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Abstract

An investigation was undertaken to better understand the corrosion behaviour of
dissimilar welded Cu-lean AA7003 and AA7108 extrusions. The major variables under
study were the heat-treated condition (as-welded T6 vs. as-welded T6+Paint Bake (PB)),
extrusion alloy Cu composition (AA7003 vs. AA7108), weld filler composition (ER4043
vs. ER5356), weld joint geometry (lap-joint vs. T-joint), and weld direction with respect

to extrusion direction (parallel (=) vs. perpendicular (LL)). The corrosion behaviour of the

various weld configurations under investigation was observed using an ASTM standard
practice for modified salt spray testing (ASTM G85-A2), a GM worldwide engineering
standard for cyclic corrosion testing (GMW-14872), and potentiodynamic polarization
measurements. The effect of exposure to GMW-14872 on the tensile-shear behaviour of

the various weld configurations under study was also investigated using a custom tensile
jig.

Examination post exposure to ASMT G85-A2 revealed the presence of differing
pitting corrosion morphologies between AA7003 and AA7108. Due to increased Cu-
content, AA7003 displayed deep pitting corrosion which penetrated the entirety of the
dynamically recrystallized top surface layer and reached the fine-grained interior.
Shallow pitting of the recrystallized surface layer was observed on AA7108, with very

few penetration sites that reached the underlying fine-grained interior.

No difference in corrosion behaviour was observed between the heat affected zone
(HAZ) and unaffected base alloy of welded AA7003 and AA7108, also consistent with
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potentiodynamic polarization results. However, the HAZ displayed dual corrosion bands
separated by a thin band of unattacked alloy; a result of distinct local microstructural

changes induced by thermal cycling from welding.

Tensile-shear testing revealed four types of observed fracture modes: shear across
the weld throat, fracture along the AA7xxx/ER5356 interface, fracture along the
AAG6063/ER5356 interface and fracture in the HAZ of AA7xxx. Little to no corrosion
was observed on weld configurations exposed to GMW-14872, resulting in no differences
in the tensile-shear behaviour of exposed and unexposed weld configurations. Large

variations observed in the tensile-shear results were a result of numerous weld defects.
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1.0 Introduction

Bumper assemblies are an important passive safety feature found on automobiles,
as they are one of the main structures that absorb energy in the event of an automobile
collision. Current automotive aluminum bumper assemblies are typically fabricated using
heat-treatable AA6xxx-series (Al-Mg-Si) with medium to high strength, toughness,
energy absorption, weldability, and formability. In this context, Cu-lean AA7Xxx
extrusions such as AA7003 and AA7108 which exhibit higher strength than AAGxxx
extrusions, represent an attractive alternative light-weight material from which to

fabricate bumper assemblies [1], [2].

Arc welding (MIG) is becoming a key joining process for AA7xxx alloys within
the transportation industry. A major technological issue preventing widespread utilization
of arc-welded AA7xxx joints is limited due to the susceptibility to severe localized
corrosion [3], [4], which generally occurs as exfoliation corrosion within the HAZ or as a
type of stress corrosion cracking which initiates at the weld toe and propagates into the
interfacial region between the weld bead and the HAZ (termed the “white zone”). The
typically observed exfoliation corrosion occurs in elongated (deformed) grain structures
and involves a galvanic interaction between grain boundary region and the adjacent solute
depleted matrix. Consequently, key factors that influence the susceptibility of AA7xxx
alloys to exfoliation corrosion include the grain shape (alloying and the degree of cold
deformation) and the heat-treated condition (temper). High strength AA7xxx alloys with

low aspect ratio grain structures tend to have a lower susceptibility to exfoliation



M.A.Sc Thesis — J.Dabrowski; McMaster University — Materials Science and Engineering

corrosion due to the decreased length of the intergranular path [5], [6]. In a similar
manner, the coarse recrystallized surface layer has also been found to have a beneficial
influence on the exfoliation corrosion as compared to the fibrous interior of AA7xxXx

alloys [7].

