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ABSTRACT 

Fetal exposure to cigarette smoke is associated with an increased risk of 

adult-onset metabolic abnormalities. In Canada, nicotine replacement therapy 

(NRT) is recommended as a safe smoking cessation aid for pregnant women. 

However, our laboratory has demonstrated that fetal and neonatal nicotine 

exposure results in glucose intolerance in adult rats. The goal of this thesis was 

to determine the mechanism(s) underlying the observed dysglycemia following 

fetal and neonatal nicotine exposure, with a specific focus on the effects of 

nicotine on pancreatic development and postnatal beta cell function. 

Nulliparous female Wistar rats received daily subcutaneous injections of 

either saline or nicotine bitartrate (1 mg/kg/d) for 2 weeks prior to mating until 

weaning (postnatal day 21 - PND21 ). Pancreatic tissue was collected from male 

offspring at birth (PND1), 3, 7, 15 and 26 weeks of age. For the critical windows 

study, dams received nicotine or saline during different stages of pancreatic 

development, including: A) pre-mating only, B) pre-mating + pregnancy only, C) 

pre-mating, pregnancy and lactation, or D) pre-mating + lactation only. For the 

intervention study, nicotine-exposed dams received either normal chow or diet 

containing antioxidants (1000 IU/kg vitamin E, 0.25% w/w coenzyme 010 and 

0.05% wlw cx-lipoic acid) during mating, pregnancy and lactation. 

Results from this thesis demonstrate that exposure to nicotine during both 

fetal and neonatal development (but neither stage alone) causes a permenant 
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loss of beta cell mass beginning at birth, and adult-onset dysglycemia in rodents. 

Furthermore, nicotine exposure induces pancreatic oxidative stress and 

mitochondrial-mediated beta cell apoptosis in neonates, followed by a 

progressive decline in mitochondrial structure and function. Maternal treatment 

with a dietary antioxidant cocktail during pregnancy and lactation protected the 

developing beta cells from nicotine-induced apoptosis and mitochondrial swelling. 

These data indicate that the safety of NRT use during pregnancy should be re

evaluated. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 TYPE 2 DIABETES 

1.1.1 Impact 

Type 2 diabetes has been classified as a global "epidemic", given the 

enormous human and economic costs of this disease and its associated health 

complications (1 ). Patients with type 2 diabetes are characterized primarily by 

hyperglycemia, and an increased risk of developing numerous comorbidities, 

including retinopathy, nephropathy, neuropathy and cardiovascular mortality (2). 

The prevalence of type 2 diabetes is rapidly increasing worldwide (1) and in 

Canada (3). It is estimated that the number of people with diabetes will rise 

globally from 171 million in 2000 to 366 million in 2030 (2.8% to 4.4% of the 

population) (1 ). However, a recent population-based study in Ontario ·suggests 

that these projected numbers may severely under-estimate the global diabetes 

epidemic (3). Lipscombe and Hux reported that in Ontario, the age- and sex

adjusted prevalence of diabetes increased from 5.2% in 1995 to 8.8% in 2005 (a 

69% increase over 10 years), levels which already exceed the predicted rates for 

2030 (3). 
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1.1.2 Pathology 

Type 2 diabetes is diagnosed when fasting plasma glucose (FPG) levels 

rise higher than 7 .0 mmol/I and/or the 2 hour post-load glucose (following a 75 g 

oral glucose challenge) is greater than 11.1 mmol/I ( 4 ). These glucose measures 

are high relative to individuals with "normal" FPG of 5.1 mmol/I and 2-hour 

glucose of 5.4 mmol/I. Furthermore, patients are identified as "pre-diabetic" if 

they have impaired glucose tolerance (IGT; 2 hour glucose 7 .8-11.0 mmol/I) or 

impaired fasting glucose (IFG; FPG 6.1-6.9 mmol/1) (4). Glycemic control 

worsens during the transition from IFG I IGT towards type 2 diabetes, in part, 

because of a progressive decline in the ability of pancreatic beta cells to secrete 

sufficient insulin for maintenance of glucose homeostasis (5-8). Impaired beta 

cell function has been observed in pre-diabetic patients with IFG or IGT (5), likely 

due in part to declining beta cell mass, which has also been observed in patients 

prior to diagnosis of diabetes (7). Patients in the early stages of type 2 diabetes 

are generally hyperinsulinemic as a result of compensatory increases in beta cell 

secretion, but over time, chronic hyperglycemia results in deterioration of beta 

cell function and ultimately, hypoinsulinemia ensues (6;8). 

1.1.3 Etiology 

The etiology of type 2 diabetes is multi-factorial and involves a complex 

interaction of both environmental and genetic factors. Numerous modifiable 

lifestyle factors are strongly associated with the development of impaired glucose 

2 
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homeostasis, including physical inactivity, dietary quality (in particular, dietary fat 

intake), and cigarette smoking (9). Smoking not only increases the risk of 

developing type 2 diabetes in a dose-dependant manner, but also impairs 

metabolic control in diabetic patients (reviewed in (10-12)). However, in addition 

to lifestyle choices of the individual with diabetes, maternal lifestyle has also been 

shown to substantially influence the metabolic phenotype of the offspring. 

Therefore, risk factors for type 2 diabetes can be traced back as far as fetal life. 

1.2 FETAL PROGRAMMING OF ADULT DISEASE 

1.2.1 Barker's Hypothesis: Epidemiological Evidence 

Dr. David Barker's "developmental origins of adult disease" theory states 

that a fetus adapts to an adverse intrauterine environment by favoring the 

development of organs that ensure short term survival (13-15). This 

reprogramming is beneficial for the immediate survival of the fetus, but has 

harmful long-term effects as the metabolic demands of the individual increase 

with age (13-15). 

Fetal programming of adult disease was first demonstrated in a landmark 

cohort study where maternal exposure to the Dutch famine of 1944-1945 during 

the first half of pregnancy was associated with significantly higher rates of obesity 

in 500,000 male offspring at age nineteen (16). A more recent cohort study 

followed 122,000 American women and showed a significant correlation between 

low birth weight and increased risk of coronary heart disease, stroke, and type 2 

3 
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diabetes, even after adjusting for potential confounding lifestyle factors (17). This 

association between intrauterine growth restriction (IUGR) and the metabolic 

syndrome has since been documented around the world in studies from England 

(18-20), Sweden (21), Holland (22), India (23) and South Africa (24). 

1.2.2 Animal Models 

In normal human development there is little variation in fetal growth up to 

16 weeks, but during mid to late gestation fetal growth becomes particularly 

sensitive to adverse intrauterine environments (25). The major determinants of 

normal fetal growth include: genetics, placentation, the materno-placento-fetal 

unit integrity, adequate nutrient and oxygen supply, and correct hormonal 

balance (26). Disruption of any of these elements, particularly in late gestation, 

may lead to impaired fetal growth and possibly IUGR. 

To study the mechanisms underlying fetal programming of adult disease, 

numerous research groups have developed animal models of IUGR. The most 

common approaches to simulate fetal growth restriction include: 1) maternal 

undernutrition with calorie or protein deprivation (27-30), 2) placental insufficiency 

using bilateral uterine artery ligation to restrict blood flow (31 ;32), 3) 

glucocorticoid exposure via maternal dexamethasone treatment (33-35), 

inhibition of placental 11 ~-hydroxysteroid dehydrogenase 2 (11 ~-HSD2) (36) or 

fetal adrenalectomy followed by exogenous cortisol infusion (37;38), and 4) 

maternal testosterone treatment (39). These animal models consistently produce 

4 
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offspring with low birth weight and a variety of metabolic abnormalities during 

adulthood, including hypertension, hypercholesterolemia, obesity, glucose 

intolerance, and insulin resistance (40;41 ). Since cigarette smoking is one of the 

most common causes of IUGR clinically (42;43), animal models have been 

designed to examine cigarette smoke-induced intrauterine growth restriction 

(44;45). However there are no animal models designed to investigate the long 

term effects of maternal cigarette smoke exposure on metabolic outcomes in the 

offspring. 

1.3 CIGARETTE SMOKING 

1.3.1 Prevalence of Cigarette Smoking 

In 1964, the US Surgeon General first reported that cigarette smoking is 

causally associated with lung cancer (46). Since this time, the link between 

smoking and the morbidity and mortality associated with numerous clinical 

conditions has been well-established (46). Consequently, smoking rates have 

drastically declined over the years; in 1965, 52% of males and 34% of females in 

the US were smokers compared with 21 % of men and 19% of females currently 

(47). However, approximately 15-20% of all women smoke during pregnancy 

(48;49), despite intentions to refrain from smoking during that period (50). 

5 
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1.3.2 Smoking During Pregnancy: Effects on the Fetus 

Cigarette smoking during pregnancy is associated with a number of 

adverse obstetrical outcomes (48;51 ;52), many of which are thought to be 

attributed to the effects of maternal smoking on the placenta. For example, 

maternal smoking is associated with an increased risk of placental abruption 

(premature separation of a normally implanted placenta before delivery) (53) and 

placenta previa (implantation of the placenta over or near the cervix, causing 

partial detachment during labor) (54). Oxygen and nutrient delivery to the fetus is 

compromised with cigarette smoking as a result of uteroplacental 

vasoconstriction, placental infarcts and calcifications (55). Consequently, both 

maternal cigarette smoking and exposure to secondhand smoke are 

unequivocally associated with intrauterine growth restriction (51 ). Children of 

women who smoke during pregnancy weigh approximately 200 g less on average 

than children of non-smokers at birth (42;43;52;56;57), with a clear dose

dependent association between cigarette smoking and reduced birth weight 

(42;43). Finally, the risks of stillbirth and sudden infant death syndrome (SIDS) 

are also strongly increased with maternal smoking (51 ). 

1.3.3 Smoking During Pregnancy: Fetal Programming 

The risks associated with smoking during pregnancy are not limited to 

adverse fetal and neonatal outcomes, but are also clearly linked with adverse 

postnatal health consequences (51 ). For instance, prenatal exposure to tobacco 

6 
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smoke has been associated with an increased risk of childhood cancers, 

including childhood brain tumors and leukemia/lymphoma (58). Prenatal tobacco 

exposure also predicts adverse postnatal neurobehavioural outcomes, such as 

attention deficit hyperactivity disorder (ADHD), learning disabilities, behavioral 

problems and increased risk of nicotine addiction (reviewed in (51 ;59;60)). 

Furthermore, recent epidemiological studies have shown a strong relationship 

between maternal smoking and subsequent obesity, hypertension and type 2 

diabetes in the offspring (49;61-65). The British National Child Development 

Study reported that the offspring of women who were either "medium to heavy", 

or "heavy" smokers were over 4 times more likely to develop type 2 diabetes after 

16 years of age than the offspring of non-smokers (64). However the 

mechanisms underlying these associations have not yet been determined. 

1.3.4 Smoking Cessation: Nicotine Replacement Therapy 

Epidemiological evidence demonstrates that cessation or at least 

reduction of cigarette smoking during pregnancy can ameliorate damage to a 

developing fetus (66;67). As such, women are strongly encouraged to quit 

smoking during this critical window of development. However due to the highly 

addictive nature of nicotine, quitting smoking is extremely difficult and often 

requires considerable support, as well as the use of pharmacological smoking 

cessation aids. Only 20-30% of female smokers successfully abstain from 

smoking during pregnancy and half of these women replapse within 6 months of 
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parturition (68). 

Nicotine has been identified as the addictive component of cigarettes and 

the majority of adverse physiological symptoms associated with smoking 

cessation (cravings, irritability, restlessness, anxiety and increased appetite) have 

been attributed to nicotine withdrawal (47). Therefore, pharmacological smoking 

cessation therapies have been designed to replace nicotine, including nicotine 

replacement therapy (NRT), bupropion (Zyban®, a noncompetitive antagonist at 

the nicotinic receptor) and varenicline (CHANTIX®, a partial nicotinic receptor 

agonist) (47). Specifically, NRT is available in the form of nicotine chewing gum, 

transdermal patch, lozenges, nasal spray and inhaler (47). 

Although NRT is highly effective for· smoking cessation in non-pregnant 

smokers (reviewed in (47)), there is currently no evidence to suggest that NRT 

use is effective for smoking cessation in pregnant women (69;70). These 

findings may be attributed to the increased rate of nicotine metabolism in 

pregnant versus non-pregnant smokers (60% higher nicotine clearance and 

140% higher cotinine clearance during pregnancy) (71 ). Despite the lack of 

evidence to support the efficacy of NRT use during pregnancy, the percentage of 

pregnancies in which NRT was prescribed has increased steadily between 1998 

and 2004 (70). 

Nicotine, in the form of gum, nasal spray and lozenges, is currently 

classified as a Pregnancy Category C drug, meaning that studies on animals 

show conclusive adverse effects on fetal development, but no adequate and well
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controlled studies have been performed on pregnant women. The transdermal 

nicotine patch is classified in Pregnancy Category D, meaning that there is 

positive evidence of human fetal risk, but the benefits from use in pregnant 

women may be acceptable despite the risk (60). Based on these US FDA 

classifications, it is generally agreed that the risk to the fetus of continued 

smoking outweighs any potential adverse effects of NRT (47;72). Furthermore, 

NRT is thought of as a safer alternative to smoking during pregnancy because 

the mother and fetus are exposed to one chemical instead of thousands (47;72). 

The Ontario Medical Association (OMA) currently advocates NRT as a safe 

alternative to cigarette smoking for pregnant women and has urged Health 

Canada to modify their labeling requirements to include NRT use during 

pregnancy (72). However, there are several issues with the OMA 

recommendations. First, NRT use compared to placebo does not appear to 

increase the probability of successful smoking cessation during pregnancy, and 

secondly, nicotine may not be the "safe" chemical in cigarettes as was previously 

assumed, particularly in light of recent studies examining the long term 

consequences of prenatal nicotine exposure. Indeed, concerns have been raised 

in a recent critical review by Ginzel and colleagues about the safety of nicotine 

replacement therapy use during pregnancy, based on evidence of fetotoxicity and 

neuroteratogenicity associated with maternal nicotine exposure (73). 
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1.4 TOXICOLOGY OF NICOTINE 

1.4.1 Nicotine Exposure During Pregnancy: Epidemiology Evidence 

In pregnant women who smoke or use NRT, nicotine crosses the placenta, 

concentrates in fetal blood and amniotic fluid, and is detectable in breast milk 

during lactation (7 4;75). Therefore, maternal nicotine exposure results in both 

fetal and neonatal exposure. 

There are a limited number of trials examining the safety of NRT in 

humans, and all of these are focused on the short term toxicological effects on 

the fetus. One study showed an increased prevalence of specific malformations 

in pregnant NRT users compared to both nonsmokers and smokers (76), while 

another study on the same cohort data showed that NRT use during pregnancy 

was not associated with an increased risk of stillbirth (77). Nicotine gum and 

patches have been shown to increase maternal blood pressure and heart rate, as 

well as fetal heart rate, but to a lesser degree than cigarette smoking (78). 

Although smoking is clearly associated with intrauterine growth restriction 

(42;43), this effect does not appear to be attributed to nicotine, as birth weights 

were higher in women using NRT compared with the placebo group (79). 

Currently there are no prospective epidemiological studies that examine 

NRT use during pregnancy and the incidence of disease in adult offspring. 

Therefore, animal models have been utilized to examine the long term effects of 

prenatal nicotine exposure, as well as to carefully evaluate the acute effects of 

maternal nicotine on the fetus and neonate in a controlled environment. 
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1.4.2 Nicotine Exposure During Pregnancy: Animal Models 

Animal models that study the toxicity of nicotine during pregnancy have 

focused primarily on both the short and long term effects of nicotine on the 

central nervous system. Taken together, evidence from numerous animal studies 

has clearly established nicotine as a neuroteratogen that compromises the 

development of critical neural pathways in the developing brain (60;80). Short 

term, prenatal nicotine exposure is associated with a compromised neonatal 

response to hypoxia (81-83), suggesting that nicotine may play a key role in the 

increased incidence of SIDS in newborns of maternal cigarette smokers (51 ). 

Numerous long term neurological effects have also been documented following 

prenatal nicotine exposure, which are thought to explain many of the adverse 

neurobehavioural outcomes in the offspring of women who smoke during 

pregnancy (reviewed in (51 ;59;60)). For example, prenatal nicotine exposure in 

rodents causes postnatal hyperactivity, cognitive impairment, increased anxiety, 

somatosensory deficits, persistent neurochemical alterations, changes in 

sensitivity to nicotine, alterations in nicotine self administration and altered 

patterns of neural cell survival and synaptogenesis (reviewed in (59;60)). 

Therefore, numerous adverse health consequences in the offspring of 

women who smoke during pregnancy have been attributed to the detrimental 

effects of nicotine alone. However, until recently the long term metabolic 

consequences of prenatal nicotine exposure had not been examined in an animal 

model, despite the strong relationship between maternal smoking and 
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subsequent obesity, hypertension and type 2 diabetes in the offspring (49;61-65). 

This topic has recently gained more attention, and was the subject of a 2009 

review paper entitled: "Prenatal Nicotine Exposure and the Programming of 

Metabolic and Cardiovascular Disorders", which cited several of the studies from 

this thesis (84). 

1.4.3 Fetal and Neonatal Nicotine Exposure: Metabolic Outcomes 

Our lab has developed a rodent model to determine whether nicotine, the 

addictive component of cigarette smoke, is involved in fetal programming of 

adverse metabolic outcomes. In women who smoke or use NRT, both the fetus 

and neonate are exposed to nicotine, as this chemical easily crosses the 

placenta, concentrates in fetal blood and amniotic fluid, and is detectable in 

breast milk during lactation (74;75). Therefore, this animal model was designed 

to expose offspring to highly relevant concentrations of nicotine during critical 

windows of fetal and neonatal development. Female rats in this model are 

injected daily with either nicotine bitartrate (1.0 mg/kg/day) or saline (vehicle) for 

two weeks prior to mating, three weeks during gestation (fetal development) and 

three weeks during lactation (neonatal development). The dose of nicotine used 

in this animal model results in maternal serum cotinine concentrations of 136 

ng/ml (85), which is within the range of cotinine levels reported in women who are 

considered "moderate smokers" (80 to 163 ng/ml) (86). In addition, this dose of 

nicotine results in serum cotinine concentrations of 26 ng/ml in the nicotine
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exposed offspring at birth (85), which is also within the range (5 to 30 ng/ml) 

observed in infants nursed by smoking mothers (87). 

The long term metabolic consequences of fetal and neonatal nicotine 

exposure have been well characterized in this animal model. Maternal nicotine 

exposure during pregnancy and lactation in rats has been shown to cause 

increased adiposity and obesity (88;89), altered perivascular adipose tissue 

composition and function (90), elevated blood pressure (90) and impaired 

glucose homeostasis (89) in the adult male offspring at 26 weeks of age relative 

to saline controls. Similarly, other research groups have confirmed that offspring 

exposed to nicotine during fetal and neonatal development have altered adiposity 

(91-93) and impaired glucose homeostasis during adulthood (93). However, the 

mechanisms underlying the association between fetal and neonatal nicotine 

exposure and adult-onset metabolic abnormalities have not been investigated in 

this animal model. In addition, the mechanisms through which maternal cigarette 

smoking leads to an increased incidence of obesity, hypertension and type 2 

diabetes in the offspring is also unknown (49;61-65). Therefore, the general goal 

of this thesis was to determine the mechanism(s) underlying the observed 

dysglycemia following fetal and neonatal nicotine exposure. Specifically, this 

work will investigate the effects of nicotine on pancreatic development and 

determine how an early chemical insult to the pancreatic beta cell can lead to 

dysfunctional glucose homeostasis during adulthood. 
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1.5 PANCREATIC DEVELOPMENT 

1. 5. 1 Critical Windows of Pancreatic Development 

In rats, pancreatic development occurs both prenatally and postnatally, 

whereas in humans the majority of development is completed prenatally (94 ). 

Since the critical windows for determining beta cell mass differ between rodents 

and humans, this section will focus on rodent pancreas development. The 

maximum rate of beta cell mass expansion occurs during late gestation, 

beginning at day 16 post-conception; the beta cell population doubles daily, 

mainly due to beta cell neogenesis from undifferentiated precursor cells (95). 

Growth of the beta cell population continues during the first week of postnatal 

development in rats via replication and neogenesis, although at a much slower 

rate than during late gestation (95;96). During the second week of neonatal life, 

a wave of beta cell remodeling occurs via apoptosis, but is not accompanied by 

changes in beta cell mass (95;96). During adult life (1 to 7 months), beta cell 

mass continues to expand slowly, and mainly through increased size of individual 

cells rather than an increase in the number of cells (95). Therefore, an adverse 

fetal and/or neonatal environment that affects the early development of beta cell 

mass may permanently alter the beta cell population due to the limited 

opportunity for proliferation and neogenesis after the first two weeks of neonatal 

life. 
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1.5.2 Beta Cell Mass and Function in Humans with Type 2 Diabetes 

In healthy individuals, beta cells efficiently respond and adapt to metabolic 

challenges through hyperplasia, hypertrophy and increased insulin synthesis and 

secretion (97). Conversely, patients with type 2 diabetes are characterized by 

their inability to produce a sufficient amount of insulin to normalize blood glucose 

levels and compensate for peripheral insulin resistance (5-7;98). In other words, 

impaired beta cell function is a central defect in patients with type 2 diabetes 

(5;8). Furthermore, this insulin insufficiency is observed prior to the diagnosis of 

type 2 diabetes (5) and is thought to be attributed to a reduction in beta cell mass 

(6;99). Indeed, humans with type 2 diabetes exhibit a 40-60% reduction in beta 

cell mass prior to diagnosis compared to weight-matched controls (7;100;101). 

Therefore, impaired beta cell mass and function are crucial contributing factors to 

the progressive decline in glucose homeostasis control in patients with type 2 

diabetes (5;8). The regulation of beta cell mass is determined by a balance of 

beta cell size, replication, neogenesis and apoptosis (95;99; 102). The loss of 

beta cell mass in humans with type 2 diabetes appears to be due mainly to 

increased apoptosis (7), whereas the compensatory expansion of beta cell mass 

in response to increased insulin demand is mediated primarily by beta cell 

proliferation (97;103). 
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1.5.3 Beta Cell Mass in Animal Models of Fetal Programming 

A common finding in numerous animal models of metabolic fetal 

programming is altered beta cell mass prior to the onset of glucose abnormalities 

(reviewed in (104-106)). However, the mechanisms through which beta cell loss 

occurs vary depending on the animal model. Maternal protein restriction results 

in smaller fetal islets, mainly due to a reduction in the proliferation rate combined 

with increased apoptosis (107-109). Maternal calorie restriction during the last 

week of gestation causes a reduction in beta cell mass at birth, which is attributed 

to altered islet neogenesis rather than altered proliferation or apoptosis 

(109;110). Ligation of the uterine artery on the last days of gestation (to mimic 

uteroplacental insufficiency) causes a reduction in beta cell proliferation at 14 

days postnatally, but no change in beta cell apoptosis, which results in reduced 

beta cell mass beginning at 15 weeks of age (31 ;111 ). Regardless of 

mechanism, the loss of beta cell mass in all of these animal models is central to 

the impaired glucose tolerance observed in the adult offspring (reviewed in (104

106)). Fetal and neonatal nicotine exposure has been shown to cause adult

onset dysglycemia, but the possible contribution of impaired beta cell mass 

and/or function to this phenotype have not been examined in detail. Furthermore, 

the mechanisms through which exposure to nicotine during critical windows of 

pancreatic development may impact beta cell survival and function remain to be 

determined and are the focus of this thesis. 
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1.6 REGULATION OF BETA CELL SURVIVAL AND FUNCTION BY NICOTINE 

Although there are numerous pathways through which beta cell survival 

and function may be regulated, this thesis will focus on selective pathways that 

were hypothesized to be likely targets of fetal and neonatal nicotine expsoure. 

1. 6. 1 Pancreatic Nicotinic Acetylcholine Receptors 

The nicotinic acetylcholine receptor (nAChR) belongs to a family of 

neurotransmitter-gated ion channels (112) that are homo- or heteropentamers 

comprised of various combinations of a- and (3-subunits (a2 - a10 and (32 - (34) 

(113). The nAChRs are known to be particularly important for healthy brain 

development and their expression is tightly regulated during critical windows of 

neural development (80). Importantly, many of the adverse effects of prenatal 

nicotine exposure on neural development and long term neurobehavioral 

consequences have been attributed to the ability of nicotine to interact with and 

alter expression of the nAChR during critical windows of development (80). 

Although the nAChR is best characterized in the brain, there is also evidence for 

the presence of these neuronal receptors in various non-neuronal cell types 

(114;115), including a pancreatic beta cell line (116). Furthermore, Yoshikawa 

and colleagues have demonstrated that nicotine can directly interact with the 

nAChR in beta cells to inhibit both basal and glucose-stimulated insulin secretion 

(116). However, it is currently unknown whether the nAChR subunits are present 

in the developing pancreas and therefore, whether nicotine could be acting 

17 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

directly on its receptor to adversely affect beta cell survival and function. 

1. 6. 2 Oxidative Stress 

Cellular oxidative status is a balance between oxidative stress and 

antioxidant capacity. A basal level of reactive oxygen species (ROS) is required 

for normal cell function, but if the level of ROS exceeds the antioxidant capacity 

of the cell, oxidative stress will ensue (117;118). Molecules that are classified as 

ROS include the superoxide anion (02•-), hydrogen peroxide (H202) and the 

hydroxyl radical (•OH) (119). If the cellular antioxidant defense system is 

overwhelmed, ROS can cause damage to cellular proteins, lipids and nucleic 

acids (118;120), ultimately leading to cell death (121 ). 

Mitochondria are particularly susceptible to oxidative stress for a number 

of reasons. First, the iron-sulphur centers of the enzymes in the mitochondrial 

electron transport chain (ETC) are extremely sensitive to ROS inactivation (119). 

Secondly, mitochondrial DNA (mtDNA) is significantly more susceptible to ROS 

damage than nuclear DNA (nDNA) because it is not protected by a nuclear 

membrane or histone proteins, it contains only exons (coding regions of DNA) 

and its repair mechanisms are poor (119;122). However, mitochondria are not 

only susceptible to damage by ROS, but are also the major source of 

endogenous ROS production. When the enzyme complexes in the ETC are 

dysfunctional, electron leakage occurs, and ROS are formed by the donation of 

an electron to oxygen (119). Antioxidant enzymes such as manganese 
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superoxide dismutase (MnSOD) or copper-zinc (CuZn) SOD convert 02•- to 

H20 2, which can then be converted safely to water by glutathione peroxidase-1 

(GPx-1) (119). If H202 is not detoxified by GPx-1, then it will be converted to the 

highly reactive •OH (119). 

Maternal smoking is associated with increased levels of oxidative stress 

markers in mothers, newborns and infants (123;124). Furthermore there is 

considerable evidence in vivo and in vitro to suggest that exposure to nicotine 

alone results in increased oxidative stress in fetal, neonatal and adult tissues 

( 125-127). In adult rats, nicotine exposure has been shown to increase oxidative 

stress in pancreatic tissue in vitro (127) and to produce oxidative tissue injuries in 

vivo (128;129). Because the pancreatic beta cell has low expression of 

antioxidant enzymes (130; 131 ), it is particularly susceptible to oxidative stress

mediated tissue damage, including increased beta cell death (117;121;132-135). 

For these reasons, the effects of fetal and neonatal nicotine exposure on 

oxidative stress in the beta cells will be explored in this thesis. 

1.6.3 Apoptosis Pathways 

There are two major signaling pathways of programmed cell death, the 

mitochondrial pathway (intrinsic) and the death receptor pathway (extrinsic) 

(Figure 1.1 ). In the mitochondrial pathway, pro-apoptotic members of the Bcl-2 

family (Bax, Bak or Bid) translocate to the mitochondrial outer membrane, and 

are involved in the formation of a mitochondrial permeability transition pore 

19 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

(mtPTP) (119;121;136-140). Anti-apoptotic members of the Bcl2 family (Bcl-2 

and Bel-XL) sequester Bax, Bak and/or Bid, and therefore prevent translocation 

of these pro-apoptotic signaling molecules to the mtPTP. Opening of the mtPTP 

destroys the mitochondrial membrane potential, causing ion equilibration, 

swelling of the mitochondria and release of proteins from the intermembrane 

space into the cytosol (119). Cytochrome c release leads to the formation of an 

"apoptosome", consisting of Apaf-1 (apoptosis protease activating factor), 

caspase-9 and ATP, which in turn activates caspase-3 (121 ;137;140). Release 

of AIF (apoptosis-inducing factor) or EndoG (endonuclease G) leads to DNA 

fragmentation, while SMAC/DIABLO (second mitochondria-derived activator of 

caspases I direct !AP-associated binding protein with low pl) release causes 

inhibition of the IAP (inhibitor of apoptosis protein) family (121 ;137;139). 

