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Abstract 

Computing as a service is rapidly becoming the new normal for many sectors of the 

economy. The widespread availability of broadband internet has allowed an extensive 

range of services to be delivered on-demand from centralized computing systems known 

as ‘data centers’. These systems have evolved to be enormously complex. Optical-based 

communication is desired to increase data center capability and efficiency, however 

traditional optical technologies are not feasible due to cost and size. Silicon photonics 

aims to deliver optical communications on an integrated and affordable platform for use 

in data centers by leveraging the existing capabilities of complementary metal-oxide 

semiconductor manufacturing. 

This thesis contains a description of the development of monolithic silicon 

photodiodes for use in photonic integrated circuits in, and beyond, the current 

telecommunications wavelength windows. The focus is on methods which are compatible 

with standard silicon processing techniques. This is in contrast to the current approaches 

which rely on hybrid material systems that increase fabrication complexity. 

Chapter 1 and 2 provide background information to place this work into context. 

Chapter 3 presents an experimental study of resonant devices with lattice defects which 

determines the refractive index change in silicon-on-insulator waveguides. High-speed 

operation of resonant photodiodes is demonstrated and is found to be limited by 

resonance instability. Chapter 4 demonstrates high responsivity avalanche photodetectors 

using lattice defects. The detectors are shown to operate error-free at 10 Gbit/s, thus 

confirming their capability for optical interconnects. Chapter 5 presents photodiodes 

operating with absorption through surface-state defects. These detectors show fast 

operation (10 Gbit/s) and have an extremely simple fabrication process. Chapter 6 

demonstrates photodiodes operating beyond the traditional telecommunications window. 

Operation at 20 Gbit/s, at a wavelength of 1.96 µm is demonstrated, offering potential for 

their use in the next generation of optical communication systems which will exploit the 

thulium doped fiber amplifier.  
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Chapter 1     Introduction 

1.1 Photonics & computing 

The photonics industry has entered an era of integration. Discrete photonic 

components are increasingly rare, as they are replaced with photonic integrated circuits 

(PIC). In this sense, we can draw a parallel from the middle of the 20
th

 century, and the 

development of the integrated electronics industry which enabled dense functionality of 

electrical devices on semiconductor substrates in line with the predictions of Gordon 

Moore [1]. The emergence of the microprocessor, coupled with steady improvements in 

fabrication technology has witnessed incredible utility of microelectronics in the past 50 

years. The invention of the microprocessor is arguably the most significant technological 

step in recent history, as it has enabled or accelerated the advancement of nearly every 

field in science and technology. 

The complete integration of photonic devices onto semiconductor substrates will 

enable a new era of functionality. This next generation of devices will take advantage of 

existing knowledge in semiconductor manufacturing to dramatically lower cost versus 

discrete photonic components [2]. Miniaturization will allow for deployment in a wide 

range of applications previously prohibited by cost or size. These developments will have 

widespread impact but are largely driven by the demands of the computing industry. After 

decades of silicon device miniaturization, fundamental limitations are being reached in 

high performance systems [3] and integrated photonics is needed to help [4,5]. 

Photonic and computing technology already have an intertwined relationship. The 

development of optical fiber networks through the 1980’s and 1990’s has brought high 

data-rate connections spanning the globe. In recent years both computing power and 

optical communication bandwidth have steadily improved. This has allowed for a new 

range of online services which exploit high bandwidth connections to individual homes 

and businesses. This includes consumer services such as streaming video (e.g. Netflix) 
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and social networking (e.g. Facebook), but extends to hardware resources as well; from 

online data storage to processing power itself, providers such as Amazon offer the use of 

powerful computing systems. These services allow a user to access vast resources, and 

represent a true paradigm shift in computing, as functionality is not limited by the tool 

that one owns (or has access to locally). Computing is transforming to an on-demand 

service or utility, the so called ‘cloud’ model. To enable this model, service providers 

maintain centralized computing systems collectively referred to as ‘data centers’. 

Data centers are very large scale computing systems that consist of thousands of 

interconnected components. The limitations of a single silicon die necessitate a data 

center model based on parallel processing as the demand for computation power far 

outreaches the pace of individual processor performance. It is difficult to comprehend the 

scale of these systems, even more so as details of individual data centers are generally 

unavailable for competitive reasons. However data centers may be viewed as a subset of 

high performance computing, albeit a very large one, and we can look elsewhere to 

provide some perspective on the scale of state of the art systems. Supercomputers 

designed for intense science and engineering functions also consist of thousands of 

interconnected nodes. For example the Titan Cray XK7 system at the Oak Ridge National 

Laboratory in the United States consists of 18,688 AMD Opteron-6274 16-core CPUs and 

18,688 Nvidia Tesla K20X GPUs, giving a grand total of 560,640 cores. Regardless of 

the systems purpose, be it simulating supernovas or simply stockpiling “selfies” in a data 

center, the power consumption of computing at this scale is incredible. The Titan 

supercomputer has a theoretical peak computation power of 27 PetaFlops (10
15

), while 

consuming over 8 MW of power. To place this in context, producing this electricity 

requires approximately 95 metric tons of coal per day, or about one train car’s worth. This 

may be viewed as both an ecological and economical disaster today, but is also a 

roadblock to future development. The next generation of high performance systems is 

aimed at achieving exascale computing power (10
18

 Flops), but the current energy 

efficiency in terms of Flops/Watt must greatly increase [6,7]. Improving the interconnect 
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system with photonics is a key ingredient to the next generation of high performance 

computing. 

As data centers scale up in physical size and bandwidth requirements, electrical 

interconnects have been pushed to their fundamental limits due to their finite electrical 

resistance. As the length of wire increases, so does the resistance and capacitance, 

limiting the electrical bandwidth [8]. Transmission lines cannot simply be made thicker to 

lower resistance due to the “skin” effect, described as follows. For an alternating current 

in a conductor, as the frequency increases the current density concentrates at the surface, 

increasing the effective resistance and countering benefits gained from using a thicker 

wire. Resistive loss in electrical transmission lines limits the maximum bit rate to 

 
0 2

A
B B

L
≤ , 

where B0 ~ 10
16

 bit/s for a resistive-capacitance limited transmission line typically found 

on a chip, A is the cross section of the wire and L is the length [8,9]. 

Optical technology holds several advantages over electrical interconnects. Optical 

cabling is not susceptible to electromagnetic interference, and the non-conductive cables 

simplify electrical design considerations at the system level by isolating components and 

eliminating potential ground loops. Perhaps the key differentiator from electrical systems 

is that optical transmission loss is not dependent on modulation rate, thus allowing 

systems to scale up in both speed of operation and length. Optical dispersion does pose a 

challenge for long-haul applications but less so for ‘short reach’ data center needs with 

lengths less than 2 km. Furthermore, increased transmission rates can be accomplished 

using multiple wavelengths of light propagating along the same fiber simultaneously, 

which is a scheme known as Wavelength-Division-Multiplexing (WDM).  

Optical-based interconnects are rapidly replacing electrical ones in data centers 

allowing for vast gains in data rate and interconnect length. The first generation of optical 

interconnects have been designed for an easy transition from electrical connections as 
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they consist of a fiber optic cable with optical transceiver structures onboard the cable 

connector. Known as ‘active optical cables’, they can plug into existing electrical 

connections but maintain high-speed performance over long distance. These cables have 

been deployed for several years already, with upcoming iterations reaching transfer rates 

of 100 Gbit/s [10]. Active optical cables will provide benefit to data centers in existence 

today, but significantly greater progress will be seen when new data centers are 

constructed which fully utilize the strengths of photonics. 

The implementation of optical interconnects may lead to remarkable architectural 

changes in computing. The concept of a silicon ‘macrochip’ is shown in Figure 1.1, 

where an array of silicon dies are closely integrated with photonic bridges. Such a system 

would provide advantages of density, energy efficiency and reduced latency compared to 

existing multichip arrangements [11]. 

 

Figure 1.1 | The ‘macrochip’ concept. A dense integration of multiple silicon dies 

connected with silicon photonic bridges. Figure reproduced from [11] © 2011 IEEE. 

While high performance computing is perhaps the largest driving force behind 

integrated optics there are many other areas that can take advantage of photonic 

integration. Photonic devices have penetrated into every sector of technology, therefore 

opportunities for integration or miniaturization are plentiful. A partial list of applications 

includes: gyroscopes [12], mechanical sensors [13], quantum computing [14], glasses-free 

three-dimensional displays [15], sensing applications for industry and medicine such as 

glucose monitoring [16] and gas sensing [17]. Laser integration is providing great 
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advances such as silicon Raman lasers for broad spectrum production [18], laser beam-

steering with no moving parts [19] and optical tweezers at the nanoscale [20]. Many of 

these tools offer exciting opportunities. For example, integrated beam-steering will allow 

for affordable laser ranging technology (LIDAR), which is a key requirement of self-

driving cars and other robotic vision systems. 

Many of these devices operate in the optical fiber transmission windows around 

wavelengths of 1.3 µm and 1.5 µm, as there is a well developed family of optical 

components. Yet integrated optics will not be limited to this wavelength region as many 

applications exist further into the infrared spectrum. Mid-infrared photonics (2 - 5 µm) is 

an expanding field, and integrated optics can deliver solutions [21]. 

 Most of the aforementioned devices are platform agnostic, meaning that they could 

be implemented in a variety of material platforms using the same physical principles. 

Each platform possesses their own strengths and weaknesses in the functionality offered 

and ease of fabrication. The focus of this thesis is on monolithic silicon photodetectors 

implemented on the silicon-on-insulator platform.  

1.2  Silicon photonics as a solution 

1.2.1  The strengths of silicon 

Silicon has traditionally been thought of as a poor material for optoelectronic devices. 

It has an indirect band-gap which severely limits light emission and absorption efficiency. 

Silicon does not possess a linear electro-optic response (Pockels effect) and has weak 

second order effects, ruling out modulation with an applied electric field. Furthermore it 

lacks the adjustable band-gap offered by compound semiconductors such as InGaAs, 

which greatly increases flexibility for detection and lasing. However there are several 

strengths of silicon that make up these shortfalls, including the high refractive index 

contrast and low propagation loss of silicon waveguides.  
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In the infrared silicon has a refractive index of ≈ 3.5 while silicon dioxide is ≈ 1.5, this 

difference provides a high degree of optical confinement making nanoscale waveguides 

possible using silicon-on-insulator (SOI). An SOI wafer consists of a silicon handle wafer 

with a layer of buried oxide underneath a thin surface layer of silicon, which is typically 

constructed from bonding two wafers together [22]. This process was originally 

developed for electronics but has become foundational for silicon photonics. With the 

optical isolation provided by the buried oxide, low loss waveguides can be formed in the 

thin silicon surface layer. Silicon has an optical band-gap of ≈ 1100 nm, and the 

established telecommunication wavelength regions lie beyond this in the range of 1300 - 

1600 nm. Thus the bulk material transmission loss is limited by crystalline defects and 

impurities, which are not a concern as high quality crystalline silicon is relatively 

inexpensive. The primary propagation loss associated with silicon waveguides is due to 

surface roughness. With advanced silicon processing knowledge, this is not a critical 

problem. Sub-micron waveguides can be routinely made with losses lower than 2 dB/cm 

[23], which is an acceptable figure for photonic circuits on the order of millimetres in 

length. 

The high resolution lithography available for silicon allows complex structures to be 

fashioned onto the SOI platform. For efficient on/off chip coupling there are grating 

structures [24] and nanotapers [25]. The availability of low-loss waveguides provides 

compact and high quality-factor resonant structures including ring resonators [26], disk 

resonators [27] and photonic crystal cavities [28]. These resonant structures can be used 

for on-chip routing, along with arrayed waveguide gratings [29], multimode 

interferometers [30] and sub-wavelength structures for waveguides and waveguide 

crossings [31]. These are just a small selection of the wide variety of structures that allow 

for the control of light on the SOI platform. They are all possible to produce cheaply due 

to the availability of high quality optical lithography.  

The entrenchment of silicon in the semiconductor industry is a primary motivation for 

silicon photonics. The large wafer sizes and mature manufacturing protocols provide an 

economic advantage for the platform. Despite the strengths of the SOI platform for 
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passive devices, there are challenges in the electrical integration of active devices. The 

building block components that nearly all photonic systems make use of are a light source, 

a modulator to encode an electrical signal onto an optical carrier wave and a 

photodetector to convert the optical signal back to an electrical signal. These three 

components are also the basis for optical interconnects. Various other structures may be 

required depending on the application but will not be discussed in detail, these include 

amplifiers [32], thermal controllers [33], variable optical attenuators [34] and optical 

isolators [35]. 

1.2.2 Lasers 

The most notable absence in the library of available devices is the silicon laser. 

Silicon has a fundamental limitation for light emission due to its indirect band-gap. 

Achieving an electrically pumped silicon light source would have tremendous benefit and 

so there is much work towards this goal but the research developments to date are still far 

short of application requirements. Silicon nanocrystals can emit light far more efficiently 

than bulk silicon [36] but their integration into operating devices is troublesome as the 

crystals are formed within oxide which is a barrier to electrical injection. Silicon Raman 

lasers have been demonstrated but are not a practical solution for most integrated optics 

applications as they require a high power optical pump source [18]. Lasing has been 

demonstrated using germanium grown on silicon waveguides but the efficiency with 

electrical injection is low, and requires tensile strain [37]. However this is a developing 

topic and is likely to see further advances. The only remaining solution is one using a 

hybrid III-V semiconductor on SOI approach. Wafer bonding of III-V semiconductors to 

silicon waveguides has been demonstrated, and examples of both a Fabry-Perot structure 

and ring cavity design from Liang et al. are shown in Figure 1.2 [38]. While the 

fabrication of these hybrid devices is quite complex, they offer high optical power and 

most importantly a high level of integration with the laser directly fabricated on the 

waveguide.   
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Figure 1.2 | Left - A hybrid silicon Fabry-Perot laser. The waveguide mode extends 

into the InP region directly above the waveguide. Right - A hybrid microring laser 

with a silicon bus waveguide, the simulated mode is shown in the right inset while an 

SEM image of the device cross section is shown in the left inset. Figure reproduced 

from [38] © 2010 NPG. 

Although it would appear that an integrated light source is a required component, in 

fact the flexibility offered by co-packaging a discrete laser device can be significant. An 

SOI chip with a fiber coupled from a vertical-cavity surface-emitting laser (VCSEL) or 

quantum-dot frequency-comb laser [39] for example, can serve a variety of applications 

where complete integration is not required. 

1.2.3  Modulation 

With regard to optical modulation, silicon is again prey to its fundamental limitations. 

In general, high-speed optical modulators typically rely on the Pockels effect, where the 

application of an electric field to a crystalline material alters its refractive index. For 

silicon, the Pockels effect is not present in bulk material due to the centro-symmetry of 

the crystalline structure. This limitation has led to the development of hybrid SOI 

approaches, as with the laser, where III-V semiconductor materials are bonded on silicon. 

Additionally there are polymer based modulators, where an organic material is spun onto 

a silicon waveguide [40]. Both of these approaches offer excellent performance, but they 

lag far behind monolithic silicon devices in terms of manufacturability. III-V hybrid 

devices require wafer bonding, and polymer based devices are subject to the processing 

durability of the chosen material with thermal degradation as a common issue. To make a 

practical modulator in silicon an entirely different approach is needed to introduce a 

phase change. 
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A landmark paper in silicon photonics was published in 1987 which described the 

relationship between refractive index changes and the concentration of free carriers in 

silicon [41]. This work laid out the fundamentals needed to develop silicon optical 

modulators without relying on the Pockels effect. By using a p-n diode which crosses a 

waveguide, the free carrier concentration can be modified either by injection or depletion, 

allowing for the direct control of refractive index and therefore phase modulation. This 

was demonstrated, for example, by Xu et al. and is shown in Figure 1.3, describing a 

silicon ring resonator with a p-n junction integrated on the ring [42]. 

Due to the complex manufacturability and cost issues of hybrid structures, much of 

the recent attention has been directed towards carrier based modulation and the 

monolithic silicon approach. Using modern silicon foundries, sub-micron waveguides and 

tightly controlled doping profiles, the speed of silicon modulators has been pushed above 

40 Gbit/s. Figure 1.4 shows a 40 Gbit/s eye diagram, accompanied by a schematic cross-

section of the silicon modulator developed by Gardes et al. [43]. Unlike the 

‘instantaneous’ Pockels effect, employing carriers involves a speed limitation, therefore 

shorter drift distances and optimally placed dopant greatly influence device functionality. 

 

Figure 1.3 | The first reported silicon modulator using a ring resonator. Left - A 

schematic diagram of the ring resonator device. Right – A transmission spectrum of 

the bus waveguide, as the voltage increases there is a blueshift in resonance due to 

increased carrier concentration. Figure reproduced from [42] © 2005 NPG. 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

10 

 

 

Figure 1.4 | Left – A schematic cross-section of a silicon Mach-Zehnder modulator. 

The p-n junction in the waveguide uses a wrap-around geometry to increase the 

overlap of the depletion region with the optical mode.  Right - A 40 Gb/s eye diagram. 

Reproduced from [43] © 2011 Optical Society of America. 

While silicon modulators do not surpass the performance characteristics of hybrid 

approaches, they will likely win over system designers. The higher cost associated with 

fabrication of the hybrid devices may not be worth the marginal performance increase. 

1.2.4  Photodetection: The hybrid approach 

Silicon waveguide photodetectors face a fundamental challenge; to absorb light 

beyond the optical band-gap of silicon at the telecommunications wavelengths. Due to the 

conflict of using the same material for both a low loss waveguide and a highly absorptive 

photodetector, hybrid approaches have dominated the field. It is possible to bond III-V 

materials to silicon waveguides in the same fashion as is done for lasing structures, but 

germanium based detectors have dominated research efforts due their relative simplicity. 

