
MCMASTER UNIVERSITY

MASTER’S THESIS

Simulation of Subcritical Experiments
in ZED-2 using G4-STORK

Author:

Salma Mahzooni

Supervisor:

Dr. Adriaan Buijs

A thesis submitted in fulfilment of the requirements

for the degree of Master’s of Applied Science

in the

Department of Engineering Physics

March 2015

Abstract
In nuclear reactors, transients may happen, for example at the time of refueling, rod

withdrawals or insertions, and during reactor accidents. Transient behavior may result

from changes either in materials or in the geometry of the reactor core components. An

enhanced understanding of these time-dependent changes in reactors may improve the

reactor operation and reduce the probability of accidents. In spite of the importance of

understanding the conditions that lead to transients, there are not many time-dependent

reactor simulation codes available.

This study is focused on modeling the sub-critical reactivity measurements in the ZED-

2 reactor, using the recently developed G4STORK computer code. The ZED-2 experi-

ment measures the sub-critical state resulting from a step-wise reduction of the moder-

ator level.

G4-STORK is a time-dependent Monte Carlo code for reactor neutronics calculations

based on the GEANT4 toolkit. G4-STORK has the ability to follow the evolution of

the neutron population in time, including delayed neutrons, and to model the resulting

changes in material and geometric properties of a reactor.

The keff values calculated by G4-STORK were compared with the experimental mea-

surements and with MCNP results. The comparison shows significant discrepancies

with both MCNP and the experimental measurements. These discrepancies are increas-

ing as the reactor becomes increasingly subcritical (from ∼20 mk to ∼40 mk). The

recently developed G4-STORK code is still at an early stage of its development, and

needs to be improved further to be used for transient analyses of the reactors. Given the

flexibility of G4-STORK, there are many opportunity to improve and extend this code.

Acknowledgements
I would like to thank my supervisor, Dr. Adriaan Buijs for all his help and support

for the past few years. I would also like to thank everyone in the nuclear engineering

department at McMaster. In particular, I want to acknowledge folks in Dr. Buijs’ group:

Jason Sharpe, Wesley Ford, and Andrew Tan. You guys provided a great deal of help

and welcome distractions during all the coding, debugging, and writing frustrations.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Scope of the study . 2

1.1.1 Status of the G4-STORK code 2
1.1.2 Structure of the Thesis . 3
1.1.3 Scientific Value of This Work 4

1.1.3.1 Motivations . 4

I Theoretical Background 7

2 Theory 8
2.1 Physical Background . 8

2.1.1 Neutron Interactions and Cross Sections 8
2.1.1.1 Cross Sections . 9
2.1.1.2 Neutron Interactions 10
2.1.1.3 Neutron Transport Equation 14

2.1.2 Criticality . 18
2.1.2.1 Methods for Criticality Calculations 20

3 Computational Methods 24
3.1 Deterministic Method . 26

3.1.1 Diffusion Theory . 27
3.1.2 Static Deterministic Solution 30
3.1.3 Dynamic Deterministic Simulation 31

3.2 Monte Carlo Method . 33
3.2.1 Neutron Transport Simulation in Monte Carlo 36

iii

Contents iv

3.2.1.1 Monte Carlo Simulation World and Initial Source Dis-
tributions . 36

3.2.1.2 Monte Carlo Calculations 38
3.2.2 GEANT4 Monte Carlo Toolkit 41

3.2.2.1 History . 41
3.2.2.2 Structure . 42

3.2.3 General Geant4 Simulation Scheme 46
3.2.3.1 Initial Actions . 46
3.2.3.2 Final Actions . 48

3.3 Nuclear Data . 48

II Modelling the Experiment in the G4STORK code 50

4 Previous Related Research 51
4.1 Experiments Related to Subcritical Measurements 51
4.2 Codes Related to G4-STORK . 53

4.2.1 MCNP5 . 53
4.2.2 TART 2012 . 54
4.2.3 Serpent . 55

5 Methodology 57
5.1 G4-STORK . 58

5.1.1 Data Processing . 59
5.2 Implementation of G4-STORK . 60

5.2.1 Neutron Population Stabilization 61
5.2.1.1 Renormalization Method 62

5.2.2 Computed Quantities . 64
5.2.3 Delayed Neutrons . 64
5.2.4 Boundary Condition Options 66

5.3 Modeling the ZED-2 Subcritical Reactivity Measurements Experiment
in G4-STORK . 67
5.3.1 The ZED-2 Subcritical Experiment 67

5.3.1.1 ZED-2 Reactor . 68
5.3.1.2 Reactivity Measurements 69
5.3.1.3 Inverse Point kinetics Method 69
5.3.1.4 MCNP Code Calculation 72

5.3.2 G4-STORK Implementation of the ZED-2 Subcritical Experiment 73
5.3.2.1 Geometry Setup . 73
5.3.2.2 Full Core . 73
5.3.2.3 Quarter Core . 74
5.3.2.4 Material . 75
5.3.2.5 Cross section Data Library 76

6 Results and Discussion 79
6.1 ZED-2 Full Core . 79

6.1.1 Critical Height . 86
6.1.2 Subcritical Height . 87

Contents v

6.2 ZED-2 Quarter Core . 88

7 Summary and Conclusions 93

A Full Core ZED2 Construction 95

B Quarter Core ZED2 Construction 140

C Log File 185

D Source File 188

Bibliography 191

List of Figures

2.1 A neutron incident normally upon a thin layer(adapted from [1]). 10
2.2 Primary neutron interaction types. 11
2.3 The elastic cross section of 238

92U and 235
92U (ENDF/B-VI, 300 K data). 12

2.4 The inelastic cross section of 238
92U and 235

92U (ENDF/B-VI, 300 K data). 12

2.5 The radiative capture cross section of 238
92U and 235

92U (ENDF/B-VI,
300 K data). 13

2.6 The fission cross section of 238
92U and 235

92U (ENDF/B-VI, 300 K data). 14
2.7 Neutron fission chain reaction (adapted from [2] chapter 2.) 14
2.8 Particles in the infinitesimal box moving in a cone dΩ in direction Ω̂. . . 15
2.9 Time dependence of the flux for a source free multiplying medium [3]. 20

3.1 The circle confined in a unit square. 25
3.2 Monte Carlo random point selections 25
3.3 Geometry representation of full core defined in a deterministic code.

Adapted from Dr. Rouben’s lecture note 31
3.4 Flow chart of iterative flux solution. 32
3.5 Data processes in a Monte Carlo simulation. 38
3.6 Geant4 simulation hierarchy. 43
3.7 The definition to each class category in Geant4 simulation hierarchy. . . 44

5.1 Data flow and main processes in the G4STORK code. 59
5.2 G4-STORK data processing hierarchy. 61
5.3 A schematic of G4-STORK process between the runs. 63
5.4 Angle view (left) and cross-sectional view (right) of the ZED-2 reactor. 68
5.5 Cross-sectional view of CANFLEX fuel bundle. 69
5.6 Inverse subcritical count rates as a function of the moderator height [4]. 70
5.7 Subcriticality measurements as a function of the moderator height [4]. . 71
5.8 The simplified model of the ZED-2 reactor [5] 74
5.9 Angle view (left) and cross-sectional view (right) of the quarter ZED-2

reactor core. 75
5.10 Material description flowchart. 76

6.1 The effective (on left) and the run (on right) multiplication factors in
time. 80

6.2 Converged neutron spatial distribution (top) and the schematic of ZED-
2 in Z-axis including all the dimensions(bottom). 81

6.3 Converged energy spectrum at time 50 ms and 200 ms. 82

vi

List of Figures vii

6.4 Neutron distribution in XY-plane (top) and ZED-2 topview schematic
(bottom). 83

6.5 Neutron flux distribution plotted by 2-dimensional histogram. 84
6.6 Fission site locations in xy plane top-view. 85
6.7 Three dimensional fission site locations. 85
6.8 keff versus the moderator height for G4-STORK, MCNP, and experi-

mental measurements. 88
6.9 The effective (on left) and the run (on right) multiplication factors in

time. 89
6.10 Neutron spatial distribution in time. 89
6.11 Energy spectrum in time. 90
6.12 Flux distribution in the right. 91
6.13 Fission site locations in xy plane view on left and flux distribution on

the right. 92

List of Tables

2.1 Variable definitions used in the neutron Boltzmann equation 2.3 17
2.2 Comparison between the criticality calculation methods 23

3.1 Variable definitions used in the point kinetics approximations 33
3.2 The space-energy dynamic approaches 34
3.3 Common initial source distributions 37
3.4 Criticality calculation methods in Monte Carlo simulation 40
3.5 Definitions of some of the Geant4 classes 45
3.6 Parameters definitions for equation 3.21 47

4.1 Definitions of the variables in equation 4.1 52

5.1 Variables used in the calculation of subcritcal reactivity using equation
5.6 . 71

5.2 Variables used in equation 5.9 . 77

6.1 Effective multiplication and run multiplication factors calculated using
G4-STORK for ZED-2 full core . 84

6.2 Effective multiplication and reactivity of the G4-STORK, MCNP codes
and the Experimental measurements. 86

6.3 Percentage differences between the experimental measurements and G4STORK
and MCNP. 87

6.4 Effective multiplication and run multiplication of full core and quarter
core. 92

viii

I dedicate my dissertation to my family and many friends. A
special feeling of gratitude to my loving parents, Mehdi

Mahzooni and Zahra Naghavi, whose words of
encouragement and push for tenacity ring in my ears, who
held my hands and had my back through all difficulties that
I have been through. My sisters Samaneh and Sarah and my
brothers Samer and Hamid have never left my side and are

very special.

ix

Chapter 1

Introduction

Nuclear power plants perform tasks similar to other generating power plants (such as oil,

gas, etc). The heat produced from the fission reactions is used to generate steam which

causes the turbines to run and generate electricity. Although the concept of producing

power is similar to other conventional power generating plants, the nuclear reactor core

is an intricate system. The study of the nuclear reactor entails a study of the combination

of the neutron transport theory and heat transfer.

It is hard to observe what exactly happens inside an operating reactor. Studying and

understanding the behavior of an operating nuclear reactor therefore relies heavily on

computer simulations. Computer simulations and modeling are alternatives to experi-

mentation, and cheaper. Using computer simulations allows scientists and engineers to

model and observe complex problems and situations such as dynamic states and acci-

dent cases. There are two methods used to simulate and model nuclear reactors: the

deterministic and Monte Carlo methods.

The deterministic method is based on solving the neutron transport equation directly

while making some assumptions (e.g. discretizing energy and space) to simplify this

equation. Deterministic neutron transport codes are widely used to simulate the physics

of reactors.

1

Chapter 1. Introduction 2

The Monte Carlo method simulates the life of single neutrons from birth to death in

continuous-energy and three-dimensional geometry. It is truer to nature, but more time-

consuming than deterministic codes.

The focus of this study is on dynamic neutron transport theory using the Monte Carlo

method.

1.1 Scope of the study

This study has been built around modeling a subcritical experiment in the ZED-2 reactor

in a Monte Carlo reactor physics simulation code, the so-called G4-STORK code. This

code was developed at McMaster University. The title of this code has been given the

name "Geant4 STOchastic Reactor Kinetics" or G4-STORK.

This study is based on subcritical measurements done with ZED-2 in the Canadian Nu-

clear Laboratories, (CNL, formerly known as AECL) at Chalk-River, Ontario [4]. The

investigation was conducted to demonstrate the ability of the G4-STORK code for reac-

tor kinetics calculations. The aspects looked into were how close the simulation results

are to the experimental measurements; also the G4-STORK results were compared to

another Monte Carlo reactor physics code known as Monte Carlo N-Particle (MCNP)

code, although the MCNP reactor code is a static simulation code.

1.1.1 Status of the G4-STORK code

The development of G4-STORK started in September 2010 as a Master’s project [6].

Code capabilities and preliminary results were introduced in two reactor physics con-

ferences (CNS) in 2011 and 2012 as well as in the dissertation [7] [6]. The G4-STORK

code can be classified as a three-dimensional, continuous-energy, time-dependent, Monte

Carlo code. This code is based on the Geant4 tool kit and is intended only for reactor

Chapter 1. Introduction 3

physics calculations. It must be pointed out that this code has been only tested and

used by the McMaster university group, and this thesis is not a full description of G4-

STORK. Only the essential calculation methods and code capabilities are fully covered

in this text (mainly the features that were required to model the aforementioned subcrit-

ical experiment in the ZED-2 reactor). New features are constantly being developed,

implemented, and envisioned for G4-STORK, features which are the basis of the up-

coming thesis projects.

1.1.2 Structure of the Thesis

This thesis is divided into two parts. Part I: the theoretical background to the fundamen-

tal topics of this study, Part II: the scientific value of this project, and the features and

capabilities of the G4-STORK code which are essential to model the experiment.

Chapter 2 provides the basics of the theoretical physics background essential to this

project. In this chapter, an introduction to the physics of neutron interactions is given,

followed by the derivation of the neutron transport equation and its simplified version,

the diffusion theory. This chapter includes information on both the statics and kinetics of

the neutron transport equation. Chapter 3 is about the methods that are used to compute

the solutions to the neutron transport equations. These methods are then separately

discussed and defined in the detail necessary for this project. At the end of this chapter, a

brief comparison of the advantages and disadvantages of these two methods is provided.

This theoretical background, in terms of both physics and computational, is collected

from various different sources [2][1][3]

The second part of this thesis starts with chapter 4, which is a brief discussion of the

differences and similarities of this study with respect to other studies that have been

published in the literature. G4-STORK methodology is then defined in chapter 5. This

chapter is divided into two parts: G4-STORK mechanisms and the discussion of the

ZED-2 experiment, followed by the implementation of this experiment in G4-STORK.

Chapter 1. Introduction 4

Also, the implementation of this very experiment in MCNP is very briefly defined in this

chapter. Chapter 6 presents the data and discusses the results in detail. The final chapter

is left for conclusions and some future plans to further developments in G4-STORK.

1.1.3 Scientific Value of This Work

The unique feature of this study is that it uses a new transport calculation code that

has been recently developed. The G4-STORK code is based on an open-source toolkit

which makes this code much more user-friendly than any other existing reactor Monte

Carlo codes. This code uses the data from a recent release of the evaluated data libraries

(i.e. ENDF/B-VII, etc), data which then are converted to the GEANT4 format.

The characteristic feature of G4-STORK is that it is only used in reactor physics cal-

culations, specifically for time-dependent calculations. The time-dependency feature of

the G4-STORK code makes this code very special as it can estimate the kinetic neu-

trons’ behavior in a nuclear reactor. This feature of the G4-STORK code makes it a

good candidate for this study.

1.1.3.1 Motivations

The neutron population in a nuclear reactor fluctuates over time even when the core is

in a stable (critical) state. These fluctuations in neutron population are then periodi-

cally suppressed by the reactor’s control system to sustain a stable neutron population

throughout the nuclear reactor operation. However, the time-dependent response of the

neutron population becomes important when the state of the nuclear reactor changes

with time (e.g. at a time of accident or a power maneuver). Thus, the time-dependent

behavior of the neutron population in a nuclear reactor is one of the most important

features of nuclear reactor operation.

Chapter 1. Introduction 5

The evolution of the state of a nuclear reactor has been studied using mostly determin-

istic approaches to the time-dependent neutron transport equation such as the point-

kinetics approximation. These approximations suffice to describe the mean value of the

state variables in a deterministic manner. Since these approximations are deterministic,

they are limited by the same static deterministic limitations (discretizations of space,

time, and energy) that are important factors in solving the time-dependent (kinetics)

behavior of the reactor. Nonetheless, this kinetics behavior of a nuclear reactor is a

stochastic process and can be defined in sets of stochastic kinetic equations

The stochastic (Monte Carlo) techniques do not rely on such limitations. In Monte Carlo

methods, all the neutrons can be tracked both in time and space in a nuclear reactor core.

Thus, the overall properties of a nuclear reactor can be simulated at any time during the

simulation. Many Monte Carlo reactor physics codes, such as MCNP, neglect the time

dependency for calculating the reactor characteristics. Therefore, these calculations can

only accurately simulate the static state of a reactor and not the kinetic state of a reactor.

As stated above, G4-STORK has the capability to simulate both the reactor response to

transient behavior and time-dependent systems.

G4-STORK tracks the evolution of the reactor’s neutron population over time and deter-

mines various kinetic parameters. From the simulated parameters the keff of the system

in time can be extracted. This study is to model the subcritical ZED-2 experiment to

compute keff at various moderator heights for the subcritical state. However, this study

goes beyond merely deducing the results of this experiment using G4-STORK. The

following summarizes the goals, objectives, and questions of this study.

Chapter 1. Introduction 6

Study Goals, Objectives, and Research Questions

• Study Goals:

– Demonstrate the capabilities of the G4-STORK code;

– Develop an understanding of the modeling reactor physics experiment using

the G4-STORK code;

• Objectives:

– Model an experiment using G4-STORK to test and explore the performance

of this reactor physics computer code for simulations of nuclear reactor ki-

netics;

– Revise and refine the preliminary conceptual modeling in G4-STORK to

model the real reactor physics experiment for G4-STORK development;

• Research Questions:

– How do the G4-STORK results compare to experimental and MCNP re-

sults?

– Which are the important characteristics of this experimental model leading

to further improvement of this code for better reactor kinetics calculations

in future?

– What working features are warranted based on G4-STORK development to

guide future research?

Part I

Theoretical Background

7

Chapter 2

Theory

2.1 Physical Background

In the first few sections of this chapter, the basic physics of neutron interactions and the

necessary principles of nuclear reactors are discussed. Understanding of the physical

background is important in Monte Carlo simulations, where every neutron is tracked

through its interaction with existing material and boundary conditions. Also, these fun-

damental concepts help in understanding neutron transport theory. The latter sections

are devoted to introducing the general form of the time-dependent neutron transport

equation.

The purpose of this discussion is to familiarize the reader with fundamental neutron

transport theory. Readers who desire to see a more detailed discussion on the subject

may wish to consider one of the many related textbooks [2][1][3].

2.1.1 Neutron Interactions and Cross Sections

The primary goal of the reactor physics is to understand how neutrons are distributed in

space, time, and energy in a nuclear reactor [2]. The neutron transport equation satisfies

8

Chapter 2. Theory 9

this goal by describing the motion of neutrons and their interactions with the materials

in a nuclear reactor.

Neutrons interact with any nuclei at any energy and temperature in the nuclear reactor

materials. As stated above, the neutron transport theory depends on understanding of

the neutrons interactions throughout their journey within the nuclear reactor before they

are absorbed or leaked. The transport equation is a linear equation since the neutron-

neutron interactions are negligible in such systems which have much higher atomic

density than neutrons density in a given medium [8].

The probability that one of the neutron interactions occurs between the target nucleus

and an incident neutron is called microscopic cross section [9]. The cross sections

concept is more described in the next section 2.1.1.2.

2.1.1.1 Cross Sections

The concept of cross section can be understood by considering a neutron passing through

a thin layer of a material with an area A1 that has N ′ nuclei as shown in Figure 2.1. The

cross sectional area of each nucleus is set to be σ. The probability which the neutron

may have an interaction with one of these nuclei is N ′

A
σ. 2

At the atomic level σ does not simply represent the geometric cross sectional area of the

target nucleus, but rather it represents a physical quantity that depends on the specific

target nucleus and energy of the incident neutron. However, the dimensions of this

quantity remain as the dimensions of area, and usually it is given in units of barns (1

barn= 10−24cm2).

Therefore, the probability of having a certain type of interaction differs depending on

the energy of the incident neutron. The macroscopic cross section for interaction type i

1A is the area of the slab A = X × Y
2Where N ′

A represents the area density.

Chapter 2. Theory 10

FIGURE 2.1: A neutron incident normally upon a thin layer(adapted from [1]).

is given by 2.1

Σi(E) = Nσi(E) (2.1)

where N is the atomic number density of the material, and i is one of the reactions as it

was shown in figure 2.2.

The following subsections introduce the significant neutrons’ interaction with nuclei in

the nuclear reactors.

2.1.1.2 Neutron Interactions

Neutrons interact with matter in two general types: scattering and absorption [1]. The

neutron interaction in which the neutron bounces off the nucleus with or without chang-

ing its energy is called scattering. The scattered neutron changes its direction, but the

number of protons and neutrons in the nucleus stays unchanged. Scattering is classified

into two categories: elastic and inelastic. When a neutron is absorbed by a nucleus, it

can lead to either emitting various types of radiation or inducing fissions [9]. A neutron

Chapter 2. Theory 11

FIGURE 2.2: Primary neutron interaction types.

is absorbed mainly by radiative capture and fission interactions. Figure 2.2 shows the

types of neutron interactions3.

In elastic scattering(n,n), the incident neutron may be absorbed by the nucleus which

results in the formation of the compound nucleus. However, the compound nucleus then

re-emits the neutron and the compound nucleus returns back to the original nucleus. The

total kinetic energy and momentum of the neutron-nucleus system are conserved [9].

Figure 2.3 shows elastic cross section plots of 238
92U and 235

92U. The resonant behavior

of the nucleus cross section is observed in the elastic cross section plot. The resonance

peaks are representative of the formation of excited states of the compound nuclei [2].

It is referred to as potential scattering, when a neutron is incident on a nucleus without

any absorption (i.e. formation of a compound nucleus). In most scattering collisions,

3The notation (n,j) used in the parenthesis in Figure 2.2 represents the interaction of a neutron n with
target nucleus that results in a resultant nucleus and an outgoing particle j.

Chapter 2. Theory 12

FIGURE 2.3: The elastic cross section of 238
92U and 235

92U (ENDF/B-VI, 300 K data).

the neutron penetrates into the nucleus and forms an excited state of the nucleus from

which radiation is eventually released. This scattering interaction is called inelastic

scattering(n,n′). In inelastic scattering, the total final kinetic energy is less than the

initial total kinetic energy of the system, since a part of the initial energy was spent on

exciting the nucleus. Some inelastic cross sections are plotted in Figure 2.4.

FIGURE 2.4: The inelastic cross section of 238
92U and 235

92U (ENDF/B-VI, 300 K data).

In the case of radiative capture (n,γ), the neutron is absorbed by the target nucleus,

and the compound nucleus emits one or more high-energy photons. This interaction is

Chapter 2. Theory 13

especially important in reactor physics, since it involves removing neutrons from the

chain reaction [1]. The capture cross section of238
92U is plotted in Figure 2.5. When

the center-of-mass energy4 Ec plus the binding energy of the incident neutron Eb is

close to a nuclear energy level of the compound nucleus, the probability of forming

the compound nucleus is large [1]. High probabilities of formation of the compound

nucleus are responsible for the resonance behavior in capture cross sections at those

energies.

FIGURE 2.5: The radiative capture cross section of 238
92U and 235

92U (ENDF/B-VI, 300
K data).

Fission interactions (n,f) occur when an incoming neutron is absorbed by a nucleus

and the nucleus splits into two lighter nuclei while releasing some (typically two or

more neutrons). These neutrons, which are produced at the instant the fission reaction

happens, are called prompt neutrons. The fission products’ nuclei are highly unstable

and will release neutrons later in the process. These neutrons produced from fission

precursors are called delayed neutrons. Also, the similar resonance behavior of the cross

sections for nuclear fission is expected since the mode of disintegration is relatively

independent of the formation mechanism. The fission cross sections of 238
92U and 235

92U

are plotted in Figure 2.6. The fission reaction occurs only for actinides, and for nuclei

4Ec = (M
m+M)E where M: nuclear mass, m: neutron mass, and E is the neutron energy in laboratory

system

Chapter 2. Theory 14

FIGURE 2.6: The fission cross section of 238
92U and 235

92U (ENDF/B-VI, 300 K data).

that have high energy neutrons (6-9 MeV) impinging on them that are able to overcome

the binding energy of the nucleons in the nucleus [1].

2.1.1.3 Neutron Transport Equation

The nuclear fission reactors are based on the self-sustaining chain reactions. In every

neutron-induced fission reaction, two or three neutrons are released so that the pos-

sibility of a sustained neutron chain reaction is obvious [2]. Figure 2.7 illustrates an

induced-fission chain reaction.

FIGURE 2.7: Neutron fission chain reaction (adapted from [2] chapter 2.)

Chapter 2. Theory 15

Thus, to sustain a fission chain reaction at least one of the produced neutrons must

survive to induce further chain reactions [2].

The neutron transport equation also known as the neutron Boltzmann equation describes

the rate of nuclear reactions in a given boundary conditions. This equation is essentially

an equation for the neutron conservation in a medium [10].

The most fundamental goal of a simulation code is to find the best estimate of the

neutron loss and production rates. Therefore, the neutron transport equation is the most

fundamental reactor physics equation solving the behavior of the neutron population

within certain material using a given set of boundary conditions.

Figure 2.8 illustrates neutrons moving in the direction of solid angle dΩ in an infinitesi-

mal box. The volume element dV is used to account for neutrons that are lost or gained.

FIGURE 2.8: Particles in the infinitesimal box moving in a cone dΩ in direction Ω̂.

Let the neutron density distribution of the infinitesimal volume at time t be defined as

N(r,Ω, E, t)drdΩdEdt,

Chapter 2. Theory 16

then the neutron angular flux at time t is defined as

vN(r,Ω, E, t)drdΩdEdt ≡ Φ(r,Ω, E, t),

where v is the neutron velocity. The angular neutron current is the vector quantity made

from the neutron angular flux by the unit vector in the direction of motion

J(r,Ω, E, t) = Φ(r,Ω, E, t)Ω̂.

The time-dependent neutron balance in the infinitesimal volume dV is then:

N(r,Ω, E, t+ ∆t) = N(r,Ω, E, t) + P (r,Ω, E,∆t)− L(r,Ω, E,∆t), (2.2)

where P is the neutron production and L is the neutron loss. The total number of

neutrons in the volume V during time t to t + ∆t is ∆Ω∆E
∫
V
drN(r,Ω, E, t + ∆t).

The neutron gains in the system come from scattering and fission productions, and the

losses are from the capture, inelastic scattering, and the leakage out of the volume V .

Using equation 2.2, the neutron Boltzmann equation is as follows:

(2.3)
1

v

∂Ψ

∂t
+ Ω̂ · 5Ψ(r, E, Ω̂, t) + ΣtΨ(r, E, Ω̂, t)

=

∫
4π

dΩ̂′
∫ ∞

0

dE ′Σs(E
′ → E, Ω̂′ → Ω̂)Ψ(r, E ′, Ω̂′, t) + s(r, E ′, Ω̂′, t).

The variables in Equation 2.3 are as defined in table 2.1:

The first term on the left-hand side is the time-rate of change in the angular neutron

density. The second term describes neutron streaming (i.e. the rate at which neutrons

travelling in the direction of motion Ω̂ leave and enter the differential volume element

d3r.) into and out of d3r. The third term consists of all interactions removing neutrons

from the flux either by absorption or scattering away from the differential angle, Ω̂ and

energy, E.

Chapter 2. Theory 17

Ψ neutron flux
v neutron speed
E neutron kinetic energy
Ω neutron solid angle (momentum direction)
Σt total interaction cross section
Σs the collision scattering cross section
s the neutron sources

(external and fission sources

sexternal(r, E
′, Ω̂′, t)+

sprompt(r, E
′, Ω̂′, t) = χp(E)Σi

∫
dE ′νΣfΨ(r,E′Ω̂′, t)

)

TABLE 2.1: Variable definitions used in the neutron Boltzmann equation 2.3

Equation 2.3 assumes that all the neutrons are emitted instantaneously at the time of fis-

sion. However, a small fraction of the neutrons are emitted later from fission precursors.

These small fractions of neutrons become important in determining the time-dependent

behavior of a nuclear reactor. So the source term in equation 2.3 can be defined as:

stot(r, E
′, Ω̂′, t) = sexternal(r, E

′, Ω̂′, t) + sdelayed(r, E
′, Ω̂′, t) + sprompt(r, E

′, Ω̂′, t).

(2.4)

Where sdelayed(r, E ′, Ω̂′, t) and sprompt(r, E ′, Ω̂′, t) are

sprompt(r, E, Ω̂
′, t) = χp(E)

∑
i

(1− βi)
∫
dE ′νΣi

f (r, E
′)Ψ(r, E ′, Ω̂′, t) (2.5)

The delayed neutrons are emitted from many different fission products; however, for

simplicity they are divided into six precursor groups with delayed yields (βi) and decay

Chapter 2. Theory 18

constants (λi). Therefore, the source of the delayed neutrons is defined as:

sdelayed(r, E, Ω̂
′, t) =

∑
l

χl(E)λlCl(r, t), (2.6)

where Ci(r, t) is the concentration of the fission precursor of type i. Thus,

1

v

∂Ψ

∂t
+ Ω̂ · 5Ψ(r, E, Ω̂, t) + ΣtΨ(r, E, Ω̂, t)

=

∫
dE ′

∫
dΩ̂′Σs(r, E

′ → E, Ω̂′ · Ω̂)Ψ(r, E ′, Ω̂′, t) + sexternal(r, E
′, Ω̂′, t)

+
∑
l

χd(E)λlCl(r, t) + χp(E)
∑
i

(1− βi)
∫
dE ′νΣi

f (r,E
′)Ψ(r,E′, Ω̂′, t)

(2.7)

Also the fission precursors are changing in time as they are decaying, and more fission

products are added. This equation is as follows

∂

∂t
Cl(r, t) =

∑
i

βil

∫
dE ′νΣi

f (r, E
′)Ψ(r, E ′, Ω̂′, t)− λlCl(r, t). (2.8)

The equations 2.7 and 2.8 are known as the kinetic transport equations.5

2.1.2 Criticality

To maintain a stable chain reaction in a nuclear reactor in time, the rate of neutron

production needs to be balanced with the rate of loss. For this reason an important

factor is defined for the reactors: the "multiplication factor". This factor is defined as:

keff =
P (t)

L(t)
(2.9)

5 There are some assumptions made for the kinetic equations such as considering the prompt neutron
spectrum (χp) and the delayed neutron spectrum (χd) are independent of each other [3]. This assumption
may result in significant errors in the reactor kinetics. Another assumption is that the materials are
assumed to be time-independent. Fortunately, both of these assumptions are generally true for reactor
simulations or computational methods. [3].

Chapter 2. Theory 19

To normalize the multiplication factor to zero, another quantity, the so called reactivity,

is defined as

ρ = 1− 1

keff

(2.10)

The reactor is said to be in a critical state when keff = 1. In other words, when the num-

ber of neutrons produced is equal to the number of neutrons lost, the reactor is critical.

When the rate of neutron losses and productions are not changing at the same rate in

time, the neutron population may grow (supercritical) or decay (subcritical) exponen-

tially according to the equation below 2.11[1]:

N(t) = N(0)e
(keff−1)t

l , (2.11)

where keff is the multiplication factor and l is the neutron lifetime, which is defined as

l = N(t)/L(t) [1].

Considering the definition above, the three different states of criticality can be defined

as below:

k =

< 1, Subcritical (2.12)

= 1, Critical (2.13)

> 1, Supercritical (2.14)

Figure 2.9 illustrates these states of the neutron population in time without any exter-

nal neutron source. The solutions to equation 2.7 give no useful information on the

criticality of the system as to whether it is subcritical or supercritical [3].

Chapter 2. Theory 20

FIGURE 2.9: Time dependence of the flux for a source free multiplying medium [3].

2.1.2.1 Methods for Criticality Calculations

There are some methods to calculate the multiplication factor. The differences between

the methods come from whether the time-dependent (static) or time-independent (dy-

namic) neutron transport equation is chosen. Following discussion describes and com-

pares these methods very briefly.

