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Abstract 

An emerging trend in computing is to use distributed heterogeneous computing (HC) 

systems to execute a set of tasks. Cluster computer systems, grids, and Desktop 

Grids are three popular kinds of HC systems. An important component of an HC 

system is its resource management system (RMS). The main responsibility of an RMS 

is assigning resources to tasks in order to satisfy certain performance requirements. 

For cluster computer systems, we propose a new mapping heuristic which requires 

less state information than current heuristics. For Desktop Grids, we propose a new 

scheduling policy that exploits knowledge of the effective computing power delivered 

by the machines and the distribution of their fault times in order to improve per­

formance. Finally, for grids, we propose a new decentralized load balancing policy 

which dramatically cuts down the communication overhead incurred in state infor­

mation update. 

The proposed resource management policies utilize the solution to a linear pro­

gramming problem (LP) which maximizes the system capacity. Our simulation ex­

periments show that these policies perform very competitively, especially in highly 

heterogeneous systems. 
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Chapter 1 

Introduction 

1.1 Motivation 

Widespread availability of low-cost, high performance computing hardware, the rapid 

expansion of the Internet and advances in computing networking technology have led 

to an increasing use of heterogeneous computing (HC) systems. An HC system is con­

structed by networking various machines with different capabilities and coordinating 

their use to execute a set of tasks. An important component of an HC system is its 

resource management system (RMS) which is responsible for assigning resources to 

tasks in order to satisfy certain performance requirements. 

The first kind of HC systems we consider is the cluster computer system. Clusters 

of commodity computers are rapidly gaining acceptance as the preferred way to con­

struct large computing platforms for applications with extensive computer needs (see 

Sterling et al. [66]). Such systems form the building blocks for grids which are becom­

ing very successful in managing and organizing an institution's computing resources 

(see Foster et al. [28]). 

In a cluster computer system, the RMS consists of a dedicated mapper for assign­

ing incoming tasks to machines. The mapper immediately maps an arriving task to 

the system. For such HC systems, it is necessary for any mapping heuristic to stabi-
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lize the system if the system can be stabilized. Furthermore, the mapping heuristic 

should attempt to minimize the mean task waiting time. In addition to stability and 

performance concerns, the mapping heuristic should minimize the amount of state 

information required in mapping. As will be discussed later, this is necessary to avoid 

performance degradation that results from using full state information in large sys­

tems. Motivated by these requirements, we propose several mapping heuristics that 

perform very competitively and verify their performance using simulation. 

Desktop Grids are the second kind of HC systems considered here. Desktop Grids 

are HC systems characterized by the non-dedication of their machines. Desktop 

Grids aim to harvest a large number of desktop PCs owned by individuals and whose 

idle cycles can be exploited to run Grid applications. Desktop Grids have recently 

received a lot of attention because of the success of several popular applications such 

as SETI@home [61]. 

There are several differences between Desktop Grids and cluster computer systems. 

One of the key differences is the dedication of machines. In cluster computer systems, 

the machines are assumed to be fully dedicated for executing the submitted tasks. On 

the other hand, in Desktop Grids, machines can also execute local tasks submitted by 

their owners and thus these machines are not fully dedicated for executing the Grid 

applications. Due to these differences, resource management for Desktop Grids is 

different from that of cluster computer systems. In Desktop Grids, the RMS consists 

of a dedicated scheduler which mainly uses pull-based scheduling (i.e., a machine 

sends a request to the scheduler in order to get a task) . Other differences will be 

discussed in detail later when defining the workload models for both Desktop Grids 

and cluster computer systems. 

For Desktop Grids, we propose a new scheduling policy that exploits knowledge 

of the effective computing power delivered by the machines and the distribution of 

their fault times in order to improve scheduling performance. In the literature, several 

papers describe techniques that are used in predicting CPU availability and modeling 
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machine availability. In our work, we show how such predictions can be used by the 

scheduler to make effective scheduling decisions. 

Grids are the third kind of HC systems considered in our work. Grids can consist 

of a much larger number of machines than cluster computer systems. Also, grids are 

typically more heterogeneous and geographically dispersed. As opposed to Desktop 

Grids, we consider grids that consist of a dedicated infrastructure. Thus, resource 

management for grids should address several issues that are distinct from those of 

cluster computer systems and Desktop Grids. 

We propose a new decentralized load balancing policy for grid resource manage­

ment. In centralized policies, a central machine is dedicated as a load balancer and 

all tasks are submitted to the central machine. Thus, the load balancer can become 

a bottleneck and a single point of failure. To avoid this, decentralized load balancing 

policies involve all machines in load balancing and avoid the use of a central server. 

However, current decentralized load balancing policies suffer from significant commu­

nication overhead. This is because these policies require updating each machine with 

full state information. Our proposed policy performs very competitively while requir­

ing dramatically less information and thus significantly reducing the communication 

overhead. 

Section 1.2 defines our workload model for HC systems. Section 1.3 contains a de­

tailed introduction to mapping heuristics for cluster computer systems. Section 1.3.1 

defines the workload model for cluster computer systems, and Section 1.3.2 reviews 

the literature related to mapping heuristics. Section 1.4 contains a detailed intro­

duction to scheduling policies for Desktop Grids. Section 1.4.1 defines our workload 

model for Desktop Grids, and Section 1.4.2 reviews the literature related to scheduling 

policies for Desktop Grids. Section 1.5 contains a detailed introduction to decentral­

ized load balancing for grids. For decentralized load balancing, Section 1.5.1 gives 

our workload model in detail, and Section 1.5.2 discusses related literature. 

3 
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1.2 A Workload Model for HC Systems 

An HC system connects and coordinates various machines with different capabilities 

to execute a set of tasks. Let the number of machines in the system be M. 

The tasks are assumed to be independent and atomic. In the literature, parallel 

applications whose tasks are independent are sometimes referred to as Bag-of-Tasks 

applications (BoT) (as in Anglano et al. [9]) or parameter-sweep applications (as in 

Casanova et al. [16]). Such applications are used in a variety of domains, includ­

ing simulations, fractal calculations, computational biology, and computer imaging, 

and are becoming predominant for HC systems (see Iosup et al. [38] and Li and 

Buyya [48]). 

While determining the exact task execution time on a target machine remains a 

challenge, there exist several techniques that can be used to estimate an expected value 

for the task execution time (see Rao and Huh [57]). Our policies exploit estimates 

on mean task execution times rather than exact execution times. Furthermore, in 

HC systems, tasks that belong to the same application are typically similar in their 

resource requirements. For example, some applications are CPU bound while others 

are more I/O bound. In fact, several authors have observed the high dependence of a 

task execution time on the application it belongs to and the machine it is running on. 

They argue for using application profile information to guide resource management 

(see Kontothanassis and Goddeau [46]). We follow the same steps and assume that 

the tasks are classified into groups (or classes) with identical distributions for the 

execution times. 

It is assumed that the tasks are classified into N classes. Tasks that belong to class 

i arrive according to a renewal process with rate ai. Furthermore, the execution time 

of a task on a machine depends on the class of the task and the machine. Let µi,J be 

the execution rate for tasks of class i at machine j, hence 1 / µi,J is the mean execution 

time for class i tasks at machine j. We allow µi,J = 0, which implies machine j is 

physically incapable of executing class i tasks. Each task class can be executed by 
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at least one machine. Let a be the arrival rate vector, where the ith element of a is 

ai· Also, letµ be the execution rate matrix, having (i,j) entry µi,j· We assume that 

ai > 0 for all i = 1, ... , N. Also, given any class i, we assume that there exists at 

least one machine j such that µi,j > 0. There are further conditions on the arrival 

and execution time processes that are needed for our analytic results to hold (see 

Appendix A). Several techniques for classifying tasks and obtaining the arrival and 

execution rates in HC systems exist (see [46]). 

1.3 Mapping Heuristics for Cluster Computer Sys­

tems 

When a new task arrives to the system, the mapper uses a mapping heuristic to map 

the arriving task to a machine. In our work, we consider dynamic mapping heuristics 

(Kim et al. [40]). Dynamic mapping heuristics use information on the state of the 

system to make their mapping decisions. On the other hand, static mapping heuristics 

make mapping decisions independent of the state of the system. 

It is necessary for any mapping heuristic to stabilize the system if the system can 

be stabilized. Furthermore, the mapping heuristic should attempt to minimize the 

mean task waiting time. In addition to addressing stability and performance, the 

mapping heuristic should minimize the amount of state information required in map­

ping. In large systems, mapping heuristics that require full state information suffer 

from several limitations. First, there is a significant communication overhead since 

the mapper needs to communicate with a large number of machines. Also, the syn­

chronization overhead that results from requiring full state information may degrade 

performance. Another important problem is that the supplied information can be 

out of date resulting in performance degradation. As observed by Mitzenmacher [54], 

this is a major limitation of heuristics which attempt to exploit global information to 

balance load too aggressively. 
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Motivated by these requirements, we propose several mapping heuristics that per­

form very competitively and verify their performance using simulation. In particular, 

the Linear Programming Based Affinity Scheduling (LPAS) heuristic achieves com­

petitive performance and at the same time requires less state information than current 

heuristics. Furthermore, by solving an allocation LP, the LPAS heuristic provides an 

explicit method to compute the maximum capacity and to compute the allocation of 

machines to classes. 

We also describe other LPAS-related heuristics which attempt to reduce fur­

ther the state information required in making mapping decisions. We introduce the 

Guided-LPAS heuristic, a modification of the LPAS heuristic which guarantees sta­

bility of a stabilizable system. Although the LPAS heuristic does not suffer from the 

root cause for instability of other heuristics, we are unfortunately not able to prove 

its stability. 

1.3.1 Workload Model 

In a cluster computer system, there is a dedicated mapper for assigning incoming 

tasks to machines. The mapping heuristics considered here are immediate mode 

heuristics [40]. In such heuristics, a mapping decision is made by the mapper as soon 

as a task arrives. Each new task arriving in the system is immediately assigned to 

one of the machines. The task can only be executed by the machine to which it is 

assigned. It is assumed that there is no queueing at the mapper and tasks are queued 

at the machines to which they are assigned. With respect to local scheduling, we 

assume that each machine can use any policy as long as it is non-idling. 

The dynamic mapping heuristics considered here assume that the execution rates 

are known. A task's execution time is not known until its completion, though the 

task class and thus its execution rate is known to the mapper and the machines. 

Furthermore, in most of these heuristics, the mapper uses information supplied by 

the machines in making mapping decisions. Such information includes, for instance, 
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the task queue length for each class. Thus, when a task arrives to the system, the 

mapper contacts the machines whose information is needed, and subsequently, the 

machine supplies the mapper with the requested information. 

1.3.2 Literature Review 

The problem of mapping tasks onto machines in HC systems is an extremely active 

field (for example, see Braun et al. [14] and Kim et al. [40]). 

Several mapping heuristics are described and compared in Maheswaran et al. [51]. 

The model assumptions in [51] and our assumptions for the HC system are identical. 

However, the authors in [51] do not group tasks into classes and they assume that 

the expected execution time of every arriving task is known on each machine. This 

can be unrealistic in typical HC systems. On the other hand, we assume that the 

tasks are grouped into classes and only the arrival rates of each class's tasks and the 

execution rates of each machine for each class are known. This assumption is made 

in several models of cluster and grid environments (such as Franke et al. [29] and 

Kontothanassis and Goddeau [46]). 

In [46], the performance of several mapping heuristics is examined on a real-world 

workload. One of these heuristics is similar to the MCT (Minimum Completion Time) 

heuristic [51]. Another heuristic is a variation on the MCT heuristic that attempts 

to minimize completion time while taking affinity effects into account. Experimental 

results show that varying the MCT heuristic to take affinity effects into account 

exhibits improved performance over the MCT heuristic [46]. 

Several dynamic mapping heuristics are proposed and compared in [40] for HC 

systems in which tasks have priorities and multiple soft deadlines. These heuristics 

are batch mode heuristics, as opposed to the immediate mode heuristics considered 

here. Immediate mode heuristics map an arriving task as soon as it arrives, whereas 

batch mode heuristics consider a subset of tasks for mapping. The workload model 

in [40] is identical to our workload model with the addition of priorities and deadlines 

7 
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associated with tasks. 

Ansell et al. [10] develop a class of heuristics for systems having the same workload 

model. Such heuristics are based on the application of a policy improvement step to 

an optimal static heuristic. However, these heuristics are computationally intensive 

and may not scale well. In fact, only a small system with N = 2 and M = 2 is 

considered in their numerical study. Another limitation is that there is no attempt 

to reduce the amount of state information required in mapping. Thus, the mapper 

needs to obtain full state information at every mapping event. 

Another heuristic is suggested in Glazebrook et al. [33]. The heuristic is applicable 

to systems having an identical workload model to the model considered here. However, 

the mean execution time of a task depends only on the machine (i.e., for a machine 

j, µi,j = µj, for all i = 1, ... , N). Furthermore, machines may not be permanently 

available for service. Similar to [10], such a heuristic computes an index for each 

machine at every state of the system and thus may not scale to large systems. 

Our model for an HC system has been studied in the context of queueing analysis. 

The MCT heuristic is a variation on the MinDrift rule which is shown to perform 

well in heavy traffic scenarios (see Stolyar [67]). Wasserman et al. [68] introduce a 

processor allocation policy which corresponds to the MCT heuristic. 

1.4 Fault-Aware Scheduling Policies for Desktop 

Grids 

A scheduling policy must support systems with a very large number of machines. 

Besides the natural complexity of scheduling for such large systems, the complexity is 

further complicated by several factors. First, Desktop Grids are characterized by very 

high resource volatility. In such systems, machines can fail at any time without any 

advance notice. Since Desktop Grids are typically based on the Internet, machines 

are also exposed to link failures. Furthermore, Desktop Grids are volunteer comput-
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ing systems where participants voluntarily join in to execute the Grid applications. 

Thus, the machines of a Desktop Grid system are not dedicated (i.e., machines' local 

jobs should have higher priority than the Grid tasks). To better cope with resource 

volatility, a scheduling policy must be fault-aware in the sense that it needs to ex­

ploit the knowledge of the effective computing power delivered by resources and the 

distribution of their fault times (if such information is available). 

A second factor contributing to the complexity of scheduling for Desktop Grids is 

related to the heterogeneous nature of such systems. These systems interconnect a 

multitude of heterogeneous machines (desktops with various resources: CPU, mem­

ory, disk, etc.) to perform computationally intensive applications that have diverse 

computational requirements. Performance could be significantly impacted if informa­

tion on task and machine heterogeneity is not taken into account by the scheduling 

policy. To the best of our knowledge, our work is the first to consider the problem of 

scheduling for heterogeneous Desktop Grids involving resource volatility. 

In current Desktop Grids, the default scheduling policy is First-Come-First-Served 

(FCFS) (see Domingues et al. [27] and Kondo et al. [44]). It does not require any 

information on task arrival rates, machine execution rates or availabilities. FCFS per­

forms well in systems with limited task heterogeneity. However, as our simulations 

show, its performance can be very poor in systems with high task heterogeneity and 

degrades rapidly as the load increases. In our work, we suggest the use of an existing 

policy (the Geµ policy) which has been described in the queueing literature. This 

policy performs much better than FCFS, but requires information on the machine ex­

ecution rates. Furthermore, we develop a new policy, the Linear Programming Based 

Affinity S.cheduling policy for Desktop Grids (LPAS_DG), which utilizes the solution 

to a linear programming (LP) problem that maximizes system capacity. In addition 

to the machine execution rates, this policy assumes knowledge of the task arrival 

rates and that there is a mechanism by which the scheduler detects machine failures 

and availabilities. Our simulation experiments show significant performance advan-
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tages for the LPAS_DG policy over the Geµ policy, especially in highly heterogeneous 

systems. 

1.4.1 Workload Model 

In our model for a Desktop Grid, there is a dedicated scheduler for assigning incoming 

tasks to the requesting machines. Resource management systems for Desktop Grids 

mainly use pull-based scheduling (see Choi et al. [20, 21]). In pull-based scheduling, 

when a machine becomes available, it sends a request to the scheduler in order to be 

assigned a new task for execution. Using pull-based scheduling in Desktop Grids is 

necessary due to the property that the machines are not dedicated. One of the results 

of using pull-based scheduling is that tasks queue at the scheduler side. There is no 

queueing at the machines; in fact, in Desktop Grids, one machine executes at most 

one task at a time without preemption (see Choi et al. [21], Domingues et al. [26], 

and Kondo et al. [44]). Also, in pull-based scheduling, the scheduler makes a decision 

as soon as it receives a request from a machine [21]. 

In Desktop Grids, machines can fail (or become unavailable) at any time without 

any advance notice [9]. If a machine fails while executing a task, then that task needs 

to be resubmitted to the scheduler. We assume that the scheduler becomes aware 

of the failure of any machine within a negligible amount of time [44]. We assume 

that the Desktop Grid is mainly used to execute short-lived applications [44]. These 

applications consist of short tasks whose mean execution times are small relative to 

the mean machine availability times. Hence, in such systems, we do not consider fault 

tolerant scheduling mechanisms such as checkpointing, migration and replication, due 

to their overhead. 

One of the basic properties of Desktop Grids is the non-dedication of machines. 

When a machine is available, it may also run local jobs (i.e., jobs submitted by a local 

user). The machines' local jobs are always given higher priority. When a machine 

is busy with local jobs, the result is a slowing down of the execution of the Desktop 

10 
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Grid tasks submitted by the scheduler to the machine. To model the non-dedication 

property of machines, we use an approach similar to [9]. Let µ~,j be the nominal 

execution rate for tasks of class i at machine j, hence 1 / µ~,j is the mean nominal 

execution time for class i tasks at machine j. When a machine becomes available, it 

sends its request for a new task to the scheduler. As in [9], we assume that the machine 

also supplies the expected proportion of time that it is going to spend in executing the 

Desktop Grid tasks during its coming availability period (i.e., its CPU availability). 

These estimates can be obtained using techniques such as those suggested by Wolski 

et al. [70] and Yang et al. [72]. Thus, we can define the effective execution rate µi,j 

for the submitted tasks as follows: 

where aj represents the fraction of machine j's capacity that is available for executing 

the Desktop Grid tasks during its coming availability period. Also, let µ be the 

effective execution rate matrix, having (i,j) entry µi,j· As in [9, 44], once a task is 

submitted to a machine, the task can not be resubmitted unless a failure occurs. 

1.4.2 Literature Review 

A taxonomy of Desktop Grids and a survey focusing on scheduling is provided in [21]. 

This taxonomy is defined by three major components: the application's perspective, 

the resource provider's perspective, and the scheduler's perspective. With respect to 

our workload model, we consider applications with independent, fixed tasks that are 

computation-intensive. There are no deadlines associated with tasks and the tasks 

arrive non-deterministically to the scheduler. In terms of the resource provider's per­

spective, we assume that the resource providers (i.e., the machines) are not dedicated 

to public execution and they are faulty. In terms of the scheduler's perspective, a cen­

tralized organization is assumed. The scheduler uses pull-based scheduling in which 

scheduling events are initiated by the resource providers. 