Although germanium differs with silicon in its lattice constant, epitaxial growth of 

germanium on silicon has been achieved. This has allowed for several different 

approaches for integrating detectors on silicon, including a germanium p-i-n diode with a 

bandwidth of 42 GHz, where a slab of germanium is grown at the end of a silicon 

waveguide [44]. A schematic diagram and micrograph of this detector is shown in Figure 

1.5.  

Avalanche detectors have also been explored. A gain-bandwidth product of 340 GHz 

was achieved with epitaxial growth of germanium on silicon [45]. A germanium 
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avalanche detector has also been incorporated directly onto a silicon waveguide with a 

rapid melting growth technique by Assefa et al. [46]. In this case, metal-semiconductor-

metal Schottky diodes were formed directly in a germanium layer with tungsten plugs. 

The detector makes use of evanescent coupling to achieve a 300 GHz gain-bandwidth 

product and 40 Gbit/s operation. 

 

Figure 1.5 | A 42 GHz germanium on silicon p-i-n photodiode. Left - A schematic 

diagram, germanium was grown directly on the silicon at the end of a rib waveguide. 

Upper right - A micrograph of the detector. Bottom right – An SEM image of the 

detector. Reproduced from [44] © 2009 Optical Society of America. 

The main drawback of germanium integrated photodetectors lies with the fabrication 

requirements. Epitaxial growth can result in a poor interface with the silicon which 

increases device leakage current. Also, the optical absorption of germanium begins to 

“roll-off” at wavelengths approaching 1570 nm, so for longer wavelengths towards the 

mid-infrared germanium becomes a poor option. 

These hybrid approaches to detection are continually maturing in their attempt to fill 

the needs of silicon photonic circuits. However the gap between the research laboratory 

and applied technology is still large and the aforementioned manufacturability issues will 

remain for the foreseeable future. 
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1.2.5  Challenges of integration 

It is clear that the miniaturization of optical technology through silicon photonics will 

provide many benefits. Existing optical technology is relatively expensive and large, but 

silicon photonics can provide cost savings and miniaturization. Surveying the state of the 

art shows a large list of devices proven in the research lab, and a much reduced list 

deployed in application. For medium length scale applications, such as server to server 

links from 1 – 1000 metres inside a data center, commercial products are deployed. In this 

application size requirements are less stringent and therefore the level of integration can 

be low (i.e. co-packaging of multiple chips). 

Photonic links are also demanded at shorter scales, including links from a 

microprocessor to memory on-board, or looking further into the future, core to core links 

within a microprocessor. These small scale applications will require a higher level of 

integration due to the limited space and power constraints. The main obstacle is that the 

fabrication processes for the individual photonic components are not congruent, and 

therefore creating a single PIC with multiple complex structures (i.e. III-V laser + 

germanium detector) can inflate the fabrication cost. 

A commonly used phrase in the silicon photonics community is that a device is 

‘compatible with CMOS fabrication processes’. While this is true in most cases in that 

devices are made using the same equipment that is used in the microelectronics industry, 

in a certain context it can be a disingenuous statement as it suggests a photonic circuit can 

share a die with an electronic one. This is far from the current reality. The process flows 

for electronic and photonic circuits are not the same and require different optimizations. 

A primary difference is the top silicon thickness in SOI wafers where optical devices 

require a greater thickness (compared to electronic circuit fabrication) to ensure low loss 

waveguides. Efforts have been made to integrate photonic circuits into unmodified 

industrial CMOS processes [47,48]. Waveguides, modulators and filters have been 

created alongside transistors, but these optical devices fall short of what is achievable in a 

process flow optimized for silicon photonics. This leaves questions as to how ultimately 
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photonic chips will be integrated with electronics, and if they will ever reside on the same 

die. In the short term, co-packaging processes have been developed, where distinct 

electronic and photonic ICs are packaged together. This can be done with a flip-chip 

process, where the face of the chips are placed together. This has the advantage of 

shortening any links between the two chips. Alternatively the chips can simply be placed 

side by side with wire-bonded connections. For some processes multiple photonic chips 

will be needed, and therefore precise alignment methods are required [49]. Connecting 

waveguides from chip to chip may be accomplished using grating couplers in the flip-

chip method, or alternatively in a side by side configuration where one solution involves 

polymer waveguides to join adjacent chips [50]. 

With the large variety of devices demonstrated and various fabrication and packaging 

methods any sort of standardization may take some time to occur. This is bad news for 

those interested in applying integrated photonic devices in larger systems. However there 

are now efforts to simplify development for designers and allow for wider access to 

advanced fabrication facilities [51, 52]. 

1.2.6  Multi-project wafers and the ‘fabless’ approach  

The use of CMOS manufacturing for silicon photonics can provide a cost advantage 

but only on a large scale. CMOS facilities involve a large capital investment and require a 

high production volume to derive cost-advantage. Even in the case of outsourced 

fabrication, the cost for a low volume of devices remains high due to the fixed cost of the 

lithography mask set, process setup and verification. CMOS chips are only delivered 

cheaply once these fixed costs are covered, and a high volume of wafers can be processed 

for relatively low variable costs. Since most academic researchers and new businesses do 

not require volume production, these costs are unaffordable. This has led to the silicon 

photonics community attempting to repeat the success of early CMOS development with 

the use of multi-project wafers (MPW). MPWs are shared fabrication runs where users 

pay for their own share of the die, allowing small projects to be developed with leading 

edge fabrication services in a ‘pay-as-you-go’ manner. Lowered cost is not the only 
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advantage with MPWs, they have an established set of design rules and a repeatable 

fabrication process providing for guaranteed performance of building block structures. 

Their disadvantage is that the process is locked such that variation from the MPW is not 

permitted. 

For academic researchers the MPW model is essential, as the state-of-the-art in silicon 

photonics has mostly moved past what is achievable at university funded clean rooms. 

MPW fabrication has enabled a sizeable portion of recent research in silicon photonics, 

including the contents of this thesis. Figure 1.6 is a photograph of a wafer received 

through a shared fabrication run at a silicon foundry. These services allow researchers to 

focus on the device design, rather than the increasing difficulties of modern silicon 

fabrication. 

 

Figure 1.6 | A wafer of silicon photonic devices used in this thesis. 

For the private sector MPWs are enablers for small companies to establish themselves 

as a ‘fabless’ producer, where design and testing is done in house but fabrication is 

outsourced. Prototyping through an MPW can accelerate development, as once the device 

is ready for a production run the volume can be easily scaled up as the fabrication 
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processes are also in place. This approach avoids switching fabrication facilities and the 

risk of new process conditions.  

Even for larger companies the fabless approach to device manufacturing remains 

attractive. Consolidation is the general industry trend as even long time producers (e.g. 

IBM in 2014) have divested from in-house fabrication to focus on development of 

products. There now exists only a handful of major companies in the business of chip 

fabrication (e.g. TSMC, Intel, Global Foundries, Samsung).  

1.3  Monolithic silicon detectors 

1.3.1  Defect-based detection 

While germanium-based detectors have offered the most compelling solution in terms 

of performance, their fabrication comes at a cost of added complexity. This has motivated 

the development of monolithic silicon detectors, which primarily include bulk defect-

based devices and surface-state defect devices. Such detectors absorb sub-band-gap light 

through defect mediated processes. While developing an all-silicon high-speed 

photoreceiver which matches hybrid performance is the ultimate goal, silicon detectors 

can also fulfil other roles such as power monitoring and low speed detection for 

spectrometers or sensors. There are several ways in which monolithic silicon detectors for 

sub-band-gap light have been constructed and these will be briefly reviewed here. 

Defect-based photodetectors have most extensively been studied by employing ion 

implantation to introduce damage to the silicon crystal structure. The advantage of ion 

implantation is that the concentration of defects can be controlled and delivered where 

desired. The absorption can be increased within a photodiode while leaving the remainder 

of the silicon waveguide highly transparent. Detectors created with this method have been 

explored at McMaster University, beginning with a p-i-n rib waveguide detector created 

by Knights et al. [53]. Further work by Doylend et al. and Logan et al. integrated these 

photodiodes within ring resonators fabricated with optical lithography and electron-beam 
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lithography, respectively [54, 55]. A photodetector within a ring resonator increases the 

responsivity due to the optical intensity build up while allowing the device to maintain a 

compact footprint. The resonator also acts as a filter, allowing wavelength selection for 

use in either a wavelength division multiplexing scheme or a spectrometer device. 

While these devices demonstrated the principles of operation, the high-speed response 

was not characterized. To compete with hybrid solutions for deployment within optical 

interconnects systems a fast, low bias and highly responsive diode is needed. A step 

towards this goal was made by Geis et al. who fabricated a high-speed silicon 

photodetector with lattice defects introduced using ion implantation [56]. The authors 

reported a 35 GHz bandwidth at 10 V reverse bias. Further high-speed characterization of 

silicon photodiodes have shown error-free operation at 10 Gbit/s [57]. 

1.3.2  Long wavelength detection 

Much of the research effort in silicon photonics has focused on wavelengths from 

1300 to 1550 nm, a range which makes up the commonly used transmission windows for 

telecommunications. Defect mediated detection has been demonstrated at wavelengths of 

1744 nm [58], 1900 nm and 2200 nm by Souhan et al. [59, 60] and from 2000 nm and 

2500 nm in large cross-section waveguides by Thomson et al. [61].  

1.3.3  Surface-state detection & other approaches 

While bulk defects introduced from ion implantation have been shown to greatly 

enhance responsivity and enable useful devices, photodetection can be achieved in their 

absence. Defects present at the surface of crystalline silicon have been shown to absorb 

light. Baehr-Jones used metal contacted to the wings of an undoped silicon waveguide 

and demonstrated optical detection [62]. More recently, a capacitive sensing scheme was 

demonstrated which can measure absorption without direct electrical contact with the 

waveguide [63]. 

An unconventional method for detection is through two-photon absorption, a non-
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linear optical effect where two sub-band-gap photons are simultaneously absorbed if their 

combined energy is greater than the band-gap. This phenomenon has allowed for 

detection in resonant based devices due to the build-up of high optical intensity. The 

effect has been observed in microdisk resonators [64] but can occur in any resonant 

structure including microrings or photonic crystal cavities [65]. This approach is 

generally less desirable as the responsivity of the detector varies with input power. 

Polycrystalline silicon is another material system useful for defect-based detection. A 

polycrystalline material is composed of individual crystal grains or crystallites, each 

covered with an imperfect surface which can absorb light. Although the material 

possesses higher loss than mono-crystalline silicon it can be used for waveguides and has 

been shown to function as a detector at 1550 nm [66]. The desire to use this material 

comes from its manufacturability, as polycrystalline material can be produced with 

deposition methods on various substrates. 

1.3.4  Resonant detectors 

One limiting factor for any defect detector is the relatively low absorption of the 

damaged silicon. Germanium diodes can produce adequate absorption on a length scale of 

tens of microns where equivalent absorption in a silicon photodiode may need millimetres 

of length. This may be an unwieldy chip area to occupy for a single photodetector, and 

such a large area would impact chip cost and limit high-speed operation.  

Defect based detectors have been developed in both resonant [54,55] and non-

resonant configurations [56-60]. Resonant detectors offer the advantage of wavelength 

selectivity and increased responsivity per chip area occupied. Since the diode itself is a 

much shorter length, capacitance and leakage current are also reduced. Finally, resonant 

devices have the advantage of wavelength selectivity built into the device. For a 

wavelength division multiplexed system this saves additional chip area as the need for a 

separate filter is avoided.  

Resonant detectors do however introduce added complexity in operation. Although 
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the short diode length aids in high-speed operation, they must contend with a limitation 

imposed by the photon cavity lifetime. Their operation is also sensitive to refractive index 

fluctuations and in a wavelength division multiplexing scheme, each channel must 

operate on a specific wavelength. In real conditions the surrounding temperature of a 

device will see fluctuation due to dissipated heat and environmental variation. Therefore 

the resonator must have real time adjustment of its resonance condition. Tuning can be 

performed by the integration of thermal heaters, capable of responding to these slowly 

varying conditions. Additional instabilities arise with a high intensity of light in the diode, 

resulting in a large photocurrent generated with rapidly changing carrier concentrations. 

This dynamic behaviour can cause small fluctuations of the index of refraction, 

perturbing the resonator.  

1.4 Contributions in thesis 

The novel contributions outlined in this thesis build towards monolithic silicon 

detector development. In chapter 3 defect based resonant detectors are discussed. This 

includes an experimental study of defects in ring resonators to determine the refractive 

index change introduced; both real and imaginary. Also in chapter 3 are experimental 

results from resonant photodetectors, including high-speed operation in which a limitation 

in bandwidth is explored. Chapter 4 presents experimental results from avalanche 

photodetectors, which includes a significant improvement in sensitivity over previously 

reported devices as well as first demonstration of high-speed, large signal operation. 

Chapter 5 presents results from a monolithic silicon detector operating with surface-state 

based absorption. This detector has simple fabrication steps and will find use as a power 

monitor, with potential uses in sensing applications. A comparison in performance of 

detectors using bulk or surface defects is also presented. Chapter 6 presents results for 

avalanche detectors at wavelengths beyond the standard telecommunications windows. 

The detectors show sensitivity up to 2.5 µm and are capable of operation at 20 Gbit/s 

which represents the fastest large signal demonstration of a defect detector to date. The 

thesis concludes with a summary and discussion of suggested future work. 
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1.5 Publications 

The contributions of this thesis have been published in respected research journals and are 

listed here chronologically: 

Ackert, J.J. et al. Defect-mediated resonance shift of silicon-on-insulator racetrack 

resonators. Opt. Express 19(13), 11969-11976 (2011). 

Ackert, J.J. et al. Silicon-on-insulator microring resonator defect-based photodetector 

with 3.5-GHz bandwidth. J. Nanophotonics 5(1), 059507-059507 (2011). 

Ackert, J.J. et al. Photodetector for 1550 nm formed in silicon-on-insulator slab 

waveguide. Electron. Lett. 48(18), 1148-1150 (2012). 

Ackert, J.J. et al. 10 Gbps silicon waveguide-integrated infrared avalanche photodiode. 

Opt. Express 21(17), 19530-19537 (2013). 

Ackert, J.J. et al. Monolithic silicon waveguide photodiode utilizing surface-state 

absorption and operating at 10 Gb/s. Opt. Express 22(9),10710-10715 (2014). 

At the date of submission of this thesis, a manuscript describing high-speed 2 µm 

photodetectors has been accepted in Nature Photonics. 

This research has also been presented at international scientific conferences: 

Ackert, J.J. et al. Silicon-on-insulator Racetrack resonator tuning via Ion implantation. 

Proceedings of IEEE Group IV Photonics P1.30 (2011). 

Ackert, J.J. et al. Defect enhanced silicon-on-insulator microdisk photodetector. Optical 

Interconnects Conference TuP10. Page 76-77 (2012). 

Ackert, J.J. et al. Waveguide integrated silicon avalanche photodetectors. Proceedings of 

SPIE 8629, Silicon Photonics VIII, 86290R (2013). 

Ackert, J.J. et al. 10 Gb/s bit error free performance of a monolithic silicon avalanche 
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waveguide integrated photodetector. Optical Fiber Communication Conference Th4C.3 

(2014). 

1.6 Statement of work 

The work in this thesis involved several collaborators whose contributions were as 

follows. 

In chapter 3 a study of ion implantation in passive ring resonators was a collaboration 

with Raha Vafaei and Lukas Chrostowski at the University of British Columbia in 

Vancouver, BC. The initial device design and fabrication was completed by UBC, along 

with contributions to discussion and interpretation of results following the ion 

implantation experiment.  

Further work in chapter 3 involved high-speed measurements of resonant photodiodes. 

The experimental work was done together with Marco Fiorentino at Hewlett Packard 

Laboratories in Palo Alto, CA, USA. 

In chapter 4 and 5 high-speed measurements of photodiodes were performed together 

with Abdullah Karar and John Cartledge of Queen’s University in Kingston, ON. Dixon 

Paez of McMaster contributed electrical simulations which appeared in a journal article 

but not in this thesis. 

In chapter 6, the devices were characterized together with Dave Thomson and Li Shen 

at the University of Southampton, Southampton, UK. This included high-speed 

measurements and variable wavelength continuous-wave results. 

All of these collaborators were co-authors on journal publications and contributed to 

the discussion of results. 
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Chapter 2     Background  

Overview 

This chapter is divided into five subject areas most relevant to this thesis. Section 2.1 

deals with optical absorption, section 2.2 presents background on the p-n junction and 

photodiodes. An overview of avalanche photodiodes is presented in section 2.3. Section 

2.4 covers the theory of ring resonators. Finally, section 2.5 provides a brief outline of 

high-speed measurement techniques.  

Silicon photonics is the synthesis of a wide range of physics and technology, and thus 

there are some notable omissions to content in this chapter. Optical waveguide theory is 

not covered in any detail, as this thesis involves single mode silicon-on-insulator (SOI) 

waveguides which have been extensively studied and described previously. For a general 

treatment on the fundamentals of optical waveguides the reader may refer to Integrated 

optics: theory and technology by Hunsperger [1] and Fundamentals of optical 

waveguides by Okamoto [2]. Silicon fabrication technology is omitted as all devices in 

this thesis were developed with multi-project wafers that employed established CMOS 

processes. If the reader is unfamiliar with this subject matter they may refer to Silicon 

VLSI Technology by Plummer [3]. 

2.1 Optical absorption 

It is useful to describe the phenomenon of optical absorption in matter before 

discussing the special case of silicon, a semiconductor material. Optical absorption is a 

general term describing a set of physical processes by which a photon incident on a target 

is converted to another form of energy. We will begin with the classical treatment of 

electromagnetic waves interacting with a dipole. This results in the general behaviour of 

the real and imaginary parts of the refractive index as a function of frequency. Further 

detail of this treatment can be found in Introduction to Electrodynamics by Griffiths [4]. 
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2.1.1 The frequency dependence of refractive index 

In a non-conducting medium, the electric permittivity ε describes the refractive index 

by n ε= . The permittivity is frequency dependent and by exploring this dependency we 

can gain insight into the nature of absorption. The following treatment is valid for a non-

conducting material with bound charge only. 