Static criticality calculations

There are two methods to calculate criticality problems for the static case, and are

known as k static and alpha static calculations. The common ground between these

two static methods is that in both calculations, a parameter is introduced to adjust the

system back to be critical [11]. The static solutions for criticality calculations solve

the systems which are close to critical. While solving the static solutions to find the

criticality of the system, the following needs to be considered:

• The solutions of the criticality calculations signify the asymptotic distribution of

neutrons or the fundamental mode. (To achieve the neutron balance for steady

Chapter 2. Theory 21

state of the system)

• External sources are neglected for simplicity;

• All neutrons are assumed to be promptly born;

• Media are considered to be time-independent (the material is not changing)

The k static criticality calculation

The k static calculation adjusts the neutron production to obtain a critical system. The

time-independent neutron transport equation is achieved when 1
v
∂Ψ
∂t

= 0 in equation

2.3 and when introducing a factor k to account for balancing the neutron losses and

productions in the system. Equation 2.15 is:

(2.15)
Ω̂ · 5Ψ(r, E, Ω̂, t) + ΣtΨ(r, E, Ω̂, t)

=

∫
4π

dΩ̂′
∫ ∞

0

dE ′Σs(E
′ → E, Ω̂′ → Ω̂)Ψ(r, E ′, Ω̂′, t)

+ sexternal(r, E
′, Ω̂′, t) +

ν

k
χ(E)

∫
dE ′ΣfΨ(r,E′, Ω̂′, t)

The k static method solves equation 2.15 to find the k factor in order to make the system

critical. In other words, k is a factor that adjusts the number of neutrons per fission ν to

preserve the balance between the losses and productions in the system, and eventually

to achieve the criticality. Therefore, there should exist the largest value of k, which

corresponds to the fundamental mode, to solve the equation 2.15 [3]. The k value then

implies how much ν needs to be changed to keep the equation 2.15 in a balance. Thus

k < 1 describes a subcritical system, and it requires an increase in ν to balance the

equation 2.15. Similarly k > 1 represents a supercritical system, and to balance the

equation 2.15, the ν has to be decreased.[3].

The k static method is applicable only for near critical systems, and this factor is not

always the same quantity as keff (only at near critical systems).

The α static criticality calculation

Chapter 2. Theory 22

The α static method solves equation 2.7 by assuming that the time and space compo-

nents can be separated, as in equation 2.16 [3]

(2.16)Ψ(r, E, Ω̂, t) = Ψa(r, E, Ω̂)eαt

Inserting the equation 2.16 in equation 2.3, the following equation 2.17 is obtained

[Ω̂ · 5+ Σt +
α

v
]Ψ(r, E, Ω̂) =

∫
dE ′

∫
dΩ̂′Σs(r,E

′ → E, Ω̂′ · Ω̂)Ψ(r,E′, Ω̂′)

+ χ(E)

∫
dE ′νΣf (r,E

′)Ψ(r,E′, Ω̂′)

(2.17)

The largest real component of α is a solution to 2.17 that corresponds to the fundamental

mode solution [3]. The α values can be summarized to describe the different states

criticality as

α =

< 0, Subcritical

= 0, Critical

> 0, Supercritical

In the subcritical systems, the α factor adds more neutrons with lower speed to the

system in order to achieve the critical state. For the supercritical systems this factor

removes the lower speed neutrons of the system for obtaining the criticality [3]. Since

the α static method only considers the fundamental mode solution6, this method is not

useful for the transient behavior or higher order modes.

Dynamic criticality calculations

In dynamic criticality calculation method, the neutron losses and productions over a

period of time(T) calculates the multiplication factor of the system

keff =
NP (T)

NL(T)
. (2.18)

6Assuming that the system eventually relaxes to its fundamental mode which corresponds to a single
exponential variation of the neutron distribution N(t) = N(0)eαt [11]

Chapter 2. Theory 23

This method makes no assumptions and finds the multiplication factor from its defini-

tion in equation 2.3. The neutrons are tracked over a period of time interval (T), and

the material and simulation world geometry over this time interval are unchanged. [6].

Therefore, the rate of neutron productions (NP) to neutron losses (NL) is calculated at

the end of the time interval. Table 2.2 illustrates briefly a comparison between the static

and dynamic methods.

Methods Accuracy Time-dependency Implementation
k-static Very accurate only near critical No Easy
α-static Very accurate near critical Yes Easy

Dynamic Accurate at any state Yes Hard

TABLE 2.2: Comparison between the criticality calculation methods

Since the dynamic method has no assumptions, it is always applicable to calculate the

actual keff . Where the static methods can only estimate whether a system is sub or super

critical and give a rough estimate of how far from criticality the system is. This method

is accurate only for near-critical cases.

Chapter 3

Computational Methods

In this chapter, two types of reactor physics computation methods –deterministic and

Mont Carlo– are discussed. This discussion aims to fulfill the knowledge required for

this project. Therefore, the deterministic method is briefly introduced, and only those

Monte Carlo computer code used in this project are described more in detail.

Before proceeding to discussion of this chapter, an explanatory example is presented

to demonstrate how the Monte Carlo and the deterministic methods actually work. The

problem in this example is to calculate the area of a circle that is confined in a unit square

as shown in Figure 3.1. It is known that the area of the circle is given by equation 3.1

Acircle = πr2. (3.1)

where r is the radius of the circle.

The deterministic method solves the area formula of the circle (3.1) by the given initial

parameters, such as the radius of the circle and number of π. Then the exact value for

area of the circle is calculated using this method and the outcome is the same for the

same set of input parameters. The value for the area using deterministic method is to

24

Chapter 3. Computation 25

FIGURE 3.1: The circle confined in a unit square.

use equation 3.2

Acircle = πr2 = π(0.5)2 = 0.785. (3.2)

The way that this problem is treated by the Monte Carlo method is by

1. Selecting a large number of points inside the square (Fig. 3.1):

(−0.5 < x < 0.5 & − 0.5 < y < 0.5).

2. Calculating the number of points that are falling inside the circle (x2 + y2 < 1);

3. Knowing the total number of selected points inside and the number of points

falling inside of the circle, as shown in Figure 3.2. Their ratio is found as equation

FIGURE 3.2: Monte Carlo random point selections

Chapter 3. Computation 26

3.3

A =
• inside the circle

• total
=

8

10
= 0.8. (3.3)

The procedures above should give the area of the circle. This procedure is repeated until

the difference in results from consecutive runs are less than an uncertainty (Ai+1−Ai <

0.0025). Since the outcome of the simulation is always slightly different, this method of

calculation is also called stochastic. As is seen in equation 3.3, the result is very close to

the correct value. However, as the number of simulated points increases, the estimated

result becomes much closer to the exact value found by the deterministic method.

This example is very simple, so that the use of the Monte Carlo method is unnecessary.

However, many mathematical and physical problems have much convoluted equations

that make the Monte Carlo method one of the most straightforward solution to them (e.g.

the neutron transport). As mentioned earlier, the discussion of this chapter is focused

mainly on the stochastical method (Monte Carlo method); since this project is built on

using a Monte Carlo code tool set called Geant4. This tool kit will be discussed in

section 3.4.

3.1 Deterministic Method

Deterministic neutronics methods solve the discretized neutron transport equation to

obtain a system of equations for scalar flux [1]. To find solutions to the linearized

Boltzmann transport equation, the seven-dimensional equation 2.3 (three spatial, two

directional, energy, and time) needs to be solved analytically. All deterministic transport

methods intend to find a flux solution for the neutron transport equation 2.3 and 2.7. The

challenge of finding a solution is not in the complex mathematical formulation of the

equation, but rather in the convoluted angular and energy dependency of the terms in this

equation. Thus, some suitable approximations are introduced to simplify this equation

and yet to preserve obtaining useful information of the average behavior of neutrons.

Chapter 3. Computation 27

These simplifications can be obtained by replacing each continuous dimension: spatial,

energy, and angular directions in equation 2.3 by a discretized set of function values at

a discrete set of points [12]. This discrete set of functions converts the 2.3 equation to a

system of algebraic equations which are solvable by the computers [12]. The following

paragraph is a brief and short discussion on these discretizations.

The energy discretization is done by dividing the continuous energy into energy groups,

which is also known as group structure. The next simplification is spatial meshing,

where the simulation geometry is subdivided into smaller volumes Vn with homoge-

neous material properties. Another approximations to equation 2.3 is angular discretiza-

tion. The outgoing angular distributions are generally chosen to be normal to the sur-

face created by spatial meshing [6]. Discretizing the angular dependence can be done

via different methods, as listed below [10]:

• The method of characteristics;

• The collision probability method;

• The discrete ordinate method;

• The method of spherical harmonics.

The discussion of the methods is out of the scope of this text. However, the diffu-

sion method is discussed in the following section both for time-dependent and time-

independent treatments of the neutron transport equation.

3.1.1 Diffusion Theory

Neutron diffusion theory is derived from the general transport theory. The diffusion

equation is accepted as the simplest way to solve neutron transport problems. Before

proceeding into deriving the diffusion equation, it is more convenient to work with a

Chapter 3. Computation 28

balance equation for the scalar neutron density. This equation is as shown below:

1

v

∂

∂t
Φ(r, E, t) +∇J(r, E, t) + Σt(r, E)Φ(r, E, t) =∫ ∞

0

[Σs(r, E
′ → E)Φ(r, E, t) +

1

4π
χ(E)νΣf (r, E

′)Φ(r, E ′, t)]dE ′, (3.4)

Where J(r, E) is the neutron current density.

The equation above was derived by integrating each term in equation 2.7 over the angu-

lar variable1.

The next approximation to get to the diffusion equation is to integrate the equation

3.4 over energy variable to remove the continuous energy-dependence. Each term in

equation 3.4 is integrated over some energy interval corresponding to energy group g

(energy discretization). The integration of the terms is rather straightforward, and it is

sufficient to replace the scalar flux Φ(r, E, t) by the scalar group flux Φg(r, t), the total

cross section Σt(r, E) by Σt,g(r), and the neutron current density term J(r, E, t) by

Jg(r, t). Therefore, the equation 3.4 with energy discretization becomes

1

vg

∂

∂t
Φg(r, t) +∇ · Jg(r, t) + Σt,g(r)Φg(r, t) =

G∑
g′=1

[Σs,g′(r)Φg′(r, t)] + χg

G∑
g′=1

1

4π
νΣf,g′(r)Φg′(r, t)], (3.5)

where

1

vg
=

∫ Eg−1

Eg

1
v
Φ(r, E)dE∫ Eg−1

Eg
Φ(r, E)dE

,

χg =

∫ Eg−1

Eg

χ(E)dE,

and
1one can find a full derivation of the equation 3.4 in many text books such as [3] [1].

Chapter 3. Computation 29

Σs,g′→g =

∫ Eg−1

Eg

∫ Eg′−1

Eg′
Σs(r, E

′ → E)Φ(r, E ′)dEdE ′∫ Eg′−1

Eg
Φ(r, E ′)dE ′

.

After removing the energy dependence on the neutron equation, it is time to show the

actual diffusion theory. The diffusion theory suggests that the neutron current density

J(r, t) is proportional to the flux gradient, this approximation is known as Fick’s law

and is shown in equation 3.6 [1]

Jg(r, t) = −Dg(r)∇Φg(r, t), (3.6)

where Dg(r) is known as the diffusion coefficient. For the diffusion equation to be

accurate, it relies on the following approximations [10]

1. The angular flux is only weakly dependent on the angular variables;

2. The fission source is isotropic;

3. The time derivative of neutron current density is small compared to the flux gra-

dient;

4. The anisotropic energy-transfer contribution can be ignored in group-to-group

scattering.

Using the above approximations, the diffusion equation can be written as

1

vg

∂

∂t
Φg(r, t)−Dg∇2Φ(r, t) + Σt,g(r)Φg(r, t) =

G∑
g′=1

[Σs,g′(r)Φg′(r, t)] + χg

G∑
g′=1

1

4π
νΣf,g′(r)Φg′(r, t)]. (3.7)

Considering the discrete homogeneous material region, the spatial dependence of cross

section and consequently the dependence of the diffusion coefficient is removed, and

therefore

−∇Dg(r)∇Φg(r, t) = −Dg∇2Φ(r, t) (3.8)

Chapter 3. Computation 30

As can be seen in equation 3.7, the diffusion equation depends on three spatial vari-

ables and time. Consequently, the solution methods largely depend on geometry. With

discretization of space and energy, the set of diffusion equations must be individually

solved, and the results of each equation are coupled together using suitable boundary

conditions. The following two subsections demonstrate the algorithms that some com-

puter codes follow to solve the static and kinetic diffusion equation respectively.

3.1.2 Static Deterministic Solution

A time-independent deterministic solution for the neutron transport equation is solved

by using spatial mesh approximation, as was discussed above. Thus, the world geom-

etry is divided into smaller volumes VN to compute homogenized cross sections. Then

the simulation world is a series of these spatial meshes, and the neutron flux is solved in

each of these individual cells, and these solutions are coupled to one another with appro-

priate boundary conditions. The next step is to repeat these flux calculations iteratively

until the results are within a reasonable range.

The neutron flux is determined at the center of each individual cell using so called a

finite difference method. The name comes from the fact that the derivatives by finite-

difference ratios are used. In this method, it is assumed that every cell has homogeneous

properties. Figure 3.3 illustrates a full core in deterministic calculations. Every cell with

the same color has the same homogeneous property (e.g. reflector (brown), outer-core

(blue), inner-core (red)) [13].

The flux calculation starts with an initial guess of the flux values; then the diffusion

equation is solved to find the value of the flux at the center of every cell. The divergence

(leakage) term is solved by using the flux at midpoint of cell C (as shown in Figure

3.3) and the flux at the interface (the boundary between cell C and L or T, etc.). This

calculation represents one iteration. This procedure is repeated for another iteration

with using the previous calculated flux values. The next step is to repeat these flux

Chapter 3. Computation 31

FIGURE 3.3: Geometry representation of full core defined in a deterministic code.
Adapted from Dr. Rouben’s lecture note

calculations iteratively until the results are within a reasonable range. The value of the

flux is said to be converged when the ratio of the flux in the current iteration to the that

in the previous iteration at every cell in the geometry is close to 1 [13]. The following

chart 3.4 exemplifies the algorithm of this method .

3.1.3 Dynamic Deterministic Simulation

In the time-dependent case, the neutron equation has a partial differential term in time

compared to the steady-state case that is only the ordinary differential equation. Find-

ing the solution to the time-dependent analogue requires additional approximations to

simplify the time dependence term [14].

Chapter 3. Computation 32

FIGURE 3.4: Flow chart of iterative flux solution.

There are different approaches to solve for the time-dependent transport equation. The

methods to solve the dynamic transport equation can either use point-kinetics approxi-

mations or some space-energy dynamics methods, such as the finite difference method,

the modal and nodal approaches, and quasi-static method. Some of these methods are

described briefly below.

The point kinetics approximations assume that the solution to this equation is a sepa-

rable solution into a space-energy function (Φ time-independent neutron flux) and time

function (T (t)) as in equation 3.9.

Ψ(r, E, t) = Φ(r, E)n(t). (3.9)

Thus, using this assumption, the point kinetic equations 2.7 and 2.8 become [15]

Chapter 3. Computation 33

dn(t)

dt
=
ρ(t)− β

Λ(t)
n(t) +

n∑
i=1

λiCi(t) (3.10)

dCi(t)

dt
= βi

ρ(t)

Λ(t)
n(t)− λiCi(t) (3.11)

where the variables used in equation 3.10 and 3.11 are as in table 3.1

ρ the reactivity
Λ the average neutron generation
βi the delayed neutron fraction of group i (n is the number of these percurosrs)
λi the delayed neutron decay constant
Ci the delayed neutron precursors concentration

TABLE 3.1: Variable definitions used in the point kinetics approximations

The point kinetics approximation approach faces many restrictions as in the following

• Equations 3.10 and 3.11 do not consider the energy effects.

• This method uses an average over the delayed neutrons characteristics (i.e., βi

and λi) for each isotope.

• This method assumes a static flux shape which is only true for the system with

static material compostions.

To eliminate some of these restrictions, the space-energy dynamics methods were intro-

duced. These methods are defined in the table 3.2 [15]. However, these approaches have

some limitations because of the discretizations of space, energy, and time that affect the

accuracy and speed of the calculations.

3.2 Monte Carlo Method

Monte Carlo computer codes use the stochastic method to estimate the solutions of

the neutron transport equation. The advantage of this method is that the necessary

Chapter 3. Computation 34

Methods Description
The quasistatic method The quasistatic method solves the flux shape in

regular time steps using the equation 2.7.
The finite difference method The finite difference method solves the equation

2.7 with finite difference quotients for the neu-
tron flux across space-energy meshes at each
time step.

The modal method The flux is represented as a superposition of
fundamental space-energy modes, where the
time-dependent superposition coefficients are
updated at each time step using this method.

The nodal method The neutron flux is represented as individual
coupled fluxes at spatial nodes, where the time-
dependent coefficients are updated at each time.

TABLE 3.2: The space-energy dynamic approaches

approximations in the deterministic method are superfluous for finding the solutions for

a complex system such as nuclear reactors. Thus, the Monte Carlo method is an ideal

candidate for solving three-dimensional, time-dependent problems. Consequently, the

continuous treatments of all degrees of freedom in neutron transport equation preclude

the discretization errors in the calculation, and the error in Monte Carlo calculations

turn up as the stochastic uncertainty [3].

The Monte Carlo method is based on a random sampling scheme to solve a physical

problem [16]. Unlike the deterministic methods that solve an exact equation, rather

Monte Carlo estimates the solution2 by tracking each individual particle and recording

some features of their average behavior [17].

Monte Carlo simulations start with generating a finite number of particles (N) in the

medium of study, that is modeled in the computer, as if coming from a source. Each

of these particles is tracked, and the history of the events3 in which they participate is

recorded. The behavior of this system is described by the probability density function

(PDF) of particles in space4. Each particle’s history is constituted from the events,

2 Monte Carlo provides information about some specific physical quantities (tallies) which are re-
quested by the user [17].

3 Each event refers to a specific neutron interaction (collision, absorption, fission, escape, etc.)
4 This equation turns out to be the same as the integral transport equation[17].

Chapter 3. Computation 35

which are obtained by random sampling from the PDF’s. Suppose that the purpose of

these simulations is to obtain the desired result of finding quantity x. Then this purpose

is fulfilled as below

x′ =
1

N

N∑
n=1

xn (3.12)

The uncertainty in x′ decreases as the number of histories (N) increases, which in most

cases is proportion to N
1
2 .

Thus, calculating a random variable using the Monte Carlo method requires one defin-

ing two functions: the cumulative probability distribution function and, as was men-

tioned above, probability distribution function. These two functions are essentially de-

scribing how probable it is that this random variable x′ occurs in an interval between x

and x+ ∆x (PDF), and this random variable x′ is less than or equal to x (CPD) [3]. The

PDF is defined as f(x)

f(x)∆x = P {x < x′ < x+ ∆x} . (3.13)

The cumulative probability function is defined by

F (x) = P {x′ < x} . (3.14)

It is important to note that often the random variable x′ (e.g. scalar flux) is not the

random numbers that are sampled from the particle’s history. Therefore, the properties

(e.g. the mean number of collisions c̄ in some volume V with a total cross section σ)

must be sampled from the simulations that are necessary to calculate x′ (Φ = c̄
V σ

) [3].

Chapter 3. Computation 36

3.2.1 Neutron Transport Simulation in Monte Carlo

In the Monte Carlo method, a number of initial neutrons are generated from a source5

and are moving based on functions of probability of the neutrons’ interactions through

the medium of the study. These neutrons then are tracked from birth (e.g. fission or

neutrons source) to death (e.g. absorption or capture). The neutrons move through a

series of steps that end with an interaction. The type of the neutron interactions and the

path length depend on the cross sections of the materials in which they are traveling.

Thus, according to the local material in the system of study, the neutrons undergo the

possible interactions which may cause either the creation of the secondary neutrons or

the disappearance of the initial neutrons. Therefore, each initial neutron has a history

that consists of information about the number of the secondary neutrons, positions, and

time of occurrence of interactions. An event is then the history of the initial neutrons

and their secondary neutrons from creation to loss [6].

3.2.1.1 Monte Carlo Simulation World and Initial Source Distributions

The simulation world for a particular study requires all the geometries and their material

compositions to be known and defined in the Monte Carlo simulation world. The sim-

ulation world consists of one mother volume that includes all the daughter geometries

in the design. The mother volume is marked as the largest volume in the simulation

world, and outside of this volume the probability of any interaction is zero. Thus, when

a neutron has crossed the world’s boundary, it is considered as a loss. The next largest

volume in the mother world may contain many smaller geometries or daughter vol-

ume inside it. Also each volume can be divided into smaller volumes (also known as

meshes) for finding more accurate results for scoring. To define the simulation world,

some restrictions are required as follow:

5There are various kinds of neutron sources used in Monte Carlo simulations such as point source,
uniform source, distributed source, etc [6]

Chapter 3. Computation 37

• No overlap is allowed between the daughter volumes. The reasoning behind this

restriction is that when the particle is in the overlapping region, the simulation

cannot decide which geometry and material compositions to choose.

• The number of meshes in a volume is required to be as small as the minimum di-

mension that the simulation code can resolve. As the number of meshes increases,

the number of boundaries that needs to be checked for determining which volume

the neutrons are in would increases [6].

The primary neutrons can be generated in different forms at the beginning of the sim-

ulation, as described in table 3.3 [6]. The initial neutron distribution will converge in

Neutron initial source distribution Description
Beamline starting at the same positions and

the same momentum direction.
Point source starting at the same position but

random momentum direction.
Uniform source starting at positions uniformly

distributed across the simulation
world.

Distributed source starting both position and momen-
tum direction according to a given
distribution.

TABLE 3.3: Common initial source distributions

time and space to the physical distribution. In fact, the neutron primary source can start

at any distribution, but applying some of the initial neutron distribution 3.3 may con-

verge more quickly than others. For instance, the distributed initial source is the fastest

to converge toward the true physical spatial distribution. The source convergence is a

significant factor for some calculations, such as criticality calculations. In criticality

calculations, the rates of the neutrons losses and productions do depend on spatial dis-

tribution of the neutrons. Therefore, the neutron source has to be converged before any

solution estimation can be made [6] [18].

Chapter 3. Computation 38

3.2.1.2 Monte Carlo Calculations

After the primary neutrons are generated, each individual neutron is tracked in the simu-

lation world. When tracking the neutron, the following information needs to be known:

1. The current position of the neutron;

2. The material M in the volume in which the neutron resides;

3. The material compositions (finding the elements and isotopes that are used in the

material);

4. The total cross section in the material (Σt =
∑

kN
kσkt , where σ is the micro-

scopic cross section).

Once the above information is determined, the simulation will be done through the

procedure that is described in Figure 3.5. As shown in Figure 3.5, the first step is to find

FIGURE 3.5: Data processes in a Monte Carlo simulation.

the new position of the neutron. The step length s can be randomly sampled by knowing

Chapter 3. Computation 39

the total macroscopic cross section of material M (Σt). The PDF for distance s is

f(s) = Σte
−Σts. (3.15)

Using the equation 3.15, the sampling procedure is

F (s) = 1− e−Σts → s = − ln(ξ)

Σt

, (3.16)

where ξ ∈ [0, 1). If the distance s is less than the distance to the boundary, the particle

is moved to the interaction point. The next step is to randomly select the collision

interaction probability at the interaction point. The collision isotope k is sampled such

that

Pk−1 ≤ ξ < Pk, (3.17)

where Pk is the discrete cumulative distribution function that is defined as:

Pk =
k∑
i=1

Nkσkt
Σt

(3.18)

After randomly selecting the collision isotope, it is time to select the reaction type. To

sample the reaction type J for isotope k follows the same procedure as sampling the

collision isotope k with a probability function defined as:

pJ =
σJ

σt
, (3.19)

where σt = σelastic +σinelastic +σcapture +σfission. After the above sampling procedure

is done, the exit energy and direction of the neutron are determined. If the secondary

neutrons are created at this new location, then the primary neutron is removed from

the simulation. This procedure is known as one history and at the end of each history

some of the physical quantities, requested by the user, are tallied and written out. This

procedure is repeated for more iterations until the tallied quantities are converged.

Chapter 3. Computation 40

The outcomes in the Monte Carlo simulations come from tallying and scoring processes.

The results from the tallies created by the scoring processes are raw data at the end of

each simulation. To produce useful information from these raw data, these data are used

to calculate some useful physical quantities such as keff . For instance, the multiplication

factor of the system is calculated by tallying the number of the neutrons at the beginning

and the end of every cycle throughout the simulation. Figure 3.5 illustrates the criticality

calculation in MCNP.

There are several methods used to calculate the criticality in Monte Carlo simulations.

The k-static method, the α-static method, and the dynamic method, which were dis-

cussed in details in section 2.1.2, are briefly described in Table 3.4.

criticality calculation methods Descriptions
k-eigenvalue method The ratio between the number of neutrons in

successive generations [17] (time-independent
process).

kgeneration =
Number of neutrons i+1
Number of generations i

[6]

α-eigenvalue method The multiplication factor is calculated by

kα = αTR + 1

Where α = 1
t2−t1 [log(N(t2)

N(t1)
)] and TR is neutron

time removal [11]
Dynamic method The criticality of the system at time t is calcu-

lated by

keff =
NP (T)

NL(T)
(3.20)

Where T is the interval [t0, t], and NP and NL

are the total neutrons produced and lost over pe-
riod T .

TABLE 3.4: Criticality calculation methods in Monte Carlo simulation

Chapter 3. Computation 41

3.2.2 GEANT4 Monte Carlo Toolkit

Geant4 is an open-source object-oriented simulation toolkit that has capabilities to ac-

curately track the particles through matter. The Geant4 toolkit was developed by the

collaboration of many scientists and engineers worldwide. Geant4 is implemented in

the C++ programming language, which is an object oriented computer language. The

object-oriented method made it easier to effectively manage complexity and limit de-

pendencies by defining a uniform interface and common organizational principles for all

physics models [19]. This toolkit consists of functions and classes that encompass ev-

ery aspect for physics simulation process, including tracking, geometry, physics models

and hits [19]. This software system has capabilities to handle everything from simple

to complex detector geometries, and available physics models cover a wide range of

energy for the interactions of particles with matter.

3.2.2.1 History

Geant4 development first appeared in 1993, when two independent studies at CERN

and KEK were investigating how the modern computing techniques can improve the

existing GEANT36 program [19]. The two studies then merged and it was decided to

develop a simulation program based on object-oriented method using C++ computer

language [21]. The GEANT4 project (RD44) became an international collaboration

between Europe, Russia, Japan, Canada, and the United States.

The first release of Geant4 was completed in 1998 [21], and the Geant4 collaboration

was established for continuing on the development, and granting maintenance and user

support in 1999 [19]. This collaboration project is managed in a hierarchical organiza-

tion divided into three groups: A Collaboration Board which is responsible for manag-

ing the resources and agreements for the Geant4 project, a Technical Steering Boarding

6 The GEANT3 program was a software for particle physics interactions simulations thorough matter
using Monte Carlo method implemented in FROTRAN [20].

Chapter 3. Computation 42

which is responsible for the decision making about the manner in which physics phe-

nomena are implemented, and the working groups which are working individually on

the maintaining and developing of the physics phenomena code libraries [19].

Geant4 is freely available with comprehensive installation documentation, user and ref-

erence guide, and training kit. Also, several online code browsers exist for helping

users navigate the source code. The collaboration also runs an online user forum with

subforums according to different areas of interest [19].

3.2.2.2 Structure

Geant4 has been built around the concept of building a toolkit as the basis for the sim-

ulation components7. In other words, this toolkit provides a diverse range of flexible

and modular components which enable the user to pick only those components needed

for one’s purposes [19]. The general hierarchical structure and data progression flow

in Geant4 is shown in the flow chart 3.6. As one of the requirements for this toolkit,

the category dependency has unidirectional flow, meaning that the upper hierarchical

categories have no dependencies in any object in the lower hierarchical groups.

Figure 3.6 illustrates the categories of the classes for the major components of the

Geant4 toolkit. The categories at the bottom of Figure 3.6 are the foundations of this

toolkit and are used by the higher categories [22]. These categories are listed and briefly

described in Figure 3.7 [22]. Before proceeding to the next section, note Table 3.5 which

represents the definitions of those classes that are essential for describing the tracking

procedure in Geant4 [6].

7 The Geant4 toolkit is composed of three major parts: the source code, the nuclear data, and the
utility files

Chapter 3. Computation 43

FIGURE 3.6: Geant4 simulation hierarchy.

The tracking manager is responsible for passing the necessary messages between the

upper hierarchical object and lower hierarchical objects of the class categories that they

manage [19]. Their task is to carry out the necessary actions in the tracking process by

accessing the specific class that they manage. Some of these manager classes are:

Chapter 3. Computation 44

FIGURE 3.7: The definition to each class category in Geant4 simulation hierarchy.

• Run manager

• Event manager

• Tracking manager

• Stepping manager

• Process manager

Chapter 3. Computation 45

Classes Definitions
Hit An interaction involving a tracked particle that invokes a

physics process.
Process A physics model used to calculate the likelihood and result

of a hit.
Step A single discrete movement of a particle, which starts and

ends with a hit.
Track A series of sequential steps that make up the history of the

particle.
Primary An initial source particle used to start an event.
Event The entire history of n primaries and their descendants from

birth until death by absorption or escape from the simulation
geometry.

Run A collection of independent events.
Simulation The entire modeling process from start to finish, which may

include multiple runs.

TABLE 3.5: Definitions of some of the Geant4 classes

To use the Geant4 toolkit for building an application, three mandatory classes and a

main driver function must be implemented by the user:

1. G4VUserDetectorConstruction: Defining the material and geometry of the simu-

lation world8

2. G4VUserPhysicsList: Defining the physics process to be used in the simulation9

3. G4VUserPrimaryGeneratorAction: Defining source distribution of primary parti-

cles

4. Main driver file: containing the main function to instantiate the kernel, the run

manager, and the user defined classes.

There are some optional classes that the user may implement such as:

Run Action

Defines the actions to be taken at the beginning and end of each run.

8 Physical environment that the particles move through during the simulations (i.e., a reactor geometry
and its material compositions)

9 The physics interaction between the particles through matter (i.e., neutrons interactions with matter)

Chapter 3. Computation 46

Event Action

Defines the actions to be taken at the beginning and end of each event.

Tracking Action

Defines the actions to be taken at the beginning and end of tracking for the current track.

Stepping Action Defines the actions to be taken at the beginning and end of each step.

Although the above classes are implemented by the user, the functions are defined in the

Geant4 toolkit, and the user can choose from the Geant4 built-in classes and functions

to quickly create the user classes.

3.2.3 General Geant4 Simulation Scheme

Simulations in Geant4 consist of NRun, and each run has NEvent. Every event is made

up of several number of tracks (NTrack), and every track is composed of steps that

propose all the physics processes associated with each individual particle [19].

At every stage from the interactions (hit) in the step level to the run level, the data is

collected and analyzed. The data processing in Geant4 can be categorized into two

group actions: initial actions and final actions.

3.2.3.1 Initial Actions

Geant4 tracks the particles as they go through the physics processes step by step. The

tracking in Geant4 handles a physics process with the use of three actions:

• At rest, when interactions occur on a particle at rest.

• Along a step, when the interactions occur along the step.

• Post-step, when the interactions occur at the end of the step.

Chapter 3. Computation 47

Each physics process possesses a step length for the particle using these actions. The

step length calculations depend on the physics process. For the processes which depend

on nuclear data such as hadronic processes, the step length is found as:

di =
ηi
Σi

(3.21)

Where the variables of equation 3.21 are defined in Table 3.6.

di step length associated with
hadronic process i

Σi the cross section associated with
process i

ηi the number of interaction lengths
left

ηi = − log(r)

r ∈ (0, 1]

TABLE 3.6: Parameters definitions for equation 3.21

Therefore, each track starts by calculating the ηi using equation 3.21. This value is

updated when any characteristics of the particle change [6]. The appropriate interactions

take place at the pre-step, along-step, and post-step. Also, the process with smaller step

length is chosen while every process proposes a step length [6]. Each interaction (hit)

is scored and saved in a so-called object hit, which is a container class. Only those

interactions are registered that occurred in the volumes which are flagged by a scoring

class (i.e., sensitive detector class). The saved data from the hit collection will then be

analyzed by the event action and the analyzed information will then be passed on to

the run action. The event action also finishes all the tasks which need to be done at the

beginning or end of each event.

