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Abstract 


The radioactive 26Al is an important probe for the interstellar medium of our 

galaxy since it is observed through the emission of 1.8 Me V gamma rays from 

the decay of 269Al produced by the proton capture on 25 Mg. But the production 

of the galactic 26Al is now still not well determined partially due to the lack of 

knowledge of the important states in 26Si which dominate the large uncertainty in 

the 25 Al(p,1) 26 Si reaction rate at nova temperatures. 

In nova explosions, the proton capture of 25Al competes with its f3 decay and 

bypasses the production of 269 Al, since the capture product 26Si decays quickly to 
26

m Al instead of its ground state, without the emission of the 1.8 Me V gamma 

ray. But at even higher temperatures, such as in supernova explosions, 26
m Al can 

be excited to the higher excited states by thermal excitation and then quickly de­

excite to the ground state, thereby enhancing the production of 26YAL The energy 

levels in 26 Si in the Gamow window corresponding to these temperatures therefore 

need to be well understood in order to determine the 25Al(p,1)26Si reaction rate, 

and thus the production rate of 26Al in these explosive environments. 

Two experiments were performed to study the important states in 26Si : one 

is the p(27Si,d)26Si* reaction at the NSCL, aiming to construct the level scheme of 

low lying states around the proton threshold; the other experiment is a measure­

ment of the elastic scattering of 25 Al+p with CRIB at RIKEN in order to obtain 

information on states in a broad range above the proton threshold. Details of these 

two experiments and their data analyses will be presented in this thesis. 
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Introduction and Motivation 

In this chapter, an introduction to some relevant background knowledge on nuclear 

astrophysics which is the research field of this thesis will be given briefly. Following 

this is the explanation of the scientific motivation for the study of 26 Si. 

1.1 Stellar evolution, nucleosynthesis and abun­

dance 

We know today that our universe started from the Big-Bang (BB) which makes the 

first-ever nuclei to fill up the universe from hydrogen up to beryllium, with most of 

them hydrogen and helium. As the universe cooled down after the BB explosion, 

the hydrogen and helium gas contracted due to gravity to form the molecular 

clouds from which the first stars were born due to the further contraction until the 

final gravitational collapse. Upon its formation, the star steps into its long journey 

of stellar evolution starting as a main sequence star1 for 903 of its lifetime. Here 

we will only give a simple introduction to the stellar evolution associated with the 

1Most of the stars spend most of their lifetimes in burning hydrogen and are thus categorized 
as a group of stars named the main sequence stars when they are in the hydrogen burning stage. 
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nucleosynthesis of elements in the nuclear burning processes during the various 

stages of the stellar evolution. More general knowledge of nuclear astrophysics 

and more profound details about the following content can be found in many 

references, such as [1] and [2]. 

1.1.1 Quiescent burning processes 

When a star forms as a main sequence star out of the contracting molecular cloud 

in the interstellar medium (ISM), it will still undergo further contraction because 

the inward gravitational force still overcomes the outward internal pressure in the 

star. Therefore the core of the star gets heated by the thermal energy continuously 

generated from the conversion of gravitational energy. The core temperature and 

the matter density keep increasing until a critical condition (T ,...., 0.01 GK; p rv 

102 g/cm3) when hydrogen ions (protons) gain enough kinetic energy from the 

heating to tunnel through the Coulomb barrier between two protons which makes 

it possible for protons to fuse together and release tremendous nuclear energy. 

This process of burning hydrogen goes smoothly and the continuously generated 

outward nuclear radiation impedes further gravitational contraction. Finally, the 

two competing forces come to an equilibrium, where the core stops contracting. 

This hydrogen burning process will last for a very long time since at this temper­

ature the protons have energies far below the Coulomb barrier making the fusion 

of protons very slow. This is why most of stars remain in main sequence burning 

hydrogen for most of their lives. During this process another abundant element, 

Helium, is produced via the pp-chain reaction at low temperatures and CNO cycle 

reactions at higher temperatures [1]. 

When all the hydrogen in the core has been burned up with only Helium re­

maining (but still with hydrogen outside the core), the main sequence of stars 

ends and no nuclear energy will be generated to prevent the core from contracting 

because at this time the core temperature has not become high enough for the 

Helium ions to fuse together. The core eventually gets heated up again by the 
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thermal energy from the gravitational contraction, and the core temperature and 

density keep increasing until the critical conditions for Helium burning are reached 

(T,....., 0.1-0.4 GK; p,....., 102-105 g/cm3 , [2]). The core comes to an equilibrium again 

with Helium burning inside the core and Hydrogen burning still in the hydrogen 

shell around the Helium core. 

Such burning process will repeat in the subsequent Carbon burning, Neon burn­

ing, Oxygen burning and the final quiescent burning - Silicon burning, which will 

result in, for a massive star, a very hot silicon burning core surrounded by layers 

of burning shells of lighter elements from the Oxygen burning shell to the outer 

hydrogen burning shell. Since the nuclear burning is ignited by the thermal energy 

converted from the gravitational contraction of a star, how far a star can go in 

the burning stages is then essentially determined by its mass. For low mass stars, 

they spend their whole lives burning hydrogen, at most up to helium burning and 

then die as white drawfs since their thermal energy is too small to ignite further 

nuclear burning, while for massive stars, the gravitational contraction can provide 

enough energy for them to go all the way to the last quiescent burning stage. 

These quiescent burning processes can make contributions to the nucleosynthe­

sis and abundances of the elements up to iron since iron is the most stable element 

and it is impossible for the any nucleus to overcome the large Coulomb barrier 

to fuse with a iron nucleus under the quiescent stellar burning conditions. Other 

mechanisms are therefore required to explain the nucleosynthesis of the elements 

beyond iron - the explosive burning processes, to be described in the following 

section. 

1.1.2 Explosive burning processes 

The explosive burning occurs in conditions of extremely high temperature and 

density, which can never be achieved during the quiescent burning processes, and 

is characterized by an abrupt increase in temperature and huge amount of nuclear 

energy release in a extremely short time period (usually in about one second), 

3 
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compared with the relatively mild character and millions of years long journey of 

the quiescent stellar burning. It happens when a massive star or a close binary 

system comes to the end of its life. Recall that a massive star can keep burning 

nuclei in its core until nothing can be burned leaving iron in the core. The star 

then starts contracting again. The iron nuclei cannot be burned to counter the 

further contraction. However the contraction confines the free electrons in the core 

to become a degenerate electron gas, the internal pressure of which then stops the 

contraction of the core. But as more and more mass in the shells around the core 

becomes degenerate and is deposited to the core to make it reach a critical mass, 

even the degenerate gas pressure can no longer support the core and the star then 

ends its life by a core collapse and a subsequent explosion, ejecting their envelopes 

rich in various materials into the interstellar medium where new stars will be born. 

This scenario discussed above is just one of various explosive events in the 

universe and is called Type II supernova explosion. Similar events to Type II 

supernovae are the Type lb and le supernovae with differences in that the massive 

progenitor star of the Type lb has its outer hydrogen layer blown off by stellar 

winds or a companion star, and the progenitor star of the Type le has both the 

hydrogen and helium layer stripped off. The progenitor stars of the Type lb/le 

are usually called the Wolf-Rayet stars. 

Other explosive scenarios are the nova explosion and Type Ia supernova explo­

sion in a binary system including a carbon-rich (CO) white dwarf and a compan­

ion star - usually a main-sequence star or a red giant star. Due to the strong 

gravity of the electron-degenerate matter in the white dwarf, the hydrogen-rich 

material keeps being transferred from the companion star via the equipotential 

surface (Roche lobes) of the two objects to the white dwarf, forming an accretion 

disk around the white dwarf. When the material reaches the surface of the white 

dwarf, it will quickly become degenerate due to the strong gravity of the white 

dwarf, resulting in the increase of temperature. Depending on the accretion rate 

and the mass of the white dwarf, the white dwarf can end up with a nova explosion 

4 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

or a more explosive Type Ia supernova explosion. If the companion star is a low 

mass star, the accretion rate will be low which allows thermonuclear runaway to 

take place due to the high temperature near the bottom of accreted layers around 

the surface of the white dwarf, associated with large amount of energy release. This 

is the scenario of the nova explosion. If the companion star is a massive star, the 

material will be quickly accreted from the star to the white dwarf and accumulated 

in the degenerate form on its surface. As a consequence, the mass of the white 

dwarf will soon exceed the Chandrasekhar limit and an explosion occurs disrupting 

the whole white dwarf. This is the scenario of Type Ia supernova explosion. 

During the explosion, the light elements, hydrogen and helium, in the outer 

shells are burned in a completely different manner from that in the quiescent 

burning processes due to the extreme explosive conditions. Light elements can be 

also synthesized in the explosive hydrogen and helium burning, i.e., via hot CNO 

cycles or breakout sequences from the hot CNO cycles. The heavier elements will 

only be synthesized via the neutron capture processes (s-process and r-process) 

and proton capture processes (p-process) 2 which can only occur under the extreme 

conditions of explosive events. The neutrons in the s- process are produced in the 

star before explosion, i.e., in carbon burning and oxygen burning stage, while the 

neutrons in the r- process are due to the neutronization by the weak interaction 

at the time of hydrodynamic contraction of later stage stars, i.e., presupernovae. 

Nucleosynthesis in the s-process goes along a path close to the group of stable 

nuclei and nucleosynthesis in the r-process goes along a path close to the neutron 

drip-line. The p-process path in turn runs close to the group of stable neutron­

deficient nuclei. The s-process is responsible for nucleosynthesis of half of the 

elements beyond iron while r-process makes the other half. It should be pointed 

out that nova explosions and supernova Type Ia explosions contribute mainly to the 

nucleosynthesis of light elements up to iron and have no important contributions 

to nucleosynthesis of elements beyond iron. 

2s- and r- represent slow neutron capture and rapid neutron capture, respectively and p­
represents proton capture. 

5 
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1.1.3 Thermonuclear reactions 

Thermonuclear reactions occur throughout the whole course of stellar evolution, 

from initial quiescent hydrogen burning to the explosive burning stages. It is the 

dominant source of the energy generation in our universe and is the way by which 

all elements including those in human beings are produced. At different stages of 

the stellar evolution, different thermonuclear reactions take place due to the dif­

ferent conditions characterized by the temperature, responsible for the production 

of specific groups of elements determined and limited by those conditions. The 

abundances of different isotopes in the universe are calculated from the network 

calculations using the thermonuclear reaction rates of various reactions occurring 

in different stellar scenarios at different temperatures and matter densities. 

Since in the stellar matter all elements exist in the form of a gas, the particles 

should be treated collectively and their collective motions are therefore constrained 

by the gas model, normally the Boltzmann-Maxwell (BM) velocity distribution. So 

the calculation of the reaction rate will be weighted by the BM distribution of the 

velocity. Besides, from the nuclear reaction point of view, the occurrence of re­

actions between individual charged particles are prevented by the resistance due 

to the repulsive Coulomb force between them, that is, the Coulomb barrier. To 

represent the possibility that a charged particle overcomes the barrier to react 

with another charged particle, a penetrability factor is introduced into the cross 

section for the nuclear reaction according to quantum mechanics. The higher the 

energy of the reacting particles, the higher the penetrability and thus the easier 

a reaction takes place. Combining these two effects together, the thermonuclear 

reaction rate for a specific nuclear reaction will peak with the total energy (to­

tal kinetic energy in the center-of-mass frame) at an energy only determined by 

the stellar temperature (besides the masses and charges of the reacting particles). 

Therefore, a thermonuclear reaction can take place with highest probability within 

a window around the peak energy, called the Gamow window. Since the energy 

levels populated in the compound nucleus in a stellar capture reaction is directly 

6 
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related to the total energy, the most populated energy levels will be those corre­

sponding to the total reaction energies right within the Garnow window. In the 

calculation of the reaction rate, those levels in the compound nucleus have the 

dominant contributions while contributions from levels out of the Garnow window 

can be negligible. So it is crucial for the network calculations of element abun­

dances to locate accurately the positions of energy levels of astrophysical interest 

in compound nuclei in the important stellar thermonuclear reactions. More details 

and the derivations of the thermonuclear reaction rates are given in Chapter 6. 

1.2 Scientific motivation for the study of 26Si 

1.2.1 26Al in the galaxy 

The radioisotope 26Al (half-life t 1; 2 = 0.72 x 106 years) is an important probe for 

Inter-Stellar Medium (ISM) of a galaxy, which is the birthplace of newly formed 

stars. The presence of 26Al in the ISM has been confirmed by searching for the 

characteristic 1.809 MeV -y-rays from 26Al decay. It was discovered first by the 

HEA03 satellite through the detection of the 1.809 MeV -y-rays and was later 

mapped out in an all-sky distribution over the Galaxy by the COMPTEL telescope 

installed on the CGRO satellite. It is through the Doppler-shift measurements 

of this 1.809 MeV line by the next-generation telescope INTEGRAL that the 

galactic 26Al is confirmed to co-rotate with the Galaxy and therefore be distributed 

throughout the whole Galaxy [3]. Figure 1.1 shows the all-sky maps of 26Al from 

the COMPTEL results and the INTEGRAL as well. 

Regarding the stellar sources of the the galactic 26Al, there is always a discrep­

ancy between the observed data from the satellites and the stellar models. The 

all-sky rnap clearly shows that the 26Al is more densely distributed in the spiral 

arrn of the Galaxy, which consists of mainly massive stars and indicates that novae 

and low-mass star cannot be the major sources. One thing we are sure about is 

that in the Galaxy there is about 1-3 solar mass of 26AL However, according to 
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Figure 1.1: Map of the 26 Al in the galaxy measured by the INTEGRAL telescope. 
The background image of the milky way is overlaid with the COMPTEL map of 
26 Al emission. (Adapted from reference: MPE, 2005) 

the classical nova models, classical novae should be among the major contributors 

to the production of 26 Al [4, 6, 7]. A recent study on the nucleosynthesis of mas­

sive stars suggests that the 26 Al is mainly from the Type II supernova explosions 

and the Wolf-Rayet stars [8] which fits very well to the observed data. In spite 

of this , the current situation is still unclear and we still do not have a full un­

derstanding about the sources of the 26Al. Nevertheless, now we know that apart 

from the major contributors, AGB stars can also be a site for 26 Al production and 

nova explosions are still significant contributors. Since there are large uncertainties 

in the important reaction rates for the production of 26 Al in explosive hydrogen 

burning due to lack of the knowledge about the details of the explosive events [5] 

and since they significantly affect the production of 26 Al, it is necessary for us to 

perform more accurate measurements to reduce these uncertainties so that we can 

put firmer constraints on the stellar model calculations and therefore gain more 
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knowledge about the Galaxy as well as the ISM. 

1.2.2 The importance of the 25 Al(p,1) 26Si reaction 

The characteristic decay "(-rays from 26Al are produced in the following way: the 

proton capture of 25Mg leads to 26Al in its ground state, then the ground state 
26Al mostly decays to the first excited state of 26Mg by 13+ and electron capture, 

followed by the 'Y decay of 26Mg to its ground state with an emission of the 1.809 

MeV "(-ray. This 1.809 MeV 'Y can be only produced from the the decay of the 

ground state of 26Al (T1; 2 = 7.17 x 105 years) and the 26Al in its isomeric state 

(T1; 2 = 6.36 s)will directly decay to the ground state of 26Mg without any 'Y 

emission. Figure 1.2 shows how this characteristic 1.809 MeV 'Y transition occurs. 
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Figure 1.2: 1.8 MeV 'Y transition from the decay of the ground state of 26Al. 

The reaction path toward the production of the ground state of 26 Al, denoted 

by 269Al, is 

In nova explosions (typical temperature T9 = 0.1 - 0.4), the proton capture 
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of 25 Al competes with its j3+ decay and bypasses the production of 269Al since 

the capture product 26Si decays quickly to the 0.228 MeV isomeric state in 26Al 

(denoted by 26 
m Al) instead of its ground state, resulting in no emission of 1.809 

Me V gamma rays. Since the transition between the ground state and the isomeric 

state is almost impossible due to their large spin difference (D..J = 5), a thermal 

equilibrium cannot be established between the two states and therefore the 26Al 

nuclei in the two states should be considered as two different nuclei instead of 

the same one, which therefore complicates the 26Al production and makes the 

25 Al(p,1)26Si reaction very important. The reaction path toward the production 

of the isomeric state of 26Al follows 

Figure 1.3 shows in the chart of nuclei the different reaction paths toward the 

production of the 26Al for different conditions. 
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Figure 1.3: reaction paths toward the production of the 26 AL 

At even higher temperatures in supernova explosions (typical temperature 

T9 > 1), 26 
m Al can be excited to the higher excited states, such as the 0.417 
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MeV state (J7r = 3+) and the 1.058 MeV state (J7r = 1+), by thermal excitation, 

and then quickly decay and produce 269Al again [14]. It is in this way that the 

ground state of 26 Al communicates with its isomeric state and achieves an indi­

rect thermal equilibrium between them via the intermediate higher excited states. 

Figure 1.4 demonstrates such communication. A study in Ref. [14] has shown 

that at such high temperatures the 25 Al(p, 'Y) 26Si reaction dominates over that of 

the 25 M g(p, 'Y)26 Al reaction and as a result, instead of producing the 26 
m Al, the 

25 Al(p, 'Y)26Si reaction will produce most of the 26Al in its ground state. 
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Figure 1.4: Communication between the 269Al and the 26mAl via the intermediate 
excited states by thermal excitation at supernova temperatures. 

1.2.3 Nuclear structure of 26Si 

We have already mentioned that the thermonuclear reaction rates of stellar cap­

ture reactions are determined by the energy levels of the compound nuclei within 

the Gamow windows corresponding to the stellar temperatures at which these re­

actions occur. Therefore states in 26Si within the corresponding windows at nova 

temperatures and supernova temperatures need to be well understood in order 
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to determine the 25 Al(p,1) 26 Si reaction rate and thus the production rate of 26 Al 

in these explosive environments. In the 25 Al(p,1) 26Si reaction, only states above 

proton threshold (Sp=5.518 MeV) in 26Si can be populated, as shown in figure 1.5. 

T9 =1 

r 
Q = 5515 keV 

8700 (0+. 2+1 

13 levels 
••• 

5945 O+ 
59_1_6_ l+ 

5678 1+ 

4183 3+ 

2784 2+ 

1796 2+ 

_ft+ 

Figure 1.5: In the 25 Al(p,1) 26 Si reaction, only states above proton threshold 
(5p=5.518 MeV) in 26 Si can be populated. The Gamow windows at the typical 
nova and supernova temperatures are indicated by arrows. 

Figure 1.6 shows the level scheme of 26Si compared with that of its mirror 

nucleus 26Mg. 

The astrophysically important states in 26Si have been studied with different 

reactions [9, 10, 11, 12, 13] due to their dominant contributions to the large un­

certainty in the 25 Al(p,1) 26Si reaction rate at nova temperatures (red band region 

in figure 1.6). But controversies exist on the spin-parity assignments for some 

dominant states, such as the 5.912 MeV and 5.946 MeV states, and the level en­
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Figure 1.6: Level schemes of 26 Al and its mirror nucleus 26Mg. The color bands 
indicate the Gamow windows at different stellar temperatures; for example, the 
red band is for the nova temperature range and the blue one is for supernova 
temperatures. 

ergies and spin-parities of the newly found states from those measurements also 

need to be confirmed. Furthermore, comparison with the mirror nucleus points 

to the possible existance of new states in 26Si, which may contribute strongly to 

the 25Al(p,1)26Si rate at supernova temperatures. To address these issues, we per­

formed two experiments: one is the p(27Si,d)26Si* reaction at the NSCL aiming 

to construct the level scheme of low lying states around the proton threshold; the 

other one is the elastic scattering of 25 Al+p with CRIB [21] at RIKEN in order to 

obtain information on states in a broad range (Ex= 5.6 MeV - 8.6 MeV) above the 

proton threshold [23]. 
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Two experiments for the study of 

265i 

This chapter covers all the descriptions of the two experiments performed at two 

different laboratories - NSCL and CRIB - including facility introduction, exper­

imental techniques and set-up, radioactive beams in use, detector configurations 

for each experiment, and so on. For the production of the radioactive beams, more 

details can be found in Appendix A. 

2.1 	 The p(27Si,d)26Si* experiment at the NSCL 

facility 

This experiment aimed to measure the 1-decays from the low-lying proton-unbound 

excited states of the product nuclei 26Si. At higher excited states, the 26Si becomes 

unstable and is destroyed by the more preferred particle decays. For this reason, 

this 1' spectroscopy measurement was only used to study levels of 26Si in the low 

energy range for which the beam energy was chosen according to the kinematics. 

In the following, I will begin with the kinematics of this reaction. 
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2 .1.1 Kinematics 

Let us consider the general case of a incoming beam particle in collision with 

a target particle (two-body kinematics, non-relativistic). Figure 2.1 shows the 

schematic diagram of the collision. Let us make the following notation: 

T

m

mb mass of the beam particle 

mt mass of the target particle 

mr mass of the recoiling heavy particle 

0 mass of the detected light particle 

n kinetic energy of the beam particle before collision 

Q98 Q-value of the reaction with the residue in the ground state 

Tr kinetic energy of the recoiling heavy particle after collision 

0 kinetic energy of the detected light particle after collision 

Ex excitation energy of the recoiling heavy particle after collision 

() scattering angle of the light particle relative to the beamline direction 

Or scattering angle of the heavy particle relative to the beamline direction 

Using the conservation of the total energy and momentum before and after the 

collision, we have the following equations 

n + Q = To +Tr +Ex 

J2mbn = J2m0 T0 cosO+ J2mrTrcosOr 

where vf2mT is the momentum of a particle of mass m with kinetic energy of T. 

We known; T0 is measured by detectors and() is calculated from the geometry of 

the target and detector as well as the hit position on the positive sensitive detector. 

The remaining quantities are unknown: Tr, Or and Ex, among which the Ex is of 
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Figure 2.1: schematic diagram of a beam target in collision with a target particle. 

interest. It is given by solving the above equations as a function of Tb, T0 and() 

For our case, we have mb=m(27Si) ~27 amu (atomic mass unit), mt=m(1H) ~1 
1amu, m0 =m(2H) ~2 amu and mr=m(26Si) ~26 amu. Then the expression of Ex 

can rewritten as 

7
0m(2 Si)) ( m(2H) ) 2.jm(27Si)m(2H)nT

Ex = ( 1 - m(26Si) Tb - 1 + m(26Si) To+ m(26Si) cos() 


1 14 JM 

= n- To+ 13~cosB26 13

T

Figure 2.2 shows plots of the correlations between Ex and the deuteron energy 

0 at various scattering angles that the scattered deuteron makes with the beam­

line, with the beam energy Eb=89 Me V /A. These plots can be used to determine 

the scan range of excitation energies we can obtain for a given beam energy. As 

1All the masses in this thesis are adopted from the Atomic Mass Evaluation. 
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we can see from the plots , the range of our interest (Ex = 5 - 8 M e V) can be 

achieved by using the 89MeV/A beam energy . 
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Figure 2.2: Correlations between the excitation energy of 26Si* and the energy of 
the scattered deuteron at various scattering angles with the beam energy E6=89 
MeV/ A. 

2.1.2 The 	NSCL facility 

The NSCL (National Superconducting Cyclotron Laboratory) is located on the 

campus of Michigan State University and is a world leader in rare isotope research 

and nuclear science education. It primarily consists of two superconducting cy­

clotrons - K500 and K1200, which are coupled together to make it possible to 

produce many rare isotopes with the in-flight (fragmentation) method2 . 

Figure 2.3 shows the schematic diagram of the NSCL facility. 

2 See Appendix A for the methods of beam production 
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Figure 2.3: schematic diagram of the NSCL facility with the two cyclotrons K500 
and K1200, the Al900 fragment separator and the 8800 spectrograph indicated. 

The charged particles of the primary beam are produced from an electron 

cyclotron resonance ion source (ECR) and then injected into the first K500 cy­

clotron to gain the first acceleration. Following that is the further acceleration of 

the charged particles in the K1200 cyclotron where the beam particles get fully 

stripped from the electrons and sent to the production target of the Al900 sep­

arator to produce the secondary (reaction) beam by fragmentation. Besides the 

beam particle of interest, many other contaminant particles can be produced at 

the same time as well. So right after the secondary beam production, the beam 

separation is performed to separate out only the beam particles of interest which 

then can be transmitted through the remaining part of the A1900 separator and 

delivered to the different experimental lines, i.e. the 8800 spectrograph. 

2.1.2.1 8800 spectrograph 

The 8800 spectrograph is a magnetic device with large acceptance and high resolu­

tion for charged particle spectroscopy and is specially designed for nuclear reaction 

experiments with radioactive beams (15]. The design is unique in that the spec­

trograph is installed vertically on a carriage instead of the traditional horizontal 
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installation. This not only saves space but also makes it possible to rotate the 

spectrograph from 0° to 60° for different experiment purposes. The 8800 can be 

operated in two different modes: a focus mode with the best momentum accep­

tance (±23) but limited resolution (1in1000 in energy) , and a dispersion matching 

mode with the best resolution (1 in 5000 in energy for a 1 mm beam spot) but 

limited momentum acceptance (±0.53) . More detailed descriptions of the two 

modes can be found in Ref. [15] . Figure 2.4 shows the schematic diagram of the 

8800 spectrograph. Table 2.1 lists some characteristic specifications of the 8800. 
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-
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Figure 2.4: schematic diagram of the 8800 spectrograph and additional components 
of the upstream beamline. 

In figure 2.4 the target position in the 8800 analysis line is also indicated. 

