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 Abstract  
 

Radiotherapy has become a standard modality for treating prostate cancer. Typically, 

intensity modulated radiotherapy (IMRT) is employed. Accurate delineation is important to 

ensure that the clinical target volume (prostate) is sufficiently irradiated and that the organs at 

risk (OARs) are appropriately spared. A recent technological development in radiotherapy 

treatment planning is the employment of atlas-based segmentation to automate target volume and 

OAR delineation. Atlas based-segmentation utilizes the spatial relationship between a pre-

contoured atlas subject and a new patient image to derive the segmentation result. The typical 

approach has three steps: many atlas subject images are globally registered to the target image, 

an atlas subject image that is the most similar to the target is selected, and the chosen atlas image 

and contours are aligned with the target image space using deformable registration.  The purpose 

of this work was to design an atlas selection strategy and evaluate its impact on the final atlas-

based segmentation outcome.  Segmentation accuracy was mainly quantified using the Dice 

Similarity Coefficient (DSC), which was used to score the overlap between automatic and 

manual contours on a 0 to 1 scale. 

 

An alternative atlas selection approach was proposed that identified the most similar atlas 

subject based on several anatomical measurements that were chosen to indicate the overall 

prostate and body shape.  A brute force procedure was first performed for a training dataset of 20 

patients using image registration to pair subjects with similar contours based on DSC.  For the 

identified best matches, anatomical measurements were compared.  An atlas selection procedure 

was designed; relying on the computation of a similarity score defined as a weighted sum of 
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differences between the target and atlas subject anatomical measurements.  Finally, an 

optimization procedure was performed to obtain the weights that gave the highest DSC between 

automatic and manual contours for the training set.  The mean DSCs obtained using brute force 

were 0.78±0.07 and 0.90±0.02 for the prostate and either femoral head.  The proposed atlas 

selection method achieved 0.72±0.11 and 0.87±0.03 for the prostate and either femoral head.  

Clearly, the algorithm was able to identify the best matching atlas subject for any target subject 

in the training set of data. 

 

  The key point of this work was to also validate the atlas selection strategy.  Thus, the 

optimized atlas selection procedure was tested on images of 10 additional subjects. Again, the 

algorithm’s ability to predict the most similar atlas subject was excellent.  A brute force search 

for the set of 10 images achieved mean DSCs of 0.76±0.03 and 0.88±0.03 for the prostate and 

either femoral head.  The proposed method yielded DSCs of 0.64±0.09 and 0.86±0.04 for the 

prostate and either femoral head.    The difference in mean DSCs between the proposed method 

and the brute force was statically significant (p < 0.05). Overall, the brute force results 

demonstrated that atlas-based segmentation can reproduce a similar level of accuracy as manual 

recontouring (Granberg et al., 2011).  More importantly, the same level of accuracy was 

achieved with the proposed atlas selection method as with more computationally intensive 

techniques.  These results indicate that atlas-based segmentation is a promising technique for 

prostate radiation therapy. 
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                                      Introduction 

 
 

1.1. Prostate Cancer 

The human body is made up of millions of cells that organize forming tissues and organs. 

Normally, genes inside the cell are responsible for cell growth, division, and cell death. When 

normal cells are damaged, they enter the apoptosis process (cell death) and are often replaced by 

new cells in a programmed and controlled way. When this process fails, new cells are produced 

without control leading to the formation of a tumor.  Cell growth within the prostate gland can be 

either benign (non-cancerous) or malignant (cancerous), with almost all men experiencing 

prostate enlargement by the age of 70 (Canadian Cancer Society, 2014). Benign prostate 

enlargement is common but is not life threatening. The growth of the prostate compresses the 

urethra preventing urine from flowing normally.  Malignant cell growth, on the other hand, is life 

threatening since cancer cells have the potential to spread to, and damage, different parts of the 

body. Men of different race, family history, diet, and lifestyle have a varying risk of developing 

prostate cancer.  For example, African men have about 60% higher rate of prostate cancer than 

1 
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Caucasian men, while Asian men have a reduced rate of developing prostate cancer (Canadian 

Cancer Society, 2014). 

 

Prostate cancer is one of the most frequently diagnosed cancers in males worldwide 

(Globocan, 2012). In Canada, prostate cancer is the most commonly diagnosed cancer after skin 

cancer with 23,600 new cases estimated in 2014 (Canadian Cancer Society, 2014). Currently, 

prostate cancer is one of the leading causes of cancer-related death among Canadians with 4,000 

deaths in 2014, representing 10% of all cancer deaths (Canadian Cancer Society, 2014).  

 

1.2. Regional Anatomy  

The prostate is a part of the male reproductive system. It is a fibromuscular gland, which 

surrounds the prostatic urethra. The adult prostate is about the size of a walnut and weights 20-25 

g. As shown Figure 1.1, the prostate gland is located between the pubic symphysis and the 

anterior rectal wall and it is near the bladder neck and seminal vesicles (Snell, 2012). The 

prostate gland is composed of a mixture of smooth muscle and glandular tissue, with openings 

into the urethra. The prostate itself is divided into the anterior, middle, posterior, right, and left 

lobes. The function of the prostate gland is to produce a milky fluid composed of citric acid and 

acid phosphatase. This fluid is added to semen at the time of ejaculation to neutralize the acidity 

in the vagina (Snell, 2012). 
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Figure 1.1:  Sagittal section of a contoured CT image. The red area is the prostate gland, orange 

corresponds to the bladder, and green represents the rectum. 

 

1.3. Prostate Cancer Radiation Therapy  

Treatment options for prostate cancer patients depend on the stage of the disease and 

factors such as age, health condition, and personal preference. The available options include 

radical prostatectomy usually with pelvic lymph node dissection (lymphadenectomy) (Boxer et 

al., 1977), hormonal therapy (Galbraith and Duchesne, 1997), chemotherapy (Crawford and 

Flaig, 2012), external-beam radiation therapy (EBRT) (Abdel-Wahab et al., 2012), and high dose 

rate (HDR) and low dose rate (LDR) brachytherapy (Sylvester et al., 2011). Moreover, various 

treatment modalities are commonly combined with hormonal therapy. In addition, new types of 

treatments are being tested in clinical trials including proton beam radiation therapy, high 

intensity focused ultrasound (HIFU), and ultrasound–guided cryosurgery (National Cancer 

Institute, 2014).  In this work, the treatment option of interest is EBRT.   
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A typical dose prescription for early stage prostate cancer is 78 Gy delivered in 2 Gy 

daily fractions. Furthermore, there are indications that using a higher dose can lead to better 

treatment outcomes (Zelefsky et al., 1996, Vicini et al., 2001).  Dose escalation requires the use 

of highly advanced treatment modalities such as intensity-modulated radiotherapy (IMRT) or 

volume-modulated arc-therapy (VMAT) where dose to the rectum, bladder, and femoral heads 

may be limited despite increased dose to the tumor (De Meerleer et al., 2004).  These 

technologies deliver dose distributions with steep dose gradients so it becomes increasingly 

important to define the tumor and surrounding organs at risk (OAR) for successful targeting.   

 

 

1.3.1 External Photon Beam Radiotherapy 

EBRT is typically delivered using a linear accelerator (linac) where the radiation source 

is mounted on a gantry that rotates about a fixed point in space.  The head of the linac is fitted 

with a multi-leaf collimator (MLC) that allows beam shaping via independent motion of many 

tungsten leaves.  In three-dimensional conformal radiotherapy (3DCRT), multiple fields from 

different gantry angles around the patient are used to concentrate the radiation dose in the tumor 

and spare the surrounding normal tissue.  The MLC is used to define the shape of each treatment 

field to fit the projection of the target. Currently, 3DCRT is considered to be a conventional 

technique.  IMRT is an advanced modality in which each field is divided into many “beamlets”, 

each carrying a different intensity of radiation.  This is achieved by superimposing many MLC 

shapes that are often smaller than the target to deliver various beam intensities.  One variant of 

IMRT is step-and-shoot, where the radiation beam is off during gantry rotation and when the 
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MLC is moving to shape the field. The beam is turned on once the field shaping is complete.  

IMRT offers many degrees of freedom to alter the dose distribution, improving the ability to 

conform the dose to the target volume. Figure 1.2 shows an example MLC configuration used for 

prostate IMRT, while Figure 1.3 shows a typical seven-beam arrangement. 

 
Figure 1.2: MLC configuration of anterior (left) and right anterior oblique (right) treatment 

fields. The red arrows represent MLC leafs and yellow arrows represent the jaws.   

 

 

 

 

 

 

 

 

 



M.Sc. Thesis – A. Mallawi; McMaster University–Medical Physics and Applied Radiation sciences

   

 

 6 
 

 

Figure 1.3: Axial view of a CT image for a prostate cancer case showing seven IMRT beams 

and the resulting dose distribution. The blue area is PTV that includes the prostate gland with 

additional geometric margin, orange is the bladder, green is the rectum, and turquoise and light 

blue are the femoral heads. The red, yellow, purple isodose lines represent the 78, 74 and 70 Gy 

respectively. The legend in the top left corner represents different isodose lines. 

 

It has been shown that IMRT reduces gastrointestinal morbidity and the chance of hip fracture 

for prostate patients compared with 3DCRT due to reductions in bowel and femoral head doses 

(Sheets et al., 2012). A further development of IMRT is VMAT, where radiation is delivered as 

the gantry travels in an arc around the patient.  In VMAT, a continuous beam is shaped by a 

dynamic MLC with simultaneous gantry rotation and dose rate control. This increases the 

number of beam angles available compared with IMRT, potentially leading to higher dose 

conformality, improved normal tissue sparing and faster delivery.    
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1.3.2 Treatment Planning 

Prior to radiotherapy a treatment planning system (TPS) is typically used to determine 

treatment parameters such as beam direction, intensity and shape that will ensure the prescribed 

dose is delivered to the target with minimal dose to normal tissue. A typical treatment planning 

protocol for prostate EBRT is shown in Figure 1.4. The process begins with the acquisition of a 

CT image of the patient. The position must be comfortable so the patient is able to maintain it 

throughout the entire treatment course. The next step in the planning process is to contour the 

target and normal tissue on the planning CT. This is typically performed by a radiation 

oncologist employing the nomenclature outlined by the International Commission on Radiation 

Units and Measurements (ICRU) (ICRU Report 62, 1999).  Supplementary images obtained 

using magnetic resonance imaging (MRI), positron emission tomography (PET), or ultrasound 

(US) may also be used to improve tissue contrast, thereby improving the accuracy of the target 

and normal tissue contours.  

 Figure 1.4: A typical treatment planning protocol for prostate cancer EBRT: 1. CT simulation 

(left), 2. Contouring of the target and surrounding healthy organs (center), and 3. Selection of 

beam parameters to deliver the prescribed dose (right). 

 

 

The clinical target volume (CTV) comprises the gross tumor and areas at risk of 

subclinical involvement.  In early stage prostate cancer the CTV includes the prostate gland and 

the base of the seminal vesicles. The planning target volume (PTV) consists of the prostate with 

 2 1 
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additional geometric margin.  Targeting the PTV during treatment planning ensures that the 

prostate receives the prescribed dose despite uncertainties such as daily setup errors and patient 

motion due to organ filling. In addition to the prostate and PTV, all the healthy organs around the 

tumor volume are also outlined. For prostate cancer, the contoured OARs include the rectum 

(from the ischium to anterior flexion of sigmoid), entire bladder, and the right and left femoral 

heads (to the lesser trochanter inferiorly). 

 

TPS offer various treatment planning alternatives for EBRT.  For 3DCRT, a forward 

planning approach is used, while a computer based, inverse planning approach is necessary for 

IMRT/VMAT. Forward planning is a manual process that involves several steps.  First, all 

beams parameters including the type of radiation and its energy along with geometrical 

parameters such as beam number, angles of incidence, and the MLC are defined. Second, the 

dose distribution is computed by the computer.  Finally, the dose distribution is reviewed by the 

dosimetrist to confirm that the target volume is sufficiently covered and the OARs are 

sufficiently spared. If this is not achieved, various beam parameters may be modified until the 

goals of the treatment are achieved.  

 

Manual dose optimization as used in 3DCRT planning is not possible in IMRT due to the 

complexity of the treatment. Therefore, a computer-based algorithm is used in which the dose to 

the OARs is limited though a number of user-defined objectives and constraints.  For example, 

the dosimetrist may ask for “at least 95% of the PTV to be covered with dose greater than 78 Gy” 

while allowing “no more than 30% of the rectum to receive a dose of 40 Gy or higher”. The 

optimization algorithm then adjusts beam fluences to best meet the user-defined objectives.  If 
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the result is not satisfactory, the planner will re-adjust the objectives appropriately and the 

optimization is repeated.  At all stages, the treatment plan is reviewed using the dose volume 

histogram (DVH), which shows the fraction of targets or organs vs. the radiation dose.  Once the 

plan is approved, the patient is carefully positioned on the linac treatment couch daily and the 

treatment is delivered as planned over several weeks. 

