
LINEAR PROGRAMMING BASED RESOURCE

MANAGEMENT

LINEAR PROGRAMMING BASED RESOURCE MANAGEMENT

FOR HETEROGENEOUS COMPUTING SYSTEMS

By

ISSAM AL-AZZONI, B.Eng., M.A.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

© Issam Al-Azzoni, May 2009

DOCTOR OF PHILOSOPHY (2009)

(Software Engineering)

McMaster University

Hamilton, Ontario

TITLE: Linear Programming based Resource Management for Heterogeneous Com­

puting Systems

AUTHOR: Issam Al-Azzoni, B.Eng., M.A.Sc. (McMaster University)

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: cviii, 108

11

Abstract

An emerging trend in computing is to use distributed heterogeneous computing (HC)

systems to execute a set of tasks. Cluster computer systems, grids, and Desktop

Grids are three popular kinds of HC systems. An important component of an HC

system is its resource management system (RMS). The main responsibility of an RMS

is assigning resources to tasks in order to satisfy certain performance requirements.

For cluster computer systems, we propose a new mapping heuristic which requires

less state information than current heuristics. For Desktop Grids, we propose a new

scheduling policy that exploits knowledge of the effective computing power delivered

by the machines and the distribution of their fault times in order to improve per­

formance. Finally, for grids, we propose a new decentralized load balancing policy

which dramatically cuts down the communication overhead incurred in state infor­

mation update.

The proposed resource management policies utilize the solution to a linear pro­

gramming problem (LP) which maximizes the system capacity. Our simulation ex­

periments show that these policies perform very competitively, especially in highly

heterogeneous systems.

lll

Contents

Abstract

List of Tables

List of Figures

1 Introduction

1.1 Motivation .

1.2 A Workload Model for HC Systems

1.3 Mapping Heuristics for Cluster Computer Systems .

1.3.1 Workload Model .

1.3.2 Literature Review .

1.4 Fault-Aware Scheduling Policies for Desktop Grids.

1.4.1 Workload Model .

1.4.2 Literature Review .

1.5 Decentralized Load Balancing Policies for Grids

1.5.1 Workload Model .

1.5.2 Literature Review .

1.6 Thesis Outline

2 Mapping Heuristics for Cluster Computer Systems

2.1 Mapping Heuristics .

2.2 The LPAS Heuristic

2.2.1 Overview ..

2.2.2 Simulation Results

2.3 Other LPAS-Related Heuristics

2.3.1 Overview

2.3.2 Simulation Results

IV

iii

vii

IX

1

1

4

5

6

7

8

10

11

14

14

15

16

18

18

22

22

26

34

34

37

2.4 The Guided-LPAS Heuristic 39

2.5 Summary and Discussion . . 41

3 Fault-Aware Scheduling Policies for Heterogeneous Desktop Grids 43

3.1 Current Policies 43

3.2 The Geµ Policy 44

3.3 The LPAS_DG Policy. 45

3.4 Simulation Results . . 48

3.4.1 Task and Machine Heterogeneity 52

3.4.2 Other Distributions . 57

3.4.3 Large Systems

3.4.4 The Value of Information on CPU Availabilities

3.4.5 Realistic Architectures

3.4.6 Robust Modifications .

3.5 Implementation

3.5.1 Experimental Results .

3.5.2 Analysis and Recommendations

3.6 Summary

4 Decentralized Load Balancing for Heterogeneous Grids

4.1 Current Policies

4.2 The LPAS_dec Policy .

4.3 Simulation Results . .

4.3.1 Task and Machine Heterogeneity

4.3.2 Robustness

4.3.3 Realistic Architectures

4.4 Summary

5 Conclusion

v

57

59

60

65

67

69

74

77

79

79

81

83

84

86

86

89

91

Appendix A

Bibliography

Vl

93

99

List of Tables

2.1 Comparison of the mapping heuristics .

2.2 Execution rates for System 2.Cl

2.3 The machine allocation matrix for System 2.Cl

2.4 Execution rates for System 2.C2

2.5 The machine allocation matrix for System 2.C2

2.6 Simulation results for System 2.C2

3.1 Execution rates for System 3.A

3.2 Simulation results for System 3.A

3.3 Simulation results for System 3.B

3.4 Simulation results for System 3.C

3.5 Simulation results for System 3.D

3.6 Simulation results for System 3.E

3.7 Execution rates for System 3.B

3.8 Execution rates for System 3.C

3.9 Execution rates for System 3.D

3.10 Execution rates for System 3.E

3.11 Simulation results for System 3.A involving other distributions

3.12 Simulation results for System 3.F

3.13 A copy of Table 4.14 in [15] ...

3.14 Simulation results using the modified LPAS_DG policy

3.15 Results of experiment on HiHi setting .

vu

28

29

30

37

38

39

49

50

53

53

54

54

55

55

56

56

58

59

61

68

71

3.16 Results of experiment on LoHi setting.

3.17 Results of experiment on HiLo setting .

3.18 Results of experiment on LoLo setting

4.1 Simulation results for System 4.A . . .

viii

72

72

73

85

List of Figures

3.1 Relative average task completion times: System 3.Gl under arrival

rates a 1 64

3.2 Relative average task completion times: System 3.G2 under arrival

rates a 1 65

3.3 Relative average task completion times: System 3.G2 under arrival

rates a 2 66

3.4 Performance improvements under different values for the maximum

inaccuracy I . 69

4.1 System 4.A simulation results under different values for the maximum

inaccuracy . 87

4.2 Relative average task completion times and number of message ex­

changes: System 4.Bl under arrival rates a. 88

4.3 Relative average task completion times and number of message ex­

changes: System 4.B2 under arrival rates a 89

lX

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Chapter 1

Introduction

1.1 Motivation

Widespread availability of low-cost, high performance computing hardware, the rapid

expansion of the Internet and advances in computing networking technology have led

to an increasing use of heterogeneous computing (HC) systems. An HC system is con­

structed by networking various machines with different capabilities and coordinating

their use to execute a set of tasks. An important component of an HC system is its

resource management system (RMS) which is responsible for assigning resources to

tasks in order to satisfy certain performance requirements.

The first kind of HC systems we consider is the cluster computer system. Clusters

of commodity computers are rapidly gaining acceptance as the preferred way to con­

struct large computing platforms for applications with extensive computer needs (see

Sterling et al. [66]). Such systems form the building blocks for grids which are becom­

ing very successful in managing and organizing an institution's computing resources

(see Foster et al. [28]).

In a cluster computer system, the RMS consists of a dedicated mapper for assign­

ing incoming tasks to machines. The mapper immediately maps an arriving task to

the system. For such HC systems, it is necessary for any mapping heuristic to stabi-

1

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

lize the system if the system can be stabilized. Furthermore, the mapping heuristic

should attempt to minimize the mean task waiting time. In addition to stability and

performance concerns, the mapping heuristic should minimize the amount of state

information required in mapping. As will be discussed later, this is necessary to avoid

performance degradation that results from using full state information in large sys­

tems. Motivated by these requirements, we propose several mapping heuristics that

perform very competitively and verify their performance using simulation.

Desktop Grids are the second kind of HC systems considered here. Desktop Grids

are HC systems characterized by the non-dedication of their machines. Desktop

Grids aim to harvest a large number of desktop PCs owned by individuals and whose

idle cycles can be exploited to run Grid applications. Desktop Grids have recently

received a lot of attention because of the success of several popular applications such

as SETI@home [61].

There are several differences between Desktop Grids and cluster computer systems.

One of the key differences is the dedication of machines. In cluster computer systems,

the machines are assumed to be fully dedicated for executing the submitted tasks. On

the other hand, in Desktop Grids, machines can also execute local tasks submitted by

their owners and thus these machines are not fully dedicated for executing the Grid

applications. Due to these differences, resource management for Desktop Grids is

different from that of cluster computer systems. In Desktop Grids, the RMS consists

of a dedicated scheduler which mainly uses pull-based scheduling (i.e., a machine

sends a request to the scheduler in order to get a task) . Other differences will be

discussed in detail later when defining the workload models for both Desktop Grids

and cluster computer systems.

For Desktop Grids, we propose a new scheduling policy that exploits knowledge

of the effective computing power delivered by the machines and the distribution of

their fault times in order to improve scheduling performance. In the literature, several

papers describe techniques that are used in predicting CPU availability and modeling

2

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

machine availability. In our work, we show how such predictions can be used by the

scheduler to make effective scheduling decisions.

Grids are the third kind of HC systems considered in our work. Grids can consist

of a much larger number of machines than cluster computer systems. Also, grids are

typically more heterogeneous and geographically dispersed. As opposed to Desktop

Grids, we consider grids that consist of a dedicated infrastructure. Thus, resource

management for grids should address several issues that are distinct from those of

cluster computer systems and Desktop Grids.

We propose a new decentralized load balancing policy for grid resource manage­

ment. In centralized policies, a central machine is dedicated as a load balancer and

all tasks are submitted to the central machine. Thus, the load balancer can become

a bottleneck and a single point of failure. To avoid this, decentralized load balancing

policies involve all machines in load balancing and avoid the use of a central server.

However, current decentralized load balancing policies suffer from significant commu­

nication overhead. This is because these policies require updating each machine with

full state information. Our proposed policy performs very competitively while requir­

ing dramatically less information and thus significantly reducing the communication

overhead.

Section 1.2 defines our workload model for HC systems. Section 1.3 contains a de­

tailed introduction to mapping heuristics for cluster computer systems. Section 1.3.1

defines the workload model for cluster computer systems, and Section 1.3.2 reviews

the literature related to mapping heuristics. Section 1.4 contains a detailed intro­

duction to scheduling policies for Desktop Grids. Section 1.4.1 defines our workload

model for Desktop Grids, and Section 1.4.2 reviews the literature related to scheduling

policies for Desktop Grids. Section 1.5 contains a detailed introduction to decentral­

ized load balancing for grids. For decentralized load balancing, Section 1.5.1 gives

our workload model in detail, and Section 1.5.2 discusses related literature.

3

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.2 A Workload Model for HC Systems

An HC system connects and coordinates various machines with different capabilities

to execute a set of tasks. Let the number of machines in the system be M.

The tasks are assumed to be independent and atomic. In the literature, parallel

applications whose tasks are independent are sometimes referred to as Bag-of-Tasks

applications (BoT) (as in Anglano et al. [9]) or parameter-sweep applications (as in

Casanova et al. [16]). Such applications are used in a variety of domains, includ­

ing simulations, fractal calculations, computational biology, and computer imaging,

and are becoming predominant for HC systems (see Iosup et al. [38] and Li and

Buyya [48]).

While determining the exact task execution time on a target machine remains a

challenge, there exist several techniques that can be used to estimate an expected value

for the task execution time (see Rao and Huh [57]). Our policies exploit estimates

on mean task execution times rather than exact execution times. Furthermore, in

HC systems, tasks that belong to the same application are typically similar in their

resource requirements. For example, some applications are CPU bound while others

are more I/O bound. In fact, several authors have observed the high dependence of a

task execution time on the application it belongs to and the machine it is running on.

They argue for using application profile information to guide resource management

(see Kontothanassis and Goddeau [46]). We follow the same steps and assume that

the tasks are classified into groups (or classes) with identical distributions for the

execution times.

It is assumed that the tasks are classified into N classes. Tasks that belong to class

i arrive according to a renewal process with rate ai. Furthermore, the execution time

of a task on a machine depends on the class of the task and the machine. Let µi,J be

the execution rate for tasks of class i at machine j, hence 1 / µi,J is the mean execution

time for class i tasks at machine j. We allow µi,J = 0, which implies machine j is

physically incapable of executing class i tasks. Each task class can be executed by

4

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

at least one machine. Let a be the arrival rate vector, where the ith element of a is

ai· Also, letµ be the execution rate matrix, having (i,j) entry µi,j· We assume that

ai > 0 for all i = 1, ... , N. Also, given any class i, we assume that there exists at

least one machine j such that µi,j > 0. There are further conditions on the arrival

and execution time processes that are needed for our analytic results to hold (see

Appendix A). Several techniques for classifying tasks and obtaining the arrival and

execution rates in HC systems exist (see [46]).

1.3 Mapping Heuristics for Cluster Computer Sys­

tems

When a new task arrives to the system, the mapper uses a mapping heuristic to map

the arriving task to a machine. In our work, we consider dynamic mapping heuristics

(Kim et al. [40]). Dynamic mapping heuristics use information on the state of the

system to make their mapping decisions. On the other hand, static mapping heuristics

make mapping decisions independent of the state of the system.

It is necessary for any mapping heuristic to stabilize the system if the system can

be stabilized. Furthermore, the mapping heuristic should attempt to minimize the

mean task waiting time. In addition to addressing stability and performance, the

mapping heuristic should minimize the amount of state information required in map­

ping. In large systems, mapping heuristics that require full state information suffer

from several limitations. First, there is a significant communication overhead since

the mapper needs to communicate with a large number of machines. Also, the syn­

chronization overhead that results from requiring full state information may degrade

performance. Another important problem is that the supplied information can be

out of date resulting in performance degradation. As observed by Mitzenmacher [54],

this is a major limitation of heuristics which attempt to exploit global information to

balance load too aggressively.

5

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Motivated by these requirements, we propose several mapping heuristics that per­

form very competitively and verify their performance using simulation. In particular,

the Linear Programming Based Affinity Scheduling (LPAS) heuristic achieves com­

petitive performance and at the same time requires less state information than current

heuristics. Furthermore, by solving an allocation LP, the LPAS heuristic provides an

explicit method to compute the maximum capacity and to compute the allocation of

machines to classes.

We also describe other LPAS-related heuristics which attempt to reduce fur­

ther the state information required in making mapping decisions. We introduce the

Guided-LPAS heuristic, a modification of the LPAS heuristic which guarantees sta­

bility of a stabilizable system. Although the LPAS heuristic does not suffer from the

root cause for instability of other heuristics, we are unfortunately not able to prove

its stability.

1.3.1 Workload Model

In a cluster computer system, there is a dedicated mapper for assigning incoming

tasks to machines. The mapping heuristics considered here are immediate mode

heuristics [40]. In such heuristics, a mapping decision is made by the mapper as soon

as a task arrives. Each new task arriving in the system is immediately assigned to

one of the machines. The task can only be executed by the machine to which it is

assigned. It is assumed that there is no queueing at the mapper and tasks are queued

at the machines to which they are assigned. With respect to local scheduling, we

assume that each machine can use any policy as long as it is non-idling.

The dynamic mapping heuristics considered here assume that the execution rates

are known. A task's execution time is not known until its completion, though the

task class and thus its execution rate is known to the mapper and the machines.

Furthermore, in most of these heuristics, the mapper uses information supplied by

the machines in making mapping decisions. Such information includes, for instance,

6

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

the task queue length for each class. Thus, when a task arrives to the system, the

mapper contacts the machines whose information is needed, and subsequently, the

machine supplies the mapper with the requested information.

1.3.2 Literature Review

The problem of mapping tasks onto machines in HC systems is an extremely active

field (for example, see Braun et al. [14] and Kim et al. [40]).

Several mapping heuristics are described and compared in Maheswaran et al. [51].

The model assumptions in [51] and our assumptions for the HC system are identical.

However, the authors in [51] do not group tasks into classes and they assume that

the expected execution time of every arriving task is known on each machine. This

can be unrealistic in typical HC systems. On the other hand, we assume that the

tasks are grouped into classes and only the arrival rates of each class's tasks and the

execution rates of each machine for each class are known. This assumption is made

in several models of cluster and grid environments (such as Franke et al. [29] and

Kontothanassis and Goddeau [46]).

In [46], the performance of several mapping heuristics is examined on a real-world

workload. One of these heuristics is similar to the MCT (Minimum Completion Time)

heuristic [51]. Another heuristic is a variation on the MCT heuristic that attempts

to minimize completion time while taking affinity effects into account. Experimental

results show that varying the MCT heuristic to take affinity effects into account

exhibits improved performance over the MCT heuristic [46].

Several dynamic mapping heuristics are proposed and compared in [40] for HC

systems in which tasks have priorities and multiple soft deadlines. These heuristics

are batch mode heuristics, as opposed to the immediate mode heuristics considered

here. Immediate mode heuristics map an arriving task as soon as it arrives, whereas

batch mode heuristics consider a subset of tasks for mapping. The workload model

in [40] is identical to our workload model with the addition of priorities and deadlines

7

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

associated with tasks.

Ansell et al. [10] develop a class of heuristics for systems having the same workload

model. Such heuristics are based on the application of a policy improvement step to

an optimal static heuristic. However, these heuristics are computationally intensive

and may not scale well. In fact, only a small system with N = 2 and M = 2 is

considered in their numerical study. Another limitation is that there is no attempt

to reduce the amount of state information required in mapping. Thus, the mapper

needs to obtain full state information at every mapping event.

Another heuristic is suggested in Glazebrook et al. [33]. The heuristic is applicable

to systems having an identical workload model to the model considered here. However,

the mean execution time of a task depends only on the machine (i.e., for a machine

j, µi,j = µj, for all i = 1, ... , N). Furthermore, machines may not be permanently

available for service. Similar to [10], such a heuristic computes an index for each

machine at every state of the system and thus may not scale to large systems.

Our model for an HC system has been studied in the context of queueing analysis.

The MCT heuristic is a variation on the MinDrift rule which is shown to perform

well in heavy traffic scenarios (see Stolyar [67]). Wasserman et al. [68] introduce a

processor allocation policy which corresponds to the MCT heuristic.

1.4 Fault-Aware Scheduling Policies for Desktop

Grids

A scheduling policy must support systems with a very large number of machines.

Besides the natural complexity of scheduling for such large systems, the complexity is

further complicated by several factors. First, Desktop Grids are characterized by very

high resource volatility. In such systems, machines can fail at any time without any

advance notice. Since Desktop Grids are typically based on the Internet, machines

are also exposed to link failures. Furthermore, Desktop Grids are volunteer comput-

8

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

ing systems where participants voluntarily join in to execute the Grid applications.

Thus, the machines of a Desktop Grid system are not dedicated (i.e., machines' local

jobs should have higher priority than the Grid tasks). To better cope with resource

volatility, a scheduling policy must be fault-aware in the sense that it needs to ex­

ploit the knowledge of the effective computing power delivered by resources and the

distribution of their fault times (if such information is available).

A second factor contributing to the complexity of scheduling for Desktop Grids is

related to the heterogeneous nature of such systems. These systems interconnect a

multitude of heterogeneous machines (desktops with various resources: CPU, mem­

ory, disk, etc.) to perform computationally intensive applications that have diverse

computational requirements. Performance could be significantly impacted if informa­

tion on task and machine heterogeneity is not taken into account by the scheduling

policy. To the best of our knowledge, our work is the first to consider the problem of

scheduling for heterogeneous Desktop Grids involving resource volatility.

In current Desktop Grids, the default scheduling policy is First-Come-First-Served

(FCFS) (see Domingues et al. [27] and Kondo et al. [44]). It does not require any

information on task arrival rates, machine execution rates or availabilities. FCFS per­

forms well in systems with limited task heterogeneity. However, as our simulations

show, its performance can be very poor in systems with high task heterogeneity and

degrades rapidly as the load increases. In our work, we suggest the use of an existing

policy (the Geµ policy) which has been described in the queueing literature. This

policy performs much better than FCFS, but requires information on the machine ex­

ecution rates. Furthermore, we develop a new policy, the Linear Programming Based

Affinity S.cheduling policy for Desktop Grids (LPAS_DG), which utilizes the solution

to a linear programming (LP) problem that maximizes system capacity. In addition

to the machine execution rates, this policy assumes knowledge of the task arrival

rates and that there is a mechanism by which the scheduler detects machine failures

and availabilities. Our simulation experiments show significant performance advan-

g

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

tages for the LPAS_DG policy over the Geµ policy, especially in highly heterogeneous

systems.

1.4.1 Workload Model

In our model for a Desktop Grid, there is a dedicated scheduler for assigning incoming

tasks to the requesting machines. Resource management systems for Desktop Grids

mainly use pull-based scheduling (see Choi et al. [20, 21]). In pull-based scheduling,

when a machine becomes available, it sends a request to the scheduler in order to be

assigned a new task for execution. Using pull-based scheduling in Desktop Grids is

necessary due to the property that the machines are not dedicated. One of the results

of using pull-based scheduling is that tasks queue at the scheduler side. There is no

queueing at the machines; in fact, in Desktop Grids, one machine executes at most

one task at a time without preemption (see Choi et al. [21], Domingues et al. [26],

and Kondo et al. [44]). Also, in pull-based scheduling, the scheduler makes a decision

as soon as it receives a request from a machine [21].

