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Abstract 

Post-silicon validation has become an essential step in the design flow of system-on­

chip devices for the purpose of identifying and fixing design errors that have escaped 

pre-silicon verification. To address the limited observability of the circuits during 

post-silicon validation, embedded logic analysis techniques are employed in order to 

probe the internal circuit nodes at-speed and in real-time. In this dissertation, \Ve 

propose novel on-chip debug architectures and the associated debug methods, which 

improve observability during at-speed post-silicon validation. 

First, we propose a novel embedded debug architecture that enables real-time 

lossless data compression in order to extend the observation window of a debug ex­

periment. The proposed architecture is particularly suitable for in-field debugging 

on application boards that have sources of non-deterministic behavior, such as asyn­

chronous interfaces. To quantify the performance gain from using lossless compression 

in embedded logic analysis, we present a new compression ratio metric that captures 

the trade-off bet\veen the area overhead and the increase in the observation window. 

Second. \ve propose a novel architecture based on lossy compression. This archi­

tecture enables a new debug method \Vhere the designer can iteratively zoom only 

in the intervals that contain erroneous samples. Thus, it is tailored for the identi­

fication of the hard-to-detect functional bugs that occur intermittently over a long 

execution time. \Vhen compared to increasing the size of the trace buffer. the pro­

posed architecture has a small impact on silicon area, while significantly reducing the 

number of debug sessions. The new debug method is applicable to both automatic 

test equipment-based debugging, as well as in-field debugging on application boards, 

so long as the debug experiment can be reproduced synchronously. 
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Third, we address the problem of the presence of blocking bugs in one erroneous 

module that inhibit the search for bugs in other parts of the chip that process data 

received from the erroneous module. \Ve propose a novel embedded debug architecture 

for bypassing blocking bugs. This architecture enables a hierarchical event detection 

mechanism to provide correct stimuli from an embedded trace buffer, in order to 

replace the erroneous samples caused by the blocking bugs. 

It is anticipated that the main contributions presented in this dissertation will 

help further the adoption of embedded logic analyzers, as the main alternative to 

scan chains for gathering data during post-silicon validation in real-time debug envi­

ronments. 
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Chapter 1 

Introduction 

The continuous advancements in semiconductor manufacturing have enabled the im­

plementation of digital integrated circuits (I Cs) with millions of transistors on a single 

silicon die. The increased design complexity leads to a longer implementation cycle, 

which is mainly driven by increased design and verification times. To address this 

problem, the core-based system-on-chip (SoC) design paradigm has emerged at the 

encl of the past decade [61]. In this paradigm, to address the length of the implemen­

tation cycle, the system integrators reuse pre-designed and pre-verified intellectual 

property blocks (or embedded cores) developed by core providers. Nonetheless. given 

the increase in the number of embedded cores and the growing size of the user defined 

logic, as well as the shrinking time-to-market cycles, the contribution of verification 

to the overall implementation time is considerable. As a consequence, pre-silicon ver­

ification techniques, such as formal verification using model checking or functional 

verification through biased-random simulation, have been established as a necessary 

step to identify design errors (or bugs) before the design is manufactured [70]. 

Nonetheless, the growing complexity of SoC designs and the limitations in mod­

eling all the physical characteristics of the design, make pre-silicon verification tech­

niques inadequate to guarantee the first-silicon to be error-free. Because finding bugs 

in a fabricated design will cause a silicon re-spin. which impacts both the product 

cost and the time-to-market, it is desirable for design bugs to be identified and fixed 

1 
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as soon as the first silicon is availa hle. Consequently. post-silicon validation (or s il­

icon debug) [3] has emerged as a necessary step in the implementation cycle of SoC 

designs. 

This introductory chapter is organized as follows. Section 1.1 provides au overvie\v 

of the design flow and the verification techniques for very large scale integrated (VLSI) 

circuits. Section 1.2 describes the motivation of this research. Finally, Section 1.3 

outlines the main contributions of this research and presents the organization of the 

dissertation. 

1.1 Design Flow of VLSI Circuits 

The design flow of VLSI circuits is comprised of three steps: specification, implemen­

tation and manufacturing as shown in Figure 1.1. The specification step typically 

describes the expected functionality of the VLSI circuits. Design specifications are 

described in a high-level language such as SystemC [43], or in hardware description 

languages (HDLs) such as VHDL [79]. Verilog [80] or System Verilog [98]. The regis­

ter transfer level (RTL) abstraction is used in HDLs to describe the circuit's behavior 

as a set of transfer functions which represent the flow of signals between the registers, 

and the logical operations performed on those signals [39]. The process of trans­

forming the circuit model from a higher (or less detailed) abstraction level to lmver 

(or more detailed) abstraction level is called synthesis. The logic synthesis performs 

the translation of the HDL design into the generic library of components followed by 

optimization and mapping into the gate-level components [32]. 

The subsequent step in the design flow is to synthesize a circuit description into 

a gate-level netlist that represents the logical functionality of the circuit (i.e., imple­

mentation). As shown in Figure 1.1, the design can be implemented based on different 

design methodologies either full custom or semi-custom. In the full custom design 

methodology, the designer creates the layout of the circuit and the interconnections 

between the circuit components in order to maximize the performance of the circuit, 

and minimize its area. On the other hand, in the semi-custom design methodology, 

the implementation is performed using standard cell libraries or gate arrays through 

2 
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Design flow Verification techniques 

( Pre-silicon verification: 
Specification: 1 1 

I b ,..__ __ ___, functional/timing simulation, 1 

~~h~~~al~~er~n-c~:odel l_ ___ fo_r_ma~er_ifi_1c_atio~----) 
I 
I 

' ( 
1 

Implementation: 
I full custom, cell libraries , 
L------,-----_ ___) 

______ l __ _ 
( Manufacturing: l 
I complementary metal-oxide ____ ___, 

~iconductor technology) 

Manufacturing test: 
scan-based design for test, 

built-in self-test 

Post-silicon validatl~-~. J 
physical probing, scan-based 
debug, embedded trace buffer 

Figure 1.1: Design Flow and Verification Techniques of VLSI Circuits 

computer-aided design (CAD) tools. These tools transform the design from the RTL 

abstraction level into the gate level structural netlist and perform the translation 

from the gate level netlist into a physical layout [18]. 

The final step in the design flow of VLSI is the process of creating the integrated 

circuit (i.e., manufacturing). The fabrication process is a multiple-step sequence of 

photographic and chemical processing steps during which the integrated circuits are 

gradually created on a wafer made of semiconducting material based on the specific 

transistor technology (e.g .. 90 nm) [34]. Silicon is the most commonly used semi­

conductor material in VLSI circuits and complementary metal-oxide semiconductor 

(CMOS) is the main type of transistors. The increasing complexity of VLSI design 

makes pre-silicon verification, manufacturing test and the validation of the first silicon 

a bottleneck in the design flow. 

3 
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1.1.1 Pre-Silicon Verification 

As the complexity of SoC designs increases. the shrinking time-to-market makes de­

sign verification one of the major challenges in the implementation fimv. As a conse­

quence, pre-silicon verification techniques such as formal verification and simulation 

are used extensively to identify design errors before the design is manufactured [70]. 

The purpose of these pre-silicon verification techniques is to verify the implemented 

design against its specification. 

Simulation techniques are used to verify the circuit behavior at various levels of 

abstraction. For example. the design can be simulated at a higher beliavioral level 

that does not contain detailed timing information. The more detailed information the 

circuit model has (e.g., logic-level netlist), the more time will be needed to wrif:v its 

functional correctness. Thus, exhaustive simulation for complex VLSI designs is prac­

tically infeasible. Formal verification. as a complementary technique to simulation, 

is the process of mathematically proving or disproving the correctness of the design 

with respect to a certain formal specification or property [62]. There are two main 

approaches to formal verification: equivalence checking and property (also known as 

model) checking. The purpose of equivalence checking is to ensure that two given 

designs are functionally identical by comparing one design called the reference model 

with the targeted design. These designs may be given on different levels of abstrac­

tion, i.e., register transfer level or gate level [35]. Property (or model) checking is used 

to check a given design for the satisfaction of its properties which are formulated in 

a dedicated verification language. ·Model checking is a commonly used approach in 

formal verification of finite state concurrent systems, where exhaustive exploration 

of all states and transitions in the circuit model can be performed through efficient 

techniques that reduce computing time [28]. 

Formal verification has proven its significance in identifying the logic bugs during 

pre-silicon verification of the Intel processor [16]. Nevertheless, clue to the inherent 

trade-off between state coverage and verification time, as well as the limitations in 

modeling all the physical characteristics of the design, pre-silicon verification tech­

niques have become insufficient to guarantee the first-silicon to be error-free. 

4 
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Input 1 Circuit 1 

test ~1. 
1 under I · Output 

~~v_e_c_to_r_s~_i 1~1 ~~t_e_s_t~~~~: ~re_s_p_o_n_s_e_s~ 

Expected 
correct 

responses 

Comparator 

Figure 1.2: Basic Principle of VLSI Circuits Testing 

1.1.2 Manufacturing Test 

Pass/Fail 

l\Ianufacturing test has become an essential step in the implementation flow of the 

VLSI circuits to ensure that the functionality of the manufactured circuits matches 

its implementation [24]. It is used to identify the physical defects that lead to faulty 

behaviors in the fabricated circuits. Figure 1.2 shows the basic principle of man­

ufacturing test. The entire test process is typically controlled by a powerful test 

instrument called automatic test equipment (ATE). Circuit under test (CUT) is the 

entire chip or part of the chip to \vhich the input test vectors are applied. The input 

test vectors are binary patterns applied to the input of the circuit. These test vectors 

are obtained. using automatic test pattern generation (ATPG) algorithms [24]. The 

circuit is identified as a fault-free circuit if the observed output responses match the 

expected correct responses. If the circuit failed the test, the fault diagnosis process 

will be started to diagnose and identify the root cause of the failure. 

The circuit under test can be tested using functional or structural test. Functional 

test requires a complete set of the test patterns to verify every entry of the truth table 

(e.g., for a circuit with n inputs, the number of input test vectors will be 2n). For 

example, for exhaustively testing a 64-bit ripple-carry adder, 2129 input test vectors 

are needed. If the ATE operates at 1 GHz, it would take 2.158 x 1022 years to apply 

the complete test set [24]. Therefore, complete functional testing leads to extremely 

long testing time, which makes it practically infeasible for testing complex integrated 

circuits. On the other hand, structural testing depends on the netlist structure of the 

5 
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T 
p 
G 

BIST control logic 

Circuit under test 
Good/bad 

Figure 1.3: Basic Principle of BIST 

design. In this technique, the defects are usually modeled at a certain level of design 

abstraction for the purpose of efficient testing (e.g., gate level or transistor level) [24]. 

Some typical fault models are stuck-at fault model, open fault model and path delay 

fault model. The most commonly used fault model is the single stuck-at fault model 

where a single node in the structural netlist of the logic network is assumed to have 

a fixed logic value and hence it is stuck-at either 0 or 1. \Vhen using the stuck-at 

model for the 64-bit ripple-carry adder, only 1728 stuck-at faults would need to be 

excited ·with 1728 input test patterns [24]. 

Achieving high fault coverage during manufacturing test is obtained through the 

inclusion of design for testability (DFT) circuitry that enhances the controllability and 

observability of the circuit's internal nodes. Scan based DFT is the most commonly 

used DFT methodology, in which all or part of the sequential elements (i.e .. flip fl.ops) 

of the circuit are replaced with scanned flip-flops (SFFs). In the test mode, these SSFs 

form one or more long shift registers called scan chains. The input test patterns are 

applied serially to the input of these scan chains which are connected to the primary 

inputs of CUT. The states of these SFFs are observed by shifting out the contents of 

the shift registers whose outputs are connected to the primary outputs of CUT [24]. 

Another DFT method is the built-in self-test (BIST). BIST can be used as a low 

cost testing approach when compared to ATE-based testing. In ATE-based testing, 

test stimuli are applied to the chip pins from the ATE and test responses are shifted 

out and compared with the correct responses stored in the ATE memory. Due to the 

large memory and bandwidth requirements for testing state-of-the-art SoCs, BIST 

6 
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Figure 1.4: Deterministic BIST 1\·ith I\Iultiple Scan Chains Architecture 

can be used as an alternative approach to external test for complex VLSI circuits. As 

shown in Figure 1.3, a test pattern generator (TPG) generates a set of test stimuli 

and a signature analyzer (SA) analyzes the test responses and makes the decision 

of good/bad chip. The BIST control block controls the test sequence. In BIST ap­

proach, a linear feedback shift register (LFSR) can be used as the TPG, and a single 

input signature analyzer (SISR) or a multiple input signature analyzer (J\IISR) can 

be used as the SA [13]. BIST methods can be classified into pseudo-random BIST 

and deterministic BIST. Applying only pseudo random test stimuli cannot guarantee 

sufficiently high fault coverage because the majority of the circuits are not completely 

random testable. Thus, the pseudo-random test-patterns can be extended with deter­

ministic test patterns using more sophisticated pattern generators in order to achieve 

high fault coverage [26. 105, 120]. The pseudo-random BIST can be combined with 

deterministic BIST methodology to generate the scan inputs of the circuit under test 

for multiple scan chains architecture. 

Figure 1.4 shows scan-based BIST architecture that supports deterministic BIST 

pattern generation. The test pattern generator consists of an LFSR and sequence 

generating logic (SGL). The purpose of SGL is to modify the pseudo-random patterns 

generated from the LFSR into deterministic ones by changing certain bit positions 

[63, 64]. The deterministic patterns are then applied to the CUT via scan chains. 
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The outputs of the scan chains are compacted into a signature stored in a nrnltiplc 

input shift register (~IISR) to be compared with the correct expected signature. 

By cost-effectively inspecting whether the implemented design is identical to the 

fabricated one, manufacturing test has become a key enabling technology that ac­

celerates yield ramp-up and guarantees product quality. Nonetheless, manufacturing 

test is concerned onl.v \vith fabrication defects and it relies on the circuit netlist as 

a golden reference. Therefore, to make sure the product does not contain any de­

sign bugs ( v.:hich are present in the netlist and hence affect every fabricated device), 

manufacturing test must be complemented by post-silicon validation (or silicon de­

bug) in order to identify the design errors that have not been caught by pre-silicon 

verification. 

1.1.3 Post-Silicon Validation 

The purpose of post-silicon validation is to identify and fix design bugs that are 

present in the fabricated circuit. These bugs can be classified into functional (logic) 

bugs where the circuit does not correctly match its specified function, or electrical 

bugs where the circuit does not meet the correct behavior over the entire operating 

region of its voltage, temperature or frequency [57]. The limited observability of the 

internal circuit signals is the major concern during post-silicon validation. To ad­

dress this problem, physical probing techniques have emerged to improve the ability 

to probe internal circuit nodes and hence find the root cause of the electrical bugs 

[75, 97]. Probing techniques such as time resolved photoemission [33] and laser volt­

age probing [85] provide essential debug information that aids in the localization of 

the electrical bugs. Given the importance of physical probing techniques and the 

increasing complexity of SoC designs. a localization step, which we denote as logic 

probing, that compares the simulation data with the information observed in silicon, 

is required to identify a subset of circuit nodes that need to be physically probed [107]. 

Consequently, logic probing techniques have emerged as a complementary approach 

to physical techniques not only to aid in finding the electrical bugs but also to help 

in identifying the functional bugs that have escaped pre-silicon verification. 
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Reusing the scan chains. \\·hich are present in the circuit for manufacturing test. 

is one of the most commonl~· used logic probing techniques during post-silicon vali­

dation [30, 118]. In this scan-based debug approach, the circuit response is captured 

after the occurrence of a specific trigger event and, subsequently, the captured re­

sponse is transferred to the debug software (this process is called scan dump). The 

debug soft\vare communicates with the circuit under debug (CUD) either through 

scan channels when debugging on the automatic test equipment (ATE), or through 

a low bandwidth interface (e.g., Boundary Scan [53]) when debugging on the target 

application board. The captured circuit response can be analyzed off-chip using post­

processing algorithms, such as latch divergence analysis [29] or failure propagation 

tracing [25], to identify the first failing state elements. 

The limitation of scan-based debug lies in the fact t lmt halting the execution 

during scan dump may destroy the system's state. Thus, capturing debug data in 

consecutive clock cycles can not he achieved by using only the available scan chains. 

Although the use of shadow scan latches. (which may incur a substantial area penalty 

[58]), can avoid the destructive nature of the scan dump. a new capture cannot occur 

until the scan dump has been completed. Because capturing debug data in consec­

utive clock cycles is essential for identifying the timing related bugs. complementary 

techniques to scan-based method have been developed to provide real-time observ­

ability of a limited set of internal signals during post-silicon validation. 

The debug data of a subset of internal signals can be acquired off-chip in real-time 

through dedicated chip pins [112]. The limitation of this debug technique for the state­

of-the-art SoCs lies not only in the difficulty to drive high internal clock frequencies 

onto external chip pins but also in the limited pin counts allocated for debug. Con­

sequently, embedded logic analysis methods that rely on on-chip trace buffers have 

emerged as a complementary approach to scan-based methods to enable real-time 

and at-speed observation of a limited set of internal signals [71]. The captured data 

is subsequently transferred, via a low bandwidth interface, from the internal debug 

module to the external debug software for post-processing. Trace buffer-based tech­

niques have been recently used for debugging microprocessors [38, 46, 86, 95, 99], SoC 

designs [48, 71], and designs mapped to field programmable gate arrays [5, 100, 122]. 
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1.2 Dissertation Motivation 

The focus of this dissertation is to develop design-for-debug (DFD) architectures and 

methods that facilitate the identification of the functional bugs, when the validation 

is performed at-speed and in-system, i.e., on prototype application board. Although 

they have been validated for fonctional bugs. the proposed architectmes and methods 

can be used also as a front end to physical probing techniques to assist in electrical 

bugs validation. As explained next. they are motivated by the limited real-time 

observability, as \vell as by the difficult:v of dealing with blocking bugs during post­

silicon validation. 

The amonnt of debug data that can be captmed into an on-chip trace buffer dur­

ing embedded logic analysis i:'i limited by the trace buffer width, which constrains the 

number of signals to be probed. and its depth. which limits the number of samples to 

be stored. To extract as much data as possible from a given debug experiment, i.e., 

to increase its observation window. without increasing the area of the on-chip trace 

buffer, compression can be employed. The existing compression methods can be cat­

egorized into special-purpose methods for microprocessors [46, 52, 60, 99] and generic 

methods for custom SoC designs [6, 7, 48, 67, 123]. The special-purpose methods rely 

on trace reduction or on lossless compression techniques. Trace reduction techniques 

are based on sampling (or filtering out) data at specific intervals, using programmable 

start/stop flags or by recording only program counter changes or branch addresses. 

In the lossless compression techniques. the compression can be accomplished by elim­

inating the redundant temporal information on data or address busses (e.g., through 

differential compression) [ 46]. 

For custom SoC designs, the compression techniques are currently emerging. For 

example, the compression can be achieved by analyzing the design and identifying 

a subset of essential signals which, after being captured. on-chip, would then be ex­

panded in the debug software using the knowledge of the design data [48, 67]. vVe 

refer to this method as a width compression technique where the length of the ob­

servation window remains the same and compression is achieved by re-constructing 

the values of more signals from the ones that are captured in the trace buffer. To 
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capt me ctS nrnny samples as possible \\·hile running a long delmg experiment. one can 

employ also depth compression. It is important to note that the two main directions 

for compressing debug data for custom SoC designs (width and depth compression) 

are orthogonal to each other. Int his dissertation we focus only on depth compression, 

which to the best of our knowledge has not been covered in the public domain (other 

than the prior works by the authors [6, 7]). t>.Ioreover, a ne\v debug technique has 

been recentl:v proposed in [123], as a follow up to our research work presented in [6]. 

The key differences between the debug technique introduced in [123] and our \vork 

will be discussed in Chapter cl. 

Because of the presence of blocking bugs in one erroneous module inhibits the 

search for bugs in other parts of the chip that process data received from the erroneous 

module, it is important to bypass its erroneous behavior. In this dissertation. we 

address this problem by developing an embedded debug architecture that enables 

a hierarchical event detection mechanism in order to provide stimuli from an 011-

chip trace buffer. for the purpose of replacing the erroneous behavior caused by the 

blocking bugs [8]. 

1.3 Dissertation Organization and Contributions 

The rest of this dissertation is organized as follmvs. Chapter 2 provides the back­

ground and a review of related work in post-silicon validation. 

Chapter 3 introduces a novel debug architecture for embedded logic analysis that 

enables real-time lossless data compression. The proposed debug technique extends 

the depth of the observation window of a debug experiment. To quantify the perfor­

mance gain from using lossless compression in embedded logic analysis, we present 

a new compression ratio metric that measures the trade-off betv.reen the area over­

head and the increase in the observation window. \Ve use this metric to quantify 

the performance gain of three dictionary-based lossless compression algorithms. The 

proposed architecture is based on one pass scheme algorithms which do not require 

re-running the debug experiment. Thus, the proposed architecture is particularly use­

ful for in-field debugging on application boards which have non-deterministic input 
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sources. such as asynchronous interfaces. 

Chapter 4 presents a novel architecture for at-speed silicon debug based on lossy 

compression. In order to accelerate the identification of the design errors. we have 

developed a new debug method where the designer can iteratively zoom only in the 

intervals that contain erroneous samples. By extending the silicon debug observation 

window using a short sequence of debug sessions, the proposed approach is useful in 

aiding the identification of hard-to-detect functional bugs that occur intermittently 

over a long period of time [57], \vhich is computationally-infeasible to be simulated 

during pre-silicon verification. \Vhen compared to increasing the size of the trace 

buffer, the proposed architecture has a small impact on silicon area, 1vhile signifi­

cantly reducing the number of debug sessions. The proposed method is applicable to 

both automatic test equipment-based debugging and in-field debugging on application 

boards, so long as the debug experiment can be reproduced synchronously. 

Chapter 5 introduces a novel embedded debug module architecture for bypassing 

blocking bugs that occur intermittently over a long execution time. This architecture 

facilitates the validation of the other parts of the chip that process data received from 

the erroneous module. The proposed approach enables a hierarchical event detection 

mechanism to provide correct stimuli from an embedded trace buffer. in order to 

replace the erroneous samples caused by the blocking bugs. 

Chapter 6 summarizes the contributions of this research and provides directions 

for future work. 
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Chapter 2 

Background and Related Work 

This chapter provides the background and a review of related \vork on post-silicon 

validation. \Ve first introduce an overview of post-silicon validation in Section 2.1. 

The scan-based debug technique is described in Section 2.2. The basic principle of 

embedded logic analysis and the trace buffer-based debug techniques are introduced 

in Section 2.3. The recent advancements in the design for debug techniques for 

improving the observability of the internal circuit's nodes are described in Section 

2.4. Finally, Section 2.5 concludes this chapter. 

2.1 Overview of Post-silicon Validation 

As outlined in the previous chapter, due to the growing complexity of system-on­

chip (SoC) designs and the ever increasing demand of time-to-market, pre-silicon 

verification techniques such as simulation and formal verification [70] have become 

insufficient to guarantee the first-silicon to be error-free. Furthermore, many electrical 

bugs (e.g., leakage, charge sharing, noise coupling between interconnect lines or drive 

fights) cannot be screened without the existence of the fabricated IC [57]. Given 

the escalating mask costs, it is imperative that the design bugs are identified and 

fixed as soon as the first silicon is available. As a consequence, structured post-silicon 

validation techniques have emerged to reduce the time required to find design bugs, 

the number of silicon spins, and hence the time-to-market [112]. 
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The design bugs that can be identified clming post-silicon validation can be clas­

sified as either functional bugs or electrical bugs, as described in Chapter 1. These 

design bugs types arc analyzed and debugged differently according their validation 

plans [58]. For functional validation, \·alidation patterns are applied to circuit under 

debug (CUD) in order to ensme its functional correctness. For electrical validation, 

validation patterns are used to ensure functional correctness of the CUD across the 

entire operation region of voltage. temperature and frequency. A characterization 

window is used to specify the range of voltage and frequency across which the circuit 

is guaranteed to \vork [58]. Iu order to identify the electrical bugs, a two dimensional 

plot (also referred to as sh moo plot) is used to show how the circuit performs against 

the variation of the voltage and the frequency [11 J. It should be noted that the de­

bug process which targets different types of bugs depends on the underlying debug 

environment and the design-for-debug (DFD) features implemented in the CUD to 

facilitate the identification of design bugs. 

2.1.1 Debug Environments 

There are two main types of environments for debugging prototype silicon: digital 

IC testers (also referred to as ATE) and prototype application boards. Digital IC 

testers are used in manufactming test to screen the circuit for manufacturing defects. 