 

1.3.3 Image-Guided Radiation Therapy (IGRT) 

Radiotherapy is planned assuming that the prostate remains within the PTV despite organ 

motion or setup error.  A large change from the planning geometry could increase the risk of 

recurrence due to reduced dose delivered to the prostate or the risk of complication due to over 

irradiation of OARs.  One way to address daily uncertainty is to increase the margin between the 

prostate and PTV.  However a larger margin increases the amount of dose to normal tissue.  A 

small PTV margin is desired but requires the treatment to be corrected daily for anatomical 

variation and patient setup at each fraction.  This requires IGRT, a process where patient images 

are acquired just before or during radiotherapy and the treatment is corrected online to ensure the 

planned dose is delivered.   

 

Prostate IGRT typically involves implanting three or more gold fiducials into the prostate 

before treatment planning.  These are clearly visible on the planning CT and act as surrogates for 

the position of the prostate at planning.  Just before treatment, an orthogonal set of images of the 

patient is acquired employing MV photons.  The treatment couch is then translated such that the 

fiducial positions at treatment align with their positions identified in planning.  The treatment 

plan is delivered and the process is repeated for each fraction. 
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1.4 Image Registration 

Medical image registration is the process of aligning homologous anatomy in two images 

by finding an optimal transformation. One image is defined as a fixed image 𝐹 (target) and the 

other is a moving image 𝑀 (source). An automated image registration algorithm comprises a 

transformation model that allows modifications of the source image to align it with the target, an 

interpolator to determine the intensity values at certain points when M is moved, a similarity 

metric to quantify image alignment, and an optimization algorithm to maximize image similarity. 

When registering two images the objective is to find the spatial transformation that aligns the 

two images as measured by the similarity measure. The registration workflow is shown in Figure 

1.5. 

 Figure 1.5: Image registration workflow. 
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1.4.1 Spatial Transformations  

The transformation represents a spatial mapping from the source image to the target 

image space as shown in Figure 1.6. 

 

Figure1.6: Image registration determines the transformation that maps point A in one image to 

the homologous point B in the second image. 

 

There are many ways to model transformations.  Global methods affect the entire image 

simultaneously while local methods allow different areas of the image to undergo independent 

motion.  One global transformation of interest is the 3D rigid transformation characterized by six 

degrees of freedom (DOF).  In Cartesian coordinates there are three possible rotations about the 

x, y, and z axes (𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧) and three possible translations (𝑡𝑥 , 𝑡𝑦 , 𝑡𝑧).  Typically, this is written 

using a 4 × 4 matrix as follows: 

                                                            𝑇𝑅 =  

 
 
 
 

𝑡𝑥
𝑅 𝑡𝑦

𝑡𝑧
0 0 0 1  

 
 
 
 ,                                   (1.1)  

 

 

where 𝑅 =  𝑅𝑥  𝑅𝑦  𝑅𝑍 = 
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1 0 0
0 𝑐𝑜𝑠𝜃𝑥 −𝑠𝑖𝑛𝜃𝑥

0 𝑠𝑖𝑛𝜃𝑥 𝑐𝑜𝑠𝜃𝑥

  

𝑐𝑜𝑠𝜃𝑦 0 𝑠𝑖𝑛𝜃𝑦

0 1 0
−𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦

  
𝑐𝑜𝑠𝜃𝑧 −𝑠𝑖𝑛𝜃𝑧 0
𝑠𝑖𝑛𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0

0 0 1

 ,      (1.2) 

The process of finding a point in the target image (𝑥′ , 𝑦′ , 𝑧′) that corresponds to a point in the 

source image (𝑥, 𝑦, 𝑧) using a rigid transformation may be written as follows: 

                                               𝑥′ , 𝑦′ , 𝑧′ = 𝑇𝑅 𝑥, 𝑦, 𝑧 = 𝑇𝑅 ∙  

𝑥
𝑦
𝑧
1

 ,                               (1.3) 

A slightly more complicated transformation model also involves scaling factors for the three 

axes. This gives a nine DOF transformation that may be written as follows:   

 

                                                 𝑇𝑅𝑆 =  

 
 
 
 

𝑡𝑥
𝑅𝑆 𝑡𝑦

𝑡𝑧
0 0 0 1  

 
 
 
 ,                                        (1.4) 

    

                                                               𝑅𝑆 = 𝑅 ∙  

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

 ,                                              (1.5) 

 

where R is the rotation matrix given in equation (1.3) while 𝑠𝑥  , 𝑠𝑦  , 𝑠𝑧  are the scaling factors for 

the three axes.  When s = 1 there is no scaling,  𝑠  < 1 is a compression, and  𝑠 > 1 is an 

expansion. In general, an affine transformation comprises translation, rotation, scaling, and 

shearing for a total of 12 DOF in 3D.  The general affine transform can be denoted as follows: 
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                                         𝑇𝐴 =  

 
 
 
 

𝑡𝑥
𝑅𝑆𝐻 𝑡𝑦

𝑡𝑧
0 0 0 1  

 
 
 
,                                           (1.6)                   

 

                                                          𝑅𝑆𝐻 = 𝑅 ∙ 𝑆 ∙  
1 𝑕𝑥 𝑕𝑦

0 1 𝑕𝑧

0 0 0

 ,                                           (1.7)                                                                          

Where R and S are the rotation and scaling matrices, respectively, and 𝑕𝑥 , 𝑕𝑦 , 𝑕𝑧  are the shear 

factors along the 𝑥, 𝑦 and 𝑧 axes. 

 

1.4.2 Image Similarity 

Similarity metrics quantify the alignment of images during registration.  Various types of 

metrics have been described but intensity-based computations are the most convenient from the 

perspective of automation.  Mutual information (MI) is an example of an intensity-based 

similarity metric that is of special interest in this thesis.  Mutual information measures how well 

one image explains the other; it is the amount of information in one image that allows one to 

describe the other image (Hill et al., 2001). It is maximized at the optimal registration and 

minimized for unrelated source and target images.  MI is defined as follows: 

 

 𝑀𝐼  𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐻  𝑠𝑜𝑢𝑟𝑐𝑒 +  𝐻  𝑡𝑎𝑟𝑔𝑒𝑡 –  𝐻  𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡 ,                     (1.8) 

 

where H (source) and H (target) are the marginal entropies of the source and target images and 

H(source, target) is the joint entropy. A common method to compute these quantities is 

Shannon-Wiener entropy (Shannon, 1948): 
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                                   𝐻 𝑠𝑜𝑢𝑟𝑐𝑒 = − 𝑝 𝑎 𝑙𝑜𝑔𝑝 𝑎 𝑎 ,                                                   (1.9) 

 

                                  𝐻 𝑡𝑎𝑟𝑔𝑒𝑡 = − 𝑝 𝑏 𝑙𝑜𝑔𝑝 𝑏 𝑏 ,                                              (1.10) 

 

𝐻 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡 = −  𝑝 𝑎, 𝑏 log 𝑝 𝑎, 𝑏 
𝑏𝑎

,                                 (1.11) 

 

where 𝑝 (𝑎) is the probability that intensity 𝑎 occurs in the source image, 𝑝 (𝑏) is the probability 

that intensity b occurs in the target image, and 𝑝 (𝑎, 𝑏) is the probability that a occurs in the 

source at the same location as b occurs in the target. Typically, the MI metric has been used for 

inter-modality registration.  For example, Studholme et al. (1996, 1997) used MI to register MR 

with CT and PET images.  MI is also useful for intra-modality registration, for example, to align 

a pair of CT images (Wierzbicki et al., 2004). 
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1.4.3 Optimization 

In image registration, optimization is the selection of transformation parameters that 

maximizes the similarity between the transformed source and target images. Two common 

algorithms for function optimization are the downhill simplex approach (Nelder and Mead, 

1965) and, of most interest in this thesis, simulated annealing (Metropolis et al., 1953). 

 

1.4.3.1 Downhill Simplex  

 
The Nelder and Mead multidimensional unconstrained method for function optimization 

does not impose limits on parameter values. The algorithm begins by creating a simplex in the 

transformation parameter space.  This is a polytope consisting of n + 1 vertices where n is the 

number of DOFs associated with the transformation model being solved.  For example, a simplex 

is a triangle or a tetrahedron in two-dimensional or three-dimensional parameter space, 

respectively. The optimization commences by evaluating the similarity metric at each of the 

vertices and depending on these values, the simplex undergoes reflection, expansion, or 

contraction. The process continues until the change in similarity metric is below a certain 

tolerance.  

1.4.3.2 Simulated Annealing  

The name and concept of simulated annealing (SA) originate from annealing in 

metallurgy where a material is heated and then cooled in a controlled manner to increase the size 

of crystals and reduce imperfections.  Simulated annealing optimization is a random search 

method meaning that the parameter space is sampled randomly at each iteration.  To control the 

convergence of the algorithm, the user specifies a cooling schedule described by an initial 
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temperature, a function for lowering temperature with increasing iterations, and the final 

temperature (stopping criterion).   

 

Consider the example annealing run shown in Figure 1.7.  An initial guess starts the 

process at point 1.  The first iteration places the point of interest at point 2 which is selected 

purely randomly since nothing is known about the problem landscape.  Furthermore, initial 

temperature is high meaning large moves in parameter space are allowed.  Point 2 provides a 

higher function value than point 1 so it is automatically accepted as a potential solution.  In the 

second iteration, the amount energy available for the entire system is less due to cooling.  Thus, 

the move from point 2 to 3 is shorter than from 1 to 2.  The function value at point 3 happens to 

be lower than 2 representing a less optimal set of parameters.  At this point the algorithm allows 

selection of parameter sets that give lower function evaluations to ensure a large portion of 

parameter space is sampled and to prevent the algorithm from getting stuck near local maxima.  

As iterations continue the system is cooled down and smaller and smaller moves are allowed.  

Eventually, the algorithm may become greedy, accepting only parameter sets that increase the 

function value.  Execution is terminated when temperature reaches the stopping criterion or if the 

change in function value between iterations is below tolerance.  The algorithm may now be re-

run several times to obtain new parameter solutions.  If this is performed indefinitely all possible 

parameters will be explored so the global maximum of the function is guaranteed to be 

identified. 
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                    Figure 1.7: Example simulated annealing track. 
 

 

Selecting the specifics of SA algorithms has a large impact on performance.  Typically, the 

various parameters and subroutines are selected empirically although there is much research on 

determining appropriate approaches (Park et al., 1996; Aarts et al., 1997).  One method available 

in SciPy (The SciPy Community) employs the fast cooling schedule and is described in the 

following pseudo-code: 

 

For k = 0 to kmax: 

 𝑇𝑛𝑒𝑤 = 𝑇0 ∙ exp(−𝑐 ∙ 𝑘𝑞𝑢𝑒𝑛𝑐 𝑕) with 𝑐 = 𝑛 ∙ exp −𝑛 ∙ 𝑞𝑢𝑒𝑛𝑐𝑕  

For i = 0 to imax: 

 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝑥𝑐    

 𝑑𝑓 = 𝑓(𝑥𝑜𝑙𝑑  ) − 𝑓(𝑥𝑛𝑒𝑤 ) 
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            if  𝑑𝑓 <  0: 

                               accept xnew as a solution 

else: (                                         

                         𝑝 = exp⁡(−𝑑𝑓 ∙ 1/𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛/𝑇) 

                                    if (𝑝 > random (0, 1)): accept xnew as a solution 

                        

where k is the iteration number, Tnew is the temperature at iteration k, T0 is the initial temperature, 

n and quench are user selectable parameters that modify the cooling schedule, i is the dwell sub-

iteration number (T does not change during dwell iterations), xnew is the new set of parameters, xc 

is the move in parameter space that is randomly selected with temperature dependence, f(xold) is 

the evaluation of the function being optimized at the old set of parameters, boltzmann is a user 

selectable parameter that controls the probability of accepting parameters that are suboptimal,  

and random (0,1) is random number selected from a uniform distribution. 

