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A WKB method is used to extend RDT (Rapid Distortion Theory) to initially inhomo-

geneous turbulence and unsteady mean 
ows. The WKB equations describe turbulence

wavepackets which are transported by the mean velocity and have wavenumbers which

evolve due to the mean strain. The turbulence also modi�es the mean 
ow and generates

large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to

Taylor's four-roller 
ow in order to explain the experimentally observed reduction in the

mean strain. The strain reduction occurs due to the formation of a large-scale vortex

quadrupole structure from the turbulent spot con�ned by the four rollers. Both turbu-

lence inhomogeneity and three-dimensionality are shown to be important for this e�ect.

If the initially isotropic turbulence is either homogeneous in space or two-dimensional,

it has no e�ect on the large-scale strain. Furthermore, the turbulent kinetic energy is

conserved in the two-dimensional case, which has important consequences for the theory

of two-dimensional turbulence. The analytical and numerical results presented here are

in good qualitative agreement with experiment.

1. Introduction

When turbulence enters a mean 
ow having large velocity gradients, it experiences

rapid distortion. The notion of rapid distortion refers to the fact that the interaction

between the mean 
ow and the turbulence is much stronger than the interaction amongst

the turbulent eddies, and therefore turbulence evolution may be described approximately

by linear equations. Classical Rapid Distortion Theory (RDT) is based on exact solutions

of these linear equations for some basic mean 
ows (Batchelor & Proudman 1954; Mo�att

1965; Hunt 1973; Durbin 1981; Goldstein & Durbin 1980). Uniform strain, uniform shear

and uniform rotation are the simplest of such 
ows. The RDT solutions for the Reynolds

stress components have had, and continue to have, a signi�cant impact on turbulence

theory. Hunt (1973) extended the RDT analysis to an important case of nonuniform

strain: the distortion of initially homogeneous turbulence by steady irrotational 
ows

around two-dimensional blu� bodies.

In the case of irrotational mean 
ows with nonuniform strain, the appropriate basis

for RDT is given by the Cauchy's equation for the turbulent vorticity ! (Batchelor &

Proudman 1954),

!(x; t) = �

�1

!

0

(a); (1.1)

where a = a(x; t) is the initial (at t = 0) coordinate of the 
uid particles,!

0

(x) = !(x; 0)
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is the initial vorticity and � is the Jacobi matrix with components

�

ij

=

@a

i

@x

j

; i; j = 1; 2; 3: (1.2)

Because the mean 
ow is initially irrotational, any mean vorticity comes from turbulent

perturbations to the mean 
ow. Therefore, under the RDT approximation, the matrix

� must be calculated from the solution for the initial coordinate a corresponding to the

mean 
ow. To �nd � for stationary 
ows around two-dimensional bodies, Hunt expressed

initial coordinate a in terms of the stream-function (constant along streamlines) and a

drift function introduced by Darwin (1952) (travel time of 
uid elements). Homogeneity

of upstream turbulence allowed Hunt to consider the evolution of individual Fourier

harmonics of initial vorticity !̂

0

(q) exp(iq � x), for which (1.1) gives

^
!(q;x; t) = �

�1

^
!

0

(q) exp(iq � a): (1.3)

The solution for the vorticity may then be obtained via an integration over initial

wavenumbers q,

!(x; t) =

Z

^
!(q;x; t) dq: (1.4)

The most important results in Hunt's approach appear for small-scale turbulence when

one can introduce a local wavenumber k related to the initial wavenumber q as follows,

k =r(q � a) = �

T

q; (1.5)

where �

T

is � transposed. Durbin (1981) employed Hunt's approach to consider distortion

of turbulence in axisymmetric 
ow using Stokes function instead of the stream-function to

�nd the Jacobi matrix. Following Hunt, Durbin (and others who studied inhomogeneous

distortion of turbulence) used the Fourier transform to describe the evolution of initially

homogeneous turbulence.

In many situations, however, the initial turbulence is strongly inhomogeneous. This

is the case for turbulent spot experiments, and for experiments where turbulence arises

in a spatially con�ned region of the 
ow. A classic experiment of this type is Taylor's

four roller mill in which turbulent vortices arise in the 
ow con�ned by the four rollers.

In a recent article Andreotti, Douady & Couder (1996) describe the results of such an

experiment and make the interesting observation that the mean strain is reduced by the

distorted turbulence. The main goal of this paper is to modify RDT so that it applies

to inhomogeneous turbulence and allows the mean 
ow to change in response to the

small-scale turbulence.

WKB RDT has very close links with the local stability theory (also called short-

wave asymptotics) developed for incompressible 
uids by Lifschitz & Hameiri (1991)

and Friedlander & Vishik (1991). In fact, some of the WKB stability calculations are

identical to the classical RDT solutions, as was pointed out by Leblanc & Cambon

(1998). Lifschitz & Hameiri (1991) noted that the WKB approach allows one to consider

local perturbations to the mean 
ow and thus derive a universal stability condition which

is independent of the boundaries, however complicated they may be. Similarly, the WKB

RDT developed in the present paper allows one to consider inhomogeneous turbulence

and its feedback on the mean 
ow locally, outside of the thin layer where the turbulence

blocking by boundaries is important. The links between local stability theory and WKB

RDT are discussed in x2.1. The short-wave asymptotics method of local stability theory

has recently been used by Sipp & Jacquin (1998) to study the three-dimensional elliptic

instability of Taylor{Green vortices. They showed that the 
ow is unstable and that the

fastest growing mode is the same as for unbounded elliptical 
ows. We consider a related
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problem from a di�erent point of view in x4. The links between RDT and stability theory

are discussed in detail in Cambon & Scott (1999).

In x2.2 we develop a new WKB technique to extend the RDT analysis to the case of ini-

tially inhomogeneous turbulence. WKB RDT is based on Gabor transforms, rather than

the Fourier transforms used in standard RDT, and thus can be applied to inhomogeneous

turbulence. In addition, the theory allows the large-scale strain to be time-dependent,

non-uniform and without any special symmetries (e.g. two-dimensionality or axial sym-

metry). Note that time-dependence is important even in 
ows around blu� bodies moving

at constant speed because the separated 
ow behind the body makes the irrotational 
ow

upstream unsteady (Cantwell & Coles 1983). We then consider the two-dimensional limit

of WKB RDT in x3. This limit is important for the theory and numerical simulation of

two-dimensional turbulence.

Section 4 is devoted to the application of WKB RDT to the Taylor's four roller mill

experiment of Andreotti et al. (1996). We show that turbulence inhomogeneity is crucial

for the e�ect of strain reduction by the turbulence, and thus cannot be described using

the standard RDT analysis based on Fourier transforms. Furthermore, we show that

three-dimensionality of turbulence is also important and that strain reduction is absent

for two-dimensional turbulence. This application shows the usefulness of WKB RDT for

explaining poorly understood experimental observations. Note that the strain reduction

occurs in the center of the four roller system and the boundaries are not essential for its

qualitative understanding.

Finally, in x5 the results of this paper are summarized and the implications and po-

tential applications of WKB RDT are discussed.

2. WKB theory of the rapid distortion of turbulence

2.1. Links with local stability theory

WKB RDT applies to situations in which the distortion is weakly nonuniform, so that

the integral scale of turbulence l is much smaller than the characteristic scale of the

large-scale velocity gradient L,

� = l=L� 1: (2.1)

From the physical point of view, the WKB approach deals with the dynamics of vor-

ticity wavepackets convected by the mean 
ow. Each wavepacket is characterized by a

wavenumber k which changes due to the local strain. In general there are an in�nite

number of wavepackets at each point x, each contributing to the turbulence spectrum

which varies slowly in space. As we will see below, such wavepackets (and the turbulence

spectrum) can be described in terms of the Gabor transform of vorticity.

