
UNAMBIGUOUS FUNCTIONS

IN LOGARITHMIC SPACE

UNAMBIGUOUS FUNCTIONS

IN LOGARITHMIC SPACE

By

GRZEGORZ HERMAN, M.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the Degree of

Doctor of Philosophy

McMaster University

©Copyright by Grzegorz Herman, February 2009

DOCTOR OF PHILOSOPHY (2009)
(Computing and Software)

TITLE: Unambiguous Functions in Logarithmic Space

McMaster University
Hamilton, Ontario

AUTHOR: Grzegorz Herman, M.Sc. (Jagiellonian University, Krakow, Poland)

SUPERVISOR: Michael Soltys, Ph.D.

NUMBER OF PAGES: v, 46

ii

Abstract

The notion of nondeterminism is one of the most fundamental concepts in many
areas of computer science. Unambiguity, requiring that there be at most one correct
sequence of nondeterministic choices, has proved to be one of the most meaningful
restrictions of nondeterminism. In the context of space-bounded Turing Machines,
several variants of unambiguity have been proposed and studied, and some interesting
results have been established, narrowing slightly the gap between deterministic and
nondeterministic logarithmic-space computation.

We study the different variants of unambiguity in the context of computing
multi-valued functions (as opposed to the usual yes/no decision problems). We pro­
pose a modification to the standard computation models of Turing Machines and
configuration graphs, which allows for unambiguity-preserving composition. We in­
troduce a unified notation, capturing the different flavors of ambiguity. Furthermore,
we define a notion of reductions (based on function composition), which allows non­
determinism but controls its level of ambiguity. In the light of this framework we
establish some reductions between different variants of path counting problems. We
also investigate more carefully the technique of inductive counting, and obtain im­
provement of some existing results.

lll

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Michael Soltys. It was
much thanks to him-being not only an inspiring and patient advisor, but also a great
person-that my years at McMaster were truly pleasant and enriching.

The other members of my supervisory committee: Dr. Ryszard Janicki and
Dr. Emil Sekerinski, as well as Prof. Stephen Cook, who has agreed to review my
thesis, have all provided many valuable remarks.

I am deeply grateful to my parents Izabel a and Krzysztof, and to my grand­
mother Zofia-I think it is simply not possible to overestimate the support and en­
couragement I have received from them.

Many of my fiends also deserve my sincere thanks. In Poland: Lech, Ania and
Michal, Marta, Patryk, Kasia, Ania, and of course Dominika, who has waited for me
so patiently ... In Canada, I have been blessed to meet father Peter, Allan, Theresa
and Elaine, Lauren and Due, Meghan, and many others. Thank you all for being
there for me!

IV

Contents

1 Introduction 1
1.1 A Bit of History . 1
1.2 Contributions .. 3
1.3 Structure and Notation . 5

2 Models of Computation 7
2.1 Quering Turing Machines . 7
2.2 Quering Computation Graphs 14
2.3 Ambiguity . 18
2.4 Reductions. 21

3 Results 25
3.1 Problems with Promises 25
3.2 Basic Observations 26
3.3 Inductive Counting 30
3.4 Graph Traversal . 35
3.5 Future Work 37

A A Modular Approach 39

v

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Chapter 1

Introduction

1.1 A Bit of History

The notion of nondeterminism is one of the fundamental notions in theoretical com­
puter science. Given any model of computation which allows it, the question whether
nondeterminism yields a proper increase in the power of the model, is one of the
first to be asked. The relationship between deterministic and nondeterministic flavors
of resource-bounded computation classes has been under intense scrutiny for the last
four decades, giving rise to numerous formulations, techniques, and even new branches
of computer science (e.g., proof complexity has emerged from trying to tackle the P
vs. NP question). It seems however, that despite all the progress, we still do not
have an adequate understanding of these issues. And so, even in the most natural
and well studied cases-of polynomial time and logarithmic space-the questions of
nondeterminism (i.e., P vs. NP and L vs. NL) stand open.

The study of nondeterminism in the space-bounded context has been more
fruitful in unconditional results, than in the time-bounded context. In particular,
very low space bounds (o(loglog(n))) have been shown in [34, 12] to capture only
regular languages, with nondeterminism yielding no additional power. For bounds
at least polylogarithmic (log(n) 0 (1l), an algorithm due to Savitch (see [33]) allows
us to do away with nondeterminism. Between these two bounds the question re­
mains open, though it has been shown by Kannan (see [16]) that the equality of
DSPACE(loglog(n)) and NSPACE{loglog(n)) cannot be proven by means of sim­
ulation, and by Szepietowski (see [37]) that this equality would imply L = NL.
Because sub-logarithmic space machines lack the ability to count, the world between
the space bounds of O(loglog(n)) and o(log(n)) is very sensitive to minor modifica­
tions in the definitions and in general requires special proof techniques ([38] contains
a thorough presentation of these issues; for a survey and some interesting results see

1

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

also [22]).
Among all space bounds, it is the logarithmic one that has received the most

attention. It is large enough to allow counting (and thus many "natural" algorithmic
approaches), while at the same time small enough (even in the nondeterministic vari­
ant) to be contained in polynomial time (in fact, even in NC2), which makes it well-fit
for reductions between polynomial-time problems. Many things are known about non­
deterministic logarithmic space. It is closed under complementation (see [13, 36]) and
thus both the oracle and the alternation hierarchies collapse to NL. Its unbounded
alternation class, called AL, is equal to P (see [9]). Finally, the symmetric variant
of NL (defined in [21]) has been recently shown (by Reingold; see [28], building on
results from [29]) to be equal to L. However, the "big question" -whether L equals
NL-remains open.

When a notion resists a complete understanding, it is natural to restrict it
in some way, hoping that the restricted case will be easier to analyze. Accordingly,
numerous restrictions of nondeterminism have been introduced and studied. A noto­
rious restriction is that of unambiguity, in which the machine does not need to know
the path to an answer (and thus can make nondeterministic choices), but the path
itself is required to be unique. Unambiguity has been first introduced for context-free
languages (requiring that every word has at most one derivation). For polynomial
time bounds, it has been defined by Valiant (see [39]). Although much has been said
about the class UP (especially concerning its relation to one-way functions, one of
the core concepts of cryptography), its exact relations to both P and NP remain
unknown.

The unambiguous version of NL, called UL, has been first explicitly con­
sidered in [4] and [8]. In the latter, variants of UL that allow polynomially many
accepting computation paths, as well as variants that consider not only accepting,
but all reachable or all paths, have been proposed. Some inclusions between these
classes have been presented, and the classes ReachUL and StrongUL have been
shown to be closed under complementation. The Immerman-Szelepcsenyi technique
of inductive counting has been extended in [7], allowing the removal of ambiguity at
the cost of a relatively small increase in required computation space. StrongUL has

been shown by Allender and Lange to be contained in deterministic space O(i~;~~~~:))
(see [2]). In [20], Lange has exposed a problem complete for ReachUL. Finally,
inductive counting has been used again by Reinhardt and Allender in [30] to show
that UL and NL coincide in the nonuniform setting (i.e., NL/poly= UL/poly), and
thus also in the uniform setting under some hardness assumptions (see [3] for details).

The study of space-bounded computation has also included numerous exten­
sions of the model. Of these, the concept of an auxiliary pushdown automaton (a
space-bounded, possibly nondeterministic Turing Machine, with an additional push-

2

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

down (last-in, first-out) storage, not subject to the space bound) has received a lot of
attention. Cook has shown in [10] that logarithmic-space AuxPDAs (both determin­
istic and nondeterministic) capture deterministic polynomial-time exactly. When a
polynomial-time restriction is added, deterministic and nondeterministic logarithmic­
space AuxPDAs have been shown in [32] and [35] to capture languages that are
log-space reducible to deterministic and general context-free languages, respectively.
The concept of unambiguity has been investigated also in this setting, but here the
equivalence of unambiguous AuxPDAs and unambiguous context-free languages has
not been exposed so far (Niedermeier and Rossmanith have shown in [26] that the
latter can be recognized within the class StrongUAuxPDA, but the converse in­
clusion remains open). The aforementioned result of Reinhardt and Allender proves
that unambiguous AuxPDAs can recognize all context-free languages, but it requires
the use of advice, and thus applies only in the nonuniform setting.

Altogether, collapses of deterministic and nondeterministic complexity classes,
and equivalences of various extensions or restrictions of nondeterminism, have been
shown in the context of bounded space--even though not all space bounds have been
covered unconditionally. On the other hand, known separation results (such as those
for sub-logarithmic alternation hierarchies; see [22]) work under "ill" conditions, such
as inconstructibility of respective space bounds or the machine's inability to count.
This provides a strong evidence toward the claim that nondeterminism does not in­
crease the power of a space-bounded Turing Machine. However, it seems that the
current techniques are insufficient to provide a proof of this claim, and applying ideas
from other branches of mathematics (as an example one can take the Reingold's
proof that L = SL, based on expander graphs and analysis of eigenvalues of graph
adjacency matrices) might be necessary to resolve the question. The lesser claim of
USPACE(J(n)) = NSPACE(J(n)) (and, in particular, UL = NL) should be in
much closer range.

1.2 Contributions

In our study, we initially set out to solve the UL vs. NL problem. As providing
any unconditional results in this field seems quite difficult, we decided to analyze the
relative complexity (in terms of the required ambiguity) of problems. This has led
to a search of a notion of reduction which would be at the same time stronger than
deterministic log-space, and weak enough to provide meaningful comparison of prob­
lems and classes. Finally, opting for a variant of functional many-one reductions, we
have introduced a generic framework for analysis of space-bounded, limited-ambiguity
functions. The contributions of this thesis can thus be described as follows:

3

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

1. Model: We provide a modification of the standard model of oracle Turing
Machines, which allows for nondeterministic computation of deterministically
valued (i.e., well defined) functions. In the space-bounded setting, such com­
putation has been defined (as in [14]) only based on deterministic machines
having access to an oracle for a language from a possibly nondeterministic class.
In a different manner, functions (including the path-counting functions which
we consider in Chapter 3) have been defined based on properties of the com­
putation tree of a nondeterministic machine (giving rise to classes such as #L,
GapL, etc.; see [4]), and not computed by the machine itself. Our model agrees
with the first of the above when full power of nondeterminism is allowed, but
has the advantage of being easily adaptable to classes of limited ambiguity. The
different variants of unambiguity are achieved through restricting the shape of
the configuration graph of our machines. The computation is shown to compose
nicely, preserving both space and ambiguity constraints.

2. Reductions: Based on our computation model, we introduce a notion of nonde­
terministic, unambiguous reductions. The notion of space-bounded reducibility
has been extensively studied. Nondeterminism has been first added in this con­
text to Turing reductions (see [18, 31]), this model has been also shown not to
be robust with respect to minor definition changes. Also, as the bias of our
work is toward showing collapses rather than separations, we tried to avoid cre­
ating oracle hierarchies (we use oracles only as a tool of function composition,
not as sources of additional computation power). Nondeterministic many-one
reductions have been introduced in [19]-there, however, a reduction effectively
computes a relation (a set-valued function). Our notion is much better fit for
the purpose of comparing the ambiguity-complexity of functions, it is also as
natural to work with as many-one reductions.

