 LOA B,I SEARCH AHEAD
STA AHEAD AOD~ESS OF NEXT ENTRY
ADB .5
LOA B,I LENGTH OF ASSEMBLY
STA LNTH3 SAVE LENGTH OF ASSEMBLY-------CMA1N7l - ---- ----------------­
ADA' VALUE
SSA
JMP FN003
CLE,SZA,RSS
CCE
STA VALUE RET~IN NEW VALUE
LOB AHEAD AOO~ESS OF NEXT ENTRY

------·cps-NEXT-- TERMINATTUrr-------------------­
FNDD 2 CCA,RSS YES

RSS
JMP FNDAO,I RETURN ADDRESS NOT FOUND
SEZ,RSS
JMP FNDOi
INB BACK UP IN SCAN OF seq
LDB B I TO RETRIEVE ADDRESS OF ASSEMBLY----Aus--;-S-­ ---FORU-PREVIOUS--TMSTRUGT~"--=-~"--'------------

VJ

I-'

0

..
,,. ADDRESS FOUND..
FNDD3 ADA LNTH3

__FNJ)O_i.__A_a_EL_J11
LOB B I
ELB,ClE,ERB
ADA B
JMP FNDAD,I..

• SEARCH BACKWARD..
FND05 CM~INA

-~~~ -STA -vAcur
FNDD6 INB

LOB 8,I
CPB Mi
JMP FNDD2
INB
LOA B,I
STA BACK

LENGTH OF ASSEMBLY
ADDRESS IN AS_SEJ1JLL_ED CODE~--------------

CLEAR BIT 15 IF NECESSARY
RETAIN ADDRESS IN CA>

IN SOURCE CODE BLOCK

COfflfEIITGlfNSTA1llTIJl'OSITIVE

ADDRESS OF PREVIOUS INSTRUCTION

TER.MINATION
YES

RETAIN ADDRESS OF PREVIOUS INSTR

. -----ADB--;z+-- ----------------­

LD A 8,I LENGTH OF ASSEM8LY
CMA,INA SUBTRACT LENGTH OF ASSEMBLY
ADA VALUE FROM CONSTANT
SSA
JMP FNDD7 POSITION FOUND
SZA ,-R.SS
,JMP FNOD7

-----srA--V-A[~EYrVITOE

LOB BACK
CPB Mi
JMP FND02
JMP FNDD6+4..

FNDD7 CMA,INA
____ JMP _ _E_NQD4

ADD~ OF PREV IN SCB ENTRIES
TERMINATOR
YES, ADDRESS NOT FOUND
NO

w
N
0

• •
• DEFINE FORWARD REFERENCES••

---rwlJ~~---------

FWDR1 ADA 8700 ADDRESS OF FIRST REFERENCE
ADA JMP ACTUAL ADDRESS
STA WMOVE
LOA WMOVE,I RETTRIEVE INSTRUCTION
ANO 81777 RELATIVE ADDR OF NEXT INSTR
STA SAVEE RETAIN ADDRESS
LOA WMOVE,I RETRIEVE INSTRUCTION

·-----AND-BiToU REMOVE-PUINT"E~CJ NEXIR"~

STA WMOVE,I
AND 80700 LENGTH OF ASSEMBLY
SZA
CLB,INB,RSS ONE WORD ASSEM9LY
CCB TWO WORD ASSEMBLY
STB LENTH
LOA WMOVE ADDRESS OF INSTRUCTION

----ADA-0340-- AODR--·rN-ADDR-BDJC~-----------------

STA AODR3

LOA ZADD ASSEMBLY ADDRESS
JSB OATAD UPDATE DATA ADDRESS
JSB IDIRT
STA ADDR3,I STORE ADDRESS
LOA AODR3

__LOB LENTH GET ADDRESS IN,~A_D_O~R~E_S_S_B~L_O~C~K'-------------

~~~j~~~-;7 k~Ea~B~R~g-py WORD ASSEM9L Y 
STA TEMP 
LOA WMOVE,I RETxIEVE UNDEF INSTRUCTION 
ADA TEMP ADDRESS 
!OR CPIB CURRENT PAGE INDIRECT BIT 
STA WMOVE,I STO~E INSTRUCTION 
LOA SAVEE POINTER TO NEXT INSTRUCTION

------ADA D700 ~ETURW-Ta--sYM80C-T.!r8LT ---------· 
SSA 
JHP FWDR1 NO, FORWARD REFERENCE 
JMP FWDRF,I 

w 
w 
0 



.... 
• SYSTEM LIST ROUTINE• __•_ENTER CAl______L_O__S_'(_S_J_E_Ji__D_IJ1EC_TlV£ 
• CA> < 0 CALL FROM EDITOR.. .. 
LIST NOP 

STA ENDFG PRINT FOR END MESSAGE 
CLE,SSA CLEAR PRINT FLAG 
JMP LST1 CALL F~OM EDIT 

LOA FIRST FIRST ENTRY IN SC~9~----------------·

RSS 

LSTi LOA SUCAD GET PREVIOUS SUCCESSOR ADDRESS 
CPA NEXT ·rfRMINATION 
JMP LST3 YES 
LOB A1 I ADDRESS OF NEXT STATEMENT 
SZB,R~S ENO OF USER PROGRAM 
JMP LST3 
STB SUCAO N~ SAVE NEXT ADDRESS------Aotr-;2----- -------- ------------------­
STA ADOR
LOA A1 I GET STATEMENT NUMBER 
STA StNUM . 
SEZ PRINT FLAG 
JMP LST2 SET 
LOB NUM1 
CM9 INS

-----ADB1 STNITR CHECK~J\1'ffit 
CLE,SSB
JMP LST1 GET NEXT STATEMENT 

LST2 CMA,INA -STATEMENT NUMaER 

w 
~ 
0 



ADA NUM2
SSA IN RANGE 
JMP LST3 NO 
CCE YES, SET PRINT FLAG 
LOA STNUM STATEMENT NUMBER

------J s e--c NOEC 911'-flfRY--ToASCIrtrEC I MA [
LOA Mo 
JSB TTY.P PRINT STATEMENT NUMBER 
LOA Mi 
LOB RG0~-13 ADDRESS OF 1 BLANK 
JSB TTY.P 
LOB ADDR. 
!NB 

------1..DA-131~ 

ALF,ALF
ANO 8177 NUMBER OF CHARS IN SOURCE INPUT 
ADB • 3 AOD~ESS OF SOURCE LINE 
JSB TTY.P PRINT LINE! AND CR-LF 
JMP LST1 GET NEXT L1NE.. 

LST3 LOB ENOFG END MESSAGE------ssa · --------------------­
JMP LIST,! NO, RETIRN 
LOA M2 
JSB NWLNS 
LOA .12
LOB LSTMG 
JSS TTY.P PRINT -LIST ENDS­

-----~J_Mf_LIST~I .. 
LSTMG OEF •+1 

ASC 6, •LIST ENDS• 

w 
Ul 
0 



.. 
. .. 

ORG '+0009.. 
"!'­

>.< MA IN LEXfCAT-~WBROUTINE TO-S-CAN INPUT-S-OURCEC·cn:re: 
• ALONG WITH CODE INVOLVED IN EDIT OPERATIONS 
'I­.. 
• THE INSTRUCTION SET HAS BEEN DIVIDED INTO 15 GROUPS 
• DEPENDING UPON THE INSTRUCTION 

• REQUIRED.. 

---,,.-l;ROUP--TNSTRUCTilJN-TYPE. 
• NUMBER.. .. 1.. .. 2 INPUT I OUTPUT.. .. 3 INPUT I OUTPUT 

--;y:----~-. .. l+ INPUT I.. .. .. 5 EXTENDED.. REGISTER.. 

OUTPUT 

ARIT!-1 
REFERENCE 

.. 6 MEMORY REFERENCE 

.. 7 EXTENDED ARITH.. MEMORY REFERENCE 

NO 


TYPE ANO THE OPERAND 

ffPER~NIJRTO.U-IREU 

OPERAND REQUIRED 

CLEAR FLAG MAY BE PRESENT 

CHANNEL NUMBER EXPECTED 
---~----------·------­

CHANNEL NUMBER EXPECTED 
CLEAR FLAG MAY BE SPECIFIED 

NUMBER OF SHIFTS 

LA !3EL 
'NUMBER:
ASTERISK 
INDIRECT FLAG 

w 

O'\ 
0 



--

------

.. ,,. 

... PSEUDO OP.. .. 8 END NO OPERA@__li_8li'IRED
---Jf:. .. g ASC LENGTH AND LIST OF ASCII.. DATA.. 

.. 10 DEC REAL OR DECIMAL INTEGER.. 

.. 11 OCT OCTAL INTEGER VALUES 
---•.. - 12 EQU ITTJORESS.. 

.. 13 ABS ADDRESS VALUE
• .. 14 SSS VALUE.. 
.. 15 DEF ADDRESS DEFINITION 

--•.. 
• EXCEPT FOR THE MEMORY REFERENCE INSTRUCTIONS ALL 
• OPERAND RECOGNITION ANO HANDLING WILL BE WITHIN THE 
• LEXICAL SUSROUTINES. MEMORY REFERENC~ OPERANDS WILL 
• BE EXAMINED BUT NOT PROCESSED UNTIL THE INSTRUCTION 
• IS ABOUT TO BE SiOREO •.. .. 

--~ 

w 

-.J 
0 



'.LEX NOP
LOB EOINT REPLACE OR DELETE 

~~~'~;~ NO 


----· J5 8 __GET_C_R___GE_l"_ EIRSI_~_HARA_G_Jf_R_______
JMP LXR1 FIRST CHARAClER NOT FOUND
C?A STAR WHOLE LINE A COMMENT
JMP LEX,! YES, RETURN
CPA BLANK BLANK, NO LABEL
JMP LEX2 YES
j~~ t~~~,I ~g~ it[~~~L 0~r~~~rg~ARCTER
LOB LAqt YE~ ADDRESS FOR FIRST LABEL---·----JS-0-LBRO-,T~E~{rTA 9t=:[- -------- ~~~~----
JMP LXR9 ILLEGAL CHARACTER BEGINS LABEL
JSB GETCR
JMP LXR3 ILLEGAL TERMINATION AFTER LABEL
CPA BLANK BLANK
RSS YES, VALID TERMINATION
JMP LXR3
LOB LAB1 MEMORY ADDRESS OF LABEL
JS1rl:OKUP---SYM!3D[-TA BLi:--CODl\TJP-- ------·
STB LBLAO SAVE SYM90L TABLE ADDRESS
LOH EDINT EDIT INSTRUCTION FLAG
SLB REPLACE OR DELETE
JMP LEX1 YES
SZA NO, LABEL EXIST IN TABLE
JMP •+4 YES
LOA .2
-STA-THLTc;----TAL-UFrOR.~ON EX IS 17\NILABEL
JHP LEX2

SSA,RSS LABEL DEFINED
JMP LXR4 OOU3LY DEFINED LABEL

w
0
00

•
• STORE NEGATIVE.. ..• RETAIN ADDRESS

---CE-XT--STALBL~

LEX2 JSB NTBLK
JMP LXR5
JSB BCKSP
LOA M3
STA TEMP3
CLE

LEX3 JSB GETCR
--~ JMP-LXR?

SEZ,RSS
ALF,ALF
IOR OPAOO,I
STA OPADD,I
SEZ,CME
ISZ OPADO
ISZ TEMP3 --.------ -J t-1 p -[Ex r·
J SB MNEM
LOB EDINT
SLB,RSS
JMP LEX4
LOA INSNH
CPA .6
JMP LEX12

---~cp~---;7---

JMP LEX12-1
CCB
AnA M8
SSA,R.SS
STB ASMFG
JMP LEX,I

VALUE FOR UNDEFINED LABEL
OF DEFINED LABEL ON EDIT OPERATION

~nm~rss1WA·ssc:Hnu-u--clYDE
NEXT NON BLANK CHARACTER
NO OPCODE FOUND
RETURN LAST CHAR TO BUFFER

READ THREE CHARACTERS

READ CHARACTER

MNEMONic-·NoT-TOUfffi

SHIFT ALTERNATE CHAR

STORE CHAR IN OPCODE BUFFER

ADVANCE BUFFER ADDRESS

CHA~ACTER COUNTREA Dd Nf.xr· cR AR.-'---------------------­
LOOK UP OP CODE NAME
EDIT INSTR FLAG
DELETE OR REPLACE
NO
YES, MEMORY REFERENCE INSTR

YES

EXTEffDED~-rTHf1EM REF

YES

MACHINE CODE OR DATA EDIT

DATA

w
\.0
0

http:SSA,R.SS

..
LEX!+ JSB GETCR GET TERMINATOR CHAR

R.SS
JMP LEX5 ...

,,. END OF LIN_E. CHECK INSTRUCTION NUMBER
...

LOA INSNM

CPA .8 ENO PSEUDO OP DOES NOT REQUIRE
JHP LEX12+2 OPERAND
ADA. M3
SSA,RSS OPERAND EXPECTED
J~P LXR6 YES ERROR NO OPERAND FOUND

~HP-lEX' I RETUR:W-VATTD---rNSTRCJCTTOi-r-----------­
LEX5 CPA BLANK VALID TERMINATOR AFTER OPCODE

RSS YES
JMP LXR8 NO
LOA INSNM INSTRUCTION OPERAND NUMBER
CPA .1 FIRST OPERAND TYPE
JMP LEX,I YES, RETURN NO OPERAND EXPECTED
GPA .2 NO SECOND OPE~ANO TYPE

--RSS___ .. . YES-,----C[EAR-· FCA:;--EXPECTE~--·

JMP LEX? NO

JSB GETCR
JMP LEX,! CLEAR FLAG NOT FOUNO
CPA C CLEAR FLAG
JMP lf X6
CPA BLANK BLANK TERMINATOR
JMP LEX,I YES. RETURN

---~·M p---i_ X R 8 ---~0 ,-"TRRUR.-TCI:E7AL-----crlA R IN oPER

LEX6 LOA ASMBY

!OR 81000 MASK IN CLEAR FLAG BIT
STA ASMnY
JSB TR~CK CHECK TERMINATION

1~~ t~~BI ILLEGAL CHAR IN OPERAND

LEX7 CPA .3 THIRD OPERAND TYPE

-------RSS_____ YES--REAO~CH.lrNNEI:-NUffBER

CPA .4 FOU~TH OPERAND TYPE
RSS YES, READ IN CHANNEL NUMBER

w
I-'
0

..
LEX31 CPA .14 BSS PSEUDO OP

RSS
JMP LEX35
JSB LABCK

--,-----JHP -l EX3 2----if\JT~BIT
JMP lEX33 UNDEF LABEL/DOES NOT EXIST
JSB OTRG,I DEFINED LABEL
ADA OPNUM
JSB DTR.G,I
LOA A,I RETRIEVE ADDRESS
SZA,RSS
JMP LXR17 UNDEFINED OPERAND

l:DA -p_ jT RET~TEVtvATU~--"---------------------

.JM P .lf.+3
LEX32 CLA

ADA OPNUM
SZA,RSS OPERAND VALUE ZERO
JMP LXR19
SSA
JMP LXR19

-- -L 0 B -Ml z-g---CRECrRJ\NGE

AOB A

SSB,RSS
JMP LXR13
STA LENTH SAVE LENGTH
STA IDRCT FLAG TO SIGNAL BSS
JMP LEX,!..

----i:--E~x-3-3-J~,s-a--v ~c--

JM P LEX32+1

w
I-'
I-'

JMP LEX10 NOt ADVANCE TO REGISTER REFERENCE
JSB NMBR,I READ CHANNEL NUMBER
JHP LEX9 FIRST CHAR NOT A NUMBER

LEX8 L013 0100
JSB RANGE CHECK RANGE OF OPERAND-------JM P--TEX, r------------------- ----- ----------­

LOO INSNM INSTRUCTION
CPS .3 TYPE 3 OPERAND
JMP
CPA
RSS

LXR8
COMMA

YES, ILLEGAL
COMMA BOFORE
YES

CrlAR IN OPERAND
CLEAR FLAG

JMP LXR8
----j~~-¥~~CR NEXT CH_A_RA_CTE R.--=---------­

CP A C CLEAR FLAG
JMP
JMP

LEX6
LXR8

YES,
NO

MASK IN

LEX9 JSB LTPR,I LETTER OR PERIOD
JMP LXR8 NO, BAO DATA IN OPERAND
LOB LAB2 YES, ADDRESS OF LABEL
JS3 LBRO 1__I READ LA 8EL

--JMPLXR9­ --IlLFGAI: CHll:~oEGTNS LABEL
LOB LA82
JSB LOKUP
SZA,RSS
JMP LXR10
SSA
JMP LXR10

______LOA A I JM P-CtX8

MEMORY ADDRESS OF LABEL
SYM10L TBLE LOOK UP
RETURN POSITIVE ADDRESS
ASSF.M3LED CODE
POSITIVE ADO~ESS
NO, UNDEFINED LABEL
RETRIEVE VALUE --­ - -----------­

IN

LEX 10 CPA .5 TYPE 5 OPERAND
RSS
JMP LEX11
JSB NM9R.,!
JMP LXR8
SZA,RSS
JMP LXR13[DB-Mio -

READ IN OPERAND VALUE

ZERO VALUE
YES-'---ERROR--­ - ----------------­

JSB
JMP
JMP

RANGE
LEX,I
LXR11

CHECK RANGE Of VALUE

ILLEGAL CHAR AFTER OPERAND
w
I-'
N

If.

,,. MEMORY REFERENCE TYPE INSTRUCTIONS
• ALL OPERAND EVALUATION IS HANDLED OUTSIDE LEXICAL SUBROUTINE
If.

-~L_E_X_i_L_CPl~__•. E>
JMP LEX12
CPA .7 EXTENDED ARITH MEMORY REFERENCE
RSS
JMP LEX13 NO
ISZ LFNTH TWO WORD ASSEMBLY

LEX12 JSB OPRC,I
JMP LEX, I

If.

~Eiro-P-SEUffO OP BR~NCRES-TO EXECUTFIWUTINE
If.

LOB EDTFG EDIT OPERATION
S?B
JMP LXR12 ILLEGAL OP CODE DURING EDIT
JMP XEQ,I YES BEGIN EXECUTION..

• THE REMAINDER OF THE INSTRCTIONS ARE FOR DATA DEFINITION PURPOSES
-~...- -·------·- --- -------	 --· ------------------· ..

LEX! 3 LOB M29
STB LNTH2
INS
STB TEMP3
LOB DATBF ADDRESS OF DATA BUFFER

___	STB OATPT RETAIN AOOR OF DATA BUFFER_____

STB--TEHP4 CI:EAf{-UATA-SUFFER-1-0---ZE~

CLO

STB TEMP4,I
ISZ TEMP4
ISZ TEMP3
JMP •-3 ...

STB LENTH LENGTH OF DATA ENTRY
------sra··r EMp3----cLE AR-TOR-ASc-p·s EUDOCW

w
I-'
w

,,.
lf.

lf.

CPA .9 ASC PSEUDO OP
RSS YES

-----;JH·p-·-rrxr~-----r'fo---=-------------------------

JS B GTNM,I INPUT POSITIVE INTEGER
STA OPNUM
SZA, RSS VALUE ZERO
JMP LXR.13 YES 1 ERROR
LOB M29 CHE{jK RANGE
ADB A
SSB RSS
JMP-1TXR1'"3 \J"ALUF"IJDID"rR---.--A~N~G-E_______

JSB NTBLK NEXT NON BLANK CHARACTER

JMP LX~11 NO OPERAND FOUND
C?A COMMA COMMA BEFORE DATA
RSS YES
JMP LXR8 NO, ERROR
LOB OPNUM
OLS MULTIPLY BY 2 FOR CHARACTER COUNT--CM8-TN8 ------- --~-------------

STB'TEMP

CLO
CLE

LEX14 SOC
JMP LEX15
JSB GETCR NEXT CHARACTER
RSS NONE FOUND

-"JM VLEXI?+1
STO SET IF NO CHAR FOUND

LEX15 L0A BLANK LOAD BLANK
si::Z,RSS

SHIFT CHARACTER~B~'~k~P3 MASK IN CHARACTER
STA TEMP3
SEZ,CHE

---~JS B STD 11:r-----STOR:Etl"ATATir80 FF ER
STA TEMP3 CLEAR STORE WORD
ISZ TEMP
JMP LEX14
JMP LEX,I

w
I-'

""'

..
..

LEX1& CPA .10 DEC PSEUDO OP

RSS YES
JMP LEX22

--TIXT7-:J-S-9--CNS-T, I~-~Rt-A-CcHCTitcTMAL INTEGER
JSB
JMP

TPCK 1 I LEX2u
INTEGER
REAL

OR REAL

LEX19 JS9 STOAT
JS8 TRMCK
JMP LEX,I
CPA COMMA
JMP LEX17
JM P--L XR~

INTEGER IN <A>

RETURN
COMM~ SEPARATING DATA

YES READ NEXT NUMBER
N0-1-'ffA D---CHJ\R-J'ICTER ·~---------------

LE X20 JSB
LOA

STOAT
TFMP2

STORE FIRST
SECOND WORD

WORB OF
OF REAL

REAL

.. JMP LEX19 ..
LEX22 CPA .11 OCT PSEUDO OP

RSS
~MP._TEX24

LEX23 JSB OCTN 1 I READ IN OCTAL INTEGER
JSB STDAI STORE IN DATA BUFFER
JSB TRHCK CHECK TERMINATION
JMP LEX,!
CPA COMMA COMMA StPARATING DATA
JMP LEX23 YES, READ NEXT INTEGER

--or---~J~M_P__ LXR8 NO, ERROR_______________________

w
I-'
lJ1

• •

_________ _

..

LEX24 CPA .12 EQU PSEUDO O?

RSS
JMP LEX28
LOB LBLFG LABEL FLAG-------sze-,-Rss ----------- ---·-'-'-=-----­

JM P LXR14 NO LABEL PRECEDES EQU
JSB LA3CK REAQ IN ANO EXAMIN OPERAND
JMP LEX26 LABEL NOT FOUND
JMP LXR10 LABEL IS UNDEFINED
ADA OPNUM ADO IN CONSTANT
JSB OTRG,I CHECK RANGE OF ADDRESS
STA ZADD ADDRESS IN ASSEMBLED CODE

-------JSirTRHCK CHEC~-TERMTN~TION--

JMP LEX,I
JMP LXR11 BAO DATA FOLLOWS OPERAND

• STORE OPERAND VALUE IN LAST POSITION OF DATA BLOCK
• IF LABEL NOT PRESENT IN OPERAND,,.
ITXZ~TDA--OPNUM

SSA
JMP LXR15 OPERAND MUST BE POSITIVE
LOB 0100
ADB A
j~~,E~~13 OPERAND VALUE TOO LARGE
LOB YOATA LAST LOCATION IN DATA BLK-----srA"---vnAT~;-r--STO~~AUDRFSS____________________
STB ZADD ' RETAIN ADDRESS IN ASSEMBLED CODE
ADS
STB

Mi
YOATA UPPER BOUND OF DATA BLOCK

• JMP LEX,I

w
I-'

°'

..
LEX28 CPA .13 ABS PSEUDO OP

RSS
JMP LEX31

-·------·_J_SB__L_AB_CJ~_____REAJL_I_N OPERAN~O~-------------------
JMP LEX29 NO LABEL
JMP LEX30 UNDEFINED LABEL
JSB OTRG,I DEFINED LA8EL
ADA OPNUM INCLUDE CONSTANT
JSB DTRG,I CHECK ADDRESS RANGE
LOA A,I · RETRIEVE DATA ADDRESS
SZA
JMP LXR17 UNDEFINED OPERAND--------:JSB---STDAT STORtUATA____________________

JMP LEX,!..
LEX29 CLA

ADA OPNUM
SSA NEGATIVE
JMP LXR13 YES, ERROR
LOB 0100-------..-ADB_A__________

SSB,RSS CHECK RANGE OF NUMERIC
JMP lXR13
JSB STOAT STORE DATA VALUE IN BUFFER
JMP LEX,!..

LEX30 CCB
_____,JSB VAL REQUEST USER ENTRY

1'1PLFX29+1..

w
I-'
-...J

•...
• DEF PSEUDO OP•• THE FORMAT FOR THE DEF INSTRUCTION !St•---•<LABET>OtrrABEL <,I>,,.

~ THE OPERAND IS FURTHER RESTRICTED THAN A MEMORY REF

• INSTRUCTION. FOR THAT REASON SUBROUTINE OPREC WHICH
• NORMALLY READS OPERANDS WILL NOT SE USED FOR THE DEF
• OPERAND. INSTEAD THE LABEL READING SUBPOUTINE1 LABRO,
• WILL BE USED WITH A SPEARATE CHECK FOR THE INOlRECT
• FLAG •..
•• UNDEFINED OPERANDS..
• DURING AN EDIT OPERATION THE INSTRUCTION WILL NOT BE
~· PERMITTED.
• DURING NORMAL PROGRAM DEFINITION A REQUEST TO DEFINE
• THE UNDEFINED LA9El ON THE NEXT ENTRY IS PRESENTED.

