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Abstract

A random graph model is introduced, which is supposed to capture the assortativity

effect in various real-world networks. An effect that appears when different types

of vertices have non-uniform tendencies to connect to each other. Therefore, given

the node- and edge-type distributions P,Q a discrete matching method is developed,

so that the empirical distributions asymptotically passes to their given limits P,Q.

Applications of martingale convergence methods are exploited to prove the large n

limits of the discrete Markov setup. Finally, the relation between inhomogeneous

random graph model as another recently studied topic and our model is investigated.
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Notations

E (X) Expected value of random variable X

P (A) Probability of event A

Ω(·) f(n) = Ω(g(n)) if for large enough n, f(n) ≥ Cg(n)

ω(·) f(n) = ω(g(n)) if limn→∞
g(n)
f(n)

= 0

Θ(·) f(n) = Θ(g(n)) if limn→∞
f(n)
g(n)

= c

O(·) f(n) = O(g(n)) if for large enough n, f(n) ≤ Cg(n)

o(·) f(n) = o(g(n)) if limn→∞
f(n)
g(n)

= 0
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Chapter 1

Introduction

The theory of random graph has been first investigated by the inspiring paper of Erdős

and Renyi [1] in 1960. In their model it is assumed that the number of vertices is

fixed and the edges are put between the vertices with given probabilities. As discussed

in section 1.1, the significant assumption of homogeneous edge probabilities, that is

the probability of existence of any edge is p all over the network, makes the analysis

quite straightforward. The combinatorial works of Erdős opened a new perspective

for studying large networks by bringing in methods which capture as many precise

features of graph ensembles as possible. Usually the complete information about

the number of individuals, their connectivity matrix and even more their types of

connections is not available. Therefore, it is inevitable that a suitable q ensemble

must be proposed of which the real graph would be any realization, i.e an element of

this sample space. Depending on the proposed probability space, the accuracy of the

reported average graph features might vary. The main topic of random graph theory,

is to propose a graph ensemble that matches as closely as possible to characteristics

of network types, such as biological networks, social graphs, citation networks and
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financial networks. For instance, in the remarkable papers of Barabasi [2, 3, 4], the

scale free graph arising from preferential attachment is shown to be a good fit for

biological networks, the world wide web and friendship networks. This model is

briefly explained in section 1.3.

It is not always the case that we are in a complete blindness about the topology of

our networks. Sometimes we might be provided with partial information such as the

degree sequence, i.e the sequence of node degrees, without knowing how these nodes

are connected to each other. The Configuration model introduced in [5] addresses the

problem of generating a random sample from an ensemble of graphs with the specified

degree sequence. As briefly discussed in section 1.2, it is an inherent assumption of

uniform attachments in it, which leads to equally probable graphs in the ensemble.

Therefore the placements of edges in this model ignores the possible node and edge

types, which are some extra information we have about the vertices and their connec-

tion tendencies. The main contribution of this thesis is to generalize the configuration

model to allow edge placement to depend on node and edge type. Similar to the con-

ventional model, the vertices have an associated number of half-edges (edges which

are not yet paired), and then the pairings of the half-edges are performed according

to the prescribed edge-type distribution. The aim is to achieve the given edge- and

node-type distributions asymptotically as the graph size gets large. These distribu-

tions are usually determined from empirical measurements of a known real network,

so as to include rather general graphs of similar types. The mathematical analysis

of our matching algorithm in section 2.3 proves that for given distributions (having

finite moments) the empirical distribution after pairings is concentrated with high

probability around the nominal given distributions. Once we have an algorithm that

2
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generates a random graph as close as desired to a real network. We can proceed with

further investigations and study other problems on the random sample and expect to

get similar results in real networks. For instance, we might want to find the size of the

giant connected component in the graph, the probability of having cascading defaults

in financial networks, the dynamics of disease contagion in biological networks, or

several other interesting problems. Our model captures the assortativity of networks,

mainly the tendency for individuals to connect to similar or opposite types. It is

called assortative configuration model because it allows the half-edge pairings have

the so called assortativity.

As another perspective, instead taking the edge-type distribution into account,

one can work with node types, which results to the so called inhomogeneous random

graph described in chapter 3. This model is easier to conceive and more natural to

apply to real networks than the configuration model, but it can be regarded as a

subset of the former model. The vertices are given with fixed or random weights,

and the probability of having an edge between two nodes only depends through the

node weights. This model seems more realistic because what one might know in the

first place about any graph may be some information about vertices which can then

be translated to node types. However in section 3.2 we show how this model can be

related to assortative configuration model.

It is the hope of this thesis that the mathematical exploration of assortative graphs

will establish the required foundation for applying this model to important real-world

networks. Moreover, analytic formulations and their mathematical proofs provide

strong basis for the Monte-Carlo simulations performed on random graphs.

3
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1.1 Erdős-Renyi Graph

In this section, we are going to briefly address the so called Erdős-Renyi random

graph Gn,p, which is considered to be the simplest model for random networks. The

name originated from the inventors after their pioneering work [1], which established

a new field of research. The underlying randomness in this model is homogeneous

across the whole network: each pair of the n vertices is connected with occupation

probability p; also called edge probability. The described randomness is uniform and

unrelated to the type of vertices, which makes the characteristics of this model such as

degree distribution, phase transition and graph diameter easier to analyze. Given the

independence of edge occupancies, the degree of any fixed node follows a Binomial

distribution Bin(n, p) with success probability p and n − 1 trials (total number of

neighbours for each vertex). Denoting the degree of node v by Dv, then

P (Dv = k) =

(
n− 1

k

)
pk(1− p)n−k. (1.1)

If the edge probability p scales down with n, i.e p = λ/n, then it is known as a basic

probability theory property that the Binomial probabilities converges to a Poisson

distribution with parameter λ:

lim
n→∞

P (Dv = k) = e−λ
λk

k!
. (1.2)

One can also strengthen the results for empirical node distribution, and justify stricter

methods of convergence such as convergence in probability for the number of vertices

4
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with degree k, u
(n)
k . For any ε > 0,

P

(∣∣∣∣∣u(n)k

n
− e−λλ

k

k!

∣∣∣∣∣ ≥ ε

)
→ 0. (1.3)

Since for large k the Poisson probability mass function is smaller than k−τ , for any

positive τ , the Erdős-Renyi random graph is not in the category of scale-free graphs

which have a fat tailed distribution, thus it can not be used as a suitable model for

real-world networks which are showing heavy tail properties.

There is a less commonly used version also referred as Erdős-Renyi graph, which

again has n vertices, but instead of taking each possible edge with probability p, one

picks m of n(n− 1)/2 possible edges between the vertices uniformly at random. The

fixed number of edges in the second realization brings an annoying level of dependence,

however when p = 2m/n(n − 1) the first model is closely related to the second one

[6], and that is why much of the attention is given to the first model.

Since this section is aimed to express an overview of main features of the Erdős-

Renyi model, we conclude by explaining an interesting result about a phase transition

related to the emergence of a unique giant connected component in the network. The

sequence of Erdos-Renyi graphs Gn,λ/n, where λ is constant, has a phase transition

at λ = 1. We write L1(G) for the number of vertices in the largest component of a

graph G. As shown first by Erdos-Renyi in [1], with high probability (whp), if λ < 1

then L1(Gn,λ/n) is of logarithmic order, if λ = 1 it is of order n2/3, while if λ > 1 then

there is a unique giant component containing Θ(n) vertices.

The intuition behind this result is that, the average number of neighbours of a

randomly chosen vertex is λ and allowing the randomness in edges occupation to be

modelled by a Branching process with parameter λ, then the supercritical growth

5



M.Sc. Thesis McMaster - Mathematics

of λ > 1 is associated to a giant connected component. A simple proof for the

evolution of the random graph based on the Branching process approximation, and

the associated phase transition results, is given in [7].

1.2 Configuration Graph

In this section our aim is to investigate a class of graphs which have a fixed degree

sequence. In another words, given a sequence of node degrees, we want to construct

such graphs with this degree sequence. Also it might be desirable in some situa-

tions that the ensemble of constructed graphs with the given degree sequence become

equally probable, namely they are uniformly distributed. However not all the degree

sequences are graphical, in the sense of being realizable as degrees of vertices in a

graph. For instance d = (dv)v∈[n] is not graphical if the sum of degrees is an odd

number.

Definition 1.2.1. A graph is said to be simple, if there are no any self-loops or mul-

tiple edges between any pairs of vertices. Otherwise it is referred to as a multigraph.

We would like to restrict the class of configuration graphs to simple graphs, and the

question of obtaining a uniform measure over this class also needs to be answered. The

configuration model as a possible realization of random graphs was first introduced

in [5, 8] where both are inspired by [9]. Given the sequence of vertex degrees d, let

H = ∪nj=1Hj be a fixed set of 2m =
∑n

j=1 dj labelled half-edges, where |Hj| = dj.

The so called configuration σ is a partition of H into m pairs half-edges, which

are the edges. A more sensible explanation for the formation of this model is that

all vertices are equipped with certain number of stubs (half-edges) equal to their

6
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degrees, then these stubs are attached to each other uniformly at random to build

up the connections yielding the graph with prescribed degree sequence Confn(d). So

by labelling the set of all half-edges in {1, . . . , `n}, where `n =
∑

v∈[n] dv, a specific

configuration σ is denoted as

σ = {(i, σ(i)) : i ∈ [`n/2]}. (1.4)

where σ(i) is the incident half-edge to i, which together form a full edge. The at-

tachments are going to continue until all half-edges get connected to one another.

Following the notations in [10], denote xi as the half–edge which is picked at step

i of pairings, and let yi be the one to which xi is paired. Then a pairing scheme

(xi)i∈[`n/2] is said adaptable if the choice of xm only depends on (xj, yj)
m−1
j=1 . Moreover

it is uniform when

P
(
xm is paired to ym

∣∣xm, (xj, yj)m−1j=1

)
=

1

`n − 2m+ 1
. (1.5)

At any step of the pairing, the drawn half-edge has no tendency to connect to specific

types of half-edges, which means the remaining unpaired half-edges are equally prob-

able to be connected the chosen half-edge. According to the given rule of attachment

(1.5), the probability of any configuration σ, which occurs when an index j exists

7
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such that xj = i and yj = σ(i), can be found:

P (Confn(d) = σ) = P (xi is paired to yi ∀i ∈ [`n/2])

=

`n/2∏
i=1

P
(
xi is paired to yi

∣∣xi, (xj, yj)i−1j=1

)
=

`n/2∏
i=1

1

`n − 2i+ 1
=

1

(`n − 1)!!
.

Therefore, all the configurations for a given degree sequence d are equally probable.

