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ABSTRACT 


The subject of this thesis is the mechanical response of inherently anisotropic 

granular materials. The study comprises both the experimental and numerical aspects and 

provides a rigorous methodology for the solution of geotechnical problems involving 

anisotropic frictional materials. 

The experimental investigation has been carried out at both the material and 

structural levels. The material tests involved a series of direct shear, triaxial and hollow 

cylinder experiments on crushed limestone sand, whose mechanical characteristics are 

strongly affected by the orientation of the sample. In addition, a scaled foundation setup 

was designed and a series of experimental tests was carried out to examine the effects of 

anisotropy on bearing capacity. 

The numerical part of this work was associated with development and 

implementation of a constitutive framework that describes the mechanical response of 

transversely isotropic frictional materials. The framework is based on elasto-plasticity 

and accounts for the effects of strain localization and inherent anisotropy of both the 

deformation and strength characteristics. An implicit scheme was proposed for 

identification of material parameters/functions, which incorporates predictions based on 

critical plane analysis. As a part of constitutive modeling, a suitable numerical algorithm 

was also developed to integrate the constitutive equations. 
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The constitutive framework has been implemented in a commercial FE package 

(ABAQUS). A series of numerical simulations were carried out focused on the 

assessment of the bearing capacity of a shallow foundation in transversely isotropic 

granular medium. The results of numerical simulations have been compared with the 

experimental data. A parametric study was also carried out aimed at examining the 

influence of various simplifications in the mathematical framework on its predictive 

abilities. 
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CHAPTERl 

INTRODUCTION 

1.1 Problem Statement 

The main objective of this thesis is to develop a comprehensive and rigorous 

approach, including both experimental and numerical aspects, for the solution of 

geotechnical problems that involve anisotropic materials. This includes conducting a 

comprehensive experimental investigation, formulation of an inelastic constitutive model 

to describe the behavior of the material, development of a procedure to identify the 

material parameters, and an extensive numerical analysis. 

On the practical side, the focus is on the assessment of bearing capacity of a 

shallow foundation in an inherently anisotropic particulate medium. 

1.1.1 Material Anisotropy and Related Issues 

Natural soils and sedimentary rocks are typically formed by deposition and 

progressive consolidation during the diagenesis. Such formations usually have a distinct 

internal structure. For example, in sedimentary rocks the microstructure is often visible to 

eye through the appearance ofmultiple sedimentary layers or bedding planes. As a result, 

the mechanical characteristics in both the elastic and inelastic ranges display a strong 

inherent anisotropy. Oda and Koishikawa (1977) and Oda et al. (1978) have shown that a 

distinct microstructure associated with the parallel alignment of particles is universally 
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observed not only in river, beach and dune sand but also in artificially deposited sands. 

Considering that the particle deposition takes place in the vertical direction, the plane of 

isotropy tends to be horizontal. The presence of anisotropy has a significant influence on 

the performance of geotechnical structures. For example, the anisotropy of strength 

properties of soil affects the stability of natural slopes and the bearing capacity of 

foundations. An appropriate consideration of anisotropy is also essential in the context of 

the design and stability analysis of underground structures, such as chemical and nuclear 

waste storage facilities, oil wellbores, tunnels, etc. While the presence of anisotropy in 

various geomaterials has been widely accepted, its modeling and experimental 

investigation still poses significant challenges. 

In geotechnical engineering, laboratory tests such as direct shear, triaxial and 

hollow cylinder tests are typical in studies of the strength and the mechanical behavior of 

geomaterials. Over the last few decades, extensive experimental studies have been 

conducted on various geomaterials to investigate the anisotropy in their mechanical 

behavior. These include studies on natural clay deposits (e.g., Graham and Houlsby 1983, 

Kirkgard and Lade 1991, Nishimura et al. 2007), sand specimens (e.g., Oda et al.1978, 

Yamada and Ishihara 1979, Lam and Tatsuoka 1988) as well as sedimentary rocks (e.g., 

Atwell and Sandford 1974, Duveau et al. 1998, Oka et al. 2002). The most 

straightforward way to assess the anisotropic strength properties is to employ a direct 

shear test. Note that in this case the results cannot be explicitly used to investigate the 

deformation response of the sample as a continuum, as the displacement measurements 

are taken along a predetermined localization plane. Further more, due to the non­
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uniformity of the displacement and stress fields, the stress-strain characteristics can not 

be evaluated from direct shear tests. In general, triaxial and hollow cylinder tests are 

more suitable to determine both strength and stress-deformation characteristics. However, 

the triaxial tests on transversely isotropic materials are also restrictive in the sense that 

the results are reliable only for vertical and horizontal samples. This stems from the fact 

that for inclined specimens the distortion is constrained by the presence of loading 

platens, which leads to non-uniformity in the resulting stress field. Note that several 

investigators conducted extensive triaxial experiments on inclined samples (e.g., Duveau 

et al. 1998, Oka et al. 2002); however the quantitative conclusions are, in this case, 

questionable. Finally, hollow cylinder tests have also been widely used to investigate the 

anisotropy in the response of geomaterials (e.g., Symes et al. 1984, Lade et al. 2008). In 

this case, the samples are typically prepared with horizontal bedding planes, but unlike in 

a triaxial test, the directions of the principal stresses can deviate from the principal 

material directions by any desired angle. Hollow cylinder tests are performed in two 

general loading configurations. In the first case, it is possible to have the rotation of 

principal stresses with equal intermediate and minor principal stresses (Hight et al. 1983, 

Symes et al. 1984). This is a desirable configuration to study the anisotropic effects; 

however, it is associated with a non-uniform stress state within the sample. In the other 

procedure, the loading combination is set up to provide a rather uniform stress 

distribution in the sample, but the intermediate and minor principal stresses are not equal 

and the effects anisotropy and the intermediate principal stress are coupled (Saada 1988 

and 2000, Lade et al. 2008). Methods have been suggested in which the effect of 
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intermediate principal stress is solely studied using true triaxial tests, but again in the true 

triaxial testing device stress non-uniformity in the sample is an issue. 

Numerical analysis of the behavior of geomaterials is not a trivial task either. 

Generally, the constitutive models employed for this purpose are based on the theory of 

elasto-plasticity. The major features that should be considered in the model are 

compaction/dilation, pressure sensitivity, anisotropy and localization. Implementation of 

any constitutive model requires the identification of material parameters, which is also 

challenging. The modeling of the mechanical response of anisotropic materials is 

typically based on the notion of a continuum with microstructure and requires the 

introduction of a tensorial measure (fabric tensor) that describes the anisotropy. The 

available methods are essentially based on the representation theorems of scalar function 

of tensor variables (e.g. Boehler and Sawezuk 1977 and Boehler 1987, Cowin 1987, Oka 

et al. 2002, Pietruszczak and Mroz 2001, Pietruszczak et al. 2002). While these 

approaches are mathematically rigorous, the main problem is the complexity of the 

formulation and, subsequently, the identification ofmaterial parameters. 

1.1.2 Anisotropy and Bearing Capacity 

In both structural mechanics and soil mechanics limit load calculations pose some 

of the most challenging problems in non-linear analysis. In structural mechanics limit 

load is generally associated with geometric non-linearity, so that large deformation 

theories have to be used for solving the problems. In contrast to this, the collapse of soil 

bodies is usually dominated by material non-linearity, which in numerical context falls 
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within the area of constitutive modeling. 

Computation of limit loads in geomechanics, using numerical and analytical 

analyses, has received considerable attention in the literature. The stability of shallow 

foundations is traditionally assessed using the bearing capacity formula (Terzaghi 1943). 

The classical bearing capacity factors Ne, Nq , and Nr (e.g. Meyerhof 1951) are 

functions of the internal friction angle, and reflect the contribution of cohesion, 

surcharge/embedment and self weight of the soil in the failure zone beneath the footing. 

Several different expressions for bearing capacity factors can be found in standard soil 

mechanics/foundation engineering text books (e.g. Bowles 1996, Das 1999, Das 2002, 

Craig 2004, Budhu 2006). 

The bearing capacity equation stems from the limit equilibrium approach whose 

mechanical bases are rather questionable. A more rigorous methodology is that of limit 

analysis, which provides both lower and upper bound assessments (e.g., Chen 1975, 

Sarma and Iossifelis 1990, Drescher and Detournay 1993, Michalowski 1995 and 1997, 

Ukrichto et al. 2003, etc.). The basic premise of the limit analysis is the assumption of an 

associated rigid-perfectly plastic material and the bounds are established with no 

reference to the deformation history. A more accurate approximation involves a 

numerical assessment based on finite element analysis (e.g., Sloan and Randolph 1982, 

Griffiths 1982 and 1989, de Borst and Vermeer 1984, Frydman and Burd 1997, 

Woodward and Griffiths 1998, etc.). The latter can incorporate more advanced 

constitutive models that reflect the salient features of the mechanical response of the 

material. 

5 
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Different issues associated with the assessment of the bearing capacity have been 

investigated in the literature using the finite-element method. The evaluation of the 

bearing capacity factor Nr in particular has received a considerable attention (e.g. 

Frydman and Burd 1997, Woodward and Griffiths 1998). The effect of non-associativity 

of flow rule has also been addressed in some works including those of de Borst and 

Vermeer (1984) and Yin et al. (2001). 

The issue that has not been adequately addressed in the assessment of ultimate 

bearing capacity is the influence of anisotropy of the material. Over the last decade 

attempts have been made to include the effect of anisotropy in the evaluation of bearing 

capacity (e.g., Siddiquee et al. 2001), but the problem has yet to be more rigorously 

approached. Another related issue, which is usually ignored in standard assessments of 

bearing capacity, is that of the onset of localized deformation. In the post-localized 

regime, the formulation of the problem requires a non-classical framework, such as a 

non-local approach, gradient dependent description (e.g., Bazant and Lin 1988, Bazant 

and Pijaudier-Cabot 1988, Triantafyllidis and Aifantis 1986), or similar, and this has not 

yet been properly addressed for the class ofproblems considered here. 

1.2 Scope of the Work 

This thesis is structured as follows. In Chapter 2, the results of experimental study 

are presented. The experimental program consisted of two independent parts. The first 

part involved a series of direct shear, triaxial and hollow cylinder tests aimed at 

investigation of the anisotropic material characteristics. The second one involved a series 
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of small-scale footing tests carried out to assess the variation of the bearing capacity with 

orientation of principal material axes. In Chapter 3, the mathematical formulation of the 

problem is outlined. The constitutive framework presented there is a multi-yield surface 

plasticity model, extended for the case of inherently anisotropic materials. In addition, the 

description of post-localized response is also addressed. Discussion regarding the 

procedure for identification of material functions/parameters is presented in Chapter 4. 

Subsequently, the integration algorithm for the elastoplastic constitutive equations is 

reviewed (Chapter 5), followed by some numerical examples. The results of numerical 

simulations of the footing test are also presented in Chapter 5 and the performance of the 

framework is compared with the experimental data given in Chapter 2. In addition, a 

parametric study is carried out aimed at examining the influence of various simplifying 

assumptions on the predictive abilities of the framework. The last chapter gives the 

conclusions as well as some suggestions for future work. 
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CHAPTER2 

EXPERIMANTAL INVESTIGATION 

2.1 Introduction 

In this chapter, the results of an experimental study, which is focused on 

examining the anisotropy effects in the behavior of geomaterials, are presented. First, a 

preliminary study that was aimed at selecting a material with the desired mechanical 

characteristics, is briefly outlined. Subsequent sections describe the testing procedures 

used, together with the experimental results and conclusions. The experimental program 

consisted of two parts. The first one involved a series of direct shear, triaxial and hollow 

cylinder tests aimed at investigating the anisotropic material characteristics, while the 

second part involved a series of small-scale footing tests carried out to assess the 

variation of the bearing capacity with orientation of principal material axes. 

The examined materials were all prepared/remolded in the laboratory, and to 

obtain the desired internal microstructure different preparation methods were employed. 

It is very well established that naturally over-consolidated clayey deposits show 

significant anisotropy in their mechanical behavior (Graham and Houlsby 1983, Graham 

et al. 1983, Kirkgard and Lade 1991, Nishimura et al. 2007). Considering this fact, the 

first two trials in selecting the material for the investigations were clayey material, i.e. 

Dundas clay and kaolinite. 
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Bulk samples of Dundas clay (a silty clay material) were remolded in a cylindrical 

mold, 1 Ocm in diameter and 30cm high. The inside of the mold was sprayed with Teflon 

to reduce the friction between soil and mold, and thus the sample disturbance during 

molding and extracting the sample from the mold. Samples with 12% moisture content 

were consolidated in 5 layers of about 4cm thickness under an axial stress of 500 kPa. 

Each layer was kept under the pressure for 5 min. To prevent separation between the 

layers, the surface of each consolidated layer was scratched with a sharp instrument 

before adding the next consecutive layer. This preparation method provided samples with 

a set of bedding planes normal to the axis of the cylinder, i.e. normal to the axial 

pressure. The bulk sample was then extracted form the mold with a hydraulic jack. 

Subsequently, a number of direct shear samples, with different orientations, were cut 

from the bulk sample (see Fig 2-1), and a series of direct shear tests were performed. 

Fig 2-1 Cutting direct shear samples with different bedding plane orientations from the bulk sample 
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The results of direct shear tests, as presented in Fig 2-2a, did not show a 

significant anisotropy in the behavior of the material, even though the over-consolidation 

ratios for the tests were quite high, i.e. OCR=5.0, 7.5 and 10.0. Therefore, it was decided 

to increase the consolidation time so that more significant changes in the microstructure 

could develop. For the next series of tests, the bulk sample within the mold was placed 

under the same 500 kPa axial stress for an additional consolidation time of 41 hrs. Again 

the results did not show any significant anisotropy in the strength and the deformation 

response of the material (see Fig 2-2b ). Allowing even more time, e.g. one week, for 

consolidation helped to induce a rather weak anisotropy in the material, as shown in Fig 

2-2c, but due to the time constraints of the study, it was decided to change the type of the 

material. 