The importance of the tester environments lies in the capability to apply the input 

stimuli and compare the responses on the circuit I/O pins against the expected re­

sponses. Part of electrical validation is performed on the tester because of the ability 

to precisely control the voltage and frequency. Due to the limitation of tester storage 

and the necessity to cover the functional correctness of the CUD, ATEs may not be 

sufficient for debug, e.g., to replay several minutes of digital video [112]. Therefore. 

in-system debugging (on application boards) is usually used as a complementary ap­

proach to ATE-based debug. For in-system debug approach, no extensive stimuli and 

responses storage are needed as in the case of ATE-based debug but the controllabil­

ity and observability are less straightforward. The debug engineer can chose between 

the debug environments based on the validation objectives. 
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2.1.2 Post-silicon Validation Techniques 

The main challenge in post-silicon validation is the limited observability of the internal 

circuit's signals. To address this problem. physical probing teclmiqnes have emerged 

to improve the ability to probe internal circuit's nodes and hence find the root cause 

of the electrical bngs [33. 75. 85, 97]. However, despite the recent advancements in 

the physical probing techniques, the complexity of state-of-the-art devices requires 

a localization step to precede the destructive IC failure analysis. This step, vvhich 

we denote as logic probing. correlates the simulation data to what is observed in the 

silicon (either on the (I/ Os) or on the internal signals) in order to identify a subset of 

circuit nodes that need to be physically probed [107]. This is achieved by adding DFD 

hardware for the purpose of improving the internal observability and accelerating the 

debng process. The DFD techniques are not only nseful in finding the electrical bugs 

but they are also essential for locating the functional bugs. 

In order to identify the design bugs during post-silicon validation, DFD infras­

tructure is employed to enable capturing and accessing the internal state of the CUD. 

Two DFD complementary techniques have been used to provide the observability of 

the system's state: scan chain debug technique based on run-control debug approach, 

and embedded logic analysis based on real-time trace approach. These debug tech­

niques are essential to narrow down the search for design bugs by pinpointing both 

temporally ("·hen) and spatially (where) a bug occurs. 

2.2 Scan-based Observability 

The scan methodology is the most commonly used technique in manufacturing test 

for the purpose of allowing the observation of internal circuit's full state. Scan chains 

have been used extensively for debugging complex digital ICs [12, 14, 30, 44, 59, 69, 

72, 89, 108, llL 115, 117, 118]. To distinguish between the usage of scan chains in 

manufacturing test and post-silicon validation, we first illustrate their functionality 

during the manufacturing test process. 
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Figure 2.1: A Single Scan Chain Architecture 

2.2.1 Scan-based DFT Methodology 

vVhen employing scan chains in scan-based DFT, the sequential elements (i.e., fiip­

fl.ops, latches) are connected in such a manner that allows tv.ro modes of operation. 

In the test mode, the scanned flip-fl.ops are reconfigured as one or more shift registers 

(known as scan chains). The input test vectors are serially loaded to the CUT. Once 

a vector is loaded, the CUT is allowed to work in its normal mode \vhere the circuit 

response is captured in the flip-fl.ops. Thereafter, the captured response is shifted out 

and compared versus the expected response [24]. 

Fignre 2.1 illustrates the architecture of a single scan chain. Each scanned flip-fl.op 

(SFF) is composed of a D flip-fl.op and a 2-to-1 multiplexer. A scan enable signal SE 

selects between two data inputs: the original data input D, and the scan-data input 

SD. The primary inputs/ outputs (PI/PO) are connected directly to the combinational 

logic. The scan chain is constructed by connecting the data output Q of one SFF 

to the SD signal of the following SFF, as illustrated in the Figure 2.1. The scan­

based DFT procedure during the test process can be explained as follows: (i) assert 

scan enable signal (i.e., SE is set to 1), and load the test vector through the scan 

input (SI); (ii) de-assert scan enable signal (i.e., SE is set to 0), and apply one clock 

cycle in order to capture the circuit response from the combinational logic outputs in 

SFFs; and (iii) re-assert scan enable signal (i.e., SE is set to 1), and scan out the test 
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responses. \ \-hile the test response is shifted out. a new test vector is sinrnlt aneousl.\· 

shifted in. The length of the scan chain and the number of test patterns are the 

two contributing factors that influence the test time. To reduce the test application 

time, multiple scan chains can be used. Each scan chain usually has its dedicated SI 

and SO pins and hence the test data/response can be shifted in/ out in parallel. It is 

important to note that most blocks of a SoC are designed with full-scan capability. 

where all internal sequential elements are replaced by SFFs, in order to achieve high 

fault coverage [24 J. 

2.2.2 Scan-based Debug Methodology 

In the scan-based debug approach, the circuit response is captured after the occur­

rence of a specific trigger event and subsequently, the captured response is transferred 

to the debug soft\vare (this process is called scan dump). The debug software com­

municates with the circuit under debug either through scan channels when debugging 

on the automatic test equipment (ATE), or through a low bandwidth interface (e.g .. 

boundary scan IEEE 1149.1 standard interface [53]) when debugging on an appli­

cation board. To control the debug process, DFD hardware (i.e., debug module) is 

integrated with scan chains to enable start, stop, resume or single-step the program 

execution [116]. This approach obviously provides high observability and controllabil­

ity of the circuit behavior and hence facilitates the identification of the error-capturing 

scan cells. For example, scan-based techniques rely on stopping the functional test 

program when a failure is observed on an output and subsequently, by re-running the 

debug experiment with different trigger points, it can scan dump the state before and 

after the observed failure point. Thereafter, post-processing algorithms, such as latch 

divergence analysis [29] or failure propagation tracing [25], can be used to analyze 

the scan dumps and identify the first failing state elements. 

To support scan-based debug, two essential features have to be enabled by the 

DFD infrastructure: breakpoint mechanism (i.e., trigger conditions detector) and 

execution control. Breakpoints (or trigger conditions) determine the points in time 

at which the system execution is stopped. Once the circuit is stopped, the internal 
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state is transferred to debug software to be compared with the obtained correct sUtte 

from simulation. The breakpoint circuitry can be reprogrammed to specify a different 

trigger condition to get an insight in the actual behavior of the CUD. The process of 

stopping the circuit at a certain time and observing its internal state can be repeated 

in a sequence of debug experiments (or sessions) until the bug is identified. 

The operations, that control the execution of the CUD during a debug session, 

can be explained as follows [112]: 

• Reset: to reset the chip and its environment to a knmvn state: 

• Run: to start the application; 

• Stop: to stop the on-chip clocks once the trigger condition occurred: 

• Scan out: to dump the content of the scan chains: 

• Single step: to step through the execution of the chip, one clock cycle at a time: 

and 

• Continue: to resume operation after execution has previously been stopped. 

These fonctions require an on-chip clock reset circuitry and a clock controller that 

provides stop. scan, continue, and single-step operations. 

The controlled execution of the circuits's internal functions is similar to the process 

of softvvare debug. During software debug, the debug engineer iteratively sets custom 

breakpoints to stop the program and then examines the state of the application. Vari­

ous breakpoints configurations and single step operations can be performed iteratively 

until the bugs are identified. During post-silicon validation, an on-chip breakpoint 

module is programmed to stop the CUD at a specific point in time. Thereafter, 

the contents of all flip-flops (i.e., scan chains) can be transferred off-chip via a low 

bandwidth interface to be analyzed. 

Example of a Breakpoint Debug Module 

Figure 2.2 shows an example of a breakpoint module, which is connected to several 

trigger signals from an embedded core. The selection of targeted trigger signals, that 

18 



Ph.D. TheHis - Elrnb A. Anis Daoud l\Icl\Iaster University - Electrical & Computer Engineering 

Trigger signals from Data through 
embedded core serial interface 

~- -~r~I. :-~-~MUX j---, __ J~= 
Comparator Comparator 

Breakpoint 

----T--, ~, .---=r--- II c~~t~~ITer 
Logical 1 • 

.... 1 •1------------l 
operator , 

;-=-Ev~nt ~ 1 
I. I counter/ r-------
1. Lsequencer, _ 
L _ - ------==r===--------==--==--=-

Breakpoint output 

Figure 2.2: Example of Breakpoint Debug 1'.Iodule 

debug engineer wants to trigger on. is uploaded to the breakpoint debug controller 

through the serial interface, e.g .. boundary scan IEEE 1149.1 standard interface [53]. 

The capability of the breakpoint module for detecting a certain trigger condition is 

essential in the identification of design bugs. Thus, the breakpoint debug module 

contains comparators which are used to compare the selected trigger signals against 

preprogrammed breakpoint registers existing in the breakpoint debug controller. The 

targeted comparison operations (e.g., less than, greater than or equal) are selected 

based on the control information uploaded in the breakpoint controller. 

As shown in Figure 2.2, two trigger signals can be selected using two multiplexes 

(l\IUXs) and these signals can be compared against the loaded values of the two 

comparators. A logical operation can be performed on the output of the two com­

parators such as OR, XOR, or AND operation. The output of the logical operator 

is connected to an event counter /sequencer. The event counter is used to determine 
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a certain event that occ:nrred a pre-defined munber of times. The event sequencer 

is used to determine multiple different events that occurred in a pre-defined order. 

The debug configuration that specifies the breakpoint condition can be uploaded to 

the breakpoint debug controller at run-time through the serial interface. \Vhen the 

targeted trigger condition occurs, the output of the breakpoint debug module triggers 

the clock controller that pro\·ides stop, scan. and single-step functions. It is important 

to note that the breakpoint module can contain more levels of logic than the ones 

shmvn in Figure 2.2. For example, bitwise operators can be inserted to precede the 

comparison operators to perform bitwise operation between a selected trigger signal 

and a pre-defined constant value uploaded in the breakpoint controller. 

To facilitate the inclusion of breakpoint modules during the design stage of the 

chip, a novel approach has been proposed to automatically generate breakpoints mod­

ules nsing breakpoint description language (BDL) [116]. BDL allows the designer to 

write the description that captures the specification of the breakpoint module. A 

BDL compiler tool then reads this description and generates the hardware implemen­

tation of the corresponding breakpoint module. However, the area of the generated 

breakpoints nsing BDL can be larger than their custom implementations. This area 

increase is because the generated breakpoints do not share common resources (i.e., 

comparators) [116]. 

Scan-based Debug Architecture 

Figure 2.3 illustrates the scan-based architecture for post-silicon validation [93]. Note 

that the surrounding combinatorial logic, associated with each scan chain, is not 

shown in this figure. There are two modes of operation: the test (or debug) mode 

on ATE and the debug mode on prototype target application board. In the test 

mode, the concat signal is set to 0 (i.e., Concat = 0) and the scan is configured for 

manufacturing test on ATE, where the scan chains are accessed in parallel through 

the functional pins. As mentioned earlier, part of electrical validation is performed on 

the ATE because of the ability to precisely control the voltage and frequency. In the 

debug mode where the CUD is debugged in-system, once the breakpoint debug module 

detects the trigger event, the clock controller stops all on-chip clocks. Thereafter, the 
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Figure 2.3: Scan-based Debug Architecture [93] 

concat signal is set to 1 (i.e., Concat = I) and hence the multiplexers concatenate all 

scan chains into one long shift register. The content of the scan chain is then shifted 

out via the SO pin through the serial interface (e.g., JTAG [53]). The received data 

can be applied to the chip via the SI pin during shifting out scan chains data. This 

procedure is repeated until all internal scan chains have been scanned out. After 

comparing the circuit's complete state against the expected one, the debug engineer 

can reprogram the breakpoint debug module to specify another trigger condition in 

order to capture and analyze the chip's state at another particular event. Upon 

observing a mismatch, the engineer tries iteratively to zoom in on the time and 

location of the error's occurrence by setting another trigger condition and analyzing 

the captured data. This process is continued until the root cause of bugs is identified. 

Then, the bug is fixed in the original design and new silicon is manufactured. Figure 

2.4 shows the iterative debug flow during post-silicon validation as described above. 

It is important to note that stopping a system with multiple clock domains may lead 
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to data invaliciation where some clock domains might use data from clock domains 

that have already stopped because the on-chip clocks do not stop simultaneously 

[41]. A novel data invalidation detector has been proposed in [41] to identify the scan 

elements (i.e., ftip-ftops) that capture invalid data, and hence the content of these 

elements will not be used for the comparison \Vith the simulation model. 

The clock controller can enable other control functions such as single step and 

continue operations. The single step operation is implemented as an extension to 

the debug scan-out operation, where the circuit is allowed to work in the normal 

mode and the scan enable on the scannable ftip-ftops is not activated. The continue 

operation is achieved by deactivating the breakpoint mechanism that releases the 

gating on the clocks, so that chip operation can resume. It is important that the 

phases and frequencies of the on-chip clocks are the same as at the moment the chip 

was stopped: otherwise, the resumed operation ·will not be the same as in the case of 

a chip that has not been stopped [31]. 

Because halting the execution during scan dump may destroy the system's state, 

capturing debug data in consecutive clock cycles can not be achieved by using only 
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the available scan chains. As hard-to-detect functional bugs appear in circnit st ates 

which may be exercised billions of cycles apart [57]. it is desirable to maintain the 

circuit operation during scan dumps. Although the nse of shaduw scan latches. which 

may incur a substantial area penalty [58], can avoid the destructive nature of the scan 

dump. a new capture cannot occnr until the scan dump has been completed. Becanse 

capturing debug data in consecutive clock cycles is essential for finding timing-related 

bugs, new debug methods have been developed to provide real-time observability of 

a limited set of internal signals. 

Real-time obserYation of a subset of internal signals off-chip, can be achieved by 

using dedicated chip pins to output the debug data to on-board acquisition buffers 

[112]. The limitation of this approach for state-of-the-art SoCs lies in the limited 

number of pins used for debug, as well as in the difficulty to drive internal data at 

high rates onto the board. As a consequence, embedded logic analysis methods that 

rely on on-chip trace buffers have emerged as a complementary approach to scan­

based methods in order to enable real-time and at-speed sampling of a limited set of 

internal signals [7L 78]. 

2.3 Embedded Logic Analysis 

Embedded logic analysis is a DFD technique used for improving the observability 

of internal signals of SoC design by acquiring debug data on-chip into embedded 

trace buffer. This is achieved through a DFD event detection mechanism that can be 

configured to a specific trigger event at \vhich the acquisition process starts or stops. 

2.3.1 Basic Principle of Embedded Logic Analysis 

Figure 2.5 illustrates the basic principle of an embedded logic analysis debug frame­

work. In this framework, the off-chip debug software communicates with the embed­

ded debug module through a serial interface such as the Boundary Scan interface 

(i.e., JTAG [53]). The embedded debug module contains an embedded trace buffer 

to provide real-time observability for a subset of internal signals. As shown in Figure 
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Figure 2.6: Circuit under Debug with Centralized Debug ~Iodule 

2.6, a centralized embedded debug module monitors a limited set of internal signals 

coming from embedded cores and the interconnect bus of the CUD. The concept of 

a centralized debug module has been used in debugging multi-core processor design 

[91]. The clebug flow during embedded logic analysis is explained as follows. 

A debug experiment (or session) starts by uploading the embedded debug module 

with the debug configuration (Step (1)). This configuration contains debug control 

information such as the trigger condition that specifies the point in time at which the 

acquisition of debug data starts, and the control data that specifies the selection of 

nodes that need to be probed. Once the trigger condition occurs during the execution 

of the on-chip application, the debug module will start capturing the selected signals 
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behavior into an on-chip trace buffer (Step (2)). The debug experiment is completed 

by transferring the trace buffer's content to debug software, where the captured data is 

analyzed (Step (3) ). The debug experiment can be iteratively repeated with different 

debug configuration until the design bugs are identified. 

2.3.2 Embedded Debug Module Architecture 

The key feature of an embedded debug module is to capture the behavior of selected 

internal signals upon the occurrence of a certain triggering condition (i.e., trigger 

event). This is achieved using an event detector that monitors a group of trigger 

signals to determine when the debug data is captured in the trace buffer. as shown in 

Figure 2. 7. The trigger condition can be performed based on bitwise. comparison or 

logical operations between a certain selected trigger signal and a specified constant 

value stored into a control register which exists in the embedded debug module con­

trol. To further enhance the detection ability of the debug module, the event detector 

is augmented by an event sequencer to monitor a specified sequence of events. The 
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configuration of the trigger signal selection, the trigger conditions. and the choice of 

the signals that need to be probed are uploaded to the embedded debug module con­

trol through the low bandwidth interface (e.g .. JTAG [53]). It is important to note 

that the event detector/ seqencer functionality used in the embedded debug module 

is similar to the one used in the breakpoint module of scan-based debug architecture 

described in Section 2.2.2. 

The embedded trace buffer can allow flexible acquisition by employing it as a seg­

mented buffer. Figure 2.8 shows the segmented trace buffer with S segments. Each 

segment captures the data upon the occurrence of the corresponding triggering con­

dition, e.g., Segment 1 starts the acquisition upon the occurrence of trigger condition 

1. Once the first trigger condition occurred, the event detector circuit is configured 

to monitor the second trigger condition. The event detection circuit is sequentially 

updated with the control information that specifies the required triggering condition 

until the last triggering condition is reached. Each segment size can be configured to 

work as a circular buffer segment and thus in this case the triggering condition can be 

used to stop the c1ata acquisition. The feature of a segmented trace buffer described 

above has been used in debugging FPGA designs [5]. 

26 



Ph.D. Thesis - Elrnh A. Anis Daoud l\Icl\faster University - Electrical & Computer Engineering 

Circuit under debug 
--- - -!-=------=--==-=--:----=-:~-=--=-=--~ _----:---__::___---==--=- --__ -- - -- - ~ 1 i 

[fr!Qgei- modu!e}l )Trigger module 2 

Core 1 Core 2 

Trigger module Interconnect Bus 

1-------- ---"""' c--"j 

Core 3 Core4 
Trigger module 3 I Trigger module 4 I 

Trace 

1 

buffer 

Debug 
controller 

JTAG 
interface 

Trace port 

Figure 2.9: I\lulti-core Debug Architecture \Vith Centralized Trace Buffer 

2.3.3 Embedded Logic Analysis Related Work 

\Vhile scan-based debug concepts have emerged from the manufacturing test research, 

trace buffer-based debug has been influenced by software debugging used in real-time 

embedded systems [76]. Real-time systems, centered around embedded processors or 

micro-controllers, have been traditionally debugged using in-circuit emulator (ICE) 

devices. ICEs are constructed using bond-out chips, which connect internal nodes 

to additional device I/ Os in order to make them visible off-chip to external instru­

ments. The limitation of using ICEs for state-of-the-art SoC devices lies not only in 

the increasing gap between the on-chip and off-chip frequencies, but also in a large 

footprint of the bound-out chips caused by the additional I/ Os used only for debug. 

As a consequence, for SoC designs there has been a trend toward placing the instru­

mentation on-chip, thus enabling at-speed sampling through embedded logic analysis 

[5, 71, 100, 122]. 

The trace buffer-based debug methods can be broadly classified as: special-purpose 

(i.e .. , specific to embedded processors) [47, 49, 77, 91, 95, 99] or generic (i.e .. appli­

cable to any type of custom SoCs) [L 2, 48, 71, 90]. In order to concurrently monitor 
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Figure 2.10: P.Iulti-core Debug Architecture with Multiple Trace Buffers 

signals behavior from different cores in complex SoCs, distributed trigger modules are 

allocated in multi-core architecture [46]. ~Ioreover, t\vo approaches can be used to 

support data tracing from embedded cores either: centralized or distributed trace. In 

the centralized trace approach, one trace buffer is employed for the entire SoC, where 

the trace data is selected through a multiplexer network [2]. Figure 2.9 shows the 

multi-core debug architecture with central trace buffer. The centralized trace buffer 

approach has been used in debugging the Cell processor which contains nine process­

ing cores [91]. Due to the limited speed and bandwidth of the serial interface, high 

speed trace port can be used for streaming the data that is captured into the trace 

buffer [36. 46]. Thus, the trace port can facilitate the debug process by offloading 

the trace buffer contents while running the on-chip application and hence allowing 

more data to be captured on chip. Nonetheless, due to the growing complexity of 

SoCs and the increasing number of embedded cores [109], the capacity and bandwidth 

of a single trace buffer used in the centralized trace approach limit the observability 

when signals from different cores need to be concurrently acquired. To address this 

problem, distributed trace buffers can be used to improve the real-time observability 

of the multi-core architecture. In distributed tracing approach, multiple trace buffers 
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are allocated to nrnltiple cores. \\·hen_' the data can be acquired simultaneousl.\· from 

different cores during the debug process [GG. 71]. In order to efficiently utilize the 

available on-chip trace buffers, they can be dynamically allocated based on the trig­

ger conditions that may occur consecutively over a short interval from different cores 

[66]. For example, in Figure 2.10. three trace buffers can be shared in such a manner, 

data can be captured simultaneously from three different sources. e.g., three cores or 

two cores and the interconnect bus. 

In summary, the event detection capability described previously and the embedded 

trace buffer are the two main essential features in embedded logic analysis. The event 

detection mechanism helps the debug engineer to specify the trigger condition which 

starts and/ or stops the capturing process of the debug data into trace buffer. The 

capacity of the embedded trace buffer limits the amount of data that can be captured 

during a debug session and hence can lengthen the debug process. In order to enhance 

the event detection capability and extract more data than the one that is captured 

on-chip, a number of debug techniques have been proposed to address these issues. 

2.4 Recent Advancements in DFD Techniques 

As stressed earlier the event detection mechanism used in the DFD infrastructure of 

both scan-based debug methodology and embedded logic analysis, and the capacity of 

on-chip trace buffer employed in the embedded logic analysis are two essential features 

in identifying design bugs during post-silicon validation. In this section, we describe 

the debug techniques that have been recently developed to address these features 

and thus improve the observability during post-silicon validation. First, we describe 

the assertion-based debug technique which has been recently used as a detection 

mechanism for identifying the violation of design properties, and thus it facilitates 

the localization of the root cause of a faulty execution behavior in the circuit under 

debug. Second, we present a new detection mechanism based on transaction-level 

debug techniques for debugging designs that contain complex on-chip communication 

infrastructures. Third, we introduce the emerging techniques to address the limited 

capacity of the on-chip trace buffers used in embedded logic analysis. 
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2.4.1 Assertion-based Debug 

Assertion-based verification (ABV) is \videly used to shorten the pre-silicon verifi­

cation process in the design flmv [37]. An assertion is a statement that describes a 

design's intended behavior (also referred to as a property), which must be satisfied in 

an error-free design. For example. an assertion may state that a FIFO buffer overflow 

should never occur. i.e .. If the data is written into a full FIFO buffer, the asser­

tion will be fired to indicate the occurrence of a faulty behavior which caused the 

FIFO overflow. Assertions describe the intended circuit functionality using hardware 

verification language such as System Verilog [54] or Property Specification Language 

(PSL) [4, 55]. The follmx;ing example illustrates how an assertion is written in PSL 

to express a certain property of a bus arbiter: 

assert always ({ !req;req} I => { reqf *O: 1 };grant}) 

In this example, the bus arbiter assertion states that the bus should give a bns 

grant within two clock cycles when the request signal goes from low to high and 

the request signal remains high until the grant is received. The I => operator is a 

temporal implication (the preconditions and the post-conditions represent its left and 

right arguments respectively). the [*low: high] operator specifies a range of repetition, 

and the semicolon";" represents temporal concatenation. Upon the occurrence of the 

preconditions ( { !req;req}), if any of post-conditions ( { reqf*O: 1 };grant}) is not satisfied, 

the assertion \vill be asserted to indicate an error. The distinguished benefit of ABV 

methodology lies in improving the observability within the design by revealing any 

unexpected behavior caused by a bug that leads to an assertion violation (or failure). 

Thus, an assertion failure is used as a beginning step for the debugging process of 

identifying design errors and hence accelerates the error localization. 

Assertions have been used extensively in formal verification and simulation tech­

niques during pre-silicon verification [51, 70]. In formal verification, assertions are 

used to indicate if the design properties are proven correct. Nonetheless, the growing 

complexity of SoC designs makes proving the correctness of properties computation­

ally impractical. On the other hand, assertions are used in simulation in such a 

manner that the actual circuit responses obtained during simulation can be checked 
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Figure 2.11: Basic Principle of Assertion-based Debug 

dynamically by the simulator against the specified properties. \Vhen any of the spec­

ified assertion rules is violated, a report containing information such as when and 

vvhere the violation occurs is generated so that the debug engineer can study ;-md 

fix the corresponding error. It is essential to note that the existence of no assertion 

failure is not an indication that the design is error-free. This indicates only that the 

design properties specified by the assertions are satisfied. 

Synthesizing assertions (or design properties) into hardware checkers has recently 

become an effective technique to perform in-system post-silicon design validation 

[2, 19]. To enable assertion-based debug during post-silicon validation. a checker 

generator is used to produce hardware assertion checkers from assertion statements 

written using a hardware description language [20, 22]. As shown in Figure 2. lL the 

checker generator is used to generate the assertion checkers from the assertions which 

are specified in PSL. The outputs of the assertion checkers are monitored by the 

embedded debug module. The output of a certain checker will be asserted to indicate 

an assertion failure of the corresponding design property specified by the checker. The 

checker output can be used as a trigger signal to stop capturing the data into trace 

buffer, as explained later in this section. The advantage of using assertion checkers 

lies in facilitating the process of locating the root cause of observed errors by starting 

the analysis process of detected errors from the places that fire the assertions. 