Relative to the solution treated condition, an over-aged condition has been
commonly observed to have a beneficial effect on the susceptibility to exfoliation
corrosion of Cu-rich and Cu-lean AA7xxx alloys by way of reducing the rate of
intergranular corrosion [8], [9]. The beneficial influence has been primarily attributed to
the lack of a continuous layer of grain boundary precipitates, as a result of coarsening
[10]. Using thin film analogues of intermetallic phases to investigate the mechanism of
intergranular corrosion in Cu-rich AA7xxx alloys, Ramgopal et al. [11], [12] showed that
the dissolution potential of the n-MgZn, phase is much lower than the pitting potential of
the base alloy. They conclude that the grain boundary phase (n-MgZn;) tends to
preferentially dissolve at potentials where the matrix is still passive. Moreover, they
determined that precipitate dissolution and the resulting microchemistry, which is
dependent on heat-treatment history, plays a significant role in controlling the
intergranular corrosion. However, little work has been done to investigate the effect of an
automotive paint-bake heat-treatment cycle on the corrosion behaviour of Cu-lean

AATxxx alloys [13].

In addition to the micro-galvanic cell activity induced by the intermetallic

constituents and strengthening particles present, there is strong evidence to suggest that
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macro-galvanic cell activity between the weld bead and base AA7xxx alloy may also be
playing a controlling role. Electrochemical profiles taken in cross-section across MIG
welded joints during exposure to saline solutions suggest that a potential difference exists
across the AA7xxx welded joint [14], [15], [16]. These studies consistently show that the
HAZ and base alloy are more electronegative with respect to the weld bead (MIG-welded

with AA5xxx filler wire).

The majority of recent corrosion research efforts into welded AA7xxx alloys has
been focused on Cu-rich alloys, due to their widespread use in the aerospace industry and
friction stir welding, due to the processes’ low thermal input [17], [18], [19]. This leaves
a significant gap in literature concerning the corrosion behaviour of welded Cu-lean

AATxxx alloys.

This study was undertaken to investigate the corrosion behaviour of welded Cu-
lean AA7003 and AA7108. The major variables under study were: the heat-treated
condition (as-welded T6 vs. as-welded T6+PB), extrusion alloy Cu composition (AA7003
vs. AA7108), weld filler composition (ER4043 vs. ER5356), weld joint geometry (lap-
joint vs. T-joint), and weld direction with respect to extrusion direction (parallel (=) vs.
perpendicular (L)). The effects of the aforementioned variables on the corrosion
behaviour of welded AA7003 and AA7108 using ASTM and GM Worldwide
Engineering standardized cyclic corrosion tests and potentiodynamic polarization scans
are demonstrated in this thesis. Additionally, the effect of corrosion on the tensile-shear

behaviour of the various weld configurations utilizing a custom made tensile-shear jig is
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shown. Finally, the corrosion behaviours observed between the two unaffected base
alloys, the corrosion found in the HAZ, differing corrosion behaviours found between the
variables of interest, and the effect of exposure to GMW-14872 on the tensile-shear

behaviour on welded AA7003 and AA7108 are discussed.
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2.0 Literature Review

2.1 Microstructure of AA7xxx alloys

AATxxx alloys belong to the Al-Zn-Mg-(Cu) family of aluminum alloys, which
obtain their strength from age-hardening due to the precipitation of Zn and Mg from
solid solution [20]. Cu additions have been found to increase the age-hardening response
by increasing precipitation within the matrix [21]. Moreover, due to the complicated
interactions between the Al solid solution and major (Cu, Mg, Zn) and minor (Fe, Si, Mn,
Zr) alloying additions, results in a heterogeneous microstructure. The resulting
microstructure consists of two physiochemically differing areas: the grain matrix and the
grain boundary regions. The grain matrix contains three types of second-phase particles:
fine strengthening precipitates, coarse intermetallics, and dispersoids, whereas the grain
boundary region is characterized by a precipitate-free zone (PFZ) and grain boundary

precipitates [22].