Light interaction with non-conducting matter can be modelled by the interaction of 

electrons (bound to atoms) with the electric field of a propagating electromagnetic wave.  

For small electron displacements their binding force can be given by the spring 

relationship 

  2

0F m xω= − , (2.1) 

where m is the electron mass, ω0 is the natural frequency of the oscillator and x is the 

displacement. The electric field constitutes a driving force, and there exists a damping 

force due to radiation, which are described by Eq. (2.2). This model is not fully physical 

but for small displacement values (low intensity light) this is a useful form; 

  
0 cos( )driving damping

dx
F qE t F m

dt
ω γ= = − , (2.2) 

where ω is the angular frequency of the electromagnetic field, q is the electron charge, E0 

is the amplitude of the electric field and γ is the damping constant. Writing Newton’s 

second law, this describes a damped harmonic oscillator;  

  
( )

2
2

0 02
cos

d x dx
m m m x qE t

dt dt
γ ω ω+ + = . (2.3) 

The solution to this equation written in the complex form is  
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02 2
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i tq m
x t E e
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ω

ω ω γω
−=

− −
ɶ . (2.4) 
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The dipole moment is given by ( )p qx t=ɶ ɶ , therefore the polarization P over some volume 

can be expressed as a summation over jf electrons with resonant frequency ωj and 

damping γj in each of N molecules; 

 

  

2

2 2

j

j j j

fNq

m iω ω γ ω

 
=   − − 

∑ɶ ɶP E . (2.5) 

The complex polarization can be expressed in terms of the complex electric field ɶE and 

the complex susceptibility, eχɶ , as 0 eε χ=ɶ ɶɶP E . With Eq. (2.5) and the relation for 

complex permittivity ( )0 1 eε ε χ= +ɶ ɶ , we can represent the complex dielectric constant as 

  2

2 2

0

1
j

j j j

fNq

m i
ε

ε ω ω γ ω
= +

− −
∑ɶ . (2.6) 

For a dispersive medium, a travelling plane wave is described as 

  ( )

0 0( , ) ,i kz tz t e with kω εµ ω−= =
ɶ ɶɶ ɶ ɶE E  (2.7) 

where k is the complex wave number. With k written in its real and imaginary parts Eq. 

(2.7) becomes  

  ( )

0( , ) z i kz tz t E e eκ ω− −=ɶ ɶE . (2.8) 

We can see that the wave is attenuated, with an intensity absorption coefficient of 2α κ= , 

and a refractive index of n ck ω= . Returning to Eq. (2.6), we can use the binomial 

expansion, 1 1 2x x+ ≅ +  , to express the complex wave number; 
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The real and imaginary parts provide expressions for the refractive index and absorption 

coefficient; 
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Figure 2.3 | Optical absorption versus wavelength for various semiconductor 

materials. Figure reproduced from [6] ©1972 North-Holland. 

Interestingly in Figure 2.3 the behaviour of silicon is noticeably different than that of 

GaAs and InP. This is because silicon possesses an ‘indirect’ band-gap. A direct band-gap 

occurs if the lowest energy point in the conduction band aligns in momentum space with 

the highest energy point of the valence band in energy-momentum space, illustrated in 

Figure 2.4. In silicon these two points are offset, consequently a photon with the 

minimum energy to cross the band-gap cannot complete the transition alone. A 

momentum transfer must occur through a phonon (quantized lattice vibration) interaction. 

This indirect process is naturally less efficient than the direct process. The sloped 

absorption spectra in Figure 2.3 is related to this indirect absorption, as the photon energy 

increases the momentum mismatch decreases making transition more likely.  
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where mn is the electron effective mass and Ec-Ef is the energy difference between the 

conduction band and the Fermi level. The first bracketed term represents the ‘effective 

density of states’. Similarly the expression can be written for holes, where EV is the 

valence band energy, such that 
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The addition of dopants to silicon can introduce far more free carriers than are present 

due to thermal excitation. Furthermore, photogeneration of carriers may occur from other 

absorption methods, which in turn contribute to the concentration of free carriers. 

In addition to the increase in optical absorption (the imaginary part of the refractive 

index) the real part of the refractive index is also affected by free carriers. These 

processes contribute collectively to the phenomenon known as plasma dispersion. Soref 

[7] experimentally determined this behaviour in silicon and formulated the important 

empirical relations given by: 

 

  

18 18 1[8.5 10 6 10 ] ( ),e hN N cmα − − −∆ = × ∆ + × ∆  (2.16) 

  22 18 0.8[8.8 10 8.5 10 ].e hn N N− −∆ = − × ∆ + × ∆  (2.17) 

The change in refractive index is key to the construction of devices such as 

modulators and variable optical attenuators. It is also important when attempting to 

understand dynamic behaviour in optoelectronics, as many devices exhibit undesirable 

behaviour due to the presence of carriers. 
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2.1.3  Two-photon absorption 

In a crystalline material a photon of energy smaller than the band-gap is not absorbed 

as it has insufficient energy to excite an electron to the conduction band. However, two 

photons with combined energy greater than the band-gap can simultaneously be absorbed. 

This is known as ‘two-photon absorption’ (TPA) and the strength of this effect is 

dependent on the intensity of light, or the electric field strength squared. The time varying 

carrier population density can be described as Eq. 2.18 [8],  

  2( ) ( )
( ) ,

2

dN t N t
I t

dt h

β

ν τ
= −  (2.18) 

where I is the optical intensity, N(t) is the time varying free carrier population density, τ is 

the free carrier lifetime, hν is the photon energy and β is the TPA coefficient which is 

approximately 0.8 cm/GW at telecommunications wavelengths [9]. Due to the compact 

dimensions of SOI waveguides, non-linear effects such as TPA require close 

consideration. A typical waveguide will have a cross section of less than 0.2 µm
2
, 

therefore a seemingly low coupled average power will result in a high power density.  

For ‘typical’ average power levels in silicon waveguides (~1 mW or less) the effect of 

TPA can mostly be ignored. However detrimental absorption effects will occur for 

devices which exploit short pulse trains, such as Raman lasers [10]. TPA can be 

beneficial in some cases, as it allows photodetection where it otherwise won’t occur. As 

mentioned in chapter 1, microresonator devices with their enhanced intensity can exploit 

TPA for detection in silicon. 

2.1.4  Absorption through deep-level defects 

A crystalline material can absorb a sub-band-gap photon through the presence of 

lattice defects. Defects can exist in several forms; this includes imperfections in the lattice, 

such as vacancies or interstitial atoms, impurity atoms present through contamination but 

most commonly from impurities intentionally introduced through ion implantation or 
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during growth. All of these types of defects disrupt the intrinsic band structure, and create 

energy levels within the band-gap.  

A defect level is known as ‘deep’ when it is of much larger energy than the thermal 

energy (kT ≈ 0.026 eV at room temperature), and therefore according to the Fermi-Dirac 

distribution function will not rapidly ionize at room temperature. Shallow levels are those 

which are easily ionized at room temperature, such as the commonly used dopants boron 

and phosphorous.  

Optical absorption through deep-levels in silicon has been studied for some time. Fan 

and Ramdas observed sub-band-gap absorption in silicon irradiated with deuterons, 

reported in work published in 1959. Absorption occurred with photon energies as little as 

0.41 eV, corresponding to wavelengths of ≈ 3 µm [11]. This behaviour is described in 

Figure 2.5. Later work showed that ion implantation could produce defects such as the 

silicon divacancy, which is formed by two adjacent vacancies in the diamond lattice 

structure of silicon and is responsible for an absorption peak at 1.8 µm [12]. The silicon 

divacancy defect has been attributed to energy levels 0.23 eV below the conduction band, 

0.41 eV below the conduction band and 0.23 eV above the valence band [13]. 

 

Figure 2.5 | The photoconductance and absorption spectra from p-type silicon 

irradiated with neutrons. Reproduced from [11] ©1959 AIP. 
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A simple schematic model for optical absorption through a defect is shown in Figure 

2.6. A deep-level in the lower half of the band-gap could be filled via thermal excitation 

from the valence band, followed by photon excitation to the conduction band. 

Alternatively a deep-level in the upper half of the band-gap could be filled by a photon 

excitation, the electron being subsequently thermally excited to the conduction band. 

Deep-level-transient spectroscopy experiments have shown that for 1.55 µm light the 

latter process dominates in the case of silicon containing divacancies [14]. 

 

Figure 2.6 | A simple model of the optical excitation process through a deep-level. 

The known levels of the silicon divacancy are labeled. 

The controlled introduction of deep-level defects is very useful for the formation of 

silicon waveguide detectors. Ion implantation can be used to target specific regions, 

leaving the remaining silicon waveguides unaffected. A silicon waveguide based p-i-n 

model was developed by Logan et al. [15] which implemented a mathematical 

formulation of the model described in Figure 2.6. 

Metal impurities are another route to introducing detection capability at longer 

wavelengths. It has been shown that gold and zinc offer detection through mid-gap states 

[16, 17]. However the use of such impurities are detrimental for CMOS electronics. Gold 

is viewed as a contaminant because it is able to rapidly diffuse through silicon at low 

temperature, leading to the introduction of deep-level defects in undesired locations. A 

detector made with structural defects such as the divacancy does not face such issues as it 
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can be easily incorporated into waveguide devices with ion implantation and thermal 

stability has been shown to beyond 200 °C [18]. 

The work in this thesis involves implantation conditions and subsequent annealing 

trends previously observed in defect mediated detector work [14, 15, 18], where the 

primary defect was identified as the divacancy. It is assumed that the divacancy is the 

dominant, active defect in all of the devices described here utilizing bulk defects. 

2.1.5  Surface-state absorption 

One of the assumptions for an ideal crystal is that it possesses infinite periodicity. In a 

real crystal structure there must be a termination (surface or interface) where atoms will 

be left with unsatisfied bonds. Electron wavefunctions at the surface will be disrupted and 

not form continuous bands as in bulk material, resulting in electronic levels within the 

band-gap. These levels are known as surface states, or interface states if another material 

system is present (e.g. silicon - silicon dioxide).  

Surface-state absorption has been measured in the case of a cleaved silicon surface in 

vacuum [19], where an absorption peak was observed at an energy of 0.5 eV and was 

seen to reduce in intensity after surface oxidation. This 0.5 eV state has been attributed to 

the silicon dangling bond, while a 0.3 eV and a 0.7 eV transition have been identified due 

to the silicon-oxygen bond [20]. For silicon, a thin layer of surface oxidation occurs 

naturally under exposure to air at room temperature, the thickness of which is on the order 

of nanometers. This ‘native’ oxide surface lacks uniformity and leaves some silicon 

bonds unsatisfied. Alternatively, high temperature oxidation processes produce a thicker 

and more uniform layer. 

Much of the historical efforts in silicon processing have been directed towards 

reducing the concentration of electronically active surface states. These are undesirable in 

most devices, as they act as recombination centers and lower operating efficiency. 

Surface chemistry becomes increasingly important for nanophotonic devices as the bulk 

material volume is lowered. Surface-state absorption has been studied in microresonators 
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where it was found to play a significant role beyond scattering due to roughness. In a 

study by Borselli et al. microdisk resonators were subjected to various surface treatment, 

including hydrogen fluoride to remove the silicon-dioxide layer and H2O2 + H2SO4 to 

oxidize the surface [21]. While in many devices surface states are undesirable, in this 

thesis this phenomenon is used to create a photodetector sensitive to sub-band-gap 

photons. 

2.2  Photodiodes 

This section will introduce the basic physics of the photodiode. For further 

background the reader may refer to the texts Physics of semiconductor devices by Sze [5] 

and Solid state electronics by Streetman and Banerjee [22]. 

2.2.1  P-N junction 

Semiconductor carrier concentrations can be controlled through the use of dopant 

atoms. Acceptors are atoms which occupy a lattice site and possess one less electron than 

the host semiconductor, thus they introduce a ‘hole’ which is a site to capture a free 

electron. Donors are atoms with an extra electron and when occupying a lattice site they 

introduce a free electron. Dopants are typically introduced into silicon through ion 

implantation, allowing for the creation of an abrupt junction between a p doped (acceptor) 

and n doped (donor) region. At this junction there will be an initial diffusion current due 

to the imbalance in free carrier concentration. Electrons will move from the n region to 

the p region, while holes will move from the p region to the n region. This diffusion 

current will reach an equilibrium as the displaced charge establishes an electric field 

which introduces a drift current in the opposite direction. At this equilibrium, the drift and 

diffusion currents are equal and there is a contact potential V0 across a region that has 

been cleared of free charge due to this field, known as the depletion region. A schematic 

of these processes is shown in Figure 2.7. 
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such as carrier recombination and non-absorbed light. For a defect-based silicon 

waveguide p-i-n photodetector the external QE is given by 

 

  

(1 ) ,L

ext eαη χ γ= Γ −  (2.21) 

where Γ is the modal confinement factor, χ is the carrier extraction efficiency as the 

presence of defects will cause recombination, and γ is the fraction of absorption that leads 

to carrier generation. L is the length of the detector and α is the absorption coefficient. 

An alternative metric to characterize a photodetector is the responsivity, which is the 

ratio of current produced to incident optical power (Amperes/Watt). The current flowing 

in a detector is given by 

 

  

,p

P
I q q

h
η η

ν
= Φ =  (2.22) 

where η is the quantum efficiency, q is the electron charge, Φ is photon flux, P is optical 

power and hν is the energy per photon. The responsivity R is then given by 

  0 ,
1.24

q
R

h

λη
η

ν
= =  (2.23) 

where λ0 is the photon wavelength in microns. From this we can see that for a 

photodetector operating in the telecommunications windows, a responsivity approaching 

1 A/W represents high efficiency. Further gains in efficiency require carrier 

multiplication. 

2.2.4  Operation speed limitations 

The operation speed of a p-i-n photodetector is limited by several factors. These 

include the time required for carrier extraction, the RC time constant due to the electrical 

circuit properties and the time delay from the diffusion current component (if present). 
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A photodiode can also be limited by diffusion current if a portion of the light is 

absorbed in the doped p and n regions. Without a high electric field some carriers will 

diffuse slowly towards the junction, while others will simply recombine. The carriers that 

are able to reach the junction will cause a slow tail to the detector’s time response. The 

diffusion current J for electrons and holes is given by Eq. (2.25) and Eq. (2.26) 

respectively, 
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where ∆n and ∆p are the non-equilibrium carrier concentrations, D is the diffusivity, q is 

electron charge, and L is the diffusion length or the average length a carrier will travel 

before recombination. By using the Einstein relation given by Eq. (2.27),  
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the diffusion current can be rewritten in terms of mobility, such that 
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where n is the density of generated photocarriers, µe is electron mobility, kB is 

Boltzmann’s constant and T is temperature. This diffusion current, JDif, can be compared 

to the drift current within the junction given by Eq. (2.29), where E is the electric field.  

  
drift eJ qn Eµ=
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 (2.29) 
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Impact ionization can be characterized by a set of coefficients for electrons and holes, 

αn and αp. These coefficients are material dependant and describe the average number of 

ionization events per distance travelled by a carrier. For the case of electron injection at 

low frequencies the multiplication factor M is given by 
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where WD is the depletion width [5]. This expression describes the ultimate breakdown 

voltage of the device, which occurs when M approaches infinity. If the ionization 

coefficients are equal, now defined as α, then Eq. 2.30 can be simplified to Eq. 2.31 and 

the breakdown voltage occurs when αWD= 1 and 
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2.3.2  Avalanche noise 

Avalanche breakdown is a process driven by independent impact ionization events. 

For a given carrier crossing the multiplication region, the number of impact events will 

vary. This introduces a noise source, described as the excess noise factor, which is given 

in Eq. (2.32) as the mean-square of the multiplication factor over the square-mean of the 

multiplication factor 

  2

2
( ) .

M
F M

M
=  (2.32) 

The excess noise factor F is dependent on both the multiplication factor and the carrier 

ionization ratio k=αp/αn. In the case of electron injection, McIntyre [23] showed that the 

excess noise factor can be expressed as Eq. (2.33) 
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From this equation we can see that if k=1, when αn= αp, then F = M. If hole ionization is 

limited and αp=0 then k =0 and F = 2 for large values of M. In general, a small k value is 

required to minimize the excess noise factor. This is good news for silicon based 

avalanche detectors as they possess a smaller k value than alternative materials such as 

germanium. Varying optical absorption and carrier multiplication properties between 

materials such as silicon and germanium have led to separate absorption and 

multiplication structures (SAM) for avalanche photodetectors. In this scheme an efficient 

absorber material (e.g. germanium) is used to generate the initial photocurrent, while 

carrier multiplication occurs in an adjacent region of a material possessing a favourable 

ionization ratio (e.g. silicon). 

2.3.3  Avalanche-limited transit time 

In a non-avalanche diode the carrier transit time limited bandwidth is dependent on 

the time for a single pass across the device. In an avalanche device carrier generation is 

ongoing after the pulse of light has been absorbed. The avalanche transit time will be 

dependent on the ionization ratio, the further the ratio is from k=1 the shorter the transit 

time will be. For example, if only electrons are multiplying (k=0) then the carrier transit 

time would be similar to the non-avalanche case, as the generated holes travelling 

opposite to the electrons would not cause further ionization events. 

This effect leads to a bandwidth limitation and was characterized by Emmons [24]. If 

the steady-state multiplication factor M0 < αn/αp then bandwidth has little dependence on 

the multiplication. If M0 > αn/αp then a constant gain-bandwidth product is seen. In this 

case, the multiplication as a function of frequency can be expressed as Eq. (2.34), 
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where τeff is the effective transit time, which is given by 
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where τ is the carrier single pass transit time through the multiplication region and N is a 

number varying from 1/3 to 2 depending on the ionization coefficient ratio [24]. 