Assuming the degree sequence is graphical, following the uniform adaptable pairing

scheme leads to a multigraph which is uniformly drawn from the sample space. How-

ever the expense of this uniformity is the emergence of possible self-loops and multiple

edges, which can not be prevented during the matching algorithm. Moreover by ig-

noring the labels on stubs, different configurations might be corresponded to a same

graph. This means that despite the uniform distribution of Confn(d), their induced

graphs are no longer equally probable. One can identify a (multi)graph by a collection

of indicator events (xij)i,j∈[n], such that xij = 1 when there exists an edge between

vertices i, j. Therefore degree of vertex i is

di = xii +
∑
j∈[n]

xij. (1.6)

Proposition 1.2.2. Let G = (xij)i,j∈[n] be a (multi)graph, which has the degree

sequence d = (di)i∈[n], then

P (Confn(d) = G) =

∏
i∈[n] di!

(`n − 1)!!
∏

i∈[n] 2
xii
∏

1≤i≤j≤n xij!
. (1.7)

8
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Proof. Following the proof of [11], each configuration has probability 1/(`n − 1)!!, so

we only need to find the number of configurations which are equivalent to G upto

relabeling the half-edges. Note that by permuting the half-edges incident to each

vertex we get the same graph but a different configuration, where the numerator of

(1.7) counts the number of permutations. Moreover the factor xij! compensates for

the fact that the multiple edges between i, j can be relabelled without affecting the

graph structure but giving rise to different configuration. Likewise 2xii ’s are due to the

self-loops’ half-edges which can be ordered reversely without changing the skeleton

graph. �

To get around the self-loops and multi-edges and get a simple graph with pre-

scribed degree distribution, two methods have been presented. The first is the erased

configuration model in which self-loops are removed and multi-edges are merged, so

that the final generated graph is simple. The second isrepeated configuration model

in which the pairing algorithm is repeated until it produces a simple graph. Both

methods are first introduced in [12], and the proof of convergence of empirical degree

distribution to target distribution for the second case is done by Janson in [13]. In

addition Janson derived the probability of a random configuration multigraph being

simple and showed that it is bounded from below, which is a required condition for

the feasibility of obtaining simple graphs by finite repetitions of the configuration

pairings.

9
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1.3 Preferential Attachment Model

In both previous sections, static models for random graphs are presented. That is the

number of nodes is fixed and the degree sequence is given beforehand, so there is no

place for dynamical growth of the model. However, these static models do not capture

the evolution of networks. For instance, in social graphs the friendship relations are

forming and deforming continuously, while in a citation network the number of authors

and papers is growing by time. The Preferential attachment model is introduced by

Barabasi and Albert in their highly cited paper [2], which gives rise to the random

growth of a network and also explains why in their model the degree distribution

decays proportionally to k−3, known as power law. The growth mechanism is that at

each time t a new vertex with certain number of edges is added to the network, and

those edges are sequentially connected to already present vertices. The higher the

degree of the receiving vertex is, the more chance of absorbing the edges of the new

vertex it has. That is why this model sometimes referred as rich-get-richer. Since

there are some imprecisions in how this model defined in [2], a rigorous treatment

of the results which explores the complete formation from early stages and precise

update formulations has been presented in [14]. Let us briefly explain the simplest

expositions for the undirected preferential attachment model PAt(1), where at each

step, one edge and its associated vertex are added to the network (the ‘1’ stands for

the number of vertices added at each step). The set of vertices at time t is denoted

by {v(1)1 , . . . , v
(1)
t }, and degree of v

(1)
i in PAt(1) is denoted by Di(t). At the beginning

of the process, PA1(1) consists of a single vertex with a self-loop, and conditionally

10
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on PAt(1), the growth rule for obtaining PAt+1(1) is as follows:

P
(
v
(1)
t+1 ∼ v

(1)
i |PAt(1)

)
=


1

2t+1
i = t+ 1

Di(t)
2t+1

i ∈ [t]
(1.8)

As it comes from (1.8) the vertices with higher degrees in PAt(1) have more chance

of receiving the other side of the incident edge from v
(1)
t+1. There is also a positive

probability of appearing a loop at v
(1)
t+1. This model has been generalized in [14]

to PAt(m), by starting from PAmt(1) and collapsing the vertices {v(1)1 , . . . , v
(1)
mt} into

groups of m.In other words, v
(1)
1 , . . . , v

(1)
m in PAmt(1) are merged into the vertex v

(m)
1

in PAt(m), similarly v
(1)
m+1, . . . , v

(1)
2m are merged into v

(m)
2 and so forth untill getting t

vertices in PAt(m). Therefore, in PAt(m) there are mt edges, and t vertices and there

might be some self-loops and multiple edges as well. The next theorem which can be

found with its proof in [10] studies the asymptotic empirical degree distribution. Let

us define Pk(t) as the proportion of vertices with degree k at time t,

Pk(t) =
1

t

t∑
i=1

1{Di(t)=k} (1.9)

and denote pk = 2m(m+1)
k(k+1)(k+2)

as the limiting degree distribution.

Theorem 1.3.1. For fix m ≥ 1, there exists a constant C = C(m) such that as

t→∞

P
(

max
k
|Pk(t)− pk| ≥ C

√
log t/t

)
= o(1). (1.10)

This theorem confirms the decay of degree distribution according to k−3, which has

been stated earlier. The mainstream of all proposed models for preferential attach-

ment is that the connection probabilities are proportional to degree of the receiving

11
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vertex. Variations of this model have been presented to study the directed case [15]

and nonlinear attachment probabilities [16].

12



Chapter 2

Assortative Configuration Graphs

The main contribution of thesis is described in this chapter, which is the extension of

configuration model discussed in 1.2 to the directed and assortative case. The model

introduced in this chapter is capable to capture the tendency of linkage between

vertices according to their degrees. For instance, in social networks highly connected

nodes tend to connect to other high degree nodes, or in biological networks high degree

individuals usually connect to low degree nodes, thus vaccinations that target the

high degree vertices in biological networks could quickly stop the disease contagion.

Measures of assortativity and indications of intense percolation in such networks are

studied in [17], but in this chapter we aim to introduce a quite general mathematical

foundation, which allows almost all edge and node types behaviour. Therefore, we

assume consistent node and edge type distributions P,Q are given, which can almost

be any arbitrarily distributions satisfying some nonrestrictive conditions. Then a

random discrete matching algorithm for half-edge pairings is suggested and shown

to converge to target distributions. The chapter is organized as follows: in section

2.1, general conditions on degree distribution P are imposed and a sampling method

13
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to obtain a graphical bi-degree sequence is studied. In the second section 2.2, an

assortative wiring of half-edges according to the edge-type distribution Q is presented,

and in the next section 2.3 asymptotic results, which investigate the empirical edge

type distribution are proved. Finally in 2.3.3 some applications such as limiting

distribution of emerged self-loops is studied.

2.1 Degree Sequence

Chen et al. [18] studied the configuration model for directed graphs, where each

vertex comprises two sets of half-edges: in-stubs and out-stubs, and a full edge is

established by connecting an out-stub to an available (not yet paired) in-stub. In

order to get a graphical realization for a directed graph, the total number of available

in-stubs has to match the number of out-stubs, otherwise the matching process does

not terminate. However, if we denote the bi-degree of vertex v by (jv, kv), which is

drawn at random from joint degree distribution Pjk, and let n be the total number

of vertices, then

lim
n→∞

P

∑
v∈[n]

(kv − jv) = 0

 = 0.

Unless P (kv 6= jv) = 0, which typically doesn’t happen. In this section we want to

study an algorithm, starts off by sampling from degree distribution P , then develope

a matching method which yields asymptotically to target edge distribution Q. So if

we denote the set of vertices with in-degree j and out-degree k by Vjk, and the set

of edges made from pairing a k out-stub to a j in-stub by Hkj; from k out-stub we

mean a half-edge which goes off from a vertex with out-degree k, similar notion also

14
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exists for an in-stub; then in an infinite graph

P (v ∈ Vjk) = P
(
d−(v) = j, d+(v) = k

)
= Pjk

P (` ∈ Hkj) = Qkj,

where v and ` are randomly chosen vertex and edge respectively. We say a vertex is

of type (j, k), if it belongs to Vjk, and an edge is of type (k, j), when it belongs to

Hkj. For example, as depicted in Fig. 2.1, vertex 1 is of type (2, 3), and the dashed

blue edge is of type (3, 2).

1(2, 3) 2

(2, 2)

3

(2, 0)

(3, 2)

Figure 2.1: directed graph

As it was earlier, P and Q are bivariate node and edge type distributions, which

have the following marginals:

P+
k =

∑
j Pjk P−j =

∑
k Pjk

Q+
k =

∑
j Qkj Q−j =

∑
kQkj.

(2.1)

Definition 2.1.1. The node and edge type probability laws P , Q are consistent if:

• The mean in- and out-degrees of nodes are equal: z :=
∑

j jP
−
j =

∑
k kP

+
k .

• Q+
k = kP+

k /z, Q−j = jP−j /z for all integer values of j,k.

15
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Given the consistent laws P , Q we can draw n independent copies from P to

form the bi-degree sequence (jv, kv)v∈[n]. Some regularity conditions on the degree

distribution, which relate the behaviour of the empirical degree distribution in a

finite setup to the subjective probability measure, need to be imposed. Let ujk be

the number of type (j, k) nodes for the given bi-degree sequence (jv, kv)v∈[n], the

shorthand quantities,

u+k =
∑
j

ujk u−j =
∑
k

ujk (2.2)

are defined to better address the regularity conditions. Moreover, for the given se-

quence we denote the bi-degree of a uniformly chosen vertex U in [n] by Dn =

(Jn, Kn) = (jU , kU). Thus one can associate an empirical measure to the finite graph,

which is identified by the ratios ujk/n.

Condition 2.1.2. For the given sequence of bi-degrees (jv, kv)v∈[n], the following

conditions hold:

1. Convergence in distribution of the empirical degree to P -measure: Dn ⇒ D,

where D ∼ P . In other words:

P (Dn = (j, k)) =
ujk
n
→ Pjk. (2.3)

2. Finite expectation:
∑

k kP
+
k =

∑
j jP

−
j = z <∞.

3. Convergence of the first moment: Both for the in- and out-degrees the following

16
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convergence assertions hold:

E (Jn) =
1

n

∑
j

u−j → E (J) =
∑
j

jP−j

E (Kn) =
1

n

∑
k

u+k → E (K) =
∑
k

kP+
k .

