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Abstract 

The notion of nondeterminism is one of the most fundamental concepts in many 
areas of computer science. Unambiguity, requiring that there be at most one correct 
sequence of nondeterministic choices, has proved to be one of the most meaningful 
restrictions of nondeterminism. In the context of space-bounded Turing Machines, 
several variants of unambiguity have been proposed and studied, and some interesting 
results have been established, narrowing slightly the gap between deterministic and 
nondeterministic logarithmic-space computation. 

We study the different variants of unambiguity in the context of computing 
multi-valued functions (as opposed to the usual yes/no decision problems). We pro­
pose a modification to the standard computation models of Turing Machines and 
configuration graphs, which allows for unambiguity-preserving composition. We in­
troduce a unified notation, capturing the different flavors of ambiguity. Furthermore, 
we define a notion of reductions (based on function composition), which allows non­
determinism but controls its level of ambiguity. In the light of this framework we 
establish some reductions between different variants of path counting problems. We 
also investigate more carefully the technique of inductive counting, and obtain im­
provement of some existing results. 
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Chapter 1 

Introduction 

1.1 A Bit of History 

The notion of nondeterminism is one of the fundamental notions in theoretical com­
puter science. Given any model of computation which allows it, the question whether 
nondeterminism yields a proper increase in the power of the model, is one of the 
first to be asked. The relationship between deterministic and nondeterministic flavors 
of resource-bounded computation classes has been under intense scrutiny for the last 
four decades, giving rise to numerous formulations, techniques, and even new branches 
of computer science (e.g., proof complexity has emerged from trying to tackle the P 
vs. NP question). It seems however, that despite all the progress, we still do not 
have an adequate understanding of these issues. And so, even in the most natural 
and well studied cases-of polynomial time and logarithmic space-the questions of 
nondeterminism (i.e., P vs. NP and L vs. NL) stand open. 

The study of nondeterminism in the space-bounded context has been more 
fruitful in unconditional results, than in the time-bounded context. In particular, 
very low space bounds (o(loglog(n))) have been shown in [34, 12] to capture only 
regular languages, with nondeterminism yielding no additional power. For bounds 
at least polylogarithmic (log(n) 0 (1l), an algorithm due to Savitch (see [33]) allows 
us to do away with nondeterminism. Between these two bounds the question re­
mains open, though it has been shown by Kannan (see [16]) that the equality of 
DSPACE(loglog(n)) and NSPACE{loglog(n)) cannot be proven by means of sim­
ulation, and by Szepietowski (see [37]) that this equality would imply L = NL. 
Because sub-logarithmic space machines lack the ability to count, the world between 
the space bounds of O(loglog(n)) and o(log(n)) is very sensitive to minor modifica­
tions in the definitions and in general requires special proof techniques ([38] contains 
a thorough presentation of these issues; for a survey and some interesting results see 
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also [22]). 
Among all space bounds, it is the logarithmic one that has received the most 

attention. It is large enough to allow counting (and thus many "natural" algorithmic 
approaches), while at the same time small enough (even in the nondeterministic vari­
ant) to be contained in polynomial time (in fact, even in NC2), which makes it well-fit 
for reductions between polynomial-time problems. Many things are known about non­
deterministic logarithmic space. It is closed under complementation (see [13, 36]) and 
thus both the oracle and the alternation hierarchies collapse to NL. Its unbounded 
alternation class, called AL, is equal to P (see [9]). Finally, the symmetric variant 
of NL (defined in [21]) has been recently shown (by Reingold; see [28], building on 
results from [29]) to be equal to L. However, the "big question" -whether L equals 
NL-remains open. 

When a notion resists a complete understanding, it is natural to restrict it 
in some way, hoping that the restricted case will be easier to analyze. Accordingly, 
numerous restrictions of nondeterminism have been introduced and studied. A noto­
rious restriction is that of unambiguity, in which the machine does not need to know 
the path to an answer (and thus can make nondeterministic choices), but the path 
itself is required to be unique. Unambiguity has been first introduced for context-free 
languages (requiring that every word has at most one derivation). For polynomial 
time bounds, it has been defined by Valiant (see [39]). Although much has been said 
about the class UP (especially concerning its relation to one-way functions, one of 
the core concepts of cryptography), its exact relations to both P and NP remain 
unknown. 

The unambiguous version of NL, called UL, has been first explicitly con­
sidered in [4] and [8]. In the latter, variants of UL that allow polynomially many 
accepting computation paths, as well as variants that consider not only accepting, 
but all reachable or all paths, have been proposed. Some inclusions between these 
classes have been presented, and the classes ReachUL and StrongUL have been 
shown to be closed under complementation. The Immerman-Szelepcsenyi technique 
of inductive counting has been extended in [7], allowing the removal of ambiguity at 
the cost of a relatively small increase in required computation space. StrongUL has 

been shown by Allender and Lange to be contained in deterministic space O(i~;~~~~:)) 
(see [2]). In [20], Lange has exposed a problem complete for ReachUL. Finally, 
inductive counting has been used again by Reinhardt and Allender in [30] to show 
that UL and NL coincide in the nonuniform setting (i.e., NL/poly= UL/poly), and 
thus also in the uniform setting under some hardness assumptions (see [3] for details). 

The study of space-bounded computation has also included numerous exten­
sions of the model. Of these, the concept of an auxiliary pushdown automaton (a 
space-bounded, possibly nondeterministic Turing Machine, with an additional push-
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down (last-in, first-out) storage, not subject to the space bound) has received a lot of 
attention. Cook has shown in [10] that logarithmic-space AuxPDAs (both determin­
istic and nondeterministic) capture deterministic polynomial-time exactly. When a 
polynomial-time restriction is added, deterministic and nondeterministic logarithmic­
space AuxPDAs have been shown in [32] and [35] to capture languages that are 
log-space reducible to deterministic and general context-free languages, respectively. 
The concept of unambiguity has been investigated also in this setting, but here the 
equivalence of unambiguous AuxPDAs and unambiguous context-free languages has 
not been exposed so far (Niedermeier and Rossmanith have shown in [26] that the 
latter can be recognized within the class StrongUAuxPDA, but the converse in­
clusion remains open). The aforementioned result of Reinhardt and Allender proves 
that unambiguous AuxPDAs can recognize all context-free languages, but it requires 
the use of advice, and thus applies only in the nonuniform setting. 

Altogether, collapses of deterministic and nondeterministic complexity classes, 
and equivalences of various extensions or restrictions of nondeterminism, have been 
shown in the context of bounded space--even though not all space bounds have been 
covered unconditionally. On the other hand, known separation results (such as those 
for sub-logarithmic alternation hierarchies; see [22]) work under "ill" conditions, such 
as inconstructibility of respective space bounds or the machine's inability to count. 
This provides a strong evidence toward the claim that nondeterminism does not in­
crease the power of a space-bounded Turing Machine. However, it seems that the 
current techniques are insufficient to provide a proof of this claim, and applying ideas 
from other branches of mathematics (as an example one can take the Reingold's 
proof that L = SL, based on expander graphs and analysis of eigenvalues of graph 
adjacency matrices) might be necessary to resolve the question. The lesser claim of 
USPACE(J(n)) = NSPACE(J(n)) (and, in particular, UL = NL) should be in 
much closer range. 

1.2 Contributions 

In our study, we initially set out to solve the UL vs. NL problem. As providing 
any unconditional results in this field seems quite difficult, we decided to analyze the 
relative complexity (in terms of the required ambiguity) of problems. This has led 
to a search of a notion of reduction which would be at the same time stronger than 
deterministic log-space, and weak enough to provide meaningful comparison of prob­
lems and classes. Finally, opting for a variant of functional many-one reductions, we 
have introduced a generic framework for analysis of space-bounded, limited-ambiguity 
functions. The contributions of this thesis can thus be described as follows: 
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1. Model: We provide a modification of the standard model of oracle Turing 
Machines, which allows for nondeterministic computation of deterministically 
valued (i.e., well defined) functions. In the space-bounded setting, such com­
putation has been defined (as in [14]) only based on deterministic machines 
having access to an oracle for a language from a possibly nondeterministic class. 
In a different manner, functions (including the path-counting functions which 
we consider in Chapter 3) have been defined based on properties of the com­
putation tree of a nondeterministic machine (giving rise to classes such as #L, 
GapL, etc.; see [4]), and not computed by the machine itself. Our model agrees 
with the first of the above when full power of nondeterminism is allowed, but 
has the advantage of being easily adaptable to classes of limited ambiguity. The 
different variants of unambiguity are achieved through restricting the shape of 
the configuration graph of our machines. The computation is shown to compose 
nicely, preserving both space and ambiguity constraints. 

2. Reductions: Based on our computation model, we introduce a notion of nonde­
terministic, unambiguous reductions. The notion of space-bounded reducibility 
has been extensively studied. Nondeterminism has been first added in this con­
text to Turing reductions (see [18, 31]), this model has been also shown not to 
be robust with respect to minor definition changes. Also, as the bias of our 
work is toward showing collapses rather than separations, we tried to avoid cre­
ating oracle hierarchies (we use oracles only as a tool of function composition, 
not as sources of additional computation power). Nondeterministic many-one 
reductions have been introduced in [19]-there, however, a reduction effectively 
computes a relation (a set-valued function). Our notion is much better fit for 
the purpose of comparing the ambiguity-complexity of functions, it is also as 
natural to work with as many-one reductions. 

3. Counting: Within our framework, we analyze variants of the path-counting 
problem. We exhibit some dependencies between different count ranges. In par­
ticular, by Propositions 3.2.7 and 3.2.10 we obtain the equivalence of counting 
up to any constant number of (arbitrary or simple) paths. Furthermore, we take 
a closer look on the inductive counting technique of [13, 36], which allows us 
to combine the results of [7] and [30] into Algorithm 3.3.12: an unambiguous 
algorithm for reachability on graphs with restricted ambiguity of shortest paths. 
In the process, some of the interplay between the ambiguity of a graph and the 
ambiguity of its traversal, is shown. 
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1.3 Structure and Notation 

This thesis has the following structure: In Chapter 2, we discuss our formal models 
of computation. First, we define Quering Turing Machines and Quering Computation 
Graphs, together with their restricted-ambiguity variants. Based on these definitions, 
we introduce a consistent naming scheme for various ambiguity-related function and 
language classes. Next, we introduce our concept of unambiguous reductions, and 
show how they can be used to place functions in some of the classes under considera­
tion. In Chapter 3, we look at specific problems related to path counting. We exhibit 
some relationships between counting up to different bounds. Finally, we examine the 
approaches to reachability based on inductive counting and graph traversal, which 
enables us to improve the results from [13, 36] and [7]. We conclude with a short 
discussion of possible future work directions. In Appendix A, we include an outline 
of a possible approach to the UL vs. NL question. 

