
DEONTIC LOGICS FOR SPECIFICATION OF FAULT-TOLERANCE

DEONTIC ACTION LOGICS

FOR

SPECIFICATION AND ANALYSIS OF FAULT-TOLERANCE

By

PABLO F. CASTRO, Lie.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree

Doctor of Philosophy

McMaster University

© Copyright by Pablo F. Castro, 2009

DOCTOR OF PHILOSOPHY (2009) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Deontic Action Logics for Specification
and Analysis of Fault-Tolerance

AUTHOR: Pablo F. Castro, Lie. (Univ.Nae.Rio Cuarto, Argentina)
SUPERVISOR: Dr. T. S. E. Maibaum
NUMBER OF PAGES: xii, 246

ii

Abstract

In this thesis we develop a mathematical framework to express and reason about
properties of fault-tolerant computing systems. The main idea behind this math­
ematical framework is to use axiomatic theories to specify systems. The standard
logical operators allow us to describe the basic behavior of the system, while we use
deontic predicates on actions to express prescriptions about the system's behavior.
Deontic logics have proved to be useful for reasoning about legal and moral systems,
where the situation is more or less similar to fault-tolerance: there exists a set of
rules that states what the normal behaviours or scenarios are. Violations arise when
these rules are not followed and, as a consequence, some actions must be performed
to return to a normal or desirable state. We develop our own deontic logic, keeping in
mind that we want to use it for specifying fault-tolerant systems. We investigate the
properties of this logic, commenting on those that are relevant to the use of the logic
in practice. We provide two different deductive systems; one of them is a standard
(Hilbert style) deductive system, while the other one is a tableaux system, which can
be applied automatically to prove properties of specifications.

In any specification language, it is important to have at hand mechanisms which
enable designers to modularize the system description; we investigate how to apply
these mechanisms to the logics proposed in this thesis, and, in particular, we focus on
how the modularization of specifications affects the local prescriptions of a module (or
component). We study the problems that arise from the interaction between compo­
nents. We show that, in some cases, we can guarantee that the locality of violations
in a particular component is preserved. Some examples are provided throughout this
thesis to illustrate how the ideas described below can be applied in practice .

iii

Acknowledgements

I would like to thank Prof. Tom Maibaum for being my supervisor during these four
years and for his guidance throughout this time. I also would like to thank Gabriel
Baum, Javier Blanco and Nazareno Aguirre for their help before coming to Canada.
All this work would not be possible without the support and understanding of Valeria
and my parents.

v

Contents

1 Introduction 1

1.1 Fault-Tolerant Systems 3

1.2 Formal Methods and Fault-Tolerance 6

1.3 Deontic Formalisms and Fault-Tolerance 9

1.4 Aims of the thesis . . . 11

1.5 Structure of the thesis 13

1.6 Notation 14

2 Basic Concepts 15

2.1 Propositional Logic, Modal Action Logics and Temporal Logics 17

2.1.l Modal Logic 19

2.1.2 Dynamic Logics and Modal Action Logics 20

2.1.3 Temporal Logics 24

2.2 Deontic Logic 28

2.2.l Paradoxes in Deontic Logic 29

2.2.2 Deontic Action Logics 30

vii

33 2.3 Logic in General

2.4 Summary

3 A Deontic Action Logic

3.1 Concocting a Propositional Deontic Logic.

3.2 Related Logics. . . .

3.3 A Deductive System

3.4 Soundness and Completeness .

3.5 Spicing up DPL with Time . .

3.6 Introducing Violation Constants and Several Permissions

3.7 Summary

4 Some Examples

4.1 The Diarrheic Philosophers.

4.1.1 Axioms

4.1.2 Some Properties .

4.2 The Muller C-element .

4.2.l Implementing the c-element with a majority circuit

4.3 A Simple Train System .

4.4 Byzantine Generals

4.5 Coolers

4.6 Further Comments

39

41

43

50

52

55

65

75

79

81

82

83

88

94

97

100

104

109

113

viii

5 A Tableaux Calculus 115

5.1 Tableaux for DPL . 116

5.1.1 Soundness and Completeness 121

5.2 Open Systems and Partial Specifications 125

5.3 Some Examples 132

5.4 Extending the tableaux to temporal logics 136

5.4.1 Completeness and Decidability . 142

5.5 Open Systems and Temporal Logic 147

5.6 A Final Example 152

5.7 Conclusions and Further Work . 153

6 Relating Tableaux with the Hilbert System 157

6.1 A Proof of the Hilbert-system Completeness 157

6.2 Summary 165

7 An Extended Logic for the Support of Modularity 167

7.1 Modularizing the Deontic Logic . 168

7.1.1 A Touch of Model Theory 173

7.1.2 Locus Models. 179

7.1.3 Putting Together Deontic Specifications 191

7.2 Calculating Violations 197

7.3 Revisiting the Diarrheic Philosophers 207

ix

7.4 Further Remarks . 212

8 Concluding Remarks 213

8.1 Contributions 214

8.2 Future Work . 217

x

List of Figures

2.1 Classification for formulae A and B. 18

2.2 Classic rules for formulae of type A and B 19

2.3 Naturality condition for a 35

2.4 Diagram of a cocone 36

2.5 Diagrams for pushouts 36

3.1 Counterexample for O(a) --t O(a LJ b) 48

3.2 Example of model 49

3.3 Counterexample for Kant's law . . . 65

3.4 Model for the Gentle Killer. 79

4.1 (a) Muller C-Element (b) Implementation with a majority circuit 94

4.2 Counterexample 99

4.3 Example of of violation 104

4.4 Counterexample when traitors lie 109

4.5 Possible violations for the two coolers example . 112

5.1 Classification for formulae A and B. . 117

5.2 Classification for formulae P and N. . . . 117

5.3 Classification for deontic formulae. 118

5.4 Classic rules for formulae of type A and B 118

5.5 Rules for deontic necessity 118

5.6 Rules for modal necessity. 119

5. 7 Rules for possibility and permission 120

5.8 Rules for possibility and permission 120

5.9 Tableau for ([a]<p /\ (a)?jJ) --t (a)('P /\ 1/J) 133

5.10 Tableau for (a)<p --t [a]<p 133

5.11 Counterexample for (a)<p --t [a]<p 134

5.12 Tableau for P(a) /\(a #act 0) --t Pw(a) . 134

5.13 Tableau for [get_cold]on/\ [get..hot]-ion/\ (get_cold)on/\ (get..hot)-ion135
5.14 New tableau for [get_cold]on/\ [get...hot]--ion/\ (get_cold)on/\ (get...hot)--ion135
5.15 Counterexample 136

5.16 Rules for N . 137

5.17 Rules for EU 137

5.18 Rules for AU 137

xi

5.19 Algorithm for applying the tableaux calculus . 155

5.20 Tableau for Heating System . . . 156

7.1 Examples of degrading diagrams . 199

7.2 Degrading diagram D2 +Di D3 . 199

7.3 Specification of a cooler 200

7.4 Coproduct C + C 201

7.5 Degrading diagrams of C and C + C 202

7.6 XFork specification 208

7.7 Specification of a philosopher 208

7.8 Putting together forks with philosophers 209

7.9 Upgrading diagram of FPhil 210

7.10 Two philosophers eating 211

7.11 Coproduct of upgrading diagrams .. 211

xii

Chapter 1

Introduction

The aim of this thesis is to study the theory and application of different mathematical
formalisms to the specification of fault-tolerant systems. In particular, we focus on
using logical formalisms arising from the study of moral and ethical norms (called
deontic logics). These logics have been widely used by philosophers and lawyers to
investigate the reasoning that is used when statements with prescriptions or norms are
involved. The analogy with fault-tolerance is more or less straightforward: faults in
software may produce incorrect behaviour (i.e., violations to some requirements), and
therefore, corrective or recovery actions are needed. This is similar to the situation
in legal and normative systems where persons or entities may infringe some laws, and
therefore, some actions must be undertaken in consequence (e.g., this person must pay
a fine). However, to use these mathematical frameworks for reasoning about computer
systems, we must ensure that they allow us to express the basic properties of fault­
tolerant software. Moreover, the techniques used in formal languages of computer
science must be supported for these logics to make it possible to apply them in
practice. In this thesis we develop a mathematical, deontic framework, analyzing the
characteristics that are needed to specify fault-tolerant systems and, in consequence,
adding these features to our framework. Towards this goal, we introduce some typical
examples that illustrate the usefulness of the formalisms discussed below.

Logics, and mathematical frameworks in general, have been shown to be useful
for the design, specification and for the verification of systems. In particular, math­
ematical reasoning is essential in the development of critical systems where faults or
errors may cause financial loss, or worse, unexpected behaviour can result in the loss
of human life (e.g., airplane software). Different logical languages and mathematical
theories have been used in the last few decades for developing software and systems in
general, which are free of faults or errors (e.g., Hoare logic [Hoa69]). However, when

1

PhD Thesis, P.F.Castro McMaster-Computing & Software

systems become more complex, the task of proving the absence of faults becomes
harder and more expensive. As a result, fault-tolerance techniques are a good alter­
native; they allow software to continue working (perhaps in a degraded state) in the
presence of errors or faults. Roughly speaking, fault-tolerant systems are those which
have the possibility of overcoming, more or less successfully, unexpected behaviour
during their execution.

There exist several techniques to implement fault-tolerance (e.g., code replication,
voting algorithms and exception mechanisms, see [LA90]), but these are mainly for
the implementation phase and not for the design phase. In the few last years, several
researchers from the formal methods community have proposed using fault-tolerance
techniques together with formal methods to provide more reliable software. Related
with this, recently, some researchers ([KQM91, CJ96, MM06, Mai93, 1804, FM91a])
have pointed out that deontic logic, a variation of logic advocated for the study of
norms, is useful for reasoning about fault-tolerant systems. An interesting feature of
this logic is that the notions of permission and obligation are naturally embedded in
the formalism. Through this thesis, we take both ideas and develop different deontic
formalisms which we assert can be used to specify fault-tolerant software. We also
add the dimension of time in our logics; temporal logics have been shown to be very
useful for the verification of systems, particularly for reactive systems and automatic
verification of specifications (see [MP92] and [Eme90]).

Furthermore, the decomposition of systems into modules or components is fun­
damental to create products of good quality. In recent years, software systems have
become so complex and large that trying to design them without good techniques
of modularization is an almost impossible task. If we pursue the idea of specifying
a system using formal methods, modularization techniques are necessary for several
reasons: first, the formal specification must reflect the structure of the system which
encodes several design decisions, and second, proving properties (and reasoning in
general) about small specifications is simpler than reasoning about large specifica­
tions. However, how to produce components of specifications and how to compose
several modules to obtain the final specification is not a trivial issue. Here we follow
the main ideas introduced by Goguen and Burstall in [BG77], where techniques com­
ing from category theory are used to put components together; we explain these ideas
later on when the basic definitions of category theory are introduced. An important
topic in this thesis (see chapter 7) is understanding how the deontic constructions
used to specify norms fit into modularization techniques, and how the structure of
the violations (i.e., those violations or errors arising during a possible execution of the
system and the logical relationships between them) occurring in the different mod­
ules can be composed to approximate the structure of the violations occurring in the
final specification. In the following sections we introduce in more detail fault-tolerant
systems and, after this, we argue why deontic formalisms can help in specifying and

2

PhD Thesis, P.F.Castro McMaster-Computing & Software

verifying fault-tolerant systems.

1.1 Fault-Tolerant Systems

The first definition of fault-tolerant system can be traced back to [Avi67], where it is
stated: "we say that a system is fault-tolerant if its programs can be properly executed
despite the occurrence of logic faults." Since then, computing systems have changed
dramatically and so have the faults that programs must tolerate. In particular, the
increasing complexity of computing systems implies that design faults in systems
are more common (in [TPOO] it is argued that all the software faults are because
of design faults). Moreover, today most computing systems interact by means of
the internet or large networks, and therefore they are exposed to faults from other
software, faults during communication with other systems or faults arising from the
interaction with users. Furthermore, systems which interact with the environment
are exposed to unexpected environmental behaviour. Following the terminology in
the fault-tolerance literature, we can distinguish between error and fault. A fault is
a hardware defect or a software mistake (i.e., a bug). An error is an undesired state
of a system which is the consequence of a fault. As explained in [TPOO], developers
have four ways to deal with faults:

• Fault prevention,

• Fault removal,

• Faul tolerance,

• Input sequence workarounds (i.e., the users have to deal with the errors).

Fault prevention is the most common way to minimize faults; well-known techniques,
tools and methods from software engineering are used to produce software of better
quality. In particular, formal methods provide an appealing approach to produce
software without faults; theories and languages arising from mathematics are used to
prove mathematically that software is free of faults.

Fault removal is usually achieved by means of testing [TPOO] (which can be done
in several different ways) to discover faults during the development process and there­
fore eliminate them from the design or the implementation. Using formal methods,
properties of the specification can be checked to know if the specification is sound with
respect to the requirements. In a later step, model checking can be used to know if a

3

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

possible implmentation satisfies the specification (i.e., it is a correct implementation
of the specification).

However, as already remarked upon by Dijkstra [Dij72], testing can show the
existence of faults, but not their absence. On the other hand, formal methods are
hard to apply to large and complex systems. Moreover, although a system is free
of faults, it is exposed to faults from the operating system, from hardware or from
any unexpected behaviour of the environment. This implies that in critical systems
the capability to continue working in an acceptable way in spite of the presence of
faults is needed, and therefore fault-tolerance techniques become necessary. There
are many fault-tolerance techniques that can be used to improve the capability of
a system to deal with faults. It is common to divide them between fault-tolerance
hardware techniques and fault-tolerance software techniques depending on whether
they are used at the hardware level or the software level. We review them briefly.

Hardware fault-tolerance is achieved, commonly, by means of hardware redun­
dancy (i.e., additional hardware is used). Hardware redundancy techniques can be
classified into static, dynamic or hybrid redundancy. Static techniques do not detect
errors or change the configuration of the hardware dynamically. A standard example
of these techniques is when several modules (e.g., processors) are used instead of only
one and some mechanism is used to decide which is the correct output of the hard­
ware. Usually, a voting strategy is used; for example, if two of three modules return
the same value, then this value will be the final result. On the other hand, dynamic
techniques react to errors. For example, in the technique called duplication with com­
parison, two modules perform the same action; if the output of the two disagree then
some corrective actions are executed to take the system to an acceptable state. This
approach can be extended (a so called dual-dual configuration) using many pairs, one
of them being the principal one and when an error is found, this piece of hardware
is put in a maintenance state, and therefore another pair is used. Hybrid approaches
utilize both static and dynamic techniques. Hardware fault-tolerance has been inves­
tigated deeply and applied in practice (in aeronautics, nuclear applications, aerospace
systems and health science applied systems). A good reference is [SS98].

Software fault-tolerance techniques are used to build software capable of tolerating
faults. Following [TPOOJ, they can be divided in two classes:

• 	 Single version fault-tolerance: in this case individual pieces of software are
designed to support faults.

• 	 Multiversion fault-tolerance: in this case several versions of a piece of software
are used to prevent system failures.

4

PhD Thesis, P.F.Castro McMaster-Computing & Software

There are several techniques that use a single-version of some software. As explained
in [TPOO], decomposing software into several components or pieces which are inde­
pendent to some degree is important to avoid the propagation of errors from one part
of the system to other parts, or possibly all of the system. Here, it is important to
use techniques that restrict the propagation of errors from one component to oth­
ers when designing the architecture of the software. For example, in system closure
[Den76], no action is allowed unless it is explicitly permitted (and here we can see the
shadow of deontic notions which we will use later on). The main goal here is to reduce
the possibility that the errors propagate through the system; when some error occurs,
some valid actions can be disabled to avoid error propagation. Another approach uses
atomic actions [AL81]; atomic actions are those in which some components interact,
but during the execution of these actions there is no flow of information between
these components and the rest of the system. Atomic actions allow us to isolate
the errors to the participating components, and, moreover, if an error is detected, a
rollback to a consistent state before the execution of the action is possible. (This is
usually done with transactions in databases.) Another often used technique for fault­
tolerance in software is the use of exception mechanisms in programming languages,
where interruption mechanisms are used to stop the normal execution of code when
an error is detected, and then an exception handler is executed to try to return to
a consistent state. Many programming languages provide mechanisms for exception
handling. Well-known examples are: Java, C++ and Eiffel. Other techniques used
are checkpoints and recovery mechanisms. These can be static or dynamic. In static
checkpoints, the execution of the software is checked at some points and, in case of
an error, the system is returned to a state free of errors.

In multiversion software fault-tolerance techniques, several versions of the same
component (or module) are used to improve the fault-tolerant features of software.
Some examples of these techniques are the following. N-version programming [Avi95]
is a technique where several versions of some software are produced to satisfy the
same requirements, and then the output of the system is decided taking into account
all the outputs (using some decision technique like, for example, voting). In this case,
it is required that there is total independence in the development of each version,
i.e., different programming languages, design languages and indeed different teams
of developers must be used to produce each version. This, of course, implies that
the cost of the software increases seriously. There exist several variations of this ap­
proach, basically changing the way in which the output is selected, and also combining
this technique with single-version methods. See [TPOO] for a more exhaustive list of
methods that have been used in practice.

One important aspect of fault-tolerance is error detection, i.e., the mechanisms
used to detect if an error has occurred during the execution of the system. There
exist several techniques for this: replication checks (several versions of a component

5

PhD Thesis, P.F.Castro McMaster-Computing & Software

can be used to check if their outputs coincide), timing checks (when we have timing
constraints, for example in real time systems, we can use clocks or time deadlines to
check if a specific task has been done), reversal checks (use the output to calculate
the corresponding input and then compare it with the actual input), coding checks
(codes are used to analyze if some piece of information is valid, for example, when
downloading a file from the internet, a checksum is usually also provided and this
code can be used to detect if the file obtained is the original one) and structural
checks (properties of data types are used to detect errors).

1.2 Formal Methods and Fault-Tolerance

In the last few decades, significant effort has been made to use formal methods to
specify and verify fault-tolerant systems. In this section we review briefly some of
these approaches.

Program Verification and Fault-Tolerance: Many of these works have applied
extensions of Hoare logic to verify fault-tolerant programs. For example, in
[Cri85], an approach to the design and verification of programs that are tolerant
to faults is proposed. Faults are formalized as operations which are performed
at random time intervals. The approach is presented using an example of a
stable storage device; the main idea is to extend Floyd/Hoare logic with rules
which enable reasoning about crashes and failures in storage disks. The logical
rules suggested in this work are dependent on the example used (for example
a decay operation which produces faults on the disks is axiomatized and used
in the logical calculus). In [SS83], a formal methodology to design computing
systems is presented. The approach is based on the concept of fail-stop proces­
sors (processors that halt in the presence of an internal failure). An axiomatic
verification technique is described to verify programs running on these kinds of
processors. In [Aro92J, fault-tolerant programs are characterized by means of
predicates. Invariants are used to describe those states which are free of errors.
The author formally defines fault-tolerance using the concepts of closure and
convergence. Closure is the property of a system of staying in a certain set of
states, indeed during the occurrence of faults. On the other hand, convergence
is the property that, if faults stop occurring, then the program reaches a state
where the invariant describing the correct states is true. Faults are defined as
unexpected actions of programs written in a concurrent programming language.

Another line of research is proposed in [LMJ93], where a formal framework is
provided to reason about concurrent programs (defined in a language similar to
UNITY [CM88]). Several predicates are introduced to formalize fault-tolerance

6

PhD Thesis, P.F.Castro McMaster-Computing & Software

features of algorithms. Some of them are: p degrades to q (the predicate p stops
holding at some instant where a weaker predicate q starts holding), p upgrades
to q (at some point where p is true, there is a sequence of computations that
makes a stronger predicate q true). Many other similar predicates are proposed,
and these predicates are used to classify the states of a program into correct
(there is no fault), safe (states where, if no more faults occur, the program will
reach a correct state) and recoverable (states where, though there are errors, we
can execute a recovery action to reach a safe or correct state). This classification
of states and the logic introduced are used to reason about two examples: an
algorithm to calculate the invariant of a Markov chain and an algorithm to find
a solution of a set of linear equations.

Program Transformation and Fault-Tolerance: On the other hand, some au­
thors have pointed out that many aspects of fault-tolerance can be captured
using program transformations. For example, in [Gar98], a fault is defined as
an "unwanted nevertheless possible state transition". In this work the notion of
failure model is defined as a program transformation which captures the faults
that a given program might exhibit. If a program is still correct after a program
transformation, then the program is called fault-tolerant for that failure-model.
The paper uses a UNITY style programming setting, and the UNITY program­
ming logic is used to prove that some programs are tolerant to faults. [LJ92]
extends the refinement calculus introduced in [Bac87]. A fail-stop scheme is
assumed. The faults that may come from the hardware or the environment are
considered; the programs are assumed to be fault-free or correct. Code trans­
formation techniques are used to modify a program to tolerate hardware faults.
Other approaches using program transformations are described in [PJ94, AK98].

Self-Stabilizing Programs: Self-stabilizing programs (programs which will even­
tually reach and stay in a predetermined set of states regardless of its initial
state) have been an active area of research from the seminal work of Dijkstra
[Dij74]. Extensions of the weakest precondition calculus can be used to prove
self-stabilization properties of specific programs, as shown in [FvG99]. Several
other works have proposed a formal framework to reason about self-stabilization,
some of them are: [KP93, LS93, PS05], mainly extending the logic of UNITY.

Theorem Provers: The (semi-)automatic theorem prover PVS [ORS92] has been
used to verify particular cases of critical systems such as airplane systems and
distributed protocols. PVS uses higher-order logic and several other formalisms,
like temporal logic or Hoare logic, can be embedded in this logic to reason about
specific domains like imperative programs and reactive systems. Other theorem
provers have been used to prove fault-tolerant properties in specific scenarios;
examples can be found in [Mor02, Zha08, MGOO, LR93, QS98]. On the other
hand, model checking [CES86] has been used to verify and to validate specific

7

PhD Thesis, P.F.Castro McMaster-Computing & Software

systems; for example, in [SECH9S] the requirements of an embedded spacecraft
controller were validated using SPIN [Hol97], and in [GLL +oo] several properties
of a railway control system were proven using SPIN. A more general approach
is taken in [YTKOl], where programs written in the programming language
introduced in [Aro92] are translated to SMV [McMOO], and then properties of
a given program are verified using the SMV tool.

Process Algebra based Approaches: In several works, notions coming from pro­
cess algebra [Mil79] are used to specify and verify fault-tolerant concurrent
programs. For instance, in [DixS3, dBCG92] exceptions and interrupts are for­
malized in the language CSP [HoaS5]. [Pel91] uses redundancy in CSP to model
fault-tolerance. [AP94] extends the 7!'-calculus [MPW92] with failures, and gives
some examples of fault-tolerant systems. [RH97] defines a process algebra and
introduces a model of failures and "locations" (processes run in locations). Lo­
cations can be killed and new processes can be spawned in remote locations.
In [Jan95], Janowski presents a CCS [Mil79] based approach to deal with fault­
tolerance; in this thesis a new type of transition (called faulty-transition) is
introduced in the labelled transition system. This allows the author to formal­
ize the notion of fault, then a notion of bisimulation is introduced to define
fault-tolerance. However, in these works no extension of Hennessy-Milner logic
[HMSO] with a corresponding deduction system is provided to describe and prove
properties about the fault-tolerant processes defined with these languages.

Specification Languages and Fault-Tolerance: Several formal languages and fra­
meworks have been used to formalize and to prove properties of specific exam­
ples of fault-tolerant systems. For instance, in [LM94] the byzantine generals
problem is formalized with TLA + [Lam94]. In [Abr06], the Event-B language
[AH07] is used to specify a train system. Another example using Event-B is
given in [YB09], where a broadcast protocol is specified and verified. In [KJOS],
a file system is specified with the Alloy language [Jac06], and verified using
the Alloy analyzer. Duration calculus [CHR91] has been designed for reasoning
about real time systems; several examples related with fault-tolerance and real
time systems are described in [CH03] (e.g., a gas burner). In contrast to the
other frameworks, the duration calculus uses a continuous fl.ow of time.

Open Systems: Systems where the environment is taken into account as an active
player (this is the case of fault-tolerant systems) and the control of the environ­
ment's behaviour is imperfect or non-existent are called open systems [BarS7].
This is in contrast to closed systems, where the entire behaviour of the system
can be deduced from the behaviour of the components or modules which are
part of it. In open systems, the interaction with an environment which cannot
be controlled implies that the behaviour of it affects the behaviour of the sys­
tem. One of the most common techniques to deal formally with open systems

s

PhD Thesis, P.F.Castro McMaster-Computing & Software

are the rely-guarantee techniques [DMOO, Jon83, CJ07, CC96, AL95], where
the specification of the system relies on the assumption that the environment
behaves in some way and, therefore, it guarantees some behaviour. However, as
we say above, in fault-tolerance this assumption on the environment must be
as minimal as possible.

Summarizing, the approaches focused on programming languages are useful when we
analyze the fault-tolerant characteristics of a given program, but they are designed to
reason at a low level of abstraction where the amount of detail involved may be cum­
bersome for reasoning about specifications. The extensions of process algebra provide
interesting frameworks where fault-tolerant concurrent processes can be specified, but
they lack well-studied logical frameworks. On the other hand, existing specification
languages have been shown to be useful for specifying and verifying specific case
studies; however, the difference between correct, expected or ideal behaviour and
incorrect, unexpected or abnormal behaviour is just stated using ad-hoc mechanisms.

Deontic logics offer a natural way of distinguishing between normal and abnormal
behaviour by means of deontic predicates. Systems can be specified by means of
logical axioms and properties of systems can be proven using the logical laws of these
formalisms. The general properties of deontic predicates can be used in different
settings, avoiding the use of ad-hoc logical mechanisms. In addition, the benefit of
deontic predicates in open systems is that we can impose norms on the behaviour
of the environment and in cases where these norms are not followed, we can act in
consequence. For these reasons, some authors have proposed deontic formalisms to
reason about fault-tolerance. We review these approaches in the next section.

1.3 Deontic Formalisms and Fault-Tolerance

Deontic formalisms have been used in computer science, for different purposes (see
[WM93]): database specification, reactive system specification, artificial intelligence
and legal reasoning. As we said before, norms and normative reasoning arise naturally
in fault-tolerance and it seems attractive to include deontic predicates into existing
formal languages to have the possibility of distinguishing between normal and abnor­
mal behaviour. However, the application of deontic logic to fault-tolerance is a recent
topic of research. The following works use deontic logic for reasoning about problems
related with fault-tolerance.

In [CJ96] an extension of standard deontic logic (see the next chapter) is proposed
to reason about constraints in databases and to distinguish between hard (necessary)

9

PhD Thesis, P.F.Castro McMaster-Computing & Software

and soft (deontic) constraints. The soft constraints admit violations and then the
notion of recovery (from violation of static or state violation) is characterized. But
the notion of transition constraint is not considered in this work, i.e., only norms
regarding states are investigated.

In [LS04] deontic interpreted logic is used to formalize the bit-transmission proto­
col. The approach classifies agent states into green and red, and using this a deontic
machinery is developed. However, as explained by the authors, the investigation of
how to divide transitions into red and green is left as further research. Also, a ques­
tion raised by the authors is how these methods will scale up to deal with realistic
examples with many agents and many kind of faults.

In [Coe94], a dyadic deontic logic is proposed to formalize fault-tolerant programs
and an example of an application is described. However, the semantics and the
calculus of the described logic are not investigated by the author.

In [KM85] and [Kho88], Khosla and Maibaum propose a deontic logic to specify
systems, although fault-tolerance is not dealt with in this work. The authors state
clearly that this logic can be used for the prescription and description of systems and
this can be used for characterizing abnormal executions. Khosla and Maibaum argue
that the difference between prescription and description of systems is important when
specifying systems. The description of a system action is usually given by establishing
its precondition and postcondition. This is usually interpreted as a contract between
the action being specified and the rest of the system. If the rest of the system
ensures the precondition, then the action ensures the postcondition. However, there
are some missing details, such as: in which scenarios is this action allowed to be
executed? The precondition only tells us under what conditions the good behaviour
of the action will be the expected. However, it is plausible that in some scenarios
which satisfy the precondition, the action should still not be executed. Let us present
a simple example to illustrate this fact. Consider the case of a bank account. The
specification of the withdraw action could be stated informally in a pre/postcondition
style as follows: if the balance of the account is greater than an amount X, then after
withdrawing X dollars, the balance of the account is the original balance minus X.
However, there could be cases where the account is not available to be used (for
example a block on the account of the customer is imposed for some legal reason). Of
course, several conditions can be added to take into account these cases, but then, in
the specification, it is not possible to distinguish what is a normal scenario and what
is an abnormal one.

Differentiating between normal and abnormal scenarios is important; dramatic
actions can be taken in abnormal scenarios that are not taken in normal cases. For
example, in the instance given above, the machine may make a phone call to the

10

PhD Thesis, P.F.Castro McMaster-Computing & Software

police. Summarizing, the classic approach to systems specifications with pre and
postconditions does not distinguish between normal situations and abnormal ones.
This distinction is needed in fault-tolerance where abnormal scenarios must be taken
into account to prevent undesired consequences. On the other hand, differentiating
between normal and abnormal executions allows us to prove the properties that are
true in normal situations [FM91a], and those that are true in consequence of an
unexpected behaviour. Following Khosla and Maibaum [KM85], this approach can
be called total specification since more cases are taken into account when defining an
action.

In [KMQ93], a deontic logic is introduced and used to describe a library system.
By means of this example, the authors show how this logic can be used to specify
temporal constraints and error recovery. However, the logic is sketched and only a
partial axiomatization is presented.

Many other authors (e.g., [WM93]) have stated that deontic systems are useful
for reasoning about fault-tolerance because of the analogy between faults in computer
systems and the situation in legal systems, but the analogy is not taken further.

1.4 Aims of the thesis

The specific goal of this thesis is to propose a logical framework with deontic predicates
in which concepts related to fault-tolerance can be formalized and, therefore, fault­
tolerant properties of systems (if any) can be proven. With this goal in mind, we
investigate the meta properties of the logic proposed, and we show that it has some
desirable properties: soundness, completeness, compactness and decidability. These
properties make the logic appealing for practical use. The deontic predicates we use
have novel properties with respect to those used in related work; we explain these
characteristics in chapter 3. We study the properties of this new characterization of
deontic predicates and their applicability to fault-tolerance.

The logical machinery introduced in the following chapters is intended to be used
at a design level, when the main characteristics and the architecture of the system are
delineated. We follow the ideas arising from modal action logics [Ken91, KQM91] and
dynamic logic [HKTOO], where systems are specified by means of logical theories and
the actions of the system are described using modal operators in a pre/postcondition
style. Moreover, we take some ideas of [FM92] where concepts arising in category
theory are used to modularize temporal theories in such a way that the intercon­
nections between the different logical theories reflect the architecture of the system.
However, as we state above, since we consider the environment as an active player

11

PhD Thesis, P.F.Castro McMaster-Computing & Software

in the system, and we take the view that the environment and some components of
the system may have unexpected behaviour, the difference between description and
prescription becomes important, and then we claim that the use of deontic predicates
is important to state this difference at a design level. We ground our claims with
practical examples.

During the description of a system, we specify what its structure is, how the
different states of the system are defined (its variables and data structures) and what
the effects of the actions are (i.e., we describe what the effects of the actions are when
they are executed in a particular context). The prescription of the system, on the
other hand, is the specification of the behaviour that the system should have, which
may perhaps not be the case for several reasons: a malicious environment, a fault in
the code or in the hardware, a design fault, etc.

Summarizing, deontic constructs allow us to incorporate in the specification non­
normal behaviour. It is important to stress once more that this is different from the
approach taken in many formal methods where non-normal behaviour yields undefined
states. For example, in standard Hoare logic [Hoa69], if a precondition is not satisfied,
then the effects of the action are not defined (and this is similar in several related
approaches).

Today, most critical systems are concurrent, i.e., they are made up of several
processes running in parallel. Manna and Pnueli have shown that temporal logics
are useful formalisms to reason about concurrent and reactive systems [MP92], where
perhaps a transitional approach (i.e., analyzing the correctness of software taking
into account only the states before and after the execution of it) is not possible,
in particular in those systems where there is no final state. For this reason, we
include temporal logics in the formalisms described in this thesis; we also investigate
concurrency at the level of actions, providing parallel composition of actions (a feature
which is not always available in modal action logics).

Finally, when considering deontic predicates in specification, the notion of vio­
lation arises naturally. It is obvious that different violations may occur during the
execution of a system; furthermore, since we decompose specifications into several
components, it is worth asking what the relationship is between the different viola­
tions and how violations produced in one component affect the other components.
Related to this, there is an important question: how can we modularize the deontic
constructs in such a way that permissions or obligations imposed in one component
do not affect (unless this is desired by the designers) the other components. In
other words, when we decompose a system into different modules and relationships
between them, we must take into account that the obligations or permissions estab­
lished in some component may affect other parts of the system, and, in consequence,

12

PhD Thesis, P.F.Castro McMaster-Computing & Software

some mechanisms for avoiding undesired over-specification are needed. We investigate
these questions and we propose some theoretical devices to deal with them.

1.5 Structure of the thesis

In the next chapter we review briefly the notions needed to tackle the rest of the
thesis. Firstly, we discuss the basic definitions of propositional, modal and temporal
logics; then we take a look at deontic logics and we review some criticisms found
in the literature about the different deontic formalisms that have been proposed by
researchers in the field. As explained above, we use some constructions coming from
category theory to compose a specification from several parts, and so in section 2.3
we introduce the basic notions of category theory, although this topic is vast and we
mainly point to the literature for the interested reader. We also introduce Institutions
and n-Institutions, two abstract views of logical systems which allow a designer to
have a more general vision of specifications and to use different logical systems to
reason about them.

In chapter 3 we introduce our own version of deontic logic, which has some novel
features (as we explain in that chapter). Furthermore, since we intend to use this
logic to specify systems by means of logical theories and to prove properties over
these specifications, we describe an axiomatic system, which we prove is complete and
sound with respect to the given semantics. We also investigate some other important
properties of this logic, e.g., decidability.

In chapter 4 we present some case studies to show how the logical system pre­
sented in chapter 3 can be used in practice. We provide several specifications and we
investigate their properties. In these examples we use the deontic predicates to intro­
duce some prescriptions in the specification and from these prescriptions we observe
that, frequently, violations arise naturally. However, as we discuss in the chapter, to
describe a system in only one specification is complicated, and therefore, some for­
mal machinery to decompose specifications into smaller ones must be provided. We
discuss this again in chapter 7.

Proving properties by means of Hilbert style axiomatic systems is a powerful way
of verifying systems. However, for practical application, automatic tools are needed.
In chapter 5, we define a tableaux deductive system for this logic. Tableaux systems
have been demonstrated as being useful in automatic theorem proving [Fit90]. A nice
property of this formal system is that, in the case that a formula is not valid (i.e., it
is not a theorem), then a counterexample can be obtained (i.e., a model which does
not satisfy the formula). This is particularly important for analyzing specifications,

13

PhD Thesis, P.F.Castro McMaster-Computing & Software

as we can obtain counterexamples which show what was wrong and, therefore, we can
decide what we can do about it. We extend this system to cover temporal operators
and we prove that this extended system is sound and complete with respect to the
semantics. Moreover, in chapter 6 we prove that the two systems given (the Hilbert
style and the tableaux systems) are logically equivalent, i.e., the theorems that we
can prove using the two systems coincide.

Finally, in chapter 7 we present some techniques which allow us to use the logical
systems introduced in preceding chapters in a modular way. Using these techniques,
we can produce a system specification from smaller ones and the relationships between
them. This induces some theoretical questions, for example, how the model of the
entire system and the models of the smaller specifications are related and what kinds
of properties we need to assume to preserve the properties of the components when
we put them together. These questions are addressed in this chapter. It is worth
remarking that we introduce a variation of bisimulation, which allows us to capture a
notion of locality (or encapsulation) in the semantics. Furthermore, we show that the
decomposition of a specification into smaller modules imposes a similar decomposition
in the logical structure of the violations that may arise during the execution of the
system. This enables modular reasoning over violations. To show the applicability
of these techniques in practice, we revisit the example shown in chapter 4, but now
from a modularity perspective, which allows us to show the possible benefits of this
approach.

1.6 Notation

We follow standard notation in logic; usually we use the following symbols: -? (ma­
terial implication),/\ (conjunction), V (disjunction), 0 (modal necessity), () (modal
possibility). We use the following set operators: U (union), n (intersection), 0 (the
empty set), - (set complement). To indicate the end of (the proof of) a theorem,
we use a filled square (•) and we use a blank square (D) to indicate the end of a
definition.

14

Chapter 2

Basic Concepts

In this chapter we introduce the basic concepts needed to tackle the rest of the thesis.
Since the important work of Floyd [Flo67] and Hoare [Hoa69], computer scientists
have used mathematical theories to develop software which behaves correctly (i.e.,
it behaves as is expected). In particular, a rigorous development and analysis of
programs is necessary in critical applications. Examples of these applications are
airplane systems, health related systems and software in nuclear generators. The work
of Floyd and Hoare provided a promising basis for the mathematical development of
programs. However, today computing systems are very complex; they are made
of several subsytems and, often, they interact with an environment, and therefore
additional techniques are needed to deal with these systems. From the seminal paper
of Parnas [Par72], the notion of module or component is considered to be the basis
of good practice for software design; modularization allows a designer to decompose
a large system into several subsystems related to each other. Reasoning about the
subsystems is much easier than reasoning about the entire system. Thus, any formal
methodology which is aimed at being applied in practice must provide the possibility
of specifying software in a modular way.

Another important step towards the mathematical development and analysis of
software was given by the ADT (abstract data type) community [LZ75], in particular,
by the algebraic school [EM85] where equational logic, and therefore algebraic models,
were used to specify abstract data types. Abstract data types (formal descriptions of
encapsulated data types) were recognized to be a key component of software systems,
which are frequently reused for different applications. The techniques to support the
modular specification of ADTs have been studied deeply, in particular by Goguen
and Burstall in [GB92], where the concept of Institutions (abstract logical systems)
is presented. However, software systems are in practice more complex than abstract

15

PhD Thesis, P.F.Castro McMaster-Computing & Software

data types and algebraic methods are not powerful enough to express all the aspects
of software. This is particularly true in reactive and concurrent systems, where it may
not be required that the software terminates and the interaction with the environment
is a key factor. Moreover, the notion of atomic computation is fundamental for
analyses of some properties of these kinds of systems. As pointed out by Manna and
Pnueli [MP92], temporal logics have been shown to be more adequate for the analysis
of these kinds of systems. However, the first attempts at using temporal logics in
specifications lacked the notion of module, which made it hard to apply this logical
machinery to large systems. Subsequently, several approaches to solve this problem
have been proposed. In particular, in [FM92] where the basic concepts of Goguen
and Burstall were used in combination with temporal logics. The main idea is to
specify components of software using temporal theories and after this use categorical
constructions (see next section) to compose the components. This line of work follows
the philosophy introduced in [MT84], where axiomatic theories are the fundamental
unit of construction used during the process of software development, and translations
between theories are used to relate components and to guide the development process.
We adhere to this philosophy throughout this thesis, i.e., we specify the components
of systems using axiomatic theories (expressed in some underlying logical system) and
the relationships between them are established by means of the notion of translation
between theories. (This notion is dependent on the logical system used to express the
components.)

It is important to stress one relevant aspect of temporal logics. In most of them,
automatic techniques of verification can be used for the analysis of specifications. In
particular, most temporal logics used in computer science have as semantics transition
systems. Thus finite state programs can be mapped to semantic models, and therefore,
it is possible to check possible implementations against their specifications to see if
both agree. This methodology is called model checking [EC80, CES83, CES86] and
has been widely used in the formal methods community to verify programs. However,
a problem with this technique is that the representation of systems as transition
system suffers from state explosion when the systems become larger and more complex
[BCM+9o]. In this case, also, decomposing specifications is fundamental. This is an
active topic of research and some progress has been made using assume-guarantee
mechanisms [Lam83, CLM89, ASS94].

Summarizing, we have different approaches. On the one hand, we can use axioms
and axiomatic systems to specify and prove properties of systems; in this case the
proofs could be done by hand (which is a hard task), or this task can be done with
the help of (semi-)automatic provers. These software tools guide the developer during
the task of proving, but they are not fully automatic, except in simple cases. Another
approach is to take advantage of the decidability of temporal logics and use techniques
like model checking, where the process is fully automatic, though large systems are

16

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

hard to verify because of the state explosion problem. We think that both have
benefits, and therefore in the following we describe different deduction systems which
allow us to combine the benefits of both approaches. It is important to remark that for
decomposing a specification into smaller components, we use the ideas of Fiadeiro and
Maibaum introduced above, where components are specified by temporal theories and
syntactical translations between these theories reflect the architecture of the system.
Here category theory plays a central role, as it provides basic notions to combine
components. All these concepts are reviewed briefly in this chapter.

The chapter is structured as follows. We start with a brief introduction to modal
action logics and dynamic logic, a variation of modal logics, which have been shown
to be useful to formalize concepts arising from computer science. These logics have
the notion of action embedded in their constructions and their semantics is given by
transition systems. We also point out the basic ideas behind temporal logics, which
will allow us to talk about the future of a component in specifications. Finally, we
introduce the ideas of category theory and their application to software engineering
that we will use later on in this thesis.

2.1 	 Propositional Logic, Modal Action Logics and
Temporal Logics

We start this section presenting Hilbert-style and tableaux-style deductive systems for
propositional logic. We use these two well-known and simple examples to illustrate
the way in which we define the different logical systems introduced throughout this
thesis. In addition, both systems are used as a basis for the more complex systems
presented later in this chapter. The language or vocabulary of propositional logic is
given by an enumerable set of propositional letters P. We denote its elements by
lowercase letters p, q, s, The set of formulae are defined recursively as follows:

• if c.p E P, then c.p is a formula,

• if c.p and 'I/; are formulae, then -ic.p and c.p ~ 'I/; are formulae.

The rest of the boolean connectives can be defined from these operators, see [Mon76]
or [Eme72]. As usual, the semantics of propositional logic is defined by interpretations
of the propositional variables which assign truth values to them. We present the
axiomatic system introduced in [Mon76] which can be proven sound and complete.
We have the following axioms.

17

PhD Thesis, P.F.Castro McMaster-Computing & Software

• (<p ~ (1/J ~ x)) ~ (('P ~ 1/J) ~ ('P ~ x))

• (•<p ~ •1/J) ~ (1f; ~ <p)

and the deduction rule modus ponens: from <p and <p ~ 1f; we deduce 1/J. We can
give a formal definition of proof. Given a set of formulae r, we say that r I- <p (or
<p is provable from f) when there is a finite sequence <po, •.. , 'Pn such that 'Pn = <p
and each 'Pi is either an axiom, belongs to r, or follows from formulae 'Pk and 'Pi
with j, k < i, by modus ponens. We can define a similar semantical relation r I= <p,

see [Mon76] (or any classical textbook of logic) for the definition. In any logic, the
relationships between I- and I= are important so as to know that the deductive system
is coherent with respect to the desired semantics. I- is a consequence relation as is
I=, and it can be defined in different ways; we talk about this below. This style of
presentation of a logical system is followed in the next section, i.e., we present the
language of the logic, its semantics, and its deductive apparatus. In what follows,
we use the standard properties of propositional logic and the reader can consult the
good introductions given in [Mon76, Eme72, Men79]

On the other hand, tableaux systems offer another flavour of deductive systems.
The main ideas behind tableaux systems come from the seminal work of Gentzen
[Gen69]. Here we follow the style of presentation given in [Smu68]. The method is
simple and elegant; given a formula, we analyze its parts to try to find a contradiction.
In presenting the tableaux system, it is better to consider disjunction, negation and
conjunction as primitive operators instead of implication, i.e., we have the following
class of formulae (which can be defined as above): <p /\ 1/J, <p V 'ljJ and •1/J. We say that
{p, •p} (where pis a propositional symbol) is a closed set of formulae. Closed sets
of formulae are intended to capture the notion of inconsistency. Before continuing
with the presentation of the method, it is important to introduce a classification
of formulae (see figure 2 .1). This classification allows us to differentiate formulae
based on their structure. Using this classification, we can introduce the rules given

A B B2Ai A2 Bi
<p /\ 1f; <p <p<p v 7/J 7/J7/J
•(<pV'l/J) •<p •<p•(<p /\ 7/J)•7/J •7/J

<p••<p

Figure 2.1: Classification for formulae A and B.

in figure 2.2. The entire idea of the tableaux method is as follows: we start with the
negation of the formula that we want to prove; then we use the rules of figure 2.2 to
produce a tree which reflects the underlying structure of the formula. Every branch

18

PhD Thesis, P.F.Castro McMaster-Computing & Software

Figure 2.2: Classic rules for formulae of type A and B

(informally, a path from the root of the tree to some leaf node) is a possible model.
If all the branches are closed (i.e., contain a closed set), then there is no model for
the negation of the formula, and therefore the original formula is valid. The reader
can consult [Smu68] and [Fit90] for details about the tableaux method and examples
of application. An important point to note is that this method, for many logics, is
automatable, and in case of a formula that cannot be proven, a counterexample is
obtained. This is very useful in software specification since counterexamples allow us
to deduce what was wrong with a given program and what we need to do to fix it.
We say that I- r.p when we succeed in proving r.p with the tableaux rules, and we say
that r I- r.p if there is a finite set {'{Jo, ... ' 'Pn} ~ r such that I- 'Po (\ ... (\ 'Pn --t r.p.
This notion of deduction can be proven to coincide with that given for propositional
logic.

2.1.1 Modal Logic

Modal logics arose from the study of modalities (e.g., can, could, necessary, etc.) in
reasoning. Usually, two modalities are considered: Or.p (r.p is necessarily true) and Or.p
(r.p is possibly true). It is worth remarking that there exists a duality between them
which resembles the duality between the V and 3 in first order logic:

The semantics of a modal logic is given by Kripke structures, i.e., by structures
(W, R, I) where W is a set of worlds or states, R ~ W x W is a relationship which
tells us which worlds are accessible from which other worlds, and I is a function
which indicates which propositions are true in each world. The axioms of modal
logics depend on the type of relation R that we consider. This relationship could be
reflexive, symmetric, transitive, serial, etc. The most common axiomatic system is
the K system (K for Kripke) in which no restriction on relation R is assumed. The
K system contains the following axioms:

• The axioms of propositional logic

19

PhD Thesis, P.F .Castro McMaster-Computing & Software

The rules of deduction are modus ponens and modal generalization: from f- <p we
get f- Dp. This axiomatic system is sound and complete for Kripke structures with
no restrictions. The literature on modal logic is vast; the reader can consult the
good introductions given in [Che99] and [HC96]; a book more oriented to computer
science is [BRVOl]. Tableaux systems for modal logics have been investigated deeply,
standard references are [Fit72, Fit83, Gor95]. Most of these systems use labelled
formulae (i.e., formulae that have some kind of label attached). Intuitively, the labels
point out some kind of relationship between the semantics and the syntax. Labelled
deductive systems are dealt with in detail in [Gab96]. We use this technique in chapter
5. We are interested in modal systems which can be used to express statements about
computing systems (in particular modal action logics and dynamic logics).

2.1.2 Dynamic Logics and Modal Action Logics

In [Pra76] Pratt proposed to extend the modalities of modal logic to formalize the
notion of program correctness in a way that is similar to the approach in Hoare logic.
The logic obtained is called dynamic logic (see [HKTOO]). Dynamic logic introduces
the concept of action as a modality; for example, instead of having D<p, we have [a]<p
where a is an action. Actions can be combined in different ways to generate more
complex ones. Usually, the action combinators considered in dynamic logics are com­
position, iteration, choice and converse. On the other hand, in the early eighties the
FOREST project [KQM91, RFM91, Mai87] started developing modal action logics (or
MALs for brevity); these logics are closely related to dynamic logic but they consider
other operators in addition to the standard ones. (This work was actually motivated
by the work reported in [Gol82] rather than the dynamic logic approach.) Following
Broersen [Bro03], we consider dynamic logic as a specific modal action logic which
only uses a specific set of action combinators. Several works extend these operators
with less usual ones, e.g., intersection (parallel execution) and complement. However,
these operators bring some technical problems. For example, under the relational in­
terpretation of actions (given in many modal logics), the complement of an action
returns a relation which relates states which are not related by the original program,
i.e., for specifying computing systems another kind of complement is desirable. Inter­
section of actions is also not less problematic, since the relational interpretation (i.e.,
intersection of relations) together with composition and iteration exhibit properties
that are not intuitively correct. Furthermore, iteration plus complement make any
logic undecidable (see [Bro03]). Note that both operators are useful at design time

20

PhD Thesis, P.F.Castro McMaster-Computing & Software

to specify software systems: intersection allows us to specify the notion of parallel
execution, which is important to have when working with concurrent systems, and
complement allows us to express the notion of alternative action, which is important
to express frame axioms, e.g., when we need to say that a determined behaviour is
exclusive of some action.

As an example, we present the definition of standard dynamic logic (or DL for
short); see [HKTOO] for details. The language of DL is given by a pair (<1> 0 , ~o) where
<1>0 is an enumerable set of propositions and ~o is an enumerable set of primitive
actions (or names of actions). We use the Greek letters a, /3, ... as variables over
actions. The set of (composed) actions is defined as follows:

• if a E ~0 , then a is an action.

• if a and /3 are actions, then a; /3, a U f3 and a* are actions.

• if r.p is a formula (see below), then r.p? is an action.

Note that the definition is mutually recursive with the definition of formulae given
below. Intuitively, ; is the sequential composition of actions, U is the nondeterministic
choice, * is iteration and ? is a test (r.p? means proceed if r.p is true, fail otherwise).
The set of formulae is given by the following recursive definition.

• if r.p E <1>0 , then r.p is a formula.

• if r.p and ijJ are formulae, then •r.p and r.p -7 'ljJ are formulae.

• if r.p is a formula and a is an action, then [a]r.p and (a)r.p are formulae.

Intuitively, [a]r.p is true when after executing action a it is necessarily the case that
r.p holds; and (a)r.p is true when there is some way of executing action a such that we
reach a state where r.p is true. The semantics of DL is given by a Kripke structure
(W, I) where Wis a set of states or worlds, and I is a meaning function mapping each
proposition to a subset of W (the subsets of states which satisfy the proposition), and
each primitive action to a binary relation between states, that is:

• I(p) ~ W, for every p E <I>o.

• I(a) ~ W x W, for every a E ~0 .

The function I can be extended to formulae and actions as follows:

21

PhD Thesis, P.F .Castro McMaster-Computing & Software

• I(o:;/3) = J(o:) 9 I(/3).

• I(o: LJ /3) = J(o:) U!(/]).

• I(o:*) = I(o:)*.

• I(<p?) = {(u,u) Iu E J(<p)}.

• J((o:)<p) = I(o:) 9I(<p).

• J([o:]<p) = I(•(o:)•<p).

• I(•<p) = W - I(<p).

• I(<p ~ 'l/J) = W - (I(<p) U J('ljJ)).

(Here 9 denotes the forward relational composition, see [HKTOO].) The remaining
standard formulae can be defined from the ones presented above. Using these def­
initions we say that w, M F <p, for a Kripke structure M and a state w of M, iff
w E I(<p). In [HKTOO] a complete and sound axiomatic system is given for DL,
though this system is not compact, which is a consequence of having iteration in the
logic (which cannot be defined in first order logic, see [Gol82]).

Note that the semantics of actions is given by relations, and the semantics of the
action combinators is given by relational operators; we call this approach a relational
semantics. This kind of semantics is the one mainly used in modal action logics
[Pra78, Par78, Dan84, BVOl, GP90, dR98, HKTOO, Bro03]. In [KQM91J another
possibility is proposed. Actions are interpreted as a set of events, and events are the
labels on the transitions of the semantic model, though the properties that relate the
semantics and the syntax are not investigated there. We call this kind of semantics
an algebraic semantics, since the events in the semantic model have some kind of
algebraic structure. This is similar to the approach taken by Hennessy and Milner
in [HMSO], where a multimodal logic is presented to reason about processes defined
in a process algebra style [Mil89], and actions are interpreted as labels of transitions.
A similar approach is also taken in [FM97] to give the semantics of the language
Comm Unity, where the interpretations of designs or programs are labelled transition
systems, and the labels of transitions are events that can be "observed" by several
actions.

We pursue the algebraic approach in this thesis, and we show later on that nice
properties can be obtained from this semantical choice. For example, we give a
complete and sound system for a modal action logic with boolean combinators; fur­
thermore, we prove the compactness of this logic, which is an improvement on the

22

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

similar logics proposed in the literature [GP90] and [Bro03]. We come back to this
issue in chapter 3.

Following the terminology introduced in [Bro03], we use MAL(...) for naming a
modal action logic which has the action combinators appearing inside the brackets;
e.g., dynamic logic is named MAL(;, U, *, ?). The operators which can be found in
the literature are: ; (composition), n (intersection), U (union), * (iteration), ? (test),
- (complement), - 1 (converse), 1 (skip) and 0 (fail). The following are the results
known about modal action logics; almost all of them use a relational approach to the
semantics:

• 	 MAL(0) - this is multimodal logic, i.e., modal logic extended with multiple
modalities, one for each action. Sound and complete systems can be found in
the literature; the logic is decidable. This logic is also called Hennessy-Milner
logic in process algebra, though in this case the semantical structures used
are labelled transition systems. (Note that multimodal logics use a relational
semantics, i.e., each modality is interpreted as a relation.) The two systems are
equivalent, but it is interesting to note that the Hennessy-Milner logic was born
in the process algebra community, and therefore it is not strange that for this
logic an algebraic interpretation of modalities was used. As remarked in [Bro03],
the logic MAL(U,;, 1, 0, ?) is definable from MAL(0), i.e., no expressivity is
gained when these operators over actions are added.

• 	 MAL(; , U, *, ?) - this is dynamic logic; sound and complete systems exist for
this logic. See [HKTOO]. This logic is decidable, but it is not compact.

• 	 MAL(;, U, *, -l) - this is dynamic logic with converse; sound and complete sys­
tems are known for this logic [Par78], [GM96]. This logic is also decidable
(obviously it is not compact since it extends dynamic logic). Dynamic logic
with converse is more expressive than standard dynamic logic.

• 	 MAL(;, U, - 1) - this is a fragment of the logic shown above, using the axioma­
tization given in [Par78]. We can obtain a sound and complete system for this
logic.

• 	 MAL(;, U, *, n) - called dynamic logic with intersection (or IPDL). This is per­
haps the variant of dynamic logic least studied in the literature. The logic was
proven to be decidable [Dan84], though this logic does not satisfy the finite
model property. The axiomatization for IDPL was an open problem for several
years, in part because the relational semantics of intersection is not modally de­
finable. In [BVOl], a sound and complete axiomatization for this logic is given.
However, it is important to note that the interpretation of parallel execution as
intersection of relations is sometimes not in correspondence with the behaviour

23

PhD Thesis, P.F .Castro 	 McMaster-Computing & Software

of concurrent programs. This is mainly because we have composition and it­
eration in the logic and the notion of an atomic step is lost in the semantics.
Indeed, if we have an action which does not finish, in the relational semantics,
this is interpreted as an empty relationship. This engenders the same problem
that Hoare logic has to deal with for programs which run forever. Moreover, in
this case the notion of concurrency loses sense in the relational approach (the
intersection of any action with an empty action is empty). Here it seems much
more interesting to interpret actions as sequences of labels or events. We will
come back to this issue later on.

• 	 MAL(;, U, n, -) - called boolean modal logic or BML [GP90]; a sound and com­
plete axiomatic system is given in this paper. This logic is not compact as shown
in [Bro03]. Here it is important to note that the complement used in these logics
is an absolute complement, i.e., if we have an action a which is interpreted as a
relation Ra and U = W x W is the universal relation, then we have that the
complement of a is U - Ra (where - is the set difference). It is not hard to see
why this semantics of complement it is not desirable from a computer science
point of view. In this context the complement is used to formalize the notion
that an alternative action is executed; with the absolute complement we can
relate states that are not related by the original action, obtaining in this way a
behaviour that is chaotic with respect to the system being specified. A better
approach is to consider a relative complement. In spite of this being a more
adequate approach in computer science, modal logics with relative complement
have not been investigated deeply. In [Bro03] a boolean modal logic with rela­
tive complement is proposed, but its possible axiomatization is not investigated
further.

• MAL(;, u, n, -, - 1, ?) - this system is investigated in [dR98]; the system is
proven undecidable, but a sound and complete axiomatization is described.

As we said earlier, we propose in chapter 3 a boolean modal logic which, differing
from [GP90], uses a relative complement, and, a difference with respect to what is
proposed (but not axiomatized) in [Bro03], it uses an algebraic approach, i.e., actions
are interpreted as a set of transition labels. This choice is useful to obtain a simple
formalization of the boolean operators and the relative complement.

2.1.3 Temporal Logics

In [Pnu77], Pnueli proposed to use temporal logics to specify and reason about pro­
grams. Since then, temporal logics have been used extensively by computer scientists

24

PhD Thesis, P.F.Castro McMaster-Computing & Software

to underpin the production of reliable software. Temporal constructs are essential
when we need to reason about temporal properties of programs. Some standard tem­
poral properties are: a property <p is always true in the future, eventually a property
'ljJ will be true, a property <p is true until the property 'ljJ becomes true, etc. In par­
ticular these kinds of statements are useful in reactive systems or systems that do
not necessarily have to terminate (e.g., an operating system), where the machinery
of Hoare logic is hard to use (following Manna and Pnueli [MP92] this is one of the
main reasons to use temporal logic in reactive and concurrent systems). There are
different temporal logics, each one reflects a different conception of time. We can
classify temporal logics in different ways.

We can distinguish between linear time logics and branching time logics. Linear
temporal logics [Pnu77] are widely used in computer science to specify and verify
computing systems. These logics assume that the flow of time is linear and discrete,
i.e., any given instant of time has only one successor. On the other hand, branching
time logics suppose a non-deterministic discrete setting where a given instant has
multiple successors. This approach is particularly used when non-determinism is
present in specifications. In the following we briefly introduce both systems.

Linear Temporal Logics

Linear temporal logics (or LTLs) were proposed by Pnueli in his seminal paper
[Pnu77]. This logic extends propositional logic with a simple set of temporal modal­
ities: N<p (in the next instant <p is true), F<p (eventually <p is true) and G<p (always
in the future <p is true) and <p U 'ljJ ('l/; is true at some moment in the future, and
until 'ljJ becomes true, <p is true). Several other operators can be defined using these,
in particular a weak version of <p U 'ljJ (i.e., 'ljJ may not be true in the future) can be
defined (see [MP92]).

The semantics of LTL is given by Kripke structures and traces over it (i.e., paths
in the Kripke structures). Paths are usually maximal (though some works consider
all the possible paths), and the relation of satisfaction is defined with respect to an
instant, a path and a Kripke structure, i.e., i, 71", M I= <p says <p is true at moment i
of path 7r in the structure M. The semantics for these operators (with the intuitive
reading) can be found in the standard textbooks [MP92] and [Eme90].

Sound and complete proof systems are known for LTL, for example in [MP83] the
following Hilbert-style system for LTL is presented.

LTLl.

25

PhD Thesis, P.F.Castro McMaster-Computing & Software

LTL2. G(cp -t 'lj;) -t (Gcp -t G'lj;).
LTL3. Gcp -t cp.
LTL4. N-.cp -t 0 Ncp.
LTL5. N(cp -t 7/J) -t (Ncp) -t (N'l/J).
LTL6. Gcp -t Ncp.
LTL7. Gcp -t NGcp.
LTL8. G(cp -t Ncp) -t (cp -t Gcp).
LTL9. cp U 'ljJ +--+ ('l/J V (cp /\ N(cp U 'lj;))).
LTLlO. cpU '1jJ -t F'lj;.

with the rules:

• If cp is an instance of a propositional tautology, then f- cp.

• If f- cp -t 'ljJ and f- cp, then f- 7/J.

• If f- cp, then f- Gcp.

LTLl defines a duality between F and G. LTL2 is the K axiom of modal logic;
note that since the last rule given above is the generalization rule, we have a normal
modal system. LTL3 says that the present is included in the future. LTL4 says
that, if something is false in the next instant, then it is false that this property is
false in the next instant (note that this formula is valid since we are in a linear flow
of time). LTL5 is the K axiom for the next operator. LTL6 tells us that the future
includes the next instant. LTL8 can be thought of as an induction property, and the
remaining axioms only express the definition of the operators.

LTL has been widely used for model checking [Hol97]. In [SC85] it was proven
that the LTL model checking problem is PSPACE complete. In a context where non­
determinism is possible, branching time logics offer the possibility of quantifying over
the branching produced by the non-determinism. As stated in [HR04]: Branching
time appears to make the non-deterministic nature of future more explicit.

Branching Time Logics

Branching time logics consider, for a given instant of time, multiple successors, and
therefore operators to quantifying over different possible futures become possible.
In [EC80, BAMP81], the quantifiers A and E were introduced. One of the most
used branching temporal logics in computer science is CTL (computational tree logic)
introduced in [EC80]. (They also introduced a restricted version of CTL, called UB,

26

PhD Thesis, P.F.Castro McMaster-Computing & Software

which does not have the until operator.) Now we have two kinds of modal operators:
on the one hand, we have operators quantifying over paths, and on the other hand
we have temporal operators. CTL only allows us to combine them in certain ways.
More specifically, we can only use the pairs: AU, AG, AF, AN, EU, EG, EF and EN.
The intuitive interpretation of the operators is as follows:

• A (cp U 'ljJ), in all the possible futures, cp is true until 'ljJ becomes true.

• AGcp, in all the possible futures, cp is always true.

• AFcp, in all the possible futures, cp is eventually true.

• ANcp, in all the possible next instants, cp is true.

• E(cp U 'l/J), in some possible future, cp is true until 'ljJ becomes true.

• EGcp, in some possible future, cp is always true.

• EFcp, in some possible future, <p is eventually true.

• ENcp, in some possible next instant, <p is true.

Sound and complete axiomatizations are given for CTL in [Eme90]. In [SC85] it was
proven that the complexity of model checking a CTL formula cp is O(K *le.pl) where K
is the size of the model and l'PI is the length of cp. LTL and CTL are incomparable in
the sense that there are sentences which are expressible in LTL and are not expressible
in CTL and vice versa [Eme90].

Though CTL has interesting expressivity, in [EH86] an extension of CTL called
CTL* is presented. CTL* provides more flexibility for combining temporal operators
with branching quantifiers. LTL and CTL are strictly contained in CTL* (i.e., all the
properties that can be expressed in LTL and CTL can be expressed in CTL*). This
logic is decidable with the same complexity as LTL. The known axiomatizations of
CTL* are far from being as simple as those for CTL and LTL (see [ReyOl]). There
have been a lot of discussion about which of these logics is better for specifying
programs (see [Sch04] for an introduction to this discussion). However, in a context
where we have nondeterminism, branching time logic is a natural choice. On the
other hand, CTL admits simpler axiomatizations than CTL*, which can be a benefit
when proving properties by hand.

In [MP90], (following the terminology introduced in [Lam77] for concurrent pro­
grams in general) temporal properties are divided into categories. There are two
which in practice are very common: safety properties (they state that some property

27

PhD Thesis, P.F.Castro McMaster-Computing & Software

is true for every instant and any state of the system, i.e., this property is a system
invariant), and liveness properties (they state that some property will be satisfied in
the future).

There exist several other variants of temporal logic (some of them have also been
used in computer science), e.g., there are logics with a continuous flow of time, with
intervals, with convergent flows of time, etc. These logics have varying applications,
e.g., temporal logics with a continuous flow of time are usually used for reasoning
about real time systems.