3. Counting: Within our framework, we analyze variants of the path-counting
problem. We exhibit some dependencies between different count ranges. In par­
ticular, by Propositions 3.2.7 and 3.2.10 we obtain the equivalence of counting
up to any constant number of (arbitrary or simple) paths. Furthermore, we take
a closer look on the inductive counting technique of [13, 36], which allows us
to combine the results of [7] and [30] into Algorithm 3.3.12: an unambiguous
algorithm for reachability on graphs with restricted ambiguity of shortest paths.
In the process, some of the interplay between the ambiguity of a graph and the
ambiguity of its traversal, is shown.

4

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

1.3 Structure and Notation

This thesis has the following structure: In Chapter 2, we discuss our formal models
of computation. First, we define Quering Turing Machines and Quering Computation
Graphs, together with their restricted-ambiguity variants. Based on these definitions,
we introduce a consistent naming scheme for various ambiguity-related function and
language classes. Next, we introduce our concept of unambiguous reductions, and
show how they can be used to place functions in some of the classes under considera­
tion. In Chapter 3, we look at specific problems related to path counting. We exhibit
some relationships between counting up to different bounds. Finally, we examine the
approaches to reachability based on inductive counting and graph traversal, which
enables us to improve the results from [13, 36] and [7]. We conclude with a short
discussion of possible future work directions. In Appendix A, we include an outline
of a possible approach to the UL vs. NL question.

Throughout the thesis, we employ a consistent notation, denoting:

• natural numbers and indices by small letters i through n,

• complexity bounds (functions on natural numbers) by small letters f, g, and h,

• polynomials by small letters p and r,

• alphabets and arbitrary sets by capital Greek letters I:, r, ~'

• single characters (alphabet symbols) by small letters a through d,

• words (strings of characters) by capital letters W through Z,

• languages (sets of words) by small Greek letters a through <5,

• functions on words by small Greek letters ¢, 1/J, ~ and (),

• machines and oracles by capital letters M, N, and 0,

• machine states by small letter q,

• machine configurations by capital letter C,

• graphs by capital letters G, H, and I,

• sets of graph vertices and edges by capital letters V and E, respectively,

• graph vertices and edges by small letters s through z, and e, respectively,

5

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

• (arbitrary) complexity classes and graph classes in script letters (e.g., C),

• specific complexity classes and problems in boldface (e.g, QFunc(log(n)), Reach),

• families of complexity classes in boldblank (e.g., IRJEM).

When an index (e.g., i) appears in a place where a string is expected, we
assume the natural binary encoding is used. We will use E to denote an empty string,
juxtaposition (e.g., XY) for string concatenation, Kleene star (*) for repetition, and
square brackets to access individual characters of a string (e.g., X [i]). We will use
angle brackets to denote sequences, write (...)i for a sequence over possible i's, and
Si to denote the i-th component of a sequence S. Finally, in the text, we will use
italics for emphasis and boldface for newly-defined terms.

6

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Chapter 2

Models of Computation

We begin with providing a model of computation which will be employed throughout
this work. Since the goal is the analysis of functions that can be computed unam­
biguously in logarithmic space, the following natural requirements emerge:

• the model must allow computing functions with an arbitrary range,

• sub-linear (and, in particular, logarithmic) space bounds must be enforceable,

• nondeterministic computation must be possible, but its level of ambiguity held
under control,

• computations have to be composable, and the composition should obey the
space and ambiguity restrictions as much as possible,

• the complexity classes based on the new model should coincide with the classical
ones.

2.1 Quering Turing Machines

As we have outlined before, we need a model of computation that allows function
composition, and makes the analysis of such complex functions straightforward. The
usual model of Turing Machines does not behave well when composing (under sub­
linear space bounds): the input and output tapes, not subject to the space bounds,
become an internal tape of the composed machine, which should obey the space
restrictions. To deal with that issue we employ its well-known modification: instead
of producing a (possibly long) output in its entirety, the machine computes just one
requested character. Moreover, we use the same approach to access the machine's
input-it writes the index of the input character it is interested in on one of its tapes,

7

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

and queries an oracle1 (by entering a special state). Therefore such a machine can be
seen as one rewriting requests2 about its output to (sequences of) queries about its
input, and generating an answer based on the results of these queries. This model,
which we will call a Quering Turing Machine, can be formally defined as follows3 :

Definition 2.1.1 A k-tape Quering Turing Machine is a tuple consisting of:

• a finite alphabet4 ~ ~~I 2 2),

• a finite set of states r,

• an initial state qinit E f,

• an answer state qa E r for every a E ~,

• a query state qquery E f,

• a response state qa E r for every a E ~,

• a transition relation ~ ~ r x ~k x r x ~k x { - ' - ' -----+ }k.

We will use the usual notion of configuration for Turing Machines:

Definition 2.1.2 A configuration of a Quering Turing Machine consists of the
current state q Er and, for every i E {1, ... , k}, a pair of strings \Xi, Yi) E ~* x ~*,
representing the contents of the i-th tape (to the left and to the right of the position of
the head, respectively; the head can be seen as reading the first symbol of Yi, or a blank
if Yi = E). The initial configuration on request i is \qiniti (E, i), (E, E), ... , (E, E)): the
request is written (in binary) on tape 1, all other tapes are empty.

As a Quering Turing Machine accesses an oracle, there are two kinds of state
changes: those intrinsic to the machine itself (as described by the transition relation
~), and those "performed" by the oracle, which is not part of the machine. Conse­
quently, we can define two relations formalizing these state changes:

1 In some cases we will consider machines with more than one input oracle (thus computing
functions of bigger arity). However such a tandem can always be seen as a single oracle whose
queries specify the requested input next to the bit index, and thus all formalisms will consider
single-input machines only.

2We will use the words: input, output, request, query, and answer, to mean precisely the roles
described here.

3For a nice exposition of regular and oracle Turing Machines, see for example [27, 11].
4Usually, a Turing Machine has two alphabets: the input/output alphabet, and a larger tape

alphabet. However, as in our model the input and output are never written anywhere, and any
alphabet of size at least two can be easily encoded (with only a constant factor space cost) using
any other, we have decided to unify them for simplicity.

8

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Definition 2.1.3 A configuration C intrinsically yields a configuration C' iff for
someq,q' E f, X1,. . .,Xk,Y1, .. .,Yk E :E*, ai,. . .,ak E :EU{E}, bi .. .,bk,c1,. .. ,ck E
:E, mi ... , mk E { +--, -, ----+ }, we have:

C = (q, (X1a1, biY1), ... , (Xkak, bkYk)),

C' = (q', (X1W1, Z1Y1), ... , (XkWk, ZkYk)),

~ 3 (q, (b1, ... , bk), q', (c1, ... , ck), (m1, ... , mk)),

{

(E, aici), if mi =+-- and ai =I- E,
viE{l,. . .,k}l (Wi, Zi) = (ai, Ci), ~f mi=-,

(aici, E), if mi=----+ .

A configuration C extrinsically yields a configuration C' under input oracle 0 iff
for some X1 , ... , Xk, Y1, ... , Yk E :E*, a E :E, we have:

c = (iiquery, (X1, Y1), ... ' (Xk, Yk)),
C' = (iia, (X1, Y1), ... , (Xk, Yk)),

and a is a possible response of 0 given the query xj Yj (with j being the index of the
oracle query tape).

Given the above, we can define the outcome of a computation as follows:

Definition 2.1.4 A Quering Turing Machine can answer a on request i (given input
oracle 0) iff any configuration with state Qa is reachable from the initial configuration
on i via the transitive reflexive closure of the union of intrinsic and extrinsic yield
relations.

The specifics of the above model merit a short discussion. Using the power
of nondeterministic guesses (and, later on, talking about unambiguity properties)
requires the ability to terminate branches on which the computation "went wrong"
(i.e., invalid guesses have been made). The usual model incorporates such situations
into the "reject" answer from the machine. However, we find it much easier to analyze
complex scenarios (such as interplay between multiple computations) if such failures
are made explicitly distinct from any possible answer the machine might give5 . We will
represent the failure by any configuration that does not yield a new one. For further
simplification, we do not require the answer states Qa to be final-terminating or

5 An example of such situation might be the Immerman-Szelepcsenyi technique of inductive count­
ing (see [13, 36]). There, the machine might reject a computation branch either because it has suc­
cessfully verified that there is a path between the designated vertices, or because it has made some
incorrect guesses on the way (which in our formalism would constitute a failure).

9

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

continuing the computation is seen as yet another nondeterministic choice. Moreover,
as the input oracle will often be substituted with another Quering Turing Machine,
we allow oracles in principle to give inconsistent ("nondeterministic") answers as well
as to fail, and make all failures unrecoverable, i.e., propagating from any component
to the whole computation.

With the above in place, the only externally visible difference between a Quer­
ing Turing Machine and an oracle is that the former needs to be provided with an
input (oracle) before one can talk about its answers. Therefore we will freely use the
term "oracle" to refer also to closed Quering Turing Machines-those with a specific
input "plugged in."

A deterministic Quering Turing Machine "computes" a well-defined function.
When allowed making guesses however, it might end up yielding different answers (or
failing) on different computation branches. We could therefore define the machine to
compute a relation (not necessarily a function). However, the notion of reductions
based on this understanding has been shown in [19] to be very strong (applying
them to NL yields the whole NP). Thus instead we interpret this "ambiguity" as
"computing" multiple functions:

Definition 2.1.5 An oracle consistently computes (returns) a string X E ~*

iff, for any request i, it can only answer X[i] (or fail, which is always allowed).

Definition 2.1.6 A Quering Turing Machine Mis sound for the function</>: a---> /3
iff, when supplied with an input oracle consistently returning X E a, it consistently
computes <f>(X).

Note that according to the above definition, a single machine might be sound
for many functions-in particular, a machine that always fails is sound for every
possible function on ~*! Therefore we need a notion that would require a machine
to succeed (i.e., not fail) on at least some nondeterministic branches. As it turns out
however, we do not need it to succeed on all possible inputs:

Definition 2.1.7 For any a E ~' we say that a Quering Turing Machine M is
a-total6 for a function </> : a ---> /3 iff, whenever supplied an input oracle consis­
tently returning X E a and given the request i such that the i-th character of </>(X) is
a, it can answer a. M is total for</> i.ff it is a-total for</> for every a E ~.

6 Using a term "complete" instead would make obvious the analogy to soundness and completeness
of logical frameworks-however it could be easily confused with completeness with respect to a
complexity class (even though one applies to languages, while the other to machines).

10

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

How do traditional (nondeterministic) deciders fit into this picture? Each can
be seen as computing a characteristic function-making sure that ~ contains the two
characters "O" and "1", the output can be seen as a member of~*. The problem is that
the Quering Turing Machine formed this way does not necessarily have to be sound
for any function (as its answers are not guaranteed to be consistent among possible
computation branches). However, if the original decider was an "existential" nonde­
terministic machine (i.e., accepting a word when there exists an accepting branch),
we can turn all "O" answers into failures, achieving a sound, 1-total Quering Turing
Machine for the original language. Analogously, a "universal" decider can be turned
into a sound, 0-total Quering Turing Machine by failing all accepting paths. Further­
more, the connection goes in the other direction as well: we can wrap a sound, 1-total
(0-total) Quering Turing Machine into an existential (universal) decider by treating
every failure as a reject (accept, respectively).