 

One advantage of SA over other methods is its ability to provide a good solution for 

complex problems. Moreover, this algorithm guarantees the optimal solution will be found given 

sufficient computational time (Kohonen, 1999).    However, when computational time is limited, 

SA results depend greatly on characteristics such as the cooling schedule, and the algorithm 

becomes susceptible to being trapped at local maxima (Elmohamed, 1998; Elhaddad, 2012). 
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1.5 Atlas Based Segmentation (ABS) 

Accurate image delineation in radiotherapy is important to ensure the prostate is 

sufficiently irradiated and that OARs are appropriately spared. Manual contouring is subject to 

significant inter and intra-observer variability (Mitchell et al., 2009; Livsey et al., 2004) with 

most of the uncertainty attributed to inter-observer variability (Jameson, et al., 2010). Recently, 

ABS has been applied in radiotherapy treatment planning to automate prostate and OAR 

delineation. In one ABS approach, an atlas is constructed by compiling many images of different 

subjects with corresponding segmentations generated manually by an expert.  Thus, the atlas 

describes the location, shape, and spatial relationship between anatomical structures (Rohlfing et 

al., 2005).  The first step for a new patient image is to select the most appropriate atlas subject.  

This is followed by image registration of the atlas subject and target subject images.  Finally, the 

resulting transformation is used to propagate the atlas subject contours onto the new patient 

image.  This process is represented in Figure 1.8. Clearly, ABS will produce more accurate 

results if the selected atlas subject is similar to the image to be segmented.  
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Figure 1.8: An example ABS process applied to prostate radiotherapy treatment planning. First, 

an appropriate atlas subject is selected from a multi-subject database.  The selected atlas subject 

comprises a reference image 𝐼𝐴 and contours 𝜉𝐴  = {prostate, rectum, bladder, right femoral head, 

left femoral head}.  The reference image 𝐼𝐴 is then registered to a new target image 𝐼𝑇  to obtain 

the transformation 𝑇𝐴⟶𝑇  that maps 𝜉𝐴 to 𝜉𝑇 .  

 

1.5.1 Atlas Selection Strategies 

Various ABS approaches have been described in the literature. The focus of this thesis is 

on atlas selection since the decision about what atlas subject to use strongly impacts final 

segmentation accuracy, yet atlas selection has received little attention in the literature.  

Furthermore, strategies used for atlas selection are rarely explained in the literature, while simple 

selection techniques may not be effective (Rolfing et al., 2005).  Four main strategies for atlas 

subject selection have been identified by Rolfing et al., (2005): single fixed atlas subject, 
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selecting the most similar atlas subject, generation of an average atlas subject, or using multiple 

atlas subjects. 

 

1.5.1.1 Single Atlas Subject 

The simplest approach involves careful selection of a single atlas subject for ABS.  

Clearly, the spatial relationship between various contours in the atlas must be sufficiently generic 

to represent the anatomical variation expected among patients. The atlas subject is usually 

selected based on visual inspection to ensure high image quality, contour accuracy, and 

anatomical variation that best captures the variation expected in the patient population. Single 

atlas based segmentation was employed by Kikinis et al. (1996) who selected one subject to form 

a brain MRI atlas; not much effort was made to select an appropriate atlas subject.  Rohlfing et al. 

(2005) studied the effect of different atlas selection strategies on the accuracy of contours 

generated for confocal microscopy images of the bee brain.  His results showed that constructing 

a single subject atlas based on visual assessment yielded lower final segmentation results 

compared to the other selection approaches described below. 

 

1.5.1.2 Most Similar Atlas Subject 

Selecting the optimal subject from an atlas assumes that for any given image there is one 

atlas subject that would produce the best segmentation accuracy (Rohlfing et al., 2005).  The 

optimal atlas subject may be obtained by registering all atlas subject images to the target, 

computing image similarity metrics, and selecting the subject that is most similar with the target.  

This strategy simplifies the remainder of the ABS process since only a single atlas subject is used 
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but there is a strong dependence between the atlas subject selection process and the final 

segmentation accuracy (Hoang Duc et al., 2013).  Leung et al., (2010) selected the most similar 

atlas subject for hippocampal volume in brain MRI according to similarity metric after rigid 

registration while Rohlfing et al. (2005) selected the most similar atlas subject for a bee brain 

confocal microscopy image based on image similarity after affine and non-rigid registration.  

Selection after affine registration was shown to be less computationally intensive.  Regardless of 

the transformation model, these techniques rely heavily on the performance of the image 

registration method that aligns atlas subject and target images. On a practical level, registering all 

atlas subjects to the target image is extremely time consuming. Finally, similarity metrics do not 

always detect a best match in terms of final contouring accuracy in ABS (Sanroma et al., 2014). 

 

1.5.1.3 Average Shape Atlas  

An average atlas can be constructed by creating an average image over images of many 

individuals.  One way to obtain an average atlas from a population is to select an arbitrary but 

representative individual as a reference to which all the original images are registered.  An 

average image is then generated. There are different proposed methods to create an average 

shape atlas from the population; one way is to obtain an active shape model (ASM) as presented 

by Cootes et al., (1994) and later used by Rohlfing et al., (2005).  Creating an ASM requires 

identification of corresponding landmarks on the shapes (contours) of all subjects, affinely 

aligning all the landmarks so they correspond as closely as possible, and calculating the mean 

shape from the aligned shapes.  The variation of contour points across the population can then be 

measured and mathematically described by applying principle component analysis (PCA) 

(Johnson and Wichern, 1988). Once the average image and average shape are generated, all the 
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original data may be re-registered with the current averages to generate a new average to use in 

subsequent iterations. This iterative process may be carried on until convergence (Rohlfing et al., 

2005). 

 
Acosta et al. (2010) used another method to build an atlas for prostate CT.  This 

technique was first used by Downling et al. (2009) for prostate MRI segmentation.  An average 

image was constructed as described above.  The affine plus non-rigid transformations obtained 

during this process were then used to align binary images representing population contours onto 

the average image space.  An averaging process was then performed on the binary data to obtain 

probabilistic maps for each contour.   

 

In the methods above a separate procedure for atlas subject selection is unnecessary 

because shape variability across the population is contained within the atlas itself (using PCA or 

as a probability map).  Another advantage of the image averaging process is that it reduces 

imaging artifacts and noise.  However, the average atlas approach requires substantial 

computational time.  Furthermore, adding subjects into the atlas is difficult since a full 

recomputation of the average is necessary.  

 

1.5.1.4 Multiple Atlas Subjects 

This process requires the collection of many subjects’ images and their corresponding 

contours. To segment an unknown target image, atlas subjects within the database are registered 

to the target image and their transformed segmentations combined to estimate contours in the 

target image. One way to combine several segmentations is using a “majority voting” algorithm 

(Kittler et al., 2003).  The outputs of the subject atlas contours are determined for each voxel in 
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the target image, their “votes” are counted and the label that gained the highest number of votes 

in a particular voxel is selected to represent that voxel.  This process requires contours to be 

interpolated onto the 3D image grid. 

 
Recently, multi-subject ABS was shown to be more accurate compared to a single subject 

or average atlas image approach (Rohlfing et al., 2005). This is because the multi-subject atlas 

inherently contains large anatomical variability across the population.  However, a multi-subject 

atlas requires additional computational time since all atlas subjects have to be aligned with a 

given target.  Furthermore, the process of combining segmentations into one final contour set is 

not trivial.  For example, Acosta et al., (2013) used a technique where the final segmentation is a 

probability map – this describes the inherent uncertainty of contouring CT images.  However, in 

the conventional radiotherapy process, a single, definite set of final contours is required. 

 

Currently, there are commercially available ABS algorithms such as the one offered by 

MIMvista (MIMvista Corp, Cleveland, OH). From the quoted literature, it is not clear what atlas 

selection strategy is employed.  The company compared two approaches for a prostate cancer CT 

atlas: most similar atlas subject and multiple atlas subjects.  It appears that the most similar 

subject selection process involved computing an intensity-based similarity metric (e.g. MI) for 

all atlas subjects and the new target image, and selecting the atlas subject with the highest metric.  

In the multiple subject atlas method, the same process was repeated but the top three to five atlas 

subjects were selected and carried through the ABS pipeline.  The final segmentations were then 

combined using a “vote rule” (Pirozzi et al., 2012). The results were similar to what Rholing et 

al. (2005) concluded: multi subject atlas approaches yield higher accuracy than the most similar 

atlas subject.  In a slightly different approach, a user provided bladder volume was used to 
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perform the most similar atlas subject selection (Lin et al., 2008).  This procedure requires 

bladder volume to be known or estimated and the images employed had contrast agent in the 

bladder to assist in the contouring.  There were no further details on atlas selection for the other 

ROIs. 

 

1.6 Evaluation of Image Segmentation  

In this thesis, segmented anatomy is represented by a binary image with 1s and 0s 

representing inside and outside, respectively.  Similarly, a geometrical surface may be used to 

represent anatomical boundaries.  To quantify segmentation accuracy it is important to measure 

the difference between contours obtained using one method (e.g. ABS) vs. a gold standard (e.g. 

manual segmentation).  Two metrics for measuring segmentation differences are the Dice 

Similarity Coefficient and Hausdorff distance. These evaluation methods usually take the 

manually drawn contour as the ground truth.  However, manual segmentation results are subject 

to inter and intra-observer variability, complicating the process of quantifying the accuracy of an 

automated segmentation method such as ABS. 

 

1.6.1 Dice Similarity Coefficient 

The Dice Similarity Coefficient (DSC) quantifies the spatial overlap between two 

segmentation results on a 0 to 1 scale, where 0 indicates no overlap and 1 indicates perfect 

overlap (Lee, 1945).  
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Figure 1.9: DSC is calculated based on the area or volume contained in regions A and B, 

and their overlap C. 

 

For the example in Figure 1.9, the DSC is given by: 

                                           DSC = 
2 |𝐴∩𝐵|

 𝐴 +|𝐵|
 =

2|𝐶|

 𝐴 +|𝐵|
  ,                                               (1.12) 

where A and B are the areas of the two independent regions and C is their overlapping area. In 

prostate ABS, DSC was used to evaluate accuracy versus manually drawn contours (Velker et al., 

2013).  

 

1.6.2 Hausdorff Distance 

Another common method for evaluating segmentation accuracy is to measure the 

distance between two segmentations (Huttenlocher et al., 1993). The Hausdorff distance is the 

maximum of all possible minimum distances between two sets of segmentations. Consider the 

example in Figure 1.10.  The Hausdorff distance between A and B can be obtained by calculating 

the minimum of the distance between each point on A and every point on B and taking the 

maximum value labeled as d1 in the given example. The same procedure is repeated to calculate 
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the minimum of the distance between each point on B and every point on A and taking the 

maximum value labeled as d2.  The final Hausdorff distance is the largest of d1 and d2. 

 

Figure 1.10: The Hausdorff distance for the contours A and B is given by d2 since it is larger 

than d1. 
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1.7 Purpose of Thesis 

Successful IMRT of prostate cancer relies on accurate delineation of the prostate and 

OARs. Recently, ABS was employed in radiotherapy treatment planning to automate prostate 

and OAR delineation. In a typical approach, the essential step in ABS is the selection of an atlas 

subject from a database that best matches the target image. Pervious atlas selection methods 

employed various approaches with different advantages and disadvantages. 

 

This thesis presents an alternative atlas selection strategy in the most similar atlas subject 

framework.  Specifically, a single atlas subject will be selected for a given region in a new target 

image based on the similarity between anatomical characteristics.  Therefore, different atlas 

subjects will be used to contour different anatomy in the target image.  The anatomical 

characteristics used for selection include measurements such as prostate length and patient 

thickness. These were chosen because prostate length indicates the overall prostate shape while 

the overall body shape may be represented using the anterior-posterior and lateral separation. 

 

The aim of this work is to propose an atlas selection strategy and evaluate its impact on 

the final segmentation accuracy. In order to do that, the first step was to create a training set of 

20 patients.  The data for each patient comprised a planning CT image and segmented prostate 

and OARs (rectum, bladder, and both femoral heads).  A brute force procedure was then 

performed using affine image registration to measure the volume of overlap between 

segmentations.  These values were used to identify subject pairs with the most compatible 

contours.  The agreement in various anatomical measurements for best subject pairs was 

analyzed and an atlas-target subject similarity score was proposed.  The similarity computation 
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was optimized to maximize the final DSC obtained with the training set.  This new atlas 

selection approach was tested on 10 new patients to evaluate the selection performance.  

