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ABSTRACT 

This project studies the applicability of two 

ordination methods, principle component analysis and 

correspondence analysis, and one classification method, 

mode analysis, for a specific ecological data set. The 

differences between techniques are discussed and the 

results are compared. 
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1. INTRODUCTION 

Multivariate statistical technique seeks a method 

of reducing the dimensionality of multivariate data in 

order to give the investigator a much simpler and clearer 

data structure to examine and interpret. In certain ecolo­

gical studies, the data come in the form of sampled sites 

(plots), where each site is measured by the number or 

coverage or other ecological measurements of a set of 

species which appeared in it. The number of sites and the 

number of species sampled usually are very large. By using 

subjective judgement, anexperienced ecologist may identify 

easily any obvious pattern response of vegetation along 

some environmental influence such as climate, topography, 

water supply, soil, etc. But for the more detailed analysis 

in order to reveal trend and classes of variation in. the 

vegetation, an objective and scientific data analysis 

technique is needed. Recently, the multivariate statistical 

tech!1ique has been studied as a powerful and potential 

methodology in the field of ecology (Kershaw 1973 and 

Orloci 1975). 

This project studies the applicability of two 

ordination methods, principle component analysis and 

correspondence analysis, and one classification method, 

mode ana1ysis, for a specific set of ecological data. 
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The data have been analysed by Dr. Kershaw (1968b). One of his 

methodsfor analysis is the principle component analysis with ~he 

Domin scale measurement. Firstly, he classified the sample sites 

by classical subjective Braun-Blanquet association analysis 

(Blaun-Blanquet 1951) into eighteen associations. Then, he used 

these associations as a basis of comparison for the results of 

principle component analysis and other analyses. In this project, 

I applied the principle component analysis to the frequency 

measurement data instead of the Domin scale measurement data to 

examine the different results. Meanwhile, the principle component 

analysis was carried out by both correlation matrix and covariance 

matrix to compare the results. Transformed data were also used in 

the analyses. 

Correspondence analysis has been proposed recently 

(Hill 1973) as an ordination methodology preferable to principle 

component analysis. Thus I studied this technique and used it 

on the data set to examine its properties and compare it with the 

principle component analysis. Mode analysis is one of the cluster 

analysis techniques for finding the natural grouping and is used 

here to examine its performance. The first few components extracted 

by principle component analysis and correspondence analysis are 

used as input data for the mode analysis as well as original data 

in order to compare the effect of the reduction of dimensionality. 

Since there are numerous multivariate statistical techniques 

available for different purposes and for a variety of sampling 



methods, these three techniques in no way exhaust the techniques 

nor are they necessarily the best ones. 
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The purpose of this project is to clarify the properties and 

the usage of these three techniques. In this project, the basis 

used for evaluation and comparison of the different results is the 

Blaun-Blanquet association analysis. Since I am not familiar with 

the ecological context, the project will concentrate on demonstrating 

the use of these techniques but will not investigate critically the 

ecological meaning of the results. 



2. DATA 

The ecological data which are employed in this project 

are part of Dr. K. A. Kershaw's Nigerian savanna vegetation data. 

The data were sampled from Zaria province, Nigeria, and the detailed 

sampling procedure was described by Dr. Kershaw (1968a). There 

are four hundred and thirty-three sample sites and the area of each 

site is 100x400 feet. The sample sites were partially randomised 

with respect to obvious topographical fieatures. For each sample 

site, the wood species were included in the enumeration by both 

the Domin scale measurement and the frequency measurement. The 

frequency measurement is the actual count of the number of occurrences 

of each species within each of the sample sites. The Domin scale is 

a simplified representation of the abundance of each species within 

each sample site. Its eleven scales are defined as follows: 

Domin scale 

Cover about 100 percent 10 
Cover> 75 percent 9 
Cover 50-75 percent 8 
Cover 33-50 percent 7 
Cover 25-33 percent 6 
Abundant, cover about 20 percent 5 
Abundant, cover about 5 percent 4 
Scattered, cover small 3 
Very scattered, cover small 2 
Scarce, cover small 1 
Isolated, cover small x 



In this project, I used one hundred and ninety-eight sample 

sites as the input data, which were selected randomly by Dr. Kershaw 

from the original four hundred and thirty-three sample sites as 

a convenient size for analysis. Each site was measured by the 

number of occurences of each of fifty wood species. The species 

n~mes are in Appendix A. Appendix B is the data list of the first 

five sample sites. 

By referring to Dr. Kershaw's original sample note-book and 

the paper he published on the results of association analysis 

(Kershaw 1968a), firstly, I identified the associations of the one 

hundred and ninety-eight sample sites and then used it as the 

basis for later comparisons of the different results of analyses. 

There are four sample sites, site 42, 43, 57, and 58, in the one 

hundred and ninety-eight sites which do not bel~ng to any of the 

associations, and the first association does not contain any of the 

one-hundred and ninety-eight sample sites. The one hundred and 

ninety-eight sites, therefore, are divided into eighteen groups. 

One group is the four sites mentioned above and the rest are the 

seventeen associations which are listed in Appendix C. 
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The first three associations have relatively common species 

present in each sample sites, and the dominant species is 

Dichrostrachys. Associations 4 to 8 have the common dominant species 

Isoberlinia doka. Associations 9 to 13 have Monotes as the common 

preeminent species. Associations 14, 15, 16 have Detarium and 
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Gardenia as the common species. The term Braun-Blanquet association 

will be used to refer these pre-determined associations in the 

subsequent sections. 



3. ME'I'HODS 

3.1 ;?rinciple Component Analysis 

Consider a p by n data matrixz, representing n 

observations of a p-dimensional variable (X1 , x2 , ••• , 

Let S denote the sample covariance matrix. 
~ 

Principle 

component analysis seeks an orthogonal transformation of 

the original variable to a set of new variables, which 

are called the principle components (Y1 , Y2 , ••• , YP)' 

such that 

Y =AX - - ,..... 
From the orthogonal constraint, the coefficient 

matrix A satisfies ATA = A AT = I. If we arrange the new 
.,,,,.., ,,..,,,, ___, -- ,,.J ..-" 

variable set by their variance in descending order, then 

the jth principle component of the sample observations is 

the linear compound 

Y. = 
J 

a .X 
PJ p 

The coefficients of this linear compound are the elements 

of the standardized eigen vector of the sample covariance 

matrix § corresponding to the jth largest eigen value cj. 

The variance of the jth component Yj is equnl to cj' and 

the total system's variance is c
1 

+ c2 + ••• + cp =trace§. 

Since matrix § is non-negative definite, the eigen 

-value'5 are all real and non-negative. This transformation 

reconstructs the original dispersion matrix by a new 



set of uncorrelated variables and we may consider them 

separately. In geometric representation, the principle 

components are the new variables specified by the axes of 

a rigid rotation of the original coordinate system into 

an orientation corresponding to the directions of maximum 

variance in the sample scatter configuration. These 

component axes are the least-square solutions of the best 

:fitted lines for the sample. The complete mathematical 

treatment and proofs can be found in most of the multi­

variate textbooks.(Cf. Morrison, chap. 7, 1967; Kendall 

& Stuart, chap. 43, 1967). 
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The main reason for the above trans~ormation is to 

try to find a means to display the population structure 

as economically as possible. If after completing the 

transformation, the first m components take account of 

most of the system's variation, then it may be reasonable 

to discard the remainder and hence reduce the number of 

variables to be considered. The relative contribution 

of the jth component toward the total variation can be 

measured by 

c. 
1 

trace S - • 

Bartlett (1954) developed a testing scheme for deciding 

on the number of components to be preserved for the 

multinormal observations. In practice, i:f the first four 
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or five components do not take account of a large portion 

of the system's variation, then it is very hard to interpret 

the result and the value of the transformation will be 

in doubt. 

