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Abstract 

This thesis is devoted to introducing new problem formulations and exact 

solution methods for a class of continuous covering location models. The manuscript 

includes three self-contained studies which are organized as in the following. 

In the first study, we introduce the planar expropriation problem with non-rigid 

rectangular facilities which has many applications in regional planning and undesir

able facility location domains. This model is proposed for determining the locations 

and formations of two-dimensional rectangular facilities. Based on the geometric 

properties of such facilities, we developed a new formulation which does not require 

employing distance measures. The resulting model is a mixed integer nonlinear pro

gram. For solving this new model, we derived a continuous branch-and-bound frame

work utilizing linear approximations for the tradeoff curve associated with the facility 

formation alternatives. Further, we developed new problem generation and bounding 

strategies suitable for this particular branch-and-bound procedure. We designed a 

computational study where we compared this algorithm with two well-known mixed 

integer nonlinear programming solvers. Computational experience showed that the 

branch-and-bound procedure we developed performs better than BARON and SBB 

both in terms of processing time and size of the branching tree. 

The second study is referred to as the planar maximal covering problem with 

single convex polygonal shapes and it has ample applications in transmitter loca

tion, inspection of geometric shapes and directional antenna location. In this study, 

we investigated maximal point containment by any convex polygonal shape in the 

iii 



Ozan QAKIR DeGroote School of Business 

Euclidean plane. Using a fundamental separation property of convex sets, we derived 

a mixed integer linear formulation for this problem. We were able to identify two 

types of special cuts based on the geometric properties of the shapes under study, 

which were later employed for developing a branch-and-cut procedure for solving this 

particular location model. We also evaluated the resultant bound quality after em

ploying the afore-mentioned cuts. 

In the third study, we discuss the dynamic planar expropriation problem with 

single convex polygonal shapes. We showed how the basic problem formulations dis

cussed in the first two studies extend to their diametric opposites, and further to 

models in higher dimensions. Subsequently, we allowed a dynamic setting where the 

shape under study is expected to function over a finite planning horizon and the sys

tem parameters such as the fixed point locations and expropriation costs are subject 

to change. The shape was permitted to relocate at the beginning of each time pe

riod according to particular relocation costs. We showed that this dynamic problem 

structure can be decomposed into a set of static problems under a particular vector of 

relocations. We discussed the solution of this model by two enumeration procedures. 

Subsequently, we derived an incomplete dynamic programming procedure which is 

suitable for this distinct problem structure. In this method, there is no need to evalu

ate all the branches of the branching tree and one proceeds with keeping the minimum 

stage cost. The evaluation of a branch is postponed until relocation takes place in 

the lower-level problems. With this postponing structure, the procedure turned out 

to be superior to the two enumeration procedures in terms of tree size. 
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Chapter 1 
Preliminaries 

1.1 Preface 

Location Science consists of siting single or multiple facilities within a feasible 

space while ensuring that a particular objective function is optimized. Problems in lo

cation science are set apart from those in layout research, as in the location-theoretic 

view, the facilities to be sited are usually relatively small compared to the feasible 

location space. The location space may vary with regards to the problem structure. 

Some examples of location spaces are: lines, Euclidean planes, multi-dimensional 

spaces, routes, networks, spherical surfaces, network interiors and grids. The reach 

of location science is far beyond the operations research/management science disci

pline and is related to many domains such as: industrial engineering, computational 

geometry, geography, mathematics, economics, pattern recognition, marketing, re

gional planning and socio-economic planning. Therefore, location science may be 

regarded as the discipline of finding the best locations for any type of entities that 

are of particular interest in the above-stated domains. 

1.2 Location space 

One method of categorizing location problems is by the type of space on which 

facilities are located. If the location space is continuous, the location of a facility 

can be specified by continuous variables denoting the coordinates. Therefore, if it 

1 
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is feasible to locate on a space where the coordinates of the candidate sites vary 

continuously, we call this a continuous location problem. If the candidate sites are 

pre-determined in terms of a discrete set of feasible location points, they can be 

modeled by employing discrete variables. Then, the resultant location model will 

be a discrete location problem. If the candidate sites are restricted to the vertex set 

of a given network, then the resulting location model is a discrete network location 

problem. If the facility can be positioned along the edges of the network, as well as 

on its vertices, then the corresponding location model is an absolute network location 

problem. These location spaces are illustrated in Figure 1. 

Continuous Discrete Discrete network Absolute network 
location problem location problem location problem location problem 

• • 
• 

• 
• 
• 

/ ---\ ----/ \ \ 
I \ \ 

I \ \ 
I \ \·- \ \ 

\ -----· " \ ...... \ 

\ ........ ' " ____..... 
...----

Candidate Candidate Candidate Candidate 
facility sites facility sites 

• 
facility sites 

• 
facility sites 

• 
Figure 1. Location spaces and corresponding problems 

1.3 Distance metrics 

In location science, the proximity relationship, or the actual travel distance 

between the points on a space, is measured by employing a distance metric. This is 
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a function which returns a real value, the distance, between each pair of points. Let 

(P1 , P2) be a point pair located on a space p, d (P1 , P2) be the distance between these 

points and P3 E p be a third point. A distance metric defined on p will essentially 

satisfy the following properties (Love et al., 1988): 

(1) d(Pi,P2 ) 2: 0, VP1,P2 E p (non-negativity property); 

(2) d(P1 ,P2 ) = 0 ¢==} P1 = P2, VP1,P2 E p (identity property); 

(3) d (P1 , P2) = d (P2, P1 ) , VP1 , P2 E p (symmetry property); 

(4) d (Pi, P2) ::::; d (P1 , P3 ) +d (P2, P3 ), VPi, P2, P3 E p (triangle inequality). 

To employ the principles of convex programming, it is required that d (P1 , P2 ) is 

a convex function V P1 , P2 E p. The real travel distances are usually approximated 

with closed form analytical expressions assuming the properties (1-4) as well as con

vexity (Love and Morris, 1972, 1979; Brimberg, 1989; Brimberg and Love, 1991, 1992, 

1995). 

Consider a compact set U containing the origin 0 and the points~' such that 

d (0, Pi) ::; 1, VPi E U as illustrated in Figure 2. Then, U is said to be the unit ball 

of the distance metric d. The distance between the origin and a fixed point Pi, j ~ 

U can be calculated by expanding the unit ball U by r times (i.e. r x U: r E ~+) 

until the unit ball boundary au touches the point Pi. Then, distance between the 

origin and the point Pj, measured employing the metric d, is said to be r, which is 

given by the Minkovski relation d (0, Pi) = min { r E ~+ : Pi E r x U} . 

Excluding the satisfaction of symmetry property (3), the distance metric d can 

be derived from a gauge g which is a real-valued function defined on p satisfying the 

homogeneity property g (0' pj) = r. g (0' au) and completely defined by its unit ball 
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Figure 2. Calculating the distance using the unit ball of a metric 

U. The unit ball U illustrated in Figure 2 is an example for gauge distance unit balls 

since it violates the symmetry property. When the symmetry property is satisfied by 

a gauge g, its unit ball is symmetric around the origin 0. A gauge satisfying the 

properties ( 1-4) and the symmetry property is said to define a distance norm. 

In mathematics, a norm is a function that assigns a non-negative length to a 

vector in a vector space. In location science, the set of all distance norms which can be 

defined by a single parameter p and which satisfy the triangle inequality are referred 

to as Minkovski distances of order p. These distance measures are all convex functions 

and they are equivalently named £P norms. Let the points P1 , P2 be located at the 

coordinates (au, a21 ) and (a12 , a22 ) in the plane, respectively. Then the £p distance 

between these two points is given by the term: 

For p = 1, £1 is called the rectangular, rectilinear, Manhattan or sometimes 

the Hamming distance. This distance measure is usually employed when movements 
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parallel to the axis system are allowed for one direction at a time (i.e. traveling 

simultaneously in all directions is forbidden). For example, consider an automatic 

guided robot used to handle material between machining centers in a shop floor. In 

flexible manufacturing environments, the job orders are usually transmitted to those 

type of automatic guided robots electronically, via cables engraved in the floor forming 

a grid-like path. Hence, movements may be allowed only along paths aligned with an 

orthogonal axis system. The appropriate distance measure on the movements of this 

robot is then the rectangular distance norm: 

As opposed to the movements in one direction at a time, now assume that 

simultaneous movements along the directions of an axis system are allowed. In this 

case, we have the Chebyshev, maximum or £00 distance: 

If movements are allowed along all the directions homogeneously, the distance 

between two points can be measured by the length of the straight line segment joining 

these two points. This distance measure is called the straight-line, Euclidean, or 

£2 norm between two points: 

2f2 (P1, P2) = V(au - ai2)2+ (a21 - a22) . 

Distance norms can also be classified according to their unit balls. If the unit 

ball of a norm is composed of linear segments, it is said to be a member of the distance 

measures called the block norms. The subset of gauge distances having this linearity 

property are referred to as the polyhedral gauges. Unit balls of these gauges are convex 

5 




Ozan QAKIR DeGroote School of Business 

polyhedrons. This corresponds to the situation where movement is permitted only in 

a finite set of directions. These directions are defined by the half-lines from the origin 

to the vertices of the unit ball. Symmetric polyhedral gauges are equivalent to block 

norms. Round norms are those distance measures which have no linear segments on 

their unit balls. Examples of the unit balls corresponding to some distance measures 

used in location science are illustrated in Figure 3. 

Euclidean Rectangular 

+ 

..... + 

; 
Chebyshev 

Block norm 
(Hexagonal) Polyhedral gauge Gauge 

Figure 3. Unit balls of some distance measures 
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1.4 Objective functions 

Apart from having different feasible location spaces, location problems may 

vary according to their objective functions. There are two predominant objective 

functions in location science: mini-sum and mini-max. Location problems with these 

two objective functions are called median and center problems, respectively. The 

mini-sum objective function corresponds to minimizing the sum of the (weighted or 

un-weighted) distances between the fixed points and the facility(ies). The mini-max 

objective leads to finding the facility location(s) such that the maximum distance 

between the facility(ies) and the farthest point to the facility(ies) is minimized. 

~----~ 
I 

0.9 I 
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• 
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0.5 
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Figure 4. Solution for the mini-sum problem: Median point 
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To illustrate these objectives, we generated a small example with five fixed 

points located in a unit square where the point locations are randomly generated 

from uniform distribution U rv [O, 1] as illustrated in Figures 4-5. The single facility 

mini-sum (median) and mini-max (center) problem solutions for this example were 

(0.694, 0.334) and (0.560, 0.473), respectively. 

0.9 I 

0.8 

0.7 

0.6 

Center point 
0.5 • 

0.4 • 
0.3 

0.2 

0.1 


0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 i 

-----~----~. ___J 

Figure 5. Solution for the mini-max problem: Center point 

Many extensions and hybrids of these two objective functions have also been 

studied in location science literature. A summary of some important objective func

tions is provided below. 

Anti-median or maxian (Church and Garfinkel, 1978). This objective corresponds 
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to finding a facility location that maximizes the sum of the fixed point-to-facility 

distances within a bounded feasible space (see, Figure 6). 

1 

0.9 • 
0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
i

0.1 

0 I 
0 0.1 0.2 o.3 o.4 o.5 o.6 o.7 o.8 o.9 1 I 

Figure 6. Solution for the maxi-sum problem: Anti-median point 

Anti-center or maxi-min (Dasarathy and White, 1980). This objective corre


sponds to finding a facility location that maximizes the closest fixed point-facility 


distance within a bounded feasible space (see, Figure 7). 


Cent-dian (Halpern, 1976). This objective function is the convex combination of 


center and median objectives. 


Max-sum-min (Moon and Chaudry, 1984). This objective function corresponds to 


finding a set of facility locations that maximize the sum of closest distances between 


the facilities and the fixed points which patronize them. 
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Figure 7. Solution for the maxi-min problem: Anti-center point 

Max-min-min dispersion and maxi-sum dispersion (Kuby, 1987). These mod

els are employed for dispersing a set of facilities within a bounded feasible space; thus 

there are no fixed points in these models. The first objective function maximizes the 

closest distances between a set of facilities, whereas the latter one maximizes the sum 

of the distances between the facilities (see, Figure 8). 

Medi-center (Khumawala, 1973). This objective function minimizes the average 

distance such that every distance between facilities and fixed points is smaller than 

a threshold. 

For illustration purposes, we solved the anti-median and anti-center problems 

on the same small problem illustrated in Figures 4-5. The optimal solution found for 
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Figure 8. Solution for the max-min-min and maxi-sum dispersion problems 

both problems was (0,0) as illustrated in Figures 6-7. We also solved two dispersion 

problems with four facilities in a unit square employing different objective functions. 

The solutions for max-min-min and maxi-sum dispersion problems were the same 

and it pointed out that the four facilities should be located at the following locations: 

(0,0), (0,1), (1,0) and (1,1) as illustrated in Figure 8. 

A detailed analysis and discussion of the objective functions used in location 

science can be found in Eiselt and Laporte (1995). 

1.5 Other classifications of location problems 

In addition to the differences in feasible location space, the distance metric 
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used, and the objective function, location problems may be classified according to 

the following: (1) the number of facilities to be located (i.e. single facility vs. multi

facility); (2) the nature of system parameters (i.e. deterministic vs. stochastic, static 

vs. dynamic etc.); (3) facility type (i.e. capacitated vs. uncapacitated, desirable vs. 

undesirable etc.); and (4) the categorization of demand (i.e. continuous vs. discrete, 

deterministic vs. stochastic). 

An extensive taxonomy for distinguishing location problems can be found in 

Brandeau and Chiu (1989). For other overviews that classify location problems, one 

can refer to Hale and Moberg (2003) and ReVelle and Eiselt (2005). 

1.6 Evolution of location science 

The foundations of location research date back to 17th century and the first 

location problem is variously attributed to the scientists Pierre Fermat, Evangelista 

Torricelli and Battista Cavallieri. They independently studied the spatial 1-median 

problem and proposed solution methods based on geometric principles. The popular

ization of location science starts with Alfred Weber's observation (see, Weber, 1909) 

that the spatial 1-median problem has an industrial application and essentially solves 

the problem of locating a facility to minimize the sum of transportation costs from 

that facility to a given set of fixed points. Since then, the spatial 1-median problem 

has usually been named after Weber. Today, there exists a huge body of knowledge 

related to the problem, its extensions, solution approaches, and applications. A com

plete history of the ·weber problem can be found in Wesolowsky (1993). Another 

extensive but earlier historical perspective on the Weber problem is due to Kuhn 
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(1973). The properties and variations of the problem are discussed in detail by Love 

et al. (1988). 

Discrete location theory evolved after Hakimi's (1964) seminal paper which 

contains the first results regarding the location problems on network spaces. The 

main result in this paper is known as the Hakimi property today. This is the concavity 

proof of the mini-sum objective function, for the case where the fixed demand points 

are located at the vertices of a graph. Moreover, he showed that the minimum of 

this concave function is attained at one of these vertices. This is a ground-breaking 

result because it allows the decision maker to restrict the candidate facility sites only 

to the vertices of the graph and leads to a very effective solution method. If the 

shortest path between each vertex pair is known, Hakimi's (1964) result guarantees 

that the 1-median problem can be solved in 0 (IVl 2 
) computation time on general 

graphs G = (V, E). Later, Hakimi (1965) showed that this property also holds for 

multiple facilities. More information about the literature concerning discrete location 

problems can be found in Tansel et al. (1983a; 1983b), Mirchandani and Francis 

(1990), Daskin (1995) and the references therein. 

Apart from Weber's (1909) and Hakimi's (1964) influential work, there are 

other milestone studies in the evolution of location science. These can be summarized 

as: Sylvester's (1857) proposition and Chrystal's (1885) solution method regarding 

the minimum covering circle problem, which led to the development of center problems 

in location science. Hotelling's (1929) paper initiating a branch of location problems 

which are known today as competitive location problems. Weiszfeld's (1937) algorithm 

for efficiently solving the Weber problem is, known today as the Weiszfeld procedure. 
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Cooper's (1963) paper gave rise to another family of location problems referred to as 

location-allocation problems and Toregas et al.'s (1971) location set covering problem 

led to the establishment of another stream of location research called covering location 

problems. 

More detailed information on the variety of problems in location science can 

be found in books by Love et al. (1988), Francis et al. (1992), Drezner (Ed., 1995), 

Sule (2001), Drezner and Hamacher (Eds., 2002) and in survey articles by Francis 

and Goldstein (1974), Brandeau and Chiu (1989), Chhajed et al. (1993), Owen and 

Daskin (1998), Hale and Moberg (2003), ReVelle and Eiselt (2005) and Melo et al. 

(2009). The computational aspects of location problems are investigated, in detail, 

in closely related books by Eilon et al. (1971), Scott (1971a), Christofides (1975), 

Daskin (1995), and in articles by Megiddo and Supowit (1984), Guha and Khuller 

(1999), Arya et al. (2004), Gabor and van Ommeren (2006) and Xu and Xu (2009). 
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Chapter 2 
Scope of the thesis and related literature 

2.1 Scope of the thesis 

Apart from the two predominant objective functions mentioned in the previ

ous chapter, another important objective in location science is the covering objective. 

This will be the particular concentration of this thesis. Covering problems may be cat

egorized into four groups of problems: (1) the set covering location problem (SC£P); 

(2) the maximal covering location problem (MXC£P); (3) the minimal covering lo

cation problem (MNC£P); and (4) the maximum expected coverage location problem 

(M£C£P). 

In general, a fixed point is deemed as being covered by a facility if the distance 

between the fixed point and the facility is smaller than a pre-determined threshold 

value. The first problem, SC£P (Toregas et al., 1971), is employed for locating a 

minimum number of facilities within a feasible space such that every fixed point 

is covered by a facility. As it stands, SC£P is very restrictive and it is often not 

financially viable to apply this model because the spread of fixed points is important 

in covering location problems. For example, if the spread of the fixed demand points 

is not condensed in particular locations, the SC£P solution will require too many 

facilities and this may be far beyond the budgetary restrictions as illustrated in Figure 

9. 

Church and ReVelle (1974) and White and Case (1974) independently pro
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Figure 9. Spread of the fixed point set 

posed the MXC£P, which relaxed the obligatory coverage requirement. The objec

tive of MXC£P was to solve for the maximum number of points covered by analyzing 

a set of possible facility site alternatives. 

The diametric opposite of the MXC£P objective also exists and was first 

studied by Drezner and Wesolowsky (1994). This problem solves for the minimal point 

coverage by a circular disk or a rectangle and is referred to as MNC£P. Another 

approach for partially covering the fixed point set is the M£C£P (Daskin, 1983). In 

this objective, a demand originating from a fixed point may not be covered because the 

facilities may be serving some other fixed points. This corresponds to the busy state 

of the facilities in the system. Daskin (1983) proposed and solved the M£C£P with 
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the objective of maximizing the expected coverage under the assumption that the 

probability regarding the busy state of the facilities in the system is known as a 

pnon. 

This thesis is particularly devoted to introducing new formulations and ex

act solution methods for a group of new continuous minimal and maximal covering 

location problems. Unlike the facilities considered in existing covering location mod

els, the facilities employed in this text are dimensional facilities. That is, we study 

covering location problems of facilities having particular shapes rather than being 

analytical solution points in the feasible location space. The facilities may assume 

many diverse dimensional forms according to the application area. For example in 

material cutting, the facility is nothing but a shape that has to be placed on the ma

terial with covering minimum fault-points. A practical example of this application is 

the problem of cutting polygonal pieces from a bigger fiat section of leather in the 

leather industry. Since we study the covering location problems of different dimen

sional objects in various chapters, we will generally use the terms shape and facility 

interchangeably, throughout this thesis. 

All the proposed problems in this thesis solve for the location of shapes in a 

continuous feasible location space while ensuring that the shapes are aligned with 

the orthogonal axis system. That is, the shapes are restricted to move only via 

translations, and rotational moves are not permitted. The translations allowed for 

the shapes are affine transformations which do not permit dilations and distortions 

of the shape. In other words, the shapes preserve their interior angles and the points 

on the edges of the shape preserve their co-linearity. Problems considering rotational 
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aspects of the shapes, which are beyond the scope of this text, can be tackled either 

algorithmically or by iteratively rotating the axis system and employing the models 

discussed in this manuscript using modified fixed point locations. 

vVe also discuss the implementation of continuous covering model under a 

dynamic setting. In this scenario, the facilities are expected to serve for multiple time 

periods and system parameters such as fixed point locations and costs are subject to 

change. 

Prior to a formal statement of problems to be studied, it is essential to identify 

the gaps in the literature regarding this group of covering models. In this respect, we 

review the relevant literature on continuous covering location problems, dimensional 

facility location problems and dynamic facility location problems in the following sec

tion. In the next chapter, we summarize the gaps identified in the literature and state 

the problems which are the particular subject of this thesis. 

2.2 Literature review 

In this section, we provide a detailed literature review on continuous cover

ing problems, dimensional facility location problems and dynamic facility location 

problems which are closely related to the thesis problems. 

2.2.1 Continuous covering location problems 

The group of maximal and minimal covering problems which will be discussed 

in this thesis fall into the realm of continuous covering location models. In continuous 
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location problems, the location space can be described by continuous variables, de

noting the coordinates. Unlike in discrete location problems, a finite set of candidate 

sites for the facilities can not be specified in continuous location problems. There

fore, instead of a pre-specified set of candidate sites, we consider a feasible location 

space. Usually, continuous location problems are regarded as site-generating (Love et 

al., 1988) models in the sense that the facility location can be anywhere within the 

feasible location space. 

In general, a metric is employed as a mathematical description of the distance 

or closeness relation between the fixed points and the facilities. The metrics which 

are members of the Minkovski distances of order p are all convex functions for p ~ 1 

(Love et al., 1988), hence their mixed norms (i.e. convex combinations) also have 

this property. Therefore, continuous covering problems usually call for the utiliza

tion of convex optimization and global optimization methods (Hirirart-Urruty and 

Lemarechal, 1993; Hansen et al., 1995). 

The distance threshold below which the fixed points are deemed as covered 

is called the impact radius (Carrizosa and Plastria, 1995). Since we study covering 

location problems of dimensional facilities in this thesis, it is worthwhile to clearly 

state the distinction between a dimensional facility and an impact radius. An impact 

radius applies to an analytical solution point and sets the threshold for the covering 

decision, whereas a dimensional facility has its coverage area already incorporated 

within. 

In this section, we further categorize the covering models introduced in Sec

tion 2.1 into four classes: (1) obligatory (or sometimes referred to as full) covering 
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models, where the objective is to cover the fixed point set with the minimum possi

ble impact radius; (2) maximal covering models, where the objective is to cover the 

largest number (or weight) of fixed points with a fixed impact radius; (3) empty cov

ering models, where the objective is not to cover any fixed points but to maximize 

the possible impact radius; and (4) minimal covering models, where the objective is 

to cover least possible number (or weight) of fixed points with a fixed impact radius. 

2.2.1.1 Obligatory (or full) covering models 

The minimal radius full covering problem with a fixed point set can be solved 

by finding the minimum impact radius of a circular disk (in case of Euclidean distance) 

enclosing the fixed point set. This is equivalent to a renowned problem in location 

science, namely, the minimum covering circle problem proposed by Sylvester (1857). 

An early method for this problem was proposed by Elzinga and Hearn (1972). Their 

method is based on iteratively expanding the radius of the circle either touching 

two fixed points which define the diameter of the circle or three fixed points on the 

circle forming an acute triangle, until the circle covers the whole fixed point set. The 

method can be summarized as follows. 

Procedure: Elzinga-Hearn 

Step 1. Pick 2 demand points P 1 and P 2 from the fixed point set. 

Step 2. Construct the circle C such that the two points on hand define its diameter. 

Step 3. If C covers the fixed point set, it is the minimum covering circle, STOP. 

Otherwise, add a fixed point P 3 lying outside C. 
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Step 4. Check the triangle T defined by the three points on hand. If there is an 

obtuse angle in T, drop the point at this angle, return to Step 2 and continue with 

the two points on hand. 

Step 5. If all the angles of the triangle T are acute, compute the new circle C passing 

through these three points. If C covers the fixed point set, it is the minimum covering 

circle, STOP. 

Step 6. Otherwise, add a point P' outside C according to procedure ADD-DROP, 

return to Step 4 and continue with these three points. 

Procedure: ADD-DROP 

Step 1. Let, pT be the farthest point of T from P' as in Figure 10, and L be the 

line passing through pr and the centre of C. 

Step 2. L separates the two remaining vertices of T (see, Figure 10). Then, drop 

the point which is on the same half-plane as P'. .ft 

this point 

e P' <-Add this 
point 

L 

Figure 10. Adding and dropping points in Elzinga-Hearn method 

The average complexity of Elzinga-Hearn method is still not known on a ran

domly generated fixed point set. Preparata and Shamos (1985), reported that the 
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method has an 0 (N2 ) worst case complexity, where N is the number of fixed points. 

Later, Drezner and Shelah (1987), contributed with an example where the method 

actually takes 0 (N2
) steps. 

The minimum covering circle problem can be tackled by computing a tessella

tion of the plane, finding a non-dominated set of circle locations and finally searching 

the resultant set of location alternatives. This procedure requires employment of far

thest point Voronoi diagrams (Okabe et al., 1992; Suzuki and Okabe, 1995), a basic 

tool of computational geometry. Many efficient methods are readily available for ob

taining Voronoi diagrams: see, for example, the studies of Ohya et al. (1984) and For

tune (1987). The first step, computing the non-dominated set of location alternatives 

(i.e. the farthest point Voronoi diagram), will essentially require 0 (N log N) time 

(see, Aurenhammer, 1991; Okabe et al., 1992). The resulting structure is a tree net

work. Then, the solution of the minimum covering circle problem corresponds to 

finding the circle location minimizing the impact radius on the absolute tree network 

(i.e. on the vertices and the continuum of the edges), that covers the fixed point set. 

Welzl (1991) proposed another efficient method for the full covering problem, 

which works with 0 (N) complexity, by adding the fixed points one by one to the 

incumbent solution. According to Welzl's (1991) procedure, the new points added 

to the solution either lie inside the current minimum covering circle or on the new 

minimum covering circle. 

