THE DESIGN AND IMPLEMENTATION
OF AN

INCREMENTAL ASSEMBLER

By
JAMES ALAN FORRESTER, B.Sc.

A Project
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

May 1974



MASTER OF SCIENCE (1974) McMASTER UNIVERSITY
(Computation) Hamilton, Ontario.

TITLE: The Design and Implementation of a Simple
Incremental Assembler on the Hewlett Packard
2100A Computer

AUTHOR:

James Alan Forrester, B.Sc. (McMaster University)

SUPERVISOR: Dr. Nicholas Solntseff

NUMBER OF PAGES: xv, 444

(e
t ol



ABSTRACT

The basic concepts of batch, coﬁversational, and
incremental computing are presented along with a brief discussion
on their influence on computing.

The design and implementation consideration for the
assembly language implementation of a simple incremental
assembler is presented. An éssembler, to accept simple assembly
language programs which are scanned as they are received and
assembled into machine code, has been implemented on the Hewlett
Packard 2100A computer and is discussed in full detail. The
assembler has been designed to execute incomplete programs such
that debugging print out of registers and specified core
locations is possible. The assembler also provides an editor
to perform delete, insert and replace operations on user programs
input to the assembler.

The assembler is oriented for the naive user, but it
assumes the user has a small knowledge of assembly language
programming. Important considerations in writing interactive

programs are also discussed.



ACKNOWLEDGEMENTS

At this time I would like to thank Dr. Nicholas Solntseff
for his patient and helpful guidance throughout the implementation
of the project and for his many comments and suggestions
.reqarding the form and content of this report.

I would like to express my appreciation to the Applied
Mathematics Department at McMaster University for givihg me the
opportunity to attend graduate school and for the privilege of
using the departmental computer for my Master's project.

I would also like to express my appreciation to the
National Research Council of Canada for the research support.

I am grateful to Dr. G.L. Keech and Dr. R.A. Rink for
reading my project.

Special thanks must be given to Mr. Chris Bryce whose
advice and suggestions were very valuable in the implementation
of the project, Dr. Khursheed Ahmend for the use of his Hewlett
Packard cross-assembler during the implementation of the project,
and to all the students and friends at McMaster University with
- whom I have been associated.

Lastly, I would like to thank Mrs. Jane Fabricius for

the meticulous typing of the project report.

iv



TABLE OF CONTENTS

Page.
CHAPTER I: INCREMENTAL ASSEMBLY, CONCEPTS 1
AND CONSEQUENCES
Assemblers 1
Batch, Conversational and Incremental Systems 2
Basic Definitions 2
Batch Environment 2
Conversational Concepts 3
Incremental System Overview 5
Incremental Execution 7
Summary 8
Considerations for Interactive Programming 9
Interactive Utilization to Users ‘ 11
Programming Process ' 12
Conclusions 13
CHAPTER II: IMPLEMENTATION - BASIC CONCEPTS 14
Introduction 14
Standard Assembly 15
Simple Incremental Assembly 16
Porward References 17
Defined Memory Reference Instructions 18
Introductory Text 18
System Directives 18
:DUMP 19
:EDIT ' 19



Page

¢:LIST(,M(,N) 20

: SEQUENCE ,M,N 20

:+ XECUTE 20
CHAPTER IIXY: ASSEMBLER IMPLEMENTATION 22
Introduction | | 22
Source Program Assembly . ' 22
Mnenmonics and Pseudo Operations 23
Assembler Control Statement 27
Instruction Modifications ‘ 27
Assembler Tables 28
Instruction Table 28

User Program Tables 29

Main Symbol Table 30
Special Symbol Table 31
Program Location Counter Table .32

The Source Code Block 32

Free Space Table 34

User Program Areas 34
Instruction Assembly 35
Forward References 36
Program Segments ‘ 38
Error Message Processor 39
Subroutine ERROR 40
CHAPTER IV: INITIALIZATION 44
Introduction 44



Page

Program Initialization 44
Initialization Subroutines 47
Subroutine CNFIG 48
Subroutine GRTIO 48

Disc Input Driver 49
CHAPTER V: THE SYSTEM CONTROLLER AND THE 51

INPUT/OUTPUT PACKAGE

The System Controller 51
Introduction ' . 51
Program Control Transfers 51
Source Program Entry 53
System Controller Modifications 54
Subroutine Requests 55
The Input/Output Package ' 55
Introduction 55
Output Control 56
Subroutine TTY.P 57
Subroutine INIT 57
Subroutine GETCH 57
Interrupt Control 58
Subroutine I.OFF 58
Subroutine I.ON 58
Sﬁbroutine I.STP 59
Carriage Control 59
Subroutine CRLFD 59



Subroutine NWLNS
Input Control
Suﬁroutine DATIN
Subroutine TTY.I
| Subroutine PROCS
Binary to Ascii Conversion
Subroutines CNOCT and CNDEC

CHAPTER VI: LEXICAL SCAN AND NUMBER
MANIPULATION

" Lexical Scan

Introduction

Subroutine LEX

Introduction
Source Statement Scan

érogram Modicications

Character Manipulation Subroutines
Subroutine BCKSP
Subroutine GETCR
Subroutine NTBLK
Subroutine RDCOM
Subroutine TRMCK

Lexical Support Routines
Subroutine LABRD
Subroutine LETPR

Subroutine LOKUP

Page
59
59
59
60
60
61
61
66

66
66
67
67
68
72
74
74
74
74

75
76
76



Subroutine FIND
Subroutine MNEM
Subroutine RANGE
Subroutine OPREC
Subroutine STDAT
Subroutine LABCK
Subroutine DATRG
Subroutine VAL

Number Manipulation

Introduction

Octal Integers - Subroutine OCTIN
Subroutine OCTCK

Operand Integers - Subroutine NUMBR
Subroutine DECHK

Dec Pseudo Op
Subroutine CONST
Subroutine NUMCK

Decimal Integers
Subroutine TYPCK
Subroutine IFIX
Subroutine GTNUM
Subroutine TWINT

Summary

CHAPTER VII: ASSEMBLY AND STORAGE

Introduction

Page
| 76
77
79
79
79
80
80
80
82
82
82
83
83
84
85

85
86
86
87
87
87

100
100



Page

Instruction Assembly 100
Subroutine SETCD 100
Data Definitions 101
Machine Instructions 101
Memory Reference Operand Evaluation 101
Assembly Routines : . ' 104
Subroutine DETLN 104
Subroutine STRCD 104
Subroutine DTSET 104
Subroutines STRCK and DATFL 104
Subroutine STLBL 105
Subroutine STPLC 105
Statement Storage 105
Introduction . 106
Subroutine ASMBL - 106
Subroutine STSCB 107
Subroutine LBDEF / 108
Subroutine FWDRF 108
CHAPTER VIII: SYSTEM DIRECTIVES 110
Introduction 110
ABORT 110
DUMP 110
DUMP Subroutines 112
EDIT 112

HALT . 112



Page

LIST 113
Subroutine LIST . 114
SEQUENCE 115
Subroutine SQNCE 115
XECUTE | 116
Xecute Subroutines : 118
Subroutine PLCDF A 118
Subroutine SSTDF 119
Subroutine FNDAD ' 120
Subroutine CDSCN 121
Subroutine SAVR 121
Conclusions ' 121
CHAPTER IX: THE EDITOR » 124
Introduction ' 124
Edit Instruction Scan 125
Overview 128
Source Program Edit 128
Subroutine DSCB 129
Subroutine ISCB 129
Subroutine RSCB 130

Data Edit Operations 130
Subroutine DTEDD 130
Subroutine DTEDI 131
Subroutine SCSYM » 131
Machine Code Edit Operations . 132

-

xXi



Introduction

Single and Multiple Delete

Single and Multiple Insert

Replace

Edit Subroutines
Subroutine PREPR
Subroutine DELTE
Subroutine CMOVF
Subroutine CASCD
Subroutine JMPAF and JMPBF
Subroutine JMPS
Subroutine JMPE1l
Subroutine STFSP
Subroutine SNGDL
Subroutine XDEL
Subroutine XINS
Subroutine YINS
' Subroutine MULIN
-Subroutine ENDMI
Subroutine EDIPT

Edit Subsystems

Introduction

Single Delete

Multiple Delete

Single Insert

Page
132
134
136
137
138
138
138
139
139
140
140
140
140
140
141
141
142
143
143
143
144
144
144
145
147



Multiple Insert
Replace

End

Conclusions

APPENDIX A: Assembler Machine Instructions
and Pseudo ops

APPENDIX B: The Introductory Text

APPENDIX C: Direct Memory Access

APPENDIX D: Non-Interrupt Transfer Routines
APPENDIX E: Dump and List Output

APPENDIX F: Memory Map and Functional
Unit Relation Chart

APPENDIX G: Source Program Listing

APPENDIX H: Bibliography

Page
147
149
150
150
153

162
194
197
200

205

218
443



Table
Table
Table

Table

Table
Table
Table

Table

Table
Table
Table
Table

Table

3.1
3.2
3.3
5.1

6.4

6.5

LIST OF TABLES

The User Program Tables
Forward Reference Linkage
Base Page Error Messages

Input/Output Subroutines in
Functional Groups

Lexical Error Messages
Character Manipulation Subroutines
Lexical Support Routines

Error Messages for Lexical
Support Routines

Number Program Error Messages
Auxiliary Assembly Subroutines
Dump Error Messages

List and Sequence Error Messagés

Editor Error Messages

xXiv

Page
41
42
43
62

89
921
92
93

94
109
122
123
152



LIST OF FIGURES

Page

Figure 5.1 System Controller Flow Diagram 63
Figure 6.1 Subroutine Lex Flow Diagram 95

Xv



CHAPTER I

INCREMENTAL ASSEMBLY, CONCEPTS AND CONSEQUENCES

ASSEMBLERS

When computeré first began to be used it was realized
that programming in machine language was an extremely tedious
process. One of the most important steps taken to make
programming easier was to intréduce mnémonic codes in place of
machine operation codes and addresses. The use of mnemonic
codes leads to a programming language almost equivalent to
machine lanquage but very much easier to read. A program for
translating from such a lanquage into the corresponding machine
language is called an assembler.

The main task of an assembler is tc translate assembly
language instructions into machine language instructions that
correspond almost one-to-one with what appears in the assembly
language program. The assembler uses a table to determine the
appropriate operation codes. Also it must assign and keep
track of addresses as well as pseudo operation codes of the
assembly language.

The advantage of an assembler arises when a program
is being tested. It is often useful to output intermediate
results, as well as the required answers, to follow the course
of calculations in full detail. Extra'output instructions

must obviously be inserted to provide this information.



These additional instructions can be easily removed from the
program once the program is working properly. The assembler
can create a new machine language version without any further
effort on the part of the programmer. On the otherrhand, to
remove extra instructions directly from a machine language
" program and include the necessary adjustments is tedious and
likely to introduce new program errors.

The difficulty in writing an assembler is not so much
in developing one that translates assembly language programs
correctly but in producing one that is able to handle incorrect

programs in some sensible way.

BATCH, CONVERSATIONAL AND INCREMENTAL SYSTEMS

BASIC DEFINITIONS

Of prime importance are the definitions of source
and object program. The source program is the program written
by the programmer whether it is coded in symbolic form like
punched cards or typed in at terminal. The object program is
the assembled code which is recognized by the computer as

executable instructions.

BATCH ENVIRONMENT

The term batch p;ocessing implies a programmer sub-
mittinq hié job and reéeiving his results at a later time.
Several jobs are accumulated and the batch theh presented to
the computer system on an input tape. To the programmer the

most important point is that he has no contact with his job



between the time the job is submitted until he receives his
output.

The most significant aspect of batch processing is
that the entire source program is available initially and all
output can be postponed until a later phase. Declarative
statements are processed in an initial phése with storage
allocated immediately. In.the same pass statement labels are
recognized and entered into the symbdl table; then in a later
phase decisions regarding statements nsing labels can be made
immediately on the basis of table entries. In addition
source program error diagnostics can be postponed and the

object code may be suppressed.

CONVERSATIONAL CONCEPTS

Compared to the bhatch environment where the user has
no contact with his job after submission a conversational
environment provides the exact opposite. In a batch environ-
ment a user may have to make several runs to eliminate syntax
and logic errors with the intervening time ranging from
minutes to days. But in the conversational mode the user
can interact with the computer to define his program on a
statement by statement basis. After each statement has been
entered the conversational assembler will respond to the
user so that syntactic errors can be eliminated in one
terminal session and execution time debugging is possible on
a dynamic basis. |

Conversational programming places a heavy load on the



overall system; the magnitude of the load is reflected in the
additions necessary to support the conversational environment.
Basically the conversational assembler or comviler is very'
similar to the conventional batch processor containing special
features for conventional, terminal—orientéd operation.
Conversational assembly involving two passes assembles each
statement conditionally with the source program residing on
external storage.

Conversational assembly offers significant advantages
over batch processing which are inherent in the intefactive
mode of operation. The conversational mode is similar to
the batch mode in that the éntire source program must be
defined before execution but differs from batch processing
in that the user has control over ﬁhe input/output functions
in the conversational mode. Ultimately one would like the
flexibility of a language interpreter with the performance
of a batch or a conversational assembler.

The incremental mode of operation is a refinement
of the conversational mode. Like the conversational mode,
user-system interaction on a statement by statement entry
is inherent to incremental assembly but the possibility of
line by line execution or the execution of incomplete programs
is inherent in an incremental system and not in batch or

conversational operations.



INCREMENTAL SYSTEM OVERVIEW

An interactive programming environment should achieve
the speed factors inherent in assembled programs and the
flexibility of interpretive systems. Incremental systems are
an attempt to achieve these goals.

In order to achieve such goals the following features
are required:

1. The ability to execute a source program as it is
being input;

2. The ability to edit prior statements without .re-entry;
3. The ability to execute selected portions of a program;

4. The ability to function in the batch mode.

To achieve these above requirements a highly sophis-
ticated operating system is required. Some of the features
would possibly be;

1. A dynamic loader for hand coded subroutines;

2. A memory relocation feature for changing virtual
addresses to actual machine addresses;

3. A high level language beyond standard FORTRAN or

assembly language for implementation to enable a
significant amount of computation per interaction.

{

Incremental assembly permits two modes: batch and
incremental. The batch mode allows the user to assemble
prestored source programs but does not allow program editting
during assembly. Incremental mode, used normally conversationally
permits execution and edit operations during.assembly.

The incremental assembler accepts statements on a

.



statement by statement basis with immediate assembly once the
statement is received. Code generated is immediately avail-
able for execution with a link maintained between the source
program statement and the assembled code to permit edit
operations to both the source and assembled code. The user
is able to assemble, modify and execute the program on a
statement by statement basis otherwise only available with an
interpreter. But with an interpreter each statement must be
processed each time it is executed. In an incremental system
the statement is processed once, when it is entered iﬁitially.
There exist two different types of control statements,
transient statements and commands. A transient statement is
a statement in the source language which is assembled and
discarded immediately. This may allow the user perhaps to
preset registers or core. Commands permit system activity
outside the scope of the source language. An example would
be the command to change statement sequencing.
Four basic blocks of any incremental system are:
Program Structure Routines: The program structure
routines maintain the source program and manage a
program structure table which contains an entry for
each source statement. The Program Structure Table
indicates the relationship of statements and the
static properties of the program. Table elements
are generated as the source language statements

are processed.



Controller: To provide the interface between the user
and the assembler and to direct control flow
according to the input.

Execution Monitor: To control program execution as
determined by the established mode of operation.

Command Controller: To analyse and dispatch command

requests,

By the nature of incremental assembly and the Program
Structure Table it is not alwavs necessary that code reside
in contiguous core locations. Although this is a conceptual
difference it poses no serious problems.

Source statements available at entry to an incremental
assembler may range from a single statement to a whole program.
The source may also be a group of statements to be inserted
into‘the existing program or replacement statements which must

be incorporated into the Program Structure Table.

INCREMENTAL EXECUTION

Due to the incremental process there are four possible
modes of execution:

1. Automatic: FEach statement is executed immediately
after assembly.

2. Controlled: Execution only occurs when explicitly
requested,

3. Block Step: Controller pauses for user intervention
after the execution of each block or
subroutine within the program.

4. Step: Execution is suspended after each
statement,



SUMMARY

Batch techniques were developed out of necessity and
when these techniques gained acceptance tpe batch mode was
the only operation procedure. Programm;;g in the batch mode
may not be the most natural or optimum method, but conver-
sational techniques do not offer a completé solution in that
_partial program execution is not permitted. Clearly, language
and syntax errors are quickly eliminated but if a programmer
must fully develop an algorithm before assembly he might as
well as assemble in batch mode and rely on execution time
debugging.

Therefore some kind of incrémental assembly seems
necessary to develop algorithms in an interactive computing
environment. To execute a program as it'is being assembled
is a naturallway and may well be the optimum from a development
point of view. Incremental interaction is useful when hunting
for errors cagsed by mispunching or when exploring a family of
algorithms. It remains to be seen if the gains justify the
complexity of incremental assembly.

This report is concerned with an attempt to design
and implement a simple incremental assembler for teaching
assemhly language programming. Before describing design
considerations and implementation, considerations for inter-
active programming and the net effect of online utilization

are discussed.



CONSIDERATIONS FOR INTERACTIVE PROGRAMMING

"An interactive system is only useful it it satisfies

n (7)

the users' needs. Depeﬁding on the type of person for

which the system is designed, various features can be implemented
to achieve successful user orientation. The following list
includes features used in the project and mentions others

which could be used for similar pfograms.

The system should consist of smoothly linked steps.
No gaps should occur in its flow which require the user to
consult outside references. Ancillary information should be
stored to be produced on request rather than routinely within
the program unit.

All input should be completely checked, and both
lexical and logical errors, if possible,'éhould be flagged.
Diagnostic messages should clearly indicate user remedial
action. Errors can be reduced if the user can see his input
after he enters it bhut before it is processed -- an echo check.

Responses to prompts should be as simple as possible
so that control alternates frequently between the user and
the proqram} although the computer accomplishes much more
during its section of the input/output cycle, the user should
feel he is participating as an equal.

If the occurrence of the user's response is more
important than the contents of the response, e.g., if the

response is simply a oroceed command, then input checking can



10

berfelaxed: this prevents a delay when an unimportant spelling
or other error is made.

It may be that tﬁe user should be forced to select
an option rather than simply be given the opportunity to specify
an option. (This is equivélent to requiring that every field
on a contrél card be specified, even if zero; the chance of
an option being forgotten is elimipated.) This feature is not
used in this project but changes could be introduced to
implement such a system feature.

The availability of a record of the user's experience
with the system is helpful when the normal output device does
not produce a hard copy.

It may be feasible to include two or more levels of
complexity within a system. Once the beginner becomes
acquaintéd with the rules and concepts he.can step up to a
more advanced sysfeﬁ. Storage requirements could therefore
be kept to a minimum until the functions and messages of the
higher level are required; processing time might increase but
user response time should decrease.

The user could earn the right to increased control
over the program flow as he learns; he could skip certain steps
which he no longer finds interesting or alter certain variables
in the midst of execution.

Lastly, the system could be designed to accept
criticism. Users would be asked to make comments or otherwise

rate the program; on the basis of the response the program can

-



11

be modified.

INTERACTIVE UTILIZATION TO USERS

The differences between batch and interactive
‘programming lies in the "entire programming practice"(6).

The user can direct the run without concern for optimum
computer utilization. The interactive environment implies
.certain conditions diffefenﬁ from those of a batch environment;
the following is a brief list of some of these features.

A complete plan is not necessary: techniqueé of trial
and error sclutions requiring human assistance are all
permissible. In program debugging one need not fear that a
small omission causes a lost ruh as in a batch environment.

In a good online system prograﬁ errors should not cause any
problem; immediate discovery and correction of program errors
should be inherent in an interaétive system,

Input/Output devices with the exception of display
scopes are generally quite slow restricting the volume of
output that can be presented in a giéen time period. Even
if terminals were faster it is unlikely that a user would
make much use of the speed for he does not always take the time
to absorb much output.

In the interactive mode the user generally enters
commands or programs by kevboard devices, which are not intended

for rapid or high volume input. The means of expression must

be concise to accomplish a maximum and minimize input errors.



12

Unlike batch or off-line processing the user is
spending his own time during the entire programming practice.
Some people would prefer to deliver their jobs and retire to

their home or office until the job is run and collect their
vresults at a later time. Most people feel their time is worth
the gain of interactive programming but people become annoved
when some error such as a system malfunction causes lost time

at a terminal.

PROGRAMMING PROCESS

One apparent difference is that interactive programming
favours small proaram modules which can bhe connected to form
large programs. Small routines are easily and quickly entered
and tested for the rapid turnaround time far outweighs the
time spent in finding few or no errors.

The language should prdvide concise powerful state-
ments that allow a dialogue between the user and the program.

Editting techniques modify existing programs or
merge keyboard input with other routines at assembly time.
Such editors may edit lines by line number or by more advanced
methods which edit by context rather than line number.

Lastly, interactive programming is wvaluable in
permitting interaction between the user and the assembler;
the assemblef may query the user regarding error conditions
permitting changes before the assembly is complete. . This
may be extended to compilérs which include questions to aid

the compiler to produce better code.



CONCLUSIONS

The most obvious advantage of interactive programming
is the time saving. The whole process from coding to final
nexecution can be repeated several times within a relatively
short time span. But without the exisfence of support the
mere existence of an interactive terminal will not assist the
‘user very much. In providing such a system one must consider
both the methods of operation forced bn the user and those

which should be present to take full advantage of the situation.



CHAPTER IX

IMPLEMENTATION - BASIC CONCEPTS

INTRODUCTION

Initial considerations affecting the assembly language

implementation of an incremental assembler are:

1. The basic inherent assumptions about.the user;

2. The ultimate goal of the project:

3. To a much lesser extent the fac111t1es of the
installation.

The purpose of this project was to design and implement
an incremental assembler on the Hewlett Packard 2100A computer
to accept simple programs which are scanned és they are received
and assembled into machine_code. Appropriaﬁe error messages
are output if necessary. It should be possible to execute
parts of a program; debugging printout of registers and core
locations should also be possible. In addition, an editor
to delete, insert and replace source and object programs
should be available.

An inherent basic assumption is that anyone using the
assembler has a small knowledge of assembly language program-
ming. The‘user who has not had experience with assembler
languages may have some difficulty but a brief look. at the.
assembler mnemonics in the Hewlett Packard 2100A Reference

1(8) 1(9)

Manua or the Assembler Manua should provide the user

14



15

with enough information to use tﬁe assembler. For anyone
proficient in assembler language programming this assembler is
too elementary.

The installation offers a Hewlett Packard 2100A
computer with 12K (12288 words) of core, supported by
perepheral I/O devices. Of interest are the Olivetti teletype
machine and the Data Point 3300 terminal, hard and soft copy
devices respectively which lend themselves to interéctive
input/output activity.

The core size is 12K but it should be‘pointed out
that the last 1008 words of core contains the hardware -
protected basic bhinary loader and is not available for users'
programs.

Since this assembler is an incremental assembler,
assembly occurs immediately after statement entry. The
assembler does not Qait until the program is fully defined.

The remainder of this chapter briefly discusses the
standard assembly process and mentions some of the important
differences required to implement a simple incremental assembler.
Also included is arvery brief discussion of the introductory
text and System Directives: neither of these are features of
a standard assembler but have been included to acquaint the
user with the system and to make the assembler more like an

incremental system.

STANDARD ASSEMBLY

An assembler normally hegins assembly once the program



16

has beén thoroughly defined. Such an assembler has two or
three passes, if punch and list output are requested. 1In the
first pass the assembler creates a symbol table from the names
used in the source statements. It also checks for certain |
possible error conditions and generates diagnostic messages,
if necessary. |

During pass two the assembler again examines each
statement in the source program along with the symbol table
and produces the binary program and program listing.
Additional diagnostic messages may also be produced. If both
punch and list output are requested, the list function may be
deferred to the third pass.

References to undefined instructions or data will
cause the printing»of diagnostic messages and may halt further

system activity after assembly.

SIMPLE INCREMENTAL ASSEMBLY

After the lexical scan of each statement, the assembled
instruction and any symbol table entry must both be stored in
their appropriate location before reading in the next program
statement. A program statement having a lexical error initiates
the wmwrinting of an error message and a request to re-enter the
statement. No attempt ié made to assemble such a statement
thus the program need not be reassembled for a lexical error.

Assembly time pseudo operations become meaningless in
an incremental system. In particular, the Assembly Listing

Control pseudo ops listed in the Hewlett Packard Assembler



17

Manﬁal(g), allowing the user tQ control assembly listing during
pass two or three of the assembly process, are meaningléss.

| - Since the program is defined statement by statement,
the program mav be executed statement by statement, by
specifying program execution after each statement entry.
"However, the assemblef isAintended for the inexperienced
programmer to'develop programs in steps and blocks. It seems
reasonable that a user would enter his préqram in blocks or
groups of statéments and check out each block by program
execution.

The most important difference between standard assembly

and incremental assembly is the handling of forward references

and the assemblv of Memorv Reference instructions.

FORY’\_!_ARD REFERENCES

During the first pass of a standard assembly, references
to undefined instructions or data arereferred to as forward
references.

In a one pass system Memory Reference instructions
~having forward references, involving an undefined symbol in
the operand, are retained by linking the undefined assembled
code of the Memorv Referencé instruction to the symbol position
in the Symbol Table by means of special pointers. The design
and maninulation of forward reference pointers for direct and
indirect Memory Reference operands &re discussed in Chapter III
and VII,

An undefined symbol in an Input/Outovut instruction


http:FORN"l'.RD

.18

operand causes the statement to be ignored; this is discussed
fully in Chapter VI in the lexical scan of program statements.
An undefined symbol in an ABS or BSS pseudo instruction operand
is treated in an entirely different manner;'operand handling

in this case is explained in Chépter ITIT under the topic of
assembler mnemonics and in Chapter VI in ‘the lexical scan of

program statements.

DEFINED MEMORY REFERENCE INSTRUCTIONS

In order to distinguish Memorvy Reference ihstructions
having defined operands from Memory Reference instructions
having a forward reference we employ.a special assembly of the
instruction using one level of indirect addressing and a special
table to hold Memorv Reference operands.

Instruction assembly techniques used in this assembler
are discussed fully.in Chapter III following the discussion

on program tables.

INTRODUCTORY TEXT

Eleven pages of introductory text are printed to
provide some background information and acquaint the user with

the system features, in particular the System Directives.

SYSTEM DIRECTIVES

There are seven System Directives all beginning with a

colon and all are recognized by their first letter



19

:ABORT Discontinue program entry, start over

:DUMP Dump reagister contents

:EDIT Edit the existing source and object program
: HALT Halt the computer, press run to continue
:LIST List all or part of the user program
:SEQUENCE Change the sequencing, then list the program
:XECUTE Execute the user's program

The commands resemble the control étatements in the
“incremental syStem described in Chapter I, for they are
intendéd to give the user control beyond the program level.

All but the Halt directive are presented‘to the user
for a halt instruction is more important to someone exhibiting
such a program rather than using it. Of these directives
presented to the user all are explained in some detail with the
exception of the Abort which is fully explained in a single

statement, when listed with the others.

:DUMP

After execution register contents will be saved. It
will be possible to dump these register contents as well as
data address values as an alternative to using output instructions

1

in the user program.

+EDIT

"The process of editting code online is considered by

(7)

some to be the heart on an online system”. The editor is
by far the most complicated feature of the program and will
only be discussed briefly in this section.
The editor will allow the user
to delete anvy number of program statements,

to insert statements between anv two program statements,
and to replace a single statement by another single statement.



20

Editor restrictions will be discussed in the.section

dealing with the detailed program description.

TLIST(,M(,N))

A list option is another inherent feature to permit
listing of all or part of the program anytime, except during
an edit.

M and N, if present, specify the first and last lines
to be listed. If N is absent then all statements from M on
are listed. 1f neither M nor Nrare présent then the whole
program is liéted. It was decided that all listing would be

surpressed if M was greater than N.

: SEQUENCE ,M, N

Change the program sequencing such that M is the first
statement number with N being the increment. Following
completion, the whole program\ié listed.

Restrictions on M and N are that both are positive
integers. M must not exceed 1700 while N must be greater than
zero and not exceed 25, ébme ubper bounds on M and N were
necessary and these seem reasonable in relation to more
important user restrictions.

The seaquence oontion mav seem unnecessary but may be of
great importance when inserting many statements between two

successive statements or realigning statement numbers after a

series of deletes or inserts.



21

: XECUTE

XECUTE is responsible for the execution of the user
program. Incomnlete programs may be partially executed hut
execution will immediately halt with a warning message priﬁted
for attempting to execute a machine instruction having a forward
reference. |

Immediatelv after successful execution or after

encountering a forward reference the contents of the A, B, E,

and 0 registers will he saved in special store variables.



CHAPTER IIT

ASSEMBLER IMPLEMENTATION

INTROCUTION

The major design and implentation considerations are
presented in Chapter III. Also included is a discussion on

program segments and error message handling.

SOURCE PROGRAM ASSEMBLY

The operating system of the Hewlett Packard 2100A, the
Moving Head Disc Operating System (DOS-M), offers relocatable
and absolute assembly options; relocatable assembly permits
the'user programs to take advantage of all ope:ating system
features such as external subroutine calls to library programs.
One very obvious advantage is that relocatable assembly requires
that the program be written dependent upon operating system
features. To implement the assembler using relocatable assembly
would require program segments all be dependent on the DOS-M
system.

To avoid such dependence on the operating system the
source program has been assembled as an absolute program. In
an absolute program the addresses generated by the assembler
are to be interpreted as absolute locations in memory.

One minor excepticn is the instructional text stored
on the cartridqe disc. This data has been stored on the disc

using the DOS-M facility to write onto a user disc file
22



23

(EXEC Céll, Request Code 15). Storin§ the data in this manner
is for ease of programming.

Core normaily occupied by system routines during
execution after relocatable assembly will now be available
to the assembler after absolute assembly. However, base
. page linkage, external subroutine éalls, literals, or any
other inherent feature of the relocatable assembler and loader
are not available,\nor will they be avéilable in any user

program input to the incremental assembler.

MNEMONICS AND PSEUDO OPERATIONS
All machine instructions and the arithmetic subroutine
requests for hardware multiply/divide operations listed in the

.Hewlett Packard Assembler Manual(g)

are available to the user
but not floating point operations.

Scanning Hewlett Packard System listings for the
frequency of‘Régister Reference and Alter Skip multiple
instructions, it was found that multiple instructions do not
constitute a significant proportion of the overall instructions.
The Revefse Skip Sense, RSS, instruction was the most commoﬁ
‘instfuction involved in the multiple instructions. An
inexperienced programmer may be aware of multiple instructions
but will not have much use for them and consequently they will
not be made available.

Memory Reference instruction operands have also been

restricted to the form:

(+) (symbol) (# inteqer)(,I) .



24

A §ymbol may ha#e.ohé to five characters consisting
of A through Z, 0 through 9 or a period; the first character
cannot be 0 throuéh 9. The symbol may be replaced by an
asterisk (*) signalling thé présent program location. A
symbol may be preceded by a positive sign or a blank.

The'inteqer may be an octai or decimal value. If
there is no symbol in the operand this value must be positive
but not greater than 778; the user is allowed to access the
first 1008 words of base page. An ihteqer and svmbol together
must not exceed the bounds of the user program area.

The indirect reference indicator causes the address
value of the overand to access any other word in the user
program which is taken as the new mémory reference for the
same instruction.

The introductory text warns the user that the assembler
is restricted in size but does not discuss ﬁser program location.
To the usér the assembler is a virtual address program, the
user is not aware of where and, in some cases, how his
program is stored in memory. Thus, many of the pseudo
operations instructions listed in the Hewlett Packard Assembler

1(9) are excluded.

Manua
All Assembler control pseudo ops with the exception

of the END péeudo—op are excluded. The REP pseudo op, to

"repeat the statement immediately following by the number

specified in the operand® is described as an Assembler Control

pseudo op. Although it does not influence program positioning



25

it has been excluded for it exists as a convenience to
experienced proqraﬁmers.

| Object Program Linkage pseudo ops are concerned with
relocatable assembly; accordingly, they have been excluded.
As discussed in Chapter II the Assembler Listing Controi
- pseudo ops have been éxcluded.

The Constant Definition pseudo ops ASC, DEC and
OCT have been included and implemented in strict accordance
with Hewlett Packard definition. Appendix A lists and defines
all machine instructions and available pseudo ops.

The DEX pseudo oo to generate extended precision
constants has been excluded.

The BSS pseudo op for storagé allocation has been
included but its defintion has been altered. The format

BSS m
normally restricts m to be any expression that evaluates to
a non-zero, positive integer. Due to space limitations an
upper bound of 128 has been imposed. The definition has bheen
expanded to initialize program storage to zero.

Address and Symbol Definition pseudo ops ABS, DEF,
and EQU have been included. Operands for these instructions
must evaluate to a value within the program data area bounds.
For ABS and EQU pseudo ops the operand is of the form

(+) (symbol) (+ integer) . |
The operand may also evaluate to an address on the available

base page area.



26

In the case of an EQU a label must precede the pseudo
op and an undefined symbol may not be present in the operand.
An undefined symbol in an ABS or BSS operand is permitted but
willvinitiate a request to the user to enter a temporary value
for the symbol. Further reference to this symbol will not
necessarily yield this value.

The DEF pseudo op operand is restricted to a data
address symbol and an optional indirect flag. Undefined
operands will not be permitted during an edit, but during
normal program definition the user is requested to define
the symbol on the next statement entry. If the next data
entry does not define the symbol or if a data edit operation
alters the data area holding the DEF pseudo op, then the
address value will be incorrect.

The END pseudo op has been redefined to halt program
entry and advance to execute the user program. It will not be
stored in the user program; any label preceding or any operand
following is ignored. END will not be permitted during an
edit operation.

| Altogether there are 86 machine instructions and pseudb
ops which have been divided up into fifteen different categories
‘depending upon the instruction type and the operand expected.
Appendix A has a list of:

1. The available machine code instructions and pseudo ops
and their definition.

2. The instruction tvpe number.

3. The machine instructions according to their instruction
number.



27

ASSEMBLER CONTROL STATEMENT

The Assembler Control Statement normally beginnihg
user programs has been excluded; Since the source program
is in absolute format a user program input to the incremental
assembler will then be an absoclute programn.

The program liét option is meaningless but a list of
the source program can be taken ét almost any time using the
List Directive. Other assembler options like binary butput
or a cross reference table will not be available or negdeé.l

Since most of the options normally associated with the
Assemblexr Control Statement have heen excluded or redefined,
the inexperienced user is not expected to enter an Assembler

Control Statement.

INSTRUCTION MODIFICATIONS

Although the instruction set has been restricted, the
user is expected to have only a small knowledge of assehbler
language programming. The available 86 mnemonics are ample
for learning purposes.

Changes that could be made for an advanced user would
be the inclusion of the REP pseudo op and floating point
operations. These extra instructions would provide further
assembler versatility. To include any other pseudo ops is
questionabhle for the users' expectations are apt to change
significantly. Once a user has mastered the techniques of
assembler language programming, the pseudo ops should be

easily understood.



28

It may be possible to include features like a cross
reference table, conditional assembly or some other feature
normally associated with the Assembler Control Statement. The
user is apt to benefit from the inclusion of such changes but
the overall influence of such program improvements on the
user require serious consideration before implementation.

The remainder of Chapter III is a discussion on:

Assembler Tables,
Instruction Assembly,
Forward References, -
Program Segments and a list of the Assembler
Functional Units,
Error Message Handllng.
This material is of particulat interest to anyone

wishing to alter or extend the assembler but not to those

interested in understanding the basic concents.

ASSEMBLFR TABLES

Storage has been allocated for system and user tables
beginning at address 15200 to the last available word in
memory. These tables are as follows:

The Instruction Table,

The Main Symbol Table,

The Special Symbol Table,

The Program Location Counter Table,

The Free Space Table,

The Source Code Block, ‘

The User Program Table for machine instructions
and data.

INSTRUCTION TABLE

This is a system table for instruction look up. This

table is not initialized for each new user program; all other



29

tables are initialized for each new user program and set during
program definition.

The 86 machine instructions and pseudo ops have been'
arranged alphabetically for a binary search table look up.
The table 4028 (3x86) words in length has'been divided into
three separate sections. The first section holds the first
two of the three letters of the alphabetic list of mnemonics. .
Each word in the second section holds the third létter of the
mnemonic and the instruction type number inAthe format:

Bits 0- 3 1Instruction type number
8- 15 Third letter of mnemonic name

The third section holds the skeleton of the assembled
instruction; the pseudo ops are assigned a (-1) minus one value
in this section. The skeleton code of a pseudo instruction is

ignored throughout the assembler.

USER PROGRAM TABLES

Unlike the Instruction Table these tables are
‘initialized for each new program. The Méin Symbol Table and
Special Symbol Table must also be set with special pointers
for difect and indirect forward references used by the assembled
instructions.

With the exception of the Free Space Table an attempt
to make an entry to a User Program Table will terminate all
user-assembler activity with the user program being lost.
However, all user tables, with the exception of the Free Space

_ Table have a built in warning to the user if the table is



- 30

about to overflow and a request to begin-execution to obtain

final program results before table overflow occurs.

MATIN SYMBOL TABLE

The Symbol Table can accommodate up to 125 different
symbols, each symbol requiring six words of storage. The
format for symbol storage . is:

Word 1 First two characters of symbol name
Word 2 Third and fourth characters
Word 3 Bits 8- 15 Last character of symbol
Bit 0 =1 Defined symbol
= 0 Undefined symbol
Word 4 and 5 have different uses depending on whether the

symbol is defined or not.

Undefined Word 4 Address of last direct forward reference
' Word 5 Address of last indirect ferward reference
Defined Word 4 Symbol address in assembled code
Word 5 Symbol address in source code storage

Word 6 Linkage to Special Symbol Table (see below)

Symbol positioning in the table will be determined by
a hash code which takes the arithmetic sum of the words holding
the symbol name and divides the value by 125, The remainder
vields a relative position in the table to begin a linear
search for the next free area to store the symbol., The hash
code was tested and found to distribute the symbols throughout
the table. This is the only table using a hashing function
for all other tables use strictly a iinear search and storage
procedure,

Each entry to the Symbol Table will be counted by the

subroutine for storing symbols while overflow will be determined



- 31

by the subroutine that applies the hash code function to the

symbol and finds the symbol vposition.

SPECIAL SYMBOL TABLE

. The Special Symbol Table, SST, is for compound operands, -
i.e. Memory Reference operands having a symbol and an integer
value. The SST will hold up to 75 different compound operands
'with each entry requiring fburAwords as follows:

Word 1 The integer value

Word 2 Bits 0-14 Source code address of the
instruction

= (0 Direct reference

= 1 Indirect reference

Vlord 3 Address of last forward reference

Word 4 Link to further entries in SST

Bit 15

For each Memory Reference operand combination an entry
to the SST is made. Symbols having more than one entry in the
SST will bellinked by Word 4 with a zero in Word 4 terminating
the list. Word 6 of the symbol entry in the Symbol Table
will hold the addreés of the first SST entry.

Before actual user program execution special routines
will scan the SST and the Program Location Counter Table, a
tablé‘used to hold similar operands where the asterisk term
replaces the symbol, to calculate operand addresses, provided
such‘addresses are within the bounds of the program. This
allows edit operations to occur after instruction entry and
before execution in order to preserve operand addresses.

By initiating execution as many addresses as possible

are defined; the table area used bv these address pointers is



.32

cleared for further use., Further editting of these
instructions after the address has heen set is at the users'

peril for the address cannot be altered.

PROGRAM LOCATION COUNTER TABLE

The PLC table will hold up to 50 memory reference
operands involving the asterisk with the table format bheing:

Word 1 Bits 0-14 Source code storage address of
statement

1 Indirect reference

0. Direct reference

Word 2 Integer value in operand

Bit 15

The PLC table holds these operands until the user
wishes to execute his program at which time the assembler

will attempt to define zll operand references in the PLC table.

THE SOURCE CODE BLOCX

All incremental systems should allow the user
to make corrections to his program and list the updafed
source program. An incremental assembler can be implemented
in several ways; the two means considered for this project
were:

1. The user program could be assembled to some intermediate
form from which the source program can be recreated.

2. The user program can bhe assembled into object code.
Since the assemblv process is not normally one-to-one,
it is not usually possible to recreate the source
program from the assembled version. The assembler
must maintain two copies of the program, one in source
form and one in assembled form.

The first approach offers the advantage of not having



- 33

two copies of the program at the expense of slower running.
Using the first approach it was felt that the user might be
slightly alarmed if the interpreter were to remove redundanﬁ
blanks and reformat his output for a list command. It was
also found that the trade off between the simplicity in
storing source code along with a simple listing program, and
the complexity required in the implementation of an inter-
mediate code algorithm from which the source or assembled
code could be generated justified storing the source code
along with the assembled code.

The Source Code Block, SCB, is 57008 words in length

and will retain six words of information concerning each
statement as well as the source statement. The format for a
source statement entry is:

Word 1 Address of the next statement
(0 for the last statement)
Word 2 Address of the previous statement
(-1 for the first statement)
Word 3 Statement number
Word 4 Bits 0- 7 Number of words in SCRB entry
Bits 8-~15 MNumher of characters in source
statement
Word 5 Bits 0-14 Address of assembly
(0 for a comment statement)
Bit 15 = 1 Data definition
= 0 Machine code instruction
Word 6 Length of assembly

=

The source program statement will be stored two
characters ?er word beginning in the first character position
(Bits 8-15) of the first word to follow Word 6 in the SCB.

Like the main Symbol Table space in this table cannot

be reclaimed by an execution.



- 34

FREE SPACYE TARLE
Thé Ffee SpacevTable hoids the length and address of
déletions from the SCB after an;edit oneration. - Each deletion
from the SCB will be recorded in two words in the Free Space
Table in the following format:
Word 1 Length of the deletion,
Word 2 Address of the deletion.
Unlike the other tables, entries to a full table wil;
not cause program termination. The entry will be retained,
if the length of the deletion is»lérqer than the smallest
deletion’and the smallest deletion will be discarded.
Before storihg any statement the assembler will scan
the FREE SPACE for an isolated SCB location before allocating
the next free area in the SCB., This is a reclamation procedure

to make use of all available SCB space for statement storage.

USER PROGRAM AREAS

The last two tables are the user prodram areas for
data definitions and machine instructions having 4008 and
3408.words respectively for assembled code. The Dump Directive
has been included as an alternative to using output instructions
in the user program. For this reason the data area was set
larger than the program area.

The overall program area could best be fitted into the
last page where 17008 locations were available for the user
program (7008 words) and the data érea (10008 words) . |

Table 3.1 lists the layout of the user program and



- 35

data tablé areas.

The structure of both these tables is very inefficient
and space consuming for each table requires a corresponding
address field for each data and machine instruction leocation,
i.e. two locations are required for each word of assembled
instructions and each word of data definitions.

In the case of data definitions, the address block
is necessary to maintain an address pointer to each data item
for reference by a machine instruction and for shifting data

on an edit operation.

INSTRUCTION ASSEMBLY

The Memory Reference instructions require the address
field so that forward references can bhe easily distinguished
from defined Memory Reference instructions.

All machine instructions other than Memory Reference
instructions are assembled in much the same manner as in the
standard assembly process. Memory Reference instructions use
ﬁhe address table to hold a 15 bit overand address.

Normally, assembly of a simple Memory Reference instruction
has a 10-bit address, a current page bit and an indirect bit
to be set according to the operand. The incremental assembler
sets the 15-bit operand address in the program address table
correspondinq'to the position of the instruction in the user
program area. An indirect reference indication in the operand
is handled by setting bit 15 of the operand address in the

program address area. The Memory Reference instruction is set


http:ASSEM!3T.1Y

- 36

into the user program area with fhe 10-bit address pointing to
 the 15-bit address stored in the address table position. The
current page and indifect bits are sét so that the instruction
involves an indirect reference to the address through the
address table,

An Extended Arithmetic Meﬁory Reference instruction
assembles into two words; the second word of the assembly is
a 15-bit address to the program address.tagle with an indirect
reference specified.

All defined Memory Reference instructions with the
exception of valid user references to the base page will have
the indirect bit and the current page bit set for simple Memory
Reference instructions. Forward references will appear as a
direct reference to base page.

| The assembly is definitely no lonéer a one-to-one
transformation froh source to object code because of the
particular means adopted for implementation. This is

further justification for having two copies of the program.

FORWARD REFFRENCES

Forward reference addresses are combined with the
instruction skeleton on a Memory Reference instruction; the
instruction will appear like a direct reference to base page.
Such an address must be greater than 1008 else the instruction
is regarded as a valid user reference to the available base
page area. For this reason the user program area was arranged

with the program address table preceding the user program area.



- 37

From Table 3.1 Symbol Table entries pointing to user program
inétructiéns having forward references will be in the range
3418 to 6778. |

During initialization Symbol Table entries for forward
referanceswere set to‘a value greater than 7008. Forward
" reference indicators in the Symbol Table begin at 7018 for
direct references and 10764 for indirect references. Each
symbol position has a separate pointef for direct and indiféct
references separated by 1758 (125). The SST has its forward
references beginning at 12738.

During program definition the forward reference
indicator in the symbol tables is replaced by a pointer to the
last forward reference. Forward references to the same operand
are linked into a chain with a reference greater than 7008
signalling the end of the chain and a pointer to the symbol
tables,

Program location counter references in the user program
are also treated as forward references. The PLC table is
bounded by address XPLC, 17634 and YPLC, 17777 such that PLC
forward references would range from 16348 to 17778 and not
conflict with symbol table references.

No linkage techniques are used with the PLC table for -
each PLC reference is regarded as a separate forward reference.

Table 3.2 offers a diagram of forward reference linkage

in the main Symbol Table.



. 38

PROGRAM SEGMENTS

Program Segments may be described in terms of
functional units or segments of storage. In planning the
overal program an attempt was made to design each segment as
a self-contained brogram unit so that each functional unit
could be regarded as a particular.block of computer storage.

However, as the complexity of a program unit increases
there is a tendeﬁcy for the segment to become fraémented. A
very obvious example is the editor; due to its complexities
it became far too large to store on one ?age such that editor
subroufines were allocated to three different pages of memory.
It is also convenient for two different program functions to
share common subroutines rather than permit duplication. 1In
such a case program seaments will not remain self—contained’
units. Sharing of common subroutines by several program units
will conserve storage space and due to the limited storage
size it was necessary for §roqram units to share common sub-
‘routines rather than maintainihq self-contained program units
which may involve subprogram duplication.

In terms of functiénal units the program may be
segmented as follows:

Initialization,

System Controller,

Input/Output Packaae,

Lexical Scan,

Number Manipulation Package,
Statement Assembly and Storage,

Systems Directives excepting the Editor,
Editor.



-39

A description of program segmentation in relation to
the dynamic storage allocation becomes difficult to follow
or remember for the text becomes an enumeration of subroutines
'or program units followed by a brief discussion on each.
Sucﬁ a discussion is not presented but:Appendix F does offer
a listing of program units in relation to their storage with
‘a brief program discussion.’

Following a brief discussion on the error message
processing the following six chapters offer a detailed program

discussion of the functional segments.

ERROR MESSAGE PROCESSOR

Normally an error message follows the program which
uncovéred the error condition with the error message output
programs resident on base page. There are some minor
exceptions in the positioning c¢f error messages; the most
obvious exception in the presence of nine error messages on
base page to avoid unnecessary duplication. These messages
are listed in Table 3.3.

Since most error messages concern user input it seems
that there sﬁould be an automatic return to the System Controller
yet avoid duplication of return instructions. For this reason
there is a bhase page entry point, label ERCAL, which initiates
a jump to subroutine ERROR followed by an indirect jump to the

System Controller. Any error condition followed by an input



40
operation will initiate a jump to ERCAL.*

Subroutine ERROR

Calling Sequence
LDA < Character length of the error messaqe >
LDB < Address of error messaqe >
Subroutine ERROR calls subroutine BPLM to print the

error message on a newline and subroutine REENT to print the
re-entry request

PLEASE RE ENTER STATEMENT
on the next line following the error message. BPLN and REENT

use the Input/Output package presented in Chapter V, to output

the error messages.

* There are two exceptions.
Within subroutine NATIN, which prompts the input operation,
a buffer overflow error message is printed if necessary but
control does not leave DATIN,
On an input error in a sequence request the Sequence flag
is set after calling ERROR and before returning to the System
Controller.



- 41

TABLE 3.1 THE USER PROGRAM TABLES
ADDRESS ADDRESS PURPOSE
NAME
026001 First address of program address table
corresponding to first address of the
user program area
026337 Last address of program address table
corresponding to the last address of the
user program area
026340 PROG Fntry/Exit point for executing the user
program
026341 XUSRP First address of user orogram area
026677 YUSRP Last address of user program area
026700 Return jump from user program to calling
point
026701 XDATA FPirst address of data address area
027277 Last address of data address area
027301 First address for data value storage
027677 Last address for data value storage



- 42

TABLE 3.2 FORWARD REFEREMCE LINKAGE

This example of forward reference linkage uses the

first symbol position of the Symbol Table having an undefined

symbol with direct and indirect references to that symbol.

A diagram of the linkage of the forward references in

the user program area shows the address pointer combined with

XX, or XXX denoting the skeleton assembly of a Memory Reference

instruction.

are also presented.

Svmbol Table

Word
Word
Word
Word
Word
Word

YU WN

Memory Address
026341
026353
026364
026372

026417

The pointers linking back to the Symbol Table

Address Contents

Symbol name stored as Ascii characters

341 Page address of first direct and
353 indirect forward references

;———4XXX372

EXXX3 64
XX1076

WX X417

4

L—XXX701

Return pointer for indirect reference

Return pointer for direct reference



LABEL

ERR1
| ERR2
ERR3
ERR4
ERRS
ERR6
ERR7
ERRS

ERR9

TABLE 3.3 BASE PAGE ERROR MESSAGES

ERROR MESSAGE

BAD DATA INPUT

STATEMENT NUMBER OUT OF RANGE
OPERAND VALUE OUT OF RANGE
ILLEGAL OPERAND TERMINATION
JLLFGAL CHARACTER BEGINS LABEL
NO OPERAND FOQUND

OPERAND IS UNDEFINED

UNDEFINED LABEL IN OPERAND

NO LADEL FOUND

43



CHAPTER IV

INITIALIZATION

INTRODUCTION

The initialization program is called for each new
user program after one of the following conditions.

Recognition of the Abort Directive

Abort request from the System Controller

Abnormal abort due to a program table overflow
Operator intervention by setting the Program Location
Counter register or the computer front panel

PROGRAM INITIALIZATION

The first task is to turn off all I/0 activity and
enable the interrupt system for the assembler and user program
use. A call to subroutine CNFIG will configure the input/
output package to direct all user-system communication through
the teletvvoe machine for a hard copy outout.

Besides the last 1008 words holding the basic binary
loader the first 1008 words are also reserved locations.
"Though not considered core storage the A and B registers
occupy the first two memory locations. Memory locations 00002
and 06003 are exit points if the A and B register contents
should bhe used as executable instructions. The program was
initially assembled with these locations holdiné indirect
jumps to the forward reference warning program as part of the
execution routines, if the user should attempt to execute the
contents of A or B.

L.ocation 00004 and 00005 are the Power fail and

-

44



- 45

Memory Protect/Parity Error interrupt locations each holding
halt instructions. |

All other main frame interrupt locations, address
00006 to 00025, are assembled to zero. Address 00026 to 00077‘
are the remaining interrupt locations; these addresses are
not initialized. By giving the user accesé to the first 1004
words allows the user to alter these locations; it is necessary
to restore these locations for each new user program,

Into memory locations 00006, 00011 and 00012 are
stored subroutine jump instructions to three base page
interrupt subroutines used by the disc input driver.

Using the disc inout driver the eleven pages of
introductory information will be read in. Appendix B has a
brief discussion on the text and a listing of the program to
store this data as well as a listing of the actual text.

Length and address pointers are stored in two tables following
the initialization program.

All disc data input/output operations will be initiated
by subroutine GRTIO which initializes the disc read, calls the
disc input driver, and prints the data using the system I/0
package. Disc input operations will be handled using Direct
Memor§ Access, DMA, a facility to provide a direct data path
software assignable between memory and a high speed peripheral
output device. A full discussion of DMA is given . in Appendix C.

After the first page has been printed the user is

requasted to tyre S to transfer all I/O activity to the CRT



46

screen or C to continue. This is the first instance where
input checking is relaxed for anvy response other than S is
accepted as a continue command. Althouﬁh, a particular
character has been requested as a response to a prompt
virtually any other character will be accepted>to avoid the
generation of an error message.

The S response will cause the I/0O pvackage to bhe
configured for soft copy output on the Data Point 3300 CRT
screen,

By default program statements are sequenced by beginning
at fen and incrementing each statement by ten. The second page
advises the user that he may specify alternate sequencing by
typing S followed by the first statement number and an increment.

After printing the second page and before reading the
user response, all system variables and user tables are
initialized. It is not possible to initialize program tables
before printing the seéond page for the length of the first
two pages is greater than the length of the buffer area
available to store the disc input. An attempt to store either
of the first two paées in this area would overwrite part of the
Instruction Table. The remaining vages of the introductory
" text will fit into this buffer area. The first two pages are
stored in the core normally used by the program tables; once
the second page has been printed, the user tables are initialized.

All user program tables are initialized to zero with

the forward reference pointers stored in the symbol tables. All



47

program control flags used in the System Controller and all
system variables are set to their initial wvalue. Temporary
values used throughout the assembler will not be initialized.

One special variable which must be set is GRTFG,
the program flag to signal that the program is in the
'initialization‘phase. GRTFG must be set before a user
sequence request is read so that pfoqram control will return
to the calling point within the initialization program rather
than the System Controller on an error condition.

The third page offers an option. For the user aware
of the assembly features program entry may begin immediately.' -
Any response other than L, the learning option, for presentation
of the remaining text is accepted as a signal to begin program
entry. '

After the last page has bheen output and before reading
the first user program statement all main frame locations
beginning at address 00006 to 00025 are cleared to zero along
with the initialization flag, GRTFG. After the user'entry has
been read in proaram control transfers to the System Controller

to call the main lexical routines.

INITIALIZATION SUBROUTIMNES

Three subroutines from the input/output package are
called by the initialization program:
DATIN Read user input,

I.OFF Turn off output device interrupt,
TTY.P Perfeorm output operation.



48

These subroutines are presented as part of the I/0O package
in Chapter V.

Subroutine SQNCE reads in the statement numbers for
the sequence request. SONCE is also used for the Sequence
Directive introduced in Chapter II; SONCE is discussed in
" Chapter VIII with the'discussion of System Directives.

The remaining subprograms CNFIG, GRTIO and the disc
input driver are used strictly for initialization purposes.

Subroutine CNFIG

Calling Sequence
L.DB < Channel number of I/0 device >

CNFIG will configure the I/O package to direct all
user-system communication through the device referenced by
the channel number. All input/output instructions in the
I/Q'package will be set with a new channel number. As
well the Memory Reference instructions referring to the device
interrupt location must have a new address to point to a new
interrupt location.

Subroutine GRTIO

Calling Sequence :
LDA < Disc address of input >
LDR < Input length (words) >
GRTIO will call the disc input driver to read in a
page of the introductory text and call subroutine TTY.P to

print the text.



- 49

DISC INPUT DRIVER

The disc input driver is comprised of eight subroutines:
three interrupt service subroutines and five subroutines taken
from the disc I/0O driver used in the DOS-M System generator
program. Minor changes were made to the five disc driver
subroutines but the program structure is unchanged.

The interrupt subroutines are needed after a DMA
interrupt to address 00006, a disc Data Channel interrupt to
address 00011 and a disc Control Channel interrupt to address
00012, These service routines will clear the control flag of
their resvective channel and return program control to the
location causina the interrupt.

The disc input program has been written by professional
programmers understanding the interface between the disc
controller aﬁd the computer. A program deécription of the disc
driver could be presented but it was felt that such a description
requires too much additional background information for a
program which is not part of the assembly process.

This program is a tested program. Nevertheless, in
order'to trace most disc read problems that might arise, it
was decided to include three halt conditions for:

fen unsuccessful read attempts (HLT 22B),
Address error, abnormal halt (HLT 24B),
Disc not ready - (HLT 26B).

With the present implementation knowledge of the disc

input driver would not be necessary for changing the overall

program features. The disc driver is required to retrieve



.50

binary data to be printed as introductory text. Changing thé
assembler might require the disc to input assembler programs.
Again the circumstances would not require that the mechanics
of the disc be known, since the disc driver operates
independently of the assembly process. However, changing the
disc driver hardware unit would probably require a totallv new

disc driver program.



CHAPTER V

THE SYSTEM CONTROLLER AND THE INPUT/OUTPUT PACKAGE

THE SYSTEM COMNTROLLER

INTRODUCTION

After initialization, program control is directed to
the first of two secondary entry points to the System Controller
at which point the input is treated as a source program

statement entry. The initialization program is the only
program to use this entry point to the System Controller.

The other secondary entry point is a return from an editor
insert or replace operatidn. Both these operations involve
the inclusion of source statements in the program and the SCB
storage of such statements is carried out in the System
Controller.

Program control is directed to the main entry point
of the System Controller for any program situation reguiring
user input, with the exception of:

the user responses when printing the introductory text,
the user responses to an edit-veto request.

After the input overation is complete the System
Controller is intended to direct program control in any one
of eight directions depending on the first character of the

input and the status of five different system variables.

PROGRAM CONTROIL TRAMSFERS

After initialization anv response beginning with an
equal sign is interpretted as a request to abort the current

51



- 52

" user program and prepare for another user program.

If this test fails, interrupt mode on the output device
is enabled, after being disabled for an input operation. Now
five different systém variables are examined; if one of these
variables is set to a non-zero value, control will be transferred
to the programkunit reaguiring the inout.

The first variable tested is the ARS/BSS flaq.. After
a prompting message is orinted, the ABS/BSS flag is set followed
by a return to the Svstem Controller. The user is expected
to eﬁter a temporary value to define an undefined symbol in
an ARS or BSS instruction operand. Program control returns
to the ABS/BSS routine, subroutine VAL,'to examine the iﬁput.

If the ABS/BSS flag had nof been set subroutine CLEAR
is célled to initialize all lexical variables in premaration
of a source program statement either during an edit operation
or normal program definition or in preparation of a data
address for a Dump operation.

The Dump Directive offers an option of displaying data
addresses; the user is requested to type in a response either to
end the Dump;opefaticn or to dumn data address conten?s. The
Dump flag is set in anticipation of such a response to return
control to the Dump routine.

Prior to setting the Secquence flag a user sequence
request is not accepted. After an error message and re-entry

reaquest are Printed, the Seocuence flaa is set to direct proaram



- 53

control to the Sequence Directive routine with new statement
sequencing data.

Two different system variables involved with edit
operations are examined. The flag signalling source statemen£
entries during an editor replace or insert operation will
direct program control to subroutine EDIPT,.which originally
requested the input.

The other editor flag examined is the main edit flag,
signalling an edit operation is in progress. Program control
is directed to the edit instruction scan program to interpret
and execute what should be an edit instruction request.

The seventh and last test is applied to the first
character of the input; a colon beginning the entry signals
a System Directive. After the colon has been recognized control
branches to the program which interprets and channels the

System Directives,

SOURCE PROGRAM ENTRY

Failure to satisfy any of the seven tests results in 7
the assembler treating the input as a source program statement.
It should be noted that this is the first secondary entry
point .to the System Controller at which point control branches
to the main lexical scan routine, subroutine LEX. Following
successfulzcompletion of the lexical scan control branches to
subroutine ASMBL to allocate space in the SCB to store the
‘program statement,

Data definitions and machine code instructions will be


http:point.to

- 54

assémbled into their appropriaté location by subroutine SETCD
while comment statements are ignored.

The next instruction, a call to subroutine STSCB to’
store all statements in the Source Code Block, is the last
entry point to the System Controller. Edit operations involved
with the insertion of source statements have already performed
the lexical scan, the SCB space alloment and the assembled
code storage independently of the System Controller.

After the statement has been stored in the SCB, symbols
are defined and entered into the Symbol Table. In most cases,
‘program control 1oops'back to the beginning of the System
Controller except during an inser@ involving the entry of more
"than one program statement where control will return to the

insert subsystem.

SYSTEM CONTROLLER MODIFICATINNS -

The System Controller is primarily intended to direct
the input to the program unit requiring the input. The overall
structure of the unit is very simple and could easily be
expanded or modified to include transfers to different program
units requiring user input,

Changes to source proagram definition or storage are
more likely to be introduced in the subroutines called by the

System Controller rather than within the System Controller.



55

SUBROUTINE REQUESTS

After entry to the System Controller and during exam-
ination of the different branch conditions the System Controller
calls two I/0 subroutines:

DATIN Request and read user innut,
I.0N Turn on output device interrupt,

Both these subroutines are discussed in the following section
on the I/O package.

One other subroutine called is subroutine CLEAR to
initialize all variables used in the lexical scan of source
program statements or in the scan of an address for a data
address dump.

The subroutines called in the secticn on the source
program entry are as follows:

LEX The main lexical scan program,

"ASMBL Prevare SCB area for statement storage,
SETCD The main assemblvy proagram,

STSCB Store statement in SCB,

LBDEF Define label bheginning statement,

These subroutines will be discussed in their respective program

unit in the next two chapters.

THE INPUT/OUTPUT PACKAGE

INTRODUCTION

| The Input/Output Package is comprised of fifteen sub-
routines to perform five different interrelated input/output
functions:

1. Request and read in an input string,

2. Output Ascii records,
3. Interrupt control and service routines,



56

. Carriage control programs,
5. Binary to Ascii octal or decimal conversion.

These fifteen different subroutines, which are listed
in Table 5.1 in their functional groups form a self—contained‘
unit; program modifications would not likely involve changing
the I/0 package for it exists as a unit almost totally
independent of other assembler features, yet used by almost
all assembler features. Subroutine GETCR is normally used for
scan purposes, but it is also called in DATIN to retrieve the
first character from the input buffer to ensure at least one.
character has bheen read before returninag from DATINM,

On scanning the progfam listing it may seem haphazard
to arrange subroutines TTY.I, TTY.P, I.ON and I.OFF one after
the other not according to functional group. This arrangement
Awithin the I/O package is convenient to subroutine CNFIG for
all I1/0 machine instructions reside within these four sub-
routines.,

With the exception of the binary to Ascii conversion
all other I/O functions have been designed around the I/0
facility of the Hewlett Packard Basic compiler for the 2100A
computer; also they are in some way reliant on the output

function. For this reason the output unit is discussed first.

OUTPUT CONTROL

The output function is called from various points
throughout the prooram; Subroutine TTY.P is the main driver

program calling subroutines INIT and GETCH.



57

Subroutine TTY.P

Calling Sequence
LDA < Character lenath of output >
LDB < The address of the output buffer >

On entry if

(A) > 0 then print (A) characters followed by a carriage
return and line feed,

(A) 0 then print onlv a carriage return and line feed,

(A) < 0 then print -(A) characters onlv.

]

TTY.P will output each chafacter using the non-interrupt
transfer routines discussed in Appendix D. By typing any key
on the keyboard the user may interrupt his program if the
interrupt mode had heen enabled before the input operation.
Interruét mode is disabled during the printing of the
introductory text. Output operations in non-interrupt mode
cannot be interrupted. Interrupt mode is enabled in‘the System
Controller after the Abort test. On an interrupt the control
flag is cleared to turn off device activity before calling the
interrupt service subroutine. | .

On a normal completion a carriage réturn and line feed
are output if requested earlier.

Subroutine INIT

Calling Sequence
LDA < Character length of outnut >
LDB < The address of the output buffer >
INIT saves the register contents and sets a pointer

depending on the sign of (A) on input'to TTY.P.

" Subroutine GETCH

Return P+1 Buffer emnty
P+2 Character in (A)

-



58

GETCH retrieves the next character, removes the parity
bit and returns the character in (A) to the second return
address. The first return address indicates that the text has

been output.