 

ABS holds considerable promise for future application in clinical use to improve 

contouring efficiency and reduce variability.  For such an application, the selection of the best 

atlas subject has a critical impact on segmentation accuracy.  This work simultaneously proposes 

an atlas selection technique and evaluates its success.  These methods may extended to process 

additional patient data, contour additional anatomy, and even extended to different areas of the 

body. 
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                                Materials and Method 

 
 
 

2.1. Computational Environment 

The main part of this work was performed on a workstation running the CentOS 5.10 

Linux operating system (The CentOS Project). Images were processed using the Python 2.4 

scripting language (Python Software Foundation, Delaware, USA) and a custom version of the 

Visualization Tool Kit (Kitware Inc., Clifton Park, USA). A detailed list of scripts used in this 

work may be found in Appendix 1.   

 

2.2. Patient Data   

  Anonymized planning CT images of 30 prostate cancer patients undergoing IMRT at the 

Juravinski Cancer Center between June 2012 and January 2013 were collected for this work.   

Patients were selected randomly although images with unusual features such as hip prostheses or 

uncommon size or shape of anatomy were excluded.  It was assumed the patients had early stage 

prostate cancer given that the prescription was either 76 or 78 Gy over seven weeks.  Ethics 

2 
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approval for collecting this dataset was obtained from the McMaster University Research Ethics 

Board. 

 

All images were acquired with the patient supine with a full bladder using a Philips 

Brilliance Big Bore CT scanner (Philips Medical Systems, Amsterdam, Netherlands) and the 

following parameters: helical mode, 120 kVp, 212-267 mAs, and 50-65 cm field of view.  

Images were reconstructed on 3 mm slices.  The CTV, rectum, bladder, right femoral head, and 

left femoral head were contoured either by a radiation oncologist or a dosimetrist with later 

approval from the attending oncologist.  The CTV contours were modified to remove the base of 

the seminal vesicles, obtaining a prostate ROI for use for the remainder of this study.  This was 

deemed necessary due to the large variability of the seminal vesicles across the population and 

previous reports of difficulties in contouring this area of an image accurately (Fiorino et al., 

1998). 

 

The following parameters were measured for each patient image for later analysis: anterior-

posterior (AP) and lateral (LR) patient thicknesses at the prostate centroid, volume of each ROI, 

distance between the prostate centroid and centroids of all other ROIs, cranial-caudal prostate 

length (PL), and the maximum diameters of the right femoral head (RFHD) and the left femoral 

head (LFHD).  Example measurements are shown in Figure 2.1.  All measurements except PL, 

RFHD, and LFHD were performed automatically using the scripting environment in the Pinnacle 

TPS (Philips NV, Amsterdam, Netherlands). PL was measured in the sagittal plane using the 

prostate contour as a guide while femoral head diameters were measured in the transverse slice 

showing the largest bone cross section. 
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As explained below, these parameters will be used to select an atlas subject that is most 

compatible with a given target image.  Thus, it is important that they can be measured precisely 

and efficiently.  This can be achieved by having the user place points near the centroids of the 

prostate, rectum, bladder, and femoral heads.  These points can be used to estimate most of the 

necessary measurements.  The user will then have to measure PL and femoral head diameters 

manually.  It is estimated that these measurements and the placing of the centroid points will 

require up to five minutes.  Estimating the volume of ROIs is more complicated, but as discussed 

below, it may not be necessary. 

 

Figure 2.1: Parameters measured for each patient: panel A shows the anterior-posterior (AP) and lateral 

(LR) patient thickness, panel B shows the cranial-caudal prostate length (PL), panel C shows the distance 

between the prostate centroid and centroids of all other ROIs, and panel D shows the right and left 

femoral head diameters (RFHD and LFHD) 
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2.3. Image Preparation  

The planning CT images and ROIs were obtained from the Pinnacle TPS. Several pre-

processing steps were necessary for further analysis.  First, all ROIs were converted into binary 

images with 1s indicating inside the ROI and 0s outside.  The second step was to create binary 

mask images corresponding to the area of interest in each CT image.  This was constructed by 

applying the OR logical operator to binary images representing the prostate, rectum, bladder, and 

both femoral heads.  Finally, the result was morphologically dilated by 2 cm.  The process is 

illustrated in Figure 2.2. The last preprocessing step involved resampling each CT image and its 

derived binary data to match the voxel size in all remaining images.  This creates one-to-one 

correspondence between voxels in each image pair, simplifying various data analyses described 

later. 

 

Figure 2.2: Procedure used to derive the mask representing the region of interest in each image 

for further analysis. 

 

2.4. Image Registration 

The pre-processed images were registered to enable the analysis described in Section 2.5.1.  All 

registrations were performed using a modified version of a previously validated algorithm 

(Wierzbicki et al., 2010). A nine DOF transformation model was employed for registration 

allowing 3D rotation, translation, and scaling. The downhill simplex optimizer was employed to 
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maximize MI in the volume described by the binary mask described above.  Registration 

constraints were imposed to disallow any rotations greater than 10 degrees and scaling over 10 

percent. This strategy reduced the optimization search space, improving the robustness of the 

registration algorithm. Every registration result was visually validated by comparing the 

transformed CT with the planning CT image. 

 

2.5 Atlas Selection 

An atlas was constructed comprising CT images of 20 out of the 30 patients analyzed in 

this work along with the associated contours of the prostate, rectum, bladder, and both femoral 

heads.  This atlas was used to evaluate and develop the following atlas selection methods.   

 

2.5.1 Brute Force 

This method is not directly applicable in ABS because it requires that any new target 

image has already been contoured.  However, it does allow the identification of atlas-target 

subject pairs that have the most compatible contours.  This was achieved by performing 20-

leave-one-out experiments where each subject image was selected as the target to which all 

remaining 19 subject images were registered as described in Section 2.4.  There were a total of 

380 registrations required (20 target subjects x 19 source subjects per target). The resulting 

transformations were applied to the source binary images representing the prostate, rectum, 

bladder, and both femoral heads.  The agreement between any transformed contours and 

manually derived target contours was quantified using DSC.  Finally, for each subject, the 

remaining 19 subjects were ranked according to the achieved DSC. The ranking was performed 

separately for each ROI to determine the best and poorest source subjects for any target.  Thus, it 
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is possible that different subjects have the most compatible ROIs depending on the type of ROI. 

This method is illustrated in Figure 2.3. 

 

 

Figure 2.3: Brute force quantification of subject contour compatibility based on DSC.  

 

 

 

 

19 registered 

source images 

 

affine 
registration + 

DSC 
measurement   

rank atlases 
according to 

DCS 

best 
sources 

poor 
sources 

Target image 

19 source 
images  



M.Sc. Thesis – A. Mallawi; McMaster University–Medical Physics and Applied Radiation sciences

   

 

 36 
 

2.5.2 Correlation of Single Anatomical Measurements 

This atlas selection strategy compares anatomical measurements performed on images to 

find an atlas subject that is most similar to a target.   Details of these measurements are described 

in Section 2.2.  This method is feasible for use in ABS since it is not time consuming to make the 

measurements on a new target image and, since only a few parameters are involved, an 

exhaustive comparison with all atlas subjects is possible. The first goal was to measure 

correlation in particular anatomical measurements between each of the 20 targets and their best 

matched atlas subjects.  In this case, “best matched” means the atlas subject that gave the highest 

DSC for the target as determined in the brute force method.  For the best matched subject pairs 

plots of all anatomical measurements in target vs. best atlas subject were generated and the 

Pearson’s product-moment correlation coefficient was computed.  This process was used to 

identify the anatomical measurement that was most correlated for atlas selection.  For a new 

target image, the measurement would be made and the atlas subject having the most similar 

measurement would be selected for ABS.   

 

2.5.3 Correlation of Anatomical Measurement Combinations 

It is possible that single parameters measured in targets and best-matched atlas subjects 

are poorly correlated.  In this case, an optimal combination of several parameters may prove 

more useful.  As described in Section 2.2, a total of 14 parameters were available and it is not 

trivial to determine how to combine them to improve correlation.  To reduce complexity, ROI 

volumes were excluded because a full ROI contour is required to compute volume, eliminating 

the need for ABS.  Moreover, volumes of most ROIs in the pelvic region have a large inter and 

intra patient variability (Livsey et al., 2004; Nishioka et al., 2013). It was proposed that the 
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anatomical measurements remaining in the analysis should be combined to compute a cost for 

each particular ROI and atlas-target subject combination as follows: 

                   𝐶𝑅𝑂𝐼 =  𝑊𝑅𝑂𝐼 ,𝑀  1 −
𝑀𝐴

𝑀𝑇
 

𝑀

,                                               (2.1)  

where M is an anatomical measurement (PL, AP, LR, RFHD, LFHD, prostate-BW, prostate-RW, 

prostate-RF, prostate-LF), WROI,M is the weight assigned to M for the particular ROI, MA is the 

measurement in an atlas subject, MT is the measurement in the target subject, and CROI is the cost 

for a particular ROI scoring the discrepancy between measurements in an atlas and a target 

image (C decreases as the atlas and target subjects become more similar). During atlas selection, 

the cost function may be computed between the target and all atlas subjects to find the atlas 

subject that is the closest match (minimal C).  This is then repeated for each ROI to identify the 

optimal atlas subject for each contour.  This form uses weighting factors to designate the 

importance of each anatomical measurement in selecting the atlas subject.  An optimization 

problem was then formulated where the weights are the parameters and the goal is to maximize 

the DSC possible for each target and ROI.  The problem was solved for the 20 images, with each 

subject acting as a target and the remaining 19 acting as an atlas.  No additional image 

registration or DSC computation was necessary since all results were already established in the 

brute force analysis.  

 

Optimization was performed using the SA method described in section 1.4.3.2.  The 

algorithm randomly selects a set of weighting factors.  For each target subject, the function C is 

computed for all 19 subjects comprising each individual atlas.  The atlas subject giving the 

lowest C is chosen and the final DSC following affine registration is looked up from the results 

of the brute force experiment.  This is repeated for all 20 targets to obtain 20 DSC values for any 
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ROI.  Thus, the mean DSC represents the contouring accuracy possible for the ROI if atlas 

selection is performed using equation (2.1) with the current weight factors and if the remaining 

steps of ABS only involve affine registration.  Overall, the SA method selects weight factors that 

maximize mean DSC. This process was automated using a Python script that employs the SA 

module included in the SciPy package.  Table 2.1 outlines the parameters of the optimizer, 

description of SA optimization code may be found in Appendix 2. The optimization was 

repeated 10,000 times since the chance of finding the global maximum with SA improves with 

additional computational time (Kohonen, 1999).  

 

Parameter Value 

Initial solution x0 (initial 

weights) 

1.0 

Initial temperature T0 None (automatically computed) 

Final temperature Tf 1e-12 

maxiter (kmax) 400 

dwell (xmax) 250 

Boltzmann Constant 1.0 

n, quench (parameters to 

change the cooling schedule) 

1.0 

 Table 2.1: Simulated annealing parameters used to optimize the atlas selection strategy.  All 

parameters were set to their default values except maxiter, which was set to 400 using trial and 

error. 

 

 

For comparison, an additional experiment were carried out using a leave-one-out scheme 

to assess segmentation accuracy based on random selection, where for each subject in the 

training set, an atlas subject was a randomly selected.
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2.6. Atlas Selection Validation 

Validation is considered one of the most important aspects when a new algorithm is proposed 

for clinical use.  Thus, the proposed atlas selection algorithm was validated using 10 additional 

planning CT images (testing dataset). The goal was to validate not only the atlas selection 

algorithm but also to measure final segmentation accuracy. The process of validation is 

summarized as follows: 

 

1. New data were prepared as described in Section 2.3.  Manually drawn contours were used 

to obtain the gold standard segmentation result. To assess the possibility of maximizing 

accuracy by adding more patients to the atlas dataset, brute force was repeated with all 30 

patients as described in section 2.5.1.   

2. Anatomical parameters were measured for each new subject as outlined in Section 2.2. 

3. Sets of weights resulting in high DSCs for the 20 subject training data set were identified 

from the total of 10,000 generated for each ROI.  Details of the selection process are 

described later.   

4. The optimized atlas selection method was applied for each new target image in the testing 

dataset. The atlas for this process comprised the 20 subject training set. For each pair the 

segmentation accuracy was measured using DSC and Hausdorff distance. 

5. A random atlas selection process was also performed where, for each of the 10 subjects in 

the validation set, an atlas subject was randomly selected from the 20 subject training set. 
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                                 Results and Discussion  

 

 3.1. Anatomical Characteristics 

The measured parameters for the 20 study subjects used to design an atlas selection 

strategy are summarized in Table 3.1. Some parameters showed larger variability across the 

population, making them potentially more important among the other parameters when 

attempting to pair a target image with an atlas subject.  Parameters such as AP and LR patient 

thickness are important because they indicate the overall body shape. Since the prostate is 

approximately bracketed by bladder, rectum and femoral heads, the distance between those 

organs indicates the position of the prostate. As already mentioned, ROI volumes were removed 

from further analysis despite providing valuable information since accurate computation of 

volume requires the ROI to be delineated.  