Chapter 3. Computation 48

3.2.3.2 Final Actions

As was mentioned earlier in this section, every run is composed of several events.

Therefore, the run action will collect all the analyzed data from the event actions and

will complete all actions at the beginning and end of each run. If the simulation consists

of several runs, the data processing ends at the simulation level by analyzing data from

every run.

3.3 Nuclear Data

The results of any reactor physics simulation codes are significantly dependent on the

nuclear interaction data that is used in the simulations. The nuclear data used in the

reactor physics simulation codes includes the necessary information to model the neu-

tron interactions. These parameters are such as, the incoming energy of the an incident

neutron, interaction cross sections, outgoing angular and energy distributions, and the

secondary particle yield [6].

All the nuclear data is derived from certain evaluation organizers that are called eval-

uated nuclear data libraries. The information of the interactions between the incident

neutrons and the target nuclei is based on experimental measurements and theoretical

nuclear models [10]. The nuclear cross section data is evaluated at a certain tempera-

ture, often at zero Kelvin.

A change in temperature affects the velocity of the nucleus and consequently the nucleus

energy. The nucleus velocity can be defined as a Maxwell-Boltzmann distribution. The

velocity distribution of the nucleus, which is characterized as an ideal gas in thermal

equilibrium, is defined as follows

F (v) = N(
M

2πkT
)

3
2 e−

Mv2

2kT (3.22)

Chapter 3. Computation 49

where N is the number of particles, M is the mass of the nucleus, k is the Boltzmann

constant, v is the velocity of the nucleus. Therefore, the average nuclei have a greater

speed as temperature increases.

There are resonant peaks in the cross section data as discussed in section 2.1.1.1, and

changes in the temperature causes changes in the target nucleus velocity. Thus, the neu-

trons that did not have the proper energy to form a compound nucleus, may now have

enough energy to cause nucleus formation [6]. Therefore, the changes in the tempera-

ture broaden these resonant peaks. This effect of temperature on the resonant peaks is

called Doppler broadening. Doppler broadening of the data library can be applied be-

fore the simulation using some codes such as NJOY. Also, they can be done on-the-fly

as the temperature of the material is changing.

Depending on the simulation codes, the format of these data libraries may vary. These

differences may come from the way of treating Doppler broadening of the cross sections

and/or from the layout of the cross section tables. For example, the MCNP simulation

code uses the data format which differs from the Geant4 data libraries. In Geant4 simu-

lations, the MCNP data libraries cannot be used unless they are converted to the nuclear

data library in Geant4, known as G4NDL10.

10Geant4 Nuclear Data Library

Part II

Modelling the Experiment in the
G4STORK code

50

Chapter 4

Previous Related Research

The emphasis in this chapter is on the literature of the most recent related research to

this study. Described briefly are only references that are considered to be of general

interest. This discussion required a judgment decision, and there may be more related

research that are omitted or have not been described properly. Therefore, the more

easily accessible literature is covered in this chapter.

The first section focuses mainly on similar subcritical measurements experiments and

briefly discusses this research. The second section discusses the related time-dependent

Monte Carlo simulation codes and points out the differences between those and G4STORK

code.

4.1 Experiments Related to Subcritical Measurements

Naing et.al. [23] performed a number of experiments in a Westinghouse pressurized-

water reactor type 2-loop plant.1 The purpose of this study was to investigate the appli-

cability of the modified Neutron Source Multiplication (NSM) method with extraction

1Cycles 7 and 8 of Tomari Unit No. 2

51

Chapter 4. Previous Studies 52

of the fundamental mode. The measurements were collected regarding a withdrawal of

a sequence of control rod banks during the reactor startup.

The subcriticaclity of the reactor was achieved by insertion of control rods in various

patterns during the start up [23]. The subcriticality was established using the inverse

count rate (M) method. The modified NSM method, as defined in equation 4.1, was

used to estimate the subcritical reactivity for these measurements.

ρsl = Cim
l Csp

l C
ext
l ρsref

Mref

Ml

(4.1)

Where all the variables above are defined in Table 4.1. The corrections (Cim
l , Csp

l , C
ext
l)

criticality calculation methods Descriptions
ρsl Estimated subcriticality of l-th subcritical state
Cim
l Correction factor to the disturbance of neutron

importance field
Csp
l Correction factor to the spatial effect caused by

the disturbance of the fundamental mode
Cext
l Correction factor to the extraction of the funda-

mental mode
ρsref The reference subcriticality
Mref The reference state
Ml The count rate of neutron detector of l-th sub-

critical state

TABLE 4.1: Definitions of the variables in equation 4.1

were evaluated from numerical analyses of eigenvalue, and fixed source problems that

were defined by three-dimensional diffusion equation 3.4 were computed using the fi-

nite difference method (as discussed in section 3.1.2).

Naing et. al.’s experimental research is similar to the subcritical measurements in ZED-2

in some ways; for example, both experiments were done for subcritical measurements.

However, they differ in many ways:

1. The experiments were done in different kinds of reactors (Naing et. al. was done

in light water (PWR) and Atfield et. al. was done in a heavy water reactor)

Chapter 4. Previous Studies 53

2. The subcriticalities were evaluated using different methods (Naing et. al. used a

modified version of NSM method, and Atfield et. al. used Inverse Point Kinetics

method)

4.2 Codes Related to G4-STORK

Before going into details and discussing G4-STORK in the next chapter, some com-

puter codes related to G4-STORK and some previous studies on developing computer

codes similar to G4-STORK are introduced. There are many computer codes that are

specifically used in reactor physics analysis such as MCNP, WIMS, SCALE, PARK,

DRAGON, DONJON, and many more. However, only those codes that are either used

to validate G4-STORK results for this study (such as MCNP or codes that have more

similarities to G4-STORK, such as time-dependent Monte Carlo codes) are described

in this section.

4.2.1 MCNP5

MCNP is a three-dimensional, continuous-energy Monte Carlo simulation code that was

developed by Los Alamos National Laboratory [17]. The MCNP code is written in the

FORTRAN computer language, and includes both geometry and output tally plotters

[17]. MCNP features the MCNPX versions that are the extended series of the main

MCNP versions. Theses series consist of the features that were not included in the main

series, such as exotic particle tracking (muons and neutrinos), interchangeable physics

model, and some burnup calculations [6].

MCNP can be used for transport of neutrons and other particles (electron, photon, and

coupled neutron-photon-electron) [17]. Also, MCNP has the capability to calculate

eigenvalues for critical systems [17].

Chapter 4. Previous Studies 54

Thus, MCNP is mainly used for physics simulations and criticality calculations for near

critical states. MCNP solves the criticality problems using the k-eigenvalue method that

was described in Table 3.4. As mentioned earlier, the k-eigenvalue method is the ratio

between the numbers of neutrons in successive generations and is a time-independent

approach, which is only accurate for near critical regime [6].

MCNP has been widely used for validating the deterministic codes for the criticality

calculations and other characteristic properties. Since MCNP finds the solutions with-

out applying those necessary simplifications, as in deterministic codes such as energy

discretizations, MCNP provides more accurate results than those from the deterministic

codes.

While MCNP is the most widely used transport calculation code based on the Mont

Carlo method, it fails to perform the criticality calculations for non-critical cases. Also,

implementing new behavior is practically impossible, since MCNP source code is not

available to be accessed by the user, unlike the G4-STORK code that is based on Geant4

toolkit that grants its users an easy access to flexible source codes.

4.2.2 TART 2012

TART is a three-dimensional, time-dependent, coupled neutron-photon Monte Carlo

transport code [24]. TART was developed by Lawrence Livermore National Laboratory.

The first version of this code was released in 1995 [24]. The subsequent versions of this

code have been released at regular periods until the latest version, TART 2012. TART

is written in standard FORTRAN computer language; however, the graphics portion of

the system requires a C compiler [24].

TART versions have been improved in the physics, the nuclear and atomic data used

by the code. The previous versions of this code used the multi-group, unshielded cross

section until the TART 2005 version that added the continuous energy cross sections

Chapter 4. Previous Studies 55

feature to this code. While using the multi-group cross sections feature may save the

computational simulation time, it only decreases the computational time by approxi-

mately a factor of two compared to using the continuous energy cross section. Thus,

there is not much benefit to using multi-group cross section library [24].

TART is capable of performing the criticality calculations in three methods that were

described in Table 3.4. TART uses a periodic renormalization of the neutron population

to keep the population within a manageable range for calculating the criticality using

the dynamic method. The dynamic method is used in G4-STORK for calculation of keff

which is described later in chapter 5.

Although G4-STORK and TART share many fundamental concepts in dynamic reactor

physics calculations, TART does not support dynamic material or geometric changes in

time [6].

4.2.3 Serpent

Serpent is a three-dimensional, continuous energy Monte Carlo reactor physics burnup

calculation code [25]. This code was developed by VTT Technical Research Center of

Finland since 2004. This code is written using ANSI-C language, and uses GD open

source graphics library to create the graphical output [25].

The first version of this code (Serpent 1) was developed in a short time, mainly to

develop a Monte Carlo neutron transport code for reactor physics calculations at the fuel

assembly level [10]. As the work proceeded, adding more calculation routines (such as

burnup calculations to the source code) caused some problems, such as dealing with

extensive memory usage and complicating the source code with adding more routine

calculations. The Serpent2 has the capability to calculate burnup for fuel assembly in

two dimensional geometry to the full-core problems in parallel mode simulations.

Serpent is a Monte Carlo code that has many capabilities such as [25]:

Chapter 4. Previous Studies 56

• Calculations of spatial homogenization and group constant generation for deter-

ministic reactor codes

• Burnup calculations for the detailed assemblies for fuel depletion studies

Calculations of various reactor physics parameters (such as criticality calculations using

k-eigenvlaue method) at pin, assembly and core levels to model any critical reactor type.

Considering all the applications of Serpent, this code can only calculate the near-critical

systems. Unlike Geant4, Serpent is not an open source code [26]. Therefore, it lacks

the flexibility and accessibility to modify the source code for implementing calculations

as users desire.

Chapter 5

Methodology

As was mentioned in chapter 1, the G4-STORK code can be defined as a three-dimensional,

continuous-energy Monte Carlo neutron transport code. Although this code is based on

the GEANT4 tool kit, some extensions were added and modified to be usable in reac-

tor physics calculations. The main work of this study was to model the ZED-2 sub-

critical measurements experiment using G4-STORK and to compare the results from

G4-STORK code to experimental results, as well as to results computed from MCNP

computer code.

This chapter briefly describes the major modifications which were made to the GEANT4

classes and is not intended to give a complete description of the calculation methods

used in G4-STORK. For a detailed methodology description it is best to refer to dis-

sertation thesis by Liam Russell [6]. The next part of this chapter concentrates on

describing the ZED-2 experiment and on modeling this experiment in G4-STORK and

MCNP. However, the emphasis of this section is placed on the modeling the ZED-2

subcritical measurements experiment in the G4-STORK, as the use of G4-STORK for

this particular experiment is the focus of this study.

57

Chapter 5. Methodology 58

5.1 G4-STORK

The G4-STORK code has features which make it a practical code for nuclear reactor

physics calculations, especially for perturbations via the reactor core (i.e., caused by rod

withdrawal, temperature oscillations and transient behavior such as non-critical state of

the nuclear reactor).

The G4STORK code was developed at McMaster University. The development of G4-

STORK is still in its early stage. G4-STORK is written based on the open-source

Monte Carlo particle physics simulation Geant4 toolkit, as was discussed in chapter

3 (3.2.2). This code is mainly developed in a LINUX based operating system and has

been neither compiled nor tested in Windows operating systems. Figure 5.1 illustrates

a flowchart of the main process in G4-STORK. The program’s main processes start

from pre-processing the user input, and the world geometry processes the cross section

data library for the world’s material. Then this information is passed on to the main

calculation action processes (i.e., initial and final action as defined in 3.2.3). The final

results from the run action are collected and outputted into some files. G4-STORK has

the capability to run in the parallel mode. The parallelization of G4STORK uses the

event-level parallelism which helps to speed up the computation of the events [27]. The

parallelization was implemented using TOP-C and marshalgen1 [6]. The event-level

parallelism uses a master-slave topology. There are a number of slaves that each pro-

cess a number of events. Then the master is responsible for coordinating the slaves and

also all the run-level results (i.e., calculating the physical parameters at the end of each

run) [6].

The special feature of G4-STORK is the ability to track the evolution of the neutron

population in time, including delayed neutrons. It can also model the resulting changes

1 A full descriptions of TOP-C and Marshalgen tools can be found in the references [27] and [6]

Chapter 5. Methodology 59

FIGURE 5.1: Data flow and main processes in the G4STORK code.

in material and geometric properties of a reactor. The time-dependent feature in G4-

STORK makes this reactor physics code a good candidate for transient calculations in

a nuclear reactor.

5.1.1 Data Processing

Every single volume in the G4STORK simulation world is defined as a neutron sensitive

detector. These neutron sensitive detectors must collect and save the following data:

1. Check if the particle is a neutron otherwise kills the particle

2. Record the neutron survivors and delayed neutrons

3. Record the number of neutron produced and lost

Chapter 5. Methodology 60

4. Record the total neutrons (lost) lifetime

5. Record the positions of all the fissions

Then the saved data (by a class called TallyHit) from the sensitive detectors will be

transferred to event action. The responsibility of event action is to repackage the data

from TallyHit into EventData and to hold the information from TallyHit of that specific

event (an integer that classifies each event fro Run Manager). After all events in a run

are done, all the data will be passed to run action by run manager for a set of analysis

which needs to be done before end of the run.

The run action is responsible to calculate some physical quantities, such as the run mul-

tiplication constant krun(5.1), the average neutron life time, the neutron multiplication

constant keff(5.2), and run duration. Then all of this information will be recorded in an

output log or into the screen (C). The run action is also responsible to save the survivors

and delayed neutrons into the separate files with their event identifiers before a run is

over.

Run manager is a class which has many key responsibilities throughout the simulation.

It is responsible for the communicating between the successive runs, getting the pri-

maries from each event from the primary generator, passing the data from each event

to the event action. Also, this class needs to update the simulation time, check for the

convergence in Shannon entropy, keep the physical quantities after Shannon entropy

conversion, and update the survivors’ list as well as delayed neutrons’ lists. The follow-

ing diagram 5.2 summarizes the data processing flow in G4-STORK in addition to their

responsibilities.

5.2 Implementation of G4-STORK

As was described in section 3.2.2, the GEANT4 toolkit contains libraries of functions

and classes that provide the necessary information to build simulations in various fields

Chapter 5. Methodology 61

FIGURE 5.2: G4-STORK data processing hierarchy.

in science. Even though this versatile software has many applications, it has little appli-

cations in the field of nuclear engineering. Therefore, to use Geant4 for nuclear reactor

simulations, some of the classes and functions had to be modified [6].

The G4-STORK code was developed by using the modified classes and functions in

GEANT4 for creating a reactor physics code to simulate the evolution of a neutron pop-

ulation over a period of time in any medium [6]. To simulate the true neutron evolution

at a regular time interval, the evolution of the neutron population should not be dis-

rupted. The following subsections describe the development of the G4-STORK code to

achieve this goal and highlight the details which are more important to this project.

5.2.1 Neutron Population Stabilization

As discussed in section 2.1.2,the multiplication factor (keff) is a quantity that determines

the change of the neutron population of a nuclear reactor in time. The neutron popu-

lation changes in time follow an exponential law given by equation 2.11. Figure 2.9

Chapter 5. Methodology 62

illustrates the three cases of the criticality when the neutron population is constant in

time or it is critical 2.13, and the non-critical cases when the neutron population is not

constant in time subcritical 2.14 or supercritical 2.12.

Thus, simulating non-critical systems depend upon having a fixed number of neutrons

to avoid losing too many neutrons at subcritical cases or of producing a large number of

neutrons in supercritical cases. Since G4-STORK is a time-dependent code, the number

of neutrons is kept constant by renormalizing the number of neutrons at fixed time

intervals. Each of these time intervals, which are the period between renormalizations,

is called a run.

5.2.1.1 Renormalization Method

At the beginning of the simulation in G4-STORK, a set of primary neutrons is intro-

duced to the system (i.e., at time t0). All of the neutrons are tracked throughout the run,

and are stopped by reaching the time t0 + T , which is considered as the end of run. At

the beginning of the next run, the survivor neutrons from the previous run are renormal-

ized to the initial number of primary neutrons at the beginning of the previous run. The

renormalization of the neutron population occurs through either deleting or duplicating

of individual neutrons by creating a list of targets that are uniformly distributed across

the list of survivors [6].

These periodic renormalizations of the neutron population are to ensure that there are a

sufficient number of neutrons for an accurate representation of the neutron’s spatial and

energy distribution of the non-critical systems. Moreover, selecting targets uniformly

across the survivor list does not affect the spatial and energy distribution of the neutron

population [6].

Figure (5.3) illustrates renormalization process for two consecutive runs. The run i

contains four events, and every event starts with N primary neutrons.

Chapter 5. Methodology 63

FIGURE 5.3: A schematic of G4-STORK process between the runs.

TheN neutrons are tracked as they go through the interactions with the method that was

described in section 3.2.3. All the neutrons are eventually stopped at time t0 + T or at

the end of the run. At the end of each run, the survivor neutrons, along with fission sites

and delayed neutrons, are saved in separate files. Also some physical quantities, such

as krun and keff , are calculated before the run is finished. The krun which is called the

run multiplication constant quantifies the absolute change in the number of neutrons

in a time interval [t0, t0 + T] in run (i) and is defined as:

krun ≡
N(t0 + T)

N(t0)
(5.1)

krun is an important quantity for renormalizing the neutron population for the next run

i+1. The neutron population (N ′) is renormalized to the number of initial primary

neutrons (N) from the selected survivors by either duplicating or deleting depending on

krun before the next run starts, which is summarized as follow :

• krun = 1, the neutron survivor list is used as the primary neutron population for

the next run

Chapter 5. Methodology 64

• krun < 1, some of the neutrons are duplicated from the previous run neutron

survivor list

• krun > 1, some of the neutrons are deleted from the previous run neutron survivor

list

5.2.2 Computed Quantities

Every simulation in G4-STORK is made of several of these temporal run divisions. At

the end of each run, before the neutron population is renormalized, some of the reactor’s

physics characteristic quantities, such as the number of neutrons lost and produced, are

extracted from the run outcome 2. keff for an instance in time t is defined as equation

2.17. On the other hand, calculating keff stochastically requires a time interval in which

the number of neutrons produced and lost are tallied.

G4-STORK uses the dynamic method that was discussed in section 3.2.1 for the criti-

cality calculations. This method computes keff value using 3.20, which is a ratio of the

neutron productions over the neutron loss in a time interval T of run m. Thus, equation

3.20 is rewritten as:

keff =
NP (m)

NL(m)
(5.2)

Where NP and NL are number of neutron produced and lost in run m, respectively.

5.2.3 Delayed Neutrons

The delayed neutrons are not produced in the current run unless they either come from

a previous delayed neutron list or from being generated instantaneously. As was men-

tioned earlier, the delayed neutrons of the current run are saved in a separate file for the

future runs (as shown in Figure 5.3). At the start of each run, the delayed neutron list is

2An example of the log output files is shown in appendix C

Chapter 5. Methodology 65

checked to see if any delayed neutrons should be born in the next upcoming run. In this

case, the delayed neutrons are removed from the delayed list and added to the survivor

list before the renormalization processes occur.

G4-STORK generates the delayed neutrons in three ways:

First is production of the delayed neutrons to be ignored. This method is advantageous

for the systems in which the delayed neutrons are not important.

Second method is to generate the delayed neutrons promptly at the time of the fission,

but the initial momentum of the delayed neutrons is still sampled from a delayed neutron

data. This method is only useful for near critical systems.

Third option is to produce the delayed neutrons in the time that they would naturally

decay from the precursors. Thus, the concentration of each precursor group is calculated

and saved from an older steady state of the system. In reality this list of the delayed

neutron precursors is a list of coordinates and the decay times at which a delayed neutron

will decay in future. Thus, at the beginning of every run, the delayed neutron precursors

need to be sampled, checking if any precursor would decay (produce a delayed neutron)

in the current run. Also, the precursor tally for each group has to be renormalized by

the same weighting factor that is used to renormalize the survivors (N(i + 1)) at the

beginning of each run

Cl(i+ 1) = Cl(i)×
1

krun(i)
(5.3)

where l represents the lth precursor group and Cl is the precursor concentration of

group l.

However, the last method is still being developed further, and this option was not used

for this project.

Chapter 5. Methodology 66

5.2.4 Boundary Condition Options

The boundary conditions define what happens to the neutrons that end up in a region

outside of the world volume. The boundary condition features are especially important

for reactor geometry simulation using infinite lattice simulation, and core’s sector sim-

ulation (i.e., quarter core, half core, etc.). Since Geant4 does not have such boundary

conditions, they were developed in G4-STORK [7]. There are three options available in

G4-STORK:

1. Black boundary: the neutrons that cross this boundary are killed.

2. Reflective boundary: the neutrons that hit the boundary are reflected back into the

geometry.

3. Periodic boundary: the neutrons that hit the boundary are removed from the ge-

ometry and are reentered from the opposite side of geometry.

The periodic and reflective boundary conditions in G4-STORK were implemented as

step-limiting process. For the periodic boundary, the step-limiting process acts on those

neutrons which reach the boundary of outermost geometry in the simulation by killing

the neutron and reentering an identical neutron (a neutron with the same property) from

the opposite side of the boundary of the geometry [7].

For the reflective boundary, the neutrons that reach the boundary are again killed and the

same-property neutron is reborn from the same boundary in geometry but in an opposite

direction of its previous movement.

A useful feature in the G4-STORK simulation is the capability of simulating different

boundary conditions simultaneously. For instance, G4-STORK can simulate a square

box with four of its sides set as reflective and the rest of them as black boundary con-

ditions. This feature is useful for the sector of a reactor core calculation, such as a

quarter-core having two reflective boundary sides that represent the other three quarter

of the core and a black boundary which represents the graphite wall boundary condition.

Chapter 5. Methodology 67

5.3 Modeling the ZED-2 Subcritical Reactivity Measure-

ments Experiment in G4-STORK

The purpose of this study was to model the subcritical measurements experiment in

ZED-2 using the G4-STORK code. Since G4-STORK has the ability to simulate the

transient behavior such as subcritical calculations, it makes the prediction of such con-

ditions in a reactor more plausible to calculate. Therefore, the simulation of this exper-

iment was implemented in G4-STORK and was compared to the MCNP code for the

same experiment.

This section describes the ZED-2 experiment briefly. More detailed information can

be found in the published paper [4]. Modeling this experiment in G4-STORK is then

discussed in detail followed by a brief discussion of modeling this experiment in MCNP.

It must be mentioned that the author has made no contribution to the development of

the full core MCNP model for this particular experiment and that the input file was

provided to the author by ZED-2 group at AECL (now CNL).

5.3.1 The ZED-2 Subcritical Experiment

The study of subcritical states is not only important for monitoring the approach to the

critical state but has many significant applications such as preventing costly down time

of power reactors and problems due to monitoring the lower signal to noise ratio from

instruments [4]. One of the more fundamental uses of subcritical calculations is using

them as benchmark measurements. However, not many subcritical experimental data

are available to validate the results of such subcritical calculations.

The following subsections describe the ZED-2 reactor as well as describing the exper-

iment in more details. This section is a brief description of the ZED-2 reactor and the

Chapter 5. Methodology 68

configuration that was used in this experiment, the reactivity measurements and calcu-

lations, and the modified MCNP code which was used for this study.

5.3.1.1 ZED-2 Reactor

ZED-2 reactor is a low-power (∼ 5-10 W), heavy-water moderated, versatile tank-type

research reactor. The reactivity of the reactor is controlled by manually adjusting the

moderator height.

The ZED-2 geometry for the sub-criticality measurements used the CANFLEX-LEU

type fuel in a 52-assembly square lattice. Each fuel assembly consisted of five fuel

bundles that each have a height of about 50 cm, and no coolant was included in the fuel

assemblies for this experiment. The Figures 5.4 and 5.5 show a top view and a side

view of the reactor core and a top view of the lattice cell, respectively. These Figures

5.4 and 5.5 are generated by the GEANT4 visualization.

FIGURE 5.4: Angle view (left) and cross-sectional view (right) of the ZED-2 reactor.

Chapter 5. Methodology 69

FIGURE 5.5: Cross-sectional view of CANFLEX fuel bundle.

5.3.1.2 Reactivity Measurements

The reactor was operated at about 100 W for one hour for each subcritical height (drain-

ing between 5 to 25 cm of heavy water from the reactor tank). The counts were collected

using a fission chamber. The fission chamber is located in the D2O reflector [4]. The

results from the measurements were used to determine the relationship between moder-

ator height and the inverse of the count rate as shown in Figure 5.6 [4].

The subcriticality values were calculated using the inverse point kinetics method. This

method is described briefly below.

5.3.1.3 Inverse Point kinetics Method

Solving the point kinetics equation 3.10 for ρ gives the following:

ρ = β +
dn

dt

Λ

n(t)
− Λ

n(t)

kmax∑
k=1

λkCk(t) +
S0

n(t)
. (5.4)

Chapter 5. Methodology 70

FIGURE 5.6: Inverse subcritical count rates as a function of the moderator height [4].

Then solving the other point kinetics equation3.11 for the precursor concentration gives:

Ck(t) =
βk
Λ

∫ t

−∞
n(t)e−λk(t−t′). (5.5)

Substituting 5.5 to 5.4 is:

ρ = β +
dn

dt

Λ

n(t)
− 1

n(t)

kmax∑
k=1

λkβk

∫ t

−∞
n(t)e−λk(t−t′) +

S0

n(t)
(5.6)

The equation 5.6 is called inverse point kinetics [2] and was used to calculate the re-

activity for the subcritical experiment by using the following parameters in the Table

5.1.

The sub-critical state of the reactor was achieved by the step-wise draining of the mod-

erator. The steps of draining the moderator were from about 5 to 25 cm out of the

reactor vessel for about one hour. These measurements taken during the transient were

Chapter 5. Methodology 71

β Sum of all the delayed fractions
∑imax

i=1 β1

λk The decay constant; Its values are known de-
pending on the fuel material

Λ The mean generation; Its value was evaluated
by some MCNP calculations

n(t) the neutron number density that comes from the
count rates of the fission chamber

S0 the external source which is usually ignored

TABLE 5.1: Variables used in the calculation of subcritcal reactivity using equation
5.6

used to determine the relation between keff and moderator height. Figure 5.7 shows the

moderator height versus keff [4]. Figure 5.7 shows two sets of experiments:

FIGURE 5.7: Subcriticality measurements as a function of the moderator height [4].

• Using only air-cooled fuel assemblies (voided) in the core lattice

• Using light-water-cooled fuel assemblies only for the outer ring of the core lattice

(flooded)

In this work, however, the results for the voided experiment are presented.

Chapter 5. Methodology 72

5.3.1.4 MCNP Code Calculation

The experimental results were intended to be compared to MCNP calculations for keff

calculations. However, some modifications on MCNP keff calculations were required,

since the MCNP only computes the keff near critical states. Therefore, Atfield et.al.

used the following modification for criticality calculations in MCNP: The KCODE card

calculation in MCNP is responsible for tallying the criticality calculations data. For

these calculations, all the neutrons are tracked through a series of fission cycles. The

source for each cycle is determined by the fission sites of the previous cycle [4]. How-

ever, all the KCODE tallies are collected at the steady state, and KCODE for subcritical

systems do not include any multiplication factors [17]. The MCNP manual suggests

that the subcriticality calculations can be evaluated by multiplying the results by the

system multiplication [17]. Atfield et.al. modified the criticality calculations in MCNP

by introducing M defined as: the multiplication factor in the KCODE card calculation

as [4]

M = 1 +
∞∑
i=1

Πi
j=1kj. (5.7)

Then keff is

keff = 1− 1

M
. (5.8)

Since this paper [4] only shows the preliminary results of the subcritical measurements

experiment, the results from the MCNP criticality calculations were not available in

Atfield et.al. [4]. However, the MCNP input file for this particular experiment was

provided to us for this study. For this reason, the MCNP criticality calculations are also

used to be compared to the G4-STORK.

Chapter 5. Methodology 73

5.3.2 G4-STORK Implementation of the ZED-2 Subcritical Exper-

iment

The purpose of the G4-STORK modeling needs to be clearly defined before proceeding

further in this section. The objective of using G4-STORK is that this code has the ability

to model transient changes in both material and geometric properties. This ability makes

G4-STORK a very good candidate to model the transient behavior of the subcritical

experiment.

5.3.2.1 Geometry Setup

One of the great advantages of using G4-STORK is that it has the ability to model

the complex, heterogeneous 3-Dimensional geometries at the level of realistic neutron

interactions in a reasonable time. The G4-STORK code is versatile to handle from

a simple geometry with one kind of material (such as a solid sphere) to a complex

geometry (such as a reactor).

All the simulation world types (i.e., a solid sphere or ZED-2 reactor) are built using a

class called "StorkWorld3". This class creates the simulation geometry and the materials

based on the user input file.

For this study, two simulation worlds were added to the G4-STORK code: A full core

of ZED-2 reactor and a quarter of the core of this reactor. The world constructors for

both geometries (i.e. full and a quarter core) are shown in the Appendices A and B.

5.3.2.2 Full Core

All the physical dimensions of ZED-2 reactor were taken from a ZED-2 report listed

in the reference [5]. The simplified model of the ZED-2 geometry was modeled in

3All the G4-STORK classes are defined in the dissertation thesis by Liam Russell [6]

Chapter 5. Methodology 74

G4-STORK; this simplified model was defined in the report [5], and shown in Figure

5.8. The parts of the reactor’s geometry which have a contribution less than a few

FIGURE 5.8: The simplified model of the ZED-2 reactor [5]

hundredth of mk were ignored in the G4STORK model. The geometry shown in Figure

5.4 illustrates the full core geometry for the full core simulations. The lines in Figure

5.4 are representative of the solids or the volumes, and they appear if the visualization

attributes in Geant4 are not set to solid.

5.3.2.3 Quarter Core

The quarter core was modeled in the G4-STORK code for two reasons. First, it can

save computational time because of the symmetry. The second reason was to estimate

the neutronics calculations with a better statistics.

Chapter 5. Methodology 75

The boundary conditions are then defined as reflective boundaries in the sides ending

by the moderator and the graphite reflector side of the reactor has the normal boundary

condition. Having the boundary conditions as stated makes the quarter core a repre-

sentative model for the full core. Therefore, the results from the quarter core can then

be extended for the full core. The multiple boundary conditions (mix of reflective and

regular) were added to the G4-STORK code for this study. Figure 5.9 shows the radial

cross section of the quarter core generated in the G4-STORK code.

FIGURE 5.9: Angle view (left) and cross-sectional view (right) of the quarter ZED-2
reactor core.

5.3.2.4 Material

The materials that are defined in the G4-STORK code are identical to the materials used

in the MCNP model for the comparison purposes. In general, the materials are made

of elements that are made of isotopes. The materials description in G4-STORK follow

the same trend and are described by three classes. The descriptions of these classes are

illustrated in the flowchart below (5.10). Since all of the materials description in MCNP

Chapter 5. Methodology 76

FIGURE 5.10: Material description flowchart.

input were not defined in the appropriate form for G4-STORK, some extra calculations

to convert the weight fraction of some isotopes to their atomic weight percent was re-

quired. As mentioned earlier, the materials are defined in the constructor world and can

be seen in either the full core or a quarter core classes A and B.