INTERRUPT CONTROL

An interrupt is a user initiated action to halt some
present activity. For the pﬁrposes of the assembler the
interrurt mode is used primarily to inferrﬁpt the printing of
warning messages to the user.

The interrupt service subroutines are called from
several locations in the assembler. Subroutine I.0OFF and I.ON
are both very straightforward and not apt tc be altered.
Subroutine I.STP uses a very simple handling of én interrupt
condition. The subroutine could easily be changed to treat
the interrupts in a'different manner.

Subroutine I.OFF

I.0FF turns off the device interrupt mode by setting a
NOP, a no operation instruction, into the device interruot
location and clears the device control flag to turn off read
mode.

 Subroutine I.ON

I.0N turns on the device interrupt by storing a jump to
the interrupt service subroutine in the device interrupt
location. The device is set to read mode and set to look for

input.



. 59

Subroutine I.STP
I1.8TP is thé actual interrupt service subroutine:; it
will call I.OFF to turn off interrupt mode and then call
TTY.P to print sSTOP before‘returninq to the System Controller.

CARRIAGE CONTROL

The carriage control calls are also called throughout
the assembler; often they precede a call to the output function
to print the output on a new line.

Subroutine CRLFD

CRLFD will clear the A register and call TTY.? to output

a carriage return and line feed.

Subroutine NWLNS

Calling Seguence
LDA < Two's complement number of CR-LF >

NWLNS will output the two's complement number of
carriage return-line feeds as specified in (A) by successive

calls to CRLF¥D,

"INPUT CONTROL

Subroutine DATIN is the main input subroutine calling
TTY.I-to perform the input operation and PROCS to store each
character in the input buffer.

Subroutine DATIN is primarily called from the System
Controller but there are separate calls from the initialization
program and for a response to the edit-veto request.

Subroutine DATIN

Return (A) PFirst character of input



60

DATIN outputs the read prompt, the @ and the bell
characters before calling sﬁbroutine TTY.I. On returning from
TTY.I length and address vpointers for character retrieval and
statemeht storage are set. A call to subroutine GETCR will
return the first character of the input in (A).

Subroutine TTY.I

Calling Seauence
LDA < Length of the 1nnut buffer, 72 characters >
LDB < Address of the input buffer >

Return (A) The number of characters input or -1 on
buffer overflow

TTT.I saves the length and address pointers and sets
the device to input mode. Using thevnon—interrupt request
routines pr;sented in Appendix D, each character is read in,
immediately after each character is read in subroutine PROCS
is called to store each character in the buffer.

Before returning to DATIN, TTY.I turns off the input

device read mode.

Subroutine PROCS

Calling Sequence
LDA < Character to be stored >

Return P+1 Get next character
P+2 (A). Character count
(B) Minus one value on buffer overflow

PROCS will ignore superfluous characters, in particular
the line feed and null character, and pack all valid characters
~into the input buffer. The back space character, the left
arrow, permits the back up of one character. Any number of

back space entries are permitted but multiple back spacing



61

cannot backup beyond the original buffer address.
Buffer overflow will be flagged in PROCS but is not
acted on. The second return address is set after recognitién

of a carriage return character to end the input string.

BINARY TO §§CII CONVERSION

Although, not directly related to the other I/O
functions the hinary to Ascii con&ersion facility is used
in the List proagram to‘convert the statement number to Ascii
characters and in the Dumo nroaram to convert the register
contents, after execution.

Subroutines CNDLC, CNOCT; CNRPIN, and DVUKN are all
Hewlett Packard librarv vrograms which have been modified
slichtly to simolify storage and output.

Subroutihes CNOCT and CNDEC.

Calling Sequence A
LDA < Value to be converted >

Return (A) The least two significant digits
(B) The address of the most significant digits

CMDEC and CNOCT specify ten and eight decimal,
resvectively for the conversion. The address returned in (B)

will be used as input to subroutine TTY.P.



- 62

TABLE 5.1

INPUT/OUTPUT SUBROUTINES IN FUNCTIONAL GROUPS

INPUT:
DATIN Request and read user input
Y. I Perform input oreration
PROCS Character processing for input
ouTPUT:
TTY.P Perform output operation
GETCH Character processing for output
INIT - Initialize for output

INTERRUPT CONTROL:

I.0N Turn on interrupt
I.0FF Turn off interrupt
I.5Tp _Interrupt service

CARRIAGE CONTROL:

CRLFD Output carriage return-line feed
NWILMS Output multiple CR-LF
BINARY TO ASCII COWVERSION:
CNOCT Convert to Ascii octal
CNDEC Convert to Ascii decimal
CNBIN Stored converted value

DVUKN Divide value to be converted



FIGURE 5.1 SYSTEM CONTROLLER FLOW_ DIAGRAM

MAIN ENTRY POINT

ON

INITIALLZE
LEXICAL
VARIABLES

INITIALIZATION
PROGRAM

LEXICAL SCAN
SUBROUTINE VAL

DUMP DIRECTIVE

63



ENTRY FROM

INITIALIZATION

PROGRAM

- Y SEQUENCE

R ———>DIRECTIVE
Y  _ SUBROUTINE
EDIPT
Y EDIT INSTRUCTION

f——""——*SCAN

Y SYSTEM DIRECTIVE
»SCAN

lN

—

LEXICAL SCAN
OF PROGRAM
STATEMENT

|

OMMEN N ASSEMBLE
TATEMENT > — STATEMENT

\J

64



ENTRY AFTER EDIT
REPLACE OR INSERT
OPERATION

STORE
—e—— 3/STATEMENT
IN SCB

STORE
STATEMENT
LABEL

|

TIPL
INSERT

Y

MULTIPLE

— . INSERT

~

PROGRAM

65



CHAPTER VI

" LEXICAL SCAN AND NUMBER MAMIPULATION

LEXICAL SCAN

- INTRODUCTION

Subroutine LEX is the main lexical ‘scan program used
to analyse source nrogram statements. LEX is called from
three different locations in the assembler:

The System Controller,
Subroutine EDIPT,
Subroutine DELTE.

A call from the System Controller is for ﬁhe analysis
.0of source program statements entered during the normal program
definition. Subroutine EDIPT will call LEX to scan source
program statements involved in an edit insert or replace
operation.

DELTE is an edit subroutine for deleting statements
from the assembled program. On an edit operation involving
the deletion or repvlacement of a program statement, the lexical
scan is necessary to return statement label information and
Memory Reference operand information. A label beginning a
statement to be deleted is no longer defined after the edit
operation: Subroutine LEX returns information used to locate
the symbol in the Symbol Table. Operand analysis is unnecessary
except for Memory Reference instructions; operand information
must be returned to adjust forward reference pointers, if
necessarv, after an edit.operation.

The section "Subroutine LEX" describes the lexical

66 ’



scan and emphasizes some of the chanqeé required in the
instruction scan for the instructions which are not implemented -
in accordance with the standard Hewlett Packard assembly
langquage.

Following the section "Subroutine LEX" is a discussion
on changes which could be implemented. The remainder of
.Chapter VI is a detailed discussion of the important lexical
routines. This group of subroutines may be further divided
into three grouvs, those involved with character manipulatiomn,
the lexical support routines used in instruction analysis and

the number forming subroutines.

Subroutine LEX

. INTRODUCTION

The available assembler instructions have been divided
into fifteen different grounms for overand analysis; these
fiftee;_gfoups and their operands have been described in Appendix
A, After the group type has been established the program falls
through a logical cascade operation which eventually loéates
the vaiue of the group number by comparing the group type value
with all possible group number values. Following the comparison
test for each group type is the program unit to interoret the
operand for the particular operand tvoe.

- Excepting Memory Peference instructions, all operand
recdgnition and evaluation is within the lexical vprograms.

Memory Reference operands will be examined but not evaluated

until the instruction is about to be assembled.



68

SOURCE STATEMENT SCAN C

LEX begins a character‘by character scan to analyse

the statement entry. The first character must be one of:

a blank,

a letter or a period,

an asterisk,
" Any other character will result in a call to a lexical error
message; all lexical error messages are listed in Table 6.1.

An asterisk signals a comment statement; no further
scan is necessary. The assemblv flag has been set for a comment
statement by subrdutine CLEAR; LEX returns to the calling program.

A blank signals that no lahel is present; the program
‘continues bv advancing to the next non-blank character in
preparation for the instruction mnemonic,

An alphabetic character or a period signals a label
is present. Using subroutine LABRD the label is read into the
temporary bhuffer for statement lahels. Conventional Hewlett
Packard assembly will truncate any label greater than five
characters and issue a warning message., For this assembler
at least one blank terminator character must foliow the fifth
‘or last label character or an error message will bhe printed
with the statement being ignored.

A label flag is set for the presence of a statement
label with an error message being printed for a doubly defined
label and the statement again heing ignored.

The instruction mnemonic 1is packed into a two-word

buffer to facilitate instruction look up by subroutine MNEM.



69

After returning from MNEM, the program begins the logical
cascade of the different instruction types.

On matching the instruction type number, operand
analysis may begin. Generally, the scan'of‘machine code
instructions adheres to standard Hewleft Packard definition.
The restrictions pertaining to Memorv Reference instructions
have already been discussed. One further deviation from
standard assembly is the use of a symbbl in an Iﬁput/Output
operand in the place of a channel number value.

Normally the channel number is in the range 0 to 63
but it mayv be ecuated to a svmbol such that a symbol replaces
the integer in the operand. It was decided that an I/0
instruction with an undefinéd operand would not be accepted.

' This is the first instance of statements with undefined
operands not Eeinq acceptéd. Memory reference instructions
having undefined operands will be accepted and retained for the
symbol tables have been speciallv designed to hold such
references. The Memory Reference instruction offers a 10 bit
address field to link forward references while an I/0 instruction
has oniy a six bit field for the channel number. This is
intended to discourage the use of I/0 instructions for the user
proqraﬁ area is restricted in size; it should encourage the |
use of the Dump Directive after execution.

On recognition of the END instruction control branches
to the execution programs, excent during an edit overation

which must be completed before beginning execution.



70

Data definitions have been discussed in Chapter III
in the section on mnemonics and pseudo ops. One important
restriction is that the data definition mav be no longer than
28 words in length. The only exception is the BSS pseudo op
which may be 128 words.

Before scanning any data defintion.the 28-word data
.buffer is cleared. As the instruction is scanned each data
value is stored in the buffer; this is particularly relevant
to the ASC, DEC, and OCT pseudo ops which may involve more than
one word in the definition. An error in the data entry will
cause the whole statement to be ignored. LEX will call
subroutines to input numeric terms for OCT and DEC but the
terminator character after each value is checked within LEX.

The remaining pseudo ops are at most a one-word entry
to the buffef. The BSS and EQU pseudo ops de not use the data
buffer.

Any symbol in a pseudo oo operand is restricted to a
data address symbol. This is important in the scan of the ABS,
BSS, EQU and DEF pseudo ops. The ABS and BSS pseudo ops have
been discussed in Chapter  II1I and Appendix A and need not be
dealt with any further.

| The EQU pseudo op is regarded as a data definition of
length zero but an assembly address must be set to store a
Symbol Table address for the label which must precede the
instruction. The operand address is stored in the last position

of the data table area with the assembly address corresponding



71

to this location. Before returning, the upper bound of the data
table is decremented to ?revent an overwrite of this instruction.

The EQU instructions is another instance of a stateﬁent
being ignored due to an undefined operand symbol but in this
case it is in accordance of the Hewlett Packard definition.

An undefined symbol in a DEF pseudo op operand is again
handled in a different manner as presented in Chapter ITI.

The DEF pseudo op is the last instruction type.
Failure by the program to match the instruction type number
within LEX signals a program error. An error messaqe.is
printed followed by a computer halt (HLT 33B); a re-entry
request is not presented. Overator intervention is reauired
ﬁo correct the vrogram fault. This intervention would probably
involve referring to an assembler listinqAbf the program to
determine core addresses of the variables involved in the
lexical scan and examininq actual core locations to determine
the error. To correct the program fault, it would probably be
‘necessary to change some memorv locations to restore their
proper value and reset the proaram location counter either
to coﬁtinue assembler activity on the current user program
or to abort the current program and initialize for a new user

proaram.



- 72

PROGRAM MODIFICATIONS

In considering the implementation of any changes the
overall program changes must be weighed against what advantages
could be gained.

The DEC and OCT pseudo ops instructions are totally
rejected if any part of the statement is in error. Changes
could be made strictly within LEX to ignore any data item in
error and print a warning message pointing to the ignored value.
To ignore the data item in error is trivial and presumably
to point to the data item in error is also trivial. But would
such a change be advantageous?

A user entering several data values in one statement
usually would not want an item excluded due to an error. With
the present implementation a user has greater control over the
program structure by the rejection of the statement on a single
error,

It, therefore, seems best to assume that changes to the
lexical scan would have to be implemented as a result of
expanding the set of available instructions or relaxing the
restrictions on the present instruction set.

Relaxing some user program restrictions would definitely
be significant within LEX. Operands for the DEF pseudo op
could be expanded to resemble a Memory Reference operand or
undefined references during an edit overation may he permitted.

Changes regarding Memory Reference operands or undefined

symbols in I/0 instructions could be considered.

-



- 13

However, the program modifications necessary would
probably far outweigh the advantages of such changes.

Expanding the instruction set to include the REP
pseudo op or floating point arithmetic reguests would require
changes throughout the assembier. Allowing the user to enter
multiplé instructions would require a much more thorough scan.
Such a change would necessarily involve a distinction between
Alter Skip, and Shift Rotate instructions in the Instruction
Table and a provision for the instructions which belong to
both instruction groups. Subroutine LEX would be responsible
for scanning these instructions and forming the multiple
instruction,.

Seemingly storage allocation would have to be rearranged.
The available storage size does not permit these inclusions
without usage of the disc input driver to load either ancillary
subroutines or program segments as needed. It would probably
be beét to leave all assembler and program tables in memory at
‘all times and relv on the controller unit to manage disc transfers
of program segments.

In the long run, the advantages of such changes should
far outweigh the work involved in implementing such a change.
Such changes would probably be beneficial to a more experienced

user without defeating the original purpose of the assembler.



- 74

CHARACTER MANIPULATION SUBROUTIMES -

The remainder of Chapter VI is devoted to the discussion
of the different subroutines used in the lexical scan and for
number handling purvoses. Some of these subroutines have
important uses outside the lexical scan but their primary

. function is as part of the lexical scan.
The subroutines involved with character manipulation

are listed in Table 6,2 and will be discussed first.

Subroutine RCXSP
BCKSP will back up the scan of the input huffer by
one character by adjusting the one's complement word count
and the address word to the next character in the buffer. No
check is needed for baclking up Beyond the original buffer
address for the situation never occurs.

Subroutine GETCR

Return P+1 Buffer empty
P+2 Next character from input buffer in (A)

GETCR is the only subroutine to retrieve a character
from the input buffer. For each call to GETCR the one's
complement character count is incremented; when this value goes
to zero the buffer has been fully scanned. The second return
address returns the character in (A).

Subrout%pe NTRIYK

Return P+1 Non~blank‘character not found
P+2 MNext non-blank character in (A)

Using GETCR, NTBLK will search for the next non-blank

character in the buffer.



- 75

Subroutine RDCOM

Return P+l No comma found in buffer
P+2 Comma read

Using GETCR, RDCOM will position the buffer pointers to
retrieve the first character after the comma on the next call
to GETCR.

Subroutine TRMCK

Return P+l Valid termination
P+2 1Invalid termination, character in (A)

TRMCX uses GETCR, but it has a different function in
that it is examining the character to bhe a terminatof, either
the blank character or the end of line condition. The first
return addfess signals valid termination: the second return

exits with the character in (A) for further analysis.

LEXICAL SUPPORT RETURNS

The lexical support subroutines will be described in
their approximate order of occurrence in LFX. Table 6.3 lists
these subroutines; error messages associated with these subroutines

are listed in Table 6.4,

Subroutine LARRD

Calling Sequence
LDA < First character of symbol, (A) > 0 >
_ < First character not read, (A) < 0 >
LDB < Address of symbol buffer >

Return P+1 First character not a letter or a period,

character in (A)
P+2 Symbol read

LABRD is the symbol reading subroutine for reading

statement labels and operand symbols. The first return address



- 76

7

israbplicable if on entrvy (A) signals that the first character
has not been read. MNormally, no error message is generated
unless nothing was read.

Ordinarily LABRD will read up to five characters into
the symbol buffer. Numeric characters will be stored as Ascii
characters so that these characters can be output if the symbdl
must be orinted separately.

Subroutine LETPR

Calling Sequence
LDA < character to bhe examined >

Return P+1 Character in (A) not alphabetic or a period
P+2 Alphabetic or period character in (A)
LETRP is called bv LEX and LABRD to examine a character
to be alphabetic or a period.

Subroutine ILOXUP

e T e e SO

Callina Sedquence
LDR < Address of the symbol buffer >

Return (A) > 0 The program address of the symbol
(A) = 0 Symbol not found in Symbol Table
(A) < 0 Undefined symbol
(B) Symbol Table address of symbol
Given the symbol buffer address LOKUP calls subroutine
FIND to locate the symbol position in the Symbol Table. An
undefined symbhol has had previous references bhut has not been

defined as a statement label.

Subroutine FIMND

Calling Sequence
LDE < Address of the symbol buffer >

Return (A) = 0 Symbol not in Symbol Table
() Symbol Table address of symbol



77 .

FIND anplies the hashing function to vyield the relative
table position to begin a linear search. The relative table
position is converted to an actual storage address to begin
the search for the next free area to store the symbol or the |
" symhol position in the table. | |

If the table area is not occupied,‘the symbol haé‘not
_been previously entered: control returns to LOKUP. A symbol
entry in this location will be checked word by word with the
symbol being sought.

Reaching the end of the table will immediately cause
the search to continue at the heginning of the table in a
circular fashion. Failure to find the symbol or a free position
for the symbol indicates the Symbol Table is full and results
in an abnormal program abort.

: Subroutine MNEM

Subroutine MNEM finds the assembly skeleton of the
instruction mnemonic from the Instruction Table. Using the
mnemonic which has been packed into a two-word buffer by .
subroutine LEX, MNEM performs a binary search with the first
section of the Instruction Table for the first two characters
of the mnemonic.

After finding the instruction position in the first
section of the Instruction Table, this position pointer is
adjusted to reference the corresponding position in the

second section of the Instruction Table.

Further corrections may be included to the position



- 78

pointer if there is more than one mnemeonic in the Instruction
Table beginning with the same first two letters. The poiﬁte?
is set to reference the position of the first mnemonic is sﬁch
a case.

Using the vosition information, a linear search is
set to match the third character of the mnemonic with the
characters stored in the second section of the Instruction
Table. Since six différent mnemonics may begin with the same
two letters, the linear seafch is attempted six times.

Failure to match either the first two characters or
the third character of the mnemonic with the appropriate
entry in the Instruction Table will signal an undefined
mnemonic which results in an error message and return to the
System Controller.

On successful recognition, the instruction number
and skeleton assembly code are retrieved from the Instruction
Table,

For the simple task of determining the type oé
assembly an assembly flag variable is used rather than making
referénce to the assembly skeleton. Initialized to zero by
subroutine CLEAR, the assembly flag is used to denote:

pseudo operation (data definition) (-1),

comment statement ( 0),
machine code instruction (



79

N

Subroutine RANGE , -

Calling Sequence
LDA < Value in operand > _
LDB < Two's complement of upper bound value >

Return P+1 Valid termination
P+2 Invalid termination .
]

RANGE is intended to examine the operand values for
the Input/Output and Extended Arithmetic Register Reference
instructions. RANGE checkslthe operand value to be positive
and within range and includes the operand value with the
assembly skeleton. »

Subroutine TRMCX is called to check for valid
termination; RANGE uses the two return addfesses depending on
TRMCK.,

§Ebroutine OPREC

All Memory Reference onerands, some pseudo-op operands
and data addresses to be output by the Dump Directive will be
read in and retained. OPREC calls BSKSP, TRMCK, LABRD, and
NUMBR, NUMBR reads in decimal or octal integers. OPREC does
not rely on RANGE to check operand values for RANGE will include
the operand value with the assembly skeleton and include a
separate call to TRMCK,

‘Subroutine STDAT

Calling Sequence
IDA < Data value to bhe stored >

Before any data definition is scanned, the data buffer
is cleared and a counter is set, STDAT‘will store data values

from the data buffer during the scan of the nseudo op.



80
Data definitions usinag the buffer have an impééed
bound of 28 words since this is only a temporary huffer,
Failure to comply with this restriction results in a warning
message with the statement being ignored. This data is held
in the buffer to he assembled after the lexical scan.

Subroutine LARCX

Return P+1 No operand svmbol
P+2 Onerand svmbol is not defined
P+3 Operand symbol defined, address in (A)
Using OPREC, LABCK will read in the operand for pseudo
ops having address onerands and data addresses for the Dump
Directive. With three different return addresses overand
recognition and analysis for the different instruction types

is easier.

Subroutine NDATRG

Callinag Sequence
LDA < Address to be examined >

DATRG checks the address to be within bounds of the
program data area or the available base page area. DATRG is
primarily a lexical support routine but is also required by
the Dump Directive.

Subroutine VAL

After a prompt from VAL the user is to type in a
temoorary value for an undefined symbol in an ABS or BSS operand.
The ABS/BSS flag is set followed by a return to the
System Controller to input a value. The System Controller
will return program control to VAL to clear the ABS/RSS flag

and subhstitute the-value for the undefined symbol.



81

Reading in a value as such requires several
precautionarv steps; the original statement entry resides in
the input buffer and the statement length in a special variable.
Both of these must be retained if the statement is to be stored
in the Source Code Block after aésembl?.

After each input operation the character length of the
-input is stored in a special input variable. Before reading
in a temporary value the character length of the original
program statement must be stored in a temporary location, not
involved with an input operation so that this value may be
retrieved after the temporarv value is input: the input huffer
address is alteredbso that an auxiliary buffer is used to input
the value. Pointers must be retained to scan the buffer.

After the input operation is complete the input buffer address
and the statement length are then restored to their proper
variable.

An error in the entry of a temporarv value results

in the original program statement being ignored.



82

NUMBER MANIPULATION

INTRODUCTION

The number handling subroutines are used throughout
the assembler but are primarily called by the lexical routines.
There are four major categories with which number usage is
associated:

Octal integers for the OCT pseudo op,

Octal and decimal integers for operand exoressions,
Floating point numbers and decimal integers for the DEC
vseudo op,

Decimal integers generallv involved with statement numbers.

Before discussina the four different number types it
should be pointed out that there are eight error messages,
listed in Table 6.5, shared by the number forming subvrograms.
In the event of an error, subroutine ERRNOR is called to print
the error message and re-entry request. During initialization
program control returns to the calling point but normally

control passes to the System Controller.

OCTAL INTEGERS - Subroutine OCTIN

Return (A) Octal integer

Subroutine OCTIN is called strictly by LEX to form
octal integers for the OCT pseudo op. The next non-bhlank
character is examined to be a sign with the sign flag set
accordinglv. TFailure to locate anv data or a solitary sign
necessitates a branch to the appropriate error routine.

Initially a zero value is set into a temporary
variable. Y¥hile constructing the value each new digit will

be added into the previous value after the value has been



83

shifted three times to the left. The shift used is a left
circular shift with overflow checked after each shift hy
examining hit 0. |

On finding a character which is not an octal digit
OCTIN checks that at least one valid octal digit has been
input. If so, OCTIY assumes that this character is the
terminator and that the value has been defined. Like all
other numbher routines a terminator is returned to the bhuffer
‘and not checked in OCTIY.

Before returning one last check for a negative sian
is taken with the two's comnlement value returned if necessary.

If no valid octal digits were input before encountering

the terminator an error message 1is output.

Subroutine QCTCX

Calling Seaquence
ILDA < Character to be examined >

Return P+1 Character in (A)
P+2 Octal digit in (A)

OCTCK is the only subroutine called by OCTIN to examine
each character to be an octal digit.

OPERAND INTEGERS - Subroutine MNUMBR

Return P+1 PFirst character not a number
P+2 Decimal or octal integer in (A)

.Subrqutine NUMPBR is called to read in operand integers,
either decimal integers or octal integers flagged by a B,
immediately following the value. NUMBR will form an octal and
decimal value from the input until it can determine which value

to return. -



84

Like OCTIN, NUMBR will check for no operand dééa,
a solitary sign and retain sign information. Each character
will be examined by subroutine DECHK to be a decimal digit
but a separate internal check is required to test a decimal
~digit to be an octal digit as well.
Before including a new decimal digit the previous
value is multiplied by ten using shifts and additions. A
valid octal digit is included after three shifts. In each
case overflow will he checked hefore accepting the new digit.
Any character which does not satisfy the octal digit
test results in an error flaé being set; the scan must continue
for this number is ant to be a decimal value. The first
character rejected by DECHK is tested to be the character B
signalling an octal digit. If this character is @ B and
the octal error flag is clear, the octal value is returned,
but if the error flag is set there will be an error meséage.
Any character other than B is assumed to be a‘terminator
and is returned to the buffer: a decimal value is returned.

Subroutine DECHK

Return P+1 Character in (A)
P+2 Decimal digit in (A)

All number forming subroutines involved with decimal
values will use DECHK to check each character being scanned,
DECHK examines the character to be in the range of decimal

digit characters and returns the character if the test fails.



- 85

DEC PSEUDO OP

The DEC psevdo op may have floating point, or decimal
integer operand wvalues even £houqh floating point arithmetic
is not available. Subroutine CONST will initiate the input
of floating point constants.

Subroutine CONST

Return (A) and (B) Floétinq point constant
CONST advances up to the next non-blank character,
sets the sign flag and checks for a solitary sign. CONST
calls NUMCK which controls the Ascii to binary conversion.

Subroutine NUMCK

Return (A) and (B) Floating point constant
NUMCK is very similar to the subroutine NUMCK is the
Hewlett Packard Basic compiler for Ascii to binary conversion
of floating point numbers. Changes have been made to ignore
leading zeros in an exponent term and error handling has been

altered. As part of the number input NUMCK calls:

.PACK To normalize and pack a floating point constant,
NORML To normalize a value with its exponent,

MpY To multiply an unpacked number by ten,

DBY To divide an unpacked number by ten,

MPY To multiply an integer by ten.

The program logic has not been changed from the program
'listinqs of the Hewlett Packard Basic compiler. Since these
programs are évailable in Hewlett Packard system listings and
since they exist as support programs they will not be discussed

any further.



- 86

DECIMAL INTEGERS

The DEC pseudo oo, by definition, may have decimal
integer operand values. Rather than write an additional
program for strictlv decimal integer input it became necessary
to provide a real to integer conversion.

The pfesence of subroutine IFIX in the Hewlett Packard
system listings provided the necessary conversion as well as
a check on the exponent of a floating point number.

All that remained was to write a simple subroutine to
determine a real or integer value from the floating point
number stored in (A) and (ﬁ). Two variables DPFLG, the decimal

point flag and EFLG, the exponent flacg, have the format.

DPFLG = 0 No decimal noint present
= 1 Decimal point oresent

EFLG = -1 No exponent term

' = 0 Exovonent term

Subroutine TVYPCK

Calling Sequence
LDA < Floating point number >
LDB < Ploating point number >

Return P+l Floating point number in (A) and (B)
"P+2 Integer in (A)

TYPCK examines the decimal point flag and the exponent
flag and will call subroutine IFIX if neither of these variables

were set in NUMCK.



87

Subroutine IFIX ot
Calling Secuence
LDA < Floating point number >
LDB < Floating point number >
Return (A) 1Integer value
IFIX converts the floating point value to a single word

" integer.

Subroutine GTNUM

GTNUM calls CONST to input a positive decimal integer
value. GTNUM will not accent negative or real number values.

Subroutine TWINT

Return P+1 One integer valid termination

P+2 One integer invalid termination

P+3 Two integers valid termination

P+4 Two integers invalid termination
TWINT is set to call GTNUM twice to inout one or two

positive integers. The different return conditions are

important when examining the veto flag on an edit request.

Normally, the third return is the only acceptabhle return for
statement number input. Termination is checked by TRMCX and

as in all other cases the terminating character is returned

. to the bhuffer by BCKSP.

SUMMARY

The number handling subroutines and the main features
of the lexical scan have been presented. Programs to input
and store floating point numbers have been successfully
implemented. Further implementation of floating point arith-

metic subroutine requests is definitely possible.



88

Once the lexical scan is completed control returns to
the calling program. In the case of a call from the System

Controller statement assembly and storage follow immediately.



-89

TABLE 6.1 LEXICAL ERROR MESSAGES

Error messages with an alternate label, i.e., (ERRS6),

signal base vage error messages.

LABEL ERROR MFSSAGE

LXR1 FIRST CHARACTER NOT FOUND

LXR2 ILLEGAL FIRST CHARACTER

LXR3 BAD DATA FOLLOWS LABEL

LXR4 DOURLY DEFINED LABEL

LXRS INSTRUCTION MOT FOUND

LYR6 NO OPERAND FOUND

(ERR6)

LXR7 BAD DATA FOLLOWS OP CODE

LXRS8 BAD DATA IN OPERAND FIELD

LXR9 ILLEGAL CHARACTER BEGINS LABEL
(ERR5)

LXR10 UNDEFINED LAREL IN OPERAND
(ERRS)

LXR1l1 ILLEGAL OPERAND TERMIMATION
(ERR4)

TXR12 ILLEGAL INSTRUCTION DURIMNG EDIT
LXR13 OPERAND VALUE OUT OF RANGE
(ERR3)

LXR14 NO LABEL PRECEDES EQU PSEUDO OP
LXR15 = ADDRESS MUST BE POSITIVE

LXR16 INSTRUCTION MNOT FOUND

L¥R17 OPERAND IS UNDEFINMED

(ERR7)

LXR18 UNDPEFINED LABEL NOT PERMITTED WITH DEF DURING EDIT


http:OPF.RA.ND
http:MP.SSl\.GE

LAREL

LXR19

ERROR MESSAGE

OPERANMD VALUE MUST BE GREATER THAN ZERO

90


http:OPP.R1\.ND
http:MF.SSZ'i.GB

91

TABLE 6.2 CHARACTER MAMNIPULATION SUBROUTINES . .

SUBROUTINE

BCKSP

GETCR
NTBLK

RDCOM

TRMCK

FUNCTION

Back space one character in the input buffer

RPetrieve the next character from the input'
buffer

Get the next non-blank character from the
input

Read up to a comma in the buffer

Check for a termination character



92

TABLE 6.3 LEXICAL SUPPORT ROUTINES

SUBROUTING FUNCTION
DATRG Check for data address
FIND 7ind Symbol Table address of symbol
LABCK Read in operand, examine symbol
LABRD Read a symbol
LETPR Check for period or a letter
LOKUP Look up Symbol Table address
MNEM Find assemhled instruction from mnemonic
OPREC Read in and interovret overand
RANGF. Check Channel Number and Shift Count range
STHAT Store data value in temporary data buffer

VAL Prompt definition of undefined ABS or BSS symbol



TABLE 6.4 FRROR MESSAGES FOR LEXICAL SUPPORT ROUTINES

SUBROUTINE

’DATRGk
FIND
LABRD
MNEM

OPREC

RANGE

STDAT

ERROR MESSAGE

ADDRESS BEYOND PROGRAM BOUNDS
SYMB0L TARLE OVERFLOW

NO LABEL FOUND

JLLEGAL ASSEMBLER INSTRUCTION
OPERAND VALUE OUT CF RANGE
ILLEGAL OPFRAND TERMINATION
MINUS SIGN PRECEDES LABEL
MINUS SIGM PRECEDES ASTERISK

INDIRECT REFERENCE PERMITTED ONLY WITH
MEMORY REFERENCE AND DIEF IMNSTRUCTIONS

OPERAND VALUL OUT OF RANGE

DATA INPUT EXCEEDS IMPOSED LIMIT

93



TABLF 6.5 NUMBER PROGRAM ERROR MESSAGES

LABEL

NUMR1

NUMR2

NUMR3
(ERR1)

NUMR4
NUMRS
NUMR6
NUMR7

NUMRS

ERROR MESSAGE

NO OPERAND DATA FOUMD

SOLITARY SIGN

BAD DATA INPUT

ERROR IN EXPONENT

INTEGER OVERFI,OW

POSITIVE INTEGER EXPECTED

BAD DATA FOLLOWS IMNTEGER

REAL HNUMBIR OUT OF RANGE

94


http:SOT.,IT.'l\.RY

'FIGURE 6,1

SUBROUTINE LEX FLOW DIAGRAM T

Lexical Errors have not been included. The term "INTR NUM"

is used to represent Instruction Number.

( ENTER )

¥
RETRIEVE
FIRST

CHARACTER

IRS
ALPHAAfUMERIC CHARACTER

' RETURN
READ LABEL

ASTERISK

Rz P

READ MNEMONIC
LOOK UP

INSTRUCTION




NTR ' CLEAR FLAG

MAY -BE

NUM=2 PRESENT

[ 4

CHANNEL
NUMBER

SHIFT
COUNT

MASK OPERAN
INTO ASSEMB
SKELETON

RETURN

26



INTR Y
NUM=6
N

INCREMENT
ASSEMBLY
LENGTH

W
XAMIN

MEMORY -
REFERENCE || RETURN
OPERAND

\EXECUTE USER
“"PROGRAM

INITIALIZE
DATA BUFFER
AND POINTERS

SYSTEM
C CONTROLLER




READ OPERAND
STORE IN

¥

READ OPERAN]

~7

SET BSS FLA@

DATE BUFFER

L

RETURN

RETURN

98



'READ OPERAND
STORE IN
DATA BUFFER

ERROR ERROR
MESSAGE MESSAGE

PROGRAM

ERRCR SYSTEM
CONTROLLER

( RETURN )

929



CHAPTER VII CT

" ASSEMBLY AND STORAGE

INTRODUCTIONM

During prooram definition after control returns from
subroutine LEX, subroutine ASMBL is called to premare pointers
and allct svace to store the statement in the Source Code

Block. During an edit overation EDIPT calls ASMBL,

INSTRUCTION ASSEMRLY

Afterbcallinq ASMBL the System éontroller loads the
assembly flag into the » register and will call SETCD unless
0:9) ié a zero, a comment statement. SETCD is also called from
various places in the editor for storing edit entries.

Table 7.1 lists seven of the auxiliary assembly
subroutines called by SETCD, Of that list subroutine DFTLN,
DTSET and STPCD do not have error conditions while subroutines
STLBL, STRCK, DATFL and STPLC have error messadges. These
vsubroutines will be discussed following thg discussion on
subroutine SETCD,

Subroutine SETCDH

Calling Sequence
LDA < Assemblv flaa >

The assemblv flag is examined and control branches
accordingly; data definitions were treated first for they are

less comnlicated than machine code entries.

100



101

DATA DEFINITIONS

For an T0OU pseudo op the assembly address has been set;
SETCD returns to the calling program.

Otherwise, the assembly address is set the next free
area in the data table; data table pointers are set to check
for a data tablé overflow, by calling subroutine DATFL. Once
it has heen ascertained that the data table will not ovérflow,

the data is assembhled hefore returninag to the calling program.

MACHIMNE IMSTRUCTIONS

All machine instructions other than Memory Reference
instructions have alreadyv heen scanned and prenmared for assembly
and will be immediately stored in the next location in the user
bprogram area.

Memory Reference operand evaluation and storage now

become the sole function of SETCD.

MEMORY REFERENCFE OPERAND TVALUATION

Memory Reference overands not having a symbdl or an
aéterisk term are evaluated first. The opérand integer becomes
the address by a simple addition to the assembly skeleton.
After checking for an indirect reference the instruction is
stored in the user program area.

'Operands involvina the PLC symbol, the asterisk, are
assembled next. The SCP address of the proagram statement with
a bit flag for an indirect reference and the overand integer

are stored in the PLC table. The relative page address of


http:OP~R:z\.ND

102

the entry to the PLC table becomes the forward reference
pointer to the instruction.

The remaining operand expressions involve symbols
either defined or undefined with or without integer terms.

For each symbol there is a call to subroutine LOXUP returning
"~ the Symbol Table address as well as a pqinterbfor a defined
or undefined symbhol or a symbol not found in the Symboi Table.

A defined symbol without an operand integer can be
assembled immediately. A data address must bhe adjusted for
the address to reference the data value and not the data
address location. The instruction is assembled as discussed
in Chapter IIIkby referring to the operand through one level
of indirect addressina,

Symbols which were not found in the Symbol Table are
entered into the table by a call to STLBL. These symbols can
ﬁow be regarded as undefined symbhols.

The address of the last direct and indirect forward
reference will be held in Word 4 and 5 respectively in the
Symbol Table entry of undefined symhols. The address of the
last reference will be taken from the Symbol Table and combined
with the assembly skeleton to be stored with the user program.
The instruction will apnear as a direct reference to base vage
but will be recognized as a forward referencé using the address-
-1inkaqe techniques presented in Chapter IIIX.

Each Memory Reference operand having a symbol and an

integer is referred to asba compound operand and will be stored



103

in the Special Symbol Table, SST. Word 6 of the Symbol-Table
entry for any symbol is a link to the first compound operand
for that symbol. Word 4 for each compound ovperand entry is

a link to further compound operands with a zero in Word 4
being the terminator.

For each different operand combination there will1be
a new entry to the SST. Second and subsequent entries of
identical compound operands will not require_a new entry but
will be linked in the same manner as forward references for
undefined symbols.

A zero in Word 6 of the symbol involved in the compound
operand necessitates a linear search through the SST until the
next free area is found. Fntries to the SST have been presented
in Chapter III. The address of the SST entry is set into
Word 6 of the Symbol Table entry. The instruction is stored
like anv forward reference:; in this case, the address term
is a pointer to the SST.

If Word 6 has a link to the SST then each SST entry
associated with the symbol will be examined for an identical
compound operand. Failure to find a match requires a linear
search through the SST for the next free area. In this case,
the link pointer is set to Word 4 of the last S&8T entrvy.

"Within SETCD there is a check for SST overflow or
‘the apnroach to overflow conditions with the appropriate

warnings.



104

ASSEMRLY ROUTINES T

Subroutine HETLM

Return (A) = 0 Two-word assembly
(A) # 0 One-word assembly

DETLH determines the assembly length of Memory Reference
instructions. On a two-word assembly the first word is stored
in the user program area. For a one-word assemblv the assembly
skeleton is returned in (7).

Subrogﬁ}ne STRCD

Callina Seaquence
ILDA < Assembled instruction »

Fach instruction is stored in the next free location
in the userbproqram area. The pointer to the user program
area is advanced by one and a call to subrdutine STRCX will
check for program area overflow.

Subroutine DTSET

Callinag Seaquence
ILDB < Address for first data term >

DTSET will prepare the address pointers and store the
.data addresses and vaiues. The BSS instruction uses an indirect
reference to non-existant memory to return a zero to be used
as the data value: all other pseudo ops, excepting EQU, have

the data values stored in a temporaryv data buffer.

Subroutines STRCKX and DATFL
vThesé subroutines simply check the position pointers
of the user program afea and the data area respectivelvy.
Overflow of either tabhle will result in an abnormal abort

condition. A warning message is printed if either table



. 105

approaches an overflow condition.

Subroutine STLBL

Calling Sequence
LDA < A > 0, Defined symbol >
< A =0, Symbol not in table >
LDB < Symbol Table address of symbol >
STLBL will copy the symbol name into the Symbol Table,
for a defined symbol the program address and the SCR address
will also be included. For undefined symbols the forward
reference pointers have already been set.
STLBL also counts the numher of symhol entries to the
Symbol Table and will print a warning messace if the table is
nearly full. Overflow is detected in subroutine FIND when

a symbol cannot be stored or located in the table.

Subroutine STPLC

Calling Seaquence
LDA < SCB address of statement >

All PLC references are stored in the PLC table. No
attempt will he made to define such references until execution.
Like the other nrogram tables a warning is presented if the
table is nearly full or the user orogram will he lost if the

table is allowed to overflow.



. 106

STATEMENT STORAGE

INTRODUCTICN

Four different subroutines are responsible for state-
ment storage in the Source Code Block and the definition of
statement labels in the user program., They are:

ASMBL To allocate SCR snace to storé a program statement,
STSCR To store the nrogram statement,
LBDEF To define a statement label,

FWDRF To define previous references to a statement label.
ASMRI, is called from the Svstem Controller and
subroutine EDIPT. STSCB and LBDEF are strictlv callea from the
System Controller., Subroutine FVDRF is called from LBDEF and

the XECUTT Directive.

These subroutines are called in the order presented
and once comolete the System Controller loops bhack to its
main entryv point or to the multiple insert module if a multiple
insert operation is in progress.

The remainder of Chapter VII is a discussion of these

four subroutines.

Subroutine ASMRI

The character length of the proaram statement and the
word lenagth of the entry to the SCB will be saved in a temporary
variable. The Free Space table is scanned for an area large
enough to hold the statement entry.

The scan of the Free Space table will cease when the
first area larée enough to hold the SCB entrv is found. The

table entrv mav he deemed large enouagh to held further entries;



. 107

it was arbitrarily decided that any isolated area in the SCB
larger than twelve words in length would be retained after part
of this isolated area had been allocated for the current
statement; remaining entries smaller than twelve words would be
ignored.

Failure to find an entry in the Free Space table large
ehouqh to hold the statement éntry requires that the next avail-
able area in the SCB be allotted. The SCB address is retained
for statement storage after assembly.

A test is made for the SCR tahle bheing full or nearly
full with the avpronriate action taken in each case.

Subroutine_STSCR

STSCE stores the six words of information ?ertainiﬁq
to each statement along with the source statement in the SCB
buffef. rdit instructions involving source statement entries
will handle the storage of the address of the previous and next
statements as well as statement numbers but require STSCR to
complete the SCB entry.

During program definition the address of the next and
previous statements are readily set but a back up must be included
if the instruction should be stored in an area that was referenced
by the Free Space table. A correction must be introduced to link
the nrevious instruction with the current instruction.

The statement number is easily calculated and saved. Word 4
becomes the temporary, set in ASMBL, holdinag the character—leﬁqth

of the statement and the word-length of the SCR entrv.



- 108

Word 5 is the assembly address with bit 15 set to one for a
data definition. A comment statement is represented by a zero
value. Word 6 is the assembly length of the statement.

Begihninq with the first word to folléw Word 6 the
source statement is copied into the Source Code Block.

Subhroutine LRBDEF

Subroutine LEDEF initiates- Symbol Table definition of
all statement labels. If there has not been previous reference
to the svmbol STLBL is célled to store the symbol in the table
and signify that the éymbol has been defined.

A svmbol having had a vrevious reference has forward
references associated with it. By checking the direct and
indirect forward reference pointers any value less than 7008
signals a forward referehce. By setting a flag for either a
direct or indirect reference these forward references will be

defined by a call to subroutine FVDRF,

Subroutine FWDRF

Each forward reference is split into the assembly
skeleton énd the address pointerQ Using the assembly skeleton
and the assembly address, each instruction will be defined in
the same manner as a Memorv Reference instruction having an
operand symbol. Once the address pointer becomes greater than
700

g all forward references have been defined; FWDRF may return

to the calling progran.



SUBROUT INE

DATFL

DETLN

DTSET
STLRL
STPLC
STRCD

STRCK

. 109

TABLE 7.1 AUXILIARY ASSEMBLY SUBROUTINES

Check

FUNCTION

PO S

data table area for overflow

Determine assembly length of Memory Reference
instruction

Assemble data definition

Store
Store
Stdre

Check

symbol in Symbol Table
program location counter reference
assembled instruction in user program area

user program area for overflow



CHAPTER VIIT

SYSTEM DIRECTIVES

INTRODUCTION

After the colon, signalling a System Directive, is
recognized there is a transfer to the program module to interpret
and channel the System Directives. The next non-blank character
following the colon is required for directive identification.
Failure to find a non-blank character or failure to match the
character to one of A, D, E, H, L, S, or X will result in an
error message and a return to the System Controller.

Using a logical cascade the character is tested with
the above characters in the order presented until a match is

found.

ABORT

e et

The Abhort Direcctive will initiate an unconditional

jump to the initialization program.

DUMP

On recognition of a D, program control branches to the
Dump program to print the register names and contents in octal
and decimal format. Dumn will print the register contents as
they avpeared after the previous execution by using the special
store variables holding such values.

The binary to Ascii section of the I/0 package is used

solely to convert the reagister values to Ascii characters for

output. One further feature is the binary to Ascii decimal

11N


http:specj.al

111

subroutine ASCDC which will convert binarv to Ascii usiﬁg
subroutine CNDEC but also include a minus sign preceding the
value if negative.

After the reqister contents have heen presented a
reaquest is presented to the users to type either R to return
6r D followed by a data address to be output. The Dump flag
is set before program control returns to the System Controller
to input the user response. Program control returns to the
next location in the Dump program.

Anv resvonse beginning with a character other than
a D is accepted as a reaquest to terminate all Dump operations.
The Dump flag‘is cleared and control passes back to the System
Controller.

Otherwise, the data address is read in by LABCK. The
operahd must have a data address symbol and be within data
table bounds. Failure to satisfyv these conditions generates an
error message and a re-entry request; Dump error messages are
listed in Table 8.1. It should be noted that these are bhase
page error messages used for operand errors elsewhere in the
assembler.

Successful entrv of a valid data address will result
in the corresponding value being printed first as a decimal
value then as an octal value. The message requesting a data
address dump will be presented after each address dump until
the user signals he is finished.

Dump output is presented in Appendix E.



S 112

DUMP SUBROUTINES T

There are five subroutines called strictly within the
Dump Directive.
EODMP To prepare to display (F) or (0)
RGDP1 To display (A) or (B)
RGDP2  To display (F) or (0)
RGDP3 To print the register name '
T ASCDC To convert binarv to Ascii decimal with a minus
sign preceding a negative value

These subroutines rely on the binary to Ascii conversion
facility in the I/0 package to prepare the values before calling
subroutine TTY.P,

Subroutine ASCDC calls subroutine CNDEC in the I/0O
package: a negative number is converted to a positive before
calling CNDEC and a minus sign character will be stored in the
buffer holdinag the Ascii outnput.

Three lexical scan subroutines are required to read in
and examine the data address.

RDCOM Read up to the comma bhefore the data address

LARBCK Read the onerand and examine the symbol term
DATRG Check for a data address

EDIT

Even though Edit is the next directive in the logical
sequence of System Directives, it will not be discussed since

Chapter IX is a detailed discussion of the editor.

HALT

Recognition of the H character will halt the computer
with instruction HLT 77B and 1020778 will appear in the display

register on the computer front panel. By pressing the run



113

switch assembler operations may continue.

LIsT

The List Directive will list the user program statement
by statement. Unlike the System Directives already nresented
List requires a scan of the command to establish the presence
of statement numhers.

The format for the list instruction is:

+L(IST) (,M(,17)).

M and N, if nresent, snecify the first and last étate—
ments to be listed. TIf N is absent then all statements from
M on are listed. If neither M nor M avnpear the whole program
is listed.

If a comma is not encountered in the scan, it is
assumed the whole program should be listed. Thé first and
last statement numbers are set as parameters to subroutine LISsT.

On recognition of a comma it is assumed that statement
numbers follow. Suhroutiné TUINT will read in these statement
numbers; the second and fourth return addresses from TWI&T
involve invalid termination and result in an error messaqge
warning.

If N is abhsent then statement number M is examined to
be less than the largest number else an error message for
statement numbers out of range. Statement numher ™M and the
last statement number will be set as parameters to subroutine
LIST.

If both M and N are present, M and N will be the



114

statement numher parameters to LIST. N must be greater than
the first statement number and ™ must be less than the last.
If N is less than ™ no error warning is printed.

List error messages are presented in Table 8.2, these
are base page error messages which are used by the Sequence
‘Directive as well.

Sample LIST ouput is ﬁresented in Appendix E.

Subroutine LIST

Calling Seaquence
LDA < Positive value, call from System Directive >
< -1, call from editor »>

Beginning with the first statement entry in the'SCB
and continuing for all entries LIST will save the address of the
next instruction.

For each statement LIST scéns it retrieves the statement
ﬁumber, Word 3 of the SCB entry. LIST is looking for the first
statement number not less than the first statement number’
parameter. But before any statement will be printed the
statement number must also be less than or equal to the second
statement number parameter.

Using the binary to Ascii subroutine CMDEC the state-
ment number is converted to Ascii data and printed with leading
zeros. A blank character is then printed. Word 4 of the SCB
entry holds the length of the source statement; now with the
SCB address of the statement the source statement can be listed.

When either statement number bounds or the terminator

in the SCB are encountered all listing ceases. On a call from



115

the Svstem Directives module the message *LIST ENDS* ‘is

presented. On a call from the editor the message is surpressed.

The format for the Sequence Directive is:
:S (EQUENCE) ,M,N.

‘Sequence will change statement sequencing such that
M becomes the first user program statement number and N is the
increment for successive statement numbers. Following completion
the whole program will be listed by a call to subroutine LIST.

Subroutine SOMCE, called for sequencing information in
éhe initializatien program, is also called by the Seéuence
Directive.

Bad input data or a range error will cause the Sequence
‘flag to be set before returning to the System Controller for
new values of M and N. Once the Sequence Directive has’been
requested, and an error has occurred valid data must be entered’
before the Seaquence flag will be cleared,

With the new secguencing information there is a cascade
through the SCB with a new statement number assigned to each
statement,

gpbrougipe SONCE

Return P+1 ZIrror, Re-enter statement
P+2 Statement numbers accepted and stored

Calling subroutine TWINT, SONCE will read in two
statement numbers, two integer values for M and N. M is

restricted to be a vositive value less than or ecqual to 1000



116

while N must be positive, non-zero and less than or equal to-
25,

On a data innut or range error the error message is
printed hefore proagram control is directed to first return
address.

- If both numhers are in range the values are stored and

program control returns throuah the second return address .

XECUT@

Before bheginning the execution of a user program, XECUTE
subroutines PLCDF and SSTDF will attempt to define all PLC
references and entries to the SST table.

Subroutine CNDSCM will scan the user program and replace
the first 99 forward references with a jump to the XFCUTE
warning message regarding undefined forward references.

| The main input buffer, the auxiliarv input buffer for
the témporary definition of undefined ABS or BSS operand
symbols and the data store huffer together form a 100-word
buffer. CDSCM will clear this buffer area to zero and store
the first 99 forward references. TFven though the huffer can
hold up to 100 forward references only the first 92 are held
so that a zero will signal the last forward reference,.

It is definitely possible that there may be more than
99 forwérd references and it is definitelv vpossible to define
a orogram which will skip around the first 99 forward references
and yield incorrect results by executing instructions which are

forward reference indicators.



117

But if these conditions should arise the user is not’™
using the assembler as it was intended and/or the user's
regquirements are bheyond the scopve of the assembler.

The assembler was intended for inexperienced nrogrammers
to develon oproarams in steps and blocks so that the user can
check his oproaram bv executinag and dumping the results. 7o
accunulate over 99 forward references shows that the user is
entering a lono complicated nrogram without testing it in
steps, in which case the user is probably too experienced to
benefit from using the assembler. But if these 92 forward
references are such that thev are intended to reference an
address bevond the bhounds of the program, because of an operand
integer term, then the user is heing foolish and wasting his
time for he should know that the assembler is restricted in
program size.

Thus, it seemed reasonable to stop at 99 forward
references being repnlaced by a jumn instruétion to the forward

reference warning.

-

This special jumo instruction has also been placed in
locations 00002 and 99003 if the user should attenpt to execute
the contents of the A or B registers.,

The user program may now be executed. After successful
execution the register contents are speéially‘saved by
subroutine SAVR and all forward references are returned to the

proagram.

- The user orogram is scanned for the occurrence of the



118

particular jumnp to the forward reference warning. Fach of
these jumps will be revlaced by the next forward reference
stored in the buffer before execution. Once a zero is
encountered all forward references have been restored to the
program; control returns to the Svstem'Controller.

' During the execution of a user program if controi
-should pass to the forward reference warnina execution of the
user oroaram will cease at that oointf register contents will
be saved for dumn purnoses.

Before printing the warning message; the interrunt
facilitv on the outout device must bhe disabled. This is
extremely important fer once the warninag message is printed
the forward references are returned to the program. Inter-
rupting the bprintinag of the warning message will return control
to the System Controller before the forward references can be

restored to the user nrogram.

¥FCUTE SURRNUTINES

There are five execution subroutines, PLCD¥, SSTDF,
FMDAD, CNSCN and SAVR which are all strictly called from the
XECUTE routine.

'Subrog;ine PLCDF

PLCD? will make a linear search through the PLC table
to define as manv PLC references as possible. Given the SCB
address of the PLC reference and the integer value in the
operand, PLCDF calls subroutine FNDAD to calculate the address

referenced.



119

FNDAD returns the address in (A) or sets (A) f& -1 if
the address referenced by the operand expression is beyond
program range. If tﬁis address is out of range the PLC
reference will not be removed from the table.

A defined address will be retained. Using the SCB

'address the assembly address is retrieved and retained; also
the correspondina address in the address table is required.
The forward reference pointer is sevmarated from the instruction
skeleton and using this data the instruction is assembled like
any other Memory Reference instruction.

Using the forward reference pointer, the forward reference
area in the PLC table is reclaimed for further use by clearing
the address area to zero.

Subroutine SSTDF

SST will attemnt to define compound operands. The
Symbol Table is examined for defined symbols with references to
the SST. |

Taking the SCB address of the symbol and the integer
value SSTDF calls TNDAD to calculate the address of the compound
operand. Using subroutine FPWDRF to advance through the forward
references, all forward references will bhe defined with new
addresses.

All compound operand references for each defined symbol
will be input to FNDAD. After all SST entries for any one
symbol have been tested the links between the Symbol Table entry

and all remaining SST entries must be adjusted, After an address



120

is defined the SST entry will be cleared to reclaim table

area for further use. The relative pésition of the entry in
the table is found and used to calculate a forward reference
pointer to he vlaced in its appropriate table-entry position.

Subroutine FNDAD

Calling Secuence
LDA < Operand integer value > _
LDB < SCB address of symbol or PLC reference >

Return (A) = -1, Address not found
# -1, Address calculated

Starting at the SCRB address in the B register on input,
FNDAD will scan through the SCB using the assembly length of
each statement to find the operand address.

FMDAD will have to search in two directions for positive
and negative operand integers. In scanning throuch the SCR,
program termination must be checked for each statement. On a
search hackwards, due to a negative integer value, program
termination is flagaged by a -1 value in Word 2 of the SCR entry.
For each search ahead, program termination is established when
Word 1 of the SC® entrv points to the next free address in the
SCRr.

As the program advances ahead the assembly length of
each statement is subtracted from the integer until the value is
zero or less than zero. The assembly address of this instruction
is the address sought with a correction term included if the
‘integer value is less than zero. A search involving a negative
value is similar for the operand integer is converted to a

prositive value.



121

In either case the address is returned in the A register
with a -1 value returned if the terminator was encounteréd.

Subroutine CDSCN

Subroutine CDSCN clears the 100-word buffer area to zerc
and stdres the first 99 forward references in the buffer,

Since the firsfrlﬂﬂg words of hase pnaage are available
to the user, Memorv Reference insﬁructions making reference to
this area must not be regarded as forward references. All
forward reference nointers will be removed and replacedrby an
unconditional jump to the forward reference warning program.

Extended Arithmetic Memory Reference instructions
‘must not be confused with I/0 instructions or Extended Arithmetic
Register Reference Instructions. In such a case the first word
of the two-word assemblv is renlaced.

Subroutine SAVR

SAVR will save the contents of the A, B, E and O registers

in special store wvariables after execution.

CONCLUSIONS

With the exception of the XECUTE Directive all System
Directives discussed are all fairlv straightforward and would
probhably not require further modificaticns.

The XECUTE proaram could be expvanded to resemble a
totally‘incremental svstem. Specifically, this would entail
the provision for user defined single or multiple step execution

options to be implemented using micro-programming.



122

TABLE 8.1 DUMP ERROR MESSAGES.

LAREL ERROR MESSAGE

DPER1 N0 OPERAMND FOUMND

DPERZ. NO LABIL FOUMD

DPIR3 UMNDEFINED LABEL IN OPERAND

DPER4 OPERAND IS UMDEYINED



123

TABLE 8.2 LIST AND SEOUIMCE FERROR MESSAGES

LABEL ERROR MESSAGE
FRR1 BAD DATA INPUT

ERR2 STATEMENT NUMBERS OUT OF RANGE



CHAPTER IX

" THE EDITOR -

After recognition of the Edit Directive and before
returning to the System Controller in anticipation of an
edit instruction, the edit flag and address pointers are set.
A message requesting the user to bégin edit operations is
printed. |
| The Editor will allow the user to:
Delete any number of statements in the program,
Insert statements between successive statements,
Replace any statement with another statement.
The following instruction causes statements M through
N to be deleted:
/D (ELETE) ,M(,N) (,V).
If only M is specified only that one statement will be
deleted. If M is greater than N the instruction is ignored.
| V is the veto flag. When specified, all statements
involved in the edit are printed; the user ié prompted to
respond:
Y(ES) to delete the program statements.
Any other response causes the instruction to be ignored.
The following instruction permits insertions between
successive stétements:
/I (NSERT) ,M(,N),

If only M is specified, then only statement M will be

124



125

inserted. N is a statement number increment for more than one
insertion between successive statements.

On a multiple insert, N is defined and greater than
zero, it is not possible to enter both data and machine code
type statements. A multiple insertion will be automatically
ended if the statement number of the statement to be inserted
‘exceeds the statement number of the instruction which follows
the insert.

To replace a single statement the edit instruction is:

/R(EPLACE) ,M(,V).

A machine instruction statement cannot be replaced by
data nor can data be replaced by a machine instruction.
However, it is possible either to replace a data definition or
a machine instruction by a comment statement or to replace a
comment statement by a machine instruction or data definition.

A multiple replace operation is not permitted since
sequencing information is not available.

To end the current edit operation, the instruction format

[
/2]

/E(ND) .

EDIT INSTRUCTION SCAN

All edit operations begin with a slash and the first
non-blank character is used to identify the edit instruction.
All following characters up to the comma are ignored.

Failure to detect a slash in the first character

position will result in an error message; a list of all editor



126

errof messages is presented on Téble 9.1. If a multiple insert
has just been completed a call to subrbutine ENDMI must be

made to end the multiple insert at the assembled code level.
All edit variables are initialized by subroutine EDCLR.

The program performs a logical cascade on the next
non-blank character to test for the characters D, E, I, or R
and set an instruction number for each except for E which
transfers control to finish the edit operation.

‘Using subroutine TWINT the statement numbers will be
read in. The second and fourth return from TWINT signél an
illegal terminal character. On such a condition subroutine
VETCK will continue the scan for a veto request. If the
terminal characters are a comma immediately followed by a V,
the veto flag is set; any other combination results in the
instruction being ignored and an error message being printed.

The third and fourth return from TWINT signal a multiple
edit operation. A multiple delete or insert is valid but a
multiple replace results in an error message being printed.
There are now five different edit instructions:

1. Single Delete,

Multiple Delete,
Single Insert,
Multiple Insert,
Replace.

Nk N
[ ] - . L] ]

The number preceding the instruction corresponds to the edit
instruction number.
Before the edit operation can begin, several program

checks and further preparatory work are required. The value of

-



127

statement number M must obviously be within the bounds of the.
user program.

The Source Code Block addresé of the statements
immediately preceding and following the statements involved inv
the edit must be found by a search through the SCB. Delete
instructions require special attention: A delete instruction
referring to the last statement in the ﬁser program has a
sﬁeciaf flag set, A multiple delete instruction requires an
extended search through the SCB to find the SCB address of the
statement following the last deletion.

\ A multiple insert will allow several statements to be
inserted between successive statements. The sum of M and N must
not be greater than or equal to the statement number following
the insert,.

If this is the case, the multiple insert is convérted
to a single insert instruction by changing the edit instruction
number from four to three and by printing a warning message to
-the user.

If M and N are within range, the first statement number
is prepared for the first and subsequent entries by subtracting
the value of N from M so that each statement number of the
multipleé insert can simply be calculated by adding N to the new
value of M.

The veto flag,.ifrseﬁ, réquests the printing of all
statements involved in the edit. Statement numbers cf the lines

to be listed are parameters to subroutine LIST. As well the



128

addfess of the statement before fhe edit wil} also be set as.
a special variable used by LIST to scan only those statements
involved in the edit. Immediately fbllowing, the user is
asked if these are the statements to be editted. The lexical
scan of the response is relaxed and only the first character
is examinea. Any response other than Y(ES) is regarded as a
signal to veto the edit 0peration{

Subroutine ASMAD retrieves the assembly address of the
instruction preceding and following the edit instruction and
the assembly address of the instruction involved in a delete or

replace operation.

.OVERVIEW

The Introduction and the Edit Instruction Scan sections
introduce the editor operations but only offer a brief discussion
on part of the edit operation.

Before discussing each of the edit subsystems further

background information is required to understand edit operations,

SOURCE PROGRAM EDIT

Since two copies of the user program, the source and
object program, are maintained by the assembler'both must be
treated separately by an edit operation. For each of the three
operations it was necessary to write separate subroutines to
manage next and previous statement pointers as well as the
statement number entry in the SCB, Word 1, 2, and 3 of each

‘statement entry in the SCB. Subroutines DSCB, ISCB, and RSCB



129

were written to handle the case of delete, insert and replace

operations.

" Subroutine DSCB

If the whole program is to be deleted then the sYstem
pointer to the first statement is set to the next free area in
the SCB while the system address of the previous statement is
reinitialized to negative:ohg. If the first program statement
- is to be deleted the system pointer to the first statement is
altered and the SCB address of the previous instruction for the
new first statement must be set to the terminator value, -1.
On deleting the last statement the system address pointer of
-the previous statement is reset.

For a deletion preceded and followed by program state-
ments, the successor address pointer of the statement before
the delete must point to the first statement after the delete
and the previous address pointer of the statement after the
delete must be reset to point to the statement preceding the
delete.

Subroutine ISCB

By definition an insert is an inclusion between
successive statements such that no program check is required
for operations involving the first or last statement. The
appropriate pointers of the statements following and preceding
the insert must be reset. The next and previous pointers'as
well as the statement number of the insertion are set by ISCB.

On a multiple insert, each inserted statement can be



130

included so that the multiple insert can be terminated after
any number of insertions.

" Subroutine RSCB

On replace operation not involving the first or last
statement RSCB calls subroutine ISCB to link up the edit entry.
Replacements involving the first or last statement require
special attention.

On replacing the first program statement the first
three pointers of the edit entry to the Source Code Block must
be set. The system variable pointing to the address of the first
statement is set to point to the new first statement.

On replacing the last statement the first three pointers
of the SCB entry are set.. As well the successor address of the
previous statement must be changed and the system variable
pointing to the previous statement must now point to the

replacenent.

DATA EDIT OPERATIONS

o Editor operations at the assembly code level manage data
and machine instructions separately. To edit a machine code
instruction is a far more complicated procedure than a data edit
operation. There are three subroutines, DTEDD, DTEDI and SCSYM,
directly involved with the manipulation of the user program and
data area on é data edit operation.

Subroutine DTEDD

With the length and address of the data to be deleted

DTEDD shifts the data area by moving data addresses and data



131

values to f£ill the gap left by the deleted data. Actually,
there is no gap for the deleted data ié overwritten; afterwards
vacated data areas are cleared., For each data address moved
the address area in the data table must be altered to compensate
for the shift,

No data shift is necessary when an EQU pseudo op is
deleted since the reference will be cleared in the Symbol
Table such that the symbol is flagged as undefined for future
references.

.Subroutine DTEDI

Data insert operations also shift the data table to-
insert the data in its proper position. Beginning with the
last data item and continuing to the first data item after
the insert both the data address and value are moved with the
address pointér adjusted to compensate for the shift. The
program checks for data table overflow before calling subroutine
DTSET to store the data.

EQU instructions, having had their assembled code
address set during the lexical scan, do not require data
shiftihg.