--.-TlrT[URtTo-no-su--NI~ESULl-ra-A~E~NTffGTt:SS--~UDR.--E....s-s------,---­
• DEFINITION •
• ENTERING A DEF INSTRUCTION PRIOR TO PROGRAM COMPLETION
• MAY LEAD TO UNEXPECTED RESULTS IF A DATA EDIT OPERATION
• OCCURS ...

--~-mrTA-EO I Ts I t'fVOLV~SHTFTINbDF-D A 1 A I 0 rfAXE s p Ac E F0 R.
• AN INSERTION O~ TO FILL A GAP LEFT BY A DELETION.
• INSUCH CASES SHIFTING WILL ALTER A OEF POINTER •

•
..
• IT IS STRONGLY RECOH~ENDED THAT All DEF INSTRUCTIONS
~ BE THE LAST DATA ENTRIES BEFORE BEGINNING FINAL PROGRAM
• EXECUTION AND AFTER ALL DATA EDIT OPERATIONS OR

--·~HATANY-DATA-OEFINITIO-NS-REFFR.ENCES--8Y--AuEF--BF.lliE
• FIRST DATA ENTRIES A~D ALL DATA EDIT OPERATIOND
• 	 REFE~ENCE SUBSEQUENT DATA ENTRIES

w
I-'
CX>

..
..

LEX35 CPA .15 DEF PSEUDO OP

RSS
----~8~ LXR16______

LOB
JSB
JMP

LAB2
LBRO,I
LXR9

READ LABEL FIRST CHAR NOT

ILLEGAL CHAR BEGINS LABEL

READ

JSB
JMP
CPA

TRHCK
LEX36
COMMA

CHECK
VALID

TERMINATION
TERMINATION

RSS
·-----JMP---CX~11 ERROR

JSB GETCR NEXT CHARACTER
JMP LXR11
CPA
RSS
JMP

I

LXR11

INDIRECT
YES

BIT

STA IORCT SET INDIRECT FLAG
LEX36 LOB LA92 ADDRESS OF LABELB--l OKO?--SYM BOC-IA BLE-l.lllJ~~-----------------~-----JS

SZ A, RSS LABEL EXIST
JMP LEX37
SSA LABEL DEFINED
JMP LEX37 NO
AOB .3 YES

w
I-'
l.,O

-------~~------------------

•
LEX37

LOA
JMP

LD9

B !
LEX38

EDTFG UNDEFINED LABEL NOT PERMITTED
SZ B_
JMP LXR18
CCB
STB UNDEF

O~E_lll_I___Q_p_E_RA__I_I_Q~N_

LOA ZDATA
INA

LEX38 JSB IDIRT
JSB STOAT
ISZ UNOEf---------JHPLEx;·r

NEXT LOCATION IN DATA AREA

MAS~ ON INDIRECT BIT IF NECESSARY
STO~E DATA IN BUFFER
UNO~FINED LABEL----------­

JSB
LOA

NWLN,I
HB

LOB
JSB
LDA

LXMS2
WRITE,!
M6

..

LOB LA82
JSB WRITE,I
[D A--~14
LOB LXMS3
JSB WRITE,!
JMP LEX,I

PRINT LABEL NAME

PROMPT TO DEFINE LABEL

w
rv
0

..
LXMS2 OEF •+1

ASC 4, DEFINE..
. ..

~XMSTlJIT-.+1
ASC 7, ON NEXT ENTRY.. ,,.

.. LEXICAL ERROR MESSAGES ...
LXR1 LOA .26

LOB •+2
----------JMP-ERC~A~l---------

>:­

DEF •+1
ASC 13,FIRST CHARACTER NOT FOUND.. ..

LXR2 LDA .24
LOS •+2----------JMP-·-rnc·......-------------------------­

• oEF •+1
ASC 12,ILLEGAL FIRST CHARACTER.. ..

LXR3 LOA .22
LDB •+2

-------JMP-tRc·rr ..
DEF •+1
ASC 11,BAO DATA FOLLOWS LABEL.. ..

LXRl+ LOA • 20
LOB •+2

----JMP"-ERCAT..
DEF ..,.+1

ASC 10,00UBLY DEFINED LABEL

w
N
I-'

--~·~·-·--- ~---

,,.
.,.
LXR5 LOA .22

LDB •+2
----., JME__ERCAl_ ----------------------------·--­

DEF .Y.+1
ASC 11,INSTRUCT!ON NOT FOUND

•,,.
LXR6 LOA .16

LDl3 .Y.+2
~--·~=--''t'l_P ER~C AL

DEF ERR6 NO OPERAND FOUND..
•
LXR7 LOA .24

LOB •+2
JMP ERG.Al• urr--.--+r
ASC 12,BAD DATA FOLLOWS OP CODE,,.

,,.
LXR8 LOA .26

LOB •t-2
JMP ERCAL

:,.

DEF--.-+1
ASC 13,BAO DATA IN OPERAND FIELD

•
,.,.

LXR9 LDA .30
LOB •+2
.JMP ERCAL,,.

--OEF-ERR5 n:i::rc;ITT:-i;RARAGTER BEGTNS LABEL,,.
,,.

w
N
N

L X R1 0 L 0 A • 2 &
LOB •+2
JMP ERCAL,,.

T ____________ DEF ERRS UNDEFINED LABEL··- ·--·IN OPERAND___ -----------------------­

..
LXR11 LDA .28

L08 .._+2

JMP ERCAL
..
DEF ERR4 ILLEGAL OPERAND TERMINATION

.y.
--~----·------------

LXR12 LOA .32
LDB •+2
JMP t:RCAL..
DEF ""+1
ASC 16,ILLEGAL INSTRUCTION DURING EDIT..

-------.------··

LXR13 LOA .2&
LOB •+2
JMP ERCAL..
DEF ERR3 OPERAND VALUE CUT OF RANGE

---TXTU-z+i:mr-~2

LOB •+2
.. JMP ERCAL

DEF
ASC

•+i
16,NO LABEL PRECEDES EQU PSEUDO OP.

w
N
w

..
..

LXR15 LOA .24

LOB ..,+2
JM P ERC A=L,_____

~

DEF ~+1
ASC 12,ADORESS MUST BE POSITIVE..
..

LXR16 LOA .22
LOB ..,+3
JSB BPLN PRINT ERROR MESSAGE

-~R[T~3B HATT;-PRUGR!nrt:t<~R~O~R---------

•
 DEF _.+1

.. ASC 11,INSTRUCTION NOT FOUND

LXR17 LOA
LOB

• 20
.Y.+2

JMP ERCAL
-----~-~~

~

.. DEF ERR.7 OPERAND IS UNDEFINED

..
LXP..18 LOA

LOB
.50
•+2

.. JMP ERCAL
-----rrt:F--..,;+~i----

AS C 25,UNDEFINED LABEL NOT PERMITTED WITH DEF DURING EDIT.. ..
LXR19 LOA .l+O

LOG •+2
JMP ERCAL..

..
!JE~+T--

ASC 20,0PERAND VALUE HUST BE GREATER THAN ZERO

w
I\.)

""'

•..
" CHECK RANGE OF OPERAND VALUE..
• ENTER <A> VALUE IN OPERAND .-----:·-- --- --·-c3T-lJPPER--B-OUNO- -oF ___OPTRAt~m-VA[UE --------­

..•
RANGE NOP

STA OPNUH CHANNEL NUMBER/NUMBER OF SHIFTS
SSA POSITIVE
JMP LXR13 NO, VALUE OUT OF RANGE
ADA 8 ssA,Rss-------.un-L7'iRGr-·
JMP LX~13 YES, VALUE OUT OF RANGE
LOA ASHBY
IOR OPNUM MASK IN OPERAND
STA ASMBY RESTORE
JSB TRMCK
JMP RANGE,! RETURN VALID TERMINATION
ISZ RANGE

-----------JM P. RANGE,~r--
••
• STORE DATA IN SPECIAL STORE BUFFER DURING LEXICAL SCAN•• ENTER <A> DATA ITEM TO STORED IN BUFFER.. ..

----STITTfTf'fOP_____
STA OATPT,I STORE DATA IN BUFFER
CLA
ISZ DATPT ADVANCE POINTER
ISZ LENTH COUNT LENGTH
ISZ LNTH2 DATA BUFFER OVERFLOW
JMP STOAT,! NO

. LOA .32-------LOB ···•f.2 ---------­
JMP ERCAL,,.

DEF •+.1

ASG 16,DATA INPUT EXCEEDS IMPOSED LIMIT

w
N

-·------------~- ----------- U1

• •

---------- ---------------

..•
~

INPUT TEMPORARY VALUE FOR UNDEFINED LABEL

•
VAL NOP

STB ABSSF SET A5B/BSS FLAG
JSB LXNTY REQUEST USER UNTERVENTION
LOB SRCNT SAVE LENGTH OF INPUT
STB RDCOM
LOA BUFA INPUT BUFFER ADDRESS

___LOB BUFB AUXILIARY 8UFFER
:> TA-WM-ovr--s Av E--PR n-r.rmv·--Bu FTE-R AD DR~

STB BUFA USE AUXILIARY 3UFFER FOR INPUT
•
• JUMP TO SYSTEM CONTROLLER TO READ INPUT•

JMP CNTR.L.I..
• RETURN POINT FROM CONTROLLER

--.y;-~-----~~- ----------------- -----­~-------

L X RTN JSB 9CKSP RETURN FIRST CHAR TO BUFFER
LOB ROCOH RESTORE LENGTH OF INPUT BUFFER
STB SRCNT
LOA WP.OVE
STA 9UFA RESTORE MAIN BUFFER ADDRESS
CLA
STG A8SSF CLEAR ABS/BSS FLAG
JSB---m: BR,-r-""REltD--rN-1 NT EG~ --­
J HP LXR8 FIRST CHAR NOT A DIGIT

JHP VAL,I

w
t\J

°'

. ,,.
¥­

,,... PRINT PROMPT TO INPUT A VALUE FOR UNDEFINED LABEL
..

--CXITTYtll!t>
JSB
LOB

NWLN,I
LA82

OUTPUT CR-LF

LOA
JSB
LOA
LOB

Mo
WRITE,!
.40
LXMS1

PRINT LABEL

JSB WRITEtl
-~n·fP--ornrr, i·-----------------­

1f. ..

LXMS1 OEF •+1

ASC 20, IS UNDEFINED TYPE IN A TEMPORARY VALUE
1f.

w
N
'1

----------·---------------------­

•,,. .. READ IN AND EXAMINE OPERAND FOR DATA DEFINITION INSTRUCTIONS..
___.,.____RE TURN P+t NQ_OEE_RlUlD___l~_aEl . -----------­

• P+2 0 PERA NO LABEL IS UNDEFINED.. P+3 LABEL DEFINED ADDRESS IN <A>.. ..
LABCK NOP

JSB OPRC,I
LOB OPLBL OPERAND LA8EL
SZB RSS

-----~MP-'-[-A13-C-l\,TL-AITIT-N'O'IFlJOtffi
SSB
JMP LXR8 PLC IS NOT VALID
LOB LAB2 ADDRESS OF LABEL
JSB LOKUP
SSA
JMP LABC1 UNDEFINEC LABEL
SZA,RSS

-------'JMP LABC1 rABEI:lTOES NOl EX!S
JSB DTRG~I CHECK FOR DATA LABEL
ISZ LABCK.

LABC1 ISZ LABCK
JMP LARCK,!

w
rv
co

,.--· -- -- -··-------·---------·--·-------------------- ·---------------·----­

.. ..
• CHECK FOR OVERFLOW IN DATA TABLE.. ..

-----l)~~C1f01Y-­

LDA ZDATA NEXT FREE DATA AREA
C~A,INA
ADA YDATA UPPER BOUND OF DATA AREA
SSA,RSS OVERFLOW
JMP DTFL1 NO
LO A • 30
LOB •+2

--------~J}fP-TB.;::.L~a~v--~TA1lLT-UVERFDJl~­...
DEF ""+1
ASC 15,0VERFLOW IN ?ROGRAM DATA TABLE.. ..

DTFL1 ADA M10
SSA 1 RSS DATA TABLE NEAR ~VERFLOH

--·-----JMP OATFL I NO
JSB NWLN,! NEW LINE
LOA .40
LDO •+3 PRINT WARNING MESSAGE
JSB WRITE,!
JMP OATFL,I

• DEF ... +1
-------1rsc--zu,-m:rTA I ABLE NEARLY FOLL, BEGIN EXEGU ITUN

w
N
l.O

I

r----- --­
1

I
I .,. ..

• SUBROUTINE CLEAR TO INITIALIZE VARIABLES USED IN THE LEXICAL SCAN.. ..
----C-CFA-~-cJFI------------.

CL8
STB LABL1
STB lABl1+1
STB LABLi+2 CLEAR LABEL BUFFERS
STB LA9L2
SHl LA 9l2+1
STB LABL2+2------.:-----·-··------·- ~-------

ST B ASMOY SKELETON OF ASSEMBLED INSTRUCTION
STB ASM~G ASSEMBLY FLAG
STB IDRCT INDIRECT FLAG
STB INSNM INSTRUCTION NUMBER
STB LBLAD LA3EL ADDRESS
STB LBLFG LAR~L FLAG I
sra MNC MNE~ONIC BUFFER----·---·--- STB MNC~r--------- -·----·----- -------------------­
ST B ~UMFG OPE~ANO NUMBE~ FLAG
STB OPLBL OPEqANO LAJEL
STB OPNUM NUMERIC VALUE IN OPERAND
STB ZADD ADRESS IN ASSEMBLED CODE
INB
STB LENTH LENGTH OF ASSE~BLY
LOB MNMNG OPERAND ADDRESS STORE---------STB--OPADO --------· ----­
JMP CLEAR,I

w
v..1
0

.,.
•
• SYMBOL TABLE LOOKUP

•
~

ENTER f B) = ADDRESS OF LAB=E=L___. -

• RETURN CA> > 0 ADDRESS OF LABEL IN PROG~AM
• CA) = 0 LA3EL DOESNOT EXIST
~ CA) < 0 UNDEFINED LA8EL

•
11­

!!#-
CB) SYMBOL TA3LE ADDRESS OF LABEL

..
CITKUP~UP

JS8 FIND FINO LABLE IN SYMBOL TABLE
SZA,RSS LABr:L EXISTS
JMP LOKUP,I N01 LABEL NOT IN TABLE
ADB .2 YE~, GET INFO ON LABEL
LOA 8 I
CLE,EhA
!NB

------TDA-TI.-r -~D!JRE'.:iS I t-.'A-SSE M 3 L EII -CUDE
SEZ,RSS UNDEFINED REFERENCE
CMA,INA YES
ADB M3 RESTORE LABEL ADO~ESS
JMP LOKUP,I

w
w
I-'

• •

,------­
!'

• ..
• FIND LABEL IN SYM90L TABLE,,.
•

---..----nrt-SYff9TILTAB~A s BEE1'rTRPITffENTEDIU HOLD N0-----rf()~
• THAN 125 LABELS. AN ATTEMPT TO INTRODUCE MORE THAN
• 125 WILL CAUSE THE ASSEMBLER TO HALT WITH THE USE~ S
• PROGRAM LOST..
.,. EACH SYM90l TABLE ENTRY IS SIX WORDS IN LENGTH
•
• WORD 1 FIRST TWO CHARACTE~S OF LABEL ___-------.-----------------­

.. WDRD 2 THI~O ANO FOURTH CHARACTER IN LABEL
¥

• WORD 3 errs 8-15 LAST CHARACTE~.. BIT 0 = 0 UNDEFINED LABEL.. 1 OEFINFD 	 LABEL.. ..
----~lfO-R:uI+ AND 5 HA v E OTFFRENT---us-Es-rF TA E l A BE l Is 0R

• IS NOT DEFINED
•• UNDEFINED 	 WORD 4 ADDRESS TO LAST DIRECT FORWARD REF
• 	 WORD 5 ADO~ESS TO LAST INDIRECT FORWARD REF
.. 	 DEFINED WORD 4 LA3EL ADDRESS IN ASSEMBLED CODE

WORD 5 LABE__l,,,~!JQ_~E_?_LlN S::__::C'-"B'------­-----.
..
..
• WORD o LINK TO SPECIAL SYMBOL TABLE FOR COMPOUND

OPERANDS

• ENTER {3} 	 ADDRESS OF LA9EL BUFFER..
• RETU~N (8) SYM30L TABLE ADDRESS OF LABEL .. 	 ::: 0 LA BE_~ N 0 T I_!'J~T A-=-BL"'-E:::_-___________________-----'---'(A_)------..---­..

w
w
N

FINO 	 NOP
SfB ADOR3 RETAIN ADDRESS OF LABEL
STB ADDR2
CLB
STB LMTFG CONTROL SEARCH OF SYM Tql-sn-n:.11P-r+·--------	 --­
LOA M3
STA TEMP3
CLB,RSS
ISZ AODR1

FINO! 	 LOA AOORJ,I
ADA TEMP4 SUM ELEMENTS OF LABEL
STA TEMPI+--------TSTTFMP________
JMP FIND1-1
DIV .125 REMAINnER IN CB> 0-124
BLS 	 MULTIPLY REMAINDER BY 6
STB A
BLS
ADB A
ADS XSTBL SASE AOORESS OF SYMBOL TABLE --------sr s--TEMP-3

FIN0 2 	 ~~~ B,I LABEL CELL EMPTY
JMP FIND6 NO, SOMETHING IN SYMBOL TABLE

w
w
(JJ

•
• EITHER LABEL NOT IN TABLE OR LOCATION FREE TO STORE LABEL•

JMP FINO,I
FIN04 ADS .6----------[U-ATMTn;----------·-·

SZA,.R.SS
JMP FIN05
LOA TEMP3
CMA,INA
ADA fJ
SSA,RSS TABLE OVERFLOW
JMP FNDER YESJS a-·FNff1_________

JMP FIN02
FIN05 LOA YSTBL UPPR BNO OF SYM TBL

GMA,INA
ADA B
SSA TABLE 90UND EXCEEDEQ
JMP •+3 NO
ADB M750 YESL SEARCH BE~INNING OF TABLE

--- ST B TMT~--SEAt<.C~tJTHEl(STITC-W- --rA"BL E
JSB FND1
JHP FIND2

FIN06 JS8 FNf11
STB TEMP4 RETAIN SYM TBL AOOR
CLE
JMP •+4

FIN07 GCE---------rNs-------zmvncrAODT{ESSEs
ISZ AOOR3
LDA B I
CPA ADDR3,I MATCH

w
w

• if>o

http:SZA,.R.SS

FIN08
JMP
JMP

•+2
FIND9

YES
NO

SEZ,RSS
JMP FIN07

__Ir ~-zB--.."0___
.J . HUI R.3

LOA A,I
ANO CHi

AD'J ~~.N CJL_~OO_fil:._$_$_ ..

MASK OFF UPPER 8

-----------·

BITS
CPA ADDR3,I
CCA,RSS
JMP FIM09
LOB TEMP4

MATCH
SET <A> NE 0

RETRIEVE LABL AOOR
,JM? FH.J0 1 I .--Frnn-g---iua-IEM p <+~-~G;CTtyPTVIO 0 s AD DITT:~
JMP FIND4 CHECK NEXT ENTRY..

•

FNDER LDA .22

L03 "'+2
JMP TBLOV..

-----u~FI

ASG 11,SYMBOL TABLE OVERFLOW.. ..
• RETRIEVE ADDRESS OF LABEL.. ,,.
FND1 NOP-------r:.11.ir-·.zrnnRZ

STA ADDR3 RESTORE ADDRESS OF LABEL
.JMP flJD1, I

w
w
Ul

,-­
.. ..
• LOOK UP 	 MNEMONIC IN TABLE..

-~~• RETRIEVE INSTRUCTION NUMBER ANO INSTRUCTION SKELETON.. ------------ . ..
MNEM NOP

CLE
LOA XOPCO ADDR OF OP CLOE TA~LE
STA urnso LOWER 10UNO IN SEARCH
LDB .86
AOl3 A _____	_.,.Ta-uP1nrrr--uwERrrITTJNO

AOd U.1 ~qo

,JMP MNEM1
LOA LWRBD
CMA 	 COMPLEMENT LOWER BOUND
MJA UPRBO
CLE,SZA,RSS CHECK FO~ CONVERGENCE
CCE---riNEffr13RS ___ UTVT~BY 	I WO
LOA 13,I
CPA MNC FIRST TWO CHARACTERS MATCH
JMP MNEM3 YES
SEZ 	 NO
JMP MNER MNEMONIC NOT IN TABLE
CMA,INA HALVE INTERVA.L
AflA MNC--ss ,,,.--- '----­
JM P MNEM2

STB LHR.80 SET NEW LOWER 90UNO
ADB UPRBD
JMP MNt:M1-5

MNEM2 SfB 	 UPRBO SET NEW UPPER BOUND
A08 U!RBO
JMP MNEM1-5

---A"NEtfTll.OB--Mi _______JJJtCrUP FOR SEVElUIL MNt:.'MONTCS

LOA B,I BEGIN WITH THE SAHE TWO LETTERS

w
w
O"t

CPA MNC
JMP "'-3
AD B • 86
LOA M6
STA TEMP3

---~ffltlf\lrs------~AD~\fAl'ICE--,mRE-S-TLJNEX r ENT RY
LOA
AND

9,I
CH1

TEST FOR
MAS~ OUT

THIP.O
FIRST

CHA~~CTCR
CHARACTER POSITION

CPA MNG+l THI~D CHARACTER MATCH
JMP MNEM5 YES
ISZ
JMP

TEMP3
MNEM4

NO
LOO~ AT NEXT OPCODE

JMP MNER OPC00E NOT FOUND
----i1f\lttt?-1ro B--H13 n ----1:r1rGKuP-10··--cHECKF1RSI

LOA 9,I TWO CHARACTERS
CPA MNC
RSS
JMP MNER ERROR
/.\08 .. 86
LOA 8,I
AND B177 GET INSTRUCTION NUMBER

---sTA-IN~NM RETAT~ --------------­
ADA M8
SSA
CLA,INA,RSS MACHINE INSTRUCTION
CCA DATA
STA ASMFG ASSEMBLY FLAG
AD B • 85
LOA 91I----sTA --A::i Mgy----SKELt:TUNurA-S-stfIB1.TrrlNS IR 0 C I I 0 N
JMP MNEM,I

"
~ INSTRUCTION NOT FOUND
•
MNER LOA .30

LOB •t-2
JMP EPCAL---DE F--.y.·:vr·~---
ASC 15,ILLEGAL ASSEMBLER INSTRUCTION

w
w
-..J

-----·----- -------·-----------------------------­

....
" ORG 60009..

---l1-!NP1JTA___ -C1TilST~nr--
J(. ..
• RETURN P+i VALID DATA IN <A> ANO CB)

.. "" • THE TERMINATOR WILL 9E RETURNED TO THE INPUT STRING

..
--cUNST---mJP-

J SB NT~LK NEXT NON BLANK CHARACTER
JMP NUHR1 NO DATA FOUND
CLB
sra SIGN SET SIGN POSITIVE
INB
CPA PLUS POSITIVE SIGN
JMP CONSt YES

-CP f('--HTN as--i'TCfi-REGI\ I IVE SIGl'l
CCB,~SS YE'.:.\
JMP CON':>2 NO

CONS1 STB SIGN RECORD SIGN
JS9 GETCR FETCH NEXT CHARACTER
JMP NUMR2 SOLITARY SIGN

CONS2 JS8 NU~G~ FETCH CONSTANT
_____ J~te___Q()_t! ?_Ii r

w
w
CX)

..,.

"
~

FETCH NUMBER AND CONVERT TO BINA~Y

• " RETURN P+1 VALID DATA RETURNED IN (~) ANO ---..-- -----­
:y.