In Desktop Grids, machines can fail (or become unavailable) at any time without

any advance notice [9]. If a machine fails while executing a task, then that task needs

to be resubmitted to the scheduler. We assume that the scheduler becomes aware

of the failure of any machine within a negligible amount of time [44]. We assume

that the Desktop Grid is mainly used to execute short-lived applications [44]. These

applications consist of short tasks whose mean execution times are small relative to

the mean machine availability times. Hence, in such systems, we do not consider fault

tolerant scheduling mechanisms such as checkpointing, migration and replication, due

to their overhead.

One of the basic properties of Desktop Grids is the non-dedication of machines.

When a machine is available, it may also run local jobs (i.e., jobs submitted by a local

user). The machines' local jobs are always given higher priority. When a machine

is busy with local jobs, the result is a slowing down of the execution of the Desktop

10

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Grid tasks submitted by the scheduler to the machine. To model the non-dedication

property of machines, we use an approach similar to [9]. Let µ~,j be the nominal

execution rate for tasks of class i at machine j, hence 1 / µ~,j is the mean nominal

execution time for class i tasks at machine j. When a machine becomes available, it

sends its request for a new task to the scheduler. As in [9], we assume that the machine

also supplies the expected proportion of time that it is going to spend in executing the

Desktop Grid tasks during its coming availability period (i.e., its CPU availability).

These estimates can be obtained using techniques such as those suggested by Wolski

et al. [70] and Yang et al. [72]. Thus, we can define the effective execution rate µi,j

for the submitted tasks as follows:

where aj represents the fraction of machine j's capacity that is available for executing

the Desktop Grid tasks during its coming availability period. Also, let µ be the

effective execution rate matrix, having (i,j) entry µi,j· As in [9, 44], once a task is

submitted to a machine, the task can not be resubmitted unless a failure occurs.

1.4.2 Literature Review

A taxonomy of Desktop Grids and a survey focusing on scheduling is provided in [21].

This taxonomy is defined by three major components: the application's perspective,

the resource provider's perspective, and the scheduler's perspective. With respect to

our workload model, we consider applications with independent, fixed tasks that are

computation-intensive. There are no deadlines associated with tasks and the tasks

arrive non-deterministically to the scheduler. In terms of the resource provider's per­

spective, we assume that the resource providers (i.e., the machines) are not dedicated

to public execution and they are faulty. In terms of the scheduler's perspective, a cen­

tralized organization is assumed. The scheduler uses pull-based scheduling in which

scheduling events are initiated by the resource providers.

11

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Several fault-aware Desktop Grid scheduling policies are presented in [9] for Bag­

of-Tasks applications. The proposed policies exploit fault handling mechanisms in­

cluding replication and checkpointing. Furthermore, these policies exploit knowledge

of the effective computing power delivered by resources and the distribution of their

fault times to improve scheduling performance. The performance of the different

policies is analyzed using an extensive simulation study. The policies proposed in [9]

assume that the set of tasks is initially available to the scheduler, however, we assume

a continuous arrival stream of tasks and that the scheduler only knows the arrival rates

and execution rates (it does not need to know the entire distribution). Our work goes

beyond this by addressing workloads where multiple Bag-of-Tasks applications are

simultaneously submitted.

Other policies are proposed in [44]. These policies attempt to minimize the overall

execution time, or the makespan, of a single parallel application. The application is

assumed to consist of a number of independent tasks that is relatively small compared

to the number of available resources. The policies are based on three resource selection

techniques, namely resource prioritization, resource exclusion, and task replication.

Even though the policies developed in [44] are designed to schedule a single applica­

tion, the authors acknowledge that these policies provide key elements for designing

effective "job scheduling" strategies. Furthermore, the authors planned to design

scheduling policies for the scenario where multiple applications are submitted over

time. In this context, our work represents a step in addressing such environments.

Several scheduling policies are suggested in [26] for institutional Desktop Grids.

Institutional Desktop Grids are grids comprised of the desktop machines of an in­

stitution (academic or corporate) and thus are typically characterized by a more

homogenous computing infrastructure. Similar to [9, 44], the scheduling policies are

designed to minimize the turnaround time of a single Bag-of-Tasks application. The

turnaround time for a Bag-of-Tasks application is defined as the elapsed time between

the submission of the first task until the last task is completed.

12

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Several papers study machine availability in Desktop Grids. In Nurmi et al. [56],

availability data is collected from different Desktop Grid environments. Their results

indicate that either a hyperexponential or Weibull distribution effectively represents

machine availability in enterprise and Internet computing environments. In Kondo

et al. [45], statistics from four real enterprise Desktop Grids are gathered in order to

develop predictive models for machine availability. They distinguish between machine

availability and CPU availability. The former is a binary value that indicates if the

machine is reachable. Examples of machine unavailability include power failure or

machine reboot. The latter is a percentage value that quantifies the fraction of the

CPU that can be exploited by Desktop Grid applications.

An approach for predicting machine availability in Desktop Grids is presented in

Ren et al. [58]. The authors apply semi-Markov process models for the prediction.

They suggest a method for applying availability prediction to job scheduling. Using

simulation, they show the effectiveness of their scheduling policies in large compute­

bound guest applications. Our work proposes policies for short-lived applications.

A significant amount of work has been done on the measurement and characteri­

zation of CPU availability. The work in [72] includes techniques based on time series

analysis for predicting CPU load at some future time point, average CPU load for

some future time interval, and variation of CPU load over some future time interval.

The work in [70] examines the problem of making short and medium term forecasts

of CPU availability on time-shared Unix systems. Their results demonstrate the pos­

sibility of making short and medium term predictions of CPU availability despite the

presence of long-range autocorrelation and potential self-similarity.

Kondo et al. [43] measure and characterize CPU availability in a large-scale Inter­

net Desktop Grid. Their characterization focuses on identifying patterns of correlated

availability using clustering techniques. In Rood and Lewis [59], the authors iden­

tify five availability states which capture why and how resources become unavailable

over time. Their five-state availability model is motivated by the workload model of

13

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Condor [22]. The authors characterize a Condor pool trace to develop multi-state

predictors and use these predictors in developing scheduling policies for Condor (see

Rood and Lewis [60]). These policies assume push-based scheduling, as opposed to

the pull-based scheduling policies considered here.

1.5 Decentralized Load Balancing Policies for Grids

Even though decentralized load balancing has advantages (with respect to central­

ized policies) in terms of scalability and fault tolerance, the communication overhead

incurred by frequent information exchange between machines represents a challenge.

Current policies require updating each machine with full state information. This is

problematic due to two main factors. First, the communication overhead necessary for

full state information update may be prohibitive. In effect, this may cause scalability

issues for grids using a decentralized load balancing approach. Second, requiring full

state information may degrade performance due to the effect of outdated data.

Motivated by these issues, we propose a novel decentralized load balancing pol­

icy that performs very competitively and at the same time requires dramatically

less state information. By solving an allocation LP, the 1.inear Programming based

Affinity S_ched uling load balancing policy for decentralized grids (LPAS_dec) provides

an explicit method to compute the allocations of machines to tasks. Our simulations

show significant performance advantages over competing policies, especially in highly

heterogeneous systems.

1.5.1 Workload Model

In decentralized load balancing, a task can be submitted to any machine in the grid.

Each machine is responsible for the assignment of its locally submitted tasks to one of

the grid machines. Upon the arrival of a task to a machine, the machine immediately

makes a decision on whether to execute the task locally or send it for execution on

14

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

another machine. After that, the task can only be executed by the machine to which

it is assigned. Thus, a task can not be migrated more than once. Similarly, several

researchers assume a migration limit of one as task migration is often difficult in

practice and there are no significant benefits of using higher migration limits (see Lu

et al. [50] and Shah et al. [62]).

We consider dynamic load balancing policies. These policies, as opposed to static

policies, attempt to exploit dynamic state information to optimize performance. In

order to do that, certain types of information need to be exchanged among the ma­

chines, e.g. task queue lengths, machine execution rates, and so forth. In grids, there

is no efficient state-broadcast mechanism [50]. Other approaches for information ex­

change, such as state-polling, are also problematic in practice (see Gu et al. [34],

Lu et al. [50], and Werstein et al. [69]). To minimize the overhead of information

collection, we assume that state information exchange is done by mutual informa­

tion feedback [50]. Thus, when a machine j 1 needs the local state information of

another machine j 2 , then it sends a request message to j 2 which in turn sends back

a reply message. Both the request and reply messages may embed other local state

information as dictated by the load balancing policy.

1.5.2 Literature Review

Several authors have suggested decentralized load balancing policies for grids. In

general, a decentralized load balancing policy should address the following:

1. Information exchange policy. The information exchange policy is concerned

with how to update each machine with the state information of other machines.

Two techniques for information exchange were discussed earlier: state polling

and mutual information feedback. Several load balancing policies that use state

polling are presented in [34, 62, 69]. The LPAS_dec policy uses mutual infor­

mation feedback, as do the policies presented in Arora et al. [13], Lu et al. [50],

and Rao and Huh [57].

15

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

2. Transfer policy. The transfer policy address the question of when to balance

the load. Some policies balance the load only upon task arrivals, including

the LPAS_dec policy and [13, 57, 62]. Other policies [69] are threshold-based

e.g., only when the load on a machine exceeds a certain threshold, load bal­

ancing is triggered. Some load balancing policies use a combination of both

techniques [34, 50].

3. Selection Policy. On the event of load balancing, the selection policy determines

which tasks to migrate. Policies, such as the LPAS_dec policy and [57, 62],

which balance the load upon task arrivals migrate only the arriving task. Some

policies, however, migrate additional tasks, such as [13]. Other policies which

use a threshold-based transfer policy rank the queued tasks based on certain

criteria and only migrate the highest ranking tasks (see [34, 50]).

4. Placement policy. On the event of load balancing and task migration, the

placement policy determines the machines into which these tasks are to be

migrated. Some policies use the expected completion time as a metric for the

placement policy (including the LPAS_dec policy, the LBA policy [62], and the

IDP policy [50]). Other policies use the expected load on the target machines

and only migrate tasks to the least loaded machines (including [34]).

Performance monitoring tools such as NWS [71] and MonALISA [47] can be used

to provide dynamic information on the state of the grid system. Furthermore, these

tools anticipate the future performance behaviour of an application including task

arrival and machine execution rates.

1.6 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses mapping

heuristics for cluster computing systems. Chapter 3 discusses scheduling policies for

16

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Desktop Grids. Chapter 4 discusses decentralized load balancing for grids. Each

chapter first discusses several relevant policies, then presents our linear programming

based policy, and finally discusses simulation results. Chapter 5 concludes the thesis

and outlines suggestions for possible future work. Appendix A contains detailed proofs

for the theorems in Chapter 2.

17

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Chapter 2

Mapping Heuristics for Cluster

Computer Systems

In this chapter, we describe the LPAS-related mapping heuristics for cluster com­

puter systems. Section 2.1 describes several related mapping heuristics. Section 2.2

introduces the LPAS heuristic and includes simulation results that compare the per­

formance of various mapping heuristics. Other LPAS-related heuristics that attempt

to reduce further the required state information for mapping are discussed in Sec­

tion 2.3. The Guided-LPAS heuristic is introduced in Section 2.4. Appendix A

contains detailed proofs for several results discussed in this chapter. Contents of this

chapter appear in Al-Azzoni and Down [3, 5] and He et al. [36].

2.1 Mapping Heuristics

A mapper using the MET (minimum execution time) heuristic assigns an incoming

task to the machine that has the least expected execution time for the task [51].

Thus, when a new task of class i arrives, the mapper assigns it to a machine j such

that j E arg minJ' 1/ µi,j'· Ties are broken arbitrarily; for instance, a mapper could

pick the machine with the smallest index j when more than one machine has the

18

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

least expected execution time. The MET heuristic does not require the machines to

send their expected completion times back to the mapper as tasks arrive, thus the

MET heuristic has the advantage of requiring limited communication between the

mapper and machines. However, this heuristic can cause severe load imbalance to a

degree that the system is unstable. For example, consider a system with one arrival

stream with rate a 1 = 6, and two machines with execution rates µ 1,1 = 5 and µ1,2 =

3, respectively. This system will suffer from load imbalance causing instability if the

MET heuristic is used, as no tasks are sent to machine 2. It is easy to see that the

system can be stabilized with the given value of a 1 .

The MCT (minimum completion time) heuristic assigns an arriving task to the

machine that has the earliest expected completion time [51]. Several existing re­

source management systems, e.g. NetSolve [12] and SmartNet [30, 31], use the MCT

heuristic or other heuristics that are based on the MCT heuristic. The mapper exam­

ines all machines in the system to determine the machine with the earliest expected

completion time.

There are several limitations for the MCT heuristic. First, the mapper requires

full state information since it needs to obtain the queue lengths of all machines in the

system. Second, the MCT heuristic suffers from its lack of any foresight about task

heterogeneity. It might assign an arriving task to a poor machine which minimizes the

task's completion time, yet causes problems for future arrivals. Consider the following

system with M = 7 and N = 4. We will refer to this system as System 2.H. The

arrival and execution rates are given by a = [8.5 8.5 9.6 8.5] and

5 5.02 4.95 0.001 4.7 5.2 5.25

0.001 5.09 4.9 4.92 5 5.13 5.14
µ=

4.45 5 0.001 4.45 4.9 5 5.1

5.02 4.95 5 5.02 5.25 4.75 0.001

The system contains a few machines that have very poor performance when exe­

cuting tasks that belong to particular classes. While such values would most likely not

19

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

arise in practice, we have chosen these values to emphasize the point that assigning a

task to a machine that is very poor executing its class may result in significant perfor­

mance degradation. Since the MCT heuristic maps each arriving task to the machine

that minimizes its expected completion time, it may assign an arriving task of class

i to a machine j that is very poor executing class i tasks. Since the MCT heuristic

does not prevent this from happening, it can result in very poor performance. Other

heuristics, including the LPAS heuristic, perform much better than the MCT heuris­

tic in such cases since they avoid mapping an arriving task to its minimum expected

completion time machine that could do better for future task arrivals. Simulation

results for System 2.H are shown later.

Furthermore, the tendency of the MCT heuristic to make mapping decisions based

on the immediate marginal improvement in completion time for an arriving task may

be problematic. In fact, using the MCT heuristic may result in an unstable system

even though the system can be stabilized. The instability of the MCT heuristic is

demonstrated in Sharifnia [63] by considering the following system with M = 2 and

N = 4. The arrival and execution rates are given by o: = [10 10 25 40] and

15.38 0

16.67 16.67
µ=

0 50

16.67 200

respectively. Simulation experiments show the instability of the MCT heuristic for

such a system. Other heuristics, including the LPAS heuristic, do not suffer from this

limitation. In fact, the LPAS heuristic does stabilize this system.

In order to address the limitations of the MCT heuristic, the k-percent best (KPB)

heuristic [51 J identifies for each class a subset consisting of the (kM / 100) best ma­

chines based on the execution times for the class, where 100 / M ::; k ::; 100. Let Sf

be the set of the l kM / 100 J machines that have the smallest expected execution time

for class i tasks. The mapper assigns an arriving class i task to the machine in the

20

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

subset Sf that has the earliest expected completion time. Define k = l kM /100 J to

be the number of machines considered by the KPB heuristic.

The KPB heuristic does not attempt only to assign an arriving task to a superior

machine based on execution times, it also attempts to avoid assigning an arriving task

to a machine that could do better for tasks that arrive later. As discussed earlier,

this foresight is not present in the MCT heuristic. Another advantage of the KPB

heuristic is that the mapper needs only to communicate with a subset of the machines

for each class, rather than with all machines in the system. Thus, the mapper requires

less state information than the MCT heuristic.

While the KPB heuristic succeeds in reducing the required state information for

mapping, setting its parameter (k) may be problematic and is done in an ad-hoc man­

ner in [51]. Instability or severe performance degradation can result if inappropriate

values for k are used. Also, the KPB heuristic maps each class to the same number

of machines, which may not be desirable.

As will be discussed in the next section, the LPAS heuristic builds on the idea of

the KPB heuristic. Instead of mapping each class to a fixed number of machines, the

LPAS heuristic maps each class to a different set of machines based on the solution

of an allocation LP. Furthermore, by solving an allocation LP, the LPAS heuristic

provides an explicit method to compute the maximum capacity and to compute the

allocation of machines to classes. This has the advantage of requiring dramatically less

state information while at the same time achieving competitive performance levels.

The LPAS heuristic maps each class to a much smaller number of machines than the

MCT heuristic. Furthermore, the LPAS heuristic provides a systematic way to choose

the machines.

21

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

2.2 The LPAS Heuristic

2. 2 .1 Overview

Our proposed heuristic is similar to the KPB heuristic in that the mapper needs only

to consider a subset of the machines for each class, however, the determination of this

subset requires solving a linear programming problem (LP) (Andradottir et al. [7]).

Then, the mapper assigns the task to the machine that has the earliest expected

completion time in the subset.

The LPAS heuristic requires solving the following allocation LP, where the decision

variables are). and bi,j for i = 1, ... , N, j = 1, ... , M (recall that µi,j and ai are the

execution rates and arrival rates for the system, respectively). The variables bi,j are

to be interpreted as the proportional allocation of machine j to class i.

max).

(2.1)
M

s.t. L bi,jµi,j 2::).ai, for all i = 1, ... , N,
j=l

(2.2)
N

L bi,j :::; 1, for all j = 1, ... , M,
i=l

(2.3)

bi,j 2:: 0, for all i = 1, ... , N, and j = 1, ... , M.

The left-hand side of (2.1) represents the total execution capacity assigned to class

i by all machines in the system. The right-hand side represents the arrival rate of

tasks that belong to class i scaled by a factor of).. Thus, (2.1) enforces that the total

capacity allocated for a class should be at least as large as the scaled arrival rate for

that class. This constraint is needed to have a stable system. The constraint (2.2)

prevents overallocating a machine and (2.3) states that negative allocations are not

22

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

allowed.

Let).* and {8i,j}, i = 1, ... , N, j = 1, ... , M, be an optimal solution to the alloca­

tion LP. The allocation LP always has a solution, since no lower bound constraint is

put on>.. However, the physical meaning of).* requires that its value be at least one.

In this case, 1/ >. * is interpreted as the long-run utilization of the busiest machine.

The value >. * can also be interpreted as the maximum capacity of the system. We

define the maximum capacity as follows. Consider a system with given values for ai

(i = 1, ... , N) and ,*. If,* :::; 1, then the system is unstable. Thus, the system

will be overloaded and tasks queue indefinitely. If, however, >. * > 1, then the system

can be stabilized even if each arrival rate is increased by a factor less than or equal

to,* (i.e., the same system with arrival rates a~ :::; ,*ai, for all i = 1, ... , N, can

be stabilized). In this case, the values {8i,j}, i = 1, ... , N, j = 1, ... , M, can be

interpreted as the long-run fraction of time that machine j should spend on class i

in order to stabilize the system under maximum capacity conditions. Let 8* be the

machine allocation matrix where the (i, j) entry is 8i,j.

The following theorems summarize these stability results (the proofs are provided

in Appendix A). For j = 1, ... , M, we let Wj(t) be the total workload at machine

j at time t which is defined as the cumulative amount of time that it takes machine

j to execute all tasks present in its queue at time t. Let W(t) be a vector with jth

element wj (t).

Theorem 2.2.1 If,* > 1, then the system can be stabilized. More specifically, the

workload process ({W (t)}) converges to a steady-state distribution as t ---+ oo.

Theorem 2.2.2 If,* < 1, then the system can not be stabilized. Thus, as t---+ oo,

tasks queue indefinitely regardless of the implemented mapping heuristic.

The LPAS heuristic can be stated as follows. Given a system, solve the allocation

LP to find {8i,j}, i = 1, ... , N, j = 1, ... , M. When a new task of class i arrives, let

23

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Si denote the set of machines whose bi,j is not zero (Si = {j : bi,j =/= 0}). The mapper

assigns the task to the machine j E Si that has the earliest expected completion

time among the subset of machines Si. Again, ties are broken arbitrarily. Note that

the LPAS heuristic does not use the actual values for { bi,j}, beyond differentiating

between the zero and nonzero elements. We must solve the allocation LP to know

where the zeros are.

The LPAS heuristic considers both the arrival rates and execution rates and their

relative values in deciding the allocation of machines to tasks. Furthermore, by solving

the allocation LP, the LPAS heuristic provides a systematic approach for setting

parameters that guarantee the stability of a stabilizable system. This is an advantage

over the KPB heuristic where figuring the correct value fork may not be trivial. The

KPB heuristic maps each class to k machines independent of the class, whereas the

LPAS heuristic maps each class to a different subset of the machines based on the

solution of the allocation LP. The following example clarifies this point and provides

some intuition for the LPAS heuristic.

Consider a system with two machines and two classes of tasks (M = 2, N = 2).