Shifting data will upset the program address of the
shifted data. DTEDI as well as DTEDD call subroutine SCSYM to
adjust data addresses after a shift'operation.

" Subroutine SCSYM

Calling Sequence
IDA < Correction value for address >
LDB < Test addrecs >



132

The A register holds a cérrection term to be added to
any address greater than or equal to the test address in the
B register. Program area addresses Qill not be altered for
the core location of the data table follows the program area,
hence the data addresses will always be greater than any
address referring to the user program area.

Subroutine SCSYM first scans the Symbol Table for
defined symbols and compares the test address with the assembly
code address, Word 4 of the symbol entry. The correction term
is added to all addresses greater than or equal to the test
address, but a special check is set to ignore EQU instructions
‘which are stored at the end of the data table.

The user program address area is next scanned for data
addresses. The test address is adjusted so that this address
points to the data value rather than the data address. The
same test is appliea ﬁsing the address of thé data value.

Lastly the data definition instructions in the Source
Code Block which follow the insert must have the assembly
address adjusted to compensate for the edit. Again, EQU
instructions in the SCB must not have the assembly address
chahged. An EQU instruction in the SCB is recognized as a data

definition with an assembly length of zero.

MACHINE CODE EDIT OPERATIONS

INTRODUCTION

Before discussing the edit of machine code instructions

in full detail an understanding of the basic concepts involved



133

in a machine code edit is needed.

Editting the assembled machiné'code entails moving
assembled code involved in the edit operation and the use of
unconditional jump instructions to link fogether the edit
entries and the existing user program. It was decided to
place these edit entries immediately after £he existing user
program. However, once all edit operations are complete,
program definition must be able to continue such that the
main user program defined before the edit operation is linked
with the program entered after all edit operations are
complete.

A two-word buffer is used to separate the first edit
entry from the existing program. After all edit operations
have been completed these two locations are used to hold two
unconditional‘jump instructions to the next two free areas in
the user program area for program definition. These two jump
instructions will maintain the link between the program entered
before and after the edit.

This technique in using two jump instructions is used
in liﬁking the programband most of the edit entries.

It would seem that only one jump instruction is required
to link the program units but two jump instructions are required
due to skip instructions.

To avoid using two jump instructions would require a
bit pattern check on the assembled instruction which immediately

precedes the jump instructions. Such a bit pattern test to



134

seek out all the different skip instructions is apt to be a
fairly large program. It was believed that the difficulty in
implementing such a feature would faf outweigh the apparent
gain.

With these concepts in mind the machine code edit

.operations are discussed.

SINGLE AND MULTIPLE DELETE

All instructions being deleted must be examined for a
Memory Reference instruction with a forward reference pointer.
All other instructions, including Memory Reference instructions
with defined operands may be deleted immediately.

Instructions with a reference to the PLC table imust
first clear the entry to the PLC table before being deleted.
But for instructions with forward references pointing to the
symbol tables or linking to references which point to the
symbol tables, it is necessary to adjust such pointers to
exclude the reference.

A machine code delete operation depends upon the length
of the deieted code. If more than one word of the assembly
code is to be deleted thé assembly code involved is cleared to
zero. Two jump instructions are placed after the assembly code
which precedes the delete to point to the instructions which
immediately follow the delete. A delete operation involving
Vonly one word of assembly code may not simply be cleared to
zero; If a skip instruction should proceed the assembled

instruction to be deleted the program logic will be altered by



135
simply clearing the instruction to be deleted.

In the location occupied by the single word to be
deleted a jump instruction is set to point to the next free
progrém area for storihg the edit entry. Sincertwo jumps
must be used to link all edit entries the next assembly
instruction must be moved into the next free program area.

Moving An assembled insﬁruction involves some of the
problems similar to deleting. Changing the assembly address
in the Source Code Block is simple enough but instructiohs
having forward references must have the list, linking the

forward references, changed to point to the new position of the
.forward reference,

In the place of the assembled instruction following the
deletion is stored the second jump.. Two jumps following the -
edit entry will link the edit entry back to the next assembled
instruction in the program.

| If no aséembled instructions follow thé deletion, the
address of the delete becomes the address used to hold jumpé
linking the user program, entered before the edit operation,
to the next free program location, after all edit operations

are complete.



136

SINGLE AND MULTIPLE INSERT

An assembly code insert precedéd and followed by
assembled instructions is fairly straightforward. The
instruction which precedes the insert is moved to the next frée
program area; the assembly code to be inserted is stored
immediately following. The assembly instrﬁction which
logically follws the insert is moved to the next program area.
Jumps are appropriately placed to link the program and edit
entry.

Complications develop if there is no assembly code
which either precedes and/or follows the insert.

If no assembled code precedes, then all insertions will
be stored in the next free program area. On completion, the
instruction occupying the first location in the user program
is moved and stored immediately after the insert. 1In the place
formerly occupied by the first instruction'is stored a single
jump instruction to the insertion. Two jumps following the
insert will link the insert to the instructions which logically
follow.

If no assembly code follows the insert the program
handles the situation similar to the case where no assembly
code follows an instruction to be deleted. 1In this case the
two locations following the insert will be used to link the
- program with the next free program location after all edit

operations are complete.



137

Should assembly code neither precede nor follow the
~insertion the program pointers must bé arranged so that the
pointers, normally used to link the program to the next free
program area once an edit operation is ended, are not going
to branch arount the insertion. Once the insert is complete
" program pointersvwillvbe set to reference the insertion as
the main user program and treat any further edit entries
appropriately. |
REPLACE

A one-word machine code instruction can be replaced by
a one-word instruction in the same storage location. The same
is true for a two-word assembly being replaced by another two-
word assembly instruction.

Replacing a two-word assembly by a one-word assembly
requires that the replacement be stored in the next free program
area with jumps in the position of the deleted two-word assembly
pointing to the edit entry and jumps from the edit entry back
to the user program.

A one-word assembly replaced by a two-word assembiy
is similar to a delete for the replacement is stored in the
next available program area. The next instruction in the
assembled code is moved to be stored after the replacement entry
with the appropriate linkage provided.

| A machine code instruction replaced by a comment is
treated as a sipgle delete while a comment statement replaced

by a machine code instruction is treated as a single insert



138

at the assembly code level.

EDIT SUBROUTINES

With an understanding of the basic edit operations
it is now possible to discuss the subroutines concerned with
machine code edit operations. These subroutines are presented

in the approximate order in which they are called.

Subroutine PREPR

Calling Sequence
LDB < Address of statement to be deleted >

Return (A) Assembly flag/Assembly address of instruction
to be deleted

Subroutine PREPR prepares some pointers before scanning
an instruction to be deleted.

Subroutine DELTE

Calling Sequence
LDB < Address of statement to be deleted »

DELTE initiates the lexical scan of the statement to
be deleted and after the scan is complete, DﬁLTE begins analysis
of the results to delete the statement.

If a statement label is present, the symbol involved
is set as undefinéd in the Symbol Table. Using the symbol
address, forward reference pointers are calculated and stored
'in their appropriate Symbol Table position.

On a data delete operation subroutine DTEDD is called
but a machine code deletion is ha?dled within DELTE,

Machine instructions excluding Memory Reference

instructions with forward reference pointers may be deleted -



139

immediately. Instructions involving PLC references can be
deleted once the PLC reference is cleared from the PLC table.
The remaining instructions will be Mémory Reference instructions
involving'references to the symbol tables. The address pointer
of the deleted instruction will be set as input to subroutine
_CASCD to remove the forward reference from the linked list of
forward references.

Subroutine CMOVE

Calling Sequence _ _
LDA < Assembly address of instruction to be moved >
LDB < SCB address of instruction to be moved >
CMOVE is needed to moved assémbled instructions before
~and after instructions involved in an edit operation.

Before moving the assembled code CMOVE will changé the
assembly address location in the Source Code Block to account
for the move. The assembled code is moved into the next free
area of the user program area; the words which previously held
the instruction area cleared. After moving each instruction
there is call to subroutine STRCK to check for program overflow.

If a moved instruction has a forward reference pointer
to the symbol tables, address pointers are set as input to

subroutine CASCD to change the forward reference of the

instruction pointing to the moved instruction.

CASCD performs a cescade through the forward references
beginning at an address specified by an input variable until

the required pointer is found. The forward reference pointer



140

is changed to compensate either for a deleteq instruction

or for the movement of an instruction with a forward reference.
Failure to find the forwardlreference signals a

program error. A warning message is printed followed by a

halt (HLT 33B).

" Subroutines JMPAF and JMPBF

JMPAF and JMPBF both call subroutine JIJMPS to place
jump instructions to link the edit entry with the user program
and to link the user program with the edit entry respectively.

Subroutine JMPS

Calling Sequence
LDA < Address where jump references >
LDB < Address to store jump instruction >
JMPS forms the jump instructions from the address
reference and the instruction skeleton and stores two jump

instructions to link the editted code.

Subroutine JMPE1l

Callihg Sequence
LDA < Address where jump reference >
LDB < Address to store jump instruction »
JMPEl1l inserts one jump instruction to link the editted
code.

Subroutine STFSP

For every deletion STFSP is called to clear the entry
from the Source Code Block and store the length and address of
the deletion in the Free Space Table.

Subroutine SNGDI,

SNGDL is strictly a delete subroutine to delete a

single machine code instruction. Subroutine SVPSN is called



141

to find the next free program area to store the edit entry.
Subroutine DELTE will examine the statément to be deleted.
Subroutine XDEL will find the location of the instruction aftér
the deletion, to be moved by CMOVE, Subroutines JMPAF and
JMPBF will place jumps to link the edit entry.

Subroutine XDEL

Return (A) Assembly address of instruction after
deletion :
(B) SCB address of instruction after deletion
XDEL is strictly a delete subroutine to find the first
machine instruction after a deletion. Using informatién from
the instruction scan and beginning with the instruction after
the delete, the SCB address and assembly éddress of the next
machine code instruction will be returned,
If no assembly code follows the delete then the program
pointers are set to_link the user program with the next free

program area after the edit operations.

Subroutine XINS

XINS is an insert subroutine, for a single insert
instruction, to find the SCB and assembly addresses of the
machineAinstruction which logically precedes an insert.

Failing to find any machine code before the insert, XINS
calls subroutine YINS to find the instruction in the assembled
code which logically follows the insert.

If assembled code neither precedes nor follows the insert,
XINS stores the assembled code insert and resets program pointers

to treat the entry like the user main program. For a multiple



142

insert, subroutine MULIN will handle this sitﬁation.

If machine code instructions follow but do not precede
the insert, the insert is stored and the assembly instruction,
which logically follows the insert, is moved and placed after
the insert. Using JMPEl one jump is set to point to the insert
entry and JMPAF stores two jumps back to the main user program.

Subroutine YINS

Return P+1 Edit entry linked with program
4 P+2 (A) §ssemb1§ addfess of instruction after
insert
(B) SCB address of instruction after
insert

By scanning through the SCB, YINS returns the SCB and
assembly addresses of the instructions which logically follows
the insert,

If the insert follows the last machine code instruction,
program activity varies depending on the calling program: On
a call from XINS, YINS returns such information to XINS.
Usually, the inserted code is linked with the main program.
YINS returns to the first return address.

There is one other secondary call to YINS for a machine
code replacement of a one-word assembly by a two-word assembly.
Normally, YINS will return the SCB and assembly address of the
instruction which follows the replacement but if no assembly
code follows the replacement, YINS sets up the linkage of the

two-word replacement to the user program and advances the

program location counter to include the replacement.



143

Subroutine MULINM

Like XINS and YINS, MULIN scans the Source Code Block
for the SCB and assembly addresses thch precede and follow
a multiple insert operation with the appropriate pointers set.

MULIN initiates storage of the first statement to be
inserted and branches to the last entry point to the System
Controller to finish statement storage. |

Subroutine ENDMI

A multiple insert operation can be terminated any time
by the user entering a new editvinstruction; termination may
also occur on a statement number violation. Using the pointers
set in MULIN, ENDMI stores the appropriate jump instructions
to link the multiple insert and ENDMI clears all the multiple
insert péinters. |

Subroutine EDIPT

EDIPT handles the input of source program statements
during an edit. The special flag for source statement input
~is set before jumping to the System Controller.

The System Controller returns control to EDIPT to
examine the input. If a slash begins the input it is assumed
the slash signals an edit instruction and in such cases a
multiple insert is terminated. If the user'inadvertantly
enters the slash the»multiple insert will still be terminated.
The program branches to scan the instruction.

For a source statement entry subroutine LEX is called

to scan the input. Any lexical errors are treated in the

-



144

usual manner with control returning to the System Controller.
Subsequent statement re-ehtry returns control to EDIPT for the
edit input flag has not been cleared.

Input for replace operations is examined for an assembly
flag match between the deleted and the replacement statement;
comment statements do not require an assembly flag match.

The statement number for a multiple insert is
calculated. On a statement number error, the calculated
statement is greater than that of the next statement; the
multiple insert is terminated by a call to ENDMI. A warning
message is printed and the edit input flag is cleared before
returning to the System Controller.

If the statement number is in range, the edit input
flag is cleared and subroutine ASMBL is called to allocate

space to store the statement in the SCB.

EDIT SUBSYSTEMS

INTRODUCTION

After gathering all information that is requested from
the instruction scan, the editor uses the instruction number in

a logical cascade to f£ind the appropriate edit subsystem.

SINGLE DELETE

An undefined statement number in the edit instruction
results with the instruction being ignored but a warning
message is printed.

Otherwise subroutine DSCB handles the delete of the



145

source program. PREPR prepares some pointers in anticipation
of an assembled code edit‘and returns the assembly flag/assembly
address word before scanning the instruction to be deleted.‘

A comment statement being deleted does not require
a lexical scan of the statement; the Source Code Block
length and address of the delete are retained in the Free
Space Table by calling subroutine STFSP,

For both data and machine instructions subroutine
DELTE is called; DELTE calls DTEDD to delete a data definition
or DELTE returns information on a machine code instruétion
and if necessary adjusts forward reference pointers to exclude
the deleted instruction.

Using the assembly length of the deleted machine code
the deleted area is replaced by jump instructions for a two-
word assembiy or subroutine SVPSN is called to delete a single~
word assembly.

Before returning to the System Controller a record of
the deletion is stored in the Free Space Table by subroutine

STFSP.

MULTIPLE DELETE

A multiple delete is somewhat more complicated than
a sihgle delete. A counter is first set to hold the assembly
length of ali deleted machine code instructions. DSCB is called
to perform the edit on the source program.

For each statement being deleted not only is the SCB

address of the statement retained but also the link to the next



146

statement else it will be lost calling subroutine STFSP,

Like the single delete there is a call to PREPR for
each statement to be deleted; For both data defintions’and'
machine instructicns code subroutines DELTE and STFSP are
called; for a comment statement only subroutine STFSP need
be called. The deletion of a comment or data definition is
complete; the next statement may now be deleted.

On a machine code delete the address of the first
machine code deleted must be retained. The address of the
last machine code instruction deleted is advanced for each
delete with the deleted area cleared. The second word of a
two-word assembly must also be cleared; the length of the
deleted code is advanced by the assembly length for each
deletion.

After scanning all statements to be deleted, the
length of the deleted assembly code is examined. If no assembly
statements have been deleted, the multiple delete is finished.
If only one word in the assembled code is to be deleted then
the siﬁuation resembles a single delete at the machine code
level} subroutine SNGDL is_called to perform a single machine
code delete., If more than one word in the assembled code is
to be deleted, then a pair of jumps stored in the first two
words beginning the delete point to the first two assembled

instructions after the delete.



147

SINGLE INSERT

If the statement number spgcified by the insert
instructionris a'defined‘statement, the‘error message labelled
EDR7 is printed with the re-entry request.

Before beginning a single insert, subroutine EDIPT will
input the statement to be inserted and examine the assembly
flag to determine the naturéiof the insert. |

Regardless of the assembly the SCB pointers must be set
by a call to ISCB. For a comment sfatement program control
may branch to the last entry point of the System Controller to
comﬁlete statement storage in the SCB. For a data insert |
subroutine DTEDI is called to store the data in its appropriate
data table position before returning to the System Controller.

On a machine code insert the assembly code before and
after the insert is sought; the insert is stored depending

upon its logical position in the assembled program.

MULTIPLE INSERT

Like the single insert there is a call to error message

EDR7 for a defined statement number on an insert operation.

Otherwise, the multiple insert flag is set. All source
statements in the insert are input by a call to EDIPT. After
a statement has been fully stored in the SCB in the System
Controller, program control returns to the multiple insert
program. This call to EDIPT, in the multiple inéert program
is the return point from the System Controller for further

input.



148

Since both data and machine code cannot both be
entered interchangeably the assembly flag of each statement
to be inserted is compared with the flag denoting either a |
data or machine code insert. On an assembly flag clash the
edit flag signalling source stafement entry is set before
printing an error message so that control will return to
EDIPT following statement re-entry.

A comment statement requires a call to ISCB., A data
definition requires calls to DTEDI and ISCB., On the first
machine code instruction to be inserted a call to MULiN
prepares address pointers and stores the first machine code
insert. A flag is set to signal the second and subsequent
machine code entries which are stored in the next user program
area similar to any other assembled instruction,

The multiple insert operation is terminated by a call
to subroutine ENDMI from the instruction scan section of the
editor on recognition of a new edit instruction or from EDIPT

on a statement number violation.



149

REPLACE

Using the delete subroutines PREPR, DELTE and STFSP
the instruction to be replaced is deleted. EDIPT inputs the
replacement statement and cheéks for an assembly flag clash
between the deleted and replacement stafements. RSCB sets the
SCB pointers before storing the instruction.

For machine code instructions replaced by machine code
instructions of the same assembly length the replacement is
stored in the deleted area. To store the replacement it is
necessary to save the user program location pointer in a
temporary variable. The program location of the replacement
is set as the program area pointer used by SETCD, to store the
replacement instruction. After the replacement has been stored
the user program location counter is restored.

Any ofherrmachine code replace operations have already
been discussed in the section on machine code replace operations.

Data deletions are handled in DELTE. Data replacements
are easily included by calling DTEDI,

After all replacement operations are complete control
returﬁs to the last entry point of the System Controller to

complete SCB entries for the replacement.



150

§§24

The End request first adjusts the SCB successor
address pointer of the last program statement to point to the
next free location in the SCB. Thé successor address pointer
of the last program statement may point to edit entries in
the SCB which have been stored immediately after the last
program Statement. Changing the succeésor address pointer
will by bypass any possible edit entries in the SCB and
maintain the proper source program linkage.

Two jump instructions are set to link the main user
program with the next free program area in the user program
area. These jumps are to reside in the two words set aside
after recognition of the Edit Directive,.

Lastly, the main edit flag is cleared before returning

to the System Controller.

CONCLUSIONS

The Editor is restricted to the three main edit
operations which are adequate for a beginner's use. Multiple
skip instructions or subroutine calls which pick up arguments
from subsequent locations would not be handled correctly.
Fortunately, multiple skip instructions are not available; the
people for whom the assembler is intended are not expected to
employ such argument linkage techniques, but the possibility
exists. The only alternative seems to be complete reassembly
which defeats the purpose of the assembler.

However, the Editor will handle patches made over



151

patches; although the object program may come to look rather
peculiar, the source program will always be readable. Before
changing the editor serious consideration should be given to
all editor features in the light if possible changes to any

other assembler features.



152

TABLE 9.1 EDITOR ERROR MESSAGES

LABEL ERROR MESSAGE

EDR1 ILLEGAL DATA PRECEDES FDIT INSTRUCTION
EDR2 UNDEFINED EDIT INSTRUCTION
* EDR3 BAD DATA FOLLOWS EDIT INSTRUCTION
EDRA4 VETO NOT PERMITTED ON AN INSERT .
EDRS STATEMENT NUMBER OUT OF RANGE
(ERR2)
EDR6 ILLEGAL SOURCE TYPE ENTRY DURING EDIT
EDR7 STATEMENT NUMBER ALREADY DEFINED
EDRS STATEMENT NUMBERS MUST ACCOMPANY EDIT INSTRUCTION

EDR9 STATEMENT NUMBER IS NOT DEFINED



153

APPENDIX A

ASSEMBLER MACHINE INSTRUCTIONS AND PSEUDO OPS



Assembler machine code instructions are:

ADA
ADB
ALF
ALR
ALS
AND
ARS
ASL
ASR
BLF
BLR
BLS
BRS
CCA
CCB
CCE
CLA
CLB
CLC
CLE
CLF
CLO
CMA
CMB
CME
cpA
CPB
DIV
DLD
DST
ELA
ELB
ERA
ERB
HLT
INA
INB
IOR
ISZ
JMP
JSB
LDA
LDB
LIA
LIB
LSR
MIA
MIB
MPY
NOP
LSL

Add to ()

Add to (B) ‘

Rotate (A) left 4

Shift (A) left 1, clear sign
Shift (A) left 1

And to (A) :

Shift (A) right 1, carry sign

-Arithmetic long shift left

Arithmetic long shift right
Rotate (B) left 4

Shift (B) left 1, clear sign
Shift (B) left 1

Shift (B) right 1, carry sign
Clear and complement (A)

Clear and complement (B)

Clear and complement (E) set (E) =1
Clear (A)

Clear (B)

Clear I/0 control bit

Clear (E)

Clear I/0 flag

Clear overflow bit

Complement (A)

Complement (B)

Complement (E)

Compare to (A), skip is unequal
Compare to (B), skip if unequal
Divide

Double load

Double store

Rotate (E) and (A) left 1
Rotate (E) and (B) left 1
Rotate (E) and (A) right 1
Rotate (E) and (B) right 1

Halt ,
Increment (A) by 1

Increment (B) by 1

Inclusive or into (A)
Increment, then skip if zero
Jump

Jump to subroutine

Load into (A)

Load into (B)

Load into (A) from I/O channel
Load into (B) from I/0 channel
Logical long shift right

Merge (or) into (A) from I/O channel
Merge (or) into (B) from I/O channel
Multiply

No operation

Logical long shift left

154



155

OTA  Output from (A) to I/O channel
OTB Ouptut from (B) to I/O channel
RAL Rotate (A) left 1

RAR Rotate (A) right 1

RBL Rotate (B) left 1

RBR Rotate (B) right 1

RRI. Rotate (A) and (B) left

RRR Rotate (A) and (B) right

RSS Reverse skip sense

SEZ  Skip if (E) = 0

SFC Skip if I/0 flag 0 (clear)

SFS Skip if I/0 flag = 1 (set)

SLA Skip if LSB of (A) is zero

SLB  Skip is LSB of (B) is zero

SOC Skip if overflow bit = 0 (clear)
s0s Skip if overflow bit = 1 (set)
SSA  Skip if sign bit of (A) 0

SSB Skip if sign bit of (A) 0

STA  Store (A)

STB  Store (B)

STC Set I/0 control bit

STF Set I/0 control flag

STO Set overflow bit :

SWP  Switch (A) and (B)

SZA  Skip if (A) =
SZB  Skip if (B) = 0
XOR  Exclusive or to ()

nu

Assembler Pseudo Operation instructions are limited to:

ABS Define absolute value

ASC Generate Ascii characters

BSS Reserve Block of storage

DEC Define decimal constants

DEF Define address

END Terminate program (begin execution)
EQU Equate symbol

ocT Define octal constants



ASSEMBLER INSTRUCTIONS

156

LEXICAL GROUP NUMBER CLASSIFICATION

GROUP
NUMBER

1

~ S

10
11
12
13
14
15

INSTRUCTION
TYPE

ALTER SKIP
REGISTER REFERENCE

INPUT/OUTPUT
INPUT/OUTPUT
INPUT/OUTPUT
EXTENDED ARITHMETIC
REGISTER REFERENCES
MEMORY REFERENCE

EXTENDED ARITHMETIC
MEMORY REFERENCE

OPERAND REQUIRED

NO OPERAND REQUIRED

CLEAR FLAG may BE PRESENT
CHANNEL NUMBER EXPECTED

CHANNEL NUMBER EXPECTED
CLEAR FLAG MAY BE PRESENT

NUMBER OF SHIFTS
SYMBOL (ASTERISK)

INTEGER
INDIRECT FLAG

PSEUDO OPS

END
ASC
DEC
ocCT
EQU
ABS
BSS

DEF

NO OPERAND REQUIRED

LENGTH AND LIST OF ASCII DATA
REALS OR DECIMAL INTEGERS
OCTAL INTEGERS

ADDRESS

ADDRESS VALUE

VALUE

ADDRESS DEFINITION



157

MACHINE INSTRUCTIONS

MNEMONIC CLASSIFICATION BY GROUP NUMBER

GROUP 1 ALF ALR ALS ARS BLF BLR BLS
BRS CCA CCB CCE CLA CLB CLE
CLO CMA CMB CME ELA ELB ERA
ERB INA INB NOP RAL RAR RBL
RBR RSS SEZ SLA SLB SSA SSB
STO Swp SZA SZB

GROUP 2 SocC SOSs
GROUP 3 CLF SFS SFS STC

GROUP 4 CLC HLT LIA LIB MIA MIB OTA
OTB

GROUP 5 ASL ASR LsL LSR RRL RRR

GROUP 6 ADA ADB AND CPA vCPB IOR 1582
JMP JSB LDA LDB STA STB XOR

GROUP 7 DIV DLD DST MPY



- 158

MACHINE INSTRUCTION OPERAND TYPES

GROUP 2 SOC (C)

The clear flag if present will clear the overflow bit
after execution of the instruction.

GROUP 3 CLF (+)integer
SFS (+)symbol

The integer must be a positive value less than 64
signifying the channel number to make the instruction
apply to one of up to 64 I/O devices or functions.

The operand may also be a symbol which has been
equated to an I/0 channel address by an EQU pseudo op.
An optional plus sign may precede the channel number.

GROUP 4 CLC (+)integer(,C)
HLT (+)symbol(,C)

Group 4 instruction operands are similar to Group 3
except that they may be followed by, C to clear the
device flag after execution of the instruction.

GROUP 5 ASL (+)integer

The integer operand must be a positive value from one
to sixteen to specify the number of shifts on the
combined contents of (B) and (A).

GROUP 6 ADA (+) (symbol) (tinteger) (,I)
GROUP 7 DIV (+) (symbol) (tinteger) (,I)

The memory reference operand has been restricted to a
symbol, integer and indirect flag combination. The
symbol may be preceded by a blank or a + sign; any
other character will generate an error message.

An integer operand without a symbol must be a positive
integer less than 64 for reference to the base page: any
other value will not be accepted. A symbol-integer
combination must be within bounds of the user's program
area. : »

The indirect flag allows the value of the operand to
access another word in the user program area which is
taken as the new memory reference for the instruction.



159

PSEUDO OPERATIONS

The ASC, DEC and OCT data definitions have been
implemented in accordance with Hewlett Packard definition.
ASC n, < 2n characters >

ASC generates a string of 2n alphanumeric characters in
Ascii code into n consecutive words. One character is
right justified in each 8 bits; the most significant bit is
zero. n must be a positive decimal integer in the range
1l to 28*, If any number less than 2n characters are
present before the end of the statement, the remaining
characters are assumed to be blanks and stored as such.
Anything after 2n characters in the operand field is
treated as a comment. -

To enter the code for Ascii symbols which perform some
action like carriage return or line feed, the OCT pseudo
op must be used.

A label preceding represents the address of the first two
characters.

DEC dl['dZ' e dn]

DEC records a string of decimal constants into consecutive
words. The constants may be integer or real (floating
point) and positive or negative. If no sign is specified,
ositive is assumed. The decimal number is converted into
its . binary equivalent by the assembler. The label, if.
present, serves as the address of the first word occupied
by the constant. 15
A decimal integer must be in the range 0 to 2 -1 (32767)
which may assume positive, negative or zero values. It
is converted into one binary word and appears as follows.

15 14 0

S | nunmber

sign

A floating point number has two components a fraction and
an exponent which specifies the power of ten by which the
fraction is multiplied. The fraction is a signed or unsigned
number which may be written with or without a decimal point.

* By Hewlett Packard = definition n may be any expression
resulting in a decimal value in the range 1 to 28 but the
implementation has been restricted to strictly decimal integers.



ocT

160

The exponent is indicated by the letter E and precedes a
signed or unsigned decimal integer. A floating point
number may have any of the following formats:

tn.n, #n., t.n, +tn.Ete, tn.nEte, #n.Ete, *.nEte
The number is converted to binary, normalized and stored in
two computer words. If either of the fraction or the

exponent is negative that part is stored in two's complement
form, :

15 14 Word 1

S Fraction (most significant bits)

sign binary point
Word 2
15 8 7
fraction | exponent S

sign of exponent«u7

The floating point number is made up of a seven bit exponent
with a sign bit and a 23 bit fraction with a sign bit. The

38

number must be in the épproximate range of 10~ to zero.

01[,02, sy On]

- OCT stores one or more octal constants in consecutive words

of the object program. Each constant consists of one to six
octal digits (0 to 17777). If no sign is given the sign

is assumed to be positive. If the. sign.is negative, the
two's complement binary equivalent is stored. The constants
are separated by commas with the last constant terminated
by a space. If less than six digits are specified for a
constant the data is right justified in the word. The
letter B must not be used after the constant,

The remainder of the pseudo operations, ABS, BSS, DEF,

END, and EQU have been altered from the Hewlett Packard definition.



ABS

BSS

DEF

END

EQU

161

t (symbol) (tinteger)

ABS will define a data address or a base page address
within the user program bounds. Undefined symbols in the
operand will be accepted but a temporary value must be
entered to define the symbol

(+) (symbol) (tinteger)

BSS advances the program location counter according to the

"value 6f the operand and initializes the data area to zero.

The operand value has been restricted to the range of 1 to
128, As undefined symbol in the operand will be accepted
but a value must be entered to define temporarily the
symbol.

symbol (,I)

DEF generates one word of core as a 15 bit data area address
which may be used as the object of an indirect address found
elsewhere into the source program. The address may be
referenced indirectly through the label preceding. The
operand field must be a data symbol which may be followed

by an indirect flag.

END does not require an operand for it is a command to begin
execution of the user's program.

(+)(symbol)(iiﬁteger)

EQU assigns to a symbol a value other than one normally
assigned by the program location counter. A label must
precede the EQU pseudo op to be assigned the value
represented by the operand field.

The operand nmust be an address in the user program data
area or in the base page area available to the user. A
symbol in the operand must have been previously defined.



162

APPENDIX B

THE INTRODUCTORY TEXT



163

THE iNTRODUCTORY TEXT

The data has been stored as binary data packed two
characters per word beginning on the first sector of the
first track of a removable cértridge disc by the DOS -M syStem
facility to write onto user files, EXEC call, Request code 15.
Every page 6f information starts on a disc sector boundary
but no page of information will bhe allowed to cross a track
boundary. This restriction is imposed by the disc controllerx
which requires additional head positioning and read commands
to read across a track boundary. The special positioning of
each page has been incorporated into the disc address table,
in the initialization program, according to the format:

Bits 0 - 7 Sector number,
8 - 15 Track number.

This arrangement of the introductory text removes the necessity
for using a disc file directory or search program.

The following is a list of the page names used in the
program to store the text on disc and the names used in the

address table in the initialization program.

PAGE 1 Introductory information
PAGE 2 Introductory information
PAGE 3 User option to begin program entry or continue

presentation of text

PAGE 4  List of the System Directives excluding the Halt

Directive
DUMP Explanation of Dump Directive
LIST Explanation of List Directive \

SEQUENCE Explanation of Sequence Directive



164

XECUTE Explanation of Xecute instruction

EDIT 1 Explanation of Editor and edit instructions

EDIT 2 'Explanation of Editor and edit instructions

LAST Warning to user about program size and prompt
to begin

The remainder of Appendix B is a 1isting of the program
used to store the text on disc followed by a listing of the

eleven pages of the text.



ASMR,R,L
NAM
EXT_

%
X STO®F PTAD ONLY INTRODNCTARY TEXT ON NTSC SARTRINGE
%
*

T

Fo
XEL

STADT NOP
%
T _DAGE 1
'3
LD3 =81111 .
: INGTH OF NATA
COn AAGE1 BoNZrau’ AnnBESs 0F NATS
cLa RELATTYE SERTAR NUMRER
JSB DWeIT
*®
* DALE 2
2
Lna =azse
STR 8L
LNA SAGE?
L83 =08
JSR DWSIT

O5Id NO LXulL AGOLONAOYINI HA0LS OL AI20dd

S9T



166

1IdMG usSh
710= wlll
$19Vg YU
Tahe LlS
Ghaa4= Hud

dakfil 9 39Vd

K g

[T

o

«7

Q.
e O e
- dd™

% o oF

39Va

(42

<

[«
[seloal ¥ o2 ol
-l aded ™

* %t

M O-CC 3 CeCOowm

Vo

!

% ¥ %



http:r-....Jl

167

1IeMC &SP
teG= QU
vdYVa VU
A&l ©widS
aniu= Gu'l
R *
31003X & 39Vd =%
*
1TaMu wsh
ghl= o
4£3%Vae vul
Asliy wis
9thg= 501
*
FUNZNUIES £ 39Vd %
*
LTaMl wsP
YTu= wd
949va VUR
I3NE Bl
2ife= Gul .
*
15171 9 59Vu =
*




L4

PAGE 9 FEDIT 1

£ XK

=52
UFL
DAGEQ
=N24
DWRIT

E1nT 2

reroar
N3 I-0

PAGE

* X X

=47
aneL
D570
=N"7
DWRIT

LAST

D3P 0W| o DO BW

N

PAGE

LR

=587
3UYEL
PGC1Y
=030
INPTY

STCO PROAGEAM

=
W NI » NTJIO-HI! =

D W

EXEC
$+?
42

QZDT.
mOoOimmMmy)
OOMMg

&)

891



COPY_RINARY DATA ONTN NISC

ENTER (A) PRGGRAM ANOQPESS 0F NATA
(R)Y RELATIVE SFIrTNR NUMARTR

OO K[ K

DWRIT NOP
STA ADDR
STR _SECTR
JS2? EXEC
NEF *47
NEF 2ONDE RFQUFST CONE 15 FNR NISH WRITE
DEF CONKUND :
NTF ADOR, T PROGRAM ADNPESS
DEF NUFL LENGTH OF RUFFEPR
DEF FNMAME FILE NAME

NEF SECT2 ELATIVE STATOR

JMP BWRIT,T

XN, |
™~y

RUFL__7SS

(@)

oo

o]

i}
[o= R
oY T
DD
NS b

FNAME ASC AN  BINARY FILF ON USER DISC ARFA

:;.

-

[ %
n
(W]

Sup

69T



PAGF1 DFF *#1

3
* PAGFE 1 INTRO“UPTTON
® .
ASC 16, YOU ARF COMMUNTCATTNG WITH
ASC 124,A HEWLFTT PACKARN 21074
NCT 106612
ASG 1A ,0NMPUTER THAT HAS RFEN PREDAREND
AS? 12,TN 2EAN IN AND ASSEMALE
OnY _106R12. R -
ASC 17,r0MPUTER PROGPAMS WHINY YNU ENTED,
0CY 106R12,106512
ASC 183, A GOMPHTED DR2OGROAM TS A SERIES
ASC 11,0F COMMANNS 'TO DIPECT
nNTY 136R12
BSC 15,THS COMPUTER TN A STED Ry STER
ASrh 14, PRNDLEM SOLYING PROCFIURE,
NNT 106612,156612
g%g 9R%R > SUCH COMMANNS RFENOGNTZED BY THF COMPUTER ARE IN THT
0CT 10bh1
ASE 26,F0RM OF MACHINE LANGUAGSY s RUT PRROGRAMMING IN MACHINT
noYT 106R12
ASC 15,LANGUAG® TS A TFDINUS 99200FSS
ASC 15,4,AM0) ONE CF THE MNSYT IMPOOTANT
nnT 406612
ASC_18,STTAS.IN_TRYING TO MAKE. PROGRAMMING
ASC 11 ,FASTIER IS T0O TNTRONUNF
NeT 106612

0LT



i

1

DEPOPIBNEEID» IO
NNTINTINTINNINIIVINO NN
DO A I A A O

b ]

VS

RUCT
TNF

-
S

P
[~ ]

v
NF
use _ S
S LANGUAGE
T TO MACHINE mODF BUT
A

M TO ToOANSLATE <UUCH A {_ANGUAGE
THE CORPCSPANNDTMNG

“GS%SNGUAG: TS CALLED AN ASQfM?L"D
THE TASK OF AN ASSEMBLFR TS 10 TRANSLATC ASSFM3LY

PUCTIONS TINTO MACHINE LANGUAGE
STRUNTTINNS NORRFSPONDTING

WHAT APPEARS TN THE ASSEM3LY LANGUAGE PROGRAM,

A

e (e »
VR -

EASTIER Tn RFAN, A

.K-*‘)

N*

(\) [ap 2 V] 7JN-§ N THTINGOW

i
0
ns
0
0
HI
!

IV (Nw @« e
TV =HDY I

P

s\)“w)l\)ZJ)N

o

1661

?“PH%NHHH+%»MAHwNHN999HNHHA

- o~

DD
N N2

RWTSE
CPET

[ e s TR S IO T WO S 5 N R T Ba B Y an B ot of 08 =~ 2

o,

GIED N @A MR O DVE £ N N E DN 8L D el Il
3V}

o De Ne Jve @ The The 4 N

1ﬂanN

POSSTALE TG TPANSFFER

- CRT SOPEEN,

OOoINT NUTPUT ON CRT SCREEN
TYOF § TO FONTTNUF
UPN KEY TO ENTE? ALL PESPINTES)




GE? DEF *#1
*_ PAGE 2 INTRONUNTION

k-2

nry 1166327

ASE 17, AM ASSEMBLER NORMALLY RBEGINS

ASC 139&§§EVGLY ONCE THFE PROGRAM

noT 106612

ASC 18,HAS REEN FULLY DEFINED. REFEPENNES

ASS 13,T0 UNDFEFINED INSTRUCTIONS

OCY _AGeB12 S

ASG 18,0° NATA WILL TERMINATE THE ASSEMALY

AST 11,0R HALT FURTHFR SYSTEM

NNT 106612

ASC 12,ACTIVITY AFTER ASSFMRLY.

0CT 1956612,10R5812

4SC 13, THTIS ASSEMRLER IS AN INCRPEMENMTAL

ASC 11 ,ASSEMAL TR FOR ASSEMALY

ANT_ 406642

ASG 2R,PNGURS IMMFNTIATELY AFTEP STATFMENT ENTRY., THE ASSEMBLER
nnT 106612 '
ASH 16,0N0FS MOT WATT UMTTL THE DRNGPAM

ASC 14,TS FULLY DEFINED UNPET INFD

NoT 156612

ASC 24 ,RTFERENCES ARFE PETAINCD UNTIL DEFINTYTTION OCCURS.

i
{
i
|
!

LT


http:RfFEPENr.FS

p12,176H12

TACH STATEMTMT TS SENAUENREN

DD IO LDD> )
DDANIIN TINTI AN
YYD A=Y YO -

]
)
3

N _ASSIGNED A _STATEMENT

IREP, RY DEFAULT THE €70ST
TEMENT NUMBER TS 172 WITH EACH

LESSTYF STATEMENT NUMTTR INMOCREMENTEN RY 1n
1196642

TH SPECIFY ALTFEFRMATE SEQUENACTNG
E S FEOLLOWED BY THE

4CH:>»*

4

C -
\)C)I\)D i!\JZ

-

0

|72 ]

TATFMENT NUMARER THTN A VALUE FOR THE INCREMENT,
14) TO SEPARATE THE S ANOD THE TWN VALUES,

XAMOLE 1S 41246

ITH _THE FIRSY INSYRUCTION

Ml Tern

-
Ll 72 hand T R B

-

<
2
£

£ 2] (00T

THE STATEMENT
WTTH THE FOLLOWING STATFMENTS ADVANCRED RY 4,
PE € TN NONTTNUF

P o o TS
NXNAVIN NINGN <

NED 0 LIN NG OU‘Q&QN,DD!‘NOJ‘J}:‘D LNOYCEY
DZ RN

! i
et Al AV L el e e A T N Y e e RS T e e el
* (Ne Ne e T Ne e

€LT



EAGEI?- DEF *+1%1
* DAGE 2 TNTROCDUCTION TO USERS

x

NCT 115677
OTT 106R12

NCT 105212,105212

0CT 105212,155712 .

AST 15, TF YOUP ARE FAMILIAR WTTH

ASC 15, THFE FZATURES NF THE ASSEMALE®D

00T 1068612 )

AST 57,v0U MAY BEGTN ENTRY OF AN ASSTMALY LANGUAGE P20GRAM.
NCT 106612,10A512

asc 12, TYSF C TO CONTTNUE

noT 106R12,106612

AST 15, WATT FOR SYSTEM PESPONSF

ARY 106612,106612

ASTC 12, NToTM PROGRAM SNToOy

ORT_105A12,106612

ASC 27,ELSE TYSE L TO LEARN AROUT THE VARIOUS SYSTEM FEATURES
N

LT



PAGEL DNEF *4+1

PAGE

&

® ik R

7,115212 |
THERE ARE & SYSTFM DIREATIVES
HICH YAY BE ENTEDED ANY

2
ME WHTLE DEFINTNG YOUR PROGPAM, EXCEPT NURING AN FDTT,

Y ALLOW YOU RRFEATER CONT2OL
EP THF ASSEMTLER AMN THF

F_YOUP P205RAM,
1
FTIVES ARE ALL PRFCEDEN RY A MOLON ().
T NISCONTINUE OROGPAM ENTRY, BREGIN BAGAIN

NN NTINTIVNG
AT A O HADITI

SIZ

e
N ﬂ%’\)(/)l\)c nN

[ % )

N

3

612,176

»

QUMP REGTSTER NONTENTS

1OV IT NG

§

INTININTINTI

~

A12,10

L
.
H
»

LIST ML NR DART OF YOUR PROGLAM

N
Y
[AV]
~-
[HY
32

'

£

I

THrN
742410

1291q

' £E  CHANGE THE SEQUTNCING,
T HE PINGRAM
TF EYECUTE YOUR PROGRAM
2126612

TYPF £ TO CANTTINUF

2
=
2
2
2
>
; FNIY THE EXISTING PROGRAM
:’;
2
U
T
2

1
<
1
Q
. 4

)

mxcrr‘“m:ﬁr'c\
I ~inD —‘ld‘JJ‘CO‘JO\—«IO‘O

s

D
51
1
M
I
1
c
- C
512

»2 BN )}

PRI b ot b T e (O b b F QR T bk b b 1 b AR b R
Y

OO0 IR 0D £ O D0 0D N £ OONCD E JTEDO0 3 NN

ZpOpOspldrIlPpIleIpDs>DBOPDO» DL D)
* (e e -b Ve e Ne (M e

T4 A OI DA Y = (D)

SNOININNINT

SLT


http:116637,11~?.12

DAGES NEF ¥31

¥ _nump

n5212
XECUTTION THF CONTENTS NF THE A, By © ANN O

L

g

(@

[

[

C

T8

]

88

Y]

u

e

o | 1%

ul «T

[ —

= o] Let C]

0. i ¢ o L

3! n - o

oo B 7 i) o) z =i

cl = lod o <r po

L& [} Cu [as]

7 o <

0 e L =z v s

. Ly -0 Uoul

[ =11} (73] "> Jy T

5% D v poo clibou] TR

> Tl I 2118 > Uik |

< (S0 ST o} C L O

v WD <o 2 0k 2

o [ — O <
L8] O B | 54 u'x ol [ L
+ o uht I >0 T « =
[N & IF i - T - =
Wl b bei T LT o U B
) (&) <7 < UT O -
-t e »ui e I Z» O P2
- = < Z I & A #13 "1 O
(G V343 [ANIRE N N4 > NLWC A <SG
i D 0 e ot [ a
Qike OV WONZ = 6O e O
L. LIC O a (30 o<t [un] O
A N L= DU e D u e
«t (722 S IR B B ¢ e P e ¢4 IRl
[ - e el T L) eI C g
Sl SN oV TR oF Y o VIR ol N T 723 S V1208 SV 7o SNIR = oV IR N TR
Myl e HFQeZCmZ=NZ e Ve 0

OO o0

IWCECLCHRF QU L L
[VeaN el SV oI UGN SUoINL S AV I A SVET S RVERE A N o I Y TGN SUat 2o
A ONC GCINM NG sOh O I @G
A OV rt e e e e e U e et e e O O

TTCTCT&¥CCTCPTCTChTCﬂTQTCP

LCNCNOCUCUrrOCnrCriCnenneuncr o

CO OCTC <

CAICA<LC <

CAACTIC<LCT L

176


http:CO!'JTO.ff
http:12,PEGISTF.RS

PAGEE DEF *+1
%
* _LIST
3"
NOT 116637,106512
neT 4952412,105242
ASC 19, TLISTL{sMI,NY)
NCT 1066124176512
ASS 28,70 LIST YNUR PROGRAM SEQUENTTALLY STATEMENT BY STATAFMENTY
0T 106R12,106612
B?; 78,§4AND ,,,,, My  IFE_PRPESENT_SPECIFY THE SIRST AND LAST _STATEMENT
NCT 40656142
ASE 27, . TO BE LISTEN, IF N TS ARSSENT THEN ALL STATFE=-
neT 1386612
ASC 28, MENTS F220M M ON ARE LTSTFED, IF NEITHED APPFAR
OrT 106612
ASC 21, THEN THE #WHOLE PROGRAM IS LISTEN,
0°T 105612,106R12
ASn 27, e BUT _TE N IS LESS_ THAN. M LISTING IS SUPRESSEDS.
ONT 105812,1056212
agg 9, TYPE C TO CONTINUFT

LLT



PAGE7 DEF #+1
% SEQUENCE
Py
0CT 116637,105212,136612
ASC 28, WHILE ENTERING YOUR PRAGRAM ¥YNU MAY WANT TN CHANGF
ocT 136K12
ASC 22,STATEMENT SEQUENCTNG.
NCT 106A12,156512
ASC 18, 1STOUENTE 4 M, N
OCT 1056124106612
ASC 16,IS VEPY STMTLAR TO THE SENUJENAF
ASC 14,0PTION PPRESFNTEN EARPLIER FOP
NCT 19612 o
AST 22,4 AND N ARF TWO POSTTIVE INTEGFRS SUCH THAT
0T 1066125106642
ASE 2L, t BEGOMES THE FIPST STATEMENT NUMRER
NoT 10A612
ASE 15, N TS_THE _INCPEMENT.
ASC 14, FOR SUCCFSSIVE STATEMENTS,
OCT 106612,176612
ASC 27,0N COMPLETINN, THT WHALF PRNGPAM IS LTSTED.
0rT 106512,106642
ASC 16,RPESTRICTINANS ON M AND N ARFE THAT
ASC 16, # MUST NOT EYCFEN {1400 AND
NAT 106612
ASC. 174 . . N MUST _NOT _EXCEEN 25,
0nT 106612,105212
Agg 3,TYPE C TO CONTTNUE
M

8LT



DAGER DEF *21
x®
* XECUTE o
3®r
NNT 1416677,105212,105212
ASC 17, $XERUTE
NTT 106612,106H12 :
ASC 2%,WILL INITIATE THFE FXECUTTON NF YDUR PROGRAM. TNOOMPLETF
NCT 106512
AS¢q 15,DQOGRA'§ MAY ALSO 8F TXECUTEDN
ASC 15, 0T _EXECUTION WILL IMMEDIATTLY
NCYT 1NKRKB12
ASC 14,HALY, WITH A WARNTING MESSAGE
AST 16, PRINTF), IF THE?c TS A MACHTNF
NNT 196612
ASC 2?0, TNSTRUCTION HAVING A FORWARD REFEREMCE,
OCT 106612,10RK12
AS 28, TMMEDTATELY AFTER FXECUTINN OR AFTER ENCOUNTERING &
neT 19068612
ASC 15,FNOWARD RFFERENME THE SONTENTS
ASE 1A, OF THF Ay By © ANN 0 RFEALTSTE=PS
NnT 196612
ASC 7,WTLL RE SAYEN,
nNeT 106612,105212
ASC 24, TYPE € 70 TONTTNUE
NQP

6LT


http:t1J6i:.t2

PAGEC NEF

RUFF

onT
ASC

() bb

Y]

$FNTT

necT1
ASC
ner
ASG
anT
ASO
ooy

ASC .

neT
ASG
T
ASC
ney
ASC

~

You 10

E ANY NUMBER 0F STATZMSENTS IN YOUR PROGRAM
T BETWEEN SUCCESSTIVRE STATEMENTS

OLACE _ANY STATEMENT.

e
1= Data

-

a3 DA D

’ﬂ bt

106612

EATT ;NQTQUC*IONS BTGIN WITH A SLASHY (/).

106H1

THE FOLLOWING OPFRATION CAUSES STATFMENTS M THPOUGH

INCLUSTIVYR, TN 8% NS LETEN

r e P b ) b e b PO (O b O P e 3
FEORDWNIDIE DR NDe DV
+ NY Ny (Ne Ne Ne NE Ve
)]
N nﬂ‘miru NNy N

P S

08T



NCT 106612,106612

AST 14, /DELETE MM (V)

0ot 108612,108612)

ASC 27,1F ONLY M IS SPEFTFIFD ONLY THAT DNE STATFMENT WTLL 8¢
00T 1£56R12

ASC L,yNELETEN,

05T 10661%,106612

ASC 16,V, THE VFTO FLAG, WHEN SPECTFTTN

ASGC 13, TNITIATES THE PRINTING NF

T 116612

ASC.27, ALL STATEMENTS INVOLVED TN THE FOIT,
NPT 106612

ASC 26, TYPE TN YFS TO GONTINUE THE £0TT
T 106612

ASC 27, 0° NO TN YETN THE FDIT OPERATTON,
NFT 106612,106612

ASC 26, TYPE £ TO CONTTNNT

N

18T


http:OGT_J..fl

PGELDN DEF
a

<
4
WS

2 _ENIT_2
%
0CT 116637,106812
ASC 22, T0 TINSTRT AFTWEEN SUGCESSIVE STATEMENTS
N7 116612,106612
ASr 12, FINSERT M, M)
00T 106612,106512
ASC 14,IF QONLY ™ IS SPERTFTED ONLY
ASA_15,STATENMENT. M_WILL. 35 INSERTED,
NAT 1NpR12
AST 77N IS AN IMEPEMENT FOR MORF THAN ONFE INSERTION RETWEEN
NAT 106A1
ASC 11,SUGNFSSIVE STATEMENTS,
NrT 10RA12,106512
ASE 17, Ay MEANS OF AN ENTIT OPERATTON

281



183

(V8
=z
[
-
z
o
(&
o]
[
(&)
w
- o
o o >
= tu [
- =z &) v
Z < < u:
o © S - .
E [« S «<Z
TR =z [T zCe i
- o oz . |
S S i pat = !
Ho o> 0 Uik Y <
Vi v O ©H LG
- DZ O L
u = o =3 o.
L o e e Fp zC
S I T 7 S T (@]
Z O T<a T ot o
Z Hoa HO Lz bt
< ] b bt oo
(& o w> e | Dul
¢ w o Fu 0O o
= [ - VE Z
> N e - L Uz
a > o[ I TR TRRRY < g of JVA NI N 4 VY NI
zZ It el O O e |
LW OO T a0 & o
3OLE Ok CXO OO
uw Qo o X N =R Szl Ol o _
- oW SIS i v
<t eIy | e [T |

v
OO T IO LTy
UVirtlifet vt =<0 ed et Tt |
O O L& Lk O m
L XUl NV I XV A XVGHE Y SV IO SV
CICINOONICIN MO MC oCHIN S OO m
111111111141711112M
e OO QO OO CUCR O]
(%Y O V¥ 8 VX Su VAN T X 7ol 7Y SR VoY M 751 V01 &l Vel o}
ACCCICCEACAICTC AL O < =



http:PEPLAcr,Mt.vi

PGELL DEF *+1
* | AST _PAGE
2
NeT 116677 W
nrT 105242
gi% 28%g > NOTE THAT THIS IS A SMALL ASSEMBLER NOT CAPARLE NF
T 10651 '
A?? z;éZ?gnLING LARGE PRNAGPAMS. PRNAGRAM AREA NVERFLOW WTLL
nr in
ASC 17,TERMINATE ALY ASSEMPLY, PAY C1OSE
ASG 124, AYTENTION FOR OVFPFLNY
NCT 106612
ASr‘ Q9WQRNTY‘P WFQQ"’G )'
NoT 196612,1065612
%E? ;7%612 INE TMPNOOTANT DQUGQAMMIMG CONSIDERATTON INVOLVYFS
9 ;
ASS 18, THE DEF PSTUNO OP USED FOR DEFINTNG

¥8T1



ASr 14,ANDRESSES. ITS USAGE

NeY 106612

ASC _16,1IS._82 cSTDlﬁIWBwID DNATA ADNRESSES,.

onT 1065612,126612

ASTC 238, MO°F IMPORTANTLY, THE DFF PSFURO NP SHOULD PRECEDE
NCT 106612 _

ASE 15,001 DATA WHICH MAY 8% TNYOLYEN

ASC 14, TN ANY DATA EDIT NPERATTNNS

arT 106612

A?% 23,09 FOLLOW ALL DATA DEFIMITTONS AFTER THF LAST DATA ©0TIT
T 4106612 o —— S e S —
ASC 28,NPERATION., FAILURE TO NOD SN MAY RESULT IN AN INCNRRERT
NtT 106612

ASC 25,ANDRESS RFFERENNES AND MFANIMGLESS PPOGRAM PESULTS.

NCT 166612,106612

ASC 24, YOU MAY NOW REGIN PROGRAM ENT®Y

NCT 106612,100612

ASEC 19, TYPE IN YOUR FTPST STATEMENT

nor 196612

NOP

END START

Q81


http:106i:.12

186

PAGE 1

YOU ARE COMMUNICATING WITH A HEWLETT PACKARD 2100A
. COMPUTER THAT HAS BEEN PREPARED TO READ IN AND ASSEMBLE
COMPUTER PROGRAMS WHICH YOU ENTER.

A COMPUTER PROGRAM IS A SERIES OF COMMANDS TO DIRECT
THE COMPUTER IN A STEP BY STEP PROBLEM SOLVING PROCEDURE,

SUCH COMMANDS RECOGNIZED BY THE COMPUTER ARE IN THE
FORM OF MACHINE LANGUAGE, BUT PROGRAMMING IN MACHINE
LANGUAGE IS A TEDIOUS PROCESS AND ONE OF THE MOST IMPORTANT
STEPS IN TRYING TO MAKE PROGRAMMING EASIER IS TO INTRODUCE
INSTRUCTION CODES IN PLACE OF MACHINE CODES AND ADDREGSES.
THE USE OF INSTRUCTION CODES LEADS TO A PROGRAMMING LANGUAGE
ALMOST EQUIVALENT TO MACHINE CODE BUT EASIER TO READ. A
PROGRAM TO TRANSLATE SUCH A LANGUAGE INTO THE CORRESPONDING
MACHINE LANGUAGE IS CALLED AN ASSEMBLEH.

THE TASK OF AN ASSEMBLER IS TO TRANSLATE ASSEMBLY
INSTRUCTIONS INTO MACHINE LANGUAGE INSTRUCTIONS CORRESPONDING
WITH WHAT APPEARS IN THE ASSEMBLY LANGUAGE PROGRAM,.

IT IS NOW POSSIBLE TO TRANSFER CONTROL 7O THE CRT SCREEN.
TYPE S TO PRINT OUTPUT ON CRT SCREEN

OTHERWISE TYPE C TO CONTINUE

(TYPE RETURN KEY TO ENTER ALL RESPONSES)



187

AN ASGEMBLER NORMALLY BEGINS ASSEMBLY ONCE THE PROGRAM
HAS BEEN FULLY DEFINED. REFERENCES TO UNDEFINED INSTRUCTIONS
OR DATA WILL TERMINATE THE ASSEMBLY OR HALT FURTHER SYSTEM
ACTIVITY AFTER ASSEMBLY.

THIS ASSEMBLER IS AN INCREMENTAL ASSEMBLER FUR ASSEMBLY
OCCURS IMMEDIATELY AFTER STATEMENT ENTRY. THE ASSEMBLER
DOES NOT WAIT UNTIL THE PROGRAM IS FULLY DEFINED. UNDEFINED
REFERENCES ARE RETALNED UNTIL DEFINITION OCCURS.

EACH STATEMENT IS SEQUENCED AND ASSIGNED A STATEMENT
NUMBER, BY DEFAULT THE FIRST STATEMENT NUMBER IS 10 WITH EACH
SUCCESSIVE STATEMENT NUMBER INCREMENTED BY 10.

TO SPECIFY ALTERNATE SEQUENCING TYPE S FOLLOWED BY THE
FIRST STATEMENT NUMBER THEN A VALUE FOR THE INCREMENT.

USE COMMAS (,) TO SEPARATE THE S AND THE TWO VALUES.,

FOR EXAMPLE:5,12.6

RESULTS WITH THE FIRST INSTRUCTION ASSIGNED THE STATEMENT
NUMBER 12 WITH THE FOLLOWING STATEMENTS ADVANCED BY 6.

OR TYPE C TO CONTINUE



" PAGE 3

lss

IF YOUR ARE FAMILIAR WITH THE FEATURES OF THE ASSEMBLER
YOU MAY BEGIN ENTRY OF AN ASSEMBLY LANGUAGE PROGRAM.

TYPE 'C TO CONTINUE

WAIT FOR SYSTEM RESPONSE

BEGIN PRUGRAM ENTRY

ELSE TYPE L TO LEARN ABOUT THE VARIODUS SYSTEM FEATURES

PAGE 4

THERE ARE 6 SYSTEM DIRECTIVES WHICH MAY BE ENTERED ANY
TIME WHILE DEFINING YOUR PROGRAM, EXCEPT DURING AN EDIT.
THEY ALLOW YOU GREATER CONTROL OVER THE ASSEMBLER AND THE
DESIGN OF YOUR PROGRAM,

THESE DIRECTIVES ARE ALL PRECEDED BY A COLON (:)

:ABORT
:DUMP
:EDIT
tLIST
: SEQUENCE

+XECUTE

DISCONTINUE PROGRAM ENTRY., BEGIN AGAIN
DUMP REGISTER CONTENTS

EDIT THE EXISTING PROGRAM

LIST ALL OR PART OF YOUR PROGRAM

CHANGE THE SEQUENCING, THEN LIST THE PROGRAM

EXECUTE YOUR PROGRAM

TYPE C TO CONTINUE



189

DUMP
AFTER EXECUTION THE CONTENTS OF THE A, B, E AND O

REGISTERS WILL BE SAVED,
:DUMP

WILL DISPLAY THE REGISTERS A5 OCTAL AND DECIMAL VALUES.
INSTRUCTIONS WILL ALS0O BE PRESENTED TO DISPLAY DATA ADDRESS

CONTENTS,

AS AN ALTERNATIVE TO USING OUTPUT INSTRUCTIONS WITHIN YOUR
PROGRAM, RESULTS CAN BE STORED IN THE REGISTERS
AS DATA AND THEN DUMPED AFTER EXECUTION,

TYPE C TO CONTINUE

LIST

:LIST( . M(.N))
TO LIST YOUR PROGRAM SEQUENTIALLY STATEMENT BY STATEMENT
M AND N, IF PRESENT SPECIFY THE FIRST AND LAST STATEMENT
TO BE LISTED, IF N IS ABSENT THEN ALL STATE=-
MENTS FROM M ON ARE LISTED. IF NEITHER APPEAR
THEN THE WHOLE PROGRAM IS LISTED.

BUT IF N IS LESS THAN M LISTING IS SUPRESSED.

TYPE C TO CONTINUE



150

- XECUTE

:XECUTE
WILL INITIATE THE EXECUTION OF YOUR PROGRAM. INCOMPLETE
PROGRAMS MAY ALS0 BE EXECUTED BUT EXECUTION WILL IMMEDIATELY
HALT, WITH A WARNING MESSAGE PRINTED, IF THERE IS A MACHINE
INSTRUCTION HAVING A FORWARD REFERENCE.

IMMEDIATELY AFTER EXECUTION OR AFTER ENCOUNTERING A

FORWARD REFERENCE THE CONTENTS OF THE A, B, E AND 0O REGISTERS
WILL BE SAVED. '

TYPE C TO CONTINUE

SEQUENCE

WHILE ENTERING YOUR PROGRAM YOU MAY WANT TO CHANGE
STATEMENT SEQUENCING.

:SEQUENCE,M,N

IS VERY SIMILAR TO THE SEQUENCE OPTION PRESENTED EARLIER FOR
M AND N ARE TWO POSITIVE INTEGERS SUCH THAT

M BECOMES THE FIRST STATEMENT NUMBER
N IS THE INCREMENT FOR SUCCESSIVE STATEMENTS,

ON COMPLETION, THE WHOLE PROGRAM IS LISTED.

RESTRICTIONS ON M AND N ARE THAT M MUST NOT EXCEED 1000 AND
N MUST NOT EXCEED 25.

TYPE C TO CONTINUE



191

EDIT 1
GEDIT
WILL ALLOW YOU TO
DELETE ANY NUMBER OF STATEMENTS IN YOUR PROGRAM
INSERT BETWEEN SUCCESSIVE STATEMENTS
REPLACE ANY STATEMENT.

ALL EDIT INSTRUCTIONS BEGIN WITH A SLASH (/).

THE FOLLOWING OPERATION CAUSES STATEMENTS M THROUGH
N, INCLUSIVE, TO BE DELETED

/DELETE M( ,N)(,V)

IF ONLY M IS SPECIFIED ONLY THAT ONE STATEMENT WILL BE
DELETED.

V. THE VETO FLAG, WHEN SPECIFIED INITIATES THE PRINTING OFf
ALL STATEMENTS INVOLVED IN THE EDIT.
TYPE IN VYES TO CONTINUE THE EDIT
OR NO TO VETO THE EDIT OPERATION.

TYPE C TO CONTINUE



192

TO INSERT BETWEEN SUCCESSIVE STATEMENTS

JINSERT , M(,N)
IF ONLY M IS SPECIFIED ONLY STATEMENT M WILL BE INSERTED.
N IS AN INCREMENT FOR MORE THAN ONE INSERTION BETWEEN
SUCCESSIVE STATEMENTS.

BY MEANS OF AN EDIT OPERATION STATEMENT M CAN BE
REPLACED BY A SINGLE STATEMENT

/REPLACE M(,V)

A MACHINE CODE INSTRUCTION CANNOT BE REPLACED BY DATA NOR
CAN A DATA STATEMENT BE REPLACED BY A MACHINE INSTRUCTION.

/END

THE END INSTRUCTION TERMINATES THE CURRENT EDIT OPERATION.

TYPE C TO CONTINUE



193

LAST

NOTE THAT THIS IS A SMALL ASSEMBLER NOT CAPABLE OF
HANDLING LARGE PRDGRAMS., PROGRAM AREA OVERFLOW WILL
TERMINATE ALL ASSEMBLY. PAY CLOSE ATTENTION FOR OVERFLOW
WARNING MESSAGES.

ONE IMPORTANT PROGRAMMING CONSIDERATION INVOLVES
THE DEF PSEUDO 0P USED FOR DEFINING ADDRESSES. ITS USAGE
IS RESTRICTED TO DATA ADDRESSES.

MORE IMPORTANTLY, THE DEF PSEUDO OP SHOULD PRECEDE
ALL DATA WHICH MAY BE INVOLVED IN ANY DATA EDIT OPERATIONS
OR FOLLOW ALL DATA DEFINITIONS AFTER THE LAST DATA EDIT
OPERATION. FAILURE TO DO SO0 MAY RESULT IN AN INCORRECT
ADDRESS REFERENCE AND MEANINGLESS PROGRAM RESULTS.

