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ABSTRACT 

Background and Objectives: Pharmacogenetics has the potential to maximize drug efficacy and 

minimize adverse effects of cardiovascular disease (CVD) but its translation into clinical practice 

been slow. However, recent advancements in genotyping and statistical methodologies have now 

provided robust evidence in the support of personalized medicine. This thesis addresses how the 

advancements in pharmacogenetics may help to gain novel insights into existing drug targets, 

inform and guide clinical decision-making and validate potential disease target pathways.  

Methods: This was achieved by exploring whether the COX-2 genetic variant (rs20417) is 

associated with a decreased risk of CVD outcomes, assessing whether bile acid sequestrants 

(BAS) are associated with a reduced the risk of coronary artery disease (CAD) using the 

principles of Mendelian Randomization and investigating whether genetic variants associated 

with dysglycaemia are associated with an increased risk of CAD.  

Results: We demonstrated that COX-2 carrier status was associated with a decreased risk of 

major cardiovascular outcomes. Furthermore, we also showed that BAS appear to be associated 

with a reduced risk of CAD and genetic variants associated with HbA1c and diabetes were 

associated with an increased risk of CAD. 

Conclusions: The convergence of technological and statistical advancements in 

pharmacogenetics have led to a more high-quality and cost-effective means of assessing the 

effect of CVD therapeutic agents.  
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CHAPTER 1 

Introduction 

 

Cardiovascular disease (CVD) is one of the most common causes of mortality and morbidity 

worldwide. It is widely recognized that there is much intra-individual variability in the response 

to CVD drug therapies(1). Several factors contribute to this variability, including drug 

adherence, drug interactions and genetic polymorphisms (2;3). Pharmacogenetics is the study of 

genetic variability in drug response. The primary goal of pharmacogenetics is to use the effect of 

genetic polymorphisms to optimize drug therapy in order to reduce the risk of adverse 

cardiovascular events.  Therefore a better understanding of the genetic determinants of 

cardiovascular medications may ultimately lead to personalized tailoring of these therapeutic 

agents.  

 

The adoption of pharmacogenetics into clinical practice has been slow due to the lack of 

replication amongst previous published studies(4;5). Although there are several statistical and 

methodological explanations for these sometimes inconsistent findings(1), the lack of replication 

is primarily due to inadequate sample sizes and the selection of genetic variants used in 

candidate gene studies.  Pharmacogenetic studies require large sample sizes because they must 

be powered to detect common variants with relatively low effect sizes or rare variants with large 

effect sizes (6;7). Furthermore, the candidate genetic polymorphism should have a known 

functional effect on the metabolism, transportation or targeting of the therapeutic agent and it 

should be strongly associated with a clinical response or outcome as documented in animal 
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model studies or in pharmacokinetic and pharmacodynamics studies. Thus by ensuring adequate 

sample sizes and a strong understanding of the molecular mechanisms of the underlying drug 

response allows for more precise estimation of the pharmacogenetic association.   

 

Over the past decade there has been a wide scale accumulation of genetic data, owing to 

decreasing genotyping costs and new developments in high throughput technologies, such as 

exome sequencing and Next generation sequencing (NGS). These technologies allow for faster, 

cost-effective and more targeted sequencing of the whole genome with the potential for the 

discovery of novel and low-frequency genes associated with CVD(8). In addition, large biobanks 

and national and international data consortia have been developed to provide freely available 

genetic datasets, which consist of harmonized phenotypes and genotype variables from several 

prospective cohort studies. For example, the CARDIoGRAMplusC4D performed a meta-analysis 

of 63,746 cases of coronary artery disease (CAD) and 130,681 controls to identify genetic 

variants associated with the risk of CAD and myocardial infarction(9).  These large datasets 

provide enough power to detect genetic associations that may have not reached genome-wide 

significance in underpowered genome-wide association studies (GWAS), as well as the ability to 

identify additional loci in pathways underlying the pathogenesis of CAD and potential drug 

targets.  

 

In light of the accumulation of information from genetic data consortia, researchers now have a 

greater ability to account for the conflicting findings among published pharmacogenetic studies. 

Initially, many reported pharmacogenetic associations have not been replicated in larger patient 

populations with the use of stringent statistical parameters(10;11). It is most likely that these 
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initial pharmacogenetic studies overestimated the effect size of the genetic variant due to limited 

sample size or poorly characterized functional genetic variants(7). For instance, the effect of 

cyclo-oxygenase-2 (COX-2) enzyme in CVD is uncertain owing to the adverse effects reported 

in randomized controlled trials (RCTs) of the selective COX-2 inhibitor(14;15) and conflicting 

reports from animal model studies(12;13). However, by using data from 49,232 participants to 

assess the effect of the rs20417 single nucleotide polymorphism (SNP) (COX-2), which encodes 

for the COX-2 enzyme and has been associated with a decrease in COX-2 activity and reduced 

risk of CVD outcomes, the protective role of COX-2 was confirmed. Therefore improved access 

to large datasets with high genome coverage provides enough statistical power to confirm 

previously reported drug targets. Furthermore, revisiting these associations helps to enhance our 

understanding of how these genetic variants contribute to the pathogenesis of CVD and 

identifying potential drug targets.  

 

As a result of the vast amount of data generated from genetic consortia, there is now a need to 

develop novel statistical methodologies in order to analyze and interpret these datasets.  For 

instance, genetic variants may provide a useful instrument in assessing potential causal 

relationships reported in observational studies. Specifically, Mendelian Randomization analyses 

use genetic associations to explore the effects of modifiable exposures on outcomes based on the 

principle that genetic variants are randomly allocated at meiosis and are not influenced by factors 

that may bias observational associations, such as confounding and reverse causation(16). Thus 

by adopting the principles of Mendelian Randomization analyses enables us to infer the strength 

of the causal association reported in observational studies.  
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The principles of Mendelian Randomization may also be applied for drug target validation in 

order to guide treatment decisions in the absence of evidence from randomized trials. This 

approach helps to strengthen the rationale for conducting an RCT(16) because it is highly cost-

effective due to the availability of genetic data through large-scale biobanks and data consortia. 

Furthermore, the random allocation of genetic variants replicates the double-blinded 

randomization process used in RCTs and carriers of an effect allele represent lifelong differences 

in exposure levels in comparison to their non-carriers counterparts unlike RCTs, where the 

length of the exposure is typically restricted to several years of follow-up. Drug target validation 

may be achieved by using functional alleles of a gene within a drug target pathway to extrapolate 

the effects of a therapeutic agent(17;18).  For instance, bile acid sequestrants (BAS) are a widely 

prescribed intestinal cholesterol absorption agent yet the effects of BAS on the risk of CAD in 

uncertain. By applying the principles of Mendelian Randomization to explore the effect of BAS 

on the risk of CAD, we assessed whether the rs4299376 SNP (ABCG5/8) was associated with 

CVD outcomes. Thus Mendelian Randomization analysis may help to distinguish on-target and 

off-target actions of therapeutic interventions.  

 

Another advantage of using a Mendelian Randomization analysis is it may resolve conflicting 

finding between observational studies and clinical trials and helps to identify potential disease 

target pathways. For instance, observational studies have shown that diabetes is associated with 

increased risk of CAD while elevated levels of glycated hemoglobin (HbA1c) and fasting glucose 

are modestly associated with CAD(19;20). In contrast, many glucose lowering clinical trials have 

not showed an effect on the risk of CAD. Thus we used data from large genetic epidemiology 

studies and applied the principles of Mendelian randomization to confirm the role of 
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dysglycemia in CAD. We reported that SNPs associated with diabetes and HbA1c appeared to be 

associated with the risk of CAD. Thus Mendelian Randomization studies help to determine 

which biomarkers are causally associated with CVD, and in turn, help to inform which disease 

pathways should be targeted.   

 

The objectives of this thesis was to assess whether the recent advancements in  pharmacogenetics 

allows for the confirmation of existing drug targets, informs clinical decision-making and 

validates potential drug target pathways. This will be achieved by:  

1. Conducting a review to identify the potential clinical implications of pharmacogenetics 

and to describe outstanding methodological and statistical issues among these studies 

(Chapter 2);  

2. Exploring whether the COX-2 genetic variant (rs20417) is associated with a decreased 

risk of CVD outcomes (Chapter 3); 

3. Testing whether BAS are associated with a reduced the risk of cardiovascular outcomes 

using the principles of Mendelian Randomization (Chapter 4); and   

4. Investigating whether SNPs associated with dysglycaemia are associated with an 

increased risk of CAD (Chapter 5).  
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ABSTRACT 

Pharmacogenetics is the study of inherited variation in drug response. The goal of 

pharmacogenetics is to develop novel ways to maximize drug efficacy and minimize toxicity for 

individual patients. Personalized medicine has the potential to allow for a patient’s genetic 

information to predict optimal dosage for a drug with a narrow therapeutic index, to select the 

most appropriate pharmacologic agent for a given patient, and to develop cost-effective 

treatments. Although there is supporting evidence in favor of pharmacogenetics, its adoption in 

clinical practice has been slow because of sometimes conflicting findings among studies. This 

failure to replicate findings may result from a lack of high-quality pharmacogenetic studies, as 

well as unresolved methodological and statistical issues. The objective of this review is to 

discuss the benefits of incorporating pharmacogenetics in clinical practice. We will also address 

outstanding methodological and statistical issues that may lead to heterogeneity among reported 

pharmacogenetic studies and how they may be addressed.
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Introduction 

It is widely recognized that there is interindividual variability in drug response, where subgroups 

of patients experience either adverse drug reactions or do not respond properly to treatment 1. 

While the definition of individualized response to drug treatment is not yet fully understood2 and 

there is uncertainty as to whether certain patients are consistent non-responders or simply 

inconsistent responders, this variability may be attributed to biological factors (i.e. age, sex, 

nature of disease), behavioral factors (i.e. smoking, drug interactions) or genetic factors (i.e. 

genetic variants). Furthermore, the lack of patient adherence is also recognized as an important 

contributor to variability of response.  For example, the discontinuation of antiplatelet therapy is 

the strongest risk factor for stent thrombosis in percutaneous coronary intervention3. 

Nonetheless, it is estimated that genetic factors can account for 20% to 95% of individual 

variation in drug response4; however, the amount of explained variation depends on the class of 

drugs.  

 

The wide variability in drug response emphasizes the need for a more “personalized” approach to 

medical treatment. It is possible that pharmacogenetics can address this need by providing a 

better understanding of how genetic variants influence drug response 5. This review will focus 

primarily on pharmacogenetics, which assesses how genetic variants influences drug metabolism 

and effect. The ultimate goal of pharmacogenetics is to develop novel ways to minimize harmful 

drug effects and to optimize care for individual patients.  More specifically, a patient’s genetic 

information may be used to predict the optimal dosage for a drug with a narrow therapeutic 
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index, to select the most appropriate pharmacologic agent, and to develop cost-effective 

treatment plans.   

 

Despite the promise of personalized medicine, there has been little methodological consistency 

among pharmacogenetic studies. This may be due to modest effect sizes, heterogeneity among 

study designs and patient populations, as well as a lack of standardization among biological and 

phenotypic measures 6-8.  Holmes et al. (2009) performed a systematic review and a field 

synopsis of pharmacogenetic studies9. They reported that the lack of consistency among studies 

may be a result of the preponderance of reviews over primary research, small sample sizes, a 

mainly candidate gene approach, surrogate markers, an excess of nominally positive to truly 

positive associations and paucity of meta-analyses. Therefore there is an urgent need for properly 

designed pharmacogenetic studies to advance the discovery and development of medical 

strategies for individualized treatment. The objective of this review is to discuss the potential 

benefits of incorporating pharmacogenetics into clinical practice, as well as methodological and 

statistical challenges faced in pharmacogenetic studies. In this review, we will first identify 

potential clinical applications of pharmacogenetic and illustrate these with promising 

contemporary examples.  In the second part, we will summarize some of the major 

methodological challenges facing pharmacogenetic studies. 

 

Potential Applications Pharmacogenetics 

Personalized medicine has the potential to improve drug safety and efficacy for a specific 

individual.  Adoption of pharmacogenetics in clinical practice promises more effective decision-

making with regard to diagnostic testing, drug selection and dosing. In this section we will 
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describe some future applications of pharmacogenetics and provide contemporary examples that 

reflect how these topics may be applied to a clinical setting. It should be noted by readers, that in 

many instances further research is needed to unequivocally recommend pharmacogenetic testing. 

It is widely believed that a better understanding of the genetic mechanisms in drug response has 

the potential to help clinicians predict an individualized drug dosage; however, to date, there are 

few examples that illustrate this hypothesis with improved clinical outcomes.  

 

Individualized Drug Dosage  

The genetic variants that influence the observed differences in drug response can be classified 

into two groups: pharmacokinetics (PK) and pharmacodynamics (PD). The genes that influence 

the PK properties of a drug affect the mechanisms of how the drug is absorbed, distributed, 

metabolized and excreted by the body. The genes that influence the PD of a drug affect the 

mechanism of the drug’s target and how it impacts the body. One underlying principle of 

individualized drug dosage is that it must be faster and more effective than use of a PK or PD 

assay alone. In other words, genetic testing may not be required if the therapeutic level of the 

drugs or a surrogate can be measured, and it is rapidly available and widespread, such as the case 

with certain antibiotics (not withstanding the genetic susceptibility of the pathologic agent).  

 

For example warfarin has a narrow therapeutic index, and inadequate or excessive 

anticoagulation can lead to an increased risk of adverse cardiovascular events or bleeding 

complications.  Thus warfarin therapy dosage is complicated by individual variability and 

requires regular monitoring to achieve proper anticoagulation effects. Initial warfarin therapy is 

administered by a fixed dosage, or by an estimated regimen based on the patient’s clinical 
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characteristics with further adjustments based on the patient’s anticoagulation response measured 

by laboratory assays, such as the International Normalized Ratio (INR). However, it may be 

more beneficial to use both genetic factors and clinical covariates as opposed to frequent INR 

monitoring because genetic polymorphisms account for 30-35% of the variability in warfarin 

metabolism and clinical factors account for 17-21% of variation in warfarin dosing10. Therefore 

an algorithm that incorporates a combination of these factors would ultimately improve the time 

required to establish a stable maintenance dose. 

 

The principle genes involved in the metabolism of warfarin are the cytochrome P450 (CYP) 2C9 

enzyme and the vitamin K epoxide reductase complex, subunit 1 (VKORC1) gene. Carriers of at 

least one or more variant alleles of the CYP2C9 genotype are associated with overcoagulation 

and an increased risk of bleeding while on warfarin therapy 11-13; whereas, those who possess the 

variant VKORC1 genotype experience warfarin treatment resistance and an increased risk of 

adverse cardiac events 14. The International Warfarin Pharmacogenetics Consortium developed a 

pharmacogenetic algorithm for an appropriate warfarin dosage 15. The study reported that among 

5000 participants the pharmacogenetic algorithm identified a larger proportion of patients who 

required a lower dose (≤ 21 mg per week) of warfarin and those who required a higher dose (≥ 

49 mg per week) to maintain stable therapeutic anticoagulation. The genetically-guided treatment 

benefited 46.2% of the entire cohort, specifically those for whom the standard dosage of warfarin 

would not be appropriate. It is important to properly identify this proportion of patients because 

some (i.e. who require ≤ 21 mg per week) are at risk for excessive anticoagulation, whereas 

others who require a higher dose of warfarin (i.e. >/=49 mg/wk) are at risk of inadequate 
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anticoagulation. Data on adverse events such as thromboembolic events or bleeding were not 

collected for this study. 

 

In another study patients who were treated using a pharmacogenetic algorithm had 28% less 

hospitalizations after six months of warfarin therapy compared to a control group (18.5% vs. 

25.5%, p < 0.001)16.  The ability to increase the accuracy of dose prediction may help to enhance 

drug efficacy and drug safety associated with under-dosing or over-dosing patients.  Although 

promising, it should be emphasized that the implementation of pharmacogenetic testing 

ultimately depends on clear evidence of improved clinical outcomes. 

 

Individualized Drug Selection 

Personalized medicine can help to guide individualized treatment when the clinical effect of a 

drug is expected to vary according to genotype. Under these conditions, the risk-benefit balance 

of a drug might depend on the variant allele carrier status. This balance can be affected by 

pharmacogenetic effects on safety, efficacy, or both.  For example the incidence of adverse 

clinical events may differ according to genotypic groups, if for instance slow metabolizers 

accumulate a toxic metabolite. Thus prior knowledge of a patient’s genotype may be used to 

guide clinical decision-making because the patient may benefit from an alternative 

pharmacological regiment, such that they receive a reduced dose of a standard therapy or a 

different drug altogether. Conversely, patients who are classified as fast metabolizers may 

experience increased drug efficacy from a higher dose if their genetic status results in accelerated 

clearance of the active metabolite. 
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Chronic infection with hepatitis C virus (HCV) is treated with a combined therapy of 

peginterferon-α-2a (PegIFN-α-2a) or PegIFN-α-2b and ribavirin.  However, less than half of 

treated patients achieve a sustained virological response (SVR) 17. A genome-wide association 

study of 1671 chronic HCV patients reported that a genetic polymorphism in the IL28B gene 

(rs12979860) region was strongly associated with SVR 18. The authors reported that the 

polymorphism was associated with a two-fold change in treatment response among Caucasians 

(P=1.06x10-25) and African Americans (P=2.06x10-3).  Interestingly, the differences in allelic 

frequency of the IL28B genetic variant may explain about half of the difference in treatment 

response between these two ethnic groups.  

 

Another study assessed whether accounting for the human leukocyte antigen C (HLA-C), and the 

killer immunoglobulin-like receptors (KIR) improved the predictive value of the IL28B genotype 

19. The authors found that the carriers of the variant IL28B genotype were associated with 

absence of treatment-induced HCV infection clearance and absence of spontaneous HCV 

infection clearance. Furthermore carriers of the variant HLA-C genotype were associated with 

failed treatment but not spontaneous HCV infection clearance. Thus the prediction of treatment 

failure among HCV patients was improved from 66% using the IL28B genotype to 80% with the 

use of the IL28B and HLA-C genotypes. Incorporating this information can help clinicians to 

improve the clinical management of patients infected with chronic HCV because they will be 

able to better predict those who will respond the best to PegIFN treatment, which will help to 

reduce the adverse side effects associated with this treatment.  
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Pharmacoeconomy 

Pharmacogenetics has the potential to reduce the costs associated with inappropriate drug 

treatments or serious adverse drug reactions that require hospitalization 20. Pharmacoeconomic 

considerations are especially important given the moderate effects of genetic determinants 

typically reported in pharmacogenetic studies.  In other words, if a more expensive drug has a 

slightly decreased benefit in individuals with a certain genotype, then careful evaluation of the 

costs associated with an alternative therapy or the cost of genotyping is necessary before 

recommending further pharmacogenetic testing. 

 

One example of utilizing genetic testing to improve cost-effectiveness is the treatment of HIV 

positive patients with abacavir, a nucleotide reverse-transcriptase inhibitor. Abacavir 

Hypersensitivity Syndrome (AHS) is a potentially lethal side effect affecting 5-8% of patients in 

the first six weeks of treatment 21.  It presents with a constellation of symptoms such as fever and 

rash; and rechallenge with abacavir, after initial therapy, may result in worsening AHS 

symptoms with an increased risk of mortality 22. Patients who experience AHS are strongly 

associated with the variant histocompatibility complex class I allele (HLA-B)*5701 genotype, 

which is present in 2-6% of Caucasians 23.   

 

Mallal et al (2008) observed that, in a double-blind prospective randomized study, Prospective 

Randomized Evaluation of DNA screening in a Clinical Trial (PREDICT-1), selective abacavir 

use informed by HLA-B*5701 testing reduced the risk of AHS 23. The authors of this study 

reported that screening eliminated AHS (0% in the prospective-screening group vs. 2.7% in the 

control group, P<0.001), and had a negative predictive value of 100% and a positive predictive 
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value of 47.9%. This led to the recommendation that prospective HLA-B*5701 screening should 

be adopted in clinical care 24, 25.  

 

Furthermore several studies have evaluated the cost of prospective HLA-B*5701 screening 26-28. 

Kauf et al analyzed the cost-effectiveness of HLA-B*5701 screening by assessing the cost of 

prior genetic screening and the cost of using an alternative medication, tenofovir, within short-

term and lifetime models 28. The authors reported that the short-term costs of prospective 

screening were dependent on the cost of the genetic test, the cost associated with AHS treatment 

and screening performance. The lifetime models showed that genetically-guided abacavir 

treatment was more effective and less costly than alternative treatment with tenofovir. 

Furthermore, as of 2009, the patent for abacavir has expired in the United States. Thus the cost-

effectiveness of HLA-B*5701 screening prior to abacavir-based treatment is now highly 

dependent on the prevalence of the HLA-B*5701 genotype, the cost of prescribing a generic 

medication compared to a non-generic one, screening costs and the method of health care 

funding.   

 

Methodological Issues in Pharmacogenetics 

Although pharmacogenetics has the potential to address variability in drug response and improve 

drug efficacy and safety, the adoption of pharmacogenetics in clinical practice has been slow. 

This resistance may stem from sometimes conflicting findings among pharmacogenetic studies. 

The failure to replicate these findings may result from a lack of high-quality studies and 

unresolved methodological issues. In this section, we will address methodological issues 
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pertaining to pharmacogenetic study design and provide specific examples of pharmacogenetic 

studies that illustrate potential challenges the reader may encounter.  

 

Study Design 

Table 2.1 provides a brief description of each study design. 

 

Randomized Controlled Trials 

Randomized controlled trials (RCTs) remain the “gold standard” in epidemiological study 

design. In the field of pharmacogenetics, there are two ways in which RCTs can be used to 

establish pharmacogenetic determinants of drug safety and efficacy. First, patients can be 

randomized to a genetically-guided therapy versus standard care. While this design offers the 

best level of evidence to support the use of genetic data, it may be impractical in some situations. 

For example the speed of genotyping may cause delays in treatment or randomization for trials 

that require known pharmacogenetic determinants. Alternatively, if the genotype of interest is 

rare and the aim of the study is to compare response between two or more therapeutic regimen 

among carriers, participants may be stratified based on their genotype and then randomized to 

the intervention or control group.  