Throughout the thesis, we employ a consistent notation, denoting: 

• natural numbers and indices by small letters i through n, 

• complexity bounds (functions on natural numbers) by small letters f, g, and h, 

• polynomials by small letters p and r, 

• alphabets and arbitrary sets by capital Greek letters I:, r, ~' 

• single characters (alphabet symbols) by small letters a through d, 

• words (strings of characters) by capital letters W through Z, 

• languages (sets of words) by small Greek letters a through <5, 

• functions on words by small Greek letters ¢, 1/J, ~ and (), 

• machines and oracles by capital letters M, N, and 0, 

• machine states by small letter q, 

• machine configurations by capital letter C, 

• graphs by capital letters G, H, and I, 

• sets of graph vertices and edges by capital letters V and E, respectively, 

• graph vertices and edges by small letters s through z, and e, respectively, 
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• (arbitrary) complexity classes and graph classes in script letters (e.g., C), 

• specific complexity classes and problems in boldface (e.g, QFunc(log(n)), Reach), 

• families of complexity classes in boldblank (e.g., IRJEM). 

When an index (e.g., i) appears in a place where a string is expected, we 
assume the natural binary encoding is used. We will use E to denote an empty string, 
juxtaposition (e.g., XY) for string concatenation, Kleene star (*) for repetition, and 
square brackets to access individual characters of a string (e.g., X [i]). We will use 
angle brackets to denote sequences, write ( ... )i for a sequence over possible i's, and 
Si to denote the i-th component of a sequence S. Finally, in the text, we will use 
italics for emphasis and boldface for newly-defined terms. 
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Chapter 2 

Models of Computation 

We begin with providing a model of computation which will be employed throughout 
this work. Since the goal is the analysis of functions that can be computed unam­
biguously in logarithmic space, the following natural requirements emerge: 

• the model must allow computing functions with an arbitrary range, 

• sub-linear (and, in particular, logarithmic) space bounds must be enforceable, 

• nondeterministic computation must be possible, but its level of ambiguity held 
under control, 

• computations have to be composable, and the composition should obey the 
space and ambiguity restrictions as much as possible, 

• the complexity classes based on the new model should coincide with the classical 
ones. 

2.1 Quering Turing Machines 

As we have outlined before, we need a model of computation that allows function 
composition, and makes the analysis of such complex functions straightforward. The 
usual model of Turing Machines does not behave well when composing (under sub­
linear space bounds): the input and output tapes, not subject to the space bounds, 
become an internal tape of the composed machine, which should obey the space 
restrictions. To deal with that issue we employ its well-known modification: instead 
of producing a (possibly long) output in its entirety, the machine computes just one 
requested character. Moreover, we use the same approach to access the machine's 
input-it writes the index of the input character it is interested in on one of its tapes, 
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and queries an oracle1 (by entering a special state). Therefore such a machine can be 
seen as one rewriting requests2 about its output to (sequences of) queries about its 
input, and generating an answer based on the results of these queries. This model, 
which we will call a Quering Turing Machine, can be formally defined as follows3 : 

Definition 2.1.1 A k-tape Quering Turing Machine is a tuple consisting of: 

• a finite alphabet4 ~ ~~I 2 2), 

• a finite set of states r, 

• an initial state qinit E f, 

• an answer state qa E r for every a E ~, 

• a query state qquery E f, 

• a response state qa E r for every a E ~, 

• a transition relation ~ ~ r x ~k x r x ~k x { - ' - ' -----+ }k. 

We will use the usual notion of configuration for Turing Machines: 

Definition 2.1.2 A configuration of a Quering Turing Machine consists of the 
current state q Er and, for every i E {1, ... , k}, a pair of strings \Xi, Yi) E ~* x ~*, 
representing the contents of the i-th tape (to the left and to the right of the position of 
the head, respectively; the head can be seen as reading the first symbol of Yi, or a blank 
if Yi = E). The initial configuration on request i is \qiniti ( E, i), (E, E), ... , (E, E)): the 
request is written (in binary) on tape 1, all other tapes are empty. 

As a Quering Turing Machine accesses an oracle, there are two kinds of state 
changes: those intrinsic to the machine itself (as described by the transition relation 
~), and those "performed" by the oracle, which is not part of the machine. Conse­
quently, we can define two relations formalizing these state changes: 

1 In some cases we will consider machines with more than one input oracle (thus computing 
functions of bigger arity). However such a tandem can always be seen as a single oracle whose 
queries specify the requested input next to the bit index, and thus all formalisms will consider 
single-input machines only. 

2We will use the words: input, output, request, query, and answer, to mean precisely the roles 
described here. 

3For a nice exposition of regular and oracle Turing Machines, see for example [27, 11]. 
4Usually, a Turing Machine has two alphabets: the input/output alphabet, and a larger tape 

alphabet. However, as in our model the input and output are never written anywhere, and any 
alphabet of size at least two can be easily encoded (with only a constant factor space cost) using 
any other, we have decided to unify them for simplicity. 
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Definition 2.1.3 A configuration C intrinsically yields a configuration C' iff for 
someq,q' E f, X1,. . .,Xk,Y1, .. .,Yk E :E*, ai,. . .,ak E :EU{E}, bi .. .,bk,c1,. .. ,ck E 
:E, mi ... , mk E { +--, -, ----+ }, we have: 

C = (q, (X1a1, biY1), ... , (Xkak, bkYk) ), 

C' = (q', (X1W1, Z1Y1), ... , (XkWk, ZkYk)), 

~ 3 (q, (b1, ... , bk), q', (c1, ... , ck), (m1, ... , mk) ), 

{ 

(E, aici), if mi =+-- and ai =I- E, 
viE{l,. . .,k}l (Wi, Zi) = (ai, Ci), ~f mi=-, 

(aici, E), if mi=----+ . 

A configuration C extrinsically yields a configuration C' under input oracle 0 iff 
for some X1 , ... , Xk, Y1, ... , Yk E :E*, a E :E, we have: 

c = (iiquery, (X1, Y1), ... ' (Xk, Yk)), 
C' = (iia, (X1, Y1), ... , (Xk, Yk) ), 

and a is a possible response of 0 given the query xj Yj (with j being the index of the 
oracle query tape). 

Given the above, we can define the outcome of a computation as follows: 

Definition 2.1.4 A Quering Turing Machine can answer a on request i (given input 
oracle 0) iff any configuration with state Qa is reachable from the initial configuration 
on i via the transitive reflexive closure of the union of intrinsic and extrinsic yield 
relations. 

The specifics of the above model merit a short discussion. Using the power 
of nondeterministic guesses (and, later on, talking about unambiguity properties) 
requires the ability to terminate branches on which the computation "went wrong" 
(i.e., invalid guesses have been made). The usual model incorporates such situations 
into the "reject" answer from the machine. However, we find it much easier to analyze 
complex scenarios (such as interplay between multiple computations) if such failures 
are made explicitly distinct from any possible answer the machine might give5 . We will 
represent the failure by any configuration that does not yield a new one. For further 
simplification, we do not require the answer states Qa to be final-terminating or 

5 An example of such situation might be the Immerman-Szelepcsenyi technique of inductive count­
ing (see [13, 36]). There, the machine might reject a computation branch either because it has suc­
cessfully verified that there is a path between the designated vertices, or because it has made some 
incorrect guesses on the way (which in our formalism would constitute a failure). 
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continuing the computation is seen as yet another nondeterministic choice. Moreover, 
as the input oracle will often be substituted with another Quering Turing Machine, 
we allow oracles in principle to give inconsistent ("nondeterministic") answers as well 
as to fail, and make all failures unrecoverable, i.e., propagating from any component 
to the whole computation. 

With the above in place, the only externally visible difference between a Quer­
ing Turing Machine and an oracle is that the former needs to be provided with an 
input (oracle) before one can talk about its answers. Therefore we will freely use the 
term "oracle" to refer also to closed Quering Turing Machines-those with a specific 
input "plugged in." 

A deterministic Quering Turing Machine "computes" a well-defined function. 
When allowed making guesses however, it might end up yielding different answers (or 
failing) on different computation branches. We could therefore define the machine to 
compute a relation (not necessarily a function). However, the notion of reductions 
based on this understanding has been shown in [19] to be very strong (applying 
them to NL yields the whole NP). Thus instead we interpret this "ambiguity" as 
"computing" multiple functions: 

Definition 2.1.5 An oracle consistently computes (returns) a string X E ~* 

iff, for any request i, it can only answer X[i] (or fail, which is always allowed). 

Definition 2.1.6 A Quering Turing Machine Mis sound for the function</>: a---> /3 
iff, when supplied with an input oracle consistently returning X E a, it consistently 
computes <f>(X). 

Note that according to the above definition, a single machine might be sound 
for many functions-in particular, a machine that always fails is sound for every 
possible function on ~*! Therefore we need a notion that would require a machine 
to succeed (i.e., not fail) on at least some nondeterministic branches. As it turns out 
however, we do not need it to succeed on all possible inputs: 

Definition 2.1.7 For any a E ~' we say that a Quering Turing Machine M is 
a-total6 for a function </> : a ---> /3 iff, whenever supplied an input oracle consis­
tently returning X E a and given the request i such that the i-th character of </>(X) is 
a, it can answer a. M is total for</> i.ff it is a-total for</> for every a E ~. 

6 Using a term "complete" instead would make obvious the analogy to soundness and completeness 
of logical frameworks-however it could be easily confused with completeness with respect to a 
complexity class (even though one applies to languages, while the other to machines). 
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How do traditional (nondeterministic) deciders fit into this picture? Each can 
be seen as computing a characteristic function-making sure that ~ contains the two 
characters "O" and "1", the output can be seen as a member of~*. The problem is that 
the Quering Turing Machine formed this way does not necessarily have to be sound 
for any function (as its answers are not guaranteed to be consistent among possible 
computation branches). However, if the original decider was an "existential" nonde­
terministic machine (i.e., accepting a word when there exists an accepting branch), 
we can turn all "O" answers into failures, achieving a sound, 1-total Quering Turing 
Machine for the original language. Analogously, a "universal" decider can be turned 
into a sound, 0-total Quering Turing Machine by failing all accepting paths. Further­
more, the connection goes in the other direction as well: we can wrap a sound, 1-total 
( 0-total) Quering Turing Machine into an existential (universal) decider by treating 
every failure as a reject (accept, respectively). 