YOU MAY NOW BEGIN PROGRAM ENTRY

TYPE IN YOUR FIRST STATEMENT



194

APPENDIX C

DIRECT MEMORY ACCESS



195

DIRECT MEMORY ACCESS

Disc input operations will be handled by Direct
Memory Access, DMA, a facility to provide a direct data path
software assignable between memory and a high speed peripherai
device. |

DMA transfers are accomplished in_blocks which are
‘initiated by an initialization routine ahd from then on
operation is under automatic control of the hardware. The
initialization tells DMA which direction to transfer the data,
which I/0 channel is involved and ‘how much data to transfer.
Completion will be signalled by an interrupt to the DMA
channel address, address 00006,

The information required to initialize DMA is given
by the control words which must be specifically addressed to
the DMA interface card.

Control Word 1 identifies the I/0 channel in bits
0 - 5 and offers two options

Bit 15 =1 Give STC to I/0 channel at end of each DMA
cycle (except last cycle if input operation)

= 0 No STC

Bit 13 = 1 Give CLC to I/0 channel at end of block
transfer

= 0 No CLC
The disc data chahnel specified on Control Word 1 is
118; the disc command channel is 128. Both STC and CLC options
were selected. |

Control Werd 2 givés the starting memory address for



196

the block transfer. Bit 15 determines whether the data is to
go into memory (=1) or out of memory (=0).

Control Word 3 is the two's complement of the number
of words to be transferred into or out from memory. The disc
controller will transfer the data in 128 word blocks but this
is not intended to imply that DMA transfers must be in multiples
of 128, DMA may transfer any number of words within the bounds
of available memory. Any buffer less ﬁhan 128 words will be
zero filled.

One important difference should be noted when doing a
DMA input operation from a disc. Due to the asYnchronous
nature of disc storage and the design of the interface, the
order of staring must be reversed, thus start the DMA first

then the disc.



197

APPENDIX D

NON-INTERRUPT TRANSFER ROUTINES



198

NON-INTERRUPT TRANSFER ROUTINES

It is possible to transfer data without using the
interrupt system which involves a "wait-for—flag" method in
which the computer commands the device to operate and then
waits for the completion response. It is assumed that

computer time is relatively unimportant.

INPUT

The operation begins with a program instruction to set
the control and clear the flag on the addressed interface card.
In this example, it will be assumed that the interface card is
in the slot for select code 16, thus the instruction STC 16,C..
The computer goes into a waiting loop, repeatedly checkihg the
status of the flag bit. If the flag is not set the JMP *-1
instruction causes a jump back to the SFS instruction. When
the flag is set the skip condition for a SFS is met and the
JMP instruction is skipped. The computer thus exists from the
waiting loop and the LIB 16 loads the device input data into
(B).

INSTRUCTIONS - COMMENTS

STC 1l6,C Start device

SFS 16 Is input ready

JMP *-1 No, repeat previous instruction
LIB 16 Yes, load input into (B)

OUTPUT
The first step is to transfer the output to the inter-
face buffer; the OTB 16 instruction does this. Then STC 16,C

commands the device to operate and accept the data. The computer



199

then goes into the waiting loop, the same as described for an

input operation.

When the flag is set indicating the device

has accepted the data, the computer exits from the loop.

{In the example, the final NOP is for illustration purposes

only).

© INSTRUCTIONS

OTB
STC
SFS
JMP
NOP

16
16,C
16
*_1

COMMENTS
Output (B) to buffer
Start device
Has device accepted data

No, repeat previous instruction
Yes, proceed



200

APPENDIX E

DUMP AND LIST OUTPUT



201

:LIST PROGRAM

. 000010 * L ~
000020 * SAMPLE PROGRAM FOR LIST AND DUNMP OUTPUT
000030 *

goo040 CLA CLEAR A REGISTER
000050 cCB CLEAR AND COMPLEMENT B REGISTER
000060 5TO SET OVERFLOW REGISTER

*¥LIST ENDS*

2 :XECUTE PROGRAM
@ :DUMP PROGRAM RESULTS

A REGISTER OCTAL ocoooc
DECIMAL 000000

B REGISTER OCTAL 177777
DECIMAL -00001

E REGISTER 1
0 REGISTER 1

TYPE R TO RETURN
ELSE TYPE DO, FOLLOWED BY OPERAND TO BE DUMPED

@R



202

:L(IST)

000005 * - :

000010 * SAMPLE PROGRAM FOR LIST AND DUMP OUTPUT

000015 *

000020 CLA CLEAR A REGISTER

000025 CCB CLEAR AND COMPLEMENT B REGISTER
000030 STO SET OVERFLOW REGISTER

000035 LDA ALPHA+1 LOAD A AND B REGISTERS

000040 LDB BETA

000045 *

000050 ALPHA DEC 11,12,13 DECIMAL CONSTANTS
000055 BETA 0OCT 11,12.13 DCTAL CONSTANTS
000060 *

*_IST ENDS*



@ :X(ECUTE)
@:D(UMP)

A REGISTER OCTAL 000014
DECIMAL 000012

B REGISTER OCTAL 000011
DECIMAL 000009

E REGISTER 1
0 REGISTER 1

TYPE R TO RETURN
ELSE TYPE D, FOLLOWED

@D ,ALPHA
DECIMAL 000011
O0CTAL 000013

TYPE R TO RETURN
ELSE TYPE D, FOLLOWED

@b,BETA-1
DECIMAL 000013
OCTAL 000015

TYPE R TO RETURN
ELSE TYPE D, FOLLOWED
eD0 ,BETA+1

DECIMAL 000010
OCTAL 000012

TYPE R TO RETURN
ELSE TYPE D, FOLLOWED

@R

BY OPERAND TO BE DUMPED

BY OPERAND TO BE DUMPED

BY OPERAND TO BE DUMPED

BY OPERAND TO BE DUMPED

203



204

@8:LI8T,5,30

000005 *

000010 * SAMPLE PROGRAM FOR LIST AND DUMP 0OUTPUT

000015 *

000020 CLA CLEAR A REGISTER

000025 CCB CLEAR AND COMPLEWMENT B REGIGIELR
000030 STO SET OVERFLOW REGISTER

¥LIST ENDS*

@:LIST,.,28, 32

000030 5T0 SET OVERFLOW REGISTER

#_IST ENDS*



205

@:LIST .35

000035 LDOA ALPHA+1 LOAD A AND B REGISTERS
000040 LDB BETA

000045 *

000050 ALPHA DEC 11, 12,13 DECIMAL CONSTANTS
000055 BETA O0OCT 11.,12.1%3 OCTAL CONSTANTS
000060 *

¥ IST ENDS*


http:11.�12.13

206

APPENDIX F

MEMORY MAP AND FUNCTIONAL UNIT RELATION CHART

AN



207

INTRODUCTION

The Memory Map offers a through listing of all thé
program units. The address of almost every subroutine as
well as a brief description of the subroutine has been
included.

Immediately following the Memory Map is a chart to
display the relationship between the program units on each
page. For each program unit there is a list of the units
called and also a list of the différent program units which
call each particular unit. The number following each entry

in the chart refers to the page on which the unit resides.



208

MEMORY MAP

PAGE 0

ADDRESS
00000 A REGISTER
00001 B REGISTER

00002 EXIT SEQUENCE TO FORWARD REFERENCE WARNING IF A AND
00003 B CONTENTS ARE USED AS EXECUTABLE INSTRUCTIONS

00004 POWER FAIL INTERRUPT HALT

00005  MEMORY PROTECT/PARITY ERROR HALT

00006 DIRECT MEMORY ACCESS CHANNEL

00011 DISC DATA CHANNEL

00012 DISC CONTROL CHANNEL

00101 JUMP TO INITIALIZATION

00103 BASE PAGE LINKAGE OF SYSTEM SUBROUTINES

00172 ASSEMBLER TABLE ADDRESSES

CONSTANTS
00211 Decimal constants
00313 Octal constants
00343 Alphabetic constants
VARIABLES
00365 System variables
00416 Temporary variables
00427 Edit variables

00511 CONSTANTS AND VARIABLES FOR DISC INPUT DRIVER

00516 CHARACTER CONSTANTS

BUFFERS .
00532 Input buffer
00576 Auxiliary input buffer
00642 Data store buffer

00677 OCTAL CONSTANTS

00714 INTERRUPT HALTS



00717
00727

00724
00730
00753

00763

01131

01154
01157
0lle2

01165

01234
01253
01262
01272
. 01304
01313
01317

01323
01340
01350

01355

01365
01374
01411
01450
01457
01504
01510
01515
01525
01532

209

INTERRUPT SERVICE SUBROUTINE CALLS
ERROR MESSAGE OUTPUT

ERROR MESSAGE SUBROUTINES

ERROR Call BPLN and REENT
REENT Print re-entry request
BPLN Print error message

BASE PAGE ERROR MESSAGES
TABLE OVERFLOW WARING

INTERRUPT SERVICE SUBROUTINES

DMASS Clear control flag on DMA channel

DCSS Clear control flag on disc data channel

CCss Clear control flag on disc control
channel

INITIALIZATION SUBROUTINE

 CNFIG Configure I/0 package

LEXICAL SCAN SUBROUTINES
GETCR Get next character from input buffer
NTBLK Get next non blank character
RDCOM Read upto a comma in buffer
BCKSP Back up one character in buffer
TRMCK - Check for walid terminator character
SAVEE Save present contents of (E)
RSTRE Resore contents of (E)

ASSEMBLY SUBROUTINES
WMOVE Move N words
DATAD Adjust address for data address
IDRCT Mask on indirect reference bit

EXECUTION SUBROUTINE
SAVR Save register contents after execution

EDIT SUBROUTINES

EDTAD Prepare address pointer for edit

PREPR Prepare to scan editted text

DSCB Delete from Source Code Block

SNGDL Delete a single machine code instruction
XDEL Find assembled instruction after deletion
SVPSN Save user program position before edit
JMPE1 Insert one jump during edit

JMPAF Place return after edit entry

JMPBF Place link to edit entry

JMPS Store two jump instructions to link edit

entry



01543
01562
01607
01652
01662

"~ ADDRESS

02000

02041
02103
02122
02165
02172
02202
02252
02266
02300
02312

02320
02324
02330
02334
02370

02410
02457

02526
02530
02632
02534
02567
02574
02643
02645

02676

02721
02756

210

DISC INPUT DRIVER SUBROUTINES

DESKI
DISKD
SEEK
RSEEK
STAT

Disc input controller

Disc input driver

Output disc head positioning commands
Output disc seek after ten read errors
Retrieve disc status word

PAGE 1

SYSTEM CONTROLLER

INPUT/OUTPUT PACKAGE

DATIN
TTY.I
TTY.P
I.0FF
I.ON

PROCS
GETCH
INIT

I.STP
NWLNS

CRLFD
CNDEC
CNOCT
CNBIN
DVUKN

Request input

Preform input operation

Preform output operation

Turn off interrupt mode

Turn on interrupt mode

Character processing for input
Character processing for output
Initialize for output

Interrupt service

Output multiple carriage return line
feed

Output carriage return line feed
Binary to Ascii decimal

Binary to Ascii octal

Store converted value

Divide value to be converted

STATEMENT STORE

STSCB
LBDEF

ABORT
DUMP
EDIT
HALT
LIST
SEQUENCE
XECUTE

Store statement in Source Code Block
Define label beginning statement

‘SYSTEMS DIRECTIVE CONTROLLER

Abort program

Branch to Dump routine

Prepare for an edit operation

Halt the computer

Interpret and execute List request
Branch to sequence routine

Branch to execute user program

SEQUENCE DIRECTIVE EXECUTION

DUMP DIRECTIVE EXECUTION
Dump register contents
Dump data address contents



03030
03040
03061
03072
03103
03123
03211
03231
03257
03334
03446
03535
03625

03671

ADDRESS

04000

04517

05174
05212
05245

05237
05350
05401
05416
05550

05672

211

DUMP SUBROUTINES

EODMP Prepare to dump either (E) or (0)
RGDP1 Dump (&) or (B)

RGDP2 Dump (E) or (O)

RGDP3 Print register name

ASCDC Convert binary to Ascii decimal with

minus sign if needed
TEXT FOR DUMP OUTPUT
DUMP ERROR MESSAGES
USER PROGRAM EXECUTION
FORWARD REFERENCE EXECUTION WARNING

EXECUTION SUBROUTINES

SSTDF Define compound operands
PLCDF Define Program Location Counter (PLC)
references
FNDAD Find address for PLC or compound
' operands _

FWDRF Define forward references

LIST SUBROUTINE

PAGE 2

LEXICAL SCAN
LEX Main lexical scan subroutine to scan all
source program statements

LEXICAL ERROR MESSAGES

LEXICAL SUBROUTINES

RANGE Check range of operand value

STDAT Store data in temporary buffer

VAL Input temporary value for undefined -
symbol

LABCK Read in and examine operand for data
definition

CLEAR Initialize all variables in lexical scan

LOKUP Symbol Table look up

FIND Find symbol address in Symbol Table

MNEM Look up mnemonic in Instruction Table

DATFL Check for data table overflow



ADDRESS

06000
06020
06227
06302
06336
06367
06423
06461
06500
06515
06553
06607
06616
06662

07000

07155
07435
07501

07516

07561

07657

ADDRESS

10000

10327

10336

212

PAGE 3

NUMBER MANIPULATION SUBROUTINES

CONST Input a decimal constant

NUMCK Fetch number and convert to binary

.PACK Normalize and pack floating point number
- NORML Normalize wvalue and exponent

MBY10 Multiply unpacked number by ten

DBY10 Divide unpacked number by ten

MPY Multiply integer in (A)

DECHEK Examine character to be decimal digit

TYPCK Determine real or integer

IFIX Convert real to integer

TWINT Input one or two decimal integers

GTNUM Input a positive decimal integer

OCTIN Input an octal integer _

OCTCK Examine decimal or octal operand integer

ERROR MESSAGES FOR NUMBER ROUTINES

LEXICAL AND DUMP SUBROUTINES

OPREC Read in operand

LABRD Read a symbol

LETPR Check character to be alphabetic or
period

DATRG Check address to be in program data

table range

EXECUTION SUBROUTINE
CDSCN Scan user program for forward references

SEQUENCE SUBROUTINE
SQNCE Read in user defined statement numbers

PAGE 4

INSTRUCTION ASSEMBLY

ASSEMBLY SUBROUTINES
SETCD Set and store instructions in appropriate
program area
Evaluate and store all memory reference

operands
DETLN Determine assembly length for a Memory
: Reference instruction
ASMBL Allocate space in Source Code Blcck for

storing statement



213

10511 DTSET Store data definition in program data

area
10535 STLBL Store symbol in Symbol table

10622 STRCD Store instruction in program area

1¢627 STRCK Check user program area for overflow
10664 STPLC Store Program Location Counter reference

EDIT SUBROUTINES

11000 CMOVE Move assembled code

11066 "~ CASCD Adjust forward reference pointers of
statements involved in an edit

11210 - DELTE Delete statement from assembled code

11332 DVTEDD Delete data definition

11405 DTEDI Insert data definition

11475 SCSYM Adjust data address after an edit

11623 STFSP Store length and address of deletion
from Scurce Code Block

11727 ASMAD Retrieve assembly addresses of instruc-

tions involved in an edit

PAGE 5
ADDRESS
12000 EDIT CONTROLLER (INSTRUCTION SCAN)

EDIT SUBSYSTEMS

12267 Single Delete
12323 Multiple Delete
12437 Single Insert
12476 ~ Multiple Insert
12542 Replace
12651 End
: EDIT SUBROUTINES
12661 EDCLR Initialize edit variables
12701 VETCK Check for a veto request

12726 EDITOR ERROR MESSAGES

EDIT SUBROUTINES

13207 EDIPT Source code input during an edit opera-
tion

13305 ISCE I.ink insert with Source Cocle Block

13325 XINS Find assembled instruction which
precedes insert ~

13412 YINS ‘'Find assembled instruction which
follows insert

13462 MULIN Prepare for and begin machine code

multiple insert



214

13544 ENDMI End a multiple insert operation

13603 RSCB Link replacement with Source Ccde Block
PAGE 6

ADDRESS

14000 INITIALIZATION PROGRAM

14340 DISC INPUT STORE BUFFER

ASSEMBLER TAEBLES
ADDRESS

15200 INSTRUCTION TABLE

15602 SYMBOL TABLE

17160 SPECIAL SYMBOL TABLE (SST)
17634 PROGRAM LOCATION COUNTER TABLE
20000 SOURCE CODE. BLOCK (SCB)

25700 FREE SPACE TABLE

26001 USER PROGRAM AREA

26701 FPRCGRAM DATA TABLE



215

PROGRAM UNIT INTERRELATION

PAGE 0

ERROR MESSAGE
PROCESSOR

INTERRUPT SERVICE
SUBRCUTINES

INITIALIZATICON
SUBROUTINE

LEXICAL SCAN
SUBROUTINES

ASSEMBLY
SUBROUTINES

EXECUTION -
SUBROUTINE

EDIT
SUBROUTINES

DISC IMPUT
DRIVER

PAGE 1

SYSTEM CONTROLLER

CALLING PROGRAM PROGRAM CALLED

THROUGHOUT THE
PROGRAM

1/0 PACKAGE (1)

DISC INPUT

- DRIVER (0)

INITIALIZATION
PROGRAM (6)

LEXICAL SCAN (2)
SYSTEM DIRECTIVE
CONTROLLER (1)

EDIT CONTROLLER (5)

STATEMENT ASSEMBLY (4)

XECUTE DIRECTIVE (1)

EDIT SUBSYSTEMS (5)
EDIT SUBROUTINES (5)
EDIT DIRECTIVE (1)

INITIALIZATION (6) INTERRUPT SERVICE
SUBROUTINES (0)

CALLING PROGRAM

I/0 PACKAGE (1)

LEXICAL ROUTINES (0)

STATEMENT ASSEMBLY (4)

STATEMENT STORAGE (1)
I/0 PACKAGE THROUGHCUT THE
PROGRAM
STATEMENT STORAGE SYSTEM CONTROLLER (1)
SYSTEM DIRECTIVE
CONTROLLER (SDC)

SYSTEM CONTROLLER (1) LEXICAL ROUTINE (0)



PAGE 1
DUMP

EDIT

LIST

SEQUENCE

XECUTE

PAGE 2
MAIN IEXICAL
SCAN SUBROUTINE

LEXICAL SCAN
SUBROUTINES

PAGE 3
NUMEBEER IMANIPULATION
ROUTINES

LEXICAL AND DUMP
SUBROUTINES

EXECUTION
SUBROUTINE

CALLING PROGRAM

SDC (1)

SpC (1)

SDC (1)

SEQUENCE DIRECTIVE
(1)

EDIT CONTROLLER (5)

SDC (1)

SDC (1)
LEXICAL SCAN (2)

CALLING PROGRAM

SYSTEM CONTROLLER
(1)

EDIT SUBROUTINES
(4,5)

MAIN LEXICAL SCAN
SUBROUTINE (2)

CALLING PRCGRAM

LEXICAL SCAN
SUBRCUTINES (2,3)
EDIT CONTROLLER (5)
sSpC (1)

LEXICAL SCAN (2)
DUMP DIRECTIVE (1)

XECUTE DIRECTIVE (1)

216

PROGRAM CALLLD

DUMP SUBROUTINES (1)
LEXICAL AND DUMP
SUBROUTINES (2,3)

EDIT SUBROUTINES (0)
LIST SUBROUTINE (1)

NUMBER MANIFULATION
SUBROUTINES (3)

STATEMENT NUMBER
SUBROUTINE (3)
LIST DIRECTIVE (1)

XECUTE SUBROUTINES
(1,3)

PROGRAM CALLED

LEXICAL ROUTINES
(0,2,3)

NUMBER MANIPULATION

RCUTINES (3)

LEXICAL SUBROUTINES
(0)

NUMBER MANIPULATION

ROUTINES (3)

PROGRAM CALLED

LEXICAL SUBRCUTINES
(0)

LEXICAL SCAN (0)
NUMBER MANIPULATION
ROUTINES (3)



217

PAGE 3 CALLING PROGRAM PROGRAM CALLED
SEQUENCE SEQUENCE DIRECTIVE NUMBER MANIPULATION
SUBROUTINE (1) ROUTINES (3)
(STATEMENT NUMBER INITIALIZATION (6)

INPUT)
PACE 4 - CALLING PROGRAM SROGRAM CALLED

INSTRUCTION ASSEMBLY SYSTEM CONTROLLER ASSEMBLY SUBROUTINES
(L) - (0)
EDIT SUBSYSTEMS (5)
EDIT SUBROUTINES (4,5)

EDIT SUBROUTINES EDIT CONTROLLER (5) LEXICAL SCAN (2)
EDIT SUBSYSTEMS (5) ASSEMBLY SUBRCUTINE
(4)

PAGE 5 CALLING PROGRAM PROGRAM CALLED
EDIT CONTROLLER SYSTEM CONTROLLER EDIT SUBSYSTEMS (5)
(1) EDIT SUBEROUTINES
A (4,5)

LEXICAL SUBROUTINES
(0)

EDIT SUBSYSTEMS EDIT CONTROLLER (5) EDIT SUBRCUTINES
(0,4,5)
PAGE 6 : CALLING PROGRAM - PROGRAM CALLED
INITIALIZATION SYSTEM CONTROLLER INITIALIZATION

(1) SUBROQUTINE (0)
DISC INPUT DRIVER
(0)
STATEMENT NUMBER
INPUT (3)



218

APPENDIX G

SOURCE PROGRAM LISTING



ASMSB

219

sAsL

= L)
ut pd
e Lo}
wn won —
) =5 <t
4 =t <N o
w - o u
- =t n o.
uw x Wit o
(14 a Wz L u L)
(] 100N T w o O« =
o) >l b W w o la
o0 ~db= M < o L] o <t %)
> W=z x - < -0 o
] - 4 r o o
“ g v 4 o - o <
n O [} o o - o e
<t Oyl o WIY ) " - =
Wz = - i [2) w
(o] P ) V] D64 » o ] %]
(s Ty ﬂPS = ul ) i
« i o 40D o <ty - O« o
¥ Wi o W ul e o} - o
S o <t w> o/ 0. <<
=4 Ll On. b4 mormw O = o i
o IS o = Z o O ¥ T
00 L <t L= L) Zalld -
| = Wwn [+ = . = LN
- W3 ALY Y w zzp o
1] V) - Wrw o - ZzZo! W
) I 00 - VY w - W o
x ax u DEn O <T woxr =
i > -t poera ot Wethp= D
T  wouak T oz v H ol
ouiEns w wey M =4 « )
us O = vl o O > ) o
- AZZ < bV s L %
D awo) “ i Oon o
© O Y _ I dm =IOl =X
1w = L ] | 0 Tk ,
> u o 1] GO - N ,
W Wwo I ¢ ol ~ .
T Ooluld 1 o OT% o ;
Ot O X Zt |ouT T WM™ :
Zoe Oooul o | it 0 O ;
(D | 4 1 Dw wp, 0 ‘
O W< © ol t Lo I ;
we, OxX o < § It TN Zaz {
S0 XrZo el I I SN OO0 ¥ «
o D00 zZ1 et HOMH O :
Wit T Olrin Wt ‘ 1 © | m
Nt wWo o =\ 01 OQf I o e A
ot i 2 ) we | i O oas 3= :
ot ND Tz 8 m. o [ 'Y Y] :
il IO DL [~ U O ¥ IZ0 T :
20 Z Okl =1 - N w. om :
ot 0og Zzulw SR t T ZWE <> :
P HWOOO _ ﬁ b~ HOH W :
, F { : R
...u.¥¥¥¥¥¥4¥¥T4¥4¥¥&.4¥4l4¥¥4x..r..vx.%nv*x.&.x.x‘&.:.! :
| b ! L
_ _ | :
W “ w H
;



PROGRAM RESTRICTIONS

% N % % %

oI
D D (0 b
O Z

o Jdld
[0 W
=
O 2 b
el <L

5
muo
)% A 11
Wit (N
LIt (N e
NN D~
<L b (HAN
_ —NZ
Nd T O
M e P I
et -
i [ZaY &}
= T
<t o> (¥
L O 44 (/Y b
L LI =D
|- 4 TE]
D -0
1JC b S
Az X
O LIN
I OO
(SER S )
IO
T ul<Y
L e O 1~ Q.

<
L) D s}
Y Je 0o N
T X0 ZW D

=4 oy ©

E
0
C
H
N
)
ST

jead ] <Tigh—=03
OFT T oIw
| el [ ol o O]
Wi (N w
X0 ¢ X WM
- (Dl

o oy N
SOy O

oW O™ Oak-tin
The Y Zd YTl
OD -0
OF O b Wi
wnnom Wi 0O di
0 - NNO

OlWLZXD o

ZOWa 2O

WL Z 07 NN
W 00T D
O>-<Th~ 22 W

AT ODNT D
O et O <L (N O U (D
O bHED L a2
rouuro ouwio
IOZUl MIOT|
OO LI L
O (AT YD

el Q- INOZ

O e
ZrZ oY woOoDX
O QW o

[ WZunnornEe
VnNCoO oo -
3 KL AT bk e O T P L
O LrZOo nTh
A>T b
(o= il S S f S
LA e ou. Ol
Q>00Z¢  Zk

CVIL QA Z C Ll ~

T ed ZED I TSN

TﬁEIICPTUTi
|

n.x.avn.x.x.l.#T*.#l.u.#x.%

ﬁ;444¥4;

[alel?%)
b Jual o]
O
b

220



* X %

PROGRAMMING LANGUAGE

FY
* HEWLETT PACKARD ASSEMBLY LANGUAGE FOR THE 2108 SERIES
T¥ OF COMPUTERS (ABSOLUTE ASSEMBLY)
®
¥
* PRIMARY STORAGE
* .
* XOPCD  QOPSRATION CODE TABLE FOR INSTRUCTION L0OOX UP
N (SYSTEH TABLE N THE USER)
* XSTBL  MAIN SYMBOL TABLE
¥ XSST SPECIAL TABLE FOR GCOMPOUND OPERANDS
M (OPERAND WITH A LABEL AND NUMERIC VALUE)
* XPLC PROGRAM LOCATION COUNTER TASLE
* (HOLD ALL PLC REFERENCES TO BF DEFINED -
M IMMEDIATELY SEFORE EXECUTION)
* XSCB SOURGE CODE TABLE
x (STORE SOURGE PPOGRAM ALONG WITH ALL
x NECESSARY INFORMATION)
* XFRSP FREE SPACE IN SOURCE CODE BLOCK
¥ (STORE LENGTH AND ADDRESS OF DELETIONS FROW SCBY
* XUSRP  USER PROGRAM AREA FOR MACHINE CODE INSTRUCTIONS
* XDATA = USER PROGRAM AREA FOR DATA
3
»
T TAUTHOR  JAMES FORRESTER

MASTER S DEGREE PROJECT :
MCMASTER UNIVERSITY,; HAMILTON ONTARIO

'3
'
E
: NOVEMBER, 1973
¥

1ce



|
(o]
o
- C A
] =
[ el (@]
= bl Y
<t
w oy
=z Oul
o Ol
o
o [+ %
ul L
- <)
= ]
w we
ot
o L
- P o
Ll
- )
O« NLJ
- FTo <«om
Z wo
w =0 00
o b
N1 W oend
Zt b ou!
o1 <« >4 W
b Zag Zul
-1 N a3 OX
ot ,L Pt
- | ox w»
o & Zuw W
i 0O <ad Own
wioe a
Wi Z > 0.
Xl O )
O <> =
= & WV Y
<t ) 1 <
W Ul J
Ol 4 Od O e
ot M@ WO T -
Kl ¥ zZu WwWoz
oL w =z
N Y
¥t o axuw
Wit < Z> o
72X W
poo I Nz T
HO )

W % ok kDR % ok % % % %

¥OTHER FEATURES LTIKE BINARY OUTPUY OR A CCROSS REFERENCE

TABLE ARE NOT AVAILABLE.

% % %

MALL LEARNING PROGRAMS FOR

WING USER TABLES

S
G
0

* 2 PROGRAM SIZE

*

¥0

- %

13 ]
pd prat
[ oo I o4
X uix
(&} SO
<t 0.3
= > L.
oY
ol W
(o] b I bl
[elole]
[ wm
= w=o
4 =T O O =
o T an1 [75]
(=4 O ul
- o ZWw .
! TOZ
o T TS0
[T I P~ Ok
B S =] [ JUTI o
=z ZOND
WD ™~ L[]
a0 >Z i
[eal A BN 75} ~O LI
W WX fagd SN TER]
A Z0Oul = G
m oy LU <tz
<% )T [VpRVE] g o
e O e £ e W
Mt = < > <Ly
- Ou w o
O>CO - L
MNALSOD e QWO
= LOOZ] S -
>AE O T
Nl <IRIO i
QLY b DT
ZOLNKY! Jd-ZO0
LWODULID! Qi
<CAOWNE| =X
oDk <« 0O
NI et o
Wi Z O e
TIXIXTITIXTH] Wl
ekt o o ol =0l
ZD0Z
[« O ZH
o Lt
-OZXT
- .0 =
4 O <T b
< B g 4
W o % 3 % % % XN

N

3]


http:L_A2-S.Eti8_L.ER

PROGRAM STRUCTURE
~ % THE USER PROGRAM WLL BE TREATED AS AN ABSOLUTE PROGRAM

"
v ¥*THERE WILL NOT BE ANY

3

% % %

=

Wi e o

[ -
17} 4

> o4

[ 73] <

(4] (]

el L

[ [n]

- =z

= d Lt

24 -
W b o]

a. 18}

© x4
q=
V8 0 ol
x w ﬂ

| ad - Ll
b~ O

v - Z
=z >l

=t Y
%217 bl ow
bd DD > o b
- [Ty
< 4]
S (@ z
W zZ >
: <N 0
Z 0 L Ok
<t s 2 &
< << WD
D> o
Yt ) %) -
e Z o
WAL o o=
Dl -
Y sx - F
| DO O =
N0 DO
s 2 i o uwZ
<z Ll e 1]
oL o %) 24
(FREVE] Z o
—h— >0 - Tl
] <<l
et IR % =%
1
(o4 a o>
(&) -t Om

L i

- W=
huo B o F8)
=

|
|

(+LABEL) (+/=VALUE) (41}

REPLACE

GRAM LOCATION COUNTER REFERENGE (*) MAY

0
ABEL.

PR
LA

£
RUGCTIONS AND PSEUDO OPS

LD
=i

H 1
;#W;;;#;%#ﬁ&m;;##tﬁ;;#

|

223




Ms.., s
& o
o
. [T
O
o) -
T3] (7404
o O
w Z
- o0
-t O~
= x|
“o
=z Zie
1 -
Ul e x
MZ b=
o [72]
L bt MR
= =
<Th4 Ui e
TZ © W
4 ho
N T
0.l Ve
(ofa Bape I o]
SO
on own
Q. &
Dt Olerly
Wy il
DLy bt
Qe HaD
o = 0o
ut ST
o= g0
= LYo
<l O
i low
HT (Yo
Ll o
ST W
. d lele"an'
O Qui
wey oo
T <CDOX
 gal
=z
(TIPS
O 1y
" m
o <T
Dl
oT
-

=TT

Lo oe GO ]

~Ou
Y E
o]t lan)
NP

%ok ok N %k % Mot % % %

DEFINITION

DURING

KL OQOE

Pk 0 ok % % %

NAL END OF PROGRAM AND ADVANCE TO EXECUTION
¥
Y
£
E

N
0
P
0

W o ke 3 o N o

224




L]
1}
-
w
St
=z =z
b (& =z O e
[&] = el (D Wi
[ NI - w
(%] [T G 7]
S L)t D= o~~~
o Ay of ool
[ o < e
Wi Lol L T VSR~ ¢ | aod
-d Quln 3 Ok —
(S 2 e O ZZZ o
T T sl =
F = HNNEF wn AT EXT -4 ]
-l ied Wil (@] m
| ed b (DO b= [ i s o
Whete TZZL.b-~T0.00 — OFm~
Wt QOO LI 3TF Z aCam
Sl L HO OO O ol
i~ o~ ~ QDOr -
Ot L b 4 (D o o OO i O~ QW22

ot ot €, €T ot T e e e (03 (0 0 27 22 27 LN SN S LU L
- (EEE(((AAA(TI(IOMM
Ol O ZZEud ; Luad
e o e o o o YT T e b e b Y Y Y Y O O OO S
I TH VIR VI o s PR T TS oo g € o g oA o f o N o M4 T
0 b b g (0 b e bt o o 4 4 L i L LD L D WU L 30 30
QOCTIZINNOIT I T dedawd ddad JALOO
LY NNCNI LK INNNOOOOLOOLLOOO

g _(A)

COU K NOV S L EVNC@OW L OWL O m
daaaaaIaaRnOOOO00On00CO0E

ASSEMBLER MACHINE CODE INSTRUCTIONS ARE?S

IEEFE L EE B ESEREESBESEIEEE RN BB B B

225



226

S

Lty

z2Z

zZ

g

Pt s | ha s
<X <X ~d OO -
DD wil il
(«.fa) o ZZz OO0 it
il 24 ZZ N\ Zzz
z2Z i W €L i b Tt
oD ol ~ Irx s O 8
o COPET T (&1 ]

[T TS pm b T TR TOO
[l oW L ooy oo
(FRRVEL ot ] -~ SN UL N
0o ~ e Y 0 Laal e it

b d ! [ |~~~
nwn <N« D on = OOl ~ o b

oAt e S e - or oY
- . [anlsalvdo i LLTOO o~
~e~ e~ OO0 i D ] o am
[TRES das] CZZZZ e~ T Qe 22 e
e Wl Il <O FIMIODHFH =
o -0 L e ot w7 o
OO0 A0~ i - O - Qe OO
Zhi= O bl N0 00OLIYEY =YY
Lt (7 B b s o ot e Te Py S THTH
Tui | Wil OZZZZdvr~— it

wiolduwiluiu EEZOE e N Q. Ldbem e
VL= 8 don DI NN TS S oot R TR IVE [ $TH Ouwiiim-g oD

OAQHCOILI<I0 O IO OO CHOORON A
EEZF = DDk b b JOOQOIT T T T I UV O] b
OCOoOOHCOOOOOUZZZDID0CCOOWWDODD
OOLOODUENY L —HMMN I I S IZETZ00

W <002 (b <L (0 <L (e <X OINOL O L O T DO 0 >0 <T 0
Q0 _JNJ I IZZ0ONE N0 O O i—
OO QLI T rd bkt ™ D I I D N ITZTZTZ00

¥¥¥¥l%¥¥¥¥¥¥¥¥%¥4¥#¥44¥¥4¥*¥




L)
o
<L -
L
~ O
[+ 4 wdfN
[~ N wlal d o
[ otedq 1"
- St e
- OUVNN |~~~
wis haind Hin<tm
L NN | -
- € et e bk b e ()
: , L L <t -
Lol P NN T it :)\;85100 d P~ (=4
- o~ Dne < | ou m ~
= b Z OO~ T b
kT | Werd QOO+ A OO0
LOLOOOY Sl Jddenm Qomp -
[FRL T PR Lo Drigvrd Huwl CoOu. ooy Zu
O IO IO KXZZ b XL o

| Ao LMW ZZO maO
e s Y NN NN D OQ ed~<I D
= - aalea ko= (R IS N I Tal 01717, RN S TR ITR - £ oa g TH
[SRPPNI) O) | < o =

T TR TR R P T T T TR PR Y Y T TR T
EEEEEESIIIIIIIII NN ST N
o s e o e e (Y L= OO0 D
Il T WO O QA D,D.DD (s 4ea 0.0 .3
P b e e b 3 b bt e b e A e b O O b b e et bt 1 O
QOOOOOWN MM MM MM NN = UM W X
XY Y Y (¥ X Q7 2 LA NN N NN DD N NANI L

O A A NINONCDON<TO UL OQA <TG
IIODX XL LA A JOONN b NN O
O O O O O/ 1Y O (D NN NN IDINNN NN INNT NN X

I EE B EEREBREEEEIEER SR EEEE BB S

|

227



228

-
b4
(o] - o
(el < -4
. (=] [« 4 (=4
O D &) X
o (] ()
L o (+'4 (4
] > vin (] 18]
b V8] 11 24 (%]
- 78} Zw a4 o
— vy =z (a1 78] ud
X iD= N (@]
— —gZ ! n o} > |
- uie<t e i - W
DO o Z oZF g Z L
W 0N~ e Or4 HX. O 4
¥ aINZ Lo O <<t o0
g T O X O [.on TS VYo WY 24 <
OULO- < = oz =4 -
2B o) o O Lier N O ~
Z - 00 O o w— O <
O DY OL ZuW =0 4 >
- OO T WO o, oW <t
= OO O e =0 Gk
O T Zp- » O o [ 7]
D @ moud-~0 wo s O pd
o <w oa—0no L 0 & o
L g [ ad vy < Lz =z o -
N it Zuiug Ok O> W Qoo
Z ZNYZZ T T o b~ s = =
L et T T Dl =0 Z oo O -
Wz XDOn, | 20 WJE s O "H.
a  wwbikiidcuw 2z <3l oo o
O DUXOORWD -0 ¥ ul LK =4
[%2] T oo o~ v
O () T -~ _J
(=] -t Y oo = ﬂ
o b bt (18 LI !
[Ty (7230 K N o O L )
n v Z eea O 0 F el
[« : wa oo OO v el W
NONOLOD M- o w < - n o Z os0
X OVVLIWZOO NOAEZIZ SN T @ ©@ el 4 % O
W a<maouille fea} i v
- OO Qb . b=k v (O IO 0O
m EDEII_ 40 ) OO o wi >l
= OCNTIDITIT I OO0 += O e I}
W T 0 o
%] [+ o
170} (@] — [+'4
<t =z ' <L
o
PR R R EEE RN NN % % M NN NN ®




*

BASE PAGE LINKAGE OF SYSTEM SUBROUTINES

P’

%

zZ
<t
[&]
T [+
L
-t [ oad
(=4 [&]
N < o
lals] 4 o4 1%}
IO > T 8] (S
s ATHTE I L ﬂ L t
om R | (5] b o |
Oz D m (@) z
<l 4 Y - =M (&) 4t
O ®V O )
MWL, WY w2 o i ] pV
O Or+WOOU . Wi O o<
Cory Wwuoouwy Wn. O L
-t OLL- O 7 Wi WD w o e -z
N JdOZZOOU 0 T O oo |tDOo
¥ OMOWy ZZO0Z Zyoauwy » jad W ]
ZLWd DO« LI O o Z
M odb= LY Y0 b 00 [l
ZL40O00O<IWIDDul wZw=2 O i 3 Z
= OIS EOOMONY) ST [ %0 R [
AU W 3 Q0 LY ZXE Waun i

OV OO sl W = >Z 0L << OF IO
P O N S b N b <L T = O O )
DY INULODNII—=OF N =OUNY O Ld-Y
QXD N 0.IO0OCOCO L o O ouwOD=E
oW ez I OO0 ZW Dz Y (Rt
DNNCITIOHW LI COMr IO, O = 2
o | b b O N N L e A ) Libe Dt g

OO0 b L IO W LIIQO Y D Z Z WO D b e DO DY
> OZOHDI T S IO Y b T el XKUY b O b b L1}
e O ZORMMILILEZ T T =20 D 2w wW2Z2oDhon
UL ST X OORO QN b Y wd wd OO OO

L

OLaLICHUW-ZWUOHJIVEE LoD LYK onzZo
iDL L >N OCUL K UDZW O O Ou Z el
>NEFTWOZ b LU NZO0NTEMX NN k- (¥
VIOl T ¢ s eI WHOWD X EOL
TJAACCCDDDDDDDGIIITLLLLLNCWOO
| :
VTR PR TR TR TR P T T PR PR TR TR TR PR IR TU YV P P PN T TR R PV TR
Ll Lt biu o Lo b b b e ol g bt bl g oty
als alalalalalallalalalalalalalalalalalalalalal =l al oY=

W | | m — ,

H | ! i
OO0 U~ Z O~ OO T 20 AN QA Y ZNZ O
HOWMI LD oL YN ZOW O XN M Jod—
RT,,SSLMHN..ALTTT.T.T.TMOSBBEIOTMNNCD‘
WSNAACCCDDD,NuDDDGII TJ«LL.L.LLLN NANOO

| ,
| | | |

229



o
7]

Loy
i
[« 4
=z
[T T =W
x I o
LWV ]
b0 W D=T
old-Ud el
Q.4 0 Wy
bilds =>=Z
OOD O
w o=z o
owsE alw
O Q> b= (M2 (¥
QO VNZoYrW
Y WO
QOZE |
L L WS O
L IOz
O Wi ooy
O -0
wzonnoow
Ni<tet oz
U D20
ST =
O T AVl e
ZOXOD ODL
LZ O L0 b=
Oldbtiws T 2Zul
NIV N

Z0 JUIONY N
ONDOOOZO
(DU I -0
b b= € L e 75 D
OCNNNIN--

!
TR TR TR TR TE TR TR TS
Lot by s LU
fatal=lalayalal=)

o |

[&Ts NN I T a4 23V
ZNMZOO0ZW
CFLQT?&WP

SSSSQ¢STT&. <T(N% T WO R I F N X%

*
_

EDIT VARIABLE ADDRESSES

wom
o 00
[ ZWu
[T I = oo T,
Z D Y=z
[ ity
< [72]+8
b4 s A ZOu!
il - Y
adinil - Ll QO
BADO00 - T
OO0 Ny W ed ST Pt
[ e o of Do B4 Lok S B ]
OO DHLOD
Z o Ob=liit= O
N b o [0 T BN %
NLTa Y N D2
[asl] DO A E Dl
NEQ N, <x [
[72] VB o CO-uD
O D bew pem (N —=ZD O
LN o MO X W
> o0 Wrao x
onoliul . DIl
| - [T
0o OO0 u U O
L= O b Z T -
Y oo Y
DVYDOVY o NDZDOY
—-Z-ZZ 0 Z i Y b T
Uikl O el <l bt
Y A T
- o o
| + O +
20 - b+ 10Z =2

TNZTRSiFN?.CTETI
IO 4= s OO >N ACY
MEZ OOkt o o0 b~ >0 Wi

wd O BRI b b b b B ET IO X

i
TR TR PR PR TR T P PO P P PO PN T TR PO T
W itubibitut ot bbb g
DDDDDDDD n] S lan}sefunlanlonfor)

i X AT
D0 - b Ok b b=i— < &/ Q.00 CF
MZIT QAN s ZZZZ Xm0 (O

% *

230



REGISTER REFERENCE ADDRESSES

wi
o
o
-
w 1]
)
= w
> o
Lt Z
T ol
Lt <oy w
Zo —-u O
N W e
et iy Juwoa
ZT oo

Z0OY [2n BN

< oo
TdOWW> g WE
OOF I 0T b
o Dmm Qu <
A Z IO OO0
=7 OO

<O .J azZ oy
QO d-—L A<
| ZOOoLuw our o
QOZ OO XL
NNCOITXAD WO
T O>D2ZOLNY
DDCOSAUSTﬂP

mmommommon
NG T e
oMo oo
DM ONDS OO NM A
NN DN NN O WO

Ol it et - N I O

|

b D B von Yo TS FUR YO0 I PR VL TR TS
Clo e bl L Wi bl
EEEEEDDDDDDWD

* % MO

[ P 0.0 <
OMI=OMN
>A (0O N
COFOMNNA LI

|
_

f

(1P @ 8 S & S 0. 0 ¢ I I b i

x
o
L)
o
[+ 8
o
wl
7,
o
o
[
o
b
o
-
o
m
o
(72}
o
o]
'S
[+ 4
o
o
L 4
foa]
fveleatonas]salsc BN o)
MMNNNSN S
TaY o N N O )
HOMNONG O
[ T VT VO I oV
111272 [oe]
bl W
widw bl w
fouYunTonlanl onfon B on ]
. oo,
T OonyY O
IO O
oD

i
i
i
i

> Q.

231




»

¥ DECIMAL CONSTANTS

x
*

DEC 0

ZERO

AN IO O

COOOOOO00

HOIM TN MO
L N R B I )

Qe NN O
Ot eicied et el

aQoooOoOOn

(=2 IaV T\ R gTo RUe]
O ot o et e d e o
LUK R R R AN

RN FOOVRNLT O
AN NN MMM

i | |
(OO OROOOLWEOOLOOLLOOVOOO CUCC
i g b o b b g

Wit il sy
LoOOQOOOOMNO0OO

|

RONIOOD AT
OO UM PO 3
000'001._00.

|

w

232



ASCII ZERO

@O0 F LN
SFAMNON N
OOLOOO
W LU b
coonan

el e~ TaVI o\ Tyl
S NNOM
LI BN

w0Hin
Wil LD
Ondwed 4 1) 8 )

OLOCOLLOLOO
[ANIVEIVRICR TRIVERITINN)
QOOOOO0OO

[Ta¥ial

[Yel L 1qV]
S vd el = O M LN
e o TXEETE

)
DI oo
QOO OOINOOINONONNLNIND
A0 N €0 TN et vt vt A D OO N OU IS 0O P vt OO 4
LI T T O T O N O A |

CCCCCCCCCCCCCAUCCTCCCCC
Wb Wb L b g U o b o oyl

| -
oMo oo
OANO OO ONNOINS AN NN
LD €0 Ot vt o w100 O U O O €5 I~ ad el O PN v
b - 2 3 2 0 S i 2 20 2 3 -2 e 3 200 2l - 23 -

|
|

233



OCTAL CONSTANTS

% % W ok ¥

[anY ]
oo
CQACMONOEC
MNAOMNOMCOAOOMONOOOW
IO OO NOONO MM
OO I o o e U D

e e e Y e e et ol ad ad ek ]
OQOQOOOOLOLOOLOOOOCOLO
OOOOOOOOWOOOOOOOOOO
L ooMONOODO
MNANONONOO-OOMONOOOWW
MIMNOMMMRODOONANRSMNOD RN
et I TN Al et e U AU EY -

i
i
i

<]

oND

NN
t

b
QLY
oo

(]
IO
NS

MmN
MMt oe
MM
I I I A |

|t md adadun
OO
OO0000
|

|

MO
Mmoo
M ONN

DOOODOMODDEODOODDNS * * OOODOOMOO

234



ALPHABETIC CONSTANTS

* % % W %

O N -t T
[avfacToufealaml oL ok o]
o] v ed et el el e et

e b e o o e b
OOLOOOGL
COO000000

D L)
<L IO .

WONAM I OO

RN TVENTNT NI ST
Tiiliiii

b b b oo e e e

LOQOOLOO
ololéfelelolold)

Z OO 5 >

235




VARIABLES

% 3 % % %

w

2

v =

’ () T3]

- WO o

v X 0. w

O W om L.

o = O w ]

¢ I w w © a

W @ WO e Wi -

m OOO oy o o

T w aaLro e Ol <TeTl) D

S O FeD ki WOAD

Z o o duw DV e ¥

O DAL o~ E ean i

Y ¥vDO o opwl <« v
< = ukomzZD O Og Opd
Lt W OofeEHOo HOOG —WZL
Lr TE oEk> (0 0O CZWeawDn
o uw DOZ > Zhd oy D

00 W— OZWH ¥Z «a>xy O L
Ot Za (B Zher oSz oz
Ty EOHZ b WO Z L

OMZAN  ZZZ WS aOWe O W

oo MUY e TEOZ Z2Z
SuLoor 5 O L b RS0 Oovuoo

Ll Ol 5110 D e 2 22 O O D Z D O Z
no ov E-OZWWOOONZ EZkiibi~
.OYODOORT DZ Ll kDIt
W SIZ=-0 W L ed Z IO OWIOLD
€S e o O o S JUHALIEIU. D LIUILILY Wik O0A OO0
NZW Zuh | ¥ CODOVZXEEZ JOJu
CO LI <T N |l d BT &~ €S S ENIFNIPNE ST

N Y OO - NNOLIE S /DU - L b b e
N T JEF Y IOOWOOCLL L > Q. 2D XD
OOTODDOHMIIO N b b L Db~ b= O Ll il
L OOTOOLM UL 3T NNV DZZZRZ

R L R B R e B R L R T R R I PR B

N NNNNUVNNNNNNNNnNL NN
NNNNONNVNNNNNNNLNVNCNNNWYN

LU0 =Z OO0 OLVFOHIIA O
NOFZ WU N Z - 2>amUlL 2 Z 0. 00
NOZ DO == X WS D IO TGS N
CIOODETOHNEO LY IIUE~LLOOW 0D

‘ |

ABCCCDEFTGLNPSSQ«SSSTV..ZZZ,_/_#

236




wi

(8]

(=4

24

()
¥4 z Ll
[&] (@] w
Oy M
I >
o O O
< D oY I
Ui X < Y
o0 w w o© i
o< = o v o o
O> | ¥ > PN LY o) -l

W - (e >4 W < T

TEITURod i w a0 e >
OV W = o eal w
el ) - OO = = - 24
DY N O et o W v o i
OO0 <A, .4 NS V> = Llle O
= g Ol VXY o b
v D Zh o Ww TR e
= Ol KW OYW Zp Dl azO
bt W O - Zm Je
Y Z>U. —0J0 D« - n
na OuD ZZ Oy, L0 oD o
N =me i jo) TOON ZZ ZZK
wo uix b oA I ooy VS = 3 e < il
o A =0 LD b (Y YYD
o W o, NEMZZZ Wt Lz
oLl ¥ina oOox TGO A0 0.5
Qb <o Wiy el JJOO OT OCOZ
111111111111111111111111111
SSSSSSSSSSSSSSSSSSSSSSSSSSS

gl%10) Ssn\,SQ)SSSSSSSSS»)SSnDSCJQJSH\,S

mme om

*

O > LD (Db
MM OUWAIZTE OZali bl Tl
QOO ZE U HJO A ND AT 22T 5S 4200
QOOMNNCEAOLXXIZOEWEZAI D0 O il
% L Tl OO LWL IS T ZZZ OO -

N&uDGHGZiZG

833333838838883B883888

~3 W
HOUMDZo0

238




ADDRESS IN ASSEMBLED CODE

TEMPORARY STORAGE

i e et et

NHNNnNWAN
UHNANL> Smn\u [721%]
mmmen commm

- OIM F OO M

00000000
IEXEIYITEO
[TRITR VNI U] PRI TL
b b e b b N

i
!

[
=z
Wi
=
73]
| ad
<t
- s 4
n V8]
b
[Sef [T
z 2
[ | [ea}
Zu!
Zm [
k=1 4t
od =z
78 (o]
o =
zZ [¥R]
~d=T =z
1] =
[se] 78}
< Q. U
O (@]
[TV [7]
oo %]
L
oo 24
[} ] [an}
[m] ) o
< =Y <X
~OJLN
[ O N s W
[salsnh 2 M &)
sL<l it Z
L b
|
L L. DD
Ll oY e
DDEE,D
O
O\ I
omm oz
L= L= 7

ND _OPERANDS
NEWONIC SEARCH
I

EMONIC SEARCH

UN
M
F
R
E
M

[o W L TVED~. 4 SRI P Il ] o]
s W UIDO
HOQUW OO Z0
DOZDHOD z

-
(&le}
Wil

ps¥eale"LS font T busl
QO O «ZWo
Ouw W wzEm
> OLIZ

Y XoMroouwu.of
HYLWHOOQOM WL
OZx = Daoa.

TEMPORARY USED IN BUFFER STOREAGE
D

O W o-2Za.

HALJOZTONNDD

M X

—“Z

b b= (DOt~ O YD 2Z 0
OOZZA0 20T 040X
OIS U XK DL Dbl b D
EAMMEE%NMF‘_NSESN

fan Jum hew Yoo Yo Rouw Y4

DDDDDDHDO

Lt b b b b bt L

DI~ O

QWFLU.O

KuOOONMI UOoODLX
DOIIXZXOKIXZON
OQZO00CHIZIZO0.0CHZ0
.L!L.LI#M__. AEHHILTMMOSSUU

|

239




VARTABLES

EDIY

%% SISO WL LIWLILLZE T O

b o T T PO R e e e L
L) b Lt b O LD e b
UVl ed <IN O Z XX
DW= Z O Wil
I ONHT IZV IHITE

VETO FLAG

o
et o
T b~
=z 7 - tn
oz = o ow Lt
o L W o N
17210 L ? we 1N
Wi = Ou Yoou b
g . Oocom Zacn
Wy D 0o —=Jd0Z 0B
Wit = O Al D
0| oo, 4L} z =t
L OO ZuWZo| O i
VO WLOMHLIHY =0 Jd N
) AWIZ IS W bt 1)
w e DO W W= E )
o W IHZE IS iy 3]
O 0Oad = WD O 0w
O Cll-HZEORZ —OZ0 L
g OONLI00 -0 O
e S T T T L O o
Sl el JT - OWIZ ZXUI L
ol dd DO W Ol
M CAUWZDNILE - aZ F
= &}
W (o4
n o
n (@)
) j

111111111111111111111

NV N NNNNNNNBNANVAOVLNAN
UV NNTNNNNNNNNNNNAWN
88?883838388888838888
|

AN AN Z - T > T OO AN

LI WO 0 E DX AN QWA L U O
TEEO0OF JZZUE S VAT OO
NVNDL OO AZZZDIXRHOOOOW

| |

(& ]
=z
(=4
[+
)
o
|l o
—t 7]
o T84
[I%} - N
o0 v o
OmYw 0 oW
o=z oyl
(N zZ Do
Z o -~ O3
—ZD p
) I o=z
[+'4 - Z
WG Ll =D
b it (& e
o L N0
—ZW, W
O Znwn
a OO o

O Dbt (0 O
C O OnNno
IV Z -l Wil D=
WOHNODZY
I O oM<
LN IO LI

QO IO
VY XWISH ZO.
ONDZZ (NS
CCOMWONOW
PO 17, B FN T W 7 ¥ o WY 2

|
|

2w A O b o
WL DX O
EEOCZUIS -
NN IEOZZ O
IO OWWILI>N

i
DDDDDDODIDD

Rujulodafalelefofe

WL WAL

|
o zZM 00w
LUXNT ZI<ID
WO A== O
TaOXZOWNID

NN % <TOW I8 NN

240



BISC READ COMMAND
DISC ADOR OF LASY TRACK
LAST TRACK ACCESSED

[+ 4110 4

¥ DISC INPUT DRIVER VARIABLES
0
0
0

'

TAC DEC 204
DSIPT OCT 14340

%]

MEMORY ADDRESS FOR DISC INPUT

FOR INPUT

OOBeo

NINNE
et Lt b L
oxeox

Zs=o
O OZu
0.0 (N
U XX Z M
FE_E._I.L

e Yoo fun Sen Yo
OO
WL
Oy
Z NG

=0
OO

|

CHARACTER CONSTANTS

wn
18]
> [7¢]
bt [ 18]
[ -]
[&] (]
Ll -
[« 4 (&)
- O 78]
[om N o o
(=4 L
= [}
W
(S - 4 -
n©n n 1
> o (@]
v W 3%]
=
[ 78]
w = 3%
QD (o]
wi 5%}
[ ”~ [&]
w Zz L
Y Loz
0. P O
71715

MZ N OT
Z O < DA
KX DZ Do
HOOTH— U]
PoOwETaawm

ASTERISK

INPUT STORE BUFFERS

i
0T INNMIO NN
175755555

e ) ol T e S
LOOOCOO00
lalatelatatatets

1 |
MZCdn QT
ZOSTaDNOWNX
D Z
Ld OO C i I b

_
| |

~ DATA OVERFLOW BUFFER

wluwsny
OO oen

| T
<mD
b=
DD«

* DSTI# O QOIS %+ % % % PCCEMPPSS&. * % CICOCD

241



OCTAL CONSTANTS

OUTPUT

?‘QTTY
SCII
KELETON
BIT 15 FOR INDIRECT REFERENCES

DIRECT BIT
0
Y
S
S

OO0 O LD
LT =Ou. W
b ZE NZ

IMIT OF USER DATA AREA

ON RETURN

ZO -
YO0
ety DoDO
LI I bz 5

wDEZDHD
OCOOHOE™

R_L
UtI

moo-oooo o o

DOO-HOOmOOmOOo.T
HinoooosoooIom
AN OO OO MO
HO MO NN NMDM NN
| vieiaded O OM = O N -4t

!
o oo e B e e B b o o
QLOLCOLVOOLLO

(s a S TRINE b-d A I =Z

EOOOOW O =
L OO O ML Z «T p
SOETENEZNZLICN

ﬁOOOOOQCOOODO;

_ _
| |

INTERRUPT HALTS

HALT ON_A POWER FAIL

MEMORY PROTECT

USER WARNING FOR FORWARD REFERENCES

/
INTERRUPT SERVICE SUBROUTINE CGALLS

N

i
|
1
}

PARITY ERROR

PPEX JMP MPPE,I

JSB DMASS
338 ¢

% % % % % TqCCDIL I E >0 % % HH&. Mun. %% ODO

242



» .
: CALL TO ERROR MESSAGE OUTPUT

%*

ERCAL JS
JM

*
*

: SUBROUTINE T0O PRINT ERROR MESSAGES

x

Py
ERROR !

5 PRINT ERROR MESSAGE

REQUEST RE-ENTRY

%
s

5

: PRINT MESSAGE REQUESTING USER RE-ENTER STATEMENT AFTER ERROR

REENT NOP
LDA .26 MESSAGE LENGTH
LD8 RENT
JSB WRITE,I PRINT MESSAGE
. JMP REENT,I
RENT DEF *21 MESSAGE TO REQUEST RE-ENTRY
. ASGC 13,PLEASE RE-ENTER sTATEaENT
3
* PRINT MESSAGE ON NEW LINE
L3
BPLN NOP , |
STA HOLDA PRESERVE POINTERS TO ERROR MESSAGE
STB HOLDB
JSBNKLN, T OUTPUT CR=LF
LDA HOLDA RESTORE (A) ANB (B)
LDB HOLDB
JSB WRITE,I PRINT MESSAGE
JMP 8PLN,T ~

€ve



BASE PAGE ERROR MESSAGES

* % % % ¥

N

T

S
PERAND

—-wXu 00
ooxm W

o W zZZ
[kt A
D W L,

WO OO
0 ZOZOu

) dd O i
Q0. wded 02
ENOHHHOO DO
Laa] LS V=i e

Ittt 00 o -
CCCCCCCCf
KA W NN
T Y« «F <Y <f < LT,

-HOUIM IO O
02 07 0F O 0 02 O (e 0
00 O 00 OF 00 2 O 6 O

SOM N a0 e

(SNIURITRRNSIURIVEITRIVELPNE 38

* PRINT MESSAGE ON TABLE OVERFLOW WITH RESTART INSTRUCTIONS

NEW LINE ERROR MESSAGE

TUNE

od T T
[sWVE Se 4Tt g
Bn*WSS

e Mmoo,
oo s
= JANT

N
T
R

TBLOV

%

DEF *+1
ASC

12,PRESS RUN TO START AGAIN

»
2

¥ INTERRUPT SERVICE SUBROUTINES

»*
'3

¥ DMA INTERRUPT SERVICE ROUTINE

'3
x

CLEAR CONTROL AFTER 0OMA

6

e GLE A
JMP DOMASS,T

DMASS NOP

TRANSFER COMPLETE

244



DATA CHANNEL INTERRUPT

»
%
®
»
%
D

€SS

NOP '
CLC DC CLEAR CONTROL ON DATA CHANNEL
JMP BCSS,I

CONTROL CHANNEL INTERRUPT

LI L I

3

GC CLEAR CONTROL ON CONTROL CHANNEL
CCSS,1I

CONFIGURE I/0 SUBROUTINES

"7 X ENTER (3) CHANNEL NUMBER OF I70 DEVICE

*

CNFIG NOP

LDA D72
STA TEMP2
LDA 1.0 ADDR OF FIRST I/0 INSTR

B ~ STA TEMP1

T CNFGT LDA TEMPI,T INSTRUCTION IN (A)

STA TEMP3
SSA,RSS BIT 15 SET
JMP CNFG2 NO
é?? 80700 MEMORY REFERENCE
JMP CNFG2 YES

B LOA TEMP3 RESTORE INSTRUCTION

Sve



RETRIEVE INSTRUCTION

YES BIT 19 SET

NO
YES,

O

8203090

DAPABAZZPABAA,BAABAABAP
ZNT OO OO NFO VT

ADVANCE ADDRESSES

ol
L)

HeiQled &) & o™ oM e e D
WO U AQAIDADHOHDONIM M D
(V90 o1 TH>- 30 20 >4 T TN Lo ant T g VI g g Vi S T
ZUWZWWWZZZZ2 2 Z 222222272
CTCTTTCICIICIICIICIC

CNFG2

—

ot b

Lan o I o T Y

-

-

* REMOVE CHANNEL NUMBER AND REPLAGE WITH NEW ONE

»
»
3
»

CNFG3 NOP

AND D108

ADD IN NEW VALUE

I0OR 3 '
JMP CNFG3,1I

246




£0L

* GET NEXT CHARACTER FOM INPUT BUFFER
ON

*
* RETURN P#]

¥
%

247

()
o e
o ud
= ty -
- u Y- 4% (&
b - INE X P Ll T
U > LU b ¢4
[TE RN VST o4 TR = ST co;mD [
| WY i e D T
W b= Db L DO 40D (YT WO
AN Oul D =z
¥ LY =X < e
W O ZweOou & >
o LY e it Z DD o b4 b
O LEWXOUX < W d = =z
I O LO<Ir<Iriey ~l - o
<t (% ~L L T ¥ o o Ll
g OWD aCDLOMUY <t < b Ly
boad T Zw>mouwIo o wol ol o ol ou =z
e O W O Op= =t &) <t Y
WO O oM bmiT T e D
o > eSO NND [T V4 Y
Led Z OO0 WO Wn o Tw
- < TP x < O>»
(&) Z A
< < Om
o — [ ] - Ll - bt
<L ~ o= m zZ ~ -
e o unos wip ey Z0 QNN N
© -~ owon N YOO z oz Qud Z d S
Z SO0 FNL N - ) - M NED
o Q Wl IS DML Z it Ll o b e
+ O LVECWDX O KDWY + + OZMZZZ
o | -~ ne | ~ 0o |
A NOA OMNLISNL O ONA > 0. oo <O ND.
CVNE VOV JOWIZ NN u = oNTOTUVIE
ZYT T IHO HAL T I z o Z™OT
o
vd Lol M 4
& Ui L o
- v om
[ , e b~
% % ¥ LD * N % % %% N ZTZ




* READ UP TO COMMA IN BUFFER

2
¥* BACKSPACE OVER ONE CHARACTER

»
»

* RETURN P#i
 BCKSP

'3
¥
'3
®

248

SAVE (E)
K
Ez

(o]
L3
0 VUG
k- OV
QY
OO <<
(S]] BQJVD\B
0O Meaf LI T
OUVIOOFOOINT
ZmOIUNOTNT™

€
R
~_ RESTORE (B9

SAVEE
N
N




249

o
(=
-0
<)
Zh-
S}
Pl < -
e us
tuex e
e
| ] b [N}
(] ¥ (e
(% il et o
b-d — Ltz W o 7]
[ e b > bt ~ - 1Y)
[ <t O = 2 o
P %4 TID Od o 4 L b~
n o< Z ool (o} =z
ox <L D= b o~ )
- TT oud T 1] e o
™ e ou=z - e b
o =4 L o =z
Z bl QY =z 0] b 11 x
I =z - Lo =z
ol Ol » b= O )
W wWE Z o o o -
O o uiea>=z © 1%} &)
]
o Df ud
o 4 P b o — [
| ST o4 LY o -~ -~
o a0 o WNMNY - (e VU A 1Y
Z >z O ZO00 %) oL O
] - GETT ul > -
= ot W S 4 [ G o
o 4+ O O wien  widee
w oo | o ~
- A M <Ih NO. z o.moa o oo
= OVNA. TN =4 (o] oS e Ton Wil b
¥ o Z O™ ZLIN™Z O™
0 D L
TR ¥ > wi w
o R VR © <t i o
O X : wn = o
4 <1 7
% % e % Dk b % % %% o
|



http:L_I_D_IER~lN_AI_.QR

MOVE N WORDS FROM (A) TO (B)

ENTER (A) = FWA OF ORIGIN

R R AR KKK K

{B) = FWA OF DESTINATION
MOVE NOP
STA MORG SET FWA OF ORIGIN
LDA SORCE WORD COUNT
CMA, INA
STA TEMPY
CDA MORG, T
§§g 8,1 STORE A WORD
I1SZ MORG ADVANCE COUNTERS
1S7 TEMPY
JMP %-5
ADB M1 REFERENGE LAST WORD MOVED
. JMP WMOVE,I
2
* DETERMINE DATA OR MACHINE INSTRUCTION ADDRESS
* AND MAKE CORRECTION FOR DATA ADDRESS
* ENTER (A) ADORESS TO 3E EXAMINED
* RETURN MACHINE CODE ADDRESS OR UPDATED DATA ADDRESS
'3
DATAD NOP
LDB XDATA FIRST ADDRESS IN DATA AREA
CMB, INB
823 A
JMP DATAD,I MACHINE INSTRUCTION ADDRESS
LOA A, I DATA ADDRESS :
J4P DATAD,I RETRIEVE ADDRESS REFERENCE

0s¢



MASK ON INDIRECT 3IT IF REQUESTED
ENTER (A) INSTRUCTION OR ADDRESS

pd X WK KKK

DIRT NOP
%gg IDRCT INDIRECT FLAG
I0R MNEG MASK ON BIT 15
. JMP IDIRT,I
-3
¥ SAVE REGISTER CONTENTS AFTER EXECUTION
*
SAVR NOP :
STA SAVA SAVE (A)
STB SAVS SAVE (3) :
§§é,ALs SHIFT (E) INTO (A), CLEAR BIT 0
INA SET BIT 0 IF OVERFLOW SET
STA SAVEO SAVE (E) AND (0)
. JMP SAVR, I
*
* PREPARE ADDRESS POINTERS FOR EDIT OPERATION
2 3
EDTAD NOP :
LDA ZUSRP NEXT. FREE AREA IN PROGRAM
STA EUSRP SAVE FOR EDIT LINK PURPOSES
ADA .2 ADVANCE FOR EDIT ENTRIES
STA ZUSRP
JSB STCK,I CHECK FOR PROGRAM AREA OVERFLOW
JMP EDTAD,I

182



PREPARE SOME POINTERS FOR SCAN OF SOURCE CODE TEXT

ENTER (B) SCB ADDRESS OF INSTRUCTION TO 8E DELETED

RETURN (A) ASSEMBLY FLAG, ADDRESS OF ASSEMBLY OF
INSTRUCTICN TO BE DELETED

DR XRHK K ERD

REPR NOP
" ADB_ .3 ADOR OF LENGTH
TNA B,T
AND B177 NUMBER OF WORDS IN SCB ENTRY
STA CNFG3
LDA B,I
ALF,ALF
AND B177 NUM3ER OF CHARAGTERS
CMA CONTROL VARIABLE USED IN GETTING
STA CONT NEXT CHARACTER FROM BUFFER
LDA 8,1 ASSEM FLAG, ADDR OF ASSEMBLY
JMP PREPR,I _

Z2s8¢



¥

%

* CLEAR UP LINKAGE IN SOURCE CODE 3LOCK ON A DELETE

: OPERATION

L -

DSC8  NOP
LDA SCBED
SZA DELETE FIRST LINE
JMP DSC32
{DB DLTLN YES, DELETE LAST LINE
S78,RSS
JMp’ DSGa1
e N ‘Y€§7*UEEETE‘WHUIE‘PROGRAM
LDA NEXT NEXT AREA IN SCB WILL BE ADDR
STA FIRST OF FIRST STATEMENT IN SC8

. JMP DSCB,I

DSC81 LDA SCBE? DELETE FIRST LINE

. 5TA FIRST o _ .

