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Abstract

A major difficulty in computing engineering flows at high Reynolds
number is the need for non-uniform grids adapted to solid boundaries
that may be moving or changing shape. These non-uniform grids are
expensive to calculate and cannot be used with the most accurate or ef-
ficient numerical schemes. We present one solution to this problem: a
Brinkman (volume) penalization of the obstacle which allows an efficient
pseudo-spectral method to be used to solve the Navier–Stokes equations
on a Cartesian grid. Although this is the most severe test of the penal-
ization (due to the global support of the Fourier basis), it is shown that
the method still yields reasonable results. We also present an analytical
solution of Stokes flow calculated using the penalization which illustrates
the error and continuity properties of the approach. Work is currently
underway to implement the penalization approach in a wavelet basis.

1 Introduction

The computation of moderate Reynolds number flow without subgrid-scale mod-
els is possible for simple geometries (such as periodic boundary conditions or
channel flow) due to the implementation of highly efficient and accurate spectral
methods. These simulations are useful to investigate the fundamental physics
of turbulence, but they are not able to calculate flows of engineering interest.
For such flows (which may include complex geometries and moving or deform-
ing solid boundaries) spectral methods cannot be used since the calculational
grid must follow the shape of the obstacle (to implement the no-slip boundary
condition) and should be refined near the solid boundaries to resolve the bound-
ary layer (whose thickness δ decreases like Re1/2). Such unstructured grids can
only be used with less efficient and less accurate methods, such as finite ele-
ments. In addition, the cost of recalculating the grid to follow the movement
and deformation of the obstacle is usually prohibitive.

An alternative approach to calculating flow around complex geometries is to
retain the simple grid and accurate numerical method and instead change the
equation. This is the essence of the ‘penalization’ (or fictitious domain) methods
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where an extra term is added to the Navier–Stokes equations which ‘penalizes’
flow in the solid region (volume penalization) or at the solid boundary (surface
penalization). Such a method (called the ‘immersed boundary approach’) was
first used by Peskin [1] to model flow around heart valves, and in modified form
by Goldstein et al. to model flow two-dimensional flow around a cylinder [2]
and by Goldstein & Tuan to calculate three-dimensional channel flow over a
ribbed surface [3]. Saiki & Biringen [4] used Goldstein’s method to investigate
the transition to turbulence of flow past a sphere in a boundary layer. In this
approach the presence of the solid boundary is simulated by adding an appro-
priate force field to the flow. The penalization approach appeared promising,
but the precise form of the penalization was always ad hoc, often based on a
mechanical model to add a body force to cancel the flow at the solid boundary.
Because of the the ad hoc nature of the penalization, it was difficult to estimate
the error of the method theoretically. In addition, the penalization usually in-
volved an iterative scheme that is conceptually complicated (although relatively
straightforward to implement numerically). For example, Goldstein’s method
required solving an iterative feedback scheme to enforce the no-slip boundary
condition. Such iterative schemes make mathematical analysis of the method
difficult.

Other indirect ways of enforcing boundary conditions include: adding a
force at the boundary at each time step such that velocity is neutralized to
second-order [5], and interpolating the velocity at the boundary using Lagrange
polynomials that satisfy the no-slip condition [6].

A new penalization has recently been introduced by Angot et al. [7] follow-
ing Arquis & Caltagirone[8] which is based on the Brinkman law for flow in a
porous medium. Essentially, one models the flow as a porous medium, where
the permeability is infinite in the fluid part and tends to zero in the solid part.
The porosity is maintained constant in the solid. The permeability K of the
‘solid’ is then controlled by a small parameter ǫ: K ∝ 1/ǫ ≫ 1. The main
advantage of this method is that Angot et al. [7] have rigorously shown using
asymptotic analysis that the solution of the penalized equations uǫ converges
to the solution of the Navier–Stokes equations with the correct boundary condi-
tions u as ǫ→ 0 with a well-controlled global error of O(ǫ3/4). This means that
the penalization can be used with confidence, and the error can be chosen as
small as desired, merely by using an appropriate value for ǫ. This rigour (and
the fact that it is a volume rather than a surface penalization) distinguishes
the Brinkman penalization from other penalization methods. The penalization
term is also extremely simple: one adds a term which is −1/ǫ u in the solid and
zero elsewhere.