The death receptor pathway involves the binding of a death receptor (e.g., 

Fas) to a ligand (e.g., Fasl), which results in activation of a caspase-signaling 

cascade to induce cell death (121;138;139;141). In particular, the Fas/Fasl 

interaction leads to oligomerization of Fasl, recruitment of FADD (Fas-associated 

death domain) protein and pro-caspase-8 to the cytoplasmic death domain of 

Fas, where a death-inducing signal complex (DISC) is formed ( 121; 141 ). 

Formation of the DISC leads to activation caspase-8, which in turns causes 

cleavage of pro-caspase-3 to its active form (121;141). Alternatively, active 

caspase-8 can induce cleavage of Bid to tBid, which will then translocate to the 

mitochondrial outer membrane, resulting in release of mitochondrial proteins and 
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amplification of the Fas/Fasl apoptosis signal (121;141). 

Mitochondrial-mediated cell death plays a crucial role in the pathogenesis 

of type 2 diabetes, and specifically, in the survival of pancreatic beta cells (142). 

The mitochondrial-mediated apoptotic pathway has been shown to be involved in 

beta cell apoptosis caused by exposure to both chronic high glucose (143) and 

fatty acids (144). On the other hand, in healthy adult human islets, exposure to 

high concentrations of glucose induced beta cell apoptosis via the death 

receptor-mediated pathway (145). Therefore, both pathways may play a role in 

beta cell apoptosis; their relative involvement in nicotine-induced beta cell 

apoptosis following fetal and neonatal exposure remains to be determined. 

1. 6.4 Mitochondria 

In beta cells, the mitochondria play a key role in signaling for apoptosis (as 

described above) and therefore regulating beta cell mass (119) (Figure 1.1 and 

1.2). In addition, the mitochondria are critical for maintenance of beta cell 

function through the coupling of a glucose stimulus to insulin release (146-148) 

(Figure 1.3). Both human and animal studies have demonstrated impairment of 

mitochondrial function in islets of subjects with type 2 diabetes (149; 150). 

Therefore, defects in mitochondrial function are hypothesized to be central to the 

pathogenesis of type 2 diabetes. 

It is estimated that 98% of the energy for the beta cell is produced by 
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mitochondrial oxidative metabolism (148). The mitochondria are essential for 

both stages of glucose-stimulated insulin secretion, including glucose entry and 

metabolism, as well as insulin exocytosis from the beta cell (Figure 1.3). Glucose 

enters the beta cell via glucose transporter 2 (GLUT2) and is converted to 

pyruvate through glycolysis. The beta cells contain relatively low amounts of 

lactate dehydrogenase (151 ), meaning that nearly all of the pyruvate produced 

from glucose is routed to the mitochondria, rather than converted to lactate in the 

cytosol (146;148). NADH, a product of both glycolysis in the cytosol and the citric 

acid cycle within the mitochondrial matrix, is the major source of electrons for the 

electron transport chain ( 146; 152). Electrons are transferred through the four 

protein complexes, and at complex IV, oxygen is reduced to water (146;152). At 

complexes I, Ill and IV, H+ ions are pumped from the mitochondrial matrix across 

the inner mitochondrial membrane, creating an electrochemical potential gradient 

(146;152). When the H+ ions are transported back to the mitochondrial matrix via 

ATP synthase, the energy stored within the electrochemical gradient is used to 

produce ATP from ADP. ATP production stimulates closure of ATP-sensitive K+ 

channels, depolarization of the beta cell membrane, opening of the voltage-gated 

Ca+ channels and finally a rise in intracellular Ca+ levels, which triggers insulin 

exocytosis (146). 

Insulin exocytosis from the beta cell occurs in two phases. The first phase 

involves release of insulin-containing vesicles, which are stored and ready for 

exocytosis, in response to an acute rise in intracellular Ca+ levels (148;152). The 
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second phase involves sustained insulin release, which can only occur after ATP 

is produced by fuel metabolism in the mitochondria, allowing for the mobilization 

and priming of insulin granules from reserve pools to create new insulin vesicles 

(148;152). Therefore, if ATP production by the mitochondria is compromised, 

then insulin synthesis and secretion will also be adversely affected. Indeed islets 

from patients with type 2 diabetes show reduced insulin secretion in response to 

a glucose stimulus, as well as lower ATP levels and a lower ATP/ADP ratio (149). 

The role of mitochondria in regulating beta cell function remains to be determined 

following fetal and neonatal nicotine exposure. 

1 . 7 PROTECTION OF BETA CELL SURVIVAL AND FUNCTION BY ANTIOXIDANTS 

Loss of compensatory beta cell function is a crucial event in the 

progression from normal to impaired glucose tolerance (5-8;98). Furthermore, 

the inability of beta cells to secrete sufficient insulin to maintain healthy glucose 

homeostasis has been attributed to a reduction in beta cell mass (6;99). Since 

the mitochondria are central to both the beta cell apoptosis and loss of beta cell 

function in type 2 diabetes (119;146-148), improving mitochondrial function may 

be a viable option for protecting beta cell mass and function. Antioxidant 

interventions have been used successfully in various models of type 2 diabetes to 

improve markers of glucose homeostasis (153-161), and to protect beta cell 

mass and prevent beta cell apoptosis ( 154; 157). However, the ability of 

antioxidants to protect beta cells during fetal and neonatal development has yet 
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not been examined. 

Antioxidants are known to function optimally when a mixture is used 

instead of an individual compound because independently, antioxidants are often 

not only ineffective, but can potentially act as pro-oxidants, thus causing cellular 

damage (162). Furthermore, when several antioxidants are combined, they can 

act cooperatively as reductio.n/oxidation (redox) couples, thus increasing efficacy 

(162). For these reasons, an antioxidant diet containing a mixture of coenzyme 

Q10 (CoQ), alpha lipoic acid (ALA) and vitamin E (VitE) will be investigated in this 

animal model. 

CoQ is a lipid-soluble benzoquinone compound that shuttles electrons to 

complex Ill in the respiratory chain and translocates protons across the inner 

mitochondrial membrane (163). In addition to its main role in energy production, 

CoQ protects the mitochondria through a number of mechanisms, including its 

ability to act as a free radical scavenger (163), inhibit mitochondrial depolarization 

independent of its free radical scavenging property (164 ), and function as a redox 

couple (162;165). When combined in an antioxidant cocktail, CoQ acted 

primarily to regenerate a-tocopherol (VitE) by direct reduction of the tocopheroxyl 

radical, while VitE functions as the direct radical scavenger (165). Vitamin E (a

tocopherol) is a lipid soluble chain breaking terminating antioxidant that acts 

primarily to scavenge lipid peroxyl radicals (162), and has also been shown to 

protect cells from mitochondrial damage (166). ALA functions as an essential 

cofactor for several mitochondrial enzyme complexes (including pyrvate 
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dehydrogenase), a free radical scavenger, and an important redox couple for 

CoQ and VitE (162). Treatment with ALA protects rodents from age-related 

defects in mitochondrial bioenergetics (167). Furthermore, all three of these 

antioxidants have independently been shown to prevent mitochondrial-mediated 

apoptosis in various cell types (164;166;168-171). The ability of these 

antioxidants to prevent nicotine-induced beta cell apoptosis and mitochondrial 

damage will be examined in this animal model. 

1.8 SPECIFIC AIMS 

1. 8. 1 Specific Aim 1 

The first goal of this PhD thesis was to determine the critical windows of 

fetal and neonatal nicotine exposure for pancreatic beta cell development and 

adult-onset dysglycemia. First, I hypothesized that maternal nicotine exposure 

would cause beta cell apoptosis and loss of beta cell mass in the developing 

fetus and neonate. Furthermore, since rodent pancreatic development occurs 

during two important phases, (expansion during fetal development and 

remodeling during neonatal development), I hypothesized that nicotine exposure 

would be required during both pregnancy and lactation to cause permanent beta 

cell damage and metabolic reprogramming in the offspring. 
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1.8.2 Specific Aim 2 

The second aim of this thesis was to determine the mechanisms through 

which fetal and neonatal exposure to nicotine results in: a) loss of beta cell mass 

during development, and b) impaired glucose homeostasis during adulthood. 

hypothesized that nicotine acts directly on the developing pancreas via the 

nicotinic acetylcholine receptor to induce beta cell apoptosis and loss of beta cell 

mass. Mitochondria are particularly susceptible to damage by reactive oxygen 

species and are capable of signalling for cellular apoptosis following oxidative 

stress. Therefore, I proposed that nicotine exposure would induce oxidative 

stress in the developing beta cells, and consequently trigger the mitochondrial

mediated apoptotic signalling pathway. Furthermore, I proposed that alterations 

to the mitochondria during perinatal development would initiate a feed-forward 

chain of progressive postnatal mitochondrial damage, ultimately leading to 

impaired beta cell function. Therefore, in this animal model I hypothesized that 

nicotine-induced mitochondrial defects would contribute to loss of both beta cell 

mass (via apotosis) during development and beta cell function during adulthood. 

1.8.3 Specific Aim 3 

The third objective of my thesis was to determine whether an antioxidant 

intervention during pregnancy and lactation could prevent the nicotine-induced 

beta cell defects and dysglycemia in this animal model. I hypothesized that 

exposure to antioxidants during pregnancy and lactation would protect the beta 
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cell mitochondria from the damaging pro-oxidant effects of nicotine, thus 

preventing the early loss of beta cell mass. Furthermore, I proposed that 

protection of the mitochondria during critical windows of pancreatic development 

would prevent the progression of postnatal mitochondrial defects which contribute 

to impaired beta cell function and dysglycemia during adulthood. 

1.9 REFERENCES (REFER TO CHAPTER 7) 

The references for the general introduction and discussion have been 

compiled into one bibliography at the end of Chapter 7. 

27 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

1.10 INTRODUCTION FIGURES 
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Figure 1.1: Extrinsic and intrinsic pathways of apoptosis (121 ). 
The schematic diagram outlines key signaling molecules involved in the extrinsic 
(receptor-dependent) and intrinsic (mitochondrial) apoptosis pathways. In the extrinsic 
pathway, a death-inducing ligand, such as tumor necrosis factor a (TN Fa) or Fas ligand 
(Fasl), binds to its respective receptor (TNF-R1 or Fas, respectively), and triggers the 
formation of a death-inducing signal complex (DISC). DISC formation leads to activation 
of caspase-8, which can either lead to activation of caspase-3 or to the activation of Bid. 
Bid assists in the activation and translocation of Bax to the mitochondria, thus triggering 
the intrinsic pathway. Intrinsic apoptosis can also be triggered by environmental stress 
that either directly damages the mitochondria or activates the Bax. Bax translocates to 
the mitochondrial outer membrane, where it oligomerizes and allows release of proteins 
such as cytochrome c (Cyt-c), Smac or AIF from the mitochondria into the cytosol. 
Release of Cyt-c triggers the formation of an apoptosome complex with Apaf-1 and 
caspase-9, which signals for activation of caspase-3. 
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Figure 1.2: Oxidative stress, apoptosis and oxidative phosphorylation pathways 
in the mitochondria (119). 
The schematic diagram integrates the multiple pathways that are all linked to the 
mitochondria. Antioxidant enzymes MnSOD and GPx detoxify reactive oxygen species 
which are formed by the donation of an electron to molecular oxygen by the complexes 
from the electron transport chain . Mitochondrial-mediated apoptosis is regulated by 
members of the Bcl2 family, which bind to the mitochondrial permeability transition pore 
(mtPTP, consisting of VDAC, Ant and CD) and trigger the release of proteins, including 
cytochrome c (CytC) and SMAD/Diablo into the cell cytosol. 
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Figure 1.3: The role of the mitochondria in the beta cell (147). 
The schematic diagram the outlines the central role of the mitochondria in regulating 
glucose stimulated insulin release from the beta cell. Glucose enters the beta cell via 
glucose transporter 2 (GLUT2) and is phosphorylated by glucokinase, so that it can enter 
the glycolysis pathway in the cytosol. Pyruvate, produced during glycolysis, enters the 
mitochondria and undergoes the citric acid cycle to produce NADH and FADH2, which 
provide electrons that enter the electron transport chain at complexes I and II. The 
transport of H+ ions across the inner membrane increases the electrochemical potential 
gradient and allows for ATP to be produced by ATP synthase. This increase in the 
ATP/ADP ratio triggers the closing of KATP channels and opening of Ca+ channels, 
which allows for insulin exocytosis from the beta cell. The presence of uncoupling 
protein 2 (UCP2) in the mitochondrial inner membrane causes leakage of H+ ions into 
the matrix and leads to inefficient production of ATP by ATP synthase. Superoxide 
generated by the electron transport chain stimulates proton leak activity of UCP2 protein, 
thus decreasing glucose-stimulated insulin secretion. 
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CHAPTER 2 

FETAL AND NEONATAL NICOTINE EXPOSURE AND POSTNATAL GLUCOSE 

HOMEOSTASIS: IDENTIFYING CRITICAL WINDOWS OF EXPOSURE 

BRUIN JE, KELLENBERGER LO, GERSTEIN HC, MORRISON KM, HOLLOWAY AC. FETAL 

AND NEONATAL NICOTINE EXPOSURE AND POSTNATAL GLUCOSE HOMEOSTASIS: 

IDENTIFYING CRITICAL WINDOWS OF EXPOSURE. JOURNAL OF ENDOCRINOLOGY. 2007. 

194(1 ):171-8. 

2.1 INTRODUCTION 

Approximately 15-20% of all women smoke while pregnant (1 ;2), despite 

intentions to refrain from smoking during that period (3). Cigarette smoking during 

pregnancy remains one of the most important modifiable risk factors for adverse 

fetal, obstetrical and developmental outcomes (1 ;4). Moreover, epidemiological 

studies have demonstrated that fetal exposure to maternal smoking during 

pregnancy is associated with adverse postnatal health outcomes including 

obesity, hypertension and type 2 diabetes (2;5-11 ). In pregnant women who 

smoke or use nicotine replacement therapy, nicotine crosses the placenta, 

concentrates in fetal blood and amniotic fluid, and is detectable in breast milk 

during lactation (12). Therefore, maternal nicotine exposure results in both fetal 

and neonatal exposure. 

Animal studies have demonstrated that fetal and neonatal exposure to 

nicotine alone, at levels that are representative of women who smoke or use 
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nicotine replacement therapy, results in low birthweight, and postnatal impaired 

glucose homeostasis, hyperinsulinemia, increased body weight and dyslipidemia 

(13-17). The beta cell loss, impaired glucose tolerance and hyperinsulinemia 

observed in the nicotine-exposed offspring from this animal model (17) closely 

represents symptoms associated with type 2 diabetes in humans (18;19). 

However, the heterogeneous nature of smoking behaviour and nicotine 

replacement therapy use in the pregnant and breastfeeding population (20-22) 

results in nicotine exposures during different windows of development. 

Epidemiological evidence strongly suggests that cessation or at least reduction of 

cigarette smoking during pregnancy will ameliorate the damage to a developing 

fetus (23;24). However the effect of smoking cessation on metabolic 

disturbances later in life has not yet been determined. Furthermore, the 

developmental stages when nicotine exposure can result in an irreversible impact 

on glucose homeostasis in the offspring have not yet been identified. This study 

was designed to identify the critical windows of fetal and neonatal exposure to 

maternal nicotine on the development of the pancreatic beta cell and glucose 

intolerance in the offspring. 

2.2 MATERIALS AND METHODS 

2. 2. 1 Maintenance and Treatment of Animals 

All animal experiments were approved by the Animal Research Ethics 

Board at McMaster University, in accordance with the guidelines of the Canadian 
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Council for Animal Care. Nulliparous 200-250g female Wistar rats (Harlan, 

Indianapolis, IN) were maintained under controlled lighting (12:12 L:D) and 

temperature (22°C) with ad /ibitum access to food and water. Dams were 

randomly assigned (N= 5 per group) to receive saline (vehicle) or nicotine 

bitartrate (1 mg/kg/d, Sigma-Aldrich, St. Louis MO) via subcutaneous injection 

daily A) for 2 weeks prior to mating only; B) for 2 weeks prior to mating and until 

parturition (fetal exposure); C) for 2 weeks prior to mating until weaning (fetal and 

neonatal exposure) and; D) for 2 weeks prior to mating and after parturition until 

weaning (neonatal exposure). 

At postnatal day 1 (PND1) litters were culled to eight, retaining males in 

preference to assure uniformity of litter size between treated and control litters. 

To eliminate any confounding effects of the female reproductive cycle, only male 

offspring were used in this study. After weaning at postnatal day 21 (PND21 ), 

male offspring were selected randomly and caged as sibling pairs. 

2.2.2 Oral Glucose Tolerance 

Glucose homeostasis was investigated in nicotine-exposed and control 

rats at 26 weeks of age (N=12 per group) using an oral glucose tolerance test 

(OGTT). To avoid litter effects, no more than three animals from a single litter 

were tested. After an overnight fast, serum concentrations of insulin and glucose 

were measured in saphenous vein samples, collected by repeated puncture, at 

baseline (0900h), 30 and 120 minutes after rats were given 2g/kg glucose 
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(Sigma-Aldrich, St. Louis MO) in water by gavage as previously described (25). 

Blood samples were allowed to clot at 4 °C, centrifuged and stored at -80°C until 

assayed. Serum glucose concentrations were measured by a commercially 

available kit using the glucose oxidase method (Pointe Scientific Inc., Canton, 

Ml), and insulin levels were measured by an ultra sensitive rat insulin ELISA 

(Crystal Chem Inc., Downers Grove, IL). 

2.2.3 Beta Cell Mass 

To assess whether nicotine exposure during pregnancy and lactation 

alters prenatal and postnatal pancreas development, pancreas tissue was 

collected from a subset of pups at birth (PND1 ), 4 and 26 weeks of age. Animals 

at PND1 were euthanized by decapitation and at 4 and 26 weeks animals were 

euthanized by isofluorane overdose. The pancreas from each animal was 

weighed and then fixed by immersion in 10% (v/v) neutral buffered formalin (EM 

Science, Gibbstown, NJ) at 4 ° C overnight, washed in water and embedded in 

paraffin. lmmunohistochemical detection of insulin was performed on 5µm serial 

sections, separated by an average of 30µm, of PND1, week 4 and week 26 

pancreatic tissues from saline-exposed (5 sections per animal; 5 animals 

randomly selected to include animals from each saline exposure group) and 

nicotine exposed (5 sections per animal; 5 animals per group) offspring. These 

age groups were selected to examine the effects of nicotine exposure on fetal 

pancreatic development (PND1 ), neonatal pancreatic development (week 4) and 
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adult pancreatic development (week 26). Tissue sections were deparaffinized in 

xylene, rehydrated and washed in PBS. Endogenous peroxidase activity was 

quenched in methanol, followed by antigen retrieval in 1Ommol/I citrate buffer (pH 

3.0) and blocking with 10% (v/v) normal goat serum and 1 % (w/v) BSA. Sections 

were then incubated with the primary antibody, a polyclonal, guinea pig anti

swine insulin antibody (1:150 dilution) (DakoCytomation, Carpinteria, CA), which 

has been shown by the manufacturer to cross react with rat insulin, overnight at 

4°C. Sections were then washed in PBS, and immunostaining was identified 

using the Vectastain kit (Vector Laboratories, Burlinghame, CA) with 

diaminobenzadine as the chromogen. Tissue sections were counterstained with 

Harris's hematoxylin, destained with acid alcohol, dehydrated and mounted with 

Permount (Fisher Scientific, Fair Lawn, NJ). Control sections were incubated 

with 1 % (w/v) BSA in PBS in place of the primary antibody. In all sections, the 

whole pancreas was analyzed by combining measurements from up to 90 fields 

per section. lmmunopositive cells were identified using Image Pro Plus Version 

5.1 software (Media Cybernetics, Inc., Silver Spring MD) for automated cell 

counting and the calculation of beta cell area and total pancreas area. The beta 

cell area was calculated as a ratio of the beta cell area (immunopositive staining 

only) to the total pancreas area (immunopositive staining plus pancreas 

counterstaining). Beta cell mass was calculated as the product of the beta cell 

area and the corresponding total pancreas weight in milligrams. 
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2.2.4 Islet Apoptosis and Proliferation 

Detection of apoptotic cells in pancreatic islets from saline- and nicotine

treated rats was performed using a terminal deoxynucleotidyl transferase 

mediated dUTP nick end labelling (TUNEL) assay according to manufacturer's 

instructions (Roche Applied Science, Laval, Quebec) with insulin colocalization. 

Briefly, tissue sections were deparaffinized in xylene and rehydrated in 

decreasing concentrations of ethanol to PBS. Next, tissues were subjected to 

antigen retrieval in 1Ommol/I citrate buffer (pH 3.0) and blocking with 10% (v/v) 

normal goat serum and 1 % (w/v) BSA. Sections were then incubated with the 

primary antibody, a polyclonal, guinea pig anti-swine insulin antibody (1:150 

dilution, DakoCytomation, Carpinteria, CA), overnight at 4°C followed by anti

rabbit Alexa Fluor 594 secondary antibody (1 :400 dilution, Molecular Probes, Inc., 

Eugene OR) for 2 hours at room temperature. Following the 

immunofluorescence immunostaining for insulin, tissues were subjected to the 

TUNEL assay. Following a PBS wash, tissues were permeabilized in 0.5% (v/v) 

Triton X-100 for 30 minutes at room temperature and then incubated with the 

FITC-conjugated TUNEL enzyme for 60 minutes to detect DNA fragmentation. 

Nuclei were counterstained with DAPI (Sigma Aldrich, St. Louis, MO) and tissue 

sections were imaged with an Olympus BX-61 microscope and analyzed with 

Image Pro Plus Version 5.1 software (Media Cybernetics, Inc., Silver Spring MD). 

For analysis, 3 islets per section (3 sections per animal, 5 animals per group) 

were quantified for apoptosis and reported as the percentage of TUNEL + beta 
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cells. 

To evaluate islet cell proliferation, tissues were processed as above and 

incubated with a mouse anti-proliferating cell nuclear antigen (PCNA) antibody 

(1 :2000 dilution, Sigma Aldrich, St. Louis, MO) overnight at 4oC. PCNA has 

been demonstrated to be a useful marker of islet cell proliferation, as it is present 

in the cell nuclei within the later part of G1, S, and G2 phases of the cell cycle 

(26). lmmunostaining was identified using the Vectastain kit (Vector 

Laboratories, Burlinghame, CA) with diaminobenzadine as the chromogen. 

Tissue sections were counterstained with Harris's hematoxylin, destained with 

acid alcohol, dehydrated and mounted with Permount (Fisher Scientific, Fair 

Lawn, NJ). For analysis, 3 islets per section (3 sections per animal, 5 animals 

per group) were quantified. Islet cell proliferation was assessed as the 

percentage of total islet cells that were PCNA+. 

2.2.5 Statistical Analysis 

All statistical analyses were performed using SigmaStat (v.2.03, SPSS, 

Chicago, IL) and one-way analysis of variance (ANOVA) followed by post-hoc 

multiple comparisons when significance was indicated by ANOVA (a=0.05). 

When significa'nce was indicated by ANOVA, OGTT results for each treatment 

group were compared to the saline controls (Bonferroni's t-test, a=0.05). There 

was no difference in the glucose or insulin response to the OGTT at baseline, 30 

or 120 minutes between the 4 saline groups (one-way ANOVA; all p>0.90) so the 
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data were pooled for comparison with the nicotine-exposed offspring. Similarly, 

there were no differences in beta cell mass, apoptosis or proliferation between 

the 4 saline groups (one-way ANOVA; all p>0.90) so the results for the saline

exposed groups were pooled for comparison with the nicotine-exposed offspring. 

When significance was indicated by ANOVA (p<0.05), the results for beta cell 

mass, proliferation and apoptosis among each treatment group were compared to 

each other using the Student-Neuman-Keuls test. Data were tested for normality 

as well as equal variance, and when normality or variance tests failed, data were 

analyzed using Kruskal-Wallis one-way ANOVA on ranks. Area under the curve 

for the total glucose response during the glucose tolerance test was assessed 

using the trapezoidal rule. 

2.3 RESULTS 

2.3.1 Pregnancy Outcome and Birth Phenotypes 

Nicotine administration had no effect on maternal food consumption during 

the 2 week period prior to mating (saline: 8.5 ± 0.24 g food/100 g body weight vs 

nicotine: 8.9 ± 0.30 g food/100 g body weight, p=0.30) or during pregnancy 

(Table 2.1 ). In addition, nicotine exposure did not affect mating success (100% in 

all groups), maternal weight gain during pregnancy, litter size or birth weight in 

any treatment group (Table 2.1 ). 
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2.3.2 Glucose Homeostasis 

At 26 weeks of age nicotine exposure had no effect on fasting serum 

glucose (p>0.05} or insulin concentrations (Kruskal-Wallis one-way ANOVA on 

ranks p>0.05) in any treatment group (Table 2.2). Following an oral glucose 

challenge, animals in Group C (fetal and neonatal nicotine exposure) had a 

higher total glucose response (area under the curve; AUC) to the glucose load 

relative to the saline controls (p<0.01 ), an effect that was not observed in any 

other group (Figure 2.1 ). Furthermore, the peak glucose concentration at 30 

minutes was higher in this group (saline 9.1 ± 0.29 mmoH-1; Group C 10.9 ± 1.15 

mmoH-1; p<0.05) and the ability to clear the glucose load, determined by serum 

glucose concentrations at 120 minutes following the glucose challenge, was 

impaired (saline 8.2 ± 0.33 mmoH-1; Group C 11.4 ± 1.21 mmoH-1; p<0.005; 

Figure 1 ). The total insulin response (AUC) to the glucose challenge was also 

(p<0.05) elevated in the offspring in Group C relative to the control (saline

exposed) offspring (Table 2.2). 

2.3.3 Beta Cell Mass 

At birth (PND1 ), results for Groups A and D and Groups B and C were 

combined as pups in these groups had the same exposure to nicotine 

(preconceptual only and preconceptual + fetal exposure respectively). Fetal 

exposure to nicotine (Groups 8 and C) resulted in reduced beta cell mass 

(p<0.05) relative to saline-exposed offspring (Figure 2.2A), an effect that was still 
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present at 4 weeks of age (Figure 2.28). By 26 weeks, animals exposed to 

nicotine during pregnancy alone (Group B) had recovered their beta cell mass 

relative to saline controls (Figure 2.2C). The beta cell mass at 26 weeks of 

offspring exposed to nicotine during both fetal and neonatal development (Group 

C} continued to be lower than the beta cell mass of any other group (Figure 

2.2C). Offspring of dams exposed to nicotine prior to pregnancy or prior to 

pregnancy and during lactation (Groups A and D respectively) did not exhibit a 

loss of beta cell mass at any age examined (Figures 2.2A-C). At all three ages, 

changes in beta cell mass were a reflection of changes in the beta cell area, not a 

reduction in pancreas weight (Table 2.3). 

2. 3.4 Beta Cell Proliferation and Apoptosis 

Although beta cell mass at 4 weeks of age was reduced in animals with 

fetal exposure alone or both fetal and neonatal exposure to nicotine, by 26 weeks 

of age the beta cell mass of animals without neonatal exposure (Group B) was 

the same as saline controls, but remained suppressed in animals exposed during 

fetal and neonatal periods (Group C). To determine if this recovery was due to 

increased proliferation and/or decreased apoptosis in pancreatic islets, further 

studies were undertaken. At 4 weeks of age, animals in Group B (fetal exposure 

only) had a higher percentage of PCNA+ islet cells relative to the animals that 

had been exposed to nicotine during fetal and neonatal development (Group C) 

and saline controls (Figure 2.3A). Animals with fetal and neonatal exposure to 
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nicotine (Group C) had an increased level of beta cell apoptosis relative to those 

with fetal exposure alone or to saline controls (Figure 2.38). 

