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Abstract 

Bayesian filtering refers to the process of sequentially estimating the current state 

of a complex dynamic system from noisy partial measurements using Bayes' rule. 

This thesis considers Bayesian filtering as applied to an important class of state 

estimation problems, which is describable by a discrete-time nonlinear state-space 

model with additive Gaussian noise. It is known that the conditional probability 

density of the state given the measurement history or simply the posterior density 

contains all information about the state. For nonlinear systems, the posterior density 

cannot be described by a finite number of sufficient statistics, and an approximation 

must be made instead. 

The approximation of the posterior density is a challenging problem that has 

engaged many researchers for over four decades. Their work has resulted in a variety 

of approximate Bayesian filters . Unfortunately, the existing filters suffer from possible 

divergence, or the curse of dimensionality, or both, and it is doubtful that a single 

filter exists that would be considered effective for applications ranging from low to 

high dimensions. The challenge ahead of us therefore is to derive an approximate 

nonlinear Bayesian filter, which is theoretically motivated, reasonably accurate, and 

easily extendable to a wide range of applications at a minimal computational cost. 
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In this thesis, a new approximate Bayesian filter is derived for discrete-time non­

linear filtering problems, which is named the cubature Kalman fil,ter. To develop this 

filter, it is assumed that the predictive density of the joint state-measurement random 

variable is Gaussian. In this way, the optimal Bayesian filter reduces to the problem 

of how to compute various multi-dimensional Gaussian-weighted moment integrals. 

To numerically compute these integrals, a third-degree spherical-radial cubature rule 

is proposed. This cubature rule entails a set of cubature points scaling linearly with 

the state-vector dimension. The cubature Kalman filter therefore provides an efficient 

solution even for high-dimensional nonlinear filtering problems. More remarkably, the 

cubature Kalman filter is the closest known approximate filter in the sense of com­

pletely preserving second-order information due to the maximum entropy principle. 

For the purpose of mitigating divergence, and improving numerical accuracy in sys­

tems where there are apparent computer roundoff difficulties, the cubature Kalman 

filter is reformulated to propagate the square roots of the error-covariance matrices. 

The formulation of the (square-root) cubature Kalman filter is validated through 

three different numerical experiments, namely, tracking a maneuvering ship, super­

vised training of recurrent neural networks, and model-based signal detection and 

enhancement. All three experiments clearly indicate that this powerful new filter is 

superior to other existing nonlinear filters. 
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Chapter 1 

Introduction 

1.1 Problem Statement 

The term 'filtering' is commonly used to refer to the process of estimating the target 

signal from a noisy received signal in some 'optimal' error criteria. Optimal filtering 

has been a focus of research in signal processing and control since the pioneering 

works of Kolmogorov [63] and Wiener [124] over half a century ago. In this thesis, 

we specifically consider Bayesian filtering as applied to state estimation problems 

described by discrete-time nonlinear dynamic systems with additive Gaussian noise. 

Here the term 'state' is typically used to describe the 'physical state' of a dynamic 

system.1 

To fix ideas, let us consider a GPS (Global Positioning System) receiver mounted in 

a car. The GPS receiver is equipped to estimate the state vector components, namely, 

the position and velocity of the car. To illustrate the state-estimation mechanism 

1 The notion of 'state' is by no means confined to the physical state of a dynamic system. It is 
applicable to biological systems, economic systems, social systems, and others. 
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inside the GPS receiver, we write the motion equation describing how the state evolves 

in time as 

(state)k ( (non) linear function of state) k-l + (process noise )k_1 , (1.1) 

where k is the time index indicating the value at k; the noise term is supposed to 

account for random perturbations due to the car 's motion. The GPS receiver receives 

noisy measurements available in the form of a GPS signal, which typically contains 

the time-stamped locations of a set of satellites. Hence, we write another equation 

relating the temporally evolving state to the measurements as 

(measurement) k ( (non) linear function of state) k + (measurement noise )k. 

(1.2) 

Here the noise terms in (1.1) and (1.2) are assumed to be known up to second-order 

statistics. 

For this scenario, we loosely define 'filtering ' as the problem of estimating the 

current state of the car in an 'optimal' and consistent fashion as new GPS signals 

arrive sequentially in time. 

The first landmark contribution to optimal filtering in discrete time was made by 

R. E. Kalman [62]. He formulated the recursive filtering solution to linear Gaussian 

problems using a state-space model similar to (1.1)-(1.2) . Unfortunately, when the 

restricted assumptions of linearity and Gaussianity are violated, the Kalman filter fails 

to work. In real-world situations, however, dynamic systems are often nonlinear. Such 

nonlinear systems arise in many diverse applications from macroscopic ion channel 

2 
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kinetic problems [83] to navigation and control of space capsules [74]. 

In 1964, Ho and Lee formulated a general stochastic filtering problem from a 

Bayesian estimation perspective, and derived a conceptual closed-form solution [47]. 

In their paper, they proved that the conditional probability density of the current state 

given the measurement history, or simply the posterior density, provides a complete 

statistical description of that state. From the posterior density, we can calculate any 

'optimal' estimate of the state. In the sequential Bayesian filtering paradigm, the 

Bayesian filter sequentially updates the posterior density by acquiring information 

from newly arrived measurements. Ho and Lee went on to prove that the Kalman 

filter is a special case of a more generic Bayesian estimator. 

For nonlinear systems, the posterior density cannot be described by a finite num­

ber of sufficient statistics, and we have to be content with an approximate filtering 

solution. Approximation of the Bayesian filter has engaged many researchers for over 

four decades, thereby coming up with a variety of solutions from the extended Kalman 

filter to particle filters. Unfortunately, the existing filters suffer from the curse of di­

mensionality, possible divergence or both, and it is doubtful that a single filter exists 

that would be considered effective for applications of both low and high dimensions. 

The challenge ahead of us therefore is to derive an approximate nonlinear Bayesian 

filter, which is theoretically motivated, reasonably accurate, and easily extendable to 

a wide range of applications at minimal computational cost. 

1.2 Contributions 

The main contribution of this thesis lies in the theoretical development of a new 

nonlinear Bayesian filter. The new filter is named the cubature Kalman filter (CKF) 

3 
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[4] . In order to develop the CKF, the following two important steps are taken: 

• 	The optimal Bayesian filter is reduced to the problem of how to compute multi­

dimensional Gaussian-weighted integrals. This is accomplished by assuming 

that the predictive density of the joint state-measurement vector is Gaussian 

distributed. 

• In order to numerically compute these integrals, a third-degree spherical-radial 

cubature rule is derived by combining a third-degree spherical rule and a system­

atically modified version of the first-degree generalized Gauss-Laguerre quadra­

ture rule. 

The CKF includes a number of striking properties: 

• 	The computational cost of the CKF at each recursion cycle is a linear function 

of the number of function evaluations. The CKF therefore, provides an efficient 

solution even for high-dimensional nonlinear filtering problems. 

• 	 The CKF is derivative free. Hence, it can be applied even for some physics-based 

system models that include dead zones and look-up tables. 

• 	 Most remarkably, given the second-order statistics of the state and innovations 

processes, due to the maximum entropy principle, the CKF is the closest known 

approximation to the Bayesian filter that could be designed for a nonlinear Gaus­

sian filtering problem. 

Since the CKF committed to digital hardware may exhibit a divergent behavior or 

even complete failure due to numerical imprecision, a square-root version of the CKF 
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is also derived. The computational cost of this square-root formulation is of the same 

order as that of the CKF. 

The formulation of this new filter is validated through a number of challenging 

computer experiments. Combined with the square-root formulation, the properties 

outlined above make the CKF an attractive choice for diverse applications. In par­

ticular, it is proven from the experimental results that the CKF may be the method 

of choice for training recurrent neural networks. 

1.3 Organization of the Thesis 

This thesis is organized as follows: 

• 	 Chapter 2 reviews the literature on discrete-time nonlinear filters. Specifi­

cally, based on computational aspects, nonlinear filters are discussed under two 

broad classes, namely, moment-matching algorithms and innovations-based al­

gorithms. 

• In Chapter 3, two different approaches to numerical integration- Product Rules, 

and Non-Product Rules- are briefly reviewed. An efficient non-product third­

degree cubature rule for Gaussian-weighted integrals is finally derived. 

• In Chapter 4, the cubature Kalman filter is developed for discrete-time nonlinear 

filtering problems using three extremely powerful ideas: (i) Bayes' rule, (ii) 

Statistical properties of the innovations process (iii) The cubature rule presented 

in Chapter 3. The computational cost of the CKF is computed in terms of flops. 

• 	 In Chapter 5, the square-root version of the CKF is developed. In order to ac­

commodate the square-roots of the error covariances, the CKF is reformulated 
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using matrix factorization and the least-squares method. The additional com­

putational cost incurred due to this square-root formulation is also computed. 

• 	 Chapter 6 evaluates the performance of the square-root cubature Kalman filter 

experimentally when applied to three challenging problems. They are (i) Track­

ing a maneuvering ship, (ii) Supervised training of recurrent neural networks 

for dynamic reconstruction of a chaotic time series, and (iii) Model-based signal 

detection and enhancement . 

• 	 Chapter 7 is divided into two parts: In the first part , a number of key attributes 

of the CKF are summarized. The second part outlines a few interesting research 

topics we would like to treat in future. 

• 	 Finally, three appendices are added to this thesis: 

- In Appendix A, the CKF developed for pure discrete-time problems is 

extended to filtering problems whose state-space model is described by a 

continuous-time process equation and a discrete-time measurement equa­

tion. 

- Appendix B presents the unscented filtering approach as it shares a number 

of common properties with the CKF. 

- In Appendix C, the theory of particle filtering is derived from a moment­

matching perspective. 

1.4 Related Publications 

Many important results reported in this thesis can be found in the following articles: 
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• 	I. Arasaratnam and S. Haykin, "Cubature Kalman Filtering: A Powerful Tool 

for Aerospace Applications," accepted, Int'l Radar Conj., Bordeaux, France, 

Oct. 2009. 

• 	I. Arasaratnam and S. Haykin, "Cubature Kalman Filters," forthcoming IEEE 

Trans. Automatic Control, vol. 54, June 2009. 

• I. Arasaratnam and S. Haykin, "Nonlinear Bayesian Filters for Training Recur­

rent Neural Networks," Book Ch., Advances in Artificial Intelligence, Springer: 

Berlin/Heidelberg, A. Gelbukh and E. Morales, Eds., pp. 12-33, 2008. 

• I. 	Arasaratnam and S. Haykin, "Square-Root Quadrature Kalman Filtering,'' 

IEEE Trans. Signal Processing, vol. 56, no. 6, pp. 2589-2593, June 2008. 

• I. 	Arasaratnam, S. Haykin and R. Elliott, "Discrete-Time Nonlinear Filtering 

Algorithms Using Gauss-Hermite Quadrature," Proc. IEEE, vol. 95, no. 5, pp. 

953-977, May 2007. 
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Chapter 2 

Literature Review 

This chapter reviews a variety of existing solutions to filtering problems describable by 

a discrete-time nonlinear state-space model with additive Gaussian noise. Although 

it is understood from Figure 2.1 that this survey focuses only on the solutions of a 

subset of quite general and complex dynamic state-space models, many important 

real-world problems fall within this considered subset. For example, despite the fact 

that time is continuous in nature, we are interested in finding discrete-time filtering 

solutions for the following three main reasons: 

• 	In many cases, we are provided with a sampled version of analog (continuous) 

processes. Moreover, we may encounter a sequence of events occurring naturally 

in discrete time, e.g., random-walk problems of statistics. 

• 	 The measurement models are commonly available in discrete time because sen­

sors are digital devices. Sometimes, the discrete-time measurement models are 

unintentional. For example, the satellite navigation system provides GPS sig­

nals with a single position fix only as each satellite passes. Thus, the GPS 
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Continuous Discrete 

Linear 

~ ~.~.... 
(..., 	Gaussian ) Non-Gaussian 

Figure 2.1: Setting of a generic state-space model; 'Equations' denote the state evo­
lution function in (1.1), and the state-to-measurement mapping function in (1.2) 
without noise terms; circles denote the focus of this thesis 

receiver can estimate its position only at discrete points in time. 

• 	 Finally, irrespective of the temporal description of a state-space model we tend 

to solve filtering problems using digital computers. 

2.1 Optimal Bayesian Filter 

This section presents a theoretically relevant discrete-time optimal Bayesian filter. 

Before setting the stage for the derivation of the Bayesian filter, consider the problem 

9 
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of sequentially estimating the state xk E ~n,, when it evolves in time according to the 

equation 

(2.1) 


and is related to noisy measurements via 

(2.2) 


where 

• 	 Zk E ~n is the measurement 

• 	 q k-l and rk are uncorrelated process and measurement Gaussian noise sequences 

with zero means and covariances Qk-l and Rk , respectively 

• 	 Uk E ~mis a known input at time k; it may be derived from a compensator as 

shown in Figure 2.2. 

The state-space model of this filtering problem embodies a pair of equations, 

namely, the process equation (2.1), and the measurement equation (2 .2). The pro­

cess equation describes the temporal evolution of the hidden state, whereas the 

measurement equation maps the hidden state to the measurements. The objec­

tive of the optimal filter is to recursively compute the posterior density p(xklDk), 

where the history of input-measurement pairs available up to time k is denoted by 

Dk = { (zi, ui), i = 1, 2, ... k}. The posterior density provides a complete statistical 

10 
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Process Equation 

A Measurement Equation
( 

Xk· (
~ ' 
f(., .) 

.._-~-1 Control Law I~ Observer 14.._. 

Uk Xkf111·
\._....____ ___....._) 

'V" 
Compensator 

Figure 2.2: Signal-flow diagram of a dynamic state-space model driven by the feedback 
control input. The observer may employ a Bayesian filter. The label z-1 denotes the 
unit delay. 

description of the state at that time, and is computed in two basic update steps, 

namely, the time update, and the measurement update. 

2.1.1 Time update 

In this step, using Kolmogorov's forward equation [51], the old posterior density of 

the state is updated before receiving a new measurement. This operation finally leads 

to the predictive density of the current state 

r p(xk, Xk-1 IDk-1)dxk-l}[(nx 

{ p(xk-1IDk-1)p(xklxk-1, uk_i)dxk-1, (2.3) 
J.J/i'.n:c 

h(., .) 
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where p(xk-1IDk-l) is the old posterior density at time (k-1), and the state-transition 

density p(xklxk_1,uk-1) is obtained from (2 .1). 

2.1.2 Measurement Update 

Upon the receipt of a new measurement zk, using Bayes ' rule, the predictive density 

is updated and the posterior density of the current state is obtained as follows: 

p(xklDk-1, Uk, zk) 

1 
-p(xkl Dk-1 , uk)p(zklxk , uk) , (2.4)
Ck 

where the likelihood function p(zklxk , uk) is obtained from (2.2) and the normalizing 

constant 

Ck p(zklDk-1 , u k) 

{ p(xklDk-1, uk)p(zklxk, uk)dxk. 
} fR_nx 

To develop a recursive relationship between predictive and posterior densities in (2.4) , 

the natural condition of control, which is described next, must be assumed. 

Natural Condition of Control 

The natural condition of control states that the control inputs have to satisfy the 

relationship [92] 

12 
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This condition therefore suggests that Dk-l has sufficient information to generate the 

input uk as shown in Figure 2.2. To be more specific, the input uk can be generated 

using xklk-l· Under this condition, it therefore holds that 

(2.5) 


The natural condition of control is fulfilled when the control inputs are precom­

puted as in the case of an open-loop control system or a feedback control system as 

depicted in Figure 2.2. However, it may not be fulfilled in the situation where an 

observer and a controller function independently. For example, it is not fulfilled in 

a parameter-tracking problem where the controller is aware of the parameter more 

accurately than what the observer is estimating. However, throughout this thesis, we 

assume that the natural condition of control is fulfilled. 