The following simple result allows us to combine "partially total" Quering
Turing Machines into a total one:

Proposition 2.1.8 For a function</>, if for every a E ~ there exists a Quering Turing
Machine sound and a-total for</>, then we can build a Quering Turing Machine sound
and total for </>.

Proof Let the a-total Quering Turing Machine for </> be called Ma· The desired
machine M can be built as follows: nondeterministically guess the right answer a,
and invoke the program for Ma. The soundness and totality of M are clear-it can
never reach a wrong answer (as one of the Ma's would have to do it), and if it correctly
guesses the answer a, Ma (being a-total) will "confirm" it. •

As both input and output are implicit in a Quering Turing Machine, i.e., never
available in their entirety, we need special arrangements to give a meaningful definition
of the space consumed by it. First, we enrich the alphabet~ with yet one more special
symbol, the blank. Then we make sure that whenever an oracle is queried about an
index beyond its output (and only then), it answers with the blank symbol7

. Finally,
we can define our space bounds:

Definition 2.1.9 8 The size (length) of an oracle is the smallest value of a query
(i.e., the smallest character index) to which it might respond with a blank.

7This can be achieved formally by adjusting Definition 2.1.5 and propagating this change wherever
necessary. It is a very intuitive change, yet including it would affect the clarity of all further results­
thus we opted for keeping it "under the hood."

8 Definition 2.1.9 might seem roundabout, but remember that we are trying to take into consid­
eration the fact that the input oracle might itself happen to be a QTM.

11

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Definition 2.1.10 A Quering Turing Machine M operates in space f(n) iff, when­
ever supplied with an input oracle of size n, it reads or writes no more than f(n) cells
on all its tapes, including the oracle tape.

The above definition does not take the size of the query into consideration.
On one hand it eliminates the ill case of the request being very short compared to the
input, while on the other it forces the machine to make sure it will not consume too
much space just reading its request. However, for the algorithms that are "aware" of
their own space bounds (and whose space bounds are space-constructible according
to the usual definition, as in [34]), it is not an issue-they can discover the size of
their input and return a blank if the request is beyond the longest possible output.
Finally, just issuing oracle queries requires space logarithmic in the oracle size, and
hence we will not consider sub-logarithmic space bounds.

Building on the above, we can naturally define some complexity classes:

Definition 2.1.11 For a space bound f(n) 2:: log(n), the class QFunc(f(n)) consists
of all functions that have sound and total Quering Turing Machines operating in space
O(f(n)).

Definition 2.1.12 For a space bound f(n) 2:: log(n), the class QSpace(f(n)) (and
co-QSpace(f(n))) consists of those languages, whose characteristic functions have
sound, 1-total (respectively, 0-total) Quering Turing Machines operating in space
O(J(n)).

The classes defined this way correspond naturally to the classical ones:

QSpace(J(n)) = NSpace(f(n)),

co-QSpace(J(n)) = co-NSpace(J(n)).

Furthermore, we can show the following:

Proposition 2.1.13 QFunc(J(n)) = FNSpace(J(n)).

Proof We will only show that QFunc(log(n)) = FNL-the result generalizes easily
to larger space bounds. It has been shown in [14] that several definitions of FNL are
in fact equivalent. Here we use the following:

Definition 2.1.14 A function ef> is in FNL iff:

• there is a polynomial p such that for every X, lef>(X)I ::S P(IXI),

• the language L¢ = { (X, i, a) : ef>(X)[i] =a} (known as the graph of ef>) is in NL.

12

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

It is now easy to see that this definition is equivalent to QFunc(log(n)). Logarithmic
space bounds for the Quering Turing Machine induce a logarithmic bound on the size
of the request, and thus a polynomial bound on the length of the output. The NL
machine for L</J can be turned into a Quering Turing Machine for </> by guessing the
appropriate a as in the proof of Proposition 2.1.8. Turning a Quering Turing Machine
for </> into an NL machine for L¢ can be obtained by comparing the answer (of the
original QTM) with the a given on input (and rejecting on all failed branches). •

The above proof exhibits a close relationship between the function classes and
the intersections of "existential" and "universal" language classes. This relationship
can be captured as follows:

Corollary 2.1.15 For every space bound f:

</> E QSpace(J(n)) n co-QSpace(f (n)) =? </> E QFunc(J(n)),

</> E QFunc(J(n)) =? L</J E QSpace(J(n)) n co-QSpace(J(n)).

As mentioned earlier, we want to be able to compose Quering Turing Machines
(i.e., use the output of one as the input to another). We do it in the most natural way,
using separate tapes for the two machines, and invoking the program of the inner one
whenever the outer one wants to make an input query. The following can be easily
seen:

Proposition 2.1.16 If M and N are Quering Turing Machines sound for</> and 1/;,
respectively, then their composition is sound for</> o 'lj;. Moreover, if they are total, so
is the composition.

Proof The soundness of the composition can be seen by simply unrolling Defini­
tion 2.1.6. To show that it is also total, it is enough to note that the totality of N
implies that a correct answer can be reached for any query, and thus M can always
continue with its computation. •

Furthermore, we can bound the space used by a composition of space-bounded
Quering Turing Machines:

Proposition 2.1.17 For any pair of Quering Turing Machines M and N, which
run in space f (n) and g (n), respectively, their composition operates within space
O(f (2o(g(n)))).

Proof On input of length n, N uses space g(n) = log(2g(n)) :::; f(2g(n)). It can answer
(with a non-blank) to requests of length at most g(n), and thus its output has length
20(g(n)). Given an input that long, M can use no more than f(20(g(n))) space. The
overall space needed is bounded by the sum of these two, which is in O(J(2o(g(n)))),
as required. •

13

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

2.2 Quering Computation Graphs

We now proceed to present the "static" way of looking at query-based computation,
extending the concept of configuration graphs to express issuing queries and producing
answers.

Definition 2.2.1 A Quering Computation Graph (V, E, S, c) is a directed graph
with a distinguished subset? of source vertices S C:: V, together with a coloring
function c: VUE-----+~ U {-l} (j_ denoting "no color"), such that there is at most
one vertex of every color (i.e., c(u) = c(v) #- J_ ::::?- u = v), but there may be many
edges of a single color.

The "colors" are purely a conceptual convenience-they correspond to the
symbols of the alphabet. Intuitively, we take the usual configuration graph repre­
sentation of nondeterministic computation (i.e., edges following the intrinsic yield
relation) and add colored vertices and edges to represent answer configurations and
transitions dependent on oracle queries (i.e., extrinsic yield), respectively. Note that
we specify a set (i.e., not a single vertex) as the "source"-the computation may
start in different configurations, depending on the initial request. We will formalize
this dependency later on. Moreover, the definition of a Quering Computation Graph
requires every possible answer to be returned in at most one configuration-but this
can be easily enforced if the machine clears the content of all its tapes before moving
into an answer state.

Oracles (and, equivalently, closed Quering Turing Machines) do not issue any
input queries. Thus their operation can be modeled with the following restriction of
Quering Computation Graphs:

Definition 2.2.2 A Closed Computation Graph is a Quering Computation Graph
in which all edges are uncolored.

To compose computations (i.e., making a machine use the answers of another
one as its input) we need a corresponding operation on Quering Computation Graphs.
Let us define it as follows:

Definition 2.2.3 Given Quering Computation Graphs G = (Va, Ea, Sa, ca) and
H = (VH, EH, SH, cH), and a function f : Va -----+ SH, the !-composition of G

9 All results in this section hold regardless of S, so we could assume that S = V and omit it from
the definition. However, in later sections we will use S as a means of simplifying many arguments.

14

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

and H (denoted Go f H) is a Quering Computation Graph (V, E, S, c) with:

V =Vax VH,

S ={(u,f(u)): u E Sa},

E =E1 U E 2 U E 3 , where

Ei = { ((u, f(u)), (v, f(v))) : (u, v) E Ea, ca((u, v)) = 1-},
E 2 = {((u,x), (u,y)): (x,y) E EH},

E 3 = {((u,x), (v,f(v))): (u,v) E Ea,ca((u,v)) = cH(x)-# 1-},

c((u x)) = { ca(u) if x = f(u),
' 1- otherwise,

c(((u x) (v))) = { cH((x, y)) if u = ~'
' ' 'y 1- otherwise.

We say that an edge in the !-composition is of type 1, 2 or 3, depending on which
of the sets E 1 , E 2 and E 3 it belongs to.

The correspondence between !-composition and "plugging in" one Quering
Turing Machine as an input oracle of another is as follows. The function f represents
a way of extracting the oracle query, and so the initial configuration of the inner
machine, from the configuration of the outer machine. Usually it is as simple as
taking a segment of the configuration corresponding to the contents of the oracle
tape, in which case we will omit f entirely and simply write Go H. The transitions in
the composed computation can be divided into three groups (edges of type 1, 2, and
3, respectively): the uncolored (i.e., not depending on the oracle answers) transitions
of the outer machine, the inner computation, and transferring the answer of the inner
to the outer machine (in which case the color of the answer has to match that of the
"conditional" edge).

The following is an expected consequence of our definitions:

Observation 2.2.4 The composition of two Quering Computation Graphs is a Quer­
ing Computation Graph. The composition of a Quering Computation Graph and a
Closed Computation Graph is a Closed Computation Graph.

It is natural to require the !-composition to be associative. Before we can
claim that, we need to address a technical detail of our notation. We would like to be
able to write

GofHo9 I,

and understand it as being parenthesized in any order. However, if we group the left
terms first, we would need f : Va -----"* SH and g : Va x VH -----"* S1, while in the other

15

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

case we should have J : Va -+ SH x S1 and g : VH -+ S1. To reconcile these, let us
go back to what these functions are supposed to represent in the composition. Each
of them extracts the initial state of the "inner" machine from the current state of
the "outer" one. It is clear that this dependency should not change with the context
in which this composition of machines is used. Thus we will assume in the above
expression J : Va -+ SH and g : VH -+ S1, and then apply the function to only the
last component, and produce only the first component of the respective tuple. Having
clarified that we can now prove the following:

Proposition 2.2.5 !-composition is associative.

Proof Consider the expressions

L := (Go f H) o9 I and

R:=Gof(Ho9 I).

In the light of the above discussion, we formally mean

where

L := (G of H) o9, I and

R := G of' (H o9 I),

g' ((s' u)) = g (u) '

J'(s) = (f(s),g(f(s))).