2.4  Optical resonators in silicon 

The availability of high quality resonators is one of the main benefits of the silicon-

on-insulator platform. The most common resonant structure is the ring resonator which is 

extensively used for modulation and filtering. This section will review the fundamentals 

of the ring resonator. For a more detailed treatment of waveguide resonators, the reader 

may refer to Optical microresonators: theory, fabrication, and applications by Heebner 

[25] and Photonics: Optical Electronics in Modern Communications by Yariv [26]. The 

contents of this section follow from these works, primarily from [25]. 

2.4.1  Ring resonators 

To understand the ring resonator it is instructive to briefly consider the analogous 

structure in free space optics, the Fabry-Perot cavity, which consists of two partially 

reflective surfaces as input/output couplers. This structure will introduce constructive and 

destructive interference, which provides increased optical intensity at resonant 

frequencies. The two partially reflective surfaces are directly analogous to a microring 

where the ring itself is the cavity and the input/output is acquired through evanescent 

coupling. Evanescent coupling involves waveguides placed within close proximity of 

each other, such that there is significant overlap of the exponentially decaying electric 
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The intensity of the transmitted optical field is then 
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We can look at the electric field within the ring, the ratio of E3 to E1 which is given by 
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δ
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−
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The intensity is then given by the square of the field 
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When the resonance condition is satisfied, 2 mδ π=  where m is an integer, the cosine 

term goes to 1. By considering the low loss case where 1a ≃  the equation simplifies to 

  
3

1

1

1

I t
BUF

I t

+
= =

−
. (2.42) 

This quantity is known as the ‘Build-up factor’ (BUF) and tells us that the power within 

the ring can be greatly enhanced when the coupling to the ring is small. It is important to 

note that as there is no power source within the ring, the average power over the spectrum 

must remain the same, resulting in off resonance intensity lower than the input. 

2.4.3 Coupling condition 

By examining the relation for transmitted optical intensity we can examine the impact 

of the coupling coefficients. If we consider Eq. (2.39) and apply the resonance condition, 

2 mδ π= , the cosine terms equate to 1 and we are left with Eq. (2.43), 
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From this relationship we can see that if a=t then the transmission intensity will go to 

zero. This special case is known as critical coupling. It is a commonly desired trait for a 

ring resonator as it provides the maximum achievable extinction ratio, or the intensity 

ratio on-resonance versus off-resonance. The coupling coefficient and loss within the ring 

are design parameters which may be altered to achieve critical coupling. In an SOI 

microring achieving this condition is a challenge as waveguide fabrication tolerances are 

present. For an SOI rib waveguide there will be variation in the waveguide width due to 

photolithography variations, the silicon slab region thickness due to etching variations 

and also the waveguide height will vary due to the original SOI thickness variation. All 

such variations affect the evanescent coupling strength. Waveguide optical loss is 

primarily from sidewall roughness and bending loss occurs for small radius rings (r < 

5µm). However even these relatively constant fabrication parameters lead to uncertainty 

in cumulative loss, as the optical mode profile overlap with the loss sources will change 

depending on the waveguide dimensions. 

2.4.4  Free spectral range 

The separation between adjacent resonance frequencies is known as the free spectral 

range ( )2 1FSR ω ω ω= ∆ = − . Light circulating at adjacent resonance frequencies will be 

subject to the phase relation given by, 

  
2 12

n
L L where

c

ω
π β β β= − = . (2.44) 

When dealing with nanophotonic waveguides, significant dispersion is present and cannot 

be ignored. The refractive index (or effective index of the optical mode) will vary with 

wavelength, and on the scale of the FSR this variation is approximately linear and given 

by 
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Rearranging to solve for ∆ω gives 
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the quantity ng is known as the group index, and for a nanophotonic SOI waveguide is 

significantly larger than the effective index, often > 50% depending on the waveguide 

dimensions. The FSR can also be described in terms of wavelength, given by Eq. (2.49) 

in terms of frequency and wavelength, 

 

  

2

0

g g

c
FSR

Ln Ln

λ
ν λ= ∆ = ∆ = − . (2.49) 

2.4.5  Quality factor 

The quality factor (Q) represents the sharpness of a resonance. The definition is given 

by the ratio of the stored energy in the resonator versus the energy lost per cycle, 
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which can also be expressed in terms of wavelength or frequency for a given resonance 

located at λ0 with a Full-Width Half-Depth of ∆λ, 

 

  

0 0Q
ω λ

ω λ
= =

∆ ∆
. (2.51) 

A higher Q represents a longer photon lifetime within the resonator, with the relationship 

given by 
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Q Q
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λ

ω π
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which sets a corresponding bandwidth limitation of  

  1

2
c

phot

v
tπ

= . (2.53) 

2.4.6 Racetrack resonators 

The shape of the resonator itself is not fundamental to operation, provided the 

waveguide dimensions remain the same. Rings are typically used as they minimize 

surface area occupied and resonator length for a given bend radius. Eq. 2.49 tells us that 

to maximize FSR, as is often desirable for both filters and modulators, then the resonator 

length must be minimized. Typical resonator dimensions are on the order of 10 µm for 

the ring radius. Below a bend radius of 5 µm, physical space to incorporate the modulator 

structure becomes a consideration but more importantly the optical loss of the waveguide 

increases.  

A common alternative to the microring is the racetrack resonator, which introduces a 

longer coupling region as opposed to the ‘point’ coupler of a ring. The benefit of a 
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racetrack is that a longer coupling region can simplify design and simulation. With a 

point coupler, changing the coupling coefficient requires a change in coupling gap 

whereas a racetrack coupler can simply be made longer, without introducing variation in 

the coupling gap. In terms of design, changing the coupling gap in a ring requires 

computationally intensive numerical simulation, as the point coupler cannot be well 

described analytically. However in a racetrack coupler, the parallel waveguides can be 

described with a coupling strength per unit length, allowing for simple variation of the 

coupler length to adjust the coupling strength. In this thesis racetrack resonators are used 

in chapter 3. These racetrack devices are in the add-drop configuration, which modifies 

the transmission equation. For a resonator with two identical couplers, the transmission 

function can be simply modified from the all-pass resonator (Eq. 2.39) by including an 

additional source of loss, that is the new coupler. The loss coefficient a is replaced with at, 

leaving  

  2 2 2 2

2 4 2

0

2 cos

1 2 cos

transmittedI t a t at

I a t at

δ

δ

+ −
=

+ −
. (2.54) 

An SEM image of an SOI racetrack resonator is shown in Figure 2.14. The resonator is in 

an add-drop configuration with identical couplers.  
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Figure 2.14 | An SEM image of an SOI racetrack resonator in an add-drop 

configuration. The oxide cladding has been removed in the rectangular region. 

2.5  High-speed measurement instrumentation 

2.5.1 Modulation patterns 

There are multiple methods in which signals can be encoded onto a carrier wave. This 

thesis does not concern modulation techniques specifically, so this will be a brief 

overview to provide context for subsequent measurements. 

The simplest format for encoding data optically is amplitude shift keying, that is 

changing the optical power level of the signal from one state to another. This approach 

allows for various amplitude levels to be defined, but commonly an on-off keying (OOK) 

approach is taken which allows for binary transmission. An important distinction is that 

of return to zero (RZ), or non-return to zero (NRZ). RZ signals may fluctuate between +1 

and -1 for instance, with a rest state in between each bit at zero. This rest state signifies 
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the timing for each bit, meaning an external clock source is not required. NRZ signals 

alternate between levels without returning to a rest state at zero. This approach requires 

an external clock, but without the presence of the ‘0’ symbols the effective bit rate is 

higher. 

This raises the distinction between symbol rate (or baud rate), and bit rate. The bit rate 

represents the actual data transmitted while the symbol rate represents how rapidly the 

carrier wave is being modulated. For example, an OOK-RZ signal has a symbol rate twice 

that of the bit rate and for an OOK-NRZ signal the symbol rate equals the bit rate.  

The use of OOK has fundamental limits. For example, increasing the symbol rate 

results in a broadened laser spectrum. A wider spectrum results in more noise in a channel, 

and thus lowers the sensitivity of the system. More advanced techniques that employ 

phase modulation deliver data rates which surpass the capabilities of amplitude shift 

keying. The use of phase shift keying can deliver bit rates above the symbol rate. 

Measurements in this thesis make exclusive use of OOK-NRZ.  

2.5.2 Frequency response characterization 

Measuring the frequency response characteristic of a device is carried out using a 

network analyzer. This tool provides a generated signal to apply to a system under test, 

the output signal from the system is then compared with the original signal’s amplitude 

and phase (if desired). The output signal from a network analyzer is not a bit pattern, but 

a sine wave signal which can vary in frequency to cover the spectrum of interest.  

For measurements in this thesis, it is desirable to know how a photodiode will respond 

to a modulated input signal. To do this, the output signal of the network analyzer drives 

an optical modulator. The photodiode then receives the modulated optical signal, 

converting it back to an electrical one which the network analyzer receives and compares 

with the original output. This measurement is done while varying the output frequency, 

such that the limit of operation can be determined. This is known as an S21 parameter 

measurement, and it provides the transmitted gain or loss of the device under test. The S-
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parameter or scattering-parameter name arises from the matrix associated with a multiple 

port device. Figure 2.15.A shows a 2 port device with incident and reflected waves. For 

example, the S11 parameter would be the reflected signal from the device back to the 

network analyzer. S-parameters are complex quantities, but in this thesis we are 

concerned with the real part (amplitude). Figure 2.15.B shows an example spectrum from 

a network analyzer, where the measurement frequency is swept up to 10 GHz and the S21 

parameter is recorded. A general performance metric is the ‘3 dB bandwidth’, which is 

the frequency where the device response drops to half power [27]. 

 

Figure 2.15 | A) Transmission and reflection parameters for a 2-port device under 

test. B) A sample S21 measurement from a network analyzer. 

2.5.3 Eye diagrams and bit-error rate measurement 

Network analyzers provide key information on the frequency response of devices but 

are not sufficient to fully determine the quality of a device. Measurement of a transmitted 

bit pattern is necessary to provide a test under actual operating conditions. Compared to 

the network analyzer, a bit pattern provides a non-uniform and larger signal which can 

expose faults in the device under test.  

Examining a lengthy bit pattern one bit at a time is not the most convenient approach. 

For experimental purposes it is convenient to use an eye diagram, which contains every 

sequence of 0’s and 1’s in a bit pattern in one image. It does not contain separate 

information from a full bit pattern, rather an eye diagram superimposes each instance onto 
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a single image so it may be analyzed efficiently. A wide open eye represents a well 

behaved device, as 0’s and 1’s are clearly defined. While a ‘closed’ eye represents poor 

operation, as 0’s and 1’s are indistinguishable. An eye diagram allows for the evaluation 

of pattern-dependent behaviour, for example a device may respond differently to a ‘0’ 

following a single ‘1’, than a ‘0’ following a sequence of multiple ‘1’ symbols. 

Furthermore, it provides for a characterization of noise, rise/fall time (often defined 90% 

to 10%), and jitter of the signal [28]. Figure 2.16 shows an eye diagram with sample 

metrics labeled. 

 

Figure 2.16 | An example eye diagram. Relevant metrics obtainable from the 

diagram are labelled. 

The eye diagram provides a significant amount of information on the quality of 

operation, yet in order to rigorously evaluate a component a bit-error rate test (BERT) is 

employed. In this test, a generated bit pattern is input to the DUT and the output is 

compared to the original signal, with an error being a bit that doesn’t correspond with the 

original sequence. This approach directly tests the communications capability of the 

device. In the case of a photodiode, a common metric is to evaluate the bit-error rate 

versus received optical power. 
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The acceptable bit-error rate of a device depends on the application but in general one 

error per terabit (an error rate of 10
-12

) may be considered ‘error free’. Encoding 

techniques, such as forward error correction (FEC) allow for a greatly increased device 

error rate by encoding data into a longer bit-stream. For example the RS(255, 239) code 

takes a sequence of 239 bits and encodes them into 255 bits. In this scheme 

communication with a BER less than 10
-12

 requires an original uncoded BER of less than 

10
-4 

[29]. This results in a 7% ‘overhead’ in the data rate, but the relaxed BER 

requirement can offer greater utility. For example, if a photodiode can operate with lower 

received optical power then it may be placed at the end of a longer link. In integrated 

applications where electrical power consumption is critical, it would allow for a lower 

power laser. 

2.6 Simulation tools 

Commercial software simulation tools were used in the course of this thesis work. For 

waveguide simulation RSoft Beamprop was used to provide optical mode profiles. RSoft 

Fullwave was used for finite-difference time-domain (FDTD) simulations of resonant 

devices (http://optics.synopsys.com/rsoft/). Ion implantation parameters were obtained 

through the use of SRIM (Stopping and range of ions in matter) software (www.srim.org) 

[30]. Electrical simulations of p-i-n junctions were performed with Silvaco ATLAS 

(www.silvaco.com). 

2.7  Summary 

This chapter has provided the necessary background for understanding the following 

chapters. The remainder of this thesis will describe the fabrication and experimental 

characterization of defect-mediated photodiodes. 
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Chapter 3     Resonant Detection via Mid-

gap Lattice Defects 

Overview 

This chapter reports results on defect mediated detection in SOI waveguide resonant 

devices. First described is a study of the impact of the introduction of ion implantation 

induced defects in silicon ring resonators; work which determined the refractive index 

changes introduced by such defects for the first time. The chapter then describes 

fabrication of ring and disk resonator based photodetectors for both continuous-wave and 

high-speed operation. These devices perform in line with expectation for continuous-

wave operation but exhibit instability at high speed. This is followed by an examination 

of the potential causes and finally a summary of the utility of these devices considering 

these limitations. This work represents the first detailed description of this instability. 

Results from this work have been reported by the author in the following research 

journal publications. 

Ackert, J.J. et al. Defect-mediated resonance shift of silicon-on-insulator racetrack 

resonators. Opt. Express 19(13), 11969-11976 (2011). 

Ackert, J.J. et al. Silicon-on-insulator microring resonator defect-based photodetector 

with 3.5-GHz bandwidth. J. Nanophotonics 5(1), 059507-059507 (2011). 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

65 

 

3.1 The effect of lattice defects on the refractive index of 

silicon waveguides 

3.1.1 Introduction 

Ion implantation has been used previously for intentional introduction of lattice 

defects in silicon for purposes of sub-band-gap photodetection [1, 2]. This technique of 

defect engineering has also been used for other applications such as modifying carrier 

lifetime [3]. In this chapter the effects of low dose ion implantation on the refractive 

index in silicon waveguides for wavelengths around 1550 nm are determined for the first 

time. This is achieved by inert ion implantation of silicon-on-insulator (SOI) racetrack 

resonators and observing the resonance condition shift which allows for the determination 

of both the real and imaginary parts of the refractive index. This data defines useful 

knowledge when incorporating defects into resonant detectors, as described later in this 

chapter, and for more general use of defect engineering in silicon photonics. 

Further, the deliberate introduction of lattice defects could be utilized to alter devices 

post fabrication. For example, ring resonators are very sensitive to refractive index 

changes. Variation in waveguide dimensions lead to small changes in the effective index 

of the guided optical mode, and large displacements of resonance wavelengths. Ring and 

racetrack resonators are sensitive to the coupling condition which depends on the physical 

gap between the bus waveguide and ring waveguide. Introducing a low level of defects 

after fabrication could increase the loss of a ring and change its coupling condition in a 

controlled manner which would allow for the post-fabrication correction of device 

characteristics; a technique known as ‘trimming’. 

3.1.2 Device fabrication and experimental methods 

For this experimental work, add-drop SOI racetrack resonators were employed, 

consisting of 30 µm radius bends and either 15 µm or 40 µm long coupling regions. The 
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fabrication was facilitated by CMC Microsystems and carried out at IMEC in Leuven, 

Belgium. The silicon waveguide was 220 nm high, over a 2 µm thick layer of buried 

oxide. The waveguides had a nominal width of 450 nm and were patterned using 193 nm 

ultraviolet lithography.  

Post-fabrication inert ion implantation was carried out at the Tandetron Laboratory at 

Western University. The high implantation energies of up to 4 MeV available on this tool 

allow for the implanted ion species to penetrate through the cladding and waveguide and 

reside in the buried oxide, ensuring only structural defects in the silicon waveguide. 

Photolithography carried out at McMaster University was used to define ion implantation 

windows such that the coupling region between the bus waveguide and racetrack could 

remain unaffected by the implantation. This ensures the coupling coefficients of the 

device would not change, so that the quality factor (Q) and ring loss can be determined. 

Figure 3.1 shows the photomask layout for the implantation as well as an SEM image of a 

racetrack. Several chips underwent the ion implantation process with varying dose below 

the amorphization threshold [4], at energies of 350 keV for boron ions and 700 keV for 

silicon ions. 

The samples in this section are listed with an implant dose and species along with a 

prefix A or B, which represents the total resonator lengths of 218 and 268 µm 

respectively. For example, a device labeled A/3E14- boron describes a resonator of length 

218 µm which has undergone a boron ion implantation with a dose of 3x10
14

 cm
-2

. 

After ion implantation the hardened photoresist mask required removal using a 

‘pirahna etch’ solution of H2SO4 + H2O2. This is an exothermic reaction, the heat from 

which determined the baseline annealing temperature of 100 °C. After this process each 

sample was annealed in sequential steps of 25 °C up to a maximum of 300 °C, with a 

duration of 5 minutes. Between each step the sample was optically characterized at room 

temperature using a tunable laser and fiber coupling setup. Light was coupled on and off 

the chip via shallow etched gratings. The tunable laser was a NewFocus 6427, which 
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As an example of this behaviour Figure 3.2 shows optical spectra for the device 

A/3E14-boron. The transmitted power versus wavelength is shown for several annealing 

temperatures. 