Surrounding the target , a 1-ray detector array SeGA is installed, which will be 

described in the following section. The SeGA array detects the 1-rays from the 

decay of the heavy reaction recoils , in coincidence with the detection of these recoils 

at the 8800 focal plane. An ultra-fast and radiation-hard detectors made from a 

single-crystal diamond is installed in the 8800 before the target for timing. 
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Table 2.1: Characteristic parameters of the 8800 spectrograph, adapted from [16]. 

Energy resolution 1 in 10000 FWHM 
Dispersion 9.6 cm/% (t::..P/ P) 
Momentum Acceptance 5% (P) 
Angular acceptance in dispersive 70 
Angular acceptance in no-dispersive 100 

Angular resolution 2 mrad 
Position resolution 0.4 

At the end of the 8800 is the focal plane [15, 16). The detector system at 

the focal plane consists of a pair of cathode readout drift chambers ( CRDC) for 

beam tracking information, followed by a multi-segmented ion chamber for energy 

loss measurement, and three large plastic scintillators for timing and total energy 

measurements. Figure 2.5 shows the schematic diagram of the focal plane at the 

end of the 8800 spectrograph. 

2.1.2.2 SeGA detector array 

8eGA is a highly segmented germanium detector array. It consists of 24 sepa­

rate germanium detectors arranged in two rings at 37° and 90° with 12 detectors 

for each ring. Each individual detector is divided into 32 segments providing ac­

curate 3-dimensional position for Doppler broadening correction of the measured 

1-ray energies. Further details on the SeGA array can be found in reference [17). 

Figure 2.6 shows a photo of the SeGA detector array from the front view. 

2.1.3 Experiment details 

The radioactive 27Si (T1; 2=4.16s) beam in the experiment at NSCL was produced 

by fragmenting 150 MeV /nucleon 36Ar primary beam ions on a 940 mg/cm2 9 Be 

target, resulting in a beam energy of 89 Me V /nucleon, an intensity of about 1x107 

20 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

Figure 2.5: schematic diagram of the focal plane detector system at the end of the 
8800 spectrograph. 

pps and purity of about 363. A 250 mg/cm2 polypropylene foil (CH2) was used 

as the secondary target which is surrounded by the highly segmented germanium 

detector array (8eGA) detecting the gamma rays from the decay of 268i* recoils. 

These gamma rays were detected in coincidence with the detection of the 268i 

recoils at the 8800 focal plane. The 268i recoils were identified by the time of flight 

(TOF) between the diamond detector and the scintillator together with the energy 

loss in the ion chamber. 

2.2 The p(25Al,p)25Al experiment at the CRIB 

facility 

We performed an elastic scattering experiment by bombarding a thick proton target 

(polyethylene, CH2) with a radioactive heavy-ion beam of 25 Al. With the beam 
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Figure 2.6: Photograph of the SeGA array from the front view. 

losing energy and finally stopping in the thick target, a wide range of resonance 

energies can be scanned in the inverse kinematics. Because only states above 

the proton threshold (Sp=5.518 MeV) 3 in the intermediate compound nucleus of 

26Si can be populated in the scattering, this experiment aims to study only the 

resonances above that, as complementary to the aforementioned NSCL experiment. 

2.2.1 Kinematics and the thick target method 

Usually in a nuclear experiment, a light stable beam is used to bombard a target 

made of a relatively heavier long-lived particle and thus the normal kinematics ap­

plies. But in experiments involving radioactive beams, especially those for nuclear 

astrophysics study, one uses heavy radioactive beam particles to bombard light 

target nuclei and therefore the kinematics is reversed. To obtain the proper reac­

3the Q-value of t he nuclear reaction in which a proton and a heavy nucleus form a compound 
nucleus; only energy levels above this Q-value in the compound nucleus can be populated by t he 
mechanism of compound nuclear scatterings and reactions. 
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tion information for compound nuclear reactions or scatterings, such as resonant 

energies and the excitation function, the motion of the interacting particles should 

be calculated in inverse kinematics, in which all quantities should be converted 

from the laboratory frame to the center-of-mass (CM) frame. 

Although we can deduce all the energies in the CM frame by the same normal 

kinematics as used for deducing the excitation energy in the p(27Si,d)26Si* exper­

iment, there is simpler way to do that due to the symmetry and simplicity of the 

elastic scattering in inverse kinematics. Figure 2.7 shows the schematic diagram 

of the elastic scattering with both the quantities in the laboratory frame and their 

corresponding quantities in the CM frame indicated explicitly. 

v , T 
m m 

M T m n 
b C7 

··-----------•~·-···-······--------------------------~--..:..:la=b'------

Figure 2. 7: schematic diagram of the elastic scattering in inverse kinematics. 
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The notation in the figure is explained as follows: 

m mass of the light target particle, i.e. proton 

M mass of the heavy beam particle 

Ve velocity of the center of mass 

Vm lab velocity of m after collision 

vr:;:i CM velocity of m after collision 

VM lab velocity of M after collision 

v'J:F CM velocity of M after collision 

n lab kinetic energy of M before collision 

Tm lab kinetic energy of m after collision 

T::;" CM kinetic energy of m after collision 

TM kinetic energy of M after collision 

Tft CM kinetic energy of M after collision 

()lab lab scattering angle of m relative to the beamline direction 

()cm CM scattering angle of m relative the beamline direction 

According to the simple trigonometry, we can easily find the following relations, 

setting v;::" = Ve for elastic scatterings: 

Vm = 2vr:;:i COS ()lab 

And then from conservation of momentum and kinetic energy, we finally obtain 

the relation between the total kinetic energy in the CM frame Ecm and the detected 

proton energy Tm, as well as the relation between Ecm and the beam energy Tb, 

Ecm= M+m Tm 
4M cos2 81ab 

m 
Ecm = M Tb+m 
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T

In order to scan a wide range of resonance energies, the thick target method [18, 

19] was used. In this method, the target, usually a polypropylene target (CH2 ), is 

chosen to be thick enough to fully stop the radioactive beam but thin enough for 

the recoiling light particles, usually protons, to exit the target. In the travel path 

of the beam particle from its beginning in the target to its final stop, the beam 

particle continuously loses energy mainly due to the collisions with the electrons in 

the target [20], and collides with the light target particles to scatter them mostly 

into the forward solid angles in the laboratory system. Therefore, a wide range of 

energy levels can be scanned simultaneously with only one beam energy, with the 

maximum of the range corresponding to the beam energy; and the scattered light 

particles can be detected at forward angles in the laboratory system. According 

to the above derivations, we can express Ec:m in terms of the initial beam energy 

0 before entering the target, the stopping power [20] of the beam particles in the 

target dE/ dx and the differential target thickness the beam ion has traveled, as 

follows, 

m tdE)m(

Ec:m = M + m Tb = M + m To - Jo dx dx 

where x is the length that the beam has traveled in the target when a scattering 

occurs. 

For our case of the 25Al+p elastic scattering, m ~1 amu and M ~25 amu. 

Then we can rewrite all the relations as 

2.2.2 The CRIB facility 

CRIB is the CNS (Center for Nuclear Study) Radioactive Ion Beam separator 

located at the RIKEN campus at Wako in Japan. Figure 2.8 shows the schematic 
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diagram of the CRIB facility. The primary stable beam, typically a few 100 pnA 

(particles per nano ampere4), is produced and accelerated at an AVF cyclotron, and 

then can be delivered into different experimental halls including CRIB for different 

purposes. CRIB then uses the primary beam to bombard a primary gas target at 

the FO chamber to produce different low energy ( <10 MeV /u) radio-isotope (RI) 

beams by the in-flight (fragmentation) method. The produced various RI beams 

are then passed through two dipole magnets to separate them according to the 

characteristic mass-to-charge ratios (A/q) of different nuclei or different charge 

states ( q) of the same nucleus. The rigidities5 
( B p) of the magnets are set to select 

the desired beam particles with proper A/q based on the following relation, 

A
Bp=-v (2.1) 

q 

where Bis the magnetic field; pis bending radius of the dipole magnet; and A, q, 

v are the particle's atomic mass number, charge state and velocity, respectively. 

After the first selection through the bending dipole magnets according to the 

magnetic rigidity, a Wien filter, installed downstream of the two dipole magnets 

as shown in the schematic diagram, provides further separation for beam particles 

of the same magnetic rigidity but different masses (A) according to the velocity 

of the beam particle. The Wien filter will be described in detail in the following 

section. 

With these techniques, the CRIB facility can produce intense and good-quality 

RI beams with a typical intensity of 104 to 106 pps (particles per second6 ), which 

are applicable for various studies of nuclear physics, especially for those related to 

the nuclear astrophysics that needs high intensity and high purity RI beam [21]. 

41pnA=1 nano ampere/1 charge unit (e) ~ 6.3xl09 particle per second 
5This also refers to a particle's momentum per unit charge in a magnetic field. 
6 For stable beams, we use the high intensity unit of pnA; for radioactive beams, we use the 

unit of pps due to their low intensities relative to the stable beams. 
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0 5 m 

Figure 2.8: schematic diagram of the CRIB facility. 

2.2.2.1 Beam selector - the Wien Filter 

After the beam separation using magnetic dipole according to the different mag­

netic rigidities of different nuclei, the radioactive beam is still greatly contaminated 

by radioisotopes with the same mass-to-charge ratios (A/q) but different masses. 

Therefore, a secondary beam selector called a Wien Filter is used and it performs 

the separation based on the different momenta. In this sense, the Wien Filter is 

also called momentum separator. Figure 2.9 shows the schematic diagram of the 

Wien Filter. 

When it is working, there are two fields applied inside: a vertical electric field 

and a horizontal magnetic field perpendicular to the beam line. The directions 

are set in such that when a charge particle passes through, it will experience the 

downward or upward electric force and the opposite magnetic force. Only when 

the two forces balance each other can the charged particle go straight along the 

beam line through the filter. Otherwise, the particles will deviate from the beam 
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Figure 2.9: schematic diagram of the side view of the vVien Filter. 

line and stop within the filter. When the two forces are equal, we can determine 

the "passing-through" velocity in terms of the magnetic field B and the electric 

field E as 

E 
v=- (2.2)

B 

Since we can find the beam velocity from the energy and mass of the beam particle, 

by applying the proper electric field and magnetic field, we can select only parti­

cles with the right velocity and therefore prevent the contaminants with different 

velocities from passing through the filter and proceeding to the target. 

2.2.2.2 Experimental chamber (F3) 

After the beam particles pass through the Wien Filter, they enter the experimental 

chamber in which they will be identified and tracked using two PPAC (Parallel 

Plate Avalanche Counter) [22] detectors before they bombard the target. It is 

because even the Wien Filter can not filter out the unwanted particles with the 

same mass and the same charge as the desired beam particles and they will co­

exist with the beam particles and also react with the target. For example, for 
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3 identical 6E-E telescopes 

double-sided silicon detector 

2 

L).E -
5 x 5 cm area, -75 µm thick 

Thick CH target 

TOF{L).t) by 2 PPACs 
10 x 10 cm area 

+ Beam 

Figure 2.10: Set-up of the detectors in the experimental chamber. 

our experiment, the final radioactive 25 Al beam on target is still contaminated 

greatly by its mirror nucleus 25 Mg in the same charge state. Since in the inverse 

kinematics the light target particles will be scattered primarily into the forward 

scattering angles, the silicon detectors for detection of the scattered particles are 

placed at such angles. Figure 2.10 shows the set-up of the detectors in the detector 

chamber and figure 2.11 shows a photograph of the experimental chamber. 

In case of inelastic scattering in which the heavy particle is scattered out in its 

first excited state and immediately decays to its ground state with a 1-emission, 

a Nal 1-ray detector array is installed right above the target for detection of 

the 1-rays in coincidence of the detection of the light recoils (protons) in the 
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Figure 2.11: A photograph of the experimental chamber (F3). 

silicon detectors. By this coincidence measurement , we can not only identify the 

resonances in the inelastic scattering events, but also remove protons from these 

events due to the measured proton spectrum of the elastic scattering events . 

2.2.3 Experiment details 

The elastic scattering experiment was performed using a 7.5 MeV /A 24 Mg8+ pri­

mary beam. The reaction 2H(24Mg,n) 25 Al was used to produce the secondary 25 Al 

beam with energy of about 3.4 MeV/A, purity of about 503 and intensity of up 

to l.2 x106 pps. The secondary beam was identified by two PPACs (Parallel Plate 

Avalanche Counters) which were also used for beam tracking to determine the 

beam position on target and the scattering angle when combined with the proton 

position measured on a PSD (Position-sensitive Silicon Detector). The secondary 

target was a 6.58 mg/cm2 CH2 target , which was thick enough to stop the 25 Al 

beam ions. The elastically scattered protons after the target were measured down­
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stream by 3 sets of ~E-E telescopes at 0°, 17° and 27°, respectively. Each telescope 

consists of one 75µm double-sided 16chx 16ch PSD and two 1500µm single channel 

SSDs (Silicon Strip Detectors). Right above the target, 10 NaI detectors were used 

to detect ')'-rays from the decay of the first excited state of the 25Al produced in 

the inelastic scattering. 

Figure 2.12 shows a schematic diagram of the beam transport line along the 

CRIB, and the beam tracking and proton detection systems in the F3 chamber. 

FO gas target 
02 at 760 Torr 

--~011------1 

~ecsndary beam PriL1:1ary beam
2 Al •, 5.3 MeV/A "Mg , 7.5 MeV/A 

Wien Filter 

PPACl PPAC2 

Figure 2.12: schematic diagram of the beam transport line along the CRIB, and 
the beam tracking and proton detection systems in the F3 chamber. 

The Si detectors - PSDs and SSDs - were calibrated separately with three 

alpha sources (237Np, Ea=4.788 MeV; 241 Np, Ea=5.486 MeV; 244Np, Ea=5.805 

MeV). A further calibration with proton beams of 5 MeV, 9MeV and 14 MeV was 

used to correct for the pulse height defect of alphas in the Si detector. Since the 

energy range of protons in the PSD used in this experiment is about 2 MeV, the 

proton beams will punch through the PSDs, enabling the ~E-E telescope to be 

calibrated as a whole. 

2.2.4 Electronics and Data Acquisition System (DAQ) 

Each SSD has one channel and is only used for an energy measurement. Each PSD 

has 16x 16 channels and it also provides the energy measurement for reconstructing 
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the total proton energy and for .6.E-E particle identification. Besides, it can also 

provide 2-dimensional position information for calculating the scattering angles and 

the timing information for particle identification using the TOF (Time Of Flight) 

method only by which the low-energy scattered proton stopping in the PSDs can 

be identified. The 2-dimensional position information in each PPAC, which is 

used for beam identification and beam tracking (constructing the scattering angle 

together with the positions from PSDs), is calculated from the four timing signals 

it provides with two signals determining one dimension. 

Figure 2.13 shows the diagram of the electronics for the detectors. 
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Figure 2.13: Diagram of the electronics for the detectors, adapted from [24]. 
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There are three trigger modes: beam singles trigger (PPAC signals), beam 

coincidence trigger (beam and PSD signals) and pile-up trigger. The beam singles 

mode is used when fine tuning the beam before directing the beam to the target 

and it triggers events with no PSD signals. The pile-up trigger is used for flagging 

the pile-up events which will be removed from the total events. The working 

trigger is the coincidence trigger provided by the beam signals (PPAC signals) 

combined with the PSD signal, and let through only events which have the beam 

particles with the right energies and the protons with energies deposited in the 

PSD. Figure 2.14 shows the electronic diagram of DAQ triggers. 

The DAQ used at CRIB is the Barbel system and the online data analysis is 

performed using the ANAPAW analysis package, both of which can are discussed 

in more detail on the RIKEN DAQ website [25]. 
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Figure 2.14: Electronic diagram of the DAQ trigger, adapted from [24]. 
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Some Basic Techniques in the Data 

Analysis for Nuclear Experiments 

In this chapter, before describing the detailed data analysis for our two exper­

iments, some basic analysis techniques and procedures used in our experiments 

and also common in nuclear physics experiments will be introduced, such as the 

particle identification techniques. 

3.1 Particle identification (PID) techniques 

Normally in nuclear beam experiments, especially for radioactive beam experi­

ments, the resulting beam can not be 100% pure and is inevitably contaminated 

during the beam production. Also the reaction recoils are contaminated either by 

the unreacted beam particles and the contaminants from the beam or by the other 

reaction products. So we have to filter out the contaminants in order to get the 

desired beam for the expected nuclear reactions. There is currently no electronics 

or detectors which can recognize nuclear isotopes and automatically filter out un­

wanted information in nuclear experiments. The techniques normally used now are 

the energy loss and the time-of-flight method which use combinations of detectors 

to identify the measured particles based on their properties. 
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3.1.1 PID using energy loss information in detectors - the 

~E-E method 

When a charged particle passes through the matter in a detector, it will interact 

mainly with the electrons in the matter via the Coulomb interaction. The particle 

will therefore lose its energy toward creating electron-ion pairs, which can then be 

collected as an electric signal whose size is a measurement of the energy deposited 

in the detector. Its energy loss per unit length in the matter is then related to its 

charge (proton number Z) as well as its mass M 1 
, and is given by the Bethe-Bloch 

formula (see Eq.5.3 in Chapter 5) from which we find that 

Z2E 
-ex­ (3.1) 

v2.D.x 

where v is the velocity of the particle. If a detector is thin enough to let the particle 

pass through, the total energy deposited in the detector can be approximated as 

the .D.E in the above relationship with .D.x as the thickness of the thin target. So 

for different charged particles passing through the target, .D.x is the same and we 

can rewrite the proportionality as 

z2 
.D.E ex 2 . (3.2) 

v 

Since we have the total energy of the particle E = ~M v2
, we can find based on 

the proportionality above that 

.D.E x E ex M x Z 2
• (3.3) 

In the plot of .D.E vs E, this corresponds to a hyperbolic curve for continuously 

varying E or a point on such a curve for a single E 2 , with the curvature uniquely 

10f course, the energy loss is also related to proton number and mass density of the matter 
of the detector and since we always use the same detectors in an experiment can treat them as 
constants. 

2The light reaction products usually have continuously varying energies according to the 
reaction kinematics and the beam particles or the heavy reaction products in inverse kinematics 
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determined by the mass M and proton number Z of the detected particle. By 

measuring the energy loss f).E in a thin detector and total energy in a following 

thick detector (thick enough to stop the particle) and plotting them in the f).E 

vs E histogram, different particles can be clearly identified. Figure 3.1 shows the 

simulation of the f).E-E curves of different nuclei. 
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Figure 3.1: Simulation of particle identification using the f).E vs E histogram. 

Since in real experiments the particles (beam particles or scattered products) 

do not necessarily go perpendicularly into the ilE-E array instead at an angle () 

with the perpendicular direction, the proportionality for f).E should be corrected 

by a factor of l/cos(), as shown in figure 3.2. But the histogram in figure 3.1 still 

applies except for that there is a minor extension of width for each curve upward to 

account for particles scattered into the rest angles. Examples from our experiments 

can be seen in the PID section in Chapter 5. 

usually have fixed energies or energies varying in a very small range. 
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Figure 3.2: schematic diagram of the ~E-E PID method. 

3.1.2 	 PID using time of flight between detectors - the 

TOF-LiE method 

The effectiveness of the ~E-E method is limited by the particle energy and its 

intensity on the detectors, since particles of high energy and high intensity will 

damage the expensive detectors, for example in our experiments, the silicon PSD 

(Position Sensitive Detector) detectors. So it is usually used for the identification 

of low-energy, low-intensity light charged particles, such as protons and alpha 

particles, but it is not useful for particles with energies too low to pass through 

the thin ~E detector, e.g., the PSDs in our CRIB experiment. For example, to 

straightly penetrate through a 75µm PSD, a proton needs a kinetic energy of at 

least about 2 Me V and protons with energies under this 2 Me V threshold energy 

will stop in the PSD and therefore will not be identified uniquely using the ~E 

vs E histogram. For these situations, another widely used PID method using the 

time of flight (TOF) of the ions between detectors comes to play a role, since it is 

just a time measurement between a "start" signal and a "stop" signal and thus not 

limited by particle energies. Actually the TOF method is the most used method for 
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neutron energy measurements. In the following section, we will discuss separately 

the PID techniques using the TOF method for beam particles and scattered light 

particles. 

Let L be the distance between the two detectors providing the start and stop 

signals and t the time difference between the two timing signals. Then the velocity 

of the particle can be calculated as v = L/t and the kinetic energy E of the particle 

can be written as 

E = ~Mv2 = ~M (L) 2 

(3.4)
2 2 t 

First let us discuss the PID using the .6.E-TOF method for beam particles or 

heavy reaction products which have many contaminants with energies that are 

either fixed or varying in a small range. Usually their energies are high enough for 

them to pass though the thin detectors for the energy loss measurement and thus 

Eq. 3.2 can be used for .6.E. Then we find that 

(3.5)~~ex z2
• 

In the .6.E vs time (of TOF) histogram, this corresponds to locus in parabolic 

bands representing different isotopes with the same Z but different masses with 

the masses increasing from left to right as the TOF increases. This is due to the 

fact that usually these particles have similar energies, i.e., their E is almost the 

same. Thus according to Eq.3.4, the smaller the mass M, the shorter the TOF 

should be. Or according to the correlation between the magnetic rigidity, Bp, and 

the mass-to-charge ratio of the particle, A/q, that is Bp = (A/q)v, we can find 

the time-of-flight t = L/v = (A/q)L/Bp. Since the Bp value is the same for all 

particles, for isotopes with the same Z (or q), the bigger the mass (A), the shorter 

the time-of-flight. Similarly according to .6.E ex Z 2/v2 = 2MZ2 /E, for the same 

Z, the smaller the mass M, the smaller the .6.E. For the same M, the bigger the 

Z, the bigger the .6.E. Figure 3.3 and figure 3.4 show an example of PID for beam 
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Figure 3.3: An example of PID for beam particles using the .6.E vs TOF histogram, 
adapted from [27]. 

particles using the .6.E vs TOF histogram. 

The PID for light reaction products is slightly different since the energies vary 

continuously according to the kinematics as discussed above. For particles passing 

through the .6.E detectors , the PID is the same as that described above and each 

particle species is represented by a parabolic band. But for particles stopping in 

t he thin detector, their energy losses cannot be approximated using Eq. 3.2 since 

the energy deposited is just the total energy E = ~Mv2 . Using t = L/v, we find 

that 

.6.E x t2 ex M 2 . (3.6) 

According to this , these light particles can be identified in the .6.E-TOF histogram 
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Figure 3.4: Another example of PID for beam particles using the 6.E vs TOF 
histogram, adapted from [27]. 

by their masses. Figure 3.5 shows a simulation of PID using this method for 

particles whose energies span a wide range. 

3.2 Data analysis procedure for nuclear experi­

ments 

When we have an idea for an experiment on our research subject , we write a 

proposal and apply for beamtime. After the proposal is approved, we begin to 

think about the detailed run plan and prepare for the experiment set-up. We then 

work on the beam development, detector set-up, target preparation, electronics, 

and finally the dat a collection. At this stage, it may seem that the experiment has 
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Figure 3.5: A simulation of PID using the ~E-TOF histogram for continuous ~E. 

been successfully done. However, this is not completely true. The experiment is 

just halfway being done since what we got during the experiment time is simply the 

recording of the experiment - that is, the raw information about the experimental 

runs - and we are still on the way to finding the results from the experiment. This 

remaining job is the data analysis: it is part of the experiment and is as important 

as the experimental runs themselves. 

The raw data are obtained and converted from the electronic signals by the data 

acquisition (DAQ) electronics, and then encoded into binary data for easy storage 

and access. The raw data for our two experiments performed at two different 

laboratories were encoded in different ways and their formats are given in the 

Appendix C. The first step of the data analysis is then the decoding and sorting 

of the raw binary data to the normal accessible data formats that depend on the 
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analysis program that will be used. Of course, we can directly analyze the raw 

binary file with the decoding and sorting included in the analysis program, but 

it is always good and convenient for future further analysis to decode and sort 

all raw data into new easily accessible data formats. And it is also good for the 

standardization of the analysis programs since almost all the different laboratories 

have different raw data formats and their own analysis programs and it is very 

inconvenient and difficult for researchers at different laboratories to communicate 

with each other, especially for researchers who are not based in a laboratory. 

For example, the CRIB data is encoded into . rdf format and the NSCL data 

is encoded into . evt format. To analyze these data directly, one needs to use 

their own analysis program packages, which are the ANAPAW analysis tool [28] 

for CRIB data and the SpecTcl analysis tool [29] for NSCL data. To reduce the 

complexity of learning and using multiple programs for our data analysis, we can 

use just their own decoding programs to sort our data ( . rdf and . evt) into the 

same data format ( . root), respectively, so that we can use the same analysis tool 

for both datasets. The most used general analysis tool is the C++ based ROOT 

data analysis tool package [30]. In ROOT, we can decode the raw data of different 

formats separately using the corresponding decoding method and sort them into 

the same format - the . root format, which can be easily accessed and analyzed 

by any user-customized ROOT program. 