There are close links between WKB RDT and the local stability theory developed by

Lifschitz & Hameiri (1991) and Friedlander & Vishik (1991) to study local stability of

incompressible 
ows with respect to localized perturbations. They considered a localized

linear perturbation to a �xed solution of the incompressible Euler equations which con-

sists of a quasi-monochromatic wave train with a slowly varying wavevector and a mean


ow component which is 1=� times stronger than the oscillating component. The set of

equations for the wave train amplitude obtained in these papers has much in common

with the equations for the turbulent component which will be derived here. There are,

however, several essential di�erences.

First, in our approach we de�ne the perturbations (turbulence) in such a way that their

mean is zero, and we derive a separate equation for the modi�cations to the mean 
ow

due to the turbulence. In principle, such modi�cations may accumulate slowly until they
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are as large as the original unperturbed 
ow. The modi�cations to the mean 
ow are as

important for the present study as the evolution of turbulence itself. Secondly, our ap-

proach deals with perturbations which are not quasi-monochromatic, but contain locally

an in�nite wavenumber spectrum corresponding to turbulence (described in terms of the

Gabor transform). Finally, our equations for turbulence have the form of a Lagrangian

conservation law which allows us to write the formal solution to these equations if the

mean 
ow trajectories are known.

In this paper, we use a technique which is similar to the one developed for the two-

dimensional case by Dyachenko et al. (1992) and Dubrulle & Nazarenko (1997), and

which was recently applied to the subgrid modelling of two-dimensional turbulence by

Laval et al. (1998).

2.2. Derivation of the WKB equations for turbulence

To derive a transport equation for two-dimensional turbulence Dubrulle & Nazarenko

(1997) used Wigner's function. Here we use an alternative approach employing the Gabor

transform because it leads to a shorter and more elegant derivation. The relation between

the Wigner's function and Gabor (as well as wavelet) transform is well documented and

can be found for example in Mallat (1998) and Farge (1992). As in the two-dimensional

case, the aim is to separate the large and small scales in the original dynamical equations

in such a way that the small-scale turbulence is described by a local wavenumber spectrum

which varies slowly in coordinate space. This can be done by \lifting" a quantity which

is conserved along the 
uid-particle trajectories from coordinate space to coordinate-

wavenumber space (by applying Gabor transform, see below). In the two-dimensional

case, the conserved quantity is the vorticity perturbation. Indeed, when the mean 
ow

and turbulence scales are separated, the vorticity perturbation is carried unchanged by

the unperturbed mean 
ow (to the accuracy O(�

1

) assumed in WKB theory). A similar

situation arises in three dimensions for the potential vorticity vector, de�ned as

� = �!: (2.2)

Here ! is the vorticity and � is a Jacobi matrix de�ned in (1.2). According to the Erthel's

theorem, � satis�es

@

t

� + u �r� = 0: (2.3)

Equation (2.3) is equivalent to the Cauchy formula (1.1) (in fact, 1.1 is the solution to 2.3).

The initial values of the potential vorticity and the vorticity coincide, �(x) = !(x; 0).

Let us now assume that the 
uid 
ow consists of a large-scale part corresponding to

the mean 
ow and small-scale perturbations corresponding to turbulence,

u = u

L

(X) + u

0

(x);

! = !

L

(X) + !

0

(x);

� = �

L

(x) + �

0

(x);

� = �

L

(X) + �

0

(x); (2.4)

where x = X=�; � = l=L � 1. We now linearize (2.3) with respect to the primed

variables (as in RDT) and neglect O(�

2

) terms (as in WKB theory). The result is

@

t

�

0

+ u

L

�r�

0

= 0; (2.5)

where

�

0

= �

L

!

0

+ �

0

!

L

: (2.6)

Equation (2.6) shows that perturbations of the potential vorticity are carried unchanged
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by the mean 
ow. This result holds in general, not just for irrotational mean 
ows,

however we leave rotational 
ows (e.g. shear 
ows, for which work is in progress), for

separate study and consider only irrotational mean 
ows (!

L

= 0). In this case

�

0

= �

L

!

0

; (2.7)

and �

0

drops out of the problem.

Because we need to deal with objects that are localized in both frequency and position

we will use the Gabor transform representation, which is de�ned as

^
�(x;k; t) =

Z

f(�

�

jx� x

0

j)e

ik�(x�x

0

)

�

0

(x

0

; t) dx

0

; (2.8)

where k � 2�=l; 1 � �

�

� � and f(x) is a function which decreases rapidly at in�nity,

e.g. exp(�x

2

). The Gabor transform of equation (2.5) is

@

t

�̂

i

+

Z

f(�

�

jx� x

0

j)e

ik�(x�x

0

)

r

0

� (u

L

(x

0

) �

0

i

(x

0

)) dx

0

= 0; (2.9)

where r

0

denotes the gradient with respect to x

0

. Because of the decreasing kernel f ,

the main contribution to the integral comes from the region jx� x

0

j � 1=�

�

. Therefore

one can Taylor expand the function u

L

since it varies signi�cantly only over the scale

1=�� 1=�

�

. Neglecting the quadratic terms in this Taylor expansion, which are of order

(�=�

�

)

2

� 1, we have

@

t

�̂

i

+

Z

f(�

�

jx� x

0

j)e

ik�(x�x

0

)

r

0

� (u

L

(x) �

0

i

(x

0

)) dx

0

+

Z

f(�

�

jx� x

0

j)e

ik�(x�x

0

)

r

0

� [((x

0

� x) �r)u

L

(x)] �

0

i

(x

0

) dx

0

= 0:(2.10)

Integrating by parts and changing r

0

! �r in the �rst integral in (2.10), we see that

this integral is equal to (u

L

�r)�̂

i

. Integrating the second integral by parts and changing

(x

0

� x) ! ir

k

and r

0

! ik, the second term becomes �(r(u

L

� k)) �r

k

�̂

i

. Thus,

one can write the equation for
^
� as

D

t

^
� = 0; (2.11)

where

D

t

= @

t

+
_
x �r+

_

k �r

k

;

_
x = u

L

=r

k


; (2.12)

_

k = �r(k � u

L

) = �r
; (2.13)


 = u

L

� k: (2.14)

Note that
^
� is now a vector quantity. As we have seen, the Gabor transform of the poten-

tial vorticity is carried unchanged along the rays in (x;k)-space. The ray equations (2.12)

and (2.13) are a Hamiltonian set of equations with Hamiltonian function 
. According

to (2.11), the solution for
^
� can be expressed in terms of its initial value

^
�(x;k; 0),

^
�(x;k; t) =

^
�(a; q; 0); (2.15)

where a = a(x; t) and q = q(x;k; t) are respectively the initial coordinate and the initial

wavenumber.
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2.3. Properties of the rays

In coordinate space, the turbulence wavepackets move with the mean 
ow (see 2.12).

The solution for x in terms of initial coordinates a

L

= (a

1

; a

2

; a

3

) is given simply by the

inverse of a

L

(x).