2.4 DISCUSSION 

Our laboratory has previously demonstrated that nicotine exposure during 

pregnancy and lactation results in endocrine and metabolic changes in the 

offspring that are consistent with those observed in type 2 diabetes (17). The 

dose of nicotine used in this study (1 mg/kg/d nicotine bitartrate) results in 

maternal serum cotinine concentrations of 136 ng/ml (27), which is within the 

range of cotinine levels (80 to 163 ng/mL) reported in women who are considered 

"moderate smokers" (28). In addition, this dose of nicotine resulted in serum 

cotinine concentrations of 26 ng/ml in the nicotine-exposed offspring at birth (27), 

which is also within the range (5 to 30 ng/ml) observed in infants nursed by 

smoking mothers (29). Although 15-20% of pregnant women smoke (1 ;3) many 

women attempt to stop smoking during pregnancy and then relapse following 

parturition (20-22) resulting in nicotine exposure at conception and during 

lactation only. The influence this pattern may have on offspring health is 

unknown as the developmental stages of fetal and neonatal development which 

are susceptible to nicotine exposure have not been determined. The current 

study was designed to represent the various windows of exposure that children of 

average smokers would experience. Since nicotine is rapidly metabolized in rats 

(half life of 45 minutes), the nicotine from each daily injection is entirely cleared 
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before the next injection (30), ensuring that each window of nicotine exposure 

remains separate. In this study, we have demonstrated in an animal model that 

postnatal glucose homeostasis is impaired only if nicotine exposure occurs during 

both pregnancy and lactation. Neith.er developmental stage alone leads to 

subsequent dysglycaemia at 26 weeks of age in adult offspring. The impaired 

glucose homeostasis observed in this animal model is an early indicator of risk 

for the development of type 2 diabetes, a disease which is associated with 

numbers co-morbidities including cardiovascular disease, nephropathy, 

retinopathy and neuropathy (31 ;32) 

In humans, type 2 diabetes develops due to a progressive reduction in the 

ability of the pancreas to produce sufficient insulin to compensate for any 

underlying resistance to the action of insulin (18;23;33). This defect in beta cell 

function is already observable in dysglycaemic individuals with impaired fasting 

glucose or impaired glucose tolerance, long before the onset of frank type 2 

diabetes (33). Recent studies suggest that this insulin insufficiency may be due 

in part to a reduction in beta cell mass (18;34). Indeed, in humans pancreatic 

beta cell mass is reduced by 40-60% in patients with type 2 diabetes (23;35;36), 

and this reduction in beta cell mass precedes the diagnosis of diabetes (23). 

Similarly we have shown in an animal model that reduced beta cell mass 

preceded the loss of normal glycaemic control and that although insulin secretion 

in response to the OGTT was increased, it was insufficient to normalize glucose 

concentrations, an effect which is in accordance with our previous findings (17). 
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We had previously suggested that nicotine-induced damage to the beta 

cell during fetal development may induce permanent changes in pancreatic 

structure and function evident as impaired glycaemia in adults (17). Similar 

findings have been reported for other in utero insults including glucocorticoid 

administration, uteroplacental insufficiency and fetal undernutrition (26;37-39). 

However, this work illustrates that in utero nicotine exposure alone transiently 

reduces beta cell mass without permanent metabolic defects. The full recovery of 

beta cell mass and function can be attributed to enhanced beta cell proliferation 

leading to increased expansion of beta cell mass between 1 and 6 months of 

age. Control animals experienced a 4.6 fold-increase in beta cell mass between 

1 and 6 months of age, whereas animals with fetal exposure only (Group 8) had 

lower absolute beta cell mass at 1 month of age but a 6.2 fold "catch-up" in beta 

cell mass such that by 26 weeks of age they had recovered to 98% of the saline 

control beta cell mass. There was no decrease in apoptosis found to explain this 

"catch-up" in beta cell mass. Continued nicotine exposure through lactation 

appears to prevent this pancreatic cell "catch-up". The rats exposed to nicotine 

during both fetal and neonatal development had a beta cell mass that was only 

62% of controls at 26 weeks. Furthermore, the inhibited growth of beta cell mass 

in these offspring was due to increased beta cell apoptosis and not to decreased 

beta cell proliferation. 

Other insults during fetal and neonatal developmental, such as maternal 

undernutrition, also cause a reduction in beta cell mass at birth, an effect which 
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was irreversible even though restoration of nutrition at the end of gestation 

resulted in normal beta cell proliferation during lactation (40). In contrast, the 

results from this study have demonstrated that increased beta cell replication 

following a reduction in beta cell mass at birth was able to fully restore beta cell 

mass and function. However, recovery only occurred when nicotine exposure 

was stopped prior to neonatal pancreatic development. When nicotine exposure 

continued through neonatal pancreatic development via lactation (Group C 

animals), the capacity for islet cell proliferation and therefore beta cell recovery 

appears to be lost. These results are also consistent with another rodent model 

in which the primary mechanisms for an adaptive increase in beta cell mass were 

islet neogenesis and beta cell replication, while an adaptive reduction in beta cell 

mass was primarily due to increased beta cell apoptosis (41). 

In conclusion, nicotine exposure during both pregnancy and lactation 

results in impaired glucose homeostasis in the offspring of this animal model. 

This effect is mediated by an irreversible reduction in pancreatic beta cell mass in 

early life. These results confirm previous findings that recovery of beta cell mass 

occurs during critical developmental windows, otherwise the beta cell loss is 

permanent and will lead to metabolic defects in the offspring. In applying these 

results to the human population, it is essential to consider developmental 

differences between species. In rats, pancreatic development occurs both 

prenatally and postnatally, whereas in humans the majority of development is 

completed prenatally (42). However, regardless of differences in timing, the 
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essential principal that impairment of early pancreatic development will result in 

permanent changes remains the same. Therefore, data from the current study 

imply that smoking cessation prior to the completion of pancreatic development 

may be beneficial in terms of protecting the future metabolic capacity of the 

offspring. This study also raises some concerns regarding the safety of 

continuous nicotine replacement therapy during pregnancy and lactation. 
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Figure 2.1: Oral glucose tolerance tests. 
Serum glucose concentrations (mmol/I) following administration of an oral glucose load 
(2g/kg body weight) at 26 weeks of age for the offspring of female Wistar rats given 
saline (control: closed circles), or nicotine (1mg·kg-1 ·d-1, open circles) A) prior to 
pregnancy (Group A); B) prior to pregnancy and during pregnancy (Group B); C) prior to 
pregnancy, during pregnancy and during lactation (Group C) and D) prior to pregnancy 
and during lactation (Group D); N=12 per group. Data are presented as mean± SEM. 
Values with an asterisk are significantly (p<0.05) different from saline controls. 
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Figure 2.2: Beta cell mass. 

Effect of fetal and neonatal exposure to nicotine bitartrate (1 mg· kg-1 · d-1) on pancreatic 

beta cell mass (mg) of rats at: A) PND1; 8) 4 weeks of age and C) 26 weeks of age. 

Beta cell mass was calculated using N=S sections per animal, and N=S animals per 

treatment group. Data are presented as mean± SEM. Values with an asterisk are 

significantly (p<0.05) different from saline controls. 
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Figure 2.3: Islet cell proliferation and beta cell apoptosis. 
Effect of fetal exposure only (Group B) and fetal and lactational exposure (Group C) to 
nicotine bitartrate ( 1 mg · kg-1 ·d-1) on: A) percent islet cell proliferation (PCNA+ islet 
cells) and B) percent beta cell apoptosis (TUNEL+ beta cells) at 4 weeks of age. Both 
apoptosis and proliferation were calculated using N=3 islets per section, with N=3 
sections per animal and N=5 animals per group. Data are presented as mean ± SEM. 
Values with an asterisk are significantly (p<0.01) different from saline controls. 
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Table 2.1: Maternal outcome and birth phenotype. 

Treatment Maternal food Maternal weight Birthweight Litter size 

Consumption gain during (g) 

(g food/100g pregnancy 

body weight) (g) 

Saline 7.9±0.10 138.4 ± 7.30 6.0 ± 0.06 13.8 ± 0.97 

Nicotine - AID 7.9 ± 0.14 160.6 ± 12.66 5.9 ± 0.04 15.1±0.88 

Nicotine - B/C 8.1±0.24 130.4 ± 10.05 6.2 ± 0.09 12.0 ± 1.07 

Values are presented as mean± SEM. Results for Groups A and D and Groups Band C 
were combined as pups in these groups had the same exposure to nicotine 
(preconceptual only and preconceptual + fetal exposure respectively). 

Table 2.2: Effect of developmental exposure to nicotine in Wistar rats 

Treatment Fasting Fasting lnsulin:Glucose AUC Insulin 

glucose insulin 

(mmol/I) (ng/ml) 

Saline 7.4 ± 0.27 1.9 ± 0.68 0.27 ± 0.063 221.8 ± 27.23 

Nicotine -A 7.1±0.68 2.0 ± 0.54 0.24 ± 0.050 300.2 ± 50.02 

Nicotine - B 7.6 ± 0.30 1.4 ± 0.24 0.19 ± 0.030 250.2 ± 38.70 

Nicotine - C 8.3 ± 0.36 1.8 ± 0.18 0.26 ± 0.014 342.2 ± 40.32* 

Nicotine - D 7.4 ± 0.19 1.5 ± 0.31 0.21±0.048 255.9 ± 31.88 

Values are presented as mean± SEM. Values with an asterisk are significantly different 
from the saline controls (p<0.05) 
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Table 2.3: Effect of developmental exposure to nicotine on beta cell mass in Wistar 
rats 

Age Treatment Beta Cell Area Pancreas Beta Cell Mass 

(%) Mass (mg) (mg) 

Saline 2.0 ± 0.18 12.0 ± 0.90 0.24 ± 0.023 

PND 1 Nicotine - AID 2.0 ± 0.12 11.9 ± 0.11 0.28 ± 0.017 

Nicotine - B/C 1.4 ± 0.12* 14. 4 ± 0.90 0.17 ± 0.013* 

Saline 

Nicotine -A 

Nicotine - B 4 weeks 

Nicotine - C 

Nicotine - D 

0.7 ± 0.04 

0.6 ± 0.04 

0.4 ± 0.04* 

0.5 ± 0.04* 

0.7 ± 0.04 

306 ± 23.7 2.13 ± 0.11 

327 ± 22.0 2.09 ± 0.14 

347 ± 27.9 1.57 ± 0.14* 

343 ± 12.0 1.62 ± 0.14* 

293 ± 14.3 1.96 ± 0.12 

Saline 

Nicotine -A 

26 weeks 	 Nicotine - 8 

Nicotine - C 

Nicotine - D 

1.2 ± 0.06 

1.3 ± 0.06 

0.90 ± 0.05 

0.64 ± 0.03* 

1.2 ± 0.07 

915±81.1 9.83 ± 0.76 

928 ± 44.0 12.17 ± 0.64 

1072 ± 64.9 9.66 ± 1.02 

946 ± 118.0 6.09 ± 0.95* 

964 ± 34.1 10.65 ± 0.61 

Values are presented as mean± SEM. At birth (PND1 ), results for groups A and D and 
groups B and C were combined as pups in these groups had the same exposure to 
nicotine (preconceptual only and preconceptual + fetal exposure respectively). Values 
with an asterisk are significantly different from the saline controls (p<0.05). 
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CHAPTER 3 

INCREASED PANCREATIC BETA CELL APOPTOSIS FOLLOWING FETAL AND 

NEONATAL EXPOSURE TO NICOTINE IS MEDIATED VIA THE MITOCHONDRIA 

BRUIN JE, GERSTEIN HC, MORRISON KM AND HOLLOWAY AC. INCREASED 

PANCREATIC BETA CELL APOPTOSIS FOLLOWING FETAL AND NEONATAL EXPOSURE TO 

NICOTINE IS MEDIATED VIA THE MITOCHONDRIA. TOXICOLOGICAL SCIENCES. 2008 

JUN; 103(2):362-70. EPUB 2008 JAN 17. 

3.1 INTRODUCTION 

Although cigarette smoking is associated with numerous adverse 

obstetrical and fetal outcomes (1-6), approximately 15-20% of all women smoke 

during pregnancy (1 ;7). Furthermore, recent epidemiologic studies have 

demonstrated a relationship between maternal smoking and the subsequent 

development of obesity, hypertension and type 2 diabetes in adult offspring (7

13). Our laboratory has previously shown in a rat model that maternal exposure 

to nicotine, the major addictive component of cigarettes, during pregnancy and 

lactation results in development of obesity and impaired glucose homeostasis in 

adult offspring (14;15). Furthermore, this fetal and neonatal nicotine exposure 

resulted in elevated pancreatic beta cell apoptosis and loss of beta cell mass at 

weaning, which persisted into adulthood (15). These results may partially explain 

the increased risk of type 2 diabetes in children born to women who smoked 

during pregnancy (11 ). However, the cellular pathway(s) which are involved in 
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nicotine-induced beta cell toxicity during fetal and neonatal development have not 

yet been identified. 

There are two major signaling pathways of programmed cell death, the 

mitochondrial pathway (intrinsic) and the death receptor pathway (extrinsic) 

(Figure 3.1 ). In the mitochondrial pathway (Figure 3.1 ), pro-apoptotic members 

of the Bcl-2 family (Bax, Bak or Bid) translocate to the mitochondrial outer 

membrane, and are involved in the formation of a mitochondrial permeability 

transition pore (mtPTP) (16-22). Opening of the mtPTP destroys the 

mitochondrial membrane potential, causing ion equilibration, mitochondrial 

swelling and release of proteins, including cytochrome c, from the 

intermembrane space into the cytosol (16). Cytochrome c release leads to 

formation of an apoptosome, which in turn activates caspase-3 and ultimately 

induces cell apoptosis ( 16;19;22). Anti-apoptotic members of the Bcl2 family 

(Bcl-2 and Bet-XL) sequester Bax, Bak and/or Bid in the cytosol, thus preventing 

translocation of these pro-apoptotic signaling molecules to the mtPTP and 

inhibiting apoptosis. 

The death receptor pathway involves the binding of a death receptor (e.g., 

Fas) to a ligand (e.g., Fasl), which results in activation of a caspase-signaling 

cascade to induce cell death (16;20;21 ;23). In particular, the Fas/Fasl 

interaction leads to otigomerization of FasL, recruitment of FADD (Fas-associated 

death domain) protein and pro-caspase-8 to the cytoplasmic death domain of 

Fas, where a death-inducing signal complex (DISC) is formed (16;23). DISC 
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formation leads to the activation of caspase-8, which in turn causes cleavage of 

pro-caspase-3 to its active form (16;23). Alternatively, active caspase-8 can 

induce cleavage of Bid to tBid, which will then translocate to the mitochondrial 

outer membrane, resulting in release of mitochondrial proteins and amplification 

of the Fas/Fasl apoptosis signal (16;23). The goal of the current study was to 

determine whether the beta cell apoptosis observed in this animal model 

following fetal and neonatal nicotine exposure is mediated via the mitochondrial 

and/or death receptor pathway. 

3.2 MATERIALS AND METHODS 

3.2.1 Maintenance and Treatment ofAnimals 

All animal experiments were approved by the Animal Research Ethics 

Board at McMaster University, in accordance with the guidelines of the Canadian 

Council for Animal Care. Nulliparous 200-250g female Wistar rats (Harlan, 

Indianapolis, IN) were maintained under controlled lighting (12:12 L:D) and 

temperature (22°C) with ad libitum access to food and water. Dams were 

randomly assigned (n=10 per group) to receive saline (vehicle) or nicotine 

bitartrate (1 mg/kg/d, Sigma-Aldrich, St. Louis MO) via subcutaneous injection 

daily for 2 weeks prior to mating until weaning. At postnatal day 1 (PND1) litters 

were culled to eight to assure uniformity of litter size between treated and control 

litters. To eliminate any confounding effects of the female reproductive cycle, 

only male offspring were used in this study. After weaning, male offspring (n=5 
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per treatment group) were selected randomly for the experiments described 

below. Immediately following sacrifice, pancreas tissue was excised and either 

frozen in liquid nitrogen for western blotting analysis, fixed in 10% neutral 

buffered formalin for immunohistochemistry, or fixed in 2% glutaraldehyde, 0.1 M 

cacodylate buffer (pH 7 .4) for electron microscopy experiments as described 

below. 

3.2.2 Western Blotting 

Protein expression was measured in either whole pancreas homogenates 

(n=5 per group) or mitochondria/cytosol fractions (n=5 per group) from pancreas 

of nicotine and saline-exposed offspring. Protein was extracted from whole 

frozen pancreas using RIPA lysis buffer (15 mM Tris-HCI, 1% (v/v) Triton X-100, 

0.1 % (w/v) SDS, 167 mM NaCl, 0.5% (w/v) sodium deoxycholatic acid), with 

Complete Mini EDTA-free protease inhibitors (Roche Applied Science, Laval, 

PQ). To separate the mitochondrial and cytosolic fractions, the Compartmental 

Protein Extraction Kit (K301301 O; Biochain Institute Inc., Hayward, CA) was used 

according to manufacturer's instructions. For Western blots of whole pancreas 

homogenates, 30 µg of protein was loaded; for Western blots of the 

mitochondrial/cytosolic fractions, 20µg of protein was loaded. Protein was 

subjected to SDS-PAGE and then electro-transferred to PVDF blotting membrane 

(BioRad Laboratories, Hercules, CA). Membranes were blocked overnight with 5 

% (wt/vol) skim milk in TTBS at 4°C and then incubated for 1 h at room 
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temperature in primary antibody on a rocking platform. The membrane was cut 

horizontally; one half was incubated with the antibody for the protein of interest 

and the other ha1f with a loading control antibody (a-tubulin or f3-actin, depending 

on which molecular weight was compatible with the primary protein of interest). 

The following antibodies were used for this study (all rabbit polyclonal except 

Bcl2): Fas (1 :1000; 50 kDa; Santa Cruz Biotechnology, Inc., Santa Cruz, CA), 

Fasl (1:1000; antibody reacts with both the membrane bound form [40 kDa] and 

the soluble form (26 kDa]; Santa Cruz), Caspase-8 (1:12,000; antibody reacts 

with both the inactive form [55kDa] and the active form [17 kDa]; AbCam, 

Cambridge, MA), Bax (1:1000; 23 kDa; Santa Cruz), Bcl2 (1:1000; mouse 

monoclonal; 26 kDa; Santa Cruz), Cytochrome c (1:1500; 11 kDa; Santa Cruz), 

Caspase-3 (1 :2000; antibody reacts with both the inactive form [35 kDa] and the 

active form [17 kDa]; Santa Cruz), 13-Actin (1 :2000; 43 kDa; AbCam) and a

Tubulin (1 :2000; 55 kDa; AbCam). After washing with TIBS (TBS, 0.5% (v/v) 

Tween 20), blots were incubated with peroxidase-conjugated secondary anti

rabbit (1 :2000; Santa Cruz) or anti-mouse (1 :2000; Amersham Biosciences, 

Piscataway, NJ) antibodies for 1 h at room temperature on a rocking platform. 

Blots were washed thoroughly in TTBS, followed by TBS after immunoblotting. 

Reactive protein was detected with ECL Plus chemiluminescence (Amersham 

Biosciences) and Bioflex X-ray film (Clonex Corporation, Markham, ON). 

Densitometric analysis of immunoblots was performed using lmageJ 1.37v 

software (National Institutes of Health, Bethesda, MD); all proteins were 
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quantified relative to the loading control. For antibodies that recognized two 

forms of the protein at different molecular weights (i.e., caspase-3, caspase-8 

and Fasl), both bands were quantified from the same sample relative to the 

loading control from that lane. 

3. 2.3 lmmunohistochemistry 

To determine the cellular localization of the active apoptotic pathways, 

immunohistochemical staining for active caspase-3 was performed in pancreas 

sections of nicotine and saline-exposed offspring. Active caspase-3 was selected 

because it is the final executioner caspase common to both the extrinsic and 

intrinsic pathways of programmed cell death. The pancreas from each animal 

(n=5 per group) was fixed by immersion in 10% {v/v) neutral buffered formalin 

(EM Science, Gibbstown, NJ) at 4° C overnight, washed in water and embedded 

in paraffin. Tissue sections {5µm) were deparaffinized in xylene, rehydrated and 

washed in PBS. Endogenous peroxidase activity was quenched in methanol, 

followed by antigen retrieval in 10 mmol/I citrate buffer (pH 3.0} at 3TC and 

blocking with 10% (v/v) normal goat serum and 1 % (w/v) BSA at room 

temperature. Sections were then incubated with the primary antibody, a 

polyclonal rabbit anti-active caspase-3 antibody {1 :10 dilution; Santa Cruz 

Biotechnology, Santa Cruz, CA} overnight at 4°C. Sections were washed in PBS, 

and immunostaining was identified using the Vectastain kit (Vector Laboratories, 

Burlinghame, CA) with diaminobenzadine as the chromogen. Tissue sections 
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were counterstained with Harris's hematoxylin, destained with acid alcohol, 

dehydrated and mounted with Permount (Fisher Scientific, Fair Lawn, NJ). 

Negative control sections were incubated with 1 % (w/v) BSA in PBS in place of 

the primary antibody. 

3. 2. 4 Electron Microscopy 

Pancreas tissue from saline and nicotine-exposed offspring (n=5 per 

group) were cut into small pieces and immersed in 2% glutaraldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.4) at 4°C for 1-3 days. Samples were then 

washed with 0.2 M sodium cacodylate buffer (pH 7.4), fixed for 1 hour in 1% 

Os04 in 0.1 M sodium cacodylate buffer (pH 7.4) at room temperature, 

dehydrated in an ethanol series followed by 100% propylene oxide (PO). 

Infiltration was performed at room temperature by immersion of tissues in 50% 

epon-araldite I 50% PO for 30 min, followed by 75% epon-araldite I 25% PO for 

30 min and 2 x 60 min in 100% epon-araldite. Tissues were embedded in 100% 

epon-araldite and polymerized overnight at 65°C. All chemicals used for electron 

microscopy were purchased from Canemco Inc., Montreal, PQ, unless otherwise 

stated. Thick sections (approximately 1 µm) were cut on an Ultracut E 

ultramicrotome (Leica Microsystems, Wetzlar, Germany), stained with toluidine 

blue and examined under a light microscope to ensure the presence of islets. 

Thin sections (approximately 70nm) were then cut from areas of the tissue 

containing islets, mounted on a Cu/Pd grid (200 mesh), and stained with 
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saturated uranyl acetate and lead citrate. Grids were examined with a JEOL 

1200EX transmission electron microscope (JEOL Ltd., Tokyo, Japan) and 

representative photographs were taken. All photographs were analysed using 

Image Pro Plus Version 5.1 software (Media Cybernetics, Inc., Silver Spring, 

MD). Beta cells were identified within the pancreas sections by the presence of 

insulin granules. The number of mitochondria was calculated relative to the area 

of a beta cell in at least four different cells per animal. To assess mitochondrial 

swelling, the average mitochondrial area and optical intensity were determined by 

manually circling a minimum of 140 mitochondria within the beta cells of each 

animal. Higher optical intensity values (a measure of brightness) represent 

increased empty, white spaces and less tightly formed cristae within a 

mitochondrion, which is an indication of organelle swelling. 

3.2.5 Statistical Analysis 

All statistical analyses were performed using SigmaStat (v.3.1, SPSS, 

Chicago, IL). The results are expressed as mean ± SEM. Data were checked for 

normality and equal variance and were tested using unpaired Student's t-tests (a 

= 0.05). Where data failed normality or equal variance test, data were reanalyzed 

using Mann-Whitney rank sum test. 
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3.3 RESULTS 

3. 3. 1 Mitochondrial-Mediated Apoptosis Pathway 

To examine the mitochondrial-mediated pathway of apoptosis, protein 

expression of total Bcl2, Bax, and caspase-3 were measured in whole pancreas 

homogenates from saline- and nicotine-exposed offspring. In addition, the 

mitochondrial and cytosolic fractions were isolated from pancreas samples for 

measurement of Bax translocation to the mitochondrial membrane and 

cytochrome c release from the mitochondria into the cytosol. Nicotine-exposed 

offspring had decreased Bcl-2 expression (p<0.05; Figure 3.2B), but no change in 

Bax expression (p>0.05; Figure 3.2A) relative to saline controls. This resulted in 

a 2.7-fold increase in the ratio of Bax (pro-apoptotic) to Bcl2 (anti-apoptotic) 

compared to control animals (p<0.05; Figure 3.2C}. Although there was no 

change in total Bax, the ratio of Bax expression in the cytosolic fraction relative to 

the mitochondrial fraction was reduced (p<0.05} following nicotine exposure 

(Figure 3.3A} suggesting increased translocation of Bax from the cytosol to the 

mitochondria. Additionally, nicotine-exposed offspring had an increase (p<0.05} 

in the ratio of cytochrome c expression in the cytosolic fraction relative to the 

mitochondrial fraction compared to saline-exposed animals (Figure 3.3B), 

implying that nicotine exposure increases cytochrome c release from the 

mitochondria into the cytosol. Finally, caspase-3, the last protein activated in the 

apoptosis signaling cascade, was examined. There was no change in the 

inactive 35kDa form of caspase-3 (Figure 3.4A), but an increase in the 17kDa 
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active form of the protein (Figure 3.48), which translated into a 3.3-fold increase 

(p<0.05) in the ratio of active to inactive caspase-3 protein in nicotine-exposed 

relative to saline-exposed offspring (Figure 3.4C). 

3.3.2 Death Receptor-Mediated Apoptosis Pathway 

To examine the death-receptor pathway of apoptosis, protein expression 

of the Fas receptor (Fas), Fas ligand (Fasl) and caspase-8 were measured in 

whole pancreas homogenates from saline and nicotine-exposed offspring. 

Nicotine exposure caused a significant (p<0.05) upregulation of Fas and the 

soluble form of Fasl (Figure 3.5A and 8) relative to saline exposure, but no 

change in expression of membrane-bound Fasl (Figure 3.58). There were no 

significant differences in expression of either the inactive or active forms of 

caspase-8 (Figure 3.6A), or the ratio of inactive to active caspase-8 (Figure 

3.68). 

3.3.3 /mmunohistochemical Localization of Active Caspase-3 

lmmunohistochemical staining of pancreas sections from saline and 

nicotine-exposed offspring revealed that all active caspase-3 protein was 

localized within the islet cells; there was no immunopositive staining in the acinar 

tissue of these sections (Figure 3. 7). 
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3.3.4 Electron Microscopy 

Electron microscopy photographs of pancreatic beta cells from saline and 

nicotine-exposed offspring (Figure 3.8A and 8, respectively) were examined to 

assess changes in mitochondrial number and morphology. The average optical 

intensity of mitochondria in nicotine-exposed beta cells was increased by 

approximately 11 % compared to saline-exposed mitochondria (p < 0.05; Figure 

3.8E). There was no difference in the number of mitochondria per beta cell area 

(p = 0.332; Figure 3.8C) or the average mitochondrion area within beta cells of 

saline and nicotine-exposed animals (p =0.160; Figure 80). 

3.4 DISCUSSION 

Humans with type 2 diabetes are characterized by the inability to produce 

a sufficient amount of insulin to compensate for peripheral insulin resistance (24

26). This insulin insufficiency is observed prior to the diagnosis of type 2 

diabetes (25) and is attributed to a reduction in beta cell mass (26;27). Indeed, 

recent studies have demonstrated a 40-60% reduction in beta cell mass from 

human patients with type 2 diabetes prior to diagnosis compared to weight

matched controls (24;28;29). Similarly, in our animal model, fetal and neonatal 

exposure to nicotine results in permanent loss of beta cell mass, a defect that 

precedes the onset of glucose intolerance (15). The nicotine-induced reduction 

in beta cell mass in this rodent model has been attributed to elevated levels of 

beta cell apoptosis and an impaired capacity for islet cell proliferation (15). 
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However, the specific apoptotic pathways responsible for this nicotine toxicity 

were unknown. Results from the current study suggest that exposure to nicotine 

during fetal and neonatal development triggers apoptotic signaling in pancreatic 

beta cells via the mitochondrial-mediated pathway. 