 

Substudies within RCTs can be used to determine the impact of genetic variants in response to 

drug outcomes. In these studies stored biological samples from pre-existing clinical trials are 

genotyped with power comparable to that of a prospectively planned pharmacogenetic cohort 

study. This appears to be an optimal design to discover and characterize pharmacogenetic 

determinants prior to an evaluation of gene-guided therapy versus standard care. 
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Pharmacogenetic RCTs are able to measure the independent effects of the genotype, the drug 

response and the gene-drug interaction in the active drug and placebo/control groups. With this 

approach it is then possible to distinguish the differences between simple markers of disease 

progression and true pharmacogenetic markers, whose effect on disease progression is only seen 

in the presence of a drug. This can also be assessed by developing a “gene score” (i.e. combining 

information from many SNPs) and testing for a drug-gene interaction.  

 

One major limitation of pharmacogenetic RCTs is the cost and time required to conduct the 

study. These studies require a large sample size to be powered enough to detect a modest effect 

size. Furthermore, a post-hoc analysis of a RCT may be inappropriate for a pharmacogenetic 

study because the initial cohort was designed using a specific null hypothesis, estimated effect 

size and study power and may underestimate the true gene-drug interaction.  

An example of a genetically-guided RCT is the Clarification of Optimal Anticoagulation through 

Genetics (COAG) trial 29. The COAG trial is a randomized, double-blinded clinical trial that 

compares genotype-guided dosing and clinical guided dosing for the initiation of warfarin 

treatment. The objective of the trial is to determine whether genetic information improves drug 

treatment. This trial is ongoing and final results of the study are yet to be published. 

 

Another example of a pharmacogenetic RCT is the Statin Response Examined by Genetic 

Haplotype Markers (STRENGTH) Study 30. The purpose of the STRENGTH Study was to 

explore the association between genetic polymorphisms and low-density lipoprotein cholesterol 

(LDLc) lowering in statin-treated patients. The STRENGTH Study was a 16-week, randomized, 
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open-label study of 3 statins in 509 outpatients with hypercholesterolemia. Study participants 

were initially randomized to 8 weeks of 10 mg/day atorvastatin, 20 mg/day simvastatin, or 10 

mg/day pravastatin followed by 8 weeks of 80 mg/day atorvastatin, 80 mg/day simvastatin, and 

40 mg/day pravastatin. Voora et al reported that carriers of the ABCA1 variant (rs12003906) 

were associated with a reduced LDLc lowering effect and carriers of the loss-of-function 

SLCO1B1 allele were associated with increased risk of statin therapy discontinuation 30, 31. The 

use of pharmacogenetic RCTs will be instrumental in the understanding of how genetic variants 

contribute to drug therapy and lay a solid foundation for tailored medical therapy. 

 

Another recent RCT example is the effect of the CYP2C19 genotype on the safety and efficacy 

of clopidogrel. Dual antiplatelet therapy of clopidogrel and aspirin has been shown to reduce 

adverse vascular events among patients with acute coronary syndromes 32, 33. Several studies 

have observed that carriers of the loss-of-function allele are associated with a reduced response 

to clopidogrel and an increased risk of adverse cardiovascular outcomes 34, 35. Based on these 

findings, in 2010 the FDA put a boxed warning for the prescription of clopidogrel which may 

require dose adjustment or use of a different drug 36. However, a genotyped subgroup from the 

CURE study showed that carrier status of the loss-of-function CYP2C19 allele did not differ in 

the safety and efficacy of clopidogrel 37. These findings were also replicated in a subgroup of the 

ACTIVE A trial. While patients in the CURE study were mostly non-invasively managed, 

another distinguishing feature of the analysis is the inclusion of the placebo group. The addition 

of the placebo group provides evidence of the efficacy of the experimental treatment. It also 

helps to reduced sources of confounding, such as potential pleiotropic genetic effects and 

population stratification. The results of this study have also been confirmed by a systematic 
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review and meta-analysis consisting of 32 studies and 42,016 patients 38. The authors reported a 

significant association between loss-of-function carrier status and risk of CVD events using 

“treatment-only” studies. However, the authors failed to report a significant association when 

using “effect-modification” studies or studies with more than 200 cardiovascular events. These 

analyses shows the importance of using large RCTs with both placebo and drug arms to 

guide validate recommendations on pharmacogenetic findings and medication use.  

 

Prospective Cohort Studies 

Prospective cohort studies follow a group of participants who are self-selected into a drug 

treatment group and assess how genetic distribution corresponds to the risk of developing the 

study outcome. Prospective cohort studies are able to examine causality through the temporal 

affects of drug exposure and genetic variants on disease risk 39. However, prospective cohort 

designs are expensive and time-consuming because they often require a large sample size to 

detect a relatively modest drug-gene interaction. Moreover, this study design is more subject to 

confounding because the assignment of drug therapy is subject-driven rather than randomly 

allocated.  

 

Selection bias occurs in prospective cohort studies if loss to follow-up is differential by drug 

exposure or by genotype. For example loss to follow-up and drug use may vary by age, and loss 

to follow-up and genetic polymorphisms may vary by ethnic group. Furthermore, if individuals 

who were lost to follow-up tended to have different risks associated with the study outcome as 

compared to those who remained for the entire length of the study then the overall incidence 

estimates would be biased. 
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Prospective cohort studies are more subject to nondifferential misclassification as compared to 

case-control studies. Nondifferential misclassification occurs when exposure measurement errors 

are independent of the outcome and result in dilution of the measure of association and bias 

estimates toward the null. This may occur if drug use is not collected at multiple time points 

throughout the study. During the study participants may begin a new medication or discontinue 

their current treatment because of adverse drug events. An increase in data collection over the 

study period will help to ensure improved accuracy of patient behavior and improved 

measurements.  

 

As mentioned previously, subgroups of participants from prospective cohorts can be analyzed in 

nested case-control study studies. These studies select participants who experienced the study 

outcome and compare them to randomly selected controls from the original study cohort. The 

advantages of using this design are the cases are compared to the same comparison group, which 

helps to reduce bias and confounding. Furthermore this design allows researchers to use small 

sample sizes and allows for a more cost-effective approach.  

 

One such example in pharmacogenetics is the examination of the CYP2D6*4 allele in tamoxifen 

treated patients from the Rotterdam Study 40. The CYP2D6 gene is involved in the formation of 

endoxifen from tamoxifen, which is used for the treatment of estrogen receptor-positive breast 

cancer within post-menopausal women 41. The objective of the study assessed the association 

between carriers of the CYP2D6*4 allele and breast cancer mortality among all incident users of 

tamoxifen. The study reported that the hazard ratio of breast cancer mortality in patients with the 
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*4/*4 genotype was 4.1 (95% CI 1.1–15.9; p=0.041) compared to those with the wild-type 

genotype. Although these results are subject to potentially more bias as the exposed and 

unexposed groups were not randomized, there is greater generalizability in this study as 

compared to an RCT. This represents a trade-off between optimal internal validity in the RCT 

design compared to external applicability in the prospective cohort design. It would be wiser to 

report the more robust estimates of the RCT and use subsequent studies to explore the 

generalizability of these findings than rely on the estimates from a prospective cohort study.  

 

 Case-Control Studies 

Case-control studies are the most common study design in pharmacogenetics. Under this model, 

cases are defined as those who have had a specific adverse drug event or a poor therapy outcome. 

The genetic variant frequencies in the cases are compared to the controls who have a comparable 

level of drug exposure but are also free of the study outcome. These studies are able to measure 

the effect of the gene-drug interaction but the independent effects of the genotype and drug 

response cannot be ascertained.  

 

Case-controls studies can be performed quickly and they are more cost-effective than large 

prospective studies. Case-control studies may be the only feasible study design when it is not 

possible to conduct an RCT. For example it may not be possible to use a prospective study 

design to assess rare adverse drug outcomes or rare variants because they require a very large 

sample size 42. Furthermore, it is unethical to conduct a RCT with a priori unequivocal 

knowledge of severe drug-gene interaction, in which carriers of a variant allele are known to be 

susceptible to adverse events.    
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The retrospective design of case-control studies makes it be more prone to confounding, 

selection bias and information bias. Selection bias is the product of inappropriate choice of study 

controls and differential participation rates between cases and controls. Ideally, controls should 

represent cases with respect to potential exposures and have the same risk of developing the 

outcome phenotype. For example pooled hospital-based controls may include participants whose 

allelic frequencies correspond to another underlying disease, which will distort the exposure-

disease association. Selection bias may also result from differential nonparticipation among cases 

and controls if those who failed to participate were related to genotype or drug exposure.  

 

Information bias in case-control studies is most likely to result from differential 

misclassification. Differential misclassification occurs when there is systematic error in the 

degree of misclassification between cases and controls, which will distort the true magnitude of 

association in any direction. One common type of information bias in case-control studies is 

recall bias. Recall bias occurs when cases remember past exposures differently than controls. For 

example cases may recall past drug exposures better than those who did not experience the 

outcome because they have more motivation to identify possible causes of their disease. It is 

important to note that there is no recall bias with genetic exposure because participant’s 

genotypes are fixed. 
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Genetic Epidemiology Considerations 

Phenotype definition  

In pharmacogenetic studies the selection of the study endpoint and the patient response 

phenotype are crucial for interpreting drug efficacy 43. However, since many pharmacogenetic 

studies use data from prospective studies, the study endpoints and patient population may not be 

precise enough to identify functional genes that are associated with the drug response. For 

example it may be more appropriate to measure clinical outcomes, such as adverse bleeding 

events, when studying the association between safety measures and genetic markers. 

Nevertheless physiological and biochemical measures may be more appropriate phenotypes to 

represent the underlying gene function in the drug-gene interaction 44, such as platelet count or 

clotting time. These phenotypes represent stronger biological or causal evidence of the functional 

activity of the gene or protein in question.  

 

However, across studies, there is great heterogeneity in the biological measurement and 

definitions of outcomes or phenotypes.  For example the reported prevalence of aspirin resistance 

ranges from 5-45% 45, which is thought to result from small sample sizes and heterogeneity 

within the methodologies used to measure the biochemical and functional components of aspirin 

resistance 46, 47. Goodman et al (2008) performed a systematic review of all the genetic studies of 

aspirin resistance, and observed that the effect of the PIA1/PIA2 polymorphism in the GPIIIa 

receptor appears to differ according to the technique used to measure aspirin resistance 48. The 

lack of standardization among laboratory tests leads to imprecise effect estimates of the 

polymorphism and drug response. Therefore to decrease heterogeneity among studies and for 
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more reliable estimates of pharmacogenetic associations there must be consistent and 

functionally relevant phenotypic definitions.  

 

Genetic Polymorphisms  

The associated genetic variants are either directly functional or they are indirectly correlated with 

another variant that is the actual cause of the drug-response. Linkage disequilibrium (LD) “is the 

tendency for a pair of alleles at two linked loci to be associated with each other in the population 

more than would be expected by chance” 49. LD is useful in genetic association studies because 

high LD allows for a smaller subset of markers single nucleotide polymorphisms (SNPs) to be 

genotyped while capturing most of the genetic information. However, LD varies among ethnic 

populations and this may affect cross subpopulation comparisons when causal SNPs are not 

directly genotyped but rather captured by “proxy” SNPs 50, 51.  

 

Population Stratification  

A source of confounding within population-based pharmacogenetic studies can result from 

population stratification 52.  Population stratification occurs when ethnic subpopulations within 

the entire study population differ in terms of genotype frequency and risk of disease 53.  

Population stratification confounds pharmacogenetic associations when differences in the 

prevalence of an allele parallels the incidence of study outcomes 52 and may bias both the 

strength of the association and estimates of precision of the genetic variant-outcome association.  

In other words, clinical outcomes might vary among genetically distinct populations for reasons 

other than the variant being tested and thus bias pooled drug-gene interaction effects 54.  

Stratification can also occur in apparently homogeneous populations, for example Davey Smith 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

28 

 

et al observed an increasing north-south gradient in the frequency of the variant allele for lactase 

persistence across Britain 55.  

 

One approach to minimizing the confounding effects of population stratification is to match 

participants based on geographical region and by markers of ethnic origin 56. Stratifying the 

study sample by ethnic groups allows for fair comparisons among homogenous groups; however, 

depending on the amount of stratification, too many groups will decrease the power able to 

detect an effect within each stratum.  Genetic principal components are also widely used to 

minimize confounding by stratification. This method corrects for spurious associations in traits 

that differ among populations and have different allelic frequencies for the genotype of interest. 

Most differences in allelic frequencies are thought to have occurred because of genetic drift and 

may not represent functional variants 57. Thus the principle component technique is used to 

detect and correct for the population heterogeneity to minimize false positive associations 58.  

Variance component methods have also been recently developed to adjust for population 

stratification 59. Importantly, randomized studies are immune to this bias since equal numbers of 

individuals of each population strata will be randomized to the drug of interest or placebo group. 

 

Genetic Pleiotropy 

Genetic pleiotropy is the phenomenon in which a single gene is responsible for a number of 

distinct and seemingly unrelated phenotypic traits 60. This phenomenon is of special importance 

to pharmacogenetics because it may confound the pharmacogenetic association. For instance if 

the gene of interest is associated with multiple outcomes or intermediate phenotypes, the 

reported drug-gene interaction may be a result of the underlying gene mechanism and not a 
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product of the drug response 61. For example the SH2B3 gene has been associated with multiple 

phenotypic traits, such as blood pressure 62, 63, blood eosinophil number 64, myocardial infarction 

64, celiac disease 65, type I diabetes 66, LDL-cholesterol 67, asthma 64, blood platelet number 68, 

hemoglobin concentration 69 and hematocrit 69. 

 

Several large trials have observed that lowering low-density lipoprotein cholesterol (LDLc) 

levels decreases the risk of atherosclerosis events, which can be achieved through statin therapy 

70.  The proprotein convertase subtilisin/kexin type 9 (PCSK9) gene degrades the LDL receptor, 

which helps to increase the clearance of LDLc from circulation. Gain-of-function carriers of the 

PCSK9 genotype are associated with mild to severe hypercholesterolemia, while loss-of-function 

carriers are associated with decreased LDLc and decreased risk of cardiovascular events 71, 72. 

The loss-of-function carriers are also associated with more pronounced decrease in LDLc with 

statin therapy 73, and it is difficult to determine to which extent the observed relationship is 

driven by a pharmacogenetic effect or by the gene effect. Therefore to distinguish if there is an 

independent relationship and true effect modification it is essential to use a RCT design with a 

control group to see if the effect occurs in the treatment group alone.  

 

Statistical Issues in Pharmacogenetics 

A major issue in pharmacogenetics is the lack of replication amongst population-based studies. 

Possible explanations for the sometime inconsistent findings are modest effect sizes, small 

sample sizes and multiple hypothesis testing.  In this section we will discuss sample size and 

multiple testing issues, and how to address them.  
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Sample Size 

The ability to determine whether there is a clinically significant difference between groups is 

dependent on the study sample size. Pharmacogenetic studies must be large in order to have 

enough statistical power to detect a gene effect, a treatment effect and a drug-gene interaction 74. 

The power to detect a statistical interaction depends on the number of SNPs, the allelic 

frequencies of each SNP, and the type of study design 75.  It is unlikely that a common genetic 

variant will have a large effect in a complex trait, such as drug response 76. Studies should thus 

be powered to detect a common or rare variant with a modest or very large effect size, 

respectively 76, 77.  

 

Table 2.2 shows the approximate sample sizes needed to detect a significant gene-drug 

interaction (assuming 80% power and α = 0.05) by effect size and allelic frequency (among 

controls). Under these conditions, it is assumed that the genetic variant is causal; however, it is 

possible that the variant allele is in LD with the actual causal variant, which may require a larger 

sample size 79, 80. If a rare genetic variant is anticipated with a small or modest effect, a sample 

size of more than 900,000 participants would be required. However, if a common variant with a 

large effect was expected, then a sample size of approximately 900 participants is needed. These 

results suggest that the majority of pharmacogenetic studies are underpowered, which may give 

rise to false-negative or false-positive estimates.  

 

For some pharmacogenetic questions, the required sample sizes may be difficult to obtain. The 

need for large datasets has lead to the creation of international consortia where data between 

investigators is pooled or analyzed together, or large population-based biobanks, which store 
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biological materials (i.e. blood or DNA) and demographic information, including drug use 81. In 

addition, RCTs now incorporate genetic add-on studies which has the same high internal and 

external validity and large sample size of the parent RCT, while remaining cost-effective 82.   

 

Multiple Testing 

Multiple testing refers to the repeated use of a statistical test and the risk of an overall type I 

error 83. Multiple testing arises when there are multiple comparisons in statistical models that 

contain multiple genes, multiple exposures and multiple interactions 84. Within these models it is 

inappropriate to use the standard p-value of 0.05 because as the number of tests increases so does 

the frequency of type I errors.  

 

The most common approach to correct for multiple testing is to use the Bonferroni correction, in 

which the p-value that is used for one test is divided by the total number of tests in the analysis. 

However, the use of the Bonferroni correction may be considered too conservative because many 

SNPs are in LD, which may mask their effects and increase type II errors. Furthermore, since 

many of the pharmacogenetic studies are underpowered to detect a drug-gene interaction, the 

Bonferroni correction may null the study results 85. Another possible approach to adjust for 

multiple testing is to use the false discovery rate (FDR), which is less conservative than the 

Bonferroni correction 86. The FDR estimates the expected proportion of false positives among 

associations that are declared significant, which is expressed as a q-value.  
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Conclusions  

Pharmacogenetic studies offer both a promising future yet have a challenging present. 

Personalized medicine has the potential to maximize drug efficacy and minimize the toxic 

effects; however, there are many issues in study design and analysis that need to be addressed. 

Large collaborative efforts across biostatisticians, epidemiologists, pharmacologists and 

clinicians is needed to provide robust evidence to support individualized treatment for improved 

drug efficacy and safety.  
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TABLES 

Table 2.1: Study designs for pharmacogenetic studies and their main strengths and 

limitations 

Study Design Description Strength Limitation 

Randomized 

Controlled Trial 

Participants are 

stratified by genotype 

and randomized to 

treatment groups 

Evidence of a drug-

gene interaction; 

Evidence of causality; 

Assess multiple 

outcomes 

Requires large sample 

size; High cost; 

Unable to assess rare 

events 

Prospective Cohort 

Study 

Participants are 

followed over time 

and disease outcome 

is compared with drug 

and genotype 

subgroups 

Prospective nature; 

Assess multiple 

outcomes 

Selection bias (loss-

to-follow-up); 

Information bias 

(nondifferential); 

Confounding; Unable 

to assess rare events 

Case-Control Study 

The genotype 

frequency and drug 

response outcome is 

compared among 

cases and controls 

Requires small sample 

size; Low cost; Assess 

rare events 

Selection bias; 

Information bias 

(differential); 

Confounding; Unable 

to assess rare events 
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Table 2.2: Sample size required to detect a drug-gene interaction in a pharmacogenetic 

study based on minor allele frequency*.  

 

Prevalence of variant 

allele carriers among 

controls  

Odds ratio* 

1.10 1.20 1.30 1.40 1.50 2.00 

0.01 906222 240782 113415 67443 45528 14464 

0.05 189628 50434 23785 14164 9577 3072 

0.10 100570 26779 12647 7543 5109 1657 

0.15 71330 19013 8991 5370 3644 1193 

0.20 57106 15237 7213 4314 2931 968 

*Sample sizes have been calculated based on a drug-gene interaction assuming an additive genetic model. These 

estimates assume a type-I error rate of 0.05, a power of 80% and a baseline risk of an adverse drug reaction among 

exposed subjects to be 10%. Sample sizes were calculated using QUANTO78.  
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ABSTRACT  

 

Aims: A genetic variant (rs20417) of the PTGS2 gene, encoding for COX-2, has been associated 

with decreased COX-2 activity and a decreased risk of cardiovascular disease (CVD). However, 

this genetic association and the role of COX-2 in CVD remains controversial.  

Methods and Results: The association of rs20417 with CVD was prospectively explored in 

49,232 subjects (ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, RE-LY, and WGHS) 

and the effect of potentially modifiable risk factors on the genetic association was further 

explored in 9,363 INTERHEART participants. The effect of rs20417 on urinary thromboxane 

and prostacyclin metabolite concentrations were measured in 119 healthy individuals. Carriage 

of the rs20417 minor allele was associated with a decreased risk of major CVD outcomes 

(OR=0.78, 95% CI: 0.70 - 0.87; P=1.2x10-5). The genetic effect was significantly stronger in 

aspirin users (OR: 0.74, 95% CI: 0.64−0.84; P=1.20x10-5) than non-users (OR: 0.87, 95% CI: 

0.72−1.06; P=0.16) (interaction p-value: 0.0041). Among patients with previous coronary artery 

disease (CAD), rs20417 carriers had a stronger protective effect on risk of major adverse events 

as compared to individuals without previous CAD (interaction p-value: 0.015). Carriers had 

significantly lower urinary levels of thromboxane (P=0.02) and prostacyclin (P=0.01) 

metabolites as compared to noncarriers.  

Conclusion: The rs20417 polymorphism is associated with a reduced risk of major 

cardiovascular events and lower levels of thromboxane and prostacyclin. Our results suggest that 

a genetic decrease in COX-2 activity may be beneficial with respect to CVD risk, especially in 

higher risk patients on aspirin. 

KEYWORDS: pharmacogenetics, genetics, aspirin, myocardial infarction, stroke 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

50 

 

INTRODUCTION 

 

Cyclooxygenase (COX) enzymes are responsible for converting arachidonic acid into 

prostaglandin (PG) H21, which acts as a metabolic precursor of prostaglandins, prostacyclin and 

thromboxane. Three isoforms of the COX enzyme have been identified (COX-1, COX-2, COX-

3), but only the COX-1 and COX-2 isoforms are functional. The COX-1 enzyme is constitutively 

expressed in most tissues, including platelets, where it is involved in the formation of 

thromboxane A2 through an intermediate. Low dose aspirin decreases platelet activity by 

irreversibly acetylating COX-1 and inhibiting the production of platelet-derived thromboxane 

A2
2. COX-2 is an inducible enzyme that is expressed by cells involved in inflammation (i.e. 

endothelial cells, monocytes, and macrophages). It is believed to have cardioprotective effects by 

facilitating the production of prostacyclin, which is a potent vasodilator and inhibits platelet 

activation and smooth muscle cell proliferation3.  