Now, let us return to the recursive solution to the filtering problem. Substituting 

(2.5) into (2.4) yields 

(2.6) 


as desired, where the 'new' normalizing constant 

(2.7) 


The recursive solution of the optimal Bayesian filter given by (2.3), (2.6) and (2.7) 

provides a unified approach for nonlinear filtering problems conceptually. From the 

posterior density (2.6), any statistic regarding xk can be computed. For example, we 

13 
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can provide an optimal estimate and the associated covariance (variance) according 

to some chosen criterion. 

The signal-flow diagram in Figure 2.3 illustrates the interplay of various densities 

to produce a new posterior density from the old posterior density at each recursion 

cycle. This cycle is repeated to estimate the new state at time ( k +1). Unfortunately, 

in most cases, the posterior density is intractable for the following two reasons: 

• 	 For a multi-dimensional system, we must compute multi-dimensional integrals 

(2.3) and (2. 7). 

• Even after these integrals are computed, it 	may be difficult to propagate the 

posterior density through subsequent time steps. The reason is that there is 

no guarantee that the new posterior will remain closed with a finite summary 

statistic expressed in terms of (quasi-)moments. 

Consequently, intense research in the past has resulted in a number of suboptimal 

solutions to nonlinear filtering problems. These suboptimal filtering solutions to the 

problem of recursively finding the posterior density may be classified in numerous 

ways. However , it is the measurements which provide new information for the pur­

pose of updating the state. It is therefore reasonable to classify nonlinear filters based 

on how they process these measurements. In this chapter, all known nonlinear filters 

are accommodated under one of two broad classes of algorithms: moment-matching 

algorithms processing the raw measurements, and innovations-based algorithms pro­

cessing the whitened measurements. 

14 
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Time Update Measurement Update 
.A__) ( ___A ___, 

( 
State Transition Likelihood 

Old Posterior New Posterior 

Figure 2.3: Optimal recursive Bayesian filter. The posterior density from the previous 
time step becomes our prior in the current time step in each recursion cycle. 

2.2 Moment-Matching Algorithms 

The basic idea of moment-matching algorithms is to represent both the predictive and 

posterior densities in some form a priori (e.g., Gaussian, Gaussian-sums, orthogonal 

polynomials such as the Edge-worth series, spline functions, point-masses, particles, 

etc.), thereby setting the stage to recursively find its parameters or moments based 

on the two basic update equations (2.3) and (2.6). Of course, these methods directly 

use the raw measurements due to the presence of the likelihood function in (2.6). To 

elaborate on this idea, the classical approach introduced by Kushner in the late 1960s 

[67] is considered. Specifically, in [67, 68], Kushner approximates these two densities 

15 
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as Gaussian. Under the Gaussian approximation, the moment-matching algorithm 

completes its recursion cycle in the two basic update steps described earlier. 

Time Update 

In this first step, the filter computes the predicted state or the mean of the predictive 

density as 

(2.8) 


Substituting (2.1) into (2.8) yields 

(2.9) 


Because vk-l is assumed to have zero mean, and uncorrelated with the past measure­

ments, we get 

IE[f(xk-1 , Uk-i)IDk-1] 

r f(xk-1 1 Uk-1)P(Xk-1ID k-1)dxk-lJanx 
r f (Xk-1 1 Uk-1)N(xk-1 ;Xk-l jk-1 1 Pk-llk-i)dxk-11 (2.10)Janx 
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where N(., .) is the conventional symbol for a Gaussian density. Similarly, the error 

covariance is given by 

Pklk-1 = JE[(xk - xklk-1)(xk - xklk-i)TIDk-iJ 

= r f (Xk-1, Uk-1)fT(xk-1, Uk-1)N(xk-l; Xk-llk-1 l pk-llk-i)dxk-l}If(nx 

- xklk-i:xiik-1 + Qk-1· (2.11) 

Measurement Update 

In this second step, by applying the measurement update equations (2.6) and (2.7), 

the moment-matching filter computes the mean and covariance of the Gaussian pos­

terior density as 

_.!._ { xkN(zk; h(xk, uk), Rk)N(xk; xklk-1, Pklk-1)dxk, (2.12) 
Ck }Rnx 

_.!._ r (xk - Xklk)(xk - xklk)TN(zk; h(xk, Uk), Rk) 
Ck )Rnx 

(2.13) 


where the normalizing constant 

(2.14) 

The set of integrals entailing (2.10), (2.11), (2.12), (2.13) and (2.14) can be approx­

imated by numerical integration methods. For example, the Gauss-Hermite quadra­

ture has been proposed in [68, 80, 120], whereas the Monte Carlo integration technique 

is employed in the so-called Gaussian particle filter [35]. In so doing, the resulting 
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moment-matching algorithm is expected to outperform the widely used EKF because it 

does not rely on a direct linearization of both the process and measurement functions. 

In some nonlinear filtering problems, the conditional densities can be multi-modal 

or heavily skewed, and can no longer be approximated by a single Gaussian. To 

alleviate the errors due to the Gaussian assumption, the generalized Edgeworth series 

has been exploited to represent a wide class of densities in the literature [17, 22, 117, 

119]. The generalized Edgeworth series consists of two multiplicative functions: (i) a 

Gaussian density (ii) a set of Hermite polynomials that are orthogonal to each other. 

Hence the posterior density can be characterized by quasi moments. The recursive 

relations can be established for a finite number of these quasi-moments. However, the 

main issue here is that a large number of terms are required to reasonably approximate 

a distinctly non-Gaussian density. It has also been observed that the behavior of the 

estimator is highly sensitive to the truncation of the infinite series [22, 118]. 

To this end, filtering solutions for the problem of how one could approximately 

represent the predictive and posterior densities using a limited amount of summary 

statistics have been discussed. At the extreme end of the moment-matching case, the 

following question arises: Is it possible to propagate the whole posterior density, which 

can possibly be described by an infinite number of moments, recursively? Surprisingly, 

the answer to this question is positive. 

The simplest answer is known as the point-mass method. In the point-mass 

method, the densities are approximated by point masses located on a rectangular 

grid [13], Ch. 5 in [31]. Hence, the integrals for recursive Bayesian estimation can 

each be evaluated numerically as a discrete nonlinear convolution. 
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Another approach in [65] has proposed piecewise constant functions to approxi­

mately represent densities. This method is more sophisticated, and incurs less compu­

tational cost than the point mass method. More sophisticated interpolation schemes, 

such as different spline approximations, have also been investigated in the literature 

[14, 27, 123]. 

Finally, under this research direction, a relatively new class of algorithms called 

particle filters is discussed. 1 

Particle Filters 

Particle filters are also suboptimal filters. Essentially, particle filtering without re­

sampling embraces the idea of Monte Carlo integration [31, 40, 99]. Particle filters use 

a large number of weighted samples called particles to approximately represent the 

underlying posterior density. Since the basic form of this plain Monte Carlo estima­

tion degenerates over time, a clever remedy in the form of resampling was introduced 

in the seminal paper by Gordon et al. [40]. Particle filters offer the following benefits: 

• 	The basic theory of particle filtering is simple 

• 	 Coding all steps but resampling is relatively easy 

• 	 The greatest strength of particle filters lies in their flexibility- they can be 

applied to nonlinear filtering problems with noise terms being (non)additive 

and (non-)Gaussian. 

Particle filters have gained popularity in many challenging and complicated systems, 

which commonly arise in econometrics, robotics, and financial mathematics. However, 

1The reader may consult Appendix C for a detailed exposition of how particle filters fit into the 
moment-matching approach. 
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they suffer from the following serious limitations: 

• 	 Particle filters may require an enormous number of particles in the following 

contexts: 

- For filtering problems with a relatively high state-space dimension. 

- When more accurate measurements are available-- This leads to a highly-

peaked likelihood function that may not have a sufficient overlap with the 

predictive density. In order to mitigate the tendency of sampling parti­

cles from non-informative volume of the state space, more sophisticated 

sampling strategies such as Markov Chain Monte Carlo sampling may be 

required. 

• 	The performance of particle filters crucially depends on the choice of the so­

called proposal density. The optimal proposal density is the true posterior den­

sity, and is therefore unavailable. However, particle filters manage to perform 

well with suboptimal proposal densities [99]. 

• 	The efficiency of particle filters is significantly reduced by 

- random sampling and, 


- resampling. 


• Particle filters are not immune to the curse of dimensiona/,ity, a term coined 

by Bellman five decades ago [12]- It is well known that the variance of the 

estimation error produced by a brute-force Monte Carlo sampling method that 
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numerically computes the integral fx f (x)dP(x) is given by 

where 

- c is the proportionality constant. 


- N is the number of particles drawn from the probability density P(x). 


- cr2 is the variance of the random variable y = f(x). 


It is however, argued in [24] that from the perspective of a particle filter that 

uses the Monte Carlo sampling method, c is not a constant; rather it is a variable 

that strongly depends on both time and the state-vector dimension. 

• Finally, there is 	no rigorous guideline for choosing the 'optimal' number of 

particles. Of course, each step of the particle filtering algorithm can be refined 

for improved performance depending on the nature of a problem and experience 

of a designer. 

Despite these problems, an intense research activity in the field of particle filter­

ing has, over more than a decade, resulted in numerous improvements in both the 

statistical and computational efficiency (see [15] and the references therein). As a 

final remark, it is worth mentioning a quite common practical rule: Only when a 

kit of analytical tools do not suffice for the problem at hand are the simulation-based 

methods necessary. The bottom line: Particle filters may be an attractive choice only 

when all sorts of analytical filters, some of which are described next, fail. 

21 




Ph.D. Thesis - Ienkaran Arasaratnam McMaster - Electrical Engineering 

2.3 Innovations-Based Algorithms 

Before going into the details of innovations-based algorithms, this section starts with 

the definition of ' innovations' . The innovation at time k, denoted by €k , is obtained 

by subtracting the predicted measurement given the past measurement history Dk-1 

from the current measurement zk: 

(2 .15) 


From (2.15) , it is understood that €k amounts to new information about the state that 

does not exist in Dk-l· Unlike moment-matching algorithms, which process the raw 

measurements, innovations-based algorithms are designed to process the innovations. 

Suppose that the predictive density of the joint state-measurement vector is as­

sumed to be Gaussian. In this case, all other conditional densities, namely, the 

predictive state density, the innovations density and the posterior density, become 

Gaussian. This implies that all conditional densities are closed in each recursion 

cycle, similarly to the Kalman filter , which nicely fits into innovations-based algo­

rithms [41]. It is therefore, not surprising that the nonlinear filters embracing the 

innovations approach include simple matrix algebraic operations similar to those of 

the linear Kalman filter. The nonlinear filters exemplified by the extended Kalman 

filter and its variants [51], unscented Kalman filter [52], and quadrature Kalman fil­

ter [49] , fall under this second category of algorithms. These filters differ from each 

other in the way in which the means and covariances of the conditional densities are 

computed. Curiously, the derivation of any one of these existing innovations-based 

nonlinear filters from the innovations perspective is absent from the literature. A 
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more detailed derivation of this powerful approach is deferred to Chapter 4. 

Extended Kalman Filters 

The extended Kalman filter (EKF) has been the workhorse for nonlinear filtering 

problems in signal processing [9, 81, 82, 100], control [29, 110, 116] and optimization 

[11, 95] for more than four decades. The EKF linearizes the nonlinear process and 

measurement functions using the first-order Taylor series expansion evaluated at the 

current best estimate of the state. This suggests that Kalman's original theory can 

be adopted to nonlinear systems. Though the EKF is popular for its simplicity, it 

suffers from the following limitations: 

• 	 It quickly diverges in 'highly' nonlinear systems owing to its limited approxi­

mation capability. 

• 	 The EKF often yields an underestimated error covariance because it does not 

account for a prior covariance matrix in its analytical linearization approach. 

• Finally, its application is limited to differentiable functions only. 

To improve the EKF, two different attempts have been made in the past: 

• 	 The iterated EKF: The basic idea of the iterated EKF is to linearize the mea­

surement model around the updated state, rather than the predicted state [37]. 

This is achieved iteratively, and it involves the use of the current measurement. 

• 	 The second-order EKF: The basic idea of this algorithm is go beyond the first­

order term of the Taylor series expansion, and retain the second-order terms as 

well [8]. 
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The second-order EKF requires the computation of J acobians and Hessians, proce­

dures that are often numerically unstable, and computationally intensive. Particu­

larly, the Hessian turns out to be a three-dimensional matrix with its entries being 

second-order partial derivatives. In some systems, they do not even exist, e.g., models 

representing abruptly changing behavior. In practice, the second-order EKF is not 

commonly used, and higher order approximations are almost never used. 

As an analytical derivative-free alternative to the first-order EKF, the central­

difference Kalman filter was proposed in [101], and later extended to the second 

order as well as the corresponding square-root solution for numerical stability in [89]. 

The original derivation in [89] involves the approximation of a nonlinear function 

using Stirling's second-order interpolation formula, and closely follows the second-

order EKF theory. Of course, this second-order formula is identical to the second­

order Taylor expansion of the function about the latest state with the Jacobian and 

Hessian being replaced by central differences [49, 5].2 

Finally, under the innovations-based nonlinear filter family, two more members, 

namely, the quadrature Kalman filter and the unscented Kalman filter, are mentioned. 

The quadrature Kalman filter uses the Gauss-Hermite quadrature rule to numerically 

compute various Gaussian-weighted integrals arising in the Gaussian approximation 

to the nonlinear Bayesian filter [49]. The quadrature Kalman filter was derived from 

a statistical linear regression perspective, and expanded to facilitate its use in a non­

Gaussian environment in [7]. For improved numerical stability, a square-root solution 

was proposed in [6]. 

2N0rgaard et al. in [89] have named the central-difference Kalman filter the 'divided-difference 
filter'. This naming is a misnomer because the divided-difference method is fundamentally different 
from the central-difference method. The central-difference Kalman filter is also referred to as the 
'nprKF', where the prefix 'npr' stands for the initials of the three authors of [89], and the postfix 
'KF' stands for 'Kalman Filter'. 
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A detailed account of the unscented Kalman filter is presented in Appendix A, 

which compares the unscented Kalman filter, with the CKF studied in this thesis. 

So far, under the innovations class, a number of well-known algorithms based on 

the Gaussian assumption have been discussed. However, the posterior density result­

ing from nonlinear filtering may possibly be non-Gaussian with multiple modes. A 

complete statistical characterization requires more than the first two-order moments. 

As a systematic solution to represent the non-Gaussian posterior density, any one 

of the innovations-based filters can be generalized to approximate the posterior den­

sity as a mixture of Gaussians at the expense of increased computational complexity. 

The reason lies in the fact that any non-Gaussian density can arbitrarily closely be 

modeled by a Gaussian mixture [l]. A bank of filters running in parallel can be 

used to provide the state estimate as a weighted average of each filter estimate. The 

weights can be obtained from the innovations. However, the Gaussian mixture-based 

nonlinear filter suffers from the following two limitations: 

• 	 Growing-memory problem. The number of Gaussian components grows expo­

nentially when the filter propagates over time. For a manageable implementa­

tion, the Gaussian mixture reduction techniques can be utilized at the expense 

of a certain amount of information loss [125]. 

• 	 Degeneration. Remarkably, after a few time steps, all filter modules of the Gaus­

sian mixture filter may tend to concentrate on a relatively small state-space 

volume, similar to particle filtering without resampling. To avoid this undesir­

able situation, a systematic reinitialization may often be required. Finding a 

systematic solution to avoid this reinitialization step is truly challenging. 
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Summary 

This chapter presents the theory of the optimal Bayesian filter for an important class 

of state-estimation problems described by a discrete-time nonlinear state-space model 

with additive Gaussian noise. The Bayesian filter recursively propagates the posterior 

density, which embodies a complete statistical description of the current state. For 

nonlinear systems, however, the optimal posterior density is typically intractable, 

and an approximation must be made instead. A number of well-known approximate 

nonlinear filters are discussed with a special emphasis on their relative virtues and 

limitations. 
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Chapter 3 

Theory of Cubature Rules 

Consider a multi-dimensional weighted integral of the form 

I(f) = l f(x)w(x)dx, (3.1) 

where f(.) is some arbitrary function, ~ ~ ]Rn is the region of integration, and the 

known weighting function w(x) 2: 0 for all x E ~- For example, in a Gaussian­

weighted integral, w(x) is a Gaussian density and satisfies the nonnegativity condition 

in the entire region. Such integrals arise in many places, e.g., financial mathematics, 

computer graphics, etc. Unfortunately, they can seldom be computed analytically, 

especially in a multi-dimensional region. To compute them approximately, we seek 

numerical integration methods. The basic task of numerically computing the integral 

(3.1) is to find a set of points Xi, and weights wi that approximates the integral I(f) 

using a weighted sum of function evaluations: 

m 

I(f) ~ Lwif(Xi). (3.2) 
i=l 
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The methods used to find the weighted point set { x,;, wi} are often described as 

cubature rules. Cubature rules can be divided into product rules and non-product 

rules, as described in the sequel. 