Figure 2.12 shows an illustrative example of the bus arbiter assertion described 

earlier: assert always ({ !req;req} I => { reqf*O: 1 };grant}). The output of this checker 

circuit will be asserted when the request (req) signal goes high and the bus arbiter does 

not grant a bus grant within at most two clock cycles during which the request signal 

remains high. The assertion checker generator builds the circuit based on various 
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automata for PSL properties [22, 23]. As shown in Figure 2.12(a), an automaton is 

illustrated as a directed graph. where vertices represent the states, and the conditions 

for the transitions among the states are written on the edges. The checker generator 

transforms the automaton of the assertion into RTL code. Based on the assertion 

checkers described in [2L 23], the assertion checker can be implemented in hardware 

using combinational logic and flip-flops as shown in Figure 2.12(b). In this example, 

the state SO is the initial state, which is activated upon a reset and the state 54 is the 

final state, which is reached upon an assertion violation. The output of an assertion 

checker can be connected to a flip-flop to enhance the frequency performance [20]. 

Assertion checkers can be dynamically configured into a dedicated reconfigurable 

logic [2, 19]. Thus, assertions can be integrated in embedded logic analysis to facilitate 

the debug process. For example, a firing assertion can be used as a trigger to stop 

capturing data into the trace buffer (i.e., the trace buffer is employed to work as a 

circular buffer during the debug experiment) and hence the captured data represents 

the behavior of the internal signals, which occurs over an interval that precedes the 

bug detected by the assertion. Thereafter, the captured data can be analyzed in order 

to identify the root cause of the fired assertion. 

32 



Ph.D. Thesis - Ehab A. Anis Daoud 

-------, 

Initiator 

Master --·r-··-t• 
--~-~ 

Event 
monitor 

I 

l\Icl\Iaster University - Electrical & Computer Engineering 

Interconnect 

Debug control 

Target 

Slave 

Event 
monitor 

Figure 2.13: Transaction-Based Communication-Centric Debug [ 42] 

2.4.2 Transaction-level Debug 

The increasing complexity of the on-chip communication infrastructures of SoC de­

signs has recently motivated the researchers to introduce communication-centric de­

bug techniques. As a consequence, transaction-level debug techniques have been 

proposed to aid in speeding up the debug process of SoC designs that have a complex 

on-chip comnrnnication infrastructure [42] (e.g., a network-on-chip (NoC) [15]). A 

transaction can be defined as an exchange of a data or a sequence of related events 

between two components. e.g., request and acknowledge signals. These transaction 

events will cause data transfers on the on-chip communication infrastructure. The 

concept of transactions-level modeling (TLI\I) has been used, as a high level of ab­

straction, in pre-silicon verification to boost the performance of simulation [101]. In 

the TLM approach, the details of communication among design modules are sepa­

rated from the details of the implementation of these modules. The communication 

mechanism at the transaction level can be described using a high-level modelling 

language (e.g., SystemC [43]). Transaction-level debug approach has been recently 

adopted in post-silicon validation, as described next. 

Figure 2.13 shows transaction-based communication centric debug architecture, 

where the transaction monitor is used to observe the communication transactions be­

tween the embedded cores [27]. The debug control manages the interaction between 
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the cores by controlling the generation. and deli wry of transactions during the ck­

bug process [cl2. 113]. A transaction is initiated by a master port on the initiator 

core, by sending a request which is executed by the receiving slave port on the target 

core that responds by sending an acknowledgment to the master. The SoC com­

munication infrastructure uses specific communication protocols such as Open Core 

Protocol (OCP) [83], Device Transaction Level (DTL) [87], and AXI [9]. During the 

communication-centric debug session, upon the detection of a transaction with spe­

cific characteristics (e.g .. with a specific destination target, data value. or frequency 

of occurrence), the transaction monitor can signal to the debug control unit that the 

interconnect has to stop the transportation of transactions [113]. The control debug 

unit can also stop the suspected core in order to inspect the system's state through a 

scan dump using scan-based debug methodology. The proposed debug approaches im­

plemented in [42, 113] have been extended to address the distributed-shared-memory 

communication infrastructure for multi-processor SoCs [114]. 

Other transaction-level debug architectures are currently emerging. For example. 

novel transaction-based debug architecture has been recently proposed in [104] to 

enable an efficient and effective cross-trigger mechanism among multiple embedded 

cores. Debug features, such as transaction trace module and debug access module. 

have been introduced for the architecture presented in [102] in order to facilitate con­

current debug of the embedded cores and the inter-core communication infrastructure 

[103]. It should be noted that the debug architectures and techniques proposed in 

this dissertation can be used as complementary approaches to the architectures and 

methods discussed in this section to further increase their effectiveness in debug. 

2.4.3 Compression in Embedded Logic Analysis 

The capacity of on-chip trace buffers employed for embedded logic analysis limits the 

observation window of a debug experiment. To address this problem, compression 

techniques have been introduced to extract as much data as possible from a given 

debug experiment, i.e .. to increase the observation window. The existing compression 

methods can be classified into special-purpose methods for embedded processors and 
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generic methods for any custom SoC design. 

The trace compression techniques for embedded processors are based on exploit­

ing the unique characteristics of the running program. For example. the running 

soft.ware contains code segments (or basic blocks) that are executed repeatedl.\· and 

hence the address value of these blocks is increased by a certain offset. The address 

trace reduction can be achieved by eliminating the redundant temporal information 

on the address buses. It is essential to note that the hardware-based compression 

techniques for compressing the data traces are different from the software-based trace 

compression techniques that are used for simulation environments [106]. For the 

software-based compression techniques, the address trace can be compressed using a 

two-pass algorithm [88]. In the first pass. an intermediate partially compressed trace 

is created, and the dynamic control fl.ow of the program is recorded. During this 

pass, the unique instruction addresses are expressed as offsets from their previous 

references. During the second pass. the generated trace from the first pass and the 

associated dynamic control fimv information are used to encode the dynamic basic 

block successors and the data offsets using run length encoding. Despite the higher 

compression ratios that can be achieved using these software-based techniques, they 

are not suitable for real- time trace compression because of the area overhead required 

to store the trace data and the associated control information before compression. As 

a consequence. hardware-based trace compression techniques have been introduced 

to enable real-time trace compression, as described next. 

Figure 2.14 shows the three phases of a hardware approach to real-time address 

trace compression for embedded processors [60]. In this approach, the program ad­

dresses generated from the address bus of the microprocessor are first passed through 

the branch/target filtering phase to filter out the sequential addresses and retain the 
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non-sequential addresses. The concept of trace filtering exploits the characteristics 

of the basic block which consists of a sequence of executed instructions. The basic 

block starts with a target instruction and it ends \vith a branch instruction which 

redirects the execution of the running software to etnother basic block. Because the 

addresses of the instructions between the target ancl the branch instructions within a 

basic block are incremented linearly ·with a certain offset, the branch/target filtering 

phase records only the a<ldresses of the branch and the target instructions in order 

to reduce the trace size. The trace reduction techniques that are based on filtering 

out data at specific intervals by recording the target and branch addresses have been 

used extensivel.\' in debugging embedded processors [10, 52, 77]. 

In the second phase in Figure 2.14. the filtered addresses are encoded to eliminate 

the redundant address information by reducing the average bit width of the address 

data trace. Because the basic block contains few instructions, the difference between 

the address of the target instruction and the address of the branch instruction for 

the same block is small and hence this difference um be encoded using fe\ver bits 

than the hits required for encoding the branch address itself. During this second 

phase, the target address is encoded using the following two successive steps: the 

binary address patterns are first partitioned into equal slices, e.g .. 32-bit word can 

be partitioned into 8 slices and each has 4 bits: then, the encoding is performed 

on these slices. The purpose of this address data partitions step is to facilitate the 

encoding process and to reduce the bit width of the address in order to achieve good 

compression during the final phase. To further reduce the size of the addresses, the 

third phase compresses the encoded address trace using a lossless data compressor of 

the Lempel-Ziv (LZ) compression algorithm [124]. This dictionary-based compression 

approach is employed in the third phase because its hardware implementation can 

perform compression in real-time, and it can achieve high compression ratio clue to 

the repeated addresses patterns that result from the execution of the loop statements. 

The differences bet\veen the above described address trace compression technique 

[60] and our proposed generic compression techniques, which are described in this 

dissertation, are discussed in Chapter 3. Because the data in custom SoC designs 

may exhibit less repeated patterns or span larger ranges than the address data of the 
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embedded processors. different trace compression techniques have emerged to acklress 

this issue, as described next. 

For custom SoC designs, several compression techniques have been recently pro­

posed to extend the \vidth and the depth of the observation window. In the \viclth 

compression technique. the length of the observation window remains the same and 

compression is achieved by re-constructing the values of more signals from the ones 

that are captured in the trace buffer. For example. the width compression can be 

achieved h:v analyzing the design and identifying a subset of essential signals \vhich, 

after being captured on-chip, would then be expanded in the debug soft,vare using the 

knowledge of the design data [48, 67]. By applying the sampled data onto a behavioral 

model of the design. the debug engineer can reconstruct data for signals that are not 

monitored by the embedded logic analyzer. The concept of signal restoration have 

been proposed to restore data in the combinational nodes of the circuit under debug 

[48]. By exploiting the boolean relationships among logic gates, data sampled in the 

state elements can be forward propagated and backward justified through the circuit 

netlist to reconstruct the behavioral information of the combinational nodes. The 

method proposed in [67] allows data to be restored in sequential elements across mul­

tiple clock cycles. In this approach, by only monitoring a subset of state elements, 

data can be reconstructed for other sequential elements, as well as combinational 

nodes in the design. 

The basic principle of state restoration from [67] is demonstrated in the example 

shown in Figure 2.15. Figure 2.15(a) shows the CUD with five flip-flops (FFs), and 

Figure 2.15(b) gives the data in the state elements after the restoration algorithm 

from [67] is applied. In this example, only FF C is sampled during clock cycles 0 - 3. 

It should be noted that the x in the table refers to values that cannot be restored 

using only the subset of sampled data. Using backward justification, when a logic 1 

is captured in FF C, the values of FF A and FF B can be evaluated as logic 1 and 

0 respectively in the previous clock cycle. On the other hand, the values of FF C can 

be forward propagated to indicate the values of FF D in the following clock cycle. 

However, for FF E, its value can be reconstructed when the values of FF B and 

FF C are known in the previous clock cycles. As shown in this example, using only 
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Figure 2.15: Illustrative Example of State Restoration [67] 

the four values obtained in FF C for clock cycles 0 - 3, data can be restored for 

other state elements across multiple clock cycles; this results in a restoration ratio 

of 14/ 4 = 3.5X. However, the number of clock cycles for which the data is restored 

depends on the length of the observation \Vindow determined by the depth of the 

on-chip trace buffer. Hence, any complementary depth compression techniques that 

can extend the observation window (as the ones presented later in this thesis) will 

also improve the methods from [48, 67]. 

2.5 Concluding Remarks 

In this chapter, we have discussed the background and the related work of the existing 

techniques for post-silicon validation. We presented two complementary approaches. 

Although the first approach that relies on scan-based debug methodology provides 

full observability of the internal system's state, it is not capable of handling real-time 
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acquisition in consecu ti \·e clock c:~·cles. It is also impractical to a pph· this technique 

every clock cycle over a long execution time. Thus. embedded logic analysis tech­

niques, which are based on real-time trace. have been introduced in order to aid 

scan-based methodology and improve real-time observability. Finally, we discussed 

the existing techniques used to improve the observability of the internal circuit's nodes 

and accelerate the post-silicon validation process. 
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Chapter 3 

Embedded Debug Architecture for 

Lossless Compression 

In this chapter. we propose a novel architecture for embedded logic anal:vsis that en­

ables real-time lossless data compression in order to extend the observation window 

of a debug experiment and hence improve the observability. The proposed archi­

tecture is particnlarly suitable for in-field debugging of SoCs that have sources of 

non-deterministic behavior such as asynchronous interfaces. In order to measure the 

tradeoff between the area overhead and the increase in the obserYation \vindow, \Ve 

also introduce a ne\v compression ratio metric. \Ve use this metric to quantify the 

performance gain of three dictionary-based compression algorithms tailored for em­

bedded logic analysis. 

The rest of this chapter is organized as follows. Section 3.1 gives preliminaries for 

the research work presented in this chapter, outlines the motivation behind it and 

summarizes its contributions. Section 3.2 analyzes the performance of different com­

pression algorithms based on the proposed ne\v compression ratio metric. Section 3.3 

presents the proposed debug architecture. Section 3.4 describes our proposed imple­

mentations of three dictionary-based lossless compression algorithms. Experimental 

results from Section 3.5 show how the proposed compression ratio metric is used to 

quantify the performance gain of these three compression algorithms. Finally, Section 

3.6 concludes this chapter. 
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3.1 Preliminaries and Summary of Contributions 

Embedded logic analysis has emerged as a powerful technique for the purpose of 

enabling at-speed acquisition of data from a limited set of internal signals in real 

time. Embedded logic analysis methods that rely on on-chip trace buffers are used 

as a complementary approach to scan-based methods to facilitate the identification 

of functional bugs cluring post-silicon validation [110]. Trace buffer-based techniques 

have been recently cmplo.ved for debugging microprocessors [10. 38, 46], SoC designs 

[2, 48, 7L 110]. and field programmable gate arrays (FPGAs) [5, 100. 122]. Nonethe­

less, the amount of debug clata that can be captured into an on-chip trace buffer 

during embedded logic analysis is limited by the trace buffer width, which constrains 

the number of signals to be probed, and its depth, which limits the number of samples 

to be stored. To address this problem, compression techniques have been introduced 

for the width ancl/ or depth of the trace buffer, as described in Section 2.4.3 from 

Chapter 2. In this chapter, \Ve introduce a novel debug architecture that enables a 

depth compression technique for embedded logic analyzers. 

The choice of the depth compression method relies on the type of the silicon 

debug experiment. The validation process generally consists of t\vo main phases. In 

the first phase the bug appears on an application board and its occmrence cannot 

be reproduced immediately in a deterministic fashion. This happens if the bug is 

triggered by non-determ•inistic input sources coming from the design environment, 

such as asynchronous interfaces or interrupts from peripherals [94]. In this phase the 

main objective is to understand and isolate the input behavior that causes the bug to 

manifest itself. This helps defining the subsequent debug experiments when the bug 

can be triggered deterministically by controlling the inputs. In the second phase the 

silicon debug experiment becomes deterministic in the sense that the same behavior 

can be reproduced consistently either on an ATE or on an application board. The 

main objective in this phase is to trace the root cause of the bug and for this to be 

achieved. it is necessary to collect as much data as possible (this data is subsequently 

passed to post-processing software). This type of debugging with deterministic input 

sources is referred to as deterministic replay or cyclic debugging. 
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For com press mg debug data for the former problem ( non-cletenninist ic in pn 1 

sources), in this chapter we propose a novel debug architecture that supports rcal­

time lossless clata compression. Because the compression algorithms may vary in 

terms of their resource requirements for real-time compression, a trade-off between 

the amount of additional on-chip area required by the compression architecture and 

the compression ratio needs to be taken into account. Therefore. in this chapter we 

introduce a new compression ratio metric that measures the trade-off bet\veen the 

area overhead of the compression architecture and the increase in the observation 

window. The main contributions of this chapter are summarized as follmvs: 

• we analyze the requirements for lossless data compression and introduce a new 

compression ratio metric that captures the real compression benefits of using 

compression in embedded logic analysis. Based on these requirements and the 

proposed compression ratio metric, \Ve present the performance analysis of dif­

ferent lossless compression algorithms: 

• we propose novel implementations of dictionary-based compression algorithms 

that satisfy high-throughput/real-time encoding to aid in embedded logic analy­

sis. The proposed dictionary-based compression architectures support the most 

commonly used replacement policies. 

3.2 Embedded Logic Analysis Framework 

This section introduces the embedded logic analysis framework based on lossless com­

pression. \Ve first analyze the requirements for lossless data compression in embedded 

logic analysis. Second, we introduce a new compression ratio metric that measures the 

trade-off between the area overhead of the compression architecture and the increase 

in the observation window. Finally, we provide performance analysis of different 

compression algorithms based on the proposed compression ratio metric. 

Figure 3.1 shows the basic principle of embedded logic analysis framework based 

on lossless compression. The off-chip debug software communicates with the on-chip 

debug module through a serial interface (e.g., JTAG [53]) as shown in Figure 3.1. A 
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Figure 3.1: Embedded Logic Analysis Frame\vork Based on Lossless Compression 

debug experiment starts by uploading the debug module with its configuration (Step 

(1)), which specifies the trigger event at which the acquisition process starts. After 

the trigger event occurs, the compressed data is stored in the trace buffer (Step (2) ). 

After the trace buffer is filled, the debug experiment is completed by offloading the 

compressed data to the debug software (Step (3)), where the debug information is 

decompressed (Step ( 4)). 

3. 2.1 Lossless Compression Requirements 

Three main requirements have to be satisfied in order to enable lossless data compres­

sion in embedded logic analysis. The first requirement is obviously a good compression 

ratio. The second requirement is the real-time compression, v;hich is motivated by 

the demand of at-speed sampling when hard-to-find bugs occur only due to external 

events that are dependent on the application environment. Because the application 

board may have sources of non-determinism that prohibit deterministic replay of the 

debug experiment, a lossless compression method should be used to exactly retrieve 

the sequence of events that have lead to or have happened after the trigger event 

has occurred. The third requirement is that the area overhead of the proposed archi­

tecture should have an acceptable impact on the silicon area. Having a compressor 

with a very large area will defeat the very purpose of using compression in embedded 

logic analysis, which is to extend the observation window of a debug experiment at 

low cost. For example, if the compression ratio is only 2x and the area overhead of 
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the encoder is larger than the trace buffer itself. then it is more convenient to double 

the size of the trace buffer. as \Ve \vill obtain the same observation winclow with less 

silicon area. These three requirements uniquely characterize the compression method 

in embedded logic analysis. Therefore, \Ve propose a novel compression ratio metric 

to quantify the performance gain from using a specific compression algorithm in an 

embedded debug module. 

3.2.2 The Proposed Compression Ratio Metric 

The proposed metric is called adjusted compr·ession ratio and it is defined as C Rae/just = 

(1+ A~~~:'.~':herut): where C Rdata is the data compression ratio achieved by the compres-
.11 

sion algorithm: 1\J is the area of the trace buffer; and AreaOverheacl is the area 

required by the hard·ware implementation of the compression algorithm. If the com­

pression is not employed and the trace buffer is increased to include the area over­

head of the compression architecture. the observation window size \Vmdd increase by 

( J\J +Are~\~verhead). Intuitively, the proposed compression ratio measures the trade-off 

between the area overhead of the compression architecture and the increase in the 

observation window. For example, if the trace buffer size is 8 kb:vtes and the equiva­

lent area overhead of a specific compression architecture in terms of trace buffer area 

is also 8 kbytes and the achieved data compression ratio is 2, then using compression 

will bring no benefit in extending the observation window because C Radj,,st = 1. In 

summary, this ne\v metric captures the authentic merit of the compression method, 

by taking into account both the compression ratio and the area overhead. Before 

justifying our selection of compression algorithms to be used in embedded logic anal­

ysis, we first review and analyze several lossless compression algorithms based on the 

previous requirements and the proposed compression ratio metric. 

3.2.3 Performance Analysis of Compression Algorithms 

Lossless data compression algorithms can be classified into two main categories ei­

ther statistical coding algorithms or dictionary coding algorithms. It is known that 

statistical-based compression algorithms, such as Huffman coding [50] or arithmetic 
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coding [92]. can lead to au optimal average coclc length and hence a goocl compn:s­

sion ratio can be achieved [50]. For instance. in Huffman coding. variable length 

codewords are used to replace the most frequently occurring symbols with shorter 

codewords and the less frequently ones with longer codewords. The static imple­

mentation of these methods requires two passes over the same data, in the first pass 

the tree-based codewords structure is built and in the second pass the encoding is 

performed. 

For the 1-eal-time requirement and the fact that debug data is not knmvn a-priori 

as mentioned earlier. these static methods are not suitable for embedded logic anal­

ysis. Nonetheless. statistical-based methods can be implemented in an adaptive \my. 

as in the case of dynamic Huffman coding algorithm [65] where the tree-based code 

is created and maintained according to the changes in the incoming symbols' prob­

abilities. The hardware implementation of adaptive Huffman coding. based on a 

tree-based codewords structure. is presented in [74] with a throughput of approxi­

mately 1 bit/cycle. Consequently. for a high throughput application, the tree-based 

implementation will not be suitable. Hmvever, the adaptation can be clone in real 

time with extra area overhead based on ordered codeword tables [68, 73]. Never­

theless, according to the proposed compression ratio metric C Radjusti these adaptive 

statistical-based methods implementations will bring no benefit in embedded logic 

analysis. This is because their silicon area is prohibitively large to be implemented 

into an embedded debug module. 

The second category of data compression algorithms is the dictionary-based com­

pression algorithms. Representative examples of this type of algorithms are locally 

adaptive data compression algorithm (BST\V) [17] or Lempel-Ziv (LZ77) compres­

sion algorithm [124] and its variants LZ78 [125], LZ\V [119] and \VDLZ\V [56]. The 

compression in these algorithms is achieved by encoding a symbol or a sequence of 

consecutive symbols into shorter codewords which are represented by indices to the 

dictionary entries. The adaptive dictionary-based algorithms can achieve competitive 

compression ratios compared to the adaptive statistical algorithms [17]. In order to 

perform fast search in hardware between the incoming symbol and the dictionary 

entries, a dedicated fast parallel search engine called a content-addressable memory 
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( CA?\I) is used [84]. The hardware implementation of the adaptive dictionary-based 

algorithms can achieve both high throughput and good compression ratio as presented 

in [73, 81, 82]. However, the area reported in the previous implementations is too 

large to be acceptable in embedded logic anal:.·sis. Therefore, in this chapter, we pro­

pose a debug architecture. that supports adaptations of dictionary-based compression 

algorithms. to achieve real-time compression and an acceptable balance bet\veen the 

compression ratio and the area overhead as quantified by the proposed compression 

metric CR udJ ust. 

3.3 The Proposed Debug Architecture 

This section describes the proposed debug architecture which enables real-time lossless 

data compression. The main contribution in this architecture is the encoder module 

which is shaded in Figure 3.2. First, \Ve provide an overview of the main features in 

an embedded debug module. Second, we introduce the proposed encoder architec­

ture, \Vhich supports dictionary-based lossless compression algorithms, followed by its 

variants of implementations that support different replacement policies. 

3.3.1 Overview of Embedded Debug Module 

The embedded debug module enables capturing a set of internal samples after the 

occurrence of a certain triggering condition. By monitoring a group of trigger signals, 

an event detector determines when the debug data is captured in the trace buffer as 

shown in Figure 3.2. In our implementation, the triggering condition can be performed 

based on bitwise, comparison or logical operations between certain selected trigger 

signal and a specified constant value. To further enhance the detection ability of 

the debug module, the event detector is followed by an event sequencer to monitor 

a specified sequence of events. The configuration of the trigger signal selection, the 

triggering conditions. and the choice of the signals that need to be probed are uploaded 

to the embedded debug module control through the low band\vidth interface (e.g., 

JTAG [53]). 
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Figure 3.2: The Proposed Embedded Debug Module 

3.3.2 The Proposed Encoder Architecture 

In this chapter, we propose three implementations of dynamic dictionary-based com­

pression algorithms for embedded logic analysis. First, a locally adaptive data com­

pression algorithm or BSTW [17] is used based on a fixed width dictionary structure. 

Second. a modified version of this algorithm is presented. Third, a word-based dy­

namic Lempel-Ziv (\VDLZ\V) data compression algorithm [56] is employed based on 

a hierarchy variable \Vorel dictionary width structure. In these algorithms, the dic­

tionary is implemented in hardware using CA1I whose depth represents the total 

number of entries in the dictionary. 

Figure 3.3 shows the proposed encoder architecture that supports these dictionary­

based compression algorithms and Table 3.1 gives the CA1I terminology used in this 

architecture. To illustrate the basic principles of using the CA1I for real-time data 

compression, we first introduce the hardware implementation of the single-symbol 

width dictionary BSTW algorithm as follows. At the beginning of a debug experi­

ment, the encoder is enabled by setting Encoder - en flag and the user can configure 
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(1) Encoder CTRL implementation with 
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(2) Encoder CTRL implementation with 
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Figure 3.3: The Proposed Encoder Architecture with support of FIFO and Random 
Replacement Policies 

Differential - en flag to select one of the two lossless compression techniques: di­

rect encoding or differential encoding (where the difference bet\veen t\VO successive 

symbols is encoded). The direct encoding method is explained as follows: after the 

trigger condition occurs, the encoder starts its operation; if the symbol exists in the 

CAJ\I then the match address, which represents the codeword, is written in the trace 

buffer; if the incoming symbol does not exist in the CAM, a code\vord 0 (this code­

word is reserved for the symbols that do not exist in the CAl\I), indicating that this 

symbol is an un-encoded symbol followed by the symbol, to be written in the trace 

buffer; then, this symbol is written in the CAJ\I at the address pointed by a control 

address counter in the Encoder CT RL. This address counter is initialized to 1 at 

the beginning of the debug experiment and it is incremented each time a mismatch 

occurs. Once the counter reaches the threshold of the CA~I's depth, which indicates 
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Table 3.1: Terminology for the Proposed Encoder Architect me 

~ame 

we 
data - wr 
data - comp 
address - wr 
niatch - address 

Representation 
CA~! write enable 
CA~! write data 
CA~I compare data 
CA?-.I write address 
The match address (codeword) 

that the CA~I is filled \Vith symbols, a replacement policy is employed. Because 

the replacement policies vary in terms of their resource requirements, we discuss the 

implementations of the most commonly used replacement policies in the following 

subsections. It should be noted that the proposed architecture provides simultaneous 

data searching and writing in the same clock cycle, and it has been verified using 

Xilinx CAl\I [121]. 

