
ON THE MODELLING, ANALYSIS, AND MITIGATION

OF DISTRIBUTED COVERT CHANNELS

ON THE MODELLING, ANALYSIS, AND MITIGATION

OF DISTRIBUTED COVERT CHANNELS

BY

JASON JASKOLKA, M.A.Sc.

a thesis

submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

c© Copyright by Jason Jaskolka, March 2015

All Rights Reserved

Doctor of Philosophy (2015) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: On the Modelling, Analysis, and Mitigation of Distributed

Covert Channels

AUTHOR: Jason Jaskolka

M.A.Sc., (Software Engineering)

McMaster University, Hamilton, Ontario, Canada

SUPERVISOR: Dr. Ridha Khedri

NUMBER OF PAGES: xxii, 305

ii

To my family who has provided me with the support

and encouragement to find my path to success

iii

Abstract

Covert channels are means of communication that allow agents in a system to transfer in-

formation in a manner that violates the system’s security policy. Covert channels have been

well studied in the constrained and old sense of the term where two agents are communi-

cating through a channel while an intruder interferes to hide the transmission of a message.

In an increasingly connected world where modern computer systems consist of broad and

heterogeneous communication networks with many interacting agents, distributed covert

channels are becoming increasingly available. For these distributed forms of covert chan-

nels, there are shortcomings in the science, mathematics, fundamental theory, and tools

for risk assessment, and for proposing mechanisms and design solutions for averting these

threats. Since current formal methods for specifying concurrent systems do not provide

the tools needed to efficiently tackle the problem of distributed covert channels in sys-

tems of communicating agents, this thesis proposes Communicating Concurrent Kleene

Algebra (C2KA) which is an extension to the algebraic model of concurrent Kleene algebra

(CKA) first presented by Hoare et al. C2KA is used to capture and study the behaviour

of agents, and description logic is used to capture and study the knowledge of agents. Us-

ing this representation of agents in systems of communicating agents, this thesis presents

a formulation and verification approach for the necessary conditions for the existence of

distributed covert channels in systems of communicating agents. In this way, this thesis

iv

establishes a mathematical framework for the modelling, analysis, and mitigation of dis-

tributed covert channels in systems of communicating agents. This framework enhances

the understanding of covert channels and provides a basis for thinking and reasoning about

covert channels in new ways. This can lead to a formal foundation upon which guidelines

and mechanisms for designing and implementing systems of communicating agents that are

resilient to covert channels can be devised.

v

Acknowledgements

First and foremost, I wish to extend my deepest gratitude to my academic supervisor

Dr. Ridha Khedri for his unwavering support, guidance, and encouragement throughout

the development and advancement of my research. I am extremely grateful for his ability

to motivate me to realise my full potential and to continually to pursue excellence in my

research. His close mentoring has undoubtedly provided me with the necessary skills to

achieve success in my academic career, now and in the future.

I would like to thank the members of my Supervisory Committee: Dr. Wolfram Kahl and

Dr. Michael Soltys for all of their valuable, constructive, and thoughtful comments. I would

also like to acknowledge all of those other individuals with whom I have interacted with

throughout my doctoral studies. Their productive discussions, knowledge, and insight have

significantly contributed to the progress of my research.

I want to extend my sincere thanks to the Natural Sciences and Engineering Research

Council of Canada (NSERC) which has provided the financial support to undertake this

research and prepare this thesis.

Last, but certainly not least, I wish to express my most genuine gratitude to my dear family

for all of their love, encouragement, and support which has enlightened my path to success.

vi

Contents

Abstract iv

Acknowledgements vi

Contents xiii

List of Tables xiv

List of Figures xv

List of Symbols and Abbreviations xvii

1 Introduction 1

1.1 General Context . 2

1.1.1 Systems of Communicating Agents 2

1.1.2 Information Security . 5

1.2 Specific Context . 9

1.2.1 Covert Communication Channels . 9

1.3 Motivation . 19

1.4 Problem Statement, Objectives, and Methodology 21

1.4.1 Problem Statement . 21

1.4.2 Objectives and Methodology . 22

vii

1.5 Contributions . 25

1.6 Related Publications . 30

1.6.1 Journal Articles . 30

1.6.2 Refereed Conferences . 30

1.6.3 Technical Reports . 31

1.7 Structure of the Thesis . 31

2 Literature Survey 33

2.1 Covert Communication Channels . 34

2.1.1 Classification of Covert Channels . 34

2.1.2 Modelling Covert Channels . 36

2.1.3 Detecting Covert Channels . 40

2.1.4 Preventing Covert Channels . 46

2.2 Formalisms for Capturing Agent Behaviour 50

2.3 Formalisms for Capturing Agent Knowledge 52

2.4 Conclusion . 58

3 Mathematical Background 59

3.1 Algebraic Structures . 59

3.2 Concurrent Kleene Algebra . 63

3.3 Dijkstra’s Guarded Command Language . 65

3.4 Pre- and Post-Condition Specifications and Hoare Triples 68

3.5 Description Logic . 69

3.5.1 ALB Syntax . 69

3.5.2 ALB Semantics . 70

3.6 Conclusion . 72

4 Specifying Systems of Communicating Agents 74

viii

4.1 Running Example of a System of Communicating Agents 75

4.2 Specifying Agent Behaviour . 77

4.2.1 Rationale for C2KA . 78

4.2.2 Structure of Agent Behaviours . 79

4.2.3 Structure of External Stimuli . 81

4.2.4 Communicating Concurrent Kleene Algebra (C2KA) 82

4.2.5 A Comment on a Model for C2KA 87

4.2.6 Specifying Systems of Communicating Agents with C2KA 89

4.2.7 Orbits, Stabilisers, and Fixed Points in C2KA 97

4.2.8 Specifying Agent Behaviour Using a Prototype Tool 105

4.2.9 Discussion and Related Work . 108

4.3 Specifying Agent Knowledge . 110

4.3.1 Specifying Agent Knowledge using the Description Logic ALB . . . 110

4.3.2 Specifying Agent Knowledge Using the SPASS Theorem Prover . . . 114

4.3.3 Discussion and Related Work . 115

4.4 Conclusion . 116

5 Agent Behaviour and Potential for Communication 117

5.1 The Potential for Communication Condition for the Existence of Distributed

Covert Channels . 118

5.1.1 Potential for Communication in the Literature 118

5.1.2 The Potential for Communication Condition 123

5.2 Formulating the Potential for Communication Condition 123

5.2.1 Formulating Potential for Communication via External Stimuli . . . 124

5.2.2 Formulating Potential for Communication via Shared Environments 128

5.2.3 A Formulation of the Potential for Communication Condition 130

5.3 Verifying the Potential for Communication Condition 131

ix

5.3.1 Verifying the Potential for Communication Condition Using the Pro-

totype Tool . 132

5.4 Modifying Agent Behaviours to Preserve or Disrupt the Potential for Com-

munication . 134

5.5 Discussion and Related Work . 138

5.6 Conclusion . 140

6 Communication Schemes and Agent Knowledge Evolution 141

6.1 Communication Schemes . 142

6.1.1 Components of Communication Schemes 143

6.1.2 Classifications of Communication Schemes 143

6.1.3 An Example Communication Scheme 146

6.1.4 Guidelines for Systematically Devising Communication Schemes . . 147

6.1.5 Discussion and Related Work . 153

6.2 Merging Communication Schemes into Systems of Communicating Agents . 154

6.2.1 Amendments to Agent Knowledge 154

6.2.2 Amendments to Agent Behaviour . 157

6.2.3 Applications of Merging Communication Schemes into Systems of

Communicating Agents . 160

6.2.4 Discussion and Related Work . 162

6.3 Evolution of Agent Knowledge . 162

6.3.1 Assumptions . 163

6.3.2 Operations for Updating Agent Knowledge 164

6.3.3 Evolving Agent Knowledge Through the Execution of Concrete Agent

Behaviours . 165

6.3.4 Illustrative Example of the Evolution of Agent Knowledge 169

6.3.5 Discussion and Related Work . 169

x

6.4 Verification of Confidential Information Leakage 171

6.4.1 Discussion and Related Work . 176

6.5 Conclusion . 176

7 Discussion, Conclusion, and Future Work 178

7.1 Highlights of the Contributions . 178

7.2 Future Work . 182

7.2.1 Theory: Models and Techniques . 182

7.2.2 Applications . 184

7.2.3 Tools and Automation . 186

7.3 Closing Remarks . 187

A Detailed Proofs 188

A.1 Detailed Proof of Proposition 3.2.2 . 188

A.2 Detailed Proof of Proposition 4.2.1 . 189

A.3 Detailed Proof of Corollary 4.2.2 . 191

A.4 Detailed Proof of Proposition 4.2.3 . 194

A.5 Detailed Proof of Corollary 4.2.4 . 196

A.6 Detailed Proof of Proposition 4.2.5 . 199

A.7 Detailed Proof of Proposition 4.2.6 . 200

A.8 Detailed Proof of Proposition 4.2.7 . 202

A.9 Detailed Proof of Proposition 5.2.1 . 205

A.10 Detailed Proof of Proposition 5.2.3 . 205

A.11 Detailed Proof of Proposition 5.4.1 . 207

A.12 Detailed Proof of Proposition 5.4.2 . 209

B Axioms of C2KA 213

B.1 Stimulus Structure S Axioms . 213

xi

B.2 Concurrent Kleene Algebra K Axioms . 214

B.3 Left S-semimodule
(
SK,+

)
Axioms . 215

B.4 Right K-semimodule
(
SK,⊕

)
Axioms . 216

B.5 Communicating Concurrent Kleene Algebra Axioms 216

C Analysing Agent Behaviour Using the Prototype Tool 217

C.1 Specifying Systems of Communicating Agents 217

C.2 Computing Orbits, Stabilisers, and Fixed Points 221

C.3 Verifying Stimuli-Connected Systems, Communication Fixed Points, and Uni-

versally Influential Agents . 224

C.4 Verifying the Potential for Communication Condition 226

C.5 Agent Behaviour Specifications for the Prototype Tool 229

C.5.1 Behaviour Specification File for Agent C (AgentC.txt) 229

C.5.2 Behaviour Specification File for Agent S (AgentS.txt) 230

C.5.3 Behaviour Specification File for Agent P (AgentP.txt) 232

C.5.4 Behaviour Specification File for Agent Q (AgentQ.txt) 235

C.5.5 Behaviour Specification File for Agent R (AgentR.txt) 236

D Analysing Agent Knowledge Using the SPASS Theorem Prover 241

D.1 Verifying the Constraint on Communication Condition 241

D.2 Agent Knowledge Specifications for the SPASS Theorem Prover 245

D.2.1 Knowledge Specification File for Agent C (AgentC.dfg) 245

D.2.2 Knowledge Specification File for Agent S (AgentS.dfg) 249

D.2.3 Knowledge Specification File for Agent P (AgentP.dfg) 254

D.2.4 Knowledge Specification File for Agent Q (AgentQ.dfg) 259

D.2.5 Knowledge Specification File for Agent R (AgentR.dfg) 263

D.2.6 Evolved Knowledge Specification File for Agent R

(EvolvedAgentR.dfg) . 268

xii

Bibliography 274

Index 299

xiii

List of Tables

3.1 Constructors of the description logic ALB 70

3.2 Semantics of the description logic ALB . 71

3.3 Definition of the satisfiability relation |= for the description logic ALB . . . 72

4.1 Stimulus-response specification of agent C 90

4.2 Stimulus-response specification of agent S 90

4.3 Stimulus-response specification of agent P 90

4.4 Stimulus-response specification of agent Q 91

4.5 Stimulus-response specification of agent R 91

xiv

List of Figures

1.1 A hybrid view of agent communication . 5

2.1 An illustration of the idea behind Moskowitz and Kang’s zero capacity channel 48

3.1 An illustration of the exchange axiom . 63

4.1 A visualisation of the operation of the running example system of communi-

cating agents when the idle prevention scheme is implemented using a NOOP

command . 78

4.2 Abstract behaviour specifications of the agents in the running example system

of communicating agents . 92

4.3 Concrete behaviour specification of agent C 94

4.4 Concrete behaviour specification of agent S 95

4.5 Concrete behaviour specification of agent P 95

4.6 Concrete behaviour specification of agent Q 96

4.7 Concrete behaviour specification of agent R 96

4.8 The uses hierarchy of the C2KA component of the prototype tool 107

4.9 The ALB signature for the example system of communicating agents 111

4.10 Initial knowledge base specification of agent C 112

4.11 Initial knowledge base specification of agent S 113

4.12 Initial knowledge base specification of agent P 113

4.13 Initial knowledge base specification of agent Q 113

xv

4.14 Initial knowledge base specification of agent R 114

5.1 A visualisation of the potential for communication for the running example

system of communicating agents . 132

5.2 The uses hierarchy of the potential for communication component of the

prototype tool . 133

6.1 The extended ALB signature for the example communication scheme 151

6.2 Specification of an example communication scheme
(
NCS,BCS

)
based on

FTP command mapping . 153

6.3 Amended knowledge specification of the sending agent S resulting from the

communication scheme merge . 157

6.4 Amended knowledge specification of the receiving agent R resulting from the

communication scheme merge . 157

6.5 Amended concrete behaviour specification of the sending agent S resulting

from the communication scheme merge . 158

6.6 Amended concrete behaviour specification of the receiving agent R resulting

from the communication scheme merge . 159

6.7 Evolved knowledge specification of agent S resulting from the simulation of

its amended concrete behaviour . 170

6.8 Evolved knowledge specification of agent P resulting from the simulation of

its concrete behaviour . 170

6.9 Evolved knowledge specification of agent R resulting from the simulation of

its amended concrete behaviour . 171

xvi

List of Symbols and Abbreviations

C2KA Communicating Concurrent Kleene Algebra . 22

CKA Concurrent Kleene Algebra . 22

ALB Attributive Language with Boolean Algebras on Concepts and Roles.22

LTL Linear-Time Temporal Logic . 50

CTL Computation Tree Logic . 50

CTL∗ Extended Computation Tree Logic . 50

CCS Calculus of Communicating Systems. .51

CSP Communicating Sequential Processes . 51

ACP Algebra of Communicating Processes . 51

G −→ S guarded command with guard G and statement S . 65

abort abort statement . 65

skip skip statement . 65

v := E assignment of the evaluation of expression E to variable v 65

R dependence relation . 65

xvii

dc alternation symbol . 66

{P} S {Q} Hoare triple with pre-condition P , program S, and post-condition Q 68

NC set of concept symbols . 69

NR set of role symbols . 69

NO set of object symbols . 69

> top concept . 70

⊥ bottom concept . 70

¬C complement of concept C . 70

C u D intersection of concepts C and D .70

C t D union of concepts C and D . 70

∀ R .C universal restriction of concept C by role R . 70

∃ R .C existential restriction of concept C by role R . 70

∇ top role . 70

∆ bottom role . 70

¬R complement of role R . 70

R u S intersection of roles R and S . 70

R t S union of roles R and S . 70

R�C domain restriction of role R by concept C . 70

R�C range restriction of role R by concept C .70

xviii

R` converse of role R . 70

NA knowledge base for agent A . 69

TA TBox for agent A . 69

AA ABox for agent A . 69

C v D inclusion of concept C in concept D .70

C ≡ D equivalence of concepts C and D . 70

C
(
X
)

assertion of object X as concept C . 70

R
(
X,Y

)
assertion of relationship between objects X and Y via role R 70

(
D, I

)
terminological interpretation with domain D and interpretation function I .70

N |= ϕ entailment of axiom ϕ by knowledge base N . 72

C set of agents . 75

FTP set of FTP commands . 75

N set of natural numbers . 76

K CKA structure . 80

K set of agent behaviours . 80

+ choice between agent behaviours . 80

; sequential composition of agent behaviours . 80

∗ parallel composition of agent behaviours .80

;© finite sequential iteration of a behaviour . 80

xix

*© finite parallel iteration of a behaviour . 80

0 behaviour of the inactive agent . 80

1 behaviour of the idle agent . 80

≤K sub-behaviour relation. .80

A 7→
〈
a
〉

an agent with name A and behaviour a . 80

S stimulus stricture . 81

S set of external stimuli . 81

⊕ choice between stimuli. .81

� sequential composition of stimuli . 81

d deactivation stimulus . 81

n neutral stimulus . 81

Sb set of basic stimuli . 82

≤S sub-stimulus relation . 82

◦ next behaviour mapping. .83

λ next stimulus mapping . 83

(
SK,+

)
left S-semimodule . 83

(
SK,⊕

)
right K-semimodule . 83

EV set of event occurrences . 87

TR(EV) set of traces over EV .87

xx

PR(EV) set of programs over EV . 87

P(X) power set of set X . 87

send send statement . 93

receive receive statement. .93

[y := x] substitution of y by x . 94

Orb(a) orbit of a . 98

OrbS(a) strong orbit of a .98

Stab(a) stabiliser of a . 99

∼K equivalence relation on orbits .99

lK encompassing relation with respect to agent behaviours .99

lS encompassing relation with respect to external stimuli . 99

aC b behaviour b is induced by behaviour a . 101

N 0
A initial knowledge base of agent A . 110

→S potential for direct communication via external stimuli 124

→n
S potential for communication via external stimuli using at most n basic

stimuli . 125

→+
S potential for communication via external stimuli. .125

aR b dependence of behaviour b on behaviour a . 129

→E potential for direct communication via shared environments 129

→+
E potential for communication via shared environments .129

xxi

R+ transitive closure of the dependence relation R . 129

 potential for direct communication . 130

 + potential for communication . 130

NCS knowledge component of a communication scheme . 143

BCS behaviour component of a communication scheme . 143

NA t NB merged knowledge of agents A and B . 154

ϕ an axiom, terminological or assertional, from a knowledge base 164

ΦC set of confidential information . 171

xxii

Chapter 1

Introduction

Modern computer systems are comprised of broad and heterogeneous communication net-

works with many interacting agents. They often consist of physical networks or virtual

networks. They can be spread across a variety of application domains, each with their

own security concerns with varying implications and priorities. The rising popularity of

such expansive and complicated computer networks and systems has contributed to the

increased storage and exchange of extraordinary amounts of information. Consequently,

this has prompted growing concerns with respect to preserving the confidentiality of this

vast amount of information. Therefore, an effort needs to be made in order to design and

implement systems which conform to system requirements demanding increased security

measures for sensitive information.

This chapter introduces the context and problem domain of this thesis and motivates the

need for a mathematical framework for the modelling, analysis, and mitigation of distributed

covert channels. More precisely, Section 1.1 gives an overview of systems of communicating

agents and provides a general introduction to information security. Section 1.2 introduces

covert channels, discusses the shift towards more distributed forms of covert channels, and

examines the threat that they pose to the confidentiality of information, while outlining the

1

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

specific context of this thesis. Section 1.3 motivates and discusses the need for a mathemat-

ical framework for the modelling, analysis, and mitigation of distributed covert channels.

Section 1.4 states the proposed research problem, outlines the objectives of this thesis, and

discusses the highlights of the approach taken to achieve each objective. Section 1.5 sum-

marises the contributions of this thesis to the enhanced understanding of distributed covert

channels in systems of communicating agents. Section 1.6 notes the publications related to

the work presented in this thesis. Finally, Section 1.7 outlines the structure of the remainder

of this thesis.

1.1 General Context

From an architectural perspective, modern computer systems typically consist of numerous

interacting agents. Ensuring that such systems are secure is a challenging task. Generally

speaking, this thesis explores the area of information security and focusses on one issue re-

lated to the preservation of information confidentiality in systems of communicating agents:

covert channels.

1.1.1 Systems of Communicating Agents

A system of communicating agents refers to any collection of interacting behavioural enti-

ties. Throughout this thesis, the terms agent and communication shall be treated in the

sense used by Milner in [Mil89b] where an agent refers to any system whose behaviour

consists of discrete actions and where each interaction, direct or indirect, of an agent with

its neighbouring agents is called a communication.

In a system of communicating agents, each agent is comprised of two components: a be-

haviour and a knowledge. The behaviour of an agent dictates how it may communicate

with other agents in the system. The knowledge of an agent determines what information

it may communicate to other agents.

2

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A system of communicating agents may consist of numerous agents with concurrent be-

haviours. In this way, a system of communicating agents is a concurrent or distributed

system where each agent has the potential to behave independently of the other agents in

the system. However, more often than not, concurrent systems feature complex interactions

amongst the system agents in order to, for example, synchronise and sequence behaviour

or coordinate access to shared resources. Therefore, one of the most essential aspects of

concurrent systems is the notion of communication.

The communication between agents can be divided into two fundamental classes: shared-

variable communication and message-passing communication [SGG07]. In shared-variable

communication, agents transfer information through a shared medium (e.g., variables, mem-

ory, etc.). If two agents in a system have access to a shared environment, then they may

engage in shared-variable communication by forcing changes in the shared environment and

subsequently observing the forced changes. For example, suppose that two agents A and B

have access to a shared variable called x. If agent A wanted to communicate the value 4 to

agent B via shared-variable communication, it could do so by assigning x := 4. Then, when

agent B reads the variable x, it can obtain the value 4. Conversely, in message-passing com-

munication, agents transfer information explicitly through the exchange of data structures.

If two agents in a system are exchanging data explicitly using the operations of a prescribed

communication protocol, then they are engaged in message-passing communication. For

example, suppose that two agents A and B adhere to a communication protocol offering

prescribed send and receive operations. If agent A wanted to communicate the value 4 to

agent B via message-passing communication, it could do so by using the prescribed send

operation from the communication protocol. This is to say that agent A issues a command

such as send (4) to agent B. Then, agent B can use the the prescribed receive operation

from the communication protocol to receive the value 4. This is to say that agent B issues

a command such as receive (x) to receive the value 4 that was sent by agent A and to store

it in the variable x. In this case, the agents A and B engage in a communication handshake

3

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

when they synchronise their send and receive operations. The notion of handshaking is

common in many process calculus models for communication and concurrency and will be

discussed further in Section 2.2.

In a system of communicating agents, agents can communicate via their shared environ-

ments in the form of shared-variable communication and through their local communication

channels in the form of message-passing communication. However, the system agents may

also be influenced by external stimuli. When dealing with open systems, external stimuli

may result from systems outside the boundaries of the system of communicating agents

being considered and may have an impact on the way in which the agents in the consid-

ered system behave. For example, consider a complex system with multiple interacting

subsystems. One of the subsystems may trigger an event that acts as an external stim-

ulus that another subsystem must respond to. These events can be the result of explicit

messages transmitted by a particular subsystem or by an environment variable passing a

certain threshold, for example. From the perspective of behaviourism, a stimulus consti-

tutes the basis for behaviour. In this way, agent behaviour can be explained without the

need to consider the internal states of an agent [Wat30]. By considering this notion of

the open world influence of external stimuli alongside the closed world shared-variable and

message-passing communication, the communication amongst the agents in a system of

communicating agents can be viewed as shown, for example, in Figure 1.1.

Consider the system of communicating agents consisting of agents A1 and A2 within the

dotted box depicted in Figure 1.1. Agents A1 and A2 have a shared environment through

which they can communicate. Additionally, they have some communication channels at

their disposal for sending and receiving messages. However, the behaviours of agent A1 and

agent A2 can also be influenced by the external stimuli coming from agent A3, for example.

Consider the case where agent A1 is subjected to an external stimulus from agent A3.

Then, agent A1 may respond to the stimulus by changing its behaviour which can affect

the communication between it and agent A2. In Figure 1.1, the system formed by agent A5

4

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Env(A5)

A1 A2

Env(A1) Env(A2)

external stimuli

shared environment

Env(A4)

A5

A3

Env(A3)

A4

communication channels

Figure 1.1: A hybrid view of agent communication

alone is a closed and independent system and does not communicate with the rest of the

world neither by external stimuli nor by a shared environment.

These are the kinds of systems of communicating agents that this thesis focusses on when

developing a mathematical framework for the modelling, analysis, and mitigation of dis-

tributed covert channels.

1.1.2 Information Security

Information security is rooted in three main aspects: confidentiality, integrity, and availabil-

ity [Bis02]. The interpretation of each aspect depends on the context within which it arises.

The literature defines confidentiality, integrity, and availability in many ways. This thesis

adopts the definitions found in [DoTI91]. Confidentiality asserts the protection of informa-

tion from unauthorised disclosure. The demand for the concealment of information arose

from the increased use of computing systems in all spheres of the economy and in govern-

ment, medical, and military domains. For example, military institutions restrict access to

information to those individuals or groups who have a need for that information. Confiden-

tiality is often established by implementing a “need to know” principle which grants access

to information only to those who require the information. Integrity asserts the protection of

information from unauthorised modification. Integrity consists of both data integrity which

5

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

refers to the trustworthiness of the content of the information, and origin integrity which

refers to the trustworthiness of the source of the information. Origin integrity is more com-

monly known as authentication. The accuracy and credibility of information relies heavily

on the integrity of information and is central to the proper operation of a system. Avail-

ability asserts the protection of information from unauthorised withholding. Availability is

directly related to the reliability of a system since a system that is unavailable is at least as

bad as no system at all. With respect to information security, availability has implications

that extend to the ability of an agent to deliberately deny access to information or services

by making them unavailable, thus rendering the system unusable.

It should be noted that these three aspects of information security are defined at a broad

and general level for the purpose of covering a wide range of problems, and it can be argued

that the list is not entirely complete [Gol11]. A more detailed discussion of information

security can be established by examining several major sources of security evaluation cri-

teria such as the U.S.A. Trusted Computer System Evaluation Criteria (TCSEC) [DoD85],

the European Information Technology Security Evaluation Criteria (ITSEC) [DoTI91], the

Canadian Trusted Computer Product Evaluation Criteria (CTCPEC) [Com93], and the

Common Criteria for Information Technology Security Evaluation (CC) [Com09].

When discussing information security, there must exist a means of specifying what is, and

what is not, a violation of security. Therefore, a security policy is required to state what

is, and what is not, allowed. A security policy is a predicate on the knowledge of a set

of agents that establishes what each agent is allowed to know and communicate [SKJ09b].

For example, consider a data store consisting of customer records for a financial institution.

Suppose that each record contains information classified as CustomerName, AccountNum-

ber, AccountBalance, and AccountStatus. A policy for this example may be that no agent

should know both the CustomerName and AccountNumber of an individual customer. Sub-

sequently, confidential information is defined as the information that is protected by the

security policy.

6

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In this day-and-age, computer systems face a large number of significant threats each and

every day. A threat is considered to be any potential violation of any aspect of a system

that affects its availability, and the confidentiality and integrity of its data. Threats come

in many different forms and there exists a variety of security mechanisms that attempt

to counter threats to the security of a system. However, more recently, a new type of

threat, known as insider threat , has emerged and has quickly raised many new security

concerns. An insider threat is defined as any agent who has special access to, or knowledge

of, confidential information with the potentiality to cause harm or danger [CR06]. Insider

threats can come in the form of malicious attacks or non-malicious attacks. Malicious

attacks arise from insiders intentionally eavesdropping, stealing, or damaging information,

or using information in a fraudulent manner whereas non-malicious attacks are typically

the result of carelessness or lack of knowledge. For example, a malicious insider attack may

involve an employee at a financial institution intentionally leaking confidential information

such as the CustomerName and AccountNumber of individual customers to third parties

which do not have the authority to access or possess that information. On the other

hand, a non-malicious attack can be the result of an employee at a financial institution

wrongly configuring the security access system, thus allowing it to be infiltrated by outsiders.

Reported losses due to insider threats have been estimated to be in the millions of dollars

annually [TK08]. Hence, insider threats are often cited as the most serious security problem

in many studies since many organisations often overlook them [PHGB10]. For example, in

a May 2014 study by the Ponemon Institute [Pon14], 42% of all data breaches globally, are

caused by malicious attacks which include insider attacks, malware infections, phishing or

social engineering attacks, and code injection. Additionally, corporate espionage is often

committed by trusted insiders in such a way that many organisations do not even know it

is occurring, and those who do rarely publicise it [CKC05]. For this reason, many people

do not believe insider threat is a real problem. Every organisation has the potential to be

a target of corporate espionage and insider threat. Because of this, an effort needs to be

7

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

made to devise effective and efficient security mechanisms and strategies with the ability to

address this threat, as well as other emerging security concerns.

There are normally three strategies that are utilised when addressing security concerns:

prevention, detection, and recovery [Bis02]. These strategies may be used separately or in

some combination in order to achieve the goal of attaining a secure system (i.e., a system

which has the properties of confidentiality, integrity, and availability). Prevention refers

to the failure of an attempted attack on a system. For example, a data store of customer

records for a financial institution requiring a password, which prevents (to a certain limit)

unauthorised agents from accessing the records, is a simple prevention mechanism to ensure

the confidentiality of the information in the data store. Prevention mechanisms are typi-

cally cumbersome and contribute to a reduction in overall system performance. Detection

is often used when an attack cannot be prevented. Detection mechanisms accept that an

attack will occur and attempt to determine if an attack is underway or has occurred. For

example, a monitor watching the access to the financial institution’s data store of customer

records is a simple detection mechanism to detect and report any attempt to access both the

CustomerName and AccountNumber of individual customer. Detection mechanisms com-

monly monitor various aspects of the system, looking for actions or information indicating

that an attack is underway or has occurred. Recovery refers to the ability to stop an attack

and to assess and repair any damage caused by that attack. For example, if an agent were

to delete a customer record from the financial institution’s data store, a simple recovery

mechanism might be to restore the customer record from a backup. Recovery mechanisms

often result in reduced system performance and are typically difficult to implement.

Information security relies on many aspects of a computer system. Achieving a secure sys-

tem begins with an assessment of the nature of the threats being dealt with and countering

those threats with security mechanisms, whether they be prevention, detection, or recovery

mechanisms, in order to maintain confidentiality, integrity, and availability.

8

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1.2 Specific Context

When dealing with information security, a number of concerns arise with respect to the

confidentiality, integrity, and availability of information. One of the most pressing concerns

to many organisations is the threat of confidential information leakage and data exfiltration.

Specifically, this thesis studies the existence of distributed covert channels in systems of

communicating agents that threaten the confidentiality of information by affording an ability

to leak confidential information is a clandestine manner.

1.2.1 Covert Communication Channels

He said to his friend, “If the British march

By land or sea from the town to-night,

Hang a lantern aloft in the belfry-arch

Of the North-Church-tower, as a signal-light,–

One if by land, and two if by sea;

And I on the opposite shore will be,

Ready to ride and spread the alarm

Through every Middlesex village and farm,

For the country-folk to be up and to arm.”

— Henry Wadsworth Longfellow, Paul Revere’s Ride (6-14)

The art of hidden or secret communication has existed for centuries and can be concisely

captured by the excerpt of Henry Wadsworth Longfellow’s 1860 poem entitled “Paul Re-

vere’s Ride” given above [Lon14]. Paul Revere and his friend have shared a communication

scheme which will allow for the secret communication of the way in which the British ap-

proach; “One if by land, and two if by sea”. The poem embodies the fundamental essence

of covert communication and gives a flavour of the kind of communication that this thesis

examines.

9

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The conception of covert channel communication is commonly attributed to Lampson’s

1973 paper entitled “A Note on the Confinement Problem” [Lam73] where a covert channel

was first defined as any communication channel that is neither designed nor intended to

transfer information at all. Since then, several other definitions of covert channels have been

proposed. For example, in [Kem83], Kemmerer defined a covert channel as a channel that

uses entities not normally viewed as data objects to transfer information from one subject to

another. Similarly, according to the U.S.A. National Computer Security Center [NCSC93],

a covert channel is a parasitic communication channel that draws bandwidth from another

channel in order to transmit information without the authorisation or knowledge of the latter

channel’s designer, owner, or operator. Despite that each of these are valid definitions for

covert channels, this thesis adopts the definition given in the U.S.A. Department of Defense

Orange Book [DoD85] which defines a covert channel as any communication means that

allows an agent to transfer information in a manner that violates a system’s security policy.

This definition is chosen based on its generality and its relationship to the security policy

employed by a given system. Under this definition, communication channels that may be

hidden from the view of others are permitted to exist in a computer system provided they

do not violate the system’s security policy. Moreover, this definition is now commonly

accepted [Sco07].

Covert Channel Terminologies

Over the years, covert channels have been well-studied in the constrained and old sense

of the term where two agents are communicating while an intruder interferes to hide the

transmission of a message. Several different terminologies related to covert communication

channels have surfaced. For instance, in [Sim85], Simmons described a subliminal channel

as a kind of channel that can be constructed in a cryptographic algorithm by one party

giving up some of its ability to authenticate, without the knowledge of the host, in order to

secretly transmit some bits of information. Additionally, in [Mur07], Murdoch commented

10

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

on two other terminologies that are commonly discussed: steganographic channels and side

channels. A steganographic channel is a means of communication on an open channel, where

the sender and receiver collude to prevent an observer from being able to reliably detect

whether communication is taking place. A side channel is a communication channel which

violates a security property, but where the sender unintentionally leaks information through

unexpected external channels (e.g., timing, power consumption, etc.).

However, as the world becomes increasingly connected, opportunities to establish and oper-

ate covert channels are becoming more and more available. Distributed covert channels are

covert channels that exist in distributed systems of communicating agents where multiple

inter-connected agents coordinate their actions through communication. In this way, the

study of distributed covert channels involves the analysis of multiple communication chan-

nels established through a variety of communication mediums, as well as the examination

of the roles of intermediate agents in potential communication paths. Because of this, dis-

tributed covert channels express an evolution of the old and constrained understanding of

covert channels.

While there is no standardised usage on each of these terminologies, it is clear that each

of these variants are linked. For example, a subliminal channel can be viewed as special

type of steganographic channel, and a steganographic channel can be used to construct a

covert channel. Because of this, each of these variants is considered to be encompassed by

the notion of covert channels as defined in [DoD85]. This is consistent with the current

common usage and description provided by Wagner [Wag05]. Throughout the remainder

of this thesis, covert channels are considered in the distributed sense discussed above. This

understanding of covert channels still falls under the definition provided in [DoD85].

Defining Characteristics of Covert Channels

The defining characteristic of any covert channel is that it is typically constructed in such

a way that its existence and usage is hidden from the view of third party observers. In this

11

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

way, the use of covert channels often results in third-party observers not even necessarily

being aware that any communication is taking place at all. Referring back Longfellow’s

“Paul Revere’s Ride”, to any observer other than Paul Revere, whether there is one signal

light or two has no particular meaning. In this way, it is only through the covert channel

that is established between Paul Revere and his friend that the communication takes place.

In 1984, Simmons [Sim84] provided a classical example known as the prisoner’s problem to

help understand the dynamics of covert channels. The prisoner’s problem is expressed as

follows:

Two prisoners have been locked up in separate cells apart from one another. The

prisoners wish to devise an escape plan. In accordance with prison rules, the

prisoners are permitted to communicate with one another by sending messages,

provided that the messages do not deal with escape plans. As such, all messages

that are sent must pass through a warden. If the warden detects any sign

of conspiracy, it will thwart the escape plans by transferring both prisoners

to solitary confinement from which no prisoner has ever escaped. The prisoners

were well aware of these facts, and before getting locked up, they shared a secret

that they can exploit to allow for the embedding of hidden information into their

seemingly innocent messages. If the prisoners are able to exchange information

to coordinate their escape without raising any suspicion by the warden, then

they will succeed in their plans for escape.

In essence, the prisoners establish a covert channel in order to secretly communicate their

escape plans without the warden being aware that such communication is taking place. The

most important aspect of the prisoners’ covert channel is the sharing of a communication

scheme. A communication scheme describes how information will be transferred and under-

stood from the sender to the receiver. In the prisoner’s problem, the communication scheme

12

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

is centred around the shared secret for concealing information about the escape. Further-

more, using the communication scheme, the prisoners communicate by sending messages

through legitimate means while deliberately violating the security policy which stated that

no transmitted messages contain any information regarding escape plans.

The prisoner’s problem illustrates the primary objective of a covert channel, namely to

conceal the fact that any communication is taking place at all. This objective differs

from that of cryptography where no effort is made to hide the communication and the

objective is to render the information that is being communicated unavailable to all but

the intended receiver. Instead, the objective of covert channel communication aligns with

that of steganography. It turns out that covert channel communication and steganog-

raphy are closely related and often confused [JK11b]. In the past, it has been largely

debated whether there exists a relationship between covert channels and steganography

(e.g., [Ber07, BR05, GKT05, HZD05, PSCS07, PAK99, Sar06, ZAB07a]). However, in its

simplest form, steganography can be perceived as a specific type of covert channel com-

munication since, in steganography, information is embedded into some form of cover (i.e.,

images, audio, video, etc.) which can fundamentally be viewed as a data structure of some

dimension which is transmitted from its source to its destination at some point in time or

at some series of points in time, through one or more communication channels.

Examples of Covert Communication

Covert communication channels can be classified as either protocol-based, environment-

based, or both [Jas10]. A protocol-based covert channel refers to any communication means

that exploits a communication protocol to convey messages that violate a security policy. A

simple illustrative example of a protocol-based covert channel is the card counting scheme

given in Example 1.2.1. In this example, players A and B are communicating according to

the protocol in that their behaviour is quite ordinary, but the information that they are

communicating has a hidden meaning which is unknown to third party observers.

13

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Example 1.2.1 (Card Counting). Suppose that two players A and B frequently visit the

casino to play blackjack. In order to avoid significant losses and to maximise their payout

each visit, player A and player B have become expert card counters. However, since card

counting is highly frowned upon in the casinos, they develop a scheme to communicate

the card counts to one another. The scheme consists of associations of common words,

which would be part of natural conversation at a blackjack table, with particular card counts.

Player A begins by sitting at a table and obtaining the count. Then, player B joins the table

and player A, who has the current count, uses one of the agreed upon words in a sentence.

For example, player A may utter the sentence “I wish there was more ice in my drink”.

This sentence contains the word “ice” which could indicate a count of +3, for example. In

this way, player B learns the count and knows how to appropriately place its bets in order

to maximise its profit.

The word associations with the current card counts constitute the communication scheme

that allows for the establishment of the covert channel. To the other players and the dealer,

the conversation amongst the players at the table does not seem out of place and they are

unaware that this communication of the count is taking place.

To place the idea of protocol-based covert channels in the context of computing and systems

of communicating agents, consider the simple long and short message channel described in

Example 1.2.2. By communicating according to the specified communication protocol, a

sender is able to choose to send long and short messages in such a way as to encode a hidden

message to be decoded by the receiver.

Example 1.2.2 (Long and Short Messages). According to a specified communication pro-

tocol, a sender is able to choose to send long and short messages. By carefully choosing

a particular sequence of long and short messages, the sender is able to encode a hidden

message which can be decoded by a receiver. For instance, the receipt of a long message

may indicate a bit 1 and the receipt of a short message may indicate a bit 0. In this way,

14

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the sequence of long and short messages can map to a bit-string representing confidential

information which should not be transmitted.

Conversely, an environment-based covert channel refers to any communication means that

uses environmental resources, functionalities, or features, including timing information, to

convey messages that violate a security policy. An example of an environment-based covert

channel is one where two people, who are communicating openly in the same room, arrange

the pens on a desk in a particular way so as to encode a message that is not detected by

an observer as in Example 1.2.3.

Example 1.2.3 (Pen Arrangement). In an office space, two employees may utilise various

arrangements of three pens on their desks in order to communicate any variety of informa-

tion to one another. Depending on the orientation, colour, etc. of the pens, the employee

who observes the changes in the pen arrangement can obtain a piece of information according

to some previously agreed upon communication scheme.

Any other employees who are unaware of the agreed upon communication scheme, will only

see the pens on the desk (if they are even paying that close of attention) and will be unaware

that any communication is taking place at all.

In the context of computing and systems of communicating agents, an example of an

environment-based covert channel is one where a sender is able to modulate the timing

of events in such a way that it can be detected by a receiver whereby the timing of events

can be mapped to a particular encoding of information as in Example 1.2.4.

Example 1.2.4 (Memory Write Timing Modulation). Suppose that a sender has the ability

to insert delays into memory write accesses on a shared memory space and that a receiver

is able to observe the length of the writes from the sender on the shared memory space. By

modulating the timing of the writes, the agents are able to devise a communication scheme

that dictates the transmission of a bit 1 if the length of the write operation is above a

predefined threshold and a bit 0 if it is below the threshold. By iterating this communication

15

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

scheme, the sender is able to modulate the timing of its write operations so that a bit-string

can be transmitted to the receiver that is observing the modulations in the timing of the write

operations.

A particular feature of environment-based covert channels is that the communication of in-

formation occurs in an open system belonging to the public domain. Each user of the system

has access to the information being presented, however, due to the restricted knowledge of

the shared communication scheme, an observer may not be able to detect or interpret the in-

formation to gain a knowledge that the communication of information exists at all. Finally,

it is important to note that in both protocol-based covert channels and environment-based

covert channels, it is not the communication between agents that is in violation of a security

policy, but rather, the information that is being communicated.

Necessary Conditions for the Existence of Distributed Covert Channels

The existence of covert channels has a significant impact on the confidentiality of a system

of communicating agents, particularly, because they provide a mechanism for secretly di-

vulging sensitive information to agents which are not authorised to access or obtain such

information. One of the main challenges and first steps towards safeguarding systems of

communicating agents against the threat of covert channels is determining the necessary

conditions under which a covert channel may exist in a given system. A wide range of

conditions for covert channel existence can be found in the literature. However, many

existing conditions for covert channel existence are inconsistent and vary in terminology

and in the way they are articulated. To address the inadequacy of existing conditions for

covert channel existence, this thesis proposes a set of necessary and verifiable conditions

for the existence of distributed covert channels in systems of communicating agents first

presented in [JKZ12]. In a system of communicating agents, if there exists a distributed

covert channel, then the following conditions are satisfied:

16

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(1) Potential for Communication: If there exists an agent acting as a source of infor-

mation and an agent acting as an information sink, such that the source and sink agents

are different, and if there exists a pattern of communication allowing for information

to transfer from the source to the sink through the synchronisation and sequencing of

events, then the source and sink agents have a potential for communication.

(2) Constraint on Communication: If there exists confidential information in the data

store of an agent, then there is a constraint on the communication of the agent and the

agent can be a source of information.

The potential for communication condition considers the behaviour of the agents in the

system and captures how information can be communicated by the agents in the system.

In a system of communicating agents, an information flow may be established through the

synchronisation of system events. The synchronisation of events may be initiated using

timed events, where clocks are synchronised, or using a communication handshake, for

example. Such a synchronisation of events can allow for the creation of a “pattern of

communication” or simply a sequence of events that allows information to flow from one

agent in the system to another. In essence, as long as there is a potential for information

to flow from one agent to another, a communication channel can be established.

Conversely, the constraint on communication condition considers the knowledge of the

agents in the system and captures what information can be communicated by the agents

in the system. In this way, the constraint on communication condition provides that only

communication channels affording an ability to violate the security policy employed by the

system through the threat of confidential information leakage are considered to be covert

channels. In a system of communicating agents, if there is no agent that has the knowledge

of any confidential information, then regardless of any potential communication means,

covert or otherwise, there is no possibility for any agent in the system to communicate any

17

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

confidential information to violate the security policy and therefore there is no possibility

for the existence of a covert channel under the definition of covert channels adopted in this

thesis.

Highlights of Covert Channel Research

Typically, covert channel research can be split into four categories: explaining covert

channels, finding covert channels, measuring covert channels, and mitigating covert

channels [Mil99]. Generally speaking, explaining covert channels refers to the develop-

ment of models of systems that recognise the existence of covert channels. Finding covert

channels usually involves identifying the existence of covert channels in a system. Measur-

ing covert channels refers to estimating the bandwidth or capacity of covert channels in

order to determine their seriousness. Lastly, mitigating covert channels deals with efforts to

design systems in such a way that the existence of covert channels is reduced or eliminated.

There are many existing techniques which cover these areas of covert channel research and

they will be examined thoroughly in Chapter 2.

Specifically, this thesis examines the development of a mathematical framework for the

modelling, analysis, and mitigation of distributed covert channels in systems of commu-

nicating agents. It looks to formally specify and verify the necessary conditions for the

existence of distributed covert channels so that approaches for detecting confidential infor-

mation leakage through the establishment and operation of distributed covert channels in

systems of communicating agents can be devised. While it is nearly impossible to eliminate

all covert channels in open systems due to their infinite nature, this thesis aims to aid in

the development of mechanisms for designing and implementing systems of communicating

agents that are more resilient to covert channels.

18

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1.3 Motivation

Today, the protection of large amounts of sensitive information is at the forefront of security

concerns. The existence of covert channels in systems of communicating agents poses a

threat to the security of the system for a variety of reasons. Covert channeling techniques

afford an ability to tamper with data stores in a manner that is unknown to the system and

thus have the potential to compromise system integrity. Furthermore, the existence and

usage of covert channels can significantly impact system availability. Since covert channels

are typically based on obscure uses of system resources and functionalities, their usage can

theoretically degrade system performance to a point where the system is rendered virtually

unusable. This often results in serious reductions in productivity which often translates to

a reduction in profit for many organisations (e.g., [HZD05]).

However, the most significant threat posed by the existence of covert channels is their ability

to secretly transmit sensitive information which raises considerable confidentiality concerns.

In particular, covert channels present themselves as a fruitful avenue for malicious insiders

wishing to leak sensitive information to unauthorised agents. In modern organisations, the

use of covert channels allows for insider threats, such as corporate espionage. In particular,

these concerns have an increasing significance in large organisations wishing to maintain

confidentiality regarding their secrets. This is the case with the increased use of large

scale data stores and cloud computing. As organisations begin to store more and more

information in the cloud, they must use prevention and detection mechanisms to protect

their data from any sort of attack or leakage to ensure that the cloud is secure. Consequently,

the prospect of confidential information leakage has now become among the highest fears

of any executive [Sco07]. In a document published by Kaspersky Lab in 2014 [Kas14], the

protection of confidential information against leakages is now the top priority for many

organisations.

19

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The existence of covert channels and their usage for breaching confidentiality policies also

presents economical concerns. The cost of breaches of confidentiality is substantial and can

cripple many organisations. According to a 2014 research report by IBM and the Ponemon

Institute [Pon14], the average total cost of an information leak and the breach of confi-

dential information is approximately $3.5 million. In addition to the costs associated with

confidentiality breaches, the existence of covert channels allows for the transmission of in-

formation using existing systems without paying for the service provided which can also

result in significant losses over time. This case is commonly exemplified when a system is

infected by a Trojan horse. Trojan horses often masquerade as legitimate files or programs

and commonly attempt to appear as helpful programs. This means that they can operate

without the knowledge of the host user. The primary uses of Trojan horses include data

theft in the form of retrieving passwords, credit card information, or other confidential in-

formation, as well as commandeering hosts to perform automated spamming or to distribute

denial-of-service attacks.

These concerns, among others, have led the U.S.A. Department of Defense and the U.S.A.

National Computer Security Center to include covert channel analysis as part of the eval-

uation criteria for the classification of secure systems outlined in [DoD85] and [NCSC93]

respectively. However, the fact remains that each year, there are hundreds of news stories

covering identity thefts and the leakage of confidential information to unauthorised par-

ties. In recent memory, stories such as WikiLeaks, the rise of Stuxnet, the Heartbleed bug,

and the breach of Apple’s iCloud, for example, have underscored the need for mechanisms

for protecting information confidentiality and for mitigating the existence and usage of

covert channels. As many organisations depend on increasingly distributed, expansive, and

complex communication networks, there are numerous possibilities for the exfiltration of

sensitive information and the detection of such threats presents many challenges. Practical

and foundational solutions are required to alleviate the threat of confidential information

leakage in modern computer systems.

20

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1.4 Problem Statement, Objectives, and Methodology

This section provides a statement of the problem that is addressed in this thesis. It also

outlines the objectives of this thesis and discusses the methodology used to achieve those

objectives.

1.4.1 Problem Statement

Currently, covert channels are poorly understood. According to the U.S.A. Department of

Homeland Security [DoHS09], there are shortcomings in the science, mathematics, and fun-

damental theory to deal with covert channels in modern computer systems. Due to a lack of

use of formal methods and the existence of ambiguous language peculiarities, protocol spec-

ifications often allow for unanticipated or unintended usage which enables the establishment

of covert channels whilst adhering to the specification [SK06]. The resulting transmissions

cannot be considered anomalous, leading to the difficulty of detecting such channels. Zander

et al. [ZAB07b] suggest that there is a lack of formal methods for identifying covert chan-

nels during system design and that there is a necessity for a more comprehensive approach

to mitigating covert channels. With the current lack of understanding of covert channels

and fundamental theory to express and reason about covert channels, how can one expect

to develop techniques for identifying and mitigating covert channels in computer systems,

particularly at the early stages of system development?

This thesis aims to enhance the understanding of covert channel communication by devel-

oping a mathematical framework for the modelling, analysis, and mitigation of distributed

covert channels in systems of communicating agents for the purpose of protecting infor-

mation confidentiality in such systems. In particular, this thesis endeavours to provide a

foundation upon which guidelines and mechanisms for designing and implementing systems

of communicating agents that are resilient to covert channels can be devised. The achieve-

ment of these goals requires the articulation and examination of the necessary conditions

for the existence of distributed covert channels presented in Section 1.2.1.

21

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1.4.2 Objectives and Methodology

To reach a mathematical framework for the modelling, analysis, and mitigation of dis-

tributed covert channels, this thesis sets a number of objectives which are described below.

Objective 1: Modelling Systems of Communicating Agents

The first objective is to develop a suitable mathematical framework for modelling and spec-

ifying systems of communicating agents. Each agent in a system of communicating agents

is comprised of a behaviour and a knowledge, and suitable mathematical structures to

capture the intricacies of the behaviour and knowledge of system agents are needed. In

order to accurately capture the concurrent and communicating behaviour of agents with

respect to the complexities of distributed covert channels, this thesis develops a mathe-

matical framework called Communicating Concurrent Kleene Algebra (C2KA) which is an

extension to the algebraic model of concurrent Kleene algebra (CKA) first presented by

Hoare et al. [HMSW09a, HMSW09b, HMSW10, HMSW11]. The mathematical framework

of C2KA allows for the separation of communicating and concurrent behaviour in a sys-

tem and its environment, and for the expression of the influence of external stimuli on the

behaviours of a system of communicating agents. C2KA also provides three levels of speci-

fication for agent behaviour giving the flexibility to select the most suitable level based on

the context of the given problem. In this thesis, the knowledge of each agent in a system of

communicating agents is captured using description logic. In particular, this thesis focuses

on representing agent knowledge using a decidable description logic called ALB (Attribu-

tive Language with Boolean Algebras on Concepts and Roles) [HS00] since it provides the

required expressivity for the articulation of the intricacies of covert communication schemes

and reasoning on agent knowledge.

22

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Objective 2: Formulating the Potential for Communication Condition

The second objective is to formulate and verify the potential for communication condition

for the existence of distributed covert channels. The potential for communication condi-

tion states that if there exists the possibility for information to flow from one agent to

another through the synchronisation and sequencing of events in a system, then the agents

have the potential for communication. The potential for communication condition requires

an examination of the behaviour of the agents in a given system. This thesis provides

a formulation of the potential for communication condition using C2KA. The use of the

mathematical framework of C2KA allows for the consideration of the potential for commu-

nication amongst system agents from two complementary perspectives. First, the potential

for communication via external stimuli examines how stimuli generated from one agent in

the system are able to influence the behaviour of other agents in the system. Second, the

potential for communication via shared environments studies how communication can occur

through shared events or variables and the dependencies between them. In this way, the

formulation of the potential for communication condition presented in this thesis is able to

account for and capture the intricacies of distributed covert channels in complex systems

of communicating agents. Furthermore, it provides a more complete representation of the

potential constraints and means for communication among system agents than what can be

done with existing approaches.

Objective 3: Formulating the Constraint on Communication Condition

The third objective is to formulate and verify the constraint on communication condition for

the existence of distributed covert channels. In a system of communicating agents, agents

communicate by exchanging messages constructed from their knowledge. Therefore, the

study of agent knowledge is necessary to accurately model agent communication. This thesis

provides a formulation of the constraint on communication condition using description logic.

23

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

By establishing a description logic specification of the knowledge of each agent in a system

of communicating agents, the constraint on communication condition can be formulated and

used to identify potential sources of confidential information leakages. In this way, covert

channels are considered only to be those that have the potential to allow for violations

of the system security policy via confidential information leakage through some form of

communication. Furthermore, an analysis of distributed covert channels that considers

agent knowledge allows for the identification of those agents in a system for which it would

be most beneficial to observe the communication to ensure that the security policy is being

respected. The idea is that if an agent does not know any confidential information, then

that agent is unable to communicate any confidential information to violate the security

policy and it can be ignored in the analysis.

Objective 4: Developing Approaches for Mitigating Distributed Covert Chan-

nels

The fourth objective is to use the proposed mathematical framework to articulate and merge

communication schemes into specifications of systems of communicating agents, and to de-

velop approaches for detecting the existence of distributed covert channels used for leaking

confidential information. When two agents decide to establish a covert channel, they must

first devise a communication scheme that is to be shared between them. A communication

scheme describes how information will be represented, transmitted, and understood from

the sender to the receiver in the communication. In this way, a communication scheme is

an amendment to both the knowledge and the behaviour of the sender and the receiver.

Therefore, a communication scheme is comprised of two components: a knowledge base

that contains all of the information required to carry out the communication of some in-

formation, including the shared representation of the information to be transmitted, and a

specification of the behaviours of the sender and the receiver that will allow them to send,

receive, and understand any transmitted message. In this thesis, the knowledge component

24

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

of a communication scheme is represented as a description logic knowledge base and the be-

haviour component of the communication scheme is represented as pre- and post-condition

specifications of the behaviours of the sending agent and the receiving agent. This thesis

presents an approach for merging a communication scheme into a specification of a system

of communicating agents in order to augment the knowledge and behaviour of the system

agents so that they may be able to establish and operate a covert channel. Such an ap-

proach is shown to be useful from two different perspectives, namely those of constructing

and detecting covert channels. From the construction perspective, covert communication

schemes can be devised in a very modular way and can be incorporated into the specifica-

tion of a system of communicating agents. In this way, a covert channel can be mounted

in the amended system of communicating agents and various existing techniques can be

used in order to test the effectiveness of the constructed covert channel in terms of stealth,

robustness, capacity, etc. Alternatively, communication schemes for existing covert channel

techniques can be specified and merged into proposed specifications of systems of commu-

nicating agents. In this way, the execution of the system of communicating agents can be

simulated and techniques such as those in [JKS11, JKS14] can be used to detect leakages

of confidential information consistent with the perception of covert channel communication

provided in [JK11b].

1.5 Contributions

The fulfilment of the objectives of this thesis described in Section 1.4.2 leads to the following

contributions:

(1) Necessary Conditions for the Existence of Distributed Covert Channels

(Section 1.2.1): This thesis proposes a set of necessary conditions for the existence

of distributed covert channels in systems of communicating agents. Conditions for the

existence of covert channels currently found in the literature vary in terminology and in

25

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the way they are articulated. Many existing conditions are inconsistent, making formal

techniques for the verification of the existence of distributed covert channels in sys-

tems of communicating agents a difficult task. The inadequacy of the varying existing

conditions in the literature are discussed and consolidated to develop a set of neces-

sary conditions for the existence of distributed covert channels. The set of necessary

conditions for the existence of distributed covert channels proposed in this thesis helps

to improve the current understanding of covert channels and can serve as a basis for

developing effective and efficient mechanisms for mitigating distributed covert channels

in systems of communicating agents. Work related to this topic has been published

in [JKZ12].