11 
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Several fault-aware Desktop Grid scheduling policies are presented in [9] for Bag­

of-Tasks applications. The proposed policies exploit fault handling mechanisms in­

cluding replication and checkpointing. Furthermore, these policies exploit knowledge 

of the effective computing power delivered by resources and the distribution of their 

fault times to improve scheduling performance. The performance of the different 

policies is analyzed using an extensive simulation study. The policies proposed in [9] 

assume that the set of tasks is initially available to the scheduler, however, we assume 

a continuous arrival stream of tasks and that the scheduler only knows the arrival rates 

and execution rates (it does not need to know the entire distribution). Our work goes 

beyond this by addressing workloads where multiple Bag-of-Tasks applications are 

simultaneously submitted. 

Other policies are proposed in [44]. These policies attempt to minimize the overall 

execution time, or the makespan, of a single parallel application. The application is 

assumed to consist of a number of independent tasks that is relatively small compared 

to the number of available resources. The policies are based on three resource selection 

techniques, namely resource prioritization, resource exclusion, and task replication. 

Even though the policies developed in [44] are designed to schedule a single applica­

tion, the authors acknowledge that these policies provide key elements for designing 

effective "job scheduling" strategies. Furthermore, the authors planned to design 

scheduling policies for the scenario where multiple applications are submitted over 

time. In this context, our work represents a step in addressing such environments. 

Several scheduling policies are suggested in [26] for institutional Desktop Grids. 

Institutional Desktop Grids are grids comprised of the desktop machines of an in­

stitution (academic or corporate) and thus are typically characterized by a more 

homogenous computing infrastructure. Similar to [9, 44], the scheduling policies are 

designed to minimize the turnaround time of a single Bag-of-Tasks application. The 

turnaround time for a Bag-of-Tasks application is defined as the elapsed time between 

the submission of the first task until the last task is completed. 

12 
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Several papers study machine availability in Desktop Grids. In Nurmi et al. [56], 

availability data is collected from different Desktop Grid environments. Their results 

indicate that either a hyperexponential or Weibull distribution effectively represents 

machine availability in enterprise and Internet computing environments. In Kondo 

et al. [45], statistics from four real enterprise Desktop Grids are gathered in order to 

develop predictive models for machine availability. They distinguish between machine 

availability and CPU availability. The former is a binary value that indicates if the 

machine is reachable. Examples of machine unavailability include power failure or 

machine reboot. The latter is a percentage value that quantifies the fraction of the 

CPU that can be exploited by Desktop Grid applications. 

An approach for predicting machine availability in Desktop Grids is presented in 

Ren et al. [58]. The authors apply semi-Markov process models for the prediction. 

They suggest a method for applying availability prediction to job scheduling. Using 

simulation, they show the effectiveness of their scheduling policies in large compute­

bound guest applications. Our work proposes policies for short-lived applications. 

A significant amount of work has been done on the measurement and characteri­

zation of CPU availability. The work in [72] includes techniques based on time series 

analysis for predicting CPU load at some future time point, average CPU load for 

some future time interval, and variation of CPU load over some future time interval. 

The work in [70] examines the problem of making short and medium term forecasts 

of CPU availability on time-shared Unix systems. Their results demonstrate the pos­

sibility of making short and medium term predictions of CPU availability despite the 

presence of long-range autocorrelation and potential self-similarity. 

Kondo et al. [43] measure and characterize CPU availability in a large-scale Inter­

net Desktop Grid. Their characterization focuses on identifying patterns of correlated 

availability using clustering techniques. In Rood and Lewis [59], the authors iden­

tify five availability states which capture why and how resources become unavailable 

over time. Their five-state availability model is motivated by the workload model of 
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Condor [22]. The authors characterize a Condor pool trace to develop multi-state 

predictors and use these predictors in developing scheduling policies for Condor (see 

Rood and Lewis [60]). These policies assume push-based scheduling, as opposed to 

the pull-based scheduling policies considered here. 

1.5 Decentralized Load Balancing Policies for Grids 

Even though decentralized load balancing has advantages (with respect to central­

ized policies) in terms of scalability and fault tolerance, the communication overhead 

incurred by frequent information exchange between machines represents a challenge. 

Current policies require updating each machine with full state information. This is 

problematic due to two main factors. First, the communication overhead necessary for 

full state information update may be prohibitive. In effect, this may cause scalability 

issues for grids using a decentralized load balancing approach. Second, requiring full 

state information may degrade performance due to the effect of outdated data. 

Motivated by these issues, we propose a novel decentralized load balancing pol­

icy that performs very competitively and at the same time requires dramatically 

less state information. By solving an allocation LP, the 1.inear Programming based 

Affinity S_ched uling load balancing policy for decentralized grids (LPAS_dec) provides 

an explicit method to compute the allocations of machines to tasks. Our simulations 

show significant performance advantages over competing policies, especially in highly 

heterogeneous systems. 

1.5.1 Workload Model 

In decentralized load balancing, a task can be submitted to any machine in the grid. 

Each machine is responsible for the assignment of its locally submitted tasks to one of 

the grid machines. Upon the arrival of a task to a machine, the machine immediately 

makes a decision on whether to execute the task locally or send it for execution on 

14 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

another machine. After that, the task can only be executed by the machine to which 

it is assigned. Thus, a task can not be migrated more than once. Similarly, several 

researchers assume a migration limit of one as task migration is often difficult in 

practice and there are no significant benefits of using higher migration limits (see Lu 

et al. [50] and Shah et al. [62]). 

We consider dynamic load balancing policies. These policies, as opposed to static 

policies, attempt to exploit dynamic state information to optimize performance. In 

order to do that, certain types of information need to be exchanged among the ma­

chines, e.g. task queue lengths, machine execution rates, and so forth. In grids, there 

is no efficient state-broadcast mechanism [50]. Other approaches for information ex­

change, such as state-polling, are also problematic in practice (see Gu et al. [34], 

Lu et al. [50], and Werstein et al. [69]). To minimize the overhead of information 

collection, we assume that state information exchange is done by mutual informa­

tion feedback [50]. Thus, when a machine j 1 needs the local state information of 

another machine j 2 , then it sends a request message to j 2 which in turn sends back 

a reply message. Both the request and reply messages may embed other local state 

information as dictated by the load balancing policy. 

1.5.2 Literature Review 

Several authors have suggested decentralized load balancing policies for grids. In 

general, a decentralized load balancing policy should address the following: 

1. Information exchange policy. The information exchange policy is concerned 

with how to update each machine with the state information of other machines. 

Two techniques for information exchange were discussed earlier: state polling 

and mutual information feedback. Several load balancing policies that use state 

polling are presented in [34, 62, 69]. The LPAS_dec policy uses mutual infor­

mation feedback, as do the policies presented in Arora et al. [13], Lu et al. [50], 

and Rao and Huh [57]. 
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2. Transfer policy. The transfer policy address the question of when to balance 

the load. Some policies balance the load only upon task arrivals, including 

the LPAS_dec policy and [13, 57, 62]. Other policies [69] are threshold-based 

e.g., only when the load on a machine exceeds a certain threshold, load bal­

ancing is triggered. Some load balancing policies use a combination of both 

techniques [34, 50]. 

3. Selection Policy. On the event of load balancing, the selection policy determines 

which tasks to migrate. Policies, such as the LPAS_dec policy and [57, 62], 

which balance the load upon task arrivals migrate only the arriving task. Some 

policies, however, migrate additional tasks, such as [13]. Other policies which 

use a threshold-based transfer policy rank the queued tasks based on certain 

criteria and only migrate the highest ranking tasks (see [34, 50]). 

4. Placement policy. On the event of load balancing and task migration, the 

placement policy determines the machines into which these tasks are to be 

migrated. Some policies use the expected completion time as a metric for the 

placement policy (including the LPAS_dec policy, the LBA policy [62], and the 

IDP policy [50]). Other policies use the expected load on the target machines 

and only migrate tasks to the least loaded machines (including [34]). 

Performance monitoring tools such as NWS [71] and MonALISA [47] can be used 

to provide dynamic information on the state of the grid system. Furthermore, these 

tools anticipate the future performance behaviour of an application including task 

arrival and machine execution rates. 

1.6 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 discusses mapping 

heuristics for cluster computing systems. Chapter 3 discusses scheduling policies for 
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Desktop Grids. Chapter 4 discusses decentralized load balancing for grids. Each 

chapter first discusses several relevant policies, then presents our linear programming 

based policy, and finally discusses simulation results. Chapter 5 concludes the thesis 

and outlines suggestions for possible future work. Appendix A contains detailed proofs 

for the theorems in Chapter 2. 
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Chapter 2 

Mapping Heuristics for Cluster 

Computer Systems 

In this chapter, we describe the LPAS-related mapping heuristics for cluster com­

puter systems. Section 2.1 describes several related mapping heuristics. Section 2.2 

introduces the LPAS heuristic and includes simulation results that compare the per­

formance of various mapping heuristics. Other LPAS-related heuristics that attempt 

to reduce further the required state information for mapping are discussed in Sec­

tion 2.3. The Guided-LPAS heuristic is introduced in Section 2.4. Appendix A 

contains detailed proofs for several results discussed in this chapter. Contents of this 

chapter appear in Al-Azzoni and Down [3, 5] and He et al. [36]. 

2.1 Mapping Heuristics 

A mapper using the MET (minimum execution time) heuristic assigns an incoming 

task to the machine that has the least expected execution time for the task [51]. 

Thus, when a new task of class i arrives, the mapper assigns it to a machine j such 

that j E arg minJ' 1/ µi,j'· Ties are broken arbitrarily; for instance, a mapper could 

pick the machine with the smallest index j when more than one machine has the 
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least expected execution time. The MET heuristic does not require the machines to 

send their expected completion times back to the mapper as tasks arrive, thus the 

MET heuristic has the advantage of requiring limited communication between the 

mapper and machines. However, this heuristic can cause severe load imbalance to a 

degree that the system is unstable. For example, consider a system with one arrival 

stream with rate a 1 = 6, and two machines with execution rates µ 1,1 = 5 and µ1,2 = 

3, respectively. This system will suffer from load imbalance causing instability if the 

MET heuristic is used, as no tasks are sent to machine 2. It is easy to see that the 

system can be stabilized with the given value of a 1 . 

The MCT (minimum completion time) heuristic assigns an arriving task to the 

machine that has the earliest expected completion time [51]. Several existing re­

source management systems, e.g. NetSolve [12] and SmartNet [30, 31], use the MCT 

heuristic or other heuristics that are based on the MCT heuristic. The mapper exam­

ines all machines in the system to determine the machine with the earliest expected 

completion time. 

There are several limitations for the MCT heuristic. First, the mapper requires 

full state information since it needs to obtain the queue lengths of all machines in the 

system. Second, the MCT heuristic suffers from its lack of any foresight about task 

heterogeneity. It might assign an arriving task to a poor machine which minimizes the 

task's completion time, yet causes problems for future arrivals. Consider the following 

system with M = 7 and N = 4. We will refer to this system as System 2.H. The 

arrival and execution rates are given by a = [8.5 8.5 9.6 8.5] and 

5 5.02 4.95 0.001 4.7 5.2 5.25 

0.001 5.09 4.9 4.92 5 5.13 5.14 
µ= 

4.45 5 0.001 4.45 4.9 5 5.1 

5.02 4.95 5 5.02 5.25 4.75 0.001 

The system contains a few machines that have very poor performance when exe­

cuting tasks that belong to particular classes. While such values would most likely not 

19 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

arise in practice, we have chosen these values to emphasize the point that assigning a 

task to a machine that is very poor executing its class may result in significant perfor­

mance degradation. Since the MCT heuristic maps each arriving task to the machine 

that minimizes its expected completion time, it may assign an arriving task of class 

i to a machine j that is very poor executing class i tasks. Since the MCT heuristic 

does not prevent this from happening, it can result in very poor performance. Other 

heuristics, including the LPAS heuristic, perform much better than the MCT heuris­

tic in such cases since they avoid mapping an arriving task to its minimum expected 

completion time machine that could do better for future task arrivals. Simulation 

results for System 2.H are shown later. 

Furthermore, the tendency of the MCT heuristic to make mapping decisions based 

on the immediate marginal improvement in completion time for an arriving task may 

be problematic. In fact, using the MCT heuristic may result in an unstable system 

even though the system can be stabilized. The instability of the MCT heuristic is 

demonstrated in Sharifnia [63] by considering the following system with M = 2 and 

N = 4. The arrival and execution rates are given by o: = [10 10 25 40] and 

15.38 0 

16.67 16.67 
µ= 

0 50 

16.67 200 

respectively. Simulation experiments show the instability of the MCT heuristic for 

such a system. Other heuristics, including the LPAS heuristic, do not suffer from this 

limitation. In fact, the LPAS heuristic does stabilize this system. 

In order to address the limitations of the MCT heuristic, the k-percent best (KPB) 

heuristic [51 J identifies for each class a subset consisting of the ( kM / 100) best ma­

chines based on the execution times for the class, where 100 / M ::; k ::; 100. Let Sf 

be the set of the l kM / 100 J machines that have the smallest expected execution time 

for class i tasks. The mapper assigns an arriving class i task to the machine in the 
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subset Sf that has the earliest expected completion time. Define k = l kM /100 J to 

be the number of machines considered by the KPB heuristic. 

The KPB heuristic does not attempt only to assign an arriving task to a superior 

machine based on execution times, it also attempts to avoid assigning an arriving task 

to a machine that could do better for tasks that arrive later. As discussed earlier, 

this foresight is not present in the MCT heuristic. Another advantage of the KPB 

heuristic is that the mapper needs only to communicate with a subset of the machines 

for each class, rather than with all machines in the system. Thus, the mapper requires 

less state information than the MCT heuristic. 

While the KPB heuristic succeeds in reducing the required state information for 

mapping, setting its parameter (k) may be problematic and is done in an ad-hoc man­

ner in [51]. Instability or severe performance degradation can result if inappropriate 

values for k are used. Also, the KPB heuristic maps each class to the same number 

of machines, which may not be desirable. 

As will be discussed in the next section, the LPAS heuristic builds on the idea of 

the KPB heuristic. Instead of mapping each class to a fixed number of machines, the 

LPAS heuristic maps each class to a different set of machines based on the solution 

of an allocation LP. Furthermore, by solving an allocation LP, the LPAS heuristic 

provides an explicit method to compute the maximum capacity and to compute the 

allocation of machines to classes. This has the advantage of requiring dramatically less 

state information while at the same time achieving competitive performance levels. 

The LPAS heuristic maps each class to a much smaller number of machines than the 

MCT heuristic. Furthermore, the LPAS heuristic provides a systematic way to choose 

the machines. 
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2.2 The LPAS Heuristic 

2. 2 .1 Overview 

Our proposed heuristic is similar to the KPB heuristic in that the mapper needs only 

to consider a subset of the machines for each class, however, the determination of this 

subset requires solving a linear programming problem (LP) (Andradottir et al. [7]). 

Then, the mapper assigns the task to the machine that has the earliest expected 

completion time in the subset. 

The LPAS heuristic requires solving the following allocation LP, where the decision 

variables are ). and bi,j for i = 1, ... , N, j = 1, ... , M (recall that µi,j and ai are the 

execution rates and arrival rates for the system, respectively). The variables bi,j are 

to be interpreted as the proportional allocation of machine j to class i. 

max). 

(2.1) 
M 

s.t. L bi,jµi,j 2:: ).ai, for all i = 1, ... , N, 
j=l 

(2.2) 
N 

L bi,j :::; 1, for all j = 1, ... , M, 
i=l 

(2.3) 

bi,j 2:: 0, for all i = 1, ... , N, and j = 1, ... , M. 

The left-hand side of (2.1) represents the total execution capacity assigned to class 

i by all machines in the system. The right-hand side represents the arrival rate of 

tasks that belong to class i scaled by a factor of).. Thus, (2.1) enforces that the total 

capacity allocated for a class should be at least as large as the scaled arrival rate for 

that class. This constraint is needed to have a stable system. The constraint (2.2) 

prevents overallocating a machine and (2.3) states that negative allocations are not 
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allowed. 

Let).* and {8i,j}, i = 1, ... , N, j = 1, ... , M, be an optimal solution to the alloca­

tion LP. The allocation LP always has a solution, since no lower bound constraint is 

put on>.. However, the physical meaning of).* requires that its value be at least one. 

In this case, 1/ >. * is interpreted as the long-run utilization of the busiest machine. 

The value >. * can also be interpreted as the maximum capacity of the system. We 

define the maximum capacity as follows. Consider a system with given values for ai 

(i = 1, ... , N) and ,\*. If,\* :::; 1, then the system is unstable. Thus, the system 

will be overloaded and tasks queue indefinitely. If, however, >. * > 1, then the system 

can be stabilized even if each arrival rate is increased by a factor less than or equal 

to,\* (i.e., the same system with arrival rates a~ :::; ,\*ai, for all i = 1, ... , N, can 

be stabilized). In this case, the values {8i,j}, i = 1, ... , N, j = 1, ... , M, can be 

interpreted as the long-run fraction of time that machine j should spend on class i 

in order to stabilize the system under maximum capacity conditions. Let 8* be the 

machine allocation matrix where the ( i, j) entry is 8i,j. 

The following theorems summarize these stability results (the proofs are provided 

in Appendix A). For j = 1, ... , M, we let Wj(t) be the total workload at machine 

j at time t which is defined as the cumulative amount of time that it takes machine 

j to execute all tasks present in its queue at time t. Let W(t) be a vector with jth 

element wj ( t). 

Theorem 2.2.1 If,\* > 1, then the system can be stabilized. More specifically, the 

workload process ( {W ( t)}) converges to a steady-state distribution as t ---+ oo. 

Theorem 2.2.2 If,\* < 1, then the system can not be stabilized. Thus, as t---+ oo, 

tasks queue indefinitely regardless of the implemented mapping heuristic. 

The LPAS heuristic can be stated as follows. Given a system, solve the allocation 

LP to find {8i,j}, i = 1, ... , N, j = 1, ... , M. When a new task of class i arrives, let 
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Si denote the set of machines whose bi,j is not zero (Si = {j : bi,j =/= 0}). The mapper 

assigns the task to the machine j E Si that has the earliest expected completion 

time among the subset of machines Si. Again, ties are broken arbitrarily. Note that 

the LPAS heuristic does not use the actual values for { bi,j}, beyond differentiating 

between the zero and nonzero elements. We must solve the allocation LP to know 

where the zeros are. 

The LPAS heuristic considers both the arrival rates and execution rates and their 

relative values in deciding the allocation of machines to tasks. Furthermore, by solving 

the allocation LP, the LPAS heuristic provides a systematic approach for setting 

parameters that guarantee the stability of a stabilizable system. This is an advantage 

over the KPB heuristic where figuring the correct value fork may not be trivial. The 

KPB heuristic maps each class to k machines independent of the class, whereas the 

LPAS heuristic maps each class to a different subset of the machines based on the 

solution of the allocation LP. The following example clarifies this point and provides 

some intuition for the LPAS heuristic. 