The First-in First-out Replacement Policy 

The first-in first-out (FIFO) replacement policy is employed to replace the symbols 

that have been written in the CA~I in sequence starting from the oldest symbol. 

Regardless of the recency or the frequency of the symbol occurrence. the replacement 

is decided based on its first occurrence when it was written in the CAl\I. To enable 

this replacement policy in the proposed architecture shown in Figure 3.3, the address 

counter which exists in the Encoder - CT RL restarts from address location 1 once 

it reaches the threshold of the CA~I's depth. 

Random Replacement Policy 

Random replacement can be enabled using a linear feedback shift register (LFSR). 

A LFSR is a shift register whose input bit is a linear function which is provided by 

exclusive-or (xor) of some bits of the entire shift register value. In this replacement 

policy, the LFSR is employed as a Pseudo-random number generator [13], where the 

generated number represents the address of the symbol that needs to be replaced. 

To generate a long output sequence that covers the entire address space of the CAl\I 
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entries, the LFSR has to represent a maximal polynomial (i.e .. LFSR with wiclt h n 

will produce 2" - 1 states within the shift register except the state \vhere all of its bits 

equal zero). The initial value of the LFSR is called the seed and it has to be not equal 

0 since this value \vill lead to no change in the LFSR state. Because the location 0 

is not used in the encoding process as described above, the address register, shown 

in Figure 3.3, can be employed to work as a LFSR with an initial seed equals 1 once 

the replacement starts. Note that the LFSR will eventually enter a repeating cycle 

after it generates all of its possible states that represent the maximal sequence. 

The hardware implementation of either the FIFO or the random replacement 

policy requires a smaller area overhead than the one required by the least recently 

used (LRU) replacement polic~· or the move-to-front (I\ITF) replacement policy [17]. 

For the I\ITF replacement policy, most recently used symbol will be stored in the 

first CAM cell whereas the contents of CAI\I cells will be shifted clown and hence the 

LRU symbol will be replaced \vhen a new symbol needs to be added in the CA::\I. 

Thus. the I\ITF replacement policy requires a specific construction of the CAl\I cells 

[8L 82], and hence a substantial area is required. This makes this type ofreplacement 

policy unacceptable for embedded logic analysis, because the compression gain is offset 

by the silicon area. as discussed earlier in Section 3.2.2. Nonetheless, we propose a 

modified LR U replacement policy of relatively low cost in order to achieve a reasonable 

compression ratio and attain an acceptable area overhead. 

Modified Least Recently Used Replacement Policy 

The proposed modified least recently used (LRU) replacement policy is based on 

combining FIFO replacement policy \vith LRU replacement policy to obtain an ap­

proximate LRU replacement policy that has a small impact on the silicon area. In the 

proposed architecture shown in Figure 3.4. the CAl\I is divided into n segments and 

the index of the most recently used (~IRU) segment is stored in register 0 (Reg(O)) 

while the index of the LR U segment is stored in register n - 1 (Reg ( n - l)). This regis­

ter array is used to keep track of the order of recently accessed CA:l\I segments during 

the encoding process. The value stored in address segment register (address - seg) 

represents the address of the symbol that needs to be added or replaced within the 
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(3) Encoder CTRL implementation with (4) Encoder CTRL implementation with 
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Figure 3.4: The Proposed Encoder Architecture with support of l\Iodified LRU and 
l\Iodified LFU Replacement Policies 

segment during the encoding process. Because -vve use FIFO replacement within each 

segment. this register is employed to operate as a counter. The width (and depth) 

of the register array and the width of the address segment register (address - seg) 

are dependent on both the CAl\I depth and the number of segments (e.g., if CAl\I 

depth equals 64 and the number of segments equals 4, then the width of register array 

equals 2 bits and its depth is 4 registers while the width of address - seg register is 

4). 

Algorithm 1 describes the updating process of the register array during each clock 

cycle, and it also shows how the writing address address-wr of the CAl\I is computed 

to enable the proposed modified LRU replacement policy. Before the updating process 

of the register array starts, each register of this array is initialized to its segment index 

(lines 1 and 2). It is essential to note that before the CA1\1 is filled with symbols, 

the segment addresses operate in sequence starting from segment 0 to n - 1 and each 
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Algorithm 1: :..Iodified LR.U Replacement Policy 

1 for ( i = 0 to 11 - 1) do 
2 Reg (i) +--- i: (initialize the register array 

with segment indices) 
end 

3 while (the debug experiment is running on CUD) do 
4 if (miss and CAM is filled) then 
5 address-wr = {Reg(n - 1),address-seg(Reg(n - 1))}: 
6 Reg (0) +--- Reg (n - 1): 
7 for (i = 0 to n - 2) do 
8 Reg (i + 1) +---Reg (i): 

end 
else (match occurs (or miss occurs and CAl\I is not 

filled where the writing address occurs) on segment 
whose index is stored in Reg( k)) 

9 if (Id = 0) then 
10 Reg (0) +--- Reg (k): 
11 for ( i = 0 to k - 1) do 
12 Reg (i + 1) +---Reg (i): 

end 
end 

end 
end 

address segment (address - seg) counts from 0 to its maximum value (e.g .. a value 

of 31 for a 5-bit register). As shown in Algorithm 1, three cases may occur during 

the updating process of the register array. 

• If the incoming symbol does not exist in the CAJ\I and CAl\I is not filled, the 

register array is updated as shown from lines 9 to 12. In this case, if the writing 

address of this symbol is located on the segment whose index is stored in Reg ( k). 

then the index of this segment will be moved to Reg(O) (i.e., it becomes .\IRU 

segment) and its upper register values will be shifted down in the following 

clock cycle. It is obvious that the state of the array register will remain the 

same when k = 0 because Reg(O) contains the index of the l\IRU segment. 

• If the incoming symbol does not exist in the CAJ\I and the CAJ\I is filled, the 

register array is updated as shown from lines 4 to 8 in Algorithm 1. As it can 
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be noted from line 5. the CA.\I \Hiting address of this s.vmbol is located in the 

LRU segment whose index is stored in Reg(n - 1). In the following clock cycle. 

the stored value in Reg( n - 1) which represents the index of the LRU segment 

will be moved to Reg(O) since this segment is updated by the ~IRU symbol. 

In addition, the other registers indices \\·ill be shifted clown once in the register 

array. 

• If the incoming symbol exists in the CA0-I. the register array is updated as 

shown from lines 9 to 12 in Algorithm 1. This updating criterion is similar to 

the one described in the first case, with the exception that the match address 

occurs on the segment ·whose index is stored in Reg( k). 

The drawback of the LRU replacement policy lies in the inability to distinguish 

between the frequently and the infrequently accessed segments. In order to take the 

frequency of the accessed segment into consideration, next we propose a modified 

least frequently used (LFU) replacement policy. 

Modified Least Frequently Used Replacement Policy 

The proposed LFU replacement policy replaces the symbol that is located in the LFU 

CAJ\I segment. \Ve use a similar approach to the one proposed for the modified LRU 

replacement policy where the CA).I is divided into n segments. In the proposed ar­

chitecture shown in Figure ;3.4, the index of the most frequently used (l\IFU) segment 

is stored in Reg(O) while the index of the LFU segment is stored in Reg(n -1). This 

register array is used to keep track of the order of frequently accessed CAJ\I segments 

during the encoding process. In order to record the frequency of the accessed seg­

ment, a counter ( co1lnter - seg) is employed to be associated v;ith each segment. The 

width of this counter can be selected to allmv as many accesses as a multiple of the 

depth of its segment (e.g., a 6-bit counter is associated with a segment \Vhose depth 

is 32, which provides 64 accesses). 

Algorithm 2 shows the updating process of the register array during each clock 

cycle in order to enable the proposed modified LFU replacement policy. Before the 

updating process of the register array starts, each register of this array is initialized 
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to its segment index and each of the segment counters (counter - seg) is initialized 

with 0 as shmn1 from lines 1 to 3. The updating criterion of the register array is 

decided based on the frequency of the accessed segment. \Vhenever the segment is 

accessed (i.e., in the case of a miss. a symbol is added or replaced, whereas in the case 

of a hit, the match address is located on this segment), its associated counter - seg 

is incremented by one. The main procedures of this updating criterion are described 

as follows. 

• For the case of the miss occurrence and the CAI\I is not filled. the register 

array is updated as shmvn from lines 15 to 23 in Algorithm 2. In this case, 

if the writing address of the incoming symbol is located on a segment whose 

index is stored in Reg( k), then the register array will be updated based on the 

comparison result between the value of counter - seg( Reg( k)) + 1 and the value 

of counter - seg associated \vith each of the segment indices that are stored in 

the upper registers. This proposed updating criterion is taking into account the 

receucy of the segment in the case of the equality between these values (i.e., the 

index of the most recently used segment will be moved abm·e the least recently 

used one in the follmving clock cycle). 

• For the case of the miss occurrence and the CAI\I is filled, the register array 

is updated as shown from lines 5 to 14. As a consequence, Rf'g(n - 1) which 

contains the index of the LFU segment will be moved to a specific upper register 

based on the comparison result between the value of counter - seg(Reg(n -

1)) + 1 and the value of each counter - seg associated with the segment indices 

that are stored in the upper registers. As it can be noted, if the value of 

counter - seg( Reg( n - 1)) + 1 is less than any of the upper segment counters, 

the state of the upper registers will remain the same in the following clock cycle 

as shown from lines 13 and 14 in Algorithm 2. 

• For the case of the match occurrence. the register array is updated as shown 

from lines 15 to 23 in Algorithm 2. This updating criterion is similar to the 

first one described above for the case of a miss occurrence and the CAI\I is not 

filled. 
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Algorithm 2: f\Iodified LFU Replacement Policy 
1 for ( i = 0 to 11 - 1) do 
2 counter-seg(i) c-- 0 : 
3 Reg (i) c-- i: (initialize the register army with segment indices) 

end 
4 while (the debug experiment is running on CUD) do 
5 if (miss and C Al\I is filled) then 
6 acldress-\\T = {Reg(n - 1).adclress-seg(Reg(n - l))}: 
7 counter-seg(Reg( n - 1) )c--counter-seg(Reg(n - 1) )+ 1: 
8 for (i = n - 2 clmrnto 0) do 
9 if (counter-seg(Reg(n - 1))+1) ';:> countcr-seg(Reg(i)) then 
10 Reg (i + 1) c-- Reg (i): 
11 if (i = 0) then 
12 Reg (0) c-- Reg (n - 1): 

end 
else 

13 Reg (i + 1) c-- Reg (n - 1): 
14 break; (break the for loop) 

end 
end 

else (match occurs (or miss occurs and CAJ\I is not filled where the 
writing address occurs) on segment whose index is stored in Reg( k)) 

15 counter-seg(Reg ( k)) c--counter-seg(Reg( k) )+ 1: 
16 if (k! = 0) then 
17 for ( i = k - 1 downto 0) do 
18 if (counter-seg(Reg(k))+l) ';:> counter-seg(Reg(i)) then 
19 Reg (i + 1) c-- Reg (i): 
20 if (i = 0) then 
21 Reg (0) c-- Reg (k): 

end 
else 

22 Reg (i + 1) +-Reg (k): 
23 break: (break the for loop) 

end 
end 

end 
end 

24 if ( counter-seg( Reg ( k) )=.\laximum-count or 
counter-seg(Reg (n - l))=l\laximum-count) then 

25 for ( i = 0 to n - 1) do 
26 Reg (i) c-- Reg (i)/2 : (a right shift by one) 

end 
end 

end 
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• If the counter - seg reaches its maximum value (e.g .. a value of 63 for a G-bit 

counter). each counter of the segment counters will be divided by 2 (i.e .. shifted 

right b)· one) to maintain the order of the frequency of the accessed segments. 

as illustrated from lines 2cl to 26 in Algorithm 2. 

Because the replacement decision in this policy is based on the frequency of the 

accessed segments, the replacement can be performed on the recently accessed seg­

ment that has the lowest access frequency. However, depending on how the input 

symbols occur frequently over short intervals, this modified LFU replacement policy 

can achieve better compression ratios than the proposed modified LRU replacement 

policy as demonstrated later in the experimental results section. 

In the previous implemented replacement policies, the debug experiment ends on 

the CUD after the trace buffer is filled with the compressed debug data. Thereafter, 

its content is decompressed at the debug software, as illustrated in Figure 3.1. Because 

the un-encoclecl symbol always comes after a codeword 0, the decoder at the software 

side builds a lookup table by adding the un-encocled symbol to the table or retrieving 

a symbol from the lookup table addressed by its codeword. The updating process of 

the lookup table uses the same replacement policy that is used during the encoding 

process and hence the decompression process requires a relatively simple software 

implementation. 

3.4 Dictionary-based Compression Algorithms 

This section describes three proposed dictionary-based compression algorithms for 

embedded logic analysis and analyzes the trade-off between the area and the achieved 

compression ratio. In the previous section, \Ve have introduced, for illustrative pur­

poses, the single-symbol width dictionary BSTW algorithm \vith different implemen­

tations of the most commonly used replacement policies. To improve the compression 

ratio we need to support multiple-symbol encoding. First, we implement the BST\V 

dictionary-based algorithm based on a fixed width dictionary structure for multiple­

symbol encoding. Second, to address the limitations of the first implementation, we 
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propose a ne\V compression algorithm. called modified BST\V (I\IBST\V). to support 

multiple-symbol encoding with a reduction in the encoder area. Third. we explore 

the suitabilit.v of \VDLZvV dictionary-based compression algorithm for embedded 

logic analysis. by implementing it using a hierarchy of dictionaries with successive 

increase in the word \vidth. 

3.4.1 BSTW Dictionary-based Compression Algorithm 

A locally adaptive data compression algorithm (BST\V) [17] is implemented based 

on a fixed width dictionary structure. To achieve a good compression ratio. multiple 

symbols should be mapped into a single codeword; i.e., the dictionary's width has 

to accommodate more than a single symbol. However, depending on how the input 

symbols occur frequently over short intervals, there is a trade-off between the dictio­

nary's width and the compression ratio: the larger the dictionary's width, the higher 

the compression for highly correlated data. \Ve refer to successive symbols which are 

occurring frequently over short intervals as a correlated data, i.e., if the interval be­

tween the occurrence of successive symbols and the subsequent occurrence is shorter 

than the dictionary's depth, then the match occurs and hence greater compression 

is achieved. Nonetheless, large dictionary's width may not give better compression 

than a smaller one (e.g., three successive symbols may not occur as frequently as two 

successive symbols). In addition, the larger the dictionary's depth. the higher the 

probability of finding the symbols and hence the higher the compression that can 

be achieved. Nonetheless, note that the compression ratio can be affected by large 

dictionary's depth if input data requires only few entries in the dictionary. 

Figure 3.5( a) shows an example of the updating process for the 2-symbol width 

BSTW dictionary, where the dictionary is updated with a new entry every t\VO clock 

cycles. The generation of an output (either a codeword or un-encoded two symbols) 

occurs every two clock cycles. It should be noted that at the beginning. the dictionary 

is empty and whenever two successive symbols are not in the dictionary, they are 

added in the appropriate location (as shown in Figure 3.5(a), ab added to location 1, 

cb added to location 2. cc added to location 3, etc.). As observed from this example, 
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Input: 
: : : 
ab•cbcb a a b c c c c c 
--- :----' 

2 3 4 5 

Output:• (O,ab)i (O,cb) (2) (O,cc) (O,aa) • (O,bc) (3) 

Input: a b c b c b c a aj b c cc 

0 2 

Output: (O,a) (O,b) (0,c) (3,1) (3,1) (1,2) (2,0)! (3,1) (2,2) 

(b) MBSTW 2-bit flag dictionary example 

Input: a • b c ' b c 

2 

b c c a ab c cc 

0 i 1 

Output: (O,a)j (O,b) (O,c) (3,1) (5,1) (4,0) (6,2) 

i (c) MBSTW 3-bit flag dictionary example 

Input: b 
: 

b c' b c! b a b a c c 

2 3 8 1b 11 
9 T2 

Output: '(O,a) 
0

(0,b) (O,c)I (2) (3) (8) (9) (1) (8) 

I (d) WDLZW dictionary example I 

0 -------,--1 
1 
2 
3 c c I 

4 . a= a 1 
5 1----b ___ c_~ 
6,___ ____ _ 

7 

0 a 
1 b 

2 c 
----

3 
4 
5 
6 
7 

0 
1 t---a----i 

2~-

3 c 
4 1--- ---1 

5 f-------1 

6 -----i 

7 l------+----

8 r--~---i----~~ 
9 c b 

1 at---~---+--~ 
11 b a 
12 a __ b _ _, 
13,___ __ _,_ __ ____, 

14l------+------J 
15~--~--_J 

Figure 3.5: Illustrative Examples for Dictionary-based Compression Algorithms 
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every mismatch ge11crates a codeword 0 (this indicates that the t\vo successive symbols 

do not exist in the CAl\I) followed b)· the two symbols (as shmn1 in Figure 3.5(a). 

where (0. ab) means un-encodecl two successive symbols). If the match occurs. the 

match address represents the codeword (as sh0\n1 in Figure 3.5(a), where (2) means 

match address of two successive symbols existed in the dictionary at location 2). 

Once the dictionary is filled, the replacement policy is employed. The proposed 

replacement policies described in Section 3.3.2 can be applied to a nrnltiple-symbol 

dictionary taking into acconnt hmv often the updating process is performed (i.e .. for 

2-symbol dictionary structure. the update is executed every two clock cycles). 

The impleme11tation of a 2-symbol (or 3-symbol) dictionary algorithm requires 

twice (or three times) as much area as the one required by a single-symbol dictio­

nary algorithm. In additio11, the mismatches when using multiple-symbol dictionary 

greatly influence the compression ratio. Therefore, in the next subsection, we propose 

a modification of the single-symbol dictionary that takes into account few cases of 

the correlation between two successive s:vmbols or among three successive symbols. 

3.4.2 MBSTW Dictionary-based Compression Algorithm 

The objective of the proposed J\IBST\V algorithm is to achieve a good compression 

ratio at low cost and to support multiple-symbol encoding. Therefore in our imple­

mentation, a single-symbol dictionary is combined with tag information to account 

for the correlation among successive symbols. 

To consider the correlation between two successive symbols, \Ve use a 2-bit flag as 

a tag information as follows: 00 means that no encoding is done (un-encoded sym­

bol); 01 indicates single encoded symbol; 10 means that the two successive symbols 

are equal; and 11 indicates that the two successive symbols are located in two consec­

utive locations in the CAJ\I. The compression ratio increases when the last two cases 

occur frequently. In this algorithm, we do not need to send a codeword 0 with the 

un-encoded symbols (i.e .. the dictionary is started from location 0) since the 00 flag 

implies that the symbol is un-encoded. As shown in Figure 3.5(b). the outputs are 
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\Vritte11 in parenthesis (e.g .. (O.a)). where the first element represents the tag infor­

mation (2-bit flag represented in decimal) and the second element represents either 

the un-encoded symbol or the match address. The compressed stream is generated as 

follows: flag 0 followed by un-encocled s.vmbol: flag 1 follmved by the match address 

as a codeword: flag 2 followed b~· the match address and flag 3 followed by the match 

address of the first symbol of the two successive symbols. The tag information along 

with the un-encocled symbol or the codeword are written in a chronological order 

in the trace buffer and this tag information facilitates the decoding process. At the 

debug software side. this flag is read first and based on the flag value, the symbol is 

retrieved or added (when the flag is 0) to the lookup table. 

To increase the compression ratio for correlated data, correlation among three 

successive symbols can he taken into account. To address different cases for three 

successive symbols, a 3-bit flag is employed. The first four cases are the same as the 

cases of the 2-bit flag and another four cases are handled based on three successive 

matches as follows: 100 means the first two symbols are identical successive symbols 

and the third is located in the CAf-..I location that is next to the second: 101 indicates 

that the first two symbols are located in two consecutive locations in the CAf\I and 

the third is identical to the second: llO means three identical successive symbols; and 

111 indicates that three different successive symbols are located in three consecutive 

locations in the CA1I. Figure 3.5( c) shows few cases of the previous description. 

The proposed implementation of l\IBST\V dictionary-based algorithm has a small 

impact on the area overhead of the single-symbol width dictionary. Therefore. it pro­

vides a performance gain in C Rae/just when compared to the case of using multiple­

symbol dictionary BST\V. This improvement is demonstrated later in the experimen­

tal results section. 

3.4.3 WDLZW Dictionary-based Compression Algorithm 

The word-based dynamic dictionary algorithm (\VDLZvV) is based on using a hierar­

chy of dictionaries with successive increase in the word's width [56]. This algorithm 

uses J\1TF replacement policy. As discussed in Section 3.3.2, the hardware imple­

mentation of this replacement policy incurs a significant area overhead and hence it 
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adversely impacts C R,,dju»t. Therefore. in om implementation we nsc the proposed 

replacement policies described in Section 3.3.2 for all the dictionaries. 

As shown in Figure 3.5( cl). there are t\vo dictionaries: one has a single-symbol 

width and the other has a 2-symbol width. The construction of the dictionary may 

account for more than 2-symboL however this is achieved at the expense of an extra 

area overhead. Figure 3.5( cl) illustrates the updating process of the dictionaries. It 

shows that the 2-symbol width dictionary accommodates the recent two s:nnbols that 

exist in the input stream and also are located in the single-symbol \\·idth dictionary. 

The main limitation of this algorithm is related to using different CA~I sizes and hence 

more hardware resources are needed for this architecture. However, depending on hm\· 

the input symbols occur frequently over short intervals, this algorithm can achie\·e 

better compression ratio compared to the multiple-symbol BST\V clictionary-based 

algorithm. This is because the \VDLZ\V algorithm uses different dictionaries with 

different word widths and hence any single-symbol match is encoded either combined 

with another consecutive matching symbol, or separately when it is followed by a 

mismatch. 

In Chapter 2, \Ve described a recent hardware approach to real-time address trace 

compression for embedded processors [60]. To emphasize the contributions of our 

methods, we explain the differences bet\veen the address compression approach intro­

duced in [60] and the proposed methods from our work which target the compression 

of any type of data buses for custom SoCs: 

• the implementation of the LZ dictionary-based method introduced in [60] at 

the third phase for compressing the address trace is different from the im­

plementations of the dictionary-based methods described in this section. Our 

proposed implementations are based on the CAJ\I architecture that supports 

different replacement policies. On the other hand, the implementation of the 

LZ dictionary-based method [60] is based on the sliding dictionary structure 

which is represented by a shift register (i.e., it supports only FIFO replacement 

policy). As demonstrated later in the experimental results, the area of the 

hardware implementation of LZ-algorithm reported in [60] is at least five times 

greater than the area of the hardware implementation of the proposed J\IBST\V 
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(or \\'DLZ\\') dictionar)·-bascd method using a CAJ\I depth of 256. 

• the dictionary entry in our implementations can represent one or multiple S)'m­

bols based on the dictionarv structure. \Vhile the dictionary entry· in [60] is rep­

resented b)· an encoded address slice generated from the second phase. The high 

compression ratios achieved using LZ-algoritlnn reported in [60] are primarily 

due to the repeated patterns of the encoded address slices. These address pat­

terns are commonly generated during the program execution in the embedded 

processors. If the implementation of LZ-algorithm [60] is extended to support 

the compression for any type of data buses, both the area and the compression 

ratio will be adversely impacted. 

In summary, in this section we have adapted two existing dictionary-based com­

pression algorithms (BST\V and \VDLZ\\') for real-time hardware encoding, as re­

quired by embedded logic analysis. vVe have also proposed a new· l\IBST\V algorithm 

that improves on BSTvV by addressing the C RadJust metric. An experimental com­

parison for these three algorithms is reported in the follmving section. 

3.5 Experimental Results 

This section discusses the experiments concerning the area investment and the com­

pression benefits of the proposed dictionary-based compression algorithms. The area 

of the proposed encoder is estimated using a 180nm ASIC standard cell library and 

the debug data has been collected from an FPGA prototype of an l\IP3 audio decoder 

[45]. 

3.5.1 Area of the Proposed Encoder Architecture 

The area overhead of the proposed encoder architecture is estimated for different 

lossless dictionary-based compression algorithms in terms of 2 input NAND (NAND2) 

gates. Table 3.2 provides the estimated area overhead of the encoder for different 

replacement policies. The area represents the size of the control logic (including the 
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Table 3.2: Arca of The Proposecl Encoder Architecture in :\AND2 Equivalents 

Rep. CA,\I BST\\' l\IBST\V \VDLZ\V 
Policy Depth 1-Sym 2-Sym 3-Sym 2-Sym 3-Sym 2-Sym 3-Sym 

16 1194 1606 2035 1515 1665 1544 2226 

FIFO 
64 2194 3455 4748 2532 2716 3014 3956 
256 5563 10264 15014 5945 6162 8155 9998 
1024 19601 38112 56687 20000 20255 29142 34484 

16 1216 1621 2050 1553 1704 1584 2242 

RAN 
64 2222 3477 4770 2589 2771 3071 4027 
256 5600 10293 15043 6017 6233 8226 10101 
1024 19641 38139 56714 20076 20331 29221 34613 

16 1287 1682 2111 1614 1766 1685 2402 

LRU 
64 2482 3724 5017 2834 3021 3221 4222 
256 6356 11038 15785 6761 6980 8811 10557 

1024 20574 39057 57631 21001 21258 29958 35181 
16 1494 1888 2318 1821 1972 1999 2777 

LFU 
64 3090 4327 5619 3437 3625 3716 4872 
256 8105 12782 17529 8508 8727 10213 11845 
1024 22783 41261 59835 23209 23469 31781 36865 

data formatter) and the size of the CAl\I and it does not account for the trace buffer 

area. The area of the CAl\I was approximated to be twice as much as the area of a 

RAl\I of the same capacity, as estimated in [84]. 

