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Abstract

The development of an efficient computational methodolamgytfansient heat and mass
transfer applications is challenging. When a solution éalized on the fraction of a computa-
tional domain, an appropriate adaptive mesh method couhilmide computational work. In
this paper, we propose a novel adaptive-mesh multi-résalaigorithm for the transient mo-
mentum and energy equations. The nonlinear dynamics bettheevelocity and temperature
fields is modeled by solving the coupled system of equational&aneously, where the rate of
convergence has been optimized so that computational @ostins proportional to the num-

ber of grid points. Numerical experiments have exhibiteddyagreements with benchmark

simulation data.
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NOMENCLATURE

16} thermal expansion coefficient £ nonlinear system of equations

At time step L length scale

€ tolerance N number of non-adaptive grid poinfs
o reference temperature N number of adaptive grid points

0 temperature Pr Prandtl number

K thermal diffusivity P pressure

o reference to a wavelet family Re Reynolds number

Qy step length for Ra Rayleigh number

the relaxation scheme

v kinematic viscosity Tr temperature scale

m dimension of a Krylov space ¢ dimensionless time

p density U velocity scale

u dimensionless velocity vector (u,v) velocity components

GJ a grid at levelj x vector formz = (z,y)

g accelaration due to gravity ~ (x,y) coordinates

f source term for a PDE f a nonlinear algebraic system

J Jacobian of a nonlinear systenit length of the domain in-direction
K Krylov space of dimensiom Y length of the domain ig-direction

Superscripts

n discrete time levelp At n+ 1 discrete time levelin + 1)At
k local iteration j level of resolution
Subscripts

2 vector norm max maximum norm

1 Introduction

Transient simulations of heat transfer problems are ofs&awo advance scientific knowledge in
a wide variety of applications such as the design of therystiesns [1; 2; 3], material process-
ing [4; 5; 6], biomedical studies [7], fire protection [8], pois media [9], and weather forecast-
ing [10] - e.g. see [11] for a comprehensive survey of recently publishetksvo Toward this

direction, recent interests include the development ofggwnumerical methods [12; 13; 14; 15]



so that accuracy of a numerical model is greatly improvedhovit overburdening the computa-
tional cost [16; 17; 18]. More specifically, the natural ceatton and the shear driven circulation
in a bounded domain appear frequently in many complex imdlistpplications such as nuclear
reactor insulation, ventilation of rooms, solar energyexilon etc. .9, see, 19]. The numerical
investigation of such convective circulations often regsiia high spatial and temporal resolution
because the solution contains localized or intermittentstres, or sharp local variations, in which
locations of these structures may also vary with time. Fehsutransient flow simulation, using
modern high performance computing (HPC) facilities, ong maable to employ a mesh with ex-
treme high resolution, and there exists a number of comaescifreely available Computational
Fluid Dynamics (CFD) softwares that may be used for this psep Alternatively, using aad-
hocerror indicator, an adaptive mesh refinement (AMR) appreegas introduced in [20; 21; 22],
which can be used to improve the accuracy of a transient atmaol In [23], such an adaptive
mesh method was studied for transient heat transfer agiplsa In [24], the use of interpolat-
ing wavelet transform was studied so that a spatial mesh earflmed locally at each time step
without using anyad-hocerror indicator.

There are two principal drawbacks. First, fod-@imensional non-adaptive mesh, if the reso-
lution increases by a factor @fin each direction, the total number of grid poid¥sincreases by
a factor of2¢ if the mesh is refined uniformly. Clearly, this approach @ases drastically both
the CPU time and the memory. Second, using a locally refingld tr@solution adaptive mesh, one
may be able to optimize the number of grid poifson an adaptive mesh such thet < N.
However, this approach would require an extremely smak tatep for using an explicit time in-
tegration scheme because of the Courant-Friedrichs-L&FY) criterion [23]. Moreover, a fully
implicit method for both the linear and the nonlinear termsn@mentum and energy equations
requires matrix-vector multiplications at each time step tb linearization of the nonlinear sys-
tem, which has a computational cost that is proportion@td/?) (e.g.see, [25]). Therefore, the
development of a more powerful numerical method is esddatian optimal use of adaptive mesh
methods for transient simulations of heat transfer apptina. Ref [18] used a non-adaptive mesh
to study other aspects of cost effectiveness, such as teeysezbased discretization, for heat and
mass transfer applications. Generally speaking, the meatidynamics of the CFD or heat transfer
problems is an everlasting computational challenge, amdraztd methodologies such as adaptive
mesh and multi-scale solvers can be used to improve therpaafece of a CFD model for heat

transfer application.



In this research, we study the development of a novel appredice adaptive multi-resolution
methodology AVR) — for the solution of nonlinear, advection dominated, thalty or shear driven
transient flow problems. We aim to put together benefits ddtpowerful techniques that have
been evolved independently to the field of CFD. First, to nhatermittent spatial features effi-
ciently, an adaptive mesh is constructed from the secondrgdon wavelet transform of a tran-
sient variable, where the spatial discretization is comguwtith an adaptive wavelet collocation
method (AWCM) [26; 27]. Second, to adapt in space and time tamemove the CFL restriction
on time steps, a second-order fully implicit fractional énmtegration scheme has been studied,
where ideas from the full approximation scheme (FAS) arel fisesolving the simultaneous sys-
tem of equations iteratively at each time step [28]. Thiaine benefits of Jacobian-free Newton-
Krylov method (JFNK) are useful to ensure that the compaoiteati complexity remaing (),
whereN is the number of points on the adaptive mesh. Note that we isa@V for the number
of points on a non-adaptive mesh, akdfor that on an adaptive mesh, where usudily< N.
We want to develop an adaptive mesh algorithm for simulatinigansient problem such that the
computational cost increases withonly linearly if the mesh is refined locally, where the dedire
accuracy will be achieved according to a giepriori error tolerance. Moreover, we want that
N does not increase linearly if the tolerance for the accunaegsure is reducede. the accuracy
is improved. In such an adaptive computational model, theber of grid points on the adapted
mesh indicates the saving of CPU time with respect to cdioums on a non-adaptive mesh when
the CPU time is linearly proportional to the number of poifnfs To achieve this goal, instead
of combining three powerful methods.g, AWCM, FAS, and JFNK directly, we have considered
only some benefits of each of these methods to develop a newitalg — AMR — for heat and
mass transfer applications. This paper presents key iregrsdof thiSAVR approach, and veri-
fies its performance with transient numerical simulationsomparison with data available from
previously published articles.