Ohsawa and Imai (1997) studied some interesting properties of the problem. 

They considered a fixed radius larger than the impact radius and found the set of all 

full covering circles. Then, they tried to define a parametric function for computing 
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the cardinality of this set by means of the fixed radius (i.e. the parameter). 

Hearn and Vijay (1982) and Charalambous (1982) independently studied the 

weighted version of the basic problem and extended Elzinga and Hearn's (1972) 

method. Follow-up work is due to Megiddo (1983), where an 0 (N) algorithm was 

proposed. 

Another variant of the problem is to consider locational constraints. Suppose 

that the location (i.e. center) of the minimal covering circle is restricted to lie within 

a polygonal region. In this case, the best known solution method is reported by 

Woeginger (1998), which runs in 0 (NlogN) time. 

The only study considering full covering in ~3 is due to Spath (1978). The 

rectangular distance metric was employed for this problem. Thus, the covering shape 

of Spath's problem is a regular octahedron. 

The full covering problem under other distance measures was also studied. 

Drezner and Wesolowsky (1980a) studied the mini-max single facility center problem 

with general f,P norms, Beer and Pai (1990) investigated the Chebyshev norm center 

problems, and Nickel (1998) solved a restricted center problem under polyhedral 

gauges. 

Drezner and Wesolowsky (1983a), proposed another variant of the full covering 

problem, the full covering problem on a sphere, by considering spherical distances. 

Later, this problem was re-addressed by Patel (1995) who considered the Euclidean 

norm. Sarkar and Chaudhuri (1996) analyzed the problem on a hemisphere using 

equal fixed point weights. Das et al. (1999) proposed a polynomial time algorithm 

for the mini-max location problem on the hemisphere. 
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The multi-facility extension of the full covering problem is called the p-centre 

problem. This model is employed for solving the location problem of p circular disks 

of equal radius (for the Euclidean distance) that fully cover the fixed point set, while 

minimizing the impact radius. This problem is known to be NP-hard (Fowler et 

al., 1981; Masuyama et al., 1981; Megiddo and Supowit, 1984). If the rectangular 

distance metric is used, the circular disks are replaced by squares tilted 45°. For the 

rectangular case, the p-centre problem also remains NP-hard (Hsu and Nemhauser, 

1979; Megiddo and Supowit, 1984). However, there exist some instances where such 

problems are polynomially solvable. These instances call for a special arrangement of 

the fixed point set. See, for example, the one dimensional p-centre problems discussed 

in Megiddo et al. (1981) and Frederickson and Johnson (1983). 

The p-centre problem has algorithmic solution approaches calling for () (N3P) 

computational complexity. At the beginning, the minimum number of potential shape 

locations that cover the whole fixed point set within a fixed impact radius must be 

found. Let this fixed impact radius be R. First, circular disks of radius R are lo

cated on all the fixed points and the intersections of these disks are found. Then, 

the minimum number of these intersections which ensure that the fixed point set 

is fully covered are determined as potential shape locations. This procedure requires 

() (N3 ) computational effort (Ryzhkov, 1973; Vijay, 1985). The next step is to search 

for the minimal impact radius R, ensuring that the number of potential shape loca

tions is not greater than p. This yield an() (N3P) algorithm overall. The rectangular 

distance case of this problem was also studied by Drezner (1987) and later by Ko et 

al. (1990), who referred the problem as the rectilinear m-center problem. 
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Several other algorithmic procedures and heuristics were proposed and studied 

for this problem. Exact algorithms (Drezner, 1984), simple heuristics (Dyer and 

Frieze, 1985), interactive graphics procedures (Ezra et al., 1994), simulated annealing 

procedures (Maffioli and Righini, 1994), seed point heuristics (Pelegrin and Canovas, 

1998) and fixed point aggregation methods (Rayco et al., 1999) were successfully 

applied. 

2.2.1.2 Maximal covering models 

The first basic covering location model was proposed by Toregas et al. (1971). 

This is used to determine the locations of a fixed number of servers to fulfill an 

obligatory coverage requirement of all fixed points. As mentioned in Section 2.1, this 

model is very restrictive and not suitable for situations where the decision maker can 

not choose the impact radius or the radius threshold turns out to be insufficient for 

covering the whole fixed point set. An extension of this type of covering model is 

to consider a partial coverage of the fixed point set. This idea led location scientists 

to consider maximal coverage instead of an obligatory coverage requirement for all 

fixed points. The maximal covering location problem (MXC.CP) was introduced 

independently by Church and ReVelle (1974) and White and Case (1974). These 

authors discussed covering a maximum number of fixed demand points by analyzing a 

set of possible site alternatives. The models introduced by these authors were discrete 

problems rather than being continuous covering models, since the feasible locations 

were pre-specified. Soon after, MXC.CP was extended to continuous covering models 
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where the facility location could be anywhere on the entire plane (Mehrez, 1983; 

Church, 1984). 

Multi-facility version of MXC£P was studied under different names and heuris

tic solution procedures were proposed. Among them, Watson-Gandy (1982) named 

his problem the m-partial covering problem and solved it for Euclidean distances, 

whereas Drezner (1986) discussed the problem of maximal covering with rectangular 

distances and referred to the resulting model as a p-cover problem. 

One possible objective is to investigate how far the impact radius can be 

reduced while still guaranteeing a desired coverage level. This calls for allowing a 

varying impact radius and searching for the location of a facility, and its minimal 

impact radius, which do not violate the threshold coverage level. This problem was 

proposed by Carrizosa and Plastria (1995) and named the minimal-quantile location 

problem. 

It is interesting to note that one decade before the formal introduction of 

MXC£P, the following group of authors studied a hierarchical version of this problem 

in the context of emergency service facility planning: Schultz (1970), Calvo and 

Marks (1973), Dokmeci (1973) and Narula and Ogbu (1979). Moore and ReVelle's 

(1982) two-level model suggested a hierarchical maximal covering problem that can 

be characterized by two types of facilities: the lower level facilities providing a type

1 service and higher level facilities providing a type-2 service. Then, the problem 

is to maximize the population covered with maintaining specified service distance 

standards. Recent studies on this branch of MXC£P are due to Boffey and Narula 

(1997) and Espejo et al. (2003). 
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In the MXC.CP, a particular fixed point is either covered or left uncovered. 

That is, the facilities are fully covered up to a distance R (i.e. the impact radius), yet 

the coverage reduces to zero immediately beyond R, say at a distance R + c, where 

c is a very small number. In some application areas such as marketing and retail 

location, this problem characteristic has not been regarded as realistic. Hence, the 

coverage level was modeled as a decreasing function of the distance from the fixed 

points to the facility location. Examples are the spatial interaction models (Huff, 

1964), related to competitive facility location. One may refer to Ghosh et al. (1995) 

for a detailed review of this body of knowledge. 

This approach was adapted to the MXCCP by Berman and Krass (2002) 

and Drezner et al. ( 2004), but using different decay functions. Berman and Krass 

(2002) studied a generalization of the MXC.CP by modeling the level of coverage as 

a decreasing step function of the distance between the fixed points and their nearest 

facilities. Drezner et al. (2004) investigated a somewhat different problem by con

sidering three types of coverage levels: (1) up to some distance standard the fixed 

points are fully covered; (2) beyond some other distance standard the fixed points 

are not covered; and (3) between these two distance standards, the coverage level is 

linear according to the distance of the fixed point to the facility. They refer to this 

problem as the gradual covering problem, and proposed a branch-and-bound method 

for its solution. Earlier models discussing the coverage over the impact radius can be 

found in Church and Roberts (1983) and Pirkul and Schilling (1991). 

Further extensions of the MXC.CP include multiple, excess, backup and ex

pected coverage (Daskin et al., 1988) and stochastic models (Sherali et al., 1991). 
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Effects of demand aggregation on the fixed points and the corresponding errors were 

also investigated by Daskin et al. (1989) and Current and Schilling (1990). 

There are many application areas of the MXC£P. Some interesting reports 

on diverse applications include: control monitor location (Hougland and Stephens, 

1976), ambulance deployment (Eaton et al., 1986), locating emergency warning sirens 

(Current and O'Kelly, 1992), and branch location in the private sector (Pastor, 1994). 

An early review of the applications of MXC£P can be found in Chung (1986). A 

detailed review of covering problems in general, is given by Schilling et al. (1993). 

It is noticeable that the planar maximal covering problem literature is sparse 

on the subject of formulations where the facilities are defined by an area. A recent 

study discussing the location of area-type facilities using a classical objective func

tion is due to Carrizosa et al. (1998). In this article, the fixed point set is assumed 

to be distributed over a region according to a probability measure. The location 

of a rectangular facility minimizing the expected distance to this fixed point set is 

discussed. The studies considering the area-type facilities using covering objectives 

are very limited. The only two recent studies are due to Younies and Wesolowsky 

(2004; 2007). In the first article, the problem of locating inclined parallelograms for 

the planar maximal covering problem is proposed. A mixed integer linear program 

(MILP) and an alternative algorithm are presented. In the latter one, the problem 

is extended to general block-norm distances. Borrowing concepts from graph theory, 

Younies and Wesolowsky (2007) converted the anticipated maximal covering problem 

to an equivalent maximal clique partitioning problem on a multi-interval graph. Fur

ther, the equivalent maximal clique partitioning problem was represented as a binary 

28 




Ozan QAKIR DeGroote School of Business 

unconstrained quadratic problem. Two problems were then tackled via a genetic algo

rithm and computational examples were demonstrated. Other than these two recent 

studies, there is no earlier work considering area-type facilities for planar maximal 

covering problems. 

2.2.1.3 Empty covering models 

The maximal radius empty covering problem for a fixed demand point set us

ing Euclidean distances can be solved by inspecting the maximum impact radius of 

a circular disk that does not enclose any of these fixed points. This is the opposite of 

full covering models, and is equivalent to the largest empty circle problem of compu

tational geometry. For a detailed discussion of the largest empty circle problem one 

may refer to Toussaint (1983) and Preparata and Shamos (1985). 

The minimum enclosing circle problem and the largest empty circle problem 

have almost similar solution procedures, as discussed in Section 2.2.1.1, which com

pute a tessellation of the plane and investigate the resultant non-dominated feasible lo

cations. However, as opposed to the procedure discussed in Section 2.2.1.1, for solving 

the largest empty circle problem, one should compute a closest point Voronoi diagram. 

Methods of constructing closest point Voronoi diagrams can be found in Toussaint 

(1983), Okabe et al. (1992) and Suzuki and Okabe (1995). Similarly to the case with 

farthest point Voronoi diagrams, this procedure requires 0 (N log N) computational 

effort. For fixed points having different weights, the Voronoi diagram has to be 

adapted accordingly. Auranhammer and Edelsbrunner (1984) proposed a method of 
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constructing a weighted extension of the basic Voronoi diagram. 

The largest empty circle problem is equivalent to the maxi-min or anti-center 

location problems, named after their objective functions. These objective functions 

imply that the main goal is to choose a facility location which is as far as possible 

from the closest fixed point to the facility. In real-life applications, this corresponds 

to minimizing the undesired impact of the facility by locating it to the farthest pos

sible site from the community. Therefore, these models are regarded as noxious (i.e. 

undesirable or sometimes called obnoxious) facility location problems. 

The Euclidean distance maxi-min problem was studied by Dasarathy and 

White (1980) and Melachrinoudis and Cullinane (1985). Extensions of the basic 

problem include: the maxi-min problem in a workroom environment (Melachrinoudis, 

1985), the maxi-min problem within a polygonal region (Melachrinoudis and Culli

nane, 1986), the parametric maxi-min problem (Erkut and Onci.i, 1991), and the 

weighted maxi-min problem (Carrizosa et al., 1994). The problem with rectangular 

distances was studied by Drezner and vVesolowsky (1983b), Mehrez et al. (1986), and 

later by Appa and Giannikos (1994). 

In noxious facility location problems, undesirable nature of a facility produces 

a push effect away from the demand points. However, in some applications, there 

may be maximum distance constraints on the facility which pull the facility location 

closer to the community. Consider a landfill to be located within a region by a 

municipality. The pollution effect of the landfill site will force the management to 

consider a location as far as possible from the community; however, in that case, 

transportation costs will rise with the distance. Also, factors such as the geographical 
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boundaries of the municipality will restrict the landfill location. A problem of this 

type (i.e. with maximum distance constraints) was first proposed and solved by 

Drezner and Wesolowsky (1980b). 

Drezner and Wesolowsky (1980b, and later in (Love et al., 1988)) discussed 

a solution method for the distance-constrained problem which is known today as 

the Drezner- Wesolowsky algorithm. The algorithm first constructs circles on the 

fixed points and then gradually expands them. Since the non-dominated maxi-min 

candidate locations lie outside the union of these circles, the circles can only be 

expanded up to some extent, as otherwise the solution will occur outside the feasible 

area defined by obligatory distance constraints. Therefore, the solution of Drezner

Wesolowsky algorithm is the last point lying outside the union but intersecting with 

the feasible area defined by obligatory distance constraints. Later, Mehrez et al. 

(1986) proposed an enhancement of this algorithm for rectangular distances. Recent 

studies on distance-constrained location problems are due to Berman and Huang 

(2008) and Williams (2008). 

The only study that considered the maxi-min objective in higher dimensions 

is Goetze et al.'s (1990) article investigating a maximum empty box location problem. 

A closely related higher dimensional location problem was discussed in Nguyen and 

Strodiot (1992) under the name design center problem. This involved solving for the 

location of a maximal convex polyhedron within a polyhedral region. 

2.2.1.4 Minimal covering models 

In minimal covering location models (MNC£P), the objective is to minimize 
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the number (or total weight) of the fixed points covered. The minimal covering prob

lem was first studied by Drezner and Wesolowsky (1994). The objective was to find 

a circle or rectangle containing the minimum weight of points in the plane. Brimberg 

and ReVelle (1999) studied the multi-facility version of this problem by allowing a par

tial satisfaction of demand at the fixed points. Munoz-Perez and Saameiio-Rodrfguez 

(1999) discussed minimal covering location within a polygonal region that include 

forbidden zones. 

Plastria and Carrizosa (1999) associated an additional objective with minimal 

covering models and referred to this as the maximal radius problem. They investigated 

the tradeoffs between a set of impact radii and a set of threshold coverage levels. That 

is, they solved the basic minimal covering problem considering a set of alternative 

impact radii and the maximal radius problem for a set of threshold coverage levels. 

This approach requires analyzing bi-criterion formulations. 

A group of authors discussed pull-push type problems which are closely re

lated to distance constrained maxi-min noxious (i.e. undesirable) facility location 

problems discussed in Section 2.2.1.3. This group of covering problems was named 

semi-obnoxious (Carrizosa and Plastria, 1999a; Ohsawa et al., 2006) location prob

lems and it integrates both the attractive and undesirable features of the facilities. 

The solution methods are usually based on bi-criterion models ( Carrizosa and Plas

tria, 1999b; Ohsawa, 2000) or some algorithmic approaches integrating the farthest 

and closest point Voronoi diagrams (Ohsawa and Tamura, 2003). 

For general reviews on noxious facility location problems, one may refer to 

Erkut and Neumann (1989) and Kleindorfer and Kunreuther (1994). 
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2.2.2 Dimensional and extensive facility location problems 

Location problems studied to date generally consider facility locations as being 

analytical solution points. However, there is now a growing interest on locating 

dimensional structures such as lines, segments, routes, hyper-planes and spheres. This 

branch of location science is referred to as extensive facility location problems and it 

is a relatively new area compared to the models discussed in the previous sections. 

The problems that are of particular interest in this area were still studied up to a 

limited degree and there exist several forms of dimensional facilities according to 

specific applications. Therefore, new results in location science may especially come 

from this area. 

One extensive facility location model that is well known in all scientific dis

ciplines is the simple linear regression. This problem is essentially a mini-sum line 

location problem where the distances to the fixed points are given in terms of squared 

residuals. 

Some interesting results in locating a line facility with rectangular and Euclid

ean distances were given by Wesolowsky (1972; 1975), respectively. One was the the

orem proving the existence of an optimal median line passing through at least two 

points from the fixed point set. Later, the same result was re-addressed by Morris 

and Norback (1980) and Love et al. (1988). Subsequently, this theorem was proven 

to be valid for the block norms as well (Schabel, 1996). 

Similarly, center line problems were studied under rectangular and Euclidean 

norms (Morris and Norback, 1980), and under distances derived from norms (Schabel, 
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1998) and under gauges (Schabel, 1999). 

Solution procedures for median line location problems include: Morris and 

Norback's (1980) CJ (N3 ) enumeration algorithm, which was later reduced to a com

plexity of CJ (N2 log N) by Megiddo and Tamir (1983). For problems under rectan

gular distance, polynomial time algorithms can be generated based on solving two 

independent line location problems (see, for example, Imai et al., 1989). 

The noxious line problem was tackled in the context of computational geom

etry. An equivalent form of this problem in computational geometry literature is 

called largest empty corridor problem (or sometimes called computing the width of a 

set). Houle and Toussaint (1988) discussed this problem in detail and proposed an 

CJ (N log N) algorithm. For the problem with unequal-weight fixed point sets Lee 

and Wu (1986) developed an CJ (N2 log N) algorithm. 

Another important line location problem is the noxious route location problem 

which is applicable to hazardous materials logistics planning. This problem was 

proposed by Drezner and Wesolowsky (1989) using classical distance metrics, and 

was later extended to polyhedral norm distances by Hinojosa and Puerto (1999). 

The full covering line location problem is equivalent to siting multiple lines in 

the plane ensuring that the fixed point set is a subset of the union of these lines. 

Alternatively, this problem may be named as the line cover problem. Megiddo and 

Tamir (1982) showed that this problem is NP-hard. 

One interesting extension of basic line location problems is the line transver

sal problem. This problem investigates the existence of a line passing through a set 

which consists of N convex polygonal sub-sets. Avis et al. (1989) solved this problem 
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in 0 (NlogN) time by using Hershberger's (1989) 0 (NlogN) algorithm. Efficient 

methods for sets having the same orientation in space do exist. For example, Edels

brunner (1985) computed the line transversal of N identically oriented rectangles in 

0 (N) time. 

Another extensively studied dimensional facility form is the hyperplane. Usu

ally, the approaches listed above for line location problems are generalized for hy

perplane location problems. These problems are concerned with finding a hyperplane 

cutting the convex hull of N points in lRn, such that a certain objective function is 

minimized. Hyperplane location problems were studied under the classical objective 

functions, which led to the median-hyperplane and center-hyperplane problems. Re

lated results can be found in Houle et al. (1993), Korneenko and Martini (1993), 

Martini and Schabel (1998), and Schabel (1999). 

An extension of this problem is to find a k dimensional subspace closest to a 

set of N points in lRn, using median and center objectives. This problem was studied 

by Martini (1994) and referred to as k-fiat problem. 

Finding the closest circle to a set of points is an essential problem as it has some 

applications in roundness inspection which is an important topic in precision engineer

ing. The closest circle problem was studied by many authors in several application 

areas such as: data approximation (Rivlin, 1972; Boffey et al., 1988; Garcia-Lopez 

et al. 1998), in production engineering under the name of roundness inspection (Yer

alan and Ventura, 1988; Ventura and Yeralan, 1989) and in location science (Drezner 

et al., 2002). 

Location problems regarding polygonal facilities are studied in the context 
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of best approximation to a fixed point set. These problems have applications in 

robotic path design, pattern recognition and graphic design fields. A group of authors 

discussed approximating a polygonal curve with another simple one. This stream 

includes the works of Imai and Iri (1988), Melkman and O'Rourke (1988), Chin et al. 

(1992) and Chan and Chin (1996). 

Some specific problems in this branch are concerned with ellipse and hyper

bola fitting (Spath, 1997), finding double-ray center of a fixed point set (Glozman et 

al., 1999), locating a convex polygon within another polygon with the classic maxi

min objective (Imai et al., 1999) and approximating the fixed point set by a 1-bend 

polygonal curve (Diaz-Banez et al., 2000). 

Sava§ et al. (2002) argued that the "infinitesimal facility" assumption of many 

location models is only valid when the physical aspects of the facilities are negligible 

with respect to those of the location space. That is, the analytical solution point 

generated by such location models can be used as a facility location only if the area 

and dimensions of the facility are remarkably small, when compared to the size of the 

location space. They considered the problem of locating a single, finite-area facility 

under rectilinear metric and barriers to travel. In their approach, there exists a set 

of fixed points distributed over a planar region, and the facility is serving to this set 

from a "server" located on its boundary. They analyzed candidate facility locations 

under the median objective and proposed a heuristic procedure for the solution of 

this location problem. In a similar study, Sarkar et al. (2007) discussed locating a 

finite-area facility under the same setting but with using the center objective. 

Covering location problems with dimensional and extensive facilities (except 
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Younies and Wesolowsky, 2004; 2007) are limited. They include finding an annulus 

of minimum width covering a set of fixed points (De Berg et al., 1997), and finding a 

largest empty annulus (Dfaz-Baiiez et al., 2002). 

An interesting open problem of extensive facility location is the problem of 

finding the location and orientation of two co-centric cylinders, such that the smallest 

possible open space between the cylinders fully contains a given set of fixed points 

in R3 . Dfaz-Baiiez et al. (2004) report that there is no solution described for this 

problem up to now, other than brute-force attack algorithms. 

2.2.3 Dynamic facility location problems 

In most of the applications, facilities may be expected to function over a 

period of time throughout which the system parameters such as demand at the fixed 

points and transportation costs are subject to change. For those cases, most of the 

static location problems were extended to accommodate such changes in the system 

parameters and were called dynamic location problems. 

The establishment of dynamic facility location research dates back to the pio

neering works of Klein and Klimpel (1967) who studied the fixed charge problem with 

economies of scale, Ballou (1968) who analyzed dynamic location of warehouses from 

a marketing point of view, and Scott (1971b) who discussed facilities entering the 

system one-by-one without relocation. Later, studies dealt with parameters such as 

costs evolving through multiple periods. Changes over time in destination locations 

and product volumes were analyzed in the location science context by Wesolowsky 
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(1973) and Wesolowsky and Truscott (1975). Dynamic facility phase in-phase out 

location problems were discussed by Roodman and Schwarz (1975; 1977). 

Other extensions of basic models include: the dynamic uncapacitated sim

ple plant location problem (Van Roy and Erlenkotter, 1982; Chardaire et al., 1996), 

dynamic extension of p-median problem (Galvao and Santibanez-Gonzalez, 1992), 

dynamic warehouse location models (Khumawala and Whybark, 1976; Kelly and 

Maruckeck, 1984). 

Several versions of problems dealing with facility capacities were discussed. 

For example, demand pattern analysis and capacity adjustment of a given set of facil

ities through multiple periods was proposed independently by Sweeney and Tatham 

(1976), Erlenkotter (1981), and Fong and Srinivasan (1981; 1986). Lee and Luss 

(1987) analyzed capacity expansion and discussed some solution algorithms. Antunes 

and Peeters (2001) proposed a simulated annealing procedure for the capacity expan

sion problem. Shulman (1991) analyzed the case with discrete expansion sizes and 

contributed an algorithmic solution procedure. Melachrinoudis et al. (1995) stud

ied the noxious facility case and proposed a multi-objective programming approach. 

Wang et al. (2003) considered budget constraints while analyzing opening-closing 

policies, and Melo et al. (2005) proposed a dynamic multi-commodity framework for 

strategic supply chain modeling. 

Further generalizations of the dynamic facility location problem do exist. 

These can be summarized as follows: the problem of locating multi-echelon inter

mediate facilities (Canel et al., 2001), relocation problems of hybrid manufacturing

distribution facilities (Min and Melachrinoudis, 1999), the dynamic two-echelon relo
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cation and phase-out problem (Melachrinoudis and Min, 2000), and the multi-period, 

multi-commodity and multi-echelon location problem (Hinojosa et al., 2000). 
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Chapter 3 
Thesis problems and organization 

3.1 Gaps identified in the literature 

Review of the subject literature revealed some gaps in the current body of 

knowledge regarding continuous covering location problems. These gaps can be sum

marized as follows: 

Gap 1. In the present literature, continuous covering problems have been tackled 

only by using distance measures. Other than Younies and Wesolowsky (2004), we 

did not encounter any study attempting to formulate a covering problem without 

employing any distance measure but using the geometrical properties of the facility. 

Moreover, facility locations generated by employing the present planar continuous 

covering models are analytical solution points in the plane. Notice that these models 

can not account for dimensional facilities. 

Gap 2. It is possible that the lateral dimensions of the facilities are themselves 

decision variables. These type of facilities may be characterized as non-rigid facilities. 

There is no work discussing location problems of non-rigid 2-dimensional facilities in 

the literature. 

Gap 3. There is only one study (Spath, 1978) discussing a covering problem in ~3 

using the classic mini-max objective function. It is evident from the literature that 

continuous covering problems in ~3 considering 3-dimensional shapes have not been 

studied. 
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Gap 4. If facilities are expected to function over multiple time periods and the system 

parameters are likely to change, then we deal with dynamic location problems. The 

dynamic versions of some possible new problems that will fill Gaps 1-3 will indeed be 

new location problems. 

This thesis attempts to formulate and study a group of problems that will 

fill these gaps in location science research. To achieve this objective, we introduce 

a class of continuous covering location problems. It was also important to propose 

alternative exact solution approaches to these new models, hence for each problem, 

we also introduced a purpose-built solution procedure. A statement of the problems 

studied in this thesis are provided in the next section. 

3.2 Problem statements 

3.2.1 The planar expropriation problem with non-rigid rectangular 
facilities 

In Chapter 4, we study the planar expropriation problem with non-rigid rectan

gular facilities (P£NR). This problem is intended to address Gaps 1 ancj 2 identified 

in the continuous covering problem literature. 