 

 

3
23 

 

 



M.Sc. Thesis – A. Mallawi; McMaster University–Medical Physics and Applied Radiation sciences  
 

 41 

The remaining parameters were relatively easy to measure in the TPS.  For the 20 

subjects, it took about 10 minutes to measure PL on the sagittal slice.  Similarly, measuring 

RFHD and LFHD took a combined time of 15 minutes on a transverse slice.  Distances between 

prostate and other organ centroids were obtained automatically from existing contours.  However, 

it is reasonable to assume this may be performed efficiently since manually placing points near 

the centroid of each ROI and automatically measuring the distance between them is not expected 

to be time consuming.  Furthermore, there is a potential to reduce the time necessary to perform 

the measurements.  For example, it appears that only one femoral head diameter is needed since 

there was no statically significant difference between the right and left measurements (p > 0.05). 

All the anatomical characteristics can be found in Appendix 3.  

 

Parameter Mean ± SD (cm) Parameter Mean ± SD (cm) 

 

PL 

 

4.99 ± 0.93 
 

prostate-

BW 

distance 

 

4.60 ± 0.65 

      

      RFHD 

           

      4.69 ± 0.40 
 

prostate -

RW 

distance 

 

3.79 ± 0.44 

 

LFHD 

 

4.71± 0.38 
 

prostate -

RF 

distance 

 

11.38 ± 0.57 

 

AP thickness 

 

23.56 ± 2.33 
  

prostate -

LF 

distance 

 

11.26 ± 0.45 

LR thickness 37.57 ± 1.96   

Table 3.1: Means and standard deviation (SD) for the measured anatomical characteristics for 

the 20 subjects used to design the atlas selection method. 
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3.2. Atlas Selection  

3.2.1. Brute Force 

Image registration took approximately 20 minutes per image pair, summing to 

approximately 5 hours for the 20-leave-one-out experiments performed on the training dataset.  

Visual assessment of affine registration results indicated that differences in patient positioning 

and posture were corrected; however, differences in volume and shape of internal soft tissues 

were not.  Figure 3.1 demonstrates a typical registration result showing that bones are well 

registered while some soft tissue needed further improvement. It is clear that the two coccyx 

bones are not aligned, lateral edges of the bladder are misaligned, and there is poor overlap for 

rectum and seminal vesicles.  In general, the affine alignment of rectum and bladder was 

unacceptable due to large variations of these organs across the population.  Thus, the remaining 

focus of this work was on ABS of the femoral heads and prostate only. 

 

Figure 3.1: Typical affine registration result.  The target image is shown in blue while the 

aligned source image is in red. 
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All DSCs obtained by brute force are shown in Tables 3.2, 3.3, and 3.4.  Identifying the 

maximum DSC for each subject produced a mean ± standard deviation (SD) DSC across the 

population of 0.90 ± 0.02 and 0.78 ± 0.05 for both femoral heads and prostate, respectively.   It is 

not surprising that excellent automated contours were possible for the femoral heads due to the 

strong bone contrast seen in CT; this assists the registration algorithm in aligning bone. The 

mean DSC for the prostate was nearly 0.8 which compares favorably to 0.67 achieved by Pate et 

al. (2014) for generating a prostate ABS. The brute force DSCs were above the 0.7 level 

previously achieved through manual re-contouring of the prostate by the same observer 

(Granberg et al., 2011) and 0.65 achieved by Hwee et al. (2011) for manual re-contouring of the 

prostate bed by different observers. 

 

Overall, it appears that excellent automated segmentation results are possible if the target 

image is paired with the most appropriate subject in the atlas.  This is encouraging since these 

results were obtained using only affine registration. It is reasonable to assume that employing 

deformable image registration in the ABS technique would provide additional gains in 

contouring accuracy as would increasing the size of the atlas. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.57 0.47 0.49 0.56 0.49 0.52 0.53 0.46 0.63 0.84 0.67 0.61 0.76 0.72 0.54 0.70 0.68 0.54 0.56

2 0.56 0.20 0.17 0.35 0.21 0.56 0.52 0.20 0.46 0.55 0.54 0.42 0.45 0.46 0.31 0.48 0.56 0.34 0.31

3 0.46 0.23 0.81 0.67 0.75 0.35 0.23 0.81 0.64 0.50 0.34 0.43 0.65 0.46 0.85 0.39 0.39 0.53 0.58

4 0.50 0.25 0.83 0.75 0.22 0.17 0.84 0.75 0.58 0.40 0.49 0.67 0.55 0.84 0.47 0.46 0.59 0.65 0.50

5 0.54 0.30 0.66 0.76 0.70 0.36 0.27 0.75 0.72 0.66 0.57 0.62 0.68 0.58 0.70 0.58 0.62 0.65 0.60

6 0.45 0.25 0.71 0.65 0.68 0.25 0.25 0.57 0.63 0.55 0.45 0.52 0.51 0.40 0.65 0.50 0.44 0.48 0.42

7 0.50 0.60 0.14 0.18 0.32 0.29 0.76 0.20 0.72 0.55 0.64 0.65 0.35 0.32 0.21 0.70 0.70 0.29 0.17

8 0.47 0.54 0.06 0.13 0.25 0.22 0.72 0.11 0.69 0.48 0.64 0.50 0.25 0.32 0.20 0.65 0.70 0.56 0.15

9 0.46 0.20 0.82 0.85 0.76 0.61 0.21 0.10 0.68 0.52 0.40 0.47 0.66 0.56 0.80 0.40 0.40 0.64 0.72

10 0.72 0.50 0.70 0.77 0.74 0.61 0.70 0.73 0.70 0.71 0.66 0.66 0.68 0.59 0.66 0.84 0.82 0.61 0.58

11 0.84 0.55 0.47 0.52 0.65 0.56 0.56 0.51 0.50 0.80 0.74 0.71 0.72 0.66 0.59 0.71 0.74 0.64 0.55

12 0.71 0.61 0.33 0.41 0.58 0.43 0.69 0.67 0.39 0.67 0.76 0.78 0.62 0.61 0.41 0.70 0.71 0.65 0.38

13 0.62 0.41 0.39 0.48 0.60 0.56 0.62 0.56 0.47 0.78 0.69 0.79 0.61 0.58 0.47 0.80 0.80 0.55 0.44

14 0.76 0.47 0.60 0.67 0.69 0.53 0.37 0.33 0.68 0.70 0.76 0.57 0.61 0.61 0.74 0.70 0.57 0.74 0.70

15 0.71 0.49 0.44 0.58 0.59 0.42 0.36 0.57 0.52 0.61 0.74 0.61 0.64 0.74 0.57 0.50 0.64 0.77 0.59

16 0.52 0.30 0.85 0.48 0.68 0.69 0.23 0.21 0.77 0.67 0.59 0.41 0.49 0.69 0.53 0.42 0.46 0.55 0.64

17 0.66 0.51 0.34 0.42 0.56 0.50 0.66 0.63 0.39 0.70 0.66 0.67 0.77 0.55 0.52 0.46 0.77 0.57 0.42

18 0.65 0.57 0.34 0.43 0.60 0.42 0.72 0.69 0.40 0.83 0.72 0.69 0.79 0.61 0.53 0.40 0.79 0.59 0.42

19 0.74 0.43 0.53 0.61 0.68 0.50 0.66 0.27 0.63 0.61 0.67 0.61 0.51 0.79 0.81 0.56 0.60 0.65 0.61

20 0.56 0.32 0.58 0.66 0.61 0.44 0.17 0.14 0.72 0.58 0.57 0.38 0.45 0.70 0.61 0.65 0.44 0.43 0.61

Atlas Subjects
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t 
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b
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ct

s

 
 

Table 3.2: DSC values for prostate obtained during the brute force experiment. White cells indicate DSC values from 0.8 to unity, 

blue from 0.60 to 0.79, and red below 0.6.  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.85 0.80 0.88 0.82 0.81 0.83 0.84 0.88 0.81 0.91 0.91 0.88 0.86 0.84 0.84 0.81 0.87 0.85 0.89

2 0.83 0.82 0.87 0.77 0.78 0.77 0.81 0.82 0.71 0.80 0.80 0.89 0.88 0.86 0.81 0.74 0.57 0.81 0.84

3 0.79 0.80 0.91 0.87 0.82 0.59 0.77 0.85 0.84 0.88 0.91 0.86 0.82 0.86 0.86 0.77 0.82 0.88 0.91

4 0.86 0.82 0.88 0.91 0.87 0.76 0.87 0.88 0.86 0.85 0.90 0.88 0.89 0.89 0.90 0.81 0.80 0.85 0.87

5 0.83 0.77 0.87 0.92 0.85 0.75 0.82 0.86 0.88 0.82 0.85 0.86 0.89 0.89 0.91 0.78 0.75 0.81 0.88

6 0.81 0.78 0.81 0.88 0.85 0.74 0.78 0.83 0.83 0.76 0.81 0.78 0.84 0.83 0.85 0.83 0.75 0.73 0.82

7 0.82 0.76 0.71 0.78 0.75 0.74 0.77 0.79 0.48 0.82 0.82 0.83 0.79 0.81 0.74 0.74 0.74 0.77 0.83

8 0.86 0.80 0.82 0.87 0.83 0.79 0.77 0.90 0.52 0.84 0.87 0.86 0.88 0.81 0.85 0.86 0.81 0.59 0.82

9 0.89 0.82 0.83 0.88 0.86 0.87 0.77 0.91 0.78 0.83 0.85 0.85 0.85 0.82 0.85 0.89 0.80 0.76 0.84

10 0.51 0.59 0.84 0.86 0.89 0.78 0.38 0.47 0.78 0.51 0.77 0.80 0.79 0.89 0.84 0.52 0.39 0.84 0.83

11 0.91 0.79 0.90 0.88 0.83 0.77 0.86 0.85 0.85 0.82 0.90 0.91 0.84 0.87 0.83 0.79 0.83 0.81 0.90

12 0.89 0.80 0.90 0.90 0.89 0.83 0.83 0.87 0.86 0.41 0.91 0.89 0.88 0.88 0.89 0.76 0.83 0.87 0.92

13 0.88 0.90 0.86 0.88 0.85 0.79 0.84 0.86 0.86 0.35 0.91 0.90 0.83 0.79 0.86 0.79 0.76 0.79 0.88

14 0.85 0.88 0.86 0.89 0.89 0.85 0.77 0.87 0.86 0.81 0.83 0.87 0.83 0.89 0.92 0.81 0.76 0.81 0.89

15 0.84 0.84 0.87 0.90 0.89 0.84 0.82 0.66 0.83 0.90 0.83 0.86 0.74 0.88 0.88 0.75 0.57 0.85 0.89

16 0.84 0.80 0.85 0.90 0.90 0.84 0.75 0.84 0.84 0.87 0.82 0.88 0.85 0.92 0.86 0.79 0.74 0.80 0.88

17 0.81 0.73 0.77 0.82 0.79 0.83 0.73 0.87 0.89 0.67 0.77 0.77 0.79 0.81 0.75 0.79 0.85 0.63 0.77

18 0.87 0.54 0.83 0.83 0.76 0.74 0.73 0.82 0.81 0.44 0.85 0.82 0.78 0.77 0.71 0.76 0.85 0.63 0.81

19 0.68 0.72 0.88 0.84 0.82 0.76 0.42 0.76 0.76 0.84 0.88 0.86 0.78 0.80 0.86 0.81 0.58 0.45 0.87

20 0.87 0.84 0.90 0.89 0.88 0.83 0.84 0.83 0.85 0.79 0.90 0.92 0.88 0.88 0.88 0.88 0.77 0.81 0.87

Atlas Subjects
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Table 3.3: DSC values for the right femoral head obtained during the brute force experiment. White cells indicate DSC values from 

0.8 to unity, blue from 0.60 to 0.79, and red below 0.6.  
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.86 0.84 0.91 0.93 0.87 0.86 0.80 0.81 0.80 0.86 0.90 0.89 0.92 0.87 0.86 0.78 0.82 0.86 0.91

2 0.87 0.77 0.87 0.78 0.80 0.68 0.76 0.80 0.70 0.70 0.80 0.90 0.88 0.77 0.71 0.71 0.67 0.77 0.79

3 0.86 0.76 0.86 0.83 0.79 0.77 0.72 0.82 0.76 0.88 0.84 0.82 0.79 0.83 0.78 0.74 0.83 0.89 0.89