The set of equations and temporal integration scheme asemed in sectio§2. In sec-
tion §3, we outline the basic concepts of wavelet based numenugabaimation. The proposed
MRA methodology has been presentechdh Numerical experiments have been summarized in
section§5, where we verify that the CPU time increases approximdiedarly with the number
of grid points\ for all examples. Moreover, we have found tihédt< N in comparision with
benchmark data for all numerical experiments. Finally, \aeensummarized the main results in

sectiong6.



2 Mathematical formulation and temporal integration

2.1 Governing equations

The flow under investigation in this study is governed by tla&iNr-Stokes equation, and its ther-
modynamic state is described py= p(p, 8), where the thermodynamic variables are dengi}y (

pressurex), and temperaturé]. The Boussinesq assumption has been adopted. First, pea-de
dence of densityd) on pressurer() has been neglectede. p # p(p). Secondly, the dependence

of density on temperature has been approximated by
p(0) = p(6)[1 — B(0 — 6o)],

where( is the coefficient of thermal expansion. The governing sysiéequations in dimension-

less variables include the following PDEs:

V.-u=0, (2)
ou | Pr 9 .
00 1
— +u-Vi = VvZ26. 3
ot v v PrRa ®)

In the above system, characteristic scales for length citgJand temperature arke, U, andTy
respectively. The dimensionless number 0 corresponds to a shear driven flow , apd= 1
corresponds to a thermally driven flow, whéfe= /g3 LTx. The Prandtl and Rayleigh numbers
are, respectively, defined by

gBL*TR

1%
Pr=—, andRa = ,
K VK

which gives a Reynolds number

 gBL*T L .

Re = VPR _ UL with Re* = Ra/Pr.
1% 1%

Scientific journals publish a number of articles based orsytstem (1-3), which is a fundamental

mathematical model for heat and mass transfer applicatibhe proposed methodology is thus

tested by solving these equations.

Let us now present necessary initial and boundary conditionsimulating a shear driven as



well as a thermally driven circulation in a bounded domain.

2.1.1 Conditions and parameters for a shear driven flow

The set of equations (1-2) with= 0 governs a shear-driven, incompressible floWia= QU 09,

where the temperature equation (3) is excluded from the noaleolution procedure. Heréx)

is the boundary of the two-dimensional cavity= (0, X') x (0,Y). The initial and boundary

conditions are given by

(initial condition)

(u,v) = (0,0)
(boundary conditions)
(u,v) = (V,0)
(u,v) = (0,0)
(u,v) = (0,0)

V(z,y) € (0,X) x (0,)) att =0,

Ve € [0,X],y =), att > 0 (top wall),
Vz € [0,X],y =0, att > 0 (bottom wall), and

Vy € [0,V],x =0, = X, att > 0 (side walls).

(4)

These conditions are used in [29] with = 1 = Y andV = 1, which serves as the reference
model in sectiort5.2. Since the temperature equation is excluded from theersysve use the
relationshipRe? = Ra/Pr, and henceRe is the only dimensionless parameter that governs the

flow.

2.1.2 Conditions and parameters for a thermally driven flow

The set of equations (1-3) with = 1 governs a thermally-driven, two-dimensional natural con-
vection flow in a cavity:2 = Q U 9€2. The initial and boundary conditions for the velocity are

given by (4) withV = 0, and that for the temperature field are given by

(initial condition)

0=0 V(z,y) € (0,X) x (0,)) att =0,

(boundary conditions) 5)
0 =0, Vy € [0, Y], =0, att > 0 (left wall),

0 =06, Yy € [0, Y], = X, att > 0 (right wall), and

2=0 Vz €[0,X],y =0,y =), att > 0 (top & bottom walls).

These conditions are used in [30] with= 0.5, 6, = —0.5, Pr = 0.71, and10® < Ra < 10°.

6



2.2 Temporal integration

A fractional step time marching method - also known as thgeptmn method - was proposed
in [31] for solving egs. (1-2), where at each time step an laaryi or intermediate velocity is
obtained from (2) and is updated such that eq.(1) is satisfiedef. [31], the projection method
was implemented on a collocated or regular grid. Alterredyivihe method of Harlow & Welch
(1965) [32] - also known as the MAC method - is a commonly usgdréghm in CFD applications
that employs a staggered grid. Using the Chorin’s projeati@thod (CPM) [31], a fully implicit,

second order time integration scheme for (1-3) takes theviolg form

vV .utt =0, (6)
ul —ur 1 \/ﬁ wl%
- n—i—l. . n+1 n, ) — n+1 I v 2 n+1 n IV ran4-1 n
— A +2('u, V""" 44" V-u") vpPt+ 4Rav (u" " 4u")+ 5 (0" +6")
(7)
OO L vt vy =L e e ®)
At 2 4RaPr '

In this formulation (6-8), the nonlinear dynamics betweaa ¥elocityu and the temperatureis
calculated simultaneously, which requires an efficiematiee method. The most common practice
would solve (6-7), in the first stage, fa" ™! using either a Newton or Picard type iteration, and
then (8), in the second stage, #r !, which becomes a linear system. The present solution method
is now outlined.

In the first of the fractional time step, the simultaneougseysof PDEs are written, using the

symbolu = [u, 0]7, as

2 2
o 2 . i 2, m _ ,m n e on
AViu +u Vu+Atu AVAu" —u" - Vu +Atu, 9
where
\/ T 0
o Ra
A= . " ,
PrRa

u = [u,0]” represents the solution at a fractional time step, @hd= [u™, 6"]7 represents the
solution at the previous time step. The coupled nonlinestesy (9) takes the following general

form

L(u) = f (10)



where the nonlinear operatdrand the functionf represent the left hand and the right hand side
of (9) respectively. The system (10) retains the simultasemnlinear dependence of the velocity
and temperature within a fractional time step. In [24], aiginfractional time stepping was used,
where the velocity." ™! was obtained with a Picard’s type linearization, and thepmature was
solved after the velocity has been computed, thereby iggdhe non-linearly coupled dynam-
ics. In contrast, the present development proposes a fas¢nmeal methodology for solving the
simultaneous system of equations (10).