2.2 Deontic Logic

Deontic logic is a branch of modal logic which focuses on the study of the reasoning
arising in ethical and moral contexts, which usually involve norms and prescriptions
(see [Aqv84] and [Che99]). Two modalities which can be found in most of the deontic
logics are permission and obligation. Of course, related to them are the concepts
of prohibition and violation. Mally was the first to try to capture the reasoning
underlying norms and prescriptions, in particular Mally introduced obligation as a
predicate (together with other related operators) and provided an axiomatic system
for his logic. However, in Mally's logic the concept of obligation is superfluous, in the
sense that, if we take 0(c.p) as saying it ought to be the case that c.p, then we obtain
c.p ---+ 0(c.p) ! Since then, several deontic logics have been proposed in the literature.
Perhaps the most studied is the so-called Standard Deontic Logic (or SDL) [Che99]. A
particular case of normal modal logics, SDL has the modality O(c.p) (c.p is obligatory);
and the following axioms are proposed in this logic to capture the notion of obligation
[McN06]:

SDLO. all the tautologies of the language.
SDLl. O(c.p---+ ¢)---+ (O(c.p)---+ 0(¢)).
SDL2. 0(c.p) ---+ •O(•c.p).

For the rules we have:

• If I- c.p ---+ ¢ and I- c.p, then I- ¢,

• If I- c.p, then I- O(c.p).

Equivalent axiomatizations of SDL can be found in [Che99] (this system is called OK+
in [Aqv84]). The second deduction rule means that we have a normal modal system.

28

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

The semantics of SDL is given with Kripke structures, and the interpretation of the
obligation operator is the same as the modal necessity (although this axiomatization
imposes a different structure on the Kripke models; note that the axioms imply that
the Kripke structures are serial, i.e., every state has a successor). The intuition of
the semantics is as follows. If a state w is related with another state v, this means
that the obligations occurring in w are true in v (in some way we can think of v as
an "ideal" world for w). Several consequences of this axiomatic system have been
criticized for being contrary to the intuitive properties of obligation. For example, a
consequence of these axioms is the property O(T) (which can be read as saying that
there are always obligations; at least we have that all the tautologies are obliged).
Some people have argued that there could be scenarios where nothing is obliged, and
these kinds of scenarios are not possible in SDL. Another problematic issue is the
definition of permission which is introduced in the logic as a dual of obligation, that
is: P(cp) ~ •O(•cp). Note that this definition together with axiom SDL2 imply that
we have the following theorem: O(cp) ~ P(cp), i.e., obligation implies permission. If
we see permission as modal possibility (which is the case in SDL), then we have what
is sometimes called Kant's law: obligation implies possibility. It is not hard to find
examples where this property is not desirable. It is not our intention to defend or argue
against this logical system; readers can take their own position. Further discussion
about these topics can be found in [Che99]. Below, we present some predicates that
have been problematic not only in SDL, but also in different deontic systems that
have been proposed in the literature. These predicates are called paradoxes (but do
not confuse them with logical paradoxes, e.g., Russell's paradox of set theory) since
they are properties which are contrary to our intuition.

2.2.1 Paradoxes in Deontic Logic

Many paradoxes of deontic logic were discussed through the years, some of the most
well-known are:

• 	 O(cp) ~ O(cp V 'lf;) (Ross's Paradox). An intuitive reading is: if you are obliged
to send a letter, then you are obliged to send it or burn it.

• 	 P (<p) V P('ljJ) ~ P(<p V 'ljJ) (No free choice permission). This is similar to the
sentence explained above.

• 	 <p ~ 'ljJ f- O(cp) ~ O('lf;) (Good Samaritan paradox). As the name of this
paradox implies the following reading seems problematic: if Jones helps Smith,
who has been injured, implies Smith has been injured, so if it is obliged that
Jones helps Smith who has been injured, then it is obliged that Smith has been
injured. That is, we can obtain an obligation from a hypothetical situation.

29

PhD Thesis, P.F.Castro McMaster-Computing & Software

A complete list can be consulted in [MWD94] and [Aqv84]. However, we are interested
in the paradoxes called contrary-to-duty paradoxes where a secondary obligation ap­
pears after violating a primary obligation (like the good Samaritan paradox described
above). These paradoxes have been the most controversial in deontic logic, and they
are the most difficult to solve. It is not hard to see that reasoning of this style arises
in fault-tolerance, where after the violation of an obligation, some recovery action
must be performed to restore a state free of errors. Some of the most well known
contrary-to-duty paradoxes are the following: Chisholm's paradox, which can be in­
formally stated as: If you are obliged to go to a party, then it is obliged that, if you
go, you have to say that you are going; but if you do not go you are obliged to not say
that you are going; you do not go to the party. In SDL, for example, we can obtain
..l from these statements. This seems unreasonable since this is a plausible scenario
in the real world. Chisholm's paradox can be formalized as follows:

(O(p) /\ O(p --d) /\ •P ---+ O(•t) /\ p) ---+ ..l

Another contrary-to-duty paradox is the Gorbachov-Reagan paradox [Bel87], which
is as follows: You must not tell the secret to Reagan and you must not tell the secret
to Gorbachev. If you tell the secret to Gorbachev, you must tell the secret to Reagan.
If you tell the secret to Reagan, you must tell the secret to Gorbachev. You tell the
secret to Reagan and Gorbachev. If we formalize this situation in SDL, we obtain
a contradiction since we get two contradictory obligations which yield false in SDL.
However, this scenario is plausible (if we change the names Reagan and Gorbachev!).
There exist many other contrary-to-duty paradoxes the reader can consult [MWD94].
We remark that these kinds of paradoxes are very common in a fault-tolerance context,
and therefore any logic which is intended to be used to specify and reason about fault­
tolerant programs needs to provide some effective way to deal with contrary-to-duty
reasoning. We show how our logic deals with contrary-to-duty statements in section
3.6.

2.2.2 Deontic Action Logics

The logics that we have introduced in the section above can be classified as ought­
to-be deontic logics, since the norms are applied to predicates. On the other hand,
ought-to-do deontic logics are those where we impose norms on actions, which (as
argued by several authors [Mey88, Bro03]) are more suitable to use for specifying
computing systems, mainly because these logics have a notion of state change caused
by the execution of actions. One of the most well-known ought-to-do systems is
Dynamic Deontic Logic introduced in [Mey88]. In this work, deontic constructions
are reduced to dynamic logic constructions using a violation constant which indicates
that a violation has been produced. Meyer proposes to use the following combinators:

30

PhD Thesis, P.F.Castro McMaster-Computing & Software

; (composition), U (non-deterministic choice), n (parallel execution), and - (alter­
native action), and an algebra of actions is proposed for these action combinators.
Using modalities, Meyer defines:

F(a) ~ [a]v.

That is, an action is forbidden if and only if every execution of this action yields a vio­
lation. From this Meyer defines the rest of the deontic predicates: O(a) ~ F(a) (obli­
gation) and P(a) ~ •F(a) (permission). Broersen [Bro03] called this approach goal
oriented norms since, from evaluating the truth value of a deontic predicate, only the
resulting state of an action is important and not what happens during its execution.
Several criticisms have arisen to this approach. For example in [vdM96], the following
formula is exhibited as a paradox of dynamic deontic logic: (a)P(,8)---+ P(a; ,8), which
can be read as if after shooting the president it is allowed to remain silent, then it is
allowed to shoot the president and remain silent! which is undoubtedly undesireable.
In [Ang08] these ideas are used to establish a more serious paradox: F(a) ---+ [a].l,
i.e., forbidden actions cannot be executed. In spite of these facts, Meyer's approach
is interesting since in deontic dynamic logic a clear division between predicates and
actions is established and, as Meyer argues, some paradoxes vanish in this approach,
mainly since here we have a notion of time or state change. Moreover, some prob­
lematic statements, like nested deontic constraints, are no longer expressible.

Several variations and extensions to the Meyer work have been presented. For
example, Broersen [Bro03] describes other possible formulations of dynamic deontic
logic where different violation constants are used for defining obligation and permis­
sion, rejecting in this way the interdefinibility of these operators as given by Meyer.
In particular, Broersen uses a version of relative complement in his logic, arguing that
this approach is more appropriate for computer science.

A different approach to goal norms is the so called process norms in [Bro03].
Here the norms do not only take into account what happens in the resulting state of
an action, but also what happens during its execution. Basically, in this approach
every step during an execution of an action must be allowed for this action to be
allowed (and similarly for the other deontic constructions). This avoids paradoxes
like the shooting president one introduced above. However, in the case of atomic
actions (actions which are not obtained by means of combinations of other action),
goal norms and process norms coincide [Bro03]. A related approach is presented in
[vdM96], where instead of considering a relational interpretation of actions, actions
are interpreted as sequences of states (note that this is similar to the approach that
we called algebraic semantics; however, in this case labels of transition are not used).
Also, in this approach there is a strong relationship between modalities and deontic
predicates: if an action cannot be executed in a given state, then this action is allowed
in this state.

31

PhD Thesis, P.F.Castro McMaster-Computing & Software

Another approach to ought-to-do deontic logic is presented in [KM85], where a
modal action logic with deontic operators is described. The operators over actions
considered in this approach are: ; (sequence), n (parallel execution) and U (non­
deterministic choice). The logic uses a constant n (normativeness) to define permission
(which plays a similar role to the violation constant of Meyer), with the difference that
permission is defined as n ~ P(A, a) +-t [a]n. n is intended to indicate which states
are free of errors or are "normal" states. This conditional definition says that, in
normative states, allowed actions are those which yield normal states. This approach
seems more acceptable for our purposes since in error states the characterization of
permission by means of modalities is not present.

A modal action system (called MAL) with a similar flavour is investigated by the
FOREST project in [Ken91, KQM91, Mai87]. Here complement and intersection are
considered, and some examples of applications are developed. Although the state
normativeness and permission are interpreted as semantically different concepts, a
similar relation to those imposed by Meyer between permission and state properties
is introduced in the semantics. In this work a partial proof system is presented, al­
though its properties are not investigated in detail. An interesting feature introduced
in that work is that actions are interpreted as a set of "events"; intuitively the set
of events that this action produces during its execution (this is different from the
relational approach, and also to the process approach where an action is interpreted
as a sequence of states). We follow this approach throughout this thesis, although we
define an algebra over the events and we take advantage of the underlying structure
of this algebra. Considering events in the semantics is particularly useful for the
semantics of concurrency, where the parallel execution of different actions may gener­
ate different events, and furthermore we can distinguish between local events (events
produced by the systems) and environment events (events produced by the environ­
ment). We use these ideas to propose a way of modularizing the logic, see chapter 7.
Our approach is related to the ideas introduced in [RFM91], where category theory
is used to structure a first-order version of MAL [KQM91].

Finally, let us introduce the approach described in [FM92] where the notions of
permission and obligation are not reduced to modalities and violation constants. In
this work deontic predicates are used to define normative trajectories; these are se­
quences of actions where only permitted actions are executed, and obligations are
eventually fulfilled. This work presents interesting ideas to combine deontic specifica­
tions with temporal logic, although the relationships between the deontic predicates
and the operators over actions are not investigated by the authors.

From the point of view of fault-tolerance, goal norms are not appropriate since
we want to distinguish between recovery actions and permitted actions. In the Meyer
and Broersen work, permitted actions yield an error-free state; however, in computing

32

PhD Thesis, P.F.Castro McMaster-Computing & Software

systems this is only true when a recovery action is executed; permitted actions might
carry forward violations until a recovery action is executed. Using similar arguments,
Sergot rejects goal norms [SC06]. In chapter 3 we present a deontic logic where the
prohibition or permission to execute transitions are not directly related to modalities
or violation constants, which we argue gives us more flexibility at the time of spec­
ifying fault-tolerant systems. We explain the differences between our logic and the
logics introduced here in chapters 3 and 4.

2 .3 Logic in General

Sometimes, a more abstract view of logical systems is useful, in particular when we
need to reason about different logical systems and their relationship. Goguen and
Burstall in [GB92] propose an abstract definition of logical system and they call it
Institutions. We introduce Institutions below. Before that, we need to review the
basic definitions of category theory since Institutions and the related approaches are
defined in a categorical way.

In the words of Saunders Mac Lane [Mac98] (one of the founders of category
theory): Category theory starts with the observation that many properties of math­
ematical systems can be unified and simplified by a presentation with diagrams of
arrows. Then, basically category theory is the study of the properties of diagrams of
arrows. A category is defined as follows [MM92].

Definition 1. A category consists of a collection of objects (denoted by letters A, B,
C, .. .) and a collection of morphisms (or maps or arrows) {denoted by letters f,g,h,
... } and four operations: <lorn(!) returns an object for every arrow f (its domain},
ran(!) returns an object for every arrow f (its range). (We write f : A ~ B if A is
the domain off and B is its range.) We have an operation l_ which, given an object
A, returns an arrow lA : A~ A called its identity and we have a binary operation o,
which given two arrows f : A ~ B and g : B ~ C returns an arrow g o f : A ~ C
(its composition}. These operations satisfy the following laws:

Unit law: For all arrows f : A ~ B and g : B ~ C, the composition with the
identity arrow ls gives: ls of= f and go ls = g.

Associativity: For all arrows: f: A~ B, g: B ~ C and h: C ~ D, we have the
equality:

f 0 (g 0 h) = (! 0 g) 0 h.

0

33

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

The dual category of a category C is denoted C0 P and obtained by reversing
its arrows. Many of the mathematical structures that are widely used in computer
science are indeed categories; here we give a (partial) list:

• 	Set, the category of small sets; it contains as objects all the small sets (i.e., in
the Godel-Bernays set theory [Ber91] these are sets which are not classes) and
total functions between them.

• 	Grp, the category of groups; its objects are all the small groups and its arrows
are all the group homomorphisms.

• 	Graph, the category of graphs; its objects are graphs, and its arrows are graph
homomorphisms.

• 	 CPO, the category of complete partial orders with continuous functions as
arrows.

• Any deductive system where objects are formulae and the arrows proofs; in this
case note that the proof system must be reflexive (from a formula we can prove
this formula) and transitive.

As explained above, in category theory it is usual to reason about diagrams (collec­
tions of arrows and objects). To introduce formally the notion of diagram, we need
to introduce functors. A functor is, roughly speaking, a mapping between categories
which preserves structure. The formal definition of functor is as follows [MM92].

Definition 2. Given two categories C and D, a functor is an operation F which
assigns to each object C of C an object F(C) of D, and to each morphism f of C,
a morphism F(f) of D, in such a way that F respects the domain and codomain, as
well as the identity and the composition. that is:

• 	dom(F(f)) = F(dom(f)).

• 	 ran(F(f)) = F(ran(f)).

• 	 lF(C) = F(lc).

• 	F(g of)= F(g) o F(f).

34

0

PhD Thesis, P.F.Castro McMaster-Computing & Software

We use for functors the same notation as for arrows, i.e., we write F : C --+ D
when Fis a functor from category C to category D.

Now, we can define a diagram of a category C as a functor D : I --+ C, where
I is sometimes called the "indexing category" [MM92]. (Intuitively, D says how the
"figure" I is projected into C.) Sometimes it is required to compare two functors. In
these cases, we can use the notion of natural transformation [Mac98].

Definition 3. Let F and G be two functors from a category C to a category D.
A natural transformation o: from F to G (denoted by o: : F -.:.+ G) is an operation
associating with each object C of C a morphism o:c : F(C) --+ G(C), in such a way
that, for any morphism f : C' --+ C in C we have:

G(f) o o:c' = o:c o F(f).

Given a natural transformation o:, the condition of naturality means that the dia­
gram of figure 2.3 commutes. In category theory the concept of universal construction

F(C') ~ G(C')

F(f)! !G(f)

F(C) ---c;;;-- G(C)

Figure 2.3: Naturality condition for o:

is important. A universal construction is a construction (made up of objects and mor­
phisms) which is characterized up to isomorphism by means of its relationship with
the other related constructions in the category. One of the nice properties of universal
constructions is that it is not necessary to "look at" the structure of the objects or
morphisms in the entity to be characterized; we only take into account how this entity
is related with the rest of the entities in the category. These kinds of constructions are
useful in computer science where systems are often composed of different modules or
components and it is too complicated to look inside every one of them. The concepts
of initial objects and terminal objects are, perhaps, the simplest universal construc­
tions. An initial object in a category is an object from which we have a unique arrow
to any other object in the category; it is not hard to prove that initial objects are
unique up to isomorphism. Terminal objects are the dual concept to initial objects; a
terminal object is one for which we have a unique arrow from any object to this one.
For example, the initial object in Set is the empty set, and the terminal objects are
the singleton sets (which are isomorphic to each other in Set).

35

0

PhD Thesis, P.F.Castro McMaster-Computing & Software

In particular, we are interested in the notion of colimit, which we use to combine
specifications (see chapter 7). (Colimits are widely used in computer science literature
to combine theories, designs, graphs, etc. See [Fia05] for examples.) Given a diagram
D : I -t C, a cocone is an object C of C together with a family of C-morphisms:
{Ji : D(i) -t C I for every object i of I} (denoted by f : D -t C), such that for
every morphism u: i -t j of I we have fj o D(u) =Ji, i.e., the diagram of figure 2.4
commutes. A colimit of D is a cocone f : D -t C such that for every other cocone
f': D -t C', we have a unique arrow t: C -t C' in C, such that, for every object i
of I, we have: t o fi = ff.

c

Y"Z

D(i) D(j)

D(u)

Figure 2.4: Diagram of a cocone

Many universal constructions can be obtained as colimits of special kinds of di­
agrams [Mac98]. For example, initial objects are colimits of the empty diagram.
Another useful universal construction is a pushout. Given two morphisms of C
f : C -t C1 and g : C -t C2 , a pushout of (!, g) is given by two morphisms
u : C1 -t P and v : C2 -t P which satisfies u of = v og (i.e., the left diagram of figure
2.5 commutes), and for any other pair of morphisms u' : C1 -t P' and v' : C2 -t P'
such that u' o f = v' o g, we have a unique arrow t : P -t P' with t o u = u' and
to v = v'; this is illustrated by the right diagram of figure 2.5. Pushouts of a category
C are colimits of a diagram D : I -t C where I is a category which looks exactly just
like • +--- • -t •. In particular we are interested in colimits of finite diagrams, i.e.,

Figure 2.5: Diagrams for pushouts

36

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

diagrams D : I -t C where I is finite. If a category has pushouts and initial objects,
then it has any finite colimit [AHS09]. Categories which have any finite colimit are
called finitely cocomplete, and, if they have any colimit in general, they are called
cocomplete.

Here we only reviewed the concepts needed for the following chapters. For a
detailed introduction to category theory with examples oriented to computer science
and software engineering, the reader can consult [Fia05, BW95].

Institutions are a categorical view of logical systems consisting of an abstract
formulation of grammar and a general notion of satisfaction. The formal definition
of an Institution is as follows [GB92].

Definition 4. An Institution is given by:

• 	 A category of signatures Sig.

• 	 A functor defining the grammar g : Sig -t Set.

• 	 A functor: Sem : Sig -t Cat0
P.

• 	 A function F, which, given a signature L:, returns a relation Fr;~ ISem(E)I xQ,
such that, for each arrow O" : L: -t E', the following condition holds (satisfac­
tion condition):

-	 M' Fr:' Q(O")(<p) iff Sem(O")(M') Fr: <p.

Intuitively, the category Sig defines the possible languages of our logical system,
and how they are related to each other. The functor g defines how the formulae are
built from the basic components of the language (usually by a recursive definition)
and, given a translation between languages, this functor extends this translation to a
translation between formulae. The functor Sem defines the structures that conform to
the semantics or interpretation of a language and the relation F captures the notion
of satisfaction (where Cat0

P is the opposite category of the category of all small
categories and functors between them). The satisfaction condition requires that the
notion of truth must be invariant with respect to language change.

Several logical system are Institutions [GB92]; examples are: propositional logic,
first-order logic, equational logic and order-sorted logic. The notion of morphism
between Institutions can be defined, and therefore we can translate results of one

37

0

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

logic to other logics (once we have a suitable morphism). For example, we can prove
that equational logic is sound with respect to first-order logic with equality [GB92],
and therefore the theorems of equational logic can be translated to first-order logic
with equality, i.e., instead of using a unique logical system we can combine them.

Institutions take a semantical view of logic. Another approach is introduced in
[FS87] where Jr-Institutions are defined. Jr-Institutions capture the idea of logical
consequence or entailment systems (i.e., they consider a syntactic formalization of
logical systems). Formally, a Jr-Institution is defined as follows:

Definition 5. A Jr-Institution consists of­

• 	 A category Sign.

• 	 A functor Gram: Sign~ Set.

• 	 For every object E of Sign, a relation I-: 2Gram("E) x Gram(E) is defined satis­
fying the following properties:

-	 For every p E Gram(E), p l-r; p.

-	 For every p E Gram(E) and <I>, <I>'~ Gram(E), if <I>~ <I>' and <I> 1-r; p, then
<I>' 1-r; p.

-	 For every p E Gram(E) and <I>, <I>'~ Gram(E), if <I> l-r; p and <I>' l=r; p' for
every p' E <I>, then <I>' 1-r; p.

For every a : E ~ E', p E Gram(E) and <I> ~ Gram(E), <I> I-,, p implies
Gram(a) (<I>) 1-r; Gram(a) (p).

D

Here the notion of consequence is presented by means of its principal properties.
Following Tarski [Tar56], a logical consequence must satisfy reflexivity, monotonicity
and transitivity (or cut). However, these properties can be relaxed (for example,
non-monotonic logics are widely used in computer science). Interesting features of
Institutions and Jr-Institution arise when we consider theories, i.e., pairs (E, T) where
E is an object of Sign and T ~ Q(E), where usually the set T must satisfy closure
properties with respect to 1-r;, i.e., if <I> 1-r; p, then p E <I>. Theories can be used to
specify software or components of systems [MT84], and then using the categorical
constructions we can put together different specifications. The principal idea comes
from [BG77] where large theories can be built from smaller theories using colimits.
The colimits of a diagram of theories and morphisms between them is, in some sense,
a theory in which every theory is included (by means of the morphisms of the cocone),

38

PhD Thesis, P.F.Castro McMaster-Computing & Software

and is minimal in the sense that it is the initial object which satisfies this require­
ment. We can consider the category Th of theories of a given logic. Obviously, we
have a forgetful functor (see [Mac98]) U : Th --+ Sig. The important fact is that
this functor reflects colimits (see [AHS09]), and this implies that, if the category of
signatures is finitely cocomplete, then the category of theories is finitely cocomplete.
Putting theories together is fundamental when specifying systems; it is not viable to
specify large systems in one complex and large specification. Instead, dividing it in
several parts and establishing how the different parts are related is a more practical
option, which coincides with the usual view in software engineering. Fiadeiro and
Maibaum used this idea, but using temporal theories which are more adequate to
specify concurrent and reactive system [FM92].

It is important to note that, in 7f-lnstitutions we have that morphisms preserve
theorems, i.e., r 1-E p =? Gram(a)(r) 1-u(E) Gram(a)(p), which implies that, if we
have a diagram of theories and we obtain its colimit, then the colimit object preserves
all the theorems of the smaller theories in the diagram. This undoubtedly is an
interesting property.

2.4 Summary

In this chapter we have introduced the basic concepts that we use throughout this
thesis. We have introduced the standard definitions of propositional logic, modal logic,
temporal logic, deontic logic and general logics. These concepts will be widely used
in the following chapters. We adopt the view that logical systems provide a powerful
theoretical framework to develop reliable software. Furthermore, category theory, a
mathematical analysis of properties of diagrams of arrows, allows us to reason on
an abstract level about systems. Moreover, using standard constructions of category
theory, we can compose and put specifications together. It is interesting to remark
that sometimes we abstract from the details of the logical systems and we only use the
main properties that define them. This coincides with the view taken by Institutions
and 7f-lnstitutions.

39

PhD Thesis, P.F.Castro McMaster-Computing & Software

40

Chapter 3

A Deontic Action Logic

In this chapter we present a logic which will be a cornerstone for the rest of this
thesis. This logic is somewhat different from other well-known deontic logics, and
these differences imply some theoretical and practical benefits when specifying fault­
tolerant software. The main difference between the logic presented in this chapter
and the dynamic deontic logics presented in chapter 2 is that the formalism described
here uses an algebraic interpretation of actions, which allows us to use the structure of
the generated algebra to label the transitions on the models. Meanwhile, most other
logics, as explained in chapter 2, use a relational interpretation of actions, following
the style of Dynamic Logic [HKTOO]; the algebraic approach allows us to to take
advantage of the properties of the underlying algebra to prove meta logical properties
over the logic (e.g., completeness).

A preliminary version of the logic was presented in [CM07a, CM07b, CM09].
Here we go into the details of the formalism and the proofs. The logic has some
innovative features, as compared to extant versions of deontic logic. For example,
because we want to do various forms of automated analysis of specifications, such as
model checking, we want our logic to have appropriate meta theorems. So, our logic
is not just sound and complete, but also decidable and compact (strongly complete).
This is an improvement on the corresponding logic developed by Broersen [Bro03].
This is achieved by means of a number of interesting features. For example, although
the idea of distinguishing weak and strong versions of the permission operator were
suggested earlier, our formulation enables us to interrelate them in a new and novel
manner. The two versions of permission have an existential and universal character,
asserting that there is some context for doing an action from the present state, for
weak permission, and that every context for doing that action from the present state
is allowed, for strong permission, respectively. This notion of "context" for actions is

41

PhD Thesis, P.F.Castro McMaster-Computing & Software

captured by using the semantics proposed in [KQM91], interpreting an action as the
set of events in which the action "participates". This also supports our adoption of
an open semantics for our specifications (see [Bar87]), in which the environment of
the system we are describing may be performing actions in parallel with the system.
See [FM92] for an extensive discussion of such open semantics; as in the referenced
work, we will eventually want to adopt the idea of specifying system behaviour in
parts, in terms of components, and then to combine such components, thus making
more concrete the environment for each component in the combination.

Further, though we allow many of the usual combinators on actions, we adopt a re­
stricted version of the complement operator (do something other than the referenced
action), interpreting it locally in the state in which the complement is evaluated,
instead of globally with respect to all possible actions built from available atomic ac­
tions and combinators. These features allow us to characterize the domain of actions,
built from basic actions and combinators, as an atomic boolean algebra [Sik69]. It
is this characterization that leads to the nice meta properties of the logic that we
obtain.

The formal framework defined in the following sections has been influenced by
various past ideas; for example, the obligation operator (and its properties) are similar
to those defined in [KQM91] and [KM85], though in those works the obligation is not
defined using two variants of permission as we do in this work.

As explained above, we are interested in using automatic techniques (like model
checking) with our logic; this implies that some properties, such as decidability, are
required. Moreover, for expressing properties inherent to fault-tolerance, we need to
be able to express temporal assertions, recovery actions, and permission and obliga­
tion predicates on actions. The temporal extension of the logic uses some concepts
from [Mai93, FM9la], in particular the given semantics using traces. Finally, the
weak permission operator (see the next section) has similar properties to that defined
in [Mey88], though its relationship with the normal, so called strong permission, is
new. We shall compare our work with these frameworks at various points in what
follows. However, note that some novel properties of the deontic operators will be
given (e.g., axiom A12 below), and the definition of obligation given in section 3.1 is
slightly, but significantly, different from those in the literature.

This chapter is organized as follows. In the next section we introduce the basic
definitions of the logic, including its syntax and semantics. In section 3.3 a deductive
system is described, and some meta theorems of the logic are proven; in particular,
we prove the completeness of this deductive system. In section 3.5 we extend the
propositional system with temporal notions, and we propose an axiomatic system for
this new logical system, which is proved to be sound with respect to the proposed

42

PhD Thesis, P.F.Castro McMaster-Computing & Software

semantics. (We prove its completeness in chapter 6.) We present some small examples
of specification at the end of the chapter, but we leave the description of more complex
examples to chapter 4.

3.1 Concocting a Propositional Deontic Logic

As usual, we start defining a propositional version of deontic logic (for the sake of
brevity we call it DPL) by introducing its syntax and semantics. DPL is a modal
action logic, which uses boolean operators for combining action terms. Here, we
follow the approach proposed in [KMQ93], in the sense that actions are interpreted
as a set of "events" (transition labels), in contrast to what is usually done in modal
logics and dynamic logics, in particular, where actions are interpreted as relations
and action combinators are interpreted as relational operations. We explain later on
some benefits that the approach taken here has.

After defining the key components of DPL, we present an axiomatic system which
has some similarities to those given for Dynamic Propositional Logic [Mey88] and
Modal Boolean Logic [GP90]. Finally, we prove the soundness of the resulting deduc­
tive system.

Definition 6 (language). A language (or vocabulary) for DPL is a tuple: (<P0 ,~o),
where:

• <Po is an enumerable set of propositional letters; we will denote them: p1, p2,

• ~o is a (finite) set of primitive actions, denoted by: a 1, ... , am·

• <P0 and ~o are mutually disjoint.

D

Using the sets <P0 and ~0 , we can define the set of action terms and formulae of
a given language.

Definition 7 (action terms). Given a vocabulary (<P0 , ~0), we define the set of action
terms (called~) as follows:

• ~o ~ ~-

43

PhD Thesis, P.F.Castro McMaster-Computing & Software

• 0, U E ~-

• if a, f3 E ~' then a U f3 E ~ and an f3 E ~-

• if a E ~I then a E ~.

• No other expression belongs to ~-

We use the Greek letters: a, (3, "(, ... for term variables over ~- 0 and U are
constant action symbols: 0 denotes an impossible action and U denotes the action
obtained from the non-deterministic choice between all the actions in the language.
In a similar way we define the set of well-formed formulae.

Definition 8 (Formulae). Given a vocabulary: (~0 , ~0), we define the set of well­
formed formulae (~) as follows:

• ~o ~ ~-

• T,.l E ~-

• if a,(3 E ~'then a =act f3 E ~-

• if l.(J1, 'P2 E ~' then 'Pi ---+ 'P2 E ~-

• if 'PE ~' then ''PE ~-

• if 'PE ~ and a E ~' then (a)1.p E ~ and [a]1.p E ~-

• if a E ~ then P(a) E ~' Pw(a) E ~ and O(a) E ~-

• No other expression belongs to ~.

D

As usual, we can define some derived operators:

• ¢ V 'l/J ~def: (•¢) ___, 'l/J.

• ¢ /\ 'l/J ~ -, (•¢ v •'I/;).

44

0

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

We call P(-) permission or strong permission, whereas Pw(-) is weak permission;
the differences between the two will become evident with their semantic definitions.
Including both versions of permission gives us some freedom in specifying systems,
and it is interesting that the two operators are related in a strong way, as we show
later on.

The obligation operator will be defined using the two versions of permission, in­
stead of taking the usual definition: O(o:) =•Pw(a). We define (by means of axioms,
see below):

O(o:) = P(o:) A •Pw(a).

We will explain this definition later. Before this, we need to introduce the concept
of semantic structures.

Definition 9 (structures). Given a language L = (<I>0 , ~o), an L-structure is a tuple
M = (W, n, £,I, P) where:

• W 	is a set of worlds.

• £ 	is a non-empty set of (names of) events.

• 	 R is an £-labeled relation between worlds. We require that, if (w, w', e) E R
and (w, w", e) E 'R, then w' = w", i.e., R is functional when we fix the third
element in the tuple.

• 	I is a function:

For every p E <I>o: I(p) ~ W.

For every o: E ~o : I(o:) ~ £.

In addition, the interpretation I has to satisfy the following properties:

I.1 For every O:i E ~o: II(o:i) - LJ{I(o:j) I O:j E (~o - {o:i})}I ~ l.

I.2 	For every e E £: if e E I(o:i) nI(o:j), where o:i # o:j and O:j, o:i E 6.0 , then:
n{I(o:k) I O:k E ~o A e E I(o:k)} = {e}.

l.3 £ = Ua;EAoI(o:i)·

• 	 P ~ W x £, is a relation which indicates which event is permitted in which
world.

D

We can extend the function I to well-formed action terms and formulae, as follows:

45

PhD Thesis, P.F.Castro McMaster-Computing & Software

• I(-.cp) d~ W - I(cp).

• I(cp---+ 'lj;) ~ I(-.cp) UI('lj;).

• I(a LJ (3) ~ I(a) UI((J).

• I(a n (3) ~ I(a) n I((J).

• I(a) ~ £ -I(a).

• I(0) ~ 0.

• I(U) ~ £.

Conditions I.1 and I.2 in definition 9 express some requirements on the possible in­
terpretations of primitive actions. 1.1 says that the isolated application of an action
always generates at most one event; otherwise we will have an undesired nondeter­
minism in our models, as the different ways of executing a primitive action should
arise only because you can execute it together with other actions (perhaps environ­
mental actions). 1.2 establishes that if an event is a result of the execution of two or
more actions, then the concurrent execution of all the actions which generate it will
give us only this event. This condition also ensures that a weird nondeterminism will
not occur, in the sense that the existence of nondeterminism must be grounded on
the combination of different sets of actions with environmental events; that is, an ac­
tion can have different behaviours because several different environment (or system)
events may happen during its execution, and this is the only cause of the action's
nondeterminism. Condition 1.3 says that all the events are generated by the actions
of the vocabulary; we revisit this condition in chapter 7 where we extend the models
with "external" events.

As explained in [SC06], a useful way of thinking about the semantic structures is
seeing them as coloured Kripke structures, where a given transition w ~ w' is coloured
with green if it is allowed (i.e., when (w, e) E P), and coloured with red otherwise.
This allows us to distinguish visually between forbidden and allowed transitions.

Some notation is needed for dealing with the relational part of the structure: we
will use the notation w ~ w' when (w, w', e) E R. For a given e E £, we define the
relation Re= {(w, w') (w, w', e) ER}. Also, given aw E W we define: Pw = {e EJ

£ J (w, e) E P}. These definitions will be useful in the following sections. When

convenient we use the relationship P as a predicate, i.e., P (w, e) ~ (w, e) E P. Let
us introduce the relation l=L between models and formulae.

46

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

Definition 10 U=). Given a vocabulary L = (<1>0 , .6.0) and a £-structure M = (W, R, £,I, P),
we define the relation t=L between worlds and formulae as follows:

• 	 w, M t=L p :def: w E I(p).

• 	w, M t=L a =act /3 ~ I(a) = I(/3).

• 	 w,M t=L •cp ~not w,M t= cp.

• 	 w,M t=L cp--> 'I/;~ w,M t=L •cp orw,M t=L 'I/; or both.

• 	 w, M t=L (a)cp ~ there exists some w' E W and e E I(a) such that w ..!:.., w'
and w', M t=L cp.

• 	 w,M t=L [a]cp ~for all w' E Wand e E I(a), ifw ..!:.., w', then w',M t=L cp.

• 	 w, M t=L P(a) ~for all e E I(a), P(w, e) holds.

• 	 w, M t=L Pw(a) ~ there exists some e E I(a) such that P(w, e)

• 	 w, M t=L O(a) ~for all e E I(a), P(w, e) holds, and for every e' E £-I(a),

we have •P(w, e').

D

When no confusion is possible, we write t= instead of t=L. We have not defined
the satisfaction condition for the box modality and the obligation predicate. Note
that they can be defined by means of the other operators; see the axiomatic system
presented below. As usual, we say that M t=L cp iff, for all worlds w E W, we have:
w, M t=L cp. And we say: t=L cp, if M t=L cp for all models M. Some intuition about
each operator is useful:

• 	 (a)cp, there is a way of executing a so that cp holds in the next world.

• 	 [a]cp, after executing a in any possible way, cp will hold, this formula is equivalent
to •(a)•cp

• 	 [a1 LJ a2]cp, every way of executing a 1 or a2 leads to cp.

• 	[a]cp, after executing an action different from a, cp holds.

• 	 [a1n a 2]cp, every way of executing both a 1 and a2 leads to cp.

47

PhD Thesis, P.F.Castro McMaster-Computing & Software

• P(a), all the different ways of executing a are allowed.

• Pw(a), there is at least one way of executing a which is allowed.

Note the symmetric definitions of strong and weak permission, reflecting a univer­
sal/existential symmetry.

Some comments are in order regarding the definition of obligation. First, note
that the permission predicates allow us to partition the transitions of the semantic
structures into "allowed" transitions (or "green" transitions) and "not-allowed" tran­
sitions (or "red" transitions). For us, an obligatory action is one which is the only
one acceptable (i.e., its execution from a given state, in any way, produces a green
transition) and the execution of any other action is unwanted (although possible);
that is, these transitions are red coloured. This intuition is formalized using both
versions of permission, as shown above. The standard definition of dynamic deontic
logic does not consider obligated actions as allowed (which we think should be the

case). Recall the definition of this notion of obligation: OM(a)~ •[a]v (we use the
symbol 0 M to point out that this is the obligation proposed by Meyer). Formally,
in our setting we have that OM(a) is true in a world w when for every e E I(a)
and world w', if w ~ w', then w', MF= v. (vis a logical constant pointing out that
a violation is true.) In this definition of obligation, we have an instance of Ross's
paradox, i.e., F= 0 M (a) ---+ 0 M (a LJ ,B). This follows directly from the definition stated
above.

Note that the sentence O(a) ---+ O(a LJ ,B) is not a valid formula in our logic;
in figure 3.1 we show a counterexample. In this model we have three states w, w'

M: w'
e2 / -.f

/
/

w

~

w"

Figure 3.1: Counterexample for O(a)---+ O(a LJ b)

and w"; we use dashed arrows to describe not allowed (red) transitions, and plain
arrows for allowed (green) transitions. Consider a vocabulary with two actions a
and b; in this model we set I(a) = {e1} and I(b) = {e2}, and therefore we have
w, M ~ O(a)---+ O(a u b).

48

PhD Thesis, P.F.Castro McMaster-Computing & Software

Another option could be to define O'(a) & Pw(a) /\ -.Pw(a) (we use the symbol
O' to distinguish this variation of obligation from the obligation used in the thesis).
The formal semantics of this variation of obligation is as follows. w, M I= O'(a) iff
there exists some e E I(a) such that we have (w, e) E P, and for all e' E £ - I(a)
we have (w, e') (j. P.

We reject this definition because of underspecification; i.e., this definition says
that an obliged action is weakly allowed, and therefore some (not specified) ways of
performing it might be forbidden. Our position is that there must be no missing
details when we impose an obligation. For example, consider a vocabulary with
two actions pr and pb, which are intended to represent the actions of pressing a red
button and pressing a blue button, respectively. A possible model of this specification
is shown in figure 3.2. In this model, we set I(pr) = {e2,e3} and I(pb) = {e1,e2}.

M: w1 .,,
•1 /

/
/

w~2 w2

··~

Figure 3.2: Example of model

The dashed arrows illustrate forbidden transitions. In this case we have that w, MI=
O'(pr); however, pressing the red button together with the blue button is forbidden.
This variation of obligation does not provide the exact information about the actions
that must be performed to fulfil the obligation. This underspecification is avoided by
the predicate O(); for example, the semantic structure of figure 3.2 is not a model of
O(pr), since there is some way of pressing the red button that is not allowed. In this
case, we have to say explicitly that O(pr n pb).

On the other hand, we remark that the obligation introduced above is an imme­
diate obligation, i.e., this operator only predicates about the next transition. As a
consequence of this, an obligation is not necessarily kept through time, e.g., if the
obliged action is not performed. We think that the dynamics of obligations should
be imposed by the designers in their specifications. For example, we can say that,
if an obligation is not fulfilled, then we will keep it, with the following formula:
O(a) --t [a]O(a). This formula says that, if we are in a state w where executing an
action a is obliged (in the sense of definition 10), then for any transition w ..'.'..+ w' with
e (j. I(a) we have that w', MI= O(a). In other words, we keep the obligation until we
fulfil it.

49

PhD Thesis, P.F.Castro McMaster-Computing & Software

Another possibility is to say that an obligation to do another action arises (i.e., a
contrary to duty obligation) as follows: O(a) -t [a]O(,B). This formula says that, if
we are in a state w where the action a is obliged (in the sense of definition 10), then
for any transition w ~ w' withe (j. I(a), we have that w', MI= 0(,8). That is, when
an obligation is not fulfilled, another obligation arises.

The important point here is that these dynamics depend on the scenario to be
formalized. In section 3.5 we introduce a temporal extension of the logic. Using
the temporal operators, we can define temporal notions of obligation, for example:
A(O(a) U cp), which says that we are obliged to perform the action a until cp be­
comes true. Several deontic temporal notions can also be developed, but we do not
investigate this topic in this thesis.

A comment may be useful about the empty action (0); it is an impossible action.
Then, why predicate about whether it is permitted or not? In our logic we have
P(0) and •Pw(0) (the latter coincides with [Mey88]). From the common sense point
of view, this discussion is immaterial; thus, we choose to allow impossible actions
since it gives us completeness of our logic. Note that in our semantics both P(0) and
•Pw(0) are vacuously true.

3.2 Related Logics.

Several variants of Modal Action Logic with boolean operators (with and without de­
ontic predicates) can be found in the literature. On the one hand, the Boolean Modal
Logic introduced by Gargov and Passy in [GP90] does not have deontic operators, and
the complement used in their logic is an absolute one; and, as remarked in previous
chapters, this is undesirable (in the context of computing systems) because unreach­
able worlds become reachable using this operator. Note that the complement defined
in this chapter is a relative one; that is, for the complement of an action in the scope
of a modality we only take into account the enabled transitions in the actual world.
Broersen (see [Bro03]) proposes some modifications to the logic of Gargov and Passy,
and he presents several variants of relative complement; however, no axiomatic sys­
tems for these variants are presented there. Another point to note is that, as proved
by Broersen in his thesis, boolean modal logics with relative complement and an in­
finite number of actions are not compact. The logic presented here is compact (see
the next section); this is because having a finite set of actions allows us to obtain an
atomic algebra, which can be strongly related to the semantics of the logic (see the
completeness proof below). Here it is important to note that the semantics of the
action operators is given by means of an algebra of events, in contrast with the cited
works where the action operators are interpreted as relational operations. Having a

50

PhD Thesis, P.F.Castro McMaster-Computing & Software

finite set of actions has other meta theoretical implications, perhaps the most impor­
tant is that structurality is lost, i.e., change of notation may affect formula validity
(see [GB92] and [FS87]), although, perhaps, some weak versions of structurality may
be satisfied by this logic (e.g., the weak structurality defined in [FM93]); we come
back to these issues in chapter 7 and retrieve the situation.

Furthermore, the deontic part of the logic also has novel features, and (as explained
in the introduction) there exists a strong relationship between the two versions of the
permission operator, which is expressed by the axioms All and A12 (see below), and
this relationship is important when proving the completeness of the system. More­
over, using the two versions of permission, we define the obligation predicate (as
explained above). It is important to remark that an important difference between
the logic presented here and dynamic deontic logics ([Mey88] and [Bro03]) is that the
deontic operators are independent of modalities. We follow the philosophy introduced
in [KM85] in the sense that the prescription and description of systems must be sep­
arated concepts. Meyer defines permission using modalities (e.g., Pw(a) = (a)-w, for
some violation constant v), but this strong relationship is often not desirable in fault­
tolerance; for example, violations not only arise from execution of forbidden actions,
but they could also be carried forward by allowed actions. (Here, it is important to
note the distinction between allowed actions and recovery actions.) Similar arguments
are given by Sergot in [SC06], where the deontic component of the language nC+ is
presented. In this language, there exists a weak relationship between violations and
allowed (or forbidden) transitions; only the so-called Green-Green-Green constraint
(or GGG for short) is adhered to. In Sergot's words: from a green state using a green
transition we obtain a green state. We have not included violation constants in the
logic. In fault-tolerance (and in other contexts), a different set of violations, with
diverse structure, arise in each scenario, and, therefore, which violations exist and
how they occur must be defined in each specification by the designers. In chapter 7
we extend the logic presented above with other constructs which are aimed at facili­
tating the specification of fault-tolerant software. Violation constants are included in
the language; however, the independence between modalities and deontic predicates
is preserved. On the other hand, the GGG constraint can be introduced in the logic
as a parameterized (language dependent) logical axiom, i.e., an axiom which must be
instantiated for the extra-logical language of each specification (similar to the locality
axiom [FM92]). We deal with this in chapter 7, but we note that the characteristics
of the logic make it possible to use it to reason about transition systems described
with the language nC+.

Finally, the temporal extension of the logic presented in section 3.5 has some
similarities to the logic presented in [DK97] (where a temporal extension of dynamic
deontic logic is described), but note that there are two important differences: first,
the logic described there is an ought-to-be logic, i.e., the deontic operators are used

51

PhD Thesis, P.F.Castro McMaster-Computing & Software

on predicates (in contrast, our logic is an ought-to-do logic, i.e., we use the deontic
operators to prescribe actions). Second, the temporal logic described in [DK97] is
linear and here we introduce a branching time logic (see [Eme90]).

3.3 A Deductive System

In this section we present a (Hilbert style) deductive system; this is a normal modal
system (in the sense that the K-axiom can be deduced from it) and the axioms for the
box modalities are similar to those given in [GP90] and [HKTOO]. Given a language L,
we say that f-L <.p when <.pis a theorem of the following axiomatic system (see [BRVOl]
for the formal definition). Note that we index the deduction with a language since
the axiomatic system presented below is dependent on the language used. We follow
[1877] for the definition of the relationship f-L ~ p(<I>) x <I>, i.e., r f-L <.p if and only
if there exists a sequence of formulae <.po, ••• , <.fJn such that <.fJn = <.p and for each <{Ji

(i < n) either <.fJi Er, f-L i.fJi, or there exists <.fJk and <{Jj (where k,j < i) such that <fJi

is derivable from <{Jj and <.fJk using Modus Ponens. Of course, 0 f-L <.p is equivalent to
f-L <.p. Note that with this definition of deducibility, we can only apply the deduction
rule GN (see below) to theorems (but we cannot use this rule with assumptions). This
definition of deduction retains the deduction (meta) theorem, that is: f LJ { 'ljJ} f-L <.p if
and only if r f-L 'ljJ -t <.p, see [1877] for details. However, we need another version of
deduction (which can be thought of as being a global version of deduction) in which
we extend the axiomatic system with additional axioms; we say that f-~ <.p if we have
f-L <.p when we add the formulae in S as axioms in the axiomatic system. Note that
in this case we can apply the rule GN to the formulae in the set S.

An important characteristic of our set of axioms (which, to the author's knowledge,
is not shared with previous work) is that it establishes a deep connection between
the weak version of permission and the strong version of it. Actually, one of these
axioms can be seen as a kind of "compactness" property that our models satisfy; this
property is implied by the restrictions assumed on the two versions of permission.
This is a key fact exploited in the completeness proof. Before going into details, we
need to introduce the notions of canonical action terms and boolean algebra of action
terms. In the following we consider a fixed vocabulary:

This language induces the set .6. of boolean action terms (see definition 7); we denote
by <PsA some axiomatization of boolean algebras (note that there exist complete
axiomatizations, see [Sik69]). Then, the set b./<PsA is the quotient set of the boolean
action terms by =act (=act is the congruence defined over actions by the equality

52

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

predicate); the point is that, using this set, we can define the (atomic) boolean algebra
(f:./iPsA, Uo, no, -0 1 [0]sA, [U]sA) as follows:

• -o[a]sA = [a]sA·

• 	[a]sA Uo [,B]sA = [au ,B]sA·

• 	 [a]BA no [,B]BA = [an fJ]BA·

It is straightforward to prove that this is a boolean algebra. Furthermore, since the
terms in !:::. are generated by a finite set /:::.0 of primitive actions, the quotient boolean
algebra is finite, and therefore atomic. We denote by at(t:./<PsA) (or at(!::.) when no
confusion arises) the set of atoms of the quotient boolean algebra of terms. Note also
that we can define ~O in the usual way.

At this point we are ready to present our axiomatic system.

Definition 11 (Axioms for DPL). Given a vocabulary (<P0 , /:::.0), where /:::.0 = {a1 , ... , an},
the axiomatic system is composed of the following axioms:

1. 	 The set of propositional tautologies.

2. 	 A set of axioms for boolean algebras for action terms (a complete one), including
standard axioms for equality.

3. 	 The following set of axioms (note that the following are axiom schemas, i.e., the
variables a, a', ,8 and 'Y can be replaced by any action term; and the variables c.p
and 'I/; can be replaced by any formula}:

Al. [0]c.p

A2. (a)c.p /\ [a]'I/; --+ (a) (c.p /\'I/;)

A3. [a U a']c.p ~ [a]c.p /\ [a']c.p

A4. [a]c.p --+ [an a']c.p

A5. P(0)

A6. P(a U ,8) ~ P(a) /\ P(,8)

A 7. P(a) V P(,8) --+ P(a n ,8)

AB. •Pw(0)

A9. Pw(a U ,8) ~ Pw(a) V Pw(,8)

AlO. Pw(a n ,8) --+ Pw(a) /\ Pw(,8)

53

PhD Thesis, P.F.Castro McMaster-Computing & Software

AU. P(a) A a #act 0 ~ Pw(a)

Al2. Pw('y) ~ P('y), where 'YE At(~o)

Al3. O(a) ~ P(a) A •Pw(a)

Al4. [a]cp ~ •(a)•cp

Al5. (a1 U · · · U an) =act U

Al6. (/3) (a =act a') ~ a =act a'

Al7. ('Y)cp ~ ["f]cp, where 'YE At(~o)

Subs. cp[a] A (a =act a')~ cp[a/a']

and the following deduction rules:

MP if f- cp and f- cp ~ 'l/J, then f- 'ljJ

GN if f- cp, then f- [a]cp

D

Some explanation is needed for the axioms. Al formalizes the nature of an im­
possible action: after an impossible action everything becomes possible. A2 is a basic
axiom for dynamic logics. A3 tells us that if something is true after the execution of
a non-deterministic choice between two actions, then it has to be true after the execu­
tion of each one of these actions. A4 says that parallel execution of actions preserves
properties; perhaps one might think of some scenario where this is not true, but this
happens when we execute two actions inconsistent with each other, and this is just
an impossible action in our framework. A5, A6 and A 7 are similar axioms for strong
permission, and A8, A9 and AlO are the duals for weak permission. Note that A5
says that the impossible action is strongly permitted in every context, but A8 says
that it is not weakly permitted. So there is no context which allows its execution.
It is in this sense that the impossible action can never be executed. The important
point is to establish a relationship between the two versions of permission and ax­
iom Al2 expresses an intuitive connection between strong and weak permission: if
an action which can only be executed in one possible context is weakly allowed, then
it is strongly allowed. This axiom implies a kind of compactness property of weak
and strong permission: if in every context an action a is weakly permitted, then a is
strongly permitted (see property T6 below).

Note that the (schema) axiom Subs uses substitution on formulae: the notation
cp[a] means that the formula, which the meta variable cp denotes, has an occurrence of

54

PhD Thesis, P.F.Castro McMaster-Computing & Software

the boolean term, which the meta variable a denotes, and we write cp[a/ a'] to mean
that the term a is replaced in some of its occurrences by the boolean term a'.

Finally, axiom A15 says that all the possible actions are covered by the choice
between all the primitive actions of .6.0 . On the other hand, A16 is needed to express
that modalities do not affect equations (note that the formula a =act (3-+ [1]a =act

(3 can be proven using the properties of equality and axiom Subs). Axiom Al7
formalizes the requirement that the transitions must be deterministic with respect to
events. (It is important to stress that the action r in this formula denotes an atom in
the boolean atomic term algebra, which implies that the interpretation of this action
term can only have at most one event.)

3.4 Soundness and Completeness

Two standard requirements for propositional logics are the soundness and complete­
ness properties; we shall show that the given axiomatic system has both properties.
These two theorems give us enough confidence about the adequacy of the basic sys­
tem, whose axioms will remain in future versions.

In [GP90] and [Bro03], two different complete, and sound, systems are given for
the modal part of the logic (that is, action terms and box modality), but both systems
lack deontic concepts, and the complement described in those works is the absolute
one. As explained above, the one described here is a kind of relative complement.

Theorem 1 (soundness). The axiomatic system defined in definition 11 is sound with
respect to the models defined in definition 9, that is:

rL cp ::::} FL cp.

Proof. We have to prove that each axiom is valid, and that the deduction rules

preserve validity. Axioms A1-A2 and the deduction rules MP and GN are very

standard and their soundness proofs can be found in the literature. On the other

hand, it is clear that boolean algebra axioms are valid, since the interpretation of

action operators are given by means of set operators. We prove the validity of axioms

A3-A17 and that the deduction rule Subs preserves validity. A3: Straightforward

by first order properties. See axiom 7's proof.

A4: Direct using subset properties and "for all" properties.

A 5: Straightforward by definition of I= and vacuous domain.

A6: Suppose w, WI= P(aLJ(3), for arbitrary model M and world w. This means that:

Ve E I(a LJ (3) : P(w, e). Using first order logic we get: (Ve E I(a) : P(w, e)) A (Ve E

I(a) : P(w, e)), and this implies: w, MI= P(a) A P((3).

55

PhD Thesis, P.F.Castro McMaster-Computing & Software

A 7: Similar reasoning as before, but using the fact that: I(o: n {3) = I(o:) n I({3).

AB: For every model M and world w, by first-order reasoning we have: -{3e E 1(0) :

P(w, e)), and this means: t= •Pw(0).

A9: Suppose w,M t= Pw(o:LJ{3); by definition we obtain: :le E 'I(o:LJ{3): P(w,e) and

then using the definition of I and properties of :J we get: w, M t= Pw (o:) V P w ({3).

A 10: Similar to Axiom 10.

A11: Suppose that w, M t= P(o:) Ao: =I 0; this means: Ve E J(o:) : e E Pw and

I(o:) # 0; by basic first order reasoning we get: :le E J(o:) : P(w, e), but this implies

w, Mt= Pw(o:).

A12: Note that if 'Y is an atom of the term boolean algebra then, by property 1.2,

I('Y) = { e} for some e E £. or I('Y) = 0; in either case we have that w, MI= Pw('Y) :::}

w, MI= P('Y), for every state w and M.

A13, A14, A15: Straightforward.

A16: The result follows from the fact that action interpretations are fixed, and they

do not depend on states.

A17: If'Y is an atom of the term boolean algebra, then, by property 1.2, I('Y) = {e}

for some e E £. or I('Y) = 0; if we have w, MI= ('Y)<p, for some world w of a structure

M, then for some world w' and event e of M we have w ~ w' and w', M I= <p,

but as explained above we have I('Y) = { e}, and therefore, since the relation R is

deterministic, we have for every e E 'I('Y) and world w' such that w ~ w' we have

w', M' I= <p. That is: w, M I= ['Y]<p.

Subs: The result is straightforward from the fact that if we have o: =act o:' then

I(o:) = I(o:'); here using the Leibniz equality property deduce that, if I= 1.p[o:], then

I= 1.p[o:']. •

Axiom A2 and rule GN imply that we have a normal modal logic [Che99]. A
number of useful standard modal logic properties can be found in [Che99]; we use
some of these standard modal properties in proofs, and we will use ML to indicate
this.

The following theorems of the axiomatic system defined are used in the complete­
ness proof; actually, in [GP90], theorem T3 is used for axiomatizing the modal part
of boolean logic, and it should be enough for the modal part of our logic. Because
we are taking an algebraic view of the logic, in our axiomatic system we focused on
operational properties.

Theorem 2. The following are theorems of DPL:

Tl. P(o:) Ao:'~ o:---+ P(o:').

56

PhD Thesis, P.F.Castro McMaster-Computing & Software

T3. [a}p /\(a' ~a) -7 [a']<p.

T4. [a]<p /\ [a']?/J -7 [a U a'](<p V ?/J).

T5. [a]<p /\ [a']?/J -7 [a n a'] (<p /\ ?jJ).

T6. /\ (Pw(a) V (a =act 0))) -7 P(a').

T7. a =act a' -7 [,6]a =act a'.

Proof.
Tl:

1. P(a) P(a n a')

2. a' =act an a'/\ P(a) P(a n a')

3. a' =act an a'/\ P(a n a') P(a')

4. a' =act an a'/\ P(a) P(a')

T2: Similar to Tl but using axiom A9.
T3: Similar to Tl but using axiom A4.
T4:

1. [a]cp [a](cp V 1/J)

2. [a']1/J [a'](cp V 1/J)

3. [a]cp /\ [a']1/I [a](cp V 1/J) /\ [a'](cp V 1/1)

4. [a](cp V 1/1) /\ [a'](cp V 1/J) [a U a'](cp V 1/1)

5. [a]cp /\ [a']1/I [a U a'](cp V 1/1)

T5:

1. [a]cp [an a']cp

2. [a']1/J [an a']1/J

3. [a]cp /\ [a']1/J [an a']cp /\ [an a']1/J

4. [a]cp /\ [a']1/J [an a'](cp /\ 1/J)

Axiom A7
PL, 1

Subs f3 PL
PL, 2, 3

ML
ML

PL,1 ,2
ML, A3, 3

PL, 3, 4

A4

A4

PL, 1, 2

ML, 3

T6: We prove ((Pw(a) V (a =act 0))) 1--L P(a) and the result follows /\
[a]BA EA/4> BAAa!;;a'

by the deduction theorem.

1. (/\ (Pw(a) V (a =act 0))) Hyp.

[a]sAAa!:;;a'

2. a =act 0 P(0) PL, A5

57

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

3. a =act 0---+ P(a) 	 PL, Subs, 2

4. a =act 'Y1 LJ • • • LJ 'Yn 	 BA
5. (Pw('Y1) V'Yl =act 0) /\ · · · /\ (Pw('°Yn) V 'Yn =act 0) PL, 1
6. P('Y1)/\···/\P('Yn) 	 PL, 5, A12
7. P('Y1 LJ • • • LJ 'Yn) 	 PL, A 6
8. P(a') 	 PL, Subs, 7, 4

In the above proof we use the word BA to indicate that reasoning coming from
Boolean Algebra is used in that step of the proof (note that the boolean terms 'Yi, ... , "fn

used in step 4 are the boolean atom terms which precede a in the algebra of terms).
T7:

1. a =act a 	 Ref. of =act

2. [,B]a =act a 	 ML, 1

3. a =act a'---+ [,B]a =act a' PL, Subs, 2

•
Now, we can introduce the following (canonical) model; note that we use the atoms

of the boolean term algebra (modulo boolean equations) as labels in the transitions.
In other words, each boolean atom (of the action terms) can be mapped to one (and
only one) event in the model.

Definition 12 (canonical model). Given an equational (boolean) theory r' built from
~o, we define C = (£c, We, Re, Pc,'Ic) as follows:

• 	£c ~ at(~/r').

• 	We~ {r I r is a maximal consistent set of formulae and r' ~ r}.

•Re~ LJ{Ra,w,w' Iw,w' E Wc/\a E ~/\(V<.p E <I>:[a]<.p E w:::;. <.p E w')}, where

Ra,w,w' ~ {w [a~A w' IV[a']BA E 'Ic(a)}.

• 	Pc~ LJ{Pw,a I w E We/\ P(a) E w}, where: Pw,a ~ {(w, [a']BA) I [a']BA E
'Ic(a)}.

• 	'Ic(ai) ~ {[a']BA E £c lf-.p8 A a'~ ai}·

• 	Ic(pi) ~ {w E We IPi E w}.

58

0

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

We use this model to show the completeness of the logic; the usual way to do this
is to prove an equivalent result: each consistent set of formulae has a model. First,
we have to establish a number of useful lemmas:

Lemma 1. Va ED., V[a']BA E Ic(a) : 1-~BA a'~ a
Proof. The proof is by induction on the term a.
Base Case:

• 	 If a = 0, then by definition Ic(0) = 0 and the statement is vacuously true. Note
that we use the symbol 0 in two different ways: the first one as an action term,
and the second one as the empty set.

• 	 If a = ai, then the result is straightforward by definition of Ic.

Inductive Case:

• 	 case (a =a' U a"): let ['Y]BA E Ic(a' U a") be an event; then, by definition 12,
we have [!]BA E Ic(a') U Ic(a"); by the hypothesis we obtain: 1-~BA / ~ a'
or 1-~BA 'Y ~ a", and therefore, by properties of boolean algebras we obtain:
1-~BA 'Y ~a' U a".

• 	 case (a= a' n a"): similar argument as in the last step.

• 	 case (a= a'): suppose [!]BAE &-Ic(a), thenJLBA 'Y ~a; since 'Y is an atom,
by boolean algebra properties we get: 1-~BA / ~a.

•
Now, we can prove a fundamental lemma.

Lemma 2 (truth lemma). w,C I= <p ¢::> <p E w.

Proof. The proof is by induction on <p.

Base Case: Using the definition we get

w, CI= Pi¢::> w E Ic(Pi) ¢::>Pi E w.

Inductive Case: We have several cases (the standard logical operators are handled as

usual):

CASE I. We have to prove w, CI= [a]<p ¢::> [a]<p E w.

::::}) Suppose w, C I= [a]<p; we have two possibilities: w, C I= a =act 0 or w, C I= a #-act 0.

In the former case we have (by axiom 2) [a]<p E w. If w, C F= a #-act 0, then (by

definition of Ic) we have Ic #- 0. Now, by hypothesis:

59

PhD Thesis, P.F.Castro McMaster-Computing & Software

V["Y]BA E .Te(a), Vw' E We: w ['Y~A w' =? w',C I= <p
= [inductive hypothesis}

V["Y]BA E .Te(a), Vw' E We: w b~A w' =? <p E w' (*)

On the other hand, suppose [a]<p tj. w, then (recalling properties of maximal consistent
sets) (a)•<p E w. Now, consider the set: r = { •<p} U { 'ljJ I [a]'!/J E w }. We claim that
this set is consistent, if not:

by definition of contradiction. But using this we can deduce:

(a)•<p /\ [a]'!/J1 /\ ... /\ [a]'!/Jn E w
::::} [axiom 3 and maximal consistent set properties]
(a)(•<p /\ '!/J1 /\ ... /\'I/Jn) E W

¢=> (hypothesis}
(a)l_ E w

[ML}
1- E w I

Then r has to be consistent, and therefore it has a maximal consistent extension I'*
(by Lindenbaum's lemma). But by definition of Re:

V['/']BA E .Te(a): w b~A I'*/\ I'* I= •<p

which contradicts (*) (recall that Ie(a) i= 0) and therefore [a]<p E w.

¢::) Suppose [a]<p E w; we have to prove w I= [a]<p. Suppose that w ~ [a]<p, then this

means:

3["Y]BA E .Te(a), 3w' E We: w b~A w' /\ w', C ~ <p

which is equivalent to (by ind.hyp.):

3["Y]BA E .Te(a), 3w' E We: w b~A w' /\ <p tj. w' (**)

But, by definition of Re, this means:

3w' E We: (V'!/J: ["Y]'!/J E w =? 'l/J E w') /\ <p tj. w'

::::} {logic}

•(["Y]<p) E w
¢=> [max.cons.set properties]
["Y]<p ti. w (***)

60

PhD Thesis, P.F.Castro McMaster-Computing & Software

But we know by lemma 1 that"(~ a. From here and using the hypothesis ([a]cp E w)
and using theorem T3, we obtain: ["f]cp E w, and therefore: w, CI= [a]cp.

CASE II. We have to prove: w, CI= P(a) {::} P(a) E w.
=>)Suppose w,C I= P(a), this means:

'v'["(]BA E Ic(a) : Pc(w, ['Y]BA)·

Because of lemma 1, this implies (using definition of Pc) that either P(a) E w or
P(,B) E w where 1-<I>BA a ~ ,B, since there is no other way to introduce this relation
in the canonical model. In both cases the result follows, in the first trivially, in the
second one by using T 1.
¢::) Suppose that P(a) E w, by definition of Pc this means:

'v'["(]BA E Ic(a) : Pc(w, ['Y]BA)·

But using the definition of I= we get: w, C I= P(a).

CASE /II. w,C I= Pw(a) {::} Pw(a) E w.

For the case a =act 0 the equivalence is trivial; let us prove the other case {a =!=act 0}.

=?) Suppose w, C I= Pw (a), this means:

:l["f]BA E Ic(a) : Pc(w, ['Y]BA)·

By definition of Pc this only happens if for some ,B: "(~ ,B and P(,B) E w. Then

by theorem T 1 this implies P('Y) E w, and the refore, using axiom A 11, we get:

Pw('Y) E w; from this, by theorem T2, we obtain Pw(a) E w.

¢::) Suppose Pw(a) E w. We know by properties of atomic boolean algebras that:

[a]BA = ['Y1]BA Uo ... Uo ['Yn]BA for some ['Y1]BA, ... , ['Yn]BA atoms in 6./'PBA

{::} {def of 6./'PBA]

[a]BA = ['Y1 u ... u 'Yn]BA·

But this implies by deduction rule BA that Pw('Y1 U ... U 'Yn) E w. By axiom A9, this
implies:

Pw('Y1) V ... V Pw('Yn) E W.