5.3.2.5 Cross section Data Library

G4-STORK uses the G4NDL data library. The cross section data in G4NDL are col-

lected from a number of evaluated data libraries such as BROND-2.2, CENDL-31,

ENDF-B/VI.8, ENDF-B/VII.0, JEFF-3.0, JEFF-3.1, JENDL-3.3, JENDL-4.0, and are

reformatted to the G4NDL format [28]. The cross sections in G4NDL are point-wise

cross sections for accuracy purposes.

G4NDL contains the neutron interaction data for neutron energies ranging from 0 to 20

MeV [29]. Every neutron interaction (e.g. elastic scattering) is divided into interaction

cross sections and final states data 4 [6].

The cross section data in G4NDL are zero Kelvin data[28]. The cross section temper-

atures that are passed on by the detector description are used to Doppler-broaden the

cross sections on the fly[28]. On-the-fly Doppler broadening in GEANT4 is done with

4The state of the secondary particles

Chapter 5. Methodology 77

assumption that the motion of the nuclei in the material follows the free-gas model and

using a Monte Carlo integration technique to Doppler-broaden the temperature to the

described temperature [28]. The general equation used to calculate the cross section

data on the fly is given by[30]:

Vnσ(Vn, T) =

∫
all V_t

Vrσ(Vr, 0)P (Vt)dVt (5.9)

where all the variables in above equation 5.9 are defined in Table 5.2

Vn The incoming neutron velocity
σ The cross section at temperature T
T The local temperature of the material
Vt The target velocity
Vr The relative velocity (| Vn − Vt |)

P (Vt) The normalized Maxwell-Boltzmann distribution

TABLE 5.2: Variables used in equation 5.9

The on-the-fly method that is used in Geant4 HP models is as described below [6]:

Chapter 5. Methodology 78

On-the-fly Doppler broadening method in Geant4

• While the difference of σ̄ before and after its update is < 3%

• For i=1 to 10 do

– Sample Vt

– Calculate cross section σ̄ by equation 5.9

• End For

• Update σ̄

• End While

• Return σ̄

The technique used to Doppler broaden the cross section on the fly samples the ve-

locity of the nucleus and determines the neutron interaction cross section in the rest

frame of the sampled nucleus. This process described above carries on until the average

cross section value converges within the given limit (%3). Concerning the accuracy,

3% error is large. Although the averaged error in a large number simulation can be

smaller (i.e., increasing the number i). Thus, this technique can be computationally

expensive for simulating geometries such as ZED-2 reactor. Also, on-the-fly Doppler

broadening technique becomes increasingly expensive as the temperature of the mate-

rial increases [6].

Chapter 6

Results and Discussion

This chapter discusses and analyzes the computer simulated results for the subcritical

reactivity measurements in ZED-2 by G4-STORK; as well, it compares the G4-STORK

results with MCNP and the experimental measurements for this experiment. The G4-

STORK and MCNP models were described in details in sections 5.3.2 and 5.3.1.4,

respectively. Also the experiment measurements was discussed in section 5.3.1.

In the following sections, the results are presented for ZED-2 full core and quarter

core calculations of this ZED-2 experiment. First, the G4-STORK full core results are

elaborated on and are correlated to the MCNP calculations, as well as to experimental

measurements of this ZED-2 experiment. Later, the ZED-2 quarter core calculations by

the G4STORK are analyzed and compared with the ZED-2 full core results.

6.1 ZED-2 Full Core

The following G4-STORK results were obtained using 9 × 105 primary neutrons per

run. Each simulation lasted for 200 runs, and every run had a period of 1 ms. Each

simulation was initialized from a point source at a fuel location. The choice of the point

79

Chapter 6. Results and Discussion 80

source at a fuel pin was to achieve convergence in space and energy for the neutron

distribution to the fundamental distributions implied by the world definition.

The primary neutron energies are sampled from a Gaussian distribution centered at

2 MeV. The delayed neutrons were generated using the G4-STORK second method

5.2.3 by producing them instantaneously at the time of the fission for these simulations.

But their characteristics are sampled from the delayed neutrons distributions for energy,

momentum, and the life time. G4-STORK uses G4NDL cross section libraries that are

based on ENDF/B-VII, JEFF-3.1, JENDL-4.0 cross section data.

The criticality and subcriticality measurements for ZED-2 were computed in G4-STORK

using the simulation setup described above. Three simulations were conducted for crit-

ical (132.7 cm) and two sub-critical (127.7 cm and 114.0 cm) moderator heights. Thus,

all of the following analysis is done for all of these three heights. Figure 6.1 presents

the keff values in time on left and krun values in time on right. Each data point represents

the result of a single run. It can be seen in Figure 6.1 that the estimated keff and krun

values fluctuates a lot for the first few runs. However, after the initial convergence pe-

riod the simulated results seem to be stabilized around a constant average value. Thus,

the results from the first 50 runs were discarded.

[htb]

FIGURE 6.1: The effective (on left) and the run (on right) multiplication factors in
time.

As was mentioned earlier, the convergence in the multiplication factors results from the

convergence of the neutron spatial distribution and energy spectrum in time. Figures 6.2

Chapter 6. Results and Discussion 81

and 6.3 show the spatial distributions and the energy after the convergence was attained

for the critical height. The top part of Figure 6.2 and Figure 6.3 present the neutron

distributions in time 50 ms and 200 ms.

At these times, both the neutron distribution and energy had been evolved and stabilized

in time. In the next section 6.2, the stabilization of the neutrons in time is demonstrated

for a ZED-2 quarter. The bottom part of Figure 6.2 illustrates a schematic of the ZED-

2 reactor, including all dimensions in the geometry for a better understanding of the

graph1.

FIGURE 6.2: Converged neutron spatial distribution (top) and the schematic of ZED-2
in Z-axis including all the dimensions(bottom).

Some additional reactor physics properties were obtained by G4-STORK. Such param-

eters are the survivor neutrons2 locations and their momentum at the end of each run
1In Geant4, all the geometries in the simulation are defined relative to the world’s origin which is

located at the middle of the world geometry.
2Survivor neutrons are the neutrons which reach the end of the run and are stopped at time T + t0 (the

end of the run period).

Chapter 6. Results and Discussion 82

FIGURE 6.3: Converged energy spectrum at time 50 ms and 200 ms.

as well as the locations and energy of all the neutrons which were born from fission

interactions 3.

The survivor neutrons from the last run and fission neutrons were collected by end of

each simulation. The following graphs are plotted using the data from the critical height

simulation.

The top portion of Figure 6.4 shows the neutron distributions in XY-plane (top-view)

along with a schematic illustrating top-view of the ZED-2 reactor and all the dimensions

in the bottom portion of this Figure. As seen in Figure 6.4, the outer blue annulus repre-

sents the graphite wall, and the dark blue color illustrates that the neutron population is

relatively lower than anywhere else in the reactor. As it gets closer to the center of the

reactor, the neutron distribution increases as expected. The holes in Figure 6.4 represent

the fuel channels, and as expected the inner channels have more fissions and therefore

more neutrons (light green holes) compared to the outer ones (light blue color). As ex-

pected, the maximum flux occurs at the center of the reactor core (as shown in Figure

3 See appendix D for an example of survivors source file.

Chapter 6. Results and Discussion 83

FIGURE 6.4: Neutron distribution in XY-plane (top) and ZED-2 topview schematic
(bottom).

6.5) and drops approximately as a Bessel function as function of distance from the core.

Figure 6.6 illustrates the locations of all the fission events in two dimensions (XY-

plane). The top part demonstrates the XY view of the whole reactor, and it is expected

all the fissions interactions occurred in the fuel pins. Also the fuel channels in center of

the core appear to have more fission (red colored channels) which is again anticipated.

This can be better seen in the second graph in Figure 6.6. The last graph in Figure

Chapter 6. Results and Discussion 84

FIGURE 6.5: Neutron flux distribution plotted by 2-dimensional histogram.

6.6 indicates that the outer fuel pins contain more fission events than the inner fuel

pins which demonstrate the self shielding phenomena. 6.7 shows the three-dimensional

views of all the fission interactions throughout the simulation.

The simulated effective and run multiplication factors (discussed in section 5.2.3 equa-

tions 5.3 and 5.2) are shown in table 6.1. The statistical uncertainties are given as

standard deviations.

Height Average keff Average krun
Critical (132.7 cm) 0.9747 ± 0.0018 0.9799 ± 0.0014
Subcritical (127.7 cm) 0.9583 ± 0.0019 0.9683 ± 0.0014
Subcritical (114.0 cm) 0.8994± 0.0022 0.9332 ± 0.0013

TABLE 6.1: Effective multiplication and run multiplication factors calculated using
G4-STORK for ZED-2 full core

Chapter 6. Results and Discussion 85

FIGURE 6.6: Fission site locations in xy plane top-view.

FIGURE 6.7: Three dimensional fission site locations.

The results of keff and krun differ in a few mk for the critical height, and the discrepancy

between the two multiplication factors increases as the moderator level decreases.

Table 6.2 shows the outcomes of the simulated multiplication factors with their un-

certainties for MCNP, G4-STORK, and the experimental measurements. The MCNP

Chapter 6. Results and Discussion 86

results presented in Table 6.2 are produced using 9× 105 neutrons for 200 generations.

All the MCNP simulations used ENDF/B-VII cross section data.

Critical(132.7cm) Average keff Average ρeff
G4STORK 0.9747 ± 0.0018 -25.96
MCNP 0.9975 ± 0.0009 -2.55
Experiment 1 0
Subcritical(127.7cm) Average keff Average ρeff
G4STORK 0.9583 ± 0.0019 -35.71
MCNP 0.9893 ± 0.0007 -10.8
Experiment 0.9922 -7.86
Subcritical(114.0cm) Average keff Average ρeff
G4STORK 0.8995 ± 0.0022 -79.91
MCNP 0.9625 ± 0.0007 -38.96
Experiment 0.9691 -31.88

TABLE 6.2: Effective multiplication and reactivity of the G4-STORK, MCNP codes
and the Experimental measurements.

6.1.1 Critical Height

The moderator height at 132.7 cm represents the critical state of the ZED-2 reactor for

this specific experiment. All the simulated keff and ρeff values from the G4-STORK and

MCNP, as well as the experimental measurements, are shown in Table 6.3. As can be

seen in Table 6.3, the calculated results from G4-STORK show a noticeable discrepancy

between both the experimental and MCNP results. The critical height is about ∼-26

mk off from the experimental measurements. However, the trend of keff as function

of moderator height seems to be the same as the experimental measurements and the

MCNP results, as shown in Figure 6.8. Figure 6.8 demonstrates the comparison of the

keff values as a function of moderator height for G4STORK, MCNP, and experimental

measurements. Thus, the critical height was calculated by extrapolating of fitting a

linear equation to the data points for both G4STORK and MCNP. Using extrapolation,

the critical height for the G4-STORK calculations appeared to be at 141.26 cm, which

Chapter 6. Results and Discussion 87

is about 8.56 cm higher than the experimental critical height (∼ 6.25% difference). The

G4STORK simulation for this height (141.27 cm) computed an average keff value of

1.0003.

The same method of extrapolation was used to find the critical height for the MCNP

data points. The critical height for the MCNP appeared to be at 1134.26 cm which is

about 1.55 cm higher than the experimental critical height (∼ 1.16 % difference).

6.1.2 Subcritical Height

It can be noticed in Table 6.3 and Figure 6.8, that the discrepancy between experimental

measurements and G4-STORK reactivity results gets larger as the moderator height

decreases. The first subcritical height at 127.7 cm showed a difference of about ∼-36

Moderator Height G4STORK MCNP
Critical (132.7 cm) 2.53 % 0.24 %
Subcritical (127.7 cm) 3.42 % 0.29 %
Subcritical (114.0 cm) 7.19% 0.68 %

TABLE 6.3: Percentage differences between the experimental measurements and
G4STORK and MCNP.

mk from the experimental measurements. And the second subcritical height at 114.0

cm showed a difference of about ∼-80 mk from the experimental measurements.

The discrepancies in the results were expected given the differences in the model def-

initions (geometry and the materials), the difference between the cross section data

libraries, and the differences in the calculation methods. There are some means to im-

prove the keff calculations. Such methods are to be developed further in the near future.

However, a relatively simple way to improve the keff results was to construct a quarter

core of ZED-2 reactor to obtain a better statistic with saving computational time. The

next section presents the data for the quarter core.

Chapter 6. Results and Discussion 88

FIGURE 6.8: keff versus the moderator height for G4-STORK, MCNP, and experi-
mental measurements.

6.2 ZED-2 Quarter Core

Since the ZED-2 core lattice that was used for this experiment has a symmetric lattice

configuration, a quarter core of ZED-2 reactor was modeled in the G4STORK. Using

the quarter core allowed running more primary neutrons and saving computational time

to get better statistics for the calculations.

Using the quarter core required the use of boundary conditions. However, the only

available boundary condition in G4-STORK at the time was the periodic boundary con-

ditions. The periodic boundary conditions seemed not to serve the purpose for these

calculations. Thus, the G4-STORK boundary condition class was modified to offer ver-

satile boundary conditions. With the new G4-STORK boundary condition class, it was

possible to make only the boundaries that are the continuation of the core as reflective

boundaries while the rest of the boundaries stay as the regular boundary or zero bound-

ary. This section presents the results for the three moderator heights as were calculated

in full core. These simulations were obtained using 9×105 primary neutrons per run for

Chapter 6. Results and Discussion 89

a period of 1ms, lasting for 200 runs. Figure 6.9 presents the keff values in time on left

and krun values in time on right. The first 50 runs were discarded for the convergence

purposes. The survivor neutrons’ information at the end of each run was saved for the

FIGURE 6.9: The effective (on left) and the run (on right) multiplication factors in
time.

critical height simulation to study and show the time evolution of the neutron distribu-

tion in time. Figures 6.10 and 6.11 show the neutron spatial and energy spectrum at

1 ms, 10 ms, 15 ms, 30 ms, 50 ms, and 200 ms, respectively.

FIGURE 6.10: Neutron spatial distribution in time.

Chapter 6. Results and Discussion 90

FIGURE 6.11: Energy spectrum in time.

It can be seen in these figures, that the neutron distribution and the energy spectra evolve

in time and stabilize after the convergence at ∼50ms. The neutron distribution in time

is shown in the animation 6.2 for ∼0.1s.

Chapter 6. Results and Discussion 91

The XY-plane view (on left) and the flux map (on right) of the quarter core are shown

in Figure 6.12. As expected, most of the neutrons are accumulated at the enter of the

core with the right boundary conditions. The fission site locations were also collected

by end of the simulation and were plotted as shown in Figure 6.13.

FIGURE 6.12: Flux distribution in the right.

Chapter 6. Results and Discussion 92

FIGURE 6.13: Fission site locations in xy plane view on left and flux distribution on
the right.

Table 6.4 lists the results of keff and krun for the quarter core and the full core. The results

from the quarter core and full core are consistent and the differences are in unit of tenth

of mk. Thus, it can be concluded that using the quarter core did save computational

time but that the outcome was unaffected from the full core to quarter core.

Full Core Quarter Core
Height Average keff Average krun Average keff Average krun
Critical (132.7 cm) 0.9747 ± 0.0018 0.9799 ± 0.0014 0.9750 ± 0.0019 0.9803 ± 0.0015
Subcritical (127.7 cm) 0.9582 ± 0.0019 0.9683 ± 0.0014 0.9579 ± 0.0023 0.9681 ± 0.0013
Subcritical (114.0 cm) 0.8995± 0.0022 0.9332 ± 0.0013 0.8994± 0.0022 0.9332 ± 0.0013

TABLE 6.4: Effective multiplication and run multiplication of full core and quarter
core.

The concern of the large discrepancies in the calculations of keff may be due to the

Geant4 cross section libraries G4NDL. As was discussed in section 5.3.2.5, G4NDL

cross section data is at the 0 K. Therefore, extra calculations are required to Doppler

broaden the cross sections for any higher temperature. It is also possible that by using

the newer version of Geant4 (version 10) that many physics treatments change the re-

sults for keff . These uncertainties need to be resolved before making further conclusions

on the performance of the G4-STORK code.

Chapter 7

Summary and Conclusions

This project was intended to model the subcritical reactivity measurements in ZED-2

using G4STORK reactor physics computer code to serve fulfilling a few purposes:

1. To test the performance of G4-STORK computer code for simulations of kinetic

reactor physics;

2. To further improve the G4-STORK computer code for better reactor kinetics

calculations according to the comparison between the simulated results by G4-

STORK, MCNP, and the experimental measurements.

Three criticality calculations were performed for critical (132.7 cm) and two sub-critical

(127.7 cm and 114.0 cm) moderator heights in each ZED-2 full and quarter core. The

criticality calculations in quarter core were done to save the computational time to run

more primary neutrons per run. However, the calculated keff values were consistent with

the full core.

The calculated keff values by G4STORK showed large discrepancies compared to the

results of MCNP and to the experimental measurements, as was discussed in preceding

chapter 6. These discrepancies are increasing (from ∼26 mk to ∼48 mk) as the reactor

become more subcritical.

93

Chapter 7. Summary and Conclusions 94

The obtained keff at the critical height still shows a large discrepancy and should be

investigated more carefully. This difference can be assigned to the different methodolo-

gies used to compute the cross section libraries in Geant4 (G4NDL):

1. The on-the-fly technique that is used to Doppler broaden the cross section data

to the temperature of the local medium at the energy of the scattering neutron as

was discussed in section 5.3.2.5.

2. Also the different methodologies used to compute the final states in Geant4 (G4NDL)

As mentioned earlier, on-the-fly Doppler broadening technique can have up to 3% of

error which is a large error in terms of accuracy. Therefore, it is preferred to use the cross

section data library that is evaluated near the simulated material temperature before start

of the simulation in G4-STORK. In this way, the difference between the initial and the

final temperatures is not as large. Thus, this way makes the interpolation error much

less that have a better affect on the accuracy of the data and faster computational time.

At this end, the following remarks can be concluded from this work here:

• The subcritical reactivity measurements in ZED-2 were successfully modeled us-

ing G4-STORK as a refinement from the preliminary conceptual modeling which

was used to model the real reactor physics experiment.

• The keff values obtained by G4STORK show large discrepancies for all moderator

heights.

It was mentioned before that the G4-STORK is still at an early stage of its develop-

ment and that this project was the first real life reactor calculations modeled using this

computer code. Given the flexibility and the capability of G4-STORK, there is much

opportunity to improve and extend this code. Thus, the following task should be com-

pleted to improve the results of this particular project:

1. Using the converted MCNP cross section data near 300 K to G4NDL library.

Appendix A

Full Core ZED2 Construction

/*

Source code for the ZED2 geometry and materials

*/

#include "ZED2Constructor.hh"

// Constructor

ZED2Constructor::ZED2Constructor()

:StorkVWorldConstructor(), tankLogical1(0),

logicRodA1(0), logicRodB1(0),logicCoolant1(0),

logicPressure1(0), logicGasAnn1(0)

{

}

// Destructor

ZED2Constructor:: ZED2Constructor()

{

// Delete visualization attributes

delete vesselVisAtt;

delete tank1VisATT;

95

Appendix A. ZED2 Construction 96

delete ModVisAtt;

delete fuelA1VisATT;

delete fuelB1VisATT;

delete sheathA1VisATT;

delete sheathB1VisATT;

delete Air1VisAtt;

delete Coolant1VisAtt;

delete Pressure1VisAtt;

delete GasAnn1VisAtt;

delete Calandria1VisAtt;

delete EndPlate2VisATT;

delete airTubeLogical;

delete DumplineAlVisAtt;

delete DumplineHWVisAtt;

}

// ConstructNewWorld()

G4VPhysicalVolume* ZED2Constructor::ConstructNewWorld(const StorkParseInput*

infile) {

// Call base class ConstructNewWorld() to complete construction

return StorkVWorldConstructor::ConstructNewWorld(infile);

}

// ConstructWorld

// Construct the geometry and materials of the reactor given the inputs.

G4VPhysicalVolume* ZED2Constructor::ConstructWorld()

{

Appendix A. ZED2 Construction 97

// Set local variables and enclosed world dimensions

reactorDim = G4ThreeVector(0.*cm, 231.806*cm ,405.4*cm/2.);

G4double buffer = 1.0*cm;

encWorldDim = G4ThreeVector(2*reactorDim[1]+buffer, 2*reactorDim[1]+buffer, 2*re-

actorDim[2]+buffer);

G4SolidStore* theSolids = G4SolidStore::GetInstance();

//Defining the graphite wall and bottom

G4double Graphitewall[3] =171.806*cm, 231.806*cm, 315.4*cm/2.;

G4double Graphitebott[3] = 0., 231.806*cm,90.0*cm/2.;

// Create Dimensions of Calandria Tank

G4double CalandriaDim1[3] = 0.*cm, 168.635*cm, 315.4*cm/2.-2.69*cm/2.;

G4double BotReacTankDim[3] = 0.*cm, 168.635*cm, 2.69*cm/2.;

// Defining the dimensions of the moderator

G4double ModHeight = 132.707*cm;

G4double distbtwflrtofuel = 10.1124*cm;

G4double RodHeight = 2.0*CalandriaDim1[2]-distbtwflrtofuel;

G4double MTankDim[3] = 0.*cm, 168.0*cm, ModHeight;

G4double TubeAirFuel[3] = 0.0*cm, 168.0*cm, (2*CalandriaDim1[2]-ModHeight)/2.;

// Create Dimensions of Fuel Assembly

G4double CalendriaT1Dim[3] = 0.0*cm, 12.74*cm, RodHeight;

G4double GasAnn1Dim[3] = 0.0*cm, 12.46*cm, RodHeight;

G4double PressureT1Dim[3] = 0.0*cm, 10.78*cm, RodHeight;

Appendix A. ZED2 Construction 98

G4double Coolant1Dim[3] = 0.0*cm, 10.19*cm, (5.*(49.51*cm));

G4double Air1Dim[3] = 0.0*cm, 10.19*cm, RodHeight-(5.*(49.51*cm));

G4double EndPlate2[3] = 0.0*cm, 4.585*cm, 0.16*cm/2.0;

G4double FuelRodADim1[3] = 0.0*cm, 1.264*cm,48.25*cm/2.;

G4double FuelRodBDim1[3] = 0.0*cm, 1.070*cm,48.0*cm/2.;

G4double SheathADim1[3] = 0.0*cm, 1.350*cm, 49.19*cm/2.;

G4double SheathBDim1[3] = 0.0*cm, 1.150*cm, 49.19*cm/2.;

// Create the ring for fuel pins placement

G4int rings = 4;

G4double ringRad[3] = 1.734*cm,3.075*cm,4.384*cm;

G4double secondRingOffset = 0.261799*radian;

// Calculating the fuel cuts in the moderator and air

G4double topCalandriatoModH = 2.*CalandriaDim1[2]-ModHeight;

G4double AirinCT = RodHeight-Coolant1Dim[2];

G4double topFueltoModH = topCalandriatoModH-AirinCT;

G4double FuelinModH = Coolant1Dim[2]-(topFueltoModH);

G4int ModFuelIntersectPin = floor((((topFueltoModH)/10.)/49.51*cm)/10.);

G4int NumOfFuelBunInMod = floor((((FuelinModH)/10.)/49.51*cm)/10.);

G4double FullFuelBunInAir = ModFuelIntersectPin*49.51*cm;

G4double ModFuelIntersectPos = (topFueltoModH-FullFuelBunInAir-0.16*cm);

G4double CutFuelBunInMod = 49.19*cm-ModFuelIntersectPos;

// Create Dimensions of dump lines in graphite

G4double DumpLineAlDim[3] = 0.0*cm, 22.86*cm, 90.*cm/2.;

Appendix A. ZED2 Construction 99

G4double DumplineHWDim[3] = 0.0*cm, 22.066*cm, 90.*cm/2.;

// Create Dimensions of dump lines in Al calandria

G4double DumpLineAlDimC[3] = 0.0*cm, 22.86*cm, 2.69*cm/2.;

G4double DumplineHWDimC[3] = 0.0*cm, 22.066*cm, 2.69*cm/2.;

// Positions of the fuel bundles

G4double Pich[2] = 24.5*cm, 24.5*cm;

G4double XPos[] = {

Pich[0]/2,Pich[0]/2,Pich[0]/2,Pich[0]/2,

3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2,

5*Pich[0]/2,5*Pich[0]/2,5*Pich[0]/2,

7*Pich[0]/2,7*Pich[0]/2,

-Pich[0]/2,-Pich[0]/2,-Pich[0]/2,-Pich[0]/2,

-3*Pich[0]/2, -3*Pich[0]/2, -3*Pich[0]/2, -3*Pich[0]/2,

-5*Pich[0]/2,-5*Pich[0]/2,-5*Pich[0]/2,

-7*Pich[0]/2,-7*Pich[0]/2,

-Pich[0]/2,-Pich[0]/2,-Pich[0]/2,-Pich[0]/2,

-3*Pich[0]/2, -3*Pich[0]/2, -3*Pich[0]/2, -3*Pich[0]/2,

-5*Pich[0]/2,-5*Pich[0]/2,-5*Pich[0]/2,

-7*Pich[0]/2,-7*Pich[0]/2,

Pich[0]/2,Pich[0]/2,Pich[0]/2,Pich[0]/2,

3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2,

5*Pich[0]/2,5*Pich[0]/2,5*Pich[0]/2,

7*Pich[0]/2,7*Pich[0]/2};

Appendix A. ZED2 Construction 100

G4double YPos[] = {

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2, -7.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2, -7.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2, -7.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2, -7.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2, -5.*Pich[1]/2,

-Pich[1]/2, -3.*Pich[1]/2};

// Set up the materials (if necessary)

if(matChanged)

{

// Delete any existing materials

DestroyMaterials();

// Create the materials

ConstructMaterials();

}

// Clean up volumes

G4GeometryManager::GetInstance()->OpenGeometry();

Appendix A. ZED2 Construction 101

G4PhysicalVolumeStore::GetInstance()->Clean();

G4LogicalVolumeStore::GetInstance()->Clean();

// Set up the solids if necessary

if(geomChanged)

{

// Clean up solids

G4SolidStore::GetInstance()->Clean();

// Clean up solids

G4SolidStore::GetInstance()->Clean();

// Create world solid

new G4Box("ZED2World", encWorldDim[0]/2, encWorldDim[1]/2, encWorldDim[2]/2);

// Create the air above the moderator

new G4Tubs("AirTube", TubeAirFuel[0], TubeAirFuel[1], TubeAirFuel[2], 0., 2.0*CLHEP::pi);

// Create Graphite Reflector solid

new G4Tubs("graphitewall", reactorDim[0], reactorDim[1], Graphitewall[2], 0., 2.0*CLHEP::pi);

new G4Tubs("graphitebott", reactorDim[0], reactorDim[1], Graphitebott[2], 0., 2.0*CLHEP::pi);

new G4UnionSolid("graphitewall+graphitebott", theSolids->GetSolid("graphitewall"),

theSolids->GetSolid("graphitebott"), 0, G4ThreeVector(0.,0.,-Graphitewall[2]-Graphitebott[2]));

// Create Sheilding walls

//new G4Tubs("sheildingwall", Shieldingwall[0], Shieldingwall[1], Shieldingwall[2],

0., 2.0*CLHEP::pi);

// Create the Calandria solids 1

new G4Tubs("calandriashell", CalandriaDim1[0], CalandriaDim1[1], CalandriaDim1[2],

Appendix A. ZED2 Construction 102

0., 2.0*CLHEP::pi);

new G4Tubs("calandriabott", BotReacTankDim[0], BotReacTankDim[1], BotReacTankDim[2],

0., 2.0*CLHEP::pi);

new G4UnionSolid("calandriashell+calandriabott", theSolids->GetSolid("calandriashell"),

theSolids->GetSolid("calandriabott"), 0, G4ThreeVector(0,0,(-CalandriaDim1[2]-BotReacTankDim[2])));

// Create Moderator solid

new G4Tubs("ModSphere", MTankDim[0], MTankDim[1], MTankDim[2]/2., 0., 2.0*CLHEP::pi);

// Create the air above the coolant tube solid

new G4Tubs("AirTube1", Air1Dim[0]/2, Air1Dim[1]/2, Air1Dim[2]/2., 0., 2.0*CLHEP::pi);

// Create the Calandria tube

//new G4Tubs("CalandriaTubedwn", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2, Cal-

endriaT1Dim[2], 0., 2.0*CLHEP::pi);

new G4Tubs("CalandriaTubedwnCut1", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2,

(CalendriaT1Dim[2]-topCalandriatoModH)/2., 0., 2.0*CLHEP::pi);

new G4Tubs("CalandriaTubedwnCut2", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2,

topCalandriatoModH/2., 0., 2.0*CLHEP::pi);

// Create the GasAnn tube solid

//new G4Tubs("GasAnnTube1", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, GasAnn1Dim[2],

0., 2.0*CLHEP::pi);

new G4Tubs("GasAnnTube1Cut1", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, (GasAnn1Dim[2]-

topCalandriatoModH)/2., 0., 2.0*CLHEP::pi);

new G4Tubs("GasAnnTube1Cut2", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, topCalan-

driatoModH/2., 0., 2.0*CLHEP::pi);

Appendix A. ZED2 Construction 103

// Create the pressure tube solid

//new G4Tubs("PressureTubedwn", PressureT1Dim[0]/2, PressureT1Dim[1]/2, PressureT1Dim[2],

0., 2.0*CLHEP::pi);

new G4Tubs("PressureTubedwnCut1", PressureT1Dim[0]/2, PressureT1Dim[1]/2, (GasAnn1Dim[2]-

topCalandriatoModH)/2, 0., 2.0*CLHEP::pi);

new G4Tubs("PressureTubedwnCut2", PressureT1Dim[0]/2, PressureT1Dim[1]/2, top-

CalandriatoModH/2., 0., 2.0*CLHEP::pi);

// Create the coolant tube solid

//new G4Tubs("CoolantTube1", Coolant1Dim[0]/2, Coolant1Dim[1]/2, Coolant1Dim[2],

0., 2.0*CLHEP::pi);

new G4Tubs("CoolantTube1Cut1", Coolant1Dim[0]/2, Coolant1Dim[1]/2, FuelinModH/2./*-

topFueltoModH+(CalendriaT1Dim[2]-Coolant1Dim[2]) */, 0., 2.0*CLHEP::pi);

new G4Tubs("CoolantTube1Cut2", Coolant1Dim[0]/2, Coolant1Dim[1]/2, topFueltoModH/2./*(CalendriaT1Dim[2]-

Coolant1Dim[2])/2+Coolant1Dim[2]-topFueltoModH*/, 0., 2.0*CLHEP::pi);

// Create outer fuel bunndles solid

new G4Tubs("FuelTubeB1", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, FuelRodBDim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeB1Cut1", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, CutFuel-

BunInMod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeB1Cut2", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, ModFu-

elIntersectPos/2., 0., 2.0*CLHEP::pi);

// Create inner fuel bunndles solid

new G4Tubs("FuelTubeA1", FuelRodADim1[0]/2, FuelRodADim1[1]/2, FuelRodADim1[2],

0., 2.0*CLHEP::pi);

Appendix A. ZED2 Construction 104

new G4Tubs("FuelTubeA1Cut1", FuelRodADim1[0]/2, FuelRodADim1[1]/2, CutFu-

elBunInMod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeA1Cut2", FuelRodADim1[0]/2, FuelRodADim1[1]/2, ModFu-

elIntersectPos/2., 0., 2.0*CLHEP::pi);

// Create outer Zr-4 sheath solid

new G4Tubs("SheathB1", SheathBDim1[0]/2, SheathBDim1[1]/2, SheathBDim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("SheathB1Cut1", SheathBDim1[0]/2, SheathBDim1[1]/2, CutFuelBunIn-

Mod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("SheathB1Cut2", SheathBDim1[0]/2, SheathBDim1[1]/2, ModFuelInter-

sectPos/2., 0., 2.0*CLHEP::pi);

// Create inner Zr-4 sheath solid

new G4Tubs("SheathA1", SheathADim1[0]/2, SheathADim1[1]/2, SheathADim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("SheathA1Cut1", SheathADim1[0]/2, SheathADim1[1]/2, CutFuelBun-