4 0.91 0.85 0.84 0.90 0.84 0.84 0.81 0.85 0.83 0.87 0.88 0.88 0.88 0.86 0.83 0.77 0.81 0.87 0.88

5 0.93 0.81 0.84 0.90 0.85 0.87 0.81 0.85 0.82 0.84 0.87 0.90 0.91 0.87 0.86 0.79 0.81 0.85 0.90

6 0.87 0.79 0.76 0.84 0.86 0.85 0.79 0.84 0.70 0.76 0.83 0.82 0.86 0.82 0.87 0.87 0.81 0.79 0.84

7 0.84 0.65 0.76 0.86 0.87 0.86 0.88 0.83 0.40 0.85 0.83 0.87 0.87 0.81 0.87 0.80 0.88 0.85 0.87

8 0.82 0.76 0.76 0.82 0.81 0.81 0.88 0.86 0.35 0.81 0.63 0.79 0.80 0.75 0.85 0.86 0.92 0.62 0.78

9 0.81 0.81 0.81 0.86 0.84 0.89 0.86 0.86 0.75 0.85 0.87 0.81 0.81 0.82 0.89 0.84 0.86 0.85 0.88

10 0.70 0.51 0.74 0.81 0.82 0.65 0.39 0.36 0.74 0.48 0.39 0.74 0.80 0.77 0.42 0.50 0.42 0.75 0.77

11 0.87 0.71 0.89 0.90 0.84 0.79 0.85 0.81 0.83 0.39 0.86 0.88 0.82 0.82 0.79 0.72 0.85 0.83 0.90

12 0.92 0.81 0.84 0.88 0.87 0.84 0.74 0.64 0.87 0.85 0.86 0.88 0.90 0.86 0.84 0.79 0.83 0.81 0.90

13 0.89 0.89 0.84 0.89 0.90 0.82 0.87 0.85 0.82 0.81 0.89 0.88 0.85 0.75 0.83 0.78 0.82 0.86 0.87

14 0.91 0.88 0.79 0.87 0.91 0.86 0.84 0.80 0.80 0.84 0.82 0.90 0.86 0.85 0.84 0.79 0.77 0.82 0.87

15 0.88 0.75 0.81 0.86 0.87 0.83 0.83 0.52 0.81 0.80 0.75 0.84 0.64 0.86 0.81 0.80 0.56 0.82 0.87

16 0.87 0.71 0.78 0.83 0.85 0.90 0.85 0.85 0.87 0.50 0.77 0.84 0.80 0.85 0.79 0.87 0.81 0.79 0.84

17 0.80 0.70 0.73 0.78 0.79 0.87 0.82 0.85 0.85 0.64 0.76 0.80 0.80 0.80 0.81 0.84 0.84 0.79 0.78

18 0.83 0.68 0.81 0.80 0.80 0.82 0.88 0.91 0.85 0.45 0.83 0.81 0.81 0.79 0.75 0.86 0.81 0.83 0.83

19 0.88 0.72 0.88 0.89 0.87 0.82 0.81 0.80 0.84 0.78 0.83 0.84 0.86 0.80 0.80 0.81 0.69 0.78 0.87

20 0.91 0.79 0.87 0.89 0.90 0.85 0.84 0.79 0.88 0.68 0.90 0.90 0.86 0.87 0.89 0.83 0.81 0.83 0.89

Atlas Subjects 

Ta
rg

e
t 

 S
u

b
je

ct
s

 
Table 3.4: DSC values for the left femoral head obtained during the brute force experiment. White cells indicate DSC values from 0.8 

to unity, blue from 0.60 to 0.79, and red below 0.6.  
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3.2.2 Correlations of Single Anatomical Measurements 

The brute force experiment allowed the identification of best matched atlas subject and 

target subjects in terms of final contour DSC.  The relationship in any single anatomical 

measurement between best subject pairs was assessed by computing the Pearson’s product-

moment correlation coefficient.  For instance, the correlation coefficient for PL was found to be 

0.42, as shown in Figure 3.2. Generally, the correlation coefficient varied among parameters with 

a maximum value of 0.448 achieved for the left femoral head diameter and a minimum value of 

0.088 found for AP thickness. Correlation plots for all other anatomical measurements can be 

found in Appendix 4.   

 

Figure 3.2: Correlation of target subject and best atlas subject PL for the 20 subject training 

dataset (r = 0.42).   

 

It was not possible to identify a single anatomical parameter that was well correlated between a 

target and the best atlas subject.  A low correlation coefficient does not mean parameters are 

completely independent but does indicate there is no linear relationship.  Despite considering 
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other relationships, trends in anatomical measurements between the best image pairs were not 

identified, and this atlas selection approach was abandoned.   

 

3.2.3. Correlation of Anatomical Measurement Combinations 

Previously, a single anatomical parameter approach to atlas selection was shown to be 

ineffective.  Accurate atlas selection may be achieved by using combinations of anatomical 

measurements. Therefore, an optimization procedure was performed to identify weighting factors 

in Equation 2.1 such that the final mean DSC for the training database was maximized.  As 

described in Section 2.5.3, a total of 10,000 optimizations were performed to identify 10,000 sets 

of weights.  Two final sets of weights were obtained for prostate: one set was chosen from the 52 

sets that achieved a maximum mean DSC of 0.73 for the training dataset while giving the highest 

DSC for the validation dataset. The other set was chosen from the 300 sets of weights that 

achieved a DSC between 0.72 and 0.73 for the training set while giving the highest DSC for the 

validation dataset.  For the femoral heads, the 10,000 weight sets were ranked according to DSC 

and the highest ranking set was chosen.  The sets of selected final weights are shown in Table 3.5. 

            

             Higher weights for particular anatomical measurement indicate that that parameter was 

more important in identifying a good match in the atlas database.   For the second set of prostate 

weights, the distances from the prostate to both femoral heads were the most important for 

selecting an atlas subject for prostate contouring. This may be because the position of the 

prostate in axial CT varies most in the AP direction (Kyenzeh et al., 2010).  Lateral distance 

from the prostate to the femoral heads is less variable than the distance to the bladder or rectal 
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wall. The next most important parameter for prostate selection was PL.  This is not a surprise 

because prostate size is variable among patients and PL describes this in one dimension. 

Furthermore, there is a direct relationship between PL and age (Zhang, 2012) so it is expected PL 

should be an important parameter in selecting a well matched atlas subject for prostate.  In this 

work, 𝑊𝐶𝑇𝑉−𝑅𝐹  was higher than 𝑊𝑃𝐿,, however, reducing the uncertainty in measuring PL might 

increase the dependency of atlas selection on 𝑊𝑃𝐿 . 

 

 

 

 

 

 

 

 

 

Table 3.5: Optimized weighting values for prostate and femoral heads obtained for each 

anatomical parameter.  These weights were normalized to unity. 

 

The distribution of importance was different in the two prostate weight sets 

demonstrating that the method was sensitive to the way in which the weight sets were selected.  

However, there was some agreement between the two sets.  For example, 𝑊𝑃𝐿  were identical 

while 𝑊𝐶𝑇𝑉−𝑅𝑊  and 𝑊𝐶𝑇𝑉−𝐵𝑊  values were low.  It is not surprising that the distance from the 

prostate to the bladder or rectum does not help to position the prostate since those organs are 

quite variable across the population and not aligned following affine registration.  It is believed 

that 𝑊𝐶𝑇𝑉−𝑅𝑊  and 𝑊𝐶𝑇𝑉−𝐵𝑊  would be more important for selecting atlas subjects for rectum and 

Weight 

     

 

     Prostate (W1)  

          ROI 

 

   Prostate  (W2) 

 

 

        RF 

        

    

       LF 

𝑾𝑷𝑳 0.15 0.15 0.07 0.06 

𝑾𝑹𝑭𝑯𝑫 0.06 0.13 0.10 0.25 

𝑾𝑳𝑭𝑯𝑫 0.32 0.07 0.003 0.17 

𝑾𝑨𝑷 0.13 0.07 0.16 0.12 

𝑾𝑳𝑹 0.0016 0.10 0.15 0.01 

𝑾𝑪𝑻𝑽−𝑩𝑾 0.0031 0.01 0.14 0.06 

𝑾𝑪𝑻𝑽−𝑹𝑾 0.09 0.03 0.04 0.07 

𝑾𝑪𝑻𝑽−𝑹𝑭 0.13 0.27 0.02 0.14 

𝑾𝑪𝑻𝑽−𝑳𝑭 0.11 0.18 0.31 0.12 
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bladder contouring.  For clarity, the remaining discussion will refer to results generated with the 

second set of prostate weights.  

 

Selection of an atlas using the proposed method was nearly instantaneous, excluding the 

time necessary for performing the anatomical measurements. The atlas selection method was 

applied to the training dataset in a leave-one-out scheme, where one subject was the target and 

the remaining 19 formed the atlas.  This experiment tested the ability of the proposed selection 

method to reproduce the brute force result.  For comparison, a random selection process was also 

performed where the atlas subject was selected randomly for each target. 

 

The proposed algorithm had excellent ability to predict the most similar atlas subject for 

femoral heads, achieving a mean DSC of 0.87 ± 0.02 following affine registration.  For prostate, 

a mean DSC of 0.72 ± 0.11 was obtained. The achieved DSCs scores using the proposed atlas 

selection for each target subject in the training set are reported in Table 3.6.  The obtained results 

are encouraging since a DSC of > 0.7 was identified as acceptable following consideration of 

intra and inter-observer variability in the manual contouring process (Zijdenbos et al., 1994).  

The minimum DSC value obtained with the atlas selection method did decrease below the 0.7 

threshold, especially for the prostate. This highlights the need for human surveillance during the 

automatic segmentation procedure.  
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Table 3.6: DSC between contours obtained using the proposed ABS, brute force, and random 

selection compared to the manual contour for all 20 subjects in the training data set.    

 

The mean DSCs for the proposed atlas selection were slightly lower than the values 

established using brute force. Small decreases in performance may be acceptable given that the 

current evaluation does not include the potential benefit of deformable image registration.  This 

analysis shows that the proposed atlas selection method is able to nearly reproduce the results 

obtained with brute force for the same subjects.  Random atlas selection achieved DSCs of 

0.55±0.07 and 0.83±0.02 for the prostate and femoral heads respectively. Thus, the mean DSC 

for the proposed method demonstrated significantly higher segmentation accuracy compared 

 

 

 

 

Subject 

ID 

 

 

 

 

Brute 

force 

 

 

Prostate 

 

Proposed 

 

 

 

 

Random 

 

 

 

 

Brute 

force 

DSC for  

 

RF 

 

Proposed 

 

 

 

 

Random 

 

 

 

 

Brute 

force 

 

 

LF 

 

Proposed 

 

 

 

 

Random 

1 0.84 0.76 0.61 0.91 0.86 0.85 0.93 0.92 0.86 
2 0.56 0.34 0.42 0.89 0.89 0.81 0.90 0.90 0.88 
3 0.85 0.81 0.50 0.91 0.91 0.82 0.89 0.86 0.82 
4 0.84 0.83 0.55 0.91 0.88 0.86 0.91 0.91 0.85 
5 0.76 0.72 0.57 0.92 0.86 0.83 0.93 0.93 0.85 
6 0.71 0.57 0.45 0.88 0.83 0.81 0.87 0.84 0.86 
7 0.76 0.76 0.50 0.83 0.83 0.83 0.88 0.88 0.81 
8 0.72 0.72 0.47 0.90 0.87 0.88 0.92 0.88 0.76 
9 0.85 0.85 0.56 0.91 0.88 0.77 0.89 0.86 0.84 

10 0.84 0.74 0.66 0.89 0.89 0.83 0.82 0.82 0.82 
11 0.84 0.74 0.64 0.91 0.90 0.85 0.90 0.90 0.82 
12 0.78 0.76 0.58 0.92 0.91 0.83 0.92 0.87 0.85 
13 0.80 0.55 0.55 0.91 0.90 0.83 0.90 0.86 0.82 
14 0.76 0.76 0.61 0.92 0.85 0.85 0.91 0.91 0.82 
15 0.77 0.77 0.58 0.90 0.85 0.82 0.88 0.82 0.86 
16 0.85 0.68 0.53 0.92 0.90 0.84 0.90 0.85 0.87 
17 0.77 0.70 0.55 0.89 0.82 0.77 0.87 0.85 0.82 
18 0.83 0.72 0.60 0.87 0.85 0.81 0.91 0.83 0.83 
19 0.81 0.81 0.61 0.88 0.86 0.85 0.89 0.86 0.86 
20 0.72 0.57 0.43 0.92 0.90 0.81 0.91 0.90 0.88 

Mean  

± SD 

0.78 
±0.07 

0.72 
±0.11 

0.55 
±0.07 

0.90 
±0.02 

0.87 
±0.03 

0.83 
±0.02 

0.90 
±0.03 

0.87 
±0.03 

0.83 
±0.02 
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with random atlas selection.  The mean accuracy values across all subjects for three methods are 

shown in Figure 3.3. Analysis of variance (ANOVA) on DSCs between the selection methods 

was performed to test for statistical significance. The result showed there is statically 

significantly difference between the mean DSCs for all contours. A Tukey's honestly significant 

difference (HSD) test correction indicates that the three methods are significantly different from 

each other. Among the three strategies, brute force was the most accurate, followed by the 

proposed method, then random selection. 