 

The role of COX-2 in atherothrombosis remains controversial. Some animal studies suggest that 

genetic inhibition of the COX-2 enzyme decreases the risk of atherosclerosis4, whereas others 

demonstrate an increased risk of thrombosis5. Most clinical studies have linked pharmacologic 

inhibition by selective COX-2 inhibitors with an increased risk of CV events6, 7, presumably 

because COX-2 inhibition leads to unopposed COX-1 dependent thromboxane production and 

subsequent platelet activation and vasoconstriction7. Additionally, higher doses of aspirin with 

shorter dosing intervals are required to inhibit the COX-2-dependent pathways since nucleated 

cells rapidly resynthesize this enzyme8. In contrast with these results, a genetic polymorphism 

(rs20417) in the promoter of the PTGS2 gene (COX-2) has been associated with lower COX-2 
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activity in atherosclerotic plaque and a decreased risk of myocardial infarction and stroke9.  

Furthermore, an interaction between aspirin use and carriage of the COX-2 polymorphism has 

been reported, whereby the genetic effect is stronger in aspirin users than non-users10, 11. 

However, previous studies mostly had small sample sizes, and only some10-14 but not all15-19  

have replicated these findings. Thus confirmation and characterization of the genetic association 

between rs20417 and major adverse cardiovascular outcomes may provide greater insights into 

the biological role of COX-2 in CVD, and may also improve risk stratification of CVD patients.  

 

Given the contradictory evidence on the role of COX-2 and CVD, we undertook to (1) test the 

association of the rs20417 polymorphism with CVD, (2) examine whether the genetic 

association is modified by aspirin use, or the presence or absence of major CVD risk factors, and 

(3) explore the functional mechanisms of the polymorphism by examining its impact on 

thromboxane and prostacyclin urine levels.  

 

METHODS 

Study Populations Overview 

Events were classified according to definitions from each parent study.  Our primary outcome 

was major adverse vascular events, defined, unless otherwise specified, as the composite of CVD 

death, non-fatal myocardial infarction, or non-fatal stroke.  

 

Further details of the study population characteristics, genotyping and imputation are described 

in the Supplementary Methods. In brief, ACTIVE-A was a randomized, double-blind, placebo-

controlled trial comparing clopidogrel (75mg/d) with placebo in patients with high-risk atrial 
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fibrillation (AF)20. CURE was a randomized, double-blind, placebo-controlled trial comparing 

clopidogrel (75 mg per day) with placebo in patients with ACS without ST-segment elevation21.  

DREAM22 was a randomized, double-blind trial with a 2-by-2 factorial design that assigned 

participants at high risk for or who had diabetes to receive either ramipril (15 mg/day) vs. 

placebo or rosiglitazone (8 mg/day) vs. placebo. The EpiDREAM23 trial was an epidemiological 

arm of the DREAM trial and is comprised of participants who were either screened for eligibility 

to enter the DREAM clinical trial but were not eligible or who did not want to enter the trial but 

agreed to long term prospective follow-up.  ONTARGET was a randomized, double-blind, 

parallel trial comparing the effects of ramipril (10 mg per day), telmisartan (80 mg per day), and 

combination therapy in patients with vascular disease or high-risk diabetes patients24. RE-LY 

was a prospective, open-label, randomized trial that compared two fixed doses of dabigatran 

(110 mg or 150 mg twice daily) with open-label use of warfarin in patients with high risk AF25. 

The WGHS Study26 is a subset of the Women’s Health Study (WHS)27, which consists of healthy 

female participants who were randomized either to an aspirin intervention arm (100 mg of 

aspirin every other day) or placebo. In addition, the INTERHEART study28 was a large, 

international, standardized case-control study consisting of non-fatal acute myocardial infarction 

cases and controls from 52 countries. Finally, MARS was an open-label, two phase case-control 

study of individuals with CVD; however, for the purposes of this analysis only healthy controls 

were considered. 
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Statistical analysis 

Deviation from Hardy-Weinberg equilibrium was tested in each ethnic group for each study 

(P>0.05 for all).  Due to the limited number of individuals homozygous for the minor allele of 

rs20417, a dominant genetic model was used throughout, whereby individuals carrying either 1 

or 2 minor alleles were pooled together, and thereafter referred as “carriers” (unless otherwise 

specified). Logistic regression models were used for each individual study, with adjustment for 

age, sex, randomization status (when appropriate), and self-reported ethnicity. Results from each 

study were then combined using fixed-effect meta-analysis.  Effect of rs20417 on outcomes was 

also assessed using Cox proportional hazard regression, without further adjustment.  Association 

of rs20417 carrier status with urinary 11-dehydro thromboxane B2 and 2,3-dinor-6-keto PGF1α 

concentrations were performed using a non-parametric Kruskal-Wallis test.  The statistical 

significance threshold was set at 0.05 (two-sided) for all analyses. All analyses were performed 

using R. 

 

RESULTS 

Characteristics of study populations 

The baseline demographics of the prospective study populations (ACTIVE-A, CURE, 

epiDREAM/DREAM, ONTARGET, RE-LY, and WGHS) are presented in Table 3.1.  The 

baseline demographics of the INTERHEART and MARS study populations are presented in 

Supplementary Table 1 and Table 2.  
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Association of the rs20417 polymorphism with major adverse cardiovascular events 

Overall, 29.6% of participants were carriers of at least one rs20417 minor allele. Among the six 

prospective study populations (ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, RE-

LY, and WGHS), rs20417 carrier status was significantly associated with a reduced risk of major 

cardiovascular outcomes (OR=0.78, 95% CI: 0.70 - 0.87; P=1.20x10-5), vascular death 

(OR=0.76, 95% CI: 0.63 - 0.90; P=0.0017), myocardial infarction (OR=0.78, 95% CI: 0.67 - 

0.92; P=0.003) and stroke (OR=0.83, 95% CI: 0.70 – 1.00; P=0.04) (Figure 3.1). Heterogeneity 

across study populations was observed for major adverse cardiovascular events (heterogeneity 

P=0.0017), as well as vascular death (heterogeneity P=0.025) and myocardial infarction 

(heterogeneity P=0.047). However, once CURE was removed from the pooled analyses there 

was no longer evidence of heterogeneity (heterogeneity P>0.05 for all). No interaction with 

randomized treatment was observed in each trial (ACTIVE-A, CURE, DREAM, ONTARGET 

and RE-LY; P>0.05 for all).  

 

Effect modification by ASA use 

Due to the close biological relationship between COX-2 and ASA, and previous reports of a 

genetic interaction with ASA use, we tested rs20417 carrier status for association with 

cardiovascular events stratified by aspirin use. Aspirin use appeared to modify the relationship 

between rs20417 carrier status and risk of major cardiovascular events (heterogeneity P: 0.0041) 

(Figure 3.2). Among participants using ASA, carrier status was associated with a lower risk of 

CVD outcomes (OR: 0.74, 95% CI: 0.64−0.84; P=1.20x10-5) while this relationship was 

attenuated in aspirin non-users (OR: 0.87, 95% CI: 0.72−1.06; P=0.16).We also observed 

significant heterogeneity among the pooled estimate of aspirin users, which points to differences 
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between studies (heterogeneity P=0.0053). As most patients on ASA have established coronary 

artery disease (CAD), we also assessed the genetic association between rs20417 carrier status for 

adverse CVD events stratified by previous CAD (Figure 3.3). Previous CAD was defined as 

established acute coronary syndromes or angina. Among patients with previous CAD, carriage of 

the rs20417 polymorphism had a stronger effect on risk of major adverse events (OR: 0.69, 95% 

CI: 0.58−0.81; P=1.10x10-5) as compared to individuals without previous CAD (OR: 0.86, 95% 

CI: 0.74 −1.00; P=0.06) with an overall interaction P-value of 0.015.  

 

Genetic association in relation to other major CVD risk factors 

To evaluate the strength of the rs20417 carrier status association with CVD in relation to 

conventional risk factors, we utilized a multivariate analysis including rs20417 carrier status and 

other major CVD risk factors. Analyses were performed in ACTIVE-A and CURE because both 

studies were significantly associated with rs20417 carrier status in a univariate analyses and both 

had all participants on ASA by design. Kaplan-Meier survival curves for ACTIVE-A and CURE 

are shown in Supplementary Figure 1, along with hazard ratios calculated using unadjusted Cox 

proportional hazard models.  For ease of interpretation, individuals with two rs20417 risk alleles 

were compared to individuals with one or more protective allele, such that two rs20417 risk 

alleles is presented as a risk factor (Table 3.2). No conventional risk factors were consistently 

associated with a larger effect estimate than carrying two rs20417 risk alleles.  In fact, carrying 

two rs20417 risk alleles had the largest effect size of all risk factors (excluding age) among 

participants in CURE (OR=1.90, 95% CI: 1.46-2.48; P=2.10x10-6).  
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Effect modification by major CVD risk factors 

To explore whether the presence of specific CVD risk factors modified the association of 

rs20417 carrier status with cardiovascular outcomes, we performed sub-group analyses within 

the prospective populations (Supplementary Figure 2). WGHS was excluded as there were no 

males and the prevalence of many risk factors (e.g. diabetes, advanced age) were low in this 

study of apparently healthy middle-aged women.  None of the risk factors tested, showed a 

significant interaction with carriage of the rs20417 minor allele (P>0.05 for all). We also 

explored the association of rs20417 with myocardial infarction and its relation with major CVD 

risk factors in INTERHEART.  Overall, 32.3% of INTERHEART participants were carriers of 

the rs20417 alternate allele (Supplementary Table 1). There was no association between carrier 

status and non-fatal myocardial infarction when using a dominant genetic model (OR=0.93, 95% 

CI: 0.85-1.02; P=0.115) but a weak and consistent association was observed using an additive 

genetic model (OR=0.92, 95% CI: 0.85-0.99, P=0.02).  There was a marginally significant 

interaction between apolipoprotein A1 (apoA1) levels and carrier status (interaction p= 0.017); 

whereby, carrier status was significantly associated with CVD among individuals with lower 

than median ApoA1 levels (OR=0.82, 95% CI: 0.73-0.93, P=0.002) but not among those with 

greater than median ApoA1 levels (OR=1.05, 95% CI 0.93-1.20, P=0.42) (Supplementary Figure 

3).  None of the other modifiable risk factors or clinical characteristics showed a significant 

interaction with carrier status (P>0.05 for all). We also assessed whether the rs20417 

polymorphism was associated with CVD risk factors using a model adjusted for age, sex and 

ethnicity. None of the risk factors were significantly associated with carrier status (P>0.05 for 

all) (Supplementary Table 3).  
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Association of rs20417 with urinary metabolites of thromboxane and prostacyclin  

Finally, we tested whether rs20417 carrier status was associated with COX-1 and COX-2 derived 

urinary 11-dehydrothromboxane B2 and urinary 2,3-dinor-6-keto PGF1α in 119 healthy European 

participants (not taking aspirin or other cyclooxygenase inhibitors). Minor allele carriers were 

shown to have decreased 11-dehydrothromboxane B2 urine concentration (P=0.02), with median 

values of 97.0 ng/mmol creatinine and 125.5 ng/mmol creatinine in carriers (N=32) and 

noncarriers (N=87), respectively. In addition, minor allele carriers were shown to have decreased 

urinary 2,3-dinor-6-keto PGF1α concentration (P=0.01), with median values of 3335.8 pg/mg 

creatinine and 4702.0 pg/mg creatinine in carriers (N=32) and noncarriers (N=87), respectively 

(Supplementary Figure 4). 

 

DISCUSSION 

We found that the COX-2 (PTGS2) genetic variant rs20417 is associated with a decreased risk of 

major cardiovascular events (OR= 0.78, 95% CI: 0.70-0.87, P=1.20 x 10-5), with consistent 

effects for cardiovascular death, myocardial infarction and stroke. We also observed significant 

interactions with aspirin use (P heterogeneity: 0.0041) and previous CAD (P heterogeneity: 

0.015). Indeed, in ACTIVE-A and CURE, the magnitude of CVD risk associated with non-

carriage of the rs20417 polymorphism was similar to that of other traditional risk factors (e.g. 

age, sex, diabetes, smoking status, high blood pressure and obesity). Our urinary metabolite 

results corroborate reports of lower COX-2 activity in rs20417 carriers. 

 

Similar to previous reports, we observed an interaction between the nonselective COX inhibitor 

ASA and rs20417 carrier status10, 11. While the possibility of a biological interaction is 
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compelling, this association may also be confounded since aspirin users are also more likely to 

represent those with established CVD and thereby reflect a stronger genetic effect in higher risk 

populations29 rather than an interaction with ASA use. Indeed, the benefit of ASA parallels the 

baseline risk of study populations, with a 12% proportional reduction in CVD events in primary 

prevention population 30, 19% in secondary prevention 30, and 23% relative reduction in death in 

the acute ACS setting 31. Consistent with this hypothesis, previous CAD appeared to enhance the 

association between rs20417 carrier status and risk of CVD outcomes (P heterogeneity: 0.015).  

Similarly, we observed a strong association between rs20417 and CVD risk in ACS patients 

enrolled in CURE but no association in WGHS where the reported benefit of ASA was modest27.  

However, it should also be noted that all CURE participants were assigned a standard dose 

aspirin (75 – 325 mg daily) while WGHS participants were randomly allocated to treatment with 

low dose aspirin (100 mg every other day) or placebo. Alternatively, this interaction may also 

reflect a stronger effect of ASA in rs20417 carriers as compared to noncarriers. Finally, with the 

exception of ApoA1 (interaction p-value: 0.017), we did not observe any interactions among the 

tested risk factors in INTERHEART.  However, the interaction was modest and should be 

considered exploratory since it would not withstand adjustment for multiple testing.   

 

In agreement with previous work showing that rs20417 minor allele is linked to decreased COX-

2 expression9, 19, we demonstrated that minor allele carriers had lower levels of both urinary 11-

dehydrothromboxane B2 and urinary 2,3 2,3-dinor-6-keto PGF1α excretion. We posit that tissue-

specific effects of the genetic variant could explain the apparent discrepancy between genetic 

and pharmacological inhibition of COX-2 activity with respect to cardiovascular risk. Indeed, 

Cipollone et al (2004) demonstrated that the rs20417 genotype modified COX-2 activity in 
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carotid plaques, whereby carrier status was associated with lower levels of COX-2 expression in 

plaque-derived macrophages; however, carrier status did not influence COX-2 activity in 

endothelial tissue9.  Furthermore macrophage-specific COX-2 knock-out mice models have 

decreased atherosclerosis4; whereas, deletion of COX-2 in endothelial cells and vascular smooth 

muscle cells in double knock-out mice leads to an increased risk of thrombosis5. This may also 

explain the apparent heterogeneity among studies, since participants with more advanced stages 

of CVD are likely to have complex, macrophage-rich plaques, and hence be more susceptible to 

the COX-2 inhibiting effect of rs20417. 

 

Several factors likely contributed to the previously inconsistent reports of an association between 

rs20417 and risk of CVD 15-19. For instance the sample size among several studies exploring the 

rs20417 association ranged from 22015 to 4,99411, which indicates that some of these studies may 

not have had enough statistical power to detect a genetic effect. Also, case-control studies may 

have underestimated the reported association between rs20417 minor allele carriers and CVD 

outcomes since these studies are more likely to include COX-2 carriers who experienced non-

fatal vascular events as opposed to those who experienced vascular death. Indeed, inclusion of a 

large number of individuals from prospective studies strengthens our meta-analysis. Finally, it is 

possible that the genetic effect varies according to study population and ASA exposure such that 

heterogeneous estimates reflect true genetic risks. 

 

A few limitations of our study warrant discussion.  First, tissue-specific gene expression would 

ideally be needed to delineate the effects of rs20417 on COX-2 gene expression in relevant 

tissues such as endothelial cells, atherosclerosis plaques and macrophages.  Second, rs20417 was 
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not directly genotyped in RE-LY or in ONTARGET and could not be imputed such that a proxy 

was used.  However, use of a proxy should bias our results towards the null without invalidating 

our conclusions.  Third, while the genetic effect was consistent across ethnic groups in both the 

epiDREAM/DREAM and INTERHEART patient populations, our study populations were 

predominantly European and further studies will be needed to confirm in other ethnic groups. 

Finally, although our results suggest an interaction between apoA1 levels and carriers of the 

rs20417 genotype with CVD, this was an exploratory analysis and further work is needed.   

 

In summary, we confirmed the protective effect of the minor allele of the COX-2 (PTGS2) SNP, 

providing a genetic link between COX-2 activity and cardiovascular risk. In particular, our data 

suggest that decreased COX-2 activity is not universally deleterious in humans with respect to 

risk of adverse CVD outcomes, and taken together with observations in human atherosclerosis 

plaques and model systems implies that inhibition of COX-2 in macrophages could be beneficial. 

Additionally, the biologically compelling interaction between rs20417 carrier status and aspirin 

use suggests that widely prescribed non-selective COX inhibitors may be more beneficial among 

rs20417 carriers. Our results also highlight the complex genetic epidemiology of CVD and argue 

that genetic determinants may have different effect sizes according to study population 

characteristics, such as ASA use or presence of vascular disease.  Further research will be needed 

to fully delineate the clinical, epidemiological and pathophysiological implications of the 

observed genetic association.  



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

61 

 

 

ACKNOWLEDGEMENTS 

We are thankful to all the participants having agreed to contribute to this project. 

 

FUNDING 

This work was supported by grants from the following studies: ACTIVE-A [Sanofi-Aventis and 

Bristol-Myers Squibb], CURE [Sanofi-Synthelabo and Bristol-Myers Squibb], 

epiDREAM/DREAM [Canadian Institutes of Health Research (CIHR) ,Sanofi-Aventis, 

GlaxoSmithKline, and King Pharmaceuticals], INTERHEART [CIHR, the Heart and Stroke 

Foundation of Ontario, and the International Clinical Epidemiology Network (INCLEN), as well 

as through unrestricted grants from several pharmaceutical companies (with major contributions 

from AstraZeneca, Novartis, Sanofi Aventis, Knoll Pharmaceuticals [now Abbott], Bristol Myers 

Squibb and KingPharma)], MARS [Heart and Stroke Foundation], ONTARGET [Boehringer 

Ingelheim], RE-LY [Boehringer Ingelheim], and WGHS [National Heart Lung and Blood 

Institute and the National Cancer Institute].   

CONFLICT OF INTEREST: Dr. Eikelboom, receiving consulting fees, grant support, and 

lecture fees from Sanofi-Aventis, Bristol-Myers Squibb, and AstraZeneca, consulting fees and 

grant support from Novartis, and consulting fees and lecture fees from Eli Lilly; Dr. Anand, 

receiving lecture fees from Bristol-Myers Squibb; Dr Gerstein, receiving received honoraria for 

consulting and academic presentations from Sanofi-Aventis, Novo Nordisk, and Eli Lilly; Dr. 

Mehta, receiving consulting fees from AstraZeneca, Eli Lilly, and Novartis and grant support and 

consulting fees from Sanofi-Aventis and Bristol-Myers Squibb; Dr. Connolly, receiving board 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

62 

 

 

membership fees, consulting fees, and grant support from Sanofi-Aventis and Bristol-Myers 

Squibb; Dr Ridker, receiving research grant support from AstraZeneca and Novartis, consultancy 

fees from Merck, Genzyme, Vascular Biogenics, ISIS, and Boston Diagnostics; Dr Wallentin, 

receiving grant funding from AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, 

GlaxoSmithKline, Pharmacia, Roche, Sanofi, and Schering Plough; Dr. Yusuf, receiving 

consulting fees and grant support from Sanofi-Aventis and Bristol-Myers Squibb; and Dr. Paré, 

receiving consulting fees from Sanofi-Aventis and Bristol-Myers Squibb. No other conflicts of 

interest were reported. 

 

 

 

 

  



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

63 

 

 

REFERENCES 

 

 1.  Fritsche E, Baek SJ, King LM, Zeldin DC, Eling TE, Bell DA. Functional characterization 

of cyclooxygenase-2 polymorphisms. J Pharmacol Exp Ther 2001;299:468-476. 

 2.  Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet 2006;367:606-617. 

 3.  FitzGerald GA, Smith B, Pedersen AK, Brash AR. Increased prostacyclin biosynthesis in 

patients with severe atherosclerosis and platelet activation. N Engl J Med 1984;310:1065-

1068. 

 4.  Hui Y, Ricciotti E, Crichton I, Yu Z, Wang D, Stubbe J, Wang M, Pure E, FitzGerald GA. 

Targeted deletions of cyclooxygenase-2 and atherogenesis in mice. Circulation 

2010;121:2654-2660. 

 5.  Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, Landesberg G, Crichton I, Wu W, 

Pure E, Funk CD, FitzGerald GA. Vascular COX-2 modulates blood pressure and 

thrombosis in mice. Sci Transl Med 2012;4:132ra54. 

 6.  Kearney PM, Baigent C, Godwin J, Halls H, Emberson JR, Patrono C. Do selective cyclo-

oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the 

risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 2006;332:1302-1308. 

 7.  Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective 

COX-2 inhibitors. JAMA 2001;286:954-959. 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

64 

 

 

 8.  Eikelboom JW, Hirsh J, Spencer FA, Baglin TP, Weitz JI. Antiplatelet drugs: 

Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest 

Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e89S-119S. 

 9.  Cipollone F, Toniato E, Martinotti S, Fazia M, Iezzi A, Cuccurullo C, Pini B, Ursi S, 

Vitullo G, Averna M, Arca M, Montali A, Campagna F, Ucchino S, Spigonardo F, Taddei 

S, Virdis A, Ciabattoni G, Notarbartolo A, Cuccurullo F, Mezzetti A. A polymorphism in 

the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction 

and stroke. JAMA 2004;291:2221-2228. 

 10.  Lee CR, North KE, Bray MS, Couper DJ, Heiss G, Zeldin DC. Cyclooxygenase 

polymorphisms and risk of cardiovascular events: the Atherosclerosis Risk in Communities 

(ARIC) study. Clin Pharmacol Ther 2008;83:52-60. 

 11.  Lemaitre RN, Rice K, Marciante K, Bis JC, Lumley TS, Wiggins KL, Smith NL, Heckbert 

SR, Psaty BM. Variation in eicosanoid genes, non-fatal myocardial infarction and ischemic 

stroke. Atherosclerosis 2009;204:e58-e63. 

 12.  Colaizzo D, Fofi L, Tiscia G, Guglielmi R, Cocomazzi N, Prencipe M, Margaglione M, 

Toni D. The COX-2 G/C -765 polymorphism may modulate the occurrence of 

cerebrovascular ischemia. Blood Coagul Fibrinolysis 2006;17:93-96. 