InMod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("SheathA1Cut2", SheathADim1[0]/2, SheathADim1[1]/2, ModFuelInter-

sectPos/2., 0., 2.0*CLHEP::pi);

// Create the end plate

new G4Tubs("EndPlate2", EndPlate2[0], EndPlate2[1], EndPlate2[2], 0., 2.0*CLHEP::pi);

new G4Tubs("EndPlate1", EndPlate2[0], EndPlate2[1], EndPlate2[2], 0., 2.0*CLHEP::pi);

// Create Dump Line solid in graphite

new G4Tubs("DumpLineAl", DumpLineAlDim[0]/2, DumpLineAlDim[1]/2, DumpLin-

eAlDim[2], 0., 2.0*CLHEP::pi);

Appendix A. ZED2 Construction 105

new G4Tubs("DumpLineHW", DumplineHWDim[0]/2, DumplineHWDim[1]/2, Dumpline-

HWDim[2], 0., 2.0*CLHEP::pi);

// Create Dump Line solid in Al Calandria

new G4Tubs("DumpLineAlC", DumpLineAlDimC[0]/2, DumpLineAlDimC[1]/2, DumpLin-

eAlDimC[2], 0., 2.0*CLHEP::pi);

new G4Tubs("DumpLineHWC", DumplineHWDimC[0]/2, DumplineHWDimC[1]/2,

DumplineHWDimC[2], 0., 2.0*CLHEP::pi);

geomChanged = false;

}

// Create world volume

// Create world volume

worldLogical = new G4LogicalVolume(theSolids->GetSolid("ZED2World"),matMap["World"],

"worldLogical",0,0,0); worldPhysical = new G4PVPlacement(0, G4ThreeVector(0.,0.,0.),

worldLogical,"worldPhysical",0,0,0);

// Create Reflector volume

vesselLogical = new G4LogicalVolume(theSolids->GetSolid("graphitewall+graphitebott"),

matMap["Graphite"], "VesselLogical", 0, 0, 0);

new G4PVPlacement(0,G4ThreeVector(0,0,Graphitebott[2]), vesselLogical, "VesselPhys-

ical", worldLogical, 0, 0);

// Create Calandrai volume in mother air volume tankLogical1 = new G4LogicalVolume(theSolids-

>GetSolid("calandriashell+calandriabott"), matMap["Al57S"], "VesselLogical1", 0, 0,

0);

new G4PVPlacement(0, G4ThreeVector(0.,0.,BotReacTankDim[2]), tankLogical1,"CalandriaPhysical1",

Appendix A. ZED2 Construction 106

vesselLogical,0,0);

// Create Moderator volume ModLogical = new G4LogicalVolume(theSolids->GetSolid("ModSphere"),matMap["Moderator"],

"ModLogical",0,0,0);

new G4PVPlacement(0, G4ThreeVector(0.,0.,MTankDim[2]/2.-CalandriaDim1[2]), Mod-

Logical, "ModPhysical", tankLogical1, false, 0);

//Create Air above the moderator airTubeLogical = new G4LogicalVolume(theSolids-

>GetSolid("AirTube"),matMap["Air"], "airTubeLogical",0,0,0); new G4PVPlacement(0,

G4ThreeVector(0.,0., TubeAirFuel[2]+MTankDim[2]-CalandriaDim1[2]), airTubeLog-

ical, "airTubePhysical", tankLogical1,0,0);

std::stringstream volName;

logicCalandria1 = new G4LogicalVolume(theSolids->GetSolid("CalandriaTubedwnCut2"),

matMap["AlCalT"], "CalandriaTube1LogicalCut2", 0, 0, 0);

for (G4int i=0; i<52; i++)

{

// Create calandria tubes in mother air volume

volName.str("");

volName.clear();

volName « i;

new G4PVPlacement (0, G4ThreeVector(XPos[i],YPos[i],0.), logicCalandria1, "Calan-

driaTube1PhysicalCut2"+volName.str(), airTubeLogical, false, 0);

}

// Create gas annulus tubes in mother air volume

logicGasAnn1 = new G4LogicalVolume(theSolids->GetSolid("GasAnnTube1Cut2"), matMap["Air"],

"GasAnnTube1Logical", 0, 0, 0);

Appendix A. ZED2 Construction 107

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicGasAnn1, "GasAnnTube1PhysicalCut2",

logicCalandria1, false, 0);

// Create pressure tubes in mother air volume

logicPressure1 = new G4LogicalVolume(theSolids->GetSolid("PressureTubedwnCut2"),

matMap["AlPresT"], "PressureTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicPressure1, "PressureTube1PhysicalCut2",

logicGasAnn1, false, 0);

// Create lower coolant in mother air volume

logicCoolant1 = new G4LogicalVolume(theSolids->GetSolid("CoolantTube1Cut2"), matMap["Air"],

"Coolant1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,-topCalandriatoModH/2.+topFueltoModH/2.),

logicCoolant1, "Coolant1PhysicalCut2", logicPressure1, false, 0);

// Create air

logicAir1 = new G4LogicalVolume(theSolids->GetSolid("AirTube1"), matMap["Air"],

"Air1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,-topCalandriatoModH/2.+topFueltoModH+Air1Dim[2]/2.0),

logicAir1, "Air1Physical", logicPressure1, false, 0);

// Create inner/outer FULL fuel bunndles and sheath in air volume

logicRodA1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1"), matMap["LEUMat"],

"FuelRodA1Logical", 0, 0, 0);

logicRodB1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1"), matMap["LEUMat"],

"FuelRodB1Logical", 0, 0, 0);

logicSheathA1 = new G4LogicalVolume(theSolids->GetSolid("SheathA1"), matMap["Zr4"],

Appendix A. ZED2 Construction 108

"SheathA1Logical", 0, 0, 0);

logicSheathB1 = new G4LogicalVolume(theSolids->GetSolid("SheathB1"), matMap["Zr4"],

"SheathB1Logical", 0, 0, 0);

logicEndPlate1 = new G4LogicalVolume(theSolids->GetSolid("EndPlate1"), matMap["Zr4"],

"EndPlate1", 0, 0, 0);

logicEndPlate2 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2", 0, 0, 0);

for (G4int l=0; l<ModFuelIntersectPin; l++)

{

// Rotation and translation of the rod and sheathe

// place the center pin in air

new G4PVPlacement(0, G4ThreeVector(0,0, (topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2]))), logicSheathA1,"sheathePhysical " + volName.str(),

logicCoolant1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1,"fuelPhysicalA", logicSheathA1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1,"fuelPhysicalB", logicSheathB1,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

Appendix A. ZED2 Construction 109

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(topFueltoModH/2.-

(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathA1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

}

}

Appendix A. ZED2 Construction 110

// Make the end plates 1

G4ThreeVector EP1(0,0,(topFueltoModH/2.-EndPlate2[2])-l*(49.51*cm)); new G4PVPlacement(0,

EP1, logicEndPlate1,"EndPlate1Physical1",logicCoolant1,0,0);

// Make the end plates 2

G4ThreeVector EP2(0,0,(topFueltoModH/2.-EndPlate2[2])-l*(2.*EndPlate2[2])-(l+1)*(2.*SheathADim1[2]+2.*EndPlate2[2]));

new G4PVPlacement(0, EP2, logicEndPlate2,"EndPlate2Physical1",logicCoolant1,0,0);

}

// Create inner/outer cut fuel bunndl in air volume

logicRodA1Cut2 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1Cut2"),

matMap["LEUMat"], "FuelRodA1LogicalCut2", 0, 0, 0);

logicRodB1Cut2 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1Cut2"),

matMap["LEUMat"], "FuelRodB1LogicalCut2", 0, 0, 0);

logicSheathA1Cut2 = new G4LogicalVolume(theSolids->GetSolid("SheathA1Cut2"),

matMap["Zr4"], "SheathA1Logicalcut2", 0, 0, 0);

logicSheathB1Cut2 = new G4LogicalVolume(theSolids->GetSolid("SheathB1Cut2"),

matMap["Zr4"], "SheathB1LogicalCut2", 0, 0, 0);

logicEndPlate2Cut2 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2Cut2", 0, 0, 0);

// Rotation and translation of the rod and sheathe

// Set name for sheathe physical volume

volName.str("");

volName « 0;

Appendix A. ZED2 Construction 111

// place the center pin in air

new G4PVPlacement(0, G4ThreeVector(0,0,-topFueltoModH/2.+ModFuelIntersectPos/2.),

logicSheathA1Cut2,"sheathePhysicalCut2 " + volName.str(), logicCoolant1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Cut2,"fuelPhysicalCut2A",

logicSheathA1Cut2,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Cut2,"fuelPhysicalCut2B",

logicSheathB1Cut2,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathB1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

else if (j == 1)

{

Appendix A. ZED2 Construction 112

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathA1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathB1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

}

}

// Make the end plates 2

G4ThreeVector EP2(0,0,-topFueltoModH/2.+ModFuelIntersectPos+0.08*cm); new G4PVPlacement(0,

EP2, logicEndPlate2Cut2,"EndPlate2Physical1Cut2",logicCoolant1,0,0);

// *********Create Calandrai volume in moderator volume*************

logicCalandria1Mod = new G4LogicalVolume(theSolids->GetSolid("CalandriaTubedwnCut1"),

matMap["AlCalT"], "CalandriaTube1ModLogical", 0, 0, 0);

for (G4int i=0; i<52; i++)

{

// Create calandria tubes in moderator volume

volName.str("");

volName.clear();

volName « i;

new G4PVPlacement (0, G4ThreeVector(XPos[i],YPos[i],distbtwflrtofuel/2.), logicCa-

landria1Mod, "CalandriaTube1ModPhysicalCut1"+volName.str(), ModLogical, false,

Appendix A. ZED2 Construction 113

0);

}

// Create gas annulus tubes in moderator volume

logicGasAnn1Mod = new G4LogicalVolume(theSolids->GetSolid("GasAnnTube1Cut1"),

matMap["Air"], "GasAnnTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicGasAnn1Mod, "GasAnnTube1PhysicalCut1",

logicCalandria1Mod, false, 0);

// Create pressure tubes in moderator volume

logicPressure1Mod = new G4LogicalVolume(theSolids->GetSolid("PressureTubedwnCut1"),

matMap["AlPresT"], "PressureTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicPressure1Mod, "PressureTube1PhysicalCut1",

logicGasAnn1Mod, false, 0);

// Create lower coolant in moderator volume

logicCoolant1Mod = new G4LogicalVolume(theSolids->GetSolid("CoolantTube1Cut1"),

matMap["Air"], "Coolant1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicCoolant1Mod, "Coolant1PhysicalCut1",

logicPressure1Mod, false, 0);

// Create inner/outer fuel bunndle and sheath in Moderator volume

logicRodA1Mod = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1"), matMap["LEUMat"],

"FuelRodA1LogicalMod", 0, 0, 0);

logicRodB1Mod = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1"), matMap["LEUMat"],

"FuelRodB1LogicalMod", 0, 0, 0);

logicSheathA1Mod = new G4LogicalVolume(theSolids->GetSolid("SheathA1"), matMap["Zr4"],

"SheathA1LogicalMod", 0, 0, 0);

Appendix A. ZED2 Construction 114

logicSheathB1Mod = new G4LogicalVolume(theSolids->GetSolid("SheathB1"), matMap["Zr4"],

"SheathB1LogicalMod", 0, 0, 0);

logicEndPlate1Mod = new G4LogicalVolume(theSolids->GetSolid("EndPlate1"), matMap["Zr4"],

"EndPlate1Mod", 0, 0, 0);

logicEndPlate2Mod = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2Mod", 0, 0, 0);

for (G4int l=0; l<NumOfFuelBunInMod; l++)

{

// Rotation and translation of the rod and sheathe

// Set name for sheathe physical volume

// place the center pin

new G4PVPlacement(0, G4ThreeVector(0,0, (-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])

)), logicSheathA1Mod,"sheathePhysicalMod " + volName.str(), logicCoolant1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Mod,"fuelPhysicalModA

", logicSheathA1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Mod,"fuelPhysicalModB ",

logicSheathB1Mod,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

Appendix A. ZED2 Construction 115

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathA1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

}

}

// Make the end plates 1 G4ThreeVector EP1(0,0,(-FuelinModH/2.+EndPlate2[2])+l*(49.51*cm));

new G4PVPlacement(0, EP1, logicEndPlate1Mod,"EndPlate1Physical1Mod ",logicCoolant1Mod,0,0);

Appendix A. ZED2 Construction 116

// Make the end plates 2

G4ThreeVector EP2(0,0,(-FuelinModH/2.+EndPlate2[2])+l*(2.*EndPlate2[2])+(l+1)*(2.*SheathADim1[2]+2.*EndPlate2[2]));

new G4PVPlacement(0, EP2, logicEndPlate2Mod,"EndPlate2Physical1Mod ",logicCoolant1Mod,0,0);

}

// Create inner/outer cut fuel bunndle in Moderator volume

logicRodA1Cut1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1Cut1"),

matMap["LEUMat"], "FuelRodA1LogicalCut1", 0, 0, 0);

logicRodB1Cut1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1Cut1"),

matMap["LEUMat"], "FuelRodB1LogicalCut1", 0, 0, 0);

logicSheathA1Cut1 = new G4LogicalVolume(theSolids->GetSolid("SheathA1Cut1"),

matMap["Zr4"], "SheathA1LogicalCut1", 0, 0, 0);

logicSheathB1Cut1 = new G4LogicalVolume(theSolids->GetSolid("SheathB1Cut1"),

matMap["Zr4"], "SheathB1LogicalCut1", 0, 0, 0);

logicEndPlate2Cut1 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2Cut1", 0, 0, 0);

// place the center pin for the cut fuel bundle in the moderator

new G4PVPlacement(0, G4ThreeVector(0,0, (-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.)),

logicSheathA1Cut1,"sheathePhysicalCut1 " + volName.str(), logicCoolant1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Cut1,"fuelPhysicalCut1A

", logicSheathA1Cut1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Cut1,"fuelPhysicalCut1B

", logicSheathB1Cut1,0,0);

for(G4int j = 1; j < rings; j++)

{

Appendix A. ZED2 Construction 117

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

));

// place the fuel for the cut fuel bundle in the moderator

new G4PVPlacement(0, Tm, logicSheathB1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

));

new G4PVPlacement(0, Tm, logicSheathA1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

Appendix A. ZED2 Construction 118

));

// place the fuel for the cut fuel bundle in the moderator

new G4PVPlacement(0, Tm, logicSheathB1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

}

}

// Make the end plates 2

G4ThreeVector EP(0,0,(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+0.08*cm));

new G4PVPlacement(0, EP, logicEndPlate2Cut1,"EndPlate2Physical1Cut1 ",logicCoolant1Mod,0,0);

// Create Dump Lines Al & Heavy Water in graphite

logicDumplineAl = new G4LogicalVolume(theSolids->GetSolid("DumpLineAl"), matMap["Al57S"],

"DumplineLogicalAl", 0, 0, 0);

for (G4int s=0; s<3; s++)

{

G4ThreeVector jg(129.54*cm*cos(2.0*CLHEP::pi*s*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*s*(2./3.)),-

Graphitewall[2]-2.*Graphitebott[2]+DumpLineAlDim[2]);

new G4PVPlacement (0, jg , logicDumplineAl, "DumLineAlPhysical", vesselLogical,

false, 0);

}

logicDumplineHW = new G4LogicalVolume(theSolids->GetSolid("DumpLineHW"),

matMap["Moderator"], "DumplineLogicalHW", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0) , logicDumplineHW, "DumLineHW-

Physical", logicDumplineAl, false, 0);

// Create Dump Lines Al & Heavy Water in Al calandria

Appendix A. ZED2 Construction 119

logicDumplineAlC = new G4LogicalVolume(theSolids->GetSolid("DumpLineAlC"),

matMap["Al57S"], "DumplineLogicalAlC", 0, 0, 0);

for (G4int d=0; d<3; d++)

{

//G4ThreeVector

lm(129.54*cm*cos(2.0*CLHEP::pi*d*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*d*(2./3.)),-

CalandriaDim1[2]-2.*BotReacTankDim[2]+DumpLineAlDimC);

G4ThreeVector jg(129.54*cm*cos(2.0*CLHEP::pi*d*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*d*(2./3.)),-

CalandriaDim1[2]-2.*BotReacTankDim[2]+DumpLineAlDimC[2]);

new G4PVPlacement (0, jg, logicDumplineAlC, "DumLineAlCPhysical",tankLogical1

, false, 0);

}

logicDumplineHWC = new G4LogicalVolume(theSolids->GetSolid("DumpLineHWC"),

matMap["Moderator"], "DumplineLogicalHWC", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0) , logicDumplineHWC, "DumLineHWC-

Physical", logicDumplineAlC, false, 0);

// Set reactor as sensitive detector

worldLogical->SetSensitiveDetector(sDReactor);

airTubeLogical->SetSensitiveDetector(sDReactor);

vesselLogical->SetSensitiveDetector(sDReactor);

tankLogical1->SetSensitiveDetector(sDReactor);

ModLogical->SetSensitiveDetector(sDReactor);

logicCalandria1->SetSensitiveDetector(sDReactor);

logicGasAnn1->SetSensitiveDetector(sDReactor);

logicPressure1->SetSensitiveDetector(sDReactor);

logicCoolant1->SetSensitiveDetector(sDReactor);

Appendix A. ZED2 Construction 120

logicAir1->SetSensitiveDetector(sDReactor);

logicRodA1->SetSensitiveDetector(sDReactor);

logicRodB1->SetSensitiveDetector(sDReactor);

logicSheathA1->SetSensitiveDetector(sDReactor);

logicSheathB1->SetSensitiveDetector(sDReactor);

logicEndPlate2->SetSensitiveDetector(sDReactor);

logicEndPlate1->SetSensitiveDetector(sDReactor);

logicCalandria1Mod->SetSensitiveDetector(sDReactor);

logicGasAnn1Mod->SetSensitiveDetector(sDReactor);

logicPressure1Mod->SetSensitiveDetector(sDReactor);

logicCoolant1Mod->SetSensitiveDetector(sDReactor);

logicRodA1Cut2->SetSensitiveDetector(sDReactor);

logicRodB1Cut2->SetSensitiveDetector(sDReactor);

logicSheathA1Cut2->SetSensitiveDetector(sDReactor);

logicSheathB1Cut2->SetSensitiveDetector(sDReactor);

logicEndPlate2Cut2->SetSensitiveDetector(sDReactor);

logicRodA1Mod->SetSensitiveDetector(sDReactor);

logicRodB1Mod->SetSensitiveDetector(sDReactor);

logicSheathA1Mod->SetSensitiveDetector(sDReactor);

logicSheathB1Mod->SetSensitiveDetector(sDReactor);

logicEndPlate2Mod->SetSensitiveDetector(sDReactor);

logicEndPlate1Mod->SetSensitiveDetector(sDReactor);

logicRodA1Cut1->SetSensitiveDetector(sDReactor);

logicRodB1Cut1->SetSensitiveDetector(sDReactor);

logicSheathA1Cut1->SetSensitiveDetector(sDReactor);

logicSheathB1Cut1->SetSensitiveDetector(sDReactor);

logicEndPlate2Cut1->SetSensitiveDetector(sDReactor);

logicDumplineAl->SetSensitiveDetector(sDReactor);

logicDumplineHW->SetSensitiveDetector(sDReactor);

Appendix A. ZED2 Construction 121

logicDumplineAlC->SetSensitiveDetector(sDReactor);

logicDumplineHWC->SetSensitiveDetector(sDReactor);

// Set visualization attributes

worldVisAtt = new G4VisAttributes(G4Colour(0.5, 1., 0.5));

worldVisAtt->SetVisibility(true);

worldLogical->SetVisAttributes(worldVisAtt);

airTubeVisAtt = new G4VisAttributes(G4Colour(0., 1., 0.5));

airTubeVisAtt->SetVisibility(true);

airTubeLogical->SetVisAttributes(airTubeVisAtt);

vesselVisAtt= new G4VisAttributes(G4Colour(1.0,0.0,0.0));

//vesselVisAtt->SetForceSolid(true);

vesselVisAtt->SetVisibility(true);

vesselLogical->SetVisAttributes(vesselVisAtt);

tank1VisATT= new G4VisAttributes(G4Colour(1.0,1.0,0.0));

//tank1VisATT->SetForceSolid(true);

tank1VisATT->SetVisibility(true);

tankLogical1->SetVisAttributes(tank1VisATT);

ModVisAtt = new G4VisAttributes(G4Colour(0.,1.,0.));

ModVisAtt->SetVisibility(true);

//ModVisAtt->SetForceSolid(true);

Appendix A. ZED2 Construction 122

ModLogical->SetVisAttributes(ModVisAtt);

Calandria1VisAtt = new G4VisAttributes(G4Colour(1., 0., 1.));

//Calandria1VisAtt->SetForceSolid(true);

Calandria1VisAtt->SetVisibility(false);

logicCalandria1->SetVisAttributes(Calandria1VisAtt);

logicCalandria1Mod->SetVisAttributes(Calandria1VisAtt);

GasAnn1VisAtt = new G4VisAttributes(G4Colour(1., 0., 0.));

// GasAnn1VisAtt->SetForceSolid(true);

GasAnn1VisAtt->SetVisibility(false);

logicGasAnn1->SetVisAttributes(GasAnn1VisAtt);

logicGasAnn1Mod->SetVisAttributes(GasAnn1VisAtt);

Pressure1VisAtt = new G4VisAttributes(G4Colour(0., 1., 0.));

// Pressure1VisAtt->SetForceSolid(true);

Pressure1VisAtt->SetVisibility(false);

logicPressure1->SetVisAttributes(Pressure1VisAtt);

logicPressure1Mod->SetVisAttributes(Pressure1VisAtt);

Coolant1VisAtt = new G4VisAttributes(G4Colour(0.53, 0.81, 0.92));

//Coolant1VisAtt->SetForceSolid(true);

Coolant1VisAtt->SetVisibility(true);

logicCoolant1->SetVisAttributes(Coolant1VisAtt);

logicCoolant1Mod->SetVisAttributes(Coolant1VisAtt);

Appendix A. ZED2 Construction 123

Air1VisAtt = new G4VisAttributes(G4Colour(0., 0.5, 1.));

//Air1VisAtt->SetForceSolid(true);

Air1VisAtt->SetVisibility(true);

logicAir1->SetVisAttributes(Air1VisAtt);

fuelA1VisATT = new G4VisAttributes(G4Colour(0.0, 0.0 ,1.0));

fuelA1VisATT->SetForceSolid(true);

fuelA1VisATT->SetVisibility(true);

logicRodA1->SetVisAttributes(fuelA1VisATT);

logicRodA1Cut2->SetVisAttributes(fuelA1VisATT);

logicRodA1Mod->SetVisAttributes(fuelA1VisATT);

logicRodA1Cut1->SetVisAttributes(fuelA1VisATT);

fuelB1VisATT = new G4VisAttributes(G4Colour(0,0.5,0.92));

fuelB1VisATT->SetForceSolid(true);

fuelB1VisATT->SetVisibility(true);

logicRodB1->SetVisAttributes(fuelB1VisATT);

logicRodB1Cut2->SetVisAttributes(fuelB1VisATT);

logicRodB1Mod->SetVisAttributes(fuelB1VisATT);

logicRodB1Cut1->SetVisAttributes(fuelB1VisATT);

sheathA1VisATT = new G4VisAttributes(G4Colour(0.5, 0.0 ,1.0));

//sheathA1VisATT->SetForceSolid(true);

sheathA1VisATT->SetVisibility(true);

logicSheathA1->SetVisAttributes(sheathA1VisATT);

logicSheathA1Cut2->SetVisAttributes(sheathA1VisATT);

logicSheathA1Mod->SetVisAttributes(sheathA1VisATT);

Appendix A. ZED2 Construction 124

logicSheathA1Cut1->SetVisAttributes(sheathA1VisATT);

sheathB1VisATT = new G4VisAttributes(G4Colour(1.0, 0.5 ,1.0));

//sheathB1VisATT->SetForceSolid(true);

sheathB1VisATT->SetVisibility(true);

logicSheathB1->SetVisAttributes(sheathB1VisATT);

logicSheathB1Cut2->SetVisAttributes(sheathB1VisATT);

logicSheathB1Mod->SetVisAttributes(sheathB1VisATT);

logicSheathB1Cut1->SetVisAttributes(sheathB1VisATT);

EndPlate2VisATT = new G4VisAttributes(G4Colour(0.5, 0.5, 0.5));

EndPlate2VisATT->SetForceSolid(true);

EndPlate2VisATT->SetVisibility(true);

logicEndPlate2->SetVisAttributes(EndPlate2VisATT);

logicEndPlate1->SetVisAttributes(EndPlate2VisATT);

logicEndPlate2Cut2->SetVisAttributes(EndPlate2VisATT);

logicEndPlate2Mod->SetVisAttributes(EndPlate2VisATT);

logicEndPlate1Mod->SetVisAttributes(EndPlate2VisATT);

logicEndPlate2Cut1->SetVisAttributes(EndPlate2VisATT);

DumplineAlVisAtt = new G4VisAttributes(G4Colour(1., 0.99, 0.5));

DumplineAlVisAtt->SetForceSolid(false);

DumplineAlVisAtt->SetVisibility(true);

logicDumplineAl->SetVisAttributes(DumplineAlVisAtt);

logicDumplineAlC->SetVisAttributes(DumplineAlVisAtt);

Appendix A. ZED2 Construction 125

DumplineHWVisAtt = new G4VisAttributes(G4Colour(0., 1.0, 0.));

DumplineHWVisAtt->SetForceSolid(false);

DumplineHWVisAtt->SetVisibility(true);

logicDumplineHW->SetVisAttributes(DumplineHWVisAtt);

logicDumplineHWC->SetVisAttributes(DumplineHWVisAtt);

return worldPhysical;

}

// ConstructMaterials()

// Construct all the materials needed for the ZED2Constructor.

void ZED2Constructor::ConstructMaterials()

{

// Elements, isotopes and materials

G4Isotope *U234, *U235, *U238, *U236, *D2, *O16, *O17,

*Fe54, *Fe56, *Fe57, *Fe58, *Cr50, *Cr52, *Cr53, *Cr54,

*Si28, *Si29, *Si30, *Cu63, *Cu65, *Mn55, *Mg24,

*Mg25, *Mg26, *Zn64, *Zn66, *Zn67, *Zn68, *Zn70,

*Al27, *Ti46, *Ti47, *Ti48, *Ti49, *Ti50, *Na23,

*Ga69, *Ga71, *H1, *C12, *C13, *Zr90, *Zr91,

*Zr92, *Zr94, *Zr96, *Sn112, *Sn114, *Sn115, *Sn116,

*Sn117, *Sn118, *Sn119, *Sn120, *Sn122, *Sn124,

*Ca40, *Ca42, *Ca43, *Ca44, *Ca46, *Ca48, *B10, *B11,

*Li6, *Li7, *Gd152,*Gd154, *Gd155, *Gd156, *Gd157,

*Gd158, *Gd160,*V50, *V51;

G4Element *Oxygen, *Deuterium, *LEU,

*Cr, *Fe, *Si, *Cu, *Mn, *Mg, *Zn, *Al,

*Ti, *Na, *Ga, *Hydrogen, *C, *Zr, *Sn, *Ca,

Appendix A. ZED2 Construction 126

*B, *Li, *Gd, *V,

*FeAl, *CuAl,*FeZr, *CrZr, *OxygenZr,

*OxygenLEU, *OxygenLW;

G4Material *World, *LEUMat,

*Aluminum57S, *AlPresT, *AlCalT, *H2O, *D2O,

*AnnulusGas, *Zr4, *Air, *Moderator, *Graphite;

// Create the world environment

World = new G4Material("Galactic", 1, 1, 1.e-25*g/cm3, kStateGas,2.73*kelvin, 3.e-

18*pascal);

//make Calcium isotopes and element

Ca40 = new G4Isotope("Ca40", 20, 40, 39.9625906*g/mole);

Ca42 = new G4Isotope("Ca42", 20, 42, 41.9586176*g/mole);

Ca43 = new G4Isotope("Ca43", 20, 43, 42.9587662*g/mole);

Ca44 = new G4Isotope("Ca44", 20, 44, 43.9554806*g/mole);

Ca46 = new G4Isotope("Ca46", 20, 46, 45.953689*g/mole);

Ca48 = new G4Isotope("Ca48", 20, 48, 47.952533*g/mole);

Ca = new G4Element("Calcium", "Ca", 6);

Ca->AddIsotope(Ca40, 96.941*perCent);

Ca->AddIsotope(Ca42, 0.647*perCent);

Ca->AddIsotope(Ca43, 0.135*perCent);

Ca->AddIsotope(Ca44, 2.086*perCent);

Ca->AddIsotope(Ca46, 0.004*perCent);

Ca->AddIsotope(Ca48, 0.187*perCent);

//make Boron isotopes and element

Appendix A. ZED2 Construction 127

B10 = new G4Isotope("B10", 5, 10, 10.012937*g/mole);

B11 = new G4Isotope("B11", 5, 11, 11.009305*g/mole);

B = new G4Element("Boron", "B", 2);

B->AddIsotope(B10, 19.9*perCent);

B->AddIsotope(B11, 80.1*perCent);

//make Lithium isotopes and element

Li6 = new G4Isotope("Li6", 3, 6, 6.0151223*g/mole);

Li7 = new G4Isotope("Li7", 3, 7, 7.0160040*g/mole);

Li = new G4Element("Lithium", "Li", 2);

Li->AddIsotope(Li6, 7.59 *perCent);

Li->AddIsotope(Li7, 92.41*perCent);

//make Vanadium isotopes and element

V50 = new G4Isotope("V50", 23, 50, 49.9471609 *g/mole);

V51 = new G4Isotope("V51", 23, 51, 50.9439617 *g/mole);

V = new G4Element("Vanadium", "V", 2);

V->AddIsotope(V50, 0.250 *perCent);

V->AddIsotope(V51, 99.750*perCent);

//make chromium isotopes and element

Cr50 = new G4Isotope("Cr50", 24, 50, 49.9460422*g/mole);

Cr52 = new G4Isotope("Cr52", 24, 52, 51.9405075*g/mole);

Cr53 = new G4Isotope("Cr53", 24, 53, 52.9406494*g/mole);

Cr54 = new G4Isotope("Cr54", 24, 54, 53.9388804*g/mole);

Cr = new G4Element("Chromium", "Cr", 4);

Cr->AddIsotope(Cr50, 4.1737*perCent);

Appendix A. ZED2 Construction 128

Cr->AddIsotope(Cr52, 83.7003*perCent);

Cr->AddIsotope(Cr53, 9.6726*perCent);

Cr->AddIsotope(Cr54, 2.4534*perCent);

CrZr = new G4Element("Chromium", "Cr", 4);

CrZr->AddIsotope(Cr50, 4.10399884*perCent);

CrZr->AddIsotope(Cr52, 82.20818453*perCent);

CrZr->AddIsotope(Cr53, 9.50012786*perCent);

CrZr->AddIsotope(Cr54, 4.18768878*perCent);

//make iron isotopes and element

Fe54 = new G4Isotope("Fe54", 26, 54, 53.9396105*g/mole);

Fe56 = new G4Isotope("Fe56", 26, 56, 55.9349375*g/mole);

Fe57 = new G4Isotope("Fe57", 26, 57, 56.9353940*g/mole);

Fe58 = new G4Isotope("Fe58", 26, 58, 57.9332756*g/mole);

Fe = new G4Element("Iron", "Fe", 4);

Fe->AddIsotope(Fe54, 5.80*perCent);

Fe->AddIsotope(Fe56, 91.72*perCent);

Fe->AddIsotope(Fe57, 2.20*perCent);

Fe->AddIsotope(Fe58, 0.28*perCent);

//make iron element for Aluminium material in ZED-2

FeAl = new G4Element("Iron", "Fe", 4);