3.1 Product Rules 

For the simplest one-dimensional case, that is n = 1, the quadrature rule may be 

used to numerically compute (3.1) [114, 111]. In the Bayesian filtering context, if the 

weighting function w(x) is in the form of a Gaussian density and the integrand f(x) 

is well approximated by a polynomial in x, then the Gauss-Hermite quadrature rule 

can be used to numerically compute the Gaussian-weighted integral [7]. 

The quadrature rule may be extended to compute multi-dimensional integrals by 

successively applying it in a tensor-product of one-dimensional integrals. For example, 

consider an m-point /dimension quadrature rule that is exact for polynomials of degree 

up to d. To numerically compute an n-dimensional integral, a grid of mn points is set 

up for function evaluations. The resulting product rule is exact for integrals whose 

integrands are monomials of degree up to d. The computational complexity of the 

product quadrature rule exponentially increases with n, and therefore suffers from 

the curse of dimensionality. In general, for n > 5, the product rule is not a reasonable 

choice to approximate integrals arising in the Bayesian filter. 
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3.2 Non-Product Rules 

To mitigate the curse of dimensionality associated with product rules, non-product 

integration rules for integrals may be applied. Non-product rules choose points di­

rectly from the domain of integration. Some of the well-known non-product rules 

are: 

• Randomized Monte Carlo methods [73] 

• Quasi-Monte Carlo methods [85, 70] 

• Lattice rules [107] 

• Sparse grids [106, 36, 38, 91] 

• Monomial-based cubature rules [115, 19] 

The randomized Monte Carlo methods evaluate the integral using a set of equally­

weighted sample points drawn randomly, whereas, in the quasi-Monte Carlo methods 

and lattice rules, the points are generated from a unit hyper-cube region using deter­

ministically defined mechanisms. On the other hand, the sparse grids based on the 

Smolyak formula, in principle, combine a quadrature (univariate) routine for high­

dimensional integrals; they detect important dimensions automatically, and place 

more grid points there. Although the non-product methods described so far are able 

to numerically compute a given integral with a prescribed accuracy, they do suffer 

from the curse of dimensionality to a certain extent. In particular, my work requires 

a numerical integration rule that 

• yields reasonable accuracy; 
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• requires a small number of function evaluations; and 

• is easily extendable to high dimensions. 

For this reason, monomial-based cubature rules are considered as a 'good' choice. 

3.2.1 Monomial-based Cubature Rules 

In mathematics, the term monomial means a product of powers of variables. If only a 

single variable x is considered, this means that any monomial is either 1 or xd, where 

d is a positive integer. If several variables are considered, say, Xi , x2 , and x3 , then 

each can individually be exponentiated so that the resulting monomial is of the form 

xf1 xg2 xg3
, where di , d2 , and d3 are nonnegative integers. Typically, a set of weighted 

cubature points is chosen so that the cubature rule is exact for a set of monomials of 

degree d or less, as shown by 

L 	 m 

&J(x)w(x )dx 	 L wi&J(xi), (3.3) 
i=i 

· 1 /1'1( ) - di d2 dn "th d · b • t• . t dwhere the monorrua ;;;r x - Xi x2 . .. xn wi 1 emg nonnega ive m egers an 

.L:7=i di ::; d. This suggests that higher the degree of the cubature rule, the more 

accurate its solution becomes. Moreover, the cubature rule is also exact for all linear 

combination of monomials of degree up to d as stated in the following proposition. 

Proposition 3.1: For a cubature rule to be exact for all linear combinations of 

monomials of degree up to d, it is sufficient and necessary that the cubature rule be 

exact for all monomials of degree up to d. 

Proof: Consider a function f : Rn --t JR that is spanned by a vector subspace 
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consisting of monomial basis functions { &l'J(x)}. Hence, we write 

~ 
f(x) = L ci&l'J(x), (3.4) 

j=l 

where {CJ} are some known coefficients; we have a number c:i1t)! of monomials of 

degree up to d in an n-dimensional space. 

Consider an integral of the form 

J(f) l f(x)w(x)dx. 

Using (3.4), we further simplify 

J(f) l (LcJ&l'J(x))w(x)dx 

= ~CJ 
J

l &l'J(x)w(x)dx. (3.5) 
J 

To numerically compute (3.5), we consider a cubature rule of the form 

m 

C(f) = L wif(xi)· 
i=l 

Using (3.4), we write 

m 

i=l j 

m 

LcJ( L:wi&l'J(Xi)). (3.6) 
j i=l 
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A comparison of (3.5) with (3.6) suggests that when the cubature rule is exact for 

{9l'j(x)}, then it also holds that J(f) = C(f), which proves the proposition. 

To find the unknowns of the cubature rule of degree d, {Jei,wi}, we solve a set 

of moment equations. However, solving the system of moment equations may be 

more tedious with increasing polynomial degree and/or dimension of the integration 

domain. For example, an m-point cubature rule entails m(n +1) unknown parameters 

from its points and weights. In general, a system of <:i~)! equations with respect to 

unknowns from distinct monomials of degree up to d may be formed. For the nonlinear 

system to have at least one solution (in this case, the system is said to be consistent), 

we must use at least as many unknowns as equations [19]. That is, m must be 

chosen to be m ;::: (~:i~~~! . Suppose that a cubature rule of degree three is needed 

when n = 20. In this case, we solve (22~i:i)! = 1771 nonlinear moment equations; the 

2resulting rule may consist of more than 85 (> <°;;)') weighted cubature points. 21

In order to reduce the size of the system of algebraically independent equations 

or equivalently the number of cubature points markedly, the invariant theory was 

proposed by Sobolev [108]. The reader may consult [19] and the references therein 

for a recent account of the invariant theory. The invariant theory discusses how to 

restrict the structure of a cubature rule by exploiting symmetries of the region of 

integration and the weighting function. For example, integration regions such as the 

unit hypercube, the unit hypersphere, and the unit simplex all exhibit some form of 

symmetry. Hence, it is reasonable to look for cubature rules sharing the same form 

of symmetry. For the case considered above (n = 20 and d = 3), using the invariant 

theory, a cubature rule consisting of 40(= 2n) cubature points can be constructed by 
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solving only a pair of moment equations as described in Section 3.3.2. 

3.3 	 Cubature Rules for Gaussian-Weighted Inte­

grals 

This section presents a methodology for constructing a cubature rule for integrals 

whose integrands are all of the form nonlinear functionx Gaussian. For the ease of 

computational manipulations, however, the focus is first confined to an integral of the 

form 

l(f) = { f(x)exp(-xTx)dx. 	 (3.7)
}Rn 

To numerically compute (3. 7), first, it is converted into a spherical-radial integration 

form. Subsequently, a third-degree spherical-radial rule is proposed. Later in this 

section, this spherical-radial cubature rule will be extended to numerically compute 

integrals whose weighting function is arbitrary Gaussian. 

3.3.1 	 Transformation 

The spherical-radial transformation involves a change of variables from the Cartesian 

vector x E Rn to the radius vector r, and the direction vector y as follows: Let 

x = ry with yTy = 1, so that xTx = r2 for r E [O, oo). Afterwards, the integral (3.7) 

can be rewritten in the spherical-radial coordinate system as 

I(f) = f
00 

{ f(ry)rn- 1exp(-r2 )da(y)dr, (3.8)
Jo Jun 
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where Un is the surface of the sphere defined by Un = {y E ~nl yTy = 1} and a(.) 

is the spherical surface measure or the area element on Un. We may thus write the 

radial integral 

(3.9) 


where S(r) is defined by the spherical integral with the unit weighting function w(y) = 

1: 

S(r) = { f(ry)da(y). 	 (3 .10) 
Jun 

The spherical and the radial integrals are numerically computed by the spherical 

cubature rule (Subsection 3.3.2) and the Gaussian quadrature rule (Subsection 3.3.3) , 

respectively. 

Before proceeding further , a number of notations and definitions are used in the 

following sections/derivations: 

• 	 A cubature rule is said to be fully symmetric if the following two conditions 

hold [79]: 

1. 	 x E !IJ implies y E !IJ, where y is any point obtainable from x by permu­

tations and/or sign changes of the coordinates of x. 

2. 	 w(x) = w(y) on the region !IJ. That is, all points in the fully symmetric 

set yield the same weight value. 

For example, in the one-dimensional space, a point x E ~ in the fully symmetric 

set implies that (-x) E ~and w(x) = w(-x). 
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• In a fully symmetric region, a point u 1 is called a generator if 

• 	 For brevity, ( n-r) zero coordinates are suppressed and the notation [u1, u2 , ..• Ur] 

is used to represent a complete fully symmetric set of points that can be ob­

tained by permutating and changing the sigrr of the generator u in all possible 

ways. Of course, the complete set entails (~~~!)! points when { ui} are all distinct. 

For example, [1] E JR2 represents the following set of points: 

Here, the generator is ( ~ ) . 

• 	The notation [u1,u2, ... ur]i is used to denote the i-th point from the set [u1, u2, ... ur]· 

3.3.2 Spherical Cubature Rule 

In this subsection, a third-degree spherical cubature rule is derived for numerically 

computing (3.10). Due to the invariant theory, this cubature rule can be written in 

the form 

(3.11) 


1The new u should not be confused with the control input u used in Chapter 2. 

35 




Ph.D. Thesis - Ienkaran Arasaratnam McMaster - Electrical Engineering 

The point set due to [u] is invariant under permutations and sign changes. For the 

above choice of the rule (3.11), the monomials {yf1 yg2 
••• y~n} with L~=l di being 

an odd integer are integrated exactly. For this rule to be exact for all monomials 

of degree up to three, it remains to require that the rule is exact for all monomials 

for which L~=l di = 0, 2. Equivalently, to find the unknown parameters u and w, it 

suffices to consider monomials f(y) = 1, and f(y) = Yr due to the fully symmetric 

cubature rule: 

f(y) = 1 : 2nw { dcr(y) =An (3.12)
Jun 

f(y) =Yi : 2wu2 { Yidcr(y) = An, (3 .13) Jun n 

where the surface area of the unit sphere [32]: 

2# 
r(n/2) ' 

00with the gamma function I'(n) = f0 xn- 1exp(-x)dx. The values on the right-hand 

side of (3.12)-(3.13) are based on the fact that the integration of a monomial of the 

form & (x) = xf1 xg2 
•• • x~n over the n-dimensional unit sphere can be expressed in 

terms of the gamma function [32]: 

if any di is odd; 
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where di = HI+ di)· Solving (3.12)-(3.13) yields 

u2 1 

w 

Therefore, the cubature points are located at the intersection of the unit sphere and 

its axes. 

3.3.3 Radial Rule 

In this subsection, a Gaussian quadrature is derived for numerically computing (3.9). 

First, to transform this integral into an integral for which the solution is familiar, 

another change of variable is made via t x2 , and the following relationship is 

obtained: 

roo 1 roolo f(x)xn- 1exp(-x2 )dx = 2 lo ](t)t(1i- 1)exp(-t)dt, (3.14) 

where f (t) = f( Vt). The integral on the right-hand side of (3.14) is now in the 

form of the well-known generalized Gauss-Laguerre formula. A first-degree Gauss­

Laguerre rule is exact for f(t) = 1, t. Equivalently, the rule is exact for f(x) = 1,x2
; 

it is not exact for odd degree polynomials such as f(x) = x,x3 • Fortunately, when 

the radial-rule is combined with the spherical rule to compute the integral (3.7), the 

(combined) spherical-radial rule vanishes for all odd-degree polynomials; the reason 

is that the spherical rule vanishes by symmetry for any odd-degree polynomial (see 

(3.8)). Hence, the spherical-radial rule for (3.7) is exact for all odd degrees. Following 

this argument, for a spherical-radial rule to be exact for all third-degree polynomials 
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in x E JRn, it suffices to consider the first-degree generalized Gauss-Laguerre rule of 

the form 

001 h(t)t~- 1exp(-t)dt = w1h(t1), i = 0, 1 

where f0 (t) = 1 and f1(t) = t. Hence, solving the moment equations 

f
00 

fo(t) = 1: t~- 1 exp(-t)dt = r(~)
lo 2 

[ 
00 

n n + 1 n n
fi(t)=t: = lo f2exp(-t)dt = r(-2-) = 2r(2), 

yields ti= ~ and W1 = r(~). Consequently, the integral of interest (3.9) is approxi­

mated as follows: 

(3.15) 

3.3.4 Spherical-Radial Rule 

In this subsection, two useful results are derived for (i) combining the spherical 

and radial rule obtained separately, and (ii) extending the spherical-radial rule for 

a Gaussian-weighted integral. The respective results are presented as two proposi­

tions: 

Proposition 3.2: Let the function f(x) be a monomial of degree d such that 

f(x) 
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where {di} are non-negative integers with L~=l di= d. Next, consider the problem of 

finding a cubature rule for integrals of the form: 

l(f) = { f(x)exp(-xTx)dx. (3.16)
}JRn 

Let the ms-point spherical rule of degreed be used to numerically compute the spherical 

integral portion of (3.16) (compare (3.10)): 

ms 

S(r) = { f (rs )d<7(s) 2)i(rsi).Jun j=l 

Let the mr-point Gaussian quadrature rule of degree (d - 1)/2 be used to numerically 

compute the radial integral portion of (3.16) (compare (3.9)): 

Then, the (ms x mr)-point spherical-radial cubature rule of degreed that numerically 

computes 

ms mr 

J(f) LL aibif(risi)· (3.17) 
j=l i=l 

Proof: The integral of interest J(f) in (3.16) is rewritten as 
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Making the change of variable as described in Subsection 3.3.1, we get 

Decomposing the above integral into the radial and spherical integrals yields 

Applying the radial and spherical rules appropriately leads to 

fir ms 

I(f) ( L airt) ( L bis1~ s1~ ... s~) 
i=l j=l 

mr ms 

= LL llibj(risj1)d1 (riSj2)d2 
••• (riSjn)dn 

i=l j=l 

mr m.

LL llibif(risj), 
i=l j=l 

which proves the proposition (see also Section 2.8 in [115]). D 

Remark: The above proposition holds for monomials of degree less than d. There­

fore, from Proposition 3.1, we may say that Proposition 3.2 holds for any arbitrary 

integrand that can be expressed as a linear combination of monomials of degree up 

to d. 

Proposition 3.3: Let the weighting functions w1 (x) and w2 (x) be w1(x) = 

exp(-xTx) and w2 (x) = N(x; µ, "£). Then for every square matrix ~ such that 

~~T = "£, we have 

(3.18) 
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Proof: Consider the left-hand side of (3.18). Because :E is a positive definite 

matrix, we factorize :E to be :E = ~~T. Hence, we write 

f f(x)N(x; µ, :E)dx = }"JRn 

Making a change of variable via x = ( ~y +µ) yields 

f f(x)N(x; µ, :E)dx = }"JRn 

which proves the proposition. 0 

In what follows, the third-degree spherical-radial cubature rules are derived for 

integrals having three different weighting functions: 

• 	 Case 1. First, consider the problem of finding a spherical-radial cubature rule 

for the integral: 

J(f) = r f(x)exp(-xTx)dx. 	 (3.19)
}Rn 

By exploiting the results obtained in Subsections 3.3.2, 3.3.3 and Proposition 

3.2, (3.19) can be approximated using the third-degree spherical-radial cubature 
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rule as shown by 

(3.20) 


• 	Case 2. Next, consider the problem of numerically computing a standard 

Gaussian-weighted integral of the form 

lN(f) = { f(x)N(x; 0, I)dx. 	 (3.21)
}Rn 


Substituting I and 0 for 1: and µ, respectively, in Proposition 3.3 yields 


lN(f) = .~ { f( v'2x)exp(-xT x)dx.

y7rn }R_n 

This suggests that the cubature rule in (3.20) can be utilized to approximate 

1~ - (#f f(v'2 ~[lli)
.;;;rn 2n i=l V2 
m 

L:wif(€i), 
i=l 

where m = 2n, and the cubature point-weight set in the Cartesian coordinate 

system is defined by 

€i = fi[l]i 

1 
Wi = m ' 

i = 1,2, .. . m. 	 (3.22) 
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(a) (b) 

Figure 3.1: Contour plots of zero-mean Gaussian densities with covariances 
[10.9;0.9 1] (Figure l(a)) and [1 O; 0 1] (Figure l(b)), respectively. Using the change 
of variables that transforms Figure l(a) into Figure l(b) , we make the Gaussian­
weighting function spread equally 

This is an important result- In the next two chapters, this cubature point-weight 

set will be used to build a (square-root) cubature Kalman filter . 