The arrival and execution rates are as follows:

a= [2.45 2.45] andµ= [: ~] .

Solving the allocation LP gives A* = 1.0204 and

6* = [0 0.5] .
1 0.5

A mapper using the LPAS heuristic maps all arriving tasks that belong to class 1 to

machine 2. At the times of their arrivals, tasks that belong to class 2 are mapped to

the machine, either machine 1 or 2, that has the earliest expected completion time.

Even though machine 1 has the fastest rate for class 1, the mapper does not assign

any class 1 tasks to it. Since the system is highly loaded, and since !!:bl < M,
2 and

µ2,1 µ2,2

et1 = et2, the performance is improved significantly if machine 1 only executes class 2

24

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

tasks. In fact, the performance of the LPAS heuristic is better than that of the MCT

heuristic. For this particular system, both the MET heuristic and the KPB heuristic

(with k = 1) result in unstable systems. This is because both heuristics map class 2

tasks to machine 1 only, and the system will be unstable since a 2 > µ2,1 ·

In the LPAS heuristic, the mapper considers a subset of the machines for each

class. Ideally, the size of each subset should be much smaller than M. Similar to the

KPB heuristic, this has the advantage of requiring less communication between the

mapper and the machines. Furthermore, degradation in performance due to outdated

information is reduced. To achieve this, the o* matrix should contain a large number

of elements that are equal to zero. In fact, there could be many optimal solutions

to an allocation LP, and an optimal solution with a larger number of zeros in the o*
matrix is preferred. The following proposition gives the number of zero elements in

the o* matrix that could be achieved (the proof can be found in [7]):

Proposition 2.2.1 There exists an optimal solution to the allocation LP with at least

NM + 1 - N - M elements in the o* matrix equal to zero.

Ideally, the number of zero elements in the o* matrix should be NM+ 1 - N - M.

If the number of zero elements is greater, the LPAS heuristic would be significantly

restricted in shifting workload between machines resulting in performance degrada­

tion. Also, solutions that result in degenerate cases should be avoided. For example,

if the o* matrix contains no zeros at all, then the LPAS heuristic reduces to the MCT

heuristic. Throughout this chapter, we use the unique optimal solution in which the

o* matrix contains exactly NM + 1 - N - M zeros.

The LPAS heuristic can be considered as a dynamic mapping heuristic. As the

heuristic only involves solving an LP, it is suited for scenarios when machines are

added and/ or deleted from the system. On each of these events, one needs to simply

solve a new LP and continue with the new values.

25

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

2.2.2 Simulation Results

Overview

We use simulation to compare the performance of the mapping heuristics. The task ar­

rivals are modeled by independent Poisson processes, each with rate ai, i = 1, ... , N.

Several distributions are used for execution times. Unless otherwise stated, the exe­

cution times are exponentially distributed.

Each simulation experiment models a particular system, characterized by the val­

ues of M, N, ai, and µi,j, i = 1, ... , N, j = 1, ... , M. Each experiment simulates

the execution of the corresponding system for 20,000 time-units. Each experiment is

repeated 30 times. All confidence intervals are at the 95%-confidence level.

There are several performance metrics that could be used to compare the perfor­

mance of the mapping heuristics [51]. We have chosen the long-run average number

of tasks in the system, Q, as a metric for performance comparison. This includes

the tasks that are waiting for execution at a particular machine and tasks that are

executing.

Table 2.1 lists simulation results for different systems (these systems are discussed

shortly). For each system, the table shows the 95%-confidence interval for Q when

the corresponding mapping heuristic is used. If a system becomes unstable due to

the mapping heuristic used by its mapper, the table just indicates that the system is

unstable. Since the MET heuristic results in unstable systems in most of the systems

in Table 2.1, we do not include it here. The table also shows the results of using the

KPB heuristic with different values for k.

In these simulation experiments, we assume that a First-Come-First-Serve (FCFS)

scheduling policy is used by the machines. Thus, in this case, the expected completion

time of a class i arrival at machine j is given by

N
1 2=Q·1· + i ,]

- --
' µi,j i'=l µi',j

26

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

where Qi',j is the number of tasks of class i that are waiting or executing at machine

j, at the time of the task arrival.

Small Systems

System 2.A in Table 2.1 is the system discussed in Section 2.2.1. This is a highly

loaded system as shown by the large values for Q. As shown in the table, the MCT

heuristic performs poorly with respect to the LPAS heuristic. This is because the

MCT heuristic assigns some class 1 tasks to machine 1, although it is more advanta­

geous to dedicate machine 1 for class 2 tasks.

System 2.B is another small system, where M = 2 and N = 2. The arrival and

execution rates are as follows:

a = [5 8 J and µ = [
8 3

]
4 10

Solving the allocation LP gives A* = 1.3333 and

o* = [o.8333 o] .
0.1667 1

As indicated by the nonzero elements of the o* matrix, the LPAS heuristic assigns

all class 1 tasks to machine 1. Thus, machine 2 becomes dedicated to execute class 2

tasks. This results in improved performance since, in this case, class 2 tasks have a

higher arrival rate and they run much faster on machine 2 than on machine 1.

Large Systems

System 2.Cl is a large system with M = 30 and N = 3. The machines are grouped

into four groups, and each group consists of machines with identical performance.

Thus, if two machines are in the same group, then they have the same execution

rates. Table 2.2 shows the execution rates of the groups.

Groups P, Q, R, and S, consist of 10 machines, 9 machines, 6 machines, and

5 machines, respectively. As Table 2.2 shows, the groups vary in performance. For

27

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 2.1: Comparison of the mapping heuristics

System MCT KPB LPAS

k=l

2.A (85.68, 110.23) Unstable (62.56, 82.01)

k=l

2.B (20.05, 21.10) (5.65, 5.73) (5.21, 5.26)

k = 14

2.Cl (53.99, 54.98) (75.26, 79.13) (47.39, 47.72)

k=2

(14.75, 14.89)

k=3

2.D (22.68, 23.21) (11.00, 11.04) (10.55, 10.59)

k=5

2.E (27.71, 28.20) (51.65, 55.60) (36.54, 37.07)

k=4

2.Fl (19.09, 19.44) (20.77, 21.07) (28.71, 29.05)

k=4

2.F2 (46.36, 49.49) (73.44, 81.75) (34.27, 34.89)

k=4

2.G (37.91, 40.43) (42.21, 43.54) (42.05, 43.09)

k=5

2.H (3648.48, 4086.54) (888.62, 1319.97) (131.08, 150.15)

k = 14

2.11 (64.20, 66.32) (86.65, 94.15) (50.83, 38)

k = 14

2.12 (41.56, 41.82) (53.69, 55.19) (40.57, 40.69)

28

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 2.2: Execution rates for System 2.Cl

Group

Task p Q R s
1 8 4 4 4

2 1 4 1 2

3 4 2 8 4

instance, a machine in group P is twice as fast as a machine in group S on tasks of

class 1, however, for tasks of class 2, the opposite is true. The arrival rates are given

by O'. = [45 45 40].

Since System 2.Cl consists of some identical machines, there are an infinite number

of optimal solutions to the allocation LP. To better capture machine homogeneity of

the system, it is desirable to use the unique optimal solution in which machines that

belong to the same group have identical values for 8I,j. To do this, we solve the

allocation LP corresponding to the following system:

80 36 24 20

N = 3, M = 4, a = [45 45 40], and µ = 10 36 6 10

40 18 48 20

Solving the modified allocation LP gives ,* = 1.1146 and

0.6270 0 0 0

8* = 0.3730 1 0.0712 1

0 0 0.9288 0

Thus, for System 2.Cl, we use the 8* matrix represented in Table 2.3. In this partic­

ular solution, machines that belong to the same group have identical values for 8I,j·

Note that the b* matrix has 44 elements that are equal to zero. However, note that

based on Proposition 2.2.1, there exists another optimal solution to the allocation LP

with 58 elements in the b* matrix that are equal to zero.

29

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1 0.6270 0 0 0

2 0.3730 1 0.0712 1

3 0 0 0.9288 0

As shown in Table 2.1, the LPAS heuristic achieves the best results. Note that

the KPB heuristic is unstable for k < 14.

Task and Machine Heterogeneity

Systems 2.D through 2.G model different kinds of system heterogeneity. Machine

heterogeneity refers to the average variation along the rows of the execution rate

matrix, and similarly task heterogeneity refers to the average variation along the

columns (see Armstrong [11]). Heterogeneity can be classified into high heterogeneity

and low heterogeneity. Based on this, we simulate the following four categories for

heterogeneity [11, 51]: (a) high task heterogeneity and high machine heterogeneity

(HiHi), (b) high task heterogeneity and low machine heterogeneity (HiLo), (c) low task

heterogeneity and high machine heterogeneity (LoHi), and (d) low task heterogeneity

and low machine heterogeneity (LoLo).

System 2.D models a HiHi system with M = 7 and N = 4. The arrival and

execution rates are given by o: = [12.5 12 12.5 12] and

4.5 2 9.5 6.2 10.25 2.25 3.95

6.2 4.5 6 2 4.2 5.9 10.25
µ=

9.5 6.5 4 10 5.9 2.25 3.95

2.25 10 2 3.95 1.75 10 1.75

Solving the allocation LP gives >. * = 1.3449 and

30

6* =

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

0 0 0.6907 0 1 0 0

0.2830 0 0.3093 0 0 0.3861 1

0.7170 0

0 1

0

0

1 0 0 0

0 0 0.6139 0

For System 2.D, the LPAS heuristic outperforms the other heuristics. It maps the

tasks of each class to at most two machines, except for class 2 tasks that are mapped

to four machines. The LPAS heuristic exhibits better performance than the KPB

heuristic with k = 3.

System 2.E is a LoHi system. The system contains 7 machines and 4 classes. The

arrival and execution rates are given by a = [10 10 8 8] and

2.2 7 10.25 1 5.7 0.5 12

1.95 7.05 9.78 0.95 5.65 0.56 11.85
µ=

2 7.25 10.02 0.98 5.75 0.67 11.8

2.05 6.75 9.99 1.02 5.82 0.49 12.05

Solving the allocation LP gives .X* = 1.0844 and

1 0 0.8433 0 0 0 0

0 0 0 0 0 0 0.9151
6* =

0 1 0.0754 0 0 1 0

0 0 0.0813 1 1 0 0.0849

The MCT heuristic has the best performance for System 2.E. This is not an

unexpected result as suggested by the following argument. Due to the very low task

heterogeneity of system 2.E, one can think of it as a system with one class of arriving

tasks (a = [36]) and the execution rate of each machine is the average of the execution

rates of the four classes in System 2.E on the machine, µ = [2.05 7.0125 10.01 0.9875

5.73 0.555 11.925]. In this case, assigning an arriving task to the machine that has

the minimum expected completion time (the MCT heuristic) is the best strategy. In

fact, solving the allocation LP corresponding to the modified system above results

31

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

in the following value for 6*: [1 1 1 1 1 1 1]. Thus, in this case, the LPAS heuristic

reduces to the MCT heuristic.

Even though the MCT heuristic is the best heuristic for System 2.E, the LPAS heuris­

tic has the advantage of mapping each class to a smaller number of machines. The

LPAS heuristic performs much better than the KPB heuristic even fork = 5. The

KPB heuristic is unstable for k < 5.

Systems 2.Fl and 2.F2 are HiLo systems (M = 7, N = 4). Both have the same

execution rates and only differ in the arrival rate vector a. The arrival rate vector

for System 2.Fl is a = [4 8 10 10], and for System 2.F2 it is given by a = [7 7 7 7].

For both systems, the execution rate matrix is given by

2 2.5 2.25 2 2.2 1. 75 2.25

4.5 4 4.2 4 3.8 3.9 3.95
µ=

6 6.2 6.25 6 5.75 5.9 6.05

10 10.25 10.5 9.5 10.25 10.25 10

For System 2.Fl, solving the allocation LP gives).*= 1.1331 and

6* =

0 1 0 0

1 0 1 0.0911

0 0 0 0.9089

0 0 0 0

0.8946 0 0.0285

0 0 0

0 0 0.9715

0.1054 1 0

For System 2.F2, solving the allocation LP gives).* = 1.0798 and

6* =

0 1 0.2704 0 1

1 0 0.7282 0 0

0

0

1

0

0 0 0.0014 1 0 0.2626 0

0 0 0 0 0 0.7374 0

Due to the very low machine heterogeneity of both systems, one can think of them as

consisting of identical machines. The LPAS heuristic achieves the best performance

in many such systems as in 2.F2.

32

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

System 2.G is a LoLo system with M = 7 and N = 4. The arrival and execution

rates are given by o: = [8 9 7 10] and

5 5.05 4.95 4.98 4.7 5.2 5.25

5.25 5.09 4.9 4.92 5 5.13 5.14
µ=

4.45 5 4.9 4.45 4.9 5 5.1

5.02 4.95 5 5.02 5.25 4.75 5

Solving the allocation LP gives>.* = 1.0557 and

0 0 0 0 0 1 0.6182

1 0.8352 0 0 0 0 0
8* =

0 0.1648 0.9426 0 0 0 0.3818

0 0 0.0574 1 1 0 0

For System 2.G, the MCT heuristic has slightly better performance than the

other heuristics. The KPB heuristic (k = 4) has performance close to that of the

LPAS heuristic, however, the mapper is required to obtain the expected completion

times from four machines at each task arrival as compared to at most three machines

in the case of the LPAS heuristic.

Special Systems

Consider System 2.H defined in Section 2.1. As explained earlier, since the MCT

heuristic does not have any foresight on task heterogeneity, it may assign an arriving

task to a machine that minimizes the task's expected completion time, yet it is very

poor executing the task's class. This results in significant performance degradation

as shown in Table 2.1. The LPAS heuristic is the best heuristic for System 2.H. The

KPB heuristic performs poorly and is only stable for k 2: 5. For k < 5, instability

results. Fork 2: 5, the system becomes stable, however the performance is poor.

33

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Other Execution Time Distributions

To test the effect of execution time distribution on the performance of the mapping

heuristics, all of the previous experiments were re-run with non-exponential execution

time distributions. In particular, two distributions were used to study lower and

higher variances than the exponential case: the first is a constant execution time of

size ~ for machine j executing class i tasks, and the second is a hyper-exponential
µ,,)

distribution with mean 1 for the execution times and twice the variance as the
µi,j

exponential case.

Our results indicate that the relative performance of the heuristics is not affected

by the execution time distribution. System 2.Il has the same configuration as system

2.Cl, but with a hyper-exponential execution time distribution. System 2.12 also has

the same configuration as system 2.Cl, but with constant execution times. Table 2.1

shows the performance of the different mapping heuristics for Systems 2.Jl and 2.12.

For the KPB heuristic, both systems are unstable fork < 14.

2.3 Other LPAS-Related Heuristics

2.3.1 Overview

In this section, we describe other LPAS-related heuristics which attempt to reduce

further the state information required in making mapping decisions.

To compare mapping heuristics in terms of state information required for mapping,

we use the discount metric defined in [36]. Let N8 be the average number of machines

from which a heuristic acquires information for each arrival. The discount of the

mean required state information (over full information) for a mapping decision is

then defined by

(2.4) Discnt = (1 - -:;) x 1003.

Now, consider the heuristics introduced in Section 2.1. For the MET heuristic,

34

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

the mapper need not contact any machine in making mapping decisions and thus

Ns = 0. For the MCT heuristic, assuming that all µi,j are positive, the mapper needs

to acquire state information from all of the machines and thus Ns = M. For the KPB

heuristic, the mapper needs to acquire state information from k machines (assuming

that all µi,j are positive). For the LPAS heuristic, the mean number of machines from

which the mapper acquires information for each arrival is

The LPAS-2/k Heuristic

One way to reduce further the state information required in making mapping deci­

sions is to choose for each arrival of class i just two machines from the set Si and

then compare that pair in terms of the expected completion times. The LPAS-2/k

heuristic is stated as follows: A class i arrival is mapped to one of the two machines

(j1 , h) chosen from Si which has shorter expected completion time. If ISil > 2, ma­

chine)1 is first chosen from Si with probability p11 =
8i·~~:i:h. Then, machine j 2 is

chosen from Si \ {j1} with probability p12 = .*
8i'.!_fi~i,j2 . . • °'i i,jiµi,11

The mean number of machines from which the LPAS-2/k heuristic acquires state

information for each arrival is given by

N = 2 ~ ai ~ ai .
s L.....t -+L.....t -a a

i:IS;l>l i:IS;l=l

It is noted that, in the worst case, the LPAS-2/k heuristic acquires state information

from two machines for each arrival, and thus the discount of the average required state

information is (M - 2)/M x 100%. This implies that the discount increases as the

number of machines grows, independently of the structure of b*. Note, however, that

even though the LPAS-2/k heuristic requires less state information than the LPAS

35

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

heuristic, one needs to know the values for bi,J (rather than just whether they are zero

or not).

Consider a system with N = 1 and M arbitrary. Assume that the execution times

are exponentially distributed and µ 1,J = 1 for all j = 1, ... , M. Also, assume that the

arrival process is Poisson with rate M a 1 , where a 1 < 1. In this case, bi,J = 1 for all

j = 1, ... , M. Thus, using the LPAS-2/k heuristic, an arrival randomly (with equal

probabilities) chooses two of the machines and joins the queue of the machine with

the shorter queue length. Mitzenmacher [55] analyzed such a system and found that

when a 1 approaches 1, there is an exponential improvement in the mean waiting time

(over choosing only one machine randomly), while increasing the number of choices

for an arrival results in only a constant improvement over two choices. This suggests

that a similar degree of improvement might be expected for the LPAS-2/k heuristic

over a static mapping heuristic, although the "power of two choices" has not been

analyzed rigorously for heterogeneous systems [36].

The LP-Static Heuristic

The LP-Static heuristic requires no state information in making mapping decisions.

We define it here to compare against other heuristics which take into account state

information. The heuristic is stated as follows. Class i tasks are mapped to machine

j with probability

<5* µ· .
(2.6) Pi J. = ~ i,J.

, *ai

The LP-Static heuristic maximizes system capacity in the long term, but may

suffer from poor performance since it does not do any short-term shifting of workload

among the machines. In Appendix A, it is proven that the LP-Static heuristic is

guaranteed to stabilize a stabilizable system. However, the heuristic generally achieves

poor performance. In Section 2.4, we introduce the Guided-LPAS heuristic and prove

that it is guaranteed to stabilize a stabilizable system. The Guided-LPAS heuristic

achieves competitive performance levels with the LPAS heuristic.

36

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Tablli 2.4: Execution ~::;or System 2.C2

Task T I U I V I W I X Y

1 16.7 24.8 24.2 29 25.6 48.3

2 30.4 48.3 77.7 83.6 135.9 144.9

3 18.9 24.2 48.3 45.8 72.5 72.5

4 3 3 7.6 7.6 8.3 8.7

5 1 1.1 3 2.9 3 3

2.3.2 Simulation Results

We use System 2.C2 which models a real cluster system [46] (for details, see He [35])

to compare the LPAS-related heuristics. System 2.C2 is a medium size system with

5 task classes and 30 machines. The machines are partitioned into 6 groups, ma­

chines within a group are identical. Groups T, U, V, W, X, and Y, consist of 2

machines, 6 machines, 7 machines, 7 machines, 4 machines, and 4 machines, re-

spectively. The execution rates are shown in Table 2.4. The arrival rate vector is

Q = [204.10 68.87 77.63 5.01 10.43].

As done for System 2.Cl (Section 2.2.2), we solve the allocation LP corresponding

to the following system:

N = 5, M = 6, a= [204.10 68.87 77.63 5.0110.43], and

33.4 148.8 169.4 203 102.4 193.2

60.8 289.8 543.9 585.2 543.6 579.6

µ= 37.8 145.2 338.1 320.6 290 290

6 18 53.2 53.2 33.2 34.8

2 6.6 21 20.3 12 12

Solving the modified allocation LP gives,* = 2.4242 and

37

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 2.5: The machine allocation matrix for System 2.C2

Task II T I U I V I G:up I X I Y I
1

2

3

4

5

1 1 0 0.5881

0 0 0

6* = 0 0 0

0

0

1 1

0 0

0 0

0 0

0 0

0 1

0.3071 0

0.6489 0

0 0 0 0.2009 0.0439 0

0 0 1 0.2111 0 0

0 0.5881 0 1

0 0 0.3071 0

0 0 0.6489 0

0 0.2009 0.0439 0

1 0.2111 0 0

Thus, for System 2.C2, we use the 6* matrix in Table 2.5. In this particular solution,

machines that belong to the same group have identical values for 6l,j· Note that the

number of nonzero elements in the 6* matrix is 52. Using the LPAS heuristic, the

discount of the average required state information for a mapping decision is 583. On

the other hand, using the LPAS-2/k heuristic the discount is 943.