FeAl->AddIsotope(Fe54, 0.02340*perCent);

FeAl->AddIsotope(Fe56, 0.36700*perCent);

FeAl->AddIsotope(Fe57, 0.00848*perCent);

FeAl->AddIsotope(Fe58, 0.00112*perCent);

//make iron element for Aluminium material in ZED-2

FeZr = new G4Element("Iron", "Fe", 4);

Appendix A. ZED2 Construction 129

FeZr->AddIsotope(Fe54, 5.60198907*perCent);

FeZr->AddIsotope(Fe56, 91.9458541*perCent);

FeZr->AddIsotope(Fe57, 2.14094671*perCent);

FeZr->AddIsotope(Fe58, 0.31121012*perCent);

//make Silicon isotopes and element

Si28 = new G4Isotope("Si28", 14, 28, 27.9769271*g/mole);

Si29 = new G4Isotope("Si29", 14, 29, 28.9764949*g/mole);

Si30 = new G4Isotope("Si30", 14, 30, 29.9737707*g/mole);

Si = new G4Element("Silicon", "Si", 3);

Si->AddIsotope(Si28, 92.23*perCent);

Si->AddIsotope(Si29, 4.67*perCent);

Si->AddIsotope(Si30, 3.1*perCent);

//make Magnesium isotopes and element

Mg24 = new G4Isotope("Mg24", 12, 24, 23.9850423*g/mole);

Mg25 = new G4Isotope("Mg25", 12, 25, 24.9858374*g/mole);

Mg26 = new G4Isotope("Mg26", 12, 26, 25.9825937 *g/mole);

Mg = new G4Element("Magnesium", "Mg", 3);

Mg->AddIsotope(Mg24, 78.99*perCent);

Mg->AddIsotope(Mg25, 10.00*perCent);

Mg->AddIsotope(Mg26, 11.01*perCent);

//make Manganese isotopes and element

Mn55 = new G4Isotope("Mn55", 25, 55, 54.9380471*g/mole);

Mn = new G4Element("Manganese", "Mn", 1);

Appendix A. ZED2 Construction 130

Mn->AddIsotope(Mn55, 100.00*perCent);

//make Copper isotopes and element

Cu63 = new G4Isotope("Cu63", 29, 63, 62.9295989*g/mole);

Cu65 = new G4Isotope("Cu65", 29, 65, 64.9277929 *g/mole);

Cu = new G4Element("Copper", "Cu", 2);

Cu->AddIsotope(Cu63, 69.17*perCent);

Cu->AddIsotope(Cu65, 30.83*perCent);

//make copper for Al

CuAl = new G4Element("Copper", "Cu", 2);

CuAl->AddIsotope(Cu63, 0.01383*perCent);

CuAl->AddIsotope(Cu65, 0.00617*perCent);

//make Aluminum isotopes and element

Al27 = new G4Isotope("Al27", 13, 27, 26.9815386 *g/mole);

Al = new G4Element("Aluminum", "Al", 1);

Al->AddIsotope(Al27, 100.00*perCent);

//make Zirconium isotopes and element

Zr90 = new G4Isotope("Zr90", 40, 90, 89.9047026*g/mole);

Zr91 = new G4Isotope("Zr91", 40, 91, 90.9056439*g/mole);

Zr92 = new G4Isotope("Zr92", 40, 92, 91.9050386*g/mole);

Zr94 = new G4Isotope("Zr94", 40, 94, 93.9063148*g/mole);

Zr96 = new G4Isotope("Zr96", 40, 96, 95.908275*g/mole);

Zr = new G4Element("Zirconium", "Zr", 5);

Zr->AddIsotope(Zr90, 0.5075558873*perCent);

Zr->AddIsotope(Zr91, 0.1116101232*perCent);

Appendix A. ZED2 Construction 131

Zr->AddIsotope(Zr92, 0.1722780975*perCent);

Zr->AddIsotope(Zr94, 0.1791179604*perCent);

Zr->AddIsotope(Zr96, 0.0294379317*perCent);

//make Zinc isotopes and element

Zn64 = new G4Isotope("Zn64", 30, 64, 63.9291448*g/mole);

Zn66 = new G4Isotope("Zn66", 30, 66, 65.9260347*g/mole);

Zn67 = new G4Isotope("Zn67", 30, 67, 66.9271291*g/mole);

Zn68 = new G4Isotope("Zn68", 30, 68, 67.9248459*g/mole);

Zn70 = new G4Isotope("Zn70", 30, 70, 69.925325*g/mole);

Zn = new G4Element("Zinc", "Zn", 5);

Zn->AddIsotope(Zn64, 48.63*perCent);

Zn->AddIsotope(Zn66, 27.90*perCent);

Zn->AddIsotope(Zn67, 4.10*perCent);

Zn->AddIsotope(Zn68, 18.75*perCent);

Zn->AddIsotope(Zn70, 0.62*perCent);

//make Tin isotopes and element

Sn112 = new G4Isotope("Sn112", 50, 112, 111.904826*g/mole);

Sn114 = new G4Isotope("Sn114", 50, 114, 113.902784*g/mole);

Sn115 = new G4Isotope("Sn115", 50, 115, 114.903348*g/mole);

Sn116 = new G4Isotope("Sn116", 50, 116, 115.901747*g/mole);

Sn117 = new G4Isotope("Sn117", 50, 117, 116.902956*g/mole);

Sn118 = new G4Isotope("Sn118", 50, 118, 117.901609*g/mole);

Sn119 = new G4Isotope("Sn119", 50, 119, 118.903311*g/mole);

Sn120 = new G4Isotope("Sn120", 50, 120, 119.9021991*g/mole);

Sn122 = new G4Isotope("Sn122", 50, 122, 121.9034404*g/mole);

Sn124 = new G4Isotope("Sn124", 50, 124, 123.9052743*g/mole);

Sn = new G4Element("Tin", "Sn", 10);

Appendix A. ZED2 Construction 132

Sn->AddIsotope(Sn112, 0.97*perCent);

Sn->AddIsotope(Sn114, 0.66*perCent);

Sn->AddIsotope(Sn115, 0.34*perCent);

Sn->AddIsotope(Sn116, 14.54*perCent);

Sn->AddIsotope(Sn117, 7.68*perCent);

Sn->AddIsotope(Sn118, 24.22*perCent);

Sn->AddIsotope(Sn119, 8.59*perCent);

Sn->AddIsotope(Sn120, 32.58*perCent);

Sn->AddIsotope(Sn122, 4.63*perCent);

Sn->AddIsotope(Sn124, 0.0*perCent);

// Soudium Isotopes

Na23 = new G4Isotope("Na23", 11, 23, 22.9897677*g/mole);

// Naturally occurring Sodium

Na = new G4Element("Soudium", "Na", 1);

Na->AddIsotope(Na23, 1.);

// Gallium Isotopes

Ga69 = new G4Isotope("Ga69", 31, 69, 68.9255809*g/mole);

Ga71 = new G4Isotope("Ga71", 31, 71, 70.9247005*g/mole);

// Naturally Occurring Gallium

Ga = new G4Element("Gallium", "Ga", 2);

Ga->AddIsotope(Ga69, 60.108*perCent);

Ga->AddIsotope(Ga71, 39.892*perCent);

//make Gadolinium isotopes and element

Gd152 = new G4Isotope("Gd152", 64, 152, 151.919786*g/mole);

Appendix A. ZED2 Construction 133

Gd154 = new G4Isotope("Gd154", 64, 154, 153.920861*g/mole);

Gd155 = new G4Isotope("Gd155", 64, 155, 154.922618*g/mole);

Gd156 = new G4Isotope("Gd156", 64, 156, 155.922118*g/mole);

Gd157 = new G4Isotope("Gd157", 64, 157, 156.923956*g/mole);

Gd158 = new G4Isotope("Gd158", 64, 158, 157.924019*g/mole);

Gd160 = new G4Isotope("Gd160", 64, 160, 159.927049*g/mole);

Gd = new G4Element("Gadolinium", "Gd", 7);

Gd->AddIsotope(Gd152, 0.20*perCent);

Gd->AddIsotope(Gd154, 2.18*perCent);

Gd->AddIsotope(Gd155, 14.80*perCent);

Gd->AddIsotope(Gd156, 20.47*perCent);

Gd->AddIsotope(Gd157, 15.65*perCent);

Gd->AddIsotope(Gd158, 24.84*perCent);

Gd->AddIsotope(Gd160, 21.86*perCent);

//make titanium isotopes and element

Ti46 = new G4Isotope("Ti46", 22, 46, 45.9526294*g/mole);

Ti47 = new G4Isotope("Ti47", 22, 47, 46.9517640*g/mole);

Ti48 = new G4Isotope("Ti48", 22, 48, 47.9479473*g/mole);

Ti49 = new G4Isotope("Ti49", 22, 49, 48.9478711*g/mole);

Ti50 = new G4Isotope("Ti50", 22, 50, 49.9447921*g/mole);

Ti = new G4Element("Titanium", "Zn", 5);

Ti->AddIsotope(Ti46, 8.25*perCent);

Ti->AddIsotope(Ti47, 7.44*perCent);

Ti->AddIsotope(Ti48, 73.72*perCent);

Ti->AddIsotope(Ti49, 5.41*perCent);

Ti->AddIsotope(Ti50, 5.18*perCent);

Appendix A. ZED2 Construction 134

//make Carbon isotopes and element

C12 = new G4Isotope("C12", 6, 12, 12.0*g/mole);

C13 = new G4Isotope("C13", 6, 13, 13.00335*g/mole);

C = new G4Element("Carbon", "C", 2);

C->AddIsotope(C12, 98.83*perCent);

C->AddIsotope(C13, 1.07*perCent);

// Make the uranium isotopes and element

U234 = new G4Isotope("U234", 92, 234, 234.0410*g/mole);

U235 = new G4Isotope("U235", 92, 235, 235.0439*g/mole);

U236 = new G4Isotope("U236", 92, 236, 236.0456*g/mole);

U238 = new G4Isotope("U238", 92, 238, 238.0508*g/mole);

// Make hydrogen isotopes and elements

H1 = new G4Isotope("H1", 1, 1, 1.0078*g/mole);

Hydrogen = new G4Element("Hydrogen", "H", 1);

Hydrogen->AddIsotope(H1, 100*perCent);

D2 = new G4Isotope("D2", 1, 2, 2.014*g/mole);

Deuterium = new G4Element("Deuterium", "D", 1);

Deuterium->AddIsotope(D2, 100*perCent);

// Make Oxygen isotopes and elements

O16 = new G4Isotope("O16", 8, 16, 15.9949146*g/mole);

O17 = new G4Isotope("O17", 8, 17, 16.9991312*g/mole);

Appendix A. ZED2 Construction 135

Oxygen = new G4Element("Oxygen", "O", 2);

Oxygen->AddIsotope(O16, 99.963868927*perCent);

Oxygen->AddIsotope(O17, 0.036131072*perCent);

OxygenZr = new G4Element("Oxygen", "O", 1);

OxygenZr->AddIsotope(O16, 0.688463*perCent);

OxygenLEU = new G4Element("Oxygen", "O", 1);

OxygenLEU->AddIsotope(O16, 100.0*perCent);

// Making Oxygen for the light water

OxygenLW = new G4Element("OxygenLW", "OLW", 2);

OxygenLW->AddIsotope(O16, 99.995998592*perCent);

OxygenLW->AddIsotope(O17, 0.004001407*perCent);

// Making hydrogen for the lightwater

Hydrogen = new G4Element("HydrogenLW", "HLW", 1);

Hydrogen->AddIsotope(H1, 100*perCent);

LEU = new G4Element("Low Enriched Uranium","LEU",4);

LEU->AddIsotope(U234, 0.007432*perCent);

LEU->AddIsotope(U235, 0.9583*perCent);

LEU->AddIsotope(U236, 0.000239*perCent);

LEU->AddIsotope(U238, 99.0341*perCent);

Appendix A. ZED2 Construction 136

// Make the LEU material

LEUMat = new G4Material("U235 Material", 10.52*g/cm3, 2,kStateSolid, 299.51*kelvin);

LEUMat->AddElement(LEU,88.146875681*perCent);

LEUMat->AddElement(OxygenLEU,11.853119788*perCent);

// Create H20 material

H2O = new G4Material("Light Water", 0.99745642056*g/cm3, 2, kStateLiquid);

H2O->AddElement(OxygenLW, 1);

H2O->AddElement(Hydrogen, 2);

D2O = new G4Material("Heavy Water", 1.10480511492*g/cm3, 2, kStateLiquid);

D2O->AddElement(Oxygen, 1);

D2O->AddElement(Deuterium, 2);

Graphite = new G4Material("Graphite", 1.64*g/cm3, 5, kStateSolid);

Graphite->AddElement(Li, 1.7e-5*perCent);

Graphite->AddElement(B, 3.e-5*perCent);

Graphite->AddElement(C, 99.99697797*perCent);

Graphite->AddElement(V, 0.00300031*perCent);

Graphite->AddElement(Gd, 2.e-5*perCent);

// Make Argon

G4Element* Ar = new G4Element("Argon", "Ar", 18., 39.948*g/mole);

// Make Argon

G4Element* N = new G4Element("Nitrogen", "N", 7., 14.01*g/mole);

Appendix A. ZED2 Construction 137

//Create Aluminum57S (Reactor Calandria)

Aluminum57S = new G4Material("Aluminuum 57S", 2.7*g/cm3, 8, kStateSolid);

Aluminum57S->AddElement(Al, 96.7*perCent);

Aluminum57S->AddElement(Si, 0.25*perCent);

Aluminum57S->AddElement(Fe, 0.4*perCent);

Aluminum57S->AddElement(Cu, 0.1*perCent);

Aluminum57S->AddElement(Mn, 0.1*perCent);

Aluminum57S->AddElement(Mg, 2.2*perCent);

Aluminum57S->AddElement(Cr, 0.15*perCent);

Aluminum57S->AddElement(Zn, 0.1*perCent);

//Create AlPresT (pressure Tube)

AlPresT = new G4Material("Aluminuum 6061", 2.712631*g/cm3, 8, kStateSolid);

AlPresT->AddElement(Al, 99.1244424*perCent);

AlPresT->AddElement(Si, 0.5922414*perCent);

AlPresT->AddElement(Fe, 0.1211379*perCent);

AlPresT->AddElement(Cu, 0.0018171*perCent);

AlPresT->AddElement(Mn, 0.0383626*perCent);

AlPresT->AddElement(Cr, 0.1211405*perCent);

AlPresT->AddElement(Li, 0.00075712*perCent);

AlPresT->AddElement(B, 0.00010095*perCent);

//Create AlCalT (calandria Tube)

AlCalT = new G4Material("Aluminuum 6063", 2.684951*g/cm3, 8, kStateSolid);

AlCalT->AddElement(Al, 99.18675267*perCent);

AlCalT->AddElement(Si, 0.509640251*perCent);

AlCalT->AddElement(Fe, 0.241396625*perCent);

AlCalT->AddElement(Li, 0.00754387*perCent);

Appendix A. ZED2 Construction 138

AlCalT->AddElement(B, 0.000100586*perCent);

AlCalT->AddElement(Mn, 0.041228175*perCent);

AlCalT->AddElement(Gd, 0.000010059*perCent);

AlCalT->AddElement(Ti, 0.041228175*perCent);

Moderator = new G4Material("Moderator", 1.102597*g/cm3, 2, kStateLiquid, 299.51*kelvin);

Moderator->AddMaterial(D2O, 98.705*perCent);

Moderator->AddMaterial(H2O, 1.295*perCent);

//Create Annulus Gas

AnnulusGas = new G4Material("AnnulusGas", 0.0012*g/cm3, 2, kStateGas/*, 448.72*kelvin*/);

AnnulusGas->AddElement(C,27.11*perCent);

AnnulusGas->AddElement(Oxygen,72.89*perCent);

Zr4 = new G4Material("Zircaloy-4", 6.55*g/cm3, 4, kStateSolid);

Zr4->AddElement(Oxygen, 0.12*perCent);

Zr4->AddElement(CrZr, 0.11*perCent);

Zr4->AddElement(FeZr, 0.22*perCent);

Zr4->AddElement(Zr, 99.58*perCent);

// Make Air

Air = new G4Material("Air", 1.29*mg/cm3, 5, kStateGas);

Air->AddElement(N, 74.74095914*perCent);

Air->AddElement(Oxygen, 23.49454694*perCent);

Air->AddElement(Ar, 1.274547311*perCent); Air->AddElement(Li, 0.474350981*per-

Cent);

Appendix A. ZED2 Construction 139

Air->AddElement(C, 0.015595629*perCent);

// Add materials

matMap["World"] = World;

matMap["LEUMat"] = LEUMat;

matMap["Graphite"] = Graphite;

matMap["Al57S"] = Aluminum57S;

matMap["AlPresT"] = AlPresT;

matMap["AlCalT"] = AlCalT;

matMap["Zr4"] = Zr4;

matMap["Air"] = Air;

matMap["Moderator"] = Moderator;

matMap["Coolant"] = H2O;

matChanged = false;

return;

}

Appendix B

Quarter Core ZED2 Construction

/*

Source code for the Quarter core ZED2 geometry and materials

*/

#include "ZED2Constructor.hh"

// Constructor

ZED2Constructor::ZED2Constructor()

:StorkVWorldConstructor(), tankLogical1(0),

logicRodA1(0), logicRodB1(0),logicCoolant1(0),

logicPressure1(0), logicGasAnn1(0)

{

}

// Destructor

ZED2Constructor:: ZED2Constructor()

{

// Delete visualization attributes

delete vesselVisAtt;

delete tank1VisATT;

140

Appendix B. Quarter Core ZED2 Construction 141

delete ModVisAtt;

delete fuelA1VisATT;

delete fuelB1VisATT;

delete sheathA1VisATT;

delete sheathB1VisATT;

delete Air1VisAtt;

delete Coolant1VisAtt;

delete Pressure1VisAtt;

delete GasAnn1VisAtt;

delete Calandria1VisAtt;

delete EndPlate2VisATT;

delete airTubeLogical;

delete DumplineAlVisAtt;

delete DumplineHWVisAtt;

}

// ConstructNewWorld()

G4VPhysicalVolume* ZED2Constructor::ConstructNewWorld(const StorkParseInput*

infile) {

// Call base class ConstructNewWorld() to complete construction

return StorkVWorldConstructor::ConstructNewWorld(infile);

}

// ConstructWorld

// Construct the geometry and materials of the reactor given the inputs.

G4VPhysicalVolume* ZED2Constructor::ConstructWorld()

{

Appendix B. Quarter Core ZED2 Construction 142

// Set local variables and enclosed world dimensions

reactorDim = G4ThreeVector(0.*cm, 231.806*cm ,405.4*cm/2.);

G4double buffer = 1.0*cm;

encWorldDim = G4ThreeVector(2*reactorDim[1]+buffer, 2*reactorDim[1]+buffer, 2*re-

actorDim[2]+buffer);

G4SolidStore* theSolids = G4SolidStore::GetInstance();

//Defining the graphite wall and bottom

G4double Graphitewall[3] =171.806*cm, 231.806*cm, 315.4*cm/2.;

G4double Graphitebott[3] = 0., 231.806*cm,90.0*cm/2.;

// Create Dimensions of Calandria Tank

G4double CalandriaDim1[3] = 0.*cm, 168.635*cm, 315.4*cm/2.-2.69*cm/2.;

G4double BotReacTankDim[3] = 0.*cm, 168.635*cm, 2.69*cm/2.;

// Defining the dimensions of the moderator

G4double ModHeight = 132.707*cm;

G4double distbtwflrtofuel = 10.1124*cm;

G4double RodHeight = 2.0*CalandriaDim1[2]-distbtwflrtofuel;

G4double MTankDim[3] = 0.*cm, 168.0*cm, ModHeight;

G4double TubeAirFuel[3] = 0.0*cm, 168.0*cm, (2*CalandriaDim1[2]-ModHeight)/2.;

// Create Dimensions of Fuel Assembly

G4double CalendriaT1Dim[3] = 0.0*cm, 12.74*cm, RodHeight;

G4double GasAnn1Dim[3] = 0.0*cm, 12.46*cm, RodHeight;

G4double PressureT1Dim[3] = 0.0*cm, 10.78*cm, RodHeight;

Appendix B. Quarter Core ZED2 Construction 143

G4double Coolant1Dim[3] = 0.0*cm, 10.19*cm, (5.*(49.51*cm));

G4double Air1Dim[3] = 0.0*cm, 10.19*cm, RodHeight-(5.*(49.51*cm));

G4double EndPlate2[3] = 0.0*cm, 4.585*cm, 0.16*cm/2.0;

G4double FuelRodADim1[3] = 0.0*cm, 1.264*cm,48.25*cm/2.;

G4double FuelRodBDim1[3] = 0.0*cm, 1.070*cm,48.0*cm/2.;

G4double SheathADim1[3] = 0.0*cm, 1.350*cm, 49.19*cm/2.;

G4double SheathBDim1[3] = 0.0*cm, 1.150*cm, 49.19*cm/2.;

// Create the ring for fuel pins placement

G4int rings = 4;

G4double ringRad[3] = 1.734*cm,3.075*cm,4.384*cm;

G4double secondRingOffset = 0.261799*radian;

// Calculating the fuel cuts in the moderator and air

G4double topCalandriatoModH = 2.*CalandriaDim1[2]-ModHeight;

G4double AirinCT = RodHeight-Coolant1Dim[2];

G4double topFueltoModH = topCalandriatoModH-AirinCT;

G4double FuelinModH = Coolant1Dim[2]-(topFueltoModH);

G4int ModFuelIntersectPin = floor((((topFueltoModH)/10.)/49.51*cm)/10.);

G4int NumOfFuelBunInMod = floor((((FuelinModH)/10.)/49.51*cm)/10.);

G4double FullFuelBunInAir = ModFuelIntersectPin*49.51*cm;

G4double ModFuelIntersectPos = (topFueltoModH-FullFuelBunInAir-0.16*cm);

G4double CutFuelBunInMod = 49.19*cm-ModFuelIntersectPos;

// Create Dimensions of dump lines in graphite

G4double DumpLineAlDim[3] = 0.0*cm, 22.86*cm, 90.*cm/2.;

Appendix B. Quarter Core ZED2 Construction 144

G4double DumplineHWDim[3] = 0.0*cm, 22.066*cm, 90.*cm/2.;

// Create Dimensions of dump lines in Al calandria

G4double DumpLineAlDimC[3] = 0.0*cm, 22.86*cm, 2.69*cm/2.;

G4double DumplineHWDimC[3] = 0.0*cm, 22.066*cm, 2.69*cm/2.;

// Positions of the fuel bundles

G4double Pich[2] = 24.5*cm, 24.5*cm;

G4double XPos[] = {

Pich[0]/2,Pich[0]/2,Pich[0]/2,Pich[0]/2,

3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2, 3*Pich[0]/2,

5*Pich[0]/2,5*Pich[0]/2,5*Pich[0]/2,

7*Pich[0]/2,7*Pich[0]/2};

G4double YPos[] = {

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2, 7.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2, 5.*Pich[1]/2,

Pich[1]/2, 3.*Pich[1]/2

};

// Set up the materials (if necessary)

if(matChanged)

{

// Delete any existing materials

DestroyMaterials();

Appendix B. Quarter Core ZED2 Construction 145

// Create the materials

ConstructMaterials();

}

// Clean up volumes

G4GeometryManager::GetInstance()->OpenGeometry();

G4PhysicalVolumeStore::GetInstance()->Clean();

G4LogicalVolumeStore::GetInstance()->Clean();

// Set up the solids if necessary

if(geomChanged)

{

// Clean up solids

G4SolidStore::GetInstance()->Clean();

// Clean up solids

G4SolidStore::GetInstance()->Clean();

// Create world solid

new G4Box("ZED2World", encWorldDim[0]/2., encWorldDim[1]/2. , encWorldDim[2]/2.);

// Create the air above the moderator

new G4Tubs("AirTube", TubeAirFuel[0], TubeAirFuel[1], TubeAirFuel[2], 0., CLHEP::pi/2.0);

// Create Graphite Reflector solid

new G4Tubs("graphitewall", Graphitewall[0], Graphitewall[1], Graphitewall[2], 0., CLHEP::pi/2.0);

new G4Tubs("graphitebott", Graphitewall[0], Graphitewall[1], Graphitebott[2], 0., CLHEP::pi/2.0);

new G4UnionSolid("graphitewall+graphitebott", theSolids->GetSolid("graphitewall"),

theSolids->GetSolid("graphitebott"), 0, G4ThreeVector(0.,0.,-Graphitewall[2]-Graphitebott[2]));

// Create Sheilding walls

Appendix B. Quarter Core ZED2 Construction 146

//new G4Tubs("sheildingwall", Shieldingwall[0], Shieldingwall[1], Shieldingwall[2],

0., 2.0*CLHEP::pi);

// Create the Calandria solids 1

new G4Tubs("calandriashell", CalandriaDim1[0], CalandriaDim1[1], CalandriaDim1[2],

0., CLHEP::pi/2.0);

new G4Tubs("calandriabott", BotReacTankDim[0], BotReacTankDim[1], BotReacTankDim[2],

0., CLHEP::pi/2.0);

new G4UnionSolid("calandriashell+calandriabott", theSolids->GetSolid("calandriashell"),

theSolids->GetSolid("calandriabott"), 0, G4ThreeVector(0,0,(-CalandriaDim1[2]-BotReacTankDim[2])));

// Create Moderator solid

new G4Tubs("ModSphere", MTankDim[0], MTankDim[1], MTankDim[2]/2., 0., CLHEP::pi/2.0);

// Create the air above the coolant tube solid

new G4Tubs("AirTube1", Air1Dim[0]/2, Air1Dim[1]/2, Air1Dim[2]/2., 0., 2.0*CLHEP::pi);

// Create the Calandria tube

//new G4Tubs("CalandriaTubedwn", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2, Cal-

endriaT1Dim[2], 0., 2.0*CLHEP::pi);

new G4Tubs("CalandriaTubedwnCut1", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2,

(CalendriaT1Dim[2]-topCalandriatoModH)/2., 0., 2.0*CLHEP::pi);

new G4Tubs("CalandriaTubedwnCut2", CalendriaT1Dim[0]/2, CalendriaT1Dim[1]/2,

topCalandriatoModH/2., 0., 2.0*CLHEP::pi);

// Create the GasAnn tube solid

//new G4Tubs("GasAnnTube1", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, GasAnn1Dim[2],

0., 2.0*CLHEP::pi);

Appendix B. Quarter Core ZED2 Construction 147

new G4Tubs("GasAnnTube1Cut1", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, (GasAnn1Dim[2]-

topCalandriatoModH)/2., 0., 2.0*CLHEP::pi);

new G4Tubs("GasAnnTube1Cut2", GasAnn1Dim[0]/2, GasAnn1Dim[1]/2, topCalan-

driatoModH/2., 0., 2.0*CLHEP::pi);

// Create the pressure tube solid

//new G4Tubs("PressureTubedwn", PressureT1Dim[0]/2, PressureT1Dim[1]/2, PressureT1Dim[2],

0., 2.0*CLHEP::pi);

new G4Tubs("PressureTubedwnCut1", PressureT1Dim[0]/2, PressureT1Dim[1]/2, (GasAnn1Dim[2]-

topCalandriatoModH)/2, 0., 2.0*CLHEP::pi);

new G4Tubs("PressureTubedwnCut2", PressureT1Dim[0]/2, PressureT1Dim[1]/2, top-

CalandriatoModH/2., 0., 2.0*CLHEP::pi);

// Create the coolant tube solid

//new G4Tubs("CoolantTube1", Coolant1Dim[0]/2, Coolant1Dim[1]/2, Coolant1Dim[2],

0., 2.0*CLHEP::pi);

new G4Tubs("CoolantTube1Cut1", Coolant1Dim[0]/2, Coolant1Dim[1]/2, FuelinModH/2./*-

topFueltoModH+(CalendriaT1Dim[2]-Coolant1Dim[2]) */, 0., 2.0*CLHEP::pi);

new G4Tubs("CoolantTube1Cut2", Coolant1Dim[0]/2, Coolant1Dim[1]/2, topFueltoModH/2./*(CalendriaT1Dim[2]-

Coolant1Dim[2])/2+Coolant1Dim[2]-topFueltoModH*/, 0., 2.0*CLHEP::pi);

// Create outer fuel bunndles solid

new G4Tubs("FuelTubeB1", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, FuelRodBDim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeB1Cut1", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, CutFuel-

BunInMod/2., 0., 2.0*CLHEP::pi);

Appendix B. Quarter Core ZED2 Construction 148

new G4Tubs("FuelTubeB1Cut2", FuelRodBDim1[0]/2, FuelRodBDim1[1]/2, ModFu-

elIntersectPos/2., 0., 2.0*CLHEP::pi);

// Create inner fuel bunndles solid

new G4Tubs("FuelTubeA1", FuelRodADim1[0]/2, FuelRodADim1[1]/2, FuelRodADim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeA1Cut1", FuelRodADim1[0]/2, FuelRodADim1[1]/2, CutFu-

elBunInMod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("FuelTubeA1Cut2", FuelRodADim1[0]/2, FuelRodADim1[1]/2, ModFu-

elIntersectPos/2., 0., 2.0*CLHEP::pi);

// Create outer Zr-4 sheath solid

new G4Tubs("SheathB1", SheathBDim1[0]/2, SheathBDim1[1]/2, SheathBDim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("SheathB1Cut1", SheathBDim1[0]/2, SheathBDim1[1]/2, CutFuelBunIn-

Mod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("SheathB1Cut2", SheathBDim1[0]/2, SheathBDim1[1]/2, ModFuelInter-

sectPos/2., 0., 2.0*CLHEP::pi);

// Create inner Zr-4 sheath solid

new G4Tubs("SheathA1", SheathADim1[0]/2, SheathADim1[1]/2, SheathADim1[2],

0., 2.0*CLHEP::pi);

new G4Tubs("SheathA1Cut1", SheathADim1[0]/2, SheathADim1[1]/2, CutFuelBun-

InMod/2., 0., 2.0*CLHEP::pi);

new G4Tubs("SheathA1Cut2", SheathADim1[0]/2, SheathADim1[1]/2, ModFuelInter-

sectPos/2., 0., 2.0*CLHEP::pi);

Appendix B. Quarter Core ZED2 Construction 149

// Create the end plate

new G4Tubs("EndPlate2", EndPlate2[0], EndPlate2[1], EndPlate2[2], 0., 2.0*CLHEP::pi);

new G4Tubs("EndPlate1", EndPlate2[0], EndPlate2[1], EndPlate2[2], 0., 2.0*CLHEP::pi);

// Create Dump Line solid in graphite

new G4Tubs("DumpLineAl", DumpLineAlDim[0]/2, DumpLineAlDim[1]/2, DumpLin-

eAlDim[2], 0., 2.0*CLHEP::pi);

new G4Tubs("DumpLineHW", DumplineHWDim[0]/2, DumplineHWDim[1]/2, Dumpline-

HWDim[2], 0., 2.0*CLHEP::pi);

// Create Dump Line solid in Al Calandria

new G4Tubs("DumpLineAlC", DumpLineAlDimC[0]/2, DumpLineAlDimC[1]/2, DumpLin-

eAlDimC[2], 0., 2.0*CLHEP::pi);

new G4Tubs("DumpLineHWC", DumplineHWDimC[0]/2, DumplineHWDimC[1]/2,

DumplineHWDimC[2], 0., 2.0*CLHEP::pi);

geomChanged = false;

}

// Create world volume

// Create world volume

worldLogical = new G4LogicalVolume(theSolids->GetSolid("ZED2World"),matMap["World"],

"worldLogical",0,0,0); worldPhysical = new G4PVPlacement(0, G4ThreeVector(0.,0.,0.),

worldLogical,"worldPhysical",0,0,0);