Formal statement of the problem P£NR. Given N fixed points indexed by i and 

the expropriation costs ci E at+ associated with these points in the Euclidean plane 

R2 
, find the location and formation of a (the K) non-rigid rectangular facility(ies ), 

such that the total cost of the expropriated points is minimum. 9' 
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The expropriation location problem is intimately related to minimal covering 

and single noxious (i.e. undesirable) facility maxi-min location problems. Noxious fa

cility location problems have the classical push objectives (Eiselt and Laporte, 1995), 

in the sense that the more distant the facilities located are to the fixed points, the 

better the value of the objective function is. A logical objective function in such 

problems is to find a location maximizing the minimum distance between the facil

ity and any fixed point (Dasarathy and White, 1980; Melachrinoudis and Cullinane, 

1985). As mentioned in Section 2.2.1.3, this problem is equivalent to one of the funda

mental problems in the computational geometry domain, namely, the largest empty 

circle problem which is discussed in detail by Toussaint (1983) and Preparata and 

Shamos (1985). However, when the largest empty disks found by such an approach 

are smaller than the impact radius of the noxious facility, we formally switch to the 

minimal covering problem in order to minimize the undesirable effect of the facil

ity. This corresponds to finding the location of a disk of given radius (in Euclidean 

case) within a bounded region, covering the minimum possible weight of fixed points. 

What is different in the expropriation location problem is that it associates specific 

expropriation costs with each fixed point and the points that are covered have to be 

bought in developer's expense. Therefore, the expropriation location problem is ap

plicable when locating noxious facilities and coverage up to some degree is inevitable 

due to configuration of the fixed point set. 

The expropriation idea originated from studying point coverage (Drezner and 

Wesolowsky, 1994) in a planar setting using Euclidean and rectangular norms. There

fore, the expropriation area is a circular disk in the Euclidean norm case, whereas 
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it is a diamond shaped area when a rectangular norm is adopted. The expropria

tion location problem was first proposed by Berman et al. (2003), considering a new 

noxious facility serving a particular proportion of demand. In their original work, 

the authors proposed two formulations for the problem using the Euclidean distance 

norm. Given a predetermined budget for expropriations, the first formulation finds 

the location of the facility such that the fixed demand points which fall into the ex

propriation area are expropriated according to this budget, and the non-expropriated 

fixed points are located as far as possible from the facility. In the second formulation, 

there is a predetermined impact radius such that the points that are closer than this 

distance to the facility have to be expropriated. In this scenario, the facility location 

minimizing the total expropriation cost was investigated. Recent studies on the ex

propriation location problem include Berman and Wang (2007; 2008) and Berman et 

al. (2008). One of the motivating conclusions drawn in Berman et al. (2003) is that 

further investigation of such a problem may consider the facility having an area of 

some particular shape rather than being a mathematical solution point. 

In Chapter 4, we extend the expropriation problem to rectangular non-rigid 

facilities which can assume any rectangular formation between reasonable limitations 

imposed on their structure. The facility is non-rigid in the sense that we allow the 

formation of the facility to be a decision issue and formulate the problem in such a way 

that both location and formation decisions are made simultaneously with minimizing 

the total expropriation cost. 

Possible application areas of the PSNR exist in industrial siting applications. 

Some examples of such applications are: (1) Locating a facility where it is inevitable 
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that some current points will be covered. As mentioned above, these have to be 

bought or expropriated at the developer's expense. In this case, the expropriation 

costs will reflect land prices. (2) Locating a facility which is undesirable due to 

hazardous materials processed or due to contamination effects (i.e. a landfill). (3) 

Locating a facility operation of which may pose risks to the residents (i.e. a high 

voltage electricity distribution station). ( 4) Locating a facility where some points are 

forbidden. In this case a very large expropriation cost, say M, may be assigned to 

each forbidden point. 

3.2.2 The planar maximal covering problem with single convex 
polygonal shapes 

In Chapter 5, we study the planar maximal covering problem with single con

vex polygonal shapes (PMCS). This problem is intended to address Gap 1 identified 

in the continuous covering problem literature. 

Formal statement of the problem P MCS. Given N fixed points indexed by i and 

the weights wi E ~+ associated with these points in the Euclidean plane ~2 , find 

the location of a single convex polygonal shape, such that the total weight covered is 

maximum. 4t 

The P MCS is equivalent to investigating maximal point containment by a 

coverage area in the Euclidean plane ~2 . While some algorithmic approaches (see, 

Barequet et al., 1997; Dickerson and Scharstein, 1998) investigating planar transla

tions of convex polygonal shapes to facilitate maximal point containment exist in the 
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computational geometry literature, there are only two (see, Section 2.2.1.2) studies on 

the exact methods for general m-sided regular convex polygonal shapes. In Chapter 

5, we illustrate a general methodology that can be used to generate the formulations 

of this problem for any m-sided convex polygonal shape, and an exact procedure 

suitable for solving these problems. 

For generating the formulations of the planar maximal covering problems by 

various single convex polygonal shapes, we use a simple methodology which defines a 

convex shape to be the intersection of a set of half-planes. Consider a bounded feasible 

location plane B, and let i and j be two points with known locations (x1i, x 2i) and 

(x 1j, x2j) in this plane, respectively. A line Aij passing through these two points is a 

set of points ( x~, x;) such that, 

Such a line defines two closed half-planes. Denote these half-planes with 

7rt and 7rij. These half-planes are given by: 

and 

Next, consider a convex polygonal shape S, which is to be located on the plane 
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B. The coverage area of the shape can be represented as a closed convex subset of B. 

To illustrate this, consider the following lemma regarding the separation of a convex 

set. 

Lemma 1 Let S be a closed convex set in Rn. Then S is the intersection of all 

half-spaces containing S. 

PROOF See, Bazaraa and Shetty (1979). • 

For the formulation of P MCS, we use the property illustrated by Lemma 1. 

We represent the shape S as a closed convex subset of the feasible location plane B. 

We exemplify an m-sided convex polygonal shape by the intersection of m half-planes. 

These half-planes are defined by means of a collection of line inequalities which are 

constructed by using the extreme points (i.e. vertices) of the convex shape. Let 

Aij be the line equalities which are constructed by using the vertices i and j of the 

convex shape. We convert the line equalities Aij into line inequalities which define 

the half-plane containing the coverage area of the shape. We control the covering 

decision by specifying if a fixed point falls to the interior of the intersection of these 

half planes (i.e. into the coverage area). We employ (m + 1) binary variables to 

produce these types of covering constraints for each fixed point. This strategy results 

in mixed integer linear formulations for the anticipated P MCS problems regarding 

various convex polygonal shapes. 

These types of covering problems have several real-life applications such as lo

cation of convex area facilities, transmitter location, inspection of geometric shapes 
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and locating directional antennas whose coverage areas extend in particular direc

tions (Younies and vVesolowsky, 2004). The formulations are applicable to triangles, 

rectangles, symmetric quadrilaterals, parallelograms, rhombi and regular polygons. 

3.2.3 The dynamic planar expropriation problem with single convex 
polygonal shapes 

In Chapter 6, we study the dynamic planar expropriation problem with single 

convex polygonal shapes (DP£CS). This problem is intended to address Gaps 1 and 

4 identified in the continuous covering problem literature. 

Formal statement of the problem DP£CS. Given N fixed points indexed by i, 

the expropriation costs Cit E ?R+ associated with these points in the Euclidean plane 

?R2 and the relocation costs Vt E ?R+ associated with multiple time periods indexed 

by t, find the successive locations of a single convex polygonal shape through multiple 

time periods, such that the total cost of the expropriated points and relocation costs 

through this planning horizon is minimum. 4' 

When the shape is expected to function over multiple time periods, it is true 

that the system parameters such as expropriation costs and fixed point locations are 

subject to change. In such a dynamic setting, relocations of the shape may be allowed 

within the planning horizon to minimize the total expropriation cost. However, in 

reality, such relocations can not be carried out without incurring relocation costs. 

Therefore, when single-period continuous covering problems are extended to multiple 

time periods, the planner must ensure a balance between the total expropriation 
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cost reductions achieved by relocating the shape and additional costs due to such 

relocation decisions. 

To study the above-stated problem, we first formulate its single-period variant, 

namely, the single-period planar expropriation problem with single convex polygonal 

shapes (SPECS). A formal statement of this problem is as follows. 

Formal statement of the problem SPECS. Given N fixed points indexed by i 

and the expropriation costs ci E R+ associated with these points in the Euclidean 

plane R2 
, find the location of a single convex polygonal shape, such that the total cost 

of the expropriated points is minimum. .ft 

The diametric opposite of an optimization problem arises when the optimiza

tion direction for its objective function is reversed (i.e. from minimization to max

imization or from maximization to minimization). Throughout this thesis, we will 

use this term to indicate such related models. Under this definition, one may now 

observe that the SPECS is the diametric opposite of the planar maximal covering 

problem with single convex shapes (PMCS) introduced in Section 3.2.2. 

Therefore, in Chapter 6, we first show how the formulation for planar maximal 

covering problem with single convex shapes (PMCS) extends to its diametric opposite 

SPECS. Subsequently, allowing a dynamic setting where the system parameters 

evolve through multiple periods, we show how the formulation for SPECS extends 

to its multi-period variant, namely, the dynamic planar expropriation problem with 

single convex polygonal shapes (VPECS). We also illustrate an appropriate dynamic 

programming procedure for the solution of this problem. 

Wesolowsky (1973) introduced two assumptions for the dynamic location mod
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els, both of which also apply to our particular problem formulation. These are sum


marized as follows. 


Assumption 1 (Wesolowsky, 1973). Each relocation cost Vt is independent from the 


distance the shape is moved, and is also independent from the number of time periods 


it will remain at its new location. 


This assumption establishes that the dynamic model we discuss in Chapter 6 

is a fixed-charge location model where the relocation costs are associated only with 

the relocation decision. 

Assumption 2 (Wesolowsky, 1973). Each expropriation cost Cit and relocation cost 

Vt, is adjusted to represent its present value at t = 1. 

This assumption establishes that the cost parameters are forecasted for the 

planning horizon and appropriately discounted to reflect the time value at t = 1. 

In addition, we would like to introduce the following two assumptions, in that, 

the solutions generated by DPECS are evocative. That is, the facility planner should 

be able to interpret a meaningful location-relocation strategy from this solution. 

Assumption 3. Phasing-in occurs at the beginning of the first period. 

This assumption establishes that the shape is located into the feasible space 

for the first time at the beginning of the first period. 

Assumption 4. Phasing-out is not allowed. 

This assumption establishes that the shape is present in the feasible space 

throughout the planning horizon. 
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3.3 Illustration of the models 

All the problems are formulated as mixed integer programs (MIPs) and illus

trated through examples and computational studies. Since we study a group of new 

problems in this thesis, it is worthwhile to note that sample benchmark problems 

regarding the models discussed in this thesis actually do not exist in the literature. 

Therefore, we choose to illustrate all the proposed formulations and procedures on 

randomly generated problem instances. All the MIP programs and proposed solu

tion procedures were coded using the General Algebraic Modeling Systems (GAMS). 

Details of implementation for each study are provided in the corresponding sections. 

3.4 Organization of the thesis 

The remainder of this thesis is organized into four chapters and four appendices 

whose contents are as follows. 

In Chapter 4, we study the planar expropriation problem with non-rigid rec

tangular facilities. In Section 4.2, we provide a mixed integer nonlinear (MINLP) 

problem formulation for a single facility with four sets of constraints. In Section 4.3, 

we discuss a mixed integer linear problem for approximating the MINLP formula

tion. Section 4.4 is devoted to describe the extension of the problems to multiple 

facilities case by considering special non-overlapping constraints. In Section 4.5, we 

develop three types of strengthening cuts based on the geometric properties of the 

problems introduced in the earlier sections. Section 4.6 is reserved for introducing 

a branch-and-bound algorithm we have developed for the solutions of MINLP prob
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lerns. In particular, we discuss new problem generation and bounding strategies for 

this specific problem structure and provide an outline of the branch-and-bound algo

rithm. In Section 4.7, we present two numerical examples for the branch-and-bound 

algorithm by considering single and multiple faciliy cases, respectively. In the last sec

tion we report our computational experience with the branch-and-bound algorithm. 

In particular, we discuss many implementation details including preliminary experi

ments, performance measure, experimental design, resource settings, random problem 

generation, problem sizes, experiment termination statistics and results. 

In Chapter 5, we study the planar maximal covering problem with single convex 

polygonal shapes. In Section 5.2, we provide a five-step methodology for formulating 

the planar maximal covering problem regarding any convex polygonal shape. Section 

5.3 is alotted to illustrating two types of cuts which can be identified based on the 

geometric properties of the shapes under study. In Section 5.4, we provide a numerical 

example for the problem formulations. Section 5.5 is organized in three sub-sections 

to introduce the branch-and-cut algorithm we developed for the solution of planar 

maximal covering problems with single convex polygonal shapes. In particular, we 

introduce notations and calculation of upper and lower bounds. Then, we provide 

an outline of the branch-and-cut procedure. In Section 5.6, we present a numerical 

example for the branch-and-cut algorithm. In the last section, we demonstrate a small 

computational study where we evaluate the bound qualities attained by utilizing cuts 

provided in Section 5.3. 

In Chapter 6, we study the dynamic planar expropriation problem with single 

convex polygonal shapes. In Section 6.2 we formulate the single-period planar ex
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propriation problem with single convex polygonal shapes. Section 6.3 is devoted to 

explaining the extension of this problem to multiple time periods. Thus, we formu

late the dynamic planar expropriation problem with single convex polygonal shapes 

in this section. In Section 6.4 we discuss the decomposition of the dynamic problem 

structure to a set of static expropriation problems where the shape is present at the 

same location through multiple time periods. Section 6.5 is reserved for discussing 

two basic solution procedures for the dynamic planar expropriation problem with sin

gle convex polygonal shapes. In Section 6.6 we demonstrate an incomplete dynamic 

programming procedure we developed for the solution of this problem. Section 6.7 is 

alotted to analyzing the growth of the branching trees for three solution procedures 

discussed in Sections 6.5 and 6.6. In the last section, we present a numerical example 

for the incomplete dynamic programming procedure. 

In Appendix A, we provide two small computational studies to evaluate the 

cuts introduced in Section 4.5 in terms of their effect on solution times of expropriation 

problem formulations. vVe also present a convergence analysis for the branch-and

bound algorithm developed in Section 4.6. 

In Appendix B, we provide a series of formulations for illustrative planar max

imal covering problems. In particular, we formulate the planar maximal covering 

problems with triangles and quadrilaterals. 

In Appendix C, we provide a formulation for the three-dimensional expropri

ation problem with single convex polyhedral shapes. 

In Appendix D, we provide a formulation for the planar maximal covering 

problem with non-rigid rectangular facilities. 
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Chapter 4 
Planar expropriation problem with non
rigid rectangular facilities 

4.1 Introduction 

In this chapter, we study the planar expropriation problem with non-rigid rec

tangular facilities (PENR). We extend the scope of the original expropriation prob

lem (Berman et al., 2003) to rectangular non-rigid facilities which can assume any 

rectangular formation between reasonable limitations imposed on their structure. The 

facility is non-rigid in the sense that the formation of a facility is a decision subject. 

That is, the lateral dimensions of the facility are decision variables. The problem 

requires both location and formation decisions to be made simultaneously with min

imizing the total expropriation cost. Formation requirements are introduced in the 

model by limiting the aspect ratio of the length and width of the facility. The deci

sion of whether a fixed point falls into the expropriation area or not is managed by 

employing binary variables. 

Let the area requirement for such a rectangular facility be A, and let its 

length and width be l and w, respectively. Since l and w are also decision vari

ables, the area restriction A = l · w calls for a mixed integer non-linear program 

(MINLP) formulation and the formation decision requires an extensive exploration of 

the l (w) = A/w tradeoff curve. To overcome this non-linearity, we substitute an ap

proximate mixed integer linear (MILP) problem for the non-linear formulation. We 
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also propose a continuous branch-and-bound framework which utilizes linear approx

imations for the tradeoff curve associated with the facility formation alternatives. 

The branch-and-bound procedure exploits the curve structure by investigating each 

non-fathomed curve segment by further partitioning it according to reasonable as

pect ratio steps, forming approximation lines over the curve segments, solving the 

corresponding approximate expropriation problems on the approximation lines, and 

bounding these segments. 

When working with noxious facility location models the feasible location space 

should be bounded, as otherwise the solution will occur at infinity. Therefore, we de

fine lower and upper limits for location on both directions to describe such a bounded 

feasible location space (i.e. we use a rectangular feasible location space). 

4.2 Problem formulation for a single facility 

The PENR problem requires construction of four types of constraints: ex

propriation constraints, inclusion constraints, area restriction, and integrality and 

non-negativity constraints. In this section, we explain how each type of constraint is 

constructed and we provide the MINLP formulation of the problem. 

4.2.1 Expropriation constraints 

Consider a rectangular facility with an area requirement of A. Let (xi, x 2 ) 

denote the location of the center of the facility, and let (a1i, a2i) be the locations 

of N fixed points indexed by i. Define an envelope Of as a rectangle of the same 
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formation and dimensions as the facility, but centered at a fixed point (a1i, a2i) as 

illustrated in Figure 11. 
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Figure 11. Binary definitions for expropriation 

Let .A~, .Af3 , .Af4 and .Af4 be four gridlines passing through the vertices v;_P, V,f, V[ 

and V[ of this envelope, shown as dashed contours. Note that a fixed demand point 

i is expropriated if and only if there exists a facility location (x1 , x2 ) in its envelope 

Of. The explanation of the binary definitions given by Figure 11 is as follows. Let 

z;11 = 1 if x1 falls to the left of the right gridline .Af4 and 0 otherwise; z;12 = 1 if x1 falls 

to the right of the left gridline .Af2 and 0 otherwise; z71 = 1 if x2 falls below the upper 

gridline .Af3 and 0 otherwise, and finally, z72 = 1 if x2 falls above the bottom gridline 
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A~ and 0 otherwise. 

These definitions imply that a fixed point i is covered along the X 1 dimension 

if following two constraints hold: 

(1) 

12 -w 
( xi - aii) - zi · M::; 2 (2) 

where lvl is a very large number. Using the same logic as in the X 1 dimension case, 

we conclude that a fixed point i is covered along the X 2 dimension if the following 

two constraints hold: 

(3) 

22 -l 
(x2 - a2i) - zi · M ::; 2. (4) 

Recall that, a fixed point i is expropriated if and only if a facility is located within 

the envelope Of. To state it more formally in terms of constraints (1-4), a fixed point 

i is expropriated if and only if it is covered both along the X 1 and X 2 dimensions. 

To illustrate this, assume that there exists a facility located at (x1 , x2 ) as 

11 2 21 22shown in Figure 11 For the fixed point i we have z = 1 z~ = 1 z = 1 but z = 
• ' '/, ' i ' i i 

0. In this case, we conclude that the facility covers point i along the X 1 dimension. 

However, it does not cover the point along the X 2 dimension. Therefore, for the 

expropriation to be necessary we should have all four binary variables with values 

equal to 1. To introduce this into the formulation, we have to add the constraint: 

zll 
i 

+ z12 + z21 
1.. 

+ z22 < 
- 3 + z· 

i (5)i i 
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where zi = 1 if fixed point i is expropriated, and 0 otherwise. 

4.2.2 Inclusion constraints 

For getting sensible solutions to the noxious facility location problems, the 

location area should be bounded. Let, Lx1 and ux1 be the lower and upper bounds 

along the X 1 dimension, respectively. Similarly, let Lx2 and ux2 be the corresponding 

lower and upper bounds along the X2 dimension. The feasible location space is then 

bounded by four lines X1 = £Xl' X1 = ux1
' X2 = Lx2 and X2 = ux2 . We can then 

construct the inclusion constraints that ensure the facility will be located within the 

feasible space as follows: 

w 
LXl +-2 < - x 

1 
(6) 

UXl - W > X1 (7)2 

LX2 +-2 
l < - x 

2 
(8) 

X2 [
U - -2-> X2. (9) 

4.2.3 Area restriction, integrality and non-negativity constraints 

These constraints are straightforward and given by (10-12) 

A=l·w (10) 

(11) 

11 12 21 22 {O l}zi , zi , zi , zi , Zi E , . (12) 
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4.2.4 The MINLP formulation 

Let the expropriation cost for a fixed point i be ci. The MINLP formulation 

of the P£N'R problem can be stated as follows: 

{ t, C; • z,(PEN'R) mm ' s.t. (1- 5, 12) Vi; (6- 11)}. (13) 

4.3 The approximate problem 

The MINLP formulation (13) can be approximated by a linear approximate 

problem, denoted by PEN'RA, by constructing an approximation line over the trade-

off curve, and hence, substituting the area restriction (10) by a linear relationship 

between l and was shown in Figure 12. 

The facility is a rectangle and the planner should be able to impose some 

restrictions on its lateral dimensions to obtain a reasonable formation. Let a = 

l/ w denote the aspect ratio of the length and width of the facility. We let the fa

cility assume any aspect ratio between the limits °'min ::; a ::; °'max· The constants 

°'min and °'max define the extreme values of the aspect ratio within which the forma

tion is considered acceptable by the planner. The aspect ratio constants now define 

the limits on the length and width of the facility as follows: 

(14) 


Wmin = {A :S: W (15)
v~ 

lmin = JA · °'min :=;; l (16) 

58 




Ozan QAKIR DeGroote School of Business 

wmax 
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Figure 12. Approximation to the tradeoff curve 

(17) 

These limits are illustrated in Figure 12. The approximation line for the 

tradeoff curve defined by the formation limits may now be written as: 

lmin - lmax ) ( )l = lmax + ( · W - Wmin . (18) 
Wmax - Wmin 

Along with the approximation line (18), it suffices to write either (14-15) or (16-17) 

to complete the formation restrictions, as a linear relationship between l and w is 
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already constructed by the approximation line. The approximate problem is then 

given by the following MILP: 

(PENR.A) mm { t c; · z; s.t. (1 - 5, 12) Vi; (6 - 9, 11, 16 - 18)}. (19) 

4.4 Extension to multiple facilities 

A logical extension of the single facility problem is to consider multiple fa

cilities having particular area requirements. In this case, the objective is to locate 

multiple facilities in such a way that: (1) the area requirements of each facility is ap

proximately satisfied; (2) the total expropriation cost is minimized; (3) overlapping 

between facilities is avoided; and ( 4) formations of the facilities are decided. 

In addition to the constraints considered in the single facility case, we have to 

construct special constraints to enforce non-overlapping between multiple facilities. 

In what follows, we show how the constraints of the single facility formulation (19) 

are extended to the multiple facilities case and how the non-overlapping constraints 

can be constructed. Finally, we state the planar expropriation problem with multiple 

non-rigid facilities (PENRM). 

4.4.1 Extensions of the expropriation, inclusion and formation 
constraints 

Consider K rectangular facilities indexed by k, with corresponding area re

quirements Ak. Let the length and width of such facilities be lk and wk, respectively. 
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Further, let (x1k, x2k) denote the locations of the centers of the facilities. Consider 

the same binary definitions as those in Figure 11, with the exception that this time 

the binary variables are additionally indexed for each facility. This is because we 

consider K envelopes n~ utilized for the same purpose as the nf used in the single 

facility case. These particular envelopes have the same formation and dimensions as 

their corresponding facility. Therefore, the envelope n~ of facility k has its length 

and width equal to lk and wk, respectively. Thus, the expropriation constraints for 

the multiple facility case are given by: 

(20) 

(21) 

(22) 

(23) 

(24) 

where Zik = 1 if fixed point i is expropriated by facility k, and 0 otherwise. 

Let the feasible location space be bounded similarly to what was done in 

Section 4.2.2. We can construct the inclusion constraint set similarly to (6-9) as 

follows: 

(25) 

(26) 
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X2 lk
L + 2 ~ X2k (27) 

X2 lk
U - 2?: X2k· (28) 

As in the single facility case, we allow formation limitations imposed by the 

planner on facility k. Let Ok denote the aspect ratio of facility k, then we let the facility 

assume any formation between the predetermined limits ok,min ~ ok ~ ok,max, where 

ok,min and ak,max define the extreme values of the aspect ratio within which the 

formation of facility k is considered acceptable by the planner. Therefore, we generate 

the formation restrictions and the linear relationship between lk and wk as follows: 

(29) 

(30) 

(31) 


(32) 


Zk,min - lk,max ) ( )
l k = l k,max + ( · Wk - Wk,min {33) 

Wk,max - Wk,min 

where lk max = -JAk . ak max, lk min = -JAk . ak min, Wk min = vAk/ak max and Wk max = 
' ' ' ' ' ' ' 

-JAk/ak,min are known parameters. 

4.4.2 Non-overlapping constraints 

Non-overlapping constraints for facilities can be constructed by modifying the 
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expropriation scheme used for fixed points as discussed in Section 4.2.1. In the ex

propriation scheme, we form a rectangular envelope defined by length and width of 

the facility around each fixed point by constructing four imaginary gridlines. We 

then ask the following question: "Is there a facility located within this envelope?". If 

the answer is "yes" (indicated by binary variables), then we conclude that the fixed 

point is expropriated (i.e. the point inevitably falls into the expropriation area of the 

facility). 

For deriving logical non-overlapping constraints between two facilities j and k, 

first we define a rectangular envelope around facility j, centered at (x 1j, x 2j) as illus

trated in Figure 13. This envelope is denoted by n~ and we construct it by using the 

dimensions of both facilities j and k (i.e. it is a rectangular envelope whose length 

and width are (lj + lk) and (wj +wk), respectively). 

>.f

Let >.f;, >.f3 , >.f4 and >.[4 be four gridlines passing through the vertices of this 

envelope, shown as dashed contours. The explanation of binary definitions given 

by Figure 13 is as follows. Let 19}k = 1 if x 1k falls to the left of the right gridline 

4 , and 0 otherwise. 19}~ = 1 if x 1k falls to the right of the left gridline >.[2 , and 0 

otherwise. 19Jk = 1 if x 2k falls below the upper gridline >.f3 , and 0 otherwise. 19]~ = 1 if 

x2k falls above the bottom gridline >.[4 , and 0 otherwise. We can now consider how 

to enforce non-overlapping: "Is there a facility k located within this envelope O~?". 