For this study, markers of both major apoptotic signaling cascades, the 

death receptor and mitochondrial-mediated pathways, were examined. Although 

nicotine exposure resulted in some alterations to the death receptor-mediated 

pathway (increased Fas and soluble Fasl), apoptosis appears to be mediated 

primarily through the mitochondrial pathway. Bcl2, which normally sequesters 

Bax in the cytosol (16), was significantly reduced in the pancreas following 

nicotine exposure, thus explaining the observed increase in translocation of Bax 

to the mitochondria. The presence of Bax on the mitochondrial outer membrane 

would trigger mtPTP opening, mitochondrial swelling and release of proteins such 

as cytochrome c into the cell cytosol (16). Indeed, mitochondrial swelling was 

confirmed by the increased mitochondrial optical density in beta cells of nicotine

exposed offspring observed with electron microscopy. Furthermore, this swelling 

resulted in increased release of cytochrome c from the mitochondria and 

triggered activation of caspase-3 in nicotine-exposed offspring. The apoptotic 

cysteine protease, caspase-3, is normally expressed as a 32 kDa precursor, but 

following apoptosome formation by cytochrome c, the protein is cleaved, first into 

p20 and p12 fragments, and then the p20 subunit is further proteolyzed to form 

the mature 17 kDa fragment (30). The active form of caspase-3 is classified as 
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an "executioner" caspase, and is responsible for the majority of cellular apoptotic 

events (21 ). For this reason, active caspase-3 was selected as a representative 

protein for localization of apoptotic signaling within the pancreas. 

lmmunopositive staining of the active "executioner" caspase was restricted to 

pancreatic islets, indicating that the observed activation of the mitochondrial

mediated apoptotic pathway was specific to endocrine cells. Furthermore, the 

nicotine-induced mitochondrial swelling observed by electron microscopy was 

only quantified in insulin-secreting beta cells. Therefore, it is likely that the 

changes to the mitochondrial-mediated apoptosis markers observed by Western 

blotting in the whole pancreas homogenates are localized to the pancreatic islets. 

Activation of caspase-3 can also be triggered by binding of Fas to its 

ligand Fasl, via the death receptor pathway. This interaction triggers either 

caspase-8-mediated cleavage of pro-caspase-3 or DISC-mediated translocation 

of tBid to the mitochondria, leading to release of mitochondrial proteins (16;23). 

Results from the current study showed an upregulation of Fas protein, as well as 

the soluble form of Fasl in the pancreas, but no change in activation of caspase

8. Without caspase-8 activation, downstream signaling events in the death 

receptor cascade such as cleavage of pro-caspase-3 to its active form, and 

subsequent apoptosis do not occur. Furthermore, induction of soluble Fasl may 

not have a significant impact on apoptotic signaling, since soluble Fasl has 

reduced biological activity compared to the membrane-bound form of the ligand 

(31 ). These data suggest that the death receptor pathway is not activated in the 

67 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

pancreas following developmental nicotine exposure. Instead, this study 

indicates that nicotine-induced beta cell toxicity in this animal model is mediated 

by the mitochondria. Similarly, beta cell apoptosis in response to high glucose 

levels has also been shown to be mediated via the mitochondrial apoptosis 

pathway (32). Indeed, glucose stimulation resulted in alterations to the 

mitochondrial apoptotic pathway in beta cells that are similar to those seen in this 

study: namely an increased Bax/Bcl2 ratio, Bax translocation, cytochrome c 

release and caspase-3 activation (32). 

Taken together, this study overwhelmingly points to the mitochondria as 

the principal mediator of beta cell apoptosis resulting from fetal and neonatal 

exposure to nicotine. However, mitochondria are involved not only in regulation 

of apoptosis in beta cells, but are also central to maintenance of beta cell function 

(33-35). Since we have demonstrated that mitochondria are affected by nicotine 

exposure, results from this study may have further consequences for beta cell 

function. Transgenic mice with beta cell-specific mitochondrial defects have 

decreased glucose-stimulated insulin release (i.e. impaired beta cell function) 

(36;37), suggesting that mitochondrial dysfunction can lead to development of 

type 2 diabetes. Indeed, both human and animal studies have observed impaired 

mitochondrial function in pancreatic islets of subjects with type 2 diabetes 

(38;39). Therefore, the effect of fetal and neonatal nicotine exposure on 

mitochondria may have implications beyond determining the early fate of beta 

cells and may in fact be the underlying cause of dysglycaemia in nicotine
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exposed adult offspring. These results suggest a mechanism by which fetal and 

neonatal exposure to nicotine, delivered through maternal smoking or nicotine 

replacement therapy, may result in postnatal glucometabolic abnormalities and 

suggests that the long-term postnatal health consequences of nicotine exposure 

warrants further investigation. 
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3.6 FIGURES 

Extrinsic Pathway 

Figure 3.1: Extrinsic and intrinsic pathways of apoptosis. 
The schematic diagram outlines key signaling molecules involved in the extrinsic (death 
receptor) and intrinsic (mitochondrial) apoptosis pathways. In the extrinsic pathway, a 
death-inducing ligand, such as Fas ligand (FasL), binds to its receptor (Fas), and initiates 
recruitment of FADD (Fas-associated death domain) and pro-caspase-8, which combine 
to form a death-inducing signal complex (DISC). DISC formation leads to activation of 
caspase-8, and can cause either activation of caspase-3 or truncation of Bid. Bid assists 
in the activation and translocation of Bax to the mitochondria, thus triggering the intrinsic 
pathway. Intrinsic apoptosis can also be triggered by environmental stress that either 
directly damages the mitochondria or activates Bax. Bax translocates to the 
mitochondrial outer membrane, where it oligomerizes and causes release of proteins 
such as cytochrome c from the mitochondria into the cell cytosol. Release of 
cytochrome c triggers the formation of an apoptosome complex with Apaf-1 and 
caspase-9, which then signals for activation of caspase-3 and subsequently, cellular 
apoptosis. 
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Figure 3.2: Mitochondrial-mediated apoptosis; bax and bcl2. 
Protein expression for: A) Bax, B) Bcl2 and C) the Bax/Bc12 ratio in saline (black bars) 
and nicotine (white bars) -exposed whole pancreas homogenates (n=4 per group) at 3 
weeks of age. A representative western blot for each protein is provided. All protein 
expression was quantified relative to a ~-actin loading control. Data are presented as 
the mean ± SEM. Values with an asterisk are significantly different from the saline 
control (p<0.05). 
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Figure 3.3: Mitochondrial-mediated apoptosis; bax translocation and cytochrome 
c release. 
Protein expression in the cytosol (C) relative to the mitochondrial fraction (M) for: A) bax, 
and B) cytochrome c in saline (black bars) and nicotine (white bars) -exposed whole 
pancreas, fractionated homogenates (n=4 per group) at 3 weeks of age. A 
representative western blot for each protein is provided. All protein expression was 
quantified relative to a J3-actin loading control. Data are presented as the mean± SEM. 
Values with an asterisk are significantly different from the saline control (p<0.05). 

A 

7 
iijo·;::::.:
"O c: 6c: 0
OU 
£ Cl) 5o .S 
~"O 

~ 3 4 
0 0·- 0 QI 3 
"' ;>0 '.t= 
>.~ 
(.) QI 2_a:: 
0 c: 
.gj 1 
ti) e 

a::: a. 
0 

Saline Nicotine B Saline Nicotine 
M C M C 

Cytochrome c 

0.5 

0.4 

0.3 

0.2 * 

0.1 

0.0 

lft 

* 


75 




Active 
Caspase-3 

~Actin 

Ratio of Active to Inactive Caspase-3 

PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 


A Saline Nicotine B Saline Nicotine c 
~~=:~ 
~!3-Actin 

0.5 

~ 0.4 
c: 

~ 
0.3 

a 
0 0.2 

"" 
~ 

~ "' 0.1 

0.0 

Figure 3.4: Mitochondrial-mediated apoptosis; caspase-3. 
Protein expression for: A) inactive caspase-3, B) active caspase-3, and C) the ratio of 
active to inactive caspase-3 in saline (black bars) and nicotine (white bars) -exposed 
pancreas homogenates (n=5 per group) at 3 weeks of age. A representative western 
blot for each protein is provided. All protein expression was quantified relative to a~
actin loading control. Data are presented as mean± SEM. Values with an asterisk are 
significantly different from the saline control (p<0.05). 
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Figure 3.5: Death receptor-mediated apoptosis; fas and fasl. 
Protein expression for: A) Fas, and B) Fasl (membrane and soluble forms) from saline 
(black bars) and nicotine (white bars)-exposed pancreas (n=5 per group) at 3 weeks of 
age. A representative western blot for each protein is provided. All protein expression 
was quantified relative to a ~-actin loading control. Data are presented as mean± SEM. 
Values with an asterisk are significantly different from the saline control (p<0.05). · 
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Active 

Figure 3.6: Death receptor-mediated apoptosis; caspase-8. 
Protein expression for: A) inactive and active caspase-8, and 8) the ratio of inactive to 
active caspase-8 from saline (black bars) and nicotine (white bars)-exposed pancreas 
(n=5 per group) at 3 weeks of age. A representative western blot for each protein is 
provided. All protein expression was quantified relative to a ~-actin loading control. 
Data are presented as mean± SEM. There were no significant differences in expression 
of any form of the caspase-8. 
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A 

B 

Figure 3.7: Active caspase-3 immunohistochemistry. 
Representative photographs of pancreas sections containing two islet cell clusters from 
each of a A) saline, and B) nicotine-exposed offspring at 4 weeks of age. The brown 
staining represents active caspase-3 protein ; all positive staining was localized with in the 
islets. 
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Figure 3.8: Electron microscopy. 
Representative electron microscopy photographs of: A) saline (black bars) and B) 
nicotine (white bars) exposed pancreas (n=5 per group) at 3 weeks of age. Black arrows 
point to examples of mitochondrial swelling; N = nucleus. Mitochondria were quantified 
within the pancreatic beta cells and presented as: C) the number of mitochondria per 
beta cell area, D) the average mitochondrial area, and E) the average mitochondrial 
optical intensity. Data are presented as mean± SEM. Values with an asterisk are 
significantly different from the saline control (p<0.05). 
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CHAPTER 4 

MATERNAL EXPOSURE TO NICOTINE INCREASES OXIDATIVE 

STRESS IN THE PANCREAS OF THE OFFSPRING. 

BRUIN JE, PETRE MA, LEHMAN MA, RAHA S, GERSTEIN HC, MORRISON KM AND 

HOLLOWAY AC. MATERNAL EXPOSURE TO NICOTINE INCREASES OXIDATIVE STRESS IN 

THE PANCREAS OF THE OFFSPRING. FREE RADICAL BIOLOGY AND MEDICINE. 2008 JUN 

1;44(11):1919-25. EPUB 2008 MAR4. 

4.1 INTRODUCTION 

Cigarette smoking during pregnancy is associated with a number of 

adverse obstetrical outcomes including placenta previa, premature rupture of the 

membranes, preterm birth and low birthweight (1-6). Moreover, recent 

epidemiologic studies have shown a strong relationship between maternal 

smoking and subsequent obesity, hypertension and type 2 diabetes in the 

offspring (7;8). We have previously shown in a rat model that maternal exposure 

to nicotine alone during pregnancy and lactation results in permanent loss of beta 

cell mass and function in the offspring (9; 10). These results may partially explain 

the increased risk of type 2 diabetes in children born to women who smoked 

during pregnancy (11 ), but the mechanism(s) underlying this beta cell loss have 

not yet been identified. 

It has been demonstrated that maternal smoking is associated with 
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increased levels of oxidative stress markers in mothers, newborns and infants 

(12;13). Furthermore, there is considerable evidence in vivo and in vitro to 

suggest that exposure to nicotine results in increased oxidative stress in fetal, 

neonatal and adult tissues (14-17). Indeed, in adult rats, nicotine exposure has 

been shown to increase oxidative stress in pancreatic tissue in vitro (16) and to 

produce oxidative tissue injuries in vivo (18;19). Because the pancreatic beta cell 

has low expression of antioxidant enzymes (20;21 ), it is particularly susceptible to 

oxidative stress-mediated tissue damage including increased beta cell death (22

27). 

The current study uses an animal model of fetal and neonatal exposure to 

nicotine, which has previously been shown to cause increased beta cell 

apoptosis at birth and weaning (9;10;28). It was hypothesized that maternally

administered nicotine would activate the fetal and neonatal pancreatic nicotinic 

acetylcholine receptors (nAChR), to cause an imbalance in the pro-oxidative/anti

oxidative status of the beta cell (oxidative stress), thus signaling for beta cell 

apoptosis. The nAChR belongs to a family of neurotransmitter-gated ion 

channels (29) that are homo- or heteropentamers comprised of various 

combinations of a- and 13-subunits (a2 - a10 and 132 - 134) (30). The nAChR is 

best characterized in the brain; however, these neuronal receptors also exist in 

various non-neuronal cell types (31 ;32), including adult pancreatic beta cells (33). 

It has been suggested that nicotine may affect adult pancreatic function by direct 

interaction with the pancreatic nAChR (33). However, expression of nAChR 
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subunits has not been previously examined in the developing fetal or neonatal 

pancreas. 

Therefore, the goals of this study were: 1) to determine the pattern of 

nAChR subunit expression in the developing pancreas, 2) to examine whether 

fetal and neonatal nicotine exposure alters pro- and I or anti-oxidant markers in 

the pancreas, and 3) to assess whether the pancreatic and I or systemic 

oxidative balance has been disrupted. 

4.2 MATERIALS AND METHODS 

4. 2. 1 Maintenance and Treatment ofAnimals 

All animal experiments were approved by the Animal Research Ethics 

Board at McMaster University, in accordance with the guidelines of the Canadian 

Council for Animal Care. Nulliparous 200-250g female Wistar rats (Harlan, 

Indianapolis, IN) were maintained under controlled lighting (12:12 L:D) and 

temperature (22°C) with ad libitum access to food and water. Dams were 

randomly assigned (n=1 O per group) to receive saline (vehicle) or nicotine 

bitartrate (1 mg/kg/d, Sigma-Aldrich, St. Louis MO) via subcutaneous injection 

daily for 2 weeks prior to mating until weaning. At postnatal day 1 (PND1) litters 

were culled to eight to assure uniformity of litter size between treated and control 

litters. To eliminate any confounding effects of the female reproductive cycle, 

only male offspring were used in this study. After weaning at postnatal day 21 

(PND21 ), male offspring (n=10 per group) were selected randomly for the 
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experiments described below. 

4.2.2 Reverse Transcription (RT) and Real-Time PCR 

Pancreatic tissue from pups born to saline- and nicotine-exposed mothers 

was removed at PND1 and PND21 and immediately placed in RNA later (Sigma

Aldrich Inc., St. Louis, MO, USA) for analysis by either semi-quantitative RT-PCR 

or quantitative real-time PCR. The mRNA expression of nAChR subunits (a2, 

a3, a4, a5, a6, a7, [32, [33, and [34) was determined at birth (PND1) and weaning 

(PND21) by RT-PCR to assess the pattern of the receptor subunit expression 

during fetal and neonatal development. The mRNA expression of the anti

oxidant ertzymes heme-oxygenase 1 (H0-1 ), glutathione peroxidase (GPx), 

manganese superoxide dismutase (MnSOD) and copper/zinc superoxide 

dismutase (CuZnSOD) was determined at PND21 by real-time PCR to compare 

the antioxidant response following nicotine or saline exposure. RNA was 

extracted using a Qiagen RNA Extraction Kit (RNeasy Mini Kit, Mississauga, ON, 

Canada) and treated with TURBO DNA-freeTM DNase-1 (Ambion, Austin, TX) 

according to manufacturer's instructions; RNA was stored at -80°C prior to use. 

RNA samples (n=6 per group) were reverse transcribed to cDNA in a 20 

µL reaction mixture containing 1 µg of extracted RNA, 1 µL of random primers, 

1 µL of dNTPs (10 mM), 4 µL of 5x First-Strand Buffer, 1 µL of 0.1 M OTT, 1 µL of 

RNase OUT, 1 µL of Superscript Ill RT and DNase/RNase-free water (lnvitrogen, 
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Carrisbad, CA, USA), according to the standard protocol supplied with each 

product. The reaction was carried out in an iCycler Thermal Cycler (Bio-Rad, 

Hercules, CA, USA) using the following program: 5 minutes at 25°C, 60 minutes 

at 50°C, and 15 minutes at 70°C. The cDNA was stored at -20°C until use. 

Reverse transcription (RT)-PCR reactions to determine the pattern of 

nAChR subunit expression were prepared in 50 µL reactions with: 40.1 µL of 

RNase/DNase free water, 5.0 µL of 1Ox Mg-free PCR Buffer, 1.5 µL of MgCl2 (50 

mM), 1.0 µL of dNTPs (10 mM), 0.4 µL of Taq DNA Polymerase (lnvitrogen, 

Carrisbad, CA, USA), 1.0 µL template cDNA, and 1.0 µL of the primer mix (10 

µM, MOBIX, McMaster University, Hamilton ON, Canada). Primer sequences for 

nAChR subunits are provided in Table 4.1. The cDNA was amplified in the 

iCycler Thermal Cycler using the following program: 2 minutes at 94°C, followed 

by 35 cycles of 30 seconds denaturing at 94°C, 30 seconds annealing at 55°C, 1 

min elongation at 72°C, and then storage at 4°C. PCR products were separated 

on a 2% agarose gel and visualized using ethidium bromide (EMO, Gibbstown, 

NJ, USA). PCR products were imaged with the UVP Bioimaging Systems Epi 

Chemi II Darkroom and Labworks software (UVP Inc., Upland CA). 

Real-time PCR to measure antioxidant enzyme expression in saline- and 

nicotine- exposed pancreas was performed using SYBR® Green chemistry (n=5 

per treatment group). 25µL reactions were prepared with 10.5 µL of 

RNase/DNase free water, 12.5 µL of iQ SYBR Green Supermix (Biorad 

Laboratories, CA), 1.0µL of template cDNA, 1.0 µL of the primer mix (25 µM for 
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Beta Actin; 10 µM for MnSOD, CuZnSOD and GPx-1; 2 µM for H0-1; MOBIX, 

McMaster University, Hamilton ON, Canada}. Primer sequences for antioxidant 

enzymes are provided in Table 4.1. The cDNA was amplified in an iCycler 

Thermal Cycler coupled with an iCycler IQ Multicolor real-time PCR Detection 

System using iCycler IQ software v3.1.7050 (Biorad Laboratories, CA}. Real

time PCR was run for 1 cycle (50°C for 2 min, 95°C for 10 min} followed 

immediately by 40 cycles (95°C for 15 s, 60°C for 60 s}, and fluorescence was 

measured after each of the repetitive cycles. Emission data were quantified 

using the threshold cycle (Ct} value. A melting point dissociation curve generated 

by the instrument was used to confirm that only a single product was present with 

each set of primers. Gene expression of each antioxidant enzyme was quantified 

as the average Ct value normalized to the beta actin Ct value for the same 

sample. 

4.2.3 Western Blotting 

Protein expression was measured in whole pancreas homogenates from 

nicotine and saline-exposed offspring at weaning (PND21 }. Protein was 

extracted from the pancreas (n=4 per group} using RIPA lysis buffer (15 mM 

Tris-HCI, 1 % (v/v) Triton X-100, 0.1 % (w/v} SOS, 167 mM NaCl, 0.5% (w/v} 

sodium deoxycholatic acid), with Complete Mini EDTA-free protease inhibitors 

(Roche Applied Science, Laval QC, Canada). 30 µg of protein was subjected to 

SOS-PAGE using a 10% separating gel and then electro-transferred to PVDF 
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blotting membrane (BioRad Laboratories, CA). Membranes were blocked 

overnight with 5% (w/v) skim milk in TBST (TBS, 0.5% (v/v) Tween 20) at 4°C 

and then incubated for 1 h at room temperature in primary antibody on a rocking 

platform. The membrane was cut horizontally at approximately 40 kDa and the 

upper molecular weight portion was incubated in rabbit polyclonal anti-beta actin 

for all blots (47 kDa running weight; 1 :2000 dilution, AbCam, MA). The lower 

molecular weight portion was incubated with primary antibodies for MnSOD 

(rabbit polyclonal, 1 :5000, 25kDa, Santa Cruz Biotechnology, CA), CuZnSOD 

(rabbit polyclonal, 1 :1000, 23 kDa, Santa Cruz Biotechnology, CA), GPx-1 (rabbit 

polyclonal, 1 :5000, 22kDa, AbCam, MA) and H0-1 (mouse monoclonal, 1 :4000, 

35kDa, Stressgen Biotechnologies, BC, Canada). After washing with TBST, blots 

were incubated with peroxidase-conjugated secondary anti-rabbit (1 :2000; 

Santacruz, CA) or anti-mouse (1 :2000; Amersham Biosciences, NJ) antibodies 

for 1 hat room temperature on a rocking platform. Blots were washed thoroughly 

in TBST followed by TBS after immunoblotting. Reactive protein was detected 

with ECL Plus chemiluminescence (Amersham Biosciences, NJ) and Bioflex X

ray film (Clonex Corporation, ON). Densitometric analysis of immunoblots was 

performed using lmageJ 1.37v software (National Institutes of Health, Bethesda, 

MD); all proteins were quantified relative to beta actin. 

4.2.4 Reactive Oxidative Species Production by Isolated Islets 

Islet isolation from rats was performed as previously described (34). 
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Briefly, the pancreas was immediately excised following sacrifice and placed in 6 

ml of Hank's balanced salt solution (HBSS) (HyClone, Logan UT) containing 4 

mg/ml collagenase type IA (Sigma-Aldrich, St. Louis, MO), 100 IU/ml penicillin 

G and 0.25 µg/ml streptomycin (Gibco, Grand Island, NY). The pancreas was 

minced finely and the resulting suspension was incubated at 37°C for 40 min. 

The reaction was then quenched with 20 ml HBSS supplemented with 10% fetal 

bovine serum (FBS) (HyClone, Logan, UT), 100 IU/ml penicillin G and 0.25 

µg/ml streptomycin. Islets were manually picked from the suspension using a 

small glass pipette and a dissecting microscope. The islets were incubated at 

37°C, 5% C02 / 95% normal atmosphere in 5 ml RPMI 1640 (Life Technologies, 

Burlington, ON) supplemented with 10% FBS, 100 IU penicillin G and 0.25 µg/ml 

streptomycin for 48 hours. 

ROS production by isolated islets at PND21 following saline and nicotine 

exposure was measured using 2',7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA) (Molecular Probes Inc., Eugene, OR) fluorescence as previously 

described (35). Briefly, 100 islets from saline- and nicotine-exposed offspring 

(n=3 per group) were washed twice with PBS. Following centrifugation, the 

supernatant was removed and the pelleted islets were then resuspended in 100 

µL of PBS containing 1 OOµM H2DCFDA and incubated for 3 h at 37°C. Because 

of the relatively low number of cells in this assay, a long incubation period allows 

for the diffusion of the oxidized dye from inside the cell back out into the culture 

medium (35). This approach has been previously validated to determine ROS 
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production by isolated islet cells in rats (35). In addition, since H2DCFDA must be 

made fresh immediately prior to use, islets isolated on different days were 

incubated in different batches of reagent. To account for day-to-day variability 

within the experiment, a 43 µM hydrogen peroxide reaction was prepared with 

each batch of H2DCFDA to calibrate the performance of the dye. The hydrogen 

peroxide was added to 1 OOµM H2DCFDA and incubated in parallel with the islet 

reactions. Following the incubation period, the islets were vigorously disrupted to 

release intracellular H2DCFDA. Both the islet suspensions and the hydrogen 

peroxide control were centrifuged, and the supernatants were transferred to black 

96-well plates (BO Falcon, Mississauga, ON). Fluorescence of the 2',7'

dichlorofluorescein product was determined using a SpectaMax Gemini XS 

(Molecular Devices Corp., Sunnyvale CA) microplate spectrofluorometer at 

excitation and emission wavelengths of 505 nm and 540 nm, respectively. All 

measurements of islet ROS production were normalized ·to the 0.043 mM 

hydrogen peroxide control. 

4.2.5 Protein Carbonyl Detection 

To assess oxidative damage to pancreatic proteins, the presence of 

protein carbonyl groups was quantified using the OxyBlot™ Protein Oxidation 

Detection Kit (Chemicon International, Temecula CA). Formation of protein 

carbonyl groups was measured at PND21 in both whole pancreas homogenates 

(n=5 per group) and in the mitochondrial fraction of the pancreas (n=4 per group) 
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from saline- and nicotine-exposed offspring. Whole pancreas homogenates were 

prepared and quantified as described above. To separate the mitochondrial 

fraction, the Compartmental Protein Extraction Kit (K301301 O; Biochain Institute 

Inc., Hayward, CA) was used according to manufacturer's instructions. Protein 

samples were then prepared with the OxyblotTM Kit, according to manufacturer's 

instructions. Briefly, equal amounts of protein (16 µg for whole pancreas, and 10 

µg for mitochondrial fractions) were derivatized with either 2,4

dinitrophenylahydrazine (DNPH) or a derivatization-control solution. Gel 

electrophoresis, transfer to a PVDF membrane, immunoblotting conditions and 

detection of reactive protein were the same as above. Blots were incubated for 1 

h in rabbit-DNP antibody (1 :150), followed by 1 h in secondary goat anti-rabbit 

lgG (HRP-conjugated; 1 :300). No reactive protein was detected in the 

derivatization-control immunoblots. Densitometric analysis of immunoblots was 

performed using lmageJ 1.37v software (National Institutes of Health, Bethesda, 

MD). 

4.2.6 8-iso Prostag/andin F2a 

Blood samples (n=10 per group) for the analysis of 8-iso-prostaglandin 

F2cx (8-isoPG), a marker of lipid peroxidation, were collected immediately after 

sacrifice from saline and nicotine-exposed animals at weaning (PND21 ). Blood 

samples were allowed to clot at 4 °C, were then centrifuged and the serum was 

stored at -80°C until assayed. 8-isoPG concentrations were determined using 
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the CorrelateTM EIA Direct 8-iso-prostaglandin F2a Enzyme Immunoassay Kit 

(Assay Designs, Ml) according to manufacturer's instructions. 

4.2. 7 Statistical Analysis 

All statistical analyses were performed using SigmaStat (v.2.03, SPSS, 

Chicago, IL). Data from nicotine-exposed offspring were compared to the control 

group using Student's t-test (a=0.05). 

4.3 RESULTS 

4.3. 1 nAChR Subunit mRNA Expression 

At PND1 and PND21 all of the nAChR subunits except a5 were present in 

the pancreas of both saline- and nicotine-exposed offspring (Figure 4.1 ). 

4.3.2 Antioxidant Enzyme Expression 

Fetal and neonatal exposure to nicotine did not alter mRNA expression of 

H0-1, GPx-1, MnSOD or CuZnSOD in the pancreas at PND21 (Table 4.2). 

Nicotine exposure significantly increased the protein expression of both GPx-1 

and MnSOD in the pancreas at PND21 (Figures 4.28 and C respectively; 

p<0.05), but did not alter the protein expression of H0-1 or CuZnSOD (Figures 

4.2A and D respectively). 
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4.3.3 Reactive Oxygen Species Production by Isolated Islets 

ROS production by isolated pancreatic islets was significantly elevated in 

nicotine-exposed offspring relative to saline controls at PND21 (Figure 4.3; 

p<0.05). 

4.3.4 Protein Carbonyl Formation 

To assess whether the balance of ROS production and antioxidant 

enzyme expression has been disrupted by nicotine exposure, oxidative damage 

to protein was measured in the pancreas at PND21. Total protein carbonyl levels 

were unchanged in the whole pancreas (Figure 4.4 ), but a significant increase in 

oxidative damage to a 25 kDa protein was observed (Figure 4.4; p<0.05). 

Furthermore, total protein carbonyl levels were approximately 3 times higher in 

the mitochondrial fraction from nicotine-exposed relative to saline-exposed 

pancreas (Figure 4.4; p<0.001 ). 