CCB —SET TERMINATOR IN PREVIOUS
LDA SCBE?2
INA
STB A, T
Jup pics, 1

0sCB2 LDA DLTLN"  DELETE LAST LINE
SZA,RSS

__JmMp’'psca3
- L0525 E—AByroFTNSTR-BEFORE D

STB PREV RESET POSITION OF LAST INSTR
JMP DSER,1I  BEFORE EDIT

DSCB3 LDA SCRED
LDB SCBE?
ST8 SC3E0,1  STORE SUCC ADDR IN PREV INSTR

_ STA B,I SET PREV ADOR IN SUCC INSTR
— 3P DéCH, T »

€6t



254

o
() x ul L)
(2% < -t =t
o ¥o n @ -
x Vo 9] = ("™
()& ] [ [P (a0
1 o o %] oy =
d oo - n nojl W
O w s «r o
w Zi- w ZzZ 0
= T ™Y = - =T
w e -4 - [ n
- O Ziul - >l s
w = oo o zz ¥ol o w
o ul H L o =0l N o
el 07 —t Z0 O O
= g o0 b ] < O
o WO =z OxT w <
- O —-Ou. <t DY -0 =
Lo td T [+4 oy, b
O - = - Wl n o
D WLt <t 2] ZOol v
o axXo o Z| < >
- = wo - v -t . (TSI -
v WZo o ow| b . =
=z - o d n Cc 0 oxT wil
W LI o (o) +4 Ll 3
jan] zZ> Ol QOMmQ N T
w o PO ¥ oD ozZueo uwna O
[0a N &) (7237204 Pt ClUip-L XL O
o L w
O u - Zin
=z Lo et ed
TR - O - xrz [l
. Z e b o o - - o~
- O VW o <0 b w p 4N - il
T o« cw> 0 o aw b4 o el e W=l
[ S B >0z A X TZ . m (&) «ZT o3 OUVCHNCY
< N> | M M - 1 DLW nE XOIXEIX
¥ < o | | -~ !
L oamem M D Mo WiE ALONDOA M DIA IO IO
w o ud onwn n nxs ZKT OONOLEOCCNSNT -
- ZTD W M ™D Z 0 4O TN NN
LR O o
Z -t <t zZ0 -
[ e (] wed [t -~ -4
v o ) o. (T8 W w
z . o €
LR R 2 ) * % M * &.44.4¥X >



http:SZA,R.SS

¥ DELETE LAST LINE

»
2

D WORO SNGL DLTE
ON_NUMBER

TE
E
I

XDELZ2

NGLE DELETE

ORPOSITIONING

I M AREA F
ONS AFTER AN EDIT OPERATION

N USER PROGRA

N
T

[l &l

IN PROGRAM

%
%

T ¥TINSERT A SINGLE JUMP DURING EDIT

3

RESULTS
ORIGINA

(A) ADDRESS WHERE JUMP RESULT
(3) ADDRESS WHERE JUMP ORIGINATES

* ENTER

RELATIVE ADDRESS

STORE JUMP

GET

255



256

|
z
o
[,
x 1]
b 1% -t
L aal 0 Z bd
= = wi o v
= — o
o = <A
o < Z-0 tn =z
o x o -1 but o a
4 (o] W (LY lad b -t =
a. ol (@] il Nex L =
. o o len -z © -
%4 e % a. oz dp o
w w 4 Din o ()
% > o ah Ll [ RN
D o ] ZE0 0o wiy n o
v oDhx Cc o Z =0
=z <t D . ™MPD o r - ZWw
[ n w = o (7)) MS
> o o =z o Wi o X wa |
o Let > < - ORRO w . op W o
- =L o) ¢ W = - ™™ (%]
zZ Ly O T = U] T e - r o W
tw T < <t > 0nITx - QZz |
w ooy Y Pl O oY T bt L)
- O LT AT noye Wi o't
- = < O w= Too< T O>
o oW 4 @ Zw puoY ot as W ¥ X W00
u Nz o o =z - <rRIq. z LI NN
Ot - o
[+ O -l N -~
w — o - W om
[ — e Ol | - o X Z
U oo o, sl - > W - O ~ - o=
<t Yu eyYa u. wiinnm o ~ -~
BE OO no Tan v a= MO LInNG.
o DN EDX Q. wnpEx o -E N TiXE
P Na SRS To <SS E Ak o=m O 5
o oz i o «arm -
- [eMeals godeslcsloolon e L] Q. mmn B 4 O WO <TI0 Q.
OOOZVI-NX z oo ONZOMZWE T
T8 (Z Jed IR ™TY wz NLTJJ ul o Z O VHHIN™ ™Y
%) Ot x W
<t < (D T8 O
o ﬂ Al fe) - Z n
o am o v w a
. = = =
*4*;4ﬁ % X N % D * kAN R




257

-~

[75] <L

Nex -
or w

(o] z

T O LI e

Z QTN
O O
b~ OT Tl

NI = D

oD < o
ol u.Jz
ol --aD
NEOCH Vo
[ gnl ] 0 t

o> QL
T.vvp: e
LI O i (N
X -1 (N k)
O I~ 1N - B
oaw ket bt -
= Wiy D —
OWOR- MDA o o
NIl - O = {7 I & Ll
Lo b AU Y T D L i Y.
A T T ol oY Y o -
0O B O o »n w =
D-lLZxT nx KON -
0O i Ol oouwIY z 0w =
Ze~s ZNV) oAb L <O L oD et
IiEOTIAT 0O ZE O WD
Y0 O T e ZOOODD OZ M- i
MIND I ONT IO O ped
SHeOC UL W - WO, WSO =4
O it TLim Q> | 200N &
O e (O o o o 1) O o oz =4
Ol Do WHoOOODDx O
Zealie OO0 LY EENX A >>0N0 >
O~ AZZr Y < L i O 227 L O O bt bt
W Ll O 00 ONZOWHYSF00
Dz O oo
HHYOOY (1 g
Yo Wi = LI (]
N ShlTa Ol {oe
HZ OLIFY - N o TURE Nl SV B
QDOUMOO K MO OZO ANYONXZa LN
-l oW oo LEOOT NN NS emuitn
L b O T X T d Z O AW L OO N I
- &) D,\ e~ MDMMTDOTUDDZRD

YO0 Z am
O NAD ww QOIOCCMANG<IO—-O0
DY) e OO AFNINEO0 JNE

COOY YO~ ZLNWV IO A T
o woo (S TY
M Eewoo - (=]
DIZEXTZO = o
i -
T T )

DISK1
DISKZ

|
|
|



R

N

A

A
FUL READ
N READ

S3S
I

T (D <L
— QA e
D>l <NG 2
oY T W
o 3
oDETNONN -
DirZ L
NI+

ook b % X % A %

o.
vl
o
'
| 72]
—
on]

ADDR REG
UNT REGISTER

R
0

bahin S A - 4
(2404 (8]
QO Ckx=
TZXZ
WOz
E EZOH
“ o
Ll 2l ol ot
LiLidOZ
SSRSRUS
oo
EODOWCE
O b <L e o4
[} Lo
OWF L0
L UHEHO<T

DDOR
ENTH
CMND

<
TN NN
oML M<T
~SOONI0 D

|
w
-tz
uwz
Z T
price of
O o
X L!
Ot [

- v
Qe Z
ZzZZ0 <t W
<f <L [2 4T
xEZ -
NEO =z
[l e) <L <IN
Qs ETX| KD

Q OQ =i
[mY T4 <t
== WL U
W & e O
MO Tl

DO HH JIXY
on. boe =0 LD
[Ta] J B o d St Dl ve
22U Z2Z<0OT
aow

.1 DD
KDAC C TKK
LN o O N =N
MANO OGO OO | bi-ib
NOOLOOOOLF NOQ

O <T<TOOCLOMNOMNA

ML ONOUNIATDITIFD

OSKD1

II-WCC
(o]
-

258



EEK COMMAND ALONG WITH TRACK AND SECTOR NUMBER TO

S
SC

1 STATUS ERROR
2 DISC READY, INITIATE DATA TRANSFER

RETURN P+
P+

AGCESSED

ZDd <
Z o 4
I % Z YO
WCKNDCT
PDCOLZ T
KO <L LT Q)
e O O T b L <X
= X ol
| W <O ,d
e b b (O Z < 1)
L= $un TS SERN TN T
0. OMA et
Cr uitYuno
OonDolDuwal
PO 0O>D

>0 O
N~ O¥ah
N~ L S Lo VAL o
W..OCCESNS
! MOOONJIE )

R
lLoaOmaaa

O Z b 0. (b
NﬂAOSLCAS

x|
il
W

% ok % % % % (N

v

ODR _COMMAND
ANNEL

MMAND

o
ax ™)
OO
Y O ZOwno
WZEOKn
NI =T
] > Owou)
[ —EO<I
Yo <
R YmITE A9
- <a>0N0
DOWIHH
O NI

o0
[S L8 = $ad (o
- 5T N
LLOXOLMm
TVCCUDDB

LOOICIIN
OO Z
OOV AN It

wog Wiw

'Y

T ¥ CUMPUTE PHYSTICAL HEAD/SECTOR FROM TOGITAL SECTOR .

¥ NUMBER AND HEAD MASK

»

TRACK

12 SECOTRS PER

259



AD3 HDMSK o
§§§ oc, WAIT FOR DMA TO AGCEPT TRACK NUMBER
9TA 0OC QUTPUT HEAD SEGCTOR
STC D6, T 70 DATA GHANNEL
3F WAIT FOR SEEK GOMPLETION
JMp %21
JS8 STAT CHECK STATUS
R3s
137 SEEK

. JMP SEEK,I

¥

»

* OQUTPUT SEEX GOMMANDS TO FIRST AND LAST TRACKS ON DISC

* FOLLOWING 10 UNSUCGESSFUL READ ATTEMPTS.

" _

RSEEK NOP
CL A
JS5SEEK
NG P
LDA TR202
JSB SEEK
NOP
JMP RSEEK,I

09¢



S CHECK

TATUS BEFORE AND AFTER DATA TRANSFER

C S
R COMPLETION WITH DISC STATUS WORD}

)
8]

261

]
L)
pv4 v
(&) =z
W =4
X o ot
[
[an] -
n = L)t
=1 Zh
b T Z T
a =l <
- O0OZ I
n OZa OF
< b= (@]
.~ NIy
X OOl
[T R i<t tn
@ «<S2QAAZTND pV4+ 4
e Z O Db uiQ
D NI Orlet (1914
z TZ IO ne
FEDW W
w Do =Zzo o b
> QO Za000 N
— b b e N Y [
Y DOLT JOHKO e |
O OFRTOOLOWEZ o
" o
[72] <t
[l 24

C C AH’T! 7
1 siATAASSA
CCCCC.CCSLTRSL
WD OO0 OO

I i L L3 Y
AL OOICOION0. O IO
O i o e b= L 3 e I T ()T
ZNSNOOONN™DOINOTIKINY




*-2

STAT2 RAL,SLA
JMP
* WRITE ERROR

*

ABNORMAL HALT

3EGIN READ AGAIN

HLT 248
JMP T DTISKT

DISC NOT READ MESSAGE

BEGIN READ CYCLE AGAIN

*

E
SC 7,DISC NOT READ

STATR g F *+1

262




263

*
= x o
W - = fom
wer — > o Y z
Z vy 58] A o Z %] (o]
Ok o > - o >0 « ] 4
(17, %] oo 1% , o b
>t > O W ) L
Zora w o e - | w»v - = n=
g<am T a Z o | w = DH
Ta - - O w ST Ul 24 w
Z O © % - Z = ow
- X Z D e 4 o) - Zz0)
et H O = O G b
> T o o o uwey D i >
Y - [« TS oo o C o o
3 - O - Zm W -0 Az
olu x z O (O Iet wn 175Y0% Y
O - no Zzz - oo
Yo o o] 4 TO OO z (TN 1]
0> W TL I B n b= HO o o
0 oJ | ZW WX - - FC Wwp
w Oe| it > < T <l = Zh
TrZu Zuw| - ad v N = E L]
0> IO Z -0 ow e s 4%)
- T - zol Zzo Juw (Y% DO i
Vol Z ¥ O W WO 9T ESO o~ O !
-2 wol o w o Zul e () b o !
OOl G| w 2 (s 4 %) O
woo - Z Z WLl e (N Lo, " na! |
OZZN 0 W o< Wk e zZZ | o NEWm
WO Jw T ey ] i Lo < mom
ooz HOe X O QoH oW L) =] ~ N et
wet =ETEX - o < Liul Ll nal
[+'d w n o w rm (&35 GO m
w W on w w wo!l no - >z g IOl
SN Zui o v >0 ZWw =z ZeL -1 -z
~SZZ OT T OZ wa| ok OOV | S]e4 u O
[+ 000 Hk=- O O ne! ol k- b -
L e =~ | O o Py 7] D %] o
~4 - T N o | wa 2 O nw ZZo
- ZOw K-l Woow Ul ey Do) i m Yoz
o o owlyy we o oY I W oo _ N DaD
o &Te% (2 W O > D O~ v W0
[~ B - Y O xr D L ZZ uwc Pt o Wi
o =z =0 o oW ow O - Xul T. < O
O w o oeuwn w Lt | ]
© D Dl DD & | ~
L nx o <N
ol X > ZO Ly, -
o uy N Y [P ¥1}
b Lt - (Y| »» n .
0, w = ik W H o
> Tl JO Iz = TITY =z
2 00 <O ~uw o P - !
. | H !
* % x..rjn.a.&‘*#x.n..v!¥¥¥¥¥¥¥¥l¥44¥¥_¥4¥¥4¥44¥¥ !
| i
" - _ i
| | | |




THREE?®

DUMP FLAG (DMPFG)

RETURN TO DUMP ROUTINE WITH USER RESPONSE
EITHER TO END THE OUMP OPERATICN OR DUMP

FOURS

ODATA ADDRESS CONTENTS.

SEQUENCE FLAG (SEGFG)

RETURN TO SEQUENGCE ROUTINE WITH STATEMENT
NUMBER DATA.

FIVES

EDIT SOURCE CODE INPUT FLAG (EDLX)
RETURN WITH SOURCE INPUT DURING EDIT OPERATION.

L R R AR ERNEESE N R EREEEREEESE KX ENSEEIFERENRS]

SIXs EDIT FLAG (EDTFG)
RETURN TO _MAIN EDITOR ROUTINE TO INTERPRET '
AND EXECUTE EDIT REQUEST.
SEVEN? A COLON BEGINNING A USER ENTRY SIGNALS A
SYSTEM DIRECTIVE. AFTER RECOGNIZING A COLON
BRANCH TO THE ROUTINE TO INTERPRET AND
CHANNEL SYSTEM DIRECTIVES.
FAILURE TO SATISFY ANY ONE OF THESE TESTS RESULTS IN
g?%Téagg¥8LER TREATING THE INPUT AS A SOURCE PROGRAM
THE CODING WILL FALL THROUGH TO THE MAIN LEXICAL
ROUTINE

¥9¢



FIRST CHAR IN (A)

INPUT,
ENABLE INTERRUPT
3SS FLAG

AD
ORT
5

3
S/

<o mon:
o = (Ao
PIDIND AN IND NSO

O™

CMAND

UTINE

DT

GONTRO

UCTION
COMMANDS

0

£
T
TR
D
EM

LEXICAL POINTERS
EQUENCE R
T DURING ¢
TO EDIT_INPU
AG, EDIT INS
EDIT COMMAN
RECEDES SYST

FLAG
RN TO DUMP ROUTINE

TU
QUENCE FLA

RN TO LEXICAL ROUTINE
Q7 RETURN TO SEQU
N
FL
SS
P

RETU

CLEAR

DuMP

€

E

SOURCE INPU
TUR
I

PROCE

GOLON

xw;m

[}
-

& =0 (L]
(1Y 4 VI 1T > Wi Ok
vwo oY I T W 17,
CIE Xw WO oo ood>
OO O L LI WOn

OO OMMo. OO MOA MDA <a.
NENONEONSONTONE O T

)
I

>eD ~Z X

5

'3

¥ ENTRY POINT TG MAIN PROGRAM AFTER INITIALIZATION

z
(o]
4
[V
[ 4
/4
W
o
[§%] (@]
(S}
<L b [
nez -
—-Ow o
N3 w
>N
- - pd
< Oler (5
ZOF Wi
a0
o o©
A
XY Z Z
O<Iul W OD
HOE o HO
XKWENO 2
W O ladp= b
0O
ox
=<t
on
Lol o] o
L] _’ [»)
EILW D oY
XKINE O Wo
W = -
BT 2= N 7o R T L)
i < Z
[saloals £ §as] ()
nNNAaNn Z>
b Jae T 1 72 1w T » 0K |
D0
=z -
© Wz
7] s 4
x
- % % % %

¥
[&] [
(] [+ 4
—db 3%
[s0)-4 %]
i z
ulon (2]
oul
o 73]
0. -
0.
Ll p —i
QO | g
o w -
Ddn o
oulz =
N
<t o
Z Al =
o
wna. =z
L2 24
O b o D
[T [ and
okt Ll
[72] -2 24
-l
L
faa] VT HN =
Quin] Zk-
NO N
(g ** L 172 ]
SLM,RCM
H L .3
oommma. 0.
NNQNIE
IO
s
[
o
o
[F8}

265



http:szg-,-R.ss

ROUTINE

SUBROUTINE TO REQUEST INPUT AND CALL INPUT

% % %

Q.
o

jp=

z

Ll
Lt
<t
e

z
(@)
o
(-
b4
1] wn
- [ 1o
a WX W -
= KO - L
o ol L2
o Wi, = 1 =
o oy o b
oW <
- O T n =
wn C O W M
] 1] o
o oY uw O >
of vuoo o o
ud n Du=z I b
% TV Owo oLz
L. el DI eIl
-l & O m o Lot
N O RZO ¥ OX WERRW
o wol orod 1w I
O O LI WLORZ DL
. w oul -
~ = oK I o= >z
oD Wit MO Yl
0. O ZLUuNOOOst LWNDD
= b T Z WO OO
D D DODWWTWW IO
O O OO AOXY oY
(%) =l et
w |+ =
o ol Lo’ xvyz=z
W > sl < ¢ Z ovdpmct QO
- OO OTZ U T Ot b

N sINDF- XN TOD JI<TLList<g
OE R +B- NN OOTLOBOO
' - [ H
NIONOIMO IO TTLITDO A
NOONNOON=IT A= NS5
S 1™ IO I00NM=S

RDSYM DEF *+1

%

INPUT PROMPT

¥ MESSAGE ON BUFFER OVERFLOW

OCT 40007

®

%

SC B,BUFFER OVERFLOH

DAT2 gEF 41

266



INPUTS FROM TELETYPE OR CRT SCREEN

(A) = MAXIMUM NUMBER OF CHARACTERS IN RECORD
(8) = BUFFER STARTING ADDRESS
RETURN (A) = NUMBER GF‘CHARACTERS IN RECORD
= -1 ON BUFFER OVERFLOHW

THE CHARACTERS ARE PACKED TWO TO A WORD IN THE BUFFER.

ALL REGCORDS MUST 3E TERMINATED WITH A LINE FEED.
THE NULL AND CARRIAGE RETURN CHARACTERS ARE IGNORED.

THE LEFT ARROW(S) DELETE THE PREVIOUS CHARACTER(S).

md KK KA KR KKK R KR Jox KRR R

TY.I NoP
STA COUNT  SAVE LENGTH
STB BADDR SET BUFFER_ADDRESS
cLB SET CHARACTER COUNTER
LOA IMODE
TI.1 OTA TTY SET TTY TO INPUT MOBE
TI.2 SIG TTv,c REQUEST CHARACTER
JMP *-1 WAIT FOR CHARAGTER INPUT
LIA TTY — LOAD THARACTER
JS8 PROGCS PROCESS CHARACTER
JMP TI.? GET NEXT CHARACTER
CLC TTY A
JMP TTY.I,I RECORD COMPLETE RETURN

L9¢



268

L]
[
o
o
<3
[+2
L o
] TS
Z o
4 . -t
(4 > O ) .}
o - T i
- Z = D (14 ©
w = . o 0. -
o o (= [on B (%] (TS
- i " w D 6= oo [v'd
ﬂ o orul ¥ ¥ O Dt o> Lt o
w o w TERN S o T ul
(- -, ol Yo wo -
e Oul 14 TN . W SV win il D= o
ol «az <t no Dt MO P
w O bt Y v W o - d = =
ou. S ] < o J o it O3 w
I +~> T T W~ Zuw D Y OwWw
= o Wz O - & < b COIdIOt -
%) o 0o o bd -G o
T ol ~D -~ < L OZOA Mk o
¢ woe <X p < Y <« ~ - =z [a'4
D - ~L) ~ = b ad P bt = 0 o
o OV o t T o> d b >0 X YO W
o] < - S = —Ool-a u. -
o w D b = — -z z
b~ 1y 0. Z =0 - M=l -
o b - —t | il e S~ G~ W =A]
n 0o D X O > Z< WD WD Ot no
o <t o o o o (S17) AW IO0X —z
[« TR v 4 <<
O oV Zx prd =z
ul z LI w n w
o oe T T =
L e =X b = i) x &) o
-~ oo << O - a0 O = o ™
= T o> © - T O> Db 43> > o
S D= o Z o Zh WE - b i a.
n zZn 1 v O ITTLTTGWTTT;TRT
< A (&) H | 'S
([} Let -~ AONICIIINDATOND <II O
b ~Z g & o~ NO O N b= S ON S
D o~ a0 o= W AN AJONTIMNONNTI NS
Q) <M ~ W =
et - (TH VW
D wo = TR . r
(&) e Q0 w4 .
o
R RN EEEEE R RS EEREE R R N -




HAS 3EEN TYPED FROM THE

IF A CHARACTER
PUT ON TELETYPE.

S
7

BUF

LOAD FROM BOARD BUFFER

LIA TTY

N
[
W
-
o
%) 5
W ar
= onu
S Wz
wo= 0 Z bl
1] S O ¥ oD N
fan] = el I ZZ
: [ WO -
2 - o "o OaDD
a4 =z D > DOOk
S o W o Wo
[ [T oy - O
T n o wwel u
7 - = I Z-OxO
N LI
) (& > D= AUV
| o D e P o 0o
- & Orak DZ O au
M e O W WO |
v owkk ¥V O | Ou
© WL W W o
> KO O = O | N
e w o o - oun o
N N RZRZ e =OC | 00
o VY K N PO~
4 O WOHOD 0w WWuLWwoo
L Z Ok > RR(ﬁLD
| izl
el + D -~ +

XX 0L e HQPVAP
N M b DHZEO w8 W e
MY e N> e O ZUID D
HOA Crdbm oLk~ ¢ CH =N b=
BRTIFTITTTIIFCTNCT

L) »

ADAPAACBCAABAAZPABP
TZNETOF _JOLINA N0 DO S
DIN™ INODDIOJOTINNTD LT

:
|

%
»*

¥ THIS RGOUTINE TURNS OFF THE TELETYPE INTERRUPT MODE

'3

I1.0FF NOP

gRUPT CELL

E
D

- O

IN
M

TURN OFF

RETURN
* THIS ROUTINE TURNS ON THE TELETYPE INTERRUPT MODE

»

SET NOP

3

I.0N

NOP

269

UT MODE

SET JS8 INTO INTERRUPT CELL
T ITTY TO INP
T TTY TO LOOK FOR INPUT

SET T
SET 7

[ e
oW O
| B -~z
9>-O>>0
el gl ol ol
|

ommomon.
(ol Ll gubd
O™




INTERRUPT LOCATION CODE

¥ CHARACTER PROCESSING SECTION FOR TTY

*
E'S
¥ ENTER (A) HOLDS CHARACTER

TTLII JSB ISTP,I
¥

¥
%
x®
* RETURN

»

270

4
o
224 puo
= T -
o - Lt
nZ L [+4
- =4
wo o 0 m
o = z
1y n o L] <t
winy <I Y
(L) ~ (44
] =Tl we—o T
x 4 T8 (&3 TRRN S /o] 5
e o< T O
oo 1 &1 40 WO aul
Y L <ty SIa - D
Lip Yool wrey <0
[+'4 W < TYNOT T
bt DL OO T ool
O W oo o OZO <L)
N~ il FRNPEOE s ol o T OW)
L o ORAU (LISITRTR
= OUW OO wWwxu.>D KED - DIl
- ZWZE L =40 O TOomD
0 O0ZOoro Lol » e T M
(Sl Eoda) DAZEULUOT Qe O]
o, - O s I T S | oY D
Hol e e e e o e HHIt OV W
I w0 N sNOY W - OO
=uoLou CIOWOWOD® LD Z
NZ>Z>

Zp- NYLYNﬁNBB Rppj

e L] [} IIIT: I
- - -~ | -~ n e
" n b (V224 TE R oV RSRRRS

~ CDCNU?ZN QP (2 QOO0
NMACLW OO N oD OLIMOouLOOONNO
AN ZE X O U 20 L <L
BRPLD CCR,T.C PLTIPA@:PQ,BR,P

PUAPAPAPAPBBBPAPBPFAPRAZP
OCZNEZAS AT AT AONT AT JX =S Ch N
ZaNMODIOIOTOCNDHOMNNITNIFHNHD

|
|

PROCS
PRGC1
PROC?2




* .

: THIS SECTION DELETES PREYIOUS GCHARACTER(S)

DLETE SIB,RSS IS BUFFER EMPTY
JMP’ PROGS,I YES, RETURN
cCA NG
208 A DEGREMENT GHARACTER GOUNT
SL3, RSS LOW CHARAGTER
JYP PROCS,I YES
ADA BADDR NG DECREMENT AODRESS POINTER
STA BADDR
LDA BADDR,T GET LAST TWO GHARACTERS
— AND 8177 BELTTE LAST THARACTER

] JMP PROC1 STORE NEXT-TO-LAST GCHARAGTER

¥ THIS SECTION PUTS GOUNT IN A AND RETURNS TO P42

CMPLT LDA B PUT CHARACTER COUNT IN (A)
IS7 PROCS

. JNP PROGS,I

X

2

* SUBROUTINE GETCH

* RETURN P+1 BUFFER EMPTY

. P+2 CHARAGTER IN (A)

E-3

GETCH NOP
CPB COUNT
JMP CETCH,I BIFFER EMPTY, P+1 RETURN
LDA BADOR,T GET THO CHARACTERS
ALFIALF (B) EVEN, POSITION GHAR RIGHT
SL37INB CHECK 0/%, AND INDEX GCOUNT
15778ADDR—(B) 0DD CREVMENT ADDR POINTER

FINSH AND B177 STRIP LEFT CHARACTER
I0R B200 ADD BIT 7
1S7 GETCH
JMP GETCH,I RETURN ON P42

1L



INITIALIZES FOR OUTPUTTING A RECORD

% % % % %

OR (A) < 0
RESS

CARRIAGE RETURN

LINE FEED
ADD IN BIT 7

o«

[ Y )
oMmmITo
LRl o 14VIaY]

[ JseJaafeo]

jus Juns hn Juw ¥ o 4
IO
(SERTRTE) SNl )

o
O T it
Wy
Z20n.d40

L1
peo

o O JOFi% ﬁvC&. % % W

* STOP

COMMAND SERVICE

%

TURN OFF KEYBOARD INTERRUPT

NEW LINE
PRINT STOP

MMM
onNnNOOnE
ZTDMAATTD

o

[
5]
L ]

e

¥

ASC 2,STOP

STOPA DEF *+1

272



: TO OUTPUT MULTIPLE CR~-LF
: ENTRY -(A) CONTAINS THE NUMBER OF CR-LF TO BE OUTPUT

L J

NWLNS NOP
STA TEMP
JSB CRLFD
ISZ TEMP
JMP *-2
- JMP NWLNS,I
*®»
: SUBROUTINE T0O OUTPUT CARRIAGE RETURN - LINE FEED
x ,
CRLFD NoP
CLA
b : JSB T7Y,P QUTPUT CR-LF
| C JMPTCRLFD,T
3%
: CONVERT BINARY TO ASCII CCTAL OR DECIMAL
: ENTER (A) = VALUE T0 BE CONVERTED ‘
* RETURN (A) CONTAINS LEAST TWO SIGNIFICANT DIGITS ‘
: {B) PDINTS TO ADDRESS OF MOST SIGNIFICANT UIGITS ]
M .
CNDEC NgoP BINARY TO DECIMAL ASCII
LD0B M11
JSB8 CNBIN
x JMP CNDEC,I
3
CNOCT NOP ' BINARY 10O OCTAL ASCII
LOB M8
JS8 CNSIN
JMP CNOCT,I

€Le



DIVIDE BY 8 OR 10

it

L
HOAMZMD M
AfocaNo o

T T
lenlasYeeYsolsclsaleaTen)

b e e (Y U (1
NN NN

CNBN1

DIVIDE 8Y 8 OR 10

(ST
”~ -
NZ Mo
ZY¥Y aoo

TEEIIDESNODLEIYS
LWL ZW > Wi Z > duduibd

adlanfoal o ol g

» "~

SWAP FOR QUTPUT PURPOSES

4
-
- N
ZOoO QG e
MYsSXsIm
Lz z
k=00

|
<O OULOMNTCR COM<TMA
NN JIOFONIE OO MO
NN NT S SNN A

CNBN2Z2

o0,
oX

-
o,
<o

oX
o2
W <TI0

274



»
»

NOP
CLB

DVUKN

QUOTIENT + 1

CLEAR LOOP COUNTER

S8

TEMPY

DIVIDE BY SUCCESSIVE SUBTRACTION

aalV]
NN
s
=
oo

(8) IS POS

NVERT WAS NEG

Wi<T4D !
Z LI} T
OO
oouwon

- N
¥ MO

rrpwd DO
Wwn> Sw
OO O

A i .~
| o L7217 -2 7o Py e b an Y uin § o >4
NI HNTINT L

REMAINDER 1O (B)

O da™

275



SET _SOURCE CODE BLOCK ENTRIES

BESIDES STORING THE STATEMENT ENTRY, SIX WORDS
NECESSARY INFORMATION ABOUT THE state IUST

THE FORMAT FOR THESE SIX WORDS ISt
WORD 1 ADDRESS OF NEXT STATEMENT ENTRY IN SC8

LR R R R R R L R R R T R Y T

WORD 2  ADDRESS OF PREVIQUS STATEMENT ENTRY
(-1 FOR THE FIRST STATEMENT)
WORD 3  STATEMENT NUMBER
WORD &  BITS 0- 7 NUMBER OF WORDS IN SC3 ENTRY
BITS 8-15 NUMBER OF CHARACTERS IN SOURCE INPUT
WORD 5  BITS 0-i4 ADDRESS OF ASSEMSLY
: ' (0 FOR A COMMENT STATEMENT)
BIT 15 0 MACHINE CODE INSTRUGCTION
1 DATA DEFINITION
WORD 6 LENGTH OF ASSEMBLY
THE USER SOURCE STATEMENTS WILL BE STORED TWO CHARS
PER WORD BEGINNING IN THE FIRST GHARACTER POSITION
(BITS 8-15) OF THE FIRST WORD TO FOLLOW WORD 6 IN THE
SOURCE CODE BLOCK TABLE.

9LC



STSC

B

i
i

%

'l
i

e D U U0 LN U B2 1 U VI U T D M A U A
ZND =T ZATZ A OrrZINDZ <0000 -2Z~U0-0Z«40--tO0IXNJDO

P
i

~

-

-

EDTFG EDIT OPERATION

sca1 YES

ADDRL NG, ADDRESS OF ENTRY IN SCB

NEXT ' SUCCESSOR ADDRESS

B, I STORE SUCCESSOR ADDRESS

PREV ADDRESS OF PREVIOUS INSTRUGCTION

cUSTN PREVIOUS STATEMENT NUMBER

STING STATEMENT NUMBER INCREMENT

BUSTN CURRENT USER STATEMENT NUMBER

%65Q1 STORE STATEMENT NUMBER

PREV ADDR OF PREVIOUS FOR NEXT ENTRY

ADOR1

LNTH2 WORD HOLDING LENGTHS

8,1

éggrc ASSEMBLY FLAG

SCB2 COMMENT STATEMENT

ELA STORE ASSEMBLY INFORMATION IN (E)

7ADD ADDRESS OF ASSEMBLY

ERA ASSEMBLY INFORMATION IN BIT 15
b ]

LENTH LENGTH OF ASSEMBLY

B, I

skeNT NUMBER OF WORDS IN SOURCE INPUT

BUFA INPUT BUFFER ADDRESS

WMOVE —MOVE INTO SCB3

STSCB, I

LLT



MNEMONIC

DEFINE LABEL PREGEDING

- (]
w -
o m
« «
o -
o -
— )
m
w =
o -
= n
Wl
(e'4 2
g —
Zz 0w
Woowhi |
VNZEX w
o m
A SO )
LoD ]
w o
d O wi
pw w> | o
oM O O
aaoay wo -
AAZ IO >Z N
Pt (5]
[ - o~
O Lo - ~
L owa Lo JWw
IO 0D 00
DNDO ~ O IO
A I N N
L 3
o n o kwma.
CONTOONTO AT
Z N IS IOT™

278



w
L. -~J
L 7y
W o om
(o] . < L
= -l - -]
i [T 4 -
X 78] W &l Lt
L o O o (=]
W - T - o
39 [ BN TR TE) 24 L (&)
o -, l hd
Wwed =Z Z- oa] [39]
w = O O+ O (el &] . O
&) 0 Zga WO X et T FEITE 7oY. 4
z W W oZa. W -0 (MmN
Ll o o v [ AT 75 = €~ i N<qwWo
o —oOWD O W W X ﬁALRS
L o w Z Wl Ul em o0
. Wi =l W o O <« oz
L O e ¥ o O Ukd b=
o ul W e (4% [ ¥
Z Od OO 0O a Wan LU
- o XO uZz o w—dlid v on
(&) L = Lo - § SR R 4 iz ul
(T8} Wi T e =W g MRAR
o O oy O U@ Mm>u. o>0
L) Z Ccu Qu Old<st <x<tl) o] i e
o) D > A wpad 00 KL NL <
L) )
L 3 LY
- W Wl T - L
O ¥ 2 oo o W
o D OF 00 Dad ke = OF0
MY s TNNON EON oLt o X s O D
I.RB@ LY=o FL,BC.B 78 T .d
AABB.ATAABZAAAABBBADAABAABAAP
LTQTDDSSSDTDSSDDD\DTVD.@NDTM
QNN AL D™D KN Y <T ST LN LI N AT

«t
L.
[
w
-4

279




280

=z
"
I
W
g
wl b
NI - <1
[T8128 44 o [}
= <t w ]
O - o ~N —HO
e 7] o~ s z < pom
(&) - o z - =
wo > X (L) < )
e 4TE Y I Z (o] (] Ol
[ [ * A e RE [& <t Ui
Tz ZWKD < 1] o oz
W W0 UDHUX o L ul Ld
7] wen ZyY o ZaXT - (&) owm
W il ) L e =z (3 e Zul
> Ller < - OoOLN us < o =t 0
- TYxa. ¥Zoyy =Zouw 1] (vt o
- e VOZUWT-LIKD m < X - ted
(&) i O Opd= i~ X D0 1Y Tz <« eyl =
ul [» 4 Y =-DnNa o (7] [ T B 0 4 o 01} -
o4 ! et nomo. Ll <t oww © b
i N WHsS0O T x YU >O oo &)
o0 el WO b=l Z o v wi
Qe DUl Ow » (7] <0 -0 N o
= Lt < Z Z TeD Wi S < N i
w Tul HOLILD 0 = D= Z - o
[ o Z b LT T g - OO NdZ
7 <t NR7T Tl d b - Z U [N 0.
b X > o | v O D &) o ou L b >
0 O VO -VNE-ZZ0 ] Z< o X2z o
T o« N H W< Ll e b of »n O o
- ol HDOOD S Y T I — O w L2 )
W - OO OOWTa JOFL! o x ow wz ~
brd no> D womiy wowm oul
zZ >~0Z 0 L] ZZA> in z=>
<X N OO0 z [l 9]
T o~ Y w —~ weoos
© 2 b e © D o
wo. oz Z w w -~ O
] == L [ Lt <1 ViN o b
z IO O ol =D D -t T N - 4 b 7L o
<t N>l OT.d Y O TR M < D A Z - b4
Wit I OIO0<T i) W e S v o e _jbeT o
- w - <OWT I X =z Zanm o 0 o oo
wt Y il s osisren  es e e (o] s (N
(4 % e i - oo < e an
0. SUTa—— o nITos QN axs
o Lt (&] e 2 TS day W 0™
] Y o 0.
- Lid D= b= L) V8] = -t =N
=z T Z 4N x [ [ab=g
i D P n 0
>
L EEE R RN TR AR N R ) M % o % 3 % % b Pk




RE(DIT)
* PREPARE SOME POINTERS AND PROMPT USER TO BEGIN

* % % %

S POINTERS

LAG

EDIT DIRECTIVE
F
ES

00 -

* * W
_

ADVANCE FOR TEST ADOR FOR INSERTS

QUTPUT 8 CR-LF

n

PRINT EDIT PROMPT

wa

- Z (0 e
NN XLIX >
N>OQWZROENOFNZZ

ERSC\_C:_NT,_NMN -_LLT;M.(._NC

La) ¥

CCOODTINIDIOO IO
OOFNDRNONOOVNONE
OCOSV™ NI I3 IS

RETURN TO CONTROLLER

no
=

—t =T

t

|
|
|

'S

ASC 10,B8EGIN EDIT OPERATION
TH{ALT)

EOMSG DEF ¥#1

¥
»
3
-

* STOP THE COMPUTER

P
*

T0 CONTINUE

DIRECTIVE
op

SysT1

281



TLUISTY (L ML,N))
LISY THE PRQOGRAM SEQUENTIALLY STATEMENT B8Y STATEMENT

M AND Ny IF PRESENT SPECIFY THE FIRST AND LAST STAT
T0 8E LISTED.. IF N IS ABS NT THEN ALL STA
FROM M ON ARE LISTED.. IF NEITHER APPEAR T
WHOLE PROGRAM IS LISTED.

IF N < M LISTING IS SUPPRESSED

EMENT
TEMENTS
HE

HoR R KKK KKK KKK

T DIRECTIVE

V=-IY -
LKE<I<
NZVNoOWv
o A O e
WEE

Nw

S
S
“AD U
ST W
AD S
E NU
RO
0
R

AZNZM-MOIMm
Q
Z02Z

FLOACLGLLIO
TXNVIZNZINZINTY
LVNVITW VR TND>
Lan}
M=-MO AT VZ<r

28¢



. 283

W
zZ
—
o ol
=z e~ n
o z ~
[&] 93] wd
w x
n oOul o L
el w [aa
Z b lea] Ly
< O = s )
Tr oO;m s 3 0.
- o = =
-3 (o8
¥ N - (&) o
uw Zo (7] us
— O (24 o o-d
[~ 9 L - (] Wl -t
W =t L. u. =z (o]
o un [T o
(L TS o u. [70] - | et
-4 o o [2'4 1 D =z
o - 73] ¥ O (o]
W Wil < w v (B4 (]
m aw Z O - W
T Oz o~ — Z o = o - o
D Zey ) -4 <) 1 - n L
Z uo =< 2% KOO o -
- X w ZO = e | b
| o XE= W - Ml 0 o } o
7] (O [&]a4 (o W o
o w»nwz own | ad V8] [ - ad L
- WX ow W =0 W D < Lud
w >0 b= > 72} Oz 0 o o o

|
N ZEN e O e e SN Ze T
MF g3 (AIMNITAS NI NT o0 J

ZD XNZD >+4DDDZD >ENIDDDDAZMIAIE
—Z C...r, = Sx.CNN,TLC S!FNCNMNLMNC
L L]
BBBPAKAAPPAAAAAAPPAAAAABBABP
MDQ.MDMDSaIMDTDManDM...lDT.DTDSSDSM

|
|
|
|

o
-

SYST3

2
>
[ %]




CHANGE PROGRAM SEQUENCING SUCH THAT

M BECOMES THE FIRST STATEMENT NUMBER
N IS THE THE INCREMENT FOR SUCCESSIVE STATEMENTS

RESTRICTIONS ON M AND N ARE THAN M MUST NOT EXGCEED 1000
AND N MUST NOT EXCEED 25.

YST4 S VE
S E

A~
ela)

CPA S
JMP SEQ R CODE BLOCK
IX(ECUTE)

WILL INITIATE THE EXECUTION OF THE USER PROGRAM.

FA KR KKK A KR KKK K R KK

NO, EXECUTE DIRECTIVE
vyed '

ERROR MESSAGES

EEREER

YSTS «22
%12

LDA
LDB
JMP ERCAL
DEF
ASC

*49
11,UNDEFINED INSTRUCTION

¥8¢


http:CJ:lAlli.iE

NUMBERS OUT OF RANGE

BAD DATA INPUT

STATEMENT

DEF ERR1
DEF ERRZ

P’
E 3
a2

285

|
o
g
w
n

|

[s4
o o
(o4 [ W
o ke M
W wz|l =t
> w . Dl
e W= Zo
oo b Lud =
0. ~ =) =D
=z oD Obmet| ZZ
[ Q. <<= | Ll
Z W -~ ]
4 i < T w= -2
W ~J Vb= Ul KT
m o W W <« o
b o Ol i) (D
pos Wl W ZL ZINnnNk-Z oW
pd (&) tl tn <l ZD
o = s DU die - Qp.Z
-~ Wi W CoOopoOmuw ITI
pd D w 0o o =Lt
TN} P NNNDIN =LY aTZ
= O] Wl NN Z ZF0
w [ ,] ocuiul Ll — 0
- - <Y YO Mr
<t Z| - woo=oro R4S
[ead o w -ODLOD0 WO
(7,) (&I ] O <IN I iz
(L}
<X
~t
-~ L b~
'S nl OO L1 S ZOZ O
O « W> bz L K T -0
Z0nc ol Y DD LXK CT
o = Wi Wik wIONDFD wTlid>Ui
Yy wo no L M s ONCOIZNN
- D e | !
M= ¥ <0, ILIMICIL O ITTIM DA 0
noOs W Y QOO0 OO0 TS
™OT N ONIHNT I JOMD
(.
L
[7¢]

SEQ

»

»

* RETURN
L 3

¥

SEQ1




BUMP REGISTER CONTENTS AND DATA ADDRESSES

Ot # £ X %

UMP LDA SAVA
LDB DUMPY :
JSB RGDP1 DUMP (A)
LDA SAV3
LD3 DUMP1+1
JSB RGDP1 DUMP (8B)
LDA SAVED
LD3 DUMP1+2
JSB EODMP DUMP (E)
LDA SAVEO
RAR POSITION FOR (0)
LD3 DUMP1+3 ADDRESS OF REGISTER NAME
. JSB EODMP DUMP (O)
DMP1  LDA M2
1S58 NWLNS
LDA .16
LDB RGDOM4 RETURN INFORMATION
JsSB8 TTY,P
LDA .46
LDB RGDMS OPERAND DUMP INSTRUCTION
. JSB TTY.P
; SET FLAG, JUMP TO SYSTEM CONTROLLER
cecB
ST8 DMPFG SET DUMP FLAG

JMP CMAND READ RESPONSE

¥
: RETURN POINT FROM SYSTEM CONTROLLER

. bMp2z

GPA D OPERAND DUMP DIRECTIVE
JMP ¥+ YES

CLB NO

STB DMPFG CLEAR FLAG

JMP CMAND RETURN TO CONTROLLER

98¢



2

* DUMP DATA ADDRESS CONTENTS

STRUCTION

A

C

L

N

6

I
JATA AREA

ADD IN DATA ADDRESS BEING SOUGHT )

OXZXH.10MY
DE W Z .
O AW
OOOOLIOKOM
< MLl >
WCWO=T TG I W
¥ZHZIO00Z

i [ B ]
St oM 8 et

QULOWWEZXam Vl-E 10

QO0OOAr0.-0OZ
KOQAICOOOONHIK OO OXT R % XA T M0 o0

" ~
MAMO O O<TOOOMm !
NZNZTITNCNOEIONZT OO0 NOOZNIZTONNODOoOnNoOOUIONnnNIT
JJJJJJAJLCASJL.LSJLLSIIJLJJLLJLLJ.LJj_JJ

-

n <

% = -

L L 15
n o © -
% o w w
ouwl 0 o o
wos <N
z0 Vv — 4
=] wz L =t
L. <t (L © o
L << .} 12 0V d-
] TN wnw < | <0
Zo Z -z
o L o o OO
wn T L ~ O
N o o
nNnZ 75 e > > =
Wit LY o el D
-2 . Z < a0z
0z << z Z|
OO IO Lo - D
<> Qb o o oa

K NOM - , |

[ auws o o e e T s e
T OrXa > o> O>I0 >a

N e sMuONL W OV Vel Ok OOk L Z O X

p
c
3
P
2
p
7
T
P

L3 H H
MO MIIOMITIOMNA NI OO DL

_
*

|

287



DUMP1 DEF AY |
DEF BE ADDRESS OF REGISTER NAMES
DEF_E '
DEF 0

DUMP2 DEF TEMP7

x

* PREPARE TO DUMP EITHER (E) OR (0)

* ENTER (A) REGISTER STATUS IN BIT 15

* {8) ADDRES_ OF REGISTER NAME

E'S

EODMP NOP
CLE,ELA MOVE BIT FLAG IN TO (E)
L0A .48 ASCII ZERO
2NA
ALF,ALF __ SHIFT TO FIRST CHARACTER POSITION
JSB RGDPZ — DUMP REGISTER
JMP EODMP,I

88¢



»
%

(8)

* DUMP (A) OR

-
<
b4
]
(&
w
o
[SF]
4
4 (&)
4 (7]
w (&) <
= (%]
| 7Y <« <t W o
= =z o’ -
= 4 2
o L 4 p
(1] - > o
(= © <
O (%] o =
Uit i <X —
aw 0 [T o
ot S w - O
™D [+’ o [
(o TF] > (04
[ o i
W) z < Z =
[Fu}TH - Z b
o o o o
O o (2 B o N (&)
7
ity =]
jTed -~
L0 P O NN A MO
= {m O X o F e ¢« X 00
St Qo> OO0 »>00»>00
e O 00D b L Z D b = (N
o~ RMRTﬂRTTC.TMRTAP
<itn
o PBABBABBABABABBBP
oo QNONODNNE
o ZAdAd™Md ATV AT IS AT
E H
= -l
bd o
w o
'y .
% k4 % % OF * %

(E) OR (0)

* DUMP

PRINT REGISTER NAME
REGISTER

PRINT

L

-~
M -0 pNy

O T e Qe
Qo0 ZHh-0O
LD ed (D wd D= (D
- oDT-Qu

PSASBABTUP
ONOONOCINE
ey JE B by, S PR, R

RGDP2

289



!
=
P=4
oz
w
-0 u
[« 4T =
Wi <1
> z
Z
ouv [+4
LW [V}
ol u) b=
W =z %]
[sa] T3y ) 4
O (8]
o [FE}
-Nnx= o
Nl
ww=z -
»Y =z
SO0 =
w <OX o
by el b= o.
<t
z
o
78 ND N oo
| ad o Z 0 e
w rTE 4 >
-t L X ol -
v e b 30 2 S e b
(TH}
[+ 4 0. < M D < M
O b~ N OOV
m 2N AdT
4 M
o o
0. (mn]
D
* % % # %0

"RGDP3, I
A
A

! z
o =i
P o
o Lt

* % % % 3 %

E

C
GNIFICANT CHAR
S SIGN

CONVERTED
U

ITI

ID
IGNIFI
US SIG

0
ALUE
S
I

IVE

RY

Yr T
SAVE MOST S

> O

INCLUDE MIN

—« O =
o w NO

SN TN

WNNZZ edin = Z OO0

ﬁRAICBBHB O e
- 'S |

CONVERT POSITIVE -NUMBER TO ASCII

PRINT DECIMAL VALUE

DEC

=t

N

0o
o

>0

ORI MK INMD IO
OPVNETNOZORBVONT

=
(&)
(]
Q
%]
<X

ASCD1

P NTIO™ AL HINY ™Y ™™

290



'S
P’y
RGOM1 DEF *+1

ASC 5, REGISTER

'3

¥
RGDM2 DEF *+1
. ASC 44,0CTAL

Pl
RGOM3 DEF *+1 '
ASC 10, DECTIUMAL

*

¥

RGDM4 DEF *#1
ASC

h 8, TYPE R TO RETURN

¥
RGDMS DEF *4+1
ASC 23,ELSE TYPE D, FOLLOWED BY OPERAND TO BE DUMPED

' ¥
:ADUﬂPWERROR HWESSAGES
DPER1 LDA .16

LDB *+2
JMP ERCAL

DEF ERRS6 NO OPERAND FOUND

»

16¢C



'S

3

DPER2 LDA
LD8B
JMp

14
ERCAL

ERR9

+20
¥+2
ERCAL

ERR?7

NO LABEL FOUND

OPERAND IS UNDEFINED

c6¢



EXECUTE USER PROGRAM

B R

T XEQT JS§”FECUF DEFTNE_FEC_REFrRENFES

F

JS8 SSTDF DEFINE SST ENTRIES

JS3 SONCD,TI SCAN CODE FOR FORWARD REFERENGES
JSB PROG,1  EXECUTE USER PROGRAM

JS8 SAVR SAVE REGISTER CONTENTS

: RESTORE FORWARD REFERENCES TO USER PROGRAM
XEQT "LJOA XUSRP FIRST LOCATION IN USER PRUGRAM

STA TEMP
LDB BUFA ADDRESS OF UNDEFINED REFERENGES
ST8 TEMP1

XEQ2 LDB TEWPL,I ,
CPB ZERD ALL UNDEF REF RETURNED TO PROGRAM
JMP XEQL YES

XEQ3 LDA TEMP,I ,
“CRATHPEEX ‘SgzcrnE*TEHM*TU“INTERRUPT'EXEUUTIUN“*‘"—_-*——“—*————“

+
ISZ TEMP NO, NEXT LOCATION IN PROGRAM
JMP XEQ3
STB TEMP,I  RETURN FORWARD REFERENGCE TO
ISZ TEMP USER PROGRAM
ISZ TEMP1 ,
JMP XEQ2 .
T XEQH JMP TMAND RETURN TO CONTROULLER

€6¢



KKK KK

*

UNDEFINED (FORWARD REFERENCE) WARNING

§PPET JSB SAVR SAVE REGISTER CONVENTS
: PREVENT INTERRUPT BEFORE PROGRAM IS RESTORED
JSB T1.0FF TURN OFF INTERRUPT
LDA .28 MEMORY PROTECT ERROR
LDB MPT1
JS8 BPLN PRINT EXPLANATION OF ERROR
LDA 40 TO USER
LD8 MPY2
JSB TTY.P
. JMP XEQ1
X
MPT1 DEF *#1
. ASC 14,UNDEFINED OPERAND IN PROGRAM
¥
MPT2 DEF *+1
ASC 20,EXECUTION CEASES, CONTINUE PROGRAM ENTRY

vec



DEFINE GOMPOUND OPERAND REFERENCES

¥ ootk %

IN SYM TBL
ABLE

0SI
Y

POSITION I
OF SyMBOL T

ABDRRSS OF SYMBOL TABLE

RETRIEVE AGDRESS
E
0

Lt

-t
m 4
=Mk =M
N+ NOUVINZ

o O oL

RE
R
B8

OOZOOF-O%
[ dD) LN O

TN

SST1

-]
e
3]
5]

b4
(&]
[}

= -t

(@] [aa]

(35}

- w

<7 o]

o X (@]

w o o

zZ O z
Z . L (@]
z Z [&] —
T 24 | ol
(&) oo ] =t
(7o Q- o o %]

48} w wnn o
w=zm pid 3 Q=N
<t L] pq V8 il
[s 8 3ue PO ) . = VN
<X fom i 0 2Z o
b L) o N HHO

=z na -z
e ol L wl
- a3 V8] orul WY
Ot m o> Sk
T X <TOIOT <IN

pray g TN A ZDILn NN

L - Z

(@] L) Y wn
k= Mk =O O kD
SN &Y NNN v AX o0
S/l oAERSm s<lcl o t<IOY

o n ! -~

LI N .
O <0 C<IINRMONOA <ITMUWNA IO <TIMMm

CNETO0IUITOOF OR0ON
N TI<L.IONTIILAN<T NI

295



MINE NEXT AREA IN SYM TBL
VE ADDRESS IN SST

XAMI
SAVE

 x
i<t
N
[72120K S
nnoo

DO O
b O ee
IN HN

S§ST2

[
%)
7
ke
i b
(s8] - [ S
= o Ll (%)
- =z lbLtn Z0n
oA - Wity ©
-l D ) Y, —Z
o o o £ " n Z et
m T T n W O <
bl o N> n=z O = O>
> 11} o ¥ Z LY O
N Z0 Yl (4 L Z e
O WO O 0Oz ¢ Dy =2
O~ = NZ Q0 W DAZZWe
o P Z TN O L —u
© <SUIDNWO e o uaZu b
N ONZYoru W< o <O o
O e =l Yo >0 W u=z 0o
<10 OXOCOY <0 O LOOoHNGS
fas] W} ZOZOCY) Nad ¥ OV n<
[ - T o < | W
N et LY £ = T e odi
ZOWN =>L0Z0 X mwolco>
—HZ WOWTA OHOOWL © Wo=kO<
A= ZNNONLAaZ>»Z U D<I>Na)
e
- o~

~ A0 -~ [T

QZOKT IOZZo pYZZNaO.

= O XYNZOO0 —~O0ne O

~ N O0LOZT MNUAOCON BEOOMWONWL

o RO O<SlL INOAD TPPLSTM
- i |

Ll el T LM DN AINL L IMMNO DI T

CONQ A= OO E-NOQVNUIO OO0

_
_

296


http:CCA,R.SS

297

¥1]
[&]
-
[I%]
2 4 4
o4 i (73} tud
) [T S - -
= w - W =z
=z, [« o m bt
! - . +— < o
= O owm ! =z L o
" o (234 7] ol Wl
w <t - pVal V)
(%3] =l 0 ¥ X ZWwn
z o o WoWw > L] ¥)
- L [a] < I Z [+ -l O
| uwwn i S - Ox
> 0 [72] Y o ow =z X o B
@ O (TR T} o D =Z W O
- < o I T )
4 o] = - Z¥
LW ne| n O <« 7} ozul
[&] 721~ o b X [72] [l an ]
Y = ul O Ll |l g
< < oL - ¥ 24 -3
w > owm N ZWN ~ (o) NZT <L
- 0 O w o L Owix
[ JELS 4 <0 Y Az o ozul
=z
2
- — Q
-l o~ (o] L3 . Z
a oo QO < MO Nt zZ »n ™M
T OEZXEIM OZENAdRUINET b= = N O
W W NWnZrnanNnuw O ONX »n
[ o and o W ol S T RS T o 7o 175 ] A T « W YO L. 4 7]
| - [en] .
LI NN T T LI LT ) <<MAQ ) gL MA
b A= NSO O = O O 0T b N TS0 0 OO0
) SCh)IIJLASLCAAMSSJJ % wd LN AT
Q
[Ap] Q
- < -
wn n
7] % % % % N




DEFINE PLC REFERENCES BEFORE BEGINNING EXECUTION

i

KRR KK KK R R KR KR KKK KR

I
i

ﬁgHEPLC REFERENCE IS STOREDC IN TWO WORDS IN THE PLC

ADDRESS WITH BIT 15 SET FOR INDIRECT
ERENCE

NUMERIC VALUE IN OPERAND

x =
Q (o]
A A
[ o
~N [ed

NO ATTEMPY WILL BE MADE 7O DEFINE THE PLC REFERENCE
UNTIL EXECUTION. BEFORE EXECUTION THE PLC TABLE
WILL B3E SCANNED AND ALL POSSIBLE REFERENCES WILL B3E
DEFINED. THE SPACE OCCUPIED BY THE ADDRESS WILL BE
CLEARED TC ZERO.
A WARNING IS PRESENTED IF THE PLC TASLE IS NEARLY FULL
THE EXISTING USER PROGRAM IS LOST IF THE TABLE IS

: ALLOWED TO OVERFLUOW.

*

86¢



PLCDF

BASE ADDRESS OF PLC TABLE

Xt ) s> HMKOCKA o

PLC1

\_IN PLC

)
-t
[+ TR}
< [ea}
- w
<x =z
o P
<t
[T (&
(@] [%]
W
wo >»Z
Wz -d 0
<D d D
Lo D=
oo
<L=x oL
| o W >
=ty - Y
pat—To W feal Pl s
wag «auwz
ZnD =11}
-t
| S
) w
48] o
O (NOHW
N=Q.Z VN N

7]
n

3% ]
NN

KON
Wwich W
o L b (Y
Z O
—ulen e
onl  <I|
0O |
=< b1}

]
oWy oOWW I,
YYNSRCA

INDIRECT REFERENCES

b

§

0, LOOK_ AT NEXT AREA IN PLC TABLE

<
o
- e
(&) 7R,
" L0
(i S fa]
nlnDCAw

LG N

S

' - - L] Lol bl

OO0 OECNIIII0 TI0 IIIITLLIMIMOIA L
COTOOFOXONIONING SO d-ZO00ONNE -
Z A AN IO I N

|

|
|
|

BER VALUE

~Z
el

SAVE ADDRESS

Sy

SNOOU IV IDNDIN

299



1]
i o4
(&) )
Z -
uJ - Z %]
Z [ - O
i [ o L)
(VR TS w pd
% el - d m
7 > = N~ =4
> o - o ey b
-t (24 I wor~mn =
m (] e Wi 0 4 [« &]
- (o Il Jt oOZZ -
] <1 waod wm OZHO = O
%] 00~ M E I QO
(7] OXY OOl V- D =
s NZW O n Wwwne o T
%) NHO  <CHLIZW SEWD ke
L, WO O LI 0 ﬂ,
WO oZ0 WorOm 0.0 Z
o Qo ZOO0D a O -
Qn oo LT Y b Z S
(a7 B € 75172 B Do Wz - Z
<ty Wit xuox 4 TEI0S Y
o WoY LIOKE rorul D
oo =00 =Wonon X0 -
QO 00 WIFZZW WD W )
Vel NI OOV VLN o
bt -
LN " L
wt - N oA | N] = Y
o OKOIXXE MEND W K Ked
0O HOIOOFHOOD OO N 0O DO
QI «-OMO<CTIOO0 SO0 ~ Q0 b=
< AT OANO ST LI OmMa B0

! i
LIOMONTOOCONOLONA OTT<TIA,
OO0 OF-ONNFONTONZOZTZ 0O _J-=
wd L NN I TIN I T AL A NI TN ONT

pPLC?2

'3

* THO WORD ASSEMBLY

N IN ADDRESS BLOCK

10
ECT BIT

o

300



W##*f#*ﬂi*#**

FIND ADDRESS FOR COMPOUND OPERAND
NTER (A) OPERAND NUMBER VALUE

(B) SOURCE CODE BLOCK ADDRESS OF LABEL

RETURN (A) = -1 ADDRESS NOT FOUND
ADDRESS IN ASSEMSLED CODE
NDAD NOP

STA VALUE
SSA DETERMINE DIREGTION OF SEARCH
JMP FNDD5

FNDD1 LDA B,1 SEARCH AHEAD
STA ABEAD ADDRESS OF NEXT ENTRY
LDA B,1I LENGTH OF ASSEMBLY

 STA LNTH3 SAVE LENGTH OF ASSEMBLY

——————"CMA, INA

ADA’ VALUE
SSA
JMP FNDD3
CLE,SZA,RSS
STA VALUE RETAIN NEW VALUE
LDB AHEAD ADDRESS OF NEXT ENTRY
CPB NEXT TERMRINATICN

FNDDZ €A, RSS YES
JMP FNDAD,I RETURN ADDRESS NOT FOUND
SEZ 4RSS
JnP’ FNDD1
INB BAGCK UP IN SCAN OF SC3
LDB B,I TO RETRIEVE ADDRESS OF ASSEMBLY
ADB .5 " FDOR PREVIOUS INSTRUGTION

T0¢



M1

* ADDRESS FOUND

%
FNDD3 ADA LNTH3

FNDD4L A0S

2

302

o
= o~
o w
4 =z
SER o4 (]
o T b > N
- D wn d V8]
- o o o —
I (o} bt =4
v v — Lt =
o =z > n zZ 0O
_or - w wn W Z
o < D
4 o 0 a m O
(&) - D >t [ R TS
o o . L Vo) 7]
4 = - o fon) b=
fos) = = =X Z 0O
< W v | W an] i =
w W o %) NOF Z o
(o a ud nzz O HV o
o brd o/ quit O w wv
[&] u, Q Q o TR ool
O o w un oo
w - <t Oz = -0
') nx 0o o IV gam!
(2% ; nz b4 T oZa
pi} W Pt e 0¥ - —
o > ox < [T S = YT e
n QY ZmO. »n QW
ol w woo O Ouwuwo
=z L <> N7, IV . 8 L= >=Z
]
o] - g
o rt +
« ﬂ ‘o VU S N 1Y NGO xS
= o) o ¥ D O oy 0o (]
¥ o 0O O Had DO OO0 0
O Z edZ add w2Zd ZVNZAdAHZZ ZZ
< D METL BBTBIV Lo i
m o - | -
MTBBBPBAABAAAAPAPABBPP <.
T SZOAOTZOoOR0OOT0NINT-OOST =X
% N O L SO LI DN IOTI™ O™
< N O ~
w o o
i Q) O [
zZ Z prag
W% % W b » W




¥¥¥¥¥jF

J

FORWARD REFERENCE

NO,

R1
RF,1

o0
=X
(VI 1%

LN

| >
O J z
i ol o Z o
(] wdl = QO e
= Mt b e
w LR I &
o =z 0 n o b 1 1B
w Zp- o 0N < D o YL
. oxX Z = (Fe ¥ O o
uwl - © Tr (73] & O = U Wk
o -z > (&} n o ¥ N ¥ Z-
o O > T8 wi O O Z +ZH
- puo | TR & 0 _id o (e | T O QO
v oo D = Mo e 0o o Z—0D
X - N w =X o wwo ZOw W XM
Y Nl Wikl 2 Yt N tud oz
wid Zownk . Hy O n WR O WHZ>
LY OXZZ < Y D O W VRO Z VY W»
w0 <L) bt ST W G DLW D G0
oD W o o0 W Oxt < O Wiy NG o
(7] < >LWalip O Q0O | 0 0O 0 W Z
w (7] L > el nz g < OO DN
3] Nd =HHZU T 00 UV ow OzZ0 wWwnz w=
pd Uiel ObmbAbd™ b= =TT L) T ) < L -
Wi D IO O e i<t f Yoy zD
o Opr =d—E Z WO O ND O =X.d OO
w QO Wi W ZXT 0 na = Wouw WoD-Cul
H Tt KXY 4 O < <DV VLY KOO
" - 7} ] i ]
(o] - “~ W ﬂ - - -
o Wikt ¢ Tw M OFmmIT) o~ W wil
<t O DEMNUDWOIRO s ERoOSyyod— NaD>0O>LUID
X ONOONSONON M ZOIOORHOOZNMATOIHODO
(e 4 MISFEAEIMIO Z WENMOQIODOACWNHWI WA S an
W OOITZTOANTOIM H IZOACNOHID S D= T OO0
| -~ i | =~ '
0. XL OL LI O IMO N T LT L NI DN T L <L (Y T T L et A O
s OO OZ - DZ = ZNJOMOOONNFOONZ =00 ODNE S
z Z LT () d <IN AL N <N OO I I3 SN AT
= _
TR -
M ol
Qo
g%

303



=g

IRECTIV!