NUMCK NOP
CLB
STB EXP
STB MANT1 ZERO ALL COMPONENTS OF NUMBER
STB MANf 2
STB EXPON
ST1rTf1fPr---srr~Wfl3E~m:;- F I:\ Ls E
er.a
STB OPFLG SET DECIMAL POINT FLAG FALSE
STB EFLG SET EXPONENT FLAG FALSE

NUMC1 GPA PRIOO DECIMAL POINT
ISZ OPFLG YES, SET FLAG TRUE
J 11P NUHC2 NO
CLA INITIALIZE POST DECIMAL DIGIT
ST A-TXPDN---orG-rr- cou NTER.--1 a l ERff
JMP NUMC3+1 FETCH A CHARACTER

NUMC2 JSB DECHK
JMP NUMC7
ISZ EXPON YES COUNT DIGIT
ALF,ALF
ALF,RAR LEFT JUSTIFY DIGIT AND SAVE IT
STA TEMPI+---Jso-rn1 vru lill[TfPCY-PREVrous--mJffoER--SrTU
LOB EXP
sza ZERO EXPONF.NT
JMP NUMC4 NO
LDA .4 YES SET EXPONENT TO 4
STA EXP
LOA TEi1P4 LOAD NUM3ER

w
w
\.0

http:EXPONF.NT

CL a
· NUMC3 JSB NORML NORMALIZE THE NUMBER

ISZ TEMP3 SET NUMBER OCCURRED FLAG
JSB GETCR
JMP NUM12·----JffP-NDfvfCl___NDf··r;FfARACTER

NUMC4 A08 Mt+
CMG COMPUTE EXPONENT BIAS AND SAVE IT
LD.1\ TEMP4
ST8 TEMP4
CL8

NUMC5 ISZ TEMP4 DIGIT POSITIONED
JMP NUMCo NO

-----~CIT~-- Yo-lffi D IN L 0'1P ,n Rr 0 F l\fUffBER
ADB MANT2
CLO
SEZ OVERFLOW
INA YES ADVANCE A
ADA MANT1 ADD IN HIGH PART OF NUM3ER
SOS OVERFLOW
JHP NUMC3 NO
c L£",ERlr--·--yEs-~DTATE--u-ovrn AND B011?
E~B EXPONENT
ISZ EXP
NOP
JMP NUMC3

NUHC& CLE,ERA
ERB SHIFT DIGIT RIGHT
JMP NUMCS

--NlJMCTCl.B"··-··------nt:cr MAL POTNl
STB TEMP4
CPB TEMP3 OR DIGIT FOUND

w
~
0

JMP NUMR~J NO~ BAD INPUT DATA
CPA E YE::>, E
ISZ EFLG YES
JMP NUM12 NO, NO EXPONENT P~RT
JSB GETCR---------- -JH P-1WHR_1+ _______
CP.1\ PLUS

d~~ ~~~8~
CCA,RSS
JMP NUMC9
STA TfMP4 NOTE MINUS SIGN
STA TEMP3

----~UffG--a-,JSi3-bETCR______
RSS

NUMC9 JSB DECHK DIGIT
RSS NO
JMP NUMCA
CLA CHECK FOR ZERO EXPONENT
CPA TFMP3 Z~RO EXPONENT
J"1P NUM10 YES

-------~------JM p NU MR4--rrn-------­
NUMC A CPA ZE~O LEADING ZERO

JMP NUMC8-1 YES, SET EXPONENT ZERO
STA TEMP3 NO, SAVE IT
JSB GETCR
JMP NUM10 SECOND DIGIT
JSB DECHK
JMP NUM10 NO---------cn!JIEMPT---YE,..._S____
BLS,BLS
AOB TEMP3 MULTIPLY PRIOR DIGIT BY 10
f:'lLS
AO~ S ADD NEW DIGIT
ST A TEl~P3 SAVE EXPONENT
JSB GETCR

w
.!:>.
I-'

JMP NUM10 THIRD DIGIT
,Jsa OECHK
R.SS
JMP NUMR4 EXPONENT TOO LONG

NUM10 LOA TEMP3 RET~IEVE EXPONENT
--~· . rs7-lrffP4 PO-$TTT\fE ~~---

CMA, INA YES, COMPLEMENT IT
~SS NO .

NUM12 CLA
ISZ OPFLG DECIMAL POINT
AOA EXPON YES, CORRECT EXPONENT
SZA,RSS ZERO EXPONENT
JMP NUM14 YES
SSA_____ ~o---·l'rCT;-1'\rrVC-EJ{TJUNEITT

JMP NUM13 NO'
CMA,INA YES, SET COUNTER
STA EXPON
JS8 08Y10 DIVIDE NUMBER BY 10
ISZ EXPON FINI
.JMP •-2 NO
JMP NUM14 YES

Na rn:3-ST~ T XPO fJ SET---CDUN~
JSB MBY10 MULTIPLY BY 10
ISZ EXPON FINI
JMP •-2 NO

NUM14 LOA MANT1 YES 1 LOAD
LOB MANT2 NUMdER
ISZ SIGN POSITIVE
JMP NUM15 YES
C"IA_____ ------~o;----coMPCEMENT I I
CMB,IN9,SZ8,RSS
INA

NUM15 JSB .PACK PACK NUMBER INTO <A> AND
STA TEMP1
STB TEMP2
JSB BCKSP RETURN TERMINATOR TO BUFFER
LOA TFMP1 RESTORE CA>

----J1'1P-l'WM CK) I ·~---~-

w

N ""'

.. ,,.

,,. NORMALIZE AND PACK FLOATING POINT NUMBER

""lf

----;-p-A-CT\Nl'.rP ~NTTSSA-rfr---nu-rnn-<m__ ___
JSU NORML EXPONENT IN EXP, CE) CLEARED
CLE,SZA, R.SS ZERO RESULT
JMP .PACK,I YES
flDB 8177 NOz. ROUNO
SSA,RSS PO'::>ITI\lE NUMBER.
INB YES 1 FINISH ROUND
CLO
SEz-----~-VE~Frovr-FR01'1 (3)
CLE,INA YES ~ ADVANCE CA>
SOS OVEq_f-'LOW <A> = 100000, CB> = 0
R.AL
SSA,SLA,RSS TWO HIGH BITS 1, <A> = 140000
JMP PACK1 NO
CCE YES
ARS SLA ALS SET <A> = 100000 ANO SKIP

--·-vr;Cl{lR.AKl....,-------~~-cooNTERPARl-ro--..-.-
STA MBY10
LOA 1

"'

w
.t:>.
w

http:p-A-CT\Nl'.rP

-------------·------­

ANO M256 DELETE 8 LOW ORDER BITS OF H~NTISSA
STA 1 SAVE LOW O~DER MANTISSA
LOA EXP FETCH EXPONENT
SEZ 	 OEG~EMENT EXPON~NT
ADA M1 YES--- so c-------·---N o----F>RT01'Cl5VfRITO w
INA 	 YES, INCREMENT EXPONENT
ADA 8200 NO
SSA 	 EXPONENT UND~RF~OW
J~P NUMP8 YES, ERROR
ll.DA M256 NO
SSA,RSS EXPONENT OVERFLOW

_____ 	J.'1P NUMqa YES_,ERRoq
ADJ'.c--g zu-u- Na-, -KESTD"R1:::TXPUNEITT,- p 0 s J. I l 0 N s I G N
RAL
AND 8377
ADB A MASK TO 8 BITS ANO COMBINE WITH
LOA MBY1D LOW ~ANTISSA, kETRIEVE HIGH
GPA MNEG MANTISSA
RSS 	 NEGATIVE
JMP .PACK,I·-cpu-t3370---·-uvF.RFcnw-----­
J;1p Nl.JMR8 YES
JMP .Pt.CK,I NO

w
""' ""'

•
~

"" .. NORMALIZE A, B, ANO EXP
..

---r;rc.n=~m::--~-o-P

STA
CLA

M8Y10 SET LEFT-SHIFT

STA MPY
LOA MBY10
SZA,RSS
SZB

COUNTER

ON ZERO

TO ZERO

CLEAR EVERYTHING
JMP NOR.M3

-------sr~-TXP__ _ -~----------

NORM!
STA
ST8

MANT1
"1ANT2 STORE ~ANTISSA AND RETURN

NORM2
NORM3

JMP NORML,t
ISZ MPY
CLE,El9

COUNT LEFT
ROTATE <Al

SHIFTS
AND (3) LEFT INTO CE)

ELA
.------------3~~'-~6~~~-~~~-,H{~~~~R~k{tzihr----------------­

SEZ, SSA NO, THO HIGHEST B!TS 1
J~P NORM2 YES, - UNNORMALIZED
ER.A
ER.9,CLE SHIFT TO NORMALIZE MANTISSA
STA MANT1 NO, COMPUTE CORRECTED EXPONENT
LDA MPY

-----~CMA 1 INA
A:fJA -EXP-­
ST A EXP
LOA MANT1
JMP NO~M1

w
~
V1

-----------------·------------------ ------------­

..

...
• MULT!PLY UNPACKED NUMBER BY 10.,. ..

--~gyrcrrrap-·--------··-------------

LD A MANT1
SZA,RSS RETURN ON ZERO MANlISSA
JMP MBY10,I
1_08 EXP
ADB .3 MULTIPLY BY 8
sra EXP
LOB ~ANT2 LOAD MANTISSA

---- CTF;TFU\-­
ERB DIVIDE BY 4
CLE, ER1\
ERB,CLE
ADB MANT2
SEZ DOUBLE AOO TO PRODUCE 1.25 $
INA MANTISSA
ADA MANT1

-------ss71.-;·qss----c-crRREXT-ul'r-CVE RF L 0 w
JMP ¥-+5
CLE, ERA
ERB
ISZ EXP
NOP
STA MANT1
STB MANT2

------'J~ ?r-lBYTU--,1----­

w

°'
~

.. ..

.. DIVIDE UNPACKED NUMBER av 10
l.'· ..

--crBYITllOP-_____-riU[TTPLY-SY DOUB L t~TRGTH TEN TA
LOA ~ANT1
SZA,RSS RETURN ON ZERO MANTISSA
JMP OBV10,I
LOB M2
ADB EXP ADD EXPONENT OF TENTH TO MANTISSA EXPONENT
ST8 EXP
LOA M1~NT2

-------ClE-TRA~---~JOSTIFTTUWERffiHITTSS~
JSB

7
MPV MULTIPLY BY ONE TENTH

DEF TfNTH
CLE,£LA SHIFT BACK
£LB, CLE
ADA B ADD IN LOW ORDER MANTISSA
SEZ
INS TENTH••2-16 ANO ROUND TO i6 BITS------SlH -MANTT_________________ ·---­
LO A MANTt
JSB MPV 00 SAME FOR HIGH MANTISSA
DEF TENTH
CLE
ADA 8
ADA MANTZ EFFECTIVELY SUH DOUBLE LENGTH PRODUCTS .
SEZ

-----INS
SWP EXCHANGE CA> AND (8)
JSB NORML NORMALIZE RESULT
JMP OBY10,I

w
.:::..
-...J

----- --- ---------------~-------------

••
• MULTIPLY INTEGER IN A

•
~

---MPV___ 	NOP ----·Ar.Yoqt:ss OF MULTIPLIER IN MPY, r-
LDB M2
STB MBY10 SET -2 IN SIGN TEMP
LDB MPV,!
LOB R1 I LOAD MULTIPLIER
CLE,S~A CA> NEGATIVE
CMA,CME,INA YES, COMPLEMENT <A> AND <E>
SS9 	 (8} NEGATIVE

-----CMB-,CHE, INB YES-,--COMPIEM-E~N-T~C~B~>~A~N~o-~c-E~>---

SEZ (E> = 0

ISZ MBY10 NO, SET SIGN OF RESULT NEGATIVE
STB NORML SAV~ MULTIPLIER
L08 Mto
STB TEMP1 SET COUNTER
CLB 	 ZERO P~OOUCT
ELA BIAS A TO LEFT

MP'fr-I§~'25fM"ea- SH_I_F_T:-~~~~;-A_N_D_~~o UPON NON- ZERO BIT
ERB
ISZ TEMP! DONE
JM? MPY1 NO
ERA,CLE YES, ADJUST FINAL RESULT
rsz· Mev10 NEGATIVE RESULT
JMP MPY2 NO--CMB ~-

CMA,INA1SZA,RSS YES,GOMPLEMENT RESULT
INB

HPY2 CLO
ISZ MPV
JMP MPY,I

w
.::::.
00

------------ -

.. . ..

• EXAMINE CHARACTER TO BE DECIMAL VALUE

.

---'F-----------·-• ENTER CHARACTER-·- IN (A)

• RETURN P+1 CHARACTER IN CA>
~ P+2 DIGIT IN CA>,,.

•

OECHK NOP

STB STORE SAVE (9)
JSB SAVEE SAVE <E> REGISTER-----·---L1le-·-rr7z-----------------­
AOB A CHA~ACTER IN CA>
SSB,RSS ASCII 728 OR GREATER
JMP •+6 YES RETURN WITH CHARACTER
ADB .10 NO, ASCII 608 OR GREATE~
SSB

J:-1P .\<+3

LOA 8 COPY DIGIT INTO (~)-----------rSZ 1J ECrfl(________________
JSB RSTRE RESTORE CE>
LOB STORE RESTORE CB>
JMP DECHK,I

w
,;:,.
I.Cl

• •
• SUBROUTINE TO DETERMINE REAL OR INTEGER•
• ENTER NUMBER STORED IN (A) ANO ----.,.--·

~ DPFLG = 0 NO DECIMAL POINT• = 1 DECIMAL POINT•
• EFLG = -1 NO E RECOGNIZED• = 0 E RECOGNIZED
If.