The following simple result allows us to combine "partially total" Quering 
Turing Machines into a total one: 

Proposition 2.1.8 For a function</>, if for every a E ~ there exists a Quering Turing 
Machine sound and a-total for</>, then we can build a Quering Turing Machine sound 
and total for </>. 

Proof Let the a-total Quering Turing Machine for </> be called Ma· The desired 
machine M can be built as follows: nondeterministically guess the right answer a, 
and invoke the program for Ma. The soundness and totality of M are clear-it can 
never reach a wrong answer (as one of the Ma's would have to do it), and if it correctly 
guesses the answer a, Ma (being a-total) will "confirm" it. • 

As both input and output are implicit in a Quering Turing Machine, i.e., never 
available in their entirety, we need special arrangements to give a meaningful definition 
of the space consumed by it. First, we enrich the alphabet~ with yet one more special 
symbol, the blank. Then we make sure that whenever an oracle is queried about an 
index beyond its output (and only then), it answers with the blank symbol7

. Finally, 
we can define our space bounds: 

Definition 2.1.9 8 The size (length) of an oracle is the smallest value of a query 
(i.e., the smallest character index) to which it might respond with a blank. 

7This can be achieved formally by adjusting Definition 2.1.5 and propagating this change wherever 
necessary. It is a very intuitive change, yet including it would affect the clarity of all further results­
thus we opted for keeping it "under the hood." 

8 Definition 2.1.9 might seem roundabout, but remember that we are trying to take into consid­
eration the fact that the input oracle might itself happen to be a QTM. 
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Definition 2.1.10 A Quering Turing Machine M operates in space f(n) iff, when­
ever supplied with an input oracle of size n, it reads or writes no more than f(n) cells 
on all its tapes, including the oracle tape. 

The above definition does not take the size of the query into consideration. 
On one hand it eliminates the ill case of the request being very short compared to the 
input, while on the other it forces the machine to make sure it will not consume too 
much space just reading its request. However, for the algorithms that are "aware" of 
their own space bounds (and whose space bounds are space-constructible according 
to the usual definition, as in [34]), it is not an issue-they can discover the size of 
their input and return a blank if the request is beyond the longest possible output. 
Finally, just issuing oracle queries requires space logarithmic in the oracle size, and 
hence we will not consider sub-logarithmic space bounds. 

Building on the above, we can naturally define some complexity classes: 

Definition 2.1.11 For a space bound f(n) 2:: log(n), the class QFunc(f(n)) consists 
of all functions that have sound and total Quering Turing Machines operating in space 
O(f(n)). 

Definition 2.1.12 For a space bound f(n) 2:: log(n), the class QSpace(f(n)) (and 
co-QSpace(f(n))) consists of those languages, whose characteristic functions have 
sound, 1-total (respectively, 0-total) Quering Turing Machines operating in space 
O(J(n)). 

The classes defined this way correspond naturally to the classical ones: 

QSpace(J(n)) = NSpace(f(n)), 

co-QSpace(J(n)) = co-NSpace(J(n)). 

Furthermore, we can show the following: 

Proposition 2.1.13 QFunc(J(n)) = FNSpace(J(n)). 

Proof We will only show that QFunc(log(n)) = FNL-the result generalizes easily 
to larger space bounds. It has been shown in [14] that several definitions of FNL are 
in fact equivalent. Here we use the following: 

Definition 2.1.14 A function ef> is in FNL iff: 

• there is a polynomial p such that for every X, lef>(X)I ::S P(IXI), 

• the language L¢ = { (X, i, a) : ef>(X)[i] =a} (known as the graph of ef>) is in NL. 
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It is now easy to see that this definition is equivalent to QFunc(log( n)). Logarithmic 
space bounds for the Quering Turing Machine induce a logarithmic bound on the size 
of the request, and thus a polynomial bound on the length of the output. The NL 
machine for L</J can be turned into a Quering Turing Machine for </> by guessing the 
appropriate a as in the proof of Proposition 2.1.8. Turning a Quering Turing Machine 
for </> into an NL machine for L¢ can be obtained by comparing the answer (of the 
original QTM) with the a given on input (and rejecting on all failed branches). • 

The above proof exhibits a close relationship between the function classes and 
the intersections of "existential" and "universal" language classes. This relationship 
can be captured as follows: 

Corollary 2.1.15 For every space bound f: 

</> E QSpace(J(n)) n co-QSpace(f (n)) =? </> E QFunc(J(n)), 

</> E QFunc(J(n)) =? L</J E QSpace(J(n)) n co-QSpace(J(n)). 

As mentioned earlier, we want to be able to compose Quering Turing Machines 
(i.e., use the output of one as the input to another). We do it in the most natural way, 
using separate tapes for the two machines, and invoking the program of the inner one 
whenever the outer one wants to make an input query. The following can be easily 
seen: 

Proposition 2.1.16 If M and N are Quering Turing Machines sound for</> and 1/;, 
respectively, then their composition is sound for</> o 'lj;. Moreover, if they are total, so 
is the composition. 

Proof The soundness of the composition can be seen by simply unrolling Defini­
tion 2.1.6. To show that it is also total, it is enough to note that the totality of N 
implies that a correct answer can be reached for any query, and thus M can always 
continue with its computation. • 

Furthermore, we can bound the space used by a composition of space-bounded 
Quering Turing Machines: 

Proposition 2.1.17 For any pair of Quering Turing Machines M and N, which 
run in space f ( n) and g ( n), respectively, their composition operates within space 
O(f (2o(g(n)))). 

Proof On input of length n, N uses space g(n) = log(2g(n)) :::; f(2g(n)). It can answer 
(with a non-blank) to requests of length at most g(n), and thus its output has length 
20(g(n)). Given an input that long, M can use no more than f(20(g(n))) space. The 
overall space needed is bounded by the sum of these two, which is in O(J(2o(g(n)))), 
as required. • 
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2.2 Quering Computation Graphs 

We now proceed to present the "static" way of looking at query-based computation, 
extending the concept of configuration graphs to express issuing queries and producing 
answers. 

Definition 2.2.1 A Quering Computation Graph (V, E, S, c) is a directed graph 
with a distinguished subset? of source vertices S C:: V, together with a coloring 
function c: VUE-----+~ U {-l} (j_ denoting "no color"), such that there is at most 
one vertex of every color (i.e., c( u) = c( v) #- J_ ::::?- u = v ), but there may be many 
edges of a single color. 

The "colors" are purely a conceptual convenience-they correspond to the 
symbols of the alphabet. Intuitively, we take the usual configuration graph repre­
sentation of nondeterministic computation (i.e., edges following the intrinsic yield 
relation) and add colored vertices and edges to represent answer configurations and 
transitions dependent on oracle queries (i.e., extrinsic yield), respectively. Note that 
we specify a set (i.e., not a single vertex) as the "source"-the computation may 
start in different configurations, depending on the initial request. We will formalize 
this dependency later on. Moreover, the definition of a Quering Computation Graph 
requires every possible answer to be returned in at most one configuration-but this 
can be easily enforced if the machine clears the content of all its tapes before moving 
into an answer state. 

Oracles (and, equivalently, closed Quering Turing Machines) do not issue any 
input queries. Thus their operation can be modeled with the following restriction of 
Quering Computation Graphs: 

Definition 2.2.2 A Closed Computation Graph is a Quering Computation Graph 
in which all edges are uncolored. 

To compose computations (i.e., making a machine use the answers of another 
one as its input) we need a corresponding operation on Quering Computation Graphs. 
Let us define it as follows: 

Definition 2.2.3 Given Quering Computation Graphs G = (Va, Ea, Sa, ca) and 
H = (VH, EH, SH, cH), and a function f : Va -----+ SH, the !-composition of G 

9 All results in this section hold regardless of S, so we could assume that S = V and omit it from 
the definition. However, in later sections we will use S as a means of simplifying many arguments. 
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and H (denoted Go f H) is a Quering Computation Graph (V, E, S, c) with: 

V =Vax VH, 

S ={(u,f(u)): u E Sa}, 

E =E1 U E 2 U E 3 , where 

Ei = { ( (u, f(u)), (v, f(v))) : (u, v) E Ea, ca( (u, v)) = 1-}, 
E 2 = {((u,x), (u,y)): (x,y) E EH}, 

E 3 = {((u,x), (v,f(v))): (u,v) E Ea,ca((u,v)) = cH(x)-# 1-}, 

c((u x)) = { ca(u) if x = f(u), 
' 1- otherwise, 

c(((u x) (v ))) = { cH( (x, y)) if u = ~' 
' ' 'y 1- otherwise. 

We say that an edge in the !-composition is of type 1, 2 or 3, depending on which 
of the sets E 1 , E 2 and E 3 it belongs to. 

The correspondence between !-composition and "plugging in" one Quering 
Turing Machine as an input oracle of another is as follows. The function f represents 
a way of extracting the oracle query, and so the initial configuration of the inner 
machine, from the configuration of the outer machine. Usually it is as simple as 
taking a segment of the configuration corresponding to the contents of the oracle 
tape, in which case we will omit f entirely and simply write Go H. The transitions in 
the composed computation can be divided into three groups (edges of type 1, 2, and 
3, respectively): the uncolored (i.e., not depending on the oracle answers) transitions 
of the outer machine, the inner computation, and transferring the answer of the inner 
to the outer machine (in which case the color of the answer has to match that of the 
"conditional" edge). 

The following is an expected consequence of our definitions: 

Observation 2.2.4 The composition of two Quering Computation Graphs is a Quer­
ing Computation Graph. The composition of a Quering Computation Graph and a 
Closed Computation Graph is a Closed Computation Graph. 