The sets of vertices and source vertices of L and R are trivially equal, and so are
their colorings. It remains to show that the same holds true for the sets of edges. Let
us write x -+a y E G to denote that (x, y) E Ea and ca((x, y)) = a, and consider a
hypothetical edge (s, u, x) -+ (t, v, y) in either L or R. Unwinding the definition of
composition we get:

(s, u) -+-1 (t, v) E G of H _

(s -+-1 t E G /\u = J(s) /\v = J(t))

V(s = t /\ u -+J_ v EH)

V(s -+at E G /\ v = f(t) /\ cH(u) =a =f- 1-),
(s, u) -+a (t, v) E G of H (with a =I- 1-)

(s=t/\u-+avEH),

16

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

(u, x) -----+_L (v, y) E H o9 I =

(u -----+_L v EH/\ x = g(u) /\ y = g(v))

V(u=v/\x-----+_LyEI)

V(u ---+av EH/\ y = g(v) /\ c1(x) =a =J _.1_),

(u, x) ---+a (v, y) E H o9 I - (with a =J _.1_)

(u=v/\x-----+ayEI),

(s, u, x) -----+_L (t, v, y) E L =
(s -----+_Lt E G /\ u = J(s) /\ v = f(t) /\ x = g(u) /\ y = g(v))

V(s = t /\ u -----+_L v EH/\ x = g(u) /\ y = g(v))

V(s ---+at E G /\ v = f(t) /\ cH(u) =a =f _.l /\ x = g(u) /\ y = g(v))

v(s = t /\ u = v /\ x -----+_Ly E I)

V(s = t /\ u ---+av EH/\ y = g(v) /\ c1(x) =a =J l_),
(s, u, x) ---+a (t, v, y) EL_ (with a =J l_)

(s = t /\ u = v /\ x ---+a y E I),

(s, u, x) -----+_L (t, v, y) E R _

(s -----+_Lt E G /\ u = J(s) /\ v = f(t) /\ x = g(u) /\ y = g(v))

V(s = t /\ u -----+_L v EH/\ x = g(u) /\ y = g(v))

v(s = t /\ u = v /\ x -----+_Ly EI)

V(s = t /\ u ---+av EH/\ y = g(v) /\ c1(x) =a =J _.1_)

v(s ---+at E G /\ v = J(t) /\ y = g(v) /\ CH(u) =a =J J_ /\ x = g(u)),
(s, u, x) ---+a (t, v, y) E R _ (with a =J _.1_)

(s = t /\ u = v /\ x ---+a y E I),

from which it can be seen (the lines for R being a permutation of those for L), that
the edges (and their colors) match and thus L = R, as required. •

When relating Quering Computation Graphs to Quering Turing Machines, we
need to be able to talk about the size of a graph for the particular machine. However,
as the space bounds on the computation do not depend on the length of the request
(only on the input), we already have infinitely many distinct initial configurations. To
deal with that issue, let us note that a space-bounded Quering Turing Machine, once
a specific input oracle is supplied, will not even read the bits of the request beyond

17

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

a specific point. Thus, all computations for requests differing only at these "far bits"
are going to be exactly identical, allowing us to divide all configurations (and thus the
vertices of the graph) into finitely many equivalence classes and count them instead.
This makes the size of the Quering Computation Graph dependent on the size of the
input only, which is what we are used to in the "standard" model. The bound on the
graph size is of course an exponential function of the bound on the space consumed
by the machine:

Proposition 2.2.6 A Closed Computation Graph, corresponding to a Quering Tur­
ing Machine working in space f(n) and supplied with an input of size n, has size
20(f(n)).

2.3 Ambiguity

To capture the degree of ambiguity of a computation, we look at the shape of its
Quering Computation Graph:

Definition 2.3.1 For a family C of Closed Computation Graphs, we say that a Quer­
ing Turing Machine M is a C-machine iff, when supplied with any consistent input,
its Closed Computation Graph belongs to C.

The above notion can be naturally extended to complexity classes:

Definition 2.3.2 10 The class C-QFunc(f (n)) consists of all functions that have sound,
total C- machines operating in space 0 (! (n)). Analogously we can define the classes
C-QSpace(f (n)) and co-C-QSpace(f(n)).

To be able to talk about classical deterministic and non-deterministic algo­
rithms, we introduce two classes of Closed Computation Graphs: D-those of out­
degree 1, and N-the class of all Closed Computation Graphs.

Computational (un)ambiguity is expressed by limits on the number of distinct
ways to reach (from a source vertex) a node in the Closed Computation Graph. The
variant of this restriction will be denoted by specifying the following (orthogonal)
aspects:

1. The number of paths allowed (as a function of the size of the graph, with k and
p standing for arbitrary constants and polynomials, respectively),

10Note that the classes from Definition 2.3.2 are semantic, i.e., defined by machines that have to
meet undecidable criteria (here, their Closed Computation Graph on every possible input being in
class C). Therefore we cannot immediately provide complete problems for them.

18

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

2. The types of paths that are counted:

• A = all paths,

• S =simple paths (i.e., without loops),

• M = minimal-length paths.

3. The types of target nodes of the paths of interest:

• A = all nodes,

• F = colored ("final") nodes only.

For example, pAF-graphs are those Closed Computation Graphs with at most p(n)
paths between a source and any final vertex, and IMA-graphs-those with a unique
minimal-length path to any (reachable) vertex.

Note that within this framework, we could consider notions of "unambiguity"
other than based on path counts, for example planar graphs (this would allow our
framework to capture the recent result of [5], showing that reachability on directed
planar graphs can be solved in UL). However, the corresponding restrictions of the
machines (e.g., "planar machines") are unnatural, and furthermore an equivalent of
Lemma 2.4.2 (and thus also Proposition 2.4.4) does not hold for every possible class
of Closed Computation Graphs.

In the above notation, a number of classical complexity classes can be captured
in a unified manner. In particular

L = D-QSpace(log(n)),

FL= D-QFunc(log(n)),

UL= lAF-QSpace(log(n)),

RUL = lAA-QSpace(log(n)), and

FewL = LJ pAF-QSpace(log(n)).
p(n)EnO(l)

The class FewUL (defined in [6] under the name of LogFewNL, requires a
unique computation path to every accepting configuration, but allows multiple such
configurations to exist) does not seem to be directly captured by our framework.
However, the corresponding function class can be shown (by a technique similar to
Theorem 6 of [8]) to be the same as for UL:

Proposition 2.3.3 FLFewUL = FLUL.

19

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Proof Since inclusion is obvious (UL ~ FewUL), it is enough to show how to
simulate a single call to a FewUL oracle. Let M be the machine we want to simulate.
Now if we define

LM := { (X, C) IC is an accepting configuration of M, reachable on input X},

we will see that LM E UL, as M can have at most one computation path to any
accepting configuration. Now the question of whether M accepts X can be rephrased
as of whether there exists a C such that (X, C) ELM. As the maximal size of config­
urations is logarithmic in the length of X, the above can be answered by enumerating
over all possible Cs and quering a UL oracle for LM. •

For convenience, we will use AlLlL to denote the set of Closed Computation
Graph classes obtained from any combination of the above restrictions (including
D-graphs and the class of all graphs), 1UNTI-those with a "unique" path of a given
type, and IRIEM-those closed under edge removal (these do not contain the classes
based on minimum-length paths, as removing an edge might invalidate a minimum
length path and make several longer paths take its place):

AlLlL := {D, N} U {pAF,pAA,pSF,pSA,pMF,pMAlp E n°(1l},

1UNIT := {D, lAF, lAA, lSF, lSA, lMF, lMA},

IRIEM := {D, N} U {pAF,pAA,pSF,pSAlp E n°(1l}.

We can also extend Proposition 2.1.8 to C-machines:

Proposition 2.3.4 For a Closed Computation Graph class C E AlLlL and a function
</>, if for every a E I; there exists a C-machine sound and a-total for</>, we can build
a single C-machine, sound and total for </>.

Proof Using the construction from the proof of Proposition 2.1.8 almost works. What
can go wrong, is that we might introduce more vertices with the the same color (or, if
we merge them together, increase the number of paths of interest). To prevent this,
in each Ma we make all answers but a fail (in the Closed Computation Graph this can
be seen as removing all colors except for a). This way each Ma is solely responsible
for returning the answer of a, the answer vertices are unique, and the path count does
not grow. •

20

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

2.4 Reductions

To talk about the relative complexity of different problems (functions), we would
like to introduce a notion analogous to log-space reductions, a notion that would
allow nondeterminism but at the same time limit its level of ambiguity. The obvious
approach would be to adapt the usual many-one reductions of Karp (</J being reducible
to 'lj; iff there exists a () computable in the appropriate class, such that </J = 'lj; o (); for
detailed definitions for decision and functional problems, see [17] and [4]). However,
this requires the ranges of the functions being compared to be identical-a limitation
which we find too strict. Moreover, even the very nature of Quering Turing Machines
(being queried multiple times about different characters of their output) suggests
employing some variant of Turing reductions.

In the space-bounded setting however, the notion of Turing reducibility be­
comes very sensitive to the exact definition. By analogy to the model with a read-only
input tape and append-only output tape, it is natural to make oracle tape append­
only and not subject to the space bounds. This turns out to be much too strong-it
has been shown in [23] that even a deterministic, constant-space machine, when given
such access to an oracle for a particular language in CFL n L, can decide all recursive
languages (the basic idea is that if the contents of the oracle tape are preserved over
the queries, one can use it to simulate two stacks by appending symbols correspond­
ing to pushing and popping, and two stacks are sufficient to have a general model of
computation).

Specifying that the oracle tape is erased after every query (as proposed by
Ladner and Lynch in [18]) makes the machine much weaker, but still too strong-it
is possible to decide 3-CNF satisfiability (and thus every language in NP) in NLL by
first copying the input formula to the oracle tape, followed by a (guessed) satisfying
assignment, and then quering an oracle for the formula value problem, which is in L.

In [31], Ruzzo, Simon, and Tom pa have suggested a further restriction of that
model, requiring the machine to operate deterministically from the moment of the
first write to the oracle tape, up until the oracle is queried-this way the complete
contents of the query depend deterministically on the configuration in which the
machine started to write the query. This approach however, as all approaches (even
completely deterministic) with unbounded oracle tapes, has been shown in [24] not to
be robust with respect to the number of oracles (even if the oracles are for the same
language).

It seems then, that for a sufficiently weak and robust definition of reducibility,
we have to make the oracle tape(s) subject to the space bounds. But in that case our
notion would not contain the natural many-one reductions: a language decidable in
space O(n) but not in space O(log(n)) (guaranteed to exist by the Space Hierarchy

21

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Theorems, see [34]) would not be reducible to itself, as the machine could not pass its
input (even unchanged) to the oracle. We can fix this issue by letting the oracle access
the machine's input (which, in case of Quering Turing Machines is implicit anyway).
However, if we restrict the queries to different requests on the same input, we will end
up with a notion "dual" to many-one reductions (with the functions being composed
in the opposite order)-again too weak for our purposes.

From the above discussion we see a need for a way of transforming the input
that would fit within some required restrictions. A similar concept has been intro­
duced in [31], where it has also been shown to be equivalent to the "deterministic query
writing" in case of a single oracle tape. We extend it to consider ambiguity: taking
a function class C-QFunc(f (n)) and requiring the desired "type" of modifications
(e.g., edge removal) to be computable in that class, while making the "parameters"
of the change (e.g., which edge to remove) part of the oracle query. Another way of
looking at it is as a function outputting a sequence of objects corresponding to every
possible modification of the desired type, with the request containing the index of
the object to extract (next to the usual index of the character we are interested in).
The resulting model ends up being close to many-one reducibility (as it is based on
function composition), but with each reduction consisting of two parts-the family of
input transformations, and the actual algorithm, allowed to query the oracle on any
member of this family:

Definition 2.4.1 A function 1> : a ----+ (3 is C /D-reducible to a function 'I/; : r ----+ c5
(written 1> -:5.i 'I/;) iff there exist a (possibly infinite) family of functions (}i : a ----+ /, a
polynomial p, and a function ~ : c5* ----+ (3 such that:

• taking (}(X) := ((}i(X))i~p(IXI) we have(} E C-QFunc(log(n)) (i.e., the functions
(}i can be "uniformly" computed in C-QFunc(log(n))),

• ~ E 'D-QFunc(log(n)),

•for every XE a, ~(('I/; o (}i(X))i) = ¢(X).