• RETURN P+1 REAL IN CA> ANO -------..---------P+Zl NT£'GE ~Tfl-[AJ ..
If

TYPCK NOP
STA TEMP SAVE A REGISTE~
LOA DPFLG
CPA ZERO COM~ARE DEC. PT. FLAG FOR ZERO
JMP TYPC1 NO DECIMAL POINT

·-i:TJA~!FMP-----r<EST.{)RE___ l~T ------­
JM P TYPCK,I RETURN WITH REAL NUMBE~

TYPC1 LOA TEMP
ISZ ~FLG
~~~ I1~~K,I §~~~E~¥M,~RINTEGER
ISZ TYPCK 

-----~JMP_J_Y_f_CK_J 

w 
(J1 

0 



.. .. 
• INTEGERIZE FLOATING POINT NUMBER .. 

~ ENTER NUMBER IN CA) ANO CB> 
------..-------------------- ----- ---------·- --------------------- ------- ------------------­

.. RETURN P+1 INTEGER IN CA> ­.. 

..,. 
IFIX 	 NOP

STA MPY SAVE <A> 
JSB FLUN 
CLO---·--s s ll------­ rr·CTP-NEGJfTTVEt::RRuR 
J MP NUMR5 
AOA M16 COM~UTF SHIFT COUNT 
SSA,RSS IF EXP 16 OR MORE OVERFLOW 
JHP NUMR5 
CLE,SZB SET <E> = 0 IF CB> = 0 
CME 

STALOA MPY-__________________________________B SAVE SHIFT COUNT IN CBJ--­

IFX1 	 ISZ q ANY MORE SHIFTS 
JMP IFX2 YES 
SEZ,SSA IF NUMG LT 0 A~D FRACT NOT 0 
INA 	 BUMP RESULT 
JMP IFIX,I

IFX2 	 SU?., ARS SHIFT RIGHT ANO TEST BIT LOST 

GGE
-------------JK P -TFXI______________________________________ 

.. .. 
v- UNPACK LOW WORD OF NUMBER 

"'
,,. 
FLUN 	 NOP WORD IN <B> 

LOA B (tU = (8) 

-1\ ND fJ377- --EXTF:UrCrTXVDTfENT-1N\Al 

CMB SUBTKACT OFF EXPONENT FROM 

AOB A MANTISSA IN <B> 
CMH 
SLA,RAR NEGATIVE EXPONENT 
ro~ MSK4 YESj FILL IN LEADING BITS wJ""!P FLUN 7 I NO 	 U1 

I-' 



.. 
.. 

• SUBROUTINE TWINT READS IN ONE OR TWO POSITIVE INTEGERS.. 

• RETURN P+1 ONE INTEGER VALID TERMINATOR

---"\'-------p~ff~E-TIHET;-ER!-fNv1rcTl}TEKHnfATO,.-R...---------· 
.. P+3 TWO INTEGERS, VALID TER~INATOR 
• P+4 TWO INTEGERS, INVALID TERMINATOR.. 
.. 

TWINT NOP 

CLA 
STA NUM1 INITIALIZE TWO INTEGERS TO ZERO _____...._STANUM2 - ------ -~~-----------

JSB GTNUM GET FIRST INTEGER 
STA NUM1 STORE VALUE 
JSB TRMCK CHECK TERMINATO~ 
JMP THINT,I FIRST RETRUN CONDITION 
CPA COMMA COMMA 
RSS YES 

--------j~~--~¥~{{-~~~~gi'fl:~~t{~-CT' • " " " • ' " ---­
JM P 
JSB 

NUMR7 
DFCHK CHECK FOR DIGIT 

RSS 
JMP 
JSB 

TWINl 
BCKSP 

NO 
YES, READ SECOND INTEGER 
RETURN CHARACTER TO BUFFER 

JMP TWIN2+1 SECOND RETURN 
TWIN1 JSB BCKSP RETURN CHARACTER 

JS8--GTl\1Uff--READ--INTEGTR 
TO BUFFER ---­

STA NUt-:2 
JSB TRMCK 
JMP TWIN2 THIRD RETURN CONDITION 
JSB BCKSP RETURN CHARACTER TO BUFFER 

HHN2 
ISZ 
ISZ 

T!.../PH
TriINT 

ISZ HHNT
---JM p- -rw I NT;r 

w 
U1 
N 



... 
"' "' SUBROUTINE GTNUH GALLED BY THINT TO INPUT AN INTEGER.. 
• ~ETURN P+i POSITIVE INTEGER IN CA> 

---~··--------------------·-------------·--:------------·--.. 
;JNUM NOP 

JSB CONST INPUT A CONSTANT 
SSA NEGATIVE NUMBER 
JMP NUMRG YES 
JSB TYPC~ NO, REAL OR INTEGER 
JMP NUMR6 REAL 

-------~Jt1P -GTNUf{;r-----~---,,. .. 
"' READ IN OCTAL I~TEGER .,,. 

.. RETURN CA> OCTAL INTEGER.. 
If ---oCTrN-1\10 p---------­

J S 9 NTBLK NEXT NON BLANK CHARACTER 
JMP NUMRi NO DATA FOUND 
CLB1CLE 
ST9 NUH1 INITIALIZE 
IN8 
STB SIGN SET SIGN POSITIVE 

w 
U1 
w 



------- ----------· 

CPA PLUS POSITIVE SIGN 
JMP OCTN1 YES 
CPA MINUS NO~ ~!NUS SIGN 
cca,R.SS YE::> 
JMP OCTN2 NO

---;i.:>T g--s rGH_____RECTIRDMTNffS-S"rG"~---
0CTN1 JSB GETCR 

JMP OCTN3 
OCTN2 JSB OCTGK OCTAL DIGIT 

J!1? OCTN3 NO 
CCE 
LOB 1'13 
ST3 TEMP3--------------i::.u ff-N UM I -------­
R 8 L. SL B CHECK FOR OVERFLOW 
JMP.NUMR5 OVE~FLOW 
ISZ TEMP3 
J'~P .\'--,3
ADA 9 ACCEPT VALUE ADD NEW DIGIT 
STA NUH1 
JMP OCTN1 GET NEXT CHARACT~R---uCTru-s E z-, Rs s----------------------­
J MP NUMR2 SOLITARY SIGN
Jsa 8CKSP RETURN CHAR ro 9UFFER 
LOA NUM1 
LOB SIGN 
SS8 NEGATIVE SIGN 
CMA 1 INA YES, COMPLEMENT 

----------~_tj_f'__Q_g_T_~ NiJ________________ 

w 
U1 
,.i:.. 

http:cca,R.SS


-lif. 

"!­

~ SUBROUTINE OCTCK TO CHECK FOR OCTAL DIGIT.. 
• E~TER CHARACTER IN <A>------v---- --- ------- ---- -- ---- ---- ---------------------------------­

• RETURN P+i CHARACTER IN CA> 
~ P+2 OCTAL DIGIT IN Ud 
ti­
>;. 


OCTCK NOP 
JSB SAVEE SAV~ IE)
LOB 070 
AlJ 8 A--------cHA ~1'\CTCT~----rN-\~l-

SSB, RS S CHA~~CTE~ 703 O~ GREATER 
JMP •+~ YES, RETURN WITH CHARACTER 
A03 .8 NO, ASCII &03 OR GREATER 
<::<::: R 

J~f> •+3 NO 

LOA 8 YES LOAD DIGIT INTO CA> 
rsz OCTCK 

---- -- ------- JS iJ R. ST RE --~ f:STO RE 

JKP OCfGK,I 


w 
\J1 
U1 



••
• INPUT DECIMAL INTEGER OR OCTAL INTEGER FOLLOWED BY A B • 

·•RETURN P+l FIRST CHA~ACTER NOT A NUMBER 
~--------P+T1NTEGERTN- ~--------------(Ar------------ \ 

••
NUMBR NOP 

JSf3 NTRLK NEXT NON BLANK CHAR 
JMP NUMR1 NO DATA FOUND 
CL'3,INB
STB SIGN SET SIGN POSITIVE

--------CPL\- PLUS -POSTTIV~STGN 

JMP NUM81 YES 
CPA MINUS NO, NEGATIVE SIGN 
CC9,RSS YES 
JMP NUM82 
ST8 SIGN RECORD SIGN 

NUM81 JSf-3 GETCR 
JMP NUMRZ SOLITARY SIGN 

---~mm~--JsB- Dfc HK--TIECTNAT-nl:GTT 
JMP NUMBR,I FIRST RETURN 
CLO 

CLB 

STB NUM1 DECIMAL 
Sf 9 NUMZ OCTAL 
STB TEMP4 OCTAL ERROR FLAG 

NUMB3 A03 A --- ·----soc ·----·-·---!JEl.TifJ'.'1-CUVERFCITTr 
JMP NUMR5 YES 
AD8 NUM1 NO, ADO IN DIGIT 
STB NUM1 
LOB M8 CHECK FOR OCTAL DIGIT 
AD1 A 
SSB,RSS OCTAL DIGIT 

I ~l _T_ ~J'.le!f_____l!O , __Rf:: g_?ISQ__ E:: ~RQJL 


w 
Ul 

°" 



- ---- --·--------­

ADA NUM2 
STA NUM2 
soc 
JMP NUMR5 
JS3 GfTCR 

---~---~j :-1 p- Nu 'i CJ 6-----um--lYF-rn~ER.HTffii.TroN 
JS3 DECYK DECIMAL DIGIT 
JMP NUMB4 NO 
LuB 
STB 

M3 
TEMP3 

YES, S,IFT OCTAL RIGHT 
TEMPORARY COUNTER 

3 PLACES 

Ll')8 NUM2 
RBL,SL3
JMP ~JUMR5

----ISTTEMP3 

OCTAL OVERFLOW 
YES 

-=-----­
JMP 
STB 

"'"-3 
NUM2 

LD~ NU~l MULTIPLY DECIMAL 3Y 10 USING 
BLS,BLS 
ADEl NUM1 

SHIFTS ANO ADDITION 

STB NUM1 
JMP NUM83

-----NUMBit- -c PA. lJE----------u CTU-Tl.~ 
q_ss 
J'-IP NUM86 

YES 
NO 

LOA 
SZA 

TEMP4 
OCTAL ERROR 

JMP NUMR5 YES 
LOA NUM2 RETURN OCTAL 
JMP NUMB7 

-~mnro-JSB ·scKsp·---RETlJRNIERMTl''JAT OR I a '30F FER 
LOA NUM1 RETURN DECIMAL 

NUMB? LOS SIGN 
SSB NEGATIVE SIGN 
C~A,INA YES, COMPLEMENT 
ISZ NUM9R 
JMP NUMB~,! 

w 
U1 

• -...J 



.. 
.. 
.. 

,,.. ERRO~ MESSAGES..
.. --------------· .. 

NUM~1 LOA .. 22 

LOB ""+2 
JMP NUME~ ... 
DEF •+1 
ASC 11~NO OPERAND DATA FOUND --.. 

... 

NUMR2 LOA .14 


LOB "'+2 
JMP NUMER.. 

DEF •+1 
A'.:)Q__?_~SOLIT ARY SIGN 

---~ .. 
NUMR3 LOA .14 

.. 
LOB 
JHP 

•+2 
NUHER 

.. DEF ERR.1 BAO DATA INPUT 
~----

NUMR4 LDA .ill
LOB ..,.+2 

JMP NUMER
.. 
DEF •+! 
ASC 9,ERROR IN EXPONENT.. 

IF-----------­

NUMR5 LOA .16 
LOB •+2 
JMP NUMER. 

w 
V1 
CX> 



.. 

.. 
DEF 
ASC 

"'"+1 
8,INTEGER OVERLFOW 

If 

-~"1Uf1R:ol.iJ~-Z~ 
LDB •+2 
JMP NUMER.. 
DEF •+1 
ASC 13,POSITIVE INTEGER EXPECTED.. 

If 
----~ lJffR.7-TD ~--; zz+ 

LOB "'"+2 
JMP NUMER.. 
DEF "'"+1
ASC 12,RAD DATA FOLLOWS INTEGER.. .. 

--- --f'lUMR:tf--to A----;24 

LOo •+2 

JHP NUMER.. 
DEF ._+1
ASC 12,REAL NUMBER OUT OF RANGE.. .. 

---~"'---PRTNT----CRRUR--RESSJrGE-itNDKtt:NTRY REL! OEST.. 
• DURING INITIALIZATION RETURN TO CALLING ROUTINE 
• OTHERWISE RETURN TO SYSTEM CONT~OLLE~.. .. 
NUMER JSB ERROR 

LOA GRTFG----------------sSA--- ---- -~pffT-FL lH; 
JMP GRTER,I JUM? INTO ~REET ROUTINE 
JMP CNTRL,I 

w 
U1 
l..D 



.. .. 
If. SUBROUTINE TO READ MEMORY REFERENCE OPERANDS AS WELL FOR OTHER 
• ASSOCIATED FUNCTIONS.. 

--,..-~fffr1ffRYKTFEffENGr--cr0E1U1ND Is REST~TCT ED T 0 
If. .. (+LABEL> (+/-VALUE> C7 I> 
.. 
• THE LABEL MAY BE SUBSTITUTEO BY THE PROGRAM LOCATION 
• COUNTER SYMBOL <•> .. .. 

--oPRtC-f.fOt' 
OPP.Ci JSB NUMgR READ IN INTEGER 

JHP OPR.C4 FIRST CHAR NOT A NUMBER 
CC8 
STB NUMFG SET OPERAND NUM9ER FLAG 
STA OPNUM STORE VALUE 

OPRC2 JSB TRMC~ TER~INATION 
JMP OPRC8 YES, C~ECK FOR LA3EL

------cPA--P[US___l\fO --P!JSITTVr-s-rc;N ~----
JMP OPRC3 YES, SET SIGN 
CPA MINUS NO, ~INUS SIGN 
~SS YES 
JMP OPRC7 
GCB,RSS

0 PRC 3 C L 8 , I f\Jl3 
ST9 SIGN SET SIGN 

-------[0 B 0 Pl Hl CA ffEC Fl:A G 
SZB,RSS SET 
JMP OPRG5 NO, READ LABEL 
LD8 NUMFG 
SZB 
JMP OPER1 ERRO~ IN OPERAND 
JSO qcKSP RETURN SIGN TO BUFFE~ 


_____J_f'1f __QPRQJ__Jsf:_~lLt~I~~~LR, __ 


w 
O"I 
0 



OPRC4 JS3 LETPR LETTER O~ PERIJO 
JMP OPRC6 NOi SPECIAL CHA~ACTER 
~SS YE~, VALID CHA~ACTER 

OPRC5 LQA Ml NO C~ARACTER P~EVIOUSLY READ 
LOG SIGN SIGN REFORF LA3EL-------------ssn - -------NEGATIVE SIGN·-------­
JMP OPER2 YES, E~~OR 
LOB LA92 STO~E ADDRESS FOR LA9EL 
JS8 LA3RD 
JMP OP~CG Ill~GAL CHARACT~R 9FGINS LABEL 
CLG, IW~ 
ST8 OPlgl S~T OPERAND LA3cl FLAG 
JMP OPRC2 

----\JP1ZCo-LTl G-Dl"P Fr;----ouMP--FL1'\G-­
S Z B DUMP OPERATION 
JMP OPER1 YES, ERROR 
CPA STAR NOi ASTE~ISK 
CSA,RSS YF:::> 
JMP OPFR1 NO, ERRO~{
LOB SIGN 
SSB 

-------------- --Ji·1P OPER3___i'lnrns--srGN ?RECEDES ASlERISK 
STA OPLBL S(T P.L~C. INDICATOR 
J;·1P OPRC2 


OPRG? LQB OMPFG 

SZB 
JMP OPER1 
CPA COM~A COM~A 
R.SS YES 

----~rn P - OPl::RT___NO P1TRRO~ 
JSS GETCR 
JMP OPER1 ILLEGAL CHAR IN OPERAND 
CPA I INOIRECT FLAG 
CCA,RSS YES 
JMP 0PER1 ILLEGAL CHAR IN OPERAND 
STA !CR.CT 

w 
O'\ 

I-' 




JSB TRMCK END OF OPERAND 
R.SS 
JMP OPER1 ILLEGAL TERMINATION 

OPP.CB LDA IDRCT INDIRECT FLAG SET 
SZAJM PtJFRTo----y ES_____________ -·- --------------- -----------------­
LDA OPLBL CHECK FO~ LA8EL 
SZA LA~_l:::~L Fourm 

JMP OPREC,I Y~S, RETURN 

LOA INSNM NO LABEL FOUND 
CPA ZERO 
JMP OP~EG,I 
~DA MB MEMORY ~EFERENCE TYPE INSTRUCTION--- SSA-,-Rss------·------ ---------· -----------­
JM P QPREC,I NO 
LDA OPNUM YES, CHECK RANGE 
SSA 
JMP OPRC9 NEGATIVE 
AIJA 0100 
SSA 
JMP OPREC,I RETURN VALUE IN RANGE-------u	......PmRC..,..9~TD A----;2 5 · -~-------------
l DB "1-+2 

JMP ERCAL
.. 
DEF ERR3 OPE~AND VALUE OUT OF RANGE.. 

OPR10 LOB INSNM INSTRUCTIO~ NUM3ER 
ADO MB MEMORY REFERENCts s g------- ----------------·-­
JM P OPRC8+3 YES 

LOA .38 NO, INDRCl REFE~ENCE NOT ALLOWED 
LOB OPR.Mi 
JS8 BPLN 

w 
°' N 



LOA .. 38 
LOB OPRM2 
JS3 WRITE,I PRINT ERROR MESSAGE 
JS0 ~EENT RE ENTRY REQUEST 

-~---..J_M_e __CNJRt..._,__I___RJ;IlJ>?.f\! __J_Q_~P~T!SQ!..._L_ER_____ 

OPRM1 DEF •+1 
.,. ASC 19,INDIRECT ~EFERENCE PERMITTED ONLY WITH 

OPR~2 DEF .\'1-+1 
ASC 19,MEMORY REFERENCE ANO DEF INSTRUCTIONS.. 

.... 
---OPERT-LDA-.-2-8 

LOB "'+2 
JMP EFCAL.. 
DEF ERR4 ILLEGAL OPERAND TERMINATION.,. .. 

OPER2 LOA .26----- - - ----L Dtr_'\'t_f 2 

JMP ERCAL
,,. 
Dt::F ...+1 

.,. ASC 13,MINUS SIGN PRECEDES LABEL 


•

OPER3 LOA .28______---------cutr-""-+--z 

.JMP EPCAL 
If-

DEF •+t 
ASC 14,MINUS SIGN PRECEDES ASTERISK 

w 
CTI 
IJJ 



.,. 
• ... .. 
• READ A LABEL---v;---------­

.. A LABEL MAY HAVE ONE TO FIV~ CHARACTERS CONSISTING 
• OF A THROUGH 0 TYROUGH g, AND THE PERIOD. THEZ1• FIRST C~ARACTEK MUST BE ALPHA9ETIC OR THE PERIOD •.. 
• ENTER CA> ~ U FIRST CHAR,~CTER IN (.I\)
• CA> < 0 FIRST CHARACTER NOT RE.1\0 ... 

-----.-----------r31--~DURE-S-S-FTJ~-T7\UE[____ 
... 

"' RETURN P+1 FIRST CHARACTEq NOT VALID 

• P+2 LA3El SUCCESSFULLY READ.. 
LABRO NOP 

STB ADDR SAVE ADDRESS 
LOB M5

-------::;nrTrnP-:r-----cHA~-AcTEr<--cn tJNl 
CLE, SSA, RS$ 
JMP LABR1 
JSB NTOLK FIRST NON 3LANK CHARACTER 
JMP LBCR1 RETURN NO LA1EL FOUND 
JSB lfTPR LETTER-PEPIOO CHECK 
JHP LABR2+1 BAD CHARACTER BEGINNING LABEL 
SEZ,RSS----r: A..-.B~R~1~ A1- F,- ,!\LF----sHTFr- -CHA RA-CT FR. 
IOR AODR,I
STA ADOR,I STORE CHARACTE~ 
SEZ,CME 

w 
O'I 
.i::. 



rsz Aooq ADVANCE BUFFER POINT~R
ISZ TEMP3 
RSS 
JMP LABR2 FIVE CHARACTERS READ 
JSu GETCR NEXT CHARACTER.--------JMP-L A9R3_________ ----- -- - ------- - -------------­
JS3 LETPR LETTER-PERIOD 
R.SS NO 
JMP LA8R1-1 YES, STORE CHARACTER. 
JSB OFCHK OECtMAL NUMPFR. 
J~1P LA3R3 NO 
ADA .48 YES, BUT RETAIN AS CHARACTER 
J"!P LA3~1-1 

----rirm~-z--- Is T-L A9R 0----------------------------------­

JM P LABRO,I
LABR3 JSil RCKSP RETURN TERMINATOR TO BUFFER 

JMP LA3R2•
If 

LBER1 LOA .14 
LOB 'f+2 --------------- JMP ERG A.-- ---------­,,. 
DEF ERR9 NO LABEL FOUND 

w 
O'I 
U1 



If. 

If. 
,,. 

If. CHECK FOR LETTER OR PERIOD
,,. 

--..-RE TDR.N-Pn-CHA1fAClt--~-fNC A> 
If. P+2 LETTER OR PERIOD IN CA> 
If. ,,. 
LETPR NOP 

JSB SAVEE SAVE CE> REGISTER 
CPA PRIOD PERIOD 
JMP lf.+7 YES 

----~---i.-uuA _________WCJ____. 

ADB 0133 
SSB,RSS ASCII 1338 OR GREATER 
JMP lf +4 

AOB .26 NO ASCII 1018 

SSS,RSS OR GREATER 
ISZ LETP~ YES 
JS8 RST~E RESTORE <El REGISTERJM?-TETPRjT_____________ ---------------------­

w 
OI 

OI 




... 

... ,,. 
•
• CHECK ADDRESS RA~GE IN DATA BUFFER AREA----·-,,:---· -- -- ---------- - --- -·-·-·--···------ --·-· -··---------· --- ·---------·····--·------- ·-··---------------------------­

... ENTER CA> = ADDRESS TO BE CHECKED ... 
• RETU~N AnDRESS IN CA>• 
'!" 

DATRG NOP 
LOB XOATA LOWER 90UNO OF DATA AREA-------cMs·, INFr·-------··-·---------·-------·· --- ------·-----­
ADH ~ 

SSB LOWER OOUND ERROR 
J~1P OTRG1 
LOU YDATA UPPER BOUND OF DATA AREA 
CMO 
ADO A 

____________ j ~ ~, d f ~RI Uj=>Pf;~_f10U t'!Q_f:~R0-~---------___________ 

JMP DATRG,I
DTRG1 LD3 DiOO 

AOB A 
SSB 
JMP DATRG,I,,. 

----u"' TERI-·-co -,x. ·~3n 
LOB •+2 
JMP ERCAL

• OF.F ~+1 
ASC 15,AODRESS BEYOND PROGRAM BOUNDS 

w 
O"l 
--..] 



.. .. .. .. 
... SCAN USER PROGRAM FO~ FORWARD REFERENCES---------- . ------------ ----· -----·---·------­.. 
.. STORE THE FIRST 99 FORWA~D REFERENCES IN THE INPUT 
• ANO DATA STORE BUFFFRS. REPLACE THE FO~AARO REFE~ENCES 
• BY A JUMP TO A ROUTINE THAT TERMINATES EXECUTION AND 
"' WARNS THE USER ABOUT FORWARD REFERENCES.,. 
•
COSCN----------- cn·A--rn-u-n~-

NOP 

s r A TE~P 
STA TEMP3 
LDB BUFA ADDR OF BUFFER TO HOLD FWD REF 
STB TfMP1 
ST9 TEMP2 
CLB 

sra TEMP1,I CLEAR 3UFFE_P~··------
TST-TFMP1 . 

ISZ TE.MP 

JMP ..,._3 
ISZ TEMP3.. 
LDA XUSRP FIRST LOCATION IN PROGRA~ AREA 
STA TEMP.. 

---cuswr-·cuAID·Wj I RET'ZITV~"TNSTR:JCTTUN 
SSA,RSS BIT 15 SET 
JM? COSN2 NO 
AND 82000 YES, IIO INSTRUCTION 
SZA 
JMP GOSN4 YES 
LOA TEMP,!
ANO 1700 REGISTER REFERENCE---------szA;RSS -------- --------------------­
JMP CDSN4 

w 
O"I 
ro 



ISZ TEMP EXTEND~O ARITH MEMORY REF 
LOA TEMP,I EXA'1INE ADDRESS 
SSA 	 INDIRECT BIT SF::T 
JMP CDSN4 YES, DEFINED REFERENCE 
ADA 0100Clt:- ----------..---· 

JMP COSN3
.. 

GOSN2 	 AND 80700 MEMORY REFEREN~E 

SZA,~SS

JMP CDSN4 NO 
LOA TEMP,! YES, RETRIEVE INSTRUCTION 
AND B2000 CURENT PAGE BIT SET--------sZ A-- -----------·- ·-·------ --------- --------­
JM P COSN4 YES 
LOA TEMPz.I 
ANO 8177/
ADA 0100 
CCE 

CDSN3 	 SSA FORAARD REFERENCE 
JMP GDSNt-+ NO 

-------- CL A,-SEZ; RSS-----YES­
CC A 
ADA TEMP 
STA TEMP1 ADDRESS OF FOR~ARO REF 
LOA TEMP1,I GET INSTRUCTION 
STA TfMP2,I SAVE INSTRUCTIO~ 
LOA MPPEX FORCE PRINTING OF WARNING MESSAGE 
STA TfMPi,I DURING EXECUTION---------rsz-TEMP2 --------------- -----------­
ISZ TfMP3 
~SS 
JMP CDSCN,I FIRST 99 FWO REF SAVED 

COSN4 	 ISZ TEMP NEXT ADDRESS 
LOA TFMP 
CPA ZUSRP ENO OF USER PRO~RAM 
JMP GOSCN,I YES, RETURN 

-~------JM p- C 0SN1-· ----~u-- -----­

w 
O'\ 
l..O 



•
.... 


• READ IN USER DEFINED STATEMENT NUMBERS
.. 
--:-R_UJl~-$~-~-i,~~~A-i:~~---~U~-§~R~E_~-~8-~~ft1r1ffID--STORrn--

IJ'. ,,. 

SQNCE NOP 


JSB RDCOM 
RSS NOTHING ENTERED 
JSB TWINT 
NQO 

-----~ss-- FJ1ffi uATJl.~?ur---
R.SS rwo POSITIVE INTEGERS ~EAO IN 
J~1 P SOER1 
LD1J M1001 
AD3 NUM1 CHECK RANGE OF FIRST 
SSB,RSS
JMP SQER2 TOO LA~GE 
LOB NUM2 IN ~ANGE 

--~-zrr; RSS- E~o---~--

J~P SQER2 YES, ERROR 

AQB M26 NO . 

SSB,RSS TOO LARGE 

J~P SQER2 YES 
LQA NUM1 30TH NUM1E~S IN RANGE 
STA FSTMT FIRST STATEMENT NUMBER 
LD3 MUM2 

------sT[3 ST I ~c--sTA ITMENT-lW11BER:-TNl.RE MEN I 
CMB,IN3 
AO A 3 
STA CUSTN CURRENT USER STATEMENT NUM3ER 
ISZ SQNCE 
JMP SQNCE, I 

w 
-...) 

0 

http:ITMENT-lW11BER:-TNl.RE


.. .. 
SQER1 LO A .1Lt 

LDB ""+2 
JMP SQER3______¥ __________ ---------­

.. .. 
DEF ERR1 BAD DATA INP.UT 

SQER2 llJA .30 
LOB ""+3 

SQER3 JS8 ER~OR 
JMP SQNCE,I 

---y;-----~------------

RETURN ON ERRJ~ 

0 E F ERR.2 STATEMENT NUMBER OUT OF RANGE 

w 

I-' 
-i 



• • ,,. 
ORG 100008.. 

.,,. SET AND STORE INSTRUCTION <DATA OR MACHINE GODE> 
• IN APPROPRIATE PROGR4M AREA 

.. 
.. 
• EVALUATE ALL MEMORY REFERENCE OPERANDS 

• ENTER CA) > U MACHIN~ INSTRUCTION 
• CA) < 0 DAT A---ll --------··----~-----.. 
SETCO NOP 

SSA,RSS TYPE OF ASSEM~LY 
JMP STCD1 MACHINE INSTRUCTION 
LOA ZAOO DATA, ADDRESS OF ASSEMBLY 
SZA AOD~ESS ALREADY SET 
JMP SETCD I YES REfURN

·-----LDA--7.DATA'----N0,.1NEXrFREE-A7-.EA-irrurr~A~T~A~B~L-E___________ 
STA ZADD ADDRESS IN ASSEM3LED CODE 
ADA LENTH LENGTH OF ASSEM3LY 
STA ZDATA RESET DATA TABLE POINTE~ 
JSB DTFL,I CHECK FOR DATA TABLE OVE~FLOW 
LD3 ZAOD AOORESS FO~ DATA STORE 
JS8 DTSET MOVE DATA INTO DATA AREA 
_-Jt-1.E ~f_I_Q_Q_,_I_____________________ 

~ .. .. 
,,. STORE ASSEMBLED MACHINE INSTRUCTIONS.. .. .. 
STCD1 LD9 ZUSRP NEXT FREE AREA IN ASSEM CODE

--------------sTB-ZADo--------sEr--AUD"RESS-TW-A-SSDJ-com: ------------· 
LOA INSNM INSTRUCTION NU~BER 
ADA M6 
SSA,RSS MEMORY REFERENCE INSTRUCTION 
J~1P STCD3 YES 

w 
I\.) 
.......i 



--·----· - ---- -- --·--------------~---~-

STCQ2 LOA ASMqy NO, GET ASSEM3LEO CODE 
JSB ST~CO STORE CODE 
JMP SETC0 7 I 

\to 

" CLEAR UP OPERAND FOR MEMORY REFENCE INST~UCTIONS ----..---·------·----· - ---·--··--· - --- --------------·- --------------·-- ·-···----· ------···-··-----------·-·· 

STC03 LOA OPLBL OPERAND LABEL PRESE~T 
SZA YES 
.J~P STCD4 
JS3 DETLN NO, GET INST~ SKELETON 
ADA OPNUM ADO OPERAND IF PRESE~T 
JSB IDIRT CHECK FO~ INDIRECT FLAG 
JMP STCD2+1 STORE ASSE~BLED INSTRUCTION __\'_______ .. - ----------- ··----·-- ------ ---·- --··- --·--------------------···-----------­

" LABEL OR ASTfRISK IS PRESENT 
" STC04 SSA,RSS

JMP STCD5 LA9EL 
LOA AOnR1 ASTE~ISK, PLC REFERENCE 
JSB IOIRT ADDRESS IN SCB 
JSG STPLC STORE PLC ~EFE~ENCE ----------- JSB DfTLN _____GET"INSP~UCTION_______ 

ADA WMOVE ADJ TERM TO SISNAL FORWARD REFERENCE 

JMP STC02+1 

~ 

\to 

"- EXAHI~E LA8F::L.. .. 
STCTJ?-co1r-·c1:rBc____RETRTE'JE"""""1-A8"EL~-ITTJRESS 

JSB LOKP,I SYM~OL TABL~ LOOK UP 
STB BCKSP SAVE SYM30L TABLE ADOR 
SZA,RSS LABEL EXIST 
J'"1P STC08 NO 
SSA LABEL DEFINED
JMP srcog No 
LOB OPNUM OPERAND NUMBER 

·--~----·-sze -- ---------- -------·----------------­- ~--------------------

JM P TCD11 STO~E OPERAND IN SST 
JS9 DATAD UPDATE FOR DATA AOO~ESS 

w 
"'1 
w 



JSB 
LOB 

!DIRT 
ZUSR? ADDRESS FOR INSTRUCTION 

ADB 0340 ADDR POSITION IN AODR 3LOCK 
STA 
ST9 

8,I
ADDRJ 

SET ADDRESS IN AODR AREA 
SAVE AOOR IN AOQR BLOCK --­ ·---------·------­---~JSs-·oErur--LENGTWdF-ASSEM3lY-

SEZ 
JMP STCD6 TWO WORO ASSEM3LY 
SHP ONE HORJ ASSEM3LY 
AND 81777 GET RELATIVE ADDRESS 
ADA 8 
ADA CPIB CURRENT PAGE !~DIRECT BIT 

-~~,........-JMP STGD2+1
STC06 ADA--A-DDRT___-OPE~l'IND-.zrormrss-

IDR MNEG INDIRECT BIT 
JM? STC02+1 ... 

~ LABEL DOES NOT EXIST 
>;:. 

STCOB CCE 
JS3 STL9L STORE LABEL IN SYM TBL 

----sTCffCJ-l. Dn.---oPNO f{___DP E~.zrno- NUMBER--- -----­
S Z A 
JMP TC011 YES 
LDB BCKSP SYM TBL AO~R OF LABEL 
ADB • 3 
LOA roqcr CHECK FOR INDIRECT REFERENCE 
SZA 
INB 

----------i_o A 111y------1rnD~ESS-OF-T.1rs1 REF ERENCT 
ST A Rth, 0 '1 
STB qcKSP SAVE ADOR IN SYM TBL 
JSB DETLN DETERMINE LENGTH OF ASSEM8LY 
STA ASM3Y SAVE ASSEMBLED INSTRUCTION 
LOA ZUS~P 
ANO A1777 GET RELATIVE ADDRESS 
STA 9CKso,r SET FORWARD REF IN SYM T3L

----LO A ASMB y-----sKEI:ETO N- INST>{OCTT07'i -----------------­
AD A RDCOM ADO PRF.V UNOEF REFERENCE 

JMP STCD2+1 

w 
'3 
ii:::. 



~ 

• 
~ LABEL WITH OPERAND NUMBER 
~ ,,. 

---TCTIT-r-GCA____ ------v A-RI tlBL~--c-oflTRDC-PRTNTTl\!G-
STA GETC~ OF WAR~ING MESSAGE 
STA LINK LINK FLAG FOR SST 
LOB 9CKSP SYM f BL AD~R OF LABEL 
AD~ 95 LINK TO SST 
STB RDCOM SAV~ LINK CHARACTER 
LOA 8,I PREVIOUS SST ENT~IES 
SZA ---·------- J MP--Tcn-r5----y ES --------------­
L D 1 XSST AOOqESS OF SST 
~SS 


TCD12 .~n.B .4 

LOA YSST UPPER 90UNO OF SST 

CMA,IMA
ADA 9 
SSA TABLE OVERFLOW ---------- JMP !CO13 ~o·-----·---·---

L DA • 32 YES 
L03 TCD~1 
JMP TBLOV 

TC013 ADA .L;O
SSA TABLE NEAR OVERFLO~ 
J"lP TCD14 NO 
LOA GETCR YES, WARNING PREVIOUSLY PRINTED---------sz A-------------------------------·--­

JM P TC014 YES 
LDA .48 PRINT WARNING TO USER ~EGAROING 
LJB TGDR2 TABLE OVERFLOW 
JSG BPLN 
STA GETCR SET FLAG TO SUPPRESS MESSAGE 

TC014 LDA 8,I AREA OCCUPIED 

w 
-...J 
U1 



SZA 
JMP TCD12 YES 
LOA LINK NO, LINK SET 
5ZA 

Jt1P "'+3 
----sre-R.1rc-011;-r-s1·r--cmr11orrR-r:'l--s-v-A-rn[ 
RSS 
STD AODR2,I LINK TO PREV SST BLOCK 
LOA OPNUM SET OPEqANO VALUE IN SST 
STA ~ I 
STB A50R3 SAVE AJORESS 
L8A 8CKSP ADO~ OF SYM TBL ENTRY 
JSB IOIRT SET INnIRECT FLAG 4ITH THIS ADOR
I-s-z---/l,ODR.3'--Ao-v--a.--NCE" --­ADORI7 S-S---~---~-

STA ADDR3,I SET LINK TO SY180L TA9LE 
ISZ ADOR3 ADDRESS OF LAST FORWARD REF 
LOA AODR3,I
STA GETC~ VALUE OF LAST FORWAqO REF 

TC015 JSB DETLN 
STA ASM8Y 
LOA ZUSRP 

~------AND -11 777--RED\Tnrc:---A"nD~FSs--
STA ADORJ,I SET ADDRESS IN SST 
LOA GETCR VALUE OF LAST FORWARD REFERE~CE 
ADA ASMBY 
JMP STC02+1.. 

"' PREVIOUS FNTRIES FOR THIS LABEL.. 
---~-----TA-> -- C-ONT7ITNS--l::TNK~ROM-snfBOCl~TIL~ .. 

TCD16 LOB A,I VALUE IN SST 
GPB OPNUM MATCH 
i~SS 
JMP TC018 NO 
STA REENT SAVE ADDRESS 

w 
-._) 

O'I 



INA 
LD3 A1 I GET HORu HOLDI~G INDIRECT FL~G 
CLE,ELB INDIRECT BIT FLAG I~ (~)
LDJ IO~CT INDIECT FLAG ON OPERAND 
9LS CLEAR SIT D-----------SET - -·----------- . . . - ... - .. - - -­
I W3 

SZ3,RSS

JMP TCD17 
SS8,SL8,RSS MATCH 
J~P TC018-1 NO MAT~H 

TCD17 ADA .1 
LDB A I ADD~ OF PRfV REF 

---------~-------·---------------··-·sr A· AOO'.{:r---sAvE--AiJffREss--nr-ssT---· 
STB GETCR SAVE VALUE OF PREV REFERENCE 
JMP TC015

•• EXAMINE NEXT LINK IN SST• 
LOA R.EENT 

TCD18 ll.OA .3 AOOR OF LINK WORD -- ----ST A A 0 D Rz··---- s A\/;:_:-··· ADDRFSs-------------·--·------·· 

LOA A,I GET LINK AOOR . 

SZA FURTHER ENTRIES 
JMP TCD16 YES, LOOK AT NEXT ENTRY 
CCA NO Sff UP LIN< FOR SST 
STA LINK 
JMP TCD12-2.. 

TCDR1 
.. 

DEF
ASC 

•+t
16,COMPOUNO OPERAND TABLE OVERFLOW 

..,, 
TCDR2 DEF

ASC 
•+1
24,COMPOUNO OPERAND TABLE NEAR OVERFLOW, LIMIT USE 

w 
.....J 
.....J 



- -------------

.. 
If}. 

• 
:,... 

DETERMINE LENGTH 
INSTRUCTION 

OF ASSEM3LY FOR MEMORY REFERENCE 

iJFTLN NOP 
LOA ASMBY RETRIEVE INSTR SKELETON 
CLE,SSA,RSS TWO wo~o ASSEM3LY 
Ji1P .._ +3 NO 
JSB STRCD YES, STORE WORJ 
CLA,CCE SET INDICATOR 

_)J1e_Q~IJ-fu ~I___ 
.."' 
• ALLOCATE STORAGE SPACE FOR STORING PROGRAM 
• STATEMENT IN SOURCE CODE BLOCK 
If .. 

ASMBL NOP 

LOA SRCNT CHAR LENGTH OF INPUT ST~ING 
---~STA-Bd 

9LF, BLF 
INA 

SHIFT CHAR COUNT 

ARS NUM3ER OF WO~DS 
STA 
AQA
STA 

SRCNT 
.6 
TEMP3 

NUM Of 
LENGTH 
RETAIN 

WOP.OS TO BE MOVED 
OF FNTRV ro SCB 
NUM3ER JF ~OROS 

TO SCB 

AD3 A 
STB-CNTlfZ--TNPUITENGTlf-TDK'S~ 

w 
-...J 
00 



- -------------------------- --

lf 

,,_ SCAN FREE SPACE AREA FIRST BEFORE ALLOCATING NEXT 
• AR.EA IN SCB.. 

L03 XFRSP-----7\ SM BT-1- DA -3 t l -------------------------------------------­
S Z A ENTRY . 
JMP AS"-104 YES 
AD8 .2 NO 
LDA YFRSP UPPER 90UNO OF F~EE SPACE AREA 
CMA,INA
ADA 3 
SSA OVERFLO~ IN FREE SPACE AREA-JM P--A SH':Jl No--------------------------- --­

AS MB 2 LOA NFXT YES, NEXT LOCATION IN SGO 

LOB TEMP3 NUMBER OF WORDS IN SCB ENTRY 
ADS A 
STB NEXT PREPARE FOR NEXT ENTRY 
AD3 M1 CHECK FOR TAGLE OVERFLOW 
CMB,IN8
AD3 YSC9 UPPER 30UNO OF SOURCE CODE BLOCKSS8, RSS _____OVE~Fl:OW 
J~1P ASM93 NO 

LDA .30 YfS 

LD3 ASMR1 
JMP T8LOV.. 

ASM83 ADf3 M125 TABLE NEAR OVERFLOW 
SSB~RSS


----JM?' ll.SM~~3-5--
LD.A • 52 

LOB ASMR2 

JSB 8PLN 
JMP ASMB5 

w 
-.....] 

\0 



.. 
ASM9!+ C~~A, INA BLOCK IN FREE SPACE 

ADA TfMP3 LARGE ENOUGH TO HOLD EOIT ENTRY 
SSA,RSS
JMP ASM81+3 NC 

----A-iSA- -.TZ~ ---ARF:_A_RF.:-ffAI Nn:rtTT7fR~~--Tf;rou-c;-rr-


CC E, SS A, RS S TO HOLD FURTHER ENT~IES

CLA,CLE NO . 
STA a,I CLEQR ENTRY FROM FREE SPACE AREA 
INB YES 
LQA 8,I GET ADDqESS IN SCB 
RSS SKIP NEXT INSTR <E> MAY BE SET 

ASM35 CLE INHI3IJS OPERATION OF F~EE SPACE --------------s r A -Aoniu----s A1J ::---AD OR___r N-- s c·r--------- =-------· 

SEZ,RSS CHANGE REQUIRED IN FREF SPACE 
JHP ASMBL,I NO, RETURN 
LQA TEMP3 LENGTH OF ENTRY IN SC9 
ADA 8,I ADD ADDRESS IN FREE SPACE 
STA 8lI STO~E NEW AODRfSS
AOo M BACK UP ADDRESS 
LOA TEMP3 
CM A1INA------AVATCf"i-BLE-S PA Cc­
1\ DA 8,I

STA B,I STORE NEW LENGTY 
JM? ASM8L,I 

1f .. 
ASMR1 DEF ..,.+1

ASC 15,SOURCE PRQGRAM TABLE OVERFL04--T-----·------------­---·-~--------

..,. 

ASMq2 DEF "'+1 
ASC 26,PROGRAM APPROACHES IMPOSED LIMIT, BEGIN EXECUTION 

w 
co 
0 

http:A-iSA--.TZ


• • 
• STORE DATA BUFFER IN PROGRAM DATA AREA 
'I­

• ENTE~ (3) = AQOqESS FOR QATA STORA __----¥- --- --- - -- --------- ----------- - - - - - --· - ---- ------- - ----- -·------ - -- ·--- - - -- -·-------------­

•
DTSET NOP 

LOA OAT3~ ADO~ OF DATA 8UFFER 
ST3 ROCOM ADD~ESS FOR DATA 
LOB IDRCT 3SS INSTRUCTION 
SZB 
LOA 80700 YES AOO~ESS IN NON EXISTNAT MEMORYSTA -TEMPT___SAVE- BUFFER- ADlTffSS _____________________ ---­
LDA LENTH LENGTH OF ASSEM~LY 

C~A,INA

STA TEMP4 

DTST1 LOA RDCOM FETCH AQORESS
ADA B400 Ano AOD~ESS POI~TER 

STA ~DCOM,I STO~E AOOR~SS 

LOB TE~P3,I RETI~EVE VALUE --------- sT 8- -n.-, I -- -~STO~E vAcu;::-- Al~-PPROPRr~-IHJm{ 
ISZ TfMP3 
ISZ RDCOM ADVANCE 9UFFER POINTERS 
ISZ TEMP4 
JMP DTST1 
JMP JTSET,I 

w 
ex:> 
I-' 



.. .. 
• STORE LABEL IN SYMBOL TABLE.. ... 

--·-TITTt:TTAT1;T--n~ornri:s·~-TN As S8f9TT1J--G1rrrr.-­.. = 0 NON EXISTANT LABEL 
• (3) = ADO~ESS OF LA3El IN SYMBOL TA8LE 
" <E> ADDRESS OF BUFFER HOLJI~G LABEL .. = 0 LA31• = 1 LAB2•... 

" THE -SYlfi'.rOC-TATJCE--·m1.:)>JErN--rMPTEMENTETI-TCY--ffCYCUrrn MORE 

.. THAN 125 LABELS. AN ATTEMPT ro INTRODUC€ MORE THAN 
• 125 HILL CAUSE THE ASSEMBLER TO HALT WITH THE USE~ S 
"' PROGRAM LOST,,. 
• EACH SYMBOL TA9LE ENTRY IS SIX WORDS IN LENGTH.. 
• WORD 1 FIRST TWO CHARACTERS OF LA3El 

-~--- ----·-~------- ----------~---~--------------..,. -----·---- --------- ---·­

'f WORD 2 THIRD ANO FOURTH CHARACTER IN LABEL.. .. WORD 3 BITS 8-15 LAST CHARACTER 
If BIT 0 = 0 UNOEFIN~O LABEL.. 1 DEFINED LABEL.. .. 

----.--~mRD"lfl\l'JI}"?H.lrVF.uTFFER"ENT"lJSES-"TF 1HE LlfBEL----rs···UR 
.. rs NOT DEFINED.. 
• UNDEFINED HORD 4 ADDRESS TO LAST DI~ECT FORWARD REF 
• ~ORO 5 ADDRESS TO LAST INDIRECT FORWARD REF,,. 
• DEFINED WORD 4 LASEL ADO~ESS IN ASSEMBLED CODE 
If WORD 5 LA1EL AODPESS IN SCB --. -------------------------- ----·- ------------------.- ----­.----~---------------

.. WORD 6 LINK TO SPECIAL SYMBOL TA9LE FO~ COMPOUND 
"' OPERANDS.. .. w 

N 
00 



STL8L NOP 
STA TEMP3 SAVE <A> 
ISZ LBCNT INCREMENT LABEL COUNT 
LOA 0115 
CMA,INA-----------A 0 A- L 5 C NT______ 
SSA SYM90L TABLE NEARLY FULL 
J~P ST8L1 NO 
LDA .42 
LOS ST'~LR 
JSB 8PLN 

ST Bl 1 l 0 11 • 3 
STA SO~CE NUM3ER 8F WROOS TO BE MOVED---------co A-L ABT____-------------------- --------------­
SE Z 
LOA LA92 GET PROPER LABEL ADDRESS 
JSB WMOVE MOV': THE LABEL 
LOA TEMP3 LA9EL DEFINED 
SZA,RSS
JMP STLBL,I NO, RETURN SET NO FLAGS 
STA TEMP3 YES------------------[DA -- 8 ;I -- ------------------­
AD A .1 DEFINE LABEL/ DEFINED REFERENCE 
STA B,I
INB 
LD1:\ TEMP3 AOOR IN ASSEMBLED COOE 
STA 9,I STO~E ADOR IN ASSEM CODE 
INB 
LOA ADDR1 ADDRESS IN SC8--------STA ff I- ------- ----­
JMP SlLBL,I.. 

STBLR. DEF ""+1 
ASC 21,SYHBOL TA9LE NEARLY FULL, BEGIN EXECUTION 

w 
w 
00 



.. 
.. 

• STORE INSTRUCTION IN PROGRAM AREA.. 


·•ENTER <A> ASSEM3LED INSTRUCTION---.·-------------·----·-·-- ··---·--·-·-·-· - ----· -- --· ­.. 
STR.CD NOP 

STA 
ISZ 
JSB 

zusqp
ZUSR 0 ' 
STRGK 

I STO~E INSTRUCTION 
NEXT LOCATION PROGRAM AREA 

... JMP STR.CO,I 

• CHECK.. USER PROGRAM A~EA FOR OVERFLOW 
.. 
STRCK NOP 

LDB YUSRP UPPER 00UNO OF PROGRAM AREA 
GMB,INB
AOB ZUSRP ------­-ss g--------uvERFI.-UW 
JMP STRC1 NO 
LOA .24 YES 

.. 
LOB 
J'.-1P 

STRfR 
T8LOV 

"' .. PROMPT USER IF PROGRAM AREA IS ABOUT TO OVERFLOW 
STKGI-1\ Dg-·;-ri;-----­

S SB 
JMP ST~CK,I 
LDA 
LOB 

.52 
ASMR2 

.. 
JSB 
JMP 

9PLN 
STRCK,I 

STRER DEF •+1 
ASC 12,PROGRAM BUFFER OVERFLOH 

w 
~ 
00 



-------- - - --~·----

.. .. 
• STORE PLC REFERENCE.. 
• ENTER CA> SC3 ADDRESS WITH INDIRECT BIT SET IF NEEDED----..----- ----------------------------------------------- ----------------· ------------ ---------------- ---- ---· 

.. 
,,. EACH PLC REFERENCE IS STORED IN TWO WOR9S IN THE PLC 
,,_ TABLE .. 
,.. WORD 1 SCB ADDRESS WITH BIT 15 SET FOR INDIRECT.. REFERENCE.. 

---"'-RORD_2___f\lUMERTC--YITT::UE--TN-UPER 7J. Nu__________ _ .. 
• NO ATTEMPT WILL BE M4DE TO DEFINE THE PLC REFERENCE 
,,. UNTIL EXECUTION. DEFORE EXECUTION THE PLC TA1LE 
,,. WILL 9E SCANNED AND All POSSI3LE REFERENCES HILL 3E 
• DEFINED. THE SPACE OGCUPifD BY f~E ADDRESS WILL 8E 
• CLEARED TO ZERO •.. 

--- • A --WARNING rs- PR.FS£NTEu--1rTRF-PLC---rJrncE-Ts- NEARL'f-FUtl: 
,,. THE EXISTING USER PROGRAM IS LOST IF T~F TABLE IS 
• ALLOWED TO OVERFLOW •.. .. 
STPLC NOP 

STA HOLOl\ SAVE <A> 

CLB 


----------sT8 - -SRc rr---cr.r.n.K SEARCrri=rA-S­
LDA XPLC 8ASc ADDRRSS OF PLC TM~LE 
JMP \1-+3 

STPL1 LDA ZPLC RETRIEVE ADDRESS 
AJA • 2 ADVANCE TO NEXT POSITION IN TABLE 
<;;TA ZPLC RETAIN POSITION IN TABLE 
JMP STPL2 CHECK FOR TABLE OVE~FLOW 
UJA ZPL ·----------L D 3 A , I 
SZB AREA OCCUPIED­
JMP STPL1 YES 

w 

Ul 
00 



AND 81777 NO SAVE ADDRESS
STA WMOVE 
LOA HOLDA 
STA ZPLC,I
ISZ ZPLC
[DA -·oPN!Jff___C:rP-ERAf'llY-NlTf·fffER. 
STA ZPLC I
J~P STPL~,I RETURN 

STPL2 LOB YPLC UPPER BOUND OF PLC A~E
CM8,IN9 
AfJO ZPLC 
SSB OVERFLOW 
Jt~P STPL 3 NO

------LOA ~24 
LDB PLC~! 
JMP TELOV 

STPL3 A08 .10 
SSB TABLE NEARLY FULL 
J 1~P STPL1+4 NO 
LOA SRCFG YES 
SZA MESSAGE ALP-EADY PRINTEO 

-------y~P -sTPLTfIt-YEs-------------­
l DA .42 NO 

LOB PLCR2 
JSB 8PLN 
STA SRCFG SFT SEARCH FLA:; 
.JMP STPL1+4.. 

PLCR1 DEF ~+1
---------As c 12,---.---c.1rsEl----rA13rr-uvERFDJW 

.. ~ 
PLCR2 D~F ""+1 

ASC 21, BEGIN EXECUTION TO PREVENT .TA8LE OVERFLOW.. .. 
CYCFG EQU OPFLG DEFINE TEMPORARY STORAGE 

-----SRCF~-EQU EXP - -----------­

w 
co 
0) 



--- -------~---~ 

.. 

.y... .. 
• MOVE ASSFMBLEO COD~ WHICH PRECEDES OR ~OLLOWS MACHINE----¥--CODE1NSTRUCTIONS -HiVOLVED IN AN-ElJIT___ - ------------ ----------------­

'" • ENTER (A) ADDRESS IN ASSEMBLED CODE 
• (0) ADDRESS IN SOURCE coo~ BLOCK 
.\'"­

"" CMOVE NOP 
STA HOLDA ---- - - -----~DB ~I~ -----------ASS'i::1C7\DOR--TN-S-CB_____ 
LDA ZUSRP ADDR WHERE CODE HILL RESIDE 
STA 811 ~EGIFINE ASSEX AODR IN SCB 
ST8 AUDR2 SAVE AGD~ESS 
JSB CMVF3 
JSZ ADOR2 ASSEMBLY LFNGTH ADDRESS 
LDB AOJR2,I ASSEMBLY LENGTH 

.CP3 .2 TWO AORJ ASSEM3LY ----- J1--1P GMl/E2 ___YFS -- - - - ----------­
LD A HCUJ3 NO 

AND 80700 

5ZA,RSS MEMJRY REFERENCE INSTRUCTION 
JMP GMOVE,I NO, l{f:TU~N 
LOA HOU18 
~ND 82000 CURR.ENT PAGE arr 
S 7- A 

------------ JMP - CMO vi::;-r--coR?::NrPAGE-BTT-SET7___R.CTURN 
CMVE1 LOA HOLD~ ~ESTORC INSTRUCTION 

SSA DEFINED, INDIRECT BIT SET 
JMP CMOVE 1 I YES, RETURN 
ANO S1777 VALID ~EFfRENCE TO BASE PAGE 
ADA D100 GET A08~ESS 
SSA 

w 
co 
-...J 



JMP CMOVE,I YES REFERENCE TO <A> O~ CB> 
ADA .54 NO, INVALID REFERENCE ro BASE PAGE 
STA HOLDB 
LOB 31600 CHECK FOR PLC ~EFERENCE 

--------~ti~, pm_______ ~---
ss s, Rss UNDEFINED PLC REFERENCE 
JMP CMOVE,I YES, RETURN 
LOA HOLDA 
AND i31777 ADDKESS BEING SOUGHT 
STA GETr.~ NO, SAVE ADD~ESS 
LOA ZUSRP 
AOA Mi 
A~D--Hl777 AOD~E"Ss--Tu--3~-c1:'JDEO OU~ 
STA ROCOM REPLACEMr:NT 
JSB CASGO 
J:1P CMOVE,I 

'I­

"' TWO WORD ASSEMBLY.. 
CMVE2 ISZ HOLDA

---------Js-a-nWE3 
JMP CMVEi.. 

• ~ETRIEVE ASSEMBLED INSTRUCTION.. 
CMIJE3 NOP 

LOA HOLDA,! RETIRIEVE ASSEM3LED COGE 
STA HOLDS--------sTA·-zus RP;-r-lfUVFl:;DTitTNTOflfEW-tuCATTO"N 
CUI. 
STA HOLDA,! PLACE NOP IN VACATED AREA 
ISZ ZUSRP 
JSB STCK~I LOO~ FOR OVE~FLOW IN USER PROG 
JM P CMVE.__,, I 

w 
00 
00 



.. .. 
~ ADVANCE THROUGH LINK~O LIST OF FORWARD REFE~ENCES 
.. TO CHANGE POINTERS CAUSED BY A DELETE O~ CODE 
,,. OE!NG MOVED--·-·---···-·- ··---· ----- -- --·--------·----·---·----·-----·-----­.. 
CASCO NOP 

GLA 
STA !DR.CT 
STA GSOFG 

CSCD1 LOA HOLD'3 
L:JB 0701

------AD 8 A ---- -----P-OIITTER-ro~i:rcr-
S S3, R.SS 
JMP CSCD3 YES 
ADA JMP CALCULATE AODR OF NEXT REFERENCE 
STA ADD~2
LOA AOOR.2,I
ANO 81777 ADDRESS OF NEXT REFE~ENGE 

CSC02 STA HOLDB
-------------CPA -GETC~---P:OO".{ESs--uETN\;--SDVGR1 

R.SS YES 
JMP CSC01 NO 
LOA ADDR2 7 I RET~IEVE INSTRUCTION 
ANO 81760 SAVE INSTRCUTION SKELETON 
ADA RrCOM ADD IN NEW ADDRESS 
STA A.OCJR2,I 

___ JLL____J M_e__cAs cQd _____ .__ _ 

• EXAMINE SYMBOL TA3LE FO~ FORHARJ REFERENCES.. 
CSCD3 LOA CSDFG 

SZA 
JMP CSOER ERROR, CANNOT FINO FWD REF IN TBL 
LOA .125 
CMA I

-----AD A1 B 

SSA 

JMP CSCD4 DIRECT REFERENCE IN SY~ TBL 
AD3 "1125 

w 
co 

"° 



---

LDA .. 125 
CMA,INA
ADA B 
SSA,RSS
JMP CSCD? 

----~STA--I 0RCT-~I~NO-rRf.:Gf-RtFERE_NCE:_TIC-S-YFflBL 
CSCD4 9LS 

SfB A MULTIPLY BY 5 FOR SYM90L TABLE 
3LS 
ADa A 

LOOK UP 

ADO XST9L BAS~ ADDRESS OF SYMBOL TABLE 
Af13 • 3 
LOA IORCTS Z A--­ ------- INDIRECT REFERE~CE 

-----~ ----------------------- ­ ----­
IN 9 YES, ADVANCE ADDRESS 
JMP CSC06 

CSC05 AOB ~125 
LGfl ., 75 
CMA,INA
AOA B 
SSA qss

-----JMp' csDER ADD R:Es-s--l'rOT1-J\rSYMUOLl7\-srES 
9LS,8LS MULTIPLY BY 4 
AOB XSST BASE ADDRESS OF SST 
ADB • 2 

CSCD6 STB ADDR2 