(2.4)

These set of constraints are the minimal assumptions we need in proceeding sec-

tions to prove our results. More conditions may be required depending on the type

of the necessary boundedness. In the following two sections, our goal is to compose a

finite graph with node and edge type empirical distribution as close as possible to P ,

Q. Therefore, two steps for this construction are studied. First, a realizable bi-degree

sequence is obtained by slight modification of the original draw from P . Secondly the

assortative wiring process for pairing the half-edges is introduced and shown to reach

the target edge distribution Q.

As we have seen before if the bi-degree sequence is sampled arbitrarily from P , then

with vanishing probability that sequence would lead to a graphical representation. So

starting with (jv, kv)v∈[n], the sequence is modified slightly to form a feasible sequence

(j̃v, k̃v)v∈[n]. The following clipping algorithm is proposed in [18].

1. Draw a bi-degree sequence (jv, kv)v∈[n] from P distribution.

2. Let Dn =
∑

v∈[n](kv − jv) be the difference between out-degrees and in-degrees.

3. If |Dn| > ∆n then go back to 1, otherwise continue to the next step.

4. Choose |Dn| vertices, {i1, . . . , i|Dn|} uniformly at random from the set of vertices
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[n]. Define the modified degree sequence (j̃v, k̃v)v∈[n] like follows:

j̃v =

 jv + 1 Dn ≥ 0 and v ∈ {i1, . . . , i|Dn|}

jv otherwise

k̃v =

 kv + 1 Dn < 0 and v ∈ {i1, . . . , i|Dn|}

kv otherwise

(2.5)

The threshold level ∆n has to be chosen, so that with high probability a randomly

drawn bi-degree sequence is accepted in step 3 of the algorithm, namely probability of

Dn = {|Dn| ≤ ∆n} must converge to one. A suitable threshold is found in [18], but for

the case when in- and out-degrees are independent from each other. Nevertheless they

are not necessarily independent and might come from a joint measure Pjk. However,

we can exploit their suggested threshold and generalize the proof of Lemma 2.1 in

their paper, all that matters is to have ∆n = o(n).

Remark 2.1.3. In order to prove P (Dn) → 1, we need stricter tail boundedness

conditions for the marginals of P , rather than merely having finite first moment. A

sufficient condition is proposed in [18], as there exist slowly varying functions L+(·)

and L−(·) such that

∑
k>x

P+
k ≤ x−αL+(x)

∑
j>x

P−j ≤ x−βL−(x), (2.6)

for all x ≥ 0, where α, β > 1.

Note that (2.6) ensures that marginals of P have finite moments of order greater

than one. Although, it is not necessary for kv−jv to have finite variance, but assuming

it does we can show for ∆n = n1/2+δ, δ ∈ (0, 0.5) the acceptance probability in step 3
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converges to 1. Equivalently we have:

P
(
|Dn| ≥ n1/2+δ

)
≤ Var(Dn)

n1+2δ
=
nVar(kv − jv)

n1+2δ
→ 0. (2.7)

Once we get a suitable sequence (j̃v, k̃v)v∈[n], we would like its joint distribution to

converge asymptotically to i.i.d elements coming from Pjk. It is important to note

that from the construction of the modified sequence, the vertices bi-degrees are no

longer independent from each other. But, it is reasonable to expect some sort of

similarity between the original degree sequence and the modified one, because the

number of added half-edges in the algorithm is negligible in comparison with the

number of vertices. Next proposition will let us to accept the modified sequence as a

reasonable candidate for (jv, kv)v∈[n].

Theorem 2.1.4. Fix any chosen threshold level ∆n = o(n), that satisfies the accep-

tance condition with probability 1− o(1), then

(i) For any fixed finite subset of [n], say S, (j̃v, k̃v)v∈S converges in distribution to

(ĵv, k̂v)v∈S , where (ĵv, k̂v) are i.i.d bivariate P -distributed random variables.

(ii) If ũjk denotes the number of type (j, k) nodes after degree adjustment, then the

following limit in probability holds:

ũjk
n

p−→ Pjk. (2.8)

Proof of Theorem 2.1.4. To show convergence in distribution in the first part, we have

to prove that for any bounded function f : N2|S| → [−M,M ] the following equation
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holds: ∣∣∣E(f((j̃v, k̃v)v∈S)− f((ĵv, k̂v)v∈S)
)∣∣∣→ 0. (2.9)

The details of the proof is given in the appendix. For the second part it is important to

note that, there are two sources of randomness. First is coming from the randomness

lies on choosing the set {i1, . . . , i|Dn|} in the clipping algorithm, and second one is

due to the randomness of the original bi-degree sequence. Both parts of this theorem

were studied in [18], though some minor modifications have to be made for extending

the results to non-independent in- and out-degree case. �

Remark 2.1.5. One could also demonstrate that condition on occurrence of Dn the

empirical mean of in- and out-degree after the clipping process converges in proba-

bility to z, because

P

∣∣∣∣∣∣ 1n
∑
v∈[n]

k̃v − z

∣∣∣∣∣∣ > ε |Dn

 ≤ P

∣∣∣∣∣∣ 1n
∑
v∈[n]

kv − z

∣∣∣∣∣∣+
|Dn|
n

> ε |Dn


≤ 1

P (Dn)
P

∣∣∣∣∣∣ 1n
∑
v∈[n]

kv − z

∣∣∣∣∣∣+
∆n

n
> ε


≤ 1

P (Dn)
P

∣∣∣∣∣∣ 1n
∑
v∈[n]

kv − z

∣∣∣∣∣∣ > ε

2

→ 0.

(2.10)

Equation (2.10) holds because we can make ∆n/n less than ε/2 for large n.

2.2 Assortative Wiring

The construction here is similar to the conventional configuration model, that is half-

edges are initially detached from each other, and as time passes, they are going to
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get connected. However, the main difference is the governing rule of wirings, which

in the conventional case is uniform among the set of available in- and out-stubs, but

in the assortative scheme the matchings are made according to general probability

weights, which are not necessarily uniform.

To begin this process, all vertices are equipped with a bi-degree (jv, kv)v∈[n] which

are i.i.d draws from Pjk. If this sequence passes the condition of clipping algorithm,

then the modified degree sequence, d̃ = (j̃v, k̃v)v∈[n] is generated, otherwise the se-

lection process is repeated. Although the results of next sections are derived for

the modified sequence, but for notational simplicity all the variables are represented

without tilde sign. Thus by d = (jv, kv)v∈[n] we actually mean the modified feasible

sequence d̃ = (j̃v, k̃v)v∈[n], which is resulted after the clipping algorithm while the

tilde signs are dropped.

Definition 2.2.1. The following sets are defined, so that we can express the config-

uration’s dynamics in terms of them:

• H+
k (t) = {unpaired out-stubs with out-degree k up to time t},

• H−j (t) = {unpaired in-stubs with in-degree j up to time t},

• Ekj(t) = {type (k, j) edges have been paired up to time t}.

Moreover their cardinality are expressed by non-calligraphic letters, as H+
k (t), H−j (t)

and Ekj(t).

The set of possible pairings at time t would be ∪kH+
k (t)×∪jH−j (t), with elements

given weights proportional to Qkj/Q
+
kQ
−
j . In order to make these weights add up to
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one at time t, all of them are normalized by

C(t) :=
∑
k,j

H+
k (t)H−j (t)

Qkj

Q+
kQ
−
j

. (2.11)

Therefore, at time t the probability of choosing a type (k, j) edge among all possible

pairings would be

P
(
H+
k (t) connects to H−j (t)

)
=
H+
k (t)H−j (t)

Qkj

Q+
k Q
−
j

C(t)
. (2.12)

The wiring process stops at the terminal time T (n) =
∑

v∈[n] kv, when there are no

more available stubs, and all half-edges are wired by that time. One can model the

dynamics of the wiring process acting on the above sets of available stubs by a Markov

process with the given probability weights in (2.12), where the Markov state variables

are

Y (t) =
{(
H+
k (t)

)k(n)
k=1

,
(
H−j (t)

)j(n)
j=1

, (Ekj(t))
k(n),j(n)
k,j=1

}
,

Y (0) =
{(
ku+k

)k(n)
k=1

,
(
ju−j

)j(n)
j=1

, (000)
k(n),j(n)
k,j=1

}
.

k(n) and j(n) are the n-th order statistics, i.e k(n) = maxv∈[n]{kv} and j(n) = maxv∈[n]{jv}.

Transition probabilities can easily be found from (2.12). Conditioned on the graphical

degree sequence d and previous matchings Y (t), for each time step 0 < t ≤ T (n), we

have

E
(
H+
k (t+ 1)−H+

k (t) |d, Y (t)
)

= −
H+
k (t)

∑
j H

−
j (t)

Qkj

Q+
k Q
−
j

C(t)

E
(
H−j (t+ 1)−H−j (t) |d, Y (t)

)
= −

H−j (t)
∑

kH
+
k (t)

Qkj

Q+
k Q
−
j

C(t)

E (Ekj(t+ 1)− Ekj(t) |d, Y (t)) =
H−j (t)H+

k (t)
Qkj

Q+
k Q
−
j

C(t)
.

(2.13)
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These are the trend equations which represent the average rate of change of the

Markov variables, conditioned on the history of previous pairings.

2.3 Asymptotic Results

2.3.1 Empirical edge type distribution

As it turns out the discrete matching algorithm we have defined can be analyzed

for large n, using the techniques for “almost martingales” pioneered by Wormald

[19]. The idea is to associate a differential equation system to the trend equations

(2.13), and then demonstrate the claim that Markov variables lie with high proba-

bility around the solution of the differential system. In other words, we expect that

the differential system could remarkably track the trajectories of the Markov pro-

cesses. In our problem, it is intuitive to introduce the continuous time functions(
z+k (τ), z−j (τ), ekj(τ)

)
with the intention that

H+
k (t)/n = z+k (t/n) + o(1),

H−j (t)/n = z−j (t/n) + o(1),

Ekj(t)/n = ekj(t/n) + o(1).
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Therefore one can conjecture that the ODE system

w(τ) : =
∑

k≤k(n),j≤j(n)

z+k (τ)z−j (τ)
Qkj

Q+
kQ
−
j

ż+k (τ) = −
z+k (τ)

∑
j≤j(n) z

−
j (τ)

Qkj

Q+
k Q
−
j

w(τ)
, z+k (0) = kP+

k 1{k≤k(n)}

ż−j (τ) = −
z−j (τ)

∑
k≤k(n) z

+
k (τ)

Qkj

Q+
k Q
−
j

w(τ)
, z−j (0) = jP−j 1{j≤j(n)}

ėkj(τ) =
z+k (τ)z−j (τ)

Qkj

Q+
k Q
−
j

w(τ)
, ekj(0) = 0

(2.14)

could be the one whose solution is approximating the trajectories. The choice of the

initial conditions actually seems natural, because from part ii of theorem 2.1.4 we

expect H+
k (0) = nkP+

k (1 + o(1)), which is consistent with taking the deterministic

initial condition z+k (0) = kP+
k . Summarizing the representation of this system, one

could consider

ẋ(τ) = f(x(τ)) where f : Rk(n)+j(n) → Rk(n)+j(n)+k(n)j(n)

x(0) =
({
zQ+

k

}k(n)
k=1

, {zQ−j }
j(n)
j=1, {000}

k(n),j(n)
k,j=1

)
,

(2.15)

where

x(τ) :=
({
z+k (τ)

}k(n)
k=1

,
{
z−j (τ)

}j(n)
j=1

, {ekj(τ)}k(n),j(n)k,j=1

)
,
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as an alternative description of differential equations with the understood function f

from R.H.S of (2.14). Moreover, the domain for this system is the bounded open set

Ω(ε)
n =

{(
τ,
{
z+k
}k(n)
k=1

, {z−j }
j(n)
j=1, {ekj}

k(n),j(n)
k,j=1

)
: −ε < τ < z(1− ε) , − ε < z+k < k ∀k ,

− ε < z−j < j ∀j ,−ε < ekj < k ∧ j &
∑

j≤j(n),k≤k(n)

z+k z
−
j

Qkj

Q+
kQ
−
j

> ε
}
.