In this paper our goal is to make a first step towards the use of spectral (and
eventually wavelet) methods for computing the solution of complex flows. More
precisely, we would like to show that using the Brinkman penalization method
it is possible to perform stable and accurate computations of incompressible
viscous flow past an arbitrary obstacle using a classical pseudo-spectral method
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based on a Fourier decomposition. Because of its global support, the Fourier
basis is not well-adapted to non-smooth functions (e.g. discontinuous functions
produce Gibbs oscillations) and thus if the penalization produces reasonable re-
sults with the pseudo-spectral method it should work well for any other method
(e.g. a wavelet method with whose basis functions have compact support).
Apart from its exponential convergence properties (for smooth C∞ functions),
the pseudo-spectral method is interesting because of its ease of implementa-
tion in two or three dimensions and its applicability to problems with periodic
boundary conditions.

The paper is organized as follows. §2 presents the theory of the penalization
and an analytic solution of Stokes flow. This calculation illustrates the error
and smoothness of the penalization solution near a solid boundary. Then in §3
we describe how the penalization is implemented in a two-dimensional pseudo-
spectral numerical code. Some results of applying a spectral and second-order
finite difference code to the Stokes flow problem are also presented. The results
of applying the penalized code to a selection of test problems for cylinder arrays
are presented in §4. These problems are relevant to flow past tube bundles in the
heat exchangers of steam generators. Finally, the advantages and disadvantages
of the method are discussed and perspectives for future research are suggested
in §5.

2 Theory

2.1 Brinkman penalization

Let us consider a viscous incompressible fluid governed by the Navier–Stokes
equations

∂u

∂t
+ u · ∇u +∇P = ν∆u, (1)

∇ · u = 0. (2)

We focus here on the case where the fluid occupies the complement in the plane
R2 of a periodic lattice of obstacles Oi (see figure 1). The boundary conditions
associated with this problem are therefore:

u is Q-periodic, Q =]0, L1[ × ]0, L2[, (3)

u = 0 on ∂Oi, ∀i (4)

When a Fourier Galerkin method is used to compute the solution of (1) – (4),
the solution is decomposed as

u(x1, x2, t) =
∑

k∈Z2

uk(t) exp

[
i2π(

k1x1
L1

+
k2x2
L2

)

]
, (5)
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L1

L2

Figure 1: Periodic lattice of obstacles

and the obstacles are defined by the boundary condition (4), which is impossible
to implement for arbitrary obstacles Oi.

In order to use the Fourier decomposition (5) for arbitrary obstacles we
replace (1) – (4) by the following set of penalized equations

∂uǫ

∂t
+ uǫ · ∇uǫ +∇Pǫ = ν∆uǫ −

1

ǫ
χ0uǫ, (6)

∇ · uǫ = 0, (7)

uǫ is Q-periodic, (8)

and now (6) and (7) are to be satisfied in the whole plane R2. Here ǫ > 0 is a
penalization coefficient and χ0 denotes the characteristic (or mask) function

χ0(x, t) =

{
1 if x ∈ Oi,
0 otherwise.

(9)

As ǫ → 0, it was proved theoretically by Angot, Bruneau & Fabrie [7] that the
solutions of the penalized equations (6) to (8) converge to that of the Navier–
Stokes equations with the correct boundary conditions (1) – (4). More precisely,
the upper bound on the global error of the penalization for steady flow was
shown to be [7]

||u− uǫ|| ≤ Cǫ1/4. (10)
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This penalization has been implemented in a finite difference code by Khadra
et al.[9] for flow around a cylinder and was found to give very good results. In
fact, the actual error was slightly better, O(ǫ). It is important to note that ǫ is
an arbitrary parameter, independent of the spatial or temporal discretization,
and thus the boundary conditions can be enforced to any desired accuracy by
choosing ǫ appropriately. This property distinguishes the Brinkman method
from other penalization schemes and allows the error to be controlled precisely.