~~~ 6sBFG 
JMP CSC02

~-----------------

GSDER L!JA • 34
LOB >.<+3
JSB BPLN
HLT 55A STOP ERRO~ IN PROGRAM..
DEF -11-+1

-------~--~?_Q___ J_?'_, ADORE SS NOT LOC AT_ED-P RO G_R_A_M_E_R_R_O__R____________
..
GSDFG EQ_U WMOVE

w
l.O
0

.,.

...
• DELETE STATEMENT FROM ASSEMBLED CODE ,,,.
• ENTER (8) ADDRESS OF CODE TO 3E DELETED---v;-- ---- ------- ------------------- ----- ------- -- -------------­
,,.

DELTE NOP

CLE,ELB
STB 8ADDR ADDRESS POINTER.
CCA FLAG TO DENOTE LEXICAL SCAN
STA EDINT OF CODE TO BE DELETED
JSB CLEq.r

---------Jsa -i.:Exr;r--­
CL A

STA EDINT CLEAR LEX-EDIT FLAG

•
LOA LBLFG LABEL FLAG FROM SOU~CE CODE
SZA,RSS LABEL PRESENT
.JMP DEL Ti l\JO
LDD LBLAD LABEL AOQR IN SY~30L TA3LE

--------1\03 -.. 2 -------ADD~E-ss-oF-T7rnEL--rNFORMATTON
LOA B,I
AND CH1 SAVE LAST CHARACTER IN LA9EL
STA s,r
INB
STB SAVR SAVE SYMBOL TABLE ADDRESS
LOA XSTBL BASE ADDRESS OFSYMBOL TABLE
CMA,INA

------- AlJ A -TB cr1rr-------.noD~FSS-oFuFt:rrru--cn.BET
CLB
DIV ~6 RELATIVE POSITION OF LABEL
ADA 8701 SYM90L T9L POSITION POINTER

w
\.0
I-'

STA S.IWR, I INDICATING UNDEFINED LAJELS
ADA .125 STOTE IN SYMBOL TA8LE TO BE USED
ISZ SAVR
STA SAVR,I..

0 ECT1LDA-AS.1fF_G _____A-SS_E_Ml3LYFIAG

SSA,RSS

JMP DfLT2 MACHINE INSTRUCTION
LOA SCBE1 SG9 AOOR OF DATA TO BE DELETED
ADA .S ADOR OF LENGTH OF ASSEMBLY
LD3 A,I LENGTH OF ASSEMBLY
STB LENTH
JSB DTEDO EOIT DATA------JMP--DEL TE;-i----·--- ---· ..

DELT2 LDA INSNM INSTRUCTION NU~3ER
ADA M6
SSA MEMORY REFERENCE
JMP OELTE,I NO, RETURN
SZA
ISZ ElNTH ADVANCE LENGTH OF DELETED CODE

----[!)ff UPI:8l: ------YEs-,--o?Em NIT-l..Al3EI:--P-RESET\JT~-------------·
szo,~ss
JMP DELTE,I NO, RETURN DEFINED REFFRENCE
SSB PROGRAM LOCATION COUNTE~ REF
Jt'1P DEL T3 YES
LD9 LAB2 NO, ao A SYMqQL TAALE LOOK UP
JSB LOKP,I
SSA ~SS DEFINED ~EFERENCE

---Ji1 P 'DFlTF,-r--YEs- -RETURN -- ---- ­
LOA ASMEl ADD~ OF ASSEMJLED I NSTRUC TI ON
L03 ASM9Y TWO WORD ASSEM3LY
SSS

w
l..O
N

INA YES
INA
STA TEMP3 SAVE ADD~ESS OF INSTRUCTION
AND 31777 GET ~ELATIVE ADDRESS OF
STA GETCR UNO~FINED REFERENCE

---------LDA--TE'.MPJ;r-i:;ET ASSEM8LEO INSf:(UCTn:nr
ANO
AD.A

81777
01no

AOOR OF ~EXT FORWARQ REFERENCE

SSA
JMP
ADA
STA

DELTE,I
.64
ROCOM

VALID REFE~ENCE TO
YES
NO
SAVE ADDRESS TO OE

BASE PAGE

MOVED
STA HOLDf3

-~~-JSE3 ___ CASGO-~CA-S-CAD-E~-IRROD-GHC1JDEl-GuPUUE
JMP DELTE 7 I ALTERED FORWARD REFERENCES

•
~

CLEAR PLC REFERENCE IF INSTRUCTION IS DELETED
'If.