 13.  Vogel U, Segel S, Dethlefsen C, Tjonneland A, Saber AT, Wallin H, Jensen MK, Schmidt 

EB, Andersen PS, Overvad K. Associations between COX-2 polymorphisms, blood 

cholesterol and risk of acute coronary syndrome. Atherosclerosis 2010;209:155-162. 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

65 

 

 

 14.  Maguire J, Thakkinstian A, Levi C, Lincz L, Bisset L, Sturm J, Scott R, Whyte S, Attia J. 

Impact of COX-2 rs5275 and rs20417 and GPIIIa rs5918 polymorphisms on 90-day 

ischemic stroke functional outcome: a novel finding. J Stroke Cerebrovasc Dis 

2011;20:134-144. 

 15.  Orbe J, Beloqui O, Rodriguez JA, Belzunce MS, Roncal C, Paramo JA. Protective effect of 

the G-765C COX-2 polymorphism on subclinical atherosclerosis and inflammatory 

markers in asymptomatic subjects with cardiovascular risk factors. Clin Chim Acta 

2006;368:138-143. 

 16.  Lahteela K, Kunnas T, Lyytikainen LP, Mononen N, Taittonen L, Laitinen T, Kettunen J, 

Juonala M, Hutri-Kahonen N, Kahonen M, Viikari JS, Raitakari OT, Lehtimaki T, Nikkari 

ST. No association of nineteen COX-2 gene variants to preclinical markers of 

atherosclerosis The Cardiovascular Risk in Young Finns Study. BMC Med Genet 

2012;13:32. 

 17.  Montali A, Barilla F, Tanzilli G, Vestri A, Fraioli A, Gaudio C, Martino F, Mezzetti A, 

Cipollone F, Arca M. Functional rs20417 SNP (-765G>C) of cyclooxygenase-2 gene does 

not predict the risk of recurrence of ischemic events in coronary patients: results of a 7-year 

prospective study. Cardiology 2010;115:236-242. 

 18.  Sharma V, Kaul S, Al-Hazzani A, Alshatwi AA, Jyothy A, Munshi A. Association of 

COX-2 rs20417 with aspirin resistance. J Thromb Thrombolysis 2013;35:95-99. 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

66 

 

 

 19.  Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, Laurent GJ. 

Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role 

in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 2002;22:1631-1636. 

 20.  Connolly SJ, Pogue J, Hart RG, Hohnloser SH, Pfeffer M, Chrolavicius S, Yusuf S. Effect 

of clopidogrel added to aspirin in patients with atrial fibrillation. N Engl J Med 

2009;360:2066-2078. 

 21.  Yusuf S, Zhao F, Mehta SR, Chrolavicius S, Tognoni G, Fox KK. Effects of clopidogrel in 

addition to aspirin in patients with acute coronary syndromes without ST-segment 

elevation. N Engl J Med 2001;345:494-502. 

 22.  Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, 

Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the 

frequency of diabetes in patients with impaired glucose tolerance or impaired fasting 

glucose: a randomised controlled trial. Lancet 2006;368:1096-1105. 

 23.  Anand SS, Dagenais GR, Mohan V, Diaz R, Probstfield J, Freeman R, Shaw J, Lanas F, 

Avezum A, Budaj A, Jung H, Desai D, Bosch J, Yusuf S, Gerstein HC. Glucose levels are 

associated with cardiovascular disease and death in an international cohort of normal 

glycaemic and dysglycaemic men and women: the EpiDREAM cohort study. Eur J Prev 

Cardiol 2012;19:755-764. 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

67 

 

 

 24.  Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, 

Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N 

Engl J Med 2008;358:1547-1559. 

 25.  Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly 

PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, 

Darius H, Diener HC, Joyner CD, Wallentin L. Dabigatran versus warfarin in patients with 

atrial fibrillation. N Engl J Med 2009;361:1139-1151. 

 26.  Ridker PM, Chasman DI, Zee RY, Parker A, Rose L, Cook NR, Buring JE. Rationale, 

design, and methodology of the Women's Genome Health Study: a genome-wide 

association study of more than 25,000 initially healthy american women. Clin Chem 

2008;54:249-255. 

 27.  Ridker PM, Cook NR, Lee IM, Gordon D, Gaziano JM, Manson JE, Hennekens CH, 

Buring JE. A randomized trial of low-dose aspirin in the primary prevention of 

cardiovascular disease in women. N Engl J Med 2005;352:1293-1304. 

 28.  Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais 

P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with 

myocardial infarction in 52 countries (the INTERHEART study): case-control study. 

Lancet 2004;364:937-952. 

 29.  Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, 

Knouff CW, Thompson JR, Horne BD, Stewart AF, Assimes TL, Wild PS, Allayee H, 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

68 

 

 

Nitschke PL, Patel RS, Martinelli N, Girelli D, Quyyumi AA, Anderson JL, Erdmann J, 

Hall AS, Schunkert H, Quertermous T, Blankenberg S, Hazen SL, Roberts R, Kathiresan S, 

Samani NJ, Epstein SE, Rader DJ. Identification of ADAMTS7 as a novel locus for 

coronary atherosclerosis and association of ABO with myocardial infarction in the presence 

of coronary atherosclerosis: two genome-wide association studies. Lancet 2011;377:383-

392. 

 30.  Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, Buring J, Hennekens C, 

Kearney P, Meade T, Patrono C, Roncaglioni MC, Zanchetti A. Aspirin in the primary and 

secondary prevention of vascular disease: collaborative meta-analysis of individual 

participant data from randomised trials. Lancet 2009;373:1849-1860. 

 31.  Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 

cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study 

of Infarct Survival) Collaborative Group. Lancet 1988;2:349-360. 

 

 

  



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

69 

 

 

 FIGURE LEGENDS 

Figure 3.1: Association of rs20417 carrier status with major cardiovascular events in six 

prospective patient populations. 

Analyses were adjusted for age, sex, randomization status (when appropriate) and self-reported 

ethnicity. ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, RE-LY and WGHS data 

were included in the meta-analysis. DREAM represents epiDREAM/DREAM. Hetero. P. 

represents heterogeneity p-value. 

 

Figure 3.2:  Analysis of association of rs20417 carrier status with major cardiovascular 

events stratified by aspirin use in six prospective patient populations.  

Analyses were adjusted for age, sex, randomization status (when appropriate) and self-reported 

ethnicity. ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, RE-LY and WGHS data 

were included in the meta-analysis. DREAM represents epiDREAM/DREAM. Hetero. P. 

represents heterogeneity p-value. 

 

Figure 3.3:  Analysis of association of rs20417 carrier status with major cardiovascular 

events stratified by previous coronary artery disease in six prospective patient populations.  

Analyses were adjusted for age, sex, randomization status (when appropriate) and self-reported 

ethnicity. ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, RE-LY and WGHS data 

were included in the meta-analysis. DREAM represents epiDREAM/DREAM. Hetero. P. 

represents heterogeneity p-value. 

 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

70 

 

 

TABLES 

Table 3.1:  Baseline characteristics of prospective study populations   

 
ACTIVE-A CURE 

epiDREAM/ 

DREAM 
ONTARGET RE-LY WGHS 

N 1061 4662 14104 3610 2501 23294 

Mean age (SD) 71.0 (9.9) 63.6 (11) 52.0 (11) 67.0 (7.3) 71.9 (7.4) 54.2 (7.1) 

Female (%) 483(45.5) 1921(41.2) 8589(60.9) 998(27.6) 804(32.1) 23,294 (100) 

BMI (kg/m2) (SD) 29.1 (5.6) 27.7 (4.2) 30.0 (5.8) 29.8 (5.2) 29.2 (5.5) 25.9 (5.0) 

Previous CAD (%) 314(29.6) 4662 (100) 114(0.81) 2882(79.8) 799(31.9) 0 (0) 

Diabetes (%) 222(20.9) 994(21.3) 1842(13.1) 1909(52.9) 495(19.8) 586 (2.5) 

High Blood Pressure (%) 908(85.6) 2852(61.2) 5011(35.5) 529(14.7) 1884(75.3) 5730(24.6) 

Current Smoking (%) 81(7.6) 1048(22.5) 2049(14.5) 393(10.9) 226(9.0) 2710(11.6) 

Aspirin use (%) 1061 (100) 4662 (100) 1535(10.9) 2843(78.8) 727(29.1) 11617(50) 

rs20417 carrier status, No.(%)       

     Carriers 318(30.0) 1233(26.4) 4802(34) 857(23.7) 581(23.2) 6794(29.2) 

     Noncarriers 743(70.0) 3429(73.6) 9301(66) 2753(76.3) 1920(76.8) 16490(70.8) 

Median Follow-up (years) 3.5 0.8 3.6 2.6 2.1 10.2 

Major cardiovascular events       

     N events 247 456 131 565 87 518 

    Events per 100 person-years (95% CI) 7.3 (6.3-8.3) 16.2 (14.7-17.7) 0.3 (0.2-0.3) 3.5 (3.2-3.8) 1.7 (1.3-2.1) 0.2(0.2-0.2) 

Vascular death       

     N events 165 239 20 228 46 135 

    Events per 100 person-years (95% CI) 4.8 (4.0-5.5) 7.7 (6.7-8.8) 0.05 (0.08-94.5) 1.3 (1.2-1.5) 0.8(0.5-1.1) 0.58 (0.48-0.68) 

Myocardial infarction       

N events 43 255 86 269 43 217 

    Events per 100 person-years (95% CI) 1.2 (0.8-1.6) 9.5 (8.3-10.7) 0.2 (0.1-0.2) 1.6 (1.4-1.9) 0.8 (0.5-1.1) 0.09(0.08-0.11) 

Stroke        

     N events 105 55 48 157 46 270 

     Events per 100 person-years (95% CI) 3.1 (2.5-3.8) 2.0 (1.4-2.5) 0.1 (0.08-0.1) 1.0 (0.8-1.1) 0.8 (0.5-1.1) 0.12(0.10-0.13) 
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Table 3.2:  Association of rs20417 carrier status and conventional risk factors with major cardiovascular events in ACTIVE-A 

and CURE. 

Odds ratios of conventional risk factors for the risk of adverse events in CVD risk patient populations from multivariate models also 

including randomization status (when appropriate) and self-reported ethnicity.  

 

  

  CURE  ACTIVE-A 

Risk factor OR (95% CI) P  OR (95% CI) P 

       

Carriage of two rs20417 risk alleles 1.90 (1.46-2.48) 2.10E-06  1.63 (1.16-2.30) 5.10E-03 

       

10 Years of age 1.62 (1.45-1.81) 1.10E-17  1.84 (1.53-2.21) 1.10E-10 

       

Male sex 1.52 (1.23-1.89) 1.20E-04  1.15 (0.84-1.57) 0.38 

       

Presence of diabetes 1.54 (1.23-1.93) 1.50E-04  2.05 (1.44-2.91) 6.70E-05 

       

Current smoking 1.02 (0.76-1.35) 0.90  1.66 (0.92-2.98) 0.09 

       

High blood pressure 1.31 (1.05-1.64) 0.02  0.99 (0.65-1.52) 0.98 

       

Obesity (BMI>30) 0.94 (0.74-1.19) 0.59  0.89 (0.64-1.24) 0.50 
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Figure 3.1: Association of rs20417 carrier status with major cardiovascular events in 

six prospective patient populations. 
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Figure 3.2:  Analysis of association of rs20417 carrier status with major cardiovascular events stratified by aspirin use in six 

prospective patient populations.  
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Figure 3.3:  Analysis of association of rs20417 carrier status with major cardiovascular events stratified by previous coronary 

artery disease in six prospective patient populations.  
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ABSTRACT 

Background: Statins are used to lower low density lipoprotein cholesterol (LDL-C) but they 

may be ineffective or not well tolerated. Bile acid sequestrants (BAS) act to reduce the intestinal 

absorption of cholesterol but previous trials were underpowered to demonstrate an effect on 

clinical outcomes.   

Methods and Results: We conducted a systematic review and meta-analysis of randomized 

controlled trials (RCTs) to assess the effect of two approved BAS, cholestyramine and 

colesevelam, compared to a placebo on plasma lipid levels.  We then applied the principles of 

Mendelian Randomization to estimate the effect of BAS on reducing the risk of CAD. First, we 

quantified the effect of rs4299376 (ABCG5/ABCG8), which affects the intestinal cholesterol 

absorption pathway targeted by BAS, on both LDL-C and CAD, and then we used these 

estimates to predict the effect of BAS on CAD.  Nineteen RCTs with a total of 7,021 study 

participants were included. Cholestyramine 24g/d was associated with a reduction in LDL-C of 

23.5 mg/dL (95% CI: -26.8,-20.2; N=3,806) and a trend towards reduced risk of CAD (OR: 0.81, 

95% CI: 0.70-1.02; P=0.07; N=3,806) while colesevelam 3.75g/d was associated with a 

reduction in LDL-C of 22.7 mg/dL (95% CI: -28.3,-17.2; N=759).  Based on genetic findings 

demonstrating that rs4299376 was associated with a 2.75 mg/dL decrease in LDL-C and a 5% 

decrease in risk of CAD outcomes, we estimated that cholestyramine may be associated with an 

OR for CAD of 0.63 (95% CI: 0.52 - 0.77; P= 6.3x10-6; N=123,223) and colesevelam with an 

OR of 0.64 (95% CI: 0.52-0.79, P: 4.3x10-5). These estimates were not statistically different from 

previously reported trends from BAS clinical trials (P>0.05).   

Conclusions: The cholesterol lowering effect of BAS can be expected to translate into a 

clinically relevant reduction in the risk of CAD. 
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INTRODUCTION  

 

Elevated plasma levels of low-density lipoprotein cholesterol (LDL-C) are a well-established 

risk factor of cardiovascular disease (CVD)1. Current guidelines recommend that statin therapy 

should be used in select groups of patients with atherosclerotic CVD in primary and secondary 

prevention settings2. However, statins may not be fully effective in lowering LDL-C3;4 or well 

tolerated5, and therefore patients may require additional or alternative lipid-lowering treatments.  

 

Bile acid sequestrants (BAS) are large polymers that bind to bile salts in the small intestine, 

preventing their reabsorption into the enterohepatic circulation pathway. The resulting depletion 

of bile acids leads to increased hepatic metabolism of cholesterol for bile salt synthesis, thereby 

lowering plasma LDL-C levels6. Three BAS have been approved for clinical use:  

cholestyramine and colestipol (first generation) and colesevelam hydrochloride (colesevelam) 

(second generation). Colesevelam was developed to overcome gastrointestinal intolerance 

associated with the first-generation BAS7-9. Three randomized controlled trials (RCTs) have 

evaluated the efficacy of cholestyramine for cardiovascular prevention but results have been 

inconclusive 8;10;11. Although most of these trials have demonstrated that treatment with 

cholestyramine reduces LDL-C levels, only one trial has shown a modest reduction in the risk of 

CVD events (OR: 0.81 (95% CI: 0.70 -1.02); P=0.07) 8. To date, there are no adequately 

powered trials exploring the effects of colesevelam or colestipol on the risk of major 

cardiovascular events.  Thus the efficacy of BAS in the prevention of CVD is uncertain.   
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Mendelian Randomization analyses use genetic variants with a known biological function to 

explore the effects of a modifiable exposure on an outcome 12;13. Genetic variants are useful 

instruments for assessing causality because they are randomly allocated and they are independent 

of many factors that may confound observational associations. Thus, in the absence of evidence 

from randomized trials, the principles of Mendelian Randomization can be applied for drug 

target validation as functional alleles of a gene within a drug target pathway can be used to 

extrapolate the effects of the pharmacological intervention14;15.  This approach can strengthen the 

rationale for conducting an RCT12 because it is highly cost-effective due to the availability of 

genetic data through large-scale biobanks and data consortia. 

 

The ATP-binding cassette (ABC) genetic subfamily forms active membrane transporters that 

regulate the delivery and disposal of intestinal cholesterol and affects the same pathway that is 

targeted by BAS16. The ATP-binding cassette sub-family G member 5 (ABCG5) and ABCG8 

genes are mainly expressed in hepatocytes and enterocytes17.  In the liver, these transporter genes 

are responsible for increased biliary cholesterol secretion, while in the intestine, they recycle free 

cholesterol from the enterocyte back into the intestine lumen and promote the fecal excretion of 

biliary sterols18. The rs4299376 single nucleotide polymorphism (SNP) is an intronic variant of 

ABCG5/8 that has been associated with altered plasma LDL-C levels 19-21 and risk of coronary 

artery disease (CAD) in the CARDIoGRAMplusC4D Consortium 22.  The same variant is in 

perfect linkage disequilibrium (r2=1) with the rs6544713 SNP, which is also known to be 

associated with CAD19. This genetic polymorphism represents a potential proxy for the 

mechanism-based effect of BAS on LDL-C and the risk of CVD.  
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In order to test whether BAS has the potential to reduce the risk of cardiovascular outcomes, we 

first conducted a systematic review and meta-analysis to assess the effect of BAS on plasma lipid 

levels and major cardiovascular outcomes.  We then applied principles of Mendelian 

Randomization to predict the effect of BAS on CAD using the known genetic association of the 

ABCG5/ABCG8 polymorphism rs4299376 with lipids 23 and CAD22. 

 

METHODS 

Search strategy and study selection of clinical trials 

A structured search of RCTs evaluating the effects of BAS on markers of cardiovascular risk or 

clinical outcomes was conducted in the PubMed database. The following terms were used to 

search all clinical trial registries and databases: colesevelam; cholestyramine; colestipol; placebo; 

and randomized controlled trials. Only studies with a double-blinded, placebo-controlled trial 

design in adults aged 18 years that assessed the effect of BAS (i.e. cholestyramine, colestipol and 

colesevelam) in comparison with a placebo were included. Refer to the Supplemental Methods 

for more details.  

 

Global Lipids Genetics Consortium 

Data on the genetic association between the rs4299376 SNP and plasma lipid levels were 

obtained from a previously published genome-wide association study (GWAS). In brief, 

Teslovich et al (2011) performed a meta-analysis of 46 lipid GWAS assessing common variants 

associated with serum lipids (LDL-C, high density lipoprotein cholesterol (HDL-C), total 

cholesterol (TC), and triglycerides)23. A total of 46 studies and 91,285 individuals of European 
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descent were analyzed for the genetic association with LDL-C, while data from 95,708, 95,992 

and 92,410 individuals were available for HDL-C, TC and triglycerides, respectively.  

 

CARDIoGRAMplusC4D Consortium 

Data on the genetic association between the rs4299376 SNP (ABCG5/8) and the risk of CAD 

was obtained from the CARDIoGRAMplusC4D Consortium.  Briefly, the 

CARDIoGRAMplusC4D Consortium performed a meta-analysis of 63,746 cases of CAD and 

130,681 controls22.  CAD outcomes were defined as one of the following: myocardial infarction 

(MI), > 50% stenosis in at least one coronary vessel at angiography, history of percutaneous 

transluminal coronary angioplasty or coronary artery bypass graft surgery, angina or death due to 

CAD24. For the association between the rs4299376 SNP and CAD outcomes the lipid-lowering 

allele was used as reference throughout the manuscript. 

 

Cholesterol Treatment Trialists' (CTT) Collaboration  

As a sensitivity analysis, we confirmed the predicted effect of BAS on CAD using data from the 

Cholesterol Treatment Trialists' (CTT) Collaboration25. Briefly, the CTT assessed the association 

between change in LDL-C with statin therapy and reduction in risk of CVD. The CTT was a 

prospective meta-analysis from 169,138 individuals from 26 statin RCTs. Over a period of 5 

years, there were a total of 24,323 major vascular events, which was defined as the first 

occurrence of coronary death or non-fatal MI, coronary revascularization, or stroke.  
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Statistical Analysis 

To calculate the effect of BAS on plasma lipids levels, the mean change-from-baseline of plasma 

lipids in the 24 g/d cholestyramine treatment group and the 3.75 g/d colesevelam group were 

compared to the mean differences in the placebo group.  Meta-analyses were performed using an 

inverse variance random effect meta-analysis. Refer to the Supplemental Methods for further 

details. 

 

Simulations were performed to predict the effect of 24 g/d cholestyramine on plasma lipid 

profiles (HDL-C, TC, and triglycerides) using the known genetic associations of rs4299376 SNP 

with lipids fractions.  To do so, we adapted the method from Sofat et al14 to match the genetic 

effects to the effect of cholestyramine 24 g/d on LDL-C, taking into account the uncertainty of 

both the genetic and drug effect estimates.  Refer to the Supplemental Methods for more 

information. In order to validate whether the rs4299376 SNP had a similar effect on plasma lipid 

profiles as cholestyramine, the predicted effects of cholestyramine on plasma levels of HDL-C, 

TC and triglycerides were estimated using genetic data. These predicted estimates were then 

compared to known effects of cholestyramine on the same lipids fractions from clinical data. 

Next, the predicted effect of cholestyramine on the risk of cardiovascular outcomes was 

projected using data from the genetic association of rs4299376 with CAD. This was then 

compared to the effect of cholestyramine on CAD from the only outcome trial of cholestyramine, 

Lipid Research Clinics Coronary Primary Prevention Trial (LRCCPPT) 8. As a sensitivity 

analysis, the predicted effect of cholestyramine on CAD was also estimated using data from the 

CTT25. This estimate was similarly compared to the cardiovascular outcomes reported in the 

LRCCPPT in order to compare the predicted effect of BAS with statin use. The same analyses 
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were performed for 3.75 g/d colesevelam. Refer to the Supplemental Methods for more 

information. All statistical analyses were performed using R.   

 

RESULTS 

Study Selection 

The structured literature search of PubMed databases derived a total of 420 citations and 19 

studies were identified for inclusion in this review. Supplemental Figure 1 contains a flow 

diagram of the study selection process. Owing to the lack of reported data from clinical trials the 

results of the colestipol meta-analysis are described in the Supplemental Methods.  