(2) Specification of Concurrent and Communicating Agent Behaviour (Section 4.2):

In order to accurately capture the concurrent and communicating behaviour of systems

of communicating agents with respect to the complexities of distributed covert chan-

nels, this thesis develops Communicating Concurrent Kleene Algebra (C2KA) which is

an extension to the algebraic model of concurrent Kleene algebra (CKA) first presented

by Hoare et al. [HMSW09a, HMSW09b, HMSW10, HMSW11]. C2KA allows for the

separation of communicating and concurrent behaviour in a system and its environment

and for the expression of the influence of external stimuli on the behaviours of a system

of agents. The strength of this work is that it allows for the inheritance of most, if not

all, of the theory that has been previously developed with respect to CKA. C2KA does

not establish a new foundation, but rather builds atop well-established ones. All of

this inherited theory provides the power and flexibility to specify all that can be done

with existing formalisms while allowing for expansion beyond existing limitations. For

example, existing formalisms such as CKA work only within closed systems, whereas

C2KA allows for the handling of open systems with the notion of external stimuli

coming from outside the boundaries of the system being considered. C2KA provides

26

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

a framework which presents a different view of communication and concurrency than

what is traditionally given by existing formalisms and allows for the intricacies of dis-

tributed covert channels to be captured. Work related to this topic has been published

in [JKZ13, JKZ14].

(3) Specification of Agent Knowledge (Section 4.3): When specifying systems of com-

municating agents for the purpose of covert channel analysis, in addition to both the

concurrent and communicating behaviour, the knowledge of each agent needs to be con-

sidered. This thesis provides a representation of agent knowledge using the description

logic ALB [HS00]. This representation of agent knowledge gives the power and flexibil-

ity to reason on agent knowledge at both the terminological or conceptual level and at

the assertional or object level. The formal logic-based semantics of this representation

of agent knowledge allows for the inference of implicitly represented knowledge from

the knowledge that is explicitly contained in a knowledge base. Furthermore, with the

proposed description logic representation of agent knowledge, the interplay between

the knowledge and behaviour of the agents in systems of communicating agents can

be studied, particularly, by looking at the evolution of agent knowledge through the

execution of agent behaviour and through communication.

(4) Formulation and Verification of the Potential for Communication Condition

(Chapter 5): One of the first steps towards uncovering whether covert channels can exist

in a given system of communicating agents is to identify which agents have the poten-

tial for communication. This thesis proposes a formulation and verification approach

for the potential for communication condition for the existence of distributed covert

channels. The formulation is based on the mathematical framework of C2KA. The

use of C2KA, allows for the consideration of the potential for communication amongst

agents from two complementary perspectives. First, the potential for communication

via external stimuli examines how stimuli generated from one agent in the system are

27

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

able to influence the behaviour of other agents in the system. Second, the potential for

communication via shared environments studies how communication can occur through

shared events or variables and the dependencies between them. By formulating the

potential for communication condition for the existence of distributed covert channels

using C2KA, the satisfaction of the condition can be formally verified for a given sys-

tem of communicating agents. The proposed formulation can serve as the basis for

developing mechanisms for mitigating distributed covert channels in systems of com-

municating agents. This can allow for the strengthening of system designs so that they

are more robust against covert channels. Work related to this topic has been published

in [JK14a].

(5) Formulation and Verification of the Constraint on Communication Condition

(Section 6.4): Often, security policies are based on the knowledge of the agents in

the system for which the policy is defined. This thesis proposes a formulation and

verification approach for the constraint on communication condition for the existence of

distributed covert channels. The formulation is based on description logic [BMNP03].

The use of description logic provides the ability to reason about the knowledge of

agents in terms of what an agent knows, or can come to know. By formulating the

constraint on communication condition for the existence of distributed covert channels

using description logic, the satisfaction of the condition can be formally verified for

a given system of communicating agents. This leads to an analysis of covert channels

that considers agent knowledge. The consideration of agent knowledge in the analysis of

systems of communicating agents for the existence of distributed covert channels allows

for the identification of those agents in a system for which it would be most beneficial

to observe the communication to ensure that the security policy is being respected. It

is acknowledged that further exploration into formulating and verifying the constraint

on communication condition for the existence of distributed covert channels is needed.

28

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(6) Guidelines for Better Understanding Covert Channels and Attaining Sys-

tems Resilient to Their Existence and Use (Chapter 6): The development and

sharing of communication schemes is an integral part of the establishment of covert

channels. The communication scheme describes how information will be interpreted

and transferred from the sending agent to the receiving agent. This thesis presents a

representation and classification for communication schemes. This classification pro-

vides useful information for anticipating the kind of amendments and reasoning that

can be performed when a communication scheme is incorporated into a system of com-

municating agents. This thesis also proposes guidelines for modularly developing and

merging covert communication schemes into systems of communicating agents. The

proposed approach illustrates how covert channels can be designed early in the devel-

opment of a system of communicating agents, particularly at the system specification

level. It also provides a way of analysing the specification of a system of communicat-

ing agents for potential vulnerabilities to covert channels as it gives a way to specify

and inject potential covert communication schemes into the specification of a system of

communicating agents. This can lead to a better understanding of covert channels. Fur-

thermore, this thesis presents an approach for the verification of confidential information

leakage in systems of communicating agents via the establishment and operation of dis-

tributed covert channels. The proposed technique employs the framework presented

in Chapter 4 for specifying systems of communicating agents and the formulations of

the potential for communication condition and the constraint on communication con-

dition described Chapter 5 and Section 6.4. An important part of this approach is

the evolution of agent knowledge through the execution of concrete agent behaviours.

This thesis also proposes a set of guidelines for which the evolution of agent knowledge

can unfold. These contributions can serve as the basis for a comprehensive analysis

of distributed covert channels in systems of communicating agents and can aid in the

advancement of mechanisms for diminishing the threat of covert channels in systems

29

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

of communicating agents. As a whole, these contributions can also serve as part of a

foundation for proposing guidelines for designing and implementing systems of commu-

nicating agents that are resilient to covert channels. However, it is recognised that a

much deeper investigation into the ideas encompassed by this contribution is required.

1.6 Related Publications

Below is a list of the publications related to the research presented in this thesis.

1.6.1 Journal Articles

• [JK14b] J. Jaskolka and R. Khedri. Mitigating covert channels based on analy-

sis of the potential for communication. Theoretical Computer Science, (40 pages),

(Submitted, 2014).

1.6.2 Refereed Conferences

• [JKZ12] J. Jaskolka, R. Khedri, and Q. Zhang. On the necessary conditions for covert

channel existence: A state-of-the-art survey. Procedia Computer Science, 10:458–465,

August 2012. Proceedings of the 3rd International Conference on Ambient Systems,

Networks and Technologies, ANT 2012.

• [JKZ14] J. Jaskolka, R. Khedri, and Q. Zhang. Endowing concurrent Kleene algebra

with communication actions. In P. Höfner, P. Jipsen, W. Kahl, and M.E. Müller,

editors, Proceedings of the 14th International Conference on Relational and Algebraic

Methods in Computer Science, volume 8428 of Lecture Notes in Computer Science,

pages 19–36. Springer International Publishing Switzerland, 2014.

30

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

• [JK14a] J. Jaskolka and R. Khedri. A formulation of the potential for communication

condition using C2KA. In A. Peron and C. Piazza, editors, Proceedings of the 5th In-

ternational Symposium on Games, Automata, Logics and Formal Verification, volume

161 of Electronic Proceedings in Theoretical Computer Science, pages 161–174. Open

Publishing Association, 2014.

1.6.3 Technical Reports

• [JKZ13] J. Jaskolka, R. Khedri, and Q. Zhang. Foundations of communicating concur-

rent Kleene algebra. Technical Report CAS-13-07-RK, McMaster University, Hamil-

ton, ON, Canada, November 2013. Available: http://www.cas.mcmaster.ca/cas/

0template1.php?601.

1.7 Structure of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 provides a survey of current state-of-the-art in the literature with respect to

covert channels, and formalisms and representations for capturing the concurrent and com-

municating behaviour and the knowledge of agents in systems of communicating agents.

Chapter 3 introduces the required mathematical background including an overview of alge-

braic structures, concurrent Kleene algebra (CKA), Dijkstra’s guarded command language,

pre- and post-condition specifications, and description logic.

Chapter 4 describes how to specify systems of communicating agents by introducing the

mathematical framework of Communicating Concurrent Kleene Algebra (C2KA) for specify-

ing the concurrent and communicating behaviour of agents. It also introduces a description

logic representation of agent knowledge for specifying the knowledge of system agents.

31

http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Chapter 5 presents a formulation and verification approach of the potential for communica-

tion condition for the existence of distributed covert channels in systems of communicating

agents based on C2KA.

Chapter 6 gives an outlook for the proposed mathematical framework for the modelling,

analysis, and mitigation of distributed covert channels. It presents a representation of

communication schemes and guides an approach for merging communication schemes into

specifications of systems of communicating agents. This chapter also proposes a set of

guidelines for the evolution of agent knowledge through the execution of concrete agent

behaviours and an approach for the verification of confidential information leakage in sys-

tems of communicating agents via the establishment and operation of distributed covert

channels. The proposed approach for the verification of confidential information leakage

also comments on a formulation and verification approach of the constraint on communica-

tion condition for the existence of distributed covert channels in systems of communicating

agents based on description logic.

Chapter 7 highlights and assesses the contributions made by this thesis. This chapter also

draws conclusions and suggests avenues for future work.

32

Chapter 2

Literature Survey

The current literature shows a wide range of existing approaches for classifying, modelling,

and mitigating covert channels in systems of communicating agents. Additionally, there

are a variety of ways in which systems of communicating agents can be specified using

an assortment of existing formalisms for capturing different aspects of the behaviour and

knowledge of agents.

This chapter surveys the literature and discusses existing work in the various areas of

covert channel research. It also reviews existing approaches and formalisms for capturing

the behaviour and knowledge of agents in systems of communicating agents. Specifically,

Section 2.1 examines the current state of covert channel research. In particular, it looks at

existing classifications of covert channels and current approaches for modelling, detecting,

and preventing covert channels. Section 2.2 surveys and discusses existing formalisms for

capturing agent behaviour in systems of communicating agents. Section 2.3 provides an

overview and discusses existing formalisms for capturing agent knowledge in systems of

communicating agents. Lastly, Section 2.4 summarises the material presented in this chapter

and provides some additional concluding remarks.

33

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

2.1 Covert Communication Channels

The current state of covert channel research is quite scattered and suffers from much incon-

sistency and disagreement over many of the fundamentals of covert channels. This section

aims to motivate the need for a better understanding of covert channels and to illustrate

the inspiration for the research presented in this thesis. Specifically, this section examines

the existing classifications of covert channels, as well as existing approaches for modelling,

detecting, and preventing covert channels in systems of communicating agents.

2.1.1 Classification of Covert Channels

Currently, there is no generally agreed upon classification of covert channels. Traditionally,

covert channels have been divided into two classifications: storage channels and timing

channels. The following definitions are taken from [DoD85].

Storage Channel: A storage channel is a communication means involving the direct or

indirect writing of object values by the sender and the direct or indirect reading of

object values by the receiver.

Timing Channel: A timing channel is a communication means involving the sender sig-

nalling information by modulating the use of shared resources (e.g., CPU usage) over

time in such a way that it is observable by the receiver.

Over the years, it has been suggested that there is no fundamental distinction between

storage channels and timing channels [DoD85]. The only differences that may be drawn

between them is the way in which information is encoded in each class of channel. This has

led to a new classification model based on the dimension in which data is encoded, whether

time or space, and also on the paradigm by which characters are encoded, either value-based

or transition-based . The following classification is found in [WL05b] and consists of four

types of channels:

34

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Value-based Spatial Channel: A value-based spatial channel is a communication means

which encodes data within a spatial container.

Transition-based Spatial Channel: A transition-based spatial channel is a communica-

tion means which encodes data by representing it as changes between spatial

containers.

Value-based Temporal Channel: A value-based temporal channel is a communication

means which encodes data by modulating the timing of the occurrence of events.

Transition-based Temporal Channel: A transition-based temporal channel is a

communication means which encodes data by modulating intermediate events on the

occurrence of events.

A parallel can be drawn between value-based spatial channels and traditional covert storage

channels and similarly, between transition-based temporal channels and traditional covert

timing channels. However, the introduction of transition-based spatial channels and value-

based temporal channels gives new classes of covert channels. Transition-based spatial

channels make explicit the fact that a covert storage channel can be created indirectly

without requiring the sender having any control of the value of the object. Value-based

temporal channels exploit the ability of a sender to alter the times at which events occur.

More recently, a different classification of covert channels based on the medium used for

embedding covert information was proposed [Jas10].

Protocol-based Covert Channel: A protocol-based covert channel is a communication

means that uses the communication protocol to convey messages that violate a security

policy.

Environment-based Covert Channel: An environment-based covert channel is a com-

munication means that uses environmental resources, functionalities, or features to

convey messages that violate a security policy.

35

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Protocol-based covert channels typically involve the misuse of communication protocols and

mechanisms in order to transmit covert information. Environment-based covert channels

normally involve the use of factors in the shared environment of the channel users to transmit

a covert message. A particular feature of environment-based covert channels is that the

communication of information occurs in an open system which belongs to the public domain.

Each user of the system has access to the information being presented, however, due to its

encoding, an observer may not be able to detect or decode the information to gain any

knowledge that the communication of information exists at all.

It is important to note that in both protocol-based covert channels and environment-based

covert channels, it is not necessarily the communication between agents that is in violation

of a security policy, but rather, the information that is being communicated. Because of

this fundamental difference from previously existing classifications of covert channels, and

due to its simplicity and generality, the protocol-based/environment-based classification of

covert channels is adopted and considered throughout the remainder of this thesis.

2.1.2 Modelling Covert Channels

In order to develop an understanding of covert channels, researchers have proposed various

models in an attempt to capture the characteristics of covert channels in computer systems.

Typically, a model allows for an abstract, conceptual view of the system of interest and can

aid in reasoning about the system and help in understanding the system in general.

Non-Interference Models

Some of the first models for covert channels were those based on the notion of non-

interference. When discussing non-interference, a computer system is modelled as a machine

with inputs and outputs, each classified as either low-level or high-level. A computer system

has the non-interference property if and only if any sequence of low-level inputs will produce

the same low-level outputs, regardless of what the high-level inputs are [GM82]. The study

36

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

of non-interference emerged from the need to understand why covert channels were possi-

ble [RMMG01]. Covert channel models based on non-interference are commonly attributed

to Goguen and Meseguer [GM82]. Ryan et al. [RMMG01] suggest that the problem with

non-interference models is a question of practicality; how can non-interference models be

translated into efficient algorithms for detecting covert channels? According to [HKMY87],

there is a cost for characterising security in terms of non-interference assertions due to the

fact that a complicated induction is necessary to verify that a non-interference policy is

satisfied.

Information Flow Models

The study of information flow is considered one of the main approaches for investigating

confidentiality in computer systems [FGM03]. The aim of information flow-based models is

to characterise any possible flow from high-level agents to low-level agents. One of the first,

and likely most well-known, formal models allowing for the automation of the discovery of

security leaks and illegal information flows is the Bell-LaPadula model [BL76].

Numerous other information flow-based models that can be used to describe covert channels

have since been proposed. Denning [Den76] investigated a lattice structure derived from

security classes to guarantee secure information flow in computer systems. Brewer and

Nash [BN89] proposed the Chinese Wall Security Policy model where information access is

not restricted by its security level. Instead, datasets are grouped into conflict of interest

classes whereby an agent can have access to information of only one of these datasets. Mc-

Dermid and Qi [MQ91] presented a model for evaluating secure systems and for testing for

the existence of covert channels by combining static analysis and dynamic testing. Shen and

Qing [SQ07] characterised the subject properties of information flows in a state machine

model. Jaeger et al. [JSS07] developed a model to describe risk information flows which are

information flows that may exist due to a combination of overt and covert information flows.

37

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Shaffer et al. [SAIL07, SAIL08] presented an approach founded on the notion of interfer-

ence and focussed on identifying covert channel vulnerabilities at the implementation level

through static analysis techniques. Varadharajan [Var90] used a formalism extended from

Petri nets to model information flow security requirements. Focardi and Gorrieri [FG94]

introduced a CCS-like process calculus called Security Process Algebra (SPA) to verify that

no information flow is possible from a high-level system to a low-level system. This model

was extended in [FGM03] to a real-time setting with operators allowing for the capture of

time dependent information flows in addition to logical information flows. Also, a variety

of approaches for modelling and analysing information flows have been based on typing

systems (e.g., [HPRW08, HRLS06, Kob05, VIS96]).

Finite State Models

According to [SC99], some covert channels can be modelled as finite state machines, while

others cannot. Millen [Mil89a] proposed a number of techniques for estimating the capacity

of covert channels that are modelled by finite state machines where each transition takes

a constant amount of time. A variant of this model was proposed by Liu et al. [LHD10].

Gray [Gra91] used a probabilistic state machine model with a finite (but potentially very

large) set of states and a set of communication channels providing the only interface to

the external environment to describe computer systems. This model is similar to the

synchronous state machine model described by Millen [Mil90] except that Gray’s model

has a probabilistic transition function rather than a non-deterministic one. Wang and

Lee [WL05b] proposed a model based on finite state machines allowing for the analysis of

covert channels on abstract system specifications and for articulating a set of minimum re-

quirements for setting up a covert channel. Johnson et al. [JLY10] modelled what are coined

as behaviour-based covert channels where communicating agents are represented as finite

state machines. Using this model, Johnson et al. described how two agents can establish

covert channels which allow their communication to bypass a monitoring agent.

38

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Probabilistic Models

In the literature, there are a number of probabilistic models for covert channels (e.g., [TG88,

KC09]). However, in [GGT10], Grusho et al. discussed some of the issues that are encoun-

tered when using statistical detection techniques and estimating covert channel capacities

which quite often use probabilistic models of communication. The issue with using such

models is that even small differences in the models can affect the topological structure of the

sets associated with probability measures. These structural differences are often detectable

using computer simulations. The results of these simulations may help or hinder the search

for prohibitions of certain configurations and covert channels which cannot appear in le-

gal communication. According to [GKT05], with enough statistical theory, covert channels

based on statistics can be mitigated using such probability models and methods. However,

there is an uncertainty associated with probabilistic models and the question remains, with

what certainty can covert channels be mitigated using probabilistic models?

Discussion

One important observation which can be made through this examination of existing ap-

proaches for modelling covert channels is that many of the existing models suffer from

restrictions which limit their applicability to devise or detect covert channels in computer

systems. For instance, one such restriction is that many existing models for covert channels

only consider the knowledge of the agents in a system of communicating agents by classify-

ing them into security levels. However, many models only consider two security levels (high

and low) when in reality there are many more. Based on these observations, it can be seen

that a comprehensive formal model for covert channels is non-existent.

39

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

2.1.3 Detecting Covert Channels

The detection of covert channels embedded in various protocols is a relatively new area of

research and recently, detection methods have begun being categorised into three categories:

signature-based, protocol-based, and behavioural-based (e.g., [JK11a]). Signature-based de-

tection methods involve examining the communication stream of information for specific

pre-designed patterns. Protocol-based detection methods involve examining protocols by

monitoring the communication stream for violations and anomalies. Lastly, behaviour-

based detection methods involve constructing reference profiles with respect to a legitimate

communication environment and constructing user profiles for each agent in the system.

Then, the reference profiles are compared against the real-time user profiles checking for

violations or illegal behaviours.

This section discusses and assesses the strengths and weaknesses of existing approaches for

covert channel detection and examines why there is a need for new techniques to detect the

existence of covert channels, particularly at the early stages of system development.

Non-Interference-Based Detection Techniques

A short while after the introduction of the confinement notion by Lampson [Lam73], the

existence of covert channels was being examined through non-interference properties. Na-

gatou and Watanabe [NW06] devised a technique for detecting the use of covert channels

at run-time by enforcing non-interference policies through flow control and access con-

trol mechanisms. Goguen and Meseguer [GM82] defined the existence of covert channels

through non-interference properties in security policies. By this approach, security veri-

fication consists of checking that a given system model satisfies a given policy. Volpano

and Smith [VS97] described non-interference through typing where a system contains inter-

ference if it cannot be correctly typed and Lowe [Low02] described non-interference using

process calculi.

40

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The notion and applicability of non-interference is questioned in [RMMG01] since the trans-

fer of a single bit of information causes a non-interference violation. It is often the case that

non-interference approaches attempt to classify data and processes of a system according to

two security levels: high and low [HZD05]. However, it is rarely the case that real systems

only have two security levels, which leads to a fundamental restriction of the use of non-

interference properties to define the existence of covert channels outside of the theoretical

realm.

Shared Resource Matrix

In 1983, Kemmerer introduced a technique for identifying the use of covert channels based on

the ways in which shared system resources are used [Kem83]. The technique is appropriately

called the Shared Resource Matrix (SRM). The shared resource matrix is motivated by the

observation that covert channels require collaboration with an agent having the ability to

signal or leak information to an unauthorised agent. The authorisation is normally granted

on system objects which may include file locks, device busy flags, the passing of time, etc.

The shared resource matrix technique involves two steps. First, an analyst needs to identify

and enumerate all of the shared resources that can be referenced or modified by an agent

in the system. Second, the analyst needs to carefully examine each resource to determine

whether it is possible for the resource to covertly transfer information from one agent to

another. A set of minimum criteria that must be satisfied for a covert channel to exist in

the system is provided in [Kem83]. The verification of the minimum criteria considers both

storage channels and timing channels.

The shared resource matrix technique has a number of advantages. It allows for the at-

tributes that do not meet the preliminary criteria of being modified or referenced by an

agent to be quickly discarded. It also provides a graphical design for developers in all

stages of software design. However, the shared resource matrix technique is tedious and ad

hoc in nature as the analyst must decipher scenarios in which the criteria might be satisfied.

41

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

It is also quite difficult to automate the technique which proves to be one of its significant

weaknesses.

Covert Flow Trees

Kemmerer and Porras devised an approach, called Covert Flow Trees (CFTs) [KP91, PK91],

for detecting covert channels in computer systems based on the representation of security

violations arising from the application of fault trees. A CFT is a tree-structured represen-

tation of the sequence of operations that transfer information from one agent to another.

The goal of covert flow trees is to identify operation sequences or information flows in the

tree structure that support either the direct or indirect ability of an agent to detect when

an attribute has been modified. This means that CFTs help to recognise when system

attributes have been changed in some way by a sequence of operations.

The use of covert flow trees has the benefit of generating a comprehensive list of scenarios

that could potentially support covert communication. Also, CFTs provide a graphical

illustration of the routes that information travels as it is relayed from attribute to attribute,

and eventually detected by the receiver. The drawback of the covert flow tree technique rests

in the size of the covert flow trees that are generated and the scalability of the approach.

The process of reducing and expanding the operation sequences produced by covert flow

trees is currently ad hoc. Consequently, there is a risk of false positives since a complex

hypothetical scenario consisting of numerous agents and system states can be generated to

show the existence of a covert channel which is not possible in the system.

Information Flow Analysis

Information flow analysis approaches have been popular in developing techniques for de-

tecting the existence of covert channels since information flows are often described through

policies which aim to preserve confidentiality.

42

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Denning and Denning [DD77] provided a technique for uncovering covert channels using

the lattice-based model of information flow proposed in [Den76]. Andrews and Reitman

provided an axiomatic definition for information flow in sequential programs [AR80]. Em-

phasis was placed on proof rules for programs containing assignment, alternation, iteration,

composition, and procedure calls. The given definition closely resembles Hoare’s deductive

system for functional correctness [Hoa69]. The axiomatic approach analyses a program

looking for information flows which violate the security policy of the system. A similar

approach was taken by Sabri et al. [SKJ09b] where the satisfiability of security policies

in communication protocols was verified using an amended version of Hoare logic. Mur-

ray and Lowe [ML10] examined information flow properties of object-capability patterns.

In [TGC87, TGC90], Tsai et al. proposed a method for identifying potential storage chan-

nels based on the analysis of programming language data structures, code, and semantics

used within the kernel to discover variable alterability and visibility. This analysis is sim-

ilar to that used in the shared resource matrix technique [Kem83] for each matrix entry.

Melliar-Smith and Moser [MSM91] looked at developing a technique for screening all system

programs using a data dependency analysis.

Models of information flow attempt to describe all possible ways of comprising information

at fine-grained views of a system. With this view, the information is recognised as low as the

bit level. Techniques for conducting analysis on such models are able to successfully discover

covert channels, however, they are known to be vulnerable to false positives where violations

that do not really exist are flagged [Mil87]. Information flow analysis also typically occurs

at later stages in software development, such as the implementation stage. For instance,

typing systems are able to analyse information flows within program code, but not at an

earlier stage in software development. In an attempt to detect information flow violations

earlier in the software development process, Alghathbar et al. [AFW06] proposed a logic-

based technique called FlowUML which aims at validating information flow policies in UML

sequence diagrams.

43

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Anomaly Detection Techniques

Anomaly detection refers to the detection of patterns in a given data set that do not conform

to what is considered normal behaviour. Anomaly detection techniques are typically used in

conjunction with machine learning and statistical approaches in order to provide measures

to determine the existence of anomalies. Sohn et al. [SSM03] proposed an offline covert

channel detection technique based on the idea of anomaly detection using a support vector

machine (SVM) to search for anomalies in the header fields of network packets. A similar

technique was proposed by Tumoian and Anikeev [TA05b, TA05a] involving the interception

of all TCP traffic and a model of the initial sequence number generation. The idea is to

use a neural network to create a model using only the intercepted TCP traffic without

any knowledge of the data generation algorithm in an attempt to identify anomalies in the

initial sequence numbers of the intercepted TCP segments. Berk et al. [BGC05a, BGC05b]

investigated a methodology for detecting such channels based on a statistical measure of how

well the capacity of a given channel is achieved. Jadhav and Kattimani [JK11a] proposed

a statistical protocol-based detection method involving the capture of TCP segments from

active network streams and analysing the covert channel vulnerable fields of TCP headers.

Zhai et al. [ZLD10] proposed a method based on a TCP Markov model and the Kullback-

Leibler divergence [KL51] to verify the existence of anomalies in the TCP Flags field. Zhao

and Shi [ZS10] aimed to detect the existence of covert information embedded in TCP Initial

Sequence Numbers using phase-space reconstruction to represent the dynamic nature of

initial sequence numbers by building a four-dimensional space of the one dimensional initial

sequence numbers.

Anomaly detection techniques which are based on statistics and probabilities typically have

some level of uncertainty associated with the probability model used for making statistical

decisions. Because of this, anomaly detection techniques for detecting covert channels very

often result in an answer of “maybe” and rarely yield a definitive answer of “yes” or “no”.

44

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Scenario-Based Detection Techniques

Hélouët et al. [HZD05, HZJ03] proposed an algorithm which characterises the presence of a

covert channel in a scenario description. From a scenario description of a system, a covert

channel is viewed as a game where a pair of corrupted users, sender and receiver, attempt to

send information while the rest of the protocol aims to prevent the information from being

communicated. The use of scenarios has several advantages. Scenarios often provide the

first obtainable information regarding a system’s behaviour since they are used to describe

system requirements. Also, several recommendations [Com09, Com93, DoTI91, DoD85,

NCSC93] request that covert channel use be documented with such models. It is often

the case that model-based studies can overlook some covert channels or exhibit unrealistic

scenarios. Despite that this approach can immediately offer scenarios for covert channel

use, it only reveals “potential covert channels”, the existence of which needs to be tested

on a real implementation of the protocol.

Separability-Based Detection Techniques

A system is separable (i.e., multi-level secure) if and only if it is behaviourally equivalent

to a collection of single level systems that have no interaction [Bro94]. In developing the

notion of separability, Rushby developed a technique for security verification called Proof

of Separability [Rus82]. The aim is to prove that the behaviour perceived by each agent

of a shared system is indistinguishable from the behaviour that could be provided by an

isolated machine for the agent’s private use. Later, Jacob [Jac90] proposed a method for

detecting covert channels where the idea is that if a system, where all known channels have

been “cut”, is separable, then there are no covert channels, otherwise, at least one covert

channel exists. The shortcoming of Jacob’s method is that it does not detect covert channels

completely dependent on known channels.

45

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Discussion

Many of the existing techniques for detecting the existence of covert channels in computer

systems perform analyses at late stages in software development. For instance, many tech-

niques are concerned with detecting covert channels at the implementation stage where anal-

yses are performed on program code. It would be much more beneficial if covert channels

could be detected at a much earlier stage in software development, namely the specification

and design stages where few research has studied.

Also, many existing detection techniques suffer from a variety of drawbacks, such as scala-

bility issues, applicability issues, and uncertainty, as is the case for statistical approaches.

Moreover, detection techniques can be subject to false positives which stems from a lack of

formality.

2.1.4 Preventing Covert Channels

Since the conception of covert channels, a wide variety of techniques for preventing their use

in computer systems have been proposed. Typically, the goal of covert channel prevention is

simply to reduce the usefulness of the covert channels existing in a system for communicating

information. The aim is to deter malicious agents from having the desire to use covert

channels.

The NRL Pump

In the early 1990’s, researchers began to observe that in order to maintain reliable com-

munication, acknowledgements were required. Shortly thereafter, it was realised that if a

high-level agent passed acknowledgements directly to a low-level agent, then the higher-level

agent could pass high-level information to the low-level agent by altering acknowledgement

delays. This observation and realisation was the motivation for the development of the NRL

pump (also known simply as the pump) [KM93, LMST+04]. Developed by the U.S.A. Naval

46

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Research Laboratory, the pump is a multi-level secure component (hardware or software) for

preventing the use of covert timing channels with the goal of minimising information leakage

from high-level agents to low-level agents without degrading average time performances.

A handful of variants of the pump have since been proposed. For example, Ogurtsov et

al. [OOS+97], introduced the quantised pump, the linear quantised pump, and the loga-

rithmic quantised pump. These variations differ in the interpretation of the bit that is

transmitted from the high-level agent to the lower-level agent. Each variation of the pump

offers their own tradeoffs in terms of system performance. Although the pump offers a

formidable mitigation technique for covert channels, it suffers from scalability issues due to

an inability to handle large state spaces [LMST+04].

Information Theoretic Prevention Techniques

A common approach for preventing covert channels in computer systems is to reduce their

usefulness by minimising their capacity using information theoretic techniques. Information

theory, which dates back to Shannon’s seminal writings in 1948 [Sha48], involves the quan-

tification of information and deals with finding the fundamental limits on reliably storing

and communicating data. According to [WL05a], capacity estimation is an important part

of covert channel analysis since it is often used as a measure of the severity of a covert

channel. Mechanisms for computing the capacity of covert channels in computer systems

are presented in a number of works (e.g., [Low02, SC99]). The idea behind capacity analysis

is that if the capacity of a covert channel can be reduced to a reasonably small rate, then

the channel is rendered unusable as a means of effectively transferring information. The

guidelines outlined in [DoD85] and [NCSC93], state that covert channels with capacities

less than one bit/second are usually considered acceptable, while capacities greater than

100 bits/second are unacceptable. A selection of approaches for reducing the capacity of

covert channels are given by Martin et al. [MMA06] and Giles and Hajek [GH99, GH02].

Moskowitz and Kang [MK94] discussed some historical issues with information theoretic

47

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1 bit 1 bit 1 bit 1 bit

1t 2t 4t 8t

Figure 2.1: An illustration of the idea behind Moskowitz and Kang’s zero capacity channel

approaches to covert channel prevention. They claimed that the use of capacity as the sole

measure of insecurity is insufficient. To support this claim, Moskowitz and Kang presented

an example of a channel which had a computed capacity of zero and upon which any message

could be sent. In doing so, Moskowitz and Kang assumed a noiseless communication channel

with two symbols. On the first use of the channel, either symbol can be sent within one

clock tick, on second use, either symbol can be sent within two clock ticks, on third use,

either symbol can be sent within four clock ticks, and so on such that on the nth use, either

symbol can be sent within 2n−1 clock ticks. This idea is illustrated in Figure 2.1. With

such a channel, it is easy to see that by the nth transmission there are 2n different messages

and that the total transmission time by the nth transmission is
∑n−1

i=0 2i clock ticks. After

some time analysis (the details of which are ignored here), it can be computed that the

capacity of this channel is zero. Furthermore, it can also be seen that any message can

be sent on this channel with no loss of fidelity. This zero capacity channel illustrated that

knowing that the capacity is zero does not ensure that the system is in a secure situation.

This observation led to the introduction of the small message criterion which additionally

considered the message length, fidelity, and time frame for transmission for determining the

tolerable level of covert communication in the system.

Still, tolerances such as those provided by capacity estimation and the small massage cri-

terion, can result in a greater threat than what is calculated using information theoretic

techniques. This is particularly apparent when low capacity channels, which are typically

considered innocuous, are used as the mechanism for initiating and correctly sequencing the

communication between the sending agent and the receiving agent. This aligns with the

48

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

existence conditions of both storage and timing channels in Kemmerer’s shared resource

matrix technique [Kem83]. The use of these low capacity channels aids in the establishment

of higher capacity covert channels. For example, in a distributed system, it is possible to

establish a covert communication scheme involving the use of multiple low capacity channels

such that their combination results in a much higher capacity channel which can be used

to leak confidential information. In order to mitigate this threat, it should be noted that

it is not uncommon for the capacity threshold to be zero, meaning that any covert channel

with a capacity greater than zero is considered to be a threat [MK94].

Fuzzy Time

In an effort to mitigate the use of covert timing channels, Hu [Hu91] developed the notion

of fuzzy time. Fuzzy time is a covert channel countermeasure that aims to reduce the

capacity of covert timing channels by making all clocks available to a process noisy. Covert

timing channels require two clocks: a reference clock (usually a system clock) to measure

the absolute time and another clock to be modulated by the sending agent and observed by

the receiving agent [Wra91]. The fuzzy time technique is based on this idea and attempts

to isolate a process from all precise timing information by randomly altering the timings of

I/O operations to diminish the precision and accuracy of system clocks. In [Tro93], Trostle

explored additional countermeasures based on the notion of fuzzy time to help mitigate

covert timing channels. Such countermeasures included ways to redesign the system process

scheduler based on security levels, similar to the lattice scheduler proposed by Hu [Hu92].

Discussion

Existing covert channel prevention techniques simply attempt to reduce the capacity of

covert channels to a rate which makes the use of covert channels inefficient. It should be

noted that the primary target of a large proportion of existing prevention techniques is

covert timing channels. The issues that are noted with the existing prevention techniques

49

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

lie in the scalability of the techniques and the impact they pose on the overall performance

of the system. If covert channels can be prevented at earlier stages in system development,

then the performance repercussions can be reduced.

2.2 Formalisms for Capturing Agent Behaviour

When discussing systems of communicating agents, one of the most important aspects of

each agent is their concurrent and communicating behaviour. Concurrency and communi-

cation have been popular topics of study in computer science and software engineering since

the 1960’s. Over the course of the past 50 years, there have been many proposed models

for concurrency. Each of these models attempts to capture the concurrent and communi-

cating behaviour of agents in a system. This section provides an overview and discussion

of existing formalisms for capturing the concurrent and communicating behaviour of agents

in a system of communicating agents.

Systems interact with other systems resulting in the development of patterns of stimuli-

response relationships. Therefore, models for concurrency are commonly constructed upon

the assumption of uninterruptible system execution or atomic events. Models for concur-

rency differ in terms of how they capture this notion. A coarse-grained classification cate-

gorises models for concurrency as either state-based models or event-based models [CS96].

State-based models describe the behaviour of a system in terms of the properties of its

states. Typical state-based approaches for capturing the concurrent and communicating

behaviour of agents consist of representing system properties as formulae of temporal log-

ics, for example, such as linear-time temporal logic (LTL) [Pnu77], computation tree logic

(CTL) [CE82] and its extension (CTL∗) [EH86], and model-checking the state space of the

system against them. Conversely, event-based models represent systems via structures con-

sisting of atomic events. There is an extensive variety of examples of event-based models

for concurrency including labelled transition systems [Kel76], Petri nets [Pet62], process

50

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

calculi (e.g., calculus of communicating systems (CCS) [Mil80], communicating sequen-

tial processes (CSP) [Hoa78a], algebra of communicating processes (ACP) [BK84], and π-

calculus [MPW92]), Hoare traces [Hoa85], Mazurkiewicz traces [Maz87], synchronisation

trees [Mil80], pomsets [Pra86], event structures [Win87], and action algebras [Koz93, LG98,

Pra91].

Existing state-based and event-based formalisms for communication and concurrency such

as temporal logics, labelled transition systems, Petri nets, and process calculi are primar-

ily interested in modelling the behaviour of a system either in terms of the properties of

its states or in terms of the observability of events. However, many existing formalisms

(e.g., [CE82, EH86, Hoa85, Kel76, Maz87, Pet62, Pra91, Pnu77, Win87]) do not deal di-

rectly with the notion of communication or they have a very convoluted or restricted view

of the interactions among system agents. Perhaps the best formalisms for capturing the

communication between system agents are the process calculi (e.g., [BK84, Hoa78a, Mil80,

MPW92]). In an attempt to capture the communicating behaviour of agents, process calculi

provide tools for describing the interactions, communications, and synchronisations between

agents in a system. However, process calculi typically only consider the representation of

interactions between agents as message-passing communication, and often neglect shared-

variable communication. Additionally, one of the primary notions in many process calculi

is the idea of conjugate actions and handshaking. The idea is that when two conjugate

actions execute in parallel, a handshake occurs and the result is a silent, unobservable com-

munication action, traditionally denoted by τ . However, it is not always the case that each

and every event in a system has a primitive conjugate action and that each communication

is a silent action.

Moreover, existing state-based and event-based formalisms do not directly, if at all, provide

a hybrid model of communication and concurrency which encompass the characteristics

of both state-based and event-based models. However, recently, Hoare et al. [HMSW09a,

HMSW09b, HMSW10, HMSW11] proposed a formalism for modelling concurrency called

51

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

concurrent Kleene algebra (CKA). CKA extends the algebraic framework provided by

Kleene algebra by offering, aside from choice and finite iteration, operators for sequential

and concurrent composition. Concurrent Kleene algebra is perhaps the closest formalism to

providing such a hybrid model capturing the elements of both state-based and event-based

models. While CKA can be perceived as a hybrid theory for concurrency, the same cannot

be said for communication. As presented in [HMSW09a, HMSW09b, HMSW10, HMSW11],

communication in CKA is not directly captured. Variables and communication channels are

modelled as sets of traces. Communication can be perceived only when programs are given

in terms of the dependencies of shared events [HW11]. One needs to instantiate the low-

level model of programs and traces for CKA in order to define any sort of communication.

Furthermore, neither CKA nor any other existing formalism for capturing the concurrent

and communicating behaviour of agents deals directly with describing how the behaviours

of agents in a system are influenced by external stimuli, which is an important aspect that

ought to be considered when capturing the concurrent and communicating behaviour of

agents in systems of communicating agents.

2.3 Formalisms for Capturing Agent Knowledge

Epistemology, derived from Greek meaning “knowledge science”, is rooted in philosophy,

theoretical computer science, artificial intelligence, economics, and linguistics. In systems

of communicating agents, each agent has a knowledge of various aspects of the system to

which it belongs and the world in which it resides. In the literature, there are a number of

existing formalisms for capturing agent knowledge.

Epistemic Logic

Perhaps one of the most popular existing formalisms for capturing and reasoning about

agent knowledge is epistemic logic [MvdH04]. Epistemic logic is a modal logic concerned

52

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

with reasoning about knowledge. The relevance of epistemic logic is realised in the formal

description of the knowledge of agents in distributed and intelligent systems in order to

specify or verify protocols, represent knowledge, and formalise reasoning methods. In an

epistemic logic, let P be a set of propositional constants such that P = {pn | n ∈ N}.

Additionally, let A be a set of m agents. The set LmK (P) of epistemic formulas, ϕ,ψ, . . .

over A is the smallest set closed under the following rules:

• If p ∈ P then p ∈ LmK (P)

• If ϕ,ψ ∈ LmK (P) then (ϕ ∧ ψ),¬ϕ ∈ LmK (P)

• If ϕ ∈ LmK (P) then Ki ϕ ∈ LmK (P), for all i ∈ A

In an epistemic logic, the formula Ki ϕ is read as “agent i knows that ϕ.” As with many

other modal logics, the semantics of epistemic logic are related to Kripke structures [Kri63].

Kripke structures are simple abstract machines which attempt to capture the idea of a

computing machine, without adding unnecessary complexities. A Kripke structure M is

a tuple (S, π,R1, . . . Rm) where S is a non-empty set of states, π : S → (P → B) is a

truth assignment to the propositional atoms per state, and Ri ⊆ S × S (i = 1, . . . ,m) are

the so-called accessibility relations. Essentially, Kripke structures are graphs whose nodes

represent reachable system states and whose edges represent state transitions. There also

exists a labelling function which maps each node to a set of properties that hold in the

corresponding state. A Kripke world w = (M, s) consists of a Kripke structure M together

with a distinguished state s ∈ S. The notion of Kripke worlds provides an interpretation

for the accessibility relations in a Kripke structure. The interpretation of (s, t) ∈ Ri is

that in world (M, s), agent i considers world (M, t) as a possible world on the basis of its

knowledge. The satisfiability relation of Kripke worlds is defined with regard to epistemic

formulae.

53

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

An extension to epistemic logic called dynamic epistemic logic (DEL) was proposed by

van Ditmarsch et al. [vDvdHK03, vDvdHK07]. In dynamic epistemic logic, there are addi-

tionally actions that can cause changes in a Kripke structure. More specifically, dynamic

epistemic logic has a notion of action algebras or action structures which represent a num-

ber of dynamic modal operators that may change the knowledge of the agents involved. In

essence, dynamic epistemic logic adds dynamic modal operators (referred to as knowledge

actions, epistemic actions or simply actions) to multi-agent epistemic logic for a set of

agents and a set of atomic propositions. Actions may change the knowledge of the agents

involved, but they do not change facts.

Epistemic logics provide a basis for modelling the knowledge of agents in systems of com-

municating agents and additionally offer extensions to handle additional notions of belief,

common knowledge, temporal constraints, groups of agents, etc. Specifically, the extension

to dynamic epistemic logic allows for a description of how knowledge changes as the result

of the execution of actions in a system. Such logics are best suited for artificial intelligence

applications where decisions are made based on the notion of possible or accessible worlds.

However, epistemic logics require that all information be represented as proposition vari-

ables, which cannot always be done easily in many practical applications, particularly those

involving distributed covert channels in systems of communicating agents. Also, they re-

quire each agent in the system to “speak” a common language which may not necessarily be

the case in systems of communicating agents. Lastly, epistemic logics provide a static view

of the system that is fixed at the beginning and once a possible world is no longer deemed

possible, it is removed and cannot be recovered which provides many restrictions when rea-

soning about systems of communicating agents for the existence and usage of distributed

covert channels.

54

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Logic of Communication Graphs

In [PP05, PP07], Pacuit and Parikh presented the logic of communication graphs. The

logic of communication graphs is a way to reason about the knowledge of agents in a sys-

tem which are restricted to communicating according to some given communication graph.

This means that each agent may only communicate with another agent if it respects the

prescribed communication graph for the system. A multi-agent epistemic logic with com-

munication modalities is developed where agents are assumed to communicate according

to some fixed communication graph. Any graph G = (A, E) is called a communication

graph where A is a set of system agents and the intended interpretation of (A,B) ∈ E is

that agent A and agent B can communicate. Given a communication graph G = (A, E),

a sequence of communications (agent A learns a fact from agent B who learns a fact from

agent C, etc.) respects the communication graph if agents only communicate with their

immediate neighbouring agents in G. The approach given in [PP05, PP07] rests on two

fundamental assumptions, namely that all the agents share a common language and that

the agents make available all possible pieces of (purely propositional) information which

they know and which are expressible in the common language. In this approach, the situa-

tion in which agent A learns some ground fact ϕ (directly) from agent B is represented by

a tuple (A,B, ϕ) and is called a communication event . Using this idea of communication

events, a history of events is captured in this approach and used to specify the communica-

tions that are legal in the sense that they respect the given communication graph. For an

event (A,B, ϕ) to take place after a history H, it must be the case that after H, B knows ϕ.

Clearly agent A cannot learn from agent B something which agent B did not know. Whether

a history is justified depends not only on the initial valuation, but also on the set of com-

munications that have taken place prior to each communication in the history. With the

logic of communication graphs, given a communication graph and a corresponding model

with an initial state and history, the legality of the history and the satisfiability of a formula

55

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

with respect to the given model is defined by mutual recursion. This is due from the fact

that the legality of a history can only be defined in terms of the knowledge of agents and

the knowledge of agents, in turn, requires quantification over legal histories. While the logic

of communication graphs provides a means for reasoning about the knowledge of agents in

a system of communicating agents while conforming to the potential for communication

among agents, it again provides a static view of the system and restricts agents to “speak”

a common language. Furthermore, the notions of histories and communication graphs con-

tribute to a significant amount of overhead with the use of this formalism for capturing

agent knowledge in systems of communicating agents.

Information Algebra

While many existing approaches for representing agent knowledge are logical in flavour,

there is a formalism that has a more algebraic flavour called information algebra. Informa-

tion Algebra [KS07] is a mathematical structure that involves pieces of information Φ and

a lattice of frames D for classifying pieces of information. Information algebra provides a

different way of representing agent knowledge by allowing for each agent in a given system

to classify information into different frames. This allows agents in the system to “speak”

different languages. It also provides a representation of knowledge as an information store

with operations for inserting, updating, and removing information, rather than a set of

formulae denoting what an agent considers to be possible in a system as is the case with

many logic-based formalisms for agent knowledge. However, information algebra comes

with a complex representation with a large algebraic structure. It is also unclear how this

formalism can be extended to capture some of the intricacies of distributed covert channels

in systems of communicating agents.

56

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Description Logic

As an alternative to the above mentioned formalisms for capturing agent knowledge in

systems of communicating agents, this thesis uses description logic [BMNP03] for modelling

agent knowledge. Prior to the 1980’s, description logic languages were known as concept

languages. Description logic was first introduced to provide a formal logic-based semantics

which was not available with frames and semantic networks. There exist many variants

of description logic languages. The base language is known as AL (Attributive Language)

and allows for negation of atomic concepts and intersection of concepts, as well as universal

restrictions and limited existential quantifications. All other languages are extensions to

the language AL. For example, a popular extension is the language ALC [BMNP03] which

additionally allows for negation on any concept. Other extensions include the language

DLR [CDL02] which allows for n-ary roles and ALCK [DLN+92] which sees the addition

of epistemic operators commonly found in epistemic logics to description logic. There are

many more variations and extensions and an exhaustive list will not be provided in this

thesis. However, a more detailed discussion of description logic, specifically the decidable

description logic variant ALB [HS00], is provided in Section 3.5. The rationale for modelling

agent knowledge using the description logic ALB lies in the needed expressivity required

to reason about agent knowledge at both the terminological or conceptual level and at the

assertional or object level which is essential when considering the complexities of distributed

covert channels and covert communication schemes. Furthermore, the decidability of the

description logic is important since it means that it is possible to determine whether an

agent knows a particular fact (i.e., it can be determined if an arbitrary description logic

formula is a theorem). This is a central feature that is needed in order to develop approaches

for automating reasoning on agent knowledge.

57

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

2.4 Conclusion

This chapter highlights the fact that there exists a lack of understanding when it comes to

dealing with covert channels in systems of communicating agents. For example, there is

much confusion surrounding the classification of covert channels. Also, while there exists

many ways in which covert channels can be modelled in systems of communicating agents,

there does not exist any mathematical framework which can capture the common proper-

ties of covert channels. Similarly, there are many existing covert channel countermeasures

focussed on detecting or preventing the existence and usage of covert channels in systems

of communicating agents, each with its own strengths and weaknesses. However, many of

these approaches exist at the implementation level and do not address the issue of covert

channels early in the development of a system of communicating agents. This thesis aims to

enhance the understanding of covert channels by developing a mathematical framework for

the modelling, analysis, and mitigation of distributed covert channels. It looks to provide a

foundation upon which guidelines and mechanisms for designing and implementing systems

of communicating agents that are resilient to covert channels can be devised.

Additionally, there exists many formalisms which aim to capture the behaviour and knowl-

edge of agents in systems of communicating agents. However, there is no formalism that

directly captures the concurrent and communicating behaviour of agents in a system of

communicating agents, particularly in terms of the influence of external stimuli and the

intricacies of distributed covert channels. To address this gap in the literature, this thesis

proposes a new way of formalising the concurrent and communicating behaviour of agents

and capturing the knowledge of each agent in a system of communicating agents that is

different than what is done with current formalisms for agent behaviour and knowledge.

This new way of looking at systems of communicating agents will allow for the analysis

of such systems with respect to the existence and usage of distributed covert channels for

leaking confidential information.

58

Chapter 3

Mathematical Background

This chapter provides the mathematical background required for the remainder of this the-

sis. Particularly, Section 3.1 gives the mathematical preliminaries of the algebraic structures

used in this thesis. Section 3.2 introduces concurrent Kleene algebra which is integral in

specifying agent behaviour in systems of communicating agents. Section 3.3 summarises

Dijkstra’s guarded command language which is used when specifying of agent behaviour.

Section 3.4 details the notion of pre- and post-condition specifications and gives a brief

summary of Hoare triples. Section 3.5 gives an overview of description logic, specifically the

language ALB, which is used for specifying agent knowledge in systems of communicating

agents. Lastly, Section 3.6 summarises what has been presented in this chapter and gives

some closing remarks.

3.1 Algebraic Structures

An algebraic structure refers to some arbitrary set S called the carrier set with one or

more finitary operations defined on S [Coh81]. The most common operations for algebraic

structures are unary operations which take one input value to produce an output and binary

operations which take two input values to produce an output.

59

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Several common properties of binary operations in algebraic structures are given in Defini-

tion 3.1.1.

Definition 3.1.1 (Properties of Binary Operations — e.g., [Hun74]). Let S be a set,

+ : S × S → S and · : S × S → S be two binary operations, and ≤ be a partial order.

For all a, b, c ∈ S, it is said that:

· right-distributes over + ⇐⇒ (a+ b) · c = a · c+ b · c

· left-distributes over + ⇐⇒ a · (b+ c) = a · b+ a · c

+ is associative ⇐⇒ a+ (b+ c) = (a+ b) + c

+ is commutative ⇐⇒ a+ b = b+ a

+ is idempotent ⇐⇒ a+ a = a

0 is the identity of + ⇐⇒ 0 + a = a = a+ 0

0 annihilates S with respect to · ⇐⇒ 0 · a = 0 = a · 0

+ is right-isotone with respect to ≤ ⇐⇒ (a ≤ b =⇒ a+ c ≤ b+ c)

+ is left-isotone with respect to ≤ ⇐⇒ (a ≤ b =⇒ c+ a ≤ c+ b)

�

Several simple algebraic structures are presented below. These structures provide the build-

ing blocks for larger and more complex structures that are introduced later in this thesis.

Definition 3.1.2 (Semigroup — e.g., [Hun74]). A semigroup is a mathematical struc-

ture
(
S, ·
)

consisting of a non-empty set S, together with an associative binary operation ·.

A semigroup is called commutative if · is commutative, and a semigroup is called idempo-

tent if · is idempotent. �

Definition 3.1.3 (Monoid — e.g., [Hun74]). A monoid is a mathematical structure
(
S, ·, 1

)
consisting of a semigroup

(
S, ·
)

and a distinguished constant 1 which is the identity with

respect to ·. A monoid is called commutative if · is commutative, and a monoid is called

idempotent if · is idempotent. �

60

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 3.1.4 (Semiring — e.g., [HW93]). A semiring is a mathematical structure(
S,+, ·, 0, 1

)
where

(
S,+, 0

)
is a commutative monoid and

(
S, ·, 1

)
is a monoid such that

operator · distributes over operator +. Element 0 is said to be multiplicatively absorbing if

it annihilates S with respect to ·. A semiring is idempotent if operator + is idempotent. Ev-

ery idempotent semiring has a natural partial order ≤ on S defined by a ≤ b ⇐⇒ a+b = b.

Operators + and · are isotone on both the left and the right with respect to ≤. �

Definition 3.1.5 (Quantale — e.g., [HMSW09a]). An idempotent semiring
(
S,+, ·, 0, 1

)
is

called a quantale if the natural order induces a complete lattice and the operation · distributes

over arbitrary suprema. �

A Kleene algebra extends the notion of idempotent semirings with the addition of a unary

operator commonly interpreted as finite iteration. Kleene algebras are most commonly

known for generalising the operations of regular expressions.

Definition 3.1.6 (Kleene Algebra — e.g., [Koz97]). A Kleene algebra is a mathemat-

ical structure
(
K,+, ·, ∗, 0, 1

)
where

(
K,+, ·, 0, 1

)
is an idempotent semiring with a mul-

tiplicatively absorbing 0 and identity 1 and where the following axioms are satisfied for

all a, b, c ∈ K:

(1) 1 + a · a∗ = a∗

(2) 1 + a∗ · a = a∗

(3) b+ a · c ≤ c =⇒ a∗ · b ≤ c

(4) b+ c · a ≤ c =⇒ b · a∗ ≤ c

�

Some important notions required for the proposed framework for specifying the concurrent

and communicating behaviour of agents in systems of communicating agents are actions of

monoids on sets and semimodules.

61

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 3.1.7 (Left S-act — e.g., [KKM00]). Let S =
(
S, ·, 1

)
be a monoid and K be

a non-empty set. Then, K is called a left S-act, denoted SK, if there exists a mapping

S ×K → K denoted by juxtaposition such that for all s, t ∈ S and a ∈ K:

(1) (s · t)a = s(ta) (2) 1a = a

�

A right S-act, denoted KS , can be defined analogously1.

Definition 3.1.8 (Left S-semimodule — e.g., [HW93]). Let S =
(
S,+, ·, 0S , 1

)
be a semir-

ing and K =
(
K,⊕, 0K

)
be a commutative monoid. Then,

(
SK,⊕

)
is called a left S-

semimodule if there exists a mapping S × K → K denoted by juxtaposition such that for

all s, t ∈ S and a, b ∈ K:

(1) s(a⊕ b) = sa⊕ sb

(2) (s+ t)a = sa⊕ sb

(3) (s · t)a = s(ta)

(4)
(
SK,⊕

)
is called unitary if it also satisfies 1a = a

(5)
(
SK,⊕

)
is called zero-preserving if it also satisfies 0Sa = 0K

�

A right S-semimodule, denoted
(
KS ,⊕

)
, can be defined analogously. From Definition 3.1.8,

it is easy to see that each unitary left S-semimodule
(
SK,⊕

)
has an embedded left S-act SK

with respect to the monoid
(
S, ·, 1

)
.

1Every left act of a monoid S =
(
S, ·, 1

)
can be interpreted as a right act over the opposite monoid Sop =(

S, ·op, 1
)
, which has the same elements and identity as S, but where multiplication if defined by s ·op t = t ·s.

In this way, the two notions are essentially equivalent [KKM00].

62

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

• •

• • •

• •

a

b

a

b

d

c

d

c

≤

• • •

• • •

• • •

a

b

a

c

a

b

d d

c

d

b c

Figure 3.1: An illustration of the exchange axiom

3.2 Concurrent Kleene Algebra

Concurrent Kleene algebra (CKA) is an algebraic framework developed by Hoare et al.

[HMSW09a, HMSW09b, HMSW10, HMSW11]. CKA extends Kleene algebra by offer-

ing operators for sequential and concurrent composition, along with those for choice and

finite iteration. The operators for sequential and concurrent composition are related by an

inequational form of the exchange axiom.