Consider a system with two machines and two classes of tasks (M = 2, N = 2). 

The arrival and execution rates are as follows: 

a= [ 2.45 2.45 ] andµ= [ : ~ ] . 

Solving the allocation LP gives A* = 1.0204 and 

6* = [ 0 0.5] . 
1 0.5 

A mapper using the LPAS heuristic maps all arriving tasks that belong to class 1 to 

machine 2. At the times of their arrivals, tasks that belong to class 2 are mapped to 

the machine, either machine 1 or 2, that has the earliest expected completion time. 

Even though machine 1 has the fastest rate for class 1, the mapper does not assign 

any class 1 tasks to it. Since the system is highly loaded, and since !!:bl < M,
2 and 

µ2,1 µ2,2 

et1 = et2, the performance is improved significantly if machine 1 only executes class 2 
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tasks. In fact, the performance of the LPAS heuristic is better than that of the MCT 

heuristic. For this particular system, both the MET heuristic and the KPB heuristic 

(with k = 1) result in unstable systems. This is because both heuristics map class 2 

tasks to machine 1 only, and the system will be unstable since a 2 > µ2,1 · 

In the LPAS heuristic, the mapper considers a subset of the machines for each 

class. Ideally, the size of each subset should be much smaller than M. Similar to the 

KPB heuristic, this has the advantage of requiring less communication between the 

mapper and the machines. Furthermore, degradation in performance due to outdated 

information is reduced. To achieve this, the o* matrix should contain a large number 

of elements that are equal to zero. In fact, there could be many optimal solutions 

to an allocation LP, and an optimal solution with a larger number of zeros in the o* 
matrix is preferred. The following proposition gives the number of zero elements in 

the o* matrix that could be achieved (the proof can be found in [7]): 

Proposition 2.2.1 There exists an optimal solution to the allocation LP with at least 

NM + 1 - N - M elements in the o* matrix equal to zero. 

Ideally, the number of zero elements in the o* matrix should be NM+ 1 - N - M. 

If the number of zero elements is greater, the LPAS heuristic would be significantly 

restricted in shifting workload between machines resulting in performance degrada­

tion. Also, solutions that result in degenerate cases should be avoided. For example, 

if the o* matrix contains no zeros at all, then the LPAS heuristic reduces to the MCT 

heuristic. Throughout this chapter, we use the unique optimal solution in which the 

o* matrix contains exactly NM + 1 - N - M zeros. 

The LPAS heuristic can be considered as a dynamic mapping heuristic. As the 

heuristic only involves solving an LP, it is suited for scenarios when machines are 

added and/ or deleted from the system. On each of these events, one needs to simply 

solve a new LP and continue with the new values. 
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2.2.2 Simulation Results 

Overview 

We use simulation to compare the performance of the mapping heuristics. The task ar­

rivals are modeled by independent Poisson processes, each with rate ai, i = 1, ... , N. 

Several distributions are used for execution times. Unless otherwise stated, the exe­

cution times are exponentially distributed. 

Each simulation experiment models a particular system, characterized by the val­

ues of M, N, ai, and µi,j, i = 1, ... , N, j = 1, ... , M. Each experiment simulates 

the execution of the corresponding system for 20,000 time-units. Each experiment is 

repeated 30 times. All confidence intervals are at the 95%-confidence level. 

There are several performance metrics that could be used to compare the perfor­

mance of the mapping heuristics [51]. We have chosen the long-run average number 

of tasks in the system, Q, as a metric for performance comparison. This includes 

the tasks that are waiting for execution at a particular machine and tasks that are 

executing. 

Table 2.1 lists simulation results for different systems (these systems are discussed 

shortly). For each system, the table shows the 95%-confidence interval for Q when 

the corresponding mapping heuristic is used. If a system becomes unstable due to 

the mapping heuristic used by its mapper, the table just indicates that the system is 

unstable. Since the MET heuristic results in unstable systems in most of the systems 

in Table 2.1, we do not include it here. The table also shows the results of using the 

KPB heuristic with different values for k. 

In these simulation experiments, we assume that a First-Come-First-Serve (FCFS) 

scheduling policy is used by the machines. Thus, in this case, the expected completion 

time of a class i arrival at machine j is given by 

N 
1 2=Q·1· + i ,] 

- --
' µi,j i'=l µi',j 
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where Qi',j is the number of tasks of class i that are waiting or executing at machine 

j, at the time of the task arrival. 

Small Systems 

System 2.A in Table 2.1 is the system discussed in Section 2.2.1. This is a highly 

loaded system as shown by the large values for Q. As shown in the table, the MCT 

heuristic performs poorly with respect to the LPAS heuristic. This is because the 

MCT heuristic assigns some class 1 tasks to machine 1, although it is more advanta­

geous to dedicate machine 1 for class 2 tasks. 

System 2.B is another small system, where M = 2 and N = 2. The arrival and 

execution rates are as follows: 

a = [ 5 8 J and µ = [ 
8 3 

] 
4 10 

Solving the allocation LP gives A* = 1.3333 and 

o* = [ o.8333 o ] . 
0.1667 1 

As indicated by the nonzero elements of the o* matrix, the LPAS heuristic assigns 

all class 1 tasks to machine 1. Thus, machine 2 becomes dedicated to execute class 2 

tasks. This results in improved performance since, in this case, class 2 tasks have a 

higher arrival rate and they run much faster on machine 2 than on machine 1. 

Large Systems 

System 2.Cl is a large system with M = 30 and N = 3. The machines are grouped 

into four groups, and each group consists of machines with identical performance. 

Thus, if two machines are in the same group, then they have the same execution 

rates. Table 2.2 shows the execution rates of the groups. 

Groups P, Q, R, and S, consist of 10 machines, 9 machines, 6 machines, and 

5 machines, respectively. As Table 2.2 shows, the groups vary in performance. For 
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Table 2.1: Comparison of the mapping heuristics 

System MCT KPB LPAS 

k=l 

2.A (85.68, 110.23) Unstable ( 62.56, 82.01) 

k=l 

2.B (20.05, 21.10) (5.65, 5.73) (5.21, 5.26) 

k = 14 

2.Cl (53.99, 54.98) (75.26, 79.13) (47.39, 47.72) 

k=2 

(14.75, 14.89) 

k=3 

2.D (22.68, 23.21) (11.00, 11.04) (10.55, 10.59) 

k=5 

2.E (27.71, 28.20) (51.65, 55.60) (36.54, 37.07) 

k=4 

2.Fl (19.09, 19.44) (20.77, 21.07) (28.71, 29.05) 

k=4 

2.F2 ( 46.36, 49.49) (73.44, 81.75) (34.27, 34.89) 

k=4 

2.G (37.91, 40.43) ( 42.21, 43.54) (42.05, 43.09) 

k=5 

2.H (3648.48, 4086.54) (888.62, 1319.97) (131.08, 150.15) 

k = 14 

2.11 (64.20, 66.32) (86.65, 94.15) (50.83, 38) 

k = 14 

2.12 ( 41.56, 41.82) (53.69, 55.19) ( 40.57, 40.69) 
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Table 2.2: Execution rates for System 2.Cl 

Group 

Task p Q R s 
1 8 4 4 4 

2 1 4 1 2 

3 4 2 8 4 

instance, a machine in group P is twice as fast as a machine in group S on tasks of 

class 1, however, for tasks of class 2, the opposite is true. The arrival rates are given 

by O'. = [45 45 40]. 

Since System 2.Cl consists of some identical machines, there are an infinite number 

of optimal solutions to the allocation LP. To better capture machine homogeneity of 

the system, it is desirable to use the unique optimal solution in which machines that 

belong to the same group have identical values for 8I,j. To do this, we solve the 

allocation LP corresponding to the following system: 

80 36 24 20 

N = 3, M = 4, a = [45 45 40], and µ = 10 36 6 10 

40 18 48 20 

Solving the modified allocation LP gives ,\* = 1.1146 and 

0.6270 0 0 0 

8* = 0.3730 1 0.0712 1 

0 0 0.9288 0 

Thus, for System 2.Cl, we use the 8* matrix represented in Table 2.3. In this partic­

ular solution, machines that belong to the same group have identical values for 8I,j· 

Note that the b* matrix has 44 elements that are equal to zero. However, note that 

based on Proposition 2.2.1, there exists another optimal solution to the allocation LP 

with 58 elements in the b* matrix that are equal to zero. 
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1 0.6270 0 0 0 

2 0.3730 1 0.0712 1 

3 0 0 0.9288 0 

As shown in Table 2.1, the LPAS heuristic achieves the best results. Note that 

the KPB heuristic is unstable for k < 14. 

Task and Machine Heterogeneity 

Systems 2.D through 2.G model different kinds of system heterogeneity. Machine 

heterogeneity refers to the average variation along the rows of the execution rate 

matrix, and similarly task heterogeneity refers to the average variation along the 

columns (see Armstrong [11]). Heterogeneity can be classified into high heterogeneity 

and low heterogeneity. Based on this, we simulate the following four categories for 

heterogeneity [11, 51]: (a) high task heterogeneity and high machine heterogeneity 

(HiHi), (b) high task heterogeneity and low machine heterogeneity (HiLo ), ( c) low task 

heterogeneity and high machine heterogeneity (LoHi), and (d) low task heterogeneity 

and low machine heterogeneity (LoLo). 

System 2.D models a HiHi system with M = 7 and N = 4. The arrival and 

execution rates are given by o: = [12.5 12 12.5 12] and 

4.5 2 9.5 6.2 10.25 2.25 3.95 

6.2 4.5 6 2 4.2 5.9 10.25 
µ= 

9.5 6.5 4 10 5.9 2.25 3.95 

2.25 10 2 3.95 1.75 10 1.75 

Solving the allocation LP gives >. * = 1.3449 and 
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0 0 0.6907 0 1 0 0 

0.2830 0 0.3093 0 0 0.3861 1 

0.7170 0 

0 1 

0 

0 

1 0 0 0 

0 0 0.6139 0 

For System 2.D, the LPAS heuristic outperforms the other heuristics. It maps the 

tasks of each class to at most two machines, except for class 2 tasks that are mapped 

to four machines. The LPAS heuristic exhibits better performance than the KPB 

heuristic with k = 3. 

System 2.E is a LoHi system. The system contains 7 machines and 4 classes. The 

arrival and execution rates are given by a = [10 10 8 8] and 

2.2 7 10.25 1 5.7 0.5 12 

1.95 7.05 9.78 0.95 5.65 0.56 11.85 
µ= 

2 7.25 10.02 0.98 5.75 0.67 11.8 

2.05 6.75 9.99 1.02 5.82 0.49 12.05 

Solving the allocation LP gives .X* = 1.0844 and 

1 0 0.8433 0 0 0 0 

0 0 0 0 0 0 0.9151 
6* = 

0 1 0.0754 0 0 1 0 

0 0 0.0813 1 1 0 0.0849 

The MCT heuristic has the best performance for System 2.E. This is not an 

unexpected result as suggested by the following argument. Due to the very low task 

heterogeneity of system 2.E, one can think of it as a system with one class of arriving 

tasks (a = [36]) and the execution rate of each machine is the average of the execution 

rates of the four classes in System 2.E on the machine, µ = [2.05 7.0125 10.01 0.9875 

5.73 0.555 11.925]. In this case, assigning an arriving task to the machine that has 

the minimum expected completion time (the MCT heuristic) is the best strategy. In 

fact, solving the allocation LP corresponding to the modified system above results 
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in the following value for 6*: [1 1 1 1 1 1 1]. Thus, in this case, the LPAS heuristic 

reduces to the MCT heuristic. 

Even though the MCT heuristic is the best heuristic for System 2.E, the LPAS heuris­

tic has the advantage of mapping each class to a smaller number of machines. The 

LPAS heuristic performs much better than the KPB heuristic even fork = 5. The 

KPB heuristic is unstable for k < 5. 

Systems 2.Fl and 2.F2 are HiLo systems (M = 7, N = 4). Both have the same 

execution rates and only differ in the arrival rate vector a. The arrival rate vector 

for System 2.Fl is a = [4 8 10 10], and for System 2.F2 it is given by a = [7 7 7 7]. 

For both systems, the execution rate matrix is given by 

2 2.5 2.25 2 2.2 1. 75 2.25 

4.5 4 4.2 4 3.8 3.9 3.95 
µ= 

6 6.2 6.25 6 5.75 5.9 6.05 

10 10.25 10.5 9.5 10.25 10.25 10 

For System 2.Fl, solving the allocation LP gives).*= 1.1331 and 

6* = 

0 1 0 0 

1 0 1 0.0911 

0 0 0 0.9089 

0 0 0 0 

0.8946 0 0.0285 

0 0 0 

0 0 0.9715 

0.1054 1 0 

For System 2.F2, solving the allocation LP gives ).* = 1.0798 and 

6* = 

0 1 0.2704 0 1 

1 0 0.7282 0 0 

0 

0 

1 

0 

0 0 0.0014 1 0 0.2626 0 

0 0 0 0 0 0.7374 0 

Due to the very low machine heterogeneity of both systems, one can think of them as 

consisting of identical machines. The LPAS heuristic achieves the best performance 

in many such systems as in 2.F2. 
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System 2.G is a LoLo system with M = 7 and N = 4. The arrival and execution 

rates are given by o: = [8 9 7 10] and 

5 5.05 4.95 4.98 4.7 5.2 5.25 

5.25 5.09 4.9 4.92 5 5.13 5.14 
µ= 

4.45 5 4.9 4.45 4.9 5 5.1 

5.02 4.95 5 5.02 5.25 4.75 5 

Solving the allocation LP gives>.* = 1.0557 and 

0 0 0 0 0 1 0.6182 

1 0.8352 0 0 0 0 0 
8* = 

0 0.1648 0.9426 0 0 0 0.3818 

0 0 0.0574 1 1 0 0 

For System 2.G, the MCT heuristic has slightly better performance than the 

other heuristics. The KPB heuristic (k = 4) has performance close to that of the 

LPAS heuristic, however, the mapper is required to obtain the expected completion 

times from four machines at each task arrival as compared to at most three machines 

in the case of the LPAS heuristic. 

Special Systems 

Consider System 2.H defined in Section 2.1. As explained earlier, since the MCT 

heuristic does not have any foresight on task heterogeneity, it may assign an arriving 

task to a machine that minimizes the task's expected completion time, yet it is very 

poor executing the task's class. This results in significant performance degradation 

as shown in Table 2.1. The LPAS heuristic is the best heuristic for System 2.H. The 

KPB heuristic performs poorly and is only stable for k 2: 5. For k < 5, instability 

results. Fork 2: 5, the system becomes stable, however the performance is poor. 
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Other Execution Time Distributions 

To test the effect of execution time distribution on the performance of the mapping 

heuristics, all of the previous experiments were re-run with non-exponential execution 

time distributions. In particular, two distributions were used to study lower and 

higher variances than the exponential case: the first is a constant execution time of 

size ~ for machine j executing class i tasks, and the second is a hyper-exponential 
µ,,) 

distribution with mean 1 for the execution times and twice the variance as the 
µi,j 

exponential case. 

Our results indicate that the relative performance of the heuristics is not affected 

by the execution time distribution. System 2.Il has the same configuration as system 

2.Cl, but with a hyper-exponential execution time distribution. System 2.12 also has 

the same configuration as system 2.Cl, but with constant execution times. Table 2.1 

shows the performance of the different mapping heuristics for Systems 2.Jl and 2.12. 

For the KPB heuristic, both systems are unstable fork < 14. 

2.3 Other LPAS-Related Heuristics 

2.3.1 Overview 

In this section, we describe other LPAS-related heuristics which attempt to reduce 

further the state information required in making mapping decisions. 

To compare mapping heuristics in terms of state information required for mapping, 

we use the discount metric defined in [36]. Let N8 be the average number of machines 

from which a heuristic acquires information for each arrival. The discount of the 

mean required state information (over full information) for a mapping decision is 

then defined by 

(2.4) Discnt = ( 1 - -:; ) x 1003. 

Now, consider the heuristics introduced in Section 2.1. For the MET heuristic, 

34 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

the mapper need not contact any machine in making mapping decisions and thus 

Ns = 0. For the MCT heuristic, assuming that all µi,j are positive, the mapper needs 

to acquire state information from all of the machines and thus Ns = M. For the KPB 

heuristic, the mapper needs to acquire state information from k machines (assuming 

that all µi,j are positive). For the LPAS heuristic, the mean number of machines from 

which the mapper acquires information for each arrival is 

The LPAS-2/k Heuristic 

One way to reduce further the state information required in making mapping deci­

sions is to choose for each arrival of class i just two machines from the set Si and 

then compare that pair in terms of the expected completion times. The LPAS-2/k 

heuristic is stated as follows: A class i arrival is mapped to one of the two machines 

(j1 , h) chosen from Si which has shorter expected completion time. If ISil > 2, ma­

chine )1 is first chosen from Si with probability p11 = 
8i·~~:i:h. Then, machine j 2 is 

chosen from Si \ {j1} with probability p12 = .\* 
8i'.!_fi~i,j2 . . • °'i i,jiµi,11 

The mean number of machines from which the LPAS-2/k heuristic acquires state 

information for each arrival is given by 

N = 2 ~ ai ~ ai . 
s L.....t -+L.....t -a a 

i:IS;l>l i:IS;l=l 

It is noted that, in the worst case, the LPAS-2/k heuristic acquires state information 

from two machines for each arrival, and thus the discount of the average required state 

information is (M - 2)/M x 100%. This implies that the discount increases as the 

number of machines grows, independently of the structure of b*. Note, however, that 

even though the LPAS-2/k heuristic requires less state information than the LPAS 
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heuristic, one needs to know the values for bi,J (rather than just whether they are zero 

or not). 

Consider a system with N = 1 and M arbitrary. Assume that the execution times 

are exponentially distributed and µ 1,J = 1 for all j = 1, ... , M. Also, assume that the 

arrival process is Poisson with rate M a 1 , where a 1 < 1. In this case, bi,J = 1 for all 

j = 1, ... , M. Thus, using the LPAS-2/k heuristic, an arrival randomly (with equal 

probabilities) chooses two of the machines and joins the queue of the machine with 

the shorter queue length. Mitzenmacher [55] analyzed such a system and found that 

when a 1 approaches 1, there is an exponential improvement in the mean waiting time 

(over choosing only one machine randomly), while increasing the number of choices 

for an arrival results in only a constant improvement over two choices. This suggests 

that a similar degree of improvement might be expected for the LPAS-2/k heuristic 

over a static mapping heuristic, although the "power of two choices" has not been 

analyzed rigorously for heterogeneous systems [36]. 

The LP-Static Heuristic 

The LP-Static heuristic requires no state information in making mapping decisions. 