DELT3 LJB ASME1 ADD~ESS OF ASSEMBLED INSTR
LOA ASM8Y INSTRUCTION SKELETON
SSA TWO HORD ASSEM3LY------1 N 3 ---------------- --- ---- --- ---------- -- ------­
LDA 8,I
AND R1777 GET RELATIVE ADDRESS
ADA 81SOO AOO~ESS IN PLC TABLE
CLB
SfB ALI CLEA~ ENTRY IN PLC STORE TABLE
JMP DtLTE,I

w
\,0

w

" •
• DATA DELETE..
• SHFIT DATA AND DATA AODR~SSES TO FILL GAP LEFT BY
• DELETED DATA---..----­
• NO DELETE IS NEC(SSA~Y WHEN AN EQ~ PSEUDO OP IS
• D~LETEO SINCE THE REFERENCE IS CLEARED IN THE SYM30L
• TABLE
..•
DTEDD NOP

LOA LFNTH LENGTH OF nATA TO 3E DELETED
---~-----SlAjRSS LTNGTF-r--zrno-- -----------·

JMP DTEOD,I EQU ~SEUDO OP, NO OPERATION NEED~D
CMA,INA
STA fEMP?
LOA ASME1 AOOR OF FIRST WORD TO 3E DELETED
ELA, CLE, ERA CLEAR 9IT 15
STA HOLDA
ADA LENTH
STA-AS1'1E2
STA HOLOB
LOA ZDATA NEXT FREE DATA LOCATION
CMA,INA
ADA ASME2
STA. H-MP6 -NUM OF DATA INTEMS TO BE MOVED
SZA,RSS

w
,f::,."°

--· ---- -· ·--·-----·--~----

JMP DTOD2-3 NO DATA ITEMS TO BE MOVED
DTD01 LQA HOLOB,I GET ADDRESS

LOG A,I GET VALUE
ADA TEMP? ADD DISPLACEMENT TO ADDR
STB A I STO~E VALUE IN NEW AODR

-----~--ST Au-HOLO-Z\, I STOREnADJR IN NEH-POSITIOTI
ISZ HCLDA
ISZ HOLOq ADVANCE AODR POINT~qs
ISZ TFMP6
JMP OTOD1
L03 ASME2 PARAMETERS TO R~SET SYMBOL TABLE
LOA TFMP7 PROGRA~ AOnR A~EA AND SC9 AODR
JSB SCSYMLDA-1fMP7______________

SfA
CLA

TEMPS
CLEAR VACATED DATA AREA TO ZERO

DTDD2 LQS
STA
STA
ISZ

HOLOA,I
B I
HOLDA,I
HOLDA ADVA~CE ADDRESS POINTER

---­
ISZ TEMP6
JM P -DT01J 2 ­
LOA
ADA

ZOATA
TEMP?

RES~T NEXT
AREA AFTER

FREE
DATA

AREA IN
DELETE

DATA

STA ZO.i\TA
JMP OTEDO,I

·~-~~--~-------- -

w
\0
V1

-------- -----~- ----------· - ---------------------------- --·--~-------

.. ..
"' INSERT DATA.. .

"' SHIFT DATA ANO DATA ADDRESSES WHICH LOGICALLY FOLLOW

-------,:---TNSER.TTHEW-ST 0 ITT:TNS-~J:<TEff fflHA-----------------·- ~-----

•
,,. NO INSERT INVOLVED WITH EQU PSEUDO OP FOR ENT~Y WILL
• BE SET IN SYMBOL TABLE.. ..
OTEDI NOP

LOB LENTH EQU ~SEUDO OP LENGTH rs ZERO------sz g-,-R.s-s--­
J MP OTEDI,!
LDA SCBE2
JMP DTEI2

DTEI1 ~OA M4

OTEI2 t8~ ~DETA NEXT FRE~ AREA IN DATA AREA

CPA EN~XT TERMINATOR

-------T4P-:JTEI:f YES.
ADA .4 A001 OF ASSEM FLAG, ASSEM ADOR
LD8 A,I EXAMINE ASSEMBLY FLAG
SS3 7 RSS DATA
J :1 P DTE I 1 N 0
ELB,CLE,ERB YES, CLEAR BIT 15

OTEI3 ST8 ASME2
STB ZADD ADOR IN ASSEM1LED CODE--------cPB 7DATt\~U-ITEMs--.o--a~~OVED_______________
RSS YES
JMP DTEI5

OTEI4 LOA LENTH LEN~TH OF INSE~T
ADA ZDATA
STA ZDATA CHECK FOR OVERFLOW IN DATA
JSB DTFL,I TAP,LE
LOB ZADD POSITION OF FIRST ~NTRY------Js g -·orsr-r-·1NSt:RT--UATA_____________ . ---------------­
JM P OT.~Df,I..

OTEI5 LOA ~DATA NEXT FREE AREA IN DATA TABLE
STA HOLDA
CM.A, H'A
ADA ASME2 LOCATION OF FIRST INSE~T

w
\.0

°'

STA TE~P3 -NU~9E~ OF WO~JS TO BE MOVEG
JTEI& LJ.~ ;...iCLD~

AJA :H
STA HOLDA FIRST DATA ENTRY TO BE MOVED

---------~ fg ~oCoq·----G-~I_Jl,_D_O_B.~_ss_________________ _
LOA B,I GFT VALUE
AOB LENTH ADD DISPLACEME~T
STA 8,I STO~E VALU~

LOA HOLDA
ADA LENTH
STB A1 I STO~E ADDRESS
ISZ TfMP3--JMP OTEI6 _____
LOB SCBE2 POINTER FOR SCAN THROUGH SCB
ADO .1
LD3 B1I
STB SL;BE1
LOA LFNTH SCAN THROUGH SYMBOL TABLE~
LOB ASME2 PROGRAM DATA A~EAS AND SCu
JSB SCSYM TO CLEA~ UP ADDRESS CHANGES

----------- L DB As ME 2 ---·A f)1Tq -HHERr-uATA-1n LI.- BE"'-TNSERTFO
STB ZADD AOOR IN ASSEMBLED CODE
JMP DTEI4 INSERT DATA

w
ID
-....]

.. ..
• SCAN SYMBOL TABLE, USER P~CGRAM ADDRESS AREA AND
~ SOURCE CODE BLOCK TO UPDATE LABELS AFTER AN EDIT
• OPERATION INVOLVING DATA____ 'IL________ ----·-----·----·-- - -- - -- ------------- ---------­

.. ENTER CA> CORRECTION VALUE TO ADDRESSES
• CB> AODRfSS VALUE USED TO WHIGH ADDRESSES
• NEED gE CHANGED.. ..
SCSYM NOP

STA NUM1 VALUE--------CM t31T NB __________________________________

STB NUM2 ADO~ESS
LDA XST3L AOO~ESS OF SYM30L TA3LE
RSS

SCSM1 ADA .6 NEXT ENTRY IN SYMBOL TABLE
LD3 YSTBL UPPER 30UND OF SYM TBL
G:-lR,tNB
AD? A

----·--ssB;;RSS- uV£~FLO

J'1P SCSMI+
LDa A,I NO, CONTENTS OF AODRRSS
SZ3,R.SS
JMP SCSM1 NO ENTRIES
STA 8C~SP ENT~Y, SAVE ADDRESS
AD A • 2
LOB A,I GET LAREL INFO~MATIONG l E, ER 3-------------- ----· ----- --··----- ------·--·----·
SEZ LABEL DEFINED
J~1 P SCSM 3 YES

SCSM2 LDA ACKSP NO
Jl~P SCS Mi

SCSM3 ADA .. 1
STA AOflR2

________I.. Qf? -~ 1 J ______f1 Q_Q_~ I N __ll__-_S5 EM~LE Q_Q_Q_D E

w
ID
00

http:SZ3,R.SS

LOA NUM2 TEST ADD~ESS
ADA B ADO IN AOD~ESS
SSA TOO SMALL
JMP SCSM2 YES
LOA 8 I RETRIEVE ADD~ POINT~R

-----ADA -xDATA--~-IQU -ADDR--DEFIN1TIO-N ______
SSA
JMP SCSM2 YES
1\09 NUM1 NOf REQEFINE LABEL
STB ADDR2 1 I SE VALUE IN SY~BOL TABLE
JMP SCSM2 CONTINUE..

• CHECK FOR DATA OR MACHINE CODE LABEL
---~-------------- ------------------- ------ ------ -- ··- -----------· . ---------· ----·

SCSM4 LOA NUM2 TEST LABEL ADDRESS
GMA, IN.~ CONVERT TO POSITIVE
JSB DATAO CORRECTION IF DATA ADDRESS
CMA,INA CONVERT TO N~GATIVE VALU~
STA NUM2 ...

• EXAMINE LABEL AREA IN PROGRAM------..-·-- -----------­ ------------------~--------·------· ---·­

L DA 0337
STA TEMP3
LDA J!-"P
STA TEMP4

SCSM5 ISZ TEMP4
GLB

LOAD ADDRESS~~~-:U:l'i~Lt,I
CCB
STB ID~GT SET INOI~ECT FLAG
ELA,CLEiERA CLE,l\R. 8 IT 15
LOB NUM<- TEST ADO~ESS
.1\08 A
SSS COR~ECTION REQ~IREO

w
l..O
l..O

---- ----- --·--------- ---------------­ ---~-·-·----

JMP •+S NO
LOB IDRCT YES
ADA NUM1 ADD IN CORRECTION
SSS
IOR MNEG MAS~ ON INDIRECT BIT

-------:;T i'.\--T EM Pz+ ,-r--R£TUR.N-Au0 ~ESS- - ~---

! S Z TEMP3
.J'~P SGS M 5

~

~ SATISFY SC3 REFERENCES WITH DATA
~

l~B SCB£1,I GET AOD~ESS
R.SS

ST;Sl'loL Qg--i:r; T Arm RE.:;S-O F-1\!m s f A r EM ENT

CPR EN>:XT FINISHED

JMP SCSYM,I RETURN
ADB • 4 AODR OF ASSEM FLAG, ASSEM AODR
L!JA 8,I
SSA,RSS DATA
J~1P SCSM7 NO
STA STFSP SAVE CA>

------~:-..ig-- ------A DD ~-or--CTNGTirUF-lrSSEMBrT
LOA 8,I ASSEMBLY LENGTH IN <A>
ADB Mi DECR.EMENT <8)
SZA,~SS EQU PSEUDO OP
'J~P SCSM7 YES

LOA STFSP NO, RESTORE <A>
ELA,CLE,ERA RE~OVE 1IT 15
ADA NU~1 ADO CORRECTION TERM TO DATA ADD~

------IDR-11NEG_____ R.ESTDRE- 3rrp,--- ---­
ST A 8 I

SCSM7 A!l'3 M4 RESET CB>
JMP SCSM5

.i::..
0
0

• •

-----"----~---------------- ----·~------- ---- --~- -- -----------­

• STORE LENGTH AND ADDRESS OF DELETION FROM SOURCE CODE
• BLOCK IN FREE SPACE ~REA•
"• EACH DELETION FROM THE SOURCE CODE BLOCK WILL BE
• RECORDED IN TWO WORDS IN THE FREE SPACE TABLE WITY
• THE DELETED AREA IN THE SCB CLEARED TO ZERO•
.\' WORD 1 LENGTH OF DELETION..
• WORD 2 SCB A~DRESS OF D~LETION--"" :i;:-- -- - --- ---------"""""""----"-------"""___________"___ ------ ""___ ---­

•
• FULL TABLE SUBSEQUENT ENTRIES, LARGER THAN THE SMALLEST
• WILL REPLAC~ THF SMALLEST. ENTRI~S SMALLER
• THAN THE SMALLEST WILL BE IGNORED •
••
STFSP NOP----- -------cLA ---------­

LOB SCBE1 ADDRESS OF DELETION
sra TEMPS
LQB CNFG3 LENGTH OF DELETION
CM8,IN3
ST8 TFMPo

FSP1 STA TEMP5,I CLEAR DELETED AREA
ISZ TEMP5

----~--r Sz-T E:vl P 5--74DVANCE-l'OTNTERS
J'-1P FSP1
LOA XFRSP ADDRESS OF TABLE
RSS

FSP2 ADA .2 ADVANCE TO NEXT POSITION IN TAAL€
STA ZFRSP SAVE PRESENT POSTION
CM~.,. INA
ADA YF~SP UPPER BOUND OF TA3LE-----------ss A - - - - -----IF TA RL E-FUCL- ~ND-:>ffAt.t:ER """"ENT
JMP FSP3
L~A ZFRSP RETgIEVE PRESENT POSITION·
LOB ZFRSP,I AREA OCCUPIED
SZB
JMP FSP2 YES, LOOK AT NEXT POSITION
LOA CNFGJ NO, GET LENGTH OF DELETION """

-----------·-- ----- -------- ­ I-'
0

STA ZFRSP,I STORE LENGTH
ISZ ZFRSP
LOA SC9f1 ADO~ESS OF DELETION
STA ZFqsr,I STO~E ADDRESS

______ JM P _ _s lt S_P_,j____________________
FSP3 CLA

STA TEMP2
LOA XFRSP BASE ADDRESS OF FREE SPACE
J'1P 11-+ 3

FSP4 	 LOA TEMP1
ADA • 2
STA TEMP1 ADD~ESS OF NEXT BLOCK IN FSP
L03 YFRSP UPPER 80UNO OF FREE SPACEC~18; I I\ 9 ------------------------------------ -------------­
AD 8 A

SSB,RSS TABLE FULLY SCANNED
JMP FSPS YF:S
LOJ TEMP1 7 I NO, GET LENGTH OF DELETION
C>18, INQ
AOB CNFG3 GREATER THAN PRESENT DELETE
SS :-5-------J:,lP FSP4___ N
SZ8,RSS
JMP FSP4 NO

LD8 TEMP2

':>ZB
JMP FSP5
STA TEMP2 ADDRESS IN FREE SPACE
J"1P FSP4

-~FSPS--l08 TEMP
C ~~rn, I N3
AJ3 A,I
SSB

STA TEMP2

JMP FSP4

FSP6 	 LIJA TP1P2

S Zi\ ~SS

---------]MP' STFSP-~1
LD8 CNFG3- LENGTH OF DELETION
sra A,I
INA
LD3 SC3~1 ADO~ESS OF DEL~TION
Sf B .r.. 	 I

~JMP STFSP,I
rv
0

,,. ..
,,. RETRIEVE ASSEM~LED CODE ADORESSES OF INST~UCTIONS
,,. INVOLVED IN THE EDIT OPE~ATION.. ------,,.-- --------------­

ASMA O NOP
LOA SCRE ADDRESS OF SCB ADDRESS
STA TEMP1
LOB ASME ADDR OF ASSEMBLED CODE ADOR STORE
STB TfMP2
L'.1A M3
STA TEMD3

--~sfm-1-LDA--TEM p1-1-~AUDRESSiff-SC-S-
S Z A, RSS ' CHECK FOR UNDEFINED REFERENCE
JMP O.SM02
ADA .4 ADQ~ESS OF ASSEM8LY
LOB A,I AooqESS IN ASSEMaLEO CODE
STB TEMP2 1 I

ASM02 ISZ TFMP1
ISZ TEMP2 ADVANCE ADDRESS POINTERS---------------1 S Z - TEMP 3 -------------- ---------------------­
JM P ASMOi
JMP ASMAO,I

~

w
0

O~G 120009
If ..
If

• INTERPRET AND EXECUTE EDIT INSTRUCTIONS--..---------------------------------------~~---------------..
• EDIT WILL ALLOW THE USER TO
If .. DELETE ANY NUMBER OF STATEMENTS IN THE P~OGRAH• INSERT 9ETWE~N SUCCESSIVE STATEMENTS ... REPLACE ANY STATEMENT
'f

• THE FOLLOWING OPE~ATION CAUSES STATEMENTS M TH~OUGH
• N, INCLUSIV~, TO Bf DELETED..
"' /OCELETE> 11 MC,tHC,V)..
.. IF ONLY M IS SPECIFIED ONLY THAT STATEMENT WILL BE
• DELETED. --·---r--r F-- w>--WIHE-11'fSTRUCTTOff--HTITtJ~Tt7NGR~U-.. ..
• V IS THE VETO FLAG
If

• WHEN SPECIFIED STATEMENT($) REFE~ENCED BY THE EDIT
.. INSTRUCTION wrtL 8E PRINT~O. A MESSAGE WILL ASK THE
• USER IF THIS IS THE CODE TO BE EDITTEO.

___ lf___ A _RESPONSE-OF--YTES}- WILL--C OIHINUE-IH~-ETUITNSTIUCTTUN
• WITH ANY OTHER RESPONSE CAUSING THE EDIT INSTRUCTION
._ TO BE IGNORED •.. ..
• TO INSERT 9ETWfEN SUCCESSIVE STATEMENTS•
If I I <NSERT> MC N>---,,.---------- ---- ____________________,___ J __________________

• IF ONLY M IS SPECIFIFD ONLY STATEMENT M WILL BE
• INSE~fEQ. N IS AN INCREM~NT FOR MOR~ THAN ONE
• INSE~TION 3ETHEEN SUCCESSIVE STATEMENTS.

~•
~
0

---- -- ---- ---- -------~--

..
• RESTRICTIONS ON AN INSERT..
• 1 ON A MULTIPLE INSERT (N>O), IT WILL NOT BE

·• POSSIBLE TO ENTER 30TH DATA AND MACHINE CODE
-----~--IY-P E. STl\TEMENTS~ ­------· ---- ---------------- ·····--·----·----·-----·

• 2 A ~ULTIPLE INSERTION WILL BE AUTO~ATIGALLY ENDED
• IF THE STATEMENT NUMBER OF frlE WOULD 9E INSERT
• EXCEEDS THE NEXT STATEMENT NUMBER IN THE PROGRAM •..
... ..
• TO ~EPLACE A SINGLE STATEMENT----'F-·--- -·-· ---·-··-----·----- ·--··--·· -----·----­

• /RCEPLACE>,M<,V>•
• A MACHINE CODE INSTRUCTION CANNJT BE REPLACED BY DATA
• NOR CAN A DATA STATEMENT 9E REPLACED BY A MACHINE
,,.,,. INSTRUCTION ..

• THERE IS NO MULTIPLE REPLACE BECAUSE SEQUENCING
--·---·--1NFORMATI0 N" -rs- NOr AV ATLA1 lT-· ----·- -------------·--·

• THE END INSTRUCTION WILL TE~MINATE THE CURRENT EDIT
• OPERATION •.. .. 1£ <ND>
If

EDIT CPA SLASH SLASH PRECEDING EDIT OPERATION
RSS
JMP E0~1 NO, ERROR

EOIT1 LOB MIIP
SZB MULTIPLE INSERT NOW COMPLETE
JS8 ENOMI CLEAR UP MULT INSERT
JSB EDCL~ CL~AR FJIT VARIAOLES

-----------··--Jsa-NTTILl(___NEXrNON B"CANlCCffARl.\CTER-··
JMP EDR2 NO INST~UCTION
LOS EDNUM EDIT INST~UCTIO~ NUMBER
CPA 0 DELETE REQUEST

.;,..

Ul
0

JMP EOIT2+1
AOB .2 NO, ADVANCE INSTR NUMBE~
CPA E END RE~UEST
JMP EOT41l YES
CPA I NO. INSERT REQUEST--JffP--EDTT2___YES--- - --------.3-------·----------­

A09 92 NO AJVANCE INSTR NUMBER
CPA R REPLACE RE1UEST
~SS YFS
JMP EDR2 NO, UNDFFIMED EDIT OPERATION

EOIT2 ST8 EONUM SAVF INSTRUCTION NUMaER
JS3 RDCOM REAQ UPTO COMMA
J'1P Eoqs

-----:JSB THNr,~r~-.Rf:l'IT-TN-·sTnlEMENINUMBER.S-­
JMP EDIT4+1
J~-i P EOI T3
JMP EDIT4
LDa EONUM EDIT INSTRUCTION NUMRER
GPB .5 REPLACE
JMP EDR3 YES, ERROR
CLE,RSS

EUTT~-cCE --- ­
JS B VETCK LOOK FOR VFTO FLAG
SEZ MULTIPLE OPERATION
JMP F.:DIT4+1 NO
LOB EONUM YES, CH~CK FOR REPLACE
CD!) .5
JMP EDR3

EDIT4 ISZ EDNUM ADVANCE INSTRUCTION NUMBER---------- LD.A. -NUM r--------------·------------------- ----­

"" "" CHECK RANGE OF FIRST NUHOER
....

L03 FSTMT FIRST STATEMENT NU~~ER IN PROGRAM

CMG,INB
AJa A ADD FIRST EDIT STATEMENT NUM1ER
SS9

--------.)MP TD 'Z5
LOB CUSTN LAST STATE~ENT NUMSER IN PROGRAM
C'.'13

AD'3 A

SSB,RSS
JMP EDR5 FIRST NUMBER TOO LARGE

.i:>.

°'
0

•
• ADVANCE T~ROUGH SOURCE CODE BLOCK FOR ADD~ESSES OF
• CODE INVOLVED IN EDIT•

LOA 	 FIRST ADO~ OF FI~ST ENT~Y IN SC8--.	--------t{ss·· - ------ ----------··- ----·---------------------------·­
EDIT5 LOA A,I ADD~ESS OF NEXT ENTRY

CPA 	 ENEXT ENO OF PROGRAM
JMP 	 EDIT? YES
AnA 	 .2 ADD~ESS OF STAT~MENT NUMBER
LOG 	 AJI STATEMENT NUM3E~
AOA 	 MZ
ST8 	 STOR.E--·--GM 8 ;T NS·-------------­
A 08 ~UM1 FIRST EDIT STATEMENT NU~8ER

SZB,RSS
JMP 	 EDIT&
SSB
J'~P 	 EDIT?
STA 	 SC9EO
JMP 	 EDITS

-------TUTTo 	ST A ·sea ET
JMP EDIT5

EDIT? LOB 	 FDNUM EDIT INSTRUCTION NUMBER
G0 B 	 • 2 MULTIPLE DELETE
J'1P 	~DI T8 YES
CPB 	 .1 SINGLE DELETE
JMP 	 EDIT9+1
STA 	 SC9~2 SAVE ADDRESS OF INSTRUCTION

-----~---JM P TD Ti o·--HHIC R--F OLI.O\·fS-E"DTT-1JPER.~TTO~N---
E D l T 8 LOB STORE RET~IEVE SiATEMENT NUMgE~

CDB 	 NUM2 LAST STAEMENT TO 8~ DELETED
JMP 	 EDIT9 YES
GPA 	 EN~XT TE~~INATION
JMP 	 EDIT9f-2 Yt.S
CM3, HB
A03 	 NUM2 FIRST STATEMENT NUM9ER AFTER----------SS B, R. SS ---- }! ULT I FL E- DELETE"___________ ------­
JM P EDIT5 NO
~SS YES .

EOIT9 LOA A,I ACO~ OF NEXT STATEMENT

CPA 	 ENEXT TERMINATOR IN SCB

ii::.

-..J
0

--

STA OLTLN DEL£TE LAST LINE
STA SC3E2

YW EDT12
..

• CHECK FOR MULTIPLE INSERT
-~.. -·----------------------------­

EDT 10 CPB .4 MULTIPLE INSERT
RSS YES
JMP EOT12 NO
Lr.JA NUM2
SZA 1 RSS ZERO INC~EMENT
JMP ~0~5 Y~S, FRROR-{6g ~~-;,3 E 2 IN S_IR_iJC T_I0 N A FT E,-'--R'--"I'---N'---'S'--"E=-R-'-_T________________.

LOB B,I STATEMENT NUMBE~

..

..
~ LIPPE~ LIMIT OF STATEMENT NUMBER ON A MULTIPLE INSERT

STB EDLMT
CMB,INB
AOB NUM1

-----..ua--NuM-2-- STATEMENINUMBER--nfe~ENT
ssa,R.ss TOO LARGE
JMP EDT11 YES, CONVERT TO SINGLE INSERT
LDA NUM2 PREPARE STATEMENT NUM1E~S
CM8,INB FOR FIRST ENTRY OF MULTIPLE
AfJE! NUM1 INSEKT
STB NUM1
JMP EDT13

---------,~-- --·~-~-··~·---- --­

EDT11 LOA .3 CONVERT TO AS SINGLE I~SERT
STA EONUM
LDA .40 WARNING TO USERS
LD8 EOM1
JSB i3PLN
J~P EDT13..