Definition 3.2.1 (Concurrent Kleene Algebra — e.g., [HMSW09a]). A concurrent Kleene

algebra (CKA) is a mathematical structure
(
K,+, ∗, ; , *©, ;©, 0, 1

)
such that

(
K,+, ∗, *©, 0, 1

)
and

(
K,+, ; , ;©, 0, 1

)
are Kleene algebras linked by the exchange axiom given by

(a ∗ b) ; (c ∗ d) ≤ (b ; c) ∗ (a ; d). �

In a CKA, the operator + is interpreted as a non-deterministic choice, the operator ; is

interpreted as sequential composition, and the operator ∗ is interpreted as parallel composi-

tion. The operators *© and ;© are interpreted as finite parallel iteration and finite sequential

iteration. The element 0 is the identity with respect to + and annihilates with respect

to ; and ∗ and the element 1 is the identity with respect to ; and ∗. Intuitively, the ex-

change axiom expresses a divide-and-conquer mechanism for how parallel composition may

be sequentially implemented on a machine. This intuition is illustrated in Figure 3.1.

63

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A selection of laws for CKA which are needed for the remainder of this thesis are given in

Proposition 3.2.1. Each of the results presented in Proposition 3.2.1 are consequences of

the exchange axiom.

Proposition 3.2.1 ([HMSW09a]). For all a, b, c, d ∈ K,

(1) a ∗ b = b ∗ a

(2) (a ∗ b) ; (c ∗ d) ≤ (a ; c) ∗ (b ; d)

(3) a ; b ≤ a ∗ b

(4) (a ∗ b) ; c ≤ a ∗ (b ; c)

(5) a ; (b ∗ c) ≤ (a ; b) ∗ c

An additional useful law is given in Proposition 3.2.2.

Proposition 3.2.2. For all a ∈ K, a ;© ≤ a *©.

Proof. The proof involves the application of Definition 3.1.6(3), Definition 3.1.6(1), and

Proposition 3.2.1(3). The detailed proof is given in Appendix A.1.

An important aspect of CKA is the notion of dependence and the idea of aggregation

algebras.

Definition 3.2.2 (Aggregation Algebra — e.g., [HMSW09b]). An aggregation algebra is a

mathematical structure
(
S,+

)
consisting of a set S, together with a binary operation +. �

In general, aggregation algebras are considered to be absolutely free in the sense that the

operator + need not satisfy any laws.

Hoare et al. provided a definition for an independence relation in [HMSW09b]. By taking the

negation of the definition of the independence relation, the following definition is obtained

for a dependence relation.

64

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 3.2.3 (Dependence Relation). A dependence relation on an aggregation alge-

bra
(
K,+

)
is a bilinear relation R ⊆ K ×K, i.e.,

(a+ b) R c ⇐⇒ (aR c ∨ bR c)

aR (b+ c) ⇐⇒ (aR b ∨ aR c)

If aR b, it is said that b depends on a. �

3.3 Dijkstra’s Guarded Command Language

In [Dij75], Dijkstra provided a language that compactly combines programming concepts

called the guarded command language. The guarded command language is most often used

when performing program verification and proving program correctness using Hoare logic.

The most important element of the guarded command language is the guarded command. A

guarded command takes the form G −→ S where G is a boolean expression called the guard

and S is a statement (or a sequence of statements). A guarded command is interpreted by

evaluating the guard G when it is encountered. If G evaluates to true, then the statement S

is executed. Otherwise, if G evaluates to false, the statement S is not executed. Note

that a guarded command by itself is not a statement. Instead, it is component from which

statements can be constructed.

There are two very simple but important statements in the guarded command language

called abort and skip. The abort statement is the undefined instruction which is interpreted

as “do anything”. On the other hand, the skip statement is the empty instruction which is

interpreted as “do nothing”.

Another common statement is the assignment statement. The assignment statement allows

values to be assigned to variables and takes the form: v := E where v is a program variable

and E is an expression to be evaluated. For example, x := y+ 4 is a statement that assigns

the evaluation of the expression y + 4 to the variable x.

65

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The selection statement is a finite set of guarded commands enclosed by the if . . . fi keywords:

if G0 −→ S0

dc G1 −→ S1

. . .

dc Gn −→ Sn

fi

In a selection statement, only one of the guarded commands is chosen to execute. Each

guarded command in the set is separated by the alternation symbol dc to indicate that each

guarded command is one alternative in the set. Upon the execution of a selection statement,

all of the guards are evaluated. If no guard evaluates to true, then execution of the selection

aborts. Otherwise, one of the guards that evaluates to true is non-deterministically chosen

and the corresponding statement is executed. For example, consider the following selection

statement:

if a ≥ b −→ max := a

dc b ≥ a −→ max := b

fi

Upon the execution of this statement, if it is the case that a = b, then both guards evaluate

to true. Therefore, one of the guarded commands will non-deterministically be chosen to

execute. In this case, the new value for max will have equal results. Because at least one of

the guards must be true for the selection statement to execute without aborting, the skip

statement is often needed. For example, consider a program that requires a variable x to

be reset to 0 when an error flag is set to true, otherwise the program shall do nothing. This

behaviour is captured by the following statement:

66

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

if error = true −→ x := 0

dc error = false −→ skip

fi

The repetition statement is syntactically similar to the selection statement where instead a

finite set of guarded commands is enclosed by the do . . . od keywords:

do G0 −→ S0

dc G1 −→ S1

. . .

dc Gn −→ Sn

od

In a repetition statement, unlike in the selection statement, the guarded commands are

executed repeatedly until none of the guards evaluate to true. Upon execution of a repetition

statement, all of the guards are evaluated. If no guard evaluates to true, then skip is

executed. Otherwise, one of the guards that evaluates to true is non-deterministically

chosen and the corresponding statement is executed, after which the repetition is executed

again. For example, consider the following repetition statement:

do a < b −→ b := b− a

dc b < a −→ a := a− b

od

This repetition ends only when a = b since that is the point at which both guards evaluate

to false, thus resulting in the execution of skip.

67

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Lastly, in the guarded command language, statements can be separated by the sequential

composition or concatenation operator ; . When the statements are selected for execution,

all of the statements that are separated by the operator ; will be executed successively in

the given order from left to right. For example, x := 4 ; y := x+ 3 first assigns the value 4

to the variable x, and then assigns the evaluation of the expression x + 3 (i.e., 7) to the

variable y.

3.4 Pre- and Post-Condition Specifications and Hoare Triples

A program or behaviour can be specified in many different formalisms. One way of specifying

the behaviour of a program is by a pre- and post-condition specification. In a pre- and post-

condition specification, the pre-condition asserts what must be true before the program is

executed and the post-condition asserts what is true after the execution of the program. A

pre- and post-condition specification often takes the form of a Hoare triple.

Definition 3.4.1 (Hoare Triple — e.g., [Hoa69]). A Hoare triple is of the form {P} S {Q}

where P is the pre-condition, Q is the post-condition, and S is a program statement (or a

sequence of statements). �

A program S is said to satisfy a pre- and post-condition specification if the execution

of S begins in any state in which the pre-condition P is satisfied and terminates in a

state in which the post-condition Q is satisfied. A pre- and post-condition specification

can be non-deterministic meaning that there may be many such programs S that satisfy

the specification. For example, consider the following pre- and post-condition specification

presented as a Hoare triple:

{0 ≤ x ≤ 5} S {x > 5}

In this case, there are infinitely many programs S that can satisfy the specification. As an

example, one such program that satisfies the specification above is S
def
= x := x+ 10.

68

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

3.5 Description Logic

Description logic refers to a family of knowledge representation formalisms that repre-

sent the knowledge of an application domain by first defining the relevant concepts of the

domain and then using these concepts to specify properties of objects occurring in the do-

main [BMNP03]. Description logics are equipped with a formal logic-based semantics with

emphasis on reasoning as a central service. This allows one to infer implicitly represented

knowledge from the knowledge that is explicitly contained in a knowledge base. In particu-

lar, this thesis adopts a decidable description logic called ALB (Attributive Language with

Boolean Algebras on Concepts and Roles) [HS00] since it provides the necessary expressivity

that is required for the representation of agent knowledge described in Section 4.3.

3.5.1 ALB Syntax

The signature of ALB is given by a tuple
(
NC , NR, NO

)
consisting of three disjoint sets

of concept symbols, role symbols, and object symbols, respectively. Every concept symbol

represents a concept and every role symbol represents a role relating two objects. Concept

symbols are also called atomic concepts and roles symbols are also called atomic roles. Two

special concepts, > and ⊥, denote the top concept containing all objects and the bottom

concept containing no objects, respectively. Similarly, two special roles, ∇ and ∆, denote

the top role containing all pairs of objects and the bottom role containing no pairs of objects,

respectively. If C and D are concepts, and R and S are roles, then complex concepts and

roles are defined by induction using the constructors of Table 3.1.

A knowledge base N =
(
T,A

)
is comprised of two components: the TBox (T) and the

ABox (A). The TBox contains sentences describing concept hierarchies (i.e., relations

between concepts). More specifically, the TBox is any finite set of terminological axioms.

69

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Concept Terms Role Terms

> top concept ∇ top role
⊥ bottom concept ∆ bottom role
¬C concept complement ¬R role complement

C u D concept intersection R u S role intersection
C t D concept union R t S role union
∀ R .C universal restriction R�C domain restriction
∃ R .C existential restriction R�C range restriction

R` role converse

Table 3.1: Constructors of the description logic ALB

Definition 3.5.1 (Terminological Axiom — e.g., [BMNP03]). A terminological axiom has

the form of a concept inclusion C v D where C and D are concepts. �

As shorthand, C ≡ D is written when C v D and D v C. For example, the statement: “Every

customer is a person” (denoted Customer v Person) belongs in the TBox. Conversely, the

ABox contains ground sentences stating where in the hierarchy objects belong (i.e., relations

between objects and concepts). More specifically, the ABox is any finite set of assertional

axioms.

Definition 3.5.2 (Assertional Axiom — e.g., [BMNP03]). An assertional axiom has the

form of a concept assertion C
(
X
)

or a role assertion R
(
X,Y

)
where C is a concept, R is a

role, and X and Y are object symbols. �

For example, the statements: “Richard is a customer” (denoted Customer
(
RICHARD

)
) and

“Richard has an account status of ‘active’ ” (denoted accountStatus
(
RICHARD,ACTIVE

)
)

belong in the ABox.

3.5.2 ALB Semantics

Formally, the semantics of the description logic ALB is defined by a terminological interpre-

tation
(
D, I

)
over a signature

(
NC , NR, NO

)
where D is a non-empty set called the domain

and I is an interpretation function that assigns every concept C a set I
(
C
)
⊆ D, every role R

70

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

I
(
>
)

= D
I
(
⊥
)

= ∅
I
(
¬C
)

= D\I
(
C
)

I
(
C u D

)
= I

(
C
)
∩ I

(
D
)

I
(
C t D

)
= I

(
C
)
∪ I

(
D
)

I
(
∀ R .C

)
=

{
x ∈ D | ∀(y | y ∈ D : (x, y) ∈ I

(
R
)

=⇒ y ∈ I
(
C
)

)
}

I
(
∃ R .C

)
=

{
x ∈ D | ∃(y | y ∈ D : (x, y) ∈ I

(
R
)
∧ y ∈ I

(
C
)

)
}

I
(
∇
)

= D ×D
I
(
∆
)

= ∅
I
(
¬R
)

= (D ×D)\I
(
R
)

I
(
R u S

)
= I

(
R
)
∩ I

(
S
)

I
(
R t S

)
= I

(
R
)
∪ I

(
S
)

I
(
R�C

)
=

{
(x, y) ∈ I

(
R
)
| x ∈ I

(
C
)}

I
(
R�C

)
=

{
(x, y) ∈ I

(
R
)
| y ∈ I

(
C
)}

I
(
R`
)

=
{

(x, y) ∈ D ×D | (y, x) ∈ I
(
R
)}

Table 3.2: Semantics of the description logic ALB

a binary relation I
(
R
)
⊆ D×D, and every object X an element I

(
X
)
∈ D [BMNP03]. It is

required that I obeys the unique name assumption, meaning that I
(
X
)
6= I

(
Y
)

for every

pair of object symbols X 6= Y ∈ NO [HSG04]. The interpretation function I extends in a

natural way to complex concepts and roles, as defined in Table 3.2 for concepts C and D,

and roles R and S.

Let N =
(
T,A

)
be a knowledge base and let

(
D, I

)
be a terminological interpretation. The

satisfiability relation |= is defined as shown in Table 3.3.

To this point, a satisfiability relation has been defined which determines whether a given

axiom is true with respect to a given interpretation. However, an entailment relation which

indicates whether an axiom is a logical consequence of a knowledge base is desired.

71

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(
D, I

)
|= C

(
X
)

⇐⇒ I
(
X
)
∈ I
(
C
)(

D, I
)
|= C v D ⇐⇒ I

(
C
)
⊆ I

(
D
)(

D, I
)
|= C ≡ D ⇐⇒ I

(
C
)

= I
(
D
)

(
D, I

)
|= R

(
X,Y

)
⇐⇒

(
I
(
X
)
, I
(
Y
))
∈ I
(
R
)(

D, I
)
|= R v S ⇐⇒ I

(
R
)
⊆ I

(
S
)(

D, I
)
|= R ≡ S ⇐⇒ I

(
R
)

= I
(
S
)

(
D, I

)
|= T ⇐⇒ ∀(ϕ | ϕ ∈ T : I |= ϕ)(

D, I
)
|= A ⇐⇒ ∀(ψ | ψ ∈ A : I |= ψ)(

D, I
)
|= N ⇐⇒

(
D, I

)
|= T and

(
D, I

)
|= A

Table 3.3: Definition of the satisfiability relation |= for the description logic ALB

Definition 3.5.3 (Entailment Relation — e.g., [HSG04]). Let ϕ be a terminological axiom

or an assertional axiom. An axiom ϕ is said to be entailed by a knowledge base N (writ-

ten N |= ϕ) if and only if for every interpretation
(
D, I

)
such that

(
D, I

)
|= N, it holds

that
(
D, I

)
|= ϕ (i.e., N |= ϕ ⇐⇒ ∀

((
D, I

)
|
(
D, I

)
|= N :

(
D, I

)
|= ϕ

)
). �

When an axiom ϕ is entailed by a knowledge base, the agent to which the knowledge base

belongs is said to know ϕ.

3.6 Conclusion

This chapter summarised the necessary mathematical background required for the remain-

der of this thesis. The presented algebraic structures and concurrent Kleene algebra are

used to develop the mathematical framework of Communicating Concurrent Kleene Al-

gebra (C2KA) for specifying the concurrent and communicating behaviour of agents in

Chapter 4 and for formulating the potential for communication condition for the existence

of distributed covert channels in Chapter 5. Dijkstra’s guarded command language is also

used in Chapter 4 for providing the concrete behaviour specification of agents as part of the

mathematical framework of C2KA and in Chapter 6 as part of the approach for describing

72

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the evolution of agent knowledge through the execution of agent behaviours. The ideas of

pre- and post-condition specifications and Hoare triples are used in Chapter 6 to represent

the behaviour component of communication schemes. The description logic ALB is used for

specifying the knowledge of agents in Chapter 4. It is also used in Chapter 6 to represent

the knowledge component of communication schemes and for formulating the constraint on

communication condition for the existence of distributed covert channels when discussing

an approach for verifying the existence of a potential confidential information leakage in a

system of communicating agents.

73

Chapter 4

Specifying Systems of

Communicating Agents

The first step towards analysing a system of communicating agents for distributed covert

channels is to formally specify the system. Recall that each agent in a system of com-

municating agents is comprised of a behaviour and a knowledge. To specify a system of

communicating agents, it suffices to provide a specification of the behaviour and knowledge

of each agent in the system. This chapter precisely deals with this matter. First, Section 4.1

provides the description of a system of communicating agents that will serve as an illus-

trative running example throughout the remainder of this thesis. Section 4.2 introduces

the mathematical framework of Communicating Concurrent Kleene Algebra (C2KA). It

also shows how to specify the behaviour of each agent using this framework. Section 4.3

introduces a representation of agent knowledge based on the description logic ALB. It also

shows how to specify the knowledge of each agent in a system of communicating agents.

Lastly, Section 4.4 provides some concluding remarks about the specification of systems of

communicating agents.

74

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

4.1 Running Example of a System of Communicating Agents

This section describes a simple example of a system of communicating agents whereby a

sending agent and a receiving agent are able to establish and operate a covert communica-

tion channel based on a variation of the FTP command mapping communication scheme

from [ZLSN05]. This example will serve as a running example throughout the remainder of

this thesis. It will be used to illustrate the specification of agent behaviour and knowledge in

this chapter, the analysis of the potential for communication condition for the existence of

distributed covert channels in Chapter 5, and the development, representation, and merging

of communication schemes into specifications of systems of communicating agents, as well

as the evolution of agent knowledge through the execution of agent behaviours in Chap-

ter 6. Ultimately, it will be shown in Chapter 6 that the system of communicating agents

described in this section contains a covert channel that can be used to leak confidential

information to an agent which should not know or possess that information.

Consider a system formed by a set C of communicating agents consisting of five agents:

{C, S,P,Q,R}. Suppose that this system of communicating agents makes use of a com-

mon FTP client software. The common FTP client software integrates a function, called

the idle prevention scheme, which guarantees that at least one command will be sent in

a fixed period of time [ZLSN05]. The set of commands that can be sent to implement

the idle prevention scheme can be selected by a user or system agent. For the purpose

of this example, let the command space of the idle prevention scheme for the FTP client

be denoted by FTP (i.e., FTP is the set of all FTP commands selected to implement the

idle prevention scheme in the system). For simplicity and brevity, consider an FTP com-

mand space of the idle prevention scheme consisting of only four commands such that

FTP = {ABOR, ALLO, HELP, NOOP}. In this way, the idle prevention scheme can choose

to issue any of these commands at will.

75

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In the system formed by a set C of communicating agents, let C denote a clock agent

that increments a variable called time which is shared amongst all of the agents in the

system. For the purpose of this example, assume that time is discrete and modelled by the

set of natural numbers N. In this way, the variable time represents the number of clock

ticks that have occurred since the system has started operating. Let S be an agent that

waits for the idle prevention scheme to determine the time to send a command from the

command space FTP. Once agent S receives a signal from the idle prevention scheme, it

chooses and issues a command. Moreover, for the purpose of this example, assume that

agent S has knowledge of some set of confidential information. It is acknowledged that

the confidential information in a real system of communicating agents may be very large,

but for simplicity and illustration, let the set of confidential information be the set {01},

containing only the (very small) bit-string 01. Additionally, suppose that the security

policy for this system explicitly forbids any agent, other than agent S, from knowing or

possessing this information. Let P and Q be agents that listen for FTP commands to

be issued. When agent P receives an FTP command, it assigns an enumeration of the

received command to a variable called cmd representing the most recent command that

was received. Assume that agent P is configured with an enumeration mapping of all of

the possible FTP commands when they are sorted alphabetically (i.e., P initially knows the

following mapping {(ABOR, 1), (ALLO, 2), (HELP, 3), (NOOP, 4)}). Assume that agents S

and R know how agent P behaves in the system. This means that agents S and R know the

enumeration mapping that agent P is configured with. As it will become more clear in the

subsequent chapters, it is through this shared knowledge of the operation of agent P, coupled

with the potential for communication among the system agents, that agents S and R will be

able to develop a covert communication scheme and establish a covert channel in the system.

After storing the enumeration of the received command, agent P increments a counter

denoted by a variable for each command (i.e., for all i such that 1 ≤ i ≤ |FTP|) called num i

where i represents the enumeration corresponding to the received command. For example,

76

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

if agent P receives a NOOP command, then it assigns cmd := 4 and increments num 4.

In this example, assume that the counters num i for 1 ≤ i ≤ |FTP| and the variable cmd

are shared with agents Q and R. Finally, when agent P has completed its computation, it

forwards the FTP command that it received. When the idle prevention scheme signals that

it is time to send a command, agent Q begins to wait for a command to be issued. When

agent Q receives an FTP command, it computes the number of clock ticks that have passed

since the last command was received and stores the value in a variable called delta that is

shared with all of the other agents in the system except for the clock agent C. For example,

when agent Q receives a command, it assigns delta := time − last where last is a local

variable storing the time at which the last command was received. Once the computation is

complete, agent Q forwards the FTP command that it received. Finally, let R be an agent

that computes the average arrival time of each command using the values stored in the cmd

and delta variables that it shares with agents P and Q. For instance, agent R updates

a local variable for each command (i.e., for all i such that 1 ≤ i ≤ |FTP|) called since i

representing the total time that has passed since the command enumerated as i has been

received by computing since i+delta. Then, agent R computes since i/num i and stores

it in a variable called avg i that is shared with all of the other agents in the system except

for the clock agent C. The operation of the system of communicating agents described in

this section can be visualised as shown in Figure 4.1.

4.2 Specifying Agent Behaviour

This section proposes an extension to concurrent Kleene algebra, called Communicating

Concurrent Kleene Algebra (C2KA), as a mathematical framework for capturing the be-

haviour of agents in systems of communicating agents. C2KA allows for the separation of

communicating and concurrent behaviour in a system and its environment and is able to

express the influence of external stimuli on the behaviours of a system of communicating

77

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Agent S

enumerate cmd
increment num_4

send NOOP

compute delta
compute last

update since_1
update since_2
update since_3
update since_4
compute avg_4
reset since_4

increment time

idle prevention
scheme

Agent C

Agent Q

Agent R

Agent P

send NOOP

read cmd
read num_4

read delta

read time

Figure 4.1: A visualisation of the operation of the running example system of communicating
agents when the idle prevention scheme is implemented using a NOOP command

agents. It presents a different view of communication and concurrency than what is tradi-

tionally given by existing process calculi and other formalisms for capturing the concurrent

and communicating behaviour of agents. In this thesis, C2KA is the formalism that is used

to specify agent behaviour in systems of communicating agents.

4.2.1 Rationale for C2KA

As mentioned in Section 2.2, existing formalisms for capturing the concurrent and commu-

nicating behaviour of agents do not directly, if at all, provide a hybrid view of communica-

tion and concurrency encompassing the characteristics of both state-based and event-based

models. Usually formalisms are either state-based or event-based. For example, temporal

logics, such as LTL [Pnu77], CTL [CE82], and CTL∗ [EH86], represent state-based for-

malisms. Conversely, labelled transition systems [Kel76], Petri nets [Pet62], process calculi

(e.g., CCS [Mil80], CSP [Hoa78a], ACP [BK84], and π-calculus [MPW92]) are examples

representing event-based formalisms. Even with a formalism such as concurrent Kleene

78

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

algebra (CKA), which can be perceived as a hybrid model for concurrency, the notion of

communication is not directly captured. Communication can be perceived only when pro-

grams are given in terms of the dependencies of shared events [HW11]. This requires the

instantiation of a low-level model of programs and traces for CKA in order to define any

sort of communication. Instead, a way in which communication can be specified in CKA

without the need to articulate the state-based system of each action (i.e., at a convenient

abstract level) is desired.

Furthermore, there is currently no such formalism that deals directly with describing how

the behaviours of agents in a system are influenced by external stimuli. The influence of

external stimuli is an important aspect that ought to be considered when capturing the

concurrent and communicating behaviour of agents in systems of communicating agents,

particularly when dealing with open systems. In open systems, external stimuli are required

to initiate agent behaviours. This is to say that the agents in an open system need an

external influence from the world in which they reside in order to begin their operation.

Existing formalisms, such as CKA and process calculi, deal primarily with closed systems

where there is no external influence on the behaviours of agents and they do not directly, if

at all, consider agent behaviours in open systems.

To address these shortcomings of the current literature, this thesis proposes the mathemat-

ical framework of Communicating Concurrent Kleene Algebra. C2KA offers an algebraic

setting which can capture both the influence of external stimuli on agent behaviour as well

as the communication and concurrency of agents at the abstract algebraic level. It uses

notions from classical algebra to extend the algebraic foundation provided by CKA.

4.2.2 Structure of Agent Behaviours

In [HMSW09a, HMSW09b, HMSW10, HMSW11], Hoare et al. presented the framework of

concurrent Kleene algebra, which captures the concurrent behaviour of agents. The frame-

work of CKA is adopted in order to describe agent behaviours in systems of communicating

79

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agents. In what follows, let K def
=
(
K,+, ∗, ; , *©, ;©, 0, 1

)
be called a CKA (see Section 3.2

for more information on CKA).

In a CKA K, the support set K represents a set of possible agent behaviours. The oper-

ator + is interpreted as a choice between two behaviours, the operator ; is interpreted as

a sequential composition of two behaviours, and the operator ∗ is interpreted as a parallel

composition of two behaviours. The operators ;© and *© are interpreted as a finite sequential

iteration and a finite parallel iteration of behaviours, respectively. The element 0 represents

the behaviour of the inactive agent and the element 1 represents the behaviour of the idle

agent just as in many process calculi. Moreover, associated with a CKA is a natural order-

ing relation ≤K representing the sub-behaviour relation. For behaviours a, b ∈ K, a ≤K b

indicates that a is a sub-behaviour of b if and only if a+ b = b.

When speaking of agents and agent behaviours, A 7→
〈
a
〉

is written to indicate that A is the

name given to the agent and a ∈ K is the agent behaviour. For A 7→
〈
a
〉

and B 7→
〈
b
〉
, A + B

is written to denote the agent
〈
a + b

〉
. In a sense, the operators on behaviours of K

are extended to their corresponding agents. In this way, an agent is defined by simply

describing its behaviour. Because of this, the terms agents and behaviours may be used

interchangeably.

Consider the running example described in Section 4.1. Let the set of all agent behaviours K

for the given system be generated using the operations of CKA and the set {abor, allo,

help, noop, sendabor, sendallo, sendhelp, sendnoop, since1, since2, since3, since4,

count1, count2, count3, count4, avg1, avg2, avg3, avg4, reset1, reset2, reset3,

reset4, tick, delta, last, wait, read, 0, 1}. abor, allo, help, and noop represent the

behaviours that map each FTP command to their corresponding enumeration. sendabor,

sendallo, sendhelp, and sendnoop represent the issuance of a particular FTP command.

For all 1 ≤ i ≤ |FTP|, sincei denotes the behaviour which computes and stores the total

time that has passed since the command enumerated as i has been received. counti denotes

the behaviour which increments the counter storing the number of times that the command

80

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

enumerated as i has been received. avgi represents the behaviour that computes and stores

the average arrival time of the command enumerated as i. reseti denotes the behaviour

that resets the total time that has passed since the command enumerated as i has been

received to 0. tick denotes the behaviour that increments the variable representing the

number of clock ticks that have occurred since the system has started operating. delta

represents the behaviour that computes and stores the number of clock ticks that have

passed since the last command was received. last represents the behaviour that stores the

time at which the last command was received. wait represents the behaviour that idly

waits for an FTP command that implements the idle prevention scheme to be issued. read

represents the behaviour that reads the shared variable cmd. The inactive agent behaviour 0

represents a behaviour that fails, and the idle agent behaviour 1 represents a behaviour that

does nothing.

4.2.3 Structure of External Stimuli

A stimulus constitutes the basis for behaviour. Because of this, each discrete, observable

event introduced to a system, such as that which occurs through the communication among

agents or from the system environment, is considered to be an external stimulus which

invokes a response from each system agent.

Definition 4.2.1 (Stimulus Structure). Let S def
=
(
S,⊕,�, d, n

)
be an idempotent semiring

with a multiplicatively absorbing d and identity n. The structure S is called a stimulus

structure. �

Within the context of external stimuli, S is the set of external stimuli which may be in-

troduced to a system. The operator ⊕ is interpreted as a choice between two stimuli and

the operator � is interpreted as a sequential composition of two stimuli. The element d

represents the deactivation stimulus which influences all agents to become inactive and the

element n represents the neutral stimulus which has no influence on the behaviour of all

agents.

81

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 4.2.2 (Basic Stimulus). A stimulus s ∈ S is called a basic stimulus if it is

indivisible with regard to the � operator (i.e., ∀
(
t | t|s : t = n ∨ t = s

)
and

∀
(
t, r | s|(t � r) : s|t ∨ s|r

)
where the divisibility relation | is defined by x|y ⇐⇒

∃(z |: y = x� z)). The set of all basic stimuli is denoted as Sb. �

Furthermore, each stimulus structure has a natural ordering relation ≤S representing the

sub-stimulus relation. For external stimuli s, t ∈ S, s ≤S t indicates that s is sub-stimulus

of t if and only if s⊕ t = t.

Once again, consider the running example from Section 4.1. Let the set of all external

stimuli S be generated using the operations of stimulus structures and the set {ips, abor ,

allo, help, noop, n, d}. The stimuli denoted by abor , allo, help, and noop represent the

sending of each of the FTP commands in the command space FTP. The stimulus ips

represents the signal sent from the idle prevention scheme to the system of communicating

agents in order to cause the system to issue a command to prevent the FTP client from

entering an idle state. The set of external stimuli also includes the deactivation stimulus d

which is interpreted as a kill signal and the neutral stimulus n which is interpreted as any

stimulus with no influence that belongs to the complement of the set of external stimuli

which may be introduced to a system.

4.2.4 Communicating Concurrent Kleene Algebra (C2KA)

C2KA extends the algebraic foundation of CKA with the notions of semimodules and stim-

ulus structures to capture the influence of external stimuli on the behaviour of system

agents.

In essence, a C2KA consists of two semimodules which describe how a stimulus structure S

and a CKA K mutually act upon one another in order to characterise the response invoked

by an external stimulus on the behaviour of an agent as a next behaviour and a next

stimulus.

82

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

First, the left S-semimodule
(
SK,+

)
describes how the stimulus structure S acts upon the

CKA K via the mapping ◦. The mapping ◦ is called the next behaviour mapping since

it describes how an external stimulus invokes a behavioural response from a given agent.

From
(
SK,+

)
, the next behaviour mapping ◦ distributes over + and ⊕. Additionally,

since
(
SK,+

)
is unitary, it is the case that the neutral stimulus has no influence on the

behaviour of all agents and since
(
SK,+

)
is zero-preserving, the deactivation stimulus

influences all agents to become inactive. Second, the right K-semimodule
(
SK,⊕

)
describes

how the CKA K acts upon the stimulus structure S via the mapping λ. The mapping λ

is called the next stimulus mapping since it describes how a new stimulus is generated

as a result of the response invoked by a given external stimulus on an agent behaviour.

From
(
SK,⊕

)
, the next stimulus mapping λ distributes over ⊕ and +. Also, since

(
SK,⊕

)
is unitary, it is the case that the idle agent forwards any external stimulus that acts on it

and since
(
SK,⊕

)
is zero-preserving, the inactive agent always generates the deactivation

stimulus.

Definition 4.2.3 (Communicating Concurrent Kleene Algebra). A Communicating Con-

current Kleene Algebra (C2KA) is a system
(
S,K

)
, where S =

(
S,⊕,�, d, n

)
is a stimulus

structure and K =
(
K,+, ∗, ; , *©, ;©, 0, 1

)
is a CKA such that

(
SK,+

)
is a unitary and

zero-preserving left S-semimodule with mapping ◦ : S ×K → K and
(
SK,⊕

)
is a unitary

and zero-preserving right K-semimodule with mapping1 λ : S × K → S, and where the

following axioms are satisfied for all a, b, c ∈ K and s, t ∈ S:

(1) s ◦ (a ; b) = (s ◦ a) ;
(
λ(s, a) ◦ b

)
(2) a ≤K c ∨ b = 1 ∨ (s ◦ a) ;

(
λ(s, c) ◦ b

)
= 0

(3) λ(s� t, a) = λ
(
s, (t ◦ a)

)
� λ(t, a)

(4) s = d ∨ s ◦ 1 = 1

(5) a = 0 ∨ λ(n, a) = n

�
1An infix notation is used for the next behaviour mapping ◦ and a prefix notation for the next stimulus

mapping λ. These notations are adopted in an effort to reach out to those in the communities of monoid
acts and Mealy automata since they adopt a similar non-uniform notation.

83

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In Definition 4.2.3, Axiom (1) describes the interaction of the next behaviour mapping ◦

with the sequential composition operator ; for agent behaviours. This axiom corresponds

to the definition of the transition function for the cascading product (or synchronous serial

composition) of Mealy automata [Hol04]. Axiom (2), which is referred to as the cascading

output law , states that when an external stimulus is introduced to the sequential compo-

sition (a ; b), then either the cascaded stimulus must be generated by the behaviour a, or

the behaviour b must be the idle agent behaviour 1. It allows distributivity of ◦ over ; to

be applied indiscriminately. In order to illustrate the motivation for the cascading output

law, consider a stimulus s ∈ S and a behaviour
(
(a + b) ; c

)
∈ K. Then, the calculation of(

s ◦ (a+ b) ; c
)

is given in Example 4.2.1.

Example 4.2.1 (Cascading Output Law). Let s ∈ S and
(
(a+ b) ; c

)
∈ K.

s ◦
(
(a+ b) ; c

)
= 〈 Definition 4.2.3(1 〉

(s ◦ (a+ b)) ;
(
λ
(
s, (a+ b)

)
◦ c
)

= 〈 Definition 3.1.8(1) for
(
SK,+

)
〉

(s ◦ a+ s ◦ b) ;
(
λ
(
s, (a+ b)

)
◦ c
)

= 〈 Definition 3.1.8(1) for
(
SK,⊕

)
〉

(s ◦ a+ s ◦ b) ;
(
(λ(s, a)⊕ λ(s, b)) ◦ c

)
= 〈 Definition 3.1.8(2) for

(
SK,+

)
〉

(s ◦ a+ s ◦ b) ;
(
λ(s, a) ◦ c+ λ(s, b) ◦ c

)
= 〈 Distributivity of ; over + 〉[

(s ◦ a+ s ◦ b) ;
(
λ(s, a) ◦ c

)]
+
[
(s ◦ a+ s ◦ b) ;

(
λ(s, b) ◦ c

)]
= 〈 Distributivity of ; over + 〉

84

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(s ◦ a) ;
(
λ(s, a) ◦ c

)
+ (s ◦ b) ;

(
λ(s, a) ◦ c

)
+ (s ◦ a) ;

(
λ(s, b) ◦ c

)
+ (s ◦ b) ;

(
λ(s, b) ◦ c

)
= 〈 Definition 4.2.3(2) 〉

(s ◦ a) ;
(
λ(s, a) ◦ c

)
+ 0 + 0 + (s ◦ b) ;

(
λ(s, b) ◦ c

)
= 〈 Identity of + 〉

(s ◦ a) ;
(
λ(s, a) ◦ c

)
+ (s ◦ b) ;

(
λ(s, b) ◦ c

)
= 〈 Definition 4.2.3(1) 〉

s ◦ (a ; c) + s ◦ (b ; c)

Without the cascading output law, the result in Example 4.2.1 would have two additional

sub-behaviours, namely, (s ◦ b) ;
(
λ(s, a) ◦ c

)
and (s ◦ a) ;

(
λ(s, b) ◦ c

)
. However, due to

the cascading output law, since each of these sub-behaviours contain a cascaded stimulus

that results from a different behaviour than that of the first component of the sequential

composition, and since the second component of the sequential composition in each case

is not the idle behaviour 1, the resulting behaviour for each of these sub-behaviours is the

inactive behaviour 0. In this way, the cascading output law ensures consistency between

the next behaviour and next stimulus mappings with respect to the sequential composition

of agent behaviours. Axiom (3) describes the interaction of the next stimulus mapping λ

with the sequential composition operator � for external stimuli. This can be viewed as the

analog of Axiom (1) with respect to the next stimulus mapping λ when considering the

action of
(
SK,⊕

)
. Axiom (4), which is referred to as the idle agent law, states that the idle

agent 1 is not influenced by any external stimulus other than the deactivation stimulus d.

The idle agent law indicates that the idle agent is passive and can be seen as having no

state-changing observed behaviour. In this way, the idle agent does not actively participate

in the operation of a system. The idle agent law plays a role in proving Proposition 4.2.6.

Finally, Axiom (5), which is referred to as the neutral stimulus law, states that no agent,

other than the inactive agent 0, is able to generate a new stimulus without outside influence.

85

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

As mentioned in Section 4.2.1, external stimuli are required to initiate agent behaviours

in open systems. In open systems, the stimulus structure plays a vital role in describing

the concurrent and communicating behaviour of agents. However, in a closed system where

there is no external influence, a C2KA can be considered to have trivial stimulus structure

(i.e., S = {n, d}). In this case, the next behaviour and next stimulus mappings are trivial and

it becomes easy to see that the C2KA reduces to a CKA. By this observation, it is clear that

C2KA provides and extension to CKA by allowing for the consideration of open systems and

the influence of external stimuli on agent behaviours in systems of communicating agents.

These observations pertaining to the open and closed world views of agent behaviour are

particularly evident by considering the neutral stimulus law, in conjunction with the fact

that
(
SK,+

)
is unitary.

The following proposition is a result of the axiomatisation of C2KA.

Proposition 4.2.1. Let
(
S,K

)
be a C2KA. For all a, b ∈ K and s, t ∈ S:

(1) a ≤K b ∧ s ≤S t =⇒ s ◦ a ≤K t ◦ b (2) a ≤K b ∧ s ≤S t =⇒ λ(s, a) ≤S λ(t, b)

Proof. The detailed proofs can be found in Appendix A.2.

The isotonicity laws given in Corollary 4.2.2 follow immediately from Proposition 4.2.1.

Corollary 4.2.2. In a C2KA where the underlying CKA and stimulus structure are built

up from quantales, the following laws hold:

(1) a ≤K b =⇒ s ◦ a ≤K s ◦ b

(2) s ≤S t =⇒ s ◦ a ≤K t ◦ a

(3) s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)

(4) s ◦ a ;© ≤K s ◦ a *©

(5) s ◦ a ;© = +(n | n ≥ 0 : s ◦ an)

(6) s ≤S t =⇒ λ(s, a) ≤S λ(t, a)

(7) a ≤K b =⇒ λ(s, a) ≤S λ(s, b)

(8) λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))

(9) λ(s, a ;©) ≤S λ(s, a *©)

(10) λ(s, a ;©) = ⊕(n | n ≥ 0 : λ(s, an))

Proof. The detailed proofs can be found in Appendix A.3.

86

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

4.2.5 A Comment on a Model for C2KA

In [HMSW09a, HMSW09b, HMSW10, HMSW11], Hoare et al. provided the following

model for CKA. Let EV be a set of event occurrences. A trace is a set of events and

a program is a set of traces. The set of all traces over EV is denoted by TR(EV)
def
=

P(EV) and the set of all programs is denoted by PR(EV)
def
= P(TR(EV)). Obviously,(

PR(EV),∪, ∗, ; , *©, ;©, ∅, {∅}
)

is a CKA [HMSW09a, HMSW09b, HMSW10, HMSW11].

Moreover, the structure of external stimuli can be modelled by sets of strings. In this way,

it is easy to see that
(
P(Λ∗),∪, •, ∅, {ε}

)
is a stimulus structure, where Λ is a set of alphabet

symbols, • denotes set concatenation, and ε is the empty string.

In a C2KA, the semimodules
(
SK,+

)
and

(
SK,⊕

)
contain a left S-act SK and a right K-

act SK, respectively. It is well known that monoid acts can be considered as semiau-

tomata [KKM00, pg. 45]. The combination of these two semiautomata leads to a Mealy

automaton. A Mealy automaton is given by a five-tuple
(
Q,Σ,Θ, F,G

)
[Hol04]. The set

of states Q is a subset of PR(EV) (i.e., the set K). In this way, each state of the Mealy

automaton represents a possible program that can be executed by the system as a reaction

to the stimulus (input) leading to the state. The input alphabet Σ and output alphabet Θ

are given by the stimulus structure such that Σ = Θ = S. Finally, the transition func-

tion F : Σ × Q → Q and the output function G : Σ × Q → Θ correspond to the next

behaviour mapping ◦ : S×K → K and next stimulus mapping λ : S×K → S, respectively.

These mappings respectively correspond to the transition functions from the semiautomata

representations of SK and SK.

The proposed model is also equipped with two operations for Mealy automata. The op-

eration ; is associative and the operation + is associative, idempotent, and commutative.

The ; operation corresponds to the cascading product of Mealy automata and the opera-

tion + corresponds to the full direct product of Mealy automata [Hol04].

87

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In [Hoa78b], Hoare provided a trace semantics for Dijkstra’s guarded command langu-

age [Dij75]. Let P and Q be commands and let TR(P) and TR(Q) denote the associated

sets of traces in accordance with the following recursive definition where • denotes set

concatenation:

TR(abort) = {false}

TR(skip) = {true}

TR(x := E) = {x := E}

TR(P ;Q) = TR(P) • TR(Q)

TR(if c −→ P dc d −→ Q fi) = {c} • TR(P) ∪ {d} • TR(Q)

TR(do c −→ P od) =
⋃
n≥0

Sn

where S0 = {¬c}, Sn+1 =
(
{c} • TR(P) • Sn

)
∪ S0

From this recursive definition, abort always fails and skip has a no effect and never fails. An

assignment statement corresponds to itself. A trace of a sequential composition corresponds

to a trace of the command P followed by a trace of the command Q. A trace of the

selection statement is a trace of one of the alternatives, preceded by a record of the guard

that evaluated to true. For a repetition statement, Sn represents the trace of exactly n

iterations of the command. Each iteration of a repetition statement is a record of the

truth of the guard followed by a trace of the command, and where the last iteration is

followed by a record of the falsity of the guard. It is important to note that, at the expense

of notational inconvenience, the selection statement and the repetition statement can be

extended to contain a set of n guarded commands.

By considering Dijkstra’s guarded command language with an additional parallel compo-

sition operation ∗ having an interleaving semantics, it becomes easy to see that Dijkstra’s

guarded command language may be used to specify the programs that represent the carrier

88

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

set of a CKA and the usage of guarded commands falls within the model of programs and

traces for CKA as described above and in [HMSW09a, HMSW09b, HMSW10, HMSW11].

In this way, Dijkstra’s guarded command language can be used to provide the state-level

specification of agent behaviours (see Section 4.2.6) which, in turn, can be modelled as sets

of traces.

4.2.6 Specifying Systems of Communicating Agents with C2KA

C2KA offers three levels of specification that may be considered when specifying a system

of communicating agents. Depending on the context of a given problem, the most suitable

level of specification can be selected.

Stimulus-Response Specification of Agents

At the stimulus-response specification of agents level, the specification of the next behaviour

mapping ◦ and the next stimulus mapping λ for each agent in the system are provided.

The running example described in Section 4.1 can be specified using the C2KA constructed

from the CKA generated by the set of agent behaviours {abor, allo, help, noop, sendabor,

sendallo, sendhelp, sendnoop, since1, since2, since3, since4, count1, count2, count3,

count4, avg1, avg2, avg3, avg4, reset1, reset2, reset3, reset4, tick, delta, last,

wait, read, 0, 1} and the stimulus structure generated by the set of external stimuli {ips,

abor , allo, help, noop, n, d}. The stimulus-response specifications of the agents in the run-

ning example are compactly specified as shown in Tables 4.1 to 4.5. It is important to note

that all together, Tables 4.1 to 4.5 define a single next behaviour mapping ◦ and a single

next stimulus mapping λ.

89

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

◦ ips abor allo help noop

tick tick tick tick tick tick

λ ips abor allo help noop

tick n n n n n

Table 4.1: Stimulus-response specification of agent C

◦ ips abor allo help noop

sendabor sendabor sendabor sendabor sendabor sendabor

sendallo sendallo sendallo sendallo sendallo sendallo

sendhelp sendhelp sendhelp sendhelp sendhelp sendhelp

sendnoop sendnoop sendnoop sendnoop sendnoop sendnoop

λ ips abor allo help noop

sendabor abor abor abor abor abor

sendallo allo allo allo allo allo

sendhelp help help help help help

sendnoop noop noop noop noop noop

Table 4.2: Stimulus-response specification of agent S

◦ ips abor allo help noop

abor abor abor allo help noop

allo allo abor allo help noop

help help abor allo help noop

noop noop abor allo help noop

count1 count1 count1 count2 count3 count4

count2 count2 count1 count2 count3 count4

count3 count3 count1 count2 count3 count4

count4 count4 count1 count2 count3 count4

λ ips abor allo help noop

abor n abor allo help noop

allo n abor allo help noop

help n abor allo help noop

noop n abor allo help noop

count1 n abor allo help noop

count2 n abor allo help noop

count3 n abor allo help noop

count4 n abor allo help noop

Table 4.3: Stimulus-response specification of agent P

90

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

◦ ips abor allo help noop

delta wait delta delta delta delta

last wait last last last last

wait wait delta delta delta delta

λ ips abor allo help noop

delta n abor allo help noop

last n abor allo help noop

wait n abor allo help noop

Table 4.4: Stimulus-response specification of agent Q

◦ ips abor allo help noop

since1 since1 since1 since1 since1 since1
since2 since2 since2 since2 since2 since2
since3 since3 since3 since3 since3 since3
since4 since4 since4 since4 since4 since4
read read read read read read

avg1 avg1 avg1 avg1 avg1 avg1

avg2 avg2 avg2 avg2 avg2 avg2

avg3 avg3 avg3 avg3 avg3 avg3

avg4 avg4 avg4 avg4 avg4 avg4

reset1 reset1 reset1 reset1 reset1 reset1

reset2 reset2 reset2 reset2 reset2 reset2

reset3 reset3 reset3 reset3 reset3 reset3

reset4 reset4 reset4 reset4 reset4 reset4

λ ips abor allo help noop

since1 n n n n n

since2 n n n n n

since3 n n n n n

since4 n n n n n

read n n n n n

avg1 n n n n n

avg2 n n n n n

avg3 n n n n n

avg4 n n n n n

reset1 n n n n n

reset2 n n n n n

reset3 n n n n n

reset4 n n n n n

Table 4.5: Stimulus-response specification of agent R

91

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

C 7→
〈
tick

〉
S 7→

〈
sendabor + sendallo + sendhelp + sendnoop

〉
P 7→

〈
abor ;count1 + allo ;count2 + help ;count3 + noop ;count4

〉
Q 7→

〈
delta ; last + wait

〉
R 7→

〈
since1 ; since2 ; since3 ; since4 ;read ;

(
(avg1 ;reset1) +

(avg2 ;reset2) + (avg3 ;reset3) + (avg4 ;reset4)
)〉

Figure 4.2: Abstract behaviour specifications of the agents in the running example system
of communicating agents

Abstract Behaviour Specification

The second level of specification gives a specification of the abstract behaviour of each sys-

tem agent. Whereas at the stimulus-response specification level, all possible responses to all

external stimuli for each agent were specified, at the abstract behaviour specification level,

the specification is restricted to the desired behaviour of an agent in the communicating

system and it can be refined by computing the responses to the external stimuli that can

be introduced into the system in the given context. The abstract behaviour specification

for each agent behaviour is shown in Figure 4.2.

As a further example of this level of specification, consider the running example in a context

where the system may only be influenced by the introduction of an ips stimulus since it is

the only stimulus that an external agent, namely the idle prevention scheme, has control

over. Additionally, for simplicity and illustrative purposes, assume that at this level of

specification, only the behaviour of agent S composed with the behaviour of agent P is

considered. This is to say that, the focus is pointed directly on this subset of the system

behaviour. In the given context, the abstract behaviour of the composed agent (S ; P) is

specified as ips ◦ (S ; P). By systematic computation involving the use of Axiom (1) from

Definition 4.2.3, the abstract behaviour of the composed agent (S ; P) can be shown to

be (sendabor ;abor ;count1)+(sendallo ;allo ;count2)+(sendhelp ;help ;count3)+

92

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(sendnoop ;noop ;count4). This computation can also be automated using the prototype

tool (see Appendix C.1). It is important to note that the specification of the composed

agent (S ; P) at the abstract behaviour specification level is a subset of the specification of

the next behaviour and next stimulus mappings given at the stimulus-response specification

level. Since agent S is free to choose which FTP command to issue in order to implement the

idle prevention scheme, it is possible that when an ips stimulus is introduced to the system

signalling that a command needs to be issued, agent S may issue any of the available

FTP commands. Therefore, through the mathematics of C2KA, it can be seen that the

computed abstract behaviour of the composed agent (S ; P) reflects each of the possibilities

of choosing any particular FTP command. Furthermore, it can be observed that at the

abstract behaviour specification level, the composed agent (S ; P) has a more deterministic

behaviour than that which is specified at the stimulus-response specification level.

At the abstract behaviour specification level, C2KA can be viewed as an event-based

model of communication. In C2KA, the left S-semimodule
(
SK,+

)
and the right K-

semimodule
(
SK,⊕

)
allow for the specification of how the external stimuli influence the

behaviour of each agent in a given system. For this reason, this level of specification is best

suited for describing message-passing communication where agents transfer information ex-

plicitly through the exchange of data structures, either synchronously or asynchronously.

Concrete Behaviour Specification

The concrete behaviour specification level involves providing the state-level specification of

each agent behaviour. The state-level behaviours of agents are represented as programs

which are defined over a set of events and that can be executed by the system. At this level,

the concrete programs for each of the CKA terms which specify each agent behaviour are

defined. In this thesis, the programs for each agent behaviour are specified using Dijkstra’s

guarded command language [Dij75]. The definition of Dijkstra’s guarded command language

is amended with two additional statements: send x and receive x. The statement send x,

93

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

where x is a program variable, denotes the sending of the variable x in a broadcast fashion

where any agent that can receive the variable will do so. Similarly, the statement receive x,

where x is a program variable, denotes the receipt of the variable x. By using these two

statements, explicit message-passing communication can be represented at the concrete

behaviour specification level. Furthermore, the send x and receive x statements help to

relate the external stimuli in the stimulus-response specification to the concrete behaviour

specification for a given agent. For instance, there is a bijection between send x and x

where x ∈ S\{n, d}. Therefore, by extrapolation, it can be said that send x is a stimulus.

Additionally, for all stimuli x, y ∈ S\{n, d} assume that send (x⊕ y) = send x⊕ send y and

send (x� y) = send x� send y. A similar assumption is made with respect to the receive x

statement.

The concrete behaviour specifications of the agents in the running example are specified as

programs in the extended Dijkstra’s guarded command language as shown in Figures 4.3

to 4.7. For the running example, each external stimulus can be represented as a send x

or receive x statement, along with the neutral stimulus n and the deactivation stimulus d.

For instance, the stimulus abor can be represented as send abor or as receive abor . The

interpretation for the running example translates the next behaviour and next stimulus

mappings as substitutions as shown in Figures 4.3 to 4.7.

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d} and let C be a program such that:

C
def
= time := time + 1

and

∀(x | x ∈ S\{n, d} : (receive x) ◦ C = C ∧ λ
(
(receive x),C

)
= n) ∧

n ◦ C = C ∧ λ
(
n,C

)
= n ∧ d ◦ C = abort ∧ λ

(
d,C
)

= d

Figure 4.3: Concrete behaviour specification of agent C

94

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d}, let S be a program, and let y be a variable in S such that:

S
def
= if true −→ y := ABOR

dc true −→ y := ALLO

dc true −→ y := HELP

dc true −→ y := NOOP

fi;

and

∀(x | x ∈ S\{n, d} : (receive x) ◦ S = S ∧ λ
(
(receive x),S

)
= send y) ∧

n ◦ S = S ∧ λ
(
n, S
)

= n ∧ d ◦ S = abort ∧ λ
(
d,S
)

= d

Figure 4.4: Concrete behaviour specification of agent S

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d}, let P be a program, and let y be an expression variable in P such
that:

P
def
= if y >= ABOR −→ (cmd := 1; num 1 := num 1 + 1)

dc y >= ALLO −→ (cmd := 2; num 2 := num 2 + 1)

dc y >= HELP −→ (cmd := 3; num 3 := num 3 + 1)

dc y >= NOOP −→ (cmd := 4; num 4 := num 4 + 1)

fi;

and

∀(x | x ∈ S\{n, d} : (receive x) ◦ P = P[y := x] ∧ λ
(
(receive x),P

)
= send x) ∧

n ◦ P = P ∧ λ
(
n,P

)
= n ∧ d ◦ P = abort ∧ λ

(
d,P
)

= d

Figure 4.5: Concrete behaviour specification of agent P

95

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d}, let Q be a program, and let y be an expression variable in Q such
that:

Q
def
= if (y >= ABOR ∨ y >= ALLO ∨ y >= HELP ∨ y >= NOOP) −→

(delta := time− last; last := time)

dc ¬(y >= ABOR ∨ y >= ALLO ∨ y >= HELP ∨ y >= NOOP) −→ skip

fi;

and

∀(x | x ∈ S\{n, d} : (receive x) ◦ Q = Q[y := x] ∧ λ
(
(receive x),Q

)
= send x) ∧

n ◦ Q = Q ∧ λ
(
n,Q

)
= n ∧ d ◦ Q = abort ∧ λ

(
d,Q

)
= d

Figure 4.6: Concrete behaviour specification of agent Q

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d} and let R be a program such that:

R
def
= since 1 := since 1 + delta;

since 2 := since 2 + delta;

since 3 := since 3 + delta;

since 4 := since 4 + delta;

n := cmd;

if n = 1 −→ (avg 1 := since 1/num 1; since 1 := 0)

dc n = 2 −→ (avg 2 := since 2/num 2; since 2 := 0)

dc n = 3 −→ (avg 3 := since 3/num 3; since 3 := 0)

dc n = 4 −→ (avg 4 := since 4/num 4; since 4 := 0)

fi

and

∀(x | x ∈ S\{n, d} : (receive x) ◦ R = R ∧ λ
(
(receive x),R

)
= n) ∧

n ◦ R = R ∧ λ
(
n,R

)
= n ∧ d ◦ R = abort ∧ λ

(
d,R

)
= d

Figure 4.7: Concrete behaviour specification of agent R

96

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

When considering the concrete behaviour specification level, C2KA can be viewed as a

state-based model of communication. Since C2KA extends concurrent Kleene algebra, it

inherits this model of communication from CKA. Just as in CKA, the instantiation of a low-

level model of programs and traces for C2KA affords the ability to specify communication

through shared events and the dependencies between them. This low-level model of pro-

grams and traces for C2KA is exhibited through the specification of the agent behaviours

as programs written using Dijkstra’s guarded command language. Because of this, this

level is specification is best suited for shared-variable communication where agents transfer

information through a shared medium such as variables, memory locations, etc.

C2KA provides a hybrid mathematical framework which is able to capture both the influence

of external stimuli on agent behaviour as well the communication and concurrency of agents

at the abstract algebraic level in systems of communicating agents. Depending on which

level of specification if being considered, the model can be viewed as either event-based or

state-based. This gives flexibility in allowing for the choice of the level of specification that

is most suitable for the given problem and its context.

4.2.7 Orbits, Stabilisers, and Fixed Points in C2KA

Orbits, stabilisers, and fixed points are notions that allow for the perception of a kind

of topology of a system with respect to the stimulus-response relationships among the

system agents. Because of this, some insight into the communication channels that can be

established among system agents can be gained. This insight can aid in the analysis of the

potential for communication condition for the existence of distributed covert channels (see

Chapter 5). For example, C2KA allows for the computation of the strong orbits (presented

below) of the agent behaviours in a given system. The strong orbits represent the strongly

connected agent behaviours in the system and therefore can provide some insight into the

abilities of the agents in the same strong orbit to influence one another’s behaviour through

97

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

communication. Furthermore, having an idea of the topology of the system allows for the

abstraction of components of the overall system behaviour. This kind of abstraction can aid

in separating the communicating and concurrent behaviour in a system and its environment.