We define it here to compare against other heuristics which take into account state 

information. The heuristic is stated as follows. Class i tasks are mapped to machine 

j with probability 

<5* µ· . 
(2.6) Pi J. = ~ i,J. 

, *ai 

The LP-Static heuristic maximizes system capacity in the long term, but may 

suffer from poor performance since it does not do any short-term shifting of workload 

among the machines. In Appendix A, it is proven that the LP-Static heuristic is 

guaranteed to stabilize a stabilizable system. However, the heuristic generally achieves 

poor performance. In Section 2.4, we introduce the Guided-LPAS heuristic and prove 

that it is guaranteed to stabilize a stabilizable system. The Guided-LPAS heuristic 

achieves competitive performance levels with the LPAS heuristic. 
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Tablli 2.4: Execution ~::;or System 2.C2 

Task T I U I V I W I X Y 

1 16.7 24.8 24.2 29 25.6 48.3 

2 30.4 48.3 77.7 83.6 135.9 144.9 

3 18.9 24.2 48.3 45.8 72.5 72.5 

4 3 3 7.6 7.6 8.3 8.7 

5 1 1.1 3 2.9 3 3 

2.3.2 Simulation Results 

We use System 2.C2 which models a real cluster system [46] (for details, see He [35]) 

to compare the LPAS-related heuristics. System 2.C2 is a medium size system with 

5 task classes and 30 machines. The machines are partitioned into 6 groups, ma­

chines within a group are identical. Groups T, U, V, W, X, and Y, consist of 2 

machines, 6 machines, 7 machines, 7 machines, 4 machines, and 4 machines, re-

spectively. The execution rates are shown in Table 2.4. The arrival rate vector is 

Q = [204.10 68.87 77.63 5.01 10.43]. 

As done for System 2.Cl (Section 2.2.2), we solve the allocation LP corresponding 

to the following system: 

N = 5, M = 6, a= [204.10 68.87 77.63 5.0110.43], and 

33.4 148.8 169.4 203 102.4 193.2 

60.8 289.8 543.9 585.2 543.6 579.6 

µ= 37.8 145.2 338.1 320.6 290 290 

6 18 53.2 53.2 33.2 34.8 

2 6.6 21 20.3 12 12 

Solving the modified allocation LP gives,\* = 2.4242 and 
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Table 2.5: The machine allocation matrix for System 2.C2 

Task II T I U I V I G:up I X I Y I 
1 

2 

3 

4 

5 

1 1 0 0.5881 

0 0 0 

6* = 0 0 0 

0 

0 

1 1 

0 0 

0 0 

0 0 

0 0 

0 1 

0.3071 0 

0.6489 0 

0 0 0 0.2009 0.0439 0 

0 0 1 0.2111 0 0 

0 0.5881 0 1 

0 0 0.3071 0 

0 0 0.6489 0 

0 0.2009 0.0439 0 

1 0.2111 0 0 

Thus, for System 2.C2, we use the 6* matrix in Table 2.5. In this particular solution, 

machines that belong to the same group have identical values for 6l,j· Note that the 

number of nonzero elements in the 6* matrix is 52. Using the LPAS heuristic, the 

discount of the average required state information for a mapping decision is 583. On 

the other hand, using the LPAS-2/k heuristic the discount is 943. 

Table 2.6 shows the simulation results for System 2.C2. As the table shows, the 

LPAS heuristic achieves the best results. The LPAS-2/k heuristic has worse perfor­

mance than that achieved by the LPAS heuristic, yet it uses less state information. 

The performance degradation is not large (and is significantly better than the LP­

Static heuristic). 
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Table 2.6: Simulation results for System 2.C2 

LP-Static (24.25, 24.29) 

MCT (11.45, 11.46) 

LPAS (11.32, 11.33) 

LPAS-2/k (14.01, 14.02) 

2.4 The Guided-LPAS Heuristic 

Consider the MCT heuristic. Stolyar [67] showed that it does not minimize system 

workload in heavy traffic. Sharifnia [63] showed that it may not stabilize the system 

even if the system can be stabilized. He attributed this to its greedy use of information 

resulting in assigning tasks to the "wrong" machines persistently and thus causing 

instability. An important question is: with the restrictions of the LPAS heuristic, is 

it true that the LPAS heuristic is guaranteed to stabilize a stabilizable system (i.e., 

a system where the solution to the allocation LP is.\* > 1)? 

Even though our simulation experiments have failed to find a stabilizable system 

that is not stabilized by the LPAS heuristic, we are not able to prove the stability 

of the LPAS heuristic. This is because of the difficulty of finding an expression for 

the actual machine allocations achieved by the LPAS heuristic. However, we are 

confident of its stability as it avoids assigning tasks to the "wrong" machines by using 

task heterogeneity to provide foresight. Thus, it does not suffer from the root cause 

for the instability of the MCT heuristic. If one is still concerned about stability, we 

give the Guided-LPAS heuristic and give a proof for its stability. 

The Guided-LPAS heuristic is guaranteed to stabilize a stabilizable system. It is a 

modification of the LPAS heuristic such that, over time, target (reference) execution 

capacities allocated for individual task classes on each machine are achieved. These 

targets are found from the solution of the allocation LP. In particular, the target 

execution capacity allocated by machine j for class i is 
8i·r.i,j. 

Let 7ri,j be the target mapping ratio of class i tasks to machine j such that the tar-
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get execution capacity reference levels are achieved (i.e., 1ri,j = 
6i~:i/ ). The Guided­

LPAS heuristic uses the LPAS heuristic as long as the actual rate at which class i 

tasks are mapped to machine j is not too far from its target level ni,j' or equivalently, 

the actual execution capacity levels are not far from their targets. 

The Guided-LPAS heuristic can be stated as follows. Let ai,j(t) denote the number 

of class i tasks assigned to machine j in [O, t]. Let ai(t) denote the number of class 

i tasks that arrived during [O, t]. An arrival of a class i task at time t is mapped 

to a machine j for which: (i) the task's expected completion time is minimized, (ii) 

67,j =J- 0, and (iii) ai,j(t-) < ni,jai(t)+Ci,j'/i, where Ci,j is a nonnegative but otherwise 

arbitrary constant. Note that since at any class i arrival time t, ai,j(t-) < ai(t) and 

Ci,j 2: 0, j = 1, ... , M, there is always at least one machine satisfying condition (iii), 

and therefore the heuristic is well defined. 

The Guided-LPAS heuristic attempts to achieve the short-term advantages at­

tained by the LPAS heuristic. However, it employs an oversight control that achieves 

target execution capacity reference levels in the long run. This ensures the stability 

of the heuristic while achieving good performance levels. The stability result for the 

Guided-LPAS heuristic is stated in the following theorem (the proof is provided in 

Appendix A): 

Theorem 2.4.1 The Guided-LPAS heuristic stabilizes a stabilizable system. More 

specifically, if the system is stabilizable and the mapper uses the Guided-LPAS heuris­

tic, then the workload process ( {W ( t)}) converges to a steady-state distribution as 

t ____, 00. 

Our simulation experiments indicate that the oversight control mechanism is sel­

dom used. For instance, consider the system defined in Section 2.1 to show the 

instability of the MCT heuristic. Setting Ci,j = 1, i = 1, ... , N, j = 1, ... , M, and 

simulating the system under the Guided-LPAS heuristic (using the same assumptions 

as in Section 2.2.2), we observed that the number of times condition (iii) is violated 
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was zero. 

In Section 2.3, we introduced a variant of the LPAS heuristic which results in a 

further reduction of the state information required for mapping. We referred to this 

heuristic as the LPAS-2/k heuristic. Here, we modify the LPAS-2/k heuristic such 

that stability is guaranteed for stabilizable systems. The resulting heuristic is referred 

to as the Guided-LPAS-2/k heuristic and is defined as follows. Let Ti(t) = {jl <57,j =/= 0 

and ai,j(C) < ni,jai(t) + Ci,jyt}. A class i arrival at time t is mapped to one of the 

two machines (j1,j2) chosen from Ti(t) such that the arrival joins the machine with 

the minimum expected completion time. If 17i(t)1 > 2, machine j 1 is first chosen from 

Ti(t) with probability Ph = 2:: cii,Jiµ~: 1 
..• Then, machine j2 is chosen from Ti(t) \ {j1} 

jET;(t) i,jµi,J 

with probability Ph = (2:: ~i~i µ;,j)
2
_ 8• . . . 

jET;(t) i,jµi,3 i,Ji µi,11 

The following theorem states the stability result for the Guided-LPAS-2/ k heuris-

tic (the proof is provided in Appendix A): 

Theorem 2.4.2 The Guided-LPAS-2/k heuristic stabilizes a stabilizable system. 

More specifically, if the system is stabilizable and the mapper uses the Guided-LPAS-2/k 

heuristic, then the workload process ( {W ( t)}) converges to a steady-state distribution 

as t ----* oo. 

2.5 Summary and Discussion 

The main contribution of this chapter is the proposal of the LPAS mapping heuristic 

for heterogeneous computing systems. The LPAS heuristic utilizes the solution to 

an allocation LP in making mapping decisions. By solving an allocation LP, the 

LPAS heuristic provides an explicit method to compute the maximum capacity and 

to compute the allocation of machines to classes. This has the advantage of requiring 

dramatically less state information while at the same time achieving competitive 

performance levels. It does not suffer from the limitations of other mapping heuristics, 

namely the limited use of information about task heterogeneity (as in the case of 
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the MCT heuristic) and the ad-hoc manner for setting parameters (as in the KPB 

heuristic). Furthermore, we have introduced two modifications to the LPAS heuristic. 

First, the LPAS-2/k heuristic significantly reduces the state information required in 

mapping. Second, the Guided-LPAS heuristic is guaranteed to stabilize a stabilizable 

system. 

A related open question is to analyze the robustness of the LPAS heuristic. Often, 

HC systems operate in an environment with a large degree of uncertainty (see Smith 

et al. [65]). In this context, robustness can be defined as the degree to which a 

system can function correctly in the presence of parameter values different from those 

assumed (Ali et al. [6]). A number of papers have studied robustness in HC systems, 

including Ali et al. [6], Mehta et al. [53], Shestak et al. [64], and Smith et al. [65]. 

We believe that the solution to the allocation LP is inherently robust with respect to 

errors in estimates of the parameters (the arrival and execution rates) and thus we 

expect the LPAS heuristic to have robustness advantages over other existing resource 

management policies for H C systems. 
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Chapter 3 

Fault-Aware Scheduling Policies 

for Heterogeneous Desktop Grids 

In this chapter, we introduce several scheduling policies for Desktop Grids. Section 3.1 

describes the First-Come-First-Served policy which is used in major Desktop Grid 

schedulers. The Geµ policy and the LPAS_DG policy are described in Sections 3.2 

and 3.3, respectively. In Section 3.4, we present the results obtained in our simulation 

experiments. In Section 3.5, we analyze the performance of the LPAS_DG policy using 

the McMaster Grid Scheduling Testing (MGST) framework. Section 3.6 concludes the 

chapter. Contents of this chapter appear in Al-Azzoni and Down [1, 4] and Kokaly 

et al. [42]. 

3.1 Current Policies 

A scheduling policy that is applicable to our workload model is the classical First­

Come-First-Served (FCFS) policy. FCFS is used in major Desktop Grid sched­

ulers [27, 44]. An advantage of FCFS is that it does not require any information 

about task arrival rates or machine execution rates. However, as our simulations 

show, FCFS only performs well in systems with limited task heterogeneity and under 
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moderate system loads. As the application tasks become more heterogeneous and the 

load increases, performance degrades rapidly. 

3.2 The Geµ Policy 

The Geµ policy is a variation of the generalized cµ rule (Geµ) analyzed by Mandel­

baum and Stolyar [52]. We consider the version of the Geµ rule which asymptotically 

minimizes delay costs. The policy can be stated as follows: when a machine j requests 

a task, the scheduler assigns it the longest-waiting (head of the line) class i task such 

that i E argmaxiDi(t)µ~,J' in which Di(t) is the waiting time (sojourn time) of the 

head of the line class i task at the time of making the scheduling decision t. 

To the best of our knowledge, the Geµ policy has never been suggested or used as 

a scheduling policy in Desktop Grids. The Geµ policy aims at myopically maximizing 

the rate of decrease of the instantaneous delay cost. It has been proved that when 

the primitives o: and µ satisfy certain conditions, the Geµ policy minimizes both in­

stantaneous and cumulative delay costs, asymptotically, over essentially all scheduling 

disciplines, preemptive or non-preemptive [52]. The optimality of the Geµ policy is 

obtained under a heavy traffic assumption, in other words, optimality is achieved as 

the system load approaches 100 percent. When one backs off from the heavy traffic 

condition, we will see that there is room for making bad scheduling decisions, which 

in turn can significantly degrade performance. 

Under moderate traffic conditions, the Geµ rule could make more frequent bad 

scheduling decisions, especially in systems with highly heterogeneous execution rates. 

This results from the policy's greedy nature. Our LPAS_DG policy avoids this by 

preventing the assignment of particular task classes to inefficient machines. 

Note that a scheduler using the Geµ policy only requires information on the ex­

ecution rates of the machines. Using this extra information, however, can result in 

achieving significant performance improvement over policies that do not use such 
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information (i.e., FCFS). 

3.3 The LPAS_DG Policy 

The LPAS_DG policy requires solving the following allocation LP (Andrad6ttir et 

al. [8]) at each machine availability /unavailability event, where the decision variables 

are,\ and oi,j for i = 1, ... , N, j = 1, ... , M. The interpretation of the variables and 

constraints is identical to that of the allocation LP in Section 2.2.1. 

max,\ 

(3.1) 
M 

s.t. L oi,jµ~,j 2: ,\ai, for all i = 1, ... ' N, 
j=l 

(3.2) 
N 

L oi,j :::; aj, for all j = 1, ... , M, 
i=l 

(3.3) 

oi,j 2: 0, for all i = 1, ... , N, and j = 1, ... , M. 

Whenever a machine becomes available or unavailable, the scheduler solves the 

allocation LP to find { 87,j} , i = 1, ... , N, j = 1, ... , M. If a machine j becomes 

unavailable, then aj = 0. In this case, o;,j = 0 for i = 1, ... , N. On the other 

hand, if a machine j becomes available, aj is equal to the predicted CPU availability 

for machine j during its next expected machine availability period (CPU availability 

prediction techniques are discussed in Section 1.4.2). Solving the allocation LP at 

each availability/non-availability event represents how the LPAS_DG policy adapts 

to the dynamics of machine availability. Constraint (3.2) enforces the condition that 

the allocation of machine j should not exceed its CPU availability. The use of aj 

represents how the LPAS_DG policy adapts to the dynamics of CPU availability. 
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The value ,\ * can be interpreted as follows. Consider an event in which a machine 

becomes available or unavailable. Let ,\* and {Ji,1}, i = 1, ... , N, j = 1, ... , M, 

be an optimal solution to the allocation LP corresponding to the system just after 

the occurrence of the event. Consider the system that only consists of the available 

subset of the M machines. Then, the value ,\ * can also be interpreted as the maximum 

capacity of this partial system. 

The LPAS_DG policy is defined as follows. When a machine j requests a task, 

the scheduler assigns machine j the longest-waiting (head of the line) class i task 

such that µi,1Ji,1 > 0 and i E argmaxi µi,jDi(t), where Di(t) is defined in Section 3.2. 

Note that µi,j represents the effective execution rate for class i tasks at machine j 

(µi,j = a1 µ~,j for i = 1, ... , N, j = 1, ... , M). 

Consider a system with two machines and two classes of tasks (M = 2, N = 2). 

The arrival and execution rates are as follows: 

" = [ 1 1.5 ] and µ = [ : ~ ] . 

Assume that all machines are dedicated (i.e., ai = 1, for all j = 1, ... , M). Solving 

the allocation LP gives ,\ * = 1. 764 7 and 

J* = [ 0 0.3529 ] · 
1 0.6471 

Thus, when machine 1 requests a task, the scheduler only assigns it a class 2 task. 

Machine 2 can be assigned tasks belonging to any class. Although the fastest rate 

is for machine 1 at class 1, machine 1 is never assigned a class 1 task. Note that 

machine 1 is twice as fast as machine 2 on class 2 tasks and note that !!:.hl < µ
1

'
2 

• 
µ2,1 µ2,2 

Now assume that machine 1 is fully dedicated and machine 2 is available only 

10% of the time (i.e., a 1 = 1 and a2 = 0 .1). Solving the new allocation LP gives 

,\ * = 1.2258 and 

J* = [ 0.0806 00.1 ] 
0.9194 
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In this case, machine 1 is assigned tasks from any class, but machine 2 is only assigned 

class 1 tasks. Note that machine 1 is 20 times as fast as machine 2 on class 2 and 

thus the LPAS_DG policy avoids assigning a class 2 task to machine 2. 

To show how the LPAS_DG policy adapts to machine failures, consider the fol­

lowing system ( M = 4, N = 3). The arrival and execution rates are as follows: 

2 2 2 2 

a = [ 3 5 4 J and µ = 1 20 3. 7 5.9 

1 20 7.1 2.7 

Assume that all machines are dedicated (i.e., aj = 1, for all j = 1, ... , M). Solving 

the allocation LP gives ,\* = 2.0513 and 

1 0.0769 1 1 

o* = o o.5128 o o 

0 0.4103 0 0 

Note that machine 1 is never assigned tasks belonging to class 2 or class 3. While 

machine 2 may be assigned tasks from any class, machines 3 and 4 are only assigned 

class 1 tasks. 

Now, assume that machine 2 fails. Solving the new allocation LP gives,\* = 1.0306 

and 

1 0 0.4194 0.1266 

o* = o o o o.8734 

0 0 0.5806 0 

In this case, in addition to class 1 tasks, machine 3 is assigned class 3 tasks and 

machine 4 is assigned class 2 tasks. 

Ideally, the number of zero elements in the o* matrix should be NM+ 1-N - M. If 

the number of zero elements is greater, the LPAS_DG policy would be significantly re­

stricted in shifting workload between machines resulting in performance degradation. 

Also, if the number of zero elements is very small, the LPAS_DG policy resembles 
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more closely the Geµ policy. In fact, if the 8* matrix contains no zeros at all, then 

the LPAS_DG policy reduces to the Geµ policy. Throughout the chapter and unless 

otherwise stated, we use an optimal solution in which the 8* matrix contains exactly 

NM+ 1 - N - M zeros. Such a solution always exists (see Proposition 2.2.1 ). 

3.4 Simulation Results 

We use simulation to compare the performance of the scheduling policies. The task ar­

rivals are modeled by independent Poisson processes, each with rate ai, i = 1, ... , N. 

The execution times are exponentially distributed with rates µ~,i' where 1/ µ~,j rep­

resents the mean execution time of a task of class i at machine j, i = 1, ... , N, j 

= 1, ... , M. Unless otherwise stated, it is assumed that machine fault times and 

availability times are exponentially distributed. A machine fault (availability) time 

represents a time interval during which the machine is unavailable (available). 