Sometimes the components are extracted from the 

correlation matrix instead of the covariance matrix. In 

this case, the sum of the eigen values will be equal to 

the number of dimension p. The general rules for the 

choice of which matrix to be used in the principle com­

ponent analysis are: If the responses are in .widely 

different measurement uni ts, the correlation matrix 

should be employed. Otherwise the covariance matrix 

generally is more meaningful and has g~eater statistical 

appeal. Principle component anal,ysis is the most popular 

multivariate statistical technique and has applications 

in many f'ield.(Cf. Kendall 1939 in Agriculture; Craddock 

1964 in Meteorology). For some applications in Ecology, 

it has been used by Orloci (1966) and Kershaw (1968 b). 

3.2 Correspondence Analvsis 

This technique was proposed by Dr. M.O. Hill 

(1973, 1974) as a extention of' Whittaker's gradient 

analysis (1967). Conside:- a p by n data matrix X, where ....,, 

the elements x .. represent, for example, the number of occurrences 
l,'} 

of s.pecies i at site j U=l~ ... ,p; j=l, .. :, n). Whittaker 1 s gradient 

analysis assumes that there is a well-marked .phy$cial gradient, 



and assigns scores tj(j=l, 2, ••• , n) comf'orming with 

the gradient to each of the n sites. For each species, 

one calculates the mean site scores si(i=l, ••• , p) to 

indicate its preference 

S· = It .x .. /x. , 
1 . j J 1J 1. 

where xi. is the row total 

The derived species scores then are used to calculate a 
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new set of the site scores and get the gradient analysis 

result t'. of the sites 
J 

t' . = rs. x .. /x · · 
J i 1 1J • J ' 

where x · is the column total .J 

Hill suggested th9 :i-·eciprocal aYerage procedure 

which iterates the above procedure successively 

by replacing the old score.s with new ones, It can be 

proved (Hill 1974) by matrix algebra that this procedure 

will converge and is equivalent to a singular value 

decomposition problem·as follows. 

Define _B:diag(xi.) and f:diag(x.j), then (p, ~' ,!_) 

is a solution of' correspondence analysis of' ! if and only 

if 

' 
or 
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Where Rt takes the square-root of.]. solving for~' we -
have 

.l.. 
R2 s is the eigen vector of a non-negative definite matrix _,,...,, 
of the form~ §T, P

2 is the eigenvalue of the solution. 

The solution of the axes will be ordered by their eigen-

values. The unit vector corresponds to the eigenvalue 

1 and is the trivial solution o:f the system. 

In the same paper, Hill also provea several 

properties of correspondence analysis: that it is 

equivalent to Fisher's (1940) canonical analysis of the 

contingency table where p is the correlation of ~ and 1 

with respect to matrix X, and t t.at it is equivalent also 
~ 

to a special case of Hotelling's canonical correlation 

analysis. He indicated that correspondence analysis is 

a potential multivariate technique for ecological data. 

It also has several advantages over principle component 

analysis. Correspondence analysis uses a good species 

ordination to derive the site ordination which closely 

resembles that obtained by principle component analysis 

with standardized data. But for unstandardized data, 

principle component analysis tends to emphasize species­

rich sites and lead to a less satisfactory species 

ordination. Another difference between these two tech-

niques is that the axes derived f'rom the correspondence 
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analysis are not orthogonal to each other, which probably 

con£orms more with the ecological gradients where they 

are seldom orthogonal to each other. 

3. 3 !~ode Analysis 

For a multivariate p by n data matrix, where p 

is the number of variables and n is the sample size, 

cluster analysis attempts to devise a classification 

scheme for grouping the n individuals into g group, where 

the individuals assigned to the same group are "similar" 

but individuals from various groups are "different". 

The number of groups g and the characteristic of the group 

are to be determined by the classification scheme. 

There are a number of dif~f'erent techniques in 

cluster analysis (Everitt 1974), each having advamtages 

and disadvante.ges depending on the kind of data and the purpose of 

the analysis. Mode analysis (Wishart 1969a) belongs to one 

of the hierarchical clustering tecr..niques. It was developed 

to avoid the "chaining effect" of the nes.rest neighbor method 

(Williams, Lambert and Lar~ce, 1966) ac.d to detect the natural 

• .p t'-' . d. . 1 grouping O..L 1~e in i v·iai.;.a s. The procedure is :firstly to 

decide whether the data are multimodal. In the single 

variate case, this can be done by constructing a histogram 

and removing the low :frequency regions (saddle regions) 

temporarily and assigning a group to each of the modal regions. 

Each point whic~ falls in·a saddle region is then 
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assigned ·. to its nearest mode. But for the p-variate case, 

the construction of a histogram of this kind involves too 

man.y calculations. Wishart (1969a) suggested the use of the 

spherical regions instead of the rectanguloid regions to sim­

plify the calculation. His algorithm is as follows. 

(i) Select the frequency (density) threshold k, 

compute the similarity matrix for the individuals 

and determine the distance PD from each point to 

its kth nearest point. (The distance is calculated 

in the similarity matrix.) 

(ii) Order the distances PD so that the smallest is 

first and use KP as an index. KP defines the 

order in which the data points become dense; 

point KP(l) has the smallest kth. distance PD(l) 

and is first to become dense when PMIN=FD(l), 

point KP(2) is second at PD(2), and so on. 

(iii) Select distance thresholds PMIN from successive 

PD values, initialising a new dense point at each 

cycle. There are three possible fusion phases as 

the second and each subsequent dense point is 

introduced. 

(a) The new point does not lie within PMIN of 

another dense po:i.nt, then it _initialises 

a new group. 

(b) The point lies within PMIN of dense points 
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:from one group only. The point, therefore, 

is fused directly to that group. 

(c) The point falls within PMIN of dense points 

from separate group. Then the groups concerned 

are fused. 

(iv) A note must be kept of the nearest-neighbor distance 

DMIN between dense points of different groups. 

When PMIN exceeds DTuITN, immediately the two groups 

separated by DI~ITN is fused. 

At each intermediate cycle of the above algorithm, there 

are different sets of groups classified, except the first and the 

last cycles where only one cluster is defined. Wishart suggested 

that the solution with the largest number of groups should be 

considered as the most significant and hence adopted as the 

natural grouping. The analysis may never reveal more than one 

group which indicates that the data are unimodal. There is a 

computer program available for mode analysis (Wishart 1969b). 

Appendix D is the flow chart for the mode analysis computer program. 

For a specified k, it calculates the array PD, distance in ascending 

order of each sample point to its kth nearest point. Array KP indicates 

the sample points corresponding to PD. The rest of the procedure simply 

followsthe algorithm listed in page 13. 



4. PRINCIPLE COMPONENT ANALYSIS 

4.1 Raw Data 

Principle component analysis (hereafter referred to as 

P.C.A.) is an eigenvalue extraction technique. Since the data 

matrix is fifty by one hundred and ninety-eight, a computer is 

necessary for the computation. The IMSL and SSP library were 

checked for their eigen-value extraction ability and the results 

con:f ormed to six decimal places. In this project, two 

decimal places would be accurate enough. The following compu­

tation are based on IIvISL library program. 

The P.C.A. calculation could be based on either the 

correlation matrix or the covariance matrix. Both are computed. 

P.C.A. is applied to the correlation matrix of the untransformed 

data, the square-root transformed data, and the natural-logarithm 

transformed data. The first ten eigenvalues and their cumulative 

percentage of the total variation are presented in Table 1. 