Let 'Yi be some of these action terms such that Pw('Yi) E w; since 'Yi E at(D.), using
MP and A12 we get P('Yi) E w. By definition of Pc, this implies that:

:J['Y]BA E Ic(a) : Pc(['Y]BA, w).

and this is just the definition of w, C I= Pw (a). •
61

PhD Thesis, P.F.Castro McMaster-Computing & Software

Note that we have to prove that the defined interpretation Ic holds with the
restrictions I.1 and I.2 (I.3. is satisfied by definition). Also we must prove that
the transitions in the canonical model are deterministic with respect to events. The
following theorems do this.

Theorem 3. For any w, w', w" E We we have that, if w ~ w' and w ~ w" are in

Re, then w' = w".

Proof. We know that e = ['Y] for some 'YE At(~/r'); now by axiom A17 we have

that w, C f: ('Y)c.p --+ ['Y]<p, this implies that both w and w" satisfy the same predicates,

and therefore w' = w". •

Theorem 4. The function Ic satisfies conditions 1.1 and 1.2.

Proof. First note that all the atoms of the boolean algebra ~/<PBA {the Lindenbaum­

Tarski algebra {Sik69j) have the following form {or are equivalent to it):

where for all ai E ~o: ai = a] or ai = a], for some j. That is, the atoms in the
Lindenbaum algebra can be represented by terms which are composed of "intersections"
of atomic actions or their negations. It is for this reason that the atoms of the
Lindenbaum algebra are suitable for representing labels in the model: each of them
point out which primitive actions are executed and which are not.

That Ic satisfies conditions 1.1 and 1.2 is implied by the underlying structure of
the generated Lindenbaum Algebra:
1.1: If ['Y] E Ic(ai) - LJ#i(Ic(aJ)), then 'Y =act ai n (n#i(aJ)), where n is used to
denote the application of n to a finite sequence of boolean terms.
1.2: We have to show that, if ['Y] E I(ai) n I(aJ), for some i #- j, then:

(3.1)

In this case it is easy to see that:

'Y =act a~ n ... n a;, n ai n ... n a~, (3.2)

where the af are the primitive actions which have the equivalence class ['Y] in their
interpretation, and the a; are the rest. Since the right term in equation 3. 2 is an
atom, every other ['Y'] that satisfies condition 3.1 also satisfies: ['Y'] = ['Y]. The theorem
follows. •

We have proved that the canonical model has the correct behaviour; the com­
pleteness follows:

62

PhD Thesis, P.F.Castro McMaster-Computing & Software

Corollary 1. For every consistent set r of DPL, there is a model which satisfies it.
Proof. If r is consistent, then there exists a maximal extension of it which is a
maximal consistent set, and therefore this set is a world w in the canonical model.
By the definition of canonical model we know w, C F r; this completes the proof. •

From it we obtain compactness:

Corollary 2. If every finite subset of a set r of formulae is satisfiable, then r is
satisfiable.

Decidability can be proved using a selection argument.

Theorem 5 (decidability). Satisfiability is decidable in DPL.

Proof. Suppose that for a formula r.p: w, MF r.p, for some model M and world w.

Let d(r.p) = m be the degree of r.p (that is, the maximal depth of nested modalities),

and let n be the number of primitive actions in the language.

First, note that for every world in M we have at most L:~=l (7) = 2n - 1 possible
relationships with other worlds (that is, the maximum number of events in the model).
Let M' be the model obtained from M by ruling out those worlds not reachable from
win m "steps". Clearly, M',w F r.p, and M' has at most m * (2n - 1) worlds, where
m = d(r.p) and n is the number of primitive actions.

This gives us a decidability method: given r.p, build all the models up to size m *
(2n - 1) and check if r.p is true in every one of them. Obviously, this method is
exponential in complexity. •

The following theorems of the axiomatic system give us the first flavor of it.

Theorem 6. The following sentences are theorems of DPL.

TS. a =act 0 +-t P(a) A -iPw(a).

T9. O(a) A O(a) +-t U =act 0.

TlO. O(a) A 0(/3) -t O(a n /3).

TU. P(U) -t P(a) for every action a.

Tl2. Pw(a) -t Pw(U) for every action a.

Tl3. O(U) +-t P(U).

63

PhD Thesis, P.F.Castro McMaster-Computing & Software

T14. 0(0) ~ •Pw(U).

T15. O(a) ~ P(a).

Proof. We prove property T8 as an example, the other proofs are similar. Note that
the direction ~ is straightforward by axioms A5 and A8 and using Subs. For the
other direction we prove P(a) /\ •Pw(a) f-L a =act 0 and then we use the deduction
theorem:

1. P(a) /\ •Pw(a) Hyp.

2. •P(a) Va =act 0V Pw(a) PL, A11

3. a =act 0 PL, 1, 2

•
Some intuition about these properties is needed to understand the essence of the

logic. Theorem TB says that only impossible actions are both strongly allowed and
forbidden. T9 is related with this property, it says that if we are obliged to perform
contradictory actions, then every action is impossible. The equation 0 =act U implies
that we have a degenerate boolean algebra. Though we have the possibility of having
the degenerate boolean algebra in our semantics, usually this can be considered as
indicating that our action algebra is inconsistent. Property T14 is strange at first
sight; it says that it is obligated to do an impossible action if no action is allowed.
Actually, it only says that in this case we are obliged to do nothing. T15 says that,
if an action is obligated, then it is permitted.

Note that we do not have what is sometimes called Kant's law [MWD94], that is:
O(a) ~ (a)T. Informally, this can be thought of as saying that ought implies can.
We do not believe that this is the case in computing systems. Let us illustrate this
with a simple example: it is obligatory for an automatic bank teller to print a receipt
when it gives money to a customer; however, if there is no more paper, the receipt
cannot be printed. This scenario can be formalized as follows. Consider a vocabulary
with actions: wdr (it represents the action of withdraw money), pr (it is the action of
printing a receipt) and msg (an error message is displayed). We have a propositional
variable npaper, which is true when there is no paper in the machine. Consider the
following formulae:

• Done(wdr) ~ O(pr)

• •npaper ~ [pr]..l

64

PhD Thesis, P.F.Castro McMaster-Computing & Software

The first formula says that, if a customer withdrew money, then the machine is obliged
to print a receipt. The second formula says that, if there is no paper, then the machine
cannot print a receipt. A possible model of this set of sentences is depicted in figure
3.3. In this model, we have two worlds: w, w'. In the two worlds, the predicate

w msgnpr w' - - - - - ... npaper npaper

Figure 3.3: Counterexample for Kant's law

npaper is true; the dashed arrow indicates an action which is not allowed (to not
print a receipt). If we call this model M, we have that w, M ~ O(pr) -t (pr)T, i.e.,
we are obliged to print a receipt but this action is not possible in this state.

In this respect, our definition of obligation differs from the one given in [Mey88].
In that framework Kant's law is a theorem of the logic. Similarly, we have neither
Pw(a) -t (a)T nor P(a) -t (a)T.

3.5 Spicing up DPL with Time

We have defined the basic logic, but if we want a good logic for specifying computing
systems, the dimension of time is needed. Several types of temporal logics have been
used by computer scientists in recent decades. In this section we shall introduce a
Branching Time Logic; this logic is very similar to CTL (see [EH82]), that is, we allow
temporal predicates combined with quantifiers on paths. Although, CTL* logics are
more expressive, they are much harder to axiomatize, as is shown in [ReyOl]. We
leave for further work a CTL* version of the logic presented here.

On the other hand, the temporalization shown below is an Okhamist logic since
formulae are evaluated with respect to a history and an instant, that is, we evaluate
predicates using fixed traces. This semantics allows us to introduce the interesting
predicate Done(), which can be used to predicate on the immediate past; this operator
is mentioned in [Mey88] and [KQM91], but here we offer an axiomatization with
some new axioms, and we show that mixing it with temporal notions allows us to

65

PhD Thesis, P.F.Castro McMaster-Computing & Software

express interesting properties. Other past operators are not described here, though
the extension of the logic to support these is immediate. (In chapter 7 we introduce
a variation of the Done() operator which is useful when we consider the notion of
component or modular piece of specification.)

First, we will present some changes to the definitions given earlier to be able to
introduce time in the language. Let us define the temporal formulae.

Definition 13 (temporal formulae). Given a DPL vocabulary (<I> 0 , ~0), the set of
temporal deontic formulae (<I>r) is defined as follows:

• <I> ~ <I>r. That is, the formulae defined in definition 8 are temporal formulae.

• if a E ~' then Done(a) E <I>r.

• if cp,'lj; E <I>r and a E ~'then (cp-+ 'lf;) E <I>r, [o:]cp E <I>r and •cp E <I>r.

• ifcp,'lj; E <I>r, then AGcp E <I>r, ANcp E <I>r, A(cpU 'lf;) E <I>r and E(cpU 'lf;) E <I>r.

The temporal operators are the classic ones in CTL logics; intuitively, the predi­
cate ANcp means in all possible executions cp is true at the next moment, AGcp means
in all executions cp is always true, A(cp1 U cp2) means for every possible execution 'P1

is true until cp2 becomes true and E(cp1 U cp2) says there exists some execution where
cp1 is true until cp2 becomes true. As usual, using these operators we can define their
dual versions:

def ()• AFcp ~ A T U cp .

def G• EFcp ~ ·A •cp.

• ENcp ~ ·AN•cp.

In order to define the semantics of the temporal version of the logic, we need some
changes to the structures considered, as well as needing to introduce the definition of
traces. Firstly, we define the notion of initial states, then all the possibles traces of
execution will be defined with respect to an initial state.

Definition 14 (temporal model). Given a language L = (<I>0 , ~o), M = (W, R,£,I,
P, w) is called a temporal structure, where:

• (W, R, £,I, P) is a structure as defined in definition 9.

66

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

• 	 w E W is the initial state.

D

Using the initial state we can consider all the traces (or paths) which start in this
state.

Definition 15 (traces). Given a model M = (W, n,&,I, P,w) a trace is a (labeled}
eo ei e2 h f. · e; -n d '7'1. Jpath s0 --t s 1 --t s 2 --t ... , w ere Jor every i: si --t si+l E '"' an so = w . .L ne set o

all traces with initial state w is L:(w). D

Note that some paths could be finite; we use maximal traces (i.e., those traces
which cannot be extended) to give semantics to the temporal operators.

We need some additional notation; given an infinite trace (or path) 7r = s0 ~
ei e2 d b i e; e;+i h b th f t' ts 1 --t s 2 --t ... , we enote y 7r = Si --t si+l --t ... t e su pa o 7r star mg a

position i. The notation 'Tri = si is used to denote the i-th element in the path, and
we write 7r[i ..j] (where i ::; j) for the subpath si ~ ... ~ Sj+i· Finally, given a finite

1 	 1 1path 7r = s~ 1 ~ Sn+i, we say 7r :::5 7r if 7r is an initial subpath of 7r, that is:
Si = s~ and ei = e~ for 0 ::; i ::; n, and we denote by -< the strict version of :::5.

Definition 16 (maximal traces). Given a structure M = (W,n,&,I,P,w), a trace
7r is called maximal if and only if there is no other trace 7r

1 such that: 7r -< 7r
1 The set •

of maximal traces is denoted by L:* (w). Note that all the infinite traces are maximal.
We denote by #Jr the length of the trace 7r; if it is infinite we just use an abuse of
notation and say #Jr= oo. D

The relation l=fJn is defined using paths and structures. An interesting point to
note is that we also use a given instant to evaluate formulae. It is needed here since
the predicate Done(-) allows us to predicate about the immediate past. Note that,
in the following definition, we use the relation I= defined in definition 10.

Definition 17 (l=vn). Given a model M = (W,n,&,I,P,w), a trace 7r = s0 ~
s1 ~ s2 ~ ... E I:* (w), we define the relation I=DTL as follows:

• 	 7r, i, M l=vn cp ~'Tri, (W, n, &,I, P) I= cp, if cp does not contain any temporal
predicates.

• 	 7r,i,M l=vrL •cp ~not 7r,i,M l=vrL cp.

67

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

• 	Jr, i, M l=DTL <p1 ~ <p2 ~ either not Jr, i, M l=DTL <p1 or Jr, i, M l=DTL <p2.

• 	Jr, i, M l=DTL Done(a)~ i > 0 and ei-1 E I(a).

. [def I I eb I e1 * 	 '] I ·f• 	 'Tr, i, M l=DTL a]<p ~ V7r = s0 ~ s 1 ~ ... E L: (w) such that 7r[O.. i -< 7r, •
e~ E I(a), then 7r1

, i + 1, M l=DTL <p.

• 	Jr, i, M l=DTL AN<p ~ if i = #Jr, then Jr, i, M I= <p. If i i= #Jr, then \:/Jr' E
L:*(w) : 7r[O.. i] -< 7r1

: Jr', i + 1, MI= <p.

• 	Jr, i, M l=DTL AG<p ~ if i = #Jr, then Jr, i, M I= <p. If i i= #Jr, then \:/Jr' E
1L:*(w): 7r[O ..i]-< 7r we have that Vi ~j ~#Jr': Jr',j,M I= <p.

• 	Jr, i, M l=DTL A(<p1 U <p2) ~ if i = #Jr, then Jr, i, M I= <p2. If i i= #Jr, then
V7r' E L:*(w) : 7r[O.. i] -< 7r

1 we have that :Ji ~ j ~ #Jr' : 7r
1 ,j,M I= <p2 and

Vi~ k ~ j: Jr',k,M I= <p.

• 	Jr, i, M l=DTL E(<p1 U <p2) ~ if i = #Jr, then Jr, i, M I= <p2. If i i= #Jr, then
37r' E L:*(w) : 7r[O.. i] -< 7r1 we have that :Ji ~ j ~ #Jr' : 7r

1,j,M I= <p2 and
Vi~ k ~ j: Jr',k,M I= <p1.

0

Note that, in this semantics, when we are at the end of a maximal (finite) trace
those predicates true in the last state are maintained through time.

We say that M I=DTL <p if 7r, i, M I=DTL <p for all paths 7r and instants i. And we say
l=DTL <p if <p holds for all models M. Note that we have, at least, two ways of defining
the notion of valid formula; one is saying that a formula is valid if and only if the
formula is true for every model, in any path in any position; we denote this by I= <p.
The other possibility is to say that a formula is valid if and only if it is true in every
model, at the beginning of every path, we denote this validity by I= A <p, the subindex
pointing to the fact that this is a kind of anchored interpretation, anchored at the
beginning of time (see [MP89]). In this chapter we use the non-anchored version of
satisfiability.

Next, we present an axiomatic system for the semantics just described; some
axioms are the classic ones for CTL and the others allow us to exploit the relationship
between modal and temporal operators.

Definition 18 (DTL Axioms). Given a vocabulary (<I> 0 , ~0), the axiomatic system is
composed of the (substitution instances of) the following axioms:

68

PhD Thesis, P.F.Castro McMaster-Computing & Software

• All the axioms given in definition 11.

TempAxl. (U)T -t (ANcp ~ [U]cp)

TempAx2. [U]..L -t (ANcp ~ cp)

TempAx3. AGcp ~ •E(T U ''P)

TempAx4. E(cp U 1/J) ~ 'ljJ V (cp /\ ENE(cp U 1/J))

TempAx5. A(cp U 1/J) ~ 'ljJ V (cp /\ ANA(cp U 1/J))

TempAx6. [a]Done(a)

TempAx7. [a]•Done(a)

TempAx8. •Done(0)

TempAx9. •Done(U) -t •Done(a)

and the following deduction rules:

• Rules given in definition 11.

TempRulel. if I- ·Done(U) -+ <p and I- <p -t ANcp, then I- <p

TempRule2. if I- <p, then I- AGcp

TempRule3. if I- <p -t (•1/J /\ ENcp)}, then I- <p -t •A(-0 U 'ljJ)

TempRule4. if I- <p -t (•1/J /\ AN (<p V •E(-0 U 'ljJ))), then I- <p -t •E(-0 U 'ljJ)

TempRule5. if I- •Done(U) -t AGcp, then I- <p

D

Some comments will be useful; note that the formula •Done(U) holds only at
the beginning of each trace, and therefore we can think of this as asserting that the
actual instant is the beginning of time. Axioms TempAxl and TempAx2 relate the
box modal operator with the temporal operators, reflecting the semantics introduced
above. On the other hand, TempAx3 - TempAx5 are classic axioms for CTL logic
(given in [EH82]). Axioms TempAx6-TempAx9 define the Done() operator, mainly
using the box modality. The first inference rule is a kind of induction rule, saying: if
something is true at the beginning of time, and it is preserved by every action, we can

69

PhD Thesis, P.F.Castro McMaster-Computing & Software

deduce that it holds everywhere. Thus it enables us to establish invariants. On the
other hand, TempRule5 implies that every instant is reachable from the beginning.
The other rules are standard for temporal logics.

We prove some useful theorems of this system. Note that, since the CTL system
is embedded in the axiomatic system given in definition 18, we can derive all the CTL
theorems; we only focus on the new ones.

Theorem 7. If f- -.Done(U) ---? <p and f- AN<p, then f- <p

Proof. Suppose: f- -.Done(U) ---? <p and f- ANcp, then:

1. ANcp Hyp.
2. cp--. ANcp PL, 1

Therefore using TempRule1 we get: f- cp. •
Corollary 3. If f- -.Done(U) ---? <p and f- <p---? [U]cp, then f- <p

Proof. We suppose f- -.Done(U) ---? <p and f- <p ---? [U]cp; then we prove that (U) T f­
<p ---? AN<p and [U]..l f- <p ---? AN<p, and therefore by the deduction theorem we get
f- <p ---? AN<p. Finally, using TempRule1 we get: f- cp.
Case 1: (U) T f- <p ---? ANcp

1. (U)T Assumption
2. ANcp ~ (U]cp PL, 1, TempAx2
3. cp---> ANcp PL, Hyp, 2

Case 2: [U]..l f- <p ---? ANcp

1. (U]_l_ Assumption
2. ANcp ~ cp TempAx1
3. cp--. ANcp PL, 2

•
Both theorem 7 and corollary 3 are two different formulations of the induction

principle TempRulel. The next theorem allows us to characterize deadlock: when
no action is enabled, we stay in this state forever. This property is established in
[Kro87] as an axiom.

Theorem 8. f- [U]..l /\ <p---? AN([U]..l /\ cp)
Proof.

1. (U]_l_--. (ANcp ~ cp) TempAx2

70

PhD Thesis, P.F.Castro McMaster-Computing & Software

2. [U]1- /\ <p---+ AN<p PL, 1

3. [U]1----+ ((AN[U]1-) ~ [U]1-) TempAx2
4. [U]1----+ AN[U]1- PL, 3
5. [U]1- /\ <p---+ (AN[U]1- /\ AN<p) PL, 2, 4
6. [U]1- /\ <p---+ AN([U]1- /\ <p) PL, CTL property

•

Now, we can prove some important properties of the Done() operator.

Theorem 9. The following are theorems of the axiomatic system defined above.

T16. Done(a) /\a~ a'~ Done(a')

Tl7. Done(a LJ (3) ~ Done(a) V Done(f3)

T18. Done(an (3) Done(a)/\ Done((3)+-t

T19. Done(a LJ (3) /\ Done(a) ~ Done(f3)

T20. [a]cp /\ [f3]Done(a) ~ [f3]cp

Proof.

T16 We use corollary 3 for proving this property (which can be thought of as an

induction).

Base Case:

1. ·Done(U)---+ (•Done(a) /\·Done(a')) PL f3 TempAx9
2. ·Done(U)---+ (•Done(a')---+ ·Done(a)) PL, 1
3. ·Done(U) ---+ (Done(a) ---+ Done(a')) PL, 2
4. ·Done(U) ---+(Done(a)/\ a~ a'---+ Done(a')) PL, 3

Ind. Case. Suppose: a ~ a'.

1. [a]Done(a) TempAx6
2. [a']Done(a') TempAx6
3. [a] Done(a)/\ [a'] Done(a')---+ [an a'](Done(a) /\Done(a')) TS
4. [an a'](Done(a) /\Done(a')) MP, 1, 2, 3
5. [a'] Done(a')/\ a~ a'---+ [a] Done(a') T3
6. a ~ a' Assumption
7. [a]Done(a') PL, 2, 5, 6

8. [a]Done(a')---+ [a](Done(a)---+ Done(a')) ML

71

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

9. 	 [a](Done(a)--+ Done(a')) MP, 7, 8
10. 	 [a]-, Done(a) TempAx7
11. 	 [a] (-iDone(a) V Done(a')) PL, 10
12. 	 [a](Done(a)--+ Done(a')) PL, 11
13. 	 [a](Done(a)--+ Done(a')) /\ [a](Done(a)--+ Done(a'))

--+ [au a](Done(a)--+ Done(a')) T4
14. 	 [au a](Done(a)--+ Done(a')) PL, 9, 12, 13
15. 	 [U](Done(a)--+ Done(a')) BA, 14
16. 	 (Done(a)--+ Done(a'))--+ [U](Done(a)--+ Done(a')) PL, 15
17. 	 (Done(a)/\ a' i;;; a--+ Done(a'))

--+ [U](Done(a) /\a' i;;; a--+ Done(a')) PL, 16

T17:: We use corollary 3:
Base Case:

1. -,Done(U) --+-,Done(a U /3) 	 TempAx9
2. -,Done(U)--+ ((-,Done(a) /\ -,Done(/3))--+ -,Done(a U /3)) PL, 1

3. -,Done(U) --+ (Done(a U /3)--+ Done(a) V Done(/3)) PL, 2

Ind.Case:

1. 	 [a U /3] Done(a U /3) TempAx6
2. 	 [a] Done(a) TempAx6
3. 	 [/3]Done(/3) TempAx6

4. 	 [a] Done(a)/\ [/3]Done(/3)--+ [a U /3](Done(a) V Done(/3)) T4
5. 	 [a U /3](Done(a) V Done(/3)) PL, 2, 3, 4
6. 	 [a U /3](Done(a) V Done(/3))

--+ [a U /3](Done(a U /3)--+ Done(a) V Done(/3)) ML

7. 	 [a U /3](Done(a U /3)--+ Done(a) V Done(/3)) MP, 5, 6
8. 	 [a U f3]-,Done(a U /3) TempAx7
9. 	 [an fiJ-,Done(a u /3) PL f3 BA, 8
10. 	 [an fiJ-,Done(au /3)

--+[an /3](-iDone(a) /\ -,Done(/3)--+ -,Done(a U /3)) ML
11. 	 [an /3](-iDone(a) /\ -,Done(/3) --+ -,Done(au /3)) MP, 9, 10
12. 	 [a U /3](Done(a U /3)--+ Done(a) V Done(/3)) ML f3 BA, 11
13. 	 [U](Done(a u /3) --+ Done(a) V Done(/3)) BA f3 A3, 12, 7

T18:--t):

1. Done(an /3) /\an /3 i;;; a--+ Done(a) T16
~ an{3i;;;a Def[:;;;
3. Done(an /3)--+ Done(a) PL, 1, 2

72

PhD Thesis, P.F.Castro McMaster-Computing & Software

4. Done(an {3) Aan {3 ~ {3---+ Done({3) T3
5. an {3 ~ {3 Def.~

6. Done(a n {3) ---+ Done({3) PL, 4, 5
7. Done(an {3)---+ Done(a) A Done({3) PL, 3, 6

t-): By induction:
Base Case:

1. •Done(U)---+ --,Done(o:) TempAx9
2. •Done(U)---+ (Done(a) A Done({3)---+ Done(an (3)) PL, 1

Ind. Case:

1. [a] Done(a) Aan {3 ~a---+ [an {3]Done(o:) T3
2. [o:]Done(o:) TempAx6
3. a n {3 ~ a Def. ~
4. [an {3]Done(o:) PL, 1, 2 ,3
5. [{3] Done({3) TempAx6
6. [{3]Done({3) Aan {3 ~ {3---+ [an {3]Done({3) T3
7. a n {3 ~ {3 Def.~

8. [a n {3] Done({3) PL, 5, 6, 7
9. [an {3]Done(o: n {3) TempAx6
10. [an {3]Done(o: n {3)---+ [an {3](Done(o:) A Done({3) ---+Done(an (3)) ML
11. [an {3](Done(o:) A Done({3)---+ Done(an (3)) MP, 10, 8, 4
12. [a]•Done(o:) TempAx7
13. ['fi]•Done({3) TempAx7
14. [aufi](•Done(o:)V•Done({3)) PL f3 T4, 12, 13
15. [an f3]•(Done(o:) A Done(f3)) PL f3 BA
16. [an {3](Done(o:) A Done({3)---+ Done(an (3)) PL f3 ML, 15
17. [U](Done(o:) A Done({3)---+ Done(an (3)) PL, A3, BA, 11, 16

T19:

1. Done(au (3) A Done(a)---+ Done((o: u (3) n a) T18
2. Done(au {3) A Done(a) ---+ Done({3) PL, BA, 1, Tl 6

T20:

1. {3na~{3A[{3]Done(o:)-+[{3na]Done(o:) T3
2. {3 n a~ a A [a]•Done(o:)---+ [{3 n a]•Done(a) T3
3. [{3 n a]•Done(o:) PL, 2, TempAx7 f3 def. ~
4. [f3]Done(o:)-+[{3na]Done(o:) PL, 1 &def.~

73

PhD Thesis, P.F.Castro McMaster-Computing & Software

5. [,8]Done(a)---> [,8 n a] Done(a)/\ [,8 n a]-,Done(a) PL, 3, 4
6. [,8]Done(a) ____, [,8 n a].1 ML, 5
7. [,BJ Done(a) ____, [,8 n a]<p ML, 6
8. ,8 n a ~ a/\ [a]<p ____, [,8 n a]<p T3
9. [a]<p ____, [,8 n a]<p PL, 8, ~def.
10. [,B]Done(a) /\ [a]<p ____, [,8 na]<p /\ [,8 n a]<p PL, 9, 7
11. [,B]Done(a) /\ [a]<p---> [(,8 n a) LJ (,8 n a)]<p PL, T4, 10
12. [,B]Done(a) /\ [a]<p---> [,8]<p PL, BA, 11

•
Now, we prove the soundness of the system given above.

Theorem 10. The axiomatic system is sound.

Proof. For the modal operators and the propositional part the proof is straightfor­

ward, just observing that the the semantics is exactly the same when a formula is

evaluated. We give the proof for the novel axioms; the others are standard for tem­

poral logics.

TempAx1: Let M be a model, 7f = w0 ~ w1 ~ ... a (maximal) path and i a given

instant, suppose: 7r, i, M F= (U) T. This means that: 3w' E W, ei E £ : wi ~ w'. But

from the semantics, we get that 7r, i, M F= (AN<p +-> [U] <p) and therefore: 7r, i, M F=

(U)T ____, (AN<p +-> [U]<p).

TempAx2: If7r,i,M F= [U]..l, then ~ei E £,w' E W: w ~ w', and therefore 7r[O .. i] is

a maximal trace, and #Jr = i. Using the semantics of AN we get: 7r, i, M F= AN<p +-> <p.

TempAx6: Suppose: Jr, i, M ~ [o:]Done(o:), i.e., 37r': 7r[O.. i] -< 7r1

, where 7r1 = wo ~

w1 ~ ... e~i wi ~ w' with ei E I(o:), and 7r1,i + I,M ~ Done(o:) which is a contra­

diction.

TempAx7: Similar to TempAx6.

TempAx8: We have Ve E £: e rt. 0, and therefore Jr, i, MF= -,Done(0).

TempAx9: Suppose that Jr, i, MF= •Done(U); this fact implies that: i = 0 and from

here we obtain: Jr, i, MF= -,Done(o:).

TempRule1: For every path Jr, the sentence •Done(U)-> <p implies that <p must be

true at instant 0, the other sentence says that <p must be true in any other instant of

7r, and therefore Jr, i, MF= <p. •

We use the tableaux system presented in chapter 5 to prove the completeness of
the axiomatic system described above. A direct proof of completeness of the temporal
system can be obtained applying the techniques presented in [GPSS80]; however, for
our purposes it is more useful to prove the completeness of the Hilbert system using
the tableaux system; we can take advantage of the relationship established between
the two formal systems at the time we verify systems.

74

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

3.6 	 Introducing Violation Constants and Several
Permissions

In practice we use violation predicates to indicate that a violation has occurred. A
natural choice is to consider these predicates as a subset of the propositions of the
vocabularies. However, sometimes it is useful to distinguish the violation propositions
from the other propositions. We can extend the notion of the vocabularies to take
into account this separation, adding a set Vo of violation propositions (denoted by
v1 , ... , vn). Another useful extension is to consider several versions of permission,
which allows us to have stratified norms and to avoid some paradoxes (we illustrate
this with the examples of section 4).

Definition 19. An extended language is a tuple (~0 , bo0 , Vo,Io) where:

• ~o is an enumerable set of proposition symbols.

• boo is a finite set of action symbols.

• Vo is a finite set of violation propositions.

• I0 is a finite index set for permissions.

We assume that these sets are mutually disjoint. 	 D

We consider the same formulae as in the earlier section, but we introduce one
permission predicate for each index in the vocabulary. The formal definition of the
formulae is:

• If <.p E ~o U Vo, then <.p E ~.

• If <.p and'!/; are formulae, then <.p --t '!/;, •'!/; E ~-

• If <.p is a formula and a an action, then [a]<.p is a formula.

• If a is an action and i E I 0 , then P~(a), Pi(a) and Qi(a) are formulae.

• If <.p and'!/; are formulae, then EN<.p, A(<.pU '!/;)and E(<.pU '!/;) E ~-

For example, if we consider the vocabulary ({a, b}, {p}, { 1, 2}), we have different
permissions P1() and P2 (). Similarly with weak permission and obligation.

75

PhD Thesis, P.F.Castro McMaster-Computing & Software

Given a language, because we have several violations in a language, we can define a
predicate VL which, roughly speaking, defines which violations are true and which are
false in the current state. A state of violation then is a predicate VL = *Vi/\···/\ *Vn,

where {vi, ... , vn} = Vo and * is blank or •, i.e., this predicate describes a state
where a subset of the violations are true and other violations are false. On the other
hand, we can use the predicate V L = v1 V · · · Vvn to detect if in a state some violation
is true. Note that -,V L says that no violation is true, and therefore this predicate
allows us to define normative states (and normative traces).

Obviously, we can build a lattice of violation states (see below) and we can abstract
the states of the system using this lattice of violations by forming equivalence classes
of states using the predicates Vi.

As explained above, one important requirement to ask for is that allowed actions
must not introduce new violations. This is called the GGG (Green-Green-Green)
condition in [SC06]; as the name of this condition indicates, from a "green" state
(without violations), performing an allowed transition (a "green" transition), we must
reach a "green" state. This principle can be formally specified by the following (finite)
set of axioms:

• -, V L /\ pi (a) --t [a]•V L for every permission index j.

We denote by G(L) this set of axioms. We take this principle further, and we say
that, if from a state with a violation state Ve we perform an allowed action, then the
state of violation is preserved or improved (i.e., it cannot happen that a violation,
which is not true in a given state, becomes true after executing an allowed action).
This stronger version of GGG can be formally specified by the following (finite) set
of axioms:

We denote this set of axioms by SG(L). Assuming G(L) or its stronger version
SG(L) may allow one to simplify proofs and specifications (e.g., see the example of
the coolers in the next chapter).

We also introduce some changes to the semantic structures to give the semantics
of this variation of the logic. Basically, we consider one relational structure for each
index in the vocabulary

Definition 20 (models). Given a language L = (<I>0 , ~0 , V0 ,I0), an L-Structure is a
tuple: M = (W, n, &,I, {Pi Ii E Io}) where:

76

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

• W 	is a set of worlds.

• £ 	is a non-empty set of (names of) events.

• 	 R is an £-labeled relation between worlds. We require that, if (w, w', e) E R
and (w, w", e) E R, then w' = w", i. e., R is functional when we fix the third
element in the tuple.

• 	I, is a function:

- For every p E cf>0 : I(p) ~ W

- For every a E ~o: I(a) ~ £.

In addition, the interpretation I has to satisfy the following properties:

I.1 	For every ai E ~o: II(ai)- LJ{I(aj) I aj E (~o - {ai})}I ~ 1.

I.2 	For every e E £: if e E I(ai) nI(aj), where ai i- aj and aj, ai E ~0 , then:
n{I(ak) I ak E ~o A e E I(ak)} = {e}.

I.3 	£ = U:t;EC.o I(ai)·

• 	 each pi ~ W x £ is a relation which indicates which event is permitted in which
world with respect to permissions with index i.

D

It is straightforward to extend the axiomatic system of definition 11 to these new
formulae: we consider a separate version of axioms A5 - A13 for each index i E I 0 ,

i.e., we have:

A5. Pi(0)

A6. Pi(a U (3) ~Pi(a) A pi((3)

A7. Pi(a) v Pi(f3) ~ Pi(a n (3)

A8. 	...,p~(0)

A9. 	 P~(a u (3) ~ P~(a) V P~(f3)

AlO. P~(a n (3) ~ P~(a) A P~(f3)

All. Pi(a) A a #act 0 ~ P~(a)

A12. P~('Y) ~ Pi('Y), where 'YE At(~o)

77

PhD Thesis, P.F.Castro McMaster-Computing & Software

where i E Io.

The different versions of the deontic predicates allow us to have stratified levels
of norms. It is straightforward to extend the proofs of soundness and completeness
for this variation of the logic. For each index i, we can repeat the proof of soundness
given in section 3.3, and in the canonical model we define a relationship:

P~ ~ LJ{P~,a Iw E We A Pi(a) E w},

where: P~,a ~ {(w, [a']sA) I [a']sA E Ic(a)}. For each index i, the proof proceeds
as before.

Having several versions of permissions is useful in practice, in particular when we
have contrary-to-duty statements. Consider, for example, the gentle killer paradox:

• it is forbidden to kill.

• if you kill, you ought to kill gently.

• you kill.

In SDL the formalization of this paradox gives us an inconsistent set of sentences
[SP94]. We can formalize this scenario as follows:

• kg i;;;; k

• nk n k =act 0

• 0 2 (nk LJ kg)

• ANDone(k)

We consider the actions k (kill), kg (kill gently) and nk (not kill). The first axiom
says that it is forbidden to kill. The second formula says that the action of kill gently
(kg) is a way of killing. The third axiom expresses that killing and not killing are
disjoint actions. The fourth formula says that, if we will kill, then we have to kill
gently. In the last formula, we use the Done() operator to state that we will kill

78

PhD Thesis, P.F.Castro McMaster-Computing & Software

(which is expressed saying that the next action is to kill). In this case we consider in
the vocabulary two indexes: 1 and 2 pointing out that there are two different levels of
norms in the specification. In contrast to standard deontic logic, these sentences are
not contradictory in our setting. For example the structure illustrated in figure 3.4 is a
model of this set of sentences. The structure in this figure has three states w, w 1 , w2 ,

WI
-~

e~... ···

.. ···'
... ··

w

.... •2

Figure 3.4: Model for the Gentle Killer

and we have I(k) = {e1 ,e2}, I(kg) = {e1 } and I(nk) = {e3 }. The labels on the
transitions indicate which actions are executed and which are not in each transition.
The upper dashed arrow denotes a transition that is forbidden with respect to index
1 but not for index 2. The lower dashed arrow indicates an arrow which is forbidden
for both indexes.

3.7 Summary

In this chapter we have presented a propositional deontic logic which is a formal basis
for the rest of the thesis. This logic has the standard modal predicates (possibility and
necessity) over an expressive algebra of actions (a boolean algebra), deontic predicates
(permissions and obligations) and we also enriched this logic with branching time
operators. The main properties of this formal system were investigated, in particular
we proved that the given axiomatic system is sound, strongly complete and decidable.
Furthermore, the obtained system is compact, which is an improvement over the
deontic logic in boolean operators described in [Bro03] and [GP90].

The completeness proof given in section 3.4 introduces a technique that we also use
to prove some properties about the tableaux system presented in chapter 5; we use the
atoms of the boolean algebra of terms to label the transitions of the canonical model;
these atoms describe which action is performed and which is not during a transition.
We take this idea further in the tableaux system to produce counterexamples of
specifications.

79

PhD Thesis, P.F.Castro McMaster-Computing & Software

Finally, it is important to stress (once more) that the way in which the deontic
predicates are defined differs from what is done in other deontic action logics [Mey88],
[Bro03], where deontic predicates are defined using the modalities. Here there is no
a priori relation between the two. They are intended to model different aspects
of a system: modalities are aimed at describing a system in a pre/post-condition
way, whereas deontic predicates express prescriptions about how the system should
behave. From our point of view, the two notions differ and they must be specified by
different formal constructions. (Here we follow the main ideas introduced in [KM85].)
This separation between these concepts gives more freedom at the time of specifying
systems. Note that, in case they are needed, some relationship between deontic
constructions and modalities can be introduced by means of extra axioms, see chapter
7 for some examples.

80

Chapter 4

Some Examples

The specification of systems using modal logics (and related formalisms) has been
well studied. For example, the FOREST reports ([KQM91, Ken91, Rya90, RFM91])
discuss different applications for the modal action logic presented there. (For instance
in [KQM91] a system for a library is discussed in detail.) On the other hand, dynamic
logics [HKTOO] have been used in practice to reason about complex examples; this
logic is similar to Hoare logic [Hoa69] and it can be used to specify programs in
pre/post-condition style. In this chapter we present five case studies to show how
the constructs presented in chapter 3 can be used in practice to specify and verify
fault-tolerant systems, going beyond the work cited above.

First, we take the classical example of dining philosophers of Dijkstra [Dij71], but
we add some features to it, so that every process has the possibility of crashing for an
indefinite amount of time. This modification allows us to illustrate how we can use
our logic to reason about fault-tolerance. We have outlined this example in [CM07b];
here we analyze in detail a formalization of this problem, and we focus on proving
some of its properties to show that the deductive system is usable in practice.

As a second example, we exhibit a specification of the Muller c-element, a delay
insensitive circuit. This circuit is tolerant to delays in its inputs; in this case we show
how obligations can be used to distinguish between normal and abnormal behaviour.
The third example is a simple train system; fault-tolerance is important in these kinds
of systems since failures may cause tragic accidents. In this example, we illustrate how
contrary-to-duty statements might arise in practice. We present two further examples:
the byzantine generals; this is a classic example of fault-tolerance [LSP82]. We give
a specification of this problem where we use the deontic predicates to distinguish
between good and bad behaviour, and how stratified norms are used for reasoning

81

PhD Thesis, P.F.Castro McMaster-Computing & Software

about different kinds of faults that may happen during the execution of the system.
The last example is a specification of a microprocessor which has two coolers to keep
the temperature low; the redundancy in the system allows it to support failures in one
of the coolers. In this example, we use stratified norms to model a contrary-to-duty
statement.

4.1 The Diarrheic Philosophers

The problem which we shall investigate below can be described informally as follows:

Example 1. In some college, a fixed number of philosophers are dedicated to thinking
about different problems. Because each philosopher must eat to survive, the college
has a (circular) table which contains a big bowl of pasta. Each philosopher has a seat
and two forks, one for each hand. But, because of budgetary reasons, neighbouring
philosophers have to share forks. In addition, the pasta could be contaminated (usually
philosophers think for a long time and so the pasta may develop some dangerous
bacteria, probably because they have to share forks!) and therefore philosophers could
get a stomach ache and then they must go to the bathroom. A problem arises, of
course, when a philosopher goes to the bathroom with some forks in his hands. A
philosopher may come back, or not, from the bathroom (the details are left to the
reader's imagination).

The main point to make about the following specification is the way in which the
possible faults (i.e., when a given philosopher goes to the bathroom) are modeled.
We model this scenario as a system violation; we will see that two possible violations
can be defined. First, if a philosopher goes to the bathroom with two forks in his
hands, then we obviously have the worst situation that could happen (this situation
will be modeled with the predicate Vi A --iv2 , the proposition vi becomes true when
a philosopher takes one or two forks with him to the bathroom). The other is when
a philosopher only takes one fork with him (we use the predicate v2 to model this);
in this case, we will prove that undesirable blocking is not possible. Additionally,
we will see that when violation vi upgrades to a violation v 2 the system can avoid
suffering some undesired blocking. Using this specification, a very interesting set of
properties can be proved, some of which will be shown later.

A philosopher in the bathroom is different from a philosopher that is eating. An
eating philosopher is a philosopher performing an allowed action, which is not in
an error state. Instead, while a philosopher in the bathroom is a philosopher in an
error state. In a computing system, an eating philosopher could be a printer printing

82

PhD Thesis, P.F.Castro McMaster-Computing & Software

a document, while a philosopher in the bathroom could be a printer out of toner,
or printing something different from what it is intended to print. In the original
problem there is no difference between processes crashing or exhibiting a malicious
behaviour, on the one hand, and processes having a normal behaviour, on the other.
Note also that the eating philosophers always hold onto the two forks, while the
philosophers in the bathroom might hold only one fork; this scenario may prevent
deadlock-free solutions from working. For example, solutions introducing asymmetry
into the behaviour of philosophers (odd-numbered philosophers take the right fork
first, and even-numbered philosophers take the left fork first [MK99]) could fail to
avoid deadlock.

We suppose in the example that the eating philosophers will eat for a finite amount
of time. The difference between error states and normal states is useful since, in the
last cases drastic actions can be taken to restore the normal state of the system (e.g.,
restarting the printer or replacing the toner).

4.1.1 Axioms

We start defining the language in which the specification is expressed; consider the
following set of primitive actions:

b.0 = { i.upL, i.upa, i.downa, i.downL, i.getbad, i.getthk, i.gethungry}

where 0:::; i :::; n, for some n. Intuitively, i.upL (i.upa) is the action of philosopher i
picking up the left (right) fork; i.downL and i.downa are the inverses. On the other
hand, i.getbad, i.getthk and i.gethungry are executed when philosopher i gets
sick, starts thinking or gets hungry, respectively. We also consider the following set
of predicates:

cI>0 = {i.thk, i.eating, i.hungry, i.bath, i.hasL, i.hasa, fork1 .up, forkt.down}

where i.eating tells us if philosopher i is eating, i.hungry if the philosopher is
hungry, i.bath will be true when i is in the bathroom, i.hasL and i.hasa allow us
to know if i has the left or right fork in his hands. And forkt.up, fork1 .down will be
true if fork i is up or down, respectively. We consider two violations per philosopher:
Vo= {i.v1, i.v2}

We have several axioms, but note that many of them are frame axioms (i.e., they
express which part of the system is not changed by the actions, these requirements
are usually implicit); stating these axioms can be avoided if a more abstract language
of specification is used, and then translated to our logic. Let us establish the initial
conditions:

83

http:forkt.up
http:fork1.up

PhD Thesis, P.F.Castro McMaster-Computing & Software

0Phill. Done(U) -t (/\ i.thk) /\ (/\ forki.down) /\ (/\ •Lv1 /\ •Lv2)

That is, at the beginning all the philosophers are thinking, all the forks are down and
there are no violations. We also need to express that some states or some actions are
disjoint:

Phil2. forki.down EB forki.up
Phil3. Leating EB Lthk EB i.hungry EB i.bath
Phil4. (Lthk V Lbath) -t [LupL U i.upa]..l

Here the symbol EB denotes the strict version of V. Axiom Phil2 says that each fork
can either be up or down but not both. Phil3 is similar but expressing a disjointness
condition on philosopher states. Phil4 says that a thinking or ill philosopher cannot
pick up any fork.

Phil5. ([Lupa]Lhasa) /\ ([i.upL]LhasL)
/\([Ldowna]•Lhasa) /\ ([LdownL]•i.hasL)

Phil6. (•Lhasa -t [LliP;J•Lhasa) /\ (•LhasL -t ~·i.hasL)
(i.hasa -t [Ldowna]Lhasa) /\ (LhasL -t [LdownL]LhasL)
/\(•LhasL -t [i.downL]..l) /\(•Lhasa -t [i.downa]..l)

Phil7. (LhasL -t [Lgetthk]Done(LdownL))
/\(Lhasa -t [Lgetthk]Done(downa))

Phil8. ([i.getthk]i.thk) /\ (•Lthk -t[~i-.g-et_t_h_k]•i.thk)

The first axiom models the behaviour of the Lup and Ldown actions. On the other
hand, axiom Phil6 is a frame axiom; it says that only the actions i.upL (i.downL) and
i.upa (Ldowna) can make predicates LhasL and Lhasa become true (false). Phil7
and Phil8 are similar but they model the behaviour of the i.getthk action. The
next couple of axioms express some behaviour of the forks.

Phil9. forki.up -t [LupL U (i + 1).upa]..l
PhillO. forki.up +-+ ((i + 1).hasa V LhasL)

Axiom Phil9 expresses that, if a fork is up, then none of the corresponding philoso­
phers can take it (here "+" denotes addition modulo n + 1). The other formula
establishes that a fork i is up if and only if the philosopher i, or i + 1, has it in his
hands.

We also need to predicate that two neighbouring philosophers cannot take the
same fork at the same time; this is expressed by the following axiom:

84

http:forki.up
http:forki.up

PhD Thesis, P.F.Castro McMaster-Computing & Software

Philll. i.upL n (i + 1).upR = 0

In an implementation, we could use a semaphore to ensure this requirement.

The next set of axioms models the behaviour of the i.gethungry action.

Phil12. (i.gethungry n (i + 1).gethungry) = 0
Phil13. i.thk /\ •(i - 1).hungry /\ •(i +!).hungry/\

forki.down /\ forki+1 .down -t (i.gethungry) T
Phil14. (i.thk /\ (((i - !).hungry V (i + 1).hungry)V

((i - 1).v1 /\ i.hasL) V ((i + 1).v1 /\ i.hasR))) -t [i.gethungry].l
Phil15. i.hungry /\ (fork1 .down V i.hasL) /\ (forki+1 .down V i.hasR) -t

ANi.eating
Phil16. i.hungry /\ ((i + 1).v1 /\ (i + 1).hasR) /\ ((i - 1).v1 /\ (i - 1).hasL) -t

ANi.thk
Phill7. ([i.gethungry]i.hungry) /\ (•i.hungry -t [i.gethungry]•i.hungry)

The first formula establishes that no two neighbouring philosophers can get hungry at
the same time; if we allow concurrency here, it will give us some problems. Again some
mechanism for mutual exclusion is needed in the implementation. Phil14 expresses
that if some philosopher is getting hungry and some neighbour is already in that
state, the philosopher has to wait. Obviously, this specification exhibits a starvation
problem (and this may be the best reason for food poisoning!); to avoid this, a priority
queue is needed. For simplicity, we do not deal with this problem in this example.

Phil13 tells us when a philosopher will have the possibility of getting hungry.
Axiom Phil15 says that if a philosopher is hungry and he can take both forks,
then he will start to eat. The last two axioms in this set specify the behaviour of
i.gethungry and some frame conditions.

The following set of sentences specify what happens when a philosopher is eating,

Phil18. i.eating t--t (i.hasL /\ i.hasR /\ •i.bath)

Phil19. i.eating -t [i.upL Li i.upR LJ i.getbetter LJ i.gethungry].l

Phil20. i.eating -t [U]Done(i.getthk Li i.getbad)

Phil21. i.eating +-t O(i.downL n i.downR)

Axiom Phil18 says that a philosopher is eating iff he has both forks and he is not
in the bathroom. Axiom Phil19 restricts the actions that can be done when a
philosopher is eating. Phil20 says, if a philosopher is eating, then he can only
start thinking again or getting sick. Of course, in a more complicated specification
philosophers might eat for an undefined amount of time (here they only eat for one

85

PhD Thesis, P.F.Castro McMaster-Computing & Software

time unit). The amount of time that philosophers eat is not important for our present
purposes. The last axiom establishes an obligation about the release of the forks.
Some explanation is needed about this obligation; note that the deontic predicate
here (Phil21) says what happens ideally or normally, but perhaps this condition
may be violated. The important point here is that the obligation predicate allows us
to differentiate an ideal or normal scenario from one that is not (note that O(a) -+
•Pw(a), where the negation of a weak permission can be read as a prohibition), and
this is a strong benefit of deontic logic. Note also that these deontic restrictions will
be reflected in the semantic structures, where some arcs will be green colored (allowed
transitions) and others red colored (forbidden transitions, e.g., when a philosopher
does not put down the forks). This classification of transitions allows us to perform
different analyses on the semantic models (e.g., to investigate properties that are
preserved by green transitions).

The i.getbad action can be modeled as follows:

Phil22. ([i.getbad]i.bath) A (•i.bath-+ [i.getbad]•i.bath)
Phil23. i.bath-+ [i.getthk]i.bath

We note axiom Phil23, which says that if a philosopher gets better, then he goes
to the thinking state (and therefore he has to free up those forks that he has in his
hands).

Finally, we present a collection of axioms for modeling the notion of violation. The
predicates i.v1, i.v2 are used for this purpose; i.v1 becomes true when philosopher
i (after eating) does not release both forks. i.v2 is a refinement of i.v1; it is true
when philosopher i only releases one fork, but holds onto the remaining fork. These
variables allow us to reason about the situations in which an undesirable blocking
becomes possible, because some norm has been violated (e.g., that in Phil21), and
when we can avoid it (so-called recovery steps). Interestingly, we can predicate about
recovery from bad scenarios (for example, when i.v1 "upgrades" to i.v2). The axioms
are:

Vl. •i.V1 A O(i.downL n i.downR) -+
([i.downL n i.downR]i.vi) A ([i.downL n i.downR]•i.v1)

V2. •i.V1 A --,Q(i.downL n i.downR)-+ [U]•i.v1
V3. i.v2 +-+ i.v1 A (•i.hasL E9 •i.hasR)
V4. (i.V1-+ [i.downL n i.downR]•i.v1) A (i.V1 A •i.V2-+ [i.downL n i.downR]i.v1)
V5. i.v2 -+ [i.downL LJ i.downR]i.v2
V6. ((i.v2 A •i.hasL)-+ [i.downR](•i.v2 A •i.v1))A

((i.v2 A •i.hasR)-+ [i.downR](•i.v2 A •i.v1))

86

http:i.downR](�i.v2
http:i.downR](�i.v2
http:i.downR]i.v2
http:i.downR]i.v1
http:i.downR]�i.v1
http:i.downR]�i.v1
http:i.downR]i.vi

PhD Thesis, P.F.Castro McMaster-Computing & Software

The first axiom defines when i.v1 can become true, that is, when philosopher i is
obligated to put down both forks but he does not do so; otherwise i.v1 is false. V2
is needed to say that the other actions do not affect the violation marker i.v1 . V3
defines i.v2 ; it is true if and only if the philosopher has only one fork and violation
i.v1 is true. Intuitively, this occurs when a philosopher only takes one fork with him
to the bathroom, or perhaps if he puts down a fork after getting in a violation state.
Note that it is possible for a philosopher to put down a fork while in the bathroom,
although in this model this philosopher will stay in the bathroom while he puts down
a fork; there are no constraints in the specification to prevent this or to encourage it.
(This may be considered an example of underspecification.) We may be of the view
that he leaves the fork under the bathroom door and somebody will pick it up. (For
the sake of simplicity we abstract these details from our model). V 4 establishes that
putting down both forks is a recovery action for i.v1, and, if we are not in a violation
of type i.v2 , then doing something different will leave us in the same violation state.
This has the important consequence that, when we are in a violation of type i.v2 , we
can recover from i.v1 and i.v2 ; exactly this is specified by axiom V6.

Note that the deontic part of the specification is simple: we only have obligations
when the philosophers are eating. Of course, more complicated scenarios could be
thought of; we can add a second obligation (a contrary-to-duty obligation) when a
philosopher is in the bathroom (e.g., to release at least one fork). As we said before,
we keep our example as simple as possible, and we just illustrate how the logic is used
in practice. We only impose one obligation and describe how violations follow when
this obligation is not fulfilled.

On the other hand, axioms: Vl and V2 impose a relationship between violations
and obligations. Although this relationship is not as strong as the ones usually im­
posed in dynamic deontic logic, see section 3.2, we argue that a weak relationship
is better in fault-tolerance (which is also noted by Sergot in [SC06]). For example,
note that in each scenario we have a different set of possible violations: v1 , ... , vn, and
then we can define: V = v1 V ... V vn, and therefore a state free of violations is one in

which -.v = -.v1 /\ ... /\ -.vn is true. However, defining, e.g., P(a) ~ (a)-.v (as done
by Meyer [Mey88]) is not always a good option: in the example presented above a
philosopher could be in the bathroom with the two forks (in a violation state), and
with this strong definition putting down only one fork is forbidden (not allowed) be­
cause the philosopher will still be in a violation state. The point is that this situation
is not desirable in our scenario: the action of putting down only one fork allows the
system to make some progress (allowing other philosophers to eat). As noted above,
allowed actions, in a violation state, could carry forward violations. More examples
of this kind can be found in [SC06].

Note that the GGG condition (see 3.2) could be introduced as a specification

87

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

dependent axiom, i.e., it must be instantiated in each specification (in a similar way
to locality axioms, see [FM92]). Using this axiom, formula Vl can be simplified.

4.1.2 Some Properties

In this section, we prove some important properties about the specification given
above. Firstly, we show some important lemmas, which allow us to modularize the
proofs. The proofs show how the logic can be used in practice, although it is important
to remark that we can build software tools which assist the software designer in this
task. In the next chapter we present a tableaux system which can be used for proving
properties from specifications.

Our first lemma establishes that no two neighbouring philosophers can have the
same fork at the same time.

Lemma 3. f-Phil •((i + 1).hasa /\ i.hasL).
Proof. We use induction to prove it.
Base Case:

1. ·Done(U)---+ fork1 .down 	 PL, Phil1
2. ·Done(U)---+ (•i.hast /\ •(i + 1).hasa) PL, 1, Phil2, Phil10
3. ·Done(U) ---+ (•i.hast V •(i + 1).hasa) 	 PL,2

Ind. 	 Case:

1. •(i + 1).hasa /\-ii.hast---+ [(i + 1).upa](i + 1).hasa 	 PL, Phil5
2. i.Upt n (i + 1).upa = 0 	 Phil11
3. (i + 1).upa ~ i.upt 	 BA, 2

4. -ii.hast ---+ [i.upt]•i.hast 	 PL, Phil6
5. (i.upt]•i.hast---+ [i + 1.upa]•i.hast 	 PL, T3, 3
6. -ii.hast---+ [i + 1.upa]•i.hast 	 PL, 4, 5
7. •(i + 1).hasa /\-ii.hast---+ [(i + 1).upa]((i + 1).hasa /\-ii.hast) ML, 6, 1
8. -ii.hast---+ [i.upt]i.hast 	 PL, Phil5
9. i.upt ~ i + 1.upa 	 BA, 2

10. •(i + 1).hasa---+ [(i + 1).upa]•(i + 1).hast 	 PL, Phil6
11. [(i + 1).upa]•(i + 1).hasa---+ [i.upt]•(i + 1).hast 	 PL, T3, 9
12. 	 •(i + 1).hasa---+ [i.upt]•(i + 1).hasa PL, 10, 11
13. 	 •(i + 1).hasa /\-ii.hast---+ [i.upt](•(i + 1).hasa /\ i.hasL) PL, 12, 8

14. 	 •(i + 1).hasa /\-ii.hast---+
[i.upt U (i + 1).upa](•(i + 1).hasa V -ii.hast) PL, T4, 6, 12

88

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

15. 	 -ii.hasL --+ [i.upL]•i.hasL

16. 	 •(i + 1).hasR--+ [(i + 1).upR]•(i + 1).hasR
17. 	 -.i.hasL /\ •(i + 1).hasR--+

[i.upL LJ (i + 1).upR](-.i.hasL V-.(i + 1).hasR)
18. 	 -.i.hasL /\ •(i + 1).hasR--+ [U](-.i.hasL V •(i + 1).hasR)
19. 	 i.hasL--+ forki.up
20. 	 fork1.up--+ [(i + 1).upR]J.
21. 	 i.hasL--+ [(i + 1).upR]J.
22. 	 fork1.up--+ [i.upL]J.
23. 	 i.hasL --+ [i.upL]J.

24. 	 i.hasL /\ •(i + 1).hasR--+ [(i + 1).upR]J.
25. 	 1---+ •(i + 1).hasR
26. 	 i.hasL /\ •(i + 1).hasR--+ [(i + 1).uPR]•(i + 1).hasR
27. 	 i.hasL /\ •(i + 1).hasR--+ [(i + 1).upR]•(i + 1).hasR
28. 	 •(i + 1).hasR--+ •(i + 1).hasR V -.i.hasL
29. 	 i.hasL /\ •(i + 1).hasR--+ [U]-.(i + 1).hasR
30. 	 i.hasL /\ •(i + 1) .hasR --+ [U] (--.(i + 1) .hasR V •i.hasL)
31. 	 (i + 1).hasR--+ fork1.up
32. 	 (i + 1).hasR--+ [i.upL]J.
33. 	 (i + 1).hasR /\ -.i.hasL--+ [i.upL]J.
34. 	 (i + 1).hasR /\-.i.hasL--+ [i.upL]-.i.hasL
35. 	 (i + 1).hasR /\ -.i.hasL--+ [i.upL](-.i.hasL V •(i + 1).hasR)
36. 	 (i + 1).hasR /\ -.i.hasL--+ [i.upL](-.i.hasL V (i + 1).hasR)
37. 	 (i + 1).hasR /\ -.i.hasL--+ [Uj(-.i.hasL V-.(i + 1), hasR)
38. 	 (•(i + 1).hasR V -.i.hasL)--+ [U](-.i.hasL V •(i + 1).hasR)

PL, Phil6
PL, Phil6

PL, T4, 15, 16
PL, BA, T4, 14, 17

PL, Phil10
PL, Phil9, T3

PL, 19, 20
PL, Phil9, T3

PL, 19, 22
PL, 21

PL
ML, 24, 25

PL, 16
PL

PL, BA. 26, 27, T4
ML, 28, 29
ML, Phil10

PL, Phil9, 31, T3
PL, 32
PL, 15
ML, 34
ML, 33

BA, PL, 36, 35, T4
PL, 18, 30, 37

•
The second lemma says that, if a philosopher is in a violation, then he has some

fork in his hands:

Lemma 4. I-Phil i.v1 ---+ (i.hasR V i.hasL)
Proof. See appendix A. •

The next lemma tells us that, if it is not the case that philosopher i is in violation,
then in the next state either he will not be in a violation or he will not be eating.
That is, if a philosopher goes into a violation state, then he cannot be eating.

Lemma 5. I-Phil ->i.v1 ---+ [U](-,i.v1 V •i.eating)
Proof. See appendix A. •

89

http:U](-,i.v1
http:fork1.up
http:fork1.up
http:fork1.up
http:forki.up

PhD Thesis, P.F.Castro McMaster-Computing & Software

The following lemma characterizes, in some way, the relationship between viola­
tions i.v1 and i.v2 : if a philosopher is in violation i.v1 and not in i.v2 (that is, he
has both forks), then none of his neighbouring philosophers can be eating.

Lemma 6. f-Phil i.v1 /\ •i.v2 --t •(i + 1).eating /\ •(i - 1).eating

The next lemma says that, if a philosopher is not eating, then in the next state
he is not eating or he is not in a violation.

Lemma 7. f-Phil •i.eating --t [U](•i.v1 V •i.eating)
Proof. See appendix A. •

The following lemma tell us that, if a philosopher is in a violation, then he cannot
be eating.

Lemma 8. f-Phil i.v1 --t •i.eating
Proof. See appendix A. •

It seems obvious that, if a philosopher is in a violation, then he is in the bathroom;
the following lemma formalizes this intuition.

Lemma 9. f-Phil i.v1 --t i.bath
Proof. See appendix A. •

If a philosopher is thinking, then he has neither the right fork nor the left fork.

Lemma 10. f-Phil i.thk --t •i.hasL /\ •i.hasR
Proof. See appendix A. •

No two neighbours can be hungry at the same time.

Lemma 11. f-Phil •i.hungry V •(i + !).hungry
Proof. See appendix A. •

Suppose that a philosopher i + 1 is in a violation v2 , but he does not have the
right fork in his hands, and, in addition, philosophers i and i - 1 are not in the
bathroom, i is hungry and i - 1 is thinking, then there exists the possibility for i to
eat in the future. This fact is expressed by the following lemma.

Lemma 12. f-Phil AG(((i+ l).v2 /\ •(i+ l).hasR) /\ •i.bathroom/\•(i- l).bathroom) /\
i.hungry /\ (i - 1).thinking --t EFi.eating
Proof. See appendix A. •

90

http:U](�i.v1

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

The next lemma is a variation of the above lemma.

Lemma 13. I-Phil AG(((i+ l).v2/\ •(i+ l).hasR) /\ •i.bathroom/\ •(i-1).bathroom)/\
i.thinking /\ (i - !).thinking --t EFi.eating
Proof. See appendix A. •

Now, we have the same scenario as before, but, if (i - 1) is eating, then i will
have the possibility of eating.

Lemma 14. I-Phil AG(((i + 1).v2/\-.(i + 1).hasR)/\•i.bathroom/\•(i - !).bathroom)/\
(i.thinking Vi.hungry)/\ (i - 1).eating --t EFi.eating
Proof. See appendix A. •

We have the following variation of the above lemma.

Lemma 15. I-Phil AG(((i + 1).v2/\•(i + 1).hasR)/\•i.bathroom/\•(i - 1).bathroom)/\
i.thk /\ (i - 1).hungry --t EFi.eating
Proof. See appendix A. •

We need one more lemma. The next one says if a philosopher cannot be in the
bathroom, and a neighbour is hungry, then he will be thinking in the next state.

Lemma 16.

i.thk /\ (i - 1).hungry /\ AN-.i.bathroom --t ENi.thk

Proof. See appendix A. •
At this point we are ready to prove the first important property: if philosopher i

is always in violation i.vi, but not in violation i.v2, then none of his neighbours can
eat.

Property 1. I-Phil AG(i.v1/\•i.v2) --t AG(-.i.eating/\•(i + 1).eating/\•(i - 1.eating))
Proof.

1. 	 i.v1 ->-ii.eating lemma 8
2. 	 AG(i.vi)-> AG(-ii.eating) CTL, 1
3. 	 i.v1 /\ -ii.v2 ->

•(i + 1).eating /\ •(i - 1).eating 	 lemma 6
4. 	 AG(i.v1 /\ •i.v2)->

AG(•(i + 1).eating /\ •(i - 1).eating) CTL, 3
5. 	 AG(i.v1 /\ 0 i.v2) ->

AG(•i.eating /\ •(i + 1).eating /\ •(i - 1).eating) CTL, 2, 4
91

http:AG(i.v1/\�i.v2

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

•
Now, 	we will prove that a violation i.v2 is less dangerous than a violation i.v1 /\

•i.v2 , in the sense that the first type of violation allows neighbours to progress in
some cases. Suppose that a philosopher goes to the bathroom with the left fork,
then his right neighbour is free to take his left fork (the right fork of the philosopher
who has gone to the bathroom); moreover, he will be lucky in the sense that his
left neighbour does not compete anymore for that resource. In addition, if the right
neighbour of the lucky philosopher will not go to the bathroom, then we can ensure
that the lucky philosopher will have the possibility of eating in the future.

Property 2.

f-Phil AG(((i + 1).v2 /\ •(i + 1).hasR) /\ •i.bath /\ •(i - 1).bath)-+ EH.eating

Proof.

1. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.thinking /\ (i - !).thinking___. EFi.eating Lemma 13

2. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.hungry /\ (i - !).thinking___. EH.eating Lemma 12

3. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.thk /\ (i - 1).hungry ___. EFi.eating Lemma 15

4. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.hungry /\ (i - !).eating___. EFi.eating PL, Lemma 14

5. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.thk /\ (i - 1).eating ___. EFi.eating PL, Lemma 14

6. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)
/\i.eating ___. EFi.eating CTL

7. 	 i.eating EB i.bath EB i.hungry EB i.thk Phil3
8. 	 (i - 1).eating EB (i - 1).bath EB (i - 1).hungry EB (i - 1).thk Phil3
9. 	 -i(i.hungry /\ (i - 1).hungry) /\ -i(i.eating /\ (i - 1).eating) lemma 3,

lemma 11
10. 	 AG(((i + 1).v2 /\ -i(i + 1).hasR) /\-ii.bath/\ -i(i - 1).bath)

___. EFi.eating CTL, 1-9

•
The proof of this property is sketched; the idea behind it is to analyze the possible

states of the philosophers involved using lines 7, 8 and 9, and then by lines 1-6 we
can prove that in each possible scenario the property is true, and the result follows.