(2.16)

Over this region, the denominators of autonomous functions of the differential system

are bounded away from zero, so there is Lipschitz continuity over this set. Namely,

there exists c = c(ε) such that

‖f(x)− f(y)‖ < c ‖x− y‖

for every x, y ∈ Ω
(ε)
n . Because of the equivalence of norms, let us agree on l∞ norm

from now on. Next proposition gives the solution for this system over the proposed

region.

Proposition 2.3.1. Given the ε > 0, the system of ordinary differential equations

in (2.14) has the unique solution

z+k (τ) = zQ+
k

(
1− τ

z

)
+ o(1)

z−j (τ) = zQ−j

(
1− τ

z

)
+ o(1)

ekj(τ) = Qkjτ + o(1),

(2.17)

for the time interval τ ∈ [0, z), which is extendible to the boundary of Ω
(ε)
n . (see

appendix for the proof)
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Remark 2.3.2. The o(1) factor in equation (B.9) of the proof of proposition 2.3.1

comes from the tail condition of Q, which is clearly going to zero as n grows. However,

further on we may need to increase the Lipschitz factor with n, thus in order to get

an o(1) error in x(τ), we need to impose stricter tail condition on Q. For instance, if∑
k>k(n)

Q+
k decays like 1/ log n, then c can be chosen as log log n/z and still we get

an o(1) error term in (B.9). Because the denominators are ε away from zero on Ω
(ε)
n ,

then the Lipschitz constant would be of order 1/ε2. Thus, we can choose ε according

to the desired Lipschitz constant, that gives us an o(1) error in (B.9). From equation

(B.9) and the fact τ ≤ z on Ω
(ε)
n , we get

∥∥x(τ)− x(1)(τ)
∥∥ ≤ z log n

log log n
× 1

log n
= o(1).

Thus the approximation error remains as o(1).

Once the solution of (2.14) is known, we could go one step further to approximate

the Markov processes with the their continuous counterparts, by using Wormald’s ar-

gument. However, there are two obstructions here. First, the proof for approximating

the trajectories of random processes with the solution of corresponding differential

system is brought for finite (n independent) number of variables in [19], but as men-

tioned in this paper the issue can be resolved without any trouble, and Amini has

shown it in [20]. Second, as pointed out in [19] the growth of Lipschitz constant pre-

vents us from choosing a domain Ω which extends to the natural end of the process.

That is the reason Ω
(ε)
n is set to stay ε away from the actual terminal point of the

process (when τ → z). But, eventually we would like to approach ε → 0, and that

forces the Lipchitz constant to blow up. So we have to prove a version of the theorem

which allows the growth of the Lipschitz constant as n increases, while being able to
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control the error probability as a function of Lipschitz factor. Therefore, an improved

version of this theorem is expressed here, but proved in appendix.

Proposition 2.3.3. Let b = b(n) be the number of random variables, and {Y (n)
` (t)}b`=1

is a sequence of stochastic processes such that 0 ≤ Y
(n)
` (t) ≤ C0n. Let Ft be the σ-

field induced by these processes upto time t. In addition, suppose there exists a

bounded connected open set D(n) ⊆ Rb+1 such that

{
(0, z1, . . . , zb) : P

(
Y

(n)
` (0) = nz`, ` = 1, . . . , b

)
6= 0
}
⊆ D(n), (2.18)

and is a function of n. If TD(n) = inf
{
t ≥ 0 :

(
t/n, Y

(n)
1 (t)/n, . . . , Y

(n)
b (t)/n

)
/∈ D(n)

}
would be the stopping time, which alarms the exit of variables from the controlled

domain, and the following conditions hold for t ≤ TD(n):

1. (Bounded Increments) for some constant β(n):

max
1≤`≤b

∣∣∣Y (n)
` (t+ 1)− Y (n)

` (t)
∣∣∣ ≤ β(n).

2. (Trend) For some λ1(n) = o(1) and for all 1 ≤ ` ≤ b:

∣∣∣E(Y (n)
` (t+ 1)− Y (n)

` (t) |Ft
)
− f`

(
t/n, Y

(n)
1 (t)/n, . . . , Y

(n)
b (t)/n

)∣∣∣ ≤ λ1(n).

(2.19)

3. (Lipschitz Continuity) the family of functions {f`}, ` = 1 . . . b(n) are Lipschitz

continuous on D(n) with all Lipschitz constants uniformly bounded by µ(n)

(typically, this constant grows as n increases).

then it is possible to conclude:
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(i) For any initial condition (0, ẑ1, . . . , ẑb) ∈ D(n), the following system of differen-

tial equations has a unique solution on D(n) which passes the initial points. i.e

zk(0) = ẑk, k = 1, . . . , b. Moreover, this solution is extendible to the boundary

of D(n).

dzk
ds

= fk(s, z1, . . . , zb) (2.20)

(ii) For the given λ > λ1 with λ = o(1), and sufficient large C we can approximate

the random processes with the solution to the above ODE such that:

P
(∣∣∣Y (n)

k (t)− nzk (t/n)
∣∣∣ ≥ λn

)
= O

(
bρσ

λ
e
−nλ

3

ρ3

)
; ρ(n) := β(n)µ(n) (2.21)

In other words with probability 1−O
(
bρσ
λ
e
−nλ

3

ρ3

)
we have:

Y
(n)
k (t) = nzk (t/n) +O(λn), (2.22)

for all k ∈ {1, . . . , b} and 0 ≤ t/n ≤ σ(n). zk is the solution of equation in (2.20),

with initial condition zk(0) = Y
(n)
k (0)/n. And σ(n) determines the distance to

the boundary of D(n).

σ(n) = sup{s : dist∞ ((s, z1(s), . . . , zb(s)), ∂(D(n))) > Cλ} (2.23)

Throughout the proof it is assumed that σ(n) = O(1).

Now we are in a position to give a rough estimate about the eventual ratio of

type (k, j) edges at the terminal time T (n), which is basically the main result of this
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thesis.

Theorem 2.3.4. The ratio of type (k, j) edges concentrates with high probability

around the nominal edge type distribution Qkj. To be more precise for any chosen

λ = o(1) with high probability of 1−O
(
bρσ
λ
e−nλ

3/ρ3
)

we have

Ekj(T (n))

n
= zQkj + o(1), (2.24)

where ρ = ρ(n) is the uniform Lipschitz constant over Ω
(ε)
n , and b = b(n) is the

dimension of system in (2.14).

Proof of Theorem 2.3.4. Since the denominators of autonomous functions in (2.14)

are at least ε on Ω
(ε)
n , the Lipschitz constant is bounded by ρ = 1/ε2. Therefore,

depending on the decay speed of Q’s tail, we could pick ε(n) such that the error term

in solution of (2.14) is kept at order o(1), like the way we did in remark 2.3.2. Now

because all the requirements of proposition 2.3.3 are satisfied by β(n) = 1 and λ1 = 0,

one can exploit it to establish the concentration region of Ekj for any t/n ≤ σ(n) as

Ekj(t)

n
= ekj(t/n) +O(λ)

= (t/n)Qkj + o(1) +O(λ) = (t/n)Qkj + o(1),

(2.25)

where σ(n) specifies the maximum time such that continuous solutions of (2.14) are

at Cλ distance from the boundary of Ω
(ε)
n . The only constraint in the set Ω

(ε)
n , which

is violated as the process keeps going on, is the approaching of τ to z(1−ε). Therefore

the boundary of Ω
(ε)
n is reached at τ̂ = z(1 − ε), where ekj(τ̂) = zQkj(1 − ε) + o(1).
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Let us evaluate z+k and z−j at the boundary:

z+k (τ̂) = zQ+
k ε+ o(1)

z−j (τ̂) = zQ−j ε+ o(1)

(2.26)

The complication arises right after τ̂ , where we can not use (2.25), because τ is no

longer in Ω
(ε)
n . However, the point is that since ε(n) = o(1) then for times around nτ̂ ,

the remaining number of k out-stubs from (2.26) are going to be

H+
k (t)

n
= zQ+

k ε+ o(1) = o(1). (2.27)

And we know that the difference between Ekj(T (n)) and Ekj(t) is bounded by this

number of k out-stubs, namely:

Ekj(T (n))

n
− Ekj(t)

n
≤ H+

k (t)

n
= o(1) =⇒ Ekj(T (n))

n
= zQkj + o(1).

�

Remark 2.3.5. In order to obtain a negligible error probability in theorem 2.3.4,

one has to choose λ, such that the exponent of e grows to infinity as n approaches

infinity. And this needs to be done in accordance with the choice of ρ(n), which has

already been determined by picking suitable ε(n) related to the tail of Q.

2.3.2 Assortative wiring for undirected graphs

As a more simplified case, one can observe that the results of the previous section hold

for undirected graphs. Supposing the initial degree sequence d = (dv)v∈[n] satisfies
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the only required condition for being graphical, namely
∑

v∈[n] dv be an even number,

then the undirected graph can be constructed by assortative pairings according to

the edge type distribution Qkj, that in this case is symmetric, i.e Qkj = Qjk. In

contrast to the directed case the degree distribution is univariate distribution, since

there are no in- and out-degrees. The corresponding consistency between P,Q would

be Qk = kPk/z where z is the mean degree and Qk is the marginal of Q, which is

indeed independent of index taken to be fixed. The half-edges are connected to the

vertices but not to each other at the beginning of the wiring process, however they are

going to connect gradually during the wiring process. The set of un-paired half-edges

upto time t, which are associated to a k-degree node is denoted by Hk(t), and its

cardinality is shown by Hk(t). Likewise before

P (Hk(t) connects to Hj(t)) =
2Hk(t)Hj(t)

Qkj
QkQj

C(t)
for k 6= j

P (Hk(t) connects to Hk(t)) =
Hk(t)(Hk(t)− 1)Qkk

Q2
k

C(t)
,

(2.28)

where the weighting factor is C(t) =
∑

k 6=j Hk(t)Hj(t)
Qkj
QkQj

+
∑

kHk(t)(Hk(t)−1)Qkk
Q2
k

.