Table 2.6 shows the simulation results for System 2.C2. As the table shows, the

LPAS heuristic achieves the best results. The LPAS-2/k heuristic has worse perfor­

mance than that achieved by the LPAS heuristic, yet it uses less state information.

The performance degradation is not large (and is significantly better than the LP­

Static heuristic).

38

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 2.6: Simulation results for System 2.C2

LP-Static (24.25, 24.29)

MCT (11.45, 11.46)

LPAS (11.32, 11.33)

LPAS-2/k (14.01, 14.02)

2.4 The Guided-LPAS Heuristic

Consider the MCT heuristic. Stolyar [67] showed that it does not minimize system

workload in heavy traffic. Sharifnia [63] showed that it may not stabilize the system

even if the system can be stabilized. He attributed this to its greedy use of information

resulting in assigning tasks to the "wrong" machines persistently and thus causing

instability. An important question is: with the restrictions of the LPAS heuristic, is

it true that the LPAS heuristic is guaranteed to stabilize a stabilizable system (i.e.,

a system where the solution to the allocation LP is.* > 1)?

Even though our simulation experiments have failed to find a stabilizable system

that is not stabilized by the LPAS heuristic, we are not able to prove the stability

of the LPAS heuristic. This is because of the difficulty of finding an expression for

the actual machine allocations achieved by the LPAS heuristic. However, we are

confident of its stability as it avoids assigning tasks to the "wrong" machines by using

task heterogeneity to provide foresight. Thus, it does not suffer from the root cause

for the instability of the MCT heuristic. If one is still concerned about stability, we

give the Guided-LPAS heuristic and give a proof for its stability.

The Guided-LPAS heuristic is guaranteed to stabilize a stabilizable system. It is a

modification of the LPAS heuristic such that, over time, target (reference) execution

capacities allocated for individual task classes on each machine are achieved. These

targets are found from the solution of the allocation LP. In particular, the target

execution capacity allocated by machine j for class i is
8i·r.i,j.

Let 7ri,j be the target mapping ratio of class i tasks to machine j such that the tar-

39

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

get execution capacity reference levels are achieved (i.e., 1ri,j =
6i~:i/). The Guided­

LPAS heuristic uses the LPAS heuristic as long as the actual rate at which class i

tasks are mapped to machine j is not too far from its target level ni,j' or equivalently,

the actual execution capacity levels are not far from their targets.

The Guided-LPAS heuristic can be stated as follows. Let ai,j(t) denote the number

of class i tasks assigned to machine j in [O, t]. Let ai(t) denote the number of class

i tasks that arrived during [O, t]. An arrival of a class i task at time t is mapped

to a machine j for which: (i) the task's expected completion time is minimized, (ii)

67,j =J- 0, and (iii) ai,j(t-) < ni,jai(t)+Ci,j'/i, where Ci,j is a nonnegative but otherwise

arbitrary constant. Note that since at any class i arrival time t, ai,j(t-) < ai(t) and

Ci,j 2: 0, j = 1, ... , M, there is always at least one machine satisfying condition (iii),

and therefore the heuristic is well defined.

The Guided-LPAS heuristic attempts to achieve the short-term advantages at­

tained by the LPAS heuristic. However, it employs an oversight control that achieves

target execution capacity reference levels in the long run. This ensures the stability

of the heuristic while achieving good performance levels. The stability result for the

Guided-LPAS heuristic is stated in the following theorem (the proof is provided in

Appendix A):

Theorem 2.4.1 The Guided-LPAS heuristic stabilizes a stabilizable system. More

specifically, if the system is stabilizable and the mapper uses the Guided-LPAS heuris­

tic, then the workload process ({W (t)}) converges to a steady-state distribution as

t ____, 00.

Our simulation experiments indicate that the oversight control mechanism is sel­

dom used. For instance, consider the system defined in Section 2.1 to show the

instability of the MCT heuristic. Setting Ci,j = 1, i = 1, ... , N, j = 1, ... , M, and

simulating the system under the Guided-LPAS heuristic (using the same assumptions

as in Section 2.2.2), we observed that the number of times condition (iii) is violated

40

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

was zero.

In Section 2.3, we introduced a variant of the LPAS heuristic which results in a

further reduction of the state information required for mapping. We referred to this

heuristic as the LPAS-2/k heuristic. Here, we modify the LPAS-2/k heuristic such

that stability is guaranteed for stabilizable systems. The resulting heuristic is referred

to as the Guided-LPAS-2/k heuristic and is defined as follows. Let Ti(t) = {jl <57,j =/= 0

and ai,j(C) < ni,jai(t) + Ci,jyt}. A class i arrival at time t is mapped to one of the

two machines (j1,j2) chosen from Ti(t) such that the arrival joins the machine with

the minimum expected completion time. If 17i(t)1 > 2, machine j 1 is first chosen from

Ti(t) with probability Ph = 2:: cii,Jiµ~: 1
..• Then, machine j2 is chosen from Ti(t) \ {j1}

jET;(t) i,jµi,J

with probability Ph = (2:: ~i~i µ;,j)
2
_ 8• . . .

jET;(t) i,jµi,3 i,Ji µi,11

The following theorem states the stability result for the Guided-LPAS-2/ k heuris-

tic (the proof is provided in Appendix A):

Theorem 2.4.2 The Guided-LPAS-2/k heuristic stabilizes a stabilizable system.

More specifically, if the system is stabilizable and the mapper uses the Guided-LPAS-2/k

heuristic, then the workload process ({W (t)}) converges to a steady-state distribution

as t ----* oo.

2.5 Summary and Discussion

The main contribution of this chapter is the proposal of the LPAS mapping heuristic

for heterogeneous computing systems. The LPAS heuristic utilizes the solution to

an allocation LP in making mapping decisions. By solving an allocation LP, the

LPAS heuristic provides an explicit method to compute the maximum capacity and

to compute the allocation of machines to classes. This has the advantage of requiring

dramatically less state information while at the same time achieving competitive

performance levels. It does not suffer from the limitations of other mapping heuristics,

namely the limited use of information about task heterogeneity (as in the case of

41

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

the MCT heuristic) and the ad-hoc manner for setting parameters (as in the KPB

heuristic). Furthermore, we have introduced two modifications to the LPAS heuristic.

First, the LPAS-2/k heuristic significantly reduces the state information required in

mapping. Second, the Guided-LPAS heuristic is guaranteed to stabilize a stabilizable

system.

A related open question is to analyze the robustness of the LPAS heuristic. Often,

HC systems operate in an environment with a large degree of uncertainty (see Smith

et al. [65]). In this context, robustness can be defined as the degree to which a

system can function correctly in the presence of parameter values different from those

assumed (Ali et al. [6]). A number of papers have studied robustness in HC systems,

including Ali et al. [6], Mehta et al. [53], Shestak et al. [64], and Smith et al. [65].

We believe that the solution to the allocation LP is inherently robust with respect to

errors in estimates of the parameters (the arrival and execution rates) and thus we

expect the LPAS heuristic to have robustness advantages over other existing resource

management policies for H C systems.

42

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Chapter 3

Fault-Aware Scheduling Policies

for Heterogeneous Desktop Grids

In this chapter, we introduce several scheduling policies for Desktop Grids. Section 3.1

describes the First-Come-First-Served policy which is used in major Desktop Grid

schedulers. The Geµ policy and the LPAS_DG policy are described in Sections 3.2

and 3.3, respectively. In Section 3.4, we present the results obtained in our simulation

experiments. In Section 3.5, we analyze the performance of the LPAS_DG policy using

the McMaster Grid Scheduling Testing (MGST) framework. Section 3.6 concludes the

chapter. Contents of this chapter appear in Al-Azzoni and Down [1, 4] and Kokaly

et al. [42].

3.1 Current Policies

A scheduling policy that is applicable to our workload model is the classical First­

Come-First-Served (FCFS) policy. FCFS is used in major Desktop Grid sched­

ulers [27, 44]. An advantage of FCFS is that it does not require any information

about task arrival rates or machine execution rates. However, as our simulations

show, FCFS only performs well in systems with limited task heterogeneity and under

43

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

moderate system loads. As the application tasks become more heterogeneous and the

load increases, performance degrades rapidly.

3.2 The Geµ Policy

The Geµ policy is a variation of the generalized cµ rule (Geµ) analyzed by Mandel­

baum and Stolyar [52]. We consider the version of the Geµ rule which asymptotically

minimizes delay costs. The policy can be stated as follows: when a machine j requests

a task, the scheduler assigns it the longest-waiting (head of the line) class i task such

that i E argmaxiDi(t)µ~,J' in which Di(t) is the waiting time (sojourn time) of the

head of the line class i task at the time of making the scheduling decision t.

To the best of our knowledge, the Geµ policy has never been suggested or used as

a scheduling policy in Desktop Grids. The Geµ policy aims at myopically maximizing

the rate of decrease of the instantaneous delay cost. It has been proved that when

the primitives o: and µ satisfy certain conditions, the Geµ policy minimizes both in­

stantaneous and cumulative delay costs, asymptotically, over essentially all scheduling

disciplines, preemptive or non-preemptive [52]. The optimality of the Geµ policy is

obtained under a heavy traffic assumption, in other words, optimality is achieved as

the system load approaches 100 percent. When one backs off from the heavy traffic

condition, we will see that there is room for making bad scheduling decisions, which

in turn can significantly degrade performance.

Under moderate traffic conditions, the Geµ rule could make more frequent bad

scheduling decisions, especially in systems with highly heterogeneous execution rates.

This results from the policy's greedy nature. Our LPAS_DG policy avoids this by

preventing the assignment of particular task classes to inefficient machines.

Note that a scheduler using the Geµ policy only requires information on the ex­

ecution rates of the machines. Using this extra information, however, can result in

achieving significant performance improvement over policies that do not use such

44

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

information (i.e., FCFS).

3.3 The LPAS_DG Policy

The LPAS_DG policy requires solving the following allocation LP (Andrad6ttir et

al. [8]) at each machine availability /unavailability event, where the decision variables

are,\ and oi,j for i = 1, ... , N, j = 1, ... , M. The interpretation of the variables and

constraints is identical to that of the allocation LP in Section 2.2.1.

max,\

(3.1)
M

s.t. L oi,jµ~,j 2: ,\ai, for all i = 1, ... ' N,
j=l

(3.2)
N

L oi,j :::; aj, for all j = 1, ... , M,
i=l

(3.3)

oi,j 2: 0, for all i = 1, ... , N, and j = 1, ... , M.

Whenever a machine becomes available or unavailable, the scheduler solves the

allocation LP to find { 87,j} , i = 1, ... , N, j = 1, ... , M. If a machine j becomes

unavailable, then aj = 0. In this case, o;,j = 0 for i = 1, ... , N. On the other

hand, if a machine j becomes available, aj is equal to the predicted CPU availability

for machine j during its next expected machine availability period (CPU availability

prediction techniques are discussed in Section 1.4.2). Solving the allocation LP at

each availability/non-availability event represents how the LPAS_DG policy adapts

to the dynamics of machine availability. Constraint (3.2) enforces the condition that

the allocation of machine j should not exceed its CPU availability. The use of aj

represents how the LPAS_DG policy adapts to the dynamics of CPU availability.

45

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

The value ,\ * can be interpreted as follows. Consider an event in which a machine

becomes available or unavailable. Let ,* and {Ji,1}, i = 1, ... , N, j = 1, ... , M,

be an optimal solution to the allocation LP corresponding to the system just after

the occurrence of the event. Consider the system that only consists of the available

subset of the M machines. Then, the value ,\ * can also be interpreted as the maximum

capacity of this partial system.

The LPAS_DG policy is defined as follows. When a machine j requests a task,

the scheduler assigns machine j the longest-waiting (head of the line) class i task

such that µi,1Ji,1 > 0 and i E argmaxi µi,jDi(t), where Di(t) is defined in Section 3.2.

Note that µi,j represents the effective execution rate for class i tasks at machine j

(µi,j = a1 µ~,j for i = 1, ... , N, j = 1, ... , M).

Consider a system with two machines and two classes of tasks (M = 2, N = 2).

The arrival and execution rates are as follows:

" = [1 1.5] and µ = [: ~] .

Assume that all machines are dedicated (i.e., ai = 1, for all j = 1, ... , M). Solving

the allocation LP gives ,\ * = 1. 764 7 and

J* = [0 0.3529] ·
1 0.6471

Thus, when machine 1 requests a task, the scheduler only assigns it a class 2 task.

Machine 2 can be assigned tasks belonging to any class. Although the fastest rate

is for machine 1 at class 1, machine 1 is never assigned a class 1 task. Note that

machine 1 is twice as fast as machine 2 on class 2 tasks and note that !!:.hl < µ
1

'
2

•
µ2,1 µ2,2

Now assume that machine 1 is fully dedicated and machine 2 is available only

10% of the time (i.e., a 1 = 1 and a2 = 0 .1). Solving the new allocation LP gives

,\ * = 1.2258 and

J* = [0.0806 00.1]
0.9194

46

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

In this case, machine 1 is assigned tasks from any class, but machine 2 is only assigned

class 1 tasks. Note that machine 1 is 20 times as fast as machine 2 on class 2 and

thus the LPAS_DG policy avoids assigning a class 2 task to machine 2.

To show how the LPAS_DG policy adapts to machine failures, consider the fol­

lowing system (M = 4, N = 3). The arrival and execution rates are as follows:

2 2 2 2

a = [3 5 4 J and µ = 1 20 3. 7 5.9

1 20 7.1 2.7

Assume that all machines are dedicated (i.e., aj = 1, for all j = 1, ... , M). Solving

the allocation LP gives ,* = 2.0513 and

1 0.0769 1 1

o* = o o.5128 o o

0 0.4103 0 0

Note that machine 1 is never assigned tasks belonging to class 2 or class 3. While

machine 2 may be assigned tasks from any class, machines 3 and 4 are only assigned

class 1 tasks.

Now, assume that machine 2 fails. Solving the new allocation LP gives,* = 1.0306

and

1 0 0.4194 0.1266

o* = o o o o.8734

0 0 0.5806 0

In this case, in addition to class 1 tasks, machine 3 is assigned class 3 tasks and

machine 4 is assigned class 2 tasks.

Ideally, the number of zero elements in the o* matrix should be NM+ 1-N - M. If

the number of zero elements is greater, the LPAS_DG policy would be significantly re­

stricted in shifting workload between machines resulting in performance degradation.

Also, if the number of zero elements is very small, the LPAS_DG policy resembles

47

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

more closely the Geµ policy. In fact, if the 8* matrix contains no zeros at all, then

the LPAS_DG policy reduces to the Geµ policy. Throughout the chapter and unless

otherwise stated, we use an optimal solution in which the 8* matrix contains exactly

NM+ 1 - N - M zeros. Such a solution always exists (see Proposition 2.2.1).

3.4 Simulation Results

We use simulation to compare the performance of the scheduling policies. The task ar­

rivals are modeled by independent Poisson processes, each with rate ai, i = 1, ... , N.

The execution times are exponentially distributed with rates µ~,i' where 1/ µ~,j rep­

resents the mean execution time of a task of class i at machine j, i = 1, ... , N, j

= 1, ... , M. Unless otherwise stated, it is assumed that machine fault times and

availability times are exponentially distributed. A machine fault (availability) time

represents a time interval during which the machine is unavailable (available).

There are several performance metrics that can be used to compare the perfor­

mance of the scheduling policies [9, 44]. We use the long-run average task completion

time W, as a metric for performance comparison. A task completion time is defined

as the time elapsing between the submission of the task and the completion of its ex­

ecution, including resubmission times. For each simulation experiment, we also show

the average task completion time for class i tasks, Wi, for all i = 1, ... , N.

In this section, we study several systems. Each simulation experiment models

a particular system under different assumptions on machine and CPU availabilities.

Each experiment simulates the execution of the corresponding system for 20,000 time­

units. Each experiment is repeated 30 times. For every case, we give W, the improve­

ment (L\) over the Geµ policy, and Wi, i = 1, ... , N. For W, we also give the accuracy

of the confidence interval defined as the ratio of the half width of the interval over

the mean value (all statistics are at 953 confidence level). A negative improvement

means a policy is being outperformed by the Geµ policy. Note that we do not give

48

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.1: Execution rates for System 3.A

Task II T I u I vc)°; I x I v I
1 2 2 2 2 2 2

2 1 20 3.7 7.1 2.4 8.7

3 1 20 9.4 3.7 7.3 2.7

4 1 20 2.8 5.9 4.4 6.3

performance results for the FCFS policy when it results in either an unstable system

or one in which performance is several orders of magnitude worse than the Geµ policy.

Consider the following system. System 3.A is a medium-size system with 4 task

classes and 30 machines. The machines are partitioned into 6 groups, with machines

within a group being identical. Thus, if two machines are in the same group, then

they have the same execution rates. Groups T and U consist of 3 machines each,

while groups V, W, X, and Y consist of 6 machines each. For the systems discussed

in this section, the machines are ordered with the machines of group T first, group U

second, etc. Thus, for example, in System 3.A, the machine j = 7 belongs to group

V and the machine j = 30 belongs to group Y. The execution rates are shown in

Table 3.1. Using this partition, we have all machines being homogeneous to class 1

tasks; 10 percent of machines are slow for most arrivals, 10 percent of machines are

fast for most arrivals and the majority of machines (the remaining 80 percent) have

high task and machine heterogeneity.

For System 3.A, Table 3.2 shows the simulation results under two different arrival

streams: (i) a 1 = [11.25 22.5 36 63], and (ii) a 2 = [17.5 35 56 98]. The arrival rates

a 1 result in a lightly loaded system while those in a 2 lead to a heavily loaded system.

The following are the simulation scenarios for arrival rates a 1:

1. There are no machine failures, and aj = 1 for all j = 1, ... , M.

2. Each machine fails at the rate 0.02 per time-unit and the mean fault time is two

49

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.2: Simulation results for System 3.A
l'. nder Arrival Ratrn a1

FCFS GCJL LPAS_DG
! w W1 W2 Wi W4 w W1 W2 W1 Wi w 6 1 W1 W2l W1 Wi Case· 6

1 l.G5 -617.393 1.93
I

l.G2 0.23 0.54 0.20 0.19 0.20 0.15 34. 783 T 0.51 0.13. 0.12 0.11 l.G3 · l.G3

; ±G.91l'7r ±0.03% ±0.04% l i

2 0.23 0.55 0.20 0.19 0.20 0.15
I

0.13 ! 0.12 0.11 34.723 0.51
I I

t
±0.04% ±0.0G'lr l -i

3 i 0.25 O.G4 0.21 0.19 0.23 0.18 283 I 0.5G 0.1710.15 0.13

I
±0.1G% ±0.26% I

I

4
I

0.25 0.62 0.21 0.20 0.23 0.18 283 I o.58 O.lG I 0.13 0.13

±0.04% ±0.05%
I

-- - 1- ------- ---- - - 1-- 22~~831 O.GS-5

l
0.31 0.80 0.26 0.22 0.28 0.24 0.23 ! 0.19 0.18

!

i ±0.33% ±0.48'.Yr i
l'.nder Arrival Rates a2

CasE~ w 6 W1
- ! -

w" w W1 W2 w, Wi w 6 j W1 W2 'W1 Wi W2j W1

1 • T 0.40 203 I un 0.2510.27 1.11 0.33 0.30 0.37 0.32 0.25

I l ±0.44% ±0.40o/c 1
2

T

1 0.48 0.34 20.833 11.09

I

1.30 0.38 0.44 0.38 0.28. 0.31 0.32

1

±0.56% ±0.47o/c 1
3

!
0.81 2.20 0.64 0.57 0.77 0.62 23.463 \ 1.88 0.40 \ 0.48 0.56

1 ±1.21% ±0.93o/c l

50

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for

all j = 1, ... , M.

3. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four

time-units. Machines are fully dedicated when they are available i.e., aj = 1

for all j = 1, ... , M. Failures in this case are more common than the previous

case.

4. Each machine fails at the rate 0.02 per time-unit and the mean fault time is

two time-units. CPU availabilities are given by:

0.5 if j = 13, 19, 25,

ai = 0.75 if j = 1, 4, 14, 26,

1 otherwise.

5. Each machine fails at the rate 0.05 per time-unit and the mean fault time is

four time-units. CPU availabilities are the same as in the previous case.

The following are the simulation scenarios for arrival rates a 2:

1. There are no machine failures, and aj = 1 for all j = 1, ... , M.

2. Each machine fails at the rate 0.01 per time-unit and the mean fault time is one

time-unit. Machines are fully dedicated when they are available i.e., aj = 1 for

all j = 1, ... , M.