 
Figure 3.2 | Post ion implantation optical transmission spectra for device A/3E14- 

boron. As the annealing temperature is increased the Q increases and the resonance 

shifts lower in wavelength. This trend is representative of other implanted devices, 

as well as those that received a silicon implant. 

A summary of results for different devices is shown in Figure 3.3 where a comparison 

of resonance shift versus annealing temperature is plotted for three nominally identical 

resonators (i.e. identical prior to post-fabrication ion implantation). Each resonator was 

from a different chip and received a different implantation dose. A clear increase in 

resonance shift is seen as the implantation dose is increased. This indicates that the 

concentration of lattice defects in the silicon influences the real part of the refractive 

index. After ion implantation the shift in refractive index is positive, with a reduction 

towards the original value upon annealing. 

In Figure 3.3b the optical loss of the racetrack resonators versus annealing 

temperature is shown for multiple chips. To extract the loss value the resonator spectra 

were fit to the analytical expression for optical transmission of an add-drop resonator with 
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identical couplers. This expression was given in chapter 2, but shown again here as Eq. 

(3.1); 

2 2 2 2

2 4 2

2 cos

1 2 cos

in

out

P t A t At

P A t At

+ − δ
= γ

+ − δ
 (3.1) 

where, Pout is output power, Pin is input power, γ is the insertion loss, t is the transmission 

coefficient , A = exp(αL) with L as the resonator length, α the loss coefficient, and the 

phase δ = 2πneffL/λ. Upon fitting it was found that the transmission coefficient did not 

change with annealing. This was expected as the region was masked during implantation. 

The values of loss in Figure 3.3 can be compared to a model introduced by Foster et al. 

[5]. This model estimates loss due to lattice defects for a range of implantation conditions 

of varying ion species, dose and energy. From Figure 3.3 we can compare the values for 

the baseline annealing temperature as this most closely represents the post-implantation 

condition. From the Foster model we would expect 23, 96 and 152 dBcm
-1

, for increasing 

ion dose respectively. The measured values from Figure 3.3 are 71, 239 and 301 dBcm
-1

, 

approximately twice the loss predicted from the model. Considering the different 

experimental conditions used by Foster, this discrepancy is not surprising. The Foster 

model has also underestimated loss previously when compared to experimental results [5].  

 

Figure 3.3 | Three nominally identical racetrack resonators implanted with silicon at 

700 keV. The marker size is indicative of the uncertainty. A) Resonance shift relative 

to the implanted state as a function of annealing temperature. B) The total optical 

loss of the racetrack resonators. 
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As the devices are annealed at increasingly higher temperatures the optical loss trends 

downward, consistent with the trend of resonance shift and annealing. The abrupt 

decrease in both loss and resonance shift after annealing at 200 °C suggests that the deep-

level responsible for these changes is the silicon divacancy. The divacancy has previously 

been observed as the primary optically active defect after low dose ion implantation in 

silicon [6]. 

The Q may be used to assess the optical loss within the resonator. Values of Q were 

extracted from the resonance linewidth (obtained through fitting a Lorentzian function) 

and plotted in Figure 3.4 for two devices representative of the group. As the devices are 

annealed there is an increase in the Q and a corresponding blue-shift in resonance 

wavelength. 

 

Figure 3.4 | Quality factor and resonance blue-shift (relative to the implanted state) 

versus annealing temperature for devices. A) A/1.5 E14-Si B) B/1.25 E12-Si. The 

marker size is indicative of the uncertainty.  

3.1.4 Determination of the real component of the refractive index 

To convert the measured resonance shift to a change in the real part of the refractive 

index we first need to determine how the effective index of the waveguide mode changes 

with refractive index in the silicon. The ion implantation is assumed to produce a 

significant change only in the refractive index of the silicon and not the buried oxide. In 

Figure 3.5 a simulation of the change in waveguide effective index is plotted versus the 
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2
,

eff

m

n L
mπ

λ
=  (3.4) 

and the free-spectral range is 

2

,
g

FSR
Ln

λ−
=  (3.5) 

with the group index ng given by 

.
eff

g eff

dn
n n

d
λ

λ
= −  (3.6) 

We then rearrange Eq. (3.6) to solve for neff, and add a term to consider the effective 

index susceptibility, providing 

.
eff eff

eff g Si

Si

dn dn
n n n

d dn
λ

λ
= + + ∆  (3.7) 

From the mode condition given by Eq. (3.4), we know that the ratio eff m
n λ is equal for 

the initial wavelength λ0 to the shifted wavelength λ0+∆λ, therefore with Eq. (3.7) we can 

write 

( )00

0 0

.

eff effeff
g Sig

Si

dn dndn
n nn

d dnd
λ λλ

λλ
λ λ λ

+ + ∆ + ∆+
=

+ ∆
 

(3.8) 

This equation can be solved for the wavelength shift, leading to 

.
effSi

g Si

dnn

n dn

λ

λ

∆∆
=  (3.9) 

For the case where the silicon index change equals the effective index change, this 

equation simplifies to a form shown previously by Gardes et al. [8],  

0

.
eff

g

n

n

λ

λ

∆∆
=  (3.10) 

To summarize Eq. (3.9), the shift in refractive index is determined by three factors: (1) 

the shift in material refractive index; (2) the material and waveguide dispersion and (3) 
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the change in mode profile resulting from a change in material index. The same effect is 

found for temperature dependence of waveguide-based resonant devices [9].  

With Eq. (3.9) we can determine the maximum index shift for the resonators for each 

dose. Through the resonator’s free spectral range, a group index of 4.545 was found at a 

wavelength of 1563 nm. From Figure 3.3 the implantation doses of silicon were 1.25 x 

10
12

 cm
-2

, 7.5 x 10
13

 cm
-2

 and 1.75 x 10
14

 cm
-2

, while the respective resonant shifts were 

∆λ= 0.7 nm, 2.2 nm and 2.9 nm. The implantation regions covered one third of the 

resonator length, resulting in a shift in refractive index of ∆nSi= 0.005, 0.016 and 0.021 

respectively. 

3.1.5 Discussion 

Through ion implantation in add-drop SOI racetrack resonators, the refractive index 

shift and optical loss due to deep-level defects was determined directly in silicon 

waveguides for the first time.  

A shift in the real part of the refractive index of 0.005 was observed for a silicon 

implantation with a dose of 1.25 x 10
12 

cm
-2

. The Soref relations [10] indicate that a 

concentration of 3 x 10
18

 cm
-3

 holes, or alternatively 5.9 x 10
18

 cm
-3

 electrons would be 

required to achieve the same shift in index. We can compare this to the concentration of 

defects using a relation found by Foster [5] that describes the vacancy type defect 

concentration CD as 

 
10 0.63(2.79 10 ) ,D AC φ= ×  (3.11) 

where Aφ is the adjusted ion dose, found by multiplying the actual dose by the number of 

vacancies per angstrom per ion obtained with “The stopping range of ions in matter” 

(SRIM) code [11]. For the chosen implantation condition (silicon at 700 keV), a factor of 

0.2 vacancies per angstrom per ion is found with SRIM, resulting in 
174.2 10DC = × cm

-2
.  

 We note that the higher dose of silicon at 1.75 x 10
14

 cm
-2

 only produced an index 

shift four times larger for a dose approximately 100 times greater, indicating that the 
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composition of defects produced is dependent on dose, a result reflected in the 

performance of defect mediated detectors as a function of dose. 

The results are important for future designs of resonant devices in general as defects 

may be used for device modification, or ‘trimming’ after fabrication. A low concentration 

of defects could be introduced and subsequently annealed to alter the real and imaginary 

refractive index of a device. This information is also useful in the design of resonant 

defect-based detectors, information on which constitutes the remainder of this chapter. 

Specifically, understanding the optical loss in the ring allows the designer to choose the 

correct coupling gap while the real part of the refractive index will influence the free 

spectral range and resonance location. 

3.2 High-speed resonant detection via defect states in 

silicon ring resonators 

3.2.1 Overview 

Defect based silicon ring resonator detectors have been previously studied and 

characterized for continuous-wave conditions. Characterization of the detector response at 

high speed has been reported previously only once in a conference proceedings paper [12], 

and this effort provided few details. In this section a defect based SOI waveguide ring 

resonator is described which is found to operate with an open eye diagram at 5 Gbit/s 

with a small signal 3 dB bandwidth of 3.5 GHz at a reverse bias of 15 V. A detailed 

analysis of the results discovered a previously unknown, fundamental limitation of such 

devices under high frequency operation. 

3.2.2 Device fabrication and experimental methods 

The resonators were fabricated via CMC microsystems at CEA-LETI, Grenoble, 

France using 193 nm deep-ultraviolet lithography on SOI wafers with a top silicon 
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thickness of 220 nm and a buried oxide layer of 2 µm. The silicon waveguides were 

created from a 170 nm etch, leaving a slab height of 50 nm. A 1 µm thick oxide layer was 

deposited over the waveguides to isolate them from an Al/Cu metal contact layer. Boron 

and phosphorous ion implantations at a dose of 2 x 10
14

 cm
-2

 formed the electrical doped 

regions of the photodiodes. To allow for absorption in the infrared, inert ion implantation 

was used to create deep-level defects. Boron ions were implanted at an energy of 350 keV 

and a dose of 1 x 10
13

 cm
-2

. Light was coupled on and off the waveguides with shallow 

etch grating couplers designed for the transverse electric (TE) mode at a wavelength of 

1550 nm, with a total device throughput loss of 16 dB. An optical micrograph of the ring 

can be seen in Figure 3.6. 

The photodiodes were incorporated onto 40 µm diameter rings with a waveguide 

width of 500 nm and a coupling gap of 200 nm. The quality factor was measured to be 

approximately 10,000 and the free spectral range was 4.98 ± 0.02 nm. The photodiode 

makes up approximately 2/3 of the ring circumference (extending beyond the via visible 

in Figure 3.6) and does not overlap the coupling region. The remaining portion of the ring 

is placed beneath a resistive heater, formed with a narrow strip of metal. This heater can 

be used to thermally tune the resonance wavelength if necessary. 

 

Figure 3.6 | An optical micrograph of a ring resonator detector with a 40 µm 

diameter. 
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shows a current-voltage (IV) plot of the device. The dark current is 0.2 nA at a reverse 

bias of 5 V. 

 

Figure 3.8 | Optical transmission and photodiode current as a function of 

wavelength for the 40 µm diameter ring resonator. 

 

Figure 3.9 | Photodiode current as a function of wavelength for a 5 V reverse bias, 

and the current – voltage characteristic for dark and illuminated conditions with an 

estimated waveguide coupled power of 110 µW. 

The devices show excellent sensitivity to low optical power levels. A photocurrent 

spectra is shown in Figure 3.10 for a 40 µm diameter ring detector. The tunable laser 

output power was set to 0 dBm, and the built-in attenuator was used to reduce the power 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

78 

 

by 50 dB, resulting in an estimated 2 nW of waveguide coupler power. The detector 

produced 40 nA of photocurrent on resonance, giving an internal responsivity of 20 A/W.  

 

Figure 3.10 | Transmission and photocurrent spectra from a ring resonator with -50 

dBm launch power. The ring diameter is 40 µm and the photodiode was reverse 

biased at 30 V. 

3.2.5 High-speed measurement results 

In Figure 3.11a the normalized small signal frequency response is plotted for reverse 

bias voltages of 5, 10 and 15 V. A 3.5 GHz 3 dB bandwidth is seen at a reverse bias 

voltage of 15 V. A 5 Gbit/s eye diagram is shown in Figure 3.11b. 
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Figure 3.11 | The normalized frequency response for three different bias voltages of 

the ring resonator based detector. (B) A 5 Gbit/s eye diagram. 

Although the devices indicate suitability for detection at the modest bandwidth of 3.5 

GHz, a higher operational bandwidth might be expected. There are many possible factors 

influencing the speed of the devices. In order to examine the bandwidth limitation the 

influence of the experimental setup was first determined. The setup’s high-speed 

capability was verified by measuring other (calibration) devices which achieved higher 

operational speeds. Therefore if there is some significant degradation of the response 

from the setup then it should not be evident at the speed of this ring detector. 

As for the ring detector itself, the first potential limit on the operation speed examined 

was the photon lifetime within the ring. As described in chapter 2, the Q of a resonator 

describes the ratio between the energy stored (circulating photons) and the rate of energy 

lost (photon loss). The higher the Q, the longer photons will remain in the resonator. If 

the photon lifetime approaches that of the desired signalling rate, then the switching 

functionality of the resonator would be diminished. This is quantified by Eq. (3.12), 

which follows from chapter 2 section 2.4.5, which describes the operational bandwidth 

for a given Q and excitation wavelength. The measured device had a Q of approximately 

10,000 at 1565 nm, imposing a limitation of 
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This result is much higher than the measured bandwidth and therefore will have a limited 

effect on the total operation speed. 

Another limit in operational speed which must be considered (in common with all 

photodetector structures) is the resistance-capacitance (RC) limit. The capacitance of the 

photodiode was measured using a Boonton 7200 capacitance meter. Since the ring 

photodiode is very small and near the limit of the Boonton, similar devices longer in 

length were measured and the capacitance of the ring photodiode was obtained from 

extrapolation to be 250 ±10 fF. With a 50 Ω load resistance assumed (neglecting the 

resistance contribution of the doped silicon slab region) we can calculate the RC limited 3 

dB bandwidth: 

 
1

12 ,
2

RCv GHz
RCπ

= =  (3.13) 

and clearly this is not the primary limiting factor. Further confirmation of this conclusion 

was obtained from measurements of straight (non-resonant) waveguide detectors sharing 

the same chip area. These straight detectors were significantly longer than the 

circumference of the resonant photodiodes, and in fact showed better high-speed 

performance. 

The final, classical limiting effect on the operation of a photodiode which is 

considered here is the transit time of the generated charge carriers, associated with their 

velocity. At a reverse bias of 15 V, if we assume a fully depleted junction width of 1.5 

µm and thermal saturation velocity is reached, ( 
71 10satv cm s= × ), then the maximum 

carrier transit time is on the order of 15 ps. This is clearly not the source of the bandwidth 

limit as the rise and fall times in Figure 3.11 are approximately 150 ps. Although the 

small signal frequency response does show a dependence on voltage up to 15 V, further 

increases in bias voltage did not alleviate this limitation suggesting the saturation velocity 

was reached. 
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Upon further consideration and discussion, it was suggested that a possible source of 

the bandwidth limitation is operational instability. The small signal response of 3.5 GHz 

would typically result in a ‘cleaner’ eye diagram at 5 Gbit/s. In fact, in chapter 4 of this 

thesis, non resonant detectors of the same construction show a similar small frequency 

response but a much improved eye diagram. This discrepancy may be explained by the 

two measurement methods. With a small signal network analyzer measurement, steady 

state conditions are approximated and large fluctuations in carrier concentration are not 

present. In contrast, a bit pattern measurement introduces large fluctuations in carrier 

concentration which can lead to resonance instability. This is explored further in the next 

section. 

3.3 High-speed resonant detection via defect states in 

silicon disk resonators 

3.3.1 Overview 

In addition to the ring resonators of the previous section, microdisk p-i-n 

photodetectors were also fabricated and characterized at high speed. The devices are 

similar in construction to ring resonators whereby they are monolithic silicon devices 

which use a defect enhanced p-i-n photodetector incorporated onto a microdisk. The 

microdisk structure employed is a simple silicon pedestal, in essence it is a ring resonator 

where the centre of the ring remains unetched. Without the inner edge of a waveguide to 

confine light the optical modes differ from a ring with such a microdisk exhibiting 

‘whispering gallery’ modes [13]. 

3.3.2 Fabrication and device details 

The devices shared the same fabrication and characterization methods as the ring 

resonators in section 3.2. The disks themselves were created with diameters of 10 or 20 

µm, with bus waveguide widths of 350 nm and coupling gaps of 180 nm. The photodiode 



Ph.D. Thesis

 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

3.3.3 Continuous

devices. In 

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that sho

wide

of the disk and thus nearer to the heavily doped 

the

the fundamental mode.

Ph.D. Thesis

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

3.3.3 Continuous

The microdisks were characterized with a tunable laser in the same manner as the ring 

devices. In 

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that sho

wide

of the disk and thus nearer to the heavily doped 

the power build

the fundamental mode.

Ph.D. Thesis

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

3.3.3 Continuous

The microdisks were characterized with a tunable laser in the same manner as the ring 

devices. In 

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that sho

wider linewidth. These ar

of the disk and thus nearer to the heavily doped 

power build

the fundamental mode.

Ph.D. Thesis

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

Figure 3.12 |

diameter) 

3.3.3 Continuous

The microdisks were characterized with a tunable laser in the same manner as the ring 

devices. In 

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that sho

linewidth. These ar

of the disk and thus nearer to the heavily doped 

power build

the fundamental mode.

Ph.D. Thesis              

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

Figure 3.12 |

diameter) 

3.3.3 Continuous

The microdisks were characterized with a tunable laser in the same manner as the ring 

devices. In Figure 3.13

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that sho

linewidth. These ar

of the disk and thus nearer to the heavily doped 

power build

the fundamental mode.

              

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter dis

shows an optical micrograph of the detector and a schematic diagram of the cross section.

Figure 3.12 |

diameter) 

3.3.3 Continuous

The microdisks were characterized with a tunable laser in the same manner as the ring 

Figure 3.13

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

modes that show reduced

linewidth. These ar

of the disk and thus nearer to the heavily doped 

power build-

the fundamental mode.

              

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

µm diameter disk, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

Figure 3.12 |

diameter) and a schematic diagram of the 10 µm dia

3.3.3 Continuous-wave

The microdisks were characterized with a tunable laser in the same manner as the ring 

Figure 3.13

µm diameter disk. 

each showing a significantly different quality factor and photocurrent response. 

w reduced

linewidth. These ar

of the disk and thus nearer to the heavily doped 

-up 

the fundamental mode.

              Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

Figure 3.12 | An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

wave

The microdisks were characterized with a tunable laser in the same manner as the ring 

Figure 3.13

µm diameter disk. There are three

each showing a significantly different quality factor and photocurrent response. 

w reduced

linewidth. These ar

of the disk and thus nearer to the heavily doped 

up is 

the fundamental mode.

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

wave characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

Figure 3.13 optical transmission and photocurrent spectra are shown for a 10 

There are three

each showing a significantly different quality factor and photocurrent response. 

w reduced

linewidth. These ar

of the disk and thus nearer to the heavily doped 

 reduced and thus the photocurrent response is much lower than 

the fundamental mode. 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

There are three

each showing a significantly different quality factor and photocurrent response. 

w reduced photocurrent also show higher optical loss as indicated by the 

linewidth. These are likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

There are three

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

There are three

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

There are three optical 

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

optical 

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

characterization 

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

optical 

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

82

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

 

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

optical modes observed

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

82 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

modes observed

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm dia

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

modes observed

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

of the disk and thus nearer to the heavily doped p 

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

and a schematic diagram of the 10 µm diameter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

modes observed

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes

 region. Due to the high

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

modes observed

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

e likely the higher order modes 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

modes observed in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

 which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Jason Ackert                  McMaster University – 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

 Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk.

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the high

reduced and thus the photocurrent response is much lower than 

Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

k, and 2 µm inside the disk edge for the 20 µm diameter disk. 

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

region. Due to the higher optical loss 

reduced and thus the photocurrent response is much lower than 

Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

 Figure 3.12 

shows an optical micrograph of the detector and a schematic diagram of the cross section.

An optical micrograph of microdisk photodetectors (10 and 20 µm 

meter microdisk (not to scale).

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

er optical loss 

reduced and thus the photocurrent response is much lower than 

Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

Figure 3.12 

shows an optical micrograph of the detector and a schematic diagram of the cross section.

meter microdisk (not to scale). 

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

each showing a significantly different quality factor and photocurrent response. The two 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

er optical loss 

reduced and thus the photocurrent response is much lower than 

Engineering Physics

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

Figure 3.12 

shows an optical micrograph of the detector and a schematic diagram of the cross section.

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum

The two 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

er optical loss 

reduced and thus the photocurrent response is much lower than for 

Engineering Physics 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

Figure 3.12 

shows an optical micrograph of the detector and a schematic diagram of the cross section. 

 

 

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

in the transmission spectrum, 

The two 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

er optical loss 

for 

 

occupied one half of the microdisk circumference. Phosphorous doping was 500 nm from 

the outside of the disk, while the boron doping was 1.5 µm inside the disk edge for the 10 

Figure 3.12 

 

 

 

The microdisks were characterized with a tunable laser in the same manner as the ring 

optical transmission and photocurrent spectra are shown for a 10 

, 

The two 

photocurrent also show higher optical loss as indicated by the 

which exist closer to the centre 

er optical loss 

for 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

83 

 

 
Figure 3.13 | Optical power transmitted and photocurrent as a function of 

wavelength for a 10 µm diameter disk. 

On the chip were ‘control’ microdisks which were masked during the post-fabrication 

ion implantation step. These disks still exhibit measurable photocurrent, and not 

surprisingly have a much higher Q than those with defects. In Figure 3.14 a 20 µm 

diameter disk is shown that does not have defects. It has a linewidth of 12 pm and a Q of 

131,000 for the resonance at 1572.52 nm. The Q obtained from these microdisks is very 

high compared to ring resonators, due to the lack of an inner sidewall. This in turn limits 

optical loss through scattering and surface-state absorption. 
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dissipated power remains constant. This encoding reduces the data rate, but can remedy 

problems associated with thermal loading.  

3.3.5 Frequency response 

The microdisk frequency response was characterized with the same experimental 

setup used for the microring resonators described earlier in this chapter. The normalized 

small signal frequency response is shown in Figure 3.17.a. At resonance there is a 3 dB 

bandwidth of approximately 4 GHz, similar to the ring resonator devices in the previous 

section. However with the laser moved 100 pm off-resonance the frequency response is 

increased to approximately 7 GHz. 

An eye pattern of the disk photodiode was also recorded. Figure 3.17.b shows a 10 

Gbit/s eye diagram for a 20 µm diameter disk with a reverse bias of 15 V. This result was 

recorded off-resonance and is consistent with the 7 GHz small signal bandwidth result.  

 

 

Figure 3.17 | High-speed operation of a 20 µm diameter microdisk photodetector at 

15 V reverse bias. (A)The small signal frequency response, the 3 dB bandwidth is 

reduced from 7 GHz to 3 GHz on resonance. (B) A 10 Gbit/s eye diagram of the 

microdisk operating off resonance with a reverse bias of 15 V.  

In Figure 3.18 bit patterns for a 20 µm diameter microdisk are shown for various 

wavelength displacements from resonance. When off-resonance the devices are ‘well 
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behaved’, with the bit pattern resembling a square wave, as seen in the first frame at a 

wavelength of 1572.719 nm. At this point the bit pattern corresponds to the eye diagram 

in Figure 3.17.b; it is noisy due to the low optical power but remains open. As the 

wavelength approaches resonance the behaviour is no longer uniform, consistent with 

power buildup during consecutive ‘on’ states. Examining the pattern at a wavelength of 

1572.889 nm, a relatively clean bit-rate pattern is seen up until the centre division of the 

plot, when several consecutive ‘on’ states occur and the power loading nearly doubles. In 

the last frame, 1573.011 nm, which is closest to resonance, the signal quality is degraded 

for the entire bit train. In this case the varying levels of the on-off states results in a closed 

eye diagram. 

 

Figure 3.18 | 5 Gbit/s bit patterns from a 20 µm diameter microdisk detector for 

various wavelengths near resonance. The device was not stable on resonance, but 

showed an open eye off resonance. The timescale is 2 ns/division while the vertical 

scale is 30 mV/division.  

The microdisk thus is displaying a power dependent instability, the successive ‘on’ states 

pose a problem, and show a relatively fast power buildup on a scale less than 10 ns. 

We can consider the photon lifetime of this resonance, which is 27 pm and 

corresponds to a Q of approximately 58,000. The resulting photon lifetime is given by 
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These values are consistent with the ‘on resonance’ small signal bandwidth result in 

Figure 3.16 and the fall time seen in Figure 3.17. The resonator is being limited by photon 

lifetime, but the large fluctuation in power is a separate issue. 

Temperature instability is a potential issue when operating on resonance as greater 

power absorption would result in a higher temperature, inducing a resonance shift to 

higher wavelengths. Yet in this case the laser is operating at a wavelength less than 

resonance, therefore a thermal red-shift would increase the laser’s relative offset from the 

resonance peak. This increase in the laser offset would reduce the optical power coupled 

into the resonator, which is contrary to what is observed from Figure 3.18 where repeated 

‘on’ states result in greater power. Additionally, the timescale of this effect is on the order 

of nanoseconds, far too short for typical thermal events on a 20 µm diameter device. 

3.3.6 Carrier concentration modulation as a cause of instability 

The presence of free carriers in a silicon waveguide impacts the refractive index [10]. 

During operation the number of carriers is fluctuating as light enters the resonator, 

photons are absorbed, and free carriers are generated. The changing carrier concentration 

could shift the resonance position, altering the amount of light present in the resonator.  

We consider a critically coupled ring resonator for simplicity. In this case, all loss is 

assumed to occur within the ring and therefore this represents the on resonance case after 

the ring has undergone the maximum shift due to carrier generation. Scattering losses are 

much lower than loss due to absorption and will be ignored. We will assume that every 

absorbed photon generates an electron-hole pair, but ignore effects due to avalanche 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

89 

 

carrier multiplication. Given an incident power absorbed Pi, the generation rate of 

electron-hole pairs is then 

 ,i
EHP

wg phot

P

V E
ρ =  

(3.16) 

where Vwg is the waveguide volume (cross-sectional area x ring circumference) and Ephot 

is the photon energy in Joules. Carriers are swept out of the ring due to the electric field, 

with an average lifetime τavg given by the time needed to travel half the junction width: 
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where vsat is the saturation velocity 1 x 10
7
 cm/s and W is the junction width. The steady 

state concentration of electrons is reached on timescales much longer than the average 

lifetime. With τavg ≈10 ps, and a bit pattern of 5 Gbit/s, an ‘on’ bit would be 200 ps long 

and the carrier concentration would approach the steady state value, where the production 

rate of carriers is equal to the rate at which they are removed. The carrier concentration is 

then 
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From the Soref relations [10] we can calculate the refractive index shift 
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and using Eq. (3.9) the refractive index shift of the silicon can be converted to a shift in 

the resonance wavelength: 

.
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The resonance blue-shift is plotted as a function of the optical power (in the bus 

waveguide) in Figure 3.19, for the case of a 10 µm radius ring resonator with a 
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waveguide width of 500 nm and a height of 220 nm with a 50 nm slab. This example 

assumes that the ring is critically coupled and absorption losses dominate scattering loss. 

In this situation no optical power exits down the bus waveguide and all absorption 

generates free carriers within the ring waveguide. 

 

Figure 3.19 | A model of the blue-shift versus optical power in the bus waveguide for 

a a 10 um radius critically coupled ring resonator. The wavelength is 1550 nm and 

the p-n junction width is 1.5 µm.  

Such a wavelength shift is detrimental to detector operation as it would introduce 

variation in the sensitivity of the detector. This effect was not observable with 

continuous-wave measurements. This may be due to a counteracting thermal shift which 

masks the blue-shift during continuous-wave measurements. This effect is evident at 

high-speed operation due to the difference in time constant for the thermo-optic and free 

carrier effects in silicon. We thus describe the high-speed modification of the resonance 

point through: 
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 (3.21) 
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3.3.7 The shift in the imaginary index 

As we have seen, the modulation of the real part of the refractive index due to the 

presence of carriers can negatively impact resonant detection. The imaginary part of the 

refractive index will also change, and any change of the loss within a resonator will 

change the build-up factor of the device. The build-up factor influences the responsivity, 

so this is an important consideration. 

Following the example describe above, we can use the Soref relation [10] which 

describes the change in optical absorption due to the presence of free carriers,  

 
18 18[8.5 10 6 10 ].e hN Nα − −∆ = × ∆ + × ∆  (3.22) 

An optical power level of 1 mW within the bus waveguide of a critically coupled all-pass 

resonator would lead to an increase in α of 0.12 cm
-1

 in the silicon. Typical intrinsic 

waveguide loss close to 3 dB/cm, or α = 0.69 cm
-1

, and resonant detectors in this chapter 

show loss several times higher than this. The impact of a changing loss on the build-up 

factor for an all-pass ring resonator is given by the equation 
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where ‘a’ is the single round trip amplitude transmission, given by 
La e α−= . On 

resonance, we can plot this relation for different values of the transmission coefficient ‘t’, 

shown in Figure 3.20. For a 10 µm radius ring an increase in α of 0.12 would reduce the 

value of ‘a’ by 0.01. This may have a significant impact in the limiting case of t = 0.99. 

However the loss of an implanted ring is several times higher than intrinsic waveguide 

loss (as seen from the earlier passive resonator results), meaning that ‘a’ values close to 1 

(and ‘t’ values) are generally not achieved in this type of resonant detector. This rules out 

the steepest part of the curve in Figure 3.20, ensuring a small reduction in the build-up 

factor due to carrier concentration changes. As a reminder, this calculation assumes bias 
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sufficient for carrier saturation velocity. In the case of no bias the resulting free carrier 

concentration would be much higher. 

 

Figure 3.20 | The build-up factor of a ring resonator versus the attenuation 

coefficient. 

Beyond the modifications due to free carrier concentration, other phenomenon could 

influence the build-up factor. These include two-photon absorption, and potentially the 

saturation of lattice defects.  

3.4 Summary 

This chapter introduced a study of defects in SOI waveguide resonators, followed by 

characterization of microring and microdisk resonator detectors. 

The study of ion implantation in SOI waveguide resonators determined the refractive 

index shift associated with the introduction of lattice defects. The resulting shift was 

larger for defects than an equivalent concentration of free carriers. This process is a 

potential method for post-fabrication ‘trimming’ of resonant devices. Defects can be 

easily incorporated through ion implantation and removed via thermal annealing.  
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The frequency response of microring resonators were characterized. Both the small 

signal response and large signal response was recorded. The results showed lower 

bandwidth than expected. Possible limitations included: the RC limit, photon lifetime 

limit, carrier transit time and defect lifetime. However all of these considerations can be 

eliminated as similar defect based detectors have shown stable operation at higher speeds 

as results in chapter 4 of this thesis will demonstrate. The microring is thought to be 

limited by resonance instability. 

The bandwidth limitation was explored in more detail with results from a microdisk 

photodetector. The microdisks possess a higher Q than the microring and therefore 

demonstrate greater resonance instabilities. Based on the observations of the microdisk, a 

simple model was suggested for carrier induced refractive index shift and subsequent 

instability in resonant detectors. The model shows that a significant resonance shift can 

accompany absorption, thus impacting the photocurrent response. The changing refractive 

index poses a challenge for a resonant detector operating at high power. Due to the 

extreme sensitivity of the devices they are likely not suitable for high-speed 

photodetection where dynamic operating points are required.  

Low power detection is a potential niche for these detectors as the issues of resonance 

stability are avoided and the ring characteristics can be exploited as a highly responsive 

low power detector in sensing applications. The resonant structure provides a build-up of 

optical power within the ring, and the photodiode itself can be greatly shortened thus 

reducing the dark current.  

In summary, the resonant detectors presented in this chapter have several strengths: a 

compact footprint, low dark current, enhanced responsivity on resonance and optical filter 

functionality. These benefits mean there is potential use for resonant detectors in lower 

power sensing applications, such as spectroscopy or as a channel monitor combined with 

an optical filter. However they are less suitable for high-speed data transfer as they suffer 

from instabilities. 
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Chapter 4     Avalanche High-Speed 

Photodetectors  

Overview 

In the previous chapter the limitations of resonant enhanced detectors were discussed. 

The dominant result was that resonant instabilities interfere with high-speed operation. 

This chapter will describe non-resonant detectors operating in the avalanche regime with 

results presented for both high-speed and continuous-wave operation. The detector design 

has similarities with the ring resonator detectors in chapter 3; that is a p-i-n junction on a 

sub-micron silicon-on-insulator (SOI) rib waveguide with ion implantation of the intrinsic 

region to introduce lattice defects for enhanced absorption.  

There are multiple design iterations described in this thesis, each fabricated through 

multi-project wafers, facilitated by CMC Microsystems. This approach offered excellent 

fabrication quality and volume which was not achievable otherwise. However the 

relatively long design and fabrication cycle (> 6 months) limited the total number of 

fabrication runs over the course of the PhD work. Subsequent experimental results will be 

presented in chronological order with the focus being operational speed. Reports on 

continuous-wave (or steady-state) characterization will not be repeated for each device set 

because the results are not wholly different between fabrication runs. 

The first section of this chapter will discuss devices which were fabricated at CEA-

LETI in Grenoble, France, followed by devices fabricated at IME A*STAR in Singapore. 

The results reported in this chapter have formed the basis of the research journal 

publication: 

Ackert, J.J. et al. 10 Gbps silicon waveguide-integrated infrared avalanche photodiode. 

Opt. Express 21(17), 19530-19537 (2013). 
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4.1 LETI devices 

4.1.1 Design and fabrication 

Detectors were fabricated at CEA-LETI with their 193 nm deep-ultraviolet 

lithography process on SOI wafers with a top silicon thickness of 220 nm and a buried 

oxide layer thickness of 2 µm. The silicon waveguides were created from a 170 nm etch, 

leaving a silicon slab height of 50 nm. A 1 µm thick oxide layer was deposited over the 

waveguides to isolate them from an Al/Cu metal contact layer. Boron and phosphorous 

ion implantations at a dose of 2 x 10
14

 cm
-2

 formed the diodes. To allow for absorption in 

the infrared, ion implantation was used to create deep-level defects. A variety of 

implantation conditions and annealing temperatures were performed via post-fabrication 

implantation. In these cases, photolithography at McMaster was used to create a 

photoresist mask prior to selective ion implantation.  

The photodiodes were incorporated onto waveguides with a width of 500 nm which 

had doped regions situated 500 nm from the waveguide sidewall. The detector lengths 

ranged from 200 to 800 µm. Figure 4.1 is a schematic cross section of the detector. 

Shallow-etch grating couplers were designed to facilitate Transverse-Electric mode 

coupling at a wavelength of 1550 nm. Such couplers have been previously characterized 

in the results of chapter 3 and provide a total loss from fiber to fiber of 15 dB. 
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Figure 4.3 | The photodiode current as a function of launched power for a 200 µm 

long photodiode (LETI) with a reverse bias voltage of 40 V. Upon subtracting the 

dark current of 3.5 µA, linear operation is seen from -30 to 3.5 dBm. An estimated 7 

dBm is lost to coupling. 

4.1.3 Temperature response  

The variation in performance as a function of ambient temperature for photodetectors 

(and indeed any integrated device) dictates the operational application. In the case of the 

current devices this is further complicated because the responsivity of defect mediated 

detectors is dependent on a relatively low post-process annealing temperature. The 

defects introduced from ion implantation can be removed at temperatures less than 300 

°C, as described in the previous chapter of this thesis. 

The detectors were exposed to temperatures up to 275 °C and the photocurrent 

response was measured together with the change in optical power transmitted. Figure 4.4 

shows the photocurrent and optical loss versus temperature for an 800 µm long device at 

40 V reverse bias. The annealing steps were done in atmospheric conditions for 5 minutes 

at each temperature. In between annealing steps the samples were characterized. The 

necessity to remove the chip from the optical setup for annealing at each step introduced 

random alignment error. However a clear trend is seen: as the temperature increases the 

photocurrent response increases. Above 300 °C a drop in response was observed (not 
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shown); thus the experiment did provide a guide to an optimal post-process annealing. It 

is noteworthy that previous devices have had defect states which have annealed out at 

lower temperatures. This particular sample received a silicon implant with an energy of 1 

MeV and a dosage of 1.4 x 10
12

 cm
-2

. 