4.3.5 8-iso Prostaglandin F2a 

Mean serum levels of 8-isoPG in nicotine-exposed animals were 3 times 

higher than in control offspring, but due to variability in the nicotine-exposed 

offspring, this difference did not reach significance (saline 256 ± 48.6 pg/ml, 

nicotine 767 ± 375.4 pg/ml; p=0.17). 
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4.4 DISCUSSION 

Recent epidemiological studies have shown that the offspring of women 

who smoke during pregnancy have an increased risk of developing obesity, 

hypertension and type 2 diabetes (7;8;11 ;36-40), although the mechanism(s) 

underlying these associations are unknown. We have previously demonstrated 

in a rat model that maternal nicotine exposure during pregnancy and lactation 

causes beta cell apoptosis in fetal and neonatal offspring, followed by 

development of impaired glucose metabolism in early adult life (9; 10;28). We 

hypothesized that nicotine acts directly on the nicotinic acetylcholine receptor in 

the developing pancreas to induce oxidative stress, and ultimately, beta cell 

apoptosis. Indeed, results from this study demonstrate that subunits of the 

nAChR are present during early postnatal life, and that in the pancreas, perinatal 

nicotine exposure results in both increased oxidative stress and increased beta 

cell apoptosis. 

In this study, the a2 - a4, a6 - a7 and ~2 - ~4 subunits of nAChR were all 

present in the pancreas at birth and weaning. Nicotine-exposed offspring have a 

mean serum cotinine (the major metabolite of nicotine) concentration of 26.2 ± 

1.78 ng/ml at birth (41 ), which provides evidence that maternally-administered 

nicotine reaches the pups. The presence of the nAChR subunits in the fetal and 

neonatal pancreas suggests that this maternally-derived nicotine may act via 

non-neuronal nicotinic acetylcholine receptors to cause the observed increase in 

beta cell death in the offspring (9;10;28). However, further binding studies and 
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co-administration of an nAChR antagonist would be required to determine 

conclusively that nicotine is exerting its effects by direct activation of the nAChR. 

Nicotine exposure has been shown to increase oxidative stress in 

pancreatic tissue in vitro (16) and it is well established that pancreatic beta cells 

are particularly susceptible to oxidative stress-mediated tissue damage due to 

their low level of antioxidant enzyme expression (20;21 ). Therefore, we 

hypothesized that the observed increase in beta cell apoptosis in neonatal 

nicotine-exposed offspring (9; 10;28) might be due, in part to nicotine-induced 

oxidative stress in the developing pancreas. Indeed, nicotine-exposed offspring 

had elevated expression of antioxidant proteins, MnSOD and GPx-1, in the 

pancreas and a concomitant rise in islet ROS production. Cellular oxidative 

status is a balance between oxidative stress and antioxidant capacity. Therefore 

if the level of ROS exceeds the antioxidant capacity of the cell, oxidative stress 

will ensue (25;42). Data from this study suggest that fetal and neonatal nicotine 

exposure triggers both the pro-oxidant and anti-oxidant response in the pancreas. 

The consequences of oxidative stress include damage to mitochondria, 

cellular proteins, lipids and nucleic acids (42;43), which can lead to cell death 

through a variety of mechanisms (22). Indeed, nicotine-exposed animals had 

evidence of oxidative protein damage, as there was increased protein carbonyl 

formation in the nicotine-exposed offspring relative to saline controls. 

Interestingly, individual proteins in both the whole pancreas and isolated 

mitochondrial fraction appeared to be particularly susceptible to oxidative 
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damage. This trend has also been observed by other groups who report 

increased protein carbonyl modification to susceptible proteins (44-46). In a 

future study, we plan to identify specific proteins that are targeted by oxidative 

stress in this animal model using 2-dimensional gel electrophoresis and mass 

spectrometry. Furthermore, our data suggest that the oxidative stress is not 

limited to the pancreas, as there was a trend towards higher levels of 8-isoPG (a 

marker of whole body oxidative stress) in the nicotine-exposed offspring at 

weaning. Taken together, these results suggest that developmental nicotine 

exposure induces an antioxidant response that is associated with loss of redox 

balance in the pancreas. 

Results from this study also indicate that the increased oxidative stress in 

the pancreas may differentially affect the mitochondria. A striking increase in 

protein carbonyl levels was observed in the isolated mitochondrial fraction from 

the pancreas following nicotine exposure whereas there was no significant 

difference in protein carbonyl formation in the whole pancreas homogenate. 

Furthermore, the increase in MnSOD protein expression, but not CuZnSOD 

protein expression, also indicates that the oxidative stress may be localized 

within the mitochondria. The superoxide dismutase antioxidant response is 

essential for protecting the cell from oxidative stress; SOD enzymes catalyze the 

conversion of the highly reactive superoxide anion to hydrogen peroxide, which 

can then be safely converted to water and molecular oxygen by catalase and 

glutathione peroxidase (47). Mitochondrial DNA is more vulnerable to ROS 
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damage than nuclear DNA (48), which may explain why elevated levels of ROS 

in the islets induced the mitochondrial SOD response (MnSOD) and not the 

cytosolic response (CuZnSOD). In addition, the mitochondria are not only 

targeted by ROS, but are also the major source of ROS production in the cell. 

The iron-sulfur centers of the electron transport chain (ETC) enzyme complexes 

within the mitochondrial inner membrane are extremely sensitive to ROS 

inactivation (43;49). When the function of electron carrier complexes is impaired, 

electrons build up at the initial stages of the ETC, leading to further production of 

ROS (43;43). Oxidative damage within the mitochondria can lead to 

mitochondrial swelling and ultimately trigger programmed cell death (22;49;50). 

The exact role of the mitochondria in the observed beta cell apoptosis in this 

animal model has been examined in a separate study (51 ). 

Results from this study have shown that maternal nicotine, delivered to the 

fetus and neonate either through cigarette smoking or nicotine replacement 

therapy, during pregnancy and lactation, may act directly on the nAChR in the 

developing pancreas to induce oxidative stress and subsequent beta cell loss in 

the pancreas. Furthermore, this oxidative stress may target the mitochondria, 

suggesting a potential mechanism through which fetal and neonatal nicotine 

exposure leads to beta cell apoptosis. An early reduction in beta cell mass is 

associated with an increased risk of developing type 2 diabetes later in life 

(52;53), which may explain, in part, the increased risk of type 2 diabetes in 

children born to women who smoked during pregnancy. This study also provides 
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further support to the recent concerns about the safety of nicotine replacement 

therapy during pregnancy and lactation (54). 
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Figure 4.1: mRNA expression for nAChR subunits. 

Representative PCR products are shown on an agarose gel from saline control pancreas 

at: A) PND1 and B) PND21. Lane: 1) 1 OObp DNA ladder; 2) a2; 3) a3; 4) a4; 5) a5; 6) 

a6; 7) a7; 8) ~2; 9) ~3; 10) ~4; 11) 1 OObp DNA ladder. 
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Figure 4.2: Quantification of protein expression for antioxidant enzymes. 
A) H0-1, B) GPx-1, C) MnSOD and D) CuZnSOD in saline (black bar) and nicotine 
(white bar) -exposed pancreas at 3 weeks of age (n=4 per group). A representative 
Western blot for each protein is presented in panel E. All protein expression was 
quantified relative to a ~-actin loading control. Data are presented as the mean ± SEM. 
Values with an asterisk are significantly different from the saline control (p<0.05). 
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Figure 4.3: ROS production in isolated islets at postnatal day 21. 
Islets were isolated from saline (black bar) and nicotine (white bar)-exposed offspring 
(n=3 per group) at weaning (postnatal day 21 ). Data are expressed as relative 
fluorescent units (normalized to a hydrogen peroxide control in H2DCFDA) ± SEM. 
Values with an asterisk are significantly different (p<0.05). 
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Figure 4.4: Pancreatic protein carbonyl formation at postnatal day 21. 
A) Quantification of protein carbonyl groups in whole tissue homogenates (n=5 per 
group) and mitochondrial fractions (n=4 per group) from the pancreas of saline (black 
bar) and nicotine (white bar)- exposed offspring at 3 weeks of age. B) A representative 
Western blot of protein carbonyl groups is shown for the whole pancreas and 
mitochondrial fraction from saline (S) and nicotine (N) - exposed offspring. The black 
arrow indicates a 25 kDa protein that is significantly altered by fetal and neonatal nicotine 
exposure in the whole pancreas homogenates. Data are presented as the mean± SEM. 
Values with an asterisk are significantly different from the saline control (p<0.05); a 
double asterisk indicates a p value < 0.001. 
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Table 4.1: Primer sequences for reverse transcription and real-time PCR. 

Gene Forward Primer Reverse Primer 

GPx-1 

MnSOD 

CuZnSOD 

H0-1 

nAChRa2 

nAChRa3 

nAChRa4 

nAChRa5 

nAChRa6 

nAChRa7 

nAChR ~2 

nAChR ~3 

nAChR~4 

Beta Actin 

5' - CGA CAT CGA ACC CGA TAT AGA 

5' - CCT TIC CCT GAC AAG GTA CAC 

5' - TGG GTI CCA TGT CCA TCA ATA 

5' - ACA CCA GCC ACA CAG CAC TA 

5' - CTC CTG CAG CAT CGA TGT GAC CTI 

CTT 

5' - GGA GAA GTG ACT TGG ATC C 

5' - GCC ATC TAT AAG AGC TCC TGC AGC 

ATC 

5' - CGA ACG TCT GGT TGA AGC 

5' - TCT TAA GTA CGA TGG GGT GAT AAC 

5' - TTG CCA GTA TCT CCC TCC AG 

5' - GCT GAC GGC ATG TAC GAA G 

5' - CTC ATT ATC CAC CTC CGT TT 

5' - GGT TGC CTG ACA TCG TGT TG 

5' - GCT GTG CT A TGT TGC CCT AGA C 

5' - CCA TCA CCA AGC CCA GAT AC 

5' - CAA ATG CTG CAC AGG AAT ACA 

5' - CTG GAC CGC CAT GTI TCT TA 

5' - CCA GCA GCT CAG GAT GAG TA 

5' - GAG ATG CAC AGC GTG ATC TIC TCT 

CCAC 

5' - CAA GTG GGC A TG GTG TGT G 

5' - CTI CTC GCC AAA CTC TGA AGG CAG ATA 

G 

5' - CAC CAT AA T GGA ATA GGG 

5' -AAC ATG GTC TIC ACC CAC TTG 

5' - CTI CTC ATT CCT TTT GCC AG 

5' - GGA GGT GGG AGG CAC AAT C 

5' - CTG TAT CAC TCT CCT TTC CAT CC 

5' - GCC AAT GAG CGG TAT GTC 

5' - ACC GCT CAT TGC CGA TAG T 

Table 4.2: mRNA expression of antioxidant proteins in the pancreas at 3 weeks of 
age, as determined by quantitative real-time PCR. 

Subunit Saline Nicotine p value 

H0-1 1.43 ± 0.018 1.42 ± 0.016 0.628 

GPx 1.17 ± 0.016 1.19 ± 0.022 0.486 

MnSOD 1.36 ± 0.089 1.35 ± 0.020 0.640 

CuZnSOD 1.23 ± 0.012 1.21 ± 0.021 0.377 

All gene expression was quantified relative to a 13-actin loading control. Data are 
presented as the mean ± SEM. 
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CHAPTER 5 

FETAL AND NEONATAL NICOTINE EXPOSURE IN WISTAR 

RATS CAUSES PROGRESSIVE PANCREATIC MITOCHONDRIAL 

DAMAGE AND BETA CELL DYSFUNCTION. 

BRUIN JE, PETRE MA, RAHA S, MORRISON KM, GERSTEIN HC, HOLLOWAY AC. FETAL 

AND NEONATAL NICOTINE EXPOSURE IN WISTAR RATS CAUSES A PROGRESSION OF 

PANCREATIC MITOCHONDRIAL ALTERATIONS AND LEADS TO BETA CELL DYSFUNCTION. 

2008. PLoS ONE3(10): E3371. DOl:10.1371/JOURNAL.PONE.0003371. 

5.1 INTRODUCTION 

Cigarette smoking is associated with numerous adverse obstetrical and 

fetal outcomes (1-6), yet 15-20% of women reportedly smoke during pregnancy 

(1 ;7). Furthermore, mounting epidemiologic evidence indicates that maternal 

smoking is associated with an increased risk of obesity, hypertension and type 2 

diabetes in the offspring (7-13), although the mechanisms underlying this 

relationship are unknown. Our laboratory has previously demonstrated in a rat 

model that maternal exposure to nicotine, the major addictive component of 

cigarettes, during pregnancy and lactation results in postnatal obesity and 

impaired glucose homeostasis in adult offspring (14;15). Because nicotine 

replacement therapy (NRT) is recommended for pregnant women who cannot 

quit smoking by other means (16), these results may have significant public 

health implications. In our animal model, postnatal dysglycemia following fetal 
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and neonatal nicotine exposure was associated with a loss of beta cell mass, 

beginning at birth and persisting into adulthood (14). This reduction in beta cell 

mass following developmental nicotine exposure may partially explain the 

increased risk of type 2 diabetes in the offspring of women who smoked during 

pregnancy (8). 

Individuals with type 2 diabetes are unable to produce sufficient insulin to 

maintain normal glucose homeostasis (17). This has been attributed, in part, to 

reduced beta cell mass and impaired beta cell function (17;18}. In beta cells, the 

mitochondria are involved in triggering apoptosis, thereby contributing to the 

regulation of beta cell mass (19;20}. We have previously shown that fetal and 

neonatal exposure to nicotine results in beta cell loss due to increased oxidative 

stress (21} and beta cell apoptosis (14;15}. Furthermore, we have demonstrated 

that this nicotine-induced oxidative stress differentially targeted the mitochondria 

in the pancreas (21), resulting in mitochondrial-mediated beta cell apoptosis (22). 

However, in addition to regulating beta cell mass (via apoptosis}, the 

mitochondria are also critical for maintenance of beta cell function through the 

coupling of a glucose stimulus to insulin release (23-25). Both human and animal 

studies have demonstrated mitochondrial dysfunction in islets of subjects with 

type 2 diabetes (26;27}. Therefore, we hypothesize that the dysglycemia 

observed in this animal model following fetal and neonatal nicotine exposure is 

likely mediated by pancreatic mitochondrial defects. This study will examine the 

effect of fetal and neonatal exposure to nicotine on postnatal mitochondrial 
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structure and function, as well as subsequent beta cell function. 

5.2 MATERIALS AND METHODS 

5.2.1 Maintenance and Treatment ofAnimals 

All animal experiments were approved by the Animal Research Ethics 

Board at McMaster University, in accordance with the guidelines of the Canadian 

Council for Animal Care. Nulliparous 200-250g female Wistar rats (Harlan, 

Indianapolis, IN, USA) were maintained under controlled lighting (12:12 L:D) and 

temperature (22°C) with ad libitum access to food and water. Dams were 

randomly assigned (n=30 per group) to receive saline (vehicle) or nicotine 

bitartrate (1 mg/kg/d, Sigma-Aldrich, St. Louis, MO, USA) via subcutaneous 

injection daily for 2 weeks prior to mating until weaning (postnatal day 21 ). We 

have previously demonstrated that this dose of nicotine (1 mg/kg/d) results in 

cotinine concentrations in maternal serum that are similar to "moderate" female 

smokers and in nicotine-exposed offspring serum at birth that are comparable to 

infants nursed by smoking mothers (28). At postnatal day 1, litters were culled to 

eight to assure uniformity of litter size between treated and control litters. To 

eliminate any confounding effects of the female reproductive cycle, only male 

offspring were used in this study. 
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5.2.2 Oral Glucose Tolerance 

Glucose homeostasis was investigated in nicotine-exposed and saline 

control rats at 4, 15 and 26 weeks of age (n=15 per group) using sequential oral 

glucose tolerance tests (OGTT) as previously described (14;15). Briefly, after c;in 

overnight fast insulin and glucose were measured in saphenous vein samples, 

collected by repeated puncture, at baseline, 30 and 120 minutes after rats were 

given 2g· kg-1 glucose (Sigma-Aldrich, St. Louis, MO, USA) in water by gavage. 

Blood samples were allowed to clot at 4°C, centrifuged and stored at -80°C until 

assayed. Serum glucose concentrations were measured by a commercially 

available kit using the glucose oxidase method (Pointe Scientific Inc., Canton, Ml, 

USA), and insulin levels were measured by an ultra sensitive rat insulin ELISA 

(Crystal Chem Inc., Downers Grove, IL, USA). Data are presented as the 

average area under the curve (AUC) ± SEM for saline- and nicotine-exposed 

offspring at each age. 

5.2.3 Electron Microscopy 

Pancreas tissue from offspring at 3 weeks (n=4 per group), 15 weeks 

(saline: n=3 and nicotine: n=4), and 26 weeks (n=3 per group) were collected 

and processed for electron microscopy as previously described (22). All 

chemicals used for electron microscopy were purchased from Canemco Inc., 

Montreal, QC, Canada unless otherwise stated. Thick sections (approximately 

1 µm) were cut on an Ultracut E ultramicrotome (Leica Microsystems, Wetzlar, 
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Germany), stained with toluidine blue and examined under a light microscope to 

ensure the presence of islets. Thin sections (approximately 70nm) were then cut 

from areas of the tissue containing islets, mounted on a Cu/Pd grid (200 mesh), 

and stained with saturated uranyl acetate and lead citrate. Grids were examined 

with a JEOL 1200EX transmission electron microscope (JEOL Ltd., Tokyo, 

Japan) and representative photographs were taken at either 5000x or 12000x 

magnification. All photographs were analysed by a single investigator blinded to 

the treatment groups using Image Pro Plus Version 5.1 software (Media 

Cybernetics, Inc., Silver Spring, MD, USA). 

Beta cells were identified within the pancreas sections by the presence of 

insulin granules. Insulin granules were classified as filled (dense-core), immature 

(light gray granule) or empty (no insulin). The number of insulin granules and 

mitochondria were calculated relative to the area of a beta cell. Individual 

mitochondrial morphology was assessed by quantifying: a) the average 

mitochondrion area; b) the proportion of mitochondria with blebbing and/or 

merging with other mitochondria (refer to Figure 5.1 E for examples); c) the 

proportion of mitochondria in each of five defined stages of progressive 

deterioration. The definitions for each mitochondrial stage were created using a 

modification of a previously described scale for assessing mitochondrial 

morphologies (29). Stage 1 mitochondria were classified as structurally healthy, 

with dense, intact cristae. Stage 2 mitochondria had visible swelling, but 

maintained distinctive intact cristae structure. Stage 3 mitochondria had more 
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severe swelling and minimal evidence of intact cristae. Stage 4 mitochondria 

displayed severe swelling, minimal cristae structure and formation of vacuoles. 

Stage 5 mitochondria were extremely large and swollen, with essentially 

complete loss of defined structure within the mitochondrial membrane. An 

example of mitochondria at each defined morphological stage is provided in 

Figure 5.2F. 

5.2.4 Mitochondrial Enzyme Activity 

Pancreas tissue was excised from offspring at 3 weeks (saline: n=7, 

nicotine: n=5), 15 weeks (n=5 per group) and 26 weeks (n=5 per group), frozen 

on dry ice and stored at -80°C until analysis. Tissue samples were homogenized 

in homogenization buffer (5mM HEPES pH 7.4, 100mM KCI, 70mM sucrose, 220 

mM mannitol, 1 mM EGTA) with Complete Mini EDTA-free protease inhibitors 

(Roche Applied Science, Laval, QC, Canada) using Tenbroeck tissue grinders. 

Homogenates were spun for 10 min at 600xg, the supernatant removed, flash 

frozen in liquid nitrogen and stored at -80°C until use. Citrate synthase activity 

(an indicator of total mitochondrial mass) was measured using the thiol reagent 

5,5'-dithio-bis-{2-nitrobenzoic acid) (DTNB, Sigma Chemical Co., St. Louis, MO, 

USA). Complex IV (cytochrome c oxidase) activity was assessed by measuring 

the rate of cytochrome c (from equine heart; Sigma Chemical Co., St. Louis, MO, 

USA) oxidation. Both activity assays were performed using UV

spectrophotometry (Varian Inc., Palo Alto, CA, USA) as previously described 
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(30). Data are expressed as the mean enzyme activity relative to the wet weight 

of tissue. 

5.2.5 Islet Isolation 

Islet isolation was performed as previously described (21) at 26 weeks of 

age. Briefly, the pancreas was immediately excised following sacrifice, minced 

finely and placed in 6 ml of Hank's balanced salt solution (HBSS) (HyClone, 

Logan, UT, USA) containing 4 mg/ml collagenase type IA (Sigma-Aldrich, St. 

Louis, MO, USA), 100 IU/ml penicillin G and 0.25 µg/ml streptomycin (Gibco, 

Grand Island, NY, USA). Following an incubation period of 40 min at 37°C, the 

reaction was quenched with 20 ml HBSS supplemented with 10% fetal bovine 

serum (FBS) (HyClone, Logan, UT, USA), 100 IU/ml penicillin G and 0.25 µg/ml 

streptomycin. Islets were manually picked from the suspension using a small 

glass pipette and a dissecting microscope. The islets were incubated at 37°C, 

5% C02 / 95% normal atmosphere in 5 ml RPMI 1640 with 3.0 mM glucose (Life 

Technologies, Burlington, ON, Canada) supplemented with 10% FBS, 100 IU 

penicillin G and 0.25 µg/ml streptomycin for 24 hours. 

5. 2. 6 Reactive Oxygen Species Production by isolated Islets 

Reactive oxygen species (ROS) production by isolated islets following 

saline and nicotine exposure was measured using 2',7'
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dichlorodihydrofluorescein diacetate (H2DCFDA} (Molecular Probes Inc., Eugene, 

OR, USA} fluorescence as previously described (21 }. Since islet ROS production 

at weaning has been previously confirmed in this animal model (21 }, oxidative 

stress was only assessed at the endpoint of the current study (26 weeks}. 

Briefly, 80 islets from saline- and nicotine-exposed offspring (n=6 per group} were 

washed with PBS. Following centrifugation, the supernatant was removed and 

the pelleted islets were then resuspended in 100 µL of PBS containing 1 OOµM 

HzDCFDA and incubated for 3 h at 37°C. Because of the relatively low number of 

cells in this assay, a long incubation period allows for the diffusion of the oxidized 

dye from inside the cell back out into the culture medium (27). This approach 

has been previously validated to determine ROS production by isolated islet cells 

in rats (21 ;27). In addition, since HzDCFDA must be made fresh immediately 

prior to use, islets isolated on different days were incubated in different batches 

of reagent. To account for day-to-day variability within the experiment, a 43 µM 

hydrogen peroxide reaction was prepared with each batch of HzDCFDA to 

calibrate the performance of the dye. The hydrogen peroxide was added to 

1OOµM HzDCFDA and incubated in parallel with the islet reactions. Following the 

incubation period, the islets were vigorously disrupted to release intracellular 

HzDCFDA. Both the islet suspensions and the hydrogen peroxide control were 

centrifuged, and the supernatants were transferred to black 96-well plates (BO 

Falcon, Mississauga, ON, Canada}. Fluorescence of the 2',7'-dichlorofluorescein 

product was determined using a SpectaMax Gemini XS (Molecular Devices 
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Corp., Sunnyvale, CA, USA) microplate spectrofluorometer at excitation and 

emission wavelengths of 505 nm and 540 nm, respectively. All measurements of 

islet ROS production were normalized to the 43 µM hydrogen peroxide control 

and expressed as a percentage of the average saline control. 

5.2. 7 Oxyblot Detection of Protein Carbonyls in Isolated Islets 

To assess oxidative damage by reactive oxygen species to islet proteins, 

the presence of protein carbonyl groups was quantified using the OxyBlotTM 

Protein Oxidation Detection Kit (Chemicon International, Temecula, CA, USA). 

Formation of protein carbonyl groups was measured at 26 weeks in isolated 

pancreatic islets (saline: n=6, nicotine: n=5). 100 islets were hand-picked into 

eppendorf tubes and centrifuged for 3 minutes at 300 ref. The supernatant was 

removed and islets were resuspended in 100 µL of homogenization buffer with 

protease inhibitors (as described above) and frozen at -80°C until use. Upon 

thawing, cells were lysed using a sonication probe. Protein samples (5µL) were 

then prepared with the OxyblotTM Kit, according to manufacturer's instructions. 

Derivatized protein was subjected to SOS-PAGE using a 12 % separating gel and 

then electro-transferred to PVDF blotting membrane (BioRad Laboratories, 

Hercules, CA, USA). Membranes were blocked for 2 h at room temperature with 

5 % (w/v) skim milk in TBST (TBS, 0.5% (v/v) Tween 20), incubated overnight at 

4°C in rabbit-DNP antibody (1:150), and finally 1 h at room temperature in 

secondary goat anti-rabbit lgG (HRP-conjugated; 1 :300). Blots were washed 
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thoroughly in TBST followed by TBS after immunoblotting. Reactive protein was 

detected with ECL Plus chemiluminescence (Amersham Biosciences, 

Piscataway, NJ, USA) and Bioflex X-ray film (Clonex Corporation, Markham, ON, 

Canada). Densitometric analysis of immunoblots was performed using lmageJ 

1.37v software (National Institutes of Health, Bethesda, MD, USA); all proteins 

were quantified relative to a Ponceau S (Sigma Aldrich, St. Louis, MO, USA) 

loading control. 

5.2.8 Glucose-Stimulated Insulin Secretion in Isolated Islets 

Glucose stimulated insulin secretion (GSIS) was examined as a marker of 

beta cell function at 26 weeks of age. Briefly, 20 islets from both saline- and 

nicotine-exposed offspring (n=6 per group) were incubated in 100 µL of Krebs 

Ringer Bicarbonate buffer, pH 7.4 (135mM NaCl, 3.6mM KCI, 5mM NaHC03, 

0.5mM NaH2P04·2H20, 0.5mM MgCl2·6H20, 1.5mM CaCl2·2H20, 10mM Hepes, 

0.1% BSA) with either 3.0 mM glucose (basal) or 16.7 mM glucose (stimulated) 

for 2 hours at 37°C. All reactions were performed in duplicate. Following the 

incubation, islets were centrifuged, the media removed and stored at -80°C until 

use. The pelleted islets were resuspended in 25 µL of cell homogenization buffer 

(as described above), sonicated to release insulin and frozen at -80°C until use. 

Insulin levels were measured in both the media and the pellet by an ultra 

sensitive rat insulin ELISA (Crystal Chem Inc., Downers Grove, IL, USA). 

Results were expressed as the concentration of insulin in the media relative to 
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the concentration remaining in the pellet, to normalize for variability in the size of 

islets. Glucose-stimulated insulin release was determined by comparing the 

amount of insulin released from the pellet into the media at 16.7 mM glucose 

relative to 3 mM glucose. 

5.2.9 Statistical Analysis 

All statistical analyses were performed using SigmaStat (v.3.1, SPSS, 

Chicago, IL, USA). The results are expressed as mean ± SEM. Data were 

checked for normality and equal variance and were tested using unpaired 

Student's t-tests (a = 0.05) at each age. Where data failed normality or equal 

variance test, data were reanalyzed using Mann-Whitney rank sum test. 

5.3 RESULTS 

5.3.1 Oral Glucose Tolerance Tests 

At 4 weeks of age there was no effect of nicotine exposure (p>0.05) on the 

total glucose response (area under the curve; AUG) to the oral glucose load. By 

15 weeks of age the nicotine-exposed animals had a higher total glucose 

response (AUC) relative to the saline controls (p<0.05), an effect which was also 

evident at 26 weeks of age (Figure 5.3). 
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5.3. 2 Mitochondrial Structure 

There was no difference in the number of mitochondria per beta cell area 

at any age (Figure 5.1 A), but the mean individual mitochondrion area was 

significantly higher (p<0.05) following nicotine exposure at 15 and 26 weeks of 

age (Figure 5.1 B) compared to saline controls. Furthermore, the proportion of 

mitochondria with either blabbing or merging with neighboring mitochondria 

dramatically increased in the nicotine-, but not saline-exposed animals with age 

(Figure 5.1 C). 

Structural abnormalities were also evident in mitochondria of nicotine

exposed offspring starting at weaning (postnatal day 21 ). At all ages, more than 

75% of the mitochondria from saline-exposed offspring were classified as stage 1 

(structurally intact; Figure 5.2A). In contrast, nicotine-exposed offspring had a 

significant decrease in the proportion of healthy, stage 1 mitochondria beginning 

at 3 weeks of age, followed by a continual decline with age, such that by 26 

weeks only 31 % of nicotine-exposed mitochondria were classified as stage 1 

(Figure 5.2A). Coinciding with the loss of healthy stage 1 mitochondria was a 

significant 4.7-fold increase in the proportion of stage 2 mitochondria (visible 

swelling) at 3 weeks in the nicotine-exposed offspring (Figure 5.28). 