If the answer is "yes" (indicated by the above binary variable definitions), then we 

conclude that the facilities j and k are overlapping. Thus two facilities j and k overlap 

along the X 1 dimension if following two constraints hold: 
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Figure 13. Binary definitions for non-overlapping 

(x1k 
11 

- X1j) + {)jk - M 2:: 
(wj +wk) 

2 
(34) 

(x1k - X1j) 
12 

- {)jk · M::; - (wj +wk) 

2 
. (35) 

Similarly, two facilities j and k overlap along the X 2 dimension if following 

two constraints hold: 

(36) 
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22 -(lj+lk)
(x2k - X2j) - {)jk. Jvf::; 2 · (37) 

Note the important fact that two facilities overlap if and only if they overlap 

both along X 1 and X 2 dimensions. To illustrate this, consider the case where we 

have iJ}k = 1, iJ}% = 1, {};k = 1 but {};% = 0. In this case we see that the facilities 

j and k overlap along the X 1 dimension; however they do not overlap along the 

X 2 dimension. It follows that facility k lies below facility j because there is a vertical 

distance more than (lj + lk) /2 between their centers. Hence, to avoid overlapping, 

binary variables iJ}L iJ}%, {};t and {};% should never be equal to 1 simultaneously. To 

introduce this into the formulation, we have to add the constraint: 

(38) 


Whereas we discussed the constraints between two facilities, the same type of 


constraints are required for all pairs of facilities (i.e. none of them should overlap). 


Therefore, in the formulation, we include the non-overlapping constraints between 


all facility pairs { (j, k) : j -::/= k} . Hence, the expropriation problem with multiple 

non-rigid facilities PENRM can be stated as follows: 

(Pt:NRM) min · z;, : s.t. (20 - 24), ( zif, zf;, z?f, z[f,{ t, t, e; 

ZikE{0,1}) Vi,k; (25-30,33), (x1k,X2k,lk,wkER+) Vk; 

(34- 38,), (u}i,u);,u;:,u;; E {o, 1}) \lj,k, u k}. (39) 
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4.5 Strengthening cuts 

In this section, we illustrate three types of strengthening cuts based on the 

geometric properties of the problems discussed in the earlier sections of this chapter. 

We refer to the first group of cuts as global cuts. These are suitable for all the problems 

discussed in this chapter. The second group of cuts are approximate problem-specific 

cuts, which are intended to strengthen particular approximate problem formulations. 

Finally, we discuss a third group of cuts which are useful for the multiple facilities 

case. 

Lemma 2 (Global cuts) The inequalities: 

11 + z12 > 1(a) z Vi (40)
i i 

21 + z22 > 1(b) zi i - Vi (41) 

hold for all the planar expropriation problem formulations. 

PROOF (a) From the binary definitions in Figure 11, one can observe that the 

binary variables zf 1 and z[2 can never be simultaneously equal to zero in a feasible 

integer configuration. (b) The same argument as in part (a) applies. • 

For the approximate-problem specific cuts, consider an example approximate 

problem p defined on a curve segment as illustrated in Figure 14. Let the limits on 

the formation of the facility for this specific approximate problem be ( w~in, l~ax) and 

66 




l 

Uppe~····· ..b~unding: 

Mixed integer 
Approxim~l:·El... 
is solved on.... this 
approximatiori:\.,line 

l(wl) = Afw./ . , 
. \..., ( ip l ( p ))-+ : 

\., U{apr' Wapr' . . 
......... ............ L..................................................................................:::..... ..... 

............................ 
.......................... ...::::::·:.:·:.·.~·.·.·.~~~·······'"············· 

···........ 

Curve segment p 

----1----------------------------------, 

Ozan QAKIR DeGroote School of Business 

....................... 
....... 
 ··········· 

Problem p 

" " 

.. 
/

P P 

................. (Wm=' lmin) 


w 
I 

Figure 14. An approximate problem on a curve segment 

Lemma 3 (Approximate problem-specific cuts) If one of the arguments (a) la1i - aihl > 

w~axi (b) la2i - a2hl > l~ax is true for the points i and h, i =/. h, then the inequal

ity: 

(42) 

holds for the approximate expropriation problem p. 

PROOF (a) Notice that, the term Ja1i - a1hl is the rectangular distance between 

points i and h along X 1 dimension. If this distance is bigger than the maximum width 

allowed in the approximate problem p, the points i and h can not be expropriated at 
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the same time. (b) Similar to the argument in part (a), therefore omitted. • 

Lemma 4 (Cuts for the multiple facilities case) The inequalities: 

L
K 

Zik ~ 1 Vi (43) 
k=l 

hold for the PfNRM formulations. 

PROOF Since the overlapping between facilities is forbidden, a fixed point i can 

only be expropriated by one facility. • 

In Appendix A, we illustrate two computational studies where we evaluate the 

effect of these cuts on solution times of expropriation problem instances. 

4.6 A branch-and-bound procedure 

In this section, we discuss a branch-and-bound procedure which iteratively 

partitions the l(w) = A/w tradeoff curve to segments and bounds the objective 

function value of the mixed integer nonlinear expropriation problems of type (13) 

defined on these segments. For this purpose, we differentiate between the following 

problems defined on a curve segment: 

(1) Mixed integer nonlinear expropriation problem p (MINLP-p). This is 

the expropriation problem of type (13) defined on curve segment p (see, Figures 

14-15). 

(2) Approximate expropriation problem p. This is the approximate expropria
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tion problem of type (19) defined on curve segment p (see, Figure 14). The objective 

function value of this problem is used as an upper bound on the objective function 

value of the MINLP-p. 

........................................ 


( W~in' l!ax) .....················ i~t.eqerMixed 

This is the nonlinear p.t'C(blem p 

~~re:f~~~e~~·-.....~..~,is 

",/ " . 

' 
' 

l(wJ = Afw -,\ \,_r: :]~:~_:::1E:r~:~>t~::.x,1:m. ) 
·:'. ..................................::::::::::~'.'.:·:::.::::::::-.··"""""Thl·~..··~s the tangent 

line T/
Curve segment p 

w 

Figure 15. Two auxiliary expropriation problems 

(3) Auxiliary expropriation problems. These are two auxiliary expropriation 

problems defined on the tangent lines Tf and T! as illustrated in Figure 15. These 

two problems are used to compute a lower bound on the objective function value of 

the MINLP-p. 

The tangent lines can be found as follows. Let the slopes of these two tangent 

lines be 4 1 and sj2 , respectively. We can find the slope 4 1 , with equalizing it to the 
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first derivative of the curve function evaluated at the formation ( w~in, l~ax). That is, 

dl / dw = -A/ (w~in) 2 = sj,1 . Similarly, the slope sj,2 can be found with equalizing it to 

the first derivative of the curve function evaluated at the formation ( w~=' l~in). Thus, 

dl/dw = -A/ (w~aJ 2 = 4 2 . Let, the possible formations on tangent lines T[ and 

T! be (w~1 , l~1 ) and (w~2 , l~2 ), respectively. Then, the tangent lines T[ and T! are 

given by the equations l~1 = sj,1 · w~1 +CTl and l~2 = sj,2 ·w~2 +Cr2 where CTl and 

Cr2 are constant terms. Let, w~l,max be the largest width allowed on tangent line 

T[ and l~2,max be the largest length allowed on tangent line Tf, as shown in Figure 15. 

By the definition of slope, we have 4 1 = ( l~in - l~ax) / ( wj,l,max - w~in) and sj,2 = 

(l~in - lj,2,max) / ( w~ax - w~in). From these two equalities, w~l,max and l~2,max can be 

found. Then, using the formations ( w~l,max' l~in) and (w~in' lj,2,max), the constant 

terms Cr1 and Cr2 can be derived as follows: CTl = l~in - sj,1 · wj,1,max and Cr2 = 

lp p p
T2,max - 8T2 . Wmin · 

Note that, the approximate expropriation problem and two auxiliary expro

priation problems are simple mixed integer linear problems. In these problems, the 

area restriction A = l / w is substituted with a linear relationship between l and w. 

Each segment p on the tradeoff curve l (w) = A/w is defined by an aspect ratio 

interval [a~in' a~ax], where a~n = l~in/w~ax and a~ax = l~ax/w~in (see, Figure 14). 

Problem generation is done by a cutoff approach over aspect ratio intervals; hence, if 

it is decided that a segment p will be investigated further, the corresponding aspect 

ratio interval [ a~in, a~axl is divided into n equal intervals. We thus create n new 

curve segments; hence n new expropriation problems need to be investigated. Node 

selection from the branching tree is done by a best node first strategy. Thus, among 
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the candidate problems, we select the problem with the lowest objective function (i.e. 

upper bound) value. 

4.6.1 Notations 

p : index for the segment problems; 


f P : optimal objective function value of the MINLP-p; 


ffpr : optimal objective function value of the approximate expropriation problem p; 


( w~pr, l~pr) : optimal formation (i.e. width and length of the facility) found by the 


approximate expropriation problem p; 


Jf1 and Jf2 : optimal objective function values of the auxiliary expropriation prob


lems defined on the tangent lines Tf and Tf, respectively; 


n : a number pre-determined by the user denoting the number of problems to be 


generated; 


W : a list keeping track of the active (i.e. non-fathomed) problems; 


wT : a list where n new problems are kept temporarily; 


UB(p): upper bound on the objective function value of the MINLP-p; 


LB(p) : lower bound on the objective function value of the MINLP-p; 


U B* : best upper bound found. 


4.6.2 Upper and lower bounds 

The objective function value of the approximate problem p can be used as an 
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upper bound on the objective function value of the mixed integer nonlinear expropri

ation problem p. This is given by the following result. 

Lemma 5 (a) A~ w~pr · l~pr; (b) JP~ fgpr. 

PROOF (a) Due to convexity of the tradeoff curve l(w) = A/w. Since w ~ 0, the 

second derivative of curve function, d2 l/ dw 2 = 2A/w3 is always positive, hence the 

tradeoff curve is convex. Consider any convex combination w~pr = 5 · w~in + ( 1 - 5) · 

wi:iax' 5 E [O, 1] of the limits on the width in curve segment p. By the definition of 

convexity, 

l (5 · W~in + (1- 5) · W~ax) ~ 5 · l (w~in) + (1- 5) · l (w~ax) (44) 

is true Vw~pr E [w~in' wi:iaxl. One may observe that, the left and right hand side 

of (44) is equal to l (w~pr) and l~pr' respectively, as shown in Figure 14. Thus, 

l (w~pr) ~ l~pr, Vw~pr E [ w~in, wi:iaxl and hence A = l (w~pr) · w~pr ~ l~pr · w~pr. 

(b) By contradiction. Assume there exists an optimal approximate problem 

formation (w~pr,l~pr) and an optimal MINLP-p formation (wP,lP) at the same curve 

segment with corresponding objective functions fgpr and f P, such that fP > ffpr as 

shown in Figure 16. Observe that there always exists a MINLP-p formation ( wP*, lP*) 

on the same curve segment which can fit into the coverage area of the approximate 

problem formation ( w~Pr' l~pr), and hence, covering at most the same number of fixed 

points. Thus we have fP > fgpr ~ f P* which contradicts the optimality of f P. • 

Let fgux = min { f~1 , f~2 } , and (w~ux, l~ux) be the optimal formation corre
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l 

l(w) =A/ w 

[P ---------
' 

Curve 

I 
I 

---------~-----------
'I 

segment p 

w 
p P* pw w wapr 

Figure 16. Illustration of Lemma 5(b) 

sponding to f%ux· The minimum of the objective function values of two auxiliary 

expropriation problems can be used as a lower bound on the objective function value 

of the mixed integer nonlinear expropriation problem p. This is given by the following 

result. 

Lemma 6 f%ux :S JP. 

PROOF Let the unknown optimal formation for the MINLP-p be (wP, fP) as shown in 

Figure 17. Recall from the notations that, the objective function value regarding this 

formation is JP. It is easy to observe that one can always find an optimal formation 

(w~ux' l~ux) for an auxiliary expropriation problem on one of the tangent lines which 
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can fit into the coverage area of the optimal MINLP-p formation ( wP, lP), and hence, 

covers at most the same number of fixed points as (wP,lP), as shown in Figure 17. 

Therefore, f!ux ::; f P. • 

l 

Curve segment p 

I I 

--~-----·---------------
' I
I I 
I 

w 
WP WP 

aux 

Figure 17. Illustration of Lemma 6 

4.6.3 Outline of the branch-and-bound algorithm 

Step 1 (Initialization). 

Define n; the list '1t only includes the first problem corresponding to the aspect ratio 

interval [n:min, G:max]; UB(l) = UB* = oo, LB(l) = 0. 

Step 2 (Problem generation). 

(2.1) From the list '11, select the problem p' such that UB(p') = minpEw {UB(p)}, 
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remove p' from '11. Partition the aspect ratio interval of problem p' into n equal 


intervals and create n new problems, add these problems to \J!T. 


(2.2) Vp E wT : (2.2.1) Solve the approximate expropriation problems and set the 


upper bounds UB(p) = fgpr· (2.2.2) Solve the auxiliary expropriation problems and 


set the lower bounds LB(p) = fgux. 


Step 3 (Bounding). 


(3.1) IfminpE\flr {U B (p)} < UB*, update the upper bound UB* +----- minpE\flr {U B (p)} . 

(3.2) Remove the problems from wT and add them to '11. 


Step 4 (Pruning). 


\:Ip E '11: (4.1-Prune by bound) If LB(p) 2:: UB*; (4.2-Prune by optimality) Else if 


LB(p) = U B (p); fathom p and remove from '1t. 


Step 5 (Check the list). 

If '11 # 0, return to Step 2; else stop with optimal solution UB*. .ft 

A convergence analysis of this procedure is provided in Appendix A. 

4.7 Numerical examples for the branch-and-bound algorithm 

4.7.1 Single facility PENR example: Example 1 

We constructed a 50-point example problem (Example 1 hereafter) in a bounded 

square having a dimension of 10 x 10 units, where the fixed point locations in each 

dimension are randomly generated from uniform distribution U"' [O, 10]. Each fixed 

point has a unit expropriation cost of 1 and the area requirement for the single facility 
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[0.4, 1.6] [1.6, 2.8] [2.8,4] 

0 8 
[0.4,0.8] [0.8, 1.2] [1.2, 1.6] 

0 8 () 
Figure 18. Branching tree for Example 1 

is 20 unit squares. The formation of the single shape is considered to be acceptable 

in the aspect ratio interval [amin, O!max] = [0.4, 4]. The number of new problems to be 

generated after each branching decision is n = 3. The data for this example problem 

is given in Table 1. 

The branching tree for this example is illustrated in Figure 18. Square brack

ets above each node of the branching tree indicate the aspect ratio interval of the 

corresponding problem. Solutions attained at each node in the branching tree are 

summarized in Table 2. 

According to the results presented at Figure 18, there are two alternative 

optimal solutions at the nodes (5) and (6) of the branching tree with an objective 

function value of 3. The facility location found by the approximate expropriation 

problem at node (5) is (x1, x2) = (7.087, 2.855) with lateral dimensions ( w5' l5) = 
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II Point II a1i azi II Point II ali 

1 
2 
3 
4 

6 
7 
8 
9 

11 
12 
13 
14 

16 
17 
18 
19 

21 
22 
23 
24 

2.624264 2.672071 
7.214577 0.420937 
5.030869 5.04965 
9.979267 7.057403 

4.401408 3.390079 
1.534631 1.179493 
1.992227 1.182514 
4.543277 2.179437 
2.484197 4.44614 
2.290888 5.327973 
9.756471 6.981464 

2.975805 9.533832 
8.617978 6.952832 
5.320528 6.530289 
2.141231 9.946365 
3.341322 5.738205 

8.628258 3.854502 
4.20512 8.106408 
2.458259 6.719806 
7.080638 2.574753 
6.831599 5.754518 
1.85656 8.229517 

3.355435 0.599625 
7.513105 5.897806 
3.810221 1.478399 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

5.323392 4.831004 
2.401478 9.221698 
2.73379 9.967937 
7.190492 5.200507 
5.838773 8.300443 
2.064844 7.012389 
3.911611 4.015819 
6.303549 9.195663 
8.963257 9.337799 
0.03591 7.248852 
7.688158 2.438863 
0.394231 1.292512 
9.300951 0.123071 
3.682208 4.262025 
7.05713 0.628475 

5.062653 5.671356 
5.184912 0.229162 
1.108956 4.518587 
2.082176 8.453704 
0.382973 0.623229 
7.955007 6.259559 
2.24412 9.241891 
5.787337 7.942322 
6.696141 9.111632 
6.906478 0.879958 

Table 1. Data for Example 1 
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fP UB(p) LB(p) Pruned by II 
1 - - - - 00 0 -
2 7.22 2.73 5.353 4.203 4 2 -

3 8.585 6.058 2.789 7.237 6 5 Bound UB* = 4 
4 8.834 4.801 2.291 8.760 4 4 Optimality 

5 7.087 2.855 5.087 3.95 3 3 Optimality UB* = 3 
6 7.662 3.042 4.677 4.317 3 3 Optimality 

7 7.772 3.156 3.969 5.056 5 5 Optimality 

II p II Area 3 Area gap a Points covered II 
1 

2 22.49 12.45 0.785 {17,20,36,50} 

3 20.183 0.915 2.5948 {11,13,17,24,34,46} 

4 20.069 0.345 3.8236 {11,13,17,46} 

5 20.0936 0.468 0.7764 {17,20,36} 

6 20.19 0.95 0.923 {17,20,36} 

7 20.0672 0.336 1.2738 {17,20,29,36,50} 

Table 2. Summary of the solutions for Example 1 
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(5.087, 3.951) and a resulting area of A5 = 20.098. The facility location found by 

the approximate expropriation problem at node (6) is (x1 , x 2 ) = (7.662, 3.042) with 

lateral dimensions (w6 ,l6 ) = (4.677,4.317) and a resulting area of A6 = 20.19. These 

solutions are illustrated in Figures 19 and 20, respectively. 

I 10 
! 
i 9 

I 8 

I 7 

6I 
I 

5 
I 
I 

4 

I 
I
I 3 
I 
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0 

• 

•• .. •
• 

• • •
• 

• •• 
•• •

• 
• • •• 

• .. 

0 2 3 4 5 6 7 8 9 10 I 

Figure 19. Optimal location for the single facility found at node (5) 

4.7 .2 Multiple facilities P£NRM example: Example 2 

To illustrate the case of multiple facilities, consider the same set of fixed points 

and bounded region used in the single facility case. Two facilities each having an area 

requirement of 15 unit squares are going to be located within this region. The for
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Figure 20. Optimal location for the single facility found at node (6) 

mation limitations imposed on the facilities are given by the aspect ratio intervals 

[a1,min, et1,max] = [0.5, 3] and [a2,min, et2,max] = [0.6, 2.8] . Number of problems to be 

generated after each branching decision is taken as n = 4. The branching tree re

garding this example problem (Example 2 hereafter) is illustrated in Figure 21 and 

solutions attained at each node of the branching tree are summarized in Tables 3-5. 

According to the results presented in Figure 21, the optimal solution for the 

multiple facilities example is attained at node (25) of the branching tree with an 

objective function value of 4. Optimal facility locations found by the approximate 

expropriation problem at node (25) are: (1) (x11 ,x21 ) = (1.154,4.875) for facility 1; 

and (2) (x12 , x22 ) = (8.735, 3.191) for facility 2. Optimal lateral dimensions found for 
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Figure 21. Branching tree for Example 2 

these facilities are: (1) ( wi5 
, Zi5) = (2.236, 6.708) with a resulting area of Ai5 = 15 for 

facility 1; and (2) (w~5 , l~5 ) = (2.445, 6.136) with a resulting area of A~5 = 15.0025 for 

facility 2. This solution is illustrated in Figure 22. 

4.8 Computational study 

In this section, we report our computational experience with the branch-and

bound algorithm we developed for the solution of P£NR. In particular, we compared 

this algorithm with two conventional MINLP algorithms, namely, BARON's branch

and-reduce algorithm and SBB's branch-and-bound algorithm. 

81 




5 

10 

15 

20 

25 

Ozan QAKIR DeGroote School of Business 

WP [P APp [al,mim Ct1,max] Xu X21 % Area gap c:t1 Points covered1 1 1 


1 
 [0.5, 3) - - - - - - - 

2 
 [0.5, 1.75) 6.944 8.618 5.477 2.739 15.0015 0.01 0.5 {30,33,34,48,49} 

3 
 [0.5,1.75] 5.714 8.618 5.477 2.739 1.5.0015 0.01 0.5 {18,30,33,48,49} 

4 
 [1. 75,3) 8.597 2.872 2.765 5.497 15.1992 1.328 1.988 {17,36} 

[l. 75,3] 8.585 3.142 2.789 5.442 15.1777 1.184666 1.9512 {17,36} 

6 
 [l. 75,2.375] 5.389 5.061 2.614 5.763 15.0644 0.429333 2.2046 {3,5,14,26,41} 

7 
 [1.75,2.375] 8.597 2.851 2.765 5.456 15.0858 0.572 1.9732 {17,36} 

8 
 [2.375,3) 8.844 3.376 2.312 6.506 15.0418 0.278666 2.814 {17,46} 

9 
 [2.375,3] 1.163 4.621 2.255 6.658 15.0137 0.091333 2.9525 {31,43} 

[2.375,2.6875] 8.746 3.167 2.466 6.087 15.0105 0.07 2.4683 {17,36} 

11 
 [2.375,2.687'5) 3.741 6.374 2.513 5.969 15 0 :.!.375 {16,18,32,39} 

12 
 [2.6875,3] 1.163 4.62 2.255 6.654 15.0047 0.031333 2.9512 {31,43} 

13 
 [2.6875,3] 1.163 4.806 2.255 6.655 15.007 0.046666 2.9512 {31,43} 

14 
 [1.75,2.375] 8.528 3.191 2.926 5.126 15 0 1. 7518 {17,20,29,36,50} 


[1.75,2.375] 8.597 2.957 2.765 5.456 15.0858 0.572 1.9732 {17,36} 


16 
 [2.375,3] 1.122 4.636 2.244 6.686 15.0033 0.022 2.9799 {31,35,43} 


17 
 [2.375,3] 1.122 4.636 2.244 6.687 15.0056 0.037333 2.9799 {31,35,43} 

18 
 [2.375,2.6875] 8.757 3.141 2.487 6.035 15.009 0.06 2.4266 { 17,36} 


19 
 [2.375,2.6875) 8.746 3.167 2.466 6.087 15.0105 0.07 2 .4683 {17,36} 


[2.6875,3] 1.122 4.821 2.244 6.685 15.0ll 0.073333 2.979 {31,35,43} 


21 
 [2.6875,3] 1.163 4.806 2.254 6.655 15.0003 0.002 2.9512 {31,43} 


22 
 [2.6875,2 .84375] 8.844 3..174 2.312 6.489 15.00:.!5 0.016666 2.8066 {17,46} 

23 
 [2.6875,2.84375] 1.217 4.653 2.362 6.349 15 0 2.6879 {10,31,43} 


24 
 [2.84375,3] 1.163 4.619 2.255 6.653 15.0025 0.016666 2.9503 {31,43} 


[2.84375,3) 1.154 4.875 2.236 6.708 15 0 3 {31,43} 


Table 3. Summary of the solutions for Facility 1 - Example 2 
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p 

1 
2 
3 
4 

6 
7 
8 
9 

11 
12 
13 
14 

16 
17 
18 
19 

21 
22 
23 
24 

[a2,min, a2,maxl X12 X22 WP
2 

[P
2 

AP
2 3 Area gap a2 Points covered 

[0.6.2.8] 

[0.6,l.7] 4.449 1.772 4.914 3.087 15.1695 1.13 0.6282 { 1,8,23,25} 

[1.7,2.8] 8.607 2.85 2.785 5.423 15.1281 0.854 1.9472 {17,36} 

[0.6,1.7] 1.488 4.001 2.976 5.044 15.0109 0.072666 1.6948 { 1,9,10,43} 

[1.7,2.8] 3.828 4.618 2.407 6.28 15.1159 0. 772666 2.609 { 5,8, 16,32,39} 

[0.6,1.15] 2.025 3.403 3.977 3.85 15.3114 2.076 0.968 {1,9,32,39,43} 

[1.15,1.7] 5.019 4.436 3.355 4.512 15.1377 0.918 1.3448 {3,5,14,26,32,39,41} 

[0.6,1.15] 2.536 7.238 5 3 15 0 0.6 { 18.19,22.31,44} 

[1.15.1.7] 8A53 3.067 3.094 4.878 15.0925 0.616666 1.5765 { 17,20,29,36} 

[1.15,1.425] 1.689 6.791 3.305 4.545 15.0212 0.141333 1.3751 { 10,19,22 ,31,44} 

[1.425, 1. 7] 6.946 2.733 3.244 4.623 15 0 1..125 {20,36,40.50} 

[1.15,1.425] 8.109 2.957 3.612 4.153 15 0 1.15 {17,20,36} 

[1.425, 1. 7] 8.318 3.192 3.244 4.623 15 0 1.425 {17,20,29,36} 

[1.7,2.25] 5.733 3.705 2.663 5.65 15.0459 0.306 2.1216 {3,8.21,26,41} 

[2.25,2.8] 3.828 6.515 2.407 6.25 15.0437 0.291333 2.5965 { 12,16,18,32,39} 

[1.7,2.25] 8.607 2.829 2.784 5.412 15.067 0.446666 1.9432 { 17,36} 

[2.25,2.8] 8.746 3.173 2.466 6.1 15.0426 0.284 2.4736 {17,36,46} 

[2.25,2.525] 1.327 4.087 2.582 5.809 1.3 0 2.25 {9,10,19,37,43} 

[2.525,2.8] 1.247 4.575 2.422 6.194 15.0018 0.012 2.5573 {10,31,43} 

[2.25,2.525] 8.746 3.166 2.466 6.085 15.0056 0.037333 2.4679 {17,36} 

[2.525,2.8] 8.732 3.077 2.437 6.154 15 0 2.5252 {17,36,38} 

[2.25,2.3875] 3.758 6.961 2.547 5.891 15.0043 0.028666 2.3129 {12,16,18,39} 

[2.3875.2.525] 8.746 3.165 2.466 6.083 15.0006 0.004 2.4667 {17,36} 

[2.25,2.3875] 8.506 2.905 2.582 5.810 1.5.0014 0.009333 2.2501 {17,36,38} 

[2.3875.2.525] 8.735 3.191 2.445 6.136 15.0025 0.016666 2.5096 {17,36} 

Table 4. Summary of the solutions for Facility 2 - Example 2 
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Bound UB* = UB(4) = 6 


Bound UB* = UB(4) = 6 


Bound UB* = UB(9) = 6 

Optimality 


Optimality 


Bound UB* = UB(12) = 5 

Bound UB* = UB(12) = 5 

Optimality 


Bound UB* = UB(12) = 5 

Bound UB* = UB(12) = 5 

Bound UB* = UB(12) = 5 

Optimality 


Optimality 

Optimality 

Optimality 


Optimality 


Optimality 


Optimality 


Optimality UB* = UB(25) = 4 


Table 5. Summary of the bounds for Example 2 
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Figure 22. Illustration of the optimal solution for Example 2 

4.8.1 Experiments and basis for measuring performance 

In our experiments, we found that many conventional MINLP solvers are not 

suitable for our particular Pt:NR problem. The objective function of P£NR is nei

ther convex nor differentiable. Hence well-known MINLP solvers such as MOSEK, 

KNITRO, and FILTER did not work for this problem because these solvers make use 

of the convexity or second-derivative information. We also tried some other solvers 

such as CONOPT, DICOPT and LOQO which are suitable for non-convex optimiza

tion problems. However, it is well-known that when models with non-differentiable 

and non-convex functions are submitted to these solvers, they become less reliable 

and may terminate at solutions which are not local optima. Our experience with these 
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solvers showed that their performance in solving P£NR is unsatisfactory. Most of 

the time, these procedures stopped prematurely and returned relaxed MINLP solu

tions or terminated after facing local infeasibility for a subproblem in the branching 

tree. Hence, we did not find the solutions generated by these solvers comparable to 

our branch-and-bound scheme. The results we obtained by using BARON and SBB 

were much more meaningful and comparable to our branch-and-bound algorithm than 

those gererated by other solvers. Hence, to provide a basis for illustrating the perfor

mance of our algorithm, we choose to compare it with BARON's branch-and-reduce 

and SBB's branch-and-bound algorithms. 