92

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

Note that we cannot ensure that philosopher i will always eat, because this de­
pends on fair scheduling. If we add some kind of fairness restriction to our specifica­
tion, then we are able to prove it.

Obviously, we can prove the symmetric case.

Property 3.

f-Phil AG(((i - 1).v2 /\ •(i - 1).hasL) /\ •i.bath /\ •(i + 1).bath)-+ EFi.eating

Using both property 2 and property 3 we can obtain the following corollary.

Corollary 4.

f-Phil AG(i.v2 /\ •(i + 1).bath /\ •(i - 1).bath /\ •(i + 2).bath /\ •(i - 2).bath) -+

EF((i - 1).eating V (i + 1).eating)

Proof.

1. 	 i.v2 --> -ii.hasL ffi •i.hasR V3
2. 	 AG(i.v2 /\ •i.hasL /\ •(i + 1).bath /\ •(i + 2).bath) -->

EF((i + 1).eating) Prop.3
3. 	 AG(i.v2 /\ •i.hasR /\ •(i - 1).bath /\ •(i - 2).bath) -->

EF((i - 1).eating) Prop.2
4. 	 AG(i.v2 /\ (•i.hasR ffi -ii.hasL) /\ •(i - 1).bath/\

•(i + 1).bath /\ •(i + 2).bath /\ •(i - 2).bath)-->
EF((i + 1).eating) V EF((i - 1).eating) CTL, 2, 3

5. 	 AG(i.v2 /\ •(i + 1).bath /\ •(i - 1).bath
/\•(i + 2).bath /\ •(i - 2).bath)-->
EF((i + 1).eating V (i - 1).eating) CTL, 1, 4

•

Imposing fairness restrictions (i.e., if a philosopher has the possibility of eating an
unbounded number of times, he will eat an unbounded number of times) we should
be able to prove the following property:

AG(i.v2 /\ •(i + 1).bath /\ •(i - 1).bath /\ •(i + 2).bath /\ •(i - 2).bath)-+
AF((i - 1).eating V (i + 1).eating)

That is, in case of a v2 violation, one of the two neighbours will eventually eat.

93

PhD Thesis, P.F.Castro McMaster-Computing & Software

Finally, if we consider the CTL property:

(AGp -t EFq) -t (A(r U AGp) -t EFq)

then we obtain the following corollary from theorem 4:

Corollary 5. f- A(i.v1 UAGi.v2)/\AG(•(i+1).bath/\•(i - 1).bath/\•(i + 2).bath/\
•(i - 2).bath) -t EF((i - 1).eating V (i + 1).eating)

This says that, if a violation v1 upgrades to a violation of type v2 (for example, if
the philosopher puts down a fork), then at least one of the two neighbours will have
the possibility of eating in the future.

4.2 The Muller C-element

a) b)

~
Y-@-z
uU

Figure 4.1: (a) Muller C-Element (b) Implementation with a majority circuit

The Muller C-Element [MC79] is a delay-insensitive circuit; the circuit has two
boolean inputs and one boolean output (see figure 4.1 (a)). The output becomes true
when the two inputs are true, and it becomes false when the two inputs are false. The
idea is that the output remains in its state until the two inputs change their states.
In [AG92, Aro92], the following (informal) specification of the C-element with inputs
x and y and output z is given: "(i} Input x (respectively y) changes only if x = z
(respectively, y = z), (ii} Output z becomes true only if x /\ y holds, and becomes false
only if •x /\ •y holds; (iii) Starting from a state where x =y, eventually a state is
reached where z is set to the same value that both x and y have. Ideally, both x and
y change simultaneously. Faults may delay changing either x or y."

Note that in this (informal) specification the word "ideally" is used to point out
an event that should occur in a scenario without faults. We use deontic predicates
(see the specification below) to formalize this informal, "ideal", requirement. The
predicates of the specification are: {x, y, z}, x and y represent the inputs, and z
represents the output. The actions are: {ex, cy, cz}, ex (respectively, cy) is the

94

http:f-A(i.v1

PhD Thesis, P.F.Castro McMaster-Computing & Software

action of changing input x (respectively, y). cz is the action of changing output z.
We consider a violation constant v1 .

Ml.
M2.
M3.
M4.
M5.
M6.
M7.
MS.
M9.
MlO.
Mll.
M12.
M13.
M14.

-.Done(U) -t (x ~ y) /\ -.v1
(x -t [cx]-.x) /\ (-.x -t [cx]x)
(y -t [cy]-.y) /\ (-.y -t [cy]y)
(z -t [cx]-.z) /\ (-.z -t [cx]z)
(x -t [cx]x) /\ (-.x -t [cx]-.x)
(y -t [cy]y) /\ (-.y -t [cy]-.y)
(z -t [cz]z) /\ (-.z -t [cz]-.z)
(cx)T -t (x ~ z)
(cy)T -t (y ~ z)
(cz)T ~ -.(x ~ z) /\ -.(y ~ z)
(x ~ z) /\ (y ~ z)---+ O(cx n cy)
F(cx n xy) v F(cx n cy) -t [(ex n cy) LJ (ex n cy)]v
(x ~ z) /\ (y ~ z) -t -.v1
(U)T

Axiom Ml says that at the beginning x and y have the same value and there is no
violation. Axioms M2-M7 define the behaviour of actions ex, cy and cz. Axioms
MS - MU formalize requirement (ii). Axiom MU expresses that x and y ought to
change simultaneously. Axiom M12 says that if we perform some forbidden action,
then we go into a violation state. Axiom M13 says that when x, y and z coincide there
is no violation. The last axiom expresses that always some action can be executed.

First, we prove the following property from the specification:

AG(O(a) -t ANDone(a)) f-M x ~ y

(where M denotes the set containing all the axioms of the specification.) The formula
at the left says that in every path only actions which are obliged are executed (i.e.,
the deontic constraints are satisfied), the right formula says that in this case x ~ y.
The proof is using the induction rule. First, note that f-M -.Done(U) -t x ~ y holds
by axiom Ml. We prove:

AG(O(a)---+ ANDone(a)) f-M x ~ y -t [U]x ~ y

as follows:

1. (x ~ y) /\ (y ~ z) __, O(cx n cy) Mll

95

PhD Thesis, P.F.Castro McMaster-Computing & Software

2. (x +-> y) /\ (y +-> z) ---+ [cz]..l PL, MlO
3. (x +-> y) /\ (y +-> z)---+ [ex n cy n cz](x +-> y) /\ (y +-> z) DPL,M7, M2,M3
4. (x +-> y) /\ (y +-> z) ---+ [cz](x +-> y) /\ (y +-> z) PL, 2
5. ~-rlA~+->zj-+~n~~-rlA~-zj PDL, BA,3,4
6. O(ex n ey)---+ [U]Done(ex n ey) Assump.
7. (x +-> y) /\ (y +-> z)---+ [U]Done(ex n ey) PL,6,1
8. (x +-> y) /\ (y +-> z)---+ [U](x +-> y) /\ (y +-> z) DPL, 7, 5
9. (x +-> y) /\ •(y +-> z) ---+ [ex]..l PL, MS
10. (x +-> y) /\ •(y +-> z) ---+ [ey]..l PL,M9
11. (x +-> y) /\ •(y +-> z) ---+ [ex n ey]x +-> y DPL, M5,M6
12. (x +-> z) /\ •(y +-> z) ---+ [ex LJ ey]..l DPL,11,12
13. (x +-> y) /\ •(y +-> z) ---+ [U]x +-> y DPL, 11, 12
14. (x +-> y)---+ [U](x +-> y) PL, 8, 13

In the proof we use the acronym DPL to indicate that the formula follows directly using
the properties of DPL described in chapter 3. Using this property of the specification
we can prove the following property about normative trajectories (i.e., trajectories
where the obligations are fulfilled [FM91a]).

AG(O(a) ~ ANDone(a)) f-M (x ~ y /\ y ~ z) V [U](x ~ y /\ y ~ z)

i.e., in any instant requirement (iii) is true or it becomes true in the next instant.
The proof is as follows.

1. x +-> y Property above
2. •(x +-> y) /\ (y +-> z) ---+ (x +-> y) /\ •(y +-> z) PL,1
3. (x +-> y) /\ •(y +-> z) ---+ [ex]..l DPL, MS
4. (x +-> y) /\ •(y +-> z) ---+ [ey]..l DPL, M9
5. (x +-> y) /\ •(y +-> z) ---+ [ez n ey n ex](x +-> y) /\ (y +-> z) DPL, M4, M5,M6
6. (x ,_.. y) /\ •(y +-> z)---+ [ez n ey n ex](x +-> y) /\ (y ,_.. z) DPL, 1, 2
7. (x +-> y) /\ •(y +-> z) ---+ [ez]..l PL, MlO
8. (x +-> y) /\ •(y +-> z)---+ [U](x +-> y) /\ (y +-> z) DPL, 7, 6
9. (x +-> y) /\ (y +-> z) V [U](x +-> y) /\ (y +-> z) PL, 2, 8

In the general case we can prove that, if a violation occurs, we can reach a state
free of errors. This is expressed by the following formula:

f-M V1 ~ AN(x ~ y) /\ (y ~ z)

The proof is as follows:

1. v1 ---+ •(x +-> z) V •(y +-> z) M13
2. •(x +-> z) /\ •(y +-> z) ---+ [ez n ex n ey](x +-> z) /\ (y +-> z) PDL, M4, M5, M6

96

PhD Thesis, P.F.Castro McMaster-Computing & Software

3. -.(x <-+ z) /\ -.(y <-+ z) - [ex U ey]..l PDL, M8, M9
4. -.(x <-+ z) /\ -.(y <-+ z) - [ex U ey](x <-+ z) /\ (y <-+ z) PDL, 4
5. -.(x <-+ z) /\ -.(y <-+ z) - [U](x <-+ z) /\ (y <-+ z) PDL, 2, 4
6. -.(x <-+ z) /\ (y <-+ z) - [ex n ey n ez](x <-+ z) /\ (y <-+ z) PDL, M2,M5,M6
7. -.(x <-+ z) /\ (y <-+ z) - [ey n ez]..l DPL, M8, MIO
8. -.(x <-+ z) /\ (y <-+ z) - [U](x <-+ z) /\ (y <-+ z) DPL,7,6
9. (x <-+ z) /\--i(y <-+ z) - [eyncxn ez](x <-+ z) /\ (y <-+ z) POL, M3,M5,M6
10. (x <-+ z) /\ -.(y <-+ z) - [ex n ez]..l DPL, M9, MIO
11. (x <-+ z) /\ (y <-+ z) - [U](x <-+ z) /\ (y <-+ z) DPL, 10, 9
12. -.(x <-+ z) V -.(y <-+ z) - [U](x <-+ z) /\ (y <-+ z) PL, 11, 8, 5
13. v1 - [U](x <-+ z) /\ (y <-+ z) PL, 1, 12
14. v1 - AN(x <-+ z) /\ (y <-+ z) PL, TempAxl, M14, 13

Using axiom M13 straightforwardly, we can prove:

This property says that when we go into a violation state, then we can recover from
it (i.e., reach a state where there are no faults). In other words, the design is tolerant
to faults of type v1. It is interesting to note that the deontic predicate used in the
specification (the obligation) allows us to distinguish an ideal scenario from a faulty
one. In addition, the deontic predicates allow us to express naturally some parts of
the informal specification, as is shown by axiom Mll.

4.2.1 Implementing the c-element with a majority circuit

The C-element can be implemented with a majority circuit with three inputs [MC79]
as shown in figure 4.1 (b). In this case we have that z is the output of the circuit and
u is the extra input of the circuit. The predicate maj(x, y, u) returns the value of the
majority circuit (which we suppose works correctly). The definition is:

maj(x, y, u) +-+ (x /\ y) V (x /\ u) V (y /\ u)

We consider a new violation constant v2. We keep most of the axioms, we replace
Ml by:

Ml. ·Done(U) ~ (x +-+ y) /\ (y +-+ z) /\ (u +-+ z) /\ -w1 /\ •V2

and axiom M7 is replaced by:

M7. •(z +-+ maj(x, y, u)) +-+ (cz)T

97

PhD Thesis, P.F.Castro McMaster-Computing & Software

which says that z changes according to the value of maj(x, y, z). We add the following
axioms

M14. (u-+ [cu]•u) /\ (•u-+ [cu]u)

M15. (u-+ [cu]u) /\ (•u-+ [cu]•u)

M16. •(z ~ maj(x, y, u)) -+ 0(cz n cu)

M17. F(cu n cz)-+ [cu n cz]v2

M18. U ~ Z-+ •V2

Axioms M14 and M15 express the behaviour of cu. Axiom M16 expresses that z and
u ought to change simultaneously. This reflects the requirement that the feedback
from the output of the circuit to u should work correctly. Ml7 says that, if it is
forbidden to not change u and z at the same time and we do not change u and z
simultaneously, then we go into a violation v2 . M18 expresses that when u has the
same boolean value as z, there is no violation v2 .

In this implementation, we have to verify that the specification satisfies require­
ments (ii) and (iii). As stated in [AG92], the implementation tolerates delays in inputs
x and y (i.e., items (ii) and (iii) hold indeed in the presence of a delay in changing x or
y), but it does not tolerate delays in input u. First, let us prove that this specification
satisfies item (ii) by proving:

AG-iv2 f-M z ~ u

i.e., if there is no violation v2 , the feedback from z to u works correctly. The proof
uses induction. It is straightforward to see that f-M 0 Done(U) -+ •(u ~ z). Now,
let us prove f-M u ~ z-+ [U]u ~ z

1. (u ;.-..+ z) /\ (maj(x,y,u) ;.-..+ z) ---+ [cz]T PL,M7
2. (u ;.-..+ z) /\ (maj(x,y,u) f--+ z) ---+ [cu]T PL, M16
3. (u f--+ z) /\ (maj(x,y,u) f--+ z)---+ [cu LJ cz](u ;.-..+ z) DPL, 1, 2
4. (u ;.-..+ z) /\ --i(maj(x,y,u) ;.-..+ z)---+ O(cz n cu) PL, M16
5. 0(cz n cu) ---+ F(cz n cu) Def. 0()
6. (u ;.-..+ z) /\ --i(maj(x,y,u) ;.-..+ z) ---+ [U]--,v2 DPL, assumption
7. F(cz n cu)---> [cz n cu]v2 M17
8. (u ;.-..+ z) /\ --i(maj(x,y,u) ;.-..+ z) ---+ [U]..l DPL,4,5,6
9. (u f--+ z) /\ --i(maj(x,y,u) f--+ z)---+ [U](z ;.-..+ u) DPL, 8
10. (u f--+ z)---+ [cu n cz](u ;.-..+ z) DPL,M7,M15
11. (u f--+ z) /\ (maj(x,y,u) f--+ z)---+ [U](u ;.-..+ z) DPL, 3, 10
12. (u f--+ z) ---+ [U](u ;.-..+ z) PL, 9, 11

Using this property we can prove that we change z only when x and y have the

98

PhD Thesis, P.F.Castro McMaster-Computing & Software

same boolean value and z has a different value, i.e.:

AG-iv2 f- (cz)T-+ •(x +-+ z) /\ •(y +-+ z)

The proof is as follows:

1. (cz)T---+ •(z ~ maj(x,y,u)) M7
2. •(z ~ maj(x,y,u))---+ •(u ~ maj(x,y,z)) PL, Property above
3. (u ~ maj(x, y, u)) ---+ (maj(x, y, u) ~ x) /\ (maj(x, y, u) ~ y) PL, Def.maj
4. (cz)T---+ (maj(x, y, u) ~ x) /\ (maj(x, y, u) ~ y) /\ (maj(x, y, u) ~ z) PL, 1, 2, 3
5. (cz)T---+ •(x ~ z) /\ •(y ~ z) PL, 4, Def.maj

cxncyncuncz cxncyncuncz cxncyncuncz cxncyncuncz

~ // ,, ~ /

82 83 84M· 81
· x,y,z,u z, u u,v2 u,x,v2

~ ..
cxncyncuncz

u,x,z,v2

Figure 4.2: Counterexample

However, this property is not true when we have a violation of type v2 , as the model
of figure 4.2 shows; in this figure each si (for i ~ 5) denotes a state of the model, and
below each state we put the predicates that are true in that state. On the other hand,
each transition is labelled with an event which indicates which action is executed and
which is not. Dashed arrows denote transitions whose labels are not allowed to be
executed. For example, in state s4 the event ex n cy n cu n cz is forbidden. In this

· 't' 1 t t · d c h · 1 h e1 e2 e3 e4mod 1 e , t he m1 ia s a e is s 1 , an ior t e maxima pat 7r = s 1 -+ s2 -+ s3 -+ s4 -+ s5

(where the e/s are the events of figure 4.2), we have that:

7r,4,M ~ (cz)T-+ •(x +-+ z) /\ •(y +-+ z),

i.e., a change in cz is not due to a change in the two inputs x and y, which violates
requirement (ii).

99

PhD Thesis, P.F.Castro McMaster-Computing & Software

4.3 A Simple Train System

We consider a simple example of a train system. Train systems are those systems that
control the movement of trains through a network of rail segments. Fault-tolerance
is a key aspect of these systems: a fault in the system may cause a train collision and
the loss of human life. These kinds of systems are the object of active research in the
fault-tolerance community, see [Abr06, HG93, ABOS].

Our system is made up of a collection of trains: t 1 , ... , tn and a set of rail segments
r 1 , ... , rm (we assume n < m). Rail segments are connected to other rail segments,
in each of these connections the rails have one signal controlling the access to them.
The goal of the signal is to prevent trains from entering one segment when another
train is already in it. The signals can be green (when the segment is free) or red
(when another train is in the segment). We have the following predicates. For each
0 :::; i :::; n and 0 :::; j :::; m, we have a predicate t 1 .rj which is true when the train t 1

is in segment rj; we also have a predicate t 1 .s (true when the train is stopped). For
each 0 :::; j :::; m we have a proposition r j .green which is true when the signal of the
segment rj is green. We have a violation predicate vj for every 0 :::; j :::; m which is
true when we have two trains in the segment r j. (This is implemented by a sensor
in the segment which detects the two trains.) Finally, we have propositions riRrj
which indicate that r 1 and rj are connected.

We have the following actions: t 1 .move(j) (the train t 1 moves to the segment rj),
t 1 .stop (this action stops the train), r 1 .ggreen (the signal of rail r 1 is set to green)
and r 1 .gred (the signal of segment r 1 is set to red).

Recall that in chapter 3 we introduced an extension of the logic with vocabularies
that can have several versions of deontic predicates. In this example we consider three
versions of deontic predicates for each train, and one version for each segment. We
denote by t 1 .Pk(), t 1 .P~() and t 1 .Qk() the permissions and obligations corresponding
to train t 1 . We use the same notation for the segments. Furthermore, we use some
syntactic sugar and instead of writing t 1 .0k(t1 .move(j)) we write t 1 .0k(move(j)),
i.e., we do not repeat twice the trains and the segments when the second occurrence
can be deduced from the context.

The axioms are as follows:

Tl. EB t 1 .rj
l~j~m

for every 1:::; i:::; n. (E9 1~j~m t 1 .rj denotes the exclusive "or" of the predicates t 1 .rj.)

100

PhD Thesis, P.F.Castro McMaster-Computing & Software

This axiom states that each train is in one and only one segment.

T2. ·Done(U) --t /\ /\

This axiom says that, at the beginning of time, there are not two trains in the same
segment.

T3. V (riRrj A tk.ri) --t (tk.moveto(j))T
1$1$m

(for every 1 :S j :S mand 1 :S k :S n.) Axioms T3 say that train tk can move to rail
r j if and only if the train k is in a segment that is connected to r j .

(for every i.) Segments are not connected with themselves.

T5. (v
(where 1 :S k :S m.) There is a violation in segment rk if and only if there are two
trains in segment rk.

(for every 1 :S j :Sm and 1 :S i :Sn.) When there is a train in a segment, the signal
for this segment must be red.

T7. (/\ •ti.rj) --t rj.01(ggreen)
1$1$n

(for every 1 :S j :S m.) If there is no train in the segment, then the signal for the
segment must be green.

(for every 1 :S i :S i, 1 :S k :S mand 1 :S j :S 2.) If the signal of a segment is red,
then any train is forbidden to move into the segment.

T9. t 1 .move(k) n tj .move(k) =act 0

101

PhD Thesis, P.F.Castro McMaster-Computing & Software

(for every 1 ::=; i, j ::=; n and i i- j.) We suppose that there is some mechanism
which prevents two trains from entering the same segment simultaneously, and this
mechanism works correctly.

(for every 1 :::; j :::; n, 1 :::; k :::; m and 1 :::; i :::; 3.) This axiom formalizes a contrary­
to-duty statement: if you are forbidden to move to segment rk, then you are obliged
to not move the train to segment rk, or to stop the train. This statement also can be
read as saying: if you are forbidden to move to segment rk, and you do it, you have
to stop the train. This is similar to the gentle killer paradox1 .

Note that we are only taking into account the trains that for some reason ignore
a red signal and enter into the segment. We must also specify what happens when
another train is already in the segment, to avoid train collisions.

Another bad scenario is when a train is "locked" in a segment, i.e., when a train is in
a segment where all the connected segments have their signal set to red. In this case
the train is obliged to stop.

T12. ti.rk /\ (/\ ((ti.move(j))T---+ F1 (ti.move(j))))---+ ti.03 (stop)
l:Sj:Sm

The following axiom says that trains cannot move to a segment and at the same
time this segment's signal changes to red; we assume some kind of mechanism which
prevents a signal from changing at the same moment that a train is entering the
segment.

(for every 1 :::; i ::=; n and 1 ::=; j ::=; m.) We define the behaviour of each action with
the following axioms.

T14. ([t 1 .take(j)]t1 .rj) /\ (•ti.rj---+ [i.take(j)]•ti.stop)
T15. ([rj.ggreen]rj.g) /\ (•rj.g---+ [rj.ggreen]•rj.g)
T16. ([rj.gred]•rj.g) /\ (•rj.g---+ [rj.gred]•rj.g)

We can prove some properties of this specification. For example, we can prove that,

1It is forbidden to kill, but if you kill, you have to kill gently; you kill. From this one can obtain:
you have to kill gently, which is contradictory with respect to the initial obligation.

102

http:t1.take(j)]t1.rj

PhD Thesis, P.F.Castro McMaster-Computing & Software

if obligations of type 2 are fulfilled by trains, then there is no danger of having two
trains in the same segment. Let <I> be the following set of formulae:

<I>1 = {AG(ti.02(stop) --t ANDone(ti.stop)) I 1::; i::; n}.

These (finite) sets of formulae express that trains fulfil the obligations of type 2. We
can consider a similar set of formulae for the segments:

<I>2 = {AG(ri.01(gred) --t ANDone(ri.gred)) I 1::; j ::; m}.

Using these sets of formulae, we can prove the following property:

Informally, when trains fulfil their obligations of stopping at a red signal and segments
fulfil the obligation of setting their signal to red when there are trains in the segment,
then we cannot have two trains in the same segment.

The proof uses the axiom of induction. Using axiom T2 and propositional logic
we obtain I-Train °Done(U) --t •(ti.rk /\ tj.rk)· Now, we prove:

The proof is a follows:

1. •ti.rk /\ tj .rk -4 rk.02 (gred) T6
2. rk.01(gred) -4 [U]Done(rk.gred) DPL, TempAxl, Assumption
3. rk.gred n ti.move(k) =act 0 T13
4. •ti.rk /\ tj.rk -4 [t1.move(k)]1- PDL, 1,2,3
5. •ti.rk -4 [ti.move(k)]•t1.rk PL, T14
6. •ti.rk /\ tj.rk -4 [U]-.ti.rk PDL, 4, 5
7. ti.rk /\ •tj.rk -4 rk.01(gred) T6
8. rk .gred n t j .move(k) =act 0 T13
9. •tj.rk /\ ti.rk -4 [tj.move(k)]1- PDL, 1,2,3
10. •tj.rk -4 [tj.move(k)]-.t1.rk PL, T14
11. •tj.rk /\ t1.rk -4 [U]-.tj.rk PDL, 4, 5
12. •tj.rk /\ •t1.rk -4 [t1.move(k) n tj.move(k)]1- PDL, T9
13. •tj .rk /\ •ti.rk -4 [t1.rk.move(k) n tj .rk.move(k)]•tj .rk /\ •ti.rk PDL, T14
14. •tj.rk /\ •t1.rk -4 [U]•tj.rk /\ •t1.rk PDL, 6, 11, 12, 13
15. •(ti.rk /\ tj.rk -4 [U]-.(ti.rk /\ tj.rk)) PL, 14, 11, 6

Therefore, using the induction rule, we get I-train •(t1.rk /\ tj.rk)· Another property
is that, when the obligations of type 3 are fulfilled, then when we have two trains in

103

http:U]-.(ti.rk
http:U]�tj.rk
http:U]-.tj.rk
http:tj.move(k)]-.t1.rk
http:U]-.ti.rk
http:ti.move(k)]�t1.rk

PhD Thesis, P.F.Castro McMaster-Computing & Software

a segment, both will stop. The property can be stated as follows:

ti.03 (stop) --t ANDone(ti.stop) I-Train ti.rk /\ tj.rk --t ANti.stop /\ tj.stop.

The proof is straightforward from the axioms.

We can think of this property as a recovery property, since from a state where
there is a (dangerous) violation we go into a state where we still have a violation
but it is safe, since it is free of train collisions. As stated in [Aro92], fault-tolerance
is not only about reaching a state free of error after a violation. But also, in some
cases, it is acceptable to reach a safe state, where no further violations might arise.
Of course, this example can be made more realistic, and we can state that after two
trains are stopped in the same segment, then one of them can be removed, or an
alternative exit can be made available. We keep the example as simple as possible to
show how deontic predicates can be used to express requirements over specifications,
which, when not fulfilled, yield a violation or bad behaviour.

On the other hand, if obligations of type 2 are not fulfilled, we can reach dangerous
states. In figure 4.3, we have a model with two states s0 and s1 ; below each state,
we have the predicates that are true at this state. We have two segments which are
connected, and we have two trains, ti is in segment ri and t 2 is in segment r 2 . Since
segment r 2 is occupied, ti is forbidden to move to that segment, but if it moves,
then it must stop. The train moves to that segment and it does not stop. We reach
a state where the two trains are in the same segment, and ti executes any action
but ti.stop, which will produce a collision in the real world. This model also shows
that the contrary to duty predicate expressed by axiom TlO does not introduce any
inconsistency in the specification.

-­.....
ti .stop

~ -,
so s1

t1.r1, t2.r2, r1Rr2 t1.r2, t2.r2, r2.v, r1Rr2, r2.green

Figure 4.3: Example of of violation

4.4 Byzantine Generals

The Byzantine generals problem was stated originally in [LSP82]; the problem is the
following. We have a general with n - 1 lieutenants. The general and his lieutenants

104

PhD Thesis, P.F.Castro McMaster-Computing & Software

can communicate with each other using messengers. The general may decide to at­
tack an enemy city or to retreat; then, he sends the order to his lieutenants. Some
of the lieutenants might be traitors. Traitors might deliver false messages or per­
haps they avoid sending a message that they received. The loyal lieutenants must
agree on attacking or retreating. This problem is a classic problem of fault-tolerance
and distributed computing. Different solutions have been proposed, for example in
[LSP82, DS83, ST87]. These solutions are simpler when an authenticated way of
communication is used, i.e, traitors cannot lie. A solution proposed in the original
paper is using signed messages in such a way that signatures cannot be forged (using
some encryption protocol). The analogy with fault-tolerance is straightforward, the
general is a sender process, the lieutenants are processes that have to agree with some
decision taken by the sender. The traitors are faulty processes.

The specification that we provide below uses the ideas introduced in [DS83, ST87],
where authenticated messages are used. The specification does not assume any form
of authentication to prevent forged messages. Instead, deontic predicates are used
to express that traitors are forbidden to lie. Of course, they might forge messages
anyway. We consider this as a malicious behaviour which is a worse betrayal than
to not obey orders. The important point here is that deontic operators allow us to
abstract from the mechanisms that are used to prevent traitors from lying.

We have the following actions: li.sendA(j) (lieutenant li sends the message of
attack to lieutenant lJ), 11 .fwd(k, A, j) (lieutenant li forwards to lj the message of
attack that he received from lk), 11 .betray (lieutenant 11 becomes a traitor). We
consider a clock that allows lieutenants to synchronize; the action tt increments the
clock by one unit of time. The specification uses m+ 1 rounds of messages, which
are coordinated by means of the clock. We have the following predicates. li.Aj
(this predicate indicates that li has received a message from lj saying that he must
attack). We have a violation predicate 11 .v for each lieutenant (this predicate is true
when li is a traitor, i.e., a 11 is in a violation state) and li.d (this predicate is true
when 11 have decided to attack), ri (this predicate is true when we are in round i).

We assume that 10 is the general, the messages are delivered correctly and all the
lieutenants can communicate directly with each other, in such a way that they can
recognize who is sending a message. We have n lieutenants and the specification that
is shown below uses a constant m < n that indicates that the specification tolerates
at most m traitors.

(For the deontic predicates we use the same notation conventions as in the train
example.) The axioms are the following. Note that the following are axiom schemas,
each formula denotes a finite collection of axioms.

105

PhD Thesis, P.F.Castro McMaster-Computing & Software

01. Done(U)--+ (/\ /\ •11.Aj) A r 0 A (/\ •11.d)
(1::;1$n) (1$j$n}/\(1#j) 1$1$n

At the beginning, the lieutenants have not received any message, we are in round zero
and the lieutenants (with exception of the general) have not taken any decision (by
default the decision is to retreat).

If the general is loyal, then he keeps holding the same decision that he has taken at
the beginning.

3. /\ 11.01(betray)
1$1$n

Lieutenants should not betray.

4. •Done(U) A 10 .d--+ 10 .02
(LJ sendA(i))
1$1$n

At the beginning, if the general decided to attack, then he ought to send a message
with his decision to the other lieutenants.

These axioms specify the behaviour of the clock.

6. Do(tt)

We always increment the clock.

(where 1 ::; k::; m, 1 ::; i ::; n and 1 ::; j 1 , ... , jk ::; 1 are k different numbers.) These
axioms indicate that, if in round k the lieutenant 11 has received k messages with the
order to attack, then he decides to attack.

8. rk A 11.Aj1 A···A11.Ah--+

11.02
((LJ sendA(j) n fwd(j 1 , A, j) n · · · n fwd(jk, A, j)))

1jnAj#j1/\···Aj#jk

These axioms indicate that, if in round rk the lieutenant 11 has received k messages

106

http:A���A11.Ah

PhD Thesis, P.F.Castro 	 McMaster-Computing & Software

with the order to attack from k different persons, then he ought to notify all the
rest of the lieutenants about the decision to attack, he also forwards all the messages
received.

F39. li.v /\ •li .Aj ---t (lJ fwd(j, A, k))
l:Sk:Sn

If a lieutenant is a traitor, then he is forbidden to lie. This involves contrary-to-duty
reasoning. Lieutenants might betray at any moment (which is forbidden), but, if they
betray, then they must not lie.

10. 	 rk /\ •li.v /\ •li.Aj1 /\ • • • /\ •11.Aj, ---t

[LJ sendA(k)]1- /\ [LJ fwd(k, A, k')]1­

(where 1 '.S k '.Sm, 1 '.S i '.S n and t > n - k.) These axioms say that, when in round
rk a loyal lieutenant has not received at least k messages saying that he must attack,
then he does not send nor forward any message.

(for any 1 '.S i '.S n.) These axioms expresses that the decision taken in round mis
final.