There are several performance metrics that can be used to compare the perfor­

mance of the scheduling policies [9, 44]. We use the long-run average task completion 

time W, as a metric for performance comparison. A task completion time is defined 

as the time elapsing between the submission of the task and the completion of its ex­

ecution, including resubmission times. For each simulation experiment, we also show 

the average task completion time for class i tasks, Wi, for all i = 1, ... , N. 

In this section, we study several systems. Each simulation experiment models 

a particular system under different assumptions on machine and CPU availabilities. 

Each experiment simulates the execution of the corresponding system for 20,000 time­

units. Each experiment is repeated 30 times. For every case, we give W, the improve­

ment (L\) over the Geµ policy, and Wi, i = 1, ... , N. For W, we also give the accuracy 

of the confidence interval defined as the ratio of the half width of the interval over 

the mean value (all statistics are at 953 confidence level). A negative improvement 

means a policy is being outperformed by the Geµ policy. Note that we do not give 
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Table 3.1: Execution rates for System 3.A 

Task II T I u I vc)°; I x I v I 
1 2 2 2 2 2 2 

2 1 20 3.7 7.1 2.4 8.7 

3 1 20 9.4 3.7 7.3 2.7 

4 1 20 2.8 5.9 4.4 6.3 

performance results for the FCFS policy when it results in either an unstable system 

or one in which performance is several orders of magnitude worse than the Geµ policy. 

Consider the following system. System 3.A is a medium-size system with 4 task 

classes and 30 machines. The machines are partitioned into 6 groups, with machines 

within a group being identical. Thus, if two machines are in the same group, then 

they have the same execution rates. Groups T and U consist of 3 machines each, 

while groups V, W, X, and Y consist of 6 machines each. For the systems discussed 

in this section, the machines are ordered with the machines of group T first, group U 

second, etc. Thus, for example, in System 3.A, the machine j = 7 belongs to group 

V and the machine j = 30 belongs to group Y. The execution rates are shown in 

Table 3.1. Using this partition, we have all machines being homogeneous to class 1 

tasks; 10 percent of machines are slow for most arrivals, 10 percent of machines are 

fast for most arrivals and the majority of machines (the remaining 80 percent) have 

high task and machine heterogeneity. 

For System 3.A, Table 3.2 shows the simulation results under two different arrival 

streams: (i) a 1 = [11.25 22.5 36 63], and (ii) a 2 = [17.5 35 56 98]. The arrival rates 

a 1 result in a lightly loaded system while those in a 2 lead to a heavily loaded system. 

The following are the simulation scenarios for arrival rates a 1: 

1. There are no machine failures, and aj = 1 for all j = 1, ... , M. 

2. Each machine fails at the rate 0.02 per time-unit and the mean fault time is two 
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Table 3.2: Simulation results for System 3.A 
l'. nder Arrival Ratrn a1 

FCFS GCJL LPAS_DG 
! w W1 W2 Wi W4 w W1 W2 W1 Wi w 6 1 W1 W2l W1 Wi Case· 6 

1 l.G5 -617.393 1.93 
I 

l.G2 0.23 0.54 0.20 0.19 0.20 0.15 34. 783 T 0.51 0.13. 0.12 0.11 l.G3 · l.G3 

; ±G.91l'7r ±0.03% ±0.04% l i 

2 0.23 0.55 0.20 0.19 0.20 0.15 
I 

0.13 ! 0.12 0.11 34.723 0.51 
I I 

t 
±0.04% ±0.0G'lr l -i 

3 i 0.25 O.G4 0.21 0.19 0.23 0.18 283 I 0.5G 0.1710.15 0.13 

I 
±0.1G% ±0.26% I 

I 

4 
I 

0.25 0.62 0.21 0.20 0.23 0.18 283 I o.58 O.lG I 0.13 0.13 

±0.04% ±0.05% 
I 

-- - 1- ------- ---- - - 1-- 22~~831 O.GS-5 

l 
0.31 0.80 0.26 0.22 0.28 0.24 0.23 ! 0.19 0.18 

! 

i ±0.33% ±0.48'.Yr i 
l'.nder Arrival Rates a2 

CasE~ w 6 W1 
- ! -

w" w W1 W2 w, Wi w 6 j W1 W2 'W1 Wi W2j W1 

1 • T 0.40 203 I un 0.2510.27 1.11 0.33 0.30 0.37 0.32 0.25 

I l ±0.44% ±0.40o/c 1 
2 

T 

1 0.48 0.34 20.833 11.09 

I 

1.30 0.38 0.44 0.38 0.28. 0.31 0.32 

1 

±0.56% ±0.47o/c 1 
3 

! 
0.81 2.20 0.64 0.57 0.77 0.62 23.463 \ 1.88 0.40 \ 0.48 0.56 

1 ±1.21% ±0.93o/c l 
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time-units. Machines are fully dedicated when they are available i.e., aj = 1 for 

all j = 1, ... , M. 

3. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four 

time-units. Machines are fully dedicated when they are available i.e., aj = 1 

for all j = 1, ... , M. Failures in this case are more common than the previous 

case. 

4. Each machine fails at the rate 0.02 per time-unit and the mean fault time is 

two time-units. CPU availabilities are given by: 

0.5 if j = 13, 19, 25, 

ai = 0.75 if j = 1, 4, 14, 26, 

1 otherwise. 

5. Each machine fails at the rate 0.05 per time-unit and the mean fault time is 

four time-units. CPU availabilities are the same as in the previous case. 

The following are the simulation scenarios for arrival rates a 2: 

1. There are no machine failures, and aj = 1 for all j = 1, ... , M. 

2. Each machine fails at the rate 0.01 per time-unit and the mean fault time is one 

time-unit. Machines are fully dedicated when they are available i.e., aj = 1 for 

all j = 1, ... , M. 

3. Each machine fails at the rate 0.01 per time-unit and the mean fault time is 

one time-unit. CPU availabilities are given by: 

0.75 if j = 13, 19, 

aj = 0.85 if j = 14, 25, 

1 otherwise. 
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The simulation results above suggest that using the LPAS_DG policy results in im­

proved performance over the Geµ policy. Also, using the FCFS policy for System 3.A 

results in severe performance degradation. 

3.4.1 Task and Machine Heterogeneity 

Systems 3.B through 3.E model different kinds of system heterogeneity. The simula­

tion results for these systems are presented in Tables 3.3, 3.4, 3.5, and 3.6, respectively. 

We model each system under two different sets of arrival rates: o:1 and o:2 . The arrival 

rates o:1 result in a lightly loaded system compared to a heavily loaded system under 

arrival rates o:2 . The following are the simulation scenarios for arrival rates o:1
: 

1. There are no machine failures, and aj = 1 for all j = 1, ... , M. 

2. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four 

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for 

all j = 1, ... , M. 

The following are the simulation scenarios for arrival rates o:2
: 

1. There are no machine failures, and aj = 1 for all j = 1, ... , M. 

2. Each machine fails at the rate 0.02 per time-unit and the mean fault time is two 

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for 

all j = 1, ... , M. 

For Systems 3.B through 3.E, M = 28 and N = 4. The machines are partitioned 

into 7 groups (labeled T through Z). Each group consists of 4 machines and machines 

within a group are identical. 

System 3.B models a HiHi system. The arrival rate vectors are o:1 = [50 48 50 48] 

and o: 2 = [62.5 60 62.5 60]. The execution rates are shown in Table 3.7. 

System 3.C models a LoHi system. The arrival rate vectors are o:1 = [30 30 24 24] 

and o:2 = [40 40 32 32]. The execution rates are shown in Table 3.8. 
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Table 3.3: Simulation results for System 3.B 

Under Arrival Rates o:1 

Geµ LPAS_DG 

Case w W1 W2 W3 W4 w L1 W1 W2 W3 W4 

1 0.22 0.21 0.23 0.20 0.23 0.13 40.91% 0.12 0.14 0.13 0.12 

±0.04% ±0.04% 

2 0.37 0.35 0.42 0.35 0.36 0.28 24.32% 0.27 0.32 0.27 0.26 

±0.70% ±1.10% 

Under Arrival Rates o:2 

Case w W1 W2 W3 W4 w L1 W1 W2 W3 W4 

1 0.28 0.27 0.32 0.27 0.27 0.22 21.43% 0.24 0.21 0.27 0.19 

±0.14% ±0.30% 

2 0.45 0.42 0.54 0.42 0.41 0.39 17.78% 0.37 0.45 0.40 0.32 

±0.85% ±0.79% 

Table 3.4: Simulation results for System 3.C 
li nder Arrival Rates a 1 

FCFS GqL LPAS_DG 

Case w 6 W1 W2 W1 W4 w W1 W2 W1 W4 w 6 W1 W2 W1 W1 

1 0.21 0% 0.21 0.21 0.20 0.21 0.21 0.21 0.21 0.20 0.21 0.22 -4.76% 0.21 0.11 0.29 0.29 

±0.02% ±0.02% ±0.03'7c 

2 0.27 0% 0.27 0.28 0.27 0.28 0.27 0.26 0.27 0.27 0.27 0.31 -14.81% 0.30 0.21 0.38 0.38 

±0.78% ±0.76o/c ±0.73'7r 

l.inder Arrival Rates a 2 

Case w 6 W1 W2 W1 W1 w W1 W2 W1 W4 w 6 W1 W2 W1 if·! 

1 0.27 -3.85% 0.27 0.27 0.26 0.27 0.26 0.25 0.25 0.27 0.26 0.32 -23.08% 0.31 0.25 0.38 0.37 

±0.33o/c ±0.23'7c ±0.23'7c 

2 0.65 -38.30% 0.65 0.65 0.64 0.65 0.47 0.46 0.45 0.50 0.47 0.52 -10.64% 0.49 0.44 0.56 0.59 

±2.77% ±l.21o/c ±0.97o/c 
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Table 3.5: Simulation results for System 3.D 
Under Arrival Rates a 1 

FCFS Gett LPAS_DG 

CaRe w 6 W1 W2 W1 W1 w Wi W2 Wi w4 w 6 W1 W2 W:i W1 

1 0.21 03 0.48 0.26 0.18 0.11 0.21 0.49 0.26 0.17 0.10 0.23 -9.523 0.47 0.26 0.21 0.13 

±0.06'/i' ±0.06% ±0.08o/c 

2 1.46 -204.173 1.74 1.50 1..!2 1.35 0.48 1.07 0.59 0.41 0.24 0.54 -12.53 1.()4 0.64 0.46 0.35 

±4.64% ±1.09% ±1.17'/c 

Under Arrival RateR a 2 

----- - - - -·--- --··-· -- ---- - - - --

Case w 6 W1 W2 w3 w4 w W1 W2 W:i W4 w 6 W1 W2 Wi W1 

1 1.04 -205.883 1.31 1.08 1.00 0.93 0.34 0.75 0.42 0.29 0.17 0.54 -58.823 1.()4 0.64 0.45 0.35 

±3.387' ±0.44/[ ±1.07% 

2 0.75 1.65 0.92 0.63 0.38 0.77 -2.673 1.54 0.88 0.73 0.43 

±l.88o/c ±1.64o/c 

Table 3.6: Simulation results for System 3.E 
Under Arrival Rates a 1 

FCFS Gett LPAS_DG 

Case w 6 W1 W2 w, w4 w W1 W2 w, w4 w 6 W1 W2 W1 W1 

1 0.20 0% 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.21 0.20 0.22 -103 0.22 0.21 0.23 0.21 

±0.03S1 ±0.04% ±0.05% 

2 0.28 -3.703 0.28 0.28 0.29 0.28 0.27 0.27 0.26 0.28 0.27 0.33 -22.223 0.33 0.32 0.34 0.32 

±0.58% ±0.52% ±0.49'7c 

Under Arrival Ratrn a2 

Case w 6 W1 W2 w, W1 w W1 W2 w, w4 w 6 W1 W2 w, W4 

1 0.46 -35.293 0.45 0.45 0.46 0.46 0.34 0.34 0.34 0.35 0.34 0.45 -32.35% 0.49 0.43 0.52 0.40 

±1.15)( ±0.53% ±0.48% 
-- -- - --- --- - -- -t- ·t- - -j --- j- --- ------ . -- --

2 1.18 1.17 1.17 1.20 1.17 1.12 5.083 1.05 1.01 1.22 1.21 

±2.93% ±2.44/f 
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Table 3.7: Execution rates for System 3.B 

II Group 
Task T I U I V I W I X I Y I z 

1 4.5 2 9.5 6.2 10.25 2.25 3.95 

2 6.2 4.5 6 2 4.2 5.9 10.25 

3 9.5 6.5 4 10 5.9 2.25 3.95 

4 2.25 10 2 3.95 1.75 10 1.75 

Tll able 3.8: Execution ~~;:or System 3.C 

Task T j U j V j W j X j Y j Z 

1 2.2 7 10.25 1 5.7 0.5 12 

2 1.95 7.05 9.78 0.95 5.65 0.56 11.85 

3 2 7.25 10.02 0.98 5.75 0.67 11.8 

4 2.05 6.75 9.99 1.02 5.82 0.49 12.05 
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1 2 2.5 2.25 2 2.2 1.75 2.25 

2 4.5 4 4.2 4 3.8 3.9 3.95 

3 6 6.2 6.25 6 5.75 5.9 6.05 

4 10 10.25 10.5 9.5 10.25 10.25 10 

Trle 3.10: Execution ~:~~rfor System 3.E 

Task T I U [ V I W I X I Y I Z 

1 5 5.05 4.95 4.98 4.7 5.2 5.25 

2 5.25 5.09 4.9 4.92 5 5.13 5.14 

3 4.45 5 4.9 4.45 4.9 5 5.1 

4 5.02 4.95 5 5.02 5.25 4.75 5 

System 3.D models a HiLo system. The arrival rate vectors are o:1 = [14 28 35 35] 

and a 2 = [17 34 42.5 42.5]. The execution rates are shown in Table 3.9. 

System 3.E models a LoLo system. The arrival rate vectors are a 1 = [24 27 21 30] 

and a 2 = [32 36 28 40]. The execution rates are shown in Table 3.10. 

The results in Tables 3.4 and 3.6 indicate that the FCFS policy achieves acceptable 

performance in lightly loaded systems with low task heterogeneity. The FCFS policy 

achieves poor performance and even results in unstable systems as the level of task 

heterogeneity increases or as the system load increases. This suggests that FCFS 

will not be able to support the same level of throughput as our two proposed policies. 

While the LPAS_DG policy achieves very competitive performance to that of the Geµ 

policy, its performance is generally superior only in highly heterogeneous and highly 

loaded systems. 
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3.4.2 Other Distributions 

To test the sensitivity of the performance of the scheduling policies to the distribu­

tional assumptions, Table 3.11 shows the simulation results for System 3.A under 

arrival rates a 1 using different distributions for machine execution times, fault times, 

and availability times. With respect to machine failure rates and CPU availabilities, 

cases 1, 2, and 3 in Table 3.11 correspond to cases 1, 3, and 5 in Table 3.2, respectively. 

For the execution times, in addition to the exponential distribution, two other 

distributions are used to study lower and higher variances than the exponential case: 

the first is a constant execution time of size ~ for machine j executing class i tasks, 
µ,,J 

and the second is a hyper-exponential distribution with mean ~ for the execution 
µ,,J 

times and twice the variance as the exponential case. For the machine availability 

and fault times, a hyper-exponential distribution is used. In agreement with the 

data provided in [56], the squared coefficient of variation for the hyper-exponential 

distribution is set to five. 

The simulation results above indicate that the relative performance of the policies 

is not affected by the distributions for machine execution times, fault times, and 

availability times. Furthermore, the performance of the FCFS policy depends on the 

level of task heterogeneity, and in systems with highly heterogeneous tasks, the policy 

performs poorly regardless of the underlying distributions. 

3.4.3 Large Systems 

System 3.F is a large system with M = 3000 machines and N = 4 classes. The system 

is constructed using 100 multiples of System 3.A. Table 3.12 shows the simulation 

results for System 3.F under arrival rates a= 100 x a 1 , where a 1 represents the first 

set of arrival rates used in simulating System 3.A (see Table 3.2). 

The following are the simulation scenarios for arrival rates a: 

1. Each machine fails at the rate 0.05 per time-unit and the mean fault time is four 
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Table 3.11: Simulation results for System 3.A involving other distributions 
Exponential Execution Time Distribution 

FCFS Gtp. LPAS_DG 

Case w 6 
- i -

W1l W2 Wi W4 w W1 W2 Wi W4 w 6 W1 W2 Wi W1 

1.63 -608.70% 1.91 ' 1.61 1.61 1.61 0.23 0.54 0.20 0.19 0.20 0.15 34.78% 0.51 0.13 0.12 0.11 

±5.58% ±0.04% ±0.04'7c 

2 0.25 0.64 0.21 0.20 0.23 0.18 28% 0.56 0.17 0.15 0.13 

±0.56'7c ±0.68% 

3 0.32 0.83 0.27 0.23 0.30 0.22 31.253 0.70 0.20 0.17 0.18 

±1.47% ±2.46% 

Hyper-exponential Execution Time Distribution 

Case W W1 W2 W1 W4 w W1 W2 Wi W4 w 6 W1 W2 Wi W:1 

1 7.13 -3000% 7.41 I 7.11 7.11 7.11 0.23 0.54 0.20 0.19 0.20 0.15 34.78% 0.51 0.13 0.12 0.11 

±10.41% l ±0.05% ±0.05% 

2 0.26 0.65 0.22 0.20 0.24 0.19 26.92% 0.56 0.19 0.17 0.14 

±0.52'7c ±0.82% 
f-----+--------- +-- -- --+----+--+--+- - -- - - ------ +-----1 -----

3 0.34 0.86 0.28 0.24 0.31 0.26 23.53% 0.71 0.27 0.22 0.20 

±l.16o/r ±l.39o/c 

Deterministic Execution Time Distribution 

Case w 6 W1 W2 Wi W:1 w W1 W2 Wi W1 w 6 W1 W2 W1 W4 

1 0.94 -327.27% 1.21 0.91 0.91 lUll 0.22 0.53 0.19 0.19 0.20 0.15 31.82% 0.51 0.12 0.11 0.11 

±2.52'1r ±0.02% ±0.02% 

2 0.24 0.61 0.20 0.18 0.21 0.17 29.17% 0.55 0.15 0.14 0.13 

±0.63% ±0.67o/c 

3 0.29 0.77 0.24 0.21 0.27 0.22 24.14% 0.69 0.20 0.17 0.18 

±1.07% ±l.5'7c 
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Table 3.12: Simulation results for System 3.F 

Geµ LPAS_DG 

Case w W1 W2 w3 w4 w ~ W1 W2 w3 W4 

1 

2 

0.19 0.50 0.16 0.16 0.16 0.14 26.32% 0.50 0.11 0.11 0.11 

±0.00523 ±0.00783 

0.19 0.55 0.16 0.15 0.16 0.15 21.05% 0.55 0.13 0.12 0.11 

±0.00933 ±0.00753 

time-units. Machines are fully dedicated when they are available i.e., aj = 1 for 

all j = 1, ... , M. 