Table 1 Extracted eigenvalues from correlation matrix 

eigenvalues & cumulative pe::-centages 

1 2 3 4 5 6 ? 8 g 10 

6 .. 18 4.16 3.35 2.66 2.20 
x 1.98 1.81 1.76 1.66 1.63 

12 21 27 33 37 41 45 48 52 55 

7.96 4.76 ~1. 78 2.90 2.24 1.86 1.66 1.60 1.54 1.40 
JX 16 25 33 39 43 47 50 54 57 59 

log(x+l) 8.13 4.77 3.79 2.89 2.28 1.85 1.68 1.61 1.51 1.39 
16 26 33 39 44 47 51 54 57 60 
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From the computation, we find that the use of correlation 

matrix for P.C.A. calculation is not very efficient. It takes 

about ten components to account for fifty percent of the total 

variation and almost all of the components to explain the 

whole system's variation. In this situation, the value of 

the analysis may be questioned, since it cannot achieve the 

purpose of reducing the dimensionality without considerable 

loss of information. From Table 1 we can also see that 

square-root transformation and logarithm transformation make 

little improvement to the results and are not much different 

from each other. While the main purpose of these transfor­

mations is to stabilizethevariances, by using the correlation 

matrix we standardize the variables by their standard devia­

tion and give them an equal scale. Thus, the results from 

original data and transformed data are not much different. 

The computation results derived from covariance matrix 

are presented in Table 2. From the table we can see that the 

first three components all take more than ten percent of the 

total variation and after the sixth component they drop down 

to less than four percent. Again the square-root and logarithm 

transformations give similar results. In the following analysis, 

we will consider only the square-root transformation. It is 

very clear that the P.C.A. calculation results for this data 

set are much better if one employs the covariance matrix 

rather than correlation matrix. The sample sites can be ordered 



x 

log(x+l) 
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Table 2 Extracted first ten eigenvalues 
_from the covariance matrix 

1 

545 

35 

14.8. 

27 

6.4 
26 

eigenvalues & cumulative percentages 

2 3 

284 226 

52 67 

9.4 5.9 
45 55 

3.9 2.4 
42 51 

4 5 6 7 8 9 10 

116 89 71 53 30 26 20 

74 80 84 88 90 91 92 

3.8 2.2 1.8 1.5 1.3 1.2 1.1 

62 66 70 73 75 77 79 

1.6 0.97 0.84 0.75 0.63 0.58 0.55 
58 62 65 68 71 73 75 

by the obtained principle components. If we can attach some 

environmental gradients to the first few components and 

explain the system's variation satisficatorily by using them 

alone, then the dimensionality vlill be reduced and the 

redundancy in species will be removed by the P.C.A. trans-

formation. 

We now can plot the sample points against the derived 

first few principle components by projecting them into the 

2-dimension plane. (e.g. component 1 vs. 2, component 2 vs. 3,. 

etc.) Based on the pre-determined Braun-Blanquet associations 

of the sample sites, we can evaluate the performance of the 

different P.C.A. calculations. Fig. 4.1 is the square-root 

transforraed data plots on the first 2 principle component axes 

derived by correlation matrix. The points (saraple sites) are 



Fig. 4.1 

X a.~is-- first principle component axis 

Y axis-- second principle component axis 

Square-root transformed data 

Use the correlation matrix 

Origin and scale are arbitary 

(~ denotes coincident points) 
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all mixed up and can be divided barely into the three groups 

where each group contain species: Isoberlinia doka, Monotes, 

and Dichrostachys respectively. The plots on the other 

component axes derived by correlation matrix yield the same 

sort of unidentifiable result. 

Fig. 4.2 is the plot of original data on the first 

two component axes derived by covariance matrix. In the 

middle of the graph, there is an obvious vacancy between the 

different groups. By listing and examining ~he sample sites 

under the order of the magnitude of their first principle 

component, we may conclude that the first component axis is 

an axis showing the species variation, where the left half 

is sample sites with species Isoberlinia doka and the right 

half is sites with Monotes. It takes account of thirty-five 

percent of the total variation and divides the sites into 

two different gr·oups. · Except this, however, we canno.t 

recover any of the Braun-Blanquet associations. A study of 

the plots on other sets of principle components also reveals 

the same difficulty of recovering the associations. For 

P. C.A. to be effecti~re, there should be no complete discon­

tinuity between sample extremes. This can be illustrated 

by the following two-dimension situation. 



Fig. 4.2 

X axis-- first principle component axis 

Y axis-- second principle component axis 

Untransformed data 

Use the covari&nce matrix 

Origin and scale are arbitarary 

(~ denotes coincident points) 
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Unsatisfactory P.C.A. 
transformation due to 
the extreme point 

The use of frequency measurement probably introduces sample 

extreme points which create the distortion mentioned above and 

make the P.C.A. result unsatisfactory. The square-root 

transformation attempts to reduce the effect of extreme 

points. 

Fig. 4.3 is the plot of square-root transformed data 

on the first two principle components derived by covariance 

matrix. By identifying the sam?le sites, we see that 

associations 2, 3, 8, 12 1 13, 14, 15, and 16 can be divided 

relatively well. The associations 4, s, 6, with the common 

species Isoberlinia doka are mixed in the left hand side, 

and associations 9, 10, 11 with species Monotes are in the 

right side. :F'ig. 4.4 is the plot on the first and the 

third component axes. It separates several associations 

as in Fig. 4.3. We ca.n distinguish, moreover, beteen association 

5 and associations 4 and 6. Those associations with the common 

species rf.onotes are miXE:d together still on the right sicle 



Fig. 4.3 

X axis-- first principle component axis 

Y a.~is-- second principle component axis 

Square-root transformed data 

Use the covariance matrix 

Origin and scale are arbitrary 

(~ denotes coincident points) 
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Fig. 4.4 

X axis-- first principle component axis 

Y axis-- third principle component axis 

Square-root transformed data 

Use the covariance matrix 

Origin and scale are arbitrary 

(~ denotes coincident points) 
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and cannot be divided properly. 

The above technique of plotting the sample sites by 

projection to two of their principle component axes has 

serious drawbacks. When we project the spatial clusters 

onto the plane, the structure of the data is completely 

distorted and obscured. Hence, sometimes precious informa­

tion concerning the real structure is concealed. One means 

to overcome this disadvantage is to attempt to increase the 

plot to three dimensions. Kershaw (1968b) devised a method 

to project the spatial points onto the three plane surface. 

For a small sample size, this would be a better approach, 

since we can reconstruct the position of the point in three 

dimensional space and gain a much clearer picture of the 

data structure. But fora large sample, it. has little advan­

tage over the plotting of three two-dimensional projections 

separately. Perspective drawing (Kershaw & Shephard, 1972) 

is another graphic technique ·which illustrates the sample 

points hanging on the three dimensional space. But it also 

has the shortcoming o:f deciding the relative depth of points 

in the graph. By drawing the consecutive rotation of the 

graph or using an interactive displaying device to show 

the rotation, one can overcome this problem and gain a 

clearer picture of the data structure. This is, however, 

much more expensive and time-consuming. 
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Among the above computations, square-root transformed 

data with covariance matrix seems to have the best result 

for P.C.A. of this frequency measured ecological data set. A 

comparison with Dr. Kershaw' s previous analysis'7 in which he 

employed the Domin scale measurement (Kershaw 1968b), 

shows that frequency measurement has not given much improve-

ment over the Domin scale measurement in return for the 

amount of extra work requir·ed for sample collection and 

treatment. Part of this probably may be attributed to the 

fact that the Braun-Blanquet associations are derived by 

using the Domin scala measurement. 

4.2 The Use of the Most Abundant Species 

From section 4.1, we learn that due to the larger 

data variation introduced by the use of the frequency 

measureilient, the P.C.~. can not yield good results. 

Examining the original data list, we find out that there 

are species which are present in less than six sites out 

of the total of one hundred and nine~y-eight sample sites. 

These rare species sometimes present more noise than infor­

mation for they can form the extreme points in the sample 

and hence distort the P.C.A. results. Comparing the total 

number of species and the presence of each species in the 

sites, one may discard fifteen species which are found in 

no more than twenty-five sites and the total number of 
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individual species in less than sixty. The discarded fifteen 

species are 1, 2, 3, 5, 6, 7, 8, 14, 18, 24, 26, 27, 34, 43, 

and 50. (The corresponding species namesare in Appendix.) 

P.C.A. has been p·er:formed on the reduced data matrix. 