Another advantage of the Brinkman penalization is that the force F i acting
on an obstacle Oi can be found by simply integrating the penalization term over
the volume of the obstacle (see [10] and [11] for details):

F i =
1

ǫ

∫

Oi

udx. (11)

Thus, the calculation of lift and drag on an obstacle can be made simply, ac-
curately and at very low cost. (This result can be found by integrating the
penalized Navier–Stokes equations and noting that u and u · ∇u are negligible
in the solid part.)

2.2 Penalization in two dimensions

Note that the penalization applies equally to one, two or three dimensions. In
this paper, however, we focus on two-dimensional flow, and hence we would
like to use the efficient vorticity–stream function (ω − ψ) form of the Navier–
Stokes equations. We have chosen this formulation since it is more efficient than
the primitive variables formulation in two dimensions, and is thus the standard
choice for two-dimensional turbulence simulations. It is also a tough test for
the penalization approach since the penalization term becomes the curl of a
Heaviside function (which is singular). If the method gives reasonable results
in this case, it should work even better for the primitive variable formulation in
two and three dimensions. In addition, we plan to implement the penalization
in an adaptive wavelet code (which relies on a large compression of the vorticity
field), so we need to ensure the method works on the vorticity equation.

The penalized form of the vorticity equation is

∂ω

∂t
+ J(ψ, ω) = ν∆ω − 1

ǫ
curl (χ0curlψ) (12)

−∆ψ = ω, (13)

where we have set

J(ψ, ω) ≡ ∂ψ

∂x1

∂ω

∂x2
− ∂ψ

∂x2

∂ω

∂x1
(14)

curlψ ≡
(
∂ψ

∂x2
,− ∂ψ

∂x1

)
, (15)

curlv ≡
(
∂v

∂x2
− ∂v

∂x1

)
. (16)
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Of course if (ψ, ω) solves (12) – (13) then u = curlψ solves (1)–(4) for a suitable
pressure function Pǫ.

This formulation is preferred for at least two reasons. First, the incompress-
ibility equation (2) is automatically satisfied, and we do not need to compute
the pressure. Secondly, in the context of two-dimensional flows, the vorticity is
the physically relevant variable whose size and shape are directly related to the
physical phenomenon involved (instabilities, drag, lift etc.).

We have limited our investigations here to the Fourier decomposition and
two-dimensional flows. Extensions to (i) wavelet decomposition, and (ii) three-
dimensional flow are currently under way and will be reported elsewhere (see
also §5 of this paper).

2.3 Application to Stokes flow

To help understand what the penalized approximation to the solution of the
Navier–Stokes equations looks like near a solid boundary we consider the simple
case of Stokes flow. Stokes solution describes a uni-directional flow accelerated
impulsively from rest and bounded by an infinite flat plate parallel to the flow.
The velocity of the flow must be zero at the surface of the plate, and thus the
flow develops a typical ‘boundary layer’ shear profile that progressively diffuses
vorticity into the interior of the flow. In this case the Navier–Stokes equations
become

∂u

∂t
= ν

∂2u

∂x22
, (17)

where u = u1(x2, t), u(x2, 0) = 1, u(0, t) = 0 and x2 ≥ 0 (note that we consider
the lower half-plane to be solid). It is assumed that the flow remains uni-
directional (i.e. that no instabilities develop). The above equations can be
easily solved, giving

u(x2, t) = erf

(
x2√
4νt

)
, (18)

where erf is the usual error function: erf(z) ≡ 2√
π

∫ z

0 e
−s2 ds.

The force on the wall is given by

(
∂u

∂x2

)∣∣∣∣
x2=0

=
∂

∂x2
erf

(
x2√
4νt

)∣∣∣∣
x2=0

=
1√
πνt

. (19)

Now, the penalized approximation to Stokes flow is given by

∂uǫ
∂t

= −1

ǫ
H(−x2)uǫ + ν

∂2uǫ
∂x22

, (20)

where H(x) is the Heaviside function, uǫ(x2, 0) = 1 and uǫ(·, t) is defined on
the entire plane R2 (see e.g. [12]). We solve the penalized equation using the
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Laplace transform,

z(x2, α) =

∫ ∞

0

e−αt uǫ(x2, t) dt. (21)

Taking the Laplace transform of (20) (letting ν = 1/2 for simplicity) we obtain
the following equations,

αz = 1
2z

′′ − βz + 1, x2 < 0,
αz = 1

2z
′′ + 1, x2 > 0,

(22)

with boundary conditions z(0+) = z(0−), z′(0+) = z′(0−), where the prime
indicates the derivative with respect to x2 and β = 1/ǫ. The solution of the
above equations is

z = Ae−|x|
√

2(α+β) + 1
α+β , x < 0,

z = Be−x
√
2α + 1

α , x > 0,
(23)

with

A =

√
α+ β −√

α√
α(α+ β)

, B =
−√

α+ β +
√
α

α
√
α+ β

.