Moreover, computing the orbits and stabilisers of agent behaviours can aid in the analysis

and verification of the existence of distributed covert channels in systems of communicating

agents since it allows for modelling the possible reaction of a system to a stimulus. Also,

in some cases, orbits allow for the analysis to be reduced to only some relevant orbits of a

system. Similarly, stabilisers allow the analysis to be reduced to studying only the stimuli

that influence the behaviour of an agent. It is conjectured that such reduction could, for

example, alleviate the state explosion problem in model checking.

Since a C2KA consists of two semimodules
(
SK,+

)
and

(
SK,⊕

)
for which there is a left S-

act SK and a right K-act SK, there are two complementary notions of orbits, stabilisers, and

fixed points within the context of agent behaviours and external stimuli, respectively. In

this way, one can use these notions to think about concurrent and communicating systems

from two different perspectives, namely the behavioural perspective provided by the action

of external stimuli on agent behaviours described by
(
SK,+

)
and the external event (stim-

ulus) perspective provided by the action of agent behaviours on external stimuli described

by
(
SK,⊕

)
. This section focusses only on the treatment of these notions with respect to the

left S-semimodule
(
SK,+

)
and agent behaviours. In a very similar way, the same notions

can be presented for the right K-semimodule
(
SK,⊕

)
and external stimuli.

Definition 4.2.4 recalls the notions of orbits, stabilisers, and fixed points from the mathe-

matical theory of monoids acting on sets [KKM00].

Definition 4.2.4. Let
(
SK,+

)
be the unitary and zero-preserving left S-semimodule of a

C2KA and let a ∈ K.

(1) The orbit of a in S is the set given by Orb(a) = {s ◦ a | s ∈ S}.

(2) The strong orbit of a in S is the set given by OrbS(a) = {b ∈ K | Orb(b) = Orb(a)}.

98

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(3) The stabiliser of a in S is the set given by Stab(a) = {s ∈ S | s ◦ a = a}.

(4) An element a ∈ K is called a fixed point if ∀(s | s ∈ S\{d} : s ◦ a = a).

�

A preorder on K can be defined as a �K b ⇐⇒ Orb(a) ⊆ Orb(b). Given this preorder,

an equivalence relation ∼K can be obtained from the intersection of �K and �K. The

equivalence classes of ∼K give the strong orbits [LPRR02]. The strong orbits can also be

viewed as the strongly connected components of a directed graph [Ste10]. Additionally,

when a ∈ K is a fixed point, Orb(a) = {0, a} and Stab(a) = S\{d}. It is important to

note that since
(
SK,+

)
is zero-preserving, every agent behaviour becomes inactive when

subjected to the deactivation stimulus d. Due to this fact, this special case is excluded when

discussing fixed point agent behaviours.

Before discussing the interplay between C2KA and the notions of orbits, stabilisers, and

fixed points, the partial order of sub-behaviours ≤K is first extended to sets in order to

express sets of agent behaviours encompassing one another.

Definition 4.2.5 (Encompassing Relation). Let A,B ⊆ K be two subsets of agent be-

haviours. It is said that A is encompassed by B (or B encompasses A), written AlKB, if

and only if ∀
(
a | a ∈ A : ∃(b | b ∈ B : a ≤K b)

)
. �

In essence, A lK B indicates that every behaviour contained within the set A is a sub-

behaviour of at least one behaviour in the set B. The encompassing relation lS for external

stimuli can be defined similarly.

Orbits

The orbit of an agent a ∈ K represents the set of all possible behavioural responses from an

agent behaving as a to any external stimulus from S. In this way, the orbit of a given agent

can be perceived as the set of all possible future behaviours for that agent. With regard

to the specification of the running example given in Section 4.2.6, the orbits of each of the

99

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agent behaviours can be computed. For instance, the orbits of the behaviours abor, read,

and count3 are given by Orb(abor) = {0,abor,allo,help,noop}, Orb(read) =

{0,read}, and Orb(count3) = {0,count1,count2,count3,count4}, respectively.

Proposition 4.2.3 provides an isotonicity law with respect to the orbits and the encom-

passing relation for agent behaviours.

Proposition 4.2.3. Let
(
S,K

)
be a C2KA. Then, a ≤K b =⇒ Orb(a) lK Orb(b) for

all a, b ∈ K.

Proof. The detailed proof can be found in Appendix A.4.

A selection of additional properties follow immediately from Proposition 4.2.3 and are given

in Corollary 4.2.4.

Corollary 4.2.4. In a C2KA the following laws hold for all a, b, c, d ∈ K:

(1) Orb(a) lK Orb(a+ b)

(2) Orb((a ∗ b) ; (c ∗ d)) lK Orb((a ; c) ∗ (b ; d))

(3) Orb(a ; b) lK Orb(a ∗ b)

(4) Orb(a ; b+ b ; a) lK Orb(a ∗ b)

(5) Orb((a ∗ b) ; c) lK Orb(a ∗ (b ; c))

(6) Orb(a ; (b ∗ c)) lK Orb((a ; b) ∗ c)

(7) Orb(a ;©) lK Orb(a *©)

(8) Orb(a) lK Orb(c) ∧ Orb(b) lK Orb(c) ⇐⇒ Orb(a) ∪ Orb(b) lK Orb(c)

Proof. The detailed proofs can be found in Appendix A.5.

As stated before, without discussing the properties derived from the right K-semimodule(
SK,⊕

)
, due to the cascading output law (see Definition 4.2.3 (2)), it is also the case

that Orb((s ◦ a) ; (λ(s, c) ◦ b)) = {0} for any (a ; b) ∈ K and ¬(a ≤K c) ∧ b 6= 1.

100

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Another Interpretation of Orbits

The influence of external stimuli on agent behaviours are called the induced behaviours via

external stimuli. The notion of induced behaviours allows for some predictions to be made

about the evolution of agent behaviours in a given system by providing some insight into the

topology of the system and how different agents can respond to any external stimuli. Here,

a formal treatment of the notion of induced behaviours is provided. While studying induced

behaviours, a particular focus is placed on the next behaviour mapping ◦ and the effects of

external stimuli on agent behaviours since there is an interest in examining the evolution of

agent behaviours via the influence of external stimuli in a given system of communicating

agents.

Definition 4.2.6 (Induced Behaviour). Let a, b ∈ K be agent behaviours such that a 6= b.

The behaviour b is said to be induced by the behaviour a via external stimuli (denoted

by aC b) if and only if ∃(s | s ∈ S : s ◦ a = b). �

Equivalently, this notion can be expressed as a C b ⇐⇒ b ∈ Orb(a) for a 6= b. In this

way, it can be seen that the orbit of a behaviour a represents the set of all behaviours

which are induced by a via external stimuli. Considering the specification of the running

example, it is plain to see, for instance, that abor C allo via the external stimulus allo

and count3 C count4 via the external stimulus noop.

Strong Orbits

Two agents are in the same strong orbit, denoted a ∼K b for a, b ∈ K, if and only if their

orbits are identical. This is to say when a ∼K b, if an agent behaving as a is influenced by

an external stimulus to behave as b, then there exists an external stimulus which influences

the agent, now behaving as b, to revert back to its previous behaviour a. Furthermore,

if a ∼K b, then ∃(s, t | s, t ∈ S : s ◦ a = b ∧ t ◦ b = a). In this case, the

external stimuli s and t can be perceived as inverses (or conjugates) of one another and

101

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

allow an agent to revert back to its previous behaviour since t ◦ s ◦ a = a and s ◦ t ◦ b = b

(i.e., t� s ∈ Stab(a) and s� t ∈ Stab(b)). In this way, the notion of strong orbits presents a

generalisation of the handshake found in many process calculi (e.g., [BK84, Hoa78a, Mil80,

MPW92]). In process calculi, two primitive conjugate actions executing in parallel results

in an unobservable communication action, denoted by τ . Rather than restricting to a view

where handshaking can only occur between primitive actions, the notion of strong orbits

shows how handshaking can occur between complex sequences of actions that result in the

same kind of unobservable communication action. With regard to the specification of the

running example, there are a number of strong orbits. A selection of these strong orbits are

given by {abor,allo,help,noop}, {read}, and {count1,count2,count3,count4}.

As a specific example, the strong orbit represented by {abor,allo,help,noop} indicates

that (abor ∼K allo ∼K help ∼K noop).

Stabilisers

For any agent a ∈ K, the stabiliser of a represents the set of external stimuli which have

no observable influence (or act as neutral stimuli) on the behaviour of an agent behaving

as a. In the specification of the running example, the stabilisers of each of the agent

behaviours can be computed. For example, Stab(abor) is generated by
{
s� abor , ips, n |

s ∈ S\{d}
}

, Stab(read) is generated by {abor , allo, help, ips,noop, n}, and Stab(count3)

is generated by
{
s� help, ips, n | s ∈ S\{d}

}
.

Proposition 4.2.5. Let
(
S,K

)
be a C2KA. Then, Stab(a) ∩ Stab(b) lS Stab(a + b) for

all a, b ∈ K.

Proof. The proof is straightforward by the definition of the encompassing relation lS for

external stimuli. The detailed proof can be found in Appendix A.6.

102

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

However, consider a case where ∃(s | s ∈ S : s ◦ a = b ∧ s ◦ b = a). Then,

s /∈ Stab(a) and s /∈ Stab(b) but s ∈ Stab(a+ b). Therefore, it is easy to see that in general

¬
(
Stab(a+ b) lS

(
Stab(a) ∩ Stab(b)

))
and ¬

(
Stab(a+ b) lS

(
Stab(a) ∪ Stab(b)

))
.

Fixed Points

Depending on the given specification of a system of communicating agents, there may be

any number of fixed points with respect to the next behaviour mapping ◦. When an agent

behaviour is a fixed point, it is not influenced by any external stimulus other than the

deactivation stimulus d. With regard to the specification of the running example, it is

easy to see, for instance, that the behaviour read for agent R and the behaviour tick

for agent C, are fixed points, while the behaviours abor and count3 for agent P are not

fixed points. The existence of fixed point behaviours is important when considering how

agents can communicate via external stimuli. For instance, an agent that has a fixed point

behaviour, does not have any observable response to any external stimuli (except for the

deactivation stimulus) and therefore it can be seen that such an agent cannot be a receiver

in any sort of communication via external stimuli.

Proposition 4.2.6 gives a selection of properties regarding fixed agent behaviours.

Proposition 4.2.6. Let
(
S,K

)
be a C2KA and let a, b ∈ K such that a and b are fixed

points. Then:

(1) 0 is a fixed point

(2) a+ b is a fixed point

(3) a ; b is a fixed point

(4) a ;© is a fixed point

Proof. The proofs each use Definition 4.2.4(4). The proof for (1) is straightforward from

the axiomatisation of C2KA. The proof for (2) involves Definition 3.1.8(1) for
(
SK,+

)
and

the proof for (3) uses Definition 4.2.3(1). The proof for (4) uses Proposition 4.2.1(5), the

application of (3), Definition 4.2.3(4), and the definition of a ;©. The detailed proofs are

given in Appendix A.7.

103

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In Proposition 4.2.6, Identity (1) states that the inactive agent 0 is a fixed point with

respect to the next behaviour mapping ◦. In this way, the inactive agent is not influenced

by any external stimulus. Similarly, it is easy to see that the deactivation stimulus d is a

fixed point with respect to the next stimulus mapping λ if the notion of a fixed point is

considered in terms of external stimuli. Identities (2), (3), and (4) state that the choice,

sequential composition, and sequential iteration of fixed point behaviours results in a fixed

point behaviour, respectively. In general, even if a, b ∈ K are both fixed points, nothing

can be said about (a ∗ b) as a fixed point.

Perceiving the Topology of a System of Communicating Agents

As mentioned earlier, orbits, stabilisers, and fixed points allow for the perception of a kind of

topology of a system which can be beneficial for analysing systems of communicating agents

for the existence of distributed covert channels, particularly with respect to reasoning about

the potential for communication amongst agents. Proposition 4.2.7 provides further insight

into how the topology of a system of communicating agents can be perceived using C2KA

and the notions of fixed points, strong orbits, and induced behaviours.

Proposition 4.2.7. Let a, b, c ∈ K be agent behaviours.

(1) a is a fixed point =⇒ ∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b))

(2) a ∼K b =⇒ aC b ∧ bC a

(3) a ∼K b =⇒ (aC c ⇐⇒ bC c)

Proof. The proof for (1) follows straightforwardly from Definition 4.2.6 and the definition

of the orbit of a fixed point. The proof for (2) is straightforward from Definition 4.2.6 and

the definition of ∼K. The proof for (3) involves the shunting rule, the definition of ∼K, and

Definition 4.2.6. The detailed proofs can be found in Appendix A.8.

104

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In Proposition 4.2.7, Identity (1) states that if an agent has a fixed point behaviour, then it

does not induce any agent behaviours via external stimuli besides the inactive behaviour 0.

This is a direct consequence of the fact that an agent with a fixed point behaviour is not

influenced by any external stimuli (except for the deactivation stimulus d) and therefore

remains behaving as it is. Identity (2) states that all agent behaviours which belong to the

same strong orbit are mutually induced via some (possibly different) external stimuli. This

is to say that if two agent behaviours are in the same strong orbit, then there exists inverse

stimuli for each agent behaviour in a strong orbit allowing an agent to revert back to its

previous behaviour. Finally, Identity (3) states that if two agent behaviours are in the same

strong orbit, then a third behaviour can be induced via external stimuli by either of the

behaviours within the strong orbit. This is to say that each behaviour in a strong orbit

can induce the same set of behaviours (perhaps via different external stimuli). Therefore,

the strong orbit to which these behaviours belong can be abstracted and perceived as an

equivalent behaviour with respect to the behaviours which it can induce via external stimuli.

4.2.8 Specifying Agent Behaviour Using a Prototype Tool

A prototype tool has been implemented in order to support the automated analysis of sys-

tems of communicating agents for the existence of distributed covert channels, particularly,

in terms of the potential for communication condition. The tool is implemented using the

functional programming language Haskell and makes use of the Maude term rewriting sys-

tem [CDE+03] for supporting the computation and rewriting of systems of communicating

agents specified using C2KA.

The prototype tool consists of two main components. The first component implements the

C2KA core and allows for the specification of the behaviour of agents in systems of commu-

nicating agents using C2KA. It also supports the automated computation of orbits, strong

orbits, stabilisers, and fixed points as described in Section 4.2.7. The second component

allows for the automated verification of the satisfaction of the potential for communication

105

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

condition for a given system of communicating agents by implementing the formulation of

the potential for communication condition presented later in Chapter 5. If the tool deter-

mines that there exists a potential for communication between two agents, it provides a

list of all of the possible communication paths or patterns of communication between those

agents. This section focusses only on the first component that allows for the behaviour of

agents in a system of communicating agents to be specified.

Figure 4.8 shows the uses hierarchy of the C2KA component of the prototype tool. It consists

of 33 modules. The Behaviour and Stimulus modules implement the representation of terms

of a CKA and a stimulus structure, respectively. The NextBehaviour and NextStimulus

modules implement the representation of terms of the left S-semimodule
(
SK,+

)
and the

right K-semimodule
(
SK,⊕

)
and allow for the specification of the next behaviour and next

stimulus mappings, respectively. The LevelThreeSpec module provides the representation of

Dijkstra’s guarded command language that is used in the concrete behaviour specification

of agents. The Agent module provides the representation of agents following the three

levels of specification provided by the C2KA framework and provides functions for loading

agent specifications from files. The SoCA module provides the implementation of a system

of communicating agents and provides functions for adding new agents to a system and

establishing the sets of basic agent behaviours and basic external stimuli for a given system

specification. Each of the above mentioned modules consists of three sub-modules containing

the associated types, parsers, and printers. The Orbits, StrongOrbits, Stabilisers, and

FixedPoints modules provide implementations of orbits, strong orbits, stabilisers, and fixed

points, with respect to both the next behaviour mapping ◦ and the next stimulus mapping λ.

Finally, the MaudeInterface module provides the interface to the Maude term rewriting

system.

A detailed usage of the prototype tool for specifying and analysing the agent behaviours

in the running example of the system of communicating agents described in Section 4.1 is

provided in Appendix C.

106

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

StimulusParser StimulusPrinter

StimulusTypes

Stimulus

BehaviourParser BehaviourPrinter

BehaviourTypes

Behaviour

NextStimulusParser NextStimulusPrinter

NextStimulusTypes

NextStimulus

NextBehaviourParser NextBehaviourPrinter

NextBehaviourTypes

NextBehaviour

LevelThreeSpecParser LevelThreeSpecPrinter

LevelThreeSpecTypes

LevelThreeSpec

OrbitsStrongOrbits FixedPoints StabilisersMaudeInterface

AgentParser AgentPrinter

AgentTypes

Agent

SoCAParser SoCAPrinter

SoCATypes

SoCA

A

A uses B

B

LEGEND

Figure 4.8: The uses hierarchy of the C2KA component of the prototype tool

107

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

4.2.9 Discussion and Related Work

C2KA offers an algebraic setting which can capture both the influence of external stimuli on

agent behaviour, as well as the communication and concurrency of agents at the abstract

algebraic level. It uses notions from classical algebra to extend the algebraic foundation

provided by CKA. As mentioned earlier, by considering a C2KA with a trivial stimulus

structure (i.e., S = {n, d}), any system will have two orbits with respect to the next be-

haviour mapping ◦, namely {0} and K. By merging these two orbits, the set K is obtained

and therefore it becomes easy to see that the C2KA reduces to a CKA.

In the past, communication has been studied in process calculi such as CCS [Mil80],

CSP [Hoa78a], ACP [BK84], and π-calculus [MPW92]. As discussed in [HMSW09a, HMSW10,

HMSW11], some analogies can be made relating CKA with process calculi. Therefore, by

considering the case where a C2KA has a trivial stimulus structure, then the same kind of

analogies relating C2KA with existing process calculi can be made.

In [HMSW09a, HMSW09b, HMSW10, HMSW11], Hoare et al. have taken steps towards

investigating some aspects of communication through the derivation of rules for a simpli-

fied rely/guarantee calculus [Jon81] using CKA. However, this kind of communication is

only captured by examining shared events and the dependencies between them. Since the

proposed framework provides an extension of CKA, it is also capable of achieving these

results. Furthermore, C2KA supports the ability to work in either a state-based model (as

illustrated in Figures 4.3 to 4.7) or an event-based model (as illustrated by Tables 4.1 to 4.5

and Figure 4.2) for the specification of concurrent and communicating systems. It offers

the ability to separate the communicating and concurrent behaviour in a system and its

environment. This separation of concerns allows for the consideration of the influence of

stimuli from the world in which an agent resides as transformations of agent behaviours

and yields the three levels of specification offered by C2KA and described in Section 4.2.6.

With these levels of specification, C2KA is able to capture the notions of message-passing

108

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

communication and shared-variable communication consistent with the hybrid view of agent

communication depicted in Figure 1.1 in Chapter 1. Specifically, the abstract behaviour

specification level is interested only in the behaviour of an agent as dictated by the stimulus-

response relationships that exist in the given system. In this way, the behaviour of an agent

is dictated by its responses to external stimuli without the need to articulate the inter-

nal state-based system of each behaviour. On the other hand, by instantiating a concrete

model of agent behaviour, such as that of programs and traces similar to what is done with

CKA [HMSW09a, HMSW09b, HMSW10, HMSW11] at the concrete behaviour specifica-

tion level, then the state-based model of agent behaviour can be defined. In this way, if

a given problem requires insight into how external stimuli are processed by an agent, the

concrete behaviour specification level affords the ability to specify such internal states of

agent behaviours in terms of programs on concrete state variables. Because of this, C2KA is

flexible in allowing the context of the given problem to dictate which level of abstraction is

most suitable. For example, if the given problem need not worry about the internal states of

agent behaviours, then the system can be specified at the stimulus-response specification or

abstract behaviour specification level without any modifications to the proposed framework.

Moreover, C2KA inherits the algebraic foundation of CKA with most, if not all, of its

models and theory. It does not establish a new foundation, but instead builds atop well-

established ones. All of this inherited theory provides the power and flexibility to specify

all that can be done with existing formalisms while allowing for expansion beyond existing

limitations. C2KA provides a framework which presents a different view of communication

and concurrency than what is traditionally given by existing formalisms and allows for the

intricacies of distributed covert channels to be captured.

109

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

4.3 Specifying Agent Knowledge

In this thesis, the formalism that is used to specify agent knowledge in systems of commu-

nicating agents is the description logic ALB (see Section 3.5 for more information on ALB).

This section presents a representation of agent knowledge using ALB [HS00]. This repre-

sentation of agent knowledge gives the power and flexibility to reason on agent knowledge

in systems of communicating agents at both the terminological or conceptual level and at

the assertional or object level.

4.3.1 Specifying Agent Knowledge using the Description Logic ALB

Each agent A in a given system of communicating agents has a knowledge base, denoted

by NA =
(
TA,AA

)
. Each agent in the system begins with some initial knowledge base

denoted by N 0
A. The initial knowledge base represents the specification of the knowledge of

each agent before the system begins any kind of operation or function. The knowledge base

of each agent captures all of the information that the agent knows, or can come to know

through reasoning. The knowledge base of an agent evolves as information is inserted or

updated through communication.

Specifying the Description Logic Signature

Recall that a signature
(
NC , NR, NO

)
specifies three disjoint sets of concept symbols, role

symbols, and object symbols, respectively. When specifying the knowledge of an agent using

the description logic ALB, assume that there is a common signature for a system formed

by a set C of communicating agents. The knowledge base of each agent A ∈ C is specified

with respect to this common signature.

Consider the running example described in Section 4.1. The signature for the system of

communicating agents is given by
(
NC , NR, NO

)
as shown in Figure 4.9. In this signature,

110

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

NC = {Command,ConfInfo,BitString,Enumeration}
NR = {CmdToEnum,EnumToCmd,Variable}
NO = {ABOR,ALLO,HELP,NOOP, 00, 01, 10, 11,CMD,DELTA, LAST,

TIME,NUM 1,NUM 2,NUM 3,NUM 4, SINCE 1,SINCE 2,

SINCE 3, SINCE 4,AVG 1,AVG 2,AVG 3,AVG 4} ∪ N

Figure 4.9: The ALB signature for the example system of communicating agents

there are concepts pertaining to the commands available in the system, the notions of bit-

strings and enumerations, and confidential information. Additionally, there a roles which

denote mappings from commands to enumerations and from enumerations to commands, as

well as those which denote variables in the system. Finally, there are objects representing

the actual FTP commands available in the given system, the possible bit-strings that may

be used in the system, and the names of all of the variables that exist in the given system.

Additionally, the set of all natural numbers N is included as object symbols so that they

may denote enumerations or values for variables.

Specifying Agent Knowledge Bases

In order to specify the knowledge base of each agent in a system of communicating agents,

a definition of the TBox and the ABox must be given with respect to a given signature.

Once again, consider the system of communicating agents described in Section 4.1. The

description logic specifications for the initial knowledge base of each agent in the given

system of communicating agents with respect to the signature
(
NC , NR, NO

)
are shown

in Figures 4.10 to 4.14. To simplify the presentation of the specifications of the initial

knowledge of each agent, assume the following sets of assertional axioms:

111

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

CMDS =
{

Command
(
ABOR

)
,Command

(
ALLO

)
,Command

(
HELP

)
,Command

(
NOOP

)}
ENUMS =

{
Enumeration

(
1
)
,Enumeration

(
2
)
,Enumeration

(
3
)
,Enumeration

(
4
)}

BITS =
{

BitString
(
00
)
,BitString

(
01
)
,BitString

(
10
)
,BitString

(
11
)}

NUMS =
{

Variable
(
NUM 1, 0

)
,Variable

(
NUM 2, 0

)
,

Variable
(
NUM 3, 0

)
,Variable

(
NUM 4, 0

)}
SINCES =

{
Variable

(
SINCE 1, 0

)
,Variable

(
SINCE 2, 0

)
,

Variable
(
SINCE 3, 0

)
,Variable

(
SINCE 4, 0

)}
AVGS =

{
Variable

(
AVG 1, 0

)
,Variable

(
AVG 2, 0

)
,

Variable
(
AVG 3, 0

)
,Variable

(
AVG 4, 0

)}
MAPS =

{
CmdToEnum

(
ABOR, 1

)
,CmdToEnum

(
ALLO, 2

)
,

CmdToEnum
(
HELP, 3

)
,CmdToEnum

(
NOOP, 4

)}
VARS =

{
Variable

(
TIME, 0

)
,Variable

(
DELTA, 0

)}
Additionally, assume that there is a notion of memory and naming consistency for shared

variables. This means that variables with the same name have the same interpretation

(i.e., they point to the same memory location). Under this assumption, for two distinct

agents A and B in the same system of communicating agents, if agent A has an assertional

axiom Variable
(
VAR,X

)
in its ABox and agent B has an assertional axiom Variable

(
VAR,Y

)
in its ABox, then it is the case that X = Y.

N 0
C =

(
T 0
C ,A0

C

)
where

T 0
C = ∅
A0

C =
{

Variable
(
TIME, 0

)}
Figure 4.10: Initial knowledge base specification of agent C

112

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

N 0
S =

(
T 0
S ,A0

S

)
where

T 0
S =

{
ConfInfo v BitString,EnumToCmd ≡ CmdToEnum`

}
A0

S = CMDS ∪ ENUMS ∪ BITS ∪ AVGS ∪ MAPS ∪ VARS ∪{
ConfInfo

(
01
)}

Figure 4.11: Initial knowledge base specification of agent S

N 0
P =

(
T 0
P ,A0

P

)
where

T 0
P =

{
EnumToCmd ≡ CmdToEnum`

}
A0

P = CMDS ∪ ENUMS ∪ BITS ∪ NUMS ∪ AVGS ∪ MAPS ∪ VARS ∪{
Variable

(
CMD, 0

)}
Figure 4.12: Initial knowledge base specification of agent P

N 0
Q =

(
T 0
Q ,A0

Q

)
where

T 0
Q = ∅
A0

Q = CMDS ∪ NUMS ∪ AVGS ∪ VARS ∪{
Variable

(
CMD, 0

)
,Variable

(
LAST, 0

)}
Figure 4.13: Initial knowledge base specification of agent Q

113

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

N 0
R =

(
T 0
R ,A0

R

)
where

T 0
R =

{
EnumToCmd ≡ CmdToEnum`

}
A0

R = CMDS ∪ ENUMS ∪ BITS ∪ NUMS ∪ SINCES ∪ AVGS ∪
MAPS ∪ VARS ∪

{
Variable

(
CMD, 0

)}
Figure 4.14: Initial knowledge base specification of agent R

With respect to the initial knowledge specification of each agent in the given system of

communicating agents, the terminological and assertional axioms that are identical in the

initial knowledges of agents C, S, P, Q, and R constitute the shared knowledge about the

system. For example, each agent, except for the clock agent C, initially knows the set of

FTP commands that are available in the system. Additionally, agents S, P, and R share the

terminological axiom EnumToCmd ≡ CmdToEnum` which states that the role EnumToCmd

is equivalent to the relational converse of the role CmdToEnum, and the assertional axioms

that define the mapping from commands to enumerations. The sharing of this knowledge

results from the fact that, in the given example, agents S and R know the enumeration

mapping that agent P is configured with. Furthermore, there are shared variables in the

system. For instance, from the specification of the initial knowledge of each agent, it is easy

to see that the variable cmd is shared amongst agents P, Q, and R and the variable time

is shared amongst all of the agents in the system. Lastly, it can be seen that only agent S

knows that all confidential information are bit-strings (i.e., ConfInfo v BitString). No other

agent has any initial knowledge of the confidential information in the system.

4.3.2 Specifying Agent Knowledge Using the SPASS Theorem Prover

The SPASS theorem prover [TST14] is used to support the automated reasoning on agent

knowledge specified using the description logicALB. SPASS is an automated theorem prover

114

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

for first-order logic with equality and it additionally supports modal logics and description

logics. SPASS is based on the description logic ALB and implements a resolution-based

decision procedure for reasoning on TBoxes and ABoxes.

In this thesis, SPASS is currently used to specify the knowledge base of each agent in a

given system of communicating agents. Using these knowledge base specifications, the sat-

isfaction of ALB formulae can be verified. This provides the needed support for automating

the verification of the constraint on communication condition in systems of communicat-

ing agents presented later in Chapter 6. A detailed usage of the SPASS theorem prover

for specifying and reasoning on agent knowledge for the system of communicating agents

described in Section 4.1 is provided in Appendix D.

4.3.3 Discussion and Related Work

In the literature, there have been many proposed formalisms for capturing the knowledge

of system agents. For instance, agent knowledge has been previously described using var-

ious logical formalisms such as epistemic logic and its variants (e.g., [MvdH04]), including

dynamic epistemic logic (e.g., [vDvdHK07]), and logics of communication graphs [PP05,

PP07]. Additionally, there have been other formalisms for representing agent knowledge

such as information algebra [KS07], among others. While each of these formalisms allow for

the specification of agent knowledge, they each have drawbacks such as requiring each agent

to “speak the same language” or being restricted to a static view of the system of agents,

as is the case for epistemic logics and the logic of communication graphs. Moreover, some

formalisms such as information algebra, introduce large and complex algebraic structures

which leads to much overhead in terms of comprehensibility. Instead, the representation of

agent knowledge presented in this section is based on the description logic ALB since it is

decidable and extendable allowing for the representation of various communication schemes

and scenarios. This point will be further articulated and emphasised in Chapter 6. Further-

more, the representation of agent knowledge presented in this section allows for reasoning

115

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

at both the terminological or conceptual level and at the assertional or object level which

is desirable when considering agent knowledge in the context of establishing and operating

distributed covert channels.

4.4 Conclusion

In order to analyse a system of communicating agents for the existence of distributed covert

channels, it must first be formally specified. This chapter has presented a means for spec-

ifying systems of communicating agents by providing ways in which the behaviour and

knowledge of each agent in the system can be represented. First, the mathematical frame-

work of Communicating Concurrent Kleene Algebra (C2KA) was introduced as a means for

specifying the concurrent and communicating behaviour of agents in a system. Using the

running example, the use of C2KA was demonstrated. Additionally, the use of a prototype

tool for automating the specification of systems of communicating agents using C2KA was

discussed. Then, a representation of agent knowledge based on the description logic ALB

was presented. Again, using the running example, the specification of the knowledge of each

agent in the system of communicating agents was shown. Also, the use of the SPASS the-

orem prover for supporting the automated specification and reasoning on agent knowledge

was discussed.

The formal specification of the behaviour and knowledge of agents presented in this chapter

will be used later in this thesis, most notably in Chapter 5 and in Chapter 6 as the basis for

the formulation and verification of the potential for communication condition and constraint

on communication condition for the existence of distributed covert channels, respectively.

116

Chapter 5

Agent Behaviour and Potential for

Communication

If a covert channel exists in a system of communicating agents, then the covert channel users

must have the ability to communicate with one another, either directly or indirectly. This

chapter presents the formulation and verification of the potential for communication condi-

tion for the existence of distributed covert channels based on the study of agent behaviour

in systems of communicating agents. Section 5.1 discusses the potential for communication

as found in the literature and motivates the potential for communication as a necessary

condition for the existence of distributed covert channels. Section 5.2 presents a formula-

tion of the potential for communication condition based on the mathematical framework

of C2KA as defined in Section 4.2. Section 5.3 demonstrates the verification of the poten-

tial for communication condition using the running example described in Section 4.1 and

specified in Section 4.2.6. Section 5.5 discusses the proposed formulation and verification

of the potential for communication condition along with related work. Finally, Section 5.6

provides concluding remarks.

117

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

5.1 The Potential for Communication Condition for the Ex-

istence of Distributed Covert Channels

In the literature, a study of the potential for communication among system agents has been

an important part of existing work in detecting and preventing the existence and use of

covert channels. This section examines the potential for communication as it is found in

the literature and motivates the need for the potential for communication among agents in

a system of communicating agents as a necessary condition for the existence of distributed

covert channels. Lastly, this section informally states the potential for communication

condition for the existence of distributed covert channels.

5.1.1 Potential for Communication in the Literature

When it comes to the potential for communication between system agents in terms of covert

channel existence, the literature shows a variety of conditions which point to the necessity

for covert channel users to be able to communicate either directly or indirectly.

Existence of Shared Resources

A condition existing in many sets of covert channel existence conditions found in the liter-

ature is related to the existence of shared resources. For both storage and timing channels,

the condition states, “The sending and receiving processes must have access to the same

attribute of a shared resource” [Kem83]. Similar conditions are given in [SC99, WJG+04,

WL05b]. In [SC99], the condition is alternatively phrased in terms of the existence of a

global variable rather than the existence of a shared resource. In the case of two agents (i.e.,

direct communication), this condition is required. However, it is not required in the general

case. Take, for instance, a sending agent S and a receiving agent R. It is possible that

the sending agent and receiving agent can communicate through a set of proxy agents P

and Q, for example. In this case, the sending agent S can communicate with the proxy

118

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agent P, which may react to the communication from the sending agent S by deterministi-

cally conveying a message to the proxy agent Q, which in turn deterministically writes to

a memory location that the receiving agent R can read. Then, the sending agent S and the

receiving agent R do not share any resources but can still communicate, provided that the

sending agent S knows the deterministic mechanisms used by the proxy agents P and Q.

The knowledge of such mechanisms is not uncommon if the proxy agents P and Q are servers

with deterministic behaviours. It is not necessary that the sending agent S knows which

memory location the proxy agent Q writes to. Instead, the sending agent S simply needs to

know that the proxy agent Q writes to a memory location that the receiving agent R can

read. This is an example of indirect communication between agents S and R. This sort of

indirect communication can be imagined to exist between any arbitrary number of proxies.

Ability to Alter and Observe Changes in Shared Environments

Another condition which can be found in many existing sets of conditions for covert channel

existence is the ability for a sending agent to alter a shared resource in such a way that

the receiving agent can detect or observe the alteration. Often this condition is broken

into two conditions detailing the existence of a sending mechanism for the sending agent

and the existence of a receiving mechanism for the receiving agent. According to [Kem83],

for storage channels, “There must be some means by which the sending process can force

the shared attribute to change” and “There must be some means by which the receiving

process can detect the attribute change”. Again, in [SC99], similar conditions are given

in terms of global variables rather than shared resources. In [McH95], a condition which

attempts to express the same spirit as those given in [Kem83] can be found. The condition

states, “There must be an effective procedure for exploiting a security flaw to form a channel

for transmitting a useful quantity of information from the sending process to the receiving

process in a timely manner.” However, it is not necessary that a security flaw be exploited

in order to form a communication channel. Covert channels are designed in such a way that

119

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

they intentionally bypass the security policy of the system. Therefore, the formation of a

communication channel can be done by simply modifying the behaviour of agents so that

they are able to use the system in unintended ways. Furthermore, this condition carries a

significant amount of ambiguity. For instance, it is not clear what is meant by “an effective

procedure for exploiting a security flaw” or by the ability to transmit “a useful quantity of

information in a timely manner.” With such ambiguity, one cannot expect to adequately

determine whether such a condition is satisfied.

A condensed set of conditions which must be satisfied for covert channel existence is given

in [WL05b]. The conditions read “If the sender is able to invoke change(s) in the visible

space of the receiver, a covert channel may exist” and “If the sender is able to change when

an object is updated relative to the observation made by the receiver, a covert channel may

exist.” These conditions essentially reduce to the sender being able to change a shared

resource such that the receiver is able to observe the change. The first condition roughly

corresponds to storage channels, where the sender and receiver are communicating through

a shared object and the second condition roughly corresponds to timing channels, where the

sender and receiver are communicating using a shared clock. The issue with such compact

conditions is that clarity is lost since a single condition encompasses a number of simpler,

more easily verifiable conditions which are equally concise. These simpler conditions are

hidden behind vague language and complicated terminology, such as the term “visible space”

for example. While conciseness is strongly preferred when articulating the conditions for

covert channel existence, it should not come at the cost of clarity and expressiveness.

Distinguishing Covert Timing Channels

In [Kem83], a distinction is made between storage and timing channels. This distinction

translates to the sets of existence conditions. The ability for a sending agent to alter a shared

resource in such a way that the receiving agent can detect or observe the alteration is recast

in terms of clocks and response times. According to [Kem83], for a timing channel to exist,

120

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

“The sending and receiving processes must have access to a time reference such as a real-

time clock” and “The sender must be capable of modulating the receiver’s response time for

detecting a change in the shared attribute”. An important observation about the conditions

for the existence of a timing channel is that they imply that either the sending agent or

the receiving agent has the ability to change the value of the shared attribute in order to

implement the timing channel. However, there is no need to have separate conditions for

covert storage channels and covert timing channels. It is well known that any time two

agents share a processor, there exists a shared resource among the processes, namely a

common clock or time reference. Actually, covert timing channels require two clocks: a

reference clock (usually a system clock) to measure the absolute time and another clock to

be modulated by the sending agent and observed by the receiving agent [Wra91]. Therefore,

a common clock can be viewed simply as a shared attribute of the shared processor and

the conditions for storage channels and timing channels can be consolidated into one set

of conditions. This extends from the suggestion that there is no fundamental distinction

between storage and timing channels [ZAB07b].

Ability to Correctly Synchronise and Sequence Events

Another condition for covert channel existence found in the literature is related to the cor-

rect synchronisation and sequencing of events so that communication between the sending

and receiving agents can take place. According to [SC99], “The sender and the receiver must

be able to synchronise their operations so that information flow can take place.” A similar

articulation of this condition, ensuring the correct order of communication events between

the sending agent and the receiving agent, can be found in [WJG+04]. Also, in [Kem83],

for both timing and storage channels, the condition states, “There must be some mecha-

nism for initiating the communication between the sending and receiving processes and for

sequencing the events correctly. This mechanism could be another channel with a smaller

bandwidth.” One of the inherent issues with the above condition is that one needs to devise

121

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

a scenario that satisfies the condition. This requires insight and imagination into the system

being analysed which may not be a trivial exercise. A condition that does not require such

heuristics in order to verify its satisfaction for a given system of communicating agents is

desired. It can be seen that the collective behaviour of the agents in a system presents a

pattern of communication that reflects the possibility of sequencing events. This pattern of

communication is a study of the behaviour of the agents in the system and not a study of

the available resources.

Potential to Communicate

The conditions found in [Kem83] have been rephrased and condensed in [SC99, TGC87,

Sid03] by establishing conditions pertaining to the potential for communication. According

to [SC99], “The sender and receiver of the covert channel have the potential to communicate

in the system.” In conjunction with the other conditions presented in [SC99, TGC87, Sid03],

the above condition captures the idea that, if there is a sending agent acting as the source

of information and a receiving agent acting as the sink, such that if information can flow

from the source to the sink, then there is a potential for communication. However, this is

not entirely clear from the condition presented as it is. For instance, it is not clear what

exactly is meant by “potential to communicate.” Instead, the inference of the existence of

an information flow from the sender to the receiver is required.

After examining conditions pertaining to the potential for communication found in the lit-

erature, it is clear that there is ambiguity and a lack of consistent terminology. Because of

this, it is difficult to verify the satisfaction of such conditions. A re-articulation and formal-

isation of the existing conditions concerning the potential for communication is required.

This can help to improve the current understanding of covert channels and serve as a basis

for developing effective and efficient mechanisms for mitigating covert channels in systems

of communicating agents.

122

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

5.1.2 The Potential for Communication Condition

The potential for communication condition is introduced as one of the two necessary con-

ditions for the existence of distributed covert channels in [JKZ12]. It is a rephrasing of

the existing conditions found in the literature. This is done to ensure that the condition

is clear, verifiable, and captures the ability to establish an information flow from a sending

agent to a receiving agent in a system of communicating agents. The condition reads:

If there exists an agent acting as a source of information and an agent acting

as an information sink, such that the source and sink agents are different, and

if there exists a pattern of communication allowing for information to transfer

from the source to the sink through the synchronisation and sequencing of events,

then the source and sink agents have a potential for communication.

The potential for communication condition captures how information can be exchanged and

communicated by the agents in the system through a study of their behaviour. In systems

of communicating agents, the synchronisation of system events can allow for the creation of

event sequences, or “patterns of communication”, that allow information to flow from one

agent to another. In essence, the potential for communication condition indicates that as

long as it is possible for information to flow from one agent to another, a communication

channel can be established.

5.2 Formulating the Potential for Communication Condition

This section proposes a formulation of the potential for communication condition for the

existence of distributed covert channels in systems of communicating agents. The proposed

formulation is based on the mathematical framework of C2KA that was presented in Sec-

tion 4.2.4. In the following subsections, the potential for communication is examined from

two complementary perspectives, namely the external stimuli perspective and the shared

123

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

environment perspective, consistent with the hybrid view of agent communication presented

in Section 1.1.1 (see Figure 1.1).

5.2.1 Formulating Potential for Communication via External Stimuli

An examination of the potential for communication in a system of communicating agents

from the perspective of external stimuli involves an investigation into the interactions of

the agents. In a given system of communicating agents, each agent is subjected to each

external stimulus. This means that when an agent generates a stimulus, it is broadcasted

to all other agents and a response is invoked. This means that every agent in the system

responds to each stimulus that is issued. However, it is not the case that the behaviour of

each agent will be influenced by each stimulus. It is said that communication via external

stimuli has taken place only when a stimulus that is generated by an agent influences (i.e.,

does not fix) the behaviour of another agent. With this view of stimuli, it is possible that

more than one agent is influenced by the generation of the same stimulus by another agent

in the system.

Consider a system formed by a set C of communicating agents with A,B ∈ C such that A 6= B.

Definition 5.2.1 (Potential for Direct Communication via External Stimuli). Agent

A 7→
〈
a
〉

is said to have the potential for direct communication via external stimuli with

agent B 7→
〈
b
〉

(denoted by A →S B) if and only if ∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

t ◦ b 6= b
)

where Sb is the set of all basic stimuli. �

If there exists a basic sub-stimulus that is generated by agent A that influences the behaviour

of agent B, then there is a potential for direct communication via external stimuli from

agent A to agent B. The existence of a basic stimulus t ≤S λ(s, a) that does not fix

the behaviour of B is required since it is possible that λ(s, a) ◦ b = b. As an example,

take A 7→
〈
a
〉

and B 7→
〈
b
〉

where b = c + d and λ(s, a) = s1 ⊕ s2 such that s1 ◦ b = c + d

and s2 ◦ b = c. Then, since s2 ≤S λ(s, a) and s2 ◦ b 6= b, it is the case that A→S B.

124

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 5.2.2 (Potential for Communication via External Stimuli Using at Most n Basic

Stimuli). Agent A is said to have the potential for communication via external stimuli with

agent B using at most n basic stimuli (denoted by A→n
S B) if and only if ∃

(
C | C ∈ C ∧

C 6= A ∧ C 6= B : A→(n−1)
S C ∧ C→S B

)
. �

Definition 5.2.3 (Potential for Communication via External Stimuli). Agent A is said to

have the potential for communication via external stimuli with agent B (denoted by A→+
S B)

if and only if ∃
(
n | n ≥ 1 : A→n

S B
)
. �

When A→+
S B, there is a sequence of external stimuli (of arbitrary length; basic or compos-

ite) which allows for information to be transferred from agent A to agent B in the system

of communicating agents.

Stimuli-Connected Systems of Communicating Agents

Two subsets X1 and X2 of C form a partition of C if and only if X1∩X2 = ∅ and X1∪X2 = C.

Definition 5.2.4 (Stimuli-Connected). A system formed by a set C of communicating

agents is said to be stimuli-connected if and only if for every X1 and X2 that form a

partition of C, it is the case that ∃(A,B | A ∈ X1 ∧ B ∈ X2 : A →+
S B ∨ B →+

S A).

Otherwise, the system is said to be stimuli-disconnected. �

In a stimuli-connected system, every agent is a participant, either as the source or sink, of

at least one direct communication via external stimuli. For example, it is easy to verify

that the system of communicating agents described in Section 4.1 is stimuli-disconnected.

This verification can be done automatically using the prototype tool (see Appendix C.3).

Communication Fixed Points

The notion of an agent as a communication fixed point is important in terms of the potential

for communication via external stimuli.

125

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Definition 5.2.5 (Communication Fixed Point). An agent A ∈ C is said to be a commu-

nication fixed point if and only if ∀
(
B | B ∈ C\{A} : ¬(A→+

S B)
)
. �

Obviously, a communication fixed point does not have the potential for communication via

external stimuli with any other agent. Thus, it is plain to see that an agent A 7→
〈
0
〉

is a communication fixed point since for all s ∈ S, λ(s, 0) = d and since d is not a basic

stimulus, it cannot have the potential for communication via external stimuli with any other

agent. Additionally, if A →+
S B, then the potential communication path from agent A to

agent B contains at most one communication fixed point that is agent B. Consider the

running example from Section 4.1. Agents C and R are communication fixed points, while

agents S, P, and Q are not communication fixed points.

Universally Influential Agents

A universally influential agent is the dual of a communication fixed point.

Definition 5.2.6 (Universally Influential). An agent A ∈ C is said to be universally influ-

ential if and only if ∀
(
B | B ∈ C\{A} : A→+

S B
)
. �

A universally influential agent is able to generate some stimulus that influences the be-

haviour, either directly or indirectly, of each other agent in the system. In this way, it is

obvious that a communication fixed point cannot be universally influential. Again, con-

sidering the running example given in Section 4.1, there is no agent that is universally

influential.

Proposition 5.2.1. A system of communicating agents that contains a universally influ-

ential agent is stimuli-connected.

Proof. Assume that a system formed by a set C of communicating agents is a stimuli-

disconnected system and let agent C ∈ C be universally influential. Then, using the def-

inition of a stimuli-disconnected system (see Definition 5.2.4), instantiation with B = C,

126

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

and Definition 5.2.6, it is the case that either the system is stimuli-connected or agent C

is not universally influential which is a contradiction to the assumption that the system is

stimuli-disconnected and agent C is universally influential. The detailed proof can be found

in Appendix A.9.

Proposition 5.2.1 shows that the existence of a universally influential agent in a system of

communicating agents yields a stimuli-connected system.

Proposition 5.2.2. Let A 7→
〈
a
〉

be an agent such that a is a fixed point behaviour. Then,

there does not exist an agent B that has the potential for communication via external stimuli

with agent A.

Proof. The proof is straightforward using Definition 5.2.1.

Proposition 5.2.2 states that no agent has the potential for communication via external

stimuli with an agent that has a fixed point behaviour. This is due to the fact that if an

agent has a fixed point behaviour, then it is not influenced by any external stimuli and

therefore communication with that agent via external stimuli is not possible.

Proposition 5.2.3. Let A 7→
〈
a
〉
, B 7→

〈
b
〉
, and C 7→

〈
c
〉

be agents in a system formed by

a set C of communicating agents.

(1) If B→S C then (A + B)→S C.

(2) If A→S B then A→S (B + C) if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬(t ◦ b ≤K b+ c ∧

t ◦ c ≤K b+ c)
)
.

Proof. The proof of (1) uses Definition 5.2.1, the distributivity of λ over +, the definition

of ≤S , and the fact that ⊕ is left-isotone with respect to ≤S . The proof of (2) involves

Definition 5.2.1, involves monotonic ∃-body, anti-monotonic ¬, distributivity of ◦ over +,

and substitution of = by =. The detailed proofs can be found in Appendix A.10.

127

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Proposition 5.2.3 shows how the potential for communication via external stimuli can be

preserved when non-determinism is introduced among agents. Specifically, Identity (1)

states that when non-determinism is added at the source of a potential communication

path via external stimuli, the potential for communication via external stimuli is always

preserved. Intuitively, this is the case since there can always be a sub-stimulus generated

by the source which results from agent B that can preserve the potential for communication

via external stimuli with agent C. On the other hand, Identity (2) states that when non-

determinism is added at the sink of a potential communication path via external stimuli,

the potential for communication is preserved only if there does not exist any basic stimulus

that is generated by the source that influences agent B and agent C to behave as a sub-

behaviour of agent B + C. This condition ensures that agent B + C cannot have a fixed

point behaviour. If the non-determinism that is introduced causes a fixed point behaviour,

then there will no longer be any potential for communication as stated by Proposition 5.2.2.

5.2.2 Formulating Potential for Communication via Shared Environments

The examination of communication via shared environments, either through shared vari-

ables, resources, or functionalities, has been the topic of study for a number of existing

techniques for covert channel and information flow analysis (e.g., [Kem83, KP91, SKJ09b,

SC99, WJG+04, WL05b]). When formulating the potential for communication via shared

environments, the focus is centred on finding whether a particular agent has the ability to

alter an element of the environment that it shares with a neighbouring agent such that the

neighbouring agent is able to observe the alteration that was made.

Since the proposed formulation is based on C2KA which is an extension of CKA, the

mechanisms provided by CKA are used to formulate the potential for communication via

shared environments. Similar to what is done with existing information flow techniques

for formulating the potential for communication via shared environments, the formulation

studies the dependencies between events that are shared amongst system agents.

128

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In what follows, consider the aggregation algebra
(
K,+

)
(see Definition 3.2.2) where K is

the set of agent behaviours from the CKA and + is the choice between agent behaviours

from the CKA, and let a, b ∈ K. Furthermore, let R be a dependence relation on
(
K,+

)
(see Definition 3.2.3) where aR b denotes that the behaviour b depends on the behaviour a.

Such a dependence relation may be a definition-reference relation between program variables

in the specifications of agent behaviours. Assume that ¬(aR 0) and ¬(0 R a) and ¬(aR 1)

and ¬(1 R a) for every a ∈ K. These are rather natural assumptions since the inactive and

idle behaviours depend on nothing and nothing depends on them.

For the purpose of this formulation, consider a system formed by a set C of communicating

agents and assume that a dependence relation R is given and let A,B such that A 6= B.

Definition 5.2.7 (Potential for Direct Communication via Shared Environments). Agent

A 7→
〈
a
〉

is said to have the potential for direct communication via shared environments

with agent B 7→
〈
b
〉

(denoted by A→E B) if and only if aR b. �

Definition 5.2.8 (Potential for Communication via Shared Environments). Agent A is said

to have the potential for communication via shared environments with agent B (denoted

by A→+
E B) if and only if aR+ b where R+ is the transitive closure of the given dependence

relation. �

This means that if two agents respect the given dependence relation, then there is a potential

for communication via shared environments.

Proposition 5.2.4. Assume a system formed by a set C of communicating agents and

let A,B,C ∈ C.

(1) If B→E C then (A + B)→E C. (2) If A→E B then A→E (B + C).

Proof. The proofs are straightforward from Definition 5.2.7 and the bilinearity of the de-

pendence relation R.

129

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Proposition 5.2.4 shows that the potential for communication via shared environments is

preserved when non-determinism is introduced at the source or the sink of a potential

communication path via shared environments. If there exists a dependency between two

agent behaviours a and b, then given a choice between b and any other behaviours, it is

possible to choose to behave as b in order to preserve the dependency. While this is not

always the case, it is important to note that the focus is placed on the identification of the

potential for communication, which means that if it is possible for an agent to choose a

behaviour which yields the potential for communication, then in general the potential for

communication exists.

5.2.3 A Formulation of the Potential for Communication Condition

By combining the definitions of potential for communication via external stimuli and via

shared environments, a formulation of the potential for communication condition for the

existence of distributed covert channels is obtained. In what follows, consider a system

formed by a set C of communicating agents and let A,B ∈ C such that A 6= B.

Definition 5.2.9 (Potential for Direct Communication). Agent A is said to have the poten-

tial for direct communication with agent B (denoted by A B) if and only if

A→S B ∨ A→E B. �

Definition 5.2.10 (Potential for Communication). Agent A is said to have the poten-

tial for communication with agent B (denoted by A + B) if and only if A B ∨

∃
(
C | C ∈ C : A C ∧ C + B

)
. �

For a given system of communicating agents, if there exists a sequence of agents, starting

with a source agent A and ending on a sink agent B, that have the potential for direct

communication either via external stimuli or via shared environments, then agent A has the

potential for communication with agent B.

130

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

With the above formulation of the potential for communication condition for the existence

of distributed covert channels, the way in which the covert information is communicated

is abstracted away. This is to say that, the formulation does not require any insight into

how the covert information is being transmitted from the source to the sink. For instance,

whether there exists a protocol-based covert channel where covert information is embedded

into existing network packets for example, or whether there exists an environment-based

covert channel where covert information is transmitted by modulating the timing of events,

the verification of the potential for communication condition remains the same. This means

that there is no need to verify different conditions for different classes of covert channels.

This is because the given formulation of the potential for communication condition rests

simply on the ability for one agent in a given system of communicating agents to influence

the behaviour of another agent, or on the ability for one agent to alter a shared environment

that can be observed by another agent. In this way, the covert communication scheme that is

used by the covert channel users is irrelevant in this analysis. The notion of communication

schemes is discussed further in Section 6.1.

5.3 Verifying the Potential for Communication Condition

Given a system of communicating agents, the verification of the potential for communication

condition for the existence of distributed covert channels for any two agents follows directly

from the application of the definitions given in Section 5.2.

Consider the running example system of communicating agents described in Section 4.1.

Figure 5.3 shows a visualisation of the potential for communication amongst the agents in

the system. For instance, it is easy to see that (S→S P) and ¬(P→S R) by Definition 5.2.1

and (S →+
S Q) and ¬(S →+

S R) by Definition 5.2.3. Similarly, it is the case that (P →E R)

and ¬(C →E P) by Definition 5.2.7 and (C →+
E R) and ¬(Q →E P) by Definition 5.2.7.

Finally, by the application of Definition 5.2.9, it is the case that (S P) and (P R) and

by the application of Definition 5.2.10, it can be shown that (S + R) and ¬(C + S).

131

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Agent S

Agent P

Agent Q

Agent R

Agent C

A B

LEGEND

A ↝ B*

A → B*
E

A → B
E

A → B
S

A → B*
S

A B

A B

A B

A B

Figure 5.1: A visualisation of the potential for communication for the running example
system of communicating agents

Now that it has been shown that the potential for communication condition is satisfied in the

running example system of communicating agents (particularly from agent S to agent R),

it remains to be verified whether the constraint on communication condition is satisfied

as well. The formulation and verification of the constraint on communication condition is

touched upon in Section 6.4.

5.3.1 Verifying the Potential for Communication Condition Using the

Prototype Tool

The C2KA component of the prototype tool was described in Section 4.2.8. This section

describes the potential for communication component of the prototype tool. The potential

for communication component allows for the automated evaluation of the satisfaction of

the potential for communication condition for a given system of communicating agents by

implementing the formulation of the potential for communication condition presented in

Section 5.2. If the tool determines that there exists a potential for communication between

two agents, it provides a list of all of the possible communication paths or patterns of

communication between those agents.

132

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

C2KA
Component

PFCviaStimuli PFCviaEnvironment

CommPaths

PFC

A

A uses B

B

LEGEND

Figure 5.2: The uses hierarchy of the potential for communication component of the proto-
type tool

Figure 5.2 shows the uses hierarchy of the potential for communication component of the

prototype tool. It consists of 4 modules. The CommPaths module implements the func-

tionality for determining and displaying the potential communication paths between two

agents in a given system of communicating agents. The PFCviaStimuli module implements

the formulation of the potential for direct communication via external stimuli presented in

Section 5.2.1. Similarly, the PFCviaEnvironment module implements the formulation of

the potential for direct communication via shared environments presented in Section 5.2.2.

Finally, the PFC module implements the formulation of the potential for communication

condition for the existence of distributed covert channels presented in Section 5.2.3. It

also provides functions for verifying whether a given system of communicating agents is

stimuli-connected and whether a given agent in a system of communicating agents is a

communication fixed point, or whether it is universally influential.

A detailed usage of the prototype tool for verifying the potential for communication condi-

tion for the running example of the system of communicating agents described in Section 4.1

is provided in Appendix C.4.