4.8.2 Design of experiments and resource settings 

We created a set of test problems considering two factors: (1) number of fixed 

points N; and (2) number of non-rigid facilities K. Each combination of the sets 

N = {5, 10, 20, 50, 75, 100, 200, 500} and K = {1, 2, 3} resulted in an instance of the 

P£NR problem. The fixed point coordinates a1i and a2i in each dimension were 

randomly generated from a uniform distribution U,....., [O, 10] within a 10 x 10 square. 

Finally, we allowed each fixed point to assume a unit expropriation cost ci = 1. The 

properties and optimal solutions of the test problems under study are summarized 

in Table 6, where #Discrete and #Constraints stands for the number of discrete 

variables, and number of constraints, respectively. 

The area requirement for each facility considered in this experiment is taken 

as 15 unit squares and the dimensional formation of each facility is considered to be 
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N K II #Discrete #Constraints Optimal II 

5 1 


2 


3 


10 1 


2 


3 


20 1 


2 


3 


50 1 


2 


3 


75 1 


2 


3 


100 1 


2 


3 


200 1 


2 


3 


500 1 


2 


3 


25 59 0 


54 127 0 


87 204 0 


50 109 0 


104 227 0 


162 354 0 


100 209 0 


204 427 0 


312 654 0 


250 509 1 


504 1027 2 


762 1554 5 


375 759 4 


754 1527 8 


1137 2304 13 


500 1009 6 


1004 2027 13 


1512 3054 20 


1000 2009 15 


2004 4027 33 


3012 6054 56 


2500 5009 44 


5004 10027 102 


7512 15054 171 


Table 6. Properties and optimal solutions of the problems under study 
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acceptable within the aspect ratio limits [amin, O:max] = [0.5, 1.5]. We selected the 

number of new problems to be generated after a branching decision as n = 2 for small 

problems N = {5, 10, 20}, n = 3 for moderate problems N = {50, 75, 100}, and n = 4 

for big problems N = {200, 500}. 

The algorithm was implemented in the GAMS modeling system and all experi

ments were conducted on a 1.6 GHz desktop computer with 512 MB RAM. We utilized 

CPLEX 10 as the MILP solver for tackling the approximate expropriation problems 

generated by our algorithm. For the subproblems generated by BARON and SBB, 

we utilized MINOS as the NLP solver and CPLEX 10 as the LP solver. Moreover, 

it is worthwhile to note that our branch-and-bound algorithm has no preprocess

ing capabilities whereas most of the conventional solvers do have such enhancements 

to reduce solution times. For example, BARON and SBB are known to implement 

preprocessing and perform multi-start local search algorithms on the root problem. 

For evaluating the performance of these three algorithms by equal standards, 

we also imposed some resource restrictions by using the option files provided by 

the GAMS system. First, we imposed a 3 hour limitation on the CPU time by 

adding the command option reslim=10800. Second, we used the command option 

i terlim=100000 for imposing a limit of 100,000 on the number of iterations. Finally, 

we ensured that the branching tree for each procedure is not bigger than 100,000 

nodes by utilizing the command expropriation.nodlim=100000 within our code. 
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4.8.3 Problem size 

Problem size depends on two factors: N and K. A single facility P£NR 

problem is composed of 5N discrete variables and lON + 9 constraints. The multi

facility problem calls for 5NK + 2K(K - 1) discrete variables and lONK + 9K(K 

1) /2+9K constraints. These numbers point out that the number of discrete variables 

and constraints are more sensitive to the number of facilities considered. Clearly, an 

increase in the number of facilities has a critical effect on increasing problem size. 

4.8.4 Experiment results 

The results of our experiments on the test problems with three algorithms are 

summarized in Table 7. The legend for reading this table and average gap formula 

(45) is as follows. 


Legend. 


GT : generation time (in seconds); 


SR : solution returned; 


CPU : total CPU time elapsed (in h:mm: ss format); 


SBT : size of the branching tree; 


t : procedure reached 3 hour CPU time limit; 

+: procedure terminated prematurely by returning a feasible integer solution. This 

corresponds to case 8 of GAMS's SOLVE SUMMARY report. In this case, at the time of 

termination MODEL STATUS will show that the solution obtained is a feasible integer 

solution, but it is not necessarily optimal; 
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N K 

BARON Branch & Reduce 

GT SR SBT CPU 

SBB Branch & Bound 

GT SR SBT CPU 

Algorithm 

GT SR SBT CPU 

5 1 0.08 0 5 0:00:02 0.04 0 30 0:00:09 0.04 0 3 0:00:04 

2 0.08 0 13 0:00:03 0.11 0 6•! 0:00:19 0.06 0 4 0:00:04 

3 0.12 0 56 0:00:06 0.13 0 1901 0:04:46 0.06 0 5 0:00:08 

10 1 0.07 0 7 0:00:03 0.07 0 113 0:00:35 0.06 0 3 0:00:04 

2 0.07 0 18 0:00:04 0.11 0 2136 0:09:38 0.07 0 4 0:00:04 

3 0.12 0 178 0:00:19 0.14 0 5886 0:25:15 0.07 0 5 0:00:08 

20 1 0.07 0 33 0:00:10 0.07 0 2828 0:15:27 0.05 0 3 0:00:07 

2 0.09 0 235 0:00:28 0.08 0 3026 0:16:14 0.07 0 ,j 0:00:18 

3 0.13 0 13576 0:33:41 0.13 7* 14988 1:42:08+ 0.08 0 5 0:00:18 

50 1 0.1 1 4259 0:08:-16 0.08 13* 21590 2:02:14+ 0.17 1 4 0:00:24 

2 0.17 7* 13937 3:00:oot 0.25 NA 7578 1 :04:38 0.11 2 7 0:03:41 

3 0.19 13* 4483 3:oo:oot 0.32 NA 9778 1 :46:51 0.11 5 39 0:49:34 

75 1 0.1 5* 47442 3:00:oot 0.21 12* 11176 1:13:41+ 0.11 4 10 0:02:05 

2 0.19 12* 5317 3:oo:oot 0.25 2•1* 16119 1:34:10+ 0.15 8 16 0:45:12 

3 0.88 24* 1787 3:oo:oot 0.22 NA 6460 1 :40:35 0.15 13 21 2:05:56 

100 1 0.14 7* 25596 3:oo:oot 0.21 9* 11472 1:39:15+ 0.11 6 10 0:07:20 

2 0.32 20* 3074 3:oo:oot OA3 NA 10790 2:14:04 0.11 13* 9 3:oo:oot 

3 0.21 38* 859 3:oo:oot 0.28 NA 10204 2:52:01 0.14 20* 10 3:oo:oot 

200 1 0.21 21* 7187 3:oo:oot 0.23 30* 10080 2:07:42+ 0.26 15 9 1:25:54 

2 0.27 53* 617 3:oo:oot 0.23 NA 3648 1 :36:27 0.31 33* 7 3:oo:oot 

3 1.83 82* 229 3:oo:oot 0.36 NA 612 0:20:38 0.39 57* 6 3:oo:oot 

500 1 0.49 55* 825 3:oo:oot 0.27 65* 6068 2:46:56+ 0.46 44* 4 3:oo:oot 

2 0.5 153* 93 3:oo:oot 0.42 NA 1632 1:44:14 0.58 108* 4 3:oo:oot 

3 0.57 NA 18 2:54:47 0.76 NA 979 1:13:51 1.03 177* 4 3:oo:oot 

Table 7. Comparison of the algorithm with MINLP solvers 
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Terminated by BARON SBB Algorithm 
Count Average Gap Count Average Gap Count Average Gap 

Optimality 10 - 8 - 17 -
CPU time limit 13 73.24 % - - 7 1.57 % 
Integer solution - - 7 300 % - -
Local infeasibility 1 - 9 - - -

Table 8. Termination summary 

NA: procedure terminated after facing local infeasibility in branching tree by return

ing no solution; 

* : solution returned is not proven to be optimal; 


OPT : optimal solution of the instance; 


SAi : set of all instances; 


NI : number of instances. '9 


It is evident from Table 7 that the results for our branch-and-bound procedure 

compete favorably with two alternatives. Among the solutions presented in Table 

7, those generated by SBB were of inferior quality. SBB was able to solve only 

small problems with N = {5, 10, 20} to optimality. For a single facility moderate 

N = {50, 75, 100}, and big N = {200, 500} problems, SBB terminated prematurely 

by returning integer feasible solutions. It was evident that multi-facility problems 

become unsolvable for SBB very quickly. 

The termination statistics regarding the three algorithms under study are sum

marized in Table 8. Of those not solved by SBB, 7 instances were terminated pre

maturely by returning integer solutions, and 9 instances returned no solution by 
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terminating due to local infeasibility in the branching tree. The average gap values 

in this table are calculated as follows: 

Average Gap (3) = (L SR ~p~PT) / NI (45) 
SAI 

where the optimal solutions for instances were computed before the experiment with

out imposing resource restrictions. These values were summarized in Table 6. 

For SBB, the average gap between the solutions returned and the optimal 

solution after terminating with integer solution was as high as 3003. As far as our 

particular problem structure is concerned, the performance of BARON was better 

than SBB. It was able to solve small problems N = {5, 10, 20} to optimality, yet 

the numerical evidence in Table 7 shows that moderate N = {50, 75, 100} and big 

N = {200, 500} problems are not solvable by BARON within the time constraint. 

For those 13 instances, solution times quickly reached the 3 hour CPU time limit and 

BARON terminated the procedure by returning best integer solutions. The average 

gap after terminating by CPU time limit was 73.243 which is quite high. The largest 

problem, with N = 500, K = 3, was not solvable with BARON and the procedure 

terminated by local infeasibility. 

Among the three algorithms under study, our branch-and-bound procedure 

was superior to BARON and SBB. We were able to compute optimal solutions for 

703 of the instances within CPU time limit by using our algorithm. The solution 

times for these problems were reasonable. Figure 23 is a depiction of the resultant 

solution times on a logarithmic scale for each test problem. It is evident that our 

algorithm, in general, resulted in better solution times. As seen from Table 8, our 
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algorithm terminated due to the CPU time limit in 7 instances. Of those 7 runs, our 

algorithm was able to detect the optimal solution in 4 cases. That is, at the time 

of termination our algorithm was able to find the optimal solution but it could not 

verify its optimality. The average gap after terminating by CPU time limit was merely 

1.57%. Moreover, the growth of the branching tree was significantly smaller than with 

BARON or SBB. It is also worthwhile to note that the subproblems in our algorithm 

are hard MILP problems. It was evident from our computational experience that 

using our branch-and-bound procedure for solving P£NR and P£NRM is much 

better than using BARON or SBB. 
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Figure 23. Illustration of solution times 
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Chapter 5 
Planar maximal covering problem with 
single convex polygonal shapes 

5.1 Introduction 

In this chapter, we study the planar maximal covering problem with single con

vex polygonal shapes (PMCS). As discussed in Section 3.2.2, this problem has real-life 

applications in location of convex area facilities, transmitter location, material cut

ting, inspection of geometric shapes and directional antenna location where the cov

erage areas of the antennas extend in particular directions (Younies and Wesolowsky, 

2004). 

Current maximal covering literature is sparse on the subject of formulations 

where the facilities have particular area requirements and specific formations (such as 

convex polygonal shapes), rather than being analytical solution points in the plane. 

As discussed in Sections 2.2.1.2, 3.1 and 3.2.2, there are only two studies on the ex

act methods for the maximal covering problems of regular convex polygonal shapes: 

(1) the planar maximal covering problem for inclined parallelograms (Younies and 

Wesolowsky, 2004), and (2) the planar maximal covering problem under block-norm 

distance measure (Younies and Wesolowsky, 2007). The P MCS problem discussed 

in this chapter is a more general formulation and encompasses the planar maximal 

covering problems that are solvable by Younies and Wesolowsky (2004; 2007) ap

proaches, as special cases. To illustrate this, we provide a comparative analysis of 
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II Shape II Y&W (2004)* Y&W (2007)* p MCS II 

Triangles x x ./ 

Rectangles ./ ./ ./ 

Rhombi ./ ./ ./ 

Quadrilaterals ./ ./ ./ 

Regular polygons-symmetric x ./ ./ 

(hexagons, octagons etc.) 

Regular polygons-non-symmetric x x ./ 

(pentagons, heptagons etc.) 

* Younies and Wesolowsky (2004; 2007) 

Table 9. A comparative analysis of three formulations 

these three formulations based on the convex polygonal shapes that can be handled 

by these formulations in Table 9. 

5.2 Problem formulation 

In this section, we discuss how to formulate P MCS using a simple five-step 

process. We'll only demonstrate the construction for the formulation of a regular 

hexagon; however, one can generate the formulation for any particular convex polyg

onal shape by following the same procedure. For illustration purposes, we provide 

the P MCS formulations for the triangles and quadrilaterals in the Appendix B. 

Consider a regular hexagon with an area requirement of A. Denote the six 

vertices of this hexagon by V1 , V2, V3, Vi, Vs and V6 . Let the location of the hexagon 

be (x1 , x2) and its half-length be l as illustrated in Figure 24. Since an interior angle 
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X2 LXl ux1 
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Figure 24. A hexagon and its vertices 

equals to 120° for the hexagon and the area requirement is known, the half-length of 


the hexagon is given by l = JAJ3/6, which is a known parameter. 


Step 1. Write the relative locations of the vertices of the convex polygonal shape in 


terms of shape location. 


For the hexagon in Figure 24, these are given as follows: Vi = (x1 - l/ J3, x2 

l), V2 = (x1 - 2 · l/J3, x2), V3 = (x1 - l/J3, x2 + l), Vi= (x1 + l/J3, X2 + l), Vs= 

(x1 + 2 · l/J3, x2 ) and V6 = (x1 + l/J3, x2 - l). 

Step 2. Using the relative locations found in Step 1, generate the underlying line 
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equalities for the lines passing through the edges of the shape. 

\ 
\ 

\ 
\ 

\ 

' ' ' ' \ 
\ 

Iv.: 
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\ 
\ 

\ 

_!______~~-~-~!____________,.. 
\ 

\ 
\ 

'\,\, 
Ai6 "Vi\ /~ ~'A 

\ I ~ 45 
\ I 

I I

7f;, = { (x;,x;) : A,, ;;,, O},:/ 
1 

7f~5 = { (x,, x,): A.45 ,;; O} 

A,56 ,' 

Figure 25. Underlying half-planes of the hexagon 

Let (x~, x'2 ) denote an arbitrary point on the corresponding line equality. 

These lines are shown as dashed contours in Figure 25. We start with >. 12 and write 

l - (X2 - l) ( ( r;;))
>-12 =x; - (x2 - l) - ( J3) ( v13) · x~ - x1 - l/v 3 = 0. 

X1 - 2 · lj 3 - X1 - lj 3 

After further simplification, the line equality >. 12 is given by 

>-12 =x; + J3 · x~ - x2 - J3 · x1 + 2 · l = 0. (46) 
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Continuing with the same procedure, we can define the other line equalities as follows: 


A23 =x; - J3 ·x~ - x2+ J3 ·x1 - 2 · l = 0 (47) 

A34 =x; - x2 - l = 0 (48) 

A45 =x; + J3 ·x~ - x2 - J3 ·x1 - 2 · l = 0 (49) 

A55 =x; - J3 ·x~ - X2 + J3 ·x1 + 2 · l = 0 (50) 

Arn = x; - x 2 + l = 0. (51) 

Step 3. Using the underlying line equalities found in Step 2, generate the logical in

equalities for the coverage decision. This is done by selecting the half-plane containing 

the coverage area of the shape. 

Let (ali, a2i) be the locations of N fixed points indexed by i. Consider as a 

first example the fixed point located at (au, a21 ) shown in Figure 25. If this point is 

covered by the hexagon, when we substitute the point location (au, a21 ) for (x~, x;) in 

line equalities (46-51), the following inequalities should hold: 

.\12 2 0 (52) 

.\23 :::; 0 (53) 

.\34 :::; 0 (54) 

A45 :::; 0 (55) 

A55 2 0 (56) 

.\15 2 0. (57) 

To illustrate this, consider the half-planes: ni2 = { (x~, x;) : A12 2 O}, n23 = 

{(x~,x;) : A23:::; O}, n34 = {(x~,x;) : A34:::; O}, n45 = {(x~,x;) : A45:::; O}, nt6 = 

{(x~, x;) : .\56 ;:::: O}, and ni6 = { (x~, x;) : .\16 ;:::: O} illustrated in Figure 25. Coverage 
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area of the hexagon is the intersection of these six half-planes. As an example of 

non-coverage, consider the fixed point located at (a 12 , a 22 ) shown in Figure 25. This 

point falls into the half-plane 7rt5 , therefore it can not be in the intersection. We 

conclude that this fixed point does not fall into the coverage area. 

Step 4. Define the binary variables assisting the covering decision for a fixed point 

and generate the coverage constraints using line inequalities (52-57) found in Step 3. 

Consider the following binary definitions. Let, y[ = 1 if (52) holds for point 

i, and 0 otherwise; YT = 1 if (53) holds for point i, and 0 otherwise; yf = 1 if (54) 

holds for point i, and 0 otherwise; yf = 1 if (55) holds for point i, and 0 otherwise; 

yf = 1 if (56) holds for point i, and 0 otherwise; yf = 1 if (57) holds for point i, and 0 

otherwise. Further, let M be a very large number employed for controlling the active

inactive status of each constraint. Using the above binary definitions together with 

the line inequalities (52-57), we define the covering constraints for a fixed point i as 

follows: 

a2i + J3 ·aii - X2 - J3 ·X1 + 2 · l 2: (1 - yf) · ( - M) (58) 

a2i - J3 ·aii - x2 + J3 ·x1 - 2 · l :S (1 - y;) · M (59) 

a2i - X2 - l :S (1 - yf) · M (60) 

a2i + J3 ·aii - X2 - J3 ·X1 - 2 · l :S (1 - yf) · M (61) 

a2i - J3 ·aii - x2 + J3 ·X1 + 2 · l 2: (1 - yt) · (- M) (62) 

a2i - x2 + l 2: (1 - yf) · ( - M). (63) 

Recall from Step 3 that if a point is covered, constraints (58-63) should all hold 

for that point. That is, if the point falls into intersection of half-planes 7ri2 , 7r23 , 7r34 , 7r45 , 
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nt6 and ni6 , then the binary variables y}, YT, yr, y{, yf and yf should all be equal 

to 1. Therefore, in order to implement coverage for a point by the hexagon, we have 

to add the constraint 

1 ( 2 4 5 6) >6 · Yi1 + Yi + Yi3 + Yi + Yi + Yi _ Yi (64) 

where Yi = 1 if the fixed point is covered by the hexagon, and 0 otherwise. 

Step 5. (a) Generate the inclusion constraints to ensure that the shape is located in 

the feasible location area. (b) Add the integrality and non-negativity constraints. 

(a) 	Let, LXl and ux1 be the lower and upper bounds for feasible shape 

2locations along the X 1 dimension, and let Lx2 and ux be the corresponding lower 

and upper bounds along the X 2 dimension as shown in Figure 24. We can then 

construct the inclusion constraints that ensure the shape will be located within the 

feasible space as follows: 

X1 - 2. l/-/3?. LXl 	 (65) 

X1 + 2. Z/-13::::;; uxl (66) 

X2 - l?. Lx2 (67) 

X2 + l::::;; Ux2 
• (68) 

(b) 	These constraints are straightforward and given by 

y}, YT, yf, y;, yf' yf' Yi E {O, 1} (69) 

(70) 

The MILP formulation of P MCS can now be stated as follows: 

(PMCS) max { tw,- y; : s.t. (58 - 64, 	 69) \fi; (65- 68, 70)} (71) 
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where the objective function maximizes the total weight covered, the constraints (58

64) are the covering constraints, the constraints (65-68) are the inclusion constraints, 

(69) and (70) are the integrality and non-negativity constraints, respectively. 

5.3 Cuts 

In this section, we illustrate two types of cuts which later will be useful for 

developing a branch-and-cut algorithm for the solution of P MCS. These cuts can 

be identified based on the geometric properties of the convex polygonal shapes under 

study. The first type of cuts are suitable for the P MCS problem formulations re

garding regular even-sided polygons that have their opposite edges parallel, namely, 

the parallel-sided polygons (Younies, 2004). Let, m be the number of the edges of a 

parallel-sided polygon. Assume the vertices Vi, ... ,Vm are indexed clock-wise as shown 

in Figure 26. 

Lemma 7 The inequalities: 

'. + r+(m/2) > l
Yi Yi Vi, r=l, ... ,m/2 (72)-

hold for all P MCS problem formulations regarding parallel-sided polygons. 

PROOF Similar argument to those introduced in the proof of Lemma 2. Observe 

from the binary definitions discussed in Section 5.2 that the binary variables y'[ and 

y;+(m/
2l, where r = 1, ... , m/2, can never be simultaneously equal to zero in a feasible 

integer configuration. • 
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Yi= 1 ' 

Yi= 1 

y~ = 1 

' \ 
' \ 
' v"2, m = 6 

I 
I 

I 
I 

Figure 26. Illustration of Lemma 7 

This is illustrated for the cases of rhombus and hexagon in Figure 26. The 

second group of cuts is related to the binary variables Yi utilized for the covering 

decision. These cuts are suitable for all regular convex polygonal shapes. The cuts 

belonging to this group can be found by using the dimensions of the rectilinear convex 

hull of the shape. Denote the rectilinear convex hull of a shape by H. Let the width of 

1{ along X 1 dimension be W(H). Similarly, let the length of 1{ along X2 dimension be 

£(1-l). These are illustrated for some example shapes in Figure 27 where the rectilinear 

convex hulls are shown as double lines. 

Lemma 8 If one of the arguments: (a) la1i - aijl > W(H); (b) la2i - a2jl > £(1-l) is 
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true for the points i and j, i =J j, then the inequality: 

Yi+ Yi ::; 1 (73) 

holds for all P MCS problem formulations. 

PROOF Same argument as the one used in the proof of Lemma 3 applies, therefore 

omitted. • 

£(J{) = l £(J{) = 2 · l 

W(J{) = l · (1/ tanB + 1/ tan/3) 

W(J{) = 2 ·l 

£(J{) =2 · l £(J{) = 2 · l 

W (J{) = l · (1/ tan(cp /2) + 1/ tan(r /2)) w ( J{) = 4 · zI J3 

Figure 27. Dimensions of some rectilinear convex hulls 

5.4 Numerical example for P MCS formulations: Example 3 

In this section, we illustrate an example planar maximal covering problem 

(Example 3 hereafter) by considering four different shapes each having an area re

quirement of 10 unit squares. We used the fixed point set illustrated in Section 4. 7.1 
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Shape II Obj. func. X1 X2 Points covered II II 
Triangle 9 0.905 0.42 { 1,2,6, 7 ,8,23,25,40,50} 

Rhombus 9 3.662 4.836 {3,5,9,10,16,26,32,39,41} 

Quadrilateral 10 4.378 5.426 {3,10,14,16,21,26,29,32,39,41} 

Hexagon 10 2.835 8.271 {12,15,18,19,22,27,28,31,44,47} 

Table 10. Summary of the solutions for Example 3 

with allowing a unit weight wi = 1 for each fixed point. The shapes under study are 

as follows. 

1. a triangle with interior angles e= 60° and /3 = 30° (see, Figure 27); 

2. a regular rhombus; 

3. a quadrilateral with interior angles r.p = 80° and 'Y = 60° (see, Figure 27); 

4. a regular hexagon. 

We solved the resultant P MCS problems for these shapes. Corresponding 

optimal shape locations are shown in Figures 28-29, whereas the solutions are sum

marized in Table 10 for this small example. 