3. Each machine fails at the rate 0.01 per time-unit and the mean fault time is

one time-unit. CPU availabilities are given by:

0.75 if j = 13, 19,

aj = 0.85 if j = 14, 25,

1 otherwise.

51

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

The simulation results above suggest that using the LPAS_DG policy results in im­

proved performance over the Geµ policy. Also, using the FCFS policy for System 3.A

results in severe performance degradation.

3.4.1 Task and Machine Heterogeneity

Systems 3.B through 3.E model different kinds of system heterogeneity. The simula­

tion results for these systems are presented in Tables 3.3, 3.4, 3.5, and 3.6, respectively.

We model each system under two different sets of arrival rates: o:1 and o:2 . The arrival

rates o:1 result in a lightly loaded system compared to a heavily loaded system under

arrival rates o:2 . The following are the simulation scenarios for arrival rates o:1
:

1. There are no machine failures, and aj = 1 for all j = 1, ... , M.

2. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for

all j = 1, ... , M.

The following are the simulation scenarios for arrival rates o:2
:

1. There are no machine failures, and aj = 1 for all j = 1, ... , M.

2. Each machine fails at the rate 0.02 per time-unit and the mean fault time is two

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for

all j = 1, ... , M.

For Systems 3.B through 3.E, M = 28 and N = 4. The machines are partitioned

into 7 groups (labeled T through Z). Each group consists of 4 machines and machines

within a group are identical.

System 3.B models a HiHi system. The arrival rate vectors are o:1 = [50 48 50 48]

and o: 2 = [62.5 60 62.5 60]. The execution rates are shown in Table 3.7.

System 3.C models a LoHi system. The arrival rate vectors are o:1 = [30 30 24 24]

and o:2 = [40 40 32 32]. The execution rates are shown in Table 3.8.

52

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.3: Simulation results for System 3.B

Under Arrival Rates o:1

Geµ LPAS_DG

Case w W1 W2 W3 W4 w L1 W1 W2 W3 W4

1 0.22 0.21 0.23 0.20 0.23 0.13 40.91% 0.12 0.14 0.13 0.12

±0.04% ±0.04%

2 0.37 0.35 0.42 0.35 0.36 0.28 24.32% 0.27 0.32 0.27 0.26

±0.70% ±1.10%

Under Arrival Rates o:2

Case w W1 W2 W3 W4 w L1 W1 W2 W3 W4

1 0.28 0.27 0.32 0.27 0.27 0.22 21.43% 0.24 0.21 0.27 0.19

±0.14% ±0.30%

2 0.45 0.42 0.54 0.42 0.41 0.39 17.78% 0.37 0.45 0.40 0.32

±0.85% ±0.79%

Table 3.4: Simulation results for System 3.C
li nder Arrival Rates a 1

FCFS GqL LPAS_DG

Case w 6 W1 W2 W1 W4 w W1 W2 W1 W4 w 6 W1 W2 W1 W1

1 0.21 0% 0.21 0.21 0.20 0.21 0.21 0.21 0.21 0.20 0.21 0.22 -4.76% 0.21 0.11 0.29 0.29

±0.02% ±0.02% ±0.03'7c

2 0.27 0% 0.27 0.28 0.27 0.28 0.27 0.26 0.27 0.27 0.27 0.31 -14.81% 0.30 0.21 0.38 0.38

±0.78% ±0.76o/c ±0.73'7r

l.inder Arrival Rates a 2

Case w 6 W1 W2 W1 W1 w W1 W2 W1 W4 w 6 W1 W2 W1 if·!

1 0.27 -3.85% 0.27 0.27 0.26 0.27 0.26 0.25 0.25 0.27 0.26 0.32 -23.08% 0.31 0.25 0.38 0.37

±0.33o/c ±0.23'7c ±0.23'7c

2 0.65 -38.30% 0.65 0.65 0.64 0.65 0.47 0.46 0.45 0.50 0.47 0.52 -10.64% 0.49 0.44 0.56 0.59

±2.77% ±l.21o/c ±0.97o/c

53

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.5: Simulation results for System 3.D
Under Arrival Rates a 1

FCFS Gett LPAS_DG

CaRe w 6 W1 W2 W1 W1 w Wi W2 Wi w4 w 6 W1 W2 W:i W1

1 0.21 03 0.48 0.26 0.18 0.11 0.21 0.49 0.26 0.17 0.10 0.23 -9.523 0.47 0.26 0.21 0.13

±0.06'/i' ±0.06% ±0.08o/c

2 1.46 -204.173 1.74 1.50 1..!2 1.35 0.48 1.07 0.59 0.41 0.24 0.54 -12.53 1.()4 0.64 0.46 0.35

±4.64% ±1.09% ±1.17'/c

Under Arrival RateR a 2

----- - - - -·--- --··-· -- ---- - - - --

Case w 6 W1 W2 w3 w4 w W1 W2 W:i W4 w 6 W1 W2 Wi W1

1 1.04 -205.883 1.31 1.08 1.00 0.93 0.34 0.75 0.42 0.29 0.17 0.54 -58.823 1.()4 0.64 0.45 0.35

±3.387' ±0.44/[±1.07%

2 0.75 1.65 0.92 0.63 0.38 0.77 -2.673 1.54 0.88 0.73 0.43

±l.88o/c ±1.64o/c

Table 3.6: Simulation results for System 3.E
Under Arrival Rates a 1

FCFS Gett LPAS_DG

Case w 6 W1 W2 w, w4 w W1 W2 w, w4 w 6 W1 W2 W1 W1

1 0.20 0% 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.21 0.20 0.22 -103 0.22 0.21 0.23 0.21

±0.03S1 ±0.04% ±0.05%

2 0.28 -3.703 0.28 0.28 0.29 0.28 0.27 0.27 0.26 0.28 0.27 0.33 -22.223 0.33 0.32 0.34 0.32

±0.58% ±0.52% ±0.49'7c

Under Arrival Ratrn a2

Case w 6 W1 W2 w, W1 w W1 W2 w, w4 w 6 W1 W2 w, W4

1 0.46 -35.293 0.45 0.45 0.46 0.46 0.34 0.34 0.34 0.35 0.34 0.45 -32.35% 0.49 0.43 0.52 0.40

±1.15)(±0.53% ±0.48%
-- -- - --- --- - -- -t- ·t- - -j --- j- --- ------ . -- --

2 1.18 1.17 1.17 1.20 1.17 1.12 5.083 1.05 1.01 1.22 1.21

±2.93% ±2.44/f

54

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.7: Execution rates for System 3.B

II Group
Task T I U I V I W I X I Y I z

1 4.5 2 9.5 6.2 10.25 2.25 3.95

2 6.2 4.5 6 2 4.2 5.9 10.25

3 9.5 6.5 4 10 5.9 2.25 3.95

4 2.25 10 2 3.95 1.75 10 1.75

Tll able 3.8: Execution ~~;:or System 3.C

Task T j U j V j W j X j Y j Z

1 2.2 7 10.25 1 5.7 0.5 12

2 1.95 7.05 9.78 0.95 5.65 0.56 11.85

3 2 7.25 10.02 0.98 5.75 0.67 11.8

4 2.05 6.75 9.99 1.02 5.82 0.49 12.05

55

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1 2 2.5 2.25 2 2.2 1.75 2.25

2 4.5 4 4.2 4 3.8 3.9 3.95

3 6 6.2 6.25 6 5.75 5.9 6.05

4 10 10.25 10.5 9.5 10.25 10.25 10

Trle 3.10: Execution ~:~~rfor System 3.E

Task T I U [V I W I X I Y I Z

1 5 5.05 4.95 4.98 4.7 5.2 5.25

2 5.25 5.09 4.9 4.92 5 5.13 5.14

3 4.45 5 4.9 4.45 4.9 5 5.1

4 5.02 4.95 5 5.02 5.25 4.75 5

System 3.D models a HiLo system. The arrival rate vectors are o:1 = [14 28 35 35]

and a 2 = [17 34 42.5 42.5]. The execution rates are shown in Table 3.9.

System 3.E models a LoLo system. The arrival rate vectors are a 1 = [24 27 21 30]

and a 2 = [32 36 28 40]. The execution rates are shown in Table 3.10.

The results in Tables 3.4 and 3.6 indicate that the FCFS policy achieves acceptable

performance in lightly loaded systems with low task heterogeneity. The FCFS policy

achieves poor performance and even results in unstable systems as the level of task

heterogeneity increases or as the system load increases. This suggests that FCFS

will not be able to support the same level of throughput as our two proposed policies.

While the LPAS_DG policy achieves very competitive performance to that of the Geµ

policy, its performance is generally superior only in highly heterogeneous and highly

loaded systems.

56

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

3.4.2 Other Distributions

To test the sensitivity of the performance of the scheduling policies to the distribu­

tional assumptions, Table 3.11 shows the simulation results for System 3.A under

arrival rates a 1 using different distributions for machine execution times, fault times,

and availability times. With respect to machine failure rates and CPU availabilities,

cases 1, 2, and 3 in Table 3.11 correspond to cases 1, 3, and 5 in Table 3.2, respectively.

For the execution times, in addition to the exponential distribution, two other

distributions are used to study lower and higher variances than the exponential case:

the first is a constant execution time of size ~ for machine j executing class i tasks,
µ,,J

and the second is a hyper-exponential distribution with mean ~ for the execution
µ,,J

times and twice the variance as the exponential case. For the machine availability

and fault times, a hyper-exponential distribution is used. In agreement with the

data provided in [56], the squared coefficient of variation for the hyper-exponential

distribution is set to five.

The simulation results above indicate that the relative performance of the policies

is not affected by the distributions for machine execution times, fault times, and

availability times. Furthermore, the performance of the FCFS policy depends on the

level of task heterogeneity, and in systems with highly heterogeneous tasks, the policy

performs poorly regardless of the underlying distributions.

3.4.3 Large Systems

System 3.F is a large system with M = 3000 machines and N = 4 classes. The system

is constructed using 100 multiples of System 3.A. Table 3.12 shows the simulation

results for System 3.F under arrival rates a= 100 x a 1 , where a 1 represents the first

set of arrival rates used in simulating System 3.A (see Table 3.2).

The following are the simulation scenarios for arrival rates a:

1. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four

57

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.11: Simulation results for System 3.A involving other distributions
Exponential Execution Time Distribution

FCFS Gtp. LPAS_DG

Case w 6
- i -

W1l W2 Wi W4 w W1 W2 Wi W4 w 6 W1 W2 Wi W1

1.63 -608.70% 1.91 ' 1.61 1.61 1.61 0.23 0.54 0.20 0.19 0.20 0.15 34.78% 0.51 0.13 0.12 0.11

±5.58% ±0.04% ±0.04'7c

2 0.25 0.64 0.21 0.20 0.23 0.18 28% 0.56 0.17 0.15 0.13

±0.56'7c ±0.68%

3 0.32 0.83 0.27 0.23 0.30 0.22 31.253 0.70 0.20 0.17 0.18

±1.47% ±2.46%

Hyper-exponential Execution Time Distribution

Case W W1 W2 W1 W4 w W1 W2 Wi W4 w 6 W1 W2 Wi W:1

1 7.13 -3000% 7.41 I 7.11 7.11 7.11 0.23 0.54 0.20 0.19 0.20 0.15 34.78% 0.51 0.13 0.12 0.11

±10.41% l ±0.05% ±0.05%

2 0.26 0.65 0.22 0.20 0.24 0.19 26.92% 0.56 0.19 0.17 0.14

±0.52'7c ±0.82%
f-----+--------- +-- -- --+----+--+--+- - -- - - ------ +-----1 -----

3 0.34 0.86 0.28 0.24 0.31 0.26 23.53% 0.71 0.27 0.22 0.20

±l.16o/r ±l.39o/c

Deterministic Execution Time Distribution

Case w 6 W1 W2 Wi W:1 w W1 W2 Wi W1 w 6 W1 W2 W1 W4

1 0.94 -327.27% 1.21 0.91 0.91 lUll 0.22 0.53 0.19 0.19 0.20 0.15 31.82% 0.51 0.12 0.11 0.11

±2.52'1r ±0.02% ±0.02%

2 0.24 0.61 0.20 0.18 0.21 0.17 29.17% 0.55 0.15 0.14 0.13

±0.63% ±0.67o/c

3 0.29 0.77 0.24 0.21 0.27 0.22 24.14% 0.69 0.20 0.17 0.18

±1.07% ±l.5'7c

58

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.12: Simulation results for System 3.F

Geµ LPAS_DG

Case w W1 W2 w3 w4 w ~ W1 W2 w3 W4

1

2

0.19 0.50 0.16 0.16 0.16 0.14 26.32% 0.50 0.11 0.11 0.11

±0.00523 ±0.00783

0.19 0.55 0.16 0.15 0.16 0.15 21.05% 0.55 0.13 0.12 0.11

±0.00933 ±0.00753

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for

all j = 1, ... , M.

2. Each machine fails at the rate 0.05 per time-unit and the mean fault time is

four time-units. Since System 3.F is constructed using 100 multiples of System

3.A, the CPU availabilities for each multiple are given as those for System 3.A

under case 4 (refer to the simulated cases for System 3.A under arrival rates

al).

As Table 3.12 shows, the LPAS_DG policy achieves the best results for System

3.F. The FCFS policy results in significant performance degradation, although the

system is not heavily loaded under arrival rates a. These results indicate that, even for

large systems, the relative performance of the policies depends on the heterogeneity

of the system as well as its load.

3.4.4 The Value of Information on CPU Availabilities

Consider System A. Assume that each machine fails at the rate 0.05 per time-unit

and the mean fault time is four time-units. CPU availabilities are given by:

-{0.05 aj -

1

if j = 4, 5, 7, 13, 19, 20, 25,

otherwise.

59

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

We simulate the system under arrival rates a= 0.75xo:1 = [8.4375 16.875 27 47.25],

where o: 1 represents the first set of arrival rates used in simulating System A. We

consider two cases. In the first case, the policy does not use estimated CPU availabil­

ities (i.e., the policy assumes that aj = 1, for all j = 1, ... , M). In the second case,

the policy uses the estimated CPU availabilities. Our simulation experiments indi­

cate that the LPAS_DG policy which incorporates information on CPU availabilities

results in~= 20.51% while the LPAS_DG policy which does not use this information

results in ~ = -156.41%. These results show that the LPAS_DG policy effectively

exploits knowledge on CPU availabilities. Furthermore, the LPAS_DG policy may

perform poorly when these estimates are not available. In such cases, the use of the

Geµ policy is recommended.

3.4.5 Realistic Architectures

To simulate more realistic scenarios, we use the data reported in [9] and Canonico [15]

which was collected by running benchmarking tools on an actual system. We refer to

this system as System 3.G.

In [9], the authors define the nominal computing power of a machine as a real

number whose value is directly proportional to its speed. Thus, a machine with a

nominal computing power of 2 is twice as fast as a machine with a nominal computing

power of 1. It is found that, for System 3.G, there are three different values for the

nominal computing power of machines, namely {1, 1.125, 1.4375}.

Since we consider the problem of scheduling multiple applications on Desktop

Grids, we define Pi,j as the nominal computing power of machine j on class i tasks.

Thus, a machine j with Pi,j = 2 is twice as fast as a machine j' with Pi,j' = 1 on class

i tasks. In this manner, we can describe systems in which a machine is fast on some

applications but slow on others.

As in [9], the CPU availability is described by a discrete-time Markov chain whose

parameters are computed using a network monitoring and forecasting system. A new

60

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.13: A copy of Table 4.14 in [15]

Hostname p shape scale Paa Pab Pac Ha pb/J pbc Pea Pcb p('('

bird 1 0.568664 477343 0.998 0.001 0.001 0.015 0.970 0.015 0.000 0.0197 0.9803

blind 1.125 0.729215 856663 0 0 0 0 0.9814 0.0186 0 0.0098 0.9902

boo boo 1 0.570816 619497 0 0 0 0 0.9904 0.00!)6 0 0.0133 O.!J867

chocolate 1.4375 0.662438 610445 0 0 0 0 0.9!J58 0.0042 0 0.1376 0.8624

hobbrs 1.125 0.560362 19!)6!)0 0.9969 0.0029 0.0002 0.0270 0.9674 0.0056 0.0005 0.0123 O.!J872

joplin 1 0.960769 1271536 O.!J987 0.0011 0.00003 0.0028 0.9!)46 0.0024 0.0002 0.0134 O.!J863

kenny 1.125 0.720823 350024 0 0 0 0 O.!J!J14 0.0086 0 0.0152 O.!J848

marge 1.4375 0.677637 373307 O.!J982 0.0017 0.0001 0.0097 0.9735 0.0168 0.0005 0.0449 0.9546

nmrvin 1 0.928094 753368 0 0 0 0 0.9795 0.0205 0 0.0378 O.!J622

miles 1.125 0.570816 619497 0 0 0 0 0.9933 0.0067 0 0.0503 0.9497

nat 1.4375 0.607016 405233 0 0 0 0 0.9946 0.0054 0 0.0352 0.9648

popeye 1 0.616905 228117 0 0 0 0 0.9889 0.0111 0 0.0214 0.9786

rocky 1.125 0.537631 178959 0 0 0 0 0.9964 0.0036 0 0.0004 0.9996

scooby 1.4375 0.68684 248058 0.9982 0.0016 0.0002 0.0093 0.9815 0.0092 0.0005 0.0169 0.9826

taz 1.4375 0.556867 243961 0 0 0 0 0.9916 0.0084 0 0.025 0.9750

61

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

value for the CPU availability is computed every 10 seconds of simulated time. The

chain contains three states: a, b, and c, corresponding to the CPU availability of 100%,

50%, and 33%, respectively. Let Pxy denote the one-step transition probability of

moving from state x to state y (x, y E {a, b, c}). The actual values for each machine's

transition probabilities are reported in Table 4.14 in [15] (the table is reproduced in

Table 3.13).

To find the steady-state probability Px of being at a state x, we solve the following

set of equations:

together with the normalizing equation Pa + H + Pc = 1.

For the LPAS_DG policy, we compute aj as the steady-state CPU availability for

each machine j from the corresponding Markov chain:

aj = l.OOPa + 0.50H + 0.33Pc

This is justified for the model of System 3.G since the mean execution time for a given

task is much larger than the average time spent in a particular state of the Markov

chain.

To model machine availability, we use a Weibull distribution. The density and

distribution functions for a Weibull distribution are given by (v denotes the machine

availability time, v E (0, oo)) [56]:

Fw(v) = l-e-(v/(3)°',

62

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

respectively. The parameter a is called the shape parameter, and f3 is called the scale

parameter. The actual values for the Weibull parameters depend on the particular

machine. For System 3.G, these parameters are provided in Table 4.14 in [15]. As

in [9], the fault time of a machine is set to a constant 120 time-units.

We simulate two configurations based on System 3.G (3.Gl and 3.G2). Both

systems consist of M = 300 machines. We simulate the execution of each system for

two billion time-units. We group the machines into 15 groups. Each group consists of

20 machines identical in terms of the Markov chain describing CPU availability and

the parameters for the Weibull distribution. Each group has the same parameters as

those of one of the 15 machines of System 3.G listed in Table 4.14 in [15].

In System 3.Gl, we assume that the machines of a group are identical in terms of

their nominal computing powers. Each group has the same nominal computing power

as one of the 15 machines of System 3.G. Furthermore, we assume that the nominal

computing power of a machine depends only on the machine and is independent of

the class of tasks being executed. Thus, if a machine j belongs to a group G and the

nominal computing power for the group is Pc, then Pi,j =Pc, for all i = 1, ... , N.

Thus, a fast machine is fast on all applications. System 3.Gl represents a system

which is mainly used to execute a single application.

In System 3.G2, we assume that each machine has a nominal computing power (on

class i tasks) Pi,j randomly chosen from {1, 1.125, 1.4375} with equal probabilities.

Thus, a machine can be fast executing some applications while, at the same time,

slow executing other applications. System 3.G2 represents a system which is mainly

used to execute multiple applications with inherent heterogeneity.

Finally, we assume that there are N = 4 classes (or applications). The authors

in [9] define BaseTime as the mean execution time of a task submitted to a machine

with a nominal computing power of 1. Thus, each class consists of tasks with the

same value for BaseTime (for class i, we denote it by BaseTimei)· We assume

that BaseTimei = 8750, 17500, 35000, 50000, for i = 1, ... , 4, respectively. This

63

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.2

1

0.8

0.6

0.4

0.2 111111: ..