It is natural to require the !-composition to be associative. Before we can 
claim that, we need to address a technical detail of our notation. We would like to be 
able to write 

GofHo9 I, 

and understand it as being parenthesized in any order. However, if we group the left 
terms first, we would need f : Va -----"* SH and g : Va x VH -----"* S1, while in the other 

15 



Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software 

case we should have J : Va -+ SH x S1 and g : VH -+ S1. To reconcile these, let us 
go back to what these functions are supposed to represent in the composition. Each 
of them extracts the initial state of the "inner" machine from the current state of 
the "outer" one. It is clear that this dependency should not change with the context 
in which this composition of machines is used. Thus we will assume in the above 
expression J : Va -+ SH and g : VH -+ S1, and then apply the function to only the 
last component, and produce only the first component of the respective tuple. Having 
clarified that we can now prove the following: 

Proposition 2.2.5 !-composition is associative. 

Proof Consider the expressions 

L := (Go f H) o9 I and 

R:=Gof(Ho9 I). 

In the light of the above discussion, we formally mean 

where 

L := (G of H) o9, I and 

R := G of' (H o9 I), 

g' ( ( s' u) ) = g ( u) ' 

J'(s) = (f(s),g(f(s))). 

The sets of vertices and source vertices of L and R are trivially equal, and so are 
their colorings. It remains to show that the same holds true for the sets of edges. Let 
us write x -+a y E G to denote that (x, y) E Ea and ca( (x, y)) = a, and consider a 
hypothetical edge (s, u, x) -+ (t, v, y) in either L or R. Unwinding the definition of 
composition we get: 

(s, u) -+-1 (t, v) E G of H _ 

(s -+-1 t E G /\u = J(s) /\v = J(t)) 

V(s = t /\ u -+J_ v EH) 

V(s -+at E G /\ v = f(t) /\ cH(u) =a =f- 1-), 
(s, u) -+a (t, v) E G of H (with a =I- 1-) 

(s=t/\u-+avEH), 
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(u, x) -----+_L (v, y) E H o9 I = 

(u -----+_L v EH/\ x = g(u) /\ y = g(v)) 

V(u=v/\x-----+_LyEI) 

V(u ---+av EH/\ y = g(v) /\ c1(x) =a =J _.1_), 

(u, x) ---+a (v, y) E H o9 I - (with a =J _.1_) 

(u=v/\x-----+ayEI), 

(s, u, x) -----+_L (t, v, y) E L = 
(s -----+_Lt E G /\ u = J(s) /\ v = f(t) /\ x = g(u) /\ y = g(v)) 

V(s = t /\ u -----+_L v EH/\ x = g(u) /\ y = g(v)) 

V(s ---+at E G /\ v = f(t) /\ cH(u) =a =f _.l /\ x = g(u) /\ y = g(v)) 

v(s = t /\ u = v /\ x -----+_Ly E I) 

V(s = t /\ u ---+av EH/\ y = g(v) /\ c1(x) =a =J l_), 
(s, u, x) ---+a (t, v, y) EL_ (with a =J l_) 

(s = t /\ u = v /\ x ---+a y E I), 

(s, u, x) -----+_L (t, v, y) E R _ 

(s -----+_Lt E G /\ u = J(s) /\ v = f(t) /\ x = g(u) /\ y = g(v)) 

V(s = t /\ u -----+_L v EH/\ x = g(u) /\ y = g(v)) 

v(s = t /\ u = v /\ x -----+_Ly EI) 

V(s = t /\ u ---+av EH/\ y = g(v) /\ c1(x) =a =J _.1_) 

v(s ---+at E G /\ v = J(t) /\ y = g(v) /\ CH(u) =a =J J_ /\ x = g(u)), 
(s, u, x) ---+a (t, v, y) E R _ (with a =J _.1_) 

(s = t /\ u = v /\ x ---+a y E I), 

from which it can be seen (the lines for R being a permutation of those for L), that 
the edges (and their colors) match and thus L = R, as required. • 

When relating Quering Computation Graphs to Quering Turing Machines, we 
need to be able to talk about the size of a graph for the particular machine. However, 
as the space bounds on the computation do not depend on the length of the request 
(only on the input), we already have infinitely many distinct initial configurations. To 
deal with that issue, let us note that a space-bounded Quering Turing Machine, once 
a specific input oracle is supplied, will not even read the bits of the request beyond 
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a specific point. Thus, all computations for requests differing only at these "far bits" 
are going to be exactly identical, allowing us to divide all configurations (and thus the 
vertices of the graph) into finitely many equivalence classes and count them instead. 
This makes the size of the Quering Computation Graph dependent on the size of the 
input only, which is what we are used to in the "standard" model. The bound on the 
graph size is of course an exponential function of the bound on the space consumed 
by the machine: 

Proposition 2.2.6 A Closed Computation Graph, corresponding to a Quering Tur­
ing Machine working in space f(n) and supplied with an input of size n, has size 
20(f(n)). 

2.3 Ambiguity 

To capture the degree of ambiguity of a computation, we look at the shape of its 
Quering Computation Graph: 

Definition 2.3.1 For a family C of Closed Computation Graphs, we say that a Quer­
ing Turing Machine M is a C-machine iff, when supplied with any consistent input, 
its Closed Computation Graph belongs to C. 

The above notion can be naturally extended to complexity classes: 

Definition 2.3.2 10 The class C-QFunc(f ( n)) consists of all functions that have sound, 
total C- machines operating in space 0 (! ( n)). Analogously we can define the classes 
C-QSpace(f (n)) and co-C-QSpace(f(n)). 

To be able to talk about classical deterministic and non-deterministic algo­
rithms, we introduce two classes of Closed Computation Graphs: D-those of out­
degree 1, and N-the class of all Closed Computation Graphs. 

Computational ( un)ambiguity is expressed by limits on the number of distinct 
ways to reach (from a source vertex) a node in the Closed Computation Graph. The 
variant of this restriction will be denoted by specifying the following (orthogonal) 
aspects: 

1. The number of paths allowed (as a function of the size of the graph, with k and 
p standing for arbitrary constants and polynomials, respectively), 

10Note that the classes from Definition 2.3.2 are semantic, i.e., defined by machines that have to 
meet undecidable criteria (here, their Closed Computation Graph on every possible input being in 
class C). Therefore we cannot immediately provide complete problems for them. 
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2. The types of paths that are counted: 

• A = all paths, 

• S =simple paths (i.e., without loops), 

• M = minimal-length paths. 

3. The types of target nodes of the paths of interest: 

• A = all nodes, 

• F = colored ("final") nodes only. 

For example, pAF-graphs are those Closed Computation Graphs with at most p(n) 
paths between a source and any final vertex, and IMA-graphs-those with a unique 
minimal-length path to any (reachable) vertex. 

Note that within this framework, we could consider notions of "unambiguity" 
other than based on path counts, for example planar graphs (this would allow our 
framework to capture the recent result of [5], showing that reachability on directed 
planar graphs can be solved in UL). However, the corresponding restrictions of the 
machines (e.g., "planar machines") are unnatural, and furthermore an equivalent of 
Lemma 2.4.2 (and thus also Proposition 2.4.4) does not hold for every possible class 
of Closed Computation Graphs. 

In the above notation, a number of classical complexity classes can be captured 
in a unified manner. In particular 

L = D-QSpace(log(n)), 

FL= D-QFunc(log(n)), 

UL= lAF-QSpace(log(n)), 

RUL = lAA-QSpace(log(n)), and 

FewL = LJ pAF-QSpace(log(n)). 
p(n)EnO(l) 

The class FewUL (defined in [6] under the name of LogFewNL, requires a 
unique computation path to every accepting configuration, but allows multiple such 
configurations to exist) does not seem to be directly captured by our framework. 
However, the corresponding function class can be shown (by a technique similar to 
Theorem 6 of [8]) to be the same as for UL: 

Proposition 2.3.3 FLFewUL = FLUL. 

19 



Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software 

Proof Since inclusion is obvious (UL ~ FewUL), it is enough to show how to 
simulate a single call to a FewUL oracle. Let M be the machine we want to simulate. 
Now if we define 

LM := { (X, C) IC is an accepting configuration of M, reachable on input X}, 

we will see that LM E UL, as M can have at most one computation path to any 
accepting configuration. Now the question of whether M accepts X can be rephrased 
as of whether there exists a C such that (X, C) ELM. As the maximal size of config­
urations is logarithmic in the length of X, the above can be answered by enumerating 
over all possible Cs and quering a UL oracle for LM. • 

For convenience, we will use AlLlL to denote the set of Closed Computation 
Graph classes obtained from any combination of the above restrictions (including 
D-graphs and the class of all graphs), 1UNTI-those with a "unique" path of a given 
type, and IRIEM-those closed under edge removal (these do not contain the classes 
based on minimum-length paths, as removing an edge might invalidate a minimum 
length path and make several longer paths take its place): 

AlLlL := {D, N} U {pAF,pAA,pSF,pSA,pMF,pMAlp E n°(1l}, 

1UNIT := {D, lAF, lAA, lSF, lSA, lMF, lMA}, 

IRIEM := {D, N} U {pAF,pAA,pSF,pSAlp E n°(1l}. 

We can also extend Proposition 2.1.8 to C-machines: 

Proposition 2.3.4 For a Closed Computation Graph class C E AlLlL and a function 
</>, if for every a E I; there exists a C-machine sound and a-total for</>, we can build 
a single C-machine, sound and total for </>. 

Proof Using the construction from the proof of Proposition 2.1.8 almost works. What 
can go wrong, is that we might introduce more vertices with the the same color (or, if 
we merge them together, increase the number of paths of interest). To prevent this, 
in each Ma we make all answers but a fail (in the Closed Computation Graph this can 
be seen as removing all colors except for a). This way each Ma is solely responsible 
for returning the answer of a, the answer vertices are unique, and the path count does 
not grow. • 
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2.4 Reductions 

To talk about the relative complexity of different problems (functions), we would 
like to introduce a notion analogous to log-space reductions, a notion that would 
allow nondeterminism but at the same time limit its level of ambiguity. The obvious 
approach would be to adapt the usual many-one reductions of Karp ( </J being reducible 
to 'lj; iff there exists a () computable in the appropriate class, such that </J = 'lj; o (); for 
detailed definitions for decision and functional problems, see [17] and [4]). However, 
this requires the ranges of the functions being compared to be identical-a limitation 
which we find too strict. Moreover, even the very nature of Quering Turing Machines 
(being queried multiple times about different characters of their output) suggests 
employing some variant of Turing reductions. 