2.1.1 Strengthening Precipitates

AATxxx alloys inherit their medium to high strength from the precipitation of
Guinier-Preston (GP) zones and the metastable n' phase [23]. The precipitation of these
phases is a result of aging (tempering/heat-treating) the supersaturated solid solution (o).
The precipitation sequence of AA7xxx alloys has been studied extensively and is

summarized by the following [24], [25], [26]:

o — o+ GP-zones — a+n' — a+n Equation [1]
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o — o+ GP-zones > a+ 1 —> o+t Equation [2]

The three precipitate phases present in the grain matrix are: GP-zones, the metastable n'
phase, and the equilibrium n phase. The chemical composition of all three phases is
generally accepted as MgZn; [20]- [26]. The t-phase, Al,MgsZns, is typically observed in

Cu-free AA7xxx alloys and is not observed during commercial heat-treatments [26].

GP-zones form as fine (= A) spherical solute atom clusters that are coherent with
the Al matrix, and which have nucleated either homogeneously or heterogeneously at
vacancies and dislocations [27]. The composition of GP-zones is difficult to measure due
to their size, but their Zn-Mg ratio is believed to range from 1-1.3 [24], [28], [29], [30].
Transformation of, or subsequent nucleation on, GP-zones leads to the formation of the
metastable n' phase. n' precipitates are plate-like and semi-coherent with the surrounding
matrix and their Zn-Mg ratio is believed to range from 1-1.5 [27], [31], [32] . Subsequent
transformation leads to the equilibrium n phase, which can also be heterogeneously
nucleated at grain boundaries, dislocations, and dispersoid particles [27], [33] . The n
phase is the largest of the three phases and is incoherent with the matrix exhibiting a plate

or rod-like shape, with a Zn-Mg ratio of approximately 2 [24], [27], [34] .

Upon heat-treatment, peak-aged (T6) AA7xxx alloys contain a high concentration
of the n' phase in the grain interior with the n phase located on grain boundaries. In
comparison, the over-aged (T7) alloys contain a smaller concentration of ) phase
particles, which have increased both in size and spacing, within the grain matrix and on

the grain boundaries [35], [36], [37]. In Cu-containing AA7xxx alloys the n' and 1 phase
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are believed to have the composition Mg(Al, Cu, Zn), with Cu-content of the precipitates

increasing with aging time [25], [31].

Grain boundaries are characterized by a single precipitate phase () phase) and a
PFZ, as shown in Figure 1. Grain boundary precipitate compositions have been shown to
depend on Cu-content of the alloy [38]. The grain boundary precipitates of low Cu-
content AA7004 (4.3Zn-1.6Mg-0.01Cu) were determined to be MgZn,. Increased Cu-
content of various AA7xxx alloys showed a decrease in the Zn content of Mg(Cu, Zn,
Al), precipitates with an increase in alloy Cu-content. Mg and Al content appeared
largely unchanged. Similar conclusions were drawn for precipitates within the grain

interior.

PFZs are believed to be a result of either solute depletion in the vicinity of the
grain boundary due to grain boundary precipitation or a depletion of the critical number
of vacancies required for precipitation [39], [40]. An investigation [41] into the
composition of the PFZ of AA7075 (5.5Zn-2.4Mg-1.55Cu) in the T6 and T7 conditions
revealed a depletion of Zn across the PFZ in both tempers. However, Cu-concentration
across the PFZ was found to decrease within the over-aged (T7) condition compared to
the T6. A study [42] conducted on AA7449 (8.5Zn-2.1Mg-1.9Cu) in the T6, T79, and
T76 tempers also revealed a similar conclusion. The Zn-content was depleted across the
PFZ of all tempers with a decrease in Cu-content upon over-aging to either the T79 or

T76 conditions.
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Figure 1: The typical appearance of the grain boundary region of AA7005-T73 (4.4Zn-
1.3Mg-0.01Cu) denoted by the presence of grain boundary precipitates and a PFZ [43].