To study wavepacket evolution in wavenumber space, it is convenient to introduce

vectors �

i

corresponding to the rows of �

L

,

�

i

=ra

Li

; i = 1; 2; 3: (2.16)

Because the a

Li

's are conserved along trajectories of the unperturbed mean 
ow, the �

i

's

satisfy

@

t

�

i

+ (u

L

�r)�

i

+ (�

i

�r)u

L

= 0; i = 1; 2; 3: (2.17)

The �rst two terms in this equation are the Lagrangian time derivatives of �

i

, and thus

�

i

(t) = �

i

(x(t); t) satis�es the equation

d

dt

�

i

= �(�

i

�r)u

L

; i = 1; 2; 3: (2.18)

The initial value for a

Li

is x

i

, and the initial �

i

is equal to the unit vector in the direction

of the i-axis,

�

i

(0) = e

i

; i = 1; 2; 3: (2.19)

Now, if u

L

is irrotational we can write

_

k = �(k �r)u

L

: (2.20)

Thus, �

i

(t) satis�es the same equation as k, with initial condition (2.19). Since (2.20) is

a linear equation, one can write the solution k(t) in terms of �

i

and q = k(0),

k(t) = q

i

�

i

= �

T

L

q; (2.21)

where �

T

L

is the transposed matrix �

L

. We see that the expression for k obtained via the

Gabor transform does indeed coincide with the RDT de�nition of the local wavevector

(1.5). To �nd the solution k(t) for a given initial value it is su�cient to know the solutions

for only three initial wavenumbers, namely e

1

; e

2

and e

3

. On the other hand, even these

solutions are not needed for some particular mean 
ows for which the a

L

's are known so

that one can calculate directly �

T

L

to �nd k(t).

2.4. Expressing the vorticity and velocity in terms of the potential vorticity

It is not hard to see that the derivation of (2.11) does not depend on the fact that

!

L

= 0. Therefore, the Gabor transform of the potential vorticity perturbations for

rotational mean 
ows also satis�es (2.11). However, this fact is helpful only if we are able

express the observables, such as velocity or vorticity, in terms of solutions of (2.11). One

can do this easily for irrotational mean 
ows where, according to (2.7), we have

^
� = �

L

^
!: (2.22)

Because �j

t=0

= 1, the initial �̂ and !̂ coincide, and the solution (2.15) can be written

as follows,

^
�(x;k; t) =

^
!(a

L

; q; 0): (2.23)

From (2.22) we can �nd the vorticity,

^
! = �

�1

L

^
�: (2.24)
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Let us now �nd �

�1

L

. In terms of �

i

, equation (2.22) can be written as

^
� = � �

^
!; (2.25)

Multiplying the equation for �

1

by �

2

and subtracting the equation for �

2

multiplied by

�

1

, we have

�̂

1

�

2

� �̂

2

�

1

= (�

1

� �

2

)�
^
!: (2.26)

After vector multiplication of this equation by �

3

and using (2.25) and (2.24), we get

^
! = �̂

1

(�

2

� �

3

) + �̂

2

(�

3

� �

1

) + �̂

3

(�

1

� �

2

): (2.27)

The velocity is then given by substituting (2.27) into

^
u = �i

(
^
! � k)

jkj

2

: (2.28)

2.5. E�ect of viscosity

Taking into account viscosity modi�es equation (2.5) as follows,

@

t

�

0

+ u

L

�r�

0

= ���

0

; (2.29)

Where � is the viscosity. Correspondingly, (2.11) is replaced by

D

t

^
� = ��jkj

2

^
�: (2.30)

Integrating this equation along characteristics (2.12) and (2.13) we have

^
�(x;k; t) =

^
!(a

L

; q; 0) exp(q�q); (2.31)

where

� = ��

Z

t

0

[�

L

�

T

L

]

x=x(a;t)

dt: (2.32)

Solutions for the vorticity and velocity can be obtained by substitution of (2.31) into

(2.24) and (2.28).

2.6. Evolution of the mean 
ow

The equation for the large-scale vorticity !

L

is obtained by averaging the inviscid vor-

ticity equation over the intermediate scales (between the large and small scales). For our

purposes, the most convenient procedure of averaging is

!

L

= ! =

Z

f

2

(�

�

jx� x

0

j)!(x

0

; t) dx

0

; (2.33)

where f is the same function as in the Gabor transform (2.8). Then, the averaged vorticity

equation is

@!

Li

@t

� S

ij

!

Lj

+ �

imn

@

2

R

jn

(x; 0)

@x

j

@x

m

= 0; (2.34)

where S

ij

= 1=2(@u

Li

=@x

j

+ @u

Lj

=@x

i

), �

ijk

is the absolute antisymmetric tensor, and

R

ij

(x; 0) is the averaged Reynolds stress tensor at r = 0. Using the above de�nition of

averaging allows us to write an expression for R

ij

(x; 0) in terms of Gabor transforms

(and means that the �lter function f does not appear explicitly in the averages),

R

ij

(x; 0) = u

0

i

(x; t)u

0

j

(x; t)

=

1

2(2�)

3

Z

û

i

(x;k; t)û

j

(x;�k; t) + û

i

(x;�k; t)û

j

(x;k; t) dk: (2.35)
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R

ij

(x; 0) represents the modi�cation of the large-scale vorticity by the distorted turbu-

lence. The components of this tensor describe large-scale momentum 
uxes induced by

turbulence and, therefore, they contain the most valuable information about turbulence.

To �nd the averaged Reynolds stresses, one has to use the RDT solutions via the following

chain of substitutions (2.23) ! (2.27) ! (2.28) ! (2.35).

Note that the expression for the averaged Reynolds stresses in terms of Gabor trans-

forms is formally identical to the standard expression for these quantities in terms of

Fourier transforms. An essential di�erence, however, is that R

ij

(x; 0) is now a function

of the spatial coordinate and, therefore, gives a nonzero contribution to the equation for

the mean 
ow (2.34). This is because we averaged over the intermediate scales, rather

than over the entire 
uid volume as is common in the theory of homogeneous turbulence.

2.7. Turbulent kinetic energy

The Reynolds stress tensor also contains information about the density of the turbulent

kinetic energy

E(x; t) =

1

2

u

0

2

=

1

2

R

ii

(x; 0); (2.36)

where summation over the repeated index is assumed. The turbulent kinetic energy E

varies slowly in space on the large mean 
ow scale. Using substitutions (2.23) ! (2.27)

! (2.28) ! (2.35) ! (2.36) we have the following expression for the turbulent kinetic

energy,

E(x; t) =

1

2(2�)

3

Z

j
^
!j

2

jkj

2

dk

=

1

16�

3

Z

j�̂

1

(�

2

� �

3

) + �̂

2

(�

3

� �

1

) + �̂

3

(�

1

� �

2

)j

2

jkj

2

dk; (2.37)

Because � can be expressed in terms of the initial vorticity, as stated in (2.15), it is

convenient to change the variable of integration in (2.37) from k to q. Taking into account

that the incompressibility in the wavenumber space means dq = dk and using (2.23)

and (2.21) we have

E =

1

16�

3

Z

j!̂

10

(�

2

� �

3

) + !̂

20

(�

3

� �

1

) + !̂

30

(�

1

� �

2

)j

2

(q

1

�

1

+ q

2

�

2

+ q

3

�

3

)

2

dq; (2.38)

where !̂

i0

= !̂

i

(a(x; t); q; 0); i = 1; 2; 3; is the initial value of the vorticity. Similar

formulae may be derived for other components of the Reynolds stress (2.35).

In general the total turbulent kinetic energy,

R

E dx, is not conserved. It can be trans-

ferred to, or be drawn from, the large-scale mean 
ow (the sum of the mean 
ow and

turbulent energies is, of course, constant). On the other hand, according to (2.11) there

is a quadratic quantity conserved by the turbulence,

A =

Z

j
^
�j

2

dk dx = const: (2.39)

Making the analogy with the wave action of WKB theory, we will call this invariant

the turbulence action (c.f. the two-dimensional case considered in Dubrulle & Nazarenko

1997).
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3. Two-dimensional irrotational mean 
ow

3.1. General theory

In many applications, the mean 
ow is approximately two-dimensional.The RDT analysis

is much simpler for two-dimensional mean 
ows, and we now consider this interesting

limiting case. For simplicity we drop the subscript L in u

L

, �

L

and a

L

in this section.