The time evolution of the temperature figlef-* = ¢ is obtained from (10). However, the same
for the velocity field requires additional steg?™! = u — AtV P"*! such thatV - u"*! = 0. This
step accounts for the effect of the pressure gradient farcke that eq. (1) is satisfied at each time

step, thereby requiring the solution of a Poisson equation

1
2prtl — _ V.. 11
\Y Atv u (11)

In the present implementation of the CPM algorithm, the m&ar system (10) of Helmholtz
equations and the elliptic Poisson equation (11) are savedch time step, where the boundary
conditions for (11) are Neumann typ& P"*!1 . 1 = w - 7, and that for (10) are Dirichlet type.
In order to optimize the rate of convergence and the comiputat cost, we have developed a

multi-resolution methodology that is now outlined briefly.

3 A wavelet based numerical methodology

Recently, wavelet-based methods have appeared in a nurhiEsearch areas as a dynamically
adaptive numerical method [33; 34; 35; 36; 37; 24]. Wavetsts be classified into two cat-
egories. The first-generation wavelets have difficultiesi@éaling with non-periodic boundary
conditions E.g.see, 38]. However, this limitation has been resolved with ititroduction of
the second-generation wavelet theory in [39]. The recemtldpments of wavelet methods for
CFD applications have been reviewed in [26]. A second-geitar adaptive wavelet collocation
method (AWCM) for time dependent PDEs was proposed in [4Bjcivwas extended to solve
two- and three-dimensional elliptic problems [27]. In [8B; 42], the 2D vorticity equation was
solved in the simultaneous space-time domain, assumingrtigvariable as if another spatial

direction, using the second-generation AWCM. To the bestutfiors’ knowledge, the benefits of



wavelet-based numerical methods have not been fully eshlizthe area of heat and mass transfer
application. In [43; 24; 44; 45], the incompressible Nas&okes equations and the temperature
equations were solved using an interpolating wavelet ntktwbere the temperature field and the
velocity field were computed in two steps using a Bi-Conjedatadient STABIlized (BiCGSTAB)
algorithm. This algorithm requires the linearization of thonlinear system, and does not take full
advantage of the multi-level proprieties of wavelets. la tbllowing section, the wavelet method

for approximating a given function has been presented.

3.1 The wavelet collocation method

In the present development, second-generation waveketsoastructed on &dimensional grid
={x, €V keckKl jeJ xl' =}

using the lifting scheme, e.g. see [46; 27] for details. Hareinctionu(x) is approximated by

j—124—1
@)= qer@+> > D dlv(e), (12)
kelCio l=jo n=1 ke icml

!
ldie" |

luzllz —

whereG’0 is an arbitrary coarse gridy’ is the desired fine gridC’c and KC# are sets of indices
associated with the gri¢’, andd = [}, d}"'](jo <1 < j—1, 1 < u < 2?—1) denote the wavelet
coefficients at levej [38; 27].

Let ¢ = [c}] denote the numerical values of the functiofx) on a gridG’. In the lifting
schemec is separated into an even or coarse data associated ondhg gtiand a odd or detail
data on those grid points ¢ which do not belong tg’ . Odd values are then predicted from
even values, and even values are updated using predictedatges. This is done recursively,
starting from a fine grid;’ until a coarse grid;’° is reached. The process transforms a given
function evaluatiom into its wavelet transforrd. Symbolically, we writel = Wc andec = W—1d,
whereW andW—! are forward and inverse wavelet transform operators. Neithnor W-! are
formed explicitly, but these transforms are computing gsinly O(/N) operations - thanks to the
lifting scheme.

When G’ is a uniformly refined dyadic grid, there are a totaléf= (27 + 1)¢ collocation



points. However, only a fraction of these points are assediwith the largestv’ wavelet coeffi-

cients,|d’| > el|uie

2, Where eq. (12) provides the bestterm approximation:/ (x). Such an
approximation does not oscillate at a frequency or wave muntiiat is larger tha®y’ [34]. In other
words, the maximum wave number for the approximation (12),ig/hich is same as the maximum
wave number for a Fourier spectral collocation method omtiteG’. Hence, the adaptive wavelet
approximation (12) retains the same wave number truncaisowhat a Fourier spectral method
would do on the grid;’. If u(x) represents a property of a fluid motion that has localizetiapa
structures, we can have’ < N, which is one well-known advantage of wavelet based meth-
ods over spectral methods. The computational complexith@fpresent wavelet method, using
lifted interpolating bi-orthogonal wavelets, 3(V'), which was verified previously, for example
see, [27].

All spatial derivatives in eq. (10) and (11) are calculatethg a weighted residual collocation

method such that

/ R(&)S(x — al)dx = 0,

where the residual is defined B(z) := Lu(x) — Lu!(z), andd(x) is the dirac delta function [e.g.
see 41]. Then, following [41], we ha\léu(x@ = DW~1d, whereD is the resulting differentiation
matrix. First,d is obtained by taking the forward wavelet transform of a gigeand then the in-
verse wavelet transform aef at each levej recursively results into a polynomial representation of
u?, which is differentiated to find derivatives. The compudaél cost of this approach is approxi-
mately equal to that of calculating the wavelet coefficientsere neithe) nor W1 is explicitly
formed, due to the lifting scheme. It can also be shown thatmtlaximum error of calculating
q-th order derivative ofi(z) is O(¢'~%/?), wherep is the order of the polynomial that is used in
computing wavelet transform [e.g. 27; 41].

In the present work, an adaptive mesh is constructed reelysstarting from the coarsest grid
G’ , and extending it to the desired finest leyaluch that only those grid points that are necessary
to evaluate the approximation (12) are used for a simulat®rdetails of the mesh generation
process is described in [27]. The system of nonlinear egusit{10) and elliptic equation (11)
are discretized on the adaptive mesh using a method thatdeas dummarized above, without
theoretical details, and the readers are referred to thk ofid27; 41]. In this research, a multi-

resolution algorithm has been proposed for solving (10)(Adgl
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4 A multi-resolution method for nonlinear system

A multi-resolution or multi-grid solution method trans$ethe solution from a fine to a coarse
resolution, and vice-versa. The present method employslapti@e mesh, and the grid transfer

process is based on the wavelet transform coefficiénts

4.1 Grid transfer operations

Using a wavelet transforr#’ on a gridG7, the fine-to-coarse grid transf&’ is denoted by

W =R, (13)
and defined by
o j—22¢4-1
@)= Y Qen@) Y Y Y (@) 1y = ]l (14)
kelCio l=jo n=1 ke Icm!

which is obtained by discarding the coefficiedts7‘1, ke kit p=1...2¢—1fromeq.(12).

Similarly, the coarse-to-fine grid wavelet projecti@# is denoted by
uw = R, (15)

which is the exact inverse of (13) in the way that the discdndavelets are now included to ob-
tain (15). These discarded wavelets may not be availablesictipe, and following [38, Ch.7], we

will use the predict wavelets to define the coarse-to-find gansfer process (15) approximately

by

j—224-1 2d_1
j jo g Al Gig—1_ pj—1
@)=Y qeR@ Yy Y Y dlel@ Y Y & (@), (16)
keKio I=jo n=1"p  jout p=1 keKmi-1

WhereJ’,i’j ~! are approximations to discarded wavelet coefficients.
Note that the classical multigrid algorithm for a lineariic PDE employs either a trivial
restriction or a weighted restriction on a uniformly refirgmad. A trivial restriction implies that

[R7-'wi)}, ' = u] because the multi-level grids are nes@d' c G’ such thatz) ' = ],

11



A weighted mean of neighboring values is used to construcelwed restriction, where the
choice of weights is open, but one may consider that theicgstr is an adjoint mapping of the
prolongation, e.g. see [47]. It is a common practice in rgulti theory that weighted means
are used to construct restriction and prolongation opesatut their construction needs special
treatment if an adaptive mesh is used.

The present development differs from a classical mul@gigorithm, and implements the
grid transfer operations on an adaptive mesh, using liftiéetpolating wavelet transform, where
interpolating polynomials of ordei and that of ordep are used for coarse-to-fine and fine-to-
coarse transfers respectively. In all numerical verifaradi we have used= p = 6. According to
the approximation theory, the wavelet transform providék @an accurate represent of a function
at coarse or fine resolution, which provides a more apprtgpcanstruction for these grid transfer

operations rather than using ad-hocweighted mean that is commonly in multi-grid theory.

4.2 A multi-resolution algorithm

Let £L(u’) denote the approximation @(u) on the gridg’, where£ is a nonlinear advection-

diffusion operator - such as the left hand side of (10), ahddenrite the discrete form
L) = f7, (17)
wheref7 is an approximation to the right hand side of eq. (10). Anexgsioblem
L) =g, (18)

at a coarser resolutione. on the gridG’—!, is now solved with appropriate definition gf'. The

current fine resolution approximatiesi-/ is updated by

uk T = ok 4+ RI (uj—l _ 'RJ—lul’W)7

error

where the error is calculated at the coarser resolutionisanansferred to the fine resolution. Note,
the calculation of error at a coarser resolution is a keytpaisaving CPU time. The process is
continued until the residual

v/ = f7— LI(uM) (19)

12



is minimized by a given tolerance. The right hand side of £8),E’ !, can be formed by transfer-
ring the current residuat/, and the approximate solution®/, to the coarser resolution according
to

g™t = RITNI 4 L(RITMM).

If g/~1 is formed this way, a uniformly refined grid is used, and weighmeans are used to
constructR’, this multi-resolution algorithmMRA) takes the similar form of a multi-grid full-
approximation scheme - as described in [48]. However, sudassical multigrid full approxi-
mation scheme is not optimal for solving the advectionudiibn problem (17) because a substan-
tial amount of computational work is needed for improving thte of congvergence,g, using
anisotropic coarsening and refinement. In the present olevednt, the adaptive mesh and wavelet
transform as well as the following development are novetrdoution of thisMRA with respect to
multi-grid theory, and anisotropic coarening/refinemeas hot been used.

In order to improve the rate of convergence for the abl@Ré, a process - known as relax-
ation or smoothing - can be employed to improve the approtima:*# before transferring to
the coarser resolution, as well as to impraye!7. A relaxation method aims to remove high
frequency oscillation of the error from an approximate 8olu A goal of the present work is
the development of an efficient relaxation method for hedtraass transfer applications, where
a nonlinear advection-diffusion problem is solved. The raft convergence of the presdviRA
solver depends also on the relaxation method that solv€s@@pproximately [e.g., 28].

To see how a relaxation method for a nonlinear problem iniced a high computational over-

head, we can re-write eq. (17) in the following compact form:
f7(u) = 0. (20)

Since this is a nonlinear system, an improved approximatgisn u* + s, is obtained by solving
the linear probleny/ (u*7)s;, = —f/(u*7) approximately, whergf is the Jacobian of the nonlinear
system (20) and is the N x 1 error vector that can be thought as a search direction. liiaatb
the construction of7, a numerical construction gf (u*)s,, is a matrix-vector product, which has
a computational cost that scales lik8N?), where\ is the number of grid points. Clearly, the
computational overhead is extreme even with an adaptivé teetnique. The solution procedure

will be benefited greatly if one computeg(u*)s, using O(N) complexity as well as finds a

13



search directios;, such that the residual (19) is reduced by a significant amount

In order to reduce th&(N?) complexity toO(N), let us consider the Frechet derivative of
f7(u), which is a fundamental Applied Mathematical technique céding to the mathematical
definition of the Frechet derivative, we can approximatedtion of the Jacobiay along the

search directios;, in the form of a matrix-vector product, such that

P (b + ps,) — £ (uh)

T (u*)s), =
n

(21)

for some small real number[25]. Clearly, the right hand side of (21) can be evaluateti @i(\)
complexity when the cost of computirfg scales likeO(N). Hence, in the above development,
the problem is linearized approximately with ') complexity.