0
Generic Class 1 Class 2 Class 3 Class 4

DFCFS lIIll Geµ DLPAS DG

Figure 3.1: Relative average task completion times: System 3.Gl under arrival rates

information is enough to generate the matrix µ'. The mean nominal execution time

for a class i task at machine j can be computed as BaseTimei x 1/ ~,j·

Figures 3.1 and 3.2 show simulation results for Systems 3.Gl and 3.G2 under ar­

rival rates a 1 = [0.00457 0.00229 0.00114 0.00080]. In this section, we normalize

the results with respect to the Geµ policy and note that the accuracy of the gener­

ated confidence intervals is 0.13 or less. These results indicate that the FCFS policy

achieves acceptable performance in systems with low task heterogeneity, such as Sys­

tem 3.Gl. However, as the level of task heterogeneity increases (e.g. System 3.G2),

FCFS results in performance degradation which gets worse as the load increases. For

instance, Figure 3.3 shows results for System 3.G2 under higher load (a2 = [0.00495

0.00110 0.00214 0.00135]). In this case, FCFS results in an unstable system. Both

the Geµ and the LPAS_DG policies result in significant performance improvement.

The LP AS_DG policy is generally superior in highly heterogeneous and highly loaded

systems.

64

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.05

1

0.95

0.9

0.85

0.8

0.75
Generic Class 1 Class 2 Class 3 Class 4

DFCFS 1ID1 Geµ DLPAS DG

Figure 3.2: Relative average task completion times: System 3.G2 under arrival rates

al

3.4.6 Robust Modifications

Throughout the previous simulation experiments, we have assumed that the LP AS_

DG policy uses an optimal solution in which the o* matrix contains exactly NM +
1 - N - M zeros. Such a restriction reduces the number of machines that can execute

each task class. In some cases, especially in systems with low task heterogeneity, this

may result in performance degradation. Furthermore, as observed in Section 3.5, this

causes the LPAS_DG policy to be less robust against potential parameter estimation

errors and other sources of errors.

In this section, we modify the LPAS_DG policy by eliminating such a restriction.

However, we avoid the use of optimal solutions having no zero elements in the o*
matrix, since in this case the LPAS_DG policy reduces to the Geµ policy. To do so, we

use the optimal solutions provided by the barrier optimization routine (CPXbaropt) of

ILOG CPLEX [37]. By alleviating such a restriction on the number of zero elements

in the o* matrix, the LPAS_DG policy becomes less aggressive in its exclusion of

65

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1

0.75
Generic Class 1 Class 2 Class 3 Class 4

llill Geµ DLPAS DG

Figure 3.3: Relative average task completion times: System 3.G2 under arrival rates

a2

machines for certain task classes. As our simulations show, this results in improved

performance and increased robustness.

Table 3.14 shows simulation results for the systems of different heterogeneity con­

sidered in Section 3.4.1. These results show that the modified LPAS_DG policy results

in significant performance improvement over the unmodified version. Furthermore,

performance is improved with respect to the Geµ policy: the degradation becomes

less in the case of the LoHi System (System 3.C) and a positive improvement results

in the case of the HiLo System (System 3.D).

In the following experiment, we compare the unmodified LPAS_DG policy against

the modified version with respect to their robustness against CPU availability es­

timates. Consider the following system (System 3.H). The system has identical

machines as System 3.A. We simulate the system under arrival rates a 1 (see System

3.A). Each machine fails at the rate 0.02 per time-unit and the mean fault time is

66

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

two time-units. CPU availabilities are given by:

0.25 if j = 6, 10, 16, 22,

0.5 if j = 5, 9, 14, 15, 21, 27,

0.75 if j = 4, 7, 8, 13, 19, 20, 25, 26,

1 otherwise.

Using an approach similar to Iosup et al. [39] and Zhang and Inoguchi [73], we

assess the impact of inaccuracy under the assumption of null overall inaccuracy [39].

Under this assumption, while any individual estimate may be inaccurate, the (overall)

average estimation inaccuracy is 0. Define I to be the maximum inaccuracy whose

value ranges from 03 (perfect information) to 1003 (high inaccuracy). When a

machine j becomes available, let aj denote the estimated CPU availability for machine

j used by the LPAS_DG policy in solving the allocation LP. In our simulations, aj is

obtained using the following relation: aj = aj x (1 + E), where Eis sampled from the

uniform distribution [-J, +I] and aj is the actual CPU availability for machine j. If

aj x (1 + E) > 1, we set aj to 1; and similarly, if aj x (1 + E) < 0, we set aj to 0.

Figure 3.4 compares the two versions of the LPAS_DG policy in terms of their

performance improvement with respect to the Geµ policy. The figure shows that

the modified version is more robust against CPU availability estimates, while the

unmodified version may result in negative improvement under larger values of I.

This is due to the aggressiveness of the policy in minimizing the number of machines

to execute each task class.

3.5 Implementation

In this section, we use the McMaster Grid Scheduling Testing (MGST) framework

to analyze the performance of the LPAS_DG policy. MGST, the first performance

testing framework for Desktop Grids, was developed by researchers at McMaster

67

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.14: Simulation results using the modified LPAS_DG policy

Under Arrival Rates o:1 Under Arrival Rates o:2

Case w 6 W1 W2 W3 W4 Case w 6 W1 W2 W3 W4

System 3.B

1 0.12 45.453 0.11 0.13 0.12 0.11 1 0.17 39.293 0.18 0.18 0.18 0.16

±0.04% ±0.18%

2 0.25 35.143 0.24 0.27 0.25 0.24 2 0.31 26.193 0.30 0.35 0.32 0.28

±0.95% ±1.14%

System 3.C

1 0.21 03 0.21 0.11 0.27 0.27 1 0.31 -19.233 0.35 0.25 0.33 0.31

±0.03% ±0.19%

2 0.29 -7.413 0.29 0.20 0.36 0.33 2 0.49 -4.263 0.54 0.44 0.49 0.50

±0.59% ±0.93%

System 3.D

1 0.23 -9.523 0.45 0.25 0.24 0.11 1 0.42 -23.533 0.74 0.44 0.53 0.16

±0.08% ±0.49%

2 0.46 4.173 0.93 0.55 0.39 0.27 2 0.69 83 1.50 0.74 0.67 0.34

±1.08% ±1.63%

System 3.E

1 0.21 -53 0.21 0.22 0.21 0.20 1 0.40 -17.653 0.42 0.52 0.40 0.28

±0.04% ±0.44%

2 0.29 -7.413 0.29 0.29 0.29 0.29 2 0.95 19.493 0.95 1.00 0.95 0.90

±0.40% ±3.13%

68

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

30°/o

20°/o

10°/o

00/o _,___~-

-10°/o

-20°10

Inaccuracy

D LP AS DG (Modified)
~LPAS=DG

50°10

Figure 3.4: Performance improvements under different values for the maximum inac­

curacy I

University (Kokaly et al. [42]). MGST simplifies and automates the process of realistic

performance testing over a distributed testbed complementing the use of simulation.

We use the results from the MGST deployment to make several recommendations for

the practical application of the LPAS_DG policy.

3.5.1 Experimental Results

We used MGST to analyze the performance of the LPAS_DG policy under realistic

conditions. We tested the scheme on several systems. The systems used were Intel

(dual-core 2.0 GHz) and PowerPC (single-core 2.0 GHz) based Macintosh comput­

ers. The systems were located on the same network. Each test was conducted two

times, once using the simulation tool used in Section 3.4 and once with MGST. The

metric used in the simulations and experiments is the average response time, includ­

ing average communication delay for the MGST experiments. The communication

delay is the difference between the time a task is sent to be executed and the time

69

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

it begins execution. This delay occurs mainly due to network communication delays,

but it could also be caused by the software layer responsible for the distribution and

execution of the tasks.

The experiments were conducted on four categories of systems depending on ma-

chine and task heterogeneity:

High task heterogeneity and high machine heterogeneity (HiHi).

High task heterogeneity and low machine heterogeneity (HiLo).

Low task heterogeneity and high machine heterogeneity (LoHi).

Low task heterogeneity and low machine heterogeneity (LoLo).

Two to four experiments were conducted on each category. In some experiments

failures were enabled meaning that machines can fail while executing tasks. Machines

were in some experiments fully dedicated (aj = 1 for all j), where their full resources

were used exclusively by the desktop grid. In other experiments only a percentage of

the resources were available for the grid. We will use the following acronyms to express

these properties in the experiments: FE, FD, MFD, MPD for failures enabled, failures

disabled, machine fully dedicated and machines partially dedicated respectively.

The experiments in the HiHi category were conducted on 6 machines and 4 classes

of tasks. Machines 1 to 6 have the same execution rates as those of Groups T

to Y in Table 3.1, respectively. The arrival rates of the task classes were: a =

[2.25 4.50 7.20 12.60].

The average response time for each class of tasks and the over all average response

time are shown in Table 3.15. The simulation results in this and all of the following

tables are at a 953 confidence interval.

In the experiments MPD /FD and MPD /FE machines 4, 5 and 6 had availability

aj = 0.5. The remaining machines were fully dedicated (aj = 1). In the MFD/FE

and MPD /FE experiments each machine failed at the rate 0.05 per time-unit and the

mean fault time was 2 time-units. The periods were exponentially distributed.

70

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3 15· Results of experiment on HiHi setting

MFD/FD MPD/FD MFD/FE MPD/FE

Class Sim MGST Sim MGST Sim MGST Sim t\1GST

1 (0.5G, 0.57) 0.58 (0.97, 0.98) 0.99 (0.61, 0.61) 0.61 (1.10, 1.11)) 1.03

2 (0.33, 0.34) 0.34 (0.22, 0.22) 0.37 (0.35, 0.35) 0.45 (1.10. 1.11) 0.50

3 (0.18, 0.18) 0.22 (0.27, 0.27) 0.29 (0.19, 0.20) 0.20 (0.32, 0.32) 0.46

4 (0.11. 0.11) 0.17 (0.16, O.lG) 0.43 (0.13, 0.13) 0.15 (0.2G, 0.27) 1.3G

Overall (0.20. 0.21) 0.24 (0.27, 0.27) 0.42 (0.23, 0.23) 0.25 (0.35, 0.36) 0.94

In the experiments MPD /FD and MPD /FE the actual performance of the LPAS_

DG policy was much worse than the simulation had predicted. This is discussed in

detail in Section 3.5.2.

The LoHi setting was constructed from 21 machines and 4 task classes. There

were seven groups of machines with each group having 3 machines. Members of the

same group had the same execution rates. Machines in group 1 are machines 1, 2 and

3, machines in group 2 are machines 4, 5 and 6, etc. Groups 1 to 7 have the same

execution rates as those of Groups T to Z in Table 3.8, respectively. The arrival rates

of the task classes were: a= [22.5 22.5 18.0 18.0].

The average response time for each class of tasks and the over all average response

time are shown in Table 3.16.

In the MPD /FD experiment machines 4, 11 and 15 had availability a1 = 0.5.

Machines 7, 14 and 18 had availability a1 = 0.75. The remaining machines were fully

dedicated (a1 = 1).

The average response times of the MGST experiment were slightly higher due

to the fact that actual execution rates were somewhat slower. This is discussed in

Section 3.5.2.

The HiLo setting was constructed from 21 machines and 4 task classes. The

machines were divided into seven groups in the same way machines in the setting

71

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 3.16: Results of experiment on LoHi setting

MFD/FD MPD/FD

Class Sim MGST Sim MGST

1 (0.22, 0.22) 0.31 (0.24, 0.24) 0.36

2 (0.12, 0.12) 0.22 (0.13, 0.13) 0.26

3 (0.30, 0.30) 0.37 (0.37, 0.37) 0.44

4 (0.29, 0.29) 0.35 (0.35, 0.35) 0.47

Overall (0.22, 0.22) 0.31 (0.26, 0.27) 0.37

LoHi were divided. Groups 1 to 7 have the same execution rates as those of Groups

T to Z in Table 3.9, respectively. The arrival rates of the task classes were: a =

[10.50 21.00 26.25 26.25].

The average response time for each class of tasks and the over all average response

time are shown in Table 3.17. The availabilities of machines were as in the LoHi

setting.

Table 3.17: Results of experiment on HiLo setting

MFD/FD MPD/FD

Class Sim MGST Sim MGST

1 (0.49, 0.49) 0.50 (0.79, 0.80) 1.22

2 (0.28, 0.28) 0.31 (0.42, 0.42) 0.77

3 (0.24, 0.24) 0.32 (0.27, 0.27) 0.53

4 (0.14, 0.14) 0.35 (0.19, 0.19) 0.73

Overall (0.25, 0.25) 0.35 (0.35, 0.35) 0.74

Compared to simulation, the LPAS_DG policy performed poorly in the MGST

experiment. The reason is that the ideal overall load on the machines was fairly high

(86.43), but the different sources of errors and overhead caused the actual load to be

close to 100%. The sources of errors are higher overall arrival rates, over estimation

72

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

for execution rates and communication overhead coupled with the scheduling delay.

See Section 3.5.2 for more details.

The LoLo setting was constructed from 21 machines and 4 task classes. The

machines were divided into seven groups in the same way machines in the setting

LoHi were divided. Groups 1 to 7 have the same execution rates as those of Groups

T to Z in Table 3.10, respectively. The arrival rates of the task classes were: o: =

[18.00 20.25 15.75 22.50].

The average response time for each class of tasks and the over all response time

are shown in Table 3.18. This experiment included machine failures. In the MFD/FE

and MPD /FE experiments each machine failed at the rate 0.05 per time-unit and the

mean fault time was 2 time-units. The periods were exponentially distributed. The

availabilities of machines were as in the LoHi setting.

Table 3.18: Results of experiment on LoLo setting

MFD/FD MPD/FD MFD/FE MPD/FE

Class Sim MGST Sim MGST Sim MGST Sim MGST

1 (0.25, 0.25) 0.27 (0.28, 0.28) 0.39 (0.25, 0.25) 0.35 (0.31, 0.31) 0.52

2 (0.23, 0.23) 0.28 (0.30, 0.30) 0.39 (0.24, 0.24) 0.34 (0.32, 0.32) 0.63

3 (0.23, 0.23) 0.28 (0.27, 0.27) 0.35 (0.24, 0.24) 0.33 (0.32, 0.32) 0.57

4 (0.21, 0.22) 0.25 (0.32, 0.32) 0.36 (0.24, 0.24) 0.29 (0.34, 0.34) 0.52

Overall (0.23, 0.23) 0.27 (0.30, 0.30) 0.37 (0.24, 0.24) 0.33 (0.32, 0.32) 0.56

The response times in the results of our experiment were significantly higher than

the simulation results. The reason behind this is the high load coupled with failures

and over estimation of the execution rates (the assumed execution rates were higher

than the actual ones in this experiment). See Section 3.5.2.

73

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

3.5.2 Analysis and Recommendations

The LPAS_DG policy was implemented for the first time in MGST. Here we give a

few remarks regarding the implementation of this policy.

The LPAS_DG policy makes decisions based on the matrix 8*, which is produced

by solving an allocation LP. The 8* matrix depends on the values of aj. As a re­

sult, it is suggested in Section 3.3 that a new 8* matrix must be produced at every

availability /unavailability event.

Since the matrix 8* depends on aj, if the machines' aj varies between availability

and unavailability events, we think that 8* should be updated every time any aj

changes. This solution is expensive to implement because it is very hard to notify

the scheduler of every change to every aj. In addition, this will require solving the

allocation LP frequently, which is also expensive and may raise a scalability problem

(the scheduler could become the bottleneck). To solve this issue, we assumed a time

resolution Tsystem· Here, the values of aj are sent to the scheduler periodically, and it

solves the allocation LP after receiving the updated values of aj. The determination

of an optimal update period is open to research. We believe that this modification is

necessary to make the LPAS_DG policy scalable.

In some experiments the performance of the scheduling schemes differed from the

simulation results due to the machines experiencing unexpectedly high loads. The

different sources of error that can occur in a real system can significantly raise the

load, even potentially causing instability in the system. These errors can be caused

by:

1. The measured arrival rates being larger than that assumed.

2. Overestimation of execution rates.

3. Overhead caused by communication and scheduling delays. Assume

that a machine announces its availability at time t 1 , the scheduler learns of the

availability of this machine at time t2 and consequently performs the scheduling

74

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

and chooses a task to send at time t 3 • The machine then receives the task and

starts the execution at time t4 . At time t5 the machine finishes executing the

task but only at time t 6 does the scheduler learn that the task is done, obtaining

the results at t7. In the model, the execution time is considered to be ts - t4, but

in the actual implementation, there is an overhead of (t4 - t 1) + (h - t5). This

overhead affects the load if the overhead is significant with respect to t5 - t4.

4. Machine failures. Although machine failures can be incorporated in the work­

load models, they can still increase the effective load due to the fact that it takes

time for the scheduler to realize that a machine is down. This time is wasted and

effectively increases the load. For example, when using the LPAS_DG policy,

suppose that machine 3 is the only machine executing tasks from class 1, and

the execution time is 5 minutes. If machine 3 fails when executing a particular

task and the "time-out" parameter was set to 3 times (i.e. 3 times the estimated

execution time should elapse before considering the task "timed out"), then the

scheduler will not consider machine 3 down until 15 minutes have elapsed from

the moment that the task was sent. These 15 minutes are essentially lost, with

arriving tasks from class 1 accumulating in the queue at the scheduler within

that time.

If any or all of the above factors cause a significant increase in the load, the per­

formance of the scheduling scheme will deteriorate. Note that these factors were only

discovered upon deploying the LPAS_DG policy on MGST. They were not discovered

in simulations.

The LPAS_DG policy suffered in some cases in the experiments from the above

factors due to the aggressive nature of this policy in minimizing the number of ma­

chines to execute each task class. This results in exclusivity of machines for certain

task classes. When one class can be executed by a small number of machines, then the

performance depends only on these machines, so the effect of the factors mentioned

above is magnified. Contrast this with FCFS, where if a machine under performs,

75

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

the effect is less obvious since this under performing machine can get help from other

(potentially over performing) machines. Finally, the scheduling delay can contribute

to the time needed to execute tasks, effectively raising the load on machines for all

policies.

As a result of the MGST experiments, we propose the following suggestions to

improve robustness of the LPAS_DG policy:

1. Arrival rates estimation improvement. Since the LPAS_DG policy de­

pends on solving an allocation LP and that in turn depends on values that

include arrival rates of task classes, estimates should be as accurate as possible.

To do so, we propose that the actual arrival rates should be monitored (a fea­

ture that MGST provides), and check the values against the estimated values

every specific time (TarrivaLrate) and resolve the LP if one of the actual values

differs from its estimate by a specific threshold percentage (TharrivaLrate) that

depends on the load and the task class. TarrivaLrate could be a specific time

period or a number of task arrivals from a class (e.g. 10 tasks). We believe that

this solution is not computationally costly, since the checking operation requires

O(N) time and O(N) space. We expect the number of task classes (N) to be

relatively small, so there should be no scaling issues. An alternative solution is

to over estimate the arrival rates of classes, however, caution must be taken to

guarantee that the system is theoretically stable.

2. A voiding execution rates overestimation. We propose that every execu­

tion rate entry (for a specific machine for a specific task class) is modified then

checked (against the estimated peer) whenever a task is done, then the LP

is resolved if that entry differs from the estimated one by a specific threshold

percentage (Thexecution_rate) that depends on the load and the task class. This

solution requires O(N M) space and 0(1) time. Alternatively, the execution

rates can be assumed slower than they are estimated to be in a manner that

guarantees that they can never be over estimated (how to do this is not clear).

76

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Caution must be taken to assure that the system is theoretically stable.

3. Lessen the effect of communication and scheduling delays. Let Pi,j be

an estimate of the value

1/µ·. i,J

1/µ· · + T· l,J J

where Tj is the communication and scheduling delay for machine j.

In the example mentioned when discussing the sources of errors (see point 3),

Pi,j would be

where the times are for the particular choice of i and j.

We propose that all execution rates must be multiplied by Pi,j before resolving

the LP to take this effect into consideration.

4. Lessen the machine failure effect. We propose choosing a low value for the

time out, which will result in allowing the scheduler to quickly detect machine

failures. The downside of this approach is that the scheduler might consider a

machine failed when it is not (in particular, when availability rapidly decreases

for a machine).

3.6 Summary

A distinct feature for this work is the proposal of fault-aware policies that take into

consideration the heterogeneity of Desktop Grids. We have proposed to use the

Geµ policy for Desktop Grids when information on the machine execution rates is

available. When task arrival rates and CPU availabilities are available, we have

developed the LPAS_DG policy which utilizes the solution to an allocation LP. Both

policies perform much better than FCFS, especially for applications with high task

77

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

heterogeneity. There are some cases for which the Geµ policy is recommended over

the LPAS_DG policy: i) when the applications have limited task heterogeneity, ii)

when the system has limited machine heterogeneity, or iii) when there is a high level

of inaccuracy in the estimation of task arrival rates, machine execution rates, or CPU

availabilities. Otherwise, the performance of the LPAS_DG policy is significantly

better, especially in highly heterogeneous systems.