12. [li.sendA(j)]lj .A1
13. [11 .fwd(k, A, j)]lk.Aj

~~~~~~~~~~~~-

14. •11 .Aj ---t [lj.sendA(i) U LJ lt.fwd(i, A, j)]•li.Aj 

15. •11 .v /\ li.d ---t [U]li.d 
16. li.Aj 	---t [U]l1 .Aj 

(for every 1 '.S k, i, j '.S n.) These axioms specify the behaviour of the actions 
li.sendA(j) and lt.fwd(i, A, j). Axiom 15 says that, if a loyal lieutenant has de­
cided to attack he keeps his decision, axiom 16 says that lieutenants do not forget 
the messages received. Finally, we describe the behaviour of the action betray. 

17. [li.betray]li.v 
18. •li.v ---t [li.betray]•li.v 

The axioms of the specification depend on a number mwhich, intuitively, is the number 
of traitors for which the specification ensures that the loyal lieutenants will agree on a 
decision. We sketch the proof of the fact that, if we have less than m traitors, then the 

107 


http:j)]�li.Aj


PhD Thesis, P.F.Castro McMaster-Computing & Software 

loyal lieutenants reach an agreement. Consider, first, the following set of formulae: 

<I> 1 = {li.F3(fwd(k,A,j))--+ ANDone(li.fwd(k,A,j)) I for any 1::; i,j,k::; n}. 

This set of formulae say that traitors do not lie. The following formulae say that 
there are at most mtraitors: 

(for some different 0::; ji, ... ,jn-m ::; n.) Another useful supposition is that loyal 
lieutenants fulfil their obligations, which is expressed by the following formulae: 

<I>3 = {li.02 (a)--+ ANDone(a) I for every 1 ::; i::; n}. 

Then, if we suppose that there are at least n - m lieutenants who are not traitors, 
traitors do not lie and that loyal lieutenants fulfil their obligations, we can prove that 
in round m+ 1 the loyal lieutenants reach an agreement. This is expressed with the 
following formulae: 

(We denote by Bizm the specification given above.) This property follows trivially if 
we prove that any two loyal lieutenants reach an agreement. This is expressed by the 
following property: 

Property 4. 

(for any u1, u2 E {j1, ... , jn-m}.J We sketch the proof 
Sketch of Proof. At the beginning we have •lu1 .d and •lu2 .d. If, in any round rk 
with k ::; m, we have lu1 .d by axiom 8, and since we assume that loyal lieutenants fulfil 
their obligations, we know that the action lu1 .sendA(luJ will be executed and also lu1 

will forward all of the k messages that he received with an attack order. This implies 
that, in round rk+1' lieutenant lu2 will have received k + 1 messages saying attack, 
and, therefore, by axiom 7, in round rk+1 we have lu2 .d. The same reasoning can be 
applied to lu2 .d in round rk with k ::; m. If lk1 .d is true in round rm+1 and false in all 
the earlier rounds, then this lieutenant has received m+ 1 messages saying "attack", 
but since traitors do not lie by assumption and also we assumed that we have at most 
m traitors, lieutenant lu1 have received an order to attack from some loyal lieutenant, 
which by axiom 8 sent the same orders to lieutenant lu2 ; this implies that in the next 
round after receiving the order from the loyal lieutenant, both have decided to attack 
by axiom 7. • 

108 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

It is interesting to note that when traitors lie, the property shown above is not 
true. Suppose that we have three lieutenants: 10 , li, 12 and 11 is a traitor. Consider 
the specification instanced with m = 1 (only one traitor). The model in figure 4.4 
shows a counterexample; we have three states: s0 , s 1 , s2 , the initial state is s0 . Below 
each state the predicates that are true at that state are shown, the predicates which 
are false are not shown. At the beginning, we have that no lieutenant is a traitor, and 
that the general 10 has decided to retreat. Each transition is labelled with the actions 
that are executed in that transition. In the first transition, 11 becomes a traitor; the 
dashed arrow indicates that a forbidden action was executed. After that, 11 lies to 12 

and he forwards a message that he did not receive; this is also a forbidden action. As 
a consequence, in round r 2 , lieutenants 12 and 10 do not agree since one has decided 
to attack and the other to retreat. 

11.betrayntt i 1.tvd(O,A,2)ntt 

.... / 

/ 
so 
ro 

Figure 4.4: Counterexample when traitors lie 

4.5 Coolers 

Consider a microprocessor which is part of a critical system (perhaps in a space 
station, where it is not easy to replace it); we have two coolers to keep the temperature 
of the processor low, and also we have a sensor to measure the temperature. The 
processor could be in a normal state (that is, working correctly) or on stand by; the 
latter could occur when the processor is too hot, maybe because the coolers are not 
working. It is forbidden that the processor is on stand by because this can produce 
some incorrect behaviour in the system. This example was partially introduced in 
[CM07c]. 

We see that we have standard violations (when the coolers are not working), and 
also a contrary-to-duty scenario: the processor is forbidden to be on stand by, but if 
the temperature is too high (because of the bad behaviour of some cooler), then we 
should put the processor on stand by. The vocabulary of the example is given by the 
following set of actions and predicates with their intuitive meaning: 

• c1 .start, turn on cooler l. 

109 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• c2 .start, turn on cooler 2. 

• c1 .stop, cooler 1 stops working. 

• c2 .stop, cooler 2 stops working. 

• p.sb, the processor goes into stand by. 

• p.up, the processor wakes up. 

• s.ghigh, the sensor detects high temperature. 

• s.glow, the sensor detects low temperature. 

and predicates: 

• p.on, the processor is working. 

• s.high, the sensor is detecting high temperature. 

• c1.on, the cooler 1 is working. 

• c2 .on, the cooler 2 is working. 

We have the following violation constants: 

• v1, a violation is produced because cooler 1 should be working and it is off. 

• v2 , similar than v1 but produced by cooler 2. 

• v3 , a violation is produced because the processor is on stand by. 

The following are some of the axioms of the specification: 

At the beginning (of time) there are no violations, the processor is working, the sensor 
is low, and the coolers are off. 

Ax2. F1(p.sb) 

It is forbidden that the processor goes into stand by. 

110 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Ax3. •s.high ___. Pi(p.sb) 

(for i = 1, 2.) If the sensor is low, then every action, different from putting the 
processor in stand by, is allowed. 

If the sensor is detecting high temperature, then the two coolers should be on. 

Ax5. s.high /\ v1 /\ v2 ___. 0 2(p.sb) 

If the sensor is detecting a high temperature and both coolers are not working, then 
the processor ought to go into stand by. 

Ax6. 	 •vi/\ F1(c1.on) ___. [c1.on](v1 /\•vi)) 
/\(vi/\ F1(c1.on) ___. [c1.on](v1 /\vi)) 

(For 2 ::::; i ::::; 3.) These axioms express that a bad behaviour of cooler 1 yields a 
violations of type v1 . 

Ax7. 	 (•vi/\ F1(c2.on) ___. [c2.on](v2 /\•vi)) 
/\(vi/\ F1(c2.on) ___. [c2.on](v2 /\vi)) 

(For i = 1, 3.) These axioms are similar to axiom Ax6 but for cooler 2. 

Ax8. 	 (•v1 /\ F2(ps.sb) _. [ps.sb](v3 /\ •v1)) 
/\(vi/\ F2 (ps.sb) ___. [ps.sb](v3 /\vi)) 

(For i = 1, 2.) These axioms indicate that violation v3 arises when the processor is 
not put on stand by when it is necessary. 

Ax9. (v1 ___. [c1.on]v1) /\ ([c1.on]•vi) 
AxlO. v2 ___. [c2.on]v2 /\ ([c2.on]•v2) 
Axll. V3 ___. [p.up]v3 /\ ([p.up]•v3) 

Ax9, AxlO and Axll define the recovery actions for each violation; although this 
example is simple, in more complicated examples the designer has to take care that 
recovery actions should not cause violations. We add the restriction that if both 
coolers are on, then it is not possible to have a high temperature in the processor 
(the system is well designed in this sense). 

111 


http:F2(ps.sb
http:F1(c2.on
http:F1(c2.on
http:F1(c1.on
http:F1(c1.on


PhD Thesis, P.F.Castro McMaster-Computing & Software 

The rest of the axioms specify the behaviour of the actions. 

Ax13. [p.up]p.on 
Ax14. •p.on --t [p.up]•p.on 
Ax15. [c 1.start]c1 .on 
Ax16. •c1 .on --t .--[c-1 -.s...,.t_a_r~t]•c 1 .on 
Axl7. [c2 .start]c2 .on 
Ax18. •c2 .on --t ,._[c-2 -.s-t_ar_,t]•c2 .on 
Ax19. [s.ghigh]s.high 
Ax20. •s.high --t ~[s-.g-h-i-gh~]•s.high 

Ax21. [s.glow]•s.high 
Ax22. s.high --t [s.glow]s.ghigh 

An interesting point about this description is that having two different kinds of deontic 
predicates adds more structure in the violation lattice; the different violations that 
may occur in this specification are shown in figure 4.5. In this illustration we can 

Figure 4.5: Possible violations for the two coolers example 

see the different violations that can arise in the example; every node denotes a set of 
violations which may become true at a certain point in the execution of the system 
(these are the violation states described in chapter 3). At the beginning we have no 
violations (the empty set); after that we can go into a violation v1 (when the cooler 
1 is not working and the temperature is high), or to a violation v2 when we have 
the same situation but for cooler 2; when both coolers are not working we get the 
two violations. Now, when we put the processor on stand by we have a violation v3 

which gives us the second dimension in the picture; this violation is needed in some 
situations to prevent the processor from burning out. These informal relationships 
between the violation states can be stated formally, we revisit this issue in chapter 7. 

On the other hand, using the the GGG condition can make easier the proof of 

112 


http:c-2-.s-t_ar_,t]�c2.on
http:c2.start]c2.on
http:c1.start]c1.on
http:p.up]�p.on
http:p.up]p.on


PhD Thesis, P.F.Castro McMaster-Computing & Software 

some properties. For example, from this specification we can prove: 

i.e., when the temperature is low there are no violations ( C denotes the set of ax­
ioms of the specification and G(C) denotes the GGG condition instanced for this 
specification). The proof is straightforward using the GGG and Ax3. 

4.6 Further Comments 

In this chapter we have presented some examples of specifications using the logic 
described in chapter 3. In these examples, deontic predicates are used to express 
ideal behaviours, and violation predicates to point out that the component or system 
has not behaved as expected. In contrast to dynamic deontic logics [Mey88, Bro03], in 
the logic presented in chapter 3 the deontic predicates are not reduced to modalities 
and violation predicates. 

Our view is that the relationship between violations and deontic predicates must 
be established in each individual specification. In Meyer's approach [Mey88], the 

definition of permission is PM(a)~ (a)•v, i.e., an allowed action is an action such 
that there is at least one way of executing it such that we reach a state without 
violations. In fault-tolerance, this is only true for recovery actions; as stated in 
[SC06], permitted actions may carry forward violations. In our setting, the properties 
of permitted actions are established in the specification, and they do not necessarily 
recover from a violation state. For instance, in the train example, by axiom TB, 
trains are obliged to stop; however, if the train stops (which is a permitted action 
since O(a) -t P(a) is a theorem in our logic), the system is still in a violation state, 
since two trains are in the same segment. A recovery action would be to remove one 
train from the segment. 

Another problem with Meyer's approach is the Ross's paradox (see chapter 2), 
with Meyer's obligation we have: OM(a) -t OM(a LJ (J). If we take again the train 
example, we have that OM(t.stop) -t OM(t.stop LJ t.stop), i.e., if a train ought to 
stop, then it ought to stop or not to stop. This property is undoubtedly undesirable. 
Ross's paradox is not valid in our logic (see chapter 3). 

Broersen proposes another reduction of deontic predicates to modalities which 

avoids Ross's paradox. Broersen proposes, for example, FB(a) ~ (a)v, i.e., an ac­
tion is forbidden if and only if there is a way of executing it which yields a violation. 

113 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

This relationship between prescriptions and postconditions is undesirable in some sce­
narios. For instance, in the example of the byzantine generals, if we use the Broersen 
prohibition to state that the lieutenants ought to not betray, i.e., F8 (11 .betray), by 
the definition of this predicate we have: (11 .betray)l;.v. Since, in the example, all 
the lieutenants are forbidden to betray, following this definition all lieutenants may 
betray. This means that given a lieutenant 11 and any state w where --.li.v is true, 
we have a transition w -..:.+ w' where li.v is true in w'. In these kinds of models the 
formula <I> 2 (that expresses that only m lieutenants will betray) will make the speci­
fication inconsistent (using the Broersen prohibition). Since in our approach there is 
no relationship between deontic predicates and transitions, the prohibition to betray 
does not imply the possibility of betraying. 

As shown in the examples, the deontic predicates allow us to distinguish normal or 
ideal scenarios from those scenarios which are abnormal or faulty. This distinction is 
reflected in the semantic structures, where we have permitted or allowed transitions 
and forbidden or not allowed transitions. The use of stratified norms allows us to 
avoid contrary-to-duty paradoxes, where an obligation which arose after a violation 
may be in conflict with other obligations; this is illustrated in the train example and 
the byzantine generals example. In [MWD94], a version of dynamic deontic logic 
with stratified norms is sketched, but reducing the deontic predicates to modalities 
(following the original definitions of Meyer). As we argued above, this reduction of 
deontic predicates to modalities is sometimes not desirable when specifying computing 
systems, since the notion of prescription and description are mixed up. 

114 




Chapter 5 

A Tableaux Calculus 

Tableaux systems ( [Smu68]) are practical proof systems which are representative of 
an important stream of research in automated theorem proving (see [Fit90]). The 
basic idea behind this kind of proof system is proof by refutation, i.e., to prove a 
formula cp, we start with •cp and then we try to derive a contradiction. Usually, 
if the formula is not provable, we get a counterexample (a model which satisfies the 
negation of the formula). Several tableaux systems have been proposed for logics used 
in computer science, such as dynamic logics, modal logics and temporal logics. For 
example, in [Pra78], a tableaux system for propositional dynamic logic is described, 
which is also shown to be more efficient than other decision methods. In [Fit72] the 
method of labeled tableaux is introduced to deal with modal logic. Meanwhile, in 
[GM96], a tableaux system that incorporates some new characteristics is introduced 
to deal with dynamic logic with converse. These systems allow us to decide these 
logics, and to find counterexamples in the case of non-valid formulae. 

In this chapter, we introduce a tableaux method for the deontic action logic pre­
sented in chapter 3. Tableaux methods can help to provide automated theorem 
provers for this logic, enabling automatation of the analysis of specifications (or the 
task of finding counterexamples). In [CM08], we have outlined a tableaux system 
for this deontic logic and in this thesis we fill in the technical details. In section 5.1 
we introduce the tableaux system, and we prove that it is sound and complete with 
respect to the semantics proposed. One important point to stress again about the 
logic is that we consider a finite number of actions in vocabularies; this then implies 
that changes of vocabularies could affect the validity of formulae. As a consequence, 
the logic does not satisfy the satisfaction condition (see [GB92]). Intuitively, some 
actions in the vocabulary denote environment actions, which might interact with the 
system being specified. Then, adding more environment actions enlarges the number 

115 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

of possible models of the specification, and therefore a formula which is valid for a 
given set of actions is perhaps not valid when more environmental actions are con­
sidered. We provide some formal machinery to tackle this problem; theorem 8 states 
that there is a bound on the number of actions to be considered when proving the 
validity of formulae. More precisely, given a formula, we can calculate the number of 
actions that we must consider in the vocabulary to prove its "global" validity (i.e., 
its validity in every vocabulary, or, in other words, in any environment in which the 
component being analyzed may be embedded). These kinds of results are important 
when we need to prove properties of incomplete specifications. For example, when 
we specify a component, but we do not know, a priori, which other components will 
interact with it, or perhaps we just have partial information about the environment 
which will interact with the component. 

The chapter is organized as follows. In section 5.1 we introduce the tableaux sys­
tem for the propositional part of the logic, and we prove its soundness and complete­
ness. Then, we extend this system to deal with branching time temporal operators, 
and we prove the soundness and completeness of this new system. In section 5.2 we 
prove some meta theorems about how formula validity may be preserved when we 
change notation. Finally, we present some examples and further work. 

5.1 Tableaux for DPL 

In this section we present a tableaux system for the logic described above; we follow 
the approach introduced in [Fit72], where standard formulae are enriched with labels; 
intuitively, each label indicates a state in the semantics where the formula is true. 
Labeled systems are usual for many logics (see [Gab96]), in particular in [GM96] a 
tableaux deduction system for dynamic logic with converse is described. Here we 
adapt these techniques to our modal action logic, showing that deontic operators fit 
neatly into the system; the duality between the strong and weak permissions resembles 
in some sense the duality between modal necessity and modal possibility. We prove 
that this system is complete and sound, and we extend this system with rules for the 
temporal version of the logic showing that completeness and soundness is preserved. 

A labeled, or prefixed, formula has the following structure: <J" : <p, where <J" is a label 
made up of a sequence of boolean (action) terms built from a given vocabulary and 
<p is a formula. We use the following notation for sequences: () (the empty sequence), 
x. xs (the sequence made up of an element x followed by a sequence xs); we also 
use the same notation to denote the concatenation of two sequences; i.e., given two 
sequences xs and ys, by xs. ys we denote the sequence made up of the elements of 
xs followed by the elements of ys. 

116 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

From here on we consider a fixed vocabulary: V = (<P0 , b.0). Recall that we 
use some axiomatization of boolean algebras, denoted by <PsA; note that there exist 
complete and decidable axiomatizations of boolean algebras. 

Now, we can introduce the notion of a tableau. 

Definition 21 (Tableaux). A tableau is a (n-ary) rooted tree where nodes are labeled 
with prefixed formulae, and a branch is a path from the root to some leaf. D 

Intuitively, a branch is a tentative model for the initial formula (which we are try­
ing to prove valid). Given a branch B, we denote by EQ(B) the equations appearing 
in B. 

In figures 5.1, 5.2 and 5.3 we introduce a classification of formulae which is useful 
for presenting the rules of the tableaux calculus. In figure 5.1, propositional formulae 
are classified following Smullyan's unifying notation [Smu68]. This notation is stan­
dard in tableaux systems. The figure also defines, for each formula of type A, two 
formulae (A1 and A2), and, for each formula of type B, two formulae (B1 and B2). 

(Note that in the literature a is used instead of A, and {3 instead of B; here we do not 
use greek letters to avoid confusion with action terms.) We also introduce the less 
standard classification for modal logics. (We follow the standard notation for modal 
logics (see [Fit72]).) Figure 5.2 shows the P and N prefixed formulae (called 7r and v, 
respectively, in the literature); for each of them we define formulae P(T) and N('Y), 
respectively. Here 'Y is some action term which is needed to define these formulae 
(see the rules below). Note that, for any formula P, P('Y) denotes two formulae. 
Finally, in figure 5.3 we introduce a new classification for deontic formulae. Although 
the deontic operators are, in some sense, similar to the modal operators, we need to 
distinguish them; the deontic predicates state properties over transitions, whereas the 
modal operators state properties about states related to the actual state. Using the 

A Ai A2 B B1 B2 
a:<pf\1/J a: <p a : 1/1 a:<pV'lj; a:<p a : 1/1 
a: •(<p V 'lj;) a : •<p a : •1/J a: •(<p /\ 1/1) a : •<p a : •1/J 
a : ••<p a:<p 

Figure 5.1: Classification for formulae A and B. 

N N(T) p P(T) 
a: [a]<p 
a : •(a)<p 

a."(:<p 

a. r : •<p 

a : (a)<p 
a : •[a]<p 

a • 'Y : <p, a : 'Y fact 0 
a • 'Y : •<p, a : r fact 0 

Figure 5.2: Classification for formulae P and N. 

117 



PhD Thesis, P.F.Castro McMaster-Computing & Software 

Nn Nn('y) Pn Pn('y) 
a: P(a) a: P('y) a: •P(a) a : 0 P('y), a : 'Y =I-act 0 
a: •Pw(a) a: •Pw('y) a: Pw(a) a: Pw('y), a: 'Y =I-act 0 

Figure 5.3: Classification for deontic formulae. 

above classification of formulae, we can introduce the rules of the tableaux method. 
In the definition of these rules we use front action of a P, N, Pn or ND formula to 
refer to the nearest action to the root in the syntactical tree corresponding to this 
formula. For example, for the formula [a]([,B]cp /\("!)'¢),its front action is a. 

In figure 5.4 the classic rules for standard formulae can be found. In figures 5.5 
and 5.6, we exhibit the rules for ND and N formulae, respectively. Rule N is standard 
for K modal logics (see [Fit72]); it does not introduce new labels in the branch, but 
it adds new formulae to labels already in the branch; intuitively, for all (the states 
denoted by) the labels reachable from the current state, the N formula must be true. 
On the other hand, rule Nn for deontic necessity requires that the corresponding 
action must be allowed for all the possible contexts in the actual state. Note that for 
modal necessity we only consider the labels already in the branch, while for deontic 
necessity we do not have this restriction. Rules P and Pn for modal and deontic 

Figure 5.4: Classic rules for formulae of type A and B 

for all 'Yi, .. ., 'Yn E Atc:0 (D.o/r), for o: the front action of Nn and r the set of equations 
already in the branch 

Figure 5.5: Rules for deontic necessity 

118 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

N
N: 

where ')'1, ... ,f'n E Atca:(b.o/r) for a the front action of N and where the labels of N(l'i) 
are already in the branch. 

Figure 5.6: Rules for modal necessity 

possibility, respectively, are shown in figure 5.7; given a P formula, this rule creates 
one branch for each possible execution of the front action in the formula; although 
the rule for deontic possibility is very similar, note that deontic possibility does not 
create new labels, because permissions only predicate over transitions. In the figure 
we use parentheses to distinguish between the P and Pn rules. Note that in these 
rules, an inequation saying that the action must not be impossible is added in each 
branch, allowing us to avoid adding labels that cannot exist in the semantics. In the 
figure 5.8 we can see the rule Per; this rule says that if an action which is atomic (in 
the sense that it cannot have different executions) is weakly allowed, then it is also 
strongly allowed. Note that we have not shown any rule for equality; this is because 
equality reasoning is implicit in our calculus (see below the definition of boolean 
closed). For simplicity of the presentation of the concepts, we rule out those formulae 
of the form: [a](a =act /3), i.e., modal formulae where equality is after a modality. 
This does not affect the completeness of the method since formulae of this kind are 
equivalent to formulae where equations do not appear after modalities (see chapter 3). 
It is straightforward to extend the method described here to manage these kinds of 
formulae. We can extend this tableaux system to deal with vocabularies with several 
versions of deontic predicates (i.e., with stratified norms) considering an instance of 
each rule per each index in the vocabulary. Now we introduce the notions of closed, 
boolean closed, deontic closed and open branch. Keep in mind that a branch is a set 
of prefixed formulae. 

Definition 22 (deontic closed). Given a branch B and a boolean theory r, we say 
that B is deontic closed with respect to r if it satisfies at least one of the following 
conditions: 

• a: P(I) EB and a: -.P(I) EB, for some/ E At(~0/f), and some label a. 

• a: Pw(I) EB and a: -.Pw(I) EB, for some/ E At(~o/r), and some label a. 

119 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

p (P ) . P (Pv) 
D · P('Y1) (Pv('Y1)) I ... IP('Yn) (Pv('Yn)) 

with {'y1, ... , 'Yn} = Atca(~o/I'), with o: the front action of P(Pv) and r is the set of 
equations in the branch 

Figure 5. 7: Rules for possibility and permission 

er: Pw('Y)Per: ___..:....:.:.... 
er: P('Y) 

with 'Y E At(~o/I'), r being the set of equations in the branch 

Figure 5.8: Rules for possibility and permission 

• er: -,P('y) EB and er: Pw('Y) EB, for some 'YE At(~o/I'), and some label er. 

0 

Note that we have not included er : P('Y) and er : •Pw('Y) as being mutually 
contradictory; this is because they are not contradictory when r f-BA 'Y =act 0. This 
fact yields the next definition. 

Definition 23 (extended boolean theory). Given a branch B, the extended boolean 
theory {denoted by EQ*(B)) of B is defined as follows: 

EQ*(B) = { ('Y =act 0) I 'YE At(~o) /\(a : P('Y), O" : •Pw('Y) E B)} UEQ(B) 

0 

It is useful for us to introduce the notion of boolean closed branch; intuitively, 
these branches are inconsistent boolean theories. We denote by EQ(B) the set of 
equations in the set B. 

Definition 24 (boolean closed branch). A branch Bis boolean closed iff EQ*(B) f--BA 

0 =act U, or EQ*(B) f--BA a =act (3 and a fact (3 EB 0 

Definition 25 (closed branch). A branch is closed if either it has a propositional 
variable a : p and a negation of it er : •p, or it is deontic closed or boolean closed. 0 

120 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

An open branch is a branch which is not closed. Note that we have not described 
any particular way to apply the rules, which are, by their nature, non-deterministic. 
We show that any algorithm which satisfies some requirements provides a complete 
system for the logic. Let us introduce the notions of "complete" branch and "com­
plete" tableau. 

Definition 26. We say that a branch B is complete if: 

• For every labeled formula a : <p E B, 

If it is a B, P or PD formula, then some of the formulae resulting from 
applying the corresponding role to the formula belongs to B. 

If it is a N, A or ND formula, then all the formulae resulting from applying 
the corresponding role belong to B. 

D 

A tableau is complete when all its branches are complete. Note that, in the 
case of an N formula, we require that all the corresponding formulae N(-yi) must 
belong to the branch. When applying the rules, we must be careful to satisfy this 
requirement; a problem arises when we apply a rule N and following it we apply a 
P-rule, adding a label that was not there before, and then invalidating the condition 
shown above. There are several algorithms which can satisfy these requirements. 
In particular, variants of the algorithms given in [Smu68] and [Fit72] can be used; 
we do not describe any of these algorithms in this section (although in section 5.4 
an algorithm for the temporal version of this logic is exhibited; this algorithm can 
be used for the present case too). However, in the next section we prove that any 
procedure which generates a complete tableaux gives us a complete tableaux system. 

5.1.1 Soundness and Completeness 

The soundness of the tableaux system is proved by a theorem which ensures that 
each rule is safe (with respect to satisfability). Towards this goal we introduce the 
following definitions. 

Definition 27 (Mapping). Given a set S of prefixed formulae (with F being the set of 
prefixes occurring in it} and a model M = (W, R, £,I, P) over a vocabulary (~0 , 1>0), 

an interpretation is a function i : F ---+ W, such that: 

121 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• For all a and a • 'Y in F, there exists e E I('Y) such that l(a) ...:+ l(a . 'Y). 

D 

Definition 28 (SAT Branch). A branch Bis SAT iff there exists a model M and an 
interpretation l such that, for every a: cp, it is the case that l(a), Mt= cp. D 

We say that a tableaux Tis SAT if there exists a branch in T which is SAT. Let 
us introduce a key theorem. 

Theorem 11. If Tis a SAT tableau, then a tableau T' obtained by an application of 

a tableaux rule is also SAT. 

Proof. Suppose that a branch B of T is SAT, and let M = (W, R, £,I, 'P) be the 

model and l the interpretation for B. We prove the theorem by induction; for the A 

and B rules the proof is standard. 

Rule P: Suppose a: (a)cp EB, and l(a),M t= (a)cp; obviously, I(a) #act 0, and also: 


:3e E I(a) : :3w' E W: w ...:+ w' /\ w', Mt= cp (5.1) 

If BU {a. 'Yi : cp} is not SAT in M, this means for all 'Yi E At(.6.0 /I') (where r is the 
set of equations in the branch and .6.o is the set of atomic actions}: 

Ve E I('Yi): Vw' E W: w }t w' Vw',M ~ cp 
=} 

Ve E I('Y1) U ... U I('Yn) : w }t w' Vw', M ~ cp 
{::} 

Ve E I('Y1 LJ .•. LJ 'Yn) : w }t w' Vw', M ~ cp 
{::} 

Ve E I (a) : w }t w' V w', M ~ cp, 

contradicting 5.1. 

Rule PD: If a : Pw(a) E B (we must have EQ(B) fLBA a #act 0), then l(a), M F= 
Pw(a), and this means: 

:3e E I(a) : P(l(a), e) (5.2) 

and therefore e E I('Yi) for some 'Yi E At(.6.o/I'), and: 

(5.3) 


and this means: l(a), MF= Pw('Yi)· 

122 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

The cases a : -.[a]cp E B, a : -.P(a) E B are similar to the first and second case, 
respectively. 

Rule N: If a : [a]cp E B, then 1,(a), MI= [a]cp; this means: 

Vw' E W, e E I(a) : 1,(a) ~ w':::} w', MI= cp (5.4) 

Then, since for every ri E At(a): I (ri) ~ I (a), it is the case that: 

Vw' E W, e E I(ri): 1,(a) ~ w':::} w', MI= cp (5.5) 

Now, if a. r is in B then we have 1,(a) ~ 1,(a. 1) (where e E I(ri)) by definition, and 
then 1,(a. 'Yi), MI= cp. 

Rule Nv If a : P(a) E B, then we have 1,(a), M I= P(a). This means: Ve E 

I(a) : P(1,(a), e). Now, if we add a : P(ri) in B (for all ri E Ati;;;a(~o/f)}, then 
if 1,(a), MI= -.P(ri) for some i, it is not hard to see that 1,(a), MI= -.P(a), which is a 
contradiction. The only possibility is that w, MI= -.Pw(ri), but this just implies that 
I(ri) = 0, and then 1,(a), MI= P(ri). • 

The soundness of the method follows by a standard argument. 

Corollary 6. If cp is tableaux provable (i.e., there exists a closed tableau for -.cp) then 
I= <p. 	 • 

Towards the proof of completeness, we introduce the notion of Hintikka sets: 

Definition 29 (Hintikka Sets). Let S be a set of prefixed formulae and F(S) the set 
of prefixes in S. We say that S is Hintikka iff: 

• 	 The labels in Sare sequences made up of elements of At(~0/EQ(S)). 

• 	 S is not closed. 

• 	 If a: P(a) and a: -.Pw(a) ES, then EQ(S) 1--BA a =act 0 

• 	 If AES, then Ai ES and A2 ES. 

• 	 If BES, then either Bi ES or B2 ES, or both. 

• 	 If NE S and a is the front action of N, then for all labels a. ri E F(S) (where 
a is the label of N} such that EQ(S) 1--BA ri ~a, we have N(ri) ES. 

• 	 If P E S, then P(ri) E S, for some ri E Ati;;;0 (~0/EQ(S)). (where a is the 
front action in P). 

123 




0 

PhD Thesis, P.F.Castro McMaster-Computing & Software 

• If Nn ES, then Nn('Yi) for all /i E At!;;;a(~o/EQ(S)). 

• If er: Pw('Yi) ES for some /i E At(~o/EQ(S)), then er: P(a) ES. 

Now, we prove that any Hintikka set is SAT. 

Theorem 12. Any Hintikka set is SAT. 

Proof. Given a Hintikka set S, we define the following model: 


• W ={er Ier: <p ES, for some formula <p} 

• f = At(~o/EQ(S)). 

• R = {er J2l er • 'Y I er, er • 'Y E W} 

• p E I(w) ~(er: p) ES 

• I(a) = At!;;;a(~o/EQ(S)) 

• P ={(er, [1]) I (er: P(1)) ES A 'YE f} 

We must prove that this is a model for S. Proving that M satisfies requirements 11, 
12 and 13 of definition 9 is straightforward using the fact that the events are defined 
using a canonical boolean algebra (see chapter 3). We define the mapping l as follows: 
t(er) =er {the identity function). Let us prove that this structure is really a model of 
S. The proof is by induction. 

Base Case: Obviously, if er : p E S then er, M I= p. We cannot have both p and •p in S, 

and therefore the definition for propositional variables is correct. If er : a =act (3 E S, 

then EQ(S) f-BA a =act (3 and therefore At(a) = At((3). 

Ind. Case: We prove this by cases: 

A rule: If A E S then A 1 and A2 are both in S, and the result follows by the definition 

of our model. 

B rule: Similar to the A rule case. 

N rule: If (er: [a]cp) ES, and EQ(S) f-BA a =act 0, then At!;;;a(~o/EQ(S)) = 0 and 

therefore er, MI= [a]<p. Otherwise, er./i: <p for all /i E F and /i E At!;;;a(~o/EQ(S)), 

and therefore Ye E I(a) : er~ er. /i ===*'"er. /i, MI= <p. 

P rule: If er : (a)cp E S, then er. /i : cp for some /i E At!;;;a(~o/I'), thus er. /i, M I= cp 

and then er, M I= (a)<p. 

Pn rule: If er : Pw(a) E S, then er : Pw('Yi) for some /i E At!;;;a(~o/I') and then by 

definition of Hintikka sets er: P('yi), which implies by definition of M: er,M I= Pw(a). 


124 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

ND rule: If a : P(a) E S, then if EQ(S) I-BA a =act 0, then At[;;0 (D.o/r) = 0 and 
thereforea,M F= P(a). Otherwise, At[;;0 (D.0/f) -=f 0 andthenforall'°'(i E At[;;0 (D.o/f) 
occurs a : P('"Yi) E S, and this implies a, M F= P(a). • 

Using the above theorem we prove that every complete open branch is a Hintikka 
set. 

Theorem 13. If B is a complete open branch, then BU EQ*(B) is a Hintikka set. 
Proof. The proof is straightforward using the definition of open branch, complete 
branch and Hintikka set. • 

This means that any algorithm which applies the rules in such a way that it 
produces a complete tableau gives us a complete proof method for the logic: given 
a formula c.p, we put () : -.c.p at the root and we apply the algorithm. If we get a 
(complete) open branch, then we have a model of -.c.p showing in this way that c.p is 
not valid. If all the branches are closed, then -.c.p is not SAT, and therefore c.p is valid. 

5.2 Open Systems and Partial Specifications 

There is a technical point which must be resolved before continuing with the descrip­
tion of the tableaux for the temporal part of the logic. Namely, given a formula c.p, 
how many primitive actions must we consider in the vocabulary? A naive answer is: 
we just need to consider those primitive actions which appear in c.p. However, a simple 
counter-example of why this does not work is the following. Consider the formula: 
(a)c.p --+ [a]c.p. Obviously, this formula is not valid, but if we build the tableau for it 
just considering a vocabulary with a as the only action, the final tree has no open 
branches. This only shows that this formula is valid for a vocabulary with just one 
primitive action. This problem arises from the fact that we are using a finite alpha­
bet of actions and it is not possible, a priori, to know the complete set of actions 
to be considered. (Note that, usually, in dynamic logics or modal action logics an 
infinite number of actions is considered.) This occurs mainly for two reasons. First, 
we consider "Open Systems" in the sense that the component actions interact with 
environment actions; the point here is that the set of environment actions is not fixed 
as it may change over time or by context. Secondly, we assume that we are working 
with partial specifications, i.e., we might know just a part of the entire specification; 
this could happen since the system is being developed by different teams (as usual in 
software engineering), or perhaps since the system is evolving constantly. 

Summarizing, our specification only gives us a partial picture of a system. Because 
of this, system properties are hard to verify (using tableaux or other formal systems). 

125 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

After all, maybe we are not taking into account some actions important for the 
property to be proven. 

The following theorems give us some machinery to attack this difficulty. Corollary 
8 says that we can verify a property (using tableaux) restricting our attention just to 
some part of the system; if for this part of the system, this formula is valid, then it will 
be valid for any context. Interestingly, the number of actions that we need to consider 
depends on the formula to be verified. Furthermore, only the number of extra actions 
is important and not the properties of these extra actions. Some auxiliary notions 
are needed and we introduce the concepts of normal form, disjunctive normal form, 
and existential degree, and then we prove the theorems. 

The degree of a formula c.p (denoted by d(c.p)) is the length of the longest string 
of nested modalities (taking permission as being of degree 0). For any formula c.p 
we denote by Pr(c.p) the set of atomic actions appearing in c.p. Given a vocabulary 
(D.0 , cI> 0), we adapt the definition of normal form of degree n given in [Fin75] to our 
logic. We denote by Fi the set of formulae of normal form of degree i, defined as 
follows: 

• 	F0 is the set of formulae of the form *'Pi A ... A*'Ph, where for each i: 'Pi E cI> 0 

or 'Pi is a deontic predicate or 'Pi is an equation, and * is • or blank. 

• 	Fn+l isthesetofformulaeoftheform: BA*(a1)c.p1 A .... A*(ak)'Pk, where() E F0 , 

'Pi E Fn for all 1 :::; i :::; k, * is-, or blank. (B may not appear in the formula, in 
which case we only consider everything but not ().) 

The set of normal form formulae is F = LJ~1 Fi. If a formula is in normal form, we 
say that it is a NF formula. 

Theorem 14. Any formulae of degree :::; n is equivalent to l_ or a disjunction of 

normal forms of degree n. 

Proof See the proof given in {Fin75j and use the property f- (a)(c.pV'ljJ) t-t (a)c.pV(a)'l/J .


• 
Note that, in general, a NF formula can be expressed using the following schema: 

n m 

()AD. A j\ (ai)'P A j\ •(f3J)f3J 
i=l j=l 

where () is a conjunction of propositional variables or negations of them, and D. is a 
conjunction of deontic predicates or negations of them. 

126 


http:BA*(a1)c.p1


PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

If a formula is a disjunction of normal forms, we say that this formula is in dis­
junctive normal form (or DNF for short). We call Pw(a), •P(a) and (a)cp existential 
formulae, i.e., existential formulae are those whose semantics is given by an existential 
quantifier. (Note that •[a]cp is equivalent to (a)•cp.) 

Given a NF formula cp, with d(cp) = n, we can define a set of formulae SF(cp, k), 
for every k :'.S n, called the subformulae at level k. For k = 0 we define: 

n 

• 	If cp = /\*Pi, i.e., it is a conjunction of propositions or negations of them, then 
i=l 

for this case the definition is: 
n n 

SF(j\ *Pi, 0) = LJ{*Pi} 
i=l i=l 

m t 

• 	If cp = /\ *P(aj) /\ /\ *Pw(,Bk), i.e., the formula is a conjunction of deontic 
j=l k=l 


formulae or negations of them, then we define: 


m t 	 m t 

SF(j\ *P(ai) /\ f\ *Pw(,Bk), 0) = LJ{*P(ai)} U LJ {*Pw(,Bk)} 
j=l k=l j=l k=l 

• 	 In the case of a conjunction of propositional formulae and deontic formulae we 
can use the two definitions above, that is: 

SF(B /\ ~' 0) = SF(B, 0) u SF(~, 0) 

• 	 In the general case, we define: 
n m 

SF(B /\ ~ /\ (j\ (ai)'Pi) /\ (j\ •(,Bi)1/;j), 0) = 

i=l j=q 


n m 

SF(B) U SF(~) U LJ{ (ai)'Pi} U LJ{•(,Bi)'l/Ji} 

i=l j=l 


For the case of k > 0, we define: 

n m 	 n m 

SF(B /\ ~ /\ (j\ (ai)'Pi) /\ (j\ •(,Bi)'l/Ji), k + 1) = LJ SF(cpi, k) u LJ ·SF('l/Ji, k) 
i=l j=q i=l j=l 

Where given a set S of formulae, we denote by •S, the set containing the negations 
of the formulae in S. (We also suppose that several negations over a formula are 

127 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

simplified, i.e., instead of having ••P we have p.) In some sense, the set SF indicates 
which set of subformulae must be true at a given level. We use #3S to denote the 
number of existential formulae in the set S. Using this definition, we can define the 
existential degree of a NF formula <p, denoted by 0 3 , which is defined as follows: 

We can extend this definition to CNF formulae, as follows: 

The idea is to use the sets SF to define smaller models of <p. First, we need to define 
the notion of n-reachable. Given a model M and a state w, we say that a state v is 
n-reachable (or reachable in n-steps) from w, if there exists a path w ~ w2 ~ ... ~ v 
in M. Note that our logic has the unraveling property [BRVOl], i.e., if a formula <pis 
satisfiable in a model Mand state w, we can build a model M' unraveling M such 
that w and M' satisfies <p; this new model is a tree, i.e., it does not have cycles. For 
the following results we restrict our attention to tree models; The unraveling property 
guarantees that these theorems extend to any other model. 

If d ( <p) = n, then we can define a mapping L from the states reachable in M in n 
or less steps, to the subformulae of <p, as follows: 

L(v) = {'lj; E SF(<p,k) Iv is k-reachable from wand v,M I= 'lj;} 

For the following definitions, consider a model M = (W, R, £,I, P) over a vocabulary 
V = (~0 , <I>0 ) and a NF formula <p (of degree n) such that w, MI= <p. The labeling L 
helps us to define a new model Mi = (W~, R':Ci, £~,I~, P~) as follows: 

• [~ = £. 

• We define R':Ci in n steps: 

U 

- At step 0, choose for each (ai)'Pi E L(w) an event ei such that ei E I(ai) 
and there exists a state vi with w ~ vi, and vi, MI= <pi, and define R 0 = 

{w -te; 
Vi 

} 
. 

e; 

- At step k +1, let vi, .. ., Vm be the states k-reachable from w at step 0. For 
each of these states proceed as was done for state w, and define a relation 
R~;, and then Rk = LJ R~; 

i::=;m 

128 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• P:f:i=P. 

• W:f:i = {v E WI v E Oom('R~) U Ran('R~)}. 

Note that this model has an out-degree (the number of transitions coming out of any 
state) less than or equal to 0 3 ( <p), since in each state of the new model we only have 
one transition per existential subformula at the corresponding level. The following 
theorem says that the new model preserves property <p. 

Theorem 15. Given a NF formula <p and a model M, if w, M I= <p, then v, M:f:i I= 

L(v), for every v E W!f:i. 

Proof Suppose that d(<p) = n; we prove the result by induction. If v is reachable in 

n steps from w, then, by definition, L(v) only contains propositional variables and 

deontic predicates, and therefore, by definition of M:f:i, we have that v, M:f:i I= L(v). 


If v is reachable ink steps (with k < n} from w, then for each (ai)'Pi in L(v) we 
have an ei E I:f:i(ai) such that v ~ v'; by induction we know that v', Mi I= <pi, and 
therefore v, M:f:i I= (<pi)'Pi· 

Now, suppose that •(/3i)'l/;i E L(v); we know that 'I/Ji is a NF formula, and therefore 
'I/Ji= 'I/;~/\ ... /\'I/;~, and by definition of SF, we have that •'l/;~, .. .,•'l/J~ E SF(<p,k+ 1). 
Then, if for some 'l/;f and state v', we have v', M:f:i I= •'l/;f (where v ~ v' in 'R~ and 
ei E I(/3j) }, i.e., we have that •'l/;f E L( v'), then by induction we have v', M'f:i I= •'l/JL 
which implies that v, Mi I= •(/3j)'l/;j· This concludes the proof • 

Note that/\ L(w) = <p, and therefore we obtain the following corollary. 

Corollary 7. If w, M I= <p, then w, M'f:i I= <p. 

Summarizing, given a model of a NF formula <p, we can build a new model with 
branching being at most 0 3 (<.p). We are close to our original goal; using the model 
Mi, we define a model over a restricted vocabulary. First, given a model M over a 
vocabulary V = (~0 , cI> 0), we denote by EQ(M) the set of equations true in M, and 
if we have a subset S ~ ~0 , we denote by EQ8 (M) the set of equations built from 
primitive actions in S which are true in M, i.e., 

EQ8 (M) ={a =act /31 a =act /3 E EQ(M) /\a, /3 E TBA(S)} 

where T8 A(S) denotes the set of boolean terms built from variables in S. 

129 




PhD Thesis, P.F .Castro 	 McMaster-Computing & Software 

Suppose that D3 (cp) = c. If #b..0 > Pr(cp) + c, then we define a model M* = 
(W*,'R*,£*,I*,P*) over the vocabulary V* = (b..0 = Pr(cp) U {b1 , ... ,bc},<I>0), 

b1, .. ., be being fresh primitive actions. 

• £* = At(b..0/EQPr(cp)(M)). 

• W* = WX. 

• 	 For each v E WX let { ef,. .., ek} <;;,£ ;f be the set of events such that each ei 
satisfies either: 

- there exists a state vi and v ~ vi E 'R';f;,, or 

- there is a Pw(ai) E L(v) such that ei E I;f(ai) and P:f(v, ei), or 

- there is a •P(ai) E L(v) with ey E I;f(ai) and (v, ei) t:J_ P;f. 

We know that k ~ 03(cp), and then define for each such a e~ a corresponding 
event in£* as follows: 

n a) n ( n a') n ( n bj) n bi 
aEPr(cp)l\ef EI(a) a'EPr(cp)l\ef rf.I(a') 

(where we use some enumeration of the fresh h's to determine each bi); note 
that for these eY*'s, we have: ei E I';f;, <==> eY* E I*(a), for each a E TsA(Pr(cp)). 
Now we use these ei'*'s to define: 

e~"' eY - nv = { v ....!..t Vi I v ~Vi E 'R';f;,}. 


- pv = {(v, ei*) P:f(v, ey)}.
J 

Using these sets defined for each state v, we define: 

and: 

P* = ( LJ Pv) U {(v, e) Iv E W* /\ P(a) E L(v) /\ e E I*(a)}. 
vEW* 

• 	 Define I*(ai) = ffy] Jf-sA ')' !;;;; ai}, for every ai E b..0. 

• Define I*(pi) = I';f;,(Pi), for every atomic proposition Pi· 

Let us prove that this new model preserves properties of L. 

130 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Theorem 16. Given a vocabulary V = (~0 , <1>0 ), a NF-formula cp such that ~o > 
Pr(cp) + D3(cp), with d(cp) = n and a model M, ifw,M I= cp, then for the model M* 
defined above over the vocabulary V* = (Pr(cp) U {b1 , ... , bo3 (cp)}, <1>0 ) with the b~s being 
fresh action terms, we have v, M* I= cp. 
Proof. By the theorem above, we have that w, Mt, I= cp. As explained above, if 
we prove that v, M* I= L(v) for every v, we have that w, M* I= cp. For the states 
reachable in n steps, we have that L(v) contains only propositional variables or deontic 
predicates; for the propositional predicates the result is trivial. Now, suppose that 
P(o:) E L(v), then w,M't, I= P(o:), and then v,M* I= P(o:), by the definition of M*. 
If Pw ( o:) E L(v), then v, Mt, I= Pw ( o:), and therefore there exists an ei E I'f:i (cp) such 
that P'f:i(v,ei), but for this ei we have a corresponding ef such that (v,eY) E P* and 
ef E I*(o:), and therefore v, M* I= Pw(o:). If-.P(o:) E L(v), then we have an ei E I'f:i 
such that -.P(v, ei); for this ei, we have an ey E P* and by definition of P* we 
have -.P*(v, eY), since -.P'f:i(v, ei) and P(o:) <t. L(v), otherwise L(v) is inconsistent. 
Therefore, v, M* I= -.P(o:). If-.Pw(o:) E L(v), then we have have -.P'f:i(ei, v) for every 
ei EI*; if we have P(o:) E L(v), then o: =act 0, an equation which is also true in M* 
and therefore v, M* I= -.Pw(o:). If o: #act 0, then P(o:) <t. L(v), and there is no way to 
introduce a tuple (v,eY) in P*, so v,M* I= -.Pw(o:). 

Now, suppose that v is reachable in k < n steps from w; for the deontic predicates 
and propositional variables the proof proceeds as before. If (o:i)'Pi E L(v), then v, Mt, I= 
(o:i)'Pi, and so there is an ei E I't,(o:) such that v ~ vi and vi, Mt, I= 'Pi· Using 

e~ 
induction we get vi, M* I= 'Pi, and we have, by definition of M*, that v -4 vi; this 
implies that v, M* I= (o:i)'Pi· If-.(f3i)7/Ji E L(v), then v, Mt, I= 7/Ji, which means that 
for all ei such that ei E I'f:i(f3i) and v ~ vi, we have Vi, Mt, I= -.'lj;. Since 7/Ji is a NF 
formula it is a conjunction of formulae, i.e., 7/Ji = 7/Jl /\ · · · /\ 7/Jf", and, for some of 
these 7/Ji 's, we have v, Mt, I= -.'lj;f, and by definition of L we have -.7/Jf E £(v') and 
therefore, by induction, v', M* I= -.'lj;f, which implies w, M* I= -.(j3i)7/Ji· The theorem 
follows. • 

Thus, D3 ( cp) gives us a bound for the number of new primitive symbols that we 
need to verify a given formula. From this theorem we get the following corollary: 

Corollary 8. For any DNF formulae cp with D3(cp) = n, if we have a vocabulary 
V = (~o, <Po) and a model M of V such that w, MI= cp, then there exists a model M' 
of a vocabulary V' = (Pr(cp) U {b1 , ... , bk}, <1>0 ) such that w', M' I= cp and k::; n. 
Proof. Suppose that w, MI= cp for some Mover a vocabulary V. Since cp is in DNF, 
we know that cp = <p1 V ... V 'Pm (each 'Pi being a NF formulae), and therefore w, M I= 'Pi 
for some i. By theorem 16 we know that there exists a model M' of a vocabulary 
V' = (Pr(cp) U {b1, ... ,bk},<Po) with k = D3(cpi)::; D3(cp) such that w',M' I= 'Pi and 
then w',M' I= cp. (Note that we can ensure that each Pr(r.p) = Pr(r.pi), by adding the 

131 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

formulae [a1 LJ ... LJ at]T to each 'Pi with Pr(<p) = { a1, .. ., at}; these formulae do not 
modify the truth value of the former one.) • 

Roughly speaking, this theorem says that if a formula has a model in a language 
with an extra collection of knew variables (with k > 0 3 (<.p) = n), then if we add n 
new primitive actions, we also obtain a model. Or conversely, if we cannot get a model 
with n new primitive actions, we will not get a model by adding further primitive 
actions to the language. Because each formula is equivalent to a DNF formula, the 
above result gives us a bound for checking every formula. The method is as follows: 
given a formula <p, take its negation and get the DNF equivalent formula <p1

; then 
develop a tableau taking into account at most D3 (<p1

) = n primitive actions; if the 
tableau is closed, then the formula <p is valid for any extension of its vocabulary. 
Corollary 8 can be used to improve the completeness of the method, i.e., the tableaux 
is not only complete with respect to the semantics, but it is also complete with respect 
to language enrichment. 

It is worth noting that we have two kinds of validities: we have formulae which 
are valid with respect to one vocabulary (i.e., these formulae are true with respect 
to all the models of this vocabulary). We can call this notion of validity local valid­
ity, and we have formulae which are valid with respect to every vocabulary, i.e., a 
global validity. For example, the formula [a U b]<p ~ [U]<p is valid in the vocabulary 
({a, b}, {p, q, s,. .. }) but it is not valid in the vocabulary ( {a, b, c}, {p, q, s,. .. } ). (It 
is important, when using equivalences, to distinguish between "global" equivalences 
or "local" equivalences.) 

5.3 Some Examples 

Now we give some examples. In figure 5.9 we build the tableau for the formula: 
([a]<p /\ (a)'lj;) --+ (a)(<p /\ '1/J). This formula is one of the axioms given for dynamic 
logic in [HKTOO]. The crosses at the end of each branch mean that those branches 
are closed. Note that here we are using a new action symbol. 

We have added numbers in the formulae to better explain the example. Formula 
(1) is the negation of the formula to be proven. Formulae (2) and (3) are obtained 
by applying the rule A to the negation of the implication, formulae ( 4) and (5) are 
obtained from formula (2) using the A rule. Formulae (6) and (7) follow from formula 
(3) by application of the N rule. In a similar way, we obtained formulae (8) and (9) 
from formula 4. After that, we have branching using the P rule. Finally, we apply 
the B rule to formulae (6) and (7) and we obtain the leaves closing the tableau. 

132 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

(1)(): ((o:]cp /\ (o:),P) /\ ~((o:)(cp /\ ..P)) 
(2)() : ((o:]cp /\ (o:)cp) 
(3)(): ~((o:}(cp/\1/J)) 
(4)() : (o:]cp 
(5)() : (o:)..P 
(6)o:n13: ~(cpA1/J) 
(7)o: n :B: ~(cp" ..p) 
(8)0: n 13 : cp 
(9)o: n :B: cp 

~-
(lO)o: n 13 : ..P (13)o: n 13 : 1/; 

(ll)o:n~i'.3=~..P (14)o:n~:B:~..p

x x x x 

Figure 5.9: Tableau for ([a]<p /\ (a)'lj;) --t (a)(<p /\ 7/J) 

Now, consider the following formula (which is not valid): (a)<p --t [a]<p. The 
tableau for it is shown in figure 5.10. Note that, in this case, we use a new action 

Figure 5.10: Tableau for (a)<p --t [a]<p 

symbol (following corollary 8). First, we reduce the implication, after that we use the 
rule P on the second formula, and then we use rule P again in the third formula. We 
can observe that this tableau has some open branches and using them we can build 
a "counterexample" (shown in figure 5.11). Note that we can use the labels in the 
formulae to put the labels on the transitions, indicating in this way which actions 
were executed and which were not. 

Now, we apply the tableaux method to a deontic formula: P(a) /\(a #-act 0) --t 

Pw(a). We exhibit the corresponding tableau in figure 5.12. For building this tableau, 
the rule ND is used together with the A rule, noting that the branch is closed since 
it is boolean closed; the predicates P(a n /3) and •Pw(a n /3) introduce the equation 
a n /3 =act 0 in the extended boolean theory of the branch. On the other hand, 
predicates P(an/3) and •Pw(an/3) introduce the equation an/3 =act 0 in the extended 
boolean theory. Keeping in mind that {an /3 =act 0, an /3 =act 0} f--BA a =act 0, and 
that •a =act 0 is in the actual branch, we conclude that the branch is boolean closed. 

133 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

•w' F <p 

~ 
w• 

~ 
•w" F -.ip 

Figure 5.11: Counterexample for (a)<.p - [a]<.p 

() : (P(a) /\-.a =act 0) /\ -.Pw(a) 

() : (P(a) /\-.a =act 0) () : P(a) 

() : -.(a =act 0) 

() : -.Pw(a) () : P(a n ,6) 

():P(an:B) 

() : -.Pw(a n ,6) 

(): -.Pw(an:B) 

x 

Figure 5.12: Tableau for P(a) /\(a =I-act 0) - Pw(a) 

We present a last example to illustrate the use in practice of theorem 8. In this 
example we consider a heating system. This system has two ways of being started: 
one is pressing a button, and the other one is by means of a sensor, which detects if 
the room is too cold. Let us analyze the following formula: 

[get_cold]on /\ [get...hot]•on /\ (get_cold)on /\ (get...hot)•on 

This formula specifies the behaviour of the sensor (when it turns on the heating 
system). Also, it has some additional formulae which say that there exists other 
parts of the system that could turn on (or turn off) the heating mechanism. Note 
that here we do not know which are the other actions that can interfere, we only know 
that they exist; this is an incomplete specification. It could be the case that some 
other person is responsible for designing (and specifying) the interaction between 
the system and the user, and we have only to specify the behaviour of the sensor. 
However, if we build the tableau for this formula (note that we do not build the 
tableau for the negation of it, as in this case we are using the tableau to investigate if 
the given formula is consistent), we learn that this formula is inconsistent (see figure 
5.13). Note that we added the equation get_cold n get...hot =act 0 in the formula, 
because if the two actions are mutually disjoint, this equation reduces our set of 
atomic boolean terms. The tableau below was built as follows. First, we apply rule 
A several times, then we apply rule P to line 7, and then we apply this rule again to 
line 8; finally, we use rule N twice. 

At first sight it seems strange that this formula is inconsistent; the main problem 
here is that we have not considered some other actions in the specification. Taking 

134 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

() : ([get_cold]on I\ [get..hot]..,on) I\ ( (get_cold)on I\ (get..hot)..,on) 
() : [get_cold]on I\ [get..hot]..,on 
() : (get_cold)on I\ (get..hot)-,on 
() : get_cold n get_warm =act 0 
() : [get_cold]on 
() : [get..hot]..,on 
() : (get_cold)on 
() : (get..hot)..,on 

__ I 
get_cold n get.hot : on 

-- Iget.hot n get_cold : ..,on 
get_cold n get.hot : ..,on 
get.hot n get_cold : on 
x 

Figure 5 .13: Tableau for [get_cold] on/\ [get...hot] •on/\ (get_cold) on/\ (get...hot) •on 

into account corollary 8, we add two more actions. Let us consider the actions: 
set_on and set_off. Intuitively, the first one turns on the heating system, and the 
second one turns it off. Again we can add some disjointness restriction on actions, 
namely: set_on n set_off =act 0 (we cannot press the two buttons at the same 
time), get...hot n set_off =act 0, get_cold n set_on =act 0, get...hot n set_on =act 0, 
get_cold n set_off =act 0 (the sensor is blocked when a user presses a button). 

Note that these equations impose a strong restriction on the system: the sensor 
has to be shut off when a user presses a button. (Later on we shall see that we can 
manage this scenario using deontic predicates, in this way making the specification 
less restrictive, in a kind of fault-tolerant approach.) For the sake of simplicity, we 
do not put the equations into the tableau (but remember that they modify the set of 
atomic boolean terms), and we just show an open branch of the tableau (see figure 
5.14). This open branch can be obtained if we apply rule P to formulae in lines 3 and 
4 in the tree. Using this branch we can build the model illustrated by figure 5.15. 

() : [get_cold]on 
() : [get..hot]-,on 
() : (get_cold)on 
() : (get..hot)-,on 

get_cold n get.hot n set_off n set_on : on 

get.hot n get_cold n set_on n set_off : -,on 

Figure 5.14: New tableau for [get_cold]on/\[get...hot]-ion/\(get_cold)on/\(get...hot)-ion 

135 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

•w' Fon 

~ 
w•~ 

•w" F •on 

Figure 5.15: Counterexample 

In this figure we set: 

'Yl = get_cold n get-1lot n set_off n set_on 

and 
1'2 = get_hot n get_cold n set_on n set_off 

Thus, the new actions in the vocabulary allow us to build a model which satisfies the 
formula. In section 5.6 we extend this example with temporal operators and deontic 
features, to provide a broader example. 

5.4 Extending the tableaux to temporal logics 

In the previous sections, we described a tableaux method for the propositional deontic 
logic introduced in chapter 3; we can extend this method in order to deal with the 
temporal extension of the deontic logic. The main idea behind this extension is to use 
the fixed point definition of temporal operators (as is done in [GM96] and [SW91] for 
dynamic logic and the µ-calculus, respectively). We show that this temporal extension 
of the tableaux calculus is sound and complete with respect to the given semantics. 
In addition, in chapter 6, we use this tableaux calculus to prove the completeness of 
the axiomatic temporal system described in chapter 3; we leave this as a future work. 

Recall from chapter 3 that we enrich the language with the following formulae: 
ANcp (for all paths, in the next instant in time cp is true), A(cp U 'ljJ) (for all paths, cp 
is true until 'ljJ becomes true) and E(cp U 'l/J) (for some path, cp is true until 'ljJ becomes 
true). Using them we can define the remainder of the usual CTL operators (see 
[EH82]). As usual in CTL, we can give the following characterization of the temporal 
operators: 

• A(cp U 'l/J) = 'ljJ V (cp /\ •'l/J /\ AN(A(cp U 'ljJ))) 

136 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• E(cp U 'lj;) := 'lj; V (cp A •1/J A (EN(E(cp U 'lj;)))) 

This means that we can define the temporal operators as fixed points of the appropiate 
functional (see [Eme90] for details). We use this idea during the development of our 
extended tableaux. The same technique is used in [SW91] for the µ-calculus, where 
a given model is used to guide the construction of the tableau. In [GM96], fixed 
points are also used to develop a tableaux calculus for dynamic logic with converse. 
In both works, new constants are added to detect branches which cannot satisfy a 
given formula. Here the nature of the temporal operators (and the fact that we 
mix them with modal logic operators) allows us to state the rules without these 
variables. In addition, our tableaux rules for the propositional case allows us to 
deal with intersection and the complement. We introduce the following rules for 
temporal logic: One of the benefits of having labels in the formula describing the 

N: u: AN<p ~N:----~-A_N'P____ 
u : (U} T I u : ~(U}T u:(U}T I u:~(U}T 
u : [U]<p u : <p u : (U}~'P u : ~'P 

Figure 5.16: Rules for N 

EU , ___u_:_E~(<p~U----'-,P~)__ ~EU : ___u_:~-E-'-(<p'--U-',P-'-)__ 
u:~w u:~,P 

u:wl u:<p <r:<p 
u: ~AN~E(<p U ,P) u: AN~E(<p U ,P) 

Figure 5.17: Rules for EU 

AU : __u_:_A_(<p_U_,P_)__ 
u:~w 

u:,PI u:<p 
u: ANA(<p U ,P) 

Figure 5.18: Rules for AU 

actions performed is that we can check the Done() straightforwardly. We introduce 
the notion of a branch that is done-closed. 

137 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Definition 30. A branch B is done-closed iff we have either 

• 	a. 'Y: Done(a) EB and EQ(B) J.i8 A 'Y ~a, or 

• 	a, 'Y: -iDone(a) EB and EQ(B) f- 8 A 'Y ~a, or 

• 	 () : Done(a) E B, for some a. 

0 

In a similar way, we redefine the notion of closed branch. 

Definition 31. A branch is closed iff either 

• 	 a : cp E B and a : ''P E B, for some formula cp, or 

• 	 B is boolean closed, or 

• 	 B is deontic closed, or 

• 	 B is Done() closed. 

0 

The following definitions are needed to prove the soundness and completeness of 
the tableaux system; mainly, they are adaptations of similar definitions for other logics 
(e.g., the several modal logics presented in [Gor95], the dynamic logic introduced in 
[GM96] and the modal logics of [Fit72]). 

Definition 32 (t-mapping). A t-mapping is a mapping l between the labels of a set 
S of formulae and a model M which satisfies: 

• 	 l((}) = w, where w is the initial state of M (we suppose that there is a formula 
labelled with the empty string in S). 

• 	 for all traces 7r, if a : cp E S, then, if 'Tri = l(a), it follows that: 7r, i, M t= cp 

0 

138 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

A t-mapping can be used to define when a given branch is satisfiable; we say 
that a branch B is SAT iff there exists a mapping i and a model M such that i is a 
t-mapping for B. 

Definition 33. B/a = {cp I a: <p EB} (that is, B/a are the formulae of branch B 
with prefix a). D 

Definition 34. A prefix a is reduced if all the rules (except P) have been applied to 
it. That is, we do not generate new states from it. It is fully reduced if all the rules 
were applied to it. D 

Definition 35. A prefix a' is a copy of a prefix a if: 

• 	 B /a = B /a', i.e., they have the same formulae. 

• 	 There exists some/ E At(b.0 /f): a= a0 • / and a' =a~. 1; in other words, the 
last executed action is the same. 

D 

Definition 36. A branch B is t-completed iff: 

• 	 all prefixes are reduced. 

• 	 for every a' which is not fully reduced there is a shorter copy a (see the definition 
above) which is fully reduced. 

• 	 If it is an N formula, then all the formulae resulting from applying the corre­
sponding rule belong to B. 

D 

The difference between this definition and definition 26 is that in the latter we also 
require the saturation of P rules; instead, above we only require this for fully reduced 
labels (the reduced labels are a copy of some fully reduced label in the branch). In 
[GM96] ignorable branches are introduced to capture the scenario of a given branch 
which cannot satisfy a DPL formula [a*]<p since •<pis true in every state (i.e., at every 
label). Here we have two different cases: a branch cannot satisfy a formula A(cp U 'lj;) 
since 'lj; is never true for some sequence of labels a, or it cannot satisfy a formula 
E(<p U 'lj;) since for every sequence of labels a, 'lj; is never true. That is, we define two 
kinds of ignorable branches: A-ignorable branches and E-ignorable branches. In these 
definitions, we say that a ::=; a' if there exists some label a" such that a •a" = a', and 
a -< a' when for some atomic term / we have a • / = a'. 

139 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Definition 37. A branch B is E-ignorable with respect to a formula a : E(cp U 1/J) E B 
iff: 

• 	 it is t-complete and not closed. 

• 	 a : •1/J E B. 

• 	 for every prefix a' ~ a, we have that a' : E ( cp U 1/J), a' : •1/J E B. 

0 

In a similar way we can define A-ignorable branches. 

Definition 38. A branch B is A-ignorable with respect to a formula a : A(cp U 1/J) E B 
iff 

• 	 it is t-complete and not closed. 

• 	a : •1/J E B. 

• 	 if there exists some a' >-a, then there exists a maximal chain a-< a 1 -< a 2 -< ..., 
such that for all i we have ai: A(cp U 1/;), ai: •1/J EB. 

0 

Now we redefine the notion of open branch. 

Definition 39. A branch is open if it is t-completed and neither closed, E-ignorable 
nor A-ignorable. 0 

Using these definitions we can prove soundness: 

Theorem 17 (Soundness). If a branch B of tableau T is SAT wrt a model M and 
a mapping l, then a branch B', obtained by some of the given tableaux rules, is SAT 
wrt the model M and the mapping l

1 which coincides with l over the labels in B. 
Proof. The proof is by cases; for non-temporal connectives the proof is the same as 
the one given in theorem 11. For the temporal operators we have the following cases. 
Case AN: If B U {a : ANcp} is SAT, this means that for all 7r (such that 'Tri = l(a)) 
we have: 'Tr, i + 1, M I= cp. If l(a) is not related to any other state in M, then we 
have l(a), M I= [U] l_, and therefore we have that 7r, i, M I= cp, and then B U {a : 

140 




0 

PhD Thesis, P.F.Castro McMaster-Computing & Software 

[U]<p, a: <p} is SAT wrt i and M. On the other hand, if i(a), MI= (U)T, then for 
every path 7r1 such that 7r[O.. i] -< 7r1 we have that 7r1

, i + 1, MI= <p, i.e., we have that 
BU {a : (U) T, a : [1'1]<p, ... ,a : [l'n]'P} (for every /'i E At(D.o/r)) is SAT in i and M, 
and then B U {a : (U) T, a : [U] <p} is SAT wrt i and M. 
Case AN: Similar to the case above. 
Case A(<p U 'I/;): Suppose that BU{a : A(<p U 'I/;)} is SAT for a model M and a mapping 
i, this means that for all sequences 7r such that i(a) = 'Tri we have 7r, i, M I= A(<p U 'I/;), 
which by definition means that for every 7r1 such that 7r[O..i] j 7r1

, there exists an i ~ k 
for which 7r1 

, k, M I= 'I/; and for every i ~ j ~ k we have 7r1 
, j, M I= <p. Using a similar 

reasoning to the first case, we get that either B U {a : <p, a : •'I/;, a : ANA(<p U 'I/;)} or 
BU{a:'lj;} areSATfori andM. 
Case •A(<p U 'I/;): Similar to the case below. 
Case E(<p U 'I/;): Suppose that BU {a : E(c.p U 'I/;)} is SAT for a model M and mapping 
i, then we have that for every 7r with i(a) = 'Tri, 7r, i, M I= E(<p U 'I/;), i.e., there 
exists some 7r1 such that there exists some k for which 7r1

, k, M I= 'I/; and for every 
i ~ j ~ k we have that 7r1,j,M I= c.p. If7r,i,M I= 'I/;, then BU {a: 'I/;} is SAT wrt 
i and M. Otherwise, we have 7r, i, MI= <p and 'Tr, i, MI= ENE(<p U 'I/;), and therefore 
BU {a: <p, a: ·AN•E(<p U 'lj;)} is SAT wrt i and M. 
Case •E(<p U 'I/;): Similar to the last case. • 

The key point is to prove that we can discard ignorable branches safely. 

Theorem 18. If a tableau T has a branch B which is SAT for a mapping i and model 
M, and it has a formula a: E(<p U 'I/;), then there is at-complete tableau T', obtained 
from T applying the rules, such that it has a SAT branch B' which B ~ B' and it is 
not E-ignorable for the formula a : E( c.p U 'I/;). 
Proof. Suppose that there exists a model M and an assignment i such that 'Tr, i, MI= 
E(c.p U 'I/;), i.e., in M we have 1r

1 such that 7r[O..i] -< 7r1 such that 1r
1

, k, M I= 'I/; for 
some k, and 1r

1 
, j, M I= <p, for every i ~ j ~ k. If 7r, i, M I= 'I/;, then B U {a : 'I/;}, 

which is obtained by rule EU, is SAT wrt i and M. By definition, this branch is not 
· bl 0th · i _ ( ) e1 e2 ek ek+l hignora e. erwise, suppose 7r - i wi ---+ W1 ---+ .•. ---+ wk ---+ ••. , w ere ei E /'i, 
for every i. Now, if we apply the rule EU and •AN to a: E(<p U 'I/;) we get a branch 
BU {a: ENE(<p U 'l/;),a: c.p,a: (U)c.p,a. 'Yi: E(c.p U 'I/;)}, which is SAT since we 
can extend i defining i(a. 'Yi) = w 1; moreover, by theorem 17 we can get a t-complete 
branch B' which extends the branch shown above, and we can repeat this argument 
until we obtain a SAT t-complete branch B' which contains: 

{a.')'1: E(c.pU'lj;),a.')'1 :<p, ... ,(a.····f'k): E(<pU'lj;)}. 

7r
This branch cannot be ignorable for a: E(<p U 'I/;), otherwise we have 7r1

, k, MI= 'I/; and 
1

, k, MI= •'I/;, which is a contradiction. • 

A similar result can be proven for A-ignorable branches. 

141 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Theorem 19. If a tableau T has a branch 13 which is SAT for a mapping i and model 
M, and it has a formula CT : A(<.p U 'ljJ), then there is a t-complete tableau T', obtained 
from T by applying the rules, such that it has a SAT branch 13' for which 13 ~ 13' and 
it is not A-ignorable for the formula CT : A(<.p U 'l/J). 
Proof. Similar to theorem 18. • 

The soundness of the system follows from the theorems above; if we have a tableau 
for a set S of formulae which has all closed or ignorable branches, then the set S is 
not satisfiable. Therefore, if we start with the set {•<.p} and we have a closed tableau 
for it, we know that •<.p is not SAT, hence <.p is valid. 

5.4.1 Completeness and Decidability 

We use the model presented in theorem 12 for proving the completeness; we make 
some modifications to it to avoid infinite models. (Actually, we have the finite model 
property, see below.) First, we present some properties about t-completed branches. 
These properties are useful for the proof of completeness, and to prove that the 
algorithm shown below terminates. The closure of a formula <.p (cl (<.p)) can be defined 
in a similar way to its definition in [Eme90] and [FL79], i.e., given a formula <.panda 
set of equations r, we define cl (<.p) with respect to r as the least set satisfying: 

• 	 <.p E cl(<.p). 

• 	If <.p1 is a subformula of <.p, then <.p1 E cl(<.p). 

• 	If AN<.p' E cl(<.p), then (U)T, [U]<.p' E cl(<.p). 

• 	If A(<.p' U 'l/J) E cl(<.p), then ANA(<.p' U 'l/J) E cl(<.p). 

• 	If E(<.p' U 'l/J) E cl(<.p), then -.AN-.A(<.p' U 'l/J) E cl(<.p). 

• 	If P(a) or Pw(a) E cl(<.p), then P(ri) E cl(<.p) or Pw(ri) E cl(<.p), respectively, 
where /i E At(~o/f). 