¥ SYSTEM LIST ROUTINE
D

»
¥ ENTER (A) > 0 SYSTEM

»*
x*

304

w
7]
w
a4
(o]
o -
<t =z
s
(a4 P
V8] (@] L (7]
(L) wy - 73] 4
I %] = il uj
7] o Wl -t Y [sa] -
n (& & 0y o = zo
we n O [So I o | D L
bl ¢ oD -0 =z X
-z W > W=
274 (e TTR TSN WiQ b [ [ ]
(@] Z 0O [ %] 4 > =z < Z
L Llp~bi> DX ol (o} PR
it Z i 00 Luw < = O D k-
[en] K3l HE O [TEREES ¢ v zZ
U oOXOZ| > Doud b= oL
Lol We = < W T > 3
x u Xz ik « - . [TN3TS)
] =Y - Q= WO W N ! Z—
o Z< 40 a4 pd <1
[T LU N0 Ll [l ] ] |l
g LI Z O [TV ATH] T wwn
-t 0OOUL] O >all =Z v an Wt
wd
<t
(&}
o v - O o = W
U, ) <Ip=M M B D Nt -—f
v O~ OXbubd(N=(S O Z =T OZ N T
ZoNNHL DWW SNNIDONCQ s NDZ2-NNZE
~ W Ju NZ I . J0N I3 L JZ N J
< "~ - ,‘ -~ L -
~ A ILIA <IN<TIADMNA DI <TT <IN NMMNUIO =T
O JZ0ONOQ0 EOMNE QOO0 Us T
ZNOT I . JOMINTSNRININN™ JO<IOD0O
[ o o
2] b -
(] 73] [%)
% % % .d - P




-}
< o
= W
bt (D
O W =
g W D ¥
~ NN Z Z
[TH 4 4 (=
Wikd b=
- Z
ZTLo W
=2O0n X o~
LZxt
oo - U
, -0 < O
W e Z -
W Wl v n
Z NED> [72]
<t Wiy ke W
Y et Z &
nNZ - 0O
ZQuik-+ O O
HZ>>NN O <

Zo > O»0
2O v 0
NOT T

AAPEAVQUABABBBB
onzTononoounoZ
NI I AT Jd™ I

NUM2
LST3

RS IN SOURCE INPUT

LENGTH
M!
D
Tt
T

N~ (B ]
UL Db
ﬂ o _JeHM-(N
AQ,\.AB [ ] g
L
T OmmO.
QD.JZ0NZET
P L L LD

3

END MESSAGE
NO, RETIRN

LDB ENDFG

LST3

ENDS-

PRINT -LISY

| pond
-~ O Vo «
P Z X e~
N OS> (N
R e () b=
—dZZ e )

MO CM<TOMA,|
NZTONOONI
NTATIAITE™

¥LIST ENDS*

LSTMG DEF *+1
ASC b,

3
13

305



¥
-
. ORG 40008
'3
*"MAIN LEXICAL SUBROUTINE TO SCAN INPUT SOURCE CODE
: ALONG WITH CODE INVOLVED IN EDIT OPERATIONS
'y
* THE INSTRUCTION SET HAS BEEN DIVIOED INTQ 15 GROUPS
* DEPENDING UPON THE INSTRUCTION TYPE AND THE OPERAND
: REQUIRED
¥ GROUP TINSTRUCTION TYPE OPERAND REQUIRED
: NUMBER
: 1 NO OPERAND REQUIRED
: 2 INPUT /7 OQUTPUT CLEAR FLAG MAY BE PRESENT
: 3 INPUT /7 OUTPUTY CHANNEL NUMBER EXPECTED
¥ L INPUT / OUTPUT CHANNEL NUMBER EXPECTED
: CLEAR FLAG MAY BE SPEGIFIED
* 5 EXTENDED ARITH " NUMBER OF SHIFTS
: REGISTER REFERENCE
¥ MEMORY REFERENCE LABEL
¥ NUMBER
* EXTENDED ARITH ASTERISK
¥ MEMORY REFERENCE INDIRECT FLAG

90¢



-4
() o
(&} w
wn [S.]
< W n
[an] - Ul
(VI TR Z D
o o oo IS |
L <
2 b - ™
ol o»n <
TEA r o
! L
O v
[un B e [ T8 B V]
z =z QO
| < Z
o Y et
w T o
[ B -
O O I3
Zhe b=
O Wer W O
P B T o B « A o)
a.
o
O 0O o O -~
o Z wn w o
D W < 0 O
38}
(7]
o
w0 o (=B o]
et
I E R EREEEEEREN

ADDRESS

EQU
ABS
8SS
DEF

| 3V)
)

ADDRESS VALUE

VALUE

[ar}
-t

ADDRESS DEFINITION

B R R R R R

()5 5-4
wZzuws
O
Zd4 Q
[Filn b JVE}
Zw
<z
[T98 uf- 24 T¥]
L wied
xXoxXxo

Z X
>t Q.0
o o
OZWNk=0
Towoo
W—ZZt~
et N

ot o oo
wiZ2ODul
ITOoome,m
-

oMmao
U DU~
oxn=z
[ ¥ et

e Z D
e Z L O
O <TOXm
Lo <t
Ol
> Q. Wdn
WO Db

% %k % % % % %

307



-
-~ W
w o
s B -
W e bt
e . M
) L=t o %2 =4
= (e [ 7 BTV n w Lt
oo &) Z 0w -
(o] = =z L)oo o0 -
u. an O < O o DU <t d
- oOToY W - oapo< - =<t ]
iz OQOH L& Z = 4D p— w
wow oL O < [ z N o
L —ZE o~ s 4 FTmF_. (TER ] -l <
b o = LNy W = o O dZ < -
ud LHO 4 LYO| - g E oW ¥
-l o W Ul O Z K BldaHd 0 o
W < p— m Xl <« Ll ) el 2 oul
o TOa @ O & T +~ wlu 0O X 0 W=
Ot Zd ~n o D Lt o Z
4 o KIWIT W 0O Omoe T
(o] HEZDO WIOKWO = N OSORO ool
NTrib-Z  —uiom - "X W o wo
w 14 B PEITY b OXT ) W I | =ZuW T <
o e Wt @ 3 O < >
B2 W=l % _H | O OV e < U R
- WNed «Z O WZ e OO Dowe
0. HYOQOWaW s N i EEDHOW AN L 0D
W OWHIWSULOOWW . Dol WaouiClw < a0
o NJFWYBYNNYWI > TPNWESZ> > 0
| T ~ _
- o MY e e B Ok Lo
Z Qe sZNENCIR0OMZ MeHDIZ - b
M OX I XA NOYE - M i X 3 N
O + Wl JUi- XX WX d K100 bl + NI X
ER#GlSLBLLLLTLGLB ) ¥ eIt
| ' [ Y

L3 | H
Ao MO <O <TA MO DA MO TN OMOMMA IO TR o
O IO TATNEONENTANE D0 IENTOFONS
Z IS MO OSNIN I NON N I N N TN

' LEX

"

308



STORE NEGATIVE VALUE FOR UNDEFINED LABEL
RETAIN ADDRESS OF DEFINED LABEL ON EDIT OPERATION

FXf" - STA LBLFG ADDRESS IN ASSEMBLED GOODE

rm*a**#

EX2  JSB NTBLK NEXT NON BLANK CHARACTER
JMP LXR5 NO OPCODE FOUND
ggg BLKSP RETURN LAST GHAR TO BUFFER
gzé TEMP3 READ THREE CHARAGCTERS

LEX3  JSB GETCR READ GHARACTER
JMP LXRS —  MNEMONIC NOT FOUND
SEZ,RSS
ALF,ALF SHIFT ALTERNATE CHAR
IOR OPADD,I
T4 QPADD,T  STORE CHAR IN. OPCODE BUFFER

y 1

ISZ OPADD ADVANCE BUFFER ADDRESS
ISZ TEMP3 CHARACTER GOUNT
JMP LEX3 " READ NEXT CHAR
JSB NNEM LOOK UP 0P CODE NAME
LDB EDINT EDIT _INSTR FLAG
SLB,RSS DELETE OR REPLAGE
JMP LEXY NO
LDA INSNM YES, MEMORY REFERENCE INSTR
JMP LEX12 YES
CPA o7 EXTENDED ARITH MEM REF
JUP LEX12-1  YES
ADA M8 MACHINE CODE OR DATA EDIT
SSAsRSS
ST8 ASMFG DATA
JMP LEX,I

60€


http:SSA,R.SS

GET TERMINATOR CHAR

GETCR
LEXS

* END OF LINE

CHECK INSTRUCTION NUMBSER

ION

g FOUND
ER OPCODE

AN
uc
FT

E
T

S%UDO 0P DOES NOT REQUIRE
D
R R
R
T A

p
AN
AN
£
RN
D

D
ER

Wi~ 0
0 Lt ud
O> 0 > >

EN
oP

h'a
O «Z
[Zade > 456
Zolwmnxiud
— QLMRLW..LB
LS
IO LA T
COIONITTOWn

SNM
Xi2+2

o

i N’

- Lt

© 0.

w! @] [+ 4
o o W
Ll X .4 m
o W p t o xE
= (SR 3% ] [en] by D
D OO0 - zZmZ
Z Z> > X < 5

<L L (- s 2 & D I
o o Q. =z &) Wl
Zujlod o w oild o=
<zl o 1 & Z Ooali>=
o> Ot (T ¥ T 4O >l <t
Wk oln O 1Y L - ZZ T
0 Ol - - L - - Z00
oZo Ly @] < Y o< (o] = vz

Z o z Z M a Z ¥ZTraZ
ZLZ | HZ W I
QMo (LI T 2 o' -l Eoro w
WD Z e << DY O o ounan
=0 = Ol Hud UiD i OO
OLICLS Wl MY Z =~ a0l
D Ui X < I
&= o X b ¥ O -
=N e e IIL = - VOO WYl e -
NN NN Wil <<tnle (A L AHHNDW

OZMUWOWIO dd WD < T aTuwow
ZHL>Z>Z OO b 2 SR S| R

8
R
N

b o Wi eI

OZ & | MNO » OZ «0MoOMUL wo

W X | XX XaXYIoEE XK |
HKZedW N W W uxX™m &
LI.L.WLGLCLBLIABATLLt .

| i !
OII0 INANAILCAIAQ LK IEOA A <IN
FOOTOAMNTIVMTEATZOTIQOKNEEZANAWN

A O NIMOK D JOC™IOK™ ™ IO IH D™ YOO

LEXS

~
>
V8}
P

LEX®

310



311

[
7]
[}
bad
wi
[,
o
=z o 1%}
(o] o [7]
n n =z W m
Lt n < ~N
(@] w o) -l
o o & wo W =
(o] A QTE] [ Y « I} oo ] P4
Tl O Ok - bt v
(o] i<t < ~1 < WO b4
o (vl ] o > v v
o b <X Woowin = =
w bt 0 > Z= (] Y wo
%] 2 JNTY L L b b
o kLU Z [V Tl - N
i W o &) W
v . (={TH - O Lt Lu >t
n ZW w Z 0. T L= g
om WUD ¥ o o &) nu
| -
| b -
NN o3 » 7._ = oo s ot o ] o
MOMMODY -« S o O 0O | ™M
WKW ZUE DKM ZNE N NEZ0» X

LIstiuuli0. = &IXi e+ O X IXWOW <tul
A OO S O AT ddH S P
! o~ i - | - |
CNOOOOADNIMIIAI0 CITIOA O MONDOA IIA. (OO
ANTVNETENONONI O JONIS NS OOVNE k-3 N
OEDHTIDHIDIICIINDIDIOINDINTIITNINND mJ
T
|
_

«14

|
I o .

|

LEX31
LEX3




312

wi
©
pd
u
o
i [n
. z
L <t z o
o o7 o Pt P
i 1] «T
o o (a8} 0 m.J v of
W ow e o< =z el w
- oM 2z d <_J 4O W 5] Q.
n = o Zu ol < o w o
oD - wm oo - -~ jon
oWz W [+ oa Z DO u! < -
Lo o ¥ < O U = m > < w
XTra O <t o OV N = -
o) T OZW L ouw d 0 L
OZk ooe (24 He- O MO>LIL W O b w <
- O O i w o N_ - OAD = <t o
~Z ! <t gl Lagt Z wWawy pul —oO0u o4 24
L W Zoey (&) = QN aLIROOZal & Wl [FREES
OZe O OuWOLo < O SWATO I <> Wl O Wyl O X
ZZa 2 w0ulu. Y| Ay KOXWoOomoOn w | A O DOl Z O
qAT < OO0 | Jin O OO amaluuiw o ol o«
e o & T . S & ST, o T < (aYuls (W -0 Z a o
o0 U3I (&] T OIS I JZOHZW N = >l = ¢
€ - M o tien PO D, Y
(] 7o B & I SN VY| 1vH = & 0 SORUOMDuI Y] W O Ow O W
oY Ll NOVMIV X WA e s ERAN - O & N W -
oW I Z=WOoWw Ll JwCclWowwWIiw>woow > o wwl T 2
ZHW ) H»O> Z QO»ZAdZ>UHINMIALZY| N> O
la L [aa) 4
© - V0] b <t o - L n o o - - ™M i
wHMOOW «Z 0¥ ol WO ONODNDY i «f | -lID00  wil (D el
MMHXOZXNY) E XN MYOXOXKEOY Y e OO Z >
WELirHLIZMRO XWX X OXION>X X ol WX X <l X
LQLDRLI.LC LG?CLLLLLL e deTd e IZ a0 TN )

- | - |
PBPBBPBBPASPBPAPPBPBDJPBSAPAPAPASPBPAPBBPP
TN ONIOA AN N NI ONEIONNIMI A LNSNENI NS
TIDT AT TOETITIMOD O AN ATITUIT MO I TILIT™ T

LEX3
LEX9
LEX10




z>

Y
PERAND E

EX11 CPA .6

MEMORY REFERE
ALL O

»
'3
P
%

OUTSIODE LEXICAL SUBROUTINE

EXTENDED ARITH MEMORY REFERENCE
NO
TWO WORD ASSEMBLY

]
[a\} 1T et
-l

> M
[TN] A VW T U s I TR ]
e JAOJ

A< ANDO.

L

FENITNNXE
YO OIHTIT

LEX12

tp OO o

¥

¥ END PSEUDC OP BRANCHES TO EXECUTE ROUTINE

*

EBIT

DURING

EDIT OPERATION
I

¥ THE REMAINDER OF THE INSTRCTIONS ARE FOR DATA DEFINITION PURPOSES

D
E

N MU
I oo
b b b
NZ i<l
T =00

janfostenianfonksn

wd (DN AN

ap)
!
>
d
-

b S
»

Qu3
PPDb.
T XTx
who ikl
e

|
aoOmNNG.

O b Z e (D o o S b N

OV T

0 0P

313



314

[B
=z
o
o
(&)
24
W
o=
24 ©
bl T
o - o
w © <
o < T o Y
L o © Z b
- btet oo L
= OT. <« o4 o o b
- B2 ) b o u. ui mla]
< et w O oY
L XM D0 ¢ o wed o)
Q. > Zo o 8%} <t L Z &
o ) <Tu. bl - o o [&]e4 -
L LJ - o > (&) 2 <1 =T r_t
o [ ol 4] oo s} <0 ¥ X 14
o n oz ZWw Xz 0Oz <O =0
D O i< pDZal © > D Za X 4
u) 0 Nofo oo Y ol ) - Q= 17}
w0 (*Y) W o 0 Ol Lo -
o. - WY O W - - (s 4
D D e —OX - ol O uy N et
O a Jnl X TN o~ MZ| kel N oul
nuioZ <l =2UWOOWO 2D WO WO I b d
AYWI >0 ZZW»2Z ¥ ZZ N X TC
bt +
0 e M MW I = nee N W elie) I A
O HED O« HdeEE «©D o Q) e Z 00 =00« w
HNNSRQ nroy's o= O Xim B AT E WO X M
o =0 XN NXEXO  xXOQ Zw il W DLW X = Wl L
s OO ATYaXAZ A0 A0 ki 40 ) OOV L
Lo ~ HL . ! -~ "~ .~
DML IO CMOR OO <CNACNOMOWOL MUID. O N Y < NM Q. 0.
ALNENNIOCONSNTONEO X - J IO VNI L IO WIS X E
OGN TIIINMDDIDOE™D ICONOON™DI™ DI INTIHN NIV T

LEX14
LEX15




F'3
'

LEX16 CPA .10

DEC PSEUDO 0P

o
=
e/

RSS

LEX22

-
o <
lad 1%}
w o o
kot iy
— —m W}
zZ a5 O«
i Oy | w
ZuWoo
. (LI S 0 4
el o~ Z-20u
) o< =X IO
O~ L
(] < ZZ kL b (T}
Wy Z ¥ xwne
O = <IN O
Q| WX
oy o [IRITTua] T
ol W Zna o
U v o muw=z
U D O
(el b= =T OO
WZWZ WE WO
Y~ X O>2Z W
(&]
et bt
eI =0
b DO T L) oI O SI) d
NI XE XY CIE X
20 i b= 0 U O WK L b
O N 0O N
[asTonloWeulaala W= gal aWoaX- ol
NNTNNTOAITZNOT
)™M AT
N~ o o
et -l ol
> > >
T¥] Y9} 78}
l—d | -

GCT PSEUDO OP

«11

E

K
COMMA SEPA

READ

ERROR

YES,
NGO,

L o M I M
NZaQ w0 ©
B b= 02 I 3K LK
MOk 02 L O L X
HOW k= 30 1}
|

TN OM OGO 0.
LMNTNNNTOTS
LAt S T TS L R

LEX22

LEX23

315



EQU PSEUDO OP

LABEL FLAG

[ o] L)
Ol

EQU
N OPERAND

DRESS
LED CODE

WIXZW ZUW Nk~
WD O ke
W O a2
U Z N

oz Dzuzx
L~ OZ X
-l OO L
WZZ =
sl =z W
< S I

Tl TH TR T4 &)
<cOMOuW AL
OulaIO IO
ZoY A AL

BAD DATA FOLLOWS OPERAND

I h
WO « —

HONHIO OO ot
N ANHMXYZHOT XY
LU D0 < <L W > O b <LK W DC
O ) S IO ON

Mmoo

CNEONIVNTI OO NS T

MM

v
(&) 78]
[ [on]
- o
o o
[ [w]
Ll wi
<T ¥ - X
(s} 78] P 2 T & ]
> Wwm| £ O
[T -4 [&] W
o P el 0 @
- L p=| N
=z (%] | < e«
o (o] o -
o] o o Z «a
N oz - 0O
-t td {aad onl
no [as] " u.
o=z wZnn o
o< - Donw
(o4 7] ~luy o
| gad *¥] > <Sp-a Z
o ot >apo D
<O wopa O
- o OoKt m
=z z Zd Z
Z < < 4
= o Xrpyer W
- Lt WnNor- O
wz a Ol O
Duw o O
171
T L]
>
a. -
o o 10 X ket <
Zh- W e B S o B N
<O KO (N I=IC) <X
XZ 0O X (NXOLO<Te—iOwd
] 0O AOEd>>NE>_)
[a g H 'S i

Ol <t O@MA Camoan
O ONEOONT Ot QT
W Q0TS Jnnans

0
5

316



READ IN OPERAND

ABS PSEUDO OP

7]

n

[TEITR}

(LYo d

Z0

b0

- Za

Ul e

M i~ NI

LWHN

SO Z Ut

<OXOD
OO0

- L all

WZoult>

m=LJ0 W

LU Z DM

REITE] & Ye 4

O Ol b

OZWZIw

ZDOON

UNDEFINED OPERAND

~ STORE DATA

Lo B oo I
OV X »
M OOV
DX O Z O
LI O~ =

L —

ded QOO AN
M !

oo mamaanma
1T TNOVONTNE

T ILTI SN

e
e
>
-0

OPNUM

<TI0
JONIO
OetN™ )

LEX29

STORE DATA VALUE IN BUFFER

CHECK RANGE OF NUMERIC

(A ol
(102470 b 20
NI

REQUEST USER ENTRY

317



DEF PSEUDO OP
¥ THE FORMAT FOR THE DEF INSTRUCTION ISt

¥ (LABEL) DEF LABEL(

* A % ¥

*

s 1)

LY

(=]
T ot
U O D=
BIr O <T (D
oxr Ll
W o
b ul
O LI
ouw Z2Z
bade e d ST
OO
TOWDw
oT
T LI O b
Zim
Z-NDY
DO
ju s} [T
—Ouww
oz N
om =Y
DOl
=0T
O ZUWi
—Z o
O W
b= ed
(N <t et
W=z mes
Yy <<
(72 Ty
Y~ O
LITZLWIN
Ix<aXI
[t madt Al
o LUl
orxaoT
L OOk~
o i
(72N Vo] code
[ an IR os1 70}
eI Z ()
OZ Uit
Z20x n
L] jun ]
[af el B ]
WoJouw
0.DJZD
O X<t .
[l o A &,
WNGILL 4T
TZ00..)
-Z0OX 0

* ¥ % XN % % %

REQUEST TO DEFINE

A
NEXT ENTRY IS PRESENTED.

DEFINITION

LASEL ON THE

As PROGRAM

E
D0 SO WILL RESULT IN A MEANINGLESS ADDRESS

EDIT OPERATION THE INSTRUCTION WILL NOT BE

UNDEFINED OPERANDS
RM
IN
0
N

D\RETF
SWD T
DPDTTG

|

=>=0
Z<I0D
wWx o

A EDITS INVOLVE SHIFTING OF DATA 1O MAKE SPACE FOR

L
N

GAP LEF

A
SHIFTING WILL ALTER

OR TO FILL

D
5ER
C

A
INSERTION
SUCH CASES

T

ZZ
UAI

_

¥¥¥¥4¥44f¥;¥¥¢44T444t4&4¥4¥

318



DEF PSEUDOC OP

«15
RSS
JMP_LXR16

LEX35 CPA

*
»

319

(=]
<t
79
(a4
e |
o w
zZ o
<
¥
[ 4 D.
T n o]
O Z
—-ZZ U N
- VOO < IO
() Wit IO
Y Mb~i- o b
) <tet W «L 0o
w wZzz - il Ll
<L 4 (&I O e Z
- LTEE < O W
W Oy (s 4 YOtk U
om uil <L P~ bt >
<L de r o [} 70 TRRR ¥ B o |
- < © W ZNd ‘
. (LY qm o’ o WO 3
O WO O omuy W
< Ll X QN =OE0 2 Wn
W JXe KW ZwW Wo>-<r <OWw
Y HO> W2 > NN IZD>

ﬁRl
NOoOME O -HOND M M
o

COXEWO  UIX OOV WM

deddb IO TGLI IO T Y. R
! -

I MMO O LN OO N T OO <TO D

CONENZANENTANT -QUNTENEZQ

OaAm"™0 MO IV




LDA B,T
) JMpP LEX3S
LEX37 LDB EDTFG UNDEFINED LASEL NOT PERMITTED
S78_ ON AN EDIT OPERATION
Jip LXR1S
ccB
STB UNDEF
LDA ZDATA NEXT LOCATION IN DATA AREA
LEX38 JSB IDIRT MASK ON INDIRECT BIT IF NECESSARY
JSB STOAT STORE DATA IN BUFFER
Y37 UNDEF UNDTFINED LABEL .
—— P LEX, I
JsB NWLR, T
LDA M8
LD LXMS?
JS8 WRITE,I
LDA M6
(0B LAB2
o JS8 WRITE,I PRINT LABEL NAME
LDA 14
LDB LXMS3
JSB WRITE,I PROMPT TO DEFINE LABEL
JMP LEX,T

0cg



3
LXMS2

DEF *#1
ASC 44 DEFINE

¥
- LXMS3

®
®

: LEXI
LXR1

DEF *+1
ASC 7, ON NEXT ENTRY
CAL ERROR MESSAGES

LDA .26
LOB *+2

JMP ERCAL

DEF *#1
ASC 13, FIRST CHARACTER NOT FOUND

+20
42

31

LDA
LD8
JUMP ERCAL
OEF
ASC 1D0,DO0UBLY DEFINED LABEL

XA



LXR5 LDA .22
LDB *4#2
" JMP FRCAL
DEF *#1
. ASC 11, INSTRUCTION NOT FOQUND
X
LXR6 LDA .16
LDB *42
. JMP ERCAL
. DEF ERRSG NO OPERAND FOUND
-3
LXRT LDA .24
LDB *+2
. JMP ERCAL
[ | < SR o |
. ASC 412.8AD DATA FOLLOWS OP CODE
»
LXR8 LDA .26
LDB %2
JMP ERCAL

T DER ¥RL

ASC 13,BAD DATA IN OPERAND FIELD

cce



[ 9% oo i
4wl
polesh g

e
(i)
“r|

R8 UNDEFINED LABEL IN OPERAND

[l
e o v
pelseshal

=)
-

ERRY4 ILLEGAL OPERAND TERMINATICN

2O L
e gw [w)
oM vwr

wvim

16; ILLEGAL INSTRUCTION DURING EDIT

orer
X000
TR>

226
¥42
ERCAL

ERR3 OPERAND VALUE CUT OF RANGE

PN ¥4
*32
ERCAL

®44
16, NC LASEL PRECEDES EQU PSEUDO OP.

€C¢



g Lw )

o2h
X442

ERCAL

+
B K™

wim
OM oW

*41
12, ADDRESS MUST BE POSITIVE

22
*43
BPLN PRINT ERROR MESSAGE

xerre
noco

ﬁ
—~“Bo>

e

>

A

>

~
™ =0
X000 wvim
W O

T 338 HALT, PROGRAM ERROR

*+1

11, INSTRUCTICN NOT FOUND
o2l

¥+2

FRCAL

o]
m
=

*
LXR18 LDA
LD3
JMP
*

TDEF 4T

®

x ‘
LXR19

ERRY OPERAND IS UNDEFINED

50
*32
ERCAL

25, UNDEFINED LABEL NOT PERMITTED WITH OEF DURING EDIT

« 40
*32
ERCAL

*¥71

20,0PERAND VALUE MUST BE GREATER THAN ZERQD .

yce



CHECK RANGE OF OPERAND.VALUE{
ENTER (A) YALUE IN QPERA

(3) UPPER BOUND OF OPFRKND VALUE

ARk Mk x KK

i
xu |
|
|
|

ANGE NOP
STA OPNUM CHANNEL NUMBER/NUMBER OF SHIFTS
5SA POSITIVE
ng LXR13 NO, VALUE OUT OF RANGE
SSASRSS TO00 LARGE
JMP LXR13 YES, VALUE OUT OF RANGE
LDA ASMBY
IOR OPNUM MASK IN OPERAND
STA ASMBY RESTORE
JS8 TRMCK
JMP RANGE,I RETURN VALID TERMINATION

~ ISZ RANGE o
JMP RANGE, T

: STORE DATA IN SPECIAL STORE BUFFER DURING LEXICAL SCAN
: ENTER (A) DATA ITEM TO STORED IN BUFFER

%

STDAT NOP :
§ZQ‘DATPT,I STORE DBATA IN BUFFER
L
ISZ DATPT ADVANCE POINTER
ISZ LENTH COUNT LENGTH
ISZ LNTH2 DATA BUFFER OVERFLOHW
JMP STDAT,I NO

- LDA .32
LDB *&2

. JMP ERCAL
DEF *+1
ASC 16,DATA INPUT EXCEEDS IMPOSED LIMIT

q¢C¢g



326

b~ [+ 14
D 4]
o [T
n= 4 TH 1%
] ] wo %3]
z 1id . )
-4 o o Le 24
w -t o] D~ (o]
e} - s TURS. (243w o -
=T =z = o o <r [
. Wik 1 ¥ o cZ W
> N Yu Z b bt o7 (=]
(=] (e 2(- W TY I TU  VEy Ww W
ui wz o Lu o W o<
z Ok O O = {e] W ) <
[ < Z OWDm < x oo T V1N o 4
W S5 b TN - 4 TW o s Ly Lx [es] b b
tai L O W, > o — e
© o o> [} z Mz
= N woys o o nz a1
o} Nk W <Ik4 [SEIN e 477] I ~NZY
MDY > | T O
(o d NOZ Dk - m x
o Ml DT W (@] W L =Zes
U. [7a1 % P | oD Y Zn o34
er i e R SR el O O Y]
[T D) D) () Z Db~ - <N
poo I QXS] X Ol i 1 LisxY
«d blex Z D<) = O i | EX VR |
(=4 N ain=> Z ool [+ 4 C?\F.
- o =
S |
> - o
v _ T . w bt
< (TR - ) W . [+ % 2 L 4TS e
o NEZOCOD>T = o b= NOZD>T (X0 »
© NZOOWLOW O — Z ¥OO0wW UM.J
0. MXEODIDID > Z m OOZD MXx<
W g N (N O m MEynzm SZ.Au>
L 0 ORMOM Ml O 0. [aafesTaal & Joruales]sMal
Obe NI OOl = T Z (AR Oh= {33
b ZUTY AN O Y MY ANANONMmO™
> [= 1 jan ]
O. x - =z
4 oD THTI
4 - - s 4+ 4
=4 ‘ >
%% % N %% Tn * % AR




PRINT PROMPT TQ INPUT A VALUE FOR UNDEFINED LABEL

XNTY NOP
JSB NWLN,I  OUTPUT CR-LF
LD8 LAB2
LDA M6
JSB WRITE,I PRINT LABEL
LDA .43
£58 LXMS1
JSB WRITE,I
. JMPLXNTY ST
* N
LXMS1 DEF *21
ASC 20, IS UNDEFINED TYPE IN A TEMPORARY VALUE

Lce



EXAMINE OPERAND FOR DATA DEFINITION INSTRUCTIONS

¥ READ IN AND

»*
2
%

328

[ <¢

[l b~ 1

L 7o]SH}

zZ )

it B «C

e o Y baj

Lien ™ e -

17, Z D W e

Zul - D S ool o ] ™

Do W o >4 < [Z=
L 0 o L 4 [ e

(1=} <L P L 7]
Wt - = o0 O W
om o = w oo
i T o =z t =z Pu.
il zZ 761751 -
" lmz S R 111 B TR A}V
(el I w o W e
Zlu W | oo o cow
< W 0 0 Z =X
O C 4 A< DO
wiz
O <t 4
oW - [

_Eau (= -~ i ~
o< et N O v R eV
Zi0.d QO O OND O LUOOL

KINE KOY onmemome )
L (S¥1ag] G0N RKILO ALl
bl o OO Jdd Jed )
aloa. ~ -
A.0MOMG. MO MMTO TR MNNA
z OVNONTNE OINSINENNWS
M Z™Y ek [N DA TN i ™D
- w i
wl © &
[’ fa ! fea]
< <

* bk % % %t 1




CHECK FOR OVERFLOW IN DATA TASLE

DX R xx+h

ATFL NOP

LDA 7DATA NEXT FREE DATA AREA
vl ')
ADA YDATA  UPPER SOQUND OF DATA AREA
SSA,RSS OVERFLOW
e’ DTEL NO
LDA .30
LDR *%+2

. JMP TBLOV TABLE OVERFLOW
DEF *+

. ASC 15,0VERFLOW IN PROGRAM DATA TABLE

* ,

NTFL1 ADA M1D

7 3SA,RSS DATA TABLE NEAR DJVERFLOW
Jup  DATFL, T NO
JSB NWLN, I~ NEW LINE
LDA .40
£08 *+3 PRINT WARNING MESSAGE
JSB WRITE,

. JMP DATFL,T

B DEF *+1

RS0 27, DATA TABLE NEARLY FULL, BEGIN EXECUTION ——

62¢



SCAN

SUBROUTINE CLEAR TO INITIALIZE VARIABLES USED IN THE LEXICAL

CLEAR LABEL BUFFERS

LSV o1 oY)

+ 4+
e Ll S1aVI V1Y
ol fed o
[safsaslanteplentes]
<L <L <L <L <L
- od od d d ot

[ aWaataslsalonlsalsn]as]
O B e o o o e
Z N NI
o

=1
RS
-
o]

ASSEMBLED INSTRUCTION

UMBER

A
G
5
N
S
F

(<
Z o e e (2 LA
Q. HAO<TU
[ genlibi] =
W e/ Xel a0
P VRY L ad AN SN
Linounmew)
MNZZIAZ
YL o bl o 20

> (DT
[anl TR Mg -G TH
TEXUNIA0O
NNOZWOME
Lo s T ol

4D I

= 3 VN s | o]
DE4Z0O
Z2o0. 0.1
EZOOMN

P

L
TODK
b T e
ZE <
wze
4EZ00

DOMOMMNMOE DM MO
O T N
AN N NBINN DI LA N




»

o o

* SYMBOL TABLE LOOKUP

* ENTER (3) = ADDRESS OF LASEL

* RETURN (A) > 0 ADDRESS OF LABEL IN PROGRAM

* (A) = 0 LA3EL DOESNGT EXIST

: (A) < 0 UNDEFINED LAREL

M (8) SYMBOL TASLE ADDRESS OF LABEL

%

CORJP NOP
JSB FIND FIND LABLE IN SYMBCL TABLE
S7A,RSS LABEL EXISTS
JMP LOKUP,T NGO, LABEL NOT IN TABLE
ADB .2 ved, GET INFC ON LABEL
LCA 8,7
%hg,sﬁa'
{DA 7y T ADDRESS IN ASSEMBLED CODE
Se7,R3S UNDEFINED REFERENGE
GMALINA YES
ADB M3 RESTORE LABEL ADDRESS
JMP LOKUP,T

TEE



L K

*B'ﬂ‘l

FIND LABEL IN SYM30L TABLE

"THE SYMB0L iKBEE HAS BEEN TMPLEMENTED TO HULD NO MORE
THAN 125 LABELS. A ATTEMPY TO INTRODUCE MORE THAN
125 WILL CAUSE TH SSEM%LE TC HALY WITH THE USER S
PROGRAM LCS3T

EAGH SYM3OL TABLE ENTRY IS SIX WORDS IN LENGTH

ENTER (3) ADDRESS OF LASBEL BUFFER

RETURN (B) SYMBO0L TABLE ADDRESS OF LABEL
(A) = 9 LABEL NOT IN TABLE

*

'3

%

'3

*

: HWORD 1 FIRST TWO CHARACTERS OF LABEL

* WORD 2 THIRD AND FOURTH CHARACTER IN LABEL

* WORD 3 £ITS 8- 15 LAST CHARACTER

¥ BIT 0 0 UNDEFINED LA3EL

: 1 DEFINFD LABEL

®

¥WORD L AND 5 HAVE DIFFERENT USES IF THE LABSEL IS5 OR
: IS NOT DEFINED

* UNDEFINED WORD & ADDRESS 7O LAST DIRECT FORWARD REF
: WORD 5 ADORESS TO LAST INDIRECT FORWARD REF
* DEFINED WORD & LA3EL ADDRESS IN ASSEMBLED CODE

* WORD 5 LABEL ADDRESS IN SCB

* WORD 6 LINK TQ SPECIAL SYMEOL TABLE FOR COMPOUND
: OPERANDS

'Y

;')

%

¥

x

x

Zee



|
[eal
) -
¥
[s0] = od
=4 > tl
wd 2] a0
<t
(TR L -
(o] ()
(T8
%] x o
73] (&
W (4.4 wn
. =% [t
[} 48] =
[an] [ %] wd
< b
wd d
= (] w—d
L] [a' Lt
<T |
- z x
(1} o po
(4’ (& %]
—
"
MmN O M ey
oy Lo 0 e
o0 =X XOosT
O EuwMmWnadoiuibg
Tl b X Q< b
-
A OOMINMl<I NN <=L
o b fb=r
ZSNOQONN A O LI

FINDYL

-t
]

]

O oW
2N
Lic b et
 aad PSR ]

3ASE ADDRESS OF SYMBOL TABLE

1
.

[ad> 24 2]
[Z1VERE

< aXp-

NOA>NMNMOINCIQ,
b= = AP N b OO e OIN ST
OO QSN HN T

FINDZ

EMPTY
SOMETHING IN SYMBOL TABLE

CELL

LABEL
NO,

FINDB

333



¥
: EITHER LABEL NOT

IN TABLE OR LOCATION FREE TO STORE LABEL

JMP FIND,I

FINDL ADB .6
LDA LMTFG
S78,2SS
%P’ FIfns
LDA TEMP3
CHA, INA
Ana’ A
SSA,RSS TABLE OVERFLOW
aMp’ FNDER YES
JSETNDT
JMP FIND2

FIND5 LDA YSTBL UPPR BND OF SYM TBL
CMA, TNA
ADA’ B
SSA TABLE BOUND EXCEEDED
JHP *43 NO _

] ADB M750 Y£S, SEARCH BEGINNING OF TABLE
B %ﬁgis*“——sea&cH*UTHER“SIUE‘UF’TABLE
N

JNP FIND2

FIND6 4S8 FNDA
STB TEMPY RETATN SYM TBL ADDR
Lol
JNB %4y

FIND7 CCE
NG KOVANCE ADORESSES
$S7 ADDR3
LDA B,I |
CPA ADDR3,I MATGCH

yEe


http:SZA,.R.SS

335

P
(¥
[as]
7] <
- Z -
-t 7]
[+4] [a VY | W
I -4 o
L] [ B o b2d
[ %] < D = wn
[73) o KX e o n
L I} -l prad —d L
s 0 © o w . (54
[an] o8 g D o [a]
[én] D W o O T8 (]
L4 = e > <I
V58 W >l Q wd
(an} W -~ > Wz Lt Lt
(& O < W A 53] m o
z T~ -~ AN -t Lo o
< Y In ol (&) o0 ) e
(7] e [l i N TR ] <I wn
wo [ ] areily) L) W Lt (¥ Ll
> Z I TEUV o OO [»] a4
-t
(o] ”n
- m 1%5)
- [oa -4 wi 1
o N ™M M 0N et > bl [s:4 PV
O 0w o onono (@) rS o Y 0 vt
NZNZ QeAeiDINZETZETZ [aV[a S - (] oo
A 0 s QN ) L CUsb O e vt L no=
L T 4T ABCARFTF7F % b= B o] <Teliy,
- » [ ] !
OO NLONIO<CIAMADE ma b 0> Oan
TFWETOOZLOIOIOE ooy W 9] o=
TIATY A T OO I -ded™ [T bt Z 4N
| R |
© o & —
Q [T w il
i jau] [« [on]
i : =z Pt
(Y8 TR N I

* ¥¥¥4#F_




3
'3

MNEMONIC IN TABLE
* RETRIEVE INSTRUCTION NUMBER AND INSTRUCTION SXELETON

LOOK UuP

*
*

[salm]

Ao
oz®

HKed oD IZ )

(]
Z oW
joo BN &}
o =
0w u!
w
Y o
[TE RN TS
X
oz PO
- O
3 =
o] -
= zZ w p
= w o m
-] -2 VI
m !
0 -t N
1! o O
o T oW >
h o X H
o [ ]
S ﬂ
73]
OO0 OK
MOETM © |
oYy MXeaooo
LXZX M
DN |

_ Lol

D OMMA. <TT =g N

T OO I00
P OO Om
|

:

4
_ﬂ

X
(&)
o
<
=
t
[Za] -
(s m
] =4
- [
[&]
<Y =z
o ot d
< e«
xI -
[ (03274
<L
[ o
= Q=
- b
N N
| (@173
w =
o Uled
bt O Z T
[TED e o
Lp]
-2 ¢
O WO
nZZ Z2ZZ
MOIE ZTHHE

L
< <T QO MNO ST <
OO

=

LOWER BOUND
SA

SET NEW UPPER BOUND

SET NEW

~  BACK UP_FOR_SEVER
BEGIN WITH THE

T
1 1
N v 0w
TomEmms
LI 7 LR CZ U] ek
ZXOZTOR I -
MLUMULMNB

5

| !
(=82 NeokialsMaaloafoeNsaloy

NN <IN DT

MNEM2
T MNEMT



337

brd
o
! (-
I
—d
%)
o d
o
[ada d
PRIV b
e e -4 (&)
COX 7! w -
< <X ) 04 o W b
W OO e o 5 e Pl (&}
T <T < Lan B TS o () m o)
TTX (o] r z -t (0%
0 ook o [
124 -4 z © %)
O ul oDl o o 1z b
0L ) b o - vy O £ .-
O [l 'S 118 - P I
bl SC L b (& T o
=% W00 2 Z wl
) =X Z O o — wd
| Q=T Z o - >~ W o0
oDy - p 5 W ol x
o < WDT zz 2= m ﬂ Lt
= () o O lad et bt - = w
- WON o =4 Teril ) n
NN OOLOD o ales 20 1! =z <t
WL TWOCL X o (FE Y] gL % >
X Z O t L] O n o -t
i W =
_ W
12 = i
[7] [ e ] -
™ Mt & O B w2 o ed
: 0. +TOox o (o ~ ~ L me ex! -
OMY | FeECUTOLAOHO WOMMA C SORSL Z ONOH -
Z1oww ®RIZZWZZM oZ ZC aeZo Z O 02 Q Mea+in
N#.MT_BCMMTMMﬂQM MnQBTM [ A.QTM bt .4541
oy i Lo I
APBAAQADAPZPPFAASPBADKAAAAABA&P O <MW
AIOORZOZOTONTINCANTEOOZFONIOFROORE D o0slin
O™ LACJIJJﬁLCRJALASASCCSALSJ o LTI
- |
2w
=z
L)
4 =z b4
j W % I
I
!
| | |




INPUT STRING

-

D TO TH:

.

—
=~
o

ORG 50008
CONSTANT

INPUT A
RETURM P+1 VALID DATA IN (A) AND (B}

THE TERMINATOR WILL 3E RETURN

338

HARAGCTER

N
N

C
G
ANT

2 b
G- NN
> 2
NLI>O
Zoe
[ -4
[a g0 0, o
OO

NON BLANK CHARACTER

DATA FOUND
SET SIGN POSITIVE
POSITIVE SIGN
NEGATIVE SIGN

XT

e Ok b=
WOLOWWIoOW
>

=Z Za=Z X N

=it

Lo
N O O e
D nzuasn!
ZNZO T 2
OFHNORRIDDO
LOZrOontzZZo

| LS

A MM A KOOMOA MmO,
OVE I Z 0 SO NTINE
ZD DI QVRHOMIODINTITTT

NS1

B

M
SIGN
LUS

CONS
CONS1
CONS2




FETCH NUMBER AND CONVERT T0O BINARY

P
¥
3
¥
: RETURN P+#+1 VALID DATA RETURNED IN (A4) AND (B)
*
N

UMCK

NOP
CLB
ST EXP
STB MANT1 ZERQ ALL COMPONENTS OF NUMBER
STB MANT2
ST3 _EXPON
?;g TEHUPS SET NUMBER FLAS FALSE
STB DBPFLG SET DECIMAL POINT FLAG FALSE
STE EFLG SET EXPONENT FLAG FALSE

NUMC1 CPA PRIOD DECIMAL POINT
ISZ DPFLG YES, SET FLAG TRUE
JHP NUME?2 NG
CLA ) _ INITIALIZE PCST OECIMAL DIGIT

T TTOSTATEXPONT T OIGIT COUNTER TU ZERD

JMP NUMC3+1 FETCH A CHARACTER

NUMC2 JSB DECHK
JMF NUMC7 ‘
ISZ EXPON YES COUNT DIGIT
ALF,ALF
ALF,RAR LEFT JUSTIFY DIGIT AND SAVE IV
STA TEMPL
JSTTMEYIO MULTIPLY PREVIOUS NUMGER 3Y 1U
LDOB EXP
5728 ZERD EXPONENT
JMP NUMCL NO
LOA 4 YES SET EXPONENT Y0 4
STA EXP
LDA TEMPY LOAD NUM3ER

6€€


http:EXPONF.NT

[,

[

L 34

> Lt

<< m

n 24

s [+

™) - L
(L] =z m 0.
< < b = e
ol o pao )
(TR n =z o)
(' < -
we - %4 L. -
i © = o vl :
Y n. = [
ey - o - o
zZs =z w r aty v W
(&) [F8] zZ O <T rz bl [an)
we o = o LJ wa o o =z
Tro w o - 'S - >
- — O b £z ZT - o
o o X o <0 L [ JEE & T TH
it STy n > — W
N o4 o Do TOTE = i -
- SO 8 D o © W= © —
D el = = o Za D . W
<=z S ) — LnHL, Mz - 4
b Q. (= W oo o L. . o
o oS v W W lzino. o
(1] w O Ol > O WX T W o
zZn  Z O la}~d- = o O >W v N O
Y Nl St T N P ™ | Fm
OO 0o 0.0 e b €D © O an
G e 20X ¥y Ty =z Z Y A T TOEXE
OO Wiy WDl = e D X Da D il
ZOZZE b -Z X TOZW W ZW OZ| ke

"~ "
OONOOALOAONIDONOLIOONIINALWONG A WA MM
wdNNN T EOFT O AN O N ZOOIT AU OE _ IO 0.
O IO INOHTHOL O IO ZD0OLD0OMO

e

]

_W

NUMC 3
NUMC 4
NUMCS
NUMCH




341

[}
-
b >
= (o) m
18} o
L z Cowd -
o O N 4
wt «r o ]
[ a » bom t
«r Lot > [}
oy e z g
-4 (€] O b4 [+ 4
o Ll (= oY b= o O b
o} = |72} Wz on el [ )
a o NI (a5 4 S o ol
z Q. [ 7] = [FRRTE] o B U] 0 —Z
- > po] e ~N -t [}
W =z on | VA o e 0.
o =t te > (LTS -l ZX
Sy O = b g O K G e [« N VST R ]
fas} 2z e h %4 - N Z 4
- W - oe 0o -~ (@] - il
o’ - = &} Wl =i ~ O n 4 o>
QUILIG o =~0 TLLO W OoOu D o<
Z>>Z Z OZ ON>E.UZ U1 Zp» E awnm
L]
[
M N O ONIMIY Y I Mot oMmiovYom M hote'd
Y OO CD OO T O Ge-XOOAO-Iwn o [a N &
= LMTMUMN?%MWT QO T OEESITe~RTOXTNIT g
D DWW DD Lbd D WODWIDWW DI 2l witsd

NEEN(KPMWPNTT ©c 7Nh7NTGNDJjBT s8] L 2]

PAZPB)QPAAPAA?SBSPAAPPAPABPBPESBSQAB
TOAMNEZVNITA TR QE b b NN NI IO T T S NI NI HD I
DDOETIHMO OOV TRE™S Y DHIOCTIMODIN IO IO LI
o <
[&)
=
o
zZ

NUMCO9.

T NUNMT



342

)
[as)
-
24
[an] !
=z L
<% L
o
o ~ ez
pa et <7
w = ~ o
zZ. L (=) heve
- o - o
W= a W o o e (24
zZ > > ] = ©
OW W Lt ﬂ w o - - o
-l . -~ =} <%
O W = b W z - = [+'4 z
oal = zZ0zZ Dow Lt 1w —
- O>| L O o 0 e - o o0 3 -
Mu ol VS /R | %RN ﬁ. [S> J EB bl uMu =<
1o @ o o} o et [TER
L] Ll OO K o Z Y < Ll A Z | ol
o] Z>>0 ~OX oW W o = = Ll
w0 =T W E W o - O M Zo
o =t bl v o T Lk &) vo
o O o O o i pmbet SO < D=
bt 0. v Clil s 0 DZ WV-dZ NE0Ur - c. k=0
o o HXWOWC WrWwWOOw —HOWLIDHOWIIO WO Litsd
Ll WQAZ A N>ZZ> Ol Z> MFNYFPYN% o o
L3
s8] -t
. ’ ~ )
=Y My BVZ F M ZoZ FZOZ 0 ] U NN
~T o/00 AO H w OO —HOAEO 2 s O00.Ne0
TO TEIEe WOLWOWE| Taa >0 NTA>0NZTZOS o <ISYY ST
DWW Dz AXND DZXITX ¢ DL 1 I=(—D Z GwOouwD
ZO Zed oWz NIEDE&NTME#M#SN i .TTBTN

i ™ La) »
PBSP??ASAZAAPAPAABZPPKBZPABZPABABABBAP
TNNEQNTN JWWONIZNE S =NNE TN SO0ONET 7 Nt (NOE
Y IO K OHIN SN DONIFITIAD DT I DO SN I

135

NUM10
NUML2
NUM14
NUML5




343

- - - o -~

A OUC DICLONWE ST LI X1
ONJIEOUVNZ U JOICNE QX -0
DO NHONONKNIOaI I

Dot
<O
X
Q.

.

o
©
(o) H o
V8] o]
[+ -~
I e m ot o
| w - —
o o L4
w O -~ N %)
[or] [ 7
b |~ O o~ 0
D " © <t z
(o fom, g, 3 ]
[ A - Z Mcld LS [s}
pzd oY YT M -l [
- L > wo n omn
o i o n o
o W = O™ = o
Zh- oo o Zer M -i
U] TIL ZWn Lw O o
=z D0 TR
[ ﬂTS Zwz 0T T .
foe Z D IO W -r
=< Ly OrHi. - - << lud
o i A e s X (m
-4 WOO e Y & !
. 000N &N Winll © (D
X WIDOOu Pui> TOLWuO
~ FLIN>ZO> DO»O TNYST
(8]
o
¢ [ 7p1 0] %] n
[V I [ 73] . |
(=] N el < ©
bad T e ~ i
=+ Dfe<t et =X L <«
ONQ ) = A M
i Z ey i o 1 =
~ ,
]
-
«1
=
o
(o
=

PALKL

* %k % %



http:p-A-CT\Nl'.rP

OF MANTISSA

NEZ
blex 2
[ =S )
24 et
o -0
wizzxo.
TOWX
OO0 Zws
OO
O~
O D
Ol
Wid =
[ Y
wieoe’
d 22 e (AN
el
ot O >

2556

al
> ot
il

=l X

Z -l

T
LXPGNLN!’ FOS].I.LUN SIGN
MBINE WITH
HIGH

Z !

1t (&

z Lt

© 4
o X Zo
O O = L
et (o} tul
L L. - Y
= Y .. w
LWz i v 4 -
>uw o W ﬁ et
oz > 3 =21y

w DY o %)
- N L
D0 =0 b O b <l
—Z ZM Zon OZN>
-4 S TY iy P T UI
ol =z Zlpe o
I « C Q - b

(%] D,S PS? NIZWD

CHUIO MO X WD < Q=)

2 e Z e ) e T-TZ
[} [ o] [ =]
QOO0 e N =iS
(=} M,..bSMuU ~ -l
N DNWDMDN M o2
m NM:RNﬂ» a2 2

O < IO T QT DT LN
OZ NI ONT a2 O00n

T DVERFLOW

bt =t

D.gp.of
P2 o Wie i 9

TN I CLLN b ™I LA ™I O €T <X IO TII™™

|
|
|

344



~~
t
i -
=z
Q 7]
- <L Z
=z wno
Z 2 wma.
) (o4 43¢
Z peo ] b Lad 8]
(o] - [T ot =z
I tJ [SX] <
e o | [ 7] =l
> e £ (ad
& o] -~ ookl WO
Lt Z  nm OO ML
> D B 21 I T
(w] ts) Lo Ll L B Ta e
4 L G o R T A = T )
. Wi o th TZ mMEULET TO
- N w3 [72 B 7515 § xoe o
T us p =-0Oa Ol
n o -d = e~ INZZ Zh-
§ o (& Z < WZTrX puse ]
[ X Hﬂu D oo
. . o] pod =) -7
o TR Y] o TR Y e | o
> b w [TV T HFT (D
3t} e [ oY Zex s o W
- D O D OV et e
o w o =z - OO0 XLIOuW TO
prd v O (@] ¥ O khZr NZ
<
[ [l n
o LS !
o o M O 24 s I oV} —t w~d et
- -« ~t B e X T T = -
< > DN D«PNNRYS Iy WIZd<a0.0.Z 0
L AV OXIAO0.. VOO <0 ZXXI O
L T Iz ZUWETZEZUW NZNZ O IHWEZ
N~ - i - N - o~ -~
-t O X X T <L el (N QLT L 02 L NILT T NN <UD T ol T T <Lt 0
-t Ok = (NI T b b O LT T Y Y O S D= T
<t AN N KAV NND N ™ O LS A ™ WL I ORI ™
b-ad i
(¢4 ed * - W m
[ " X X ,
- ! o OO0 i
* %% %k [ L= Z=Z
| |

345



BY 10

MULTIPLY UNPACKED NUMBER

* % % % %

MANTISSA

LOAD MANTISSA

RETURN ON ZERO
MULTIPLY BY B8
DIVIDE BY &
SLE
TIS

i~

?

- © o
- vt -
ZU>=0 0Z
<L LA DX D
THITUW X

Lol
el g e N anfapfaates)
KON SO e D)
NN

o)

e
[
o
-2

DB TO PRODUCE 1.25 %

A
SA

DoUs
MAN

o
b WO

" Lol o)
ol mn et
O A Ou O
O LI LI« (AbaeT

«d
(-
=z
<t
=
Lo

3
)
bed
L.
%
bl
—
>
=
=)
-
be
L)
~
4
o
&

pered

”

—tee

ey

Mina A, Z2Z5

N+ > <«<ifd

riw b TEx

| - - |

o WL

N IO b

SOWFZN N

D

346



3
¥

DE UNPACKED NUMBER 3Y 10

¥ DIVI

¥

x

DBYLO WORT MULTIPLY SY DOUBLE=LENGTH TENTH
SZAyRSS RETURN ON ZERO MANTISSA
JMP 0BY10,I
L08 M2
ADB EXp ADD EXPONENT OF TENTH TO MANTISSA EXPONENT
D '

_ LDA MANT?
GLE;ERA  JUSTIFY LOWER MANTISSA
JSB MPY MULTIPLY BY ONE TENTH
DEF TENTH
CLE,ELA SHIFT 3ACK
£L3,CLE
f04°8 ADD IN LOW ORDER MANTISSA

i ING TENTH*#2-16 AND ROUND TO i6 BITS

STH MANT?
LOA MANT{
JSB MPY DO SAME FOR HMIGH MANTISSA
DEF TENTH
CLE
ADA 3
é?% MANT?2 EFFECTIVELY SUM DOUSBLE LENGTH PRODUCTS
ING
SHP EXCHANGE (A) AND (B)
JSB NORML NORMALIZE RESULT
JNP 0BY1i0,1

LyeE



MULTIPLY INTEGER IN A

%% 2 % %

AND (E)

(4a)

OO
TUOWw
=z =
(] -
<L~
Ozl
L

ADDRESS OF MULTIPLIER IN MPY,I

SET -2 IN SIGN TEMP
p
v
E
v

(=4
=z
£ [}
-t ™ €
D D bef T 1}
NGO WNE
ZEXETTNOC
" "
O D oMUl m
OO0 E WD
ZWd 2 2 IOOW

-
Q.
=

Lt
>
ot
[ o
p~ <
oW
o Ll
=
o]
-
| SR
oD
I~ W
M w
M X
= Lo
=oow (2]
S8 ] o} [V
-2 | Ll
oo oo
P LD
0. N =0
> wd Z O
O Do
L WE ofa
N R% [ &}
r\” ! own
o~ a0
WO Wik
D Z N N
Dt el
~ 3 0O
(YO E
b« oY PV
T TE T -
”~
NN MO M o
> TBITo T LY o B
L3N A0 L

AND ADD UPON NON- ZERD BIT

SHIFT,TEST,

MPY1

AL RESULT .

Lyt ~<l

- [

Ot i
3 e U O >
wa Jaa
-EOTE

.

YES,COMPLEMENT RESULT

INA,SZA,RSS

-

MPYZ2

[l
”
Do
0.0,
b2

KIMOONO <IN MM ONO
FOMNEYNEETZ NS
LY U A" A T O™

348



349

o4

781474

=Lt

[&] 2

<<t
t 2 4TY
o ] VL~ 44 ~
wd [l o 8] <7
[ [« L= &) bl
> W ~uw o

- T o

— V) =Dk -
o =) bt ) z
b W ZErxo L]
Lo i =S 0 o~
L -~ [+ 4 zZ - Wi
Lt =X e d L] o
[} had o~ N D [8s]

. [s o RUWIINN R L Y g &) (o JERRVEIEY)
V5 2~ bl & R TH1 o oy
0 o~ T €4 (T (wie)

< ~ Lty e I
(oI 4 In TV & o uw
[ et iz <<t TTNno O bl

Z bt NN OI>Z O Yo
[ I &

! < b

- 0 e L]
O Wl W -~
[+ TJ el o} [FURTES VPRI TER.V4
& O o0 or Lt Ton T
L < O>N (WO M OO0
I @ N eI Ul A LUl
L =X b NI % » mBmuRSD

T oo : - ,

[TE R &) [«Wsslenlavlenlon]sManlanloaB 4 Nisaluuls B
= = O (AN NS O ST
- o ZNTIIEN I AP I
z WD
L I ) hv4
xX Z I
W ) o (&)
ud
* s

W% & % ¥




AND (B)

(A)

¥ SUBROUTINE TO DETERMINE REAL OR INTEGER
STORED 1IN

'S
* ENTER NUMBER

'S
'3

AND (8)

EGER IN (4)

AL IN (A)

RE
N

i

o+

P
p

a
o
zZ

X
(]
[+ 8
P

M % 3 b

ZERO

FLAG FOR

SAVE A REGISTER
D
A

Q.0

R
G
R
N
REAL NUM3ER

)
H REAL NUMBER

CONYERT TO INTEGER

4 it -

- o -~
' Y NN,
MO NLIS, dATS]

FTLZOFOE SO0 O

[TELa I TND
P IS

g <L
b 3 0. 2
NJAO™

L 3 Lick L Do t2, D= 0
s e b L o bt o e

kIO AP0 ONC
MECNITOANE
ed TV AT

TYPCL




INTEGERIZE FLOATING POINT NUMBER
ENTER NUMEBER IN_(A}) AND (8)

R  E L EE LR

FixX

RETURN

P+ri INTEGER IN (A}~

SAVE (&)

A
vl

-

N C
WXNOX
A
vt

-

IF EXP NEGATIVZ ERROR

COMPUTE SHIFT COUNT
IF EXP 15 OR MORE OVERFLOW

SEYT (E) = 0 IF (B) =0
SAVE SHIFT TOUNT IN (B)

IFX1

"Ny

-

>

D ViSO NZOXZ
-
L]

am Mmoo
Uik BX

L

G D UK - N O LUV L VIO L NZ
ZOIMmZTzmMIVNA=ZMZTNORVIE V=IO
©?im Iv“QbN"UNDg):mm‘UbDTJ‘DC-CDD‘U

CIFXYTT

ANY MORE SHIFTS
YES

IF NUMB LY © AND FRACT NOT O
BUMP RESULT :

SHIFT RIGHT AND TEST BIT LOSTY

*
'S
: UNPACX LOW WORD OF NUMBER
5

L O Z
ZOrRXQRXZO00

VAPV ORTP Y

WORD IN (B)
(4 = (5) ]

2 T EXPONENT IN 1A}
SUBTRALT OFF EXPONENT FROM
MANTISSA IN (B)

NEGATIVE EXPONENT
g%S; FILL IN LCZAJOING BITS

TSE




*
¥

* SUBROUTINE TWINT READS IN ONE OR TWO POSITIVE INTEGERS

%

it
IO
Wittt iag

WO ©
ZZ=ZX
O

c

N T
Qo

* RETURN P+1

o
o
7]
~
od
(@] W o (=4
- W fd
N [ 4TV T ™
(5] ] (Vi BT .
44 z b oo D =
] o (> (] o om
(S} - =4 e i
1] [ 4 Z O [ o)
b - 4 -l b et e
bad B 0% 0 o w o o
- W Yz &) [ TE I o Zo
OO0 b e Ul (1Y)
QW 0 MO O O
ST 0w Oz (&)
-z ZZ <RL - LIy Zex
Pl D N e B I ST A TY foqn'4
ud DXY < {0 Ibe (D o<1
N e o) ¥ oouwTu P
| e il Z OO < b~ Wi
O 00 o W 2z o
<T} <2 KO zZ
e IRV T 1.V S o v oo O
- o (N L e ODrS D
i QY TW!m b N O ot e
Z| W—IHCuWol I owiwiliul Tl
b GSCFCYNW CNYRSRW ~0
it _ - oo
- * | [
NI ANMANY S0 NOE W OO e b
1@01CNM AT ZNZNDNOZNZTZZZ
EFZETHE TMXT0O HYRYE LT HY bbb b
DDOFIDIEZIO DD ZTOZOMDEZIOIEZEI
ZZOZE0 ZZZO0 RO DOZ Ok
PAAFBABPASPGPBSPBPBBABPBZZZP

O e N~ NZC I TNTNUOE NS AN AN
ZASATIN =IO I LTI TN AT Y b b

<4

THIN
TWINZ

o
=

352



L
'

¥ SUBROUTINE GTNUM CALLED BY TWINT Y0 INPUT AN INTEGER
* RETURN P+1 POSITIVE INTEGER IN (A)

x

EGER

OR INT

REAL

¥ READ IN OCTAL INTEGER

*

(A) OCTAL INTEGER

* RETURN

ATA FOUND

INITIALIZE
. SET SIGN POSITIVE

NEXT NON BLANK CHARACTER
NC D

353



Z
LD
'
z 7]
Z W
(X, 2 ] 7}
(a2 = b
[72] = (]
N -t (5]
w D 4
o Z [an]
Pt bt ]
| B o/ wd
=t -] <t
I i L2 e
OwOL O (S]]
O 2Z > ZX OZ

N MMM
nzo ZTZOZCZ D;
D Z ) e LD s o o o

ATQOTHUVITNTOO -
O™ ™HATITITINL I

Lt

OCTN
0CTN2

CHECK FOR OVERFLOW
OVERFLOW

wnre
- o

NEW DIGIT

ADD

CHARACT

ACCEPT VALUE

GET

£R

NEXT

1,
iz

T0 BUFFER

N
i

[V R
BN et Z

TEMIIM IINEN I
SO0 Q0 MWD U

DVLNITO DD
pOMm\OSGODO MT“Q;NT% o OD\NQ;NS

APABPBBPRPE% ?nsD.LD. MO T ZD. ,dABnDAHDv

TCTNT ™

IN,I

L by
Z O
Txnu

DO NI O TN OO S
.LRJIJA@)JCJJJLLADCJ

354


http:cca,R.SS

SUBROUTINE OCYCK TO CHEGK FOR OCTAL DIGIT
EMTER CHARACTER IN (4}

RETURN P+1 CHARACTER IN _ (A)
P+2 GCTAL DIGIT IN

\._.'.!#:“?"‘!!’X'?-i“’“f!‘?‘f

JCTOK NCP
JSB SAVEE SAVE (E)}

,,,,, LbB D78
ADR AT CHARRCTER "IN (%)
SSE4 RSS CHARACTER 708 0OR GREATER
JMP *+5 YESs RETURN WITH CHARACTER
Egg e 8 NGOy ASCII 503 0OR EBREATER
JMP #4+3 ND
VDA B YES LGAD DIGIT INTO (X))

e ISZ DCTCK

JS3 RSTRE TRESTORE (E
JMP OCTCK,T

qG¢E



'S
3

DECIMAL TINTEGER OR OCTVAL INTEGER FOLLOWED BY A B

* INPUT

*

r‘R
j~
-

NGT A NUMB

* RETURN P+#1 F1I

(24
<
T Led =z
&) > w
i v
Ve - 2
Z0 iz Zh
IZ O Oz
4D Ok Z Y
WO N - L D
. ﬁt b -4 |32
b=d =z < I SRR TY
Ot k> AN oY
bl N S alR £ <xex
< N = O for T b
b () bt O N
> et 2212 3K 2NN ST | o1+ 4
Wo Wowol b Ok
[ Vel o 1V

ZzZ ST.YNV-

N wd Rl 2 sV 4\ -7 a4
0 ZINGD mZOoonom
LXMDY ZNTO-I0XE
b= D Z b d DN DU DD
ZZHNAZEYZNO0ZRZ

"

RROR FLAG

DECTMAL OVERFUOW

~ Q.
TE
D2oud
ZZ ey

[ -
et
%)
[
(]
[ o4
-l o
O < 4
e I o
[on BN &] [F¥)
[T A
prat ]
- Y WY
0 O
L. 00
] Lid
g N oLty
[~ ¢
(72 R ¥V B O
wo T o
>z O OZ

-

~ -~ i
QAOAOOTAIMOANCADA OROMOMDO M OMMOGN
ONE R0 O e (N THAT ) b b e (SO T L= WNHWN
N..J.JnuSCJCPJIJSJJJJCPwSSSAmDJDA N d LD b

R
NUMB1
NUMB?Z

a
=
D
z

")
0!