 

Figure 4.4 | The annealing response of an 800 µm LETI detector at 40 V reverse bias. 

The photocurrent and transmitted optical power is represented after various 

annealing temperatures. Each annealing step was 5 minutes in air at the specified 

temperature. The implantation used silicon at an energy of 1 MeV and a dosage of 

1.4 x 1012 cm-2. 

The temperature limitations imposed by defect annealing will impact the fabrication 

of a larger photonic integrated circuit using this detector. The consequence is that the ion 

implantation step which introduces the lattice defects must be done after dopant activation 

and metallization processes, as these processes require temperatures in excess of 400 °C. 

The temperature response of an operating device was also investigated using a 

temperature controller and a thermoelectric cooler mounted within the sample stage. The 

temperature was adjusted from 20 to 70 °C, the upper limit achievable with this 

thermoelectric cooler, and the current-voltage characteristic was measured. Figure 4.5 

shows the photocurrent response with temperature for a reverse bias of 35 V and 10 V. 
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Figure 4.8 | A comparison of 10 Gbit/s eye diagrams between an 800 µm and a 200 

µm long detector (LETI), with otherwise identical configuration. The timescale is 30 

ps/division. The vertical scale is 3.7 mV/div for the plot 200 µm device, and 8.2 

mV/div for the 800 µm device. 

Small signal measurements were also carried out with the LNA. Figure 4.9 shows the 

normalized response versus frequency for three device lengths, 200, 600 and 800 µm. The 

result shows again that the performance is similar. In fact the 200 µm device shows the 

smallest bandwidth but this is attributed to measurement difficulties for this detector as 

opposed to the true response. 
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Figure 4.12 | The capacitance of the LETI photodetectors for multiple device lengths. 

We can then calculate the RC limited bandwidth which is given by 

 
3

1
.

2
dBf

RCπ
=  (4.1) 

The resistance is not directly measured, but if we assume a negligible resistance from the 

doped silicon and take the load resistance value of 50 Ω, then the limitation imposed by a 

capacitance of 1300 fF for the 800 µm long device is 2.44 GHz. This is consistent with 

the observed results from Figure 4.9, and therefore the likely speed limitation.  

4.2 Devices fabricated at IME*ASTAR (Singapore) 

Overview 

Following the promising results from the LETI detectors, a fabrication run at IME 

A*STAR Singapore included both resonant and non-resonant detectors. While the 

resonant photodiodes did not yield significantly different results as those reported in 

chapter 3, improvements were seen in the non-resonant devices compared to those 
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The eye diagram of the device can be seen in Figure 4.17. Shown on the left is the 

case without the TIA in use. Shown on the right is the device with the TIA (as required 

for the BER measurement). With the use of the TIA the eye diagram appears much more 

open or square. The TIA contains a limiting amplifier, thus changing the relative shape of 

the eye by bounding the output voltage.  

 

Figure 4.17 | Eye diagrams for a 1 mm long detector (IME#1). Left – The 

unamplified signal. Right- The signal with the transimpedance amplifier used. The 

voltage amplitude scale with the TIA was 70 mV/div, without the TIA it is 8.2 

mV/div. The time scale is 30 ps. 

A BER measurement was performed for a 1 mm long detector. The results are shown 

in Figure 4.18 for a reverse bias of 25, 30 and 35 V. The BER is shown as a function of 

waveguide coupled average power. This power estimate was based on transmission 

measurements which included the entry coupler, waveguide detector and exit coupler. 

The assumption of equal loss for entry and exit couplers was made. Error-free operation 

is accomplished for all three bias levels, with the required optical power level decreasing 

with increasing bias. At 35 V reverse bias and -10 dBm waveguide coupled power, the 

detector is operating with a bit-error rate better than 1 x 10
-12

. 
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Figure 4.18 | Bit-error rate at 10 Gbit/s versus waveguide coupled power for a 1 mm 

IME #1 device at three levels of reverse bias. 

These are significant results as they demonstrate the low noise potential of the 

detectors into the avalanche regime at a reverse bias of 35 V. For an optical receiver, a 

sensitivity metric is defined by the minimum power at which error-free operation is 

observed. Error-free is often defined with a bit-error rate better than 1 error per terabit 

(BER < 10
-12

). However Forward Error Correction (FEC) methods provide a means for 

data links to accommodate higher bit-error rates and thus function with a lower received 

optical power. The penalty for these error checking schemes is a reduction in data rate, 

called ‘overhead’ [2]. Many fiber optic systems employ a 7% overhead, where a sequence 

of bits is translated into a coded sequence 7% longer than the original. For example, the 

RS(255, 239) code, where 255 coded bits represent 239 original bits, communication with 

a BER less than 10
-12

 requires an original uncoded BER less than 10
-4

. 



Ph.D. Thesis              Jason Ackert                  McMaster University – Engineering Physics 

115 

 

Commercially available avalanche photodiode receivers operate error-free below -20 

dBm, suggesting a performance gap between the current integrated detector and discrete 

III-V semiconductor solutions. The device presented here is not fully optimized and more 

sensitivity may yet be found with different defect concentrations or waveguide 

configurations. Furthermore the TIA used in this case was far from optimal as it was 

externally packaged commercial product and not optimized for the photodiode. The 

bandwidth of the TIA (56 Gbit/s) greatly exceeded the device operation speed, which 

serves to unnecessarily amplify high frequency noise present in the system [3].  

Due to the excellent 10 Gbit/s performance, the detector was subsequently measured 

at higher bit-rates. Figure 4.19 shows a 14 and 20 Gbit/s eye diagram, both taken using 

the TIA. The 20 Gbit/s eye is significantly degraded, although the 14 Gbit/s eye appears 

largely open. 

 

Figure 4.19 | Eye diagrams for a 1 mm long photodiode (IME#1) reverse biased at 35 

V. A) 14 Gbit/s B) 20 Gbit/s.  

These results lead us into the possible bandwidth limitations of the device. It is clear 

the performance was increased over the LETI devices described above. This improvement 

is attributed to a reduced RC time constant. Capacitance measurements showed an 

improvement with 1 mm devices showing less than 300 fF, a factor of 4 reduction 

compared to the LETI devices. Since the detector was of similar design, with regard to 

the p-i-n junction and defect concentration, this lowered capacitance is potentially due to 
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the metal contact design as the metal in the LETI device covered approximately 4 X more 

surface area.  

With this lowered capacitance much faster device operation might have been expected. 

Multiple samples with varying implantation dose, and resulting defect concentration, 

were measured but no discernible operation speed difference was observed. It is likely 

that the devices were limited by the RC time constant, but is this due to an increased 

resistance rather than capacitance?  

A fabrication issue with the metal contacting the silicon within the may have led to 

higher than expected resistance. The oxide etch which established the metal vias was too 

deep and extended through the thin silicon slab. A correctly performed etch would stop at 

the silicon layer, allowing the deposited metal to contact a wide area of silicon. In this 

case, the wide contact area was etched through, leaving the edge of the silicon slab the 

only contact area. Thus the total contact area of the metal via with the silicon was much 

lower than anticipated, potentially increasing this contact resistance to values which 

would limit the device operation speed. Typical metal-silicon contact resistance values 

from the foundry cannot be disclosed but with this low contact area such contact 

resistance could be significant relative to the load resistance of 50 Ω. Figure 4.20 shows 

SEM images of device cross-sections taken with a focused ion beam (FIB) tool, the metal 

layer can be seen to extend below the silicon slab layer. 
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Figure 4.21 | An SEM image of a waveguide directional coupler from a ring 

resonator (IME#1). 

If these potential sources of increased resistance were large then it would be expected 

to be observed in the forward bias current of the photodiode yet comparisons of the IME 

#1 device show little difference from other samples. This raises two possibilities which 

are not accounted for. First, the over-etch shown in Figure 4.20 may not have been 

uniform across the wafer and secondly, inconsistency in the high-speed characterization 

setup. The experimental setup was not identical for each device run, and devices from 

each run were not directly compared simultaneously. These concerns are less relevant 

considering the results presented later in this thesis. 

4.3 Summary   

This chapter presented experimental results for two sets of avalanche photodiode 

devices; fabricated at LETI (Grenoble, France) and IME A*STAR (Singapore). These 

devices make use of an SOI waveguide using a horizontal p-i-n detector geometry and ion 

implantation to introduce lattice defects which enhance absorption.  
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Both detectors demonstrated similar continuous-wave results, with responsivity of up 

to 5 A/W, and sensitivity to temperature. The photoresponse followed previously 

observed trends of defect concentration [6] where temperature exposure above 300 °C 

permanently reduces detector effectiveness. Measurements of the devices operating up to 

70 °C demonstrated that the photocurrent is enhanced with increased temperature, which 

is important for communications applications. 

The photodiodes were characterized at high speed, with error-free operation at 10 

Gbit/s achieved for the IME devices. Bit-error rate measurements were not carried out for 

the LETI devices, but from eye diagram measurements it is clear the IME #1 devices 

showed higher performance. Comparisons of the high-speed results indicate that the 

bandwidth limitations are not related to the lattice defects, carrier transit time or 

avalanche multiplication. Both devices are limited by their RC time constant, with the 

LETI devices showing a relatively high capacitance and the IME #1 devices potentially 

suffering from a high resistance due to a fabrication error. 

Regardless of the difficulties, the benchmark of 10 Gbit/s is impressive for a silicon 

photodiode and the RC limitations indicate that better performance is achievable, as seen 

later in this thesis. The next chapter will present results from a second fabrication run at 

IME A*STAR. 
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Chapter 5     Photodetection with Si/SiO2 

Surface States 

Overview 

Following the successful testing of the IME #1 devices there was an opportunity for a 

second fabrication run at IME A*STAR. This IME #2 layout was to have a focus on non-

resonant detectors, of which two variations will be presented in this chapter: 

1) A photodetector which does not use an ion implantation step to create lattice defects, 

but operates via optical absorption using surface defects along the waveguide edge. At the 

interface of the silicon and the silicon dioxide cladding, defects necessarily arise due to 

unsatisfied bonds. These surface-state defects were first demonstrated for photodetection 

by Baehr-Jones et al. [1] with a silicon waveguide contacted with metal through narrow 

silicon wings. While the work demonstrated the concept it was far from an optimized 

structure. This thesis reports improvement over that first result with modifications to the 

device geometry. This involves a p-i-n junction implemented on a rib waveguide, and a 

selective oxide etch over the waveguide region in order to leave the surface unpassivated. 

This oxide etch step is shown to increase the response of the photodetector, while the p-i-

n junction enables high-speed operation at low bias; 

2) Avalanche photodetectors similar to those described in the previous chapter that 

employed ion implantation to create lattice defects. These devices allow for a comparison 

of detectors with and without bulk lattice defects (i.e. detectors where bulk defects are 

present and those where surface-states alone mediate photodetection). The high-speed 

operation is not significantly degraded due to the presence of bulk lattice defects. 

The results reported in this chapter have formed the basis of the following research 

journal publication. 
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Ackert, J.J. et al. Monolithic silicon waveguide photodiode utilizing surface-state 

absorption and operating at 10 Gb/s. Opt. Express 22(9),10710-10715 (2014). 

5.1 Fabrication & Measurement 

The devices were fabricated at IME A*STAR using their 248 nm UV lithography 

platform. The SOI rib waveguides were nominally 500 nm wide and 220 nm in height 

over a 2 µm thick buried oxide. The remaining silicon slab region was 90 nm thick. Light 

was coupled to the waveguides with grating couplers defined by a 70 nm deep etch. Ion 

implantation of boron and phosphorous formed doped regions of a p-i-n junction, with a 

target concentration for each dopant of 8 x 10
19 

cm
-3

. A top oxide layer was deposited and 

subsequently contact vias formed, with contact to the silicon made with aluminium. 

Following the metallization process, a selective oxide etch was carried out above the p-i-n 

region. The oxide was etched in order to expose the silicon surface, leaving it 

unpassivated. In Figure 5.1, scanning electron microscope images can be seen of the 

device. Figure 5.1.a shows a top view of the waveguide and etched region, while Figure 

5.1.b shows a cross section view of a cut made using a focused ion beam tool. 
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5.2.3 High-speed results 

The high-speed response of the surface-state detectors was observed using a 2
31

-1 

PRBS on-off keying signal. An oscilloscope was used to record eye diagrams at 10 Gbit/s 

which are shown in Figure 5.6. In Figure 5.6.a, a 2 mm long detector is shown operating 

at a reverse bias of 10 V, while in Figure 5.6.b the same device is shown operating at a 

reverse bias of 2 V. The rise and fall time is approximately 60 ps, and there is no 

significant change in this value upon increasing the reverse bias voltage. 

 

Figure 5.6 | 10 Gbit/s eye diagrams of a 2 mm long surface-state photodiode. A) 10 V 

reverse bias B) 2 V reverse bias. 

The high-speed operation achieved here exceeds that of the Baehr-Jones device, 

which showed a small-signal bandwidth of 1.7 GHz. The Baehr-Jones device used silicon 

wire waveguides and metal to silicon contacts without the use of doping. Consequently 

the metal contacts were placed several microns away from the waveguide to avoid optical 

absorption, leaving carriers to travel several microns through thin undoped silicon arms 

before extraction. In contrast, the device reported here uses a rib waveguide and p-i-n 

junction, reducing the carrier travel distance to 1 µm (the waveguide width plus the 

doping separation). This structure allows for fast operation with a reverse bias of just 2 V. 

Operating without the need for an external high voltage source, or step-up voltage 

converter would simplify the power design of a photonic chip, or enable integration into a 

low voltage CMOS environment. 
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5.3 Bulk defects versus surface-state defects 

5.3.1 Comparison of continuous-wave results 

We now discuss the merits of the surface-state detector versus a detector utilizing bulk 

defects introduced using ion implantation. Most importantly, these two detectors operate 

optimally in different bias regimes. The bulk defect detectors show a strong avalanche 

effect at high bias, but a small photocurrent at low bias. Comparatively, the surface-state 

detectors show a significantly better response at low bias, but lack high responsivity in 

the avalanche regime. 

In Figure 5.7 the current-voltage characteristics of a surface-state (no bulk defects) 

and avalanche detector (with bulk defects) are compared. The figure provides insight into 

the effect of the bulk defects on the detector. At low bias, significant recombination at 

defect centres reduces the photocurrent, while in the surface-state device carriers can be 

extracted with relatively high efficiency as only the surface acts as a source of 

recombination. At high bias there is a significant increase in photocurrent for the bulk 

defect device, but this effect is not observed in the surface-state device. Upon breakdown 

(not shown in Figure 5.7), the surface-state detector photocurrent trends with the dark 

current and significantly increased responsivity is not observed, while the bulk defect 

devices show avalanche gain well before breakdown, indicating perhaps (and importantly) 

that the defects play a role in the avalanche process itself. 
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Figure 5.8 | A 10 Gbit/s eye diagram for a 1 mm long ion implanted photodiode 

(1000-100) at 15 V reverse bias (IME #2). 

The high-speed operation of the ion implanted and surface-state detector are 

compared using eye diagrams shown in Figure 5.9. The response time of the detectors is 

not greatly different, however the implanted detector does show pattern dependencies. 

Both of the eye diagrams are for 2 mm long detectors, as the shorter length surface-state 

diode did not produce great enough photocurrent to enable measurement.  

 

Figure 5.9 | Eye diagrams of a surface-state detector (-20V bias) and an ion 

implanted detector (-26 V bias). Both are 2 mm long detectors operating at 10 Gbit/s 

(20 ps/division time scale). The surface-state detector was a 500-300 design while the 

implanted detector was 500-400. 
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From the eye diagrams we can see that the surface-state detector is not significantly faster 

than the bulk defect devices, despite the presence of bulk defects and their potential 

effects on the carrier lifetime and mobility.  

5.4 Summary 

This chapter presented results for surface-state detectors and avalanche detectors 

fabricated at IME A*STAR (IME #2 run). 

A surface-state detector at a wavelength of 1530 nm has been demonstrated. The 

detector showed an open eye diagram at 10 Gbit/s with a 2 V reverse bias with a 

responsivity of 0.045 A/W. Optical absorption is due to surface-state defects which show 

an internal quantum efficiency of 30%. No ion implantation step is necessary to create 

surface defects. Instead, an oxide opening etch step was utilized to expose the silicon to 

air which allowed for the growth of native oxide and an increased concentration of 

surface defects. The monolithic silicon structure and ease of fabrication makes this device 

very adaptable for a variety of fabrication process flows. The primary application of this 

device will likely be waveguide power monitoring. 

The avalanche detectors incorporated bulk defects. Operation speed was not enhanced 

over the previous generation of devices, despite the use of a thicker silicon slab to reduce 

resistance and a low measured capacitance. However, comparisons of the high-speed 

operation of the bulk defect and surface-state detectors showed that the presence of 

defects did not significantly impact high-speed operation. 

These detectors are primarily attractive for the ease of fabrication, and consequently 

their implementation into a variety of complex circuits. While surface-state detectors 

offer much less responsivity than the ion implanted avalanche detectors, their low optical 

absorption and high internal quantum efficiency (30%) suggests the primary application 

is power monitoring. This geometry can easily be integrated onto a waveguide providing 

a large advantage over hybrid approaches. 
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It is likely that many improvements can be found to the surface-state detector. As 

previously described, the sensitivity of these detectors depends on the optical 

mode/surface overlap, and waveguide geometry could be changed to maximize this. This 

includes simple dimension changes, but also could involve the use of slot waveguides [3]. 

Another area not explored in this thesis is the effects of alternative surface treatments. 