Assuming that the silty particles in Dundas clay are the main cause that obstructs 

the development of anisotropic behavior, the same procedure was employed in examining 

the response of kaolinite, a white clay material that consists of long clay mineral sheets. 

Although, the consolidation time was one week, the results again did not show significant 

anisotropy in the mechanical response of this material either (see Fig 2-3). Allowing a 

much longer time for consolidation might have lead to more pronounced effects, but 

considering that all tests on clayey materials require long period, due to their low 

permeability, a sandy material was eventually selected for the experiments conducted in 

this study. 
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Fig 2-2 Direct shear test results on Dundas Clay; variation of shear stress versus horizontal 
displacement for samples with different bedding plane orientations with different overconsolidation 
ratios; (a) no time for additional consolidation, (b) consolidated for an additional 41 hrs and (c) 
consolidated for an additional one week 

The particular material, which was chosen, was taken from the LAFARGE PIT at 

Hwy 5, Dundas. The material is crushed limestone with elongated angular-shaped 

aggregates of particle size between 0.15mm and 2mm (sieve#lO to sieve #100). The 

samples were prepared by the sand rain method using a constant falling height of 80cm. 

Considering that the particle deposition takes place in the vertical direction, i.e. the 
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direction of sand rain, a major plane of each particle tends to be arranged horizontally. 

The plane characterized by the parallel alignment of particles, which is in tum normal to 

the direction of deposition and the preferred material axis, can be tentatively called the 

bedding plane (Oda and Koishikawa 1979). The sand rain method has proven to be a 

consistent sample preparation method providing reproducible testing samples. All the 

samples prepared with the mentioned method had a void ratio of approximately e = 0.6. 

The samples proved to be highly anisotropic. The mechanical properties were examined 

using the direct shear, triaxial and hollow cylinder devices. The details on the mechanical 

response, including specification of the conditions at failure, are provided in the 

following sections. 
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Fig 2-3 Direct shear test results on kaolinite; variation of shear stress versus horizontal displacement 
for samples with different bedding plane orientations; samples were consolidated for one week 
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2.2 Direct Shear Tests 

Direct shear test is a displacement-controlled test. A specimen is placed in a shear 

box, with typical dimensions of 60 x 60 x 40mm , and consolidated under a vertical load. 

The box is split into two separate halves, an upper and a lower. After the application of 

normal load and completion of the consolidation stage, the sample is sheared by applying 

horizontal displacement to the upper portion of the box. More details on the direct shear 

device and the standard testing procedure can be found in ASTM D 3080. 

The direct shear test imposes stress conditions on the soil sample that force the 

failure to occur along a predetermined orientation, i.e. along the horizontal plane that 

separates the two halves of the box. The test is typically performed on three or four 

identical specimens under different levels of normal stress. The classical shear strength 

parameters, i.e. friction angle ( rp) and cohesion ( c), are then determined by finding a 

linear best fit to the obtained experimental data. 

The advantages of the direct shear test are: 

1- The test is cheap, fast and simple; especially for sands. 

2- Failure occurs along a single surface, which approximates observed slip or shear 

type failures in natural soils. 

Disadvantages of the test include: 

1- It is difficult or impossible to control drainage, especially for fine-grained soils. 

2- Failure plane that is forced, may not be the weakest or critical plane 

3- Non-uniform stress conditions exist in the specimen. 

4- The principal stresses rotate during shear, and the rotation cannot be controlled. 
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Because the drainage conditions, during all stages of the test, influence the shear 

strength of soils, the direct shear test is mainly applicable to relatively clean sands which 

are free draining during shear. For clay soils, some consolidation may occur during shear, 

which would give a larger shear strength than actual. Therefore the test is not generally 

recommended for cohesive soils. 

Since the failure plane is fixed in this test, it is possible to measure the shear 

strength on planes with specific inclinations relative to the material axes. This very well 

serves the purpose of the investigation of directional dependency of the strength 

parameters. 

2.2.1 Sample Preparation Method 

In order to be able to prepare samples with different bedding plane orientations 

some modifications have been made to the standard shear box (Guo 2008). Fig 2-4 shows 

the modified shear box positioned to be filled with sand by the sand rain method. Fig 

2-4a shows the sample preparation method and Fig 2-4b shows a schematic picture of the 

shear box device with the soil sample inside. As mentioned earlier, the test samples were 

prepared by the sand rain method using a constant falling height of 80cm. A vertical cut 

was made on one side of the shear box, providing the possibility of filling the box with 

sand at desired orientation by positioning the box on a tilted base. Considering that the 

particle deposition takes place in the vertical direction, i.e. the direction of sand rain, a 

major plane of each particle tends to be arranged horizontally. The deposition angle (or 
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the bedding plane orientation) a , here is the angle between the sand rain direction and 

the direction normal to the plane of isotropy. 

As shown in Fig 2-4a with the sand rain method the shear box was literally buried 

under the sand; afterward the extra material was carefully removed, the sample was 

trimmed and the removable side parts of the box were reassembled. The sample 

contained in the shear box (Fig 2-4b) was then ready to be put in the direct shear testing 

device. The sand rain method has proven to be a consistent sample preparation method 

providing reproducible test samples in all the tests presented in this chapter. All the 

samples were prepared with a void ratio of approximately e =0.6 . The direct shear tests 

were performed on dry samples, with a displacement rate of 0.18 mm/min. Since the 

failure plane in the direct shear apparatus is always horizontal, the shear strength 

characteristics could be examined for different values of the deposition angle a. 

(a) (b) 

'4 ' -.., . 
.., <!Sand R1lin 

. '.t:1 • 

.., 

Removable Parts Failure Plane 

__J 

Fig 2-4 (a) Schematic diagram of sample preparation for direct shear tests; (b) modified shear box 
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2.2.2 Direct Shear Test Result 

The direct shear tests were carried out at four different levels of normal stress, 

an =l, 25, 50, 75kPa. Fig 2-5 to Fig 2-8 show the mechanical response of the material for 

different values of a . Due to stress non-uniformity in the direct shear specimen, the 

deformation characteristics cannot be evaluated form this test. The variation of shear 

stress and the corresponding evolution of volume change are presented in Fig 2-5 toFig 

2-8. Clearly, the material shows a significant degree of anisotropy, as the strength is 

profoundly affected by the direction of deposition. The directional dependency of the 

shear strength of the material seems to be more intense at lower levels of normal stress, 

but it is persistent for all stress levels. At low normal stresses, the evolution of volume 

change shows a progressive dilation (see Fig 2-5b), while at higher normal stresses a 

transition from compaction to dilatancy takes place as the shear stress increases (see Fig 

2-8b). 

Horizontal Displacement (mm) Horizontal Displacement (mm) 

Fig 2-5 Mechanical response at normal stress of an =1 kPa for different values of a ; 
(a) shear stress-horizontal displacement characteristics, (b) evolution of volume change 
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anisotropy in internal friction angle. Fig 2-9 shows the failure envelopes for different 

values of a along with the experimental data obtained from direct shear tests. It is 

evident that the material develops an apparent cohesion due to interlocking of aggregates, 

though it only consists of sandy non-plastic particles. 
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Fig 2-8 Mechanical response at normal stress of an =75 kPa for different values of a; 

(a) shear stress-horizontal displacement characteristics, (b) evolution of volume change 
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Fig 2-1 Oa and Fig 2-1 Ob present the distribution of the friction angle </J and 

cohesion c, as a function of the deposition angle. Both the cohesion and the friction angle 

are direction dependent, but the strength anisotropy is more pronounced in the friction 

angle. The maximum friction angle, </J :::: 56° , corresponds to vertical bedding plane ; the 

minimum, </J:::: 44°, occurs at a:::: 30°. 
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Fig 2-10 Variation of (a) the friction angle </J and (b) cohesion c with the deposition angle a 

2.3 Triaxial Tests 

The triaxial tests are used to measure the shear strength and study deformation 

characteristics of a geomaterials under controlled drainage conditions (e.g. Holtz and 

Kovacs 1981, Head 1998). In a conventional triaxial test, a cylindrical specimen is 

encased in a rubber membrane and is placed in a triaxial compression chamber. The 

specimen is subjected to a confining fluid pressure, and then loaded axially (or laterally) 

to failure. Connections at the ends of the specimen permit controlled drainage of pore 
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water from the specimen. Prior to shear, the three principal stresses are equal to the 

chamber fluid pressure. During shear, the major principal stress, o-1 is equal to the 

applied axial stress plus the chamber pressure, o-3 • The intermediate principal stress, o-2 

and the minor principal stress, o-3 are identical in the test, and are equal to the confining 

or chamber pressure. 

There are 3 types of triaxial tests, depending on the drainage conditions at the 

consolidation and shearing phases of a triaxial test. Unconsolidated-undrained (UU) or 

quick ( Q) triaxial test performed with the drainage valve closed for all phases of the test 

(ASTM D2850). In consolidated-undrained (CU) triaxial tests drainage is allowed to take 

place during the application of the confining pressure, but not during the shearing phase 

(ASTM D4767). The excess pore pressures can be measured for the shearing phase. 

Consolidated-drained (CD) test, also called slow test (S), is performed with free drainage 

condition for the whole period of the test, i.e. no generation of excess pore pressure 

during the test. This may require a slow rate in application ofload. The volume change of 

the sample during consolidation and shear can be measured. 

The main advantages of the triaxial test over the direct shear test are the 

uniformity of the stress and deformation fields in the sample, and the accuracy of the 

measurements in volume change of the sample. 

2.3.1 Sample Preparation Method 

The triaxial tests can be conducted on samples with vertical and horizontal 

bedding planes only (a =0° and a =90°) ; although several investigators carried out 
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tests on inclined samples as well (for instance see Lo and Hori 1979, Duveau et al. 1998, 

Oka et al. 2002). Note that for inclined bedding planes, the sample has a tendency to 

distort. In a triaxial environment, however, this distortion is constrained by the presence 

of loading platens. Consequently, the stress field is no longer uniform and the results, in 

the sense of variation of strength and deformation characteristics with sample orientation, 

are not fully reliable. Therefore in this work triaxial tests were performed only on 

samples with vertical and horizontal bedding planes. 

The samples were prepared in a rectangular prism mold with the dimensions of 

100 x 50 x 50 mm . Analogous to the direct shear samples, the triaxial samples were 

prepared by sand rain method using a constant falling height of 80cm. The sample 

preparation method is illustrated in Fig 2-11. 

In order to preserve the composition of the fabric, the specimen with the mold 

was first submerged in water. Then, excess water was drained out under gravity to obtain 

a moist specimen with low moisture content. The entire set up, i.e. the mold and the moist 

sample within, was then frozen. The frozen specimen was subsequently removed from 

the mold and transferred to the base of the triaxial cell and enclosed in a membrane. A 

small confining pressure was then applied while unfreezing the specimen. Finally, the 

specimen was saturated and consolidated under a hydrostatic pressure prior to the 

shearing phase. To minimize the end friction effects two layers ofmembrane with silicon 

grease in between were placed between the sample and loading plates. Proper cuts were 

made on the membranes to allow both seepage through the sample and free lateral 

expansion of the sample. 
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Fig 2-11 Schematic diagram of sample preparation and loading configuration for triaxial tests 

2.3.2 Triaxial Test Results 

The tests were conducted under four levels of confining pressure, i.e. 

p 0 =10, 50, 100, 150 kPa. The variations of deviatoric stress and volumetric strain with 

the increasing axial strain for each level of confining pressure are presented in Fig 2-12 to 

Fig 2-15. 
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Fig 2-12 Results oftriaxial test at confming pressure Po = 10 kPa; variation of (a) deviatoric stress 

and (b) volumetric strain with axial deformation 
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Each curve is the average of at least two tests with the corresponding testing conditions. 

This is illustrated in Fig 2-16, which shows the results of two consecutive tests at 

= 100 kPa . It is clear that the testing procedure and the sample preparation method p 0 

gave results that were very consistent and repeatable. 
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Fig 2-15 Results oftriaxial test at confining pressure p0 =150 kPa; variation of (a) deviatoric 

stress and (b) volumetric strain with axial deformation 
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Fig 2-16 Results oftriaxial test at confining pressure Po =100 kPa; variation of (a) deviatoric stress 

and (b) volumetric strain with axial deformation 

It is evident that the behavior is orientation-dependent. The anisotropy effects, in 

terms of both strength and deformation response, are more pronounced at low confining 

pressures and gradually decrease as the confinement increases. Regarding the volume 

change characteristics, it is evident that at low confinements, the predominant mode is 
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dilation; i.e. the compaction stage is negligible. At higher confining pressures, similar to 

direct shear test results, a transition from compaction to dilatancy is observed. 

In general, the triaxial tests gave results that were consistent with trends reported 

in direct shear. Note that the results of both triaxial and direct shear tests will be used 

later in Chapter 4 to identify the material parameters for the constitutive model proposed 

in Chapter 3. 

2.4 Hollow Cylinder Tests 

Long hollow cylindrical samples subjected to combination of hydrostatic, axial 

and torsional stresses (see Fig 2-17) have been widely used to study the behavior of 

geomaterials under combined stresses. One of the advantages of this configuration is the 

ability to conduct tests at different orientations of principal stress axes, relative to the 

axes of symmetry of the material. The state-of-the-art paper by Saada (1988) gives 

extensive details about hollow cylinder devices, their advantages and limitations. 

The hollow cylinder samples can be tested under various and quite elaborated 

stress paths. Different loading combinations of inner ( P;) and outer ( p
0 

) cell pressures, 

axial load ( F) and torque ( M) can be applied leading to a complex 3D stress state. 