After the raw data is converted to .root format files, we can re-sort them by 

placing constraints on the data and plot any data in the files for preliminary 

analysis. At this stage, we can perform PID analysis by making the histograms as 

discussed in the previous section. we can then write codes to make any necessary 

corrections, i.e. for our experiments, energy loss correction for proton energies and 

Doppler shift correction for 'Y-emissions, as well as the background subtraction 

if there is any. After all of those analyses, we are finished with the raw data 

and we can then proceed to the next advanced stage of data analysis. The fits 

using theoretical functions can be made to the analyzed data from which the final 
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physical parameters will be extracted. These extracted results are then compared 

with the existing results from other experiments if these exist, or with theoretical 

calculations. Only then can we really say that the whole experiment has been 

completed. 
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Data Analysis for the p(27Si,d)26Si* 

Experiment at the NSCL Facility 

4.1 	 Particle identification of beam recoils at the 

S800 focal plane 

Since the secondary beam on the CH2 target is contaminated by lots of unwanted 

particles, there are also 1-ray emission from the reactions of the contaminants with 

the target, which therefore contaminate the expected spectra from the decay of the 

excited states of 26 Si recoils. To eliminate the contaminant 1-ray, we select the 

1-ray emission events coincident with the 26Si recoils by gating on the 26Si recoils 

at the 8800 focal plane. The particle identification (PID) of 26Si was made using 

the t:,.E vs TOF technique. The information of time of flight (TOF) is from the 

diamond detectors and the scintillators while the t:,.E is the energy loss in the ion 

chamber at the 8800 focal plane. Figure 4.1 shows the 2-dimensional histogram 

of t:,.E vs TOF used for the PID. The area inside the red cut corresponds to the 
26Si recoils. It is clearly seen that the 26Si recoils can be easily separated from the 

other contaminants in this spectrum. To implement this PID in the code using 

ROOT, we can use the TCutG class to define a cut around the 26Si region in this 

PID histogram and then apply the cut during the scanning through the raw data 
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to obtain the spectrum of only the ')'-rays coincident with the 26Si recoils. 
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Figure 4. 1: A 2-dimensional histogram of t:iE vs TOF for the PID of 26Si. The 
area within the red gate corresponds to the 26Si ions. 

4.2 Doppler broadening corrections for !'-ray en­
.

erg1es 

Due to the high velocity of the beam particles, the Doppler broadening is prominent 

for the gamma ray energy measurement. It is corrected for as follows: 

E 1 - (3 cos () E 
1,dop = yf l _ {32 /,m easured 

where E1 ,dop , E1 ,m easured , (3 , and () represent the corrected gamma ray energy, the 

measured gamma ray energy, the ratio of the 27Si beam velocity to the speed of 
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light (/3 = v/c) and the 1-ray emission angle, respectively. 

Here we use the 27Si beam velocity for the recoil velocity, which is v=0.386c 

for all 1 emissions in this experiment. The reason is that the energy loss due 

to the reaction with the target and the 1 emission is negligible compared to the 

high beam energy, also the recoil has a mass comparable with that of the beam 

particle and thus the velocity of the recoils can be simply regarded the same as 

the beam velocity. And it is also because that the recoil energies can not be easily 

and accurately measured. Actually such measurements are unnecessary since the 

above estimate is accurate enough when the beam energy is high and the energy 

loss is low. When end detectors with high energy resolution are used to measure 

the recoil energy, it is better we use the recoil velocity instead of the beam velocity 

for this correction. 

The 1-ray emission angle () is calculated according to the geometry of the 

SeGA detectors and target. The SeGA array has 22 individual detectors and each 

detector has 32 segments. The detectors are arranged at fixed locations and each 

segment is assigned a coordinate in 3 dimensions. Figure 4.2 shows the coordinate 

system for our experiment, with the direction of z-axis points to the downstream 

along the horizontal beamline. The target is assumed to be at the origin and center 

on the beam axis .. 

In the 1-ray measurement, the 1-ray detected by the germanium detector 

(SeGA) can be scattered within the crystal and deposit its energy in different 

segments of the detector. The hit position of a 1-ray in a detector during each 

single event is chosen to be the position of the segment which has the highest de­

posited energy. Let (x, y, z) be the coordinates of a SeGA segment and (xt, Yt, Zt) 

the coordinate of the target, which ideally should be at (xt, Yt, Zt)=(O, 0, 0). Then 

the emission angle can be calculated via, 

Z- Zt 
cos() = --;:;=====;:;:=::::::;::==;::;:::===::::;::;: 

J(x - Xt) 2 + (y - Yt) 2 + (z - Zt) 2 

Figurse 4.3 and 4.4 show the uncorrected and corrected gamma ray spectra in 
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Figure 4.2: Coordinate system for segments of the SeGA array .. 

coincidence with the 26Si recoils for the whole runs. 

But in reality the target center does not sit exactly on the beam axis and it 

can be shifted slightly from the origin up and down, or upstream and downstream. 

If zero positions are still assumed in the calculation, this will result in, for a same 

transition or By,measured, different corrected energies in different detectors , which 

will consequently broaden the / energy peak, worsen the energy resolution, and 

increase the uncertainty in the determination of the peak centroid. Therefore, it is 

necessary first to determine the target position more accurately before proceeding 

to the next step of the data analysis. The procedure for improving the determi­

nation of the target position for better Doppler correction will be discussed in the 

following section. 

4.3 	 Attempts to make the Doppler correction 

more accurate 

Here I describe two attempts to make the Doppler correction more accurate: one 

is the target position determination mentioned above, and the other is an offset 
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Figure 4.3: Gamma-ray spectrum before Doppler correction in coincidence with 
the 26Si recoils for the whole runs. 

correction for the calibrated / energy before the Doppler correction. 

4.3.1 Target position determination for more accurate Doppler 

correction 

Ideally, a given / peak should always have the same peak centroid in the different 

spectra from different SeGA detectors, ignoring the statistics uncertainties in de­

termining the centroids. But we found that peak centroids measured by different 

SeGA detectors for a same / peak differ greatly. For example, table 4.1 lists the 

peak centroids for the 1796 keV peak corresponding to the strongest E2 --+ 0 tran­

sition, extracted from spectra of different SeGA detectors with the target position 

of (0, 0, 0) and Figure 4.5 shows how every peak centroid shifts relative to 1796 

keV. Figure 4.6 shows the projections of all SeGA detectors on the target plane. 
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Figure 4.4: Doppler corrected gamma-ray spectrum in coincidence with the 26 Si 
recoils for the whole runs, including gamma-rays measured in all SeGA detectors. 
The energies indicated are from skewed Gaussian fits for the peaks. 

In this experiment, SeGA detector3, 7, 8, 11, 15, 16, 23, 24 were not used. 

By changing the target position used in the Doppler correction, we can slightly 

change the peak centroids in the corrected 1-ray spectra and thus minimize the 

root-mean-square (RMS) deviations from the expected value. By trying different 

target positions within a small and reasonable range around (0, 0, 0) and comparing 

the RMS deviation, we can find the optimal target position which has the smallest 

RMS. 

To find the optimized target position, firstly we fixed the Zt coordinate of the 

target position to be zero and scanned the (xt, Yt) space to find the (xt, Yt) with the 

smallest RMS deviation for the SeGA detectors in the 37° ring. The reason why 

we fixed the Zt is that, the change in Zt has negligible effect on the final correction 

for the detectors in the 37° ring considering their long distance to the target in 
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Table 4.1: List of peak centroids measured by different SeGA detectors for the 
1796 keV peak. 

detector peak centroid 
No. (keV) 
1 1805 
2 1827 
4 1801 
5 1800 
6 1806 
9 17g5 
10 1802 
12 1787 
13 11g8 
14 1769 
17 1788 
18 178g 
19 1773 
20 1780 
21 1771 
22 1781 

the z-axis. Secondly we fixed the (xt, Yt) to be the value found from the first step, 

and iterated over Zt to find the Zt with the smallest RMS for the go0 ring. The 

effect on the final correction for the detectors in the go0 ring due to the change in 

(xt, Yt) is minor compared to that due to the change in Zt· This is why we fixed 

(xt, Yt) in the second step. Ideally, we should scan the whole (xt, Yt), Zt space in 

one step, but it is heavily limited by the computer power due to the requirements 

of large storage and computing speed. The (xt, Yt) from the first step and the Zt 

from the second step together give the optimized the target position (xt, Yt, Zt)· 

The reason we iterated (xti Yt, Zt) in two steps instead of just iterating it in one 

step for detectors both in the 37° ring and the goo ring, is that the latter would 

occupy much more computer memory, making the procedure very slow due to the 

large file size, sometimes becoming impossible. Also, the effect on the detectors in 

the goo ring due to the change of (xt, Yt) of the target position is minor compared 
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Figure 4.5: Deviations relative to 1796 ke V of the 1796 keV peak centroids mea­
sured by different SeGA detectors with the target at (0, 0, 0). Blue and red stars 
represent the SeGA detectors at the 37° and the 90°, respectively. 

with the effect on those in the 37° ring. The opposite is true when iterating the Zt 

of the target position in the second step. 

Before the iteration, it is necessary to determine the step size and the range 

of the iterations for (xt, Yt, Zt)- To this end, I performed an analysis of the effect 

of the step size on the RMS. Initially a step size of 0.05cm was used to iterate Xt 

and Yt within the range of (-lcm, lcm). (In the following content, if not specified, 

the unit of the position is in cm.) We choose a segment at (x, y, z)=(lO, 10, 20) 

in a detector of the 37° ring, with Zt=O unchanged and () as the angle the segment 

makes with the down-stream direction of the beam axis (direction of z axis). By 

applying a change fixt on x, we get the following change in cos (), 

fl.(cos 0) = cos(() - fl.()) - cos() (4.1) 
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Figure 4.6: Projections of SeGA detectors on the target plane with the target at 
(0, 0, 0). The projections in the inner and outer ring represent the SeGA detectors 
in the 37° ring and the 90 ° ring, respectively. 

where IJ.() is the change of () due to IJ.x, and cos() and cos(() - !J.()) are calculated 

by 
z 

cos () = -;:::::::::;::::==;::=::::::;;: (4.2)Jx2 + y2 +z2 
with 

x = x - Xt ~ 10, y = y - Yt ~ 10, x = z - Zt = z = 20; (4.3) 

53 




( 4.4) 

Ph.D. Thesis - Jun Chen 	 McMaster - Physics and Astronomy 

and 

z 
cos(() - .6.0) = 	 ---;::==:=::::;:::::::::::===;:::=::::::;:


J(X - .6.xt)2 + y2 + z2 

z 	 1 

---;:==;::====;::==:::::::;:--;:===================
Jx2 + y2 + z2 

1 
~cosO--::========== 

. f1 2 	 ~Xt·Xy - x2+y2+z2 

.6.xt · X 
~ cosO(l + x2 + y2 + z2) 

where we use the first order Taylor expansion to arrive at the last step. 

Combining Eq. 4.2 and Eq. 4.4, we find 

.6.xt · X 
.6.(cos O) ~ cos o. x2 + Y2 + z2 

.6.(cos 0) .6.xt · X (4.5)
---~-----cos() x2 + y2 + z2 

~ 0.08% 

The change in Doppler corrected/ energy due to the change in the target position 

is then, 

.6.E = E 1 - /3 cos() _ E 1 - (3 cos(() - .6.())
dO'p measured J l _ {32 measured J l _ {32 

(4.6) 
_ E (3.6. cos() 

- measured Jl _{32 


Then, we find, 

.6.EdO'p /3.6. cos() 
-

Edop 	 1 - /3 cos() 

/3 cos() x 0.08% 
~ 

1 - /3 cos() 

0.386 x 0.8 x 0.08% 
~ 

1 - 0.386 x 0.8 

~ 0.04% 
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where ,6=0.386 and cos 8=0.8 for detectors in the 37° ring. 

Based on the above calculation, for the 1796 keV I energy, for example, the 

change resulting from the change in the target position (~xt = 0.5mm)is, 

1796 x 0.04% ~ 0.7 keV (4.7) 

To find out the effect of ~Edop=0.7 keV on the RMS deviation, we assume that 

RMS=lO keV for the 16 detectors measuring the 1796 keV /energy; that is, 

"""'~6 (Ei _ E )2
L...ti=l dop mean = 10 keV (4.8)RMS= 

16 

Then, 

"""'16 ( i )L...ti=l Edop - Emean + ~Edop
RMS+ ~(RMS)= 

16 
(4.9) 

~ v102 + 0.12 

~ 10 + 0.03 keV 

So each step of iteration of the target position will result in a change in RMS, 

~(RMS)= 0.03 keV (4.10) 

This assures us that the iteration step length ~x= 0.05 cm is small enough to find 

the best range of target positions. 

Using the step length ~x=0.05 cm, the best target position with the least RMS 

was found to be (0, -0.25, 0). 

In order to further verify this result, we iterated the target position for (xt, Yt) 

around the one above using a shorter step length of ~x=~y=0.01 cm. The best 

result stays the same. 

With the best (xt, Yt) found, we then iterated Zt in the range of (-1,1) for the 
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Table 4.2: List of the smallest RMS obtained under different conditions. 

(x,y,z) 
Smallest RMS 

37 degree array 90 degree array total 
(x, y) vary 
z=O,fixed 

least RMS=2.1189 
at (x, y)=(O, -0.25) 

10.379 10.694 

(x, y)=(O. -0.25) 
fixed, z vary 

4.431 
smallest RMS=2.0 

at z=0.25 
8.724 

I energies measured by the detectors in the 90° array and the best result is at 

Zt=0.25. Table 4.2 shows the list of the smallest RMS deviations obtained in each 

iteration, as well as the smallest RMS calculated for all SeGA detectors combined. 

The optimized target position we found is (xt, Yt, Zt)=(O, -0.25,0.25). All 1-ray 

energies were subsequently corrected using this position. Figure 4.7 shows how 

every peak centroid shifts relative to the 1796 keV using the optimized target 

position. 

4.3.2 	 Offset correction to the calibrated r energy for more 

accurate Doppler correction 

From figure 4.7 even with the optimized target position, we can see that the peak 

centroids measured by different detectors for the 1796 ke V 1-ray still have consid­

erable deviations from the expected value, with a mean deviation of the detectors 

in the 37° ring of 9.286 keV and 7 keV for those in the 90° ring. What causes 

this deviation even after we have done an accurate energy calibration for the de­

tectors and corrected the target position? The intrinsic energy resolution of the 

SeGA detectors may contribute partially but is not be the major source, since the 

SeGA detectors have high energy resolution of about 1-2 keV. The 1796 keV I 

peak is the strongest transition among all transitions and is now well determined 

with an uncertainty of about 0.2-0.5 keV. All these considerations cannot explain 

the considerable deviations. But we can think about that they might come from 
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Figure 4. 7: Deviations from the 1796 keV of the 1796 keV peak centroids measured 
by different SeGA detectors with the target at the optimized position (0, -0.25, 
0.25). Blue and red stars represent the SeGA detectors at the 37° and the 90 °, 
respectively. 

some factors we do not know, which altogether result in an offset to the energy 

measurement for each single detector. Actually this is just like a second calibra­

tion using a well-determined peak from the measured spectrum. Here we use the 

1796 keV peak as a calibration source to find the offset for each detector, since, as 

mentioned, its energy is very well known. 

Due to the motion of emission source, the measured {-energies should be cor­

rected for Doppler Broadening in order to obtain the real transition energies of 

the r rays. But, because the measurements by the detectors are made for the r 
energies deposited in the detectors, the offsets we want to find should be applied to 

the these energies rather than the r energies after the Doppler correction. Then, 

how can we find these offsets from the r energy spectra? Let us start with the 
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formula of Doppler correction but now with the offset added, that is, 

final ( J J )1 - /3 COS (}Edop = Emeasured + o set --;:::===- (4.11)
y'l - /32 

where Et,:;az now is the final 'Y energy after Doppler correction and offset correction, 

Emeasured is still the energy deposited in the detector and oJf set is the energy offset 

due to the possible causes we already mentioned above. Since the energy in the 

present Doppler-corrected 'Y spectrum was obtained by 

1 - /3 cos(} 
Edop = Emeasured Jl _ /32 

(4.12) 

then we can find that, 

E final E J J 1 - /3 COS (}dop = dop + o set--;:===- (4.13)
y'l - /32 

It follows that 

offset= (E!1::.al - Edop)/ (1- f3cos0) (4.14) 
..VJ' Jl - /32 

Apparently we cannot use this equation to find the offset because we don't know 

what E!:;al corresponds to a given combination of Edop and (}, which is exactly 

what we want to find after finding the offset first. But we can assume that a same 

group of events making a peak in a particular range of energies in the spectrum 

of Edop should also make a peak in the spectrum of E!:;al at the expected energy 

that the peak should have after we make the offset correction. For example, for 

the 1796 keV peak, we may find a peak at 1800 ke V in a 'Y spectrum measured by 

one of the detectors and we expect that, after adding the offset, all energies in the 

previous 1800 keV peak region will now peak at 1796 keV. With this assumption, 

and with the fact that all energies measured by the same detector have the same 

offset and the average of all the involved energies corresponds to the peak energy, 

we should be able to calculate the offset by taking the average of the angles (} of 
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all the 1 events that make up a peak and using the peak centroids; that is 

Efinal _ E 
peak peak

off set = --'---==--­ ( 4.15) I-,B·cosB 

~ 

where E:;;: 
1 and Epeak represent the expected peak energy and the measured peak 

energy in the Doppler corrected spectrum, respectively; cos() is the average of cos() 

over all the involved 1-emissions making the peak. 

Here are the details for finding the offsets. By using the 1796 keV peak as 

a calibration peak, E:;;:1=1796 keV for all detectors. Epeak is the peak value 

corresponding to the 1796 keV peak in the I spectrum measured by each detector. 

we still need to know the cos(), which will be calculated for each detector using 

a 2-dimensional histogram of cos () vs Emeasured for the [ events making up the 

peak corresponding to the 1796 ke V peak. Figure 4.8 shows an example of this 

histogram. 

Of course, the offset correction is just an approximation and not a perfect 

approach, since only one known peak is used to calibrate and calculate the offsets 

which are then applied to all the other peaks. Different offsets might be obtained 

if we use different peak or multiple peaks for calibration. Strictly speaking, it 

cannot be simply assumed that the same offset calculated using one peak is valid 

for other peaks to correct their peak centroids. However, since the 1796 keV peak 

we used for calibration is the dominant peak and is much stronger than the other 

peaks, it alone will give the best correction results compared with those obtained 

using other peaks with low statistics, or using the combination of the 1796 keV and 

other peaks, both of which result in more uncertainty than the approach involving 

only the strongest peak. We did find finally that with the offset correction, the 

quality of the spectrum was improved. Further improvement might be achieved 

by introducing a gain to each detector which can be calculated to compensate for 

the offsets. It will then be similar to the linear calibration. 

After all offsets for the 16 SeGA detectors in both 37° and 90° were obtained, 
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Figure 4.8: An example of a 2-dimensional histogram of cos() vs Emeasured for 
calculating the average of cos () of a detector over the detected r emissions of the 
1796 keV peak. This is for detector No.10 in the 37° ring with the Doppler­
corrected peak of 1796 keV at 1802 keV. 

they were be applied to these detectors in the sorting program to resort the raw 

experimental data. 

4.4 Peak information from the corrected 'Y spec­

trum 

Figure 4.9 is the final fully corrected I spectrum, in which a new I ray is found at 

2260 keV; and figure 4.10 shows the same spectrum from 3700 keV to 4600 ke V, 

where another new peak around 4100 ke V is found. In gamma spectroscopy, a 

Gaussian shape function is used for fitting the I peak to extract the peak infor­

mation, such as peak centroid energy, peak intensity and corresponding uncertain­
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Figure 4.9: The final corrected r spectrum for the whole energy range of the 
detected 1-rays. 

ties [58, 59]. For the formula used for the fitting, there are various forms which are 

slightly different from one another in format, but essentially the same [58, 60] in 

that they generally consist of three components: a main pure Gaussian shape of 

the peak, a skewed Gaussian shape on the low energy side of the peak caused by 

the pile-up effect and incomplete charge collection of the detector; and a quadratic 

background at the bottom of the Gaussian shape. Here we use the following for­

mula which is adapted from the formula in the gamma analysis package GF3 [60], 

and has the pure Gaussian, skewed Gaussian and quadratic background terms 

listed below in order. 
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Figure 4.10: The final corrected / spectrum - an enlargement from 3700 keV to 
4600 keV where a new peak around 4100 keV is found. 

Y =A· (1 - !!__) · exp[-(X - X0 )
2 /(2 · a 2

)]
100 

+A· 
R 

· exp[(X - Xo)/a] ·erJc[(a + X - X0)/(J2 ·er)] (4.16) 
100 

+ a . X 2 + b . x + c 

where 
Y yield of / rays; 

A a normalization factor; 

R contribution of the skewed Gaussian, out of 100; 

X 0 peak centroid (keV); 

a standard deviation of the peak centroid (ke V); 

From the fitting the peak shape, the peak centroid and peak resolution can 
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be obtained directly. The peak intensity is represented by the total counts within 

the peak range. In gamma spectroscopy, a relative intensity is usually used with 

the strongest transition having an intensity of 100, and the rest having intensities 

relative to 100, given by the ratio between their yield and that of the strongest 

peak. The total yield in a peak in the spectrum is equal to the area under that 

peak and is calculated using the area of the fit function excluding the background 

term for that peak1. The area of the fit function is calculated as below: 

Peak Area 

1
+00 

= _ (Gaussian term+ skewed Gaussian term)dX 
00 

1+00 R 
= (A· (1- -) · exp[-(X - X0 )

2 /(2 · a2 )])dX 
-oo 100 

1+00 R ( 4.17) 
+ (A· - · exp[(X - X 0)/a] ·er fc[(a + X - X 0)/(J2 ·a)])dX 

-oo 100 
R rn= A· R 2a 

= A · (1 - -) · v 27ra + -- · ­
100 100 Ve 


2 

= A ( '2; - ~R)

O" v ,L,7r + 100..fi 

and the uncertainty of the area is given by 

b"Area 
Area 

(4.18) 


When making the fitting, we can fit each peak individually or fit all peaks 

together simultaneously. Here we choose to use the former option. The fitting 

procedure is as follows: firstly, we roughly decide the peak energy range of the 

peak to be fitted and make a fit; secondly, we fine tune both sides of the peak 

range and repeat the fitting; finally, we compare all fitting results and choose the 

fit with the smallest x2 to extract the peak parameters and their uncertainties, 

and to calculate the peak area and its uncertainty by error propagation using the 

1only when the histogram has a binning of lkeV/bin; otherwise, the bin size has to be taken 
into account when calculating the yield using the area. 
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extracted peak information. Figure 4. 11 shows an example of the skewed Gaussian 

fit for the 1796 keV peak with each component in the fit function plotted in the 

figure also. Figures 4.12 to 4.15 show the final fits for the other potential peaks in 

the final I spectrum and the fits for the newly found peaks around 4110 keV and 

2260 keV are shown in figure 4.16. All these fits are obtained by varying the fit 

range, and making the parameter R fixed or free to vary to find the smallest x2 . 

Table 4.3 lists the extracted peak parameters and peak areas, and table 4.4 lists 

the final energies for all 1 peaks, their relative intensities with respect to that of 

the strongest I ray, and the uncertainties in the intensities and energies. 

Fit for range 1747 -1845 keV 

5000 

4000 

b 
-0.0002478 ± 0.0000155 

-0.1744 ± 0.0284 
1n4 ± 50.8 
5683 ± 78.0 

11 .9 ± 1.7 
1796 ± 0.1 

16.15 ± 0.07 

3000 

~ c 

~ 
2000 

1760 1770 1780 1790 1800 1810 1820 1830 1840 
Energy (keV) 

Figure 4.11: The skewed Gaussian fit example for the 1796 keV peak with the fit 
curve in black solid line, the Gaussian component in red dotted line, the skewed 
Gaussian component in blue dashed line, and the quadratic background in green 
dotted-dashed line. 
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Figure 4.12: The fits for the peaks at 843 keV, 989 keV and 1326 keV in the gamma 
spectrum. 
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Figure 4.13: The fits for the peaks at 1404 keV, 1533 keV and 1954 keV in the 
gamma spectrum.. 
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Figure 4.14: The fits for the peaks at 2024 keV, 2360 keV and 2648 keV in the 
gamma spectrum. 
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Figure 4.15: The fits for the peaks at 2785 keV and 3000 keV m the gamma 
spectrum. 
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Figure 4.16: The skewed Gaussian fits for the newly found peaks at around 2260 
keV and 4100 keV. 

j 

Fit for range 4060 - 4170 keV 

j
0 

69 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

Table 4.3: List of the peak parameters of all the peaks extracted from the best 

fits and the calculated peak areas, along with the uncertainties. The uncertainties 

in the parentheses for the energies is just the statistical uncertainty taken directly 

from the fit results for the peak energies. 

peak centroid 0- peak area x2 
(keV) (keV) (counts) 

843.6(3) 8.0(5) 6300(682, 7.83) 1.08 

989.4(1) 9.4(3) 41134(1439, 3.53) 1.70 

1326.0(12) 14.4(28) 5448(1357, 253) 1.50 

1404.0(4) 15.8(7) 16725(876, 5.23) 1.52 

1533.0(5) 16.6(8) 14768(881, 6.03) 1.66 

1796.0(1) 16.3(1) 211961(31214, 14.53) 1.79 

1954.0(7) 17.9(22) 8976(1375, 16.63) 1.47 

2024.0(6) 17.3(21) 9435(1583, 16.83) 1.75 

2260.0(13) 21.1(43) 5038(1416, 283) 1.17 

2360.0(20) 33. 7(33) 13456(1726,12.83) 1.28 

2648.0(3) 23.9(3) 63296(8717,13.83) 1.12 

2785.0(4) 25.3(12) 13061(760, 5.83) 1.14 

3000.0(12) 30.0(43) 4513(882, 19.63) 1.12 

4113(4) 10(5) <200 0.44 
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Table 4.4: The final results for all r peaks: their energies, relative intensities with 

respect to that of the strongest r ray, and the corresponding uncertainties in in­

tensity. The results from the present work are compared with previous results [13]. 

present work other work 


B., (keV) I"! E-y (keV) ]"! 