If the complexity class of (}i or ~ is not known, we will use the function itself
as the subscript/superscript of :5_. Moreover, we will omit the subscript/superscript
entirely if the corresponding function is the identity.

The following technical result is the key to making use of unambiguous, non­
deterministic reductions:

Lemma 2.4.2 For any transformations 'I/;: a----+ (3, 1>: (3----+ 6, and Closed Computa­
tion Graph classes C E 1UNII and VE AIL.IL, C ~ V, if there exist:

22

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

• a V-machine Jvl sound (and total) for¢, working in space f(n), and

• a C-machine N sound (and total) for 'l/J, working in space g(n),

then we can build a V-machine sound (and total} for the composition¢ o 'ljJ, requiring
space O(f (2o(g(n)))).

Proof Using the natural composition of Mand N meets the soundness, totality, and
space requirements according to Propositions 2.1.16 and 2.1.17. It remains to show
how to obtain the desired (un)ambiguity properties. First, let us make the following
simple observation about the composition:

Observation 2.4.3 Every path in the !-composition of Quering Computation Graphs
G and H has the following structure:

• (optionally) a path in one of the copies of H (edges of type 2), followed by one
edge of type 3,

• a (possibly empty) path in G, with uncolored edges followed directly (as type 1},
and colored edges represented by paths in copies of H (each ending at H's colored
vertex, with a type 3 edge following it),

• (optionally) a path in one of the copies of H.

The Closed Computation Graph corresponding to the new machine on any
input X is of course the composition of the Quering Computation Graph of M and
the Closed Computation Graph of N on X. Therefore its paths follow our observation.
Requiring C to be a subset of V makes its ambiguity constraints apply to at least the
types of paths we are concerned with. Making it one of the lUNIT classes prevents N
from increasing the number of paths of interest in the overall computation within a
single query processing. As we are about to show, with some precautions we can avoid
any other paths of interest from appearing and thus complete the proof.

The cases in which we consider all paths (to either all reachable or all final
vertices) are immediate consequences of Observation 2.4.3. If we count simple paths
only, it is enough to notice that a cycle in the composition graph must mirror one in
either of the components. The matters get slightly more complicated with minimum­
length paths, as we must make some guarantees regardless of the time needed to
process any N queries. To achieve that, we introduce an additional counter tape, and
we make every step of M take an amount of time larger than all possible N queries
combined (in the query graph it might be seen as making type 1 and type 3 edges
"longer"-i.e., replacing them with sequences of edges).

23

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

As M uses space f(20(g(n))), it cannot take more than 2°U(20c9 Cnll)) steps. If
each of them was an oracle query, they would add up to at most 2°U(20

<
9
Cnll)+g(n))

steps. Therefore a counter of length O(f(2°(9 (n))) + g(n)) = 0(!(2o(g(n)))) is enough
for the purpose. Now a minimum-length path in the new machine must be a minimum
length path of M augmented with some queries. Moreover, each of them has to be
minimum-length within the query, or otherwise a shorter overall path would exist to
the same configuration. •

The next proposition justifies the definition of our notion of reduction, as
it shows that the right properties of computation graphs are maintained after the
reduction is applied:

Proposition 2.4.4 For Closed Computation Graph classes C E UNIT and D E AIL.IL,
C ~ D, and transformations ¢ : o: --+ f3 and 1/J : "(--+ b, if¢ ~i 1/J and 1/J E
C-QFunc(f(n)), then¢ E 'D-QFunc(J(n)).

Proof Take the functions () and ~ to be as in Definition 2.4. l. Define \]i : 1* --+ b* as

\]i can be computed in C-QFunc(J(n))-just preserve the index i of the part of
the output you are asked for (as the value of i is bounded by a polynomial in /X/,
logarithmic space is enough to make a copy of it), and use it whenever making a
query to the input oracle. Moreover, ¢ = ~ o '1i o e. Now, applying Lemma 2.4.2 to
the machines for~' \]i and(), we get an O(J(n))-space bounded 'D-machine for¢, as
required. •

24

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Chapter 3

Results

In this chapter we define the function problems of our interest. We also present
some simple yet interesting dependencies between these problems, and between the
unambiguous complexity classes. Finally, we show how some well-known theorems
can be viewed (and in some cases improved) in our framework.

3.1 Problems with Promises

The computation of a Quering Turing Machine on a specific input and request can
be viewed as following a path in the corresponding Closed Computation Graph. The
question whether it returns a specific answer is the same as asking whether a given
colored vertex is reachable from the given source. The problem of reachability
(denoted Reach, also known as st-connectivity or graph accessibility problem)
is well known (see [15]) to be the canonical problem for space-bounded computation.

Since we are working with restricted classes of graphs, it is natural to ask the
question whether a given graph meets the specific criteria, i.e., whether it belongs to
the given class. This introduces a family of testing problems, with TestC denoting
the problem of checking whether a given Closed Computation Graph belongs to the
class C.

We are also going to consider the (functional) problem of path counting. Here
CountX will denote counting all paths of type X (following the notation for ambiguity
classes, e.g., SF denoting simple paths from start to colored vertices), taking the max­
imum over all start-end pairs. In particular, CountSF is known to be complete for
the class #L (by definition, #L contains all functions counting the accepting compu­
tations of NL machines; the equivalence between machines and computation graphs is
well known, see Proposition 3.2.l below for details). In this work we are going to focus
on bounded version(s) of counting-the problem CountkX will be the one of count-

25

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

ing up to k paths (i.e., the set of answers being {O, 1, ... , k-1, k+}, with k+ denoting
"k or more") of type X. In this notation, a result of Allender, Reinhardt and Zhou
(Theorem 5.1 in [3]) implies that for a polynomial p, CountpSF E QFunc(log(n))
(i.e., limited counting can be solved nondeterministically in logarithmic space, but
with no bounds on ambiguity).

Most of the problems discussed might vary in difficulty when given different
"promises" about the input graph. Therefore we employ the following consistent no­
tation: C-a denotes the problem a on graphs in class C. For example, lMATestlAA
denotes the problem of testing whether the paths to all reachable vertices are unique
(indicated by the suffix IAA), restricted to graphs when the minimum-length paths
to all reachable vertices are guaranteed to be unique (indicated by the prefix IMA).

3.2 Basic Observations

First let us see how the problem of reachability fits in the new framework. The
following result is an extension of the well known fact of Reach being complete for
NL:

Proposition 3.2.1 For any class C, C-Reach is complete (with respect to determin­
istic reductions) for C-QSpace(log(n)), i.e., for any language a ~ I;*:

a E C-QSpace(log(n)) <==* a ::S8 C-Reach.

Proof If a belongs to C-QSpace(log(n)), it can be solved by an O(log(n))-space
C-machine. By definition the graph of this machine belongs to C, and whether the
machine returns a specific answer is equivalent to a specific vertex being reachable
from the source.

For an algorithm, a machine that simply guesses a path edge by edge is enough.
It works in space O(log(n)), as it is enough to remember 2 nodes at a time. Its
computation graph is identical to its input, thus it is a C-machine. It is sound (it can
only guess a path if there is one) and yes-total (there is a nondeterministic branch
corresponding to every path in the graph). •

Corollary 3.2.2 For any class C, C-Reach is hard for C-QFunc(log(n)).

The machine from the proof of Proposition 3.2.1 is not necessarily total, and
thus we cannot claim that C-Reach is always C-QFunc(log(n))-complete. However,
the following can be seen as a consequence of Proposition 2.1.8:

Proposition 3.2.3 For any class C, the following conditions are equivalent:

26

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

• C-QSpace(log(n)) = co-C-QSpace(log(n)),

• C-Reach E co-C-QSpace(log(n)),

• C-Reach E C-QFunc(log(n)),

• C-Reach is C-QFunc(log(n))-complete.

We have mentioned that the counting problems relate naturally to both reach­
ability and testing. Formally, these natural relationships are:

Observation 3.2.4 For any class C, all the following denote the same function:

C-Reach = C-CountlAF = C-CountlSF = C-CountlMF.

Proposition 3.2.5 For any class C and path restriction X,

C-TestkX ~n C-Count(k + l)X.

Proof The graph G is in kX iff there are at most k paths of type X. Therefore the
desired deterministic reduction maps all answers up to k to "yes", and that of "k + 1
or more" to "no" . •

How do counting problems for different values of k relate to each other? Ob­
viously, decreasing the counter limit can only makes the problem easier, as we can
simply glue together the previously distinct answers:

Observation 3.2.6 For any class C, path restriction X and bound k:

C-CountkX ~D C-Count(k + l)X.

In the other direction, the following can be shown. Recall that IRIEM is the
family of Closed Computation Graph classes closed under edge removal.

Proposition 3.2.7 For any class CE IRIEM and constant k 2: 1,

C-Count(k + l)SF ~i)CountlSF C-CountkSF.

In words, we show that given a graph G from a class C E IRIEM, and an
algorithm for C-CountlSF, we can create a sequence of graphs (Gi)i such that the
answer to C-Countk + lSF(G) can be obtained deterministically from the answers
(C-CountkSF(Gi))i.

27

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Proof Let us first look at the case of k = 1. Our algorithm works as follows:

on graph G:
1. if C-CountlSF(G) = 0, answer 0
2. for every edge e in G, let Ge be the same as G but withe removed
3. for every edge e in G, let Ce := C-CountlSF(Ge)
4. remove edges from G, leaving only those for which Ce = O; call the result G'
5. answer 2 - C-CountlSF(G')

First, let us discuss the graph modification. The steps 2 to 4 are just a conceptual
convenience-the graphs Ge and G' are never produced explicitly. Instead, whenever
asked whether an edge e = (u, v) is in G', we answer "yes" if both

• e E G, and

• C-CountlSF(G - e) = 0.

If there is no path between the source s and the target t in G, we will discover it
in step 1. If there is exactly one such simple path, removing any of its edges would
disconnects from t. Thus the same path is going to be present in G' and the algorithm
will return 1. If there are at least two simple paths, consider the vertex x at which
they diverge for the first time. Removing any single outgoing edge of x will not
disconnect s and t, and thus x will become a sink in G'. But as any path from s to
t has to go through x, there will be none, and our algorithm will correctly return 2.
The procedure is thus sound and total. Moreover, as the only modification of the
graph is removing edges and we have chosen C to be one of the classes closed under
this operations, all calls to C-CountlSF will have their promise fulfilled.

We can now proceed to higher values of k. It is clear that we only need to
distinguish the cases of "exactly k" and "k + 1 or more" paths (the other answers
can be copied exactly from C-CountkSF). Having at least 2 paths guarantees the
existence of the first point of divergence, as discussed above. Moreover, the same
way of deleting edges makes the vertices on the "common prefix" of the paths have
out-degree 1 in G', which allows us to deterministically find the split-point x. Now,
x has at least two "meaningful" successors (on paths to the target)-thus if there
are exactly k paths of interest, at most k - 1 of them can pass through any of the
successors. Therefore, if we modify the graph to leave exactly one of x's outgoing
edges (repeatedly for each of them), we can use C-CountkSF to determine the exact
count of the paths of interest. •

Corollary 3.2.8 For any class C E JRIEM and constant k 2': 1,

C-CountlSF ::Sn C-CountkSF :::Sf;countlSF C-CountlSF.