Both original and square-root transformed data are calculated using 

the covariance matrix. The first ten eigenvalues and their 

cumulative percentage of total variation are in Table 3. 

x 

JX 

Table 3 Extracted eigenvalues 
from the reduced data set 

eigenvalues and cumulative percentage 

1 2 3 4 ·5 6 7 8 g 10 

545 282 226 116 89 71 53 30 26 19 
35 53 67 75 81 85 89 91 92 93 

14.7 9.4 5.7 3.8 2.2 1.8 1.5 1.3 1.1 1.0 
28 46 57 65 69 72 75 78 80 82 

Comparing Table 2 and Table 3, we are aware that 

they are very similar. The sample sites are plotted against 

the derived components as before in order to examine the 

interpreting ability. Fig. 4.5 is the plotted original data 

on the first two principle component axes. It is in effect 

identical to Fig. 4.2. The plots on the other sets of 

principle components also are identical to their corres­

pondence derived in the previous section. This means that the 

discarding of' the :fi:fteen rare species has: no effect on 



Fig. 4.5 

X axis-- first principle component axis 

Y axis-- second principle ~omponent axis 

Use thirty-five species 

Untransformed data 

Use the covariance matrix 

Origin and scale are arbitrC1.ry 

(! denotes coincident points) 
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the P.C.A. ordination of' the sample sites. Fig. 4.6 is the 

square-root transfor·med data plotted on the first two prin­

ciple component axes and also is similar to Fig. 4.3. Thus 

for the efficient ordination of the sample sites by P.C.A., 

thirty-five species could achieve the same results as fifty 

species. The.information used in ordination appears to be 

carried by the abundant species. Although discarding the 

rare species has not improved the results, it certainly 

could simplify the data collection and editing. The fact 

that P.C.A. is insensitive to rare species has been pointed 

out by Austin & Greig-Smith (1968). For their ecological 

data, the ef'f'icien·t P. C.A. ordination could be attained by 

using just twenty-five percent of the total species. 

4.3 Principle Comnon9nt Analvsis after Mode fillalysis 

P.C.A. works most effectively when the data cluster 

approximately coni'orms to a multi.tiorma:~. distribution. Sometimes, 

however, the data present a dumb-bell shaped distribution, 

which forms two or more than two clusters. In this case, 

the first principle component of P.C.A. certainly could 

find the long axis of .the dumb-bell and reveal this 

variation. Since the second and the subsequent components 

are constructed in the :b.yperspace common to the clusters and 

reflect some characteristics of the clusters, they usually 

do not have a cl~ar meaning. This situation may be shown 



Fig. 4.6 

X axip-- first principle component axis 

Y axis-- second principle component axis 

Use thirty-five species 

Square-root transformed data 

Use the covariance matrix 

Origin and scale are arbitrary 

(~ denotes coincident points) 
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by the following extreme case in two-dimensions. 
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The second component of 
the P.C.A. transformation 
is meaningless 

From the previous analysis, it illustrated that the 

data probably have two or more clusters and hence 

the P.C.A. could not work efficiently. To overcome this 

problem, I employed the mode analysis first in order to 

reveal the natural grouping. Then I subject each group 

to the P.C.A. calculation when it is necessary. Using the 

results of mode analysis in section 6.1, which form six 

groups, the biggest two of them are used here for P.C.A. 

The results are as follows. 

The first group has sixty-two sample sites, all 

but two of these sites have Isoberlinia doka as the common 

species. The number of species measured is reduced to forty-

eight, since the other two species are not present in any 

of the sixty-two sites. The eigenvaluesextracted from the 

covariance matrix are in Table ~. 
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Table 4 Extracted eigenvalues 
for the sixty-two sites 

eigenvalues and cumulative percentage 

1 2 3 4 5 6 7 8 9 10 

274 256 131 51 46 37 21 17 13 9 

30 58 73 78 83 87 90 92 93 94 

8.7 4.2 3.3 2.8 2.3 1.7 1.5 1.2 1.0 0.9 
25 36 46 54 60 65 69 73 76 78 
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The results of P.C.A. with original data are not satisfactory. 

When one plots the components graph and checks the data 

list, it is revealed that the first and the second components 

are indicators of the species' variation of Isoberlinia doka 

and TermipaJig respectively. The plots on the other sets 

of' components show that the sample sites are gathered as 

a central mass and can not be divided into groups comf'orming 

to the Braun-Blanquet associations. For the square-root 

transformed data, the second component divides out sample 

sites 42, 43 from the other sites. These two sites do not 

belong to any of the associations and the species presented 

in them are very different from the other sixty sample sites. 

Hence one could consider them as outliers. Fig. 4.7 shows 

the sixty-two sample sites plotted on the first and the 

third components. It can be divided into four group con­

f'or'ming to the Braun-Blanquet associations 4, 5, 6, and 8. 



Fig. 4.7 

X a.xis-- first principle component axis 

Y axis-- third principle component axis 

Use sixty-two sample sites 

Square-root transf orrned data 

Use the covariance matrix 

Origin and scale are arbitrary 

(f denotes coincident points) 
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The second group has eighty-seven sample sites. 

Most of the sites contain species Monotes. The measured 

species number is reduced to forty-five. The P.C.A. on 

untransformed data also is distorted by the species varia­

tion. Fig. 4.8 is the eighty-seven sample sites plotted 

against the first two component axes derived from the 

covariance ~~trix with the square-root transformed data. 

It can divide out the associations 7, 12, 13, and 17, but 

associations 9, 10, and 11 are mixed in the left hand side 

and thus are difficult to divide properly. On the whole, 

however, the P.C.A. after mode analysis leads to a rather 

satisfactory result. 



:F'ig. 4.8 

X axis-- first principle component axis 

Y axis-- second principle component axis 

Use eighty-seven sample sites 

Square-root transformed data 

Use the covariance matrix 

Origin and sea.le are arbitrary 

(t denotes coincident points) 
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5. CORRESPONDENCE ANALYSIS 

5.1 Raw Data 

The most significant feature of correspondence 

analysis as an ordination technique is its duality of sites 

and species scores, a property shared by no other technique. 

For every set of sites scores, there corresponds a unique 

set of species scores and vice versa, where the correspondence 

between them is determined by the correlation P. The correla­

tion could be used as a measurement of the ability of species 

scores to order the sites. The formula in section 3.2 

illustrated that we may extract as many as r=min(p,n) sets 

of scores. But in practical usage only the sets of scores 

with high correlations are of interest. 

Applying the correspondence analysis to the untrans­

formed data, the square-root transformed data and the 

presence-absence data, the first ten nontrivial correlations 

were derived. They are shown in Table 5. 

x 

JX 
(+,-) 

Table 5 First ten correlations between 
sites and species scores 

1 2 3 4 5 6 7 8 

0.89 o.so o.72 0.65 0.58 0 • .55 0.51 0.48 

0.79 0.67 0.59 0.54 0.46 0.42 0.36 0.35 

9 10 

0.43 0.41 

0.33 0.31 

0.72 0.56 0.49 0.44 0.38 0.37 0.35 0.33 0.32 0.30 
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The derived sites scores and species scores are in the farm 

o:f' standardized eigenvectors. Since correlation is a scale­

free measurement, we can rescale the scores into more con­

venient units, such as from score 0 to score 100. The 

derived species scores- or site scores can be used as rec­

tanglar coordinates to plot the species or sites for further 

studies and interpretation in environmental terms. Techniques 

such as overlaying the environmental data for each sampling 

site over the corresponding points on the plot are employed 

generally for this purpose. There are three broad types of 

derived score axes--seriation, nodal, and polynomial axis. 

The seriation axes are those which arrange the sites (or 

species) according to some natural gradient in the data 

structure from one end to the other evenly. The nodal axes 

have a clear gap in the score seriation. Hence they divide 

the sites (or species) into some natural groupings. The 

polynomial axes depend on the other axes and thus form 

polynomial relations with them. 