5.5 A branch-and-cut procedure 

In this section, we describe a branch-and-cut procedure we have developed to 

solve the PMCS problems. A typical branch-and-cut algorithm is a combination of 

cutting plane and branch-and-bound methods. The method works with generating a 

series of LP relaxations of the original MILP problem and dynamically adding the 

cutting planes, whenever they are violated, throughout the branching tree. Then, 
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Figure 28. P MCS solutions for the triangle and rhombus in Example 3 

re-optimization of these restricted LP subproblems will potentially provide better 

bounds than those obtained by a conventional branch-and-bound algorithm. 

There are two important issues in the implementation of branch-and-cut method: 

(1) how to branch, and (2) how to generate the cutting planes. ·when a restricted LP 

subproblem is solved, the user has two choices: (1) to improve the LP relaxation with 

adding a cutting plane, or (2) to split the problem into two new subproblems with 

branching. In some applications determining the cutting planes that are valid for the 

original MILP but violated by the upper-level nodes in that branch may require too 

much computational effort. Thus, in those applications one may choose to continue 

branching without adding cuts at that level. Another option is to search for cutting 

planes after a pre-determined number of levels in the branching tree, say, at every 

four levels of depth. One variant of the branch-and-cut method is referred to as the 

9 1l I o 2 3 4 5 6 7 8 9 

I 

I 


I 

I 


I 

I 
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Figure 29. PMCS solutions for the quadrilateral and hexagon in Example 3 

cut-and-branch technique, where the user adds all the cutting planes once at the first 

node of the branching tree and then proceeds with a branch-and-bound algorithm. 

The branch-and-cut procedure we developed may be regarded as a hybrid of 

branch-and-cut and cut-and-branch approaches. First, we relax all the integrality 

requirements of a P MCS problem and obtain its LP relaxation. This problem is 

denoted by £P. Then, all cuts of type (72) illustrated in Lemma 7 are added to £P to 

obtain the first problem of the branching tree. Node selection from the branching tree 

is done by a best node first strategy. That is, among the active problems, we select 

the one whose optimal value is as large as possible. When a problem is decided to 

be split into two new problems, we branch for one of the binary variables Yi utilized 

for the covering decision. The problem is split into two new problems, one with the 

additional constraint Yi ~ 1 (i.e. the point i is covered), and the other having the 
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additional constraint Yi ::; 0 (i.e. the point i is left uncovered). Then, all cuts of 

type (73) illustrated in Lemma 8 are determined by inspecting the fixed point set 

{1, ... , N} \ { i} and then added to both problems. 

5.5.1 Notations 

p : index for the problems; 


JP : optimal objective function value of the restricted LP problem p; 


W : a list keeping track of the active (i.e. non-fathomed) problems; 


wT : a list where two new problems are kept temporarily; 


'lf;(p) : lists keeping track of the fixed points, for which a branching decision was 


not made at the preceding upper-level problems of that branch (i.e. the branch 


backtracking from the problem p to the first problem); 


UB(p) : upper bounds; 


LB(p) : lower bounds; 


LB* : best lower bound found. 


5.5.2 Upper and lower bounds 

Let a restricted LP problem p in the branching tree be split into two problems 

p including the additional constraint Yi ~ 1 and JJ'' including the additional constraint 

Yi ::; 0. The optimal objective function values of these new problems will constitute 

their upper bounds. Lower bounds are obtained as shown in Figure 30. 
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LB(p ') = LB(p) + wi LB(p ") = LB(p) 

Figure 30. Lower bounding in the branch-and-cut algorithm 

5.5.3 Outline of the branch-and-cut algorithm 

Step 1 (Initialization). 


Given a P MCS problem to maximize, relax the integrality requirements and obtain 


the problem £P. Add all cuts of type (72) illustrated in Lemma 7 to £P and obtain 


the first problem of the branching tree. The list W only includes the first problem, 


the list 7,b(l) includes all the fixed points. Solve this simple LP problem and set 


UB(l) = J1, LB(l) =LB*= 0. 


Step 2 (Problem generation). 


(2.1) From the list W, select the problem p' such that U B (p') = maxpE\lf {U B (p)}, re

move p from W. From the list 7,b (p), select the point i* such that Wi• = maxiE'!f(p') {Wi}, 

remove i* from 7,U(p). 

(2.2) Create two new problems, one with the additional constraint Yi* ;;::: 1, and the 

other having the additional constraint Yi* :::; 0, add these problems to wT. 

Step 3 (Re-optimization and bounding). 

(3.1) Add the cuts of type (73) illustrated in Lemma 8 to both problems in wT. 
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(3.2) 'lip E wr, solve the restricted LP problems and set the upper bounds UB(p) = 

fP, and set the lower bounds as shown in Figure 30. 

(3.3) IfmaJS,evr {LB (p)} > LB*, update the lower bound LB* f-- maJS,Ewr {LB (p)} . 

(3.4) Remove the problems from wT and add them to w. 


Step 4 (Pruning). 


'lip E w : (4.1-Prune by infeasibility) If p is infeasible; (4.2-Prune by bound) 


Else if UB(p) < LB(p'), p' E w\{p}; (4.3-Prune by optimality) Else if LB(p) = 


U B (p); (4.4-Prune by integrality) Else if p has a feasible integral solution, update 


the lower bound LB(p) = UB(p) (and LB* if necessary); fathom p and remove from 


w. 
Step 5 (Check the list). 


If w =/= 0, return to Step 2; else stop with optimal solution LB*. 


Lemma 9 After each branching decision, identifying the valid cuts of type (73) can 

be per/ armed in 0 (N) computation time. 

PROOF This can be realized by checking for the conditions (a) and (b) of Lemma 

8 between the fixed point i* and each point in the set { 1, ... , N} \ { i*} . Clearly, it 

will require 0 (N) time. For each point pair ( i*, j) , j E { 1, ... , N} \ { i*} , checking 

the conditions (a) and (b) can be performed in linear time which does not add to the 

overall complexity. • 
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II Point II 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

aii a2i Wi II 
4.100095 9.105754 2 

5.13224 6.291908 7 

7.572742 3.531016 3 

1.520224 9.46276 4 

8.228584 9.77409 6 

6.916508 1.124133 1 

9.866785 9.103011 5 

9.486212 2.295648 9 

2.705124 1.280016 4 

5.05719 6.703921 3 

Table 11. Data for Example 4 

5.6 Numerical example for the branch-and-cut algorithm: 
Example 4 

In this section, we show how the branch-and-cut algorithm works step-by-step 

on a small example problem (Example 4 hereafter). We considered a 10-point small 

example problem in a bounded square having a dimension of 10 x 10 units, where the 

fixed point locations in each dimension are randomly generated from uniform distri

bution U'"" [O, 10]. Each fixed point i has a weight wi. For convenience, we allowed 

the weights wi to be integer values. Thus, the weights were randomly generated from 

uniform distribution U '"" [O, 10] and rounded to the nearest integer value. The sin

gle shape to be located into the afore-mentioned bounded region is a hexagon having 

an area requirement of 15 unit squares. The data for this example problem is given 
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Figure 31. Branching tree for Example 4 

in Table 11. 

The branching tree for this example is shown in Figure 31, whereas the solu

tions attained at each node of the branching tree are summarized in Table 12. 

According to the results presented in Figure 31 and Table 12, there exist two 

alternative optimal solutions at the nodes (15) and (24) of the branching tree with an 

objective function of 13. The solution found at node (15) points out that the hexagon 

should be located at (x1 , x2 ) = (7.597, 3.186) and covering the points {3,6,8}. The 
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II p 

1 
2 
3 
4 

IBranch 

Y82. 1 
Y8~ 0 

v22. 1 

X1 

7.597 

6.65 

6.688 

X2 

3.186 

7.693 

7.759 

UB(p) 

43.9671 

19.9951 

34.9778 

29.9884 

LB(p) 

0 

9 

0 

7 

LB* 

0 

9 

9 

9 

Pruned by II 

6 
7 
8 
9 

11 
12 
13 
14 

16 
17 
18 
19 

21 
22 
23 
24 

Y2~ 0 
y5?_ 1 

Y5~ 0 
y5?_ 1 

Y5~ 0 
y7?_ 1 

Y7~ 0 
y7?_ 1 

Y7~ 0 

v22. 1 
Y2~ 0 
y4?_ 1 

Y4~ 0 
y4?_ 1 

Y4~ 0 
y7?_ 1 

Y7~ 0 
yg?_ 1 
yg~ 0 

y3?_ 1 

Y3~ 0 

6.65 

6.47 

7.188 

5.797 

3.359 

3.715 

7.597 

6.371 

3.032 

5.072 

6.897 

6.371 

6.371 

3.153 

7.693 

7.382 

7.919 

6.216 

7.382 

5.612 

3.186 

5.612 

7.919 

3.361 

7.919 

5.612 

5.612 

7.025 

27.9778 

23.9890 

15.9975 

21.9805 

18.9949 

16.9893 

13 

14.9984 

8.9997 

12.9953 

10.9993 

14.9984 

13 

12 

0 

7 

6 

0 

7 

0 

9 

7 

4 

0 

6 

7 

10 

7 

9 

9 

9 

9 

9 

9 

9 

9 

9 

9 

13 

13 

13 

13 

13 

13 

13 

13 

13 

13 

13 

Infeasibility 

Infeasibility 

Infeasibility 

Infeasibility 

Integrality, new LB(l5) = LB*= 13 
Infeasibility 

Bound, UB(l8) <LB* 
Bound, UB(l9) <LB* 
Infeasibility 

Bound, UB(2l) <LB* 
Infeasibility 

Integrality, new LB(24) = 13 
Bound, UB(25) <LB* 

Table 12. Summary of the solutions for Example 4 
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Figure 32. Branch-and-cut algorithm solution found at node (15) 

alternative solution found at node (24) points out that the hexagon should be located 

at (xi, x 2 ) = (6.371, 5.612) and covering the points {2,3,10}. These solutions are 

shown in Figures 32-33, respectively. 

5.7 Evaluation of bound quality with cuts 

In this section, we illustrate the results of a small computational experiment 

we conducted to evaluate the bound qualities attained by utilizing the cuts provided 

in Section 5.3. 

For this purpose, we created a set of test problems by using the same setting in-

traduced in Section 5.6 and generated instances with N = {3, 5, 10, 20, 50, 75, 100, 200, 
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Figure 33. Branch-and-cut algorithm solution found at node (24) 

500} fixed points. The coding was implemented in the GAMS modeling system. 

CPLEX 10 was utilized as the MILP solver and BDMLP was utilized as the LP 

solver. The results are summarized in Table 13. In this table, MILP stands for 

the optimal solution of the mixed-integer linear problem, LP stands for the optimal 

solution of its LP relaxation, and RLP denotes the optimal solution of the restricted 

LP obtained by adding cuts discussed in Section 5.3 to the LP. The last column is 

reserved for PI value, the percentage improvement on bounds, obtained by utilizing 

the cuts. 

It is evident from this table that the effect of the cuts on bound quality is 

very positive, justified by the percentage improvement on bounds given at the last 
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N II MILP LP RLP PIII II 
3 7 8.9963 7 100% 

5 12 22.9881 12 100% 

10 24 54.9619 27.99 87.08% 

20 33 93.9393 47 77.02% 

50 72 263.8102 132 68.72% 

75 90 1011.7463 631 41.3% 

100 118 1136.6788 805.934 32.46% 

200 259 1668.1534 1387.4254 19.92% 

500 479 2577.2796 2375.055 9.64% 

Table 13. Summary of bound quality 

column. The percentage improvement values in this table are calculated as follows: 

LP-RLP 
(74)PI= LP- MILP. 

The performance of the cuts were significant for small problems, yet having 

a diminishing percentage improvement on bounds as the problem size gets larger. 

However, even for the largest problem considered here, having N = 500 with 3500 

discrete variables and 7006 constraints, one can obtain an improvement of 9.64% on 

bounds, by employing the cuts provided in Section 5.3. The effect of these cuts is 

illustrated in Figure 34. 
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Figure 34. Improvement of bounds by the cuts 
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Chapter 6 
Dynamic planar expropriation problem 
with single convex polygonal shapes 

6.1 Introduction 

In this chapter, we study the dynamic planar expropriation problem with single 

convex polygonal shapes ('DPECS). In this problem, the shape is expected to function 

through a planning horizon composed of T time periods indexed by t. The fixed point 

locations and expropriation costs are allowed to change for each time period. More

over, the shape is allowed to move at the beginning of each time period at a relocation 

cost of Vt. Hence, reduction in the total expropriation costs is possible by relocating 

the shape to new locations at some time periods within the planning horizon. How

ever, in this setting, there is an inherent tradeoff associated with the reductions in 

the total expropriation costs and additional relocation costs. The objective is to find 

a location-relocation strategy, given by the vector of relocations, and corresponding 

successive locations of the shape through T time periods while minimizing the total 

expropriation and relocation costs. 

A complementary objective of this chapter is to illustrate how thesis problems 

extend to their diametric opposites as defined in Section 3.2.3, and further to three 

dimensions. Recall from Section 3.2.3 that the single-period variant of the above-

stated problem, the single-period planar expropriation problem with single convex 

polygonal shapes (SPECS), is the diametric opposite of the planar maximal covering 
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problem with single convex polygonal shapes (PMCS) discussed in Chapter 5. Hence, 

for studying the dynamic planar expropriation problem with single convex polygonal 

shapes (VPECS), we first illustrate how the P MCS formulation extends to SPECS. 

Moreover, to show how the problem formulation extends to three dimensions, 

we also formulate another problem, namely the three-dimensional expropriation prob

lem with single convex polyhedral shapes (TVECS) in Appendix C. For illustration 

purposes, the diametric opposite of the planar expropriation problem with rectangu-

Zar non-rigid facilities (PENR) discussed in Chapter 4, the planar maximal covering 

problem with rectangular non-rigid facilities (PMNR), is also formulated in Appen

dix D. 

In the remainder of this chapter, we first formulate SPECS. Then we illustrate 

how the multi-period extension of SPECS, namely VPECS, decomposes into a series 

of static problems under a particular vector of relocations. Subsequently, we provide 

an incomplete dynamic programming procedure for the solution of VPECS. We 

illustrate the whole procedure on a numerical example. 

6.2 Single-period planar expropriation problem with single 
convex polygonal shapes 

For convenience, we introduce the following notation for the constraint set of 

a P MCS problem: 

C : the set of covering constraints, for example, the constraint set (58-64); 

IC : the set of inclusion constraints, for example, the constraint set (65-68); 

IN : the set of integrality constraints, for example, the constraint set (69); 
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N 	: the set of non-negativity constraints, for example, the constraint set (70). 

Then, the PMCS is given by the following simplified formulation: 

(PMCS) max { t,w; ·y; : s.t. C, IN Vi; IC, N}. (75) 

The problem formulation for SPECS can be generated by substituting the 

objective function of the P MCS defined for a particular m-sided convex polygonal 

shape, with its diametric opposite: 

N 

min Lei· Yi (76) 

and replacing the individual covering constraint set 

Vi (77) 

with the following constraint set: 

! (t,y:) ~ y; 

m 

Vi 	 (78) 
r=l 

whereas the other remaining restrictions should be generated according to the par

ticular shape, as shown in Appendix B. Observe that, when the objective function of 

P MCS is substituted with its diametric opposite (76), the constraint set (77) becomes 

redundant. To illustrate this, consider the vector y = (yif = (0, ... , O)T. Clearly, this 

vector is a feasible solution with an objective function value of 0, because the opti

mization direction is to minimize in (76). In this case, note that constraint set (77) 

is not binding because, for any possible values of y[, we have: 

Vi. 	 (79) 
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Therefore, regardless of the input, if we use the constraint set (77) we will 

obtain the solution 0. Recall from Section 5.2 that, the rule for implementing coverage 

is given by the following: 

If y; = 1 Vr, then Yi = 1. (80) 

Therefore, for applying this rule in SPECS, we have to replace the constraint 

set (77) with (78). Now, suppose that the constraint set (78) is substituted for (77) 

in C to obtain the covering constraints C'. Then, the SPECS problem is given by the 

following program: 

(SPECS) nun { t, e; · y; : s.t. C', IN \fi; IC, N}. (81) 

6.3 Dynamic planar expropriation problem with single convex 
polygonal shapes 

Consider the dynamic setting introduced in Sections 3.2.3 and 6.1, and let the 

constraints of the SPECS problem formulation (81) be additionally indexed for the 

time periods t. Denote the location of the shape at time period t by Xt = ( Xit, x2t), 

and let Zt be a binary variable taking a value of 1 if the shape is relocated at the 

beginning of period t, and 0 otherwise. That is, we define: 

1, if Xt =/=- Xt-1, 
(82)

Zt = 0,{ if Xt = Xt-1· 

Let the constraint set Zt E {O, 1} be denoted by Z. Moreover, for using this binary 

definition, we define the following constraint set denoted by U: 
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!xit - x1,t-1I
-----~Zt, (83)
UXl _ £Xl 

lx2t - x2,t-1I
-----~Zt. (84)
UX2 _ £X2 

This constraint set will ensure the utilization of relocation costs in the objec

tive function. According to this set, if the location of the shape is different than its 

location in the preceding period (i.e. at least one of the statements !xit - x1,t-il > 

0 or lx2t - x2,t-il > 0 holds) corresponding binary variable is forced to be one. The 

denominators of (83-84) are the width and length of the feasible location space, re

spectively. These will ensure that the LHS values of (83-84) are smaller than one (i.e. 

can not be equal to one because of the inclusion constraints). 

Finally, let the planning horizon be composed of T periods. Then, the dy

namic planar expropriation problem with single convex polygonal shapes is given by 

the following program: 

T N 

(VPECS) mm g(l) =LL Cit. Yit +Vt. Zt s.t. 
{ 

t=l i=l 

C', IN Vi, t; IC, N, U, Z (85)Vt}. 
For now, we leave the discussion of g(l) appearing in the above formulation 

to Section 6.5.2. 
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6.4 Decomposition of 1JP£CS to static problems 

In this section, we illustrate that the DPECS problem can be decomposed into 

a set of static problems where the shape functions through multiple periods at the 

same location. Let z = (zt)I' be the vector of relocations. Recall from Assumption 3 

that, we allow any z vector to start with a one in this study. That is, the shape is 

located into the feasible space for the first time at the beginning of the first period. 

t= 1 2 3 4 5 

• • • • • * End of 

.. 

z =( 1, 0, 0, 1, 0 ) 
planning 
horizon 

I 

tl 
I 

t2 
\._ _,,)\.. ) 

--v--- v 
Static problem 1 Static problem 2 

Figure 35. Illustration of the decomposition of DPECS to static problems 

Consider the small example with five time periods illustrated in Figure 35. 

Let Q be the number of ones in the z vector. Then, it is easy to see that the number 

of different locations for the shape throughout the planning horizon also equals to 

Q. Hence, under a particular z, problem (85) is composed of a set of static problems 

where the shape functions through multiple periods at the same location. Let q be 
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the index for such problems. Every static problem q starts with the beginning of a 

time period ~ and ends with the beginning of a time period t'q+l as shown in Figure 

35. Denote the location of the shape during the planning period [t'q, ~+1) of the 

static problem q by Xq = (x1q,x2q) and let the shape locations Xt = (xit,X2t) in the 

formulation (85) be replaced by Xq = (x1q, x2q). Then the static problems SP(q) are 

given by the following formulation: 

(SP(q)) min s.t. C', IN Vi, 

\ft E [f,, t',+1); IC, N, \ft E [f,, t~+ 1)} • (86) 

Therefore, under a particular z vector, the solutions of Q static problems define 

the optimal shape locations Xq = (x1q, x2q) through the planning horizon. Moreover, 

the optimal objective function value of the VP£CS is given by the following term: 

Q 

g(1) = Lfq· (87) 
q=l 

6.5 Two basic solution methods 

The decomposition scheme discussed in Section 6.4 leads to the following im

portant observation. 

Remark 1 (Wesolowsky, 1973). The optimal solution of VP£CS can be identified 

by evaluating the total costs associated with every possible z vector. 4' 
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In light of this observation, we now discuss the solution of VPECS with two 

simple procedures, namely, complete enumeration and enumeration with postpone

ment. Subsequently, we explain an incomplete dynamic programming procedure which 

is superior to these methods in terms of tree size. 

6.5.1 Complete enumeration 

In this scenario one may compute the total costs of expropriations and relo

cations associated with every possible z vector and simply select the minimum cost. 

In that case, there exist 2r-i such vectors to evaluate. Wesolowsky (1973) pointed 

out that each candidate z vector calls for the solution of 1 + (T - 1) /2 static prob

lems, on average. Hence, the total number of static problems that have to be solved 

by using complete enumeration is given by the following tree size: 

TS(C£) = 2r-i ( 1 + T; l) . (88) 

6.5.2 Enumeration with postponement 

In this section we illustrate a better enumeration method where one starts 

from the last period and calculates the optimal solution of the dynamic problem by 

working backwards to the first period. In this method the time periods represent the 

stages. At each stage t, the open nodes in the branching tree are divided to two new 

nodes with labels 0 and 1, representing the two possible values of the binary variable 
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Zt· But, the nodes labeled with 0 can not be evaluated at the stages they appear. 

Hence, the evaluation of such nodes are postponed to a lower stage, where the shape 

is relocated at the beginning, as illustrated in Figure 36. Before going through the 

calculations, we introduce the following notation. 

f [t', t'') : the total expropriation cost associated with maintaining the shape at a 

particular location from the beginning of time period t' to the beginning of time 

period t''; 

g(t') : the minimum total cost incurred from the beginning of time period t' to the 

end of the planning horizon, given that the shape is relocated at the beginning of 

time period t'. 

Hence, according to the above notation, g(l) is the optimal objective function 

value of VP£CS. The first cost term f[t', t'') can be found by solving the modified 

static problem (89). 

t"-1 N 

(MSP) min 
{ 

f[t',t") - ~~cit· Yit : s.t. C', IN Vi, 

Vt E [t', t''); IC, N, \ft E [t', t'')} . (89) 

Consider the enumeration scenario illustrated in Figure 36. The numbers 

inside the brackets appearing below the labels are used for indexing the nodes that 

have to be evaluated at corresponding stages. If a relocation is specified by the z vector 

for stage t', the total cost g(t') can be calculated by summing the cost of relocation 
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T 

T-l 

T-2 

Figure 36. Branching tree for the enumeration with postponement 

Vt' at the beginning of this stage, the total expropriation cost f [t', t") associated with 

maintaining the shape at the same location for (t" - t') time periods, and the total 

cost g(t'') of stage t". Since the planning horizon is composed of T stages only, one 

may use notation f [t', *) for the total expropriation costs associated with maintaining 

the shape at a particular location from the beginning of time period t' to the end of 

planning horizon, and assume g(*) = 0 for initiating the calculations. For illustration 

purposes, calculation of costs for the last three stages are summarized in Table 14, 

where the evaluation of the nodes labeled with 0 are postponed to lower stages and 

g(*) were ignored. 

It is recognizable from Figure 36 that the enumeration procedure with post
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II Node II Total cost II 
1 g(T) = f [T, *) + vr 

2 g(T- l) = f[T- l,*) +vr-1 

3 g(T  1) = f[T  1, T) + vr_1+ g(T) 

4 g(T  2) = f[T  2, *) + VT-2 

5 g(T  2) = f[T  2, T - 1) + VT-2 + g(T  1) 

6 g(T  2) = f[T  2, T) + vr_2 + g(T) 

7 g(T  2) = f[T  2, T - 1) +Vr- 2 + g(T- 1) 

Table 14. Calculations for the enumeration with postponement 

ponement leads to evaluation of 2r-t nodes at each stage t. Hence, the total number 

of modified static problems that have to be solved by using enumeration with post

ponement is given by the following tree size: 

T 

TS(£WP) = L 2T-t. (90) 
t=l 

6.6 An incomplete dynamic programming procedure 

In this section, we formulate an incomplete dynamic programming procedure 

which leads to significant reduction in the tree size. This procedure is based on 

the following important observation regarding dynamic location problems having a 

similar structure to 'DP£CS. 

Remark 2 (Wesolowsky, 1973). Once a relocation is specified by the z vector, the 

subsequent locations of the shape are independent from the previous ones. As a con
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clusion, many of the modified static problems evaluated through the branching tree are 

identical. '9 

To illustrate this, consider the nodes (5) and (7) of the branching tree illus

trated in Figure 36. It is easy to see from Table 14 that the calculation of total costs 

g(T - 2) for these nodes is exactly the same, and hence need not to be duplicated. 

This is because the modified static problems evaluated at the nodes (5) and (7) are 

identical. 

This observation leads to an incomplete dynamic programming procedure hav

ing the following properties: 

Property 1. At each stage, evaluation of all nodes is not necessary. By Remark 2, 

one can simply proceed from the last stage to the first stage by keeping the minimum 

stage cost g(t) and the corresponding node. The other nodes labeled with 1 at the 

same stage are pruned. 

Property 2. The nodes labeled with 0 can not be evaluated at the stages they appear 

and their evaluation are postponed to lower stages. Hence, the dynamic programming 

procedure is deemed as incomplete. 

Property 3. The ties between costs at any stage are broken arbitrarily. '9 

By using Properties 1-3 and the definitions given in Section 6.5.2, the backward 

recursion for the incomplete dynamic program can be formulated as follows, where 

the star in the superscript denotes the minimum stage cost. 

g*(t') =min {f[t', t") +Vt'+ g*(t")}. (91)
t' ,t" 
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Figure 37. Network representation of the dynamic recursion (91) 

A network representation of this dynamic recursion is illustrated in Figure 37. 

For illustration purposes, we provide an example branching tree for the incomplete 

dynamic programming procedure in Figure 38. It is recognizable from this figure that 

the incomplete dynamic programming procedure leads to evaluation of (T - t + 1) 

nodes at each stage t. 

Therefore, the total number of modified static problems that have to be solved 

by using the incomplete dynamic programming procedure is given by the following 

tree size: 

T 

TS(I1JP) =LT- t + 1. (92) 
t=l 
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T 

T-l 

T-2 

T-3 

• • • • • x• x • • • x • 

Figure 38. Branching tree for the incomplete dynamic programming procedure 

6.7 Growth of the branching trees 

In this section, we provide a simple simulation to illustrate the superiority of 

the incomplete dynamic programming to two procedures introduced in Sections 6.5.1 

and 6.5.2, respectively. The criterion we may use for this comparison is the growth 

of resultant branching trees. 