The extended closure of <.p (eel (<.p)) is defined as: 

eel (<.p) = cl (<.p) U •cl (<.p) 

It is not hard to prove that eel(<.p) is a finite set for any r and any <.p. It is worth 
noting that, if we apply any rule described above to <.p, we obtain a set of formulae 

142 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

belonging to eel (<p); i.e., suppose that we start a tableau with a finite set <I>, then using 
the rules We can only add formulae belonging to eel (<f>) (where eel (<f>) = u<pE<I> eel (<p)). 
This property is useful when proving the properties stated below. 

First, we prove that any infinite chain of labels a 1 -< a 2 -< a3 • • . in a t-completed 
branch B which belongs to a tableau T (obtained by applying the rules to a finite set 
r) must contain labels which are copies of other labels. 

Property 5. Given a t-completed branch B of a tableau T obtained using the rules 
starting with a finite set of formulae r, if we have an infinite chain a1 -< a2... in 
B, then there is at least one label ai in the chain which is a copy of a label ai (where 
i < j). 
Proof. Given a finite set of formulae r, the set eel(r) is finite, and so is the powerset 
p(eel(r)); now for any a E B, we have B/a E p(eel(f)). We also have a finite 
set of atoms of D.0 /EQ*(B), say /i, .... ,/n· Since p(ecl(f)) is finite, some set of 
formulae B /a, for some label a, appears infinitely often in the chain. Take all the 

2labels a1, a , ... in the chain such that ai /B = a/B; we have a finite number of 
11, ... , /n, i.e., in the chain there must be an infinite number of labels a1 with the 
same set ai /B and the same last atom (say 'Yk), that is, we have an infinite number 
of copies in the chain. • 

Using this theorem we can show that, if we do not apply rule P to formulae with 
labels which are copies of other labels, then any chain of labels in a t-complete branch 
is finite. 

Property 6. If B is a t-completed branch of a tableau T obtained by applying the 
rules, such that we have not applied the P rule to formulae labeled with copies of other 
labels, then any chain of labels a 1 -< a 2 • . • in B is finite. 
Proof. Suppose that we have an infinite chain a 1 -< a 2 . . . . By property 5, we have 
some ai which is a copy of some ai, but then the label ai+I is obtained from ai by a 
P-rule (there is no other way to create labels in the calculus). This contradicts the 
condition in the theorem, and the refore there is no such a chain. • 

A corollary of these two properties is that any infinite chain of labels of a t­
completed branch B contains only a finite number of labels which are not a copy of 
other labels in the chain. 

Theorem 20. If B is at-completed open branch, then it is SAT. 

Proof. We build the model in the same way that we did in theorem 12. That is, we 

define M as follows: 


• W = F, where F is the set of prefixes appearing in B. 

143 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

• £ = At(b.0 / EQ(B)). 

• w = () 	 {initial state). 

• p E I(a) <::::>a: p E B. 

• I(a) = {[-y] E At(b.o/EQ(B)) 11--BA 'Y ~a} . 

• n = {a ~ a."( Ia, a."( E F}. 

• P ={(a,"() Ia: P('Y) EB}. 

We modify this model to take into account the cycles. If a' is a copy of a shorter 
prefix a then we replace each a" ~ a' by a" ~ a. And the mapping is as follows: 

l(a') = { 	a if a is ~ shorter copy of a'; 
a' otherwise 

Note that a' can be safely replaced by a, since both have the same properties. 

Now, we prove that: a : <p E B ::::} 7r, i, M I= <p where 1ri = a. For the standard 
formulae, the proof follows the same pattern as for theorem 12, by induction. The 
other cases are as follows: 

Suppose that a : Done(a) E B. By definition of a done-closed branch, we know 
that a =J (); then we have a = a' • 'Yi, and since the branch is open, we have that 
EQ*(B) I-BA 'Yi~ a, and therefore, by definition of M, we get 7r,i,M I= Done(a) 
where 1ri =a. When we have a: •Done(a) EB, the proof is similar. 

If a: E(c.p U '1/J) EB, and supposing that 7r, i, M ~ E(c.p U 'lj;) for some path 7r such 
that 1ri = a, then we have either: 

1. 7r, i, MI= •<p /\ •'1/J, or 

2. for all Jr' with 7r [ 0.. i] :::S 7r we have 7r1
, j, M I= •'1/J for every i ::; j. 

The first case is not possible since in B, by application of rule EU , we have a : <p 
or a : 'lj;. In either case, by induction, we get a contradiction. In the second case, 
by definition of M, we have a maximal sequence a 1 -< a2 -< a3 ... in B such that 
1ri = a, 1ri+l = a 1 , 7rH2 = a2 , . •• , where at some point in 7r the states start repeating 
(since, by property 6, the number of labels which are not copies of other labels is 
finite). We know that we cannot have a : •'1/J, a 1 : •'1/J, a2 : •'1/J, .. . for every label 
in the chain, since in this case the branch is E-ignorable, and therefore, by several 

144 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

applications of the E rule, we have some aj such that aj : '¢ E B, from which, using 
induction, we get a contradiction, and therefore, 7r, i, M F= E(<.p U '¢). 

Suppose that a : A(<p U '¢) E B, and suppose that 7r, i, M F= ·A(cp U '¢), where 
7ri = a. Then, by definition of F=, we have either: 

• 7r, i, MF= •cp /\ •'¢, or 

• there exists a path 7r1 such that 7r[O..i] j 7r and 7r
1 ,j, MF=•'¢ for every j;::: i. 

The first case, as shown above, is not possible. If the second case is true, then, 
by definition of M, we have some maximal sequence a -< a 1 -< a2 ... such that 
pi~+l = a 1 , 7r:+2 = a2 •.. , where at some point the states start repeating because of 
property 6. For this chain in B, we cannot have a : •'¢, a 1 : •'¢, ... , otherwise B 
is A-ignorable; and therefore by application of rule A we must have some aj in the 
chain such that aj : '¢ belongs to the branch, and then, 7r

1
, i + j, M F= '¢, which is a 

contradiction, and therefore 7r, i, MF= A(cp U '¢). 

If a : •E(<.p U '¢) and suppose 7r, i, M F= E(<.p U '¢) where 1ri = a, then for some 
1 1 1

71" with 7r[O .. i] j 71" and some k we have 71" , k, M F= '¢ and for every j :S k we have 
71"

1
, j, M F= <p; that is, we have a sequence a -< a1 -< a2 ••• such that 7r: = a, 7r:+l = 

a1 , 7r:+2 = a2 , .•. , where at some point the states start repeating by property 6. For 
a we have either {a: •cp,a: •'¢} ~ B or {a: cp,a: •'¢,a: AN•E(cp U '¢)} ~ B. 
The first statement is not possible. If we have the second, then applying the rules AN, 
N and E U several times we get that a : •'¢, a 1 : •'¢, a2 : •'¢, ... for every label 
in the chain. This implies that 71"

1
, k, M ~ '¢, which is a contradiction, and therefore 

7r,i,MF='¢. 

The case a : •A(cp U '¢) is similar to the last case above. The cases for standard 
operators are as explained in theorem 12. • 

From this theorem, completeness with respect to anchored validity follows. 

Theorem 21. If F=A cp, then any t-completed tableau obtained from {•cp} does not 

have open branches. 

Proof. Suppose that we have some open branch in the tableau; then, by theorem 21, 

we have a model M such that 7r, 0, M F= •cp for some 7r, and therefore <.pis not valid.• 


We have proved the completeness of the tableaux rules; however, we have not 
described any procedure which allows us to apply the rules to obtain t-complete 

145 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

tableaux from a finite set of formulae. In figure 5.19 (found at the end of the chapter) 
we describe, informally, an algorithm which applies the rules in a "breadth-first" way; 
this procedure is a modification of the algorithm given in [Gor95] for modal logics. 
The important point to keep in mind is that we mark formulae as "asleep" (which 
are not used at the current step in the algorithm, but can be used later on), "awake" 
(formulae which could be used during the current step in the algorithm) or "finished" 
(formulae which will not be used in further steps). This allows us to prevent situations 
where the rule N is not applied to the correct labels, e.g., when, after an application 
of the N-rule, there follows the application of the P rule, adding a label which was 
not taken into account during the application of the N rule. Also, it is worth noting 
that we can detect the labels which are copies of other labels, preventing the creation 
of cycles during the execution of the algorithm. On the other hand, we can detect 
A-ignorable branches and E-ignorable branches since, by property 6, in any chain of 
labels we get a copy of a label in finite steps; this means that we can detect if a 
branch is closed, ignorable or open in a finite number of steps. We can prove that 
the algorithm terminates and returns a t-complete tableau. 

Theorem 22. Given afinite set of formulae r, the algorithm of figure 5.19 terminates 
and returns a t-completed tableau. 

Proof. First, we show that the algorithm terminates. The algorithm only introduces 

formulae in ecl(f) and, therefore, the set of formulae appearing in the tableau is finite. 

On the other hand, on any level, we have finite branches (i.e., the tree is finitely 

generated}. So, by Konig's lemma, if the tree is infinite, we have an infinite branch. 

In this branch, as explained above, the set of different formulae is finite, and since the 

algorithm does not apply the P-rule to copies of labels, by theorem 6, any maximal 

chain of labels a 1 -< a 2 -< a 2 . . . is of finite length. Because we only use a finite set 

'Yi, .. ., 'Yn to build the labels, the number of maximal chains is also finite (otherwise, 

again by Konig's lemma, we obtain an infinite chain). That is, the number of different 

elements in the branch is finite and, therefore, the branch is finite. Summarizing, the 

algorithm cannot go on indefinitely adding new elements to the tableau. The only 

way that the algorithm does not stop is that it awakes N -formulae an infinite number 

of times. But, since only P-formulae can awake these formulae, and the number of 

?-formulae is finite and we only use each of these formulae once, we only awake 

N formulae a finite number of times. Since the algorithm eventually marks all the 

formulae in the tableau, it terminates. 


To see that the generated tableau is t-completed, as explained above, all the labels 
in a branch are fully reduced, or in the case that the label is a copy, it is reduced. 
And since we awake N-formulae after applying ?-formulae, the third condition in the 
definition of a t-completed branch is satisfied. • 

146 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Summarizing, the tableaux calculus described above is complete, and we have a 
procedure which allows us to apply the rules in such a way that we can decide if 
a given formula is valid or not. It is worth remarking that, following the proof of 
completeness, we can use this algorithm to build counterexamples in the case of a 
non-valid formula. 

5.5 Open Systems and Temporal Logic 

In section 5.2 we have proved that the tableaux calculus for the propositional part of 
the logic is in some sense complete with respect to language extension. In this section 
we prove similar results for the temporal part of the logic. The idea is to define sets 
of propositional formulae which are approximations to the temporal operators, and 
then, since the logic has the finite model properly, the satisfiability problem for the 
temporal operator can be reduced to the satisfiability of a propositional formula. For 
the following results, we consider only formulae without the Done() operator; at the 
end of this section, we show that we do not lose expressivity with this restriction. 

The finite model property for the temporal logic presented above can be proven 
in the same way that this property is proven for CTL in [Eme90], i.e., we have: 

Theorem 23. For any temporal formula r.p, if r.p is satisfiable, then it has a model of 
size less than or equal to n * 28 

, where n is the number of eventuality formulae in r.p 
(i.e., E, •A, (a)cp, Pw(a) or •P(a) formulae) ands is the size of r.p. We denote the 
number n * 28 by 5(r.p). • 

Now, we define the n-th approximation of the EU temporal operator as follows: 

Intuitively, En( r.p U 7/J) says that E( r.p U 7/J) is true at most for n steps. We can define 
the approximation for A U . 

In summary, An(r.p U 'I/;) says that A(cp U 'I/;) is true at most for n steps. Approxima­
tions are related to the temporal operators by the following theorem: 

Theorem 24. If M is a model with n states, then we have: 

147 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

1. rr, i, MF= A(1.p U 1/J) {::} rr, i, MF= An('P U 1/J). 

2. rr, i, MF= E(1.p U 1/J) {::} rr, i, MF= En('P U 1/J). 

Proof. 
1: If rr, i, MF= A(1.p U 1/J), then for every rr[O.. i] :S rr' we have that there exists some 
k such that rr', k, M F= 1/J, and for every i ::; j ::; k we have rr', j, M F= 1.p. For 
all these paths, take the minimum k which satisfies this condition. Note that it is 
not possible for any of these rr' 's to have a cycle between positions i and k (i.e., 
some state appearing twice), otherwise (since k is a minimum) we have that during 
this cycle all the positions satisfy •1/J, and therefore we can make a new sequence 
(repeating the cycle an infinite number of times) which never makes 1/J true, implying 
that rr, i, M ~ A(1.p U 1/J). Since no state appears twice in these rr' 's, we have that 
k ::; n + i for all the sequences rr' 's, and this implies that rr, i, M F= An (1.p U 1/J). The 
other direction is straighforward by definition of the approximation. 
2: If rr, i, MF= E(1.p U 1/J), then there exist some rr[O..i] :S rr' such that for some i::; k 
we have rr', k, M F= 1/J. Take the sequence rr' which satisfies the condition above, and 
such that this k is the minimum {with respect to the k's associated with the sequences 
which satisfy the condition); in this sequence we cannot have a cycle, otherwise we can 
create a sequence rr" deleting the cycle where in position k' < k we have rr", k', M F= 1/J, 
which is a contradiction since the k was the minimum position in a sequence satisfying 
the condition. Since we do not have cycles in rr' for the positions k ::; n, and therefore 
by definition of approximations, we have rr, i, MF= En('P U 1/J). • 

A direct corollary of the theorem stated above is: 

Corollary 9. If M is a model with n states, then we have: 

1. rr, i, MF= •A(1.p U 1/J) {::} rr, i, MF= ·An('P U 1/J). 

02. rr, i, MF= •E(1.p U 1/J) {::} rr, i, MF= En(1.p U 1/J). 

• 
We can define approximations to any other formula. Given a temporal formula 

1.p, an approximation to it is obtained by replacing each temporal operator in 1.p by 
an approximation to it. For example, given the formula A( i.p U 1/J) /\ E( <p1 U 1/J') an 
approximation of it is An('P U 1/J) /\ Em(1.p' U 1/J'), where n and mare natural numbers. 
However, this notation (having the numbers as superscripts) is not very useful for 
our purposes; instead we use a postfix notation, putting the numbers in a depth-first 
order, e.g., instead of the formula above we write A(1.p U 1/J) /\ E(1.p' U 1/J')[n, m]. Using 
this notation we can state the following theorem. 

148 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Theorem 25. Let c.p be a temporal formula, and M a model with n states, then: 

7r, i, MI= c.p <=> 7r, i, MI= c.p[n, ... , n] 

where c.p[n, ... , n] is an approximation to c.p. • 
The proof is a simple argument using structural induction on c.p and theorem 24. 

Using this property we can prove that each temporal formula has a bound over the 
number of atomic actions that we need to consider for checking its satisfiability. 

Theorem 26. Given a temporal formula c.p, if c.p is satisfiable in a model over a vocabu­

lary V = (b.0 , <I>0), then c.p is satisfiable over a language V' = (Pr(c.p')U{ai, ... ,an}, <I>o), 

where c.p' is a DNF formula equivalent to the approximation c.p[k, .. ., k] to c.p fork = 


S(c.p), and n::::; D3(c.p'). 

Proof. Given a temporal formula c.p we know by theorem 23 that there exists a finite 

model M with S(c.p) = k states such that 7r, i, MI= c.p, but this is equivalent to saying 

that 7r, i, MI= c.p[k, ... , k], and there exists a DNF formula c.p' equivalent to c.p[k, .. ., k], 

and therefore 7r, i, M I= c.p'. By corollary 8 we know that there exists a model M' 

over a vocabulary V = (Pr( c.p') U { a1 , ... , an}, <I> 0 ), where n ::::; D3(c.p'), and therefore by 

theorem 25 we have that 7r

1
, i', M' I= c.p. • 


In other words, to check a temporal formula, we can use a propositional approxi­
mation to it to calculate how many extra actions we need to get a model, if it exists. 

The properties above can only be used with formulae without the Done() operator; 
however, we can show that no expressivity is lost with this restriction. First, consider 
the following property. 

Theorem 27. Let p be any propositional symbol; then: 

I= A •p A AG([a]p A [a]•p) f--t AG(p f--t Done(a)). 

Proof. We prove the -t part. Suppose that 7r,0,M I= •pAAG([a]pA [a]•p), i.e., we 
have 7T, 0, MI= •p and 

7r, 0, MI= AG([a]p A [a]•p) (5.6) 

On the other hand, by definition of I= we have 7r, 0, M I= •Done(a) and 7r, 0, M I= •p. 
Now, for any 7r[O ..O] ~ 7r

1 such that 7r
1

, i, M I= Done(a), we know that i > 0 and 
1 

-te; 7Ti e;+i-t • • • = 7r , and ei E a . But then, by 5 6 we get 7r , i, M I=7Ti-1 i-l I( ) . , . p and 

then 7r1
, i, MI= p f--t Done(a). And, since this is for every i and 7r1 (including i = O}, 

we get 7r, 0, MI= AG(p f--t Done(p)). The other direction is similar. • 

Now we prove that the formula in the antecedent of the implication in the above 
theorem does not destroy models, i.e., 

149 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Theorem 28. If p does not appear in <.p, then 1f, 0, MI= c.p for a model M and a path 
1f if and only if there exists some model M' such that 

1r
1

, 0, M' I= (•P /\ AG([a]p /\ [a]•p)) /\ <.p 

for a path 7r
1 

• 

Proof. One direction is trivial. For the other one suppose that 1f, 0, M I= c.p and 
M = (W, £,'I, P, n, w). For each state v in W, we can define a set of sequences of 
elements of£ denoted by P(v), as follows: 

P(v) = { ei ... · • en Iw ~ ... ~ v} 

and P(w) = {()} (the empty string). That is, for each state we define a collection 
of paths which yield it. Since n is deterministic with respect to events, we have that 
P(v) n P(v') = 0, when v f v'. 

We define a model M' = (W', £',I', P', 'R!) as follows: 

• M' = LJ P(v). 
vEW 

• £'=£. 

• n' = { s ~ s' I s' s' E W' /\ s' = s . e}. 

• P' = {(s,e) I ifs E P(v) /\ (v,e) E P}. 

• I' (Pi) = 'I(pi), for every Pi f p. 

• I' (p) = { s E W' I3e E £ : s = s' • e /\ e E 'I' (a)}. 

It is easy to see that we have 1f, 0, M' I= •p /\ AG([a]p /\ [a]•p) for any 1f. Note 
that, for every path w ~ w1 ~ w2 ~ ... , we have a corresponding path 1f

1 in M 
with 7r

1 = () ~ e1 ~ e1 · e2 ~ ... , such that for every i, if 1f, i, M I= 'lj;, then 
7r

1 
, i, M' I= 'lj;, which can be proven by an easy structural induction, and therefore we 

have 7r
1

, 0, M' I= <.p. • 

Now, consider the CTL property: 

l=A AG('lj;' +--+ 'lj;) ~ (c.p +--+ <.p['lj;/'lj;']) 

150 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Where cp['l/J/'l/J'] is the formula obtained by replacing all the occurrences of 'ljJ in cp by 
occurrences of 'l/J'. Putting the pieces together, if we have a formula cp with some 
occurrences of Done(a), then we can check the formula: 

•p /\ AG([a]p /\ [a]•p) /\ •cp[Done(a)/p] 

Ifwe get a model of this formula by the tableaux method, then we have a countermodel 
of cp[Done(a)/p], and then, using the property stated above, and theorem 27, we get 
a counterexample for cp. Now, if we do not get a model satisfying the formula above, 
theorem 28 implies that •cp[Done(a)/p] does not have any model, and therefore, again 
by theorem 27, we obtain that •cp does not have any model which satisfies it, and 
therefore cp is valid. 

Summarizing, instead of checking formulae with Done() predicates we can check 
formulae without these predicates and we can use modalities, temporal operators and 
propositional variables to express them. 

In this section we have shown that, given a temporal formula (or a finite set 
of temporal formulae), we have vocabulary in which it can be checked for global 
validity. This can be thought of as saying that there is a bound on the number of 
environment actions that may falsify the given formula. This can be useful when 
checking open systems (i.e., systems that interact with an environment). However, 
we have to take into account that usually we will get counterexamples, which show 
scenarios where our formula is false. In these cases, we have to make the formula 
stronger by adding further assumptions, for example, using a rely-guarantee discipline 
(introduced in [CM81]), assuming some good behaviour of the environment. It is 
important to note that, although we can check global validities, we have to be careful 
when we put components together. For example, we can prove using theorem 8 that 
a given specification has a liveness property, but, when we put together components, 
the obtained specification has more restrictions and therefore it could be the case 
that we make the original component specification inconsistent. Roughly speaking, 
the liveness property is a theorem derived from the specification of the component, 
but the specification of the system including the component has no model, since 
perhaps the other components add further restrictions on the possible execution of 
the component as part of the system. Thus, the liveness property of the component 
specification is preserved in the system, but as part of an inconsistent specification. 
Therefore, consistency checking must also be done when we obtain specifications from 
smaller ones (and this can also be done using the tableaux system). 

151 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

5.6 A Final Example 

In this section we present a final example in which we use the temporal extension of 
the tableaux. We take again the example of the heating system outlined in section 
5.3. Now, we add the new actions set_on and set_off in our model, and we try to 
prove the property: 

[set_on]AG( (set_on)..l) --+ [set_on]EF•on 

where we use the equivalences AG<p = •E(T U •cp) and EFcp = E(T U cp). This 
formula says that, if after setting the heating on, we do not set it on again, then 
eventually the system will be turned off. This happens because the sensor should de­
tect that the room is getting warm and it will stop the heating system. However, if 
there is some fault in the sensor, it will never detect that the room is warming up; 
as a consequence the room will start to be uninhabitable. Let us use the tableaux 
system to try to find a countermodel. For the sake of simplicity, we only sketch the 
tree in figure 5.20. We use the following labels in the tree: 

/'1 = set_on n set_off n get_cold n get_warm 
/'2 = /'1 • /'1 
/'3 = /'1 • get_cold n set_on n set_off n get_warm 
/'4 = /'3 • get_cold n set_on n set_off n get_warm 

Note that, in the illustrated tableau, the last node is a copy of its parent. Because 
this is not an ignorable branch, the branch is open. The root of the tableau contains 
the formulae in section 5.3 together with the negation of the property to be refuted, 
and the formula AG(U)T, which guarantees that we always have a next state. To 
obtain this tableau we first apply the P rule to the last formula of the first node, and 
then we apply the •EU rule several times, together with N rules to inherit the for­
mulae in the upper node; after that we obtain the branches using the P rule over the 
formula (U)T. Because of space restrictions, we have not included all the formulae 
in each node, only the relevant formulae are shown. From the branch obtained we 
can obtain the following model: 

get_cold 

get_cold nw• __s_et__o_n---+ •w' •w" w" t= on 

Intuitively, we break the property when we press the "on" button, and after that the 
sensor does not work and it does not detect that the room is getting hot. This is a 

152 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

classic faulty scenario; we can add some formulae to our specification to prevent this 
sort of situation from arising. Consider the following set of formulae: 

{AG(Done(set_on) -7 (•Pw(get_cold) U Done(set_off LJ get_warm))), 
AG( ((get_cold) T) -7 P(get_cold))} 

The first one says that, after setting the heating system to on, it is forbidden for 
the sensor to detect that the room is cold if it has not detected earlier that the room 
was warm (or, alternatively, somebody pressed the "off" button). The second for­
mula says that the sensor is working only in those scenarios where it is allowed to be 
enabled, and then we try to observe what happens with our property. As the reader 
can check, the open branch shown above is now closed, because either we get that 
geLcold is an impossible action (it is equal to 0) in this branch (it is both forbidden 
and strongly allowed) or the sensor is not enabled since this situation is forbidden. 

5.7 Conclusions and Further Work 

In this chapter we have described a tableaux system for the deontic action logic in­
troduced in chapter 3. One of the main features of the system is that it uses the 
underlying algebra of actions to produce tableaux, enabling it to manage successfully 
the intersection and complement operator on actions, two operators which are nor­
mally hard to deal with. Moreover, the algebra of actions allows us to extend the 
propositional tableaux system to manage temporal predicates. The rules presented 
for the temporal part of the logic are simple and they reflect the basic properties of 
the logic, see chapter 3. Moreover, we show that the predicate Done() can be added 
straightforwardly to the logic and, as we proved above, it is possible to express the 
Done() operator with the temporal operators and the modal predicates. 

A relevant point demonstrated in this chapter is that, though we have a finite 
number of actions, it is possible to prove properties which are valid in any extension of 
the actual vocabulary, which seems to be very useful in practice to verify components 
which could be a part of bigger modules. This kind of completeness with respect to 
language extension is also preserved for the temporal version of the logic. 

It seems very useful to apply the tableaux system described here to specifications. 
We are pursuing the use of this system to analyze, in an automatic way, the properties 
of fault-tolerant systems. Here, we do not provide more complicated examples, but, 
if some software tool is provided, we should be able to prove properties, and to find 
counterexamples, in an automatic way over complicated and interesting case studies. 

153 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Among the benefits of the system proposed here is that it provides, in the case 
of open tableaux, complete models with labels in the transitions which describe the 
actions executed (or not) by the system. This allows us to get counterexamples which 
exhibit an incorrect behaviour of the system or its environment. Analyzing these 
counterexamples can help to improve the specification and therefore the software 
produced from it. 

As further work, we want to extend the tableaux described here to be able to 
support some sort of modularization. It seems possible to use concepts coming from 
category theory to do this (for example, some concept analogous to Institutions, 
introduced by Goguen and Burstall in [GB92]). 

It seems that the technique presented here (to use the underlying algebra of actions 
to guide the tableaux rules) can be used with other algebras, perhaps more expressive 
than boolean algebras. One of the possible candidates is residuated boolean algebras 
(see [Jip92]), for which there are also some algebras with complete equational systems 
and similar properties to boolean algebras. One of the main benefits of using these 
algebras is the possibility of incorporating the iteration operator over actions into the 
formalism. 

154 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Initial Step: Put the initial formulae in some order and mark them as awake. 

Step n+l (n 2:: 0): Choose some labelled formula a: cp marked awake as near to the root 


as possible, belonging to a branch which is not ignorable or closed. If there are several 

such formulae, choose the leftmost one. After that, proceed as follows: 


• 	 If cp is an atomic proposition, then mark the formula as finished and finish the step. 

• 	 If cp is an A formula, then add the corresponding A1 and A2 formulae to all the 
branches passing trough a : cp, and mark the formula as finished. 

• 	 If cp is a B formula, then for any branch passing through a: cp, add two new branches, 
one containing B1 and the other containing B2, and mark the formula as finished. 

• 	 If cp is a P formula, then, if a is a copy of another a' in the branch, then mark the 
formula as finished. Otherwise, for any branch passing trough a : cp, add all the 
branches resulting from applying the P-rule and mark the formula as finished. If 
there is some N formula with label a then mark it as awake. 

• 	If cp is a Pv formula, for any branch passing through a : cp, add all the branches 
resulting from applying the Pv-rule and mark the formula as finished. 

• 	If cp is a NA, --.NA, AU , --.AU , EU or --.EU formula, then apply the corresponding 
rule and add all the resulting branches to all the branches passing through a : cp, and 
then mark a : cp as finished. 

• 	 If cp is an ND formula, then apply the N v-rule and add all the resulting formulae to 
all the branches passing through a : cp, and mark this formula as finished. 

• 	 If cp is an N formula, then apply the N-rule and add all the resulting formulae to the 
corresponding branches, and mark the formula as asleep. 

End of Step n+l: If all the branches in the tableau are closed or ignorable or all the 
formulae in the tableau are marked as finished or as asleep, then finish. Otherwise start 

the next step. 

Figure 5.19: Algorithm for applying the tableaux calculus 

155 




'Yl : AG(seLon).l) 

PhD Thesis, P.F.Castro McMaster-Computing & Software 

() : AG((get_cold]on) 
() : AG((get_warm]-,on) 
() : AG((set_on]on) 
() : AG((set_offj-,on) 
() : AG((U) T) 
() : (set_on](AG(set_on).l) 
() : (set_on)AGon 

I 
'Yl : on 

'Yl : AG((get_cold]on) 

'Yl : AG((get_warm]-,on) 

/1 : AG((set_on]on) 

'Yl : AG((set_off]-,on) 

/1 : AGon 

'}'1 : (set_on).l 

11 : AG((U).l) 

/3 : on 

/3 : AG((get_cold]on) 

/3 : AG((get_warm]-,on) 

'Y3 : AG((set_on]on) 

'Y3 : AG((set_offj-,on) 

'Y3 : AGon 

/3 : (set_on).l 

/3: AG((U).l) 

'Y3 : AG( (set_on).l) 


~ 
'Y4 : on 

'Y4 : AG((get_cold]on) 

'Y4 : AG((get_warm]-,on) 

'Y4 : AG((set_on]on) 

'Y4 : AG((set_offj-,on) 

'Y4 : AGon 

'Y4 : ( set_on) .l 

'Y4 : AG( (U).l) 

'Y4: AG((set_on).l) 


Figure 5.20: Tableau for Heating System 

156 




Chapter 6 

Relating Tableaux with the Hilbert 
System 

In chapters 3 and 5 we have presented two different deductive systems for the same 
logic; we proved the completeness and soundness of the propositional part of the 
logic for these two systems. However, the completeness of the Hilbert system for the 
temporal extension of the logic was not investigated in chapter 3. Here we use the 
tableaux system to prove the completeness of the Hilbert system presented in chapter 
3. This result implies that we can combine both systems when verifying software, 
obtaining, on the one hand the benefit of automatic proving and the possibility of 
getting counterexamples in a case of an unsuccessful proof (using tableaux), and, on 
the other hand, we have a standard deductive system where the well-known properties 
of propositional and modal logic can be used. In addition, we show how the labelled 
and not unlabelled formulae can be related using the atoms of the boolean algebra of 
terms, which can be a useful technique when proving properties of labelled systems. 

6.1 A Proof of the Hilbert-system Completeness 

As explained above, we have exhibited two deductive systems. On the one hand, we 
have described a Hilbert-style system and, in the last chapter, we presented a tableaux 
deductive system. We shall prove that both systems agree in their theorems. First, 
it is important to note that in tableaux we use labelled formulae of the type: a : <p. 

We define a translation of these formula to standard formulae (without labels), as 
follows: 

157 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• H(() : 'P) = 'P· 

• H(a. 'Y: cp) = H(a: ('Y)cp). 

If S is a set of labelled formulae, then we denote by H(S) the application of H() 
to each member of S. Note that this function translates a label (consisting of a 
sequence of atomic boolean terms) to a sequence of modalities whose actions are the 
corresponding atomic boolean terms. 

One important thing to note is that in the tableaux system we consider that 
degenerate boolean algebras (i.e., when U =act 0) are not possible models of actions 
(i.e., they are inconsistent). In the Hilbert system we have not ruled out degenerate 
boolean algebra in our models, though it is easy to do this with the additional axiom: 

A19. U fact 0. 

and stating in the semantics that we only consider non-degenerate boolean algebras. 
We can also take another approach and modify the tableaux system; however, we 
think that for specification and verification of systems, degenerate boolean algebras 
are not needed and can be safely discarded. 

In this chapter, it is convenient to distinguish between the tableaux deduction and 
the Hilbert deduction. We say that 1--T <p when we have a tableaux built from () : •<p 

that is closed, and we say that 1--H <p when we can prove <p using the axiomatic system 
presented in chapter 3. (Here we abstract from the language, and we suppose that 
we are using a fixed arbitrary language L.) We also distinguish between the validity 
used for tableaux (which is anchored with respect to the beginning of time) and the 
validity that we use for the Hilbert system; the anchored validity is denoted by F= A, 

and the non anchored validity by F=. 

Our first theorem says that every theorem proved with the Hilbert system is 
provable from tableaux (which is a corollary of the soundness of the Hilbert system). 

Theorem 29. If 1--H <p =}1--T 'P· 

Proof. Suppose 1--H <p, then 7r, i, MF= <p for every structure M, trace 7r and position 

i; but then 7r, 0, MF= <p for every structure M and trace 7r. But this means that FA <p, 


and since the tableaux system is complete we have 1--T <p. • 


The hard part is to prove the other direction (1--T <p =}1--H <p), which implies that 
the Hilbert system is complete because of the completeness of the tableaux system. 
To prove this we need a number of properties. In the following, given a finite set of 
formulae S, we denote by/\ S the conjunction of all its elements. 

158 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Theorem 30. Given a t-completed finite tableau T and a closed branch B of T, we 
have that 1-H •Done(U) - (/\ H(B) - _i). 
Proof. We analyze each possibility for which B is closed. 

• 	 If() : p and() : •p belong to B for some p, then by PL we have: 1-H p /\ •p ~ L 
Now, using the definition of H(), we have: 

1-H f\ H(B) - (11) · · · (tn)P 

for some sequence of atoms ')'1, ... , 'l'n in the boolean algebra of terms. {Note 
that the function H() translates labels to {probably empty) sequence of action 
terms.) In the same way, we obtain: 

Now, since 11, ... , 'l'n are atoms in the boolean algebra of terms, we can use 
axiom A 17 together with properties of boolean algebra and obtain: 

and now by axiom A2 and PL we obtain: 

which using PL gives us: 

and from here using the property (a)_i ~ _l and PL several times we obtain: 

1-H f\ H(B) - _l. 

• 	 If EQ(B) 1-sA U =act 0, taking into account axiom A19, we have that, using 
the axioms of boolean algebra and propositional logic, 1-H /\H(B) - U =act 0. 
But from here and using the new axiom we get 1-H /\ H(B) - _i, and then 
1-H ·Done(U) - (/\ H(B) - _l). 

• 	 If B is done-closed, then we have the following possibilities: 

-	 If() : Done(a) EB, then by axiom tempAx9 and PL we have: 

1-H •Done(U) - (Done(a) - _i). 

159 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

- Suppose that O". 'Y : Done(a) E 8 with J.LBA 'Y ~ a. By definition of H(), 
we have that 

H(O". 'Y: Done(a)) = ('Y1) ... bn)('Y)Done(a). 

Since J.L BA 'Y ~ a, by properties of boolean algebras and taking into account 
that 'Y is an atom in the action term algebra we obtain: f-BA 'Y ~a. Now, 
using axiom TempAx7, PL and T3 we have: f-H ['Y]•Done(a), and from 
here, using G N, we get 

Using this, PL and axiom A2 we get: 

which implies 

0f-H Done(U) -t (('Y1) ... ('Yn)('Y)Done(a) -t ..L) 

which by definition of H() gives us: 

0f-H Done(U) -t (H(O". 'Y: Done(a)) -t ..l). 

• If it is deontic closed, then we have three possibilities: 

- O": P('Y) and O": •P('Y). 


- O": Pw('Y) and O": •Pw('Y). 


- O": •P('Y) and O": Pw('Y). 


The proof for the first two cases is similar to the proof for the propositional 
variables. For the last case, the proof is as follows. By axiom A12 we have 
f-H Pw('Y) -t P('Y) and then, using PL, we have: f-H P('Y) /\ Pw('Y) -t ..l, and0 

using the property (a)..l +-t ..l we get f-H (('Y1) ... ('Yn)•P('Y) /\ Pw('Y)) -t ..l and 
we know that: 

H(O": P('Y)) = ('Y1) ... ('Yn)P('Y) 

(for some sequence of atoms 'Yi, ... , 'Yn), and similarly for H(O" : -,pw ( "'()). Nate 
that because of axiom A 17, we have: 

and by axiom A2 we have: 

and then by PL we get: 

f-H H(O": P('Y)) /\ H(O": Pw('Y)) -t ..L 

and therefore: f-H Done(U) -t (;\ H(B) -t ..l).0 

160 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• 

We can prove a variation of the same theorem. 

Theorem 31. Given at-completed finite tableau T and a closed branch B ofT, then 
we have some label a in B such that f-H Done(U) -+ (/\ B/a -+ ..l).0 

Proof. Similar to theorem 30. • 

Note that, in the theorem above, if we restrict our attention only to branches 
which do not contain a formula () : Done(a), we have the following theorem: 

Theorem 32. Given a t-completed finite tableau T and a closed branch B of T which 
do not contain a formulae () : Done(a), then we have that f-H B/a -+ ..l. 
Proof. The cases are the same as above taking into account that we do not have the 
case of a branch wihch is done-closed because of a formula() : Done(a). • 

Now, we investigate the nature of tableaux rules; the following theorem says that 
the rules of the tableaux system only add equivalent formulae to the ones already in 
the tree. 

Theorem 33. For every rule: 

1/li 1/11 
I··· I 

1/11 1/1~ 

we have that f-H H(cp) +-t V /\ H(1/J{). 
l~j~n l~i~m 

Proof. For the propositional rules, the proof is straightforward. For the remaining 

rules, the proof is as follows. 

Rule Nv: From the axioms we can prove f-H P(a)-+ /\ P('yi) where EQ(B) f-sA /i ~ 


a and /i are atoms. Then, using modal logic properties, we get: f-H ('YD ... ('Y~)P(a) -+ 

('YD ... (!~)/\ P('yi), where (1D ... (!~) is the sequence of modalities obtained from 

a : P(a) using the translation H(); therefore: f-H H(a : P(a)) -+ /\ H(a : P('yi)). 

Rule N: Similar to rule ND. 

Rule Pv: It is straightforward to prove: f-H Pw(a) -+ VPw('Yi) where /i ~ a, and 

now using modal logic we get: 


161 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

and this proves the result. 

Rule Per: This follows from axiom A12 and modal logic. 

Rule N: By PL we have: 


1-H (U) T A [U]<p ~ AN<p 

and, by axiom A1 and PL, we have: 

and therefore, using PL, we get: 

1-H ((U) TA [U]<p) V ( •(U)TA <p) ~ AN<p. 

On the other hand, using propositional logic we have: 

1-H AN<p ~ (U) T V •(U)T 

and then, using PL, the property (a)..l ~ ..l and A1, we get: 

1-H AN<p ~ ((U)T A [U]<p) V (•(U)T A 'P) 

which proves the theorem. 

Rule -,N: This can be deduced from the rule above using PL. 

Rule EU : By axiom TempAx5, we have 


Rule •EU : Follows from the rule above using PL. 
Rule AU : By axiom TempAx4, we have: 

and using modal logic we get the result. 

Rule •AN: This follows from the rule above using PL. 
 • 

From the theorem above, we can prove that the labels that we can obtain by the 
P rule are implied by formulae already in the actual branch. 

Theorem 34. If B is a branch of a finite t-completed tableau T which contains 
formulae with labels O" and O". "(, then we have that 

1-H /\ 8/0" ~ /\{('Y)'P 'PE Bj(O" • "()}. J 

Proof. Let O" : <p1, ... , O" : 'Pn be all the formulae in B labelled with label a and 
O" • "( : 'l/;1 , ... , O" • "( : 'l/Jm all the formulae in B labelled with label O" • "(. Since any 

162 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

formula rJ. 'Y : 'I/Ji can only be obtained by using the rule P from a formula rJ : 'PJ in 
B, we have, by theorem 33, that for every rJ. 'Y : 'I/Ji there exists a rJ : 'PJ such that: 

But then note that we can apply rule P with rJ = (), in which case we obtain: 

which, by definition of H() gives us: 

and, since this is for every 'l/JJ, we obtain: 

The theorem follows. • 
We have proven that closed branches are inconsistent. However, we can have 

ignorable branches. The following theorem proves that ignorable branches are incon­
sistent. Here, given a tableaux T, we say that Sis a subbranch of T if Sis a subpath 
of a branch B of T. 

Theorem 35. Let T be a t-complete tableau, and S a subbranch of T with a formula 
rJ : E(cp U 'lj;) E S and such that every rJ1 

:::; rJ is reduced in S. If every branch B 
of T with S ~ B is either E-ignorable for rJ : E(cp U 'lj;) or closed, then we have 
f-H /\ 0 Done(U) -t (/\ S / rJ -t .l). 
Proof If S is done-closed because it contains a formulae () : Done(a), then we 
straightforwardly have: f--H •Done(U) -t (S/rJ -t -1). Otherwise, consider the fol­
lowing set of formulae: 

1r = {/\ B/rJ' I (J 2': (J As~ B}. 

First, note that, if S does not contain a formula () : Done(a), then none of the 
branches which extend S can be done-closed because of a formulae () : Done(a), 
because S is reduced for every rJ

11 
:::; rJ. Now, let us prove that: 

1. f-H Vf -t •'l/J. 

2. f-H vr -t AN vr. 

163 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

For item 1, let /\ B'/ 0" 
1 E r; we know that 0"

1 2: O". If there is some branch extending 
S which contains the formulae in B'/ 0"

1 which is ignorable, we know (since B' is 
completed for 0"

1 and definition of A-ignorable) that •1/J E B' / 0"
1

, which implies f-H 
1Vr ---+ •1/J. If all the branches containing B / 0" are closed, then all the labels obtained 

from 0"
1 by the tableaux rules are closed branches, and therefore, by theorem 34 and 

theorem 32, we obtain f-H /\ B'/ 0"
1 ---+ .l, and by propositional logic we obtain f-H 

/\ B'IO"' --t •1/J. 

1 1For item 2, we show that for each B' I 0" E r: f-H /\ B'I 0" --t AN vr. First, 
since T is t-completed, we have applied to O" all the possible rules and then we have 
branches B1, ... , Bn, so that we have that each O" , 'Yi is a label in a corresponding 
Bi for all atoms "fi, and since this label can only be obtained from O" by the P rule 

1and using theorem 34 we get f-H /\ B'/ 0" ---+ /\('Yi) Vr. Using axiom A 17 gives 
i 

1us: f-H /\ B'I 0" --t /\['Yi] vr, but then, using the properties of modal logics, we get 
i 

f-H /\B'/O"'---+ [U]Vr. By axioms TempAx1 and TempAx2 and PL, we obtain 
f-H /\B'/O"'---+ ANVr. 

From 1 and 2 and rule TempRule4, we obtain f-H Vr---+ •E(cp U 1/J); but, since 
f-H /\ B/O" --t vr, we have that f-H /\ B/O" --t ·E(cp u 1/J), and since E(cp u 1/J) E B/O", 
we have that f-H /\ B / O" ---+ E ( cp U 1/J). This implies f-H /\ B / O" ---+ .l, and, sincSe S 
is reduced for O", we have that: S / O" = B / O" and then f-H /\ S / O" ---+ .l, which implies 
f-H •Done (U) ---+ (/\ S / O" ---+ .l). • 

We can prove the same theorem for formulae of the style A(cp U 1/J). 

Theorem 36. Let T be a t-complete tableau, and S a subbranch ofT with a formula 
O" : A(cp U 'ljJ) E S and such that every 0"

1 ~ O" is reduced in S and every branch B of 
T such that S ~ B is either A-ignorable for O" : E(cp U 1/J) or closed. Then we have 
f-H /\ •Done(U) ---+ (/\ S ---+ .l). 
Proof. Similar to the proof of theorem 35. • 

Now, we prove that tableaux theorems can be proven using the Hilbert system. 

Theorem 37. If f-T cp, then f-H •Done(U)---+ cp. 

Proof. If f-T cp, then, if we start a tableau with () : •cp, we obtain all closed or 

ignorable branches. But, because of theorems 36, 35 and 30, for every branch Bi we 

have: 


0f-H Done(U) --t (j\ H(Bi)---+ .l). 

164 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Now, because of theorem 33 and the fact that the formulae in the branches are obtained 
by applying the rules to 'P, we have that 

and then: 

and by PL we obtain: 
f-H •Done(U) --t 'P 

• 
Intuitively, this theorem says that the theorems proven in tableaux can be proven 

in the Hilbert style system taking into account that the validity of tableaux is an 
anchored one. Using this result we can prove that the theorems of both systems 
coincide when we consider AG tableaux formulae. 

Theorem 38. f-T AGcp ¢:> f-H 'P 
Proof. If we have f--T AGcp, then by the theorem above we have f--H •Done(U) --t AGcp, 
and therefore, from rule TempRule5, we obtain: f--H cp. The other direction is by 
theorem 29. • 

Summarizing, if we want to prove a property using tableaux with need to prove 
that it is true for every path and every instant, if we succeed to do this, then this 
formula is valid in the sense of I=. Another consequence of the theorem above is that 
the Hilbert system is complete.. 

Theorem 39. I= 'P =?f-H cp. 

Proof. Suppose that I= cp; then we have I=A AGcp, and, therefore, since the tableaux­

system is complete, we obtain f--T AGcp, but this implies, by the theorem above, that 

f-H 'P· • 

6.2 Summary 

In this chapter, we have shown that the two deductive systems described in earlier 
chapters are related. i.e., they allow us to obtain similar theorems. Tableaux systems 
have been used in earlier work to prove the completeness of Hilbert style systems, in 
particular in temporal logic. For example, in [EH82J a tableaux system is proposed 
to demonstrate the decidability of CTL and then this system is used to prove the 

165 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

completeness of a Hilbert style system, although in this work a tableaux based one 
graphs is used instead of one based on trees. 

It is important to note the technique that we use to relate the tableaux system 
with the Hilbert system; the properties of the atoms of the boolean algebra of terms 
are used to translate labelled formulae to standard formulae, and therefore basic facts 
over the tableaux are proven using the Hilbert calculus. The main properties are that 
closed and ignorable branches are inconsistent set of formulae, and tableaux rules 
introduces equivalent formulae to formulae already in the current branch. It seems 
possible to use this technique with other logics with different algebraization of actions, 
this seems to be an interesting topic of research. 

166 




Chapter 7 

An Extended Logic for the 
Support of Modularity 

In this chapter we introduce some modifications to the deontic logic presented in chap­
ter 3 with the aim of obtaining a more general framework where system specifications 
can be written in a modular way. For this purpose, we mainly follow the philosophy 
of [BG77], in the sense that a system is specified by putting together smaller specifica­
tions (by means of some categorical constructions). The ideas presented below are also 
inspired by the logical frameworks presented in [FM91b] and [FM92], where Goguen 
and Burstall's ideas are applied to temporal logics and, therefore, to specifications 
of concurrent systems and object oriented systems, respectively. In [FM91b] a logic 
with support for modularization, with temporal constructs, is presented. This logic 
incorporates deontic predicates (permission, obligation, prohibition) to give a broader 
language to specify objects (or modular units); deontic predicates (as shown in the 
earlier chapters) allow designers to separate the concepts of description and prescrip­
tion of pieces of software. The descriptional part of the logic of a component describes 
what the effects of the actions are of this component (in a pre/post-condition style). 
On the other hand, the deontic aspect describes how this module should behave, 
though a component may exhibit a different behaviour to that which is expected. In 
[FM91b] a linear temporal logic is used and the deontic constructs are global, in the 
sense that the prescriptions given in terms of them are shared by all the components 
of the specification. In the structured version of MAL presented in [RFM91] prescrip­
tions are also global. Here we present a branching time logic (which reflects in some 
way that the notion of non-determinism is embedded inside of this logic). Moreover, 
we change some definitions in PDL so that the prescriptions in one component do not 
affect the other components in the system (i.e., they are intended to be local). 

167 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

The chapter is organized as follows. In section 7.1 we present the logical machinery 
which allows us to specify different modular units of a system. In particular, we 
exhibit a formal framework, which is useful when analyzing the violations that may 
occur during the execution of the system being specified. The deontic operators play 
a key role here: violations arise since an obligation is not fulfilled, or a prohibition 
is violated. Interestingly, some natural properties of allowed actions (namely that 
an allowed action does not introduce more violations in a given state) are useful to 
facilitate the reasoning about the behaviour of the system in faulty scenarios. We 
give some simple examples which are intended to show the application of these ideas 
in practice. 

7.1 Modularizing the Deontic Logic 

In this chapter we use the notion of vocabulary (or language) introduced at the end 
of chapter 3, i.e., we use vocabulary to refer to a tuple L = (D.0 , <I>0 , Vo, I 0 ), where D.0 

(as before) is a finite set of primitive actions: a1, ... , an, which represent the possible 
actions of a part of the system and, perhaps, of its environment. <I>0 is an enumerable 
set of propositional symbols denoted by p1 ,p2 , •.•• Vo is a finite subset of V, where 
V = {vi, v2 , v2 , ••• } is an infinite, enumerable set of "violation" propositions, and I0 

is a finite index set of (categories of) permissions. The set of formulae is defined in 
the same way as chapter 3. We also define a modified version of the Done() operator; 
this operator can be thought of as being a restriction of the standard Done() operator 
relativised to a restricted set of actions. 

• If o: is an action and S ~ D.0, then Done8 (o:) is a formula. 

The intuitive reading of Dones( o:) is: if we restrict the actions of the component to 
those appearing in S, then the last action executed was o:. Note that the classic Done() 
operator is just Done~0 ( o:); for the sake of simplicity, sometimes we write Done( o:) 
instead of Done~0 (0:). That is, we have similar formulae to chapter 3, but we add 
indexed permissions and a more general version of the Done(). 

We also add a logical constant to predicate about the initial state of a system: 

• B is a formula. 

Note that in the logic defined in chapter 3 the predicate B is not needed since it is 
expressed by •Done(U); however, here, since we consider transitions which can be 

168 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

labeled with external events, this formula does not denote the initial instant of the 
system, but the initial state of the current component. 

We also introduce some changes to the semantic structures to give the semantics of 
this variation of the logic. Basically, we follow the ideas of [FM91b], where transitions 
can be produced by actions in the language or by external components (i.e., this is an 
open system approach in the sense that is given in [Bar87]). Intuitively, each action 
produces a (finite) set of events during the execution of the system (the events that 
this action "observes"), and also there are other events produced by actions from 
other components or from the environment. 

Definition 40 (models). Given a language L = (4>0, b.0 , Vo, I 0), an L-Structure is a 
tuple: M = (W,R,£,I,{Pi Ji E Io}) where: 

• 	W, is a set of worlds. 

• 	£, is an infinite, enumerable non-empty set, of (names of) events. 

• 	R, is an £-labeled relation between worlds. We require that, if (w, w', e) E R 
and (w, w", e) ER, then w' = w", i.e., R is functional. 

• 	I, is a function: 

For every p E 4>0 : I(p) ~ W 

For every a E b.o: I(a) ~ £, and I(a) is finite. 

In addition, the interpretation I has to satisfy the following properties: 

1.1 For every ai E b.o: JI(ai) - LJ{I(ai) Jaj E (b.o - {ai})}J ~ l. 

I.2 	For every e E I(a1 U · · · U an): if e E I(ai) n I(ai), where ai -I- ai E b.0 , 

then: 
n{I(ak) I ak E b.o Ae E I(ak)} = {e}. 

• 	 each pi ~ W x £ is a relation which indicates which event is permitted in which 
world with respect to permissions with index i. 

D 

Roughly speaking, the structure gives us a labeled transition system, whose labels 
are events, which are produced by some action or they could also be external events. 
Note that we have a set of events, but actions are only interpreted over finite subsets, 
whose intersections satisfy the condition I.2, i.e., we require that every one-point set 

169 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

can be generated from the actions of the component. We call standard models those 
structures where & = UaE~o I(a), i.e., when we do not have "outside" events in the 
structure. Note that the semantics of the logic described in chapter 3 is given only in 
terms of standard models. 

We use maximal traces to give the semantics of the temporal operators, and in 
the following we use the notation introduced in chapter 3, Since, in a trace, we have 
events that do not belong to the actual components, we need to distinguish between 
those events generated by the component being specified and those which are from 
the environment. Given a language L, an L-structure M and a maximal path 7r in 
M, we define the set: 

LocL(7r) = {i I7r(i) E I(a1 LJ · · · LJ an)} U{ 0} 

(where a1, ... , an are all the primitive actions of L), i.e., this set contains all the 
positions of 7r where events occur that are observed by some action in L. Obviously, 
this set is totally ordered by the usual relationship ::; . Also we consider a restricted 
version of this set; given a set { ai, ... , am} ~ .6.0 , we define: 

In the following, given a set S of naturals, we denote by minv(S) the minimum element 
in S which satisfies the predicate p, and similarly for maxv(S). Using these concepts, 
we define the semantics in a similar way to that used in [CM07a], but taking into 
account the separation between local and external events. 

Definition 41. Given a trace 7r = s0 ~ s1 ~ s2 ~ ... E :E*(w), we define the relation 
l=L as follows: 

• 	 If Pi E <I>o U Vo, then 7r, i, M l=L Pi.& Pi E I(7ri)· 

• 	7r, i, M l=L Pi(a)..& Ve E I(a) : pi(w, e). 

• 	7r, i, M l=L P~(a) ..& 3e E I(a) : pi(w, e). 

• 7r,i,M l=L -.cp ~not 7r,i,M l=L cp. 

• 7r,i,M l=L cp1 ---t cp2 .& either not 7r,i,M l=L 'P1or7r,i,M l=L 'P2· 

• 	7r, i, M l=L Dones(a).& 3j: j = max<i(Locs(7r)) /\ ei E I(a). 

• 	7r, i, M l=L [a]cp ..& '<h' = s~ ~ s~ 1 ... E :E*(w) such that 7r[O, i] -< 7r1
, if 

j = min>i (Loe(7r1
)), and if ej E I (a), then 7r1

, j, M I= L cp. 

170 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

• 	1f, i, M l=L ANcp ~if i = #1f, then 1f, i, MI= cp. If i # #1f, then 'rh' E E*(w): 
7r[O.. i] -< 1f1 

:, if j = min>i(Loc(7r')), then 1f1,j, MI= cp. 

• 	1f,i,M l=L A(cp1 U cp2) ~ ifi = #1f, then 1f,i,M I= cp2 . Ifi # #n, then 
rl7f' E E*(w) : 7r[O.. i] -< 1f1 we have that 3j E Loc((7r')i) : 1f1 ,j, M I= cp2 and 
Vi~ k ~ j: k E Loc((7r')i), then 1f1

, k, MI= cp1 . 

• 	1f, i, M l=L E(cp1 U Cf'2) :def: if i = #1f, then 1f, i, M I= Cf'2· If i -=/= #1f, then 
37r' E E*(w): 7r[O..i]-< n' such that 3j E Loc((7r')i): 1f1,j,M I= cp2 and Vi~ k ~ 
j: k E Loc((7r')i), then 1f1

, k, MI= cp1 . 

D 

We say that I=L cp, if 1f, i, M I= cp, for every model M and path 1f. (In this chapter, 
when we use the symbol I=, we refer to this relationship and not the one defined in 
chapter 3.) 

We can think of the propositional variables in L as local variables, which cannot be 
changed by other components, i.e., we must require (as done in [FM91b] and [FM92]) 
that external events do not produce changes in local variables. In [FM92] the notion of 
a locus trace is introduced to reflect this property in the logic; a locus (trace) is one in 
which the external events do not affect the state of local variables. However, the logic 
used in that work is a linear temporal logic, and this implies that we cannot restrict 
only to traces to express this requirement, since we have a branching temporal logic. 
In the following we take further the ideas introduced in [FM92] and we define locus 
models which have the property of generating locus traces. We need to investigate 
the model theory of our logic more deeply to be able to define this concept. 

We have presented an axiomatic system for an ealier version of this temporal logic 
in chapter 3. We need to add some axioms to that system to deal with the new 
operators introduced above. The axioms for the propositional part of the logic are: 

1. 	 The set of propositional tautologies. 

2. 	 A set of axioms for boolean algebras for action terms (a complete one), including 
standard axioms for equality. 

3. 	 The following set of axioms: 

Al. [0]cp 

A2. (a)cp A [a]'l/J -t (a)(cp A 1/J) 

171 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

A3. [a LJ a']cp ~ [a]cp /\ [a']cp 


A4. [a]cp ---+ [an a']cp 


AS. Pi(0), for every index i. 


A6. Pi(a LJ /3) ~Pi(a)/\ Pi(/3), for every index i. 


A7. pi(a) V Pi(/3)---+ Pi(an /3), for every index i. 


AS. -.P~(0), for every index i. 


A9. P~(a LJ /3) ~ P~(a) V P~(/3), for every index i. 


AlO. P~(a n /3)---+ P~(a) /\ P~(/3), for every index i. 


All. Pi(a)/\ a¥= 0---+ P~(a), for every index i. 


A12. P~('Y)---+ Pi('Y), where [!'] is an atom in b.0/if>sA and for every index i. 


A13. Qi(a)~ Pi(a)/\ -.P~(a), for every index i. 


A14. [a]cp ~ •(a)•cp 


A15. (ai LJ .•. LJ an) =act U 


A16. (/3) (a =act a') ---+ a =act a' 


A17. (f')cp---+ ['Y]cp, where[!'] is an atom of b.o/if>sA 


BA. cp[a] /\ (a =act a') ---+ cp[a/a'] 


For the temporal extension of the logic consider the axioms above plus: 

TempAxl. (U) T ---+ (ANcp ~ [U]cp) 


TempAx2. [U]..l ---+ (ANcp ~ cp) 


TempAx3. AGcp ~ -.E(T U -.cp) 


TempAx4. E(cp U 'l/J) ~ 'ljJ V (cp /\ ENE(cp U 'l/J)) 


TempAx5. A(cp U 'l/J) ~ 'ljJ V (cp /\ ANA(cp U 'l/J)) 


TempAx6. [LJaES an a] Dones(a) 


TempAx7. [LJaES an a]·Dones(a) 


TempAx8. -.Dones(0) 


TempAx9. B---+ -.Dones(a) 


TempAxlO. [U]-.B 


172 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

TempAxll. Dones(a)---+ [LJaeS a] Dones(a) 

TempAx12. -iDones(a)---+ [LJaes a]-iDones(a) 

And the following deduction rules: 

• Rules given in [CM07a] for the propositional part of the logic. 

TempRulel. if f- B ---+ c.p and f- c.p ---+ [U]c.p, then f- c.p 

TempRule2. if f- c.p, then f- AGc.p 

TempRule3. if f- c.p---+ (-i'lj; /\ ENc.p)}, then f- c.p---+ -iA(c.p' U 'lj;) 

TempRule4. if f- c.p ---+ (-i'lj; /\ AN (c.p V -iE( c.p' U 'ljJ))), then f- c.p ---+ -iE('19 U 'ljJ) 

TempRule5. if f- -iDone(U) ---+ AGc.p, then f- c.p 

The new axioms are TempAx6-TempAxl2. Axioms TempAx9 and TempAxlO 
define the basic properties of the B predicate: they imply that no action was per­
formed before, and after executing any action, B becomes false. Note that we also use 
B instead of -iDone(U) in the induction rule. The rest of the axioms define the rela­
tivised Done() operator; note that in these axioms Uaes a denotes the choice between 
all the actions in S. It is important to remark that in the case that S = ~~ (i.e., 
when Sis the set of all the primitive actions of the language), then the properties of 
Done~0 () are exactly those of the standard Done() operator as defined in chapter 3. 

7.1.1 A Touch of Model Theory 

For the next definition we fix two structures Mi = (Wi, Ri, &i, Ii, Pi, wi), and M2 = 
(W2,R 2, £2,I 2,P 2, w2), then we define the notion of morphism between Mi and M2. 

Definition 42. A morphism m : Mi ---+ M2 between Mi and M2 is a pair of functions 
Uw : Wi ---+ W2, fE : &i ---+ £2), which satisfies: 

MO fw(wi) = W2. 

Ml For every Pi E <I>o and w E Wi, if Pi E Ii(w), then Pi E I2(fw(w)). 

M2 For every e E &i and ai E ~o, if e E Ii(ai), then fE(e) E I2(ai)· 

173 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

M3 For every e E f1 and w, w' E W1, if w ~ w' E R1, then fw(w) f*) fw(w') E 
'R2. 

M4 For every e E f1 and w E W1, if (w, e) E PL then (Jw(w), fE(e)) E P~. 

0 

We say that a morphism m = (Jw, fE) is surjective, if fw and fE are onto, and 
we say that m is injective if both fw and fw are injective. We introduce the concept 
of strong morphism (where we follow the terminology used in the model theory of 
modal logics [BRVOl]). 

Definition 43. A morphism m: M1 ~ M2 is strong iff the conditions M1-M4 are 
equivalences. 0 

We say that a morphism m = Uw,JE) : M 1 ~ M 2 is a bijective morphism if m 
is a strong morphism and the components fw and fE are bijections; we denote this 
situation by M 1 ~ M 2. Note that, given a morphism m: M 1 ~ M 2 and given a trace 

we can define a corresponding trace: 

1 = 
M 1 is also a bijective morphism, and it is the inverse of m, i.e., mo m-1 = idM1 and 
If m = (Jw,fE): M 1 ~ M 2 is a bijective morphism, then m- (JJ;/,f"E1): M 2 ~ 

1m- om= idM2 • 

It is straightforward to prove that, if we have a bijective morphism between two 
models, these models are elementarily equivalent, that is: 

Theorem 40. Given two models M1 and M2, if M1 ~ M2, then M1 F= cp iff M2 F= cp, 
for every formula cp of L. 

However, the existence of a bijective morphism is a strong requirement, and we 
are interested in situations when the models are not exactly isomorphic but where 
the structure of one of them is somehow preserved by the other. The notion of 
bisimulation (introduced in the context of process algebra [Mil79]) has been shown 
to be useful to show equivalence of modal formulae with respect to Kripke semantics 
[vB76], and with respect to temporal logics [BCG87] and [DV95]. Here, we describe 

174 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

a notion of bisimulation that is useful for our purposes and is related to branching 
bisimulation [vGW89] and stuttering bisimulation [MCBG88]; note that in the latter 
case, the notion of bisimulation is defined over non-labeled systems, while our notion 
of bisimulation is defined over two different labeled transition systems. Using the 
terminology of [DV95], we can say that the bisimulation presented later on is a sen­
sitive divergence bisimulation, since it distinguishes between processes which diverge 
by non-local events. 

Recall that, in a given structure M over a language L, we say that an event e is 
non-local if it does not belong to the interpretation of any action of the language; 
otherwise, we say that it is a local event. We introduce some notation useful for the 
c 	11 · t• ·nr f 1 'f th . t th ea e1 e2 en10 owmg sec 10ns. vve say w ~ w , I ere ex1s s a pa w ~ W1 ~ W2 ~ ... ~ Wn, 

such that ei is non-local for every 0 ~ i ~ n. We say that w ~ when there is an 
infinite path from w: w ~ w1 ~ ... , such that every ei is non-local. Furthermore, 
we say w ~ w' (where e is local) if w ~ w" and w" ~ w'. 

Given two structures M and M', such that £ = £' (i.e., they have the same 
events), assume I(a) = I'(a) for any a (the interpretation of every action gives us 
the same events). We say that a relationship Z ~ W x W' is a local bisimulation iff: 

• 	If wZv, then L(w) = L(v). 

• 	 If wZv, and w ~,then either v ~or there is av' such that v ~ v' and v' has 
no successors by ~. 

• 	 if wZv and w ~ w', then w'Zv if e is non-local. Otherwise, we have some v' 
such that v ~ v' and w' Z v'. 

• 	z~ also satisfies the above conditions (where z~ is the converse of Z). 

Here L(v) denotes the set of all the state formulae (primitive propositions, deontic 
predicates and equations) true at state v. (Note that the composition of two local 
bisimulations is a local bisimulation, and the identity relation is a local bisimulation.) 
In branching bisimulation (as defined in [DV95]), we can "jump" through non-local 
events; however, here we require a stronger condition: we can move through non-local 
events, but, if we have the possibility of executing a local event, we must have the 
same possibility in the related state. We see later on that this notion of bisimulation 
induces useful properties on the models and that we can characterize this notion in 
an axiomatic way. 

We say that two models Mand M' are bisimilar iff w0Zw~ (where wo and w~ are 
the corresponding initial states) for some local bisimulation Z; we denote this situa­
tion by M "'z M'. We prove later on that two bisimilar models are indistinguishable 

175 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

by our logic. In [DV95], it is shown that CTL*-X (CTL* without the next opera­
tor) cannot distinguish between Kripke structures which are DBSB (divergent blind 
stuttering) bisimilar; however, in the semantics of the temporal logic considered in 
that work, there are no labels on the transitions and, therefore, the next operator is 
problematic since it is interpreted as a global next operator. On the other hand, here 
we can take advantage of the fact that we have the events as labels of transitions, and, 
therefore, we can distinguish between local and non-local transitions. Furthermore, 
note that our next operator is a local one (although this implies some subtle technical 
points when it comes to defining the composition of components, see below). 

Using bisimilarity, we define the notion of a locus model (following the terminology 
of [FM92] where locus models are introduced in a linear temporal logic). 

Definition 44. We say that a structure M is a locus iff there is a local bisimulation 
between M and a standard model M'. 0 

It is worth noting that in this work we are not interested in comparing the ex­
pressivity of our logic with respect to the notion of bisimilarity introduced above (as 
done in [DV95]). Instead, we use this notion of bisimulation to formalize the notion 
of locus structure that, as shown later on, will be essential in defining composition 
of modules (or components). Roughly speaking, locus models are those which have 
a behaviour which is, essentially, the same as that of a standard model. Hence, the 
usual notion of encapsulation, as informally understood in software engineering, ap­
plies to our concept of component: only local actions can modify the values of local 
variables. 

We extend the definition of bisimulation to paths. 

Definition 45. Given a path 7r = w0 ~ w1 ~ . . . in M and a path 7r
1 = v0 ~ v1 ~ 

. . . in M', and a local bisimulation between M and M' such that M ,...., z M', we say 
that 7rZ7r', iff when WiZvi, then: 

• 	 if we have Wi ~ ... ~ Wn in 7r, with ej non-local for 0 :::; j :::; n, then we have 
1

Vj 	~ ... ~ Vm in 7r , with d1 non-local for every 0:::; l:::; m, such that wnZVm· 

• 	 if we have wi ~ wi+l in 7r, where e is a local action, then we have a (sub)path 

in 7r
1

: Vj ~ ... ~ Vm such that for all I :::; l < m, d1 are non-local, and wnZVm· 

• 	 we also have 7r1z~7r. 

0 

176 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

This is similar to the definition of stuttering equivalence, but taking into account 
the labels. Our first property about paths and local bisimulation is the following. 

Theorem 41. If 7r[O .. i]Z7r'[O..j], then there exists a 7r1[0..j] ::::; 71"2 such that 7rZ7r2. 
Proof. If from position i in 7r we have an infinite sequence of non-local events, then 
7l"i ~ and therefore, by definition of local bisimulation, 7l'j ~. Thus we have some 

full path 7!'2 such that 7l'Z7l'2. Otherwise, we have some e and k such that 1I'i ~ 1I'k 
in 7l'; but, since 1I'iZ7l'j we can find a state vk' in M' such that 7rj ~ vk'. We denote 
by 7!'11 [0.. k] the extension of 7!'1 [0 ..j] obtained by adding the path above. Then, we 
have 7l'[0.. k]Z7l'"[O.. k']. Thus, for any extension of 7!'[0..i], we can find a corresponding 
extension of 7!'1 , and therefore take 7l'2 to be the maximal such extension and we have 
7l'Z~. • 

It is worth noting that, since z~ satisfies the same conditions as Z, we have that 
the above theorem also is true when we replace Z by z~. Note that, if 7l'Z7r', we can 
define a mapping f 'Tr between positions of 7l' and positions of 7!'1 as follows, f 'Tr(O) = 0 
and: 

f ( l) _ { f'Tr(n) if en is non-local 
'Tr n + - min>f,.(n)(Loc(7l'')) otherwise 

where 7l' = w0 ~ w1 ~ .... In the same way we can define a function !Tr'· A useful 
property of these functions is the following. 

Property 7. If 7l'Z7l'', then 1l"iZ1l'j,.(i)' for every position i of 7!'. 

Proof. The proof is by induction; for the basis it is straightforward. For the in­

ductive case, suppose that 1l"iZ1I'/,.(i); if 1I'i ~ 7l'i+l and ei is non-local, then f'Tr(i + 

1) = i and 1I'i+iZ1l'/,.(i) by definition of local bisimulation. Otherwise, f'Tr(i + 1) = 


min>f,.(i)(Loc(7!'1)), and by definition of bisimulation between paths we get 1I'i+iZ7l'f,.(i+l) .• 


Property 8. If 7l'Z7l'', #Loc(7!'[0..i]) = #Loc(1I''[O.. f1r(i)]). 

Proof. The proof is by induction on i; the basis is straightforward: #Loc(7!'[0.. 0]) = 

0 = #Loc(7!''[0.. f1r(i)]). For the inductive case: suppose that: 


#Loc(7l'[0..i]) = #Loc(1I'[0 .. f1r(i)]). 

Then, if 1I'i ~ 7l'i+l in 7l' and ei is non-local, then #Loc(7!'[0.. i + 1]) = #Loc(7l'[0..i]), 
and then f'Tr(i+ 1) = f'Tr(i) and #Loc(7!'[0..i+ 1]) = #Loc(7!'[0 .. f1r(i+ 1)]). If ei is local, 
then #Loc(7!'[0.. i + 1]) = #(Loc(7l'[0..i]) U {ei}) and then we have 1ff,.(i) ~ 7l'f,.(i+l)' 
and then #Loc(7!''[0 .. f1r(i + 1)]) = #(Loc(1I''[O.. f1r(i)]) U {ei}) = #Loc(7!'[0.. i + l]). • 

A useful corollary of the above property is the following. 

Corollary 10. If 7l' Z7r', then either: 

177 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• 
By definition of frr and f"'' we obtain the following properties which resemble the 

properties of Galois connections. 

Property 9. If n.Zn', then: nj"(i) ~ n~ inn' iff ni ~ 1rJ"1 (k) 

Our first important theorem says that bisimilar full paths satisfy the same prop­
erties: 

Theorem 42. If 7rZ7r
1

, then, for all position i, 7r,i,M F= <.p {::} 7r
1,f1r(i),M F= <.p. 