 

Randomized Controlled Trials of Cholestyramine 

We identified a total of six RCTs comprising 4,598 hyperlipidemia participants (mean age 49.5 

years, 4.8% women)8;10;11;26-28 (Table 4.1). In the pooled analysis of plasma lipid levels, three 

RCTs evaluated the effect of 24 g of cholestyramine daily dose compared to matching placebo in 

4,002 hyperlipidemia patients (Figure 4.1). The pooled estimates indicate that cholestyramine 

treatment resulted in a mean decrease of LDL-C by 53.4 mg/dL (95% CI: -91.8, -15.0) and a 

decrease of TC by 50.7 mg/dL (95% CI: -89.9,-11.5). There was significant heterogeneity among 

the pooled changes in LDL-C (I2: 93.3% and P for heterogeneity: 5.4x10-6) and TC (I2: 93.5% 

and P for heterogeneity: 9.1x10-6). Two pooled studies (196 participants) demonstrated a 

nonsignificant effect in the change of HDL-C and triglycerides (2.6 mg/dL (95% CI: -1.2, 6.5) 

and 3.1 mg/dL (95% CI: -15.5, 21.7), respectively). One study (80 participants) reported a 

significant decrease of apoB by 44.0 mg/dL (95% CI: -61.7,-26.3) and a nonsignificant effect in 

the change of apoA (10.0 mg/dL (95% CI: -3.9, 23.9)). One RCT reported the effect of 
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cholestyramine (24 g/d) on cardiovascular outcomes8, randomizing 3,806 patients, 342 of whom 

experienced an event. Cholestyramine did not significantly reduce the composite of 

cardiovascular death or MI (OR: 0.81, 95% CI:  0.65 - 1.02, P=0.07), cardiovascular mortality 

(OR: 0.78, 95% CI: 0.48-1.27, P=0.322) or MI (OR: 0.81, 95% CI: 0.63-1.03, P=0.082).   

 

Randomized Controlled Trials of Colesevelam 

We identified 10 trials with a total of 1,142 participants with hyperlipidemia and 883 participants 

with type two diabetes mellitus20;29-37 (mean age 50.2 years, 51% women) (Table 4.1). Seven 

RCTs comprising 767 study participants evaluating the effect of colesevelam 3.75 g daily 

compared to matching placebo were used in the primary analysis (Figure 4.2). Treatment with 

colesevelam resulted in a mean decrease of LDL-C by 22.7 mg/dL (95% CI: -28.3,-17.2) with 

significant heterogeneity among the pooled change in LDL-C (I2: 56.95% and P for 

heterogeneity: 0.032). Colesevelam treatment was also associated with a decrease in TC by 19.2 

mg/dL (95% CI: -24.4,-14.0) while the effect was attenuated in HDL-C and triglycerides (0.30 

mg/dL (95% CI: -0.14, 2.0) and 9.8 mg/dL (95% CI: -1.8, 21.4), respectively). Five pooled 

studies (628 participants) demonstrated a decrease of apoB by 14.0 mg/dL (95% CI: -17.7,-10.3) 

and had a nonsignificant effect in the change of apoA (1.8 mg/dL (95% CI: -0.8, 4.5)).  We were 

unable to conduct subgroup analyses in order to explore the presence of heterogeneity among 

pooled estimates owing to a lack of data.   

 

Predicted effects of BAS on plasma lipids using genetic data 

Teslovich et al (2010) confirmed the association between the rs4299376 SNP and plasma lipid 

levels23.  The rs4299376 polymorphism was significantly associated with a decrease in LDL-C of 
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2.75 mg/dL per allele (95% CI: -3.14, -2.36) (P=1.73x10-47), a decrease in TC of 3.01  (95% CI: 

-3.44, -2.58) mg/dL per allele (P=4.0x10-45), a decrease in triglycerides of 1.08 (95% CI: -1.80,-

0.36) mg/dL per allele (P=0.003) and had a null effect on HDL-C levels (0.05 mg/dL per allele, 

95% CI: -0.09, 0.19; P=0.212). We also explored whether the rs4299376 SNP had potential 

pleiotropic effects on the risk of diabetes or on the change in glycated hemoglobin (HbA1c), 

fasting glucose, systolic blood pressure, diastolic blood pressure and body mass index using data 

from the DIAGRAM38, MAGIC39;40, GIANT41 and ICBP42 consortia. We did not observe any 

significant changes among these traits (P> 0.05 for all) (Supplemental Table 2). Next, we sought 

to determine whether the predicted effect of BAS using genetic data had a similar effect on 

plasma lipids levels as compared to the reported pharmacological effect.  To do so, we adjusted 

the per-allele genetic effect to match the LDL-C reducing effect of 24 g/d cholestyramine, as 

reported in the LRCCPPT trial8 (the only BAS  outcome trial available). We then predicted the 

effect of cholestyramine on TC using genetic data, and compared it to the known effect of 

cholestyramine. The predicted reduction of TC was 25.8 mg/dL (95% CI: -32.3, -19.4), which 

was not statistically different from the reported trial estimate (P for difference > 0.05). 

 

We performed a similar analysis using the effect of colesevelam 3.75 g/d on LDL-C as the 

reference for the genetic effect (Figure 4.3).  The predicted reduction of TC by colesevelam was 

estimated at 25.0 mg/dL (95% CI: -33.0,-16.9), which was not different (P>0.05) from results of 

our meta-analysis.  The predicted effect on HDL was null (0.42 mg/dL, 95% CI: -0.78, 1.61) and 

was consistent with the reported effect of colesevelam (P for difference >0.05).  The predicted 

effect of colesevelam was associated with a modest decrease in triglycerides (8.94 mg/dL (95% 
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CI: -15.5, -2.32) and was statistically different from the observed drug effect (P for difference: 

0.001). 

 

Predicted effects of BAS on cardiovascular outcomes using genetic data 

Data from the CARDIoGRAMplusC4D Consortium was obtained to assess the association of 

rs4299376 with risk of CAD.  The minor allele (LDL-C decreasing) of rs4299376 was associated 

with a modest yet significant decrease in risk of CAD (OR: 0.95, 95% CI: 0.93 – 0.97; P= 

2.85x10-7). We then derived the predicted effect of 24g/d cholestyramine on risk of CAD based 

on the association of the ABCG5/8 rs4299376 polymorphism on CAD, adjusting the per-allele 

genetic effect to match the LDL-C reducing effect of 24 g/d cholestyramine. Cholestyramine 

24g/d was predicted to significantly reduce the risk of CAD (OR= 0.63, 95% CI: 0.52 - 0.77; P= 

6.3x10-6). The predicted estimate was not significantly different from the effect observed in the 

only outcome trial of cholestyramine, LRCCPPT (P for difference>0.05) (Figure 4.4). The effect 

of rs4299376 was also matched to the LDL-C reducing effect of 3.75 g/d colesevelam, leading to 

a predicted CAD reduction of OR=0.64 (95% CI: 0.52-0.79; P=4.3x10-5) with colesevelam 3.75 

g/d (P for difference>0.05) (Figure 4.4).  

 

Predicted effect of BAS on cardiovascular outcomes based on CTT data 

As a sensitivity analysis, we estimated the predicted effect of 24g/d cholestyramine on CVD 

outcomes using data from the CTT, a large meta-analysis evaluating the effect of cholesterol 

reduction on CVD. The change in LDL-C levels from 24g/d cholestyramine was predicted to 

significantly decrease the risk of major vascular events (OR: 0.86, 95% CI: 0.85 - 0.87; 

P=6.6x10-83) (Figure 4.4).  This estimate was not significantly different from observed effect of 
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cholestyramine from clinical trial8 (LRCCPPT; P for difference > 0.05). Similarly, the effect of 

3.75g/d colesevelam was also predicted to significantly reduce the risk of cardiovascular events 

(OR: 0.90, 95% CI: 0.87 - 0.93; P=1.3x10-13; P for difference > 0.05).  

 

DISCUSSION 

Mendelian Randomization analyses utilize the random allocation of alleles in order to replicate 

the randomization process in double-blinded clinical trials and to reduce the potential effects of 

reverse causation and confounding factors. The results of our Mendelian Randomization analysis 

suggest that BAS may be effective in the prevention of CAD. Thus, when given in currently 

recommended doses, our data demonstrates that cholestyramine and colesevelam were associated 

with a reduced risk of CAD. Furthermore, our projections concerning the effect of BAS on 

clinical outcomes were consistent with estimates obtained from the cholestyramine LRCCPPT 

trial and the CTT.  

 

The predicted effects of BAS on cardiovascular outcomes were based on robust genetic data 

derived from the CARDIOGRAMplusC4D and the Global Lipids Genetics Consortia, which 

collectively involved 388,353 individuals from prospective cohort and case-control studies. 

Leveraging already available genetic data is highly cost-effective and has the added advantage of 

providing estimates that reflect lifelong difference in plasma LDL-C levels between carriers and 

non-carriers of the rs4299376 allele. . In contrast, randomized trials are complex, expensive and 

are generally restricted to several years of follow-up, which limits the ability to assess the long-

term effects of BAS on clinical outcomes. 
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 Our findings have important clinical implications. Although BAS monotherapy may not be as 

effective as statin therapy, our results suggest that BAS are likely to be an effective second-line 

therapy. In contrast, adequately powered randomized trials have failed to show a benefit of 

Niacin and CETP inhibitors 43-45.  Additionally, there has been a shift in clinical guidelines, 

where patients are more likely to be prescribed with high dose statin therapy to reduce the risk of 

CAD irrespective of meeting specific LDL-C targets2. However, statin therapy may not be well-

tolerated or effective in all patients, and the addition of BAS in combination with statin therapy 

may further prevent the risk of CAD. Even though there is clinical evidence demonstrating that 

cholestyramine effectively reduces LDL-C levels, as well as suggestive evidence that it 

decreases the risk of CAD events, its use is hampered by poor patient tolerability and adverse 

side effects 6. Colesevelam is much better tolerated 46;47, has other potential benefits, such as 

reducing fasting blood glucose levels48, and in our Mendelian Randomization analysis produced 

a similar reduction in CAD to that of cholestyramine. Thus our study demonstrates that there is a 

need for well-designed clinical trials to fully understand the clinical efficacy and safety of BAS, 

especially colesevelam. 

 

The ABCG5/8 genes and BAS act through related biological mechanisms. BAS bind to intestinal 

bile acids and are excreted through the feces, thus impeding the enterohepatic circulation of bile 

acid. This leads to an increase in bile acid synthesis and a subsequent decrease in plasma LDL-C 

levels49. Animal models have demonstrated that hepatic ABCG5/8 transporters are responsible 

for secreting multiple sterols in the bile while intestinal transporters limit cholesterol absorption 

from the lumen and thus promote fecal excretion50;51. Overexpression of ABCG5/8 genes in 

transgenic mice resulted in an increase in biliary cholesterol secretion, reduced cholesterol 
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absorption, and increased hepatic cholesterol synthesis50, leading to a significant reduction in 

plasma cholesterol levels and atherosclerotic lesions. In addition, treatment with BAS has also 

been associated with reduced levels of fasting plasma glucose48. Although the underlying 

mechanism is unknown, it has been suggested that the binding of BAS to bile acids alters the GI 

tract glucose absorption52. However, we observed that the rs4299376 SNP was not associated 

with the changes in the levels of fasting glucose or HbA1c and diabetes using data from the 

MAGIC and DIAGRAM Consortia (P>0.05 for all) 38,39. Furthermore, genetic mutations of 

ABCG5/8 have been associated with sitosterolemia, a rare genetic disorder resulting in increased 

intestinal absorption, decreased biliary excretion of dietary sterols, hypercholesterolemia and 

atherosclerosis. BAS treatment lowers blood levels of dietary sterols53;54 and is recommended for 

patients with sitosterolemia. Teupser et al (2010) also reported that common ABCG5/8 

polymorphisms lower phytosterol levels as well as CVD risk55, again confirming the similarity 

between BAS treatment and the effect of rs4299376.  Taken together, these results confirm the 

similarity between BAS treatment and the effect of rs4299376.  Therefore our genetic results 

illustrate that inhibition of intestinal cholesterol absorption may provide a valuable therapeutic 

target for the prevention of CVD.  

 

A few limitations of our study warrant discussion. First, we were unable to assess the overall 

effect of colestipol on plasma lipid levels, the effect of colesevelam and colestipol on 

cardiovascular outcomes or the predicted effect of BAS on apoA, apoB and adverse side effects 

due to the lack of reported data. Second, we found that the effect of colesevelam on triglycerides 

predicted by genetic data was statistically different from the pharmacological effect. 

Nonetheless, the predicted effect was weak (8.94 mg/dL (95% CI: 15.5, 2.32)) and should not 
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affect CAD risk estimates since the effect size of triglycerides is modest in comparison with 

other CAD risk factors 56. Furthermore, our meta-analysis may have been underpowered to 

detect any change because triglycerides are highly clinically variable.  However, the effects on 

TC and HDL-C predicted from genetic data were consistent with estimates from the meta-

analysis. Third, the protective effect of BAS on CAD was larger in the Mendelian 

Randomization analysis as compared to the reported trend from LRCCPPT and estimates derived 

from the CTT. Although the differences in estimates were not statistically different, this may be 

due to the observation that rs4299376 carriers have a lifelong exposure to lower levels of LDL-

C.  Fourth, there may also be a possibility of pleiotropic effects whereby either the rs4299376 

SNP or BAS influence yet unknown pathways unrelated to lipids.  For instance, both are 

involved in the absorption of dietary sterol which may be a key mediator of their CAD protective 

effect. Fifth, the predicted side effects of BAS therapy using a Mendelian Randomization 

analysis have not been addressed and further research may be required.  

 

In summary, this systematic review, meta-analysis and large-scale Mendelian Randomization 

analysis illustrates that pharmacological inhibition of intestinal cholesterol absorption may 

reduce the risk of major cardiovascular events. Comparison of genetic association studies and 

clinical trials of colesevelam supports the potential use of BAS as a second line therapy to reduce 

LDL-C in the prevention of CAD.  Our results point to the need for large-scale randomized trials 

to fully assess the efficacy and safety of BAS treatment on CVD, as well as their effect when 

combined with other lipid lowering agents such as statins.  
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FIGURE LEGENDS 

Figure 4.1: Forest plot of the association of 24 g/d of cholestyramine treatment and the 

mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB.  

Het P refers to the heterogeneity p-value.  

Figure 4.2: Forest plot of the association of 3.75 g/d of colesevelam treatment and the mean 

difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB. 

Het P refers to the heterogeneity p-value.  

Figure 4.3: Predicted effects of BAS using genetic data and the effect of 3.75g/d colesevelam 

on LDL-C, HDL-C, TC and triglycerides. 

Figure 4.4: Predicted effects of BAS using genetic data and the effects of 24g/d 

cholestyramine and 3.75 g/d colesevelam on the risk of CAD outcomes.  

CAD is defined as one of the following: MI, > 50% stenosis in at least one coronary vessel at 

angiography, history of percutaneous transluminal coronary angioplasty or coronary artery 

bypass graft surgery, angina or death due to CAD24. Diff P represents the statistical difference 

between the predicted BAS effect on CAD outcomes as compared to the pharmacological effect 

on CAD outcomes.  

  



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

102 

TABLES 

Table 4.1: Studies contributing to the BAS meta-analysis  

Author & Date  Patient Population  Follow-Up Intervention  Comparison 

Total 

Sample 

size 

Age  Women 

LDL-C (mg/dL)* 

Baseline Endpoint 

CHOLESTRYAMINE 

Betteridge 

199226 

Hyperlipidemia 
12 weeks 

Pravastatin (20 mg bid); 

Cholestyramine (16-24 g/d) 
Placebo 128 18-70 36(28) 295 (8.9) 203.8 (NR) 

LRCCPPT 

19848 
Hyperlipidemia 7.4 years Cholestyramine (24 g/d) Placebo 3806 47.8 0 (0) 215.6 (NR) 174.9 (NR) 

NHLBI Type II 

Coronary 

Intervention 

Study 198411 

Hyperlipidemia 
5 years  Cholestyramine (24 g/d) Placebo 143 46.3 (0.55) 28 (20) 241.8 (6.5) 237.4(6.2) 

Pravastatin 

Multicenter 

Study Group II 

199327 

Hyperlipidemia 8 week 

Pravastatin (20 mg/bid); Pravastatin 

(40 mg/bid); Cholestyramine (12 

g/bid);  Pravastatin (20 mg bid) & 

Cholestyramine (12 g bid) 

Placebo 311 51.9 95 (31) 236(6.6) 162(6.6) 

Watts 199210 
Hyperlipidemia 

3.5 months 
Diet & Cholestyramine (8 g/day); 

Diet 
Placebo 90 50.8(4.7) 0 (0) 203.4(8.5) 130.3(7.4) 

Wiklund 199028 
Hyperlipidemia 

12 weeks 

Pravastatin (10-20 mg/bid); 

Cholestyramine (24 g/d to highest 

dose) 

Placebo 120 50.6 (13) 60 (50) 304.6(68.0) 214.6(68.0) 

COLESEVELAM 

Bays 200830  Diabetes 26 weeks 
Colesevelam (3.75 g/d) with DM 

drugs 

Placebo with DM 

drugs 
316 56.3(9.6) 152(48) 105.6(33.8) 91.7(39.1) 

Davidson 199931 Hyperlipidemia 6 weeks  
Colesevelam (1.5 g/d; 2.25 g/d; 3.0 

g/d; or 3.75 g/d) 
Placebo 147 56.0(11) 82(56) 202(26) 163(27) 

Davidson 200120 Hyperlipidemia 4 weeks 

Colesevelam (2.3 g/d); Lovastatin 

(10 mg/d); Colesevelam (2.3 g/d) & 

Lovastatin (10 mg/d) 

Placebo 135 57.8(13.4) 72(53) 172(5) 158(5) 
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Author & Date  Patient Population  Follow-Up Intervention  Comparison 

Total 

Sample 

size 

Age  Women 

LDL-C (mg/dL)* 

Baseline Endpoint 

Devaraj 200632 Hyperlipidemia 6 weeks  Colesevelam (3.75 g/d) Placebo 48 NR NR 150(33) 136(37) 

Handelsman 

201033 
Diabetes 16 weeks Colesevelam (3.75 g/d) Placebo 216 54.5 (11.7) 149 (69) 132.8(23.9) 114.3 (NR) 

Hunninghake 

200134 
Hyperlipidemia 4 weeks 

Colesevelam (3.8 g/day); 

Atorvastatin (10 mg/day ); 

Colesevelam (3.8 g/day) & 

Atorvastatin (10 mg/day); or 

Atorvastatin (80 mg/day) 

Placebo 94 57.2(11.4) 37(39) 184(5) 163(8) 

Insull 200135 Hyperlipidemia 24 weeks 
Colesevelam (2.3 g/day; 3.0 g/day; 

3.8 g/day; or 4.5 g/day) 
Placebo 467 56 (12) 235 (50) 155(17) 127(23) 

Knapp 200129 Hyperlipidemia 6 weeks  

Colesevelam (3.8 g/d); Simvastatin 

(10 mg/d); Colesevelam (3.8 g/d) & 

Simvastatin (10 mg/d); Colesevelam 

(2.3 g/d); Simvastatin (20 mg/d); or 

Colesevelam (2.3 g/d) & Simvastatin 

(20 mg/d) 

Placebo 251 54.7(12.4) 118 (47) 198(39) 167(46) 

Rosenstock 

201036 
Diabetes 16 weeks 

Colesevelam (3.75 g/d) with DM 

drugs 

Placebo with DM 

drugs 
286 53.3(10.8) 161 (56.3) 130(NR) 120.2 (NR) 

Zieve 200737 Diabetes 12 weeks Colesevelam (3.75 g/d) Placebo 65 56.2  (9.3) 29 ( 44.6) 122.6(32.7) 107.8(27.5) 

*Refers to the highest single BAS dose reported in the study; NR: not reported  
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Figure 4.1: Forest plot of the association of 24 g/d of cholestyramine treatment and the 

mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB.  

Het P refers to the heterogeneity p-value.  
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Figure 4.2: Forest plot of the association of 3.75 g/d of colesevelam treatment and the mean 

difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA and apoB. 

Het P refers to the heterogeneity p-value.  
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Figure 4.3: Predicted effects of BAS using genetic data and the effect of 3.75g/d colesevelam 

on LDL-C, HDL-C, TC and triglycerides. 
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Figure 4.4: Predicted effects of BAS using genetic data and the effects of 24g/d 

cholestyramine and 3.75 g/d colesevelam on the risk of CAD outcomes.  
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ABSTRACT 

INTRODUCTION: Type 2 diabetes is a strong risk factor for coronary artery disease (CAD). 

However, the absence of a clear reduction in CAD by intensive glucose lowering in randomized 

controlled trials (RCTs) has fuelled uncertainty regarding the causal role of dysglycemia and 

CAD.   

OBJECTIVE: To assess whether Mendelian randomization supports a causal role of 

dysglycemia and diabetes for risk of CAD.  

METHODS: Effect size estimates of common genetic variants associated with fasting glucose, 

glycated hemoglobin (HbA1c) and diabetes were obtained from the MAGIC and DIAGRAM 

consortia. The corresponding effect estimates of these SNPs on the risk of CAD were then 

evaluated in CARDIOGRAMplusC4D. 

RESULTS: SNPs associated with HbA1c and diabetes were associated with an increased risk of 

CAD. Using information from 59 genetic variants associated with diabetes, the causal effect of 

diabetes on the risk of CAD was estimated at an odds ratio (OR) of 1.62 (95% CI: 1.23-2.07; 

P=0.002). On the other hand, nine genetic variants associated with HbA1c was associated with an 

OR of  1.53 per % increase (95% CI: 1.14-2.05; P=0.023) in the risk of CAD. No significant 

differences were observed when categorizing genetic loci according to their effect on either β 

cell function or insulin resistance. 

CONCLUSIONS: These Mendelian randomization analyses support a causal role for diabetes 

and its associated high glucose levels on CAD, and suggest that long-term glucose lowering may 

reduce CAD events.   

KEY WORDS: genetic variants, dysglycemia, diabetes, coronary artery disease 
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INTRODUCTION 

 

Large prospective observational studies have reported that type 2 diabetes increases the risk of 

cardiovascular events by approximately 2-fold following the adjustment for other risk factors1. 

These and other studies have also reported a progressive relationship between various measures 

of glycemia, including fasting glucose (FG) and glycated hemoglobin (HbA1c), and 

cardiovascular outcomes, both in people with diabetes and in people without a history of diabetes 

or cardiovascular events1,2. Conversely, large randomized controlled trials (RCTs) assessing the 

effect of glucose lowering have also yielded mixed results. For instance, meta-analyses have 

demonstrated a modest 9% reduction in the composite cardiovascular outcome and a 15% 

reduction in coronary artery disease (CAD) 3,4,5. Moreover, at least one analysis suggests that this 

effect on CAD is due to the effect of the intervention on HbA1c
6.   