In the space-bounded setting however, the notion of Turing reducibility be­
comes very sensitive to the exact definition. By analogy to the model with a read-only 
input tape and append-only output tape, it is natural to make oracle tape append­
only and not subject to the space bounds. This turns out to be much too strong-it 
has been shown in [23] that even a deterministic, constant-space machine, when given 
such access to an oracle for a particular language in CFL n L, can decide all recursive 
languages (the basic idea is that if the contents of the oracle tape are preserved over 
the queries, one can use it to simulate two stacks by appending symbols correspond­
ing to pushing and popping, and two stacks are sufficient to have a general model of 
computation). 

Specifying that the oracle tape is erased after every query (as proposed by 
Ladner and Lynch in [18]) makes the machine much weaker, but still too strong-it 
is possible to decide 3-CNF satisfiability (and thus every language in NP) in NLL by 
first copying the input formula to the oracle tape, followed by a (guessed) satisfying 
assignment, and then quering an oracle for the formula value problem, which is in L. 

In [31], Ruzzo, Simon, and Tom pa have suggested a further restriction of that 
model, requiring the machine to operate deterministically from the moment of the 
first write to the oracle tape, up until the oracle is queried-this way the complete 
contents of the query depend deterministically on the configuration in which the 
machine started to write the query. This approach however, as all approaches (even 
completely deterministic) with unbounded oracle tapes, has been shown in [24] not to 
be robust with respect to the number of oracles (even if the oracles are for the same 
language). 

It seems then, that for a sufficiently weak and robust definition of reducibility, 
we have to make the oracle tape(s) subject to the space bounds. But in that case our 
notion would not contain the natural many-one reductions: a language decidable in 
space O(n) but not in space O(log(n)) (guaranteed to exist by the Space Hierarchy 

21 



Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software 

Theorems, see [34]) would not be reducible to itself, as the machine could not pass its 
input (even unchanged) to the oracle. We can fix this issue by letting the oracle access 
the machine's input (which, in case of Quering Turing Machines is implicit anyway). 
However, if we restrict the queries to different requests on the same input, we will end 
up with a notion "dual" to many-one reductions (with the functions being composed 
in the opposite order )-again too weak for our purposes. 

From the above discussion we see a need for a way of transforming the input 
that would fit within some required restrictions. A similar concept has been intro­
duced in [31], where it has also been shown to be equivalent to the "deterministic query 
writing" in case of a single oracle tape. We extend it to consider ambiguity: taking 
a function class C-QFunc(f ( n)) and requiring the desired "type" of modifications 
(e.g., edge removal) to be computable in that class, while making the "parameters" 
of the change (e.g., which edge to remove) part of the oracle query. Another way of 
looking at it is as a function outputting a sequence of objects corresponding to every 
possible modification of the desired type, with the request containing the index of 
the object to extract (next to the usual index of the character we are interested in). 
The resulting model ends up being close to many-one reducibility (as it is based on 
function composition), but with each reduction consisting of two parts-the family of 
input transformations, and the actual algorithm, allowed to query the oracle on any 
member of this family: 

Definition 2.4.1 A function 1> : a ----+ (3 is C /D-reducible to a function 'I/; : r ----+ c5 
(written 1> -:5.i 'I/;) iff there exist a (possibly infinite) family of functions (}i : a ----+ /, a 
polynomial p, and a function ~ : c5* ----+ (3 such that: 

• taking (}(X) := ((}i(X))i~p(IXI) we have(} E C-QFunc(log(n)) (i.e., the functions 
(}i can be "uniformly" computed in C-QFunc(log(n))), 

• ~ E 'D-QFunc(log(n)), 

•for every XE a, ~(('I/; o (}i(X))i) = ¢(X). 

If the complexity class of (}i or ~ is not known, we will use the function itself 
as the subscript/superscript of :5_. Moreover, we will omit the subscript/superscript 
entirely if the corresponding function is the identity. 

The following technical result is the key to making use of unambiguous, non­
deterministic reductions: 

Lemma 2.4.2 For any transformations 'I/;: a----+ (3, 1>: (3----+ 6, and Closed Computa­
tion Graph classes C E 1UNII and VE AIL.IL, C ~ V, if there exist: 
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• a V-machine Jvl sound (and total) for¢, working in space f(n), and 

• a C-machine N sound (and total) for 'l/J, working in space g(n), 

then we can build a V-machine sound (and total} for the composition¢ o 'ljJ, requiring 
space O(f (2o(g(n)))). 

Proof Using the natural composition of Mand N meets the soundness, totality, and 
space requirements according to Propositions 2.1.16 and 2.1.17. It remains to show 
how to obtain the desired (un)ambiguity properties. First, let us make the following 
simple observation about the composition: 

Observation 2.4.3 Every path in the !-composition of Quering Computation Graphs 
G and H has the following structure: 

• (optionally) a path in one of the copies of H (edges of type 2), followed by one 
edge of type 3, 

• a (possibly empty) path in G, with uncolored edges followed directly (as type 1}, 
and colored edges represented by paths in copies of H (each ending at H's colored 
vertex, with a type 3 edge following it), 

• (optionally) a path in one of the copies of H. 

The Closed Computation Graph corresponding to the new machine on any 
input X is of course the composition of the Quering Computation Graph of M and 
the Closed Computation Graph of N on X. Therefore its paths follow our observation. 
Requiring C to be a subset of V makes its ambiguity constraints apply to at least the 
types of paths we are concerned with. Making it one of the lUNIT classes prevents N 
from increasing the number of paths of interest in the overall computation within a 
single query processing. As we are about to show, with some precautions we can avoid 
any other paths of interest from appearing and thus complete the proof. 

The cases in which we consider all paths (to either all reachable or all final 
vertices) are immediate consequences of Observation 2.4.3. If we count simple paths 
only, it is enough to notice that a cycle in the composition graph must mirror one in 
either of the components. The matters get slightly more complicated with minimum­
length paths, as we must make some guarantees regardless of the time needed to 
process any N queries. To achieve that, we introduce an additional counter tape, and 
we make every step of M take an amount of time larger than all possible N queries 
combined (in the query graph it might be seen as making type 1 and type 3 edges 
"longer"-i.e., replacing them with sequences of edges). 
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As M uses space f(20(g(n))), it cannot take more than 2°U(20c9 Cnll)) steps. If 
each of them was an oracle query, they would add up to at most 2°U(20

<
9
Cnll)+g(n)) 

steps. Therefore a counter of length O(f(2°(9 (n))) + g(n)) = 0(!(2o(g(n)))) is enough 
for the purpose. Now a minimum-length path in the new machine must be a minimum 
length path of M augmented with some queries. Moreover, each of them has to be 
minimum-length within the query, or otherwise a shorter overall path would exist to 
the same configuration. • 

The next proposition justifies the definition of our notion of reduction, as 
it shows that the right properties of computation graphs are maintained after the 
reduction is applied: 

Proposition 2.4.4 For Closed Computation Graph classes C E UNIT and D E AIL.IL, 
C ~ D, and transformations ¢ : o: --+ f3 and 1/J : "( --+ b, if¢ ~i 1/J and 1/J E 
C-QFunc(f(n)), then¢ E 'D-QFunc(J(n)). 

Proof Take the functions () and ~ to be as in Definition 2.4. l. Define \]i : 1* --+ b* as 

\]i can be computed in C-QFunc(J(n))-just preserve the index i of the part of 
the output you are asked for (as the value of i is bounded by a polynomial in /X/, 
logarithmic space is enough to make a copy of it), and use it whenever making a 
query to the input oracle. Moreover, ¢ = ~ o '1i o e. Now, applying Lemma 2.4.2 to 
the machines for~' \]i and(), we get an O(J(n))-space bounded 'D-machine for¢, as 
required. • 
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Chapter 3 

Results 

In this chapter we define the function problems of our interest. We also present 
some simple yet interesting dependencies between these problems, and between the 
unambiguous complexity classes. Finally, we show how some well-known theorems 
can be viewed (and in some cases improved) in our framework. 

3.1 Problems with Promises 

The computation of a Quering Turing Machine on a specific input and request can 
be viewed as following a path in the corresponding Closed Computation Graph. The 
question whether it returns a specific answer is the same as asking whether a given 
colored vertex is reachable from the given source. The problem of reachability 
(denoted Reach, also known as st-connectivity or graph accessibility problem) 
is well known (see [15]) to be the canonical problem for space-bounded computation. 

Since we are working with restricted classes of graphs, it is natural to ask the 
question whether a given graph meets the specific criteria, i.e., whether it belongs to 
the given class. This introduces a family of testing problems, with TestC denoting 
the problem of checking whether a given Closed Computation Graph belongs to the 
class C. 

We are also going to consider the (functional) problem of path counting. Here 
CountX will denote counting all paths of type X (following the notation for ambiguity 
classes, e.g., SF denoting simple paths from start to colored vertices), taking the max­
imum over all start-end pairs. In particular, CountSF is known to be complete for 
the class #L (by definition, #L contains all functions counting the accepting compu­
tations of NL machines; the equivalence between machines and computation graphs is 
well known, see Proposition 3.2.l below for details). In this work we are going to focus 
on bounded version(s) of counting-the problem CountkX will be the one of count-
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ing up to k paths (i.e., the set of answers being {O, 1, ... , k-1, k+}, with k+ denoting 
"k or more") of type X. In this notation, a result of Allender, Reinhardt and Zhou 
(Theorem 5.1 in [3]) implies that for a polynomial p, CountpSF E QFunc(log( n)) 
(i.e., limited counting can be solved nondeterministically in logarithmic space, but 
with no bounds on ambiguity). 

Most of the problems discussed might vary in difficulty when given different 
"promises" about the input graph. Therefore we employ the following consistent no­
tation: C-a denotes the problem a on graphs in class C. For example, lMATestlAA 
denotes the problem of testing whether the paths to all reachable vertices are unique 
(indicated by the suffix IAA), restricted to graphs when the minimum-length paths 
to all reachable vertices are guaranteed to be unique (indicated by the prefix IMA). 

3.2 Basic Observations 

First let us see how the problem of reachability fits in the new framework. The 
following result is an extension of the well known fact of Reach being complete for 
NL: 

Proposition 3.2.1 For any class C, C-Reach is complete (with respect to determin­
istic reductions) for C-QSpace(log( n)), i.e., for any language a ~ I;*: 

a E C-QSpace(log( n)) <==* a ::S8 C-Reach. 