133

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

5.4 Modifying Agent Behaviours to Preserve or Disrupt the

Potential for Communication

In a system of communicating agents, agent behaviours can be modified in many different

ways with various effects on the potential for communication between agents. A useful

result showing the effects of modifying the behaviour of an agent participating in a direct

communication is given in Proposition 5.4.1.

Proposition 5.4.1. Let A 7→
〈
a
〉
, B 7→

〈
b
〉
, and C 7→

〈
c
〉

be agents in a system formed by

a set C of communicating agents.

(1) If A B, then A (C ; B) if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ c 6= c ∨

λ(t, c) ◦ b 6= b
)
∨ aR (c ; b).

(2) If A B, then (A ; C) B if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : λ(t, c) = t

)
∨

(a ; c) R b.

Proof. The proofs both use Definitions 5.2.1, 5.2.7, and 5.2.9. The proof of (1) also involves

Definition 4.2.3(1), distributivity of ∨ over ∃, monotonic ∃-body, anti-monotonic ¬, and

substitution of = by =. The proof of (2) also uses Definition 3.1.8(3) for
(
SK,⊕

)
. The

detailed proofs can be found in Appendix A.11.

Proposition 5.4.1 identifies the conditions constraining the modifications that can be made

to the source or sink agent involved in a direct potential for communication . When con-

sidering the direct potential for communication, besides completely replacing the behaviour

of one of the agents with the behaviour of another agent, a new agent behaviour can be

sequentially composed either on the left of a sink agent or on the right of a source agent.

Specifically, Identity (1) shows how the sequential composition of an additional behaviour

on the left of a sink agent will not affect the potential for communication provided that every

stimulus that is generated by the source agent either does not fix the behaviour of the first

134

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

component of the sequential composition, or causes the first component of the sequential

composition to generate a stimulus that does not fix the behaviour of the second component

of the sequential composition. Additionally, the potential for communication will not be

affected provided that the composed behaviour preserves the dependency relation. Simi-

larly, Identity (2) shows how the sequential composition of an additional behaviour on the

right of a source agent will not affect the potential for communication provided that the

additional behaviour fixes every stimulus that it receives from the source agent or that the

composed behaviour preserves the dependency relation. These results are particularly use-

ful since behaviours that satisfy these constraints can be constructed to de-couple the direct

potential for communication between two agents. For example, consider the case when the

composed agent behaviour is a fixed point behaviour. Then, in particular, this behaviour

can be used to filter the stimuli that are received by the sink agent and to ensure that only

potential for communication via shared environments is possible between the source agent

and the sink agent.

Another useful result showing the effects of modifying the behaviour of an agent in the

sequence of a potential communication path or pattern of communication between two

agents is given in Proposition 5.4.2. In particular, Proposition 5.4.2 deals with the indirect

potential for communication between agents, unlike Proposition 5.4.1 which dealt only with

direct potential for communication .

Proposition 5.4.2. Let A + B such that ∃
(
C | C ∈ C : A C ∧ C B

)
where A 7→

〈
a
〉
, B 7→

〈
b
〉
, and C 7→

〈
c
〉
. Let R be the given dependence relation. Suppose C

is replaced by another agent C′ 7→
〈
c′
〉
. Then,

(1) If c′ = (c ; d), then A + B if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, c) : λ(t, d)= t

)
∨ (c ; d) R b.

(2) If c′ = (c+ d), then A + B if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬(t ◦ c ≤K c+ d ∧

t ◦ d ≤K c+ d)
)
.

(3) If c′ = c ;©, then A + B.

135

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(4) If c′ = 0 or c′ = 1, then ¬(A + B).

(5) If c′ ∈ OrbS(c), then A + B.

(6) If c′ is a fixed point behaviour, then A + B only if aR c′ ∧ c′R b.

Proof. Each of the proofs involve the applications of Definitions 5.2.1, 5.2.7, and 5.2.9, as

well as the basic axioms of C2KA. The detailed proofs can be found in Appendix A.12.

Proposition 5.4.2 identifies the conditions constraining the modifications allowable to the

behaviour of an agent in a potential communication path in order to maintain the potential

for communication between two agents. In this way, it demonstrates the conditions under

which a modification to an agent behaviour can be made while maintaining the commu-

nicating behaviour of the agents in the system. Specifically, Identity (1) shows how the

sequential composition of an additional behaviour with the existing agent will not affect the

potential for communication provided that the additional behaviour fixes every stimulus

that it receives from the original intermediate agent C or that the composed behaviour pre-

serves the dependency relation with the behaviour b. Assuming that each agent behaviour

takes some amount of time, this is useful since behaviours that satisfy this constraint can be

constructed to introduce delay into the potential communication path in order to disturb

a covert timing channel without the need to fully eliminate the communication. However,

in general, nothing can be said about the behaviour d alone as a consequence of Defini-

tion 4.2.3(2). The stimuli that are generated by d are dependent on the stimuli generated

by c and the effects of the stimuli cascaded from c to d cannot be determined since agent C′

is viewed as a black-box. Identity (2) is an extension of Propositions 5.2.3 and 5.2.4 to

general potential for communication. In general, provided that the introduction of non-

determinism does not result in a fixed point behaviour, the potential for communication is

maintained with the addition of non-determinism. However, if an agent were constructed

such that the agent behaviour (c+d) is a fixed point behaviour, then this result can be used

136

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

to eliminate the potential for communication via external stimuli. In this way, the potential

for communication will only be preserved if the agents have the potential for communication

via shared environments. Identity (3) follows from Identities (1) and (2) and shows that the

sequential iteration of an agent behaviour does not affect the potential for communication.

Identity (4) states that if an agent in a communication path is replaced with an inactive

agent or an idle agent, then there is no longer a potential for communication. This can be

useful in terms of eliminating the potential for communication among agents since it shows

how the behaviour of some agents may be modified in order to eliminate the potential for

communication and potentially thwart any attempts for establishing covert communication

channels. However, it is noted that this is not a suitable solution in all cases since modifying

agent behaviours in such a way can inadvertently modify the overall system behaviour and

thereby undesirably render the system useless. Identity (5) states that replacing an agent

in a given communication path with another agent in the same strong orbit will not affect

the potential for communication. This is because agents in the same strong orbit always

have the potential for communication via external stimuli with one another. Identity (6)

states that the potential for communication is maintained when replacing an agent in a

given communication path with another agent that has a fixed point behaviour only if the

dependency relation is preserved. Proposition 5.2.2 showed that an agent with a fixed point

behaviour does not have the potential for communication via external stimuli unless it is the

source of a potential communication path. So, if an agent with a fixed point behaviour is

not the source of the potential communication path, then it may only have the potential for

communication via shared environments. Finally, it should be noted that if the behaviour

of an agent in a potential communication path is restricted to a particular sub-behaviour,

then the potential for communication is only preserved if the sub-behaviour maintains the

communicating behaviour of the original agent.

The results of Proposition 5.4.1 and Proposition 5.4.2 form a basis for an approach for mit-

igating distributed covert channels in systems of communicating agents. Such a mitigation

137

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

approach is able to preserve overall system behaviours and the communication between its

components and with its environment. The goal of such mitigation approaches based on an

analysis of the potential for communication amongst system agents is to thwart the use of

distributed covert channels without the covert channel users necessarily being aware that

their attempt to use a covert channel is being mitigated.

5.5 Discussion and Related Work

Given a system of communicating agents, it is difficult to fully prevent the possibility of

covert communication from taking place since it is often undesirable to completely elimi-

nate the communication among agents. An integral part of safeguarding systems of com-

municating agents from covert channel communication is having the ability to identify

when a covert channel may exist in a given system which involves determining if and

when two agents have a potential for communication. While much of the existing work

in attempting to mitigate covert channels has been based on information theoretic ap-

proaches (e.g., [GW07, GH02, GH99, HR10, Low02, MMA06, Mil87, Mil89a, MK94]), the

proposed formulation looks to the issue of mitigating covert channels from a different per-

spective. Although, it is difficult to completely eliminate covert channels from modern

computer systems, the proposed formalisation provides a means for analysing a system of

communicating agents in order to devise mechanisms for strengthening the design of such

systems in order to make them more robust against covert channels. It also builds the

foundation for the ability to identify parts of a system where it would be most beneficial to

observe or disrupt the communication among particular system agents. For example, once

a sequence of agents that have the potential for communication has been identified, in order

to detect confidential information leakage via protocol-based covert channels, monitors can

be installed and configured to identify patterns of communication on the communication

138

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

channels available to the agents in the potential communication path using techniques sim-

ilar to that presented in [JKS11]. Similarly, in order to mitigate the use of covert timing

channels, mechanisms can be employed to de-couple or deteriorate any sort of timing infor-

mation associated with the communication channels available to the agents in the potential

communication path by injecting random delays similar to the NRL Pump [KM93].

As mentioned in Section 5.1.1, the literature contains existing works that have attempted

to articulate and verify potential for communication conditions for covert channels. How-

ever, some of them are indirect or informal and require reasoning about potential scenarios

in which the conditions might be satisfied (e.g., [SC99]). Furthermore, those works which

do provide some level of formalism, focus primarily on the potential for communication

via shared environments through various information flow analyses based on finite state

machine models, information theory, and probability theory (e.g., [Gra91, JLY10, Mil89a,

Mil90, WL05b]). Perhaps one of the most popular mechanisms for determining the potential

for communication for identifying the existence of covert channels is the Shared Resource

Matrix technique [Kem83]. It involves a careful analysis of the ways in which shared re-

sources are used in a system to determine whether it is possible for a particular resource to

covertly transfer information from one agent to another with respect to a set of minimum

criteria. Similarly, Covert Flow Trees (e.g., [KP91]) attempt to identify information flows

supporting either the direct or indirect ability of an agent to detect when an attribute of

a shared resource has been modified. The Shared Resource Matrix technique and Covert

Flow Trees can be used in the proposed formulation to concretely build the dependence

relation discussed in Section 5.2.2.

While existing works focus on studying the potential for communication via shared envi-

ronments, the proposed formulation of the potential for communication condition for the

existence of distributed covert channels is based on the mathematical foundation of C2KA

and thereby also considers the potential for communication via external stimuli. If the use

of CKA alone were to be considered for the formulation of the potential for communication

139

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

condition, only the dependencies between shared events could be used to define and verify

any sort of potential for communication. The proposed formulation provides a more com-

plete representation of the potential means for communication among system agents that

encompasses what can be done using CKA alone as well as other existing information flow

techniques.

5.6 Conclusion

The potential for communication condition is one of the necessary conditions for the exis-

tence of distributed covert channels. The study of the potential for communication requires

the study of the behaviour of the agents in a given system of communicating agents. This

chapter has presented the formulation of the potential for communication condition for the

existence of distributed covert channels in systems of communicating agents. The formu-

lation is based on the mathematical framework of C2KA that was presented in Chapter 4.

Then, the verification of the potential for communication condition was demonstrated using

the running example first introduced in Section 4.1 and the use of the prototype tool for

automating the verification was discussed. The verification showed that the potential for

communication condition is indeed satisfied for the given running example system of commu-

nicating agents. It remains to be seen whether the constraint on communication condition

also holds in the running example system of communicating agents. The formulation and

verification of the constraint on communication condition is discussed in Section 6.4.

140

Chapter 6

Communication Schemes and

Agent Knowledge Evolution

To this point, this thesis has presented a mathematical framework for formulating and

verifying the potential for communication condition for the existence of distributed covert

channels in systems of communicating agents. While this is an important first step in

determining whether a system of communicating agents has the ability to harbour covert

channels, it is also important to determine whether there exists ways in which potential

sources of confidential information leakage in a given system of communicating agents can

develop communication schemes allowing for the establishment and operation of distributed

covert channels. This chapter gives an outlook for the proposed mathematical framework

for the modelling, analysis, and mitigation of distributed covert channels. It explores ways

in which the understanding of covert channels can be enhanced by investigating further ap-

plications of the proposed framework. In particular, this chapter aims to propose directions

and guidelines towards identifying potential confidential information leakage via distributed

covert channels in systems of communicating agents. Specifically, Section 6.1 gives a repre-

sentation for communication schemes based on description logic knowledge bases and pre-

141

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

and post-condition specifications. Section 6.2 guides a systematic approach for merging

communication schemes into specifications of systems of communicating agents to obtain

amended specifications allowing for the establishment of covert channels. Section 6.3 pro-

poses a set of guidelines for the evolution of agent knowledge through the execution of

concrete agent behaviours as a means of supporting an approach for verifying confidential

information leakage. Section 6.4 provides a formulation and verification approach for the

constraint on communication condition for the existence of distributed covert channels. It

also outlines an approach for the verification of confidential information leakage in sys-

tems of communicating agents by analysing the necessary conditions for the existence of

distributed covert channels. Lastly, Section 6.5 provides several concluding remarks and

comments on future directions for the material presented in this chapter.

6.1 Communication Schemes

As discussed earlier in this thesis, in a given system of communicating agents, each agent

is represented by describing its behaviour and its knowledge of the system and the world in

which it evolves. Both of these aspects play a crucial role in the establishment of distributed

covert channels as the behaviour of an agent dictates how it may communicate with other

agents in the system while the knowledge of an agent determines what information it may

communicate to other agents.

This section aims to enhance the understanding of the modelling and construction of dis-

tributed covert channels in systems of communicating agents. In particular, this section

articulates a representation for communication schemes based on description logic knowl-

edge bases and pre- and post-condition specifications. Additionally, it shows how commu-

nication schemes can be derived from the initial specification of a system of communicating

agents where the behaviour of each agent is specified using the mathematical framework

of Communicating Concurrent Kleene Algebra (C2KA) and the knowledge of each agent is

specified using the description logic ALB.

142

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

6.1.1 Components of Communication Schemes

When two agents decide to establish a covert channel, they must first devise a commu-

nication scheme that is to be shared between them. A communication scheme describes

how information will be represented, transmitted, and understood from a sender to a re-

ceiver in the communication. In this way, a communication scheme is an amendment to

both the knowledge and the behaviour of the sender and the receiver. Therefore, a com-

munication scheme is comprised of two components
(
NCS,BCS

)
. The knowledge compo-

nent NCS =
(
TCS,ACS

)
is a knowledge base containing all of the information required to

carry out the communication of some information, including the shared representation of

the information to be transmitted. The behaviour component BCS consists of specifications

of the behaviours of the sending and receiving agents that will allow them to transmit and

understand messages.

6.1.2 Classifications of Communication Schemes

The knowledge component NCS of a communication scheme may assume different forms.

The form of the knowledge component of a communication scheme leads to the following

classification of communication schemes.

Terminological Communication Schemes

A communication scheme with a knowledge component of the form NCS =
(
TCS, ∅

)
is called

terminological . A terminological communication scheme is one where the ABox is empty.

This means that the communication scheme consists of only terminological axioms. Ter-

minological communication schemes are typically employed when the two communicating

agents have different understandings of the world and require concept translations (i.e.,

relationships between concepts) so that they may “speak the same language”. For exam-

ple, suppose that agent A and agent B wish to communicate about cars. In the world of

agent A, cars may be understood by the concept Vehicle, whereas in the world of agent B,

143

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

cars may be understood by the concept Automobile. While agent A and agent B both have

an understanding of cars, their terminology differs. Therefore, in order to communicate

with one another about the subject of cars, they must have a communication scheme that

asserts Vehicle ≡ Automobile. Only in this way, will agent A and agent B be able to share a

common understanding of the subject of cars. Similarly, one can imagine a terminological

communication scheme as a language translation. Consider two agents, one that speaks

English and one that speaks French. A terminological communication scheme can be con-

structed to define a kind of English-French dictionary (e.g., House ≡ Maison) so that the

agents may be able to communicate and understand one another.

Assertional Communication Schemes

A communication scheme with a knowledge component of the form NCS =
(
∅,ACS

)
is called

assertional . An assertional communication scheme is one where the TBox is empty. This

means that the communication scheme is comprised only of assertional axioms. Assertional

communication schemes are primarily used when the two communicating agents already

share a common understanding of the world and “speak the same language”, but need to

share relationships and knowledge about objects in the world with respect to concepts and

roles. The most common form of an assertional communication scheme comes when two

communicating agents need to establish a mapping between objects. For example, consider

a scenario where agent A and agent B are part of a card-counting ring and they need to

establish a communication scheme that associates code-words to card-counts. Assume that

agent A and agent B share a common understanding of the world and each knows the

concepts CodeWord and Count. Then, in order to understand that a particular code-word

indicates a specific card-count, agent A and agent B must have a communication scheme

that asserts, for example Map
(
ICE,+3

)
, where Map is a new role symbol that is augmented

to the set of role symbols NR in the description logic signature. In this way, agent A and

agent B will know that when the code-word “ice” is spoken that the current count is +3.

144

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Procedural Communication Schemes

A communication scheme with an empty knowledge component
(
i.e., NCS =

(
∅, ∅
))

is

called procedural . Procedural communication schemes are commonly used when the two

communicating agents need not share any additional explicit knowledge, but rather must

simply devise a means for altering their behaviour in order to send and receive information.

In essence, a procedural communication scheme represents a specification of a behaviour for

a sender to encode a particular message to be sent and a specification of a behaviour for a

receiver to extract the message that has been sent based on the information it has received.

These specifications can be thought of as being analogous to an encryption algorithm for

the sender and a decryption algorithm for the receiver. For example, suppose that agent A

wishes to inform agent B of its date of birth. However, agent A prefers not to send its date of

birth directly and would like to obscure the information. Assume that agent A and agent B

initially know and agree on the ISO date format (i.e., YYYY-MM-DD). Also, assume that

agent A and agent B initially share three variables containing integer values. Let these three

variables be denoted by x, y, and z. In this case, in order for agent A to send its date of

birth in an obscured way to agent B, no additional explicit knowledge needs to be shared

between agent A and agent B. Instead, they can use the knowledge that they already share

to devise a communication scheme for communicating the information. For example, they

can develop a procedure where agent A multiplies the value of x to the birth year, adds the

value of y to the birth month, and subtracts the value of z from the birth day, and sends

this information to agent B. Then, upon receiving this obscured birth date, agent B reverses

the operations by dividing the received birth year by the value of x, subtracting the value

of y from the received birth month, and adding the value of z to the received birth day, in

order to uncover the actual birth date. In this way, the agents merely define a procedure

for sending and receiving information using the knowledge that they already share.

145

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Composite Communication Schemes

A communication scheme with a knowledge component of the form NCS =
(
TCS,ACS

)
,

where both TCS and ACS are non-empty, is called composite. A composite communication

scheme is merely a combination of a terminological communication scheme and an asser-

tional communication scheme. This means that the communication scheme consists of both

terminological and assertional axioms. Composite communication schemes are commonly

used when the two communicating agents need to share relationships and knowledge about

objects in the world with respect to concepts and roles and when they do not already

agree on the understanding of the world or “speak the same language”. An example of a

composite communication scheme is discussed later in this chapter in Section 6.1.4.

6.1.3 An Example Communication Scheme

Consider the running example described in Section 4.1. Suppose that agent S would like

to establish a covert channel with agent R. Before any communication can begin, agent S

and agent R need to devise and agree upon a communication scheme in order to establish

a covert channel. Suppose that agent S is designated as the sender and agent R is des-

ignated as the receiver. Let agents S and R agree to establish and use a variation of the

FTP Command Mapping covert channel described in [ZLSN05] where each FTP command

is encoded as a fixed-length bit-string. For example, the NOOP command can be mapped

to the bit-string 11 and the ALLO command can be mapped to the bit-string 01. Recall

that from the initial knowledge specification of the system of communicating agents (see

Section 4.3.1), agents S and R have a knowledge of the behaviour of agent P; specifically the

enumeration mapping used by agent P. Agents S and R exploit this knowledge to devise

a communication scheme that will allow agent S to communicate a message to agent R,

indirectly through agent P. Under the agreed upon communication scheme and with the

establishment of a shared command-to-bit-string mapping for the available FTP commands

146

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

in the system of communicating agents, agent S can choose to issue particular FTP com-

mands in order to implement the idle prevention scheme so that a specific bit-string message

can be transmitted to agent R. The idea is that when agent P receives a command from

agent S, it will store the enumeration of the received command in the variable cmd which

is shared with agent R. In this way, when agent R reads the variable cmd, it can obtain the

command that was sent by agent S and determine the corresponding fixed-length bit-string

using the agreed upon command mapping established in the communication scheme and

shared with agent S.

Once again, it is acknowledged that in a real system of communicating agents, messages

that are to be sent between agents are likely to be quite large. However, in the interest of

simplicity and brevity, assume that a message is only (a very small) 2-bits in length. In

this way, a message is exactly the bit-string corresponding to the command that was issued.

Roughly speaking, this corresponds to one iteration of the communication protocol described

by the communication scheme. It is important to note, that this can be extended in a natural

way by establishing a notion of “message blocks” and by iterating the protocol defined by

the communication scheme so that the sender S can transmit a structured message to the

receiver R. This is to say that a message can consist of some number of 2-bit blocks, each

corresponding to the issuance of a particular FTP command, and arranged in a particular

sequence. Therefore, after repeated iteration of the communication protocol defined by

the communication scheme, the sender S can transmit some number of sequential blocks

which can be reassembled by the receiver R to obtain a complete bit-string message of some

arbitrary length.

6.1.4 Guidelines for Systematically Devising Communication Schemes

In order to specify a communication scheme
(
NCS,BCS

)
, a specification of both the knowl-

edge component and the behaviour component is required. The knowledge component NCS

of a communication scheme is specified as a description logic knowledge base (see Section 4.3)

147

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

and the behaviour component BCS is captured with pre- and post-condition specifications

(see Section 3.4) of the behaviours of the sending and receiving agents. Based on an informal

description of the communication scheme to be established and the initial knowledge base

specifications of the sending and receiving agents, the specification of the communication

scheme can be devised in a systematic way.

In what follows, consider the communication scheme described in Section 6.1.3 and the

knowledge specifications of the agents given in Section 4.3 for the running example system

of communicating agents from Section 4.1.

Step 1: Identify the Shared Knowledge of the Sender and Receiver

The first step towards systematically devising a specification for a communication scheme,

particularly the knowledge component NCS, is to identify the shared knowledge of the

sender and receiver around which the communication scheme will be developed. This shared

knowledge is incorporated as part of the knowledge component of the communication scheme

to indicate that it is knowledge that is vital to the operation of the communication scheme

when it is employed to establish a covert channel. With respect to the running example, the

knowledge that is shared between the sender S and the receiver R includes the terminological

axiom EnumToCmd ≡ CmdToEnum`, as well as the assertional axioms represented by the

sets CMDS, ENUMS, BITS, and MAPS (see Section 4.3.1, page 112). Particularly, the

inclusion of the enumeration mapping in the specification of the communication scheme

ensures that the sending agent S and receiving agent R know the same mapping and that

they do, in fact, agree on it before a covert channel is established.

Step 2: Construct Additional Knowledge Needed for the Communication Scheme

The next step towards systematically devising the knowledge component NCS of the spec-

ification of a communication scheme is to construct any additional knowledge that may

148

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

be required to be shared between the sending and receiving agents that will use the com-

munication scheme. This additional knowledge may come in the form of terminological

axioms, assertional axioms, or both. In terms of the example communication scheme

outlined in Section 6.1.3, the additional knowledge to be constructed and added to the

knowledge component of the communication scheme consists of the assertional axioms

represented in the set
{

CmdToStr
(
ABOR, 00

)
, CmdToStr

(
ALLO, 01

)
, CmdToStr

(
HELP, 10

)
,

CmdToStr
(
NOOP, 11

)}
corresponding to a command-to-bit-string mapping. It also consists

of the terminological axiom StrToCmd ≡ CmdToStr` showing that there is additionally a

bit-string-to-command mapping. This mapping is the fundamental knowledge required in

order to achieve an FTP Command Mapping covert channel as described in [ZLSN05] and

outlined in Section 6.1.3.

Step 3: Add Concept Inclusions According to the Method of Transmission and

Interpretation of Confidential Information

Another important aspect that the knowledge component of the communication scheme

must capture is the information that is to be sent by the sending agent. In this way,

both the sending agent and the receiving agent know what information the sending agent

is expected to use in order to transmit the intended message. This knowledge comes in

the form of a concept inclusion and can be determined, in part, from the additional ax-

ioms that were constructed in Step 2. For instance, with respect to the running example,

Step 2 found that a command-to-bit-string mapping was required knowledge for the given

communication scheme. Therefore, it follows that the sending agent will be sending FTP

commands that will be interpreted as bit-strings by the receiving agent. This knowledge

must be shared between the sender and the receiver, hence it needs to be included as part

of the knowledge component of the communication scheme. The knowledge representing

that the sending agent will be sending FTP commands is captured by the terminological

axiom Sent v Command. Similarly, the participating agents, particularly the receiving

149

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agent, needs to know how to interpret the confidential information that it receives and

stores. Once again, this knowledge is devised by imagining how the receiving agent will

receive and store the confidential information resulting from the communication with the

sending agent. For the running example, this knowledge is captured by the terminolog-

ical axiom
(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo, where ConfVar is a newly in-

troduced concept that represents variable names that store confidential information. For

the running example, this variable is defined as the variable named y through the concept

assertion ConfVar
(
Y
)
. In this way, the agents know that the receiver will have some variable

named y for which its contents is a bit-string representing the confidential information that

was transmitted. It is important to note that this terminological axiom is derived from the

communication scheme that is established between the sender and the receiver and that it

may be different under different communication schemes.

Step 4: Extend the Description Logic Signature

In particular, Steps 2 and 3 saw the introduction of new terminological and assertional ax-

ioms when specifying the knowledge component of a communication scheme. Consequently,

those steps typically require the addition of new concepts and roles. Because of this, it is

often necessary to extend the description logic signature of the system of communicating

agents for which the communication scheme is being defined with these additional concepts

and roles. This extension is required to ensure that all of the terminological and asser-

tional axioms incorporated as part of the specification of the knowledge component of the

communication scheme are defined with respect to the signature.

Considering the running example,
(
NC , NR, NO

)
denotes the signature of the system of

communicating agents for which the communication scheme is being defined (see Figure 4.9).

Based on the introduction of the new terminological and assertional axioms from Steps 2

and 3, the signature of the communication scheme is the extension
(
N ′C , N

′
R, N

′
O

)
shown

in Figure 6.1. The signature is extended with an additional concept Sent which denotes

150

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

N ′C = NC ∪ {ConfVar,Sent}
N ′R = NR ∪ {CmdToStr,StrToCmd}
N ′O = NO ∪ {Y}

Figure 6.1: The extended ALB signature for the example communication scheme

the command that was sent by the sending agent, the concept ConfVar which denotes

variable names that store confidential information, the roles CmdToStr and StrToCmd which

represent the shared command-to-bit-string and bit-string-to-command mappings of the

communication scheme, and the object Y which denotes the name of the variable that will

store the confidential information, respectively.

Step 5: Determine Pre- and Post-Condition Specifications for the Sender and

Receiver Behaviours

In the last step, the behaviour component BCS of the communication scheme needs to be

specified by giving specifications of the sending and receiving agent behaviours. The sending

and receiving agent behaviours are captured with pre- and post-condition specifications. In

the specification of the sending and receiving behaviours, the pre-condition asserts what

must be known to an agent before the program is executed and the post-condition asserts

what is known after the execution of the program. The notation of Hoare triples is used for

the specification of the behaviour component of a communication scheme.

With regard to the running example system of communicating agents and communication

scheme, and for some U,V,N ∈ NO, the pre- and post-condition specification of the be-

haviour of the sending agent S is given by:

{NS |= ConfInfo
(
U
)
∧ StrToCmd

(
U,V

)
} S {NS |= Sent

(
V
)
}

Similarly, the pre- and post-condition specification of the behaviour of the receiving agent R

is given by:

{NR |= Variable
(
CMD,N

)
∧ EnumToCmd

(
N,V

)
∧ CmdToStr

(
V,U

)
} R {NR |= ConfInfo

(
U
)
}

151

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The pre- and post-condition specification for the behaviours of the sending and receiving

agents provide assertions on the knowledge of the agents. In this way, the pre- and post-

conditions specify what an agent must know before and after executing their behaviour in

order to establish and operate a covert channel according to the communication scheme.

Particularly, the specification for the sending agent S shows that it must first know some

confidential information. This follows from the definition of covert channels adopted in

this thesis and the constraint on communication condition for the existence of distributed

covert channels. It also shows that the sending agent S must know a mapping that maps

bit-strings to commands. Then, after executing its behaviour, the sending agent S will

know what command it issued in order to transmit the confidential information. Likewise,

the specification for the receiving agent R shows that it must first know the value stored

in the variable cmd, the enumeration mapping which will give the command corresponding

to a given enumeration, and the mapping that will give the bit-string corresponding to a

given command. Then, after executing its behaviour, the receiving agent R will know the

confidential information that was transmitted by the sending agent S.

Complete Specification of the Communication Scheme

By following the guidelines proposed above, the complete specification of the communication

scheme
(
NCS,BCS

)
described in Section 6.1.3 can be devised. The complete specification is

shown in Figure 6.2. It represents a composite communication scheme since its knowledge

component consists of both terminological and assertional axioms.

Perhaps one of the most interesting observations that can be made about the specification

of the communication scheme given in Figure 6.2 is that the sending agent S and the

receiving agent R are not required to directly share any variables. Instead, through the

shared knowledge represented by the knowledge component of the communication scheme

and through the pre- and post-condition specifications of the sending and receiving agent

behaviours, the communication scheme defines the procedure by which the sending agent

152

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

NCS =
(
TCS,ACS

)
where

TCS = {EnumToCmd ≡ CmdToEnum`, StrToCmd ≡ CmdToStr`,Sent v Command,(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo}

ACS = CMDS ∪ ENUMS ∪ BITS ∪ MAPS ∪ {ConfVar
(
Y
)
,CmdToStr

(
ABOR, 00

)
,

CmdToStr
(
ALLO, 01

)
,CmdToStr

(
HELP, 10

)
,CmdToStr

(
NOOP, 11

)
}

BCS =
(
BS,BR

)
where U,V,N ∈ NO and

BS = {NS |= ConfInfo
(
U
)
∧ StrToCmd

(
U,V

)
}

S

{NS |= Sent
(
V
)
}

BR = {NR |= Variable
(
CMD,N

)
∧ EnumToCmd

(
N,V

)
∧ CmdToStr

(
V,U

)
}

R

{NR |= ConfInfo
(
U
)
}

Figure 6.2: Specification of an example communication scheme
(
NCS,BCS

)
based on FTP

command mapping

can successfully transmit some confidential information to the receiving agent. However, it

remains to be seen how the communication scheme affects the specifications of the sending

and receiving agents. This notion is investigated further in Section 6.2.

6.1.5 Discussion and Related Work

While there exists a large and vast literature of covert communication schemes and covert

channel constructions (e.g., [AA11, CBS04, GGLT02, HS96, Sal09, SWBS09]), there does

not exist a formal approach for modularly developing and specifying communication schemes

similar to what is presented in this section. After closely examining the literature, the

representation of a communication scheme as a knowledge base and a specification of the

behaviour of the sending and receiving agents does not exist in the literature. This leads

to a new and innovative way of thinking about distributed covert channels.

153

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

6.2 Merging Communication Schemes into Systems of Com-

municating Agents

Assume that the specifications of a system of communicating agents and a communication

scheme are given. Recall that a communication scheme is an amendment to both the

knowledge and the behaviour of the sending agent and the receiving agent in the system

of communicating agents. This section proposes an approach for systematically merging a

communication scheme into the specification of a system of communicating agents in order

to augment the knowledge and the behaviour of the designated sending agent and receiving

agent so that they are able to establish and operate a distributed covert channel. The

approach is presented in two parts. First, Section 6.2.1 shows how to merge the knowledge

component of a communication scheme specification with the knowledge bases of the sending

agent and the receiving agent in the system of communicating agents to obtain amended

knowledge base specifications for the sending and receiving agents. Then, Section 6.2.2

describes how to amend the behaviour of the sending agent and the receiving agent so that

they may be able to perform the required actions to engage in a covert communication.

6.2.1 Amendments to Agent Knowledge

Since the knowledge component NCS of a communication scheme is itself a knowledge base,

an operation for merging two knowledge bases specified using description logic is defined.

Definition 6.2.1 (Merged Knowledge). In general, consider a system formed by a set C of

communicating agents and let A,B ∈ C be agents with knowledge bases NA =
(
TA,AA

)
with respect to the signature

(
NCA

, NRA
, NOA

)
and NB =

(
TB,AB

)
with respect to the

signature
(
NCB

, NRB
, NOB

)
, respectively. Then, the merged knowledge of agents A and B is

defined as NA t NB
def
=

(
TA ∪ TB, AA ∪ AB

)
with respect to the signature(

NCA
∪ NCB

, NRA
∪ NRB

, NOA
∪ NOB

)
. �

154

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Merging two knowledge bases consists of merging both the knowledge bases (i.e., the TBoxes

and the ABoxes), as well as the signatures for each knowledge base. In this way, the

merging operation results in a new knowledge base with respect to an extended signature.

The merging of the signatures is required to ensure that all of the axioms in the merged

knowledge base are defined.

A keen reader will identify that, in general, the merging of two knowledge bases according

to Definition 6.2.1 can raise many consistency issues with respect to the resulting knowl-

edge base. It is noted that this is indeed an issue, and while there exists techniques to

deal with such issues such as belief revision (e.g., [AGM85, DP97, FH94]), among others

(e.g., [CKNZ10, LT97, LSWH09, TO95]), in the interest of simplicity, it is assumed that

knowledge bases are always consistent and that no inconsistencies are introduced through

the merging of knowledge bases. The issue of knowledge base consistency can be consid-

ered an issue of knowledge management and is not addressed in this thesis. Specifically, this

thesis, and more precisely this section, aims to merge the knowledge component of a commu-

nication scheme with the knowledge base of a system agent. Since a communication scheme

is typically constructed by system agents wishing to establish a communication channel, it

is reasonable to assume that the agents would not define a communication scheme that is

inconsistent with and contradictory to their existing knowledge.

Suppose that the specification of a communication scheme and a system of communicating

agents with two agents identified as the sender S and the receiver R for the covert commu-

nication are provided. The knowledge of the sending and receiving agents are amended by

applying Definition 6.2.1 using the knowledge component of the communication scheme NCS

and the knowledge of the sender NS and the receiver NR, respectively. This involves com-

puting the merged knowledge of the communication scheme and the sender NCS t NS and

the merged knowledge of the communication scheme and the receiver NCS t NR, both of

which are defined with respect to the extended signature
(
N ′C , N

′
R, N

′
O

)
of which the knowl-

edge component of the communication scheme is also defined (see Figure 6.1). By merging

155

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the knowledge component of the communication scheme with the knowledge bases of the

sender and the receiver, amended knowledge bases for the sender and the receiver which in-

clude the additional knowledge required in order to represent and interpret the transmitted

messages according to the communication scheme are obtained.

Specification of Agent Knowledge After the Communication Scheme Merge

Consider the running example specified in Section 4.3.1 and the communication scheme

specified in Section 6.1.4. Let agent S be identified as the sender and let agent R be identified

as the receiver in the covert communication. The amended knowledge specifications for the

sender S and the receiver R are obtained by applying the proposed approach for amending

the initial knowledge of the sending and receiving agent by way of computing the respective

merged knowledge bases with the knowledge component of the given communication scheme

according to Definition 6.2.1. The amended knowledge specifications for the sender S and

the receiver R are shown in Figure 6.3 and Figure 6.4, respectively. Note that both of the

amended knowledge specifications for the sender and the receiver are defined with respect

to the extended signature
(
N ′C , N

′
R, N

′
O

)
shown in Figure 6.1.

As a result of merging the knowledge component NCS of the communication scheme with

the initial knowledge of the sender S and the receiver R, the amended knowledge specifi-

cations NCS
S and NCS

R for the sender S and receiver R are respectively obtained. Each of

these amended knowledge bases contain the additional terminological and assertional axioms

provided by the communication scheme and constructed in Steps 2 and 3 in Section 6.1.4.

Specifically, the knowledge bases for the sender S and the receiver R now explicitly contain

the command-to-bit-string mapping defined by the communication scheme. In this way,

agent S and agent R have gained the knowledge required to establish a distributed covert

channel based on the given communication scheme. It is important to note that the knowl-

edge base specifications of each other agent in the system of communicating agents in the

running example remain unchanged as a result to the amendments to agent knowledge.

156

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

NCS
S = NCS t N 0

S =
(
T CS
S ,ACS

S

)
where

T CS
S = T 0

S ∪ {Sent v Command, StrToCmd ≡ CmdToStr`,(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo}

ACS
S = A0

S ∪ {ConfVar
(
Y
)
,CmdToStr

(
ABOR, 00

)
,CmdToStr

(
ALLO, 01

)
,

CmdToStr
(
HELP, 10

)
,CmdToStr

(
NOOP, 11

)
}

Figure 6.3: Amended knowledge specification of the sending agent S resulting from the
communication scheme merge

NCS
R = NCS t N 0

R =
(
T CS
R ,ACS

R

)
where

T CS
R = T 0

R ∪ {Sent v Command, StrToCmd ≡ CmdToStr`,(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo}

ACS
R = A0

R ∪ {ConfVar
(
Y
)
,CmdToStr

(
ABOR, 00

)
,CmdToStr

(
ALLO, 01

)
,

CmdToStr
(
HELP, 10

)
,CmdToStr

(
NOOP, 11

)
}

Figure 6.4: Amended knowledge specification of the receiving agent R resulting from the
communication scheme merge

6.2.2 Amendments to Agent Behaviour

Consider a given communication scheme and system of communicating agents with two

agents identified to be the sender and the receiver of the covert communication. Recall

that the communication scheme provides a pre- and post-condition specification for the

behaviour of the sender and the receiver so that they may be able to perform the required

actions to establish and operate a distributed covert channel. In general, the behaviour of

the sender and the receiver in a system of communicating agents can be amended to be any

behaviour provided that it satisfies the pre- and post-condition specification given by the

communication scheme. There may be many behaviours that can satisfy the pre- and post-

condition specification for the sender and receiver behaviours. In practice, a programmer

can be relied on to perform this task and it may be possible that this task can be partially

automated, however, this point is not discussed any further in this thesis.

157

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d}, let S be a program, and let x be a variable in S such that:

S
def
= y := conf info;

if y = 00 −→ x := ABOR

dc y = 01 −→ x := ALLO

dc y = 10 −→ x := HELP

dc y = 11 −→ x := NOOP

fi;

and

∀(z | z ∈ S\{n, d} : (receive z) ◦ S = S ∧ λ
(
(receive z), S

)
= send x) ∧

n ◦ S = S ∧ λ
(
n, S
)

= n ∧ d ◦ S = abort ∧ λ
(
d,S
)

= d

Figure 6.5: Amended concrete behaviour specification of the sending agent S resulting from
the communication scheme merge

Specification of Agent Behaviour After the Communication Scheme Merge

Once again, consider the running example specified in Section 4.3.1 and the communication

scheme specified in Section 6.1.4. Figure 6.5 and Figure 6.6 provide one example of an

amended concrete behaviour specification satisfying the pre- and post-condition specifica-

tions of the behavioural component of the communication scheme for the sending agent S

and the receiving agent R in the given system of communicating agents, respectively. The

amendments are highlighted in the form of framed statements. It should be noted that it

is possible to formally verify that the programs representing the amended sending and re-

ceiving agent behaviours satisfy their corresponding pre- and post-condition specifications.

However, this verification requires that there exist a translation between the representations

of agent knowledge and the representation of agent behaviours (i.e., a translation between

description logic axioms and commands given in Dijkstra’s guarded command language).

This translation is not currently expressed as part of this thesis and remains a fundamental

aspect of the future work.

158

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Let S be generated using the operations of stimulus structures and the set {ips, abor ,
allo, help, noop, n, d} and let R be a program such that:

R
def
= since 1 := since 1 + delta;

since 2 := since 2 + delta;

since 3 := since 3 + delta;

since 4 := since 4 + delta;

n := cmd;

if n = 1 −→ (avg 1 = since 1/num 1; since 1 := 0; x := ABOR)

dc n = 2 −→ (avg 2 = since 2/num 2; since 2 := 0; x := ALLO)

dc n = 3 −→ (avg 3 = since 3/num 3; since 3 := 0; x := HELP)

dc n = 4 −→ (avg 4 = since 4/num 4; since 4 := 0; x := NOOP)

fi;

if x := ABOR −→ y := 00

dc x := ALLO −→ y := 01

dc x := HELP −→ y := 10

dc x := NOOP −→ y := 11

fi;

and

∀(z | z ∈ S\{n, d} : (receive z) ◦ R = R ∧ λ
(
(receive z),R

)
= n) ∧

n ◦ R = R ∧ λ
(
n,R

)
= n ∧ d ◦ R = abort ∧ λ

(
d,R

)
= d

Figure 6.6: Amended concrete behaviour specification of the receiving agent R resulting
from the communication scheme merge

The amendments to the behaviour of an agent as a result of merging a communication

scheme into the specification of the system of communicating agents very often increases

the determinism in the behaviour of the amended agents. This is best exemplified by

examining the initial (see Figure 4.4) and the amended (see Figure 6.5) concrete behaviour

specifications of the sending agent S in the running example. Initially, the behaviour of

the sender S is completely non-deterministic allowing the sender to choose, at will, which

FTP command to issue in order to implement the idle prevention scheme. However, after

159

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the amendments imposed by merging the communication scheme into the specification, the

behaviour of the sender S has become deterministic. The choice of which FTP command

to issue is now completely determined by the confidential information that agent S wishes

to leak. The introduction of the communication scheme causes the sender S to behave in a

more deliberate way. Similar modifications and increases in determinism can also be seen

in the amendments to the behaviour of the receiver R.

By examining the amendments to the behaviour of the sender S and the receiver R, it can

be seen that the complexity of the pre-condition is related to the amount of modification

that needs to be done to the agent behaviour. It is easy to see that the simpler the pre-

condition, the less modification will be required in the specification of the behaviour of the

agent to satisfy it. In the context of establishing covert channels, this notion of simple

pre-conditions can indicate the potential for a “good” covert channel in the sense that it

indicates the requirement for minimal modification to the agent specification. This can be

related to the inability to detect such modifications.

6.2.3 Applications of Merging Communication Schemes into Systems of

Communicating Agents

The proposed approach for merging communication schemes into specifications of systems

of communicating agents has two complementary applications. The first application is

related to the detection of covert channel vulnerabilities in the specifications of systems

of communicating agents. The second application is related to the construction of covert

communication schemes and mounting covert channels in systems of communicating agents.

Detecting Covert Channels

The proposed approach for merging communication schemes into the specification of sys-

tems of communicating agents can be used to analyse systems of communicating agents for

their ability to harbour some types of covert channels. Suppose that the specification of a

160

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

system of communicating agents is given. Using the proposed approach, a number of covert

communication schemes that may be used in the given system can be articulated and each of

these covert channels can be mounted in the system by merging the communication schemes

into system specification. Once the amended specifications of the system of communicating

agents have been obtained, techniques such as those found in [JKS11, JKS14] can be used

to determine if it is possible for any of the mounted covert channels to be used to leak con-

fidential information from a source agent to a sink agent in the system. Furthermore, the

proposed approach allows for the development and combination of multiple communication

schemes. In this way, the proposed approach allows for the realisation of the perception of

covert channel communication provided in [JK11b] where some number of covert channels

based on different communication schemes can be combined in order to create a complex

covert communication mechanism for the purpose of leaking confidential information.

Constructing Covert Channels

Alternatively, the proposed approach for merging communication schemes into the speci-

fication of systems of communicating agents can be used to analyse existing networks of

agents for ways in which covert communication schemes can be devised and mounted in

the system. The idea is that covert communication schemes can be modularly designed

and developed based on a given specification of a system of communicating agents. Then,

a covert channel can be mounted in the system by choosing a sending and receiving agent

and using the proposed approach to merge the developed covert communication scheme

with the existing system specification. In this way, a new system specification can be ob-

tained such that a covert channel based on the developed covert communication scheme

can be established and used. Then, the new system specification can be analysed for the

effectiveness of the mounted covert channel by measuring some qualities of covert channels

such as stealth, robustness, and capacity, among others. This can be done using various

existing techniques, metrics, and approaches, such as those based on information theoretical

161

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

concepts (e.g., [CT91]), for example. In this way, the proposed approach can be used as a

tool for constructing and testing the quality of covert communication schemes with respect

to systems of communicating agents at the early stages of system development, particularly

at the system specification level.

6.2.4 Discussion and Related Work

The proposed approach illustrates how communication schemes and covert channels can

be designed early in the development of a system of communicating agents, particularly,

at the system specification level. The proposed approach also provides a way of analysing

the specification of a system of communicating agents for potential vulnerabilities to covert

channels as it gives a way to specify and inject potential communication schemes into

the specification of the system of communicating agents and to determine whether the

amended specification of the system of communicating agents can harbour a covert channel

for the purpose of leaking confidential information. After closely examining the literature, a

systematic approach for merging communication schemes into the specification of systems of

communicating agents does not currently exist. Such an approach can aid in the enhanced

understanding, construction, and detection of covert channels in systems of communicating

agents.

6.3 Evolution of Agent Knowledge

This section outlines a set of guidelines towards the development of a framework for express-

ing the evolution of agent knowledge through the execution of concrete agent behaviours.

The execution of the program statements in the concrete behaviour of an agent in a given

system of communicating agents correspond to insertions and updates in agent knowledge

bases. It is through these insertions and updates that the knowledge of an agent evolves

162

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

during system execution. The proposed guidelines and framework are based on the repre-

sentation of agent knowledge described in Section 4.3.1 and the concrete behaviour speci-

fication of a system of communicating agents specified using Dijkstra’s guarded command

language [Dij75] given in Section 4.2.6.

6.3.1 Assumptions

When formulating the evolution of agent knowledge in systems of communicating agents,

a number of basic assumptions are made in order to simplify the formulation. First, it is

assumed that all agents are honest . This means that an agent can only communicate what it

knows (i.e., there are no misinforming agents). Therefore, under this assumption, an agent A

cannot learn something from agent B which agent B did not know. A similar assumption

is made in [PP05]. Second, it is assumed that agents can only learn information from

communication. This means that an agent cannot remove information from its knowledge

base; it can only be inserted or updated. This assumption is made in order to simplify the

formulation. Because of this assumption, the proposed guidelines and framework are only

able to handle a subset of possible communication schemes. In future work, it is expected

that this assumption can be lifted to allow for the handling of notions of “forgetting”

(e.g., [Wan11, WWTP10, ZZ09]), however, this is not addressed in this thesis. When

communicating agents learn new information, it is possible that the assimilation of new

information leads to a new updated state which is inconsistent with respect to the existing

information. This is to say that through communication, it is possible that agents learn

contradicting information. While there exists techniques to deal with such issues such as

belief revision (e.g., [AGM85, DP97, FH94]) and others (e.g., [CKNZ10, LT97, LSWH09,

TO95]), in the interest of simplicity, it is assumed that knowledge bases are always consistent

and that no inconsistencies are introduced through communication. The issue of knowledge

base consistency can be considered an issue of knowledge management and is not dealt with

in this thesis. It is also assumed that there is memory and naming consistency for shared

163

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

variables. This means that variables with the same name have the same interpretation

(i.e., they point to the same memory location). This assumption is required to simplify

the evolution of agent knowledge through communication via shared environments. Finally,

throughout the formulation of the evolution of agent knowledge, it is assumed that the

signature of the description logic is such that all terminological and assertional axioms that

are being inserted or updated in the knowledge bases are well-formed axioms over that

signature.

6.3.2 Operations for Updating Agent Knowledge

As part of the development of a framework for evolving the knowledge of agents in systems

of communicating agents, a number of operations are defined. In what follows, consider a

system formed by a set C of communicating agents and for each agent A ∈ C, let NA be its

knowledge base.

• getConcepts
(
X,NA

)
= {C | NA |= C

(
X
)
}

This operation takes an object and an agent knowledge base and returns a set of all

of the concepts to which the object is known to belong by the agent.

• insert
(
ϕ,NA

)
= {ϕ} ∪ NA

This operation inserts the axiom ϕ into the agent knowledge base NA.

• For some V ∈ NO:

∀
(
A | A ∈ C : NA |= Variable

(
Y,V

)
=⇒

update
(
Variable

(
Y,X

)
, C
)

= (NA\{Variable
(
Y,V

)
}) ∪ {Variable

(
Y,X

)
}
)

This operation updates each knowledge base NA for all agents A ∈ C that have knowl-

edge of the variable Y in the given system of communicating agents with the assertional

axiom Variable
(
Y,X

)
. This operation ensures that at most one assertional axiom for

the role Variable with the domain element Y is included in each knowledge base NA.

Furthermore, this operation ensures that the value of a variable is the same for each

164

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agent that shares the variable. This arises from the assumption of shared variable

naming and memory consistency.

• For some V ∈ NO:(
NA |= Sent

(
V
)

=⇒ updateSent
(
X,NA

)
= (NA\{Sent

(
V
)
}) ∪ {Sent

(
X
)
} ∪

{Sent v C | C ∈ getConcepts
(
X,NA

)
}
)
∨(

NA 6|= Sent
(
V
)

=⇒ updateSent
(
X,NA

)
= insert

(
Sent

(
X
)
,NA

))
This operation updates the agent knowledge base NA with the concept inclusions

and assertional axioms associated with the sending of the object X. This operation

uses the special concept Sent and ensures that at most one assertional axiom for the

concept Sent is included in the knowledge base NA.

• For some V ∈ NO:(
NA |= Received

(
V
)

=⇒ updateReceived
(
Y,NA

)
= (NA\{Received

(
V
)
}) ∪

{Received
(
Y
)
} ∪ {Received v C | C ∈ getConcepts

(
Y,NA

)
}
)
∨(

NA 6|= Received
(
V
)

=⇒ updateReceived
(
Y,NA

)
= insert

(
Received

(
Y
)
,NA

))
This operation updates the agent knowledge base NA with the concept inclusions and

assertional axioms associated with the receipt of the object Y. This operation uses

the special concept Received and ensures that at most one assertional axiom for the

concept Received is included in the knowledge base NA.

6.3.3 Evolving Agent Knowledge Through the Execution of Concrete

Agent Behaviours

Let evolve denote the result of updating the knowledge base NA by the execution of a

concrete behaviour (program) S specified using Dijkstra’s guarded command language. The

result of evolve is an updated knowledge base for the given agent or for multiple agents in

the case of an assignment to a variable that is shared with other agents in the system.

165

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The evolve relation is defined by induction on program statements as follows where S1, S2,

and Sn are program statements and G1, G2, and Gn are guards:

evolve(abort,NA) = ∅

evolve(skip,NA) = NA

evolve(v := E,NA) = update
(
Variable

(
V,E

)
, C
)

evolve(IF,NA) =



evolve(S0,NA) if NA |= G0

evolve(S1,NA) if NA |= G1

. . .

evolve(Sn,NA) if NA |= Gn

evolve(abort,NA) otherwise

evolve(DO,NA) =



evolve(DO, evolve(S0,NA)) if NA |= G0

evolve(DO, evolve(S1,NA)) if NA |= G1

. . .

evolve(DO, evolve(Sn,NA)) if NA |= Gn

evolve(skip,NA) otherwise

evolve(S1 ;S2,NA) = evolve(S2, evolve(S1,NA))

evolve(send x,NA) = updateSent
(
X,NA

)
evolve(receive y,NA) = updateReceived

(
Y,NA

)
where

IF
def
= if G0 −→ S0 dc G1 −→ S1 . . . dc Gn −→ Sn fi

DO
def
= do G0 −→ S0 dc G1 −→ S1 . . . dc Gn −→ Sn od

166

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

According to the above definition, if the concrete behaviour of an agent is abort (inactive),

then the knowledge is empty after the execution. This demonstrates that a program that

behaves as an inactive agent has no knowledge. If the concrete behaviour of an agent is skip

(idle), then no changes are made to the knowledge base of the agent during the execution.

Suppose that the concrete behaviour of an agent is an assignment statement. Then, the

knowledge base of all agents in the system of communicating agents which know about the

variable that is being assigned to are updated by replacing the existing assertional axiom

for the given defined variable with a new assertional axiom relating the new value to the

variable. In this way, when a variable is modified by one agent in the system, then any

agent which shares that variable has their knowledge updated as well. In each of these

cases, there may only exist one assertional axiom pertaining to the role Variable with the

same domain element (i.e., the variable name) in any given knowledge base. For instance,

assume that there is a variable x that undergoes the following assignments x := 4; x := 5.

After the execution of these assignment statements, the ABoxes of the agents that know

the variable x contain only {Variable
(
X, 5

)
} and not {Variable

(
X, 4

)
,Variable

(
X, 5

)
}. If the

concrete behaviour of an agent is a guarded selection statement, then the knowledge of the

agent evolves in the way in which each statement for which the guard is true evolves. In this

way, the definition follows the semantics of Dijkstra’s guarded command language in that

any statement for which the corresponding guard evaluates to true is non-deterministically

selected, the corresponding statement is executed, and the knowledge of the agent evolves

accordingly. The guards must be knowledge assertions to ensure that the behaviour proceeds

only based on the knowledge of the agent, consistent with the assumption that an agent

can only communicate what it knows. Additionally, in the case that none of the guards

evaluate to true, then the execution of the selection aborts and the knowledge of the agent

evolves in the same way as an abort statement (i.e., the knowledge becomes empty). A

similar evolution occurs in the case where the concrete behaviour of an agent is a repetition

statement. In this case, the knowledge of the agent evolves in the way in which each

167

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

statement for which the guard is true evolves and it repeats this evolution until all of the

guards evaluate to false. When none of the guards evaluate to true, the resulting execution

proceeds as a skip statement (i.e., the knowledge of the agent does not change). If the

concrete behaviour of an agent is a sequential composition of program statements (S1 ;S2),

then the knowledge of the agent evolves according to the statements represented by S1 and

then according to the statements represented by S2. Finally, consider the case where the

concrete behaviour of an agent is a send or a receive command denoting a message-passing

communication. Generally speaking, with respect to the description logic signature for the

given system, send x corresponds to the sending of some object X ∈ NO and receive y

corresponds to the receipt of some object Y ∈ NO. In this way, if the concrete behaviour of

an agent is a command send x or receive y, then the knowledge of the agent is updated with

terminological axioms according to the type of objects that each agent can send (i.e., X)

or receive (i.e., Y) using concept inclusions and the special concepts Sent and Received,

respectively. For example, if an agent A were to have a concrete behaviour send abor

corresponding to the issuance of the stimulus abor and where NA |= Command
(
ABOR

)
, then

after the execution of this command, the knowledge contains the concept inclusion Sent v

Command to indicate that agent A sends commands, and the assertional axiom Sent
(
ABOR

)
to indicate that the object ABOR, representing the actual ABOR command, is indeed

the command that has been sent. The sending and receiving of an object arises from

the stimulus-response specification of agents in a system of communicating agents (see

Section 4.2.6). Specifically, when the stimulus-response specification of an agent specifies

that λ(s, S) = x for some stimulus s ∈ S and sender behaviour S, there is a corresponding

concrete behaviour send x for that agent. Similarly, when the stimulus-response specification

of an agent specifies that y ◦ R = a for some behaviour a ∈ K and receiver behaviour R,

there is a corresponding concrete behaviour receive y for that agent. In this way, the send

and receive commands are similar to CSP’s ! and ? operations [Hoa78a] and can be used

for synchronisation.