Suppose that the mean 
ow velocity is independent of x

3

,

u = u(x

1

; x

2

; t): (3.1)

Then, without lost of generality, we can put u

3

= 0, because if the mean 
ow is irrota-

tional u

3

cannot depend on x

1

or x

2

. In this case

�

13

= �

23

= �

31

= �

32

= 0; (3.2)

�

33

= 1: (3.3)

Because of incompressibility det� = 1, and therefore

�

11

�

22

� �

12

�

21

= 1: (3.4)

It immediately follows from (1.5) and (2.22) that

k

3

= q

3

; (3.5)

!̂

3

(x;k; t) = �̂

3

(x;k; t) = !̂

3

(a; q; 0): (3.6)

The fact that the x

3

-components of the wavenumber and the vorticity are conserved is

related to the equations' invariance with respect to translations along x

3

-axis. Indeed, for

the Hamiltonian system described by ray equations (2.12) and (2.13), the wavenumber

plays the role of a momentum, and its x

3

-component must be conserved. Similar con-

servation laws arise if the mean 
ow has other symmetries, e.g. axial symmetry. In the

latter case, the azimuthal components of the wavenumber and vorticity are conserved

along the mean 
ow trajectories.

We obtain the x

1

and x

2

components of vorticity using (2.27),

!̂

1

= �

22

!̂

10

� �

12

!̂

20

; (3.7)

!̂

2

= ��

21

!̂

10

+ �

11

!̂

20

: (3.8)

The expression for the energy (2.38) simpli�es to

E =

1

16�

3

Z

j!̂

10

�

22

� !̂

20

�

12

j

2

+ j � !̂

10

�

21

+ !̂

20

�

11

j

2

+ j!̂

30

j

2

(q

1

�

11

+ q

2

�

21

)

2

+ (q

1

�

12

+ q

2

�

22

)

2

+ q

2

3

dq; (3.9)

and expressions for the Reynolds stresses can be obtained in a similar way. In x4 we will

consider a speci�c example for which turbulence inhomogeneity is an important factor:

Taylor's four roller mill.

3.2. Asymptotic behaviour of the energy.

In many situations the turbulence distortion is large for large time, and we consider

several such cases below. In a suitable coordinate system

�

11

= 1=�

22

= �(t)!1; (3.10)

�

12

= �

21

= 0: (3.11)

In this case,

E �

1

16�

3

Z

j!̂

20

j

2

�

2

11

(q

1

�

11

)

2

+ q

2

3

dq
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�

1

16�

3

j�j

Z

j!̂

20

j

2

q

1

=0

dq

2

dq

3

Z

+1

�1

d�

�

2

+ q

2

3

=

1

16�

2

j�j

Z

j!̂

20

j

2

q

1

=0

jq

3

j

dq

2

dq

3

: (3.12)

Here we assumed that j!̂

10

j

2

q

3

=0

= 0. Notice that the energy is proportional to � and,

therefore, tends to in�nity.

The simplest example of the situation considered here is the uniform strain case con-

sidered by Batchelor & Proudman (1954). In this case E � � = exp(�t) where � is the

strain rate. Similar behaviour is observed in more complex mean 
ows along streamlines

passing through stagnation points (Hunt 1973).

Another example is turbulence in a mean 
ow generated by a line source or sink. In

cylindrical coordinates (r; �) this 
ow is given by

u

r

=

�

r

; u

�

= 0: (3.13)

Because the motion is the same on any streamline in this case, we shall consider only

one of them, namely the x

1

-axis. In this case �

12

= �

21

= 0 and

�

11

= 1=�

22

= x

1

=a

1

; (3.14)

where

a

1

= �

q

x

2

1

� 2�t (3.15)

is the initial x

1

-coordinate.

In the case of a source (� > 0), we have �

11

� 1 for x

1

� a

1

(i.e. �t� a

2

1

). If �t� a

2

1

,

then along the x

1

-axis

E =

1

16�

2

jx

1

j

p

x

2

1

� 2�t

Z

j!̂

20

j

2

q

1

=0

jq

3

j

dq

2

dq

3

: (3.16)

Similarly, on any other streamline

E =

1

16�

2

r

p

r

2

� 2�t

Z

j!̂

20

j

2

q

1

=0

jq

3

j

ddq

2

dq

3

: (3.17)

Note that !̂

20

can be a function of the initial coordinates a = (a

1

; a

2

; a

3

).

In the case of a sink (� < 0), we have �

22

� 1 for x

1

� a

1

. If x

1

� a

1

E =

1

16�

3

p

x

2

1

� 2�t

jx

1

j

Z

j!̂

10

j

2

q

2

=0

jq

3

j dq

1

dq

3

(3.18)

on the x

1

-axis and

E =

1

16�

2

p

r

2

� 2�t

r

Z

j!̂

10

j

2

q

2

=0

jq

3

j

dq

1

dq

3

; (3.19)

on any other streamline. Note that the trajectory of all 
uid elements reaches r = 0 in a

�nite time, t = �a

2

1

=2�. Therefore, it takes a �nite time for the energy to become in�nite.

It is interesting that the applicability condition of the WKB approach, k � jruj=u,

remains valid for turbulence wave packets at any time when approaching the sink. This

is because the radial component of the wavenumber grows as k

1

� q

1

a

1

=x

1

, and therefore

ku=jruj ! k

1

x

1

� 1 if the WKB approach is valid initially, i.e. q

1

a

1

� 1.

If the turbulence is initially homogeneous (i.e. j!̂

10

j

2

independent of x) then the energy
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grows as

p

t at each point in space and as 1=r near the sink. On the other hand, for

r

2

� ��t the turbulence remains uniform.

3.3. Two-dimensional turbulence in a two-dimensional mean 
ow

Suppose now that the turbulent velocity is also independent of x

3

,

u

0

= u

0

(x

1

; x

2

; t): (3.20)

(we allow u

0

3

to be �nite). This limit is important for applications and for computations

of two-dimensional turbulence. The decay of two-dimensional turbulence leads to the

formation of large energetic vortices with radii of the order of the size of the 
uid volume.

These vortices control the dynamics of the small scales and, in particular, they control the

dynamics of subgrid scales. Thus, one can linearize the small-scale equations with respect

to the background mean 
ow generated by the large-scale vortices (as in RDT), and this

leads to a great simpli�cation in the modelling of subgrid scales in two-dimensional 
uids.

Applications to two-dimensional turbulence is beyond the scope of the present paper and

will be reported separately (Nazarenko & Laval 1997; Laval et al. 1998).

In this purely two-dimensional case, there is no turbulence at �nite x

3

-wavenumbers,

^
u(x;k; t) = 2�

~
u(x

1

; x

2

; k

1

; k

2

; t) �(k

3

); (3.21)

^
!(x;k; t) = 2�

~
!(x

1

; x

2

; k

1

; k

2

; t) �(k

3

): (3.22)

The components of
~
u and

~
! are related as follows,

~!

1

= ik

2

~u

3

; (3.23)

~!

2

= �ik

1

~u

3

; (3.24)

~!

3

= i(k

1

~u

2

� k

2

~u

1

): (3.25)

One can see that in this case the x

3

component of velocity is conserved,

~u

3

(x;k; t) = i~�

2

=q

1

= �i~�

1

=q

2

= ~u

3

(a; q; 0): (3.26)

The energy can be expressed as follows

E =

1

8�

2

Z

j~uj

2

dq =

1

8�

2

Z

�

j~u

30

j

2

+

j~!