Proof If a belongs to C-QSpace(log(n)), it can be solved by an O(log(n))-space 
C-machine. By definition the graph of this machine belongs to C, and whether the 
machine returns a specific answer is equivalent to a specific vertex being reachable 
from the source. 

For an algorithm, a machine that simply guesses a path edge by edge is enough. 
It works in space O(log(n)), as it is enough to remember 2 nodes at a time. Its 
computation graph is identical to its input, thus it is a C-machine. It is sound (it can 
only guess a path if there is one) and yes-total (there is a nondeterministic branch 
corresponding to every path in the graph). • 

Corollary 3.2.2 For any class C, C-Reach is hard for C-QFunc(log(n)). 

The machine from the proof of Proposition 3.2.1 is not necessarily total, and 
thus we cannot claim that C-Reach is always C-QFunc(log(n))-complete. However, 
the following can be seen as a consequence of Proposition 2.1.8: 

Proposition 3.2.3 For any class C, the following conditions are equivalent: 
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• C-QSpace(log(n)) = co-C-QSpace(log(n)), 

• C-Reach E co-C-QSpace(log(n)), 

• C-Reach E C-QFunc(log(n)), 

• C-Reach is C-QFunc(log(n))-complete. 

We have mentioned that the counting problems relate naturally to both reach­
ability and testing. Formally, these natural relationships are: 

Observation 3.2.4 For any class C, all the following denote the same function: 

C-Reach = C-CountlAF = C-CountlSF = C-CountlMF. 

Proposition 3.2.5 For any class C and path restriction X, 

C-TestkX ~n C-Count(k + l)X. 

Proof The graph G is in kX iff there are at most k paths of type X. Therefore the 
desired deterministic reduction maps all answers up to k to "yes", and that of "k + 1 
or more" to "no" . • 

How do counting problems for different values of k relate to each other? Ob­
viously, decreasing the counter limit can only makes the problem easier, as we can 
simply glue together the previously distinct answers: 

Observation 3.2.6 For any class C, path restriction X and bound k: 

C-CountkX ~D C-Count(k + l)X. 

In the other direction, the following can be shown. Recall that IRIEM is the 
family of Closed Computation Graph classes closed under edge removal. 

Proposition 3.2.7 For any class CE IRIEM and constant k 2: 1, 

C-Count(k + l)SF ~i)CountlSF C-CountkSF. 

In words, we show that given a graph G from a class C E IRIEM, and an 
algorithm for C-CountlSF, we can create a sequence of graphs (Gi)i such that the 
answer to C-Countk + lSF( G) can be obtained deterministically from the answers 
(C-CountkSF( Gi))i. 
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Proof Let us first look at the case of k = 1. Our algorithm works as follows: 

on graph G: 
1. if C-CountlSF(G) = 0, answer 0 
2. for every edge e in G, let Ge be the same as G but withe removed 
3. for every edge e in G, let Ce := C-CountlSF( Ge) 
4. remove edges from G, leaving only those for which Ce = O; call the result G' 
5. answer 2 - C-CountlSF(G') 

First, let us discuss the graph modification. The steps 2 to 4 are just a conceptual 
convenience-the graphs Ge and G' are never produced explicitly. Instead, whenever 
asked whether an edge e = (u, v) is in G', we answer "yes" if both 

• e E G, and 

• C-CountlSF(G - e) = 0. 

If there is no path between the source s and the target t in G, we will discover it 
in step 1. If there is exactly one such simple path, removing any of its edges would 
disconnects from t. Thus the same path is going to be present in G' and the algorithm 
will return 1. If there are at least two simple paths, consider the vertex x at which 
they diverge for the first time. Removing any single outgoing edge of x will not 
disconnect s and t, and thus x will become a sink in G'. But as any path from s to 
t has to go through x, there will be none, and our algorithm will correctly return 2. 
The procedure is thus sound and total. Moreover, as the only modification of the 
graph is removing edges and we have chosen C to be one of the classes closed under 
this operations, all calls to C-CountlSF will have their promise fulfilled. 

We can now proceed to higher values of k. It is clear that we only need to 
distinguish the cases of "exactly k" and "k + 1 or more" paths (the other answers 
can be copied exactly from C-CountkSF). Having at least 2 paths guarantees the 
existence of the first point of divergence, as discussed above. Moreover, the same 
way of deleting edges makes the vertices on the "common prefix" of the paths have 
out-degree 1 in G', which allows us to deterministically find the split-point x. Now, 
x has at least two "meaningful" successors (on paths to the target )-thus if there 
are exactly k paths of interest, at most k - 1 of them can pass through any of the 
successors. Therefore, if we modify the graph to leave exactly one of x's outgoing 
edges (repeatedly for each of them), we can use C-CountkSF to determine the exact 
count of the paths of interest. • 

Corollary 3.2.8 For any class C E JRIEM and constant k 2': 1, 

C-CountlSF ::Sn C-CountkSF :::Sf;countlSF C-CountlSF. 
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Corollary 3.2.9 For any classes C E JRIEM, V E lUNlI, and constant k 2: 1, 

C-Reach E V-QFunc(log(n)) ~ C-CountkSF E V-QFunc(log(n)). 

It is also possible to extend the above results to count all, instead of only 
simple, paths: 

Proposition 3.2.10 For any class C E JRIEM and constant k 2: 1, 

C-Count(k + l)AF :::S~CountlAF C-CountkAF. 

Proof First, let us note that if there is any non-simple path from the source to 
the target, we can obtain infinitely many paths by choosing the number of times we 
traverse its cycle. Therefore, knowing how to count simple paths, the problem of 
counting all paths becomes a matter of cycle detection. Let us recall the proof of 
Proposition 3.2.7 and look at the (only) path 7r leavings in G'. 

If G contains a non-simple path from s to t, the first vertex that is visited 
twice on that path must lie either on 7r or "after" (and thus be reachable from) the 
divergence point x. In the latter case, the number of paths from one of the successors 
of x to t will be infinite, in which case the call to C-CountkAF will return "k+" and 
the whole procedure will correctly answer "( k + 1) +". Thus we only need to detect 
a situation in which some vertex y E 7r lies on a cycle, or equivalently, y is reachable 
from some successor z of y. As we can deterministically enumerate over all vertices 
on 7r and all successors of each of them, it remains to show how we can answer the 
question of y being reachable from z. 

Let us then introduce an additional modification of our input graph, namely 
the change of source and target vertices. It is obvious that it can be done deter­
ministically in QFunc(n). Moreover, as we are guaranteed that the new source z is 
reachable from the old source s, and likewise, the old target t is reachable from the 
new target y, we can see that the "interesting" paths in the new graph form a subset 
of those in the old one. From this it follows that the new graph belongs to C, and 
thus we can simply use C-CountlAF to check whether y is reachable from z. • 

Corollary 3.2.11 For any classes C E JRIEM, VE lUNlI, and constant k 2: 1, 

C-Reach E V-QFunc(log(n)) ~ C-CountkAF E V-QFunc(log(n)). 

Finally, when our guarantees apply to all vertices reachable from the source, 
we are free to use our algorithms with an arbitrary vertex as the target. This allows 
us to conclude: 

Corollary 3.2.12 For any class VE lUNlI, bound p, and constant k, 

pAA-Reach E V-QFunc(log(n)) =? pAA-CountkAA E V-QFunc(log(n)), 

pSA-Reach E V-QFunc(log(n)) =? pSA-CountkAA E V-QFunc(log(n)). 
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3.3 Inductive Counting 

In this section we present algorithms based on the technique called "inductive count­
ing." They all look at the vertices of the input graph reachable from the source s in 
concentric "layers," with layer k (denoted by Lk) consisting of those whose distance 
(the length of the shortest path) from s is at most k. Then they analyze the layers 
one by one, using some information computed or verified for one layer to help analyze 
the next. 

Let us start with the breakthrough due to Immerman and Szelepcsenyi (see [13, 
36]). Let us denote the number of vertices in Lk by Ck. It turns out that it is 
possible to calculate this number within QFunc(log(n)). We do this by induction on 
k, with C0 = 1 ( s is the only vertex with distance 0 from itself), and the calculation 
of ck+l from ck carried out by the following procedure (guess denotes making a 
nondeterministic choice): 

Algorithm 3.3.1 (Inductive Counting) 

1. set ck+l := 1 
2. for every v E V - { s}: 
3. set C£ := 0, F :=false 
4. for every u EV: 
5. guess whether u E Lk, if not-move to the next u 
6. guess a path from s to u of length ~ k (or fail) 
7. set C£ := C£ + 1 
8. if (u, v) EE, set F := true 
9. if C£ < Ck, fail 
10. if F = true, set Ck+i := Ck+i + 1 

It is not difficult to convince oneself that on all of the nondeterministic branches 
that have not failed, the value of Ck+l has been computed correctly. First of all, every 
vertex v contributes to the count only if there was a vertex u E Lk, and an edge (u, v). 
Therefore, the only way the computation may go wrong is for some v being incorrectly 
guessed not to be in Lk+l · For that to happen, there must exist a vertex u E Lk (and 
the edge (u, v) ), which we have wrongly guessed (in step 5) not to be there. But then 
the checksum count C£ would be smaller than the true count Ck, and the computation 
branch would fail in step 9. 

Clearly, the above can be used to create a total algorithm for Reach (it is 
enough to compare the counts with the target vertex present and removed). Moreover, 
its correctness does not depend on the shape of the input graph. 

Recalling that C-a denotes the problem a restricted to graphs in class C, we 
can conclude: 
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Corollary 3.3.2 N-Reach E N-QFunc(log(n)). 

Analyzing the algorithm a little closer, we can show more: 

Proposition 3.3.3 

lAA-Reach E lAF-QFunc(log(n)), 

lSA-Reach E lSF-QFunc(log(n)), 

lMA-Reach E lMF-QFunc(log(n)). 