 

In summary, the proposed method demonstrated a modest reduction in prostate accuracy 

compared to the brute force method and a minimal loss for both femoral heads.  The optimized 

method nearly reproduced the brute force result without requiring the target images to be 

contoured earlier. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Mean DSC± standard deviation obtained for the proposed method, brute force, and 

random atlas selection.  CTV includes the prostate gland only 
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3.3. Validation  
To test the proposed atlas selection method, 10 new subjects were randomly selected for 

inclusion into a validation dataset. For these subjects, the measured anatomical characteristics are 

summarized in Table 3.7. 

 

Table 3.7: Means and standard deviation (SD) for several anatomical measured characteristics 

for 10 subjects used to validate the atlas selection method. 

 

It appeared that the there was no difference in the measured anatomical parameters between the 

training and validation datasets, suggesting that the training dataset may already include much of 

the variability associated with patients’ geometry. The test subjects were added to the brute force 

procedure to first assess the possibility of increasing accuracy by increasing the number of atlas 

subjects.  Encompassing more anatomical variability with a larger atlas database increases 

computational time. A comparison of mean DSCs across all subjects obtained from brute force 

on the 20 and 30 subject sets is shown in Table 3.8.  These results suggest that increasing the 

number of atlas subjects will not have a large impact on the final DSC.   This may indicate that 

Parameter Mean ± SD (cm) Parameter Mean ± SD (cm) 

PL 4.65 ± 0.92 
prostate - BW 

distance 
4.43 ± 0.66 

RFHD 4.57 ± 0.38 
 

prostate - RW 

distance 

3.88 ± 0.42 

LFHD 4.62 ±0.43 
 

prostate - RF 

distance 

11.45 ± 0.84 

AP thickness 22.70 ±1.98 
 

prostate - LF 

distance 

11.14 ± 0.75 

LR thickness 36.36 ±1.74   
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the current values are the maximum achievable considering the fact that the gold standard 

segmentations were obtained manually. 

 

 

 

 

Table 3.8: The mean and standard deviation of DSCs achieved using the brute force procedure.  

 

As discussed previously, two sets of weights for the prostate were obtained for the 

proposed atlas selection algorithm.  The first set was the one that achieved the highest DSC for 

the validation set (0.60) from 52 sets that achieved the highest DSC on the training data (0.73).  

The second set was the one that achieved the highest DSC for the validation set (0.64) from 300 

sets that achieved the highest DSC on the training data (0.72 to 0.73).  The remainder of the 

discussion will focus on atlas subject selection using the second set of weights.  However, it must 

be noted that selecting the optimal set of weights was not trivial.  This is because the DSCs 

obtained on the training set are not exact due to reliance on manual segmentation as the gold 

standard.  Furthermore, many (300) optimizations resulted in high DSCs, complicating the 

process of identifying only one final set of parameters.  

 

Comparison of DSCs between manual and ABS for the test subjects using the anatomical 

selection method is summarized in Figure 3.4. High DSC values were achieved for femoral 

heads, which are clearly visible structures in CT images.  The mean DSCs ± SD were 0.86 ± 0.03 

for either femoral head. High bone contrast in CT imaging improves affine image registration.  

 

Number of Subjects 

               DSC for (Mean ± SD) 

    Prostate             RF                    LF 

20 0.78±0.05 0.90±0.02 0.90±0.03 

30  0.80±0.05  0.91± 0.03       0.90±0.02 
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Furthermore, bony anatomy tends to be similar across patients so atlas selection is not as 

important.  The mean DSC for the prostate was 0.64 ± 0.09. This is a respectable result 

considering that no deformable image registration was employed to compensate for variability in 

position and shape due to patient features and variability in bladder and rectum filling.   Random 

atlas selection achieved DSCs of 0.55±0.03 and 0.86±0.03 for the prostate and either femoral 

head, respectively.  ANOVA was performed and identified the differences between the mean 

DSCs for all contours for the three-atlas selection methods were significant. The proposed 

selection results compare well with previous ABS work in prostate radiotherapy.  For example, 

using a multi-subject atlas selection approach, Pirozzi et al. (2012) obtained mean DSCs of 0.64, 

0.82, and 0.84 for the prostate, right femoral head, and left femoral head respectively.  The 

proposed approach provides the same or better DSCs without the advantage of deformable image 

registration in the ABS pipeline  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Box and whisker plots for prostate and femoral head auto contouring. The 

figure shows the quartiles and the median. The maximum and minimum are the ends of 

the whisker.  CTV includes the prostate gland only. 
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Table 3.9 illustrates the individual auto contouring results compared to the manual gold standard.  

For the prostate contours the Hausdorff distance was also computed to provide an indication of 

the absolute contouring error as seen in Table 3.10.  As discussed before, a DSC of 0.7 or higher 

may be considered acceptable.  This criterion is met for all patients for femoral head contours.  

Only 40 % of the patients had prostate contours with sufficient DSC  

 

Table 3.9: DSC between contours obtained using the proposed ABS pipeline or brute force and 

random selection compared to the manual contour for the 10-subject validation dataset.    

 

 

 

 

 

 

 

 

 

 

Subject 

ID 

 

 

 

Brute 

force 

 

 

  RF 

 

Proposed 

 

 

 

 

Random 

 

 

 

Brute 

force 

DSC for 

 

    LF 

 

Proposed 

 

 

 

 

Random 

 

 

 

Brute 

force 

 

 

Prostate 

 

Proposed 

 

 

 

 

Random 

1 0.90 0.88 0.79 0.88 0.88 0.83 0.74 0.45 0.52 
2 0.90 0.83 0.89 0.91 0.88 0.9 0.76 0.64 0.61 
3 0.91 0.88 0.84 0.88 0.87 0.88 0.72 0.70 0.51 
4 0.92 0.85 0.85 0.90 0.86 0.81 0.81 0.75 0.57 
5 0.91 0.81 0.83 0.91 0.88 0.83 0.74 0.57 0.58 
6 0.91 0.91 0.85 0.93 0.93 0.85 0.78 0.68 0.59 
7 0.88 0.82 0.8 0.83 0.80 0.83 0.69 0.68 0.55 
8 0.89 0.87 0.83 0.85 0.80 0.84 0.76 0.70 0.53 
9 0.91 0.82 0.78 0.85 0.84 0.77 0.80 0.53 0.50 

10 0.88 0.88 0.81 0.90 0.83 0.81 0.78 0.72 0.57 
Mean 

 ± SD 

0.90  
±0.01 

0.86 
±0.03 

0.83 
±0.03 

0.88  
± 0.03 

0.86 
±0.04 

0.83 
±0.04 

0.76  
±0.03 

0.64 
±0.09 

0.55 
±0.03 
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Subject ID 

Hausdrorff distance - 

prostate 

(mm) 

1 25.7 

2 14.2 

3 10.7 

4 11.1 

5 15.7 

6 18.7 

7 10.4 

8 9.6 

9 13.2 

10 10.6 

Mean 

± SD 

14.00 
±5.0 

Table 3.10: The Hausdorff distance obtained for the prostate using the proposed ABS compared 

to the manual contour for the 10-subject validation dataset. 

 

 

The best and worst prostrate segmentation results were obtained for subject 4 and 1 with DSCs 

of 0.75 and 0.45, respectively. The subject with the lowest DSC had a Hausdorff distance of 25.7 

mm to the manual contour, while the distance for the subject with the highest DSC was 11.1 mm. 

This distance may be acceptable giving that deformable registration may be able to correct this 

difference as the capture range of deformable registration in pelvic CT is on the order of 30 mm 

(Wierzbicki et al., 2010). Moreover, manual segmentation for the prostate is associated with a 

relatively large inter observer variability so smaller difference between two contours would be 

acceptable.   The manual and auto segmentation for best and the worst result as measured by 

DSC are shown in Figure 3.5. For the worst case prostate, the auto segmentation performance 

was poor due to the anterior position of the prostate with respect to the bony anatomy for this 

patient.  For femoral heads, both best and worst cases demonstrate minimal difference from the 

manual contour. 
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Figure 3.5: Axial displays for the best (a) and worst (b) cases of prostate segmentation evaluated 

using DSC and Hausdorff distance.  Green curves represent the automated segmentation while 

red curves represent the manual segmentation. 

 

Different approaches have been reported in literature for atlas selection in ABS as 

described in Section 1.5.1. In contrast with the previous methods, selection in this work was 

based on anatomical characteristics.    This made it possible to use a large atlas data set, which 

was previously unfeasible due to the large computation time required. In general this approach is 

able to provide accurate selection for femoral head contours with reasonable accuracy for the 

prostate.  
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                                          Conclusion  

 

This study tested an atlas selection strategy that combined image registration with 

anatomical measurement matching to segment CT images for radiotherapy treatment planning. 

The technique provided contours of the prostate and both femoral heads that are similar to those 

drawn manually, but with significantly less user interaction.  

 

 Selection of an atlas subject for a new subject using the proposed method begins with the 

measurement of several anatomical characteristics in the CT image.  These values are entered 

into the optimized atlas selection algorithm and a target-atlas subject cost value is computed for 

each subject in the atlas.  The cost value is a weighted sum of differences between the anatomical 

measurements performed in the target and atlas subject images.  Finally, the atlas subject that 

gives the lowest cost value is selected for ABS.  This process is efficient, taking less than 5 

minutes for any new CT image, including the time it takes to make the anatomical measurements. 

 

4 
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  The proposed most similar atlas selection approach based on anatomical characteristics 

was tested for the prostate and both femoral heads.  Validation was initially performed using a 

20-subject atlas training dataset with manual delineation taken as the gold standard.  For this data, 

a brute force approach provided mean DSCs of 0.78 ± 0.11 and 0.90 ± 0.02 for the prostate and 

either femoral head, respectively.  These results indicate that selecting the best matching atlas 

subject for a given target achieves a similar level of segmentation accuracy as manual re-

contouring (Hwee et al., 2011), indicating that if the atlas selection problem is solved, ABS may 

replace manual contouring in radiotherapy.  After optimizing the proposed atlas selection process 

on the same training dataset, DSCs of 0.72 ± 0.11 and 0.87 ± 0.03 for the prostate and both 

femoral heads were achieved.  This demonstrated that the proposed method is capable of nearly 

reproducing the brute force results with the same set of data. The mean DSC for the proposed 

method indicated significantly higher segmentation accuracy compared with random atlas 

selection, which achieved DSCs of 0.55±0.07 and 0.83±0.02 for the prostate and femoral heads, 

respectively.   ANOVA showed significant difference on the mean DSCs the three atlas selection 

methods. Finally, testing the optimized atlas selection method on a new, 10 subject validation set 

yielded DSCs of 0.64 ± 0.09 and 0.86 ± 0.03 for the prostate and either femoral head, 

respectively.  This represented a significant loss of accuracy from 0.76 ± 0.03, 0.90 ± 0.01, and 

0.88 ± 0.03 for prostate, right femoral head and left femoral head, respectively, achieved for the 

validation set using brute force.  However, significantly better results were obtained compared to 

randomly selecting with a DSC of 0.55±0.03 and 0.86±0.03 for the prostate and femoral heads 

respectively. Statistically significant difference in ANOVA was found between the mean DSCs 

for all contours obtained from the three-atlas selection method. Furthermore, similar results of 

0.65 for prostate, 0.812 for right femoral head, and 0.834 for left femoral head were achieved in 
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previous ABS work (Pirozzi et al., 2012).  It is important to note that the impact of deformable 

registration was not included in this work whereas Pirozzi et al. did have this benefit.  Thus, the 

current method may be considered successful. 