 

The conflicting reports from epidemiological studies and clinical trials regarding the potential 

effects of dysglycaemia on cardiovascular outcomes have fuelled uncertainty regarding the 

etiologic relationship between dysglycemia and CAD. However, Mendelian randomization 

analyses may help to clarify the relationship between glucose traits, diabetes and risk of CAD. 

This approach uses genetic associations to explore the effects of modifiable exposures on 

outcomes. It is based on the principle that genetic variants are randomly allocated at birth and 

this distribution is independent of many factors that may bias observational associations7, such as 

confounding factors and reverse causation8. However, this approach does not rule out the 

possibility that genetic variants associated with dysglycaemia may also be correlated with other 

CAD risk factors such as dyslipidemia, blood pressure elevation or weight gain 7. This limitation 
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can be circumvented by adopting the method proposed by Do et al (2013) to adjust Mendelian 

randomization analyses for genetic effects on these other risk factors 9. This approach allows for 

the dissection of causal influences for the risk of CAD among sets of correlated glucose traits 

and CAD risk factors.  

 

To explore the relationship between dysglycaemia-related indices (i.e. FG, HbA1C and diabetes) 

and the risk of CAD, we identified genetic variants associated with these three indices and then 

confirmed whether their genetic effect supports a causal association with CAD. We also explored 

whether genetic variants that modify β cell function have a different relationship to CAD than 

variants that modify insulin resistance.   

 

METHODS  

Data Sources 

Effect size estimates for SNPs associated with glucose traits (FG and HbA1C) were obtained from 

the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) study, a genome-

wide association study (GWAS) consisting of more than 133,010 of European descent without 

diabetes10,11,12. Genetic data for the association of diabetes was obtained from the DIAbetes 

Genetics Replication and Meta-analysis (DIAGRAM) Consortium study, a GWAS of 34,840 

cases and 114,981 controls of European descent13. Genetic data for the association of the risk of 

CAD was obtained from the Coronary ARtery DIsease Genome-wide Replication and Meta-

analysis (CARDIoGRAMplusC4D) Consortium study, a two-stage GWAS of 63,746 cases of 

CAD and 130,681 controls14. When not available in CARDIoGRAMplusC4D, effect estimates 

were obtained from the CARDIoGRAM, which is a meta-analysis of 22 GWAS studies of 
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22,233 cases and 64,762 controls15.  CAD outcomes were defined as one of the following: 

myocardial infarction (MI), > 50% stenosis in at least one coronary vessel at angiography, 

history of percutaneous transluminal coronary angioplasty or coronary artery bypass graft 

surgery, angina or death due to CAD14. Genetic data on the association of low density lipoprotein 

(LDL), high density lipoprotein (HDL), total cholesterol (TC) and triglycerides (TG) were 

obtained from the Global Lipids Genetics Consortium study, a GWAS of 188,577 individuals 

from 60 studies16. Genetic data for the SNP associated with systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) were obtained from the International Consortium for Blood 

Pressure (ICBP) GWAS in more than 200,000 European individuals17. Genetic data for the 

association of body mass index (BMI) was obtained from the Genetic Investigation of 

ANthropometric Traits (GIANT) GWAS in more than 133,154 European individuals18. Further 

details of each consortium are included in the Supplementary Methods.  

 

SNP Selection 

SNPs were selected if they were associated with at least one of the two glucose traits (FG and 

HbA1C) or diabetes at genome-wide level significance of P < 5x10-8. For duplicate SNPs and 

SNPs associated with glucose trait or diabetes that were less than 500kb apart we obtained the 

linkage disequilibrium (LD) estimates using data from the 1000 Genomes Pilot 119 and then 

assigned a lead SNP based on the strength of association with either glucose traits or diabetes 

(Supplementary Figure 1).  
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Statistical Analysis 

We first tested FG, HbA1c and diabetes separately for the risk of CAD. This was done by using 

the effect estimates of SNPs associated with FG, HbA1c or diabetes with their corresponding 

genetic effect estimates on CAD using data from the MAGIC, DIAGRAM and 

CARDIOGRAMplusC4D consortia, respectively. Figure 5.1 represents the schematic 

representation of the Mendelian Randomization design. Linear regressions (without intercept) 

were performed using the effect estimates of SNPs on FG, HbA1C and diabetes as the 

independent variables and the genetic effect sizes on CAD as the dependent variable. To account 

for putative pleiotropic effects, we developed multivariate models to adjust for the effects of 

LDL, HDL, TC, TG, SBP, DBP and BMI, including effect size estimates of SNPs on these latter 

traits as independent variables in regression models. Throughout the manuscript, the effect of the 

SNPs associated with diabetes on the risk of CAD was expressed as the relative risk of CAD 

among diabetic individuals as compared to individuals without diabetes. Here, literature 

estimates of the prevalence of diabetes and the prevalence of CAD in nondiabetic individuals 

were obtained 20,21,22, and these estimates were applied to derive the relative risk of CAD 

associated with diabetes (further details in Supplementary Methods). Next, the causal effects of 

glucose traits and diabetes on the risk of CAD derived from Mendelian randomization were 

compared to estimates obtained from observational studies to determine if there was a similar 

magnitude of effect. Estimates of FG available in units of mg/dL were converted to mmol/L 

using a multiplication factor of 0.055. Comparison of magnitude of effect was achieved through 

random simulations (N=10,000) of the effect of SNPs on glucose traits, diabetes and CAD, 

sampling from the known effect size distribution of SNPs on these traits (i.e. published mean and 

standard error of genetic associations).  The causal effect of glucose traits and diabetes on risk of 
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CAD was then calculated for each simulation, providing a confidence interval of the estimated 

causal effect on CAD risk. The genetic effect was then compared to the effect on the risk of 

CAD from observational studies using a z-test. We also derived power estimates of the causal 

effect of SNPs associated with glucose traits and diabetes on the risk of CAD using simulations.  

To do so, we first calculated the predicted effect of each SNP on CAD by matching their effect 

on glycaemia or diabetes with expected effect on CAD based on estimates from observational 

studies. We then performed 10,000 random simulations, regressing the predicted effect of each 

SNP on CAD on their known effect on glucose traits and diabetes.  Finally, loci were categorized 

according to their effect on “β cell dysfunction” or “insulin resistance” to determine if 

association with CAD could be ascribed to either hypo- or hyper-insulinemia, respectively.  Only 

SNPs with an unequivocal effect on “β cell dysfunction” or “insulin resistance” based on 

literature reviews were included in this analysis, with all SNPs of unknown function or with 

conflicting reports excluded.  All statistical analyses were performed using R.     

 

RESULTS  

Association of glucose levels and diabetes with risk of CAD 

Thirty SNPs were associated with FG 10, nine associated with HbA1C 12 and 59 associated with 

diabetes 13. Further details on the risk alleles, associated loci, and sample sizes for the trait 

specific SNPs are presented in Supplementary Table 1.  To investigate the consistency and 

directional effect of SNPs association with glucose traits and CAD, we plotted the effect of SNPs 

on FG, HbA1c and diabetes with their corresponding effect on risk of CAD (Figure 5.2). Next, to 

explore whether SNPs associated with glucose traits and diabetes predict the risk of CAD, we 

performed linear regression analyses for each trait using the respective effect sizes of SNPs on 
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FG, HbA1c and diabetes as the independent variables with the corresponding effects sizes for 

CAD as the dependent variables (Figure 5.3). SNPs associated with HbA1C and diabetes were 

significantly associated with an increased risk of CAD (OR: 1.53 per % increase in HbA1c, 95% 

CI: 1.14 – 2.05; P=0.023 and OR: 1.57, 95% CI: 1.16 – 2.05; P=0.008, respectively) while SNPs 

associated with FG were not associated with risk of CAD (P> 0.05; Figure 5.3).  When 

regression models for HbA1C and diabetes were adjusted for potential effects on other CAD risk 

factors (i.e. LDL, HDL, TC, TG, SBP, DBP and BMI), only SNPs associated with diabetes 

remained significantly associated with CAD (OR: 1.62, 95% CI: 1.23 – 2.07; P=0.002) while 

association with HbA1c was non-significant (P> 0.05).  

 

Comparison with literature estimates from observational studies 

To date, the largest prospective meta-analysis to assess the effects of glucose traits and diabetes 

on the risk of CVD is the Emerging Risk Factor Collaboration (ERFC)20,21. The authors reported 

that diabetes was associated with an increased risk of CAD (hazard ratio (HR): 2.00, 95% CI: 

1.83 – 2.19) in 698,782 individuals from 102 prospective studies. They also observed similar 

trends for FG (HR: 1.02 per mmol/L, 95% CI: 1.02 – 1.03), and HbA1C (HR: 1.43 per %, 95% 

CI: 1.07-1.91) in 294,998 individuals without diabetes or CAD from 73 prospective studies. We 

sought to determine whether causal effects of glycaemia and diabetes on the risk of CAD derived 

from Mendelian randomization were consistent with estimates obtained from the ERFC (Figure 

5.4).  We observed that CAD risk estimates derived from diabetes SNPs were statistically 

different from the risk estimates obtained from the ERFC (P for difference=9.60x10-5) while 

there were no statistical differences for glucose traits SNPs and the corresponding literature 

estimates (P for difference >0.05 for all). Using reported risk estimates from observational 
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studies, we estimated power to detect a genetic association between CAD and diabetes at 100%, 

72.2% for HbA1C and 5.6% for FG. 

 

Effect of gene function on CAD risk estimates 

We also explored whether the causal association of diabetes with CAD differed between sets of 

genes known to influence either β cell function or insulin resistance. We thus stratified diabetes 

SNPs according to their known biological function, namely: "β cell dysfunction" or "insulin 

resistance" (Figure 5.5). Among the 59 SNPs associated with diabetes, there were 26 loci 

associated with β cell dysfunction and 11 loci associated with insulin resistance. Loci influencing 

β cell dysfunction and insulin resistance were both associated with an increased risk in CAD (OR 

1.83, 95% CI: 1.19-2.62; P=0.015 and OR: 2.35, 95% CI: 1.46-3.53; P=0.01, respectively).   

 

DISCUSSION 

Using genetic information from 59 SNPs with known association with diabetes, our Mendelian 

randomization analysis supports a causal role of diabetes for CAD. We demonstrated that SNPs 

associated with HbA1C and diabetes were associated with an increased risk of CAD, which is 

consistent with findings from large observational studies21,20. Furthermore, consistent results 

were obtained when restricting the analysis to genes affecting either β cell dysfunction or insulin 

resistance, suggesting that the therapeutic interventions that act through these different pathways 

have the potential to reduce CAD irrespective of their mechanism of action. Although our 

estimates of the effect of diabetes on CAD appeared to be more modest in comparison to 

observational studies21,20 this may be explained by residual confounding or bias among these 

studies. SNPs associated with HbA1C were also associated with an increased risk of CAD but the 
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effect was attenuated after adjustment for other CAD risk factors. SNPs associated with FG were 

not associated with the risk of CAD but we had limited power to detect an effect for FG (5.6%).  

 

These analyses have several strengths. First, the random allocation of genetic variants acts to 

reduce the potential effects of confounding and reverse-causation observed in epidemiological 

studies. Furthermore, unlike other Mendelian randomization analyses that have assessed the 

effect of glucose traits on the risk of CVD outcomes23, we were able to control for genetic effects 

on other CAD risk factors such as blood lipids, blood pressure and obesity. We also had very 

robust estimates from the CARDIOGRAMplusC4D, DIAGRAM, GIANT, GLGC, ICBP and 

MAGIC consortia which collectively included a total of 881,875 individuals. The differences we 

observed between carriers and non-carriers of genetic variants represent lifelong effects on 

HbA1C and diabetes. Indeed, in the UKPDS trial, the authors reported a nonsignificant reduction 

in the risk of myocardial infarction among patients randomized to intensive or conventional 

glucose lowering strategies24. In addition,  after 8.5 years of post-trial observations, those 

originally randomized to the active arm experienced a 15% reduction in myocardial infarction 

(P=0.01) and 13% reduction in all-cause mortality (P=0.007)25. Similar trends were also 

observed in the DCCT/EDIC trial26. Thus the genetic properties of our analysis provide further 

support that long-term treatment with glucose-lowering agents may be beneficial. Also, loci 

involved in β cell dysfunction and insulin resistance were both associated with CAD. Taken 

together, these results suggest that long-term treatment with glucose-lowering agents, regardless 

of the mechanism of action, may be required before the effects of glycemic intervention on CVD 

events may be observed.  
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There are several limitations in our study. First, the definition of diabetes used in the DIAGRAM 

consortium was specific to each cohort, which might introduce heterogeneity into results. 

Second, estimates obtained from the DIAGRAM and CARDIOGRAMplusC4D consortia consist 

of both incident and prevalent cases from prospective and case-control studies. Third, owing to a 

lack of genetic data we were only able to explore the genetic effect of glucose traits and diabetes 

in predominantly European populations and we were also unable to account for other 

confounders that might influence the effect of SNPs associated with glycaemia traits and 

diabetes on the risk of CAD, such as smoking and waist-to-hip ratio. Fourth, due to the lack of 

statistical power, we were limited in our ability to evaluate associations with FG. Fifth, we were 

unable to assess whether there was a non-linear trend for glycaemia traits and the risk of CAD 

using Mendelian Randomization since we did not have individual level data27. Finally, we were 

not able to assess the mechanism of action for all SNPs included in this analysis owing to a lack 

of functional data in the literature.  

 

In summary, our genetic analysis provides further insight into the causal role of glucose levels, 

diabetes and the risk of CAD. Our results support that diabetes has an independent and causal 

effect on the risk of major cardiovascular events.  Thus improved glycemic control among 

diabetic patients and prevention of diabetes may reduce the risk of CAD outcomes. Our results 

emphasize the need to further explore the benefits of long-term glucose lowering on CAD.   
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FIGURE LEGENDS 

Figure 5.1: Schematic representation of the Mendelian Randomization design.  

 

Figure 5.2: Effect of SNPs associated with levels of FG, HbA1c and diabetes on the risk of 

coronary artery disease.  

Each black dot represents a SNP associated with a glycemic trait (fasting glucose, diabetes or 

HbA1c) with a P < 5x10-8.    The association of each SNP with CAD (β value) is represented by 

the y-axis while association with glycemic trait is represented by the x-axis.  The blue line  

illustrates regression of CAD effects on glycemic effects. The p-value for the association of FG 

SNPs with the risk of CAD was 0.102, HbA1c SNPs with the risk of CAD was 0.023, diabetes 

SNPs with the risk of CAD was 0.008.  

 

 Figure 5.3: Genetic estimates of association of diabetes, HbA1c and FG with risk of CAD. 

Analyses were adjusted for the potential pleiotropic effects of LDL, HDL, TC, TG, SBP, DBP 

and BMI. Adjusted analyses are only presented for diabetes because the number of FG and 

HbA1c  SNPs was insufficient to perform statistical adjustment. 

 

Figure 5.4: Comparison of estimated effects of glycemia and diabetes on CAD derived from 

genetic analysis with estimates from observational studies 

 

Figure 5.5: Subgroup analysis of loci influencing β cell dysfunction or insulin resistance on 

risk of CAD.   
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Figure 5.1: Schematic representation of the Mendelian Randomization design.  
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Figure 5.2: Effect of SNPs associated with levels of FG, HbA1c and diabetes on the risk of 

coronary artery disease.  
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Figure 5.3: Genetic estimates of association of diabetes, HbA1c and FG with risk of CAD. 
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Figure 5.4: Comparison of estimated effects of glycemia and diabetes on CAD derived from 

genetic analysis with estimates from observational studies 
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Figure 5.5: Subgroup analysis of loci influencing β cell dysfunction or insulin resistance on 

risk of CAD.   
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CHAPTER 6  

Conclusion 

 

Advancements in Pharmacogenetics 

Overall, we have demonstrated that pharmacogenetics has the potential to maximize drug 

efficacy and minimize adverse effects. However, its translation into clinical practice been slow 

due to a lack of replication among previously published studies. Yet, large collaborative efforts 

that incorporate genetic and clinical data have provided robust evidence in the support of 

personalized medicine. These advancements have allowed researchers to gain novel insights into 

existing drug targets, inform and guide clinical decision-making and validate potential disease 

target pathways. In this section we will briefly summarize the main pharmacogenetic research 

papers presented in this thesis, as well as the potential research implications and limitations of 

these studies, and the future directions of pharmacogenetics.  

 

Existing Drug Targets  

In our analysis of the effect of the rs20417 SNP (COX-2) on the risk of CVD, we confirmed that 

COX-2 carrier status was associated with a decreased risk of major cardiovascular outcomes 

among 49,232 participants from the ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, 

RE-LY, and WGHS studies (1). We also observed that aspirin use and previous CAD appeared 

to modify the association between rs20417 carrier status and the risk of CVD outcomes.  

Furthermore, carriers had significantly lower urinary levels of thromboxane and prostacyclin 

metabolites as compared to noncarriers.  
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Inform treatment decision 

In our meta-analysis and Mendelian Randomization analysis of the effect of BAS on the risk of 

cardiovascular events, we observed that BAS appeared to be associated with a reduced risk of 

CAD (Chapter 4). First, our systematic review and meta-analysis showed that 24g/d of 

cholestyramine was associated with a reduction in LDL-C levels and a modest reduction in the 

risk of CAD while 3.75 g/d coleselevam was associated with a reduction in LDL-C. We also 

showed that the predicted effects of 24 g/d of cholestyramine and 3.75 g/d of coleselevam using 

genetic data were associated with a reduced risk of CAD and these estimates were not 

statistically different from previously reported trends in clinical trials.  

 

Validate targeting of disease pathways 

Our Mendelian Randomization analysis of the effects of dysglycemia on the risk of CAD 

outcomes demonstrated that SNPs associated with HbA1c and diabetes appeared to be associated 

with an increased risk of CAD (Chapter 5). Our results were consistent with reports from 

observational studies (2;3), which suggest that dysglycemia may have a causal role in the risk of 

CAD. Furthermore, our results also indicate that therapeutic interventions targeting either insulin 

resistance or β cell dysfunction pathways may potentially decrease the risk of CAD.  

 

Implications of Research  

There are several clinical and research implications for using pharmacogenetics in order to 

validate existing drug targets. In our analysis of the effect of COX-2 carrier status on the risk of 

CVD, we proposed that the COX-2 genetic variant may have tissue-specific effects, which 

indicates that selective targeting of the COX-2 genetic variant may have greater beneficial effects 
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in secondary prevention patients. Thus it would appear that COX-2 inhibition may not be 

universally deleterious in all patients; however, there needs to be further research is required to 

better understand the biological role of COX-2 genetic variant in CVD and how this variant may 

influence drug response. We also observed that the association between COX-2 carrier status and 

the risk of CVD was modified by aspirin use. Despite the potential confounding issues between 

the interaction of aspirin use and COX-2 carrier status with the risk of CVD, our results suggest 

that widely prescribed non-selective COX inhibitors, such as aspirin, may have a greater 

beneficial effect among COX-2 carriers as compared to noncarriers. However, more research is 

required to address this compelling biological interaction because most all high-risk patients are 

appropriately prescribed aspirin and we can only speculate as to the cardiovascular and bleeding 

risk of aspirin-naïve secondary prevention patients. Therefore by revisiting previously reported 

pharmacogenetic associations using large genetic data sources provides a better understanding of 

the pathology of CVD and advances the knowledge of how genetic variants influence drug 

response.    

 

There were also implications of using pharmacogenetics to help inform clinical decision-making. 

In our analysis of the effect of BAS on the risk of CAD, we suggested that BAS therapy may 

provide an appropriate second-line therapy in the prevention of CAD among patients where 

statin therapy is not well tolerated or effective. Although the clinical evidence shows that 

cholestyramine reduces LDL-C levels and it modestly decreases the risk of CAD events, its use 

has been hampered by poor patient tolerability (4). In contrast, colesevelam is better tolerated 

(5;6) and the predicted effect of 3.75 g/d colesevelam using genetic data on the risk of CAD was 

similar that of cholestyramine. In addition, the results our analysis confirmed the similarity 



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

150 

 

between BAS treatment and the effect of rs4299376 (ABCG5/8). Therefore the inhibition of 

intestinal cholesterol absorption may provide a valuable therapeutic target for the prevention of 

CVD. Thus there is still a need for a well-designed double-blinded RCT to assess the effects of 

coleselevam on the risk of clinical outcomes since there is a lack of available data.  

 

There are also implications of using pharmacogenetics to validate potential disease target 

pathways. In our analysis of the effects of dysglycemia on the risk of CAD, we showed, through 

the utilization of genetic variants, that long-term reduction in glucose may be required to observe 

a protective effect against CVD. Furthermore, the genetic properties of our analysis provided 

further evidence that long-term treatment with glucose-lowering agents may be beneficial. We 

also demonstrated that therapeutic agents targeting insulin secretion and insulin resistance 

pathways may reduce the risk of diabetes and CAD. Thus long-term treatment with glucose-

lowering agents, regardless of the mechanism of action, may provide a valuable therapeutic 

intervention in the prevention of CVD. However, more adequately powered, long-term RCTs 

that target different glucose pathways will help to explore the effects of glucose reduction on the 

risk of CVD.  

 

Limitations  

Nevertheless, there are some limitations when considering our analysis of the effect of the COX-

2 on the risk of CVD. This analysis lacked tissue-specific COX-2 gene expression data from 

endothelial tissue, atherosclerosis plaques and macrophage tissue. In addition, a proxy SNP was 

used in the RE-LY and ONTARGET patient populations.  A proxy SNP provides an appropriate 

surrogate measure because it is in high linkage disequilibrium with the candidate SNP (r2 > 
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0.80)(7). Although the proxy SNP may account for the lower allelic frequencies in RE-LY and 

ONTARGET, its use should bias our results towards the null without invalidating our 

conclusions. 

 

Mendelian Randomization provides a unique tool for assessing causality. However, this analysis 

requires that a series of criteria be met, which include: the genetic variant must be associated 

with the exposure of interest, the genetic variant must also be independent of confounders, and 

the genetic variant is independent of the outcome given the exposure and confounding factors(8). 