These devices underwent an oxide etch to the silicon surface, followed by exposure to air 

and the growth of the native oxide. There is no reason to believe that this process resulted 

in the optimal concentration of surface defects. Alternative passivation treatments would 

likely produce different responsivities. 
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Chapter 6     Long Wavelength Detection 

Overview  

This chapter presents measurements of the response of defect mediated avalanche 

detectors to long wavelengths. Thus far this thesis has contained measurements in 

established telecommunication windows around 1550 nm (the so called C and L bands). 

This chapter includes continuous-wave measurements using wavelengths from 1.96 to 2.5 

µm. High-speed operation of the detectors is demonstrated at 1.96 µm, with an open eye 

diagram at 20 Gbit/s representing the highest demonstrated bit-rate in this thesis. The 

results are followed with a comparison to the previous lower speed detectors in this thesis.  

The photodetectors were fabricated as part of a third multi-project wafer facilitated by 

CMC Microsystems at IME A*STAR in Singapore, and will be referred to as IME #3. 

Devices from the LETI, IME #1 and IME #2 runs were not characterized at longer 

wavelengths due to lack of compatibility of the coupling structures. 

A journal article describing these photodetectors has been accepted for publication in 

Nature Photonics.  

6.1 Integrated optics at extended wavelengths 

Optical communications has evolved to use wavelengths around the 1.55 µm region 

due to the availability of low-loss optical fibers and the high utility of the erbium-doped 

fiber amplifier. These innovations have spurred the development of a family of devices 

which operate in this wavelength range. This operating window is largely shared by 

efforts in silicon photonics, as most integrated devices must interface with external 

optical equipment or fiber. 

In the coming decades the data capacity offered by current telecommunications 

technology will not be sufficient to meet demand [1]. High growth in internet data use 
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continues to occur, largely due to the delivery of video over the internet. Large research 

efforts are being focused on technologies which promise increased bandwidth through the 

use of new spectral regions near 2 µm and the use of hollow-core photonic band-gap fiber 

[2]. These fibers are predicted to offer low optical loss in this wavelength region, but 

most importantly they will offer low non-linearity due to the mostly air core. A second 

key technology is the recently developed thulium-doped fiber amplifier, which has a gain 

window from 1.8 to 2.05 µm [3]. This is a broader wavelength range than that achievable 

with erbium doped fibers and therefore many more channels can occupy the same fiber in 

a wavelength-division multiplexing scheme.  

With the increasing appeal of the silicon photonics platform for telecommunications 

the long wavelength regions will become increasingly important for integrated optics. 

Furthermore, there is a myriad of other applications which will demand integrated long 

wavelength components [4]. 

There is a limited availability of photodetectors for this wavelength range which are 

compatible with silicon photonics. Hybrid approaches have been demonstrated using III-

V devices [5], but this solution is limited by the necessity for wafer bonding, making 

waveguide-integrated devices difficult. Germanium on silicon is a common hybrid 

material system used for detection at 1550 nm but has low absorption at longer 

wavelengths. Alloys of germanium-tin have high potential beyond 1550 nm and have 

received much attention in recent years, but there has been limited results thus far [6,7]. 

Graphene is an upcoming optoelectronic material and detection has been demonstrated at 

long wavelengths on silicon waveguides [8] and chemical vapor deposition of graphene 

on silicon could allow for processing at the wafer scale [9]. However the performance of 

demonstrated devices and the sophistication of fabrication techniques at this time leave 

much development work to be done.  

Defect-based detectors have been reported in silicon beyond the telecommunications 

windows. Grote et al. demonstrated 1 Gbit/s operation at a wavelength of 1.9 µm [10], 

and recently Souhan et al. achieved devices with a bandwidth of 1.7 GHz at 2.2 µm [11]. 
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Both of these works relied on the introduction of lattice defects. Detectors that rely on 

deep levels introduced by dopant atoms such as gold have been reported [12], however 

gold is a highly detrimental contaminant in CMOS processing so their device utility for 

silicon photonics is questionable. 

6.2 Fabrication 

The detectors were fabricated at IME A*STAR in Singapore and will be referred to in 

the text as IME #3. The primary goal for this fabrication run was to produce edge-coupled 

devices that could be characterized at wavelengths up to 2.5 µm. The photodiodes 

comprised of p-i-n junctions on SOI waveguides formed with a 90 nm etch. The SOI 

wafer consisted of a top layer of silicon 220 nm in height, and a 2 µm thick buried oxide 

layer. The waveguides were 1 µm in width and boron and phosphorous dopants were 

implanted 300 nm from the waveguide sidewall to minimize optical propagation loss. The 

contacts were formed with a 2 µm thick deposition of aluminum, and were positioned 

several microns away from the waveguide. A schematic cross section of the device is 

shown in Figure 6.1. An oxide etch was done to open an implantation window over the 

intrinsic region of the detector. A boron ion implantation at an energy of 60 keV and a 

dose of 1x10
13 

cm
-2

 introduced lattice defects. In Figure 6.2 SEM images are shown, 

including a cross-section cut obtained with a focused ion beam tool. Further fabrication 

details will be discussed at the end of this chapter, with a comparison to previous devices.  
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6.4 Comparison with previous work described in this 

thesis 

The IME #3 devices represent an impressive increase in operation speed over the 

previous devices presented in this thesis. This result has established that defect lifetimes 

were not imposing operational speed limitations on earlier device iterations, albeit the 

ultimate speed of the detector remains an open question. 

The result raises questions as to why earlier efforts were limited to slower speeds. It is 

useful to compare the fabrication parameters of the devices in detail, which are tabulated 

in Figure 6.11. The design parameters listed (e.g. metal dimensions) were not verified 

after fabrication. The fabrication facilities generally produce devices with dimensions 

within given specification, however fabrication errors are possible as seen with the metal 

process for the IME #1 device. 
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 Fabrication run 

LETI IME #1 IME #2 IME #3 

Error-free bit rate 

(Gbit/s) 

*estimated 

< 6* 10 10* 20* 

Small signal bandwidth 

(GHz) 

2 (800 µm long) 3.25 (1 mm long) No data 15 (200 µm long) 

12.5 (1 mm long) 

Capacitance (fF/mm) 1300 300 230 260 

Silicon slab height (nm) 50 50 90 90 

Implantation window photoresist photoresist Oxide Oxide 

N++ concentration 4E19 4E19 8E19 4E20 

P++ concentration 4E19 4E19 8E19 4E20 

Contact metal Al/Cu Al Al Al 

Contact metal thickness 0.58 2 2 2 (2 step) 

Via (width µm) 3 6 9.8 9 

Via distance from 

waveguide (µm) 

4.75 2.75 8.1 7.9 

Metal coverage per mm of 

length (µm
2
) 

85000 23000 31200 

 

29000 

 

Figure 6.11 | A comparison of fabrication parameters for detectors in four different 

multi-project wafer fabrication runs. 

Examining the capacitance values and metal layout, the LETI devices had increased 

capacitance and significantly different metal design parameters compared to the IME 

devices. The area covered by metal was significantly higher for the LETI device, which 

may be contributing to high parasitic capacitance and lower operation speed.  

The performance difference between the IME #2 and IME #3 devices is harder to 

explain. For the IME devices, dimensions for the metal and vias varied primarily due to 

differing design rules between shuttle runs. For the IME #2 and #3 devices the metal 

parameters are nearly identical and the difference in measured capacitance is not 

significant enough on its own to explain the operation speed difference.  

The designs shared many characteristics, with the primary difference being the p and 

n dopant concentration. It is possible that the IME #2 devices were being limited by 
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diffusion current. If absorption in the doped silicon wings was occurring then 

photocurrent could be generated if excited carriers drift into the depletion region (the 

waveguide). This diffusion current would have a slow time response. The IME #3 devices 

received a significantly higher doping concentration, meaning that excited minority 

carriers in the wings would recombine more rapidly, reducing the contribution of 

diffusion current. However this explanation alone does not account for observation. At 

1550 nm the detectors show little absorption in the dopant (in both waveguide mode 

simulations and measurement). Detectors were measured with dopant up to 500 nm away 

from the waveguide sidewall. Therefore the contribution of diffusion current will be very 

small, and may materialize itself as noise rather than the dominant response. 

As the devices in both cases appear to be limited by the RC time constant, few 

possibilities for the bandwidth disparity remain. The detector layers were extremely 

similar for IME #2 and #3 (with the exception of the coupling structures). The measured 

capacitance of the devices were similar, yet almost a factor of 4 difference in bandwidth 

is seen. Unfortunately resistivity test structures were not present, so determining whether 

the fabrication was to specification of the design is difficult. 

The influence of defect concentration on operation speed requires further 

characterization. The LETI and IME #1 devices were characterized with large variation in 

implant dose, and no observable difference was found. However the potential impact of 

dose may have been concealed by their relatively slow RC time constant. The faster IME 

#3 devices were not characterized with the same degree of variation in defect 

concentrations. The limited variations in dose of the IME #3 detectors did not reveal any 

trends, but it would be premature to suggest there is no time response dependence on dose.  

6.5 Summary 

This chapter has demonstrated a defect mediated silicon avalanche detector operating 

at 20 Gbit/s. The detector is 1 mm long with a responsivity of 0.3 A/W at 2.02 µm and 

has a small signal bandwidth of 12.5 GHz, limited by the RC time constant. 
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This represents the fastest demonstrated operation in this wavelength range for any 

previously reported waveguide-integrated detector, and a significant improvement over 

previous defect mediated silicon detectors in this range. It also represents the fastest large 

signal operation (open eye diagrams) of defect mediated detectors at any wavelength 

range. Previous demonstrations have shown error free operation limited to 10 Gbit/s 

[17,18]. Considering the noise inherent in the experimental setup, this detector is likely to 

achieve error-free operation at 20 Gbit/s. 

The detector has showed sensitivity at wavelengths up to 2.5 µm. A significant drop 

in sensitivity is seen above 2.2 µm which is partly due to the waveguide geometry. 

Efficient detection at these extended wavelengths should be feasible with larger 

waveguides, however this may limit the high-speed performance. 

This detector shares the fabrication procedure of earlier devices in this thesis. 

Fabrication is straightforward, incorporating standard CMOS ion implantation techniques.  

The question of ultimate operation speed for defect based devices remains open. The 

limitation of the avalanche detectors in this thesis is suggested to be the RC time constant. 

While the limitations of the LETI and IME #1 devices of chapter 4 were evident, the 

origin of the limitation to the IME #2 devices was not. 

What is certain is that the defect mediated absorption process can occur rapidly, and 

for an optical intensity sufficient to support data transfer. Previous work in silicon [19] 

demonstrated this for a small signal, yet the same devices showed only 10 Gbit/s large 

signal operation. The results of this chapter have extended the large signal operation 

speed. 
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Chapter 7     Summary, Suggested Future 

Work & Outlook 

7.1 Summary of work 

This thesis focused on the high-speed capability of defect-mediated silicon 

photodiodes. It has established the feasibility of these photodiodes for communications 

applications over a wide wavelength region through detailed results of high performing 

device structures. 

A study of resonant detectors with lattice defects was presented in chapter 3. It 

included the characterization of defects within passive silicon resonators, followed by 

experimental results from ring and disk resonator detectors at high speed. The passive 

characterization revealed the change in the real part of the refractive index, as well as the 

optical loss; important information for a resonant device incorporating defects. 

Experimental characterization of resonant detectors revealed limited operational 

bandwidth, significantly less than predicted based on the device design. Instability while 

operating on resonance was observed in microdisk structures. The cause of this instability 

is due to free carriers introducing a resonance shift. A simple model was presented for a 

ring resonator which shows a significant resonance shift, capable of influencing power 

levels in the ring. These effects make it difficult for high-speed operation of resonant 

detectors of this nature. However, promising high sensitivity results showing the detectors 

operating in steady-state with low optical intensity were presented. 

In chapter 4 high-speed characterization of silicon defect based detectors operating in 

the avalanche regime were presented. These detectors were in a non-resonant 

configuration and demonstrated error-free operation at 10 Gbit/s at a wavelength of 1550 

nm. The effects of both annealing and operation temperature was explored. The 
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combination of high responsivity and error-free operation demonstrated the feasibility of 

monolithic silicon detectors for communications applications. 

In chapter 5, the fabrication, characterization and measurement of surface-state 

photodetectors was presented. These devices absorb light through defect states at the 

surface of the silicon waveguide. The devices in this thesis showed large improvements 

over existing work on silicon surface-state detectors. The simple nature of these devices 

means they are suitable for power monitoring or sensing applications. A comparison of 

bulk defect and surface-state devices was made which showed that the bulk defects did 

not significantly inhibit high-speed operation. 

Operation of defect-based photodiodes at mid-infrared wavelengths was explored in 

chapter 6. The detectors showed sensitivity at wavelengths up to 2.5 µm. Most 

significantly, they showed high-speed operation at 1.96 µm with responsivity competitive 

with alternative material platforms. This wavelength range is significant as future 

communications systems may employ photonic band-gap fibers and thulium-doped fiber 

amplifiers. 

7.2 Suggested future work 

7.2.1 Avalanche detection  

Defect-based devices have been studied for many years, but by a relatively small 

number of researchers within the field of silicon photonics. What may not be obvious is 

that the optimization of the defect concentration remains to be done. The parameter 

matrix for the creation of lattice defects through ion implantation is extensive and has not 

been exhaustively explored. The variables include; ion species, dose, energy, annealing 

temperature and annealing time. While this thesis has filled in some data points in this 

regard, it is by no means complete and it’s likely that improvements are left to be found in 

detector efficiency. The difficulty of such a study is the fabrication burden, as detector 

variations (e.g. waveguide width) can be varied across a die, implantation and annealing 
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parameters cannot. Given the detector performance demonstrated in this thesis and the 

real potential for communications applications, it may become worthwhile to undertake 

such ‘brute force’ investigations. 

The devices in this thesis have achieved high bit-rates, but the ultimate speed 

limitation of defect mediated devices was not determined. The devices here were found to 

be limited by the RC time constant. Therefore electrical optimization may eventually 

reveal the time response of the defect mediated absorption and charge separation process. 

During work on this thesis a study of operation speed versus dose and annealing 

temperature was carried out. The data is not included in this thesis as no significant trends 

were observed. This study was carried out with the earlier, and slower, generation of 

devices. In light of the faster performing detectors achieved later, this study could be 

repeated, as a limited number of dose variations were tested in this case.  

A significant experiment left to be completed is the determination of the k value (i.e. 

the impact ionization ratio of electrons and holes). This describes the noise related to 

avalanche multiplication, and the gain-bandwidth limitation of an avalanche detector. 

This value has been measured for silicon, but not for silicon with lattice defects. A planar 

detector would be preferred to determine k, as it removes the highly non-uniform electric 

field present in the waveguide geometry and thus the varying multiplication factor. 

However, without a waveguide structure the sensitivity of the detector is greatly reduced. 

The k value would also determine the viability of a separate absorption and multiplication 

structure, or whether the current bulk implant technique is preferable. 

7.2.2 Long wavelength detection 

There is a sizeable investigation remaining of lattice defect mediated detectors at long 

wavelengths. The responsivity at longer wavelengths requires more attention. In chapter 6 

the devices lose response, in part, to the wavelength dependence of the waveguides. The 

design of waveguides for longer wavelengths is required to accurately determine the 

efficiency further into the mid-infrared. 
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The temperature response of the devices has not been studied. This includes both the 

permanent change of detector responsivity with annealing and the temporary change with 

ambient temperature. Additionally, the optimal defect concentration may not be 

equivalent for all wavelengths if different defect complexes are responsible for absorption 

in the mid-infrared.  

7.2.3 Surface-state photodetection 

Chapter 5 of this thesis presented results for a surface-state detector. These detectors 

show promise for power monitoring and potentially surface chemistry sensitive 

applications. This device was not the primary focus of this thesis, and represents an area 

ripe for further investigation.  

Future studies with this detector are recommended to focus on varying the surface 

treatment as a means to improve detector efficiency. The investigation in this thesis 

included devices with native oxide from atmospheric exposure at room temperature. A 

scheme to investigate alternative exposures could include an etch of the native oxide, 

followed by varied lengths of exposure and potentially a deposited oxide (or other 

compound) to prevent further reactive oxidation of the surface. Alternatively, increasing 

surface roughness may yield higher absorption due to the increased surface area. 

Exploring different waveguide structures is another means to improve the efficiency. 

Devices in this thesis used a simple rib waveguide (500 x 220 nm) but changes in 

dimension will lead to changes in optical overlap with the surface region.  

7.3 Outlook 

Silicon photonics is a growing field and the last decade has seen an increasing volume 

of research. A great deal of this work involves devices with extremely complex design 

and fabrication. One might observe that the imagination of researchers surpasses the 

technological capabilities of the day (and so it should). Yet the adaptation of research into 
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manufactured technology is ultimately driven by economics and it is in this context that 

the work in this thesis holds value.  

This thesis demonstrated high performing photodetector structures for use in silicon 

photonic integrated circuits. The most remarkable aspect of this class of detector is the 

relatively basic fabrication process. Competing photodetectors on the silicon platform 

require hybrid material systems which often require non-standard approaches. Hybrid 

structures may limit the economic viability of the silicon photonic platform, as multiple 

different material requirements may become unfeasible when incorporated into 

increasingly integrated environments. 

The monolithic silicon approach taken in this thesis could be implemented in a variety 

of silicon process configurations. This class of detector has been demonstrated to be 

capable for data communication applications, whether it will be adopted is uncertain as 

such a choice requires a balance between fabrication cost and performance. 

Finally, it is important to realize that applications exist beyond data communication. 

Data communication demands high performance and is a high value application, meaning 

that relatively higher cost hybrid approaches may be employed. As the manufacturing of 

photonic integrated circuits matures, especially cost sensitive applications will emerge. 

This might include sensing or lab-on-a-chip applications that make use of ‘disposable’ 

PICs. Such devices would greatly benefit from monolithic silicon solutions. 

 