30

j

2

(q

1

�

11

+ q

2

�

21

)

2

+ (q

1

�

12

+ q

2

�

22

)

2

�

dq:

(3.27)

Note that the �rst part of this integral is conserved along the 
uid trajectories. To �nd

the second part, I

2

, we change variables q

1

; q

2

! q =

p

q

2

1

+ q

2

2

; � = q

2

=q

1

, and integrate

over � . Taking into account the fact that det� = 1, we have

I

2

=

A

8�

2

Z

1

0

dq

q

Z

1

�1

j~!

30

j

2

(A� +B)

2

+ 1

d�; (3.28)

where

A = �

2

21

+ �

2

22

; (3.29)

B = (�

11

�

21

+ �

12

�

22

): (3.30)

If the initial turbulence energy spectrum is isotropic, j~!

30

j

2

is independent of � and

I

2

=

1

8�

Z

1

0

j~!

30

j

2

q

dq: (3.31)

In this case I

2

is conserved along the 
uid trajectories, as is the energy

(@

t

+ u �r)E = 0: (3.32)
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The conservation of turbulent kinetic energy in two-dimensional turbulence was ob-

tained previously in the special case of turbulence in a vortex-dipole 
ow by Dubrulle &

Nazarenko (1997). One can calculate the Reynolds stresses similarly,

R

11

=

1

4�

2

Z

k

2

2

k

4

j~!

30

(a; q)j

2

dq; (3.33)

R

12

= R

21

= �

1

4�

2

Z

k

1

k

2

k

4

j~!

30

(a; q)j

2

dq; (3.34)

R

13

= R

31

=

1

4�

2

Z

ik

2

k

2

~!

30

(a; q)~u

30

(a;�q) dq; (3.35)

R

22

=

1

4�

2

Z

k

2

1

k

4

j~!

30

(a; q)j

2

dq; (3.36)

R

23

= R

32

= �

1

4�

2

Z

ik

1

k

2

~!

30

(a; q)~u

30

(a;�q) dq; (3.37)

R

33

=

1

4�

2

Z

j~u

30

(a; q)j

2

dq; (3.38)

where k

1

= q

1

�

11

+ q

2

�

21

and k

2

= q

1

�

12

+ q

2

�

22

.

3.4. Turbulence-induced force on the mean 
ow.

For initially isotropic turbulence, ~u

30

(a; q) � ~u

30

(a; q) and ~!

30

(a; q) � ~!

30

(a; q), and we

have

R

11

= R

22

= 2I

2

=

1

4�

Z

1

0

j~!

30

(a; q)j

2

q

dq; (3.39)

R

12

= R

21

= R

13

= R

31

= R

23

= R

32

= 0; (3.40)

R

33

=

1

2�

Z

j~u

30

(a; q)j

2

q dq: (3.41)

All o�-diagonal components of the Reynolds stress tensor are equal to zero, and all diago-

nal components are conserved along the trajectories of the 
uid elements. Recall that the

averaged Reynolds stresses determine the feedback of small-scale turbulence on the mean


ow dynamics. Thus, for initially isotropic two-dimensional turbulence this feedback has

the form of a pressure (diagonal elements R

ii

> 0), whereas the turbulent viscosity is

zero (R

ij

= 0 for i 6= j). Note that the turbulence-induced pressure is conserved along

the trajectories. Thus, the turbulence-induced pressure remains homogeneous in the case

of initially homogeneous turbulence and the force produced by such a pressure on the

mean 
ow is zero. In particular, two-dimensional isotropic homogeneous turbulence does

not produce any drag on a two-dimensional obstacle embedded into the mean 
ow. This

is a RDT generalization of d'Alembert's paradox. On the other hand, initially inhomo-

geneous turbulence does produce a pressure force on the mean 
ow. For example, a

turbulent spot generated upstream of a two-dimensional body produces a positive drag

force on this body during the body's entry into the spot and a negative drag when the

body is leaving the turbulent region. This is because the pressure gradients produced

by turbulence are stronger in front of the body due (to the stagnation point), and the

direction of the pressure gradients in front of the body determines the direction of the

net force.

Thus, taking into account the inhomogeneity of initially isotropic two-dimensional

turbulence is important for describing the e�ect of turbulence on the mean 
ow dynamics.

In the case of initially anisotropic turbulence both diagonal and o�-diagonal Reynolds

stresses will be �nite.
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4. Taylor's four roller mill experiment

4.1. Experimental results

In a recent article Andreotti et al. (1996) describe the results of an experiment exploring

the relationship between vorticity and stretching. They used a classic experimental setup,

Taylor's four roller mill, to investigate the stability of a region of pure strain (a three-

dimensional hyperbolic straining 
ow in the x

1

�x

2

plane with a linear stagnation line in

the x

3

-direction). The 
ow was found to be unstable and to produce a periodic pattern

of alternate sign vortices aligned in the direction of stretching (x

1

). The most interesting

observation, however, was that the ampli�ed vortices (a sort of turbulent 
ow) have a

negative feedback e�ect on the applied strain: the velocity gradient of the applied strain

is weakened by the large-scale 
ow induced by the strained vortices. This observation

is di�cult to interpret using the standard RDT theory (Hunt 1973; Hunt & Carruthers

1990), because RDT assumes that turbulence is initially homogeneous.

Andreotti et al. (1996) pointed out that because most analytical models assume that

the strain is an imposed �eld these theories are unable to explain the experimental

observations. They proposed a qualitative explanation of the e�ect in terms of a two-

dimensionalization of the vortex cores. As the vortices are ampli�ed by stretching, their

cores become increasingly intense and thus tend to oppose any external variations of

velocity. Thus the velocity gradients associated with the applied strain are diminished.

This explanation seems reasonable, but it is only qualitative and gives little insight into

the precise interaction between the imposed strain and the ampli�ed turbulent 
ow.

Our aim is to supply a detailed theoretical explanation of the negative feedback of the

strained turbulence on the applied strain using the WKB RDT developed in this paper.

This interaction is interesting because it is an example of a self-regulating process: the

turbulence is stretched only up to a certain level, at which point it generates a large-scale


ow which counteracts the applied strain and thus stabilize the interaction. Note that

under inviscid linear theory the turbulence kinetic energy increases exponentially until

the linear theory fails (see Kevlahan & Hunt 1997). In order to explain this experimental

observation we will make use of two observations. First, the four rollers con�ne the 
ow

and thus the turbulence is necessarily inhomogeneous . Secondly, the large-scale 
ow is not

imposed, and therefore must be allowed to vary in time and space. These two observations

demonstrate that standard RDT is not su�ciently general to explain this observation.

Of course, since WKB RDT it is a linear theory it is only valid for �nite times, but this

should be su�cient to produce the observed e�ect, at least qualitatively.

In this section, we present analytical and numerical results for the Reynolds stresses

and mean 
ow evolution obtained using WKB RDT applied to the four roller experiment.

These results show precisely the negative feedback e�ect observed in the experiments of

Andreotti et al. (1996). Interestingly, the turbulence organizes itself on a large-scale sep-

arating positive and negative vorticity in order to produce a quadrupole vortex structure

whose strain counteracts the applied strain. We also compare our results with the quali-

tative physical interpretation proposed by Andreotti et al. (1996).

4.2. Assumptions and geometry

The initial geometry of the 
ow we consider here is shown in �gure 1 (in the three-

dimensional case the turbulence also depends on the direction x

3

perpendicular to x

1

and x

2

). Note that we do not include the rollers themselves (there are no boundaries in

our problem) and we consider only the uniform pure irrotational strain present initially

at the centre of the Taylor four roller mill. The presence of the rollers is instead modelled

by fact that the turbulence is inhomogeneous, i.e. it is con�ned initially to a circular
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x1

x2

l

L

U

Figure 1. Diagram showing the geometry considered. The shaded region in the centre represents

the inhomogeneous turbulence which extends over a scale L much larger than the characteristic

length scale of the turbulence l. Note that the turbulence is three-dimensional and initially

isotropic while the applied irrotational strain is in the x

1

� x

2

plane.

region with a Gaussian pro�le of turbulent kinetic energy. Furthermore, the characteristic

length scale of the turbulence l is much less than the size of the turbulent 
ow L, i.e.

l=L� 1. The fact that � = l=L� 1 allows us to apply the WKB RDT to this problem.