78

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Chapter 4

Decentralized Load Balancing for

Heterogeneous Grids

In this chapter, we introduce a new decentralized load balancing for grids. Section 4.1

describes several related policies. The LPAS_dec policy is described in Section 4.2. In

Section 4.3, we present the results obtained in our simulation experiments. Section 4.4

concludes the chapter. Contents of this chapter appear in Al-Azzoni and Down [2].

4.1 Current Policies

As discussed earlier, the MCT (minimum completion time) policy assigns an arriving

task to the machine that has the earliest expected completion time. Several authors

have suggested decentralized load balancing policies that are based on the MCT policy,

e.g., the LBA (Load Balancing on Arrival) policy in [62] and the IDP (Instantaneous

Distribution Policy) in [50]. When a task arrives to a machine, the machine con­

tacts all machines in the system to determine the machine with the earliest expected

completion time.

There are several limitations to such policies. First, when a task arrives to a

machine, the machine requires full state information. As explained in Section 1.3,

79

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

policies that require full state information may suffer from performance degradation

due to the effect of outdated information. Furthermore, the policy suffers from a

significant information exchange overhead. In particular, for each arriving task to a

machine, the machine needs to send a request message to all machines in the system

who in turn need to send back a reply message containing the expected completion

time information. Thus, a total of 2 x (M - 1) message exchanges are needed for

every arriving task. Further discussion on the MCT policy is provided in Section 2.1.

An advantage of the MCT policy is that a machine does not require any informa­

tion about the task arrival rates or machine execution rates of other machines. Thus,

only the expected completion times need to be exchanged between machines. It is for

this reason that the MCT policy is suited for systems where predicting these rates is

not possible or severely inaccurate.

In order to address the limitations of the MCT policy, we look at a decentralized

version of the KPB policy (see Section 2.1). With respect to a machine j, let s;,j be

the set of the l kM /100 J machines that have the smallest expected execution time for

class i tasks. When a task of class i arrives to machine j, the machine assigns the

task to the machine in the subset s;,j that has the earliest expected completion time.

Define k = lkM/lOOJ.

The KPB policy requires knowledge on machine execution rates while the MCT

policy does not. We use the following mechanism for exchanging information on ma­

chine execution rates. When a task of class i arrives to a machine j', the machine

sends request messages to the machines j E s;,j'. In each request message, machine

j' includes its local execution rates (µi,j', i = 1, ... , N). Upon receiving the request

messages, each of the contacted machines replies with a message including the corre­

sponding expected completion time as well as the local execution rates. Thus, at the

end, machine j' and the machines j E s;,j' update their local state information with

the corresponding execution rates.

80

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

4.2 The LPAS_dec Policy

The LPAS_dec policy is similar to the KPB policy in that only a subset of machines

need to be considered for each class, however, the determination of this subset requires

solving the following LP [7], where the decision variables are >. and 8i,j for i = 1, ... , N,

j = 1, ... , M. The interpretation of the variables and constraints is identical to that

of the allocation LP in Section 2.2.1.

max >.

(4.1)
M

s.t. L 8i,jµi,j 2:: >.ai, for all i = 1, ... , N,
j=l

(4.2)
N

'L:8i,j ~ 1, for all j = 1, ... , M,
i=l

(4.3)

8i,j 2:: 0, for all i = 1, ... , N, and j = 1, ... , M.

The LPAS_dec policy can be stated as follows. Each machine j' solves a local ver­

sion (using local data) of the allocation LP to find { 8i,j}, i = 1, ... , N, j = 1, ... , M.

When a new task of class i arrives to a machine j', let S{ denote the set of machines

whose corresponding 81,j at machine j' is not zero. Machine j' assigns the task to the

machine j E S{ that has the earliest expected completion time among the subset of

machines S{. Again, ties are broken arbitrarily.

The LPAS_dec policy requires knowledge on both arrival and execution rates. We

use the following mechanism for information exchange. When a task of class i arrives
·I

to a machine j', the machine sends request messages to the machines j E Sf . In

each request message, machine j' includes its local arrival and execution rates (O'.i,j',

µi,j', i = 1, ... , N). Upon receiving the request messages, each of the contacted

81

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

machines replies with a message including the corresponding expected completion

time as well as the local arrival and execution rates. Thus, at the end, machine j'

and the machines j E S{ update their local state information with the corresponding

arrival and execution rates.

Under ideal conditions when full state information is available, all the machines

solve the same allocation LP and thus use the same 8* matrix, achieving the maximum

capacity. However, in practice, at any given time, one or more of the machines may

have different views of the state of the system (here, the state of the system refers

to the arrival and execution rates). Thus, they solve different allocation LPs and the

resulting 8* matrices are different. However, as our simulation experiments indicate,

the information exchange mechanism of the LPAS_dec policy is effective in its state

update and thus the machines tend to quickly have the same view of the system.

Furthermore, since the LPAS_dec policy does not use the actual values for { 8*} (it

only uses information on what entries are nonzero), and since these LPs are inherently

robust with respect to the arrival and execution rates, the resulting 8* matrices tend

to be similar with respect to the positions of the zero and nonzero entries. Thus,

performance would not be significantly deteriorated when the observed system state

is a little different amongst the machines. This also explains the observed robustness

of the LPAS_dec policy against parameter estimation errors (see Section 4.3.2).

Consider a system with two machines and two classes of tasks (M = 2, N = 2).

Assume initially that a and µ are known by both machines:

[
1 1.45] [9 a= , andµ=
1 1.45 2

Solving the allocation LP gives

6* = [0 0.5] .
1 0.5

Thus, all arriving tasks that belong to class 1 are assigned to machine 2. At the

times of their arrivals, tasks that belong to class 2 are assigned to the machine, either

82

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

machine 1 or 2, that has the earliest expected completion time.

Now, assume that a 1,2 becomes 0.5. Thus, machine 2 solves a new allocation LP

to obtain:

0.3273] .

0.6727

Even though machines 1 and 2 use different 8* matrices until the next state update,

they are equivalent in terms of the locations of the zero and nonzero entries. Thus,

machine 1 still uses an allocation matrix that is equivalent in effect to the allocation

matrix which maximizes the system capacity.

Ideally, the number of zero elements in the o* matrix should be NM+ 1 - N - M.

If the number of zero elements is greater, the LPAS_dec policy would be significantly

restricted in shifting workload between machines resulting in performance degrada­

tion. Furthermore, in this case, our information exchange mechanism becomes less

effective in its state update. Also, solutions that result in degenerate cases should be

avoided. For example, if the 8* matrix contains no zeros at all, then the LPAS_dec pol­

icy reduces to the MCT policy. Throughout the chapter, we use an optimal solution

in which the o* matrix contains exactly NM + 1 - N - M zeros.

4.3 Simulation Results

We use simulation to compare the performance of several load balancing policies

including the LPAS_dec policy. In Section 4.3.1, we simulate an artificial system with

high heterogeneity levels to show the impact of heterogeneity on performance. Then,

in Section 4.3.3, we show the results of simulating a realistic grid.

The task arrivals are modeled by independent Poisson processes, each with rate

ai,j, i = 1, ... , N, j = 1, ... , M. The execution times are exponentially distributed

with rates µi,j, where 1/ µi,J represents the mean execution time of a task of class i at

machine j, i = 1, ... , N, j = 1, ... , M.

83

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

We use the long-run average task completion time W (defined in Section 3.4), as

a metric for performance comparison. For each simulation experiment, we also show

the average task completion time for class i tasks, Wi, for all i = 1, ... , N. Another

metric we also show is the total number of message exchanges, X. With respect

to a given policy, a larger value for X indicates more overhead is involved in state

information exchange.

In this section, we define several systems. Each simulation experiment models a

particular system, characterized by the values of M, N, ai,j, and µi,j, i = 1, ... , N,

j = 1, ... , M. Each experiment is repeated 30 times. For every case, we give W, Wi,

i = 1, ... , N, and X. For W, we also give the accuracy of the confidence interval

defined as the ratio of the half width of the interval over the mean value (all statistics

are at 953 confidence level).

4.3.1 Task and Machine Heterogeneity

System 4.A has M = 7 machines and N = 4 classes. Define a 1 and µ 1 as follows:

2 1.5 1.75 1 3 1.9 1.35

al=
1.35 1.5 2.4 1.55 2.9 0.75 1.55

4 2.75 1 1.35 1.5 0.9 1

2 1.75 2 1.5 2.25 1.75 0.75

and

4.5 2 9.5 6.2 10.25 2.25 3.95

µ1 =
6.2 4.5 6 2 4.2 5.9 10.25

9.5 6.5 4 10 5.9 2.25 3.95

2.25 10 2 3.95 1.75 10 1.75

Initially, the arrival and execution rates are given by a = a 1 and µ = µ 1
. The

rates only change at regular rate-change events. At every rate-change event, only

a single rate from ai,j or µi,j, i = 1, ... , N, j = 1, ... , M, changes randomly with

84

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Table 4.1: Simulation results for System 4.A

Policy w W1 W2 W3 W4 ~

MCT 3.41 3.40 3.40 3.40 3.43 0%

±13.31%

KPB 0.37 0.28 0.58 0.40 0.20 66.67%
-
k=2 ±4.04%

KPB 0.24 0.20 0.25 0.27 0.26 50.02%
-
k=3 ±0.59%

LPAS_ 0.22 0.23 0.19 0.24 0.21 65.19%

dee ±0.36%

equal probabilities. Time intervals between the rate-change events are exponentially

distributed with mean 1/0.035 time-units. For a change in a, ai,j is set to af,j, l.laf,j,

or 1.2ai,j with equal probabilities. For a change in µ, µi,j is set to µI,j, 1.05µ{,j, or

l.l5µf,j with equal probabilities. Thus, the system experiences different loads with

the lowest average load of 77.59% (when a = a 1 and µ = 1.15µ 1) and the highest

average load of 89.23% (when a= l.2a1 andµ= µ 1).

Table 4.1 shows simulation results for System 4.A. We simulate the execution of

the system for 200,000 time-units. In the last column of the table, we define ~ as

the improvement in the total number of message exchanges (X) with respect to the

MCT policy. For X, the accuracy of the confidence intervals is less than 0.1%.

The MCT policy performs much worse than the other policies. In general, the

MCT policy achieves poor performance and even results in unstable systems when

the system is highly loaded and there is high task heterogeneity and high machine

heterogeneity. Using the KPB policy, performance is dramatically improved with

respect to the MCT policy. However, finding an appropriate value fork is problematic.

Furthermore, depending on the value of k, there is a tradeoff between the achieved

performance (W) and the overhead of message exchanges (X). The LPAS_dec policy

85

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

achieves the best performance for System A even though there is a dramatic decrease

in the total number of message exchanges. It results in values for .6. comparable with

those of the KPB policy with k = 2, while achieving an improvement of 40% in the

average task completion time.

4.3.2 Robustness

We assess the impact of inaccuracy under the assumption of null overall inaccuracy

(see Section 3.4.6). Consider an actual arrival rate ai,j for class i tasks at machine j.

Let o:L denote the (corresponding) estimated arrival rate actually used by the policy.

In our simulations, af,j is obtained using the following relation: o:L = ai,j x (1 + E),

where Eis sampled from the uniform distribution [-/,+I] and I is the maximum

inaccuracy. Analogously defined, µf,j denotes the estimated execution rate of class i

tasks at machine j used by the policy.

Figure 4.1 compares the LPAS_dec policy and the KPB policy (with k = 3) in

terms of their performance on System 4.A under different inaccuracy levels. We do

not include the results for the MCT policy since it results in severe performance

degradation or even system instability for low values of I. For example, using the

MCT policy results in W = 6.61 time-units when I= 10% and the system is unstable

when I = 30%. This experiment shows that the LPAS_dec policy has robustness

advantages over the other policies which can be explained in part by the property

that the solution to the allocation LP is inherently robust.

4.3.3 Realistic Architectures

To simulate more realistic scenarios, we use the data reported in [9, 15] which was

collected by running benchmarking tools on an actual system (see Section 3.4.5). We

refer to this system as System 4.B.

We simulate two configurations based on System 4.B (4.Bl and 4.B2). Both

systems consist of M = 300 machines which are grouped into 15 groups. We simulate

86

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.2

1

0.8

131: 0.6

0.4

0.2

0
00/o 10°/o 20°/o

I

30°/o

DKPB (IZ=3)
Ea LPAS_dec

40°/o

Figure 4.1: System 4.A simulation results under different values for the maximum

inaccuracy

the execution of each system for two billion time-units.

To have dynamic CPU availabilities, the steady-state CPU availability for each

machine changes randomly at regular rate-change events (time intervals between such

events are exponentially distributed with mean 5 million time-units). At every rate­

change event, each machine assumes the same parameters as one of the 15 machines

of System 4.B listed in Table 4.14 in [15] (reproduced in Table 3.13) with equal

probabilities. Let a1 be the steady-state CPU availability of a machine j. Thus, the

execution rate for class i tasks at machine j is effectively µi,j x a1. We assume that

the load balancing policies use these estimated effective execution rates.

In System 4.Bl, we assume that the machines of a group are identical in terms of

their nominal computing powers. Each group has the same nominal computing power

as one of the 15 machines of System 4.B. Furthermore, we assume that the nominal

computing power of a machine depends only on the machine and is independent of

the class of tasks being executed. System 4.Bl represents a system which is mainly

87

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.10

1

0.75

0.5

0.25

0
Generic Class 1 Class 2 Class 3 Class 4 x

DIJMCT DLPAS dee

Figure 4.2: Relative average task completion times and number of message exchanges:

System 4.Bl under arrival rates a

used to execute a single application.

In System 4.B2, we assume that each machine has a nominal computing power (on

class i tasks) Pi,j randomly chosen from {1, 1.125, 1.4375} with equal probabilities.

Thus, a machine can be fast executing some applications while, at the same time,

slow executing other applications. System 4.B2 represents a system which is mainly

used to execute multiple applications with inherent heterogeneity.

Finally, we assume that there are N = 4 classes (or applications). We assume

that BaseTimei = 8750, 17500, 35000, 50000, for i = 1, ... , 4, respectively. This

information is enough to generate the matrixµ. Assuming aj = 1, the mean execution

time for a class i task at machine j can be computed as BaseTimei x 1/ Pi,j·

Figures 4.2 and 4.3 show simulation results for Systems 4.Bl and 4.B2 under ar­

rival rates a = [0.00457 0.00229 0.00114 0.00080]. For a machine j, we assume that

ai,j = ad M, i = 1, ... , N. In this section, we normalize the results with respect to

the MCT policy and note that the accuracy of the generated confidence intervals is

88

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

1.10

1

0.75

0.5

0.25

Generic Class 1 Class 2 Class 3 Class 4 x

DDMCT DLPAS dee

Figure 4.3: Relative average task completion times and number of message exchanges:

System 4.B2 under arrival rates a

0.1 % or less. The KPB policy is not included as it is difficult to find an optimal value

for k. These results indicate that the MCT policy achieves acceptable performance

in systems with low task heterogeneity, such as System 4.Bl. However, as the level

of task heterogeneity increases (e.g. System 4.B2), the MCT policy results in perfor­

mance degradation which gets worse as the load increases. The LPAS_dec policy is

generally superior in highly heterogeneous and highly loaded systems. Of course, there

is the added advantage of significant reduction in the overhead of state information

exchange.

4.4 Summary

In our work, we have developed the LPAS_dec policy which utilizes the solution to an

allocation LP. The policy takes into account information on heterogeneity resulting

in improved performance. However, it requires dynamic knowledge on task arrival

89

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

and machine execution rates. The information exchange mechanism used by the

LPAS_dec policy is shown to dramatically cut down the communication overhead

while being effective in updating the state information in a decentralized fashion.

90

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Chapter 5

Conclusion

In this thesis, we have proposed several resource management policies for different H C

systems. These policies utilize the solution to an allocation LP which maximizes the

system capacity. Such policies require knowledge on both arrival and execution rates.

Our simulation experiments show that these policies perform very competitively in

highly heterogeneous systems.

There are several lines along which future research could proceed.

We note that there has been little work done in characterizing actual HC system

workloads. Hence, we believe that there is a need to develop a benchmark

framework which characterizes actual workloads and can be used to compare

different policies in terms of several performance metrics (for example, see the

work of Li et al. [49]).

The main issue addressed in our work is dealing with heterogeneity of HC sys­

tems within the context of resource management. This work does not include

other factors such as communication delay, data transfer costs, heterogeneous

network bandwidths, and network topologies. We believe that the basic frame­

work presented here can be adapted to such settings.

Resource management for HC systems is an emerging field of research. There

91

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

are other kinds of HC systems that have not been discussed in this thesis. For

example, a hierarchical grid can be constructed by using multiple computing

clusters where each of these clusters has its own RMS (see Garonne et al. [32]).

Another emerging kind of HC systems uses P2P (peer to peer) based technology

for resource management (see Chakravarti et al. [17] and Kim et al. [41]) . Given

the success of our linear programming based policies, it would be worthwhile to

explore the potential of such an approach in developing resource management

policies for these emerging HC systems.

92

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Appendix A

Here, we apply the fluid limit methodology in proving several stability results. Our

analysis will involve a formal limiting fluid model for the system. This is done by

describing the system as a Markov process and performing a scaling in time and space

that allows the use of law of large numbers results, leading to a deterministic model

where the flow through the system is continuous (fluid) rather than discrete (tasks).

The use of fluid model techniques for characterizing stability is a well established

methodology: see, for example, the work of Chen [18], Chen and Yao [19], Dai [23, 24],

and Dai and Meyn [25].

First, we define the system dynamics of the queueing network corresponding to

our workload model. Class i tasks arrive via an arrival process with independent and

identically distributed (i.i.d.) interarrival times {~i(n)} where ai = 1/ E[~i(l)]. Also,

let T/i,j (n) denote the execution time for the nth class i task executed at machine

j, where µi,j = 1/ E[T/i,j(l)] if machine j can execute class i tasks, and µi,j = 0

otherwise. We assume that the sequence { T/i,j (n)} is i.i.d. for each i and j. Let Ai (t)

be the residual interarrival time for class i tasks at time t. Let Yi,j(t) be the residual

execution time for class i by machine j at time t.

Let ~,J (t) be the cumulative time that machine j has spent on class i tasks in

(0, t]. Note that the functions Ti,j(t) are determined by the mapping heuristic and

the scheduling policy of machine j. Let Tj(t) = I::1 Ti,j(t) represent the cumulative

time that machine j has been busy in (0, t].

93

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Define Wi,j(t) as the cumulative amount of time that it takes machine j to execute

class i tasks present in its queue at time t. Thus, Wi,J(t) represents the class i workload

of machine j at time t. We also define Qi,J(t) as the total queue length of class i tasks

at machine j at time t. Let ai,J (t) be the total number of class i tasks assigned by

the mapping heuristic to machine j in (0, t]. With the definitions above, we are now

able to give an expression for the evolution of Wi,j(t), i = 1, ... , N, j = 1, ... , M,

Qi,j (O)+ai,j (t)

Wi,J(t) = L T/i,J(n) - Ti,j(t).
n=l

Second, we construct a Markov process X for the system. For any of the mapping

heuristics discussed in this paper,

X(t) := (Wi,J(t), Ai(t), Yi,J(t) : i = 1, ... , N, j = 1, ... , M)

is a Markovian state evolving on

The process X may be shown to have the strong Markov property.
N M · - -

Let w = Li=l Lj=l Wi,j(O). Suppose that the funct10n (Wi,J(t), Ti,J(t) i

1, ... , N,j = 1, ... , M) is a limit point of the functions (w- 1Wi,J(wt), w-1Ti,J(wt) :

i = 1, ... , N,j = 1, ... , M) when w----+ oo. We call (Wi,j(t), Ti,j(t): i = 1, ... , N,j =

1, ... , M) a fluid limit of the system.

We are now ready to describe the fluid model corresponding to our workload

model. Let (Wi,j(t), Ti,J(t) : i = 1, ... , N and j = 1, ... , M) be a fluid limit for the

t D fi 1. °'i,j(t) · - 1 N · - 1 M . th 1. "t sys em. e ne ai,j as 1mt-+oo -t-, i - , ... , , J - , ... , , assuming e im1

exists (for the mapping heuristics we are concerned with, ai,j does exist). For any

mapping heuristic, every fluid limit satisfies the following set of conditions (for all

i = 1, ... , N and j = 1, ... , M):

- - aijt -
(A.1) W· ·(t) = W· ·(O) + -' -T· ·(t)· i,J i,J i,J ' µi,j

(A.2) Wi,J(t) ;::: O;

94

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

(A.3) Ti,J(O) = 0 and Ti,J(·) is nondecreasing;

The derivatives above exist almost everywhere, as Ti,J(t) is Lipschitz for all i, j. From

this point on, derivatives will be understood to be taken on the condition that they

exist.