The results shown in Table 3.2 are reported for different CA.~I sizes, replacement 

policies and encoding approaches. The depth of the single-symbol width dictionary 

in the \VDLZ\V dictionary-based algorithm equals half of the CA~I depth, vvhereas 

the depth of the two-symbol width dictionary is the remaining depth in the case of 

two-symbol (2-Sym) approach. The depth of the 2-symbol width dictionary is half 

of the remaining depth for the three-symbol (3-Sym) approach, v;hereas the depth of 

the 3-symbol width dictionary is the other half. The variation in the encoder area 

for a specific encoding approach is due to the data formatting of the codewords, the 

replacement policy and the CAl\I size. The more symbols are accounted for during 

compression, the larger the area overhead, which will likely offset the compression 
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benefits whell usmg a specific dictionary strnctnrc as explained in the next sub­

section. \\'hat needs to be noted is that the proposed J\IBST\V algorithm leads to 

the lowest area overhead (e.g., for CA?\I depth 256 (or 1024), the area of l\IBSTW 

algorithm is at least 30 % less than the area of BST\V or \VDLZ\V algorithm). \vhich 

is a key requirement for embedded logic analysis. 

The area results of both FIFO and random replacement implementations are 

for the nnsegmentecl CAJ\I. The area of the random replacement implementation 

is slightly greater than the one for FIFO. This difference is due to the employed lin­

ear feedback shift register (LFSR) and the associated logic, which are used to enable 

the Pseudo-random replacement as described in Section 3.3.2. Because the generated 

sequence from the LFSR does not inc lmle 0, we have added a control logic in the 

implementation of l\IBST\V random replacement in order to replace the symbol that 

is located at CAl\I address location 0. Similarly. an added control logic is employed in 

the implementation of the random replacement policy of the multiple-symbol CAl\Is 

that are used in \VDLZ\V algorithm. 

Table 3.2 shovvs the results for the segmented CAJ\I for both modified LRU and 

modified LFU replacement implementations. The number of allocated segments for 

CAM depths 16. 64, 256, 1024 of BST\V and l\IBST\V encoding algorithms are 2, 4, 8, 

8. respectively. The number of allocated segments for CAl\I depths 16, 6-1, 256, 1024 of 

2-symbol \\'DLZ\\' encoding algorithm are (2,2), (2,2), (4,4), (4,4) respectively: \Vhcre 

the first clement written in the parenthesis (,) represents the number of segments for 

the single-symbol \Viclth dictionary and the second element represents the one for the 

2-symbol v:idth dictionary. The number of allocated segments for CAl\I depths 16, 

64, 256, 1024 for 3-symbol \VDLZ\V encoding algorithm are (2,2,2), (2,2,2), (4,2,2), 

( 4,2,2) respectively. 

In the case of modified LFU implementation, there is a counter associated with 

each segment in order to keep track of the frequency of occurrence for any accessed 

segment, as explained in Section 3.3.2. The width of each segment counter is selected 

to allow twice as many accesses as the segment depth (e.g., for a CAM depth 256 

which is divided into 8 segments, each segment contains 32 locations and hence the 
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Figure 3.6: f..IP3 Decoder Architecture 

counter \Vidth equals 6 bits). Thus, the implementation of the modified LFU replace­

ment policy has a higher impact on the encoder area than the one for the modified 

LRU replacement policy. The influence of these replacement implementations on the 

compression ratio is explained in the following sub-section. 

3.5.2 MP3 Decoder Experiments 

The debug experiments have been performed on an FPGA prototype of an J\IP3 audio 

decoder [45]. Figure 3.6 shmvs the architecture of the :t\IP3 audio decoder. Tables 

3.3, 3.4, 3.5 and 3.6 show the average data compression ratio C Rdata and the average 

adjusted compression ratio C Radjt1st for 10 songs with different replacement policies 

(i.e., FIFO. Random, modified LRU, modified LFU); CRd stands for CRdata and CRa 

stands for CRadjust· These results are for direct/differential encoding of the debug 

data probed at the stereo decoder output of the J\IP3 decoder as demonstrated in 

Tables 3.3 and 3.4, and at the input of the polyphase filter bank before the modified 

discrete cosine transform (J\i!DCT) as demonstrated in Tables 3.5 and 3.6. 

The data compression ratio is calculated as C Rdata = (~{~ 1 ~~J) / K. ·where K is 

the total number of debug experiments (one debug experiment is considered to end 
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when the trace buffer ic; filled), j\[ is the size of the trace buffer that equals to its \viclth 

times its depth and lV; is the size of observation window i which equals to its tot.<:tl 

number of samples times the sample \Vidth. The volume of data that is reconstructed 

after the decompression process at the debug software side is lV;: i.e., the length of 

the observation window in debug experiment i weighted by the width of each sample. 

The relative increase in the size of the observation window for each debug experiment 

~:} is summed for all the debug experiments and then averaged to obtain C R1ata· 

Because the compression hardv.rare can add a considerable area cost to the size 

of the de bug module, it could be argued that by increasing the size of the trace 

buffer (with the same area as the compression hardware) will lead to similar benefits 

in terms of increasing the observation window size. Therefore, we use the proposed 

compression ratio metric defined in section 3. 2. 2 to measure the performance gain 

of the proposed architecture. It is essential to note that this new metric ( C Radjvst) 

captures the real compression benefit not only of the proposed solution but also of 

any other compression algorithm that requires on-chip hardware to aid embedded 

logic analysis. In other vvords. this metric sho\\·s that in some cases it may be cheaper 

to extend the size of the trace buff er than to invest in the area of the encoder. 

Based on the results from Tables 3.3, 3.4, 3.5 and 3.6. \Ve emphasize the following 

points: 

• The average compression ratios for the direct encoding at stereo decoder out­

put and at l\IDCT input are better than those achieved through differential 

encoding. This implies that the debug data at these probe points shmv more 

correlation among successive symbols than the correlation among the differences 

of successive symbols (i.e., the symbols are occurring more frequently than the 

differences between successive symbols). 

• For the direct encoding of the debug data at stereo decoder output, the smallest 

CAI\I depth gives better compression ratios than the case of the direct encoding 

of 1IDCT input data. This implies that the data at stereo decoder output 

shows more correlation than the data observed at l\IDCT input. Therefore, 

the achieved compression ratios are dependent on the symbols correlation over 
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Table 3.3: Average Compression Ratios of Encoding MP3 Data (12 x 220 samples) 
at Stereo Decoder Output using BST\V Algorithm, ~I=16k Bytes 

Rep. CAJ\I 
BSTW 

1-Symhol 2-Symhol :3-S~·mhol 
Policy Depth 

CRd CR" CR1 CR" CRc1 CRa 
16 2.73 2.69 2.39 2.34 2.00 1.95 

FIFO 
6-1 2.21 2.15 2.26 2.16 1.99 1.87 

256 1.85 1.72 2.20 1.93 2.03 1.69 
1024 1.57 1.24 2.13 1.40 2.07 1.17 

16 2.73 2.69 2.39 2.34 2.00 1.95 

RAN 
6-1 2.21 2.15 2.26 2.16 1.99 1.87 

256 1.85 1.72 2.20 1.93 2.03 1.69 
Direct 1024 1.57 1.2-1 2.13 1.40 2.07 1.17 
Encoding 16 2.H 2.69 2.-10 2.35 2.01 1.95 

LRU 
6-1 2.21 2.1-1 2.26 2.15 2.00 1.87 

256 1.8-5 1.70 2.20 1.91 2. Cl:3 1.67 
1024 1.57 1.23 2.13 1.39 2.07 1.16 

16 2.7-1 2.69 2.42 2.36 2.02 1.96 

LFU 
6-1 2.21 2.12 2.27 2.14 2.01 1.87 

256 1.8.5 1.67 2.21 1.88 2.0-1 1.65 
1024 1.57 1.20 2.14 1.37 2.08 1.15 

16 2.1-1 2.11 1.97 1.93 1.78 1.73 

FIFO 
64 1.88 1.83 1.89 1.81 1.77 1.66 

2.56 1.71 1.59 1.86 1.63 1.80 1..SO 
102-1 1.5:3 1.21 1.84 1.21 1.82 1.03 

16 2.1-1 2.11 1.97 1.93 1.78 1.73 

RAN 
6-1 1.88 1.83 1.89 1.80 1.77 1.66 

2.56 l. 71 1.59 1.86 1.63 1.80 1.50 
Differential 1024 1.53 1.21 1.84 1.21 1.82 1.03 
Encoding 16 2.1-1 2.10 1.96 1.92 1.78 1.73 

LRU 
G-1 1.88 1.82 1.89 1.80 1.77 1.66 

256 1.71 1..57 1.86 1.62 1.79 1.47 
1024 1.53 1.20 1.83 1.20 1.82 1.02 

16 2.15 2.11 1.96 1.91 1.78 1.73 

LFU 
64 1.90 1.82 1.90 1.79 1.78 1.6.S 

256 1.71 1.54 1.88 1.60 1.82 1.47 
1024 1.53 1.17 1.85 1.19 1.83 1.01 
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Table 3.4: Average Compression Ratios of Encoding l\IP3 Data ( 12 x 220 samples) 
at Stereo Decoder Output using l\IBST\V and \VDLZ\V Algorithms, ~1=16k Bytes 

Rep. CAI\I 
l\IBSTW WDLZW 

2-Symbol 3-Symhol 2-Symhol 3-Symhol 
Policy Depth 

CRc1 CRa CR1 CR0 CRc1 CR,, CR, CR0 

16 :3.01 2.% 3.07 3.00 3.20 :3.13 3.40 :3.30 

FIFO 
64 2.64 2.55 2.78 2.68 3.00 2.88 :3.37 3.20 
256 2.29 2.12 2.46 2.27 2.76 2 . ..19 3.20 2.82 
102..t 1.98 1.56 2.16 1.69 2.54 1.82 3.06 2.08 

16 3.00 2.94 3.04 2.97 3.20 :).13 3.41 3.31 

RAN 
6..1 2.62 2.53 2.74 2.64 3.00 2.88 3.37 3.20 

256 2.28 2.11 2.44 2.25 2.76 2.48 3.20 2.81 
Direct 1024 1.98 1.56 2.15 1.69 2.54 1.82 3.06 2.08 
Encoding 16 3.00 2.94 3.05 2.98 3.22 :3.1.5 3.43 3.32 

LRU 
64 2.62 2.52 2.74 2.63 3.00 2.87 3.36 :~.18 

256 2.28 2.09 2.44 2.23 2.76 2.47 3.20 2.80 
1024 1.98 1.5..t 2.15 1.67 2.54 1.81 3.06 2.07 

16 3.01 2.94 3.07 2.99 3.22 3.14 3.45 3.32 

LFU 6"1 2.63 2.51 2.75 2.62 3.02 2.88 3.:39 3.18 
256 2.30 2.06 2.47 2.21 2.77 2.43 3.20 2.76 

1024 1.99 1.51 2.18 1.65 2.56 1.79 3.08 2.05 
16 2.36 2.31 2.35 2.30 2.27 2.22 2.36 2.29 

FIFO 
6..1 2.22 2.1.5 2.27 2.19 2.29 2.20 2.47 2.34 

256 2.0..t 1.89 2.12 1.96 2.25 2.03 2.51 2.21 
1024 1.82 1.43 1.91 1.50 2.24 1.61 2.60 1.77 

16 2.33 2.28 2.31 2.26 2.27 2.22 2.36 2.29 

RAN 
64 2.18 2.11 2.21 2.13 2.29 2.20 2.47 2.34 

256 2.01 1.86 2.08 1.92 2.25 2.02 2.51 2.21 
Differential 1024 1.80 1.41 1.89 1.48 2.24 1.60 2.60 1.77 
Encoding 16 2.33 2.28 2.30 2.25 2.27 2.22 2.37 2.30 

LRU 
6..1 2.18 2.10 2.21 2.12 2.29 2.19 2.47 2.34 

256 2.01 1.84 2.08 1.90 2.25 2.01 2.51 2.20 
1024 1.80 1.40 1.89 1.47 2.24 1.59 2.60 1.76 

16 2.35 2.29 2.33 2.27 2.28 2.22 2.37 2.28 

LFU 
64 2.20 2.10 2.23 2.13 2.31 2.20 2.49 2.34 
256 2.04 1.83 2.12 1.90 2.26 1.99 2.52 2.17 

1024 1.83 1.39 1.94 1.47 2.27 1.59 2.62 1.75 
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Table 3.5: Average Compression Ratios of Encoding l\IP3 Data ( 12 x 220 samples) 
at l\IDCT Input using BST\V Algorithm, l\I=16k Bytes 

Rep. CAJ\l 
BST\\' 

I-Symbol 2-Symbol 3-Symbol 
Policy Depth 

CRc1 CRa CRc1 CR, CR1 CR" 
16 1.27 1.25 1.28 1.25 1.22 1.19 

FIFO 
64 1.31 1.27 1.26 1.20 1.22 1.15 
256 1.37 1.27 1.25 1.10 1.20 1.00 

1024 1.39 1.10 1.25 0.82 1.18 0.67 
16 1.27 1.25 1.28 1.25 1.22 1.19 

RAN 
64 1.31 1.27 1.26 1.20 1.22 1.15 
256 1.37 1.27 1.25 1.10 1.20 1.00 

Direct 1024 1.39 1.10 1.25 0.82 1.18 0.67 
Encoding 16 1.27 1.25 1.28 1.25 1.22 1.19 

LRU 
64 1.31 1.27 1.26 1.20 1.22 1.14 

256 1.38 1.27 1.26 1.10 1.20 0.99 
1024 1.40 1.09 1.2.5 0.82 1.19 0.67 

16 l..'31 1.28 1.30 1.27 1.25 1.21 

LFU 
64 1.35 1.30 1.28 1.21 1.24 1.15 
256 1.40 1.26 1.27 1.08 1.21 0.98 

1024 1.41 1.08 1.27 0.81 1.19 0.66 
16 1.17 1.15 1.21 1.18 1.17 1.14 

FIFO 
64 1.19 1.16 1.19 1.14 1.17 1.10 

256 1.24 1.15 1.17 1.03 1.15 0.96 
1024 1.30 1.03 1.17 0.77 1.13 0.64 

16 1.17 1.15 1.21 1.18 1.17 1.14 

RAN 
64 1.19 1.16 1.19 1.14 1.17 1.10 
256 1.24 1.15 1.17 1.03 1.15 0.96 

Differential 1024 1.30 1.03 1.17 0.77 1.13 0.64 
Encoding 16 1.18 1.16 1.21 1.18 1.18 1.15 

LRU 
64 1.19 1.15 1.19 1.13 1.17 1.10 

256 1.25 1.15 1.18 1.03 1.16 0.96 
1024 1.31 1.02 1.17 0.76 1.14 0.64 

16 1.20 1.18 1.22 1.19 1.19 1.15 

LFU 
64 1.23 1.18 1.21 1.14 1.19 1.11 
256 1.28 1.15 1.19 1.01 1.16 0.94 

1024 1.31 1.00 1.19 0.76 1.15 0.63 
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Table 3.6: Average Compression Ratios of Encoding 1IP3 Data (12 x 220 samples) 
at J\IDCT Input using 1IBST\V and \VDLZ\V Algorithms, J\I= 16k Bytes 

Rep. CA!\I 
l\IBSTW WDLZ\V 

2-Symhol 3-Symhol 2-S.vmhol 3-Symhol 
Policy Depth 

CR1 CR" CR1 CR" CR1 CR, CR1 CR" 
16 1.42 1.39 1.37 1.34 1.26 1.23 1.29 1.25 

FIFO 
64 1.54 1.49 1..50 1.45 1.30 1.25 1.34 1.27 
256 1.60 1.-18 1.57 1.45 1.42 1.28 1.-17 1.29 
102-1 1.55 1.22 1.5-1 1.21 1.59 1.1-1 1.66 1.1:3 

16 1.-12 1.39 1.36 1.33 1.26 1.23 1.29 1.25 

RAN 
64 1.54 1.-19 1.50 1.45 1.30 1.25 1.3-1 1.27 

256 1.60 1.48 1.57 1.45 1.42 1.28 1.-17 1.29 
Direct 1024 1.55 1.22 1.5-1 1.21 1.58 1.13 1.66 1.13 
Encoding 16 1.42 1.39 1.36 1.33 1.26 1.23 1.29 1.25 

LRU 
64 1.54 1.48 1.50 1.44 1.31 1.26 1.3-1 1.27 
256 1.61 1.47 1.59 1.-15 1.43 1.28 1.-17 1.29 

102-1 1..56 1.21 1.55 1.20 1.59 1.13 1.67 1.13 
16 1.-16 1.42 1.41 1.37 1.28 1.25 1.30 1.25 

LFU 
6-1 1.59 1.52 1.56 1.49 1.38 1.31 1.41 1.32 
256 1.64 1.47 1.61 1.44 1.50 1.32 1.54 1.33 
1024 1.58 1.20 1.57 1.19 1.63 1.14 1.72 1.15 

16 1.31 1.28 1.27 1.24 1.18 1.16 1.20 1.16 

FIFO 
64 1.-11 1.36 1.38 1.33 1.18 1.13 1.21 1.15 
256 1.-18 1.37 1.45 1.34 1.27 1.14 1.30 1.14 

1024 1.-17 1.16 1.46 1.15 1.41 1.01 1.46 0.99 
16 1.31 1.28 1.26 1.23 1.18 1.16 1.20 1.16 

RAN 
64 1.41 1.36 1.37 1.32 1.18 1.13 1.21 1.15 
256 1.48 1.37 1.45 1.34 1.27 1.14 1.30 1.1-1 

Differential 1024 1.-17 1.16 1.46 1.14 1.41 1.01 1.46 0.99 
Encoding 16 1.31 1.28 1.26 1.23 1.18 1.15 1.20 1.16 

LRU 
64 1.41 1.36 1.37 1.32 1.18 1.13 1.21 1.1-1 
256 1.49 1.36 1.46 1.33 1.27 1.13 1.31 1.15 
1024 1.48 1.15 1.47 1.14 1.42 1.01 1.47 1.00 

16 1.33 1.30 1.29 1.26 1.18 1.15 1.20 1.16 

LFU 
64 1.45 1.39 1.41 1.34 1.22 1.16 1.25 1.17 
256 1.52 1.36 1.49 1.33 1.33 1.17 1.37 1.18 

1024 1.49 1.13 1.49 1.13 1.47 1.03 1.52 1.01 
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short interuals of the obseffation \\·inclow. as explained in Section 3.c±.1. In the 

case of encoding the debug data at stereo decoder output, larger CA:'.\I depth 

does not bring any compression benefits because the larger the CAJ\I depth, the 

larger the width of the codeword while the input data shows high correlation 

over only few entries in the CAf\I. 

• The achieved results shmv that by increasing C Rdata through using larger CAl\I 

depth in few cases, does not necessarily lead to improving C Rad:fu.st (e.g., In 

the case of the differential encoding of l\IDCT input, using a CA:'.\I depth 1024 

does not improve CRadJ 11 .st). This demonstrates that increasing the CA~I depth 

beyond a certain limit ("which is dependent on both the size of trace buffer and 

how the input symbols occur frequently over short intervals), will not bring any 

compression benefits. 

• The results of the multiple-s.vmbol encoding for the 1IBST\V algorithm are 

better than the ones of using multiple-symbol BST\V algorithm. This difference 

is because the mismatches in the case of multiple-symbol dictionary BST\V 

influence the compression ratio more than the case of using a single-symbol 

dictionary l\IBST\,Y, as discussed in Section 3.4.1. In addition, the impact of the 

area of the multiple-symbol BST\V dictionary architectures on C Radj,,.st is higher 

than the area required by the proposed single-symbol l\IBST\V dictionary. This 

area reel nction (and hence C Radj 11 st improvement) was the justification for the 

development of the proposed l\IBST\V algorithm. 

• The average compression ratios achieved using \VDLZ\V algorithm are better 

than the ones achieved using :'.\IBST\V algorithm for highly correlated data as 

observed from the direct encoding results of stereo decoder output in Table 3.4. 

This is because the 2-symbol (or 3-symbol) dictionary in the case of \VDLZ\V 

algorithm contains any 2 (or 3) successively matched symbols. However, l\IB­

STW algorithm provides better results than \VDLZ\V algorithm for less corre­

lated data as manifested from the differential encoding of l\IDCT input results 

(Table 3.6) due to the following t\vo reasons. First, in the case of l\IBST\V. the 

mismatch is represented by a 2 or 3 bit flag but in the case of WDLz~r, it is 
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represented bv a codr\rnnl 0 that has a \\·idt h larger thctn the flag information. 

Second. the single-symbol dictionary depth in the case of 1\IBST\V algorithm is 

larger than the single-symbol dictionary depth used in vVDLZ\V algorithm. 

• There is no difference between FIFO and random replacement policies on the 

compression ratios when using the BST\V or \VDLZ\V encoding algorithm. 

This implies that regardless where the data will be replaced in the CAI\L the 

compression ratios will not be influenced because both FIFO and random re­

placement policies will enter into repeating cycles after all the symbols are 

replaced from the CA:\I (i.e .. each of these replacement policies restarts from 

its initial address location). 

• The FIFO replacement polic~· of the I\IBST\V encoding algorithm shows better 

compression ratios than the random replacement policy for highly correlated 

data and smaller CA:..I sizes. as observed from the direct encoding of the stereo 

decoder output in Tables 3.3 and 3.4. This is because the I\IBST\V algorithm 

is based on the correlations between two successive symbols or among three 

successive symbols but the random replacement policy influences how the suc­

cessive symbols are placed in the CAM. 

• Based on the previous two emphasized points, the modified LRU or the modified 

LFU replacement policy will have similar influence on the data compression 

ratios C Rc1ata for highly correlated data, as observed from the direct encoding 

of the stereo decoder output in Tables 3.3 and 3.4. Therefore, the achieved 

C Rac/jll.st of the FIFO replacement policy is better than the one achieved using 

either the modified LRU or modified LFU replacement policy. 

• The achieved results using the modified LFU replacement policy are better than 

those achieved using the modified LR U replacement policy for less correlated 

data, as observed from Tables 3.5 and 3.6. This implies that in the case of 

the modified LFU replacement policy, the most frequently accessed segments 

contain symbols that are occurring more frequently than the symbols that are 

existed in the most recently used segments in the case of the modified LRU 
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replacement policy. 

• The data compression ratios C Rdoto of the modified LFU replacement polic:.· are 

better than those of FIFO and random replacement policies for encoding the 

debug data at t-.IDCT inpuL as observed from Tables 3.5 and 3.6. However, the 

achieved adjusted compression ratios C Rodjust of the modified LFU replacement. 

policy can be similar or less than those achieved using FIFO or random replace­

ment implementation. Therefore. the improvement in C Rdato · due to using a 

certain replacement policy. does not necessary lead to a similar improvement 

in C Radjast because the area has been taken into account. Nonetheless. if a 

larger trace lrnffer is used, then the improvement. in CRdata \Vill be noticeable 

in C Radjust as well. 

Finally, it should be noted that in the special case of uncorrelated debug data, 

which is unlikely, even the dictionary-based compression algorithms clo not provicle an 

increase in the observation window. As a consequence, the encoder can be disabled 

and the trace buffer can be used to capture the debug data without any compression. 

This case was not observed in any of our experiments because C Rdata is ahvays above 

1 in Tables 3.3. 3.4, 3.5 and 3.6. Nonetheless, as discussed previously in this section. 

CRadjust can go below 1, especially for large CAf..I sizes. This confirms that the smaller 

the area of the encoder, the better the compression benefits will be, and this is the 

key observation specific to embedded logic analysis that leads to the development of 

the proposed ;\IBSTW algorithm. 

3.6 Summary 

In this chapter, we have explored the suitability of different dictionary-based com­

pression algorithms for lossless data compression in embedded logic analysis. \Ve 

have analyzed the specific requirements for lossless data compression in embedded 

logic analysis, and subsequently, we have proposed a new compression ratio met­

ric that captures the real benefits of a compression algorithm that needs to satisfy 

high-throughput/real-time encoding with an acceptable area. This metric is used to 
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quantify the performance gain of the proposed dict ionary-based compression archi tec­

tures that support t he most commonly used replacement policies. The architectures 

proposed in this chapter are particularly suitable for in-field debugging on application 

boards, which have non-deterministic events that inhibit the deterministic replay of 

debug experiments. 
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Chapter 4 

On Extending the Observation 

Window through Lossy 

Compression 

The capacity of on-chip trace buffers employed for at-speed silicon debug limits the 

observation \Vindow in any debug session. To increase the debug observation window, 

we propose a novel architecture for at-speed silicon debug based on lossy compression. 

In order to accelerate the identification of the design errors, we have developed a 

new debug method where the designer can iteratively zoom only in the intervals 

that contain erroneous samples. \Vhen compared to increasing the size of the trace 

buffer, the proposed architecture has a small impact on silicon area, while significantly 

reducing the number of debug sessions. The proposed method is applicable to both 

automatic test equipment-based debug and in-field debug on application boards, so 

long as the debug experiment can be reproduced synchronously. 

This chapter is organized as follows. Section 4.1 gives preliminaries for the research 

work presented in this chapter, outlines the motivation behind it and summarizes its 

contributions. Sections 4.2 and 4.3 describe the proposed debug framework and the 

proposed debug architecture. Section 4.4 introduces the algorithms for scheduling 

debug sessions, while Section 4.5 discusses the sensitivity of the proposed method to 

the failing samples distribution. Section 4.6 shows the experimental results for an 

MP3 decoder hardware and Section 4. 7 concludes the chapter. 
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4.1 Preliminaries and Summary of Contributions 

As discussed in Chapter 3, the choice of the depth compression technique relies on 

the type of the silicon debug experiment. For the first phase of the validation process 

at which the bug appears on an application board and its occurrence cannot be 

reproduced in a deterministic manner due to the existence of non-deterministic input 

sources, we proposed a novel debug architecture that supports real-time lossless data 

compression in Chapter 3. Once the input behavior that causes the bug to manifest 

itself is identified, a subsequent validation phase can be applied , where the bug can 

be triggered deterministically by controlling the inputs. In the second phase the 

debug experiment becomes deterministic in the sense that the same behavior can be 

reproduced consistently either on an ATE or on an application board. To extend 

the observation window for the latter validation phase, we propose a novel debug 

architecture based on lossy compression in this chapter. 

By extending the silicon debug observation window using a short sequence of 

debug sessions, t he proposed approach is useful in aiding the identification of hard­

to-detect functional bugs t hat occur intermittently over a long period of t ime [57], 

which is computationally-infeasible to be simulated during pre-silicon verification. 

The main contributions of this chapter are as follows: 

• by employing a signature register placed in front of the trace buffer (with a 

programmable number of samples that map onto a single signature) combined 

with a segmentation of the trace buffer we introduce a new architecture for the 

embedded debug module; 

• the proposed architecture enables a new debug methodology wher the debug 

engineer can iteratively zoom only in the intervals containing erroneous samples; 

this leads to a significant reduction in the number of debug sessions for a large 

interval that needs to be observed; 

• we develop new algorithms for scheduling debug sessions and we show that by 

leveraging the streaming feature of the low-bandwidth interface to the debug 

software, we can further improve the effectiveness of our solution. 
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4.2 Proposed Iterative Silicon Debug Framework 

The method proposed in this chapter is applicable to the scenario where the debug 

data is known a-priori and a deterministic execution of input data will always produce 

the same output data. This is the case when debugging on an ATE and it is also com­

mon when having a target application board where stimuli are applied synchronously 

(e.g .. when debugging an audio/video decoder) and thus the expected responses can 

be computed using a reference behavioral model of the circuit under debug (CUD). 

This debugging method is also referred to as cyclic debvgging or deterministic 1·eplay 

in the software engineering literature and having an experimental testbed that sup­

ports it is a pre-requisite for the proposed iterative flmv of the silicon debug process 

based on lossy compression. 

As shown in Figure 4.1, the debug framework consists of an off-chip debugger 

software which interacts ·with the on-chip debug module through a serial interface 

(such as .JTAG [.53]). The basic intuition of our approach can be explained as follmvs 

(the specific technical details of the debug module and de bugger sofhvare are given 

in the following sections). In cyclic debugging, by re-running the same experiment 

deterministically, the use of different trigger points in each debug session \vill facilitate 

the reconstruction of the circuit behavior over a long observation window. However, in 

order to avoid sampling data that does not carry any failing (erroneous) information, 

after the first experiment, it would be useful if the user can learn \vhich intervals 

are error-free. Therefore, at the center of the proposed debug methodology is lossy 

compression through which we map a sequence of samples (determined by the interval 

length) into one signature. If a signature is error-free, then, in the remaining debug 

sessions, the interval whose sequence of samples maps onto the respective signature, 

will be skipped and no samples will be extracted from it. The length of the targeted 

observation vvindow and the size of the on-chip trace buffer will determine the starting 

compression level for the initial debug session, which equals the length of the intervals 

that \vill be processed one at a time in each of the following debug sessions. 

The cyclic debug process starts by uploading the debug module with the debug 

configuration (e.g., trigger ewnt condition, the trigger signal selection, debug data 
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Circuit under debug 

Embedded 
Debug cores 

software 
J (1 }a (2}a 
T 

( 1 )b Debug module ... A 

(2)b 
G ( 1 }c (2}c 

Step (1) Initial Debug Session 
a. Upload debug module with debug configuration which 

includes the compression level 
b. Run debug experiment 
c. Transfer trace buffer signatures to debug software 
d. Determine trigger pointers of the failing signatures 

Step (2) Iterative Debug Sessions 
a. Upload debug module with debug configuration which 

includes the trigger pointers 
b. Run debug experiment 
c. Transfer trace buffer samples to debug software 
d. Determine the failing samples 

Figure 4.1: The Iterative Flow of the Silicon Debug Process Based on Compression 
and Cyclic Debugging 
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selection). The user can specify the targeted observation window whose length divided 

by the trace buffer depth will give the init ial compression level. This value will 

be uploaded together with the debug configuration in the init ial debug session as 

illustrated with step (1) in Figure 4.1. \tVhen running the debug experiment for 

t he first time and after the trigger event occurs, t he compressed signatures of t he 

sequences of samples will be stored in the trace buffer. Once the trace buffer is filled 

with the signatures (for all t he intervals in t he observation window), the init ial debug 

session is completed and the trace buffer content is offloaded to the debugger software, 

where the failing signatures (and hence intervals) are identified. In the following 

debug sessions (Step (2) from Figure 4.1 ), the user can set up t he triggering events 

such that each debug session will zoom in only into specific fai ling interval (more 

failing intervals can be sampled in one debug session if the trace buffer has mult iple 

segments, as explained in the following section). This process is repeated iteratively 

in the succeeding debug sessions until all the fai ling intervals are extracted. As shown 

in the figure, both steps (1) and (2) consist of 4 consecut ive sub-steps: uploading the 

debug configuration, running the debug experiment, transferring the debug data to 

debug software and analyzing failing samples. The benefi ts of our proposed method 

stem from the fact that we can observe the failing behaviors within a long observation 

window without wasting too many debug sessions for sampling the error-free intervals. 

As stressed earlier t he proposed silicon debug framework requires an experimental 

testbed t hat supports cyclic debugging, which is fac ilitated by both ATEs and by 

most target application boards (for example, in our experiments when bringing up 

multimedia designs where stimuli are applied synchronously) . In addit ion , for both 

special-purpose and generic trace buffer-based debug methods, the proposed approach 

will further extend the observation window while support ing the existing depth or 

width compression techniques, which are complementary to our method. F\lI't hermore, 

it can also assist t he scan-based debug methods by pin-pointing a few sparse failures 

over a large observation window, where scan dumps and latch divergence analysis need 

to be done. Also, by analyzing how the failing intervals are related to each other , the 

user can narrow down the logic block that causes the erroneous behavior. For example, 

if all the failing intervals are happening when the circuit is in a particular configuration 
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mode, then this is an indication that the logic for that particular configuration mode 

is a suspect. 

It is important to note that deterministic replay (or cyclic debugging) is not an 

assumpt ion t hat is specific only to the work presented in this chapter. Because elim­

inating t he non-determinism can improve the ability to debug any complex device 

(even without compression), several t echniques have been developed to ensure deter­

minism when searching for the root cause of failure. For example, to eliminate t he 

non-determinism caused by I/ O devices, a buffering module can be used to record 

the input data and its time stamps as described in [94]. In t his technique, when re­

playing the execution, t he I/ O devices can be temporarily suspended and the buffer 

will deterministically reproduce t he input stimuli that have been recorded. Another 

t echnique with higher hardware complexity has been employed to record t he external 

activity from I/ O pins of the Intel Pentium IvI processor [96]. This technique has 

been successfully deployed to reproduce the system failures deterministically. 

4.3 Debug Architecture for Lossy Compression 

This section describes the proposed debug architecture which facilitates the iterative 

debug flow described in the previous section. The main contributions in this debug 

architecture are shaded in Figure 4.2 and the terminology is given in Table 4.1. Fir t , 

we describe t he main features in the embedded debug module which is used for at­

speed silicon debug. Second, we introduce the distinguishing features of our work and 

explain their usage to extend the observation window through an illustrative example. 

4 .3.1 The Embedded D ebug Module 

We first overview the basic blocks in an embedded debug module. The essential fea­

ture of an embedded debug module is the ability to detect a certain event. Therefore, 

an event detector is used to monitor a group of t rigger signals to determine when 

the debug data signal is captured in the trace buffer , as shown in Figure 4.2. In our 

implementation, triggering can be performed based on bitwise, comparison or logical 
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Embedded Debug Module CTRL Implementation I 
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Figure 4.2: The Proposed Embedded Debug Module Architecture 

operations between any selected trigger signal and a specified constant value. The 

control words (CT RL - word) specify the trigger signal selection, the trigger events , 

and the choice of signals that need to be probed. The event detector, which contains 

many levels of logic, is pipelined in order to support high-speed sampling. To further 

enhance the detection ability, the event detector is followed by an event sequencer to 

monitor a specified sequence of events determined by the control words. The config­

uration of the control registers are uploaded to the embedded debug module control 

through the low bandwidth interface (e .g., JTAG). 
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Table 4. 1: Terminology for the Proposed Embedded Debug }.Iodule 

Name 
Sp-en 
St-en 
l'vIISR-en 
CTRL-word 
TRIG-pointer 
Seg-size 
Seg-en 
Event-count 
MISR-SPS 

Representation 
Spatial enable 
Stream enable 

IISR enable 
Control word 
TI·igger pointer 
Segment size 
Segmented mode enable 
Number of trigger events 
Number of samples per signature 

4.3.2 Features to Extend the Observation Window 

Figure 4.2 shows the proposed debug architecture which has a segmented trace buffer. 

The basic principle of a segmented trace buffer was introduced in Chapter 2. In the 

proposed architecture, the number of control words equals the number of segments 

and they can be used in different ways based on the Event-count and Seg-en fields. 

If both of them are zero then the trace buffer is unsegmented and CT RL - word(O) 

provides the condition for t riggering. If Event - count is set to zero and S eg - en 

is active then segment i starts sampling at t he event defined by CTRL - word(i). 

If Event - count is not zero and Seg - en is deactivated then the trace buffer is 

unsegmented and the event sequencer monitors the conditions described in the first 

Event-count control words in order to start sampling. If the Event-count is not zero 

and Seg-en is active then the triggering is sequential as described above , nonetheless 

the trace buffer is segmented and each segment i starts sampling Trigger - pointer( i) 

clock cycles after the event detection and the number of samples in each segment is 

specified by Seg - size(i) . 

As shown in the embedded debug module CTRL implementation I from Figure 

4.2, S control registers (i. e., S control words , S trigger pointers and S segments sizes) 

are allocated in the embedded debug module control. As the number of segments 

increases, the area of the debug module can become large. Since these control registers 

are accessed in sequence, an alternative is to store the values of these S control words, 
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S trigger pointers and S segment sizes into t he last few locations of the trace buffe r. 

These locations can be accessed t hrough the embedded debug module control t hat now 

contains only one control register as shown in t he embedded debug module CTRL 

implementation II from Figure 4.2. Although these will consume several locations 

from the trace buffer , because t he debug data will be captured aft er the occurrence 

of the trigger condit ions that are specified by t hese control dat a, the captured data 

can overwrite t he control information . So long as t he size of the last segment is 

larger than t he amount of control information (i.e., control word, t rigger pointer and 

segment size) stored in t he trace buffer for t his last segment (which is t he case for 

most practical implementations) , the length of the observation window will not be 

affected. 

The distinguishing features of our architecture, stem from the mult iple input sig­

nature register (MISR), commonly used in built-in self- test (BIST), which is placed at 

t he input of the trace buffer. This }.rlISR performs lossy compression on the selected 

debug data signals with a compression level determined by the samples per signature 

(JVIIS R - S P S) parameter , whenever !vf I S R - en is enabled. At the beginning of 

the debug session, the MISR counter (which is placed in t he controller of t he debug 

module) is initialized to zero. After the trigger condition occurs, t he }.lISR counter 

st arts count ing and it reset s back to zero each time it reaches MIS R - SP S, at which 

t ime the signature is written in the trace buffer. The number of signatures stored in 

each segment is determined by the segment size Seg - size. When all the failing in­

tervals (whose length is determined by t he size of a segment) have been identified, the 

compression does not need to be performed any more and NI I SR- en is deactivated. 

Example 1 Figure 4.3 shows an illustrative example of how the above-described 

features can be used by an hierarchical debug ft.ow. In the highest level of debug 

hierarchy (level 0) samples from the ent ire t argeted observation window are mapped 

onto signatures and stored in the trace buffer. In the subsequent levels of debug 

hierarchy only samples from the intervals represented by the failing signatures (in 

the level of debug hierarchy above t he one that is currently considered ) are acquired 

(either compressed or uncompressed depending whether it is the last level of debug 

hierarchy or not) . Table 4.2 gives the terminology which is used both by this example 
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N = 2 21 

Session 1 
M = 512 

I Level 0 I SPSo = 4096 S=4 

Level 1 I SPS, = 32 

Level 2 I sps2 = 1 

Session 4 Session 5 Session 6 

Figure 4.3: An Iterative Debug Example for the Proposed Iterative Debug Flow using 
Lossy Compression 

and in the following sections. 

The trace buffer has JV! = 512 locations, S = 4 segments, and the targeted 

observation window is N = 221 sample . Debug level 0 has only one debug session , in 

which the trace buffer is unsegmented, with the compression level given by SPS0 = 
N /NI = 4096. After the initial debug session, each of the eight failing signatures 

covers 4096 samples, which, for this particular case, is greater than the size of the 

trace buffer (512 locations ). Therefore, we will have an intermediate debug level 1, 

which will further filter-out the error-free intervals. For all the subsequent debug 

sessions, the trace buffer segments are used in such a way that instead of expanding 

one fai ling signature per debug session , S failing signatures are expanded. SPS1 can 

be calculated as SPS0/(NI /S ) = 32, and therefore another level of debug is needed 

to zoom in and detect when exactly the failing samples occur. In the last debug level 

2, no compression will be applied (S P S2 = 1). To better utilize the available trace 

buffer size, before running any session in debug level 2, the debugger software will 

check if any neighboring signatures from level 1 can be merged such that more than 

one signature can be expanded into one segment in debug level 2. In Figure 4.3, 

two of the failing signatures from session 2 at debug level 1 can be expanded in one 

segment in session 4 at debug level 2. Finally, as observed in the figure, when using 
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Table 4.2: Terminology for the Proposed Debug t--Iethod 

Name 
J'.1 
N 
s 
k 
S P Si 
DSi 
FSi 
DScuD 
TcuD 

Representation 
Trace buffer depth 
The length of the observation window 
The number of segments in the trace buffer 
The index of the last level of debug 
Samples per signature at debug level i 
Number of debug sessions at debug level i 
Number of failing signatures at debug level i 
Total number of debug sessions for the CUD 
Time for running debug sessions on the CUD 

lossy compression over a long observation window, the number of debug sessions for 

the above example is as low as 6. For this example, because the number of erroneous 

intervals is only 12 (it equals the number of segments with fai ling samples in the 

last debug level), there is a significant reduction in debug sessions when compared 

to the sequential debug case (where the number of debug sessions would be equal to 

N/M = 4096). 

As observed from this example, the propo cl method can be considered as a 

generalization of the binary search approach that is used in scan-based BIST diagnosis 

[40] . This fault diagnosis method relies on the binary search approach for determining 

the error-capturing scan cells by iteratively applying the generated test patterns to 

the scan chains and capturing the signature of selected scan cells. The selection of 

the scan cells in each BIST session is decided based on whether or not the captured 

signature from the previous BIST session is faulty. The binary search is continued 

until all the scan cells are diagnosed or a desired accuracy is achieved. To emphasize 

the contributions of our method, we explain the differences between the known scan­

based BIST diagnosis method [40] and the proposed method from our work which 

focuses on reducing the number of debug experiments during in-system silicon debug. 

A key observation is that t he length of the observation window, which is usually 

targeted in silicon debug, can be significantly larger than the length of the internal 

scan chains. Therefore collecting only one signature per debug session will be too 
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lengthy. Because the trace buffer is already available on-chip to collect the faul t-free 

samples in the last debug session, we reuse it in order to capture a stream of signatures. 

Consequently. as many signatures as the trace buffer depth can be extracted and 

analyzed to determine t he intervals which contain erroneous samples. This leads to 

a multiple interval search algorithm for scheduling debug sessions that replaces the 

known binary search used in scan BIST diagnosis (this scheduling is also dependent 

whether the trace buffer can be offloaded at the same time a the debug session 

is running, as discussed in t he following section). Thereafter, the multiple interval 

search is performed in the succeeding debug sessions by expanding each of the failing 

signatures into multiple signatures (with lower number of samples per signature) 

within a single segment at the subsequent level of debug. It is the segmented trace 

buffer feature that enables multiple interval search, which is continued until all t he 

failing intervals are identified at the last level of debug. 

A novel debug technique has been recent ly proposed in [123], as a follow up to 

our research work presented in this chapter. The differences between the introduced 

method in [123] and the proposed method from our work are as follows: 

• the method introduced in [123] is based on a three pass methodology. In the 

first pass , t he trace buffer is employed to store the parity information of the 

debug data, then t his data is compared with the fault-free parity information 

obtained from simulation in order to measure an approximate error rate. During 

the second pass , a set of suspect clock cycles where errors may be present 

is determined through a two dimensional (2-D) compaction technique using a 

combination of MISR signatures and cycling register signatures. In the third 

debug pass, t he trace buffer captures only during the suspect clock cycles. The 

advantage of t his technique lies in expanding the observation window by one to 

two orders of magnitude for low error rate using only 3 debug sessions. 

• in our proposed method, we set the length of the observation window at the 

ini t ial debug session, and then we start to zoom into the erroneous intervals 

using a sequence of debug sessions. In order to target the same length of t he 

long observation window, a multiple of 3 debug sessions will be needed using the 
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method introduced in [123]. As explained above, out of t hese 3 debug sessions 

only the last one will capture uncompressed samples. Hence for [123], if the 

error rate is high and the error occur in bursts, t here will be a high overhead 

of debug sessions (2 out of 3) t hat do not capture error-free samples. This 

overhead will be lower in our case, because the number of debug sessions t hat 

capture compressed samples will have a large value for samples per signature 

(it changes from one level to another by a factor of NI/ S). On the other hand, 

if the error rate is lower and the errors do not occur in bursts, the method from 

[123] will achieve a lower number of debug sessions for the same target size of 

t he observation window. It is worth mentioning, however, t hat due to the tag 

information uploaded in the buffer in the last session of [123], t he number of 

samples that will be captured in this last session is predetermined. Hence, it is 

cumbersome to include a streaming feat ure that can further reduce t he number 

of debug sessions, as it is possible in our work (this will be discussed in the next 

sect ion). 

4.4 The Proposed Scheduling Algorithms 

This section describes the proposed debug algorithms for scheduling the debug ses­

sions. To support fur ther reductions in the debug sessions, we introduce t hree im­

portant feat ures in the architecture shown in Figure 4.2 . The first feature shows 

the benefi t of using variable segments sizes at t he last level of debug. In the second 

feature, we int roduce a spacial compactor before the MISR in order to reduce the 

number of debug sessions when probing mult iple sign als. The third feature discusses 

how streaming the captured signatures as the debug session is running will fur ther 

improve the effect iveness of our proposed methodology. 

4.4.1 Algorithm for Scheduling Debug Sessions 

Algorithm 3 discus es how the compression level is updated in each debug level, as 

well as it shows how the total number of debug sessions ( D Seu D) and the t ime for 
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Algorithm 3: Scheduling Debug Sessions 
Input : M , S, SPSo and FSo 
Output : DScuo and Tcuo 

1 DScuD = 1; TcuD = N; i = 0 (set the initial debug level) ; 
2 while (last debug level not reached) do 
3 if (SPSi > M) then 
4 SPSi+ l = SPSif(M/ S) (set SPS for the the next debug level); 
5 e lseif (SP Si > M/ S) t h en 
6 SPSi+ l = 1 and do segment merging; 

e lse 
7 SPSi+ l = 1 and check for failing signatures merging; 

e nd 
8 Increment the debug level ( i + +) 
9 w hile (more failing signatures exist in the current debug level) d o 
10 Generate S trigger pointers; 
11 Run debug experiment on the CUD; 
12 Detect fai ling signatures or samples in the debugger software; 
13 Update DScuo , Tcuo; 

e nd 
e nd 

14 return DScuo , Tcuo; 

running all the debug sessions (Tcuo) are computed. It is assumed that all t he S 

segments are equal in size (i .e., 111/S). We start with an initial debug session that 

compresses the entire observation window using SP S0 = N /NI . At this time D Seu o 

is set to 1 and Tcuo is equal to N, i. e., the length of the fir t debug session is the 

entire observation window (line 1). The segmented mode feature is used thereafter , 

one signature from level i is mapped to one segment at level i + 1. Each iteration 

from the outer loop (lines 2 to 13) stands for one debug level. The update of SPS 

can be explained as follows (lines 3 to 7). If the compression level at the current 

level i is greater than the trace buffer size NI, then SP Si+ 1 = SP Si/ ( J\f / S). If 

SPSi is in between M/S and 111 then SPSi+ 1 = 1 (i.e. , we move to t he last debug 

level that does not have any compression) and segment merging can be done, where 

instead of S segments we will have SPSi/ (M/ S) segments. The intuition behind this 

segment merging step is to avoid an intermediate debug level that will not increase 

the resolut ion of the failing intervals. Finally, if SP Si is smaller than M / S we will 
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move to the last debug level (i. e., SPSi+ 1 = 1) and check if any two neighboring 

signatures can be mapped onto the same segment. 

After incrementing the debug level (line 8), the inner loop (lines 9 to 13) iterates 

t hrough each debug session at t he current debug level. The trigger pointers in each 

debug session are calculated based on the updated SP S and failing signatures from 

the previous debug level. After a new debug experiment is run on the CUD, the 

debugger software extracts the failing signatures (if t he last debug level is not reached) 

or samples (if t he last debug level is reached) and it updates the DScuD and TcuD 

accordingly, which will be returned at the end of the algorithm (line 14). 

4.4.2 Variable Segments Sizes at the Last D ebug Level 

In Section 4.4.1, we have assumed that each of the segments of the trace buffer has 

a fixed size, which is equal to NI/ S. If SPSk- l < NI/ S, multiple failing signatures 

at level k - 1 (where k is the index of the last debug level) can be mapped onto t he 

same segment at level k (line 7 of Algorithm 3). However, if the debug architecture 

supports variable segment sizes t hen the number of debug sessions in the last level can 

further be reduced. For this particular feature, the minimum segment size is SPSk- l , 

while the maximum segment size is set up to be a multipl of SPSk- l· In Figure 4.2, 

Seg - size (i) is the variable segment size for segment i. This variable segments sizes 

feat ure is only exploited at the last debug level k. Given that there are S segments, 

t he size of the maximum segment is selected in order to employ the trace buffer of 

at most S segments. Some of the S segments can have a maximum segment size and 

each of the remaining ones will have a size smaller than the maximum segment size. 

In Figure 4.3, the maximum segment size is selected to be five times SPSk-l and 

hence t hree segments each with this size along with one more segment of size equals 

SPSk- l can be used in any debug session at the last level of debug. Thus, because 

small segments (that store isolated fai lures) can be combined with large segments 

(that store bursts of failures) in the same debug session, further savings in terms of 

debug sessions can be achieved, as demonstrated later in the experimental results . 
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4.4.3 Spatial Compression 

Figure 4.2 hows an archi tectural feat ure that is used to enable spatial compre sion 

(i.e. , Sp- en flag) in order to reduce t he number of debug sessions of multiple probed 

signals. To achieve this improvement , width compression is employed before the T\IISR 

by using an X 0 R network in which multiple channels of debug data are compressed 

into a single one. This feature can be used in all the debug levels except the last one, 

where no compression is performed and the debug module selects only one channel at 

a time. The methodology for calculating the DScuD and TcuD before the last debug 

level is the same as in Algorithm 3, however, their number at the last debug level 

will be scaled by the number of channels. ote, while both the spatial compressor 

and the l\IISR may run into the alia ing problem, it is unlikely that all the erroneous 

samples caused by a part icular bug will lead to fault-free signatures in all the possible 

intervals of occurrence. As demonstrated later in the experimental results, t he effects 

of aliasing (if it does occur) are negligible. 

4.4.4 Combining Streaming and Compression 

This subsection discusses the architectural and algorithmic support for combining 

streaming with the proposed debug methodology. An interesting observation is t hat 

if the length of the debug experiment is large and if the failing signatures are sparse, 

there is a lot of idle time in between any two trigger points in the trace buffer. 