// Create Reflector volume

vesselLogical = new G4LogicalVolume(theSolids->GetSolid("graphitewall+graphitebott"),

matMap["Graphite"], "VesselLogical", 0, 0, 0);

Appendix B. Quarter Core ZED2 Construction 150

new G4PVPlacement(0,G4ThreeVector(0,0,Graphitebott[2]), vesselLogical, "VesselPhys-

ical", worldLogical, 0, 0);

// Create Calandrai volume in mother air volume tankLogical1 = new G4LogicalVolume(theSolids-

>GetSolid("calandriashell+calandriabott"), matMap["Al57S"], "VesselLogical1", 0, 0,

0);

new G4PVPlacement(0, G4ThreeVector(0.,0.,BotReacTankDim[2]), tankLogical1,"CalandriaPhysical1",

vesselLogical,0,0);

// Create Moderator volume ModLogical = new G4LogicalVolume(theSolids->GetSolid("ModSphere"),matMap["Moderator"],

"ModLogical",0,0,0);

new G4PVPlacement(0, G4ThreeVector(0.,0.,MTankDim[2]/2.-CalandriaDim1[2]), Mod-

Logical, "ModPhysical", tankLogical1, false, 0);

//Create Air above the moderator airTubeLogical = new G4LogicalVolume(theSolids-

>GetSolid("AirTube"),matMap["Air"], "airTubeLogical",0,0,0); new G4PVPlacement(0,

G4ThreeVector(0.,0., TubeAirFuel[2]+MTankDim[2]-CalandriaDim1[2]), airTubeLog-

ical, "airTubePhysical", tankLogical1,0,0);

std::stringstream volName;

logicCalandria1 = new G4LogicalVolume(theSolids->GetSolid("CalandriaTubedwnCut2"),

matMap["AlCalT"], "CalandriaTube1LogicalCut2", 0, 0, 0);

for (G4int i=0; i<52; i++)

{

// Create calandria tubes in mother air volume

volName.str("");

volName.clear();

Appendix B. Quarter Core ZED2 Construction 151

volName « i;

new G4PVPlacement (0, G4ThreeVector(XPos[i],YPos[i],0.), logicCalandria1, "Calan-

driaTube1PhysicalCut2"+volName.str(), airTubeLogical, false, 0);

}

// Create gas annulus tubes in mother air volume

logicGasAnn1 = new G4LogicalVolume(theSolids->GetSolid("GasAnnTube1Cut2"), matMap["Air"],

"GasAnnTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicGasAnn1, "GasAnnTube1PhysicalCut2",

logicCalandria1, false, 0);

// Create pressure tubes in mother air volume

logicPressure1 = new G4LogicalVolume(theSolids->GetSolid("PressureTubedwnCut2"),

matMap["AlPresT"], "PressureTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicPressure1, "PressureTube1PhysicalCut2",

logicGasAnn1, false, 0);

// Create lower coolant in mother air volume

logicCoolant1 = new G4LogicalVolume(theSolids->GetSolid("CoolantTube1Cut2"), matMap["Air"],

"Coolant1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,-topCalandriatoModH/2.+topFueltoModH/2.),

logicCoolant1, "Coolant1PhysicalCut2", logicPressure1, false, 0);

// Create air

logicAir1 = new G4LogicalVolume(theSolids->GetSolid("AirTube1"), matMap["Air"],

"Air1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,-topCalandriatoModH/2.+topFueltoModH+Air1Dim[2]/2.0),

Appendix B. Quarter Core ZED2 Construction 152

logicAir1, "Air1Physical", logicPressure1, false, 0);

// Create inner/outer FULL fuel bunndles and sheath in air volume

logicRodA1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1"), matMap["LEUMat"],

"FuelRodA1Logical", 0, 0, 0);

logicRodB1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1"), matMap["LEUMat"],

"FuelRodB1Logical", 0, 0, 0);

logicSheathA1 = new G4LogicalVolume(theSolids->GetSolid("SheathA1"), matMap["Zr4"],

"SheathA1Logical", 0, 0, 0);

logicSheathB1 = new G4LogicalVolume(theSolids->GetSolid("SheathB1"), matMap["Zr4"],

"SheathB1Logical", 0, 0, 0);

logicEndPlate1 = new G4LogicalVolume(theSolids->GetSolid("EndPlate1"), matMap["Zr4"],

"EndPlate1", 0, 0, 0);

logicEndPlate2 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2", 0, 0, 0);

for (G4int l=0; l<ModFuelIntersectPin; l++)

{

// Rotation and translation of the rod and sheathe

// place the center pin in air

new G4PVPlacement(0, G4ThreeVector(0,0, (topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2]))), logicSheathA1,"sheathePhysical " + volName.str(),

logicCoolant1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1,"fuelPhysicalA", logicSheathA1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1,"fuelPhysicalB", logicSheathB1,0,0);

Appendix B. Quarter Core ZED2 Construction 153

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(topFueltoModH/2.-

(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathA1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

else

{

Appendix B. Quarter Core ZED2 Construction 154

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(topFueltoModH/2.-(l+1)*(SheathADim1[2]+2.*EndPlate2[2])-

l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1,"sheathePhysical " +volName.str(),logicCoolant1,0,0);

}

}

}

// Make the end plates 1

G4ThreeVector EP1(0,0,(topFueltoModH/2.-EndPlate2[2])-l*(49.51*cm)); new G4PVPlacement(0,

EP1, logicEndPlate1,"EndPlate1Physical1",logicCoolant1,0,0);

// Make the end plates 2

G4ThreeVector EP2(0,0,(topFueltoModH/2.-EndPlate2[2])-l*(2.*EndPlate2[2])-(l+1)*(2.*SheathADim1[2]+2.*EndPlate2[2]));

new G4PVPlacement(0, EP2, logicEndPlate2,"EndPlate2Physical1",logicCoolant1,0,0);

}

// Create inner/outer cut fuel bunndl in air volume

logicRodA1Cut2 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1Cut2"),

matMap["LEUMat"], "FuelRodA1LogicalCut2", 0, 0, 0);

logicRodB1Cut2 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1Cut2"),

matMap["LEUMat"], "FuelRodB1LogicalCut2", 0, 0, 0);

logicSheathA1Cut2 = new G4LogicalVolume(theSolids->GetSolid("SheathA1Cut2"),

matMap["Zr4"], "SheathA1Logicalcut2", 0, 0, 0);

logicSheathB1Cut2 = new G4LogicalVolume(theSolids->GetSolid("SheathB1Cut2"),

matMap["Zr4"], "SheathB1LogicalCut2", 0, 0, 0);

logicEndPlate2Cut2 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

Appendix B. Quarter Core ZED2 Construction 155

"EndPlate2Cut2", 0, 0, 0);

// Rotation and translation of the rod and sheathe

// Set name for sheathe physical volume

volName.str("");

volName « 0;

// place the center pin in air

new G4PVPlacement(0, G4ThreeVector(0,0,-topFueltoModH/2.+ModFuelIntersectPos/2.),

logicSheathA1Cut2,"sheathePhysicalCut2 " + volName.str(), logicCoolant1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Cut2,"fuelPhysicalCut2A",

logicSheathA1Cut2,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Cut2,"fuelPhysicalCut2B",

logicSheathB1Cut2,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

Appendix B. Quarter Core ZED2 Construction 156

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathB1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathA1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),-topFueltoModH/2.+ModFuelIntersectPos/2.);

new G4PVPlacement(0, Tm, logicSheathB1Cut2,"sheathePhysicalCut2 " +volName.str(),logicCoolant1,0,0);

}

}

}

// Make the end plates 2

G4ThreeVector EP2(0,0,-topFueltoModH/2.+ModFuelIntersectPos+0.08*cm); new G4PVPlacement(0,

EP2, logicEndPlate2Cut2,"EndPlate2Physical1Cut2",logicCoolant1,0,0);

// *********Create Calandrai volume in moderator volume*************

Appendix B. Quarter Core ZED2 Construction 157

logicCalandria1Mod = new G4LogicalVolume(theSolids->GetSolid("CalandriaTubedwnCut1"),

matMap["AlCalT"], "CalandriaTube1ModLogical", 0, 0, 0);

for (G4int i=0; i<52; i++)

{

// Create calandria tubes in moderator volume

volName.str("");

volName.clear();

volName « i;

new G4PVPlacement (0, G4ThreeVector(XPos[i],YPos[i],distbtwflrtofuel/2.), logicCa-

landria1Mod, "CalandriaTube1ModPhysicalCut1"+volName.str(), ModLogical, false,

0);

}

// Create gas annulus tubes in moderator volume

logicGasAnn1Mod = new G4LogicalVolume(theSolids->GetSolid("GasAnnTube1Cut1"),

matMap["Air"], "GasAnnTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicGasAnn1Mod, "GasAnnTube1PhysicalCut1",

logicCalandria1Mod, false, 0);

// Create pressure tubes in moderator volume

logicPressure1Mod = new G4LogicalVolume(theSolids->GetSolid("PressureTubedwnCut1"),

matMap["AlPresT"], "PressureTube1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicPressure1Mod, "PressureTube1PhysicalCut1",

logicGasAnn1Mod, false, 0);

// Create lower coolant in moderator volume

logicCoolant1Mod = new G4LogicalVolume(theSolids->GetSolid("CoolantTube1Cut1"),

matMap["Air"], "Coolant1Logical", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0), logicCoolant1Mod, "Coolant1PhysicalCut1",

Appendix B. Quarter Core ZED2 Construction 158

logicPressure1Mod, false, 0);

// Create inner/outer fuel bunndle and sheath in Moderator volume

logicRodA1Mod = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1"), matMap["LEUMat"],

"FuelRodA1LogicalMod", 0, 0, 0);

logicRodB1Mod = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1"), matMap["LEUMat"],

"FuelRodB1LogicalMod", 0, 0, 0);

logicSheathA1Mod = new G4LogicalVolume(theSolids->GetSolid("SheathA1"), matMap["Zr4"],

"SheathA1LogicalMod", 0, 0, 0);

logicSheathB1Mod = new G4LogicalVolume(theSolids->GetSolid("SheathB1"), matMap["Zr4"],

"SheathB1LogicalMod", 0, 0, 0);

logicEndPlate1Mod = new G4LogicalVolume(theSolids->GetSolid("EndPlate1"), matMap["Zr4"],

"EndPlate1Mod", 0, 0, 0);

logicEndPlate2Mod = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2Mod", 0, 0, 0);

for (G4int l=0; l<NumOfFuelBunInMod; l++)

{

// Rotation and translation of the rod and sheathe

// Set name for sheathe physical volume

// place the center pin

new G4PVPlacement(0, G4ThreeVector(0,0, (-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])

)), logicSheathA1Mod,"sheathePhysicalMod " + volName.str(), logicCoolant1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Mod,"fuelPhysicalModA

", logicSheathA1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Mod,"fuelPhysicalModB ",

Appendix B. Quarter Core ZED2 Construction 159

logicSheathB1Mod,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

else if (j == 1)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathA1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

else

{

Appendix B. Quarter Core ZED2 Construction 160

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(l+1)*(SheathADim1[2]+2.*EndPlate2[2])+l*(2.*EndPlate2[2]+SheathADim1[2])));

new G4PVPlacement(0, Tm, logicSheathB1Mod,"sheathePhysicalMod " +volName.str(),logicCoolant1Mod,0,0);

}

}

}

// Make the end plates 1 G4ThreeVector EP1(0,0,(-FuelinModH/2.+EndPlate2[2])+l*(49.51*cm));

new G4PVPlacement(0, EP1, logicEndPlate1Mod,"EndPlate1Physical1Mod ",logicCoolant1Mod,0,0);

// Make the end plates 2

G4ThreeVector EP2(0,0,(-FuelinModH/2.+EndPlate2[2])+l*(2.*EndPlate2[2])+(l+1)*(2.*SheathADim1[2]+2.*EndPlate2[2]));

new G4PVPlacement(0, EP2, logicEndPlate2Mod,"EndPlate2Physical1Mod ",logicCoolant1Mod,0,0);

}

// Create inner/outer cut fuel bunndle in Moderator volume

logicRodA1Cut1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeA1Cut1"),

matMap["LEUMat"], "FuelRodA1LogicalCut1", 0, 0, 0);

logicRodB1Cut1 = new G4LogicalVolume(theSolids->GetSolid("FuelTubeB1Cut1"),

matMap["LEUMat"], "FuelRodB1LogicalCut1", 0, 0, 0);

logicSheathA1Cut1 = new G4LogicalVolume(theSolids->GetSolid("SheathA1Cut1"),

matMap["Zr4"], "SheathA1LogicalCut1", 0, 0, 0);

logicSheathB1Cut1 = new G4LogicalVolume(theSolids->GetSolid("SheathB1Cut1"),

matMap["Zr4"], "SheathB1LogicalCut1", 0, 0, 0);

logicEndPlate2Cut1 = new G4LogicalVolume(theSolids->GetSolid("EndPlate2"), matMap["Zr4"],

"EndPlate2Cut1", 0, 0, 0);

// place the center pin for the cut fuel bundle in the moderator

Appendix B. Quarter Core ZED2 Construction 161

new G4PVPlacement(0, G4ThreeVector(0,0, (-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.)),

logicSheathA1Cut1,"sheathePhysicalCut1 " + volName.str(), logicCoolant1Mod,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodA1Cut1,"fuelPhysicalCut1A

", logicSheathA1Cut1,0,0);

new G4PVPlacement(0, G4ThreeVector(0,0,0), logicRodB1Cut1,"fuelPhysicalCut1B

", logicSheathB1Cut1,0,0);

for(G4int j = 1; j < rings; j++)

{

for(G4int k = 0; k < j*6; k++)

{

// Reset string stream

volName.str("");

volName « j « "-" « k;

if(j == 2)

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),

ringRad[j-1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)+secondRingOffset),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

));

// place the fuel for the cut fuel bundle in the moderator

new G4PVPlacement(0, Tm, logicSheathB1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

else if (j == 1)

{

Appendix B. Quarter Core ZED2 Construction 162

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

));

new G4PVPlacement(0, Tm, logicSheathA1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

else

{

G4ThreeVector Tm(ringRad[j-1]*cos(2.0*CLHEP::pi*G4double(k)/G4double(j*6)), ringRad[j-

1]*sin(2.0*CLHEP::pi*G4double(k)/G4double(j*6)),(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+2.*EndPlate2[2]+CutFuelBunInMod/2.

));

// place the fuel for the cut fuel bundle in the moderator

new G4PVPlacement(0, Tm, logicSheathB1Cut1,"sheathePhysicalCut1 " +volName.str(),logicCoolant1Mod,0,0);

}

}

}

// Make the end plates 2

G4ThreeVector EP(0,0,(-FuelinModH/2.+(NumOfFuelBunInMod*49.51*cm)+0.08*cm));

new G4PVPlacement(0, EP, logicEndPlate2Cut1,"EndPlate2Physical1Cut1 ",logicCoolant1Mod,0,0);

// Create Dump Lines Al & Heavy Water in graphite

logicDumplineAl = new G4LogicalVolume(theSolids->GetSolid("DumpLineAl"), matMap["Al57S"],

"DumplineLogicalAl", 0, 0, 0);

for (G4int s=0; s<3; s++)

{

G4ThreeVector jg(129.54*cm*cos(2.0*CLHEP::pi*s*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*s*(2./3.)),-

Graphitewall[2]-2.*Graphitebott[2]+DumpLineAlDim[2]);

new G4PVPlacement (0, jg , logicDumplineAl, "DumLineAlPhysical", vesselLogical,

Appendix B. Quarter Core ZED2 Construction 163

false, 0);

}

logicDumplineHW = new G4LogicalVolume(theSolids->GetSolid("DumpLineHW"),

matMap["Moderator"], "DumplineLogicalHW", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0) , logicDumplineHW, "DumLineHW-

Physical", logicDumplineAl, false, 0);

// Create Dump Lines Al & Heavy Water in Al calandria

logicDumplineAlC = new G4LogicalVolume(theSolids->GetSolid("DumpLineAlC"),

matMap["Al57S"], "DumplineLogicalAlC", 0, 0, 0);

for (G4int d=0; d<3; d++)

{

//G4ThreeVector

lm(129.54*cm*cos(2.0*CLHEP::pi*d*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*d*(2./3.)),-

CalandriaDim1[2]-2.*BotReacTankDim[2]+DumpLineAlDimC);

G4ThreeVector jg(129.54*cm*cos(2.0*CLHEP::pi*d*(2./3.)),129.54*cm*sin(2.0*CLHEP::pi*d*(2./3.)),-

CalandriaDim1[2]-2.*BotReacTankDim[2]+DumpLineAlDimC[2]);

new G4PVPlacement (0, jg, logicDumplineAlC, "DumLineAlCPhysical",tankLogical1

, false, 0);

}

logicDumplineHWC = new G4LogicalVolume(theSolids->GetSolid("DumpLineHWC"),

matMap["Moderator"], "DumplineLogicalHWC", 0, 0, 0);

new G4PVPlacement (0, G4ThreeVector(0,0,0) , logicDumplineHWC, "DumLineHWC-

Physical", logicDumplineAlC, false, 0);

// Set reactor as sensitive detector

Appendix B. Quarter Core ZED2 Construction 164

worldLogical->SetSensitiveDetector(sDReactor);

airTubeLogical->SetSensitiveDetector(sDReactor);

vesselLogical->SetSensitiveDetector(sDReactor);

tankLogical1->SetSensitiveDetector(sDReactor);

ModLogical->SetSensitiveDetector(sDReactor);

logicCalandria1->SetSensitiveDetector(sDReactor);

logicGasAnn1->SetSensitiveDetector(sDReactor);

logicPressure1->SetSensitiveDetector(sDReactor);

logicCoolant1->SetSensitiveDetector(sDReactor);

logicAir1->SetSensitiveDetector(sDReactor);

logicRodA1->SetSensitiveDetector(sDReactor);

logicRodB1->SetSensitiveDetector(sDReactor);

logicSheathA1->SetSensitiveDetector(sDReactor);

logicSheathB1->SetSensitiveDetector(sDReactor);

logicEndPlate2->SetSensitiveDetector(sDReactor);

logicEndPlate1->SetSensitiveDetector(sDReactor);

logicCalandria1Mod->SetSensitiveDetector(sDReactor);

logicGasAnn1Mod->SetSensitiveDetector(sDReactor);

logicPressure1Mod->SetSensitiveDetector(sDReactor);

logicCoolant1Mod->SetSensitiveDetector(sDReactor);

logicRodA1Cut2->SetSensitiveDetector(sDReactor);

logicRodB1Cut2->SetSensitiveDetector(sDReactor);

logicSheathA1Cut2->SetSensitiveDetector(sDReactor);

logicSheathB1Cut2->SetSensitiveDetector(sDReactor);

logicEndPlate2Cut2->SetSensitiveDetector(sDReactor);

logicRodA1Mod->SetSensitiveDetector(sDReactor);

logicRodB1Mod->SetSensitiveDetector(sDReactor);

logicSheathA1Mod->SetSensitiveDetector(sDReactor);

logicSheathB1Mod->SetSensitiveDetector(sDReactor);

Appendix B. Quarter Core ZED2 Construction 165

logicEndPlate2Mod->SetSensitiveDetector(sDReactor);

logicEndPlate1Mod->SetSensitiveDetector(sDReactor);

logicRodA1Cut1->SetSensitiveDetector(sDReactor);

logicRodB1Cut1->SetSensitiveDetector(sDReactor);

logicSheathA1Cut1->SetSensitiveDetector(sDReactor);

logicSheathB1Cut1->SetSensitiveDetector(sDReactor);

logicEndPlate2Cut1->SetSensitiveDetector(sDReactor);

logicDumplineAl->SetSensitiveDetector(sDReactor);

logicDumplineHW->SetSensitiveDetector(sDReactor);

logicDumplineAlC->SetSensitiveDetector(sDReactor);

logicDumplineHWC->SetSensitiveDetector(sDReactor);

// Set visualization attributes

worldVisAtt = new G4VisAttributes(G4Colour(0.5, 1., 0.5));

worldVisAtt->SetVisibility(true);

worldLogical->SetVisAttributes(worldVisAtt);

airTubeVisAtt = new G4VisAttributes(G4Colour(0., 1., 0.5));

airTubeVisAtt->SetVisibility(true);

airTubeLogical->SetVisAttributes(airTubeVisAtt);

vesselVisAtt= new G4VisAttributes(G4Colour(1.0,0.0,0.0));

//vesselVisAtt->SetForceSolid(true);

vesselVisAtt->SetVisibility(true);

vesselLogical->SetVisAttributes(vesselVisAtt);

Appendix B. Quarter Core ZED2 Construction 166

tank1VisATT= new G4VisAttributes(G4Colour(1.0,1.0,0.0));

//tank1VisATT->SetForceSolid(true);

tank1VisATT->SetVisibility(true);

tankLogical1->SetVisAttributes(tank1VisATT);

ModVisAtt = new G4VisAttributes(G4Colour(0.,1.,0.));

ModVisAtt->SetVisibility(true);

//ModVisAtt->SetForceSolid(true);

ModLogical->SetVisAttributes(ModVisAtt);

Calandria1VisAtt = new G4VisAttributes(G4Colour(1., 0., 1.));

//Calandria1VisAtt->SetForceSolid(true);

Calandria1VisAtt->SetVisibility(false);

logicCalandria1->SetVisAttributes(Calandria1VisAtt);

logicCalandria1Mod->SetVisAttributes(Calandria1VisAtt);

GasAnn1VisAtt = new G4VisAttributes(G4Colour(1., 0., 0.));

// GasAnn1VisAtt->SetForceSolid(true);

GasAnn1VisAtt->SetVisibility(false);

logicGasAnn1->SetVisAttributes(GasAnn1VisAtt);

logicGasAnn1Mod->SetVisAttributes(GasAnn1VisAtt);

Pressure1VisAtt = new G4VisAttributes(G4Colour(0., 1., 0.));

// Pressure1VisAtt->SetForceSolid(true);

Pressure1VisAtt->SetVisibility(false);

logicPressure1->SetVisAttributes(Pressure1VisAtt);

Appendix B. Quarter Core ZED2 Construction 167

logicPressure1Mod->SetVisAttributes(Pressure1VisAtt);

Coolant1VisAtt = new G4VisAttributes(G4Colour(0.53, 0.81, 0.92));

//Coolant1VisAtt->SetForceSolid(true);

Coolant1VisAtt->SetVisibility(true);

logicCoolant1->SetVisAttributes(Coolant1VisAtt);

logicCoolant1Mod->SetVisAttributes(Coolant1VisAtt);

Air1VisAtt = new G4VisAttributes(G4Colour(0., 0.5, 1.));

//Air1VisAtt->SetForceSolid(true);

Air1VisAtt->SetVisibility(true);

logicAir1->SetVisAttributes(Air1VisAtt);

fuelA1VisATT = new G4VisAttributes(G4Colour(0.0, 0.0 ,1.0));

fuelA1VisATT->SetForceSolid(true);

fuelA1VisATT->SetVisibility(true);

logicRodA1->SetVisAttributes(fuelA1VisATT);

logicRodA1Cut2->SetVisAttributes(fuelA1VisATT);

logicRodA1Mod->SetVisAttributes(fuelA1VisATT);

logicRodA1Cut1->SetVisAttributes(fuelA1VisATT);

fuelB1VisATT = new G4VisAttributes(G4Colour(0,0.5,0.92));

fuelB1VisATT->SetForceSolid(true);

fuelB1VisATT->SetVisibility(true);

logicRodB1->SetVisAttributes(fuelB1VisATT);

logicRodB1Cut2->SetVisAttributes(fuelB1VisATT);

logicRodB1Mod->SetVisAttributes(fuelB1VisATT);

Appendix B. Quarter Core ZED2 Construction 168

logicRodB1Cut1->SetVisAttributes(fuelB1VisATT);

sheathA1VisATT = new G4VisAttributes(G4Colour(0.5, 0.0 ,1.0));

//sheathA1VisATT->SetForceSolid(true);

sheathA1VisATT->SetVisibility(true);

logicSheathA1->SetVisAttributes(sheathA1VisATT);

logicSheathA1Cut2->SetVisAttributes(sheathA1VisATT);

logicSheathA1Mod->SetVisAttributes(sheathA1VisATT);

logicSheathA1Cut1->SetVisAttributes(sheathA1VisATT);

sheathB1VisATT = new G4VisAttributes(G4Colour(1.0, 0.5 ,1.0));

//sheathB1VisATT->SetForceSolid(true);

sheathB1VisATT->SetVisibility(true);

logicSheathB1->SetVisAttributes(sheathB1VisATT);

logicSheathB1Cut2->SetVisAttributes(sheathB1VisATT);

logicSheathB1Mod->SetVisAttributes(sheathB1VisATT);

logicSheathB1Cut1->SetVisAttributes(sheathB1VisATT);

EndPlate2VisATT = new G4VisAttributes(G4Colour(0.5, 0.5, 0.5));

EndPlate2VisATT->SetForceSolid(true);

EndPlate2VisATT->SetVisibility(true);

logicEndPlate2->SetVisAttributes(EndPlate2VisATT);

logicEndPlate1->SetVisAttributes(EndPlate2VisATT);

logicEndPlate2Cut2->SetVisAttributes(EndPlate2VisATT);

logicEndPlate2Mod->SetVisAttributes(EndPlate2VisATT);

logicEndPlate1Mod->SetVisAttributes(EndPlate2VisATT);

Appendix B. Quarter Core ZED2 Construction 169

logicEndPlate2Cut1->SetVisAttributes(EndPlate2VisATT);

DumplineAlVisAtt = new G4VisAttributes(G4Colour(1., 0.99, 0.5));

DumplineAlVisAtt->SetForceSolid(false);

DumplineAlVisAtt->SetVisibility(true);

logicDumplineAl->SetVisAttributes(DumplineAlVisAtt);

logicDumplineAlC->SetVisAttributes(DumplineAlVisAtt);

DumplineHWVisAtt = new G4VisAttributes(G4Colour(0., 1.0, 0.));

DumplineHWVisAtt->SetForceSolid(false);

DumplineHWVisAtt->SetVisibility(true);

logicDumplineHW->SetVisAttributes(DumplineHWVisAtt);

logicDumplineHWC->SetVisAttributes(DumplineHWVisAtt);

return worldPhysical;

}

// ConstructMaterials()

// Construct all the materials needed for the ZED2Constructor.

void ZED2Constructor::ConstructMaterials()

{

// Elements, isotopes and materials

G4Isotope *U234, *U235, *U238, *U236, *D2, *O16, *O17,

*Fe54, *Fe56, *Fe57, *Fe58, *Cr50, *Cr52, *Cr53, *Cr54,

*Si28, *Si29, *Si30, *Cu63, *Cu65, *Mn55, *Mg24,

*Mg25, *Mg26, *Zn64, *Zn66, *Zn67, *Zn68, *Zn70,

*Al27, *Ti46, *Ti47, *Ti48, *Ti49, *Ti50, *Na23,

Appendix B. Quarter Core ZED2 Construction 170

*Ga69, *Ga71, *H1, *C12, *C13, *Zr90, *Zr91,

*Zr92, *Zr94, *Zr96, *Sn112, *Sn114, *Sn115, *Sn116,

*Sn117, *Sn118, *Sn119, *Sn120, *Sn122, *Sn124,

*Ca40, *Ca42, *Ca43, *Ca44, *Ca46, *Ca48, *B10, *B11,

*Li6, *Li7, *Gd152,*Gd154, *Gd155, *Gd156, *Gd157,

*Gd158, *Gd160,*V50, *V51;

G4Element *Oxygen, *Deuterium, *LEU,

*Cr, *Fe, *Si, *Cu, *Mn, *Mg, *Zn, *Al,

*Ti, *Na, *Ga, *Hydrogen, *C, *Zr, *Sn, *Ca,

*B, *Li, *Gd, *V,

*FeAl, *CuAl,*FeZr, *CrZr, *OxygenZr,

*OxygenLEU, *OxygenLW;

G4Material *World, *LEUMat,

*Aluminum57S, *AlPresT, *AlCalT, *H2O, *D2O,

*AnnulusGas, *Zr4, *Air, *Moderator, *Graphite;

// Create the world environment

World = new G4Material("Galactic", 1, 1, 1.e-25*g/cm3, kStateGas,2.73*kelvin, 3.e-

18*pascal);

//make Calcium isotopes and element

Ca40 = new G4Isotope("Ca40", 20, 40, 39.9625906*g/mole);

Ca42 = new G4Isotope("Ca42", 20, 42, 41.9586176*g/mole);

Ca43 = new G4Isotope("Ca43", 20, 43, 42.9587662*g/mole);

Ca44 = new G4Isotope("Ca44", 20, 44, 43.9554806*g/mole);

Ca46 = new G4Isotope("Ca46", 20, 46, 45.953689*g/mole);

Ca48 = new G4Isotope("Ca48", 20, 48, 47.952533*g/mole);

Appendix B. Quarter Core ZED2 Construction 171

Ca = new G4Element("Calcium", "Ca", 6);

Ca->AddIsotope(Ca40, 96.941*perCent);

Ca->AddIsotope(Ca42, 0.647*perCent);

Ca->AddIsotope(Ca43, 0.135*perCent);

Ca->AddIsotope(Ca44, 2.086*perCent);

Ca->AddIsotope(Ca46, 0.004*perCent);

Ca->AddIsotope(Ca48, 0.187*perCent);

//make Boron isotopes and element

B10 = new G4Isotope("B10", 5, 10, 10.012937*g/mole);

B11 = new G4Isotope("B11", 5, 11, 11.009305*g/mole);

B = new G4Element("Boron", "B", 2);

B->AddIsotope(B10, 19.9*perCent);

B->AddIsotope(B11, 80.1*perCent);

//make Lithium isotopes and element

Li6 = new G4Isotope("Li6", 3, 6, 6.0151223*g/mole);

Li7 = new G4Isotope("Li7", 3, 7, 7.0160040*g/mole);

Li = new G4Element("Lithium", "Li", 2);

Li->AddIsotope(Li6, 7.59 *perCent);

Li->AddIsotope(Li7, 92.41*perCent);

//make Vanadium isotopes and element

V50 = new G4Isotope("V50", 23, 50, 49.9471609 *g/mole);

Appendix B. Quarter Core ZED2 Construction 172

V51 = new G4Isotope("V51", 23, 51, 50.9439617 *g/mole);

V = new G4Element("Vanadium", "V", 2);

V->AddIsotope(V50, 0.250 *perCent);

V->AddIsotope(V51, 99.750*perCent);

//make chromium isotopes and element

Cr50 = new G4Isotope("Cr50", 24, 50, 49.9460422*g/mole);

Cr52 = new G4Isotope("Cr52", 24, 52, 51.9405075*g/mole);

Cr53 = new G4Isotope("Cr53", 24, 53, 52.9406494*g/mole);

Cr54 = new G4Isotope("Cr54", 24, 54, 53.9388804*g/mole);

Cr = new G4Element("Chromium", "Cr", 4);

Cr->AddIsotope(Cr50, 4.1737*perCent);

Cr->AddIsotope(Cr52, 83.7003*perCent);

Cr->AddIsotope(Cr53, 9.6726*perCent);

Cr->AddIsotope(Cr54, 2.4534*perCent);

CrZr = new G4Element("Chromium", "Cr", 4);

CrZr->AddIsotope(Cr50, 4.10399884*perCent);

CrZr->AddIsotope(Cr52, 82.20818453*perCent);

CrZr->AddIsotope(Cr53, 9.50012786*perCent);

CrZr->AddIsotope(Cr54, 4.18768878*perCent);

//make iron isotopes and element

Fe54 = new G4Isotope("Fe54", 26, 54, 53.9396105*g/mole);

Fe56 = new G4Isotope("Fe56", 26, 56, 55.9349375*g/mole);

Appendix B. Quarter Core ZED2 Construction 173

Fe57 = new G4Isotope("Fe57", 26, 57, 56.9353940*g/mole);

Fe58 = new G4Isotope("Fe58", 26, 58, 57.9332756*g/mole);