 

Despite that the work has reached its aim, there were unavoidable limitations. First, inter 

and intra observer variability is the most significant contributor to error in ABS results, 

particularly for prostate cancer radiotherapy due to large variation in pelvic region causing 

uncertainty in the manual segmentation (gold standard). A poor level of segmentation accuracy 

was also achieved for the prostate due to organ variation by Acosta et al. (2010) with a DSC of 

0.583. With this finding, it is important to continue address the variability challenge. In this work, 

manual segmentation was used as the gold standard during training, resulting in a variety of 

weights sets that were suitable candidates for the proposed method and complicating the process 

of selecting the best weights to use. Similarly, validation of the final segmentation relied on 

manual segmentation as the gold standard complicating the process of qualifying the accuracy of 

the automated segmentation result. Furthermore, due to variability in weights the optimization 

algorithm was repeated several times to insure the optimal set of weights has been selected.  

 

Due to time limitations, this study did not gain the potential advantage of deformable 

registration.  Affine registration was able to align bones, but this was not sufficient for aligning 

the motion accruing in pelvic region due to rectum and bladder filling. This also forced the 

removal of rectum and bladder from further analysis due to the large variability in size, shape, 

and location of these organs. However deformable registration is able to correctly align the 

prostate by masking bladder and rectum, so the registration algorithm will concentrate more on 
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registering their large discrepancies, which lead to correctly registering the prostate (Godly et al., 

2009). Finally, this work did not analyze the impact of errors in the manual measurements 

performed on CT images.  These measurements would be made by placing points near the 

centroids of the prostate, rectum, bladder, and femoral heads.  These points can be used to 

estimate most of the measurements.  This must be obtained accurately since selection of the most 

similar atlas subject is based on these measurements.  Given that PL and femoral heads diameter 

were obtained manually, there is an error is assisted with these measurement. 

 

There are several potential strategies for improving the proposed method.  For example, 

including additional subjects in the analysis would alleviate the effect of uncertainties in the 

manually draw contours used as the gold standards.  This would improve the outcome of the 

weight optimization, consequently reducing the final ABS error quantification since the 

optimized atlas selection method depends on the anatomical parameters weights.  It should be 

noted that additional subjects would probably not improve final accuracy since brute force 

results obtained with 20 and 30 subjects showed similar results. 

 

Including deformable registration in the process will also improve contouring accuracy 

(Godly et al., 2009). Moreover, it would allow comparison with different, non-rigid registration-

based, atlas selection techniques.  Deformable registration is necessary for contouring the rectum 

and bladder.  This would require the investigation of other anatomical characteristics that are 

correlated to bladder and rectum such as their volumes along with testing the ability of distance 

between the prostate and rectum and bladder to predict rectum and bladder contouring.  

Although deformable registration would improve final contouring accuracy, accurate delineation 
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of the rectum and bladder will probably require a significant amount of user input. The impact of 

errors in the anatomical measurements on the final contouring accuracy can be assessed by 

repeating the proposed atlas selection method with the manual anatomical parameters measured 

different times. The difference in the final contouring accuracy can be easily evaluated. 

Furthermore, the optimized method is focused on single atlas per contour.  The method may be 

extended by testing multiple atlas subject segmentation techniques where several estimates of the 

same organ are obtained for a target image.  This has been shown to improve contouring 

accuracy previously but does increase computational time (Aljabar et al., 2009).   

 

Another future direction will involve treatment planning of a dose distribution with the 

ABS contours and a comparison with the dose distribution obtained clinically using manually 

drawn contours.  If the dose distributions are clinically comparable, the ABS errors might be 

acceptable from the radiotherapy treatment planning perspective.  It is reasonable to assume this 

is the case because the prostate (CTV) is expanded to the PTV for treatment planning; an 

averaging process that may alleviate minor contouring errors.  Furthermore, techniques like 

VMAT may not have the ability to control the dose distribution at the same spatial resolution as 

the potential contouring errors expected in ABS.   

 

ABS in the pelvic region has previously demonstrated the potential to improve efficiency 

and reduce variability associated with manual segmentation (Young et al., 2011).  This work 

presented an atlas selection technique based on matching various anatomical measurements.  

Simultaneously, the method was validated for a set of 10 patient images.  The approach 

demonstrated great potential for selecting the best atlas for CT segmentation in radiotherapy 
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treatment planning. The method achieved high accuracy for femoral heads with reasonable 

accuracy obtained for the prostate in comparison to other results found in the literature. The 

proposed method may extended to process further patient data, contour additional anatomy, and 

even be extended to different areas of the body. In conclusion, this work demonstrates a 

promising approach for delineating the prostate and femoral heads based only on limited 

knowledge of the subject anatomy. The proposed atlas selection method could help increase 

consistency between different centers as well as increase the efficiency of the contorting process.   
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Appendix 1 
 

This section contains a detailed list of the scripts used for the image registration and image 

preparation process. 

 

  

Scripts Action 

make_prostate_Mask.py Generates the mask that limits the area of the 

images considered during image registration. 

 
resample_Images.py Resamples two images to a common voxel size. 

 
ImageGlobalRegistration.py Registers two images using a combination of 

rotations, translation, and scaling. 

 
apply_XFM_to_Image.py Applies a transformation to an image. 

 
fill_Edge_Images.py Fills region of interest boundaries automatically 

with certain intensity. 

 

add_Image.py Sum the intensities for two images into single 

image. 

 

binarize_Image.py Assigns fixed intensity values to an image 

corresponding to region of interest. 

 

convert_ROI_to_Edge_Image.py Converts a Pinnacle ROI structure into the 

boundary of the contour. 

 

calaculate_Dice_coefficient.py 

 

Calculate the image similarity for the intensity 

value in an image. 

 

convert_ROI_to_poly_Image.py Convert Pinnacle ROI into visualization toolkit 

(VTK) mesh files. 

 

atlas_selector.py 

 

Select the atlas for each new patient 

 

Table A1.1. Description of the Scripts. 
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Appendix 2 
 

Description of simulating annealing optimization code 

 

Optimize the weights  

 

import scipy.optimize 

 

 
Cost function = ((w[PL]                   * abs(1 - [j][PL]                  /  [i][PL]))                     + 

               (w[RFHD]            * abs(1 - [j][RFHD]            /  [i][RFHD]))               + 

               (w[LFHD]             * abs(1 - [j][LFHD]            /  [i][LFHD]))               + 

               (w[AP]                  * abs(1 - [j][AP]                  /  [i][AP]))                    + 

               (w[LR]                  * abs(1 - [j][LR]                  /  [i][LR]))                    + 

               (w[prostate-BW]   * abs(1 - [j][prostate-BW]  /  [i][prostate-BW]))     +  

               (w[prostate-RW]   * abs(1 - [j][prostate-RW]  /  [i][prostate-RW]))     + 

               (w[prostate-RF ]    * abs(1 - [j][prostate-RF]   /  [i][prostate-RF]))       + 

                            (w[prostate-LF]     * abs(1 - [j][prostate-LF]   /  [i][prostate-LF)])         )      

 

 j = Atlas subject,  i = Target Subject 

 

x0 = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0] 

 

res = scipy.optimize.anneal (Cost Function, 

                            x0, 

                            args=(), 

                            schedule='fast', 

      T0=None, 

                            Tf=9.9999999999999998e-13, 

                            maxeval=None, 

                            maxaccept=None, 

                            maxiter=400, 

                            boltzmann=1.0, 

                            learn_rate=0.5, 

                            feps=9.9999999999999995e-07, 

                            quench=1.0, 

                            n=1.0, 

                            dwell=250 ) 
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Patient PL (cm) RFD (cm) LFD (cm) AP (cm) LR (cm) CTV-BW (cm) CTV-RW (cm) CTV-RF (cm) CTV-LF (cm) CTV (cc) BW (cc) RW (cc) RF (cc) LF (cc)

1 4.20 4.31 4.59 26.20 38.63 5.01 3.72 11.29 11.22 52.86 18.46 12.75 165.95 167.96

2 3.58 4.55 4.18 21.52 38.58 4.09 3.60 9.99 10.13 41.35 16.32 14.16 168.07 168.16

3 5.32 4.04 4.04 23.02 36.99 5.15 3.88 11.46 11.35 73.33 29.95 16.96 165.60 148.38

4 5.66 4.19 4.59 23.80 36.44 4.51 3.23 11.20 10.95 69.10 17.07 15.03 170.28 167.75

5 5.38 4.33 4.71 25.65 39.01 4.23 4.25 11.83 11.49 75.45 25.45 18.39 211.29 202.27

6 6.00 5.46 5.38 24.01 37.95 4.93 4.61 10.94 10.88 126.62 34.16 18.26 197.13 201.20

7 4.99 4.88 4.93 25.32 36.97 5.02 3.44 11.45 12.10 59.57 24.76 19.20 174.22 175.98

8 5.23 5.11 4.98 22.77 35.37 4.88 3.47 11.34 11.50 78.12 22.41 13.22 189.94 184.89

9 5.41 4.81 4.80 25.04 38.20 5.00 3.24 10.88 10.82 46.75 28.31 15.91 170.47 165.67

10 6.00 4.50 4.24 24.36 38.33 4.16 3.89 12.08 11.37 113.96 25.24 14.27 232.07 225.01

11 4.79 4.95 5.23 23.19 38.39 4.52 4.15 11.88 11.63 84.21 23.81 15.07 191.26 192.51

12 4.81 4.78 4.52 22.34 37.87 3.67 3.82 11.75 11.53 75.16 25.31 17.25 207.17 210.96

13 3.01 4.36 4.35 21.62 34.75 4.71 3.63 11.06 10.68 67.14 27.58 15.30 169.65 165.35

14 4.50 4.23 4.50 27.70 41.09 5.69 3.96 10.98 10.91 45.63 24.58 14.04 161.45 167.22

15 4.02 5.03 4.61 18.81 34.14 3.55 3.07 10.84 11.11 37.05 16.66 11.14 165.55 154.81

16 6.00 4.63 4.96 26.62 41.35 5.64 4.62 11.98 11.90 77.36 24.97 20.34 205.55 203.75

17 6.60 4.62 4.78 23.80 36.62 4.78 3.55 11.54 11.57 107.72 24.86 14.45 185.61 189.69

18 5.72 5.23 5.26 20.02 38.36 3.58 4.02 12.57 11.62 102.94 27.06 21.50 209.14 206.60

19 3.77 4.47 4.45 20.27 34.12 3.75 3.33 10.85 11.13 39.17 19.75 13.78 158.79 163.62

20 4.81 5.27 5.18 25.23 38.31 5.12 4.29 11.65 11.38 39.06 19.46 18.56 180.34 177.55

21 4.20 4.43 4.54 24.3 35.58 4.11 3.55 9.99 9.87 36.95 18.44 12.83 172.66 174.57

22 4.25 4.15 4.45 24.01 37.7 5.01 4.06 11.44 11.46 89.96 28.28 16.33 181.4 183.09

23 3.89 4.58 4.48 22.75 35.27 4.38 3.84 11.54 10.94 10.6 54.66 18.08 165.13 152.7

24 6.33 5.16 5.11 25.71 37.94 4.75 3.88 11.96 11.82 87.27 21.81 16.85 211.12 214.56

25 6.03 4.55 4.7 21.41 34.35 3.82 3.96 11.7 10.45 100.51 20.85 13.65 165.2 161.91

26 4.8 5.11 4.99 25.04 38.55 5.23 4.09 12.19 12.07 54.42 20.73 14.62 222.49 225.4

27 4.78 4.40 3.70 20.58 34.75 5.54 2.83 11.62 11.14 58.95 52.81 16.55 190.02 186.56

28 4.63 3.95 4.54 21.83 34.73 3.82 4.22 10.35 10.64 39.69 18.69 12.36 157.5 150.55

29 3.32 4.7 5.2 19.87 38.95 3.83 4.14 12.79 12.2 64.04 37.1 17.53 225.58 192.44

30 4.24 4.65 4.53 21.48 35.75 3.8 4.25 10.94 10.81 38.3 20.09 16.34 153.89 158.54

 

Appendix 3 
 

This section provides a patient-specific data collected during this work, the table contains patients’ anatomical parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A3.1. The clinical parameters for each patient including, cranial-caudal prostate length (PL), right femoral head diameter 

(RFHD), left femoral head diameter (LFHD), anterior-posterior thickness (AP), lateral thickness (LR), distances between the CTV 

(prostate) centroid and the centroids of all other ROIs, and all contour volumes.
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Appendix 4 
 

This appendix provides a result of the correlation obtained for the anatomic 

characteristics between the target and the best atlas. It was noticed that LR thickness for 

one patient was just less than 20 cm.  This is obviously a mistake that should be corrected 

for future work. 
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Table A4.1: Correlation between the target subject and the best atlas for all the 

anatomical parameters.  The CTV in this case includes the prostate gland only. 
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