Compared to the triaxial tests, where the principal stress axes coincide with the material 

axes (vertical and horizontal), in hollow cylinder device it is possible to have non-coaxial 

material and principal stress triads. 
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Fig 2-17 Schematic diagram of hollow cylinder sample and its loading combination 

The average state of stress in the hollow cylinder sample shown in Fig 2-17, with 

inner and outer radius of r; and r
0 

, is as follow (Saada 1988 and 2000) 

F p r 2 
- .r 2 

CY = + 0 0 P, l 

a :r(r2 _ r2) r2 _ r.2 
0 I 0 I 

pr+ p.r 3MCY= oo 11 r =---- (2.1)r , Oz 2(r}-r;3)ro + r; 

Testing procedure usually starts with consolidating the sample under a hydrostatic 

state of stress by applying equal inner and outer cell pressure, i.e. ua = CY
7 

= u 8 = P; = p
0 

• 

The addition of axial and tortional stresses causes a rotation in the direction of major and 

minor principal stresses. If the ratio of liua I !ir8z remains constant, this rotation also 

remains constant. In addition, tests are usually performed at a constant mean stress, so 

that the stress path remains within the initial octahedral plane (II plane). This is done by 
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adjusting the cell pressures while the axial load and torque are being increased/decreased 

such that !!..<Ja I !!..r8z =const. and <Ja + <J, + <J 8=const .. This provides the possibility of 

investigating the effects of anisotropy at certain stress levels. 

2.4.1 Sample Preparation and Testing Method 

The hollow cylinder samples, with 1 OOmm outer diameter, 60mm inner diameter 

and 200mm high, were again prepared by the sand rain method. Sample preparation 

technique is illustrated schematically in Fig 2-18. To obtain cylindrically shaped samples, 

suction was applied between the outer membrane and the outer wall of the mold; a thin 

layer of filter paper was placed in-between them to distribute the suction evenly. For the 

inner side, the membrane was tight enough not to leave any gaps between the membrane 

and the inner wall of the mold. 

lOcm.-­
: 6cm 
~ 

: 
I I 
I I 
I I 
I I 
I I 
I I 

I 
I 
I 
I 
I 

I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

20cm 

[___ 1------L'1-----_____)I'c 

Fig 2-18 Schematic diagram of sample preparation method for hollow cylinder tests 
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After filling the mold by the sand rain method, top of the sample was trimmed and 

the sample within the mold was carefully transferred and mounted on the device. The top 

cap was placed on the sample and rubber o-rings were put in place to fully isolate the 

sample from the inner and outer chambers. A small suction was then applied to the 

sample so that it remained stable while the mold was being removed. The inner and outer 

cells were filled with water, sample was saturated and then the shearing phase started. 

In general two different testing methods have been suggested for the hollow 

cylinder apparatus. In the first one the rotation of principal stress axes takes place, while 

the averaged principal stresses are such that o-1 > o-2 =o-3 (Hight et al. 1983, Symes et al. 

1984). To produce such a stress combination the inner and outer cell pressures should be 

different, and that causes stress non-uniformity along the sample wall. The non-

uniformity becomes more pronounced when the material axes and the directions of 

principal stresses depart. In the second method, the rotation of principal stress axes takes 

place while the inner and outer cell pressures are kept equal, providing a rather uniform 

distribution of stress in the specimen. The principal stress combination in this case is such 

that o-1 >o-2 >o-3 where the effects of intermediate stress and rotation of principal 

stresses are coupled (Saada 1988 and 2000, Lade et al. 2008). In this configuration the 

relationship between the principal stresses and the angle a defining deviation of the 

major principal stress from the vertical axis, is 

(2.2) 
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Note that compared to triaxial test configuration presented earlier, a here is the same as 

the deposition angle. In this study all the hollow cylinder tests were performed using the 

second procedure. 

2.4.2 Hollow Cylinder Test Results 

The adopted loading combination was such that the directions of major and minor 

principal stresses could be rotated from vertical and horizontal directions by a constant 

value of a during the shearing phase. The intermediate principal stress was fixed in the 

direction normal to the wall of the specimen. In view of (2.2), the state of stress in hollow 

cylinder tests is representative of a triaxial compression test for a = 0°, and a triaxial 

extension test for a =90° . For intermediate values of a , the principal stress a 2 , which 

is the same as inner and outer cell pressures, is intermediate between major and minor 

principal stresses. 

The hollow cylinder tests reported here were performed with equal inner and 

outer cell pressures and under a constant mean stress of p =100 kPa. Rotation of major 

principal stress from the vertical axis, i.e. a, was kept constant for each test. The 

evolution of deviatoric stress and volumetric strain with the increasing octahedral shear 

strain is presented in Fig 2-19 for different values of a . 

As mentioned earlier, the results presented in Fig 2-19 incorporate the coupled 

effects of anisotropy and the intermediate principal stress on the mechanical behavior of 

the material. Therefore, it is not possible to study the anisotropy alone on the basis of this 

data. In view of this, the results of hollow cylinder tests were not directly used in 
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identification of the material parameters, but instead they were employed, later in Chapter 

4, to verify the performance of the model. 

----a=o· 
----a=30° 
--.--a=45' 
_ _,,,__a =60° 

• a=90° 

0.05 

Octahedral Shear Strain 

·~ > -0.0250Cl 

0.1 0.05 

Octahedral Shear Strain 

Fig 2-19 Results of hollow cylinder tests at a constant mean pressure p =100 kPa; variation of 

deviatoric stress and volumetric strain with octahedral shear strain 

2.5 Scaled Shallow Foundation Model Tests 

A number of small-scale model tests were performed in order to examine the 

variation of bearing capacity of a rigid foundation as a function of the angle of deposition 

of the material. All tests were later simulated via finite element analysis that incorporated 

the constitutive framework proposed in Chapter 3. The details on numerical simulations, 

including a comparison with experimental data, are given in Chapter 5. 

2.5.1 Scaled Model Preparation Method 

The experimental setup employed in this study is shown schematically in Fig 

2-20. The material was placed inside an aluminum box (50cm wide, 35cm high and 20cm 
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thick) that had two fixed and two removable sides, Fig 2-21. The front and the back 

plates were made of thick Plexiglas. The soil was again prepared by the sand rain method 

using a constant falling height of 80cm. The setup gave the possibility of producing 

samples at desired orientation by keeping the box tilted and maintaining the sand rain 

height constant. The procedure was able to provide fairly uniform and reproducible 

specimen with a void ratio of approximately e =0.6. Note that the solid lines shown in 

the schematic of test setup, which are normal to the direction of deposition, define the 

planes of material isotropy. All tests were carried out under plane stain conditions. In 

order to reduce the friction along the sides, the Plexiglas plates were covered by two 

layers of transparent plastic sheets that were lubricated with a viscous oil. After filling, 

the box was placed flat on the floor and the top layer of soil was trimmed. The footing, 

5.7cm wide and 20cm long, was made of a 2.5cm thick rigid aluminum plate. The tests 

were performed by applying vertical displacements at the midpoint of the footing, while 

allowing for the in-plane rotation. 

Fig 2-20 Experimental setup for the footing test (Note: a is the direction of deposition of the 
material) 
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a 

-------'------------------­

Fig 2-21 Schematic diagram of sample preparation by sand rain 

2.5.2 Scaled model Test Results 

The main results of experimental tests are shown in Fig 2-22. Fig 2-22a presents 

the load-displacement curves for selected values of the deposition angle a , ranging from 

o0 to 90° . Note that for each orientation a number of tests were performed in order to 

check the consistency of the testing procedure. Fig 2-22b presents the best fit 

characteristics obtained through the least square approximation. It is evident that both the 

initial stiffness as well as the ultimate load are affected by the direction of deposition. Fig 

2-22c shows the variation of the average ultimate bearing capacity with the deposition 

angle a . The maximum corresponds to a =0°, while the minimum is attained at 

a=60°. 
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For orientations of a= 30° ,a= 45° and a= 60° the in-plane rotation of the 

footing was observed from the early stages of the loading process. For vertical and 

horizontal configurations, a = o0
, a = 90° , the in-plane rotation took place only when 

the load was close to the ultimate bearing capacity. In all cases a diffused failure mode 

was observed, i.e. no localization took place at the macroscale. 

(a) 

500 

I? 
0.. 
.lo::._. 400 
~ 
::i 
Ill 300Ill 

~ 
0.. 
Q) a.=0°Cl 200 
cu.._ Cl=30° 
Q) 

Cl=45°>
<( 100 Cl=60° 

Cl=90° 

00 5 10 15 20 

Vertical Displacement (mm) 

550(c) 

I? 
0.. 500 
~ 

~ 

-~ 
ii 450 
() 

Cl 

c:·c: 
m 400 
Ill 

350

(b) 

-ro 
500 


a.. 

~- 400 
~ 
::I 

Ul 

Ul 300 
~ 

a.. 
Q) 200
C> ro.... 
Q) 

100~ 

0 

-----a.=0° 
----a.=30° 
--+--Cl=45° 
--...--a.=60° 

• Cl=90° 

0 5 10 15 20 

Vertical Displacement (mm) 

0 10 20 30 40 50 60 70 80 90 
Deposition Angle (a°) 

Fig 2-22 Results of scaled footing tests: (a) load-displacement response for different values of a, (b) 
averaged characteristics, ( c) variation of the bearing capacity with the deposition angle a 
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CHAPTER3 

MATHEMATICAL FORMULATION 

3.1 Introduction 

In this section, the mathematical formulation of the constitutive model is 

discussed. The approach presented here is able to simulate complex nonlinear behavior of 

geomaterials with inherent anisotropy. A general framework is also outlined to identify 

the onset of localization and to deal with post localization behavior. 

3.2 Elastoplastic Constitutive Equations (General Overview) 

In the framework of classical plasticity there are two basic functions or surfaces 

that are defined in the stress space, i.e. "yield surface" and ''plastic potentiaf' (e.g., Owen 

and Hinton 1980, Simo and Hughes 1998). These two functions are used in the derivation 

of stress-strain relations (constitutive equations) of the materials. 

Based on experimental evidence, plasticity theory postulates that irreversible or 

plastic strains occur whenever the stress state satisfies the yield criterion 

(3.1) 


where aij is the stress tensor and K is the material state (hardening) parameter. In the 

framework of plasticity, following the observation on the plastic flow of metals, it is 
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assumed that the plastic strain increments ( &$) are coaxial with the gradient of plastic 

potential function Q 

(3.2) 


where A is the plastic multiplier and eq. (3.2) is referred to as the flow rule. 

Constitutive relation is the mathematical description of the relationship between 

the states of stress and strain. Since the behavior of geomaterials is nonlinear, that 

relation is defined in an incremental form as follow 

(3.3) 


In (3.3) &ij is the incremental stress tensor, &kl is the incremental strain tensor and n;~ 

is the 4th order elasto-plastic constitutive tensor. The operator n;~ is derived by invoking 

the consistency condition, Hooke's law, additivity postulate, and the flow rule, i.e. 

(3.4) 


(3.5) 


(3.6) 


(3.7) 
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where n;kl is the elastic constitutive matrix. 

Substituting &iJ from eq. (3.5) into eq. (3.4), and considering the additivity postulate 

leads to 

(3.8) 


Introducing now the flow rule in (3.7), the above equation can be rewritten as 

(3.9) 


So that the plastic multiplier can be determined as 

(3.10) 


In the equation above, HP is the so called plastic hardening modulus. Substituting now 

eq. (3.10) into eq. (3.7) and invoking the Hook's law (3.5) yields 

(3.11) 
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Thus comparing eq. (3.11) with the functional form (3.3), the elasto-plastic constitutive 

tensor can be expressed as 

(3.12) 


If the material is isotropic, the representation theorems of scalar function of tensor 

variable allow to express the yield function in terms of stress invariants 

(3.13) 

where the stress invariants are defined as follow 

(3.14) 

1 7r 7r 
--5,{} 5,­J3 =-(J'..(J' .k(J'ki3 lj J 6 6 

In equations above siJ is the stress deviator defined as siJ =<:FiJ -8iJp, 8iJ 1s the 

Kronecher's delta and (} is the Lode's angle. 
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The strain tensor has also some commonly used invariants. The work conjugates 

of the stress invariants (p,q) , i.e. volumetric and deviatoric strains (&v,&q), are defined 

as follow: 

(3.15) 

where 

(3.16) 


Finally, the derivatives of the stress invariants with respect to stress components have 

some applications in the elastoplastic constitutive modeling. These derivatives can be 

calculated as follows 

ap _ 1 aJ1 _ 1 s:' --------u.. (3.17)
oaij 3 oaij 3 y 

aq J3 aJw 3 
(3.18)

aaij =2p;;, oaij =-qsij 
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3.3 A Multi-Surface Plasticity Model 

The constitutive framework presented here is based on multi-yield loci plasticity 

and accounts for the salient features that include the notions of compaction/dilation, 

pressure sensitivity and hardening induced by both densification and plastic distortion. In 

what follows, the basic framework will be outlined first. In the next two sections, an 

extension to anisotropy and post localization regime will be discussed. Later, in Chapter 

5, a discussion on the numerical integration scheme will be provided. 

Three basic mechanisms are considered in this model, viz. deviatoric hardening, 

volumetric hardening and a tension cutoff. The yield surface and hardening 

characteristics of the volumetric and deviatoric hardening mechanisms are shown in Fig 

3-1 a and Fig 3-1b. The elastic domain, i.e. the region inside the domain enclosed by the 

yield surfaces, is illustrated in Fig 3-lc. The yield surfaces, plastic potentials and 

hardening rules of the three mechanisms are defined as 

q
F;. = g(B)-17(p+C)=O, 

(3.20) 


F; =( ( q) )2+(p-pc)(p+C)=O, 
g B 1/1 

Pc= Poe-(ep)J(;.-K)' (eP)2 =-(l+eo)(s:)2 (3.21) 

F;=T-p=O (3.22) 
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Fig 3-1 Yield surfaces of the proposed multimechanism model, (a) volumetric mechanism, (b) 
deviatoric mechanism and c) the elastic domain confined inside the three yield surfaces 

In the expressions above, (171 ,C,1Jc,B)1 , (171 ,C,A,K,e0 )i and (T)3 are the material 

parameters for deviatoric, volumetric and tension cut off mechanism, respectively. The 

function g(0) satisfies g (7t I 6) = 1 and g (- 7t I 6) = K, where K is a constant. 