168

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Using the proposed framework and the evolve relation, the concrete behaviour of an agent A

in a system of communicating agents can be specified as a program using Dijkstra’s guarded

command language which can be mapped to knowledge assertions during execution. Equiv-

alently, the concrete behaviour of agent A can be specified as a sequence of knowledge

assertions that an agent learns at each step in the sequence. The mapping provided above

shows how the knowledge of each agent evolves through the execution of its concrete be-

haviours. It also shows the interplay between the behaviour and knowledge of each agent

in a given system of communicating agents. In some sense, the evolve relation updates the

state space of each agent as a result of the execution of concrete behaviours.

6.3.4 Illustrative Example of the Evolution of Agent Knowledge

Consider the amended concrete behaviour specifications for agent S and agent R as shown in

Figure 6.5 and Figure 6.6, respectively. Also, consider the concrete behaviour specification

of agent P as shown in Figure 4.5. Moreover, assume the merged knowledge specifications

for agent S and agent R given in Figure 6.3 and Figure 6.4, as well as the initial knowledge

specification for agent P given in Figure 4.12.

For the sake of illustration and with respect to the system of communicating agents from

Section 4.1, let the value of the variable time be 3 when the concrete behaviours of each

agent are executed
(
i.e., Variable

(
TIME, 3

)
for each agent

)
. Then, by applying the evolution

of agent knowledge for the program (S ; P ; R), the knowledge bases shown in Figures 6.7

to 6.9 are obtained.

6.3.5 Discussion and Related Work

The evolution of agent knowledge allows for agent knowledge to be updated as a result

of the execution of the concrete behaviour of agents. A similar notion has been presented

in [SKJ09b, SKJ09a] where an amended version of Hoare logic was used to verify information

flow in multi-agent systems. The evolution of agent knowledge presented in this section

169

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

NS =
(
TS,AS

)
where

TS =
{

ConfInfo v BitString,EnumToCmd ≡ CmdToEnum`, StrToCmd ≡ CmdToStr`,

Sent v Command,
(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo

}
AS = CMDS ∪ ENUMS ∪ BITS ∪ AVGS ∪ MAPS ∪{

Variable
(
NUM 1, 0

)
,Variable

(
NUM 2, 1

)
,Variable

(
NUM 3, 0

)
,Variable

(
NUM 4, 0

)
,

Variable
(
TIME, 3

)
,Variable

(
DELTA, 3

)
,ConfInfo

(
01
)
,ConfVar

(
Y
)
,

CmdToStr
(
ABOR, 00

)
,CmdToStr

(
ALLO, 01

)
,CmdToStr

(
HELP, 10

)
,

CmdToStr
(
NOOP, 11

)
,Variable

(
Y, 01

)
,Variable

(
X,ALLO

)
,Sent

(
ALLO

)}
Figure 6.7: Evolved knowledge specification of agent S resulting from the simulation of its
amended concrete behaviour

NP =
(
TP,AP

)
where

TP =
{

EnumToCmd ≡ CmdToEnum`,Received v Command
}

AP = CMDS ∪ ENUMS ∪ BITS ∪ AVGS ∪ MAPS ∪{
Variable

(
NUM 1, 0

)
,Variable

(
NUM 2, 1

)
,Variable

(
NUM 3, 0

)
,Variable

(
NUM 4, 0

)
,

Variable
(
TIME, 3

)
,Variable

(
DELTA, 3

)
,Variable

(
CMD, 2

)
,

Variable
(
X,ALLO

)
,Received

(
ALLO

)}
Figure 6.8: Evolved knowledge specification of agent P resulting from the simulation of its
concrete behaviour

has a similar spirit in that it is meant to serve as a means for showing how agents learn

new information resulting from the execution of their behaviours and their communication

with other system agents. Currently, this evolution of agent knowledge is done through a

manual simulation of the agent behaviour and application of the evolve relation presented

in Section 6.3.3. A push towards automating this process is an essential part of the future

work with regard to the evolution of agent knowledge.

170

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

NR =
(
TR,AR

)
where

TR =
{

EnumToCmd ≡ CmdToEnum`,StrToCmd ≡ CmdToStr`, Sent v Command,(
(∃ Variable` .ConfVar) u BitString

)
v ConfInfo

}
AR = CMDS ∪ ENUMS ∪ BITS ∪ MAPS ∪{

Variable
(
NUM 1, 0

)
,Variable

(
NUM 2, 1

)
,Variable

(
NUM 3, 0

)
,Variable

(
NUM 4, 0

)
,

Variable
(
AVG 1, 0

)
,Variable

(
AVG 2, 3

)
,Variable

(
AVG 3, 0

)
,Variable

(
AVG 4, 0

)
,

Variable
(
SINCE 1, 3

)
,Variable

(
SINCE 2, 0

)
,Variable

(
SINCE 3, 3

)
,

Variable
(
SINCE 4, 3

)
,Variable

(
TIME, 3

)
,Variable

(
DELTA, 3

)
,Variable

(
CMD, 2

)
,

ConfVar
(
Y
)
,CmdToStr

(
ABOR, 00

)
,CmdToStr

(
ALLO, 01

)
,CmdToStr

(
HELP, 10

)
,

CmdToStr
(
NOOP, 11

)
,Variable

(
X,ALLO

)
,Variable

(
Y, 01

)}
Figure 6.9: Evolved knowledge specification of agent R resulting from the simulation of its
amended concrete behaviour

6.4 Verification of Confidential Information Leakage

The mathematical framework presented throughout this thesis can be used to verify if there

is a possibility for confidential information leakage via distributed covert channels in a

system of communicating agents. This section proposes guidelines for determining whether

some agents can leak confidential information to other agents in a system of communicating

agents by analysing the system for the necessary conditions for the existence of distributed

covert channels and determining if an agent can come to know some confidential information

that they are not authorised to know according to the system security policy.

In what follows, consider a system formed by a set C of communicating agents and a

set of confidential information ΦC which may consist of assertional axioms, terminological

axioms, or both. The existence of a potential confidential information leakage is verified by

performing the following steps.

171

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Step 1: Identify Possible Sources of Confidential Information Leakage

The first step towards determining whether there exists a potential confidential information

leakage via distributed covert channels in a system of communicating agents is to identify

all of the possible sources of confidential information leakage and identifying whether there

exists a constraint on communication in the given system of communicating agents. Recall

from Section 4.3.1, that the initial knowledge of each agent A ∈ C (denoted N 0
A) is specified

using the description logic ALB. An agent A ∈ C is a potential source of direct confidential

information leakage if and only if agent A initially knows, as a fact or by deduction, some

confidential information
(
i.e., A is a source ⇐⇒ ∃(ϕ | ϕ ∈ ΦC : N 0

A |= ϕ)
)
. Any

agent that has an initial knowledge of some confidential information can be a source of

direct confidential information leakage. The idea is that only those agents that know some

confidential information have an ability to leak that information. By considering only the

potential sources of confidential information leakage, restrictions do not need to be placed

on those agents which do not have the ability to leak any confidential information.

Using the notion of potential sources of confidential information leakage, a formulation of

the constraint on communication condition for the existence of distributed covert channels

is obtained. A system formed by a set C of communicating agents has a constraint on

communication if and only if ∃
(
A | A ∈ C : A is a source

)
. In essence, if a system of

communicating agents contains at least one potential source of direct confidential informa-

tion leakage, then there is a constraint on the communication of the agents in the system.

The satisfaction of the constraint on communication condition indicates that there exists a

constraint on the communication of some agents in a given system of communicating agents.

This means that it is then necessary to determine whether there is any potential means for

communicating this confidential information from a source agent to some other agent in

the system that is not permitted to know this information according to the system security

policy. If there is no constraint on communication in the given system of communicating

172

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

agents then there is no possibility for confidential information leakage via distributed covert

channels.

Consider the running example system of communicating agents from Section 4.1. According

to the security policy, the confidential information is given as the set ΦC = {ConfInfo
(
01
)
}.

Therefore, with respect to the description logic specifications for the initial knowledge base

of each agent in the given system of communicating agents shown in Figures 4.10 to 4.14 in

Section 4.3.1, it is easy to see that only agent S knows any confidential information in the

system
(
i.e., N 0

S |= ConfInfo
(
01
))

. Therefore, agent S is a potential source of confidential

information leakage and it follows directly that there is a constraint on communication in the

given system of communicating agents. Furthermore, this can be done automatically using

the SPASS theorem prover since it allows for the verification of the satisfiability of ALB

formulae with respect to a given agent knowledge base (see Definition 3.5.3). A detailed

usage of the SPASS theorem prover for verifying the constraint on communication condition

for the running example of the system of communicating agents described in Section 4.1 is

provided in Appendix D.

Step 2: Identify Possible Communication Paths and Information Sinks

The second step that is required for determining whether there exists a potential confidential

information leakage via distributed covert channels in a system of communicating agents is

to identify all of the possible communication paths from each source agent identified in Step 1

to each other agent in the system. This involves applying Definition 5.2.10 from Chapter 5 in

order to verify if there exists a potential for communication between each source agent and

each other agent in the system. Also, for each pair of agents for which there is a potential

for communication, all possible communication paths need to be identified. This can be

done automatically using the prototype tool as described in Section 5.3.1 and illustrated

in Appendix C.4. Again, if there is no potential for communication from any source agent

identified in Step 1 to any other agent in the given system of communicating agents, then

173

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

there is no possibility for confidential information leakage via distributed covert channels.

Once again, consider the running example system of communicating agents described in

Section 4.1. It was shown in Section 5.3 that there is indeed a potential for communication

from agent S to each other agent in the system except for the clock agent C. In particular,

there is a potential for communication from agent S to agent R (i.e., S + R). As an

example, one possible path for achieving this is given by
(
S→S P→E R

)
, though there are

indeed three other paths. In this case, agent R is considered to be an information sink.

Step 3: Simulate Communication Paths And Evolve Agent Knowledge

Utilising each of the communication paths that were identified in Step 2, the next step for

determining whether there exists a potential confidential information leakage via distributed

covert channels in a system of communicating agents is to simulate the execution of each

communication path and evolve the knowledge of each agent according to the procedure

outlined in Section 6.3.

Consider the running example system of communicating agents given in Section 4.1, the

amendments to the behaviours of the sending agent S and the receiving agent R (see

Section 6.2.2) with respect to the communication scheme, and the communication path(
S →S P →E R

)
that was identified in Step 2. The concrete behaviour corresponding

to
(
S ; P ; R

)
(see Figure 6.5, Figure 4.5, and Figure 6.6) is simulated and the knowledge of

each agent is evolved. The result of the evolution of the agent knowledge as the result of

the simulation of the communication path
(
S→S P→E R

)
is given in Figures 6.7 to 6.9 in

Section 6.3.

Step 4: Check for Security Policy Violations

The last step in verifying whether there exists a potential confidential information leakage

via distributed covert channels in a system of communicating agents is to determine whether

there is a violation of the system security policy after simulating the behaviour of the

174

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

system and evolving the agent knowledge accordingly. This involves checking whether any

information sink knows some information that it is not authorised to know according to

a given security policy. Suppose ΦC denotes the set of confidential information protected

by the system security policy. Then, this step involves verifying the following condition for

each evolved agent knowledge resulting from the simulation of each communication path in

Step 3:

∃(ϕ | ϕ ∈ ΦC : Nsink |= ϕ)

where sink represents the agent acting as an information sink for the given communication

path.

With regard to the running example system of communicating agents from Section 4.1,

the security policy states that the set ΦC = {ConfInfo
(
01
)
} constitutes the confidential

information for the system. Also, the security policy for this system explicitly forbids

any agent, other than agent S, from knowing or possessing this information. Therefore,

consider the evolved knowledge of agent R given in Figure 6.9 which corresponds to the

simulation of the communication path
(
S →S P →E R

)
that was identified in Step 2; in

this case sink = R. It turns out that the condition given above evaluates to true for this

case. This means that there is indeed a confidential information leakage resulting from this

communication path in the given system of communicating agents. Specifically, agent R

learns the confidential information indirectly from agent S. Furthermore, this result can

be automatically verified using the SPASS theorem prover similar to the verification of

the constraint on communication condition discussed in Step 1 (see Appendix D.2.6 for a

representation of the evolved knowledge of agent R shown in Figure 6.9 used to support the

automation of the proposed verification of confidential information leakage).

175

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

6.4.1 Discussion and Related Work

The order of the steps presented above is important from a computational perspective.

First, the constraint on communication condition needs to be verified in order to determine

whether there is a constraint on communication in the given system of communicating

agents. If no such constraint exists, then there is no need to verify the potential for commu-

nication condition since all agents would be allowed to communicate freely. Furthermore,

the constraint on communication condition allows for the development of a list of agents

that have confidential information in their respective data stores, thereby allowing them to

be the source agents in the potential for communication condition. By having this informa-

tion, it is not necessary to look for a potential for communication from agents which cannot

be source agents. This reduces the total number of possible patterns of communication and

communication paths to consider.

While there exists a wide variety of techniques which aim to detect and prevent covert

channel usage in systems of communicating agents (see Section 2.1.3 and Section 2.1.4 for

a survey of existing covert channel detection and prevention techniques), there does not

exist a technique, similar to that presented above, that takes into account the knowledge of

agents in the given system under consideration. Also, no existing technique examines the

problem of confidential information leakage by analysing the necessary conditions for covert

channel existence. In this way, the proposed guidelines can serve as the basis for further

developing approaches for mitigating covert channels in systems of communicating agents

and for protecting the confidentiality of information.

6.5 Conclusion

This chapter provided an outlook for the proposed mathematical framework for the mod-

elling, analysis, and mitigation of distributed covert channels in advancing the understand-

ing of covert channels by investigating further applications of the proposed framework. First,

176

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

this chapter articulated a representation for communication schemes based on description

logic knowledge bases and pre- and post-condition specifications. Then, it was shown how

a communication scheme can be derived from the initial specification of a system of com-

municating agents where the behaviour of each agent is specified using the mathematical

framework of Communicating Concurrent Kleene Algebra (C2KA) and the knowledge of

each agent is specified using the description logic ALB. After that, this chapter presented

an approach for systematically merging a communication scheme into a specification of a

system of communicating agents. The proposed approach results in an amended specifica-

tion of a system of communicating agents which allows for a designated sender and receiver

to establish and operate a distributed covert channel according to the given communication

scheme. In particular, the approach highlighted how covert channels can be designed and

deployed early in the development of a system of communicating agents. This chapter also

discussed an approach for the evolution of agent knowledge through the execution of con-

crete agent behaviours. Finally, a set of guidelines for using the mathematical framework

presented throughout this thesis to identify potential confidential information leakage via

distributed covert channels in systems of communicating agents was provided. This included

a formulation and verification approach for the constraint on communication condition for

the existence of distributed covert channels. It is important to note that this chapter merely

presented a number of guidelines and outlined a variety of approaches which point to ways

in which the proposed mathematical framework for the modelling, analysis, and mitigation

of distributed covert channels can be used to enhance the understanding of covert channels

in systems of communicating agents and to offer a means for identifying leakages of confi-

dential information. This chapter is meant to serve as the basis for future work with regard

to the mathematical framework presented in this thesis and requires further exploration,

formulation, and articulation.

177

Chapter 7

Discussion, Conclusion, and Future

Work

As discussed in Section 1.4.1, there is a lack of formal methods for dealing with distributed

covert channels in modern computer systems. In an effort to address this issue, this thesis

has presented a mathematical framework for the modelling, analysis, and mitigation of

distributed covert channels. This framework aids in advancing the current understanding

of covert channels. This chapter summarises and discusses the contributions of this thesis

and points to future research directions resulting from this work. Specifically, Section 7.1

highlights, discusses, and assesses the contributions that are made by this thesis. Section 7.2

suggests avenues for future work resulting from the proposed mathematical framework and

its applications and tools. Finally, Section 7.3 makes final comments and closing remarks.

7.1 Highlights of the Contributions

The contributions related to the proposed a mathematical framework for the modelling,

analysis, and mitigation of distributed covert channels include:

178

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(1) Necessary Conditions for the Existence of Distributed Covert Channels: This

thesis proposed a set of necessary conditions for the existence of distributed covert chan-

nels in systems of communicating agents. If there is a covert channel in a given system

of communicating agents, then the potential for communication condition and the con-

straint on communication condition are satisfied. These conditions aid in advancing

the current understanding of covert channels and serve as a basis for developing effec-

tive and efficient mechanisms for mitigating distributed covert channels in systems of

communicating agents.

(2) Specification of Concurrent and Communicating Agent Behaviour: This thesis

developed a mathematical framework called Communicating Concurrent Kleene Alge-

bra (C2KA). It an extension to the algebraic model of concurrent Kleene algebra (CKA)

first presented by Hoare et al. [HMSW09a, HMSW09b, HMSW10, HMSW11]. C2KA

allows for the concurrent and communicating behaviour of systems of communicating

agents with respect to the complexities of distributed covert channels to be captured. It

also allows for the separation of communicating and concurrent behaviour in a system

and its environment and for the expression of the influence of external stimuli on the

behaviours of a system of agents. C2KA builds atop well-established foundations and

inherits most, if not all, of the theory that has been previously developed with respect

to concurrent Kleene algebra. In this way, it gains the power and flexibility to specify all

that can be done with existing formalisms while allowing for expansion beyond existing

limitations. Specifically, C2KA allows for the handling of open systems with the notion

of external stimuli coming from outside the boundaries of the system being considered

whereas existing formalisms, such as CKA, work only within closed systems.

(3) Specification of Agent Knowledge: This thesis provided a representation of agent

knowledge using the description logic ALB [HS00]. The proposed representation gives

the power and flexibility to reason on agent knowledge at both the terminological or

179

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

conceptual level and at the assertional or object level. It also allows for the inference

of implicitly represented knowledge from the knowledge that is explicitly contained in

a knowledge base. Furthermore, the proposed description logic representation of agent

knowledge plays a role in studying the interplay between the knowledge and behaviour

of the agents in systems of communicating agents.

(4) Formulation and Verification of the Potential for Communication Condition:

This thesis proposed a formulation and verification approach for the potential for com-

munication condition for the existence of distributed covert channels. The formulation

is based on the mathematical framework of C2KA. The potential for communication

amongst agents was considered from two complementary perspectives. First, the poten-

tial for communication via external stimuli examined how stimuli generated from one

agent in the system are able to influence the behaviour of other agents in the system.

Second, the potential for communication via shared environments studied how commu-

nication can occur through shared events or variables and the dependencies between

them. Then, it was shown how the satisfaction of the potential for communication con-

dition could be formally verified for a system of communicating agents. The automation

of the proposed verification approach using a prototype tool was also discussed.

(5) Formulation and Verification of the Constraint on Communication Condi-

tion: This thesis proposed a formulation and verification approach for the constraint

on communication condition for the existence of distributed covert channels. The for-

mulation is based on description logic [BMNP03]. The use of description logic provided

the ability to reason about the knowledge of agents in terms of what an agent knows, or

can come to know. Then, it was shown how the satisfaction of the constraint on com-

munication condition could be formally verified for a given system of communicating

agents. The use of the SPASS theorem prover as a means for supporting the automation

of the proposed verification approach was also discussed.

180

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(6) Guidelines for Better Understanding Covert Channels and Attaining Sys-

tems Resilient to Their Existence and Use: This thesis presented a number of

guidelines resulting from applications of the proposed mathematical framework and

the formulation of the potential for communication and constraint on communication

conditions for the existence of distributed covert channels. First, a representation and

classification for communication schemes was given. This classification provides use-

ful information for anticipating the kind of amendments and reasoning that can be

performed when a communication scheme is incorporated into a system of communi-

cating agents for the purpose of leaking confidential information via distributed covert

channels. Then, a set of guidelines for modularly developing and merging covert commu-

nication schemes into systems of communicating agents was discussed. This approach

illustrates how covert channels can be designed early in the development of a system of

communicating agents, particularly at the system specification level. After that, a set

of guidelines for determining how the knowledge of agents in systems of communicating

agents evolve through the execution of concrete agent behaviours. Finally, an approach

for the verification of confidential information leakage in systems of communicating

agents via the establishment and operation of distributed covert channels was articu-

lated. The proposed approach is based on the verification of the necessary conditions

for the existence of distributed covert channels and the guidelines for evolving agent

knowledge through the execution of concrete agent behaviours. These contributions

provide the basis for a comprehensive covert channel analysis of systems of commu-

nicating agents and aid in the advancement of mechanisms for reducing the threat of

covert channels in systems of communicating agents. As a whole, these contributions

encompass part of a foundation for proposing guidelines for designing and implementing

systems of communicating agents that are resilient to covert channels. This contribution

merely scratches the surface in terms of what can be done with the proposed framework.

Much more investigation and effort is required to further articulate these ideas.

181

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

7.2 Future Work

The mathematical framework presented in this thesis can be extended in a number of

different directions. The following subsections describe possible extensions and further work

with respect to the proposed theory on which the proposed framework is based, applications

of the proposed framework, and tools for automating aspects of the proposed framework.

7.2.1 Theory: Models and Techniques

Concerning the proposed mathematical theory for capturing the behaviour and knowledge

of agents in systems of communicating agents, the following directions can be explored:

(1) An investigation into providing more, and potentially better models, of C2KA (and

even CKA) ought to be undertaken. Section 4.2.5 commented on a model for the

theory of C2KA. This discussion served the purpose of showing that there exists at

least one model for the proposed theory. However, it is acknowledged that there needs

to be a push towards finding other models for the theory. This has been left as future

work since the primary focus and goal of this thesis was not to develop a brand new

theory of concurrency and communication, but rather to investigate the formalisation

of the necessary conditions for the existence of distributed covert channels in systems

of communicating agents.

(2) Further investigation into the interplay between external stimuli and the parallel com-

position operator ∗ is needed. This can lead to a more accurate view of the concurrent

behaviours of agents in systems of communicating agents. It is also possible that a

further study of how external stimuli interact with the parallel composition of agent

behaviours can allow for the relaxation of the interleaving view of concurrency that is

currently taken in this thesis.

182

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(3) A further study into the relationship between the abstract and concrete specifications

of systems of communicating agents using C2KA is needed. For example, one can study

how different formal specification languages can be used in place of Dijkstra’s guarded

command language in the concrete behaviour specification of agents. This can allow for

different concrete representations of external stimuli, for example. Moreover, such an

investigation can allow for different ways to reason about programs in concrete terms.

(4) There are a number of directions that can be explored with regard to extending the

mathematical theory of C2KA. For example, the addition of timing information to

C2KA in order to attain a kind of timed C2KA would be useful, particularly in terms of

its applicability in handling covert timing channels. Similarly, an investigation towards

the development of a kind of probabilistic C2KA, where agents respond to particular

stimuli with some probability, would be of interest. Such an extension can provide a

rich formalism for developing applications of C2KA in domains such as social networks

and offer some power for making predications about agent behaviours.

(5) With regard to the representation and theory of agent knowledge, there are a number

of future research directions. For example, the relaxation of the assumptions, specifi-

cally those outlined in Section 6.3.1, such as allowing for the existence of misinforming

agents in systems of communicating agents or for the introduction of a notion of “for-

getting” where agents can remove information from their knowledge, can allow for the

representation of more kinds of systems of communicating agents and communication

schemes. Additionally, extensions which incorporate the introduction and handling of

inconsistencies in agent knowledge may provide a much more accurate representation

of real systems of communicating agents.

(6) The material presented in Chapter 6 can serve as the basis for many future research di-

rections. In particular, work can be done in order to further articulate the details of the

proposed approach for merging communication schemes into specifications of systems of

183

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

communicating agents. For example, this can involve an examination of ways in which

behaviours can be systematically or automatically generated such that they satisfy the

pre- and post-condition specifications outlined in the behaviour component of a com-

munication scheme. It can also involve a formal verification that the resulting amended

behaviours satisfy their pre- and post-condition specifications. As mentioned in Sec-

tion 6.2.2, this requires a translation between the representations of agent knowledge

and the representation of agent behaviours. Additionally, the approach for evolving the

knowledge of agents resulting from the execution of concrete agent behaviours needs

to be explored further. Also, a push towards automating the proposed approach for

verifying confidential information leakage via distributed covert channels in systems of

communicating agents needs to be made.

7.2.2 Applications

With respect to the possible applications of the proposed mathematical framework, the

following directions can be investigated further:

(1) The range of the application domain of the mathematical framework of Communicating

Concurrent Kleene Algebra (C2KA) can explored further. Such domains may include

distributed system architectures where there are a number of communicating agents

with complex behaviours such as social networks, mobile device platforms, cloud com-

puting, wireless sensor networks, and discrete event systems and supervisory control.

This can lead to new and innovative ways to think and reason about such systems.

For example, by modelling social networks using C2KA, it may be possible to make

predications about the behaviours of online communities which has been of interest in

the areas of marketing and targeted adverting.

184

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(2) A study of how the proposed mathematical framework can be used to support the

mitigation of covert channels in systems of communicating agents is another fruitful

future research opportunity. For example, the mitigation of covert channels in systems of

communicating agents can proceed by studying ways in which systems can be analysed

for the satisfaction of the necessary conditions for the existence of distributed covert

channels. The development of approaches for falsifying the necessary conditions for the

existence of distributed covert channels can lead to the elimination of the possibility for

the existence and usage of covert channels in systems of communicating agents. This

gives two fronts from which this can be addressed. First, ways in which the potential for

communication among system agents can be disrupted or eliminated by modifying and

restricting agent behaviours in a given system can be explored. Second, an examination

of how to restrict the knowledge of system agents that are on a communication path

so that they are unable to know any fragments of confidential information that can be

leaked via covert channels and then reconstituted by the receiver can be examined.

(3) An exploration into how the proposed mathematical framework could be used to reverse

engineer binaries for agents in systems of communicating agents for the purpose of

devising covert communication schemes in order to perform code injections to establish

and operate covert channels in the given system can be undertaken. This can lead to

new and interesting ways in which to think about protecting systems of communicating

agents from being exploited to harbour covert channels.

(4) Further investigations into how covert communication schemes can be developed such

that covert channels that exhibit a set of desirable properties, such as high stealth and

robustness can be explored. This can lead to new and innovative ways to construct

covert channels. In turn, this can be used in new applications of covert channels such

as key distribution in wireless sensor networks, for example.

185

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

7.2.3 Tools and Automation

This thesis developed a prototype tool to help in automating the specification of systems of

communicating agents and in verifying the satisfaction of the potential for communication

condition for the existence of distributed covert channels. Moreover, the SPASS theorem

prover [TST14] has been used in order to support the automation of the verification of

the constraint on communication condition for the existence of distributed covert channels.

There are a number of ways in which these tools can be enhanced and extended to provide

a more comprehensive tool for analysing systems of communicating agents for the existence

and usage of distributed covert channels.

(1) The prototype tool can be enhanced by further testing and analysing its design, es-

pecially with respect to the use of the Maude term rewriting system [CDE+03]. In

particular, further work into investigating ways in which the tool can be optimised to

provide results in a more timely manner is required.

(2) The prototype tool can be extended by incorporating the functionality to support the

automation of the approach for merging communication schemes into specifications

of systems of communicating agents, as well as the approach for detecting confidential

information leakage in systems of communicating agents via distributed covert channels.

(3) It would be beneficial for the prototype tool to interface directly with the SPASS theorem

prover so that the analysis and verification of both of the necessary conditions for the

existence of distributed covert channels in systems of communicating agents could be

handled within the same tool.

186

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

7.3 Closing Remarks

The elimination of covert channels from systems of communicating agents is an ongoing

and ambitious endeavour, particularly with the respect to the increasing connectedness and

complexity of modern computer systems. According to [WJ06], human intervention is a

permanent part of every covert channel mitigation technique. The difference among the

techniques is how much each depends on the human being. Human intervention plays a

role on both sides of the covert channel fight. Analysts hoping to eliminate covert channels

from systems of communicating agents often must perform a significant amount of labour

in order to model, identify, analyse, and mitigate the use of covert channels, while users of

covert channels are constantly evolving ways in which covert channels can be established

and operated in order to evade detection and prevention techniques. The human aspect of

covert channels increases the challenge of eliminating them in systems of communicating

agents. In short, more attention needs to be placed on decreasing the amount of labour

required of covert channel analysts and the focus must be turned towards evolving and

enhancing the understanding of covert channels in order to keep up with the evolution of

covert channel users.

187

Appendix A

Detailed Proofs

This appendix contains the detailed proofs of the propositions and corollaries presented in

this thesis.

A.1 Detailed Proof of Proposition 3.2.2

For all a ∈ K, a ;© ≤ a *©.

a ;© ≤ a *©

⇐⇒ 〈 Right Identity of ; 〉

a ;© ; 1 ≤ a *©

⇐= 〈 Definition 3.1.6(3) for ; 〉

1 + a ; a *© ≤ a *©

⇐⇒ 〈 Definition 3.1.6(1) for *© 〉

1 + a ; a *© ≤ 1 + a ∗ a *©

⇐⇒ 〈 Proposition 3.2.1(3) 〉

true

188

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A.2 Detailed Proof of Proposition 4.2.1

Let
(
S,K

)
be a C2KA. For all a, b ∈ K and s, t ∈ S:

(1) a ≤K b ∧ s ≤S t =⇒ s ◦ a ≤K t ◦ b

s ◦ a ≤K t ◦ b

⇐⇒ 〈 Definition of ≤K 〉

s ◦ a+ t ◦ b = t ◦ b

⇐⇒ 〈 Hypothesis: s ≤S t 〉

s ◦ a+ (s⊕ t) ◦ b = t ◦ b

⇐⇒ 〈 Definition 3.1.8(2) for
(
SK,+

)
〉

s ◦ a+ s ◦ b+ t ◦ b = t ◦ b

⇐⇒ 〈 Definition 3.1.8(1) for
(
SK,+

)
〉

s ◦ (a+ b) + t ◦ b = t ◦ b

⇐⇒ 〈 Hypothesis: a ≤K b 〉

s ◦ b+ t ◦ b = t ◦ b

⇐⇒ 〈 Definition 3.1.8(2) for
(
SK,+

)
〉

(s⊕ t) ◦ b = t ◦ b

⇐⇒ 〈 Hypothesis: s ≤S t 〉

t ◦ b = t ◦ b

⇐⇒ 〈 Reflexivity of = 〉

true

189

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(2) a ≤K b ∧ s ≤S t =⇒ λ(s, a) ≤S λ(t, b)

λ(s, a) ≤S λ(t, b)

⇐⇒ 〈 Definition of ≤S 〉

λ(s, a)⊕ λ(t, b) = λ(t, b)

⇐⇒ 〈 Hypothesis: s ≤S t 〉

λ(s, a)⊕ λ
(
(s⊕ t), b

)
= λ(t, b)

⇐⇒ 〈 Definition 3.1.8(1) for
(
SK,⊕

)
〉

λ(s, a)⊕ λ(s, b)⊕ λ(t, b) = λ(t, b)

⇐⇒ 〈 Definition 3.1.8(2) for
(
SK,⊕

)
〉

λ
(
s, (a+ b)

)
⊕ λ(t, b) = t ◦ b

⇐⇒ 〈 Hypothesis: a ≤K b 〉

λ(s, b)⊕ λ(t, b) = λ(t, b)

⇐⇒ 〈 Definition 3.1.8(1) for
(
SK,⊕

)
〉

λ
(
(s⊕ t), b

)
= λ(t, b)

⇐⇒ 〈 Hypothesis: s ≤S t 〉

λ(t, b) = λ(t, b)

⇐⇒ 〈 Reflexivity of = 〉

true

190

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A.3 Detailed Proof of Corollary 4.2.2

Let
(
S,K

)
be a C2KA where the underlying CKA and stimulus structure are built up from

quantales. For all a, b ∈ K and s, t ∈ S:

(1) a ≤K b =⇒ s ◦ a ≤K s ◦ b

s ◦ a ≤K s ◦ b

⇐= 〈 Proposition 4.2.1(1) 〉

a ≤K b ∧ s ≤S s

⇐⇒ 〈 Hypothesis: a ≤K b & Reflexivity of ≤S 〉

true

(2) s ≤S t =⇒ s ◦ a ≤K t ◦ a

s ◦ a ≤K t ◦ a

⇐= 〈 Proposition 4.2.1(1) 〉

a ≤K a ∧ s ≤S t

⇐⇒ 〈 Hypothesis: s ≤S t & Reflexivity of ≤K 〉

true

(3) s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)

s ◦ (a ; b+ b ; a) ≤K s ◦ (a ∗ b)

⇐= 〈 Corollary 4.2.2(1) 〉

a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 3.2.1(1) & Proposition 3.2.1(3) & Idempotence of + 〉

true

191

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(4) s ◦ a ;© ≤K s ◦ a *©

s ◦ a ;© ≤K s ◦ a *©

⇐= 〈 Corollary 4.2.2(1) 〉

a ;© ≤K a *©

⇐⇒ 〈 Proposition 3.2.2 〉

true

(5) s ◦ a ;© = +(n | n ≥ 0 : s ◦ an) Recall the definition of a ;©:

a
;© = +(n | n ≥ 0 : an) (A.1)

where

a0
def
= 1

an+1 def
= an ; a

s ◦ a ;©

= 〈 Definition of a ;©: Equation (A.1) 〉

s ◦ +(n | n ≥ 0 : an)

= 〈 Definition 3.1.8(1) for
(
SK,+

)
〉

+(n | n ≥ 0 : s ◦ an)

192

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(6) s ≤S t =⇒ λ(s, a) ≤S λ(t, a)

λ(s, a) ≤S λ(t, a)

⇐= 〈 Proposition 4.2.1(2) 〉

a ≤K a ∧ s ≤S t

⇐⇒ 〈 Hypothesis: s ≤S t & Reflexivity of ≤K 〉

true

(7) a ≤K b =⇒ λ(s, a) ≤S λ(s, b)

λ(s, a) ≤S λ(s, b)

⇐= 〈 Proposition 4.2.1(2) 〉

a ≤K b ∧ s ≤S s

⇐⇒ 〈 Hypothesis: a ≤K b & Reflexivity of ≤S 〉

true

(8) λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))

λ(s, (a ; b+ b ; a)) ≤S λ(s, (a ∗ b))

⇐= 〈 Corollary 4.2.2(7) 〉

a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 3.2.1(1) & Proposition 3.2.1(3) & Idempotence of + 〉

true

193

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(9) λ(s, a ;©) ≤S λ(s, a *©)

λ(s, a ;©) ≤S λ(s, a *©)

⇐= 〈 Corollary 4.2.2(7) 〉

a ;© ≤K a *©

⇐⇒ 〈 Proposition 3.2.2 〉

true

(10) λ(s, a ;©) = ⊕(n | n ≥ 0 : λ(s, an))

λ(s, a ;©)

= 〈 Definition of a ;©: Equation (A.1) 〉

λ(s, +(n | n ≥ 0 : an))

= 〈 Definition 3.1.8(2) for
(
SK,⊕

)
〉

⊕(n | n ≥ 0 : s ◦ an)

A.4 Detailed Proof of Proposition 4.2.3

Let
(
S,K

)
be a C2KA. For all a, b ∈ K, a ≤K b =⇒ Orb(a) lK Orb(b).

Orb(a) lK Orb(b)

⇐⇒ 〈 Definition 4.2.5 〉

∀
(
x | x ∈ Orb(a) : ∃(y | y ∈ Orb(b) : x ≤K y)

)
⇐⇒ 〈 Trading for ∀ & Trading for ∃ 〉

194

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∀
(
x |: x ∈ Orb(a) =⇒ ∃(y |: y ∈ Orb(b) ∧ x ≤K y)

)
⇐⇒ 〈 Set Membership Axiom 〉

∀
(
x |: ∃(s | s ∈ S : s ◦ a = x) =⇒ ∃

(
y |: ∃(s | s ∈ S : s ◦ b = y) ∧ x ≤K y

))
⇐⇒ 〈 Distributivity of ∧ over ∃ 〉

∀
(
x |: ∃(s | s ∈ S : s ◦ a = x) =⇒ ∃

(
y |: ∃(s | s ∈ S : s ◦ b = y ∧ x ≤K y)

))
⇐⇒ 〈 Interchange of Dummies 〉

∀
(
x |: ∃(s | s ∈ S : s ◦ a = x) =⇒ ∃

(
s | s ∈ S : ∃(y |: s ◦ b = y ∧ x ≤K y)

))
⇐⇒ 〈 Trading for ∃ 〉

∀
(
x |: ∃(s | s ∈ S : s ◦ a = x) =⇒ ∃

(
s | s ∈ S : ∃(y | s ◦ b = y : x ≤K y)

))
⇐⇒ 〈 One-Point Rule 〉

∀
(
x |: ∃(s | s ∈ S : s ◦ a = x) =⇒ ∃

(
s | s ∈ S : x ≤K s ◦ b

))
⇐= 〈 Monotonic ∃-Body 〉

∀
(
x |: ∀(s | s ∈ S : s ◦ a = x =⇒ x ≤K s ◦ b)

)
⇐⇒ 〈 Definition of =⇒ 〉

∀
(
x |: ∀(s | s ∈ S : s ◦ a 6= x ∨ x ≤K s ◦ b)

)
⇐⇒ 〈 Definition of ≤K 〉

∀
(
x |: ∀(s | s ∈ S : s ◦ a 6= x ∨ x+ (s ◦ b) = s ◦ b)

)
⇐= 〈 Hypothesis: a ≤K b & Proposition 4.2.1(1) 〉

∀
(
x |: ∀(s | s ∈ S : true)

)
⇐⇒ 〈 ∀-True Body 〉

true

195

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A.5 Detailed Proof of Corollary 4.2.4

Let
(
S,K

)
be a C2KA. For all a, b, c, d ∈ K:

(1) Orb(a) lK Orb(a+ b)

Orb(a) lK Orb(a+ b)

⇐= 〈 Proposition 4.2.3 〉

a ≤K a+ b

⇐⇒ 〈 Definition of ≤K & Idempotence of + 〉

a+ b = a+ b

⇐⇒ 〈 Reflexivity of = 〉

true

(2) Orb((a ∗ b) ; (c ∗ d)) lK Orb((a ; c) ∗ (b ; d))

Orb((a ∗ b) ; (c ∗ d)) lK Orb((a ; c) ∗ (b ; d))

⇐= 〈 Proposition 4.2.3 〉

(a ∗ b) ; (c ∗ d) ≤K (a ; c) ∗ (b ; d)

⇐⇒ 〈 Proposition 3.2.1(2) 〉

true

196

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(3) Orb(a ; b) lK Orb(a ∗ b)

Orb(a ; b) lK Orb(a ∗ b)

⇐= 〈 Proposition 4.2.3 〉

a ; b ≤K a ∗ b

⇐⇒ 〈 Proposition 3.2.1(3) 〉

true

(4) Orb(a ; b+ b ; a) lK Orb(a ∗ b)

Orb(a ; b+ b ; a) lK Orb(a ∗ b)

⇐= 〈 Proposition 4.2.3 〉

a ; b+ b ; a ≤K a ∗ b

⇐⇒ 〈 Proposition 3.2.1(1) & Proposition 3.2.1(3) & Idempotence of + 〉

true

(5) Orb((a ∗ b) ; c) lK Orb(a ∗ (b ; c))

Orb((a ∗ b) ; c) lK Orb(a ∗ (b ; c))

⇐= 〈 Proposition 4.2.3 〉

(a ∗ b) ; c ≤K a ∗ (b ; c)

⇐⇒ 〈 Proposition 3.2.1(4) 〉

true

197

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(6) Orb(a ; (b ∗ c)) lK Orb((a ; b) ∗ c)

Orb(a ; (b ∗ c)) lK Orb((a ; b) ∗ c)

⇐= 〈 Proposition 4.2.3 〉

a ; (b ∗ c) ≤K (a ; b) ∗ c

⇐⇒ 〈 Proposition 3.2.1(5) 〉

true

(7) Orb(a ;©) lK Orb(a *©)

Orb(a ;©) lK Orb(a *©)

⇐= 〈 Proposition 4.2.3 〉

a ;© ≤K a *©

⇐⇒ 〈 Proposition 3.2.2 〉

true

(8) Orb(a) lK Orb(c) ∧ Orb(b) lK Orb(c) ⇐⇒ Orb(a) ∪ Orb(b) lK Orb(c)

Orb(a) ∪ Orb(b) lK Orb(c)

⇐⇒ 〈 Definition 4.2.5 〉

∀
(
x | x ∈ Orb(a) ∪ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y)

)
⇐⇒ 〈 Set Union Axiom 〉

∀
(
x | x ∈ Orb(a) ∨ x ∈ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y)

)
⇐⇒ 〈 Range Split 〉

198

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∀
(
x | x ∈ Orb(a) : ∃(y | y ∈ Orb(c) : x ≤K y)

)
∧

∀
(
x | x ∈ Orb(b) : ∃(y | y ∈ Orb(c) : x ≤K y)

)
⇐⇒ 〈 Definition 4.2.5 〉

Orb(a) lK Orb(c) ∧ Orb(b) lK Orb(c)

A.6 Detailed Proof of Proposition 4.2.5

For all a, b ∈ K, Stab(a) ∩ Stab(b) lS Stab(a+ b).

Stab(a) ∩ Stab(b) lS Stab(a+ b)

⇐⇒ 〈 Definition 4.2.5 for lS 〉

∀
(
x | x ∈ Stab(a) ∩ Stab(b) : ∃(y | y ∈ Stab(a+ b) : x ≤S y)

)
⇐⇒ 〈 Trading for ∃ 〉

∀
(
x | x ∈ Stab(a) ∩ Stab(b) : ∃(y |: y ∈ Stab(a+ b) ∧ x ≤K y)

)
⇐= 〈 ∃-Introduction 〉

∀
(
x | x ∈ Stab(a) ∩ Stab(b) : x ∈ Stab(a+ b) ∧ x ≤K x

)
⇐⇒ 〈 Trading for ∀ & Reflexivity of ≤K 〉

∀
(
x |: x ∈ Stab(a) ∩ Stab(b) =⇒ x ∈ Stab(a+ b)

)
⇐⇒ 〈 Definition 4.2.4(3) 〉

∀
(
x |: x ◦ a = a ∧ x ◦ b = b =⇒ x ◦ (a+ b) = a+ b

)
⇐⇒ 〈 Definition 3.1.8(1) for

(
SK,+

)
〉

∀
(
x |: true

)
⇐⇒ 〈 ∀-True Body 〉

true

199

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A.7 Detailed Proof of Proposition 4.2.6

Let
(
S,K

)
be a C2KA and let a, b ∈ K.

(1) 0 is a fixed point w.r.t. ◦.

0 is a fixed point

⇐⇒ 〈 Definition 4.2.4(4) 〉

∀(s | s ∈ S : s ◦ 0 = 0)

⇐⇒ 〈
(
SK,+

)
is zero-preserving (d ◦ a = 0) 〉

∀(s | s ∈ S : s ◦ (d ◦ a) = 0)

⇐⇒ 〈 Definition 3.1.8(3) for
(
SK,+

)
〉

∀(s | s ∈ S : (s� d) ◦ a = 0)

⇐⇒ 〈 d is multiplicatively absorbing in S (s� d = d) 〉

∀(s | s ∈ S : d ◦ a = 0)

⇐⇒ 〈
(
SK,+

)
is zero-preserving (d ◦ a = 0) 〉

∀(s | s ∈ S : true)

⇐⇒ 〈 ∀-True Body 〉

true

(2) a and b are fixed points =⇒ a+ b is a fixed point

a+ b is a fixed point

⇐⇒ 〈 Definition 4.2.4(4) 〉

200

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∀(s | s ∈ S\{d} : s ◦ (a+ b) = a+ b)

⇐⇒ 〈 Definition 3.1.8(1) for
(
SK,+

)
〉

∀(s | s ∈ S\{d} : s ◦ a+ s ◦ b = a+ b)

⇐= 〈 Hypothesis: a and b are fixed points 〉

∀(s | s ∈ S\{d} : a+ b = a+ b)

⇐⇒ 〈 Reflexivity of = 〉

∀(s | s ∈ S\{d} : true)

⇐⇒ 〈 ∀-True Body 〉

true

(3) a and b are fixed points =⇒ a ; b is a fixed point

a ; b is a fixed point

⇐⇒ 〈 Definition 4.2.4(4) 〉

∀(s | s ∈ S\{d} : s ◦ (a ; b) = a ; b)

⇐⇒ 〈 Definition 4.2.3(1) 〉

∀
(
s | s ∈ S\{d} : (s ◦ a) ;

(
λ(s, a) ◦ b

)
= a ; b

)
⇐= 〈 λ(s, a) ∈ S & Hypothesis: a and b are fixed points 〉

∀(s | s ∈ S\{d} : a ; b = a ; b)

⇐⇒ 〈 Reflexivity of = 〉

∀(s | s ∈ S\{d} : true)

⇐⇒ 〈 ∀-True Body 〉

true

201

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(4) a is a fixed point =⇒ a ;© is a fixed point

a ;© is a fixed point

⇐⇒ 〈 Definition 4.2.4(4) 〉

∀(s | s ∈ S\{d} : s ◦ a ;© = a ;©)

⇐⇒ 〈 Corollary 4.2.2(5) 〉

∀(s | s ∈ S\{d} : +(n | n ≥ 0 : s ◦ an) = a ;©)

⇐= 〈 Hypothesis: a is a fixed point & Definition 4.2.3(4) &

Proposition 4.2.6(3) 〉
∀(s | s ∈ S\{d} : +(n | n ≥ 0 : an) = a ;©)

⇐⇒ 〈 Definition of a ;©: Equation (A.1) 〉

∀(s | s ∈ S\{d} : a ;© = a ;©)

⇐⇒ 〈 Reflexivity of = 〉

∀(s | s ∈ S\{d} : true)

⇐⇒ 〈 ∀-True Body 〉

true

A.8 Detailed Proof of Proposition 4.2.7

Let a, b, c ∈ K be agent behaviours.

(1) a is a fixed point =⇒ ∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b))

∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : ¬(aC b))

⇐⇒ 〈 Definition 4.2.6 & Set Membership Axiom 〉

202

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∀(b | b ∈ K ∧ b 6= 0 ∧ b 6= a : b /∈ Orb(a))

⇐⇒ 〈 Trading for ∀ 〉

∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ b /∈ Orb(a))

⇐= 〈 Hypothesis: a is a fixed point =⇒ Orb(a) = {0, a} 〉

∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ b /∈ {0, a})

⇐⇒ 〈 b /∈ {0, a} ⇐⇒ (b 6= 0 ∧ b 6= a) 〉

∀(b | b ∈ K : (b 6= 0 ∧ b 6= a) =⇒ (b 6= 0 ∧ b 6= a))

⇐⇒ 〈 Reflexivity of =⇒ 〉

∀(b | b ∈ K : true)

⇐⇒ 〈 ∀-True Body 〉

true

(2) a ∼K b =⇒ aC b ∧ bC a

aC b ∧ bC a

⇐⇒ 〈 Definition 4.2.6 & Set Membership Axiom 〉

b ∈ Orb(a) ∧ a ∈ Orb(b)

⇐= 〈 Hypothesis: a ∼K b ⇐⇒ Orb(a) = Orb(b) 〉

b ∈ Orb(b) ∧ a ∈ Orb(a)

⇐⇒ 〈 Definition of Orb(b) & Definition of Orb(a) 〉

b ∈ {s ◦ b | s ∈ S} ∧ a ∈ {s ◦ a | s ∈ S}

⇐⇒ 〈 Set Membership Axiom 〉

203

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∃(s | s ∈ S : s ◦ b = b) ∧ ∃(s | s ∈ S : s ◦ a = a)

⇐= 〈 ∃-Introduction 〉

n ◦ b = b ∧ n ◦ a = a

⇐⇒ 〈
(
SK,+

)
is unitary (n ◦ a = a) & Idempotence of ∧ 〉

true

(3) a ∼K b =⇒ (aC c ⇐⇒ bC c)

a ∼K b =⇒ (aC c ⇐⇒ bC c)

⇐⇒ 〈 Mutual Implication 〉

a ∼K b =⇒
[
(aC c =⇒ bC c) ∧ (bC c =⇒ aC c)

]
⇐⇒ 〈 Distributivity of =⇒ over ∧ 〉[

a ∼K b =⇒ (aC c =⇒ bC c)
]
∧
[
a ∼K b =⇒ (bC c =⇒ aC c)

]
⇐⇒ 〈 Shunting 〉[

a ∼K b ∧ aC c =⇒ bC c
]
∧
[
a ∼K b ∧ bC c =⇒ aC c

]
⇐⇒ 〈 Definition of ∼K & Definition 4.2.6 〉[

Orb(a) = Orb(b) ∧ c ∈ Orb(a) =⇒ c ∈ Orb(b)
]
∧[

Orb(a) = Orb(b) ∧ c ∈ Orb(b) =⇒ c ∈ Orb(a)
]

⇐⇒ 〈 x ∈ A ⇐⇒ {x} ⊆ A 〉[
Orb(a) = Orb(b) ∧ {c} ⊆ Orb(a) =⇒ {c} ⊆ Orb(b)

]
∧[

Orb(a) = Orb(b) ∧ {c} ⊆ Orb(b) =⇒ {c} ⊆ Orb(a)
]

⇐⇒ 〈 Transitivity of ⊆ & Idempotence of ∧ 〉

true

204

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

A.9 Detailed Proof of Proposition 5.2.1

Assume that a system formed by a set C of communicating agents is a stimuli-disconnected

system and let agent C ∈ C be universally influential. Also, assume that there exists a

partition of C, X1 and X2, such that C ∈ X2. The proof is by contradiction.

C is stimuli-disconnected ∧ C is universally influential

⇐⇒ 〈 Definition of Stimuli-Disconnected (see Definition 5.2.4) 〉

∀(A,B | A ∈ X1 ∧ B ∈ X2 : ¬(A →+
S B) ∧ ¬(B →+

S A)) ∧ C is universally

influential

=⇒ 〈 Instantiation: B = C 〉

∀(A | A ∈ X1 : ¬(A→+
S C) ∧ ¬(C→+

S A)) ∧ C is universally influential

=⇒ 〈 Definition 5.2.6 〉

∀(A | A ∈ X1 : ¬(A→+
S C) ∧ false)

⇐⇒ 〈 Zero of ∧ & ∀-False Body 〉

false

A.10 Detailed Proof of Proposition 5.2.3

Let A 7→
〈
a
〉
, B 7→

〈
b
〉
, and C 7→

〈
c
〉

be agents in C.

(1) If B→S C then (A + B)→S C.

(A + B)→S C

⇐⇒ 〈 Definition 5.2.1 〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a+ b) : t ◦ c 6= c

)
⇐⇒ 〈 Distributivity of λ over + 〉

205

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a)⊕ λ(s, b) : t ◦ c 6= c

)
⇐⇒ 〈 Definition of ≤S 〉

∃
(
s, t | s, t ∈ Sb ∧ t⊕ λ(s, a)⊕ λ(s, b) = λ(s, a)⊕ λ(s, b) : t ◦ c 6= c

)
⇐⇒ 〈 Idempotence of ⊕ 〉

∃
(
s, t | s, t ∈ Sb ∧ λ(s, a)⊕ t⊕ λ(s, a)⊕ λ(s, b) = λ(s, a)⊕ λ(s, b) : t ◦ c 6= c

)
⇐⇒ 〈 Definition of ≤S 〉

∃
(
s, t | s, t ∈ Sb ∧ λ(s, a)⊕ t ≤S λ(s, a)⊕ λ(s, b) : t ◦ c 6= c

)
⇐= 〈 ⊕ is left-isotone with respect to ≤S 〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, b) : t ◦ c 6= c

)
⇐= 〈 Hypothesis: B→S C 〉

true

(2) If A→S B then A→S (B + C) if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬(t ◦ b ≤K b+ c ∧

t ◦ c ≤K b+ c)
)
.

A→S B =⇒ A→S (B + C)

⇐⇒ 〈 Definition 5.2.1 〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= b

)
=⇒

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ (b+ c) 6= (b+ c)

)
⇐= 〈 Monotonic ∃-Body 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= b =⇒ t ◦ (b+ c) 6= (b+ c)

)
⇐= 〈 Anti-monotonic ¬ 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ (b+ c) = (b+ c) =⇒ t ◦ b = b

)
⇐⇒ 〈 Definition 3.1.8(1) for

(
SK,+

)
〉

206

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : (t ◦ b+ t ◦ c) = (b+ c) =⇒ t ◦ b = b

)
⇐⇒ 〈 Idempotence of + 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : (t ◦ b+ t ◦ c) = (b+ c+ b+ c) =⇒ t ◦ b = b

)
⇐= 〈 Substitution of = by = 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

(
t◦b = (b+c) ∧ t◦c = (b+c) ∧ (t◦b+ t◦c) =

(t ◦ b+ t ◦ c)
)

=⇒ t ◦ b = b
)

⇐⇒ 〈 Reflexivity of = & Identity of ∧ & Definition of =⇒ 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬

(
t ◦ b = (b+ c) ∧ t ◦ c = (b+ c)

)
∨ t ◦ b = b

)
⇐⇒ 〈 De Morgan 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= (b+ c) ∨ t ◦ c 6= (b+ c) ∨ t ◦ b = b

)
⇐= 〈 Hypothesis: ∀

(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬(t ◦ b ≤K b + c ∧

t ◦ c ≤K b+ c)
)

& Weakening: P =⇒ P ∨ Q 〉

true

A.11 Detailed Proof of Proposition 5.4.1

Let A 7→
〈
a
〉
, B 7→

〈
b
〉
, and C 7→

〈
c
〉

be agents in C.

(1) If A B, then A (C ; B) if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ c 6=c ∨ λ(t, c) ◦ b 6=b

)
∨

aR (c ; b).

A B =⇒ A (C ; B)

⇐⇒ 〈 Definition 5.2.9 〉(
A→S B ∨ A→E B

)
=⇒

(
A→S (C ; B) ∨ A→E (C ; B)

)
⇐⇒ 〈 Definition 5.2.1 & Definition 5.2.7 〉

207

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[
∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= b

)
∨ aR b

]
=⇒[

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ (c ; b) 6= (c ; b)

)
∨ aR (c ; b)

]
⇐= 〈 Distributivity of ∨ over ∃ 〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ b 6= b ∨ aR b

)
=⇒

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ (c ; b) 6= (c ; b) ∨ aR (c ; b)

)
⇐= 〈 Monotonic ∃-Body 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

(
t ◦ b 6= b ∨ aR b

)
=⇒(

t ◦ (c ; b) 6= (c ; b) ∨ aR (c ; b)
))

⇐= 〈 Anti-monotonic ¬ 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

(
t ◦ (c ; b) = (c ; b) ∧ ¬(aR (c ; b))

)
=⇒(

t ◦ b = b ∧ ¬(aR b)
))

⇐⇒ 〈 Definition 4.2.3(1) 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

(
(t ◦ c) ;

(
λ(t, c) ◦ b

)
= (c ; b) ∧

¬(aR (c ; b))
)

=⇒
(
t ◦ b = b ∧ ¬(aR b)

))
⇐= 〈 Substitution of = by = 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

(
t◦c = c ∧ λ(t, c)◦b = b ∧ (t◦c) ;

(
λ(t, c)◦b

)
=

(t ◦ c) ;
(
λ(t, c) ◦ b

)
∧ ¬(aR (c ; b))

)
=⇒

(
t ◦ b = b ∧ ¬(aR b)

))
⇐⇒ 〈 Reflexivity of = & Identity of ∧ & Definition of =⇒ 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : ¬

(
t ◦ c = c ∧ λ(t, c) ◦ b = b ∧ ¬(aR (c ; b))

)
∨(

t ◦ b = b ∧ ¬(aR b)
))

⇐⇒ 〈 De Morgan 〉

∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ c 6= c ∨ λ(t, c) ◦ b 6= b ∨ aR (c ; b) ∨(

t ◦ b = b ∧ ¬(aR b)
))

⇐= 〈 Hypothesis:
(
∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ c 6=c ∨ λ(t, c) ◦ b 6=b

)
∨

aR (c ; b)
)

& Weakening: P =⇒ P ∨ Q 〉

true

208

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(2) If A B, then (A ; C) B if ∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : λ(t, c) = t

)
∨

(a ; c) R b.