Let us now develop a line search method to relax (1&)to reduce non-smooth error from
a given approximate solution®J such that|f’(u*7)||, is minimized by some factor. Most line

search algorithms require to find the search directjoto be a descent direction, satisfying
17 (0™ + agsi) ]2 < [|7 (™),

where the positive scalar; is the step length. In the present development, the vegtm com-
puted from the linear combination of independent vectors, and hence, without loss of generality
we can normalize the step lengilh = 1. Here,s; can be determined, using a Krylov subspace,
KCon (T, £7(u¥7)) such that

min || (u*)s;, + £(u™)]],

sk EKm
wherem is the dimension of the Krylov sub-spakg,. For interested readers, we refer to [Ch 7.3
of 48] for a detailed mathematical analysis of this Krylovthee.

In the JFNK solverg.g. see [25], eq. (21) optimizes the computational complexityg nor-
mally, a non-adaptive mesh is used. Moreoverwill be as large asV unless an appropriate
problem dependent pre-conditioning matrix is found, whela major drawback for the JFNK
method. In our development, is small, usually has a value frodrto 5, because the above Krylov

method is used only in the relaxation sweep of the proposdtl-regolution algorithm.
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4.3 The implementation on an adaptive mesh

According to eq. (12), if an intermittent functiar(zx) is sampled on a grig”, we can represent
this function using only a fraction of the wavelet coeffidied’. In practice, solving a transient
problem on the gridj’ and using the wavelet transform of this solution do not bang advan-
tage to simulating a flow. Instead, we need to develop an ithgorthat finds the fraction of the
coefficientsj.e. the fraction of the gridj’ without calculating the flow on the entire grid. For this
reason, one cannot apply the wavelet method directly tolat@a fluid flow.

Let us now summarize the implementation of the propd4ed on an adaptive mesh that is
obtained recursively starting from a given coarse g¥id and updating it dynamically as the flow

exhibits localized features.

1. Startwithu* for the solution of (17) on the present leyelnd check if|r/||, < t ol er ance.
(Here,u*’ may be the initial guess at the begining of the process.)dt thl er ance is

satisfied, we have a solution, and continue onto step 3 tovtesther the mesh is sufficient.

2. Performry steps ofVRA iterations on the current level. The choice of the parameter 1
results in &- cycl e andy = 2 results in d¥ cycl e iterations (e.g. see, [28] for a details

of multi-grid V- andW cycl e iterations), and go to step 1.

3. Perform a wavelet transform and analyze the one-to-ongpimg@ between the wavelet co-
efficientsd = [d]] and the grid pointaz = [z]]. All grid points that are associated with
large wavelet coefficientse. |d2|/||u’||, > € are marked for mesh refinementast i ve

poi nt s at the present level. Mark all other grid points for deletwrcoarsening.

4. If there are no points for refinement, we have a mesh anduti@ol Remove all refine-

ment/coarsening flags and stop iteration, otherwise, coatonto the next step.

5. Refine and coarsen the mesh, and construct the next ledekcgnsider only those collo-
cation points that belong to a suitably definegi ghbor s of the active grid points at the

present level [40].

6. The setofcti ve poi nts andnei ghbor s constitute the next level mesh. Ensure that
all active points on the present level and the points on thmbary are included to the next
level approximate mesh. This criterion is necessary to renthat adaptive grids are also

nested so that wavelet decomposition and reconstructestable.
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7. Use the grid transfer operation (16) to obtain an apprat@solution on the next level mesh.

Go to step 2.

In the following section, the proposed method is verified bynerical examples.

5 Numerical experiments

5.1 \Verification for error and rate of convergence

In order to demonstrate the accuracy and flexibility of theppised method, we first consider the

numerical solution of the Poisson-Boltzmann equation
—V?u + asinh(bu) = f, (22)

wherea andb are constants. The right hand functigrand Dirichlet boundary conditions are

chosen such that the solution of (22) is given by

u(z,y) = ay exp(— (2 +32)/(2u0)) — 0.5 sin(7x) sin(7ry),

wherea; = 1.0, a = 1.0, b = 1.0, andyy = 1073 have been used. The problem can be considered
as a toy model for the purpose of numerical verification. E{@) presents the solution of (22) at
various resolution$7 x 17, 33 x 33, 65 x 65, 257 x 257, 513 x 513, and1025 x 1025, showing that

the solution is converged iteratively if the resolutionremses. Fig. 1(b) presents the corresponding
adapted grids, verifying that grid points are concentraiear the point0, 0), where the solution
has a sharp gradient. These plots in Figs (1(a)-1(b)) detrada<learly that the approximation
error is reduced, and the mesh is refined only locally if tis®k&ion increases.

For this simulation, the resolution of a uniform ggdis given by(m, 27~ +1) x (m, 2771 4+1),
where usingn, = m, = 2, the coarsest grig' has a resolutiol x 3 or 9 grid points, the finest
grid G'° has a resolution 025 x 1025 or 1050 625 grid points, and a toleranee= 10~* is used
to obtain the finest grid;!° according to the algorithm that has been presente§#iB. Here
only 12473 points of the uniform grid7'° is used for the simulation. The number of points in the
adapted grid;'° is 12 473, which is aboug4-times less tham 025 x 1 025 or 1 050 625 points in the

non-adapted grid. Moreover, the number of poiritd73 is equivalent to a resolutionl2 x 112,
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which means that the resolution has been increased by alf@ctba of 8 or 9 in this case without
increasing the global number of grid points. This experitmethibits clearly the advantage of
adaptive mesh refinement approach.

As summarized in table 1, numerical experiments with ingirgathe resolution each time by
a factor of2, where the multi-level grids vary from & x 17 resolution tol 025 x 1025 reso-
lution, indicates that the rate of convergence is indepehdtthe resolution. Using numerical
experiments for0~! < ¢ < 1079, we have calculated the errgu(z,y) — u/(z,y)||» and the
number of points\V/, whereu(z, y) stands for the exact solution anf{ z, y) stands for the numer-
ical solution for each value ef Fig. 2(a) shows that the error@¢) and Fig. 2b) shows that the
error isO(N?). In other words, the toleraneecontrols the error linearly, and#% reduction
of the error increase&” by only about25%. In Fig. 2(c) the CPU[s] time is plotted against,
which verifiesO(/N') complexity such that the computational cost scales ligeaith the number
of computational degrees of freedokn

The above numerical test verifies the performance of theqe@gbalgorithm.

5.2 Numerical simulation of a shear-driven flow

A shear-driven cavity flow, where one wall of the cavity moaes constant velocity on its own
plane, exhibits a boundary layer of thicknessx Re~'/2, and is a classical test problem for the
assessment of CFD codes. In order to verify the accuracyegirsent model, where a fine mesh is
used only in the region of boundary layer, comparison resrk summarized in this section. The
initial and boundary conditions corresponding to a sheaed 2D flow in a cavity:Q) = Q U 9Q

are given by (4).

5.2.1 Comparison with reference solutions

In Fig. 3, the simulated velocity(0.5, y) is compared with data presented in [49] and [29], showing
a good agreement between the present and reference sslutiote that [49] used a Chebyshev
collocation method, employirgp 600 grid points atRe = 1 000, and [29] used a multigrid method
on uniformly refined multi-level meshes, employi6g536 grid points atRe = 1000 (as well as
various other values aRe). Using a tolerance = 103, the present model requires oriiyt16
grid points, which is about3% or 5% of the grid points required by [49] and [29] respectively; b

retains an accuracy that is comparable to these referemegagions. For the present simulation,
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the number of grid points also increasesl1tb275 and 25434 if the tolerance is decreased to
e = 10~*and10~° respectively, where the later is about the same as that bff94(a) compares
velocity u(0.5, y) for a range of tolerance valués—2 < ¢ < 10~°, which shows that a tolerance
betweenl0~2 and10~? is suffincient. This numerical experiment exhibits thatpheposed model
reduces the computational work units by reducing draggiche number of grid points without
introducing significant error in comparison with numeridata from [29; 49].

A principal objective of the present study includes a spawktane adaptivity such that the
time step,At is not restricted by the CFL condition. In order to assessctst and error of the

time integration scheme in such an adaptive mesh CFD madeisldefine a CFL number by

max(||u||) max(At)

Flax =
CFla min(Ax) ’

where CFLl,., = 1 means thaiax(At) = min(Ax) becausenax(||u||) = 1 for this simulation.
Since an explicit time integration scheme requires GEL< 1, the time stepAt¢ < min(Az),
will be extremely small if the mesh is refined locally in thgien of sharp change of the solution.
Here, At is adapted dynamically so that a given GEL is satisfied. The experiment with various
CFL,..x Values between and6, as presented in Fig.(4), shows that the time stefdit can be
adjusted according to a desired accuracy without beingetsd by the CFL number, which is a
distinct feature of the proposed model with respect to @as€FD techniques. Fig.(4) shows
clearly that & times larger CFL number retains the accuracy within theréolee limit, which is
clear from a visual comparison of computed.5, y) between Figs. 3-4.

These comparison tests reveal good agreement with regeiations as well as confirms
the accuracy of the present solution although a sparsegtidad with a largé\t and large CFL

number.

5.3 Flow in a differentially heated cavity

We have now simulated a flow in a differentially heated cafatytwo main reasons. First, this
is a prototypical problem for verifying a CFD algorithm, whiis relevant to many industrial ap-
plications. Secondly, the flow includes the gravitatiorfedas, where density variation occurs in
the vertical direction due to thermal effect. This flow isheit driven by only a thermal gradient

- known as the natural convection or driven by both a shearaatidbrmal gradient - known as
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the mixed convection. Results for a natural convection fleygriesented. The characteristic di-
mensionless parameter is the Rayleigh numBer, where the flow remains steady or laminar if
Ra < Ragiea, bUt transitions to turbulence occur otherwise. This ottaréstics of the flow makes
it a benchmark candidate for understanding the convergeirc@ew numerical algorithm.

The set of equations (1-3) with = 1 governs a thermally-driven, two-dimensional natural
convection flow in a cavity) = Q U 992. The initial and boundary conditions for the velocity are
given by (4) withV = 0, and that for the temperature field are given by (5). A serfesumer-
ical simulations have been performed fid < Ra < 10° using the same initial and boundary

conditions. These numerical simulations agree with the deaailable from [30].

5.3.1 Results

The temperature distributions fa6® < Ra < 10° are presented in Fig. 5, where we see that the
region of hot or cold fluid is concentrated near the wallgtasncreases. In other words, strong
temperature gradient occurs near the walls at liighThis development of the thermal boundary
layer makes the computation of such a flow a challenging tAskdescribed in [30], a uniform
mesh that is sufficient to calculate the flow/at = 103 will become insufficient ifRa increases
because the narrow boundary layer at highrequires a fine mesh. Looking at the temperature
distribution atRa = 10° in Fig. 5, one sees clearly that the mesh needs to be refinatiylonly
near all four walls of the cavity, which is not necessary aWwasn the walls. According to eq. (12)
and the algorithm as describedg.3, the preseriVRA identifies the region dynamically, where a
large gradient or boundary layer occurs, and determinesuherical resolution that is necessary
to resolve such a boundary layer. Our numerical experimeititsa tolerances = 5 x 10~3, show
that the maximum necessary resolutions x 128 for 10? < Ra < 107, 256 x 256 for Ra = 108,
and515 x 512 for Ra = 10°. However, atRa = 10°, the present simulation has used ohly308
points, which is about% compared to the uniform mesh at the resolutido? x 512.