The conditions (A.1)-(A.4) do not completely specify the fluid limits, and there

are other conditions on Ti,J(t). The complete set of conditions is known as the fluid

model (see Theorem 2.3.2 of [23]). A fluid solution refers to any solution to the fluid

model equations.

The fluid model is said to be stable if there exists a fixed time t' > 0 such that

Wi,J(t) = 0, t > t', i = 1, ... , N, j = 1, ... , M, for any fluid solution. The fluid model

is said to be (weakly) unstable if there exists a t' > 0 such that for every solution of

the fluid model with L.":~ 1 L.":~ 1 Wi,J(O) = 0, L.":~ 1 L.":~ 1 Wi,J(t') -j. 0. Analyzing the

stability region of the deterministic fluid model defined above allows us to characterize

the maximum capacity of the actual system.

PROOF. [Theorem 2.2.l]

Consider the LP-Static heuristic. If.* > 1, we show that the LP-Static heuristic is

guaranteed to stabilize the system. The LP-Static heuristic randomly maps tasks to

machines according to probabilities Pi,J = \~:i;j, i = 1, ... , N, j = 1, ... , M.

Let WJ(t) denote the total workload at machine j at time t. Thus,

N

Wj(t) = L Wi,j(t).
i=l

Define WJ(t) as a limit point of the function w-1wJ(wt) as w---+ oo, j = 1, ... , M.

Then,

95

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

N

Wj(t) = L Wi,j(t).
i=l

Note that if Wj(t) > 0, then it must be true that ftTj(t) = 1. Hence, if Wj(t) > 0,

then

d- a1,j aN,j d- d- ()
dt Wj(t) = -µ . + · · · + -µ . - dtT1,j(t) - · · · - dtTN,j t

l,J N,J

a1. aN. = _,J + ... + __ ,] - 1.
µl,j µN,j

Since using the LP-Static heuristic as a mapping heuristic results in ai,j = aiPi,j =
8i jµi,j · 1 N · 1 M ·t t b t th t ~, z = , ... , , J = , ... , , I mus e rue a

M

< 0 since L o:,j ~ 1 and A* > 1.
j=l

Thus, if Wj(t) > 0, then ftWj(t) < 0 which implies that there exists a fixed time

t' > 0 such that Wj(t) = 0, and hence Wi,j(t) = 0, i = 1, ... , N, j = 1, ... , M, for

all t > t'. Hence, the fluid model is stable and the result follows from Theorem 4.2

in [24].

PROOF. [Theorem 2.2.2]

Assume that the system can be stabilized. Hence, the corresponding fluid model

is stable i.e., there exists a fixed time t' > 0 such that Wi,j(t) = 0, t > t', i =

1, ... , N,j = 1, ... , M, for any fluid solution. Chooses > t'. Then, ftWi,j(s) = 0,

i = l, ... ,N,j = l, ... ,M. Also, let ftTi,j(s) = oi,ji i = l, ... ,N,j = l, ... ,M.

Condition (A.1) implies (after taking the derivative of both terms and substituting s

fort),

a·.
-3:.il_ - oi,j = 0, for all i = 1, ... , N, j = 1, ... , M.
µi,j

96

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Thus,

0 = ai,j - bi,jµi,j, for all i = 1, ... , N, j = 1, ... , M.

Summing over j,

M

0 = ai - L bi,jµi,j, for all i = 1, ... , N.
j=l

Thus, the following constraints hold ((A.6) and (A.7) follow from (A.4)):

(A.5)
M

L bi,jµi,j ~ ai, for all i = 1, ... , N,
j=l

(A.6)
N

L Oi,j :s; 1, for all j = 1, ... , M,
i=l

(A.7)

oi,j ~ 0, for all i = 1, ... , N, and j = 1, ... , M.

Thus, (A.5)-(A.7) provide a feasible solution for the allocation LP (2.1)-(2.3) with

,* = 1 contradicting the assumption that ,* < 1. Hence, the fluid model is weakly

unstable and by Theorem 2.5.1 of [23], the system can not be stabilized.

PROOF. [Theorem 2.4.l]

Using the Guided-LPAS heuristic (introduced in Section 2.4), we can show that

(A.8) Jr· ·a·(t) - M + 1 - ~ C· ., 1i < a· ·(t) <Jr· ·a·(t) + C. · 1t + 1. i,J i ~ i,J y i - i,J i,J i i,J y l

j'#j

First, let us show that

Assume that the Guided-LPAS heuristic maps an arrival of class i at time t to machine

j. Since the arriving task was mapped onto machine j, it must be true from the

97

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

definition of the Guided-LPAS heuristic (see condition (iii)) that o:i,j(t-) < 1fi,jcxi(t)+

Ci,r./t. It then follows that cxi,j(t) = cxi,j(t-) + 1 < 1ri,jcxi(t) + Ci,j.../i + 1, proving

(A.9).

Second, we show

(A.10) 7f· ·cx·(t) - M + 1 - "°' C- ., 1t < ex· ·(t). i,J i ~ i,J v i - i,J

j'=h

Consider a machine j. Clearly it is assigned the following number of class i tasks:

ai,j(t) = ai(t) - I: ai,j'(t).
j'=h

where j' E {1, ... , M}. Using the Guided-LPAS heuristic, (A.9) holds and it follows

that

ai,j(t) = ai(t) - L: ai,j'(t)
j'=h

2: cxi(t) - L(7ri,j'cxi(t) + Ci,j'Vt + 1)
j'=h

j'=h j'=h

=Jr· ·cx·(t) - M + 1 - "°' C- ., 1t. i,J i ~ i,J vi
j'of.j

This proves (A.10).

F (A 8) "t f 11 th t ,s;,jµi,j . - 1 N . 1 M rom . , I o ows a o:i,j = cxi1fi,j = --v-, i - , ... , , J = , ... , .

Thus, the results follow as before (see the proof of Theorem 2.2.1).

PROOF. [Theorem 2.4.2]

Assume that the Guided-LPAS-2/k heuristic maps an arrival of class i at time t to

machine j. Since the arriving task was mapped onto machine j, it must be true from

the definition of the Guided-LPAS-2/k heuristic (see the definition of Ti(t) of the

heuristic) that cxi,j(t-) < 1ri,jcxi(t) + Ci,j.../i. This is the key to the proof of (A.8) and

the results follow as before (see the proof of Theorem 2.4.1).

98

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Bibliography

[1] I. Al-Azzoni and D. G. Down. Linear Programming Based Affinity Scheduling

for Desktop Grids, working paper.

[2] I. Al-Azzoni and D. G. Down. Decentralized load balancing for heterogeneous

grids. In Proceedings of the 1st International Conference on Future Computa­

tional Paradigms and Applications (Future Computing 2009), to appear.

[3] I. Al-Azzoni and D. G. Down. Linear programming based affinity scheduling for

heterogeneous computing systems. In Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and Applications, pages 105-

111, 2007.

[4] I. Al-Azzoni and D. G. Down. Dynamic scheduling for heterogeneous Desktop

Grids. In Proceedings of the 9th International Conference on Grid Computing,

pages 136-143, 2008.

[5] I. Al-Azzoni and D. G. Down. Linear programming based affinity scheduling of

independent tasks on heterogeneous computing systems. IEEE Transactions on

Parallel and Distributed Systems, 19(12):1671-1682, 2008.

[6] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the robustness

of a resource allocation. IEEE Transactions on Parallel and Distributed Systems,

15(7):630-641, 2004.

99

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[7] S. Andrad6ttir, H. Ayhan, and D. G. Down. Dynamic server allocation for

queueing networks with flexible servers. Operations Research, 51(6):952-968,

2003.

[8] S. Andrad6ttir, H. Ayhan, and D. G. Down. Compensating for failures with

flexible servers. Operations Research, 55(4):753-768, 2007.

[9] C. Anglano, J. Brevik, M. Canonico, D. Nurmi, and R. Wolski. Fault-aware

scheduling for Bag-of-Tasks applications on Desktop Grids. In Proceedings of the

7th International Conference on Grid Computing, pages 56-63, 2006.

[10] P. S. Ansell, K. D. Glazebrook, and C. Kirkbride. Generalised 'join the shortest

queue' policies for the dynamic routing of jobs to multiclass queues. Journal of

the Operational Research Society, 54:379-389, 2003.

[11] R. Armstrong. Investigation of effect of different run-time distributions on Smart­

N et performance. Master's thesis, Naval Postgraduate School, 1997.

[12] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,

Z. Shi, and S. Vadhiyar. Users' Guide to NetSolve Vl.4.1. Innovative Computing

Dept. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,

June 2002.

[13] M. Arora, S. K. Das, and R. Biswas. A de-centralized scheduling and load bal­

ancing algorithm for heterogeneous grid environments. In Proceedings of the In­

ternational Conference on Parallel Processing Workshops, pages 499-505, 2002.

[14] T. D. Braun, H. J. Siegel, and A. A. Maciejewski. Heterogeneous computing:

Goals, methods, and open problems. In Proceedings of the 8th International

Conference on High Performance Computing, pages 307-320, 2001.

[15] M. Canonico. Scheduling Algorithms for Bag-of-Tasks Applications on Fault­

Prone Desktop Grids. PhD thesis, University of Turin, 2006.

100

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[16] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand. Heuristics for schedul­

ing parameter sweep applications in grid environments. In Proceedings of the 9th

Heterogeneous Computing Workshop, pages 349-363, 2000.

[17] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self­

organizing computation on a peer-to-peer network. IEEE Transactions on Sys­

tems, Man, and Cybernetics, Part A, 35(3):373-384, 2005.

[18] H. Chen. Fluid approximations and stability of multiclass queueing networks:

Work-conserving disciplines. Annals of Applied Probability, 5:637-655, 1995.

[19] H. Chen and D. Yao. Fundamentals of Queueing Networks: Performance,

Asymptotics and Optimization. Springer-Verlag, 2001.

[20] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C. Hwang. Char­

acterizing and classifying desktop grid. In Proceedings of the 7th International

Symposium on Cluster Computing and the Grid, pages 743-748, 2007.

[21] S. Choi, H. Kim, E. Byun, and C. Hwang. A taxonomy of desktop grid systems

focusing on scheduling. Technical Report KU-CSE-2006-1120-01, Department of

Computer Science and Engeering, Korea University, November 2006.

[22] Condor. "http://www.cs.wisc.edu/condor/".

[23] J. G. Dai. Stability of Fluid and Stochastic Processing Networks. Pub­

lication No. 9, 1999. Centre for Mathematical Physics and Stochastics.

http://www.maphysto.dk/.

[24] J. G. Dai. On positive Harris recurrence of multiclass queueing networks: a

unified approach via fluid limit models. Annals of Applied Probability, 5:49-77,

1995.

101

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[25] J. G. Dai and S. Meyn. Stability and convergence of moments for multiclass

queueing networks via fluid limit models. IEEE Transactions on Automatic

Control, 40:1889-1904, 1995.

[26] P. Domingues, A. Andrzejak, and L. Silva. Scheduling for fast turnaround time

on institutional desktop grid. Technical Report TR-0027, CoreGRID, January

2006.

[27] P. Domingues, P. Marques, and L. Silva. DGSchedSim: A trace-driven simulator

to evaluate scheduling algorithms for desktop grid environments. In Proceedings

of the 14th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pages 83-90, 2006.

[28] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling

scalable virtual organizations. International Journal of High Performance Com­

puting Applications, 15(3):200-222, 2001.

[29] H. Franke, J. Jann, J.E. Moreira, P. Pattnaik, and M.A. Jette. An evaluation of

parallel job scheduling for ASCI Blue-Pacific. In Proceedings of the ACM/IEEE

Conference on Supercomputing, pages 11-18, 1999.

[30] R. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,

E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust,

and H. J. Siegel. Scheduling resources in multi-user, heterogeneous, computing

environments with SmartNet. In Proceedings of the 7th Heterogeneous Computing

Workshop, pages 184-199, 1998.

[31] R. Freund, T. Kidd, and L. Moore. SmartNet: a scheduling framework for

heterogeneous computing. In Proceedings of the 2nd International Symposium

on Parallel Architectures, Algorithms and Networks, pages 514-521, 1996.

[32] V. Garonne, A. Tsaregorodtsev, and E. Caron. A study of meta-scheduling

architectures for high throughput computing: Pull versus push. In Proceedings

102

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

of the 4th International Symposium on Parallel and Distributed Computing, pages

226-233, 2005.

[33] K. D. Glazebrook and C. Kirkbride. Dynamic routing to heterogeneous collec­

tions of unreliable servers. Queueing Systems: Theory and Applications, 55(1):9-

25, 2007.

[34] D. Gu, L. Yang, and L. R. Welch. A predictive, decentralized load balancing

approach. In Proceedings of the 19th International Parallel and Distributed Pro­

cessing Symposium, 2005.

[35] Y.-T. He. Exploiting Limited Customer Choice and Server Flexibility. PhD thesis,

McMaster University, 2007.

[36] Y.-T. He, I. Al-Azzoni, and D. G. Down. MARO - MinDrift affinity routing for

resource management in heterogeneous computing systems. In Proceedings of the

Conference of the Centre for Advanced Studies on Collaborative Research, pages

71-85, 2007.

[37] ILOG CPLEX. "http://www.ilog.com/products/cplex/".

[38] A. Iosup, 0. Sonmez, S. Anoep, and D. Epema. The performance of bags-of­

tasks in large-scale distributed systems. In Proceedings of the 17th International

Symposium on High Performance Distributed Computing, pages 97-108, 2008.

[39] A. Iosup, 0. Sonmez, S. Anoep, and D. Epema. The performance of bags-of­

tasks in large-scale distributed systems. In Proceedings of the 17th International

Symposium on High Performance Distributed Computing, pages 97-108, 2008.

[40] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun, M. Schnei­

der, S. Tideman, R. Chitta, R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma,

S. Sripada, P. Vangari, and S. S. Yellampalli. Dynamically mapping tasks with

103

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

priorities and multiple deadlines in a heterogeneous environment. Journal of

Parallel and Distributed Computing, 67(2):154-169, 2007.

[41] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman.

Trade-offs in matching jobs and balancing load for distributed desktop grids.

Future Generation Computer Systems, 24(5):415-424, 2008.

[42] M. Kokaly, I. Al-Azzoni, and D. G. Down. MGST: a framework for the per­

formance evaluation of Desktop Grids. In Proceedings of the 24th International

Parallel and Distributed Processing Symposium, pages 1-8, 2009.

[43] D. Kondo, A. Andrzejak, and D. P. Anderson. On correlated availability in

Internet-distributed systems. In Proceedings of the 9th International Conference

on Grid Computing, pages 276-283, 2008.

[44] D. Kondo, A. A. Chien, and H. Casanova. Resource management for rapid appli­

cation turnaround on enterprise desktop grids. In Proceedings of the ACM/IEEE

Conference on Supercomputing, 2004.

[45] D. Kondo, G. Fedak, F. Cappello, A. A. Chien, and H. Casanova. Characterizing

resource availability in enterprise desktop grids. Future Generation Computer

Systems, 23(7):888-903, 2007.

[46] L. Kontothanassis and D. Goddeau. Profile driven scheduling for a heterogeneous

server cluster. In Proceedings of the 34th International Conference on Parallel

Processing Workshops, pages 336-345, 2005.

[47] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, M. Toarta, and

C. Dobre. MonALISA: an agent based, dynamic service system to monitor,

control and optimize grid based applications. In Proceedings of the International

Conference on Computing in High Energy and Nuclear Physics, 2004.

104

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[48] H. Li and R. Buyya. Model-driven simulation of grid scheduling strategies. In

Proceedings of the 3rd International Conference on e-Science and Grid Comput­

ing, pages 287-294, 2007.

[49] H. Li, D. Groep, and L. Wolters. Workload characteristics of a multi-cluster

supercomputer. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,

Job Scheduling Strategies for Parallel Processing, pages 176-193. Springer Verlag,

2004. Leet. Notes Comput. Sci. vol. 3277.

[50] K. Lu, R. Subrata, and A. Y. Zomaya. On the performance-driven load distri­

bution for heterogeneous computational grids. Journal of Computer and System

Sciences, 73(8):1191-1206, 2007.

[51] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic

matching and scheduling of a class of independent tasks onto heterogeneous com­

puting systems. In Proceedings of the 8th Heterogeneous Computing Workshop,

pages 30-44, 1999.

[52] A. Mandelbaum and A. L. Stolyar. Scheduling flexible servers with convex delay

costs: Heavy-traffic optimality of the generalized cµ-rule. Operations Research,

52(6):836-855, 2004.

[53] A. M. Mehta, J. Smith, H.J. Siegel, A. A. Maciejewski, A. Jayaseelan, and B. Ye.

Dynamic resource allocation heuristics that manage tradeoff between makespan

and robustness. Journal of Supercomputing, 42(1):33-58, 2007.

[54] M. Mitzenmacher. How useful is old information? IEEE Transactions on Parallel

and Distributed Systems, 11(1):6-20, 2000.

[55] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE

Transactions on Parallel and Distributed Systems, 12(10):1094-1104, 2001.

105

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[56] D. Nurmi, J. Brevik, and R. Wolski. Modeling machine availability in enterprise

and wide-area distributed computing environments. In Proceedings of the 11th

International Euro-Par Conference, pages 432-441, 2005.

[57] I. Rao and E.-N. Huh. A probabilistic and adaptive scheduling algorithm using

system-generated predictions for inter-grid resource sharing. Journal of Super­

computing, 45(2):185-204, 2008.

[58] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi. Prediction of resource availabil­

ity in fine-grained cycle sharing systems empirical evaluation. Journal of Grid

Computing, 5(2): 173-195, 2007.

[59] B. Rood and M. J. Lewis. Multi-state grid resource availability characterization.

In Proceedings of the 8th International Conference on Grid Computing, pages

42-49, 2007.

[60] B. Rood and M. J. Lewis. Scheduling on the Grid via multi-state resource avail­

ability prediction. In Proceedings of the 9th International Conference on Grid

Computing, pages 126-135, 2008.

[61] SETI@home. "http://setiathome.berkeley.edu/".

[62] R. Shah, B. Veeravalli, and M. Misra. On the design of adaptive and decentralized

load balancing algorithms with load estimation for computational grid environ­

ments. IEEE Transactions on Parallel and Distributed Systems, 18(12):1675-

1686, 2007.

[63] A. Sharifnia. Instability of the join-the-shortest-queue and FCFS policies in

queuing systems and their stabilization. Operations Research, 45(2):309-314,

1997.

[64] V. Shestak, J. Smith, H.J. Siegel, and A. A. Maciejewski. A stochastic approach

to measuring the robustness of resource allocations in distributed systems. In

106

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

Proceedings of the International Conference on Parallel Processing, pages 459-

470, 2006.

[65] J. Smith, L. Briceno, A. A. Maciejewski, H. J. Siegel, T. Renner, V. Shestak,

J. Ladd, A. Sutton, D. Janovy, S. Govindasamy, A. Alqudah, R. Dewri, and

P. Prakash. Measuring the robustness of resource allocations in a stochastic dy­

namic environment. In Proceedings of the International Parallel and Distributed

Processing Symposium, 2007.

[66] T. Sterling, E. Lusk, and W. Gropp, editors. Beowulf Cluster Computing with

Linux. MIT Press, Cambridge, MA, USA, 2003.

[67] A. Stolyar. Optimal routing in output-queued flexible server systems. Probability

in the Engineering and Information Sciences, 19(2):141-189, 2005.

[68] K. Wasserman, G. Michailidis, and N. Bambos. Optimal processor allocation to

differentiated job flows. Performance Evaluation, 63(1):1-14, 2006.

[69] P. Werstein, H. Situ, and Z. Huang. Load balancing in a cluster computer.

In Proceedings of the 7th International Conference on Parallel and Distributed

Computing, Applications and Technologies, pages 569-577, 2006.

[70] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU availability of time­

shared Unix systems on the computational grid. Cluster Computing, 3(4):293-

301, 2000.

[71] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a distributed

resource performance forecasting service for metacomputing. Future Generation

Computer Systems, 15(5-6):757-768, 1999.

[72] L. Yang, J. M. Schopf, and I. Foster. Conservative scheduling: Using predicted

variance to improve scheduling decisions in dynamic environments. In Proceedings

of the ACM/IEEE conference on Supercomputing, 2003.

107

PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software

[73] Y. Zhang and Y. lnoguchi. Influence of inaccurate performance prediction on

task scheduling in a grid environment. IEICE - Transactions on Information

and Systems, E89-D(2):479-486, 2006.

108

n)