Similarly, the dynamics of wirings can be modelled by a Markov process with the given

probabilities in (2.28), and the state variables are

Y (t) =
{

(Hk(t))
k(n)
k=1 , (Ekj(t))

k(n),j(n)
k,j=1

}
Y (0) =

{
(Hk(0))

k(n)
k=1 , (0)

k(n),j(n)
k,j=1

}
.

Such that k(n) = j(n) = maxv∈[n] dv is the n-th order statistics, and Ekj(t) is the

number of type (k, j) edges paired up to time t (Ekj(t) = Ejk(t)). The terminal time

of wiring is T (n) =
∑

v∈[n] dv, and for all t ≤ T (n) the following trend equations hold:
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E (Hk(t+ 1)−Hk(t) |d, Y (t)) = −
Hk(t)

∑
j 6=kHj(t)

Qkj
QkQj

C(t)
−

2Hk(t)(Hk(t)− 1)Qkk
Q2
k

C(t)

E (Ekj(t+ 1)− Ekj(t) |d, Y (t)) =
2Hj(t)Hk(t)

Qkj
QkQj

C(t)
+
Hk(t)(Hk(t)− 1)Qkk

Q2
k

C(t)
1{k=j}.

(2.29)

Now one can express the associated continuous differential system to (2.29) together

with a suitable region for the continuous variables like (2.16):

w(τ) :=
∑
k 6=j

zk(τ)zj(τ)
Qkj

QkQj

+
∑
k

z2k(τ)
Qkk

Q2
k

żk(τ) = −
zk(τ)

∑
j 6=k zj(τ)Qkj/QkQj

w(τ)
− 2z2k(s)Qkk/Q

2
k

w(τ)

ėkj(τ) =
2zj(τ)zk(τ)Qkj/QkQj

w(τ)
+
z2k(τ)Qkk/Q

2
k

w(τ)
1{k=j}.

(2.30)

Following the similar analysis as proof of theorem 2.3.4, the terminal number of

type (k, j) edges could be found with Wormald’s method.

2.3.3 Asymptotic distribution of self-loops

After developing the mathematical foundation for assortative configuration, many

other subgraphs can now be explored. Emergence of self-loops as depicted in Fig. 2.2

is one of the nuisance subgraphs that may happen over the process of random wirings.

So it is plausible to count the number of them for each configuration. In [10] the

argument for finding the asymptotic joint distribution of self-loops and multiple edges

is presented for conventional configuration graphs. It is proved to be a joint Poisson

distribution with two distinct parameters, related independently to self-loops and
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multiple edges. Here we are going to find the asymptotic distribution of the number

of self-loops for the assortative case, which is claimed to be a Poisson distribution

with prescribed mean. The next theorem will depict our claim.

1(2, 3) 2

(3, 3)

3 (3, 1)

Figure 2.2: directed graph with self-loops

Theorem 2.3.6. If Sn is the number of self loops at the end of the process of assor-

tative configuration, then Sn converges in distribution to a Poisson random variable,

i.e:

Sn =⇒ S, such that S ∼ Pois(µ) ; µ = z
∑
jk

Pjk
P−j P

+
k

Qkj

Proof of Theorem 2.3.6. To characterize the events yielding to a self loop, we define

the index set S:

S = {(`+v `−v , v) : v ∈ [n], `+v ∈ [kv], `
−
v ∈ [jv]}.

Every self loop is an element of this set, such that `+v is wired to `−v . Let us denote

the set of the emerged self loops by Ln ⊂ S. So one can express Sn as the sum of
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indicator functions over this index set (defining Is := 1{s∈Ln}):

Sn =
∑
s∈S

1{s∈Ln} =
∑
s∈S

Is.

In order to show the convergence in distribution, it is helpful to find the rth factorial

(Sn)r := Sn!/(Sn − r)! moment , i.e E ((Sn)r):

E ((Sn)r) = r!
∑

(s1,...,sr)⊂S

P (Is1 = . . . = Isr = 1)

= r!
∑

(s1,...,sr)⊂S

r∏
t=1

P

(
Ist = 1

∣∣∣∣∣
t−1∏
i=1

Isi = 1

)

=
∑
s1

P (Is1 = 1)
∑
s2 6=s1

P (Is2 = 1 |Is1 = 1) . . .
∑

sr /∈{s1,...,sr−1}

P

(
Isr = 1

∣∣∣∣∣
r−1∏
i=1

Isi = 1

)
.

(2.31)

To find the above probability, we would better to start by calculating the simplest

case, namely
∑

s P (Is = 1).

∑
s∈S

P (Is = 1) =
∑
s∈S

Qkvjv/Q
+
kv
Q−jv∑

w∈[n] jwQkvjw/Q
+
kv
Q−jw

=
∑
v∈[n]

kvjv
Qkvjv/Q

−
jv∑

w∈[n] jwQkvjw/Q
−
jw

=
∑
v∈[n]

kvjv
Qkvjv/Q

−
jv

n
[
E
(
J
QkvJ
Q−J

)
+ o(1)

]
=

1

nz

∑
v∈[n]

kvjv
Qkvjv

Q+
kv
Q−jv

(1 + o(1))

=
z

n

∑
v∈[n]

Qkvjv

P+
kv
P−jv

(1 + o(1)) = [z
∑
jk

Pjk
P−j P

+
k

Qkj](1 + o(1)) = µ(1 + o(1))
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We want to prove that the product of the terms in (2.31) is roughly equal to

(
∑

s P (Is = 1))r. In the remaining of the proof we are going to make this approxima-

tion more accurate, and finally we show that it holds within an o(1) error term. The

subtlety arises in computing conditional probabilities, when we know some half-edges

have already been wired and are not counted as the available candidates of wiring,

so we have to deduct their effects from the weighting factor in the denominators. Let

us find one of the conditional probabilities for q ≤ r:

∑
sq /∈{s1,...,sq−1}

P

(
Isq = 1

∣∣∣∣∣
q−1∏
t=1

Ist = 1

)
=

∑
sq /∈{s1,...,sq−1}

Qkqjq/Q
+
kq
Q−jq∑

w∈[n](jw −O(q))Qkqjw/Q
+
kq
Q−jw

=
1

n

∑
sq /∈{s1,...,sq−1}

Qkqjq/Q
+
kq
Q−jq

z[1 + o(1) +O(q/n)]

=
1

nz

∑
v∈[n]

(
(kvjv −O(q))

Qkvjv

Q+
kv
Q−jv

[1 + o(1) +O(q/n)]

)

=
1

z
E
(
KvJv

QKvJv

Q+
Kv
Q−Jv

)
(1 + o(1) +O(q/n))

=

(
z
∑
jk

Pjk
P−j P

+
k

Qkj

)
(1 + o(1) +O(q/n))

= µ(1 + o(1) +O(q/n)) = µ(1 + o(1)).

(2.32)

Therefore one can conclude by putting together the last line of (2.31) and the

manipulations in (2.32) that: E ((Sn)r) = µr(1 + o(1)), hence:

lim
n→∞

E ((Sn)r) = µr,

which is equivalent to showing that Sn converges in distribution to Pois(µ). �
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Corollary 2.3.7. As a conclusion of previous theorem, the probability of having no

self-loops converges to e−µ; indicating the fact that for large n this probability stays

bounded away from zero.
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Chapter 3

Inhomogeneous Random Graphs

3.1 Model Description

Recalling the Erdős-Renyi graph with homogenous edge occupation probabilities,

there is an extension, which assigns inhomogeneous edge probabilities adjusted by

vertex weights. So the weights of two ends of an edge determine the edge probability

between them, which seems quite natural for real applications. Perhaps we may ex-

pect that by assigning suitable equal weights the Erdős-Renyi model will be obtained.

Given the degree weights (wi)i∈[n], the probability of having an edge between nodes

i, j would be

pij =
wiwj

n+ wiwj
, (3.1)

as suggested in [12]. In the sense of the odds ratio rij one could express the Bernoulli

random variables Xij showing the status of edge (i, j) by their occurrence (Xij = 1)
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probabilities, that is

P (Xij = 1) = pij =
rij

1 + rij

P (Xij = 0) = qij =
1

1 + rij
.

(3.2)

Then the probability of certain edge configurations X = x = (xij) would be

P (X = x) =
∏
i<j

p
xij
ij q

1−xij
ij =

∏
i<j

(1 + rij)
−1
∏
i<j

r
xij
ij . (3.3)

In the case of the given edge probabilities in (3.1), rij = wiwj/n which is a multi-

plicative kernel for the odds ratio. By defining ui = wi/
√
n we get the vector of node

types u = (ui)i∈[n], which is generated from the weights vector. Thus (3.3) would be

P (X = x) =
∏
i<j

(1 + uiuj)
−1
∏
i<j

(uiuj)
xij

= G(u)−1
∏
i

u
di(x)
i .

(3.4)

So from (3.4) (di(X))i∈[n] is the sufficient statistics for configuration probability, more-

over from
∑

x P (X = x) = 1 we get the important relation

G(u) =
∑
x

∏
i

u
di(x)
i . (3.5)

Lemma 3.1.1. Assuming the odds ratio is multiplicative, the set of graphs with

degree sequence (di)i∈[n] are uniformly distributed.
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Proof. We simply can find the conditional probability as:

P (X = x |di(X) = di∀i ∈ [n] ) =
P (X = x)

P (di(x) = di∀i ∈ [n])

=
G(u)−1

∏
i u

di(x)
i∑

x:di(x)=di∀i∈[n]G(u)−1
∏

i u
di(x)
i

=
1

#{x : di(x) = di∀i ∈ [n]}
.

(3.6)

�

Given the degree weights or equivalently degree types, to investigate the joint

degree distribution one could first find the formula for the generating function:

E

(∏
i

t
di(X)
i

)
=
∑
x

P (X = x)
∏
i

t
di(x)
i

= G(u)−1
∑
x

∏
i

(tiui)
di(x)

=
G(tu)

G(u)
=
∏
i<j

1 + tiuitjuj
1 + uiuj

.