The turbulence is assumed to be homogeneous in the x

3

-direction. In all calculations

we assume that the initial turbulence is isotropic. This is the simplest assumption and

holds for all turbulent 
ows at scales small enough to satisfy Kolmogorov's universal

equilibrium hypothesis.

4.3. Evolution of small-scale turbulence

The large-scale velocity producing the applied strain in our case is initially

u

L

= (Sx

1

;�Sx

2

; 0); (4.1)

which gives a positive irrotational strain S in the x

1

-direction and an equal negative

strain �S in the x

2

-direction. This 
ow has a stagnation line in the x

3

direction. In this

case the Jacobi matrix � becomes

� =

0

@

exp(�St) 0 0

0 exp(St) 0

0 0 1

1

A

: (4.2)

The wavevector equation (2.13) has the following solution for the applied irrotational

large-scale strain given by (4.1)

k(t) = (q

1

exp(�St); q

2

exp(St); q

3

); : (4.3)

The spatial coordinates evolve according to (2.12), which gives

x(t) = (a

1

exp(St); a

2

exp(�St); a

3

); (4.4)

and, using (2.15), (2.24) and (4.2) the Gabor-transformed vorticity
^
!, is simply

^
!(x;k; t) = (!̂

1

(a; q) exp(St); !̂

2

(a; q) exp(�St); !̂

3

(a; q)): (4.5)

The velocity
^
u may be calculated from

^
! using the formula (2.28).
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4.4. Calculation of the perturbed large-scale 
ow

Because viscosity is not important at large scales, we use the inviscid equation for the

large-scale vorticity !

L

given by (2.34). Our goal is to calculate the perturbed large-

scale vorticity !

L

given the WKB RDT solutions for R

ij

(x; 0) produced by the distorted

small-scale turbulence. Because the initial large-scale vorticity is zero, (2.34) is a valid

approximation for the perturbed large-scale vorticity provided the perturbations to the

strain remain small compared to the initial large-scale strain. This means that we can

solve for the modi�ed large-scale vorticity �eld using the initial strain �eld (4.1).

Substituting (2.28), (4.5), (4.3) into (2.35) we can derive the following expressions for

the Reynolds stress

R

11

(x; 0; t) =

Z

E(a; jqj)

4�jqj

2

jk(t)j

4

�

e

2St

q

2

2

(q

2

1

+ q

2

2

) + 2q

2

2

q

2

3

+ e

�2St

q

2

3

(q

2

1

+ q

2

3

)

�

dq;(4.6)

R

22

(x; 0; t) =

Z

E(a; jqj)

4�jqj

2

jk(t)j

4

�

e

2St

q

2

3

(q

2

2

+ q

2

3

) + 2q

2

1

q

2

3

+ e

�2St

q

2

1

(q

2

1

+ q

2

2

)

�

dq;(4.7)

R

33

(x; 0; t) =

Z

E(a; jqj)

4�jqj

2

jk(t)j

4

�

e

2St

q

2

1

(q

2

1

+ q

2

3

) + 2q

2

1

q

2

2

+ e

�2St

q

2

2

(q

2

2

+ q

2

3

)

�

dq;(4.8)

R

ij

(x; 0; t) = 0 if i 6= j; (4.9)

where E(a; jqj) is the initial Gabor energy spectrum and we have used the fact that for

initially isotropic turbulence

!̂

i

(a; q)!̂

j

(a;�q) =

1

4�

�

�

ij

�

q

i

q

j

jqj

2

�

E(a; jqj): (4.10)

Since the turbulence is con�ned to a circular cylinder with its axis in the x

3

-direction we

assume the following initial Gabor energy spectrum

E(a; jqj) = exp(�(a

2

1

+ a

2

2

)=L

2

)

g

1

jqj

4

(g

2

+ jqj

2

)

17=6

exp(�(jqj=10)

2

); (4.11)

where g

1

= 1:794 and g

2

= 0:5576 are chosen to give, respectively, a total kinetic energy

density

R

1

0

E(q) dq of 9/4 and a turbulence integral scale of l = 1. This energy spectrum

has the form k

4

at scales k � 1, k

�5=3

for 1 < k < 10 and it decays exponentially for

k � 10 (the dissipation scale of the turbulence). We choose L = 100 so that l=L = �� 1,

consistent with the assumptions of the WKB RDT theory.

With the Gabor energy spectrum given by (4.11) and substituting for a using (4.4)

the solution for the perturbed large-scale vorticity is

!

3L

=

4x

1

x

2

L

4

Z

t

0

exp

�

�(x

2

1

exp(�2St

0

) + x

2

2

exp(2St

0

))=L

2

�

(R

11

(x; 0; t

0

)�R

22

(x; 0; t

0

)) dt

0

:

(4.12)

All other large-scale vorticity components are una�ected by the turbulence. It is impor-

tant to note that the spatial dependence of the perturbed large-scale vorticity is deter-

mined entirely by the initial spatial inhomogeneity of the turbulence, while the amplitude

of the perturbation is given by the combined e�ect of the turbulence Reynolds stresses

and the spatial inhomogeneity. If the turbulence were homogeneous, or if R

11

= R

22

(which is the case for the initial undistorted turbulence) then the large scales would not

be a�ected. Thus, we see clearly that the combined e�ect of spatial inhomogeneity and

distorted small-scale turbulence is necessary to distort the large-scale 
ow.
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4.5. Two-dimensional turbulence

If the small-scale turbulence is two-dimensional and initially isotropic then the perturbed

large-scale 
ow is still given by (4.12), but the Reynolds stresses are now identical,

R

11

= R

22

for all t and x (see 3.39). Using this result in (4.12) we see that if the small-

scale turbulence is strictly two-dimensional then the large-scale 
ow is not a�ected by

the turbulence. This result is interesting because it shows that not only does the pertur-

bation of the large-scale 
ow depend on the small-scale turbulence being anisotropic and

inhomogeneous, but that it must also be three-dimensional. Thus, the negative feed-back

e�ect observed by Andreotti et al. (1996) is an intrinsically three-dimensional e�ect that

requires the small-scales to be both anisotropic and spatially inhomogeneous.

4.6. Numerical results

In the previous section we derived an expression for the perturbation of a large-scale

straining 
ow due to the distorted inhomogeneous small-scale turbulence. Even though

asymptotic results can be found for St� 1 (see Kevlahan & Hunt (1997)), these results

are not relevant to our case because our approximation that S is uniform is valid only

close to the center and, therefore, not for very large distortions. Thus, we will concentrate

on the case of small and intermediate total distortions St, and solve (4.12) numerically.

We consider both inviscid and viscous turbulence. According to (2.31) the only di�er-

ence between inviscid and viscous turbulence is that in viscous turbulence all vorticity

components decay equally at large St and large q

i

due to an extra factor

exp

h

�

�

2S

(q

2

1

(1� exp(�2St)) + q

2

2

(exp(2St)� 1) + q

2

3

2St)

i

:

Therefore viscosity does not change the structure of the perturbation, only its ampli-

tude. We will see that the results are in qualitative agreement with the observations of

Andreotti et al. (1996).