Proof On how many nondeterministic branches can Algorithm 3.3.1 succeed? The 
guesses made in step 5 are of no consequence here, as there is only one way of guessing 
that will not lead to a failure later on. The only ambiguity is therefore introduced in 
step 6. But the guesses made there correspond to the paths in the input graph, and 
therefore any uniqueness promises about them yield analogous unambiguity properties 
of the accepting paths. • 

Algorithm 3.3.1 guesses paths between the same pairs of vertices over and 
over again, and thus the result does not immediately extend to higher path counts. 
If however, we know a limit on these counts, we can modify the algorithm (following 
Buntrock, Hemachandra and Siefkes, see [7]) to guess and verify all the paths to 
every reachable vertex. How can we do this? First, assume that we have guessed the 
number p of distinct paths (of length at most l) between vertices u and v. Then we 
can use the following procedure to verify the existence of at least these many paths: 

Algorithm 3.3.4 

guesspaths(G, u, v,p, l): 
1. if p = 1, guess a path from u to v of length::;; l and return 
2. guess w, the first divergence point of paths from u to v 
3. guess a path from u to w (or fail), let l' < l be its length 
4- let w' and w" be the two successors of w 
5. guess the number p' (0 < p' < p) of distinct paths from w' to v 
6. let p" := p - p', l" := l - l' - 1 
1. guesspaths(G, w', v,p', l") 
8. guesspaths(G, w", v,p", l") 

Let us first see what happens if the procedure has been supplied with too high 
a value of p. If p = 1, it means that there is no path from u to v and we will fail in 
step 1. For p > 1 it is easy to see that even if the divergence point w, and the path 
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to it, are guessed correctly, at least one of the numbers p' or p" will exceed the actual 
number of paths. Thus by a simple inductive reasoning, the procedure will fail. 

What happens when the value of p is correct? If all the guesses are made 
correctly, the algorithm returns successfully. If the divergence point w is wrong, at 
least one of its successors will fail to have enough paths to v and the procedure will 
fail. The same is bound to happen if the number p' is guessed wrongly, as then either 
p' or p" will be larger than the actual number of paths. It is then clear that with the 
correct p on input, the algorithm will succeed on exactly one computation branch. 

The situation of the p provided being too low is a bit less fortunate, as then 
the procedure might succeed on multiple computation branches (effectively guessing 
any p distinct paths from u to v). But if we process the graph layer by layer, we can 
keep track of the collective number of paths (Tk, with T0 = 1) to all vertices in Lk, 
and use it to cut off these "unfortunate" branches: 

Algorithm 3.3.5 

1. set Tk+ 1 := 1 
2. for every v E V - { s}: 
3. set T£ := 0, r := 0 
4. for every u EV: 
5. guess the number p 2: 0 of distinct paths from s to u of length ::; k 
6. guesspaths(G, s, u,p, k) 
7. set T£ := T£ + p 
8. if (u, v) E E, set r := r + p 
9. if T£ < Tki fail 
10. set Tk+1 := Tk+1 + r 

Using arguments analogous to the discussion following Algorithm 3.3.1, one 
can easily show that the value of Tk+ 1 will be correctly computed on exactly one 
nondeterministic branch, and that all other branches will fail. 

What are the space requirements of this procedure? Being almost identical to 
Algorithm 3.3.1, it uses the same amount of space, plus any calls to guesspaths(). 
The latter, not counting the recursive calls, uses logarithmic space too. One of the 
calls is a tail recursion, and thus can easily be eliminated. Moreover, if we modify the 
procedure to always handle the larger of the values of p' and p" using tail recursion, the 
depth of the stack can be bounded by O(log(p)). With each stack record consisting 
of a vertex ( w' or w"), a path count (p' or p"), and a path length ( l" E nO(l)), the 
total space used by guesspaths() can be bounded by O((log(n) + log(p)) log(p)) = 

O(log(np) log(p)). 
As it is obvious that Algorithm 3.3.5 can be used to answer the question of 

reachability, we obtain the following: 
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Proposition 3.3.6 pAA-Reach E lAF-QFunc(log(np) log(p)). 

Corollary 3.3. 7 For constants k and l, 

kAA-Reach, 

kAA-CountlSF, kAA-CountlAF, 

kAA-CountlSA, kAA-CountlAA E lAF-QFunc(log(n)). 

Moreover, taking l = k and noting that if there are at most k paths of type 
X, then CountkX becomes CountX, we can obtain the following: 

Corollary 3.3.8 

kAA-CountAF, kAA-CountAA E lAF-QFunc(log(n)). 

Algorithms 3.3.1 and 3.3.5 consider all paths to every vertex. It is however 
possible to adapt them to consider only the minimal length paths. Following Allender 
and Reinhardt (see [30]), we can extend the former to count not only the number of 
vertices in Lk (Ck), but also the sum of lengths of the shortest paths to those vertices 
(denoted I:k)· Obviously, 2:0 = 0. The modified version of the algorithm looks as 
follows: 

Algorithm 3.3.9 (Double Counting) 

1. set Ck+1 := Cki 2:k+1 := I:k 
2. for every v E V - { s}: 
3. set C~ := 0, 2:~ := 0, F :=false 
4. guess d:::; k + 2 (minimal d for which v E Ld, 

with k + 2 denoting "more than k + 1 ") 
5. for every u E V: 
6. guess whether u E Lk, if not-move to the next u 
7. guess l :::; k (minimal for which u E Lz) 
8. guess a path from s to u of length l (or fail) 
9. set c~ := c~ + 1, 2:~ := 2:~ + l 
10. if (u, v) EE, then 
11. if l + 1 < d, fail 
12. if l + 1 = d, set F := true 
13. if c~ < ck or 2:~ > I:k, fail 
14. if F =false and d:::; k + 1, fail 
15. if d = k + 1, set Ck+l := Ck+l + 1 and I:k+l := I:k+l + d 
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If all the guesses a.re made riglit., ihe olgorit~ computes C1c+1 and lJ1e.H eor-. 
rectly. What can then go wrong? If the value of d (step 4) is too small, there will be 
no valid predecessor u for v, and the algorithm will fail in step 14. If it is too lar~, 
a predecessor closer to s will be found and the branch will fail in step 11. If for some 
vertex u the value of l (step 7) is too small, no path can be found and failure. will 
occur in step 8. If it is too large, then the checksum valve of Et will be larger than 
the actual value Ek, which will force us to fail in step 13, 

Knowing Ek in addition to Ck does not seem to have any interesting con­
sequences. Note however, that if there is a unique shortest pa.th from s to every 
reachable vertex, th~ algorithm will compute the oorrect value on exactly on' oompu,. 
tation branch (as all the nondeterministic choices will have exactly one "valid" value). 
From here, we can immediately conclude the following: 

Corollary 3.3.10 lMA-Reaeh e lAP-QIUnc(log(n)). 

H the graph on the input to Algorithm 3.3.9 does not belong to IMA, there is 
a vertex reachable from s by two distinct shortest paths. Take v to be such a vertex 
closest to s. It means th&t its predecessors on those paths must be distinct, a.nd the 
statement in line 12 of the algorithm would set the flag F to true more the.n onee for 
this vertex v. Simply testing for that situation allows us to discover the issue and, 
moreover, if the loops in steps 2 and 5 evaluate the vertices in some fixed order, the 
issue will be discovered on exactly one computation branch. 

Corollary 3.3.11 TestlMA E lAF-QFunc(log(n)). 

As it turns out, the same "double counting" technique can be applied to Al­
gorithm 3.3.5. First, we can make sure that guesspaths{) considers only paths of 
length exactly l (instead of up to l). Then, making Tk denote the collective number 
of shortest paths to all vertices in L1e, we can compute Tk+l and E1i:+i from Tk and Ek 
as follows: 

Algorithm 3.3.12 

1. set Tk+l := Tk, Ek+l := E1i: 
2. for every v EV - {s}: 
3. set Tfc := 0, Ek := 0, r := 0 
4. guess d < k + 2 (minimal d for which v E Ld, 

with k + 2 denoting "more than k + 1 ") 
5. for every u EV: 
6. guess whether u E L1i:, if not-move to the next u 
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7. guess l :::; k (minimal for which u E Lz) 
8. guess p 2: 1 (the number of distinct paths of length l from s to u) 
9. guesspaths( G, s, u, p, l) 
10. set T~ := T~ + p, L:~ :=I:~+ l 
11. if (u, v) EE, then 
12. if l + 1 < d, fail 
13. if l + 1 = d, set r := r + p 
14. if T~ < Tk or L:~ > L:k, fail 
15. if r = 0 and d :::; k + 1, fail 
16. if d = k + 1, set Tk+ 1 := Tk+l + r and L:k+l := L:k+1 + dr 

Again, a discussion similar to that following Algorithm 3.3.9 allows us to con­
clude that our procedure finishes successfully on exactly one computation branch, and 
that it can be used in a similar manner for both reachability and testing problems. 
Furthermore, its space requirements are precisely those of guesspaths(). Thus we 
can conclude the following: 

Proposition 3.3.13 

pMA-Reach, TestpMA E lAF-QFunc(log(np) log(p))). 

Corollary 3.3.14 For a constant k, 

kMA-Reach, TestkMA E lAF-QFunc(log(n)). 

3.4 Graph Traversal 

All algorithms from the previous section make invalid computation paths fail based 
on "collective" quantities, and thus it is not known whether the bound of lAF can 
be tightened to lAA. However, slightly strengthening the assumption allows us to 
use a different algorithm, due to Lange (see [20]). If Lk is promised to be a tree, the 
following procedure can be used to traverse it (the two possible successors of a vertex 
can be seen as its left and right children in the tree): 

Algorithm 3.4.1 

traverse( G, k): 
1. let z be the rightmost leaf of Lk 
2. set u := s, l := 0 
3. while u =I- z: 
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4. if l < k and u is not a leaf, then 
5. u :=left child of u, l := l + 1 
6. else 
7. guess l' < l and a path of length l' from s, let v be its end 
8. set w := left child of v 
9. for every i E {l' + 2, l' + 3, ... , l}: 
10. w := right child of w 
11. if w =I u, fail 
12. set u := right child of v, l := l' + 1 

It is a simple observation that (under the mentioned assumption) this proce­
dure performs a depth-first traversal: for the internal nodes, the successor is chosen 
deterministically, while for the leaves the successor's parent v (and in a tree there 
can be only one) is guessed in step 7 and verified in steps 8-11. Moreover, knowing v 
unambiguously determines the guesses made in step 7, and hence for every v there is 
at most one computation branch leading to failure in step 11. 