(3.7)

Keeping in mind that (3.7) is the conditional expectation provided the node types,

we define mixed Poisson distribution as an appropriate candidate for vertex weight

distribution.

Definition 3.1.2. Random variable X is said to have mixed Poisson distribution

with mixing distribution F iff

P (X = k) = E
(
e−Z

Zk

k!

)
, (3.8)

where Z is the mixing parameter and F -distributed.
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The next theorem has been proved in [12], and is especially important because

it studies the asymptotic degree distribution of a fixed vertex, given some regularity

conditions on weight distribution and the multiplicative structure of the odds ratio.

The weight or type sequence is no longer assumed to be deterministically given, but is

random. Therefore, another expectation is needed to get the unconditional generation

function in (3.7).

Theorem 3.1.3. Consider the generalized random graph on n vertices with edge

probabilities defined by rij = pij/qij = WiWj/n, where (Wi)i∈[n] are i.i.d random

variables with mean µw and finite moment of order 1 + ε, for some ε > 0. Then

(i) The limiting distribution of the k-th vertex degree Dk as n → ∞ is mixed

Poisson with mixing variable Wkµw.

(ii) For any finite m, the variables D1, . . . , Dk are asymptotically independent, i.e

their joint degree distribution can be factored into independent components.

Proof. As proved in [12] and [10], to capture only the effect of vertex k, we need to

take other ti = 1 for i 6= k and take tk = t, then from (3.7)

E
(
tDk
)

= E

(∏
i 6=k

1 +WiWkt/n

1 +WiWk/n

)
. (3.9)

From Taylor expansion of log(1 + x) = x+O(x2), we will get

∏
i 6=k

1 +WiWkt/n

1 +WiWk/n
= exp

(
Wk

∑
iWi

n
(t− 1) +Rn

)
, (3.10)
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where Rn = O(W 2
k

∑
iW

2
i /n

2). Since,

∑
i 6=kW

2
i

n2
≤

max{Wi}
∑

i 6=kWi

n2

≈ µw
max{Wi}

n
→ 0,

(3.11)

and max{Wi}/n→ 0 because W has finite 1 + ε moment. Thus Rn converges almost

surely to 0. Hence

E
(
tDk
)
→ E

(
eWkµw(t−1)

)
, (3.12)

which is the transform of mixed Poisson distribution. Thus, the distribution of vertex

k converges weakly to the mixed Poisson with parameter Wkµw, which ends the proof

of part (i). For the second part by taking ti = 1 for i > m and proceeding similar to

the previous part we can get

E

(
m∏
i=1

tDii

)
→

m∏
i=1

E
(
eWiµw(ti−1)

)
, (3.13)

which verifies that the joint generating function asymptotically factorizes into the

product of mixed Poisson generating functions. �

3.2 Relation Between Assortative Configuration Model

and IRG

The main study of this section is the relation between the IRG model and configu-

ration graph. One can find the edge and more type probabilities in IRG model, and

relate them to the similar distributions in assortative configuration model. However,
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this investigation requires considering more general forms of odds ratios rather than

the multiplicative one studied in previous section. So we assume that the u = (uv)v∈[n]

are iid non-negative samples from cumulative distribution function F : R+ → [0, 1],

therefore the connection probabilities between node v and w can be identified with a

general kernel function κ. That is,

pij =
κ(ui, uj)

1 + κ(ui, uj)
, (3.14)

where κ : R+ × R+ → R+ is symmetric and non-decreasing in both variables. As a

special case one can let κ(u, u′) = uu′ to derive the Chung-Lu model [21]. Likewise,

(3.3) the probability of a certain edge configuration x = (xij)i,j∈[n] given the general

kernel (3.14) would be

P (X = x |u) =
∏
i<j

(
κ(ui, uj)

1 + κ(ui, uj)

)xij ( 1

1 + κ(ui, uj)

)1−xij

=
∏
i<j

1

1 + κ(ui, uj)

∏
i<j

κ(ui, uj)
xij

= G(u)−1
∏
i<j

κ(ui, uj)
xij ,

(3.15)

and since the total conditional probability is 1, we get the identity

G(u) =
∏
i<j

(1 + κ(ui, uj)) =
∑
x

∏
i<j

κ(ui, uj)
xij . (3.16)

In order to find some interesting results about the degree distribution we may want

to find the generating function as we did in (3.7). Given the type sequence the
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conditional generating function would be

E

∏
i∈[n]

t
di(X)
i |u

 = E

(∏
i<j

(titj)
xij |u

)

=
∑
x

P (X = x |u)
∏
i<j

G(u)−1(titjκ(ui, uj))
xij

= G(u)−1
∑
x

∏
i<j

(titjκ(ui, uj))
xij

=
∏
i<j

1 + titjκ(ui, uj)

1 + κ(ui, uj)
.

(3.17)

Node types may change as n changes. Generally they might scale with n like the

usual case of previous section, u = w/
√
n. However, we allow any arbitrary scaling

rule, which turns u into ũ as n independent random variables. Moreover, the kernel

function might have some n dependencies, which together with the type scaling rule

φ(n) can be expressed as follows:

u = u(n) = φ(n)(ũ); κ(n)(u, u′) = (n− 1)−1κ(ũ, ũ′). (3.18)

Therefore (3.17) is expressed as

E

∏
i∈[n]

t
di(X)
i |u

 = E

∏
i∈[n]

t
di(X)
i |ũ


=
∏
i<j

1 + titj(n− 1)−1κ(ũi, ũj)

1 + (n− 1)−1κ(ũi, ũj)
.

(3.19)

The fact that the kernel function decays as (n− 1)−1 is important for the upcoming

claims. For the next theorem, that has been proved in [22], we assume that the
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underlying n independent kernel function has finite 1 + α moment for some α > 0,

E
(
κ(ũ, ũ′)1+α

)
=

∫
R2
+

κ(ũ, ũ′)1+αdF (ũ)dF (ũ′) <∞. (3.20)

Theorem 3.2.1. In the IRG model with known kernel function κ(ũ, ũ′), which sat-

isfies the scaling rule (3.18) as well as the 1 + α moment condition,

(i) the generating function for degree of vertex 1 would be

ψ(t1) = E
(
t
d1(X)
1

)
= E

(
e(t1−1)h

−1(Ũ)
)

(1 + o(1)), (3.21)

where Ũ is F distributed, and

h−1(ũ) =

∫
R+

κ(ũ, ũ′)dF (ũ′). (3.22)

(ii) For any fixed m, the joint degree distribution of dv, v ∈ [m] converges in distri-

bution to the product of independent iid random variables.

Proof. To capture the generating function of d1(X), let ti = 1 for i 6= 1 in (3.17).

Thus the unconditional generating function would be

ψ(t1) = E
(
E
(
t
d1(X)
1

∣∣∣u)) = E

(∏
1<j

1 + t1κ(u1, uj)

1 + κ(u1, uj)

)

= E

(
E

(∏
1<j

1 + t1κ(u1, uj)

1 + κ(u1, uj)

∣∣∣∣∣u1
))

= E

(
E
(

1 + t1κ(u1, u
′)

1 + κ(u1, u′)

∣∣∣∣u1)n−1
)
,

(3.23)

where the last equation above comes from the independency of u elements. The
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following integral addresses the inner conditional expectation in (3.23):

E
(

1 + t1κ(u1, u
′)

1 + κ(u1, u′)

∣∣∣∣u1) =

∫
R+

1 + t1κ(u1, u
′)

1 + κ(u1, u′)
dF (u′)

=

∫
R+

1 + t1(n− 1)−1κ(ũ1, ũ
′)

1 + (n− 1)−1κ(ũ1, ũ′)
dF (ũ′)

(3.24)

Now because 1+tx
1+x

= 1 + (t− 1)x+ R(x) such that R(x) = O(x1+α), we can simplify

the above integral as

E
(

1 + t1κ(u1, u
′)

1 + κ(u1, u′)

∣∣∣∣u1) =

∫
R+

(
1 + (t1 − 1)(n− 1)−1κ(ũ1, ũ

′)
)
dF (ũ′)

+

∫
R+

O((n− 1)−(1+α)κ(ũ1, ũ
′)1+α)dF (ũ′)

= 1 + (t1 − 1)(n− 1)−1h−1(ũ1) + R̃.

(3.25)

Because of the integrability condition on 1 + α moment of κ, R̃ would be of order

O((n− 1)−(1+α)), thus (3.23) is computed as

ψ(t1) = E
((

1 + (t1 − 1)(n− 1)−1h−1(ũ1) + R̃
)n−1)

= E
(
e(t1−1)h

−1(Ũ)
)

(1 +O(n−α)),

(3.26)

which concludes the proof of first part. Deducing from this part, one can conclude

that the asymptotic degree distribution of vertex 1 would be mixed Poisson with

mixing parameter h−1(Ũ), that has the cumulative distribution F (h(·)). By similar

computations the second half of the theorem can be proved, which claims that the

joint degree of a fixed number of vertices are asymptotically getting independent of

each other. �
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In the sense of the parametrization of this theorem, one can define transformed

(κ̃, F̃ ), such that under new parameters h becomes identity map. By the transforma-

tions

κ̃(v, v′) = κ(h(v), h(v′)); F̃ = F ◦ h, (3.27)

one can verify that the new pair leads to the same model:

ψ(t1) = E
(
e(t1−1)V

)
(1 + o(1)), (3.28)

where V is F̃ distributed. Moreover, under the new pair

v =

∫
R+

κ̃(v, v′)dF̃ (v′). (3.29)

Since it is always possible to apply these transformations to a given pair, without any

loss of generality we might assume that we can take (κ, F ) such that h is the identity

map.

We can go one step further to analyze the edge type distribution as desired

at the beginning of this subsection. Hence, we should find the generating func-

tion for the shifted bivariate distribution of edge degrees by computing ψ12(t1, t2) =
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E
(
td1−11 td2−12

∣∣v1 ∼ v2
)

under the identity h map. Therefore, we first find the condi-

tional generating function when v1 ∼ v2 (v1 is attached to v2):

E

(
td1−11 td2−12

∏
i≥3

tdii

∣∣∣∣∣v1 ∼ v2

)
= (t1t2)

−1E

(∏
i<j

(titj)
xij

∣∣∣∣∣v1 ∼ v2

)

= (t1t2)
−1
∑
x

P (X = x|x12 = 1)
∏
i<j

(titj)
xij

= (t1t2)
−1

∑
x:x12=1

P (X = x)

P (x12 = 1)

∏
i<j

(titj)
xij

= P (x12 = 1)−1
∑

x:x12=1

E

 κ(u1, u2)

1 + κ(u1, u2)

∏
{i<j:(i,j)6=(1,2)}

(titjκ(ui, uj))
xij

1 + κ(ui, uj)


= P (x12 = 1)−1 E

 κ(u1, u2)

1 + κ(u1, u2)

∑
x:x12=1

∏
{i<j:(i,j)6=(1,2)}

(titjκ(ui, uj))
xij

1 + κ(ui, uj)


= P (x12 = 1)−1 E

 κ(u1, u2)

1 + κ(u1, u2)

∏
{i<j:(i,j)6=(1,2)}

1 + titjκ(ui, uj)

1 + κ(ui, uj)

 .