2.1.2 Intermetallic Particles

Intermetallics are large, irregular shaped particles that are formed during casting
and ingot homogenization. These particles arise from the interaction between major
alloying elements (Zn, Mg, Cu) and minor alloying elements (Fe, Mn, Si). Minor alloying
elements with a low solubility in Al solid solution form during solidification and interact
with the major alloying elements to form intermetallic particles [44]. Intermetallics tend
to vary in size from 1-20 um. Unlike strengthening precipitates, intermetallic particles do
not distribute uniformly throughout the grain matrix. They instead form in localized
clusters in regions of high alloying content [45]. Subsequent mechanical processing
(rolling or extrusion) breaks up the clusters of intermetallic particles and aligns them as

bands that are parallel to the working direction.
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Intermetallic particles which have been observed in various Cu-rich AA7XxX
alloys are: Al;CuzFe, (Al,Cu)s(Fe,Cu), and Mg,Si. Less frequently occurring particles
are: AlsFe, Al,CuMg, Al1,(Fe,Mn)3Si, and Mg(Al,Cu) [24], [46], [47], [48]. However, in
Cu-lean AA7xxx alloys, no Cu-containing intermetallics have been observed. Instead,
Mg,Si and Al(Fe,Mn)SiZn particles were observed in AA7003 (5.5Zn-0.8Mg) [49], and
AlzFe and Al(Fe,Si) were observed in AA7004 (4.3Zn-1.6Mg-0.01Cu) and AA7039
(4.0Zn-2.9Mg-0.08Cu) [38]. However, it must be stated that not all of the aforementioned
intermetallic particles appear simultaneously. The chemistries and frequencies of such

particles are dictated by alloy composition and thermal history.

Upon the application of different tempers (T6 and T7) on AA7075 (5.8Zn-2.5Mg-
1.4Cu) and AA7475 (5.9Zn-2.4Mg-1.6Cu) intermetallic particles have been observed to
not undergo any physiochemical changes [46]. However, at higher temperature
homogenization treatments AlsFe and Al;Cu,Fe have been found to transform into

AlFeSi [50].

2.1.3 Dispersoids

Dispersoids are formed during solidification or homogenization by the interaction
of Cr, Zr, Ti, Mn with Al. They are typically 1 um in size with little to no solubility in Al.
Dispersoids suppress grain boundary movement and decrease quench sensitivity [51].
Dispersoid particles that have been observed in AA7xxx alloys are: AlsTi, AlsZr, AlgMn,
AlCu,Mng, and Al1gMgsCr, [51], [46], [52]. Zr is believed to refine grain size without

effecting quench sensitivity, but Cr is believed to increase quench sensitivity [51].
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Although not effected by commercial tempering temperatures, dispersoid particles
have been observed to undergo changes during homogenization treatments of AA7Xxx
alloys [53], [54]. Homogenizing AA7050 (6.3Zn-2.3Mg-2.3Cu) at 495°C led to higher Zr
solubility and diffusion rates. This subsequently led to the formation of a lowered volume
fraction of larger dispersoids and minimized the potential of Zr to inhibit recrystallization.
A lower homogenization temperature of 475°C reduced the overall recrystallization

fraction by half compared to 495°C.

Al3Zr particles in AA7108 (5.5Zn-1.2Mg) and Al-6.1Zn-2.3Mg have been
discovered to act as heterogeneous nucleation sites for ' phase precipitates during slow
cooling rates, creating a PFZ around the n' particle as a result of local solute depletion.
This hindered the precipitation of GP-zones and the subsequent transformation to the
metastable n phase in the heterogeneous nucleation site vicinity [55], [56]. An
investigation of Al-5.8Zn-0.8Mg showed that the AlsZr/Al interface acted as a vacancy
sink, which reduced the amount of vacancies locally available for formation of GP-zones

and for the nucleation of subsequent hardening precipitates [57].