(A ; C) B

⇐⇒ 〈 Definition 5.2.9 〉

(A ; C)→S B ∨ (A ; C)→E B

⇐⇒ 〈 Definition 5.2.1 & Definition 5.2.7 〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, (a ; c)) : t ◦ b 6= b

)
∨ (a ; c) R b

⇐⇒ 〈 Definition 3.1.8(3) for
(
SK,⊕

)
〉

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ

(
λ(s, a), c

)
: t ◦ b 6= b

)
∨ (a ; c) R b

⇐= 〈 Hypothesis:
(
∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : λ(t, c) = t

)
∨

(a ; c) R b
)

&
(
A B =⇒ ∃(t | t ∈ Sb : t ◦ b 6= b)

)
〉

true

A.12 Detailed Proof of Proposition 5.4.2

Let A + B such that ∃
(
C | C ∈ C : A C ∧ C B

)
.

(1) C′ 7→
〈
c ; d
〉

A C′ ∧ C′ B

⇐⇒ 〈 Substitution: C′ = (C ; D) where C 7→
〈
c
〉

and D 7→
〈
d
〉
〉

A (C ; D) ∧ (C ; D) B

⇐= 〈 Hypothesis: A C =⇒ A (C ; D) & Identity of ∧ 〉

209

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(C ; D) B

⇐= 〈 Hypothesis:
[
C B ∧

(
∀
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, c) : λ(t, d) = t

)
∨

(c ; d) R b
)]

& Proposition 5.4.1(2) 〉

true

(2) C′ 7→
〈
c+ d

〉
A C′ ∧ C′ B

⇐⇒ 〈 Substitution: C′ = (C + D) where C 7→
〈
c
〉

and D 7→
〈
d
〉
〉

A (C + D) ∧ (C + D) B

⇐⇒ 〈 Definition 5.2.9 〉[
A→S (C + D) ∨ A→E (C + D)

]
∧
[
(C + D)→S B ∨ (C + D)→E B

]
⇐= 〈 Hypothesis:

[
A C ∧ ∀

(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) :

¬(t ◦ c ≤K c + d ∧ t ◦ d ≤K c + d)
)]

& Proposition 5.2.3 &

Proposition 5.2.4 〉
true

(3) C′ 7→
〈
c ;©〉

A C′ ∧ C′ B

⇐⇒ 〈 Definition 5.2.9 〉(
A→S C′ ∨ A→E C′

)
∧
(
C′ →S B ∨ C′ →E B

)
⇐⇒ 〈 Definition 5.2.1 & Definition 5.2.7 〉

210

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(
∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, a) : t ◦ c ;© 6= c ;©) ∨ aR c ;©) ∧(

∃
(
s, t | s, t ∈ Sb ∧ t ≤S λ(s, c ;©) : t ◦ b 6= b

)
∨ c ;©R b

)
⇐= 〈 Definition of ;© & Proposition 5.4.2(2) 〉

true

(4) C′ 7→
〈
0
〉

A C′ ∧ C′ B

⇐⇒ 〈 Definition 5.2.9 〉(
A→S C′ ∨ A→E C′

)
∧
(
C′ →S B ∨ C′ →E B

)
⇐⇒ 〈 0 is a fixed point behaviour & Proposition 5.2.2 & ¬(aR 0) 〉(

false ∨ false
)
∧
(
C′ →S B ∨ C′ →E B

)
⇐⇒ 〈 Idempotence of ∨ & Zero of ∧ 〉

false

The proof is similar when C′ 7→
〈
1
〉
.

(5) C′ 7→
〈
c′
〉

such that c′ ∈ OrbS(c)

A C′ ∧ C′ B

⇐⇒ 〈 Definition 5.2.9 〉(
A→S C′ ∨ A→E C′

)
∧
(
C′ →S B ∨ C′ →E B

)
⇐= 〈 Hypothesis: A C ∧ C B & Hypothesis: c′ ∈ OrbS(c) =⇒

∃(s, t | s, t ∈ S : s ◦ c = c′ ∧ t ◦ c′ = c) =⇒ C→+
S C′ ∧ C′ →+

S C 〉

true

211

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(6) C′ 7→
〈
c′
〉

such that c′ is a fixed point behaviour

A C′ ∧ C′ B

⇐⇒ 〈 Definition 5.2.9 〉(
A→S C′ ∨ A→E C′

)
∧
(
C′ →S B ∨ C′ →E B

)
⇐⇒ 〈 Definition 5.2.7 〉(

A→S C′ ∨ aR c′
)
∧
(
C′ →S B ∨ c′R b

)
⇐= 〈 Hypothesis: c′ is a fixed point behaviour & Proposition 5.2.2 〉(

false ∨ aR c′
)
∧
(
C′ →S B ∨ c′R b

)
⇐⇒ 〈 Identity of ∨ 〉

aR c′ ∧
(
C′ →S B ∨ c′R b

)
⇐= 〈 Hypothesis: aR c′ ∧ c′R b 〉

true ∧
(
C′ →S B ∨ true

)
⇐⇒ 〈 Zero of ∨ & Idempotence of ∧ 〉

true

212

Appendix B

Axioms of C2KA

Let
(
S,K

)
be a C2KA consisting of a stimulus structure S =

(
S,⊕,�, d, n

)
and a con-

current Kleene algebra K =
(
K,+, ∗, ; , *©, ;©, 0, 1

)
. Also, let

(
SK,+

)
be a unitary and

zero-preserving left S-semimodule with mapping ◦ : S ×K → K and
(
SK,⊕

)
be a unitary

and zero-preserving right K-semimodule with mapping λ : S ×K → S.

B.1 Stimulus Structure S Axioms

For all s, t, r ∈ S:

(1) s⊕ (t⊕ r) = (s⊕ t)⊕ r (associativity of ⊕)

(2) s⊕ t = t⊕ s (commutativity of ⊕)

(3) s⊕ d = s (identity of ⊕)

(4) s⊕ s = s (idempotence of ⊕)

(5) s ≤S t ⇐⇒ s⊕ t = t (definition of ≤S)

(6) s� (t� r) = (s� t)� r (associativity of �)

(7) s� n = s (right identity of �)

213

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(8) n� s = s (left identity of �)

(9) (s⊕ t)� r = s� r ⊕ t� r (right distributivity of � over ⊕)

(10) s� (t⊕ r) = s� t⊕ s� r (left distributivity of � over ⊕)

(11) s� d = d (right annihilator of �)

(12) d� s = d (left annihilator of �)

B.2 Concurrent Kleene Algebra K Axioms

For all a, b, c, d ∈ K:

(13) a+ (b+ c) = (a+ b) + c (associativity of +)

(14) a+ b = b+ a (commutativity of +)

(15) a+ 0 = a (identity of +)

(16) a+ a = a (idempotence of +)

(17) a ≤K b ⇐⇒ a+ b = b (definition of ≤)

(18) a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗)

(19) a ∗ b = b ∗ a (commutativity of ∗)

(20) a ∗ 1 = a (right identity of ∗)

(21) a ∗ (b+ c) = a ∗ b+ a ∗ c (left distributivity of ∗ over +)

(22) a ∗ 0 = 0 (right annihilator of ∗)

(23) a ; (b ; c) = (a ; b) ; c (associativity of ;)

(24) a ; 1 = a (right identity of ;)

214

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(25) 1 ; a = a (left identity of ;)

(26) (a+ b) ; c = a ; c+ b ; c (right distributivity of ; over +)

(27) a ; (b+ c) = a ; b+ a ; c (left distributivity of ; over +)

(28) a ; 0 = 0 (right annihilator of ;)

(29) 0 ; a = 0 (left annihilator of ;)

(30) (a ∗ b) ; (c ∗ d) ≤K (a ; c) ∗ (b ; d) (exchange axiom)

(31) 1 + a ∗ a *© = a *© (right unfold rule of *©)

(32) 1 + a *© ∗ a = a *© (left unfold rule of *©)

(33) c+ b ∗ a ≤K b =⇒ c ∗ a *© ≤K b (right induction rule of *©)

(34) c+ a ∗ b ≤K b =⇒ a *© ∗ c ≤K b (left induction rule of *©)

(35) 1 + a ; a ;© = a ;© (right unfold rule of ;©)

(36) 1 + a ;© ; a = a ;© (left unfold rule of ;©)

(37) c+ b ; a ≤K b =⇒ c ; a ;© ≤K b (right induction rule of ;©)

(38) c+ a ; b ≤K b =⇒ a ;© ; c ≤K b (left induction rule of ;©)

B.3 Left S-semimodule
(
SK,+

)
Axioms

For all a, b ∈ K and s, t ∈ S:

(39) s ◦ (a+ b) = s ◦ a+ s ◦ b (distributivity of ◦ over +)

(40) (s⊕ t) ◦ a = s ◦ a+ t ◦ b (distributivity of ◦ over ⊕)

(41) (s� t) ◦ a = s ◦ (t ◦ a) (sequential application of ◦)

215

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(42) n ◦ a = a (unitary
(
SK,+

)
)

(43) d ◦ a = 0 (zero-preserving
(
SK,+

)
)

B.4 Right K-semimodule
(
SK,⊕

)
Axioms

For all a, b ∈ K and s, t ∈ S:

(44) λ((s⊕ t), a) = λ(s, a)⊕ λ(t, b) (distributivity of λ over ⊕)

(45) λ(s, (a+ b)) = λ(s, a)⊕ λ(s, b) (distributivity of λ over +)

(46) λ
(
s, (a ; b)

)
= λ

(
λ(s, a), b

)
(sequential application of λ)

(47) λ(s, 1) = s (unitary
(
SK,⊕

)
)

(48) λ(s, 0) = d (zero-preserving
(
SK,⊕

)
)

B.5 Communicating Concurrent Kleene Algebra Axioms

For all a, b, c ∈ K and s, t ∈ S:

(49) s ◦ (a ; b) = (s ◦ a) ;
(
λ(s, a) ◦ b

)
(cascading law)

(50) a ≤K c ∨ b = 1 ∨ (s ◦ a) ;
(
λ(s, c) ◦ b

)
= 0 (cascading output law)

(51) λ(s� t, a) = λ
(
s, (t ◦ a)

)
� λ(t, a) (sequential output law)

(52) s = d ∨ s ◦ 1 = 1 (idle agent law)

(53) a = 0 ∨ λ(n, a) = n (neutral stimulus law)

216

Appendix C

Analysing Agent Behaviour Using

the Prototype Tool

In what follows, a brief overview of the usage of the main functions for using the prototype

tool for specifying and analysing the agent behaviours in the running example system of

communicating agents described in Section 4.1 is given.

C.1 Specifying Systems of Communicating Agents

The first step towards specifying a system of communicating agents using the prototype

tool is to provide the specification of the system to be analysed. This involves setting the

set of basic external stimuli and the set of basic agent behaviours to define the stimulus

structure and the CKA of the C2KA to be used for the specification. This is done using the

setStimSet and setCKASet functions, respectively. It also involves setting the set of defined

constants used in the concrete behaviour specifications of the agents using the setConstants

function. The set of defined constants is used in the potential for communication analysis

component of the prototype tool to distinguish defined constants and names in the concrete

behaviour specifications of agents from mutable program variables. For the specification of

217

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

the running example, the set of basic external stimuli, the set of basic agent behaviours,

and the set of defined constants are defined using the following commands:

> let stimSet = setStimSet ["ips", "abor", "allo", "help", "noop", "D", "N"]

> let ckaSet = setCKASet ["ABOR", "ALLO", "HELP", "NOOP", "SENDABOR",

"SENDALLO", "SENDHELP", "SENDNOOP", "SINCE1",

"SINCE2", "SINCE3", "SINCE4", "COUNT1", "COUNT2",

"COUNT3", "COUNT4", "AVG1", "AVG2", "AVG3",

"AVG4", "RESET1", "RESET2", "RESET3", "RESET4",

"TICK", "DELTA", "LAST", "WAIT", "READ", "0", "1"]

> let constants = setConstants ["ABOR", "ALLO", "HELP", "NOOP", "true"]

Once these sets have been defined, a new system of communicating agents can be created

using the newSoCA function. The following program fragment creates a new system of

communicating agents named “Example” with the set of basic external stimuli represented

by stimSet, the set of basic agent behaviours represented by ckaSet, and the set of defined

constants represented by constants. The newly created system of communicating agents

is represented by soca.

> let soca = newSoCA "Example" stimSet ckaSet constants

After a new system of communicating agents has been created, agents need to be added.

Each agent to be added to the system needs to be specified by providing the stimulus-

response specification and the concrete behaviour specification in a text file (see Appendix C.5

for the detailed agent specification files corresponding to the running example). Each agent

specification is loaded for use in the system of communicating agents using the load func-

tion and is added to the system of communicating agents using the addAgent function. In

the following program fragment, five agents called agentC, agentS, agentP, agentQ, and

agentR are loaded and added to the system of communicating agents represented by soca.

218

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> agentC <- load "AgentC.txt"

> agentS <- load "AgentS.txt"

> agentP <- load "AgentP.txt"

> agentQ <- load "AgentQ.txt"

> agentR <- load "AgentR.txt"

> soca <- addAgent agentC soca

> soca <- addAgent agentS soca

> soca <- addAgent agentP soca

> soca <- addAgent agentQ soca

> soca <- addAgent agentR soca

Once all of the agents are added to the system of communicating agents, each of their

specifications need to be generated for use with the Maude term rewriting system. This is

done automatically using the generateMaudeSpec function. Additionally, all of the agent

Maude specifications need to be combined with the pre-defined Maude files for C2KA to

generate a Maude specification for the system of communicating agents. The Maude spec-

ification for the system of communicating agents is also generated automatically using the

generateMaudeSOCA function. In the following program fragment the Maude specifications

for the agents represented by agentC, agentS, agentP, agentQ, and agentR are generated

with respect to the system of communicating agents represented by soca. Then, the Maude

specification for the system of communicating agents represented by soca is generated.

> generateMaudeSpec soca agentC

> generateMaudeSpec soca agentS

> generateMaudeSpec soca agentP

> generateMaudeSpec soca agentQ

> generateMaudeSpec soca agentR

> generateMaudeSOCA soca

219

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

The resulting system of communicating agents that has been defined using the prototype

tool can be displayed using the printSoCA function. The system of communicating agents

for the running example represented by soca is displayed using the following program

fragment.

> printSoCA soca

SoCA : Example

External Stimuli: {abor, allo, help, ips, noop, d, n}

Behaviours : {ABOR, ALLO, AVG1, AVG2, AVG3, AVG4, COUNT1, COUNT2,

COUNT3, COUNT4, DELTA, HELP, LAST, NOOP, READ,

RESET1, RESET2, RESET3, RESET4, SENDABOR, SENDALLO,

SENDHELP, SENDNOOP, SINCE1, SINCE2, SINCE3, SINCE4,

TICK, WAIT, 0, 1}

Named Constants : {ABOR, ALLO, HELP, NOOP, true}

Agents : {C, P, Q, R, S}

The prototype tool can be used to automate the computations required at the abstract

behaviour specification level. Consider the example context given in Section 4.2.6. The

prototype tool can be used to automate the computation of the abstract behaviour of the

composed agent (S ; P) specified as ips ◦ (S ; P). This can be done using the maude function.

The maude function is an interface function to the Maude rewriting system. It takes a Maude

term as a string input and returns the rewrite result. The following program fragment shows

the computation of the abstract behaviour of the composed agent (S ; P). Note that the

prototype tool requires the explicit specification of the behaviours of agents S and P.

220

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> print $ maude "NB((’ips), ((’SENDABOR + ’SENDALLO + ’SENDHELP +

’SENDNOOP) ; ((’ABOR ; ’COUNT1) + (’ALLO ; ’COUNT2) +

(’HELP ; ’COUNT3) + (’NOOP ; ’COUNT4))))"

"((((((SENDABOR ; ABOR) ; COUNT1) + ((SENDALLO ; ALLO) ; COUNT2)) +

((SENDHELP ; HELP) ; COUNT3)) + SENDNOOP) ; NOOP) ; COUNT4"

C.2 Computing Orbits, Stabilisers, and Fixed Points

Once a system of communicating agents has been defined, the prototype tool can be used

to compute the orbits, strong orbits, stabilisers, and fixed points for agent behaviours. For

instance, the examples given in Section 4.2.7 can all be computed automatically using the

prototype tool. In what follows, the printSet function prints a set representation of the

resulting orbits, strong orbits, and stabilisers.

The computation of the orbits of agent behaviours can be done using the ckaOrbit function.

The ckaOrbit function implements Definition 4.2.4(1) and takes the set of basic external

stimuli and an agent behaviour and returns the orbit of the given agent behaviour. Some

examples of computing orbits using the prototype tool with respect to the running example

are given below.

> printSet $ ckaOrbit stimSet "ABOR"

{0, ABOR, ALLO, HELP, NOOP}

> printSet $ ckaOrbit stimSet "READ"

{0, READ}

> printSet $ ckaOrbit stimSet "COUNT3"

{0, COUNT1, COUNT2, COUNT3, COUNT4}

Strong orbits of agent behaviours can be computed using the ckaStrongOrbit function.

The ckaStrongOrbit function implements Definition 4.2.4(2) and takes the set of basic

external stimuli, the set of basic agent behaviours, and an agent behaviour, and returns the

221

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

strong orbit of the given agent behaviour. Considering the running example, a selection of

examples of computing strong orbits using the prototype tool are given below.

> printSet $ ckaStrongOrbit stimSet ckaSet "ABOR"

{ABOR, ALLO, HELP, NOOP}

> printSet $ ckaStrongOrbit stimSet ckaSet "READ"

{READ}

> printSet $ ckaStrongOrbit stimSet ckaSet "COUNT3"

{COUNT1, COUNT2, COUNT3, COUNT4}

Similarly, the stabilisers of agent behaviours are computed using the ckaStab function

which provides an implementation of Definition 4.2.4(3). There is a technical issue that is

evident when computing the stabiliser of an agent behaviours. This is due to that fact that

the stabiliser is computed with respect to the set of external stimuli S which is an infinite

set. Because of this, it is required that the computation of the stabilisers be restricted

to a set of external stimuli that contains all external stimuli up to a prescribed maximum

length of the composed stimuli. Due to this, the ckaStab function takes the set of basic

external stimuli, an integer representing the maximum length of the composed stimuli in

the set of stimuli for which the stabiliser is to be computed with respect to, and an agent

behaviour, and returns the stabiliser of the given agent behaviour computed with respect

to the set of external stimuli generated by the given set of basic stimuli, up to the given

maximum length of the compositions. The following commands show some examples of

computing stabilisers using the prototype tool with respect to the running example. Each

example shows the computation of the stabiliser with respect to only the set of basic external

stimuli (i.e., maximum composition length 1) and again with the maximum length of the

compositions set to 2. It should be noted that the stabiliser obtained from setting the

maximum composition length to 1 is a subset of the stabiliser obtained from setting the

maximum composition length to 2.

222

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> printSet $ ckaStab stimSet 1 "ABOR"

{abor, ips, n}

> printSet $ ckaStab stimSet 2 "ABOR"

{abor, abor � abor, abor � ips, allo � abor, help � abor, ips,

ips � abor, ips � ips, noop � abor, n}

> printSet $ ckaStab stimSet 1 "READ"

{abor, allo, help, ips, noop, n}

> printSet $ ckaStab stimSet 2 "READ"

{abor, abor � abor, abor � allo, abor � help, abor � ips, abor � noop,

allo, allo � abor, allo � allo, allo � help, allo � ips, allo � noop,

help, help � abor, help � allo, help � help, help � ips, help � noop,

ips, ips � abor, ips � allo, ips � help, ips � ips, ips � noop, noop,

noop � abor, noop � allo, noop � help, noop � ips, noop � noop, n}

> printSet $ ckaStab stimSet 1 "COUNT3"

{help, ips, n}

> printSet $ ckaStab stimSet 2 "COUNT3"

{abor � help, allo � help, help, help � help, help � ips, ips,

ips � help, ips � ips, noop � help, n}

Finally, the prototype tool can be used to verify whether a given agent behaviour is a

fixed point. This can be done using the ckaFixedPoint function which implements Defini-

tion 4.2.4(4) and takes the set of basic external stimuli and an agent behaviour and verifies

whether the given agent behaviour is a fixed point with respect to the next behaviour map-

ping ◦. The following commands show how the prototype tool can be used to verify whether

an agent behaviour is a fixed point.

> print $ ckaFixedPoint stimSet "READ"

True

223

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> print $ ckaFixedPoint stimSet "TICK"

True

> print $ ckaFixedPoint stimSet "ABOR"

False

> print $ ckaFixedPoint stimSet "COUNT3"

False

It is important to note that each of the above functions for computing orbits, strong orbits,

stabilisers, and fixed points with respect to the next behaviour mapping ◦ have counterparts

for computing orbits, strong orbits, stabilisers, and fixed points with respect to the next

stimulus mapping λ. In the prototype tool, these functions are denoted by stimOrbit,

stimStrongOrbit, stimStab, and stimFixedPoint, respectively. Each of these functions

are used in a very similar way to their counterparts demonstrated above.

C.3 Verifying Stimuli-Connected Systems, Communication

Fixed Points, and Universally Influential Agents

The prototype tool can be used to verify whether a given system of communicating agents

is stimuli-connected. It can additionally verify whether a given agent in a system of com-

municating agents is a communication fixed point or whether it is universally influential.

The isStimConnected function implements Definition 5.2.4 and is used to verify whether a

given system of communicating agents is stimuli-connected. This function takes a system of

communicating agents as input and returns whether the given system is stimuli-connected.

The running example, represented by soca, can be checked for stimuli-connectedness using

the following command:

> print $ isStimConnected soca

False

224

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In order to determine whether a given system agent is a communication fixed point using

the prototype tool, the isCommFixedPoint function is used. This function implements

Definition 5.2.5. It takes a system of communicating agents and an agent as input, and

returns whether the given agent is a communication fixed point in the given system of

communicating agents. The following commands show how the prototype tool can be used

to verify whether an agent is a communication fixed point.

> print $ isCommFixedPoint soca agentC

True

> print $ isCommFixedPoint soca agentS

False

> print $ isCommFixedPoint soca agentP

False

> print $ isCommFixedPoint soca agentQ

False

> print $ isCommFixedPoint soca agentR

True

Similarly, the prototype tool can be used to determine whether a given system agent is uni-

versally influential. The isUniversallyInfluential function implements Definition 5.2.6,

taking a system of communicating agents and an agent as input, and returning whether

the given agent is universally influential in the given system of communicating agents. The

following commands show how the prototype tool can be used to verify whether an agent

is universally influential.

> print $ isUniversallyInfluential soca agentC

False

> print $ isUniversallyInfluential soca agentS

False

225

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> print $ isUniversallyInfluential soca agentP

False

> print $ isUniversallyInfluential soca agentQ

False

> print $ isUniversallyInfluential soca agentR

False

C.4 Verifying the Potential for Communication Condition

With consideration of the specification of the running example system of communicating

agents of Section 4.1, the prototype tool can be used to automatically verify the potential

for communication amongst the system agents.

The potential for direct communication and the potential for communication via external

stimuli can be verified using the dPFCviaStim and pfcViaStim functions, respectively. The

dPFCviaStim provides an implementation of Definition 5.2.1 and the pfcViaStim function

implements Definition 5.2.3. Each of these functions take a system of communicating agents

and two agents and verifies if there is the a potential for communication via external stimuli

from the first agent to the second agent. These functions simply return a boolean value

representing the satisfaction of the specified potential for communication. The commands

for verifying the satisfaction of the potential for direct communication and the potential for

communication via external stimuli between two agents in the running example system of

communicating agents and corresponding to the examples given in Section 5.3 are shown

below.

> print $ dPFCviaStim soca agentS agentP

True

> print $ dPFCviaStim soca agentP agentR

False

226

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> print $ pfcViaStim soca agentS agentQ

True

> print $ pfcViaStim soca agentS agentR

False

Similarly, the potential for direct communication and the potential for communication via

shared environments can be verified using the dPFCviaEnv and pfcViaEnv functions, respec-

tively. The dPFCviaEnv provides an implementation of Definition 5.2.7 and the pfcViaEnv

function implements Definition 5.2.8. When verifying the potential for direct communica-

tion and the potential for communication via shared environments with the prototype tool,

the dependence relation R is generated as a definition-reference relation between program

variables in the concrete behaviour specifications of agents. It is in this generation of the

definition-reference relation that the prototype tool uses the set of defined constants for the

given system of communicating agents so that they can be excluded from the relation. Some

example commands for verifying the satisfaction of the potential for direct communication

and the potential for communication via shared environments between two agents in the

running example system of communicating agents and corresponding to the examples given

in Section 5.3 are shown below.

> print $ dPFCviaEnv soca agentP agentR

True

> print $ dPFCviaEnv soca agentC agentP

False

> print $ pfcViaEnv soca agentC agentR

True

> print $ pfcViaEnv soca agentQ agentP

False

227

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Finally, the prototype tool can be used to automatically verify the potential for communica-

tion between two agents in a system of communicating agents using the pfc function which

provides an implementation of Definition 5.2.10. The pfc function takes a system of com-

municating agents and two agents and verifies if there is a potential for communication from

the first agent to the second agent. It returns a pair where the first component represents

the satisfaction of the potential for communication condition and the second component is

a list of all of the possible communication paths with the first agent as the source and the

second agent as the sink. In this way, the second component of the returned pair repre-

sents all of the possible communication paths or patterns of communication from the first

agent to the second agent. The commands for verifying the satisfaction of the potential

for communication between two agents in the running example system of communicating

agents and corresponding to the examples given in Section 5.3 are shown below where the

printPaths function prints and formats the list of all possible communication paths or

patterns of communication.

> let (condSR, pathsSR) = pfc soca agentS agentR

> print $ condSR

True

> printPaths $ pathsSR

S ->S P ->E R

S ->S P ->S Q ->E R

S ->S Q ->S P ->E R

S ->S Q ->E R

> let (condCS, pathsCS) = pfc soca agentC agentS

> print $ condCS

False

228

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

> printPaths $ pathsCS

.

From the results of the pfc function and the prototype tool, it is easy to see that (S + R)

and that there are multiple communication paths or patterns of communication that achieve

this. Therefore, the potential for communication condition is satisfied. Additionally, it is

easy to see that ¬(C + S). Since the potential for communication condition between

agent C and agent S is false, there is no potential for communication and therefore there

are no potential communication paths or patterns of communication that are printed.

C.5 Agent Behaviour Specifications for the Prototype Tool

This section contains each of the detailed agent specification files for the running example

described in Section 4.1. The specifications correspond to the stimulus-response specifica-

tion for each agent as given in Tables 4.1 to 4.5, the abstract behaviour specifications as

given in Figure 4.2, and the concrete behaviour specifications as given in Figures 4.3 to 4.7.

C.5.1 Behaviour Specification File for Agent C (AgentC.txt)

begin AGENT where

C := TICK

end

begin NEXT_BEHAVIOUR where

(ips,TICK) = TICK

(abor,TICK) = TICK

(allo,TICK) = TICK

(help,TICK) = TICK

(noop,TICK) = TICK

end

229

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

begin NEXT_STIMULUS where

(ips,TICK) = N

(abor,TICK) = N

(allo,TICK) = N

(help,TICK) = N

(noop,TICK) = N

end

begin CONCRETE_BEHAVIOUR where

C => [time := time + 1]

end

C.5.2 Behaviour Specification File for Agent S (AgentS.txt)

begin AGENT where

S := SENDABOR + SENDALLO + SENDHELP + SENDNOOP

end

begin NEXT_BEHAVIOUR where

(abor,SENDABOR) = SENDABOR

(abor,SENDALLO) = SENDALLO

(abor,SENDHELP) = SENDHELP

(abor,SENDNOOP) = SENDNOOP

(allo,SENDABOR) = SENDABOR

(allo,SENDALLO) = SENDALLO

(allo,SENDHELP) = SENDHELP

(allo,SENDNOOP) = SENDNOOP

(help,SENDABOR) = SENDABOR

(help,SENDALLO) = SENDALLO

(help,SENDHELP) = SENDHELP

230

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(help,SENDNOOP) = SENDNOOP

(noop,SENDABOR) = SENDABOR

(noop,SENDALLO) = SENDALLO

(noop,SENDHELP) = SENDHELP

(noop,SENDNOOP) = SENDNOOP

end

begin NEXT_STIMULUS where

(abor,SENDABOR) = abor

(abor,SENDALLO) = allo

(abor,SENDHELP) = help

(abor,SENDNOOP) = noop

(allo,SENDABOR) = abor

(allo,SENDALLO) = allo

(allo,SENDHELP) = help

(allo,SENDNOOP) = noop

(help,SENDABOR) = abor

(help,SENDALLO) = allo

(help,SENDHELP) = help

(help,SENDNOOP) = noop

(noop,SENDABOR) = abor

(noop,SENDALLO) = allo

(noop,SENDHELP) = help

(noop,SENDNOOP) = noop

end

begin CONCRETE_BEHAVIOUR where

S => [if true -> x := ABOR

| true -> x := ALLO

| true -> x := HELP

| true -> x := NOOP

fi;

send x]

end

231

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

C.5.3 Behaviour Specification File for Agent P (AgentP.txt)

begin AGENT where

P := (ABOR ; COUNT1) + (ALLO ; COUNT2) + (HELP ; COUNT3) + (NOOP ; COUNT4)

end

begin NEXT_BEHAVIOUR where

(ips,ABOR) = ABOR

(ips,ALLO) = ALLO

(ips,HELP) = HELP

(ips,NOOP) = NOOP

(ips,COUNT1) = COUNT1

(ips,COUNT2) = COUNT2

(ips,COUNT3) = COUNT3

(ips,COUNT4) = COUNT4

(abor,ABOR) = ABOR

(abor,ALLO) = ABOR

(abor,HELP) = ABOR

(abor,NOOP) = ABOR

(abor,COUNT1) = COUNT1

(abor,COUNT2) = COUNT1

(abor,COUNT3) = COUNT1

(abor,COUNT4) = COUNT1

(allo,ABOR) = ALLO

(allo,ALLO) = ALLO

(allo,HELP) = ALLO

(allo,NOOP) = ALLO

(allo,COUNT1) = COUNT2

(allo,COUNT2) = COUNT2

(allo,COUNT3) = COUNT2

(allo,COUNT4) = COUNT2

(help,ABOR) = HELP

(help,ALLO) = HELP

(help,HELP) = HELP

(help,NOOP) = HELP

232

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(help,COUNT1) = COUNT3

(help,COUNT2) = COUNT3

(help,COUNT3) = COUNT3

(help,COUNT4) = COUNT3

(noop,ABOR) = NOOP

(noop,ALLO) = NOOP

(noop,HELP) = NOOP

(noop,NOOP) = NOOP

(noop,COUNT1) = COUNT4

(noop,COUNT2) = COUNT4

(noop,COUNT3) = COUNT4

(noop,COUNT4) = COUNT4

end

begin NEXT_STIMULUS where

(ips,ABOR) = N

(ips,ALLO) = N

(ips,HELP) = N

(ips,NOOP) = N

(ips,COUNT1) = N

(ips,COUNT2) = N

(ips,COUNT3) = N

(ips,COUNT4) = N

(abor,ABOR) = abor

(abor,ALLO) = abor

(abor,HELP) = abor

(abor,NOOP) = abor

(abor,COUNT1) = abor

(abor,COUNT2) = abor

(abor,COUNT3) = abor

(abor,COUNT4) = abor

(allo,ABOR) = allo

(allo,ALLO) = allo

(allo,HELP) = allo

(allo,NOOP) = allo

(allo,COUNT1) = allo

233

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(allo,COUNT2) = allo

(allo,COUNT3) = allo

(allo,COUNT4) = allo

(help,ABOR) = help

(help,ALLO) = help

(help,HELP) = help

(help,NOOP) = help

(help,COUNT1) = help

(help,COUNT2) = help

(help,COUNT3) = help

(help,COUNT4) = help

(noop,ABOR) = noop

(noop,ALLO) = noop

(noop,HELP) = noop

(noop,NOOP) = noop

(noop,COUNT1) = noop

(noop,COUNT2) = noop

(noop,COUNT3) = noop

(noop,COUNT4) = noop

end

begin CONCRETE_BEHAVIOUR where

P => [receive x;

if x >= ABOR -> cmd := 1 ; num1 := num1 + 1

| x >= ALLO -> cmd := 2 ; num2 := num2 + 1

| x >= HELP -> cmd := 3 ; num3 := num3 + 1

| x >= NOOP -> cmd := 4 ; num4 := num4 + 1

fi;

send x]

end

234

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

C.5.4 Behaviour Specification File for Agent Q (AgentQ.txt)

begin AGENT where

Q := (DELTA ; LAST) + WAIT

end

begin NEXT_BEHAVIOUR where

(ips,DELTA) = WAIT

(ips,LAST) = WAIT

(ips,WAIT) = WAIT

(abor,DELTA) = DELTA

(abor,LAST) = LAST

(abor,WAIT) = DELTA

(allo,DELTA) = DELTA

(allo,LAST) = LAST

(allo,WAIT) = DELTA

(help,DELTA) = DELTA

(help,LAST) = LAST

(help,WAIT) = DELTA

(noop,DELTA) = DELTA

(noop,LAST) = LAST

(noop,WAIT) = DELTA

end

begin NEXT_STIMULUS where

(ips,DELTA) = N

(ips,LAST) = N

(ips,WAIT) = N

(abor,DELTA) = abor

(abor,LAST) = abor

(abor,WAIT) = abor

(allo,DELTA) = allo

(allo,LAST) = allo

235

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(allo,WAIT) = allo

(help,DELTA) = help

(help,LAST) = help

(help,WAIT) = help

(noop,DELTA) = noop

(noop,LAST) = noop

(noop,WAIT) = noop

end

begin CONCRETE_BEHAVIOUR where

Q => [receive x;

if (x >= ABOR || x >= ALLO || x >= HELP || x >= NOOP) -> delta := time - last; last := time

| ~(x >= ABOR || x >= ALLO || x >= HELP || x >= NOOP) -> skip

fi;

send x]

end

C.5.5 Behaviour Specification File for Agent R (AgentR.txt)

begin AGENT where

R := SINCE1 ; SINCE2 ; SINCE3; SINCE4 ; READ ; ((AVG1 ; RESET1) + (AVG2 ; RESET2) +

(AVG3 ; RESET3) + (AVG4 ; RESET4))

end

begin NEXT_BEHAVIOUR where

(ips,SINCE1) = SINCE1

(ips,SINCE2) = SINCE2

(ips,SINCE3) = SINCE3

(ips,SINCE4) = SINCE4

(ips,READ) = READ

(ips,AVG1) = AVG1

(ips,AVG2) = AVG2

236

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(ips,AVG3) = AVG3

(ips,AVG4) = AVG4

(ips,RESET1) = RESET1

(ips,RESET2) = RESET2

(ips,RESET3) = RESET3

(ips,RESET4) = RESET4

(abor,SINCE1) = SINCE1

(abor,SINCE2) = SINCE2

(abor,SINCE3) = SINCE3

(abor,SINCE4) = SINCE4

(abor,READ) = READ

(abor,AVG1) = AVG1

(abor,AVG2) = AVG2

(abor,AVG3) = AVG3

(abor,AVG4) = AVG4

(abor,RESET1) = RESET1

(abor,RESET2) = RESET2

(abor,RESET3) = RESET3

(abor,RESET4) = RESET4

(allo,SINCE1) = SINCE1

(allo,SINCE2) = SINCE2

(allo,SINCE3) = SINCE3

(allo,SINCE4) = SINCE4

(allo,READ) = READ

(allo,AVG1) = AVG1

(allo,AVG2) = AVG2

(allo,AVG3) = AVG3

(allo,AVG4) = AVG4

(allo,RESET1) = RESET1

(allo,RESET2) = RESET2

(allo,RESET3) = RESET3

(allo,RESET4) = RESET4

(help,SINCE1) = SINCE1

(help,SINCE2) = SINCE2

(help,SINCE3) = SINCE3

(help,SINCE4) = SINCE4

(help,READ) = READ

(help,AVG1) = AVG1

237

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(help,AVG2) = AVG2

(help,AVG3) = AVG3

(help,AVG4) = AVG4

(help,RESET1) = RESET1

(help,RESET2) = RESET2

(help,RESET3) = RESET3

(help,RESET4) = RESET4

(noop,SINCE1) = SINCE1

(noop,SINCE2) = SINCE2

(noop,SINCE3) = SINCE3

(noop,SINCE4) = SINCE4

(noop,READ) = READ

(noop,AVG1) = AVG1

(noop,AVG2) = AVG2

(noop,AVG3) = AVG3

(noop,AVG4) = AVG4

(noop,RESET1) = RESET1

(noop,RESET2) = RESET2

(noop,RESET3) = RESET3

(noop,RESET4) = RESET4

end

begin NEXT_STIMULUS where

(ips,SINCE1) = N

(ips,SINCE2) = N

(ips,SINCE3) = N

(ips,SINCE4) = N

(ips,READ) = N

(ips,AVG1) = N

(ips,AVG2) = N

(ips,AVG3) = N

(ips,AVG4) = N

(ips,RESET1) = N

(ips,RESET2) = N

(ips,RESET3) = N

(ips,RESET4) = N

238

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(abor,SINCE1) = N

(abor,SINCE2) = N

(abor,SINCE3) = N

(abor,SINCE4) = N

(abor,READ) = N

(abor,AVG1) = N

(abor,AVG2) = N

(abor,AVG3) = N

(abor,AVG4) = N

(abor,RESET1) = N

(abor,RESET2) = N

(abor,RESET3) = N

(abor,RESET4) = N

(allo,SINCE1) = N

(allo,SINCE2) = N

(allo,SINCE3) = N

(allo,SINCE4) = N

(allo,READ) = N

(allo,AVG1) = N

(allo,AVG2) = N

(allo,AVG3) = N

(allo,AVG4) = N

(allo,RESET1) = N

(allo,RESET2) = N

(allo,RESET3) = N

(allo,RESET4) = N

(help,SINCE1) = N

(help,SINCE2) = N

(help,SINCE3) = N

(help,SINCE4) = N

(help,READ) = N

(help,AVG1) = N

(help,AVG2) = N

(help,AVG3) = N

(help,AVG4) = N

(help,RESET1) = N

(help,RESET2) = N

(help,RESET3) = N

239

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(help,RESET4) = N

(noop,SINCE1) = N

(noop,SINCE2) = N

(noop,SINCE3) = N

(noop,SINCE4) = N

(noop,READ) = N

(noop,AVG1) = N

(noop,AVG2) = N

(noop,AVG3) = N

(noop,AVG4) = N

(noop,RESET1) = N

(noop,RESET2) = N

(noop,RESET3) = N

(noop,RESET4) = N

end

begin CONCRETE_BEHAVIOUR where

R => [since1 := since1 + delta;

since2 := since2 + delta;

since3 := since3 + delta;

since4 := since4 + delta;

n := cmd;

if n = 1 -> avg1 := since1 / num1; since1 := 0

| n = 2 -> avg2 := since2 / num2; since2 := 0

| n = 3 -> avg3 := since3 / num3; since3 := 0

| n = 4 -> avg4 := since4 / num4; since4 := 0

fi]

end

240

Appendix D

Analysing Agent Knowledge Using

the SPASS Theorem Prover

In what follows, a brief overview of the usage of the SPASS theorem prover [TST14] for spec-

ifying and analysing the agent knowledge in the running example system of communicating

agents described in Section 4.1 is provided.

D.1 Verifying the Constraint on Communication Condition

With consideration of the specification of the running example system of communicating

agents of Section 4.1, the SPASS theorem prover can be used to support the automation of

the verification of the constraint on communication condition in a system of communicating

agents.

The detailed specification of each agent knowledge base using the SPASS theorem prover is

shown in Section D.2. In each SPASS specification, under the list of special formulae

section, there is an implementation of the condition for determining whether the given agent

is a potential source of confidential information leakage (see Section 6.4). For instance, in

each of the agent specifications for the running example system of communicating agents,

241

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

there is a conjecture corresponding to the formula ∃(Z | Z ∈ NO : N |= ConfInfo
(
Z
)

),

denoted as formula(exists([z], ConfInfo(z))) in SPASS. In essence, this for-

mula verifies whether the given agent knows any confidential information (i.e., any concept

assertion that associates some object Z to the concept ConfInfo).

The SPASS theorem prover is run on each specification file to determine if the formula

is satisfied with respect to the agent knowledge base specified in the given file. Running

SPASS results in the final output SPASS beiseite: Proof found if the formula is valid

or SPASS beiseite: Completion found if the formula is not valid [TST14]. An example

of using the SPASS theorem prover to determine if agent S in the running example system

of communicating agents is a potential source of confidential information leakage is given

below.

> SPASS AgentS.dfg

--------------------------SPASS-START-----------------------------

Input Problem:

1[0:Inp] || -> Command(abor)*.

2[0:Inp] || -> Command(allo)*.

3[0:Inp] || -> Command(help)*.

4[0:Inp] || -> Command(noop)*.

5[0:Inp] || -> Enumeration(1)*.

6[0:Inp] || -> Enumeration(2)*.

7[0:Inp] || -> Enumeration(3)*.

8[0:Inp] || -> Enumeration(4)*.

9[0:Inp] || -> BitString(0)*.

10[0:Inp] || -> BitString(1)*.

11[0:Inp] || -> BitString(10)*.

12[0:Inp] || -> BitString(11)*.

13[0:Inp] || -> ConfInfo(1)*.

14[0:Inp] || ConfInfo(U)* -> .

15[0:Inp] || -> Variable(avg_1,0)*.

16[0:Inp] || -> Variable(avg_2,0)*.

17[0:Inp] || -> Variable(avg_3,0)*.

18[0:Inp] || -> Variable(avg_4,0)*.

242

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

19[0:Inp] || -> Cmd_To_Enum(abor,1)*.

20[0:Inp] || -> Cmd_To_Enum(allo,2)*.

21[0:Inp] || -> Cmd_To_Enum(help,3)*.

22[0:Inp] || -> Cmd_To_Enum(noop,4)*.

23[0:Inp] || -> Variable(time,0)*.

24[0:Inp] || -> Variable(delta,0)*.

25[0:Inp] || ConfInfo(U) -> BitString(U)*.

26[0:Inp] || Enum_To_Cmd(U,V)* -> Cmd_To_Enum(V,U).

27[0:Inp] || Cmd_To_Enum(U,V) -> Enum_To_Cmd(V,U)*.

This is a first-order Horn problem without equality.

This is a problem that has, if any, a finite domain model.

There are no function symbols.

This is a problem that contains sort information.

The following monadic predicates have finite extensions: ConfInfo, Enumeration, Command.

Axiom clauses: 26 Conjecture clauses: 1

Inferences: IEmS=1 ISoR=1 IORe=1

Reductions: RFMRR=1 RBMRR=1 RObv=1 RUnC=1 RTaut=1 RSST=1 RSSi=1 RFSub=1 RBSub=1 RCon=1

Extras : Input Saturation, Always Selection, No Splitting, Full Reduction, Ratio: 5,

FuncWeight: 1, VarWeight: 1

Precedence: command > Command > bitstring > BitString > enumeration > Enumeration >

confinfo > ConfInfo > variable > Variable > cmd_to_enum > Enum_To_Cmd >

Cmd_To_Enum > enum_to_cmd > abor > allo > help > noop > 0 > 1 > 10 > 11 > 2 >

3 > 4 > cmd > delta > last > time > num_1 > num_2 > num_3 > num_4 > since_1 >

since_2 > since_3 > since_4 > avg_1 > avg_2 > avg_3 > avg_4

Ordering : KBO

Processed Problem:

Worked Off Clauses:

Usable Clauses:

13[0:Inp] || -> ConfInfo(1)*.

8[0:Inp] || -> Enumeration(4)*.

7[0:Inp] || -> Enumeration(3)*.

6[0:Inp] || -> Enumeration(2)*.

5[0:Inp] || -> Enumeration(1)*.

4[0:Inp] || -> Command(noop)*.

3[0:Inp] || -> Command(help)*.

2[0:Inp] || -> Command(allo)*.

243

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

1[0:Inp] || -> Command(abor)*.

12[0:Inp] || -> BitString(11)*.

11[0:Inp] || -> BitString(10)*.

10[0:Inp] || -> BitString(1)*.

9[0:Inp] || -> BitString(0)*.

24[0:Inp] || -> Variable(delta,0)*.

23[0:Inp] || -> Variable(time,0)*.

22[0:Inp] || -> Cmd_To_Enum(noop,4)*.

21[0:Inp] || -> Cmd_To_Enum(help,3)*.

20[0:Inp] || -> Cmd_To_Enum(allo,2)*.

19[0:Inp] || -> Cmd_To_Enum(abor,1)*.

18[0:Inp] || -> Variable(avg_4,0)*.

17[0:Inp] || -> Variable(avg_3,0)*.

16[0:Inp] || -> Variable(avg_2,0)*.

15[0:Inp] || -> Variable(avg_1,0)*.

25[0:Inp] ConfInfo(U) || -> BitString(U)*.

27[0:Inp] || Cmd_To_Enum(U,V) -> Enum_To_Cmd(V,U)*.

26[0:Inp] || Enum_To_Cmd(U,V)* -> Cmd_To_Enum(V,U).

SPASS V 3.7

SPASS beiseite: Proof found.

Problem: AgentS.dfg

SPASS derived 0 clauses, backtracked 0 clauses, performed 0 splits and kept 24 clauses.

SPASS allocated 45899 KBytes.

SPASS spent 0:00:00.04 on the problem.

0:00:00.01 for the input.

0:00:00.01 for the FLOTTER CNF translation, of which

0:00:00.00 for the translation from EML to FOL.

0:00:00.00 for inferences.

0:00:00.00 for the backtracking.

0:00:00.00 for the reduction.

--------------------------SPASS-STOP------------------------------

In the output from the SPASS theorem prover, it can be seen that the result is SPASS

beiseite: Proof found, meaning that the formula is satisfied. This means that in the

running example, agent S is a potential source for confidential information leakage. This

confirms what was determined in Section 6.4.

244

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

In general, the SPASS theorem prover can be run for each agent knowledge base specification

for a given system of communicating agents. If any of the results show that there exists a

potential source for confidential information leakage then the constraint on communication

condition is satisfied for the given system of communicating agents.

D.2 Agent Knowledge Specifications for the SPASS Theorem

Prover

This section contains each of the detailed agent knowledge specification files for the running

example described in Section 4.3.2. The specifications correspond to the knowledge bases

specified using the description logic ALB in Figures 4.10 to 4.14 in Section 4.3.1.

D.2.1 Knowledge Specification File for Agent C (AgentC.dfg)

begin_problem(AgentC).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* AgentC.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Initial Knowledge Base for Agent C. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

245

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

list_of_symbols.

%%%

% OBJECTS

%%%

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0)

].

%%%

246

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONCEPTS AND ROLES

%%%

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

%%%

% ROLES

%%%

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

%%%

247

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

% ROLES

%%%

(variable,Variable),

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% EMPTY

%%%

%%%

% ABox

%%%

formula(Variable(time, 0)).

%%%

end_of_list.

%%%

248

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

D.2.2 Knowledge Specification File for Agent S (AgentS.dfg)

begin_problem(AgentS).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* AgentS.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Initial Knowledge Base for Agent S. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

list_of_symbols.

%%%

% OBJECTS

%%%

249

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0)

].

%%%

250

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONCEPTS AND ROLES

%%%

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

%%%

% ROLES

%%%

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

%%%

251

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

% ROLES

%%%

(variable,Variable),

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% All confidential information are bit-strings

concept_formula(implies(confinfo, bitstring)).

% Enum_To_Cmd is the inverse mapping of Cmd_To_Enum

role_formula(equiv(enum_to_cmd, conv(cmd_to_enum))).

%%%

%%%

% ABox

%%%

formula(Command(abor)).

formula(Command(allo)).

formula(Command(help)).

formula(Command(noop)).

formula(Enumeration(1)).

formula(Enumeration(2)).

formula(Enumeration(3)).

252

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

formula(Enumeration(4)).

formula(BitString(00)).

formula(BitString(01)).

formula(BitString(10)).

formula(BitString(11)).

formula(Variable(avg_1, 0)).

formula(Variable(avg_2, 0)).

formula(Variable(avg_3, 0)).

formula(Variable(avg_4, 0)).

formula(Cmd_To_Enum(abor, 1)).

formula(Cmd_To_Enum(allo, 2)).

formula(Cmd_To_Enum(help, 3)).

formula(Cmd_To_Enum(noop, 4)).

formula(Variable(time, 0)).

formula(Variable(delta, 0)).

formula(ConfInfo(01)).

%%%

end_of_list.

%%%

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

253

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

D.2.3 Knowledge Specification File for Agent P (AgentP.dfg)

begin_problem(AgentP).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* AgentP.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Initial Knowledge Base for Agent P. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

list_of_symbols.

%%%

% OBJECTS

%%%

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

254

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0)

].

%%%

%%%

% CONCEPTS AND ROLES

%%%

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

%%%

% ROLES

%%%

255

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

%%%

% ROLES

%%%

(variable,Variable),

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

256

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% Enum_To_Cmd is the inverse mapping of Cmd_To_Enum

role_formula(equiv(enum_to_cmd, conv(cmd_to_enum))).

%%%

%%%

% ABox

%%%

formula(Command(abor)).

formula(Command(allo)).

formula(Command(help)).

formula(Command(noop)).

formula(Enumeration(1)).

formula(Enumeration(2)).

formula(Enumeration(3)).

formula(Enumeration(4)).

formula(BitString(00)).

formula(BitString(01)).

formula(BitString(10)).

formula(BitString(11)).

formula(Variable(num_1, 0)).

formula(Variable(num_2, 0)).

formula(Variable(num_3, 0)).

formula(Variable(num_4, 0)).

formula(Variable(avg_1, 0)).

formula(Variable(avg_2, 0)).

formula(Variable(avg_3, 0)).

formula(Variable(avg_4, 0)).

257

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

formula(Cmd_To_Enum(abor, 1)).

formula(Cmd_To_Enum(allo, 2)).

formula(Cmd_To_Enum(help, 3)).

formula(Cmd_To_Enum(noop, 4)).

formula(Variable(time, 0)).

formula(Variable(delta, 0)).

formula(Variable(cmd, 0)).

%%%

end_of_list.

%%%

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

258

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

D.2.4 Knowledge Specification File for Agent Q (AgentQ.dfg)

begin_problem(AgentQ).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* AgentQ.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Initial Knowledge Base for Agent Q. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

list_of_symbols.

%%%

% OBJECTS

%%%

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

259

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0)

].

%%%

%%%

% CONCEPTS AND ROLES

%%%

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

%%%

% ROLES

%%%

260

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

%%%

% ROLES

%%%

(variable,Variable),

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

261

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% EMPTY

%%%

%%%

% ABox

%%%

formula(Command(abor)).

formula(Command(allo)).

formula(Command(help)).

formula(Command(noop)).

formula(Variable(num_1, 0)).

formula(Variable(num_2, 0)).

formula(Variable(num_3, 0)).

formula(Variable(num_4, 0)).

formula(Variable(avg_1, 0)).

formula(Variable(avg_2, 0)).

formula(Variable(avg_3, 0)).

formula(Variable(avg_4, 0)).

formula(Variable(time, 0)).

formula(Variable(delta, 0)).

formula(Variable(cmd, 0)).

formula(Variable(last, 0)).

%%%

end_of_list.

%%%

262

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

D.2.5 Knowledge Specification File for Agent R (AgentR.dfg)

begin_problem(AgentR).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* AgentR.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Initial Knowledge Base for Agent R. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

list_of_symbols.

%%%

% OBJECTS

%%%

263

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0)

].

%%%

%%%

% CONCEPTS AND ROLES

%%%

264

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

%%%

% ROLES

%%%

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

%%%

% ROLES

%%%

(variable,Variable),

265

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% Enum_To_Cmd is the inverse mapping of Cmd_To_Enum

role_formula(equiv(enum_to_cmd, conv(cmd_to_enum))).

%%%

%%%

% ABox

%%%

formula(Command(abor)).

formula(Command(allo)).

formula(Command(help)).

formula(Command(noop)).

formula(Enumeration(1)).

formula(Enumeration(2)).

formula(Enumeration(3)).

formula(Enumeration(4)).

formula(BitString(00)).

formula(BitString(01)).

formula(BitString(10)).

266

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

formula(BitString(11)).

formula(Variable(num_1, 0)).

formula(Variable(num_2, 0)).

formula(Variable(num_3, 0)).

formula(Variable(num_4, 0)).

formula(Variable(since_1, 0)).

formula(Variable(since_2, 0)).

formula(Variable(since_3, 0)).

formula(Variable(since_4, 0)).

formula(Variable(avg_1, 0)).

formula(Variable(avg_2, 0)).

formula(Variable(avg_3, 0)).

formula(Variable(avg_4, 0)).

formula(Cmd_To_Enum(abor, 1)).

formula(Cmd_To_Enum(allo, 2)).

formula(Cmd_To_Enum(help, 3)).

formula(Cmd_To_Enum(noop, 4)).

formula(Variable(time, 0)).

formula(Variable(delta, 0)).

formula(Variable(cmd, 0)).

%%%

end_of_list.

%%%

267

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

D.2.6 Evolved Knowledge Specification File for Agent R

(EvolvedAgentR.dfg)

begin_problem(EvolvedAgentR).

%%%

% FILE DESCRIPTION

%%%

list_of_descriptions.

name({* EvolvedAgentR.dfg *}).

author({* Jason Jaskolka *}).

status(unknown).

description

({* Evolved Knowledge Base for Agent R resulting from the manual

simulation of its amended concrete behaviour. *}).

end_of_list.

%%%

%%%

% SYMBOL LIST

%%%

list_of_symbols.

268

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% OBJECTS

%%%

functions

[

(abor,0),

(allo,0),

(help,0),

(noop,0),

(00,0),

(01,0),

(10,0),

(11,0),

(0,0),

(1,0),

(2,0),

(3,0),

(4,0),

(cmd,0),

(delta,0),

(last,0),

(time,0),

(num_1,0),

(num_2,0),

(num_3,0),

(num_4,0),

(since_1,0),

(since_2,0),

(since_3,0),

(since_4,0),

(avg_1,0),

(avg_2,0),

(avg_3,0),

(avg_4,0),

(x,0),

(y,0)

].

%%%

269

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% CONCEPTS AND ROLES

%%%

predicates

[

%%%

% CONCEPTS

%%%

(command,0), (Command,1),

(bitstring,0), (BitString,1),

(enumeration,0), (Enumeration,1),

(confinfo,0), (ConfInfo,1),

(confvar,0), (ConfVar,1),

%%%

% ROLES

%%%

(variable,0), (Variable,2),

(cmd_to_enum,0), (Cmd_To_Enum,2),

(enum_to_cmd,0), (Enum_To_Cmd,2)

%%%

].

%%%

%%%

% TRANSLATIONS

% Concept/Role Names : lowercase

% Individual Types : Capitalised

%%%

translpairs

[

%%%

% CONCEPTS

%%%

(command,Command),

(bitstring,BitString),

(enumeration,Enumeration),

(confinfo,ConfInfo),

(confvar,ConfVar),

270

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

%%%

% ROLES

%%%

(variable,Variable),

(cmd_to_enum,Cmd_To_Enum),

(enum_to_cmd,Enum_To_Cmd)

%%%

].