(3.30)

The last inequality is an extended version of (3.16). Thus, we can find ψ12(t1, t2) by

letting ti = 1 for i ≥ 3:

ψ12(t1, t2) = P (x12 = 1)−1 E

(
κ(u1, u2)

1 + κ(u1, u2)

∏
j≥3

1 + t1κ(u1, uj)

1 + κ(u1, uj)

1 + t2κ(u2, uj)

1 + κ(u2, uj)

)
.

(3.31)

And

P (x12 = 1) = E
(

κ(u1, u2)

1 + κ(u1, u2)

)
= E

(
(n− 1)−1κ(ũ1, ũ2)

1 + (n− 1)−1κ(ũ1, ũ2)

)
= (n− 1)−1E (κ(ũ1, ũ2)) (1 + o(1)).

(3.32)

The expectation term in ψ12(t1, t2) can be treated like in the proof of previous theorem
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to obtain

E

(
κ(u1, u2)

1 + κ(u1, u2)

∏
j≥3

1 + t1κ(u1, uj)

1 + κ(u1, uj)

1 + t2κ(u2, uj)

1 + κ(u2, uj)

)
=

E
(
(n− 1)−1κ(ũ1, ũ2)e

(t1−1)ũ1e(t2−1)ũ2
)

(1 + o(1)).

(3.33)

Therefore we find the expression

ψ12(t1, t2) = E
(
td1−11 td2−12

∣∣v1 ∼ v2
)

= [E (κ(ũ1, ũ2))]
−1 E

(
κ(ũ1, ũ2)e

(t1−1)ũ1e(t2−1)ũ2
)

(1 + o(1)),

(3.34)

as the generating function for shifted edge degrees. Since we take (κ, F ) such that h

becomes identity, therefore the mixing parameters are ũ1 and ũ2.

There is also another way around to find ψ12(t1, t2), which requires the edge type

probabilities. Here is the point that we derive the relation between IRG and the

assortative graph. The direct computation of the conditional expectation leads to

ψ12(t1, t2) = E
(
td1−11 td2−12

∣∣v1 ∼ v2
)

=
∑
k,k′≥1

tk−11 tk
′−1

2 P (d1 = k, d2 = k′|v1 ∼ v2 )

=
∑
k,k′≥1

tk−11 tk
′−1

2 Q
(n)
kk′ .

(3.35)
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One can expand (3.34) to get

ψ12(t1, t2) = [E (κ(ũ1, ũ2))]
−1 E

(
κ(ũ1, ũ2)e

(t1−1)ũ1e(t2−1)ũ2
)

(1 + o(1))

= [E (κ(ũ1, ũ2))]
−1 E

(
κ(ũ1, ũ2)e

−(ũ1+ũ2)
∑
k,k′

(t1ũ1)
k

k!

(t2ũ2)
k′

k′!

)
(1 + o(1))

= [E (κ(ũ1, ũ2))]
−1
∑
k,k′

tk1t
k′

2 E
(
κ(ũ1, ũ2)

e−ũ1ũk1
k!

e−ũ2ũk
′

2

k′!

)
(1 + o(1)).

(3.36)

Letting n → ∞, then by equating the coefficients of tk−11 tk
′−1

2 in (3.35) and (3.36) it

follows

Qkk′ = [E (κ(ũ1, ũ2))]
−1 E

(
κ(ũ1, ũ2)

e−ũ1ũk−11

(k − 1)!

e−ũ2ũk
′−1

2

(k′ − 1)!

)

= [E (κ(ũ1, ũ2))]
−1 E (κ(ũ1, ũ2)Pois(ũ1, k − 1)Pois(ũ2, k

′ − 1))

=

∫
R2
+
κ(ũ1, ũ2)Pois(ũ1, k − 1)Pois(ũ2, k

′ − 1)dF (ũ1)dF (ũ2)∫
R2
+
κ(ũ1, ũ2)dF (ũ1)dF (ũ2)

.

(3.37)

The above equation let us to conclude that the edge degree distribution can be found

for a given pair (κ, F ) in IRG model.

One can ignore the types of the nodes, then by picking these edge type factors in

assortative discrete matching algorithm, we get a random graph being asymptotically

equivalent to the degree sequence of the IRG model with the given pair. The only

thing that can not be replicated through assortative matching would be the type

labels of the nodes. To preserve the effect of node types, we have to apply a more

generalized model, which contains both assortative and IRG graphs. Our suggestion

is following the same assortative wiring, that was introduced in section 2.2, but with

different edge weights Qku,k′u′ . Therefore, aside from the in- and out-degree of the
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edges, the types of incorporated nodes u, u′ are also considered in edge weights. In

this new model, we have finer resolution over the edge types, which includes the type

of the incident nodes as well as their degrees. It can be readily shown that by ignoring

the node types, assortative graphs would be attained. Moreover, one can speculate

from (3.37) that the suitable edge factors with node types being considered would be:

Qkũ,k′ũ′ =
κ(ũ1, ũ2)Pois(ũ1, k − 1)Pois(ũ2, k

′ − 1)dF (ũ1)dF (ũ2)∫
R2
+
κ(ũ1, ũ2)dF (ũ1)dF (ũ2)

. (3.38)

Therefore, one can pick the node joint degree-type distribution Pkũ to be consistent

with the above edge factors. And expect to obtain a random graph with asymptoti-

cally equivalent degree distribution to the IRG model with the pair (κ, F ), that has

already yielded to (3.38). It is important to note that the support of node types must

be discrete, otherwise our large n analysis for the convergence of the discrete Markov

variables does not hold anymore.

We are looking to study more the last proposed method, which results to both

previously discussed models. Moreover, as the future works we speculate that this

model would be a nice candidate for the skeleton graph of financial networks, since it

captures both the assortativity effect as well as the agent types. Then, we would like

to add on the random exposures between the agents, as independent random variables

conditioned on the degree-type of the lender and borrower. Finally, this model would

let us to explore the cascade dynamics in financial networks from a new perspective.
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Appendix A

Proof of part i of Thereom 2.1.4

Proof. ∣∣∣E(f((j̃i, k̃i)i∈S)− f((ĵi, k̂i)i∈S)
)∣∣∣

=
∣∣∣E(f((j̃i, k̃i)i∈S)|Dn

)
− E

(
f((ĵi, k̂i)i∈S)

)∣∣∣
≤
∣∣∣E(f((j̃i, k̃i)i∈S)|Dn

)
− E (f((ji, ki)i∈S)|Dn)

∣∣∣
+
∣∣∣E (f((ji, ki)i∈S)|Dn)− E

(
f((ĵi, k̂i)i∈S)

)∣∣∣
(A.1)

Let Fn be the σ-field generated by (ji, ki)i∈[n], then it is possible to bound the first

term in (A.1) as follows:

E
(∣∣∣f((j̃i, k̃i)i∈S)− f((ji, ki)i∈S)

∣∣∣ |Dn)
≤ 2ME

(
1{∑i∈S(j̃i−ji+k̃i−ki)≥0}|Dn

)
=

2M

P (Dn)
E
(
1{∑i∈S(j̃i−ji+k̃i−ki)≥0}1Dn

)
≤ 2M

P (Dn)
E

(
1DnE

(∑
i∈S

(
j̃i − ji + k̃i − ki

)
|Fn

))

=
2M

P (Dn)
E
(
1Dn|S|

|Dn|
n

)
= 2M |S| |Dn|

n
.

(A.2)
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Since P (Dn)→ 1, then the second term in (A.1) can also be bounded from above:

E (f((ji, ki)i∈S)|Dn) = P (Dn)−1 E (f((ji, ki)i∈S)1Dn)

= E (f((ji, ki)i∈S)1Dn) (1 + o(1)).

(A.3)

Moreover we have:

E
(
f((ĵi, k̂i)i∈S)

)
= E

(
f((ĵi, k̂i)i∈S)1D̂n

)
+ E

(
f((ĵi, k̂i)i∈S)1D̂cn

)
. (A.4)

It should be clear what D̂n is indicating. It is exactly the same event like Dn, but de-

termined by (ĵi, k̂i)i∈[n], which is an independent copy generated from P distribution.

Hence we have:

∣∣∣E (f((ji, ki)i∈S)|Dn)− E
(
f((ĵi, k̂i)i∈S)

)∣∣∣
≤ E

(∣∣∣f((ĵi, k̂i)i∈S)1D̂n

∣∣∣) o(1) + E
(
f((ĵi, k̂i)i∈S)1D̂cn

)
≤M

(
o(1) + P

(
D̂cn
))

.

(A.5)

Then (A.2) together with (A.5) conclude the proof. �
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Appendix B

Proof of Proposition 2.3.1

Proof. The proof of the first claim in the proposition is trivial, since function f is Lip-

schitz on Ω
(ε)
n then the differential system in (2.15) has a unique solution on any com-

pact subset of Ω
(ε)
n , and it is uniquely extendible to the boundary of this set. For the

proof of the second part let’s denote the m-th approximate solution to the above sys-

tem by x(m)(τ) =

({
z
+,(m)
k (τ)

}k(n)
k=1

,
{
z
−,(m)
j (τ),

}j(n)
j=1

,
{
e
(m)
kj (τ)

}k(n),j(n)
k,j=1

)
, which can

be computed throughout the following recursive equation

x(m+1)(τ) = x(0) +

∫ τ

0

f(x(m)(s))ds, (B.6)

where x(1)(τ) is the solution of the unclipped system, where the indices of the summa-

tions in numerator and denominators of (2.14) are not clipped by n-th order statistics,

and the vector of initial values is not truncated as it was in (2.14). In other words,

x(1)(τ) is the solution to the infinite dimensional counterpart of (2.14). One could
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readily check that x(1)(τ) satisfies

z
+,(1)
k (τ) = zQ+

k

(
1− τ

z

)
z
−,(1)
j (τ) = zQ−j

(
1− τ

z

)
e
(1)
kj (τ) = Qkjτ.