To see the growth of the boundary layer near the side walésyéocity v(x,0.5) and the
temperatured(z,0.5) are presented in Figs(®), 6(b) respectively for increasing values &fa.
These results are compared with the data presented in [g0F&.3], and we see a very good
gualitative agreement. The scaling for the velocity field tfee present model differs from that
for the model of [30]. Hence, a rescaling of the model outfaivgs that the velocity profiles in

Fig. 6(a) has a good quantitative agreement with those presente@]in [3
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5.4 Heatisland circulation

A heatisland circulation is a typical horizontal conventdriven by the differential surface heating
in the atmosphere. In order to include the stratificatioeaffthe temperature field in eq. (3) is
decomposed inté(z,y,t) = 6 + 6(y) + 0'(x,y,t), where gravitational force acts along the

direction. This decomposition is equivalent to adding ment—ﬁv on the right hand side of

eg. (3) [10], where the Froude number is definedrby= - Zoa;. Hence, the choicér = oo
keeps the eq. (3) in its original form, and the cholte= 1 makes it equivalent to the model that
was presented in [10]. Using this modification to the govegrequations, an idealized heat island
circulation in a vertical plane has been simulated, wheedrihial localized heat source at= 0

is on the bottom horizontal wall - as shown in Fig.7(a).

The time evolutions at= 60 of the initial temperaturé(z, y, 0) for Ra = 103, 10%, and10° are
presented in Fig.(b-d). The pattern of the rising plume indicate that the verticapagation of the
plumeisreduced iRa is increased, but the plume remains symmetric with respebethorizontal
distancer measured from the center of the heat source. This patternyisi@l characteristic
of horizontal convection, which means that the numericatiehdnas simulated a flow that has
good qualitative agreement with an actual heat island katian. In Fig.8(a), we have presented
the temperature profilé(x, 0.5, 60) out of three temperature data presented in F-d7, which
shows that the maximum temperature along thegire0.5 is reduced whetka is increased. The
vertical temperature profile¥ 0.5, y, 60) in Fig. 8(b) exhibit that the temperature decays rapidly
to zero along the vertical line = 0, where(0, 0) is center of the heat source, and the rate of this
decay is faster with higher values Bt:.. This decay is associated with the stratification. To see thi
let us assume that the temperature field is spatially homesmgesy which simplifies the temperature

equation (3) to the form

00 1

— = ——==0.

ot Fr?
Clearly, the effect of the stratification term is to decay tbmperaturé in the region of positive
vertical velocity,u. The horizontal profile of the vertical velocityz, 0.5, 60) in Fig. 8(c) shows
that the vertical convection is increasingly localizedabthe heat source with increasiRg. The
narrow region of positive is accompanied by narrow regions of negatiyerhich means that the
region where the temperature decays is also accompaniedjimns of temperature increase. This

explains the wiggly profile folza = 10° in Fig. 8(b).
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5.4.1 Comparison with reference results

In [10], an idealized heat islan circulation was investgahumerically, where a fluid that was
confined in a 2D region was heated with a localized heat san¢he bottom boundary. The nu-
merical simulation in [10] required an extended domain kheoito accommodate the horizontally
convective circulation. In contrast, the present simalatised a relatively small domain, where
horizontal convection is modelled numerically using a Naamtype boundary conditions. When
Fig.8(a), 8(b), and Fig.8(c) of the present simulation ammpared visually with Fig$0(a), 9(a),
and10(b) respectively from the ref. [10], one finds a good agreemespitke both simulations are
done in different computational domain with different bdary conditions and different numerical
techniques. This comparison verifies that our numericalehsidnulates a heat island circulation

as accurate as the data presented in [10].

6 Summary

This paper has explored the development of an efficient CFDeinor transient heat and mass
transfer applications using an adaptive mesh approach. I&-resolution algorithm has been pro-
posed that explores some of the recent discoveries on aglyaoenputational algorithms. Com-
prehensive numerical experiments have been conductelddaetification of the algorithm’s per-

formance. The numerical accuracy has been verified in tvgesteFirst, a nonlinear mathematical
problem has been solved for which the exact solution is knoWims verifies the rate of conver-

gence for the iterative method, accuracy of the global nigaksolution, and the computational
time needed for a high resolution simulation. Second, tesmisimulations of a shear driven flow,
a natural convection, and a heat island circulation have bempared with previously published
numerical data. Good quantitative agreements with thete @mfirm the performance of this

novel computational approach.

The proposedVRA algorithm shares the benefits from some advanced technihaesre
known to Applied Mathematics and Computational Physiceassh community. For example,
wavelet based techniques provide an efficient method — kia@tihe nonlinear approximation — so
that the most significant proportion of the energy under alleed function can be computed using
only a small number of grid points without loosing accuraythe CFD research community, the

need for anisotropic coarsening and refinement has disgedrf@r not using the full approxima-
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tion scheme. To the Computational Physics research contyntive Jacobian-free Newton-Krylov
methodology is a powerful algorithm for simulating multiysics problems, where a problem spe-
cific pre-conditioner matrix must be designed for each samaih. Instead of using the FAS and
JFNK solver directly, the concept from these algorithmstaken so that a new algorithm can be
designed.

The development throughout this research brings noveskitieacientists whose research in-
terest lie in the numerical simulation of heat and mass feanwoblems. The potential future
development includes extension to three-dimensionasiean problems, for which a parallel ver-

sion of this code must be developed. This work is currentiyeuway.
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Grid # of MRA iteration Residual

17 x 17 19 8.06 x 1077
33 x 33 23 1.66 x 1078
65 x 65 23 1.27 x 1078
129 x 129 22 6.66 x 107
257 x 257 22 6.32 x 107
513 x 513 22 6.24 x 1079
1025 x 1025 22 6.08 x 107?