Proof. The proof is by induction on <.p. 

Base Case. We know L(7ri) = L(7rjJ, which implies that 7r, i, MF= pj iff 7r', f1r(i), M' F= 

Pj· The proof is similar for equations and deontic predicates. For the Dones() oper­

ator, suppose that 7r, i, M F= Dones(a), then, fork = max<i(Locs(7r)), we have that 

ek E I(a), and1fk_1Z7rf"(k-l)' But then we have 7rf"(k-l) ~ 7rf"(k)' and 7rf"(k) ~ 7rf"(i)' 

thus 7r

1
, f1r(i), M' F= Done8 (a). 


Ind. Case. If 7r, i, MF= [a]<.p, then suppose 7r
1

, f1r(i), M' ~ [a]<.p. Then, for some 7r2 t 

7r'[O ..f1r(i)], we have a k = min>i(Loc(7r2)) such that (7r2)k E I(a) and 7r2, k, M' ~ <.p. 

By theorem 41, we know that we have a full path 7r1 t 7r[O.. i] such that 7r1Z7r2. By 

the definition of bisimulation between paths we know that if (7r2) f" (i) ~ (7r2)k in 7r2,


1 

then (7ri)i ~ (7r1)J" (k) in 7r1 . Applying induction on the symmetric statement of the 
2 

theorem, we get 7r2 ,f"2 (k ), M ~ <.p which is a contradiction. The other direction is 
similar. 

If 7r, i, MF= AN<.p the argument is as above. 

If 7r, i, MF= A(<.p U 'l/J), suppose 7r
1

, f1r(i), M' ~ A(<.p U 'l/J). Then, if 7r1 
, f1r(i), M' ~ 

<.p, we get a contradiction. Otherwise, we must have a full path 7r2 t 7r'[O .. f1r(i)], such 
that for every j E Loc(7r2 ) we have 7r2 , j, M' ~ 'ljJ. Now, as explained above, we have 
a 7r1Zn2 and for this 7r1 we have a k E Loc(ni) such that 7ri, k, MF= 'ljJ, for this k we 
have that 7r2 , f1r(k), M' F= 'ljJ, by induction. But note that 7r2 (f1r(k)) E Loc(7r2 ) which 
gives us a contradiction, and therefore 7r

1
, f1r(i), M' F= A(<.p U 'ljJ). The other direction 

is similar. 

178 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

If 1f, i, MF= E(rp U 'l/J), and suppose 1f
1

, f'!r(i), M' ~ E(rp U 'l/J), then if 1f
1
, f'!r(i), M' ~ 

1<p and 1f , f'!r(i), M',~ 'l/J, we get a contradiction. Otherwise, we have that for every 
path 1f

11 t 7r1[0..f7r(i)] and for every k E Loc(7rt"(i)), 7r11 
, k, M' ~ 'ljJ holds . Note that 

we have a 7r2 in M' such that 7r1Z7r2 (where 7r1 is that full path mentioned above), and 
then by induction 7r2 , f7r(i), M' F= '!/J. Furthermore, note that 7r2 (f7r(i)) is a local event, 
which contradicts the assumption above, and therefore 7r1

, f'!r(i), M' F= E(rp U 'l/J). The 
other direction is similar. • 

As a corollary, we get that local bisimilar structures satisfy the same predicates. 

Theorem 43. If M "'z M', then MF= <p iff M' F= rp. 
Proof. Suppose that MF= <p and M' ~ rp; therefore, we have that 7r, i, M' ~ <p for some 
full path 7r and position i. But then we get by the theorem above that 7r1

, f1'1(i), M ~ <p 

for some 7r1Z7r {which exists since M "'Z M'). The other direction is similar. • 

7 .1. 2 Locus Models. 

At the beginning of section 7.1, we introduced non-standard models (i.e., those models 
which have "external" events). However, not all non-standard models are useful; we 
want that the external events preserve local variables, that is, the events not generated 
by any of the actions in the component have to be silent, in some sense. In [FM92], 
with the same purpose in mind, the notion of locus trace is introduced. A locus trace 
is one in which, after executing a non-local event, the local variables retain their 
value. However, since we have a branching time logic and a modal logic, in our logic 
it is not enough to just put restrictions on traces. We need to take into account the 
branching occurring in the semantic structures, i.e., we need a more general notion 
of locus model. 

Roughly speaking, locus models are those which are local bisimilar to a standard 
model. In some sense, this definition characterizes those models which behave as 
standard models, where the external actions are silent with respect to local attributes. 

Definition 46. Given a language L, we say that a L-structure M' is a locus iff there 
is a standard model M such that M "'z M' for some local bisimulation Z. D 

Using the result presented above about local bisimulation, we get that locus struc­
tures do not add anything new to the logic (w.r.t. formula validity). 

Theorem 44. If M is a locus structure, then M F= <p iff there is some standard 
structure M' such that M' F= rp. 
Proof. If M is standard the result follows. Otherwise we use theorem 43. • 

179 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Using this theorem we can prove that the axiomatic system described in section 
7.1 is sound with respect to locus structures. 

Theorem 45. The axiomatic system of section 7.1 is sound with respect to locus 
structures and the relation I= defined in section 7.1. 
Proof. Note that, if we only take into account standard structures, the definition of 
I= coincides with the definition given in chapter 3. Therefore, axioms Al - Al7 are 
sound with respect to standard models and then, by theorem 44, these axioms are sound 
with respect to locus models; the same is true for axioms TempAxl - TempAx5 
and the rules; the rest of the axioms are straightforward using the definition of B and 
the relativized Done(). • 

Summarizing, nothing is gained or lost in using the locus models of a given lan­
guage. However, we want to use these kinds of models over a wider notion of logical 
system; we shall consider several languages and translations between them, and there­
fore we need to have a notion of model which agrees with the locality properties of 
a language when we embed this language in another. First, let us define what is a 
translation between two languages. 

Definition 47. A translation T between two languages L = (b.0 , <I> 0 , Vo, I0 ) and L' = 

(~~'<I>~, V~,Ib) is given by: 

• 	 A mapping f : b.0 -t b.~ between the actions of component C and the actions 
ofC'. 

• 	 A mapping g : <I>0 -t <I>~ between the propositions of L and the propositions of 
L'. 

• 	 A mapping h : Vo -t V~, between the violations of L and the violations of L'. 

• 	 A mapping i : I0 -t Ib, between the indexes of L and the indexes of L'. 

For the sake of simplicity, we denote the application of any of these functions 
using the name of the mapping, e.g., instead of writing f(ai) we write T(ai). 

The collection of all the languages and all the translations between them forms the 
category Sign. It is straightforward to see that it is really a category: identity func­
tions define identity arrows, and composition of functions gives us the composition 
of translations (which straightforwardly satisfy associativity). Now, given a transla­
tion, we can extend this translation to formulae (actually we can describe a functor 

180 


0 



PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

grammar which reflects these facts, as done in Institutions [GB92] or 7r-Institutions 
[FS87]). Given a translation 7 : L---+ L' as explained above, we extend 7 to a mapping 
between the formulae of L and those of L', as follows. First, we need to define how 
the translation behaves with respect to action terms: 

• 7(a U {3) = 7(a) U 7({3). 

• 7(a n {3) = 7(a) n 7({3). 

• 7(a) = 7(U) n 7(a). 

• 7(U) = 7(a1) U · · · U 7(an), where { ai, ... , an} = ~o-

• 7(0) = 0. 

Note that the complement is translated as a relative complement, and the universal 
action is translated as the non-deterministic choice of all the actions of the original 
component (which is different from the universal action in the target language). It is 
important to stress that some extra axioms must be added to the axiomatic system 
to deal with the fact that the actions are interpreted as being relative to a certain 
universe. Now, the extension to formulae is as follows: 

• 7([a]cp) = [7(a)]7(cp) 

• 7(-icp) = -,7(cp). 

• 7(cp---+ 7/J) = 7(cp)---+ 7(7/J) 

• 	 7(ANcp) = 

( (7(U))T---+ AN(Done(7(U)))---+ 7(cp))) V ([7(U)]1----+ 7(cp)) 


• 7(A(cp U 1/J)) = A(7(cp) U 7(7/J)) 

• 7(E(cp u 1/J)) = E(7(cp) u 7(7/J)) 

• 7(Dones(a)) = Doner(S)(7(a)), where 7(8) = {7(ai) Iai ES} 

In other words, using translations between signatures, we can define morphisms be­
tween formulae, and therefore we can define interpretations between theories (in the 
sense of [Eme72]); we deal with this issue in the next section. 

Note that, given a translation 7 : L ---+ L' and given a £'-structure M, it is 
straightforward to define the restriction of M = (W,R,E,I,{Pi Ii E !0}) with 
respect to 7 (or its reduct as it is called in model theory [CK73]), as follows: 

181 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Definition 48. Given a translation T : L --t L' and an L' -structure M we can define 
an L-structure Mir as follows: 

• 	Wlr=W. 

• 	Elr = £- {e E I(7(U)) nI(~~ -7(~o))}. 

• 	Ilr(ai) = { e E I(ai) I e E Elr }, for every ai E ~~-

• 	Ilr(Pi) = I(7(Pi)), for every Pi E <I>o. 

• 	Rlr={w~w'ERI eE£j 7 }. 

• 	pijr(w, e) <=> pr(il(w, e). 

• 	wolr = Wo. 

D 

It is worth noting that the restriction of a standard structure of L' can be a non­
standard structure of L. Note also that we take out of the model those events which 
belong to translated actions and actions outside of the translation, i.e., we only keep 
those events which are obtained by executing only actions of L or those which are 
obtained by executing actions outside of L. Some restrictions added below ensure 
that no important property of the original model is lost when we take its reduct. 

Translations between languages and restrictions between models define a functor 
which is used in Institutions [GB92] to define logical systems; we investigate the 
institutional aspects of our logic later on. An important problem with restrictions 
is that a restriction of a given structure could be a structure which is not a locus, 
i.e., the obtained semantic entity violates the notion of locality as explained above; 
Furthermore, perhaps the reduct of a model loses some important properties. For this 
reason, we introduce the concept of 7-locus structures. We define some requirements 
on translations; given a translation T : L --t L', consider the following set of formulae 
of the form: 

• 	 (T('Y))T --t (T('Y) n ai n · · · n an)T, where 'Y is an atom of the boolean term 
algebra ~o/<I>BA, and ai, ... , an E ~~ - T(~o). 

These formulae say that the execution of the actions of L when translated to L' are not 
dependent on any action of L'; we can think of this as an independence requirement, 

182 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

i.e., the actions of L when translated to L' keep their independence. This is an 
important modularity notion. In practice, this can be ensured by implementing the 
two components (which these languages describe) in different processes. We denote 
this set of formulae by ind(T). Another requirement (which is related to independence) 
is that the new actions in b..~ (those which are not translations of any action in L) do 
not add new non-determinism to the translated actions. This fact can be expressed 
by the set of formulae with the following form: 

• 	 (T('y) )T(<p) ---+ [T('y)]T(<p), P~}i) (T('y)) ---+ pr(i} (T(r)) for every atom 'Y of the 
boolean algebra of terms obtained from L, formula <p of L, and index i of L. 

For a given translation T : L ---+ L', we denote this set of formulae by atom ( T), since 
they reflect the fact that the atomicity of the actions in L is preserved by translation. 

Definition 49. Given a translation T : L ---+ L' and a L'-structure M, we say that 
M is a T-locus iff: 

• 	 MI= ind(T). 

• 	 MI= atom(T) 

• 	 The restriction Mir is a locus structure for L. 

• 
That is, a locus structure with respect to a translation T is a structure which 

respects the locality and independence of L. We have obtained a semantical charac­
terization of structures which respect the local behaviour of a language with respect 
to a given translation; because we wish to use deductive systems to prove properties 
over a specification, it is important to obtain some axiomatic way of characterizing 
this class of structures. So, a natural question is: is there some way of characterizing 
locus models? We shall prove that we have an affirmative answer to this question. 
Let us investigate some properties of T-locus models. The first property says that in 
Mir we have all the paths that are needed. 

Property 10. Given a T-locus model M, for every full path 7r
1 of M such that 7r

1 t 
7r[O..i] (where 7r[O.. i] is a subpath in Mir), there is full path 7r

11 t 7r[O..i] in M such 
that 7r

11 also is a full path of Mir and for any formula T(<p): 7r
1

, i, M I= T(cp) iff 
7r

11 
, i, MI= T(<p). 

Proof. The proof is direct using the properties of independence and atomicity. • 

183 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Property 11. If T : L ~ L', and M is a L' structure which is a r-locus, then if 
7r, i, MIT I= <p, and 7r(i) is non-local, then 7r, i + 1, MIT I= 'P· 
Proof. The proof is by induction on <p; the cases are straightforward using the prop­
erties of local bisimulation, and the fact that a r-locus model is bisimilar to a standard 
model. • 

Another useful property is the following: 

Property 12. If T : L ~ L', and M is a L' structure which is a r-locus, then if for 
a path 7r of MIT we have 'Tri~ 7ri+l where e is local for MIT, then there is no 7r1 such 
that 7r1 t 7r[O .. i] and from position i all the events of 7r1 are non-local for Mir· 
Proof. Suppose that we have such a path; then, since MIT is bisimilar to a standard 
model, we can bisimulate the path 7r1 until i. Thus, we have some state v in the 
standard model such that 1riZv, but from there 7r1 diverges with non-local events, and 
therefore there is no way to bisimulate it. In addition, v has a successor since 'Tri has 
a successor reachable by local events. From here we obtain that M is not a r-locus 
model, which is a contradiction. • 

First, let us prove that local properties are preserved by r-locus structures. 

Theorem 46. Let T : L ~ L' be a translation and M an L'-structure. If M is a 

T-locus, then for full path 7r of Min 7r,i,M I= r(<p) ijf7r,i,Mlr I= <p, for any formulae 

'P of L. 

Proof. The proof is by induction on 'P· 

Base Case. It is straightforward using the definition of Mir· 

Ind. Case. If 7r, i, MI= r([a]<p) which is equivalent to 7r, i, MI= [r(a)]r(<p), and now 

suppose that 7r, i, Mir~ [a]<p. From here we have that there exists a path 7r1 t 7r[O ..i] 

such that 7r, i + 1, MIT~ <p, where 7r1(i + 1) E IIT(a). Now we have the same trace 

in M, which gives us a contradiction by induction. If 7r, i, Mir I= [a]<p, suppose 

7r, i, M ~ [r(a)]r(<p), and then we have a 7r1 t 7r[O .. i] (noting that, if 7r1 is not a full 

path of Mir then, applying property 10, we can find an equivalent path which belongs to 

this model} such that Jr, i, M ~ r(<p) and 7r1(i) E I(r(a)). By definition of reduction, 

we have that 7r1 

( i) E Ilr (a), which applying induction, gives us a contradiction, and 

therefore 7r, i, MI= [r(a)]r(<p). 


Suppose 7r,i,M I= r(AN(<p)) and 7r,i,Mlr~ AN<p. Then, ifi is the last position of 
7r, then we have 7r, i, Mir~ <p, which gives us a contradiction, since by induction this 
implies 7r, i, M ~ 'P· If i is not the last position of 7r, then, fork= min>i(LocL(7r)), 
we have 7r, k, MIT ~ <p, note that 'Tri ~ 7rk where e is local for L, and then in M 
we have that it is the next position where an event of a1 LJ • · · LJ an is executed, and 
therefore 7r, k, M ~ Done(a1 LJ • · · LJ an) ~ <p, which contradicts what we said above, 
and therefore 7r, i, Mir I= AN<p. The other direction is similar. 

184 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Suppose that 1f,i,M I= T(A(cp U 'lj;)) and 1f,i,Mlr ~ A(cp U 'lj;). If 7r,i,Mlr ~ cp 
and 1f, i, Mir~ 'lj; (and the same reasoning is applied when cp and 'lj; are not true at 
some moment before 'lj; comes true}, then by induction we obtain a contradiction. If, 
for some 1f1 t 7r[O..i], we have that 1f1, k, Mir~ 'lj;, for every k E LocL(7ri), then note 
that for this 7r1 in M we have 7r, i, M ~ T ( 'lj;) {by induction) and from here if a position 
j :S i is reached by a non-local event for L we have, by property 11 and induction, 
that 7r1

, j, M I= T( 'lj;), and if it is local, then we have by the supposition above that 
1f,j,M I= T('lj;), i.e., for every j 2 i 1f,j,M ~ T('lj;), which contradicts our initial 
assumption, and therefore 1f, i, Mir I= A(cp U 'lj;). The other direction is similar. 

If 7r, i, M I= T(E(cp U ¢)), then we have some 7r1 t 7r[O.. i] such that there is a k such 
that 1f, k, MI= T('lj;) where k 2 i, and for every j E Locu(7r') such that i :S j :S k, we 
have 7r1,j,M I= T(cp); then, since LocL(7r') ~ Locu(7r') and using induction, we have 
that for every j :S k such that j E LocL(7r'), 1f,j, Mir I= cp, and 1f, k, Mir I= 'lj;. Now 
if k ~ LocL (7r1

), then, by proposition 10, it must be a k' E Loe(7r1
) such that k' :S k 

and 1f1
, k', Mir I= 'lj;. On the other hand, if 1f, i, Mir I= E(cp E ¢), then we have some 

7r1 t 7r[O..i] such that 1f1, k, Mir I= 'lj;, where k E LocL(7r'), and for every i :S j :S k with 
j E LocL(7r') we have 1f1 ,j,Mlr I= cp. Note that, using property 10, we have that for 
every position j E LoeL' (7r1

) such that i :S j :S k, we have that 1f1
, j, M I= T (cp) (since, 

if it is a local event for L, we show above that it satisfies cp, otherwise it preserves the 
property), and k E Locu(7r') and then 1f, k, MI= 'lj; by induction. • 

We have a semantic characterization of T-locus models, but since we want to use 
deductive systems, we need a syntactic characterization of this class of models. For 
a given translation T : L --t L', consider the following (recursive) set of formulae: 

Roughly speaking, this set of axiom schemes says that if an action of an external 
component is executed, then the local state of the current module is preserved. Note 
that, in [FM92], a similar set of axioms is proposed, although in that case it is a finite 
set, since that work uses a linear temporal logic, and therefore preserving only the 
propositions is enough for having a good notion of locality. However we need other 
axioms to express the property that when we embed a module inside another part of 
the system, we want to ensure that the behaviour of the smaller module is preserved, 
in the following sense: we can introduce external events in some way in a given trace 
but we do not want that these external events add divergences that were not in the 
original trace. The following axiom does this: 

(T(U))T --t AFDone(T(U)). 

This axiom expresses one of the conditions of local bisimulation, namely a trace 
cannot diverge by non-local events unless the component cannot execute any local 

185 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

action. It is worth noting that, if a local action is enabled in some state, then after 
executing a non-local action it will continue being enabled (as a consequence of the 
axiomatic schema described above), i.e., we require a fair scheduling of components, 
one which will not always neglect a component wishing to execute some of its actions. 

Definition 50. Given two languages L = (~0 , <I>0 , Vo, 10 ) and L' = (~~'<I>~, V~, I~) 
and a translation T : L ---t L' we define the following set of formulae: 

Loc(r) = atom(r)Uind(r)U{r(<p) ---t [r(U)]r(<p) I <p E <I>}U{(r(U))T ---t AFDone(r(U))} 

A nice property is that this set of formulae characterizes the r-loci L'-structures. 

Theorem 4 7. Given a translation T : L ---t L', then a L'-structure is a r -locus iff 
MI= Loc(r). 
Proof. First, let us prove that, if M is a r-locus, then it satisfies Loc(r). By 
definition it satisfies ind(r) and atom(r)), and by property 10 and theorem 46 we 
have that the model satisfies the axiomatic schema. On the other hand, note that 
the other axiom is satisfied since we require that M is local bisimilar to a standard 
model, and therefore, if in some state w we have the possibility of executing a local 
event, from this state there cannot be a path which always observes non-local events, 
since otherwise the standard model does not satisfy the divergence condition of local 
bisimulation. 

For the other direction, suppose that M satisfies the axioms; we build a model 
which is standard and which is bisimilar to the original model. First, we define the 
following collection of states: 

[E] = {v IWo ~ v} U{ wo} 

and: 
[es. e] = {v I :Jz, v': (z E [es])/\ (z ~ v') /\ ((v' ~ v) V v = v')}. 

Then we define the components of the new model as follows: 

• W# = { ei •en I [e1 •en] =/= 0}. 

• R# ={es~ es.e Ies,es.e E W#}. 

• p)# = {(es,e) I :Jv E [es]: (v,e) E P)lr}· 

• z#(ai) = Ilr(ai)· 

• z#(Pi) = {es E W# I :Jw E [es] : w E Ilr(Pi)}. 

186 


0 



PhD Thesis, P.F.Castro McMaster-Computing & Software 

Note that, if w E Ilr(P) and w E [es], then, for every v E [es], we have v E Ilr(p). 
This is because non-local events preserve propositions. This structure is well-defined 
since it satisfies 11 and by definition the transitions are deterministic with respect to 
a given event. It is straightforward to see that this structure is standard since there 
are no external events. Now, we define a relationship Z as follows: 

wZ[es] <=:> w E [es]. 

Let us prove that it is a local bisimulation. 

Suppose that wZ[es]; if w ~' then we know that [es] cannot diverge by non-local 
events. The only possibility is that there is no e such that [es] ~ [es. e]; if there is such 
a transition, then w cannot diverge by non-local events, since any path which passes 
through w will not satisfy the axioms in Loc(r), and then [es] has no successors. Now 
suppose that w ~ w'. If e is non-local, then we know that w, w' E [es], and therefore 
w'Z[es], and we know by property 10 that L(w) = L(w') = L([es]). If w ~ w' 
and e is local, then we know that w' E [es • e] and then w' Z[es. e], and furthermore 
[es] ~ [es. e], by definition. Now, if [es]z~w, it is worth noting that M# does not 
have any divergence via non-local events. If [es] ~ [es. e], we have some w' E [es. e] 
(by definition), and note that we have some v E [es] and w" E [es • e] such that 
v ~ w" and w" ~ w'. Since w and v belong to [es], both satisfy the same properties 
of L (which can be proved by a straightforward proof by induction) and therefore, 
since we have v ~ w" by the axiomatic schema, we must have v, MI= ('y)T, where 
I(T) = e, and therefore we have w,M I= (r)T, i.e., there is a state v' E [es. e] such 
that w ~ v", which finishes the proof. • 

It is worth remarking again that by r f--L cp and r~ cp we denote two different 
situations. The first can be thought of as a "local" deduction relationship; this 
relationship holds when we have a proof, in the standard sense, of cp where some 
members of r may appear, but the only rule that we can apply over them is modus 
ponens. Instead, r~ cp says that, if we extend our axiomatic system with the formulae 
of S, then we can prove cp. This can be thought of as a global deduction (note that 
in this case we can apply any rule to the members of S to get a proof of cp). An 
important difference is that the former notion of deduction preserves the deduction 
theorem. However, this theorem is not valid for the global version of deduction, 
an easy counterexample is: 1--s,cp AGcp (where S, cp is an abbreviation for SU {cp} ). 
However, we can prove a variation of the deduction theorem: 

Theorem 48. r~,.,, 'I/; iff 1--~ AGcp --t 1/J. 
Proof. The left direction is trivial. 

For the other direction, we prove the result by induction on the length of the proof. 
Base Case. If the proof is of length 1, then 'I/; E S, or 'I/; is an axiom. In both cases we 

187 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

obtain f--~ AGr.p -t 1/J. (If 1/J = r.p it is direct to prove this sentence from the axiomatic 

system.) 

Ind. Case. If the proof is of length greater than or equal to I, then 1/J was obtained by 

one of the following rules: 


1. Via modus ponens from a formula r.p' -t 1/J which appears before. 

2. Via application of generalization to a formulae which appears before. 

3. By induction. 

4. 1/J is some axiom or it belongs to S 

The last case is straightforward. The other cases are dealt with as follows: 

Case 1: If we obtain it by modus ponens, then f--~ AGr.p -t r.p', and f--~ AGr.p -t ( r.p' -t 1/J) 

{by induction), which using propositional logic gives us f--~ (AGr.p -t r.p') -t (AGr.p ---+ 


1/J), and using modus ponens we get f--~ AGr.p ---+ 1/J. 


Case 2: If we obtain 1/J by generalization, then ¢ = AG¢'. Then, we have by in­

duction that f--~ AGr.p -t 1/J'; applying generalization we get f--~ AG(AGr.p -t 1/J'), and 

then it is straightforward using the axioms to prove f--~ AGAGr.p ---+ AG¢'. But we have 

that f--~ AGAGr.p +-t AGr.p, then using this property we have f--~ AGr.p ---+ AG¢'. For 

modal generalization the proof is similar 


Case 3: If we obtained 1/J by induction, this means that f--~,<p B ---+ 1/J and f--~,<p [U]'l/J, 

and then by induction we obtain f--~ AGr.p ---+ (B -t 1/J) and f--~ AGr.p ---+ [UJ'l/J, and 

then we have that AGr.p f-~ B -t 1/J and AGr.p f-~ [UJ'l/J. But, then, using the induction 

rule we get AGr.p f-~ 1/J and then using the deduction theorem for the local notion of 

deduction we get f--~ AGr.p -t 1/J. • 


Now we can prove that the deductive machinery obtained by adding the locality 
axioms preserves translations of properties. 

Theorem 49. Given a translation T: L -t L', if f--L r.p, then f--f~c(r) r(r.p). 
Proof. We prove that the translation of every axiom of the deductive system of L 
is a theorem of the deductive system of L', and for the deduction rules, if we have 
the translation of the premises, then we can prove the conclusion, and therefore every 
proof in L can be simulated in L', modulo translation. 

For the axioms of the propositional part of the logic, only two axioms are dependent 
on the language: Al2 and Al 7. For Al7, note that the translation of the instances of 
this axiom, r( ("f)r.p -t ["f]r.p), is exactly the axioms of atomicity, and therefore: f--f~c(r) 

188 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

T( ('y)c.p --t [1]c.p). For the axiom A12, the proof is similar. And since the other axioms 
are not dependent on the language, the translation of these axioms are instances of 
axioms in L'. For the deduction rules of the propositional part (modus ponens and 
modal generalization) the proof is straightforward. For the temporal axioms and rules 
we proceed by cases. 
TempAx1: We need to prove: 

L' [1-Loc(r) T((U)T --t Ac.p ~ U]c.p). 

Note the following property of Done(): 

(a)T --t ((ANDone(a) --t c.p) ~ [a]c.p). 

Using this property, we obtain that the sentence above is equivalent to: 

which is obviously a theorem of 1-f~(r). 


TempAx2: It is straightforward that [T(U)]_l_ 1-f~c(r) T(c.p) ~ T(c.p) and the property 

follows. 

TempAx3: The translation of this axiom is an instance of the same axiom in L'. 

TempAx...I.; Proving the right direction of the implication is direct; let us prove: 


T('lj;) VT(ENE(c.p U 1/J)) 1-f~c(r) E(c.p U 1/J) 

Using the property of Done() described above; we obtain that the left part of the as­
sertion above is equivalent to: 

Simple calculations (using the axioms for AN) show that from this formula we can 

prove E(T(c.p) U T('lj;)). 

TempAx5: We have to prove: 


Using the definition of T and properties of Done(), the left part is equivalent to: 

T('lj;) V (T(c.p) /\ ((T(U))T --t [T(U)]A(T(c.p) U T('lj;))) /\ [T(U)]_l_ --t T('lj;)). (7.1) 

Nate that by locality we have that: 1-f~c(r) c.p --t A(c.pWDone(T(U))), and note that: 

(c.p --t A(c.pWDone(T(U)))) /\ AFDone(()T(U)) 1-f~c(r) c.p --t A(c.p U Done(T(U))). 

Using the fact that we have the following axiomatic schema in Loc(T): 

(T(U))T --t AFDone(T(U)) 

189 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

and that from the formula we obtain Done(T(U))---+ A(7(rp) U T('l/J)), we have that: 

rp /\ (7(U))T f-f~c{r) A(T(rp) U (A(T(rp) U T('l/J)))) 

which is equivalent to: 

rp /\ (7(U))T f-f~c(r) A(T(rp) U T('l/J)). 

The result follows. 

Axioms TempAx6-TempAx9 are straightforward as their translations are instances 

of the same axioms. 

TempAx8: The translation of this axiom is [T(U)]•B, which can be proven using 

the properties of modalities. 

TempAx11 and TempAx12 are direct. 


For the induction rule we can proceed as follows. Note that, if we have f-f~c(r) 

B---+ T(rp), and f-f~c{r) 7(rp)---+ [7(U)]7(rp), then we have: 

f-f~c(r) 7(rp)---+ [7(a1) LJ · · · LJ 7(an)]7(rp) 

and by locality we have: 

f-f~c(r) 7(rp)---+ [T(ai) LJ • · · LJ 7(an)]7(rp) 

and then using the properties of the logic we get: 

f-f~c(r) 7(rp) ---+ [U]7(rp) 

and then using the induction rule we get: f-f~c(r) 7(rp). 

The temporal rule TempRule2 is straightforward. For the rule TempRule3, if 
we have: 

f-f~c(r) 7(rp)---+ (•T('l/J) /\ 7(rp)) 

this is equivalent to: 

f-f~c(r) T(rp)---+ •T('l/J) /\ ((7(U))7(rp) V [7(U)J..L---+ T(rp)). 

It is not hard to prove that this formula implies T( rp) ---+ (•T('ljJ) VENT(rp)), and then, 
applying TempRule3, we obtain •A(T(rp) U T('l/J)). For the rule TempRule4, the 
proof is similar using the locality axioms. • 

Recall that a theory presentation is a tuple P = (L, A) where L is a language 
and A is a set of axioms; it defines a theory, which is the set of consequences of the 
axioms. We say that f-p rp when f-~ rp. We use the notion of theory presentation 
to define components. To that end, it is important to define interpretations between 
theory presentations. 

190 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Definition 51. Given two theory presentations P = (L, A) and P' = (L', A'), then 
an interpretation is given by a translation T : L --> L' such that 1-P',Loc(r) T(tp), for 
every 'PE A. D 

As shown in [FS87], interpretations between theory presentations in structural 
logics preserve consequence; we can recast this result here if we add locality axioms 
to deductions. In this sense, it is important to understand that, from the logical 
point of view, we are considering a different deduction system per component. The 
resulting deduction system (of the final system) is determined by the way in which the 
different components are put together (as described below, a component is basically 
a theory presentation). First, let us prove that interpretations preserve consequences. 

Theorem 50. Given two theory presentations P = (L, A) and P' = (L', A') and an 
interpretation T : P --> P', we have that: 

Proof. Suppose that we have l-p tp; then we have a proof which uses some finite 
number of axioms of P (by the definition of proof). Let us say the proof is 'Pi, ... , 'Pn; 
but then we have that: 

1-L AGtp1 /\ ... AG'Pn --> 'P 

by theorem 48, and then by theorem 49 we have that 

1-f~c(r) T(AGtp1 /\ · · · AGtpn --t tp). 

But using the definition of translation we get: 

We know that l-p',Loc(r) T('Pi) for every 0 '.Si '.Sn, and therefore by generalization we 
obtain that 1-P',Loc(r) AG(T('Pi)) for every 0 '.Si '.Sn, and then using modus ponens we 
have that 1-P',Loc(r) T(<p). • 

This theorem implies that we have a "weakly structural" logic [FM93], i.e., we 
have to add locality assumptions to preserve consequence. 

7.1.3 Putting Together Deontic Specifications 

In this section we focus on the notion of component and the concepts needed to enable 
compositions of different components. First, we define the notion of "upgrading" 

191 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

and "degrading" formulae. These formulae are built from violation propositions; an 
upgrading formula says that one or more violations will become false in the future, and 
a degrading formula says that one or more violations will become true in the future. 
These kind of formulae are useful to analyze when, in a given state, a component will 
go into a worse violation state or will go into a better violation state (with perhaps 
an absence of violations). This is an important aspect when analyzing fault-tolerant 
software, as we want to know from which error states we cannot recover and from 
which ones we can make some improvement. An order between violation states is 
needed to formalize upgrading and degrading formulae. Note that, for every violation 
state (i.e., predicates VL =*Vi A··· A *Vn over a language L), we can define a set: 

U (VL) = { v1 Iv1 appears without a negation in VL}. 

These sets induce an order ~v over violation states as follows: 

Vi ~v V{ ¢:? U(Vi) 2 U(V{) 

Note that ~vis contravariant with respect to~- Intuitively, only the violations which 
are true at that point appear in U(VL)· The relationship ~v denotes a relationship of 
"improvement", the set of sets U(VL) form a lattice; we study this fact in detail later 
on. We denote by <v the strict version of ~v· 

Given a component (see below), an upgrading formula in this component is a 
formula which specifies some way of recovering from a violation, i.e., an upgrading 
formula identifies a recovery action for a given violation. Taking into account the 
order defined over the violation states, we can say that a recovery action improves 
the state of violation of a component. These facts inspire the following definition. 

Definition 52. Given a language L, the set of upgrading formulae for L is defined 
as follows: 

• If VL and V{ are violation states in L, <p is a formulae in L and VL <v V{ then, 

is an upgrading formula, where ai, ... , an are actions in L. 

D 

Here we define [a; ,B]<p = [a][,B]<p. Also note that we require that there must exist 
some way of executing the sequence of actions in the upgrading formulae (otherwise an 
impossible action will be a recovery action). One might think that the condition (V --t 

192 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

(a1; ... ; an) vn is a better formalization of upgrading formulae, but it is too weak; 
it says that, sometimes, by executing a 1, ... , an we eliminate some violations, and 
it does not give us any details about those scenarios corresponding to bad situations 
from which we can effectively recover. Instead, using box modalities, we can ensure 
that executing the sequence of actions in the predicate we can always recover from 
a violation state. At first sight, this could be too strong a requirement, however, we 
can refine the sequence of actions a 1; ... ; an as much as required to describe exactly 
the actions needed to upgrade the actual state of violations. 

In the same way, we can define the set of degrading formulae, which intuitively 
define actions which introduce violations. 

Definition 53. Given a language L, the set of degrading formulae is defined as fol­
lows: 

• If VL and VJ, are violation states in L, <.p is a formula in L and VJ, <v VL then, 

(VL -t ([a1; ... ; an] VD/\ (a1; ... ; an) T)) 

is a degrading formula, where a 1, ... , an are actions in the language L. 

D 

A component is a piece of specification which is made up of a language, a finite 
set of axioms, and a set of additional axioms which formalize implicit assumptions on 
the components (e.g., locality axioms). These implicit axioms are not intended to be 
defined by a designer; instead, they are automatically obtained from the structure of 
our system (using the relationships between the different components). 

Definition 54. A component is a tuple (L, A, S) where: 

• L is a language as described in earlier sections. 

• A is a finite set of axioms {the axioms given by the designers). 

• S is a set of axioms {the system axioms). 

D 

Given a component C = (L, A, S) we denote by 1-c <.p the assertion I-~ 8 <.p. Usually 
we consider that G(L) ~Sor SG(L) ~ S(i.e., the GGG predicate is i~ the system 
axioms). A mapping between two components is basically an interpretation between 
the theory presentations that define them. 

193 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Definition 55. A mapping T : C --t C' between two components C = (L, A, S) and 
C' = (L', A', S') is a translation T: L --t L' such that: 

• f-c, r(cp), for every cp EAU S. 

• f-c, Loc(r). 

It is worth noting that we require that the locality axioms must be theorems in 
the target component to ensure that the properties of the smaller component are 
preserved (as proved by theorem 50). This is expressed by the following corollary. 

Corollary 11. If r : C --t C' is a mapping between components C and C', then: 
f-c cp =?f-c, r(cp). 

In this thesis we focus on horizontal structuring of components, i.e., we study 
how components can be put together to form a system. Vertical structuring (i.e., 
notions like refinement) is not investigated in this thesis, interesting further work 
is to introduce other kinds of morphisms between components to capture vertical 
structuring (as done in [FM97] and [LF97] to formalize vertical structuring). It is 
worth remarking that, although the properties of components are preserved by the 
system, some properties of a component might be too strong, in the sense that they 
may restrict the behaviour of the environment, and, as a consequence, we may obtain 
an inconsistent specification when we put together the components. A way of dealing 
with this issue is using techniques like those introduced in [LF97], where the notion 
of co-property is introduced in a modal action logic without complement to formalize 
properties that a component is willing to have when working with an environment. 
Note that the tableaux method introduced in chapter 5 can be used to check the 
consistency of a (finite) specification. 

Now that we have a notion of component, we need to have some way to put com­
ponents together. We follow Goguen's ideas [BG77], where concepts coming from 
category theory are used to put together components of a specification. The same 
ideas are used in [FM91b] and [FM92J, where temporal theories are used for specifying 
pieces of concurrent programs, and translations between them are used for specifying 
the relationships between these components. The idea then is to define a category 
where the objects are components (specifications) and the arrows are translations 
between them; therefore, putting together components is achieved by using the con­
struction of colimits. Of course, some prerequisites are required. Firstly, the category 

194 


0 



PhD Thesis, P.F.Castro McMaster-Computing & Software 

of components has to be finitely cocomplete and, secondly, the notion of deduction 
has to be preserved by translations (which is exactly what we proved above). 

First, note that the collection of all the languages and all the translations between 
them form the category Sign. It is straightforward to see that it is really a category: 
identity functions define identity arrows, and composition of functions gives us the 
composition of translations (which straightforwardly satisfies associativity). Compo­
nents and mappings between them also constitute a category. 

Theorem 51. The collection of all components Comp and all the arrows between 
them form the category Comp. 
Proof. The identity arrow is the identity translation, which obviously satisfies all 
the requisites. And the composition between mappings is just the composition of the 
functions which define these mappings. In addition, we must prove that 1-c Loe( idc) 
(where idc is the identity translation). And, if we have translations T : C1 ---t C2 and 
T1

: C2 ---t C3, then 1-ca Loc(T' o T). 

To prove 1-c Loc(id), we have to prove (i) 1-c ('Y)T---t ('y)T, (ii) 1-c c.p---t [U]c.p, 
(iii)(U)T ---t AFDone(U) and (iv}f-c ('y)c.p ---t [t]c.p. (i), (ii) and (iv) are straight­
forward from the axioms. For (iii) we have that 1-c (U)T ---t (U)Done(U) by 
definition of Done(), and also 1-c [U]Done(U), by the temporal axioms we have 
1-c ANc.p A ENc.p ---t AFc.p, and then using TempAx we get 1-c (U) T ---t AFDone(U). 

Now, we have to prove 1-(ca) Loc(T' or). We have that: f-c2 (r(!))T ---t (r('Y) n 
a1 n ···nan)T (where a1, ... , an are the primitive action which are not images of any 
symbol by r ). Therefore, by properties of translations we have, 1-ca ((r' o r)('Y))T ---t 
() r' (a1) n · · · n r' (an)) T, where b1 , ... , bn are the primitive action of~~ which are not 
in the image of r'. Since [(r' o r)('Y) n r'(a1) n · · · n r'(an)] is an atomic action term 
in the language of C2 , we have that: 

I-ca ((r'or)(!)nr'(a1)n... r'(an)) T ---t ((r'or)(1)nr'or(a1)n· · ·nr'or(an)nb1n· · ·nbm)T 

let b~, ... , b~ be the primitive actions in the language of C3 which are not translations 
of any primitive action of C through r' or. Note that, if some of these bj is a 

translation of a primitive action a3 of C2, then 1-ca r'(a3) n bj, otherwise bj is some 
of the bi's. In any case we have: 

f-c3 (r'or)(1)nr'or(ai)n· · ·nr'or(an)nb1n. · ·nbm i;;; (r'or)(1)nb~n· · ·nb~nb1 n· · ·nbm. 

Therefore we have: 

1-ca (r' o r(r))T ---t ((r' o r)(r) n b~ n .. · n b~ n b1 n .. · n bm)T 

On the other hand, we have f-c2 r(c.p) ---t [T(U) Jr( c.p), and properties of translation 
we have: I-ca T1 o T(<p) ---t [r' o r(U)]r' o r(c.p). We also have: f-c2 (r(r))r(c.p) ---t 

195 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[r('y)]r(rp), and by theorem 46 we have 1-ca (r' o r('y))r' o r(1)---+ [r' o r(r)Jr' o r(r). 
The same reasoning can be used to prove: I-ca (r'or(U))T---+ AF(r'or(Done(U))).• 

The initial element of this category is the component with an empty language. 
We first prove that the category of signatures is finitely cocomplete (its elements are 
just tuples of finite sets): 

Theorem 52. Sign is finitely cocomplete. 
Proof. A signature is a tuple (<I>o, ~o, Vo, Io), where ~0 , Vo, Io are finite sets and 
<I>o is a set. The categories Setr (of finite sets and functions between them) and 
Set (of small sets and functions between them) are finitely cocomplete {MM92j. The 
result fallows from the fact that in product categories the colimits can be calculated 
componentwise {Mac98j. • 

The category of components is also finitely cocomplete; the forgetful functor from 
components to signatures reflects finite colimits (as shown for different logics in [GB92] 
and [FS87]; however, these logics are Institutions). 

Theorem 53. The category Comp is finitely cocomplete. 

Proof. We prove that the functor Sign : Comp ---+ Sign reflects colimits, and since 

Sign is finitely cocomplete, hence Comp is finitely cocomplete too. 


Suppose that D : I ---+ Comp is a diagram in Comp. Therefore, we have a 
diagram D' = SignD : I ---+ Sign. Say Ci = (Li, Ai, Si) are the components of the 
diagram. Let (L, a : D'---+ L) be a colimit cocone in Sign; then we assert that 

iEl iEI iEl 

is a colimit object in Comp. For each component Ci, the translation to C is given by 
ai. We prove that ai is a morphism between components. We know that f--Lu ~-(A·)

iEJ ..... i i 

ai(Ai) and 1-{JiEI°';(Loc(C;)) ai(Loc(Ci)) and 1-{J;EJ°'i(G(L;)) ai(G(Li)), and by theorem 
50 we have that 

1-r ai(rp) 

where f = LJiEI ai(Ai) ULJiEI ai(Loc(Ci)) ULJiEI ai(Si), for every 1-c; rp, and therefore 
ai is a morphism between components. These morphisms make the corresponding 
diagram commute in Sign, and therefore their extension make the corresponding dia­
gram commute in Comp. Now, if we have another cocone (C', f3 : Ci ---+ C'), then in 
Sign we have an unique morphism 'I/; : L ---+ L' (where L' is the language of C'). It is 
straight! orward to check that 'I/; can be extended to an unique 'I/; : C ---+ C', extending 
the mapping of languages to mapping between formulae. This finishes the proof • 

196 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Putting together components is therefore achieved by taking the colimit of a given 
diagram of components; an important point here is that the colimit of a given diagram 
of specifications preserves the separation of deontic predicates. In the next section 
we exhibit an example. First, we describe how the lattice of violations of a system 
can be approximated from the lattice of violations of each of its components. 

7 .2 Calculating Violations 

In each component, in a given state of execution of that component, we have a 
set of violation predicates which are valid. This set of violation predicates can be 
illustrated as a partially ordered set (using a classic graphical illustration of partially 
ordered sets). Having a visual representation of how the violations in an execution of a 
program behave is useful to analyze specifications to determine what can go wrong and 
what to do to fix it. Each state of violation can be thought of as the set of violations 
which are true at that state; then the inclusions between these sets give us a diagram 
of degrading, whereas the opposite arrows of inclusion give us an upgrading diagram 
of violations. For each set of violation predicates we can calculate a corresponding 
diagram of sets of violations and inclusions (or opposites of inclusions), which form a 
category. The important point is that these diagrams illustrate how violation states 
are related with respect to upgrading and degrading actions and, furthermore, given 
a collection of violation diagrams, a colimit of them gives us a good approximation to 
the violation diagram of the system obtained when the components are put together, 
when some conditions are satisfied. 

As explained above, we consider a set V = {v1 , v2 , v3 •.. } of violations. Then 
we can define the small category C(V) which has as objects subsets of V and as 
arrows functions between these sets. We want a particular part of this category which 
corresponds to upgrading and degrading actions. First, consider the category Pos 
whose objects are partially ordered sets (which are categories) and whose morphism 
are functors between them (order preserving mappings). This category is complete 
and cocomplete [AHS09]. We call a functor F: I--+ C(V) a degrading diagram, where 
I is a partially ordered set such that to each arrow i --+ j between two elements of 
I, F maps it to an inclusion F(i) <---+ F(j) in C(V). Now, a morphism G : D --+ D' 
between two degrading diagrams D : I --+ C(V) and D' : J --+ C(V) is a functor (an 
order preserving mapping) F : I --+ J between I and J and a natural transformation 

197 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

a : D -..:.+ D'F. Naturality means that the following diagram commutes: 

i D(i) ~ D' F(i) 

r Db)~D'lj)J 

The category Deg is the category whose objects are violation diagrams and whose 
arrows are pairs (F : I --+ J, a : D -..:.+ D'F) : D -t D' as explained above. Since the 
category Pos and the category C(V) are finitely cocomplete, then for Deg colimits 
can be calculated pointwise (see [MM92]); therefore Deg is finitely cocomplete. 

Theorem 54. The category Deg is finitely cocomplete. 
Proof. Let us show how to calculate the coproducts pointwise, the coequalizers can 
be calculated using the same technique, and therefore the property of finitely cocom­
pleteness follows. Let Di : Ii -t C(V) and D2 : 12 --+ C(V) be two degrading diagrams. 
Since Pos has coproducts, we have a poset Ii + 12 and morphisms Ji : Ii -t Ii + / 2 
and !2 : 12 --+Ii+ 12. Now, let i be an element of Ii+ 12, by definition of coproducts 
in Pos, we have some ii E Ii such that fi(ii) = i or we have an element i 2 Eh such 
that h (i2) = i, but not both. In the first case, we define Di+D2( i) = Di ( i), otherwise 
Di+ D2(i) = D2(i). Now, let d : i --+ i' be an arrow in Ii+ 12, then by definition 
of coproducts in Pos, for this arrow we some arrow di : ii -t i~ in Di such that 
d: fi(ii) --+ fi(iD, or some arrow d2 : i2 -t i; in D2 such that d: fi(i2) --+ h(i;), 
but not both. In the first case, we define Di+ D2 (d) = Di(di), otherwise we define 
it: Di + D2(d) = D2(d2). This defines a functor Di + D2 : Ii + !2 --+ C(V), and 

arrows (fi,ai: Di-..:.+ (Di +D2)fi) and (f2,a2 : D2 -..:.+ (Di +D2)h), where we have 
(ai )i' ( v) = v, and similarly for a2. 

Now, for any other degrading diagram D : I -t C(V) and arrows (ff, a~ : Di -t 

DJi) and (!~, a 2 : D2 -..:.+ D f~). Since Ii + 12 is a coproduct in Pos, we an unique 
arrow f : Ii + h -t I such that f o Ji = J{ and f oh = f~. Using this arrow 

we define the following morphism in Deg: (! : Ii + !2 --+ I, a : Di + D2 -..'..+ DJ), 
where the components of a are defined as follows: ai(v) = (a~)ii (v), when fi(iD = i, 
otherwise ai (v) = (aDi~ (v) for the i; such that h (i~) = i. This definition satisfies 
the requirement of commutativity with a~ and a;, and is unique since f is unique. • 

On the other hand, an upgrading diagram is a functor F: J0 P -t C(V), where I is a 
partially ordered set. Note that we take the dual of this category since upgrading dia­
grams are contravariant with respect to inclusion. However, the opposite of partially 
ordered set is a partially ordered set; therefore, an upgrading diagram is essentially 
the same as a degrading diagram, but we draw the arrows in the other direction (see 
the example below). A morphism between two upgrading diagrams D : J0 P -t C(V) 

198 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

and D' : J0 P --+ C(V) is a tuple (F : l 0P --+ JDP, a : D -..'...t D'F). Since the dual of a 
partially ordered set is a partially ordered set, we have the following property: 

Theorem 55. The category Upg is finitely cocomplete. 

To illustrate the idea of how colimits are built over violation diagrams, consider 
the degrading diagrams of figure 7.1 Note that diagrams D 2 and D 3 are isomorphic, 

Figure 7.1: Examples of degrading diagrams 

while the diagram Di only has {vi} (i.e., it only has an isolated point). If we consider 
the following morphisms between degrading diagrams (recall that they are made up 
of a natural transformation and a functor): Fi : Di --+ D2 and F2 : Di --+ D3 , which 
map {vi} to the the same set in each diagram, then the pushout object obtained 
(D2 +v1 D3 ) from the above violation diagrams is shown in figure 7.2. In other words, 

Figure 7.2: Degrading diagram D2 +v1 D3 

colimits join the common parts indicated by the given diagram and they separate 
the other parts (we create new names or violation predicates to distinguish between 
unrelated propositions). The same applies to upgrading diagrams. 

Given a component C = (£,A, S), we can define its degrading and upgrading 
diagrams formally as follows. The degrading diagram is a functor De : le --+ C(V), 
where the elements of le are defined as follows. If V, V' are two violation states 
of C and f-e V--+ ([ai; ... ;an]V') /\ ((ai; ... an)T) is a degrading formula of C, 
then the pair (V, V') is in le (and V, V' are elements of le). We also add the pairs 
(V, V) to satisfy reflexivity (and note that the defined relationship is transitive and 
antisymmetric). The functor Dr : le--+ C(V) is defined as follows. 

199 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

• For each violation state V which is an object of le, we have D1(V) = U(V). 

• For each arrow V --t V' (pair) in le, it returns the inclusion U(V) <-t U(V') in 
C(V). 

Similarly, we define an upgrading diagram Uc : J'J' --t C(V); in this case we draw the 
arrows following the direction in J'J'. 

Note that though the potential upgrading and degrading predicates in a com­
ponent are possibly infinite, the diagram is finite, since we have a finite number of 
violation states, which implies that we have equivalence classes of degrading and 
upgrading functions that represent the same transition between two violation state. 

We present a simple example to illustrate these notions (a more complex example 
is given in section 7.3). Consider the following scenario. We have a system where 
we have two coolers which must maintain the low temperature of a processor. We 
specify the coolers as two instances of the specification shown in figure 7.3: In this 

Cl.B --t --iv/\ •on/\ •high Cll.v --t [on]v 
C2.•on --t [on]-,on C12. [ghigh]high 
C3.[off]•on Cl3. •high --t [.....,gh,.._i-gh,....,]•high 
C4.on --t [off]on C14.[on]•high 
C5.[on]on C15.high --t [on]high 
C6.•high --t P(U) C16. (ghigh) T 
C7.high --t O(on) Cl7.(off) T 
C8.F(on) --t [on]v C18.(on)T 
C9.v --t [on]•v C19.off non =act 0 
ClO.P(on) 

Figure 7.3: Specification of a cooler 

specification we have actions: on (to turn on the cooler), ghigh (this action indicates 
when the temperature of the cooler is high) and off (this action turns the cooler 
off). Most of the axioms specify the behaviour of these actions, we can highlight the 
following axioms. Axiom C6 says that, if the temperature is low, then any action is 
allowed. Axiom C7 says that, if the temperature is high, then the cooler ought to be 
on. Axioms CB indicates when a violation arises. On the other hand, axiom C9 says 
that on is a recovery action for violation v. Axioms C15-C16 say that the actions 
ghigh, on and off can always be executed. Finally, axiom C19 says that actions on 
and off are disjoint, and axiom ClO says that the action on is always allowed (which 
implies that it never causes a violation). 

200 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Now suppose that, perhaps since we want some redundancy in the system, we 
are interested in having two coolers; a specification of two coolers can be obtained 
by taking the coproduct C + C. In this case, different variables, actions and deontic 
predicates are created to distinguish the two instances of the same specification. see 
figure 7.4. Let us investigate the degrading diagram of the component C. First, we 

Clj.B -t •Vi(\ •Olli(\ •highi Clli.vi -t [ofii]vi 
C2j.•Ofii -t [ofii]•ofii Cl2i· [ghighi]highi 
C3i-[offi]•ofii C13j.•highi -t [.-g.,....h.,....ig--:-h-.i]•highi 
C4j.Olli -t [offi]olli C14j. [ofii]•highi 
C5i-[olli]olli C15i.highi -t [olli]highi 
C6i.•highi -t Pi(U) C16i-(ghighi) T 
C7i.highi -t Qi(olli) C17i.(offi)T 
C8i.F(oni) -t [olli]vi C18i-{olli)T 
C9i.vi -t [ofii]•vi Cl9j.Offi n Olli =act 0 
ClOi.Pi(olli) where i = 1, 2 

Figure 7 .4: Coproduct C + C 

can prove 1-c •v -t [ghigh; oll]v. 

1. f-c [ghigh]high Cll 
2. f-c high - 0(on) C7 
3. f-c O(on) - F(on) Def.O() 
4. f-c F(on) - [on]v C5 
5. f-c high - [on]v PL,2,3,4 
6. f-c [ghigh][on]v ML, 5, 1 
7. f-c [ghigh; on]v Def.; 

That is, the degrading diagram of specification C is the diagram (a) shown in figure 
7.5. Meanwhile, the degrading diagram of the coproduct C +C is shown in figure 7.5 
(b). To prove that this is correct, we have to prove that there exist action expressions 
a 1, a 2, a 3 and a 4 which make the following statements true: 

l. 1-c+c •V1 /\ •v2 -t ([a1](v1 /\ •v2) /\ (a1)T). 

2. 1-c+c •V1 /\ v2 -t ([a2](•v1 /\ •v2) /\ (a2)T). 

3. 1-c+c v1 /\ •V2 -t ([a3](v1 /\ v2) /\ (a3)T). 

4. 1-c+c •V1 /\ v2 -t ([a4](v1 /\ v2) /\ (a3) T). 

201 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

(a) (b) 

I 
v 

0 

Figure 7.5: Degrading diagrams of C and C + C 

For example, for item 1 we can prove: 

f-c+c •V1 /\ •V2--+ [ghigh1;ghigh1 LJ off1]•v2 /\ v1 

as follows: 

1. f-c -w--+ [ghigh; on]v See above. 
2. f-c+c 71(-w)--+ [ri(ghigh); 71(on)]71(v) Theorem 50 
3. f-c+c -w1 --+ [ghigh1;ghigh1Uoff1]v1 Def.71 
4. f-c+c -w2--+ [ghigh U off1 U on1]-w2 Loe. 
5. f-c+c •v2 --+ [ghigh1]•v2 DPL 4 

6. f-c+c •V2 --+ [ghigh1U off1]-w2 DPL 4 

7. f-c+c -w2--+ [ghigh1;ghigh1U off1]-w2 DPL, 5, 6 
8. f-c+c •v1 /\ -w2--+ [ghigh1;ghigh1U off1]•v2 /\ v1 DPL, 4, 7 

Note that, in this proof, we have used the theorem proven in component C to prove 
the statement in the specification C + C; this shows the way in which the theorems 
proven in the components can be reused to prove properties about the entire system. 
We can also prove: f-c+c •V1 /\ •V2 --+ (ghigh1;ghigh1 LJ off1) T, as follows: 

1. f-c+c (ghigh1)T Cl61 
2. f-c+c (off1)T C171 
3. f-c+c (ghigh1u off1)T DPL, 1, 2 
4. f-c+c [ghigh1]{ghigh1u off1)T GN,3 
5. f-c+c (ghigh1)(ghigh1u off1) T DPL, 3, 4 
6. f-c+c (ghigh1;ghigh1u off1) T Def.; 

and therefore we obtain the arrow 0 --+ v1 in the degrading diagram. In the same way, 
the remaining items in the list can be proven, and therefore, we obtain the degrading 
diagram of figure 7.5 (b). 

202 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

In practice we can coordinate the different instances of the specification via some 
actions. However, in this case (depending on which actions or variables we coordinate 
across the specifications) the independence of the degrading and upgrading diagrams 
of each component might not be preserved when putting the components together. 
An obvious example is to coordinate the two coolers via actions ghigh and on (i.e., 
they have the same sensor and the same button turning on both coolers). In this case, 
both sensors go into violation at the same time. But note that, if we coordinate the 
two coolers only for action on, then the independence of the degrading or upgrading 
diagram is preserved. This can be proven using the GGG condition and the fact that 
the action on is always allowed in both components, i.e., this action never introduces 
a violation. 

In the following, we investigate some scenarios where we can ensure some inde­
pendence between the violations in the components. For the following theorems, we 
need to define formally what it means for two components to be coordinated via a 
variable or an action. Given a diagram D: I--+ Comp with components C1, ... , Cn, 
and colimit ( C, Ti : Ci --+ C), we say that two components Ci and Ci coordinate 
via an action c of C if we have an action Ci of Ci and an action c1 of C1 such that 
Ti(Ci) = c = r1(c1), and we say that Ci and C1 coordinate via a variable p of C if there 
are variables Pi in Ci and Pi in C1 such that Ti(Pi) = p = r(p1)· 

Our first theorem says that, when we have two components which do not coordi­
nate via any action, then the degrading diagrams of each component are respected by 
the degrading diagram of the specification obtained when we put both components 
together. 

Theorem 56. Consider two components C1 and C2 , with degrading diagrams Dc1 : 

Ic1 --+ C(V) and Dc2 : Ic2 --+ C(V), respectively. Let Dc1 +c2 : Ic1 +c2 --+ C(V) be the 
degrading diagram of C1 +C2 (the coproduct of C1 and C2 ), then there is a morphism 
(F, a) : Dc1 + Dc2 --+ Dc1 +c2 , such that all the components of a are iso and F is 
faithful. 
Proof. We prove that, if we have an arrow V--+ V' in the coproduct of the violation 
diagrams, then we have a degrading action in the coproduct of the components, which 
identifies this arrow. From here, we can use the identities to map Dc1 + Dc2 to 
Dc1 +c2 • Suppose that we have V --+ V' in Dc1 +Dc2 , then, by properties of coproducts, 
this arrow belongs to D 1 or D2 ; if V--+ V' belongs to D 1 , then we have that l-c1 (V--+ 
[a1; ... an]V' A (a1; ... ; an)T, but then we have: 

But note that r(V) is not necessarily a violation state of C1 +C2 , since the violations 
of C2 are not considered there. But since C1 and C2 do not coordinate via any action, 
we know that T1 (V) A r2 (-. Vc2 ), is a violation state of C1 + C2 . From this, using the 

203 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

properties of locality, we obtain: 

and 

and therefore the degrading transition V --t V' belongs to the degrading diagram of 

C1 + C2. • 

It is important to analyze in detail what this theorem says. If we have two 
components and we put them together without coordinating them via any action 
(they are totally disjoint), then the violation state of one component does not affect 
the other component and viceversa. The isomorphism of the components of the 
natural transformation indicate that the number of violations is preserved in each 
violation state of the components, and the faithfulness of the functor indicates that 
the "shape" of the degrading or upgrading diagrams of each component is preserved 
by the degrading diagram of the entire system. Obviously, this result can be extended 
for a more general setting, where we have many components which do not coordinate 
via any actions. 

We can generalize this result to situations where the components with violations 
do not coordinate via any action (see below the example of the diarrheic philosophers 
where philosophers do not coordinate via any actions; they only coordinate with forks, 
but forks do not have violations). 

Theorem 57. Given a finite diagram D: I --t Comp with components Ci, ... ,Cn, 
let (c, Ti : Ci --t C) be a colimit of D. If ci1' ... ' cik are all the components with 
violations in the language, and let Di1 , ••• , Dik be their degrading diagrams. If com­
ponents cii' ... ' cik do not coordinate via any action nor variable, then there is a 
morphism (F, a) : Di1 + · · · + Dik --t De where the components of a are iso and F is 
faithful!. 
Proof. The diagram Di1 +· · · + Dik is the coproduct of the diagrams Di1 , ••• , Dik; we 
show that each arrow V --t V' is also an arrow of De, and therefore, the morphism 
between Di1 + · · · + Dik and De is given by identities. 

Let V --t V' be an arrow in some Dii; then we have: 

1-e; V --t [a1; ... ; an]V' /\ (a1; ... ; O'.n)T.
J 

Now , we have that: 

204 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Note that rii (V) is not necessarily a violation state in C. Let v1, ••• , Vn be the viola­
tions which do not appear in V (these are translations of violations in other compo­
nents}, then rii /\ -iv1 /\ · · · /\ -wm is a violation state of C. Let a1, ... , aq be the actions 
which are translations of actions of Cij. Since Cij does not coordinate via any action 
nor variable with the other of components with violations, by locality we have: 

and therefore by properties of DPL we have: 

and by the independence axioms we have: 

which shows that we have an arrow V --+ V' in De. The result follows. • 
Note that the theorems above are also valid for upgrading diagrams; we only need 

to change the direction of the arrows in the proofs. 

However, in practice components usually coordinate via some actions, and there­
fore it is important to have some result which can be applied to wider cases where 
components interact in some way. Note that the strong version of the G G G predi­
cate says that an execution of an allowed action cannot introduce a violation into a 
violation state. Then, if we coordinate two components on actions which are always 
allowed (i.e., they are safe) and we have the axioms SG(L) in the components, then 
we can ensure that no violations are introduced when we execute a recovery (or a 
degrading) action on one of the components. We need some extra notation to present 
these results. Given a language L, we say that P(a) (a is in general allowed) iff 
P1(a) /\ · · · /\ pn(a) where {1, ... , n} are the permission indexes of L, and we say that 
a is safe in a component C if 1-c P(a). 

Theorem 58. Given a diagram C1 ~ C --+ C2 , and the pushout of this diagram, 
denoted by C1 +c C2, if (i} C1 and C2 do not coordinate via any action, (ii} the 
actions in C when translated into actions of C1 +c C2, say c1, ... , Cn, are safe in 
C1 +c C2 (i.e., 1-c1 +0 c2 P(ci) for every i} and (iii} in the system axioms of C1 
(respectively, C2} we have SG(C1) (respectively, SG(C2 )}, then there is a morphism 
(F, a) : Uc1 + Uc2 --+ Uc1+0 c21 such that all the components of a are iso and F is 
faithful. 
Proof. The proof is similar to the proof of theorem 56. Suppose that we have an 
upgrading transition V--+ V' in Uc1 +Uc2 • For the case that V--+ V' belongs to Uc11 

205 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

we proceed as follows: let a1, ... , ak be the primitive actions of C1 and b1, ... , bm be 
the primitive actions of C2. Let us use C1 - C2 for the expression: 

LJ T2(bi)· 
r2(b;)¢{T1 (a1), .. .,T1 (an)} 

and similarly for C2 - C1 . We have that: 

Note that T1(V) and T1 (V') are not necessarily violation states of C1 +c C2 . Now let 
v 1 , ... , Vt be the violation predicates which do not appear in T1(V). Obviously, these 
violation predicates are translations of violation predicates of component C2. Now by 
locality we have: 

Also we know that: 

since c1 , ... , Cn are safe actions by hypothesis and by the translations of the axioms 
SG(C2) and therefore P(ci) for any i. Now using the formulae above and the proper­
ties of the logic we get: 

and (c1 U · · · U en) U T2(U) is just C2 - C1. 

We find here part of the formula that we must prove. For the other part we have: 

Consider that C2- C1 are exactly the choice of the action which belongs to C1 +c C2 
and do not belong to the translation of primitive actions in C1, and therefore by 
independence we get: 

The case that V' -t V in Uc2 uses a similar argument. This finishes the proof • 

This theorem can be expressed by means of a slogan: 

206 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Coordination on safe actions is safe. 

This property can be generalized when we have a finite number of components and 
they only interact (or coordinate) by means of safe actions. Note that in the theorem 
we require that component C does not have any violations, i.e., in other words, we 
require that components C1 and C2 do not coordinate via any violation. In the case 
that components coordinate via violations, the independence between the violation 
diagrams of each component are not respected any longer; it is possible that in this 
case the violation diagram of the system can be approximated using the colimits of 
the violation diagrams of the components. We do not investigate this in this thesis. 
It is worth remarking that, in a concurrent setting, we want to keep the components 
as independent as possible, and coordination by means of violation constants may 
not be a good practice, to the extent that this is not strictly necessary. 

7 .3 Revisiting the Diarrheic Philosophers 

Now, we show an example to illustrate the application of these theorems in practice. 
We revisit the example of the diarrheic philosophers (which was introduced without 
the notion of components in chapter 4). Here we follow the main ideas introduced in 
[FM92] to modularize the design; note that the design obtained by modularization is 
clearer that the original one. First, let us consider the specification of a fork. The 
actions of a fork are: 

{l.up, l.down, r.up, r.down} 

and the predicates are 
{l.up?, r.up?} 

Intuitively, we have two ports by means of which we can use the forks; one is for the 
left philosopher and the other one is for the right philosopher. Note that this implies 
that the philosophers do not coordinate directly via any action (also note that these 
actions are mutually disjoint), this allows us to use theorem 57 to prove that the 
recovery of one philosopher does not cause any violations in the other philosophers. 
The axioms of the fork are shown in figure 7.6. The axioms specify the behaviour of a 
fork. As explained above, a fork can be held onto by the philosopher on the left or by 
the philosopher on the right. Therefore, we have two actions that reflect this action: 
l.up and r.up. Obviously they are disjoint (as stated by axiom f6 ), meaning that only 
one of the philosophers can be holding onto the fork. The rest of the specification 
describes what is the behaviour of each action. 

In chapter 4 we have described a complete specification of the diarrheic philoso­
phers. The specification of a philosopher that we provide below is slightly different 

207 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

XFork: 
f1.B-+ •l.up? /\ •r.up? fs.[r.up]r.up? 
f2.[l.up]l.up? f9.[r.down]•r.up? 
f3.[l.down]•l.up? f10.•r.up?-+ [r.Up]•r.up? 
f4.•l.up?-+ [l.Up]•l.up? f11.r.up?-+ [r.down]r.up? 
f5.l.up?-+ [l.down]l.up? f12-•r.up?-+ [r.down]J_ 
f6.•(l.up? /\ r.up?) f14.l.up?-+ (1.down) T 
f7.•l.up?-+ [l.down]J_ f15 .r.up?-+ (r.down)T 

Figure 7.6: XFork specification 

to the one given earlier, in part since we abstract from some details to focus on the 
specification of the violations and their properties. Note that here we take a simpler 
approach: a philosopher can take both forks or none. The actions of the specification 
are the following. 

{getthk,getbad,gethungry,upL,upR} 

and they are intended to denote the same actions as chapter 4. We have the following 
propositions: 

{hasL,hasR,thk,eating,hungry,bath,hasL,hasR} 

and two violations {vi, v2 }. The set of axioms of this specification is shown in figure 
7.7. We consider the SG(Phil) predicates on the system axioms, i.e.: •Vi/\ P1(a)-+ 

Phil: 
P1 : B -+ •V1 /\ •V2 /\ thk /\ •hungry /\ •bath Pis : •thk-+ [getthk]•thk 
p 2 : thk '!.hungry'!. eating'!. sick P16: [getbad]bath 
p3 : eating t-t hasL /\ hasR /\ •sick p17: •bath-+ ~[g_e_t_b-ad~]•bath 

p4 : •hungry -+ AFhungry Pis : [gethungry]hungry 
p5 : •eating -+ P1(U) p19 : •hungry -+ 
P6: eating-+ 0 1(downL n downR) [gethungry]•hungry 
p7: F1(downL)-+ [downL]v1 P20 : thk -+ down1 /\ downR 
Ps : F1(downR)-+ [downR]v2 P21 : hungry -+ downL /\ downR 

p9 : v1 -+ [downL]v1 P22 : hungry /\ (upL LJ upR) T -+ 

Pio : V2 -+ [downR]v2 ANeating V ANhungry 

Pn : v1 -+ [downL]•v1 P23 : bad -+ [getthk]bad 

P12 : V2 -+ [downR]•v2 p24 : eating-+ 

P13 : [getthk]thk AN(thk V bad) 


Figure 7.7: Specification of a philosopher 

208 



PhD Thesis, P.F.Castro McMaster-Computing & Software 

[a]•vi, for every i are in the system axioms of Phil. Most of the axioms have 
already been introduced in the example of chapter 4. We dicuss the remaining axioms. 
Axiom p 4 says that a philosopher which is not hungry will become hungry in the 
future; axiom p 5 states that, when the philosopher is not eating, then everything is 
allowed. Axioms p7-p12 specify how the violations occur in a given execution of this 
specification and which are the recovery actions. Note that, in axiom p 6 , we say that, 
if a philosopher is eating, then it will be obliged to return both forks. In the same 
way that we did in chapter 3, we simplify the problem by requiring that philosophers 
can only eat for a unit of time (axiom p 24); the amount of time that the philosophers 
eat is not important for our current purposes. However, note that the specification 
can be extended establishing that a philosopher can only eat a finite amount of time 
(for this we need to have a component specifying a clock). In this case we will have 
a new violation in case the philosopher continues eating beyond the prescribed limit. 
(We can consider this a preferable violation to going to the bathroom!) 

Now we focus on the analysis of violations. We suppose that some properties like 
I-Phil v1 --t hasL (if the philosopher is in violation v1, then he has the left fork) and 
I-Phil v1 --t •eating (if he is in a violation, then he is not eating) can be proven from 
the specification. (We proved these properties for the specification of chapter 4.) 

Suppose that we want to obtain the specification of a unique philosopher with two 
forks. We need to define some way of connecting the different components. With this 
goal in mind, we define a component Chan which only has actions {porti, port2 } 

with no predicates and no violations. Using channels, we can connect the forks with 
the philosopher taking the colimit of the diagram shown in figure 7.8. The components 

XFork1 Phil XFork2 

~ ~~ /, 