2. Each machine fails at the rate 0.05 per time-unit and the mean fault time is 

four time-units. Since System 3.F is constructed using 100 multiples of System 

3.A, the CPU availabilities for each multiple are given as those for System 3.A 

under case 4 (refer to the simulated cases for System 3.A under arrival rates 

al). 

As Table 3.12 shows, the LPAS_DG policy achieves the best results for System 

3.F. The FCFS policy results in significant performance degradation, although the 

system is not heavily loaded under arrival rates a. These results indicate that, even for 

large systems, the relative performance of the policies depends on the heterogeneity 

of the system as well as its load. 

3.4.4 The Value of Information on CPU Availabilities 

Consider System A. Assume that each machine fails at the rate 0.05 per time-unit 

and the mean fault time is four time-units. CPU availabilities are given by: 

-{0.05 aj -

1 

if j = 4, 5, 7, 13, 19, 20, 25, 

otherwise. 
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We simulate the system under arrival rates a= 0.75xo:1 = [8.4375 16.875 27 47.25], 

where o: 1 represents the first set of arrival rates used in simulating System A. We 

consider two cases. In the first case, the policy does not use estimated CPU availabil­

ities (i.e., the policy assumes that aj = 1, for all j = 1, ... , M). In the second case, 

the policy uses the estimated CPU availabilities. Our simulation experiments indi­

cate that the LPAS_DG policy which incorporates information on CPU availabilities 

results in~= 20.51% while the LPAS_DG policy which does not use this information 

results in ~ = -156.41%. These results show that the LPAS_DG policy effectively 

exploits knowledge on CPU availabilities. Furthermore, the LPAS_DG policy may 

perform poorly when these estimates are not available. In such cases, the use of the 

Geµ policy is recommended. 

3.4.5 Realistic Architectures 

To simulate more realistic scenarios, we use the data reported in [9] and Canonico [15] 

which was collected by running benchmarking tools on an actual system. We refer to 

this system as System 3.G. 

In [9], the authors define the nominal computing power of a machine as a real 

number whose value is directly proportional to its speed. Thus, a machine with a 

nominal computing power of 2 is twice as fast as a machine with a nominal computing 

power of 1. It is found that, for System 3.G, there are three different values for the 

nominal computing power of machines, namely {1, 1.125, 1.4375}. 

Since we consider the problem of scheduling multiple applications on Desktop 

Grids, we define Pi,j as the nominal computing power of machine j on class i tasks. 

Thus, a machine j with Pi,j = 2 is twice as fast as a machine j' with Pi,j' = 1 on class 

i tasks. In this manner, we can describe systems in which a machine is fast on some 

applications but slow on others. 

As in [9], the CPU availability is described by a discrete-time Markov chain whose 

parameters are computed using a network monitoring and forecasting system. A new 

60 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

Table 3.13: A copy of Table 4.14 in [15] 

Hostname p shape scale Paa Pab Pac Ha pb/J pbc Pea Pcb p('(' 

bird 1 0.568664 477343 0.998 0.001 0.001 0.015 0.970 0.015 0.000 0.0197 0.9803 

blind 1.125 0.729215 856663 0 0 0 0 0.9814 0.0186 0 0.0098 0.9902 

boo boo 1 0.570816 619497 0 0 0 0 0.9904 0.00!)6 0 0.0133 O.!J867 

chocolate 1.4375 0.662438 610445 0 0 0 0 0.9!J58 0.0042 0 0.1376 0.8624 

hobbrs 1.125 0.560362 19!)6!)0 0.9969 0.0029 0.0002 0.0270 0.9674 0.0056 0.0005 0.0123 O.!J872 

joplin 1 0.960769 1271536 O.!J987 0.0011 0.00003 0.0028 0.9!)46 0.0024 0.0002 0.0134 O.!J863 

kenny 1.125 0.720823 350024 0 0 0 0 O.!J!J14 0.0086 0 0.0152 O.!J848 

marge 1.4375 0.677637 373307 O.!J982 0.0017 0.0001 0.0097 0.9735 0.0168 0.0005 0.0449 0.9546 

nmrvin 1 0.928094 753368 0 0 0 0 0.9795 0.0205 0 0.0378 O.!J622 

miles 1.125 0.570816 619497 0 0 0 0 0.9933 0.0067 0 0.0503 0.9497 

nat 1.4375 0.607016 405233 0 0 0 0 0.9946 0.0054 0 0.0352 0.9648 

popeye 1 0.616905 228117 0 0 0 0 0.9889 0.0111 0 0.0214 0.9786 

rocky 1.125 0.537631 178959 0 0 0 0 0.9964 0.0036 0 0.0004 0.9996 

scooby 1.4375 0.68684 248058 0.9982 0.0016 0.0002 0.0093 0.9815 0.0092 0.0005 0.0169 0.9826 

taz 1.4375 0.556867 243961 0 0 0 0 0.9916 0.0084 0 0.025 0.9750 
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value for the CPU availability is computed every 10 seconds of simulated time. The 

chain contains three states: a, b, and c, corresponding to the CPU availability of 100%, 

50%, and 33%, respectively. Let Pxy denote the one-step transition probability of 

moving from state x to state y (x, y E {a, b, c} ). The actual values for each machine's 

transition probabilities are reported in Table 4.14 in [15] (the table is reproduced in 

Table 3.13). 

To find the steady-state probability Px of being at a state x, we solve the following 

set of equations: 

together with the normalizing equation Pa + H + Pc = 1. 

For the LPAS_DG policy, we compute aj as the steady-state CPU availability for 

each machine j from the corresponding Markov chain: 

aj = l.OOPa + 0.50H + 0.33Pc 

This is justified for the model of System 3.G since the mean execution time for a given 

task is much larger than the average time spent in a particular state of the Markov 

chain. 

To model machine availability, we use a Weibull distribution. The density and 

distribution functions for a Weibull distribution are given by ( v denotes the machine 

availability time, v E (0, oo)) [56]: 

Fw(v) = l-e-(v/(3)°', 
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respectively. The parameter a is called the shape parameter, and f3 is called the scale 

parameter. The actual values for the Weibull parameters depend on the particular 

machine. For System 3.G, these parameters are provided in Table 4.14 in [15]. As 

in [9], the fault time of a machine is set to a constant 120 time-units. 

We simulate two configurations based on System 3.G (3.Gl and 3.G2). Both 

systems consist of M = 300 machines. We simulate the execution of each system for 

two billion time-units. We group the machines into 15 groups. Each group consists of 

20 machines identical in terms of the Markov chain describing CPU availability and 

the parameters for the Weibull distribution. Each group has the same parameters as 

those of one of the 15 machines of System 3.G listed in Table 4.14 in [15]. 

In System 3.Gl, we assume that the machines of a group are identical in terms of 

their nominal computing powers. Each group has the same nominal computing power 

as one of the 15 machines of System 3.G. Furthermore, we assume that the nominal 

computing power of a machine depends only on the machine and is independent of 

the class of tasks being executed. Thus, if a machine j belongs to a group G and the 

nominal computing power for the group is Pc, then Pi,j =Pc, for all i = 1, ... , N. 

Thus, a fast machine is fast on all applications. System 3.Gl represents a system 

which is mainly used to execute a single application. 

In System 3.G2, we assume that each machine has a nominal computing power (on 

class i tasks) Pi,j randomly chosen from {1, 1.125, 1.4375} with equal probabilities. 

Thus, a machine can be fast executing some applications while, at the same time, 

slow executing other applications. System 3.G2 represents a system which is mainly 

used to execute multiple applications with inherent heterogeneity. 

Finally, we assume that there are N = 4 classes (or applications). The authors 

in [9] define BaseTime as the mean execution time of a task submitted to a machine 

with a nominal computing power of 1. Thus, each class consists of tasks with the 

same value for BaseTime (for class i, we denote it by BaseTimei)· We assume 

that BaseTimei = 8750, 17500, 35000, 50000, for i = 1, ... , 4, respectively. This 
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Figure 3.1: Relative average task completion times: System 3.Gl under arrival rates 

information is enough to generate the matrix µ'. The mean nominal execution time 

for a class i task at machine j can be computed as BaseTimei x 1/ ~,j· 

Figures 3.1 and 3.2 show simulation results for Systems 3.Gl and 3.G2 under ar­

rival rates a 1 = [0.00457 0.00229 0.00114 0.00080]. In this section, we normalize 

the results with respect to the Geµ policy and note that the accuracy of the gener­

ated confidence intervals is 0.13 or less. These results indicate that the FCFS policy 

achieves acceptable performance in systems with low task heterogeneity, such as Sys­

tem 3.Gl. However, as the level of task heterogeneity increases (e.g. System 3.G2), 

FCFS results in performance degradation which gets worse as the load increases. For 

instance, Figure 3.3 shows results for System 3.G2 under higher load (a2 = [0.00495 

0.00110 0.00214 0.00135]). In this case, FCFS results in an unstable system. Both 

the Geµ and the LPAS_DG policies result in significant performance improvement. 

The LP AS_DG policy is generally superior in highly heterogeneous and highly loaded 

systems. 
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Figure 3.2: Relative average task completion times: System 3.G2 under arrival rates 

al 

3.4.6 Robust Modifications 

Throughout the previous simulation experiments, we have assumed that the LP AS_ 

DG policy uses an optimal solution in which the o* matrix contains exactly NM + 
1 - N - M zeros. Such a restriction reduces the number of machines that can execute 

each task class. In some cases, especially in systems with low task heterogeneity, this 

may result in performance degradation. Furthermore, as observed in Section 3.5, this 

causes the LPAS_DG policy to be less robust against potential parameter estimation 

errors and other sources of errors. 

In this section, we modify the LPAS_DG policy by eliminating such a restriction. 

However, we avoid the use of optimal solutions having no zero elements in the o* 
matrix, since in this case the LPAS_DG policy reduces to the Geµ policy. To do so, we 

use the optimal solutions provided by the barrier optimization routine ( CPXbaropt) of 

ILOG CPLEX [37]. By alleviating such a restriction on the number of zero elements 

in the o* matrix, the LPAS_DG policy becomes less aggressive in its exclusion of 
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Figure 3.3: Relative average task completion times: System 3.G2 under arrival rates 

a2 

machines for certain task classes. As our simulations show, this results in improved 

performance and increased robustness. 

Table 3.14 shows simulation results for the systems of different heterogeneity con­

sidered in Section 3.4.1. These results show that the modified LPAS_DG policy results 

in significant performance improvement over the unmodified version. Furthermore, 

performance is improved with respect to the Geµ policy: the degradation becomes 

less in the case of the LoHi System (System 3.C) and a positive improvement results 

in the case of the HiLo System (System 3.D). 

In the following experiment, we compare the unmodified LPAS_DG policy against 

the modified version with respect to their robustness against CPU availability es­

timates. Consider the following system (System 3.H). The system has identical 

machines as System 3.A. We simulate the system under arrival rates a 1 (see System 

3.A). Each machine fails at the rate 0.02 per time-unit and the mean fault time is 
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two time-units. CPU availabilities are given by: 

0.25 if j = 6, 10, 16, 22, 

0.5 if j = 5, 9, 14, 15, 21, 27, 

0.75 if j = 4, 7, 8, 13, 19, 20, 25, 26, 

1 otherwise. 

Using an approach similar to Iosup et al. [39] and Zhang and Inoguchi [73], we 

assess the impact of inaccuracy under the assumption of null overall inaccuracy [39]. 

Under this assumption, while any individual estimate may be inaccurate, the (overall) 

average estimation inaccuracy is 0. Define I to be the maximum inaccuracy whose 

value ranges from 03 (perfect information) to 1003 (high inaccuracy). When a 

machine j becomes available, let aj denote the estimated CPU availability for machine 

j used by the LPAS_DG policy in solving the allocation LP. In our simulations, aj is 

obtained using the following relation: aj = aj x (1 + E), where Eis sampled from the 

uniform distribution [-J, +I] and aj is the actual CPU availability for machine j. If 

aj x (1 + E) > 1, we set aj to 1; and similarly, if aj x (1 + E) < 0, we set aj to 0. 

Figure 3.4 compares the two versions of the LPAS_DG policy in terms of their 

performance improvement with respect to the Geµ policy. The figure shows that 

the modified version is more robust against CPU availability estimates, while the 

unmodified version may result in negative improvement under larger values of I. 

This is due to the aggressiveness of the policy in minimizing the number of machines 

to execute each task class. 

3.5 Implementation 

In this section, we use the McMaster Grid Scheduling Testing (MGST) framework 

to analyze the performance of the LPAS_DG policy. MGST, the first performance 

testing framework for Desktop Grids, was developed by researchers at McMaster 
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Table 3.14: Simulation results using the modified LPAS_DG policy 

Under Arrival Rates o:1 Under Arrival Rates o:2 

Case w 6 W1 W2 W3 W4 Case w 6 W1 W2 W3 W4 

System 3.B 

1 0.12 45.453 0.11 0.13 0.12 0.11 1 0.17 39.293 0.18 0.18 0.18 0.16 

±0.04% ±0.18% 

2 0.25 35.143 0.24 0.27 0.25 0.24 2 0.31 26.193 0.30 0.35 0.32 0.28 

±0.95% ±1.14% 

System 3.C 

1 0.21 03 0.21 0.11 0.27 0.27 1 0.31 -19.233 0.35 0.25 0.33 0.31 

±0.03% ±0.19% 

2 0.29 -7.413 0.29 0.20 0.36 0.33 2 0.49 -4.263 0.54 0.44 0.49 0.50 

±0.59% ±0.93% 

System 3.D 

1 0.23 -9.523 0.45 0.25 0.24 0.11 1 0.42 -23.533 0.74 0.44 0.53 0.16 

±0.08% ±0.49% 

2 0.46 4.173 0.93 0.55 0.39 0.27 2 0.69 83 1.50 0.74 0.67 0.34 

±1.08% ±1.63% 

System 3.E 

1 0.21 -53 0.21 0.22 0.21 0.20 1 0.40 -17.653 0.42 0.52 0.40 0.28 

±0.04% ±0.44% 

2 0.29 -7.413 0.29 0.29 0.29 0.29 2 0.95 19.493 0.95 1.00 0.95 0.90 

±0.40% ±3.13% 
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Figure 3.4: Performance improvements under different values for the maximum inac­

curacy I 

University (Kokaly et al. [42]). MGST simplifies and automates the process of realistic 

performance testing over a distributed testbed complementing the use of simulation. 

We use the results from the MGST deployment to make several recommendations for 

the practical application of the LPAS_DG policy. 

3.5.1 Experimental Results 

We used MGST to analyze the performance of the LPAS_DG policy under realistic 

conditions. We tested the scheme on several systems. The systems used were Intel 

(dual-core 2.0 GHz) and PowerPC (single-core 2.0 GHz) based Macintosh comput­

ers. The systems were located on the same network. Each test was conducted two 

times, once using the simulation tool used in Section 3.4 and once with MGST. The 

metric used in the simulations and experiments is the average response time, includ­

ing average communication delay for the MGST experiments. The communication 

delay is the difference between the time a task is sent to be executed and the time 
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it begins execution. This delay occurs mainly due to network communication delays, 

but it could also be caused by the software layer responsible for the distribution and 

execution of the tasks. 

The experiments were conducted on four categories of systems depending on ma-

chine and task heterogeneity: 

High task heterogeneity and high machine heterogeneity (HiHi). 

High task heterogeneity and low machine heterogeneity (HiLo). 

Low task heterogeneity and high machine heterogeneity (LoHi). 

Low task heterogeneity and low machine heterogeneity (LoLo). 

Two to four experiments were conducted on each category. In some experiments 

failures were enabled meaning that machines can fail while executing tasks. Machines 

were in some experiments fully dedicated ( aj = 1 for all j), where their full resources 

were used exclusively by the desktop grid. In other experiments only a percentage of 

the resources were available for the grid. We will use the following acronyms to express 

these properties in the experiments: FE, FD, MFD, MPD for failures enabled, failures 

disabled, machine fully dedicated and machines partially dedicated respectively. 

The experiments in the HiHi category were conducted on 6 machines and 4 classes 

of tasks. Machines 1 to 6 have the same execution rates as those of Groups T 

to Y in Table 3.1, respectively. The arrival rates of the task classes were: a = 

[2.25 4.50 7.20 12.60]. 

The average response time for each class of tasks and the over all average response 

time are shown in Table 3.15. The simulation results in this and all of the following 

tables are at a 953 confidence interval. 

In the experiments MPD /FD and MPD /FE machines 4, 5 and 6 had availability 

aj = 0.5. The remaining machines were fully dedicated (aj = 1). In the MFD/FE 

and MPD /FE experiments each machine failed at the rate 0.05 per time-unit and the 

mean fault time was 2 time-units. The periods were exponentially distributed. 
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Table 3 15· Results of experiment on HiHi setting 

MFD/FD MPD/FD MFD/FE MPD/FE 

Class Sim MGST Sim MGST Sim MGST Sim t\1GST 

1 (0.5G, 0.57) 0.58 (0.97, 0.98) 0.99 (0.61, 0.61) 0.61 (1.10, 1.11)) 1.03 

2 (0.33, 0.34) 0.34 (0.22, 0.22) 0.37 (0.35, 0.35) 0.45 (1.10. 1.11) 0.50 

3 (0.18, 0.18) 0.22 (0.27, 0.27) 0.29 (0.19, 0.20) 0.20 (0.32, 0.32) 0.46 

4 (0.11. 0.11) 0.17 (0.16, O.lG) 0.43 ( 0.13, 0.13) 0.15 ( 0.2G, 0.27) 1.3G 

Overall (0.20. 0.21) 0.24 (0.27, 0.27) 0.42 (0.23, 0.23) 0.25 (0.35, 0.36) 0.94 

In the experiments MPD /FD and MPD /FE the actual performance of the LPAS_ 

DG policy was much worse than the simulation had predicted. This is discussed in 

detail in Section 3.5.2. 

The LoHi setting was constructed from 21 machines and 4 task classes. There 

were seven groups of machines with each group having 3 machines. Members of the 

same group had the same execution rates. Machines in group 1 are machines 1, 2 and 

3, machines in group 2 are machines 4, 5 and 6, etc. Groups 1 to 7 have the same 

execution rates as those of Groups T to Z in Table 3.8, respectively. The arrival rates 

of the task classes were: a= [22.5 22.5 18.0 18.0]. 

The average response time for each class of tasks and the over all average response 

time are shown in Table 3.16. 

In the MPD /FD experiment machines 4, 11 and 15 had availability a1 = 0.5. 

Machines 7, 14 and 18 had availability a1 = 0.75. The remaining machines were fully 

dedicated ( a1 = 1). 

The average response times of the MGST experiment were slightly higher due 

to the fact that actual execution rates were somewhat slower. This is discussed in 

Section 3.5.2. 