The proposed multimechanism model is simply formed by combining well 

established individual mechanisms. The volumetric hardening is essentially the modified 

Cam-Clay model. In the deviatoric hardening mechanism, if the conditions at failure are 

assumed to be consistent with Mohr-Coulomb criterion, then the basic material 

parameters become 111 =6sin¢/(3-sin¢), C=ccot¢; where </J and care the angle of 

friction and cohesion, respectively. The function g(B) is selected so that to provide a 

smooth approximation to Mohr-Coulomb irregular hexagonal cross-section in the 
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octahedral plane (see Fig 3-2). In particular, the form given by Jiang and Pietruszczak 

(1988) is employed 

(~1+a - ~1- a) K 
1 (3.23)

g(B) = K ~l +a - ~1- a +(1- K)~l+a cos 30 ' a ~ 

where a 1s a constant. Note that the sufficient condition for convexity is 

K?. (7a-2(1--Jl-a2
) )/9a. Thus, for a= 0.9999 for example, there is K?. 0.5587, 

which corresponds to rp:::; 58.15° . 

Mohr 
Coulomb 

Fig 3-2 Projection of normalized Mohr-coulomb yield surface and the function g(B) on the 7r 

plane (normal to the stress space diagonal) 

In the deviatoric mechanism, which has a nonassociated flow rule, 1J1 is the 

ultimate stress ratio, C is the hydrostatic tension resistance, B is a material parameter 

that controls the hardening behavior, and 1lc is the stress ratio beyond which the 

volumetric behavior of material switches from compaction to dilation. By implementing 

an associated flow rule in the volumetric hardening mechanism, 1J1 also marks the 

critical state, similar to the modified Cam-Clay model. Here A and K are the slopes of 

loading/unloading branches of the relation between void ration ( e) and natural logarithm 
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of p. For the tension cut off, T is the hydrostatic tension resistance, which should be 

less than C for this mechanism to be activated. 

The hardening effects are attributed to accumulated deviatoric plastic strain for 

the deviatoric mechanism, and to accumulated volumetric plastic strain for the volumetric 

mechanism. The hardening rules are not coupled, e.g. the volumetric plastic strain 

generated by the deviatoric mechanism does not contribute to the hardening associated 

with the volumetric mechanism, and vice versa. 

When the stress state is at the intersection of two yield surfaces the elastoplastic 

constitutive operator (D;~) can be calculated based on Koiter's postulate. The 

consistency conditions, Hooke's law and the respective flow rules are used in the 

derivation of the constitutive tensor (Pasternack and Timmerman 1986). Note that in the 

case ofmultimechanism plasticity the consistency condition should be satisfied for all the 

active yield surfaces contributing to the plastic flow, i.e. F;. =F2 =0. The constitutive 

tensor for case of two active mechanisms can be calculated as 

(3.24) 


where 

(3.25) 


BF BF 
( N ) =(He +HP)_P-He _r {J,y =1,2

P if rr r B(J'.. Pr O(J' .. 
lJ IJ 

Details of the derivation of eq. (3.24) are presented in Appendix I. 
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3.4 Inherent Anisotropy 

The modeling of mechanical response of anisotropic materials is typically based 

on the notion of a continuum with microstructure and requires the introduction of a 

tensorial measure that describes the anisotropy. The available methodologies are 

essentially based on the representation theorems of scalar functions of tensor variables. 

The most common is the approach presented by Boehler and Sawczuk (1977) and 

Boehler (1987), which is mathematically rigorous but, at the same time, very complex as 

it employs ten independent basic and mixed invariants of both the stress and fabric 

tensors. Simplified versions are also difficult in implementation as they still incorporate 

an excessive number of material functions/parameters. Cowin (1987), for example, 

developed a quadratic approximation to the failure function in terms of components of 

<7ij. However, even such a simple representation employs 12 functions of material fabric, 

which cannot be easily identified from standard experiments. In the simplified approach 

presented by Oka et al. (2002), a transformed state of stress is defined based on the real 

state of stress and the microstructure tensor. The applied transformation functions are 

rather vague and the identification of material parameters is not very clear. A different 

approach has been proposed by Pietruszczak and Mroz (2001) and Pietruszczak et al. 

(2002), in which the effects of anisotropy are considered in the material parameters, i.e. 

the material properties are considered to be directionaly-dependent. 
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3.4.1 Conditions at Failure for Anisotropic Materials (Critical Plane Approach) 

An extensive review and assessment of various failure criteria for anisotropic 

materials can be found, for example, in the work by Duveau et al. (1998). The 

specification of conditions at failure for anisotropic materials constitutes an important 

problem which has attracted the attention of numerous researchers. One of the 

approaches to formulate failure criteria is to invoke linear as well as quadratic terms of 

stress components referred to the coordinate system associated with the axes of symmetry 

of the material. An example of such an approach is an extension of the well-known Hill's 

criterion (Hill 1950), as proposed by Tsai and Wu (1971). Mathematically rigorous 

approaches, which make use of general representation theorems, were first proposed by 

Boehler and Sawczuk (1970) and later were extended by others, e.g. Nova (1980). The 

problem was also formulated by invoking the notion of a fabric tensor specifying the 

directional distribution of lineal/areal porosity (Pietruszczak 1999). 

The other group of failure criteria was derived by adopting the weakness plane 

approach. This approach requires the failure condition to be satisfied on a predefined 

discrete weakness plane, e.g. Walsh and Brace (1964), Hoek and Brown (1980), Hoek 

(1983). 

The disadvantage of most of these phenomenological formulations stems from the 

fact that they employ numerous material parameters or functions. Their relation to 

material microstructure is not explicitly defined and the identification procedure requires 

an extensive experimental program. 
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The method applied in this research is based on the critical plane approach 

presented by Pietruszczak and Mroz (2001) and Pietruszczak and Pande (2001). The 

method consists of identifying the orientation of the critical/localization plane on which 

the failure function reaches maximum. Assume that for a cohesive-frictional material the 

conditions at failure are defined in terms of Coulomb's linear form 

F=r-µa-c=O; µ=µ(nJ, c=c(n;) (3.26) 

In above µ=tan(¢) and c (cohesion) are both said to be orientation dependent and r,a 

represent the shear and normal components of the traction vector on an arbitrary plane 

with unit normal n; 

(3.27) 

(3.28) 


The distribution of strength parameters can be defined based on the results of direct shear 

tests. Let the distribution of µ =tan¢ be described by 

(3.29) 

where Qii is a traceless symmetric tensor. 
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Referring the problem to the principal material system and assuming that x3 -axis is 

normal to the bedding planes (plane of isotropy), so that e3 = ( 0, sin a, cosa) , there is 

(3.30) 

so that 

A similar methodology may be applied to describe the bias in the spatial variation 

of cohesion c. 

The framework outlined above can be employed to define the conditions at failure 

for an arbitrary stress state at a material point. The general criterion, under 3D stress 

condition represents a constrained optimization problem 

F =~(r-µo--c) =O; µ =µ(n;), c =c(n;), n;n; =1 (3.32) 
n; 

which can be solved by Lagrange multipliers or any other known technique (e.g. interior 

point method, Renegar 2001). 
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3.4.2 Mechanical Behavior ofAnisotropic Material 

The general formulation to simulate the mechanical behavior of transversally 

isotropic material is presented in this section. Anisotropy is considered for the material 

both in elastic and plastic ranges ofdeformation. 

3.4.2.1 Anisotropy in Elastic Behavior 

Consider an arbitrary coordinate system with base vectors ( e" e2 , e3), and let the 

material coordinate system be defined by the normal basis (e1,e2 ,e3 ) with e3 being the 

vector normal to the bedding plane (plane of isotropy). The relation between the stress 

tensor in the material and the global systems is 

(3.33) 


where RiJ is the transformation tensor whose components are the direction cosines of the 

material triads. 

In the elastic range, for a transversally isotropic material, the constitutive equation 

in the material coordinate system can be formulated in terms of 5 independent elastic 

parameters, E" E3 , v12 , v13 , G13 (e.g. Timoshenko and Goodier 1970, Saada 1993) 

(3.34) 


The components of the elastic constitutive tensor are 
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.b~lll =.b~222 =El (l-V31V13)Y 
A e 2 

D3333 =E3(l-v12)Y 

D~122 = D~211 = E1 (v1 +V31V13)Y 

D~133 =.b;311 =.b;233 =.b;322 =El (V31 + V31V12)Y = E3(V13 +V13V12)Y (3.35) 

D~212 =f>;121 =D~221 =D~112 =G12 

D~313 =.b;l31 =D~331 =.b;l13 =G13 

f>;323 =f>;232 =f>;332 =f>;223 =G13 

where 

y = (l-V122 -2V13V31 -2V12V13V31f1 

G _.!_(D -D )- E1 (3.36)12 - 1111 1122 - 2(1 +V )2 12 
El V31 = E3 V13 

In above equations, the shear strains are the tensorial strains (&if ; i * j ). The 

transformation rule from the material to the global coordinate system takes the form 

(3.37) 

so that 

(3.38) 


3.4.2.2 Anisotropy in Plastic Behavior 

In order to consider anisotropy in the plastic behavior some modifications should 

be introduced in the definition of basic functions that are involved in the formulation of 

the problem, i.e. the yield surface and plastic potential functions, the hardening rule, etc. 

As mentioned earlier, the modeling of the mechanical response of anisotropic 
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materials is typically based on the notion of a continuum with microstructure and requires 

the introduction of a tensorial measure that describes the anisotropy. In this work, the 

approach proposed by Pietruszczak and Mroz (2001) and Pietruszczak et al. (2002) is 

adopted, in which the effects of anisotropy are attributed to variation of material 

properties. In general, the material parameters are assumed to depend on the orientation 

of material axes relative to the principal stress system. Using the framework outlined in 

the article by Pietruszczak and Mroz (2001), the following representation is employed 

(3.39) 

Here 'I' represents any material parameter that is orientation-dependent, 4j is a 

deviatoric part of a symmetric second order microstructure tensor whose eigenvectors are 

co-linear with preferred material directions, while Ii is the so-called loading direction. 

The latter can be defined as 

(3.40) 


where the components of Li represent the traction moduli on the planes normal to the 

· · 1 · 1 (a) -1 2 3 ·pnnc1pa matena axes e; ,a - , , , 1.e. 

(3.41) 
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The above formulation can be applied to incorporate the anisotropic effects in any 

constitutive model. For the model presented in this thesis, orientation dependency of 1J1 

and T introduces the strength anisotropy while the orientation-dependency of (1Jc,B) 

enables to capture the anisotropy in the deformation characteristics of the material. In 

view of (3.39) and the definition of ; , it is worth to mention that the anisotropic effects 

in the mathematical formulation are more pronounced at lower level of stress, and tend to 

fade as the level of stress increases. A similar pattern was observed and pointed out in the 

experimental data obtained in triaxial tests (see Fig. 2-12 to Fig. 2-15). 

When deriving the elastoplastic constitutive equations, the expression for the 

gradient ofyield/plastic potential functions needs to be modified to 

(3.42) 

In (3.42), the first term in the parenthesis is a standard one in classical elasto-plasticity, 

while the second term is the contribution of the anisotropy. The derivative of 'I' becomes 

These derivatives should be considered in the integration of the elastoplastic constitutive 

equation as well as the calculation of the gradient operator. 
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3.5 Strain Localization 

In this section the kinematics of strong discontinuity is discussed first. Later, the 

formulation is applied to bifurcation analysis to determine the onset of discontinuity. The 

section is concluded by examining the formulation describing the propagation of strain 

localization. 

3.5.1 Kinematics of Strong Discontinuities 

Consider a body Q under a displacement field u(x). Furthermore, focus on the 

case when localization occurs that is associated with formation of an internal surface <5 

in Q with bandwidth h and the normal vector n. It is assumed that a discontinuity in the 

displacement field starts to develop along the internal surface <5 • This surface divides the 

body into the sub domains n+ and n- as shown in Fig 3-3. The rate of displacement 

field at time t, u(x,t), can be expressed as (Simo et al. 1993, Oliver 1995, Oliver et al. 

1999, Oliver and Huespe 2004): 

(3.44) 


Fig 3-3 Body Q with discontinuity surface <5 
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In eq. (3.44) u is a continuous rate of displacement field, and [ti] is the displacement 

jump across <5 from ~r to r.t, and H is the unit jump function 
010 

XE~r 
(3.45) 

xen-

Assuming small deformations, the strain field can be calculated by applying the proper 

spatial derivative operator on (3.44), 

. 1 ( . . ) 1 (...:... ...:... ) 1 H ([ . ] [ . ] ) µo [ . ] 
&kl =1 uk,1+u,,k =1 uk,1+u,,k +2 njo u k,1+ u L,k +h u kn, (3.46) 

'--v--' 

&kl [t]kl 

where µ 0 is the collocation function placed at <5: 

(3.47) 


Note that depending on the value of h, i.e. the bandwidth of the discontinuity plane, the 

kinematics of discontinuity described in (3.44) and (3.46) can imply different kinds of 

discontinuity. 

3.5.2 Onset ofStrain Localization; Bifurcation 

The inception of strain localization and formation of a shear band is commonly 

considered as a bifurcation problem, i.e. loss of uniqueness of solution to the set of 

equations governing incremental equilibrium which admits an alternative deformation 

mode associated with formation of a shear band (Rudnicki and Rice 1975, Pietruszczak 
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and Niu 1993, Vardoulakis and Sulem 1995). 