Chan1 Chan2 

Figure 7 .8: Putting together forks with philosophers 

XFork1 and XFork2 are "instances" of the specification XFork (i.e., they obtained 
from XFork renaming the symbols with the subindex i), and Chan1 and Chan2 are 
"instances" of Chan. Here r1 : Chan --t XFork maps port~ ~ lup and port~ ~ 
ldown, whereas T2 : Chan --t Phil maps port~ ~ upL and port~ ~ downL and 
similarly for r{ and T~. In other words, these morphisms connect the right and the 
left fork with the philosopher. Let us call the colimit object of this specification 
FPhil, where the morphism f1 : XFork --t FPhil, f 2 : XFork --t FPhil, p1 : 
Phil --t FPhil, c1 : Chan --t FPhil and c2 : Chan --t FPhil, are the required 
morphisms from the base of the cocone to the colimit object. Now, the upgrading 
diagram of FPhil is as shown in figure 7.9. The formulae at the right in this figure 

209 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Figure 7.9: Upgrading diagram of FPhil 

indicate the properties that we need to prove to show that this diagram is correct. 
Intuitively, the worst state is when a philosopher is in the bathroom with both forks. 
He can recover from this scenario by putting one of the forks down, and then he can 
go into a normal state by putting the other fork down. To prove the arrow from v1 

to 0, we proceed as follows. 

1. f-FPhil V1 -t -,eating Property of FPhil 
2. f-FPhil -,eating -t P1(U) p5 
3. f-FPhil pl (U) -t pl (downL) DPL 
4. f-FPhil -iv2 /\ P1(downL) -t [downL]-,v2 SG(Phil) 
5. rpphiJ V1 /\ -iv2 -t (downL]'v2 ML, 1, 2, 4 

6. f-FPhil v1 /\ -iv2 -t (downL]-iv1 /\ -iv2 PL, Pu, 5 
7. f-FPhil V1 -t hasL Property of Phil 
8. f-xFork lup? -t (ldown) T f14 

9. f-FPhil hasL -t (downL)T Def.Ji & theorem 50 
10. f-FPhil v1 -t ( downL) T PL, 7, 9 
11. f-FPhil v1 /\ -iv2 -t ( downL) T PL, 10 
12. f-FPhil v1 /\ -iv2 -t (downL](-,v1 /\ -iv2) /\ (downL)T PL,10, 6 

In this proof, the acronym DPL means that we can obtain the corresponding line 
using basic properties of the logic, similarly for PL (propositional logic) and ML 
(modal logic). Note that, in line 4, we use the GGG property. The other transitions 
between violation states can be proven in a similar way. 

We can build a complete specification with forks and philosophers interacting. 
Let us keep this simple and consider only two philosophers. We can use the chan­
nels to coordinate the two philosophers. Consider the diagram shown in figure 7.10. 
The colimit of this diagram gives us the final design (say TPhils), and note that 

210 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

li = {portt i--; l.up, port~ i--; l.down}XFork1 

01 = {portt i--; upL, port~ i--; downL} 

y~ h = {portf i--; 1.up, port~ i--; !.down} 
04 = {portf i--; upL, port~ i--; downL}Channel1 	 Channel3 

r1 = {portf i--; l.up, port~ i--; l.down} 
01 ! 	 !02 	 03 = {portf i--; upa, port~ i--; downa} 

r2 = {port~ i--; r.up, port~ i--; r.down}Phil1 	 Phil2 

04 = {port~ i--; upa, port~ i--; downa}031 	 I04 

Channel2 	 Channel4 

~ /, 
XFork2 

Figure 7.10: Two philosophers eating 

the colimit produces the corresponding specification with all the needed renaming of 
clashing symbols. Note that at the right of this figure the different mappings ap­
pearing in the diagram are defined. These mappings define how the different parts 
of the design interconnect (as explained in [FM92]). The interesting point here is 
to analyze what happens with the upgrading diagram in this system, when we add 
an extra philosopher. Note that the two instances of Phil do not coordinate via 
any action (both coordinate with XFork, but using different channels), and there­
fore theorem 56 can be applied here, obtaining that this specification preserves the 
coproduct of the upgrading diagrams of each philosopher. Note that the coproduct of 
the upgrading diagrams of each philosopher with forks is the one illustrated in figure 
7.11 This means that each of the (formulae which act as witnesses of a) transition of 

vl vl v2 	 v2 

1~ /2 1~ /2 

Figure 7.11: Coproduct of upgrading diagrams. 

this diagram can be proven from the specification TPhils. It is worth investigating 
if there are other transitions (since the theorem above says that we have a faithful 

211 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

(injective) functor, however we cannot ensure that this functor is full (surjective)). 
Note that when we have two philosophers, if one of them has a fork, then the other 
cannot start eating, and therefore there is no way to reach a state violation of the 
type vi /\ v~. This kind of extra-transition depends on how many philosophers we 
have in this specification; for example, if we have three philosophers, we can obtain 
further violation states. 

Summarizing, theorems 56 and 58 allow us to deduce some basic transitions be­
tween violation states. However, some other transitions could be dependent on the 
specification being developed and have to be investigated by the designer (although 
it is worth noting that these theorems give us a good starting point to analyze the 
violation structure of a specification built from several components). 

7.4 Further Remarks 

In this chapter, we have taken further the formalism presented in the earlier chapters, 
using the ideas of [FM92] to allow the specification of different modules which can be 
put together to build a whole system. Also, we have provided a theoretical basis for 
analyzing the structure of the violations that can arise when executing an implemen­
tation of a specification. The main benefit of this formal machinery is that it allows 
us to deduce part of the violation structure of the system using the properties of the 
components. 

It is important to stress that we have introduced a notion of bisimulation which 
allows us to characterize certain semantic structures which, in some way, reflect the 
locality of the components. Moreover, the deontic part of the original logic was 
generalized to allow a local version of permission and obligation, which is coherent 
with modularization, in the sense that the permissions and obligations of a given 
component do not affect (at least as far as this is desired) other parts of the system. 

212 




Chapter 8 

Concluding Remarks 

In this thesis we have investigated the utilization of deontic logics to specify concepts 
related to fault-tolerance. The main idea is to use axiomatic theories to specify com­
puting systems at the design level. While theories describe components or modules, 
translations between them express the relationships between the different modules. 
This methodology can be traced back to [MT84) where theories and interpretations 
between them are used as a basis to specify and structure computing systems. In 
this setting, we use deontic predicates to capture the notion of prescription, which is 
highly related to the notion of violation: a violation occurs since the system exhibits 
a non-desired behaviour. Deontic predicates are intended to capture the distinction 
between ideal or normal behaviour of systems, on the one hand, and the non-ideal or 
abnormal behaviour, on the other. We proposed a logic which is enough expressive for 
expressing interesting examples and differs from the other deontic systems proposed 
in the literature. Furthermore, we investigated the properties that are needed to mod­
ularize the deontic predicates in such a way that they fit neatly in the methodology 
described above. Then we concluded that some axiomatic schemas must be added to 
reflect reasonable assumptions on permissions and obligations. 

In the next section we state the contributions made in this thesis; we also describe 
some further work that seems interesting to develop using the formalisms described 
in the preceding chapters. 

213 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

8.1 Contributions 

Critical systems are very common today: airplane systems, software in nuclear power 
stations, health care related systems, bank systems, etc. Formal methods provide a 
rigorous way of producing software without errors. However, there are cases where 
the possibility of having bugs or faults is present for various reasons: a malicious 
environment, some component which changes over time or low level components which 
are not reliable. Because of this, formal frameworks that provide mechanisms to 
reason about faulty behaviour combine the benefits of both formal methods and fault­
tolerance and allow us to develop more reliable software. The formalism presented in 
chapter 3 allows us to express the idea of normativeness, i.e., which behaviour of the 
system is desirable. Using these logical constructs, the concept of violation can be 
introduced into logical theories, and therefore recovery actions can also be expressed 
and related properties can be proven. 

This deontic logic is different from previous formalisms presented in the litera­
ture; the deontic predicates are interpreted as properties of transitions and not over 
states as done in dynamic deontic logics; as a consequence, there are no relation­
ships between the deontic predicates and the modalities. This provides some freedom 
when specifying systems, and also this approach fits better with fault-tolerance. For 
example, it allows us to separate clearly the notions of recovery action and allowed 
action (sometimes these two concepts are mixed up in the deontic literature where it 
is stated that an allowed action is one which yields a state free of violations). Fur­
thermore, since we intend to use our logic for a rigorous analysis of software, we have 
proved that our logic is sound and complete, and we also proved that it is compact, 
which is an improvement with respect to other boolean modal logics proposed in the 
literature [GP90] and [Bro03]. Furthermore, the boolean modal logic that we present 
uses a relative version of the complement operator which, as we argued in chapter 3, 
is more suitable when specifying computing systems. It seems that axiomatizations 
for modal logics with relative complement have not been investigated deeply in the 
literature. (Broersen proposes an axiomatic system in [Bro03], but the completeness 
and the soundness of this system are not dealt with there.) 

We described an extension of the basic logic introduced in chapter 3, which sup­
ports several versions of deontic predicates; this allows us to introduce stratified 
norms which can be used to avoid contrary-to-duty paradoxes, which are common in 
practice (as shown in the examples of chapter 4). Stratified norms allow designers 
to introduce several levels of norms and violations which, intuitively, distinguish the 
different classes of bad behaviour that could occur during the execution of the system. 
This classification allows us to prove that some faults are tolerated by the system and 
others not, as shown in the byzantine generals, where one kind of fault is tolerated 

214 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

and others not. 

Temporal predicates have been shown to be useful to specify and verify concurrent 
and reactive systems, and, because most of fault-tolerant systems use concurrency or 
they interact with an environment, then we have added temporal operators to our 
logic. We also extended the axiomatic system to cover the temporal operators, and 
we have proved the soundness and completeness of this extended system. It is worth 
remarking that we consider an operator Done() which is used to predicate about the 
last action executed; this predicate has been proposed in other works, [DK97] and 
[KQM91], however, a complete set of axioms for it cannot be found in the literature. 
(But, note that we prove in chapter 5 that the Done() operator can be expressed in 
terms of the other temporal operators in an anchored temporal logic.) 

On the other hand, if we want to use this logic in practice, we need automated 
tools; tableaux deduction systems have been shown to be useful for automatic deduc­
tion [Fit90]. We present a tableaux system for our logic in chapter 5; the interesting 
point about this system is how the algebra of terms is used to label the formulae. The 
algebraic properties of the actions allow us to obtain a complete and sound tableaux 
system; furthermore this tableaux system has interesting properties. Our logic is de­
pendent on the language, in the sense that when we change the symbols, the theorems 
that we can prove from the axiomatic system may differ; however, we have proven 
that there exists a bound on the number of actions that we need to consider when 
verifying a formula; if the formula is valid for this number of actions, then it will be 
valid for any language possibly containing more actions. This can also be read as say­
ing that if a formula has some countermodel (i.e. a model which makes this formula 
false), then this model can be obtained using the tableaux with a language with the 
number of actions indicated by the bound. It is important to note that these extra 
actions can be thought of as environment actions, and therefore the theorem gives 
(for a given formula) the number of environment actions that must be considered to 
falsify the formula (if this is possible). This result seems to be relevant to finding 
counterexamples of specifications that interact with an environment. 

With the purpose of making this logic applicable to large specifications, we have 
provided an extension of the logic with support for modularization; an important 
issue here is how the notion of component is reflected at the syntactic and semantical 
levels, i.e, what is the relationship between the model of a module and the model of 
the entire system. For example, in [FM92] a linear temporal logic is proposed, and 
the model of the modules are traces where the external actions (the actions outside 
of the module) do not affect the local variables. However, this characterization does 
not work in branching logics, where, in addition to preserving the variables, we have 
to preserve the possible choices of a component. We use the notion of bisimulation 
(which has been widely used in modal logic) to characterize local models. Further­

215 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

more, we provided a set of axioms which enables us to capture this locality at the 
syntactic level. One consequence of this characterization of locality by means of ax­
ioms is that structurality is satisfied when we consider a deduction relation augmented 
with the axioms of locality, i.e., the theorems of the components are preserved by the 
entire system. However, it is important to note that, when putting together several 
components, it is possible that the specification obtained is inconsistent. An impor­
tant point here is that the tableaux system can be used to check the inconsistency of 
a specification (when it is made up of a finite number of axioms). 

The modularization of the logic raises the question of how to preserve the locality 
of prescriptions, i.e., if we pursue the development of specifications in a modular 
way, prescriptions also have to be modularized, otherwise the local reasoning about 
a specification becomes hard because the prescriptions in other components may 
affect the component being analyzed. In chapter 7 we propose the use of several 
versions of permission and obligation, and we show that using colimits we can compose 
specifications in such a way that the locality of prescription is preserved. Furthermore, 
since we include violation constants in the language, the different violations in a 
specification make up a lattice-like structure. We show some results which allow 
us to approximate the violations structure of the entire system using the violations 
of the components; moreover, we have shown that, if the interaction between the 
components is coordinated only by means of safe actions (actions which are always 
allowed), then the violation structure of the components is preserved in the final 
system. A consequence of this is that the action of one component cannot cause 
violations in other components. We have observed in chapter 3 that, when working 
with deontic specification, it is useful to have some requirements about the behaviour 
of allowed actions; roughly speaking, allowed action do not introduce violations. This 
is called the GGG requirement in [SC06], where it is introduced to reason about 
transition systems specified with the language 'f/C+, and we have shown that we can 
introduce this requirement by means of parametrizable axioms in a similar way to 
the use of frame axioms in [FM92]. This property is useful when proving properties 
over specifications with prescriptions, as we illustrated in the examples of chapter 7. 

Summarizing, we have provided a deontic action logic which differs from the deon­
tic logics presented in the literature, and we have illustrated with some examples why 
we think that this deontic logic is appropriate for use in specifying fault-tolerance. 
In addition, we have provided an extension of this deontic logic to allow designers to 
provide specifications in a modular way; we designed this extension in a way which 
allows us to keep the locality of the deontic predicates (i.e., that the prescriptions in a 
module do not necessarily affect other modules). Deontic logics have been proposed in 
some work [CJ96, 1804, Kho88] as an adequate logic for the study of fault-tolerance, 
in particular since the notion of prescription and violation are naturally embedded 
in these logics. We have provided a set of sufficiently complex examples to ground 

216 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

this thinking; by means of these examples, we have studied some properties that can 
be proven from specifications with prescriptions. Part of the work presented in this 
thesis has been published in some earlier papers: [CM07a, CMOS, CM07b, CM09]. 

8.2 Future Work 

The logic that we presented in chapter 3 uses an atomic boolean algebra of actions; 
we take advantage of the atoms in the algebra of terms to obtain a canonical model 
and then to prove the completeness of the axiomatic system shown in that chapter, 
and we use the same idea to define the labels that we use with the formulae in the 
tableaux system. There are several algebras related to boolean algebras which have 
a similar structure. For example, boolean algebras with operators [JT51, JT52] are 
algebras which have the boolean operators and in addition they have other operators 
with several interesting properties. In particular, there are several classes of boolean 
algebras with residuated operators that also have atom-like elements; in particular, 
residuated algebras seem to be very expressive, and perhaps the notion of iteration 
can be captured here (see [Jip92] for an introduction to residuated boolean algebras). 
It seems to be interesting further work to extend our axiomatic systems to these more 
expressive algebras. 

We have described an algorithm in chapter 5 to apply the tableaux rules; further 
work should be done to implement a software tool which allows us to apply this 
method in an automatic way. Such an algorithm would be useful to allow specifiers 
to get counterexamples (expressed by means of traces) of properties while analyzing 
a specification; these counterexamples can be used to investigate which possible runs 
of the system to be built can be dangerous and must be taken into account when 
improving the design. Here it is interesting to note that the counterexamples obtained 
by means of the tableaux system are traces made up of action terms that express which 
actions were executed and which were not; this level of detail is undoubtedly useful 
when analyzing specifications. 

The logics presented throughout this thesis have propositional operators; a first­
order extension of this logic would allow us to express interesting properties. However, 
first-order predicates bring undecidability, and furthermore (as proven in [Aba89] for 
linear temporal logic), many first-order temporal logics do not admit a complete 
calculus (although a more general notion of semantic structures can be considered 
to obtain completeness). To investigate how to keep the good meta properties of 
our logic (except, of course, decidability) in a first-order logic seems to constitute a 
interesting further work. 

217 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

Institutions and ?r-Instituitions are abstract formulations of logical systems; while 
Institutions focus on the semantical aspects of a logical system, ?r-Institutions are 
intended to capture the notion of syntactical entailment. Note that we have taken 
a syntactical approach, in the sense that we use deduction systems to prove prop­
erties of specifications, and therefore ?r-Institutions seem to be a good theoretical 
setting where the properties of the deductive systems described in earlier chapters 
can be investigated. However, ?r-Institutions do not capture some important aspects 
of tableaux systems. For example, in many tableaux systems (including those ex­
hibited in chapter 5), in the case where a formula is not valid, we can obtain a 
counterexample (a model which satisfies the negation of this formula). An abstract 
formulation of tableaux that captures these properties would be useful when reasoning 
about several tableaux systems and the connection between them. In particular, this 
abstract formulation could help to understand how different counterexamples coming 
from related tableaux are connected. For example, it should be possible to extract 
counterexamples for the components from counterexamples obtained for the entire 
system (this will allow us to analyze the counterexamples with respect to a simpler 
specification). Also, the universal constructions could be used to obtain tableaux 
from smaller tableaux, allowing in this way compositional reasoning about (tableaux) 
proofs. For example, it seems plausible that from two tableaux, one for a formula 
<p and another· for a formula 'l/J (built from the same language), the product of these 
tableaux gives us a tableaux for the formula <p A 1/J; this construction is called clashing 
tableaux in [Smu68], but it is not expressed in categorical terms. Other categorical 
constructions (limits in general) will allow us to put many tableaux together. We 
think that these ideas deserve a deeper investigation. 

In chapter 7 we have investigated mechanisms to put together several components. 
In particular, we provided a theoretical framework for the analysis of violations. As 
we argued in that chapter, an important issue is how the structure of the violations 
occurring in the components are reflected in the final system. We shown that, in 
some cases, components can be put together safely, i.e., preserving the properties of 
the local violations. It is important to investigate further these kinds of properties; 
providing an important set of these style of results will allow designers to reason in 
a easier way about the composition of specifications with support for violations. In 
particular, it seems possible that rely/guarantee mechanisms can be used to extend 
the properties described in chapter 7 in such a way that we can apply them in more 
general situations. 

The theoretical framework exhibited in earlier chapters is intended to be used 
to prove properties related to fault-tolerance. We provided some examples that are 
complex enough to show how these logics can be used in practice. However, it seems 
interesting to produce specifications of existing fault-tolerant mechanisms or protocols 
and, therefore, investigate their properties. Of course, the formalisms described in this 

218 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

thesis are intended to be used to specify new fault-tolerant systems or protocols and, 
then, their properties can be investigated in a rigorous way. It is worth remarking that 
the logical frameworks used in this thesis can be thought of as being at a low level, 
in the sense that a more design-oriented language can be developed and, then, the 
specifications made with this language can be "compiled" to the formalisms described 
in chapter 3, and so the deductive systems introduced in chapters 3 and 5 can be used 
to prove the properties of these specifications. Summarizing, this formalism can be 
utilized to provide the semantics (and the logical calculus) of languages more oriented 
to system design. 

Finally, as we remarked above, the logics introduced in this thesis are dependent 
on vocabularies, this implies that, when we add more actions, the set of theorems 
changes, perhaps some properties are no longer a consequence of the specification. 
Intuitively, this says that the specifications are in some degree dependent on the 
actions of the environment (it seems intuitive that if we add more behaviour to the 
environment, the possible faults of the system may increase). However, we proved 
that it is possible to obtain a bound in the number of the "extra" actions needed 
to prove a given property for any language. This result might be useful at time of 
proving important system properties like liveness properties (where the behaviour of 
the environment is relevant). It seems an interesting stream of research to investigate 
in which scenarios this result can be used, and if this kind of meta property can be 
implemented in a software tool in such a way that important properties of components 
can be proven in an automatic way. In particular, the idea of an automatic tool that 
finds environments which may falsify a property of a component (using properties as 
the one shown in chapter 5) seems very attractive. 

219 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

220 




Appendix A 

Proof of lemma 4. 
Base Case: 

0 01. Done(U) ---+ i.v1 	 PL, Phill 
02. Done(U)---+ (i.v1---+ (i.hasL V i.hasa)) PL, 1, PhilO 

Ind. 	 Case: 

1. •i.hasL /\ •i.hasa ---+ •i.eating 	 PL, Phil18 
2. •i.eating---+ O(i.downL n i.downa) 	 PL, Phil21 
3. •i.hasL /\ •i.hasa---+ -,Q(i.dOWllL n i.downa) 	 PL, 1, 2 
4. •i.v1 /\ •O(i.downL n i.downa) ---+ [U] 0 i.v1 	 PL, V2 
5. 	 •i.v1 /\ •(i.hasL V i.hasa)---+ [U]•i.v1 PL,3, 4 
6. 	 i.v1 /\ •(i.hasL V i.hasa)---+ [U)(•i.V1 V (i.hasL V i.hasa)) PL, 5 
7. 	 i.V1 /\ (i.hasL V i.hasa)---+ [i.dOWllR n i.dOWllL)•i.V1 PL, V4 
8. 	 i.v1 /\ (i.hasL V i.hasa)---+ 

[i.dOWllR n i.downL] ( •i.V1 V (i.hasL V i.hasa)) PL, 7 
9. 	 i.hasL---+ [i.downL]i.hasL PL, Phil6 
10. 	 i.hasa ---+ [i.downa]i.hasa PL, Phil6 
11. 	 i.hasL V i.hasa ---+ [ i.downL U i.downa] ( i.hasL V i.hasa) 

012. i.v1 /\ (i.hasL V i.hasa) ---+ 	 PL, 11 

[i.dOWllL n i.downa](•i.V1 V (i.hasL V i.hasr)) 	 PL, T4, 9, 10 
13. •i.V1 /\ O(i.downL n i.downa)---+ [i.downL n i.downa]•i.V1 	 Vl 
14. •i.v1 /\ •O(i.downL n i.downa)---+ [U] 0 i.v1 	 V3 
15. [U]•i.V1 /\ i.downL n i.downa !;;;; U---+ [i.downL n i.downa]•i.V1 T3 
16. [U] 0 i.V1---+ [i.dOWllL n i.downa]•i.V1 	 PL, 15 

017. i.V1 /\ -,Q(i.downL n i.downa)---+ [i.downL n i.downa]•i.V1 PL, 14, 16 
018. i.V1 ---+ [i.dOWllL n i.downa]•i.V1 	 PL, 13, 17 
019. i.v1 /\ (i.hasL V i.hasa) ---+ 

[i.dOWllL n i.downa]•i.V1 V (i.hasL V i.hasa) 	 PL, 18 
020. i.v1 /\ (i.hasL V Lhasa)---+ [U](•i.V1 V (i.hasL V i.hasa)) PL, 12, 19 

221 


http:U](�i.V1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downa](�i.V1
http:i.dOWllL)�i.V1
http:U)(�i.V1


PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

21. i.v1 /\ i.hasL /\ -ii.hasa--+ i.v2 	 PL, V3 
22. i.v1 /\ •i.hasa--+ [i.downL]•i.v1 	 PL, V6 
23. i.v1 /\ i.hasL /\•Lhasa--+ [i.downL]--,i.v1 	 PL, 21, 22 
24. i.v1 /\ i.hasa /\ •i.hasL --+ i.v2 	 PL, V3 
25. 	 i.v2 /\ •i.hasa--+ [i.downa]•i.V1 PL, V6 
26. 	 i.v1 /\ i.hasa /\ •i.hasL --+ [i.downa]•i.V1 PL, 25 
27. 	 i.hasL --+ [i.downL]i.hasL Phil6 
28. 	 i.v1 /\ i.hasL /\•Lhasa--+ 

[i.downL LJ i.downL](•i.v1 V i.hasL) ML, T4, 23, 26 27 
29. 	 i.v1 /\ i.hasL /\•Lhasa--+ [U](•i.V1 V (i.hasL V i.hasa)) PL, 28 
30. 	 i.hasa--+ [i.downa]i.hasa PL, Phil6 
31. 	 i.v1 /\ i.hasa /\ --,i.hasL--+ [i.downa](--,i.v1 V (i.hasa V i.hasL)) PL, 26, 30 
32. 	 i.v1 /\ i.hasa /\ •i.hasL--+ [U](•i.v1 V i.hasa V i.hasL) PL, 26, 31, T4 
33. 	 i.v1 /\ i.hasa /\ i.hasL --+ •i.v2 PL, V3 
34. 	 i.hasa --+ [i.downa]i.hasa PL, Phil6 
35. 	 i.hasL --+ [i.downL]i.hasL PL, Phil6 
36. 	 Lhasa/\ i.hasL--+ [i.downa LJ i.downL](i.hasa V i.hasL) BA, 34, 35 
37. 	 i.v1--+ [i.downL n i.downa]•i.V1 PL, V7 
38. 	 i.hasa /\ i.hasL /\ i.v1 --+ [U](•i.v1 V (i.hasr V i.hasL)) PL, T4, 36, 35 
39. 	 •i.v1 V (i.hasa V i.hasa)--+ [U](--,i.v1 V (i.hasa V i.hasL)) PL, 20, 29 32, 38 

Proof of lemma 5 

1. •i.V1 /\ --,Q(i.downL n i.downa)--+ [U]•i.v1 	 V2 
2. --,i.v1 /\ --,i.eating--+ [U]•i.v1 	 PL, Phil21, 1 
3. •i.v1 /\ --,i.eating--+ [U]•i.v1 	 PL, Vl 
4. •i.V1 /\ O(i.downL n i.downa)--+ [i.downL n i.downa]•i.V1 PL, Vl 
5. --,i.v1 /\ i.eating--+ [i.downLsqcapi.downa]i.v1 PL, Phil21,V2 
6. --,i.v1 /\ i.eating--+ [i.downL n i.downa]•i.V1 	 PL, Vl 
7. [i.downL]•i.hasL /\ [i.downa]•i.hasa 	 Phil6 
8. [i.downL n i.downa](•i.hasL /\ •i.hasa) 	 PL, T5, 7 
9. [i.downL n i.downa]•i.eating 	 PL, 8, Phil18 
10. 	 •i.V1 /\ i.eating--+ [i.downL n i.downa]•i.eating PL, 9 
11. 	 i.eating--+ [U]Done((i.downL n i.downa) LJ i.getbad) Phil20 
12. 	 i.eating--+ [i.downL n i.downa]Done(i.getbad) PL,Tl6, Tl7, 11 
13. 	 ([i.getbad]i.bathroom) /\ (i.bathroom--+ •i.eating) PL, Phil3 

Phil18, Phil22 
14. 	 i.eating--+ [i.downL n i.downa]•i.eating PL, Tl7, 13, 14 
15. 	 •i.V1 /\ i.eating--+ [i.downL n i.downa]•i.eating PL, 14 
16. 	 --,i.v1 /\ i.eating--+ [U]--,i.eating PL, 10, T4, 15 
17. 	 --,i.v1 /\ (•i.eating Vi.eating)--+ [U](•i.eating V •i.v1) PL, 2, 16 
18. 	 --,i.v1 --+ [UJ(•i.v1 V•i.eating) PL, 17 

222 


http:UJ(�i.v1
http:i.downa]�i.V1
http:i.downLsqcapi.downa]i.v1
http:i.downa]�i.V1
http:U](--,i.v1
http:U](�i.v1
http:i.downa]�i.V1
http:U](�i.v1
http:i.downa](--,i.v1
http:U](�i.V1
http:i.downL](�i.v1
http:i.downa]�i.V1
http:i.downa]�i.V1
http:i.downL]--,i.v1
http:i.downL]�i.v1


PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Proofoflemma 6. The proof is by induction. We prove i.v1/\•i.v2 ~ •(i + 1).eating, 

the another is similar. 

Base Case: 


1. ·Done(U) ___. •i.v1 	 PL, Phill 
2. ·Done(U) ___. (i.v1 /\. •i.v2 ---+ •(i + 1).eating) PL, 1 

Ind.Case: 

1. (i + 1).eating ___. (i + 1).hasL /\. (i + 1).hasR PL, Phil18 
02. (i + 1).hasR ___. i.hasL 	 Lemma 3 

3. (i + 1).eating ---t •i.hasL 	 PL, 10, 11 
4. 	 (i + 1).eating ___. •(•i.V2 /\. i.v1) PL, V3, 1 

5. 	 [U](•(i + 1).eating V •(•i.v2 /\. i.v1)) GN,4 
6. 	 •(i.v1 /\. 0 i.v2) V (•(i + 1).eating) ___. 

[U](•(i + 1).eating V •(•i.v2 /\. i.v1)) PL, 14 

Proof of lemma 7: 

1. •i.eating ~ •i.hasL V •i.hasR V i.bathroom 	 Phil18 
2. •i.Vt /\. 0 0( i.downL n i.downR) ---t [U] 0 i.V1 	 V2 
3. •i.eating---+ •O(i.downL n i.downR) 	 Phil21 
4. •i.v1 /\. 0 i.eating ___. [U]•i.v1 	 PL, 2, 3 
5. •i.v1 /\. 0 i.eating ___. [U](•i.v1 V •i.eating) 	 PL,4 
6. i.Vt ---t [i.dOWllL n i.downR)•i.Vt 	 V4 
7. i.v1 ___. i.hasL V i.hasR 	 Lemma 3 
8. i.v1 ___. i.hasL V i.hasR 	 Lemma 4 
9. i.bathroom /\. i.hasL ___. [i.getbetter)i.bathroom 	 Phil23 
10. i.bathroom /\. i.hasL ___. [i.getbetter)Done(i.downL) 	 Phill9 
11. [i.downL]•i.hasL 	 Phil4 
12. i.bathroom /\. i.hasL ___. [i.getbetter)•i.hasL 	 PL, Tl7, 10, 11 
13. i.bathroom /\. i.hasR ___. [i.getbetter]Done(i.downR) 	 Phil19 
14. 	 [i.downR)•i.hasR Phil4 
15. 	 i.bathroom /\. i.hasL ___. [i.getbetter)•i.hasL PL, 13, 14 
16. 	 i.bathroom /\. (i.hasR V i.hasL) ___. 

[i.getbetter)(•i.bathroom /\. (•i.hasR V •i.hasL)) PL, 12, 15 
17. 	 i.bathroom /\. (i.hasR V i.hasL) ___. 

[i.getbetter U i.getbetter](•i.bathroom /\. (•i.hasR V •i.hasL)) PL, 9, 16 

18. 	 i.bathroom /\. (i.hasR V i.hasL) ___. [U) 0 i.eating PL, 1, 17 
19. 	 i.v1 /\. •i.eating ---t [U)(•i.v1 V •i.eating) PL, 1, 8, 18 
20. 	 •i.eating---+ [U)(•i.v1 V •i.eating) PL, 19, 5 

223 


http:U)(�i.v1
http:U)(�i.v1
http:i.downR)�i.Vt
http:U](�i.v1
http:i.v1/\�i.v2


PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

Proof of lemma 8. The proof is by induction. Base Case: 

1. -,Done(U) -+ •i.v1 /\ •i.eating PL, Phill 
2. -,Done(U)-+ (i.v1 -+ -ii.eating) PL, 1 

Ind.Case: 

01. i.v1-+ [U] 0 (i.v1 /\ i.eating) 	 lemma 5 
2. -,i.eating]-+ [U]•(i.v1 /\ i.eating) lemma 7 
3. -ii.vi V •i.eating-+ [U]•(i.v1 /\ i.eating) PL, 1, 2 

Proof of lemma 9. The proof is by induction: the base case is straightforward using 
Phill. The inductive case is as follows: 

1. •i.V1 /\ O(i.downL n i.downR)-+ [i.downL n i.downR]•i.V1 	 Vl 
2. •i.V1 /\ O(i.downL n i.downR)-+ [i.dOWllL n i.downR]i.v1 	 Vl 
3. O(i.downL n i.downR)-+ i.eating 	 Phil21 
4. i.eating-+ [U]Done(i.getthk LJ i.getbad) 	 Phil20 
5. i.eating -+ i.hasL /\ i.hasR 	 Phill8 
6. 	 i.hasL /\ i.hasR-+ [i.getthk](Done(i.downL) /\ Done(i.downR)) Phil7 
7. 	 i.eating-+ [U]Done(i.gethtk) V [U]Done(i.getbad) ML, Tl4, 4 
8. 	 i.eating-+ 

[UJ(Done(i.downL n Done(i.downR))) V [U](Done(i.getbad)) Tl7, 6, 7 
9. 	 i.eating-+ [i.downL n i.downR]--,Done(i.downL n i.downR) PL, TempAx8 

10. 	 i.eating-+ [i.downL n i.downR]Done(i.getbad) T4, T16, 8, 9 
11. 	 [i.getbad]i.bathroom Phil22 

12. 	 i.eating -+ ,...,.[i-.d,,_o_w_nL-=n--=i-.d-=--o-w-n-.R] i.bathroom Tl7, 10, 11 
13. 	 •i.V1 /\ O(i.downL n i.downR)-+ 

[i.dOWllL n i.dOWllR](i.bathroom V •i.V1) ML, 12 
14. 	 •i.V1 /\ O(i.downL n i.downR)-+ [UJ(i.bathroom v •i.v1) BA, PL, 1, 3 
15. 	 •i.v1 /\ --,Q(i.downL n i.downR) -+ [UJ(i.bathroom V •i.v1) V2 
16. 	 •i.v1 -+ [U](i.bathroom V •i.v1) BA, PL, 14, 15 
17. 	 i.bathroom-+ [i.getthk]i.bathroom Phil22 
18. 	 i.v1 /\ i.hasL -+ [i.downL]•i.V1 Phil5 
19. 	 i.v1 /\ i.hasR -+ [i.downR]•i.V1 Phil5 

20. 	 i.v1 -+ i.hasR V i.hasL lemma 4 
21. 	 i.bathroom /\ i.hasL -+ [i.getthk]•i.v1 Tl7, Phil7, V6 
22. 	 i.bathroom /\ i.hasR-+ [i.getthk]•i.v1 Tl7, Phil7, V6 
23. 	 i.v1 /\ i.bathroom-+ [i.getthk]•i.V1 ML, 20, 21, 22 
24. 	 i.bathroom /\ i.v1 -+ [U](•i.v1 Vi.bathroom) BA, PL, 16, 17, 23 

Proof of lemma 10. The proof is by induction, the base case is direct using Phill, 

224 

http:U](�i.v1
http:i.getthk]�i.V1
http:i.getthk]�i.v1
http:i.getthk]�i.v1
http:i.downR]�i.V1
http:i.downL]�i.V1
http:i.downR]i.v1
http:i.downR]�i.V1
http:U]�(i.v1
http:U]�(i.v1


PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

we prove the inductive case: 

1. 	 i.thk-> [i.getthk]-.i.thk 

2. 	 i.hasL-> [i.getthk]Done(i.downL) 

3. 	 [i.downL]-.i.hasL /\ [i.getthk]Done(i.downL)-> [i.getthk]-.i.hasL 

4. 	 i.hasR-> [i.getthk]Done(i.downR) 

5. 	 (i.downR]-.i.hasR /\ (i.getthk]Done(i.downR)-> (i.getthk]-.i.hasR 

6. 	 -.i.thk /\ (i.hasL V i.hasR)-> 

[i.geththk] (i. thk /\ (-.i.hasL /\ -.i.hasR)) 

7. 	 (-.i.hasL-> [i.upL]-.i.hasL) /\ (-.i.hasR-> [i.upR]-.i.hasR) 

8. 	 (i.getthk [;;; i.upL) /\ (i.getthk [;;; i.upR) 

9. 	 i.getthk [;;; i.upL U i.upR 
10. 	 -.i.hasL /\ -.i.hasR -> [i.getthk] (-.i.hasL /\ -.i.hasR) 

11. 	 -.i.thk /\ (-.i.hasR /\ -.i.hasL)-> 

[i.getthk](i.thk /\ (-.i.hasL /\ -.i.hasR)) 
12. 	 -.i.thk-> [UJ(-.i.thk V (-.i.hasL /\ i.hasR)) 

13. 	 i.thk /\ (i.hasL /\ i.hasR)-> (i.upL U i.uPRJl­
14. 	 i.thk /\ (-.i.hasL /\ -.i.hasR) -> 

[i.upL U i.upRJ(-.i.thk V (-.i.hasR /\ -.i.hasL)) 

15. 	 i. thk /\ (-.i.hasL /\ -.i.hasR) -> 

(i.upL U i.upR](-.i.thk V (-.i.hasL /\ -.i.hasR)) 

Phil8 
Phil7 

T17 
Phil7 

T17 

PL, 3, 5, Phil5 
Phil7 

BA, Phil7 
BA, 8 

T3, 7, 8 

ML, 10, Phil8 
BA, PL, 1, 6, 11 

Phil9 

ML, 13 

ML, Phil6 
16. 	 -.i.thk V (-.i.hasL /\-.i.hasR)-> [U](-.i.thk V (-.i.hasL /\-.i.hasR)) BA, PL, 1, 

12, 15 

Proof of lemma 11. The proof is by induction, the base case is, as usual, using Phill, 
the inductive case is as follows: 

Phil14 
2. Phil17 
3. BA, PL, 1, 2 

4. Phil12 
5. BA,4 
6. Phil17 
7. PL, T4, 5, 6 
8. 

T4, 6, 7 
9. Phil17 

ML, 9 
11. 

Symmetrically from 3 

225 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

[U](-ii.hungry V •(i + 1).hungry) 	 BA, PL, 3, 10, 11 

Proof of lemma 12. 

1. (i.hungry) /\ (fork1 .down V i.hasa) /\ (fork1+1.down V i.hasL) 
-+ ANi.eating 

2. 	 (i - 1).thk-+ •(i - 1).hasL /\ •(i - 1).hasa 
3. 	 •(i - 1).hasL-+ fork1.down V i.hasR 

4. 	 •(i + 1).hasR-+ fork1+1.down V i.hasL 
5. 	 AG((i + 1).v2 /\ •(i + 1).hasa /\ •i.bathroom /\ •(i ­

Ai.hungry/\ (i - 1).thk-+ EN(i.eating) 

Proof of lemma 13. 

1. 	 (i - 1).thk-+ •(i - 1).hasL /\ •(i - 1).hasa 
2. 	 i. thk -+ •i.hasL /\ •i.hasR 
3. 	 •(i - 1).hasL /\ •i.hasR-+ fork1 .down 
4. 	 •(i + 1).v2 /\ (i + 1).hasL-+ •(i + 1).hasa 
5. 	 i.thk-+ •i.bathroom 
6. 	 •(i + 1).hasa /\ •i.hasL-+ forkH1.down 
7. 	 (i + 1).v2-+ (i + 1).bathroom 
8. 	 (i + 1).bathroom-+ •(i + 1).hungry 
9. 	 (i + 1).v2 -+ •(i + 1).hungry 
10. 	 i.thk /\ •(i - 1).hungry /\ •(i + 1).hungry/\ 


fork1.down/\ fork1+i .down-+ (i.gethungry) T 

11. 	 (i.gethungry)i.hungry-+ (U)i.hungry 

12. 	 (U)i.hungry-+ ENi.hungry 
13. 	 (i.gethungry n (i - 1).gethungry) = 0 
14. 	 i.gethungry !;;;; (i - 1).gethungry 
15. 	 (i - 1).thk /\ AN(•(i - 1).bathroom)-+ 


[(i - 1).gethungry](i - 1).thk 


CTL, Phil15 
lemma 10 

PL, PhillO 
PL, PhillO 

!).bathroom) 
CTL, 1, 2, 3 ,4 

lemma 10 
lemma 10 

PhillO 
PL, V3 

PL, Phil3 
PhilIO 

lemma 9 
PL, Phil3 

PL,7,8 

PL, Phil13 
T3 

PL, TempAxl 
Phil12 
BA, 13 

lemma 16 
16. 	 (i - 1).thk /\ AN(•(i - !).bathroom)-+ [i.gethungry](i - 1).thk PL, T3, 16 
17. 	 [i.gethungryJ ( i - 1).thk /\ ( i.gethungry) i.hungry -+ 

(i.gethungry)((i - 1).thk /\ i.hungry) ML 
18. 	 AN((i + 1).v2 /\ •(i + 1).hasR /\ 0 i.bathroom/\ 

•(i - 1).bathroom) /\ i.thk /\ (i - 1).thk-+ 

(i.gethungry)((i - 1).thk /\ i.hungry) CTL, 10, 17 


19. 	 AG((i + 1).v2 /\ •(i + 1).hasa /\ •i.bathroom/\ 
•(i - 1).bathroom) /\ i.thk /\ (i - 1).thk-+ ENi.eating CTL, 18, lemma 12 

Proof of lemma 14. 

226 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

1. 	 (i - 1).eating--+ ANDone(i.getthk U i.getbad) Phil20 
2. 	 (i - 1).eating--+ AN(Done(i.getthk) V Done(i.getbad)) T14 
3. 	 [(i - 1).getbad](i - 1).bad Phil22 
4. 	 ANDone((i - 1).getbad)A 

[(i - 1).getbad](i - 1).bathroom--+ AN(i - 1).bathroom Tl7,TempAxl, 
TempAx2 

5. 	 (i - 1).eating--+ ANDone((i - 1).getthk) V ANDone((i - 1).getbad) CTL, 2 
6. 	 (i - 1).eating--+ ANDone((i - 1).getthk) V AN(i - !).bathroom PL, 3, 4, 5 
7. 	 AG....,(i - 1).bathroom--+ AN--,(i - 1).path CTL 
8. 	 (i - 1).eating !\ AG....,(i - 1).bathroom--+ ANDone(i.getthk) V AN1- CTL, 6, 7 
9. 	 (i - 1).eating /\ AG....,(i - 1).bathroom--+ ANDone(i.getthk) CTL, 8 
10. 	 [(i - 1).getthk](i - 1).thk !\ [U]Done((i -1).getthk)--+ (i - 1).thk T17 
11. 	 (i - 1).eating !\ AN--,(i - 1).bathroom--+ AN(i - 1).thk CTL, 9 ,10 
12. 	 AN--,i.bathroom--+ A(i.hungry V i.thk Vi.eating) PL, Phil3 
13. 	 AG((i + 1).v2 !\ ....,(i + 1).hasR !\ ....,i.bathroom--,(i - !).bathroom)/\ 

i.hungry V i.thk V i.eating)A 
(i - 1).eating--+ EFi.eating CTL 11, 12, Lemma 16 Lemma 12 

Proof of lemma 15. 

1. 	 (i - 1).hungry !\ (forki-t·dolJil V (i - 1).hasL) !\ (forki.down !\ (i - 1).hasR) 
--+ AN(i - 1).eating Phil15 

2. 	 i. thk --+ --,i.hasL !\ ....,i.hasR Lemma 10 
3. 	 -ii.hasR--+ (i - 1).hasL V fork1.... 1 .dolJil PhillO 
4. 	 i.thk--+ (i - 1).hasL V fork(i-t)·dolJil PL, 2, 3 
5. 	 i.thk !\ AN--,i.bathroom !\ (i - 1).hungry--+ ENi.thk lemma 16 
6. 	 i.thk /\ AN--,i.bath !\ (i - 1).hungry--+ EN(i.thk !\ (i - 1).eating) CTL, 1, 4, 5 
7. 	 AG((i + 1).v2 /\ ....,(i + 1).hasR !\ --,i.bathroom !\ ....,(i - 1).bathroom)A 

i.thk !\ (i - 1).hungry--+ EN(i.thk !\ (i - 1).eating) CTL, 6 
8. 	 AG((i + 1).v2 !\ --,(i + 1).hasR !\ --,i.bathroom !\ ....,(i - 1).bathroom)A 

i.thk !\ (i - 1).hungry--+ EF(i.eating) Lemma 14 

Proof of lemma 16. 

1. 	 ....,((i - 1).hungry !\ (i + 1).hungry) lemma 11 
2. 	 (i + 1).hungry--+ [(i - 1).gethungry]1- PL, Phil14 
3. 	 AN....,(i - 1).bathroom--+ [U)--,(i - !).bathroom PL, TempAxl 
4. 	 [U]....,(i - 1).bathroom !\ [i.getbad]i.bathroom--+ [i.getbad)1- BA,T5 
5. 	 [i.getbad]i.bathroom Phil22 
6. 	 AN--,(i - 1).bathroom--+ [i.getbad]1- PL, 3, 4, 5 
7. 	 [(i - 1).gethungry]1---+ [(i -1).gethungry]....,(i -1),gethungry ML 
8. 	 ....,(i - 1).hungry--+ (i.gethungry]....,(i - 1).hungry Phil17 

227 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

9. 	 --i(i - 1).hungry /\ AN(--i(i - 1).bathroom)--> [U]--i(i - 1).hungry BA, PL, 6, 8 

10. 	 (i - 1).thk--> --i(i - 1).hungry PL, Phil3 
11. 	 (i - 1).thk /\ (i + 1).hungry /\ AN--i(i - 1).bathroom--> 


AN--i(i - 1).hungry PL, 9, 10 

12. 	 (i - 1).thk--> [(i - 1).upL U (i + 1).upL]l. Phil4 
13. 	 (i - 1).thk __, PL, T5, Phil6 

[(i - 1).upL U (i - 1).upL](--i(i - 1).hasL /\ (i - 1).hasR) 
14. 	 (i - 1).thk--> [VJ-ii.eating PL, BA, 12, 13 

15. 	 (i - 1).thk--> --ii.eating PL, Phil4 
16. 	 (i - 1).thk--> AN-ii.eating PL, TempAxl, 14, 15 

17. 	 --i(i + 1).eating /\ --i(i - 1).hungry /\ --i(i - 1).bathroom 

__, (i - 1).thk PL, Phil4 
18. 	 (i - 1).thk /\ (i + 1).hungry /\ AN--,(i - 1).bathroom--> 


AN((i - 1).thk) CTL, 11, 16, 17 


228 




Bibliography 


[ABOS] Zair Abdelouahab and Isaias Braga. An adaptive train traffic controller. 
In An Adaptive Train Traffic Controller, pages 550-555. Springer Nether­
lands, 2008. 

[Aba89] M. Abadi. The power of temporal proofs. In Theorical Computer Science, 
volume 65, 1989. 

[Abr06] Jean-Raymond Abrial. Train systems. In RODIN Book. Springer, 2006. 

[AG92] Anish Arora and Mohamed G. Gouda. Closure and convergence: A for­
mulation of fault-tolerant computing. In FTCS, 1992. 

[AH07] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposi­
tion, and instantiation of discrete models: Application to Event-B. Fun­
dam. Inform., 77:1-28, 2007. 

[AHS09] Jiff Adamek, Horst Herrlich, and George Strecker. Abstract and Con­
crete Categories: The Joy of Cats. John Wiley and Sons, 2009. Cor­
rected version of the 1990 book of the same name, available online at 
http://katmat.math.uni-bremen.de/acc/. 

[AK98] Anish Arora and Sandeep S. Kulkarni. Component based design of mul­
titolerant systems. IEEE Trans. Software Eng., 24:63-78, 1998. 

[AL81] Thomas Anderson and P.A. Lee. 
tice. Prentice Halls, 1981. 

Fault Tolerance: Principles and Prac­

[AL95] Martin Abadi and Leslie Lamport. Conjoining specifications. ACM Trans. 
Program. Lang. Syst., 17:507-534, 1995. 

[Ang08] Albert J. J. Anglberger. Dynamic deontic logic and its paradoxes. Studia 
Logica, 89, 2008. 

229 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

[AP94] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. In 
Foundations of Software Technology and Theoretical Computer Science, 
14th Conference, Madras, India,, 1994. 

[Aqv84] Lennart Aqvist. Deontic logic. In D.M.Gabbay and F.Guenther, edi­
tors, Handbook of Philosophical Logic, volume 2, pages 605-714. Kluwer 
Academic Publishers, 1984. 

[Aro92] Anish Arora. A Foundation of Fault-Tolerant Computing. 
The University of Texas at Austin, 1992. 

PhD thesis, 

[ASS94] Adnan Aziz, Thomas R. Shiple, and Vigyan Singhal. Formula-dependent 
equivalence for compositional CTL model checking. Computer Aided Ver­
ification, 6th International Conference, CA V '94, Stanford, California, 
USA, 1994. 

[Avi67] Algirdas Avizienis. Design of fault-tolerant computers. Fall Joint Com­
puter Conference AFIPS, 31:733-743, 1967. 

[Avi95] Algirdas Avizienis. The methodology of N-version programming. R. Lyu, 
Editor, Software Fault Tolerance, John Wiley and Sons, 1995. 

[Bac87] Ralph-Johan Back. A calculus of refinement for program derivations. 
Technical report, Abo Akademi, 1987. 

[BAMP81] 	 Mordechai Ben-Ari, Zohar Manna, and Amir Pnueli. The temporal logic 
of branching time. POPL, pages 164-176, 1981. 

[Bar87] 	 Howard Barringer. The use of temporal logic in the compositional speci­
fication of concurrent systems. In A.Calton, editor, Temporal Logic and 
their Applications. Academic Press, 1987. 

[BCG87] 	 Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Charac­
terizing kripke structures in temporal logic. APSOFT'87: Proceedings of 
the International Joint Conference on Theory and Practice of Software 
Development, Pisa, Italy., 1987. 

[BCM+90] 	 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. 
Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. 
LICS, pages 428-439, 1990. 

[Bel87] 	 M. Belzer. Legal reasoning in 3-d. In !CAIL, pages 155-163, 1987. 

[Ber91] 	 Paul Bernays. Axiomatic Set Theory. Dover Publications, 1991. 

230 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[BG77] R. Burstall and J. Goguen. Putting theories together to make specifica­
tions. In R.Reddy, editor, Pore. Fifth International Joint Conference on 
Artificial Intelligence, 1977. 

[Bro03] J. Broersen. Modal Action Logics for Reasoning about Reactive Systems. 
PhD thesis, Vrije University, 2003. 

[BRVOl] P. Blackburn, M.de Rijke, and Y.de Venema. Modal Logic. 
Tracts in Theoretical Computer Science 53, 2001. 

Cambridge 

[BVOl] Philippe Balbiani and Dimiter Vakarelov. Iteration-free PDL with inter­
section: a complete axiomatization. Fundam. Inform., 45, 2001. 

[BW95] Michael Barr and Charles Wells. Category Theory for Computer Science. 
Prentice Halls, 1995. 

[CC96] Antonio Cau and Pierre Collette. Parallel composition of assumption­
commitment specifications: A unifying approach for shared variable and 
distributed message passing concurrency. Acta Inf, 33: 153-176, 1996. 

[CES83] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic 
verification of finite state concurrent systems using temporal logic speci­
fications: A practical approach. POPL, 1983. 

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic 
verification of finite-state concurrent systems using temporal logic speci­
fications. ACM Trans. Program. Lang. Syst., 8, 1986. 

[CH03] Zhou Chaochen and Michael R. Hansen. Duration Calculus: 
Approach to Real-Time Systems. Springer-Verlag, 2003. 

A Formal 

[Che99] Brian F. Chellas. 
Press, 1999. 

Modal Logic: An Introduction. Cambridge University 

[CHR91] Zhou Chaochen, C. A. R. Hoare, and Anders P. Ravn. 
durations. Inf Process. Lett., 40:269-276, 1991. 

A calculus of 

[CJ96] Jose Carmo and Andrew J. I. Jones. Deontic database contraints, viola­
tion and recovery. Studia Logica, 57(1):139-165, 1996. 

[CJ07] Joey W. Coleman and Cliff B. Jones. A structural proof of the soundness 
of rely/guarantee rules. J. Log. Comput., 17:807-841, 2007. 

[CK73] C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1973. 

[CLM89] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Composi­
tional model checking. Fourth Annual Symposium on Logic in Computer 
Science, LICS, 1989. 

231 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[CM81] K. Many Chandy and Jayadev Misra. Proofs of networks of processes. 
IEEE Transactions on Software Engineering 1, pages 417-426, 1981. 

[CM88J K. Many Chandy and Jayadev Misra. Parallel Program Design: A Foun­
dation. Addison-Wesley, 1988. 

[CM07a] P.F. Castro and T.S.E. Maibaum. A complete and compact deontic action 
logic. In The 4th International Colloquium on Theoretical Aspects of 
Computing. Springer Berlin, 2007. 

[CM07b] P.F. Castro and T.S.E. Maibaum. An ought-to-do deontic logic for rea­
soning about fault-tolerance: The diarrheic philosophers. In 5th IEEE 
International Conference on Software Engineering and Formal Methods. 
IEEE, 2007. 

[CM07c] P.F. Castro and T.S.E. Maibaum. Reasoning about system-degradation 
and fault-recovery with deontic logic. In Workshop on Methods, Models 
and Tools for Fault-Tolerance, 2007. 

[CMOS] P.F. Castro and T.S.E. Maibaum. A tableaux system for deontic action 
logic. In Deontic Logic in Computer Science, 9th International Confer­
ence, DEON 2008, Luxembourg, Luxembourg, July 15-18, 2008. Proceed­
ings. Springer, 2008. 

[CM09] Pablo F. Castro and T.S.E. Maibaum. Deontic action logic, atomic 
boolean algebra and fault-tolerance. Accepted for publication in Journal 
of Applied Logic (Feb 21), 2009. 

[Coe94] Jos Coenen. Formalisms for Program Reification and Fault Tolerance. 
PhD thesis, Tenische Universiteit Eindhoven, 1994. 

[Cri85] Flaviu Cristian. A rigorous approach to fault-tolerant programming. 
IEEE Trans. Software Eng., 11:23-31, 1985. 

[Dan84] Ryszard Danecki. Non-deterministic propositional dynamic logic with 
intersection is decidable. In A. Skowron (ed.), Computation Theory, 
Springer- Verlag, 1984. 

[dBCG92] Frank S. de Boer, J. Coenen, and Rob Gerth. Exception handling in 
process algebra. In NAPAW 92, Proceedings of the First North American 
Process Algebra Workshop, 1992. 

[Den76] Peter Denning. Fault tolerant operating systems. 
Surverys, 8:359-389, 1976. 

A CM Computing 

[Dij71J E.W. Dijkstra. Hirarchical ordering of sequential processes. In Acta In­
formatica, volume 1, pages 115-138. Springer-Verlag, 1971. 

232 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[Dij72] Edsger Dijkstra. Notes on structured programming. Structured Program­
ming, 0.-J Dahl, E.W. Dijkstra, and C.A.R. Hoare eds. Academic Press., 
pages 1-82, 1972. 

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. 
Commun. ACM, 17:643-644, 1974. 

[Dix83] Trevor I. Dix. Exceptions and interrupts in CSP. Sci. Comput. Program., 
3:189-204, 1983. 

[DK97] F. Dignum and R. Kuiper. Combining dynamic deontic logic and temporal 
logic for the specification of deadlines. In Proceedings of the thirtieth 
HICSS, 1997. 

[DMOO] Carlos H. C. Duarte and T. S. E. Maibaum. A rely-guarantee discipline 
for open distributed systems design. Inf Process. Lett., 74:55-63, 2000. 

[dR98] Maarten de Rijke. A system of modal logic. 
Logic, 27:109-142, 1998. 

Journal of Philosophical 

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for 
byzantine agreement. SIAM J. Comput., 12:656-666, 1983. 

[DV95] Rocco DeNicola and Frits Vaandrager. Three logics for branching bisim­
ulation. Journal of the ACM, 42:458-487, 1995. 

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness 
properties of parallel programs using fixpoints. Automata, Languages 
and Programming, 7th Colloquium, Noordweijkerhout, The Netherland., 
1980. 

[EH82] E.A. Emerson and J.Y. Halpern. Decision procedures and expressiveness 
in the temporal logic of branching time. In 14th Annual Symposiun on 
Theory of Computing {STOC), 1982. 

[EH86] E. Allen Emerson and Joseph Y. Halpern. "sometimes" and "not never" 
revisited: on branching versus linear time temporal logic. J. A CM, 
33:151-178, 1986. 

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equa­
tions and Initial Semantics. Springer-Verlag, 1985. 

[Eme72] E.A. Emerson. 
1972. 

A Mathematical Introduction to Logic. Academic Press, 

[Eme90] E.A. Emerson. Temporal and modal logic. In Handbook of Theorical 
Computer Science, volume Formal Methods and Semantics (B), 1990. 

233 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[Fia05] Jose Luiz Fiadeiro. Categories for Software Engineering. Springer-Verlag, 
2005. 

[Fin75] Kit Fine. Normal forms in modal logics. In Notre Dame Journal of Formal 
Logic, volume XVI, pages 229-237, 1975. 

[Fit72] M. Fitting. Tableau methods of proof for modal logics. 
Journal of Formal Logic, volume XIII, April 1972. 

In Notre Dame 

[Fit83] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Vol­
ume 169 of Synthese Library, 1983. 

[Fit90] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer­
Verlag, 1990. 

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic 
of regular programs. J. Comput. Syst. Sci., 18(2):194-211, 1979. 

[Flo67] Robert W. Floyd. Assigning meanings to programs. Jacob T. Schwartz 
(ed.), Mathematical Aspects of Computer Science, American Mathemati­
cal Society Proc. Symposia in Applied Mathematics, 19, 1967. 

[FM91a] Jose Luiz Fiadeiro and T. S. E. Maibaum. Temporal reasoning over de­
ontic specifications. J. Log. Comput., 1:357-395, 1991. 

[FM91b] Jose Luiz Fiadeiro and T.S.E. Maibaum. Towards object calculi. In Ser­
nadas A Saake G, editor, Information Systems; Correctness and Reusabil­
ity. Technische Universitat Braunschweig, 1991. 

[FM92] Jose Luiz Fiadeiro and T.S.E. Maibaum. Temporal theories as modular­
ization units for concurrent system specification. In Formal Aspects of 
Computing, volume 4, pages 239-272, 1992. 

[FM93] Jose Luiz Fiadeiro and T. S. E. Maibaum. Generalising interpretations 
between theories in the context of (pi-) institutions. In Theory and Formal 
Methods, pages 126-147, 1993. 

[FM97] Jose Luiz Fiadeiro and T. S. E. Maibaum. Categorical semantics of par­
allel program design. Science of Computer Programming, 28:111-138, 
1997. 

[FS87] Jose Luiz Fiadeiro and Amilcar Sernadas. Structuring theories on conse­
quence. In Recent Trends in Data Type Specification, 5th Workshop on 
Abstract Data Types, Gullane, Scotland, Selected Papers, pages 44-72, 
1987. 

234 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[FvG99] W.H.J. Feijen and A.J.M. van Gasteren. 
ming. Springer-Verlag, 1999. 

On a Method of Multiprogram­

[Gab96] Dov M. Gabbay. Labelled Deductive Systems, 
sity Press, 1996. 

Volume 1. Oxford Univer­

[Gar98] Felix Gartner. Specification for fault-tolerance: A comedy of failures. 
Technical report, Darmstadt University of Technology, 1998. 

[GB92] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for 
specification and programming. In Journal of the Association of Com­
puting Machinery, 1992. 

[Gen69] Gentzen. Investigation into logical deduction. M. E. Szabo (ed.}, 
Collected Papers of Gerhard Gentzen, North-Holland, 1969. 

The 

[GLL+oo] Stefania Gnesi, Diego Latella, Gabriele Lenzini, C. Abbaneo, Arturo M. 
Amendola, and P. Marmo. An automatic SPIN validation of a safety crit­
ical railway control system. In International Conference on Dependable 
Systems and Networks, 2000. 

[GM96] G. Giacomo and F. Massacci. Tableaux and algorithms for propositional 
dynamic logic with converse. In Conference on Automated Deduction, 
1996. 

[Gol82] Rob Goldblatt. 
Springer, 1982. 

Axiomatising the Logic of Computer Programming. 

[Gor95] Rajeev Gore. Tableau methods for modal and temporal logics. Technical 
Report TR-ARP-15-95, Australian National University, 1995. 

[GP90] G. Gargov and S. Passy. A note on boolean logic. In P.P.Petkov, editor, 
Proceedings of the Heyting Summerschool. Plenum Press, 1990. 

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharan Shelah, and Jonathan Stavi. On 
the temporal basis of fairness. POPL, pages 163-173, 1980. 

[HC96] G. E. Hughes and M. J. Cresswell. 
Routledge, 1996. 

A New Introduction to Modal Logic. 

[HG93] Claude Hennebert and Gerard D. Guiho. SACEM: A fault tolerant sys­
tem for train speed control. In The Twenty-Third Annual International 
Symposium on Fault-Tolerant Computing, pages 624-628, 1993. 

[HKTOO] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000. 

235 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[HMSO] Matthew Hennessy and Robin Milner. On observing nondeterminism and 
concurrency. !GALP, pages 299-309, 19SO. 

[Hoa69] C. A. R. Hoare. An axiomatic basis for computing programming. 
mun. ACM, 12:576-5SO, 1969. 

Com­

[HoaS5] C. A. R. Hoare. 
19S5. 

Communicating Sequential Processes. Prentice-Hall, 

[Ho197] Gerard J. Holzmann. The model checker SPIN. 
Eng., 23:279-295, 1997. 

IEEE Trans. Software 

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling 
and Reasoning about Systems. Cambridge University Press, 2004. 

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. 
The MIT Press, 2006. 

[Jan95] Tomasz Janowski. Bisimulation and Fault-Tolerance. PhD thesis, De­
partment of Computer Science, University of Warwick, 1995. 

[Jip92] Peter Jipsen. Computer Aided Investigations of Relational Algebras. PhD 
thesis, Vanderbilt University, 1992. 

[JonS3] Cliff B. Jones. Specification and design of (parallel) programs. 
Congress, pages 321-332, 19S3. 

In IFIP 

[JT51] Bjarni Jonsson and Alfred Tarski. 
Amer. J, Math., 73:S91-939, 1951. 

Boolean algebras with operators i. 

[JT52] Bjarni Jonsson and Alfred Tarski. 
Amer. J, Math., 74:127-162, 1952. 

Boolean algebras with operators ii. 

[Ken91] Stuart Kent. A deduction calculus for modal action logic with action com­
binators. Technical report, Department of Computing, Imperial College 
of Science, Technology and Medicine, FOREST Project, 1991. 

[KhoSS] Samit Khosla. System Specification: A Deontic Approach. 
Imperial College, 19SS. 

PhD thesis, 

[KJOS] Eunsuk Kang and Daniel Jackson. Formal modeling and analysis of a 
flash filesystem in alloy. In Abstract State Machines, B and Z. Springer 
Berlin / Heidelberg, 200S. 

[KMS5] S. Khosla and T.S.E. Maibaum. The prescription and description of state­
based systems. In H.Barringer B.Banieqnal and A.Pnueli, editors, Tem­
poral Logic in Computation. Springer-Verlag, 19S5. 

236 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[KMQ93] S. Kent, T.S.E. Maibaum, and W. Quirk. Formally specifying tempo­
ral constraints and error recovery. In Proceedings of IEEE International 
Symposium on Requirements Engineering, pages 208-215, 1993. 

[KP93] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions 
message-passing systems. Distributed Computing, 7:17-26, 1993. 

for 

[KQM91] S. Kent, B. Quirk, and T.S.E. Maibaum. Specifying deontic behaviour in 
modal action logic. Technical report, Forest Research Project, 1991. 

[Kro87] Fred Kroger. Temporal Logic of Programming. Springer-Verlag, 1987. 

[LA90] P.A. Lee and T. Anderson. 
Springer-Verlag, 1990. 

Fault-Tolerance, Principles and Practice. 

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE 
Trans. Software Eng., 2:125-143, 1977. 

[Lam83] Leslie Lamport. Specifying concurrent program modules. 
Program. Lang. Syst., 5:190-222, 1983. 

ACM Trans. 

[Lam94] Leslie Lamport. The temporal logic of actions. 
Lang. Syst., 16:872-923, 1994. 

ACM Trans. Program. 

[LF97] Antonia Lopes and Jose Luiz Fiadeiro. Preservation and reflection in 
specification. AMAST, pages 380-394, 1997. 

[LJ92] Zhiming Liu and Mathai Joseph. Transformation of programs for fault­
tolerance. Formal Asp. Comput., 4:442-469, 1992. 

[LM94] Leslie Lamport and Stephan Merz. Specifying and verifying fault-tolerant 
systems. In Formal Techniques in Real-Time and Fault-Tolerant Sys­
tems, Third International Symposium Organized Jointly with the Working 
Group Provably Correct Systems - ProCoS, pages 41-76, 1994. 

[LMJ93] Luiz A. Laranjeira, Miroslaw Malek, and Roy M. Jenevein. Nest: A 
nested-predicate scheme for fault tolerance. IEEE Trans. Computers, 
42:1303-1324, 1993. 

[LR93] Patrick Lincoln and John M. Rushby. The formal verification of an algo­
rithm for interactive consistency under a hybrid fault model. In 5th In­
ternational Conference os Computer Aide5th International Conferenced 
Verification, GAV '93, Elounda, Greece, 1993. 

[LS77] E. J. Lemmon and Dana Scott. The "Lemmon Notes": An Introduction 
to Modal Logic. Oxford: Blakwell, 1977. 

237 




PhD Thesis, P.F.Castro 	 McMaster-Computing & Software 

[LS93] P. J. A. Lentfert and S. Doaitse Swierstra. Towards the formal design of 
self-stabilizing distributed algorithms. In STAGS 93, 10th Annual Sym­
posium on Theoretical Aspects of Computer Science, pages 440-451, 1993. 

[LS04] Alessio Lomuscio and Marek J. Sergot. A formalisation of violation, error 
recovery, and enforcement in the bit transmission problem. Journal of 
Applied Logic, 2:93-116, 2004. 

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine 
generals problem. ACM Trans. Program. Lang. Syst., 4:382-401, 1982. 

[LZ75] Barbara H. Likov and Stephen N. Zilles. Specification techniques for data 
abstraction. IEEE Transactions on Software Engineering, l, 1975. 

[Mac98] Saunders MacLane. Categories for the Working Mathematician. Springer­
Verlag, 1998. 

[Mai87] T. S. E. Maibaum. A logic for the formal requirements specification. 
Technical report, Imperial College, London.Deliverable R3 for FOREST, 
1987. 

[Mai93] T.S.E. Maibaum. Temporal reasoning over deontic specifications. In John 
& Wiley Sons, editor, Deontic Logic in Computer Science, 1993. 

[MC79] Caver Mead and Lynn Conway. Introduction to VLSI systems. Addison­
Wesley, 1979. 

[MCBG88] 	 E. A. Emerson M. C. Browne and 0. Grumberg. Characterizing finite 
kripke structures in propositional temporal logics. Theoret. Comput. Sci., 
59:115-131, 1988. 

[McMOOJ 	 Kenneth L. McMillan. The SMV system. Technical report, available at 
http://www.cs.cmu.edu/ modelcheck/smv.html, 2000. 

[McN06] 	 Paul McNamara. Deontic logic. Technical report, The Stanford Encyclo­
pedia of Philosophy, 2006. 

[Men79] 	 Elliott Mendelson. Introduction to Mathematical Logic. D. van Nostrand 
Company, 1979. 

[Mey88] 	 J.J. Meyer. A different approach to deontic logic: Deontic logic viewed 
as variant of dynamic logic. In Notre Dame Journal of Formal Logic, 
volume 29, 1988. 

[MGOO] 	 Reiko Mantel and Felix C. Gartner. A case study in the mechanical veri­
fication of fault tolerance. In Proceedings of the Thirteenth International 
Florida Artificial Intelligence Research Society Conference, 2000. 

238 


http:http://www.cs.cmu.edu


PhD Thesis, P.F.Castro McMaster-Computing & Software 

[Mil79] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1979. 

[Mil89] Robin Milner. Comunication and Concurrence. Prentice-Hall, 1989. 

[MK99] Jeff Magee and Jeff Kramer. 
grams. Wiley, 1999. 

Concurrence: State Models and Java Pro­

[MM92] Saunders MacLane and Ieke Moerdijk. 
Springer-Verlag, 1992. 

Sheaves in Geometry and Logic. 

[MM06] J. Magee and T.S.E. Maibaum. Towards specification, modelling and 
analysis of fault tolerance in self managed systems. In Proceeding of the 
2006 international workshop on self-adaptation and self-managing sys­
tems, 2006. 

[Mon76] J.D. Monk. Mathematical 
Springer-Verlag, 1976. 

Logic. Graduate Texts in Mathematics. 

[Mor02] Luc Moreau. A fault-tolerant directory service for mobile agents based 
on forwarding pointers. In 17th A CM Symposium on Applied Computing, 
2002. 

[MP83] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for 
your pet language. POPL, pages 141-154, 1983. 

[MP89] Z. Manna and A. Pnueli. The anchored version of the temporal frame­
work. In J. W. De Bakker, W. P. De Roover, and G. Rozenberg, editors, 
Linear Time, Branching Time, and Partial Order in Logics and Models 
for Concurrency, pages 201-284, 1989. 

[MP90] Zohar Manna and Amir Pnueli. 
PODC, pages 377-410, 1990. 

A hierarchy of temporal properties. 

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and 
Concurrent Systems: Specification. Springer, 1992. 

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile 
processes. Inf. Comput., 100:1-40, 1992. 

[MT84] T. S. E. Maibaum and Wladyslaw M. Turski. On what exactly is going 
on when software is developed step-by-step. !CSE, pages 528-533, 1984. 

[MWD94] J.J. Meyer, R.J. Wieringa, and F.P.M. Dignum. The paradoxes of deontic 
logic revisited: A computer science perspective. Technical Report UU­
CS-1994-38, Utrecht University, 1994. 

239 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[ORS92] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype 
verification system. In CADE, 1992. 

[Par72] D. Parnas. A technique for software module specification with exampes. 
In Communications ACM 15, pages 330-336, 1972. 

[Par78] Rohit Parikh. The completeness of propositional dynamic logic. Mathe­
matical Foundations of Computer Science 1978, Proceedings, 7th Sympo­
sium, Zakopane, Poland., 64, 1978. 

[Pel91] Jan Peleska. Design and verification of fault tolerant systems with CSP. 
Distributed Computing, 5:95-106, 1991. 

[PJ94] Doron Peled and Mathai Joseph. A compositional framework for fault 
tolerance by specification transformation. Theor. Comput. Sci., 128:99­
125, 1994. 

[Pnu77] Amir Pnueli. The temporal logic of programs. Proceedings of the 18th 
IEEE Symposium on Foundations of Computer Science., pages 46-67, 
1977. 

[Pra76] Vaughan R. Pratt. Semantical considerations 
FOGS, pages 109-121, 1976. 

on Floyd-Hoare logic. 

[Pra78] V.R. Pratt. A Practical Decision Method for Propositional Dynamic 
Logic. ACM Symposium on Theory of Computing, 1978. 

[PS05] I. S. W. B. Prasetya and S. Doaitse Swierstra. Formal design of self­
stabilizing programs. J. High Speed Networks, 14:59-83, 2005. 

[QS98] Shaz Qadeer and Natarajan Shankar. Verifying a self-stabilizing mutual 
exclusion algorithm. In IFIP TC2/WG2.2,2.3 International Conference 
on Programming Concepts and Methods, 1998. 

[ReyOlJ M. Reynolds. An axiomatization of full computation tree logic. In Journal 
of Symbolic Logic, volume 11, pages 1011-1057, 2001. 

[RFM91] M. Ryan, Jose Luiz Fiadeiro, and T.S.E. Maibaum. Sharing actions and 
attributes in modal action logic. In Theoretical Aspects of Computer 
Software. Springer-Verlag, 1991. 

[RH97] James Riely and Matthew Hennessy. Distributed processes and location 
failures. In Automata, Languages and Programming, 24th International 
Colloquium, 1997. 

240 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[Rya90] Mark Ryan. Structured MAL. Technical report, Department of Com­
puting, Imperial College of Science, Technology and Medicine, FOREST 
Report, 1990. 

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional 
linear temporal logics. J. ACM, 32:733-749, 1985. 

[SC06] Marek J. Sergot and Robert Craven. The deontic component of action 
language nC+. DEON, pages 222-237, 2006. 

[Sch04] Klaus Schneider. Verification of Reactive Systems, Formal Methods and 
Algorithms. Springer, 2004. 

[SECH98] Francis Schneider, Steve M. Easterbrook, John R. Callahan, and Ger­
ard J. Holzmann. Validating requirements for fault tolerant systems us­
ing model checking. In 3rd International Conference on Requirements 
Engineering (ICRE '98), 1998. 

[Sik69] R. Sikorski. Boolean Algebras. Springer-Verlag, 1969. 

[Smu68] R.M. Smullyan. First-Order Logic. Springer-Verlag New York, 1968. 

[SP94] Marek J. Sergot and Henry Prakken. Contrary-to-duty obligations. In 
DEON 94 (Proc.Second International Workshop on Deontic Logic in 
Computer Science), 1994. 

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An 
approach to designing fault-tolerant computing systems. A CM Trans. 
Comput. Syst., 1:222-238, 1983. 

[SS98] Saniel Siewiorek and Robert Swarz. Reliable Computer Systems: Design 
and Evaluation. A.K. Peters, 1998. 

[ST87] T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to 
derive simple fault-tolerant algorithms. Distributed Computing, 2:80-94, 
1987. 

[SW91] C. Stirling and D. Walker. Local model checking in modal mu-calculus. 
In Theorical Computer Science, volume 89, pages 161-177, 1991. 

[Tar56] Alfred Tarski. On the Concept of Logical Consequence. 'franslation in : 
Logic, Semantics, Metamathematics. Oxford University Press, 1956. 

[TPOO] Wilfredo Torres-Pomales. Software fault-tolerance: 
Technical Memorandum TM-2000-210616, 2000. 

A tutorial. NASA 

241 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

[vB76] J. van Benthem. Modal Correspondence Theory. PhD thesis, Mathe­
matisch Instituut & Instituut voor Gronslagenonderzoek, University of 
Amsterdam, 1976. 

[vdM96] Ron van der Meyden. The dynamic logic of permission. J. Log. Comput., 
pages 465-479, 1996. 

[vGW89] Rob J. van Glabbeek and W. P. Weijland. Refinement in branching time 
semantics. In Proceedings of the AMAST Conference. Iowa, 1989. 

[WM93] Roel J. Wieringa and John-Jules Meyer. Applications of deontic logic 
in computer science: A concise overview. Deontic Logic in Computer 
Science, Normative System Specification, 1993. 

[YB09] Divakar Yadav and Michael Butler. Formal development of a total order 
broadcast for distributed transactions using Event-B. In Methods, Models 
and Tools for Fault Tolerance. Springer, 2009. 

[YTKOl] T. Yokogawa, T. Tsuchiya, and T. Kikuno. Automatic verification of fault 
tolerance using model checking. In Pacific Rim International Symposium 
on Dependable Computing., 2001. 

[Zha08] Bo Zhang. Formal analysis of a distributed fault tolerant clock synchro­
nization algorithm for automotive communication systems. Software En­
gineering and Advanced Applications, Euromicro Conference, 0:393-400, 
2008. 

242 




Index of Symbols 


;, 21 

=act, 44 

?, 21 

EQ8 (M), 129 

M, _Tl83 

[a]cp, 44 

D, 20 

~o, 43 

<), 20 

<I>o, 43 

E, 67 

E*, 67 

AG, 27, 66 

AF, 27, 66 

AN, 27, 66 

AU, 27, 66 

a: F-.'..t G, 35 

G, 25 

B, 168 

•, 14 

n, 14 

cl{), 142 

u, 14 

dam(), 34 

Done(), 66 

eel(), 142 

0, 14 

F, 25 

9, 22 

F(), 31 

f--H, 158 

H{), 157 

1,34 


pi(), 75 


P~(), 75 

B/r7, 139 

c, 58 

LocL, 170 

N, 25 

0(), 28, 45 

EB, 84 

-, 44 

P(), 44 

ran{), 34 

Done8 {), 168 

~, 44 

"'Z, 176 

EG, 27 

EF, 27, 66 

EN, 27, 66 

EU, 27, 66 

n, 44 

u, 44 

D, 14 

f--T, 158 

D3, 128 

SF, 127 

u, 44 


u' 25 

I=, 47 

l=L, 47 


l=~TL' 67 

FA, 68 

f--L, 52 

Pw(), 44 


*' 22 


243 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

- 1 , 23 


244 




Index 


A-ignorable, 140 

7r-lnstitution, 38 

E-ignorable, 140 

T-locus, 183 


bisimilarity, 175 

boolean action terms, 43 

boolean algebra 


of action terms, 52 


canonical model 

of DPL, 58 

propositional, 58 


category, 33 

closed 


branch, 120 

deontic, 119 


compactness 

DPL, 63 


complement 

absolute, 24 

relative, 24 


complete branch, 121 

completenes 


of temporal tableaux, 142 

completeness 


for the Hilbert-style temporal sys­

tem, 157 


PDL, 62 

propositional tableaux, 124 


component 

formal definition, 193 


deduction system 

Hilbert-style, 17 


tableaux-style, 17 

degree 


existential, 126 

formula, 126 


deontic action logic, 30 

deontic logic 


ought-to-be, 30 

ought-to-do, 32 


diagram, 35 

degrading, 197 

upgrading, 198 


error 

detection, 5 


extended boolean theory, 120 


fault 

prevention, 3 

removal, 3 

tolerance, 3 


fault-tolerance 

multiversion, 4 

single version, 4 


formula 

degrading, 193 

propositional, 44 

temporal, 66 

upgrading, 192 


functor, 34 


hardware 

fault-tolerance, 4 

redundancy, 4 


Hintikka set, 123 


Institutions, 37 


245 




PhD Thesis, P.F.Castro McMaster-Computing & Software 

isomorphism 

of models, 174 


Language 

Propositional, 43 


local bisimulation, 175 

locus 


model, 176 

logic 


branching time, 26 

deontic, 28 

deontic action, 41 

dynamic, 20 

linear temporal, 25 

modal, 19 

propositional, 1 7 

standard deontic, 28 

temporal, 24 


mapping 

between components, 194 


morphims 

of models, 173 


morphism 

strong, 174 


natural transformation, 35 

non-local 


event, 175 

normal form 


disjunctive, 127 

for DPL, 126 


open branch, 121 


paradoxes of deontic logic, 29 

prefix 


copy, 139 

primitive actions, 43 


reduced prefix, 139 


safe 

action, 205 


satisfiable, 4 7 


semantic structure 

propositional, 45 


software 

fault-tolerance, 4 


soundness 

of DPL, 55 

of temporal tableaux, 140 


structure 

temporal, 66 


system 

closed, 8 

concurrent, 12 

open, 9 


t-completed, 139 

tableaux 


for DPL, 116 

tableaux rule 


A,118 

N,118 

ND, 118 

P,118 

PD, 118 


tableaux systems, 115 

trace, 67 


maximal, 67 

translation 


between languages, 180 


universal construction, 35 


violation 
propositions, 168 

states, 76 


246 



	Structure Bookmarks