Fe = new G4Element("Iron", "Fe", 4);

Fe->AddIsotope(Fe54, 5.80*perCent);

Fe->AddIsotope(Fe56, 91.72*perCent);

Fe->AddIsotope(Fe57, 2.20*perCent);

Fe->AddIsotope(Fe58, 0.28*perCent);

//make iron element for Aluminium material in ZED-2

FeAl = new G4Element("Iron", "Fe", 4);

FeAl->AddIsotope(Fe54, 0.02340*perCent);

FeAl->AddIsotope(Fe56, 0.36700*perCent);

FeAl->AddIsotope(Fe57, 0.00848*perCent);

FeAl->AddIsotope(Fe58, 0.00112*perCent);

//make iron element for Aluminium material in ZED-2

FeZr = new G4Element("Iron", "Fe", 4);

FeZr->AddIsotope(Fe54, 5.60198907*perCent);

FeZr->AddIsotope(Fe56, 91.9458541*perCent);

FeZr->AddIsotope(Fe57, 2.14094671*perCent);

FeZr->AddIsotope(Fe58, 0.31121012*perCent);

//make Silicon isotopes and element

Si28 = new G4Isotope("Si28", 14, 28, 27.9769271*g/mole);

Si29 = new G4Isotope("Si29", 14, 29, 28.9764949*g/mole);

Appendix B. Quarter Core ZED2 Construction 174

Si30 = new G4Isotope("Si30", 14, 30, 29.9737707*g/mole);

Si = new G4Element("Silicon", "Si", 3);

Si->AddIsotope(Si28, 92.23*perCent);

Si->AddIsotope(Si29, 4.67*perCent);

Si->AddIsotope(Si30, 3.1*perCent);

//make Magnesium isotopes and element

Mg24 = new G4Isotope("Mg24", 12, 24, 23.9850423*g/mole);

Mg25 = new G4Isotope("Mg25", 12, 25, 24.9858374*g/mole);

Mg26 = new G4Isotope("Mg26", 12, 26, 25.9825937 *g/mole);

Mg = new G4Element("Magnesium", "Mg", 3);

Mg->AddIsotope(Mg24, 78.99*perCent);

Mg->AddIsotope(Mg25, 10.00*perCent);

Mg->AddIsotope(Mg26, 11.01*perCent);

//make Manganese isotopes and element

Mn55 = new G4Isotope("Mn55", 25, 55, 54.9380471*g/mole);

Mn = new G4Element("Manganese", "Mn", 1);

Mn->AddIsotope(Mn55, 100.00*perCent);

//make Copper isotopes and element

Cu63 = new G4Isotope("Cu63", 29, 63, 62.9295989*g/mole);

Appendix B. Quarter Core ZED2 Construction 175

Cu65 = new G4Isotope("Cu65", 29, 65, 64.9277929 *g/mole);

Cu = new G4Element("Copper", "Cu", 2);

Cu->AddIsotope(Cu63, 69.17*perCent);

Cu->AddIsotope(Cu65, 30.83*perCent);

//make copper for Al

CuAl = new G4Element("Copper", "Cu", 2);

CuAl->AddIsotope(Cu63, 0.01383*perCent);

CuAl->AddIsotope(Cu65, 0.00617*perCent);

//make Aluminum isotopes and element

Al27 = new G4Isotope("Al27", 13, 27, 26.9815386 *g/mole);

Al = new G4Element("Aluminum", "Al", 1);

Al->AddIsotope(Al27, 100.00*perCent);

//make Zirconium isotopes and element

Zr90 = new G4Isotope("Zr90", 40, 90, 89.9047026*g/mole);

Zr91 = new G4Isotope("Zr91", 40, 91, 90.9056439*g/mole);

Zr92 = new G4Isotope("Zr92", 40, 92, 91.9050386*g/mole);

Zr94 = new G4Isotope("Zr94", 40, 94, 93.9063148*g/mole);

Zr96 = new G4Isotope("Zr96", 40, 96, 95.908275*g/mole);

Zr = new G4Element("Zirconium", "Zr", 5);

Zr->AddIsotope(Zr90, 0.5075558873*perCent);

Appendix B. Quarter Core ZED2 Construction 176

Zr->AddIsotope(Zr91, 0.1116101232*perCent);

Zr->AddIsotope(Zr92, 0.1722780975*perCent);

Zr->AddIsotope(Zr94, 0.1791179604*perCent);

Zr->AddIsotope(Zr96, 0.0294379317*perCent);

//make Zinc isotopes and element

Zn64 = new G4Isotope("Zn64", 30, 64, 63.9291448*g/mole);

Zn66 = new G4Isotope("Zn66", 30, 66, 65.9260347*g/mole);

Zn67 = new G4Isotope("Zn67", 30, 67, 66.9271291*g/mole);

Zn68 = new G4Isotope("Zn68", 30, 68, 67.9248459*g/mole);

Zn70 = new G4Isotope("Zn70", 30, 70, 69.925325*g/mole);

Zn = new G4Element("Zinc", "Zn", 5);

Zn->AddIsotope(Zn64, 48.63*perCent);

Zn->AddIsotope(Zn66, 27.90*perCent);

Zn->AddIsotope(Zn67, 4.10*perCent);

Zn->AddIsotope(Zn68, 18.75*perCent);

Zn->AddIsotope(Zn70, 0.62*perCent);

//make Tin isotopes and element

Sn112 = new G4Isotope("Sn112", 50, 112, 111.904826*g/mole);

Sn114 = new G4Isotope("Sn114", 50, 114, 113.902784*g/mole);

Sn115 = new G4Isotope("Sn115", 50, 115, 114.903348*g/mole);

Sn116 = new G4Isotope("Sn116", 50, 116, 115.901747*g/mole);

Sn117 = new G4Isotope("Sn117", 50, 117, 116.902956*g/mole);

Sn118 = new G4Isotope("Sn118", 50, 118, 117.901609*g/mole);

Sn119 = new G4Isotope("Sn119", 50, 119, 118.903311*g/mole);

Appendix B. Quarter Core ZED2 Construction 177

Sn120 = new G4Isotope("Sn120", 50, 120, 119.9021991*g/mole);

Sn122 = new G4Isotope("Sn122", 50, 122, 121.9034404*g/mole);

Sn124 = new G4Isotope("Sn124", 50, 124, 123.9052743*g/mole);

Sn = new G4Element("Tin", "Sn", 10);

Sn->AddIsotope(Sn112, 0.97*perCent);

Sn->AddIsotope(Sn114, 0.66*perCent);

Sn->AddIsotope(Sn115, 0.34*perCent);

Sn->AddIsotope(Sn116, 14.54*perCent);

Sn->AddIsotope(Sn117, 7.68*perCent);

Sn->AddIsotope(Sn118, 24.22*perCent);

Sn->AddIsotope(Sn119, 8.59*perCent);

Sn->AddIsotope(Sn120, 32.58*perCent);

Sn->AddIsotope(Sn122, 4.63*perCent);

Sn->AddIsotope(Sn124, 0.0*perCent);

// Soudium Isotopes

Na23 = new G4Isotope("Na23", 11, 23, 22.9897677*g/mole);

// Naturally occurring Sodium

Na = new G4Element("Soudium", "Na", 1);

Na->AddIsotope(Na23, 1.);

// Gallium Isotopes

Ga69 = new G4Isotope("Ga69", 31, 69, 68.9255809*g/mole);

Ga71 = new G4Isotope("Ga71", 31, 71, 70.9247005*g/mole);

Appendix B. Quarter Core ZED2 Construction 178

// Naturally Occurring Gallium

Ga = new G4Element("Gallium", "Ga", 2);

Ga->AddIsotope(Ga69, 60.108*perCent);

Ga->AddIsotope(Ga71, 39.892*perCent);

//make Gadolinium isotopes and element

Gd152 = new G4Isotope("Gd152", 64, 152, 151.919786*g/mole);

Gd154 = new G4Isotope("Gd154", 64, 154, 153.920861*g/mole);

Gd155 = new G4Isotope("Gd155", 64, 155, 154.922618*g/mole);

Gd156 = new G4Isotope("Gd156", 64, 156, 155.922118*g/mole);

Gd157 = new G4Isotope("Gd157", 64, 157, 156.923956*g/mole);

Gd158 = new G4Isotope("Gd158", 64, 158, 157.924019*g/mole);

Gd160 = new G4Isotope("Gd160", 64, 160, 159.927049*g/mole);

Gd = new G4Element("Gadolinium", "Gd", 7);

Gd->AddIsotope(Gd152, 0.20*perCent);

Gd->AddIsotope(Gd154, 2.18*perCent);

Gd->AddIsotope(Gd155, 14.80*perCent);

Gd->AddIsotope(Gd156, 20.47*perCent);

Gd->AddIsotope(Gd157, 15.65*perCent);

Gd->AddIsotope(Gd158, 24.84*perCent);

Gd->AddIsotope(Gd160, 21.86*perCent);

//make titanium isotopes and element

Ti46 = new G4Isotope("Ti46", 22, 46, 45.9526294*g/mole);

Ti47 = new G4Isotope("Ti47", 22, 47, 46.9517640*g/mole);

Ti48 = new G4Isotope("Ti48", 22, 48, 47.9479473*g/mole);

Appendix B. Quarter Core ZED2 Construction 179

Ti49 = new G4Isotope("Ti49", 22, 49, 48.9478711*g/mole);

Ti50 = new G4Isotope("Ti50", 22, 50, 49.9447921*g/mole);

Ti = new G4Element("Titanium", "Zn", 5);

Ti->AddIsotope(Ti46, 8.25*perCent);

Ti->AddIsotope(Ti47, 7.44*perCent);

Ti->AddIsotope(Ti48, 73.72*perCent);

Ti->AddIsotope(Ti49, 5.41*perCent);

Ti->AddIsotope(Ti50, 5.18*perCent);

//make Carbon isotopes and element

C12 = new G4Isotope("C12", 6, 12, 12.0*g/mole);

C13 = new G4Isotope("C13", 6, 13, 13.00335*g/mole);

C = new G4Element("Carbon", "C", 2);

C->AddIsotope(C12, 98.83*perCent);

C->AddIsotope(C13, 1.07*perCent);

// Make the uranium isotopes and element

U234 = new G4Isotope("U234", 92, 234, 234.0410*g/mole);

U235 = new G4Isotope("U235", 92, 235, 235.0439*g/mole);

U236 = new G4Isotope("U236", 92, 236, 236.0456*g/mole);

U238 = new G4Isotope("U238", 92, 238, 238.0508*g/mole);

// Make hydrogen isotopes and elements

H1 = new G4Isotope("H1", 1, 1, 1.0078*g/mole);

Hydrogen = new G4Element("Hydrogen", "H", 1);

Appendix B. Quarter Core ZED2 Construction 180

Hydrogen->AddIsotope(H1, 100*perCent);

D2 = new G4Isotope("D2", 1, 2, 2.014*g/mole);

Deuterium = new G4Element("Deuterium", "D", 1);

Deuterium->AddIsotope(D2, 100*perCent);

// Make Oxygen isotopes and elements

O16 = new G4Isotope("O16", 8, 16, 15.9949146*g/mole);

O17 = new G4Isotope("O17", 8, 17, 16.9991312*g/mole);

Oxygen = new G4Element("Oxygen", "O", 2);

Oxygen->AddIsotope(O16, 99.963868927*perCent);

Oxygen->AddIsotope(O17, 0.036131072*perCent);

OxygenZr = new G4Element("Oxygen", "O", 1);

OxygenZr->AddIsotope(O16, 0.688463*perCent);

OxygenLEU = new G4Element("Oxygen", "O", 1);

OxygenLEU->AddIsotope(O16, 100.0*perCent);

// Making Oxygen for the light water

OxygenLW = new G4Element("OxygenLW", "OLW", 2);

OxygenLW->AddIsotope(O16, 99.995998592*perCent);

OxygenLW->AddIsotope(O17, 0.004001407*perCent);

Appendix B. Quarter Core ZED2 Construction 181

// Making hydrogen for the lightwater

Hydrogen = new G4Element("HydrogenLW", "HLW", 1);

Hydrogen->AddIsotope(H1, 100*perCent);

LEU = new G4Element("Low Enriched Uranium","LEU",4);

LEU->AddIsotope(U234, 0.007432*perCent);

LEU->AddIsotope(U235, 0.9583*perCent);

LEU->AddIsotope(U236, 0.000239*perCent);

LEU->AddIsotope(U238, 99.0341*perCent);

// Make the LEU material

LEUMat = new G4Material("U235 Material", 10.52*g/cm3, 2,kStateSolid, 299.51*kelvin);

LEUMat->AddElement(LEU,88.146875681*perCent);

LEUMat->AddElement(OxygenLEU,11.853119788*perCent);

// Create H20 material

H2O = new G4Material("Light Water", 0.99745642056*g/cm3, 2, kStateLiquid);

H2O->AddElement(OxygenLW, 1);

H2O->AddElement(Hydrogen, 2);

D2O = new G4Material("Heavy Water", 1.10480511492*g/cm3, 2, kStateLiquid);

D2O->AddElement(Oxygen, 1);

D2O->AddElement(Deuterium, 2);

Graphite = new G4Material("Graphite", 1.64*g/cm3, 5, kStateSolid);

Graphite->AddElement(Li, 1.7e-5*perCent);

Graphite->AddElement(B, 3.e-5*perCent);

Appendix B. Quarter Core ZED2 Construction 182

Graphite->AddElement(C, 99.99697797*perCent);

Graphite->AddElement(V, 0.00300031*perCent);

Graphite->AddElement(Gd, 2.e-5*perCent);

// Make Argon

G4Element* Ar = new G4Element("Argon", "Ar", 18., 39.948*g/mole);

// Make Argon

G4Element* N = new G4Element("Nitrogen", "N", 7., 14.01*g/mole);

//Create Aluminum57S (Reactor Calandria)

Aluminum57S = new G4Material("Aluminuum 57S", 2.7*g/cm3, 8, kStateSolid);

Aluminum57S->AddElement(Al, 96.7*perCent);

Aluminum57S->AddElement(Si, 0.25*perCent);

Aluminum57S->AddElement(Fe, 0.4*perCent);

Aluminum57S->AddElement(Cu, 0.1*perCent);

Aluminum57S->AddElement(Mn, 0.1*perCent);

Aluminum57S->AddElement(Mg, 2.2*perCent);

Aluminum57S->AddElement(Cr, 0.15*perCent);

Aluminum57S->AddElement(Zn, 0.1*perCent);

//Create AlPresT (pressure Tube)

AlPresT = new G4Material("Aluminuum 6061", 2.712631*g/cm3, 8, kStateSolid);

AlPresT->AddElement(Al, 99.1244424*perCent);

AlPresT->AddElement(Si, 0.5922414*perCent);

AlPresT->AddElement(Fe, 0.1211379*perCent);

AlPresT->AddElement(Cu, 0.0018171*perCent);

Appendix B. Quarter Core ZED2 Construction 183

AlPresT->AddElement(Mn, 0.0383626*perCent);

AlPresT->AddElement(Cr, 0.1211405*perCent);

AlPresT->AddElement(Li, 0.00075712*perCent);

AlPresT->AddElement(B, 0.00010095*perCent);

//Create AlCalT (calandria Tube)

AlCalT = new G4Material("Aluminuum 6063", 2.684951*g/cm3, 8, kStateSolid);

AlCalT->AddElement(Al, 99.18675267*perCent);

AlCalT->AddElement(Si, 0.509640251*perCent);

AlCalT->AddElement(Fe, 0.241396625*perCent);

AlCalT->AddElement(Li, 0.00754387*perCent);

AlCalT->AddElement(B, 0.000100586*perCent);

AlCalT->AddElement(Mn, 0.041228175*perCent);

AlCalT->AddElement(Gd, 0.000010059*perCent);

AlCalT->AddElement(Ti, 0.041228175*perCent);

Moderator = new G4Material("Moderator", 1.102597*g/cm3, 2, kStateLiquid, 299.51*kelvin);

Moderator->AddMaterial(D2O, 98.705*perCent);

Moderator->AddMaterial(H2O, 1.295*perCent);

//Create Annulus Gas

AnnulusGas = new G4Material("AnnulusGas", 0.0012*g/cm3, 2, kStateGas/*, 448.72*kelvin*/);

AnnulusGas->AddElement(C,27.11*perCent);

AnnulusGas->AddElement(Oxygen,72.89*perCent);

Zr4 = new G4Material("Zircaloy-4", 6.55*g/cm3, 4, kStateSolid);

Zr4->AddElement(Oxygen, 0.12*perCent);

Appendix B. Quarter Core ZED2 Construction 184

Zr4->AddElement(CrZr, 0.11*perCent);

Zr4->AddElement(FeZr, 0.22*perCent);

Zr4->AddElement(Zr, 99.58*perCent);

// Make Air

Air = new G4Material("Air", 1.29*mg/cm3, 5, kStateGas);

Air->AddElement(N, 74.74095914*perCent);

Air->AddElement(Oxygen, 23.49454694*perCent);

Air->AddElement(Ar, 1.274547311*perCent); Air->AddElement(Li, 0.474350981*per-

Cent);

Air->AddElement(C, 0.015595629*perCent);

// Add materials

matMap["World"] = World;

matMap["LEUMat"] = LEUMat;

matMap["Graphite"] = Graphite;

matMap["Al57S"] = Aluminum57S;

matMap["AlPresT"] = AlPresT;

matMap["AlCalT"] = AlCalT;

matMap["Zr4"] = Zr4;

matMap["Air"] = Air;

matMap["Moderator"] = Moderator;

matMap["Coolant"] = H2O;

matChanged = false;

return;

}

Appendix C

Log File

———————————————————

Geant 4 Simulation of Neutron Stability

#

Geant4 version Name: geant4-09-06-patch-02 (17-May-2013)

Neutron Stability rev.0.9.3 (Bazaar build date 2013-03-13 08:01:38 -0400)

#

Current time: Tue Feb 17 13:13:02 2015

#

World Choice:

World: Q_ZED2

Reactor Material: 0

Shannon entropy mesh: (20, 20, 20)

#

Run Options:

Number of runs: 200

Number of primaries per Event: 11250

Number of events: 80

Run duration (ns): 1e+06

185

Appendix C. Log File 186

Initial Neutron Energy (MeV): 2

#

World Properties:

#

Nuclear Data Options:

Data Library:

/home/mahzoos/geant4.9.6-install/share/Geant4-9.6.2/data/G4NDL4.2

Cross section temperature (K): 0

#

Log Files:

Logging File: Log_Sub114_Q_ZED2.txt

Output source file: Src_Sub114_Q_ZED2.txt

Save source distribution interval: 50

Output fission data file: Fiss_Sub114_Q_ZED2.txt

#

Initialization time: User=82.06s Real=170.64s Sys=17.9s

#

———————————————————

#

Starting Simulation

#

Number of Primaries per Run = 900000

Number of Events per Run = 80

#

#

Interpolation started at run 50

Appendix C. Log File 187

Run Start (us) Lifetime (us) Production Loss krun keff FS Shannon H S Shannon H
74 3.65E+04 4384 65603 65812 0.9979 0.9968 67.2818 95.98
75 3.70E+04 4705 66273 66751 0.9952 0.9928 67.2484 95.9901
76 3.75E+04 3968 66931 66982 0.9995 0.9992 67.2733 95.946
77 3.80E+04 3961 66861 66721 1.0014 1.0021 67.1755 95.9392
78 3.85E+04 1.17E+04 66870 66783 1.0009 1.0013 67.2828 95.9386
79 3.90E+04 2188 67481 67268 1.0021 1.0032 67.2167 95.9249
80 3.95E+04 7280 67410 66979 1.0043 1.0064 67.316 95.9341
81 4.00E+04 2512 65659 66408 0.9925 0.9887 67.2438 95.9619
82 4.05E+04 1917 66201 66526 0.9968 0.9951 67.3232 95.938
83 4.10E+04 6584 65857 66318 0.9954 0.993 67.2709 95.9836
84 4.15E+04 5222 64489 65481 0.9901 0.9849 67.2245 96.0378
85 4.20E+04 3769 66302 66516 0.9979 0.9968 67.2728 96.0246
86 4.25E+04 7992 66512 66295 1.0022 1.0033 67.2296 95.9617
87 4.30E+04 3798 67916 67407 1.0051 1.0076 67.2496 95.9378
88 4.35E+04 6873 65940 66658 0.9928 0.9892 67.145 95.9479
89 4.40E+04 6899 66257 66334 0.9992 0.9988 67.2981 95.9489
90 4.45E+04 5327 66421 66501 0.9992 0.9988 67.23 95.9416
91 4.50E+04 5935 65312 65690 0.9962 0.9942 67.2022 95.963
92 4.55E+04 4377 66459 66785 0.9967 0.9951 67.2677 95.9755
93 4.60E+04 3197 66943 66815 1.0013 1.0019 67.2912 95.8984
94 4.65E+04 4997 66129 66341 0.9979 0.9968 67.1732 95.9398
95 4.70E+04 1957 66345 66574 0.9977 0.9966 67.3072 95.9263
96 4.75E+04 4715 66139 66231 0.9991 0.9986 67.1486 95.9869
97 4.80E+04 2716 67229 66872 1.0036 1.0053 67.2047 95.9562
98 4.85E+04 3005 65051 65942 0.9911 0.9865 67.2178 95.9778
99 4.90E+04 4169 66151 66360 0.9979 0.9969 67.317 95.9916
100 4.95E+04 4643 65878 66493 0.9939 0.9908 67.2792 95.9748
Avg (last 37 runs): 40.36 537490 597459 0.933351 0.899621 58.9123 88.9221 2.3e+03

Source convergence limit = 2%

Source converged after 50 runs.

#

Total computation time: User=3.9e+03s Real=4.6e+05s Sys=2.5e+02s

Appendix D

Source File

Uvec 1878463799 149 1687352324 124790585 # Source file for following input:

#

———————————————————

#

Geant 4 Simulation of Neutron Stability

#

Geant4 version Name: geant4-09-06-patch-02 (17-May-2013)

Neutron Stability rev.0.9.3 (Bazaar build date 2013-03-13 08:01:38 -0400)

#

Current time: Fri Jan 23 14:45:47 2015

#

World Choice:

World: Q_ZED2

Reactor Material: 0

Shannon entropy mesh: (20, 20, 20)

#

Run Options:

Number of runs: 100

188

Appendix D. Source File 189

Number of primaries per Event: 1000

Number of events: 4

Run duration (ns): 100000

Initial Neutron Energy (MeV): 2

#

World Properties:

#

Nuclear Data Options:

Data Library:

/home/salmamah/geant4.9.6-install/share/Geant4-9.6.2/data/G4NDL4.2

Cross section temperature (K): 0

#

Log Files:

Logging File: Log_ZED2_qmoren.txt

Output source file: Src_ZED2_GraphiteTest.txt

Save source distribution interval: 1

Output fission data file: Fiss_ZED2_qmorenlongertod.txt

#

#

Source distribution after 9 runs

900000

3916

900000 6.8653236593135749e+05

-9.9647743721373763e+02 -1.0244133034371525e+03 -1.7714993419830464e+03

-3.6778566063639857e-03 -4.3646228882421928e-03 7.6166935298490758e-05

7.9286222949231000e-01 8.7348099015113834e-01 1.9369974052051980e-01

1.9379515821094258e+00 1.0000000000000000e+00

Above values are defined below in order they are saved in the file

Appendix D. Source File 190

Global Time [ns] The current simulation time the
other data was recorded at that time.

Lifetime [ns] The total simulation time since the
hit that created the neutron. For de-
layed neutrons, this is the initial fis-
sion that set off the decay chain.

Psition (x,y,z) [mm] The position of the neutron at the
global time.

Momentum(x,y,z) [Mev/c] The momentum of the neutron at
the global time.

η (x,y,z) [mm] theNumberOfInteractionLengthLeft
for the hadronic processes.

Discretionary Energy/weight/etc

Bibliography

[1] J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis. John Wiley & Sons,

1976.

[2] W. M. Stacey, Nuclear Reactor Physics. John Wiley & Sons, 2001.

[3] E.E.Lewis and J. W.F. Miller, Computational methods of neutron transport. New

York: John Wiley & Sons, 1984.

[4] J. Atfield, S. Yue, and M. Zeller, “Subcritical reactivity measurements in ZED-2,”

2013.

[5] J. Atfield, “28-element natural uo2 fuel assemblies in ZED-2,” tech. rep., ZED-

2 HWR EXP 001, in OECD-NEA Nuclear Safety Committee at AECL, 2011.

International Handbook of Evaluated Reactor Physics Benchmark Experiments.

[6] L. Russell, “Simulation of time-dependent neutron populations for reactor physics

applications using the geant4 monte carlo toolkit,” Master’s thesis, McMaster Uni-

versity, Department of Engineering Physics, 2012.

[7] L. Russell, A. Buijs, and G. Jonkmans, “G4-STORK: a Monte Carlo reactor ki-

netics simulation code,” Nuclear Science and Engineering, 2013.

[8] J. Leppänen, Development of a New Monte Carlo Reactor Physics Code. PhD

thesis, Helsinki University of Technology, 2007.

191

References 192

[9] P. Rinard, “Neutron interaction with matter,” in Passive Nondestructive Assay of

Nuclear Materials, p. 357, 1991.

[10] J. Leppänen et al., Development of a new Monte Carlo reactor physics code. VTT

Technical Research Centre of Finland, 2007.

[11] R. P. Dermott E. Cullen, Christopher J. Clouse and R. C. Little, “Static and dy-

namic criticality: Are they different?,” November 2003.

[12] J. C. Wagner, Monte Carlo transport calculations and analysis for reactor pres-

sure vessel neutron fluence. PhD thesis, The Pennsylvania State University, 1994.

[13] R. Ben, “Solving the diffusion equation numerically.” University Lecture, 2014.

[14] J. B. Taylor, The development of a three-dimensional nuclear reactor kinetics

methodology based on the method of characteristics. ProQuest, 2007.

[15] K. O. Ott and R. J. Neuhold, Introductory nuclear reactor dynamics. American

Nuclear Society La Grange Park, 1985.

[16] L. L. Carter and E. D. Cashwell, “Particle-transport simulation with the monte

carlo method,” tech. rep., Los Alamos Scientific Lab., N. Mex.(USA), 1975.

[17] J. F. Briesmeister et al., “MCNP-A general Monte Carlo N-particle transport

code,” Version 4C, LA-13709-M, Los Alamos National Laboratory, 2000.

[18] R. Forster and T. Godfrey, “MCNP-a general Monte Carlo code for neutron and

photon transport,” in Monte-Carlo Methods and Applications in Neutronics, Pho-

tonics and Statistical Physics, pp. 33–55, Springer, 1985.

[19] S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce,

M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., “GEANT4—a simulation

toolkit,” Nuclear instruments and methods in physics research section A: Ac-

celerators, Spectrometers, Detectors and Associated Equipment, vol. 506, no. 3,

pp. 250–303, 2003.

References 193

[20] J. Allison, R. Brun, F. Bruyant, F. Bullock, C. Chang, J. Dumont, P. Hattersley,

R. Hemingway, P. Hobson, D. Hochman, et al., “An application of the GEANT3

geometry package to the description of the opal detector,” Computer Physics Com-

munications, vol. 47, no. 1, pp. 55–74, 1987.

[21] N. P. A. J. G.Cosmo, S.Giani et al., “GEANT4: An object-oriented toolkit for

simulation in HEP,” CERN/LHCC, pp. 98–44, 1998.

[22] G. Collaboration, “Introduction to geant4,” 2012.

[23] W. Naing, M. Tsuji, and Y. Shimazu, “Subcriticality measurement of pressurized

water reactors by the modified neutron source multiplication method,” Journal of

Nuclear Science and Technology, vol. 40, no. 12.

[24] D. E. Cullen, “TART2012 an overview of a coupled neutron-photon 3-D, combi-

natorial geometry time dependent Monte Carlo transport code,” 2012.

[25] J. Leppänen, “Serpent–a Continuous-energy Monte Carlo Reactor Physics Burnup

Calculation Code,” 2012.

[26] Code distribution and data libraries. Available at http://montecarlo.

vtt.fi/users.htm.

[27] G. Cooperman, V. H. Nguyen, and I. Malioutov, “Parallelization of geant4 using

top-c and marshalgen,” in Network Computing and Applications, 2006. NCA 2006.

Fifth IEEE International Symposium on, pp. 48–55, IEEE, 2006.

[28] J.P.Wellisch, “THE NETRON_HP NETRON TRANSPORT CODE.,” American

Nuclear Society La Grange Park, 2005.

[29] E. Mendoza, D. Cano-Ott, C. Guerrero, and R. Capote, “New evaluated neutron

cross section libraries for the geant4 code,” tech. rep., International Atomic Energy

Agency, International Nuclear Data Committee, Vienna (Austria), 2012.

http://montecarlo.vtt.fi/users.htm
http://montecarlo.vtt.fi/users.htm

References 194

[30] G. Yesilyurt, Advanced Monte Carlo methods for analysis of very high temper-

ature reactors: On-the-fly Doppler broadening and deterministic/Monte Carlo

methods. PhD thesis, Los Alamos National Laboratory, 2009.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Scope of the study
	1.1.1 Status of the G4-STORK code
	1.1.2 Structure of the Thesis
	1.1.3 Scientific Value of This Work
	1.1.3.1 Motivations

	I Theoretical Background
	2 Theory
	2.1 Physical Background
	2.1.1 Neutron Interactions and Cross Sections
	2.1.1.1 Cross Sections
	2.1.1.2 Neutron Interactions
	2.1.1.3 Neutron Transport Equation

	2.1.2 Criticality
	2.1.2.1 Methods for Criticality Calculations

	3 Computational Methods
	3.1 Deterministic Method
	3.1.1 Diffusion Theory
	3.1.2 Static Deterministic Solution
	3.1.3 Dynamic Deterministic Simulation

	3.2 Monte Carlo Method
	3.2.1 Neutron Transport Simulation in Monte Carlo
	3.2.1.1 Monte Carlo Simulation World and Initial Source Distributions
	3.2.1.2 Monte Carlo Calculations

	3.2.2 GEANT4 Monte Carlo Toolkit
	3.2.2.1 History
	3.2.2.2 Structure

	3.2.3 General Geant4 Simulation Scheme
	3.2.3.1 Initial Actions
	3.2.3.2 Final Actions

	3.3 Nuclear Data

	II Modelling the Experiment in the G4STORK code
	4 Previous Related Research
	4.1 Experiments Related to Subcritical Measurements
	4.2 Codes Related to G4-STORK
	4.2.1 MCNP5
	4.2.2 TART 2012
	4.2.3 Serpent

	5 Methodology
	5.1 G4-STORK
	5.1.1 Data Processing

	5.2 Implementation of G4-STORK
	5.2.1 Neutron Population Stabilization
	5.2.1.1 Renormalization Method

	5.2.2 Computed Quantities
	5.2.3 Delayed Neutrons
	5.2.4 Boundary Condition Options

	5.3 Modeling the ZED-2 Subcritical Reactivity Measurements Experiment in G4-STORK
	5.3.1 The ZED-2 Subcritical Experiment
	5.3.1.1 ZED-2 Reactor
	5.3.1.2 Reactivity Measurements
	5.3.1.3 Inverse Point kinetics Method
	5.3.1.4 MCNP Code Calculation

	5.3.2 G4-STORK Implementation of the ZED-2 Subcritical Experiment
	5.3.2.1 Geometry Setup
	5.3.2.2 Full Core
	5.3.2.3 Quarter Core
	5.3.2.4 Material
	5.3.2.5 Cross section Data Library

	6 Results and Discussion
	6.1 ZED-2 Full Core
	6.1.1 Critical Height
	6.1.2 Subcritical Height

	6.2 ZED-2 Quarter Core

	7 Summary and Conclusions
	A Full Core ZED2 Construction
	B Quarter Core ZED2 Construction
	C Log File
	D Source File
	Bibliography

	anm0:

