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Abstract 

In this thesis, novel progressive scalable region-of-interest (ROI) image cod­

ing schemes with rate-distortion-complexity trade-off based on residual vector 

quantization (RVQ) and matching pursuit (MP) are developed. RVQ and MP 

provide the encoder with multi-resolution signal analysis tools , which are use­

ful for rate-distortion trade-off and can be used to render a selected region 

of an image with a specific quality. An image quality refinement strategy is 

presented in this thesis, which improves the quality of the ROI in a progressive 

manner. The reconstructed image can mimic foveated images in perceptual 

image coding context. The systems are unbalanced in the sense that the de­

coders have less computational requirements than the encoders. The methods 

also provide interactive way of information refinement for regions of image 

with receiver 's higher priority. The receiver is free to select multiple regions of 

interest and change his/her mind and choose alternative regions in the middle 

of signal transmission. 

The proposed RVQ and MP based image coding methods in this thesis 

raise a couple of issues and reveal some capabilities in image coding and com­

munication. In RVQ based image coding, the effects of dictionary size, number 

of RVQ stages and the size of image blocks on the reconstructed image qual­

ity, the resulting bit rate, and the computational complexity are investigated. 

The progressive nature of the resulting bit-stream makes RVQ and MP based 
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image coding methods suitable platforms for unequal error protection. 

Researchers have paid lots of attention to joint source-channel ( JSC) cod­

ing in recent years. In this popular framework , JSC decoding based on residual 

redundancy exploitation of a source coder output bit-stream is an interesting 

bandwidth efficient approach for signal reconstruction. In this thesis , we also 

addressed JSC decoding and error concealment problem for matching pur­

suit based coded images transmitted over a noisy memoryless channel. The 

problem is solved on minimum mean squared error (MMSE) estimation foun­

dation and a suboptimal solution is devised, which yields high quality error 

concealment with different levels of computational complexity. The proposed 

decoding and error concealment solution takes advantage of the residual re­

dundancy, which exists in neighboring image blocks as well as neighboring MP 

analysis stages, to improve the quality of the images with no increase in the 

required bandwidth. The effects of different parameters such as MP dictionary 

size and number of analysis stages on the performance of the proposed soft 

decoding method have also been investigated. 
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Chapter 1 

Introduction 

We are primarily visual creatures and receive most of the information about 

our surroundings by our eyes. We do not tolerate vision defects and try to fix 

them by every possible means such as spectacles and laser treatments , while 

we may accept some level of hearing loss before using hearing aid tools and we 

cannot do much about imperfections in other senses of taste , smell, and touch. 

Capturing memorable or important events by taking photos has now become 

commonplace. We often judge the success of deep space missions by the quality 

of returned images. This bias toward senses in our daily life is extended to how 

we try to perceive or "imagine" technical results. Today, scient ific or technical 

instruments, make images to communicate with their operators rather than 

making sounds or emitting smells! We also try to extend the range of our 

natural vision by using microscopes or telescopes and go beyond the visible 

portion of the electromagnetic spectrum and take images of what used to be 

invisible. This partially explains why communication of visual signals is now 

so important. 

For centuries, human 's need to communicate has driven growing advance­

ments in communication methods from early smoke signals to recent YouTube. 

1 
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Figure 1.1: Digital communication of a signal in image form 

We now live at the age of information and seek communication developments 

more than ever. Nowadays, new inventions in information technology have 

given an unprecedented access to the ever growing knowledge, entertainment 

and business contents. New inventions improve existing methods and open 

doors to new technologies. The goal of this thesis is to address some issues in 

image communication systems by considering two different multi-stage signal 

analysis methods as image coding basis. 

1 .1 Image Communication Overview 

Fig. 1.1 displays a schematic block diagram of a typical digital image 

communication system. The signal is initially captured in image form by a 

proper image acquisition tool whose characteristics are closely related to the 

nature of the signal. A photo camera is the most apparent example of image 

acquisition tools. Images can also be acquired, for example, by computer 

graphics, medical diagnosis instruments, and scientific measuring tools. For 

digital communication, the image has to be in a digital form. A digital image 

is regarded as a two-dimensional signal made up of an array of M x N samples 
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or pixels. As the smallest individual element in a digital image, a pixel holds 

quantized value of grey level in grey-scale images or quantized values that 

represent colors in color images t. 

The encoder part in Fig. 1.1 is responsible for transforming the digital im­

age into a bit-stream so that the signal can be efficient ly and reliably delivered 

by the digital channel. According to information theory fundamentals , the 

pure essence or the existing information in a signal can be measured by the 

level of uncertainty in it , namely entropy. The source encoder or data compres­

sor, attempts to remove all of the redundancies and tries to deliver this pure 

information to the next stage in a sequence of binary digits. Most of the source 

encoders, however , leave some redundancies due to technical difficulties or im­

perfect knowledge about the source model. There are two different types of 

data compression. Lossless compression, which removes redundancies of a sig­

nal in such a way that the reconstructed signal is identical to the original one. 

Huffman coding and arithmetic coding [1] are examples of lossless compres­

sion methods. Lossy compression methods, on the other hand, tolerate some 

loss of fidelity in the reconstructed signal and yield more signal compaction 

in return. Lossy compression is also regarded as perceptual coding, since it 

exploits how we perceive the signal, and removes less important information. 

For example, our eyes are not sensitive to very subtle color variations in an 

image and color information can be rounded off without any perceptual effect. 

In some cases, signal fidelity+ in a lossy compression is noticeably sacrificed to 

tThe discussion in this thesis is limited to grey-scale images, however , it is not a difficult 
task to extend it to color images. 

tThere are different ways to compare the reconst ructed image with the original signal 
and measure fidelity. T he most common fidelity measure in image communication is called 

2 

peak signal to noise ratio (PSNR). PSNR is defined as PSNR (dB)= 10log10 ~'s3Jj\, where 
Xmax is the maximum possible value of signal samples and MSE is the mean-squared error 
between the original signal sequence X = ( x1 , x2 , . .. , x L) and the reconstructed one Y = 

(y1, y2, ... , yL) , i.e. , MSE = t I:~=l (xi - Yi)2. 
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effectively reduce the amount of transferable data. Transform coding, such as 

DCT or wavelet transform coding, followed by quantization is a common lossy 

compression approach and is used in JPEG [2] and JPEG-2000 [3] standards. 

In addition to the compression quality, the source coding building block is 

involved with some other remarkable issues. Some source coding schemes pro­

vide scalability. In image coding context , scalability is a desirable property of 

the encoded bit-stream that enables the image communication system to sup­

port various channel bandwidth constraints or receiver's quality needs. The 

signal bit-stream in a quality scalable image encoder provides progressive qual­

ity improvements and successively refines the reconstructed image. An image 

encoder may also enable region of interest (ROI) coding, in which the viewer's 

most important regions of the image have higher transmission priority. 

The channel coder in Fig. 1.1 transforms the source coder output into a 

sequence of symbols to combat the effect of the noisy transmission channel. 

In most instances, the channel coder output symbols are also binary digits. 

Unlike source coding, channel coding is involved with expanding the size of the 

transferable data to control decoding errors. A very simple, but unpopular , 

example of channel coding is to send every symbol r times with the hope 

that the symbol is received correctly most of the time. There are, of course, 

more sophisticated and reliable channel coding approaches such as, linear block 

coding, convolutional coding, and turbo coding [4]. 

The modulator converts the channel coder symbols into waveforms that 

are proper for transmission through the channel. The channel conveys the se­

quence of waveforms and imposes various noise disturbances. The demodulator 

processes the received waveforms and produces a sequence of symbols for chan­

nel decoder. The last three communication building blocks, i.e. modulator, 
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channel, and demodulator, are often regarded as digital channel in the litera­

ture. The channel decoder receives the possibly corrupted symbols and, based 

on the channel coding strategy and the noise characteristics of the channel, 

transforms them into a binary sequence called estimated information sequence. 

Finally, source decoder transforms this estimated sequence into an estimate of 

source coder output and delivers this estimate to image visualization unit. 

In this thesis, some capabilities of two different signal analysis methods, 

namely residual vector quantization (RVQ) and matching pursuit (MP) , in 

digital image communication systems are investigated. These two methods 

have similar residual and layered structures which suit quality scalability and 

ROI coding. By choosing each of these two signal analysis methods for pro­

gressive and ROI image coding, several issues in the image communication 

system of Fig. 1.1 have to be addressed. The source coder characteristics, the 

channel coding issue, and the decoding of the noise effected bit-stream are the 

main topics in this thesis. 

1.2 Overview of the Thesis 

1.2.1 Motivation 

Data compression schemes operate more efficiently when they take the 

models of both the source and the receiver into account. Perceptual coding is 

a lossy compression approach, which takes advantage of discarding irrelevant 

imperceptible information in order to achieve high compression levels. Image 

and video compression based on foveation , modeling of the fovea of the human 

eye, is an example of perceptual coding. The works in this thesis were mo­

tivated by the author's primary research on foveation and the human visual 
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system (HVS) model. Foveation can be regarded as one of the natural vision 

system actions while sending visual information from the retina to the brain, 

which provides multi-resolution perception of an image. When we look at a 

picture, we do not see the image with uniform details and the image reso­

lution is highest at the point of gaze and falls quickly toward the periphery. 

After examining different methods for video foveation and implementing a 

multi-resolution method based on filter banks for foveated H.263 video coding 

standard, which is explained briefly in appendix A, the author searched for 

other ways of implementing the more general idea of region of interest image 

coding. 

Residual vector quantization (RVQ) and matching pursuit (MP) are two 

methods that can provide multi-resolution image representation. Region of 

interest image coding was the initial goal of using these signal representation 

methods, however, research progress revealed new aspects of image coding and 

communication based on the selected foundations. RVQ and MP are able to 

provide progressive image refinement when they are used in source coder. The 

fact that earlier parts of the source coder bit-stream have more impact on 

the quality of the reconstructed image, is the reason that an unequal error 

protection (UEP) scheme may protect the source coder output better than 

ordinary equal error protection codes. Besides, the residual information left in 

the source coder output can be exploited for error concealment at the decoder. 

1.2.2 Outline 

The rest of this dissertation is organized as follows. In chapter 2, required 

theoretical background for vector quantization and matching pursuit signal 

representation are provided. Chapter 3 introduces our new VQ based ROI 

image coding. In this chapter, RVQ and its variants are adopted as source 
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coding basis and the issue of rate-quality-complexity t rade-off is investigated. 

Also, UEP effect on t he resilience of the reconst ructed image quality at the 

presence of channel error is examined. In chapter 4, image coding based on 

MP is explored. ROI image coding and quality scalability are investigated 

and different key players in this image coding scheme are studied. Chapter 5 

provides a sub-optimal MMSE based joint source/ channel decoding method. 

In this chapter, the required mathematical formulations for soft decoding of 

the received MP based bit-stream are developed and different decoding sce­

narios are investigated. This thesis is concluded in chapter 6, which contains 

concluding remarks and future directions. 

1.3 Contributions and Publications 

The results of primary research of the author on the topic of foveation 

may equip current DCT based video coding standards with a new perceptual 

coding tool. The original work on fixation point tracking and video foveation 

was awarded by the Communications and Information Technology Ontario 

(CITO) in 2004. 

The author has contributed to the area of image coding and transmission 

by the following original developments: 

• New Region of interest image coding scheme based on residual vector 

quantization and its variants. 

• Investigation of key elements of RVQ based image coding for rate-quality­

complexity trade-off of the source encoder. 

• Unequal error protection investigation for the RVQ based image coding 

bit-stream. 
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• Novel ROI image coding based on matching pursuit. 

• New MP dictionary size reduction method and rate-quality-complexity 

trade-off investigation for MP based image coding. 

• New Joint source/channel decoding method for MP based image coding 

and transmission system, which can also be applied to the proposed RVQ 

based image coding scheme. 

These contributions are contained within the chapters of the thesis as well 

as four conference and three journal papers. Most of the contents of chapter 

3 have been published in IEEE Transactions of Multimedia [5]. An earlier 

exposition of some parts of this chapter was also presented in IEEE DCC-

2003 [6]. The UEP method and its results for RVQ based ROI image coding 

bit-stream was presented in IEEE CCECE 2004 [7] . The contents of chapter 

4 have been published in IEEE Transactions on Image Processing journal [8] 

and summarized in IEEE ICME-2006 [9]. The work in chapter 5 has been 

submitted for publication to IEEE Transactions on Image Processing [10]. 

Portions of this work was presented in IEEE ICME-2008 [11] 
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Chapter 2 

Background 

In this chapter , two major topics regarding this thesis are explained; vector 

quantization and matching pursuit methods. The topics are given emphasis 

regarding to their use in this thesis and not their relative research and appli­

cation value. 

2 .1 Vector Quantization 

Over the past few decades, the large amount of data associated with digital 

signals has stimulated a large number of researchers to work on signal com­

pression algorithms. Quantization can be viewed as an essential building block 

in many lossy signal compression systems, including DPCM [12] , JPEG [2], 

H.263 [13], MPEG-4 [14], and JPEG-2000 [3], where a controlled loss of fi­

delity in the decompressed signal is tolerated. In a quantization process, a 

large and possibly infinite set of source output values are represented by a 

much smaller set of representatives , so the original values are lost forever. The 

source output values and their representatives can be considered as elements 

of an L-dimensional Euclidian space lR L. If L = 1, the quantization process is 
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called scalar quantization, where every source output value is represented by 

one of the limited reconstruction levels. For a comprehensive review of differ­

ent scalar quantization strategies, readers may refer to [l]. In case L > 1, we 

deal with vector quantization, commonly denoted by VQ. According to Shan­

non 's rate-distortion theory [15, 16] , coding vectors instead of scalars always 

increases the best achievable compression performancet, even when the data 

source is memoryless. This implies that a vector quantization strategy, that in­

volves quantizing sequences of source samples, can provide better compression 

performance than a scalar quantization system. 

2.1.1 VQ Process 

Prior to and as input to VQ process, the source output is grouped into 

vectors of size L. This can be done, for example, by treating L consecutive 

digital audio samples, or a block of L pixels of a digital image as L-dimensional 

vectors. Vector quantization can be viewed as two distinct operations namely 

encoding and decoding. Both encoder and decoder of a VQ system have a set of 

L-dimensional vectors known as codebook whose elements, known here as code­

vectors, are representatives of all the input vectors X = (x1x2 .. . xL) E JRL . 

Each code-vector Yi i E J = {1 , 2, ... , K} is represented by its index i , 

where K is the number of code-vectors in codebook C and J is VQ index set. 

VQ encoding is a mapping operation from the infinite L-dimensional space JRL 

into the finite index set J , while VQ decoding is a mapping operation from 

the index set J into the finite reproduction set C C JRL. Therefore, the whole 

VQ process can be viewed as the following mapping operation: 

(2.1) 

tin a signal compression system, better performance can be considered as a lower distor­
tion for a given rate, or a lower rate for a given distortion. 
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• 

Figure 2 .1: Voronoi partition cells 

Vector quantization divides the Euclidian space 1R L into K partitions or 

cells. Each partition is represented by a code-vector. VQ encoder identi­

fies which cell the input vector falls in , and assigns an index based on that 

indication to the vector. Usually, vector quantizers employ the nearest neigh­

bor or Voronoi cell geometry, in which the closest code-vector to each input 

vector is selected by VQ encoder. For the nearest neighbor VQ, the geo­

metric description of the cells are not required to be stored. A Voronoi cell 

Vi i E {1 , 2, ... , K} is a partition of Euclidian space, which is represented by 

Yi EC, and is defined by 

(2.2) 

where d(. , . ) is a numerically computable distortion measure. This notion of 

partitioning can be visualized in two dimensions, where each input vector 

is a point in a two dimensional space (plane). Fig. 2.1 illustrates a 2-D 

Voronoi partitioning with dots denoting the code-vectors. Euclidian distance 

as a measure for d( ., . ) is commonly used for vector quantization. Therefore, 

(2.2) can be written by the following expression 

(2.3) 
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The nearest neighbor VQ encoder performs an exhaustive search algorithm 

to find the best match for every input vector. In this regard, the encoder 

sequentially computes the distortion caused by every code-vector in the code­

book, using mean squared error formula llX-Yill 2
, and selects the code-vector 

with least resulting distortion. In the context of digital communication, the 

index of the selected code-vector is sent to the receiver, where the decoder 

performs a table lookup to reconstruct an approximate version of the input 

vector. Fig. 2.2 illustrates this process. VQ encoder performs a considerable 

amount of computations, which involves K x L multiplications and K x (L-1) 

additions for K distortion evaluation llX - Yill 2 i = 1, 2, . .. K. However, 

the operation associated with VQ decoder is very simple, involving only table 

lookup. Therefore, when the available computational resources for decoding 

is much less than that for the encoding, vector quantization becomes more 
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attractive. 

For a lossy compression system, rate and distortion play important roles. 

Here, distortion, which represents performance penalty associated with repro­

ducing X by X, is measured by mean squared error JI X - XJJ 2 and rate R is 

the number of binary digits that represents a source sample and is measured 

by the following relation 

R = flog 2 Kl bits per sample 
L 

(2.5) 

where Ix l is the smallest integer larger or equal to x. It is clear that using 

larger dictionaries increases the possibility of finding a better representative 

for input vector X , however, this increases the required rate. For a given 

dictionary size and vector dimensionality, determining the codebook for a given 

source is a key element in reducing VQ distortion. 

2.1.2 Codebook Design 

VQ Codebook design is usually referred to the process of selecting K points 

in the L-dimensional Euclidian space JRL as code-vectors. One way of codebook 

selection is to choose K points randomly in lR L space. Clearly, this approach 

does not exploit source statistical characteristics and yields poor VQ perfor­

mance. A more reasonable approach toward codebook design is to place the 

reproduction points (code-vectors) in JRL space wherever the source vectors 

are most likely to gather . In order to indicate where the source output vec­

tors cluster, a large set of source vectors , known as training set, is required. 

One simple codebook design method is pairwise nearest neighbor (PNN) [17] 

algorithm. In this algorithm, we start with the training set and systematically 

merge the elements of this set stage by stage, until we form a set with the 

desired number of elements ( K). More specifically, at each stage, two closest 
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vectors in the set are replaced by their mean and the set cardinality is re­

duced by one. PNN algorithm effectively combines those vectors that would 

result in least amount of distortion. The most widely cited VQ codebook de­

sign method is the algorithm attributed to Linde, Buzo, and Gray, popularly 

known as LBG algorithm [18]. 

2.1.2.1 LBG Algorithm 

This algorithm is similar to the k-means algorithm [19], a well known clus­

tering method in patt ern recognition. LBG algorithm is also known as gen­

eralized Lloyd algorithm (GLA), since it is a generalization of the codebook 

design algorithm for scalar quantization proposed by Stuart Lloyd [20]. LBG 

algorithm takes a large training set and K initial representatives of Voronoi 

cells (as initial code-vectors) and maps the training set vectors on Voronoi 

partitions Vi i = 1, 2, ... K, so the average resulting distortion is minimized. 

The steps of LBG algorithm are intuitive and straightforward. The first step 

is to find the closest Voronoi cell representative for each training vector and 

place the vector in that cell. Once all the vectors of the training set are as­

signed to Voronoi cells , each cell representative is updated by the centroid 

vector, the arithmetic average of the vectors in that cell. This process repeats 

iteratively and the Voronoi cells and their representatives (as code-vectors) 

are modified, until a condition on distortion measure is met. Having a certain 

training set and a set of K initial vectors , the process decreases the average 

distortion in each stage [21], however, the convergence of the process is rather 

slow near the point of convergence. A normalized distortion difference measure 

is calculated in each LBG iteration and is used as the criterion to terminate 

the codebook design process. In rth LBG iteration, distortion measure is de­

fined as D<rJ;fr;r-iJ, where D(r) is the average distortion ( for example mean 
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squared error) between the training vectors and their representative recon­

struction vectors. If this normalized difference distortion measure falls below 

a specified threshold E, i.e. D<rl;~;r-iJ < E , LBG design process terminates 

and the Voronoi cell representatives are selected as final code-vectors. 

In LBG process, the average distortion is guaranteed to decrease from one 

iteration to the next. The process, however, does not guarantee an optimal 

codebook as the output . The result of LBG codebook design process is closely 

related to the initial set of K representative vectors. There have been a large 

number of suggested methods for LBG initialization. One method is to pick 

randomly K vectors from the training set [22]. Another method, presented 

by Linde-Buzo, and Gray in their original work [18], is referred to as splitting 

technique. In this method, we start with a single-element codebook. The code­

vector is the average of all training set . By adding a fixed perturbation vector, 

we create another code-vector and double the number of codebook elements. 

Using LBG process on the training set and the set of two initial vectors , we 

design a 2-element codebook. By employing perturbation on each code-vector , 

the initial set of vectors for 4-element codebook is generated. This process 

continues until K initial vectors are obtained. A two dimensional animated 

illustration for this process is presented in [23]. The previously discussed PNN 

algorithm is another LBG initialization method, which usually yields better 

LBG codebook design among other methods. However , none of the above LBG 

initialization methods, including P N algorithm, always provides a globally 

optimal solution. More LBG initialization methods are presented in [1, 21]. 

There have been a number of attempts to find alternatives for LBG code­

book design algorithm. Neural network based VQ design approach, can have 

less sensitivity to initialization of the codebook, faster convergence, and bet­

ter rate-distortion performance [24] . Some codebook design approaches find 
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the ultimate globally optimum codebook, e.g. [25- 27], however due to their 

computational complexity, LBG still remains the most popular VQ codebook 

design algorithm. 

2.1.3 Structured Vector Quantization 

The computational complexity of a VQ encoder (number of arithmetic op­

erations in exhaustive codebook search) and the storage requirements in both 

encoder and decoder are proportional to the size of VQ codebook. For a given 

rate R bit per sample and vector dimension L, the size of codebook is K = 2RL. 

For example, for R = 1 bit per sample and L = 64, the codebook would have 

K = 264 ~ 1.84 x 1019 code-vectors! Since reducing the dimension of vectors 

diminishes the possibility of exploiting the existing statistical dependencies of 

the source output, ordinary unstructured vector quantizers operate at low bit 

rates. This may sacrifice the quality of the reconstructed signal. 

One approach to solve the VQ complexity problem is to impose some 

structural constraints on VQ codebook, so the complexity problem (due to 

nearest neighbor search) and codebook storage are mitigated. By applying 

these structures and constraints , vector quantization with large vector dimen­

sion and codebook size becomes practical, without hitting the complexity and 

storage barrier. In an unstructured VQ codebook design, K code-vectors are 

located in JRL space wherever they minimize the overall quantization distor­

tion, while the code-vectors in structured VQ are distributed in a restricted 

manner which facilitates the nearest neighbor search process. Although an 

unstructured VQ with large dimensionality, that is optimally designed for a 

certain source, yields higher rate-distortion performance "in theory" , a struc­

tured VQ provides a useful performance and complexity trade-off and makes 

a high quality signal representation realizable. 
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Figure 2.3: Mean-removed vector quantizer. (a) original mean-removed VQ structure (b) 
alternative structure 

One popular way of handling an unmanageably difficult problem is to de­

compose it into smaller ones and try to solve those sub-problems. This is the 

essence of what is called product code technique [21 , 28]. In vector quantiza­

tion, the encoding process can be viewed as the difficult problem. There are 

several methods to decompose the VQ encoding task into easier ones. One way 

of doing so is to divide the vector dimension into smaller ones. For example, 

instead of considering whole image as an input vector , we can divide the image 

into image blocks and encode each image block separately. Following are some 

other structured VQ approaches based on product code technique, which have 

been used in this thesis. For a comprehensive review of more structured vector 

quantization methods, readers may refer to [1, 21 , 29] 

2.1.3.1 Mean-Removed VQ 

The average value of vector components, i.e. 

(2.6) 
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where X = ( x 1 , x2, ... , x L) , is often regarded as statistically independent from 

the vector component variations around this value. For example, the average 

pixel values of an image signal represent the level of picture illumination which 

can be changed without drastic effect on actual image content. The mean­

removed residual vector, defined as XMR = X - X , is in the form of a vector 

of dimension Land represents the pattern content of the original vector X. In 

a mean-removed VQ [21], sometime denoted as MRVQ, both the scalar mean 

value X and the mean-removed residual vector XMR are quantized separately 

in order to represent the original vector X as X = XMR + X. 
Figure 2.3(a) illustrates this vector quantization mechanism. The vector 

quantizer and scalar quantizer blocks in this figure have codebooks Cr of size 

Kr and Ca (scalar quantizer for average value of vector X) of size Ka respec­

tively. The equivalent codebook for the whole mean-removed VQ structure is 

the product codebook C = Cr x Ca consisting of K = Kr x Ka code-vectors. 

The codebook that is designated for mean-removed residual vector is designed 

based on the statistical characteristics of those vectors , i.e. using a training 

set of mean-removed residual vectors. Figure 2.3(b) displays an alternative 

structure for mean-removed VQ. In this structure, the quantized mean value 

of each vector is subtracted from the vector to compute residual vector. In 

the second structure, the input to the vector quantizer depends on the perfor­

mance of the scalar quantizer and the system can be viewed as a sequential 

product code, where the overall quantization error between the input and out­

put vectors is equal to the quantization error introduced in the last stage, i.e. , 

the vector quantizer unit. An extensive comparison of these two structures is 

presented in [21]. 
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2.1.3.2 Residual Vector Quantization 

Sequential search product code VQ is a class of structured VQ that simul­

taneously reduces the necessary memory and computation cost. In this class 

of quantizers , different layers of the quantizer system represent different fea­

tures of the input signal. A special type of product code vector quantizer is 

one with direct sum structure [30], in which the equivalent codebook is con­

strained to be the direct sum of a number of smaller constituent codebooks. 

This type of structured VQ can be used in a very memory-complexity efficient 

fashion. For a P stage direct sum VQ with each stage having codebooks of 

size Ki, where i = 1, 2, . .. , P, code-vectors, only 2::1 Ki code-vectors are 

required to be stored while, the equivalent unstructured codebook contains 

K = rr:1 Ki. Since the exhaustive nearest neighbor search examines all the 

stored code-vectors, the computation burden is also proportional to 2:: 1 Ki , 

much less than f1:1 Ki of the equivalent unstructured VQ. 

Residual vector quantizer (RVQ) , also known as multi-stage vector quan­

tizer [31-33] , is a simple sequential search product code VQ based on direct 

sum codebook structure which includes multiple successive stages, where each 

stage encodes the residual (error) vector of the previous stage. Figure 2.4 

displays a schematic block diagram of this quantization method. According 

to t his figure, the encoding task is divided into successive stages. The first 

RVQ encoding stage (Q1) performs a crude approximation of the input vec­

tor using a relatively small dictionary C1 . The index J (l) of the reproduction 

vector is then transmitted to the receiver. The vector approximation is then 

refined by the second RVQ quantization stage (Q2 ). The residual error vector 

E2 = X - Q1 (X ), the difference between the input vector of the previous RVQ 

and its coarsely quantized version, is treated as the input to the second RVQ 

stage. The index 1<2l of the selected code-vector from codebook C2 is sent to 
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Figure 2.4: RVQ encoder and decoder 

the decoder. The third RVQ stage quantizes the second stage residual error 

vector and further refines the approximation and so on. 

The overall quantization error of an RVQ scheme is the error introduced by 

the last RVQ stage. Hence, in a ?-stage RVQ system with a perfect channel, 

RVQ decoder reconstructs the input vector using summation 

p 

x = X1 + LEi (2.7) 
i=2 

and the overall reconstruction error is EP+l· Therefore, signal to quantization 

noise power (SI R) for this RVQ system can be defined by 

(2.8) 

where E[·] is expectation operator. This equation can be expanded into the 
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following form 

SNR 
E[JJXJJ 2] E[JJE2JJ2] E[JJEpJJ2] 
E[JJE2JJ 2] x E[JJE3JJ 2] ... E[IJEP+1IJ2] 
SNR1 x S R2 x . . . x SNRp 

In logarithmic scale (dB) we have 

p 

(SNR)dB = L (SNR)dB 
i=l 

(2 .9) 

(2.10) 

For an ideally designed VQ, S R in dB grows linearly with the number of rep­

resentative index bits [21]. Therefore, if each RVQ stage is designed perfectly, 

we may expect the same performance from RVQ as its equivalent unstructured 

counterpart. This, however , is not quite true. The compression performance 

of a vector quantizer closely depends on the correlation of components in an 

input vector and this correlation declines stage by stage in an RVQ quantizer. 

Therefore, for a given rate, an unstructured VQ always outperforms RVQ 

scheme. As explained earlier, for a given complexity and memory cost , RVQ 

method provides superior compression performance compared to unstructured 

VQ. Residual vector quantization scheme is also suitable for applications that 

require progressive transmission or successive approximation since it renders 

the input vector stage by stage and progressively. 

RVQ codebook is designed stage by stage. This means that a set Ti of 

training vectors is employed to design the codebook of the first RVQ stage. 

Using this designed codebook C1 , all the vectors of Ti are quantized and the 

residual errors of those vectors are placed in a second set ~ with the same 

size and dimensionality as Ti. This new training set represents the statistical 

characteristics of the vectors applied to the second stage of RVQ. Therefore, 

~ is used as the training set for the codebook design of the second RVQ stage 

(C2 ) . The rest of the successive stage codebooks are designed by repeating 
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this process. RVQ codebook design complexity is much lower compared to the 

codebook design of its unstructured counterpart , another advantage of RVQ 

scheme. For applications in which the required training set is not large enough 

for an unstructured VQ and applications that requires codebook transmission 

as side-information, a multistage VQ with small stage codebook is beneficial 

[34]. Codebook design for RVQ with many stages and optimality issues are 

investigated in [33]. An alternative RVQ codebook design based on neural 

networks is presented in [35]. 

2.2 Matching Pursuit 

Suppose you know the grammar of a language, but your vocabulary is very 

basic. It is difficult to write about a topic in that language, since it requires 

lengthy statements to express unavailable words and subtle differences between 

close concepts. Take another example. In theory, it is possible to paint a 

natural scene using a palette consisting only of red, green, and blue paints , 

since every color can be made by a combination of these three primary colors. 

However , the artist would be frustrated by the amount of required efforts of 

constantly mixing the paints on canvas for making non primary colors. A more 

convenient and time saving approach is to use a palette rich of different colors. 

The above idea also applies to the classic problem of representing a signal 

(vector) X E lR L as a linear combination of predefined unit norm vectors 

{gl' LEr from a set ?J called dictionary, i.e.: 

(2.11) 

where r is the set of dictionary elements indices. The artist in the above 

example is analogous to the algorithm, which combines dictionary elements, 
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and his/her color palette is similar to dictionary P. Similar to a palette of 

three primary colors, the dictionary can be restricted to contain the minimum 

number of elements so that any signal X E IR L can be perfectly represented 

by the above linear combination. We call this dictionary a complete set. The 

above examples of rich vocabulary and color palette make us think if an over­

complete dictionary, containing more elements than a complete set, might 

improve signal representation. 

In this thesis, we deal with compact coding of image signals for transmission 

over a channel, where a suitable lossy representation of signal with low bit­

rate and in a progressive manner is desirable. For this kind of signal analysis­

synthesis problem, a small subset of a rich, over-complete dictionary may more 

accurately approximate a signal than a complete dictionary. This sparse signal 

approximation is in the following form 

x~x= L C-yg.y (2.12) 
1Er'cr 

where f' is a small subset of much larger index set r. Over-complete signal 

representation, like a natural language with a rich vocabulary, is able to repre­

sent a signal with the least number of dictionary elements. A linear expansion 

on bases (such as Fourier and wavelet bases) is not able to completely identify 

the signal patterns and efficiently represent a signal with minimum number of 

constituent elements. This is due to the dilution of information on the whole 

basis expansion. Now, the fundamental problem is how to efficiently represent 

a signal with the over-complete dictionary with a reasonable computational 

burden. This is how we turn into a technique called matching pursuit (MP). 

There are other methods, which are extremely complex, such as basis pur­

suit [36], that provide global optimum solution for (2.12) in an over-complete 
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signal representation and minimize the following approximation error 

c(P) = llX - L C,,g,, ll (2.13) 
')'Er' 

where P is the the cardinality of index set r' . It has been shown [37] that 

global optimal solution for (2.13) belongs to the class of computationally in­

tract able NP-hard problems. It is unproven but widely believed that the num­

ber of computational operations required for an NP-hard problem grows faster 

than any polynomial with order of the size of input vector [38]. Matching pur­

suits (MP) is closely related to a statistical parameter estimation method called 

projection pursuit [39,40], which drastically reduces the analysis complexity by 

tolerating a suboptimal solution [41 J. This signal analysis algorithm also has 

similarities to multi-stage (residual) gain-shape vector quantization [21 J. MP 

algorithm was first introduced by Mallat and Zhang in their original paper [42], 

where they developed it for one dimensional signal analysis. The algorithm 

has been employed for an increasing number of applications such as speech 

coding [43], image coding [44], video coding [45, 46], pattern recognition [47], 

medical applications [48, 49] , and industrial machining [50]. In recent years , 

video coding based on matching pursuit algorithm has shown better coding 

efficiency and perceptual quality at low bit rates than its DCT-based counter-

part [51- 53]. 

2.2.1 MP Algorithm 

Matching pursuits is a greedy algorithm t, which progressively extracts sig­

nal structures that are more coherent+ with respect to the chosen over-complete 

tGreedy algorithms are straightforward problem solving strategies. These algorithms 
take the best immediate (locally optimal) decisions using the information at hand without 
worrying if the results are globally optimum. However, sometimes they yield globally optimal 
results [54]. 

+see [55] sub-section 10.5 for the concept of "coherence" 
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dictionary. Thus, the convergence rate of this algorithm is related to the co­

herence of the input signal and the MP dictionary. In the matching pursuit 

approach, more significant signal structures are extracted earlier during the 

course of signal analysis. This is the key to an embedded progressive signal 

transmission, where bit-stream truncation at a limited bit budget or an ac­

ceptable signal quality is desirable. The successive approximation of matching 

pursuit algorithm for image coding applications means that the most visible 

features of the signal tend to be extracted first . This is a very important prop­

erty, which will be exploited in this thesis for progressive ROI image coding. 

Although using matching pursuit is not restricted to just one dimensional 

signals, this section explains the algorithm on one dimensional vectors just 

for the sake of notation simplicity. Generalizing the matching pursuit analysis 

algorithm to higher dimensions is straightforward. This algorithm is explained 

for continuous time signals in an infinite Hilbert space framework in [42]. 

Assume ~ = {g1d} J dEfd as an over-complete set with finite number of 

normalized members (llg1dll = 1) in L2 (IR) that spans a space of dimension L 

( Jd is a finite dictionary index set of ND elements and Jd is called dictionary 

index). Each L dimensional vector X of the space can be projected on a 

dictionary element g1d E ~ to approximate the vector in that direction: 

(2.14) 

where (X, g1d) is called the inner product of vector X with dictionary element 

g1d and Rx is residual vector or approximation error vector. For two tall 

vectors X 1 and X 2 , inner product operat ion is defined as (X1 , X 2 ) = X? x X 2 

and is a measure of how much a vector is in the direction of the other one. Since 

the residual vector Rx does not have any component left in g1d direction, i.e. 

the approximation error vector is orthogonal to the direction of the selected 
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dictionary element , using Pythagorean theorem we have: 

(2.15) 

where 11Rxll 2 is the energy of the approximation error. In order to minimize 

the residual energy, g1d E !72 must be selected such that the projection energy 

l(X,g1d)l 2 is maximized. 

Matching pursuit is an iterative algorithm that successively decomposes 

a residual vector, using the above-mentioned orthogonal projection, onto the 

most similar element of MP dictionary !72. To start the MP successive pro­

jection, assume the initial residual vector to be the original vector X , i.e. 

n <0lx = X t. Also suppose we have successively decomposed the vector X , 

r - 1 times and the (r - l)th order residue n <r- 1lx is already computed. As 

rth MP iteration, to decompose n <r- 1l x in g1d(rJ direction we have: 

where 

(n<r-1lx, g1d<ri ) = sup (n<r-1lx, g1d) 
JdE fd 

By induction and after TJ MP iteration we have 

T/ 

X = L(n<r-llx,g1d(rJ )g1d(rJ +n<rilx 
r=l 

(2.16) 

(2.17) 

(2.18) 

In equation (2.18) the original vector X is approximated by TJ dictionary 

elements. With a complete dictionary set, as TJ tends to infinity, the residual 

norm exponentially tends to zero [41, 55], in other words 

lim llR(ri)xll = 0 (2.19) 
T/-+00 

t As we can see later in chapter 4, in order to represent a vector by minimum number 
of MP analysis parameters, the mean value of the original signal can be removed. The 
mean-removed vector can then be treated as R,(Ol x. 
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therefore 
CXl 

X = L ('R.(r-l)x, g 1d(rJ)g1d(rl (2.20) 
r=l 

T he approximation error decays faster if the MP dictionary is more coher­

ent to the signal being analyzed. Signal decomposition in rth MP iteration is 

characterized by the inner product coefficient (R(r-l)x, g 1d(r l ) and the index of 

the selected dictionary element Jd(r ) . The balance of information between the 

inner product coefficients and dictionary indices in each MP iteration changes 

with the size of dictionary. If the dictionary is reduced to N dimensional com­

plete orthonormal basis, all the information is concentrated in inner product 

coefficients. On the other hand, in case of a dictionary with all possible unit 

vectors , all the analysis information is compacted in the chosen dictionary 

index [42]. 

In real life, MP decomposition iteration has to be terminated at some 

point. The residual projection on dictionary elements may be iterated up 

to a predefined number of times. Alternatively, matching pursuit analysis 

algorithm may continue until the residual energy becomes less than a positive 

threshold , i.e. 

0<µ<1 (2.21) 

For the purpose of using MP decomposition for signal encoding, each inner 

product coefficient should be quant ized in each MP iteration and the resulting 

quantized value can then be employed for residual vector calculation. There­

fore , a signal X can be approximated by a P -element linear combination: 
p 

X ~ X = L Q( ('R.(r-l)X, g fd(r) ) ) g Jd(r) (2.22) 
r=l 

where Q(-) is scalar quantization operator. 

Selecting the closest dictionary element (best match) to the residual error in 

each MP iteration is computationally the most intensive part of the algorithm 
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since the inner product operation (R (r-l)x, g1d) must be calculated for all 

dictionary elements (ND times). Mallat suggests a method [42] to reduce this 

computational complexity by storing the inner product of dictionary elements 

with each other. By taking inner product operation on both sides of equation 

(2.16) with g1d we have the following iterative updating formula: 

(2.23) 

In this equation, the dictionary inner products (g1d(r), g1d ) can be computed 

and stored in advance to be used as lookup table later during the course of MP 

analysis. Equation (2.23) updates the inner product of the residual error with 

all dictionary elements without employing direct inner product calculation. 

This drastically reduces the computational complexity of the matching pursuit 

analysis [42]. 

All the previously described matching pursuits formulations are also valid 

for a 2D signal (like an image) if the inner product operation is properly 

defined. For this purpose and in MP analysis context, we define a 2D inner 

product of two matrices A and B of identical size M x N as the following 

summations: 
M N 

(A, B) = LLA(i,j). B (i,j) (2.24) 
i=l j=l 

A more computationally complex variant of matching pursuit , namely or-

thogonal matching pursuit [41, 43] provides a faster converging signal approxi­

mation than the original matching pursuit by removing the selected dictionary 

element not only from the signal but also from other elements in the dictio­

nary using Gram-Schmidt orthogonalizing procedure. It has been shown [41] 

that for a vector X of size L , an orthogonal matching pursuit decomposition 

results in zero residual energy after T/ ~ L iterations. In addition to its exces­

sive computations both in analysis as well as synthesis stages, orthogonal MP 
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method deforms MP dictionary elements and their patterns during the course 

of decomposition of a vector. 

2.2.2 MP Dictionary 

An interesting property of matching pursuit signal decomposition is that 

it imposes no restriction on the choice of dictionary. Mallat and Zhang in 

their original work [42] employed a dictionary of Gabor and wavelet functions , 

however the algorithm itself does not require dictionary with any specific struc­

ture , as long as the completeness condition is satisfied. The dictionaries can 

be application specific and tailored according to the signal statistical proper­

ties in order to increase the convergence speed of the MP algorithm. A class 

of MP dictionaries , which is very popular in over-complete signal analysis is 

time-frequency dictionary class [42]. 

2.2.2.1 Time-Frequency Dictionary 

A Fourier basis poorly represents signals that are localized well in time 

domain (spatial domain for image signals) and wavelet basis does not properly 

represent signals with high frequency and narrow Fourier transform support 

[55]. Signal energy compaction (localization) of a function g(t) E L2 (ffi.) in 

time and frequency can be measured by the variance of the function in time 

(at) and frequency (aw) defined by the following relations 

2 1 100 2 2 
at = llgll2 _

00 

(t - uo) lg(t)I dt (2 .25) 

a~= 11;112 1 : (w - ~0)2 l§(w)l2 dw (2.26) 

where g(w) is Fourier transform of g(t). In the above equations , u0 and ~o 

can be viewed as energy center point of g in time and frequency domains and 
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defined respectively as the following equations 

1 100 

2 uo llgll2 -oo t lg(t) I dt (2.27) 

fo = 11:1121-: w l?J(w)l2 ri1u (2.28) 

For signals with widely varying time-frequency localization, an over-complete 

dictionary consisting of dilated, modulated, and translated versions of a single 

windowed function contains a large variety of elements (also known as time­

frequency atoms) with different time-frequency properties. Suppose g(t) E 

L2(1R) is a normalized (llg(t)ll2 = J~00 lg(t)l2dt = 1) , even function, with 

nonzero value at the origin (g(O) =/=- 0) and nonzero mean (i.e. J~00 g(t) =/=- 0). 

Elements of the triplet I= (s, ~ ' u) E ffi.+ x ffi.2 represent scaling, modulation, 

and translation parameters, respectively. A time-frequency atom is defined as 

1 t- u . 
g (t) = -g(-)e7~t 

'Y Vs s 
(2.29) 

This function is normalized by )s term and its energy is concentrated around 

its central point t = u in a neighborhood of size proportional to s. Time­

frequency atom g'Y in Fourier domain is 

(2.30) 

which is localized around frequency w = ~ on a frequency neighborhood pro­

portional to 1/ s. According to (2.29) and (2.30) , small values of scaling param­

eter s results in well localized signal in time domain and poorly concentrated 

signal in frequency domain, while atoms are well localized in frequency domain 

and poorly concentrated in time domain for large values of this parameter. 

This fact complies with Heisenberg uncertainty principle, which implies that a 

signal cannot be compact both in time and frequency domain. This principle 
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states that the temporal and frequency variances of a function g(t) E L2 (IR) 

are restricted by the following inequality [55] 

1 
(l2(l2 > -

t w - 4 (2.31) 

It has been shown that this inequality becomes equality if and only if there 

exist (v , <.p, a, b) E IR.2 x C2 such that 

g ( t) = aeicpt- b( t-v ) 2 (2.32) 

This function can provide the highest temporal and frequency localization. For 

an interesting case of (v , <.p , a, b) = (0 , 0, .v'2, -?r) we have Gaussian function 

g(t) = .v'2e-7rt2
• This function satisfies the aforementioned conditions for being 

a time-frequency prototype. The time-frequency dictionaries generated by this 

function are very popular in MP analysis and are called Gabor dictionaries. 

For representing real signals, (2.29) can to be modified to 

1 t- u 
g-y (t) = r;.g(-)cos(~t + ¢) 

yS S 
(2.33) 

In order to generate dictionaries of finite cardinality for decomposition of vec­

tors with limited size, time-frequency atoms must be sampled in time. The 

scaling, modulation, and translation parameters should also be quantized. 
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Chapter 3 

Region-of-Interest Image 

Communication Using VQ 

Rate scalability of still-image coding is the ability of extracting the visual 

information at continuously varying data rate from a single compressed bit 

stream. This property allows transmission for more than one reconstructed 

image quality by generating a bit stream in a manner in which the target bit 

rate or reconstruction quality need not be known at the time of compression. 

Image coding with progressive quality refinement provides rate and quality 

scalability for a given image coding scheme. A coarse version of image is 

transmitted first, decoded, and displayed at the receiver end. At this stage, 

the user can decide either to further refine the entire image or to determine 

region(s) of interest to be refined first. Obviously, in order to exploit the 

available bandwidth optimally, the refinement information should be comple­

mentary to the previously transmitted image data, and this can be achieved 

via progressive image coding. 

As the Internet becomes increasingly popular, more and more high resolu­

tion images are brought online. NASA is putting its collection of space photos 
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online. The Microsoft terra server provides access to high resolution satel­

lite/aero photographs over the Internet. Museums are digitizing and moving 

their collectibles online. Even individuals are sharing their personal photos 

over the web. It is very enjoyable to watch a high-resolution image on the 

screen, but it is equally painful to download the huge image over the slow 

Internet. Although the backbone of the Internet keeps improving, the content 

and the number of users also grow. Efficient delivery of large image is thus 

crucial to provide enjoyable image browsing experiences on the Internet. 

In the early days, compressed images were downloaded entirely from the 

network before their contents were rendered. Newer version of the browsers 

support progressive streaming such as JPEG 2000 [56] and progressive JPEG 

[57] standards, where views are rendered repeatedly as more and more bit­

stream arrives. Progressive streaming improves the experience of image brows­

ing. However , for a large image, the size of the compressed bit-stream is still 

too big to be streamed efficiently. One solution to this problem is to send 

a part of the image which is of more interest at a higher quality and if the 

bandwidth permits, improve the quality of the rest of the image. Moreover, in 

many applications (e.g., image streaming) the end user is browsing through a 

set of images and would prefer to receive a coarse version of the image first and 

have the option of interactively refining part or parts of the coarse received 

image. 

Image compression schemes operate more efficiently when they take into 

account the region of interest (ROI) of the end-user on the image to be com­

pressed. Transmitter can send the information of the ROI with higher quality 

than that for the background. The functionality of this method of image cod­

ing is significant in applications where some specific parts of the image are of 

higher degree of importance than others. 
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In this chapter VQ-based methods for progressive and interactive ROI im­

age coding are presented. The proposed schemes are computationally unbal­

anced and the receiver is much simpler than the transmitter, a property which 

is sometimes favorable in commercial image archiving. In order to get a pro­

gressive coding scheme with bit-rate scalability, an RVQ based algorithm is 

presented which can automatically provide a useful trade-off between rate and 

distortion in accordance with the network situation. With this RVQ method, 

receiver is able to change the ROI without losing the previously received in­

formation. Furthermore, the receiver is able to request multiple ROis and the 

transmitter progressively sends a version of image with higher quality in the 

regions of interest. Jointly sub-optimized RVQ without any increase in bit-rate 

ameliorates the reconstructed image quality at the expense of more encoding 

complexity. In order to optimally reduce the effect of the channel error on the 

reconstructed image quality, a variable error protection scheme is applied to 

the output bit-stream of our source encoder. Since the bit-stream portions at 

the output of the proposed coder have different levels of importance in terms 

of their contribution to the final reconstructed image quality (in an MMSE 

sense) , variable number of redundancy bits are added to the bit-stream por­

tions to protect them against the channel error accordingly. For unequal error 

protection (UEP) simulations, we use Reed-Solomon forward error protection 

coding method. 

This chapter is organized as follows: Section 3.1 presents our progressive 

interactive RVQ based ROI image coding methods. Mean-removed RVQ based 

ROI image coding and another alternative for the RVQ based ROI image cod­

ing scheme, which compromises the reconstructed image quality with the en­

coder complexity, are also introduced in this section. Unequal error protection 

using Reed-Solomon codes is presented in section 3.2. Section 3.3 presents 
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the simulation results which gives examples of ROI coded images with each 

of the aforementioned methods and illustrates the rate-distortion behavior of 

the schemes. This section is also includes some simulation results that reflects 

unequal error protection performance of the proposed ROI image transmission. 

3.1 ROI Image Coding Using VQ 

3.1.1 Vector Quantization of Image 

Image compression by vector quantization consists of forming the image 

vectors (by grouping this two dimensional signal into blocks of pixels of M 

columns and N rows, and treating them as an L = M x N dimensional vector) , 

comparing the vectors with the predefined vectors in the codebook, transmit­

ting the index of the closest vector to the image vectors , and reconstructing 

the image with the vectors whose indices have been sent [1, 21] (Fig. 2.2). For 

maximum exploitation of two dimensional correlation between image samples, 

the image blocks are generally selected as squares [1], i.e . M = N. 

3.1.2 A Basic Intuition 

The intuition for ROI image compression based on vector quantization 

comes from the fact that there is a close relationship between the quality of the 

reconstructed image and the corresponding codebook size, i.e. reconstructed 

image with higher quality can always be obtained by using larger codebooks. 

Thus, a simple method for ROI image coding is to use larger codebook for 

region of interest than that for the background. A low quality image is sent 

once with an initial small sized codebook. The user who receives the image 
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determines his/her point(s) of interest and sends this information to the trans­

mitter. The transmitter quantizes the ROI information by means of a bigger 

codebook. This simple method is not progressive, i.e. , the information of the 

low quality image cannot be employed in rendering the higher quality image 

of the ROI. 

3.1.3 ROI Image Coding Using RVQ 

As a result of serious complexity barrier in unstructured VQ, practical 

direct use of VQ is limited to rather modest codebook size and vector di­

mensions. While for a given bit-rate, smaller vector dimension tends to have 

lower complexity and codebook size, bigger vector dimension takes advantage 

of the correlations between more vector elements (pixels). As an ROI cod­

ing technique, the unstructured VQ does not enjoy progressive and embedded 

transmission in a sense that any request of improvement in the ROI is always 

replied by complete retransmission of image vectors with a bigger codebook 

VQ scheme. This problem can be solved by employing residual vector quan­

tization. RVQ can provide a multi-resolution representation of image vectors , 

an attractive property for progressive ROI image coding. In this structured 

VQ method, codebook enlargement is realized using more quantization stages. 

Fig. 2.4 shows the general configuration of a residual vector quantization 

system. In the first stage of a residual vector quantizer, a coarse approximation 

of the input image is generated by using a low-rate vector quantizer Q1 and 

the indices of the chosen codebook vectors are sent to the receiver. As the 

second stage, the errors between the original input vectors and their coarse 

representation are quantized by Q2 and the indices of the chosen vectors from 

the second stage codebook are transmitted. In this manner , the errors between 

the original image vectors and the approximated vectors obtained from the 
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outputs of the preceding (n - 1) stages are applied to the nth stage and the 

indices are transmitted. By providing different quality layers , this technique 

enables progressive encoding of the original image. 

The main idea for RVQ based ROI image coding is to use more quantization 

stages for the image vectors closer to the point(s) of interest. A coarse version 

of image using the first stage of RVQ is sent to the receiver. The receiver 

indicates its point(s) of interest and sends the coordinates of the point(s) to 

the transmitter. The transmitter starts refining the image by sending the 

indices of residues of image vectors inside the ROI using the next RVQ stages. 

After some stages of refinement ( PRor) and transmitting the corresponding 

RVQ indices, the vectors in the background are also started being refined. 

This improvement routine for each image vector continues and whenever the 

last RVQ refinement layer is done, the quantization and transmission for that 

vector stops but the process is continued for other image vectors until all the 

image vectors are rendered using all available RVQ stages. 

This progressive method of streaming provides quality and bit-rate scala­

bility. The transmission can be terminated in the middle of refinement process 

and the receiver is still able to reconstruct a version of the image with a quality 

corresponding to the received information. 

The aforementioned quantization method can be used in order to imple­

ment an RVQ based ROI image coding such that the quality of image gradually 

reduces from the ROI to the background. In order to achieve this , the encoder 

finds d1, the distance of the jth image block from the point of interest , and 

determines P1, the number of RVQ stages by which the lh vector is to be 

quantized, where j = 1, 2, . .. , Ns represents the image vector indices and Ns 

is the number of blocks in the image. The RVQ proceeds on lh image vector 

and encodes it with stage P1 + 1 if d1 is less than a metric Rk defined for kth 
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Figure 3.1: The entitled image blocks for quality refinement 

stage of image refinement. The distance metric Rk is the radius of a virtual 

circle, with the center of the point of interest , containing the centers of the 

image blocks that are going to be refined at the kth refinement stage, as illus­

trated in Fig. 3.1. This quantization strategy enables gradual image quality 

change from the ROI to the background. If the network situation is taken into 

account for the definition of Rk , we can have a bit-rate scalable coding scheme. 

More specifically, our proposed method of ROI coding based on progressive 

RVQ operates as follows. Using the first stage of RVQ, a coarse version of the 

image is transmitted. The receiver sends the ROI information (the coordinates 

of the center of ROI). The encoder investigates all the image blocks to check 

whether the distances of their centers from the center of ROI ( d1) is less than 

an initial value of R1 . In case the distance (d1) is more than R1 , nothing is 

sent for ;th image vector. If the distance d1 is less than R1 , the residue of the 

;th image vector is quantized using the second stage of the RVQ codebook. 

In this manner , all the image vectors are investigated and the next stage of 

RVQ encoding is completed. To further improve the image quality in the ROI, 

using the relation 

(3 .1 ) 

38 



Ph.D. Thesis - A. Ebrahimi-Moghadam McMaster - Electrical & Computer Engineering 

the encoder obtains the new distance metric. The above procedure is repeated 

for all image vectors using Rk+l as the distance metric. This process forms 

the successive layers of the image residues to be sent with emphasizing on the 

ROI. 

In (3.1) , o: determines how gradual the background quality is increased 

toward the ROI. The value which is assigned too: plays an important role to 

give greater importance to the ROI visual information. Taking into account the 

bit budget of image transmission and the importance of the ROI compared to 

the background, a proper value has to be assigned too:. In the case of absolute 

ROI importance and low bit budget , o: is set to 1, which means the refinement 

bits are sent only for the ROI. If a larger value is assigned to o: the distance 

metric Rk grows rapidly. On the other hand the circle with radius R1 and the 

center indicated by the point of interest is an initial region whose image vectors 

are sent with maximum priority. Since bigger R1 means more image vectors 

with this privilege, there would be no ROI if R1 exceeds the size of the image. 

Pract ical values for R1 can be in the range of 1/10 to 1/2 of the size of image. 

Thus, if network cannot supports a high bit-rate transmission, by choosing o: 

properly close to 1, and assigning a suitable value to R1 a higher priority of 

transmission can be given to the ROI image vectors. The transmission can be 

terminated whenever an acceptable image quality is provided at the receiver 

end. 

The gradual quality changes around ROI imitates the foveation property 

of the human visual system (HVS) [58] . If the streaming is terminated by 

the receiver in the middle of transmission, the receiver already has a foveated 

image version. For more information about different foveation methods see 

appendix A and [59-62]. 

This RVQ based method allows us to change the ROI without losing the 
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previously received information. To add this ability to the proposed method, 

we need to make a record of the number of RVQ stages by which each image 

vector has been encoded so far. Receiver should send its stage number, by 

which it was previously receiving and refining the image, and the coordinates 

of new point of interest. Using these information, the transmitter can refine 

the visual information around newly defined point of interest without sending 

the information twice. Let P}- 1
) denote the number of RVQ stages by which 

the lh block is coded. If the distance dj is less than Rk in the (k + l)th RVQ 

stage, encoder checks pj(-l) and if P}-l) > k + 1 transmitter sends nothing for 

that image block, otherwise, the residue of the vector is quantized using the 

(k + l)th stage of the RVQ codebook and the index is transmitted and P}-1
) 

is updated. 

Besides having the flexibility of changing the point of interest , multiple 

ROI can also be handled in the proposed scheme. In this case dj is calculated 

by 

dJ· = minii) i = 1, 2, ... , NRor j = 1, 2, ... ,NB 
i J 

(3.2) 

where d)i) is the distance of the lh image vector from ith point of interest and 

NRor is the number of ROis . 

3.1.4 ROI Image Coding Using Mean Removed RVQ 

The vast variation of the background illuminations causes the codebook 

in a VQ to be very much dispersed. As a result, two identical images with 

different background illuminations may have different VQ representation. To 

reduce this effect , the mean values of image vectors can be removed and sent 

separately using a scalar quantizer and the resulting image vectors can be 

quantized with a mean removed codebook [21]. 
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Figure 3.2: Mean removed VQ encoder and decoder 

Removal of image block means will not impact the performance of the 

previously described RVQ based ROI image coding scheme. Figure 3.2 shows 

a schematic diagram for the mean removed RVQ method. In this method 

a coarse version of the image, reconstructed by image block mean values , is 

sent using a scalar quantizer. Since the quantized mean of each vector (and 

not the exact mean) is removed from the original image, no additional error 

caused by scalar quantization is introduced. Using a scalar quantizer for the 

transmission of the mean value of the image reduces the minimum achievable 

bit per pixel for the coarse image representation. 

3.1.5 ROI Coding Using Jointly optimal RVQ 

Jointly optimized RVQ (JORVQ) is an RVQ paradigm which was intro­

duced to effectively minimize the overall quantization error [32, 33, 63, 64]. It 

can be shown that a sequential single-path search through RVQ stages cannot, 

in general, utilize all available code vectors. JORVQ employs M -search, an 

efficient multi-path tree search algorithm, to search the stage codebooks. Fig. 

3.3 is an example of optimal path through a lattice. According to this figure, 

the decision for choosing the proper codebook vectors is made after examin­

ing the quantization error caused by all the possible paths and the path with 
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minimum quantization error is chosen. This design results in improvement in 

reconstructed image quality. However, this increase in rate-distortion perfor­

mance comes at the expense of additional computation. For RVQ systems with 

identical codebook size N = 2K for each stage, the computation and memory 

cost for M-search (exhaustive) JORVQ is proportional to 2MK , while the cost 

for ordinary RVQ to calculate indices of M consecutive stages is M x 2K. So 

by choosing the value of M very large, the computational cost of JORVQ may 

be prohibitive. 

It is clear that for JORVQ if M , the number of RVQ stages jointly consid­

ered for optimization, is large, the computational and memory cost is enormous 

and unmanageable. To address this problem we can consider a constraint of 

maximum number of best paths which are under consideration. If the num­

ber of paths, which their track should be kept, exceeds this constraint , best 

Ne paths (with lowest resulting quantization error) are kept and the rest are 

thrown away. Ne 2::: 1 is the constraint number for maximum paths and its 

selection is a trade-off between optimality level and the memory and computa­

tional cost. This method gives a jointly suboptimal RVQ scheme and improves 

our previously described RVQ. For RVQ systems with identical stage codebook 

size N = 2K , the computational cost for M-search (exhaustive) JORVQ with 

constraint number Ne is proportional to M x Ne x 2K. It is clear that this 
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computational cost is less than that for JORVQ , specially for large values of 

M. Since there is nothing to be changed in the structure of the receiver , 

the transmitter can switch either to RVQ or to JORVQ methods. Also the 

transmitter may use JORVQ for the ROI and RVQ for the background. 

3.2 Unequal Error Protection of RVQ Coded 

Bit-Stream 

It is clear that in the embedded bit-stream resulted by the proposed ROI 

coding based on RVQ procedure, the earlier portions of the bit-stream have 

more contribution in the reconstructed image quality than the later portions. 

Indeed, by incorrectly decoding the information of the ith RVQ stage of an 

arbitrary image vector , correctly decoding of the lh , (j > i) RVQ stage in­

formation is ineffective. Thus to protect the output bit-stream of the RVQ 

based coder, an unequal error protection (UEP) [65] (in a sense to protect 

earlier parts of the bit-stream more than the later parts) results in better final 

rate-distortion performance than an equal error protection scheme when the 

bit-stream is transmitted over a noisy channel. In the proposed RVQ based 

image coding, the initial coarse version of the image is protected with maxi­

mum amount of error protection, dictated by the channel error rate condition. 

The remaining bit-stream is divided into some sub-bitstreams and each sub­

bitst ream is error protected no less than the next sub-bitstreams. 

Reed-Solomon codes are popular error correcting tools for protecting the 

transmitted bit-streams against the errors. By assigning a larger number of 

redundancy bits to the output codewords of the source coder, larger number 

of bit errors can be corrected [4]. A brief description of Reed-Solomon codes 
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Figure 3.4: "news" image using ROI coding by multiple codebook size (unstructured VQ) 
with 0.3 bpp. 

is given in appendix B. Although unequal error protection can be realized by 

most forward error correcting methods, Reed-Solomon codes are employed for 

simulation results due to their popularity. 

3.3 Experimental Results 

For the following experimental results codebooks are built using Linde­

Buzo-Gray (LBG) algorithm. As the training set, five different images (not 

including "news" image) are employed. For the multiple stage VQ schemes, 

the error vectors in a given stage form the training set for the next stage 

(Figure 2.4). For the first stage of RVQ, we use original training set (formed 

by five different images) and for mean-removed RVQ, we use the mean removed 

version of that training set. 

Here, we used 8 bits per pixel (8 bpp) gray scale "news" image to demon­

strate the performance of our methods. Fig. 3.4 shows an example of the 
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Figure 3.5: Number ofRVQ (or JORVQ) stages used for the representation of the point of 
interest image block with respect to a and for different initial radius R1 . The final number 
of the transmitted bits is constrained to 0.15 bpp . The point of interest is considered the 
centre of a 288 x 352 pixels image. 

ROI image coding using proposed unstructured VQ based scheme. This fig­

ure demonstrates the ROI image coding using unstructured VQ with vector 

dimension of 16 (blocks of 4 x 4 pixels). Codebook sizes used for this image 

are 8 and 512 for the background and the ROI, respectively, and the overall 

rate is 0.3 bpp. 

Fig. 3.5 shows the relation between the number of RVQ (or JORVQ) 

stages used for the representation of the point of interest image block and 

parameter a for three different values of the initial distance metric R1 (the unit 

for measuring R1 is the maximum between length and width of the image). In 

this figure the transmitted bits per pixel is constrained to 0.15 bpp. The point 

of interest is assumed to be the center of a 288 x 352 pixels image. According 

to this figure , the closer the value of a to 1 means the larger RVQ stages 

assigned to the ROI for some given transmission bit budget. The figure also 

shows how the initial distance metric R1 plays a role for giving more priority 

to the ROI quality refinement . 
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(~) (f) 

Figure 3.6: Progressive ROI image coding results for "news" image using RVQ based 

method. Vector dimension is 64 (blocks of 8 x 8 pixels) and codebook size in each stage is 

32. The maximum number of stages is 15. (a) original "news" image 8 bpp with indicated 

ROI . (b) Initial coarse image which is received by end-user and is employed to delineate 

the ROI (c) Image is reconstructed progressively during the course of transmission. the 

reconstructed image by the progressive method in the middle of transmission. R 1 = 0.25 

and o: = 1.1 with 0.16 bpp. (d) Reconstructed image by the progressive method in the 

middle of transmission and with more received information than in (c) . R 1 = 0.25 and 

o: = 1.1 with 0.46 bpp. (e) Final reconstructed image by 15-stage RVQ scheme, with 1.17 

bpp (f) Spatial RVQ stage status for reconstructed image in part d 
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Fig. 3.6 shows examples of progressive RVQ based ROI image coding. Fig. 

3.6(a) shows the original 8 bpp "news" image with indicated region of interest. 

To implement the method, we used image vectors with dimension of L = 64 

(blocks of 8 x 8 pixels) . Codebook size in each stage is 32 and the maximum 

number of RVQ stages is 15. Fig. 3.6(b) shows the initial coarse image which 

is transmitted to the end-user in order to make an interaction with the receiver 

for ROI indication. Assume the ROI is the one that is indicated in Fig. 3.6(a). 

This coarse image is sent approximately with 0.078 bpp. Fig. 3.6(c) shows 

one incompletely refined version of reconstructed image at the receiver by the 

upcoming stream of progressive image information. In this figure R1 = 0.25, 

a = 1.1 , and at this stage the image has been received with 0.16 bpp. If we 

let the streaming to continue, the image quality will improve. Fig. 3.6(d) 

shows the more refined version of received image with the same ROI image 

coding parameters but with 0.46 bpp. After all layers of refinement (15 RVQ 

stage in this case) the final version of reconst ructed image is obtained (with 

1.l 7bpp). Fig. 3.6(e) shows this final reconstructed image. Fig. 3.6(f) shows 

the st atus of the RVQ refinement stages in each part of the image. This figure 

is associated with Fig. 3.6(d). This figure demonstrates the ROI oriented 

priority for progressive streaming. The priority of refinement is approximately 

an exponential function of distance from the center of ROI. This function is 

closely related to a and R1 . 

In Fig. 3.7 we show another example for the progressive RVQ-based ROI 

image coding. In this figure we used image vectors with dimension of L = 16 

(blocks of 4 x 4). Fig. 3.7(a) shows the original image with 4 indicated ROis. 

A coarse version of image using first RVQ stage is sent to the receiver with 

0.32 bpp [Fig. 3.7(b)]. Fig. 3.7(c) demonstrates a coarse version of image 

which is reconst ructed at the end-user. As t his figure shows, all four ROis 
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., 

Figure 3. 7: Progressive multiple ROI image coding results for "news" image using RVQ 

based method. Vector dimension is 16 (blocks of 4 x 4 pixels) and codebook size in each 

stage is 32. The maximum number of stages is 5. (a) Original "news" image 8 bpp with 4 

indicated ROis . (b) Initial coarse version of image with 0.32 bpp (c) Reconstructed image 

by the progressive method in the middle of transmission. R 1 = 0.15 and a = 1.1 with 0.65 

bpp. (d) Final reconstructed image by 5-stage RVQ scheme, with 1.6 bpp (e) Spatial RVQ 

stage status for reconstructed image in part c 

48 



Ph.D. Thesis - A. Ebrahimi-Moghadam McMaster - Electrical & Computer Engineering 

have been reconstructed at higher quality compared to the rest of the image. 

Here a= 1.1 and R1 = 0.15 and the image is reconstructed by 0.65 bpp. Fig. 

3. 7( d) shows the final reconstructed image by 1.6 bpp. The number of RVQ 

layers used in Fig. 3.7(c) is shown in Fig. 3.7(e). 

Fig. 3.8 shows the rate-distortion behavior of the RVQ and mean removed 

RVQ schemes for two different images, that were not used for training VQ 

codebook. Here we use a = 1, R1 = 0.25 , and we change the bit-rate by 

increasing the RVQ stages used in ROI. According to Fig. 3.8(a) and (b), RVQ 

with 8 x 8 image blocks can provide a lower minimum affordable rate than that 

for RVQ with 4 x 4 image blocks (the left end of each curve represents the rate 

and the distortion corresponding to the coarsest image version provided by one 

layer RVQ). Since the coarse first layer of mean-removed RVQ is sent by scalar 

quantizer , the minimum obtainable rate by this method is less than the rate 

obtained by ordinary RVQ method. The overall rate-distortion performance 

of mean-removed RVQ is also better than that of the ordinary RVQ. Similar 

results were obtained for the second test image "mobile" as shown in Fig. 

3.8(c) and (d). 

Fig. 3. 9 shows the effect of search number ( M) in jointly optimized RVQ on 

the rate distortion behavior of this quantization scheme for the "news" image. 

Here, we have considered the maximum path number of Ne = 30. It can be 

seen that the rate-distortion performance of 2-stage JORVQ is considerably 

better than 1-stage JORVQ (i.e. ordinary RVQ) . But the difference between 

performance of 3-stage JORVQ and 2-stage RVQ is not that much. On the 

other hand, increase in the search number M escalates the computation and 

the memory cost drast ically. Thus, the figure represents a rate-distortion­

complexity behavior for JORVQ. 
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Figure 3.8: Rate-distortion behavior of the RVQ and mean removed RVQ schemes applied 

on two different images (a) RVQ rate-distortion performance for "news" image (b) Compar­

ison between rate-distortion of RVQ and mean removed for "news" image RVQ (c) and (d) 

Same as (a) and (b) respect ively but for "mobile" test image 
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Figure 3.10: Reconstructed image quality behavior of an unequal error protected 
stream in the presence of channel bit error 
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Figure 3.11: Rate-distortion behavior of UEP against equal error protection 

Index assignment of the VQ codebook can be an efficient attempt for re­

ducing the effect of channel error with no computation or rate cost. In this 

regard, index assignment is in such a way that the indices with the Ham­

ming distances of one (different in just one bit) should represent vectors with 

maximum possible similarities. However , for further protection of bit-streams 

against channel noise, we may use unequal error protection. Fig. 3.10 shows 

the behavior of the reconstructed image quality in the presence of channel bit 

error. Bit-stream belongs to the truncated ROI image coded in Fig. 3.6(c) 

with rate of 0.16 and PSNR=21.8 dB. The bit-stream is divided into three sub-

bit-streams. The first , the second ,and the third sub-bitstreams are unequally 

error protected by Reed-Solomon codes rs(31,15), rs(31,21), rs(31,27), respec­

tively. Reed-Solomon encoding and decoding are done by MATLAB functions 

using symbols of length m = 5 bits. The figure shows a perfect protection of 

the bit-stream for the bit error rates less than 0.01. 

Fig. 3.11 illustrates the advantage of UEP to the equal error protection in 
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terms of rate-distortion behavior. The input to the channel encoder is the bit­

stream used for the pervious figure. For the UEP case, the bit-stream is divided 

into three sub-bitstreams. Each sub-bitstream is then channel coded using 

Reed-Solomon codes and error protected more than the next sub-bitstream. 

For the equal error protection case, the whole bit-stream is applied to Reed­

Solomon coder. The channel error rate for this figure is 0.05. 
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Chapter 4 

MP based ROI Image Coding 

The work in this chapter focuses on a novel scalable, and progressive ROI 

image compression scheme based on matching pursuit (MP) algorithm [42, 55]. 

Like residual vector quantization in the previous chapter , Matching pursuit 

(MP) is a multi-stage signal analysis method and can be used to render a 

selected region of an image with a specific quality. The method is capable of 

providing a trade off between rate, distortion, and complexity. The method 

also provides an interactive way of information refinement for regions of image 

with higher receiver 's priority. By selecting a proper subset of the huge initial 

MP dictionary, using the method described in this work, the complexity bur­

den of MP analysis can be adapted to the computational power of the image 

encoder. 

This chapter is organized as follows. Section 4.1 details the proposed MP­

based ROI image-coding scheme. In this section, an interactive approach to 

the quality refinement of an image is introduced. Rate-distortion-complexity 

trade-off for the ROI image-coding scheme is also discussed in this section. 

Simulation results are presented in section 4.2. Also, the effect of MP co­

efficient quantization and the size of MP dictionary on the rate-distortion 
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performance of the proposed method is reported in this section. 

4.1 ROI Image Coding 

4.1.1 Sy stem Overview 

Section 2.2 comprises a detailed description for MP algorithm and its fun­

damentals. Here, an overview of MP-based image-coding system is presented. 

An image is initially divided into blocks or tiles and each image block is treated 

as an input signal (vector) to the MP analysis/synthesis system. Fig. 4.l(a) 

shows a schematic block diagram of MP based encoder and decoder. An image 

block (input signal) X = R(o)x is applied to the first MP analysis stage (MPl) , 

where R(o)x is the initial MP residual vector. Here, the signal is compared 

with all dictionary members g1d and dictionary element g1dc1>, which yields 

the maximum magnitude inner product with R (o)x , is chosen. Since we can 

only handle the transmission of analysis parameters with finite precision, the 

inner product coefficient 

C (l ) = (X, g1d(1J) = sup (R(o)x , g1d) 
Jd EJd 

(4.1) 

is quantized to C(l). In order to reduce the quantization error effect of inner 

product coefficients on MP analysis performance, the quantized version of 

inner product coefficient C (l ) is then employed to calculate the residual signal 

R(l)x = X - C (l ) g1dc1J. The quantized coefficient C (l ) along with the index 

of the selected dictionary element Jd(l ) is sent to the decoder. Now, R(l )x 

is the input to the second MP analysis stage (MP2). The resulting C(2) and 

Jd(2) are transmitted and R (2)x = R(l )x - C(2) g1dc2> is employed for the next 

MP analysis stage. This procedure continues and the corresponding analysis 

parameters are sent. Fig. 4.1 (b) illustrates the above process at the rth MP 
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Figure 4.1: (a) Schemat ic block diagram of matching pursuit encoder and decoder (b) 

More detailed block diagram of rth stage of MP analyzer 
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analysis stage. As shown in this figure, the scalar quantizer in each stage is 

adapted based on the standard deviation of the inner product coefficients in 

that MP analysis stage. Details of the employed quantization method in this 

chapter are given in the next section. At the receiver side the signal X is 

reconstructed using the received information {j(i) , and Jd(i ) by the following 

linear combination formula: 

m 

x = 2= {j(i ) 9Jd(i) ( 4.2) 
i=l 

where m is the number of MP analysis stages. 

4.1.2 MP Based ROI Image Coding 

The capability of providing a multiresolution approximation for image 

blocks makes matching pursuit algorithm a proper choice for ROI image cod­

ing. The basic idea for MP based ROI image coding is to extract more struc­

tural features for the regions of the image with higher level of viewer's interest. 

To apply this intuitive idea, an image is divided to image blocks or tiles. The 

level of interest for an image block is considered to be a function of the dis­

tance of the image block from the point of interest. Our proposed interactive 

MP based ROI image coding works as follows. A coarse version of the im­

age is transmitted to the receiver. The receiver then indicates his/her point 

of interest (i.e. , center of ROI) and sends the corresponding coordinates of 

the point to the transmitter. Following this interaction, the transmitter sends 

refinement information for each image block according to its level of impor­

tance. The level of importance is measured by the distance of image block 

centroid from the point of interest. To generate a progressive bit-stream, the 

refinement information related to image blocks inside the ROI has to have 

higher transmission priority. After MP analysis and transmission of image 
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blocks belonging to ROI, the background image blocks are also refined. This 

progressive streaming algorithm provides bit-rate and quality scalability, i.e. , 

the bit-stream can be truncated at a desired point in the middle of refinement 

process and a quality corresponding to the received information is obtained. 

The above-mentioned approach can be implemented for MP based ROI 

image coding in such a way that the quality of image gradually reduces from 

the ROI to the background. To achieve this image refinement manner , the 

encoder calculates the distance of the /h image block from the point of interest 

( d1) , where j = 1, 2, 3, ... , N 8 is image block index and N 8 is the total number 

of blocks in the image. Let P1 represents the number of MP stages by which 

the /h image block is coded. The MP algorithm proceeds on /h image block 

and encodes it with (P1 + l)th MP stage if d1 is less than a distance metric 

Rk which is defined for kth level of image refinement . Rk may be assumed as 

the radius of a virtual circle whose center locates at the point of interest (see 

Fig. 3.1) . The circle encloses centroids of image blocks that are eligible for 

the kth stage of MP refinement. This analysis scheme provides gradual image 

quality change from the ROI to the background. The distance metric Rk can 

be adjusted based on the network condition. 

The proposed progressive ROI image coding based on matching pursuit 

is very similar to the one proposed for RVQ based ROI image coding in the 

previous chapter. In order for this chapter to be self-contained, the details of 

the proposed progressive ROI coding method is also included in this chapter. 

By transmitting the mean values of image blocks, a coarse version of the image 

is reconstructed at the receiver. The receiver sends the ROI information (the 

coordinates of the center of ROI). The encoder checks all the image blocks 

to see if the distances of their centroid from the point of interest ( d1) is less 

than an initial distance value of R 1 . If d1 > R 1 , no refinement information is 
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sent for yth image block. If dj ::; R 1 , the residue of the yth image block with 

respect to the existing version of it at the receiver is approximated using the 

first stage of the MP analysis. To further improve the quality of the ROI, 

using the relation 

(4.3) 

the encoder updates the Rk with Rk+l· The above routine is repeated for 

all image blocks using Rk+l as the new distance measure. This process re­

sults in generation of successive MP refinement layers of the image with more 

emphasize on the region of interest. The updating multiplier a, in equation 

(4.3), specifies how gradual the image quality is reduced from ROI toward the 

background. This parameter plays an important role in emphasizing the ROI 

visual information. An appropriate value has to be assigned to a in order to 

meet the image transmission bit budget and, at the same time, give a desired 

level of reconstruction fidelity to the ROI compared to the background. If the 

ROI has an absolute transmission priority and the bit budget is small, a can 

be set to 1. This implies that the refinement bits are sent merely for the region 

of interest. If a larger value is assigned to a the distance metric Rk grows more 

rapidly and more image blocks become eligible for the refinement . The virtual 

circle with radius R1 and centered at the point of interest is the initial region 

which its image blocks are enhanced with the highest priority. Since a bigger 

R1 means more initial image blocks with this privilege, there would be no ROI 

if R 1 exceeds the size of the image. Practical values for R1 can be in the range 

of 1/10 to 1/2 of image size. Thus, in case of low bit budget or low bit-rate 

transmission, a is set close to 1 and R1 is selected in the above mentioned 

range and a higher priority of transmission will be given to the ROI image 

blocks. 
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The complete bit st ream generated by above algorithm conveys refinement 

information for all image blocks with a final quality dictated by the maximum 

MP analysis stages. The bit stream can be truncated whenever a desirable 

image quality is provided at the receiver. In this case, the reconstructed image 

has better quality at region(s) of interest. 

The proposed MP-based RO I image coding method allows changing the 

position of point of interest without losing the previously received refinement 

data. In order for the transmitter to handle the ROI change, the number of 

MP stages that each image block has been analyzed with, should be recorded 

at the encoder. Receiver sends the location of the new point of interest. After 

this interaction, the transmitter sends the refinement data for image blocks 

around the newly defined point of interest without the need to retransmit the 

already sent information. More specifically, let P}-1
) denote the number of 

MP stages by which the lh block is analyzed. Let dj represent the distance 

of the lh image block from the new point of interest. If dj < Rk , encoder 

checks P}-l ) and if P}-1
) ~ k no transmission for lh image block is required , 

otherwise, the residue of the image block is approximated using the kth stage 

of the matching pursuits and the index of chosen dictionary element and the 

corresponding inner product coefficients are transmitted and P}-1
) is updated. 

Besides the possibility of ROI location change during the course of trans­

mission, multiple ROI can also be coded in the proposed MP-based ROI image 

coding scheme. In the multiple points of interest case dj is calculated as fol­

lows: 

d1· = mind(i) i = 1, 2, ... , NR01 j = 1, 2, ... , Ns 
i J 

(4.4) 

where dJi) is the distance of the lh image block from ith point of interest and 

NRoI is the number of ROis. 
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Figure 4.2: Dictionary elements histogram for different MP stages when MP applied on a 
set of 8 different images 

4.1.3 Computat ional Complexity Reduction 

The size of MP dictionary has a direct effect on the computational complex­

ity of the MP algorithm. A larger dictionary requires more bits to represent 

the dictionary index than that for a smaller one. On the other hand, a prop­

erly designed larger dictionary would better represent signal structures. Thus, 

when we choose a dictionary size for MP analysis, there are trade-offs between 

rate, quality, and complexity. 

Here, a method for reducing the computational complexity of MP-based 

ROI image coding is proposed. A huge init ial dictionary is used for MP anal­

ysis of a large number of test images. According to the residual patterns of 

image blocks, in each MP stage, different subsets of the dictionary are used 

more often. We can notice this fact by observing the histogram of dictio­

nary elements when a set of different test images are analyzed using matching 

pursuit method. 
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Fig. 4.2 shows the usage frequency (histogram) of dictionary elements as a 

function of matching pursuit stage number when MP is applied to a set of 8 dif­

ferent images for a Gabor dictionary with 6400 element of 8 x 8 pixels. As this 

figure displays, in each MP analysis stage, the usage frequency of dictionary el­

ements is largely skewed and a significant number of elements are almost never 

used. This is due to the fact that in each stage of MP analysis of an image 

block, different structures exist that are not necessarily similar to structures in 

other stages and in order to extract these structures, different subsets of dictio­

nary are used more frequently. Using this prior knowledge, the computational 

complexity of MP-based ROI image coding can be reduced. The idea is to sort 

the dictionary for each MP stage based on the usage frequency of dictionary 

elements for that stage. The original and sorted dictionaries have exactly the 

same elements, but elements of the latter are sorted by their usage frequency 

in a descending manner. According to our rate-quality-complexity choice of 

working point, an ND element subset of the original dictionary can be selected 

in each MP stage simply by taking ND first elements of the corresponding 

sorted dictionary. Only the corresponding sub-dictionary is searched for the 

most similar element to the residual signal at each MP stage. Since saving 

multiple sorted versions of the original huge dictionary for each MP stage is 

inefficient , in terms of memory requirement , for each stage of matching pur­

suit , a transition vector is used to map the index from the original dictionary 

to the sub-dictionary for that stage. This transition vector reduces the storage 

requirement for the sorted dictionary and the dictionary inner products (used 

in Mallat 's fast algorithm, presented in section 2.2) to only the original ones. 

The ith element of the transition vector for the kth MP stage is a pointer to 

an element in the original dictionary which is identical to the ith element in 

the sorted dictionary for the kth MP stage. In other words, in order to point 
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to the ith element of the sorted dictionary in kth MP stage the index in the 

original dictionary ( iorig) can be found using the following relation: 

(4.5) 

In ( 4.5), transk ( ·) represents the transition vector for kth MP stage. The 

formula can also be used when the elements of the dictionary inner product 

matrix are required for the Mallat's fast matching pursuit algorithm. To point 

to the element ( i , j) of the inner product matrix of the sorted dictionary at 

kth MP stage, we simply find the element ( iorig, jorig) of inner product matrix 

associated to the original dictionary, without the necessity of storing another 

version of the original huge N ~ x N ~ matrix ( N ~ is the number of elements 

in the original dictionary). This task can be done using 

(4.6) 

According to Mallat's fast updating formula (2.23), each inner product co­

efficient (R(r+l)x, g1d) (for every Jd E fd) can be calculated only if (R(r)x, g1d) 

is already calculated in the previous MP stage. Thus, in case a given g1d is not 

included in the sub-dictionary for the stage r, the fast algorithm is not able to 

calculate (R(r+l)x , g1d) and this value should be computed using direct inner 

product operation. Fig. 4.2 shows that higher MP stages behave almost the 

same as far as the usage frequency of dictionary elements is concerned. Thus 

for higher MP stages the same transition vector, and sub-dictionary, can be 

used. Our dictionary truncation method not only reduces the computational 

complexity, it also lowers the required bit-rate by diminishing the number of 

bits representing each dictionary index. 
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4.2 Experimental Results 

In this section we present the simulation results for the proposed MP based 

ROI image coding technique. First, the choice of MP dictionary and the inner 

product coefficient quantization method are explained. 

4 .2.1 Dictionary characteristics 

Matching pursuit technique in general and the proposed MP-based ROI 

image coding in particular place no restriction on the choice of dictionary. 

For the following experimental results we choose over-complete 2-D separable 

Gabor dictionaries with different dimensionality (i.e., 4 x 4, 8 x 8, and 16 x 16) 

similar to what is used in [67]. We do not claim this choice of dictionary is 

optimum, it has been used in order to show the functionality of the proposed 

ROI image coding method based on matching pursuit analysis. However , 

Gabor 2-D dictionaries are very popular for matching pursuit analysis purpose. 

Besides, by choosing a very large dictionary, and selecting subsets of it for 

each MP analysis stage (as characterized previously), the coherence of the 

dictionary elements with the residues in each MP stage can be increased, if a 

dictionary with a specific size is targeted. 

The 2-D ( N x N) separable Gabor functions are defined in terms of a 

Gaussian prototype window 

(4.7) 

By employing this function , a set of scaled, modulated, phase shifted, and 

translated two dimensional functions is generated 

(4.8) 
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4 x 4 image blocks 8 x 8 image blocks 16 x 16 image blocks 
k Sk (k ¢k Sk (,k ¢k Sk (,k ¢ k 

1 1 0 0 1 0 0 1 0 0 
2 3 0 0 5 0 0 5 0 0 
3 6 0 0 9 0 0 10 0 0 
4 10 0 0 14 0 0 30 0 0 
5 1.3 1 n/2 20 0 0 60 0 0 
6 4 1 n/2 1.4 1 7r / 2 120 0 0 
7 7 1 7r /2 5 1 7r /2 1.4 1 n/2 
8 10 1 7r /2 12 1 7r / 2 10 1 n/2 
9 5 1 n/4 16 1 7r / 2 55 1 7r /2 
10 10 1 n/4 20 1 7r / 2 140 1 n/2 

Table 4.1: Gabor 2-D dictionary parameters associated to 4 x 4, 8 x 8, and 
16 x 16 block sizes 

where 
_ . _ ( i-u(1)) (2n(,(ll(i-u(ll) (I)) 

9!3cn(i ) - g s (l) cos N + ¢ (4.9) 

and i, j E {O, 1, ... , N - 1 }. iJ(l) = (s (l ), (, (l ), ¢(1), u(ll) is a quarter consisting 

of scale s(ll, modulation frequency (, (I), phase shift ¢(1), and translation u (l ), 

where l = 1 or 2. Here, KiJcil ,/J<2> is a normalization factor for each (N x N) 

two dimensional dictionary element. Table 4.1 shows a set of 10 values for the 

first three elements of iJ for different dimensionality of image blocks, i.e. , 4 x 4, 

8 x 8, and 16 x 16 pixels. The translation parameter u has N different values 

from 0 to N - 1, thus it is not entered into this table. Fig. 4.3 displays the 

2-D, 8 x 8 Gabor dictionary elements when u(ll = u (2) = N/2, i.e. , centralized 

2-D Gaussian elements. For image blocks of size 4 x 4, 8 x 8, and 16 x 16, the 

dictionaries consist of 1600, 6400, and 25600 2-D Gabor functions respectively. 

4.2.2 Quantization of MP inner product coefficients 

The resulting inner product coefficients of MP analysis can be delivered to 

a digital medium only with finite precisions. Therefore, quantization of the 
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Figure 4.3: 2-D, 8 x 8 Gabor dictionary elements at fixed values of u1 = u2 = N/2 , where 
N=8 

coefficients is an integral part of the proposed MP based ROI image coding. 

There are a lot of different quantization schemes to choose from and here a 

simple adaptive uniform scalar quantization scheme is employed. The step 

size of the scalar quantizer of each MP stage is adapted based on the standard 

deviation of the inner product coefficients in that stage. 

According to [42], the energy of the MP inner product coefficients is an 

exponentially decreasing function of the number of MP analysis stages. Fig. 

4.4 demonstrates experimentally calculated variance of inner product coeffi­

cients as a function of MP stage number for different image block sizes. To 

create this figure, the statistical data is extracted from MP analysis of a set 

of 8 different images. Since a larger image block involves with larger number 

of image pixels for 2-D inner product calculation than a smaller image block, 

16 x 16 image block can take the highest values of variance for MP coefficients 

among other experimented block sizes i.e. 8 x 8 and 4 x 4 block sizes. This 

figure shows that variance of MP coefficients changes significantly as a func­

tion of MP stage. Therefore, it would be a better choice to adapt the step size 
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Figure 4.4: Variance of inner product coefficient as a funct ion of MP analysis stage number 
for different sizes of image blocks 

of scalar quantizer based on MP stage number. 

For the experimental results, a mid-tread quantizer [21] with NQ = 16 

quantization steps is employed. Therefore, each MP inner product coefficient 

is represented by BQ = log2 (NQ) = 4 bits. The granular region [1] of the 

quantizer is from -3a c<n) to 3a c<nl, where a c<n) is the standard deviation of 

inner product coefficients at nth MP analysis stage. If the statistical distri­

bution for the inner product coefficients conforms to a Gaussian model, the 

above-mentioned range is where 99% of the statistical data are located. 

4.2.3 Region of interest image coding results 

Fig. 4.5 demonstrates examples of progressive MP-based ROI image cod­

ing. Fig. 4.5(a) shows the original monochrome 8 bpp "news" image with 

indicated region of interest. To apply our method of ROI image coding, the 

image is divided into 8 x 8 non-overlapping image blocks. The MP dictionary 

contains 6400 2-D Gabor elements with size of 8 x 8. Fig. 4.5(b) is the coarse 
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Figure 4.5: Progressive image enhancement using MP-based ROI image coding. The test 
image is "news" image, and image blocks are 8 x 8 pixels. The MP dictionary has 6400 
2-D Gabor elements with the size of image blocks. Here the MP analysis is restricted to 
maximum 5 stages. MP inner products are quantized with a uniform 4-bit quantizer (a) 
Original monochrome 288 x 352 pixels "news" image represented by 8 bpp. The region of 
interest is indicated by a circle. (b) A coarse version of image, generated by mean value of 
each image block, is sent to the receiver with 0.0625 bpp. (c) MP-based ROI image coded 
version of image in early part of transmission with R 1 = 0.125 and a = 1.4 with 0.1457 
bpp. (d) Previous image after receiving more refinement bits at 0.3981 bpp. (e) Completely 
refined image by 5 stages of matching pursuit analysis bit-stream at 1.3628 bpp. (f) Spatial 
status of MP stages for part (d) 
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version of "news" image formed by mean value of each image block at 0.0625 

bpp. The receiver reconstructs this version of image and indicates the region 

of interest by sending the coordinates of the point of interest to the transmit­

ter. At this stage, the transmitter starts sending refinement bits generated by 

the proposed MP based ROI image coding. In figure 4.5(c), the reconstructed 

image at an early stage of progressive transmission is shown. The analysis 

parameters are R1 = 0.125 (the unit here is the width of the image), and 

o: = 1.4. The image is progressively reconstructed at 0.1457 bpp. As time 

passes, more refinement bits participate in image enhancement. Fig. 4.5(d) 

shows how the reconstructed image looks when the overall rate becomes 0.3981 

bpp. In Fig. 4.5(e) , we receive the complete bit-stream at 1.3628 bpp. In this 

figure, all image blocks are analyzed with a maximum of Ns = 5 MP stages. 

Fig. 4.5(f) demonstrates the number of MP analysis stages that have been 

used in different locations of the image. This MP stage status presentation is 

associated with Fig. 4.5(d). 

The proposed method of ROI image coding is able to handle multiple 

regions of interest. Fig. 4.6 demonstrates this ability of our MP-based ROI 

image coding scheme. The original "news" image is shown in fig. 4.6(a) 

with three different regions of interest indicated by circles. The MP-based 

ROI image coding setting is exactly like the one in Fig. 4.5 (i.e. , o: = 1.4, 

R1 = 0.125, 8 x 8 image blocks, and a 6400-element MP dictionary of 2-D 

Gabor functions). A coarse version of image generated by the mean values 

of image block is reconstructed at the receiver end [Fig.4.5(b)]. According to 

this version of image, the receiver requests more enhancement bits by sending 

the coordinates of the regions of interest. The refinement information is sent 

to the receiver in a progressive fashion and with the priority of the RO Is. Fig. 

4.6(b) shows the received version of image in the early stages of transmission. 
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Figure 4.6: Multiple-ROI image coding based on MP (a) Original test image "news", with 
three regions of interest marked by circles. (b) The reconstructed image in early stages of 
transmission at 0.1566 bpp. The analysis parameters are a = 1.4 and R1 = 0.125. (c) 
Another version of the reconstructed image at 0.5826 bpp. ( d) Spatial MP stage status 
associated with (c) 

Here the image is reconstructed at 0.1566 bpp. Fig. 4.6(c) and (d) show a 

higher quality version of the image at 0.5826 bpp and its spatial MP stage 

status presentation, respectively. 

The proposed MP-based RO I image coding scheme is also able to handle 

the change of ROI choice during the course of transmission. Fig. 4. 7 illustrates 

this capability of the method. Fig. 4. 7( a) shows the original "news" test image 

with two successive regions of interest marked by circles. The left hand side 
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ROI is the first choice. The analysis parameters are a = 1.4, and R1 = 0.125. 

In Fig. 4. 7(b) the image reconstructed based on the first choice of ROI, when 

the receiver requests ROI change, is displayed. At this point the image is 

reconstructed at 0.1424 bpp. Fig. 4.7(c) shows the reconstructed image after 

receiving some refinement bits according to the second choice of ROI at 0.4544 

bpp. The corresponding MP stage status in different parts of image is shown 

in Fig. 4.7(d). 

4.2.4 Effects of image block size 

To implement the proposed ROI image coding, different sizes of image 

blocks may be chosen. Fig. 4.8 shows examples of MP-based ROI image 

coding for different choices of 4 x 4, 8 x 8, and 16 x 16 for image blocks. The 

MP dictionary for each image block size is tailored to that specific size. The 

size of 2-D Gabor dictionaries associated to 4 x 4, 8 x 8, and 16 x 16 image 

blocks are 1600, 6400, and 25600 respectively. The bit-streams are truncated 

in such a way that the total rates are almost 0.3 bpp. Figures 4.8(a) , (b), 

and (c) are the reconstructed images for 4 x 4, 8 x 8, and 16 x 16 image 

blocks and with the overall PSNR of 23.8732 dB, 25.3791 dB , and 26.5264 dB 

respectively. The bit rate required to receive the initial coarse version of the 

image for each of the above mentioned block sizes are 0.25 bpp, 0.0625 bpp, 

and 0.0156 bpp respectively. As it can be seen from the figures, for a given 

rate, the reconstruction quality in the region of interest for 16 x 16 case is 

much higher than that for the 4 x 4 case while , the background quality for the 

latter is higher than the former. 

Fig. 4.9 shows the effect of dictionary size change on the quality of the 

reconstructed image, analyzed by the proposed MP-based ROI image coding. 
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Figure 4. 7: Changing the point of interest during the course of transmission. (a) Origi­
nal "news" test image with two regions of interest marked by circles. (b) The refinement 
information according to the first ROI (left hand side ROI) is transmitted. At this point 
the receiver changes the ROI choice to the right hand side ROI. MP-based ROI analysis 
parameters are: a = 1.4, and R1 = 0.125. The image is reconstructed at 0.1424 bpp. 
(c) The refinement information is sent according to the new choice of ROI. The image is 
reconstructed at 0.4544 bpp. (d) Spatial MP stages status when image (c) is received 
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Figure 4.8: MP-based ROI image coding for different sizes of image blocks (the ROI is the 
one shown in fig . 4.5(a)). The bit-streams are truncated such that the overall rate for each 
case is about 0.3 bpp. (a) 4 x 4 image blocks and dictionary with 1600 elements. PSNR is 
23.8732 dB and exact overall rate is 0.2977 bpp (b) 8 x 8 image blocks and dictionary of 6400 
elements. PSNR is 25.3791 dB and exact overall rate is 0.2925 bpp(c) 16 x 16 image blocks 
and dictionary of 25600 elements. PSNR is 26.5264 dB and exact overall rate is 0.2942 bpp. 
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In order to sort the initial 2-D Gabor dictionary, a set of 8 images, differ­

ent from our test "news" image, is used to provide the usage frequency when 

the images are analyzed by matching pursuit algorithm. According to the 

popularity of the dictionary elements, they are sorted in descending order for 

each MP stage. The corresponding transition vectors for each MP stage is 

then recorded to drastically reduce the memory requirement of having dif­

ferent versions of sorted dictionaries and the corresponding dictionary inner 

product matrices (used in Mallat's fast algorithm). If a sub-dictionary with 

ND elements is required for an MP stage, the sorted dictionary corresponding 

to that stage is truncated to first Nv elements. Figures 4.9(a)-(e) show the 

MP-based ROI image coded versions of "news" test image for dictionaries of 

4, 64, 256, 1024, and 4096 elements respectively. MP-based ROI analysis pa­

rameters are: a= 1.4, and R1 = 0.125. Since the image blocks are 8 x 8, the 

first sub-dictionary is an under-complete set. Thus, even if matching pursuit 

algorithm continues for infinite number of stages, there still would be approx­

imation error. Although the second sub-dictionary seems to be complete, it 

does not have enough elements to extract feature of the signals properly and 

MP analysis may not converge fast. As the number of dictionary elements 

increases, the computational complexity of MP algorithm increases propor­

tionally. Thus, for a choice of dictionary size of MP algorithm, there is always 

a trade off between the rate distortion behavior and the computation cost. 

4 .2.5 Rate-quality-complexity trade-off 

The proposed MP based ROI image coding is able to provide compromises 

among bit rate, quality of the reconstructed image, and the computational 

complexity of MP analysis , as it is noted in the previous section. This problem 
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Figure 4.9: MP-based ROI image coding with resized dictionary. The original dictionary is 
2-D Gabor of 6400 8 x 8 elements. Using transition vector for each MP stage, the dictionary 
is sorted and truncated to sub-dictionaries with ND elements of 8 x 8 (a) ND = 4, overall 
PSNR = 22.9069 dB, rate= 0.1189 bpp. (b) ND = 64, overall PSNR = 23.5071 dB , rate 
= 0.1553 bpp. (c) ND = 256, PSNR = 23.5781 dB , rate= 0.1739 bpp. (d) ND = 1024, 
overall PSNR = 23.6011 dB, rate= 0.1925 bpp. (e) ND= 4096, overall PSNR = 23.6092 
dB, rate = 0.2110 bpp. (f) Spatial MP stage analysis status for all images 
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for a memoryless Gaussian source is studied in [66]. The knowledge of the inter­

relation among rate, quality, and complexity is imperative to the selection of 

the best MP analysis set-up. The following results are based on average MP 

analysis and reconstruction results on a set of 8 different images. The analysis 

parameters, based on the proposed MP based ROI image coding, are a= 1.4, 

and R1 = 0.125. For different stages of MP algorithm, the original dictionary 

(i.e., 6400-element 2-D (8 x 8) Gabor dictionary) is sorted and truncated to a 

dictionary of size Nv = 2BD elements of 8 x 8, 2-D Gabor functions. 

Fig. 4.10 shows the quality variation of the reconstructed ROI coded im­

ages for ROI region and for whole image as function of number of quantization 

steps (NQ = 2BQ) and MP dictionary size (Nv = 2BD) for a given fixed rate 

of 0.3 bpp. According to this figure quantization of inner product coefficients 

with 3 or 4 bits results in better quality performance when a fixed rate , i.e. 0.3 

bpp, is targeted. Very fine quantization of inner product coefficients requires 

a large number of bits to be assigned to each coefficients and this results in 

small number of MP analysis stages for further refinement of residual vectors. 

On the other hand, very coarse quantization results in large quantization er­

ror. As it can be seen from the graphs, for a subset of original dictionary 

with just 4 elements , the quality performance is far worse than the other dic­

tionary sizes. In this case, the dictionary is under-complete and not a good 

representative of all features of image blocks. According to this figure , the 

quality performance for N v = 64, 256 , 1024, and 4096 are comparable. Al­

though bigger dictionary, i.e. more complexity, almost always yields better 

quality performance, the computational cost sometimes is too much. Taking 

into account the processing power of MP analyzer, the best dictionary size can 

be selected. Adding one more bit to the dictionary index bits means doubling 

the computational burden. The figure shows that for higher values of B D (i.e. 
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Figure 4.10: PSNR versus dictionary size and quantization step number for a fixed rate 
of 0.3 bpp 

number of bits representing dictionary indices) little quality improvement is 

obtained considering the increase in the computational complexity. 

Fig. 4.ll (a) and (b) illustrate the quality of the output image of the 

proposed scheme as a function of bit-rate and the inner product coefficients 

quantization step number ( BQ). Here the dictionary size is set to ND = 

29 = 512. According to Fig. 4.ll(a) , the worst quality is obtained when 

the coarse version of image is sent with minimum number of quantization 

steps, i.e. BQ = 1. Having only the coarse version of image at the receiver , 

the qualities at ROI and the whole image are almost the same. Refinement 

information separates the quality surfaces and improves ROI quality faster 

than the whole image. These two surfaces approach each other when the whole 

image is refined with maximum number of MP stages. Fig. 4.11 (b) shows the 

effect of quantization step number on the rate-distortion performance of the 

method for ROI more distinctively. According to this figure , the best choice 

of quantization step number is NQ = 24 = 16. 
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2-D demonstration of rate-distortion behavior of the proposed method in ROI for different 
amount of quantization step number. 
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Fig. 4.12(a) and (b) demonstrate the rate-distortion behavior of the pro­

posed ROI image coding scheme as a function of dictionary size, i.e. computa­

tional complexity. For these figures , the number of quantization steps is fixed 

to NQ = 24 = 16. According to Fig. 4.12(a) , MP dictionary of very small size 

yields little quality improvement with refinement bits. The quality difference 

for the ROI and the whole image is not very much. On the other hand, a 

large MP dictionary results in very rapid quality improvement by receiving 

refinement bits especially for the ROI. Fig. 4.12(b) gives a comparison of rate­

distortion behavior for different sizes of MP dictionary. As it can be seen from 

this figure , the rate-distortion performances for large MP dictionaries , e.g. , 

B D =8 to 12, are close. When the computational burden is strictly limited 

and the bit-budget is fixed, decrementing ED by one bit means reducing the 

computational cost to half. 

As mentioned before, the proposed method provides a progressive bit­

stream which can be truncated at a desirable bit-budget or quality target . 

The receiver can decide to change its choice of ROI, i.e. , the coordinates of the 

point of interest and ROI parameters, while the previously received informa­

tion is left intact and only the required refinement information is transmitted. 

There is a similar feature for Internet protocol JPEG2000 standard (JPIP), 

regarding to the interactive and progressive ROI image coding [85]. However , 

there are some differences between JPIP and the proposed MP based ROI 

image coding in terms of the functionality of methods. The proposed method 

is capable of providing distinctive ROI(s) and background. The method is 

also able to provide a gradual change from ROI(s) to background by properly 

choosing the ROI parameters. In JPIP, however , this gradual quality change 

is not regarded. In JPIP, the ROI change is not as easy as that in the proposed 

method. In JPEG2000, if the receiver changes its choice of ROI , the server 
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needs to reorder the transferable bit-stream according to its cache model of 

the client. However , in MP-based ROI image coding scheme this reordering of 

bit-st ream is not necessary. 

80 



Ph.D. Thesis - A. Ebrahimi-Moghadam McMaster - Electrical & Computer Engineering 

····· ········ ······ ·· ·· · ....... 
45 ······• 

:ROI : 

40 
·······! ....... ; ·· ··· ·· · 

····· ··:·· 

,.-... 
~ 35 ....... :. ........ ~ 
"O 
'-' 

~ z 
ti} JO 
~ 

....... ; .. 

25 

........ ,:: •·· ···· ·· ····· u 10 
·: :1o ··· :: : . ... .. .. . , __ _ 

10~8~~~···~--·2·:~· .. ~·· 5·:··~::: ~- ~····~···=· ··=····~2~-J 
6 4 2 0 1 

MP dictionary index bits (BD) 

-BD=l2 
45 

-~- BD=lO 

-t--BD=S 

40 0 BD=6 

-t- BD=4 

- ·- ·-BD=2 

(a) 

....... ; .... ······· ········' 

....... ; 

c: 

Bit-rate (bpp) 

0 
o: 

0 
o ···>·o·· ·· 

-- '-· -' -- . ~·- ' -·-·-·-'· -· -· - ' --· ~- · - · - · -·-· 
25 

0 0.5 1 1.5 2 2.5 
Bit rate (bpp) 

(b) 

Figure 4.12: Rate-distortion behavior of the MP-based ROI image coding scheme as a 
function of MP dictionary size (a) 3-D illustration of rate-distortion-complexity (b) Rate­
distortion performance for different sizes of MP dictionary 

81 



Ph.D. Thesis - A. Ebrahimi-Moghadam McMaster - Electrical & Computer Engineering 

Chapter 5 

Joint Source/Channel Decoding 

of MP Coded Images 

The need to transmit large amount of data over a bandlimited channel has 

led to the development of various source and channel coding schemes many of 

which function by attempting to remove all redundancies from the source data 

stream. This is justified in some sense by an important result of Shannon's 

distinguished paper [15] which shows that for rates below channel capacity, 

the source and channel coding operations can be separated without any loss 

of optimality. However, in this source-channel separation theorem, there is no 

constraint on the complexity or the delay of the involved coders. In practical 

systems, where there are limits on complexity or delay, this source-channel 

separation may not be the best approach. Besides, an unwanted side-effect of 

this approach is to make the information more vulnerable to the channel noise. 

Efforts at protecting against errors involve the reinsertion of redundancy and 

consequently an increase in bandwidth requirements . 

During source coder design, for the sake of simplicity or due to imperfect 

knowledge about the source model, assumptions have to be made about the 
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source that are often inaccurate. This results in remaining redundancy at the 

output of the source encoder known as "residual" redundancy [68]. According 

to another part of Shannon's work, this residual redundancy can be exploited 

to provide protection against channel noise [15]. This technique forms the 

foundation of the present chapter and falls into the joint source-channel ( JSC) 

coding category. Unequal error protection [69], optimized rate allocation [70], 

and index assignment [71] can also be categorized in JSC coding framework. 

JSC decoding has been viewed as an interesting new error concealment and 

enhanced channel decoding method and many researchers have investigated it 

in different directions. Robust transmission of images using residual redun­

dancy of the source output is one of those directions [72-75]. It has been shown 

that DPCM source coded stream has some symbol by symbol residual redun­

dancy [68]. For image transmission using DPCM coding over an error-prone 

channel, different methods that exploit the correlation of neighboring pixels 

are presented, such as sequence based minimum mean squared error (MMSE) 

estimation [72], maximum a-posteriori detection (MAP) [73], and 2-D Viterbi 

algorithm solution [74]. In [75] for discrete cosine transform (DCT) based and 

sub-band coding (SBC) based image transmission systems a variant of Viterbi 

algorithm is presented, which takes advantage of bit-by-bit dependency of the 

source coder output stream. JSC decoding for 1-D signals has been more pop­

ularly investigated in literature. Most research directions address fixed length 

coding over memoryless channels e.g. , [76- 78], while some others treat variable 

length codes (VLC) [79-81] and channels with memory [82] . 

In this chapter, a JSC decoding scheme for (MP) based coded image signals 

for robust transmission over a memoryless noisy channel is proposed. The 

suggested method exploits residual redundancy in the output of the source 

coder using a suboptimal sequence based minimum mean squared estimation 
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Figure 5 .1: (a) Scan of image blocks in a raster manner (b) An image block and its closest 
neighbors 

(MMSE) technique and equips the MP based image coding system with an 

error concealment solution without any additional bandwidth requirement . 

This chapter is organized as follows. Section 5.1 presents some preliminaries, 

such as notations and the MP based image transmission overview. In section 

5.2, our suboptimal MMSE JSC decoding method for MP based image coded 

signals is formulated. Section 5.3 presents simulations and numerical results. 

5 .1 Preliminaries 

5.1.1 Notations and System Overview 

In this chapter, we employ the following notational rules. Random variables 

and their realizations are presented by capital letters , e.g. I , and lower case, 

e.g. i, respectively. For the sake of brevity we may write P(I) instead of 

P(I = i). Random vectors or matrixes are represented by bold-faced capital 

letters , e.g.: I or X. Sequences of random variables are denoted by underlined 

letters , e.g.: L For the work in this thesis , images are divided into image blocks 
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and coded in a raster manner [Fig. 5.l(a)]. The index associated with a one 

dimensional vector or the spatial location of a 2-D image block is labeled by a 

lower case subscript, like In. Figure 5.l(b) illustrates an image block Xn and 

its closest neighboring blocks. As shown in this figure, Xn <r> r = 1, 2, 3, 4 

represent image blocks located on top , left , right , and at the bottom of X n 

respectively. The lower case superscripts indicate the type of the indices, as in 

I~ [we will discuss different types of indices later in part (5.1.2)]. Superscript 

in parenthesis represent the MP stage number associated with an index. As an 

example, I~(k) represents the inner product coefficient index of kth MP stage 

related to the vector X n. 

The investigated transmission system is depicted in Fig. 5.2(a). The goal 

for this system is to deliver image signals using matching pursuit source coding 

scheme. An image is divided into image blocks of size NB x NB and a sequence 

of matrixes is formed Xn = (X1 , X 2 , ... , X n)· Using an MP based source 

coder, image blocks are analyzed one by one and sequences of different indices 

l are generated. These indices are sent through a noisy channel and indices 

which are possibly corrupted, are delivered to the decoder (l...). The receiver 

reconstructs the image using the correlations of different received indices. 

In this chapter , a memoryless binary symmetric channel (BSC) without 

inter-symbol interference is assumed. A binary phase-shift keying (BPSK) 

modulation over a channel with additive white Gaussian noise (AWGN) and 

hard decision is an example, which fits this model. This model is used in 

many previous works such as [77]. The channel model can be characterized 

by its index transition probability density function P( Jn I In) , where In is a 

transmitted index and Jn is the corresponding received index. This probability 

can be computed using the following equation: 

(5.1) 
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where Jn, in are binary codewords, H(jn , in) is the Hamming distance between 

the transmitted and the received indices, E is the bit-error probability (BEP) , 

and l is the number of binary digits in In (or Jn)· This probability function is 

assumed to be known by the receiver. 

5.1.2 MP Based Image Coding and Transmission 

The block diagram of the MP based communication system is shown in Fig. 

5.2(a). The input signal is divided into a sequence X = (X 1 , X 1 , . . . , X n, .. . ) 

of NB x NB pixels image blocks. As the nth input vector, X n is applied to 

the first stage of the analysis part of the system. The mean of the input 

vector is initially removed by this stage in order to eliminate the necessity of a 

bigger dictionary for representing image blocks with different illumination and 

to improve the compression performance [1 J. In order to reduce the effect of 

quantization error, the quantized mean value, Xn , (and not Xn) is employed to 

generate the mean removed entry vector to the first MP stage, i.e., n<0l x n = 

X n - Xn . The index of this quantized average value (!~) is sent through the 

channel. By applying the mean-removed vector n<0lxn to the first MP analysis 

stage (MPl) , the best match for this vector is selected using the following inner 

product operation: 

C~l ) = ( R (O)Xn, g1d(1)) = sup ( R (O) X n , gJd) 
JdEJd 

(5.2) 

This coefficient must then be quantized to C~1 ), since we can only transmit 

parameters with finite precision. The index of the selected dictionary element 

(J~( l ) ) along with the index of the quantized inner product coefficient (J~( l ) ) 

is sent to the decoder end. As shown in Fig. 5.2(a) , in order to reduce the 

impact of quantization noise on the performance of MP analysis, the quantized 

inner product coefficient c~l ) (instead of C~1 )) is employed for computation 
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of the residual signal, i.e. , RP)xn = R) 0l x n - C~1 ) gJ~(l ) (Note that g maps 

an index J~(i) to a 2D dictionary element g
1

d(i) = y~l) . RPlxn is now the 
n 

entry signal to the second MP analysis stage (MP2). The resulting analysis 

parameters of MP2 (!~(2 ) and J~(2 )) are transmitted and the residual signal 

-c2J nC2lxn = R (l )X n - Cn g1~c2J is created as the input to the third MP stage 

(MP3) . This iterative analysis procedure continues up to a predefined MP 

stage ry . The detailed process at the rth MP analysis stage is illustrated in 

Fig. 5.2(b) . In this figure , the scalar quantizer adjusts its step size based on 

the standard deviation of the inner product coefficient of that stage. For more 

detail on the quantization of MP inner product coefficient see section 4.2. 

The encoder part of Fig. 5.2(a) generates three different sequences of 

analysis indices that are to be sent to the receiver through a noisy channel: 

• indices of average values of image blocks i.e. , L~ =(If , I2, ... ,I~) 

d. t· . d t . Id (Id Id Id) h Id (Id(l ) JdC2l • ic ionary in ex vec ors, i.e., - n = 1 , 2 , . .. , n w ere i = i , i 

) ... ,If(!'/)) 

• inner product coefficient index vectors , i.e., I~ (I~, I~, .. . , I~) where 

I c = (Jc(l) J c(2) J c(ry)) 
i i ) i , ... , i 

The progressive index manager block in Fig. 5.2(a) arranges the analysis 

indices in order to form a progressive index bit-stream L On the other side of 

the noisy channel, the decoder receives the channel affected index sequences 

J_. If there was no channel error , the best estimation for the vector X n would 

be 
!'/ !'/ 

x = x + ~ {)Ci) g d( ') = x + ~ {;(i) y (i) n n ~ n In ' n ~ n n (5.3) 
i=l i=l 

In a more practical case and when the channel affects the transmitted 
-". ( i) A (i) 

indices, the joint source channel decoder estimates Xn as X n, Cn as Cn , 
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d Y- (i) Y~ (i) h . 1 2 I th· t· t· Y~ (i) 1 an n as n w ere i = , , . . . , rJ. n is es ima 10n, n may no onger 

belong to~- The estimation for X n can then be calculated using the following 

summations : 
T/ 

x = x +~ c(i) y(i) 
n n ~ n n (5.4) 

i=l 

Details of how this JSC decoding works are explained in the next section. 

5.2 Proposed Source-Channel Decoding 

5.2.1 Optimal MMSE Based Decoder 

We start this section with this premise that there are residual redundancy 

in the source output bit stream due to imperfect knowledge of source model 

and restrictions on the source coder complexity. The source-channel decoder 

presented in this section exploits the residual redundancy to improve the qual­

ity of a reconstructed image from a noise-corrupted bit-stream. We assume the 

decoder is allowed to perform with a delay of T. The goal of MMSE estimator 

is to minimize E [I (X n - X n)2 IJ.n+rL the estimation error, using all the received 

information up to time n + T. Note that J.n+r comprises all received indices 

[J.~+r, J.~+r, I.~+r] up to time n + T. According to the fundamental theorem of 

estimation [83], the opt imum MMSE solution to our problem is 

(5.5) 

5.2.2 Sub-optimal MMSE Based Decoder 

Optimal MMSE estimation of image blocks presented in (5.5) requires us­

ing all the past received indices and up to T future image block indices. This 
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estimation approach is mathematically untractable and computationally un­

manageable. In this part we consider some simplifying assumptions which 

yields practical sub-optimal soft decoder solution. 

Here we assume the decoder has access to the same dictionary and code 

book as in the encoder, therefore Xn ~ E[XnlJ.n+T], where Xn is defined 

in (5.3), offers an approximate evaluation of (5.5) which limits the decoder 

complexity and the required memory to a practical level. Using (5.3) we have: 

(5.6) 

Assuming the mutual independence of C~i), and y~l we have: 

i=l 

(5.7) 

Lets define the MMSE estimation associated to the analysis items Xn , C~i), 

and Y~i) as following: 

(5.8) 

Using (5. 7) we have: 
T/ 

x = x + ~ ()(i ) x y(i ) n n ~ n n (5.9) 
i=l 

The MMSE estimation problem has now been broken into three separate 

problems whose solution can be placed in (5.9) for ultimate image block re­

construction. Again, by using the mutual independence of Xn , c~i) and y~i) 

and memoryless channel assumption, it is clear that each of these quantized 
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items is also mutually independent of the received indices of the other two 

quantized items. For example Xn is independent of J.~+7 and J.~+7 • Therefore 

(5.8) yields: 

Xn E[Xnll~+7 ] 

(;(i) 
n E [C(i) IJC l n -n+T (5.10) 

y (i) 
n E ["Y (i)I Jd l n -n+T 

Using the law of total probability [84] we have 

Xn L E [XnlI~ , J~+7 ] P(J~IJ~+7 ) 
l~E.fa 

E [C(i) IJc(i) JC ]P(Jc(i) !Jc ) n n ' - n+T n -n+T (5.11) 

y (i) = 
n 

E [Y (i) IJd(i) Jd ]P(Jd(i) \Jd ) n n >- n+T n - n+T 

As we mentioned previously, the decoder uses the same dictionary or code­

book as the one in the encoder. Therefore by having the correct index of a 

quantized item we do not need any other information. This means for example 
- -

E[XnlI~ , .l~+7] ~ E[XnJ I~]. Consequently, (5.11) yields: 

Xn 2= E [Xn J J~]P( I~ J J~+T) (5.12) 
l~E.fa 

(;(i) 
n 2= E[C(i) 11c(i)]P(Jc(i) !JC ) n n n - n+T (5.13) 

J~{i) E .fc(i) 

y (i) 
n 2= E[Y(i) \Jd(i)]P(Id(i) IJd ) n n n - n+T 

J~{i) E.fd{i) 

2= g J~{i) P ( J~(i) IJ.~+T) (5.14) 
l~(i) E .fd{i) 

where the a posteriori probabilities act as weighting factors of a linear com­

bination of quantized items. Here, the challenge is how to evaluate these 

probabilities. 
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5.2.3 A posteriori Probability Calculations 

In this part the a posteriori probability computations, required in (5.12), 

(5.13), and (5.14) , are explained. If there is no restriction on the number of 

exploited received indices for MMSE estimation of each analysis parameter, the 

problem will turn into a mathematically intractable and computationally very 

expensive task. Hence, in order to approximate P ( IAi) l.J.n+r) in a practical 

fashion , the following indices from the larger collection of received indices 

(.J.n+r) are selected: 

• Instant information: J Ai), the received (probably corrupted) version of 

I Ai) 

• Stage-wise adjacent information: JAi- l) and JAi+l) , the received analysis 

indices of the same image block but associated with previous and next 

MP analysis stage respectively (this information does not exist for I~). 

L 11 d . . c . J (i) J (i) J (i) J (i) h . d • oca y a Jacent m1ormat10n: n<l>) n<2>) n<3>) n<4>) t e receive 

indices of the closest neighbors of X n (see Fig. 5.1 b) 

The MP based image coding is assumed to follow a raster scan (fig. 5.la) 

and to be progressive (layered). Therefore J Ai) is always received before J Ai+l) 

and after J Ai-l) and the decoder must wait for next stage of MP analysis infor­

mation to receive J Ai+l ). Using JAi+l ) for MMSE estimation is more important 

for the first MP stage decoding where there is no prior stage-wise information 

to be exploited. It is also clear that J Ai) is received before J~i~3> and ]~~4> 
and after J~~l> J~i~2>. Thus, ]~~3> and ]~~4> are to be received by enforcing 

delay to the decoder. 
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5.2.3.1 A posteriori probability associated with l~ 

As explained before, the average value of each image block is scalar quan­

tized and transmitted to the decoder prior to MP parameter transmission. 

Therefore, for the image block average value index, ( l~), useful information is 

the received indices of the average value of the block and its neighbors, and 

we have: 

P(l~l.l~+r) ~ P(I~IJ~ , J~<I» 1~<2» 1~<3» 1~<4>) 

l P (JU)P(JalJU) 
P(l!/;. , l~<l» 1~<2» 1~<3» 1~<4>) n n n 
xP(l~<i>ll~, l~)P(1~<2> ll~ , l~ , 1~< 1>) (5.15) 

x P( 1~<3> I l~ ' l~ ' l~< l>' 1~<2> ) 

where P(l~) is the index marginal PDF and P(l~l l~) is the index transition 

probability formulated by (5.1). Using the fact that l~ is the original index 

and J~ is the corresponding received index over the noisy channel, proba­

bility P(J~<I> ll~ , l~) can be reduced to P(l~<I> l l~). We can also simplify 

P(1;:<2> ll~ , 1;: , 1;:<1>) by the above reason and that X n<2> is closer to X n 

than to X n<l> and consequently, knowing l~ does not leave any new informa­

tion in 1;:-<l> about 1~<2> . Hence, this conditional probability can be approx­

imated by P(1;:< 2 >l l~). By the same token other conditional probabilities in 

(5.15) are simplified and we have 

4 

P(l~IJ~, l~< l» ... , 1~<4> ) ~ KiP(J~)P(l~ll~) II P(l~<r> l l~) (5.16) 
r=l 

where K 1 = 1/ P (l ;:, l ;:<I» ... , 1;:<4>) is a normalizing factor that makes the 

a posteriori probability hold the second axiom of probability [84]. Using the 
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law of total probability we have: 

(5.17) 
4 

II L P(J~<r>I J~)P(J~<r>I J~<r>) 
r=l I~<r> EJa 

where P(I~<r> II~) is a conditional probability that can be statistically calcu­

lated, using a set of test images, and stored in the decoder prior to the image 

communication. P(J~<r>I I~<r>) is the index transition probability that can 

be calculated using ( 5 .1). 

5.2.3.2 A posteriori probability associated with I~(i) 

In order to evaluate the a posteriori probability used in (5.13), as explained 

before, we employ both stage-wise adjacent as well as locally adjacent infor­

mation. Therefore we approximate the a posteriori probability of MP inner 

product coefficient index by the following expression. 

P(Jc(i)I J c ) ;:::;:; P(Jc(i) IJc(i) J c(i-1) J c(i+l) f(i) f(i) ) 
n -n+r n n ' n ' n ' n<l>' · · · ' n<4> (5.18) 

This conditional probability can be written in the form of the next joint prob­

abilities: 

P(Jc(i) I J c(i) J c(i-1) J c(i+l) J c(i) f(i) ) = 
n n ' n ' n ' n<l>' · · · ' n<4> 
P(Jc(i) J c(i) J c(i-1) J c(i+ l) J c(i) Jc(i ) ) 

n , n , n , n , n<l>' · · · ' n<4> 
P(Jc(i) J c(i-1) Jc(i+l) Jc(i) Jc(i) ) 

n , n , n ' n<l>' · · · ' n<4> 

(5.19) 

The probability chain rule : 

(5.20) 
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as well as (5.19) yield: 

P(Jc(i) IJc(i) J c(i-1) J c(i+l ) J c(i) f (i) ) = 
n n ' n ' n ' n<l>' · · · ' n<4> 

1 
P(Jc(i) J c(i-1) J c(i+l) f(i ) J c(i) Jc(i) f( i) ) 

n , n ' n ' n<l>' n<2>' n<3>' n<4> 

X P(Jc(i))P(Jc(i) IJc(i) )P(Jc(i-1) IJc(i) J c(i) )P(Jc(i+l) IJc(i) J c(i) J c(i- 1)) 
n n n n n'n n n'n'n 

xP(f(i) IJC(i) J c(i) J c(i-1) J c(i+l)) 
n< l > n ' n ' n ' n 

X P(f(i) IJc(i) J c(i) J c(i-1) J c(i+ l ) f(i) ) 
n<2> n ' n ' n ' n ' n<l> 

X P(f(i) IJc(i) J c(i) J c(i-1) J c(i+ l ) f (i) Jc(i) ) 
n<3> n ' n ' n ' n ' n<l>' n<2> 

x P(Jc(i) IJc(i) J c(i) J c(i-1) Jc(i+ l ) f (i) J c(i) J c(i) ) 
n<4> n ' n ' n ' n ' n<l>' n<2>' n<3> (5.21) 

Where each conditional probability must be calculated for the set of received 

indices and the transmitted index I~(i). The marginal probability P(I~(i)), 

and index transition probability P(J~(i)I I~(i)) do not need to be touched. 

Starting with P(J~(i-l ) II~(i)' J~(i) ) , since J~(i) is the received version of the 

original index I~(i) and the channel is memoryless, knowing the latter index, 

there is no information in J~(i) left about J~(i- l). Consequently, this condi­

tional probability can be reduced to P(J~(i-l)I I~(i) ) . With the same reasoning 

and the fact that I~(i) has more information about J~(i+ l ) than J~(i-l) (since 

J~(i) is in an MP analysis layer between J~(i+ l ) and J~(i-l )), we can shorten 

P(Jc(i+ l ) IIc(i) J c(i) J c(i-1)) t P(Jc(i+ l ) IJc(i)) U · th b 1 · d th n n ' n ' n 0 n n . sing e a ove og1c an e 

fact that J~~)l> inherits more residual redundancy from I~(i) than the rest of 

given knowledge in P(J~~LII~(i)' J~(i)' J~(i- l )' J~(i+l)), this conditional prob­

ability can be reduced to P(J~~L II~(i)). Due to spatial proximity of Xn<2> 

and Xn compared to Xn<2> and Xn < l > [see Fig. 5.l(b)], and all the above-

t . d P(Jc(i) IIc(i) Jc(i) J c(i-1) J c(i+ l ) TC(i) ) b d d to men 10ne reasons , n<2> n , n , n , n , Jn < l > can ere uce 

P(J~~LII~(i)) . Two remaining conditional probabilities can also be simplified 
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with the same logic. Finally, (5.21) can be shortened to the following: 

P ( JC(i) IJc(i) Jc(i-1) J c(i+l) J c(i) J c(i) ) ~ K P(Jc(i)) X 
n n ' n ' n ' n<l>' · · · ' n<4> 2 n 

4 

P( J~(i) I J~(i)) P( J~(i- l) IJ~(i))P( J~(i+l ) IJ~(i)) II P( J~~~> IJ~(i) ) (5.22) 
r=l 

h K 1/p(Jc(i) J c(i-1) J c(i+l) J c(i) J c(i) ) · l" · f w ere 2 = n ) n ) n ) n<l>) ... ) n<4> lS a norma iz1ng actor 

making the a posteriori probability on the left hand side of (5.22) conform the 

second axiom of probability [84]. P(J~(i)) in (5.22) is the marginal PDF of I~(i) 

and can be statistically approximated using a set of test images. P( J~(i) II~(i)) 

in this formula is the index transition probability which can be calculated 

using (5.1). Using the law of total probability [84] yields: 

(5.23) 

(5.24) 

P(f(i) IJC(i)) 
n<r> n 

P(Jc(i) IJc(i))P(f(i) IJc(i) ) 
n<r> n n<r> n<r> (5.25) 

P(J~(i-l) IJ~(i)) in (5.23), P(J~(i+l)IJ~(i)) in (5.24) , and P(J~~~>IJ~(i)) in (5.25) 

are prior knowledge that have to be statistically collected and stored in the 

decoder. 

5.2.3.3 A posteriori probability associated with J~(i) 

Although MMSE estimation of MP dictionary elements (5.14) deals with 

vectors, while (5.13) deals with scalars, formulas (5.12) to (5.14) have the 

same structure. The a posteriori probability associated with J~(i) like the 

one for J~(i) requires both stage-wise adjacent and locally adjacent knowledge. 
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Therefore to approximate the a posteriori probability for J~(i), we use similar 

approximation formulation to the ones for J~(i) and we have 

P(Id(i) !Jd(i) Jd(i-1) Jd(i+l) Jd(i) Jd(i) ) ,....., K P(Jd(i) ) x 
n n ' n ' n ' n<l>' · · · ' n < 4> "' 3 n 

4 

P( J~(i) IJ~(i) )P( J~(i-1) IJ~(i))P( J~(i+l ) IJ~(i)) II P( J~~~> IJ~(i) ) (5.26) 
r=l 

(5.27) 

(5.28) 

P(Jd(i ) !Jd(i) ) 
n<r> n 

P(Id(i) !Jd(i) )P(Jd(i) lld(i) ) 
n<r> n n<r> n<r> (5 .29) 

Id(i) E fd(i} 
n<r> 

h K _ l / P(Jd(i) Jd(i-1) Jd(i+l ) Jd(i) Jd(i ) ) . 1. . f w ere 3 - n ' n ' n , n<l>' ... , n < 4> lS a norma iz1ng ac-

tor. In (5.26) to (5.29) , P(I~(i) ), P(J~(i-l ) IJ~(i) ) , P(I~(i+l ) IJ~(i) ) , and P(I~~~> I 

J~(i) ) are approximated using a large set of training images and stored in the 

decoder. Also P(J~(i) II~(i) ) , P(J~(i- l ) IJ~(i-l ) ) , P(J~(i+l ) IJ~(i+l ) ) , and P(J~~~> I 

!~~~> ) are index transition probabilities and can be calculated using (5.1). 

5.3 Experimental Results 

The simulation results for the proposed joint source/channel decoding of 

the MP based coded image bit-stream are presented in this section. First , the 

MP based image coding set-up including the choice of dictionary and index 

bit assignment are discussed. Then different variants of the JSC decoding 

formulations are compared. 
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5.3.1 MP Image Coding Set-up 

5.3. 1.1 MP dictionary 

MP image coding algorithm holds no restriction for the choice of dictionary. 

Here we choose the 2-D separable Gabor dictionary of dimension 8 x 8 similar 

to what is used in the previous chapter. This choice of dictionary is not 

claimed to be optimal, it is just to exhibit the functionality of the proposed 

JSC decoding scheme. 

5.3. 1. 2 Index bit assignment 

The size of the MP dictionary has a great impact on the computational 

complexity of the matching pursuit analysis. While an appropriately larger 

dictionary may better express signal structures, it requires more bits to rep­

resent each dictionary element when it is compared to smaller dictionaries. 

Therefore, we have to consider complexity, quality, and rate trade-offs when it 

comes to assign dictionary index bits and to choose the MP dictionary size. To 

reduce the size of MP dictionary, the method introduced in the previous chap­

ter is employedt and subsets of the very large original dictionary of cardinality 

ND are selected . 

The energy of the MP inner product coefficients decreases exponentially 

with the MP stage number [42]. For the experimental results , a uniform adap­

tive mid-tread scalar quantizer , the granular region [68] of which is from -30"cn 

tThe 6400-element Gabor dictionary, whose specifications are characterized in section 
4.2.1, is employed for MP analysis of a set of test images. In each MP analysis stage, 
different subsets of the original MP dictionary are used more often. This is because of the 
residual patterns of image blocks in each MP stage, that are not necessarily similar to the 
structures in other stages, and in order to extract these patterns in different MP stages, 
different subsets of the original MP dictionary are used more frequently. To reduce the MP 
dictionary size to ND, the usage frequency of each element of the original dictionary in each 
MP stage is recorded and the top ND most popular elements of the dictionary are selected 
as the shrunk dictionary of size ND in that stage. 
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to 3acn is employed, where acn is the standard deviation of inner product coef­

ficients at nth MP stage. in section 4.2 it was shown that the optimum number 

of quantization steps for the MP inner product coefficients is NQ = 16. There­

fore , we assign BQ = log2 (NQ) = 4 bits to represent the coefficients. The mean 

value of each image block is also quantized by a 16-step scalar quantizer (or 4 

bits). 

5.3.2 Joint Source/Channel Decoding Results 

For the experimental results regarding our proposed JSC decoding scheme 

no entropy coding is employed, however using entropy coding does not have 

any effect on functionality of the proposed method. For simulation results we 

compare different image reconstruction methods listed as follows: 

• Case 1: without any soft decoding and by employing the indices as they 

are received, 

• Case 2: using marginal probability of the indices, P(In) , to approximate 

a posteriori probability P(InlJ.n+r) for all different types of indices, 

• Case 3: using no residual information and by approximating the a pos­

teriori probability with KP (In) P (Jn I In) for the soft decoding ( K is a 

normalizing factor for probabilities where it applies) , 

• Case 4: using soft decoding with no delay, i.e. by approximating the a 

posteriori probability with 

K P(I~)P(J~II~)P ( J~< l > II~) P ( ]~<2> I I~) 
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for image block average value estimation and 

P(J(i)I J (i) J (i) j<i ) J (i-1)) ~ 
n n ' n< l >' n<2>' n 

K P(I~i)) P( J~i) II~i))P( ]~il l > IJ~i) ) 

x P( ]~~2> IJ~i))P( J~i- 1 ) IJ~i)) 

for dictionary indices or inner product coefficients estimations, 

• Case 5: using a posteriori probability approximation introduced in (5.17) , 

(5.22), and (5.26) for the first two MP stages and the initial mean re­

assembling stage. The further MP stages are reconstructed as in case 

3. 

• Case 6: using a posteriori probability presented in (5.17) , (5.22) , and 

(5.26). 

The required probabilities in the a posteriori calculation of the proposed 

JSC decoding formulations (except index transition conditional PDF P(lnlln) 

which is calculated using (5.1)) are estimated statistically by MP analysis of a 

set of 100 different images. The image collection comprises images of different 

contexts such as scenery, portraits , and objects. 

5 .3 .2.1 Visual comparisons of different reconstruction cases 

Fig. 5.3 demonstrates the error concealment performance of the proposed 

JSC MMSE based soft decoding method. The test images used in this sec­

tion are not part of the training image set. Fig. 5.3(a) shows the original 

monochrome 8 bpp (bits per pixel) "Zelda" test image with size 256 x 256. 

Fig. 5.3(b) exhibits the reconstructed image using TJ = 5 MP stages by MP 

dictionary of size ND = 256 (ED = 8 bits) without the presence of the chan­

nel noise. The image block average values and the inner product coefficients 

100 



Ph.D. Thesis - A . Ebrahimi-Moghadam McMaster - Electrical & Computer Engineering 

(b) 

(c) (d) 

Figure 5.3: Visual comparison of different reconstruction cases at the presence of channel 
noise with bit error probability of Pe = 0.02. Image blocks are of size 8 x 8 and MP dictionary 
is the Gabor dictionary described in the previous sections with size ND = 256 (dictionary 
indices are represented by 8 bits) . Here the MP analysis is restricted to T/ = 5. Mean 
values as well as the inner product coefficients are represented by BQ = 4 bits. (a) Original 
monochrome "Zelda" image of size 256 x 256 represented by 8 bpp. (b) Reconstructed image 
after 5 MP stages before being corrupted by the channel noise. (c) to (h) Reconstructed 
images using methods suggested in case 1 to case 6 respectively. 
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(e) (f) 

(g) (h) 

Figure 5.3 continue 
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are represented by BQ = 4 bits. PSNR of the reconstructed image in this 

figure is 31.38 dB at 1 bpp. Fig. 5.3(c) shows the reconstructed image for 

case 1, i.e. , when the MP analysis indices are exposed to channel noise and 

no error concealment scheme is employed. The channel bit error rate in this 

figure is Pe = 0.02 and the resulting PSNR in this case is 19.95 dB. In Fig. 

5.3(d), the corrupted signal in 5.3(c) is a bit enhanced using case 2 of recon­

struction, i.e. , using the marginal probability of indices to approximate the 

required a posteriori probability for error concealment. PSNR in this case is 

a little bit better than the previous case and it is 21.9 dB . Fig. 5.3(e) displays 

the ameliorated version of Fig. 5. 3 ( c) using the error concealment soft decod­

ing without any use of residual information and by employing index marginal 

probability and index transition conditional probability (case 3). In this case, 

since the required a posteriori for soft decoding is approximated using more 

prior knowledge (compared to case 2) , the resulting PSNR is 22.9 dB , a little 

higher than case 2. The reconstruction result for case 4 is shown in fig. 5.3(f) . 

In this case, the soft decoding conforms the progressive nature of the layered 

MP analysis. In other words, the indices are estimated using the previously 

received information and with no delay. As it can be seen by this figure , the 

image quality has drastically enhanced compared to the previous cases. PSNR 

in this case is 26.37 dB. MP analysis removes most of the signal patterns in the 

early MP analysis stages and the residual vectors become more noise-like for 

higher MP stages. Therefore, the stage-wise and locally adjacent information 

seems to be not very useful for error concealment. In case 5, this fact has been 

taken into account and only first two MP stages are decoded using the full 

proposed a posteriori approximation formulas (5.17) , (5.22) , and (5.26). Fig. 

5.3(g) displays the reconstructed image using this error concealment case. As 

it can be seen, image quality in this case is very close to case 4. PSNR in this 
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case is 26.35 dB. Fig. 5.3(h) shows the resulting reconstructed image using 

case 6 for error concealment method. In this case the instant information, the 

stage-wise adjacent information, and locally adjacent information for all 5 MP 

stages are exploited in order to ameliorate the corrupted received image using 

(5 .17), (5.22), and (5.26). PSNR in this case is 27.l dB, a little bit higher 

than the last two cases. Therefore, the proposed JSC decoding method has 

improved the image quality by 7 dB. 

Fig. 5.4 exhibits another example of error concealment performance of the 

proposed JSC decoding scheme. Fig. 5.4(a) shows the original monochrome 

"House" image represented by 8 bpp. The test image is represented using the 

analysis parameters of 5 MP stages (TJ = 5) in Fig. 5.4(b) where PS R=31.13 

dB. In this figure, the MP setup is the same as Fig. 5.3. In Fig. 5.4(c) , 

the analysis parameters are affected by a noisy channel with bit error rate of 

Pe = 0.02, and the image is reconstructed without using any error conceal­

ment method (case 1) , which results in PSNR=21.31 dB. The proposed JSC 

decoding method (case 6) yields an improved version of the image, which is 

displayed in Fig. 5.4(d) with PSNR=28.29 dB. This figure also shows a PSNR 

improvement of 7 dB. 