28

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Corollary 3.2.9 For any classes C E JRIEM, V E lUNlI, and constant k 2: 1,

C-Reach E V-QFunc(log(n)) ~ C-CountkSF E V-QFunc(log(n)).

It is also possible to extend the above results to count all, instead of only
simple, paths:

Proposition 3.2.10 For any class C E JRIEM and constant k 2: 1,

C-Count(k + l)AF :::S~CountlAF C-CountkAF.

Proof First, let us note that if there is any non-simple path from the source to
the target, we can obtain infinitely many paths by choosing the number of times we
traverse its cycle. Therefore, knowing how to count simple paths, the problem of
counting all paths becomes a matter of cycle detection. Let us recall the proof of
Proposition 3.2.7 and look at the (only) path 7r leavings in G'.

If G contains a non-simple path from s to t, the first vertex that is visited
twice on that path must lie either on 7r or "after" (and thus be reachable from) the
divergence point x. In the latter case, the number of paths from one of the successors
of x to t will be infinite, in which case the call to C-CountkAF will return "k+" and
the whole procedure will correctly answer "(k + 1) +". Thus we only need to detect
a situation in which some vertex y E 7r lies on a cycle, or equivalently, y is reachable
from some successor z of y. As we can deterministically enumerate over all vertices
on 7r and all successors of each of them, it remains to show how we can answer the
question of y being reachable from z.

Let us then introduce an additional modification of our input graph, namely
the change of source and target vertices. It is obvious that it can be done deter­
ministically in QFunc(n). Moreover, as we are guaranteed that the new source z is
reachable from the old source s, and likewise, the old target t is reachable from the
new target y, we can see that the "interesting" paths in the new graph form a subset
of those in the old one. From this it follows that the new graph belongs to C, and
thus we can simply use C-CountlAF to check whether y is reachable from z. •

Corollary 3.2.11 For any classes C E JRIEM, VE lUNlI, and constant k 2: 1,

C-Reach E V-QFunc(log(n)) ~ C-CountkAF E V-QFunc(log(n)).

Finally, when our guarantees apply to all vertices reachable from the source,
we are free to use our algorithms with an arbitrary vertex as the target. This allows
us to conclude:

Corollary 3.2.12 For any class VE lUNlI, bound p, and constant k,

pAA-Reach E V-QFunc(log(n)) =? pAA-CountkAA E V-QFunc(log(n)),

pSA-Reach E V-QFunc(log(n)) =? pSA-CountkAA E V-QFunc(log(n)).

29

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

3.3 Inductive Counting

In this section we present algorithms based on the technique called "inductive count­
ing." They all look at the vertices of the input graph reachable from the source s in
concentric "layers," with layer k (denoted by Lk) consisting of those whose distance
(the length of the shortest path) from s is at most k. Then they analyze the layers
one by one, using some information computed or verified for one layer to help analyze
the next.

Let us start with the breakthrough due to Immerman and Szelepcsenyi (see [13,
36]). Let us denote the number of vertices in Lk by Ck. It turns out that it is
possible to calculate this number within QFunc(log(n)). We do this by induction on
k, with C0 = 1 (s is the only vertex with distance 0 from itself), and the calculation
of ck+l from ck carried out by the following procedure (guess denotes making a
nondeterministic choice):

Algorithm 3.3.1 (Inductive Counting)

1. set ck+l := 1
2. for every v E V - { s}:
3. set C£ := 0, F :=false
4. for every u EV:
5. guess whether u E Lk, if not-move to the next u
6. guess a path from s to u of length ~ k (or fail)
7. set C£ := C£ + 1
8. if (u, v) EE, set F := true
9. if C£ < Ck, fail
10. if F = true, set Ck+i := Ck+i + 1

It is not difficult to convince oneself that on all of the nondeterministic branches
that have not failed, the value of Ck+l has been computed correctly. First of all, every
vertex v contributes to the count only if there was a vertex u E Lk, and an edge (u, v).
Therefore, the only way the computation may go wrong is for some v being incorrectly
guessed not to be in Lk+l · For that to happen, there must exist a vertex u E Lk (and
the edge (u, v)), which we have wrongly guessed (in step 5) not to be there. But then
the checksum count C£ would be smaller than the true count Ck, and the computation
branch would fail in step 9.

Clearly, the above can be used to create a total algorithm for Reach (it is
enough to compare the counts with the target vertex present and removed). Moreover,
its correctness does not depend on the shape of the input graph.

Recalling that C-a denotes the problem a restricted to graphs in class C, we
can conclude:

30

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Corollary 3.3.2 N-Reach E N-QFunc(log(n)).

Analyzing the algorithm a little closer, we can show more:

Proposition 3.3.3

lAA-Reach E lAF-QFunc(log(n)),

lSA-Reach E lSF-QFunc(log(n)),

lMA-Reach E lMF-QFunc(log(n)).

Proof On how many nondeterministic branches can Algorithm 3.3.1 succeed? The
guesses made in step 5 are of no consequence here, as there is only one way of guessing
that will not lead to a failure later on. The only ambiguity is therefore introduced in
step 6. But the guesses made there correspond to the paths in the input graph, and
therefore any uniqueness promises about them yield analogous unambiguity properties
of the accepting paths. •

Algorithm 3.3.1 guesses paths between the same pairs of vertices over and
over again, and thus the result does not immediately extend to higher path counts.
If however, we know a limit on these counts, we can modify the algorithm (following
Buntrock, Hemachandra and Siefkes, see [7]) to guess and verify all the paths to
every reachable vertex. How can we do this? First, assume that we have guessed the
number p of distinct paths (of length at most l) between vertices u and v. Then we
can use the following procedure to verify the existence of at least these many paths:

Algorithm 3.3.4

guesspaths(G, u, v,p, l):
1. if p = 1, guess a path from u to v of length::;; l and return
2. guess w, the first divergence point of paths from u to v
3. guess a path from u to w (or fail), let l' < l be its length
4- let w' and w" be the two successors of w
5. guess the number p' (0 < p' < p) of distinct paths from w' to v
6. let p" := p - p', l" := l - l' - 1
1. guesspaths(G, w', v,p', l")
8. guesspaths(G, w", v,p", l")

Let us first see what happens if the procedure has been supplied with too high
a value of p. If p = 1, it means that there is no path from u to v and we will fail in
step 1. For p > 1 it is easy to see that even if the divergence point w, and the path

31

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

to it, are guessed correctly, at least one of the numbers p' or p" will exceed the actual
number of paths. Thus by a simple inductive reasoning, the procedure will fail.

What happens when the value of p is correct? If all the guesses are made
correctly, the algorithm returns successfully. If the divergence point w is wrong, at
least one of its successors will fail to have enough paths to v and the procedure will
fail. The same is bound to happen if the number p' is guessed wrongly, as then either
p' or p" will be larger than the actual number of paths. It is then clear that with the
correct p on input, the algorithm will succeed on exactly one computation branch.

The situation of the p provided being too low is a bit less fortunate, as then
the procedure might succeed on multiple computation branches (effectively guessing
any p distinct paths from u to v). But if we process the graph layer by layer, we can
keep track of the collective number of paths (Tk, with T0 = 1) to all vertices in Lk,
and use it to cut off these "unfortunate" branches:

Algorithm 3.3.5

1. set Tk+ 1 := 1
2. for every v E V - { s}:
3. set T£ := 0, r := 0
4. for every u EV:
5. guess the number p 2: 0 of distinct paths from s to u of length ::; k
6. guesspaths(G, s, u,p, k)
7. set T£ := T£ + p
8. if (u, v) E E, set r := r + p
9. if T£ < Tki fail
10. set Tk+1 := Tk+1 + r

Using arguments analogous to the discussion following Algorithm 3.3.1, one
can easily show that the value of Tk+ 1 will be correctly computed on exactly one
nondeterministic branch, and that all other branches will fail.

What are the space requirements of this procedure? Being almost identical to
Algorithm 3.3.1, it uses the same amount of space, plus any calls to guesspaths().
The latter, not counting the recursive calls, uses logarithmic space too. One of the
calls is a tail recursion, and thus can easily be eliminated. Moreover, if we modify the
procedure to always handle the larger of the values of p' and p" using tail recursion, the
depth of the stack can be bounded by O(log(p)). With each stack record consisting
of a vertex (w' or w"), a path count (p' or p"), and a path length (l" E nO(l)), the
total space used by guesspaths() can be bounded by O((log(n) + log(p)) log(p)) =

O(log(np) log(p)).
As it is obvious that Algorithm 3.3.5 can be used to answer the question of

reachability, we obtain the following:

32

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Proposition 3.3.6 pAA-Reach E lAF-QFunc(log(np) log(p)).

Corollary 3.3. 7 For constants k and l,

kAA-Reach,

kAA-CountlSF, kAA-CountlAF,

kAA-CountlSA, kAA-CountlAA E lAF-QFunc(log(n)).

Moreover, taking l = k and noting that if there are at most k paths of type
X, then CountkX becomes CountX, we can obtain the following:

Corollary 3.3.8

kAA-CountAF, kAA-CountAA E lAF-QFunc(log(n)).

Algorithms 3.3.1 and 3.3.5 consider all paths to every vertex. It is however
possible to adapt them to consider only the minimal length paths. Following Allender
and Reinhardt (see [30]), we can extend the former to count not only the number of
vertices in Lk (Ck), but also the sum of lengths of the shortest paths to those vertices
(denoted I:k)· Obviously, 2:0 = 0. The modified version of the algorithm looks as
follows:

Algorithm 3.3.9 (Double Counting)

1. set Ck+1 := Cki 2:k+1 := I:k
2. for every v E V - { s}:
3. set C~ := 0, 2:~ := 0, F :=false
4. guess d:::; k + 2 (minimal d for which v E Ld,

with k + 2 denoting "more than k + 1 ")
5. for every u E V:
6. guess whether u E Lk, if not-move to the next u
7. guess l :::; k (minimal for which u E Lz)
8. guess a path from s to u of length l (or fail)
9. set c~ := c~ + 1, 2:~ := 2:~ + l
10. if (u, v) EE, then
11. if l + 1 < d, fail
12. if l + 1 = d, set F := true
13. if c~ < ck or 2:~ > I:k, fail
14. if F =false and d:::; k + 1, fail
15. if d = k + 1, set Ck+l := Ck+l + 1 and I:k+l := I:k+l + d

33

Ph.D. Thesis - Grzegorz Herman .McMaster University - Computing a.nd Software

If all the guesses a.re made riglit., ihe olgorit~ computes C1c+1 and lJ1e.H eor-.
rectly. What can then go wrong? If the value of d (step 4) is too small, there will be
no valid predecessor u for v, and the algorithm will fail in step 14. If it is too lar~,
a predecessor closer to s will be found and the branch will fail in step 11. If for some
vertex u the value of l (step 7) is too small, no path can be found and failure. will
occur in step 8. If it is too large, then the checksum valve of Et will be larger than
the actual value Ek, which will force us to fail in step 13,

Knowing Ek in addition to Ck does not seem to have any interesting con­
sequences. Note however, that if there is a unique shortest pa.th from s to every
reachable vertex, th~ algorithm will compute the oorrect value on exactly on' oompu,.
tation branch (as all the nondeterministic choices will have exactly one "valid" value).
From here, we can immediately conclude the following:

Corollary 3.3.10 lMA-Reaeh e lAP-QIUnc(log(n)).