Furthermore, by 15 weeks of age nearly 20% of the mitochondria in beta cells of 

nicotine-exposed offspring were classified as either stages 3, 4 or 5 and by 26 

weeks this proportion had increased to 57% (Figure 5.2C-E). In contrast, at all 

ages examined less than 1 % of the mitochondria from the saline control group 
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were at stages 3, 4 and 5 combined (Figure 5.2C-E). It was not possible to 

perform statistics on the data presented in Figures 5.2C, D or E due to lack of 

variability in the saline treatment group replicates (nearly all 0%). 

5.3.3 Mitochondrial Enzyme Activity 

By 26 weeks, complex IV activity (a marker of mitochondrial function) was 

significantly reduced in the nicotine-exposed animals compared to saline controls 

(p<0.05; Figure 5.4A). There was no difference in citrate synthase activity (an 

indicator of mitochondrial mass) in the pancreas at any age examined (p>0.05; 

Figure 5.4B). 

5.3.4 Insulin Granule Characteristics 
• 

By 26 weeks of age, the nicotine-exposed animals had 32% fewer insulin 

granules in total (p<0.05; Figure 5.5A) and an 86% reduction in the number of 

immature granules per beta cell area (p<0.05; Figure 5.5B). The number of filled 

insulin granules per beta cell area was lower at all ages examined following 

nicotine exposure, but did not reach statistical significance (p>0.05; Figure 5.5C). 

5. 3. 5 Oxidative Stress 

Islet ROS production in adult animals at 26 weeks of age was increased 

by approximately 20% following fetal and neonatal exposure to nicotine relative to 
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saline (p<0.05; Figure 5.6). Furthermore, there was a 35% increase in the 

formation of protein carbonyl groups in the islets of nicotine-exposed offspring 

compared to saline controls (p<0.05; Figure 5.6). 

5.3.6 Glucose-Stimulated Insulin Secretion 

Fetal and neonatal exposure to nicotine resulted in impaired GSIS from 

pancreatic islets isolated from 26 week old animals (Figure 5.7). 

5.4 DISCUSSION 

Results from this study clearly demonstrate that fetal and neonatal nicotine 

exposure alters both mitochondrial structure and function postnatally. 

Mitochondrial structural abnormalities are observable prior to the onset of glucose 

intolerance and progressively worsen with age even though nicotine exposure is 

discontinued at weaning. Furthermore, as nicotine-exposed animals age, the 

observed mitochondrial defects appear to impact both mitochondrial function and 

beta cell function. These data raise concerns about the long term health 

consequences to the offspring following cigarette smoking or nicotine 

replacement therapy use during pregnancy and lactation. 

The first observable mitochondrial alteration following developmental 

nicotine exposure was abnormal mitochondrial ultrastructure in the neonates at 

weaning (3 weeks of age). These early structural alterations in the nicotine
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exposed offspring coincided with increases in both pancreatic oxidative stress 

(21) and mitochondrial-mediated beta cell apoptosis (22). However, these 

changes in mitochondrial structure precede any observable alterations in glucose 

homeostasis. As the nicotine-exposed animals age, the proportion of beta cell 

mitochondria with severe structural abnormalities of the inner membrane (stages 

3-5) and outer membrane (indicated by blabbing and I or merging) increased 

dramatically, despite discontinuation of nicotine exposure at weaning. These 

profound structural defects were not associated with any changes to the number 

of mitochondria within the beta cells, but were accompanied by a modest decline 

in mitochondrial enzyme activity, degranulation of beta cells, decreased beta cell 

function and impaired glucose tolerance (IGT). Therefore, we suggest that 

nicotine-induced mitochondrial damage has a significant role in the development 

of glucose intolerance in this animal model. 

It is estimated that 98% of the energy for the beta cell is produced by 

mitochondrial oxidative metabolism (25). Mitochondria are essential for both 

stages of glucose-stimulated insulin secretion from beta cells, including glucose 

entry and metabolism, as well as insulin exocytosis (25;31 ). In this study, fetal 

and neonatal nicotine exposure resulted in reduced complex IV enzyme activity 

at 26 weeks of age, an effect that was not associated with loss of mitochondrial 

number or mass. Since the respiratory chain enzymes are located within the 

inner membrane of the mitochondria, impairment of complex IV activity was 

expected given the observed deterioration of the inner membrane structural 
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integrity in this animal model following perinatal nicotine exposure. Conversely, 

we did not detect a change in citrate synthase activity. However, citrate synthase 

is located within the mitochondrial matrix and therefore does not depend on 

mitochondrial membrane integrity. Furthermore, since citrate synthase is an 

indicator of mitochondrial mass, a decline in activity would only be expected if 

nicotine exposure resulted in a reduction in the number of mitochondria. 

We propose that exposure of the beta cell mitochondria to reactive oxygen 

species (ROS) likely contributed to the loss of respiratory enzyme function and 

mitochondrial structural integrity in this animal model. ROS have been shown to 

inactivate the iron-sulfur centers of the electron transport chain complexes, thus 

causing defects in mitochondrial energy production (32). In addition, when the 

function of one of the electron carrier complexes is impaired electrons are not 

shuttled properly through the electron transport chain (ETC) and are increasingly 

lost to molecular oxygen, resulting in increased ROS formation (19). We 

hypothesize that in our animal model, this cycle was initiated during fetal and 

neonatal exposure to nicotine, a compound shown to have pro-oxidant properties 

in vitro and in vivo (33-35). We have previously demonstrated that nicotine 

exposure during fetal and neonatal development leads to increased islet ROS 

production and oxidative damage at weaning (21 ). We propose that this nicotine

induced increase in ROS likely triggered early, but undetectable damage to the 

ETC enzymes, thus initiating a feed-forward chain of progressive mitochondrial 

damage and additional ROS production. Furthermore, once dysglycemia has 
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been established (by 15 weeks of age in the current study), chronic high glucose 

levels likely also contributed to the observed deterioration of pancreatic 

mitochondrial structure and function, as well as the loss of beta cell function. 

Chronic exposure to high glucose has previously been shown to induce 

mitochondrial-mediated beta cell apoptosis (36), as well as mitochondrial 

superoxide production and beta cell dysfunction in isolated islets (37). As 

predicted, during adulthood nicotine-exposed offspring had elevated islet ROS 

production that was associated with increased formation of protein carbonyl 

groups in isolated islets, an indication that the redox balance has been disrupted 

in these cells. Therefore, in this animal model, perinatal nicotine exposure 

increases islet ROS production both at the end of lactation (i.e. during the 

nicotine exposure) (21) prior to the observable changes in ETC enzyme activity, 

and at 26 weeks of age when impaired complex IV activity and the most 

pronounced mitochondrial structural abnormalities were observed. We predict 

that the early mitochondrial structural alterations are likely initiated by nicotine

induced ROS, whereas the dramatic worsening of these defects between 15 and 

26 weeks may be a consequence of chronic exposure to high glucose combined 

with ROS production by previously damaged mitochondrial ETC enzymes. 

Although only a subtle reduction in respiratory enzyme activity was 

detected in the whole pancreas at 26 weeks following nicotine exposure, this may 

represent a more profound change in the beta cells, which comprise 

approximately 1 % of the adult rodent pancreas ( 14). Beta cells are known to be 
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particularly susceptible to ROS damage since they have relatively low expression 

of antioxidant enzymes (38;39). We observed dramatic mitochondrial structural 

abnormalities by electron microscopy in the beta cells of nicotine-exposed 

offspring as early as 3 weeks of age. On the contrary, loss of respiratory enzyme 

activity measured in the whole pancreas was not detectable until 26 weeks. 

Therefore, it is possible that whole tissue measurements were simply not 

sensitive enough to detect differences between saline and nicotine exposure at 

the level of the beta cell in the younger animals. We propose that as the damage 

to mitochondrial protein accumulates with age, these changes become detectable 

at the whole tissue level. 

Based on the numerous mitochondrial defects observed in this study (both 

structural and functional), it was expected that the nicotine-exposed offspring in 

this animal model would have altered beta cell function. As anticipated, 

developmental nicotine exposure resulted in altered insulin granule morphology 

and impaired GSIS compared to saline controls at 26 weeks of age. Electron 

microscopy (EM) analysis revealed a reduction in the total number of insulin 

granules within beta cells of nicotine-exposed offspring. Furthermore, there was 

a pronounced reduction ( 18-fold) in the number of pale, immature secretory 

granules by 26 weeks, suggesting that proinsulin biosynthesis may be impaired in 

this animal model and thus contribute to the loss of beta cell function. Indeed, 

proinsulin gene transcription has been previously shown to be crucial for 

maintaining proinsulin biosynthesis, retaining islet insulin stores, and ultimately 
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regulating glucose homeostasis (40). However, this finding of fewer immature 

insulin granules conflicts with EM studies in other animal models of dysglycemia, 

which have reported increased numbers of immature granules (41 ;42). These 

differences may be related to the profound alterations in mitochondrial structure 

observed in our model relative to previous studies. For example, in other models 

where the number of immature secretory granules was increased, no changes in 

mitochondrial structure were reported (41 ;42). In contrast, a significant 

proportion of the mitochondria in nicotine-exposed offspring were visibly swollen 

and vacuolated (stage 3-5) by 15 (20%) and 26 (56%) weeks of age. Another 

major difference between our animal model and the Zucker fa/fa rat model is that 

in Zucker fa/fa rats beta cells with a high proportion of immature granules had 

increased sensitivity to glucose, suggesting that the beta cells in this animal 

model are hyperactive (42). In contrast, the nicotine-exposed rats in this animal 

model of dysglycemia exhibited a diminished ability to secrete insulin in response 

to a glucose stimulus. Similarly, transgenic mice with beta cell-specific 

mitochondrial defects have decreased GSIS (i.e. impaired beta cell function) 

(43;44). Therefore, the impaired GSIS observed in this study may be attributed 

to the inability of damaged mitochondria to: a) regulate proinsulin biosynthesis, 

and b) couple a glucose stimulus to insulin synthesis and exocytosis. 

In conclusion, data from this study indicate that fetal and neonatal nicotine 

exposure adversely affects postnatal mitochondrial structure and function, which 

in turn leads to impaired beta cell function and dysglycemia in adult offspring. 
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These data suggest a mechanism to explain, in part, the increased risk of type 2 

diabetes in children born to women who smoked during pregnancy. This study 

also provides further support to the recent concerns about the safety of nicotine 

replacement therapy during pregnancy and lactation (45). 
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Figure 5.1: Mitochondrial morphology during postnatal development. 
A) The number of mitochondria per beta cell area; 8) individual mitochondrion area; and 
C) percentage of mitochondria with blebbing and I or merging with a neighboring 
mitochondria from offspring at 3, 15 and 26 weeks of age following exposure to either 
saline or nicotine during fetal and neonatal development. Representative electron 
microscopy photographs are provided to illustrate: D) typical mitochondrial structure 
(indicated by striped arrows) in the beta cells of saline and nicotine-exposed offspring 
during postnatal development, and E) examples of mitochondrial blebbing and merging 
(indicated by solid black arrows); N =nucleus. All data are presented as the mean± 
SEM. Values with an asterisk are significantly different from the saline control (p<0.05). 
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Figure 5.3: Oral glucose tolerance tests during postnatal development. 
Area under the curve (AUG) for the total glucose response to an oral glucose challenge 
at 4, 15 and 26 weeks of age in saline (closed circles) and nicotine-exposed (open 
circles) animals. All data are presented as mean± SEM. Values with an asterisk are 
significantly (p<0.05) different from saline controls. 
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Figure 5.4: Mitochondrial enzyme activity during postnatal development. 

A) Complex IV enzyme activity (an indicator of mitochondrial electron transport chain 

function) and 8) citrate synthase enzyme activity (an indicator of mitochondrial mass) in 

the pancreas of saline- and nicotine-exposed offspring at 3, 15 and 26 weeks of age. All 

data are presented as mean± SEM. Values with an asterisk are significantly (p<0.05) 

different from saline controls. 
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Figure 5.5: Insulin granule patterns during postnatal development. 
The number per beta cell area of: A) total insulin granules (filled, immature and empty); 
B) immature insulin secretory granules (containing pale-staining proinsulin); and C) filled 
insulin granules (containing dense-core mature insulin). D) Representative electron 
microscopy photographs of saline and nicotine-exposed beta cells at 26 weeks of age 
illustrate both the typical insulin granule patterns (immature insulin granules are indicated 
by solid black arrows and mature insulin granules by striped arrows), and mitochondrial 
structures (indicated by white boxes); N =nucleus. All data are presented as mean± 
SEM. Values with an asterisk are significantly (p<0.05) different from saline controls. 
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Figure 5.6: Oxidative stress at 26 weeks of age. 
Reactive oxygen species (ROS) production and the incidence of protein carbonyl groups 
(an indi.cation of oxidative damage to protein) in islets isolated from the pancreas of 
saline- (white bar) and nicotine-exposed (black bar) offspring at 26 weeks of age. All 
data are expressed as a percentage of the average saline control value and are 
presented as the mean± SEM. Values with an asterisk are significantly (p<0.05) 
different from saline controls. · 
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Figure 5.7: Glucose-stimulated insulin secretion at 26 weeks of age. 

Insulin release into the media was measured following glucose stimulation (16.7mM; 

white bars) or basal glucose exposure (3.0mM; striped bars) in saline- and nicotine

expose offspring at 26 weeks of age. All data are expressed as the insulin concentration 

normalized to the insulin concentration under basal glucose conditions (3.0mM). Values 

with an asterisk indicate a significant difference in the stimulated I basal insulin release 

ratio for saline versus nicotine exposure (p<0.05). All data are presented as mean ± 

SEM. 


134 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

CHAPTER 6 

MATERNAL DIETARY ANTIOXIDANT SUPPLEMENTATION PREVENTS 

BETA CELL LOSS AND MITOCHONDRIAL DEFECTS FOLLOWING FETAL 

AND NEONATAL NICOTINE EXPOSURE. 

BRUIN JE, WOYNILLOWICZ AK, HETTINGA BP, TARNOPOLSKY MA, GERSTEIN HC, 

HOLLOWAY AC. MATERNAL DIETARY ANTIOXIDANT SUPPLEMENTATION PREVENTS BETA 

CELL LOSS AND MITOCHONDRIAL DEFECTS FOLLOWING FETAL AND NEONATAL NICOTINE 

EXPOSURE. SUBMITTED TO DIABETES. 

6.1 INTRODUCTION 

Oxidative stress and redox signaling are essential processes for normal 

embryonic development (1). In particular, reactive oxygen species (ROS) are 

crucial for regulating cellular signaling and fate during healthy development (1 ). 

However, an increase in ROS that overwhelms the antioxidant defense systems 

can be detrimental, causing oxidative damage to proteins, DNA and lipids in 

susceptible tissues of the developing fetus. Pancreatic beta cells are known to 

be particularly sensitive to oxidative damage due to their relatively low expression 

of antioxidant enzymes compared to other cell types (2;3). We have previously 

shown that maternal exposure to nicotine (a known pro-oxidant), during 

pregnancy and lactation, causes increased islet ROS levels and pancreatic 

oxidative protein damage in the neonate (4). Furthermore, oxidative stress 

following nicotine exposure was associated with mitochondrial-mediated beta cell 
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apoptosis (5), loss of beta cell mass (6) and a progressive decline in 

mitochondrial function that coincided with the development of dysglycemia during 

adulthood in this animal model (7). Therefore, we hypothesized that maternal co

treatment with nicotine and an antioxidant cocktail during pregnancy and lactation 

would protect the developing beta cell mitochondria, thus preventing beta cell 

apoptosis and the consequent metabolic abnormalities in the adult offspring. 

For this study we used an antioxidant diet containing coenzyme Q10 

(CoQ), alpha lipoic acid (ALA) and vitamin E (VitE), which are known to act 

cooperatively as redox couples (8). Interventions containing different 

combinations of these antioxidants have been used successfully in various 

models of type 2 diabetes to improve markers of glucose homeostasis (9-13), 

and to protect beta cell mass and prevent beta cell apoptosis (9;13). 

Furthermore, CoQ, ALA and VitE have all been shown independently to prevent 

mitochondrial-mediated apoptosis in various adult cell types (14-19). However, to 

our knowledge this is the first study to test the ability of antioxidants to protect 

beta cells and their mitochondria from a toxic insult during fetal and neonatal 

development. Furthermore, although antioxidants have been shown to prevent 

dysglycemia and protect beta cell mass when treatment begins prior to the onset 

of symptoms (9; 13), this is the first study to begin treatment during embryonic 

development. The goal of this study was to determine whether an antioxidant 

intervention during critical windows of fetal and neonatal pancreatic development 

could prevent the nicotine-induced beta cell defects in this animal model, 
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including loss of beta cell mass and impaired mitochondrial structure and 

function. We predicted that protection of beta cell mass and mitochondrial 

function would prevent the progression of postnatal mitochondrial defects which 

contribute to impaired beta cell function and dysglycemia during adulthood (6;7). 

6.2 MATERIALS AND METHODS 

6.2.1 Maintenance and Treatment ofAnimals 

All animal experiments were approved by the Animal Research Ethics 

Board at McMaster University, in accordance with the guidelines of the Canadian 

Council for Animal Care. Nulliparous 200-250g female Wistar rats (Harlan, 

Indianapolis, IN, USA) were maintained under controlled lighting (12:12 L:D) and 

temperature (22°C) with ad libitum access to food and water. Two weeks prior to 

mating the dams were randomly assigned to receive either saline (n=10) or 

nicotine (n=20). Dams were injected with 1.0 mg/kg/day nicotine bitartrate 

(Sigma Aldrich, St. Louis, MO, USA) or saline subcutaneously for 14 days prior to 

mating, and during pregnancy until weaning (postnatal day 21 ). Nicotine

exposed dams received either normal chow (nicotine vehicle - NV; n=10) or diet 

containing antioxidants (nicotine antioxidant - NA; n=10) during mating, 

pregnancy and lactation. The antioxidant cocktail diet (Harlan Laboratories, 

Indianapolis, IN) contained coenzyme Q1 O (0.25% w/w), a-lipoic acid (0.1 % w/w) 

and vitamin E (1000 IU/kg). Saline-exposed dams received only the normal chow 

(saline vehicle - SV), as treatment with antioxidants may disrupt the healthy redox 
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balance, thus providing undesirable side effects. Dams were assessed 

throughout pregnancy and lactation to ensure that the antioxidant diet did not 

affect fertility, pre- and post-pregnancy maternal body weight, pregnancy weight 

gain or food consumption. For the fertility assessment, females were housed 1 :1 

with a male and monitored daily for confirmation of breeding (i.e. the presence of 

sperm in a vaginal flush). The day that a positive sign of copulation was 

observed was designated gestational day 0 (GOO). For each dam, time to 

pregnancy (days until detection of sperm in the vaginal flush), gestation length 

(GOO to parturition), fecundity index (# pregnancies I # copulations x 100), and 

fertility index (# pregnancies I # females cohabited with male x 100) were 

determined. 

At birth (postnatal day 1; PND1 ), litter size (total # pups per litter), live birth 

index(% live pups per litter), sex ratio(# male I# female pups), birth weight, total 

litter weight, number of LGA pups (large for gestational age; # pups born 2 

standard deviations above the mean control body weight), and number of SGA 

pups (small for gestational age; # pups born 2 standard deviations below the 

mean control body weight) were assessed. Litter size was then culled to eight to 

ensure uniformity among treated and control litters. To eliminate any 

confounding effects of the female reproductive cycle, only male offspring were 

used in this study. At birth, 3, 7 and 26 weeks of age, animals were euthanized 

by C02 asphyxiation, and pancreas tissue and fat pads (mesenteric, epididymal, 

and perirenal) were collected, weighed and processed for subsequent analysis. 
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6.2.2 Glucose Homeostasis 

Glucose homeostasis was assessed at 26 weeks of age by oral glucose 

tolerance tests (OGTT; n=9 per group) and insulin tolerance tests (ITT; SV and 

NA: n=9, NV: n=8) using a maximum of one animal per litter. Briefly for the 

OGTT, after an overnight fast, rats were given 2g/kg glucose (Sigma-Aldrich, St. 

Louis, MO, USA) in water by gavage, as previously described (6;20). Insulin and 

glucose were then measured in saphenous vein samples, collected by repeated 

puncture, at baseline, 30 and 120 minutes. Glucose was measured using the 

Contour glucose meter (Bayer Inc., Toronto, ON). Following the glucose 

measurement, blood samples were collected, allowed to clot, centrifuged, and the 

serum stored at -80°C until analysis. Insulin concentrations were determined 

using an ultrasensitive rat insulin ELISA kit designed for small sample volumes 

(Crystal Chem Inc., Downers Grove, IL, USA). For the ITT, following an 

overnight fast, rats were given 1 IU/kg insulin (Novolin®ge Toronto, human 

biosynthetic insulin, Novo Nordisk, Mississauga ON) in saline by subcutaneous 

injection, as previously described (20;21 ). Glucose was measured using the 

Contour glucose meter (Bayer Inc., Toronto, ON) in saphenous vein samples, 

collected by repeated puncture, at baseline, 20, 40 and 60 minutes. 

6.2.3 Electron Microscopy 

Pancreas tissue from offspring at 3 weeks (SV: n=4, NA and NV: n=5 per 

group), 7 weeks (SV and NV: n=5 per group, NA: n=4), and 26 weeks (n=6 per 
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group) were collected and processed for electron microscopy as previously 

described (5). Grids were examined with a JEOL 1200EX transmission electron 

microscope (JEOL Ltd., Tokyo, Japan) and representative photographs were 

taken at 12000x magnification. All photographs (containing at least 500 

mitochondria in the combined fields per animal) were analyzed by a single 

investigator blinded to the treatment groups using Image Pro Plus Version 5.1 

software (Media Cybernetics, Inc., Silver Spring, MD, USA), 

Mitochondrial morphology was assessed by quantifying the proportion of 

mitochondria in each of five defined stages of progressive deterioration (7). 

Stage 1 mitochondria were classified as structurally healthy, with dense, intact 

cristae. Stage 2 mitochondria had visible swelling, but maintained distinctive 

intact cristae structure. Stage 3 mitochondria had more severe swelling and 

minimal evidence of intact cristae. Stage 4 mitochondria displayed severe 

swelling, minimal cristae structure and formation of vacuoles. Stage 5 

mitochondria were extremely large and swollen, with essentially complete loss of 

defined structure within the mitochondrial membrane. An example of 

mitochondria at each defined morphological stage is provided in Figure 6.3. 

6. 2.4 Beta Cell Fraction and Apoptosis 

Beta cell fraction was measured in the offspring at birth, 3 and 26 weeks 

(n=6 per group at all ages). lmmunohistochemical detection of insulin was 

performed on four paraffin-embedded sections (5µm) per animal, separated by a 
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minimum of 40µm, as previously described (6), using a polyclonal, guinea pig 

anti-swine insulin primary antibody (1 :150 dilution) (DakoCytomation, Carpinteria, 

CA), the Vectastain anti-rabbit kit (Vector Laboratories, Burlinghame, CA), and 

diaminobenzadine (Sigma Aldrich, St. Louis, MO, USA) as the chromogen. For 

all sections, the whole pancreas was analyzed by combining measurements from 

up to 25 fields per section. lmmunopositive cells were identified using Image Pro 

Plus Version 5.1 software (Media Cybernetics, Inc., Silver Spring MD) for 

automated cell counting. The beta cell fraction was calculated as the ratio of beta 

cell area (immunopositive staining) to total pancreas area (immunopositive 

staining plus pancreas counterstaining) x 100. 

Beta cell apoptosis was measured in offspring at 3 (n=6 per group), 7 (n=6 

per group) and 26 weeks of age (n=5 per group). Detection of apoptotic beta 

cells was performed using a triple immunofluorescent staining protocol as 

previously described (6). Briefly, insulin was detected using a polyclonal, guinea 

pig anti-swine insulin antibody (1 :150 dilution, DakoCytomation, Carpinteria, CA), 

followed by an anti-rabbit Alexa Fluor 594 secondary antibody ( 1 :400 dilution, 

Molecular Probes, Inc., Eugene OR). Next, tissues were subjected to the 

terminal deoxynucleotidyl transferase mediated dUTP nick end labelling (TUNEL) 

assay according to manufacturer's instructions (Roche Applied Science, Laval, 

Quebec). Finally, nuclei were counterstained with DAPI (Sigma Aldrich, St. 

Louis, MO) and tissue sections were imaged with a Leica DMRA2 microscope 

using Openlab software version 4.0.2 (lmprovision, Waltham MA). Images were 
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analyzed with Image Pro Plus Version 5.1 software (Media Cybernetics, Inc., 

Silver Spring MD); five islets per section were quantified and reported as the 

percentage of TUN EL+ beta cells. 

6.2.5 Reactive Oxygen Species in Isolated Islets 

Reactive oxygen species (ROS) levels were quantified in isolated islets 

using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) (Molecular Probes 

Inc., Eugene, OR, USA) fluorescence at 7 (n=5 per group) and 26 weeks (n=6 

per group) as previously described (4). Briefly, pancreas tissue was digested 

with collagenase, and islets were manually picked using a small glass pipette and 

a dissecting microscope. Following an overnight equilibration period, 80 islets 

were hand-picked and incubated in 1OOµM H2DCFDA for 3 h at 37°C. 

Fluorescence of the 2', 7'-dichlorofluorescein product was determined using a 

SpectaMax Gemini XS (Molecular Devices Corp., Sunnyvale, CA, USA) 

microplate spectrofluorometer at excitation and emission wavelengths of 505 nm 

and 540 nm, respectively. Since H2DCFDA must be made fresh immediately 

prior to use, islets isolated on different days were incubated in different batches 

of reagent. To account for day-to-day variability within the experiment, all 

measurements of islet ROS production were normalized to the average saline 

control value for each experiment. 
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6.2.6 Statistical Analysis 

All statistical analyses were performed using Statistica software (version 

7.0, StatSoft Inc.) and one-way ANOVA using orthogonal comparisons based on 

a priori hypotheses. Specifically, the planned comparisons included: 1) whether 

there was a difference between fetal and neonatal nicotine relative to saline 

exposure (SV versus NV); 2) whether the co-treatment of dams with nicotine and 

antioxidants prevented the nicotine-induced defects (NV versus NA); and 3) 

whether the maternal antioxidant treatment allowed for complete maintenance at 

saline control levels (NA versus SV). Data were tested for normality as well as 

equal variance, and when normality or variance tests failed, data were analyzed 

using Kruskal-Wallis one-way ANOVA on ranks. Categorical variables (fertility 

and fecundity index) were compared using Fisher's exact test. For all outcomes 

at birth (litter size, live birth index, sex ratio, birth weight, # LGA, # SGA) the 

statistical unit was the litter. Area under the curve (AUC) for the offspring body 

weight (4-26 weeks) was assessed using the trapezoidal rule. 

6.3 RESULTS 

6. 3. 1 Maternal Outcomes 

There were no differences in maternal food consumption or pregnancy 

weight gain between any of the three treatment groups (data not shown). 

Furthermore, fertility was unaffected by either nicotine treatment or the 

antioxidant diet; no differences were observed in time to pregnancy, gestation 
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length, fecundity index or fertility index between treatment groups (data not 

shown). 

6.3.2 Litter Outcomes 

No differences were observed between any of the three treatment groups 

for litter size, live birth index, sex ratio, total litter weight, or number of LGA pups 

(Table 6.1 ). However, exposure to the antioxidant diet did cause a significant 

reduction in the birth weight compared to pups exposed to nicotine and normal 

chow (Table 6.1 ). Birth weight for the SV offspring was not significantly different 

than either NA or NV (Table 6.1 ). Furthermore, the antioxidant-treated offspring 

also had a significant increase in the number of SGA pups per litter compared to 

both NV and SV (Table 6.1 ). 