2.2 Localized Corrosion of AA7xxx Alloys

The heterogeneous microstructure of AA7xxx alloys that results from alloying
creates second-phase particles and grain boundary regions that exhibit electrochemical
behaviour differing from the matrix, making AA7xxx alloys susceptible to localized
forms of corrosion. The main forms of observed localized corrosion in AA7xxx are

pitting corrosion and intergranular corrosion (IGC). Depending on the grain structure and

10
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environmental conditions, IGC can take the form of exfoliation corrosion or stress-
corrosion cracking (SCC). A summary of the localized corrosion behaviour of AA7XXX is

given in the following sections.

2.2.1 Pitting Corrosion

Pitting corrosion is a localized form of corrosion that is denoted by small cavities
created in the material after exposure to a corrosive environment. Pitting initiation occurs
at a critical pitting potential (Epi), also referred to as the breakdown potential (Epr), at
which point the passive surface film begins to locally rupture or break down in the
presence of aggressive anions such as CI" [58], [59], [60]. In pure Al, the pitting
resistance depends on the stability of the passive film. However, in Al-alloys, pitting is
influenced by second-phase particles, which exhibit differing surface film characteristics
than the solid solution matrix as a result of micro-galvanic coupling with the surrounding

matrix [61].

To better understand pitting corrosion of AA7xxx alloys, investigations into the
electrochemical behaviour of various second-phase particles were undertaken by Birbilis
and Buchheit [62], [63]. A summary of the corrosion and pitting potentials (Ecorr and Epi)
for various second-phase particles and the matrix of AA7X75 (3-4Zn-2-3Mg-0.5-1Cu) is
provided in Table 1. From Table 1 it is observed that particles containing Cu, Fe, Mn, Ti,
and Zr exhibited a less active Ecor than the AA7X75 matrix and displayed a unique Ept.
As a consequence, these particles can form a passive film in a potential range between

their respective Ecorr and Epir. At Ecore Values of these particles, the AA7X75 matrix

11
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underwent high rates of anodic dissolution. Less active particles containing Fe and Cu
were able to sustain large cathodic currents. Less active particles containing Mn, Ti and
Zr, primarily dispersoids, were only capable of sustaining small cathodic currents and are
believed to not be associated with pitting of AA7xxx. Second-phase particles containing
Mg, Si and Zn were observed to be more active than the matrix with no observed Egy,
allowing them to corrode without a passive film at potentials above their respective Eco.

At matrix Ecorr Values, these particles underwent anodic dissolution.

Table 1: Ecorr and Ep;; of various second-phase particles and AA7X75 matrix [61].

Second-phase Ecorr Epit
particle (mV SCE in .IM NaCl) | (mV SCE in .1M NaCl)
AljFe -539 106
Al;Cu,Fe -551 -448
AlsTi -603 -225
AlsZr -776 -275
AlgMn =779 -755
Al,CuMg -883 80
Mg(Al,Cu) -943 -2
AATXT75 Matrix -965 -739
AlzZngg -1004 -
Mg-Al3 -1013 -846
MgZn, -1029 -
Mg.Si -1538 -

12
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Second-phase particles can either be anodic (more active) or cathodic (less active)
relative to the matrix, allowing for two types of pit morphologies to be observed in Al
alloys: circumferential pitting and selective dissolution of the second-phase particle [64],
[65], [66]. Circumferential pitting is characterized by attack of the matrix surrounding the
less active second-phase particle. In AA7075-T651 (3-4Zn-2-3Mg-.5-1Cu), this has been
observed around particles of Al;Cu,Fe [67]. Attack around the particles appeared as
trenches seen in Figure 2. An explanation for this behaviour is that a galvanic couple
between the less active particle and the active matrix is present. It is believed that the
ability of the less active secondary-phase particles to sustain high cathodic currents
increases the local pH, by oxygen reduction, which results in local breakdown of the
passive film around the particle [68], [69]. Similar attack of the matrix surrounding the
less active (Al,Cu)s(Fe,Cu) and Al,3CuFe, particles has also been observed in AA7075

(5.4Zn-2.4Mg-1.5Cu) [70], [71].