For this purpose, by using the formulas (88, 90 and 92), we created the resul

tant tree sizes for each method, where the number of periods ranging from 1 to 15 

were considered. The results are summarized in Table 15. 
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II T II TS(C£) TS(£WP) TS(IDP) II 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1 1 1 
3 3 3 
8 7 6 
20 15 10 
48 31 15 
112 63 21 
256 127 28 
576 255 36 
1280 511 45 
2816 1023 55 
6144 2047 66 
13312 4095 78 
28672 8191 91 
61440 16383 105 
131072 32767 120 

Table 15. Growth of the tree sizes 

This table shows that when one uses the incomplete dynamic programming 

for the solution of DP£CS, the growth of the branching tree is very slow compared 

to those resulting from using complete enumeration and enumeration with postpone

ment. 

6.8 Numerical example for the incomplete dynamic program
ming procedure: Example 5 

In this section we show step-by-step how the incomplete dynamic programming 

procedure works on an illustrative example problem (Example 5 hereafter). We con

sidered T = 5 time periods, N = 50 fixed points. The feasible location space for this 
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problem is a bounded square having a dimension of 10 x 10 units. The single shape to 

be located into this region is a square having an area requirement of 16 unit squares. 

For each time period, the fixed point locations in each dimension were randomly 

generated from a uniform distribution U ,.._, [O, 10]. Each fixed point i has an expro

priation cost Cit, and each time period has a relocation cost Vt. For convenience, we 

allowed the cost parameters to assume integer values. Thus, the expropriation costs 

were randomly generated from uniform distribution U ,.._, [1, 10], the relocation costs 

were randomly generated from uniform distribution U ,.._, [10, 20] and rounded to the 

nearest integer values. The resultant relocation costs were v = (18, 13, 15, 14, 17), 

whereas the remaining data are summarized in Tables 16-20. 

The calculations for stage costs are detailed as in the following, whereas the 

solutions for modified static problems and corresponding shape locations are sum

marized in Table 21. Moreover, the branching tree for this example is illustrated in 

Figure 39. Similarly to the branching tree presented in Figure 36, the numbers ap

pearing in the brackets at each node are used for indexing the static problems that 

have to be evaluated. 

Cost calculation for Stage 5. 


g*(5) =min {(1) : g(5) = f[5, *) + v5 =13+17 = 40 


Hence, the minimum stage cost is g* ( 5) = 40. 
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Point a lit a2it Cit Point a lit a2it Cit 

1 5.3131 2.1249 2 26 4.2652 3.8075 9 
2 2.3131 7.4028 6 27 0.0337 9.6059 9 
3 2.4730 0.9106 10 28 9.6194 7.9781 4 
4 0.4086 1.0068 8 29 6.6348 1.1239 4 

5.5931 9.2531 5 30 2.2893 6.9720 2 
6 4.2585 9.2595 9 31 1.1792 9.0421 8 
7 6.2287 6.5887 8 32 2.6719 7.3063 7 
8 0.0462 4.6570 1 33 3.7869 4.4114 4 
9 4.0417 3.0214 5 34 9.3372 3.1089 6 

0.6118 7.3829 4 35 6.5898 1.1067 7 
11 6.8407 2.6123 3 36 5.7052 6.3358 9 
12 3.9861 5.7496 1 37 6.7344 8.2831 10 
13 5.7070 0.4412 4 38 4.3088 5.1449 2 
14 7.7411 8.7576 5 39 7.3151 2.3579 4 

7.0338 3.6039 4 40 9.0863 5.0667 8 
16 2.9477 0.5435 3 41 1.7781 2.2098 5 
17 2.4738 0.5412 4 42 9.4691 4.6461 1 
18 5.4241 3.3759 1 43 9.6341 8.8944 2 
19 4.0217 1.8569 2 44 7.1215 7.6343 8 

4.6022 0.7175 2 45 6.0638 2.6975 9 
21 6.8804 2.5118 5 46 6.8298 9.2066 7 
22 0.5608 8.8659 7 47 8.6332 1.4285 2 
23 4.3284 8.6787 7 48 3.3125 6.0280 6 
24 2.8194 8.1749 8 49 7.1409 4.3300 9 

3.3317 3.3587 3 50 9.8905 8.3660 6 

Table 16. Data for t=l in Example 5 
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II Point alit a2it Cit II Point a 1it 

1 0.7229 
2 8.5938 
3 4.1685 
4 7.0171 

9.7823 
6 9.7887 
7 7.6065 
8 7.2161 
9 0.1835 

2.2009 
11 1.0060 
12 5.4374 
13 2.3022 
14 3.8120 

4.3132 
16 3.9090 
17 1.8865 
18 3.4288 
19 0.5948 

6.8792 
21 1.8644 
22 9.0988 
23 8.9576 
24 9.2399 

0.4115 

2.9931 
5.6570 
8.5107 
1.9008 
5.8519 
8.9421 
1.8952 
5.5154 
3.2950 
6.4509 
5.0481 
5.5775 
3.3937 
1.7377 
0.4178 
5.3606 
9.3676 
1.3588 
9.4144 
3.9242 
7.7153 
3.7740 
3.0338 
9.4691 
9.7737 

9 
2 
2 
8 
6 
3 
5 
6 
7 
3 
1 
8 
4 
6 
8 
8 
3 
7 
3 
3 
3 
6 
1 
8 
8 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

1.3180 
0.3808 
5.7280 
1.7166 
6.6596 
5.1922 
5.0416 
1.4903 
9.3368 
4.6783 
3.5225 
7.4105 
2.2777 
1.4539 
5.7436 
6.6565 
2.6008 
6.4088 
7.9421 
8.2669 
3.0472 
3.7243 
4.9564 
6.8889 
3.0842 

0.9827 9 
5.1371 9 
6.6686 4 
1.7053 9 
4.1346 1 
4.2614 9 
5.9943 9 
3.9423 3 
3.9885 4 
7.9240 5 
8.8277 2 
8.7820 7 
6.1545 4 
9.8601 3 
3.6288 7 
6.9485 9 
8.3729 7 
1.3820 5 
7.7133 1 
9.5273 10 
5.5929 7 
1.2895 4 
9.0639 5 
0.6967 7 
7.8151 1 

Table 17. Data for t=2 in Example 5 
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II Point alit a2it Cit II Point alit 

1 8.3973 3.5052 1 26 6.6013 4.4643 10 
2 3.6705 0.3809 1 27 0.6364 8.3702 6 
3 1.7119 0.0964 3 28 8.8341 9.7870 3 
4 1.4696 0.3142 6 29 0.9471 3.3306 4 

2.6998 6.4781 2 30 9.8089 8.0990 8 
6 5.4400 4.9912 8 31 1.2959 8.0681 5 
7 6.6448 5.2124 3 32 8.5793 8.2772 8 
8 8.8598 3.6934 2 33 7.1196 6.3286 9 
9 1.4874 9.9703 10 34 4.1123 2.9296 9 

9.8204 4.9373 2 35 4.5094 8.1850 3 
11 8.9136 7.1783 6 36 9.6174 3.8328 1 
12 2.6272 7.8685 1 37 2.8576 4.5421 5 
13 9.1916 6.0451 10 38 2.2912 6.8460 1 
14 5.0074 2.4305 2 39 2.8019 4.5449 10 

8.3111 8.4816 5 40 5.4616 4.3011 1 
16 7.8978 6.0293 10 41 5.8856 7.5435 4 
17 8.0338 7.0316 4 42 8.7177 5.0731 7 
18 2.9073 4.8028 1 43 6.5270 5.1143 5 
19 6.8024 3.5004 1 44 0.8505 7.5984 7 

6.6215 0.3929 10 45 1.7207 9.0334 3 
21 8.3503 1.1876 1 46 1.7515 7.3203 1 
22 3.6646 7.4903 5 47 6.2536 5.7099 3 
23 8.8884 7.1872 1 48 6.1589 3.2499 1 
24 6.7075 2.0375 2 49 8.6599 2.6919 3 

9.6579 0.7950 6 50 3.0162 7.1591 3 

Table 18. Data for t=3 in Example 5 
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II Point alit a2it Cit II Point alit 

1 0.9205 
2 3.2645 
3 1.7204 
4 4.4962 

3.1373 
6 5.4758 
7 9.3239 
8 4.4472 
9 9.5073 

7.8733 
11 8.5877 
12 2.5419 
13 0.3002 
14 4.5547 

0.1690 
16 9.8388 
17 2.0594 
18 1.1682 
19 0.9739 

0.8458 
21 7.9128 
22 5.7312 
23 2.1400 
24 4.5868 

2.4055 

7.2253 
2.8705 
1.4834 
3.7819 
0.1854 
5.5741 
7.7727 
4.9049 
3.3872 
1.7481 
0.3683 
3.8793 
9.0869 
9.3823 
6.9516 
5.6006 
2.0325 
3.2210 
1.3922 
9.8848 
6.7092 
8.7731 
1.1579 
5.8127 
2.0883 

7 
9 
2 
3 
3 
5 
4 
9 
6 
5 
2 
2 
2 
9 
7 
2 
7 
7 
8 
9 
2 
3 
4 
9 

10 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

2.2454 
9.0400 
0.4988 
0.9635 
7.4487 
3.4519 
0.1204 
6.8356 
9.0512 
1.4886 
8.2898 
7.9190 
2.5848 
7.9380 
7.7527 
9.0232 
3.2531 
5.7634 
1.8080 
2.2489 
0.4603 
1.1402 
3.5805 
6.5248 
6.4074 

9.6024 2 
0.4854 2 
4.8629 5 
1.8681 2 
6.3984 6 
6.5403 6 
5.8647 2 
5.2839 6 
6.1188 10 
0.8003 4 
1.5819 5 
0.0656 1 
3.5863 4 
5.1603 2 
0.8437 6 
4.3810 4 
0.6750 1 
0.0143 3 
6.4271 1 
0.1706 5 
1.5178 8 
6.8447 9 
7.3916 7 
7.7540 1 
2.0094 5 

Table 19. Data for t=4 in Example 5 
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Point a lit azit Cit Point a1it a zit Cit 

1 2.1494 1.3188 2 26 9.2521 9.2642 2 
2 6.6299 6.9851 2 27 7.0735 9.3104 3 
3 5.8876 0.4804 6 28 7.8821 3.4189 5 
4 4.7741 9.5794 1 29 2.2196 3.3809 9 

3.4921 8.8859 9 30 2.2417 3.1621 1 
6 9.0517 8.9086 7 31 8.2585 5.6151 3 
7 6.5069 5.3752 6 32 5.6196 8.0794 2 
8 5.1838 7.7574 3 33 0.9247 1.9611 3 
9 4.2920 5.9613 4 34 1.9327 1.4752 3 

8.7851 6.6734 5 35 5.9226 8.1122 1 
11 1.7137 7.9524 4 36 5.0347 1.6783 6 
12 9.4090 5.4619 1 37 4.9742 0.3660 5 
13 4.5441 7.0788 1 38 4.1373 5.9378 8 
14 7.5190 8.1686 1 39 7.3355 2.0089 6 

8.0748 0.5752 8 40 8.8085 2.8719 3 
16 2.4401 2.3993 9 41 4.0171 3.2395 10 
17 7.6454 5.0886 4 42 9.3335 6.1922 7 
18 7.1876 0.3813 5 43 7.5718 5.2781 3 
19 4.2254 1.9125 7 44 8.4537 1.8901 9 

8.0015 3.9024 10 45 2.4243 4.0314 3 
21 2.0361 2.1039 6 46 5.9333 4.0061 6 
22 0.1139 3.4882 5 47 5.7059 6.5739 10 
23 2.5545 4.9787 5 48 4.6113 6.3931 10 
24 4.2787 1.6817 9 49 9.0177 3.6135 8 

3.2078 5.4074 5 50 4.1507 6.3275 3 

Table 20. Data for t=5 in Example 5 
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3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
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II q jj Solution 

f[5, *) = 13 2.000 5.448 

f[4, *) = 34 6.774 7.813 

![4,5) = 8 5.580 2.800 

f[3, *) = 63 6.279 2.844 

f[3,4) = 4 2.000 2.381 

![3, 5) = 24 5.264 2.393 

![2, *) = 101 6.279 2.844 

![2,4) = 36 4.627 7.994 

![2, 3) = 18 7.744 6.135 

![2, 5) = 62 4.627 7.994 

f[l, *) = 136 2.120 5.381 

f[l, 4) = 75 3.006 5.021 

j[l, 2) = 13 2.000 3.007 

f[l, 3) = 51 3.006 3.857 

f[l, 5) = 108 2.184 5.221 

Table 21. Summary of the solutions for modified static problems 
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Cost calculations for Stage 4. 

g*( ) =min { (2): g(4) = ![4, *) + v4 =34+14 = 48 

(3) : g(4) = j[4, 5) + V4 + g(5) = 8 + 14 + 40 = 62 

Hence, the minimum stage cost is g*(4) = 48. Node (3) is pruned at this stage. 

Cost calculations for Stage 3. 

(4) : g(3) = f[3, *) + V3=63+15 = 78 

g*(3) =min (5) : g(3) = j[3, 4) + V3 + g(4) = 4 + 15 + 48 = 67 

(6) : g(3) = j [3, 5) + V3 + g(5) = 24 + 15 + 40 = 79 

Hence, the minimum stage cost is g*(3) = 67. Nodes (4) and (6) are pruned at this 

stage. 

Cost calculations for Stage 2. 

(7) : g(2) = ![2, *) + V2 = 101+13 = 114 

(8) : g(2) = j[2, 4) + V2 + g(4) = 36 + 13 + 48 = 97 
g*(2) =min 

(9) : g(2) = j[2, 3) + V2 + g(3) = 18 + 13 + 67 = 98 

(10) : g(2) = f[2, 5) + V2 + g(5) = 62 + 13 + 40 = 115 

Hence, the minimum stage cost is g*(3) = 97. Nodes (7), (9) and (10) are pruned at 

this stage. 

Cost calculations for Stage 1. 

(11) : g(l) = j[l, *) + V1=136+18 = 154 

(12) : g(l) = j[l, 4) + V1 + g(4) = 75 + 18 + 48 = 141 

g*(l) =min (13) : g(l) = j[l, 2) + V1 + g(2) = 13 + 18 + 97 = 128 

(14) : g(l) = j[l, 3) + V1 + g(3) = 51+18 + 67 = 136 

(15) : g(l) = j[l, 5) + V1 + g(5) = 108 + 18 + 40 = 166 
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Hence, the minimum stage cost and the optimal solution of the dynamic pro

gram is g*(l) = 128. Nodes (11), (12), (14), (15), and those labeled with 0 are pruned 

at this stage. Backtracking to the root of the branching tree gives the relocation vec

tor z = (1, 1, 0, 1, 0). According to this vector, the shape should be phased-in at the 

beginning of the planning horizon and relocated at the beginning of the second time 

period. It should be maintained at this location until another relocation taking place 

at the beginning of the fourth period. Finally, it should be maintained at this loca

tion to the end of the planning horizod. These successive locations are presented in 

Figures 40-42. 
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1 

Figure 39. Branching tree for Example 5 
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Figure 40. Shape location for period 1 illustrated at t = 1 
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Figure 41. Shape location for periods 2 and 3 illustrated at t = 2 
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Figure 42. Shape location for periods 4 and 5 illustrated at t = 4 
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Chapter 7 
Conclusions and future research 

7.1 Summary and concluding remarks 

In Chapter 4, we studied the planar expropriation problem with non-rigid rec

tangular facilities. We considered two-dimensional facilities of rectangular shape and 

allowed the facility dimensions to be decision variables. Hence we introduced the con

cept of non-rigid facilities. Other than this chapter, there is no early work in location 

theory literature for finding the locations and formations of facilities simultaneously. 

It is recognized that the current continuous covering models in the location theory 

literature can not deal with dimensional facilities. This is because such models es

sentially make use of well-known distance measures. As a result, the solutions are 

analytical points in the plane. In this study, based on the concept of non-rigid facil

ities, we developed a new continuous covering model that can solve for dimensional 

facilities without employing distance measures. In addition to site generation, the 

formations of the facilities are simultaneously optimized within the same model. 

Given area requirements Ak, the area restrictions Ak = lk ·wk for each facility 

k form convex nonlinear tradeoff curves associated with facility formations defined 

by all alternative 2-tuples (wk, lk)· Hence, the resulting covering models are hard 

mixed integer nonlinear programs. For the solution of these models, we developed a 

continuous branch-and-bound framework which utilizes linear approximations for such 

tradeoff curves. By introducing an approximate problem and two auxiliary problems, 
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we were able to bound the objective function value of the mixed integer nonlinear 

program. We also developed a new problem generation scheme based on the concept 

of aspect ratio of the length and width of the facilities. Computational experience 

showed that the branch-and-bound procedure we developed is more effective than 

the conventional mixed integer nonlinear solvers BARON and SBB for solving this 

particular location model. 

One limitation of this approach is the exponential growth of the branching trees 

in multi-facility planar expropriation problems. It can be recognized from Example 2 

that the facilities are not necessarily symmetrical. That is, for a given problem p in 

the branching tree, facilities do not necessarily assume the same aspect ratio interval. 

Therefore, the facility planner should consider investigating combinations of aspect 

ratio intervals for multiple facilities. This requirement is the most important obstacle 

for implementing the proposed branch-and-bound algorithm for the problems where 

the number of facilities is large. 

In Chapter 5, we studied the planar maximal covering problem with single 

convex polygonal shapes. This problem is equivalent to investigating maximal point 

containment by a convex polygonal shape in the Euclidean plane. Until 2004, the 

problem was studied in the computational geometry domain. Some algorithmic ap

proaches based on the translations of the shapes were derived. The investigation of the 

problem in a location-theoretic application was initiated by Younies and Wesolowsky 

( 2004) who considered inclined parallelograms. This study was the only optimization 

approach to the planar maximal covering problems with dimensional shapes that al

lowed modeling parallelograms, rhombi and rectangles. Later, this work was extended 
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to solving planar maximal covering problems using block norm distances (Younies and 

Wesolowsky, 2007). These extended models were equivalent to planar maximal cov

ering problems with even-sided polygons. In Chapter 5, we extended the scope of 

the planar maximal covering problem to account for any convex polygonal shape. We 

did not employ any distance measure and used the geometric properties of the shape 

when modeling the corresponding planar maximal covering problems. The advantage 

of our approach is that the shape need not be the replica of any block norm contour. 

Therefore, many different convex polygonal shapes can be modeled by this methodol

ogy. Note that we also solved the planar maximal covering problems with polyhedral 

gauges in this way. 

We also provided two types of cuts by using the geometric properties of the 

shapes under study and derived a branch-and-cut algorithm for solving this new lo

cation model. By this approach we created a series of LP relaxations of the original 

planar maximal covering problem and dynamically added the cuts, whenever they 

were violated, throughout the branching tree. A small computational study revealed 

the effect of these cuts on the bound qualities of these planar maximal covering prob

lems. As shown in this experiment, the bound qualities were significantly improved 

after the utilization of such cuts. 

One limitation of this approach is that we were only able to solve for shape 

locations where the shapes are aligned with an orthogonal axis system. Hence, ro

tations of the shapes were not analyzed. However, it is worthwhile to note that this 

is not an easy task. As of 2008, there is one solution method for planar maximal 

covering problems involving rotations of shapes (see, Barequet et al., 2008). This is 
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an algorithmic approach for computing a special type of diagram that involves the 

point-containment information. Given a shape and a contact point from the fixed 

point set, this diagram parameterizes the translations and rotations of shape for gen

erating the point-containment information for all fixed points. Barequet et al. (2008) 

showed how to use this diagram for solving the planar maximal covering problem in

volving rotations. However, the related problem family is open for novel optimization 

approaches. A list of these open problems can be found in Dickerson and Scharstein 

(1998). 

In Chapter 6, we studied the dynamic planar expropriation problem with sin

gle convex polygonal shapes. We showed how to locate and relocate the shape in 

location space during a planning horizon where the fixed point locations and expro

priation costs are subject to change. The dynamic model we developed was solved 

for successive locations of the shape through multiple time periods while minimizing 

the total expropriation and relocation costs. For any particular vector of relocations, 

we showed that the dynamic problem structure can be decomposed into a set of sta

tic expropriation problems. Therefore, the problem can be solved by inspecting all 

possible relocation vectors. We discussed two enumeration procedures to undertake 

this task. 

The modeling principles of dynamic location problems were first established 

in Wesolowsky (1973). According to those principles, the problem we discussed in 

this chapter can be solved much more efficiently without duplicating the evaluation 

of many identical static problems in the branching tree. Moreover, the evaluation of 

expropriation costs in some stages where the shape is not relocated may be postponed 
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to lower stages. Based on these observations, we developed an incomplete dynamic 

programming procedure for the solution of the dynamic planar expropriation problem 

with single convex polygonal shapes. 

We provided formulas for calculating corresponding tree sizes for all the solu

tion procedures discussed in this study. One advantage of the incomplete dynamic 

programming procedure we developed is the slow growth of the corresponding branch

ing trees. It was shown that the non-duplicative problem evaluation and postpone

ment strategies lead to significant reductions in the number of static problems to be 

evaluated through the algorithm; as a result, corresponding tree sizes are diminished. 

7.2 Future research 

The models studied in this thesis are versatile in the sense that they can be 

modified to solve various problems in other domains of natural sciences such as urban 

and regional planning, information processing, robotic task planning, graphic design 

and computational geometry. 

For example, the first study reported in this thesis has applications in regional 

planning. Consider a particular region where a municipality is planning to site new 

facilities in its interior. Each facility is planned to have a certain area requirement. 

However, the properties that fall into such planned areas have to be expropriated at 

the municipality's expense. In this case, one can use the planar expropriation model 

discussed in Chapter 4 for siting such facilities while minimizing the total expropri

ation cost. From a social objective point-of-view, the same model will reduce to the 

problem of locating undesirable facilities (i.e. a landfill, a power-station etc.) within 
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a bounded geographical region, while minimizing the population centers affected by 

the facility. 

Next, we may consider a nesting problem arising in the production management 

domain. In leather and garment manufacturing, an operator has to cut out a set of 

given pieces from a flat section of raw material. It is generally true that the pieces in 

one batch are not necessary identical, hence they may assume particular geometric 

shapes. It is also true that the raw material is not flawless, and there may be some 

undesirable fault points on its surface. Nevertheless, in material cutting practice, 

trim-loss is only permitted up to a reasonable degree. Therefore, locating such pieces 

on the flat section of raw material is an important problem that has to be solved. In 

this case, one may assign a large penalty cost, say M, for the fault points covered, and 

use the single-period planar expropriation model illustrated in Chapter 6 for locating 

such pieces on the flat section of raw material. 

As another real-life examples, we may consider clustering problems (see, for 

example Brusco and Kohn 2008; Tsai and Chiu 2008) arising in pattern recognition 

and information processing domains. Suppose that there is a set of points with specific 

weights assigned to them, indicating the score of a point with respect to a common 

criterion. We would like to cluster a subset of these points and set them apart from 

the remaining set, such that the distance between any two points in this cluster is 

not larger than a threshold, and the collective score of the points in the cluster is 

maximum. One may use the planar maximal covering model introduced in Chapter 

5 for solving such clustering problems. 

One of the major challenges in continuous facility location is related to sit
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ing dimensional structures such as lines, segments, routes and hyperplanes in high

dimensional spaces. In this context, the modeling approaches presented in this thesis 

may be extended for studying some interesting problems. 

Consider the following problem raised by Barequet et al. (2008), which orig

inates in the computational geometry domain. Suppose that we have a geometric 

description of an object that is planned to be manufactured. We also have a set of 

points which comes from sampling by using a coordinate-measuring apparatus that 

inspects the surface of an actual physical prototype of this object. We would like to 

check if the point set sampled from the actual physical prototype matches with our 

geometric description. It is easy to see that, one method of checking this is to try to 

cover the sampled points with the shape outlined by our geometric description. This 

type of covering problems may be essential for determining whether a manufactured 

object prototype meets the tolerances specified by related production standarts, be

fore the actual production takes place. Also, one may be interested in finding the 

optimum scaling that the model must undergo in order to cover the sampled points 

within some tolerance limits. The covering problems we studied in this thesis may 

serve as practical alternative approaches for solving such geometric problems. This 

can be achieved by fixing the number of covered points to the number of sampled 

points. Observe that, in our models, there is no restriction on the number of covered 

points. However, for solving the above-described problems, we may fix this number 

and allow the area requirement to vary, for checking the optimal scaling of the shapes 

under study. 

Consider the following problem which has its roots in the precision engineering 
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and robotic task planning fields. Suppose that we are given an object that has to be 

tested for circularity. Then, we have to take a sample of points from the surface of 

this object and measure the circularity of this point set. If the circularity is good 

enough, we accept the object, and otherwise we reject the object. This problem is 

referred to as the roundness inspection problem in precision engineering. In robotic 

task planning, the problem is equivalent to siting a circular route in the convex hull 

of a set of points such that the maximum distance from the circular route to any 

point in this set is minimum. Hence, we may consider it as a min-max circular route 

location problem. In location theory, the problem was first investigated by Drezner et 

al. (2002). 

We note that the above problem can be solved by our approach by considering 

an equivalent annulus location problem. An annulus is the open region between two 

co-centric circles. Hence, the min-max circular route location problem can be modeled 

as an equivalent problem of computing the annulus of smallest width covering the 

whole point set. Observe that, there exists a circumference whose distance to inner

circle is equal to its distance to outer-circle of the annulus. This circumference is the 

solution of the max-min circular route location problem described above. To solve 

the equivalent annulus location problem, one may use the planar maximal covering 

models we introduced in this thesis, by allowing the facility to be an annulus. In 

this case, the binary definitions should be adapted accordingly. For example, one 

binary variable may be dictated to assume a value of one if a point falls outside the 

inner-circle, and another binary variable may be dictated to assume a value of one if a 

point falls inside the outer-circle. Then, a third binary variable should assume a value 
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of one, if both of the above two binary variables are one. These binary definitions 

will allow us to implement coverage by an annulus within our modeling framework 

introduced in this thesis. Then, one may fix the number of covered points to the 

cardinality of point set, and allow varying radii both for the inner- and outer-circles 

of the annulus. 