3
U_
Z

356



%]
twl
(&}
< &)
el z N
0. (] (1]
%] .
™ o L.
e -]
] [ e m
bt T «~
J— w -
=T L S b
=z s mo
- o - Y
[T i b O
Y &L b =] ad o~
T8} -z = bl S =
b T O = Zet  Zal
OO =T -l BRI
Lo [GINTH L 0 I e Ll
vl o I (a4 [anien] ] Q = KO N
O W L) =z T [ 20N A BN SRIVY 0.
bd e - 3 s ol ¥ O =0 WY
- T © et L Ll =0
TSI 727’4 a.wn Z ZZ wiD
oz (o T - | - ¥ MY -
b e T =l < & D DD I e
0 T -0 At b= (3 =3k e (DD
O Qul DT (OO Owild Liu Ll
LU Z e O D> V) D»2Z O MY Zd>
bt
~
WOV ™ N M OIF I A o s o
A IOMTM AN 0 Ol e MO NN fentasl
ITE ONRYFOY IEOTEMETONZES TE OINITINITO a¥xx
DD DLDWDMLID ADUW I DDUDDDL Dl DIDDODH ZDD

ZZ ZOZOQZTZNThey ZZOZZZ0 Zk ZTZZ

-~ | -

LZV HZZ

"~

TR MO CI0 M O N 55 0 U0 0 0L e (O O, T <L 0. <F (L [0 T (1 0T MO
OSSNSO M S NS O E0 NTONTOQOTNMOCNTnS

TTTNUMBYL

™Y ed B O™

(8]
oo
=
»
=

NUMB?

357



ERROR MESSAGES

b IR A IR
oy

=
A

1 222
42

NUMER

>0 G
oM uwo»

*4q
11,NO OPERAND DATA FOUND

>0 L
2OQ
OM W

wim

erere
XO0O
TR
*%
afe

ERR1 BAD DATA INPUT

(]
m
-

+18
3D
NUMER

41
J,ERROR IN EXPONENT

>0 e
vuim oW
>

oM

6
2
MER

[ ol o
20
VO

1
+
U

Z ke

8G¢



DEF *+1
. ASC 8,INTEGER OVERLFOW
»
NUMRE LDA .26
' LB *%2
. JHP NUMER
DEF *+1 |
. ASC 13,POSITIVE INTEGER EXPECTED
%
TTTNUMRY LDA L 2%
LDB *+2
. JMP NUMER
DEF *+1
. ASC 12,BAD DATA FOLLOWS INTEGER
®
T TNUMRE LDA .2
LOB *+2
. JMP NUMER
DEF %41
ASC 12,REAL NUMBER OUT OF RANGE

~—“—:”7’RIN1 ERROR MESLGALE AND Re ENTRY R:uUUESG
* DURING INITIALIZATION RETURN TO CALLING ROUTINE
: OTHERWISE RETURN TO SYSTEM OUONTROLLER
¥

NUMER

0

. G

ERyI JUMP INTO GREET ROUTINE
RLyI

65 ¢



360

t
n
b
[
o
lord
o
w
- pzd
ol o
18] -
x -
<
n [&]
< 3
(%
() o =
= &
=4 /
o m v o
d o T
o ﬂ o o L . o
o b o PR TR - L
- o u! L
Lt ' ul zZ o o] L.
[&h] o (S0} 2 §7d -
= b << m %) om
L ) o = b -
o , > W D o o= -4 <O
ul m wo =z O ZWw w b
T ~ wz TRTETLTS o - W
N - o - Oz ) < o =Zuw
o ENTY ZW ZDO0YRHWV D O
~ b= el <L O D = ¢ bt Ut
> -~ D b Y o R R TH T e Zd O Z U -
(ol w - ZO WomaTrniuz Ol - Z
o Do bt O ZODWnkH ol ! b
= ut ot e - OLi- o % wn o oy
t 0 e« o E e o~ i oDo
S oo > @ L O ) wln b Db & 0 b T
d f D Witk L L WO O L Wi o/l bl
00 W S e Kl D> Z = Z > nanz ey of
Tt ) 4 *
Wk &~ Ulw
e o ",
oD W oW O ¥e OV o N~ d O 0w
T P R e TO LWDOOWLD O ZE OL YO
TR S 23 T TZEXDKZ KUDLINKEE WV
wo ? ) > D0. DOMAI0H LNZHOMAD O
Zw + 0 ZO ZOFOLOE OMHMONOCZ ool
ol e MY ~ ) ! -~ e o
<t Y o 0O MO IO TV ODCNON MMAQ.
D4 m Tl COAEZTOASLT0NTOd-ONTONTNT
ol w I NJJCSSJJCJCRJCCSTSJLSJJJ
o =
my X wo S o ™
S0 r ro WO 12} Cv
<t [ qal oo (24 (a4
, n. 0. a o
Wod N %kt N % % e O o o




s}

[EN)
(] m
<t <Y
78] -t
o

[%]
Do - =
wd [T TN S

o o (5 =T

[T8lecbm] = G

b L 1D - M L

C b bt

> o o
[anTa 45 gNRITV) [ U S WY
Oyl O O U = m
(ol 0L S oI o [S IS ¢ el
T Lz U <2 ) (]

w o v un o - W
O Wil W o< O [

O Ny I Z <Y
{30 O O < Yoy o
OO dt LoD o =iyl ©

W ailu>edar 3 W i e of
O 0. = <L CC H4Lid a o Loww o
(PR 7 B o O T B O B o W < W
[ [ Yd ~ i No R TS| na -«
= &) (OGO o e T e w
LOWO MW J L DDUWCWO
AZFZNZ>N H U RO>Z>E

i |
0 | oW D e o
a0 Z o raro Mol oY o=
b X W wmeno/ YN W<y
LG edb<’ Q.1 <tOZO.AE b0k
-~ MSMOLLOIOOD QY OW

! o |
MANT MO MGG MO OMA. e

-

ASTERISK

M
s qes i BITH
Lidesn.
[« 9o WY A T2
coon

i8] o)
prd =z
<t <<
4 o
L L
a. .
(@] o
= prd
ol -
w
x
[ G B 4
T X
Y oo (&)
o] Lad
Y LSO I
Y <xld o=t
i ey o
o ikt ol
| S g0 ] 7 JOF |
O Xl
2 b i Db
ed O el d b
s &leq 0l
LWi—td oo
Auia. o
OOOmOH

| ! o~
O MO <IA. OO0 INN.MNA T =T

NITNEOIDNZIMUN T e TN O OT DN T TN QAN T O (O
TIIMY LA AN ATITOUTDINNTOOT INTIN IS THIOY
! !

n
©
o
Q.
©

OPRCH

o
[ &}

T OPR

[
&)

OPR

|
|
|
i

MO0

361



END OF OPERAND
T

L Land
e 4 &)
wiy
oo
O

TRMCK

! -

OO T T <TI0 Ter ), < L0 IO TT L TOA

FONEOOLOANIONTOVILOT

JLSJLCJQSJLSJASJTLJ
f

NNELON
DY

©
[ &)
p\
o
o

bt ]
”~ -~
o OZ O
e WZow |

TO

MEMORY REFERENCE TYPE INSTRUCTION

CHECK RANGE

NO
YES,

r

-+
-
[ 2
Ui

.ol ety (e
aa LZuwtonmaa
OIZOM,D.\.OO

NEGATIVE

o

[} oved
oo
O wd
co

RETURN VALUE IN RANGE

0PRFEC, T

o
wl
pc 4
o
e
od
Lt (=4
S}
- e
<t O
[s:4 b
L [8Y]
o [&]
o ~ =
- L Lig
D mwl o
o ¥ i
D [V
w Zu! L
o o o4
2w
< Qu. Lot
= -l ©
(Y a4
[ B ) o
P b pd
T Yo 4
0 =
W X U e
o Zuw wo
O T >z
e}
o
wd = 0w
i < M Z O ==z
WO o 0 o eC Y 4
N+ ¥ Zoo] QMmoo
o L W I O sOm
L, MOOMOamm
uw Qooumsoon
D AN ™

o
-
o
o
o]

362



LDA .38
L33 OPRM2
JS3 WRITE,I PRINT ERROR MESSAGE
JSH REENT RE ENTRY REQUES
~ JMP CNTRL,I RETURN TO CONTROLLER
2
OPRM1 DEF *4+
ASC 19, INDIRECT REFERENCE PERMITTED ONLY WITH
'y
DPRMZ2 DEF *+1
« ASC 19,MEMORY REFERENCE AND DEF INSTRUCTIONS
®
TTTTOPERYI LDA .28
LDB *+2
. JMP ERCAL
. DEF ERRYG ILLEGAL OPERAND TERMINATION
3
___DPERZ LDA .26
I LD ¥+2
. JMP ERCAL
NEF *+14
. ASC 13,MINUS SIGN PRECEDES LABEL
¥
OPER3 L0DA .28
T LDB *+2
. JMP ERCAL
DEF *+1
ASC 14,MINUS SIGN PRECEDES ASTERISK

£€9¢



364

L)
z [
~ L0
e
L) b bt -~
[T = 4 Lad
il o
Zoo, =T
a0 o -~
(SIS (]
o - s
i td b © =
oo o P g T ]
w o <1 xz =
el el [ IV
ox T Y 4 IO
A~ O [SITRITIL
Yy — < <1 Tl ’
S ZO = - Y.iOm oo
TZLl (v = Zl W
ez e a0 LS ot i Ta SN SER S Y
L= G« 2 4 O > o IOW O
TEI Ne nl FET ) b | o (O odbdb~ & T
SO0 b - L N Koo
oo OO D [« A 4 ZORI<r & <t
. T et o0 Ll o B FB czZzo.nM T X
(€] Y =l =0 [ I Z i<t O
ODW <L Ly LW < ZXT
—Con I < L =L b OCLICD e L
o 00 o oore TR+ ND— oo
LT b 0 <« > et b= O
Z - b T < T [l T TRE- S il =
O D v &3% v L Lo » v
o o ©» !
W Pedbed N b g
> oe Ll W g %) -t
< NW e e w + o]
T = e [ et YD) et D7 ot O O\ -~
S TO N L ¥ O eoxor | oy
Wl »(ber AtV KX O EameUi-m b o Ul
a QD i OJ OOV &l b (G L N L0 30
] TOL mm o~ o+ 4 LEN Nl Z ) I YR T e O
- T eIex M QO Q. LS LR L
T of & I (e WsaleaYoal TR aWeaToWaola W NI THG2- § N
< Liib— zZ OF O AT NT NS W IO L
M = 0L o ZW L HAOTMIDITITDT NI HNN
0 <N W juo
< O b P (o]
tw [T 9] (4 g
o <Ol L ol o0
(=4
Nod % M R D % % B ok X kO %% % T
*
|



[
03] o
[ 1%}
(&) W
(=4 [T
[»>4 v
s <t o
! o
- (] o3¢ [&] o
z =« ul b
i [§3) [ and [ 78]
O [s'4 (] <t [+ 34
Q. <{ o
1% v 4 pd b
[o4 ooy LY b <t
tud wh 0 Tuw o< =z
L e OO0 e —
u. s =Ll =
o) << WD K o
o el W =z 14
et O O - -
L4 T i d D
[&] [S-7 ST o N V0T = R+ 6] =z
b (78] X 214
[od Ulbmi b NSRS -
> D e N N |l
[en] ) WO Lo Wi
<g WZ L2002 o
-t | b

' ] LS
M NYMY Y D000
0’0, WO, Iy ey
0¥ QM OOMOMMMmY M
Ol il <UL F T OI
o P R T B R P e

| |
NINAO DA MANA IR <O NO 0

NNNTNTNENTOTNTNT
AR TI YT YT YT T YYD

T LABRZ
LABR3

LABEL FOUND

NO

DEF ERRS

365



%» 3

* CHECK FOR LETTER OR PERIOD

»*

-—t—, R
(4 V8]
~ -
[ %]
= —
-4 w
!
-~ o
<X O
= ot ~
o 58]
2 Ll )
0 O
Lt
Y O =>oon
| [ZaXeW0- 24
(Y d
e t8)
X b
<L b
Xl (I8 e}
o J0 O
>N
0\ <+
L [Ze]o 38
Q.0
Q.m0
= Ccinn.w
i)
e [+
(TR [« B
s =

(4
L 2l
b= [¥8]
<1 -
L1 W
2’4 ~
() [&]
14)
o m [24
[ I o
< o~
m - W
[ae] i~
[ R
-t Al L4
Gul o
=~ Y, O
Lo - S A
[d] wnwn
O Ol
Z I ZOM»Y
bt
L o)
[a 4812’4
[ oo
M OV b

U+ NG LI
IO 0 I

- - i
salaatestoWaalenl Nlusts W
DN T NN SR
LJET N T T (AT ™

366



CHECK ADDRESS RANGE IN OATA BUFFER AREA

= ADDRESS TO 3E CHECKED

|
|

SERE R RS FE R
mn

NTER (A)
RETURN ANDRESS IN (A)
ATRG NOP
7 LDB XDATA LOWER 30UND OF DATA AREA
CMB, INB
ADB A
558 LOWER BOUND ERROR
JIMP DTRGL
LDy YOATA UPPER BOUND OF DATA AREA
ADS A
~ 5513,2SS UPPER AOUND ERROR
JMP DTERT
JMP DATRG,I
DTRG1 LD3 D100
An3 A
SS3
. JUP DATRG,I

»

TTDTERT LDA L3N
LDB ¥+2
JMP ERCAL

DEF *4+1
ASC 15, ADDRESS BEYOND PROGRAM BOUNDS

L9g



x
F'3
¥
¥ ' .
-: SCAN USER PROGRAM FOR FORWARD REFERENCES
# STORE THE FIRST 99 FORWARD REFERENCES IN THE INPYT
= AND DATA STORE BUFFFRS. REPLACE THE FORWARD REFERENCES
®BY A JUMP TD A ROUTINE THAT TERMINATES EXECUTION AND
¥ WARNS THE USER ABOUT FORWARD REFERENCES
®
COSCN NOP
LDA M100
STA TEMP
STA TEMP3
LDB BUFA ADDR OF BUFFER TO HOLD FWD REF
578 TEMPL
ST3 TEMP2
CLB
ST3 TEMP1,I CLEAR BUFFER
ISZ TEMPL
ISZ TEMP
JMNP #-3
. ISZ TEMP3
LOA XUSRP FIRST LOCATION IN PROGRAM AREA
STA TEMP
__“‘CUSNI LOA TEMP, I RETRTIEVE INSTRUCTION
SSA,RSS BIT 15 SET
JMO CDSNZ
égg B2000 YcS, I70 INSTRUCTION
JMP COSN4 YES
LDA TEMP,I
 AND 3700 REGISTER REFERENCE
- SZA4RSS
JMP CDSN&4

89¢



MEMORY REF
N

~ 3 ™M
0N Zo =z
X ol »n
wu o o
bk OO0 O

RUCTION

MEMORY REFERENCE
R
A

[ B, S o]
< ZAoy
MtNNSIO
QU
GUDwCTDE

" i

T e

Za~o
nE MDD
(23 i) ~-ivd
(] N esTan)

FORWARD REFERENCE

-

MESSAGE

WARNING

Wik iz
& LIOe
=000
QUi O D
=4 €l Vo] Pl an]

bt

LY Lol

e O 2 ot
0000 ua
TEZTIOXE
Lol uin b
Lol sl b g

OV (L T CIRT O X (7 €T L f ¥ (1, f < €L L <L < &5 <I
NS OZNTOZO0O0NE Q0 e D e () b
T IS It QAU AN I D

™~
=z
(%)
[an]
«

|
|
|
|
|
|

N
oo,
=
Lo
P b

0

IX]

=™

<y =

[ 70} =4

o

L. [0

8] (@]

04 fuld

o

[ 7]

= D

W bud W0
o D

oD D

[oaTam) !
< L.

- [es]

[ Vo3 L4 -

o O

U 20

b= Wiz

2] (]

L Lo
e 0 Z
OO
ViEZITnnwm
WD a0
[#] SN ST ST ]

CDSN4

| M
PO NI O
NN TN TS
O ™ 10D ™S

|
|
w

369



U)#'?#I%‘I‘F'K-!

READ IN USER DEFINED STATEMENT NUMBERS
 RETURN P+1 FRROR, RNE ENTRY NECESSARY
P¥2 STATEMENT NUMBERS ACCEPTED AND STORED

QNCE NOP

JSB RDCOM
RSS NOTHING ENTERED
JSB TWINT
NO® 3
RSS SAD DATA_INPUT
RSS TWO POSITIVE INTEGERS READ IN
JMP SOERL
LD3 M1001
AD3 NUM1L CHECK RANGE OF FIRST
SSByRSS
JMP’ SGER?2 TOO LARGE

- LDB NUM2 IN RANGE

T SZ3;RSS ZERD

4P SGER? YES, EXRROR
A38 M25 NO '
S58,RSS TO0 LARGE
JMP SGER2 YES
LOA NUM1 30TH NUM3ERS IN RANGE
STA FSTHT FIRST STATEMENT NUMBER
LD3 NUM?
STO STINT STATEMENT NUMBER INCREWENT
CMB, IN3
ADA 3
STA CUSTN CURRENT USER STATEMENT NUM3ER
ISZ SQNCE
JMP SONCE,I

0LE


http:ITMENT-lW11BER:-TNl.RE

SQERY LDA .14
LDB #*+42
. JMP SQER3
« DEF ERR4 BAD DATA INPUT
®
SQER?2 LDA .30
LD3 *+3
SQER3 JSB ERRKROR
« JMP SGNCE,I RETURN ON
DEF ERRZ STATEMENT NUMBER QUT OF RANGE

TLE



CATA OR MACHINE CODE)

(
REA

MEMORY REFERENCE OPERANDS
INSTRUCTION

ORG 100008

¥ EVALUATE ALL

372

T8]
]
sal
T =
- o L z
d o o
= 1IN (o] ©obet
> P4 vl (&11% -
- 2 o VERNN S 4 - ©
el O L L bt o) s}
= O -0ty wied o
i =z Z e | b
" O IO SW %)
Z N W O.lex %) <1 =
O=Ti) K2 i 0 0 z (A0
o LM o . Zow
Sebeli £ ML= eT O i eI W
AdOO> WU g b - P
DD O | eSO &) <a<ZD Z
E WL LN T i D L=
Uik i<t Z 24 o o
O Z R < 0 - Az L
NZX Lz s O 172 (o W
LT D] U 00U T Z Lt L)
£ ko OO b bt (Th70°4 SN 4
LT Mmutn<g oD
OZ oinT e n wEoD o o
el 2l =N bd = a4
LTI« 0T uOY W = bl e O
O OOV «OIZ VLI T >Xp-tn XU
SIICROCWWTO0 & WU Ll
OS2I (OIS <t ZN- >
" =
- - =
~ — - W |
~ Ok Tel & -0 - ol = ~
O OO d0owo m g mbd =)
N0 I OZ el O - > nENn O
(o] L= QTS Tan s QUN ] ot 4 g TP W DL Z D (N
N VINNLINDINGQN n MNNHE N
- i %} | -
0. <O <Lt O el T L OO 5 MMO<Tt<t
OUITONT OO N0OnE ] onTal?s) oo
ZNTI SN INIITIITYD % ~NAIN™
{
(] o 4]
€ b o
- %] O
b el
% % ) EEEEE RN
_
|
A
|




EM3LED C0DE

%

MEMORY REFENGE INSTRUCTIONS

* CLEAR UP CPERAND FOR

RAND LABEL PRESENT

¥

* LABEL OR ASTERISK IS PRESENT

*

NAL FORWARD REFERENCE

N Zw
d T LI L et o
il o4
e (53 O e €
[T an] g FRun]
L L ND T

i -4

I +
Wb OZ L
[ ool QN 1 Y e
NOCHC - O
b C Ca b i 5
YN NMET N

L3 i
[ gs e ffonirslont o N
NI NN

STCD4

|
|
|
|

®
¥

* EXAMINE LABEL

%* %

N o

n o

E8]aWen]

s o

-

N L

o o

om

b d T fa'd

T o ow

so] 1Y u o

Tedodb= & 3

OOV D

rABI w =z

e 3K L1t

o I S S N o B

0 =z

O o e

o el TELTU RN TR I %

e Mmoo

> I DIO0.

MOV AZIZO

[

I 0 o ox

N o OD

NN 2

OOk b

TLBP\S no
"

mEoomeaa o m

YN k- N (N0
NN

- STCDS

Lalm]
ol
] g
L=
[ ad

1

mam
N
N

373




3LOCK
A

Zouly
O KO,
oY et O
— wn
Lo m wn
DD D= tad
Y QY B>y
(O 0= n s B DO T
- O e
r zZau IE<a
2 0 Wi
O Z»n Vnuw
& {3 T NN
O | ™
Lo 0l b~
N O o
oo )
o O<T OOE

Mo wo

QOS2 Oull-
OO0t Ty
LN (d OO

ECT BIT

INDIR

INDIREGT. BIT

CURRENT PAGE
7 OPERAND _ADDRESS

=0, Mz O~ Mo
Ko 04 0O N OO
OO O N HOOWIO
DM Sl = o QD
HNOMTO () LOOVREN

BBBAQBZPPDAAPKRD
IO NI EZ OO0 00
DAIIN NI THIN I LT I

LABEL DDES NOT EXIST

L

E LA3SEL IN SYM TAL
RAND NUMBER ™

R

[y V3]

uJ

(&)

=Z

L

o

[5%]

.

-~

TR 4
m

<X -

P

93]

u o

O

o

x =

O
(]

<

(]

-l
sl

- ¥

[}

72020 T

wi>» I

> O

A

-~ QO

oY o

OOMmO

poe (0 @b

LI T Fo ke Fa Jorald
= IRIU

OZYn aXZ>
L1 R w1ty
R WO

o RFEP

P, TTFO
<l EEKJ

"o Ov
o

- -+
FTOZ>0NA DT
OV NI OD
CYZNMYITO0
| IO WIN D OIS
HQ3DAZQ8A9§

- TADDRESS OF LTAST REFERENCE

Fﬂ)AAPBBAABAABPAHAnUAAAP
ONONTOOONZO b (D (O Z =0T
O S N™ J<T N (A JN N DN I D d e ™

-]

o}
(&)
e
[72]

TSI TD9T

374



* LABEL WIYH OPERAND NUMBER

3
¥
%
¥

375

o G
Lt =z
o bt
kD i o Ll
rid +~ o4 (8]
- o <7 T
- Q. (&} %
7t ) 7]
- D r Ls)
s34 o =
. .| w o
T8} %) poo} u) [}
Ly fon TN 4 TR | x O %) 7]
oul e Lk b o = L
AT R S e 23] - > [+4
b= TN D b %] o ot (w] a
. IZ Y == o
o O ol o [T = w Q = 2
ouln’ < 7] o o = DO o
| YO T 7] -t oW Z d Ll
W O e O o W = il O
W D W L. P4 [+ [ Zo =0
TN o pus o8 o 2 ol ™
Ll =T N o > w > WD
od o A O D %) (ot o Z < O )
DU O IO wn x —HO
Tt b [ Lol o (Y] i (X TY R TS
N M o tt | - Z ¢
o ZTZ==ul 1o o. m ;W A e
P TR b ) e Lo A TR o o. 1O << OL Wk Woy
DO N Pt D o 2 D b 20| ) e (AT
o o = 0O M e Se I s A BENC VI 4
O © e b LR > o Q| - ZOQ
N O DN e DN IS Obel IO St bl

LUk N & (O I E CcMmomdE: OWwWll QIO »
OdM e’ TX # o i O 7.TT. b (D] b~ e MO
=~ 3

|
(LI MM LR O LTI <IN O LI <TI0 T DL T
Ldbre b - ONE QN COEONTOQOTONT ONEOO O
A TN AN T SOT NI S ™™ IN™I L ™0 )

|

_ o o X
o «l ~d -t

_ o o o

m o 3]

! b o -

T TCDit

__
I
|
e |



A ol
N

O ZO

YES
NO, LINK SET

-
Lo T o

-~

0

~
L T o |

mDDDQH B>OOD AW -
~

M N MORCOMMoOOoODmSe v O+ O

{

VID O odN 0
KANNVLZRNWNWN~NN XN X

OO ZO A~V IV T« =40 =) = X N O XN

DWOANUDCONDVANARD SO O

b;4 e BT UIET WM - DL T N VNG T Gy)
n
+
o

8]

C VprpoUPPORPRNPENEPERFDOUER ISR TR

SET LINK ADDR IN SYM TBL

LINK TO PREV SST BLOCK
SET OPERAND VALUE IN SST

<< DU)D!V)DU)
2 OoOmoOomo >

VE ADDRESS
DR _OF SYM TBL ENTRY
T INDIRECT FLAG WITH THIS ADDR
VANGCE ADDRESS
T LINK TO SYMB0L TABLE
ORESS OF LAST FORWARD REF
LUE OF LAST FORWARD REF
RELATIVE ADDRESS
SET ADDRESS IN SST
VALUE OF LAST FORWARD REFERENCE

TRIES FOR THIS LABEL
(A)Y CONTAINS LINK FROM SYMB0L TASLE

- KKK xR

A=~ O
4

m
'—1CD

VALUE IN SST

VE ADDRESS

9L¢



O
il
O~z
o B = 4
Qo
Zd
~ L
o
(Hex
Z Az
—ig, OO
)
- ]
Odiel €O
D
L e
(D ed!
07 (O €7,
Olite |
A0
=
(TR p=ap=
(DD

—
(&)
Mo
[ e
[SEFRL ]

[ JOU § G 00N ¥ 4]

X

(]

U
Tex
O
e~
a0
==

et
78]
e
w4 e
wnoeo

REFERENCE

Mocte
R SE]
D e (O

NOLSO I
o R/ P T

- i - o B
D e O L 2 NS IO D e b BT
(e ATHAIT 1NN

N~
!
o]
[ ]
[

|
|
|
_
|

»

¥ EXAMINE NEXT LINK IN SST

> b
234 7]
v

-l
ey
o
4l *W
P24
NN
W=z
(o' S B ]
(N b )
{7300 b L.
st Z O
o oLIND
oY O
LEOZY Ok
Ot Ld bl

WORD

LINK

[ s SO
(o VI
=i L0
LD > 2Z

TCD15

o

1
o
¥t
z0
[ [ O]
ad b

T AT RT LT O T <I,
CIC m CAIN I e 3
DI LHATIN™

D18

¥

¥~+1

F
ASC 16,COMPOUND OPERAND TABLE OVERFLOW

TCDR1 DE

%
3

TCOR2 DEF *+1%

LIMIT USE

ASC 24,COMPOUND OPERAND TABLE NEAR OVERFLOH,

377



x
®
* DETERMINE LENGTH OF ASSEM3LY FOR MEMORY REFERENCE
* INSTRUCTION
¥
DFTLN NQP
LDA ASMBY RETRIEVE INSTR SKELETON
CLE,SSA,RSS TWO WORD ASSEM3LY
JAp %33 NO
JS8 STRCD YES, STORE_WORD
CLA,CCE SET INDICATOR
. JHP CETLN,I
¥
* ALLOGATE STORAGE SPACE FOR STORING PROGRAY
* STATEMENT IN SOURCE CODE BLOCK
%
ASMBL NOP
LDA SRCNT CHAR LENGTH OF INPUT STRING
STA 3 '
BLE,BLF SHIFT CHAR COUNT
ARS NUMBER OF WORDS
STA SRCNT NUM OF WORDS 70 BE MQVED TO SCB
AJA .6 LENGTH OF FNTRY TO SCB
STA TEnP3 RETAIN NUMBER OF WORDS
03
STB LNTHZ  INPUT LENGTH FOR SU3

8LE



AREA FIRST BEFORE ALLOCATING NEXT

—
-
[

PER B0UND OF FREE SPACE AREA

OVERFLOW IN FREE SPACE AREA

O
£S
U

0. Ko o
[ %) o W
(X4 F el
e (0L Z

i Lo
=TT O M =T T < <1

[ KR

[&1sd

Z-Z

I
=0
L
ruolld

]

Lt

N

PREPARE FOR
CHECK FOR TAS3

[

b4
(&)
[ ]
-
[as)
Lt
[en]
(e
[
[¥8)
(&
ja'd
e}
<
w
[T
C
m..m
e
o]
O
me
-4
ol
iy
Gl »n
02 OOt
ol e
M
m oo o

X OONToX |
L Z VD NM (N
MO A AN RZ I ZE >0 el

-

H - H
QeImMDOIMMMA TN,

QONIEOOTONITOOOME OQMIO0E
L_\LS.JALCAADJLL\ASACA:DJLLJ

ASMB2

*

TABLE NEAR OVERFLOW

3

379



EDIT ENTRY

[
AT T O
ZLNnNHN D~ w
=07 eT) #NOMm

-0
=Tl
_
trD.
Y J
o
AMLI

CD\OG
prd S S 4

™M
+
o

o)

"~ &

L e X Q. =T it
XOMNEDO Y
QetinTITOOWMHIK NN T SN 0 (N™

uw

€
et
Lo
i

[ESIYE;
fsal I
[+
>u.
(=3
X
O,
=~
Oz Zu)
Ly~ O ey (3
N =M N
o34 2 B Ton -SSR U N1/ |
Zr-<TN XEZ oW
N 0 e D
ZUulZr 2 (O
SIPIU Lin e
% O,C¥ [T
Ut o DERCCNA
LN DO
Ul = YZ0.
OZHLIWTO D
L= G T BT o i = 2 S Y
Q. 0Z O o'y
IR~ T 22 e 20O
I Z e T O WD b T
> DNHNOZ =<t (N M

Lt
L]
<I
oQ.
(@37 ]
[ 73]
Lid

IN FREF SPACE

—
o

S AVAILATRLE SPACE

AR ENTRY FROM FREE SPACE AREA

STORE NEW LENGTH

- :

mo. P_ w
[N E S bt e et bl 5T
NN & el o o)
ARATBQﬂTTBBA

™~
ABASEAZPAAABAAAAP
b 22 V0D e L CY (D b £33 LS (D e 5

n

ASMB

Lol »
W - N el ]

SC 15,S0URCE PROGRAM TABLE OVERFLOY

1 DEF #*+1
A

X
*

ASMR2 DEF %21

BEGIN EXECUTION

ASC 26,PROGRAM APPROACHES IMPOSED LIMIT,

380


http:A-iSA--.TZ

¥
2®

DATA BUFFER IN PROGRAM DATA AREA

¥ STORE
%

F'y
g

A

NTE

DATA STORAGE

S _FOR

DDRES

"R_(3

£

F's

[V o
[sgl Y]
- O
< (0
[os o' 0]

EXISTNAT MEMORY

NON
5
Y

eMmT
[==Jamy 2

OINTER

L)
"N
[0 2 ol
Lot L =T !
XxNQi >0
[ VU T an S |
[onlodandiL=4
[SEmI-gr o]

oo

AT APPROPRIATE ADOR

ADVANCE BUFFER POINTERS

Texli 0l
Qe
OO
WP b
Lt odin

-l bt L
~ -

ST T T e
0000 ALOQ L

NI 2T OOOF HITOTW
OWIRTZ IO -3 L el s b
C0 b ot b OO0 O b 6 e O b (3T

i " i
Q. <T 0D D <TI0t <L o et < F e G NN IO O
OOk SN (5 b O O e O = (NN E D
Z AN AN dON ST I i T

[
s}

w
b=
[aa]

i
i
!
;
i
i
|
!

-~
- |
z |
[
o |

381



SYMBOL TASLE

STORE LABEL 1IN

%* % % %

S_TIN_ASSEMSLED CODE

STANT LABEL

[V ] ]

FLA3EL IN
BUFFER HOLD

% ok ¥ % O % A

WOROS IN LENGTH

CHARACTERS OF LABEL

TABLE ENTRY IS SIX

FIRST THWO

4
=}
ol
O!
=

#v#x.a.n....ﬁ

EACH SYMBOL

THIRD AND FOURTH CHARACTER "IN LABEL

WORD 2
* WORD 3

¥

%

JE
Luiidd
o e
[SEES Lo
b~ ed

<00
[s 4TIV}
T Z L
T

=-0a

AVE DIFFERENT USES IF THE LABEL IS TR

|
|

FORWARD REF
CT FORWARD REF

EMBLED

UNDEFINED

COBE

oo

WO

DEFINED WO

|
¥¥¥4Tv#;¥m;¥

X

SPECIAL SYMBOL TABLE FOR COMPOUND

382

“
oo
-z

Mo
Tl

~

¥ WORD 5

%* % %



383

=
o
(]
[
Lt o}
(& (&
=z w
wl >
o) o Ll
[N L
> e =
ot O n 18 0%} —
o = &) (%] v O [}
| o w %) wo w
o 'S {ad o <1 o [t ) o)
= : fas] [an} -l Lt o
o > o L pd (&) 'S
o 4 o < et 18] -
(&) o b o . Qwm -
< ! = wd won ™
| ] %] L) [ AT L.
) z (o] m.J - o [sa)
m (@] <L W ~ =Z W =
< w (¢4 ot v - Wik N -
-4 -t = <= Lad (%] ! o
[s8} O wd bt Z o e - Z| <
- (=4 L. W W o L4 [ don TN L} Led
~Z o (@] Ot D P [sa] =
e W OO Ze
- - [¢'4 Qf e~ Lt Lo Pt n Lt
11 o w a o = PO TS -
[TRTs 4 [aa el [ IR IN] [l Yo o m
=0 = b e el W, oo 0O <7
<z >0 D WO Ouwll W CE O o
N n= =z OZd Z> O <N
-
o
~ 4 fas]
- [ 3oy
Y e s I 4 wh uiry e ~ | >
Oz 4 LT Ok >0 mold o ¥ oo %
TOEILY ML N NOITNLIER b e D) e e
Qe ZW 30 MO ISk Uieet o L e (D) o= o
b= skl () oA 2N JE Y o0 D I % N
- i " H i
PAZAANAPABBQAKZABAAPAAAABAABAAP &
Ch-NOS NS OO DUWONONT b= (T D 22 (Db 22 (D=5 L)
NSILCQSJLLJLSLSLJLSJS[ASILSILTJ O«
o ~d w ' o
o —t |
wed s [¢5]
- — e
7]

"3

|

|

_

| m
v * 7,

| |

|



STORE INSTRUCTTION IN PROGRAM AREA
ENTER (A) ASSEM3LED INSTRUCTION

R TR

TRCD NOP :
STA ZUSRP,I STORE INSTRUCTION
ISZ ZUSRP NEXT LOCATION PRCOGRAM AREA
JS8 STRCK
JMP STRCD,I
F'
b 3
: CHECK USER PROGRAM AREA FOR OVERFLOW
L
STRCK NOP ,
LD{ YUSRP UPPEZR B0OUND OF PROGRAM AREA
CHMB, INB
ADB ZUSRP
553 OVERFLOHW
JMP STRC1 NO
LDA .24 YES
LD8 S5TRER
. JMP TELOV
: PROMPT USER IF PROGRAM AREA IS AB0UT TO OVERFLOW
STRCT ggg «15
JMP STRCK,I
LOA ,52
LDB ASMR2
JSB 8PLN
JMP STRCK,I
'S
% J—

STRER DEF ¥*#1i
SC 12,PROGRAM BUFFER QOVERFLOHW

8¢



¥ STORE PLC REFERENCE

»

'3
E'S

385

* ENTER (A) SC3 ADDRESS WITH

L4
-]
w© D
- W il L
0. O mm Lt
- z - -
L (&) i d pud oo bt m
x L o ded d o7 <
- o/ [SWEent 2oL ] L) -
- W= TR
prd ] Lo b= bz +8] z
(2] =z [+ G 217 -4 =t
4 LN %1 Wi
A L AOL T. ~ Zuix
(=) o -l OO TS o oC
(24 o o e wr <t [N Ten il
(@] W Lty d b [ o €T LA
= L T = o el
o Tl Tl w v ow
o 48] - Ll - I OZ
= (%] ZwT (na. 0O
- 0 WO e £ 54 %)
in o Z el 1% I TR T S 1Y
=z ad KL bl D ao O WXO.u .
it | G EWpu Fy ST 4} [ Ol o
- [PERRTETS TS b N OZ-<x Lt
s} [ o Qli;mo Trwm (L O i -t
" les) o P pen 4 MK <C<Own o
o i QIO i Sdd - O o
(@] x Z o= 0.0 ﬁrM ~ Wi W 60 «©
e - - w o et =X < N W o | O
W b i Wl .ded | o ~ < WOz o
= OIS o T bd T bk N
w W <L <O o L oeril (Kelered d
4 %} K = uJd [t > i b Tl win
W ( [«n e 38} =0z < Jd<T IO T Y
L Wy > W = uw o VO Ao o>
&) O | @D «Ieg e _
= Oz e 0O s lulite !
1 Cul = Zono pinns |
o <y ¥ O o aDu
wl T U R 4 T TV R <t W o -
. M. £ Z+-ZTIN 1NOO (o} w0 o CLCi -
! o D Dl b~ bz O o JUE 1 YU S T B T B
(24 e Z ~=00 O HO O EO+NO = -
A QLD = Db T N NN W)
(&) =X e =0 i !
L | WWWOO FHO OaDnao <aean amma
o -t S = enlldll <l Obre e (VS (0 e S LI OING S
i | ot o ZNOWM ST AL ULIN™
T 0 O S <t & O I
Qe 334 el LWL (&] -~ !
< © 0 O OZruld | T - |
W = T ZDITOO <l a o
i , = b
¥!4¥¥*¥¥T#¥444¥4444¥#S (%]
| | w
| |




386

=
o
-d
L
a4
Lt
>
o
L .
-
as] W
o IS o
L L - =
o b ’ o
< =z - o
-t b b~
o o Led %)
- - o T =
o -4 - i >
[ %] > > n LJ a4 o
1% a4 L. b o =] L. o <z
[F% it o <t -l 4 a4
24 m b ! 'S &) C
©Q 34 o - o b~ (o8
o - z o - x -
<t =z ) <T <t © s i
o = 14 a4 o -
Ll ] m. O z ut < —
=3 Zz =z - ) Lt m - I
< = e 4 L ) =4 7 i oD =z
(%} o o I d 5l &) =
U O L o nny b I Li.
o QLo =0 OO L e > n
z o D o=z 2> wn L ud o
o
| 5 =z
—t K bt & T —t
-~ Pt - -+ ,rr o ! (€]
Mlled o O M s W o N O« ® ! w
A>OOLD0U0 O 4 e S| TR IS I« -4 TS| m o -
NO I I IZ30 0y 040 A0 RLNNOJO0 wiie -~ un
 H\EOAALAAREN NG X g OO N + o 0.
B.&HZ?O?SYI? Ve~ » OO S PO NN % * O Ol
- m
DAAAZAAPleBDABPRBPAAPAB?AP TR &] (T &) oD
Zhe Qb N T OIS OO CONT DONT.QONME WHN LN el ot
ASLSIiSJLCASJLLJASJLSJLLJSJ Orr =T ET
o ) _ 1% N LIL)
wd 4 | o o T
o. 0. O o [&18}
Lt - _ - - bad® 4
wn wn A 0 %O %% OO0
_ _
_
| |




Lt
pid
[o=)
ol
(&
et
=
S‘
=
=)
.
=
O
Aa
i N
[oed 23 [
O o
o Ll
Vi oOm
uy (o]
2 Ol
L=t o
[} [l e
it Lo
oo )
Q. e Rn}
[ i
TW Wy
[So3- TN Vs b
ot N0
TO <IN
=
Z oz
Wit b
(]
[l 25 NN VSR V)
(3Z 1N
O
Q- O
k- OO
O 0O
G2 <<
a4
T
(72173 B~ @ wa
"Nz L
[~
™
it
=00 b
oo =
0 Wl

R RN

=z = ul

) o v D

cm 4 = «r

[l Lan f— b~ O

N & ol

L % D Yoo

2787 (%] o n

— L Lt LR L ¢

-t o tn e b D

e g = Epralius]

0 o —t Nno o«
valcdonl < e
S ot i S N &)

Nl TN % N TSI IRTY
o [ beid L Mmoo
sz O YL L) - Z
HOQWN  ZZw, (04 [FUR VST e BTV
W I WA, m LA A1 4]
PRI ed ed T U2 =T T Z X0
oo o : wiey o Ok el
CuIC >y o i e LI 0
TZE dadry - b= el O
| R OO, > Z Enidor O
=g T poaeiee & ey LW WOZ et
Lot Ll o A o S R
Moo= (nowm T oe O DWW
INOW VNVXWEC Wwo D o=l
4% ﬁATWN EZ O Lm0

_ |
m - i - -
!

~ 'S S -~
< O NMNN uMo wWide e Wik
O & Lo piece 0o S0 e
wd NEHOEOD SN0 e O ORo
Q2 sOZCCONICOCSNIICN 20 2oy
T eNOCIOIT 2T OETE O oMo

H H Lad :
QLTI OMNMDMA IO e O <O T I (DX =<
ChMO - NGOA S OZNIEOZNIT OSSO0
ZNEL A ™SO SN T AT N T eI )
W ]
i |l
>

| v
| |
i m -
|
|

>
(&)
=
(@] [&]

|

387



tad

w

<

[o N

(XX} -

) b
—~T
Mmoo b
~ D

L] -
O L) (%9]
(o] [ (&) -

w = pd s
~0y Wi [F8) — o
<Z o (04 o i jun
b VR T 58] v

od L [T oo )
oul W 58] N at
[T 4 o nwn

ud L
[SH] ¢ & o O §
Q ) | prafn m
Z60 6 0.Z w0 I
Lt o et 4
(Cd o [} jen) [*%
it O L e Lt L=
[V T TR Zud N bl
W= =0 et WC
e "4 [ LN T

O Ll e a0

o~ Ul a1 % B = BT oo
wo X Zhd O Ll
>Z (2 Do =122 a4
i ] (]
=~ ”- -
Ui Mo W oo =Zoul
o va { oo} DOEONSY NOLD ™
OIS 1O DO AN O

FWWOHRZ DO UIDe e 3T
O X0l Y OUMONINE W
Le! - |
QDO <IOT <IN
OO O Q- (OO0 5
DEN JOLN I AN LN DD

r

|
|

®

* TWO WORD ASSEMBLY

OVERFLOW IN USER PROG

PLACE NOP IN VACATED AREA

RETIRIEVE ASSEM3LED CODE
LOGK FOR

P, T MOVE CODE INTDO NEW LCCATIUON

’
’
I
’

C O NN
Z AN

.

¥ RETRIEVE ASSEMBLED INSTRUGTION
3 I

3

388



389

-~
7] 78} m
Lt O -
(&) =
=z i =
Ul o —
s fmn} [0} -t
[Vl e} . wn b, [=a]
[T g b Led = ) el -
3%} o [ 3] o [ o
o k) -4 oo Z b
(@] Lg - wl 59 Ly o >
o o > o’ -4 v = w
oL KT Ls RN o Ziul (] L
Lag s b =z W, T oY L. e
T [T ) 171%) ul o -4
o) ] 7 vl = [s%4 =
Ol o) o o) LW -t wi
o ] [ ) DO o 1. &
|~ 0 > o4 S o =z
[T q e (o] ul D fom e (O3 <t o 84
(@} %] o] z =z N x o 14
> <t — &) lasd = )
! o (TH T e 4 o Z L.
%) e w! o m bl W <1 Lt
(S fw! b ! wwz &) o
~tiLs 2l <1 (73 7] Y d o
v Lol ol " n Lz o - -
mD - oo} i [ L o4 [&)
Lter =z (& ooy ! (@] {TH]
R4S o Uied [ T TV N - ¥ o L o 0
i O LT 0 oW, -d o i
%2} 0o >0 < K> ZUT m i) o
e i o
13 ] |
X b (] _ [ ] i b
e - I - . |
pus T o] —m M NGIN MY eNNOETAO O O Y K 4
oo (GITRaL S 0O NCL OXOoOEO o W wWin o
(6 s W] O (OOLOON M- SOMODIW T O Qo IS
x oW CONON NNZOQ-HOIW VOEID > ) e 2 L)
Ll e HOTOLSEOMGIOTE OaOad (0 O O oD OX
O : - i ”~
Wz 0 LIl OO0 AL OTRI VA TITIC] L <TI0 T T <T O M
O O COOONT QOFOZ D NEOZT0OMRE Z ONITIOSOOTO0
e of Lo} OV IR N G DDA e AT IO T
L | = |
= [n] ~ OJ) g M |
oou O 0 o X 0 |
<L e O3 ()] & ) W o |
! =T n ) ]
%k N % %% [&) O % sk % (5
|
# | |




390

Lt
- J
a M 78] (N
= < -l b o
[ od o I o
= (=4 8 [s4
. | b =4 P 244
“ O b [Lad L
o -t o
< = O bt (&} =
=~ D 0] w ] (e <X
17y b2l ) 0 b o o
Ll - PRI Y] = wm 0. (€]
o s o O & - N O
z O Z 0 78] =z o
1 w w o Li. 4 a
o O o < z O 1
(TEE. Vo) [¥N] e R 2’4 ]
| ¥ |70 N VS F¥ [T o T8
Ly > w0 b > (/3 o -
o W X =Z O oud o <L
¢ <t Z 18] [ o]
e e [= I >0 o
K 0 O O M (Dl -
W 00D <« | < (N0, T
0 o34 1St -
Lan R - R ] - ol 23 TH] 0. o
) O n ol o» 0. o =z
=z D0 =1 Z W [ashas Lo d e
P T D e > L0 78] %]
7]
L
23
o
L b 0 W NBN o w
W (] ] [+ N ] an N O T = <I =
N (N - Y OMNT (NTDNY DO I o~ o
e (NnNO [Z21,p Y] VivibeZ DN LHANG o0V M+ w1~ =
QIBRCVI o <ID e OF ebdDOODMX oINS X DD % wd =z
L3 - - L *
AAAHQDLASBSBBBAABPDquAH.nHAHD..n.QBBQUAAP Lagastact LIV} o
QFONT e S _JODCONZI OO CNE HIOM O3S, IO wn] - o
AQINTHANN M I T SN JOIT NI <IN IN™Y L dDIT O 18]
<5 0N \0 o [&a]
(] ) [se] 58} e
(&) [& [ &) o (]
w w [ 78] [%] v
(&) [&] (&) % O % R ]




F'3
®

ASSEMELED CODE

¥ DELETE STATEMENT FROHM

F'3

{B) ADDRESS OF CODE 10 3E DELETED

¥ ENTER

o0

e L1
Zzom
bed 27

owo
[s R an] ol

Ll
%] Y o]
w o
s qay ]
et

[
<L O

CLEAR LEX-EDIT FLAG

[an] o]

Y b e

0 Zo

W i

R L QR on D | TV

Lo Wi
i

o~ i
Q. WDl T DT <
O Lt (e (51 o b
ZONONDMOV

EDINT

DELTE

el
€8] O td vl
[} ik . i)
(@] el T o -
(&) e Ner 3 MOZ
w1 5 Lidb— (1 exr
us Ll > A o I )
(&) 0O - fan TR B~ 4 (o R
o e 0O W W
o CZz o 1= das] oz
(o] fon) Ll T 0O o
n MA o Wi>  Ze
> (&) A e O
b N T ml. (Y e
(o] m oL IO W =D
o -~ G ¢ o ST o)
Wz T v 0O oo
W i (& N o
GV i Owl b ad
Tl OO0 - M O o
A0l O 7] bafn] Lt o
uo. <N < > >
in et N
JON S S 1 FY Ll =D
Wit winy Wil Y «aen
oo oD =0 0D AT
<L el O I st 0O Wi
dedZ A W wne| ﬂ N
| |
LIRS Tl -4 B
te ] (s s B = ¢ ~
d NS d beild b (=)
NN & & <D0 O
SO e DCE N ] 20D

- : -
Ll DMl QI OM el <l L 2>
LSJ!L.‘HLASISLCACDA

_
|
|
|
|
i

391



ASSEMBLY FLAG
N
9
0
H
EDIT DATA

QX
(g Im s
SN J

(2 Nt Xoul

T ST fom o pm

TS0 UL
N O elud- il
ALV L IO

- i
g e =g dunlsnlvala®
NS DO b S
SN TY T AT

DELT1

i
L

*

Lt
(s} o =z
o Wi o o
[ [SoR RN} fa]
- ZY ¥ -
oOF 1 o &)
uwhy &y o >
[ 7 N UE1 VX R o
Wity b= b
1. IS VY 7}
wn o4 =z
o o o -
o/ L OO =
wi Wl - Lt O
m w cp =z O W
S K O 2 i
Dz T L O W X
Zow fowm | Ll o o Ew
¥  OPp Og T ouwl wo
= vl C o> L
O WLZT W 20 0 W
T B VN Fa S | s o S | (' oeT
- XD i D < S ]
&) = L X [ TR 4
Dol OO0 Wa O Weo
v My Z (4 - N =
- <{i » [a] ey
N T e N «OU) e LWLINOO
Z WO ML Oowo  wiuox
- ¥z o« ZO>Z  OpT b
=t L r
- ! - Pt o
= W Tl ow Mm e e
=z (R ol 56 T SSE  NT o W S TR Y. o)
n - TN NN
2O W LR WO,
HEOO WONG OlJarOa

i - -
IO INDOOAMA T OI0 IMDm
OOONINOONITNTONNEOOWV
A LNTINHHIATINTILTI T N

[aN]
[
s
|19
]

392



393

11t TE] Ll
(&) o 4
2wl <t (en] (e8]
= Ll ] L (=4
o o <t Ny - [ 2]
4 A YO R o B Pur W -
e Ol [an O 4 13
O W W L oz W = s’
DO = = W oo (@)
14 (&) < o o TR
=0 DO om -2 TW1 U S V2 N oo 3 n-d
LI oL o = wo %] ex!
ZUlOkex O u ewl ot Ll €
PR TN 0 o Z > - ]
oIy T O .44 o o
L0 ) O ey e wm o0
Ol b O — WY - ANNE T od Z
wo =z M O WVNL 0 ok
[7oRVSRRE]PUT B ¥ N T D <« W»n 98]
i o e o ZWwy =2 S
[TRES B ou VE R R} Wi O -~ wC< [ Lo R 8 4
M ODFTZ U ol 1 O o P
[E<S3NITH) Iy o pad o () =7 =
Faw T Bl 721 TR « 4 [ T VY T B S R 70 T Y274 W
< LU= O [ (78] no witn
o<t 0 & L. ity il oY
[EVN EY A A [CH ST VRI o« Y ez
7 e -0 ) D (e onNo = W
W <z <o o) W QZX we
> NODOT Z>ZW = % L et e W<t O
ﬁ &
) i - i
| & [N , e~ L S
MO Q2RI W T W > [ ] ul
ANOLNDG — OOQCk W Wm ~o -
TN QNN K X AN b
Ll e OO Ot [721%) S A Y
OORDO O MEION O < moo a0
i ' -~
LA IO I DT LA LTI O DTl DL OIIMOA.
T e e L A T ) b e ) B MONZOZOY .Sl
N TN L ADIINAM™ O I T T (N
<
o
-l
[ B |
Lu
* % % O

?
m
|
!



DATA AND DATA ADDRFESSES TO FILL GAP LEFT BY
D_DATA

DATA DELETE

SHFIT
DELETE

% % ¥ % % 3

EARED IN THE SYM30L

*EU PSEUDO OP IS

N AN E
E IS C

WHE
NG

IS NECESSARY
INCE THE REFERE

win

DTEDD NOP

DATA TO 3E DELETED

LENGTH OF

LDA LENTH

[an]
1
] o
[34] 1! [sa}
L L) [ T%]
=z Lt b
wd o
s L ¥
o ]
— !
b= (Y&} [asl
«T [an =
o7 ] o
Ll o L] e
a - b
o «T %)
[w] (& =
o [x'4 (@] i
=z o - | b
o prd
L3 [y [ oa]
o b o
(] (70115} <X <
o O ! © L
o b~ <
Ly T L o
MY (o] (54
) - m s 44 L
st} (e} w. o
| g [+
N [afd [ =
= [an VS > D
Ly [enlll} LJ Z
ed L <L z |
L] =T
L) s’
O Ml TNIMa OO
[N o W VRN Sand Ll S8 Ton] NN VSl o0
LESIVRES -2l T NEER Dol 1= s &30
N Z N A0OWNCO2Z20na.n

e Tl g &l wiWE] o of NTP S S0 g
LS -~ - | [ S
KX} T <F <X <L <T T < < <L <L <L <L <L
PSS b ) ed b b b O 5 O - N
N QN JUHAD <A N I O

|
{
|

394



81
pu} (@]
[»els'd [s4
=y () LS
—0 2y <X
g [t
= -d o (=4
(o] ) Qo [ jan)
5] Y mey
= 0~ 3 <t (4 =
o O > (] 18] [l
- g6l 72 NN Vo] 7} m] o [ -
<0 o = <T z Tty
ult oo b= T ] uid
(eal =4 = i < (e} s 4 V1]
Wz zZ (e — a. <I ()
o Zld o 4 (PRI <1
- =2z O ey [an] 73] LiJex
Wi o < (%3] i
w A bl (] o Lt e =+
-4 (U ¢ 4 o O Lt 0% W
Ly ik o [ae e [}
=) <D (D o (4 [a] -0
[ o} RAR N POV T o B~ ¢ Y g (&) 54 > W)
IO <) L <t L4 e
G NN T L o = ui Zu
P CODb (&) [FNES 1] <
et >OUNY o o b ol
fan] oD < T (h P=4 « ler
OO0 > hdo] Lt b il
[@ITRITRE o § Lol = S oo o o -t 0 uiey
ZOW=INN < 0.0 [&] (=4 Ll <t
Mt ﬁ‘ [ B ] —
§f = © -~ L. -
N N OO HANN TN @ St O N O
OO O coooOuo >l M QOO0 Mkl
QAT JJTOTT VT I 5 0O s

0wl OO O L= NWUL O «OO0WF W O

T b~
Q. <cx it

TI T Oi= b TOI T ONENO
T NI N AL 00 €T (0 o 6 o £ e T M INEQLL T T #T 0L

OO b= NN OO N D ke o Db b (N N 2D IO e B

3 BTN

DTDD1

(™S 3 ™V SN LN ™Y eI NS

*

DTDD2

395



INSERT DATA

LOGICALLY FOLLOM

DRESSES WHICH

EGU PSEUDO OP FOR ENTRY WILL

CLVED WITH
30L TASBLE
EQU PSEUDGC 0P LENGTH IS 7ERD

LENTH

o.m
Zd

o
(on}
o
=4 ¢
[E8}
o =
< w
n
<t 7] !
- < o
=T <t loYim]
[} w_l Ol
(LI =
b-d < n ab
- S - wE
(T L
= ™ - ool
11 =3 - ¥m
o wity o
ey s ne
| 1IN o V-
e e «  <f)
L) b 5% %]
et el - =
L=z QZ O
- i (&)
P e L ]
XY (NQ<Th (D ] W
LIS <IOW ool
Z DT LI L D
(= fus]
- o
= O O g b TINT NI ¢
an TRE e D i el O
YTRL ATV R T STRI FURNR ST 7 TR TED e an Do

Nk~ G- 3 & Z 3 o<
EONETaNWA +LEOOTNN

o] PAMD,AABAD.AJQJD»BD)BDJS
AT ATl 330
i
[
{t
-
[

L= G LVl ¥ RE Vo1 70}

BTEIZ
BDTEI3

IN DATA

ENTRY

TH OF INSERT
FOR DVERFLOCH
ON OF FIRST

~
2

LEN

-
Lo B -

NIl o | e
fored o e e (D e (3
L ezl Ol
e LI CY C05 e L e o
D.LZZDZDD

PAAABBQ:P

OONTEOTFOCOOASOONT A0 NE OO N0
LAY I ™™

BTEI4

396

JATA TABLE

AREA IN

EE

FR
LOCATION OF FIRST INSERT




Mt
Q.0
P |

JATA ENTRY TO BE

o | i)
o O
> | W
o
= x
W
D
| o
_ o
, T
M -
_ — b
prad (=4
| L (&)
d == ) ]
i ud n
v oW W |
vy <D o =
| W E L | o e
G D0 [
o Jn> <f [wed
O el Wi
Tcﬂnw p-Tin 1 F8] Lef |
| o o =
(MmO o -
U W b o
L. I %] Q.

a T T OT MoN
O 0 =l 0
A IHZ O Z - WO

DI DN
M g
(o ¢ o S I o
TV Z
b € LU S e
o o
OO ow
<TO oW
OXxorOZ
(N0 b Tt by

|

,

HTAEN 3
Lidb tid D he D

WA Z I ONIT O

LIO 1 o0 el el sib=(Ovd o0 O T

Laety 8-3he i~ O s o n I T o

L 2 e DN AT NEIND

i <I H
hlie e € Gosisal doals famls dual NTaWeatorYonlsa B~ Funlsolanlas o
= CY MY b Ci e QY e I e DA O (O D) e T

NS SN Ity D

sl
bt
Ww!
P
(]

|

|
|
|

TYed T AN

|
|
|

397



%ok ook Mo% % X ok % (N

|

|
j

DDRESSES

S
A

1%}
-
o
TR ¢ n L
IS (%) o
m o o = o
b o4 la) o
- O ) )
o o T - 0
I < ul e i
o > & = -
oM L O o o
= . o 0o O“ bt
> ZO < L] Ld
[ (75} Zl W (75}
0 e Ul e 2 7))
W >z Z = | <
oD ol Ll L
O e S B (LI O =
v Zom O Zz o feal i ] -
| ey W O e ol
(TS IERTEI| o e @ Z> 4 4 a4
b TN o 2 s T e P r wey 1 [o)
N e ten 24 oW ITY RS - - W Q
< OO0 we > 0 0z W <aIo <
> g ZD D Z Oz W sz

- -4 . «iQ. MO &
-t M o b =W bl a3 v 4
paf s b S (g sal YSISQ,J\ [k SN 7o o 7 BN anll oM
DZOW  LWNZ O ANCON »Y O ~
ZHZ X Dl TN N e ! NN .,AAW

N ~ e -~ L~
A <IN LA DO MO CIMLING <X < el (D)
Clm S VNS N AN - OO O O
th)CSLD\ALP)nHS!JLSJSA.LCSJ.LJ&HOJL

_
= i ™M
> = T F
%3] %] |2 7]
[ [ ] [Se I &}
[Z2 73]

*
|

%
|

398


http:SZ3,R.SS

38
-
o
L <y
[+ 4 -
1
-2 o~ -t
br.d o) O w
[l LD m
e oy <
o < > -~
vy =z 3
Ui [1d = s
L [l TR Wiz ()
vy s Z o
wo <3 - ©
e | W kit
Ot WY LDud w
o o =M [ O D S~
<<ZE WO WL Z
F40) T G T
b ol - L2
VEONFD Y w2
Wwoowwd wouwo =
L T A TURE -4 T
| o
o
bei
| LY (=4
I - B N N N
N T b FeE I
= Nkt NEOL O
o L e ODCIL
Zom »noxX nIZan oY
: >
AT LI LA L
OONT OOUS O35
AL ILN DTN
i &)
_ Wi
| I
‘ (&

%
e

W
(A>T >
O bt bm bt
{1l pm <L b
Gl DT
oy W
OO Lt
<0 HZ

HOZO
Wit O
o =
<L o o b
DY

Ll
-0
nzZoz
wooo
P OCI0

K

®»

¥ EXAMINE LABEL AREA IN PROGRAM

%)
n
!
&
o
o
[ 4
o
«<L
o
d
-4
”
M I
~O on o
MEAYT X
e JVE IR TRITE BT
Qb Db b
el <IN <T
Clbm e 0N I ED
I AR ]
n
P4
n
O
0

GCORRECTION REQUIRED

B
L
U

SO0 LD 0
N SOION
NN Jan

399



400

v 4
o
o’ (o)
() <
o)
4 <1
b -
p = bead [
v i M [an]
) %) 5
= wn PS o
b <t Nl pe
- - /)
bt = - 54 =
m b W = o
= 78] T Lo b Ll
O - - 0 l
[ <t p- [N b 4 -~
T %) - be aug W8 < i
(&I 73 =1 L = b (Dom O, ™ LN bt
Y © = w LD Z (0O ot b4
o O ) n 4TI TRR S
X ZOo r v L v Wiod O =k
QO (ST I <t bd =0 Ol -
) = - Y () ~PZD e, o
2| T O Lot B 4 TN | Y TR 7 B« 7 VU I
Zz Oz o TZO —OmEW  WWen
— 2% N < Lo | o ormon b
v u! WD T by C - w
NS Ok O = DRZEO b SOOODN SO0 W
CLIo s Z W DHWE <OCOMWCIOWoW W
T T W O =L QZOACOUZ MY o
o ;
F u! “
[TE a} <1
[N [¥3] “ - o4 _

b M 0F - O ~ool W0
O o L > > = T etlD =
OIS LIETE M O WY OO o O W T il ()
+ O ZWLIO QO [ RZQd WAL s DO LD E et O
*HZ T 0 LD s OZMNNOZEDRN
| i L { - - |
AO<IHOING > OOMOA OO IO <ol < <0
SONNOINT W OO S OOV - ZO0NT O IO D S
NI AHLNH™ (N LQTCJALSJSILASJLEAISAJ
I .