• 	 Case 3. Finally, by making a change of variable via x = ~y+µ , and following 

the steps in a manner similar to the proof of Proposition 3.3, it can be shown 

that 

{ f(x)N(x;µ , E)dx = { f ( VE°x + µ)N(x ;o, I)dx. 
IR.n 	 }Rn 

In light of the above equality relationship, the cubature point set defined in 

(3.22) can easily be exploited to numerically compute integrals whose weighting 
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functions are arbitrary Gaussian. That is, 

The change of variable y = (vE)-1(x - µ) eliminates the correlation of a non­

standard Gaussian density and makes it to spread equally in all directions as 

depicted in Figure 3.1. This means that the cubature points are symmetrically 

distributed in the area of integration, and it is up to the nonlinear integrand 

function to decide which subset of cubature points should be covered at most. 

Of course, for improved numerical accuracy, it is important that cubature points 

overlap with the bulk of an integrand [68, 120]. 

Summary 

In this chapter, a number of well-known numerical integration methods are briefly 

reviewed. Of those, monomial-based cubature rules can yield reasonably accurate 

results with a minimal amount of computations. To numerically compute integrals 

whose integrands are of the form (nonlinear function x Gaussian), a third-degree 

monomial-based cubature rule is derived. This cubature rule uses 2n number of 

equally weighted cubature points, where n denotes the dimension of the integration 

region. These cubature points are independent of the nonlinear integrand function, 

and can therefore be precomputed and stored to speed up a filter's execution. 
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Chapter 4 

Cubature Kalman Filtering 

In this chapter, as an approximate solution to the Bayesian filter, the cubature 

Kalman filter ( CKF) is developed under the Gaussian assumption. The Gaussian 

is the most convenient and widely used density for the following reasons: 

• 	 It has many distinctive mathematical properties. 

- The Gaussian family is closed under a linear transformation and condi­

tioning. 

- Uncorrelated jointly Gaussian random variables are independent. 

• 	 It approximates many physical random phenomena by virtue of the central limit 

theorem of probability (see Sections 5.7 and 6.7 in [112] for more details). 

• 	 Remarkably, according to the maximum entropy principle, given the first two or­

der statistics of a hidden process, it is Gaussian that maximizes the information 

entropy criterion of that process (Ch. 3, [16]). 
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Consider the discrete-time state-space model given by (2.1) and (2.2). For this 

state-space model, due to the maximum entropy principle, we are motivated to assume 

that the predictive density of the joint state-measurement vector is Gaussian. Under 

this key assumption, it also holds that the predictive state density and the innovations 

density are Gaussian. More over, this assumption leads to a Gaussian posterior 

density, thereby allowing all conditional densities to be closed in every update cycle. 

This is the very assumption made in all innovations-based algorithms including the 

CKF. In this line of formulation, with a small number of multi-dimensional integrals 

at our disposal, the functional recursions of the Bayesian filter reduce to some matrix 

algebraic recursions. That is, the resulting approximate filter now operates only on 

the means and covariances of the conditional densities encountered in the time and 

measurement updates as described in the sequel. 

4.1 Time Update 

In the time update, the filter computes the mean Xkjk-l and the associated covariance 

Pklk-l of the Gaussian predictive density as described in Subsection 2.2. For com­

pleteness, however, the final formulae are reproduced as follows (see (2.10)-(2.11)): 

Xkjk-1 r f(xk-ll Uk-1).N(xk-1; Xk-llk-ll Pk-ljk-1)dxk-l (4.1)}'llf,nx 

pklk-1 = r f(xk-li Uk-1)fT(Xk-b Uk-1).N(xk-1; Xk-llk-li pk-llk-1)dxk-l}Rnx 
(4.2) 
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4.2 Innovations Process 

This section describes the innovations process, which provides new information for 

the purpose of updating the predicted state estimate. Recall the definition of the 

innovation at time k, denoted by Ek, from Chapter 2: 

(4.3) 


The innovations sequence { t:.i, i = 1, 2, ... k} obtained from the measurement sequence 

{ Zi, i = 1, 2 ... k} has a number of hallmark features, which may not be present in 

the raw measurements or the estimated states: 

• Zero mean. The innovation has zero mean: 

• l'Vhite sequence. An important property of the innovations sequence is that it 

is white (also called uncorrelated or orthogonal): 

0, j < i, j =I= 0 

We may therefore say that the innovation is the 'whitened' measurement. 

• Uncorrelated with past measurements. 
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• 	 Informationally equivalent. Under the assumption that the predicted measure­

ment zklk-l is the linear minimum mean square error estimate of zk given the 

past measurement history Dk-l = {zi, z2 ... Zk-1}, the sequence of measure­

ments { z1, z 2 , ... Zk} and its corresponding sequence of innovations { € 1, € 2 , ... Ek} 

can be determined from each other by a causal and causally invertible linear 

transformation. In this case, it also indicates that the innovations sequence com­

pletely preserves information contained in the measurement sequence. Thus, we 

may write 

The proofs of the above statistical properties of the innovations process can be found 

elsewhere [59, 60]. It is the combination of the above statistical properties that eases 

the development of many powerful algorithms. For example, it is worth mention­

ing a few innovations-based derivations such as the Kalman-Bucy filter, the Kalman 

smoother [55, 56], and the signal estimator based on second-order statistics (without 

a state-space model) [57, 86]. 

4.3 Measurement Update 

The derivation of the CKF's measurement update is rooted in the assumption that 

the predictive density of the joint state-measurement is Gaussian, and the following 

lemma that helps fuse the current measurement with the predicted state estimate [9]. 
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Lemma 4.1: Let the two random variables (x, z) be jointly Gaussian: 

( 
X ) ( X ) ( Pxx Pxz ) ) p(x,z) = N ; _ , . 

( Z Z Pzx Pzz 

Then the conditional density p(x/z) is Gaussian distributed: 

p(x, z) _ N( . A p )p(x/z) p(z) - x, x, xxlz ' 

where the conditional mean and its corresponding covariance are given by 

Proof: Because (x, z) is jointly Gaussian, the marginal density p(z) is Gaussian 

distributed. Due to Bayes' rule, we write the conditional density 

p(x, z)
p(x/z) 

p(z) 

J/27rPzz/exp(-HY - y)T P;;;}(y - y)) 
(4.4)

J/27rPyy/exp(-~(z - z)TPz-;1(z - z)) ' 

where y = [xT zTJT. In order to reduce the non-zero mean random variables x and z 

to zero-mean variables, we make the change of variables via 

x-x (4.5) 

z-z. (4.6) 
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The exponent on the right-hand side of ( 4.4) has a quadratic form, as shown by 

{4.7) 

where 

r-1 xx Pxx - PxzPz-;,1Pzx {4.8) 

p-1
zz Tzz - TzxT;;,}Tzx {4.9) 

T~1Txz -Pxzpz-;_1. {4.10) 

The exponent q in ( 4.7) can further be expanded as follows: 

q 	 = eTrxxe + errxzT/ + ,,,rrzxe + ,,,rrzzT/ - ,,,rPz-;,111 

= (e +T~1TxzT/)TTxx(e + Tx~1 TxzT/) +T/T(Tzz -TzxT~1Txz)T/ - T/T P;/11 

{4.11) 


Substituting {4.5), {4.6), and {4.10) into the factor on the right-hand side of {4.11) 

yields 

This suggests that the conditional density p(xlz) is Gaussian with the conditional 
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mean 

and the corresponding conditional covariance 

D 

Returning to the measurement update, we have found that the innovations are 

a zero-mean white sequence. Under the reasonable assumption that the innovations 

are Gaussian, they become independent of each other. In this case, we write the 

innovations density 

(4.12) 


where the innovations covariance 

Pzz,klk-1 JE[(zk - Zklk-1)(zk - zklk-1fJDk-1] 

r h(xk, uk)hT(xk, Uk)N(xk; Xkjk-1, pklk-i)dxk
}Rnx 

(4.13) 


with the predicted measurement 

lE[zkJDk-1] 

r h(xk, Uk)N(xk; Xkjk-1' pklk-1)dxk. (4.14)
}Rnx 
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Rearranging (4.12) yields 

(4.15) 


Of course, from (4.15), it is understood the innovations density p(ek), and the filter 

likelihood density p(zkiDk-d are related by one-to-one transformation. 

In order to develop an approximate Bayesian filter, it is further assumed that the 

predictive density of the joint state-measurement process can be approximated by 

Gaussian: 

Pxz,klk-1 ) ) ' 

Zk Zklk-1 pxz,klk-1 Pzz,klk-1 

= N(( xk ); ( ~klk-1 ), ( ~lk-1 

(4.16) 

where the cross covariance 

Due to Bayes' rule, the posterior density is written as 

(4.18) 

Upon the receipt of a new measurement zk, and substituting (4.15) and (4.16) into 
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(4.18) according to Lemma 4.1 yields 

(4.19) 


where 

xkfk-1 + Wk(zk - Zkfk-1) (4.20) 

Pkfk-1 - WkPzz,kfk-1W[ (4.21) 

Pxz,kfk-lpz~~k[k-1' ( 4.22) 

The signal-flow diagram in Figure 4.1 summarizes the steps involved in the recur­

sion cycle of the CKF. The CKF solves the problem of how to compute Gaussian­

weighted integrals whose integrands are all of the form (nonlinear function x Gaus­

sian density) present in (4.1), (4.2), (4.13), (4.14), and (4.17) using the third-degree 

spherical-radial cubature point set { (~i' wi), i = 1, 2, ... 2nx} presented in Subsection 

3.3.4. 
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Time Update 

--~~~~~-~~~~~~~-
( StateTransition \ 

Old G-Posterior G-Predictive 

p(x1r-1IDk-1) -----1~~ p(x1rlD1r-1) 

l 
G-FilterNewG­

G-Joint State-lnnov. LikelihoodPosterior 

p{x1rlD1r) .__ Bayes' Rule ..._ p ( [xf zfJTIDk-1 ) .._...__ p(zklDk-1) 

t 
Zk 

"'----~~~N_e_w_M_e_a_s_ur_e_m_e_nt~-- -~~~~~~~~~~--~ 
--v-

Measurement Update 

Figure 4.1: Signal-flow diagram of the CKF, where 'G-' stands for 'Gaussian-'. 
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CKF: Time Update 

1. Assume at time k that the posterior density 

is known. Factorize 

(4.23) 


2. Evaluate the cubature points (i=l,2,. .. ,m, where m = 2nx) 

Xi,k-llk-1 Sk-llk-1~i +xk-llk-1· (4.24) 

3. Evaluate the propagated cubature points (i=l,2,. .. ,m) 

(4.25) 


4. Estimate the predicted state 

1 m 

m I: x:,kjk-1 · ( 4.26) 
i=l 

5. Estimate the predicted error covariance 

A1 ~ V* V*T AT Q
m L....,. Ai,kjk-1 Ai,kjk-1 - Xkjk-lXkjk-1 + k-1· ( 4.27) 

i=l 
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CKF: Measurement Update 

1. Factorize 

(4.28) 


2. Evaluate the cubature points (i=l,2, ... ,m) 

(4.29) 


3. Evaluate the propagated cubature points (i=l,2, ... ,m) 

(4.30) 


4. Estimate the predicted measurement 

1 m 

Zklk-1 = m L Zi,klk-1· (4.31) 
i=l 

5. Estimate the innovations covariance matrix 

(4.32) 

6. Estimate the cross-covariance matrix 

1 ~x zrr ATAPxz,klk-1 = m 	~ i,klk-1 i,klk-1 - Xkik-lZklk-1 · 
i=l 

(4.33) 
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7. Estimate the cubature Kalman gain 

(4.34) 


8. Estimate the updated state 

(4.35) 


9. Estimate the corresponding error covariance 

(4.36) 


4.4 Do We Need Higher-Degree Cubature Rules? 

This section emphasizes the importance of a third-degree cubature rule over higher­

degree (more than three) cubature rules, when they are embedded in cubature Kalman 

filtering. 

• 	 Sufficient approximation: A higher-degree rule will translate to higher accuracy 

based on two assumptions: 

- The weighting function (conditional density) is known to be a Gaussian 

density exactly. 

- The integrand is well-behaved in the sense of being approximated by a 

higher-degree monomial. 
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From the nonlinear filtering perspective, these two requirements are hardly met. 

For this reason, the estimation accuracy of a nonlinear filtering problem becomes 

more complicated than the notion of accuracy associated with a degree of a cu­

bature rule. To further elaborate, suppose that the posterior random variable y 

and a prior Gaussian random variable x are related to each other via a nonlinear 

function 

y = f(x). 

When the posterior random variable y is forced to be Gaussian, despite the 

nonlinear nature off(.), the implicit assumption is that f(.) can well be ap­

proximated by some low-degree monomials (typically up to a second or third 

degree) in the vicinity of the prior mean. The reason for this approximation is 

attributed to one of the important properties of the Gaussian family that it is 

closed under a linear transformation (see the numerical experiment at the end 

of this section) . 

• 	 Numerically attractive computation: The theoretical lower bound for the number 

of cubature points of a third-degree cubature rule is 2n, where n is the dimension 

of an integration region [93]. Hence, the proposed spherical-radial cubature 

rule can be considered as a hyper-efficient third-degree cubature rule. Because 

the number of points or function evaluations in the proposed cubature rules 

scales linearly n, it may be considered as a practical step for easing the curse 

of dimensionality. In contrast, the theoretical lower bound for a fifth degree 

cubature rule is in the order of n2 , suggesting that the cubature filter using the 
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higher-degree cubature rule suffers from the curse of dimensionality [84]. 

The proposed third-degree spherical-radial cubature rule entails 2n equal, 

positive weights, whereas the construction of a fifth degree rule or any higher-

degree rule results in a set of cubature points, some of which have negative 

weights.1 When the cubature filter is developed using a cubature rule with 

negative weights, it suffers from numerical instability. More importantly, it may 

be impossible for any one to formulate a square-root solution that completely 

solves the numerical instability issue (see also Appendix B, which describes a 

number of limitations of the unscented filter due to the inclusion of a negatively 

weighted point). 

In the final analysis, even though it may be tempting to use a higher-degree cubature 

rule for the CKF's improved accuracy, its use may cause numerical problems and 

the filter's estimation accuracy may marginally be improved at the expense of an 

increased computational cost. 

4.4.1 Motivating Numerical Example 

Consider a Gaussian random variable Zp = [r OJT in the polar coordinate with the 

mean zp and covariance L:p. The first component of this random variable r corresponds 

to the 'range' and the second e to the 'angle' in radians. The random variable Zp 

in the polar coordinate is converted to another random variable Zc = [x y]T in the 

1 According to [96] and Section 1.5 of [115], a 'good' cubature rule has the following two properties: 
(i) all the cubature points lie inside the region of integration, and (ii) all the cubature weights are 
positive. 
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Figure 4.2: First two order statistics of a nonlinearly transformed Gaussian random 
variable computed by the third and fifth degree cubature rules 

Cartesian coordinate using the following nonlinear transformation: 

rcosB )
Zc = g(zp) = . 