6.3.3 Postnatal Body Composition and Glucose Homeostasis 

Maternal antioxidant exposure during fetal and neonatal development 

caused a transient, but significant reduction in body weight and proportion of 

body fat at weaning (Figure 6.1A and C) in the offspring. However, by 7 weeks of 

age (4 weeks post-treatment), the fat pad weight was no longer significantly 

different than the SV or NV groups (Figure 6.1 D), although the body weight was 

still significantly lower (Figure 6.1 B). By 26 weeks of age the body weight of the 

NA group was not significantly different from either the SV or NV animals (SV: 
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608.6 ± 10.87 g, NV: 629.5 ± 7.11 g, NA: 602.8 ± 12.01 g; p>0.05). Over the 

study period, nicotine-exposed offspring tended to be heavier than saline controls 

and were significantly heavier than the NA offspring, as measured by the AUC for 

body weight between 4 and 26 weeks of age (Figure 6.2C). 

Fetal and neonatal nicotine exposure resulted in dysglycemia during 

adulthood. At 26 weeks of age, NV offspring had significantly increased fasting 

glucose levels relative to saline controls (Figure 6.2A), but no difference in fasting 

insulin (data not shown). There were no differences in the AUC for the glucose 

or insulin response to the OGTT (data not shown). However, at 120 minutes 

following an oral glucose challenge, NV offspring had a significantly reduced 

insulin:glucose ratio (Figure 6.28), implying that there was an insufficient amount 

of insulin produced to maintain glucose homeostasis. There were no differences 

between the groups in the response to the ITT (data not shown). Taken together, 

the impaired fasting glucose, altered response to the OGTT and increased body 

weight indicate altered metabolic homeostasis in the NV offspring compared to 

saline controls. Treatment with antioxidants partially prevented the nicotine

induced increase in fasting glucose levels and altered post-GTT insulin:glucose 

ratio (Figure 6.2A and 8). 

6.3.4 Beta Cell Defects 

Fetal and neonatal nicotine exposure caused mitochondrial defects in the 

beta cells beginning at 3 weeks of age, as indicated by a significant reduction in 
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the proportion of stage 1 mitochondria and an increase in stage 2 mitochondria 

(Figure 6.3). Co-treatment of the dams with nicotine and the antioxidant cocktail 

completely prevented this early loss of structural integrity in the offspring (Figure 

6.3). Beta cell mitochondrial ultrastructure in the nicotine-exposed offspring 

continued to deteriorate with advancing age, despite discontinuation of nicotine 

exposure at weaning (Figure 6.4 ). At all ages examined, more than 75% of 

mitochondria in saline-exposed offspring were in stages 1-2 (Figure 6.4A). In 

contrast, by 26 weeks of age, over half of the NV mitochondria were in stages 3-5 

(Figure 6.48). Fetal and neonatal treatment with antioxidants completely 

prevented this decline in mitochondrial structure, such that the proportion of 

mitochondria in either stages 1-2 or 3-5 in NA beta cells was not significantly 

different than SV at any age (Figure 6.4A-B). 

Fetal and neonatal nicotine exposure caused a significant increase in 

postnatal beta cell apoptosis at all ages examined (3, 7 and 26 weeks) relative to 

saline exposure. This effect was completely prevented by co-treatment with the 

antioxidant cocktail (Figure 6.5). 

Nicotine exposure resulted in a permanent loss of the pancreatic beta cell 

fraction beginning at birth and persisting until 26 weeks of age relative to saline 

controls (Figure 6.6). Co-treatment with antioxidants completely prevented the 

beta cell loss at birth and 3 weeks of age, but by 26 weeks, the beta cell fraction 

in NA offspring was not significantly different than either SV or NV offspring 

(Figure 6.6). 
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Isolated islets from nicotine-exposed offspring had significantly higher 

levels of reactive oxygen species (ROS) at both 7 and 26 weeks relative to saline 

controls (Figure 6.7). The antioxidant intervention completely prevented the 

increased ROS levels at 7 weeks, but not at 26 weeks (Figure 6.7). 

6.4 DISCUSSION 

We have previously shown that fetal and neonatal nicotine exposure 

results in postnatal pancreatic oxidative stress and mitochondrial defects, which 

subsequently leads to adult-onset dysglycemia and related metabolic 

abnormalities (4;5;7). Results from the current study demonstrate that 

developmental exposure to an antioxidant cocktail containing coenzyme 010 

(CoQ), alpha lipoic acid (ALA) and vitamin E (VitE) prevents nicotine-induced 

beta cell apoptosis, loss of beta cell fraction, mitochondrial swelling and 

increased reactive oxygen species (ROS) levels. Although the antioxidant 

intervention was provided only until weaning (postnatal day 21 ), the protective 

effects of this treatment on beta cell apoptosis and mitochondria ultrastructure 

persisted until adulthood (26 weeks). Furthermore, the dysglycemia in nicotine

exposed adult offspring was partially improved by the antioxidant intervention. 

For this study we opted to treat only the nicotine-exposed dams with the 

antioxidant cocktail, since maintenance of a healthy oxidative balance is 

particularly important during pregnancy (1 ). We predicted that an antioxidant 

intervention in healthy, saline-treated dams without the presence of a pro-oxidant 
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would cause undesirable side effects. Indeed, ALA has been shown to protect 

beta cells, but only in the presence of a pro-oxidant (22;23); ALA treatment of 

healthy, unstressed beta cells led to decreased beta cell function and viability 

(22;23). Similarly, diabetic rats treated with ALA showed improved albuminuria 

and kidney pathology, whereas in healthy rats ALA acted as a pro-oxidant and 

contributed to renal dysfunction (24 ). 

The antioxidant cocktail used in this study was designed carefully to 

contain compounds that are known to: a) improve mitochondrial dysfunction, b) 

work cooperatively as redox couples and c) prevent mitochondrial-mediated 

apoptosis (8; 14-19). CoQ protects the mitochondria through a number of 

mechanisms, including its ability to act as a free radical scavenger (25), inhibit 

mitochondrial depolarization independent of its free radical scavenging property 

(17), and function as a redox couple (8;26). Vitamin E (a-tocopherol) is a lipid 

soluble, chain breaking, terminating antioxidant that acts primarily to scavenge 

lipid peroxyl radicals (8), and has also been shown to protect cells from 

mitochondrial damage (19). ALA functions as an essential co-factor for several 

mitochondrial enzyme complexes, a free radical scavenger, and an important 

redox couple for CoQ and VitE (8). We propose that the free radical scavenging 

properties of these antioxidants likely prevented nicotine from triggering the initial 

oxidative insult to mitochondrial proteins, and the subsequent cycle of electron 

leakage by dysfunctional respiratory chain enzymes which causes further ROS 

formation. Indeed, at 7 weeks of age (4 weeks after cessation of all treatments), 
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nicotine-exposed offspring had increased islet ROS levels and further 

deterioration of beta cell mitochondrial structure, suggesting that the cycle of 

mitochondrial damage I ROS formation was initiated during fetal and neonatal 

development. Importantly, both the increased ROS levels and decline in 

mitochondrial structure were completely prevented at 7 weeks of age by the 

developmental intervention with antioxidants. Furthermore, while the 

mitochondria continued to deteriorate in the beta cells of NV offspring, the 

protective effect of antioxidants on the mitochondria persisted until 26 weeks, 

despite only transient maintenance of ROS levels. 

The observed protection from nicotine-induced beta cell apoptosis in this 

study following maternal antioxidant consumption is likely related to the 

prevention of nicotine-induced mitochondrial damage. Mitochondrial swelling is a 

key initiating event for the mitochondrial-mediated apoptotic pathway, resulting in 

release of proteins such as cytochrome c into the cytosol and a caspase

mediated signaling cascade (27). We have shown previously that fetal and 

neonatal nicotine exposure causes mitochondrial swelling and triggers the 

mitochondrial-mediated apoptotic pathway at weaning (5). Because the 

antioxidants chosen for this study can prevent mitochondrial-mediated apoptosis 

(14-19), we predicted that maternal administration of this cocktail would prevent 

the nicotine-induced mitochondrial swelling, beta cell apoptosis and loss of beta 

cell mass we have previously observed in this model (5-7). Indeed, co

administration of the antioxidant cocktail with nicotine completely protected the 
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offspring from nicotine-induced mitochondrial swelling (Figure 6.3 and 6.4), beta 

cell apoptosis (Figure 6.5), and loss of beta cell fraction (Figure 6.6), such that 

the NA offspring were not different from the saline-exposed control offspring at 

any age examined. Furthermore, the prevention of nicotine-induced beta cell 

defects by the antioxidant treatment was also associated with improved 

regulation of glucose homeostasis in adulthood. In humans, a 40-60% reduction 

in beta-cell mass has been observed in patients with type 2 diabetes prior to 

diagnosis compared to weight-matched controls (28-30). Furthermore, the 

inability to produce sufficient insulin for maintenance of glucose homeostasis has 

been observed prior to the diagnosis of type 2 diabetes (31) and is thought to be 

attributed to this reduction in beta cell mass (32;33). Therefore, the preservation 

of beta cell mass in this animal model with the use of an antioxidant cocktail may 

have implications for the maintenance of beta cell mass and thus prevention of 

type 2 diabetes in humans. 

However, there may be some potential limitations to the protective effects 

of this antioxidant cocktail in our animal model. First, it appears that at least 

some of the protective effects of the antioxidants may not be permanent. By 26 

weeks, although the beta cell fraction in the NA offspring was 40% higher than 

the NV offspring, it was no longer significantly different from the nicotine-exposed 

animals. In addition, the NA and NV offspring both had increased islet ROS 

levels at 26 weeks compared to SV offspring. Secondly, the antioxidant 

intervention caused a reduction in body weight at birth, which persisted for 
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approximately 15 weeks after cessation of the antioxidant treatment, at which 

point the body weight recovered to control levels. Although this finding did not 

adversely influence the protective effects of the antioxidant diet on beta cells, it is 

certainly of concern given the association of intrauterine growth restriction with 

adult-onset diseases, including the metabolic syndrome (34). We predict that the 

low birth weight following antioxidant treatment in our study may be attributed to 

the presence of vitamin E in the diet. CoQ and ALA have both been safely used 

during pregnancy with no reported adverse effects on birth weight (35;36). On 

the contrary, concerns have been raised about the use of VitE during pregnancy 

for the treatment of pre-eclampsia, due to an increased incidence of low birth 

weight babies born to women supplemented with vitamin E and vitamin C (37). 

Knowing the effects of our antioxidant cocktail on low birth weight in this study, 

we would propose a follow-up study to compare the protective effects of the 

maternal diet with and without vitamin E, and to determine whether CoQ and ALA 

alone could protect the beta cell mitochondria from nicotine without affecting birth 

weight. 

Results from this study demonstrate that an antioxidant intervention during 

pregnancy and lactation can protect developing beta cell mitochondria from the 

damaging pro-oxidant effects of nicotine, and thus preserve beta cell survival and 

function. These findings have several important clinical implications. First, we 

have shown that this antioxidant cocktail may be a useful tool for protecting beta 

cells from oxidative stress during critical windows of fetal and neonatal 
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development. Aside from nicotine exposure, other common conditions that are 

known to be associated with oxidative stress during pregnancy include: 

preeclampsia, diabetes, smoking, malnutrition or excessive nutrition, infection 

and inflammation (38). Secondly, this study has provided insight into a potential 

harm-reduction strategy for women who are highly dependent on nicotine, the 

addictive component of cigarettes, and rely on nicotine replacement therapy 

(NRT) as a safer alternative to smoking during pregnancy. We propose that for 

women who are unable to quit smoking by other means, the use of NRT 

supplemented with an antioxidant cocktail may be a safer alternative for the 

developing fetus. However, the efficacy of an antioxidant intervention would have 

to be carefully evaluated before recommendation for pregnant women, especially 

considering the potential adverse effects of vitamin Eon birth weight. 
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6.6 TABLES AND FIGURES 

Table 6.1: Litter outcomes at birth (postnatal day 1). 

sv NV NA 


#Live pups/ litter 13.90 ± 1.069 13.58 ± 1.026 14.67 ± 0.972 

# Dead pups / litter 0.00 ± 0.000 0.08 ± 0.083 0.67 ± 0.667 

Litter size 13.90 ± 1.069 13.67 ± 1.047 15.33 ± 0.972 

Live Birth Index 

(%) 
100.00 ± 0.000 99.51 ± 0.490 96.30 ± 3.704 

Sex Ratio (M to F) 0.96 ± 0.227 1.08 ± 0.199 1.49 ± 0.207 

Average body 

weight (g) 
6.00 ± 0.2798 b 6.14 ± 0.1358 5.45 ± 0.197b 

Total litter weight 

(g) 
80.01 ± 4.064 81.84 ± 5.158 78.93 ± 3.745 

#LGA 0.11 ± 0.110 0.17 ± 0.167 0.11 ± 0.111 

#SGA 0.10 ± o.1ooa 0.00 ± o.oooa 0.50 ± 0.189b 

SV: saline vehicle. NV: nicotine vehicle. NA: nicotine antioxidant. LGA: large for 
gestational age. SGA: small for gestational age. M: male, F: female. All data are 
expressed as the mean ± SEM. 
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Figure 6.1: Offspring body weight and fat weight (epididymal, mesenteric and 

perirenal fat pads). 

Total fat pad weights are expressed as a proportion of body weight at 3 and 7 weeks of 

age. All data are presented as the mean± SEM. 
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Figure 6.2: Metabolic phenotype. 
A) fasting glucose (26 weeks), B) insulin:glucose ratio following an oral glucose 
challenge (26 weeks), and C) area under the curve (AUG) for body weight (4-26 weeks). 
All data are presented as the mean± SEM. 
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Figure 6.3: Mitochondria ultrastructure at 3 weeks of age. 
Mitochondria ultrastructure was measured as the percentage of mitochondria in each of 
five stages of morphological health (an example of each is provided). Representative 
electron microscopy photographs (12,000x magnification) are shown for SV, NV and NA 
beta cells at 3 weeks. All data are presented as the mean ± SEM. 
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Figure 6.4: Mitochondria ultrastructure during postnatal development (3, 7 and 26 
weeks). 
Data are expressed as the percentage of mitochondria in each of five stages of 
morphological health. Representative electron microscopy photographs (12,000x 
magnification) are shown for SV, NV and NA beta cells at 26 weeks. All data are 
presented as the mean± SEM. 

160 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

15 
lll 

OJ 13u 
ru ..... 11 
OJ 
cc 

_J
+ 9 

UJ 7z 
:::> 
I 5 
0::::'2 

3 

-sv 
-G-NV~ b 
-•-·NA ~ 

1-----------------i: 


0 10 20 30 

Age (Weeks) 

LEGEND: Blue =Anti-Insulin , Red = Nuclei (Dapi) , Green = TUNEL (Fite) 

Figure 6.5: Beta cell apoptosis at 3, 7 and 26 weeks of age. 
Apoptosis was measured as the percentage of TUNEL-positive beta cells; TUNEL = 
terminal dUTP-mediated nick end labelling. Representative immunofluorescent 
photographs (400x magnification) are provided for SV, NV and NA beta cells. Blue 
staining represents beta cells (anti-insulin with alexa fluor 594 secondary antibody); red 
staining reperesents nuclei (dapi counterstain) and green represents TUNEL-positive 
cells (fitc-labeled). All data are presented as the mean± SEM. 
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Figure 6.6: Beta cell fraction at birth, 3 and 26 weeks of age. 
Data are expressed as the beta cell area I total pancreas area x 100. Representative 
photographs of immunohistochemical staining are provided for SV, NV and NA offspring 
at 3 weeks of age. Brown staining indicates insulin-positive beta cells. All data are 
presented as the mean ± SEM. 
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Figure 6.7: Reactive oxygen species levels in isolated pancreatic islets at 7 and 26 

weeks of age. 

Reactive oxygen species were measured by H2DCFDA fluorescence and expressed as a 

percentage of the average saline control. All data are presented as mean ± SEM. 
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CHAPTER 7 

GENERAL DISCUSSION 

7.1 PROPOSED MECHANISM FOR NICOTINE-INDUCED BETA CELL DEFECTS 

The overall goal of this thesis was to determine the mechanisms 

underlying the development of dysglycemia during adulthood following fetal and 

neonatal nicotine exposure, with a specific focus on the effects of nicotine on 

pancreatic development. Based on the combined studies from this thesis, I have 

developed a model of the mechanism through which maternal nicotine adversely 

alters fetal and neonatal beta cells (Figure 7 .1 ). 

I propose that nicotine binds to the nicotinic acetylcholine receptor 

(nAChR) on the developing beta cell (chapter 4; (173)), causing an increase in 

the production of intracellular reactive oxygen species (ROS) (chapter 4; (173)). 

Since the antioxidant defense system in the beta cells is known to be relatively 

low compared to other cell types ( 130; 131 ), beta cells are particularly susceptible 

to oxidative stress. Indeed, following nicotine exposure the beta cell antioxidant 

enzymes, although upregulated, are insufficient to compensate fully for the 

increased ROS levels (chapter 4; (173)). Consequently, susceptible pancreatic 

proteins, including those located in the mitochondria, are damaged by these 

highly reactive molecules (chapter 4; (173)). 

The implications of this mitochondrial damage are two-fold. First, loss of 

mitochondrial membrane integrity allows for swelling and release of proteins from 
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the inner membrane space into the cell cytosol, thus triggering beta cell apoptosis 

(chapter 3; ( 17 4) ). Since the majority of plasticity in rodent beta cell mass is 

confined to the fetal and neonatal periods of development, any toxic insult which 

influences beta cell survival during these critical windows may permanently alter 

beta cell mass. Indeed, fetal and neonatal nicotine exposure causes a 

permanent loss of beta cell mass beginning at birth, which was attributed 

primarily to increased beta cell apoptosis and an impaired capacity for beta cell 

proliferation relative to saline controls (chapter 2; (172)). As in humans, the loss 

of beta cell mass in this animal model precedes the onset of dysglycemia and 

likely contributes to the deterioration of beta cell function in the remaining cells. 

The second implication of nicotine-induced mitochondrial damage in this 

animal model is the ability of defective mitochondria to perpetuate oxidative 

stress in the cell long after cessation of the toxicant exposure. When proteins in 

the electron transport chain (ETC) are damaged by ROS, electron leakage 

occurs from the oxidation-reduction reactions in the inner mitochondrial 

membrane, thus causing further ROS formation (119). It is this vicious cycle that 

is likely activated in the beta cells by developmental nicotine exposure, and is 

responsible for the ongoing deterioration of mitochondrial structure and function 

after cessation of nicotine treatment (chapter 5; (175)). Since mitochondria are 

central for glucose-stimulated insulin secretion (GSIS), we predicted that nicotine

induced mitochondrial defects would influence beta cell function in addition to 

beta cell survival. Indeed, the progressive decline in mitochondrial structure and 
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function following nicotine exposure was associated with impaired GSIS in 

isolated islets and reduced insulin granule biosynthesis (chapter 5; (175)), both of 

which likely contributed to the altered glucose homeostasis in this animal model. 

Finally, to confirm the involvement of oxidative stress in triggering the beta 

cell defects in this animal model, dams were co-treated with nicotine and an 

antioxidant cocktail (chapter 6; (176)). Indeed, the nicotine-induced increase in 

ROS production and mitochondrial defects were both prevented by antioxidant 

exposure, and as was predicted, this also protected the developing beta cell 

population from increased beta cell apoptosis and loss of beta cell mass and 

function (chapter 6; (176)). 

7.2 DISCUSSION OF PROPOSED MECHANISM IN BETA CELLS 

Although the studies from this thesis allow for solid, evidence-based 

deduction of the mechanism though which fetal and neonatal nicotine exposure 

causes beta cell defects and altered glucose homeostasis, the story is by no 

means complete. There are several unanswered questions about the proposed 

mechanism which would require substantial work to answer, but may provide 

interesting future directions for this animal model. 

7. 2. 1 Nicotinic Acety/choline Receptors 

The topic of the nAChR was examined only briefly in this thesis and 
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remains an area with considerable potential for future research. Based on the 

mRNA expression of the various nAChR subunits in the pancreas at birth and 

weaning, it was concluded that nicotine could potentially be acting directly on the 

developing beta cell by binding to its receptor. Indeed, nicotine has been shown 

to exert its toxic effects in other developing tissues via the nAChR. For instance, 

binding of nicotine to the nAChR during development is known to be a necessary 

step in mediating the neurotoxic effects of nicotine (177). Following receptor 

binding, the adverse effects of nicotine in the developing brain are attributed to 

reduced DNA synthesis and altered cell signaling which cause neuronal cell 

death (177). Indeed, prenatal nicotine exposure elicits long-lasting changes in 

neuronal nAChR expression and binding capacity (178). Altered pulmonary 

function following maternal smoke exposure is also thought to be mediated by the 

direct effects of maternal nicotine on the nAChR in developing lung (179). 

Similarly, the adverse effects of fetal nicotine exposure in our animal model on 

hypoxia-sensing by adrenal chromaffin cells have been attributed to stimulation of 

the a7 nAChR (83). 

However, the presence of nAChR gene expression in the developing 

pancreas does not provide conclusive evidence that the beta cells are directly 

affected by nicotine. First, the presence of the nAChR was never localized to the 

beta cells specifically, but rather to the whole pancreas since good antibodies for 

immunohistochemical staining were not available. For the same reason, protein 

expression could not be confirmed for all of the nAChR subunits in the whole 

167 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

pancreas, although preliminary data demonstrates that the a2 subunit is 

expressed at the protein level in the neonatal pancreas (Figure 7 .2). However, it 

is reasonable to predict that mRNA transcription likely corresponds to translation 

into the corresponding protein, so I hypothesize that protein expression occurs for 

the other subunits as well. Regardless, the presence of mRNA and/or protein 

expression for the nAChR subunits does not necessarily imply that the hetero- or 

homopentameric receptors are actually assembled and functional, or that nicotine 

actually binds to the receptor to produce a downstream effect in the pancreas. 

To conclusively assess the involvement of the nAChR in mediating the effects of 

nicotine on developing beta cells, a future study could be performed using a 

competitive nAChR antagonist such as a-Lobeline, mecamylamine or dihydro-~

erythroidine (180). Co-treatment of nicotine with a nAChR antagonist would 

prevent binding of nicotine to the receptor, and assuming that this interaction is 

required for inducing oxidative stress, would also prevent the beta cell apoptosis 

and mitochondrial defects. 

Presuming that nicotine does bind to its receptor in the developing 

pancreas, the next relevant topic would be the downstream effects of this 

interaction and their potential involvement in beta cell apoptosis. The nAChR is 

activated by the binding of acetylcholine or nicotine to the extracellular region of 

the receptor; homomeric receptors contain five identical binding sites, whereas 

heteromeric receptors have two binding sites at the a/~ interfaces (181 ). 

Substrate binding to the nAChR leads to three possible functional states: resting 
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(closed - in the absence of any agonist), active (open - in the presence of 

agonist) and desensitized (closed - after prolonged exposure to agonist) (181 ). In 

the active state, this receptor is highly permeable to calcium, meaning that 

binding of nicotine to its receptor results in an increase in intracellular calcium 

levels (113;182) (Figure 7.3). This can occur through a combination of events, 

including: increased ion flux through the active nAChR, nAChR-mediated 

activation of voltage-operated calcium channels, and calcium-induced calcium 

release from intracellular stores (113;182) (Figure 7.3). Calcium is thought to be 

a key mediator of nAChR signaling in nonexcitable cells, including calcium

dependent apoptosis (182). In addition, calcium plays a crucial role in regulating 

glucose-stimulated insulin secretion by beta cells (122;183). Therefore, I predict 

that calcium may be involved in mediating the effects of nicotine in this animal 

model. As described in the introduction, mitochondrial ATP production stimulates 

closure of ATP-sensitive potassium channels, depolarization of the beta cell 

membrane, opening of the voltage-gated calcium channels and finally a rise in 

intracellular calcium levels, which triggers insulin exocytosis (146). Therefore, an 

unexpected rise in intracellular calcium levels in response to nicotine binding to 

the nAChR during fetal and neonatal development could alter this tightly 

regulated calcium homeostasis which controls beta cell function and cell 

signaling. Furthermore, the mitochondrial permeability transition pore (mtPTP) 

can be stimulated to open in response to mitochondrial uptake of excessive 

calcium (119), meaning that increased calcium influx following nicotine exposure 
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could contribute to the mitochondrial swelling and subsequent apoptosis 

observed in this animal model. However, the involvement of calcium in the beta 

cell defects following fetal and neonatal nicotine exposure remains to be 

determined. 

7.2.2 Beta Cell Neogenesis 

As discussed previously, the regulation of beta cell mass is determined by 

a balance of beta cell size, replication, neogenesis and apoptosis (95;99; 102). In 

the critical windows of exposure study (chapter 2), we demonstrated that fetal 

and neonatal nicotine exposure caused an irreversible reduction in beta cell mass 

beginning at birth, which was attributed to increased levels of beta cell apoptosis 

and a decreased capacity for islet cell proliferation compared to saline controls 

(172). This is similar to humans with type 2 diabetes, in which the primary cause 

of impaired beta cell mass is increased apoptosis (7). Other animal models of 

metabolic fetal programming demonstrate loss of beta cell mass caused by: a) 

both increased apoptosis and reduced proliferation ( 107-109), b) reduced 

proliferation and no change in apoptosis (31 ;111 ), or c) altered neogenesis and 

no change in either proliferation or apoptosis (109;110). Since impaired beta cell 

neogenesis from progenitor cells is an additional mechanism through which beta 

cell mass may be regulated, it would be interesting to examine the effect of fetal 

and neonatal nicotine exposure on this pathway. 
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The differentiation of ductal epithelium into mature pancreatic beta cells is 

regulated by a complex cascade of transcription factors (184) (Figure 7.4). 

Typically, beta cell neogenesis is assessed by measuring expression of the 

transcription factors which are known to be present in beta cell progenitors. 

Specifically, pancreatic duodenal homeobox gene-1 (Pdx-1) is a key regulator of 

pancreatic development and beta cell differentiation, as well as a glucose

responsive regulator of insulin gene expression in adult beta cells (184). 

Neurogenin3 (Ngn3) is required for the development of all endocrine cell lineages 

in the pancreas, and expression of Beta2/NeuroD, Pax4, Nkx2.2, Nkx6.1 are all 

important for specific determination of beta cells ( 184) (Figure 7.4 ). Although the 

beta cell neogenesis pathway was not examined in this thesis, Somm and 

colleagues have assessed the effects of prenatal nicotine exposure on beta cell 

neogenesis ·in a similar animal model (93). In their study, female rats were 

exposed to nicotine at a dose of 3 mg/kg/day using an osmotic minipump 

between day 4 and 18 of gestation (compared to 1 mg/kg/day via daily 

subcutaneous injection throughout gestation and lactation in our animal model). 

The treatment protocol used by Somm et al resulted in reduced islet size and 

number at postnatal day 7, which was accompanied by a reduction in islet gene 

expression of Pdx-1, Pax-6, Nkx6.1 and insulin (93). Furthermore, the nicotine

exposed offspring with impaired beta cell neogenesis subsequently developed 

glucose and insulin intolerance, hyperinsulinemia, and increased body weight 

during adulthood (93). Therefore, the study by Somm and colleagues suggests 
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that in addition to increased beta cell apoptosis and an impaired capacity for beta 

cell proliferation, fetal and neonatal exposure to maternal nicotine may also 

impair beta cell neogenesis. However, this question remains to be answered in 

our animal model. 

7.2.3 Mitochondrial Function 

Impaired mitochondrial structure and function was demonstrated in 

nicotine-exposed offspring through a number of different techniques, including 

electron microscopy (beta cell specific), complex IV enzyme activity (whole 

pancreas homogenates), and the glucose-stimulated insulin secretion assay (islet 

specific). However, there are several other experiments that could be performed 

to expand on these findings. 