All calculations are made with � = l=L = 1=100 and the smallest turbulence scale

is 1=10 the integral scale l of the turbulence. The Gabor energy spectrum de�ned in

(4.11) is used. Multi-dimensional adaptive numerical integration is used to calculate the

wavenumber integrals de�ning R

11

and R

22

, and a similar one-dimensional routine is

used to calculate the perturbed large-scale vorticity via the time integral in (4.12). Only

the three-dimensional case is considered since, as pointed out in x3.3, the large-scale 
ow

is una�ected if the small-scale turbulence is two-dimensional.

Figure 2 shows the evolution of R

11

, R

22

R

33

and the di�erence R

11

�R

22

for inviscid

and viscous turbulence. The most important aspect of these �gures is that R

11

�R

22

is

non-zero and negative. This means that the large-scale 
ow is perturbed and that the

structure of the perturbation is only distorted, it does not change sign. This is equally

true for the viscous case, even though the evolution of the individual vorticity components

is quite di�erent. Because the amplitude of R

11

� R

22

is lower in the viscous case, the

perturbation is weaker, although identical in spatial structure.

Figure 3 shows the large-scale vorticity �eld and large-scale velocity �eld produced by

the small scale turbulence. We see that the perturbed vorticity �eld has a quadrupolar

structure. This �gure demonstrates three important results. First, the 
ow generated

along the axes is opposite in direction and gradient to that of the initial applied strain:

thus the turbulence does indeed have a negative feedback e�ect on the large-scale 
ow.

Secondly, the small-scale turbulence has organized itself on a large scale separating re-

gions of positive and negative vorticity which were initially well-mixed. Thirdly, the

quadrupolar structure is a distorted and inverted version of the four rollers that create

the strain in the laboratory experiment of Andreotti et al. (1996). This is a remarkable
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Figure 2. Evolution of Reynolds stresses for inviscid and viscous turbulence. Note that the

fact that R

11

� R

22

< 1 shows that the large-scale 
ow induced by the turbulence counteracts

the applied strain. (a) Reynolds stresses in the inviscid case. |, R

11

; { { {, R

22

; { � {, R

33

.

(b) Evolution of R

11

� R

22

in the inviscid case. (c) Reynolds stresses in the viscous case. |,

R

11

; { { {, R

22

; { � {, R

33

. (d) Evolution of R

11

�R

22

in the viscous case.

result since it shows that turbulence vorticity is not only ampli�ed by the strain, but

also re-organizes itself on the large scale of its inhomogeneity, creating a quadrupolar

vortex structure that opposes the applied strain. As mentioned before, this e�ect re-

quires an inhomogeneous, anisotropic (i.e. distorted) three-dimensional turbulent 
ow. If

the R

11

�R

22

were positive then the vortices would change sign and the perturbed 
ow

would enhance the applied strain. Thus we see that the relative strength of R

11

and R

22

controls the type of perturbation and whether the feedback e�ect is negative or positive.

The development of the large-scale vorticity is shown in �gure 4. The basic quadrupo-

lar pattern is conserved, although it is strongly distorted by the applied strain. This

distortion ampli�es the negative feedback which, under nonlinear theory, would even-

tually limit the maximum distortion (when the perturbation reaches the same order of

magnitude as the applied strain). In the experiment the maximum distortion would also

be limited by the boundary layers around the rollers which e�ectively con�ne the 
ow.

The development of the large-scale velocity pro�le (calculated from the vorticity �elds

in �gure 4) are presented in �gure 5. This �gure shows directly that the large-scale velocity

gradient induced by the small-scale turbulence opposes that of the applied strain. The

gradient is rapidly ampli�ed as the quadrupolar structure is increasingly distorted. It is
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Figure 3. Contribution to the large-scale 
ow from distorted turbulence at St = 0:1 (inviscid

calculation). Note that the strained turbulence has produced a large-scale 
ow whose velocity

gradients counteract those of the applied strain. (a) Vorticity �eld (solid contours indicate

positive vorticity dashed contours indicate negative vorticity). (b) Velocity �eld.
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Figure 4. Development of the large-scale vorticity induced by inviscid turbulence (only the

�rst quadrant is shown due to the quadrupole symmetry of the 
ow).

again remarkable that the small-scale turbulence is able to organize itself on a large-scale

in order to oppose the applied velocity �eld.

Finally, the evolution of the maximum vorticity and the strain rate @u

1

=@x

1

(0; 0) are

shown for the inviscid and viscous simulations in �gure 6. As mentioned earlier, the only

di�erence between the inviscid and viscous cases is that the amplitude of the perturba-

tion is greater in the former. This is because the spatial structure of the perturbation
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) induced by inviscid

turbulence.

is determined entirely by the spatial inhomogeneity of the turbulence. The maximum

vorticity and velocity gradient increase roughly exponentially in time. As expected, the

growth rates are smaller in the viscous case.

4.7. Qualitative explanation of the vortex quadrupole formation

Formation of the large-scale vortex quadrupole can also be explained by the following

simple physical argument. Consider two vortex tubes near x

1

= x

2

= 0 which are initially

aligned in the x

3

-axis and have opposite vorticity. The total vorticity of these two tubes

is zero, which corresponds to the zero mean vorticity associated with initial small-scale

turbulence. If one perturbs these tubes in the x

3

-direction, then the perturbation will

decay in the x

2

direction and grow in the x

1

direction because of the mean strain. Thus,

the vortex tubes will position themselves in the (x

1

; x

3

) plane as shown in �gure 7.

However, because of the increasing vortex-tube curvature, there will be a self-induced

motion of the vortex tube segments in x

2

-direction. For the vortex tube with vorticity

in the positive x

3

-direction, the motion will be in positive x

2

-direction for x

1

< 0 and in

negative x

2

-direction for x

1

> 0, as shown in �gure 7. The direction of the self-induced

motion in x

2

-direction is reversed for the vortex tube with vorticity in the negative x

3

-

direction. This self-induced motion tends to separate the positive and negative vorticity

and generates the quadrupole structure of x

3

-vorticity in the (x

1

; x

2

)-plane.
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and have been distorted by the applied strain. The small circles indicate the direction of the

self-induced motion of the tubes. `�', out of the page; `+', into the page.

It is easy to see that turbulence three-dimensionality and inhomogeneity are essential

for the above argument. Indeed, there would be no vortex-tube curving and self-induced

motion if we did not allow the three-dimensional perturbations. On the other hand,

if the density of the vortex tubes were homogeneous in the (x

1

; x

2

)-plane the net e�ect

produced by all the vortex tubes located at di�erent positions in the (x

1

; x

2

)-plane would

be zero (for simplicity we considered an extreme inhomogeneity with vortex tubes located

only at the centre).

The explanation proposed by Andreotti et al. (1996) for the negative feedback is quite

di�erent, and is based on their observation that the small-scale turbulence organizes itself

into a sequence of counter-rotating vortices in the stretching direction. They suggest

that once these vortices become strong enough they oppose any velocity gradients across
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their core. An analytical solution having a form of periodic distribution of vortices was

suggested as a non-linear steady state for the four-mill experiment in Kerr & Dold (1994).

Our calculation does not directly involve vortices in the stretching direction (vorticity in

the stretching direction is involved indirectly through the ampli�cation of the vorticity

which determines R

11

� R

22

), but rather the formation by the small-scale turbulence

of a large-scale quadrupole in the plane of the applied strain. Our calculation gives a

quantitative description of the negative feedback which reveals its necessary conditions

and is in qualitative agreement with the experimental observations. Unfortunately, the

authors do not include images of the 
ow in the plane of the applied strain, so we

cannot check for the presence of the quadrupolar structure. The counter-rotating vortices

observed in the experiment result from a longer-time nonlinear instability (not included

in our approximation) and are not necessary for the negative feedback e�ect (although

they may enhance it). It seems likely that the counter-rotating vortices result simply from

the Kelvin-Helmholtz instability of the intense vortex sheet that forms in the x

1

� x

3

plane during the linear straining phase.