Given the kinematics of discontinuity as discussed in the previous subsection, the 

problem can be stated as follows: find the conditions under which the strain field, 

continuous in a neighborhood of a material point P on the discontinuity surface o, 

bifurcates into discontinuous field 

continuous discontinuous 

(3.48) 

such that the traction remains continuous across the discontinuity 

(3.49) 


Given the constitutive equations 

(3.50) 


and substituting (3.50) into (3.49) leads to 

n;(DiJkl)mstk/ =n;(DiJld)s ( tkl + ~ ([ut n1) 0 ) 

{n;(DiJkl)8 n1)[ul =hn; {(DiJkl)ms -(DiJkl )8 )&kl 
'----v--' 

Qjk 

where Q is the acoustic (or localization) tensor. 

(3.51) 
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In view of equation (3.51) different mechanisms for the onset of bifurcation can 

be considered (Runesson et al. 1991 , Oliver et al. 1999): 

1- The stress state is in the elastic range, both at the discontinuity surface and its 

neighborhood, i.e. Dm0 =D0 =De. In this case, the right hand side of (3.51) will be zero 

and the equation simplifies to Q;k [ul = 0 j • Here, Qe is the elastic acoustic tensor which 

is shown to be non singular and positive definite, det(Qe) > 0, and all the eigenvalues of 

Qe are positive. Therefore, [ti] =0 and bifurcation is precluded. 

2- The stress state is in the elastoplastic range, both at the discontinuity surface 

and its neighborhood, i.e. Dm0 =D0 =Dep . In this case again, the right hand side of 

(3.51) will be zero and the equation simplifies to Q;f [ul =0r To have [ti] :;t: 0 , the 

operator Qep should be singular with at least one zero eigenvalue, i.e. 

(3.52) 


3- The stress state is in the elastoplastic range at the discontinuity surface and in 

the elastic range in its neighborhood, i.e. D =Dep , D =Dep. In this case (3.51) can 010 0 

be rewritten as 

(n;D;~n1 ) [ul = hn; (n;kl - D~) tkl = hn; 
'--v--" 

Qjk (3.53) 

54 




Ph.D. Thesis - A. Azami McMaster - Civil Engineering 

In this case, it can be proven (Runesson et al. 1991) that the minimum eigenvalue of Qep 

is negative. Considering the fact that all the eigenvalues of Q are positive in the elastic 

range, it can be concluded that before the minimum eigenvalue becomes negative it 

would be zero, so that the problem is again formulated by (3.52). Thus, the condition for 

the onset of localization requires the vanishing of the determinant of the acoustic tensor 

(e.g., Rudnicki and Rice 1975) 

The bifurcation problem m eq. (3.52) can be solved by an 

optimization/minimization analysis, e.g. Renegar (2001). The variable in this 

optimization problem is n =n; , the normal vector to the discontinuity surface, and when 

the minimum value of the function is zero the onset of localization takes place. 

Some examples ofbifurcation analysis in the context of a biaxial compression test 

are presented in figures below. Unlike the triaxial tests where an axial symmetry 

condition holds with ()2 =()3 , biaxial tests are carried out under plane strain condition, 

i.e. the strain in the direction of x2 -axis is zero. The typical results are shown in Fig 3-4. 

The simulations correspond to axial compression at hydrostatic pressure of 100 kPa. The 

selected material parameters are 1]1 =1.2, 1Jc =1.0, B =0.003, and the only active 

mechanism is the deviatoric hardening. The variation of deviatoric stress and the 

evolution of volumetric strain are presented in Fig 3-4a and Fig 3-4b, respectively. Fig 

3-4c shows the orientation of the shear band and the distribution of the determinant of the 

acoustic tensor as a function of n; (see eqn. (3.52)) at bifurcation point. 
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Fig 3-4 Biaxial tests simulation; (a) variation of deviatoric stress and (b) volumetric strain with axial 
strain, (c) variation of det(Q) and the orientation of shear band at bifurcation 

The results of a similar simulation with 171 =1Jc =l.2, are shown in Fig 3-5. 

Another simulation with an associated flow rule was carried out and the results are 

presented in Fig 3-6. In this case, no bifurcation takes place and the deformation mode 

remains homogeneous. 
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Fig 3-5 Biaxial tests simulation; (a) variation of deviatoric stress and (b) volumetric strain with axial 
strain, ( c) variation of det(Q) and the orientation of shear band at bifurcation 

Note that for an isotropic material the bifurcation analysis provides two solutions 

corresponding to two conjugate shear band orientations. In the case of anisotropic 

material, however, the solution leads to only one particular inclination for the shear band. 
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Fig 3-6 Biaxial tests simulation; (a) variation of deviatoric stress and (b) volumetric strain with axial 
strain (c) variation of det(Q) 

3.5.3 Post Localization Behavior, Homogenization Technique 

After bifurcation and formation of a shear band the displacement field 1s no 

longer continuous, thus the classical continuum mechanics approaches cannot be used to 

deal with this problem. In order to handle the discontinuous deformation mode, the 

approaches like non-local approach (e.g., Bazant and Lin 1988, Bazant and Pijaudier-

Cabot 1988), gradient-dependent description (e.g., Triantafyllidis and Aifantis 1986), or 
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similar could be applied. The framework employed in this thesis is based on a simple 

volume averaging procedure as reported in the work of Pietruszczak (1999). This 

approach distinguishes between the properties of the shear band and those of the intact 

material, thereby accounting for the inherent anisotropy of the microstructure. The 

method handles the issue locally at the material level by employing a homogenization 

technique. 

Fig 3-7 shows schematically a material intercepted by a shear band. Such a 

composite consists of two simultaneously existing constitutes, i.e. matrix (1) and the 

material in the discontinuity band (2). Assuming that the constitutes remain homogeneous 

within themselves, the volume averaging scheme may be employed (Hill 1950). 

Fig 3-7 Representative element of material intercepted by a discontinuity band 

(3.54) 


v1 and v2 are the volume fractions of the matrix and the shear band respectively, i.e. 
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dtl =1- At v<2l = At (3.55)
'v v 

where V is the volume of the element, A is the area of the cross section and t is the 

thickness of the shear band. The thickness of shear band (around 10 times of the mean 

particle size, Muhlhaus and V ardulakis 1987) can be considered as negligible compared 

to other physical dimensions, so that the shear band can be treated as a discontinuity 

plane (strong discontinuity). Therefore, it is convenient to express the deformations field 

within the shear band in terms ofvelocity discontinuities 

. { . g·2 g"3}T (3.56)g;= gl 

Thus, the strain rates generated within the band can be defined as 

(3.57) 


where n; is the unit vector normal to the band surface ( n1 in Fig 3-7). 

Tractions along the shear band can be related to the velocity discontinuities in the 

band through a separate constitutive relation: 

(3.58) 


where Kif is the elastoplastic operator defining the properties in the shear band. Imposing 

now the requirement of continuity of traction, ti , along the localization plane, one obtains 
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Combining eqs. (3.54), (3.57), (3.58), (3.59) and noting that the thickness tis negligible 

compared to other dimensions of the representative volume, the following averaged 

constitutive relation is obtained after some transformations 

(3.60) 


2where, v = u( )/t is a characteristic dimension that is defined as the ratio of the surface 

area of the localization plane to the volume of the element. 

The elastoplastic operator Kij is obtained by incorporating a strain-softening 

plasticity framework. Referring the problem to a local coordinate system along the shear 

band and taking x1-axis along the normal n; , the yield and plastic potential functions 

may be defined in a simple linear form 

f =r - µ<T- c =O; If/ = £ - 'ji<T =canst. (3.61) 

Here, £ = ~ti + tj , <T = t1 are the shear and normal components of the traction vector ( t; ) 

and j1 is a material constant (dilation angle). The softening characteristics may be 

defined by taking c = const. andµ= µ(gP) such that 
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(3.62) 

where µ 0 is evaluated at the onset of localization, µr is the residual value and P is a 

material constant. Assuming now the additivity of elastic and plastic parts of the velocity 

discontinuity vector, and following the standard plasticity procedure, the stiffness 

operator Kij may be defined as 

(3.63) 

Here, K~ is the elastic operator 

(3.64) 


where: 

KN= (l-v)E (3.65)
(1 +v)(l-2v)t 

K - E (3.66) 
T - 2(l+v)t 

E and v are the elastic parameters of the band and t is the thickness of the band. 

The numerical results presented later in Chapters 5 show the applicability of the 

proposed constitutive framework in simulation of the mechanical behavior of 

geomaterials. 
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Appendix I 

The derivation of equation(3.24): 

(3.24) 


The consistency condition should be satisfied for both mechanisms 

The rate of plastic deformation can be calculated from the flow rule for each mechanism, 

i.e. 

So that 

The above representation can also be expressed as 
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where 

Now the plastic multipliers can be determined as 

Using the above values of the plastic multipliers, the constitutive relation can be defined 

as 
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so that the tangent operator becomes 
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Appendix II 

The derivation of equation (3.43) : 

Above equation is derived from the definition of'¥ and ; in (3.39), i.e. 

(3.39) 

a'¥ a'¥ a;--=--­
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Appendix III 

The derivation of equation (3 .60) 

DH =n<l) ( s: a - s ) · iJkl iJpq u pk qt vnP qkl ' 

The above equations were derived by combining equations of homogenization (3.54), 

kinematic and static constraints viz (3.57) and (3.59), and invoking the two constitutive 

. .i-. h . . . <1> - n<1> <1> d . - K .1re atlons 1or t e two constitutes, 1.e. aiJ - iJkl&kl an ti - iJgj. 

&iJ =&~
1 

> } Averaging/Homogenization 

. - ·(!) v ( . . ) Ki t" c tr . t&iJ _ &iJ +2 nigj +njgi nema 1c ons ams 

• _ • (I) } Static Constraints 
ti - aiJ nj 

Traction Continuity Across the Band 
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. DH. 
aii = !ikl&kl 
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CHAPTER4 

IDENTIFICATION OF MATERIAL 

FUNCTIONS/PROPERTIES 


4.1 Introduction 

Implementation of the framework outlined in Chapter 3, requires the specification 

of material functions/parameters prior to localization as well as the properties of the 

material contained within the shear band. The experimental studies conducted in this 

thesis, which include the direct shear, triaxial and hollow cylinder tests, were designed to 

provide the necessary data for the identification of all material parameters. Most of the 

parameters used in the formulation have a clear physical significance and the 

identification procedure is rather straightforward. The parameters that need to be 

identified implicitly, through the best fit, include the constant B in definition of the 

deviatoric hardening mechanism, as well as the parameters defining the anisotropy 

functions. 

4.2 Material Functions/Parameters Prior to Strain Localization 

The material parameters for the volumetric hardening mechanism, (A,K,e0), can 

be identified using the data from a hydrostatic compression test with loading and 

unloading paths. Here , =0.6 is the initial void ratio of the material, while the e0 

parameters A and K define the slope of loading and unloading branches, respectively, 

in the relation between the void ratio and the natural logarithm of p . Note that for 
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hydrostatic compression, the only active mechanism is the volumetric hardening. This 

mechanism is more likely to be employed for a cohesive material. For sands, it would in 

general be sufficient to use the deviatoric hardening mechanism alone. For the sake of 

completeness a multimechanism framework is considered here and a general formulation 

is presented. 

In the deviatoric hardening mechanism, 11J is related to the shear strength, i.e. the 

friction angle, while C is the hydrostatic tension resistance. More ever, 1'/c is the stress 

ratio at which the volumetric behavior changes from compaction to dilation. Strength 

anisotropy can be simulated by directional-dependency in 1'/1 . With the directional 

dependency in 1'/c and B, along with an anisotropic elastic behavior, the formulation can 

capture all aspects of the anisotropy in the deformation characteristics. 

Consider first the directional dependency of the strength parameter rJ1 that 

appears in the deviatoric hardening mechanism. The identification of the material 

function (3.39) requires the information on the conditions at failure in samples tested at 

different orientations relative to the direction of loading. As mentioned earlier, such tests 

cannot be performed without overcoming significant difficulties. In triaxial testing setup 

the problem stems from the fact that an anisotropic material subjected to triaxial 

compression tends to distort. This distortion, however, is constrained by the presence of 

loading platens, rendering the results for inclined samples unreliable. In case of hollow 

cylinder tests with equal internal and external cell pressures, the effects of intermediate 

principal stress on the material behavior cannot be decoupled form the effects of 
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anisotropy. The stress path with = can only be achieved at the expense ofu2 u3 

nonuniformity in the stress distribution, and this makes the experimental data unreliable. 

In view of these difficulties, an implicit approach has been adopted here. In this 

strategy, the results of direct shear tests at different angles of deposition (Chapter 2.2) 

were employed to predict, using the critical plane approach (Chapter 3.4.1), the response 

in axial compression at different orientations of the sample. The latter information was 

subsequently used to identify the variation of strength parameter 1J1 with loading 

direction. Assume that the conditions at failure are defined by Coulomb's linear form 

F=r-µu-c=O; µ=µ(ni), c=c(nJ (4.1) 

where { r, u) are the shear and normal components of the traction vector on a plane with 

unit normal ni and µ and c are both said to be orientation dependent. The distribution of 

strength parameters can be directly defined based on the results of direct shear tests. Let 

the distribution of µ =tan fjJ be described by 

where Qii is a traceless symmetric tensor. Referring the problem to the principal material 

system and assuming that -axis is along the direction of deposition, so thatx3 

ni = (0, sina, cosa), there is 

(4.3) 
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so that 

The best-fit approximations employing representation (4.4) are shown in Fig 4-la. 

The results incorporate the dyadic products of degrees up to 2 and 4, respectively. 