From section 4.2, it is shown that principle com­

ponent analysis pays very little attention to the rare 

species. The main information for the calculation of the 

principle co~ponent analysis is supplied by the abundant 

species. Hill (1973) considered this as a disadvantage of 

principle component analysis and pointed out that corre­

spondence analysis can improve this condition. By an 
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examination of the derived species scores, it has been 

ascertained that the correspondence analysis stresses the 

rare species too much: in the ordination rare species 

usually obtain the extreme scores, that is, the highest or 

lowest scores. In the first twenty sets of species scores 

deri~ed from untransformed data, there are seventeen sets 

with those fifteen rare species mentioned in section 4.2 

as extreme scores. The square-root transformed data 

and presence-absence data -tfiey both have nineteen sets 

which have the fifteen rare species as extreme scores. 

This reveals that the correspondence analysis, in contrast 

to principle component analysis, has the opposite property. 

Although this is not necessarily a disadvantage, it certainly 

implies the difficulty of interpreting ordination results. 

Since the correspondence analysis is the successive calcula­

tion of gradient analysis, we might think that if we start 

with a set of species or site scores which conform with a 

specific physical gradient and carry on the correspondence 

analysis calculation until the scores converged, then the 

derived final scores should be related with this physical 

gradient and have its environmental meaning. But it is not 

the case, for no matter what scores are used to start the 

calculation, they converge to the maximum non-trivial solution 

of the correspondence analysis. Employing the same notation 

as section 3.2, the reciprocal averaging procedure is as 
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follows. 

' 
( i =O , 1, 2 , ••• ) 

Viewed from the point of species scores, the above procedure 

can be represented as 

' 
( i =O , 1 , 2 , ••• ) 

Where ~(i+l) i·s th · ~ e new species score. ,.,, The final solution 

would converge to the maximum nontrivial solution of the 

eigenvector. This characteristic shows that the correspondence 

analysis is just an ordination method which has a dual property 

of the site scores and species scores measured by their 

correlation. The interpretation of the ordination results 

have to depend on further analysis such as a knowledge of 

the environment or the species itself. Since there is no 

information concerning species readily available, we turn 

again to the Braun-Blanquet association as a basis to com-

pare the different results obtained. 

From Table 5 we learn that the first three correla-

tions for untransformed data are 0.89, 0.80, and 0.72 res­

pectively, all of which are relatively high. Examining the 

derived site scores reveals that they are ordered according 

to some underlying structure. For example, the first axis 

divides the sample sites into three groups which are sites 

with Dichrostachys, sites with Isoberlinia doka, and sites 
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with Monotes. The second axis has a polynomial shape on the 

first axis. This is shown in Fig. 5.1. By identifying 

the sample sites on the plotted graph, we see that associa­

tions 1, 2, 3, 8, and 17 can be divided out relatively well. 

In the lower left associations 7, 9, 10, 11, 12, 13, 14, 15 

and 16 are mixed together. The upper left part includes 

associations 4, 5, and 6. Fig. 5.2 shows the sample sites 

plotted along the second and the third sets of site scores. 

It can divide out associations 3, 8, 14, 15, 16, and 17, 

but the rest are mixed together. The plot on the first and 

the third sets of site scores does not provide more infor­

mation on dividing of associations. If there is environ­

mental information available, then we can continue this kind 

of examination for the other sets of scores and attach some 

meaning to them. 

For the square-root transformed data, the species 

with extreme scores also are those rare species, but there 

are few changes in the middle i:ert of ordination. The 

correlations between species and site scores are smaller 

than those of the untransformed data. Plotting the sample 

sites against the derived score sets shows shapes similor 

to those obtained with the untransformed data. This is 

because correspondence analysis does not require data 

centering within species in the same manner as required in 

P.C.A •• Thus the transformation has less influence on 



Fig. 5.1 

X axis-- site scores with highest corr elation 

Y axis-- site scores with second highest correlation 

Untransformed data 

Origin and scale are arbitrary 

(f denotes coincident points) 
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Fig. 5.2 

X axis-- site scores with second highest correlation 

Y axis-- site-scores with third highest correlation 

Untransformed data 

Origin and scale are arbitrary 

(I denotes coincident points) 
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the results. Fig. 5.3 shows the sample sites plotted against 

the first two sets of sites scores. It has the same shape as 

Fig. 5.1, but it enlarges the differences between site scores 

and leads to a more comprehensible graph. Identifying the 

sites, we can see that each site falls fairly well in the 

appropriate associations according to the ordered scores. 

It clearly divides association 5 from associations 4 and 6. 

The associations 14, 15, and 16 with Detarium as common 

species are grouped in the lower right part, above them are 

the associations with Monotes formed into one large group. 

Performing the correspondence analysis calculation 

on the presence-absence data instead of on the frequency 

data to examine its performance shows that the rare species 

are even more emphasized in this case. The first three sets 

of species scores actually start with species 1, 2, 3, and 

?. The correlations between site scores and species scores 

also are reduced: the maximum nontrivial one being just 0.72. 

For the presence-absence data, the most valuable information 

is all gathered in the first two sets of scores. If we plot 

the sites aeainst the remaining score sets, they just show 

sample sites huddled in one large cluster. Thus very little 

is revealed about the data structure. Fig. 5.4 is the sample 

sites plotted on the first two sets of site scores. Identi­

fying the sample sites illustrated that it is very similar 

to Fig. 5.3. Although the ordination is less satisfactory 



F· ig. 5.3 

X axis-- site scores with highest correlation 

Y axis-- site scores with second highest correlation 

Square-root transformed data 

Origin and scale are arbitrary 

(f denotes coincident points) 
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X axis-- site scores with highest correlation 

Y axis-- site scores with second highest correlation 

Presence-absence data 

Ori~in and scale are arbitrary 

Cl denotes coincident points) 
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than that derived from square-root transformed data, it 

certainly indicates that correspondence analysis is not 

sensitive to the scale of measurement. 

5.2 The Use of the Most Abundant Species 

Since the correspondence analysis stresses the rare 

species, we next discard the fifteen rare species mentioned 

in section 4.2 and use the remaining thirty-five abundant 

snecies to calculate the correspondence analysis and compare 

the results with the previous results. The first ten non­

trivial correlations derived are shown in Table 6. 

1 

Table 6 First ten correlations 
derived from the reduced data set 

2 3 4 5 6 7 8 g 10 

x 0.89 o.so 0.72 0.64 0.57 0.55 0.50 0.43 0.41 0.37 

JX" o.77 o.66 o.59 o.44 o.42 o.42 o.36 o.31 o.3o o.2s 

(+,-) 0.69 0.54 0.42 0.37 0.34 0.33 0.32 0.30 0.28 0.27 

The derived correlations are very similar to those 

shown in Table 5. The ordinated scores are also similar. 

The discarding of rare species also has the effect of 

enlarging the difference bet\'leen scores. Fig. 5. 5 shov1s 

the sample sites plotted against the first two sets of site 

scores of the untransformed data. Fig. 5.6 is the plot of 

the first two sets of site scores for presence-absence data. 
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X axis-- site scores with highest correlation 

Y axis-- site scores with second highest correlation 

Use thirty-five species 

Untransformed data 

Origin and scale are arbitrary 

U denotes coincident points) 
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Fig. 5.6 

X axis-- .site scores with highest correlation 

Y axis-- site scores with second highest correlation 

Use thirty-five species 

Presence-absence data 

Origin and scale are arbitrary 

(~ denotes coincident points) 
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They con:form with Fig. 5.1 and Fig. 5.4 respectively. For 

this specific set of ecological data, although correspondence 

analysis emphasizes rare species, it does share one property 

with P.C.A •• Employing the most abundant species from about 

two-thirds of the total species, vie derive results similar to 

those obtained from the complete data set. 