5.3.2.2 The effect of bit error rate, MP dictionary size, and number 

of stage 

Fig. 5.5 illustrates the channel noise effect on the quality of the recon­

structed image in different cases described previously. The effect is examined 

when "Zelda" image is analyzed by a 5 MP stages with Gabor dictionary 

of size ND = 256. The experiment was done 10 times for each BER and 

the result reflects the mean value of PSNR for every bit error rate. As de­

picted in this figure , when bit error rate is very small, different reconstruction 
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(c) (d) 

Figure 5.4: Error concealment performance of the proposed method for a different image. 
(a) Original monochrome "House" image represented by 8 bpp. (b) Image representation 
by 'f/ = 5 MP stages of dictionary size ND = 256. Image blocks are of size 8 x 8 and each 
pixel is represented by 1 bpp and PSNR=31.13 dB. (c) The image reconstructed after being 
affected by channel noise of Pe = 0.02 using reconstruction case 1, i.e. using indices without 
any error concealment (PSNR=21.31 dB). (d) Reconstructed image using the proposed JSC 
decoding method with PSNR=28.29 dB. 
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Figure 5.5: Image PSNR versus bit error rate when "Zelda" image is MP coded using 5 
MP stages by a Gabor dictionary of size ND = 256 for different reconstruction cases. 

methods perform similarly and image quality approaches to the no-noise con­

dition. This is because the proposed scheme is an error concealment method 

and works on indices which are corrupted by noise and leaves the correctly 

received indices unchanged. Also the figure shows that the full exploitation of 

instant , stage-wise adjacent, and locally adjacent information provides better 

reconstruction at the cost of higher computational complexity and delay for 

the soft decoder. Case 5 provides a little lower quality compared to case 6 

but requires less computation. In this case there is delay for reconstruction of 

the first two MP stages. Case 4 yields no delay reconstruction with a lower 

image quality than case 5 and case 6. All the reconstruction cases perform 

better than case 1, with no soft decoding. The proposed method in this work 

is based on residual redundancy, i.e., the remaining correlation between the 

adjacent image blocks or adjacent MP stages. Therefore, the suggested er­

ror concealment method shows lower performance quality when the adjacent 
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indices are more corrupted. When all the adjacent indices are distorted by a 

very noisy channel, the performance of the proposed method approaches to the 

case where only instantaneous information is used (case 2, and 3) . In perfect 

channel condition, all the reconstruction cases perform the same [when there 

is no channel noise (Pe = 0)] . 

Fig. 5.6 exhibits the effect of MP dictionary size on the performance of the 

proposed JSC decoding and error concealment method. Here, "Zelda" image 

is coded using 5 MP stages. Experiments for each bit error rate are repeated 

10 times. Fig. 5.6( a) shows image quality for different reconstruction cases 

when Pe = 0.001. For small bit error rate, e.g. Pe = 0.001 , the knowledge­

base reconstruction methods (case 2 to 6) show more PSNR advantage when 

the MP dictionary is larger. This is because the indices of larger dictionaries 

require more bits for representation and consequently they are more likely 

to be corrupted than those of smaller dictionaries. Error concealment of a 

higher number of indices for the suggested soft decoders yields more PSNR 

advantage over case 1. When the bit error rate is higher, but not too high, 

the advantage of the soft decoding, especially when decoder exploits residual 

redundancy, over case 1 is more significant. As Fig. 5.6(b) depicts , case 6 

outperforms all other cases for all dictionary sizes. This figure also shows that 

the slope of PSNR curve for each reconstruction case diminishes. This is due 

to higher probability of dictionary index error for larger dictionaries, although 

larger dictionaries yield better PSNR (when there is no channel noise). Fig. 

5.7 displays a 3-D PSNR curve of case 1 and case 6 for different bit error rates 

and MP dictionary sizes. The surface shows that the highest PSNR advantage 

of case 6 (the full exploitation of instantaneous and adjacent information) 

over no error concealment is around 0.005 <Pe < 0.05. When bit error rate is 

extremely high, the performance of case 6 reduced to case 2, since the received 
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Figure 5.6: The effect of dictionary size on the performance of the proposed JSC decoding 
scheme when 5-stage MP coded "Zelda" image with different MP dictionary size is corrupted 
with channel noise. The experiment has been repeated 10 times for each BER. (a) and (b) 
Results when Pe is equal to 0.001 and 0.01 respectively. 
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Figure 5. 7: 3-D illustration of PSNR, MP dictionary size, and bit error rate relations in 
reconstruction case 1 and case 6. 

indices do not carry any information (see tail of Fig. 5.5 for case 6 where 

Pe = 0.5). 

Fig. 5.8 demonstrates the effect of MP employed stage numbers on per­

formance of different image reconstruction cases. In order to make this figure, 

"Zelda" image was MP coded with different stage numbers by MP dictionary 

of size ND = 256. The resulting bit-streams were corrupted by channel noise 

with bit error rate of Pe = 0.02 and different cases of image reconstructions 

were employed. We reproduced the results 10 times and the figure reflects the 

average values of PSNR for every number of employed MP stages. Stage 0 in 

this figure represents image blocks reconstructed merely using average values 

of the block. As this figure shows, the curve of image reconstruction cases 

have very slow slope for stages beyond stage 2. This is due to low energy of 

the residual vectors for those MP stages. By comparing Case 5 and case 6 in 

this figure, we can infer that, for higher MP stages (e.g. , higher than 2) since 
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Figure 5.8: Image PSNR versus employed MP stages when "Zelda" image is MP coded 
using a Gabor dictionary of size ND = 256 and bit error rate is Pe = 0.02. 

the residual vectors are noise-like, there is not a significant amount of adjacent 

information while decoding the received indices. This manifests itself in little 

PS R advantage of case 6 over case 5. 
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Chapter 6 

Conclusions and Future work 

6.1 Conclusions 

Through the work presented in this thesis, the problem of image coding and 

transmission when the source coder is based on residual vector quantization or 

matching pursuit is addressed. The important property of quality scalability in 

image coding context can be manifested by progressive bit-stream and region 

of interest coding. Unequal error protection and joint source channel decoding 

are two other themes of this thesis for RVQ or MP based image communication. 

In chapter 3, we introduced new ROI image coding approaches based on 

VQ. Although unstructured VQ using multiple codebook size provides a simple 

method of having variable spatial image quality, this approach suffers from low 

maximum local quality. ROI image coding based on residual vector quantiza­

tion can address this drawback. Furthermore by its successive approximation, 

the RVQ approach provides an embedded progressive streaming scheme and 

bit-rate scalability. Moreover , this method allows the receiver client to change 

the ROI and to have multiple ROis. The proposed algorithm is also able to 
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imitate the gradual quality degradation of the foveal model in the human vi­

sual system (see appendix A). Using the mean removed scenario for the RVQ 

foveation scheme not only has all the aforementioned advantages, but also im­

proves the rate-distortion performance. Our jointly sub-optimal RVQ scheme 

improves the rate-distortion performance of the quantization scheme at the 

expense of more memory and computational cost. Therefore, a combination 

of mean-removed and jointly optimized RVQ can provide a rate-distortion­

complexity trade off for our ROI image coding scheme. By considering the 

level of importance of different RVQ stages, we can protect the output bit­

stream of the source encoder with an unequal error protection scheme. 

In chapter 4, a new ROI image coding approach based on matching pur­

suits is introduced. The method interactively allows the transmitter to send 

MP analysis data with the emphasis on ROI(s). The ROI parameters include 

the radius of initial virtual circle (R1 ) and the updating multiplier (a). De­

pending on the bit-budget, the degree of importance of the ROI(s) , and the 

computational capability of the transmitter, a proper ROI parameter set and 

MP dictionary size can be selected. Our investigations in this chapter also 

show how reducing the size of MP dictionary can affect rate-distortion perfor­

mance of the proposed image coding method while decreases the MP analysis 

computation burden. The effect of scalar quantization of MP inner product 

coefficients on transmission bit-rate and the reconstructed image quality were 

also investigated in this part of the thesis . The progressive nature of MP based 

coded bit-stream, like in RVQ based case, is potentially suitable for unequal 

error protection. 

The proposed VQ and MP based methods are unbalanced and for the 

case where receiver end-user is not well equipped, these methods concentrate 

the complexity inside the transmitter and the receiver is very simple. Since 
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the methods are interactive, they are suitable for fast browsing from image 

archives. They progressively improve the quality of the selected image by 

emphasis on refining the visual information close to ROI. 

Internet protocol standard for JPEG-2000 (JPIP) has very similar capa­

bilities for interactive and progressive ROI image coding [85 , 86]. Since there 

is no unique criterion to evaluate the performance of an ROI image coder, it 

is not easy to compare the RVQ and MP based ROI image coders and JPIP. 

However, in terms of functionality of methods the followings are noticeable: 

While the RVQ and MP based ROI image coding can provide a completely 

distinctive ROI(s) and background, by properly assigning values to a and R1 , 

the methods can also provide a gradual quality change from the ROI to the 

background. On the other hand, for JPEG-2000 this feature has not been 

considered. In JPEG-2000, if the client changes its ROI, the server may need 

to reorder the bit-stream and send the data which has not yet been sent ac­

cording to its cache model of the client. In the RVQ and MP based ROI image 

coding schemes this reordering is not necessary in the case of ROI change. 

In chapter 5, we have addressed MP based coded images that are transmit­

ted over a memoryless noisy channel, and present a novel JSC decoding and 

error concealment scheme, which exploits the residual redundancy that exists 

in the received indices. Based on MMSE estimation, a proposed sub-optimal 

estimation retrieves the corrupted indices using the correlation with other re­

ceived neighboring indices. According to the tolerable decoding delay and 

the computational complexity, we can choose from different variants of the 

suggested JSC decoding method. The proposed error concealment method 

exhibits significant visual and quantitative enhancement on the degraded re­

ceived image signals with no increase in bandwidth requirement. Numerical 
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results show that, while exploiting all the offered residual redundancy out­

performs other suggested reconstruction methods, progressive JSC decoding 

performance stands close to it with no reconstruction delay. The results also 

indicate that JSC decoding for the earlier MP stages are more beneficial than 

that for the later ones. 

Matching pursuit signal analysis has lots of similarities to residual vector 

quantization (RVQ) . The proposed JSC decoding method in chapter 5 can be 

easily modified to be used for RVQ image reconstruction of transmission over 

a memoryless noisy channel. In this case, the inner product coefficients do not 

exist and we only deal with image block average values and RVQ code-book 

indices. 

6.2 Future Directions 

The following relevant extensions of our work can be considered as future 

research directions. 

• In chapter 5, the channel is assumed memoryless. An extension of the 

proposed JSC decoding method would be to consider channels with mem­

ory and fading channels. Under such assumption, many of the required a 

posteriori probabilities presented in this work may need to be modified. 

• Throughout this thesis , we never used entropy codes to further compress 

the source coder bit-stream. The effect of entropy coding on the rate dis­

tortion performance of RVQ or MP based image coding and transmission 

system can also be a future work. In this direction, joint source-channel 

decoding of variable length codes (VLC) can be investigated. 

• For matching pursuit image coding, the dictionary optimization is an 
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interesting future work. Dictionaries can be adopted according to image 

context. Dictionaries with variable element dimensions, from a tiny el­

ement of 1 x 1 pixel to a large element of size close to the whole image 

dimension, are difficult to be stored, but , they can represent an image 

better than elements with fixed dimensions. In addition to dictionary 

storage and rate-distortion performance issues, there is also a question of 

computational complexity, which needs further investigation, when these 

alternative MP dictionaries are employed. 

• The presented index correlation of RVQ and MP based method can also 

be exploited for further signal compression. By knowing the required a 

posteriori probabilities of indices, entropy coding schemes such as Huff­

man or arithmetic lossless coding methods can be used to remove the 

redundancy of MP or RVQ coded bit-stream. This can also be an inter­

esting future direction. 

• In chapter 5, the a posteriori probabilities were calculated statistically 

using a large set of test images. The adopted method has the advan­

tage of off-line probability calculation and lower real-time computation 

cost . However , there exist some other methods in the literature, such 

as forward/backward recursion [77], for estimating those probabilities. 

A research direction can be investigation of the JSC decoding presented 

in this thesis for image coding based on matching pursuit when the a 

posteriori probabilities are estimated by those alternative methods. 
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Appendix A 

Foveated Video and Fixation 

Point Tracking 

A.1 Foveation 

The density of the cone receptors and ganglion cells on the human retina 

is not uniform and exponentially decreases as a function of eccentricity (Fig. 

A.1). Therefore, vision is a process of nonuniform sampling of an image such 

that the highest resolution information belongs to the area of image whose 

projection on the retina falls onto the center of the retina (the fovea) and the 

perceptible resolution drops rapidly away from this point [58]. 

There have been increasing research works on different approaches toward 

profiting from the above fact for perceptual image and video compression. 

These approaches are called foveation. One foveation approach is to use space 

variant (log-map) artificial image sensors and nonuniform sampling of the im­

age source [87]. Very similar idea can be applied on uniform sampled images by 

applying a space variant re-sampling scheme which resembles human retina. 

Using some nonlinear logarithmic mapping (fish-eye transform) in order to 
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Figure A.1: Visual cells density on human retinal 

pre-emphasis on the region of interest (ROI) and then an inverse mapping (de­

emphasis) can also mimic the nonlinear spatial sampling of human eyes [59]. 

A high resolution perception of an image area can be considered as a filtered 

version of the original image in that area with a high cut-off frequency. This is 

the basic idea for another approach to foveation in which foveated images are 

obtained by applying a bank of low-pass filters with different cutoff frequencies. 

This method is very useful when the foveated images or video frames are to be 

compressed by DCT based compression schemes such as JPEG, MPEG, and 

H.263 [60,61 ,88,89]. Using wavelet image coding algorithms, such as the em­

bedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees 

(SPIHT) algorithms is another approach to image foveation which provides a 

progressive image coding [62]. 

In order to implement a foveation scheme, the first step is to find the 

fixation point. In this regard, there are different methods such as object class 

detection techniques [90] , view point eye tracking methods, and using any 
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pointing devices such as a mouse. Face detection is regarded as a special case 

of object class detection and can be employed in video conferencing foveation 

application. View point eye tracking methods require equipments such as 

helmet which carries gaze tracker devices. Using pointing devices such as 

mouse is very inexpensive and can be used to locate any kind of object in an 

image or a video frame. 

In a video application (such as video conferencing using H.263 standard), 

the fixation point may be moved in any video frame, due to, for example, the 

movements of the conversing person or camera movements. These changes 

must be applied to the foveation system by updat ing the fixation point. Au­

tomatic tracking of fixation point eases the task of fixation point update, 

specially when a pointing device is used. In this appendix, a new automatic 

fixation point update mechanism for foveated H.263 or MPEG video standards 

is presented. The foveation method leaves the video compression standard in­

tact and acts as a frame pre-processing unit. The update information regarding 

fixat ion point is extracted from the motion compensation mechanism existing 

in the video standard. 
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Fovea 

Figure A.3: Pixel projection on human eye 

A.2 DCT Based Video Foveation 

Fig. A.2 displays a schematic diagram of foveated DCT based video con­

ferencing. Using the initial fixation point indicated by the user from other 

side of a conversation, the pre-processing unit performs foveation on the first 

incoming video frame. The selected foveation approach is to employ a bank of 

low-pass filters with different cut-off frequencies based on an empirical model 

presented in [89]. The normalized maximum detectable frequency for different 

location of an image is modeled by the following equation: 

(A.1) 

where ( x , y) are coordinates of the location in image, while ( x 1, y 1) is fixation 

point, the coordinates of the image pixel whose projection falls on the viewers 

fovea (Fig. A.3). In (A.l) , K = 13.75 and V is viewing distance from the 

image. All distances and coordinates are measured by physical dimension of 

each pixel. This empirical cut-off frequency can then be quantized, in order 

to have a limited number of necessary low-pass filters (Fig. A.4). Since most 

of the high frequency content of each frame has been discarded, these frames 

can be compressed more efficiently. 

The foveated frame is then delivered to the video encoder. The video 
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encoder calculates the motion vectors. The motion vector associated to the 

location of fixation point has the information of fixation point movement . This 

information helps foveation pre-processing unit operate based on new location 

of fixation point. Figures A.5(a) and A.5(b) show the foveated frames in two 

different frames using filter banks foveation approach and H.263 video coding 

standard. In these two figures , the fixation point is around piglets where it 

has been moved frame by frame in "mobile" test video. 

The fixation point tracking method can be used in region of interest video 

coding as well. In case of multiple regions of interest , the tracking method 

can update the location of ROis, frame by frame. Fig. A.6 shows a frame of 

"news" test video with two regions of interest. 
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(a) 

(b) 

Figure A.5: Automatic fixation point movement (a) Frame 100 of mobile test sequence 

(b) Frame 200 of mobile test sequence 
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Figure A.6: Multiple ROI video compression implementation using filter banks foveation 

pre-processing 
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Appendix B 

Reed-Solomon Error Correcting 

Codes 

The topics of error control coding and more specifically Reed-Solomon 

codes (also known as RS or rs codes) are extensive and require finite field (also 

called Galois field) mathematics, which is beyond the scope of this thesis . This 

appendix contains an overview of Reed-Solomon codes. For a profound study 

of these codes, interested readers may refer to [4, 91]. 

Introduced by Irving Reed and Gustave Solomon in 1960 [92], Reed-Solomon 

codes are a subset of a larger class of nonbinary, cyclic, linear block error cor­

recting codes called BCHt codes [4]. RS codes have been widely used in a 

variety of digital storage applications, such as compact discs (CDs) , digital 

versatile discs (DVDs) , and barcodes. These codes are also used in wireless 

communications, high speed modems (such as ADSL), digital television, and 

satellite communications. An interesting historic application of Reed-Solomon 

codes has been deep space data communication (across many millions of miles 

with incredibly low power) with Voyager II space probe which explored Jupiter 

tBCH codes are named after their inventors: Bose and Chaudhuri, and Hocquenghem. 
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Figure B.l: RS(n, k) code 

in late 1960's. By the expense of adding extra information (parity bits) to the 

original message and tolerating more encoding/ decoding complexity, RS codes 

are capable of correcting errors caused, for example, by channel noise in digi­

tal communication application and disc scratches in data storage applications. 

Reed-Solomon codes can detect and correct a number of digital data errors. 

This number depends on the amount of redundancy added to the original data. 

A Reed-Solomon code RS(n, k) is made up of a block of nm-bit symbol 

sequence (m > 2) , where k symbols of them are the original message symbols 

( k < n) and n - k of them are parity check symbols appended to the message 

symbols (Fig. B.1). t = l n;k J is the symbol error capability of the code, 

where lxJ is the largest integer not exceeding x. Since the original message 

with no modification is included in RS codewords, these codes are systematic. 

Reed-Solomon codes exist for all n, k, and m as long as 

0 < k < n < 2m + 2 (B.1) 

For most conventional RS codes n = 2m - 1 and n - k = 2t, where 3 ::; m ::; 8. 

Out of 2mn possible bit arrangement for an n symbol block, only 2mk are 

valid codewords and Reed-Solomon coding makes sure that these codewords 

distributed with largest minimum distance+. [93]. A Reed-Solomon decoder is 

able to correct up to t received m-bit symbols no matter one or all bits of the 

tMinimum distance measure determines the correction ability of a code. For nonbinary 
codes, such as Reed-Solomon codes, the distance between two codewords is similar to Ham­
ming distance and measured by the number of symbols in which the codewords differ. For 
RS codes minimum distance is dmin = n - k + 1. 
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symbols are corrupted. This makes RS codes an excellent choice for controlling 

burst noise. 

Reed-Solomon codes work based on a theorem in linear algebra which says 

any distinct k points uniquely determine a polynomial of degree less than k. 

Using finite field GF(2m) mathematics, RS encoder finds the k- l polynomial 

related to the k message symbols. This polynomial is then evaluated at n - k 

more points and the message symbols along with these n-k parity symbols are 

sent. The decoder can recover the original message as long as sufficient code 

symbols are received correctly. Like correcting a curve by interpolating the 

gaps, RS decoders can bridge the errors and recover the message polynomial 

and the message. 

Reed-Solomon codes, like any linear code, are able to correct up to 2t 

erasure. Erasures are symbol errors whose locations in the codeword are know 

in advance (for example by using side information). These codes can recover 

the correct message as long as 2E + S < n - k, where E is the number of 

erasures and S is the number of errors. 

Since addition and multiplication in finite field GF(2m) is well suited for 

hardware implementation, Reed-Solomon coding can be easily implemented 

by combinational logic. Digital signal processors (such as TMS320C6400) can 

also be used for RS coding realization. There are also routines in MATLAB 

and C programming designated for Reed-Solomon encoding/ decoding. 
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