Evidently, the approximation including terms up to order 4 is more accurate and 

corresponds to 

=0.1419679, fa=l.06463, =5.1768, =31.2851, =87.8614n1 b1 b2 b3 

A similar methodology may be applied to describe the bias in the spatial variation 

of cohesion c. Employing the representation analogous to that of (4.4) and denoting the 

respective material parameters as c, n~, d" d2 , ... , the second-order approximation, as 

shown in Fig 4-1 b, yields 

0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 
Deposition Angle(a0

) Deposition Angle (a0
) 

• Experimental 
Best fit (2nd order) 

- - - - - · Best fit (4th order) 

1 
2.8 
2.6 

2.40 

Fig 4-1 Variation of (a) µ and (b) cohesion with the angle of deposition 
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The framework outlined above can now be incorporated to generate a set of data 

describing the variation of compressive strength at different confining pressures and 

different orientations of the sample. The latter information may then be employed to 

identify the material function 171 =171 (1;) 

The prediction of strength under triaxial conditions represents a constrained 

optimization problem which can be solved by Lagrange multipliers or any other known 

technique (e.g. interior point method, see Renegar 2001). The problem is defined as 

F =~(r-µu-c) =O; µ =µ(n;), c =c(n;), n;n; =1 (4.6) 
n; 

Fig 4-2 shows the predicted variation of compressive strength, Re =u 1 , at p 0 =O, 

10, 50, 100 and 150kPa. For cases of p 0 =IO, 50, 100 and 150kPa the experimental data 

from triaxial tests are also included in the plots, and are clearly quite consistent with the 

predictions made by the critical plane analysis. 

For the triaxial compression and hollow cylinder tests, the function 171 =171 (1;), 

eq.(4.5), reduces to 

(4.7) 
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Fig 4-2 Estimate of maximum axial stress by critical plane analysis for p =canst. =0 kPa , triaxial 

state of stress with confining pressures Po =0, 10, 50, 100, 150 kPa and experimental results on the 

samples with a =0° and a =90° 
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so that 

Fig 4-3 shows the best-fit approximations to the set of data obtained for all values 

of p 0 within the range from 0 to 150kPa. The results are plotted in the affined space 

{ 1J1 , 13 } and correspond to representation ( 4.8). For comparison and validation of the 

proposed method, the experimental data from the triaxial (TC) and hollow cylinder (HC) 

tests are also shown on the same plot. The material parameters for the 2nd order best-fit 

curve are: 

A1 = .0078412, q1 =1.6978, a1 =835.7128 

HC TC Critical Plane 

2.1 Tests Tests Prediction 
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Fig 4-3 Variation of 1Jf with the loading angle 
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The value of the strength parameter C, can be defined by examining the response 

under hydrostatic tension u, . In this case, for any orientation n; there is T = 0, u = u, , 

so that the representation ( 4.6) reduces to 

F = ~ (u, - c Iµ) = 0 ::::> u, = C = ~ (c Iµ) = canst. (4.9) 
~ ~ 

Thus, for an oriented microstructure, the tensile strength parameter C is invariant with 

respect to orientation and its value corresponds to min( c Iµ)= 2.4. 

The specification of deformation characteristics requires the assessment of elastic 

properties, the hardening parameter B and plastic potential parameter 17c. The elastic 

moduli for vertical (a = 0°) and horizontal (a = 90°) samples were identified from 

unloading probes along the triaxial compression paths. In general, these values are 

affected by the stress state; particularly, by the magnitude of the confining pressure. For 

simplicity and transparency of the framework, constant values were assigned to these 

parameters 

E1 =6.0 MPa, E3 =12.0 MPa, v12 = 0.25, = 0.20, = 3.75MPa v13 G13 

Directional dependency of B and 17c can be described using a similar 

representation to that of 171 in ( 4.8). Here, again for the sake of simplicity, it is assumed 

that 17c = 0.8171 , while B = 0.003 =canst. for all loading directions. 

76 




• • • 
• • 

0.01 .----------------. 

c: 
-~ 

en -0.01 
(..)
·c: 
Q) 

,---­

Experimental 

•• 
Numerical 

---a=0° 

Ph.D. Thesis - A. Azami McMaster - Civil Engineering 

To verify the performance of the constitutive framework outlined in Chapter 3, 

the triaxial and hollow cylinder experiments have been simulated numerically. The 

details of the integration procedure are provided in the next chapter. 

Fig 4-4 to Fig 4-7 present the results of simulations of triaxial tests performed at 

confinements of p0 =10, 50, 100 and 150kPa. 

0.06 0.08 0.02 0.04 0.06 0.08 

Axial Strain Axial Strain 

Fig 4-4 Numerical simulations of triaxial tests at confining pressure Po =10 kPa ; variation of 

deviatoric stress and volumetric strain with axial deformation 
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Fig 4-5 Numerical simulations of triaxial tests at confining pressure p 0 =50 kPa ; variation of 

deviatoric stress and volumetric strain with axial deformation 
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The simulations were terminated at the onset of localized deformation, as the response in 

the post-localization regime represents a boundary-value problem. 

Fig 4-8 shows the set of results for hollow cylinder tests at constant pressure of 

p =lOOkPa for a= 0°, 45°, 90° and a= 30°, 60°, respectively. 
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Fig 4-8 Numerical simulations of hollow cylinder tests at a constant confming pressure 
p =100 kPa ; variation of deviatoric stress and volumetric strain with octahedral shear strain 

It is evident that for both the triaxial and hollow cylinder tests the predicted response, in 

terms of strength and volume change characteristics, is fairly consistent with the 

experimental data. 

Note that for the cases depicted in Fig 4-5 and Fig 4-8, the initial slope of the 

stress-strain characteristics is close to that observed experimentally. This is because the 

values of elastic modulus were selected for the mean stress level close to 100 kPa. For 
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tests at lower confinement (Fig 4-4) the initial slope is overpredicted, while for those at 

higher stress levels (Fig 4-6 and Fig 4-7) it is underpredicted. The maximum level of the 

deviatoric stress intensities is close to the observed values in most cases. This provides a 

justification for the procedure implemented in the identification of strength parameter 

Tlf, i.e. combination of the data obtained from direct shear tests on inclined samples with 

the critical plane analysis. 

4.3 Identification of Material Parameters in the Shear Band 

The description of post-localization response, within the context of a boundary­

value problem, requires the specification of properties along the shear band. These can 

best be assessed by examining the deformation characteristics obtained from direct shear 

tests. Note that in a shear test the sample is failed along a pre-defined localization plane. 

Therefore, the traction-displacement characteristics in the post-peak regime are 

representative of those along the shear band. Referring to Fig 2-5 to Fig 2-8, it is evident 

that the unstable response commences at horizontal displacements of approximately 

2mm, while the residual state is reached at displacement in the range of 7mm. At the 

same time, the residual friction angle may be estimated as 45° , irrespective of the value 

of a. Given this information, the parameters in the evolution law (3.62) have been 

estimated as 

µr = 1.0, f3 = 80om-' 
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Fig 4-9 shows the shear band characteristics corresponding to this choice of 

parameters. Apparently, the exponential law (3.62) is restrictive; the general trends, 

however, are consistent with the experimental data. The value of the characteristic 

dimension v, eq.(3.60), is assessed at the level of a boundary-value problem based on the 

volume associated with the respective integration point within the finite element mesh 

(Pietruszczak and Niu 1993). 
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CHAPTERS 

NUMERICAL ANALYSIS 

5.1 Introduction 

In a numerical analysis of an elasto-plastic problem it becomes necessary to 

integrate the incremental constitutive equations governing the behavior of the material. 

Whereas accuracy in the computation of the tangent stiffuess matrix can be substantially 

relaxed at the expense of convergence speed, the precision with which the constitutive 

relations are integrated has a direct impact on the overall accuracy of the analysis (Oritz 

and Popov 1985). The existing integration schemes can be classified into two different 

categories; one uses the trapezoidal rule and the other uses the midpoint rule. The 

classical approaches, viz. radial return, mean normal and closest point procedures, are 

particular cases of those families (e.g. Borja and Lee 1990, Hofstetter et al. 1993, Simo 

and Hughes 1998). In this chapter, general integration algorithms are outlined for the 

elastoplastic constitutive equations employing single and multi yield surface 

formulations. The trapezoidal rule is subsequently applied for the constitutive model 

proposed in Chapter 3. Later the simulations of some undrained hollow cylinder tests are 

presented to verify the performance of the constitutive model and the integration scheme. 

The proposed constitutive framework and the integration algorithm have been 

implemented in a commercial FE package (ABAQUS). In the second part of this chapter, 

the numerical simulations of the scaled footing tests, as described in Chapter 2, were 
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carried out using FE analysis that incorporated the material properties identified in 

Chapter 4. The detailed results, including an extensive parametric study, are presented 

and compared with the experimental data. 

5.2 Integration Algorithm for a Single Yield Surface Formulation 

The mechanical behavior of a wide range of elasto-plastic materials can be 

characterized by means of a set of constitutive relations in the general form 

(5.1) 


(5.2)a 

(5.2)b 

(5.2)c 

(5.2)d 

In the equations above, D~kl is the elastic constitutive tensor, i is the plastic multiplier 

and K is the hardening parameter. Eqn. (5.2)a is the additivity postulate that allows 

division of the increment of total strain into the elastic and plastic parts, eqn. (5.2)b is the 

generalized Hooke's law, while eqn. (5.2)d is the hardening rule. 
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The loading/unloading criteria are defined by the Kuhn-Tucker conditions 

(Luenberger 1984) 

(5.3) 


The case of F( aij,K) < 0 yields i =0, and corresponds to elastic behavior. For i > 0 

the material undergoes plastic deformation and the stress state remains on the yield 

surface, i.e. F (aij, K) =0. During plastic flow the consistency condition ( dF =0) is 

automatically satisfied by (5.3). 

In the context of finite element analysis the constitutive equations are integrated at 

the Gaussian points. The main function of the constitutive subroutine is to get increment 

of strain as input, and to calculate the updated state of stress and the updated hardening 

parameters as output. If the global iteration scheme of the finite element analysis is based 

on Newton-Raphson method, the consistent tangent operator (or the elasto-plastic 

constitutive tensor) also needs to be calculated. As mentioned previously, the precision 

with which the constitutive relations are integrated has a direct impact on the overall 

accuracy of the analysis. An acceptable integration algorithm should satisfy the basic 

requirements of numerical stability and accuracy. The following subsections present two 

families of integration algorithms for elastoplastic constitutive equations in case of a 

single yield surface models. 
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5.2.1 Generalized Trapezoidal Rule 

This approach incorporates a class of algorithms for the integration of eqns. (5.2) 

under constraints (5.3). The governing equations are 

(5.4)a 

(5.4)b 

. . oK ( (-oQ J+w(-oQ J J (5.4)cKn+I =A-P (1-w)ac.. au.. au.. 
IJ IJ n IJ n+l 

F ( ( U ii )n+l , K n+l ) =F ( ( U ii )n + (Crii)n+l , Kn + Kn+! ) = 0 (5.4)d 

where subscripts ( n, n +1 ) are the step/increment counters and w is a constant 0 :::; w :::; 1 . 

Geometric representation of the integration scheme is presented in Fig 5-1, and is 

obtained by rephrasing the set equation (5.4) as 

Trial ( ) e { • )
( u.. ) = u.. +D.. & (5.5)a

IJ n+l IJ n 1Jkl kl n+l 

= Trial • e ( ( -oQ ) ( oQ ) J (5.5)b( u.. ) ( u.. ) -A,D..kl (1-w) +w ­
IJ n+l IJ n+I IJ OU OU 

kl n kl n+l 

(5.5)cKn+I =Kn +A( 0~J((1-w)(~J +w(~J Jo&.. ou.. au.. 
IJ IJ n IJ n+l 

(5.5)d 
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Fig 5-1 illustrates how the stress state is updated in two steps. In the first step, assuming 

the material is in elastic range, the increment of stress is calculated from (5.5)a. This trial 

Trial 
stress, i.e. ( O'iJ ) n+i , is called the elastic predictor. If the trial stress is not in the elastic 

domain, such as in the case shown in Fig 5-1, according to Kuhn-Tucker conditions the 

material undergoes plastic deformation and the stress state should be mapped onto the 

updated yield surface. This is done in the second step using (5.5)b and (5.5)c, where the 

plastic flow is calculated based on the state parameters at the current and the previous 

steps ( n and n +1). At the end of calculations, the updated state of stress satisfies the 

equation of the updated yield surface (5.5)d. 

Trial 

( )() .. 
lJ n+l 

Fig 5-1 Geometric interpretation of the generalized trapezoidal rule 
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When OJ =0 the algorithm is explicit. The method resembles the classical 

approach, where the plastic multiplier can be evaluated directly from the consistency 

condition (see section 3.2). For OJ> 0 the algorithm is implicit, and the plastic multiplier 

should be evaluated by an iterative procedure. By considering OJ = 0.5 and a particular 

case of an elasto-perfect plastic von-Mises model with an associated flow rule, the 

algorithm coincides with the mean-normal procedure proposed by Rice and Tracy (1973). 

Choosing OJ =1 along with an associated flow rule, the closest point projection algorithm 

is obtained (Borja and Lee 1990, Hofstetter et al. 1993). The closest projection algorithm 

is known to be unconditionally stable if the yield function is convex, but it is only of first 

order accuracy. Choosing OJ= 0.5 provides unconditional stability and boosts the 

integration accuracy to the second order (Oritz and Popov 1985). 