6. MODE ANALYSIS 

6.1 Raw Data 

Wishart (1969b) developed the computer package 

CLUSTAN for general cluster analysis. The mode analysis 

programs are used for the following analyses. The user 

can either employ the Euclidean distance between individ­
~ 

uals or the product moment correlation between individuals 

to construct the similarity matrix for calculation. The 

frequency threshold k has to be decided before the calcu­

lation. The programs work according to the algorithm 

listed in section 3.3. It introduces the dense point 

consecutively according to the order of KD and performs 

one of the three fuse actions as a cycle. Since the 

really critical phases are those at which existing groups 

are fused together (see section 3.3, iii(c) and iv), the 

programs only output those groupings obtained immediately 

before such a fusion. In his study of several real data 

matrices( sample size ranging from 30 to 350), v:ishart (1969a) 

discovered that mode analysis has the following unique features: 

(1) The useful range of the frequency threshold k is 

about 1 to 6 depending on the sample size. For large data 

sets (n greater than 200), empirical trials indicate that 

values of k in the range 3 to 5 yield practically identical 

results. When k takes the value 1, the algorit0.rn degenerates 

to the nearest neighbor method. 

http:algorit0.rn
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empirical 
(2) Dt1ring the t\ trials, the largest number of outputs 

was 24, while the average was about 11. 

(3) In each output of the empirical trials, the 

number of groups formed is never more than 9, and the average 

maximum was about 6. 

Mode analysis was first tried by using both Euclidean 

distance and product moment correlation on the untransformed 

data and the square-root transformed data with frequency 

threshold 3 to compare their performence. They do not 

present very different results. The Euclidean distance 

was employed on the following analyses. For the untrans-

formed data with input frequency threshold 3,.the mode 

ana~ysis yielded nine outputs, each output gives two to 

seven divided groups. Wishart suggested that the selection 

of the output with the maximum number of groups was the best 

solution. Everitt (1974, p. 87), on the other hand, pointed 

out that it was not always the case, and that the decision 

of number of groupswas heavily dependent on the investigator's 

evaluation. Based on the Braun-Blanquet associations, the 

most meaningful output grouping, conforming best to those 

divided associations, is in the fifth output. It has four 

groups which are listed below. 

Group 1 contains seventeen sites: 2, 10, 14, 17, 66, 

67, 68, 69, 70, 71, 76, 94, 188, 189, 190, 191, 192. 
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Group 2 contains twenty-three sites: 72, 73, 74, 

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 163, 164, 165, 

193, 194, 195, 196, 197, 198. 

Group 3 contains seventy-three sites: This group 

is composed mainly of associations 9, 10, 11, 12, and 13, 

which have common species Monotes. 

Group 4 contains eighty-five sites: This group 

is composed mainly of associations 1, 2, 3, 4, 5, 6, 7, 8, 

and 17. They have common species Isoberlinia doka. 

The above analysis shows that there probably are 

four natural groups. But compared with the Braun-Blanquet 

associations, they are not in close enough conformity both 

in the number of groups and the sites presented in the 

groups. Hence further analysis is needed in order to reveal 

more information. 

The mode analysis for the · square-root transformed 

data with input threshold 3 yielded better results. There 

are twelve outputs, each presenting two to seven groups. 

The output which conforms best is the ninth. output. Its 

six groups are listed below. 

Group 1 contains seven sites: 8, 9, 10, 16, 17, 18, 

19. 

Group 2 contains ten sites: 11, 12, 13, 21, 22, 30, 

31, 32, 50, 51. 

Group 3 contains eleven sites: 2, 66, 67, 68, 69, 
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70, 188, 189, 190, 191, 192. 

Group 4 contains twenty-one sites: 71, 72, 73, 79, 

80, 81, 82' 83, 84, 85, 86, 87, 88, 89, 90, 193' 194 ' 195' 

196, 197, 198. 

Group 5 contains sixty-two sites: 1, 3, 4, 6, 7, 

14, 15, 20, 34, 35, 36, 37, 38, 39, 40, 42, 43, 48, 49, 52, 53, 

54' 96' 97, 98, 115, 116, 117, 118, 119, 125, 126, 127, 128, 

131, 132, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 

146, 147' 148, 149, 150, 151, 161, 162, 163, 164, 165, 171, 

172, 173, 174, 175. 

Group 6 contains eighty-seven sites: 5, 23, 24, 25, 

26, 27, 28, 29, 33, 41, 44, 45, 46, 47, 55, 56, 57, 58, 59, 

60, 61, 62, 63, 64, 65, 74, 75, 76, 77, 78, 91, 92, 93, 94, 

95, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 

111, 112, 113, 114, 120, 121, 122, 123, 124, 129, 130, 133, 

134, 135, 152, 153, 154, 155, 156, 157, 158, 159, 160, 166, 

167, 168, 169, 170, 176, 177, 178, 179, 180, 181, 182, 183, 

184, 185, 186, 187. 

The above groups conformed successfully with the Braun-Blanquet 

associations. Group 1 is association 3; group 2 is associa­

tions 1 and 2; group 3 is association 14; group 4 is 

associations 15 and 16; group 5 is associations 4, 5, 6, 

and 8; group 6 is associations 9, 10, 11, 12, 13, and 17. 

Aside from association 7, which is dispersed through groups 

S and 6, there is virtually no mixing present in the six 
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groups. The larger groups 5 and 6 could be subjected to 

furhter analyses in order to obtain more detailed inf orma-

ti on. In section 4.3, they were used as input data for 

P.C.A. I also tried to employ the mode analysis again 

toward both group 5 and group 6. But they could not derive 

a finer grouping. The :frequency thresholds 2 and 3 were 

used in these analyses. Among the outputs obtained in the 

four mode analyses (the two thresholds tried with the 

untransformed data and with the square-root transformed 

data) carried out for group 5, only one output which formed 

the eroup with sample sites 115, 116, 117, 118, 119, 148, 149, 

150, 151, 161, 171, 172, and 173 conforms vlith association 4. 

This is also the case in the four mode analyses outputs for 

group 6. The best-conforming output has three groups. One 

group has sites 5, 41, 45, 133, 134, and 135, and conforms 

with association 17, another group contains sites 23, 24, 

25, 26, 27, 28, 29, 33, 44, 46, 47, and conforms with 

association 12, the other seventy sites are formed into 

the third group. The rest of the outputs are just groups 

of totally mixed sample sites. 

The above results can be derived by applying the 

frequency threshold 2 directly to the complete data set with 

square-root transformation. It gives eight outputs, each of 

them contains . five to seven groups. The most meaningful 

output is the seventh. Its seven groups are as follows. 
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Group 1 contains six sites: 5, 41, 45, 133, 134, 

135. 

Group 2 contains eleven sites: 23, 24, 25, 26, 27, 

28, 29, 33, 44' 46, 47. 

Group 3 contains thirteen sites: 8, 11, 12, 13, 16, 

18, 21, 22, 30, 31, 32, 50, 51. 

Group 4 contains fifteen sites: 2, 9, 10, 17, 19, 

66, 67, 68, 69, 70, 188, 189, 190, 191, 192. 

Group 5 contains twenty-one sites: 71, 72, 73, 79, 

80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 193, 194, 195, 

196, 197, 198. 

Group 6 contains sixty-two sites: It is exactly the 

same sample sites which we~e on page 52 as listed previously 

as group 5. 

Group 7 contains seventy sites: This group is com­

posed mainly of associations 9, 10, 11, and 13. 

Comparing the above groups to those groups derived by using 

frequency threshold 3, we find that two more associations 

have been divided out, namely, association 12 and associa­

tion 17. The similarity of these two results obtained by 

using different thresholds also confirmed the existance of 

natural groups in tr.e data. 

6. 2 The Use of the I1~ost Abundant Species 

For most of the cluster analysis, the number of 
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variables involved will decide the necessary amount of 

calculation. It is of interest to examine the performance 

of mode analysis in the reduced data matrix. Firstly, mode 

analysis was applied to the untransformed thirty-five 

species data matrix with threshold 3. There were nine 

outputs, each with t:hree to nine groups. The sixth output 

was considered to be the most significant grouping. It 

contains five groups. 

Group 1 contains seven sites: 5, 41, 44, 45, 133, 

134, 135. 