( rsmB 

The objective of this experiment is to numerically compute the second-order statis­

tics of the random variable Zc, given by 

1g(z)N(z; Zp, Ep)dz 
Zp 

iP (g(z) - IE[zcl) (g(z) - IE[zcl) T N(z ; Zp, Ep)dz, 
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using two different cubature rules, namely, 

• the third-degree cubature rule, and 

• the fifth degree cubature rule. 

Let the mean range f be 80 units and the mean angle 1J be 0.61 radians, with ~P = 

diag([60 0.6]). The Monte Carlo method with 5000 samples is used to obtain the true 

estimate. 

Figure 4.2 shows the results of this transformation. The cloud of random samples 

represents the true density of the random variable Zc. Observe that the transformed 

variable Zc is clearly non-Gaussian. It also shows the true mean and covariance (a 

2a-ellipse) of Zc together with the estimated results employing the cubature rules of 

degrees three and five. As can be seen from Figure 4.2, the mean values estimated 

using the third and fifth degree cubature rules lie on top of the true mean. Moreover, 

the third degree rule yields a covariance contour which is seen to be more closer to 

that of the fifth degree rule even though both contours slightly deviate from the true 

contour. 

In conclusion, from the cubature filter's perspective, the fifth degree cubature rule 

does not yield a significant improvement over the third degree rule. 

4.5 Computational Cost 

Suppose that the processor of an embedded control system has a limited processing 

speed. In this case, before committing the CKF to this processor, the knowledge of its 

computational cost is of paramount importance. The unit of the computational cost 

is typically measured in terms of flops (FLoating-point OPeration) counts or simply 
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flops. One flop is defined as one addition, substraction, multiplication, or division 

of two floating-point numbers. For instance, the product of an m x n matrix by an 

n x p matrix requires mnp multiplications and mp(n -1) additions. Hence, the total 

computational cost of this matrix multiplication is mp(2n - 1) flops. 

Let nx, nz and m denote the state-vector dimension, measurement-vector dimen­

sion, and the number of cubature points, respectively. The total computational cost 

of the CKF is given by 

2 2 3 2
4mnx + 3nx +mnx(2nz + 3) + 6nx 

14 
+mnz(2nz + 1) + nxnz(6nz + 1) + 3nx 

3 2 1 
+nz + 5nz + 2nz - 3 flops, (4.37) 

which is dominated by the outer products of matrices and Cholesky factorizations. In 

deriving this total computational cost, (i) flops required for problem-specific function 

evaluations are not considered, and (ii) costs such as indexing, fetches and stores, 

input/output etc., are ignored. The latter cost is difficult to compute. However, 

provided a state-space model, the flops required for the function evaluations can be 

computed, and added to ( 4.37). 

For a typical filtering problem, it is reasonable to assume nx to be greater than nz. 

Moreover, for the CKF using the third-degree cubature rule, m turns out that m = 

2nx. In this case, the implementation of the CKF requires 2
3
6 n; flops approximately. 

Note that the computational cost of the EKF also grows cubically in terms of nx, but 

the scaling factor is less than that of the CKF [121]. This means that the CKF is 

computationally slightly more expensive than the EKF. 
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Remark: 

The CKF reduces to the Kalman filter in a linear setting for the following reason: 

The class of linear functions can be thought of as a linear combination of state-vector 

elements, and hence belongs to monomials of degree one. Because a cubature rule 

of degree three can exactly compute integrals whose integrands are all monomials of 

degree one, the CKF functions exactly similar to the Kalman filter. In this case, the 

cubature Kalman gain Wk in (4.22) becomes equivalent to the Kalman gain. However, 

the CKF is computationally three times more expensive than the Kalman filter, which 

requires only 3n~ flops [61J. 

Summary 

In this chapter, the cubature Kalman filter (CKF) is derived by taking the following 

two key steps: (i) The theory of the optimal Bayesian filter is reduced to the problem 

of how to compute various multi-dimensional Gaussian-weighted moment integrals by 

assuming the predictive density of the joint state-measurement vector to be Gaussian 

distributed (ii) To numerically compute the Gaussian-weighted moment integrals, a 

third-degree monomial-based cubature rule, presented in Chapter 3, is employed. To 

the best of the author's knowledge, this is the first time that the cubature Kalman 

filtering theory is systematically derived for nonlinear filtering under the above men­

tioned assumption. It is also justified that a third-degree is adequate for the CKF to 

perform satisfactorily. The computational cost of the CKF grows cubically with the 

state-vector dimension. 
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Chapter 5 

Square-Root Cubature Kalman 

Filtering 

The first publicly known use of the extended Kalman filter was made at NASA Ames 

Research Center in the early 1960s for circumlinear navigation and control of the 

Apollo space capsule [74]. The key to this successful operation on a small fixed­

point on-board computer is attributed to the square-root formulation of the extended 

Kalman filter. This chapter discusses the need for a similar square-root extension 

of the CKF. The square-root cubature Kalman filter (SCKF) is then derived by sys­

tematically manipulating the error covariance matrices. Finally, the additional cost 

incurred due to this square-root formulation is computed. 

5.1 Motivation 

The two basic properties of an error covariance matrix are symmetry and positive 

definiteness. It is important that these two properties be preserved in each update 
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cycle. In practice, due to errors introduced by arithmetic operations performed on 

finite word-length digital computers, these two properties are often lost. Specifically, 

the loss of positive definiteness may probably be more hazardous as it stops the CKF 

from running continuously. In each update cycle of the CKF, the following numerically 

sensitive operations may catalyze to destroy the properties of a covariance matrix: 

• 	 Matrix square rooting (see (4.23) and (4.28)) 

• 	 Matrix inversion (see (4.34) 

• 	 Matrix squared forms, which are responsible for amplifying roundoff errors (see 

( 4.27), ( 4.32) and ( 4.33)) 

• Substraction of two positive-definite matrices present in 	the error covariance 

update (see ( 4.36)) 

Moreover, some nonlinear filtering problems may be intrinsically ill-conditioned. In 

the literature on Bayesian filtering, various ad-hoc methods have been introduced. 

Some of them include [26]: 

• 	 Measurement update with a sequence of scalar measurements in a preferred 

order 

• 	 Decoupled or quasi-decoupled covariances 

• Symmetrization of covariances based on the formula p' = P+iT 

• 	 Computation of only upper triangular entries of covariances 

• Tikhonov regularization 
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• 	 Joseph's covariance update 

• 	 Use of large process and measurement noise covariances 

• 	 Use of a doubled-precision arithmetic 

In contrast, as a systematic solution to preserve the properties of covariances and 

to mitigate ill effects that may eventually lead to a divergent behavior or even com­

plete breakdown, square-root algorithms which propagate the square-roots of various 

error covariance matrices have been proposed [61]. Following this line of thinking, 

we can also structurally reformulate the CKF to develop a square-root version. The 

SCKF essentially propagates the square roots of the predictive and posterior error 

covariances, and offers the following benefits as compared to the CKF: 

• 	 Preservation of symmetry and positive (semi}definiteness. It is proven in [41, 10] 

that the use of a forced symmetry on the solution of the matrix Ricatti equation 

improves the apparent numerical stability of the Kalman filter. Since the CKF 

embraces the Kalman filter theory, the CKF is also expected to improve its 

stability. Because the underlying meaning of the covariance is embedded in 

positive definiteness, meaningful conclusions about a filter's performance from 

its covariance can be drawn, e.g., the trace of the covariance yields a confidence 

measure about the filter's state estimate. 

• 	 Improved numerical accuracy. In the nonlinear filtering context, errors are likely 

to be introduced to filter computations from various sources. For example, 

roundoff errors and catastrophic cancelation errors may occur owing to a large 

number of nonlinear function evaluations when they are computed in a system 

with finite arithmetic precision. These errors tend to accumulate over time, 
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causing the filter to diverge eventually. It is known that the condition number 

of the covariance matrix P, ,..(P), and the condition number of the square-root 

of P, r;,(S), are related to each other via 

r;, (S) .Ji«?). 

Due to a significantly smaller condition number of S, the final results involving 

S are expected to be less erroneous than that involving P [39]. 

• 	 Doubled-order precision, whereby the square-root approach yields twice the ef­

fective precision of the conventional approach [10]. Loosely speaking, the results 

given by the square-root approach in single precision are close to those given 

by the conventional approach in double precision. This property is extremely 

important because the computational time of single precision operations is sub­

stantially less than that of double precision operations. 

• 	 Availability of square roots. The covariance matrix is likely to turn out to be 

non-positive definite in a system with finite precision when [61]: 

- highly accurate or precise measurements are processed or 


- some state constraints are imposed. 


In the constrained state estimation case, a set of linearly combined state com­

ponents is assumed to be known. In this case, the posterior error covariance 

becomes positive semidefinite; it contains some zero eigen values, reflecting that 

the filter has perfect estimates along the corresponding eigen vectors. This is 

undesirable in practical terms. In the SCKF, however, a square root of the 
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error covariance matrix is available explicitly. For this reason, the SCKF can 

run continuously even in this undesirable situation. 

5.2 Derivation of SCKF 

In this section, the SCKF is developed using the least-squares method for the cu­

bature Kalman gain and matrix triangular factorization or triangularization for the 

covariance updates. The least-squares method avoids the explicit computation of 

matrix inversion; whereas triangularization essentially computes a triangular square­

root factor of the covariance without square rooting a squared-matrix form of the 

covariance [39]. To elaborate the latter, a covariance matrix P of the form 

p AAT (5.1)
' 

is considered, where P E Rnxn, A E Rnxm is a 'fat' matrix with m 2: n. Hence, 

the CKF preserves the properties of a covariance matrix, namely, its symmetry and 

positive-definiteness, provided that no computational errors are made, which is prob­

ably not true in practice. Although A in (5.1) can be considered as a square root of 

P, for computational reasons a triangular matrix of dimension n x n is desired. This 

is accomplished by applying a matrix triangularization algorithm: 

S Tria(A), 

where S E Rnxn is the desired triangular matrix, and 'Tria' denotes any one of 

tringularization algorithms. For example, to transform A into S the QR decomposition 
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may be used. 1 When AT is decomposed into an orthogonal matrix Q E IR.mxn and an 

upper triangular matrix RE 1R_nxn such that AT= QR, we get 

where S =RT. Note that in computing the square-root covariance S, Q is discarded, 

and only the upper triangular matrix R is exploited. Since S is a triangular matrix, its 

sparseness can be exploited for an efficient computation, and reduced storage space. 

Next, the SCKF algorithm is summarized. The steps are explicitly written only 

when they differ from the CKF algorithm presented in Chapter 4. In the SCKF 

algorithm, the symbol / is used to denote the matrix right division operator, which 

applies the back substitution algorithm for an upper triangular matrix S and the 

forward substitution algorithm for a lower triangular matrix S. The matrix right 

division is used to find the Kalman gain of the SCKF. Moreover, the symbols SQ,k, 

and SR,k axe used to denote the square roots of the process noise covariance Qk, and 

measurement noise covariance Rk, respectively: 

SCKF: Time Update 

1. 	 Skip the factorization step ( 4.23) because the square root of the error covariance, 

Sk-llk-i, is available. Compute from (4.24) to (4.26). 

2. 	 Estimate the square root of the predicted error covariance 

(5.2) 


1The QR decomposition has been chosen as one of the top ten algorithms of the computer age 
[18]. 
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where SQ,k-1 denotes a square root of Qk-1 such that Qk-1 = SQ,k-18~,k-l' and 

the weighted-centered (prior mean is subtracted off) matrix 

Jm[~,klk-1 - Xklk-1 _x;,klk-1 - xklk-1 · · · 


x:n,klk-1 - Xklk-d· (5.3) 


SCKF: Measurement Update 

l. 	Skip the factorization step ( 4.28) because the square root of the error covariance, 

Sklk-1, is available. Compute from (4.29) to (4.31). 

2. 	 Estimate the square root of the innovations covariance matrix 

(5.4)Bzz,klk-1 

where SR,k denotes a square-root factor of Rk such that Rk = SR,ks'J;,,k, and the 

weighted-centered matrix 

3. Estimate the cross-covariance matrix 

(5.6)Pxz,klk-1 
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where the weighted-centered matrix 

tl"klk-1 )rn [X1,klk-1 - xklk-1 X2,klk-1 - xklk-1 ... 

Xm,klk-1 - xklk-1] · (5.7) 

4. Estimate the square-root cubature Kalman gain 

(Pxz,klk-1I s;,,klk-1)IBzz,klk-1 · (5.8) 

5. Estimate the updated state xklk as in (4.35). 

6. Estimate the square root of the corresponding error covariance 

(5.9) 


All of the above steps in the SCKF are straightforward except the square-root error 

covariance Sklk, which is derived as follows: Substituting ( 4.34) into ( 4.36) yields 

(5.10) 


After multiplying by Pzz,klk-1 on both sides of (4.34), we get 

(5.11)Pxz,klk-1 
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Multiplying by W[ on both sides of (5.11), and taking transpose yields 

(5.12) 


Adding (5.10) and (5.12) together yields 

(5.13) 

Using the fact that Pklk-1 = .2'"klk-l~%_ 1 , and substituting (5.4), and (5.6) into 

(5.13) appropriately yields 

Pklk .2'"klk-1.2'"kfk-1 - .2'"klk-1~%-1w[ + wk(~1k-1~fk-1 + sR,ks~,k)w[ 

-Wk~lk-1.2'"kfk-1 

[.2'"klk-1 - wk~lk-1 WkSR,kll~lk-1 - wk~lk-1 WkSR,kf· (5.14) 

The matrix Pklk in (5.14) is the Joseph covariance in disguise [7]. Applying matrix 

triangularization on (5.14) leads to (5.9). 

5.3 Computational Cost due to SCKF 

Assuming that the modified Gram Schmidt-based QR decomposition is used as a 

triangularization algorithm, the computational cost of the SCKF in each recursion 
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cycle is given by 

6mn; + 2n! + mnx(4nz + 9) + 2n;nz 

1 
+2mnz(5nz + 11) + nxnz(4nz + 1) + nx 

7 3 1 2 19 
+3nz + 2nz + 5nz flops, 

where the notations denote the same meaning as in Section 4.5. The above cost is 

dominated by the matrix triangularization algorithm. When nx » nz, the SCKF 

approximately costs 14n~ flops in each recursion cycle. As expected, the SCKF per­

forms more computations than what the CKF does. The SCKF will be a desired 

alternative to the CKF if the application of interest demands stability, and the com­

putational burden is not a major consideration. However, the cost of the SCKF may 

be reduced significantly by taking the following steps: 

• 	 Carefully manipulating the sparsity of square-root covariances owing to their 

triangular form. For example, in (4.29), the product term Sklk-l~i can be com­

puted by simply pulling out 'some' non-zero elements of the i-th column vector 

of Sklk-i, and scaling by ..;n;. In so doing, the fact that ~i is a scaled elementary 

vector is used. 

• 	 Coding a triangularization algorithm for distributed processor-memory archi­

tectures [88]. 

Summary 

We have witnessed many successful applications of the Kalman filter due to its square­

root formulation. Although the CKF closely embraces the idea of Kalman filtering, it 
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is more sensitive to limited precision than the Kalman filter or its extended versions. 

The reason is that the CKF, by its nature, explicitly requires the square-roots of the 

error covariances. In this chapter, the CKF is reformulated to recursively propagate 

the square-roots of the error covariances. In a limited precision system, the result­

ing square-root filter significantly improves numerical stability and accuracy at the 

expense of an increased computational cost. The square-root filter performs nearly 

60% more computations than what the CKF does. 
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Chapter 6 

Experimental Evaluations 

This chapter evaluates the performance of the CKF against other presently known 

approximate Bayesian filters when applied to the following three nonlinear estimation 

problems: (i) Target Tracking (ii) Supervised Training of Recurrent Neural Networks 

(iii) Model-based Signal Processing. In all these experiments, the square-root version 

of the CKF is employed for its improved numerical stability. 