Not only must these assumptions be met but there are other potential limitations that threaten the 

validity of these analyses. First, the presence of genetic heterogeneity may violate the 

assumptions of the Mendelian Randomization analysis. For instance, there might be effects of 

pleiotropy, where the genetic variant may be associated with the exposure, as well as the 

confounding factors or the outcome of interest(9). Additionally, there may also be effects of 

linkage disequilibrium, where the selected genetic variant is highly correlated with a 

polymorphism associated with the outcome of interest or an intermediate variable within the 

disease pathway(10). Second, population stratification may violate the assumptions of the 

Mendelian Randomization analysis. Population stratification results from differing genotype 

frequencies and risk of disease in ethnic subpopulations(11) and may bias the analysis if the 

prevalence of the variant allele parallels the incidence of the study outcomes(12). Third, the 

Mendelian Randomization may also be limited by canalization, which is a developmental 

compensation where a phenotype is selected in a population despite the genetic variability(13). 

Finally, weak instrumental bias may also limit the Mendelian Randomization analysis(14). This 

occurs when the selected genetic variant has a modest association with the modifiable exposure. 
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The weak instrument reduces the power to detect an effect and thus more genetic variants or a 

larger sample size is required.  

 

Based on these aforementioned limitations, there are some issues to address in our analysis of the 

effects of BAS on the risk of CAD.  We were unable to address the effect of colestipol or 

colesevelam on the risk of clinical outcomes due to a lack of clinical data. Furthermore, the 

predicted effect of BAS on the risk of CAD using genetic data appeared to have a stronger effect 

size than the estimates from LRCCPPT and the CTT. This may be a result of the fact that 

rs4299376 allele carriers have a lifelong exposure to lower levels of LDL-C.  Finally, there may 

also be a possibility of pleiotropic effects whereby either the rs4299376 SNP or BAS influence 

yet unknown pathways unrelated to lipids.   

 

In addition, there are also limitations in our analysis of the effect of the dysglycemia on the risk 

of CAD. There was limited power to detect the effect of FG on the risk of CAD. Furthermore, 

owing to a lack of available genetic data, we were unable to account for other confounders that 

might influence the effect of SNPs associated with dysglycaemia traits on the risk of CAD, such 

as smoking and waist-to-hip ratio. Finally, we were unable to assess whether there was a non-

linear trend for glycaemia traits and the risk of CAD using Mendelian Randomization since we 

did not have individual patient level data. 

 

Future Directions  

Despite the advancements in pharmacogenetics, there is still a need to develop a systematic 

evidence-based framework to assess the quality of pharmacogenetic studies. First, there is a need 
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for more high-quality evidence from well-designed RCTs, as well as reports obtained from meta-

analyses of pharmacogenetic studies, high-quality prospective cohort studies or case-control 

studies. However, it is also important that future pharmacogenetic studies use larger sample sizes 

in order to have enough power to detect drug-gene interactions. In other fields of genetic 

epidemiology, it is common to conduct meta-analyses using more than 100,000 individuals to 

explore the underlying genetic determinants of disease (15-17).Thus large collaborative efforts 

across many disciplines are still required to guide and validate recommendations for the use of 

pharmacogenetics. In addition, the genetic polymorphisms used in these pharmacogenetic studies 

should have either a direct or indirect functional effect on the mechanism of the drug-response. 

Thus by assessing pharmacogenetic associations with stringent standards should strengthen the 

reproducibility of these results and enhance the clinical relevance of pharmacogenetics.  

 

The recent advancements in exome sequencing have provided a unique opportunity to identify 

rare mutations and novel genetic variants, which was not possible using chip-based 

technologies(18;19). Although rare variants do not occur frequently within the population(19), 

these rare mutations may result in individual alteration of the function of the drug target 

protein(20;21). Thereby, the characterization of rare variants will help to inform the clinical 

application of pharmacogenetics by identifying molecular mechanisms and prompt the search for 

potential therapies for CVD. Furthermore, despite the recent adoption of throughput new 

technologies in pharmacogenetics, there is still very limited data on the effect of epigenetic 

modifications, metabolomics, proteomics and microRNAs on the risk of CVD(22-24). A better 

understanding of these circulating metabolic and protein traits that alter genome structure and 

function will provide a more accurate method of identification and validation of drug targets and 
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biomarkers for designing personalized therapies(25;26). In order to do so, future research should 

systematically test whether genetic variants associated with metabolomics and proteomic traits 

are causally related to CVD or whether they represent markers of disease.  

 

Methodological developments have also greatly expanded the applicability of Mendelian 

Randomization analyses. In these analyses, the genetic variant should only be related to the 

exposure and independent of any confounding factors and the given outcome. However, in many 

instances, the genetic variants may be associated with multiple intermediate phenotypes. Thus 

Do et al (2013) proposed building large statistical frameworks of common SNPs in order to 

adjust for these confounding factors, and demonstrated that a causal relationship between 

triglycerides, HDL-C and LDL-C in relation to the risk CAD(27). Another development in 

Mendelian Randomization is hypothesis-free testing, where multiple genetic variant instruments 

representing multiple exposure phenotypes are created to assess the effects on several clinical 

outcomes using larger, well-characterized genetic datasets(28;29). For example, Yin et al (2014) 

developed a Mendelian Randomization Pipeline (MeRP) to facilitate the rapid assessment of 

Mendelian Randomization analyses using freely available public data(30). This method provides 

a powerful tool for efficiently screening the effects multiple exposures and outcomes using large 

networks of phenotypes, which may help to guide the discovery of future drug targets or 

strengthen the causal inference of CVD epidemiological associations. Furthermore, the majority 

of Mendelian Randomization analyses use linear models to explore causal associations; however, 

this approach may not be appropriate for all observational associations. For instance, some 

exposure-outcome relationships will demonstrate a nonlinear association, such as salt intake with 

the risk of blood pressure(31) and body mass index with the risk of mortality(32). Several 
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authors have proposed methods to explore these non-linear trends(33;34). Silverwood et al 

(2014) described a method to assess nonlinear trends for binary genotypes using data from the 

Alcohol-ADH1B Consortium (33). Adopting these methods allows for better interpretation of 

nonlinear exposure-outcome relationships and provides a more appropriate assessment of the 

given causal associations.  

 

The convergence of genotyping technologies and clinical datasets has created a large, high-

quality and cost-effective resource to assess the effect of therapeutic agents using genetic 

variants. Genetic variants provide a useful tool because they independent of many confounding 

factors and they represent lifelong follow-up. Furthermore, the advancements in genotyping 

technologies have relieved a large number of unique pharmacogenetic markers, which allows us 

to better validate existing drug targets and discover new potential targets. Thus the 

implementation of a computational infrastructure and stringent methodological guidelines may 

help to ease the transition of pharmacogenetic research into clinical practice.  
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METHODS 

 

Study Population Overview 

The Institutional Review Board independently approved each study, and all patients provided 

written informed consent. Only those patients who also consented to participate in genetic 

studies were eligible for this analysis. 

 

Atrial Fibrillation Clopidogrel Trial With Irbesartan for Prevention of Vascular Events 

(ACTIVE-A) Study  

The design and results of the ACTIVE-A study have been described previously1,2. ACTIVE-A 

was a randomized, double-blind, placebo-controlled trial comparing clopidogrel (75mg/d) with 

placebo for stroke prevention in 7,554 in patients with atrial fibrillation (AF) and at least one 

additional risk factor for stroke who were not eligible for warfarin therapy.  Regardless of 

treatment group, all study participants received a recommended daily dose of aspirin (75 to 100 

mg). Major bleeding was defined as major hemorrhage, where any overt bleeding requiring 

transfusion of at least 2 units of blood or any overt bleeding meeting the criteria for severe 

hemorrhage. Results are presented for individuals of European (N=1,016) ancestry only. 

Genotyping was performed using Sequenom iPlex technology. 

 

Clopidogrel in Unstable Angina to Prevent Recurrent Events (CURE) Study 

The design and results of the CURE trial have been described previously3-5.  CURE was a 

randomized, double-blind, placebo-controlled trial comparing clopidogrel (75 mg per day) with 

placebo in 12,562 patients with ACS without ST-segment elevation.  All study participants were 
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on a background of aspirin (recommended dose, 75 to 325 mg, daily).  Major bleeding was 

defined as substantially disabling bleeding, intraocular bleeding leading to the loss of vision, or 

bleeding necessitating the transfusion of at least 2 units of blood. Results are presented only for 

individuals of European (N=4,014) and Latin American (N=648) ancestry. Individuals from 

other ethnic groups were excluded because of small numbers (N=99 for the next largest group) 

and concerns about the potential for population stratification. Genotyping was performed using 

Sequenom iPlex technology. 

 

Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication (DREAM) 

Study/ epiDREAM 

The study design and results of the DREAM6-8 and epiDREAM9 trials have been described 

previously. DREAM was a randomized, double-blind trial with a 2-by-2 factorial design that 

assigned 5,269 participants without CVD but with impaired fasting glucose levels or impaired 

glucose tolerance to receive either ramipril (15 mg/day) vs. placebo or rosiglitazone (8 mg/day) 

vs. placebo. EpiDREAM was an epidemiological arm of the DREAM trial and is comprised of 

18,990 participants who were either screened for eligibility to enter the DREAM clinical trial but 

were not eligible or who did not want to enter the trial but agreed to long term prospective 

follow-up 9.  Aspirin use among study participants was self-reported. Of the 18,486 individuals 

who provided a DNA sample and met quality control criteria9, 14,104 were  prospectively 

followed and included in the current study. These included 6,236 participants of European 

ancestry, 3,269 of Latin American, 2,744 of South Asian, 1,162 of African, 479 of Native North 

American and 214 Asian ancestries. All ancestry assignments were self-reported and further 
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confirmed using principal component analysis. Genotyping was performed using the CVD chip 

described in details elsewhere10.  

 

Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial 

(ONTARGET)  

The design and results of the ONTARGET trial have been described previously11,12.  

ONTARGET was a randomized, double-blind, parallel trial comparing the effects of ramipril (10 

mg per day), telmisartan (80 mg per day), and combination therapy among 25,620 patients with 

coronary, peripheral, or cerebrovascular disease or high risk diabetes with evidence of end-organ 

damage. Aspirin use among study participants was self-reported. Genotyping was performed 

using Illumina’s metabochip.  Genetic data was available only for individuals of European (N= 

3,610) ancestry. Since the rs20417 genotype was not available on this chip and could not be 

imputed, the best available proxy rs2066826 (D1=1.00 and r2=0.943 in Caucasians according to 

1000 Genomes data13) was used.   

 

Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) Study 

The study design14 and results15 have been described previously.  RE-LY was a prospective, 

open-label, randomized trial that compared two fixed doses of dabigatran (110 mg or 150 mg 

twice daily) administered in a blinded manner, with open-label use of warfarin in 18,113 patients 

who had AF and at least one additional risk factor for stroke. Concomitant use of aspirin (at a 

dose of <100 mg per day) and other antiplatelet agents were permitted. Major bleeds were 

defined as a reduction in the hemoglobin level of at least 20 g per liter, transfusion of at least 2 

units of blood, or symptomatic bleeding in a critical area or organ. Only participants of self-
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reported European (N=2,501) ancestry, as confirmed through principle component analysis, were 

used for the genetic analysis. Genotyping was performed using the Illumina Human610-quad 

DNA analysis beadchip. Since the rs20417 genotype was not available on this chip and could not 

be imputed, the best available proxy rs6672638 (D1=1.00 and r2=0.943 in Caucasians according 

to 1000 Genomes data13) was used.   

 

Women Genome Health Study (WGHS) 

The WGHS16 is a subset of the Women’s Health Study (WHS), which consists of North 

American female health professionals with no prior history of CVD or other major chronic 

diseases who provided a baseline blood sample at the time of study enrollment17.  WHS study 

participants who were randomized to the aspirin intervention arm received 100 mg of aspirin 

every other day. 23,294 individuals of self-reported Caucasian ancestry, confirmed with genetic 

analysis16, were used for this analysis.  Genotyping of rs20417 was performed using either the 

HumanHap300 Duo-Plus chip or the combination of the HumanHap300 Duo and I-Select. 

 

INTERHEART 

The design and results of the INTERHEART Study have been described previously18. 

INTERHEART was a large, international, standardized case-control study designed to determine 

the association between various risk factors and non-fatal acute myocardial infarction in a total 

of 15,152 cases and 14,820 controls from 52 countries. Cases were defined as those who were 

admitted to a coronary care unit or equivalent cardiology ward within 24 hours of clinical 

characteristics of new myocardial infarction. Controls were matched by age and sex, had no 
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previous diagnosis of heart disease and were recruited from hospital or community-based 

settings. Aspirin use was self-reported.  Immunoturbidimetric assays were used to measure 

apolipoprotein concentrations (Roche/Hitachi 917 analyser with Tina-quant ApoB version 2 and 

ApoA1 version 2 kits; Roche Diagnostics, Mannheim, Germany). Of the 9,602 individuals who 

provided a DNA sample and met quality control criteria, 9,363 were included in this study. 

These included 2,051 participants of European, 1,484 of South East Asian, 1,918 of South Asian, 

1,433 of Arab, 1,668 of Latin American, 809 of African ancestries. All ancestry assignments 

were self-reported and further confirmed using principal component analysis. Genotyping was 

performed using the Illumina VeraCode GoldenGate Genotyping Kit using the BeadXpress.   

 

Mechanisms of Aspirin Resistance (MARS Study) Study 

The MARS study was an open-label, two phase, case-control study of individuals with CVD; 

however, for the purposes of assessing the association of rs20417 with urinary 11-dehydro 

thromboxane B2 and urinary 2,3-dinor-6-keto PGF1α  concentrations only healthy controls were 

considered in order to measure levels before the aspirin intervention.  Briefly, controls were 

eligible for inclusion if they met the following criteria: (i) age at least 30 years; (ii) ankle-

brachial index (ABI) >0.9; (iii) no known vascular disease.  Urine was collected into preservative 

free tubes for measurement of 11-dehydro thromboxane B2 and prostacyclin using standard 

method (Cayman Chemical, Ann Arbor, MI). Of the participants who provided a DNA sample, 

119 participants of European ancestry were included in this analysis. Genotyping was performed 

using the Illumina VeraCode GoldenGate Genotyping using the BeadXpress.   
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Table 1:  Baseline characteristics of INTERHEART participants 
 

  
Cases 

(n = 4465) 

Controls 

(n = 4898) 

Total  

(n = 9363) 

Mean age (SD) 56.5(12.0) 55.5(12.0) 56(12.1) 

Female, No. (%) 3529 ( 79.0 ) 3866 ( 78.9 ) 7395 ( 79.0 ) 

Self-reported ethnicity, No. (%)    

     European 1042 ( 23.3 ) 1009 ( 20.6 ) 2051 ( 21.9 ) 

     Chinese and other Asian 723 ( 16.2 ) 761 ( 15.5 ) 1484 ( 15.8 ) 

     South Asian 993 ( 22.2 ) 925 ( 18.9 ) 1918 ( 20.5 ) 

     Arab 569 ( 12.7 ) 864 ( 17.6 ) 1433 ( 15.3 ) 

     Latin American 835 ( 18.7 ) 833 ( 17.0 ) 1668 ( 17.8 ) 

     Black African and Coloured African 303 ( 6.8 ) 506 ( 10.3 ) 809 ( 8.6 ) 

Obesity Tertiles*, No. (%)    

     Obesity Tertile 1 751 ( 17.8 ) 1381 ( 28.7 ) 2132 ( 23.6 ) 

     Obesity Tertile 2 1235 ( 29.3 ) 1673 ( 34.8 ) 2908 ( 32.3 ) 

     Obesity Tertile 3 2222 ( 52.8 ) 1755 ( 36.5 ) 3977 ( 44.1 ) 

Diabetes, No. (%) 891 ( 20.3 ) 423 ( 8.7 ) 1314 ( 14.2 ) 

High Blood Pressure, No. (%) 1692 ( 38.5 ) 1066 ( 21.8 ) 2758 ( 29.7 ) 

Current Smoking, No. (%) 1974 ( 45.9 ) 1393 ( 29.0 ) 3367 ( 37.0 ) 

Aspirin use, No. (%) 659 ( 14.8 ) 284 ( 5.8 ) 943 ( 10.1 ) 

Median apolipoprotein A1 g/L (IQR) 1.1(1.00,1.2) 1.2(1.0,1.4) 1.1(1.0,1.3) 

Median apolipoprotein B g/L (IQR) 1.0 (0.8,1.2) 0.9 (0.8,1.1) 1.00 (0.8,1.1) 

Diet score, No. (%)    

Neither daily 850 ( 19.9 ) 783 ( 16.2 ) 1633 ( 17.9 ) 

Fruit or vegetables daily 1842 ( 43.2 ) 2077 ( 43.0 ) 3919 ( 43.1 ) 

Both daily 1573 ( 36.9 ) 1973 ( 40.8 ) 3546 ( 39.0 ) 

Life stress, No. (%)    

None 970 ( 22.9 ) 1235 ( 25.9 ) 2205 ( 24.5 ) 

Some periods 1959 ( 46.1 ) 2415 ( 50.6 ) 4374 ( 48.5 ) 

Several periods 904 ( 21.3 ) 865 ( 18.1 ) 1769 ( 19.6 ) 

Permanent stress 412 ( 9.7 ) 258 ( 5.4 ) 670 ( 7.4 ) 

rs20417 carrier status, No.(%)    

     Carriers 1386(31.0) 1640(33.5) 3026(32.3) 

     Noncarriers 3079(69.0) 3258(66.5) 6337(67.7) 
 

*Obesity tertiles represent waist/hip ratio measures. Tertiles were calculated separately for men and women based 

on the overall control data. Among men, the tertiles cutoffs were 0.90 and 0.95 and 0.83 and 0.90 in women.  
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Table 2:  Baseline characteristics for MARS in healthy controls only   

 

 

 
MARS 

N 119 

Mean age (SD) 47.2(11.0) 

Female, No. (%) 100 (84.0) 

Mean weight (kg) (SD)  76.3(21.0) 

Mean height (cm) (SD)  165.7(12.7) 

Diabetes, No. (%) 0 ( 0.0) 

High Blood Pressure, No. (%) 0 ( 0.0 ) 

Current Smoking No. (%) 59 ( 49.6) 

Aspirin use, No. (%) 2 ( 1.7 ) 

Median urinary 11-dehydro thromboxane B2 pg/mg creatinine (IQR) 112.0 (87.5,164.5) 

Median urinary 2,3-dinor-6-keto PGF1α  pg/mg creatinine (IQR) 4244.7 (3022.0,6407.0) 

rs20417 carrier status, No. (%)  

     Carriers 32 ( 26.9 ) 

     Noncarriers 87 ( 73.1 ) 
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Table 3: Association of rs20417 carrier status and major cardiovascular risk factors in 

control participants from the INTERHEART study 

 

Analyses were adjusted for age, sex, and self-reported ethnicity. 

 

Risk Factors 

Adjusted Dominant 

OR (95% CI) 

P 

Measured ApoA (g/L) 0.81 (0.64-1.03) 0.091 

Measured ApoB (g/L) 0.80 (0.63-1.03) 0.079 

Current Smoker 1.02 (0.89-1.17) 0.77 

Hypertension 0.88 (0.76-1.02) 0.096 

Diabetes 0.87 (0.70-1.07) 0.183 

Aspirin Use 0.86 (0.66-1.11) 0.251 

Obesity Tertiles* 1.06 (0.98-1.15) 0.133 

Diet Score 0.98 (0.90-1.07) 0.646 

Life Stress 1.01 (0.93-1.09) 0.879 

 

*Obesity tertiles represent waist/hip ratio measures. Tertiles were calculated separately for men and women based 

on the overall control data. Among men, the tertiles cutoffs were 0.90 and 0.95 and 0.83 and 0.90 in women.  

  



Ph.D. Thesis – S. Ross; McMaster University – Clinical Epidemiology & Biostatistics 

172 

 

Figure 1: Kaplan-Meier major cardiovascular event-free survival according to rs20417 carrier status in ACTIVE-A and 

CURE.  

 
A) ACTIVE-A                                                                                                                  B) CURE 
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Figure 2:  Subgroup analysis of association of rs20417 carrier status with major 

cardiovascular events in five prospective patient populations.  

Analyses were adjusted for age, sex, randomization status (when appropriate) and self-reported ethnicity. 

ACTIVE-A, CURE, epiDREAM/DREAM, ONTARGET, and RE-LY data were included in the meta-

analysis. Hetero. P. represents heterogeneity p-value. 
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Figure 3:  Sub-group analysis of association of rs20417 carrier status with non-fatal 

myocardial infarction in patients from the INTERHEART study.  

 
Analyses were adjusted for age, sex and self-reported ethnicity. Hetero. P. represents heterogeneity p-value. 
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Figure 4:  Boxplots of urinary 11-dehydro thromboxane B2 and urinary 2,3-dinor-6-keto PGF1α concentrations according to 

rs20417 carrier status in healthy individuals (N=119) from the MARS study.  

 

 
A) Urinary 11-dehydro thromboxane B2               B) Urinary 2,3-dinor-6-keto PGF1α 
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SUPPLEMENTAL METHODS 

Systematic Review and Meta-Analysis 

Eligibility Criteria 

Types of studies: Randomized, double-blinded, placebo controlled clinical trials (RCTs) that 

compared bile acid sequestrant (BAS) treatment with placebo. There were no restrictions based 

on publication status or publication date; however, only studies published in English were 

considered.  

Type of patients: Only patients aged ≥ 18 years were considered for this review.  

Type of Intervention: RCTs that compared the effects of BAS (i.e. 24 g daily cholestyramine, 5 

g/d colestipol, and 3.75 g/d colesevelam) with placebo or no treatment. There were no 

restrictions based on the frequency, dosage, length or duration of the BAS intervention.  

Types of Outcome Measures:  

Primary outcome measures include:  

1. Cardiovascular mortality;  

2. Myocardial infarction (MI); and  

3. Baseline and endpoint mean values or the absolute treatment difference in the 

intervention and placebo arms for the change in low density lipoprotein cholesterol 

(LDL-C) levels.  

Studies with at least one of these primary outcomes were considered.  

Secondary outcome measures include:  

1. Baseline and endpoint mean values or the absolute treatment difference in the 

intervention and placebo arms for the change in high-density lipoprotein cholesterol 
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(HDL-C), total cholesterol (TC), triglycerides, apolipoprotein A1 (apoA), and 

apolipoprotein B (apoB).  

Information sources 

A structured literature search was performed by identifying studies through electronic databases, 

hand searching reference lists, consulting with field experts and pharmaceutical companies, and 

scanning trial registries. This search was applied to PubMed (1946 to 2014 in Ovid).  