4.8. Comparison with the eddy-viscosity approach

Our computation was made within the framework of scale separation, and an assump-

tion that the small-scale turbulence is weak compared to the large-scale mean 
ow.

Another approach exploiting scale separation was developed by Frisch and co-workers

(see e.g. Frisch et al. 1987; Dubrulle & Frisch 1991; Gama et al. 1994) who developed

an asymptotic representation of eddy viscosities. They consider the opposite case: strong

small-scale turbulence interacting with weak large scales. The result of such an approach

is that in the presence of a strong small-scale component u

i

, the Reynolds stresses R

ij

of a weak large-scale component U

i

are modi�ed by a factor u

i

u

j

. Because of the scale

separation, this factor can be expanded as a function of @

n

x

U

i

u

i

u

j

= �

ijk

U

k

+ �

ijkl

@

xk

U

l

+ : : : (4.13)

The term proportional to � is the AKA term, the hydrodynamical counterpart of the

alpha e�ect in dynamo theory; the term proportional to � is the contribution from tur-

bulent viscosity. In our case, the large-scale component is strong, so we cannot apply

the result (4.13). However, we do have a corresponding expansion for times small with

respect to the typical large-scale time scale t� S

�1

. In this case, the Reynolds stresses

(4.6{4.9) are

R

ij

(t) = R

ij

(t = 0) +A

ij

St+ : : : ; (4.14)

where A

ij

is a tensor which depends only on the initial spectrum of the small-scale

turbulence. The �rst term is independent of gradients of the large-scale velocity �eld,

but it does not contribute to vorticity generation because R

11

= R

22

at t = 0. This

term is also absent in the eddy-viscosity approach. The second term, proportional to

the gradient of the large-scale 
ow is a sort of \eddy-viscosity". However, it is linear

in time and anisotropic, and we do not obtain any equivalent of the AKA term. It is

possible, however, that a similar strain reduction e�ect might be obtained within the

eddy-viscosity approach, because negative turbulent viscosities are known to produce

large-scale instabilities leading to formation of organized multipolar structures Gama

et al. (1991). Again, this would correspond to strong small scales and weak large scales,

which is the inverse of the limit considered in this paper.
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5. Conclusions

In this paper, we have developed a WKB theory of rapid turbulence distortion using

the Gabor transform. This theory provides a general description of small-scale turbulence

in an irrotational mean 
ow. In particular, the WKB method allows the RDT analysis

to be extended to initially inhomogeneous and/or anisotropic turbulence and unsteady

mean 
ows. The WKB equations describe turbulence wavepackets which are transported

by the mean velocity and have wavenumbers which evolve due to the mean strain. The

energy of the turbulence wavepackets is not generally conserved: it can be transferred to

or drawn from the mean 
ow. On the other hand, we found that the turbulence action

de�ned in (2.39) is conserved by the turbulence.

We derived expressions for the averaged Reynolds stresses and the turbulent kinetic

energy and considered the asymptotic growth of the turbulence energy under large distor-

tions. Speci�c examples of mean 
ows produced by a source or by a sink were considered.

It was shown, in particular, that the turbulent kinetic energy becomes in�nite in a �nite

time when it is drawn into a sink.

The two-dimensional limit of the WKB equations was examined in detail. It was shown

that for initially isotropic turbulence the turbulent kinetic energy is conserved along the

mean 
ow trajectory. In this case, o�-diagonal elements of the Reynolds stress tensor

are equal to zero, while the diagonal ones are positive and conserved along the mean


ow trajectory. In terms of the feedback of turbulence on the mean 
ow, this means that

the turbulence produces a pressure rather than a turbulent viscosity. We established

that two-dimensional turbulence does not produce any feedback on the mean 
ow if the

turbulence is initially homogeneous (in addition to being isotropic).

Following the theoretical developments we have applied WKB RDT to the case of

the interaction between large-scale plane irrotational applied strain and small-scale tur-

bulence. The aim of this investigation was to explain the experimental observation of

Andreotti et al. (1996) that the distorted small-scale turbulence generates a large-scale


ow that opposes the applied strain and thus limits the maximum distortion by a negative

feedback process.

In the experiment the strain is produced by four counter-rotating rollers arranged in a

square; this set-up generates approximately irrotational 
ow in the centre of the square.

We chose to approximate this 
ow by inhomogeneous turbulence in a uniform plane

irrotational strain. (The experimental turbulence must be inhomogeneous in the plane

of the strain due to the con�ning e�ect of the rollers.) The turbulence was assumed to

be initially isotropic with an integral scale much less than the scale characterizing the

inhomogeneity of the turbulence. By assuming that the change in the applied strain can

be neglected for the purposes of calculating the distorted small-scale turbulence we were

able to determine the perturbation to the large-scale 
ow due to the turbulence.

Using the geometry described above and the linearWKB RDT calculation we were able

to produce the experimentally observed negative feedback. The small-scale turbulence

re-organizes itself on the large scale of its inhomogeneity by separating positive and

negative vorticity, forming a quadrupole. This quadrupole is e�ectively an inverted and

distorted version of the four roller 
ow and thus opposes the velocity �eld of the applied

strain. In order for the large-scale 
ow to be a�ected, the small-scale turbulence must

be inhomogeneous, anisotropic (due to the distortion), and three-dimensional. In other

words, if the initial turbulence is two-dimensional or homogeneous the large-scale 
ow is

stationary. This result is interesting because it shows that the e�ect observed by Andreotti

et al. (1996) is entirely three-dimensional in nature and requires that the turbulence be

con�ned to a �nite area in the plane of the applied strain. The re-organization of the
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turbulence at large-scales is also novel, and shows that the dynamics of turbulence at

large-scales can be very di�erent from those of the small scales. Although our calculation

is only valid for short times, the self-stabilizing character of the interaction between

large and small scales suggests that the results are valid over a longer time than might

be thought a priori (for another example of the reduction of nonlinear e�ects in strained

turbulence see Kevlahan & Hunt 1997).

The WKB approach developed in this paper can be generalized to include the e�ects

of compressibility, in which case an appropriate starting point for the derivation of the

transport equations could be the RDT equations derived by Goldstein (1978). One can

also develop a WKB approach for some special cases of rotational 
ows, such as nonuni-

form pure shear 
ows and nonuniform rotation. Naturally, there is one generalization

which cannot be made within the WKB approach, namely the case when turbulence and

the mean 
ow have comparable spatial scales. The e�ects of the �nite turbulence spatial

scales have been considered by Goldstein & Durbin (1980).

In this paper we did not consider the interaction of turbulence with a wall, primarily

because we did not �nd an application where the initial inhomogeneity of turbulence

leads to new physical e�ects (the main wall e�ects for homogeneous turbulence have

been described in detail by Durbin & Hunt 1980). Note that wall e�ects are not needed

to explain the strain reduction e�ect in the Taylor's four roller 
ow discussed in this

paper.

To summarize, this paper presents the �rst complete analysis of the interaction be-

tween large-scale strain and small-scale inhomogeneous turbulence, and applies this new

theory to the Taylor four roller mill experiment. The results have explained a previ-

ously puzzling observation: that strained small-scale turbulence can produce a negative

feedback e�ect, reducing the gradients of the large-scale applied strain. Furthermore,

the case presented here serves as an example of the striking qualitative di�erences be-

tween the dynamics of inhomogeneous and homogeneous turbulence. Indeed, the negative

feedback e�ect requires that the small-scale turbulence be initially inhomogeneous and

three-dimensional.
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