Group 2 contains fourteen sites: 8, 11, 12, 13, 

16, 18, 21, 22, 30, 31, 32, 42, 50, 51. 

Group 3 contains seventeen sites: 2, 10, 14, 17, 

66, 67, 68, 69, 70, 71, 76, 94, 188, 189, 190, 191, 192. 

Group 4 contains twenty-two sites: 72, 73, 79, 80, 

81, 82, 83, 84, 85, 86, 87, 88, 89, 163, 164, 165, 193, 194, 

1~5 1°6 107 10° 
0 ' ~ ' ~ ' JVe 

Group 5 is formed by the remaining one hunC.red and 

thirty-eight sites. 

Those smaller groups roughly conform to the Braun-Blanquet 

associations, but no association is completely recovered. 

The overall results are similar to those derived from the 

complete data set. 

Again, the results obtained by using the square­

root transformed data are much better. There are twelve 
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outputs and each of them forms three to nine groups. The 

ninth output is chosen and its seven groups are as follows. 

Group 1 contains six sites: 8, 9, 10, 16, 18, 19. 

Group 2 contains tv:el ve sites: 11, 12, 13, 21, 22, 

30, 31, 32, 42, 43, 50, 51. 

Group 3 contains twelve sites: 2, 17, 66, 67, 68, 

69, 70, 188, 189, 190, 191, 192. 

Groups 4 contains seventeen sites: 5, 23, 24, 25, 

26, 27, 28, 29, 33, 41, 44, 45, 46, 47, 133, 134, 135. 

Group 5 contain twenty-one sites: 71, 72, 73, 79, 

80, 81, 82, 83, 24, 85, 86, 57, 88, 89, 90, 193, 194, 195, 

196, 197' 198. 

The remaining sample sites form tvvo large groups: one with 

sixty sites, most of them sites with Isoberlinia doka, the 

other with seventy sites, most of them sites with Monotes. 

The discarding o-£' the rare species makes little difference 

in the results of mode analysis. For the untransformed 

data, discarding the rare species enablesthe mode analysis 

to divide out both the three small associations, 1, 2, and 

3 to form group 2, and the association 17 to form group 1. 

But both do not conform perfectly to the Braun-Blanquet 

associations. For the square-root transformed data, although 

the discarding of the rare species gives an extra group 4 

which is composed primarily of associations 12 and 17, we 

can notice that a few sites have been misclassified. Except 
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these minor changes, reducing the number -of species does not make much 

difference in the results. 

From the mode analysis algorithm, we see that the 

reduction of the number of variables can simplify only 

the preparations of the similarity matrix. The major com­

putation needed is depend~nt on the number of individuals 

involved. In terms of saving the amount of calculation, 

the discarding of rare species makes no great contribution 

and should not be taken into much consideration. 

6.3 Mode Analysis after P.C.A. and Correspondence Analvsis 

Sometimes the ordination results were used as the 

input data instead of the original data for cluster analysis 

to economize the calculation time and to reduce the data 

variation. The methods, however, project the original 

data into fewer dimensions. This provides a chance for 

distorting the data structure. The derived groups might 

be completely wrong, especially v:hen the ordination itself 

is not efficient. Here, I employ the first ten principle 

components derived from the square-root transformed data 

as input data for mode analysis with frequency threshold 3. 

The results contain fifteen outputs and each one has three 

to nine divided groups. Referring to the Braun-Blanquet 

associa~ions, the ninth output is regarded as the best 

conformin9 one. It's eight groups are as follows. 
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Group 1 contains seven sites: 41, 44, 45, 46, 133, 

134, 135. 

Group 2 contains nine sites: 23, 24, 25, 26, 27, 

28, 29, 33, 47. 

Group 3 contains ten sites: 74, 75, 76, 77, 78, 

93, 105, 185, 186, 187. 

Group 4 contains fourteen sites: B, 9, 11, 12, 

13, 16, 18, 21, 22, 30, 31, 32, 50, 51. 

Group 5 contains fifteen sites: 2, 10, 17, 19, 

66, 67, 68, 69, 70, 94, 188, 189, 190, 191, 192. 

Group 6 contains ti.venty-one sites: 71, 72, 73, 

79, 80, 81, 82, 83, 84, 85, 86, 86, 87, 88, 89, 90, 193, 

194, 195, 196, 197, 198. 

Group 7 contains fifty-nine sites: This group 

is composed mainly of associations 4, 5, 6, and 8. 

Group 8 contains sixty-three sites: This group 

is composed mainly of associations 9, 10, and 11. 

The above analysis shows that the results derived from 

using the first ten principle components divide out 

more essociations than that of the complete data set. 

It has three extra groups, associations 12, 13, and 17. 

But more sites are misclassified. On the whole, the 

utilization of P.C.A. results makes the mode analysis more 

effective but less accurate in recovery of the associations. 

By using the first ten sets of species scores which 
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were derived by correspondence analysis from the square­

root transforned data as input data, again, I performed 

the node analysis v.·i th threshold 3. It gives eleven 

outputs and each one has three to seven groups. Most of 

the outputs do not conform to the Braun-Blanauet associa­

tions. The best one is the tenth, which has four groups. 

They are as follows. 

Group 1 contains six sites: 41, 44, 45, 133, 134, 

135. 

Group 2 contains nine sites: 8, 11, 16, 18, 30, 

31, 32' 50' 51. 

Group 3 contains ten sites: 66, 67, 68, 69, 70, 

188, 190, 191, 192. 

The rest of the sites form a large group. It is seen easi­

ly that using the correspondence analysis results as input 

data for mode analysis is much less satisfactory than tJ.sin~ 

~f the P.C.A. results. 



7. CONCLUSI-ON 

IJultivariate data are collected in many different 

disciplines and each data set has its own structure and 

meaning. The numerous multivariate statistical techniques 

available were developed in an effort to satisfy many 

different purposes and there is no general method for 

the investigator to use. Thus the choice of an appropriate 

technique and the meaningful interpretation of the results 

depends heavily on the researcher's experiences and 

knowledge in his specific field. The use of Braun-Blanquet 

associations in this project as basis for comparing 

analysis is only an attempt to attach ecological meanings 

and is not necessarily the best approach. Perhaps someone 

with greater ecological experience could extract consider­

ably more information from the various analyses. 

F.C.A. is an effective methodology for the conden­

sation of the data structure. But when the data · 

are mul timodal, its interpretation is 

in doubt. Section 4.3 demonstrated an attempt to avoid 

this difficulty. The results obtained are rather satis­

factory. P.C.A. is also hampered by its linearity 

assumptions and cannot satisfactory deal with the data 

which are not linearily correlated. Transformations, 
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such as the square-root tran~forrnati_on or 1 ogartthrn transforrnatton, 

cannot always correct thts non-ltneartty. If there ts evtdence of 

a non-linear data structure, other methods which are capable of 

dealing with this situation should be employed. 

When the scale of measurement is the same, the use of the 

covariance matrix for P.C.A. calculation yield ~ore meaningful 

results than does the use of the correlation matrix. The first 

three principle components derived by P.C.A. with untransformed 

data take account of more variation than that of the P.C.A. with 

transformed data. The results of untransformed data only reflect 

the species variation and over simplify the real data structure. 

The results of P.C.A. derived from transformed data are more 

meaningful. 

As pointed out in section 4.1, correspondence analysis 

is just an ordination method with the dual property of site scores 

and species scores but with no readily interpretable meaning. 

tt has no advantages over P.C.A. and further studies are needed for 

the interpretation of derived scores. P.C.A. and correspondence 

analysis have the similar ability to recover the Braun-Blanquet 

associations. Both techniques are insensitive to the discarding 

of rare species and this can be considered in sampling procedure 

to save time and effort. In the condensation of the data structure, 

as has been seen in section 6.3, P.C.A. is much better than cor­

respondence analysis. 
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Mode analysts is also tnsenstttve to the discarding of 

rare species. But the reductton of dtmens,tona1 tty of variables 

cannot reduce effectively the amount of calculation needed for mode 

analysis. The major computation needed is dependent on the number 

of individuals involved. The ouput selected as the solution in 

mode analysis depends heavily on the investigator's own judgement. 