The second observed pit morphology is characterized by anodic dissolution of the
more active second-phase particle relative to the less active matrix. Particles such as
Mg,Si and the strengthening particles MgZn, undergo dissolution relative to the matrix of
Cu-rich AA7075 [62], [72]. However, due to the smaller volume fraction of Mg,Si [48],
[46] observed in AA7075, it is believed MgZn, plays the greater role [72]. More active
second-phase particles are believed to be less detrimental to the pitting resistance of
AATxxx alloys than less active particles because more active particles are removed by
dissolution whereas less active particles remain in the matrix promoting a continuous

galvanic couple with the surrounding matrix [72], [73], [71].

13
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Figure 2: SEM image of an Al;Cu,Fe cross-sectioned with a focused ion beam of an
AAT7075-T651 sample exposed to 0.1M NaCl [67].

Certain second-phase particles present in AA7xxx alloys, which contain less
active elements (Cu and Fe), have been observed to undergo pole reversal, starting off
active to the matrix and becoming less active with time [60], [74]. An investigation of
AlzFe particles in alkaline sodium hydroxide (NaOH) solution has shown that at first the
particle underwent anodic dissolution of Al until the particle was enriched in Fe. Once
enriched in Fe it became cathodic relative to the matrix, enhancing the anodic dissolution
of the matrix. It was observed that additions of Mn and Si to AlsFe particles, Al(Fe,Mn)Si
and AlFeSi, were able to suppress the cathodic reaction of such particles, which lowered
the dissolution rate of the matrix. Similar observations were made about Al,CuMg
through anodic polarization scans in 0.5 M NaCl [75], [76] . It was observed that under
anodic polarization Cu dealloyed from the intermetallic particle. Upon liberation into the

solution, the Cu ions adsorbed onto the alloy’s surface, forming a porous Cu-rich
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structure which reversed its galvanic relationship with the matrix becoming highly

cathodic relative to the matrix.

The effects of various tempers (W, T6 and T7) on the pitting corrosion behaviour
of AA7075 have been investigated [70], [72]. Attention was focused on the potential
difference between Al;Cu,Fe and (Al,Cu)s(Fe,Cu) particles and the matrix. The largest
potential difference was observed in the W-temper: +604 mV and +500 mV, for
Al;Cu,Fe and (Al,Cu)s(Fe,Cu) respectively. This large potential difference was attributed
to the high solute (Mg and Zn) concentration in the matrix as a result of the solutionizing
heat-treatment of the W-temper. The T6-temper exhibited a potential difference of +320
mV and +375 mV between the matrix and Al;Cu,Fe and (Al,Cu)s(Fe,Cu) particles,
respectively. This lowered potential difference was attributed to the precipitation of
MgZn,, which lowers the solute content of Zn and Mg in the matrix. The potential
difference of the T7-temper was slightly higher than the T6-temper, +375 mV and +430
mV between Al;Cu,Fe and (Al,Cu)s(Fe,Cu) particles, respectively. This was attributed to

Cu-enrichment of MgZn; precipitates, which depleted the matrix of Cu.

The difference between T6 and T7-tempers on the distribution of pits in AA7075
was studied by Dey at al. [72] The T6-temper exhibited a higher number of smaller pits,
pit density, and total pitted area compared to the T7-temper. Pitting in the T6-temper also
appeared to not reach a saturation point with increased exposure time, while pitting in the
T7-temper appeared to saturate. The difference in pit distributions between the two

tempers was attributed to the difference in the volume fraction and size of MgZn;,
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precipitates. The T6-temper resulted in smaller pits, an increased pit density, and total
pitted area due to having an increased volume fraction and smaller precipitate size.
However, the authors concluded that pitting is a result of the higher potential difference
between the active MgZn, precipitates and the close proximity of less active Al;Cu,Fe
and AlzFe particles, and not the potential difference between MgZn, precipitates and the

matrix.