843.6(3) 3.0(3) 842.1(3) 3.6(4) 

989.4(1) 19.4(7) 988.8(1) 26.4(7) 

1326.0(12) 2.6(7) 1329.4(3) 3.9(4) 

1404.0(4) 7.9(4) 1400. 7(2) 10.1(6) 

1533.0(5) 7.0(4) 1531.1(5) 4.8(5) 

1796.0(1) 100(15) 1797.2(1) 100.0(5) 

1954.0(7) 4.3(7) 1960.4(2) 10.6(6) 

2024.0(6) 4.5(8) 2024.2(5) 4.3(5) 

2260.0(13) 2.4(7) 

2360.0(20) 6.4(8) 2360.2(8) 3.6(5) 

2648.0(3) 30(4) 2648.8(3) 17.3(8) 

2785.0(4) 6.2(4) 2785.5(3) 12.9(7) 

3000.0(12) 2.2(4) 3001.0(4) 12.4(8) 

4113(4) <0.1 
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4.5 Coincidence analysis of 1-rays 

Since a cascade of gamma rays can be emitted simultaneously from an excited 

state in a single reaction, the ')'-ray coincidence analysis technique is usually used 

to construct the level scheme. This analysis is made by gating on any gamma peak 

energy of interest to get all gamma rays coincident with the gated one. Various 

methods have been developed for pre-sorting of the data for this purpose [43, 42]. 

In this section, three methods for ')'-')' coincidence analysis which differ according to 

how the coincidence spectrum is obtained are described here : by')'-')' matrix, event­

by-event and by ')'-')'-')' cube. The one generally used is the ')'-')' matrix technique 

which was also used for this project. More details will be given in this section. 

4.5.1 The 1-1 matrix technique 

The procedure of this method follows three steps: (1) making a')'-')' matrix from 

the sorted data after decoding the raw experimental data; (2) finding the expected 

coincidence spectra from the matrix by applying corresponding gates on it; (3) 

finding the coincidence spectra of the corresponding background and subtracting 

it from the spectra obtained in step (2). The background subtraction is also a big 

concern for this analysis and it will be explained in more detail in the following 

text. 

4.5.1.1 Constructing the ')'-')' matrix 

We can start with a simple example assuming that during a single reaction event, 

there are 4 ')' emissions with energies of 1, 2, 3, and 4 keV, after excluding all 

contaminant energies by applying proper conditions. Since they are emitted in the 

same event, they are in coincidence with one another and thus they are in a cascade 

of emissions from an excited state to lower states. Finding all combinations of ')'­

rays emitted in all events, we will be able to find out which ')' peaks in the final')' 

spectrum in figure 4.9 are in coincidence, which then provides us with information 
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for constructing the level scheme. Among the four coincident energies we can 

immediately find that there are 6 different 2 dimensional combinations: (1, 2), (1, 

3), (1, 4), (2, 3), (2, 4), (3, 4), each of which represents a detection coincidence 

of two 'Y rays with the indicated energies and a position in the 2 dimensional 

histogram with the X axis and Y axis in 'Y energy. We can fill the histogram with 

all the combinations. For simplicity and convenience, we use the bigger energy 

value as the X energy and the smaller one as Y energy for each combination when 

we fill the histogram, since the order of the two energies in the combination does 

not matter. Then we can see that we always fill one half of the matrix below the 

diagonal, as demonstrated in figure 4.17. By filling the matrix with coincidence 

combinations from all events, all "(-1 coincidence information including that of 

background is then stored in the matrix. All of the following coincidence analysis 

will be made directly on the "(-1 matrix. 

4.5.1.2 Finding the coincidence spectra from the 1-1 matrix 

Figure 4.18 shows a 2D histogram of the 1-1 matrix constructed from the exper­

imental data. By placing a peak gate on the X axis and projecting the gated 

region onto the Y axis, we select all the coincidence events with the larger one of 

the two 1 energies within the applied energy gate. Similarly, by placing the same 

gate on the Y axis and projecting the gated region onto X axis, we select all the 

coincidence events with the smaller one of the two 1 energies within the applied 

energy gate. Adding the two projections together gives the spectrum of all 1 rays 

in coincidence with the 1 energies in the applied energy gate, i.e., the coincidence 

spectrum of the 1 peak in the gate. 

The bigger the size of the energy gate we choose, the more coincidence events 

we can select and also the more contaminant coincidence 1 rays and background 

there will be. But if the gate size is too small, the statistics in the coincidence 

spectrum will be very low and give less coincidence information. Therefore, we 

have to compromise between the statistics and accuracy and try carefully to find 
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0 
1 2 3 4 

y energy 

Figure 4.17: An example of filling the"(-"( matrix-the 2-dimensional coincidence 
histogram. The demonstration is for a single beam event only and each point 
represents a coincidence. 

the optimal coincidence gate. Figure 4.19 to figure 4.21 show the gating process 

and the resulting coincidence spectra for the peak at 1796 keV. 
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Figure 4.18: A 2D histogram of the 1-1 matrix constructed from the experimental 
data using the t echnique described in the previous subsection. 
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Figure 4.19: Top: gating on the X axis for 1796 keV and projecting the gated 
region onto the Y axis to find all the coincidence events with the 1796 keV 1-ray 
as the larger of the two energies in coincidence. Bottom: the coincidence spectrum 
obtained from the projection. 
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Figure 4.20: Top: gating on the Y axis for 1796 keV and projecting the gat ed 
region onto X axis to find all the coincidence events with the 1 796 ke V 1-ray as 
the smaller of the two energies in coincidence. Bottom: the coincidence spectrum 
obtained from the projection. 
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Figure 4.21: The coincidence spectrum obtained by combining the projections on 
the X axis and the Y axis shown in figure 4.19 and 4.20. 

4.5.1.3 	 Subtracting background coincidence events from the coinci­

dence "/ spectrum 

When we gate on an energy range to get the coincidence spectrum for a peak 

in this range, what we actually obtain is a mixture of the coincidence spectrum 

of the peak "( rays and that of the background "(-rays in the same peak range. 

This brings considerable contaminant "( rays disguised as real coincident 1-rays 

into the coincidence spectrum making it impossible to decide whether a peak in 

the coincidence spectrum is a real coincident peak or only a contaminant one 

from the background coincidence. Therefore it is necessary to find the background 

coincidence spectrum and subtract it from the peak coincidence spectrum. 

There are different methods commonly used now for background subtraction 
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of the I coincidence spectrum [44, 45, 46, 47, 48, 49], but the basic ideas are the 

same: to simulate or estimate the background in the coincidence spectrum and then 

subtract it from the spectrum. What I want to clarify here is that the background 

to be subtracted is from estimation or simulation rather than the real background, 

since it is impossible to separate the background 1-rays from the actual transition 

1-rays in the energy range of the gated peak. Because of this, there is not a very 

precise way to do the background subtraction. The method used in this analysis, 

which is the usual way for background subtraction in 1-1 analysis, is to place two 

energy gates on the tails on the both sides of the gated peak, with the sum of the 

two gate width equal to the gate width on the peak, to estimate the coincidence 

1-ray background inside the gate on the peak. For peaks with other peaks sitting 

closely on their tails, gating on tails will bring plenty of contaminant coincident 

1-rays of the neighbour peaks. For these cases, gates are be chosen on the nearby 

smooth regions as close to the gated peak region as possible, and the widths of the 

background gates are not necessarily made equal. Figure 4.22 demonstrates how 

the gates are chosen for the two situations. 

Figure 4.23 (black histogram) shows an example of a coincidence spectrum of 

the I peak at 1404 keV from the transition between the excited state of 26Si at 

4184 ke V to the excited state at 2783 ke V [50]. The energy of the 4184 ke V state 

can then be confirmed within the uncertainty range by the existence of a cascade of 

1-rays of 1404 keV, 989 keV and 1796 keV. Also shown in red is its corresponding 

background spectrum, which is estimated by placing gates on the tails around the 

gated peak, since it is not practical to separate the background I rays from the 

actual transition I rays inside the gated peak energy range. 

Figure 4.24 to figure 4.29 show the coincidence spectra for other peaks. 

79 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

6000 

5000 

4000 
>
1! 
~ 
~3000 
>w 

2000 

1000 

1750 1800 1850 19001700 
Energy(keV) 

> 800.: 
~ 
~ 600 
w 

400 

200 

2400 2500 2600 2700 2800 2900 3000 3100 3200 
Energy(keV) 

Figure 4.22: Top: choosing the background gates on the tails of the gated peak if 
they are flat enough, gates for 1796 keV peak with the red one indicating the peak 
gate and blue ones the background gates. Bottom: choosing the background gates 
on the smooth regions close to the gated peak if other peaks sit on its tails, with 
the main gate on the 264 7 ke V peak. 
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Figure 4.23: An example of a coincidence 1-ray spectrum for the 1404 keV 1-ray 
in black with its background shown in red. 
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Figure 4.24: Coincidence 1-ray spectra for 843 keV and 989 keV 1-rays in black 
with the background shown in red. 
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Figure 4.25: Coincidence 1-ray spectra for 1326 keV and 1533 keV 1-rays in black 
with the background shov.rn in red. 
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Figure 4.26: Coincidence 1-ray spectra for 1796 keV and 1954 keV 1-rays in black 
with the background shown in red. 
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Figure 4.27: Coincidence 1-ray spectra for 2024 keV and 2260 keV 1-rays in black 
with the background shown in red. 
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Figure 4.28: Coincidence 1-ray spectra for 2360 keV and 2648 keV 1-rays in black 
with the background shown in red. 

86 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

500 1000 1500 

y-y coincidence with 

2785 keV 

2000 2500 3000 3500 4500 
Energy (keV) 

~ 
C) 

~ c 
GI 
>w 

500 1000 1500 2000 2500 3000 3500 4000 4500 

y-y coincidence with 

3000 keV 

Energy (keV) 

Figure 4.29: Coincidence 1-ray spectra for 2785 keV and 3000 keV 1-rays in black 
with the background shown in red. 
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Table 4.5: The energy levels and associated 'Y transitions extracted from the anal­

ys1s. 

pr Ex (keV) 'Y cascade (ke V) 

2+ 1796.0(1) 1796.01 
2+ 2785.0(4) 989.4a+ 1796.0 2 

2785.0 

ot 3329.0(6) 1533.0b + 1796.0 

3t 3750.0(7) 1954.0+ 1796.0 

3+
2 4189.4(5) 1404.0+989.4+ 1796.0 

2+;4+ 4444.0(4) 2648.0+ 1796.0 3 1 

4+ 4796.0(12) 3000.0+ 1796.0 2 

(Oj) 4809.4(6) 2024.oc+989.4+ 1796.0 

2024.0+ 2785.0 

2+ 5145.4(21) 2360.0+989.4+ 1796.0 4 

4j 5287.6(5) 843.6+2648.0+ 1796.0 

2+ 5515.4(14) 1326.0+ 1404.0+989.4+ 1796.0 4 

(4t) 6449.4(14)d 2260.oe+ 1404.0+989.4+ 1796.0 

(2t /3j) 5909( 4)f 4113+1796.0 

apotential doublet,with the transition from Ex=3750 keV to Ex=2785 keV. 
bpotential doublet,with the transition from Ex=5291 keV to Ex=3756 keV. 
cpotential doublet,with the transition from Ex=4831 keV to E,~=2785 keV. 
dno match from database [79]. 
eno match from database [79]. 
fcould be the known 5912 keV state in the literature or the new state 5886 keV found in the 

24 M g(3 He, rq)26 Si experiment at the University of Tsukuba [39]. 
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After all cascades are extracted from the 1-1 coincidence, they are be compared 

to the equivalent ones from the well known states in 26Mg [80], the mirror nucleus of 

26 Al, to determine their spin-parity assignments. Table 4.5 lists all levels associated 

with possible transitions extracted from the analysis, based on which the level 

scheme of 26Si is constructed, as shown in figure 4.30. 

3+ 

5909 

SIB\ 
(Q+) ~ \ 

~mo 
2024 

\ 
3+ 

0 

Figure 4.30: Level scheme of 26Si based on the results from this analysis. 

4.5.2 The event-by-event technique 

The event-by-event analysis is the most straightforward way to make the 1-1 co­

incidence spectrum in that we just need to put constraints on energies to select 

only the events with 1-ray energies in the constrained peak ranges. This allows us 

to get more precise coincidence spectra without worrying about the overlap in the 
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gate area in the total coincidence spectrum caused by the adding-up of the two 

projected coincidence spectra from the "'(-"'( matrix, as described in the previous 

section. But the big disadvantage of this method is that it is very slow, hardly 

interactive and very inconvenient. It is because of that we need to read through all 

the data every time we make the coincidence spectra and that we need to specify 

the peak gates and background gates beforehand which we will use to make the 

coincidence spectra for. As a result, this method was not used in our data analysis. 

4.5.3 The 1-1-1 cube technique 

By using the"'(-"'( matrix, we can find any two 1-rays that are in coincidence with 

each other. But in a "Y transition cascade, there are usually more than two "'(-rays if 

the transition cascade starts from a high energy level. The ideal situation is that we 

can find all the 1-rays that are in coincidence in one event, so that the construction 

of the cascade becomes much easy and straightforward. But this is neither practical 

nor necessary, as will be explained in the following context. For example, if using 

the event-by-event method for this purpose, we need to put even more constraints 

on the "Y energies in order to find all coincident 1-rays in a single event at one time, 

which means more running time and more complexity. Besides, we cannot decide 

which 1-rays should be in coincidence before the analysis in order to determine the 

constraints, which is exactly what we want to find out from and after the analysis. 

We can also consider using a higher dimensional matrix for the purpose of finding 

all coincident 1-rays at one time, but the problem is that we cannot know how 

many "'(-rays are in one cascade in order to determine the dimension of the matrix, 

and that the number is not the same for all events. Having said that, although we 

might not be able to find all the coincident "'(-rays from one event, the higher the 

dimension of the coincidence matrix, the more 1-rays we can find in coincidence. 

However, another challenge immediately arises in that constructing the matrix is 

seriously limited by computational power, because additional dimension requires, 

depending on the size of the data, thousands of times the storage space of what 

90 




Ph.D. Thesis - Jun Chen 1.fcMaster - Physics and Astronomy 

the lower dimensional matrix has already occupied, and an even faster computer 

speed. In this sense, a much higher dimensional matrix is not practical. However, 

the 3-dimensional 1-1-1 cube is still practical and could be the upper limit. But the 

new difficulty now is the challenge of the background subtraction in the projection 

from the triple 1 cube to 1-1 matrix when we gate on a I energy on one dimension 

of the cube to find the corresponding 1-1 coincidence matrix for this energy. This 

makes the analysis very complicated and a method using this triple I cube can be 

found in Ref. [60]. 

2 3 4 5 6 7 
Multiplicity 

Figure 4.31: Distribution of multiplicities of all the data showing that most of the 
events have only one or two 1-rays in coincidence. This indicates that the 1-1 
matrix technique is adequate enough for the data analysis. 

Actually, we can check the distribution of multiplicities of all the data to de­

termine whether to use a higher dimensional matrix. Figure 4.31 shows the mul­

tiplicities of all our data and we can see that most events have only one or two 

1-rays in coincidence probably because other 1-rays in the same events are either 
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too weak to be detected or miss hitting onto the detectors. Some other reasons 

such as electronics may also exist. It therefore turns out that for our data, the 

1-1 coincidence analysis is efficient enough and it is not necessary to use the 1-1-1 

cube. 

4.6 Results and discussions 

The results extracted from the data analysis of this experiment are listed in ta­

ble 4.5. The spin-parities are quoted from the literature or assigned by comparison 

with the possible corresponding levels in the mirror nucleus. Since the experiment 

aimed to confirm the known levels or to find new levels in 26Si by measuring only the 

1-decays from the excited 26Si nucleus, no information is obtained at the S800 focal 

plane for the other reaction product - the deuteron. If such information could be 

obtained, the reaction kinematics geometry, such as the exit angle, and reaction 

position on the target could be reconstructed using a transfer matrix calculated in 

a program called COSY INFINITY [31], developed by researchers at NSCL. Thus, 

the DWBA (Distorted Wave Born Approximation) [32, 33] analysis of the differ­

ential cross-section could be used for making the spin-parity assignments with the 

analysis code DWUCK [34]. The spin-parity assignments can also be made by the 

angular correlation measurements (or DCO - directional angular correlation of 

coincident 1-rays from oriented states of nuclei) of the I emissions [35, 36, 37, 38], 

which were not determined in this experiment. The idea is that, by measuring the 

ratio of the intensity of the 1-ray from the state of unknown spin-parity 1 to the 

intensity of a coincident 1-ray in the same cascade with known multipolarity, and 

by comparing the ratio with the theoretical value, we can then find the multipo­

larity of the former 1-ray and therefore deduce the spin-parity of the state from 

where this 1-ray comes. 

The newly found 1-ray with energy E=4113 keV could be from the decay 

of the 3+ 5914 keV state found in the 28Si(p, t) 26Si measurement [9, 12] (with 

1That is, the multipolarity of the 1-ray is unknown. 
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the spin-parities assigned using a DWBA calculation) and the 24 Mg(3He,n) 26 Si 

measurement [11] (with the spin-parities assigned using the Hauser-Feshbach (HF) 

calculation of differential cross section [40, 41]), to the first excited state of 2+, 

1796 keV. However, it could also be the 4089 keV 'Y-ray from the decay to the first 

excited state from the o+, 5886 keV state found in a recent 24 Mg(3He,n) 26Si re­

measurement at Tsukuba University [39], with the spin-parity assigned using the 

DCO method. According to the 4113 keV centroid determination of the 'Y peak 

in our analysis, and the transition probabilities to the 2+ state from the 3+, 5912 

ke V state and from the o+, 5886 keV state, the former possibility is more likely 

based on our results. 

For the 'Y-ray with energy around 2260 keV, no match can be found in the 

literature. But from the coincidence spectra, we can clearly see that this 'Y-ray is 

in coincidence with the 'Y-ray of 1404 keV in the Ml/E2 transition from the 4183 

keV 3+ level to the 2784 keV 2+ level, as well as with the 'Y-ray of 843 keV in 

the E2 transition from the 5291 keV 4+ level to the 4446 keV 2+ level. If this 

is true, the level from which the 2260 keV can be emitted have Ex>7551 keV. 

So far however, such 'Y transitions have not been experimentally observed [80]. 

After considering this, we exclude this possibility that such higher energy levels 

are the candidates for the 2260 keV 'Y emission. We also found that there is a 

probable M3 transition with an 851 keV 'Y-ray from the 4183 keV level to the 3332 

ke V o+, which is however not seen in the total 'Y spectrum probably because it is 

too weak compared with the strong 843 keV E2 transition. If the observed 'Y-ray 

around the 843 keV, that is coincident with the 2260 keV 'Y-ray, is really from this 

transition, then the state responsible for the 2260 keV 'Y emission could be a level 

around 6443 keV or above. In this energy region, there is an o+ level at 6471 ke V 

with a possible weak M3 transition to the 4183 keV, which however, has not been 

experimentally observed before. In the mirror nucleus 26 Mg, we find that there is 

an Ml/E2 transition with a 2272 keV 'Y-ray from the 6623 keV, 4+ level to the 

4350 keV, 3+ level, where the latter is the mirror level to the 4183 keV, 3+ level 
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in 26Si. It is more probable then that the 2260 keV 1-ray seen in our experiment 

is from the transition between the 4+ mirror level of the 6623 keV, 4+ level in 

nucleus 26Mg to the 4183 keV level. Based on these considerations, we therefore 

tentatively claim a new level in 26Si at 6446 keV with spin-parity 4+, taking the 

level energy of 4183 keV as the average value (4186 keV) of the literature value 

(4183 keV) [79] and our result (4189 keV). 
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Data Analysis for the p(25Al,p)25AI 

Experiment at the CRIB Facility 

5.1 Particle identification (PID) 

As mentioned in Chapter 2, the radioactive 25 Al beam is still heavily contaminated 

by the 24Mg particles from the primary beam, and these can scatter the protons 

out of the target as well. Also, the light reaction products include other unwanted 

particles besides the proton, mostly alpha particles. Therefore, PID for both the 

beam particles and the reaction products is needed. 

5.1.1 PID for the 25Al beam 

The radioactive 25 Al beam is contaminated with other isotopes from the beam 

production, among which the primary beam particles 24Mg is the dominant one. 

Based on their different properties, such as mass and charge, we can easily separate 

the 25Al beams from those contaminants by using the combination of B p settings, 

time-of-flight (TOF) method and energy-loss measurement at F2 chamber. The 

RF (Radio Frequency) time 1 was used to separate the 25 Al beam particles from 

1The RF time refers to the time of flight between the RF signals from the AVF cyclotron 
and the timing signal from the PPAC in the F3 chamber [62]. The AVF cyclotron has two RF 
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the 24Mg particles since the 25 Al particles have smaller energies and larger mass 

than the 24Mg particles and thus are transported slower. Figure 5.1 shows the RF 

spectrum in which the 25 Al and 24Mg can be clearly identified by placing a gate 

of RF time on each of them . The histogram of X and Y positions of the beam 

on PPACs can be also used for PID, as shown in figure 5.2. Figure 5.3 shows the 

positions of 25 Al beam particles on the PPAC after applying the RF cuts for the 

selection of the 25 Al. 

... 
u.. 
a: 

10 20 30 40 50 60 70 80 
RF time (ns) 

Figure 5.1: Particle identification of 25 Al and 24 }vfg using RF time. Left columns 
correspond to the 24 Afg while right columns correspond to the 25 Al. The Y axis 
label represents the number of the RF resonators. 

resonator systems which provides two kinds of RF signals [63]. 

96 




Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

50 

105 

40 

30 
104 

20 

10 
103 

E' 
E 0 

> 
-10 102 

-20 

-30 10 

-40 

-5~50 -40 -30 -20 -10 0 10 20 30 40 50 
X(mm) 

Figure 5.2: Particle identification of 25 Al and 24 Mg m:;ing X&Y positions of beam 
particles on PPACs. 25 Al particles accumulate at the center of the PPAC and the 
24 !VIg accumulate to the right of the center. 

5.1.2 PID for the proton recoils 

The scattered protons that punch through the PSD were identified by using the 

.6.E versus E spectrum, while the spectrum of PSD energy versus TOF (between 

the PSD and the second PPAC) was used to identify protons punching through the 

PSD and the ones stopping in the PSD. Figure 5.4 and figure 5.5 show the particle 

identification of protons. When sorting the data, we can apply a gate around 

the proton region to choose only scattering events in coincidence with protons in 

the chosen region. The virtual gate is actually a combination of conditions for the 

associated variables in an event , such as PSD energy and TOF, to confine the event 

inside the gated region. It has to be pointed out that before this PID all silicon 

detectors (PSDs and SSDs) must be calibrated first since the different detector 
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Figure 5.3: 25 Al beam particles on PPACs after applying the RF cuts for 25 Al on 
the histogram of RF time. 

channels have different responses to the same energy signals. The calibration of 

the silicon detectors is explained in the next section. 

5.2 Energy calibration of the silicon detectors 

A 3-a source was used to calibrate the silicon detectors , including the PSD and 

SSD. Due to the pulse height defect (see page 275 in Ref. [2]), a secondary proton 

calibration based on the a calibration was made using proton beams of various 

energies. 
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Figure 5.4: Part icle identification of protons using a 2-D histogram of E versus 
D.E for the silicon telescope at zero degrees only for identifying scattered protons 
punching through the PSD. 

5.2.1 Primary calibration using 3-a source 

Recall from Chapter-2 that there are in total 96 PSD channels with 32 channels for 

each PSD and 6 SSD channels for 6 SSDs. Different detector channels have different 

responses to one energy signal and therefore each channel must be calibrated. For 

example, figure 5.6 shows the histogram of all PSD channels before calibration for 

the data runs using a 3-a source. Table 5.1 is a list of energies of the 3-a source 

used for the energy calibration. For the a energy spectrum obtained for each 

detector, the three peaks are fitted with a Gaussian function and then the peak 

centroids from the fits are be used as the data points for a linear fit( or for a more 

accurate calibration, a quadratic fit) to find the final calibration parameters, such 

as the gain and offset for each detector channel. The equation for the calibration 
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Figure 5.5: Particle identification of protons using a 2-D histogram of ~E versus 
time-of-flight (TOF) for identifying scattered protons both punching through the 
PSD and stopping in the PSD. 

is as follows: 

Energya = gaina x (energy channel - offseta) (5 .1 ) 

where gaina and offseta are from the a calibrations. 

Figure 5.7 shows an example of the a spectrum for one PSD, channel and the 

linear calibration of channel to energy is also shown in the same picture with the 

axis of energy at right in green. 

5.2.2 Pulse height defect effect 

The silicon detector has different responses to particles with different charges when 

measuring the energies of the particles. This means that the electron collection 
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Figure 5.6: Histogram of all PSD channels before calibration for the data runs 
using a 3-a source. 

Table 5.1: List of energies of the 3-a source for the energy calibration of the silicon 
detectors. 

a source 
. Np 

241Am 

244Crn 

a energy 
4.788 1leV 
5.486 MeV 
5.805 MeV 

efficiency of the detector will be different when particles with different charges 

deposit energy in the detector, resulting in different measured pulse heights for the 

same energy that different particles have and makes energy calibration correct just 

for the measurement of the same particle as used for the calibration. This is so the 

called "pulse height defect" effect. In our case, we measure the proton energy in 

the experiment but use the a source for energy calibration. Therefore, the pulse 
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Figure 5.7: An example of a calibration for a PSD channel. Shown in green is the 
linear fi t of channel vs energy. 

height effect must be taken into account . This effect is reduced or eliminated 

by performing a secondary energy calibration using proton beams - the same 

particles that we measure in the elastic scattering. 

5.2.3 Secondary calibration using proton beams 

Various energies were set for the proton beams used for the calibration: 1.9 MeV, 

6.4 MeV, 9 MeV and 14 MeV. While for the a calibration the PSD and SSD were 

calibrated separately, for the proton calibration , the PSD and SSD are calibrated 

together as a .6.E-E telescope. According to a SRIM energy-loss calculation [64], 

the 1.9 MeV proton cannot punch through the PSD to reach the SSD behind the 

PSD. However , since we calibrate the PSD and SSD as a whole, it can still be used 

as a calibration energy together with the proton energies of 6.4 MeV, 9 MeV and 
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Figure 5.8: Histogram of o: energies for all PSD channels after applying the cali­
bration parameters for each detector channel. 

14 MeV. Similar to the o: calibration procedure, the peak centroids from the fits 

to the proton energy peaks in the proton spectrum are used as the data points to 

perform a linear calibration fit (or quadratic fit) as follows 2 : 

Energy = gair1p x ( Energya - offsefp} (5.2) 

where gainp and offsetp are from this proton calibration, Energya is the energy 

after o: calibration and Energy is the final energy after both calibrations. 

Figure 5.9 shows an example of the proton calibration for one PSD-SSD tele­

scope. It should be pointed out that now the PSD is treated as a whole unit like 

2 Actually. only peaks with good statistics are used for calibration. For example, only the 1.9 
MeV, 9 1IeV and 14 MeV proton peaks are used because the 6.4 MeV proton peak has very 
poor statistics compared to the three others, and including it in the calibration results in a large 
uncertainty in the linear fit. 
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Figure 5.9: An example of the proton calibration for a PSD-SSD telescope. 

the SSD instead of being calibrated by channel in the a calibration because all 

PSD channels have already been normalized after the a calibration and they share 

the same calibration parameters in the proton calibration. 

After applying all the calibrations and PID gates for selecting the 25 Al beam 

ions and proton recoils, the final spectra of the proton energies measured by the 

three .6.E-E (PSD-SSD) telescopes arranged at 0° , 17° and 27° can be obtained, 

as shown in figures 5 .10 through 5 .11. 
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Figure 5.10: Top: the energy spectrum of protons measured by the telescope at 
0°. Bottom: the energy spectrum of protons measured by the telescope at 17° 
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Figure 5.11: The energy spectrum of protons measured by the telescope at 27°. 

The uncertainties in proton energy can come from the intrinsic resolution of 

the silicon detectors (PSD and SSD), the straggling of the beam particles and 

protons in the thick target, the beam energy spread before entering the target, 

and the finite solid angle of the detector strips of PSD. The former two sources are 

the major contributions at the most forward angle, which result in a resolution in 

center-of-mass energy (Ecm) of 4070 keV in full width at half maximum (FWHM). 

At large scattering angles, the contribution due to the finite solid angle of the 

detector strip becomes important and results in an total energy resolution in Ecm 

of 70300 keV at Blab = 25° [65]. 
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5.3 Energy loss correction for scattered protons 

In nuclear experiments involving thin targets, the energy loss of reaction products 

before leaving the target is small( usually from a few ke V to tens of ke V), and can 

be safely neglected compared to the exit energies of these products . But when 

using the thick target approach, the energy loss of the scattered proton traveling 

through the remaining part of the target can be considerable 3 and must be taken 

into account. In the following section, two methods for the energy loss correction 

are described. 

5.3.1 The stopping power of charged particles in target 

materials 

Before continuing to the next section, I will briefly explain the frequently mentioned 

concept of "stopping power" and how I find the stopping powers for the beam 

particle in the CH2 and pure carbon targets. 

Charged particles moving through matter interact with the electrons of atoms in 

the material. The interaction excites or ionizes the atoms. This leads to an energy 

loss of the traveling particle. The Bethe formula which was derived by Hans Bethe 

in 1930, describes the energy loss per distance traveled, also known as the stopping 

power of the material traversed. The relativistic stopping power is calculated by 

the following formula - the Bethe-Bloch formula [20], which describes the energy 

loss by ionization of fast charged particles (protons, alpha particles, atomic ions, 

but not electrons) traversing matter. 

3If the beam particles have traveled close to the end of the target, the remaining path for 
the scattered protons is short and therefore their energy losses can be neglected. But for our 
experiment, the 25 Al beam particles stop slightly beyond the middle of the target, according to a 
SRIM energy-loss calculation, and therefore the energy losses still need to be taken into account 
for all scattered protons. In fact, when the 25 Al beam particles is close to stop, the protons they 
scatter will not have enough energy to escape from the target. 
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(5.3) 

where, 

(J =v/c 

v velocity of the particle 

E energy of the particle 

x distance traveled by the particle 

c speed of light 

z particle charge 

e electron charge 

me rest mass of the electron 

n electron number density of the target 

I mean excitation potential of the target 

Then is calculated by NApZ/A, where the NA, p, A are Avogadro's constant, 

the mass density of the material, and the mass number of the material, respectively. 

The mean excitation potential I can be approximated by I = (lOeV)Z. This 

Bethe-Bloch formula is the one used in the SRIM program [64], which is used here 

to simulate shooting the beam particle onto the C H2 and C targets, to calculate 

the stopping powers (S1 and S2 ) in the two target materials for the different beam 

energies at different depth inside the target. The calculated stopping powers are 

tabulated for looking-up, or plotted in a graph and fitted to find the fitting function, 

which will be used later in this Chapter for the energy loss correction and the 

normalization of beam yields in these two targets. Figure 5.12 shows the calculated 

stopping power vs 25 Al beam energy in the CH2 target (in red) and C target (in 

black). 
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-•-in CH2 
-•-in C 

0 20 40 60 80 100 
25AI Energy(MeV) 

Figure 5.12: Stopping power vs beam energy in CH2 (red) and pure carbon target 
(black), calculated with SRIM. 

We then made fits to the calculated stopping power to extract the correlations 

between the stopping power and beam energy. For simplicity, we divided the energy 

region into two parts (E(25 Al)<15 MeV and E(25Al)>15 MeV) according to the 

curve shape of the stopping power vs energy plot and fit each part separately with 

different simple functions instead of the Bethe-Bloch function. Figure 5.13 shows 

the fits for the two parts for 25Al passing through the CH2 target. 

The extracted fitting functions are: 

1) For the C H 2 target, 

1 

Slow =a X {1 + (d - l)exp[-k(E - Ee)]} 1-d [keV/µm] (5.4) 
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with a= 2487.8, Ee= 1.54; d = 0.866; k = 0.335. 

with Ao = 2242.7; Ai = 35.11; A2 = -0.971; A3 = -0.0594; A4 = -0.00277; 

As= -4.55 x 10-s; A6 = 3.38 x 10-1 ; A7 = -9.56 x 10-10 . 

2) For the C target, the same fit functions are used and the values of fit pa­

rameters are, 

for S1ow, a= 4085.4, Ee= 0.653; d = 0.684; k = 0.341. 

for Shigh, Ao = 3393.2; Ai = 123.9; A2 = -7.947; A3 = -0.2143; A4 = -0.00325; 

As= -2.84 x 10-s; A6 = -1.33 x 10-1 ; A7 = 2.61 x 10-10 . 

5.3.2 Simple energy correction using the SRIM calculation 

In the SRIM calculation, we simulated shooting the 2sAl beam into the target 

using the actual target thicknesses. SRIM then returns the residual energies of 

the beam at different spots along the beam axis as well as the scattering and final 

energies of the associated scattered protons. By plotting the scattering energies of 

the protons at the scattering spots and the final energies upon leaving the target, 

we can determine the energy loss or scattering energy from the plot for a proton 

with any final energy leaving the target. Alternatively, we can make a fit to the plot 

to find a function for correcting energy loss. Figure 5.14 shows the examples of the 

plots of the Ecm vs the proton energy after the target from the SRIM calculation 

for the telescope at 0°, for runs with the CH2 target and for runs with the pure 

carbon target, with the fits to the data also shown. 
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Figure 5.13: Fits to the stopping power data calculated by SRIM. Two simple 
functions are used for fitting the lower and higher energy parts separately. 
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Figure 5.14: Energy loss correction from the SRIM calculation for the CH2 (top) 
and the C target (bottom). The fits to the plots are also shown, as well as the 
plots for the ideal situations with no energy loss. 
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This correction can be used only for protons with small scattering angle where 

the change of the proton's path in the target due to the scattering angle from the 

path along the beam axis can be neglected. For scattering at large angles, the 

path changes greatly as the angle changes, and consideration has to be made for 

different SRIM calculations for different paths, so that this method of correction 

is no longer simple and an other method should be applied. 

The fit functions for the two plots are: 

1) for CH2 target, 

Ecm = 0.00131115 x E; + 0.23648 x EP + 0.169081 [MeV] (5.6) 

where Ecm is the center-of-mass energy converted from the proton energy after the 

energy loss correction and Ep (Me V) represents the proton energy after the target 

that is not corrected for energy loss. 

2) for pure carbon target, 

Ecm = 0.0027504 x E; + 0.205565 x Ep + 0.384573 [MeV] (5.7) 

5.3.3 Event-by-event correction 

Ideally, the proton energies measured with the silicon detectors should be corrected 

for energy loss on an event-by-event basis. The idea is the following. The range of 

the 25 Al beam in the CH2 target is determined and then divided into 5000 equal 

parts. Then from the front end of the target, the residual energy of the 25 Al beam 

is calculated in each part by Ziegler's energy-loss routines [51], along with the 

scattered proton energy at the scattering spot. Knowing the length of the path 

the proton travels through the target, its energy after the target is obtained and 

compared with the measured proton energy in a single event. The on-spot proton 

energy of this event, that is, the energy of the proton with energy loss corrected, 

is then directly deduced from the final match of the comparison. 

To determine the range of the 25Al beam in the target, we need to find first the 
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angle at which the beam particle goes in the target with respect to the horizontal 

beam line. This together with the position of the beam on the target, can be 

calculated using the two positions of the beam particle measured by two PPACs 

(Parallel Plate Avalanche Counter), located upstream of the target. The calculated 

target position together with the position of the proton recoil on the PSD will then 

give us the angle (with respect to the horizontal beam line) at which the proton 

leaves the target. Leto: and f3 represent these two angles. They are the angles that 

the particle tracks make with the horizontal beam line. The scattering angle, say 

(), is then the angle that is made by the two tracks - the beam particle track and 

the recoil proton track. Shown in figure 5.15 is the layout of the detector system 

viewed from the side, along with the particle tracks. 

PPACl PPAC2 

PSD 

B-­ target 

d1P 

Figure 5.15: Layout of the beam tracking in the detector system obtained using 
the two PPACs before the target and the PSD after the target. 

Let A, B, C and D be the track points of the beam particle in PPACl, PPAC2, 
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target and PSD, respectively, with, 

A= A(xi, Y1, z1) 

B = B(x2, Y2, z2) 

C = C(xt, Yt, Zt) 

D = D(xp, yP, zp) 

in the coordinate system as shown in figure 5.16, with the z-axis along the hor­

izontal beam line from upstream to downstream and origin on the target plane. 

y 

x 

.................... 

Horizontal beam line z 

target 

Figure 5.16: Coordinate system for particle tracking in the detector chamber. 

The positions A, B and D are known from the measurements; the position C 

is calculated from positions A and B. Let d12 , d2t and dtp be the distance between 

the two PPACs, the distance between the PPAC2 and the target, and the distance 

between the target and the PSD. Then we find 
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Zt = 0 

(5.8) 


and 

di2 + d2t 
a= arccos AC 

dtpf3 = arccos- (5.9)
CD 
AC2 + C D2 - AD2 

(} = arccos 2AC . CD 

where 

(5.10) 

(5.11) 

dtp = Zp - Zt (5.12) 

AC= J(xt - x1)2+ (Yt - Y1)2+ (zt - z1)2 (5.13) 

CD= .J(xp - Xt) 2+ (Yp - Yt) 2 + (zp - Zt) 2 (5.14) 

AD= J(xp - x1)2+ (yP - Y1)2+ (zp - z1)2 (5.15) 

Suppose that a beam particle of energy E enters the target at an angle a and 

that lb is the range of the beam particle inside the target calculated using the 

energy-loss routines [51]. The lb is then divided into N=5000 equal parts 4 and an 

iteration procedure is made for each measured proton to find which one of the 5000 

4The more parts the h is divided into, the more accurate the energy loss correction will be; 
here N =5000 is enough for an accurate correction. 
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parts it corresponds to (where in the target the proton was scattered), according 

to the scattering angle and associated energy loss. 

-
zsAI Scattered 
beam proton 

Figure 5.17: Illustration of the paths of a scattering in the target (not to scale). 

Let t be the target thickness and lp the path length of the scattered proton 

inside the target, as shown in figure 5.17. Then according to the geometry, we can 

find, 

l = (t - lb · cos a) (5.16) 
p cos f3 

By calculating the energy loss of the proton for lp, its energy after the target, 

say Eca1, is obtained and compared with the measured energy Emea· This process 

is iterated with an optimization algorithm until the calculated energy matches the 

measured one. In my calculation, the "match" is achieved whenever IEca1-Emeal < 

5 keV, considering the experimental uncertainty of the energy measurement. 

The advantage of the event-by-event analysis is that the energy loss correction 

for each event is separate, so that each event uses its own beam energy for the 

correction. This allows more accurate correction than the simple one described 
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in last subsection, where one single beam energy was used for all events. But, 

in reality, the beam energy fluctuates from event to event and follows a Gaussian 

distribution instead of just one single energy. 

Figure 5.18 shows a proton spectrum after correcting for the energy loss in the 

target using the event-by-event method. The X axis represents the center-of-mass 

energy (Ecm) transformed from the proton energy according to the kinematics 

described in Chapter 2. In all the following content of this thesis, Ecm will be used 

in the proton spectrum instead of the proton energy . 
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Figure 5.18: An example of the proton spectrum with the energy loss correction, 
with the X axis representing the center-of-mass energy (Ecm) transformed from 
the proton energy. 

There is another method which can be used to directly extract the actual 

proton energy without adding the energy loss in the target. This involves using 

an isobaric stable beam and a well-known resonance energy to perform an energy 

calibration [61]. 

118 




Ph.D. Thesis - .Jun Chen lVlcMaster - Physics and Astronomy 

5.4 Deadlayer effect 


proton 

PSD SSDl SSD2 
-BOµm -1500µm -1500µm 

Figure 5.19: The layout of the Silicon detector telescope (PSD-SSDs) with the 
deadlayers sketched in. 

Each of the silicon detectors used in the experiment including the PSD and 

SSDs has a deadlayer of 2 µm aluminum layer plated on top of the silicon content. 

Since the deadlayer does not contribute to the charge collection of the detector, 

there will be an energy loss in the layer which can not be counted as the deposited 

energy in the detector. This aluminum layer is therefore "dead" to the energy 

measurement compared to the active layer of silicon content, from which the total 

deposited energy of particles is recognized by the electronics as the measured energy 

in the detector. For those protons punching through one detector and its deadlayer 

and finally stopping in the next detector, their energy loss can be easily corrected 

in the routine based on their deposited energy in each detector. However, there 

exist protons that do not punch through to the next detector, and their deposited 

energy could be interpreted as either due to the relatively lower energy protons 
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Figure 5.20: Energy loss in the PSD active layer only and energy loss in the PSD 
and Al deadlayer together as functions of t he proton energy when leaving the target 
(from SRIM simulation). The energies for just punching t hrough the active layer , 
and through the whole PSD, are indicated. 

stopping in the active layer , or due to the higher energy protons punching through 

the active layer and stopping in the deadlayer. Even if we can distinguish the 

proton stopping in the deadlayer from that sharing the same energy and stopping 

in the active layer , we can still not tell where inside the deadlayer it stops, so 

that it becomes impossible for the energy loss in the deadlayer to be calculated 

correctly. As a consequence of this deadlayer effect , a gap within which no events 

are counted will show up in the energy spectrum of the protons for the energy 

range corresponding to the protons that stop in the deadlayer. 

Figure 5.19 shows the layout of the Silicon detector system with the deadlayer 
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Ep after target (keV) 

Figure 5.21: Energy loss in just the Al deadlayer only vs the proton energy after 
leaving the target (from SRIM simulation). 

also sketched out. Figure 5.20 shows the calculated energy loss in the active layer 

of the first PSD and in the whole PSD, including the active layer and the Al 

deadlayer, vs. the proton energy after leaving the target. The energies for punching 

through the active layer only and through the whole PSD are indicated. Ep within 

the yellow shaded area corresponds to the ambiguous proton detection discussed 

above. The proton with energy lower than the left end (Ep<2490 keV) of this 

area can be clearly identified as a proton stopping in the active layer of the PSD, 

while the proton with energy beyond the right end (Ep>2650 keV) will penetrate 

the deadlayer and reach the second detector, in which case the energy loss in the 

deadlayer can be corrected. In the ambiguous proton energy range ( EP = 2490 keV­
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2650 keV), the region at the left side of the dashed line ( 2650 keV) corresponds to 

the protons stopping in the rest of the active layer and the maximum deposited 

energy is reached where the dashed vertical line is located. In this region, the 

measured energy by the deposit in the active layer gives the actual proton energy. 

As Ep keeps increasing toward the right end of the yellow region in figure 5.20, 

the proton will punch through the active layer and stop in the deadlayer. The 

energy deposited in the active layer can be measured, but that in the deadlayer 

cannot be measured. Since the energy loss in the active layer decreases, which 

is the measured proton energy but no longer the actual proton energy, this kind 

of proton will be confused with the protons stopping only in the active layer but 

with the same energy loss in this layer. So the energy range between the Ep for 

penetrating the PSD only and Ep for penetrating the PSD and Al deadlayer is 

the deadlayer gap mentioned above. The difference in Eioss between the two plots 

(red and green) at each Ep gives the energy loss in the Al deadlayer at this Ep. 

Figure 5.21 shows the energy loss in just the Al deadlayer vs. the proton energy 

after leaving the target. As we can see, at high energies (Ep>5 MeV) the energy 

loss in the deadlayer is small and negligible and it can also be easily corrected, 

but for some energy ( Ep f"">.I 2680 ke V, corresponding to Ec:m 720 ke V), the E1ossf"">.I 

increases abruptly up to its maximum, leaving us the with uncorrectable energy 

gap. 

5.5 Background subtraction 

Since we use the polyethylene (CH2 ) target, most of the background is from reac­

tions with the carbon in the target. Figure 5.22 is an example of the background 

proton spectrum at 0° with energy loss correction from runs with the pure carbon 

target, compared with the corrected proton spectrum from runs with the CH2 tar­

get in figure 5.23, where the same background is also shown in red. To subtract 

this background from the proton spectrum, we made measurements under the same 

conditions with the pure carbon target as for the elastic scattering. Then the yield 
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from the pure carbon target is normalized to the yield from the carbon in the CH2 

target based on the total accumulated number of beam events, the number density 

of CH2 and C, and the energy-dependent stopping power of the 25 Al beam in CH2 

and C. The normalization factor of the yield from pure carbon to the yield from 

carbon in CH2 is calculated as follows. 

3500 
Ecm (keV) 

Figure 5.22: Background proton spectrum from runs with the pure carbon target. 

5.5.1 Normalization of yields from CH2 and C targets 

Suppose that the step size of the beam energy that is equivalent to the bin size 

(tl.E) of the proton spectrum is fl.Eb in the reaction of the beam with the carbon 

nucleus. The proportionality of fl.Eb to tl.E is determined by the kinematics of 

the reaction of the beam particle with the carbon nucleus. Then we can find the 

corresponding traversed target thickness at any energy bin in the proton spectrum 

123 




• • 

Ph.D. Thesis - Jun Chen McMaster - Physics and Astronomy 

c 
~ 
~ a 

2000 

1500 

500 

~ 
>= 

•••.. 
• 

••••..._ ... .. ..
.. . . -- ........
........ . . .. -- ... _.. _..,,.

-...· -"'·"'· .,. . 


~~!!!!!!!1!!!!~~~!!!!~~~~~~~--~::::~...L:·~..-J·oc:c '·..... - ·~~~~ 
1000 1500 2000 2500 3000 3500 

Ecm (keV) 

Figure 5.23: Proton spectrum from runs with the CH2 target and the background 
from figure 5.22 (without normalization) is also shown in red. 

as 

~x =~Eb (5.17)s 
where S = f:: is the energy dependent stopping power of beam in target material. 

This gives us the yield in the thick target method at any energy bin as 

(5 .18) 


where I is the total accumulated number of beam events, <J the cross section of the 

reaction of the beam with carbon, and n the number density of carbon. 

Finally, the normalization factor N can be obtained by 

(5. 19) 
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where 11 , 12 are the total accumulated number of beam particles bombarding the 

CH2 and C targets respectively, and considered to be constant over the whole 

path that the beam particles have traveled; n1 is the equivalent number density of 

carbon in the CH2 , n2 the number density of pure carbon; and 51 and 52 are the 

stopping powers of 25 Al beam in CH2 and C, respectively. 

We apply the normalization factor for the yield of each bin in the proton spec­

trum from the runs with the pure carbon target, and then subtract it from the 

proton spectrum from the runs with the CH2 target. Figure 5.24 is the proton 

spectrum after background subtraction with the conversion of the proton energy 

in lab to the energy of center-of-mass (Ecm)· One issue that one should be careful 

about is that, subtraction of one spectrum from another can be made only when 

the two spectra have the same bin size, that is, energy per bin . 

•••••
••••. .....-• •••........ .. . . . .. .-- ...... ·-­ ........ ... ......-. ... .. 
1000 1500 2000 2500 

Ecm (keV) 

Figure 5.24: Proton spectrum after background subtraction. 
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5.6 	 Cross section from the yield spectrum of pro­

tons 

In the proton spectrum (see figure 5.18), each data point represents a total yield 

of protons at the corresponding center-of-mass energy (Ecm)· The "total" means 

that the yield is the sum of all the protons with the same Ecm within the solid 

angle covered by the detector in use. Recall the experimental yield function in the 

thick target method, described in section 5.5. l 

(5.20) 


where I is the total accumulated number of beam events, CJ the scattering cross 

section into the solid angle covered by the detector in use, n the number density 

of the protons in the C H 2 target, and S is the energy-dependent stopping power 

of the 25 Al beam in the CH2 target. 

Recall that from inverse kinematics the correlation between the beam energy 

Eb and the center-of-mass energy Ecm, that is, 

m 
Ecm = 	 M Ebeam (5.21)

+m 

where M 	and m are the masses of the beam particle and proton respectively. 

Using this equation, we can find the beam's energy range tl.Eb corresponding 

to the bin size tl.E in the proton spectrum as 

M 
tl.Eb = 	 (1 + -)tl.E (5.22) 

m 

With this, the cross section can be obtained from the yield function as, 

y.s Y·S m 
Cl= ---	 (5.23)

Intl.Eb I ntl.E M + m 

With the solid angle in the laboratory tl.01ab calculated according to the ge­
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ometry of the target-detector system, the experimental differential cross section in 

the laboratory will simply be [19], 

da a Y·S m 
--=--= (5.24)

Jnt::..Et::..n M+m 

Based on the fact that the integrals of the differential cross sections over the 

same solid angle in the laboratory frame and the center-of-mass frame are equal, 

that is, 
da da 
n · dfllab = dfl · dflcm (5.25)

d ~Glab cm 

and, 

(5.26) 

dflcm = sin ()cm d() cm d¢> (5.27) 

201ab +()cm = 180° (5.28) 

where B1ab and Bern are the scattering angles in the laboratory frame and the center­

of-mass frame, we find the differential cross sections in the center-of-mass frame 

as given by, 
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Figure 5.25: Excitation function at 0° in the center of mass frame after energy loss 
correction and background subtraction. The bottom one is the enlargement of this 
spectrum in the range of 1200 ke V to 3400 keV. 
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da dD.1ab da 1 da 1 Y·S m 
-- = ---- = --- (5.29)

4 COS ()lab dD.1ab 4 cos 01ab IntiEtin M + m 

It should be pointed out that, since the beam intensity was attenuated in the 

experiment, the actual total intensity I should be the total intensity extracted 

from the PPACl-XY histogram times an attenuation factor, which in our case is 

3000. Figures 5.25 to 5.27 are the final excitation functions at the three angles in 

the center of mass frame. 
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Figure 5.26: Excitation function at 17° in the center of mass frame after energy 
loss correction and background subtraction. 
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Figure 5.27: Excitation function at 27° in the center of mass frame after energy 
loss correction and background subtraction. 

5.7 Breit-Wigner analysis 

In this analysis, the Breit-Wigner formula will be used to fit for the proton reso­

nances in the elastic scattering, using the x-estimation fitting procedure. We start 

with this simpler approach with the aim to extracting only the resonance energy 

ER as preliminary results, which can then be used as input and confirmed in the 

R-Matrix analysis, no spin-parity assignments will be made, as these can also be 

done in the R-Matrix analysis. For the following fits, as-wave (l = 0) scattering 

is assumed, since it is the dominant contribution5 to the cross section at the low 

center-of-mass energy in our experiment. 

5The angular momentum satisfies: l = pR/n = .j2µER/n, where R is the range of interaction. 
Let b the impact parameter, then R<b and we find l<,,/2iiEb/n. The lower the energy, the lower 
the l of the partial waves that can contribute to the cross-section. 
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5. 7.1 Breit-Wigner formula for resonant elastic scattering 

In the Breit-Wigner mechanism, the differential cross section for the elastic scat­

tering in the center-of-mass frame is approximated by [66] 

(5.30) 


where fe and fr refer to the Coulomb scattering and the single-channel nuclear 

resonant scattering of an s-wave (quantum number of the orbital angular mo­

mentum l=O), respectively; the third term refers to the interference between 

the Coulomb scattering and the resonant scattering; w is the statistical factor 

= (21+1)/[(211 +1)(212 +1)] with 1, 11 and 12 as the spins of the resonance, the 

beam nucleus and the target nucleus, respectively. The three terms are given by 

2 1 2 4 (()cm)
Ife 1 = 4k2 'T/ CSC 2 

2 1 f(E) 2 

lfrl = 4k2 (E - ER)2 + [~f(E)]2 
(5.31) 

2 ~(f.*f ) 1 2 2 (()cm) f(E) 
w e r = 4k2. 'TJCSC 2 (E - ER)2 + (!r(E)]2 

x [(E - ER) cos,B + ~r(E) sin,B] 

where k is the wave number, 'T/ the Sommerfeld parameter, ()cm the scattering 

angle in the center-of-mass frame, f(E) the energy-dependent Breit-Wigner total 

width at the center-of-mass energy Ecm = E, ER the resonance energy and ,B the 

Coulomb phase. The parameters k, 'TJ, and ,Bare given by 

(5.32) 
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whereµ is the reduced mass= mM/(m + M), v the relative velocity, ZM and Zm 

the charges of the two interacting particles, and 27rC = 31.29 when E is in keV 

and µ is in amu . 

The total width r R of a resonance is related to the energy-dependent total 

width f(E) by 

f(E) = f R exp(-2m~.TJ) (5.33) 

where exp( -27rtl.77) is referred to as the energy-dependent penetration factor, tl.17 = 

17 - T/R where T/R is the value of 17 evaluated at the resonant energy E =ER. 

Figure 5.28 shows an example of the proton spectrum calculated using the 

Breit-Wigner formula with realistic values for the parameters. 

5. 7.2 Breit-Wigner fit for the experimental cross section 

To fit the experimental cross section in the figure 5.25 (in the center-of-mass frame), 

firstly we need to rewrite the Breit-Wigner formula as follows [66], 

da 1 [ 2 

dOcm = 4k2 Ai 17 


A exp(-47rtl.rJ) 
2 (5.34)

+ ( E - A4)2 + A~ exp( -47rtl.77) 

A ( 2 fl. )(E-A4)cosf3+A5 exp(-27rtl.77)sin/3]
+ 3 17 exp - 7r 4-)2_+_A_~_e_x_p_(--4-7r_tl._77_)17 --(E---A- __ 
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Figure 5.28: Calculated proton spectrum using the Breit-Wigner formula with 
realistic values of the parameters in the formula. The solid line is the total spectrum 
and it is divided into three components: a pure Coulomb scattering (dashed line), a 
pure resonant scattering (dotted line), and an interference between the former two 
scattering processes (dot-dashed line) . This figure is adapted from reference [66]. 
Unless mentioned, all the subsequent proton spectra titled with the Breit-Wigner 
formula will have the same format . The E+ and E _ mark the two characteristic 
energies where the two extrema are located; Ee is the critical energy where there 
is only the Coulomb contribution, with the resonant and the interference parts 
canceling out; ER marks where the pure resonance component peaks. 
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where the five parameters A1 to A5 have the following expressions (the corre­

lation Wcm +()lab = 7r is used; N is a normalization factor): 

N 
Ai=--­

cos4 ()lab 

A2 = Nwr~ 

_ 2NwrR
A3- (5.35)

cos2 ()lab 

The five parameters are left free in the fitting procedure and the values of A4 

and A5 deduced from the fitting will directly determine the resonant energy ER and 

width rR· Each single resonance in the spectrum of the differential cross section 

is fitted separately. In the fitting procedure, we have considered uncertainties 

due to the beam spread and the straggling inside the target which have been 

convoluted into the fit function when the fitting is in progress. Figures 5.29 and 

figure 5.30 show the fits for three different resonances with each component of the 

Breit-Wigner cross section shown as well. The fitting results are listed in table 5.2. 

Not all peaks in the excitation function can be successfully fitted by the Breit­

Wigner function due to the quality of the data, such as the statistics and the energy 

uncertainty. The fits shown here are for the two most prominent resonances in the 

spectrum at ER=1634 keV and ER=2170 keV as well as for a possible resonance 

around 3100 keV. We expect that more resonances will be able to extracted from 

the R-Matrix fit to the data, to be discussed in Section 5.8. 
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Figure 5.29: Breit-\tVigner fi ts for the resonances at ER=l.634 MeV (top) and at 
ER= 2.170 MeV (bott om). 
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Figure 5.30: A Breit-vVigner fit for t he resonance at ER=3.l00 MeV. 

Table 5.2: List of Breit-vVigner parameters of three resonances for the Breit-Wigner 
fits of the experimental differential cross sections. ER and rR are in units of keV. 
The x2 /d.o. f represents the chi-square per degree of freedom (d.o.J) for each fit. 
The quoted uncertainties are directly from the fi ts . 

1634 ± 9 65 ± 26 2.19 

2171 ± 6 115 ± 15 3.01 

3100 64 ± 8 45.9 
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5.8 	 R-Matrix analysis 

In this section, an advanced data fitting using the R-matrix formalism will be 

described and used to extract physical parameters such as energy levels and proton 

widths. R-matrix theory [52] is now the standard and the best framework for 

describing resonant processes leading to compound nuclei in low-energy nuclear 

physics, because the nuclear parameters it yields, such as level energies and widths, 

are strongly tied to the physics of nuclear spectroscopy. It is the foundation of 

the Breit-Wigner formula described previously, which is an approximation of the 

resonant cross section only valid for a single-level and narrow resonance. 

5.8.1 	 R-matrix formula for the cross section of compound 

nuclear scatterings and reactions 

The general multi-channel multi-level formula for the differential cross section of 

any resonant process from an entrance channel a to an exit channel a' is given as 

follows [52] 

da 	 daI 	 I I1do~ = 	 [(2I1 + 1)(2I2 + 1)i- L:)2s+1) ;~·°', s (5.36) 
0t I 0t 

SS 

where I 1 and I 2 are the spins of the nuclei in the entrance channel- beam particle 

and target particle; a and a' symbolize the entrance and exit channels; sands' are 

the channel spins of the entrance and the exit channels; the summation is over all 

of the partial differential cross sections of different combinations of channel spins 

s and s'; and the partial differential cross section can be written as 

1 1d<JOLS Ot s 7r 
' 	 (5.37)- (2s + l)k& (CT+ RT+ IT)drl I
Ot 

where CT, RT, and IT represent the three components of the resonant differ­

ential cross section - the Coulomb term, resonant term and interference term, 
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respectively. They are given by 

(5.38) 

IT= ~ "°'(21+1)2lR[i(TJ 1 ', 1,)*Ca.Pi(cosO)J8asa's'
V 47r ~ as ,a s , 

Jl 

where {;I is the scattering angle; T/a is the Sommerfeld parameter; the summation 

integer L is over lli - l~I, where l is the quantum number of the orbital angular 

momentum of the scattering system. 

The BL coefficients are given by 

The Z coefficients are related to the Racah coefficients, W, by 

- 1 1 1 1
Z(li11l2 12 ,sL) = (2li + 1)2(212 +1)2(211 +1)2(212 +1)2 

(5.40) 
x (l1l200ILO)W(lil1l2l2, sL) 

where (lil200ILO) are the Clebsch-Gordan coefficients. There terms are also related 

to the Z coefficients of Blatt and Biedenharn [52] by 

(5.41) 


The transition matrix element T.l, , , is given by as !1 ,as11 

r.I, '!' l = 8a' s'l' asl exp(2iwa'l') - uJ, '!' l (5.42)a s 1 ,as 1 1, 1 a s 1 ,as 1 
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where UJ, , , is the collision matrix element given by 
a s 11 ,as11 

(5.43) 


The 8~sl here is the phase shift and it should be distinguished from the Kronecker 

delta symbol 8as,a' s' used elsewhere. 

The CT and IT terms, as we can see, will vanish if the entrance channel a is dif­

ferent from the exit channel a'; that is for nuclear reactions or inelastic scattering. 

They are non-zero only when the entrance channel and exit channel are identical; 

elastic scattering is the only such case. For our experiment, it is safe to assume 

only one open channel (elastic scattering). Since s-wave is dominant in our case of 

low-energy scattering, l = 0 is assumed also. Then the multi-channel multi-level 

R-matrix formula is reduced to the single-channel R-matrix formula and the three 

terms can be simplified as follows [ 67], 

CT= (2s + l)_.!_17; sin-4 (~)
47f 2 

1 
RT= -°L:(2J + 1) {[cos2w1- cos2(w1+8/)]2 


47f Jl 


+ [sin2w1 - sin2(w1+8f)]2} Pi(cosB) 
(5.44) 

1 . 2 ((})IT= 27f ~(2J + l)1Ja sm- 2 

x {sin ( 7]2alnsin (~)) [cos2w1 - cos2(w1+8f)] 

+cos (112alnsin (~)) [sin2w1 - sin2(w1+8f)]} Pi(cosO) 
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where the 	Coulomb phase shift w1 and the total phase shift 8f are given by 

I 

w1 = 	L:tan-1 (~) 
n=l (5.45) 

J -1 ( R1Pz )81 =tan 1 + R1(B1 - S1) - <Pi 

where P1 is the penetrating function, S1 the shift function, and ¢1 the hard-sphere 

phase shift. They are given by 

(5.46) 


where rc is the channel radius; and F,, and G1 are the regular and irregular solutions 

of the radial wave equation and evaluated at re. 

The B1 in the phase shift is the boundary condition number and R1 is the energy 

dependent R-matrix element, which is given for our simplified case by 

(5.47) 


where"'( and E>. are the reduced width and pole energy for a resonance, respectively. 

These are the two resonance parameters to be extracted from the fitting. 

More details about the R-matrix theory and its derivations can be found in the 

R-Matrix theory section in Appendix B. 

5.8.2 	 Boundary transformation from R-matrix parameters 

to physical parameters 

The boundary condition parameter B1 [54, 55, 57, 56] is a constant specified to de­

termine the boundary conditions satisfied by the eigenfunctions of resonant states 
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in R-matrix theory. This parameter can be arbitrarily chosen when making a fit 

to experimental data since the R-matrix differential cross section is independent 

of it. However, the R-matrix parameters of fitting results, such aslevel energies 

and level widths, do depend on the boundary condition parameters, which causes 

different sets of level energies and widths to be deduced for the same resonance 

from R-matrix fits with different choices of the boundary parameter B1. Fortu­

nately, these "formal" resonance parameters directly deduced from R-matrix fits 

and varying with the boundary parameter B1 are not the actual resonance energy 

and resonant width. They are called the pole energy and pole width of a resonance, 

defined and used only in the R-matrix differential cross section and also referred 

to as the formal resonance energy and width. When some specific boundary condi­

tion is satisfied for a specific value of Bi, the deduced formal parameters will match 

the actual resonance parameters. The latter are also referred to as the observed 

parameters (resonance energy and width) or the physical parameters. A number 

of methods have been developed to convert the formal R-matrix parameters to the 

actual physical parameters of a resonance by the so-called boundary transfonna­

tion, based on the fact that different formal parameters of the same resonance are 

related by their boundary conditions. 

Consider a transformation Be -t B~, EA -t E~ and fAe -t /~e· Here we use the 

notation of Be for the boundary condition parameter of channel c; EA for the pole 

resonance energy of level >.; fAe for the reduced pole resonant width of channel c 

and level >.. The transformation is made by constructing the following real and 

symmetric matrix first 

CAµ= EA8Aµ - L(B: - Be)/Aefµe (5.48) 
e 

Since C is real and symmetric, it can be diagonalized by an orthogonal matrix 

K such that 

(5.49) 
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where D is a diagonal matrix. Its diagonal elements are the eigenvalues of the 

matrix C, i.e., 

(5.50) 


Then we can get 

E~ = D>. 
(5.51) 

I~= K1e 

where le is a vector of reduced widths of all levels at channel c. 

For the special case of a single channel and single level, the transformation is 

reduced to, 

I 2 ( IE>. = E>. - 'Y>. B - B) 
(5.52)

I 

'Y = 'Y>. 

where the notion of channel is ignored. 

In the actual transformation process, the boundary condition parameter is al­

ways set equal to the energy dependent shift function Se(E>.), evaluated at the 

initial input of the pole energy E>. for each resonance, and then applied to the fit 

function to deduce the new E>. from the best fit. This fit is compared with the 

old one to check if they match within the uncertainty range. We can also do it 

in a simple way as described above by using the boundary transformation matrix 

to calculate the new E>. from the original E>. without repeating the fit. If they 

do not match, the process is repeated (either by iterating the R-Matrix fit or by 

iterating the calculation with the boundary transformation matrix) with the newly 

obtained E>. as the input for the pole energy and the boundary condition parame­

ter evaluated at this input energy. This iteration of the boundary transformation 

ends when the pole energy converges, and the final pole energy and reduced width 

have been transformed to correspond to the physical parameters of the resonance 
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in use. The physical resonance width can then be calculated from the observed or 

physical reduced width 'Y>..c with the relation 

(5.53) 

where f>..c(E>..) = 2Pc(E>..h~c is called the formal resonance width. 

5.8.3 R-matrix fit for the experimental cross section 

The R-matrix fit was performed using a code based on R. E. Azuma's R-matrix 

subroutine [68, 69]. Besides the data file, an input parameter file is required when 

performing the fit, which includes reaction information such as the reaction channel 

radius (re= 1.2(A1 +A2 )
113

), the possible combinations of quantum numbers, spin­

parities assigned to the resonances to be fitted, and so on. An example of this input 

file can be found in the Appendix C. The final spin-parities for the resonances are 

determined when the best fit with these combinations of spin-parities in the input 

file has the smallest x2 of all the best fits with different nuclear inputs; while 

the resonance energies and widths are directly extracted from the fitting and the 

boundary transformation procedure. 
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Table 5.3: List of all possible combinations of channel spin S, relative orbital 

angular momentum l, and spin-parity pr of the compound nucleus. 

prs 

0 2 2+ 

3 3+ 

1 2 1­

2­

3­

3 2­

3­

4­

2 2 o+ 

1+ 

2+ 

3+ 

4+ 

3 1+ 

2+ 

3+ 

4+ 

5+ 
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The possible combinations of the nuclear quantum numbers are determined 

according to the conservation of total angular momentum before and after the 

scattering. The ground state of the 25Al nucleus has a spin-parity of ~+ and the 

proton has ~+, which couple together to give the channel spin S = ~ EB ~ = 2 or 

3. The spin-parity pr of the compound nucleus is determined by J = l EB S and 

1ff = 7ri7rp(-1)1, where l is the relative orbital quantum number of the proton with 

respect to the heavy reacting nucleus, and 7ri, 1ff and 1fp represent the parities 

of the initial heavy reacting nucleus, the final compound nucleus and the proton, 

respectively. Table 5.3 lists all the possible combinations of S, l and J7r with l up 

to 2 (d-wave). 

According to scattering theory, the s-wave (l=O) scattering is dominant and the 

higher partial waves make less or negligible contributions to the scattering. Since 

at low energies (ER<l.2 MeV) the Coulomb scattering is dominant, no apprarent 

resonance signature was observed in the excitation function. At the high energy 

region (ER>2.5 MeV) in the excitation function, there are several resonance-alike 

signatures and they are very difficult to be identified and fitted due to the poor 

statistics. Therefore, we only fit the three prominent resonances in the range from 

the 1424 keV to 2484 keV by s-wave scattering, as shown in figure 5.31. This 

corresponds to the level range of 6.942 MeV to 8.002 MeV, which is within the 

Gamow window at the temperatures of astrophysical interest (supernovae temper­

atures T9 , see figure 1.6 in Chapter. 1). The uncertainty (i--..,153 , systematic and 

statistical) for the data is adopted from reference [77] considering the similar ex­

perimental set-up. In all previous histograms, the uncertainties are the statistical 

ones calculated by default in the ROOT program using the standard deviation of 

a Poisson distribution 6 , <JN = VN, where N is the total yield at each energy (or 

energy bin in the histogram). 

Table 5.4 lists the resonance parameters for the three resonances extracted from 

6The counts Nat any energy fluctuates around its mean value>., following a Poisson probabil­
ity distribution with its mean (N) =.A and its standard deviation <7N = ./>.. In the experimental 
histogram, the measured value for N at any energy is ta.ken as its expected value at that energy, 
that is .A = N and <7N = .JN. 
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Figure 5.31: An R-Matrix fit for the three resonances at ER ,....., 1.62 MeV, 1.97 
MeV and 2.13 MeV, withs-wave (l=O) scattering for all and pr=2+, 2+ and 3+, 
respectively. 

the R-Matrix fit to the data. 

We also tried fitting the data using other spin-parity assignments for the three 

resonances and found that with J7r =2+ for both of the first two resonances, the data 

is fitted the best, with the smallest x2 compared with fits with other spin-parity 

assignments. Therefore, J7r=2+ is assigned to the first two resonances. These two 

resonances correspond to the energy levels of Ex=7.156 MeV and 7.498 MeV in 

26Si in previous study with (3He,n) [11] and (p,t) [9, 12] reactions and our spin­

parity assignments agree with their studies using a DWBA analysis. But there is a 

controversy between our assignment for the third resonance (Ex=7.647 MeV) and 

their assignments for the excited state at Ex=7.687 MeV, if they correspond to the 

same energy level in 26 Si. Our best fit to the data as shown in figure 5.31 indicates 

that the third resonance can be best described by s-wave scattering with J7r =3+, 
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Table 5.4: List of parameters of resonances from a R-Matrix fit to the three reso­
nances in the experimental differential cross section in the energy range 1424 keV 
- 2484 keV. The pole energy E>.., the resonance energy ER and the level energy Ex 
are in units of MeV and the resonance width f R is in units of keV. The proton sep­
aration energy (or proton threshold energy) is Sp=5.518 MeV. The uncertainties 
quoted are directly from the fits. 

1.882(45) 1.617(76) 7.135(76) 43(10) 

2.018(11) 1.977(15) 7.495(15) 10(3) 

2.251(19) 2.129(28) 7.647(28) 89(15) 

while from their DWBA analysis this state has J7r =3-, which would correspond to 

a p-wave scattering in our experiment. By assigning J7r =3- to the third resonance, 

we got a best R-Matrix fit as shown in figure 5.32, not as good as the one with the 

J7r=3+ assignment. 
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Figure 5.32: AR-Matrix fit for the three resonances at ER rv 1.62 MeV, 1.97 MeV 
and 2.13 MeV, withs-wave (Z=O) scattering for the first two and p-wave scattering 
(l=l) for the third resonance (J7r=2+, 2+ and 3-, respectively). 
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Thermonuclear Reaction Rate of 

25 Al(p,1)26 Si in Explosive Stellar 

Environments 

In this chapter, I will first give the general derivation and theoretical background 

of the thermonuclear reaction rate. Following that, our new reaction rate of 
25 Al(p, 1')26 Si will be presented, calculated based on our new results on the struc­

ture of 26Si, already described in Chapter 4 and Chapter 5. 

6.1 General derivation of the thermonuclear re­

action rate 

Based on the qualitative description of thermonuclear reactions in Chapter 1, we 

can derive the rate of the thermonuclear reaction 1 . Consider thermonuclear reac­

tions in a stellar gas between particles of type A with number density nA and mass 

mA, and particles of type B with number density n 8 and mass m 8 (both number 

densities in units of particles per cubic centimeter). Assume that the cross section 

1 Here we only discuss the general 2-body charged-particle-induced nuclear reactions. For 
neutron-induced reactions and more details about the derivation, refer to references [1, 2] 
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of this reaction is a(v), which depends only on the relative velocity between two 

reacting particles because according to the theory of nuclear reactions [71], the en­

ergy dependence of the cross section for a nuclear reaction only involves the total 

kinetic energy (Ecm) of the two interacting particles in the center-of-mass system 

with 

1 2
Ecm = 2µv (6.1) 

whereµ= mAmB/(mA + mB) is the reduced mass of the two reacting particles 

and v is their relative velocity. 

Since in the center-of-mass frame it does not matter which reacting particle 

should be treated as the projectile or ejectile, we let particle A be the projectile 

and v its velocity relative to particle B. The nuclear cross section is defined as 

the probability2 that a reaction occurs when a reacting particle bombards a target 

containing only one target particle per unit area in the plane perpendicular to the 

incident direction of the projectile. In a volume Vyas of gas mentioned above, the 

total number of particles A is nA Vyas and they will encounter, in a time interval 

flt, a number nBvr5t of particles B per unit area along the trajectory of particle 

A. Then we can simply write the reaction rate (number of reactions per second 

per unit volume) as 

(6.2) 


In the stellar gas, the relative velocity v varies over a wide range and its prob­

ability follows the Maxwell-Boltzmann (MB) distribution, given by 

2 
2 ( µ ) 3/2 ( µv )¢(v) = 47rv 27rkT exp - 2kT (6.3) 

2This can be regarded as the total number of reactions even though it is a fraction for this 
definition; as a matter of fact, in a nuclear reaction, there are a large number of projectiles and a 
large number of target particles per unit area in the target surface, which will result in an integer 
number of reactions. 
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with 

100 

<P(v)dv = 1 (6.4) 

So the actual reaction rate r should be an average weighted by the MB proba­

bility function above3 

(6.5) 


where ( <rv) is the weighted average and represents the reaction rate per particle 

pair, given by 

100 

(<rv) = <P(v)<r(v)dv 

00 

µ ) 3/21 3 ( µv2 ) 
= 47r ( 27rkT o v <r(v)exp - 2kT dv (6.6) 

1 2 00 

8 ) / 1 [ ( E ) 
= ( 7rµ (kT)3/2 Jo E <r(E) exp - kT dE 

where E = Ecm = !µv 2 is the total kinetic energy in the center-of-mass frame 

and the transformation from v to E has been used; k=8.6173 x 10-5 ev/K is the 

Boltzmann constant; T is the temperature. One thing that should be pointed 

out is that, besides the relative velocity, the center-of-mass velocity V of the two 

reacting particles also follows a BW distribution and its integral should also be 

included in the calculation of (<rv); however, since the motion of the center-of­

mass is independent of the relative motion and the nuclear cross section depends 

only on the relative velocity, the integral over V is integrated out to be unity. 

Until now we have not elaborated on the physics of the nuclear reaction, specif­

ically, the energy dependence of the cross section <r(E). First, let us introduce in 

the cross section the astrophysical S-factor S(E), which contains all the nuclear 

3This is for nonidentical reacting particles ; for identical particles, a factor of ~ should be 

introduced. So the general form is r = n.~:~i:v>, where JAB is the Kronecker symbol evaluated 
as 1 when A= B. and 0 when otherwise. 
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physics effects, and varies relatively flatly with energy, leaving most of the energy 

dependence of r outside the S-factor, i.e., 

1
a(E) = Eexp(-27rTJ)S(E) (6.7) 

where P = exp( -27rTJ) is so called Gamow factor which represents the energy 

dependent penetrability of the charged particle through the Coulomb barrier. The 

Gamow factor is an approximation for low energies far below the height of Coulomb 

barrier which is precisely the region where the energies in stellar thermonuclear 

reactions mostly occur. The S-factor is very useful in that due to its smooth 

variation with energies, it can be used for extrapolating the cross section data 

of stellar nuclear reactions to very low stellar energies that we can not reach in 

laboratories. 

The quantity TJ is the Sommerfeld parameter, defined as 

(6.8) 

where ZA, Z 8 are the charges of the two reacting particles, respectively; the nu­

merical form is obtained when E is in units of keV and µ in amu (atomic mass 

unit). 

Inserting the above expressions into the form of (av), we find 

1 2 00 2 
8 ) / 1 ( E) ( /µ)1 27rZAZB e

(av)= ( 7rµ (kT)3/2 o S(E) exp - kT exp - Ii VE dE6 g 

1 2 008 ) 1 1 ( {Ea) ( . ) 1 E 

= ( 7rµ (kT)3/2 o S(E) exp - kT - VE dE 


where 

(6.10) 


is called the Gamow energy. 
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Maxwell Boltzmann 


exp(-E/kT) 


kT 

Figure 6.1: The probability distribution of a thermonuclear reaction with respect to 
the stellar energy E in the stellar environment at a given temperature T. It results 
from the combined effect of the Maxwell-Boltzmann distribution for the stellar 
gas and the energy dependent penetrability function arising from the Coulomb 
barrier in the cross section of the thermonuclear reaction. Instead of peaking at 
the maximum of the MB distribution, the combined distribution has its so-called 
Gamow peak at an energy E0 , representing the most probable energy for which 
the thermonuclear reaction will happen. 

By plotting the MB probability function giving the term exp(- E / kT), the 

penetrability factor giving the term exp(-JEa/E) and their product on the same 

graph (figure 6.1), we find that, even though the MB distribution indicates that 

at a temperature T the most probable energy a particle in a stellar gas can have 

is E = kT, the energy at which a reaction will most probably take place at T 

is shifted up to a new peak energy E0 , due to the rapid increase of the Coulomb 

~ :s
! l 

i/ 

Gamow peak 

Tunnel effect 

exp(-b/E1rz) 

Eo Energy 
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penetrability with energy. The new energy E0 is called the Gamow peak energy 

and is derived by setting the first derivative of the product of the exponential terms 

in Eq. 6.9 with respect to E to zero. We obtain 

rc:r 2/3 

Eo = (kTy .Da) = l.22(Z2 z2 mAmB T.2)1/3 (6.11)
62 A BmA +mB 

where the numerical form has the unit of keV, and n is in units of 106 Kelvin. 

From here we can also rewrite Ea as Ea = ( ¥¥) 2 
E0 . 

In figure 6.1, the width of the Gamow peak is the energy window where a 

thermonuclear reaction predominantly takes place at a given temperature T. We 

call this energy window the Gamow window for this reaction at the temperature 

T. To find the Gamow window analytically, we approximate the product of the 

exponential terms in the integrand of (uv) by a Gaussian function with the same 

peak energy and peak height as the Gamow peak, and the same curvature at 

E = E0 (that is the second derivative at E0 ). The width of the Gamow peak b. is 

approximated as the width of the Gaussian peak at its 1/e peak height. Then we 

can write the product of the exponential terms in Eq. 6.9 as, 

E Ea 3Eo E-E0( Pi) ( ) [ ( )2] (6.12)exp - kT - E ~ exp - kT exp - b./2 

By matching the second derivatives at both sides of Eq. 6.12 at E0 , we find the 

effective width b. of the Gamow peak in units of keV as 

(6.13) 

So the corresponding Gamow window should be the energy window from E0 - b./2 

to Eo + b./2. 

After discussing the concepts above, now we can continue with the derivation 

of the thermonuclear reaction rate. The form of (uv) we have derived so far is for 

the general case of charged-particle-induced reactions. Actually all these reactions 
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can be categorized into two cases: non-resonant direct nuclear reactions and res­

onant nuclear reactions. All nuclear reactions not forming a resonant compound 

nucleus can be regarded as non-resonant direct nuclear reactions, such as direct 

capture reactions, stripping reactions, pickup reactions and Coulomb excitation. 

In the calculation of the stellar nuclear reaction rate, the non-resonant reactions 

is specified as the direct capture reaction, i.e., proton capture reactions and neu­

tron capture reactions. The previous statement that the S-factor varies smoothly 

with energy applies to the non-resonant nuclear reactions but not to the resonant 

reactions. A resonant nuclear reaction arises from the formation of the compound 

nucleus of the two reacting nuclei and the rearrangement in the compound nucleus 

of the contributing nucleons. When the reaction energy E (the sum of the total 

energy in the CM frame and the reaction Q-value) matches a level energy in the 

compound nucleus, this level will be strongly populated and a peak at this energy 

in the plot of the S-factor or cross section versus energy will show up instead of the 

smooth variation for non-resonant reactions. The total reaction rate includes the 

contributions from both the non-resonant and resonant reactions, and their rates 

can be derived separately and simplified differently according to their different 

natures. 

6.1.1 Non-resonant reaction rate formalism 

As discussed in the previous subsection, the S-factor for non-resonant reactions 

varies smoothly with energy and thus it can be regarded to first order as a constant, 

i.e., S(E) = S(E0 ) =constant. Then we can take the S(E) out of the integrand in 

Eq. 6.9 and replace the Gamow peak function with the Gaussian function of the 
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previous subsection. We find 

1 2 
8 ) 1 1 tXJ ( E {Ea)

(av)dc = ( Jrµ (kT)3/2 S(Eo) lo exp - kT - VE dE 

1 2 2 

8 ) / 1 {''° ( 3E0 ) [ (E - E0 ) ]~ ( Jrµ (kT)3/2S(Eo) lo exp - kT exp - D../2 d~6.14) 
1 2 

8 ) 1 1 ( 3E0 ) y!KD.. 
= ( Jrµ (kT)3/2S(Eo) exp - kT -2­

2

(2) 11 D.. ( 3Eo)
= µ (kT)3/2S(Eo) exp - kT 

In this approximation, we use a symmetric Gaussian function to replace the 

asymmetric Gamow peak function. Therefore, to find a more accurate reaction 

rate, we need to make corrections to the rate derived above for the replacement 

of the peak function and the assumption of constant S-factor, since for many non­

resonant reactions the S-factor is not constant but varies with energy E. Due to 

its slow variation with energy, the energy-dependent non-resonant S-factor can be 

expanded in a Taylor series, with respect to E = 0 for ease of computation, 

S(E) = S(O) + S'(O)E + ~S"(O)E2 + · · · (6.15) 

where the prime represents the derivative with respect to E. We insert this expres­

sion for S(E) into the general formula (Eq. 6.9) for the non-resonant reaction rate 

and we get a sum of integrals, with each corresponding to one term in the expan­

sion of S(E). With this, we have made some corrections to the energy dependence 

of the S-factor. We then find that we can replace the Gamow peak function by 

a Gaussian function in each integral, as described previously, since the quantity 

related to the S-factor is a constant and can be taken out of each integrand. Fi­

nally we arrive at the formula for the non-resonant nuclear reaction rate, with an 
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effective constant S-factor SeJJ(E0 ) [1] in place of the S(E0 ) in Eq.(6.14), 

5 S' (0) ( 35 )
Se11(E0 ) = S(O) + S(O) Eo + 36 kT[1 + 127 

(6.16) 
~ S"(O) (E2 89E kr)]

+ 2 80 °+ 36 ° 

where T 3E0 / kT; the first two terms in the square bracket arise from the cor­

rection for the asymmetry of the Gamow peak, while the remaining terms account 

for the variation of the S-factor with energy; the coefficients of S(O), S'(O), S"(O) 

are in units of MeV·b, b, and b/MeV, respectively, and their values can be either 

obtained from fits to the experimental cross-section data; or deduced from its def­

inition in Eq. 6.7 using the cross section from shell model calculations, with the 

S(O) regarded as the averaged value of the calculated S(E) over the energy range 

of interest [72, 74, 75]. 

The formula of the reaction rate (per reacting particle pair) can be numerically 

written as [1] 

(6.17) 

Sample calculations can be found in Ref. [76, 77]. At low stellar temperatures, 

non-resonant thermonuclear reactions are the dominant contributors to the reac­

tion rate but as the temperature increases, the resonant reactions compete with 

the non-resonant ones and finally become the dominant contributors. 

6.1.2 Resonant reaction rate formalism 

In non-resonant nuclear reactions (direct capture), the light energetic projectile, 

e.g., the proton, interacts only with the surface of the heavy target nucleus and goes 

directly to form the final nucleus with the simultaneously emission of 1-rays. The 
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configuration of the nucleons inside the target nucleus remains unchanged. This 

is a single-step and direct process in which no intermediate state is formed, and it 

can occur at all center-of-mass energies. In contrast to this single-step and direct 

process, the resonant reaction is a two-step process in which the projectile travels 

into the target nucleus and shares its kinetic energy among all the nucleons in the 

target nucleus, rearranging their configuration according to the level structure of 

the final nucleus. As a result, an intermediate state of the compound nucleus of two 

reacting particles is formed when the total kinetic energy Ecm of the two reacting 

particles plus the Q-value or threshold energy, which the compound nucleus can 

absorb completely to rearrange and excite the internal nucleons, matches the level 

energy Ex of an excited state in the compound nucleus. The excited compound 

nucleus will then subsequently de-excite to low-lying states by ')'-decays or break up 

into other nuclei by particle decays. The Ecm for which this happens is therefore 

called the resonant energy ER. The relation between the energy of the excited 

state Ex in the compound nucleus and the resonant energy ER is given by 

(6.18) 

Since ER > 0, we can see that Ex > Q and the resonant reaction can thus only 

populate excited states in the compound nucleus with energies above the particle 

threshold. 

The energies (Ecm) of astrophysical interest are in the low energy range: for 

example, the Gamow peak energy of the 25 Al +p capture reaction is E0 ~ 1 Me V 

at temperatures characteristic of supernova explosions of about T9 = 1 (T9 is the 

astrophysical notation of temperatures, equivalent to GK.). The level density in 

this low energy range is relatively small which means that the resonant states 

do not overlap significantly and can be regarded as isolated and narrow resonant 

states (by "narrow" we mean the total width of the resonant stater« ER)· With 

this assumption, the cross-section for populating a resonant state can be described 
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by the single-level Breit-Wigner cross section, which is given by 

,\
2 2J + 1 f 1f2

8 (6.19)O"BW = 47r (2JA + 1)(2JB + 1) (l + AB) (E - ER) 2 + f 2 /4 

where ,\ is the de Broglie wavelength, given by ,\ = 2n/k = 2n1i/y'2jiE with 

k= p/ n = y'2jiE/n as the wave number; JA, J8 , and J are the spins of the 

two particles in the entrance channel4 and the compound nucleus, respectively. 

They are related through angular momentum conservation by S EB l = J with the 

channel spin S = JA EB J8 and with l representing the relative orbital angular 

momentum of the two reacting particles; the factor ( 1 +8AB) accounts for the fact 

that the two reacting particles are identical. Eis the total energy in the center-of­

mass frame, and r 1 , r 2 are the partial widths of a resonant state for the entrance 

channel and exit channel and r = r 1 +r 2 is the total resonance width. The ratio 

of the partial resonance width to the total width is the probability of the formation 

of the compound nucleus by the corresponding channel. The total width of a state 

is a quantity related to its mean life time T by the uncertainty principle ft ~ n, 
through which the total width can be also obtained using a half-life measurement. 

After replacing the cross section reaction rate formula (Eq. 6.6) with the a8 w 

and realizing that the Maxwell-Boltzmann distribution function, E exp(- E / kT) 

is almost constant over the total width of a narrow and isolated resonance, as 

shown in figure 6.2 and therefore can be evaluated at E =ER and taken out of the 

integral, we can arrive at a simplified formula for the reaction rate for a narrow 

4 "Channel" refers to the way the compound nucleus is formed or decays, with the entrance 
channel for formation and the exit channel for decay. 
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Maxwell-Boltzmann 

narrow resonance 

Energy 

Figure 6.2: The Maxwell-Boltzmann distribution and a narrow resonance. 

resonance 

(6.20) 

where w is the statistical factor, given by 

2J + 1 
(6.21)W= (2JA + 1)(2JB + 1) (l + b°AB) 
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and the 'Y = r 1r 2 /r. The product of wand 'Y is called the strength of a resonance, 

(6.22) 


For the capture reactions ( (p, 'Y) or (a, 'Y))in the stellar environment, the en­

trance channel is the proton capture by the heavy nucleus and the exit channel is 

the 'Y-decay of the intermediate compound nucleus. The entrance and exit widths 

will be denoted by r P and r 'Y" If the compound state is in a higher resonant state, 

it is more probable for a proton inside the compound nucleus to penetrate the 

Coulomb barrier (proton decay) than for the nucleus to decay by 'Y-transitions 

( 'Y-decay). For this case, r P >> r 'Y and r ~ r P and the resonance strength is thus 

reduced to Wr ~ wr'Y' depending only on the 'Y width. For low-lying resonant 

states just above proton threshold, the compound nucleus is relatively stable for 

proton decay compared with 'Y-decay. This implies that r P « r 'Y and r ~ r 'Y and 

the resonance strength is thus reduced to W'Y ~ wrP' depending only on the pro­

ton width. It is recalled from the non-resonant reaction rate formalism that only 

reactions with the total energy E in the center-of-mass frame within the Gamow 

window contributes greatly to the reaction rate. This also applies to the reso­

nant reaction rate in that only the resonant states within the Gamow window at 

a stellar temperature contributes greatly to the reaction rate. Contributions from 

resonances beyond the Gamow window can be neglected. 

If there are many resonances within the Gamow window, the total reaction rate 

is just the sum of the rate for each individual resonance, and it is written as 

where the masses are in units of amu, the resonance strength W'Y in eV and the 

resonant energy ER in Me V. 
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6.2 	 Stellar reaction rate of the 25Al(p,1)26Si re­

action 

We calculated the new reaction rate of the 25Al(p,1) 26Si reaction using our results 

of energy levels or resonances in 26Si from the two experiments. The contribution 

from the direct capture reaction will not be recalculated in this thesis and is taken 

directly from Ref. [75]. The resonant contribution from each resonance is calculated 

using Eq. 6.23 given in the last section. Since only energy levels above the proton 

threshold energy can be populated in this reaction, only these levels contribute to 

the reaction rate. From the NSCL experiment, two levels at Ex=5.909 MeV (3+) 

and 6.446 keV (3+) are adopted for the rate calculation, while from the elastic 

scattering experiment at CRIB, three resonances at Ex=7.135 MeV (2+), 7.495 

MeV (2+) and 7.647 MeV (3+) are used as inputs for the calculation. We will also 

include the levels from previous work [10, 11, 12] in our calculations. 

For the level at Ex=5.909 MeV (ER=Ex-5.518=391 keV, 3+), the value of the 

1 width (f,,=0.033 eV) is taken from Ref. [75] while the proton width f Pis taken 

as the average of the value (fp=2.3 keV) in Ref. [12] and that (fp=2.68 keV) in 

Ref. [11]. Therefore, the resonance strength is calculated to be W/=l.9x10-2 eV. 

In the rate calculation, the ER will be taken as the average value (394 keV) of that 

(396 keV) from Ref. [12] and our result (391 keV), as well as for the level energy 

(averaged Ex=5.912 MeV). 

For the level at Ex=6.446 MeV (ER=928 keV, 4+), there are no experimental 

information on f,, and f p· Instead, f,, for this state can be calculated or esti­

mated using the experimental transition information of the mirror state in 26Mg 

at Ex=6.622 MeV. The/ width of a state associated with a Ml or E2 transition 

is calculated by 

r,,(Ml) = ;J~Lr~(Ml) [eV] (6.24) 

r,,(E2) = ;Jf~~lr~(E2) [eV] (6.25) 
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where B(Ml) and B(E2) are transition probabilities from measurements or calcu­

lations in Weisskopf-units; Bw(Ml) and Bw(E2) are the corresponding Weisskopf 

units; f~(Ml) and r~(E2) are the Weisskopf-unit /widths for Ml and E2 tran­

sitions (in eV), respectively. They are given by [78], 

r~(Ml) = 2.1x10-2E~ [eV] (6.26) 

r~(E2) = 4.9 x 10-8A413E~ [eV] (6.27) 

where By is in units of MeV. Using the B(Ml) and B(E2) of transitions from 

the Ex=6.622 MeV state in 26Mg [80], we calculated r,,=1.7x10-2 eV. The proton 

width r P can be either taken from its mirror state in 26Mg or calculated based on 

the fact that it is proportional to the penetrability through the Coulomb barrier [l]. 

Therefore we can find r P by scaling the proton width of a known resonance by the 

ratio of the penetrability (if the reduced widths are the same), that is 

(6.28) 


The penetrability is given by 

(6.29)P(E) ~ exp(-21rry) ~exp (-31.29 x ZAZn 

where mis the mass of the reacting nucleus and Z is the proton number; A and 

B refer to the 25 Al and proton respectively. 

From Ref. [79], the Ex=6.622 MeV state in 26Mg has a half life of T1; 2=19 fs. 

According to uncertainty principle, the total width of this level can be calculated 

to be f=0.693h/T1; 2= =0.15 eV. Assuming the total width r = fp+r,,, the proton 
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width is then calculated to be rp=0.13 e V and the resonance strength 

21+1 r'YrP 
Wr = (2JA + 1)(2JB + 1) x (r'Y + fp) 

(2x4+1) 0.017 x 0.13 
= x----­
(2x~+1)(2x~+1) (0.017 + 0.13) 

= 1.13 x 10-2 eV. 

We take this as the resonance strength for the Ex=6.446 MeV level in the reaction 

rate calculation. 

For the three levels at Ex=7.135 MeV (ER=1617 keV, 2+) , at Ex=7.495 MeV 

(ER=1977 keV, 2+) and at Ex=7.647 MeV (ER=2129 keV, 3+), no transition 

information is available from their mirror states in 26Mg. But we can still obtain 

an upper limit of the r width r 'Y for each level by calculating the Weisskopf-unit 

r widths of single-particle transitions. They are calculated as E2, E2 and M3 

transitions5 , respectively and we get, 

r -y{E2; E-y = 7.135MeV) = 4.9 x 10-s A413 x 7.1355 = 6.98 x 10-2 [eV] 

r -y{E2; E-y = 7.495MeV) = 4.9 x 10-s A413 x 7.4955 = 8.93 x 10-2 [eV] 

f-y(M3;E-y = 7.647MeV) = 6.8x10-15A4
/ 

3 x 7.6477 = 8.01x10-7 [eV] 

Combining these r widths with their proton widths extracted from the R-Matrix 

fit for the three resonances, r p=42 ke V, 10 ke V and 89 ke V, respectively, we find 

that r 'Y « r P at these high energy levels. Therefore, we can simplify the resonance 

strength as Wr = w x r 'YrpI (r'Y + r p) ~ wr 'Y' as discussed earlier. The resonance 

strength of these levels are calculated to be w1 = 2.91 x 10-2 eV, 3.72 x 10-2 eV 

and 4.67 x 10-7 eV. 

Table 6.1 lists all the input parameter values to be used in the calculation of 

the 25 Al(p,1)26 Si reaction rate. 

The calculated reaction rates within the temperature range of astrophysical 

5For an A/3 transition, the Weisskopf-unit I width is calculated by r~v (M3) = 6.8 x 
10-1.5A4/3E~ [eV] 
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Table 6.1: List of parameters to be used in the calculations of the 25 Al(p,1) 26 Si 
stellar reaction rate. The parameters of the last two resonances are adopted from 
Ref [12]. 

.r Ex(11eV) ER(keV) rp (eV) r"l(eV) w1(eV) 

3+ 5.912 394 2.49 3.30x 10-2 l.90x 10-2 

4+ 6.446 928 0.13 l.70x 10-2 l.13x 10-2 

2+ 7.135 1617 4.3x104 6.98x 10-2 2.91x10-2 

2+ 7.495 1977 l.Ox 104 8.93x10-2 3.72x10-2 

3+ 7.647 2129 8.9x 104 8.0lx 10-7 4.67x10-7 

1+ 5.673 155 l.3x 10-9 l.lOx 10-1 3.25x10-10 

o+ 5.946 428 l.9x10-2 8.80x 10-3 5.0lx 10-4 

interest (see Chaper 1), are listed in Table 6.3, where ER1, ER2, ER3, ER4 , and 

ER5 refer to the first five resonances in Table 6.1 in that order, and ER6 and ER7 

are the resonances found in other studies [10, 11]. The rates from the resonances 

ER6=155 keV (J7r = 1+) and ER7=428 keV (J7r = o+) are directly adopted from 

Ref [12]. The plots of these rates are shown in figure 6.3 and 6.4. From the plots, 

we can see that the high energy resonances (ER3 , ER4 , ER5) only make significant 

contributions to the rate at high temperature (T9 >1) and their contributions at 

low temperatures are negligible compared with non-resonant contribution (DC), 

due to their much weak resonance strengths and high resonance energies (far away 

from Gamow windows at low temperatures). The ER1 starts to make significant 

contribution at T9 >0.l and then becomes dominant. The rate from ER2 can be ne­

glected at T9 <0.7 but is comparable with the DC rate at higher temperatures. The 

DC contribution is dominant over the resonances at low temperatures (T9 <0.l). 

As the temperature increases, its percentage in the total reaction rate keeps drop­

ping until a minimum is reached at T9 ,...., 0.5, although its absolute contribution 

keeps increasing. After that, its percentage in the total rate increases slowly as 

the temperature increases but it will no longer dominate. 
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A comparison of the total rates from our calculations to the rates in Ref. [12] and 

in Ref. [11] is shown in figure 6.5. Agreement can be seen between our calculations 

and rates from Bardayan et al. [12] except that there is a slight difference within the 

temperature range 0.15 - 0.3 GK, arising mainly from the difference of the energies 

of the resonance at ER=394 keV used in the calculations. The discrepency between 

our calculations and the rate from Parpottas et al. [11] at lower temperatures 

(T <0.2 GK) is thought to be possibly due to their calculation mistake of the 

resonance strength for the resonance at ER=428 keV, which is calculated to be 

w1=5.0lx10-4 eV in this study. 

la2 -... --.. 
- ---DC --­
---- 394 keV 


....... 928 keV 


-- - 1617 keV 


- ··· 1977 keV 


- - 2129 keV 

,, 

,' ,, 
,' ,.· ,,
' ,• ,, 

,_, .,, ,,,,, ,,,.,,, 
,."'' I / 

I,,.· ,' 
I I 

/ 

.· ' I,, ' .· ' I 
I,, ' .· ' I ,, ' I I 


10· 15 
 ..... ,' 
I I 

..... ' 
I I/ 

' ' 
' ' 

I I 
/ I' ' 10-18 

' ' 
I 

/ I 
I 

..... I I 

;' ' 
II I 

10-21 
' ' 
' ' 
' ' 

I I 

I 

.i... .i. -"­
10-1 Temperature [GK] 

Figure 6.3: The 25 Al(p,1)26Si reaction rates from direct capture reaction and indi­
vidual resonances from our study. 
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Figure 6.4: The 25 Al(p ,')')26Si reaction rates from direct capture reaction and from 
the major contributing resonances. The sum of all contributions is also shown as 
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Table 6.2: List of calculated rates NA (<ru) of the 25Al(p, !')26Si stellar reaction from individual resonances at different 
stellar temperatures, in units of cm3s-1mol-1 . I"'d 

T(GK) DC Em ER2 ER3 ER4 ER5 

0.04 1.590x10-20 8.713x10-45 2.695x 10-112 1.066x10-198 5.949x 10-244 5.263x10-268 

0.05 1.770 x 10-18 5.291x 10-% 4.686x10-89 4.272x10-158 2.814x10-194 1.685 x 10-214 

0.06 6.410x10-17 1.675x10-28 1.388x10-n 4.757x 10-131 3.500x 10-151 7.497xl0-179 

0.07 1.120x 10-15 7.105x10-24 1.506x10-52 9.570x 10-112 1.471x10-1:37 2.101x10- 15:i 

0.08 1.190x 10-14 2.044x 10-20 2.773x10-54 2. 798 x 10-97 7.474x 10-120 2.491x10-134 

0.09 8.720x 10-14 9.813x10-18 7.281x10-4s 4.888x10-86 4.323x10-105 1.670x 10-119 

""""'O'l 
0.10 4.840x10-13 1.:348x10-15 9.780x 10-43 4.739x10-77 4.349x10-95 1.192x 10-107 

00 
0.15 2.040x 10-10 3.052x 10-09 2.onx10-27 3.776x10-50 3.870x10-52 3.796x 10-72 
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Table 6.3: Cont'd: List of calculated rates NA((rn) of the 25 Al(p,/) 26 S'i stellar reaction from individual resonances at 
different stellar temperatures, in units of cm3s-1mo1- 1 . I":1 

T(GK) DC En6 Em Total 

0.04 1.590x10-20 1.937x10-22 l.195x10-50 l.609x 10-20 

0.05 l.770x 10-18 1.116x10-18 5.217x 10-40 2.886x 10-18 

0.06 6.410x 10-17 3.412xl0-16 6.153x10-33 4.053x10-rn 

0.07 1.120x 10-15 1.962x 10-14 6.678x 10-28 2.074x 10-14 

0.08 1.190x10- 14 3.987 x 10-13 3.887x 10-24 4.106x10-ia 

0.09 8.720x10-14 4.063x 10-12 3.228x10-21 4.151x10- 12 

I-' 0.10 4.840x 10-13 2.560x10- 11 6.871x10-19 2.609x10-11 
O'l 
c.o 

0.15 2.040x 10-10 5.599x 10-09 5.798x 10-12 8.861x10-0!J 
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1.50 6.310x 10-01 8.616x 10-05 l.607x 10+00 8. 228 x 10+01 
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Figure 6.5: The ratios of the total reaction rates from our calculations to the rates 
from Barda.yan et al. [12] and Parpottas et al. [11] 
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Summary and outlook 

As an important probe of the inter-stellar medium (ISM), the amount of galactic 

26 Al needs to be calculated more accurately in order to understand stellar evolution 

better by its constraints on the stellar models. The 25 Al(p,/) 26 Si reaction plays 

an important role in producing the 26 Al at the explosive burning temperatures 

(nova and supernova explosions), and determining the accuracy of the final total 
26 Al yield predictions. Large uncertainties however (in resonance energies and 

spin-parity assignments) exist for the states of astrophysical interest (right above 

the proton threshold energy Sp=5.518 MeV) in 26 Si in the Gamow window at 

these temperatures. More input data are clearly needed in the calculation of the 
25 Al(p,/)26 Si reaction rate at the temperatures of astrophysical interest. 

A few recent experiments have been done to study the astrophysically im­

portant states in 26 Si. Caggiano et al found two new states above the proton 

threshold at Ex=5.678(8) MeV (ER=l60 keV) 1 and Ex=5.945(8) MeV (ER=527 

keV) using the 29Si(3He, 6He) 26 Si reaction, and assigned J7r=l+ and 3+ to these 

two states [10]. In the experiment, they detected the 6He to find the excited states 

in 26 Si. Bardayan et al. performed a 28Si(p,t)26Si experiment in which tritons 

were measured at different angles to deduce the excited states in 26Si and the 

angular distributions of the differential cross-section. They found a new state at 

1The number in the square following the energy value represents the associated uncertainty 
for the last digit. For example, in "5.678(8) MeV", the uncertainty is 0.008 MeV. 
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Ex=5.914(2) MeV (ER=396 keV) which was assigned J7r=Q+ in their first DWBA 

calculations [9] and later assigned J1r =3+ in their re-evaluation with the FRESCO 

code [12]. They however did not observe the two states found by Caggiano et al. 

Parpottas et al. used the (3He,n) reaction to study the 26Si structure by measuring 

the neutron at different angles. They confirmed the three states found in the two 

experiments above with Ex=5.670(4) MeV (ER=152 keV), 5.912(4) MeV (ER=394 

keV) and 5.946(4) MeV (ER=428 keV) and J7r=l+, 3+ and o+, respectively, made 

by the Hauser-Feshbach (HF) calculations of differential cross-section [11]. 

A more recent experiment (by Komatsubara et al. with McMaster participa­

tion) has been performed using the (3He,n'Y) reaction in which instead of detect­

ing the neutrons they measured the ')'-rays from the decays of the excited 26 Si 

states [39]. By constructing cascades of 'Y emissions with the ')'-')' coincidence tech­

nique, they confirmed the state at Ex=5.674 MeV (ER=156 keV) and also found 

a new state at Ex=5.886 MeV (ER=368 keV) which decays to the first excited 

state of 1.796 MeV with a 4.089 MeV ')'-ray emission. In their preliminary analysis 

for the spin-parity assignments by the directional angular correlation (DCO) tech­

nique for coincident ')'-rays, they tentatively assigned J7r =O+ to this newly found 

level. 

We successfully performed two different experiments via the p(27Si, 26Si*)d re­

action (referred to as (p,d) in the following) and the p(25 Al,25 Al)p (referred to 

as (p,p) in the following) elastic scattering with radioactive beams to study the 

structure of 26Si for the first time with these reactions. 

In the (p,d) experiment, we also measured the ')'-emissions from the excited 26Si 

and constructed the ')'-cascades with the ')'-')' coincidence technique to determine 

the level energies. We found one state within the range of 5.6 MeV to 6 MeV with 

Ex=5.909 MeV (ER=391 keV) which decays to the 1.796 MeV state with a 4.113 

Me V ')'-ray emission. According to our analysis, this state is the same state as that 

3+ state around 5.912 MeV found by Bardayan et al. and Parpottas et al. and we 

adopted the spin-parity assignment of pr=3+ from them. We also believe that the 
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4.113 MeV 1-ray corresponds to the 4.089 MeV 1-ray observed in the experiment 

by Komatsubara et al. and therefore we cannot confirm that the state found by 

them (Ex=5.886 MeV) is a new state. Above Ex=6 MeV in 26Si, we found a new 

state at Ex=6.443 MeV (ER=925 keV) which decays to the Ex=4.183 MeV state 

with a 2.260 MeV 1-ray emission. We suggest a spin-parity of J7r =4+ for this 

state by matching this cascade with those from the corresponding level ranges in 

its mirror nucleus 26Mg. We did not find the Ex=5.674 MeV and 5.946 MeV levels 

from our analysis. 

In the (p,p) experiment, we measured the scattered protons to deduce the 

experimental differential cross-section. An energy range of 0-3 MeV (Ecm; cor­

responding to Ex=5.518 MeV - 8.518 MeV) above the proton threshold in 26Si 

was scanned using a thick target. Actually, we did not see peak signatures in the 

excitation function in the region of Ecm ;S 1.2 MeV because the Coulomb scat­

tering cross-section is dominant in this low energy region. In the region above 

that, we can see many peak-like signatures but we can definitively identify three 

peaks as true resonances. Furthermore, only for these three peaks could good fits 

be made with the R-Matrix calculations of the differential cross-section. From 

the fit, we extracted the three resonances at ER=l.882 MeV (Ex=7.135 MeV) 

with J7r=2+, ER=2.018 MeV (Ex=7.495 MeV) with J7r=2+ and ER=2.251 MeV 

(Ex=7.647 MeV) with J7r=3+. The first two resonances likely correspond to the 

levels at Ex=7.150 MeV and 7.493 MeV found by both Bardayan et al. and Par­

pottas et al. The third resonance matches the level at Ex=7.694 MeV found by 

both Bardayan et al. and Parpottas et al. within a reasonable error range. As for 

the spin-parity assignments for the three states, our R-Matrix fit results agree with 

those from Bardayan et al. and Parpottas et al. but there is a discrepancy for the 

third one for which our R-Matrix fit indicates J7r =3+, whereas both Bardayan et 

al. and Parpottas et al. assigned J7r =3-. 

Based on our results from both experiments, a new reaction rate for 25 Al(p,1) 26Si 

was calculated. The contributions from the three high-energy resonances with 
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Ex>7 MeV are negligible at low temperatures (nova temperaturesrvT8 , Gamow 

window range Ex=5.621-6.461 MeV) but will come to play a role at high tem­

peratures (supernova temperaturesrvT9 , Gamow window range Ex=5.907-10.493 

MeV). The newly found 6.443 MeV (En=925 keV) state contributes to the reaction 

rates at high temperatures (T9 >1), comparable with the non-resonant contribu­

tion. Therefore, the most significant contributions at nova temperatures are from 

resonances with En<l MeV. 

Although much progress has been made from all of these experiments performed 

for the study of the astrophysical important states in 26 Si at nova and supernova 

temperatures, we note that further study to resolve uncertain states and find more 

new states will require the measurement of the angular distribution of the transfer 

reactions and the ')'-emission cascades with higher-precision and more efficient de­

tectors, and with beams of higher intensity. As the development of the radioactive 

beam (RIB) technique proceeds further, direct measurements of the 25 Al(p,')' )26 Si 

reaction with low-energy and high-intensity RIBs will be the best choice for further 

study in the future. 
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Production of RIBs in laboratory 

The methods for producing the short-lived radioactive beams (RIBs) in the lab­

oratory can be categorized into two types: the ISOL method and the In-flight 

method, which can produce RIBs in different energy regimes and thus are comple­

mentary. Figure A.1 shows a schematic diagram of the beam production by these 

two methods in comparison. 

A.1 ISOL - Isotope Separator On-Line 

In the ISOL method, radioactive ions are first produced by a primary accelera­

tor or by the neutrons from a nuclear reactor and then stopped by a production 

target after which the radioactivity is transported into an ion-source. The radioac­

tive nuclei from the ion source are extracted in the form of ions with the desired 

charge-states and then go through the selection of mass separators to remove the 

unwanted particles from the beam. After this mass separation, the beam will 

get re-accelerated by a second accelerator to the desired energy for the nuclear 

experiments. 

With the ISOL technique, beams of high quality can be produced, which is 

comparable to that of stable beams because the process is similar to that for the 

stable beam production. Strong ISOL beams can be produced but the intensity 
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Figure A.1: The schematic diagram of the RIB productions by the ISOL method 
and the in-flight method. 

varies with the chemical species used for the ion-source and their radioactivities. 

This technique also depends on the diffusion and effusion of the radioactive atoms 

in the production target. To facilitate the production process, the production 

target is always maintained at high temperatures (about 2500°C). Since the time 
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of the diffusion processes vary, this method is not suitable for short-lived nuclear 

species with half-lives of milliseconds or less because the radioactive nuclei could 

decay before they get re-accelerated to the secondary target. 

A.2 In-flight method 

In the in-flight method, the radioactive beam is produced by the fragmentation of 

heavy primary beam on a light target. Interactions with the light target nuclei can 

result in fragmentation and the produced nuclei can leave the target with velocities 

close to those of the beam projectiles. Due to the nature of fragmentation, many 

different species will be produced. Since the produced beam particles already have 

high velocities, they do not need further acceleration as in the ISOL method to 

transport them to the secondary target and therefore it is suitable for production 

of short-lived radioactive beams. Before the beam particles reach the secondary 

target beam, a beam separation is necessary, by which the beam particles can 

be identified and separated by mass, charge and momentum in a spectrometer 

(fragment separator). But even after this separation, the beam can be still con­

taminated by other particles with characteristics close to the desired beam particle. 

Further identification for the beam particles are needed on an event-by-event basis. 

Using in-flight, we can produce all chemical species with half-lives greater than 

about 150 ns which is the time of transit through the fragment separator. The 

main disadvantage of this method due to the nature of fragmentation is that it is 

difficult to produce RIBs with high intensities and high purities and the produced 

beams have poorer quality in terms of energy and focusing. 

Both of our experiments at the NSCL facility and the CRIB facility use the 

in-flight method to produce the RIBs. 

The best method for the RIB production in the future is the one that combines 

the ISOL and in-flight methods by stopping fragmentation products in a gas cell. 
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R-Matrix theory 

The R-Matrix theory is a theory of the cross-section of compound nuclear reaction. 

A compound nucleus is formed via the strong short-range nuclear force which exists 

only inside the nucleus. Outside the nucleus the Coulomb force plays the dominant 

role. Therefore the wave functions inside and outside the nucleus in the formation 

of compound nuclei behave differently, and a nuclear surface is then defined as 

existing at a radius ac representing the boundary between the internal and external 

region. Outside the surface, due to the weak electromagnetic interaction, the wave 

function is simply described as a linear combination of the incoming and outgoing 

waves. But in the internal region, the wave function is confined in the nuclear 

volume enclosed by the nuclear surface and thus can be expressed as a standing 

wave, the eigenvalue of which gives the resonant energy of a resonant state in the 

compound nucleus. But since the compound nucleus cannot last forever, and it can 

break out or decay in many exit reaction channels, the wave function is actually 

not an exact standing wave but a complete orthonormal set of such standing wave 

functions associated with all resonant states. 

In the following, the derivation of the R-Matrix formalism for a simple particle 

scattering from a central potential is described. In the internal region, the total 
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radial wave function '11 satisfies the radial Schrodinger equation, 

n,2 d2'11 
---- + V(r)'11 = E'lt (B.l)

2m dr2 

where the mass m is actually the reduced mass the scattering system. 

As mentioned above, the internal wave function is described by a complete set 

of wave functions of resonant states, as follows 

(B.2) 


where X>. represent the standing wave functions of the resonances labeled >.. All 

these resonances satisfy the Schrodinger equation, 

(B.3) 

where E>. are the energy eigenvalues of the resonant states. The energy-dependent 

coefficients C>. are given by 

C>. =lac X~'ltdV (B.4) 

where the V represents the nuclear volume enclosed by the surface at r = ac· 

Since the X>. are stationary, they must satisfy the boundary condition on the 

nuclear surfacer= ac, given by 

(B.5) 


where b is the boundary condition number and can be arbitrarily chosen. 

By multiplying Eq. B.1 by X~ and the conjugate of Eq. B.3 by '11, subtracting, 

and integrating over the nuclear volume V, we obtain 

_!f_ ('ltdX~ _ X* d'lt) = (E - E>.) re X~'ltdr (B.6) 
2m dr >. dr r=ac Jo 
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Using Eq. B.4 and Eq. B.5, we obtain 

(B.7) 


Substituting this expression of C).. to Eq. B.2, we get 

(B.8)w(r) = G(r, ac) (r ~~ - bw) r=ac 

where the Green's function G(r, ac) is given by 

(B.9) 


which relates the value of the wave function in the internal region to its derivative 

on the surface and defines the R function as its value at r = ac 

(B.10) 


where 

(B.11)'YA= ( 2~:J
112 

X;(ao) 

is referred to as the reduced the reduced width of the resonant state. 

The R-function then relates the internal stationary parameters such as the wave 

functions and eigenenergies to the total wave function W at the nuclear surface 

From Eq. B.8, we get 

(B.12) 


then we can find that 
l+bR 

(B.13) 

This implies that if we know the logarithmic derivative of the wave function at 
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r = ac for all energies, we will know the cross-section for all energies as well. 

In the external region, the total wave function can be written as a linear com­

bination of the linearly independent incident and outgoing radial waves, 11 and 0 1, 

in the form 

(B.14) 

where the coefficient U1 is so-called collision function which is the amplitude of the 

unit-flux outgoing wave 01 associated with a unit-flux incoming wave ft. The index 

l here denotes the incident relative orbital angular momentum of the scattering 

system. 

The radial incoming and outgoing wave functions at large distance can be 

written as 

11 = -exp[i(kr - 7rl/2 -17ln(kr))] 
(B.15) 

0 1 = exp[i(kr - 7rl/2 - 17ln(kr))] 

where k is the wave number and 77 is the Coulomb parameter- the Sommerfeld 

parameter, depending on the charge Z1 and Z2 of the scattering pair and their 

relative velocity v, and they are given by 

k = V2ffiE 
ti (B.16)

Z1Z2e2 
77= --­nv 

If we let p = kr, 11 and 0 1 will be functions of p. 

Alternatively, the incoming and outgoing radial wave functions can be written 

in terms of the regular and irregular Coulomb functions Fi and G1 as 

11 = (G1(kr) - iF[(kr))exp(iw1) 
(B.17) 

01 = (G1(kr) + iF[(kr))exp(-iw1) 
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where w1 is the Coulomb phase shift, and is given by 

Wz = L
I 

tan-1 (17z/n). (B.18) 
n=l 

If there is no Coulomb field in the external region (neutron scattering) or at large 

distances (r » ac), we will have 1J,...., 0, that is, zero Coulomb phase shift w = 0. 

The regular and irregular Coulomb function F,, and G1are given by (Pg. 269 

in [52]) 

r;b
F,,(kr) = y211+~ (kr) = krj1(kr) 

(B.19) 
I r;b

Gz(kr) = (-1) yTJ-(l+~)(kr) = -krnz(kr) 

where lz+~(kr) andJ_(z+~)(kr) is half-integer Bessel functions, Jzkr is the spherical 

Bessel functions and and n1kr is the spherical Neumann function. 

By evaluating the logarithmic derivative of the external wave function at the 

nuclear surface r = ac and matching it with that of the external wavefunction in 

Eq. B.13, we obtain 
1 +bR = (!{- U10f) (B.20)

Rae fz - UzOz r=ac ' 

where the prime means fr and it follows that 

Ui = 11 + bRiz - RI{ , I 
Oz+ bROz - R01 r=ac 

(B.21) 
l -LiR /z I 

= l-LzROz 
ac 

where we use the fact that 11 = Oi and L1 is the logarithmic derivative quantity 

at r = ac, given by 

Lz = ac ( ~f) -b = Sz + iP,, (B.22) 
l r=ac 

Here 81 is defined as the shift function leading to level shifts and P,, is the penetra­

bility leading to level widths. Both of them are evaluated at r = ac. Then using 
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Eq. B.17 in above equation, we can find the expressions of the shift function and 

penetrability function in terms of the Coulomb functions as follows 

S _ Fz(kr)F((kr) + Gz(kr)G~(kr) I 
z - ac F'z2(kr) + Gf(kr) r=ac 

(B.23) 
kac I 

Pi = F'z2(kr) + Gf(kr) r=ac 

Then we can rewrite the collision function Uz in Eq. B.21 in terms of Sz, Pi and 

the R function using Eq. B.17, Eq. B.21 and Eq. B.22, as 

(1 - SzR) + iP,,R Gz(kr) - iF(kr) . 
(B.24)Uz = (1 - (SzR) - iPiR Gz(kr) + iF'z(kr) exp(2iwz) 

It follows that 

Uz = exp(2iof)exp(-2i</>z)exp(2iwz) = exp[2i(of - <Pz + wz)] = exp(2ioz), atr = aac 

(B.25) 

As we can see the collision function can finally expressed as a simple form as 

Uz = exp(2ioz) with the Oz is called the total phase shift, 

(B.26) 

with 

R -1 PiR
Oz =tan 1- SR 

z 
(B.27) 

,i.. _ -1 Fz(kac) 
'f'l - tan Gi(kac) 

and wz from Eq. B.18, the Coulomb scattering phase shift. of is the resonance 

contribution to the phase shift and <Pz is the hard sphere scattering phase shift. 

Now in order to find the relation between the collision function Uz and the dif­

ferential cross-section, we start with the total wave functions. The total incoming 
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and outgoing wave functions, T1 and 0 1, are given by (Pg. 270 in [52]) 

·ly, fz .1.Tl = 'l 10-i--;2 '+' v r (B.28) 
/l"l ·ly, 01 .1. 
v1 = i zo-i--;2 '+' v r 

where 'ljJ is the wave function associated with other quantum numbers and the 

spherical harmonics function Ylo is just 

(B.29) 

Therefore the total wave function WT can be written as the linear combinations 

of the total incoming and outgoing wave functions, as follows 

(B.30) 

It follows that 

(B.31) 

Substituting the expression of Ylo and Eq. B.17 (the Coulomb shift is taken as zero 

at large distances) into the above equation and using Eq. B.19, we obtain 

~ A1i1Ylo'l/J . ~ Azi1Ylo'l/J .
WT= L.J (-2i.Fl) + L.J (1 - U)(Gz + i.Fl)112 112v r v r 

1 1 

_L ~l -i·l+l)R(1 cos r (B.32)+ 1 Azk'l/J( B). (k )- ---- J1 
7r vl/2

l 

~ fif+lA1k'l/J 1+~ y4;- vl/2 i (1 - Uz)Pz(cosB)(j1(kr) + in1(kr)) 
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Recall that a plane wave exp( ikz) can be expanded as follows 

exp(ikz) = exp(ikrcosO) = L i 1(2l + l)j1(kr)Pz(cos0) (B.33) 
l 

and h1(kr) = j1(kr) + in1(kr) is the spherical Hankel function of the first kind and 

is approximated as h1 (kr) -iexp(ikr)I (kr) at large distances. Then the aboverv 

expression of Wr can be written as 

""""' (-ik)Wr = ~ A1 x i 1(2l + l)j1(kr)Pz(cosO)Jv1127r(2l + 1)1 
(B.34) 

+ "°""' J2l + 1 A1 (-il+l )(l _ Ui)Pi(cosO) exp(ikr) 
v1/ 2~ 47r r 

l 

Now we define a value of A1 so that the first term in the expression Wr is just a 

plane wave exp( ikz), that is, 

iyl7r(2l + l)v1/ 2 

Az = --'----k--- (B.35) 

Using this value of A1 in the expression of Wr, we obtain 

,y, ( .k ) J(O) exp( ikr) 
'J!T = exp i z + (B.36) 

r 

with 

1 """"' . (B.37)f(O) = k ~ i 
1(2l + 1)(1 - U)Pz(cosO)

2
l 

Thus we find that the total wave function is just a superposition of an incoming 

plane wave and an outgoing scattering radial wave. The J(O) is thus the nuclear 

scattering amplitude and the differential cross-section is then given by 

2 

da(0) 1 "°""' (B.38)~ = lf(O)l2 
= 

4
k2 ~(2l + 1)(1 - Ui)Pz(cosO) 

l 

Finally we find that the differential cross-section depends on the collision func­
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tion U1 which in turn depends on the phase shifts associated with Coulomb scatter­

ing ( Wz), hard-sphere Scattering ( </>z), and resonant scattering (on, with the third 

one determined by the R function. It is the R function within which all the in­

formation about the stationary states, such as resonance energies and widths is 

contained Therefore, if we know the resonance energies and widths of resonances, 

we can calculate the R function and then the collision function from which the 

differential cross-section can be calculated. Likewise, if we have data of resonant 

scatterings or reactions from experiments and use the formula of differential cross­

section with R function to fit the data, we can extract the resonance energies and 

widths for unknown resonances, the spin-parity J7r as well. 

The above derivations are for the simple case of the single channel resonant 

scatterings or reactions. If there are more scattering or reaction channels involved 

to populate different resonance states, the multi-channel representation is needed. 

For this case, the R-function will become an R-matrix with each element repre­

senting the correlation between two channels. In turn, the collision function in 

Eq. B.21 is then a collision matrix and it should be re-written as [page 732 in 

Ref. [53]] 

(B.39) 

/ 2 / 2where ( kr) 1/ 2 and (kr)-1 are the diagonal matrices with diagonal elements ( kr) 1

and (kr)-1!2 , respectively; 0 ,I and Lare also diagonal matrices with component 

Oc ,le and Lc(c the channel label); the simple inverse calculation of a real value in 

Eq. B.21 now becomes the complicated inverse calculation of the matrix, that is 

(1- LR)-1. 

Actually, the resonance energies and widths extracted from the fit are not the 

physical ones and they are called formal resonance energies and widths. Different 

energies and widths can be obtained if different boundary constants are used. They 

depend on the choice of the boundary condition and they are related to the real 

physical resonance energies and width by this boundary condition. There is always 

a boundary constant at which the formal resonance energy matches the physical 
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one for each resonance. The process of finding the physical resonance parame­

ters from the formal ones is called boundary transformation, which is explained 

in Chapter 5. The differential cross-section does not depend on the boundary 

constant, which means all combinations of boundary constants and the resonance 

parameters calculated at the corresponding boundary constant will give the same 

value of the differential cross-section for the same resonant scattering or reaction. 
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More analysis details 

C.1 	 File formats of the experimental data at CRIB 

and NSCL 

The raw experimental data collected during the experiment were binary data. It 

usually include two parts: the first part is the header including the run information 

about the data file, such as file name, run time, file size, and so on; the second 

part is the binary data. The data formats used in different laboratories might 

be different in the details of the header and data body due to the different data 

acquisition systems (DAQs) and different encoding method used to making the raw 

binary data. Here the two data formats used in this thesis project are described: 

the data format of the rdf data file at CRIB with extension . rdf and that of the 

evt data file at NSCL with extension . evt. Figure C.1 shows the format of each 

event stored in the . evt file at NSCL. Figure C.2 shows the format of . rdf file at 

CRIB. 
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Event Size 

i 
First data packet ) 

-

Second packet 

Packet Size 

,___P_a_ck_e_t_1_0_ __, 

Packet body 

• 
• 
• 
• 

Figure C.1: Event format of data file at NSCL. 
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File header 

______J 

First data block )
' 

Second data block 

• 
• 
• 
• 

Block flag 

Event size 

Event ID 

Data segment 

Event 2 

• 
• 
• 
• 

Event 1 

Figure C.2: Data format of the .rdf file at CRIB. 
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C.2 Input file for the R-Matrix fitting program 

Displayed below is the content of the input file "param.par" used for the R-Matrix 

fit to our resonance data. For example, 1'e(3,1) represents the reduced width 

of the first resonance, with the first number in the square equal to J1r + 1 and 

the second number indicating the number of the resonance; the two values after 

1' e (3, 1) are the values of this reduced width and its uncertainties, respectively. 

5' g(31321) represents the formal energy of the first resonance indicated by the 

last number in the square; the first number in the square again is equal to J1r + 1 

with J1r the spin of the resoance; the second one means the number of reaction 

channel, 1 for elastic scattering and 2 for inelastic scattering; the third number in 

the square is equal to S + 1 with S the channel spin of this reaction channel; the 

fourth number is equal to l + 1 with l the quantum number of the orbital angular 

momentum. 

SET TITLE 

Elastic scattering R-matrix fit to CRIB data 

PARAMETERS 

1'e(3,1) 0.17100E+01 0.61545E-02 

2'e(3,2) 0.20540E+01 0.75266E+01 

3'e(4,3) 0.22340E+01 0.75266E+01 

4'e(3,4) 0.10840E+02 0.75266E+01 

5'g(31321) 0.42415E+OO 0.12376E-01 

6'g(31312) 0.24185E+OO 0.23795E+OO 

7'g(41413) 0.42415E+OO 0.12376E-01 

8'g(31314) 0.29485E+01 0.23795E+OO 

23'signorm 0.21941E+OO 0.27899E-02 

minimize 1000 

save 

return 
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C.3 Creating .spe file used in gf3 program 

gf3 is a useful program for gamma spectrum analysis in the RadWare package [81]. 

This program takes an input spectrum file of its own format with the extension 

. spe, plot it, and analyzes it. The . spe file is a binary file only for 1 dimensional 

spectra and it contains two parts of information for a spectrum. The first part is 

the information about the name and size of the spectrum, while the second part is 

the spectrum data. Each data point in the file is just the count of the spectrum at 

the channel corresponding to the index of its placement in the file. For example, 

if the 14th data point in the file is 100, that means that at channel 14 on the 

spectrum, there are 100 counts. 

To use the gf3 program, we need to create a .spe file from our data if one 

does not already exist. We can simply create it from a .txt file, which consists 

of only two columns of data with the first column the channel number and the 

second the count at that channel number for each row in the file. Then we can 

write a short code reading the channel and count from the .txt file, creating a 

.spe file and writing into the .spe file the count by order of its channel number 

using a subroutine named "wspec" in the gf3 code package. The following is for 

those who are reading this section and are not familiar with linking to a library. 

When compiling and building this short code, we need to link it to the library 

which contains the subroutine we used for creating . spe file. For example, if the 

short code is "CreateSpe.c" and the library is a archive "util.a" in the directory of 

"/usr/local/gf3/src/libs/util", we just do, 

gee -o CreateSpe -e CreateSpe.e /usr/loealjgf3/sre/libs/utiljutil.a -lm 

Regarding how to use gf3, refer to the manual on its website [81]. 
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C.4 	 Geometry of the detector system in the F3 

chamber at CRIB 

Figure C.3 shows the geometry of the detector system in the F3 chamber from the 

top view. All of the measured distances are listed in Table C.l. d0 , d1 and d2 are 

the distances from the target center to the centers of PSDO (0°), PSDl (17°) and 

PSD2 (27°), respectively. In the calculation of the scattering angles, we use d0= d1 

=d2=204 mm. The horizontal center of the PSDO is not on the beam axis; instead 

it is off axis to the right by 16 mm as viewed from upstream to downstream. The 

active area of each PSD is 50mm x 50mm in X & Y dimensions. Each dimension 

has 16 divisions with each having a size of 3.1 mm. 

DI 

PSDl 

02 

.. - .. - .. ----------+>· - .. - .. ­
A2 	 BlAl 82 c F PS[Xld 

(I 

Targel 
d, 

~El 
fl PSD2 

PPACI PPAC:! 	 E2 

Figure C.3: Geometry of detectors in the F3 chamber at CRIB, from top view. 
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Table C.l: List of measured distances (mm) in the detector system in F3 chamber 

at CRIB for our experimental set-up (refer to figure C.3). 

A1A2 52 B1B2 51 A2B2 56.8 BlC 248 

B2C 197 BlF 453 BlDl 435 B1D2 441 

BlEl 445 B1E2 429 CDl 193 CD2 189 

CF 208 CEl 205 CE2 207 
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