The HiLo setting was constructed from 21 machines and 4 task classes. The 

machines were divided into seven groups in the same way machines in the setting 
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Table 3.16: Results of experiment on LoHi setting 

MFD/FD MPD/FD 

Class Sim MGST Sim MGST 

1 (0.22, 0.22) 0.31 (0.24, 0.24) 0.36 

2 (0.12, 0.12) 0.22 (0.13, 0.13) 0.26 

3 (0.30, 0.30) 0.37 (0.37, 0.37) 0.44 

4 (0.29, 0.29) 0.35 (0.35, 0.35) 0.47 

Overall (0.22, 0.22) 0.31 (0.26, 0.27) 0.37 

LoHi were divided. Groups 1 to 7 have the same execution rates as those of Groups 

T to Z in Table 3.9, respectively. The arrival rates of the task classes were: a = 

[10.50 21.00 26.25 26.25]. 

The average response time for each class of tasks and the over all average response 

time are shown in Table 3.17. The availabilities of machines were as in the LoHi 

setting. 

Table 3.17: Results of experiment on HiLo setting 

MFD/FD MPD/FD 

Class Sim MGST Sim MGST 

1 (0.49, 0.49) 0.50 (0.79, 0.80) 1.22 

2 (0.28, 0.28) 0.31 (0.42, 0.42) 0.77 

3 (0.24, 0.24) 0.32 (0.27, 0.27) 0.53 

4 (0.14, 0.14) 0.35 (0.19, 0.19) 0.73 

Overall (0.25, 0.25) 0.35 (0.35, 0.35) 0.74 

Compared to simulation, the LPAS_DG policy performed poorly in the MGST 

experiment. The reason is that the ideal overall load on the machines was fairly high 

(86.43), but the different sources of errors and overhead caused the actual load to be 

close to 100%. The sources of errors are higher overall arrival rates, over estimation 
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for execution rates and communication overhead coupled with the scheduling delay. 

See Section 3.5.2 for more details. 

The LoLo setting was constructed from 21 machines and 4 task classes. The 

machines were divided into seven groups in the same way machines in the setting 

LoHi were divided. Groups 1 to 7 have the same execution rates as those of Groups 

T to Z in Table 3.10, respectively. The arrival rates of the task classes were: o: = 

[18.00 20.25 15.75 22.50]. 

The average response time for each class of tasks and the over all response time 

are shown in Table 3.18. This experiment included machine failures. In the MFD/FE 

and MPD /FE experiments each machine failed at the rate 0.05 per time-unit and the 

mean fault time was 2 time-units. The periods were exponentially distributed. The 

availabilities of machines were as in the LoHi setting. 

Table 3.18: Results of experiment on LoLo setting 

MFD/FD MPD/FD MFD/FE MPD/FE 

Class Sim MGST Sim MGST Sim MGST Sim MGST 

1 (0.25, 0.25) 0.27 (0.28, 0.28) 0.39 (0.25, 0.25) 0.35 (0.31, 0.31) 0.52 

2 (0.23, 0.23) 0.28 (0.30, 0.30) 0.39 (0.24, 0.24) 0.34 (0.32, 0.32) 0.63 

3 (0.23, 0.23) 0.28 (0.27, 0.27) 0.35 (0.24, 0.24) 0.33 (0.32, 0.32) 0.57 

4 (0.21, 0.22) 0.25 (0.32, 0.32) 0.36 (0.24, 0.24) 0.29 (0.34, 0.34) 0.52 

Overall (0.23, 0.23) 0.27 (0.30, 0.30) 0.37 (0.24, 0.24) 0.33 (0.32, 0.32) 0.56 

The response times in the results of our experiment were significantly higher than 

the simulation results. The reason behind this is the high load coupled with failures 

and over estimation of the execution rates (the assumed execution rates were higher 

than the actual ones in this experiment). See Section 3.5.2. 

73 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

3.5.2 Analysis and Recommendations 

The LPAS_DG policy was implemented for the first time in MGST. Here we give a 

few remarks regarding the implementation of this policy. 

The LPAS_DG policy makes decisions based on the matrix 8*, which is produced 

by solving an allocation LP. The 8* matrix depends on the values of aj. As a re­

sult, it is suggested in Section 3.3 that a new 8* matrix must be produced at every 

availability /unavailability event. 

Since the matrix 8* depends on aj, if the machines' aj varies between availability 

and unavailability events, we think that 8* should be updated every time any aj 

changes. This solution is expensive to implement because it is very hard to notify 

the scheduler of every change to every aj. In addition, this will require solving the 

allocation LP frequently, which is also expensive and may raise a scalability problem 

(the scheduler could become the bottleneck). To solve this issue, we assumed a time 

resolution Tsystem· Here, the values of aj are sent to the scheduler periodically, and it 

solves the allocation LP after receiving the updated values of aj. The determination 

of an optimal update period is open to research. We believe that this modification is 

necessary to make the LPAS_DG policy scalable. 

In some experiments the performance of the scheduling schemes differed from the 

simulation results due to the machines experiencing unexpectedly high loads. The 

different sources of error that can occur in a real system can significantly raise the 

load, even potentially causing instability in the system. These errors can be caused 

by: 

1. The measured arrival rates being larger than that assumed. 

2. Overestimation of execution rates. 

3. Overhead caused by communication and scheduling delays. Assume 

that a machine announces its availability at time t 1 , the scheduler learns of the 

availability of this machine at time t2 and consequently performs the scheduling 
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and chooses a task to send at time t 3 • The machine then receives the task and 

starts the execution at time t4 . At time t5 the machine finishes executing the 

task but only at time t 6 does the scheduler learn that the task is done, obtaining 

the results at t7. In the model, the execution time is considered to be ts - t4, but 

in the actual implementation, there is an overhead of (t4 - t 1) + (h - t5). This 

overhead affects the load if the overhead is significant with respect to t5 - t4. 

4. Machine failures. Although machine failures can be incorporated in the work­

load models, they can still increase the effective load due to the fact that it takes 

time for the scheduler to realize that a machine is down. This time is wasted and 

effectively increases the load. For example, when using the LPAS_DG policy, 

suppose that machine 3 is the only machine executing tasks from class 1, and 

the execution time is 5 minutes. If machine 3 fails when executing a particular 

task and the "time-out" parameter was set to 3 times (i.e. 3 times the estimated 

execution time should elapse before considering the task "timed out"), then the 

scheduler will not consider machine 3 down until 15 minutes have elapsed from 

the moment that the task was sent. These 15 minutes are essentially lost, with 

arriving tasks from class 1 accumulating in the queue at the scheduler within 

that time. 

If any or all of the above factors cause a significant increase in the load, the per­

formance of the scheduling scheme will deteriorate. Note that these factors were only 

discovered upon deploying the LPAS_DG policy on MGST. They were not discovered 

in simulations. 

The LPAS_DG policy suffered in some cases in the experiments from the above 

factors due to the aggressive nature of this policy in minimizing the number of ma­

chines to execute each task class. This results in exclusivity of machines for certain 

task classes. When one class can be executed by a small number of machines, then the 

performance depends only on these machines, so the effect of the factors mentioned 

above is magnified. Contrast this with FCFS, where if a machine under performs, 

75 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

the effect is less obvious since this under performing machine can get help from other 

(potentially over performing) machines. Finally, the scheduling delay can contribute 

to the time needed to execute tasks, effectively raising the load on machines for all 

policies. 

As a result of the MGST experiments, we propose the following suggestions to 

improve robustness of the LPAS_DG policy: 

1. Arrival rates estimation improvement. Since the LPAS_DG policy de­

pends on solving an allocation LP and that in turn depends on values that 

include arrival rates of task classes, estimates should be as accurate as possible. 

To do so, we propose that the actual arrival rates should be monitored (a fea­

ture that MGST provides), and check the values against the estimated values 

every specific time (TarrivaLrate) and resolve the LP if one of the actual values 

differs from its estimate by a specific threshold percentage (TharrivaLrate) that 

depends on the load and the task class. TarrivaLrate could be a specific time 

period or a number of task arrivals from a class (e.g. 10 tasks). We believe that 

this solution is not computationally costly, since the checking operation requires 

O(N) time and O(N) space. We expect the number of task classes (N) to be 

relatively small, so there should be no scaling issues. An alternative solution is 

to over estimate the arrival rates of classes, however, caution must be taken to 

guarantee that the system is theoretically stable. 

2. A voiding execution rates overestimation. We propose that every execu­

tion rate entry (for a specific machine for a specific task class) is modified then 

checked (against the estimated peer) whenever a task is done, then the LP 

is resolved if that entry differs from the estimated one by a specific threshold 

percentage (Thexecution_rate) that depends on the load and the task class. This 

solution requires O(N M) space and 0(1) time. Alternatively, the execution 

rates can be assumed slower than they are estimated to be in a manner that 

guarantees that they can never be over estimated (how to do this is not clear). 
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Caution must be taken to assure that the system is theoretically stable. 

3. Lessen the effect of communication and scheduling delays. Let Pi,j be 

an estimate of the value 

1/µ·. i,J 

1/µ· · + T· l,J J 

where Tj is the communication and scheduling delay for machine j. 

In the example mentioned when discussing the sources of errors (see point 3), 

Pi,j would be 

where the times are for the particular choice of i and j. 

We propose that all execution rates must be multiplied by Pi,j before resolving 

the LP to take this effect into consideration. 

4. Lessen the machine failure effect. We propose choosing a low value for the 

time out, which will result in allowing the scheduler to quickly detect machine 

failures. The downside of this approach is that the scheduler might consider a 

machine failed when it is not (in particular, when availability rapidly decreases 

for a machine). 

3.6 Summary 

A distinct feature for this work is the proposal of fault-aware policies that take into 

consideration the heterogeneity of Desktop Grids. We have proposed to use the 

Geµ policy for Desktop Grids when information on the machine execution rates is 

available. When task arrival rates and CPU availabilities are available, we have 

developed the LPAS_DG policy which utilizes the solution to an allocation LP. Both 

policies perform much better than FCFS, especially for applications with high task 
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heterogeneity. There are some cases for which the Geµ policy is recommended over 

the LPAS_DG policy: i) when the applications have limited task heterogeneity, ii) 

when the system has limited machine heterogeneity, or iii) when there is a high level 

of inaccuracy in the estimation of task arrival rates, machine execution rates, or CPU 

availabilities. Otherwise, the performance of the LPAS_DG policy is significantly 

better, especially in highly heterogeneous systems. 
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Chapter 4 

Decentralized Load Balancing for 

Heterogeneous Grids 

In this chapter, we introduce a new decentralized load balancing for grids. Section 4.1 

describes several related policies. The LPAS_dec policy is described in Section 4.2. In 

Section 4.3, we present the results obtained in our simulation experiments. Section 4.4 

concludes the chapter. Contents of this chapter appear in Al-Azzoni and Down [2]. 

4.1 Current Policies 

As discussed earlier, the MCT (minimum completion time) policy assigns an arriving 

task to the machine that has the earliest expected completion time. Several authors 

have suggested decentralized load balancing policies that are based on the MCT policy, 

e.g., the LBA (Load Balancing on Arrival) policy in [62] and the IDP (Instantaneous 

Distribution Policy) in [50]. When a task arrives to a machine, the machine con­

tacts all machines in the system to determine the machine with the earliest expected 

completion time. 

There are several limitations to such policies. First, when a task arrives to a 

machine, the machine requires full state information. As explained in Section 1.3, 
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policies that require full state information may suffer from performance degradation 

due to the effect of outdated information. Furthermore, the policy suffers from a 

significant information exchange overhead. In particular, for each arriving task to a 

machine, the machine needs to send a request message to all machines in the system 

who in turn need to send back a reply message containing the expected completion 

time information. Thus, a total of 2 x ( M - 1) message exchanges are needed for 

every arriving task. Further discussion on the MCT policy is provided in Section 2.1. 

An advantage of the MCT policy is that a machine does not require any informa­

tion about the task arrival rates or machine execution rates of other machines. Thus, 

only the expected completion times need to be exchanged between machines. It is for 

this reason that the MCT policy is suited for systems where predicting these rates is 

not possible or severely inaccurate. 

In order to address the limitations of the MCT policy, we look at a decentralized 

version of the KPB policy (see Section 2.1). With respect to a machine j, let s;,j be 

the set of the l kM /100 J machines that have the smallest expected execution time for 

class i tasks. When a task of class i arrives to machine j, the machine assigns the 

task to the machine in the subset s;,j that has the earliest expected completion time. 

Define k = lkM/lOOJ. 

The KPB policy requires knowledge on machine execution rates while the MCT 

policy does not. We use the following mechanism for exchanging information on ma­

chine execution rates. When a task of class i arrives to a machine j', the machine 

sends request messages to the machines j E s;,j'. In each request message, machine 

j' includes its local execution rates (µi,j', i = 1, ... , N). Upon receiving the request 

messages, each of the contacted machines replies with a message including the corre­

sponding expected completion time as well as the local execution rates. Thus, at the 

end, machine j' and the machines j E s;,j' update their local state information with 

the corresponding execution rates. 
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4.2 The LPAS_dec Policy 

The LPAS_dec policy is similar to the KPB policy in that only a subset of machines 

need to be considered for each class, however, the determination of this subset requires 

solving the following LP [7], where the decision variables are >. and 8i,j for i = 1, ... , N, 

j = 1, ... , M. The interpretation of the variables and constraints is identical to that 

of the allocation LP in Section 2.2.1. 

max >. 

(4.1) 
M 

s.t. L 8i,jµi,j 2:: >.ai, for all i = 1, ... , N, 
j=l 

(4.2) 
N 

'L:8i,j ~ 1, for all j = 1, ... , M, 
i=l 

(4.3) 

8i,j 2:: 0, for all i = 1, ... , N, and j = 1, ... , M. 

The LPAS_dec policy can be stated as follows. Each machine j' solves a local ver­

sion (using local data) of the allocation LP to find { 8i,j}, i = 1, ... , N, j = 1, ... , M. 

When a new task of class i arrives to a machine j', let S{ denote the set of machines 

whose corresponding 81,j at machine j' is not zero. Machine j' assigns the task to the 

machine j E S{ that has the earliest expected completion time among the subset of 

machines S{. Again, ties are broken arbitrarily. 

The LPAS_dec policy requires knowledge on both arrival and execution rates. We 

use the following mechanism for information exchange. When a task of class i arrives 
·I 

to a machine j', the machine sends request messages to the machines j E Sf . In 

each request message, machine j' includes its local arrival and execution rates ( O'.i,j', 

µi,j', i = 1, ... , N). Upon receiving the request messages, each of the contacted 
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machines replies with a message including the corresponding expected completion 

time as well as the local arrival and execution rates. Thus, at the end, machine j' 

and the machines j E S{ update their local state information with the corresponding 

arrival and execution rates. 

Under ideal conditions when full state information is available, all the machines 

solve the same allocation LP and thus use the same 8* matrix, achieving the maximum 

capacity. However, in practice, at any given time, one or more of the machines may 

have different views of the state of the system (here, the state of the system refers 

to the arrival and execution rates). Thus, they solve different allocation LPs and the 

resulting 8* matrices are different. However, as our simulation experiments indicate, 

the information exchange mechanism of the LPAS_dec policy is effective in its state 

update and thus the machines tend to quickly have the same view of the system. 

Furthermore, since the LPAS_dec policy does not use the actual values for { 8*} (it 

only uses information on what entries are nonzero), and since these LPs are inherently 

robust with respect to the arrival and execution rates, the resulting 8* matrices tend 

to be similar with respect to the positions of the zero and nonzero entries. Thus, 

performance would not be significantly deteriorated when the observed system state 

is a little different amongst the machines. This also explains the observed robustness 

of the LPAS_dec policy against parameter estimation errors (see Section 4.3.2). 

Consider a system with two machines and two classes of tasks (M = 2, N = 2). 

Assume initially that a and µ are known by both machines: 

[ 
1 1.45 ] [ 9 a= , andµ= 
1 1.45 2 

Solving the allocation LP gives 

6* = [ 0 0.5 ] . 
1 0.5 

Thus, all arriving tasks that belong to class 1 are assigned to machine 2. At the 

times of their arrivals, tasks that belong to class 2 are assigned to the machine, either 
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machine 1 or 2, that has the earliest expected completion time. 

Now, assume that a 1,2 becomes 0.5. Thus, machine 2 solves a new allocation LP 

to obtain: 

0.3273] . 

0.6727 

Even though machines 1 and 2 use different 8* matrices until the next state update, 

they are equivalent in terms of the locations of the zero and nonzero entries. Thus, 

machine 1 still uses an allocation matrix that is equivalent in effect to the allocation 

matrix which maximizes the system capacity. 

Ideally, the number of zero elements in the o* matrix should be NM+ 1 - N - M. 

If the number of zero elements is greater, the LPAS_dec policy would be significantly 

restricted in shifting workload between machines resulting in performance degrada­

tion. Furthermore, in this case, our information exchange mechanism becomes less 

effective in its state update. Also, solutions that result in degenerate cases should be 

avoided. For example, if the 8* matrix contains no zeros at all, then the LPAS_dec pol­

icy reduces to the MCT policy. Throughout the chapter, we use an optimal solution 

in which the o* matrix contains exactly NM + 1 - N - M zeros. 

4.3 Simulation Results 

We use simulation to compare the performance of several load balancing policies 

including the LPAS_dec policy. In Section 4.3.1, we simulate an artificial system with 

high heterogeneity levels to show the impact of heterogeneity on performance. Then, 

in Section 4.3.3, we show the results of simulating a realistic grid. 

The task arrivals are modeled by independent Poisson processes, each with rate 

ai,j, i = 1, ... , N, j = 1, ... , M. The execution times are exponentially distributed 

with rates µi,j, where 1/ µi,J represents the mean execution time of a task of class i at 

machine j, i = 1, ... , N, j = 1, ... , M. 

83 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

We use the long-run average task completion time W (defined in Section 3.4), as 

a metric for performance comparison. For each simulation experiment, we also show 

the average task completion time for class i tasks, Wi, for all i = 1, ... , N. Another 

metric we also show is the total number of message exchanges, X. With respect 

to a given policy, a larger value for X indicates more overhead is involved in state 

information exchange. 

In this section, we define several systems. Each simulation experiment models a 

particular system, characterized by the values of M, N, ai,j, and µi,j, i = 1, ... , N, 

j = 1, ... , M. Each experiment is repeated 30 times. For every case, we give W, Wi, 

i = 1, ... , N, and X. For W, we also give the accuracy of the confidence interval 

defined as the ratio of the half width of the interval over the mean value (all statistics 

are at 953 confidence level). 