It is evident from these examples that the research we initiated in this thesis 

have potential to be useful in many domains. It is worthwhile to note that above

stated problems can be formulated as mixed-integer nonlinear problems. Moreover, 

their objective functions may assume neither convexity nor differentiability. Thus, 

it is expected that non-convex optimization methods will be useful for developing 

appropriate solution approaches for such extended problems. 
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AppendixA 
Analysis of strengthening cuts and conver
gence of the branch-and-bound algorithm 

In this Appendix we present two small computational studies to illustrate the effect 

of strengthening cuts on solution times of expropriation problem formulations, and a 

convergence analysis for the branch-and-bound algorithm. 

A.1 Analysis of MINLP formulation 

In this section, we analyze single and multiple facility MINLP formulations 

of P ENR. Recall from Section 4.5 that approximate problem-specific cuts (APC) 

are not applicable to MINLP formulations. Hence, we investigate the effect of global 

cuts ( GC) and cuts for the multiple facilities case ( CMF) on the solution times of 

randomly generated MINLP instances. Also note that the CMF are not applicable to 

single facility instances, hence they were only appended to multi facility problems. 

We created a set of test problems by considering the combinations of the 

sets N = {5, 10, 20, 50, 75} and K = {1, 2, 3}. The fixed point coordinates in each 

dimension were randomly generated from a uniform distribution U ,.._, [O, 10] within a 

10 x 10 square. We allowed each fixed point i to assume an expropriation cost ci E z+. 

Thus, the expropriation costs were randomly generated from a uniform distribution 

U ,.._, [O, 10] and rounded to the nearest integer. The area requirement for each facility 

under study is taken as 20 unit squares. The coding was implemented in GAMS 

modeling system where BARON was utilized as the MINLP solver. Moreover, we 
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N K 


5 1 
2 
3 

10 1 
2 
3 

20 1 
2 
3 

50 1 
2 
3 

75 1 
2 
3 

CPU (h:mm:ss) 

MINLP MINLP+GC+CMF 


0:00:03 
0:00:03 
0:00:08 
0:00:05 
0:00:11 
0:00:39 
0:00:37 
0:01:41 
0:52:19 
0:13:55 
1:54:22 
2:57:34 
3:00:00 
3:00:00 
3:00:00 

0:00:03 
0:00:03 
0:00:07 
0:00:04 
0:00:08 
0:00:32 
0:00:32 
0:01:24 
0:35:51 
0:12:11 
1:30:27 
2:23:34 
2:51:17 
3:00:00 
3:00:00 

Table 22. Summary of solution times for MINLP problems 

imposed a resource limit of 3 hours on the CPU time. Finally, it is worthwhile to 

note that this experiment was conducted on a 1.6 GHz desktop computer with 512 

MB RAM. 

The results of this study are summarized in Table 22 and Figure 43. When 

appended to MINLP formulations, GC and CMF resulted in a slight reduction in 

solution times. Percentage reduction in solution times ranged from 0% to 31.47%, 

with an average reduction of 12.8%. In Figure 43, the improvement on solution times 

seems marginal but observe that they are on a logarithmic scale. 
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Figure 43. Illustration of solution times for MINLP problems 

A.2 Analysis of the approximate problem 

In this section, we analyze single and multiple facility approximate problem 

formulations P£NRA and P£NRM. In particular, we investigate the effect of GC, 

APC and CMF on the solution times of randomly generated approximate expropri

ation problem instances where CMF were only appended to multi facility problems. 

We used the same problem setting, resource limitation and computing environment 

introduced in Section A.l. However, P£NRA and P£NRM formulations are es

sentially MILP models which are easy to solve when the number of fixed points is 

small. Thereby, in this study we increased the number of fixed points for each in

stance and considered the combinations of the sets N = {25, 50, 75, 100, 200} and 
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N K MILP 
CPU {h:mm:ss) 
MILP+GC+APC+CMF 

25 1 0:00:04 0:00:03 
2 0:00:11 0:00:08 

3 0:00:17 0:00:12 

50 1 0:00:06 0:00:05 
2 0:00:42 0:00:29 

3 0:03:18 0:02:02 

75 1 0:00:29 0:00:22 
2 0:03:04 0:02:21 
3 0:09:52 0:06:26 

100 1 0:00:54 0:00:42 

2 0:18:13 0:11:03 

3 0:38:56 0:21:18 
200 1 0:17:21 0:12:34 

2 0:49:14 0:31:15 
3 1:37:18 0:56:12 

Table 23. Summary of solution times for approximate problems 

K = {1, 2, 3}. Moreover, we utilized CPLEX 10 as the MILP solver. Finally, the for

mations of the facilities are considered to be acceptable in the aspect ratio interval 

The results of this study are summarized in Table 23 and Figure 44. When we 

append GC, APC and CMF to MILP formulations, we were able to obtain consider

able reductions in solution times. Percentage reduction in solution times ranged from 

16.663 to 45.293, with an average reduction of 31.143. Similarly to Figure 43, we 

employed a logarithmic scale to illustrate the resultant solution times in Figure 44. 
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Figure 44. Illustration of solution times for approximate problems 

A.3 Convergence analysis of the branch-and-bound algorithm 

To prove the convergence of the branch-and-bound algorithm, let us now in-

traduce an index q denoting the levels of the branching tree. Consider a segment 

problem in level q where we create n new problems from it. Let the optimal objective 

function values associated with its approximate and auxiliary problems be fdpr and 

fdux' respectively. For convenience, in this section we do not illustrate indices p 

utilized for numbering segment problems. 

PROOF Let min {fd:r,1 } = fd:r,1* and assume there exists an approximate problem 
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with a formation ( w*, l*) and objective function J:I;J;.1* at level q +1 such that fd,;J;.1* > 

f:Ipr· But, observe that there also exists another approximate problem at the same 

level with objective function fd;J;.1**, and formation ( w**, l**) which can fit into the 

coverage area of the formation ( wq, zq) , and hence, covering at most the same number 

of fixed points as shown in Figure 45. Thereby, we have J:I;J;.1* > J;;pr :;::: J;;;f;.1** which 

contradicts min {fq+l} = fq+1* •apr apr · 

l 

l** 
I 
I 
I 
I 
I 
I 

l* -------------~-----~-------
I' 
I 

w 
w * 


Figure 45. Illustration of Lemma 10 

Lemma 11 

PROOF Let max {f:I;tx1
} = fg:!,1* and assume there exists an auxiliary problem with 

a formation ( w*, l*) and objective function f2;t}* at level q + 1 such that J;;;t}* < 
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l 

l* 

w ** w * 

Figure 46. Illustration of Lemma 11 

fgux· But, observe that there also exists another auxiliary problem at the same level 

with objective function Jg::Xh*, and formation ( w**, l**) which is an envelope over the 

coverage area of the formation ( wq, zq) , and hence, covering at least the same number 

of fixed points as shown in Figure 46. Thereby, we have!%:;;/** ~ fdpr > jg:;.1* which 

contradicts max {fq+l} = fq+1* •aux aux · 

Lemma 12 The branch-and-bound algorithm introduced in Section 4.6 is conver

gent. 
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PROOF Let the optimal objective function value of the MINLP problem at the root 

node be f. From Lemmas 5 and 6 we know that fdux ~ f ~ f2pr· Thus, by Lemmas 

10 and 11 we have 

f. q < J.q+1* < f < J.q+1* < f.q (93)aux - aux - - apr - apr· 

Then, it follows that 

is true for all levels q. Let max{fc?ux} =fl, max{jg~1*} = fl+l,min{fd;1;.1*} = 

!&+1 and min {f2pr} = f&. Then, (94) can be written as 

f q< fq+l < f < f,q+l < f,q (95)L- L - - U - U 

which shows that the sequence {fl}; 0 is non-decreasing and the sequence {!&} ; 0 

is non-increasing. Consider now, the sequence {Ji - fl} ; 0 . Since {fl} ; 0 is non

decreasing and {!&} ; 0 is non-increasing, it follows that {f& - fl} ; 0 is also non

increasing. This shows that if the tradeoff curve structure is sufficiently inspected as 

q -+ oo, the limit of the sequence {!& - fl} ; 0 exists at 

lim U& - JD < c (96)
q-+oo 

where c is a very small number. Observe that, at optimality we have fl f = 

f& where fl is equal to lower bound of the optimal node and f& is equal to U B* . 

• 
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AppendixB 
Example P MCS problem formulations 

B.1 PMCS with an acute triangle 

Consider the acute triangle shown in Figure 47 with an area requirement of A. 

Denote the two bottom interior angles of this triangle by e and (3 . Further, denote 

the location and length of the triangle with Vi = (x1 , x2) and l, respectively. The 

length of this triangle is given by l = J2 ·A/ (1/tanO + 1/tan/3), which is a known 

parameter. 

Jr~ = { (x~, x;) : 
l 

Ar3 ~ 0} 

---------e--t.-------L-J...-----.i.~.--J_A,3
V3 '',, ... 

Figure 47. An acute triangle and its underlying half-planes 

Step 1. The relative locations of the vertices are given by the following: 
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Step 2. The lines passing through the edges of the triangle can be written as: 

A12 =x;- tanB · x~ - X2 +tanB · X1=0 (97) 

.\23 = x; + tan,6 · x~ - x2 - tan,6 · x1 - l · (1 + tan,6/ tanB) = 0 (98) 

A13 =x; - X2 = 0. (99) 

Step 3. The following line inequalities should hold for a point that is covered: 

.\12 :S: 0 (100) 

A23 :S: 0 (101) 

.\13 2:: 0. (102) 

Step 4. The covering constraints can be generated as follows: 

a2i - tanB · a1i - x2 + tanB · x1 :S: (1- Yl) ·NI (103) 

a2i + tan,6 · a1i - x2 - tan,6 · x 1 - l · (1 + tan,6/ tanB) :S: (1- YT)· M (104) 

a2i - X2 2:: (1 - yJ) · ( - M) (105) 

1 ( 1 2 3)3 · Yi + Yi + Yi 2:: Yi· (106) 

Step 5. The inclusion constraints can be written as follows: 

x l_> LXl (107) 

X1 + l · (1/ tanB + 1/ tan/)):::; ux1 (108) 

x2_> LX2 (109) 

(110) 

Integrality and non-negativity constraints can be written as follows: 

Yt, Yi, yJ, Yi E {O, 1} (111) 
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(112) 

The planar maximal covering problem with an acute triangle is given by the 

following MILP: 

max { tw; · y; : s.t. (103 - 106, 111) Vi; (107 - 110, 112)}. (113) 

B.2 P MCS with an obtuse triangle 

Planar maximal covering problem formulation for obtuse triangles can be de

rived with minor modifications on the formulation (113). Consider the obtuse triangle 

illustrated in Figure 48. The length of this triangle is l = 2 · A/ ( ta~/3 - tan(l~O-O)), 
which is a known parameter. 

Step 1. The relative locations of the vertices are given by the following: Vi = 

(x1,x2), Vi= (x1 - l/tan(180- B),x2 + l), Vi= (x1 + l · (ta~/3 - tan(l~O-O)),x2). 
Step 2. The lines passing through the edges of the triangle can be written as: 

>.. 12 = x; + tan(180 - B) · x~ - x 2 + tan(180 - B) · x 1 = 0 (114) 

A23 = x~ + tan,6 · x~ - X2 - tan,6 · x 1 + l · (tan,6/ tan(180 - B)) = 0 (115) 

>.. 13 =x; - x2 = 0. (116) 

Step 3. The following line inequalities should hold for a point that is covered: 

>..12 ~ 0 (117) 

>..23 :S 0 (118) 

A13 ~ 0. (119) 

Step 4. The covering constraints can be generated as follows: 
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A23)" V 
,/' " 2 

7r;3 = {(x~,x;): 


~3 < O} 


l 7r; 3 = { ( x~, x; ) : 

"1i3 > 0} 


_________.____!_____ 1 

\Vi_ = ( X1' X2) V3',, '13 

Ai2
' 
\,~7r~ = {(x~,x;): Ai2 ~ O} 

Figure 48. An obtuse triangle and its underlying half-planes 

a2i + tan(180 - ()) · a 1i - x2 - tan(180 - ()) · x 1 2: (1 - y[) · (-M) (120) 

a2i +tan/)· aii - x2 - tan/)· x1 + l ·(tan/)/ tan(180 - ())) ~ (1 - Yi)· M (121) 

a2i - X2 2: (1-yl) · (-M) (122) 

1 ( 1 2 3)3 · Yi +Yi +Yi 2: Yi· (123) 

Step 5. The inclusion constraints can be written as follows: 

x 1 - l/ tan(180 - ()) 2: Lx1 (124) 

1 1 ) Xlx1+Z· --- < U (125)( tan/) tan(180-()) 
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x2_> LX2 (126) 

(127) 

Integrality and non-negativity constraints are the same with the problem for

mulation for an acute triangle and given by (111, 112). The planar maximal covering 

problem with an obtuse triangle is given by the following MILP: 

mm< { tw; ·Yi ' s.t. (120 - 123, 111) 'Ii; (124 - 127, 112)}. (128) 

B.3 P MCS with a quadrilateral 

Consider the symmetric quadrilateral shown in Figure 49 with an area re

quirement of A. Let the two non-neighboring interior angles of this quadrilateral 

be r.p and 'Y· Further, denote the location and the half-length of this quadrilateral 

by (x1 , x2 ) and l, respectively. The half-length of this quadrilateral is given by 

l = A/ ( tan(~/2 ) + tan(~/2)), which is a known parameter. 

Step 1. The relative locations of the vertices are given by the following: 

V'i_ = (X1 1 X2 - l) 1 V2 = ( X1 - tan(~/2), X2) , VJ = (X1 1 X2 + l) , Vi = ( X1 + tan(~ / 2) 1 X2) · 

Step 2. The lines passing through the edges of the quadrilateral can be written as 

follows: 

.A12 =x; + tan(r.p/2) · x~ - x2 - tan(r.p/2) · x 1 + l = 0 (129) 

.A23 =x; - tan(r.p/2) · x~ - x2 + tan(r.p/2) · x 1 - l = 0 (130) 

.A34 =x; +tan(!/2) · x~ - x 2 - tan(!/2) · x1 - l = 0 (131) 

.A 14 =x; - tan(!/2) · x~ - x2 +tan(!/2) · x1 + l = 0. (132) 
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' ' ' ' ' ' 
v;~: 

TC~ = { (x~, x;) : 

A,4 > o}\ ___.- ',
Ai4 --- Vi 

Figure 49. A quadrilateral and its underlying half-planes 

Step 3. The following line inequalities should hold for a point that is covered: 

A12 2': 0 (133) 

A23 :S 0 (134) 

A34 :S 0 (135) 

A14 2': 0. (136) 

Step 4. The covering constraints can be generated as follows: 

a2i +tan(<p /2) · a1i - X2 - tan(<p /2) · X1 + l 2': (1 - yi) · (-Jvl) (137) 

a2i - tan(<p/2) · a1i - x2 + tan(<p/2) · x 1 - l :S (1- yi) · M (138) 

a2i + tan(<p/2) · aii - X2 - tan(<p/2) · x 1 - l :S (1 - yf) · M (139) 

a2i - tan(<p /2) · aii - x2 +tan(<p /2) · x 1 + l 2': (1 - yf) · (-J'vf) (140) 
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1 ( 1 2 3 4) >4 · Yi + Yi + Yi + Yi - Yi· (141) 

Step 5. The inclusion constraints can be written as follows: 

x 1 - l/tan(cp/2) 2': Lx1 (142) 

X1 + lj tan(r/2) :::S UXl (143) 

X2 - l 2': LX2 (144) 

X2 + l::; ux2. (145) 

Integrality and non-negativity constraints are as follows: 

y}, YI, yf, yf, Yi E {O, 1} (146) 

(147) 

The planar maximal covering problem with a quadrilateral is given by the 

following MILP: 

max y,: s.t. (137 - 141, 146) Vi; (142- 145, 147)}. (148){ tw;· 
Remark 3. This formulation is also applicable to inclined parallelograms and rhombi, 

as these are nothing but special cases of symmetric quadrilaterals. If the quadrilat

eral is not symmetric over at least one of its axes, the corresponding problem will be 

equivalent to solving a planar maximal covering problem with using a specific polyhe

dral gauge. In this case, a complete description of the unit ball is required {i.e. all 

the interior angles must be known). 4' 
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AppendixC 
Three-dimensional expropriation problem 
with single convex polyhedral shapes 

In this Appendix, we provide the formulation for the three-dimensional expropriation 

problem with single convex polyhedral shapes (TDECS). This problem is the exten

sion of single-period planar expropriation problem with single convex polygonal shapes 

(SPECS) to three dimensions. A formal statement of this problem is as follows. 

Formal statement of the problem TDECS. Given N fixed points indexed 

by i and the expropriation costs ci E )R+ associated with these points in the Euclidean 

three-dimensional space ?R3 , find the location of a three-dimensional single convex 

polyhedral shape, such that the total cost of the expropriated points is minimum. 4' 

This problem is directly applicable in material cutting systems. In non

destructive material inspection, a solid material can be investigated by using a probe 

transmitting sound waves into the material and accumulating these waves back. Then, 

the locations of fault points such as cracks and air chinks in the material can be spot

ted in terms of point coordinates in lR3 . Thus, the TDECS problem is applicable to 

finding the location of a regular convex polyhedral shape that has to be cut out from 

a solid material with a minimum number of fault points. 

In particular, the formulation of TDECS calls for a generalization of the proce

dure described for SPECS in Section 6.2 to three dimensions. For generating the for

mulations of TDECS, we define the convex polyhedral shape as an intersection of a set 
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of half-spaces. Consider a bounded three-dimensional feasible location space ~, and 

let i,j and k be three points with known locations (xii,X2i,x3i), (xij,X2j,X3j) and 

(xik, x 2k, x 3k) in this space, respectively. A plane passing through these three points 

is a set of points ( x~, x~, x~) satisfying the following determinant equation: 

I I I 
Xi - Xii X2 - X2i X3 - X3i 

=0. (149)Xij - Xii X2j - X2i X3j - X3i 

Xlk - Xii X2k - X2i X3k - X3i 

Such a plane will define two closed half-spaces denoted by c:1;k and c;0k· These 

half-spaces are given as follows: 

X~ - Xii X2 
I 

- X2i X3 
I 

- X3i 


c;+  ( I I I ) (150)Xi, X2, X3 E ~: Xij - Xii X2j - X2i X3j - X3i ?: 0 

Xik - Xii X2k - X2i X3k - X3i 

ijk 

and 

X~ - Xii X2
I 

- X2i X3 
I 

- X3i 

( I I I) ::; 0 (151)Xi,X2,X3 E ~: Xij - Xii X2j - X2i X3j - X3ic:0k = 

X1k - Xii X2k - X2i X3k - X3i 

Therefore, using the separation property illustrated in Lemma 1, a convex 

polyhedral shape can be represented as a closed convex subset of ~. Similarly to 

the procedure described in Section 5.2, we define a convex polyhedral shape having 

m faces as an intersection of m half-spaces. These half-spaces are given by means 

of a collection of plane inequalities which are constructed by using the vertices of 
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the convex polyhedral shape. Now we demonstrate the construction for the problem 

formulation of a regular tetrahedron by using a simple five-step precedure similar to 

the one introduced in Section 5.2. The problem formulation for any particular convex 

polyhedral shape can be generated by following the same procedure. 

.A-t-----r---.,.-------=,,.._-.. x1 

,, 
...... -.... 

l 

v3 

Figure 50. A tetrahedron and its vertices 

Step 1. (Finding the relative locations of the vertices of the shape) 

Consider the tetrahedron illustrated in Figure 50. Let the location of this 

tetrahedron be (x1 , x2 , x3 ), and let the length of its edges be l. We can write the 

relative locations of the vertices Vi, Vz, V3 and Vi of this tetrahedron, in terms of shape 

location as follows: Vi = (x1 - l/2, x 2 , X3 - lJ3/6), Vz = (x1 , x 2 , x 3 + ZJ3/3), Vi = 

(x1 + l/2, x2, X3 - ZJ3/6), and Vi= (x1, x2 + Z./2/J3, x 3 ). 
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;;24 ={(x~, x;, x~) : 

~ m-;24 ~ 0} 

Figure 51. Underlying half-spaces of the tetrahedron 
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Step 2. (Generating the plane equations) 

Using the relative locations of the vertices, we now generate the equations 

for the planes passing through the edges of the shape. These planes are shown as 

shaded areas in Figure 51. Denote the equations of these planes by wijk, and let 

(x~, x~, x~) denote an arbitrary point on the corresponding plane equation. To start 

with w 124 , we write: 

x'1 - (x1 - l/2) x~ - (x3 - l./3/6) 

W124 := X1 - (x1 - l/2) (x3 + l./3/3) - (x3 - l./3/6) = 0, 

X3 - (x3 - l./3/6) 

which is equal to 

X~ - X1 + l/2 X~ - X3 + l./3/6 

W124 := l/2 0 l./3/2 = 0. 

l/2 lV'2/./3 l./3/6 

Upon opening the determinant we get w 124 = (x'1 - x 1 + l/2) · [(O · Z./3/6) 

(ZV'2/./3. l./3/2)] - (x~ - X2). [(l/2. l./3/6) - (l/2. l./3/2)] + (x~ - X3 + l./3/6). 

[(l/2 · lvf2/./3) - (l/2 · O)] = 0. 

After further simplification, the plane equation w 124 is given by 
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Continuing with the same procedure, we define remaining plane equations as 

follows: 

(153) 

(154) 

(155) 

Step 3. (Generating the inequalities assisting the coverage decision) 

If a fixed point i located at (a 1i, a2i, a3i) is covered by the tetrahedron, when we 

substitute the point location ( a1i, a2i, a3i) for (x~, x;, x~) in plane equations (152-155), 

the following inequalities should hold: 

(156) 

(157) 

(158) 

(159) 

This is because the coverage space of the tetrahedron is the intersection of 

half-spaces ~124 = {(x~,x;,x~): LV124::; O}, ~234 = {(x~,x;,x~): iv234::; O}, ~t34 = 

{(x~,x;,x~): LV134 ~ O}, and ~t23 = {(x~,x;,x~): iv123 ~ O}, as shown in Figure 51. 

Step 4. (Generating the covering constraints) 

First we define the binary variables assisting the covering decision. Let, yf = 

1 if (156) holds for point i, and 0 otherwise; y[ = 1 if (157) holds for point i, and 0 
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otherwise; yf = 1 if (158) holds for point i, and 0 otherwise; yf = 1 if (159) holds for 

point i, and 0 otherwise. Then, we define the covering constraints as follows: 

a2i - X2 ~ (1- yf) · (-M). (163) 

When a fixed point i falls into the intersection of half-spaces <;124 , c;-234 , c;t34 and 

c;t23 , then the binary variables y}, YI, yf and yf should all be equal to 1. Therefore, 

we add the constraint 

Yt + Yi + Yf + y'f :::; 3 + Yi (164) 

where Yi = 1 if the fixed point i is covered by the tetrahedron, and 0 otherwise. 

Step 5. (Generating the inlusion, integrality and non-negativity constraints) 

In addition to the lower and upper bounds introduced for the planar case in 

Section 5.2, we let Lx3 and ux3 be the upper and lower bounds, respectively, for 

feasible shape locations along the X 3 dimension. It follows that the location space is 

X3 = Ux 3 • Thus, the inclusion constraint set can be constructed as follows: 

175 




Ozan QAKIR DeGroote School of Business 

X1 - l/2 2:: LXl (165) 

X1 +l/2 ~ UXl (166) 

x 2_> LX2 (167) 

X2 + lv'2/v13 ~ UX2 (168) 

x3 - zv13/6 2:: Lx3 (169) 

X3 - lv13/3 ~ UX3 
. (170) 

The integrality and non-negativity constraints are straightforward and given 

by the following: 

yf, YI, yf, y'f, Yi E{O,l} (171) 

(172) 

The formulation of TDECS can now be stated as follows: 

(TVt:CS) mm { t c; · y, : s.t. (160 - 164, 171) 'o'i; ( 165 - 170, 172)} . (173) 
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AppendixD 
Planar maximal covering problem with 
non-rigid rectangular facilities 

In this appendix, we provide a formulation for the planar maximal covering problem 

with non-rigid rectangular facilities. A formal statement of this problem is as follows. 

Formal statement of the problem P MNR. Given N fixed points indexed 

by i and the weights Wi E 31+ associated with these points in the Euclidean plane 

312 , find the location of a (the K) non-rigid rectangular facility(ies), such that the 

total weight covered is maximum. • 

Similarly to the procedure described in Section 6.2, we can generate the for

mulation for P MNR by substituting the objective function of the program (13) with 

its diametric opposite 

N 

max LWi. Zi, (174) 
i=l 

and replacing the constraint set (5) with the following set of constraints: 

_ 1 . (z11 + z12 + z21 + z22) > z· Vi. (175)4 i i i i -· 

Observe that, when the objective function of P£NR is substituted with its 

diametric opposite (174), the constraint set (5) becomes redundant. To illustrate this, 

consider the vector z = (zif = (1, ... , lf. Clearly, this vector is a feasible solution 

with an objective function value of L
N 

wi, because the optimization direction is to 
i=l 

maximize in (174). In this case, note that constraint set (5) is not binding because, 
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for any possible values of zf1, z}2, zf1 and zf2 we have: 

zll + z12 + z21 + z22 < 4 Vi. (176)t i i i 

Therefore, regardless the input, if we use the constraint set (5) we will obtain 

the solution L
N 

wi. Recall from Section 4.2.1 that, the rule for implementing coverage 
i=l 

is given by the following: 

If zf1 =1, zf2 = 1, z[1 =1, and z[2 = 1, then zi = 1. (177) 

Accordingly, the P MNR formulation can be stated as follows: 

(PMNR) max (1-4,175,12) Vi; (6-11)}. (178){t,w,.z,: s.t. 
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