--EffMf--DEF--~+

ASC 20,MULTIPLE INSERT CHANGED TO SINGLE INSE~T..
~

CX)
0

http:ssa,R.ss

---~----~-- - - ---~ ----­

.. ..
¥ EXA~INE VETO FLAG..
EDT12 LOA VETO

----- -szA--,-r<ss-------vETO--FLAG
J:-1P EDT13 NO
LDA NUM1 YE5, PRINT INSTR INVOLVED IN EDIT
L03 NUt12
CP9 ZERO PRINT 1 LINE
STA NUM2 YES, SET VARIAJLE FQR LISTINS
LOA SC9EO ADn~ OF STATEMENT 9EFORE EDIT
L03 FIRST AGD~ OF FIRST STATEMENT

-------s7 A- - ------EDIT- INVDLVE--FTR.ST-STATEMEN
LOB A,I NO srg SUCAD
JSB '.'JHLN, I
CGA 	 SET FLAG FOR EQIT CALL
JS1 LISTI,I LIST
LOA .30
LDB VFTRQ VETJ REQUESTJS 8 cW L~ ----- ---- ------- --- --- -- ------·-------­
JS 3 DATN,I READ RESPONSE

CPA Y YES CONTINUE

J~·lP EDT13

JMP CNTRL,I NO, ENTER NEW EDIT INSTRUCTION
•

VETRQ DEF ""+1
---~---------A~C:: _12_~[.)_Q_'(_O_U _v.JJ_s_li___T_O__ ____________ f DJ_I___THJ S_C O_[)J~------·----

..
EOT13 	 LrJA NUM1

LOS NU~2

ST ,n. i:NM1

Sf 3 ENM2

If

• GET 	 ASSEMBLED COOE AOORESSfS OF INSTRUCTIONS----,.-INVOLVED - IN TR~EUIT------------------------~------_-----

"" 	 JSB ASMD,I
If.

ii::..

\.0
0

LOA EONUM
CPA .1 SINGLE DELETE
RSS YES
JMP EDT16 NO

___ JSS f1SCB SET SCB REFf~t:NCES FOR A DEU:.TF ----·

LuEr-scr::in.----~ODK-o-r-sT~TEHENT-10-·tri:--nECETErJ

SZ8,RSS
JMP ECR9
JS3 PREPR PREPAR~ FOR SCAN OF STORED COQE
SZA,RSS CO~MENT STATE~ENT
JMP EOT14 YFS,
STA VETO SAVE ASSEM FLAG, ADOR OF ASS~M
AD~ .2 ADDR OF CODE TO ?E DELETED----Js·B ·-urrr,r--TJf.L 1:T~-------"--------------·------------

LDA VETO ASSE~ FLAG, AOOR OF ASSEMBLY
SS A

JMP FDT14 DATA

LD3 LENTH LFNGTH OF ASSEM8LY
CP8 .2 TWO WORD ASSEMBLY
R.SS
JMP EOT15 NO, ONE WORD ASSEM3LY

--~LD3-AS'MET J TOR,E ___JUMPS Tr-r--·DELTTE1rrns l ROCTTDrr
LOA • 2

f\IJA 8 AOD~ WHERE JUMP PDI~TS

.JSB JMPS REPLACE rwo NORD ASSEM3LY BY JUMPS

EDT14 JS8 SFSP,I
JMP CNTRL,I RETU~N TO CONTROLLER..

EOT15 JSB SNGDL SINGLE DELETE--·----- J~fP -E OT 11+"____ -------·-- -----··-·--------·­

"' • MULTIPLE DELETE INSTRUCTION
•
EDT16 CPA .2 MULTIPLE DELETE

CL8,RSS YES
JMP EOT21 NO
Sf9 VETCK

---~----------[D8-~rn M1­
CM 3, IN B
A'.J8 NUM2 CHEC< THAT FIRST STATEM~NT NUMBE~
SS8 rs LESS THAN SECOND
JMP E!JR5 NO, ERROR

.i:>.
I-'
0

----- ----- --

LD3 FIRST ADD~ OF FI~ST STATEMENT
LOA SCf3EO
SZA DfLETE FIRST LINE
LOB A,I NO, AODR OF INSTR 3EFORE DELETE
ST3 scqE1 AODR OF FI~ST DELETION----JS8 DSCS _______-SATISFY- SC3 REFERENCES ______________
L~B SC8E1
JMP "'+3

EOT17 LOG Sf\VR
STB scgE1 ADO~ OF NEXT DELETION
LOA 8,I RETAIN POINTER TO ~EXT STATEMENT
STA SAVR..
CP3 SC~E2 END OF DELETIONS--------- J ~ ir t::D Ti g--~n::::s-- - - ­
JS 8 P~EPR NO, PREPARE SOME LEXICAL POINT~RS
STA VETO SAV:: CA>
SZA,qss
JMP EDT18+2 COMMENT STATEMENT
CLE,ELA GET ADDRESS IN ASSE~3LEO CODE
RAR
STA ASME1 CLEAR BIT 15 IF NECESSARY---------- R/.\ L - - ---­
ERA, CLE THEN RESTORE BIT 15
SSA OA TA
J'1P FDT18
STA DADR2 AODR OF LAST M C DELETE..

' CLEAR LOCATION INVOLVED IN EDIT
' <FIRST WORD IN A TWO WORD ASSEM3LY>

-~----.---

CL A
STA DAOR2,I
LOA DA0~1 ADDRESS OF FI~ST M C DELETE
SZA
JMP EOT18
LOA OAOR2
STA DADR1

----------cnT1a---1' oB - ·~ 2 ------------i\--omn:ss---ur-suu';{c-r--cum:::------ .
JSB OLTE,I
JS8 SFSP,I

.i:::.
f-'
f-'

LOA VETO
SZA,RSS
J~1P EOT17

ASSEH FLAG,

COMMENT

ADO~ OF ASSEMBLY

SSA
JMP EOT1.7------unr··rlNTH____Il'.'.NtTH"1l"F---i:JElTITC-COD-r-­
CPA .2 TWO WORD DELETE
RSS YES
,JMP •+4..

• CLEAR SECOND WORD IN A TWO WORD DELETE ...
____ ISZ OAOR_'Z_.___

Cl·r;-----­
ST A DADR2,I CLE4R DELETION
LOO VETGK MACHINE INSTRUCTION
AO~ LENTH SAVE LENGTH OF DELETED
ST3 VFTCK MACYINE CODE
.JMP EDT17

EDT19 LJB VETCK NUM3ER OF M C WORDS DELETED
SZi3 1 RSS

--------JM p "CNT RC ~1'la·r1 ·r:;--1NSTRUCTTCJN--DECCTEIT
CPB .1 ONE M C WORD TO BE DELETED
R.SS YES
.JMP f'.H20 NO
LOA DAOR1 AOOR OF WORD TO OE DELETED
ST A AS~ff1
JSB SNGDL DELETE ONE MAC~INE INSTR

-------.------'"' ~£- ~NI~ l__1_I_ __&E: T_lJ~~_TQ__ ~ 9~J:SQl~_~gg_____
EDT20 LD~ DAOR1 ADD~ WHEqE JUMP ORIGINATES

LOA OAORZ ADD~ WHERE JUMP RESULTS
Hll'-I AODR OF NEXT I'lSTR IN l\SSEM CODE
JS3 JMPS INS~RT JUMPS TO FINISH MULT OLTE
J~P CNTRL,I RETURN TO CONT~OLLE~

~
I-'

N

..
. • SINGLE INSERT
~

EDT21 CPA .3 SINGLE INSERT
RSS YES----- ------JM P-EO 124---r;io-· ----------- ·-·----­

~z§ SCSE1
JMP EOR7 INSTR EXISTS AT POSITION OF INSRT
JSB EOIPT EDITOR SOURC~ INPUT
L'.JA ASMFG ASS':}1Bl Y FLAG
SZA,?_SS C0~'1ENT
,J '1 :P E 0 T 2 2 YES
SSA,RSS
J~P EOT23 MACYINE INST~UCTION_____________~-~---J-SH--0 T 0 I)-r-D ATA ________

EDT22 JSB ISCB

.JMP SC3I,I

EOT23 JSFJ ISC3 INS>:RT INTO SC3
JS3 XINS FINJ ASSEH CODE BEFORE INSERT
JSB SVPSN HOLD NEXT FREE POSN IN PROGRAM
LOA ASMEO ADO~ IN ASSEM CODE

____LD3 REC::NT
JS13 ·cFVE;r-MOlJE--cnor-·-rrF.FORrTNS>::.IT
CLA,INA FLAG FO~ M C TO 3E STORED
JSB STC~,I STO~E INSERT~D CODE
JSB YINS NEXT INSTR IN ASSEM CODE
J~1P SC8I,I
JSB GMVE,I MOVE ASSEMqLED CODE AFTER INSE~T..

• INSERT JUMP TO LINK EDIT ENTRY
---~----·---·· -- ... --- -·- ·-------­·------ ·-·------- ----­

LT)~ ASMEO
LOA FOTSV
JSB JMPS
JSa JMP!ff

J~i P SCB I, I

~

I-'
w

http:cFVE;r-MOlJE--cnor-�-rrF.FORrTNS>::.IT

•
.. MULTIPLE INSE~T..
EDT24 CPA .4 MULTIPLE INSERT

RSS YES-------- --- ---JM P -E 0 T 2 g------- N 0 --- -----------­
LDB SC3E1 STATEMENT NUM3E~ ALREADY
szq DEFINED
JMP EDR7
CCB
SIB MIIP MULTIPLE INSERT IN PROGRESS..

• RETURN FROM SYSTEM C1NT~OLLER---,,:--------···· - . -------· .. --·------·------------- . ------··. ·-·· --­

MI RT JSB EDI 0 T ENT~Y POINT DURI~G HULT INSERT
LOA ASMFG ASSEM3LY FLAG
SZA,RSS
JMP EOT26 COM~ENT
LOB EXPEC OATA OR M C EXPECTED
SZB
JMP .\<+3 YESST A EXPEc·----------------·----~--
Jl•1P EDT25

CPA g MATCY 9ETW~E~ ENTRY AND PREV

JMP EDT25 YES
ccr3
STB EDLX EDIT INPUT REQUEST FLAG
JMP EDR.6

EDT25 SSA RSS
----------- JM P' E 0 T?. T----T'f!\ CH INr:-TNSTR. lJCTTUN

JS9 DTOI,I DATA INSERT
EDT26 JS8 ISC1 SATISFY SC1 REFERENCES

J~P SC3I!.I
EDT27 LD3 MC~I~ MACHINE CODE MULTIPLE INSERT

SZ8 FLAG
J''1P EOT28
CC!3--s T 3 - !'1 C'.1 IP ____ -S fT-FTA

JSB MULIN PREPARE FOR MULTIPLE INSERT

EDT28 JSB ISC9
JS3 srco,I sro~E conE
JMP SCGI,I ~

I-'
~

,,.
• REPLACE..
EDT29 LDB SC3E1 ADO~ OF LINE TO SE REPLACED

----~s zg,__q SS ____uND ;::_F_I1'J_f;_Q_5_J_a_If:l:1E ~---------
JM P EnRg ERROR
JSB PREP~ PPE 0A~E FOR SCAN OF SOURC~ CODE
SZA,qss COMMENT
JMP EDT30
SSA NO~ DATA oq MACHINE CODE
GCA,RSS OAIA
GLA,INA MACHINE INSTRU~TION
ST A EXPEC

-------1, ~r3 --~·2 ·----~--.1r.on~--0rcunE-TOnEKD'LA-CETI

JS'3 OLH:,r
EDT30 Jsg SFSP,I

JSB FDIPT EDITOR SOU~CE C0DE INPUT
JS3 RSC8 SATISFY SCB REFERENCES
LOA EXPEC FLAG FOR EXPECTED INPUT
LOB ASMFG INPUT ASSE~BLY FLAG
CPA .1 MAC~INE GODE DELETED-qss - - - 'fEs- ------- ----­-------~--------

J ~ P EOT35 NO, JATA O~ COMMENT
CPA 8 MAC~INE CODE INSE~T
~SS YES
JMP ~DT34 ~O, COMMENT INSERT
LOA ASMF1 ADD~ IN ASSEM CODE OF DELETION
LOU ELNTH LENGTH OF DELETED CODE
CPu .2 TWO WORD ASSEM3LY

------~ss --- ---------YES _______________________ -------------------­
JM P EOT33 NO
LD9 LENTH LENGTH OF ASSEM REPLACEMENT CODE
CPJ .2 TWO HORD ASSEM3LY
JMP EDT32 YES
J~~ 3~g~FI ~~p ~8EE~~fDENTKY
L~B ZUSRP JUM 0 S AFTER EDIT ENTRY----- LD A ASMEC___________ ------------------ ----­

S Z A, RS S
LOA ::usc:p
JS B ,jMPS
J'.1P scar, r ..i:>.

I-'
U1

EDT32 L03 ZUSRP SAVE PROGRAM POINTER
sra CNFG3
STA ZUSRP TEMP VALUE OF PROG POINTER
JS3 STCD,I SET AND STORE CODE
LOA CNFG3 ---sr A ·zusR.P ___RtSTO-~r-PROG"< AM-PDTNTEFf

JMP SC3I,I
..

EOT33 LOB LENTH ON(wo~o OCLETION
CP8 .1 REPLACE BY
JMP EOT32 ON~ wo~o ASSEM9L~
JS3 SVPSN TWO woqo ASSEMBLY
JSB STCD I SET ANO STOPE CJD~----·--JSB YINs-'----GEINExr-ASSEMBl.EIJ-INSTR _______________
JMP SCBI,I
JS 3 CMVE, I MOVE CODE FOLLOWING INSERT

JS3 JMPC:ff

.JS 8 JlJ.PAF ANO EDIT CHAMGES

JMP SCBI,I..

,,,_ MACHINE CODE REPLACED 8Y A COMMENT
-·---~- -----···-·· ... --···- . --·--·-·-- -·-···---·-·------·---··-·-·--·- ­

EOT34 LOA AS'-1E1
JS3 SNGOL SINGLE DELETE
JMP SCBI,I..

• COMMENT DELETED..
EDT35 CPA ZERO COM~ENT DELETED------- --Rss-- ------------YEs-------·-----­

JMP EOT36 NO, DATA DELETE
CPA 8 COM~ENT INSERTED
JMP SCBI,I YES
CPB .1 NO, MACHINE CODE INSERTED
JMP EOT23+1
JMP EDT36+1 NO, INSERT DATA..

----r-oATA-- DELETE o-------·
~

EDT36 CPA R DATA INS~RT
JSB OTDI,I YES
JMP SCBI,I

~

1--'

°' --------- ··---·-----------~-------------·----------·------.

..

• ENO REQUEST..

EOT40 LOA "4EXT

-----------srA--PREv-;-r-cr£-,U{tJ?trE FE~t:Nt:::::.~~-s-ce-

l D 8 EUSRP SET JUMP TO LIN< ~XISTING PROGRAM
LOA ZUS~P WITH REMAINING PROGRAM AREA
JSB Jt-:PS
CLB
STB EDTFG CLEA~ EDIT FLA~

.. JMP CNTRL,I

,,. CLEAR EDIT VARIABLES.. ..
EDCLR NOP

CLB
ST3 ASMEO
STB ASMF1 ASSEMBLY ADDRESSES--------STB--z\SME2 ---------­
STB DAOR1 ASSEM3LY CODE ADD~ESSES ON A
ST9 OAOR2 MULTIPLE OFLETE OPERATION
STB OLTLN DEL~TE LAST LINE
STB FDINT EDIT VARIAJLE FOR LEXICAL SCAN
STB FOLMT STAT NUM LIMIT ON HULT INSERT
STB FDTSV ADO~ Fog MOVING CODE
STB EXPEC INPUT ~X?ECTATION FLAG

--STB MITP_____MULTIPLE TNSERTI\l-P~O"'.;RESS

STB MCMIP MACHINE CODE HULT INSERT

ST9 SCJEO
sra scqEl SOU~CE CODE SLOCK ADD~ESSES

SH3 SC!1E2

STB VETO VETO FLAG
INB
STB EDNUM INSTRUCTION NUMBER

----- 5TB ELNTw----cENGTH-DF TIELETED-CODt™­
JMP EDCLR,I

""" f-'
-i

_____________________________ _

.. ..
• CHECK FOR VETO FLAG O~ AN EDIT OPERATION.. ..

----.--TNTEl<-\E) = O~OCTIPCrINSTRUCITO~
.. '° CE> = 1 SINGLE INSTRUCTION
..
VETCK NOP

SEZ
JMP •+3 SINGLE INST~UCTION
JSB RDCOM READ UPTO COMMA

---------JMP-TOR--r--~:rm--ffATA-TOL[Q)~S--m STATEffENT
JSB NTBLK NEXT NON BLANK CHAR
J '1? EOR3
GPA V VETO FLAG
RSS YES
JMP EDR3 NO
LOB EDNUM INSTRUCTION NU~aER
CPB .3 INSERT
JMP -ELJ~r.t-----yES ,--ERR_OR
STA VETO ~O, SET VETO FLAG
JMP VETCK,I.. ..

EDR1 LO A • 38
LOB •+2
JMP J:'.:RCAL

·-·---·------ ---­--~---

DEF •+1
ASC 19,ILLEGAL DATA PRECEDES EDIT INSTRUCTION.. ..

EDR2 LOA .26
LOB •+2

____Ji. JMP ERCAL

DEF •+1
ASC 13,UNDEFINED EDIT INSTRUGTIO~

.i:>­
1-'
00

..
..

EOR3 LOA .34

LOB .lf-+2
JMP ERCAL

·------.,,..--~--·· ·-· ··---- ---·

DEF •+1
ASC 17,BAD DATA FOLLOWS EDIT INSTRUCTION..
,..

EOR4 LOA .32
L03 .,..+2
JMP ERCAL -- ·-If'··--~---- --··--·--···-··-·

DEF .\<+1
.,. ASG 16,VETO NOT PERMITTED ON AN INSERT
..
EDR5 LOA

LOB
.30
.lf-+2 --··· JMP ERCAL

·--· -­--~---- -----­

.. DEF EPK2 STATEMENT NUMOER OUT OF RANGE

..
EOR6 LOA

LOB
.38
.i:<+2

.. JMP EPCAL
----·---·­Oi::F--~+T

ASC 19,ILLEGAL SOURCE TYPE ENTRY DURING EDIT..

"""

\.0

---- ---

-~--·-~ ______ , ~-- -------~---------~----~--------------

•
EOR7 LDA .32

LDB •t2

Ji1P ERCAL

• _----~-·-oEF---~+I__

,,. ASC 16,STATEMENT NUMBER ALREADY DEFINED
'f

EOR8 LOA .50
LD3 ~+2
JMP fRCAL

•
DEV-~+1
ASC 25,STATEHENT NUMBERS MUST ACCOMPANY EDIT INSTRUCTION

••
EOR9 LOA .32

LDB •+2
JMP ERCAL,,.

------~--uEF--.,.~·r

ASC 16,STATEMENT NUMBER IS NOT DEFINED

,;::..
N
0

..
"' SOURCE CODE INPUT DURING AN EDIT OPERATION..
..

EOIPT NOP
..
• SOURCE CODE INPUT DU~ING EDIT 0°ERATIO~
• JUMP TO SYSTEM CONTqOLLER TO READ ENTRY..

CC3
ST9 EDLX FLAG SOU~CE CODE DURING EDIT---J MP--C f\JTf.<C, I !:~E.l'\ !TiffPUT____________ -=-----=-=--=--'---~---------.. ..

EDXRT GPA SLASH RETURN AFTER READ
J~P EOIT1 EDIT DIRECTIVE
JSB LFXI,I SCAN INPUT TfXT
LOA EONUM EDIT INSTRUCTION TYPE
CDA .5 qEPLACE

-----~s s----- YES ___________
JMP EDPT1..

"' LOOK FOR VALID ENTRY ~URING RcPLACE
>J.

LOA EXPEC TYPE OF INPUT EXPECTED
LOB ASMFG
CPA 8 ASSEH2LY FLAGS MATCH

---------JMP-EDPTZ---YES1- VACTD REP[-ACEi"'iErrr-­
AO B A
sza, ~ss
JMP EDRo ERROR, TYPE CLASH ON ENTRY

M:»
N
f-'

- ------··--·----------­

EOPT1 LOB 	 MIIP MULTIPL~ INS~RT IN P~OGR~SS szs,qss
JMP EDPT2
L J 3 EW"li
AJA ENM2 AOO ING~EMENT -- -----------	 ST ;3 ~NM 1 -- --NEW. ST ATE Mr::N T NUM 8F.~-- -------­,..

• CHECK FOR STATEMENT NUMBER RANGE..
CMB
ADB EDLMT UP0 ~R LI~IT OF STATEMENT NUM3ER
sss,~ss IN qANGE

J:1P EDPT2 YFS

-------jsR END MT~--N o- --i::-r--io--~ULTIPL~--rNS~R-r------
STA EDLX CLtAR SOURCE CODE FLAG
LDA .4S
LD'.3 t::DPTM
JS9 3PLN
JMP CNT~L,I RETURN TO CONTROLLER.. ..

------TD PTff 	0::: F ""+
ASC 23,STATEMENT IGNORED, MULTIPLE INSERT TER~INATED

..
• CLEAR CONTROL FLAG..
EOPT2 CL'3----- ----sTs -i:-nrr

JS~ ASSMtI GET SGS ADO~ESS

JMP EOIP ,I

H::>.

N

N

.. ..

.... LINK INSERT WITH EXISTING SOURCE CODE BLOCK ENTRIES
,,.

---rsc s - No-?-­
LoA AODR1
STA SC9EO,I

AOQR OF
ADD~ OF

INSEKT IN SGS
NEXT IN PREV INSTR

L03 SC8E2
ST8 A,Inm
STA B,I
INA

------[Dff--StBE\J

ADD~ OF NfXT IN NEW INSTR

ADD~ OF PRFV IN NEXT INSTR

SE r AlJDKOr-P-REVlN--NDl--rNSTR
ST3 A,I
VJA
LOB
STB
LOA
STA

ENM1
A1 I AUOR1
SCBEO

STATEMENT NUM8E~
STO~E STATfMF.NT NUM9FR
SAVE AJD~ESS OF INS~~T ON
MULTIPLE INSERT OPERATION

A

-----~~f_I:lQ_B,):____________

.i:::.
N
w

..,.

If

• FIND INSTRUCTION IN PROGRAM HrlICH LOGICALLY PRECEJES
• INSE~TEO MACHINE CODE
If

XINS NOP
L!JA ASMFil AJOR IN ASS~M COD~
LOB SCBEO ADD~ IN SOURCE CODE
SZB,RSS
JMP XINS3

PRECEDING STATEMENT NOT FOUND

XINS1 STB qEENT SAVE ADDRESS
______________SJ~ PA 1 XRIS ?i ,..7----r·o'"u-,-,;lT

. , , .'f J -~ ,,, 1·1 ··t C.. I\;

SSA
J"1P XINS2 DATA
STA ASMt:-O MACHINE INST~UCTION
Y1P XINS,I

XINS2 INB
LOO A,I ADOR OF PREVIOUS INSTR
CP3 Mi TER~INATORJM p·-xrNs~---YEs-- ------------­
A'.J8 • 4
LOA g,I ASSEM FLAG, ASSEM AODR
AIJB M4 RESTORE ADDR
.JMP XINS1 ..,.

• NO MACHINE INSTRUCTION PRECEDES INSERT
If

---nNS--:3--cc-s---­
sr s CNFIG FIND NEXT INSTR IN ASSEMBLED CODE
JS8 YINS AFT~R INSERT
J"1P XINS5
STB CNFIG SAVE seq ADDRESS
JSB STCD,I STO~E GODE

.i:::.
rv
.i:::.

LOA ZADD
STA SAVR SAVE ASSEM?LY ADDRESS
LJA AsMr2 INSTRUCTION AFTER INSERT
GPA XUSRP INST~ RESIDE IN FIRST LOCATION
y.>1p XINS6 YES-----cCtc- ----------N 0 .,- SD '1 Tqt\(;11--FR-0-"1--Al1Tf~- OT
~DA ASME~ NEXT STATEMENT IN P~O~?~M
STA ASMC:2
JS13 Jt,1 Pl1F INS:::PT JUHPS

XINSI+ LOA S/WR. AOJ~ESS TO LINK EDIT WITH
LD~3 XUSR.P BEGINNING OF P~OGRAM

JSB .J~~Pi::1

LQA EDNU~ MULTIPLE INSERT

--crA"-~i+___ --------------- --­
J'1P ENOM3 qETUR.N TO APR.OP~IATE PROGRAM
JMP SCBI,I..