First, it would be interesting to perform the mitochondrial enzyme activity 

assays in isolated islets rather than whole pancreas homogenates. Although a 

small reduction in complex IV activity was observed at 26 weeks of age in the 

whole tissue, it is likely that this effect would be more dramatic and perhaps 

detectable at an earlier age in the isolated islets. It is certainly feasible to perform 

these assays in the isolated islets (150). However, a large number of islets would 

be required for these experiments and only a limited number of islets could be 

isolated in our studies. This would be an interesting question for a future cohort 

where isolated islets from numerous animals could be pooled. 
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Another mechanism through which mitochondrial dysfunction can occur is 

via uncoupling of the electron transport chain to ATP synthesis. In addition to the 

ROS-induced damage to the ETC enzyme complexes, induction of uncoupling 

protein 2 (UCP2) has also been implicated in loss of mitochondrial function and 

impaired glucose-stimulated insulin release (147;148;185). UCP2 is an inner 

mitochondrial membrane protein that when activated, leaks protons into the 

matrix, thus diminishing the proton gradient generated by the respiratory chain 

(Figure 1.3; (147;185)). UCP2 expression in beta cells can be induced by 

hyperglycaemia (186) and superoxide (187), ultimately leading to loss of GSIS. 

Indeed, in human patients with type 2 diabetes, UCP2 protein expression was 

significantly increased in islet cells compared to control patients (149). 

Therefore, I predicted that upregulation of UCP2 would contribute to pancreatic 

mitochondrial dysfunction following fetal and neonatal nicotine exposure. 

However, numerous attempts to measure UCP2 expression in the pancreas were 

unsuccessful. By Western blotting, four different antibodies from four different 

companies were used, but no band was ever detected at the correct molecular 

weight in whole pancreas homogenates. Even in the purified mitochondrial 

fraction, where UCP2 expression should be localized, the correct band could not 

be detected with any antibody. Similarly, real-time PCR was used to detect 

UCP2 mRNA, but the Ct values for UCP2 were barely below the blank values, 

suggesting that mRNA expression in the pancreas is incredibly low. It is also 

important to note that the Ct values for beta actin were substantially lower than 
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the blank Ct, meaning the RNA quality was not an issue in these experiments. 

Therefore, the relative expression of UCP2 in the beta cell mitochondria of 

nicotine- and saline-exposed offspring remains to be determined in this animal 

model. 

The majority of the proteins required for mitochondrial function are 

encoded by nuclear DNA (nDNA), translated by cytosolic ribosomes and 

imported to the mitochondria (119). However, 37 genes that are crucial to 

mitochondrial function are encoded by mitochondrial DNA (mtDNA), including 

genes for rRNA, tRNA and 13 polypeptides of the oxidative phosphorylation 

protein complexes (119). MtDNA differs significantly from nDNA because it is 

maternally inherited, contains only exons (coding regions of DNA), and shows 

substantial regional variation as a result of its susceptibility to ROS-induced 

mutations (119). In fact, the rate of mtDNA mutations is thought to be almost 

entirely modulated by the extent of oxidative stress in the mitochondria (119). 

These mutations will eventually interfere with the transcription of genes that are 

central to mitochondrial function, and consequently, may impact energy 

production and cell function. In animal models, mtDNA defects, induced either 

through random mutations or dysregulation of gene expression, are associated 

with impaired beta cell function and diabetes (150;188). Moreover, clinical 

studies have demonstrated a relationship between mtDNA mutations in diabetic 

patients and impaired insulin release following a glucose challenge (189;190). 

Pancreatic mtDNA defects were briefly examined in our animal model, although 
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not presented in this thesis. Indeed, a small but statistically significant increase 

in the rate of mtDNA deletions was detected in the whole pancreas from nicotine

exposed versus saline-exposed offspring by 26 weeks of age (Figure 7.5; (191)). 

An attempt was also made to measure mtDNA mutations in the whole pancreas. 

For this experiment, primers were designed to amplify the D-loop, ATPase-6, 

complex I and II regions of the mtDNA genome (Figure 7.5A). The amplified 

DNA products were then sequenced by the MOBIX lab at McMaster University 

and compared to the known rat sequence for these mtDNA regions. However, 

due to mitochondria heteroplasmy, mtDNA mutations would likely only be present 

in a very small proportion of the mitochondria, meaning that the sequencing 

technology would need to be sensitive enough to detect mutations in only 1-2% 

of the mtDNA. No differences were detected in the nicotine versus saline

exposed offspring at 26 weeks of age, but this may be attributed to either the 

sensitivity of the sequencing technology and/or the fact that the majority of 

mtDNA mutations would be localized in the beta cells rather than the whole 

pancreas. It would be interesting to examine both mtDNA deletions and mutation 

in the isolated islets if enough cells could be pooled for DNA extraction. 

Finally, mitochondrial dysfunction can also be assessed by examining the 

mitochondrial membrane potential and the ATP/ADP ratio, preferentially in 

isolated islets. The formation of ATP in the mitochondria depends on the 

electrochemical gradient created by pumping protons across the inner 

mitochondrial membrane at complex I, Ill and IV in the electron transport chain 
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(119). Therefore, a defect in complex IV activity, as observed in nicotine

exposed offspring, could interfere with this membrane proton gradient and thus 

the efficiency of ATP production. Furthermore, proton leakage caused by 

increased UCP2 would also contribute to alterations in the mitochondrial 

membrane potential, and subsequently a lower ATP/ADP ratio (149). Indeed, 

both the mitochondrial membrane potential and ATP/ADP ratio are reduced in 

glucose-stimulated islets from humans with type 2 diabetes (149). The effect of 

fetal and neonatal nicotine exposure on these outcomes in isolated islets remains 

to be determined. 

7.2.4 Insulin-Like Growth Factor Signaling 

This thesis has demonstrated clearly that oxidative stress and 

mitochondrial dysfunction play a crucial role in the regulation of beta cell mass 

and function following fetal and neonatal nicotine exposure. These findings are 

supported by numerous other groups that have shown the presence of oxidative 

stress and mitochondrial defects in the beta cells of both animals (150;192;193) 

and humans (149;194) with type 2 diabetes. However, there are numerous other 

pathways that regulate beta function and mass, such as the insulin-like growth 

factor (IGF) system, which were not examined in this thesis and may also 

contribute to the altered glucose homeostasis in our animal model. The 

pancreatic IGF system includes the ligands, IGF1 and IGF2, and receptors, 

IGF1 R, IGF2R and the insulin receptor (IR). Mice lacking either IR or IGF1 R in 
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beta cells develop glucose intolerance associated with defective glucose

stimulated insulin secretion (195;196). Furthermore, when both IR and IGF1 R 

are absent in beta cells, mice are born with normal beta cell mass, but display 

increased postnatal beta cell apoptosis and a gradual age-dependent decline in 

beta cell mass (197). Furthermore the ligands IGF1 and IGF2 have been shown 

to protect beta cell mass and function, as well as glucose homeostasis in animal 

and human studies (198-200). In humans, circulating IGF1 levels are 

significantly lower in patients with metabolic syndrome (201 ), and treatment with 

recombinant IGF1 has been shown to lower glucose levels in both healthy and 

diabetic individuals (reviewed in (202)). Therefore, in addition to mitochondrial 

dysfunction, the IGF signaling pathway could also be involved in the loss of beta 

cell mass and function in this animal model. Although the IGF pathway was not 

studied in this thesis, we have demonstrated that fetal and neonatal nicotine 

exposure results in loss of IR and IGF1 R protein expression in the adult pancreas 

(Figure 7.6; (191)), as well as a reduction in islet IGF1 expression (Figure 7.7; 

(191)). These results are consistent with the Goto-Kakizaki rat model of type 2 

diabetes which also displays defects in both beta cell mitochondrial structure and 

function (203), as well as the pancreatic IGF axis (204 ). Therefore, mitochondrial 

dysfunction is likely not the only defect contributing to loss of beta cell mass and 

function in our animal model. 

177 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

7.3 DISCUSSION OF ALTERNATIVE MECHANISMS IN PERIPHERAL TISSUES 

7. 3. 1 Regulation of Glucose Homeostasis 

Although loss of beta cell mass and function are known to be crucial in the 

pathogenesis of type 2 diabetes, it is also important to consider the involvement 

of a reduced insulin effect at peripheral tissues in regulating glucose 

homeostasis. For instance, patients with type 2 diabetes exhibit increased 

hepatic glucose production and impaired glucose uptake by the skeletal muscle, 

both of which contribute to hyperglycemia (6). In addition, type 2 diabetes is 

associated with high levels of circulating triglycerides and free fatty acids, which 

are thought to contribute to organ abnormalities due to lipotoxicity (6). This thesis 

focused on the effects of fetal and neonatal nicotine on the beta cell, but 

peripheral tissues likely also contribute to the glucose intolerance in this animal 

model. Interestingly, our lab has demonstrated a widespread reduction in insulin 

uptake, not only in the pancreas from this animal model, but also in numerous 

other glucose-sensitive tissues, including the liver, skeletal muscle and adipose, 

as well as non-metabolic tissues such as the heart, kidney and brain (205). The 

impaired peripheral insulin uptake was associated with reduced IR protein 

expression in both the skeletal muscle and pancreas of nicotine-exposed 

offspring (205), but not in the liver (data not shown). Interestingly, there was also 

no change in the protein expression of gluconeogenic enzymes, 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate 

dehydrogenase, in the liver (data not shown), although the activity of these 
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enzymes has not been assessed. The observed reduction in fat pad insulin 

uptake was associated with increased adiposity, hypertriglyceridemia, obesity, 

and altered perivascular adipose tissue in the nicotine-exposed offspring relative 

to saline controls from our animal model (88-90). This altered adiposity has also 

been confirmed in the offspring from other animal models of maternal nicotine 

exposure (91-93). These data suggest that peripheral tissues, such as skeletal 

muscle and adipose (but perhaps not the liver) may contribute to the impaired 

glucose homeostasis in this animal model. However, the effects of fetal and 

neonatal nicotine exposure on the function of these peripheral tissues has not yet 

been examined in this animal model, but would be of great interest to further 

understanding the metabolic defects observed in our studies. 

7.3.2 Mitochondrial Dysfunction in Other Tissues 

Given the involvement of mitochondria in the beta cells defects following 

developmental nicotine exposure, it would be interesting to examine 

mitochondrial structure and function in other metabolic tissues in this animal 

model. Humans with type 2 diabetes are known to have mitochondrial defects in 

skeletal muscle (206;207) and elderly patients with insulin resistance have 

impaired mitochondrial oxidative phosphorylation compared to young, healthy 

controls (208). Furthermore, animal models of type 2 diabetes have impaired 

mitochondria in adipocytes (209) and liver (210). Nicotine treatment in adult rats 

causes alterations to the mitochondrial electron transport chain in multiple rat 
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brain regions (211) and fetal nicotine exposure resulted in mitochondrial swelling 

in the brain (212), suggesting that beta cell mitochondria are not the only 

susceptible target of nicotine. Therefore, mitochondrial dysfunction may also be 

involved in other metabolic tissues in this animal model and may also contribute 

to the observed glucose intolerance following fetal and neonatal nicotine 

exposure. 

7 .4 STRENGTHS OF THE THESIS 

7. 4. 1 Nicotine Dose and Mode ofAdministration 

There are a number of strengths to this animal model as an applicable tool 

for studying the effects of fetal and neonatal nicotine exposure in humans. First 

there is the question of dose, with respect to both mode of administration and 

concentration of nicotine. In our animal model, female Wistar rats are treated 

daily with 1.0 mg/kg/day of nicotine via subcutaneous (s.c.) injection for 2 weeks 

prior to pregnancy, throughout gestation and lactation (89). In contrast, other 

studies deliver nicotine at doses generally ranging from 2.0 - 6.0 mg/kg/day via 

drinking water, i.v. self-administration, or most commonly, an osmotic minipump 

(213;214). While the osmotic minipump method is certainly convenient, as it 

eliminates the need for daily injections, there are a number of downsides to this 

commonly used mode of nicotine delivery. First, the trauma of the surgical 

procedure and anesthesia which are required for both implantation and removal 

of the minipump is certainly more substantial than a daily s.c. injection. Although 
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the process of a daily injection may be somewhat stressful for the animals at first, 

the dams are easily trainable and quickly become accustomed to the daily 

injection routine. Another major issue with the osmotic minipump is that it 

achieves constant blood levels of the drug, but the plasma concentrations decline 

gradually as the pregnancy progresses and the dam body weight increases 

(213). An approach that several groups use to deal with this issue is to provide a 

dose of nicotine based on the projected body weight of the dam towards the end 

of pregnancy (214). However, this method has been shown to deliver extremely 

high levels of nicotine to the developing fetus that are not biologically plausible or 

relevant to humans (214). An advantage of daily nicotine injections is that the 

concentration of nicotine can be adjusted according to the dam weight gain 

during pregnancy such that the daily dose is actually 1.0 mg/kg/day throughout 

the entire treatment period rather than just in the first or last stage of gestation. 

Unfortunately, neither the osmotic minipump or daily s.c. injection method truly 

mimics the delivery of nicotine via cigarette smoking or NRT in a pregnant 

woman. In humans, nicotine· levels drop overnight, and then spike after the first 

cigarette in the morning (most similar to s.c. injection), at which point the nicotine 

levels generally remain fairly constant throughout the day based on self

administration of cigarettes (most similar to osmotic mini pump). 

An extremely important consideration for our animal model is selection of 

1.0 mg/kg/day as the daily dose of nicotine prior to pregnancy, throughout 

gestation (fetal development) and lactation (neonatal development). As 

181 




PHO THESIS - J.E. BRUIN MCMASTER - MEDICAL SCIENCES 

discussed previously, this dose was selected because of its biological relevance 

to human nicotine exposure either via cigarette smoking or NRT use during 

pregnancy (213;214). Our treatment protocol results in maternal serum cotinine 

concentrations of 136 ng/ml (85), which is within the range of cotinine levels 

reported in women who are considered "moderate smokers" (80 to 163 ng/ml) 

(86). In addition, this dose of nicotine results in serum cotinine concentrations of 

26 ng/ml in the nicotine-exposed offspring at birth (85), which is also within the 

range (5 to 30 ng/ml) observed in infants nursed by smoking mothers (87). Most 

commonly, a dose of nicotine between 2.0 and 6.0 mg/kg/day is used to mimic 

nicotine exposure during pregnancy (213;214). Recently, Hussein and 

colleagues examined the relevance of these nicotine dosages in pregnant rats 

and concluded that a dose of 6.0 mg/kg/day (delivered by osmotic minipump 

using the projected maternal weight gain model) is equivalent to smoking 560 

cigarettes per day by a 70 kg pregnant woman (214). It was concluded that 

studies using high doses of nicotine to achieve toxicity are highly irrelevant and 

their validity should be questioned (214). Importantly, in a recent review of 

nicotine dose selection for in vivo research by Matta and colleagues, 1.0 

mg/kg/day was discussed as the nicotine dose in rats that most closely 

approximated nicotine levels in habitual smokers (213). Therefore, the toxic 

effects of nicotine on the developing pancreas in this thesis are extremely 

relevant to humans exposed to nicotine via cigarette smoking or NRT. 
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7.4.2 Reproducibility 

An important requirement to strengthen any scientific work is evidence of 

reproducibility. Results from this thesis have been reproduced not only within our 

lab, but also by groups at other institutions. For example, the observed loss of 

beta cell mass and increased apoptosis were reproduced in two different animal 

cohorts during my PhD (172;176). Furthermore, I have confirmed the presence 

of mitochondrial defects in the beta cells of saline- and nicotine-exposed offspring 

from three different cohorts (175;176;191) and the increased production of 

reactive oxygen species by isolated islets in two cohorts (173;176). Dr. Jim 

Petrik at the University of Guelph has also independently confirmed in our animal 

model that fetal and neonatal nicotine exposure causes a significant reduction in 

beta cell mass between birth and 26 weeks of age, which is mediated by 

increased beta cell apoptosis (215). In addition, similar results have been shown 

in a different animal model of prenatal nicotine exposure. Somm and colleagues 

from Geneva, Switzerland demonstrated a reduction in islet proportion, size and 

number at postnatal day 7 following fetal exposure to nicotine, which was 

associated with altered glucose homeostasis at 26 weeks of age compared to 

saline controls (93). However, contrary to results from our critical windows study 

where nicotine exposure was required during both pregnancy and lactation (172), 

Somm et al found that gestational exposure alone was sufficient to cause glucose 

intolerance during adulthood (93). These differences can likely be attributed to 

the differing treatment protocols between animal models; Somm and colleagues 
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performed their work in a different rodent strain (Sprague Dawley versus Wistar 

rats), and with a relatively high dose of nicotine (3.0 mg/kg/day versus 1.0 

mg/kg/day) by osmotic mini pump (versus daily injections) between gestational 

days 4 and 18 (93). Although comparisons between the two models are limited, 

this study does confirm that fetal nicotine exposure can irreversibly damage the 

developing beta cells and predispose offspring to abnormal glucose homeostasis 

later in life. 

7.5 LIMITATIONS OF THE THESIS 

There were numerous technical challenges that limited the depth to which 

certain questions could be answered in this thesis. One of the consistent 

challenges throughout my thesis was the issue of using whole pancreas 

homogenates to gain insight into beta cell specific questions. Western blotting 

was used in this thesis for the majority of protein quantification because it is more 

quantitative than immunohistochemistry, but it does not allow for localization of 

the protein expression within the tissue. There are alternative methods for 

teasing out the fetal and neonatal effects of nicotine on protein expression in 

adult beta cells, but each have their disadvantages. First, expression of a 

protein-of-interest can be co-localized with insulin protein expression by dual 

immunofluorescent staining of pancreas tissue sections. Unfortunately, this 

technique proved to be difficult because the most effective insulin antibody reacts 

with both anti-mouse and anti-rabbit secondary antibodies. Alternatively, protein 
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expression can be localized to the islets by immunohistochemical staining with 

hematoxylin as a counterstain. This technique is "endocrine" rather than "beta" 

cell specific, but is more specific than whole pancreas homogenates. For 

instance, in the Toxicological Sciences manuscript, we demonstrated that 

expression of active caspase-3 (the final "executioner'' caspase) protein 

expression was localized to the pancreatic islets by immunohistochemical 

staining, indicating that the observed activation of the mitochondrial-mediated 

apoptotic signalling pathway was specific to endocrine cells (chapter 3; (174)). 

This technique was useful for localization of the protein, but not for quantification 

of expression. The gold standard for the research questions in this thesis would 

be western blotting of isolated pancreatic islets. This was attempted with 

numerous different antibodies, but since such a small number of cells can be 

used, only very strong antibodies were able to detect a signal. An example of 

how western blotting of isolated islets was used successfully in this thesis, was 

the detection of increased protein carbonyls at 26 weeks of age (chapter 5; 

(175)). There was no difference in protein carbonyl levels in the whole pancreas 

(data not shown), but a significant increase was observed in the isolated adult 

islets following fetal and neonatal nicotine exposure. In general, when no 

difference was detected in the whole pancreas for various outcomes in this thesis 

(e.g. antioxidant gene expression, citrate synthase enzyme activity), it is possible 

that effects were masked by the overwhelming number non-endocrine cells in the 

pancreas. In contrast, when a treatment effect was seen at the whole pancreas 
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level (e.g. antioxidant protein expression, markers of the mitochondrial-mediated 

apoptotic signaling cascade), we propose that the observed effect is likely more 

modest than what would have been detected in isolated islets if this were 

possible. 

Another limitation to this thesis was the lack of an appropriate beta cell line 

to mimic the in vivo animal model. For instance, two beta cell lines that are 

commonly used for basic science research include the beta-TC6 and INS-1 E 

cells (mouse and rat adult insulinoma cells, respectively). The studies in this 

animal model all examine the beta cells between birth and 26 weeks of age 

following fetal and neonatal treatment, which is impossible to mimic in an 

available cell line. Although the effects of nicotine treatment on adult beta cells is 

certainly interesting, this is a very different question than the long term effects of 

fetal and neonatal nicotine exposure on postnatal beta cell health. That being 

said, the effects of nicotine on adult beta cell function in vitro may provide some 

insights into the ability of nicotine to directly affect the beta cell (always keeping in 

mind of course that adult beta cells substantially differ from developing beta 

cells). For instance, nicotine treatment has been shown to inhibit insulin 

secretion in INS-1 E cells ( 116;216) and mitochondrial enzyme activity in beta

TC6 cells (Figure 7.8). Similarly, fetal and neonatal nicotine exposure resulted in 

impaired glucose-stimulated insulin secretion in adult islets, which coincided with 

beta cell mitochondrial dysfunction (175). 
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7.6 CLINICAL IMPLICATIONS 

To evaluate the safety of nicotine replacement therapy for use during 

pregnancy, it is important to consider the effects of fetal and neonatal nicotine 

exposure on other tissues in this animal model in addition to the pancreas. 

Briefly, nicotine-exposed female offspring have impaired fertility and altered 

ovarian steroid hormone levels at 26 weeks of age (85). Furthermore, 

developmental nicotine exposure resulted in reduced granulosa cell proliferation, 

increased ovarian cell apoptosis, and decreased ovarian vascularity during 

adulthood compared to saline controls (217). The reproductive organs in the 

male offspring do not appear to be affected to the same degree, although some 

differences in histopathology of the testes were observed between saline and 

nicotine-exposed offspring (218;219). Another major defect in this animal model 

is the impaired ability of adrenomedullary chromaffin cells (AMCs) to respond to 

hypoxic stress following fetal nicotine exposure (220). This study suggested that 

the increased risk of sudden infant death syndrome associated with maternal 

cigarette smoking (51) may be attributable to the ability of nicotine to suppress 

acute hypoxic sensitivity in adrenal chromaffin cells (220). Maternal nicotine 

exposure may also be involved in the increased risk of asthma in offspring 

associated with maternal smoking during pregnancy (221 ;222). In our animal 

model, fetal and neonatal nicotine exposure caused an increase in alveolar size 

at weaning which was associated with increased glucocorticoid receptor and 

decreased vascular endotheli~I growth factor receptor-2 protein expression in the 
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lung compared to saline controls (223). Finally, nicotine-exposed offspring have 

increased levels of perivascular adipose tissue, which were associated with an 

impaired ability to induce vascular relaxation and increased blood pressure 

(88;90). Therefore, this animal model has demonstrated widespread adverse 

effects of fetal and neonatal nicotine exposure in the pancreas, perivascular 

adipose tissue, chromaffin cells, ovaries, testes and lungs of the offspring 

compared to saline exposure. Taken together with other studies from our animal 

model, the results from this thesis have significant clinical implications and should 

be considered by health associations when making policy decisions about the 

use of NRT during pregnancy. 

The Ontario Medical Association (OMA) currently recommends nicotine 

replacement therapy as a safe alternative to cigarette smoking for pregnant 

women and suggests that Health Canada should modify their labeling 

requirements to include NRT use among pregnant women (72). The rationale for 

this recommendation is that the nicotine patch and gum are safer than smoking 

for the pregnant woman and her fetus (72). However, these conclusions do not 

consider recent evidence of the long term adverse effects of maternal nicotine 

exposure on metabolism (88-90;93;172;175), fertility (85), and neurological 

outcomes in the adult offspring (59;60). Indeed, in light of this more recent 

evidence, a 2007 critical review by Ginzel and colleagues recommended that 

exposure to nicotine during pregnancy and lactation be strictly avoided due to 

concerns about fetotoxicity and neuroteratogenicity (73). Furthermore, this 
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recommendation was made without consideration of the long term consequences 

of maternal nicotine exposure on the offspring metabolism. Therefore, based on 

the studies from this thesis, combined with other evidence from our animal 

model, I highly recommend that the safety of NRT use during pregnancy and 

lactation be re-evaluated by policy decision makers. 

Further research is required to assess alternative harm reduction 

strategies for pregnant women who are highly dependent on nicotine and have 

been unable to quit smoking by traditional means. The final study from this thesis 

evaluated the efficacy of maternal co-treatment with antioxidants and nicotine 

during pregnancy and lactation. Results from our study demonstrated that co

treatment of dams with nicotine and a dietary antioxidant cocktail effectively 

protected beta cells in the developing fetus and neonate from the damaging pro

oxidant effects of nicotine (Chapter 6; (176)). Therefore, an antioxidant 

intervention may be a promising harm reduction strategy for women who require 

NRT to quit smoking during pregnancy. However, the antioxidant cocktail 

formulation would have to be carefully evaluated before recommendation for 

pregnant women, considering the adverse effects of some antioxidants (e.g. 

Vitamin E) on birth weight. The safety of other pharmacological smoking 

cessation aids such as bupropion (Zyban®, a noncompetitive antagonist at the 

nicotinic receptor) and varenicline (CHANTIX®, a partial nicotinic receptor 

agonist) should also be evaluated as potentially safer harm reduction strategies 

compared to NRT use for pregnant smokers. 
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7.6 DISCUSSION FIGURES 
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Figure 7.1: Overview of proposed mechanism for nicotine-induced beta cell 
apoptosis and dysfunction. 
Nicotine binds to the nicotinic acetylcholine receptor on the developing beta cell , causing 
an increase in the production of intracellular reactive oxygen species (ROS) , which 
overwhelms the antioxidant capacity of the cell and leads to oxidative stress. The beta 
cell mitochondria are particularly susceptible to ROS-induced oxidative damage, and 
also continue to be a source of ROS production (via electron leakage from dysfunctional 
electron transport chain enzymes) after cessation of nicotine exposure. In the neonatal 
beta cells, mitochondria swelling causes release of proteins (e.g. cyt c; cytochrome c) 
from the inner membrane space into the cell cytosol , thus triggering beta cell apoptosis 
and early loss of beta cell mass. As the offspring age, nicotine-induced mitochondrial 
defects lead to impaired coupling of a glucose stimulus to insulin synthesis and secretion 
by adult beta cells. Therefore, loss of beta cell mass and function as a result of nicotine
induced oxidative stress and mitochondrial dysfunction likely contribute to the altered 
glucose homeostasis in this animal model. 
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Figure 7.2: nAChR alpha 2 subunit protein expression. 

The nAChR alpha 2 subunit (60kDa) was detected in saline-exposed whole pancreatic 

tissue homogenates at postnatal day 21 by Western blotting and normalized to beta actin 

as a loading control (45 kDa). (Data from Megan Lehman's 4th year thesis). 
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Figure 7.3: Nicotinic acetylcholine receptors (nAChR) and calcium signaling (113). 
Binding of an agonist to the nAChR causes an increase in intracellular Ca2 

+ via: A) 
increased ion flux through the active nAChR, B) nAChR-mediated activation of voltage
operated calcium channels (VOCCs) , and C) Ca2+-induced Ca2+ release from 
intracellular stores (mediated by ryanodine (RY) receptors and lns(1 ,4,5)P3 (IP3) 
receptors). 
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Figure 7.4: Beta cell neogenesis (184). 

A simplified schematic of the transcription factors expressed in the different pancreatic 

cell lineages during development. Beta cells are defined by their unique expression of 

Pax4, Maf A, Nkx2.2, and Nkx6.1 during differentiation. 
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Figure 7.5: Pancreatic mitochondrial DNA (mtDNA) deletions. 
A) Diagram of the intact 16.5 kDa mtDNA genome. B) Quantification of mtDNA deletions 
in the pancreas at 26 weeks of age following saline or nicotine exposure during fetal and 
neonatal development. An asterisk indicates p<0.05. Data are presented as mean ± 
SEM. C) Representative agarose gels with separated PCR products: intact mtDNA (16.5 
kDa) and mtDNA containing deletions (less than 16.5 kDa). Figure was adapted from 
(119). 
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Figure 7.6: Islet insulin-like growth factor (IGF) protein expression. 
IGF1 and IGF2 immunostaining in pancreas tissue at 26 weeks of age following saline 
(SV) or nicotine (NV) exposure during fetal and neonatal development. An asterisk 
indicates p<0.05. Data are expressed as the percentage of immunopositive islet cells 
and presented as mean± SEM. Figure was adapted from (119). 
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Figure 7.7: Insulin-related receptor protein expression. 

Insulin receptor {IR) , IGF1 R and IGF2R protein expression by western blotting in whole 

pancreas homogenates at 26 weeks of age following saline (SV) or nicotine (NV) 

exposure during fetal and neonatal development. An asterisk indicates p<0.05. Data are 

expressed as the relative optical density (normalized to the beta actin loading control) 

and presented as mean ± SEM. Figure was adapted from (119) . 
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Figure 7.8: Direct effect of nicotine on mitochondrial function in ~TC6 cells. 
Complex IV enzyme activity is expressed as a percentage of the vehicle control following 
a 1 hr nicotine treatment (25 ng/mL) in beta cells in vitro. Data are presented as mean ± 
SEM. (Data provided by Jillian Hyslop). 
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