2.2.2 Intergranular Corrosion

Intergranular corrosion (IGC) is defined as the selective attack of grain boundary
regions (PFZs) and/or grain boundary precipitates resulting from the aging of heat-
treatable Al alloys [58]. The three major accepted theories of IGC, pertaining to AA7XXx

alloys, are discussed within this section.

2.2.2.1 Galvanic Couple Theory

Galvanic couple theory was introduced by Dix et al. [77] while studying the Al-
Cu system. The authors postulated that IGC is a result of a galvanic corrosion cell
between the less active grain matrix and the active grain boundary region (either the PFZ
or grain boundary precipitates). In an additional study, Brown and Mears [78] verified
Dix et al.’s claims by isolating the grain matrix and the grain boundary region of Al-
4%Cu and measuring their respective Ecor in @ NaCl-H,O, solution. The observed Ecorr
difference between the grain matrix and grain boundary region was +0.044 VV SCE, with

the grain boundary region being more active. In addition, transmission electron
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microscopy (TEM) analysis of AA2024 (4.3Cu-1.5Mg) post corrosion exposure
confirmed attack along the Cu-depleted PFZ, leaving behind unattacked grain boundary

precipitates (Al,Cu(Mg)) [79].

Dix et al. also examined IGC as observed in the Al-Zn-Mg system [80] using a
similar approach to Brown and Mears [78]. Aside from isolating the grain boundary
region, Dix et al. also measured the Er 0f MgZn, analogs. It was discovered that the
difference in E¢o between the grain matrix and the grain boundary region was negligible.
However, the Eo difference between the grain boundary PFZ and the more active
MgZn, was +0.020 V SCE. Dix et al. explained that IGC in the Al-Zn-Mg system was a
result of a galvanic corrosion cell between the MgZn; grain boundary precipitates and the
PFZ. On the contrary, Fink et al. [81] postulated that solute depletion (Cu,Mg,Zn) in the
PFZ would make it more active to the grain matrix, much like what was observed in the
Al-Cu system. Observation by TEM of AA7075-W, post exposure to NaCl-H,O»,
confirmed Fink’s hypothesis, revealing corrosion along the PFZ, and not the grain
boundary precipitates [82]. It is possible, however, that the mechanism responsible for
IGC in Al-Zn-Mg/AATxxx alloys is dependent on the chemical composition and the

thermal history of the alloy under study [83].

2.2.2.2 Breakdown Potential Model

IGC is not observed in environments that do not contain CI" ions [80], [81], [82].
Therefore, the shortcoming of the galvanic couple theory lies in its inability to explain the

role of ClI" ions in IGC. To account for this shortcoming, Galvele and De Micheli [84]
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developed a theory to explain IGC based on the difference in Ep« of the PFZ and the
grain matrix in an Al-4%Cu alloy. Two distinct E, were observed during
potentiodynamic polarization in 1 M NaCl. Observations post potentiostatic polarization
revealed the more active Ep Was associated with IGC and the less active Epk was

associated with 1IGC and pitting corrosion within the matrix.

Similarly, Maitra and English [85] studied AA7075 (6Zn-2.5Mg-1.7Cu) tempers
(W, T651 and T751) in 0.6 M NaCl and also observed two distinct Ey. Potentiodynamic
polarization scans of the W-temper exhibited a single Ep« (at -800 mV SCE), below
which minimal corrosion was observed and above which pitting of the matrix was
observed. However, both of the artificially aged tempers, T651 and T751, revealed the
presence of two Ep. In the T651-temper, the more active Ep (-800 mV SCE) correlated
to IGC and the less active Epk (725 mV SCE) corresponded to pitting of 