(B.7)

To calculate x(2)(τ), we find an arbitrary element of f(x(1)(τ)), say ż
+,(2)
k (τ). The

R.H.S of the second equation in (2.14) would be equal to

−
∑

j≤j(n) Qkj∑
k≤k(n),j≤j(n) Qkj

= −Q
+
k + o(1)

1 + o(1)
= −Q+

k + o(1). (B.8)

Which leads to

z
+,(2)
k (τ) = zQ+

k −
∫ τ

0

(Q+
k + o(1))ds

= zQ+
k (1− τ

z
)− τo(1),

and we get

∣∣∣z+,(2)k (τ)− z+,(1)k (τ)
∣∣∣ = τo(1).

Therefore we have

∥∥x(2)(s)− x(1)(s)∥∥ = max
k≤k(n),j≤j(n)

{∣∣∣z+,(2)k (s)− z+,(1)k (s)
∣∣∣ , ∣∣∣z−,(2)j (s)− z−,(1)1 (s)

∣∣∣ , ∣∣∣e(2)kj (s)− e(1)kj (s)
∣∣∣}

= so(1).
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From equation (B.6)

∥∥x(m+1)(τ)− x(m)(τ)
∥∥ =

∥∥∥∥∫ τ

0

(
f(x(m)(s))− f(x(m−1)(s))

)
ds

∥∥∥∥
≤
∫ τ

0

∥∥f(x(m)(s))− f(x(m−1)(s))
∥∥ ds

≤ c

∫ τ

0

∥∥x(m)(s)− x(m−1)(s)
∥∥ ds

≤ cm−1
τm

m!
o(1)

=⇒
∞∑
m=1

∥∥x(m+1)(τ)− x(m)(τ)
∥∥ ≤ ecτo(1).

Therefore the sum x(1)(τ) +
∑∞

m=1 x
(m+1)(τ) − x(m)(τ) is uniformly and absolutely

convergent. It is not so difficult to check that, this infinite sum is the solution of the

differential system, namely x(τ). Because

∥∥∥∥∫ τ

0

f(x(s))ds−
∫ τ

0

f(x(m)(s))ds

∥∥∥∥ ≤ c

∫ τ

0

∥∥x(s)− x(m)(s)
∥∥ ds→ 0.

In addition we have

x(τ) = lim
m→∞

x(m+1)(τ)

= lim
m→∞

x(0) +

∫ τ

0

f(x(m)(s))ds = x(0) +

∫ τ

0

f(x(s))ds.

Consequently, x(τ) which is found by the successive algorithm is the right solution of

the system. Moreover, the error of approximating x(τ) with x(m)(τ) can be bounded
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as ∥∥x(τ)− x(m)(τ)
∥∥ = lim

p→∞

∥∥x(p)(τ)− x(m)(τ)
∥∥

= lim
p→∞

∥∥∥∥∥
p∑

r=m

(x(r+1)(τ)− x(r)(τ))

∥∥∥∥∥
≤ lim

p→∞

p∑
r=m

∥∥x(r+1)(τ)− x(r)(τ)
∥∥

≤ lim
p→∞

[
p∑

r=m

cr−1τ r

r!

]
o(1) ≤ 1

c
ecτo(1).

(B.9)

Since τ is bounded from above on Ω
(ε)
n , then we can say from equation (B.9) that∥∥x(τ)− x(1)(τ)

∥∥ = o(1) which yields to x(τ) = x(1)(τ) + o(1). �
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Appendix C

Proof of Proposition 2.3.3

Proof. Since we have the Lipschitz property onD(n), the proof of part i of the theorem

is immediate in the theory of ordinary differential equations.

To bring the proof of the part ii, we simply present the verifications for arbitrarily

` ∈ {1, . . . , b(n)}. Taking λ > λ1 as in part ii, then define

ω =

⌈
nλ

ρ

⌉
. (C.10)

The assertion of the theorem would be trivial if ρ/λ > n1/3, namely the probability in

the conclusion is not restricted, therefore w = Ω(n2/3). Moreover, in the conclusion

of part ii, we would like to have λ = o(1), otherwise the result would not be as

interesting as expected. So we break up the interval [0, nσ(n)] into pieces of length

w(n), and show the concentration of increments of Y`(t) over one of these pieces, say

[t, t+ ω]:

Y`(t+ ω)− Y`(t).
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We will assume that for sufficiently large C, (t/n, Y1(t)/n, . . . , Yb(t)/n) is at Cλ dis-

tance of the boundary of D(n), thus we can still use trend equation, bounded incre-

ment and Lipschitz property. Consequently, a supermartingale can be constructed

from the trend equation in (2.19). For 0 ≤ k < ω we have:

E (Y`(t+ k + 1)− Y`(t+ k)|Ft) = f`((t+ k)/n, Y1(t+ k)/n, . . . , Yb(t+ k)/n) +O(λ1)

= f`(t/n, Y1(t)/n, . . . , Yb(t)/n) +O(
kβµ

n
+ λ1).

(C.11)

The second equality above follows from Lipschitz property and bounded increments

of all stochastic processes for t ≤ TD(n), i.e |Y`(t+ k)− Y`(t)| ≤ kβ for all `. Thus,

there exists a function

g(n) = O(
wβµ

n
+ λ1) = O(λ), (C.12)

such that conditioned on Ft:

Mk = Y`(t+ k)− Y`(t)− kf`(t/n, Y1(t)/n, . . . , Yb(t)/n)− kg(n),

for k = 1, . . . , ω is supermartingale with respect to the sequence of σ-fields Ft, . . . ,Ft+ω.

The difference between successive elements of this supermartingale can be bounded
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as:

|Mk+1 −Mk| ≤ β + |f`(t/n, Y1(t)/n, . . . , Yb(t)/n) + g(n)|

≤ β + |f`(0, Y1(0)/n, . . . , Yb(0)/n)|+ tβµ

n
+O(λ)

≤ O(β) + βσµ+O(λ) = O(βµ) = κρ(n) (C.13)

for some κ. Last inequality above comes from t/n ≤ σ(n). Now from Azuma’s

inequality one could bound the upper tail of the supermartingale as

P
(
Mw ≥ κρ

√
2ωα | Ft

)
≤ e−α. (C.14)

The lower tail of Mw can also be bounded by considering −Mk as a submartinagle

and applying the Azuma’s inequality for submartingales with bounded increments.

Then, we will get:

P
(
|Y`(t+ ω)− Y`(t)− wf`(t/n, Y1(t)/n, . . . , Yb(t)/n)| ≥ wg(n) + κρ

√
2ωα | Ft

)
≤ 2e−α.

(C.15)

We continue by setting

α =
nλ3

ρ3
, (C.16)

and representing the endpoints of the intervals by ki = iω, i = 0, 1, . . . , bnσ/wc, then

we next show by induction that

P (∃ j ≤ i & 1 ≤ ` ≤ b : |Y`(kj)− z`(kj/n)n| ≥ Bj) = O(bie−α), (C.17)
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where

Bj =
n

µ

(
λ+

ωµ

n

)[(
1 +

Bωµ

n

)j
− 1

]
. (C.18)

The first step of the induction holds, because we have already set z`(0) = Y`(0)/n for

all `. Note that

|Y`(ki+1)− z`(ki+1/n)| = |A1 + A2 + A3 + A4| , (C.19)

where

A1 = Y`(ki)− z`(ki/n)n

A2 = Y`(ki+1)− Y`(ki)− wf`(ki/n, Y1(ki)/n, . . . , Yb(ki)/n)

A3 = ωz′`(ki/n) + z`(ki/n)n− z`(ki+1/n)n

A4 = ωf`(ki/n, Y1(ki)/n, . . . , Yb(ki)/n)− ωz′`(ki/n).

(C.20)

From the induction hypothesis |A1| < Bi for all `, with probability 1−O(bie−α). For

every single `, A2 can be bounded with high probability of 1−O(e−α) by concentration

inequality in (C.15), and using (C.10), (C.12) and (C.16) like

|A2| ≤ wg(n) + κρ
√

2ωα

= wg(n) +
√

2κωλ = O(ωλ) ≤ B′ωλ,

(C.21)
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for a universal constant B′ (independent of n). One could claim that for all `, A2 can

be bounded as above with probability 1−O(be−α), namely from (C.15) and (C.21)

P

 ∃ 1 ≤ ` ≤ b :
Ft

|Y`(ki+1)− Y`(ki)− wf`(ki/n, Y1(ki)/n, . . . , Yb(ki)/n)| ≥ B′ωλ

 ≤ O(be−α).

(C.22)

Now since z` is the solution of differential equation system in part i, and on the other

hand elements of the sequence {f`} satisfy Lipschitz condition with uniform constant

µ(n) over all `, then

|A3| = |ωz′`(ki/n) + z`(ki/n)n− z`(ki+1/n)n|

= ω |z′`(ki/n)− z′(ζi/n)|

= ω |f`(ki/n, z1(ki/n), . . . , zb(ki/n))− f`(ζi/n, z1(ζi/n), . . . , zb(ζi/n))|

= O(
ω2µ

n
) ≤ B′′ω2µ

n

(C.23)

holds almost surely, with a suitable constant B′′ for all `. No need to mention that

the second equality above follows from mean-value theorem for ki ≤ ζi ≤ ki+1. The

upper bound on |A4| is also readily drawn from the upper bound on |A1|, like

|A4| = |ωf`(ki/n, Y1(ki)/n, . . . , Yb(ki)/n)− ωz′`(ki/n)|

= ω |f`(ki/n, Y1(ki)/n, . . . , Yb(ki)/n)− f`(ki/n, z1(ki/n), . . . , zb(ki/n))|

≤ ωµmax
`
|Y`(ki)/n− z(ki/n)| ≤ B′′ωµBi

n
,

(C.24)

(redefining B′′ appropriately so as the last inequality in (C.24) holds). Note that

because of exploiting the upper bound of |A1|, subsequently equation (C.24) is also
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true with the same probability as |A1| < Bi holds. By setting B = max{B′, B′′}, and

adding together these upper bounds, we will get:

|Y`(ki+1)− z`(ki+1/n)| ≤ Bi +Bωλ+
Bω2µ

n
+
BωµBi

n

= Bi

(
1 +

Bωµ

n

)
+Bω

(
λ+

ωµ

n

)
= Bi+1,

(C.25)

with probability 1 − O(b(i + 1)e−α), which ends the induction proof. Noticing that

Bi = O(λn), the assertion of part ii of the theorem is verified for the endpoints of

intervals. For any t ≤ nσ(n), put i = bt/ωc, then by taking into account that the

change in Y` and z` from time ki to t is at most ωβ = O(λn), we have:

|Y`(t)− z`(t/n)n| = O(λn) ∀` with probability 1−O
(
bnσ

w
e−α
)
. (C.26)

�
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[4] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter

of the world-wide web. Nature, 401(6749):130–131, 1999.
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