Now, if the input graph is in lAA, we can simply use Algorithm 3.4.1 to visit 
all reachable vertices. We can also employ it to check whether -thi5 -001\d.ition hf>ld:s 
(i.e., solve TestlAA). To see this, consider the following procedure: 

Algorithm 3.4.2 

1. for every k E {O, 1,. .. ,n -1}: 
2. for every v E V: 
3. set c := 0 
4. for every u visited by traverse(G, k): 
5. if (u,v) EE, set c := c+ 1 
6. if c > 1, answer "no" 
7. amwer "yes" 

If G E lAA, every Lk is a tree and every reachable v has exactly one valid 
predecessor u. Therefore the procedure e.nswers "yes" (at exactly one computation 
path). If G <j. IAA, there is a smallest k for which L1e+i is not a tree, and thus a 
vertex v with at least two valid predecessors within distance k. Then the algorithm 
answers "no" (also on exactly one branch). The procedure is deterministic except 
for the calls to traverse, and the latter is only called for those Lk 's that are trees. 
Therefore we can conclude the following: 

Corollary 3.4.3 lAA-Reach, TestlAA E lAA-QFunc(log(n)). 
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It seems that it should be possible to apply the technique of "multiple path 
guessing" (Algorithm 3.3.4) to the procedures from this section, and thus extend the 
results from lAA to kAA for an arbitrary constant k. Any such application is a 
matter for future research. 

3.5 Future Work 

Our work provides a convenient formal framework for analyzing unambiguously­
computable functions. In particular, it seems that the use of nondeterministic re­
ductions should allow one to achieve results stronger than those presented in this 
chapter. Furthermore, there are at least a few possible ways in which our framework 
could be extended. Thus we would like to point out at least the following directions 
for future work: 

1. Try to improve the results outlined in Section 3.1 from constant to polynomial 
bounds on path count. This will require a way of unambiguously characterizing 
a set of "pivot points,'' together with the means of verifying whether a given 
set meets this characterization. 

2. Apply the technique of Algorithm 3.3.4 (unambiguously guessing multiple paths 
at the same time) to the graph traversal algorithm from Section 3.4. A success 
here would show the appropriate variants of reachability to be complete for 
classes kAAQFunc(log(n)) (for a constant k), and together with results from 
Section 3.1, possibly prove the collapse of these classes. 

3. Incorporate strong unambiguity (limiting the number of paths between any two 
configurations, not necessarily reachable from the initial one), and possibly other 
restrictions, into the framework. The definitions and theorems from Chapter 2 
could be easily adapted. However, it seems that it is difficult to construct a 
Quering Turing Machine algorithm that would make use of nondeterminism, and 
yet remain strongly unambiguous-such an algorithm would need to deal with 
unreachable situations, which in the case of Quering Turing Machines include 
possibly inconsistent answers from the input oracle. 

4. Enrich the framework by a means of limiting the number of oracle queries al­
lowed. On one hand it would allow a stronger version of Proposition 2.4.4-
constantly or logarithmically many queries to a constant-ambiguity oracle yield 
a constant- or polynomial-ambiguity result, respectively. On the other hand, it 
is not clear whether at most logarithmically many queries to the input oracle 
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can be of any advantage (in particular, such. a situation does not even allow the 
machine to read the whole input). 

5. Extend the models to allow for unbounded-space pushdown storage. This would 
capture the existing variants of unambiguity for auxiliary pushdown automata, 
and could possibly yield results analogous to those for "standard" Turing ·Ma­
chines. 

6. Consider different space bounds than just the logarithmic. In particular, the 
linear bound deserves some attention, as the question whether DSPACE(n) 
equals NSPACE(n) (the class of context-sensitive languages) is of great im­
portance. On the other hand, we do not envision our framework being useful 
for lower space bounds, BB it has been shown in (1] that reducibility below log­
arithmic space can be achieved by a two-way deterministic finite automata. 
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Appendix A 

A Modular Approach 

So far, we have not been able to provide a proof that UL= NL, but in this chapter 
we outline a promising approach. As this line of attack does not make use of the 
machinery developed in the core chapters of the thesis, and therefore we have decided 
to place it in the Appendix. 

Let a weight function be a function assigning positive integers ("weights") 
to graph edges. It can also be seen as a graph transformation that replaces every edge 
with a sequence of consecutive edges (the length of that sequence being the weight 
assigned to the original edge). 

As proposed in [30], Algorithm 3.3.9 (unambiguously solving reachability on 
IMA-graphs) can be used together with a specialized version of the Isolation Lemma 
of Mulmuley et al. (see [25]) to obtain a collapse of UL and NL in the nonuniform 
setting: 

Proposition A.1 For all integers n large enough, there exists a sequence of n 2 weight 
functions (wi)i with ranges in [I, 4n3], such that for every graph G on n vertices, there 
exists an i such that wi(G) E IMA. 

Proof The argument for the existence of (wi)i is probabilistic. Let us choose our 
sequence of functions by assigning the weight to every edge independently and uni­
formly at random. Let us bound the probability that all functions obtained in such 
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way will be "bad" for at least one graph of size n: 

Pr[3a,#a=n V1w1( G) c/:. lMA) ~ 

#{Gl#G = n} Pr[Viwi(G) ¢:. lMA] ~ 

2n
2 
(Pr[3veVa;nYF7r2:8 --.v7r1 and 7r2 are shortest under wi])n

2 
~ 

2n
2 
(Pr[3veva,eEEae is on one but not another shortest Pttth from s tQ v}t

2 
$ 

2n
2 
(#(Vax Ea) Pr[e is on one but not another shortest path from s to v])n

2 
= 

2n
2 
(n3Pr[e is on one but not another shortest path from s to v])n

2 
< ( *) 

2n2 (n3_l_)ni -
4n3 

1 2n2 (-4l)n2 
= 2n2' 

where ( *) holds because once we fix the weights of all edges except e, there will be at 
most one possible weight for e that makes it possible. 

As the probability of all functions being "bad" is smaller than 1 (and in fact 
approaches zero quite rapidly as n grows), there must exist a "good" weight function . 

• 
The above argument is non-constructive. However, the family of the functjons 

whose existence is shown does not depend on the graph and only on its size n. There­
fore the information can be used as the advice in non-uniform computation model. 
Now given a specific graph, we can iterate over individual weight functions, using 
Algorithm 3.3.9 to discover whether wi(G) E lMA, and to solve Reach if it does. 

Corollary A.2 NL/poly= UL/poly. 

(For a proof see [30].) 
With almost all (probabilistically speaking) weight functions being able to 

disambiguate log-space computation, it seems reasonable to expect that one should 
be able to compute at least some of them in FL. We present a candidate for such a 
family of functions and provide some evidence (though no proof so far) that it indeed 
has the desired properties. It is our hope that further analysis of this approach may 
yield some fruit. 

First, let us note that to show NL= UL, we do not have to disambiguate all 
possibl~ graphs. We ca.u first modify the configuration graph by adding a step cou:uter, 
Thus th.e graph can be transformed into a. layered dag (with vertices partitioned 
into layers and a.ll edges going between consecutive layers only) while preserving the 
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property that the accepting configuration (which we can force to be the last node in 
the graph) is reachable from the initial one (again, easily made the first node) iff the 
NL machine being analyzed accepts its input. 

If we identify vertices with their numbers and assign weight 2 * 3v (simply 
using 2v would work here as well, but the base of 3 and the multiplier are used in 
later arguments) to any edge ( u, v), the total weight of any path 7r originating from 
the source s will be equal to 

w(n) = -2 * 38 + 2 * L 3v. 
vEn 

Now for any two paths n 1 , n2 of equal weight we have 

which in a dag yields n 1 = n2 . 

w( 7r1) = w( n2) ~ 

L3v = L3v ~ 

Of course, this weight function w has an exponential range, so it cannot be 
used directly. We will therefore force it into a polynomial range by choosing a suitable 
constant t and taking all the weights modulo i (thus creating a different function wi) 
for every i E {2, ... , nt}: 

Let us assume that this function family does not work, i.e., that there exists 
an infinite family of graphs {Gn} (#Ven= n) such that every weight function in our 
family fails to disambiguate it: 

Furthermore, without loss of generality, we can restrict the paths n1 and n2 not 
to share any vertices except u and v. To achieve this, simply make u the first point at 
which the paths diverge, and v-the first point at which they meet again; as subpaths 
of paths of minimum weight, the restricted paths will have to be minimum-weight as 
well. 

Let us take any GE { Gn}· Noting that in a layered dag any two paths n1 and 
n2 between the same pair of vertices must have the same number of vertices, we can 
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:q.ow coDStruct a new weighted graph H which will "captur~" all such pofllible pairs 
of paths: 

VH :=Vax Va, 
EH := {((u, x), (v, y))l(u, v), (x, y) E Ee}. 

As mentioned, without loss of generality, we can focus on pairs of pa.tbs tha.t 
do not share any vertices (except the common source and target )-we will call such 
paths in H proper. We can now define the weight function on H to calculate the 
difference of weights of the edges (and thus the paths) from G: 

w(((u,x), (v,y))) := w((u,x)) -w((v,y)) = 2 * 3z - 2 * 311• 

It is easy to show that this weight function w is injective on proper paths. 
Consider the "heaviest" vertex n. The weights of all other vertices can add up (by 
absolute value) to at most 

n-1 3n 1 
2"' 31 = 2 - 3" ~ 3-1 < ' 

i=O 

and therefore for a. proper path ?r, knowing within which ol the ranges {-3n+1, -3"), 
[-3", 3"), or ( 3", 3n+l J the value of w falls, determines whether n ls on a.ny ( a.nd on 
which) of the "component: paths'' of 11". With that known, one can remove the weight 
of n from the total and repeat the process to obtain the exact specification of 1r. 

Let us now return to the modular restrictions of w, and extend them naturally 
to H. If a weight function w, fails to disambiguate G, we must have a proper path 
in H whose weight r will be a multiple of i. Among n(nt) values of i, there are 
O(nt..-l) primes. As the values of w fall within the range (-3"+1, 3n+l}, a single weight 
r can be "used" far at moet 0( n) of the prime moduJi-..the only va.lue having more 
prime factors is 0, which corresponds to a.n empty path in H. Thet"efoN we must he.ve 
at least n( nt-2) distinct values of r and, as w is injective on proper paths, at least 
n(nt-2) distinct proper paths in H. 

We conjecture that, given the structure of H, such situation is not possible. 
Intuitively, if the l'll'Oper paths in question were short, there could not be many of 
them. On the other h1md, if they were long, m&ny of them would have to share 
many vertices, which (at least probabilistically) seems to yield a situation in which 
some edges are at the same time required to be present and absent from G. U thie 
conjecture can be proven, based on the above discussion it would immediately give 
the long-expected Meult of UL = NL. 
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