6.1 Tracking a Maneuvering Ship 

Scenario. In this first experiment, the problem of tracking a ship moving in an area 

bounded by a shore line was considered. The shore line was assumed to be a circle of 

radius r with its center at the origin. The ship was assumed to move at a constant 

velocity perturbed by white Gaussian noise when it was not 'too far away' from the 

origin; whereas when it drifted outside of the radius r from the origin, and was headed 

towards the shore, a gentle turning force pushed it back towards the origin. The model 

is interesting in that (i) it exhibits significant nonlinear behavior near the shore, and 
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(ii) it is an example where the various forms of the EKF including the CDKF fail 

completely. 

Following the scenario described in [68], the kinematic of this maneuvering motion 

was modeled in a discrete-time interval of 8 by the following four equations: 

where 

• 	The state of the ship x = [x1 x 2 x 3 x4jT; x1 and x 2 denote positions whereas x 3 

and x4 denote velocities in the x and y directions, respectively 

• 	 The noise samples, {vi, i = 1, 2 ... 4}, were assumed to be independent and 

drawn from the standard Gaussian; {qi, i = 1, 2} were their noise intensities 

• 	The functions Ji (x) and h (x) are given by 

{ -.>..xi Jxi + x~ ~rand X1X3 + X2X4 ~ O;
Jx~+x~'f1(x) 
0, otherwise. 

{ 
-.>..x2 Jxi + x~ ~rand X1X3 + X2X4 ~ O; 

2h(x) = ~· 
0, otherwise. 

Note that the term (x1x 3+ x 2x4) in the last bullet is positive only if the distance of 

the ship from the origin increases. The functions ~and ~should not be 
X1+X2 X1+X2 
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5 

~ 0 

5 

Figure 6.1: Representative trajectory of the ship (I - initial point, F - final point); * 
- Radar location; circle represents the shore line 

confused with the notion of deceleration; they denote turning forces with .X denoting 

the strength of the turning force. When the above constraints are active for a very 

short period of one or two time steps, the ship does not slow down its motion; rather, 

it tends to veer and moves away from the shore. Figure 6.1 shows a representative 

trajectory of the ship, in which it wanders from its initial position, and veers sharply 

when approaching the shore. 

A radar was fixed at the origin of the plane, and equipped to measure the range, 

r, and the bearing, (), at a measurement-time interval~. The measurement equation 

is therefore given by 

-5......._~~~~~~-'-~~~~~~-'-' 
-5 0 

E 
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where the measurement noise wk,...., N(O, R) with R = diag[u; u~]. 

Data: 

r 5 

b.. 0.05 

,\ 2 

Q1 Q2 = 0.01 

O"r = 0.01 

0.57r ad" 
O"(J 180 r ians 

The initial state estimate :Xo1o was fixed at [111 lf and the associated covariance P0; 0 

at 10h The true initial state x 0 was randomly chosen from the unit hyper cube with 

its center at the origin in each run; the total number of radar scans per run was 800. 

The units of time and space were assumed to be normalized. For example, when the 

unit of time is, say 20 minutes, then the radar is assumed to acquire its measurement 

every 1 minute(= 20 x 0.05). The above parameters were chosen according to [68]. 

To track the maneuvering ship, the following nonlinear filters were employed: 

• Particle filter with resampling after each update cycle (1000 particles) 

• Extended Kalman filter (EKF) 

• Unscented Kalman filter (UKF) 

• Central-difference Kalman filter (CDKF) 

• Cubature Kalman filter ( CKF) 
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In order to closely follow the motion of the ship, each filter was assumed to predict 

five intermediate steps without measurement updates between two consecutive mea­

surements. For a fair comparison, 50 independent trajectories were made. All the 

above filters were initialized with the same condition in each run. 

Performance metrics. To compare various nonlinear filter performances, the root­

mean square errors (RMSEs) of the position and velocity were used. The RMSE in 

position at time k is defined by 

N 

RMSEpos(k) ~L ((x1,k(n) - X1,k(n))2+ (x2,k(n) - x2,k(n))2), 
n=l 

where ( X1,k (n), Xz,k (n)) and (x1,k (n), x2,k (n)) are the true and estimated positions in 

then-th Monte Carlo simulation run and N = 50. Similarly, the RMSE in velocity 

can also be written. 

Observations. Figures 6.2(a) and 6.2(b) show the RMSEs of various filters in the 

position and velocity, respectively, during the period of 500 time units. Owing to 

a number of limitations outlined in Chapter 2 and Appendix B, the EKF diverged, 

and the UKF often broke down. For this reason, their results are not presented here. 

From Figures 6.2(a) and 6.2(b), we see that the CKF tracks better than the CDKF 

and the particle filter all along the trajectory except a short period of time, during 

which we see some overshoots owing to nonlinear effects around some maneuvers, but 

the CKF recovers quickly and tracks the trajectory afterwards. Though such errors 

occurred in a few simulated tracks, they dominated the average error in that short 

period. Overall, in this low-dimensional problem, the CKF tracks more accurately 

than others. 
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I Algorithm l Time (s) I 

EKF 0.2 
CDKF 1.0 
Particle filter 57.6 
CKF 0.6 

Table 6.1: Comparison of computational times (per track) averaged over 50 simulated 
tracks 

The computational times of the EKF, the CDKF, the CKF, and the particle filter 

are tabulated in Table 6.1 when implemented on a 2.6-GHz Intel Core2 Duo processor 

using MATLAB. As expected, the CDKF requires slightly higher computational time 

than the CKF partly because the CDKF uses a set of (2n + 1) interpolating points, 

where n is the state-vector dimension. The particle filter requires a computational 

time of 100 times that of the CKF, approximately. 

On the basis of a tracking performance-computational time tradeoff, the CKF is 

the best filter for this tracking problem. 

Remark: 

The CKF assumes continuous dynamics. When there is a discontinuity in the dynam­

ics of the problem at hand, the underlying theory of the CKF is no longer applicable. 

To mitigate this problem, we may resort to the use of smoothing. For the tracking 

problem under consideration, when the ship gets closer to the shore, its motion does 

not exactly follow the dynamics described by the state-space model because of a set 

of constraints. In order to improve the tracking performance, a fixed-lag smoother 

may be employed at the cost of a constant delay (see also Ch. 7 for a discussion on 

cubature Kalman smoothing). 
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Figure 6.2: Root mean-squared error (RMSE) averaged over 50 independent trajec­
tories (dotted- Particle filter , solid thin- CDKF, solid thick- CKF) 
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6.2 	 Supervised Training of Recurrent Neural Net­

works 

Recurrent neural networks (RNNs) are well known for their use in chaotic dynamic 

reconstruction, among other applications. Chaotic dynamics are commonly observed 

in a wide variety phenomena from molecular vibrations to satellite motions. In most 

cases, the underlying governing equations of chaotic dynamics are difficult to obtain. 

In such cases, they may be replaced with RNNs. In this experiment, Bayesian filter­

trained RNNs were considered. The well-known chaotic Mackey-Glass system was 

used to generate both the training and test data. The EKF, the CDKF, and the CKF 

were employed for the purpose of supervised training of RNNs. Particle filters were 

not considered for the following reason: The supervised training of RNNs involves a 

large number of weights to be estimated. Hence, an enormous amount of particles is 

required to completely capture this huge state-space volume as outlined in Chapter 2. 

Simply put, particle filters are computationally quite demanding for this application. 

Chaotic Mackey-Glass Attractor. The Mackey-Glass equation is often used to 

model the production of white-blood cells in Leukemia patients, and given by the 

delay differential equation [75]: 

dUt, 
(6.1)

dt 

where the delay~ = 30. To sample the time-series at discrete time steps, (6.1) was 

numerically integrated using the forth-order Runge-Kutta method with a sampling 

period of T = 6 s, and initial condition Ut = 0.9, for 0 $ t $ ~- Given a chaotic 
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Figure 6.3: Effect of a on the shape of the activation function ¥?(v) = l.71tanh(av). 

system, it is known that the next data sample uk+r can be predicted from a prop­

erly chosen time sequence Uk = [uk Uk-r ... uk-[de- 2Jr uk-[de-l]r], where dE and T 

are called the embedding dimension and the embedding delay, respectively. For the 

chaotic Mackey-Glass system, dE and T were chosen to be seven and one, respectively. 

RNN Architecture. Bayesian filter-trained RNNs were used to predict the chaotic 

Mackey-Glass time-series data. The structure of a RNN was chosen to have seven 

inputs representing an embedding of the observed time-series, one output, and one 

self-recurrent hidden layer with five neurons. Hence, the RNN has a total of 71 

connecting weights (bias included). The linear activation function was used by the 

output neuron, whereas all the hidden neurons used a hyperbolic tangent function of 

the form 

'P(v) 1.71 tanh(av), 

where a was assumed to take values ranging from 1/3 to 3. As shown in Figure 6.3, 
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the hyperbolic tangent function is 'mildly' nonlinear (that is, close to a linear function) 

around its origin when o: = 1/3. Its nonlinearity increases with a, and behaves closely 

similar to a switch when o: = 3. 

State-Space Model. To estimate the weight parameters using a Bayesian filter, 

they are typically assumed to be Gaussian random variables. Specifically, the weight 

variables are assumed to follow the first-order noisy autoregressive model, and the 

state-space model can therefore be written as 

Wk = Wk-1 +qk-1 

dk Wo<p(WrXk-1 + Wiuk) + rk, 

where 

• 	The process noise qk is assumed to be zero-mean Gaussian with covariance Qk-l 

• 	The measurement noise rk is assumed to be zero-mean Gaussian with variance 

Rk 

• 	The internal state of the RNN or the output of the hidden layer at time ( k - 1) 

is denoted by Xk-l (Figure 6.4) 

• 	 The desired output dk acts as the measurement 

• 	 Wi, Wr and W0 are input, recurrent and output weight matrices of appropriate 

dimensions; the weight vector wk is obtained by grouping elements from Wi, Wr 

and W0 in 'some' orderly fashion 

Data. A chaotic time sequence of length 1000 was generated, the first half of 

which was used for training and the rest for testing. To train the RNN using the 
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(a) (b) 

Figure 6.4: Schematic diagrams (a). Original RNN (b). Unfolded RNN of unity 
truncation depth. 

CKF, 10 epochs/run were made. Each epoch was obtained from a 107 time-step long 

subsequence, starting from a randomly selected point. That is, each epoch consisted 

of 100 examples, all of which were gleaned by sliding a window of length eight over the 

subsequence. The weights were initialized to be zero-mean Gaussian with a diagonal 

covariance of 0.5Iw; Qk-l was made to decay such that Qk-l = Ct- l)Pk-llk-l, where 

>. E (0, 1) is the "forgetting factor" as defined in the recursive least-squares algorithm 

[44]; this approximately assigns exponentially decaying weights to past measurements; 

>. was fixed at 0.9995, and Rk at 5 x 10-3 across the entire epoch; the state of the 

RNN at t = 0, x0 , was assumed to be zero. 

Unlike the CKF, which relies on integration, the EKF and the CDKF use gradi­

ent information, which in turn necessitate the use of the truncated backpropagation 

through time method. To unfold the recurrent loop of the neural network, a trun­

cation depth of unity was found to be sufficient in this experiment (see Figure 6.4). 
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CKF 

Figure 6.5: CKF-based supervised training of RNN. 

Figure 6.5 illustrates how the CKF sequentially updates the weights from the input­

output pair during a training phase. 

Performance Metric. During the test phase, RNNs were initialized with a 20 time­

step long test sequence and allowed to run autonomously using their own output for 

the next 100 steps. To fairly compare the performance of various filter-trained RNNs, 

50 independent training runs were made for each value of a. As a performance metric, 

the ensemble-averaged cumulative absolute error, which is defined by 

50 k
1 

ek - LL ld~r) - ~r)I; k = 1, 2, ... 100,
50 

r=l i=l 

was used. 

Observations. The long-term accumulative prediction error is expected to increase 

exponentially with time for the following two reasons: 

• Chaotic systems are highly sensitive even to a slight perturbation in their present 

state, popularly referred to as the butterfly effect [90]. 
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• 	The prediction error is amplified at each time step due to the closed loop struc­

ture. 

From Figures 6.6(a) and 6.6(b), it is observed that the RNNs trained with the EKF 

and the CDKF break down at a = 2 and beyond. The CKF-trained RNN per­

forms reasonably well even when a = 3, for which the hyperbolic tangent function 

is 'severely' nonlinear (Figure 6.6( c)). The reason is that the CKF tends to find a 

better local minimum of the cost function in the weight space than the EKF or the 

CDKF. 

To visualize whether the CKF-trained RNN has captured the true dynamics of 

the chaotic time series, the phase plot- a three-dimensional diagram with its axes 

denoting the RNN outputs dk+2 , dk+l, and dk- was constructed. The desired result 

is that the RNN closely approximate the true dynamics of the Mackey-Glass system. 

Figures 6.7(a), 6.7(b) and 6.7(c) show the phase plots of the true dynamics, and the 

reconstructed dynamics when a = 1/3 and a= 3, respectively. When a= 1/3 the 

reconstructed phase plot closely resembles the true phase plot as desired; whereas it 

is not exactly the case when a = 3. 
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(a) EKF-trained RNN. (b) CDKF-trained RNN. 
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(c) CKF-trained RNN. 

Figure 6.6: Effect of nonlinearity on the autonomous-prediction performance. Nonlin­
earity is controlled by the parameter a, and the prediction performance is measured 
by the ensemble-averaged cumulative absolute error criterion (a = 1/3 (solid-thin), 
2/3 (dashed), 1 (dotted), 2 (dash-dot), and 3 (solid-thick)) 
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Figure 6.7: Comparison of two different reconstructed phase plots with the true plot 
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6.3 Model-Based Signal Processing 

In the second experiment, the empirical model of the chaotic Mackey-Glass system was 

built from the clean input-output data. In contrast, provided the noisy measurements 

of a dynamic system, the objective of this third experiment was to build a nonlinear 

empirical model of the dynamic system from noisy measurements for the following 

purposes: 

• To denoise a given test signal (signal enhancement) 

• To statistically decide whether the denoised test signal belongs to the empirical 

model (signal detection) 

In this experiment, the idea of directly training RNNs in the supervised mode must 

be abandoned because the desired (teacher) output is noisy. A similar situation 

arises in many important real-life applications such as speech signal enhancement, 

image processing, decoding of symbols transmitted through a noisy wireless channel, 

and fault diagnosis. To achieve the above objectives, a systematic filtering setup is 

important. 

Cooperative Filtering for Signal Enhancement 

The objective of cooperative filtering is to construct an empirical model using 

(pseudo-) clean data extracted from the noisy data. To accomplish this objective, 

two distinct estimators, namely, the signal estimator and the weight (parameter) 

estimator, are coupled to operate in a cooperative manner (see Figure 6.8). At 

each time instant, the weight parameters of the RNN are estimated from the latest 
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Figure 6.8: Cooperative filtering illustrating interactions between the signal estimator 
(SE) and the weight estimator (WE); the labels TU and MU denote 'Time Update' 
and 'Measurement Update', respectively) 

signal estimate, and the signal itself is estimated from the latest weight estimate, 

appropriately. 

Data. To generate a noisy time series, the chaotic Mackey-Glass time series was 

considered again, but it was corrupted by additive white Gaussian noise this time. 

The signal-to-noise ratio was fixed at 10 dB. As in the second experiment, the 

architecture of a RNN was chosen to be 7-5R-l , and a hyperbolic tangent function of 

the form cp(v) = tanh(v) was used. 

State-Space Models. The dynamic state-space model for the signal estimator can 

be written as 

(6.2) 


(6.3) 
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where 

• 	 uk = [uk uk-l ... uk_6] denotes the data window to be estimated 

• 	The state transition function 

1 	 0 0 0 
f(., ., . ) 

0 	 0 1 0 

• 	 The measurement noise ek was assumed to be ek ,...., N(O, u;), where the variance 

u; was computed from the prescribed value of the signal-to-noise ratio 

• 	The process noise Vk-l was assumed to be vk-l ,...., N(O, u;), where the variance 

u; was fixed to be 10% of u;; the final result was not sensitive to this choice of 

percentage as long as it was below 100% 

• 	 The initial signal estimate was assumed to be zero with unity covariance. 