Table 1: The rate of convergence of tMRA solver is tested by solving (22). The algorithm takes
about the same number of iterations to reduce the residuat by the same factor, which is
independent of the resolution.
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Figure Captions

1 A sequence of approximate solutions of (22) at variousuésns: 17 x 17, 33 x
33, 65 x 65, 257 x 257, 513 x 513 and1025 x 1025. (a) We see clearly that the
error decreases if the resolution increases. (b) Adapidd gorresponding to the
solutionsin (a). All points at the resolutidi x 17 are used, but the mesh is refined
locally so that only a fraction of the higher resolution grid used to minimized
the error. The solutions as well as the adapted grids atugse$513 x 513 and
1025 x 1025 are almostidentical. . . . . . .. .. ... .. o oL 31
2 (a) The error remains roughly proportionaldépoo— numerical data;-— logarith-

mic slope forO(e). (b) Error as a function of the number of adapted grid points

N; o—, numerical result;-—, logarithmic slope folO(N2) (¢) The cpu time[s]
is approximately proportional t&; o—, numerical result;-—, logarithmic slope
forON). . 32

3  The velocity,u(0.5,y), along a linex = 0.5, at Re = 1000 is compared with the
data presented in ref. [29] and ref. [49]. Despite the pres@del uses only a frac-
tion of the grid points compared to reference models, a ggogkanent agreement
in this plot confirms the accuracy of the presentmodel. . . ...... . ... ... 33
4  The effects of varying the tolerance, as well as varying the CFL number for
computing the velocityy (0.5, y), at Re = 1000 are presented, whetg0.5, y) is
compared fora) 1072 < ¢ < 107% and for(b)) 1 < CFL < 6. From a visual
comparision between Fig. 3 and Fig. 4 confirms that a tolerasclarge a$0—2
or a CFL number as large &xan be used without losing accuracy significantly. . . 34
5  The temperature distributions for various values of thglégh number,Ra =
102, 10%, 105, 10%, 107, and10® at a fixed dimensionless tinE, when the flow
has reached approximately a steady state. The initial texhpe att = 0 is the
same for each case (not shown in the figure). Clearly, a tHdyouendary layer is
developed asia increases. (The plot faRa = 10® is not shown to optimize the

SPACE.) . . e 35
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The development of thermal boundary layers corresponudirtgmperature dis-
tributions in Fig 5 at various values of the Rayleigh numhé?, < Ra < 10%.
(a) Simulated temperature profile®,z, 0.5), along a fixed liney = 0.5 are pre-
sented. Only a portiom € [0,0.2] is shown. Clearly, ifRa increases, the width
of the boundary layer decreaseg:) Simulated velocity profilesy(z,0.5), also
exhibita similar pattern. . . . . . . . . ...
Time evolutions of an initially localized heat sourcefat = 1 and Ra = 103,
10* and 10° are presented, where the effect of increasitigon the pattern of
the rising plume has been exhibited. The darkest area ep=ea dimensionless
temperatured = 1 and the lightest area represeéits 0. . . . . . . ... ... ..
Temperature profiles and velocity profiles correspondirf§jd. 7 for10? < Ra <
10° are presented in this figuréz) Temperature profileg,x, 0.5, 60), along a line
y = 0.5 att = 60, show that rising of hot fluid has been suppressed with iisanga
Ra. (b) Temperature profileg,0, y, 60), along the linec = 0 show that the decay
of 6 in y is faster if Ra increases(b) Velocity profilev(z, 0.5,60) alongy = 0.5
show that the maximum af occurs atz = 0, which decreases ia increases.

These plots are in good agreement with similar plots present[10] . . . . . . .
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Figure 1: A sequence of approximate solutions of (22) atowsriresolutions:17 x 17, 33 x

33, 65 x 65, 257 x 257, 513 x 513 and1025 x 1025. (a) We see clearly that the error decreases
if the resolution increases. (b) Adapted grids correspuyndo the solutions in (a). All points
at the resolution7 x 17 are used, but the mesh is refined locally so that only a fracifathe
higher resolution grids is used to minimized the error. Tdlatsons as well as the adapted grids at
resolutions513 x 513 and1025 x 1025 are almost identical.
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Figure 2: (a) The error remains roughly proportional ¢po— numerical data;,-— logarithmic
slope forO(e). (b) Error as a function of the number of adapted grid poikitso—, numerical
result; ——, logarithmic slope fortO(N—3) (c¢) The cpu time[s] is approximately proportional to
N; o—, numerical result:-—, logarithmic slope foO(N).
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Figure 3: The velocityy(0.5,y), along a linegz = 0.5, at Re = 1000 is compared with the data
presented in ref. [29] and ref. [49]. Despite the presentehoskes only a fraction of the grid points
compared to reference models, a good agreement agreenthrd ptot confirms the accuracy of
the present model.
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Figure 4: The effects of varying the toleranegas well as varying the CFL number for computing
the velocity,u(0.5,), at Re = 1000 are presented, wherg0.5, y) is compared fofa) 1072 <

e < 107%and for(b) 1 < CFL < 6. From a visual comparision between Fig. 3 and Fig. 4
confirms that a tolerance as largelés? or a CFL number as large &san be used without losing

accuracy significantly.
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Figure 5: The temperature distributions for various valoéshe Rayleigh numberRa =
103, 104, 10°, 10%, 107, and10® at a fixed dimensionless tini€, when the flow has reached ap-
proximately a steady state. The initial temperature-at0 is the same for each case (not shownin
the figure). Clearly, a thermal boundary layer is developa@@increases. (The plot fdRa = 10%

is not shown to optimize the space.)
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Figure 6: The development of thermal boundary layers cpmeding to temperature distributions
in Fig 5 at various values of the Rayleigh numbkr < Ra < 10%. (a) Simulated temperature
profiles,f(z,0.5), along a fixed liney = 0.5 are presented. Only a portiane [0, 0.2] is shown.
Clearly, if Ra increases, the width of the boundary layer decregggSimulated velocity profiles,

v(z,0.5), also exhibit a similar pattern.
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Figure 7: Time evolutions of an initially localized heat se&iatF'r = 1 and Ra = 103, 10* and
10° are presented, where the effect of increasitagon the pattern of the rising plume has been
exhibited. The darkest area represents a dimensionlegetataref = 1 and the lightest area
representd = 0.
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Figure 8: Temperature profiles and velocity profiles comesiing to Fig. 7 forl0® < Ra < 10°
are presented in this figuré:) Temperature profileg,(z, 0.5, 60), along a liney = 0.5 att = 60,
show that rising of hot fluid has been suppressed with inorgaBa. (b) Temperature profiles,
6(0,y,60), along the linec = 0 show that the decay @fin y is faster if Ra increases(b) Velocity
profile v(z, 0.5,60) alongy = 0.5 show that the maximum af occurs atc = 0, which decreases
if Raincreases. These plots are in good agreement with simdés ptesented in [10]
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