4.3.1 Task and Machine Heterogeneity 

System 4.A has M = 7 machines and N = 4 classes. Define a 1 and µ 1 as follows: 

2 1.5 1.75 1 3 1.9 1.35 

al= 
1.35 1.5 2.4 1.55 2.9 0.75 1.55 

4 2.75 1 1.35 1.5 0.9 1 

2 1.75 2 1.5 2.25 1.75 0.75 

and 

4.5 2 9.5 6.2 10.25 2.25 3.95 

µ1 = 
6.2 4.5 6 2 4.2 5.9 10.25 

9.5 6.5 4 10 5.9 2.25 3.95 

2.25 10 2 3.95 1.75 10 1.75 

Initially, the arrival and execution rates are given by a = a 1 and µ = µ 1
. The 

rates only change at regular rate-change events. At every rate-change event, only 

a single rate from ai,j or µi,j, i = 1, ... , N, j = 1, ... , M, changes randomly with 

84 



PhD Thesis - I. Al-Azzoni - McMaster - Computing and Software 

Table 4.1: Simulation results for System 4.A 

Policy w W1 W2 W3 W4 ~ 

MCT 3.41 3.40 3.40 3.40 3.43 0% 

±13.31% 

KPB 0.37 0.28 0.58 0.40 0.20 66.67% 
-
k=2 ±4.04% 

KPB 0.24 0.20 0.25 0.27 0.26 50.02% 
-
k=3 ±0.59% 

LPAS_ 0.22 0.23 0.19 0.24 0.21 65.19% 

dee ±0.36% 

equal probabilities. Time intervals between the rate-change events are exponentially 

distributed with mean 1/0.035 time-units. For a change in a, ai,j is set to af,j, l.laf,j, 

or 1.2ai,j with equal probabilities. For a change in µ, µi,j is set to µI,j, 1.05µ{,j, or 

l.l5µf,j with equal probabilities. Thus, the system experiences different loads with 

the lowest average load of 77.59% (when a = a 1 and µ = 1.15µ 1) and the highest 

average load of 89.23% (when a= l.2a1 andµ= µ 1). 

Table 4.1 shows simulation results for System 4.A. We simulate the execution of 

the system for 200,000 time-units. In the last column of the table, we define ~ as 

the improvement in the total number of message exchanges ( X) with respect to the 

MCT policy. For X, the accuracy of the confidence intervals is less than 0.1%. 

The MCT policy performs much worse than the other policies. In general, the 

MCT policy achieves poor performance and even results in unstable systems when 

the system is highly loaded and there is high task heterogeneity and high machine 

heterogeneity. Using the KPB policy, performance is dramatically improved with 

respect to the MCT policy. However, finding an appropriate value fork is problematic. 

Furthermore, depending on the value of k, there is a tradeoff between the achieved 

performance (W) and the overhead of message exchanges (X). The LPAS_dec policy 
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achieves the best performance for System A even though there is a dramatic decrease 

in the total number of message exchanges. It results in values for .6. comparable with 

those of the KPB policy with k = 2, while achieving an improvement of 40% in the 

average task completion time. 

4.3.2 Robustness 

We assess the impact of inaccuracy under the assumption of null overall inaccuracy 

(see Section 3.4.6). Consider an actual arrival rate ai,j for class i tasks at machine j. 

Let o:L denote the (corresponding) estimated arrival rate actually used by the policy. 

In our simulations, af,j is obtained using the following relation: o:L = ai,j x ( 1 + E), 

where Eis sampled from the uniform distribution [-/,+I] and I is the maximum 

inaccuracy. Analogously defined, µf,j denotes the estimated execution rate of class i 

tasks at machine j used by the policy. 

Figure 4.1 compares the LPAS_dec policy and the KPB policy (with k = 3) in 

terms of their performance on System 4.A under different inaccuracy levels. We do 

not include the results for the MCT policy since it results in severe performance 

degradation or even system instability for low values of I. For example, using the 

MCT policy results in W = 6.61 time-units when I= 10% and the system is unstable 

when I = 30%. This experiment shows that the LPAS_dec policy has robustness 

advantages over the other policies which can be explained in part by the property 

that the solution to the allocation LP is inherently robust. 

4.3.3 Realistic Architectures 

To simulate more realistic scenarios, we use the data reported in [9, 15] which was 

collected by running benchmarking tools on an actual system (see Section 3.4.5). We 

refer to this system as System 4.B. 

We simulate two configurations based on System 4.B (4.Bl and 4.B2). Both 

systems consist of M = 300 machines which are grouped into 15 groups. We simulate 
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Figure 4.1: System 4.A simulation results under different values for the maximum 

inaccuracy 

the execution of each system for two billion time-units. 

To have dynamic CPU availabilities, the steady-state CPU availability for each 

machine changes randomly at regular rate-change events (time intervals between such 

events are exponentially distributed with mean 5 million time-units). At every rate­

change event, each machine assumes the same parameters as one of the 15 machines 

of System 4.B listed in Table 4.14 in [15] (reproduced in Table 3.13) with equal 

probabilities. Let a1 be the steady-state CPU availability of a machine j. Thus, the 

execution rate for class i tasks at machine j is effectively µi,j x a1. We assume that 

the load balancing policies use these estimated effective execution rates. 

In System 4.Bl, we assume that the machines of a group are identical in terms of 

their nominal computing powers. Each group has the same nominal computing power 

as one of the 15 machines of System 4.B. Furthermore, we assume that the nominal 

computing power of a machine depends only on the machine and is independent of 

the class of tasks being executed. System 4.Bl represents a system which is mainly 
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Figure 4.2: Relative average task completion times and number of message exchanges: 

System 4.Bl under arrival rates a 

used to execute a single application. 

In System 4.B2, we assume that each machine has a nominal computing power (on 

class i tasks) Pi,j randomly chosen from {1, 1.125, 1.4375} with equal probabilities. 

Thus, a machine can be fast executing some applications while, at the same time, 

slow executing other applications. System 4.B2 represents a system which is mainly 

used to execute multiple applications with inherent heterogeneity. 

Finally, we assume that there are N = 4 classes (or applications). We assume 

that BaseTimei = 8750, 17500, 35000, 50000, for i = 1, ... , 4, respectively. This 

information is enough to generate the matrixµ. Assuming aj = 1, the mean execution 

time for a class i task at machine j can be computed as BaseTimei x 1/ Pi,j· 

Figures 4.2 and 4.3 show simulation results for Systems 4.Bl and 4.B2 under ar­

rival rates a = [0.00457 0.00229 0.00114 0.00080]. For a machine j, we assume that 

ai,j = ad M, i = 1, ... , N. In this section, we normalize the results with respect to 

the MCT policy and note that the accuracy of the generated confidence intervals is 
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Figure 4.3: Relative average task completion times and number of message exchanges: 

System 4.B2 under arrival rates a 

0.1 % or less. The KPB policy is not included as it is difficult to find an optimal value 

for k. These results indicate that the MCT policy achieves acceptable performance 

in systems with low task heterogeneity, such as System 4.Bl. However, as the level 

of task heterogeneity increases (e.g. System 4.B2), the MCT policy results in perfor­

mance degradation which gets worse as the load increases. The LPAS_dec policy is 

generally superior in highly heterogeneous and highly loaded systems. Of course, there 

is the added advantage of significant reduction in the overhead of state information 

exchange. 

4.4 Summary 

In our work, we have developed the LPAS_dec policy which utilizes the solution to an 

allocation LP. The policy takes into account information on heterogeneity resulting 

in improved performance. However, it requires dynamic knowledge on task arrival 
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and machine execution rates. The information exchange mechanism used by the 

LPAS_dec policy is shown to dramatically cut down the communication overhead 

while being effective in updating the state information in a decentralized fashion. 
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Chapter 5 

Conclusion 

In this thesis, we have proposed several resource management policies for different H C 

systems. These policies utilize the solution to an allocation LP which maximizes the 

system capacity. Such policies require knowledge on both arrival and execution rates. 

Our simulation experiments show that these policies perform very competitively in 

highly heterogeneous systems. 

There are several lines along which future research could proceed. 

We note that there has been little work done in characterizing actual HC system 

workloads. Hence, we believe that there is a need to develop a benchmark 

framework which characterizes actual workloads and can be used to compare 

different policies in terms of several performance metrics (for example, see the 

work of Li et al. [49]). 

The main issue addressed in our work is dealing with heterogeneity of HC sys­

tems within the context of resource management. This work does not include 

other factors such as communication delay, data transfer costs, heterogeneous 

network bandwidths, and network topologies. We believe that the basic frame­

work presented here can be adapted to such settings. 

Resource management for HC systems is an emerging field of research. There 
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are other kinds of HC systems that have not been discussed in this thesis. For 

example, a hierarchical grid can be constructed by using multiple computing 

clusters where each of these clusters has its own RMS (see Garonne et al. [32]). 

Another emerging kind of HC systems uses P2P (peer to peer) based technology 

for resource management (see Chakravarti et al. [17] and Kim et al. [41]) . Given 

the success of our linear programming based policies, it would be worthwhile to 

explore the potential of such an approach in developing resource management 

policies for these emerging HC systems. 
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Appendix A 

Here, we apply the fluid limit methodology in proving several stability results. Our 

analysis will involve a formal limiting fluid model for the system. This is done by 

describing the system as a Markov process and performing a scaling in time and space 

that allows the use of law of large numbers results, leading to a deterministic model 

where the flow through the system is continuous (fluid) rather than discrete (tasks). 

The use of fluid model techniques for characterizing stability is a well established 

methodology: see, for example, the work of Chen [18], Chen and Yao [19], Dai [23, 24], 

and Dai and Meyn [25]. 

First, we define the system dynamics of the queueing network corresponding to 

our workload model. Class i tasks arrive via an arrival process with independent and 

identically distributed (i.i.d.) interarrival times {~i(n)} where ai = 1/ E[~i(l)]. Also, 

let T/i,j ( n) denote the execution time for the nth class i task executed at machine 

j, where µi,j = 1/ E[T/i,j(l)] if machine j can execute class i tasks, and µi,j = 0 

otherwise. We assume that the sequence { T/i,j ( n)} is i.i.d. for each i and j. Let Ai ( t) 

be the residual interarrival time for class i tasks at time t. Let Yi,j(t) be the residual 

execution time for class i by machine j at time t. 

Let ~,J ( t) be the cumulative time that machine j has spent on class i tasks in 

(0, t]. Note that the functions Ti,j(t) are determined by the mapping heuristic and 

the scheduling policy of machine j. Let Tj(t) = I::1 Ti,j(t) represent the cumulative 

time that machine j has been busy in (0, t]. 
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Define Wi,j(t) as the cumulative amount of time that it takes machine j to execute 

class i tasks present in its queue at time t. Thus, Wi,J(t) represents the class i workload 

of machine j at time t. We also define Qi,J(t) as the total queue length of class i tasks 

at machine j at time t. Let ai,J ( t) be the total number of class i tasks assigned by 

the mapping heuristic to machine j in (0, t]. With the definitions above, we are now 

able to give an expression for the evolution of Wi,j(t), i = 1, ... , N, j = 1, ... , M, 

Qi,j (O)+ai,j (t) 

Wi,J(t) = L T/i,J(n) - Ti,j(t). 
n=l 

Second, we construct a Markov process X for the system. For any of the mapping 

heuristics discussed in this paper, 

X(t) := (Wi,J(t), Ai(t), Yi,J(t) : i = 1, ... , N, j = 1, ... , M) 

is a Markovian state evolving on 

The process X may be shown to have the strong Markov property. 
N M · - -

Let w = Li=l Lj=l Wi,j(O). Suppose that the funct10n (Wi,J(t), Ti,J(t) i 

1, ... , N,j = 1, ... , M) is a limit point of the functions (w- 1Wi,J(wt), w-1Ti,J(wt) : 

i = 1, ... , N,j = 1, ... , M) when w----+ oo. We call (Wi,j(t), Ti,j(t): i = 1, ... , N,j = 

1, ... , M) a fluid limit of the system. 

We are now ready to describe the fluid model corresponding to our workload 

model. Let (Wi,j(t), Ti,J(t) : i = 1, ... , N and j = 1, ... , M) be a fluid limit for the 

t D fi 1. °'i,j(t) · - 1 N · - 1 M . th 1. "t sys em. e ne ai,j as 1mt-+oo -t-, i - , ... , , J - , ... , , assuming e im1 

exists (for the mapping heuristics we are concerned with, ai,j does exist). For any 

mapping heuristic, every fluid limit satisfies the following set of conditions (for all 

i = 1, ... , N and j = 1, ... , M): 

- - aijt -
(A.1) W· ·(t) = W· ·(O) + -' -T· ·(t)· i,J i,J i,J ' µi,j 

(A.2) Wi,J(t) ;::: O; 
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(A.3) Ti,J(O) = 0 and Ti,J(·) is nondecreasing; 

The derivatives above exist almost everywhere, as Ti,J(t) is Lipschitz for all i, j. From 

this point on, derivatives will be understood to be taken on the condition that they 

exist. 

The conditions (A.1)-(A.4) do not completely specify the fluid limits, and there 

are other conditions on Ti,J(t). The complete set of conditions is known as the fluid 

model (see Theorem 2.3.2 of [23]). A fluid solution refers to any solution to the fluid 

model equations. 

The fluid model is said to be stable if there exists a fixed time t' > 0 such that 

Wi,J(t) = 0, t > t', i = 1, ... , N, j = 1, ... , M, for any fluid solution. The fluid model 

is said to be (weakly) unstable if there exists a t' > 0 such that for every solution of 

the fluid model with L.":~ 1 L.":~ 1 Wi,J(O) = 0, L.":~ 1 L.":~ 1 Wi,J(t') -j. 0. Analyzing the 

stability region of the deterministic fluid model defined above allows us to characterize 

the maximum capacity of the actual system. 

PROOF. [Theorem 2.2.l] 

Consider the LP-Static heuristic. If.\* > 1, we show that the LP-Static heuristic is 

guaranteed to stabilize the system. The LP-Static heuristic randomly maps tasks to 

machines according to probabilities Pi,J = \~:i;j, i = 1, ... , N, j = 1, ... , M. 

Let WJ(t) denote the total workload at machine j at time t. Thus, 

N 

Wj(t) = L Wi,j(t). 
i=l 

Define WJ(t) as a limit point of the function w-1wJ(wt) as w---+ oo, j = 1, ... , M. 

Then, 
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N 

Wj(t) = L Wi,j(t). 
i=l 

Note that if Wj(t) > 0, then it must be true that ftTj(t) = 1. Hence, if Wj(t) > 0, 

then 

d- a1,j aN,j d- d- () 
dt Wj(t) = -µ . + · · · + -µ . - dtT1,j(t) - · · · - dtTN,j t 

l,J N,J 

a1. aN. = _,J + ... + __ ,] - 1. 
µl,j µN,j 

Since using the LP-Static heuristic as a mapping heuristic results in ai,j = aiPi,j = 
8i jµi,j · 1 N · 1 M ·t t b t th t ~, z = , ... , , J = , ... , , I mus e rue a 

M 

< 0 since L o:,j ~ 1 and A* > 1. 
j=l 

Thus, if Wj(t) > 0, then ftWj(t) < 0 which implies that there exists a fixed time 

t' > 0 such that Wj(t) = 0, and hence Wi,j(t) = 0, i = 1, ... , N, j = 1, ... , M, for 

all t > t'. Hence, the fluid model is stable and the result follows from Theorem 4.2 

in [24]. 

PROOF. [Theorem 2.2.2] 

Assume that the system can be stabilized. Hence, the corresponding fluid model 

is stable i.e., there exists a fixed time t' > 0 such that Wi,j(t) = 0, t > t', i = 

1, ... , N,j = 1, ... , M, for any fluid solution. Chooses > t'. Then, ftWi,j(s) = 0, 

i = l, ... ,N,j = l, ... ,M. Also, let ftTi,j(s) = oi,ji i = l, ... ,N,j = l, ... ,M. 

Condition (A.1) implies (after taking the derivative of both terms and substituting s 

fort), 

a·. 
-3:.il_ - oi,j = 0, for all i = 1, ... , N, j = 1, ... , M. 
µi,j 
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Thus, 

0 = ai,j - bi,jµi,j, for all i = 1, ... , N, j = 1, ... , M. 

Summing over j, 

M 

0 = ai - L bi,jµi,j, for all i = 1, ... , N. 
j=l 

Thus, the following constraints hold ((A.6) and (A.7) follow from (A.4)): 

(A.5) 
M 

L bi,jµi,j ~ ai, for all i = 1, ... , N, 
j=l 

(A.6) 
N 

L Oi,j :s; 1, for all j = 1, ... , M, 
i=l 

(A.7) 

oi,j ~ 0, for all i = 1, ... , N, and j = 1, ... , M. 

Thus, (A.5)-(A.7) provide a feasible solution for the allocation LP (2.1)-(2.3) with 

,\* = 1 contradicting the assumption that ,\* < 1. Hence, the fluid model is weakly 

unstable and by Theorem 2.5.1 of [23], the system can not be stabilized. 

PROOF. [Theorem 2.4.l] 

Using the Guided-LPAS heuristic (introduced in Section 2.4), we can show that 

(A.8) Jr· ·a·(t) - M + 1 - ~ C· ., 1i < a· ·(t) <Jr· ·a·(t) + C. · 1t + 1. i,J i ~ i,J y i - i,J i,J i i,J y l 

j'#j 

First, let us show that 

Assume that the Guided-LPAS heuristic maps an arrival of class i at time t to machine 

j. Since the arriving task was mapped onto machine j, it must be true from the 
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definition of the Guided-LPAS heuristic (see condition (iii)) that o:i,j(t-) < 1fi,jcxi(t)+ 

Ci,r./t. It then follows that cxi,j(t) = cxi,j(t-) + 1 < 1ri,jcxi(t) + Ci,j.../i + 1, proving 

(A.9). 

Second, we show 

(A.10) 7f· ·cx·(t) - M + 1 - "°' C- ., 1t < ex· ·(t). i,J i ~ i,J v i - i,J 

j'=h 

Consider a machine j. Clearly it is assigned the following number of class i tasks: 

ai,j(t) = ai(t) - I: ai,j'(t). 
j'=h 

where j' E {1, ... , M}. Using the Guided-LPAS heuristic, (A.9) holds and it follows 

that 

ai,j(t) = ai(t) - L: ai,j'(t) 
j'=h 

2: cxi(t) - L(7ri,j'cxi(t) + Ci,j'Vt + 1) 
j'=h 

j'=h j'=h 

=Jr· ·cx·(t) - M + 1 - "°' C- ., 1t. i,J i ~ i,J vi 
j'of.j 

This proves (A.10). 

F (A 8) "t f 11 th t ,s;,jµi,j . - 1 N . 1 M rom . , I o ows a o:i,j = cxi1fi,j = --v-, i - , ... , , J = , ... , . 

Thus, the results follow as before (see the proof of Theorem 2.2.1). 

PROOF. [Theorem 2.4.2] 

Assume that the Guided-LPAS-2/k heuristic maps an arrival of class i at time t to 

machine j. Since the arriving task was mapped onto machine j, it must be true from 

the definition of the Guided-LPAS-2/k heuristic (see the definition of Ti(t) of the 

heuristic) that cxi,j(t-) < 1ri,jcxi(t) + Ci,j.../i. This is the key to the proof of (A.8) and 

the results follow as before (see the proof of Theorem 2.4.1). 
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