To set the stage for the state-space model of the weight estimator, (6.3) is rewritten 

in terms of w as follows: 

Zk = uk[l] + ek 	 = Wocp(WrXk-2 + Wiuk-1) + Vk-1 + ek 

::::::: Wocp(Wrxk-2 + W{uk-llk-1) + rk, 

where the measurement noise rk ,...., N(O, u; +u;). The state-space model of the weight 
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Figure 6.9: Ensemble-averaged (over 50 runs) Mean-Squared Error (MSE) Vs. num­
ber of epochs (x- EKF, filled circle- CKF). 

estimator is therefore given by 

As shown in Figure 6.8, the cooperative filtering system functions only with inputs 

in a manner similar to unsupervised training. 

To fairly compare the performance of the CKF-trained RNN against the EKF 

and the CDKF-trained RNNs, 50 independent training and test runs were made, 

each of which consisted of 10 epochs. Each training epoch consisted of a subsequence 

of 100 examples. During the test phase (that is, at the end of each training epoch 

here), the trained RNN was presented with a test sequence of length 100. Thus, 

the ensemble-averaged (over 50 runs) MSE was computed in the course of training 

and test phases (see Figures 6.9(a) and 6.9(b)). In the course of the test phase, the 
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Figure 6.10: Representative test signal before and after cleaning (x- noisy signal (or 
measurements), dotted thin- signal after cleaning, thick- original clean signal) 

weight estimator remained turned off. As shown in Figures 6.9(a) and 6.9(b), the 

CKF improves performance by a discernable margin in both the training and test 

phases. 

Figures 6.10( a) and 6. lO(b) show the representative cleaned test signals obtained 

from the EKF and the CKF, respectively, at the end of the tenth epoch. The CKF 

significantly improves the quality of the signal as compared to the EKF. 

Signal Detection 

Motivated by the problem of detecting targets buried in sea clutter [122, 43], the 

third experiment was further augmented to deal with a signal detection scenario. To 

systematically perform signal detection, the consistency check- making a statistical 

decision whether the test signal is consistent with the trained model- based on the 

normalized innovations squared (NIS) statistic of signal estimators was introduced. 
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Figure 6.11: Normalized innovations squared (NIS) statistic Vs. test window index 
(x- EKF, filled circle- CKF, dotted thick- 953 confidence intervals). 

Under the hypothesis that the test signal is consistent, the NIS statistic, defined by 

is a realization of the chi-squared distribution with nz degrees of freedom, where nz 

is the dimension of the measurement vector [9]. 

In this experiment, the NIS statistic of the test data was computed as follows: 

The test data of length 100 was divided into a number of overlapping data windows 

of length K = 10. Two adjacent windows were separated by one time step. Thus, we 

were able to obtain 71 data windows. The ensemble-averaged (over N = 50 runs) NIS 

statistic for all these windows were then computed. For example, the NIS statistic of 

the first window was computed as 

l N=50K=10 

NK L L Ek(n). 
n=l k=l 
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To accept the hypothesis for the consistency at 95% confidence level, the confidence 

interval was computed from [72]: 

In this experiment, the confidence interval is shown by the dotted lines in Figure 6 .11. 

The desired result is that the NIS statistic lie inside those confidence intervals more 

than 95% of the time. As can be seen from Figure 6.11, the CKF provides a reliable 

detection result. The CKF result indicates that the test signal belongs to the trained 

model with 95% confidence approximately. 

Summary 

In this chapter, the formulation of the square-root cubature Kalman filter (SCKF) is 

successfully validated through three different filtering problems. In all these problems, 

the SCKF significantly outperforms other presently known nonlinear filters. 
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Chapter 7 

Synopsis and Future Research 

7.1 Synopsis 

For linear Gaussian dynamic systems, the classic Kalman filter provides the optimal 

estimate of the state in the minimum mean-squared error sense. In general, how­

ever, real-world systems are nonlinear, non-Gaussian or both. In this context, it is 

difficult to obtain a closed-form solution for the state estimate, and therefore some 

approximations must be made. Finding an approximate, yet more accurate nonlinear 

filtering solution has been the subject of intensive research since the original formu­

lation of the Kalman filter in 1960. Unfortunately, the presently known nonlinear 

filtering algorithms may experience divergence, the curse of dimensionality or both. 

In this thesis, an approximate Bayesian filter is derived for discrete-time nonlin­

ear filtering problems, which is named the cubature Kalman filter (CKF). Under the 

assumption that the predictive density of the joint state-measurement vector is Gaus­

sian, the Bayesian filter reduces to the problem of how to compute multi-dimensional 
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integrals, whose integrands are all of the form nonlinear function x Gaussian den­

sity. We are therefore emboldened to say that the cubature rule is the method of 

choice for solving this problem efficiently. Unfortunately, the cubature rule has been 

overlooked in the literature on nonlinear filters for more than four decades. In order 

to numerically compute these integrals, a third-degree spherical-radial cubature rule 

is proposed. 

A few striking properties of the CKF are summarized as follows: 

• 	 Derivative Pree: The cubature rule is derivative free. This useful property 

helps broaden the applicability of the CKF to situations where it is difficult to 

compute Jacobians and Hessians, e.g., physics-based models that include dead 

zones, look-up tables, etc. 

• 	 Efficient Cubature Rule: The third-degree cubature rule has a theoretical lower 

bound of 2n cubature points, where n is the dimension of the region of integra­

tion. The proposed spherical-radial rule also entails 2n points. It is therefore 

considered a hyper-efficient cubature rule. 

• 	 Closest Known Solution: Suppose that the statistics of the state and measure­

ment processes are known up to their second order. According to the maximum 

entropy principle also called Jaynes' principle [50], it is Gaussian that could be 

used to model those processes {including their joint density) at best. Based on 

this line of thinking, we may say that the CKF is the closest known approxi­

mation to the nonlinear Bayesian filter in a "Gaussian environment". It is also 

interesting to note that the CKF functions similarly to the Kalman filter in a 

linear setting. 
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• 	 Reasonable Computational Cost: Because the proposed cubature rule entails 2n 

cubature points, we are required to compute 2n function evaluations at each 

update cycle. Hence, when n increases, the computational cost in terms of the 

function evaluations increases linearly whereas it scales cubically in terms of 

flops, similarly to the extended Kalman filter. This suggests that the CKF re­

duces the effect of the curse of dimensionality, but, by itself, it is not a complete 

remedy for the problem of dimensionality. Because the cubature point set is 

independent of the integrands, it may be computed off-line and stored to speed 

up the filter's execution. 

It is the combination of these properties that makes the CKF an attractive choice 

for many diverse applications. For example, consider the supervised training of re­

current neural networks. For this application, the CKF offers the following benefits 

over the conventional backpropagation algorithm [5]: 

• 	The CKF converges faster. 

• 	The CKF is well-suited to handle noisy and nonstationary training data. 

• 	 Grounded in the fact that it incorporates prior information, the CKF has a 

built-in ability to regularize the solution of an ill-posed inverse problem. 

Among several members of the Bayesian filter family, the CKF has another special 

attribute- its theory is rooted in integration as opposed to the differentiation adopted 

in the EKF and its variants. This offers a couple of key benefits. First, during the 

training phase, a recurrent loop needs to be unfolded so that the unfolded network 

has a truncation depth of unity. Therefore, the burden of finding an optimal depth 

is eliminated. Second, the CKF does not suffer from the vanishing gradient problem. 
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For these reasons, the CKF may be considered as the method of choice for training 

RNNs as shown in Chapter 6. 

In general, substantial performance benefits are expected to gain by applying the 

CKF to many applications, where the EKF has been the method of choice in the 

past, without significantly increasing the computational cost. 

7.2 Directions for Future Work 

There is much room for further work on problems related to nonlinear estimation. 

The theory of cubature Kalman filtering may provide a basis for contributions. A 

number of interesting problems to be treated in the years ahead include: 

• Nonlinear smoothing 

• Extension to deal with non-Gaussianity 

• Robust nonlinear filtering 

• Stability analysis 

• CKF-based cooperative filtering as a substitute for the EM algorithm 

• CKF-integrated control 

7.2.1 Nonlinear Smoothing 

The next logical step for nonlinear filtering is to develop nonlinear smoothing algo­

rithms. Smoothing is the estimation of the state at any time within a given window 

of measurements. For linear-Gaussian systems, the optimal smoothing density is 
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tractable [97, 33]. For nonlinear systems, however, the situation is different- only the 

theoretically relevant equations to the smoothing density exist [71]. 

Recall that the CKF is built on the following three extremely powerful ideas: 

• 	 Bayes' rule; 

• 	 the statistical properties of the innovations process; and 

• 	 the cubature rule for numerical integrations. 

Now the question becomes: How shall we exploit these ideas to develop a nonlinear 

smoother? It is hoped that the conditional densities arising in the nonlinear smoother 

could well be approximated by Gaussian. Consequently, the proposed cubature rule 

may be used to numerically compute their moments. For the moment, let the name 

of the resulting smoother be the cubature Kalman smoother (CKS). The development 

of the CKS will have to address two significant issues: 

• 	 It is not clear yet how the properties of the innovations process could fully be 

exploited. 

• To improve 	the numerical stability, the CKS need to be extended so that it 

operates on the square-root covariances only. 

On the practical side, the CKS may, like the CKF, find use in many applications. 

Specifically, I would like to apply the CKS to the following two problems: 

• 	 Supervised Training of RNNs: In Chapter 6, the epoch-based training is used to 

build a RNN-based empirical model. This conventional training method may be 

replaced with a repetitive filtering-smoothing type procedure. This procedure 

will traverse through the data a number of times and move forward as a new set 
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of data is presented. This new procedure is expected to outperform the ad-hoc 

epoch-based training in terms of accuracy and efficiency. 

• 	 Optimal Control: Dynamic programming often arises in optimal control prob­

lems [77]. However, the closed-form solution to dynamic programming is inher­

ently burdensome. The CKS may be viewed as a potential approximate solution 

to dynamic programming. 

7.2.2 Extension to Deal with Non-Gaussianity 

We have found that the CKF is a good candidate to tackle nonlinear Gaussian filtering 

problems. In order to facilitate its use in a non-Gaussian environment, it could also 

be expanded through the Gaussian-mixture approximation. The reason is that any 

non-Gaussian noise distribution can be expressed as, or approximated sufficiently well 

by, a finite sum of Gaussian densities. For an exposition of this similar idea using the 

Gauss-Hermite quadrature filter, see [6]. As outlined in Chapter 2, however, we could 

expect two serious limitations associated with this Gaussian mixture-based filtering 

approach, namely, degeneration and the growing-memory problem. Of these, the 

problem of degeneration is more serious, and should be the focus of further research.1 

7.2.3 Robust Filtering 

The CKF is built under the assumption that a well-defined dynamic state-space model 

exists. Unfortunately, this assumption limits the utility of the CKF. In practice, 

uncertainties arise in many forms including 

1For linear filtering in a non-Gaussian noise environment, two different methods, namely, the 
Masreliez filter [76], and the Kalman-Levy filter [109], have been proposed in the literature. 
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• Incorrect or incomplete assumptions about the initial conditions. 

• System model mismatch. 

• Uncertainty in the noise models 

Of these, the most commonly encountered form of uncertainty results from poor or in­

complete knowledge of the noise statistics [42]. Usually, the process and measurement 

noise sources are assumed to be zero-mean Gaussians, and as a result, the remaining 

task involves finding more accurate estimates of the noise covariances. The measure­

ment noise covariance is relatively easy to define because it explicitly depends on the 

precision of a measuring instrument. However, the process noise covariance may be 

more difficult to define as it must accurately account for random disturbances of a 

system in operation, which are often non-stationary. 

A logical approach to tackling these uncertainties is to develop a more robust 

design of the CKF. The robust cubature filter must ensure that the error signals 

are bounded within some tolerance limits despite the effects of uncertainties on the 

system. In the past, researchers have proposed a number of solutions to the various 

uncertainties that can occur in different contexts. They include: 

• H 00 filters [104]; 

• Variable structure filters combining the Kalman filter with variable structure 

control [42] 

These algorithms assume the modelled systems to be linear. Making use of these 

robust linear filtering techniques for nonlinear settings would therefore be of practical 

significance. 
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7.2.4 Stability Analysis 

Another issue that deserves a future treatment lies in the stability analysis of the 

CKF. The stability analysis is of practical interest for the following reasons [98]: 

• 	 It suggests under what conditions the estimation errors are bounded; hence, 

we may predict in advance if the CKF would break down for a given problem 

before committing it to hardware. 

• 	It helps to take precautious measures against potential blow ups. 

The stability analysis for a general nonlinear setup should include: 

• Numerical errors stemming from the use of the cubature rule. 

• 	 Errors due to the approximation of a possibly non-Gaussian posterior density 

by a Gaussian density. 

• 	The cumulative effect of errors when propagated recursively over time. 

7.2.5 CKF-based Cooperative Filtering and EM 

The Expectation-Maximization (EM) algorithm is a well-known method for learning 

the parameters of a probabilistic model, where the model depends on hidden state 

(latent) variables [78, 28]. This learning scenario arises in many applications that 

include data clustering in machine learning, medical image reconstruction, and com­

puter vision. As its name suggests, the EM algorithm alternates between two steps­

(i) The E-step, in which the marginal likelihood function- the conditional probability 

density of the hidden states (also called the latent variables) given the parameters­

is updated. (ii) The M-step, in which the parameters of interest are determined by 
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maximizing the marginal likelihood. These two steps are cooperatively updated by 

feeding their respective latest estimates as the other's input. At the end of a number 

of iterations of the EM algorithm, we have a probability density of the state variables 

together with a point estimate for the parameters. 

The EM algorithm with these two interacting steps is comparable to what is hap­

pening inside cooperative filtering with the signal and weight estimators as described 

in Chapter 6. However, a distinguishing feature of the EM algorithm is that it is not 

fully Bayesian, whereas cooperative filtering takes a fully Bayesian approach. Coop­

erative filtering operates on the probability densities of the state variables as well as 

the parameters. It is therefore hoped that the EM algorithm could be improved by 

taking either one of the following two steps: 

• Replacing the E-step or the M-step of the EM algorithm with the CKF. 

• Replacing the whole EM algorithm with the CKF-based cooperative filtering 

algorithm. 

The rationale for the claim of improved accuracy is attributed to the following fact: 

It is well-known in the estimation community that the parameters should be treated 

as some random variables instead of some unknown numbers because this idea would 

allow the use of Bayes' rule in incorporating 'prior' knowledge of the parameters (see 

also [9], pp. 105-106)(see also [9], pp. 105-106). Future research should attempt to 

test this idea against a number of challenging problems. 

7.2.6 CKF-Integrated Control Algorithms 

Many common industrial processes include two key elements: the observer and the 

controller [102, 21]. For linear closed-loop systems to achieve stability, the observer 
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and the controller can be designed independently due to the well-known separation 

principle. Since the system state is typically unobservable, the observer is employed 

to provide an estimate of the unobservable state and the associated confidence on this 

estimate. The controller then uses the observer's state estimate to generate a control 

input (see Figure 2.2). 

For nonlinear systems, the situation is very different. The separation principle 

does not hold in general. Of course, the controller performance is intimately linked 

to the accuracy of the state estimate. The conventional nonlinear state observers 

include the EKF, the extended Luenberger observer and the nonlinear moving horizon 

estimator. Future research should investigate the impact of the CKF against these 

existing observers. 
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Appendix A 

Cubature Kalman Filtering for 

Continuous-Discrete Systems 

In this appendix, the CKF is extended to deal with a state estimation problem whose 

state-space model is described by a continuous-time process equation and a discrete­

time measurement equation. In many practical problems, the process equation is often 

derived from the underlying physics of a dynamic system, and expressed in the form 

of a set of differential equations, e.g., the motion of a body as it enters the atmosphere 

from a high altitude [8]. Since the sensors are digital devices, the measurements are 

available at discrete times. In this 'hybrid' setup, we have a state-space model with a 

continuous-time process equation and a discrete-time measurement equation. In the 

sequel, a more accurate time update is therefore derived whereas the measurement 

update remains the same as described for the standard CKF [3]. 
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Time Update 

Consider a state process generated from 

(A.1) 

where Xt E Rn is the state of the system to be estimated at time t; f : Rn -t Rn 

is some known function; f3t denotes the standard Brownian motion with increments 

df3t being independent of Xt; and Q is the diffusion matrix. It is known that the 

temporal evolution of the probability density of the state at time t obeys the famous 

Fokker-Planck equation, also called Kolmogorov's forward equation [51]. A closed­

form solution to the Fokker-Planck equation is difficult to obtain in general, and 

numerical methods are often the only avenue. 