.. NO MACHINE CODE PRECEDES OR FOLLOWS INSERT..
XINS5 CU3

STB CNFIG---i:n-n- --E-u SR_ p--~f{CT~TE1ll:EITT11'UIITTER

STA ?USRP

JS3 STCD,I STO~E GODE
Jsa EOTAO RES~T ~DIT POINTERS
JMP SC3I,I STO~E IN SCB

..•
• MOVE CODE IF FIRST AREA IN PROGRAM MUST 3E RETAIN~O

--.---------------------~-------------- ------------­

XI NS & LOB CNFIG SC9 ADDRESS
JS8 CMVE,I MOVc THE CODE
JSB JMPAF INSERT JUM 0 S TJ LIN~ CHANGES
.JMP X1NS4

ii:::.
N
Ul

.. ,,.
• FINO NEXT INSTRUCTION IN ASSEMBLED PRJGRAM AFTER

1

•
 AN INSERT
11­

--------,,.---RETORW--P+T-tTDllEXITTNKED-w-rnr-pRQGRA
• P+2 EDIT TEXT NOT LINKED WITH PROGRAM.. ..
YINS NOP

LOA ASME2
LD8 SC'iE2

CPIJ ENFXT ENO OF USER PROGRAM
------·- -----------------­----- JM p---YTNSJ

YINS! SZA,RSS
JMP YINS2 COMMENT
SSA
JMP YIN52 DATA
ISZ YINS

,,. JMP YINS,! MACHINE INSTRUCTION

---YTNSc l DB -ff1 T
CP3 niExT END OF P~OGRAM
JMP YINS3 YES
!\09 .4
L.. DA 9 1 !ADB M4
STA ASME2 SAVE FOR INSERTING JUMPS
JMP YINS!

-----~-·----- ------- -------------·-·----·--­

.i:..
[\.)

O"'I

_____________ _

--

•

• INSERT FOLLOWS LAST MACHINE CODE STATEMENT IN THE PROGRAM
•
YINS3 LOB CNFIG
___CPB Mi CALL F~OM SUBROUTINE XINS

-I. DJI: EDT sv---n.DD~-WHERF-JUMP--Rs-ucTs--'----------------

J 'fP-v n:rs-;-r---Y rs_________ -- -------------------­
LDB EDNU~ REPLACE OPERATION
CPf3 • 5
R.SS
J~P YINS4
LDA ZADD
LOfJ ASME1

YES
NO

LINK PROGRAM WITH REPLACEMENT
JSB J~~P'::1
LD A--EUSRP­
LJ 3 ZUSRD LINK REPLACEMENT TO PROGRAM
JS(3
ISZ

JMPf1
ZUS~P ADVANCE PROGRAM POINTER

•
YINS4

JS9 STCK 1 I JMP SCE1,I

LOB ASMEO

CHECK FOR OVERFLOW

ADD~ WHERE JUMP O~IGINATES

JS 8 JMPS
•

JSd EDTAO UPDATE EDIT LINK POINTERS
JMP YINS,I

.l:>o
N
-i

,JI. ..
• PREPARE FOR AND BEGIN MACHINE CODE MULTIPLE INSERT..
111­

,·----~----RuLTN--mrp------------­
CL A
STA EDCLR
STA \JETCK
LOO SC9EO
JMP "'+3

MLN1 ADB M3
~~§~~-~!&R RETJITTI---SGliATIURESS

CPB Mi TER~INATION

JMP MLN2
ADS • 4 ASSEMBLY ADDRESS
L!JA 9 I
SZA,RSS
JMP MLN1 COW~ENT
SSA

__,_,__	JMP t1"UH DATA
STA ASMEO SAVE ASSEMBLY AODR
RSS

MLN2 Sf 8 EOCLR NO ASSEMBLED CODE PREC~OES INSERT
L!JB SCBE2
RSS

MLN3 LDB B,I ADOR OF NEXT SCB ENT~Y
STB CNFIG SAVE ADD~FSS

-----~-------------- ------------~------------

.r:.
N
co

CP9 ENEXT TERMINATION
J"1P MLN4 YES
AOB .4
LOA B,I ADDRESS Of ASSEMOLY
AOR M4-----szA;-R:SS
JMP MLN3
SSA
J"1P MLN3
ST A .~SME2
RSS

MLN!t ST8 Vf:TCK NO ASSEM3LED CODE FOLLOWS INSERT
_____ JSB ISCR CLEAR U? SCB REFER.ENCES

-l D 0 -E OCL R ASS E1lITLED_-C_OUE-PRECt: DE--rNSERT
SZB
JMP MLN5 NO
JSB
LOA
LD9

SVPSN
ASMEO
SAVR MOVE CODE BEFORE INSERT

JS9 CMVE,I
JS8 STCD,IJM?--SCBI1I STO~~ INSERTED------------­ CODE ---------------­..

• NO.,. ASSEMBLED CODE PRECEDES INSERT

MLN5 JSB
LOA

S1CO,I
ZADD

STQqF CODE
SAVE POSITION

STA SAV~ SAVE POSITION
J tj_f___? ~§_I_,_I___________

*""' N
\.0

•
\<

• • END A MULTIPLE
.. ..
----t:-ND--;'1T-----NOP-­

L D 3 MCMIP
SZ3,RSS
J'1D ENDM3
LOA EOCLR
SZA,RSS
JMP ENQM1
LOA VETC~

INSERT OPERATION

·-·-----------------------------­

M G MULTIPLE INSERT

ASSEMBLED CODE PRECEDE INSERT

YES
NO ASSEMBLE CODE FOLLOW INSERT----------s z r;.;~ss- _______!_1_________ ---­

ENDM1

\<

JM P XINS4-6 YES
JS8 EOTAD NO
J~P ENOM3
LOA VFTCK ASSEMBLED CODE FOLLOW INSERT
SZA
JMP ENDM2 NO
LOA ASME2
L D 3 - r, NFI G---MOV~DDrTO-UuHTm;--TNSERI

JSB GMVE,I
LOA EDTSV
LOB ASMEO
JSR J~'PS
JS 8 .JMP l~F LIN< INSERT 8AGK INTO PROGRAM
JMP FNDM3

--rnnR2-----cTJ rr EDTsv·
LOB
JSB

AS:1E 0
JMDS

STO~E JU~P TO LINK INSERTED CODE

JSB EDTAD
ENDM3 CLA

STA MIIP CLEAR ~ULTIPLE INSERT FLAGS
STA MCMIP
JMP FNOM ---­ ---·­

.i:::.
w
0

If. ..
.... SET SOURCE CODE BLOCK POINT~RS FOR A REPLACE OPERATION
..

---RSCT-l..-flT.J\:>­
LDB
CP8

ENM1
FSTMT REPLACE FIRST STATEMENT

RSS
JMP
LGA

Rscrn
ACOR1

YES
NO

STA Fiqsr
LOB SC8E2

--------sr:r-.n:' r
POINTER TO FI~ST STATEMENT
SUCCESSOR STATEMENT
ADD~ -01:·-NEXT-1N-~ Ew--sTn:TEMEN~

INB
STA
CCB

8,I ADD~ OF PR~V IN NEXT STATEMENT
-1 TERMINATOR FOR BEGINNING

It~ A
STB A I

OF SG8
STO~E TERMINATOR

.. Y1P RSC83

----v.scBT-LD A -EN Mr-~EPLA~~L7\ST--STA.TEMENT____
GPA CUSTN
JMP RSC82 YES
JS13 ISG9 NO
JMP RSCB,I..

~SC82 L~A AOOR1 REPLAC~ LAST STATEM~NT
STA PREV LAST STATEHE~T AFTE~ EDIT

~------s TA - s C:3Eff,-r--AD on.-·-or-NEXT-Tff P ?..ET I NS...--1.....-R---·
LD3 SC~FO ADD~ OF PREV STAMENENT
INA
STf3 A1 I STO~E ADJR OF PKEV

RSCB3 UJB FN~1 STATEMENT NUMBE~
I NA
STB A,I STO~E STATEMENT NUMBER
JMP RS

~
w
I-'

• ORG 14\1008
..
•.. INITIALIZE STORAGE FOR EACH NEW PROGRAM

'I­..
• THE FOLLOWING TASLES WILL BE INITIALIZED..
• THE SOU~CE CODE BLOCK <SCB> FOR STORING USER SOURCE
• PROGR~MS,,.

--"C\<-l~MATN-SY!'lBOCl-Al3l.t: ..
+ THE SPECIAL SYMBOL TA3LE <SST) FO~ COMPOUND OPERANDS..
• THE PROGRAM LOCATION COUNTER <PLC> TA3LE FOR UNDEFINED
• PLC REFERENCES..
• THE FREE SPACE TA3LE FO~ HOLDING ADD~ESSES AND

---- ..--- --------- I:F:NGTH s-av- DECETTO-NS-FR0'11H~-Sca---------------..
• THE USER PROGRAM AREA FOR 80TH MAGHI~E INST~UCTIONS
• ANO DATA DEFINITIONS.. ..
GREET CLC 01 C TURN OFF ALL I/O

STF 0 TUR~ ON INTERRUPT SYSTEM----...--- --- ··--·----·------·--­

.. CONFIGURE I/O SUgROUTINES..
LOA .15 PREPARE I/O SUBROUTINES FOR
JSB CNFIG IIO THROUGH TTY
JS3 IOFF,I TURN OFF INTER~UPT

---------- -----------------------------~----------------------------·

.i:>.
w
l\J

..
• SET MAIN FRAME INTERRUPT LOCATIONS FOR EACH NEW
,,. USER PROOGRAM..

LOB .2 FIRST ADDRESS TO BE SET
-----rL~A-HPPEX--JUMP--nr-To;:rwA-Ru~E'.FERENCrwARN!NG

STA 8,I
IN!J

~~~ B,I ADVANCE ADDRESS 
LOA HLT4 POWER FAIL HALT 
STA B,I
INB 

----LDAt:lLT5 MEMORY PROTECT I PARITY ERROR HALI 
STA B,!
INB 
LOA OMAI JUMP TO OMA SERVICE ROUTINE 
STA 81 I LOB .y
LOA OCI JUHP TO DATA CHANNEL SERVICE ROUTINE--- ---1~~--~"'_I______________________________ 
LOA CCI CONTROL SERVICE ROUTINE 
STA B,I.. 

• INITIALIZE LENGTH ANO ADDRESS POINTERS FOR INPUT FROM DISC.. 
LDA TRACK DISC AOO~ESS OF DATA 
STA TEMPE> 

-----LOA~UFE---g~UFFERLTNT;"TffS--poR OUTP ­
STA TEMP? 
LOA XSTRL MEMORY ADOR TO STORE INPUT FROM DISC 
STA AOOR1,,. 

,,. PREPARE TO PRINT FIRST PAGE OF INTRODUCTARY TEXT .. 

LOA TEMPE> I DISC ADDRESS 

lD e--IEH P 7 !-rLENGTW--OF-rNPU1 

,,i:.. 

w 
w 



.. 
,,. READ DATA FROM DISC ANO OUTPUT TO USER.. 
• USER MAY SPECIFY OPTIONAL I/O DEVICE 

< .. 

------~SB-t;RTTQ ____REAff-F~OM--u-rsc,---THEN--PRTnr 
JSa DATN,I REAQ RESPONSE, RETURN FIRST CHAR 
GPA S OUTPUT TO CRT SCREEN 
RSS YES 
JMP GRT6 NO 
LOB .11 
JSB CNFIG CONFIGURE I/O SUB~OUTINES 
JSB IOFF I--.----------- -----------'--------------­

.. PRINT SECONO PAGE OF INT~ODUCTION.. 
• OPTIONAL SEQUENCING RESPONSE AVAILABLE.. 
GRT6 LOA XSTUL MEMORY ADD~ TO STORE INPUT 

ST A _l\DOR1 
ISZ TEMP6-----------TS Z TEMP7-------­
LDA TEMP6,I DISC ADD~ESS 
LOB TEMP?,I LENGTH OF INPUT 
JSB GRTIO READ THEN PRINT DISC INPUT.. 

• CLEAR USER PROGRAM TA3LES BEFORE READING USER RESPONSE.. 
LOA CUUB

------STA-IEMP ----­
LOA XST9L STA~TING ADOR JF SYM90L TA8LE 
GLB,'<SS
INA ADVANCE TO NEXT LOCATION 

~~~ ~E~P 
J~P •-3
LOA M125
STA -TEMP
LOA XSTBL
ADA • 3

.:::..
w
.:::..

STA AOOR1
LOA 8700 UNDEF FORWARD ~EF INDICATOR
LOB 3700 UNOEF INDIRECT FORWARD REFERENCE
AD3 .125 INDICATOR
JMP •+6

-TR~T.-.---1____,S r A--SAVA s-A-vt:-m
LOA AODR1 ADVANCE ADDRESS IN SYM90L TABLE
ADA .5
STA ADDR1
LOA SAVA RESTORE <A>
INA
INB..

"' ST ORE -FORH~Ru~ERENCE-PUTITTERSTO~ I REC T ANU
• INOI~ECT REFERENCES IN HAIN SYMBOL TABLE..

STA AOOR1,I STORE APPROPRIATE SYMBOL TABLE
ISZ ADOR1 REFERENCE FLAG
STB ADDR1,I
ISZ TEMP
J~P GRT1 ----- oir--M75 -----­
ST A TEMP
LOA xssr BASE ADOR OF SPECIAL SYM TBL

GRT2..
ADA
RSS
ADA

• 2

.4

.. FORWARD REFERENCE---.----------­ INOICATOR FOR SST

INS STOqE SPECIAL SYMBOL TABLE
STB A,I INDICATOR FOR UNDEFINED REF
ISZ TEMP
JMP GRT2
LOA YUSRP UPPER BOUND OF USER PROGRAM
INA
LOB XRTRN RETURN FROM EXECUTION

---- STB-~tY- --STORE--RETUITTrFROW-EXECUTTO--rq

.i::.
w
lJ1

•
• INITIALIZE SYSTEM VARIABLES
Jf.

CCA
STA GRTFG SET GREET FLAG

------STA -PREV- PREVIOUS--CNTRY~s-E-1-A~S~-1

LOA XSCB
STA FI~ST FIRST ENTRY IN SOURCE CODE BLOCK
STA NEXT NEXT ENTRY IN SOURCE CODE BLOCK
LDA XUSR.P
STA ZUSRP NEXT LOCATION USER PROG AREA
LDA XDATA
STA ZOATA NEXT LOCATION IN PROG DATA AREA------i:no-YDAT ----- ·-----------­
STB YO/HA
CLB INITIALIZE VARIABLES
STB ABSSF A9S/BSS PSEUDO OP FLAG
STB DMPFG DUMP FLAG
STB EOINT EDIT INPUT REQUEST
STa EDLX SOURCE DURING EDIT
STB EOTFG EDIT FLAG

----~TB TBCNT COUNT-SYMBOt---.JraIT--oITRTES

STB MCMIP CLEAR MULTIPLE INSERT FLAGS

STB MIIP
STB SAVA
STB SAVB DUMP VARIABLES
STB SAVEO
STB SEQFG SEQUENCE DIRECTIVE FLAG

• ... RE s PON SE-T-0--SEQUFJ'fcr--REU.UESl
••
GRT8 ~~~ ~ATN,I ~t~~E~~~~O~t~BER REQUEST

JMP GRT10 YES
CLA NO
STA CUSTN CURRENT USER STATEMENT NUMBER·--en0---;1 o- --------- ----'----------­
s rs FSTMT FIRST STATEMENT NUMBER

STB STING STATEMENT NUMBER INCREMENT
,JMP GRT12

.i::..
w
O'I

..
GRT10 JSB

JMP
SQNC,I
GRT8 ERROR

•
....

.,. THE THIRD PAGE OF USER OUTPUT OFFERS THE OPTIONI..
• TO THOSE FAMILIAR WITH THE ASSEM3LER PROGRAM
• ENTRY HAY BEGIN ...

"' ELSE INSTRUCTIONAL TEXT CAN BE PRESENTED TO

.. ~ llUJHl\i rTH~TN E><PETfIFNCEO wIT H-TH~YS"rra------------..
• READ RESPONSE C TO CONTINUE
• L TO LEARN....
GRT12 LOA OSIPT MEMORY AOOR FOR FURTHER DISC INPUT

STA ADOR1 ______,,I~sz--TEMP·~-----------------------------
1 S Z TEMP7
LOA TEMP6,I DISC ADDRESS
LOB TEMP7,I INPUT LENGTH
JS3 GRTIO
~~~ eATN,I PRINT INSTRUCTIONAL TEXT 

RSS YES 


-----JMP-GRTZ~~-No-=--------------------------

.i:.. 
w 
-..J 



--·- ··----- -- - -- ---­-----~-- -·--~ 

.. ,,. 
• PRINT INSTRUCTIONAL PAGES 
.. .. 

~r.1m--RES?UNSE-C.-O----CUITTT1'HTE-
..,,. S TO START 
,,. 

LOA 
STA 
LOA 
STA 

M8 
TEMPS 
DSIPT 
AODR1 

MEMORY AOOR FOR DISC INPUT 
:7R~TS7-TEMP,.;----------~~~-~-----~~~~~~~~~~-

I SZ TEMP? 
LOA TEMP6,I DISC AODR 
LOB TEMP7 1 I INPUT LENGTH 
JS8 GRTIO 
ISZ TEMPS 
RSS 

____ JMP GRT20 ALL TEXT PRIN,T~E~O=-~~~~~~~-~-~~~-~~~- JSB ·oATNj-r- ­
CPA S STA~T 
RSS YES 
JMP GRT14.. 


..• CLEAR HAIN FRAME INTERRUPT LOCATIONS 

GRT20 LOA M16-------·-sr7l - IEHP 
LOB .5 
CLA 
INB 
~~~ ~£AP 
JMP .,._3
STA GRTFG CLEAR GREET FLAG--..---­ ··-···

.,. READ FI~ST SOURCE PROGRAM STATEMENT..

.i::.
w
00

JSB OATN,I
JS!3 IMON,I TURN ON INTERRUPT
JSB CLER I CLEAR LEXICAL VAR!A9LES
JMP LXANL,I JUMP TO LEXICAL SCAN..

..
• READ AND PRINT INTRODUCTARY TEXT FROM DISC
•
• ENTER <A> DISC ADDRESS
• LENGTH OF INPUT <WORDS>••
GRTIO NOP

-------------sT1lTElfPI
CMB,INB
STB LENTH NEGATIVE WORD COUNT FOR OMA
LOB DMACW OUTPUT FIRST OMA CONTROL WORD
OTB 6
CLB
STB HOMSK DISC HEAD MASK
LOB ADD~1 MEMORY ADDRESS FOR IN?UT

----- Jss--uISK1
LOA M12
JS9 NWLS,I
LOA TfMP1 LENGTH OF INPUT <WORDS>
ALS LENGTH OF INPUT <CHARACTERS>
LOB ADDR1
JSB WRITE,!
JMP GRTIO,I

------·-~----

~
w
\.0

...
• PAGE LENGTH CHORDS> OF TEXT•
BUFL 	 OEF •+1

OCT 1111 PAGE 1.-------­
-----u~-T7-t.t6m Pl.:GE~

OCT 212 PAGE 3
OCT 457 PAGE 4
OCT 345 DUMP
OCT 312 LIST
OCT 416 SEQUENCE
OGT 345 XECUTE
OGT 542 EDIT 1

----ocri+4 EDT.-Z

OCT 553 LAST

•
• DISC ADDRESS OF INTRODUCTARY TEXT•
• DATA BEGINS ON FIRST SECTOR OF FIRST TRACK ON CARTRIGOE
., DISC
Jf.

---TRAC-~DEF-•+I

OCT 400 PAGE 1
OCT 405 PAGE 2
OCT 411 PAGE 3
OCT 413 PAGE 4
OCT 41& DUMP
OCT 420 LIST
OCT 422 SEQUENCE--·---ocT-1+?5 XEClJTE ----------------------­
OCT 1000 EDIT 1
OCT 1003 EDIT 2
OCT 1006 LAST..

•
END

ti:>.
ti:>.
0

ORG 152008..
• MNEMONIC TABLE..

--:-_E_LR_S_T_T_WO_l_EIIE&S OF MNEMONIC'-----------------------­

ASC 2,ABAD .
ASC 7,ADALALALANARAS
ASC 7,ASASRLBLBL9RBS
ASC 7,CCCCCCCLCLCLCL
ASC 7,CLCLCMCMCMCDCP
ASC 7,0EDFOIDLOSELEL
ASC 7 FNC~~REPHLININ

---..-As c-·7! I 0 I SJTJSLDLD[_,,.-----------------------­
AS C 1;LILSLSMIMIMPNO
ASC 7,0COTOT~A~A~9~8
ASC 7,RRRRRSSESFSFSL
ASC 7,SLSOSOSSSSSTST
ASC 7,STSTSTSWSZSZXO..

• THIRD LETTER OF MNEMONIC AND INSTRUCTION NUMBER
--~-·-· ··----~------~---·-··------------·-----

"'
­

OCT 051415,040405,041006,043001
OCT 051001,051401,042006,051401
or.r 041411,045005
OCT 051005,043001,051001,051401
OCT 051401,051416,040401,041001
OCT 042401 1 040401 1 041001 7 041404
OCT 042401,043003,047401,040401--o-cr·-041oo1, ·rrr+ 24 oT ,--u 4 o !f o5-,--u 41 uu-~------------------
oc r 041412,043011,us1001,042001
OCT 052007,04G401,041001,042010
OCT 05~414,040401,0~1001,052004
OCT 040401,041001,051006,055006

~
~
I-'

OCT 050006,041006 7 0~0406,041006
OCT 040404 7 041004 7 046005,051005
OCT 040404,041004,054407,050001
OCT 052013,040404,041004 1 046001
OCT 051001 046001 051001 046005

----ocT--osToos~-os1i+o1!oc;so 01~04-140----------------------
ocr 051403,040401,041001,041402
OCT 051402 7 040401,041001,040406
OCT 041006,041404 7 043003,047401
OCT 050001,040401,0~1001,051006..

.,. SKELETON OF ASSEMBLED CODE..
--------\J--CT177777,-0 4-rrn1r1J;-n4z+ffUUjUffI7IT1J

OCT 001400,00100D,01D000,001100
OCT 177777,100020
OCT 101020 7 005700,005400 7 005000
OCT 005100,177777 1 003400,007400
OCT 002300,002400,006400,106700
OCT 002100 7 103100,103101,003000
OCT 007000 002200 050000 054000-------ocr-11111?!171111!1uu4un:1or+zoo-----------------­
ocr 104400,001600,oos&oo,111777
OCT 177777,001500 7 005500,102000
OCT 002004,00G004,030000,034000
OCT 024000,014000,060000 7 064000
OCT 102500,106500,100040,101040
OCT 102400,106400 7 100200,000000
OCT 177777 102600 106600 001200------....cr-110130 o!-oo szon ! oos1ou!-1oo1uo-----------------­
oc r 101100,002001,002040,102200
OCT 102300 1 000010,004010,102201
OCT 102301,002020,006020 7 070000

ggf ~~i~38;fi~~b~~:fi~~~8~;fi~~5~~

.i::..

.i:=.
tv

443

APPENDIX H

BIBLIOGRAPHY

444

BIBLIOGRAPHY

(1) 	 BROWN, P.J., Recreation of Source Code from Reverse
Polish Form, Software - Practice and
Experience, Vol 2, 275-278, 1972, John Wiley
and Sons, New York.

(2) 	 HULL, T.E., DAY, D.D.F., Computers and Prcblem Solving
Addison Weslex, Don Mills, 1970.

(3) 	 KA'l'ZAN, HARRY, Batch, Conversational and Incremental

Compilers, Proc. APIFS 1969 SJCC, Vol 34,

47-56, A~IFS Press.

(4) 	 LANPSON, B., Interactive Machine Language Programming

Proc. AFIPS 1965 FJCC, Vol. 27 part 1, 473­
482, Macmillan and Co., London.

(5) 	 LOCK, K., Structuring Programs for Multi-Program Time­
sharing On-Line Applications, Proc. AFIPS
1965 FJCC, Vol 27 part 1, 457-472, Macmillan
and Co., London.

(6) 	 SCHW.P,HTZ, JULES I., On line Programming, CACM 9, No. 3 1

199-202, March 1966.

(7) 	 SMITH, L.B., The Use of Interactive Graphics to Solve
Numerical Problems, CACM 13, No. 10, 625-634,
October 1970.

(8) 	 HEWLETT PACKARD COMPANY, 2100A Computer: Reference
Manual, HP 02100-90001, December 1971, Hewlett
Packard Company, Cupertino, California.

(9) 	 HEWLETT PACKARD COMPA.i.'JY, HP Assembler, HP 02116-9014,
June 1971, Hewlett Packard Company, Cupetino,
California.

(10) 	 HEWLETT PACKARD COMPANY, Moving Head Disc Operating
System, HP 02116-91779, March 1971, Hewlett
Packard Company, Cupertino, California.

	Structure Bookmarks