H the graph on the input to Algorithm 3.3.9 does not belong to IMA, there is
a vertex reachable from s by two distinct shortest paths. Take v to be such a vertex
closest to s. It means th&t its predecessors on those paths must be distinct, a.nd the
statement in line 12 of the algorithm would set the flag F to true more the.n onee for
this vertex v. Simply testing for that situation allows us to discover the issue and,
moreover, if the loops in steps 2 and 5 evaluate the vertices in some fixed order, the
issue will be discovered on exactly one computation branch.

Corollary 3.3.11 TestlMA E lAF-QFunc(log(n)).

As it turns out, the same "double counting" technique can be applied to Al­
gorithm 3.3.5. First, we can make sure that guesspaths{) considers only paths of
length exactly l (instead of up to l). Then, making Tk denote the collective number
of shortest paths to all vertices in L1e, we can compute Tk+l and E1i:+i from Tk and Ek
as follows:

Algorithm 3.3.12

1. set Tk+l := Tk, Ek+l := E1i:
2. for every v EV - {s}:
3. set Tfc := 0, Ek := 0, r := 0
4. guess d < k + 2 (minimal d for which v E Ld,

with k + 2 denoting "more than k + 1 ")
5. for every u EV:
6. guess whether u E L1i:, if not-move to the next u

34

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

7. guess l :::; k (minimal for which u E Lz)
8. guess p 2: 1 (the number of distinct paths of length l from s to u)
9. guesspaths(G, s, u, p, l)
10. set T~ := T~ + p, L:~ :=I:~+ l
11. if (u, v) EE, then
12. if l + 1 < d, fail
13. if l + 1 = d, set r := r + p
14. if T~ < Tk or L:~ > L:k, fail
15. if r = 0 and d :::; k + 1, fail
16. if d = k + 1, set Tk+ 1 := Tk+l + r and L:k+l := L:k+1 + dr

Again, a discussion similar to that following Algorithm 3.3.9 allows us to con­
clude that our procedure finishes successfully on exactly one computation branch, and
that it can be used in a similar manner for both reachability and testing problems.
Furthermore, its space requirements are precisely those of guesspaths(). Thus we
can conclude the following:

Proposition 3.3.13

pMA-Reach, TestpMA E lAF-QFunc(log(np) log(p))).

Corollary 3.3.14 For a constant k,

kMA-Reach, TestkMA E lAF-QFunc(log(n)).

3.4 Graph Traversal

All algorithms from the previous section make invalid computation paths fail based
on "collective" quantities, and thus it is not known whether the bound of lAF can
be tightened to lAA. However, slightly strengthening the assumption allows us to
use a different algorithm, due to Lange (see [20]). If Lk is promised to be a tree, the
following procedure can be used to traverse it (the two possible successors of a vertex
can be seen as its left and right children in the tree):

Algorithm 3.4.1

traverse(G, k):
1. let z be the rightmost leaf of Lk
2. set u := s, l := 0
3. while u =I- z:

35

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

4. if l < k and u is not a leaf, then
5. u :=left child of u, l := l + 1
6. else
7. guess l' < l and a path of length l' from s, let v be its end
8. set w := left child of v
9. for every i E {l' + 2, l' + 3, ... , l}:
10. w := right child of w
11. if w =I u, fail
12. set u := right child of v, l := l' + 1

It is a simple observation that (under the mentioned assumption) this proce­
dure performs a depth-first traversal: for the internal nodes, the successor is chosen
deterministically, while for the leaves the successor's parent v (and in a tree there
can be only one) is guessed in step 7 and verified in steps 8-11. Moreover, knowing v
unambiguously determines the guesses made in step 7, and hence for every v there is
at most one computation branch leading to failure in step 11.

Now, if the input graph is in lAA, we can simply use Algorithm 3.4.1 to visit
all reachable vertices. We can also employ it to check whether -thi5 -001\d.ition hf>ld:s
(i.e., solve TestlAA). To see this, consider the following procedure:

Algorithm 3.4.2

1. for every k E {O, 1,. .. ,n -1}:
2. for every v E V:
3. set c := 0
4. for every u visited by traverse(G, k):
5. if (u,v) EE, set c := c+ 1
6. if c > 1, answer "no"
7. amwer "yes"

If G E lAA, every Lk is a tree and every reachable v has exactly one valid
predecessor u. Therefore the procedure e.nswers "yes" (at exactly one computation
path). If G <j. IAA, there is a smallest k for which L1e+i is not a tree, and thus a
vertex v with at least two valid predecessors within distance k. Then the algorithm
answers "no" (also on exactly one branch). The procedure is deterministic except
for the calls to traverse, and the latter is only called for those Lk 's that are trees.
Therefore we can conclude the following:

Corollary 3.4.3 lAA-Reach, TestlAA E lAA-QFunc(log(n)).

36

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

It seems that it should be possible to apply the technique of "multiple path
guessing" (Algorithm 3.3.4) to the procedures from this section, and thus extend the
results from lAA to kAA for an arbitrary constant k. Any such application is a
matter for future research.

3.5 Future Work

Our work provides a convenient formal framework for analyzing unambiguously­
computable functions. In particular, it seems that the use of nondeterministic re­
ductions should allow one to achieve results stronger than those presented in this
chapter. Furthermore, there are at least a few possible ways in which our framework
could be extended. Thus we would like to point out at least the following directions
for future work:

1. Try to improve the results outlined in Section 3.1 from constant to polynomial
bounds on path count. This will require a way of unambiguously characterizing
a set of "pivot points,'' together with the means of verifying whether a given
set meets this characterization.

2. Apply the technique of Algorithm 3.3.4 (unambiguously guessing multiple paths
at the same time) to the graph traversal algorithm from Section 3.4. A success
here would show the appropriate variants of reachability to be complete for
classes kAAQFunc(log(n)) (for a constant k), and together with results from
Section 3.1, possibly prove the collapse of these classes.

3. Incorporate strong unambiguity (limiting the number of paths between any two
configurations, not necessarily reachable from the initial one), and possibly other
restrictions, into the framework. The definitions and theorems from Chapter 2
could be easily adapted. However, it seems that it is difficult to construct a
Quering Turing Machine algorithm that would make use of nondeterminism, and
yet remain strongly unambiguous-such an algorithm would need to deal with
unreachable situations, which in the case of Quering Turing Machines include
possibly inconsistent answers from the input oracle.

4. Enrich the framework by a means of limiting the number of oracle queries al­
lowed. On one hand it would allow a stronger version of Proposition 2.4.4-
constantly or logarithmically many queries to a constant-ambiguity oracle yield
a constant- or polynomial-ambiguity result, respectively. On the other hand, it
is not clear whether at most logarithmically many queries to the input oracle

37

Ph.D. Thesis - Grzegorz Herman McMaster University- Computing and Software

can be of any advantage (in particular, such. a situation does not even allow the
machine to read the whole input).

5. Extend the models to allow for unbounded-space pushdown storage. This would
capture the existing variants of unambiguity for auxiliary pushdown automata,
and could possibly yield results analogous to those for "standard" Turing ·Ma­
chines.

6. Consider different space bounds than just the logarithmic. In particular, the
linear bound deserves some attention, as the question whether DSPACE(n)
equals NSPACE(n) (the class of context-sensitive languages) is of great im­
portance. On the other hand, we do not envision our framework being useful
for lower space bounds, BB it has been shown in (1] that reducibility below log­
arithmic space can be achieved by a two-way deterministic finite automata.

38

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Appendix A

A Modular Approach

So far, we have not been able to provide a proof that UL= NL, but in this chapter
we outline a promising approach. As this line of attack does not make use of the
machinery developed in the core chapters of the thesis, and therefore we have decided
to place it in the Appendix.

Let a weight function be a function assigning positive integers ("weights")
to graph edges. It can also be seen as a graph transformation that replaces every edge
with a sequence of consecutive edges (the length of that sequence being the weight
assigned to the original edge).

As proposed in [30], Algorithm 3.3.9 (unambiguously solving reachability on
IMA-graphs) can be used together with a specialized version of the Isolation Lemma
of Mulmuley et al. (see [25]) to obtain a collapse of UL and NL in the nonuniform
setting:

Proposition A.1 For all integers n large enough, there exists a sequence of n 2 weight
functions (wi)i with ranges in [I, 4n3], such that for every graph G on n vertices, there
exists an i such that wi(G) E IMA.

Proof The argument for the existence of (wi)i is probabilistic. Let us choose our
sequence of functions by assigning the weight to every edge independently and uni­
formly at random. Let us bound the probability that all functions obtained in such

39

Ph.D. Thesis - Grzegorz Herman McMW3ter University - Computing and Software

way will be "bad" for at least one graph of size n:

Pr[3a,#a=n V1w1(G) c/:. lMA) ~

#{Gl#G = n} Pr[Viwi(G) ¢:. lMA] ~

2n
2
(Pr[3veVa;nYF7r2:8 --.v7r1 and 7r2 are shortest under wi])n

2
~

2n
2
(Pr[3veva,eEEae is on one but not another shortest Pttth from s tQ v}t

2
$

2n
2
(#(Vax Ea) Pr[e is on one but not another shortest path from s to v])n

2
=

2n
2
(n3Pr[e is on one but not another shortest path from s to v])n

2
< (*)

2n2 (n3_l_)ni -
4n3

1 2n2 (-4l)n2
= 2n2'

where (*) holds because once we fix the weights of all edges except e, there will be at
most one possible weight for e that makes it possible.

As the probability of all functions being "bad" is smaller than 1 (and in fact
approaches zero quite rapidly as n grows), there must exist a "good" weight function .

•
The above argument is non-constructive. However, the family of the functjons

whose existence is shown does not depend on the graph and only on its size n. There­
fore the information can be used as the advice in non-uniform computation model.
Now given a specific graph, we can iterate over individual weight functions, using
Algorithm 3.3.9 to discover whether wi(G) E lMA, and to solve Reach if it does.

Corollary A.2 NL/poly= UL/poly.

(For a proof see [30].)
With almost all (probabilistically speaking) weight functions being able to

disambiguate log-space computation, it seems reasonable to expect that one should
be able to compute at least some of them in FL. We present a candidate for such a
family of functions and provide some evidence (though no proof so far) that it indeed
has the desired properties. It is our hope that further analysis of this approach may
yield some fruit.

First, let us note that to show NL= UL, we do not have to disambiguate all
possibl~ graphs. We ca.u first modify the configuration graph by adding a step cou:uter,
Thus th.e graph can be transformed into a. layered dag (with vertices partitioned
into layers and a.ll edges going between consecutive layers only) while preserving the

40

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

property that the accepting configuration (which we can force to be the last node in
the graph) is reachable from the initial one (again, easily made the first node) iff the
NL machine being analyzed accepts its input.