In this project, I chose the output most conforming to the 

Braun-Blanquet associations as the best solution. In many cases, 

the results successfully recover the Brayn-Blanquet associations. 

Thus, mode analysis appears to be a powerful technique for the 

discovery of the natural groups from the ecological data. In 

conclusion, the three multivariate statistical techniques employed 

in this project reveal, in some degree, the aspects of the data 

structure. For the purpose of obtaining a objective insight into 

the data, they are the useful techniques for the ecologists. 



APPE:NDIX A 

Key to Species Numbers 

1. Diospyros mespiliformis 21. Swartzia madagascariensis 

2. Grewia rnollis 22. Monotes kerstingii 

3. Anogeissus leiocarpus 23. Strychnos innocua 

4. Lannea schimperi 24. Parkia clappertoniana 

5. Sterosperrnum kunthianum 25. Uapaca togensis 

6. Cussonia barteri 26. Nauclea latifolia 

7. Kh~ya senegalensis 27. Trichilia ernetica 

8. Steganotaenia araliacea 28. Hyrnenocardia acida 

9. Entada africana 29. Ixora bauchiensis 

10. Annona senegalensis 30. Ximenia americana 

11. Terminalia avicennioides 31. Terminalia laxiflora 

12. Lannea microcarpa 32. Detarium microcarpurn 

13. Isoberlinia doka 33. Psorosperrnum corybiferurn 

14. Pterocarpus erinaceus 34. Ochna afzelii 

15. Bridelia ferruginea 35. Piliostigma thonningii 

16. Afrorrnosia laxiflora 36. Lophira lanceolata 

17. Parinari curatellifolia 37. Securidaca longepedunculata 

18. Vites doniana 38. Butyrosperrnum paradoxurn 

19. ~trychnos sp1nosa 39. Protea elliottii 

20. Daniellia oliveri 40. Gardenia ternifolia 
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41. G. erubescens 46. Isoberlinia tomentosa 

42. Faurea speciosa 47. Vitex simplicifolia 

43. Combretum molle 48. Combretum glutinosum 

44. Crossopteryx f ebrifuga 49. Dicr..rostachys cinerea 

45. Combretum binderianum 50. Cassia singueana 



APPENDIX B 

Data List of the First Five Sample Sites 

species sample sites species sample sites 

l 2 3 4 5 l 2 3 4 5 

l 0 0 0 0 0 26 0 0 0 0 0 
.2 0 0 0 4 0 27 0 0 0 0 0 

3 0 0 0 0 0 28 0 0 16 0 0 
4 4 l 9 0 10 29 0 0 0 0 4 
5 0 0 2 0 0 30 3 0 l 3 3 
6 0 0 0 0 l 31 0 l 0 0 0 
7 0 0 0 0 0 32 13 26 3 23 2 
8 0 l 0 2 13 33 0 0 l 0 l 
9 0 6 5 4 l 34 0 0 0 0 0 

10 l 4 9 5 17 35 0 0 5 0 17 
11 21 17 77 31 8 36 0 0 0 0 0 
12 l l l 4 1 37 4 l 2 0 l 
13 10 3 22 12 10 38 6 l 3 3 14 
14 0 0 0 l 0 39 0 0 0 0 0 
15 0 0 5 0 14 40 0 0 l l 0 
16 0 0 9 0 0 41 l 18 12 2 0 
17 0 0 l 0 0 42 0 0 0 0 0 
18 0 0 0 0 2 43 l 3 0 0 0 
19 16 8 11 2 4 44 l 0 0 0 0 
20 0 0 0 0 0 45 0 0 0 0 0 
21 0 0 0 l 0 46 0 0 2 l 27 
22 0 0 0 0 0 47 l 3 0 2 l 
23 l 0 0 l 0 48 6 9 0 9 0 
24 l 0 0 0 0 49 0 0 0 0 0 
25 0 0 0 0 0 50 0 0 0 0 0 



APPENDIX C 

The Seventeen Associations 

(1) Dichrostachys erosion complex association 

(five sites): 30, 31, 32, 50, 51. 

(2) Anogeissus-Feretia river bank association 

(five sites): 11, 12, 13, 21, 22. 

( 3) Combretul}Lglutinosuo-Dicr,rostach,ys-Entada 

ironstone pavement association(seven sites): 8, 9, 10, 

16, 17, 18, 19. 

(4) Isoberlinia doka-Pterocarpus frin~ing woodland 

association(thirteen sites): 115, 116, 117, 118, 119, 

148, 149, 150, 151, 161, 162, 171, 172. 

(5) Isoberlinia dof-a-Annona-Terminalia-Ximenia 

. association(twenty-seven sites): 6, 34, 35, 36, 37, 38, 

39, 40, 48, 49, 52, 53, 54, 131, 132, 136, 137, 138, 139, 

140, 141, 142, 143, 144, 145, 146, 147. 

(6) I~:_oherlinia dgka-Parinari association(ten 

sites): 125, 126, 127, 128, 163, 164, 165, 173, 174~ 175. 

(7) Isoberlinia dok~-Uapaca association(eight sites): 

91, 92, 93, 94, 95, 96, 97, 98. 

(8) Jsoberlinia doka-Detarium association(nine 

sites): 1, 2, 3, 4, 5, 7, 14, 15, 20. 

(9) Monotes-Isobe1~15nia doka association(seventeen 

sitics): 55, 107, 108, 110, 114, 121, 122, 152, 153, 154, 
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155, 166, 167, 176, 177, 181, 182. 

(10) Monotes-Parinari association(seventei::;n sites): 

56, 59, 60, 61, 62, 63, 64, 65, 103, 104, 105, 106, 109, 

123, 124, 130, 183. 

(11) Monotes southern association(twenty sites): 

99, 100, 101, 102, 111, 112, 113, 120, 129, 156, 157, 158, 

159, 160, 168, 169, 170, 178, 179, 180. 

(12) MonotG.§. northern association( ten sites): 

23, 24, 25, 26, 27, 28, 29, 33, 46, 47. 

(13) 

(nine sites): 

(14) 

(ten sites): 

(15) 

Monotes-Parinari-Detariti1J1 association 

74, 75, 76, 77, 78, 184, 185, 186, 187. 

Detarium-Gard~nig ironstone association 

66, 67, 68, 69, 70, 188, 189, 190, 191, 192. 

Parinari-Gardenia-Detarium association 

(seventeen sites): 79, 80, 81, 82, 83, 84, 85, Se, 87, 

88, 89, 193, 194, 195, 196, 197, 198. 

(16) Daniel1ia.-.Qardenia-Deterium association 

(four sites): 71, 72, 73, 90. 

(1?) ):soberlinia t_oment_g§...~_-Isoberlin5_a dokq 

aseociation(six sites): 41, 44, 45, 133, 134, 135. 



APPENDIX D 

Flow Chart for Mode Analysis Computer Progra~ 

Select Densit k 

Compute the distance PD from e_ac point 
to its kth nearest point. Order ..1:-'D with 
KP as index--thus point KP( 1) is fir st to 
become dense when the threshold reachs PD 1 

Compute DMIN, the smallest distance between 
dense oints LIM LINK of se arate rou s 

Is PMIN,DMIN?1------...y...o;'""'--~~------. 

no 

Increase the distance threshold 
to PMIN and introduce the next 
dense point KMIN 

IL=IL+l 

Increase the threshold 
to DMIN and fuse the two 
groups containing points 
LIM&LINK 

yes~~~~~-"'--~~~~~~~~~~~ 

1---4---1Does existin ? 

no 

KMIN causes the fusion of two 
or more groups 

Re-allocate non-dense points by 
some similarity criterion and 

1-----4:--toutput classifications obtained 
immediately prior to this fusion 
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