Therefore, an additional architectural feature, which is enabled using stream enable 

flag St - en shown in Figure 4.2, would enable the streaming of the samples stored in 

the trace buffer while t he debug experiment is still running on the CUD. This feature 

will provide further savings in the number of debug sessions, as demonstrated later 

in the experimental results . 

If the frequency of the off-chip serial interface is !JTAG and L is the width of a 

word in the trace buffer, then the time needed to offload a segment to the debugger 

software is Segsize x L x (l / fJTAG), where S egsize is !Yl/S for the fixed segment case 

and Seg - size(i) for the variable segment case. If the on-chip sampling frequency 

is f cuD, then the time d (the number of on-chip clock cycles) needed to stream 
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Algorithm 4: Scheduling Debug Sessions with St reaming 
Input : J\f , S, SPSo and FSo 
Output : DScuD and TcuD 

1 DScuD = 1: TcuD = N; i = 0 (set the initial debug level); 
2 while (last debug level not reached) do 
3 if (SPSi > J\f) then 
4 SP Si+ 1 = SP Sif ( M / S) (set SPS for the the next debug level); 
5 elseif (SP Si > J\f / S) the n 
6 SPSi+ l = 1 and do segment merging; 

else 
7 SPSi+ l = 1 and check fo r fai ling signatures merging; 

end 
8 Increment the debug level ( i + +) 
9 while (more fai ling signatures exist in the current debug level) do 
10 Generate the last S - 1 trigger pointers; 
11 Generate th first trigger pointer; 
12 Run debug session on CUD; 
13 while (more failing signatures satisfying st reaming condition) do 
14 Stream out the first segment contents; 
15 Update the fi rst trigger pointer; 
16 Detect the fai ling signatures or samples of the streamed segment; 

end 
17 Detect the failing signatures or samples of the trace buffer; 
18 Update DScuD and TcuD; 

end 
end 

19 return DScuD, Tcuo; 

out the contents of a segment must satisfy the following condition: (1 / f cuD) x d > 

S egsize x L x ( 1 / f JT AG). We define the streaming distance Streamdist as the minimum 

distance between two trigger points that can be mapped onto the first segment of the 

trace buffer, without overflowing it when the stream mode is enabled. Therefore, 

Streamdist = Segsize X L X !ratio , where !ratio = f cuD/ f JTAG· 

The first part of Algorithm 4 (lines 1 to 8) , which updates SPS, is identical 

to Algorithm 3. The second part (the inner loop described between lines 9 to 18) 

exploits the streaming feature. The intuition behind the proposed algorithm is to 

start with the debug session that takes the longest t ime to run and hence enables t he 

streaming of the largest number of the fai ling signatures. Then these numbers start 
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to decrease in the following debug sessions at t he same debug level. vVhen switching 

to a new debug level, we select the first failing signature and the last S - 1 fai ling 

signatures from the previous debug level to be expanded into the first debug session 

at the current debug level. vVhen running t he first debug session , it is expected ther 

will be sufficient time to stream out the contents of the first segment before t he last 

S - 1 trigger pointers occur . While streaming out the contents of a segment, another 

t rigger pointer that satisfies t he Streamdist condit ion can be uploaded to t he debug 

module. The process of streaming out the first segment contents and uploading a new 

trigger pointer for the same segment is repeated until the last S - 1 signatur s are 

reached. Subsequently, after offloading the content of the trace buffer to the debugger 

software, the above sequence of events is repeated iteratively until all failing intervals 

are identified. 

4.5 Sensitivity Analysis 

This section analyzes t he sensit ivity of the proposed debug methodology to t he failing 

samples distribution. If the entire observation window is divided into a number of 

intervals (bursts) and the length of each burst equals to t he segment size NI / S , then 

the total number of bursts that contain failing samples is labeled as B. Because B 

is directly related to the failing samples distribut ion in a long observation window, 

we analyze the sensit ivity of the proposed debug methodology to B , as well as to 

the observation window length (N), trace buffer depth (NJ) and the number of trace 

buffer segments (S). 

At debug level 0, t he initial samples per signature SP S0 = N /NI represent the 

maximum number of debug sessions (DSseq) wh n applying the sequential debug 

methodology (i. e., in each debug session, we iteratively zoom into the observation 

window until we reach its end). In the proposed methodology, the updating criteria for 

t he compression level at each debug level is SPSi+i = SPSi/( M/S). Since SPSk = 1, 

then k = flogM/S SPSol (for the sake of simplicity in this analysis we assume that 

N, !VI and S are powers of 2). The number of debug sessions on t he last level 

is DSk = r BI Sl (i. e., s bursts can be mapped onto s segments in each debug 
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Figure 4.4: Reduction in Debug Sessions versus Failing Intervals 

session) and the total number of debug sessions can be calculated as =~=o DSi · For 

the worst case scenario of the failing sample distribution, all the bursts are equally 

distributed over the entire ob ervation window. If the number of debug sessions is 

equal to r BI Sl at a specific debug level j' then the number of debug sessions at 

each of the following debug levels will also be equal to r BI Sl (by construction the 

Algorithm 3 cannot decrease the number of debug sessions when moving to an upper 

level) . Therefore, the total number of debug sessions is (f}~~ 1 + (k + 1 - j)I ~l 
s 

where ( A.J )j-l ::::; ~ ::::; ( 11£ )j. Since from the above inequality j can be rewritten as 

llog¥(~)J + 1, the maximum number of debug sessions for a given B , N, NI and 
M l logM (~)J+ l 

Scan be expressed as DSworst = (s) (¥)-l -l + (flog~(Z)l - llog¥(~)J )l~l 
Using the above formula for DSworst, which is t he number of debug sessions for the 

proposed method for the worst case distribution of the failing samples for a given B , 

we can learn when Algorithm 3 will guarantee better results than in the sequential 

debug case DSseq· Figure 4.4 considers the same values for N, NI and S as in 

Figure 4.3 and it shows how the reduction in debug sessions (defined logarithmically 

as log2(DSseq/ DSworst )) as a function of B. There are two main points that need 
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to be emphasized. Firstly, as the number of failing intervals B approaches to total 

number of intervals N / ( lvf / S), the advantages of our method are diminished, which 

is obvious because we will have to zoom in every single interval of t he observation 

window. Secondly, for low values of B (less than 10% of the total number of intervals ), 

which is a realistic case when searching hard-to-detect bugs that occur intermittently 

in large observation windows [57], the reduction in the number of debug essions is 

guaranteed to be significant even for the worst case distribution of B. 

4.6 Experimental Results 

This sect ion discusses the experiments concerning the area investment and the com­

pression benefits of t he proposed iterative debug method. The area of the proposed 

debug archi tecture has been estimated using a 180nm ASIC standard cell library. T he 

debug data has been collected from an FPGA prototype of an MP3 audio decoder 

[45]. To show the sensitivi ty of the proposed method to the distribution of failing 

samples, we have also used random data with different failing samples distributions. 

4.6.1 Area of the Proposed Debug Module 

Table 4. 3 shows the area of the debug module (excluding the trace buffer area) 111 

terms of 2 input NAND (NA D2) gates. The results shown in this t able are for 

different number of variable-sized segments (S = 2, S = 4 and S = 8) wit h t he 

embedded debug module CTRL implementation I from Figure 4.2 and with the the 

embedded debug module CTRL implementation II from Figure 4.2 (that uses a user­

programmable number of segments), for the following cases: no compression and no 

high speed sampling features; no spatial compression (Ch= 1) and spatial compres­

sion with different number of channels (Ch= 2, Ch= 4 and Ch = 8) where streaming 

compression is enabled and high speed sampling is facilitated by pipelining the event 

detector. The results from this table refer only to the logic area and do not account 

for the trace buffer . To ensure that the debug module can be shared between multiple 

logic cores on the SoC, we connect 8 different groups of signals to the same debug 
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Table 4.3: Area of The Embedded Debug r--Iodule Architecture in NAND2 Equivalents 

Segments o Comp- With Compression Features 
Number ress10n Ch= 1 Ch= 2 Ch= 4 Ch = 8 

Implementation 
5=2 2886 4970 5048 5125 5287 
5=4 4559 7036 7106 7187 7344 

I in Figure 4.2 
5=8 7799 11014 11083 11165 11322 

Implementation program-
2037 3970 4040 4121 4278 

II in Figure 4. 2 mable 

module. In addit ion, because it is important to have as many features as possible 

in the control word (such as compare against a constant or combine several types of 

logic or relational operators) , the control word (which is stored for each segment) will 

grow in size. Should all these features be removed the area of the debug module can 

be significantly reduced, nevertheless the debug capabilities will be severely limited, 

which cannot consider to be a good motivation. 

It is essential to note that the proposed debug module architecture with the em­

bedded debug module CTRL implementation II from Figure 4.2 uses the control 

register information that is stored in t he last few locations of the trace buffer. This 

architecture contains one control word register to specify the required triggering con­

dition , one trigger pointer register along with one segment size register. In order to 

support sequential event detection and multiple trigger pointers in each debug ses­

sion, t hese registers are updated from the values that are stored into the trace buffer 

as explained in Section 4.3.2 . As it can be noted , t he area results from Table 4.3 for 

t he debug architecture with the embedded debug module CTRL implementation II 

from Figure 4.2 are significantly smaller than CTRL implementation I from Figure 

4.2. The different variants of the proposed architecture are obviously larger t han the 

debug architecture that does not have any compression or high-speed features. It is 

essent ial to note t hat the increase in the logic area of the proposed debug module 

with the embedded debug module CTRL implementation II from Figure 4.2 has sig­

nificantly less penalty than scaling the trace buffer. For example, for 8 channels t hat 

are spatially compressed, the added logic area for compression is still less t han one 
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tenth of the size of an embedded memory of 4Kbytes implemented in the same tech­

nology. vVhat is also interesting to note, as the number of channels used for spatial 

compression increases, the added area becomes insignificant. Noneth less, as shown 

later in this section t he spatial compression feature can further reduce t he number of 

debug sessions. 

4.6.2 MP3 D ecoder Experiments 

An MP3 decoder has been implemented and prototyped on an FPGA board. In t he 

MP3 debug experiments performed in t his work, the determinis tic-replay is achieved 

by uploading the input stimuli to an on-board buffer. vVhen replaying a debug ex­

periment , the input stream is read from this buffer and applied synchronously to the 

circuit under debug. We have investigated how functional errors in the RTL code, can 

be detected using the proposed methodology. Table 4.4 shows the reduction ratios 

in terms of the debilg exec'lltion time for t he entire observation window, where Tseq 

and T prop are the debug execution times for the sequential (i. e., where the entire ob­

servation window is sampled sequentially and no compression is performed) and the 

proposed debug method respectively. To compute the debug execution time we need 

to consider not only the number of the debug sessions , but also the on-chip sampling 

time and the comm'llnication time (needed for off-loading the trace buffer content to 

the debugger software through the JTAG interface) for each of the deb'llg sessions. 

On the one hand, the communication time is determined by the JTAG frequency and 

the capacity of t he trace buffer and therefore it is constant for all t he debug sessions. 

On the other hand, for the proposed method the on-chip sampling time is dependent 

on how many on-chip clock cycles elapse from the trigger event until the trace buffer 

is filled only with failing intervals , which are of interest in the current debug session 

(e.g., in Figure 4.3 t he on-chip sampling time for debug session 3 will be larger than 

for debug session 2). Therefore, this time varies from one debug session to another 

and it is dependent on t he distribution of the failing samples over the observation 

window. It should be noted that the debugger software does not incur any additional 

latency because the processing of debug data can be done at the same t ime while 
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Table 4.4: Reduction in Debug Execution Time (Tseq/Tprop) for the ~IP3 Data with 
N = 221 JV! = 512 S = 4 Ch= 2 l l l 

No Streaming Streaming 
Error 3 No Spatial Spatial No Spatial Spatial 

Fix Var Fix Var Fix Var Fix Var 
0.16 49.4 58.5 58.3 71.4 216.9 239.6 256.3 288.5 
1.59 7.9 9.9 8.7 11.2 99.0 108.8 106.7 118.2 
6.14 3.0 3.8 3.1 4.0 78.9 80.7 83.7 85 .8 

the debug experiments are running on-chip and/or the data is transferred to/from 

the debugger software. Using the terminology introduced in Sections 4.3 to 4.5. the 

reduction in terms of debug ex cution time can be calculated as follows. 

For the sequential debug case, the total number of debug sessions is D Sseq = N /AI 

and the communication time of the entire observation window is DS eq x AI x L x 

1/ fJT AG, where Lis width of the trace buffer. The on-chip running t ime, in terms of 

on-chip clock cycles, can be approximated to (NI* L- f:if1 i) = (1 + N/ AI) x N/ 2 (note, 

the amount of t ime spent for detecting the first triggering event is not con idered in 

this equation and it cannot be calculated deterministically because it depends on the 

specific triggering condition). As a consequence, Tseq=(l + N /NI) x N / 2 x 1/ f cuD + 
N x L x 1/ f JTAG· The communication time for the proposed methodology is DScuD x 

M x L x 1/ !Jr Ac and the on-chip running time is TcuD x 1/ fcuD, where DScuD 

and TcuD are computed by Algorithms 3 and 4 (note, TcuD is computed in terms of 

on-chip clock cycles) . Therefore, Tprop=DScuD x M x L x 1/ J JTAG + TcuD x 1/ f cUD· 

The data reported in Table 4.4 is for probing the data buses at the output of 

the stereo decoder module in the IP3 decoder's pipe [45] for 3 different functional 

bugs affecting only several stereo modes. The error choices are motivated by the 

fact that only a few music frames throughout an entire song will use a specific stereo 

mode, thus justifying the condition t hat the bugs are very difficult to find and they 

manifest themselves only a few times over very long observation windows (the error 

rates are .163, 1.593 and 6. 143 respectively). In this particular case, the observation 

window represents 1820 MP3 frames (there are 1152 samples per MP3 frame), which 

gives N = 221
. With l'vf = 512 and S = 4, there will be three debug levels with 
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S P So = 4096. SPS1 = 32 and SPS2 = 1. To compute T seq and T,>r op· we have 

considered L = 16 (the sample width is 16 bits) and ! ra tio= f cuD/ f1TAG = 2 (The 

MP3 decoder has been implemented to work at low frequencies). 

In Table 4.4, Fix stands for fixed segment size and Var for variable segment size. 

Because S P S 1 = 32 < AJ = 128, the use of the variable segment ize at the last debug 

level leads to a further reduction in the debug execution t ime as described in Section 

4.4.2. The spatial compre sion is applied on both music channels of the I\ IP3 decoder 

and, as clearly shown in Table 4.4, streaming can bring substantial improvements . 

The significant reduction in the debug execution t ime when using streaming is due to 

the fact t hat by using the proposed iterative debug flow, by sampling only the failing 

intervals from the previous debug level, we use the t ime in between two intervals to 

stream out samples (or signatures as in the case of intermediate debug levels) t hat 

have been sampled in the same debug session. As it can be noted, the debug sessions 

are scheduled with the streaming feature after the initial debug session as described 

in Algorithm 4 from Section 4.4.4. It is important to note that these experimental 

results have shown only one case where t he aliasing occurred. In Table 4.4, when the 

error rate is 6.143 , aliasing causes a loss of 0.0053 of the erroneous data samples. 

As noted from t hese results , the effects of aliasing are insignificant . 

4 .6.3 R andom D ata Ex perime nts 

To illustrate the sensitivity of the proposed debug method to the distribution of the 

failing samples as described in Section 4.5 , Table 4.5 shows the reduction in debug 

execution time for different sets of random dat a experiments that have distinct error 

distributions. For the random data experiments , N = 227
, M = 2048, S = 4, 

and no spatial compression and no st reaming compression are enabled. The burst 

length represents the number of erroneous samples that occur consecutively and all 

the bursts are randomly distributed over the ent ire observation window. As it can 

be observed from Table 4. 5, when the burst length increases, the reduction ratios 

grow. This is because when the burst length is approaching the segment size , for a 

given error percentage, t he number of uncompressed debug sessions (the last level 

98 



Ph.D. Thesis - Ehab A. Anis Daoud l\Icl\Iaster University - Electrical & Computer Engineering 

Table 4.5: Reduction in Debug Execution Time (Tseq/ Tprop) versus Error Percentage 
of Random Data for Different Burst Lengths with N = 227

, M = 2048 , S = 4 

Error 3 Burst length 
64 128 256 512 

0.78 13.2 21.9 32.8 48.9 
1.55 7.2 12.1 18.6 26.4 
2.32 5.0 8.4 13.2 18.6 
3.08 4.0 6.6 10.3 14.6 
3.83 3.3 5.4 8.4 12.0 
4.58 2.8 4.6 7.2 10.3 

of debug) are reduced (also the number of debug sessions in the intermediate levels 

are indirectly reduced as less failing signatures need to be processed). Fina lly, as the 

error percentage increases, t he reduction ratios decrease for the same burst length 

because more debug sessions are necessary to detect the erroneous intervals (as also 

illustrated in Figure 4.4 from Section 4.5). 

4.7 Summary 

In this chapter, we have shown how lossy compression can be used for developing a 

new debug architecture and an iterative debug flow t hat provide an increase in the 

observation window for at-speed silicon debug of generic digital ICs. The proposed 

debug method accelerates the identification of the hard-to-find functional bugs that 

occur intermittently in long observation windows. This method enables an iterative 

debug technique for zooming only in the intervals containing erroneous samples and 

hence a significant reduction in the number of debug sessions can be achieved. The 

proposed solut ion is tailored for determini t ic replay circuits and applicable for both 

ATE-based debug and in-field debug on application boards. 
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Chapter 5 

Embedded Debug Architecture for 

Bypassing Blocking Bugs 

Once a design bug is found during post-silicon validation, before committing to a 

re-spin of a design it is expected any other bugs, which have escaped pre-silicon 

verification, to be also identified. This will minimize the number of re-spins , which 

in t urn will reduce both the implementation costs and the time-to-market. However , 

this is hindered by the presence of blocking bugs in one erroneous module that inhibit 

the search for bugs in other parts of the chip that process data received from this 

erroneous module. To address this problem, in t his chapter we propose a novel 

embedded debug architecture for bypassing the blocking bugs. 

This chapter is organized as follows. Section 5.1 gives preliminaries for t he research 

work presented in this chapter, outlines the motivation behind it and summarizes its 

contributions. Section 5.2 describes the proposed debug methodology for bypassing 

blocking bugs. Section 5.3 present the proposed debug architecture. Experimental 

results from Section 5.4 show how the proposed debug architecture is used to aid in 

debugging an MP3 audio decoder. Finally, Section 5.5 concludes this chapter. 
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5.1 Preliminaries and Summary of Contributions 

Due to t he escalating mask costs, it is imperative to identify the design bugs that have 

escaped pre-silicon validation as soon as the first silicon is available. Because locating 

a design bug at a certain point makes it an obstacle for debugging the remaining parts 

of the design that are connected to this point, it is important to bypass its erroneous 

behavior. This type of bug is called a blocking bug. In the presence of blocking bugs, 

the erroneous samples have to be replaced in real time with the correct stimuli. To 

achieve this goal, the following two assumptions need to be satisfied. Firstly, the 

debug data has to be deterministically computed and reproduced using a reference 

behavioral model of the CUD. Secondly, the target application board (on which t he 

CUD is located) has a deterministic execution behavior where re-applying the same 

input data will always produce the same output data. This deterministic behavior is 

common for target application boards where stimuli are applied synchronously (e.g., 

when debugging an audio/ video decoder). 

To illustrate the problem solved in this chapter , we show two different debug 

scenarios in Figure 5 .1. In Figure 5 .1 (a) , t he on-chip trace buffer is used ju t for 

capturing the debug data based on the debug configuration that specifies the trigger 

condi t ion at which the acquisition process starts. After the trace buffer is filled , the 

captured data is offioaded to the debug software, where the debug information is 

compared against the behavioral model. In order to replace the erroneous behavior 

caused by the blocking bugs, another level of triggering is needed to enable t he trace 

buffer to provide the correct stimuli only at the specific times determined by the occur­

rence of the blocking bugs. This motivates our research to develop the stimuli selection 

module, which is shaded in Figure 5.1 (b). In t his scenario , the debug configuration 

includes the following: 

• Init ial trigger event for providing the stimuli data; 

• The stimuli control information to be uploaded into stimuli selection circuitry; 

this information specifies the t imes at which the stimuli data will be provided 

and the duration of the stimuli intervals as well; 

101 



Ph.D. Thesis - Ehab A. Anis Daoud 

Circuit under debug 

Event detection circuit 

On-chip trace buffer 

l\!Icl\Iaster University - Electrical & Computer Engineering 

Debug software 

Behavioral model 

Debug configuration 

Compare the captured data 
against behavioral model 

(a) Debug Scenario without Bypassing Blocking Bugs Feat ure 

Circui t under debug Debug software 

Event detection circu it Behavioral model 

Debug configuration 

(b) Debug Scenario with Bypassing Blocking Bugs Feature 

Figure 5. 1: Debug Scenarios with and without Bypassing Blocking Bugs Feature 

• The stimuli data to be uploaded into on-chip trace buffer. 

Our objective in this chapter is to develop a debug methodology, and an associated 

logic circuit ry to be integrated in the embedded logic analyzers, to enable the real­

time replacement of the erroneous behavior (caused by blocking bugs) with the correct 

stimuli. Our contribut ion is motivated by the observation that design errors which 

escape to silicon will manifest in a burst-mode and only several times over a large 

execution time (bugs of this type are indeed the most hard-to-detect, as discussed 

in [57]). This key observation enables also to stream the stimuli data and control in 

real-t ime through a low-bandwidth interface connected to the debug software. The 

main contributions of this chapter are summarized as follows: 
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• we propose a novel architecture that enables hierarchical event detection mech­

anism to provide correct stimuli from an embedded trace buffer , in order to 

replace t he erroneous samples caused by the blocking bugs; 

• we develop an architectural feature in t he embedded trace buffer controller in 

order to enable sharing t he stimuli data, stimuli control and capture data in a 

segmented trace buffer that can be configured with different segments sizes for 

the purpose of debugging t he targeted observation window; 

• we show that by leveraging the streaming feature of the low-bandwidth interface 

to the debug software, we can fur ther improve the observabili ty by streaming 

the stimuli data. 

5.2 Methodology for Bypassing Blocking Bugs 

As outlined in t he previous section, our debug methodology for dealing with blocking 

bugs relies on: (i) validat ion data can be deterministically computed from a reference 

behavioral model of the design, which avoids t ime-consuming circuit simulation; (ii ) 

during post-silicon validat ion the circuit exhibits deterministic behavior , i.e., the non­

determinism caused by asynchronous events is masked out. The proposed debug 

methodology relies on two phases. 

Consider the two embedded cores shown in Figure 5.2. In the first phase, t he 

lossy compression technique presented in Chapter 4 is used to identify t he hard-to­

find functional bugs in Core 1. This technique enables an iterative debug flow for 

zooming only in the intervals containing erroneous samples that occur intermittently 

in long observation windows. After identifying the exact times when the bugs from 

Core 1 are activated (and knowing from the behavioral model the correct values that 

need to appear on the core's output), t he erroneous behavior should be bypassed, in 

order to validate in silicon the other parts of t he design that are connected to t he 

erroneous core (i.e., Core 2 in Figure 5.2). 

In phase 2, discussed in t his chapter, we replace the effect of t he blocking bugs 

from Core 1 with the correct stimuli required for the validation of Core 2. We rely 
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Figure 5.2: Bypassing Blocking Bugs Framework 

on t he fact t hat a blocking bug generates erroneous patterns in bursts t hat are not 

consecutive and the duration of each burst is different from one another as shown 

in Figure 5.2 (the shaded segments at t he output of Core 1 represent the erroneous 

patterns) . Note, in addi t ion to uploading the replacements for the erroneous samples , 

a stimuli pointer (Stimuli pointer ) that represents the beginning of the erroneous 

samples and an associated stimuli number (Stimuli No) are also uploaded in the 

embedded debug module. T he debug steps for validating Core 2 are explained next. 

The debug module is first uploaded with the debug configuration (step (1) in 

Figure 5.2). The debug configuration includes the trigger event that represents t he 

beginning of t he data block that has erroneous samples , as well as the stimuli data and 

stimuli cont rol (i. e., stimuli pointer and stimuli number ) for the first few erroneous 

samples to be replaced (the layout and the update of this information in the embedded 
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trace buffer are det ailed in the following section). The stimuli pointer represents the 

time at which the stimuli will be provided at the probe point . The stimuli number 

specifies t he number of the stimuli that are needed to replace the erroneous samples 

upon the occurrence of the stimuli pointer. 

After t he CUD starts execut ion (step (2) m Figure 5.2) and once t he trigger 

event occurs, an internal counter from t he debug module starts its operation and it 

increments whenever specific stimuli selection condit ion occurs. This stimuli selection 

condit ion represents t he event at which the stimuli data should be made available to 

Core 2. Once t his internal counter reaches t he first stimuli pointer , the stimuli are 

read from the trace buffer until the number of erroneous samples to be replaced equals 

t he stimuli number (step (3 ) in Figure 5.2). By exploiting the fact that erroneous 

values caused by Core 1 are sparse, t he stimuli data control can be streamed in real­

time through a low-bandwidth interface connected to the debug software, as discussed 

in the following section. 