In an implicit scheme, the plastic multiplier and subsequently the updated state of 

stress and hardening parameters, are obtained using an iterative algorithm. The 

consecutive steps for the generalized trapezoidal rule are presented in Flowchart 5-1. The 

algorithm begins with the trial elastic stress, which does not satisfy the Kuhn-Tuker 

conditions. The algorithm consist of two iterative levels; i.e. global iterative procedure 

shown by superscript s , within which a local iteration procedure is embedded shown by 

superscript m . Before starting the iterative loops, the initial value for the updated stress 

state is set to be the elastic predictor; initial plastic multiplier is considered to be zero and 

the updated hardening parameters are equal to their values at step n . Then the loop for 

the global iteration starts, by calculating the plastic deformation based on the stress state 

at step n , and step n +1 at global iteration s =0 . The Kuhn-Tuker conditions are 
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checked, and if not satisfied, the algorithm enters the local iteration loop. Inputs to the 

local iteration loop are state of stress, hardening parameters and the plastic multiplier at 

the end of the recent global iteration, and the outputs are the updated values satisfying the 

Kuhn-Tuker conditions. The values updated in the local iteration loop are then inputs for 

the next global iteration, where plastic strain is recalculated and the updated state of 

stress and hardening parameters are found for iteration s +1 . If the new values satisfy the 

Kuhn-Tuker conditions, the global iteration loop is terminated and the analysis moves to 

the next step/increment. Otherwise, the new values are inputs for another round of local 

iterations. 

To update the plastic multiplier in the local iteration process, the following 

relations are applied 

k,m k,m)F(( (J'ij ) 'l(n+IA, k,m+l =A, k,m + n+l (5.6)a
He )k (+HP )k( 

n+l n+l 

(He):+i =(( oF.)s Jn;kl((l-m)(~) +m(~)s J (5.6)b
au,, O(J'kl 0(]'kl I 

, n+I n n+ 

(5.6)c 

Details of the numerical procedure are presented in Appendix I. 
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Setting the initial 0 ( )Trial ( ) ( ) ·o 
( CF.. ) =CF.. =CF.. +D~ld i Id ; A: =0values lJ n+l lJ n+l lJ n lJ n+l 

Start of the loop fo.--r-------~----------. 
global iteration 

(c;)::: =is((l-m)(~) +m(~)s J 
8CF.. 8CF.. 

lJ n lJ n+l 

CF.. = CF.. + D.. & - &( ) 
s+l ( ) e (( • ) ( • p )s+l) 

lJ n+l lJ n lJ/d Id n+l Id n+l 

(K)s+I =(K) +is (~)((1-m)(~) +m(~)s J 
n+l n 'fJ 8&!: 8CF.. 8CF .. 

lJ lJ n lJ n+l 

Start ofloo for local iteration 

(( ) 
s+l,m s+I m)

F CFij ,Kn+I' 
is,m+l = is,m + n+I 

( )s ( )sHe +HP 
n+I n+I 

(c;)::+i =is,m+I((l-m)(:;.) +m(:;.)s J 
lJ n lJ n+I 

CF.. = CF.. + D.. & - &( ) 
s,m+I ( ) e ((. ) ( •p)s,m+I) 

lJ n+l lJ n lJ!d Id n+I Id n+l 

K~:~+I =Kn+is,m+I( 
8~)((1-m)(~) +m(~)s J 

8&.. 8CF.. 8CF.. 
lJ lJ n lJ n+I 

NO Yes is +-- is,m+l 

( ) 
s,m ( )s,m+l 

CFij +-- CFij 
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5.2.2 Generalized Midpoint Rule 

An alternative family of algorithms can be obtained from a midpoint rule, which 

takes the following general form 

(5.7)a 

( ·p) A( oQ J (5.7)b
Cij n+I = 00' .. 

lJ n+m 

k =i(~J(_§g_J (5.7)c
n+I O&!. 00' .. 

l] l] n+<O 

(5.7)d 

Here 0 ::5: OJ ::5: 1, while n +OJ means that the values have to be evaluated for a midpoint 

between the n and n+l. Geometric representation of (5.7) is presented in Fig 5-2. 

Similar to the trapezoidal rule, in the midpoint rule the stress state is also updated in two 

steps. In the first step the elastic predictor is calculated, ( aij )::~1 • If the trial state is not in 

the elastic domain, the material undergoes plastic deformation and the stress state should 

be mapped onto the updated yield surface. In this case, the plastic deformation is 

calculated based on state parameters evaluated at a midpoint between the current and the 

previous steps ( n and n +1). By analogy to trapezoidal rule, when OJ= 0 the algorithm is 

explicit and when OJ> 0 the algorithm is implicit. For the implicit case, the plastic 

multiplier should be evaluated by an iterative procedure similar to that presented in 

Flowchart 5-1. 
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( ) 

Trial 
(F .. 

lJ n+l 

. (oQ)
2Dijkl OU 

Id n+OJ 

Fig 5-2 Geometric interpretation of the midpoint rule 

5.3 Integration Algorithm for Multi Yield Surface Formulation 

Consider now a multi-surface constitutive model, where Fa (aiJ, K) =0 is a set of 

yield surfaces and Qa (aiJ) =const the corresponding set of plastic potentials. The basic 

elasto-plastic constitutive relations are 

(5.8)a 

(5.8)b 

(5.8)c 

(5.8)d 
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where subscript a stands for each yield surface or mechanism. Eqns. (5.8) represent 

additivity postulate, Hooke's law, flow and hardening rules for each mechanism 

(Vermeer 1978, Simo et al. 1988, Hofstetter et al. 1993, Simo and Hughes 1998). The 

total rate of plastic strain in eqn. (5.8)c is the sum of the strain rates for all the 

mechanisms that contribute to the plastic flow. The loading/unloading criteria are defined 

by the Kuhn-Tucker conditions for all the mechanisms involved, i.e. 

(5.9) 


The integration algorithm discussed here is based on the generalized trapezoidal 

rule, presented in section 5.2.1. The method automatically identifies the active 

mechanisms that contribute to the plastic flow, and integrates the relations (5.8) while 

satisfying the conditions (5.9). 

Since the integration scheme employed in this study is based on this approach, the 

numerical algorithm is described here in more details. The integration begins with the 

elastic predictor 

Trial ( ) e ( • } 
( a.. ) = a .. +D.. c (5.10)

IJ n+I IJ n IJki kl n+I 

Then the first Kuhn-Tuker criterion is checked for all the yield surfaces 

for Va E {1,2, ... ,m} ~Elastic Step (5.11) 

Trail )
F/J ((aij ) n+I ,Kn > 0 for 3P E {1,2, ... ,m} ~Plastic Step (5.12) 
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If the trial stress from ( 5 .10) satisfies the condition ( 5 .11) the material is in the elastic 

range, i.e. the stress state is admissible, and the analysis can continue to the next step. 

If the trial stress satisfies the condition (5.12), for at least one yield surface, then 

the response is assumed to be elastoplastic. Note that, when the trial stress satisfies (5.12) 

for several yield surfaces, this does not necessarily imply that all those yield surfaces are 

active. According to Kuhn-Tuker conditions, an active yield surface should have a 

positive plastic multiplier. In case of an inelastic response, the algorithm enters a trial-

error procedure to find all active mechanisms, plastic multipliers and the final updated 

state of stress and hardening parameters. 

The detailed integration algorithm, for the case of plastic deformation, is 

presented in Flowchart 5-2. The iteration starts with the assumption that all the yield 

surfaces satisfying (5.12) are active. The updated state of stress and state parameters, i.e. 

( u!i t+i and Kn+P are then found by a global iterative procedure (superscript s) within 

which a local iteration scheme is embedded (superscript m ). Before starting the iterative 

loop, the initial value for the updated stress state is set to be the elastic trial stress, initial 

plastic multipliers are considered to be zero and the updated hardening parameters are 

equal to their values at step n . Using the generalized trapezoidal rule, at the global 

iteration level, the flow and hardening rules can be rewritten as follows 

(5.13)a(en::: = Li; ((1- (i)) ( :~ J + (i) ( :~ JS J 
/3 If n If n+I 
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(5.13)b 

s+I _ ( ) e (( • ) ( • p )s+I )
( o-.. ) - o-.. +D.. & - & (5.13)c

lJ n+I lJ n lJkl kl n+I kl n+I 

The loop for the global iteration starts by calculating the plastic strain, the updated 

hardening parameters and the stress state viz. (5.13), based on the state variables at step 

n , and n +1 at global iteration s = 0 . Then, the updated values are checked in 

accordance with the Kuhn-Tucker conditions. If stress state is at the intersection of all the 

active yield surfaces, i.e. Fp ( ( o-iJ )::: , ( K:::)P) =0, the iteration process is complete for 

the current set of active mechanisms. A second check should be done on the positivity of 

all the plastic multipliers, i.e. i; > 0. A negative value of a plastic multiplier means that 

the corresponding mechanism should be deactivated. The set of active mechanisms 

should then be revised and the whole process should be repeated with the new updated 

set. 

If the stress state is not at the intersection of the active yield surfaces at the level 

of global iteration, the algorithm enters the local iteration process. Before the start of 

local iterations, all derivatives required for step ( n +1) are calculated based on the state 

of stress at the current global iteration. The local iteration loop is terminated when the 

stress state satisfies the equations of all active yield surfaces. The updated stress and 

plastic multipliers are then fed back to the global iteration process. The state of stress and 

hardening parameters are updated at the new global iteration s +1, and the first Kuhn­
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Tuker condition is checked for all the active mechanisms. The global iteration loop is 

terminated only when the updated state of stress is at the intersection of all active yield 

surfaces and all plastic multipliers are positive, otherwise the iteration will either update 

the set of active mechanism or reenter the local iteration loop. 

To update the plastic multipliers in the local iteration loop the following relations 

are used 

(5.14)a 

(He )s = ( oF/3 Js Di~kl ((1-m)( oQ/3 J +m( oQ/3 Js J (5.14)b/3 n+I Q(j'.. !J Q(j' Q(j' 
!J n+I kl n kl n+I 

(5.14)c(H:):+I =-(oF/3 Js (OK~J((l-m)(8Q/3) +m(8Q/3)s J
OK/3 8&.. oa.. oa.. 

n+I IJ 'l n 'l n+I 

The elastoplastic operator D:f,a can be calculated based on Koiter's postulate for 

the updated state parameters, i.e. (a.. ,K) .The consistency condition and the flow rule 
IJ n+I 

for all the active mechanisms, together with Hooke's law, are used in the derivation of 

this operator (Pasternack and Timmerman 1986). For the case of two active mechanisms, 

as presented in Chapter 3, the constitutive matrix can be expressed in the form 

(5.15) 
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where 

(5.16) 


8F 8F 
( N ) =(He +HP)_/3-He _r p,y=l,2

/3 ij rr r aa.. /Jr aa.. 
I] I] 

5.4 Numerical Simulations of Undrained Behavior of Sand 

This section demonstrates the applicability of the constitutive relation proposed in 

Chapter 3, to model the mechanical characteristics of anisotropic granular materials. The 

employed integration scheme is the one presented in section 5.3 with OJ= 0.5, which is 

unconditionally stable and highly accurate. Simulations presented here involve undraind 

hollow cylinder tests on transversely isotropic sand samples. The discussion on the 

testing equipment and procedures were presented in Chapter 2. 

Yoshimine et al. (1998) investigated the anisotropic behavior ofToyora sand with 

Dr =39- 41 % . The results of undrained hollow cylinder experiments on samples tested 

at different values of a are presented in Fig 5-3. The results ofnumerical simulations are 

also given in the same figure. The directional dependency is considered in 171 , 1lc as well 

as the hardening parameter B , as shown in Fig 5-4. The material properties employed in 

the simulations are listed in Table 5-1. The notation used is consistent with eq. (4.8). 

Note that in order to identify the material parameters properly, a more comprehensive 

experimental investigation is required and the material parameters presented in Table 5-1 

may not be accurate enough. However, the general trends in the simulated behavior are in 

a good agreement with the observed behavior. 
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Setting the initial values (ur)
0 

=(a;.)Trial =(ar) +Dtkl(ikl) ; i 0 =0 ---­
.c. 11 t• h · IJ n+I IJ n+I ~ n IJ n+I /3
1or a ac ive mec arusms ._______I+=================~----, 

Start of the 
loop for 
global 
iteration 

Start of the 
loop for 
local 
iteration 

s,m 

(c; ):::=IA; ((1-m)(8QP J +m(8 
QP Js J 

P oa.. ou.. 
lJ n lJ n+I 

a.. - u.. + D.. & - &( )s+I _ ( ) e (( • ) ( • p)s+I) 
lJ n+I lJ n ykl kl n+I kl n+I 

(Kp )::: =(Kp t +A;(::!. J((l-a)(:~ J +a(:~ JS J 
lJ lJ n lJ n+I 

active yield surfaces 

C!iV 
(H;):+, =[(aFP Js Jn;kl[(l-a)(aQPJ +a(aQPJs J 

aa.. aa.. aa.. 
lJ n+I lJ n lJ n+I 

(H% ):+! =-( aFp JS (OK~ J((l-a )(aQp J + a(aQp JS J
aKp as.. ou.. au..n+I lJ lJ n lJ n+I 

(( )
s+l,m ( )s+l,m)

Fp u.. ' Kp
A_s,m+I =A_s,m + lJ n+I n+I 

/3 /3 ( )s ( )sHe +HP 
P n+I P n+I 

(c;):~~+I =IA;·m+1 ((l-a)(:~J +a(:~Js J 
p lJ n lJ n+I 

( )s,m+I ( ) e ((. ) (. p)s,m+I)u.. = u.. +D.. & - & 
lJ n+I lJ n ykl kl n+I kl n+I 

(K )s,m+I =(K ) +A_s,m+1(aKpJ[(l-a)(8QpJ +a(aQpJs J 
p n+I p n /3 a&! au.. OU.. 

lJ lJ n lJ n+I 

Yes
( )s,m+I

(uij ) ~ uij 
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Fig 5-3 Comparison of experimental data reported by Yoshimine et al. (1998) on Toyoura sand with 
the simulation results 
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Fig 5-4 Variation of 1]1 , IJc and B with the loading angle 

Table 5-1 Material parameters for the simulations of mechanical response of Toyora sand 

£ 1 =25.0 kPa 

E3 =50.0 kPa 

V12 = 0.3 

V 13 = 0.2 

G13 = 60.0 kPa 

il1=1.28 

Ai= 0.05585 

a1 =10.527 

a2 =a3 = ... = 0 

ifc = 1.1668 

Ai= 0.03536 

a1 =14.25 

a2 =a3 = ... =0 

B = 0.0015965 

Ai = -0.44077 

a1 = 0.6291 

a2 = a3 = ... = 0 

T =0.0 kPa 

Ai =0.0 

C=l.0 kPa 
A.=0.00475 
K=0.002 
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Similar experimental data has been reported by Vaid et al. (2001) on the 

anisotropic behavior of loose Fraser River sand (Dr =30% ). The experimental results of 

undrained hollow cylinder tests are presented in Fig 5-5. The results of numerical 

simulations are also provided in the same figure. Fig 5-6 shows the directional 

dependency of 771 , 1/c and B for Fraser River sand, while all the material properties are 

listed in Table 5-2. Once again, the predicted behavior is in a good agreement with the 

general trends in the observed behavior. 