A continuous-time process equation can be treated to be a limiting case of its 

discrete-time counterpart with substantially small time intervals between successive 

states. Because the process equation in (A.l) holds in the sense of Ito [87], it is 

rewritten as 

Xt Xs + lt f (x,. )dr +lt v'Qd/3T 

~ X8 + lt f (x,. )dr + v'Q(f3t - f3s), (A.2) 

where 0 ::; s ::; t, and (t - s) is assumed to be 'small'. By numerically integrating 

over a small interval of 8, we get 

(A.3) 
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where 

• 	 The mapping function F(.) can be obtained from the Euler, Milhstein, or the 

Runge-Kutta approximation method [64]. Suppose that the forth-order Runge­

Kutta method is employed to numerically integrate (A.2) over the interval 6. 

In this case, we have 

where 

Ki f(xk) 

K2 
0 

f(xk + 
2

K1) 

K3 
0 

f(xk + 2K2) 

K4 f(xk + 0K3) 

• 	 The last term on the right hand side of (A.3) is due to the definition of Ito's 

stochastic integral. 

• 	Qk = (/3k+o - /3k) is the standard Gaussian random variable. 

To predict the state more accurately before receiving the measurement at time 

(k + 1), several integration steps are performed within the measurement-time inter­

val [k, k + 1]. The time update steps of the continuous-discrete time filter are now 

described as follows: 
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Time Update: From time step k to (k + 1) 

1. Divide the time interval [k, k + 1] into n equal subintervals, each of length 8. 

2. 	 Given xk "'N(xklk, Pklk) at time t = k, recursively estimate the predicted state 

at the i-th intermediate time step as (i = 1, 2, ... n): 

lE[xk+iolDk] 


~ { F(x)N(x; xk+(i-1)olk' Pk+(i-l)olk)dx (A.4)
}R_nx 

3. Recursively estimate the corresponding predicted error covariance (i = 1, 2, ... n): 

Pk+iolk lE[(xk+w -X.k+io)(xk+w - Xk+io)TIDk] 

~ 8Q + f (F(x) - Xk+io)(F(x) - Xk+wf
}R.nx 

x N(x; Xk+(i-l)olk' Pk+(i-l)olk)dx. (A.5) 

To numerically integrate (A.4)-(A.5), the third-degree spherical-radial cubature 

rule may be used. When i = n or at time ( k + 1), the Gaussian predicted state 

variable with mean xk+llk and covariance Pk+llk is obtained, which is finally updated 

using the measurement Zk+i according to the measurement update of the standard 

CKF. 
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Appendix B 

Comparison of UKF with CKF 

Of all innovations-based nonlinear Bayesian filters, it is the unscented Kalman filter 

(UKF) [52, 53], which shares a number of important common properties with the 

CKF, e.g., a set of deterministic weighted points, a weighted sum of these points for 

computing means and covariances, etc. The purpose of this appendix therefore is 

to compare the UKF with the CKF. To elaborate the approach taken in the UKF, 

an n-dimensional random variable x having a symmetric prior density II(x) with the 

meanµ and covariance E is considered. Obviously, the Gaussian is a special case of 

a symmetric density. Then a set of (2n + 1) sample points and weights, {Xi, wi}i~0 

are chosen to satisfy the following moment-matching conditions: 

2n 

Lwi(Xi - µx) (Xi - µx)T E. 
i=O 
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Among many candidate sets, one symmetrically distributed sample point set, here­

after called the sigma-point set, is picked up as follows: 

Xo=µ, Wo 
/'i, 

n+K 
1 

xi=µ+ (y'(n + K)E)i, wi 
2(n + K) 

1 
Xn+i = µ - (J(n + K)E)i, Wn+i 2(n+K)' 

where i = 1, 2, ... n and the i-th column of a matrix A is denoted by (A)i; the 

parameter K is used to scale the spread of sigma points from the prior mean µ, hence 

the name scaling parameter. Due to its symmetry, the sigma-point set matches the 

skewness. Moreover, to capture the kurtosis of the prior density closely, it is suggested 

that K be fixed at (3-n) (Appendix I of [52],[53]). This choice preserves moments up 

to the fifth order exactly in the simple one-dimensional Gaussian case. In summary, 

the sigma-point set is chosen to capture a number of low-order moments of the prior 

density p(x) as correctly as possible. 

Then the unscented transformation is introduced as a method of computing poste­

rior statistics of y E Rm that are related to x by a nonlinear transformation y = f ( x). 

It approximates the mean and the covariance of y by a weighted sum of projected 
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sigma points in the Rm space, as shown by 

lE[y] 1n f(x)II(x)dx 

2n 

~ LwiYi (B.1) 

cov[y] 

i=O

1n (f(x) - lE[y])(f(x) - lE[y]fII(x)dx 

2n 

~ Lwi(Yi - lE[y])(Yi - JE[y]f, (B.2) 
i=O 

where Yi = f(Xi), i = 0, 1, ... 2n. The unscented transformation approximating the 

mean and the covariance, in particular, is correct up to a p-th order nonlinearity 

when the sigma-point set correctly captures the first p order prior moments. This 

can be proved by comparing the Taylor expansion of the nonlinear function f(x) up 

to p-order terms and the statistics computed by the unscented transformation; here, 

f(x) is expanded about the true (prior) meanµ, which is related to x via x = µ + e 

with the perturbation error e "'N(O, L:) [52]. 

The UKF and the CKF share a common property- both use a set of weighted 

symmetric points. Figure B.1, shows the spread of the weighted sigma-point set 

and the proposed cubature-point set, respectively in the two-dimensional space; the 

points and their weights are denoted by the location and the height of the stems, 

respectively. However, as shown in Figure B.l, for the sigma-point set the stem at 

the center is highly significant as it carries more weight, whereas the cubature-point 

set does not have a stem at the center. Hence, they are fundamentally different. Of 

course, the cubature-point set built into the new CKF is determined with a totally 

different philosophy in mind: 
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(a) Sigma point set for the UKF 	 (b) Third-degree spherical-radial cubature 
point set for the CKF 

Figure B.l: Two different kinds of point sets distributed in the two-dimensional space 

• 	The prior statistic of x is assumed to be Gaussian instead of a more general 

symmetric density. 

• 	 Subsequently, the problem of how to compute the posterior statistic of y more 

accurately is tackled, specifically the first two-order moments of y. 

In this line of thinking, the solution for the problem at hand boils down to the efficient 

third-order cubature rule. Unlike the sigma-point approach, the derivation of a point 

set for the prior density, and the computation of posterior statistics are not treated 

as two disjoint problems. 

Moreover, suppose that a given function f (.) can be written as a linear combination 

of monomials of degree at most three and some other higher odd-degree monomials. 

Then it is guaranteed that the error incurred in computing the integral off(.) with 

respect to a Gaussian weighting function using the cubature rule vanishes. As in the 

sigma-point approach, the function f (.) does not need to be well approximated by the 

Taylor polynomial about a prior mean. 
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Finally, the following limitations of the sigma-point set built into the UKF are 

mentioned, which are not present in the cubature-point set built into the CKF: 

• 	 Numerical inaccuracy. Traditionally, there has been more emphasis on cuba­

ture rules having desirable numerical quality criterion than on the efficiency. 

It is proven that the cubature rule implemented in a finite-precision arithmetic 

machine introduces a large amount of roundoff errors when the stability factor 

defined by ~il~;I, is larger than unity [115, 36]. Let us look at the formu­

las (B.1)-(B.2) in the unscented transformation from the numerical integration 

perspective as described in [69, 48]. In this case, when n goes beyond three, 

we have :L;,:0 lwi I = (2
; - 1) and :L;,:0 wi = 1. Hence, the stability factor 

scales linearly with n, thereby inducing significant perturbations in numerical 

estimates for moment integrals. 

• 	 Unavailability of a square-root solution. The square-rooting operation (or the 

Cholesky factorization) on the covariance matrices are performed as the first 

step of both the time and measurement updates in each cycle of both the UKF 

and the CKF. From the implementation point of view, this is one of the most nu­

merically sensitive operations. In a square-root filter, this is completely avoided 

as described in Chapter 5. Unfortunately, it may be impossible for any one to 

formulate a square-root UKF that enjoys numerical advantages similar to the 

SCKF. The reason is that when a negatively weighted sigma point is used to up­

date any matrix, the resulting down-dated matrix may possibly be non-positive 

definite. Hence, errors may crop up when executing the 'pseudo' square-root 

version of the UKF in a limited word-length system (see the pseudo square-root 

version of the UKF in [121]). 
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• 	 Filter instability. Given no computational errors due to limited word length, the 

presence of the negative weight in the sigma point set may still prohibit us from 

writing a covariance matrix P in a squared form such that P = S ffI'. To state it 

in another way, the UKF-computed covariance matrix is not always guaranteed 

to be positive definite. Hence, the unavailability of a square-root covariance 

causes the UKF to halt its operation. This is disastrous in practical terms. To 

improve stability, some heuristic solutions such as fudging the covariance matrix 

artificially (Appendix III of [52]) and the scaled unscented transformation [54] 

are proposed. 

Note that the parameter "' of the sigma-point set may be forced to be zero to match 

the cubature-point set. Unfortunately, in the past there has been no mathematical 

justification or motivation for choosing"' to be zero for its associated interpretabilities. 

Instead, more secondary scaling parameters apart from "' have been introduced in an 

attempt to incorporate knowledge of prior statistics in the unscented transformation 

[54]. 

To sum up, the cubature approach is more accurate, and more principled in math­

ematical terms than the sigma-point approach. 
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Appendix C 

Particle Filtering: A 

Moment-Matching Perspective 

The purpose of this appendix is to prove with mathematical rigor that particle filters 

fit into the moment-matching approach. Because particle filtering is rooted in Monte 

Carlo integration, first, the basic theory of Monte Carlo integration is briefly reviewed. 

Suppose that we would like to empirically find the expected value of some function 

<I>(x) written as 

lE[<I>(x)] = <I>(x)p(x)dx, (C.1)L 

where p(x) is the probability density function of the random variable x. Assume that 

an ensemble with a set of N i.i.d samples {xi, i = 1, 2, ... N} can be generated from 

p(x). In this case, p(x) is approximated in a discrete form as 

1 N . 
p(x) ~ N L6(x- xi), (C.2) 

i=l 
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where 8(.) is the Dirac delta function. Substituting (C.2) into (C.l) we have the 

Monte Carlo empirical estimate 

1 { N 
IE[<P(x)] = N }:;, <P(x) L 8(x - xi)dx 

x i=l 

= ~t 1<P(x)8(x - xi)dx 
i=l x 

1 N . 

= N L<l>(x'). (C.3) 
i=l 

The error of the Monte Carlo estimate e = (JE[.] - IE[.]) is of the order 0(--JN) meaning 

that the error reduces as the number of samples N increases. Note that the function 

<P(x) becomes x and xxT when we compute the mean and covariance of x, respectively. 

Now, let us return to the particle filtering theory. Suppose that a set of equally 

weighted samples or particles {xl_1, i = 1, 2, ... N} is available from the (old) poste­

rior density at time (k-1), p(xk-ilDk-1). Particle filters essentially propagate these 

particles through the optimal Bayesian filtering solution (2.3)-(2.6), and obtain a new 

set of particles {xl, i = 1, 2, ... N} that approximates the (new) posterior density 

at time k, p(xklDk)· For simplicity, the state-space model (2.1)-(2.2) is considered 

without control inputs. Next, the particle filtering mechanism is discussed under two 

basic update steps: the time update and the measurement update. 

Time Update 

In this first update step, the predictive density is written as (see (2.3)): 

(C.4) 
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The formula that computes any moment of the predictive state variable is written as 

(C.5) 


Substituting (C.4) into (C.5), and using Fubini's theorem, we get 

Because an equally weighted set of samples {xL1, i = 1, 2, ... N}, approximating 

the old posterior density p(xk-1'Dk_1), is available, using the concept of Monte Carlo 

integration, we write 

where the state-transition density 

Because the process noise term Qk-l is assumed to be independent of Dk-1' we have 

(C.6) 

Moreover, given xL1 and Qk-l, the state Xk is deterministic due to the state equation 

(2.1). Hence, we write 

(C.7) 
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Substituting ( C. 7) into ( C.6) yields 

(C.8) 

Suppose a set of i.i.d samples {q{_1, j = 1,2, ... M} can be drawn from the noise 

density p(Clk-1). Equation ( C .8) is further simplified as 

l M N . 

~ MN LL ~(f(xL1) +qL1) 
j=l i=l 

l MN 

= MNL~(xk), (C.9) 
s=l 

where xk = f(xi_ 1) + q{_ 1. A comparison of (C.5) with (C.9) suggests that the 

equally weighted set of samples { x~, s = 1, 2, ... MN} can be thought of as a set of 

samples drawn from the predictive density p(xklDk-1). 

Measurement Update 

In the measurement update, using Bayes' rule, the posterior density is written as (see 

(2.6)): 

(C.10) 
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where, for the measurement equation (2.2), the measurement-likelihood function is 

given by 

The formula that computes any moment of the posterior state variable is given by 

(C.11) 


Substituting (C.10) into (C.11) yields 

J<I>(xk).C(zklxk)p(xklDk-1)dxk 
J.C(zklxk)p(xklDk-1)dxk 

Because the set of samples { xA:, s = 1, 2, ... MN} are available from the predictive 

density, due to Monte Carlo integration, we write 

MN

L ws<I>(xA:), (C.12) 
s=l 

where the normalized weight 

ws 
I:!~ .C(zklxk) 

s=l,2, ... MN.
N(zk; h(xA:), Rk) 
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•Stage i • • • •\ 

Stage ii 

• • •• • [!] 

Stage iii • 

Stage iv 

Figure C.l: Propagation of particles in the one-dimensional state-space through four 
different stages. Stage i: Particles represent the posterior density at time (k-1) ; Stage 
ii: Particles represent the predictive density at time k after the time-update step; 
Stage iii: Particles represent the posterior density at time k after the measurement­
update step; Stage iv: Particles represent the posterior density at time k after resam­
pling. The size of a circle amounts to the corresponding weight of that particle 

A comparison of (C.12) with (C.11) suggests that the weighted sample set {(xA:, W 8
) , s = 

1, 2, .. . MN} can be thought of as a sample set drawn from the posterior density 

To put pieces together, in each recursion cycle, the set of samples {xk, s = 

1, 2, ... MN} when carrying equal weights of JN approximates the predictive den­

sity p(xklDk-1); whereas it approximates the posterior density p(xk1 Dk_ 1) when the 

set of weights {W 8
, s = 1, 2, .. . MN} are associated appropriately. In choosing these 
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two sets of weighted samples, the central idea is this: They must tend to accurately 

match as many low-order moments of the predictive and posterior densities as possi­

ble. Figure C.l illustrates the key steps involved in particle filtering. Resampling is 

appended as the final step (stage iv) of each recursion cycle to mitigate the degener­

ation of weighted samples. 

Remarks 

• 	 When propagating a set of weighted samples over time, particle filters suffer 

from the growing-memory problem. To avoid this issue, Mis fixed at unity. To 

be more specific, each propagated particle is perturbed by a randomly drawn 

process noise sample in the time-update step. 

• In the measurement update, to numerically compute any moment of the poste­

rior state variable, samples from the predictive density instead of the posterior 

density are typically used. This is therefore comparable to the mechanism of 

importance sampling. However, it should be noted the purpose of importance 

sampling, which is to reduce the variance of an estimate, is not achieved in 

particle filters. The reason is that the predictive density carries less accurate 

information about the current state than the posterior density. 
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