Search 

The following terms were used to search all clinical trial registries and databases: 

cholestyramine; colestipol; colesevelam HCl; placebo; and randomized controlled trials. Where 

possible, authors of relevant publications were contacted to provide additional information and 

details about outstanding issues.  

Study Selection and Data Items 

Based on the results of the search strategy, titles and abstracts for each reference were examined 

independently by two reviewers (MD and SR). Relevant studies obtained from the full-text 

screening phase were reviewed for methodological quality and disagreements were resolved 

through discussion or consultation with a clinician (GP). The following information was 

extracted from each included trial: (1) characteristics of the study participants (i.e.  age, sex, 

patient population); (2) characteristics of the study (i.e.  study design, sample size, median 

follow-up period); (3) characteristics of the intervention (i.e. dose and frequency of the 

intervention); and (4) characteristics of the outcome measures (including cardiovascular 

mortality, MI, and mean change in LDL-C, HDL-C, TC, triglycerides, apoA and apoB).   

Data collection process 
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The two reviewers independently extracted data from the included studies using data collection 

forms. When methodological information could not be obtained from a publication, the author 

was contacted for further comment. All forms used in this systematic review were subject to 

pilot-testing using ten randomly selected studies.  Data entry was performed independently by 

one reviewer (SR) and cross-referenced by the other reviewer (MD).  Any discrepancies between 

the two reviewers were documented and the forms were changed accordingly.  

Summary measures 

For continuous traits, studies that reported median values were converted to an equivalent mean 

value and the corresponding standard deviation values were calculated by dividing the 

interquartile range by 1.35. If studies did not report the standard deviation, it was calculated by 

multiplying the standard error by the square root of the sample size. Where data for LDL-C, 

HDL-C and TC were available in units of mmol/L, they were converted to mg/dL using a 

multiplication factor of 38.66. Triglycerides, and apoA and apoB were similarly converted using 

a multiplication factor of 88.6 and 100, respectively. The mean change-from-baseline in plasma 

lipid levels in the BAS intervention group were compared to the mean differences in the placebo 

group with the 95% confidence interval (CI) and p-value as a measure of uncertainty. For binary 

outcomes, the treatment effect was expressed as an odds ratio (OR) with the 95% CI and p-value. 

Meta-analyses were performed using an inverse variance random effect meta-analysis.  

Synthesis of results 

Heterogeneity was assessed using the chi-square statistic (χ2) and inconsistency (I2) was 

measured by assessing the percentage of total variation of the effects of BAS across studies due 

to heterogeneity. A low p-value (p<0.10) or I2 test statistic of > 30% provided evidence of 
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heterogeneity of intervention effects. If these estimates gave rise to sufficient evidence of 

heterogeneity than attempts were made to explain these differences.  

Additional Analyses 

To explain any evidence of heterogeneity, subgroup analyses were conducted based on the 

characteristics of the participants (i.e. presence of hyperlipidaemia or type 2 diabetes mellitus) 

and the study interventions (i.e. length of follow-up). Sensitivity analyses were pre-specified and 

were used to test the robustness of the pooled results. Unless otherwise specified, a correlation 

coefficient (r) of 0.5 for the difference in the mean change from baseline was assumed for all 

analyses. Thus the r was varied by 0.3 and 0.7 for all the relevant studies to determine if this 

altered the reported estimates 1. 

Simulation Statistical Analysis  

Simulations were performed to predict the effect of 24 g/d cholestyramine on plasma lipid 

profiles (HDL-C, TC, triglycerides, apoA and apoB) using the known genetic associations of 

rs4299376 SNP with lipids fractions.  To do so, we adapted the method from Sofat et al2 to 

match the genetic effects to the effect of cholestyramine 24 g/d on LDL-C, taking into account 

the uncertainty of both the genetic and drug effect estimates. Random numbers were selected 

from the normal distributions of the change in LDL-C for the pharmacological and genetic effect 

(i.e. fixing the mean and standard deviation of each distribution to their respective estimated 

values). In order to validate whether the rs4299376 SNP had a similar effect on plasma lipid 

profiles as cholestyramine, the predicted effects of cholestyramine on plasma levels of HDL-C, 

TC and triglycerides were estimated using genetic data. These predicted estimates were then 

compared to known effects of cholestyramine on the same lipids fractions from clinical data.  

10,000 simulations were performed to generate the distribution of HDL-C, TC and triglycerides 
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assuming each allele has the same predicted effect as cholestyramine on LDL-C, and the mean 

effect and 95% CI were calculated.  The p-value for the difference between the predicted effect 

of cholestyramine and the observed effects of BAS on lipid levels were calculated by comparing 

the randomly generated point estimate of the effect of cholestyramine to the randomly generated 

point estimate of the predicted effect of the drug. Next, the effect of 24 g/d cholestyramine on the 

risk of cardiovascular outcomes was predicted using data on genetic association of rs4299376 

with CAD and compared to the effect of cholestyramine on CAD from the only outcome trial of 

cholestyramine, LRCCPPT3. The predicted drug effect was compared to the observed effect of a 

comparable dose of cholestyramine on the risk of CVD outcomes using a z-test. As a sensitivity 

analysis, the predicted effect of cholestyramine on CAD was also estimated using data from the 

CTT4. This estimate was similarly compared to the cardiovascular outcomes reported in the 

LRCCPPT in order to compare the predicted effect of BAS with statin use using a z-test. These 

analyses were also repeated using the summary effect of 3.75 g/d of colesevelam. 

 

Results 

Study Selection  

A total of 19 studies were identified for inclusion in this review. The structured literature search 

of PubMed databases derived a total of 420 citations. Of these, 360 studies were discarded 

because after reviewing the abstracts it appeared that these papers clearly did not meet our 

inclusion criteria. The full-text of the remaining 60 citations were examined in more detail. It 

appeared that 40 articles did not meet the inclusion criteria. Of the included articles, there were 

six cholestyramine RCTs3, 5-9, three colestipol RCTs10-12 and 10 colesevelam RCTs13-21 with a 
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total of 7,021 study participants.  Supplemental Figure1 illustrates the flow diagram of the study 

selection process.  

Randomized Controlled Trials of Colestipol 

We identified three RCTs with a total of 398 participants with hyperlipidemia (mean age 54 

years, 44% women)10-12 (Supplemental Table 1). Owing to the lack of reported data and 

differences in study dose, we did not pool the reported effect of colestipol on plasma lipid levels. 

Additional Analyses 

We were unable to conduct subgroup analyses in order to explore the presence of heterogeneity 

among the pooled estimates of 24 g/d cholestyramine and 3.75 g/d colesevelam on the mean 

change in plasma lipid levels due to a lack of reported data.  Therefore, to account for the high 

degree of heterogeneity in the pooled estimates of cholestyramine, the effect estimates of the 

mean change in LDL-C and TC from the LRCCPPT trial3 will be used as a surrogate since it was 

the only outcome trial. 

To test the robustness of the main findings, the r of the mean change from baseline in the 24 g/d 

cholestyramine and the 3.75 g/d colesevelam meta-analyses were varied. Assuming an r of 0.3 

and 0.7 did not demonstrate any difference in the reported treatment effects of cholestyramine 

(Supplemental Figure 2 and 3) or colesevelam (Supplemental Figure 4 and 5). However, 

assuming an r=0.3 within the cholestyramine meta-analysis resulted in a reduction of the high 

degree of heterogeneity in the pooled LDL-C estimates (P for heterogeneity =1.70x10-4) while an 

r=0.7 significantly increased the presence of heterogeneity (heterogeneity P-value:2.10x10-9). 

Similar results were also obtained for the treatment effects of colesevelam.  
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SUPPLEMENTAL TABLES 

 

Supplemental Table #1: Studies contributing to the colestipol meta-analysis 

Author & Date Patient Population 
Follow-

Up 
Intervention Comparison 

Sample 

size 
Age Women 

LDL-C (mg/dL)* 

Baseline Endpoint 

COLESTIPOL 

Hunninghake 

199510 

Hyperlipidemia 
8 weeks Colestipol (2 g; 4 g; 8 g; 16 g) Placebo 196 56.2 (NR) 101 (52) 190.0(NR) 141.3(NR) 

Simons 199211 
Hyperlipidemia 

18 weeks 

Colestipol (5 g); Colestipol (10 g) 

& each with 6 weeks of placebo; 

6 weeks of simvaslatin (20 mg); 

6 weeks of simvastatin (40 mg) 

Placebo with 6 

weeks of placebo; 6 

weeks of 

simvaslatin (20 

mg); 6 weeks of 

simvastatin (40 mg) 

61 45.3 (19) 24 (39) 303.1(77.7) 266.7 (NR) 

Superko 199212 
Hyperlipidemia 

12 weeks Colestipol (5g/d; 10g/d; 15g/d) Placebo 141 49(12) 49 (35) 168.0(12.0) 122.8(NR) 

 

*Refers to the highest single BAS dose reported in the study; NR: not reported  
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Supplemental Table #2: The association of rs4299376 SNP (ABCG5/8) and the risk of 

diabetes, glycated hemoglobin (HbA1c), fasting glucose, systolic blood pressure (SBP), diastolic 

blood pressure (DBP) and body mass index (BMI).  

Trait 
Effect 

Allele 

Other 

Allele 

Effect 

Estimate 

Standard 

Error 
P-Value 

Fasting glucose G T 0.00088 0.0026 0.737689 

HbA1c T G -0.0051 0.004 0.199 

Diabetes G T -0.00738 0.016336 0.65164 

SBP G T 0.024683 0.112445 0.826253 

DBP G T 0.00435 0.070956 0.951115 

BMI T G -0.0054 0.0064 0.4 
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SUPPLEMENTAL FIGURES 

Supplemental Figure #1: Study flow diagram. 
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Supplemental Figure #2: Forest plot of the association of 24 g/d of cholestyramine 

treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, 

triglycerides, apoA and apoB assuming a correlation coefficient 0.3. 

Het P refers to the heterogeneity p-value.  
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Supplemental Figure #3: Forest plot of the association of 24 g/d of cholestyramine 

treatment and the summary mean difference of LDL-C, HDL-C, total cholesterol, 

triglycerides, apoA and apoB assuming a correlation coefficient 0.7. 

Het P refers to the heterogeneity p-value.  
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Supplemental Figure #4: Forest plot of the association of 3.75 g/d of colesevelam treatment 

and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA 

and apoB assuming a correlation coefficient 0.3. 

Het P refers to the heterogeneity p-value.  
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Supplemental Figure #5: Forest plot of the association of 3.75 g/d of colesevelam treatment 

and the summary mean difference of LDL-C, HDL-C, total cholesterol, triglycerides, apoA 

and apoB assuming a correlation coefficient 0.7. 

Het P refers to the heterogeneity p-value.  
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Supplementary Appendix 3 

 

Mendelian randomization analysis supports the causal role of dysglycemia and diabetes in 

the risk of coronary artery disease 

 

AUTHORS: Stephanie Ross; Hertzel C. Gerstein; John Eikelboom; Sonia S. Anand; and 

Guillaume Paré. 

  

Methods 

 

Supplementary Table #1: SNPs associated with FG, HbA1c and diabetes. 

Supplementary Figure #1: Flow chart of SNPs included in analysis.   
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METHODS 

Data Sources  

Data on the genetic associations with fasting plasma glucose was obtained from the Meta-

Analyses of Glucose and Insulin-related traits Consortium. MAGIC was a genome wide 

association study (GWAS) to identify the genetic determinants of glycemic and metabolic traits. 

The association between genetic variants and the change in FPG (mmol/L) was assessed in 

133,010 and 42,854 non-diabetic European individuals1. The association between genetic 

variants and the change in hba1c (%) was assessed among 46,368 non-diabetic European 

individuals2. Genotyping was performed using the Metabochip. 

 

Data on the genetic associations with plasma lipid levels were obtained from the Global Lipids 

Consortium (GLCC)3. In brief, the GLCC performed a meta-analysis of 46 lipid GWAS 

assessing common variants associated with serum lipids (LDL-C, high density lipoprotein 

cholesterol (HDL-C), total cholesterol (TC), and triglycerides). A total of 46 studies and 91,285 

individuals of European descent were analyzed for the genetic association with LDL-C, while 

data from 95,708, 95,992 and 92,410 individuals were available for HDL-C, TC and 

triglycerides, respectively. Genotyping was performed using commercially available Affymetrix 

or Illumina genotyping arrays or custom Perlegen arrays.  

 

Data on the genetic association with the risk of CAD was obtained from the 

CARDIoGRAMplusC4D Consortium.  Briefly, the CARDIoGRAMplusC4D Consortium 

performed a meta-analysis of 63,746 cases of CAD and 130,681 controls4. Genotyping was 

performed using the Metabochip, which is a custom iSELECT chop (Illumina). In addition, 
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estimates were also obtained from the CARDIoGRAM Consortium, which was a meta-analysis 

of 22,233 cases of CAD and 64,762 controls from 22 GWAS5. 

  

Data on the genetic associations with diabetes was obtained from the DIAGRAM Consortium. 

Briefly, the DIAGRAM Consortium performed a meta-analysis of 22,669 cases of diabetes and 

58,119 controls of European descent and 1,178 cases and 2,472 controls of Pakistani descent 

(PROMIS)6. Genotyping was performed using the Metabochip.  

 

Data on the genetic associations with body mass index (BMI) were obtained from the 

Genetic Investigation of ANthropometric Traits (GIANT) consortium7. In brief, GIANT 

performed a meta-analysis of 51 GWAS assessing common variants associated with BMI in over 

170,000 individuals of European descent. Genotyping was performed using commercially 

available Affymetrix or Illumina genotyping arrays or custom Perlegen arrays.  

 

Data on the genetic associations with systolic blood pressure (SBP) and diastolic blood pressure 

(DBP)  were obtained from the International Consortium for Blood Pressure Genome-Wide 

Association Studies (ICBP) consortium8. In brief, ICBP performed a meta-analysis of 82 GWAS 

assessing common variants associated with blood pressure in over  200,000 individuals of 

European descent. Genotyping was performed using commercially available Affymetrix or 

Illumina genotyping arrays.  

 

The relative risk of CAD associated with diabetes 

The procedure to derive genetic estimates of CAD odds ratio is outlined below.  Given: 
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(A) Prevalence of diabetes  

(B) Prevalence of CAD in individuals without diabetes  

(C) Odds ratio for CAD associated with diabetes  

(D) Regression coefficient of SNP associations with CAD as function of SNP association with 

diabetes (where genetic effects are expressed as log(OR) per allele for both CAD and diabetes) 

The following can be calculated: 

(E) Calculated population prevalence of CAD:  (A ×B × C) + (1-A) ×B 

(F) Estimated prevalence of CAD in individuals with a theoretical increase in risk of diabetes of 

e = 2.72 fold: (A  × exp(1) × B  ×C) + (1- A  × exp(1)) × B 

(G) Estimated odds ratio for CAD per e = 2.72 fold increase in risk of diabetes: F/E 

It results that: 

(H) Exp(D) =  G =
𝐹

𝐸
=

 (A  × exp(1) × B  ×C) + (1− A  × exp(1)) × B

(A ×B × C) + (1−A) ×B
  

As C is the only unknown variable, the odds ratio for CAD associated with diabetes as estimated 

from genetic data can be calculated using algebraic transformations. 
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Supplementary Table #1: SNPs associated with FG, HbA1c and diabetes. 

SNPs associated with FG 

SNP Effect Allele Other Allele Estimate SE P 

rs10747083 A G 0.013 0.0023 7.57E-09 

rs10811661 T C 0.024 0.0028 5.65E-18 

rs10830963 C G -0.078 0.0025 1.07E-215 

rs10885122 G T 0.027 0.0033 6.32E-17 

rs11039182 T C 0.023 0.0024 4.82E-22 

rs11558471 A G 0.029 0.0023 7.80E-37 

rs11605924 A C 0.02 0.0023 3.93E-19 

rs11619319 A G -0.02 0.0024 1.33E-15 

rs11708067 A G 0.023 0.0026 1.30E-18 

rs12440695 C T -0.01 0.0022 3.89E-06 

rs1280 T C 0.026 0.0031 8.56E-18 

rs16913693 T G 0.043 0.0066 3.51E-11 

rs174550 T C 0.019 0.0022 1.34E-17 

rs17762454 C T -0.012 0.0023 1.88E-07 

rs2191349 G T -0.029 0.0021 1.28E-42 

rs2302593 C G 0.014 0.0023 9.26E-10 

rs2657879 A G -0.012 0.0027 5.69E-06 

rs340874 C T 0.013 0.0022 4.08E-10 

rs3783347 G T 0.017 0.0026 1.32E-10 

rs3829109 G A 0.017 0.0027 1.13E-10 

rs4869272 C T -0.018 0.0022 1.02E-15 

rs560887 C T 0.071 0.0025 1.40E-178 

rs576674 G A 0.017 0.003 2.26E-08 

rs6072275 G A -0.016 0.0028 1.66E-08 

rs6113722 G A 0.035 0.0053 2.49E-11 

rs6943153 C T -0.015 0.0022 1.63E-12 

rs7651090 A G -0.013 0.0023 1.75E-08 

rs780094 C T 0.027 0.0021 2.58E-37 

rs7867224 A G 0.013 0.0023 3.90E-09 

rs983309 G T -0.026 0.0033 6.29E-15 
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SNPs associated with HbA1c 

SNP Effect Allele Other Allele Estimate SE P 

rs10159477 A G -0.0586 0.0056 3.19E-25 

rs1046896 T C 0.0346 0.0032 1.58E-26 

rs1387153 T C 0.0258 0.0039 3.96E-11 

rs1800562 A G -0.0636 0.0069 2.59E-20 

rs2246434 A G 0.0227 0.0039 6.04E-09 

rs282606 A G 0.031 0.0054 1.17E-08 

rs4737009 A G 0.0269 0.0039 6.12E-12 

rs552976 A G -0.029 0.0034 8.16E-18 

rs855791 A G 0.0271 0.0036 2.74E-14 
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SNPs associated with diabetes 

SNP Effect Allele Other Allele N Estimate SE P 

rs10203174 T C 86197 -0.13415 0.019673 9.50E-12 

rs10278336 A G 53315 0.06831 0.015125 6.38E-06 

rs10401969 C T 86196 0.126478 0.021828 7.04E-09 

rs10758593 A G 78769 0.062361 0.012096 2.58E-07 

rs10811661 C T 86149 -0.16943 0.015688 3.72E-27 

rs10830963 G C 80713 0.096396 0.013346 5.32E-13 

rs10842994 T C 86197 -0.09152 0.014778 6.08E-10 

rs10923931 T G 84508 0.079408 0.018202 1.30E-05 

rs11063069 G A 77509 0.077583 0.015176 3.25E-07 

rs1111875 T C 86178 -0.10473 0.01161 1.98E-19 

rs11257655 T C 80652 0.067744 0.014279 2.13E-06 

rs11634397 A G 86197 -0.04676 0.01224 0.000135 

rs11717195 C T 86183 -0.10574 0.014091 6.47E-14 

rs12242953 A G 86190 -0.06827 0.023677 0.003944 

rs12427353 C G 80648 -0.08138 0.015049 6.52E-08 

rs12497268 C G 86140 -0.0341 0.014807 0.02129 

rs12571751 G A 86184 -0.07515 0.011617 1.02E-10 

rs12899811 G A 80656 0.07346 0.01264 6.34E-09 

rs12970134 A G 83545 0.075302 0.013198 1.19E-08 

rs13233731 G A 79685 0.04436 0.012024 0.000227 

rs13389219 T C 80649 -0.07032 0.012263 1.00E-08 

rs1359790 A G 86198 -0.07373 0.012984 1.39E-08 

rs1496653 G A 86196 -0.08175 0.013838 3.56E-09 

rs163184 G T 79357 0.082584 0.012167 1.18E-11 

rs16927668 T C 80647 0.042631 0.014265 0.002813 

rs17168486 T C 80650 0.100235 0.015302 5.94E-11 

rs17301514 A G 74045 0.047685 0.01938 0.013895 

rs17791513 G A 80651 -0.11541 0.022461 2.83E-07 

rs17867832 G T 46859 -0.08345 0.026923 0.001945 

rs1801282 G C 86188 -0.12254 0.01719 1.05E-12 
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SNP Effect Allele Other Allele N Estimate SE P 

rs2007084 A G 71234 -0.02168 0.023856 0.363457 

rs2075423 T G 86185 -0.07089 0.012284 8.10E-09 

rs2261181 T C 84979 0.118404 0.019442 1.16E-09 

rs2334499 T C 80646 0.039203 0.012105 0.001207 

rs243088 T A 80628 0.066896 0.011875 1.81E-08 

rs2447090 G A 79613 -0.03628 0.012518 0.003767 

rs2796441 A G 84099 -0.07114 0.012184 5.39E-09 

rs2943640 A C 86189 -0.09162 0.012026 2.69E-14 

rs3734621 C A 85818 0.066384 0.036119 0.066086 

rs4299828 G A 86197 -0.03672 0.014365 0.010611 

rs4458523 T G 85051 -0.09386 0.011812 2.02E-15 

rs4502156 C T 80652 -0.05712 0.012069 2.25E-06 

rs459193 A G 80651 -0.07795 0.01339 5.99E-09 

rs4812829 A G 80655 0.058955 0.015507 0.000145 

rs516946 T C 86191 -0.08736 0.013795 2.49E-10 

rs5215 C T 86193 0.072138 0.011749 8.50E-10 

rs6795735 T C 86194 -0.07694 0.011806 7.39E-11 

rs6819243 C T 80480 -0.07071 0.032597 0.030082 

rs7177055 G A 86196 -0.07419 0.012648 4.60E-09 

rs7202877 G T 80654 -0.11097 0.020108 3.50E-08 

rs7569522 A G 86169 0.0478 0.011639 4.06E-05 

rs780094 T C 86165 -0.05981 0.011924 5.37E-07 

rs7845219 T C 80649 0.05436 0.011851 4.57E-06 

rs7903146 T C 80647 0.328476 0.013054 1.20E-139 

rs7955901 C T 80653 0.06912 0.011902 6.51E-09 

rs8108269 G T 86193 0.065467 0.012948 4.36E-07 

rs8182584 T G 74530 0.039455 0.012879 0.002195 

rs849135 G A 80653 0.100935 0.011944 3.06E-17 

rs9936385 C T 80653 0.120896 0.012146 2.61E-23 
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Supplementary Figure #1: Flow chart of SNPs included in analysis.   
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