In the next step of the numerical analyses, the constitutive model described in 

Chapter 3 was programmed in a UMAT subroutine for ABAQUS finite element software. 

The subroutine employed the integration scheme described in Section 5 .3. The next 

section is focused on the assessment of bearing capacity of a shallow foundation in a 

transversely isotropic granular medium and the validation of the model by a comparison 

with the experimental data. 
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Fig 5-5 Comparison of experimental data reported by Vaid et al. (2001) on Fraser River sand with 
the simulation results 
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Fig 5-6 Variation of 1J1 , 1Jc and B with the loading angle 

Table 5-2 Material parameters for the simulations of mechanical response of Fraser River sand 
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5.5 Numerical Analysis of Shallow Foundation in a Transversely Isotropic 

Granular Medium 

The FE discretization used in the simulations is shown in Fig 5-7a. The mesh 

employed 860 eight-noded quadrilateral elements with reduced Gaussian integration. In 

order to assess the sensitivity of the solution to discretization, a coarser mesh (226 

elements) was also employed, as shown in Fig 5-7b. Note that although the meshes were 

symmetric with respect to the centerline of the footing, the resulting stress/displacement 

fields were not, due to anisotropy of the material. The dimensions of the FE model were 

the same as those of the experimental setup (see Chapter 2). The footing was assumed as 

rigid relative to the soil (elastic material; E=104MPa). The loading process consisted of 

applying vertical displacement at the top midpoint of the footing while allowing for the 

in-plane rotation. 

(a) (b) 

Fig 5-7 Finite element discretization for the analyzed problem; (a) fine mesh and (b) coarse mesh 

Fig 5-8 shows the load-displacement characteristics of the footing for the 

deposition angles of a = 0° and a = 90° . Two sets of predictions are provided, viz. with 
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and without taking into account the localized deformation mode. In the former case, the 

simulations employ the averaged constitutive law (3.60), while in the latter, a 

homogeneous deformation mode is enforced locally (i.e. no localization). It is evident 

that without invoking strain-softening characteristics associated with the localized 

deformation, the numerical predictions are quite poor. In fact, the bearing capacity is 

significantly overestimated and the predicted values are almost the same for both 

directions of deposition, which contradicts the experimental evidence. On the other hand, 

the simulations incorporating the strain-softening mode result in predictions that are 

fairly consistent with experimental measurements for both orientations considered. The 

issue of mesh sensitivity of the solution is addressed in Fig 5-9, which shows two sets of 

simulations for a =0° , corresponding to two different discretizations, as shown in Fig 

5-7. Clearly, the results are virtually the same, which is consistent with the notion of 

mesh-objectivity, as originally addressed in the article by Pietruszczak and Mroz (1981). 
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Fig 5-8 Load - displacement characteristics of the footing for a= 0° and a= 90° (Note: 
numerical simulations are with/without invoking the localized deformation mode) 
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----0-··· _,__ With localization,a=0° 
--------­ -­ Without localization,a=0° 

10 20 30 

Vertical Displacement (mm) 

Fig 5-9 Mesh sensitivity analysis (a =0° ) 

Fig 5-10 gives a more comprehensive picture of the evolution of mechanical 

characteristics with the angle of deposition. The results, once again, correspond to the 

standard approach (without localization) and the one incorporating the strain-softening 

mode. For the latter case, the predicted load-displacement response is again fairly 

consistent with the experimental data presented in Fig 5-1 Oc. 

For completeness, Fig 5-11 shows the load-displacement characteristics of the 

footing for the deposition angles of a =30° , a =60° and a =45° . The conclusions are 

similar to those derived from the results in Fig 5-8, i.e. incorporation of localized 

deformation mode is essential for obtaining reliable predictions. Furthermore, it is noted 

that for orientations of a =30° , a =45° and a =60°, the in-plane rotation of the footing 

was predicted from the early stages of the loading process. This is consistent with the 

experimental data as reported in Chapter 2. Also, there was no indication of any global 

localization mechanism developing at the macroscale. Instead, a diffused mode of failure 

was predicted with damage zones adjacent to the footing. 
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Fig 5-10 Load - displacement characteristics of the footing for different values of a (a) without 
localization treatment, (b) with localization treatment and (c) experimental results 

The issue of variation of ultimate bearing capacity with the angle of deposition is 

addressed in Fig 5-12. Clearly, the numerical predictions are again in a good agreement 

with the experimental results. 
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5.5.2 Parametric Study 

The simulations presented in the previous section were carried out using the 

deviatoric hardening mechanism, as described in Chapter 3. The analysis was carried out 

with and without taking into account the localized deformation mode. In this section, 

parametric studies are performed to examine the influence of various assumptions 

embedded in the model. 

The incorporation of the associated flow rule was motivated by the fact that at low 

confining pressures, which are representative of conditions in the scaled-model tests, a 

progressive dilation has been recorded. The latter is particularly evident in the context of 

direct shear tests, Fig 2-5b. In triaxial tests, the initial compaction (Fig 2-13b, Fig 2-14b 

and Fig 2-1 Sb) is associated primarily with elastic deformation, while the dilation in the 

later stages of these tests is attributed to plastic deformations. It should be mentioned that, 

in general, the use of a non-associated flow rule for materials exhibiting a high friction 

angle leads to numerical instabilities. This may occur even if some very robust solution 

techniques are employed. The problem is addressed in more details in the articles by de 

Borst and Vermeer (1984) and Yin et al. (2001). 

In the parametric studies reported here, a series of simulations were carried out 

first to investigate the significance of considering the hardening behavior on the 

prediction of bearing capacity. These involved simulations incorporating perfect­

plasticity, with and without the provision for localized deformation. Note that the 

perfectly-plastic formulation corresponds to P= 1 in eq. (3.20), so that the yield function 

is assumed to coincide with the Mohr-Coulomb failure criterion. The predicted values of 
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bearing capacity, together with the experimental ones are shown in Fig 5-13. It appears 

that consideration of the hardening in the elastoplastic constitutive model has an 

insignificant effect on the assessment of the ultimate load. 
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Fig 5-13 Variation of the bearing capacity with a; comparison of experimental and numerical 
results assuming an elasto-perfect plastic behavior 

Three additional sets of simulations were carried out to examine the significance 

of incorporating the anisotropic effects. First, it was assumed that 1J1 = min(771 ) for all 

orientations, which led to underestimating the ultimate load. The second set involved 

1J1 =mean(771 ), in which case the predicted bearing capacity was higher than the 

measured values. The last case corresponded to 1J1 =max(771 ), and the resulting bearing 

capacity was significantly overestimated. 

• 
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Fig 5-14 summarizes the results of all the parametric studies. The results clearly 

indicate the importance of accounting for inherent anisotropy and strain localization in 

order to obtain reliable assessments of the bearing capacity. The best estimate of the 

ultimate load is obtained by incorporating the most general framework. 
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Fig 5-14 Variation of the bearing capacity with a; comparison of experimental and numerical 
results 

By 	examining the other predictions, it is evident that accounting for progressive 

development of localized deformation is of more importance than incorporating strain­
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hardening effects prior to the onset of localization. Also, an adequate description of 

anisotropy seems essential in order to obtain a reliable assessment, as the variation of 

bearing capacity with the angle of deposition is quite significant. Finally, it is noted that 

in the engineering design the effects of both anisotropy and localized deformation are 

commonly neglected. In this case, the predictions are, in general, inadequate as the 

solution corresponding to the mean value of 171 significantly overestimates the bearing 

capacity, while the prediction employing min( 171 ) gives a conservative estimate. 
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Appendix I 

The derivation of equation (5.6): 


The new state of stress should be on the updated yield surface, i.e. 


s,m+I +I)
F (( (jij ) n+I ,K~~~ =0.Thus, 

k,m km)
F (( (jij ) ,Kn~I

.A, k,m+I = .A,k,m + n+I (5.6)a 
)k ( )kHe +HP( 

n+I n+I 

(5.6)b 

(5.6)c 
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Appendix II 

The derivation of equation (5.14): 


The updated state should be at the intersection of all the active yield surfaces, i.e. 


)s,m+I ( )s,m+I)Fp ((uij n+I ' Kp n+I = 0. Thus, 

=F ((u.. )s,m,(K )s,m)+(aFPJs D~ (is,m_is,m+l)((l-m)(aQp) +m(aQp)s Jp lJ n+I p n+I au.. lJld p 'fJ au au 
lJ n+I Id n Id n+I 

+(aFPJs (i;·m+i_i;·m)(aK~J[(l-m)(aQPJ +m(aQPJs JaKp a&.. au.. au..n+I lJ lJ n lJ n+I 
=F ((u.. )s,m,(K )s,m)+(.A_s,m_As,m+l)((He)s +(HP)s )=0P lJ n+I Pn+I 'P 'P Pn+I Pn+I 

(5.14)a 
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(5.14)b 

(5.14)c(H:):+I =-(aFPJS (8K~Jl(l-m)(8QpJ +m(aQpJS JOKp ac.. au.. au.. 
n+I lJ lJ n lJ n+I 
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CHAPTER6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

The study presented here includes both the experimental and numerical aspects 

and it provides a comprehensive insight into the mechanical response of anisotropic 

granular materials. The specific engineering problem addressed here was the assessment 

of the ultimate bearing capacity of shallow foundations in a transversely isotropic 

granular medium. The study comprised the experimental and numerical components both 

at the material and structural levels. 

The experimental investigations were conducted on crushed limestone sand with 

elongated angular-shaped aggregates. To induce a distinct microstructure, a sand rain 

method was used for sample preparation which enabled uniform anisotropic specimens to 

be produced at the selected void ratio. The material tests involved direct shear, triaxial 

and hollow cylinder experiments and were aimed at examining the effects of inherent 

anisotropy on both the deformation and strength characteristics. A scaled foundation 

setup was designed and a series of scaled-model tests was carried out to examine the 

dependency of ultimate bearing capacity on the material fabric. 

A general constitutive framework was outlined that describes the mechanical 

response of transversely isotropic frictional materials. The framework is based on multi­

yield loci plasticity and accounts for salient features that include the notions of 
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compaction/ dilatancy, pressure sensitivity, hardening induced by both densification and 

plastic distortion, as well as anisotropy in strength and deformation characteristics. The 

general formulation incorporates a scalar anisotropy parameter which is defined as a 

projection of the microstructure orientation tensor on the loading direction. Given the 

limitations of the triaxial and hollow cylinder tests in identification of anisotropic 

material parameters, an innovative procedure was employed for the specification of 

strength at different angles of deposition. In this approach, the results of direct shear tests 

were re-interpreted in terms of critical plane framework in order to assess the values of 

strength parameters under triaxial conditions. 

As a part of constitutive modeling, an implicit integration algorithm was 

developed to integrate the constitutive equations. The integration scheme employs 

Koiter's postulate for the specification of the tangent operator. The proposed anisotropic 

multi-yield surface model and the integration scheme were tested in simulations of 

undrianed behavior of sand in triaxial configuration. 

The performance of the model and the material parameters were verified for stress 

trajectories experienced in triaxial and hollow cylinder tests. A FORTRAN code (UMAT 

subroutine) was developed to incorporate the proposed constitutive model in a 

commercial FE package (ABAQUS). Numerical simulations were carried out aimed at 

evaluation of the bearing capacity of shallow foundation in transversely isotropic 

granular media. The numerical and experimental results were compared and showed a 

good agreement. Extensive parametric studies were conducted assessing the implications 

of introducing various simplifying assumptions in the mathematical framework. It has 
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been demonstrated that a reliable assessment of ultimate bearing capacity requires an 

adequate description of inherent anisotropy as well as that of the onset and propagation of 

localized deformation mode. 

6.2 Recommendations for Further Work 

The methodology presented here, comprising the experimental program and the 

constitutive modeling, can be applied to other geotechnical problems dealing with a 

transversely isotropic material. For example, it has been well known that the anisotropy 

of soil has a profound effect on the stability of natural slopes. Appropriate consideration 

of the anisotropy of geomaterials is also a challenge for the design and stability analysis 

of underground works, such as tunnels, chemical and nuclear waste storage as well as oil 

boreholes. In particular, wellbore instability is a serious problem that costs the petroleum 

industry over US$500--1000 million each year. It is reported that shales, which have a 

transversely isotropic structure, account for 75% of all formations drilled by the oil and 

gas industry, and 90% of wellbore stability problems occur in shale formations (Chen et 

al. 2003). 

The framework presented here can be extended for the case of induced 

anisotropy. As mentioned before, the source of anisotropy in granular materials is the 

spatial arrangement of particles during the formation process (Oda and Koishikawa 

1979). In the course ofplastic deformation this arrangement of particles may change, thus 

triggering an induced anisotropy (Oda et al. 1985). For geomaterials with a weak inherent 

anisotropy, the induced anisotropy could become dominant. In this case, the effects of 
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directional dependency of material properties should be incorporated via an appropriate 

evolution law which couples the changes in the fabric with stress state. 
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