In order to capture data from Core 2 which is connected to Core 1 that has 

blocking bugs, t rigger events for Core 2 need to be uploaded into the embedded debug 

module. These trigger events determine the t imes at which the acquisit ion processes 

start, while t he associated samples numbers specify the required amount of sampling 

data as shown in Figure 5.2. Thus, the trace buffer is employed as a egmented 

buffer to allow providing stimuli at t he output of Core 1 and capt uring data at the 

output of Core 2. The acquisit ion process can be configured to capture a selected 

debug data every a specified number of clock cycles. This process is stopped once 

the required amount of the sampling data is captured or the capture data segment is 

filled. Thereafter , the captured data is offloaded to debug software. To increase the 

effect iveness of the embedded trace buffer during the debug process, we develop an 

architectural feature t hat enables sharing the stimuli data, stimuli control and capture 

data in a segmented trace buffer t hat can be configured with different segments sizes 

in order to debug t he targeted observation window, as described in the fo llowing 

section. 
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Figure 5.3: The Proposed Embedded Debug Module 

5.3 Proposed Embedded Debug Module 

This section introduces a modified embedded debug module, which enables bypassing 

the blocking bugs, based on t he methodology described in the previous section. Our 

contributions to this embedded debug module are the stimuli selection module and 

the embedded trace buffer control, which are shaded in Figure 5.3. 

5.3.1 Overview of the Embedded Debug Module 

A standard embedded debug module can capture a set of internal samples after t he 

occurrence of a certain triggering condition (i.e. , t rigger event) . This is achieved by a 

detection mechanism using the event detector as shown in Figure 5.3. In our imple­

mentation, the triggering condi t ion can be performed based on bitwise, comparison or 

logical operations between any selected t rigger signal and a specified constant value. 

The purpose of using two event detector circuits is to concurrently monitor trigger 

signals from two different cores. 
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5.3.2 Stimuli Se lect ion Module 

The event detection capability of the embedded debug module can be extended to 

enable a mechanism for bypassing blocking bugs. This mechanism provides a second 

level of triggering at which the erroneous behavior of blocking bugs is replaced with 

t he correct stimuli from the trace buffer. The first level of t riggering represents 

t he beginning of the first set of data that has erroneous samples and the second 

level indicates when the erroneous samples start to occur after the first level trigger 

condi t ion is satisfied . The second trigger level is specified by the stimuli pointer. 

The process of updating stimuli control registers is constrained by the t ime needed 

to upload new values in these registers through the low-bandwidth interface (also 

referred to as the serial interface) . This t ime depends on the serial interface frequency 

and the width of t he stimuli control (i.e., t he width of the stimuli pointer register 

combined with stimuli number register). Therefore, t he number of on-chip clock cycles 

required for updating the stimuli control equals VV X fratio , where fratio = fcuD / fJTAG 

and f cuD is the on-chip sampling frequency; ]JTAG is t he frequency of t he serial 

interface; vV is the width of t he stimuli control. If the interval between two erroneous 

samples is less than W x f,atio, then even the correct samples that occur between 

these two erroneous samples must also be loaded in the on-chip stimuli memory. 

Hence one stimuli pointer is used to indicate t he beginning of this interval whose 

length is identified by t he stimuli number. If the time between two stimuli pointers is 

sufficient to update the on-chip stimuli control registers during the debug experiment , 

the amount of stimuli will be reduced. We illustrate the importance of having multiple 

on-chip stimuli pointers with the following example. 

Figure 5.4 shows part of t he observation window that has mult iple erroneous bursts 

over two interval groups. We assume that on-chip stimuli registers are uploaded 

with the information of timuli control 1, 2, 3 and 4 in group A. In Figure 5.4, the 

t ime between the two groups is sufficient to upload these registers with new values 

(i.e., d > 4 x W x !ratio)· As a result , for t he case of having four on-chip stimuli 

pointers, their values will be updated and hence any correct samples between any 

two consecutive erroneous samples within each group do not need to be stored on­

chip as stimuli. On the other hand, for the case of having just one on-chip stimuli 
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Figure 5.4: Example of On-chip Stimuli Pointers 

control register (i.e .. one register for t he stimuli pointer and one register for the 

stimuli number), the information of the stimuli control 1 from Figure 5.4 will indicate 

all the erroneous bursts in group A. Since the t ime between any two bursts within 

group A is less than the t ime needed to upload one stimuli control information (i.e., 

91 < W x !ratio) , t he correct samples which occur between any two bursts within t his 

group need to be stored in t he on-chip trace buffer. Because similar patterns occur 

in group B (i. e., 92 < 1¥ x ! ratio ), the informat ion of stimuli pointer number 5 will 

be uploaded to the on-chip stimuli pointer register to indicate the erroneous bursts 

in group B. Given the importance of having on-chip information for stimuli control, 

we discuss different approaches to implement them. 

In Figure 5.5 , the individual registers t hat store the stimuli pointers and the 

associated stimuli numbers are accessed by the index counter. \tVhen the stimuli 

pointer counter reaches a specific stimuli pointer , which is determined by the index 

counter , the stimuli are enabled from the trace buffer for a certain duration specified 

by the stimuli number. The stimuli flag is enabled after t he occurrence of the stimuli 

pointer. When the stimuli number counter reaches t he value of the associated stimuli 

number register , this flag is disabled. The more stimuli pointers are stored on-chip, 

the less stimuli data needs to be stored. However, the drawback of t his architecture is 

t he area overhead caused by the physical registers used for storing t he on-chip stimuli 

pointers . 
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An alternative is to store all of the stimuli control information for the entire 

observation window into the trace buffer (along with the stimuli ) and allocate one 

stimuli control register in the stimuli selection module. These stimuli control values 

are accessed from the trace buffer by the stimuli selection module control. T his 

obviously has a smaller area overhead than the approach described in the previous 

paragraph. However, it will consume as many locations of the trace buffer as the 

amount of the tot al stimuli control information. This solution is constrained by the 

limited capacity of the trace buffer and hence it impacts the length of t he observation 

window. 

The solution adopted in our work chooses only a user-programmable number of 

the stimuli pointers (and the associated stimuli numbers) to be tored in a segment 

of the trace buffer. Subsequently, one stimuli pointer register and one stimuli number 

register can be allocated in the stimuli selection module, as shown in Figure 5.6. 

The values for stimuli pointers and stimuli numbers can be updated from the off-chip 

software via the serial interface by exploiting the slack between consecut ive bursts 

of erroneous samples that need to be substituted on-chip due to t he blocking bugs. 
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This solut ion combines the benefi ts of t he approaches described in the previous two 

paragraphs: it has an area overhead smaller than using dedicated physical registers 

for storing control information and it uses only a few locations in the trace buffer. 

F\1rthermore, by employing t he low-bandwidth interface to the debug software, one 

can time-share this physical link to update also the stimuli data in the embedded 

trace buffer. 

5.3.3 Embedded Trace Buffer Control 

As shown in Figure 5.7, the dual-port embedded trace buffer has three segments: the 

first segment stores t he stimuli control, t he second one is used to store the stimuli 

data and the third one is used to capture the data responses from the core that is 

currently validated and it is connected to the core that has the blocking bugs. The 

segments for stimuli data and stimuli control work as circular buffers (i. e., if the 

reading address of any segment reaches its depth, it start s again from the beginning 

address for this segment). This is necessary in order to stream data in the trace 

buffer while running the CUD for long observation windows. This feature i essential 

for the stimuli control segment because having a few on-chip stimuli control values 
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Figure 5.7: Embedded Trace Buffer CTRL 

would help reducing t he amount of the stored stimuli data (as explained in Section 

5.3.2 and substantiated later in the experimental results). Because the hard-to-detect 

bugs occur intermittently over long observation windows, we have observed t hat there 

will be sufficient time to stream in new stimuli data during a long error-free interval 

t hat occurs between two erroneous intervals. It is also important to note t hat the 

embedded debug module CTRL is capable to t ime-share the low-bandwidt h interface 

between stimuli control and data. It distinguishes between the stimuli data and 

control based on an one-bit tag informat ion embedded in the stream that is supplied 

from t he off-chip debug software. In summary, the embedded trace buffer CTRL 

controls the following processes: 

• Wri ting the captured data into the trace buffer and reading it to be streamed 

out while running t he debug experiment. 

• Reading t he stimuli control and stimuli data from t he trace buffer and writing 

new stimuli control and new stimuli data, which are streamed in through t he 

low-bandwidth interface. The accessed stimuli control and stimuli data are 

overwritten by the streamed new stimuli control and stimuli data, respectively. 

Because t he trace buffer is used for stimuli and data capture, it is essent ial to 

configure the size of stimuli segment and the size of capture segment such that as 
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much length of the observation window as possible can be debugged. These sizes 

can be changed from debug experiment to another in order to target a length of 

observation window longer than the previous debugged one. For example, in Figure 

5.2, when running the debug experiment that targets capturing the debug data from 

Core 2 upon trigger event 2, the stimuli segment size can be selected to be smaller 

than the capture segment size. This is because the amount of stimuli , that is needed 

to bypass the blocking bugs at Core 1, does not require a large segment size to reach 

this trigger event. On the other hand, when running the debug experiment that target 

capturing the debug data from Core 2 upon t rigger event 3, the stimuli segment has to 

accommodate all the stimuli required to bypass t he blocking bugs until the occurrence 

of this trigger event and hence larger st imuli segment size will be needed. 

5 .4 Experimental Results 

This section discusses the area and the advantages of the proposed embedded debug 

module for bypassing blocking bugs. The area re ults have been estimated using a 

180nm ASIC standard cell library. The debug data has been collected from an FPGA 

prototype of an MP3 audio decoder [45] and the stimuli are used from a reference 

behavioral model of the 1IP3 decoder design. 

5.4.1 Area of the Proposed D ebug Module 

Table 5.1 shows the area of the proposed debug module (without the trace buffer) in 

terms of 2 input NAND (NAND2) gates. The area results are for the debug module 

Table 5.1: Area of The Proposed Debug Module in N AND2 Equivalents 

No Stimuli With Stimuli Selection Module 
Selection Number of Stimuli Control Registers 
Module 1 2 4 8 l 16 

5298 6758 6929 7539 8694 I 11050 
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excluding the implemented stimuli selection module and for the debug module in­

cluding the stimuli select ion module with different number of stimuli control registers 

(1, 2, 4, 8 and 16). The stimuli selection module with one stimuli control register is 

shown in Figure 5.6. The results for 2, 4, 8 and 16 stimuli control registers are for 

t he stimuli selection module shown in Figure 5.5. 

It is essential to note t hat as the number of on-chip stimuli control regist ers 

increases, the area overhead of the debug module can be significantly impacted when 

compared to t he debug module that has one stimuli control register. Therefore, it 

is desirable to store the values of the stimuli pointers and stimuli numbers into a 

few locations in the t race buffer and access t hese values through the proposed low 

cost architecture shown in Figure 5.6. A it can be noted, there is an approximately 

30% impact on t he silicon area when using the debug module with t he archi tecture 

shown in Figure 5.6 when compared to the one t hat has no stimuli selection module. 

Note, however , when the area of t he trace buffer is accounted for , this overhead is 

substantially diminished. 

5.4.2 MP3 Decoder Experiments 

The debug experiments have been performed on an FPGA prototype of an l\IP3 

audio decoder and the stimuli are used from a reference behavioral model of t he MP3 

decoder design. It should be noted that for the experiments we have performed , the 

output of the stereo decoder module at one channel has erroneous sample pat terns 

similar to the ones illustrated in Figure 5.2. These erroneous samples are due to a 

functional bug (in the RT L code) t hat was ident ified in the stereo decoder module. 

After analyzing t he erroneous behavior of this blocking functional bug, we have noted 

that the errors occur only within a few music frames (each frame has two granules 

and each granule has 576 samples for each of the two channels) throughout t he songs 

that have specific tereo decoding configuration ; thus justifying the condition that the 

blocking bugs t hat are very difficult- to-find manifest themselves only intermittently 

over long observation windows (as noted also in [57]). 

Figure 5.8 shows the effect of t he on-chip stimuli pointers on the total number 
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entire Observation Window (Song= 462.38 k Samples, Sample = 2-byte word) 

of stimuli and on the total number of stimuli pointers that are used during debug 

the entire observation window of an MP3 song. As discussed in Section 5.3 .2, t he 

number of on-chip stimuli pointers will influence the total number of stimuli pointers 

that need to be uploaded through the low-bandwidth interface. As the number of 

on-chip stimuli pointers increases, the total amount of stimuli decreases, as shown in 

Figure 5.8(a). This is due to the fact that the erroneous behavior of the detected 

blocking bugs occurs over intermittent intervals throughout the entire song. The 

t ime between two intervals is used to upload the on-chip stimuli pointer · with new 

values and hence enables a large number of trigger pointers to be used, as illustrated 

in Figure 5.8(b). In Figure 5.8, we have considered W = 32 (the stimuli pointer 

combined with the stimuli number width is 32 bits) and ! ratio = 2 (the MP3 decoder 

has been implemented for energy-efficiency at low frequencies comparable with the 

speed of the low-bandwidth interface) . 

Figure 5.9 shows the length of the observation windows (i. e., the number of samples 

that can be observed from the entire song when using the stored stimuli in the trace 

114 



Ph.D. Thesis - Ehab A. Anis Daoud 1Ic1laster University - Electrical & Computer Engineering 

(j) 500r---r--~~-~--~--~ 
Cl> 
a. 
E 
"' 

CJ) 400 r----'-'--~ 
~ 
3: 
0 

"C 
.: 300 
s: 
c: 

.Q 

~ 200 
Q; 
I/) 

..0 
0 
0 100 
.s::. 
Ci 
c: 
~ 

- TB = 16KB 
TB= 32 KB 

c::::J TB = 64 KB 
c::::J TB = 128 KB 

2 4 8 16 
On-chip Stimuli Pointers 

U> SOOr---~-~--~--~--~ 
Cl> 
a. 
E 
"' CJ) 400 ~~--'-'--~ 
~ - TB = 16KB 
3: TB= 32 KB 
.g c::::J TB = 64 KB 
.!: 3oo c::::J TB = 128 KB s: 
c: 
0 

·~ 200 
Q; 
I/) 
..0 
0 
0 100 
.s::. 
Ci 
c: 
j o~~~~~~~~~~~~~-~ 

2 4 8 16 
On-chip Stimul i Pointers 

(a) Results with Arch. in Figure 5.5 (no stream) (b) Results with Arch. in Figure 5.6 (no stream) 

- TB = 16KB 
TB = 32 KB 

c::::J TB = 64 KB 
c::::J TB = 128 KB 

2 4 8 16 
On-chip Stimuli Pointers 

(c) Results with Arch. in Figure 5.5 (stream) 

~ 500r---~-~--~--~--~ 
a. 
E 
"' CJ) 400 
~ 
3: 
0 
"C 
.: 300 
s: 
c: 
.Q 

~ 200 
Q; 
I/) 
..0 
0 
0 100 
.s::. 
Ci 
c: 
Cl> 

....I 

- TB= 16 KB 
TB = 32 KB 

c::::J TB = 64 KB 
c::::J TB = 128 KB 

2 4 8 16 
On-chip Stimuli Po inters 

(d) Results with Arch . in Figure 5.6 (stream) 

Figure 5.9: The Length of t he Observation Window (k Samples) versus the On-chip 
Stimuli Pointers for different Sizes of Trace Buffers (k Bytes); Half of each Trace 
Buffer Size is used for Capturing Debug Data (Song = 462.38 k Samples) 

115 



Ph.D. Thesis - Ehab A. Anis Daoud McMaster University - Electrical & Computer E ngineering 

buffer) for different on-chip stimuli pointers and different sizes of the trace buffe rs 

(labeled as TBs in Figure 5.9). These results are for the case of no streaming is 

used fo r t he stimuli data (as shown in Figures 5.9(a) and 5.9(b)); and for t he case 

of streaming stimuli data (as shown in Figures 5.9(c) and 5.9(d)) to overwri te the 

stimuli that have been accessed by the embedded debug module. The total number 

of samples for t he MP 3 data are 462.38k (sample width = 2-byte word ). There are 

three points t hat need to be emphasized. 

Firstly, the stored stimuli represent intermittent intervals through the ent ire ob­

servation window. Thus, t he larger the trace buffer we use, the larger t he amount 

of stimuli t hat can be stored and hence the longer the observation window that can 

be achieved. If stimuli segment in the trace buffer is greater than the amount of the 

used stimuli , t he blocking bugs are bypassed over the entire observation window, as 

observed when the trace buffer size i 128 Kbytes and the number of on-chip stimuli 

pointers equals either 8 or 16. 

Secondly, as shown in Figure 5.9, t he stimuli data streaming feat ure provides an 

increase in the length of observation window. This improvement is primarily due to 

exploit ing the time between two erroneous intervals to stream in new t imuli data. 

Thirdly, there is no significant difference between the length in observation win­

dows when using t he architecture from Figure 5.5 and the archi tecture from Figure 

5.6. As pointed out in Section 5.3 , the archi tecture from Figure 5.5 has more stimuli 

stored on-chip than the archi tecture from Figure 5.6 (this is due to the space allo­

cated for the stimuli control segment in Figure 5.6). Note , these few extra stimuli in 

Figure 5.5 are used after the end of the observation window for Figure 5. 6. Hence, t he 

observation window length will be affected only if t hese ext ra stimuli are applied at 

an interval long after t he end of the observation window achieved by the archi tecture 

from Figure 5.6. 

Figures 5.10 and 5.11 show the length of the observation windows (i.e., the number 

of samples that can be debugged from the entire song when using the stored stimuli 

in the trace buffer) versus the stimuli segment size ratio for different on-chip stimuli 

pointers and different sizes of the trace buffers (labeled as TBs in Figures 5.10 and 

5.11). These results show how the stimuli segment size constrains the length of the 
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observation window that can b debugged. As discussed in Section 5.3.3, the stimuli 

segment size can be configured to target a specific length of the observation window 

and hence the capture data segment is used for capt uring the data at specific intervals 

during the debug process. When the streaming feature for the capture data is enabled, 

the amount of data that can be captured, while running a long debug experiment , 

will be more than the amount of data that can be accommodated in the capture data 

segment. 

It is interesting to note t hat in order to extend the length of the observation win­

dow without increasing t he size of the trace buffer, compression techniques can be 

employed to store the stimuli in a compressed form . Based on the same principles of 

dictionary-based compression , as discussed in Chapter 3 for compressing capture data, 

we can build an on-chip de-compressor to extract the stimuli in real- time. Although 

this lossless cl compression architecture is orthogonal to the main contribution pre­

sented in this chapter , it is worth mentioning nonetheless that the two contributions 

can be combined to furt her extend the obs rvation window. 

5.5 Summ ary 

In this chapter, we proposed a novel embedded debug architecture for bypassing 

blocking bugs. This architecture facilitates the validation of the other parts of the 

chip that process data received from the erroneous module. The proposed approach 

enables a hierarchical event detect ion mechanism to provide correct stimuli from 

an embedded trace buffer , in order to replace the erroneous samples caused by the 

blocking bugs. We developed an architectural feature in the embedded trace buffer 

controller to enable sharing the stimuli data, stimuli control and capture data in a 

segmented trace buffer that can be configured with different segments sizes for the 

purpose of debugging the targeted observation window. Moreover , we have shown 

that by leveraging the streaming feature of t he low-bandwidth interface to the debug 

software, we can further improve the observability by streaming the stimuli data. 
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Chapter 6 

Conclusion and Future Work 

Due to t he growing complexity of SoCs and the ever increasing demand for shorter 

time-to-market , post-silicon validation has become an essential step in the imple­

mentation flow. As a result , design for debug techniques have emerged to accelerate 

the identification of design bugs during post-silicon validation. The purpose of these 

techniques is to enable the capturing and accessing the internal circui t's state of the 

circuit under debug. Two complementary DFD techniques have been introduced in 

Chapter 2: scan-based debug and embedded logic analysis. Although the first tech­

nique, which relies on scan-ba ed debug methodology, can provide full observability 

of the internal system's state, it is not capable of handling real-time acquisition in 

consecutive clock cycles . Thus, embedded logic analysis techniques , which are based 

on real-time trace, have been introduced in order to aid scan-based methodology and 

accelerate the debug process. In this dissertation , we have proposed novel architec­

tures and debug methods to be employed with embedded logic analysis techniques 

in order to facilitate the ident ification of t he functional bugs. The rest of this chap­

ter is organized as follows. Section 6.1 summarizes the main contributions of this 

dissertation , and Section 6.2 outlines directions for future work. 
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6.1 Summary of Dissertation Contributions 

In Chapter 3. we proposed a novel debug architecture that enables real-time loss­

less data compress ion in embedded logic analysis. Vve analyzed the specific require­

ments for lossless data compression in embedded logic analysis. \i\Then evaluating 

the effectiveness of various compression t echniques in improving data acquisit ion for 

post-silicon verification , one should also take t he size of the compressor into account . 

As a consequence, we proposed a novel compression ratio metric that captures the 

real benefits of a compression algorithm that needs to satisfy high-throughput/ real­

time encoding with an acceptable area overhead . This metric is used to quantify t he 

performance gain of t he proposed dictionary-based compression archi tectures t hat 

support t he most commonly used replacement policies. The proposed architectures 

are based on one pass scheme algorithms which do not require re-running the debug 

experiment. Thus, the proposed architectures are particularly suitable for in-field 

debug on applicat ion boards , which have non-deterministic events t hat inhibit t he 

determinist ic replay of debug experiments. 

In Chapter 4, we introduced a novel debug architecture based on lossy compres­

sion. The proposed architecture enables an iterat ive debug approach that accelerates 

t he ident ification of the hard-to-find functional bugs which occur intermittently in 

long observation window . By extending the silicon debug observation window using 

a short sequence of debug sessions, the debug engineer can iteratively zoom only in 

the intervals that contain erroneous samples and hence a significant reduction in the 

number of debug sessions can be achieved. In this debug approach , we have shown 

that by leveraging t he streaming feature of the low-bandwidth interface to the debug 

software we can further improve the effectiveness of our solution. The proposed debug 

architecture has a small impact on the silicon area when compared to the increase of 

the trace buffer size. This proposed debug approach is tailored for both automatic 

test equipment-based debug and in-field debug on application boards, so long as the 

debug experiment can be reproduced synchronously. 

In Chapter 5, we addressed the problem of t he blocking bugs which exist in one 

erroneous module and inhibit the earch for bugs in other parts of the chip that 
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process data received from the erroneous module. V./e proposed a novel embedded 

debug architecture that can bypass the erroneous behavior of blocking bugs and 

aid the designer in validating the first silicon. The proposed architecture nables a 

hierarchical event detection mechanism to provide correct stimuli from an embedded 

trace buffer, in order to replace the erroneous samples caused by the blocking bugs. 

To increase the effectiveness of the embedded trace buffer during the debug process, 

we developed an architectmal feature that enables sharing the stimuli data, stimuli 

control and capture data in a segmented trace buffer that can be configured with 

different segments sizes in order to debug the targeted observation window. 

6.2 Future Research Directions 

Based on the work proposed in this dissertation, future research directions are briefly 

outlined next . As the demand for multi-core designs increases, the post-silicon valida­

tion process becomes more challenging. As a result, the on-chip debug architectures 

allocated for post-silicon validation will be increased to facilitate the debug process. 

For example , future SoCs will contain more embedded logic analysis architectures. 

As discussed in Chapter 2, debug techniques have been recently introduced to address 

the problem of scheduling the capturing and offloading of debug data when it is re­

quired to simultaneously monitor the behavior of internal signals from multiple cores 

[66]. In order to improve the effectiveness of distributed embedded logic analyzers , 

future work will address the integration between these emerging debug techniques 

and the proposed architectures and methods introduced in this dissertation. For ex­

ample, new debug architectural features and efficient scheduling algorithms can be 

developed for the purpose of capturing the debug data from multiple cores through 

distributed compression architectures. 

The future generation of SoCs will show a grow in on-chip communication infras­

tructure. As a consequence, multi-core debug architectures are currently emerging to 

address the communications debug issues among multiple cores [103]. Future work 

will investigate new debug techniques to improve the observability in the emerging 

architectures in order to accelerate the debug process. These techniques will explore 
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the embedded logic analysis of the communication transactions among the embed­

ded cores. Because a transaction represents a sequence of rela ted events (e .g., a 

request and an acknowledge) , it is effective to compress a sequence of transactions 

in order to increase the observation window of the transactions trace. Thus, t he 

challenge is to develop compression architectures that exploit the unique character­

istics of the transactions (e.g., how often t he transactions are repeated), and satisfy 

high-throughput / real- t ime encoding with an acceptable area overhead. In addit ion, 

new architectural features can be int roduced to enable reading the transactions from 

the embedded trace buffer and comparing them with t he observed transactions. In 

this approach, part of the trace buffer can be used as a circular segment to capt ure 

the behavior of specific signals and t heir associated time stamps during the commu­

nication transactions. This capture process will be stopped upon the observation 

of a mismatch. Then, the observed behavior , which is captured into t he embedded 

trace buffer , is analyzed in order to aid in the identification of t he bug that causes 

the mismatch . Moreover , the t ransactions can be compressed and stored in a t race 

buffer , and an on-chip de-compressor can be employed to extract t he transactions in 

real- t ime. 
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