- ¥e) ~
=T - b
n W v

o
- W a




401

-
ol
(VAT
s | 4
o o
o <f «{
&) T b w!
- W ot D
L) it o e
(&) [rac 4 w < i
a4 T e |
b Al b=t
o -t d ot =
n OO Z =0 (] . =
mer oy aZO Pz oD
= b 11 TWwZ = o O bt b
o LV N - W < e for b
v o - 4 e T
e oo o e b T .4
[ TC = L b L —-Z n ot
= wo W = no (@} oo
o 75T ] o o = <t O Mo 0
i Lo | <C o4 O i O <1z (EY TN
- Oouwe’ ~d.1.4 [ [ RS %) TW - >
1t Ol et = < el T = S - s I - .z Wi
4 ool o S < ~ W b 0 >0 . 1t zZT
tl w -l i ww [¥4] s (] <L Ul 01 e [ aal
o WO b o © w ud - Z R VR TR YL T
L Sl —UiS o} fore W. Z OO S
(T LD T (6 7% W Ww 0w ow Zu oa W
o O O b b O . - A O = D o SV B
O - 0D =z 3 (o wo L ol e ©
(=X n=z [ Ltulex (7] o VLY O 20 Ok
%10 W W WL [ = L o oo mWwo ol
niey W r g o L 472] Ll e ¥ Z W = 04t b [
o'er TN W i | Y W < L Y < Y e e i
o -0 oow wig i o = W = 0O = Q. peltd 0 e
ouw oz v SDwx 0O W o Mo ecg ol e wo
€ty | T b W 5 O e T 0O R S S DR I >
(54 R o ) _ |
an o et oy NIz
ZU | LOW T 0 ol - “ v -
< T k- < DT ~ | | o |
w Pl D I = AP Eme 0 o o, oo ~
Xl [} Z  m BIGLY QOO0 «tn MmN Y
Y HZy o WO OTUOTE SO ey O Ol
(G et F EN R R 7} wd OWZZuw il NLZEL i nZ
= TE 4 ~STCITTTTF ,ZIY~FZ wo
TR 0 _ m =
—-dit (TERVE ] i < PABBBBBAZZPASAAAQ&PA%BPA
W - OO O E b b (AT QN T AT OIONITT O
Wy 0 £ | ZE AN A ONN T A TDO LN SN
O o 0o -
oo COw & o a
[ <l O O D SW i [\N]
nm W x =| L. b (o (<R
| = 7 wn
x.n-x.a.&.i*.#&.&.x.&. *..x.n.&,#x‘x'x.s ¥ (¥
| ?
i !
| !




402

[+
73] |5
[ T8 '8 Z b
[&) t ol
<t ZD -
o. 4 T - L
wy Q. w o
MW -4 [SR]
[F8] (&) (PR (&}
b ) Ol o o Z L4 =z
o o Jul W 1w Q. b4 o
4 L. o Z w » ) o -
[ e O wl i (o
[EF} G Lo <X o7 [FS} b= Lt
el o <L O T a 1 s -l
un oy [ [«44 - Lt
r own n -d vz W u o)
- L % 0 > Z = o
(Gl T3 4 ! (TR -l prad .
Z OO0 o cD N D i U (o]
ul [} [ o o} [en
-l =T [ wmno [P S 3 (73] wny
%] < [72] bt Wl [75] X 78]
[C I TR TY Ll o (PR . T [S8] ol 5%]
[ 5%} (4 tH ] < o (6] I
ISR Y bl w [onaW [S€E 7o I NERR VR I [sn] =z [on]
e L= ¢ Q0 g ¥ o e (ea] 78] ]
I < [8a] <D —>Z W 2z <t wd <t
[ o b [ b=t = Lo}
L L, o~ i LS i S
0.0 ~&0 0 (NO «d w0 -~ M _‘ [\ oo o8N DL -
wvnLIVYY L Q. D‘S,, [Codn W G- BN & SR S R (Y SN g o B nIc W ut
rmoh T Som Q0L DO E AT OO L il
bl Ob = Wil + 0L L OWIEZZ DVDUVVTL DRIVILZE & LN 2Z o (0 e |
Z7ws7..8u,, b D b e D T O L e (D FRF? W=l T L =00 e “
{ o - LS i - i "~ L |
KN L QL el <L O L L L OO OO MO QOO X0 MOMMOI . IO MA.

= (N Y b L (O IO = O I N S5O FTO TN LN b T OV (AN e 250 O NS () o 220 0 e B0
SILSJCSLJLASLnbASJLCASJSluLSJSJ#LC&HSADJLSJLSYLLSJ

I
W

FSP3
FSPL4
FSPH




ABCR
ERATI

D CODE ADDRESSES OF INSTRUCTIONS
DIT OPERATION

it

Q.

Z AN dN AN INTIT N

ASMAD

=
ol

STOR

DDRESS IN SCE
GHEGCK FOR UNDEFINED REFERENCE

ADDRESS OF SCB ADDRESS
ADDR QOF ASSEMBLED CODE ADDR

LS

- N M N
wouwa oh o

>

fu
~

5

ADVANGE ADDRESS POINTER

i

-

vt UMY 0
0.0 0N O
CEETT IXNVT HESIIET
QUL WL $ Sl Witunn
N Db b e (T 8 L b b e T Y

T T 00 (0 T L <T O <TI0 CANI N NIOL O,
COF Q=D OINTF OO NONTE S

ASHMDT

ASMD2

|

M
ﬂ
|
u

4

403



ORG 120008

INTERPRET AND EXECUTE EDIT INSTRUCTIONS

EDIT WILL ALLOW THE USER TO

*
*
'S
.
¥
x
X
%
* DELETE  ANY NUMBER OF STATEMENTS IN THE PROGRAM
x INSERT SJETWEEN SUCCESSIVE STATEMENTS
M REPLACE ANY STATEMENT
X
* THE FOLLOWING OPERATION CAUSES STATEMENTS M THROUGH
* N, INCLUSIVE, TO BE DELETED
»
* /DU(ELETE) s M (4N} (5 V)
* IF ONLY M IS SPECIFIED ONLY THAT STATEMENT WILL B8F
* DELETED. . -
TTFTIF M > N THE INSTRUCTION WILU BE IGNORED
»
* V IS THE VETO FLAG
* WHEN SPECIFIED, STATEMENT(S) REFERENCED 3Y THE EDIT
* INSTRUCTION WILL BF PRINTED. A MESSAGE WILL ASK THE
% USER IF THIS IS THF CODE T0 BE eDITTED.
% A RESPONSE OF YU{ES)Y WILL TONTINUE THE EIDT INSTRUCTION
* WITH ANY OTHER RESPONSE CAUSING THE EDIT INSTRUCTION
* TD BE IGNORED.
»
%
* TO INSERT BETWEEN SUCCESSIVE STATEMENTS
: /TINSERT) yM(4N)
* TF ONLY M IS SPEGCIFIFD ONLY STATEMENT M WILL BF
* TNSERTED. N IS AN INCREMENT FOR MORF THAN ONE
* INSERTION 3ETHEEN SUCCESSIVE STATEMENTS.

14%%



RESTRICTIGONS ON AN INSERT

® XX %K

1 ON A MULTIPLE INSERT (N»>0), IT WILL NOT BE
POSSIBLE TO ENTER BO0TH DATA AND MACHINE CODE
¥ TYPE STATEMENTS. 3 '
* 2 A MULTIPLE INSERTION WILL BE AUTOMATICALLY ENDED
* IF THS STATEMENT NUMBER OF THE WOULD 3E INSERT
x EXCEEDS THE NEXT STATEMENT NUMBER IN THE PROGRAM.
. |
»
* T REPLACE A SINGLE STATEMENT
: €
M /R(EPLAGE) yM{,V)
* A MAGHINE CODE INSTRUCTION CANNOT BE REPLACED 3Y OATA
* NOR CAN_A DATA STATEMENT 3E REPLACED BY A MACHINE
¥ INSTRUCTION.
* THERE IS NO MULTIPLE REPLACE BECAUSE SEQUENCING
"X INFORMATION IS NOT AVAILABLE™ o
*
* THE END INSTRUCTION WILL TERMINATE THE CURRENT EDIT
* OPERATION.
¥ /€ (ND)
x
:
EDIT CPA SLASH SLASH PRECEDING EDIT OPERATION
JHUP EDR1 NO, ERROR
EDIT1 LDB MIIP
Sz3 MULTIPLE INSERT NOW COMPLETE
JSB ENDMI CLEAR UP MULT INSERT
__JSB EDCLR _ CLFAR €317 VARIABLES
— —JS3NTBLK NEXT NON BLANK CHARATTER
JMP EDR? NGO INSTRUCTION
LD3 EDNUM £DIT INSTRUCTION NUMBER
CPA O DELETE REQUEST

S0



24
L o
oW 1%}
= [ond
D b
P D
- 2z
o7 7a}
- (VI
w D e
pd [w R £ 17]
4 Ll Z
[«

£
7
Q

O i Wil

PA TR s 4 &l e

<D W=

P d & IR0 LIS ST¥]

cuw & o

<L b Mex
T

SN o) G0 el
OZ OO Ol
ZE83N e e T e AN,

-t

-

N [==TEN oV

- FC B
et b b
QN O N
EaEEIEoR

P
(o)
=t t o
L ! ul
< o4 Pea)
o tud o =
Ll m ) w )
a.m b8 o & z
o o b =
™ 24 o | =z
o T m =z wZ 0 (]
L <O w [
oz = b L b
WoOer o (PR (&
-3 X et < o
Q3 i - o O a4
WOO - &) -l W P
o YO TR SN o e %
i (0 e wr ol >0 X s
WO 5 e (&) —
Wil [ 720+ 4 ol W
Z6 =z Zlies O X L
2D b4 DL e O &Y
> i & 1 d
iy M - > N b - T
m O O g
it il o2Doul o
a4 L 2 > d <t
w~d -l
o -+
TE | etmas LY. =
NDO @b ™ O =D MDD
HZAWE - (¥, b 2 (YT
OOOOEZRCOOAOLOY W OoOOunooD
b1 EE.EEN

WLo W= LI Wi el

| - i
ADal <<O DO OMA A G Q. AL WHIHMNO OO, NEL
FOLIATCOLWMEOFTNI D IOA S JenuzToasnm

TILODOMIT O THNITYT

EDIT2

=3 A OO TN SO

o
T

EDIT4L

%

d

¥ CHECK RANGE OF FIRST NUMBER

5
b =
o ol <1
o oW | o
o+ | &
¥ ¥ O
[» E x4

Z | &
=z
e =z

z | -
[ N TY} V&3
U Fr | o
o W] oW o
= - o <7
S o |3 I
A S

»w |z o
| o
Z b | b -
W = | =
= o | W o
utl Lt T L
- wl o
T =
- 0 | S
R AR =

- 0
S om
n - n
¢ o | wn o
- O | o= bt
o | w
- z
= L b ™
-0 Y Y

= fin o) [7s]s)
Uobed WY ergrlug

- i -
aptantentun] sWaslosYusleals R
CEOMEOT NS
O™ IO N™

406




CODE BLOCK FOR ADDRESSES OF

SCB

NTRY
MENT NUMBER

~
-

NEXT
RANM
STA
uM3

"N i
. nxT
LIO  uiid
o £ b
(ONL
O Z W
<L) 3= <L)

ADDR OF FIRST ENTRY IN
5
N

o P ut
> e o
bl = O
eI N =
T e=IF )

FIRST

TN T IO L DT O

o4
Y]
oo
>
D [s4
pried 3%
[as]
[ d =
=z jaus}
Lt z
=
L z
e oul
<< e
e Lad "SENN Y]
_ %] Qud
s SR R VY
b [o o v BN
—t [ Lt
jn} wnu o
us =t
-0 W
Lt — 4
70 =
o LN
-t QD
te WIZE =11

W AONEINE ©
U el call *21 ol VE | o Do B g
DT U e (ORI 2

[ -

OO MO I <A Mo m

g

F

v

T
MINATION

LIS 3

S b (NN DN
[ g ISF < JVRETEITR]
N od o b= >

i ol
- | e
el PO

= L2 07 O\ e D

NUMBER AFTER

o

-

s (7 e O 37 et L 144 €0 T (N 4
ZITOO OCOLOOMREOCHFDIMZOZDNG
MO WAL eU! sl (A Z LI Z 00

H Ll
O OMA <0 Om

-~

0. NI <L

NS COOREMONSNS e S T O0. TA S =-XO00 T T OUENnn.

BT N (& R T NI DS 4 )

"EDITS

TTEDITe
EBITY

EDITS

|
|
|
|

|
I

QI AT HATIAODODINIIO™MOTIOINTIN JO
i |

EBITQ

407




STA DLTLN DELETE LAST LINE
S$TA SCRE?

. J4p EDTL?

* CHECK FOR MULTIPLE INSERT

EDTL0 CP3 ok MULTIPLE INSERT
RSS YES
JuP EpT12 NG
LA NUM2
S7AsRSS ZERO INGREMENT
Ji4pP £DRS YES, ERRIR
kgg_§%352 INSRUCTION AFTER INSERT

. L03 8,1 STATEMENT NUMBER

* UPPER LIMIT OF STATEMENT NUMBER ON A MULTIPLE INSERT
ST3 EDLMT
CM3, INB
ANB  NUML
ADB NUMZ —  STATEMENT NUMBER INCREWMENT
$58,RSS T00 LARGE
JNP EDT11 YES, CONVERT TO STNGLE INSERT
LNB NUU2 PREPARE sr TEMENT NgMD 3ERS
CMB, INB FOR _FIRST ENTRY OF TI
A08° NUML INSERT
STB NUML
JMP EDT13

L 3

EDT11 LDA .3 CONVERT TO AS SINGLE INSERT
STA EDNUM
LDA .40 WARNING TO USERS
£DB EDM1L
1S3 BPLN
J4P EDT13

¥

TEDMIT DEF ¥4I

ASC ZG,MULTIPLE INSERT GHANGED TO SINGLE INSERT.

80%


http:ssa,R.ss

'S
'S

* EXAMINE VETO FLAG

LIST

I

"
~t
o

[wnd o
oZZ

oYy S T
ML, T
N il o TS

i

v

ENTER NEW E£DIT INSTRUCTION

NG,

]

-
A ]
-
b
&

e
-
o]
G
(Mo
=z Z
(] Y
|l SO TR
o w o2
tad LU
b A O o e
-t Ok -4
o ot b .
> ows “1
=z . (O 1L o
— et
TR 4 ) b
[+34 ) T - bt
- LI -
| %2 [= -l e i
b =Z g
L e il L ot
11 T < (1 le)
= e Ll L
=z e
[ S ] e = (]
Y edliiba <1
G. NCOOP -
W - H U
o E- A X o o S
— 0 HOC O -
Wouw oL ono L
WH\HY O > <y )X [20]
! i
| I
I ] € i (ol N
O O LI, [t
AT T M O
LIMQDDW DO DX
PYULWZZNZONW| ainz
I~ w
L L <L O T MK OO Ml O MM Q. O
NS OO0 e YO O N OO0 ST
AT IO B LN I TIO™ L) T
{ |
N
=4
b

'

VETRQ DEF *+1

» 00 YOU WISH 7O £DIT THIS CODE

ASC 15

O\t N

DORESSES OF INSTRUCTIONS

CoDE A
EEDIT

LED
N THE

J3B ASMD,I

U

M

e
il

«<Tid
e
Lz
L

i
&.n-,wruv

409



Ly i

P iad [ =

[T (@] 1Lt

~id [&] (7] >

Ldict w )

(s} ¥H] o SO D
L] N wll =

<1 o (TS T
1l (&) oy

m - ~ N

(o] [72] oXuwdy =L

[ W'e] o
T L (] [T

(%) O <l O

NGLE DELETE

S
"1

L

«i

— OO
3 ot DS
e i

EONUM

S
FLA

Brr [0 QWF

E
A
G
0 o
ADDR

A
2
5
’

- O =G| W

O Oz <Ol

il <l o 5
(a4 (15T el latist

o LIS 00
D KGOl
e 0.O> (NI {3t

ok

TL [l -

W oo «=o o
AN W= e
QUG E VO N LW
SQEPDEV.DV

<N

Cod—-

ST
et
p X
Cloy
SR

W t
o
W =
D
-
/ >
fan)
W S
| ]
i m
[N 75 0-3¢
> W
- Z
mbl  rn W
=) O i
uiy o .
5T o o
! oy v
gz TS
= o =
(sl - o
N O ©
Ol W
EE O O
Dooul -
Ty
bl 0 Z
Old < Y
[ S0 o S e
w2 M0
O Cuw
2N <GSy o
i
- o~
1O ke -l
- oo
b T 0
N TuZ
EA.BJ%C

ﬂnﬂﬂspnsgapnj.ﬂp.ﬂﬂ dJAAD, monNo. Q:AADUDJD»

o
~10

ONSONSE OO TN T OCOnNS,
HTIYTINTINAT AT SO ™D ST

EDT14

SINGLE DELETE

DELETE INSTRUCTION

¥ MULTIPLE

EDT16

[+l
s
m
x
jan ]
prd
-
=
18}
=
L
—
w1
-
n=z
o
-
w! 718
bown v
e} -t
—t w
L B¢
[ b T
(o o ted
Ll T O
e (23 % )4
Q. e
— Nl
[ )
T N VS RS
jeo ) ER k] TGO
-z (&Y =)
N

410

NOWDZD O

LYo 4 FRio= Yo b VY
S i Lol
IO OCTO0 R,
O IS O3T OV
ﬁuAuJSTPuASJ

_
|
{
,
W
_
]
_




ENT

ABDDR OF FIRST STATEME

foe €
[21°%
O
(gl ™

RTR%)

DELETE

(]

OZwn
L Ot !
[RRY ]
-

Lt
ol iy
Zib=~ ey
[l 7a Y] 8
-z
[l v
= )
il O
Ol
Ll T 7]
oy
o>
oo
bt (N
[V s g =]
- . Seni o
WO ex
QZ <N

|

|

|

|
ol ed
Lo !

[ %)
b o
=z Lt
! =
= =z
!t —t
b [e]
=L Q.
e
(%] -
<1
- (&}
Z > bt
Ot >
—Zr T8
— —d
O
N 21T
L Pt -
Ny O o
W =i
b
> Wt
it 4
Z0 ) <
a O N~
L L=t
OZ b K~
- O O
N ey i Lt
O N o>
DL ZWO<t
I Li~ZW
-t oo Y

£

T
SSEM3LED COD
NEGCESSARY

EN
A

M
N

CLEAR BIT 15 IF

[aV]
-}

ofid L0 O

bt LI DD 2 0 bed 2 0 o [ e (N e €T
O+ <D et O Wl
I NOQNE NN NIUILIG > 0l

L a3 -

-l
L
bl

(25
(=3

g‘g RESTORE B3IT 15

THE
OAT!

XS
-

[

-~

C DELETE

LAST M

ADDR OF

MM OO T <I MO DL et L0 < T L O T
OO e N Y (e e £ 57 U e N 6T b L O T e
A DS T NN OB NI NN TN

[
e
fos
o
78]

_
|

|
|
|
A
|

M C DELETE

ADDRESS OF FIRST
ADDRESS OF SOURGE CODE

S b
Nt OO ! -~ o
oY ol it
o0 =00 N
Tl O <IN .Jl.
O WoOo «Oum

LT T O T TEIDMD
= OIS O =D A D
O I I

T EDTI8

411



b
~4
w
=
[ER]
%)
V2] Ll
< o
o
T
o
o4 3]
X "
[en] e
< idbd
~t
~ L
w ,Frnu
<
wd ﬁD
[T s 4
= WO
¥ ow -
L = W
v X Zown
" o IE W
<k O e o S
M~ N

O i

B f T vt &

WNo  ian +
b—Nu 4 FURNR VITFURE S 4

9 _
e sl o 20 {7, Lo N

ONT N E0Ra Y
AT OK ™

|

|
|
|
|

%

COND WORD IN A TWO WORD DELETE

ISZ,QADRZ

¥ CLEAR S

o
u po o
- Ll L
) o - Y
~ L el b
o tu CL 4 n
w o i W =
b oD 0 e
Zul v ]
O o zZu! W ul.d
- Y bo o Zo
- o W O
&) z O T o 4
ZDu [T = e
oo o Db < Z
- L Qe o o
NI X b e &
WZ =0 e O
ARNO W X r Zo
ar oz O O
L JTERERI TN ) L
ZA4Z o O W
M e L E b OV
sTWT O =)
WO>0 = [ wn & o=
AT D CZWOn Wi
OTNE Z ZOrZa O
I
”» .S "
[QA Ve w4 LBVt ,,.L = R R P |
O o Y D O

C o 27 e b s (/Y e b YT |
LW ENU VN Z ~ QSN 2 Z
DVLV:VRC. EDASF

KAE?BPBPP3SPAABP
db () Y e 3T AN QAN B D e (N F
GSLASJLSJCQ)LSJJ

|
|
w

EDT19

412



'S

% SINGLE INSERT

x

o

24

tl

[%2]

=

-

Lt

-

N

<l

P 2= D

=
g

m O

e Lt
|

<< N

0. Nz

o™

bal

o

(-

o

w

L3§ SC3E1

EXISTS AT POSITION OF INSRT

INSTR

JSMP EDR7

(-
D_r\
= !
T [ %]
oo =z
LW i
no
zy [ o
-0 L
=07 3 b
Wz o O u
0 e O <
o WS
Lt pd uwz B FR B> TN
= ) Wil RHwou o
0. = O O O
=z ) oo wn o
- (&) miu) O YO o«
oo [STen] TS Ok (]
L (o noOw = Wz
O - [&Ys 740! Tl I |
€ o 7] O Lwun o foul
D z oo "R e B - 3 TRY G-
(@] L] U~ L (Db L
3 5 0 > ooz »v
b Ll MUz OOMHZ
In'"feab~d =z e Z b4 DL I
O Tl i [s%4 ! ]
e 2 1277 T W LIS L
NS (O NZ_ Iz PPaOX S
ONOUS It ZHOO Od-U O
L s> XM T EpinZ X
~I L] ﬁ [ T
[ ol ST o ¥ 3_,’ - ZO i~ - CNEN
Ot N @ TANLEZ 0 O =
ST N OO OZO S LIS O Z M
DUV = S VI W Z e O
L) & O W QY WS 4 0 D N T N 3 (00D
- - | 1 LS
M el I QTN MM O MO, D
(N OMT NTMAS DN OCN.INUVT WD
JLSJSJUJJJJJLLJCJJJJ
oo™
[\ VI oV
b -
o
[ER N VY

»

_ENTRY

JUMP TO LINK EBIT

* INSERT

o> W e
W N
0.0 0
NOZTO
W ™™

[salefsafeale W
Oz
—dd ™™

413


http:cFVE;r-MOlJE--cnor-�-rrF.FORrTNS>::.IT

»

: MULTIPLE INSERT

EDT24 CPA .4

i
{
1
|
|
|
|
i

%]
® VW

SC8E1
EDR7
MIIP

siesinvive

®

* RETY

CEDT29

TIPLE INSERT

L
S.
é gNT NUMBER ALREADY

MU
Ye
~NO
STAY
DEFI

£
NE

MULTIPLE INSERT IN PROGRESS

XN FROM _SYSTEM CONTROLLER

MIRT

~
MM sm
DN
mMNy MO
QO O+

l
|
|
4

T &
3O+
Rt

imn
j-)
e
N
U

$

EDT2¢
EDT2

[T T ¥ T Lun 95 Run Jow)

~N O
N SN OO N M

M XIS
Z'U » g

|
I
|
i
!
|
|
|

M

o

-4

™

m 1
Kom b e e VI e D e G e L N IO e O L A LN G T 0O U LTC

ZVIVIVI=OEANOZIVNVIEVE~NOEX UVE~-MINOINOWM

VWRRUWOOLLIVRXWURP DWW DV TLDLI W
H -t
WOHOTE ~ ZWOO~OrT = TN TV I

I Cy O

N
bt (0 bt el

-

ENTRY POINT DURING MULT INSERT
ASSEMALY FLAG

OMMENT
TA OQ M C EXPECTED

C
DA
YES

M

~
l>--|b-«e\4

MATCH BETWEEN ENTRY AND PREV
YES

EDIT INPUT REQUEST FLAG

HU)H

E CODE MULTIPLE INSERT

T SET FLAG
PREPARE FOR MULTIPLE INSERT

STORE CONE

AN



%

¥ REPLACE

»

Le!
(o]
(@]
(&)
[
IR Lt
(] [}
= 0
- =
a. o
Lt 73]
0/

-
wz, o
£0 Ly

¥ =
ol o=t
b= €3

< W
Lid e
Z0n o
b~ (o]
0 U

[F8]

WoZ Ul
OI_ D\N
(TRt
(L TR aIal Mo
30/
OZoeo
< D0 O

|
- | v o
W oo ™
e8] Vate 4TB1 Vo] s
oOnaanno
D\C,PO\_L

LY

Duﬂ.D..OOAHD LL L TN OO TN NN LA LM

TION

DATA OR MACHINE COCE

A
HINE INSTRU
\DDROF CCDE TO BE REPLACED

NO
oAt
MAG

(&l

bt bt

! o obee (3
Wi Wa ool
NI = NHHOO S

[
boo S
amnD
Zuit,
O O
-0l
BN &
Doy _Jw
oL )
Olt= 0!
Wo>o
winus—Jd
[A- T s Wa s R TR
MR T
DOWWIO]
oy N
v Y
T L
[9:8 I VAL
ow TI
=D T

bl (3L Q) WO ’hJNnJ,n\u
Ot JZARIO<WOOWZILIQUILIOITD
WU Z T > Tt )

U 2 XN LI LWL (303K i)
R Y7o T TR A VLS O K

-~ e |

i

b e
zZ
!
=W
==
O
o
i
[ ]
o0
(]
<5
b L4
g Z
[es] 2]
—

i

07135

Ll

LETION

D.

- TR
Lildn
- NN
=z =
[FEE<S TN
= oo
TZ o
OHT O
€y b= TE
oren

ol cobo o
MU
-5
[ 70 DY N |
iiers) o

B 2 d b e T2 Y Y

415

[59)

{me]

[wo]

&

[

zZ

L

=

Ll

[&] >

(=4 o

| |

[+ 8 P

t) 78}

ol >~ Do
- [0 ood

=m o

3 zZ0

[ 72288 ] tdtad

nn o

<N Ol
<< Ok

L. e ) L

oo VRV
[o AN TRER S ¢

TO ZO

-z O

(S} o

ZOoOwm «L X

—
MmMT el N Qo
Mk MOCL! O
—Z OAmZmom
CUNOFZ DD T0O
i or..:\uiu7._aumDanu 3N

I,I

5P919P3BBAAA3P

ONSNNT VO J-ONNANCOLNT ONTOQAINT QL S OMND AT
LS:JJSJSCC%\\JJJJLLCD JCD\JLLCD\-)LCJJJ{LSLJ}

EDT29

_
_

EDT30

.




EDT32

in

-]

~ Iz

SN =]

£ 10
lx

%

CLLOr Lurrauvmanr

[N ol T Y IR

[

m

¥ DATA
®

EDT36

Wl O

e I DA

D3 ZUSRP SAVE PROGRAM POINTER

7B ONFG3 _
TA ZUSRP EMP VALUE OF PROG POINTER
S3 STCD,I  SET AND STORE CODE

DA CNFG3

TA 7USRP RESTOURE PROGRAM POINTER
MP SC3T,I

DB LENTH ONE WORD DELETION

PB .1 REPLACE BY

MP EDT32 ONE WC2D ASSEMSLY

S3 SYPSN TWO WORD ASSEMALY

SB STED,I  SET AND STOPE 5J0F

58 YINS GET NEXT ASSEMBLED INSTRE
MP SCBI,I

S3 CMVE,I  MOVE CODE FOLLOWING INSERT
JS3 JUMP3F

S8 JMPAF AND EDIT CHAMNGES

MP SCBI,I

NE CODE REPLAGED BY A COMMENT

DA ASMEY

S3 SNGAL SINGLE DELETE

MP SCBI,I

NT DELETED

PA ZERO GCOMMENT DELETED

53 “—YES

NP EDT36 NOy DATA DELETE

PA B COYMENT INSERTED

MP SCBI,I  YES

P3 .1 NG, MAGHINE CODE INSERTED
MP EDT23+1

MP EDT36+41 NO, INSERT DATA

DELETED

PA B DATA INSERT

S8 DTDI,I  YES

MP SCBI,I

9TV



%

REQUEST
EDT40 LDOA NEXT

* END

'

R
T
I
EDIT FLAG

E

T

T
CLEAR

=0 0. (Sl
LINNO. b
KDODE o=
O LIN™ LIO

Esdanlagenlasglen]aW
=N A F
NS ed ™™

%
3

¥ CLEAR EDIT VARTIARLES

MBLY ADDRESSES

ASSE

Sy NI N4 S S )
Wbl ey dZ Wi
3TN OO o b (S O D b
NN T W £ I CI XA O LI
AAWD?DFFEEMMSSSV

=
L e
oo
Vo33 (N
72} (N
Z A= bl
OAI RT
I
T.

[&] (nar
b= (OO
< Xl <IN
ol W =z
Lild JIEO0OW .

AUIZIL DD
el | Ll ol o' 2
ST TRNT TS g BN
O AZ>De 0w
OO s 270
OV Z IO

< o O
b 2TV 1o’ o S0 41T
o wd  TDOULILL
o lW>»EN aZ
B ek e b i bl
Lt LU b 0 T = T
V) ed e P <L (L L KD
DWW IZ D
<L E O <O 3157

|

8LOCK ADDRESSES

- SOURCE CODE

[ali-e g Ll o

YETO FLAG

PBBBBBQBBBHBBBBBBBBB%P
©) b e o from b o o o o o e o e e e 27 e e 357
Z O NN UNNIIANUINAWVHWNIA™

a4
-t
(&)
jam}
» ¥ Lt

417



418

b
- o
= -
11! L ad
e 3]
" oo
- 24
=4 b
- 17
= 7 =
o 4
- =
[ bt [ =
< | o — o
te ! Z i (o4 o i
] = o o 4 wi W m -
Q. o N0 [on] L= B ]
[ Pz b [ e - 1% s
O OTOY oo W w Y
— | ST b 34 b4 z (o} b
4 - ¥ Ol o w wn
o © L Ye prad - o =
w b v o o i Ll —
e Z Ol L) — O v
= pd 8 bl T2 T - 0 . (o
<t =W -0 ¢y Db~ -
-4 LD L 3 b i Pad o
= jpan 4 B el »n b L
Q [ OO - O P )] - <t
Q.ul ZRIRX Y (AN » () o
w bt d UL WOz Zuio [
< -0 O 55 2 bt D - z
. Iz < —
1L £ et ) W
WS e tut Lit
(@] i - -4 (]
- -l oW = ¥ - -l - Z
L oMM mD 00 = < >
> THY MmOy Z b O] - T NTETEIN
A - I it M+ 0 - OO N (x| M
o7 ,.,t) ¥ WlUZW= Ll eli>> LERTUNE 52 % L)) % et
o ] | ! ;
TR o s O.NO OO MO, << N0 OMmD. <A, <D0 W <0 e
! QLIS VNEZNT L. OO0 33T D E, Wi QM= W
v W ZAMTMTMSO ™ IOmNT 307 O J05 O
)
L = p¥4
T d &) -t o
© Ly - o o4
| w o )
&.n.&.&x-hx.t.*.vv % * L 3 % % L) ¥
i
|
|




gl

20 e

%2113

OM UW>

TLII»

EDRS

O KL
»vim 100

O

200

iM%

»O L

Qe

m

XOOQ

v

m [T

A
PR2 STATEMENT NUMBER OUT OF RANGE

ILLEGAL SOURGE TYPE ENTRY DURING EDJIT

6TY



ocy



421

[

[}

o >
= w ju'd
o ~
[l [So] il
- Z > = o b td
P o i ! i Iz
o T o o - Tl z
Lt -z D > O O o
a <1 i) ) - TR T R S Y
o o © O Q. <en o of

wied tad <t z < X T w
fom 0. < [on) w -0 -~ w d L
- ow o Y L) > bt o o, -
o o © = b W - Ol (&
w - O i x o <
—=O —L_ - [ U | ud
=z Q- O O O Z owp a
<< w D Ll Z = S
o oo a0 - >0 =
W Ol (@}4 Iz Z o L. e
z Z 2 Z O pio BN < S 2T} -
i - o T o = o
o MO WD D W We ©
o oY T KL [ Lo N o] > 0. N (e
o O i) LI OO L > U [
=z (Y YLl o p- t— b <The 18]
- -0 z
pan D "
o o
z zx e = Toa]
(- L ot Tt o3 - o OU N
- b 4% DD L) W e O
ty) L wd S ke - T o VT G o T o W V15
o o> )2 —HOWOW 0O > XU @ o
o oV 78] &) il ! e (SRR el TRES Cu It}
o o | | o | -~
a O oan, IOAOIING O amaRoon
w O Wk OFX LTNO0NE L OOLEONT
O z O o O™ IE™ PRI E 1T {7, 0
o oro. pY4
baw — T - O
o o oD (04 o
%) o™ > -
o fun
W ook % s X Lilde % % % % % L % % %




ECPT1

CTTEDPTH

DR MIIP MULTIPLS INSERT IN PROGRESS
78,258

MP EDPT2

13 ENMY

38 ENM2 5DD INCREMENT -
TH ENML NER STATEMENT NUMBER
FOR STATEMENT NUM3ER RANGE

M3

D8 EDLMT UPPER LIMIT OF STATEMENT NUMBER
S8,2SS IN RAMGE

J4P EDPT2  YES

JS3 ENDMI NG, END MULTIPLE "INSERT

STA EDLX CLEZAR SOURCE CDOE FLAG

LDA .46

LD8 £DPTM

JS3 8PLN

JMP CNTR2L,I RETURN TO CONTROLLER

Sl ES S

ASC 23,STATEMENT IGNORED, MULTIPLE INSERT TERMINATED

'
E'S
'3
: CLEAR CONTROL FLAG
E

__EDPT20LB
JSB ASSM,I  GET SC3 ADDRESS
J4p enirt,T

¢y



AITH EXISTING SOURCE CCDE BLOCK ENTRIES

LINK INSERT

LI

2l
P
78} S

[ o =

L el S = L zZ=

U n oc

Z n = W 4

2 e [
M — o Lot
o> - rules
N =X > i il

o ul DZo
Za 2z =z Z-O
- B o

zZ =z oz H Lithe Ly b
[ ot B o R O mZ oK
[a'4 ﬁ! b PR PY
Wi 4 DEWNWN
N> > g r ZLinz
ZuW W o e Lbd 4
-2z oa T\ T O

- pid ST

Wi W ow m LN J
o 0 o ! o<
Ll —

Yy o o b= O L
[ion.Y oo T oie B o | IO >4
00 QO o e b L D
LSS S G 4 NNNE

[y}

-0\ 4
L =118 L Fan BN
sS4 FiYan - Ol
MOt Tk OO

COM e »n LOe Z 000N

LS 7o S Gl v o e et
m i

A <TIOMM XXMM T OB T

ZedD AN LN ) ™D

ISC3

423



IN PROGRAM WHICH LOGICALLY PRECEDES

;ODE

oN
NE

bt

NOT FOUND

E
T

Loz
Ot
OLIFE
(SR |

(3T
L
“nowm

<L ND

ZZ
b b )

L)
(o’ ol O]
[Tan]tR}
oo
[S-do

ADORESS

SAVE
2 COMMENT

e M

wid »mnZ »n
FZonzZuwnz
OV
ASva«D\GﬂX

MACHINE INSTRUCTION

DATA

ZEZ

(a1l
>}

OF PREVIOUS INSTR
qASSEM ADDR

INATOR
RE

\D0OR
ERM
f

A
T
Y
A
R

n

2
SSE

S

g -l
12 %)
= Z - Z
Lol Lasa IS gL NG o S}
R,Mix o 30X

PABBPDJAHO’APAP(LBQ,PB.APD‘
COONII- NN - ZO00 T 0mE
Z A dNTDHNDINTINTIN IO T ST

7
|

XINS
XINS1

[4V]
73]
=z
i
>

|
|
|
|
|
|

* NO MACHIMNE INSTRUCTION PRECEDES INSERT

-

NEXT INSTR IN ASSEMBLED (COD

INSERT
A
E

FIND
AFTER
SAVE
STORE

W IND =~
F (N N
LZIZu
Z b
> 2O

O men

£3= (D ¥ b (N
CSJJSJ

:
T

424



425

OO «O »
[aalededmEq ]
LN E-m
ZOD 00
R NN

MMt mma.

O AL O T
OV oDl T
D=7 TSo>n0Z Oom
CANDH NVECDEOZ O
NI XX T el

M3
I,I

T Y «f T T L T (Ol (00D TRt 0L 0.

[sa]
[ 78]
=
i
pd <t
(@] [
4 P 98] (%]
- ke < o Lt
< O [« (€]
o | o= T O - ud z
=0 e t— o [»%4 m -
Ol OO Ll [vag Lt b
1) o = 0. %) b (&)
- O = . 7
vz | b ud - i o bV
Wik XA, bq T - 78] = =z
Y O (sl =t 5] m o ot
Oy, LD L] < bt wi X —
Ol TR o e o o b <t
L=z | Yo = o - y. =z o o
W et Zo o O 4 ﬁ - 0 -
> T = - ui ) o o L
W ol ol oo I N N 2 =17
Mo ey o o Zoa W £ o »roa
TOH kUl 2O - o i Wik N
B O DD (o (] [ Z oul D
Nl bl ™ Z il b ! o0z (T
N - tn = S LTI (nlo o
<€D D eZ oo Z W W < O e
ey W ol e o o L i) Wl o< o
Lt e WO e DD Lt noofuny o L)
DAV o X (O (&} W oo <1 I (N
QSzZZWow Zow D w o i =Lk 0oz
NI 07 27 e X 44 . N | NE
! Q. [72]
[«%4
Lat -
) P4 ! ot
(e
[&] (TS
-
i
= (8}
- o
, I o
OO0 T OOROVOOVOILT S O k(NS Ol onns
A AT N ST ILITI™ Mnu CNIN™™™ d™IT
. Lt
=+ i = W0
% o wn Cl v
z z = = =z
— - VI
> ¥ % % X %% % B <




INSTRUGCTION IN ASSEMBLED PROGRAM AFTER

WITH PROGRAM

NRED WITH PROGRAWM
LINKED

T
o7

T._N

= =
<t (o]
o -
[(Sa] [
[&] (&)
o o
a. o
o

o34 [ 73]
[*¥] <
w —t

D

b Lt

L. = pd
o L [
X < I

(] = k- O
=z O < <
Ll [ S o T
i
NN M N -

Q< DI eO.NO
OOOOENT NSNS
Z 1 A0 AT I

|

w

[%2]
pd
[
B

YINS1

OF PROGRAM

D
S

NI
E
SAVE FOR INSERTING JUMPS

E

i

[l o) -~
| > wn
Uz e
A P G R VoY |
,Ducz,v.. MT L >
MO0, QM-I Q.
[anl s Sh-al e YonTanl Sl
W3 ISTN D,

E2

“YINSZ

426



*
* INSERT FOLLOWS LAST MACHINE CODE STATEMENT IN THE PROGRAM

YINS3 LDB CNFIr

- %
o]
=z

*®

F
i

e P L T MM M ML o00 O

ZUV VOO NS Unaw.<no

)

VW WHEE XWNSUPODL VOO VT

i
|

IINCONMGL BN

0

4'm42

XUV UV-HCRCCZUI U‘DHH

Z~ T-X OOV UVUVUVIVRUOZ

<M M
3

ZZ!

o CALL FROM SUBROUTINE XINS
NS; YT UVES
U REPLACE OPERATION
YES

st NO
§1 LINK PROGRAM WITH REPLAGEMENT
T
R LINK REPLAGEMENT TO PROGRAM
op ADVANGCE PROGRAM POINTER
K,I  GHEGK FOR CVERFLOW
£,
Ep ADDR WHERE JUMP ORIGINATES
SVTTTADDR WHERE JUMP RESULT
AD_ UPDATE EDIT LINK POINTERS

H

LTV



MULTIPLE INSERT

PREPARE FOR AND BEGIN MACHINE CODE

R Y

 MULIN

[ =)
O

8 ADURESS

[T V)

ASSEMBLY ADDRESS

ATA
SAYE ASSEMBLY ADDR

COMMENT

[
~4 [SN]

OFmm > Z =z Zx
CWOQ+M el d-t o0d LI
LISUs TONTE OKE T

o I8 [y Sy b of an e}
Wn&bSlﬁi&L

MLN1

"~

|
|

“

"DES INSERT

-

NO ASSEMBLED CDOE PREC

MLN2

EXT SCB ENTRY

F N
DORESS

0
A

-
~Z
00

0L T ILOO MDD DO DT LA I Q. I 3 DA DD
b O STOYOINET (S b () e YA C) b
NI NN I ,.IN

MLN3

428



429

-
(o4
&
%)
-l 4
Pt
v =
=
owm [
TR Y o
OO0 w!
O Z ! v
> (TRTSIS) =z
-l [+ 4T = O
o0 Wiy o
= o, T =
wl Ot Y o
) Qo o o !
n ) W %) z=
< 0w w - = oo
= Wi W0 o i -
o (TR ) L Lt b e
bt o m o w mn U O
- > 0.0 oz W onn
=y 7 WiDed QO w o Ooo
= v LR © L aQ.
-t tl [Ta3a' 00 ! & U
= [« 7 <)y} [TV [SAN S PRI TN}
e O ES > O ¥ O>>
L © o . o O - 0 bsTet
[ = | ZO prd = w . NN
J
o
o
bk O i
Lo ISR -~ i T A - -
> M ML OS] NI O 0O OO
LZ = N2 ZE O ZAFTD>>OMm W OO>m)
ZdFd eF N I LN APV ERL) o IO
WE eMXNE e =kl EZOInOV) o SZSSﬂ
{ o~ ! | =
O MO <O <N OMOO. MCMEMDN, W Mo
AT COONTNT - =-NONT NOCQNNE 1 VDK S
ODLITNDINDINFENDINDDIIDHDM vy TN
i T A
& o
= z Z i
-4 - j
-2 %% %3 #
|
_
|



vz

=
[}
<z
% o i

¥ ¥ END A MULTIPLE INSERT OPERATION

13
»

-
v’
- Lo}
o 4 %] o
uj s o
%] H— T3]
=z wn
L) = =
o [
w -4
[n] - X
Lo O (w]
e (0] e wd
[ Ll 4
! o uJ (@]
w [a B [a] [
pd o
4 Ll [&] S
(o] o
w o i} o
- [ ot [
o. ow]
- [om] = o
] Ll Lt Lt
' d [%e]} -
- [we] w m
-2 = <X =
93] w bt
] v wn ol (%3] w
VWO wWwo m
= < T DT =X
[Xe]
[

0 MY Y tOMNY
- X TO NeaTO
TN -l
ONZOWZWNHHOZIL
FREEDEV?XFEV

-

=
<t
n
b (%]
4 o
14) o
tn Q.
i o
i =
=
Lz
-
W h¥4
[&]
ﬁ_. <
fend
o
T e
! o
v,k L
o %)
o =z
) 4
'
Z
b
-4

NO
- MOVE

-t

NOND e LM
Fimblnuinet I
OF¥L>2-I0.00
Wbl D™

PBBDAAPAAP%PAAPABBAB?BP
OONT ONE NS VT ONTOLNQONNS

LSJLSJLSJJJLSJLL)LLJJJ

ENDM1

M
|

GODE

STORE JUMP TO LINK INSERTED

CLEAR MULTIPLE INSERT FLAGS

ford

-

e O 0.
uinag o)
=0 O
DRONEOQ HOZ!
=) S
KO Ler<l (i
O b b 5
TLJJCSSJ

TTTENDMZ2

ENDM3

430



=z
o
—~
[
<t
[+
Lad
[«
o
Led
[ -
<t =
- Wl
Q. b b
Lt pd [S1]
Y L -
= [
<T Ll oo fore
[ ) nz
o < Ll
(@] e b 5T
L %] N
0 4
2] - e
o4 n W b—
i ol (%)
[t [ (]
zZ [’ b O
= [}
o [ #8] N
0. (& LN
=1 [l V8
p'aS . ZAO
(] (a3 V] D
Q Wwicoo OD
4 >z 0!
[eul
W
[}
o P add b O
(&) «~E clw
bl ol [So YT aslinnl
9% ZUT Q)
% Ll x<sb. ()
pon] aWealondipls Mgl gan]
o IO (NS D b (D
w [P ¥ Gn Y s s JOU LV DK |
[
L oo
w ©
%)
v % %% 0

T O

i
Hu —
=
W eS8}
Do
W wz
3] Tm
[y
£ 2=
2 e
n W
i L
XM
b g
=z
! O
Pl T o
| g [
| o er
- =0 Z
oG VU S 1
il et X
Z 0T o
, L Y]
e = e
0 o
! LS
Mo oy
oD o o
(B GE S IT
& ol OW
, e}
: o

~ o~ 7
o <

1

rY s ed Dt 0O,
b Z e O - 5
(A (A O rN™

T REPLACE LUAST STRATEMENT

Pt
”»

—-(C oD
N0
EZDOVIN
LI O Py
[

FIETOL N0

me s
O™

s
KVW *

N
2

v
Ty -
N
oz

e Ll b

=z | Z

ui s

swiuz

L0710

—l P

<<t o

b

N —0a
Z

e L e =
[Tah sl TN
Lo
0

P
ET?F
oo o

<t
TS
g
w0
oY et

-

- Do
a2 VNI TN
[3isianisa
L0
<t QAN

Sy

NUMBER

-MEINT

STATE

Mo
Lt oo

i

STORE

LI KL <L ML 0.
fnY ) S on bl T ot
SN SN N ™

RSCB2

|
|
|
|

RSCB3

|

431



ORG 141008

INITIALIZE STORAGE FOR EACH NEW PROGRAM

THE FOLLOWING TASLES WILL BE INITIALIZED

THE SOURCE CODE BLOCK (SGB) FOR STORING USER S0URCE
PROGRAMS

KKK K KR KRN KK

zﬁTﬂE MATIN SYMEBOL TABLE

: THE SPECIAL SYM20L TASLE (SST) FOR COMPOUND OPERANDS

: THE PROGRAM LOCATION COUNTER {(PLC) TA3LE FOR UNDEFINED

M PLC REFERENCES

_ .} THE FREE_SPACE TASLE FOR HOLDING ADDRESSES AND
M LENGTHS OF DELETIONS FROM THE SC8
* THE USER PROGRAM AREA FOR S0TH MACHINE INSTRUCTIONS
¥ ND DATA DEFINITIONS
'3
GREET CLC 0,C TUSN OFF ALL I/0
. STF D ~ TURN ON INTERRUPT SYSTEM
* CONFIGURE I/0 SUBROUTINES
LOA .15 PREPARE I/0 SUBSROUTINES FOR
JSB CNFIG 1/0 THROUGH TTY
JSB IGFF,I  TURN OFF INTERRUPT

(A%



x & K X

SET MAIN FRAME INTERRUPT LOCATIONS FOR EACH NEW
USER PROOGRAM

LDB .2 FIRST ADDRESS 10 3E SET
LDA MPPEX JUMP TO FORWARD REFERENCE WARNING
STA 8,1
IN3
STA By1
IND ADVANCE ADDRESS
LDA HLT4 POWER FAIL HALT
34 o
g?ﬁ'gt¥5—‘*—‘wEHURY“PRUTFUT‘7“PKRITV*ERROR'HK{T“‘“—*———‘“—“—“*—““
2 k4 .
INS
LDA DMAI JUMP TO DMA SERVICE ROUTINE
Cns 24
LOA DCI JUMP TO DATA CHANNEL SERVICE ROUTINE
g2t
LDA cCI CONTROL SERVICE ROUTINE
. STA 8,1
* INITIALIZE LENGTH AND ADDRESS POINTERS FOR INPUT FROM DISC
LDA TRACK  DISC ADORESS GF DATA
STA TEMP6 |
LOA BUFL SUFFER LENGTAS FOR OUTPUT
STA TEMP7
LDA XSYBL -~ MEMORY ADDR TO STORE INPUT FROM DISC
. STA ADDR1
* PREPARE TO PRINT FIRST PAGE OF INTRODUCTARY TEXT

LOA TEMPB,I DISC ADDRESS
LDB”TEMP? I TLENGYH DOF INPUT

EEY



: READ DATA FROM DISC AND OUTPUT T0O USER
: USER MAY SPECIFY OPTIONAL I/0 DEVICE

T TTTISBGRITO.  READ FROM DISC, THEN PRINT

JS3 DATN,I  READ RESPONSE, RETURN FIRST CHAR
CPA S OUTPUT TO CRT SCREEN

RSS YES

JMP GRTH NO

LDB .11

JSB CNFIG CONFIGURE I/0 SUBROUTINES

J58 I0FF,I

. :
: PRINT SECOND PAGE OF INTRODUCTION
: OPTIONAL SEQUENCING RESPONSE AVAILABLE

GRT6 LDA XSTBL MEMORY ADDR TO STORE INPUT
STA ADDR{L
3 ISZ TEMP6
- 137 TEMP7
LDA TEMPH,I DISC ADDRESS
LDB TEMP7,T LENGTH OF INPUT
. JSB GRTIO READ ‘THEN PRINT DISC INPUT
* CLEAR USER PROGRAM TA3LES BEFORE READING USER RESPONSE
LDA GLRTB
STA TEMP — e
LDA éggaL STARTING ADDR OF SYMBOL TABLE
[ IS
INA ADVANCE TO NEXT LOCATION
5T8 A, I
I1SZ TEuP
JMP *-3
LDA M125
———————STATEMP
LDA XSTBL
ADA o3

A%



435

u
© w
= 4 ) L
w m =z -
o < =4 m -
Yl Pon <t m W = Z
o, - - - ww o< =)
1) - & Y. % o P
(544 o L) -~ = o 5] b=
(& o0 A TS =) > < (@) D
Pt €3 h-24 Ho D [72] [2ad *Y] o &)
(=Ys'4 > m X =z o Zhy
Zt 7] < > - ] OH
[ 4 i 2] @ Cl Y
(0 z - - ol W =
uo -4 -~ w © n T v DX
W O - Lt W >z o 0P
(a4 73] m o n> wips
o %] T OO n & - W >
(alh] i 1% et Ol Jo7 o w
orw o v ad w w <o
{4 (] - ou. o T o =
X (] < Z i O < oD
(Tt < ~ WI o w (4 O] wes D RU
OZO |-~ < AW s} = 00 o W
Wb ATl w | & «az o | = o e
<q O (%4 Lt i <X (&) < !
o b o 0OZ Wy -t WIS & ol
Wi llex - Z 1w 0 e u Dy
o000 > n ] cu %) Z on o =0
ZZZ =0 i 0 —w < e = 0. Wk
DO ng o uw Y [10] (7] o BN 47
[&] wi
=z ©
(TER =
[« 4 L LY 8]
-l o Dl ettt o o =
ool Y (e ru oot Qb (] o.NY o
DooONOYSO OD iU OO eInT ) . e (3 P
QNN+ OO ¥ OO0WMUON S W aED Kie
MM o% N eI [+4 T L= (DX o ¢ & (D> KT
CH i
AABBPTAAAAAB Q) <SINONORIIINT O QONOA IO
OO TOOFOZZ | W =T OoOR00ON0O Y Z-NS0Z 0K
(73 T B P, Y B Do 7 BT TS %R NN N I A | D™ S I
— =
o (e
=z N O
et -~ L
o ) [v'4
T % % % % %




'

* INITIALIZE SYSTEM VARIABLES

ENTRY IN SOURCE COOE BLOCK
ENTRY IN SOURCE CODE BLOCK

RST
XT
NEXT LOCATION USER PROG AREA

I
E
NEXT LOCATION IN PROG DATA AREA

SEY GREET FLAG

PREVIQUS ENTRY SET AS -1
F
N

— Q< o
MU b O O o b o
O X NN T T T ex
oW DDO0O0D0
OO DU 2T BN D D

FG

n
(N
FEES
4
24T [Se]
(&) o <t
<t iZ b -
th-d Tilvd (1N
Lt [I%]
-t - LN w
M. Nk WdZ >
<O WO N et
g Dy —
o o b L) n o
<0 W - W
>D oz a0 -~ o
95 - O [« ST
Wit =00 O < O
NOAODDOEZ I —
N I OQ<I»D X W
N dZ HNT << O
<< U WL - -
[ lea] O - W
= \OL b O b Z T [« S
HONEZHD DWW T o
ZMDOO0O0 4 2o w
IAUESEﬂC Qo w
WD~ k0O oW
DLZXWZH0 =Ml

N0 IS b > D> Y
DETOOCMOM Tl
<olbIT TN

| i
LA L LA ILILIHODT O OMDODE MDD
O b e O e b Y b () bom [ e e e e e e e b e o o e o
OV NN

QW INNJIN I

»

¥ RESPONSE TO SEQUENCE REQUEST

.
W
[aa]
=
o] =z
- z Lt
(%) =
L = ol
D Z wee
=] Ll Mo
11} L EZ
4 Wi D
bt Z
o < o4
[3%] b i)
fas] Y Zom
W TED
no ¥ =D
zZ uy W=z
o (%220 o)
O b D L
nz b
Ll Ld B2 118
(s z x
L Ll e i)
O Y (Db
LI O e
WO D) b=
YXWN>r-ZO ww
(3]
.~ O Z OO0
Z ™ b TZe
[t B 21 =Lt e T
T X DNk
OVY Ol sl
OO <I<IMMmO.
NOA S S D b
mDOTONLINND
«©
—
(4

436



RT10
ERROR

THE THIRD PAGE OF USER OQUTPUT OFFERS THE OPTION?

XX B RHRKE I KKK

TO THOSE FAMILIAR WITH THE ASSEM3LER PROGRAM
ENTRY MAY BEGIN
ELSE INSTRUGTIONAL TEXT CAN BE PRESENTED TO
T ¥ AQUAINT TH FINE XPERTENCED WITH THE SYSTEW
* READ RESPONSE C TO CONTINUE
¥ L TO LEARN
»
x
GRT12 LDA DSIPT MEMORY ADDR FOR FURTHER DISC INPUT
STA ADDR1
ISZ TEVMPG
157 TEMP?
LDA TEMPH,I DISC ADDRESS
LOB TEMP7,I INPUT LENGTH
JS3 GRTIO
JS3 DATN,I
CPA L PRINT INSTRUCTIONAL TEXT
RSS YES \
JMP GRTZT NO

LEY



PRINT I

L3 3 K B

NSTRUGCTIONAL PAGES

‘ READ RESPONSE © 10 CONTINUE

M $ 10 START
¥
LDA M8
STA TEMPS
LDA DSIPT MEMORY ADDR FOR DISC INPUT
. STA ADDR1
—GRTI4 1SZ TEMPE
137 TEMP7
{DA TEMPG,I DISC ADDR
LDB TEMP7,I 1INPUT LENGTH
JSB GRTIO
ISZ TEMPS
RSS
JHP GRT20 ALL TEXT PRINTED
JSBBATN, T
CPA S START
RSS YES
. JMP GRT14
* CLEAR MAIN FRAME INTERRUPT LOGATIONS
_ _GRT20 LDA Mi6
“STA TEMP
{DB .
GLA
INS
STA B,I
157 TéMP
Jup %23
] STA GRTFG CLEAR GREET FLAG
* READ FIRST SOURCE PROGRAM STATEMENT

8EY



¥ READ AND PRINT INTRODUCTARY TEXT FROM DISC

F's
* ENTER

L

439

(o]
(v ~
IO 7]
= o
[an] i
o~ - e
[14e) p ~iD
ol a. N
- pd oo
=z () o <T
-0 o
ZO o =z0O
fe ] (o] N
-~ O=t L.
[ 7] O | oo
o o M N 2D
o/ ] (%3173 oo
o o b <Tisd P4
= om T i bed
had X o
4 o0 (TS
- i X [ele]
D =] VR ]
o [l ol X > I
[ ] fe’4 | aeda
0. oo W
(6] o nx Py
[+ 4 TR W L [SS]T5
0o zZOo ox el
| | sl e
[ IL] — L
nZ - T N edpt ard  —~UIO
ity A -0 Ny N0 Kl
o N} EMZ < FTONNIET O

b Z W= QO W O
—~ gl aa B an]Vo} HATUMHNT- <IT X

"
MO eCononananona
% e O I~ QNG DT

SCSLOCS[;'J.LJ L O b b |

RTIO NOP

% % %

(>




*

OF TEXT

* PAGE LENGTH (WORDS)

%

w
)
-l Z it

W= f
WL A O D D poe e
OLWLOTNCO W
Tl <1 <1 D k- W O T
0.0.0.0. 0 N> Lkl

N

116275265?73
+ T NI TN
* NI MM A MINLTLN

FTTTTTTTTTfT
WG OO0
alelelslololaleolalvleloe]

BUFL

¥ DISC ADDRESS OF INTRODUCTARY TEXT

*

BEGINS ON FIRST SECTOR OF FIRST TRACKX ON CARTRIGDE

DATA
DISC

% % % % -

%3]

[
-\ I g VLo V)

{id b

[CRITRETRATRT o M SewTand g o) g
VOO NCOMWN
L LT D LI O <T
Q.00 A0 JIXUIUW .

[=1ar Ve
oMo NINoo o
+ OO rHNNNOOQ

| |

Lo b b o e o o o o o e o
WOoOOOo0OOLOOL
DOOOOOOOLO00D

v
x

&

|

.3 l.».h.!%h.h,l.w.uvu.ill‘

ND

E

440



ORG 152308

¥ MNEMONIGC TASLE

*
x

¥* FIRST TWO LETTERS OF MNEMONIC

NN dO 3T C N S O
T OO LI LT NN
IO JZOD0 DU =N
X COLIH, AT 0 NN
Z AT IO U NN
S OOOO T LV (N
d o I N T LN
IO WMIE Y NN
wd ST A T A e (AT
<O CuwNACKrmm

YIS NQ AL THAN =~ O
LI ITCOOOLIIOONWN
COWVONUZ OO S
I IO U IO N

LB T B N B S TR T U S S N

NN NSNS

j
QLOOCOLOLOLLLOLLOOO
vV NNNNVNW
Y < T <Y <Y <X <X &Y «f T <l <L <L

'

el el OMNOTW
O OOOODOM~NOR
O3 JoOoFIDoOoooo
PMYed wded e OO OO LN
S J A NN TP N, BN g% . S 7Y (o]
oD OoDODOOOaD
- e LIS S NP N Y N
OO Hrd i O N O
QO ooOEOoEo
oo oo itroooo
O ADEN O M et
IS K. S EAVE, K. (., JC. JTARE 6 44
Q0 COCOOMPREOmoO

LSS LS S NI NI N
O L0 v 0 e M3 e e ot b
OO ODe-OD DO O
SOOI ITTOoTIE
OO0
L S N NN NP NS
N e N e et e O e
O HAOOOO DA D
TororrIOSoSTs
Ard el e DO A A OO
[FRRVaRE SEQTTAWE, 6. ST U STo RIS 3
QoOoOoooooiroooo

¥ THIRD LETTER OF MNEMONIC AND INSTRUCTION NUMBER

Sy Wy S Sy S
OOCCOCODLCOL
ofelalolalalalalelolols]

441



WD w4 = DM NIO O
OOOOoCOOMmED
[eoTeuTuw T oo K. S JX, &f o}
A OO O N
FINNT F . T
OOOD@ODOO O
L L X
OOV A et et v M
COODOLOOOE
SOITIOOOEEOD
SO F AN A e
. g5 ST R STSTTAWC S S G o
OOOOOEOOOD
Y X
W ettt e
OCOOOCIDOON
[SelenTon PR, Janil, S JN. SN U
Ll al oo ol Slvel ko Fruel
IS g s L g T G K. K o
OOCOOO O
L I Y ’, LUK N N N Y
D3 M HAM OO
OOODAOMEOOO
orroootoo
COON ririvd vii
(YU T RT AV ToTFeRToPE ST,
OOCOOOOEEeD

i
P b B o o e e o o
SIS TATATETSIST AT ST
[elelalalelololalele)

" SKELETON OF ASSEMALED CODE

DO COCOODONOOOOOODOHDAD
Do ooomODNOCOOIOOPDOOCO
Mot @FINOCONMNDOCOONHAMNO O
el INNOM NN F o oMo
D COOOINOMNOMUOOODOONON
o] an] UOiUUillﬂOiOUlliUlﬂ
A” 7’,””’,””’,’,’,
DO OOOHOEOOOOOOOROOOEN
Lo OOoOOeCPEEORIoOCRIHNeCD
PO IO OO NOMNOO O
M INMOMOCERININ OO OINN.F OO
el COOoORNODoOOMOOoOSCROEC oo
20 OO OHOOOCrHA OO O

’,’,”’,””’.’””,
nuﬂ,nuo?.gnunu_/ﬂo FoooamMmeAD oo
UO?O?OBG?UUUDGOQUQ«;?OU
oo IrNNMNCINOONIONOOoOND
4 O N UM O R w1 0 O D AN S oy
OO ODONOOOEHOOOOOO SO
1010101010000111090010
.’,,””2”’,”’2”””
MNONOCOCEROMON TOOONDOC T
NanNoooohoMOOOoOMNDOD OO
MNINOAMEHONINOSINS AN A MM e
P OO N N O U Pt et U O P
MNONOOOoOOMOMONOOMDOOOMND
7011300011100111U11101
4 1
et ad adadadadad ot ol of SY LS L o d o Sy o ol ol o
mbChuCCCCCanuCCCCCCCCCChuPu
hOOOOOOOOOOOOOOOOOOOOO

_
]

442



443

APPENDIX H

BIBLIOGRAPHY



444

BIBLIOGRAPHY

(1) BROWN, P.J., Recreation of Source Code from Reverse
Polish Form, Software - Practice and
Experience, Vol 2, 275-278, 1972, John Wlley
and Sons, New York.

(2) HULL, T.E., DAY, D.D.F., Computers and Prcblem Solving
Addison Weslex, Don Mills, 1970.

(3) XaTZAN, HARRY, Batch, Conversational and Incremental
Compilers, Proc. APIFS 1969 SJCC, Vol 34,
47~-56, APIFS Press,

(4) LAMPSON, B., Interactive Machine Language Programming
Proc. AFIPS 1965 FJCC, Vol. 27 part 1, 473-
482, Macmillan and Co., London.

(5) LOCK, K., Structuring Programs for Multi-Program Time-
' Sharing On-Line Applications, Proc. AFIPS
1965 FJCC, Vol 27 part 1, 457-472, Macmillan
and Co., London.

(6) SCHWARTZ, JULES I., On line Programming, CACM 9, No. 3,
199-202, March 1966.

(7) SMITH, L.B., The Use of Interactive Graphics to Solve
Numerical Problems, CACM 13, No. 10, 625-634,
October 1970.

(8) HEWLETT PACKARD COMPANY, 21002 Computer: Reference
Manual, HP 02100-20001, December 1971, Hewlett
Packard Company, Cupertino, California.

(9) HEWLETT PACKARD COMPANY, HP Asserbler, HP G2116-9014,
June 1971, Hewlett Packard Company, Cupetino,
California.

(10) HEWLETT PACKARD COMPANY, Moving Head Disc COperating
System, HP (02116-91779, March 1971, Hewlett
Packard Ccmpany, Cupertino, California.



	Structure Bookmarks