%%%

end_of_list.

%%%

%%%

% KNOWLEDGE BASE

%%%

list_of_special_formulae(axioms, DL).

%%%

% TBox

%%%

% Enum_To_Cmd is the inverse mapping of Cmd_To_Enum

role_formula(equiv(enum_to_cmd, conv(cmd_to_enum))).

% All values in variables storing confidential information represent

% confidential information

concept_formula(implies(and (some (conv(variable), confvar),

bitstring), confinfo)).

%%%

%%%

% ABox

%%%

formula(Command(abor)).

formula(Command(allo)).

formula(Command(help)).

formula(Command(noop)).

271

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

formula(Enumeration(1)).

formula(Enumeration(2)).

formula(Enumeration(3)).

formula(Enumeration(4)).

formula(BitString(00)).

formula(BitString(01)).

formula(BitString(10)).

formula(BitString(11)).

formula(Variable(num_1, 0)).

formula(Variable(num_2, 1)).

formula(Variable(num_3, 0)).

formula(Variable(num_4, 0)).

formula(Variable(since_1, 3)).

formula(Variable(since_2, 0)).

formula(Variable(since_3, 3)).

formula(Variable(since_4, 3)).

formula(Variable(avg_1, 0)).

formula(Variable(avg_2, 3)).

formula(Variable(avg_3, 0)).

formula(Variable(avg_4, 0)).

formula(Cmd_To_Enum(abor, 1)).

formula(Cmd_To_Enum(allo, 2)).

formula(Cmd_To_Enum(help, 3)).

formula(Cmd_To_Enum(noop, 4)).

formula(Variable(time, 3)).

formula(Variable(delta, 3)).

formula(Variable(cmd, 2)).

formula(Variable(x, allo)).

formula(Variable(y, 01)).

formula(ConfVar(y)).

%%%

272

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

end_of_list.

%%%

%%%

% CONJECTURES (GOALS)

%%%

list_of_special_formulae(conjectures, DL).

formula(exists([z], ConfInfo(z))).

end_of_list.

%%%

end_problem.

273

Bibliography

[AA11] S.A. Ahmadzadeh and G.B. Agnew. Covert channels in multiple access proto-

cols. In Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM’11,

pages 404–405, Toronto, ON, Canada, 2011.

[AFW06] K. Alghathbar, C. Farkas, and D. Wijesekera. Securing UML information flow

using FlowUML. Journal of Research and Practice in Information Technology,

38(1):111–120, February 2006.

[AGM85] C.E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory

change: Partial meet contraction and revision functions. The Journal of Sym-

bolic Logic, 50(2):510–530, 1985.

[AR80] G.R. Andrews and R.P. Reitman. An axiomatic approach to information flow

in programs. ACM Transactions on Programming Languages and Systems,

2(1):56–76, January 1980.

[Ber07] H. Berghel. Hiding data, forensics, and anti-forensics. Communications of the

ACM, 50(4):15–20, April 2007.

[BGC05a] V. Berk, A. Giani, and G. Cybenko. Covert channel detection using process

query systems. In Proceedings of the 2nd Annual Conference for Network Flow

Analysis, FLOCON 2005, September 2005.

274

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[BGC05b] V. Berk, A. Giani, and G. Cybenko. Detection of covert channel encoding

in network packet delays. Technical Report TR2005-536, Dartmouth College,

Hanover, NH, U.S.A., August 2005.

[Bis02] M. Bishop. Computer Security: Art and Science. Addison Wesley, Boston,

MA, U.S.A., November 2002.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.

Information and Control, 60(1-3):109–137, 1984.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer system: Unified exposition

and Multics interpretation. Technical Report ESD-TR-75-306, The MITRE

Corporation, March 1976.

[BMNP03] F. Baader, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation, and Applications.

Cambridge University Press, 2003.

[BN89] D.F.C. Brewer and M.J. Nash. The Chinese wall security policy. In Proceedings

of the 1989 IEEE Symposium on Security and Privacy, pages 206–214, May

1989.

[BR05] R. Bidou and F. Raynal. Covert channels, November 2005.

[Bro94] R. Browne. Mode security: An infrastructure for covert channel suppression.

In Proceedings of the 1994 IEEE Computer Society Symposium on Research

in Security and Privacy, pages 39–55, Los Almitos, CA, U.S.A., 1994.

[CBS04] S. Cabuk, C.E. Brodley, and C. Shields. IP covert timing channels: Design

and detection. In Proceedings of the 11th ACM Conference on Computer and

Communications Security, CCS ’04, pages 178–187. ACM, 2004.

275

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[CDE+03] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and

C. Talcott. The Maude 2.0 System. In R. Nieuwenhuis, editor, Rewriting Tech-

niques and Applications, volume 2706 of Lecture Notes in Computer Science,

pages 76–87. Springer Berlin/Heidelberg, 2003.

[CDL02] D. Calvanese, G. De Giacomo, and M. Lenzerini. Description logics for infor-

mation integration. In A.C. Kakas and F. Sadri, editors, Computational Logic:

Logic Programming and Beyond, volume 2408 of Lecture Notes in Computer

Science, pages 41–60. Springer Berlin/Heidelberg, 2002.

[CE82] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. In D. Kozen, editor, Logics

of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71.

Springer Berlin/Heidelberg, 1982.

[CKC05] E. Cole, R.L. Krutz, and J.W. Conley. Network Security Bible. Wiley, Indi-

anapolis, IN, U.S.A., 2005.

[CKNZ10] D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov. Evolution of

DL-Lite knowledge bases. In Proceedings of the 9th International Semantic

Web Conference on The Semantic Web - Volume Part I, ISWC’10, pages

112–128, 2010.

[Coh81] P.M. Cohn. Universal Algebra, volume 6 of Mathematics and Its Applications.

Springer Netherlands, 1981.

[Com93] Communications Security Establishment Canada. Canadian Trusted Com-

puter Product Evaluation Criteria (CTCPEC). Communications Security Es-

tablishment Canada, Ottawa, ON, Canada, 1993.

276

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[Com09] Common Criteria Recognition Arrangement. Common Criteria for Informa-

tion Technology Security Evaluation (CC). Number CCMB-2009-07. Common

Criteria Recognition Arrangement, July 2009.

[CR06] E. Cole and S. Ring. Insider Threat: Protecting the Enterprise From Sabotage,

Spying, and Theft. Syngress, 2006.

[CS96] R. Cleaveland and S.A. Smolka. Strategic directions in concurrency research.

ACM Computing Surveys, 28(4):607–625, December 1996.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John

Wiley & Sons, 1991.

[DD77] D.E. Denning and P.J. Denning. Certification of programs for secure infor-

mation flow. Communications of the ACM, 20(7):504–513, July 1977.

[Den76] D.E. Denning. A lattice model of secure information flow. Communications

of the ACM, 19(5):236–243, May 1976.

[Dij75] E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Communications of the ACM, 18(8):453–457, August 1975.

[DLN+92] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, and W. Nutt. Adding

epistemic operators to concept languages. In Proceedings of the 3rd Internation

Conference on Principles of Knowledge Representation and Reasoning, KR

’92, pages 342–353, 1992.

[DoD85] U.S.A. Department of Defense. Trusted Computer System Evaluation Criteria

(TCSEC). Number DoD 5200.28-STD in Defense Department Rainbow Series

(Orange Book). Department of Defense/National Computer Security Center,

Fort George G. Meade, MD, U.S.A., December 1985.

277

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[DoHS09] U.S.A. Department of Homeland Security. A roadmap for cybersecurity re-

search. Department of Homeland Security Science and Technology Direc-

torate, Washington, DC, U.S.A., November 2009.

[DoTI91] U.K. Department of Trade & Industry. Information Technology Security Eval-

uation Criteria (ITSEC), COM(90) 314. Department of Trade & Industry,

London, UK, June 1991.

[DP97] A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial

Intelligence, 89(1-2):1–29, January 1997.

[EH86] E.A. Emerson and J.Y. Halpern. “sometimes” and “not never” revisited: On

branching versus linear time temporal logic. Journal of the ACM, 33(1):151–

178, January 1986.

[FG94] R. Focardi and R. Gorrieri. A classification of security properties for process

algebras. Journal of Computer Security, 3(1):5–33, November 1994.

[FGM03] R. Focardi, R. Gorrieri, and F. Martinelli. Real-time information flow analysis.

IEEE Journal on Selected Areas in Communications, 21(1):20–35, 2003.

[FH94] N. Friedman and J.Y. Halpern. A knowledge-based framework for belief

change. Part II: Revision and update. In Proceedings of the 4th Interna-

tional Conference on Principles of Knowledge Representation and Reasoning,

KR ’94, pages 190–201, 1994.

[GGLT02] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging

through TCP timestamps. In Proceedings of the Privacy Enhancing Tech-

nologies Workshop, PET, pages 194–208, April 2002.

[GGT10] A. Grusho, N. Grusho, and E. Timonina. Problems of modeling in the anal-

ysis of covert channels. In I. Kotenko and V. Skormin, editors, Proceedings

278

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

of the 5th International Conference on Mathematical Methods, Models and

Architectures for Computer Network Security, volume 6258 of Lecture Notes

in Computer Science, page 6258. Springer Berlin/Heidelberg, 2010.

[GH99] J.R. Giles and B. Hajek. The jamming game for timing channels. In Pro-

ceedings of the 1999 Information Theory and Networking Workshop, page 35,

Metsovo , Greece, 1999.

[GH02] J. Giles and B. Hajek. An information-theoretic and game-theoretic study of

timing channels. IEEE Transactions on Information Theory, 48(9):2455–2477,

September 2002.

[GKT05] A. Grusho, A. Kniazev, and E. Timonina. Detection of illegal information flow.

In V. Gorodetsky, I. Kotenko, and V. Skormin, editors, Proceedings of the 3rd

International Workshop on Mathematical Methods, Models, and Architectures

for Computer Networked Security, volume 3685 of Lecture Notes in Computer

Science, pages 235–244. Springer Berlin/Heidelberg, 2005.

[GM82] J.A. Goguen and J. Meseguer. Security policies and security models. In

Proceedings of the 1982 Symposium on Security and Privacy, pages 11–20,

New York, NY, U.S.A., 1982.

[Gol11] D. Gollmann. Computer Security. John Wiley & Sons, 2011.

[Gra91] J.W. Gray III. Toward a mathematical foundation for information flow se-

curity. In Proceedings of the 1991 IEEE Computer Society Symposium on

Research in Security and Privacy, pages 21–34, Oakland, CA, U.S.A., 1991.

[GW07] S. Gianvecchio and H. Wang. Detecting covert timing channels: An entropy-

based approach. In Proceedings of the 14th ACM Conference on Computer and

279

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Communications Security, CCS ’07, pages 307–316, New York, NY, U.S.A.,

2007. ACM.

[HKMY87] J.T. Haigh, R.A. Kemmerer, J. McHugh, and W.D. Young. An experience

using two covert channel analysis techniques on a real system design. IEEE

Transactions on Software Engineering, SE-13(2):157–168, February 1987.

[HMSW09a] C.A.R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene

algebra. In M. Bravetti and G. Zavattaro, editors, CONCUR 2009 - Con-

currency Theory, volume 5710 of Lecture Notes in Computer Science, pages

399–414. Springer Berlin/Heidelberg, 2009.

[HMSW09b] C.A.R. Hoare, B. Möller, G. Struth, and I. Wehrman. Foundations of con-

current Kleene algebra. In R. Berghammer, A. Jaoua, and B. Möller, editors,

Relations and Kleene Algebra in Computer Science, volume 5827 of Lecture

Notes in Computer Science, pages 166–186. Springer Berlin/Heidelberg, 2009.

[HMSW10] C.A.R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene al-

gebra and its foundations. Technical Report CS-10-04, University of Sheffield,

Department of Computer Science, Sheffield, UK, August 2010. Available:

http://www.dcs.shef.ac.uk/˜georg/ka/.

[HMSW11] C.A.R. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent Kleene

algebra and its foundations. Journal of Logic and Algebraic Programming,

80(6):266–296, 2011.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communica-

tions of the ACM, 12(10):576–580, October 1969.

[Hoa78a] C.A.R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–677, August 1978.

280

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[Hoa78b] C.A.R. Hoare. Some properties of predicate transformers. Journal of the

ACM, 25(3):461–480, July 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hol04] W.M.L. Holcombe. Algebraic Automata Theory. Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, 2004.

[HPRW08] R. Hähnle, J. Pan, P. Rümmer, and D. Walter. Integration of a security type

system into a program logic. Theoretical Computer Science, 402(2–3):172–189,

2008.

[HR10] L. Hélouët and A. Roumy. Covert channel detection using information theory.

In K. Chatzikokolakis and V. Cortier, editors, Proceedings of 8th International

Workshop on Security Issues in Concurrency, SecCo 2010, pages 34–51, Au-

gust 2010.

[HRLS06] K. Hristova, T. Rothamel, Y.A. Liu, and S.D. Stoller. Efficient type inference

for secure information flow. In Proceedings of the 2006 Workshop on Pro-

gramming Languages and Analysis for Security, PLAS ’06, pages 85–94, New

York, NY, U.S.A., October 2006.

[HS96] T.G. Handel and M.T. Sandford II. Hiding data in the OSI network model.

In Proceedings of the First International Workshop on Information Hiding,

volume 1174 of Lecture Notes in Computer Science, pages 23–38, London,

UK, 1996. Springer-Verlag.

[HS00] U. Hustadt and R.A. Schmidt. Issues of decidability for description logics in

the framework of resolution. In R. Caferra and G. Salzer, editors, Automated

Deduction in Classical and Non-Classical Logics, volume 1761 of Lecture Notes

in Computer Science, pages 191–205. Springer Berlin/Heidelberg, 2000.

281

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[HSG04] U. Hustadt, R.A. Schmidt, and L. Georgieva. A survey of decidable first-order

fragments and description logics. Journal of Relational Methods in Computer

Science, 1:251–276, 2004.

[Hu91] W.-M. Hu. Reducing timing channels with fuzzy time. In Proceedings of the

1991 IEEE Computer Society Symposium on Research in Security and Pri-

vacy, pages 8–20, Oakland, CA, U.S.A., May 1991. IEEE Computer Society.

[Hu92] W.-M. Hu. Lattice scheduling and covert channels. In Proceedings of the

1992 IEEE Symposium on Security and Privacy, pages 52–61, Oakland, CA,

U.S.A., 1992.

[Hun74] T. W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.

Springer-Verlag, 1974.

[HW93] U. Hebisch and H.J. Weinert. Semirings: Algebraic Theory and Applications

in Computer Science, volume 5 of Series in Algebra. World Scientific, 1993.

[HW11] C.A.R. Hoare and J. Wickerson. Unifying models of data flow. In M. Broy,

C. Leuxner, and C.A.R. Hoare, editors, Proceedings of the 2010 Marktoberdorf

Summer School on Software and Systems Safety, pages 211–230. IOS Press,

August 2011.

[HZD05] L. Hélouët, M. Zeitoun, and A. Degorre. Scenarios and covert channels: An-

other game... Electronic Notes in Theoretical Computer Science, 119:93–116,

2005.

[HZJ03] L. Hélouët, M. Zeitoun, and C. Jard. Covert channels detection in protocols

using scenarios. In Proceedings of Security Protocols Verification, SPV’03,

pages 21–25, 2003.

282

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[Jac90] J. Jacob. Separability and the detection of hidden channels. Information

Processing Letters, 34(1):27–29, February 1990.

[Jas10] J. Jaskolka. Modeling, analysis, and detection of information leakage via

protocol-based covert channels. Master’s thesis, McMaster University, Hamil-

ton, ON, Canada, September 2010.

[JK11a] M.V. Jadhav and S.L. Kattimani. Effective detection mechanism for TCP

based hybrid covert channels in secure communication. In Proceedings of the

2011 International Conference on Emerging Trends in Electrical and Com-

puter Technology, ICETECT 2011, pages 1123–1128, March 2011.

[JK11b] J. Jaskolka and R. Khedri. Exploring covert channels. In Proceedings of the

44th Hawaii International Conference on System Sciences, HICSS-44, pages

1–10, Koloa, Kauai, HI, U.S.A., January 2011.

[JK14a] J. Jaskolka and R. Khedri. A formulation of the potential for communication

condition using C2KA. In A. Peron and C. Piazza, editors, Proceedings of the

5th International Symposium on Games, Automata, Logics and Formal Verifi-

cation, volume 161 of Electronic Proceedings in Theoretical Computer Science,

pages 161–174, Verona, Italy, September 2014. Open Publishing Association.

[JK14b] J. Jaskolka and R. Khedri. Mitigating covert channels based on analysis of

the potential for communication. Theoretical Computer Science, (40 pages),

(Submitted, 2014).

[JKS11] J. Jaskolka, R. Khedri, and K.E. Sabri. A formal test for detecting information

leakage via covert channels. In Proceedings of the 7th Annual Cyber Security

and Information Intelligence Research Workshop, CSIIRW7, pages 1–4, Oak

Ridge, TN, U.S.A., October 2011.

283

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[JKS14] J. Jaskolka, R. Khedri, and K.E. Sabri. Investigative support for information

confidentiality part I: Detecting confidential information leakage via protocol-

based covert channels. In Proceedings of the 9th International Conference

on Future Networks and Communications, volume 34 of Procedia Computer

Science, FNC 2014 and MobiSPC 2014, pages 276–285, Niagara Falls, ON,

Canada, August 2014.

[JKZ12] J. Jaskolka, R. Khedri, and Q. Zhang. On the necessary conditions for covert

channel existence: A state-of-the-art survey. Procedia Computer Science,

10:458–465, August 2012. Proceedings of the 3rd International Conference

on Ambient Systems, Networks and Technologies, ANT 2012.

[JKZ13] J. Jaskolka, R. Khedri, and Q. Zhang. Foundations of communicating con-

current Kleene algebra. Technical Report CAS-13-07-RK, McMaster Univer-

sity, Hamilton, ON, Canada, November 2013. Available: http://www.cas.

mcmaster.ca/cas/0template1.php?601.

[JKZ14] J. Jaskolka, R. Khedri, and Q. Zhang. Endowing concurrent Kleene algebra

with communication actions. In P. Höfner, P. Jipsen, W. Kahl, and M.E.

Müller, editors, Proceedings of the 14th International Conference on Rela-

tional and Algebraic Methods in Computer Science, volume 8428 of Lecture

Notes in Computer Science, pages 19–36. Springer International Publishing

Switzerland, 2014.

[JLY10] D. Johnson, P. Lutz, and B. Yuan. Behavior-based covert channel in cy-

berspace. In Proceedings of the 4th International ISKE Conference on Intel-

ligent Decision Making Systems, pages 311–318, 2010.

[Jon81] C.B. Jones. Development Methods for Computer Programs Including a Notion

284

http://www.cas.mcmaster.ca/cas/0template1.php?601
http://www.cas.mcmaster.ca/cas/0template1.php?601

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

of Interference. PhD thesis, Oxford University, June 1981. Programming

Research Group, Technical Monograph PRG-25.

[JSS07] T. Jaeger, R. Sailer, and Y. Sreenivasan. Managing the risk of covert infor-

mation flows in virtual machine systems. In Proceedings of the 12th ACM

Symposium on Access Control Models and Technologies, SACMAT ’07, pages

81–90, Sophia Antipolis, France, 2007.

[Kas14] Kaspersky Lab. IT security risks survey 2014: A business approach to man-

aging data security threats. Kaspersky Lab, 2014.

[KC09] N. Kiyavash and T. Coleman. Covert timing channels codes for communica-

tion over interactive traffic. In Proceedings of the 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pages

1485–1488, Piscataway, NJ, U.S.A., 2009.

[Kel76] R.M. Keller. Formal verification of parallel programs. Communications of the

ACM, 19(7):371–384, July 1976.

[Kem83] R.A. Kemmerer. Shared resource matrix methodology: An approach to identi-

fying storage and timing channels. ACM Transactions on Computer Systems,

1(3):256–277, August 1983.

[KKM00] M. Kilp, U. Knauer, and A.V. Mikhalev. Monoids, Acts and Categories with

Applications to Wreath Products and Graphs: A Handbook for Students and

Researchers, volume 29 of De Gruyter Expositions in Mathematics Series.

Walter de Gruyter, 2000.

[KL51] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of

Mathematical Statistics, 22(1):79–86, 1951.

285

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[KM93] M.H. Kang and I.S. Moskowitz. A pump for rapid, reliable, secure com-

munication. In Proceedings of the 1st ACM Conference on Computer and

Communications Security, pages 119–129, Fairfax, VA, U.S.A., 1993.

[Kob05] N. Kobayashi. Type-based information flow analysis for the π-calculus. Acta

Informatica, 42(4):291–347, 2005.

[Koz93] Dexter Kozen. On action algebras. In Logic and Information Flow, pages

78–88. MIT Press, 1993.

[Koz97] D. Kozen. Automata and Computability. Undergraduate Texts in Computer

Science. Springer, 1997.

[KP91] R.A. Kemmerer and P.A. Porras. Covert flow trees: A visual approach to an-

alyzing covert storage channels. IEEE Transactions on Software Engineering,

17(11):1166–1185, November 1991.

[Kri63] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fen-

nica, 16:83–94, 1963.

[KS07] J. Kohlas and R. Stärk. Information algebras and consequence operators.

Logica Universalis, 1(1):139–165, January 2007.

[Lam73] B.W. Lampson. A note on the confinement problem. Communications of the

ACM, 16(10):613–615, October 1973.

[LG98] A.A. Letichevsky and D. Gilbert. A general theory of action languages. Cy-

bernetics and Systems Analysis, 34:12–30, 1998.

[LHD10] X. Liu, J. Hao, and Y. Dai. An approach to analyze covert channel based on

finite state machine. In Proceedings of the 2nd International Conference on

Multimedia Information Networking and Security, MINES 2010, pages 438–

442, Los Alamitos, CA, U.S.A., 2010.

286

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[LMST+04] R. Lanotte, A. Maggiolo-Schettini, S. Tini, A. Troina, and E. Tronci. Auto-

matic covert channel analysis of a multilevel secure component. In J. Lopez,

S. Qing, and E. Okamoto, editors, Proceedings of the 6th International Con-

ference on Information and Communications Security, volume 3269 of Lecture

Notes in Computer Science, pages 249–261. Springer Berlin/Heidelberg, 2004.

[Lon14] H.W. Longfellow. Paul Revere’s Ride. In C.W. Eliot, editor, English Poetry

III: From Tennyson to Whitman, volume 42 of The Harvard Classics. P.F.

Collier & Son, 1909–1914.

[Low02] G. Lowe. Quantifying information flow. In Proceedings of the 15th IEEE Com-

puter Security Foundations Workshop, CSFW-15, pages 18–31, Los Alamitos,

CA, U.S.A., 2002. IEEE Computer Society.

[LPRR02] S.A. Linton, G. Pfeiffer, E.F. Robertson, and N. Rus̆kuc. Computing transfor-

mation semigroups. Journal of Symbolic Computation, 33(2):145–162, 2002.

[LSWH09] J. Luo, Z. Shi, M. Wang, and H. Huang. Multi-agent cooperation: A descrip-

tion logic view. In D. Lukose and Z. Shi, editors, Multi-Agent Systems for

Society, volume 4078 of Lecture Notes in Computer Science, pages 365–379.

Springer Berlin/Heidelberg, 2009.

[LT97] J. Lobo and G. Trajcevski. Minimal and consistent evolution of knowledge

bases. Journal of Applied Non-Classical Logics, 7(1-2):117–146, 1997.

[Maz87] A. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Petri Nets: Applications and Relationships to Other Models of Con-

currency, volume 255 of Lecture Notes in Computer Science, pages 279–324.

Springer Berlin/Heidelberg, 1987.

[McH95] J. McHugh. Handbook for the Computer Security Certification of Trusted

287

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Systems, chapter 8: Covert Channel Analysis. Naval Research Laboratory,

Washington, DC, U.S.A., October 1995.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer-Verlag, 1980.

[Mil87] J.K. Millen. Covert channel capacity. In Proceedings of the 1987 Symposium

on Security and Privacy, pages 60–66, Oakland, CA, U.S.A., 1987. IEEE

Computer Society.

[Mil89a] J.K. Millen. Finite-state noiseless covert channels. In Proceedings of the

Computer Security Foundations Workshop II, pages 81–86, Washington, DC,

U.S.A., 1989. IEEE Computer Society.

[Mil89b] R. Milner. Communication and Concurrency. Prentice-Hall International

Series in Computer Science. Prentice Hall, 1989.

[Mil90] J.K. Millen. Hookup security for synchronous machines. In Proceedings of the

Computer Security Foundations Workshop III, pages 84–90, June 1990.

[Mil99] J. Millen. 20 years of covert channel modeling and analysis. In Proceedings

of the 1999 IEEE Symposium on Security and Privacy, pages 113–114, Los

Alamitos, CA, U.S.A., 1999.

[MK94] I.S. Moskowitz and M.H. Kang. Covert channels — here to stay? In Computer

Assurance, COMPASS ’94 Safety, Reliability, Fault Tolerance, Concurrency

and Real Time, Security, pages 235–243, Gaithersburg, MD , U.S.A., June

1994. IEEE Computer Society.

[ML10] T. Murray and G. Lowe. Analysing the information flow properties of object-

capability patterns. In P. Degano and J. Guttman, editors, Formal Aspects in

288

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Security and Trust, volume 5983 of Lecture Notes in Computer Science, pages

81–95. Springer Berlin/Heidelberg, 2010.

[MMA06] K. Martin, I.S. Moskowitz, and G. Allwein. Algebraic information theory for

binary channels. Electronic Notes in Theoretical Computer Science, 158:289–

306, 2006.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes part I.

Information and Computation, 100(1):1–40, September 1992.

[MQ91] J.A. McDermid and S. Qi. A formal model of security dependency for anal-

ysis and testing of secure systems. In Proceedings of the Computer Security

Foundations Workshop IV, pages 188–200, Los Alamitos, CA, U.S.A., 1991.

[MSM91] P.M. Melliar-Smith and L.E. Moser. Protection against covert storage and

timing channels. In Proceedings of the 4th IEEE Computer Security Foun-

dations Workshop, CSFW ’91, pages 209–214, Franconia, NH, U.S.A., June

1991. IEEE Computer Society.

[Mur07] S.J. Murdoch. Covert channel vulnerabilities in anonymity systems. Tech-

nical Report UCAM-CL-TR-706, University of Cambridge, Cambridge, UK,

December 2007.

[MvdH04] J.-J. Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer

Science, volume 41 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2004.

[NCSC93] U.S.A. National Computer Security Center. A Guide to Understanding Covert

Channel Analysis of Trusted Systems. Number NCSC-TG-030 in NSA/NCSC

Rainbow Series (Light Pink Book). National Security Agency/National Com-

puter Security Center, Fort George G. Meade, MD, U.S.A., November 1993.

289

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[NW06] N. Nagatou and T. Watanabe. Run-time detection of covert channels. In

Proceedings of the 1st International Conference on Availability, Reliability and

Security, ARES 2006, pages 577–584, Vienna, Austria, 2006. IEEE Computer

Society.

[OOS+97] N. Ogurtsov, H. Orman, R. Schroeppel, S. O’Malley, and O. Spatscheck. Ex-

perimental results of covert channel limitation in one-way communication sys-

tems. In Proceedings of the 1997 Symposium on Network and Distributed Sys-

tem Security, pages 2–15, Los Alamitos, CA, U.S.A., 1997. IEEE Computer

Society.

[PAK99] F.A.P. Petitcolas, R.J. Anderson, and M.G. Kuhn. Information hiding — a

survey. Proceedings of the IEEE, Special Issue on Protection of Multimedia

Content, 87(7):1062–1078, July 1999.

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instru-

mentelle Mathematik, Bonn, Germany, 1962. English translation available

as: Communication with Automata, Technical Report RADC-TR-65-377, vol-

ume 1, supplement 1, Applied Data Research, Princeton, NJ, U.S.A., 1966.

[PHGB10] C.W. Probst, J. Hunker, D. Gollmann, and M. Bishop. Insider Threats In

Cyber Security, volume 49 of Advances In Information Security. Springer,

2010.

[PK91] P.A. Porras and R.A. Kemmerer. Covert flow trees: A technique for identify-

ing and analyzing covert storage channels. In Proceedings of the 1991 IEEE

Computer Society Symposium on Research in Security and Privacy, pages

36–51, Los Alamitos, CA, U.S.A., 1991. IEEE Computer Society.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, pages 46–57, 1977.

290

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[Pon14] Ponemon Institute. 2014 cost of data breach study: Global analysis. Ponemon

Institute Research Report, May 2014.

[PP05] E. Pacuit and R. Parikh. The logic of communication graphs. In J. Leite,

A. Omicini, P. Torroni, and P. Yolum, editors, Proceedings of the 2nd In-

ternational Workshop on Declarative Agent Languages and Technologies II,

volume 3476 of Lecture Notes in Computer Science, pages 256–269. Springer

Berlin/Heidelberg, 2005.

[PP07] E. Pacuit and R. Parikh. Reasoning about communication graphs. In J. van

Benthem, B. Löwe, and D. Gabbay, editors, Interactive Logic: Games and

Social Software, volume 1, 2007.

[Pra86] V. Pratt. Modeling concurrency with partial orders. International Journal of

Parallel Programming, 15(1):33–71, February 1986.

[Pra91] V. Pratt. Action logic and pure induction. In J. Eijck, editor, Logics in AI,

volume 478 of Lecture Notes in Computer Science, pages 97–120. Springer

Berlin/Heidelberg, 1991.

[PSCS07] A. Patel, M. Shah, R. Chandramouli, and K.P. Subbalakshmi. Covert channel

forensics on the internet: Issues, approaches, and experiences. International

Journal of Network Security, 5(1):41–50, July 2007.

[RMMG01] P. Ryan, J. McLean, J. Millen, and V. Gligor. Non-interference: Who needs it?

In Proceedings of the 14th IEEE Workshop on Computer Security Foundation,

pages 237–238, Washington, DC, U.S.A., 2001. IEEE Computer Society.

[Rus82] J. Rushby. Proof of separability: A verification technique for a class of security

kernels. In M. Dezani-Ciancaglini and U. Montanari, editors, International

291

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Symposium on Programming, volume 137 of Lecture Notes in Computer Sci-

ence, pages 352–367. Springer Berlin/Heidelberg, 1982.

[SAIL07] A. Shaffer, M. Auguston, C. Irvine, and T. Levin. Toward a security domain

model for static analysis and verification of information systems. In Proceed-

ings of the 7th OOPSLA Workshop on Domain-Specific Modeling, DSM ’07,

pages 160–171, Montreal, QC, Canada, October 2007.

[SAIL08] A.B. Shaffer, M. Auguston, C.E. Irvine, and T.E. Levin. A security domain

model to assess software for exploitable covert channels. In Proceedings of the

ACM SIGPLAN 3rd Workshop on Programming Languages and Analysis for

Security, PLAS ’08, pages 45–56, Tucson, AZ, U.S.A., 2008.

[Sal09] M. Salaün. Practical overview of a Xen covert channel. Journal in Computer

Virology, 6(4):317–328, 2009.

[Sar06] B. Sartin. Anti-forensics — distorting the evidence. Computer Fraud and

Security, 2006(5):4–6, May 2006.

[SC99] S. Shieh and A.L.P. Chen. Estimating and measuring covert channel band-

width in multilevel secure operating systems. Journal of Information Science

and Engineering, 15(1):91–106, 1999.

[Sco07] C. Scott. Network covert channels: Review of current state and analysis of

viability of the use of X.509 certificates for covert communications. Technical

Report RHUL-MA-2008-11, Royal Holloway, University of London, January

2007.

[SGG07] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating System Concepts.

Wiley, seventh edition, 2007.

292

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[Sha48] C.E. Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 27:379–423, 623–656, July, October 1948.

[Sid03] K.A. Siddiqi. Covert channels over TCP/IP and protocol steganography. Tech-

nical Report 2003-03-0044, Lahore University of Management Sciences, 2003.

[Sim84] G.J. Simmons. The prisoners’ problem and the subliminal channel. In Ad-

vances in Cryptology, CRYPTO ’83, pages 51–67, New York, NY, U.S.A.,

1984.

[Sim85] G.J. Simmons. The subliminal channel and digital signatures. In

T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology, vol-

ume 209 of Lecture Notes in Computer Science, pages 364–378. Springer

Berlin/Heidelberg, 1985.

[SK06] M. Smeets and M. Koot. Research report: Covert channels. Master’s thesis,

University of Amsterdam, Amsterdam, Netherlands, February 2006.

[SKJ09a] K.E. Sabri, R. Khedri, and J. Jaskolka. Automated verification of information

flow in agent-based systems. Technical Report CAS-09-01-RK, McMaster

University, Hamilton, ON, Canada, January 2009.

[SKJ09b] K.E. Sabri, R. Khedri, and J. Jaskolka. Verification of information flow in

agent-based systems. In G. Babin, P. Kropf, and M. Weiss, editors, Pro-

ceedings of the 4th International MCETECH Conference on e-Technologies,

volume 26 of Lecture Notes in Business Information Processing, pages 252–

266. Springer Berlin/Heidelberg, May 2009.

[SQ07] J. Shen and S. Qing. A dynamic information flow model of secure systems.

In Proceedings of the 2nd ACM Symposium on Information, Computer and

293

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Communications Security, ASIACCS ’07, pages 341–343, Singapore, 2007.

ACM.

[SSM03] T. Sohn, J. Seo, and J. Moon. A study on the covert channel detection

of TCP/IP header using support vector machine. In S. Qing, D. Goll-

mann, and J. Zhou, editors, Information and Communications Security, vol-

ume 2836 of Lecture Notes in Computer Science, pages 313–324. Springer

Berlin/Heidelberg, 2003.

[Ste10] B. Steinberg. A theory of transformation monoids: Combinatorics and repre-

sentation theory. The Electronic Journal of Combinatorics, 17(1), 2010.

[SWBS09] S.H. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff. TCP/IP timing channels:

Theory to implementation. In Proceedings of the 28th IEEE Conference on

Computer Communications, INFOCOM 2009, pages 2204–2212, April 2009.

[TA05a] E. Tumoian and M. Anikeev. Detecting NUSHU covert channels using neural

networks. Technical report, Taganrog State University of Radio Engineering,

2005.

[TA05b] E. Tumoian and M. Anikeev. Network based detection of passive covert chan-

nels in TCP/IP. In Proceedings of the 30th IEEE Conference on Local Com-

puter Networks, pages 802–807, Sydney, Australia, 2005.

[TG88] C.-R. Tsai and V.D. Gligor. A bandwidth computation model for covert stor-

age channels and its applications. In Proceedings of the 1988 IEEE Symposium

on Security and Privacy, pages 108–121, Washington, DC, U.S.A., 1988.

[TGC87] C.-R. Tsai, V.D. Gligor, and C.S. Chandersekaran. A formal method for the

identification of covert storage channels in source code. IEEE Symposium on

Security and Privacy, page 74, 1987.

294

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[TGC90] C.-R. Tsai, V.D. Gligor, and C.S. Chandersekaran. On the identification of

covert storage channels in secure systems. IEEE Transactions on Software

Engineering, 16(6):569–580, June 1990.

[TK08] H.F. Tipton and M. Krause. Information Security Management Handbook,

volume 2. Auerbach, 2008.

[TO95] E. Teniente and A. Olivé. Updating knowledge bases while maintaining their

consistency. The VLDB Journal, 4(2):193–241, April 1995.

[Tro93] J.T. Trostle. Modelling a fuzzy time system. In Proceedings of the 1993 IEEE

Computer Society Symposium on Research in Security and Privacy, pages

82–89, Los Alamitos, CA, U.S.A., 1993.

[TST14] The SPASS Team. Spass: An automated theorem prover for first-order logic

with equality. Available: http://www.spass-prover.org/index.html (Ac-

cessed: May 29, 2014), May 2014.

[Var90] V. Varadharajan. Petri net based modelling of information flow security re-

quirements. In In Proceedings of the Computer Security Foundations Work-

shop III, pages 51–61, June 1990.

[vDvdHK03] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Concurrent dynamic

epistemic logic. Technical Report OUCS-2003-01, University of Otago, 2003.

[vDvdHK07] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,

volume 337 of Synthese Library. Springer, 2007.

[VIS96] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 4(2-3):167–187, 1996.

295

http://www.spass-prover.org/index.html

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

[VS97] D. Volpano and G. Smith. Eliminating covert flows with minimum typings.

In Proceedings of the 10th Computer Security Foundations Workshop, pages

156–168, Los Alamitos, CA, U.S.A., 1997.

[Wag05] D. Wagner. Re: Suggestions for the passing of passphrases. Avail-

able: http://www.derkeiler.com/Newsgroups/sci.crypt/2005-06/0622.

html (Accessed: October 23, 2014), June 2005.

[Wan11] Z. Wang. Ontology Evolution in Description Logics. PhD thesis, Griffith

University, South East Queensland, Australia, January 2011.

[Wat30] J.B. Watson. Behaviorism. University of Chicago Press, 1930.

[Win87] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Petri Nets: Applications and Relationships to Other Models of Con-

currency, volume 255 of Lecture Notes in Computer Science, pages 325–392.

Springer Berlin/Heidelberg, 1987.

[WJ06] C.-D. Wang and S. Ju. The dilemma of covert channels searching. In D. Won

and S. Kim, editors, Information Security and Cryptology, volume 3935 of Lec-

ture Notes in Computer Science, pages 169–174. Springer Berlin/Heidelberg,

2006.

[WJG+04] C.-D. Wang, S. Ju, D. Guo, Z. Yang, and W.-Y. Zheng. Research on the

methods of search and elimination in covert channels. In M. Li, X.-H.

Sun, Q.-N. Deng, and J. Ni, editors, Grid and Cooperative Computing, vol-

ume 3032 of Lecture Notes in Computer Science, pages 988–991. Springer

Berlin/Heidelberg, 2004.

[WL05a] Z. Wang and R.B. Lee. Capacity estimation of non-synchronous covert chan-

nels. In Proceedings of the 25th IEEE International Conference on Distributed

296

http://www.derkeiler.com/Newsgroups/sci.crypt/2005-06/0622.html
http://www.derkeiler.com/Newsgroups/sci.crypt/2005-06/0622.html

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

Computing Systems Workshops, pages 170–176. IEEE Computer Society, June

2005.

[WL05b] Z. Wang and R.B. Lee. New constructive approach to covert channel modeling

and channel capacity estimation. In J. Zhou, J. Lopez, R.H. Deng, and F. Bao,

editors, Proceedings of 8th International Conference on Information Security,

volume 3650 of Lecture Notes in Computer Science, pages 498–505. Springer

Berlin/Heidelberg, 2005.

[Wra91] J.C. Wray. An analysis of covert timing channels. In Proceedings of the 1991

IEEE Computer Society Symposium on Research in Security and Privacy,

pages 2–7, Los Alamitos, CA, U.S.A., 1991.

[WWTP10] Z. Wang, K. Wang, R. Topor, and J.Z. Pan. Forgetting for knowledge bases in

DL-Lite. Annals of Mathematics and Artificial Intelligence, 58(1-2):117–151,

2010.

[ZAB07a] S. Zander, G. Armitage, and P. Branch. Covert channels and countermeasures

in computer network protocols. IEEE Communications Magazine, 45(12):136–

142, December 2007.

[ZAB07b] S. Zander, G. Armitage, and P. Branch. A survey of covert channels and coun-

termeasures in computer network protocols. IEEE Communications Surveys

Tutorials, 9(3):44–57, 2007.

[ZLD10] J. Zhai, G. Liu, and Y. Dai. A covert channel detection algorithm based on

TCP markov model. In Proceedings of the 2nd International Conference on

Multimedia Information Networking and Security, MINES 2010, pages 893–

897, Los Alamitos, CA, U.S.A., 2010.

[ZLSN05] X. Zou, Q. Li, S. Sun, and X. Niu. The research on information hiding based

297

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

on command sequence of FTP protocol. In R. Khosla, R. Howlett, and L. Jain,

editors, Proceedings of the 9th International Conference on Knowledge-Based

Intelligent Information and Engineering Systems, volume 3683 of Lecture

Notes in Computer Science, pages 1079–1085. Springer Berlin/Heidelberg,

2005.

[ZS10] H. Zhao and Y.Q. Shi. A phase-space reconstruction approach to detect covert

channels in TCP/IP protocols. In Proceedings of the 2010 IEEE International

Workshop on Information Forensics and Security, WIFS 2010, pages 1–6,

Piscataway, NJ, U.S.A., 2010.

[ZZ09] Y. Zhang and Y. Zhou. Knowledge forgetting: Properties and applications.

Artificial Intelligence, 173(16–17):1525–1537, 2009.

298

Index

π-calculus, 51, 78, 108

ALB, see description logic

ABox, 69, 111, 143, 155, 167

accessibility relation, 53

ACP, see algebra of communicating processes

action algebra, 51, 54

action structure, 54

addAgent, 218

agent, 2, 80, 106

honest, 163

misinforming, 163, 183

aggregation algebra, 64, 129

algebra of communicating processes, 51, 78,

108

algebraic structure, 59

alternation symbol, 66

annihilator, 60

anomaly detection, 44

assertional axiom, 70, 111, 144, 149

associativity, 60

attack

malicious, 7

non-malicious, 7

authentication, 6

availability, 6

bandwidth, see capacity

behaviour, 2, 80, 123, 217

belief revision, 155, 163

Bell-LaPadula model, 37

bilinear relation, 65, 129

broadcast, 94, 124

calculus of communicating systems, 51, 78,

108

capacity, 18, 38, 47

carrier set, 59

cascading output law, 84, 100

cascading product, 84, 87

CCS, see calculus of communicating systems

CFT, see covert flow trees

Chinese Wall, 37

CKA, see concurrent Kleene algebra

ckaFixedPoint, 223

299

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

ckaOrbit, 221

ckaStab, 222

ckaStrongOrbit, 221

closed system, 5, 26, 79, 86, 179

communicating concurrent Kleene algebra, 77,

83, 179, 184, 216

communicating sequential processes, 51, 78,

108, 168

communication, 2

via shared environments, 128

hybrid view, 5

indirect, 119

message-passing, 3, 93, 94, 109, 168

shared-variable, 3, 97, 109

via external stimuli, 124

communication event, 55

communication fixed point, 126, 133, 225

communication graph, 55

communication path, 11, 128, 130, 132, 135,

173, 176, 228

communication scheme, 9, 12, 24, 131, 143,

154, 181

assertional, 144, 146

behaviour component, 143, 151, 184

composite, 146, 152

knowledge component, 143, 148, 154, 155

procedural, 145

terminological, 143, 146

commutativity, 60

computation tree logic, 50, 78

concatenation operator, 68, 88

concept, 69, 150

atomic, 69

bottom, 69

top, 69

concept assertion, 70

concept inclusion, 70, 149, 168

concurrent Kleene algebra, 52, 63, 79, 80, 83,

87, 97, 106, 179, 214, 217

concurrent system, 3

confidential information, 6, 150, 152, 161,

171, 175, 181

confidentiality, 5

conjugate action, 51, 102

consistency, 155, 163

constraint on communication, 17, 23, 132,

172, 175, 179, 180

corporate espionage, 7, 19

covert channel, 10

behaviour-based, 38

distributed, 11

environment-based, 15, 35, 131

protocol-based, 13, 35, 131, 138

spatial, 34

300

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

storage, 34, 41, 43

temporal, 34

timing, 34, 41, 47, 121, 136, 139, 183

transition-based, 34

value-based, 34

covert flow trees, 42, 139

cryptography, 13

CSP, see communicating sequential processes

CTL, see computation tree logic

CTL∗, see computation tree logic

data dependency analysis, 43

data exfiltration, 9

deactivation stimulus, 81, 82, 94, 99, 103

DEL, see epistemic logic, dynamic

delay, 136

dependence relation, 65, 129, 227

description logic, 57, 69, 110, 114, 147, 158,

179

detection, 8

detection method

behaviour-based, 40

protocol-based, 40, 44

signature-based, 40

Dijkstra’s guarded command language, 65,

88, 93, 106, 158, 163, 165, 167, 169

distributed system, 3

distributivity, 60

dPFCviaEnv, 227

dPFCviaStim, 226

dynamic testing, 37

encompassing relation, 99

entailment relation, 72

epistemic action, 54

epistemic logic, 52, 57, 115

dynamic, 54, 115

epistemology, 52

event structure, 51

evolve, 165, 174

exchange axiom, 63

filter, 135

fixed point, 99, 103, 105, 106, 127, 128, 135,

137, 223

FlowUML, 43

forgetting, 163, 183

FTP command mapping, 75, 146, 149

full direct product, 87

fuzzy time, 49

generateMaudeSOCA, 219

generateMaudeSpec, 219

guard, 65

guarded command, 65

301

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

handshake, 3, 17, 51, 102

Haskell, 105

Heartbleed, 20

Hoare logic, 43, 169

Hoare traces, 51

Hoare triple, 68, 151

iCloud, 20

idempotence, 60

identity, 60

idle agent, 80, 81, 129

idle agent law, 85

idle prevention scheme, 75, 92, 147, 159

inactive agent, 80, 81, 104, 129

induced behaviour, 101, 104

information algebra, 56, 115

information flow, 37, 122, 169

analysis, 42, 128

lattice model, 43

information leakage, 9

information security, 5

information sink, see also sink

information theory, 47, 161

initial sequence number, 44

insider threat, 7, 19

integrity, 5

data, 5

origin, 6

interleaving semantics, 88

isCommFixedPoint, 225

isotone, 60

isStimConnected, 224

isUniversallyInfluential, 225

Kleene algebra, 61

knowledge, 2, 241

initial, 110, 172

merged, 154

shared, 114, 148

knowledge action, 54

knowledge base, 69, 110, 143, 147, 154

Kripke structure, 53

Kripke world, 53

Kullback-Leibler divergence, 44

labelled transition systems, 50, 78

linear-time temporal logic, 50, 78

load, 218

logic of communication graphs, 115

LTL, see linear-time temporal logic

mapping

next behaviour, 83, 89, 104, 106, 223

next stimulus, 83, 89, 104, 106, 224

Markov model, 44

Maude, 105, 106, 186, 219, 220

302

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

maude, 220

Mazurkiewicz traces, 51

Mealy automaton, 84, 87

model of communication

event-based, 93, 108

state-based, 97, 108

model of concurrency

event-based, 50, 78

state-based, 50, 78

monoid, 60

act, 62, 87, 98

multi-level secure, 45

multiplicatively absorbing, 61

neural network, 44

neutral stimulus, 81, 82, 94

neutral stimulus law, 85

newSoCA, 218

non-interference, 36–38, 40, 41

object, 69

open system, 4, 16, 26, 36, 79, 86, 179

operation

binary, 59

unary, 59

orbit, 98, 99, 106, 221

pattern of communication, 17, 123, 132, 135,

138, 176, 228

Petri net, 38, 50, 78

pfc, 228

pfcViaEnv, 227

pfcViaStim, 226

phase-space reconstruction, 44

pomset, 51

post-condition, 68, 151

potential for communication, 17, 23, 97, 123,

130, 132, 173, 176, 179, 180, 228

direct, 130, 134, 135, 226

indirect, 135

via external stimuli, 124, 125, 133, 226

via shared environments, 129, 133, 135,

227

pre-condition, 68, 151, 160

prevention, 8

printPaths, 228

printSet, 221

printSoCA, 220

prisoner’s problem, 12

process calculus, 40, 51, 78, 108

program, 87

prototype tool, 105, 132, 173, 180, 186, 217

pump, 46, 139

quantised, 47

linear, 47

logarithmic, 47

303

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

quantale, 61, 86

recovery, 8

rely/guarantee calculus, 108

role, 69, 150

atomic, 69

bottom, 69

top, 69

role assertion, 70

satisfiability relation, 71

scenario, 45

security policy, 6, 171, 174

Security Process Algebra, 38

semiautomaton, 87

semigroup, 60

semimodule, 62, 83, 93, 106, 215

unitary, 62

zero-preserving, 62

semiring, 61

separability, 45

setCKASet, 217

setConstants, 217

setStimSet, 217

shared resource matrix, 41, 43, 139

side channel, 11

signature, 69, 110, 150, 155

sink, 17

small message criterion, 48

SMC, see small message criterion

source, 17, 176

of confidential information leakage, 172,

241

SPA, see Security Process Algebra

SPASS, 114, 173, 175, 180, 186, 241

specification

abstract behaviour, 92, 109, 220, 229

concrete behaviour, 93, 106, 109, 217,

227, 229

pre- and post-condition, 68, 142, 148,

151, 157, 184

stimulus-response, 89, 92, 109, 168, 229

SRM, see shared resource matrix

stabiliser, 99, 102, 106, 222

state machine model

probabilistic, 38

synchronous, 38

statement, 65

abort, 65, 88, 167

skip, 65, 88, 167

receive, 94, 168

send, 93, 168

assignment, 65, 88, 167

repetition, 67, 88, 167

selection, 66, 88, 167

304

Ph.D. Thesis – Jason Jaskolka McMaster University – Software Engineering

static analysis, 37

steganographic channel, 11

steganography, 13

stimFixedPoint, 224

stimOrbit, 224

stimStab, 224

stimStrongOrbit, 224

stimuli-connected, 125, 126, 133, 224

stimulus, 4, 79, 81, 124, 179

basic, 82, 222

cascaded, 84

inverse, 101, 105

stimulus structure, 81, 83, 87, 106, 213, 217

trivial, 86, 108

strong orbit, 98, 101, 105, 106, 137, 221

structured message, 147

Stuxnet, 20

sub-behaviour, 128

sub-stimulus, 128

subliminal channel, 10

support vector machine, 44

SVM, see support vector machine

synchronisation trees, 51

synchronous serial composition, 84

system of communicating agents, 2, 106, 217

TBox, 69, 111, 144, 155

terminological axiom, 70, 143, 149

terminological interpretation, 70

threat, 7

topology, 97, 104

trace, 87

Trojan horse, 20

typing system, 38

unique name assumption, 71

universally influential, 126, 133, 225

WikiLeaks, 20

zero capacity channel, 48

305

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Symbols and Abbreviations
	Introduction
	General Context
	Systems of Communicating Agents
	Information Security

	Specific Context
	Covert Communication Channels

	Motivation
	Problem Statement, Objectives, and Methodology
	Problem Statement
	Objectives and Methodology

	Contributions
	Related Publications
	Journal Articles
	Refereed Conferences
	Technical Reports

	Structure of the Thesis

	Literature Survey
	Covert Communication Channels
	Classification of Covert Channels
	Modelling Covert Channels
	Detecting Covert Channels
	Preventing Covert Channels

	Formalisms for Capturing Agent Behaviour
	Formalisms for Capturing Agent Knowledge
	Conclusion

	Mathematical Background
	Algebraic Structures
	Concurrent Kleene Algebra
	Dijkstra's Guarded Command Language
	Pre- and Post-Condition Specifications and Hoare Triples
	Description Logic
	ALB Syntax
	ALB Semantics

	Conclusion

	Specifying Systems of Communicating Agents
	Running Example of a System of Communicating Agents
	Specifying Agent Behaviour
	Rationale for C2KA
	Structure of Agent Behaviours
	Structure of External Stimuli
	Communicating Concurrent Kleene Algebra (C2KA)
	A Comment on a Model for C2KA
	Specifying Systems of Communicating Agents with C2KA
	Orbits, Stabilisers, and Fixed Points in C2KA
	Specifying Agent Behaviour Using a Prototype Tool
	Discussion and Related Work

	Specifying Agent Knowledge
	Specifying Agent Knowledge using the Description Logic ALB
	Specifying Agent Knowledge Using the SPASS Theorem Prover
	Discussion and Related Work

	Conclusion

	Agent Behaviour and Potential for Communication
	The Potential for Communication Condition for the Existence of Distributed Covert Channels
	Potential for Communication in the Literature
	The Potential for Communication Condition

	Formulating the Potential for Communication Condition
	Formulating Potential for Communication via External Stimuli
	Formulating Potential for Communication via Shared Environments
	A Formulation of the Potential for Communication Condition

	Verifying the Potential for Communication Condition
	Verifying the Potential for Communication Condition Using the Prototype Tool

	Modifying Agent Behaviours to Preserve or Disrupt the Potential for Communication
	Discussion and Related Work
	Conclusion

	Communication Schemes and Agent Knowledge Evolution
	Communication Schemes
	Components of Communication Schemes
	Classifications of Communication Schemes
	An Example Communication Scheme
	Guidelines for Systematically Devising Communication Schemes
	Discussion and Related Work

	Merging Communication Schemes into Systems of Communicating Agents
	Amendments to Agent Knowledge
	Amendments to Agent Behaviour
	Applications of Merging Communication Schemes into Systems of Communicating Agents
	Discussion and Related Work

	Evolution of Agent Knowledge
	Assumptions
	Operations for Updating Agent Knowledge
	Evolving Agent Knowledge Through the Execution of Concrete Agent Behaviours
	Illustrative Example of the Evolution of Agent Knowledge
	Discussion and Related Work

	Verification of Confidential Information Leakage
	Discussion and Related Work

	Conclusion

	Discussion, Conclusion, and Future Work
	Highlights of the Contributions
	Future Work
	Theory: Models and Techniques
	Applications
	Tools and Automation

	Closing Remarks

	Detailed Proofs
	Detailed Proof of Proposition 3.2.2
	Detailed Proof of Proposition 4.2.1
	Detailed Proof of Corollary 4.2.2
	Detailed Proof of Proposition 4.2.3
	Detailed Proof of Corollary 4.2.4
	Detailed Proof of Proposition 4.2.5
	Detailed Proof of Proposition 4.2.6
	Detailed Proof of Proposition 4.2.7
	Detailed Proof of Proposition 5.2.1
	Detailed Proof of Proposition 5.2.3
	Detailed Proof of Proposition 5.4.1
	Detailed Proof of Proposition 5.4.2

	Axioms of C2KA
	Stimulus Structure S Axioms
	Concurrent Kleene Algebra K Axioms
	Left S-semimodule (to.SK, +)to. Axioms
	Right K-semimodule (to.SK,)to. Axioms
	Communicating Concurrent Kleene Algebra Axioms

	Analysing Agent Behaviour Using the Prototype Tool
	Specifying Systems of Communicating Agents
	Computing Orbits, Stabilisers, and Fixed Points
	Verifying Stimuli-Connected Systems, Communication Fixed Points, and Universally Influential Agents
	Verifying the Potential for Communication Condition
	Agent Behaviour Specifications for the Prototype Tool
	Behaviour Specification File for Agent C (AgentC.txt)
	Behaviour Specification File for Agent S (AgentS.txt)
	Behaviour Specification File for Agent P (AgentP.txt)
	Behaviour Specification File for Agent Q (AgentQ.txt)
	Behaviour Specification File for Agent R (AgentR.txt)

	Analysing Agent Knowledge Using the SPASS Theorem Prover
	Verifying the Constraint on Communication Condition
	Agent Knowledge Specifications for the SPASS Theorem Prover
	Knowledge Specification File for Agent C (AgentC.dfg)
	Knowledge Specification File for Agent S (AgentS.dfg)
	Knowledge Specification File for Agent P (AgentP.dfg)
	Knowledge Specification File for Agent Q (AgentQ.dfg)
	Knowledge Specification File for Agent R (AgentR.dfg)
	Evolved Knowledge Specification File for Agent R (EvolvedAgentR.dfg)

	Bibliography
	Index