If we identify vertices with their numbers and assign weight 2 * 3v (simply
using 2v would work here as well, but the base of 3 and the multiplier are used in
later arguments) to any edge (u, v), the total weight of any path 7r originating from
the source s will be equal to

w(n) = -2 * 38 + 2 * L 3v.
vEn

Now for any two paths n 1 , n2 of equal weight we have

which in a dag yields n 1 = n2 .

w(7r1) = w(n2) ~

L3v = L3v ~

Of course, this weight function w has an exponential range, so it cannot be
used directly. We will therefore force it into a polynomial range by choosing a suitable
constant t and taking all the weights modulo i (thus creating a different function wi)
for every i E {2, ... , nt}:

Let us assume that this function family does not work, i.e., that there exists
an infinite family of graphs {Gn} (#Ven= n) such that every weight function in our
family fails to disambiguate it:

Furthermore, without loss of generality, we can restrict the paths n1 and n2 not
to share any vertices except u and v. To achieve this, simply make u the first point at
which the paths diverge, and v-the first point at which they meet again; as subpaths
of paths of minimum weight, the restricted paths will have to be minimum-weight as
well.

Let us take any GE { Gn}· Noting that in a layered dag any two paths n1 and
n2 between the same pair of vertices must have the same number of vertices, we can

41

Ph.D. Th~is - Gr.zegorz Herlllan McMaster University- Co~puting a.nd Soaware

:q.ow coDStruct a new weighted graph H which will "captur~" all such pofllible pairs
of paths:

VH :=Vax Va,
EH := {((u, x), (v, y))l(u, v), (x, y) E Ee}.

As mentioned, without loss of generality, we can focus on pairs of pa.tbs tha.t
do not share any vertices (except the common source and target)-we will call such
paths in H proper. We can now define the weight function on H to calculate the
difference of weights of the edges (and thus the paths) from G:

w(((u,x), (v,y))) := w((u,x)) -w((v,y)) = 2 * 3z - 2 * 311•

It is easy to show that this weight function w is injective on proper paths.
Consider the "heaviest" vertex n. The weights of all other vertices can add up (by
absolute value) to at most

n-1 3n 1
2"' 31 = 2 - 3" ~ 3-1 < '

i=O

and therefore for a. proper path ?r, knowing within which ol the ranges {-3n+1, -3"),
[-3", 3"), or (3", 3n+l J the value of w falls, determines whether n ls on a.ny (a.nd on
which) of the "component: paths'' of 11". With that known, one can remove the weight
of n from the total and repeat the process to obtain the exact specification of 1r.

Let us now return to the modular restrictions of w, and extend them naturally
to H. If a weight function w, fails to disambiguate G, we must have a proper path
in H whose weight r will be a multiple of i. Among n(nt) values of i, there are
O(nt..-l) primes. As the values of w fall within the range (-3"+1, 3n+l}, a single weight
r can be "used" far at moet 0(n) of the prime moduJi-..the only va.lue having more
prime factors is 0, which corresponds to a.n empty path in H. Thet"efoN we must he.ve
at least n(nt-2) distinct values of r and, as w is injective on proper paths, at least
n(nt-2) distinct proper paths in H.

We conjecture that, given the structure of H, such situation is not possible.
Intuitively, if the l'll'Oper paths in question were short, there could not be many of
them. On the other h1md, if they were long, m&ny of them would have to share
many vertices, which (at least probabilistically) seems to yield a situation in which
some edges are at the same time required to be present and absent from G. U thie
conjecture can be proven, based on the above discussion it would immediately give
the long-expected Meult of UL = NL.

42

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

Bibliography

[1] M. Agrawal, "For completeness, sublogarithmic space is no space,'' Information
Processing Letters, vol. 82, no. 6, pp. 321-325, 2002.

[2] E. Allender and K. Lange, "StUSPACE(logn) is
DSPACE(log2 n /log log n) ,'' m Electronic Colloquium on
Complexity (ECCC), vol. 3, 1996.

Contained in
Computational

[3] E. Allender, K. Reinhardt, and S. Zhou, "Isolation, Matching, and Counting:
Uniform and Nonuniform Upper Bounds," Journal of Computer and System Sci­
ences, vol. 59, no. 2, pp. 164-181, 1999.

[4] C. Alvarez and B. Jenner, "A Very Hard Log Space Counting Class,'' in ffh An­
nual Conference on Structure in Complexity Theory, pp. 154-168, IEEE Com­
puter Society Press, 1990.

[5] C. Bourke, R. Tewari, and N. Vinodchandran, "Directed planar reachability is
in unambiguous logspace," in IEEE Conference on Computational Complexity,
pp. 217-221, IEEE Computer Society Press, 2007.

[6] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, "Structure and importance
of logspace-MOD class,'' Theory of Computing Systems, vol. 25, no. 3, pp. 223-
237, 1992.

[7] G. Buntrock, L. Hemachandra, and D. Siefkes, "Using Inductive Counting to Sim­
ulate Nondeterministic Computation,'' Information and Computation, vol. 102,
no. 1, pp. 102-117, 1993.

[8] G. Buntrock, B. Jenner, K. Lange, and P. Rossmanith, "Unambiguity and Few­
ness for Logarithmic Space,'' in ffh International Conference on Fundamentals
of Computation Theory, vol. 529 of Lecture Notes in Computer Science, pp. 168-
179, Springer, 1991.

43

Ph.D. Thesis - Grnegorz Herman McMaster University - Computing and Software

[9) A. Chandra, D. Kozen, and L. Stockmeyer, "Alternation," Journal of the ACM,
vol. 28, no. 1, pp. 114-133, 1981.

[10) S. A. Cook, "Characterizations of Pushdown Machines in Terms of Time­
Bounded Computers," Journal of the ACM, vol. 18, no. 1, pp. 4-18, 1971.

[11] 0. Goldreich, Computational Complexity: A Conceptual Perspect~. Ce.mb:Odge
University Press, 2008.

[12) J. Hopcroft and J. Ullman, "Some Results on Tape-Bounded Turing Machines,"
Journal of the ACM, vol. 16, no. 1, pp. 168-177, 1969.

[13) N. Immerman, "Nondeterministic space is closed under complementation," in
:fd Annual Conference on Structure in Complexity Theory, pp. 112-115, IEEE
Computer Society Press, 1988.

[14) B. Jenner and B. Kirsig, Alternierung und Logarithmischer Platz. Dis~ta.tion,
Universitat Hamburg, 1989.

[15) N. Jones, "Space-bounded reducibility among combinatorial problems," Journal
of Computer and System Sciences, v91. 11, no. 11 pp. 68-85, 1975.

(16) R. Kannan, "Alternation and the power of nondeterminism," in Jsth Annual
ACM Symposium on Theory of Computing, pp. 344-346, ACM, 1983.

[17) R. Karp, "Reducibility among combinatorial problems," Complexity of Computer
Computations, vol. 43, pp. 85-103, 1972.

[18) R. Ladner and N. Lynch, "Relativization of Questions About Log Space Com­
putability," Theory of Computing Systems, vol. 10, no. 1, pp. 19-32, l976.

[19) K. Lange, "Nondeterministic Logspace Reductions," in 11th Symposium on Math­
ematical Foundations of Computer Science, vol. 176 of Lecture Notes in Computer
Science, pp. 378-388, Springer, 9 1984.

[20) K. Lange, "An Unambiguous Class Possessing a Complete Set," in 14th Annual
Symposium on Theoretical Aspects of Computer Science, vol. 1200 of Lecture
Notes in Computer Science, pp. 339-350, Springer, 1997.

(21) H. Lewis and C. Papadimitriou, "Symmetric Space-Bounded Computation," The­
oretical Computer Science, vol. 19, pp. 161~187, 1982.

[22) M. Liskiewicz and R. Reischuk, "The Sublogarithmic Alternating Space World,"
SIAM Journal on Computing, vol. 25, p. 828, 1996.

44

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and Software

[23] B. Litow and I. Sudborough, "On non-erasing oracle tapes in space bounded
reducibility," SIGACT News, vol. 10, no. 2, pp. 53-57, 1978.

[24] N. Lynch, "Log Space Machines with Multiple Oracle Tapes," Theoretical Com­
puter Science, vol. 6, pp. 25-39, 1978.

[25] K. Mulmuley, U. Vazirani, and V. Vazirani, "Matching is as easy as matrix
inversion,'' Combinatorica, vol. 7, no. 1, pp. 105-113, 1987.

[26] R. Niedermeier and P. Rossmanith, "Unambiguous auxiliary pushdown automata
and semi-unbounded fan-in circuits,'' Information and computation, vol. 118,
no. 2, pp. 227-245, 1995.

[27] C. Papadimitriou, Computational complexity. Addison-Wesley, 1994.

[28] 0. Reingold, "Undirected ST-connectivity in log-space,'' in 3'fh Annual ACM
Symposium on Theory of Computing, pp. 376-385, ACM, 2005.

[29] 0. Reingold, S. Vadhan, and A. Wigderson, "Entropy waves, the zig-zag graph
product, and new constant-degree expanders," Annals of Mathematics, vol. 155,
no. 1, pp. 157-187, 2002.

[30] K. Reinhardt and E. Allender, "Making Nondeterminism Unambiguous," in 3!fh

Annual Symposium on Foundations of Computer Science, pp. 244-253, IEEE
Computer Society Press, 1997.

[31] W. Ruzzo, J. Simon, and M. Tompa, "Space-bounded hierarchies and probabilis­
tic computations,'' in 14th Annual ACM Symposium on Theory of Computing,
pp. 215-223, ACM, 1982.

[32] W. Rytter, "On the recognition of context-free languages," in [Jlh International
Conference on Fundamentals of Computation Theory, vol. 208 of Lecture Notes
in Computer Science, pp. 318-325, Springer, 1984.

[33] J. Savitch, "Relationship between nondeterministic and deterministic tape com­
plexities,'' Journal of Computer and System Sciences, vol. 4, no. 2, pp. 177-192,
1970.

[34] R. Stearns, J. Hartmanis, and P. Lewis, "Hierarchies of memory limited com­
putations," in ffh Annual IEEE Symposium on Switching Circuit Theory and
Logical Design, pp. 179-190, IEEE Computer Society Press, 1965.

[35] I. Sudborough, "On the Tape Complexity of Deterministic Context-Free Lan­
guages,'' Journal of the ACM (JACM), vol. 25, no. 3, pp. 405-414, 1978.

45

Ph.D. Thesis - Grzegorz Herman McMaster University - Computing and SoftwMe

[36} R. Szelepcsenyi, "The method of forced enumeration for nondeterministie au­
tomata," Acta Informatica, vol. 26, no. 3, pp. 279-284, 1988.

[37) A. Szepietowski, "H Deterministic and Nondeterministic Space Complexities are
Equal for log log n then they are also Equal for log n,'~ in fJh Anntull Sympo­
sium on Tlw>retical Aspects of Computer Science, vol. 349 of Lecture Notes in
Computer Science, pp. 251-255, Springer, 1989.

[38] A. Szepietowski, Turing Machines with Sublogarithmic Space. Springer, 1994.

[39] L. Valiant, "Relative Complexity of Checking and Evaluating," Information Pro­
cessing Letters, vol. 5, no. 1, pp. 20-23, 1976.

46

i953

	Structure Bookmarks