Taking the inverse Laplace transform of (23) and substituting β = 1/ǫ we find

uǫ(x2, t) = e−t/ǫ


erf

(
−x2√

2t

)
+ 1

π

∫ 1

0

exp

(
ty/ǫ− 1

2t

x2

2

1−y

)

√
y
√
1−y

dy


 , x2 < 0, (24)

uǫ(x2, t) = erf
(

x2√
2t

)
+ 1

π

∫ 1

0

exp(−ty/ǫ− 1

2t

x2

2

1−y
)

√
y
√
1−y

dy, x2 > 0. (25)

Note that the first term on the right hand side of (25) is the exact solution
u(x2, t), and therefore the second term is the error.

We observe that for x2 > 0, i.e. in the fluid, the error satisfies

0 ≤ uǫ(x2, t)− u(x2, t) ≤
1

π

∫ 1

0

1
√
y
√
1− y

dy = 1 . (26)

Hence,

∫ ∞

0

|uǫ(x2, t)− u(x2, t)|2 dx2 ≤
∫ ∞

0

|uǫ(x2, t)− u(x2, t)| dx2 =

√
ǫ

2
erf

(√
t

ǫ

)
.

(27)
Moreover, integrating the above expression with respect to time, we find,

1

T

∫ T

0

∫ ∞

0

|uǫ(x2, t) − u(x2, t)|2 dx2 dt ≤

≤
√
ǫ

2

[(
1− ǫ

2T

)
erf

(√
T

ǫ

)
+

√
ǫ

πT
e−T/ǫ

]
.(28)
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This shows that the error between the exact and the approximate solutions
in the fluid is of the order of

√
ǫ. Angot et al [7] (Theorem 4.2) have proved

that in general this error is bounded by Cǫ1/4, which is consistent with our
computations for the particular case of Stokes flow.

Concerning the asymptotic behaviour of uǫ, as ǫ→ 0 (as in the penalization
approximation), when x and t are fixed, the integrals (24) and (25) can be
estimated as

uǫ(x2, t) ≤ ex2

√
2/ǫ
(√

ǫ
πt + e−t/ǫ

)
, x2 < 0,

uǫ(x2, t) ≈ erf
(

x2√
2t

)
+
√

ǫ
πt e

−x2

2
/(2t), x2 > 0.

The above results can be generalized to arbitrary viscosity ν, giving

uǫ(x2, t) ≤ ex2/
√
νǫ
(√

ǫ
πt + e−t/ǫ

)
, x2 < 0,

uǫ(x2, t) ≈ erf
(

x2√
4νt

)
+
√

ǫ
πt e

−x2

2
/(4νt), x2 > 0.

(29)

Equation (29)1 shows that the velocity decreases exponentially fast inside the
solid and is thus evanescent . The ‘skin-depth’ inside the obstacle is O(ǫ1/2).
This is consistent with the physical basis of the penalization since the solid is
modelled as a porous obstacle with permeability K ∝ 1/ǫ, and the thickness of
the boundary layer inside a porous obstacle is O(K1/2). Thus, to numerically
compute the force on an obstacle, one need only calculate the evanescent flow
near its surface. This result has important implications since it means that an
adaptive method (e.g. wavelet-based) need not resolve the entire volume of the
obstacle, only a thin shell near its surface.

Both uǫ and u
′
ǫ are continuous at x2 = 0, while u′′ǫ is discontinuous. At the

boundary the velocity and its gradient take on (at leading order) the following
values,

uǫ(0, t) =

√
ǫ

πt
+O(ǫ),

∂uǫ
∂x

(0, t) =
1√
πνt

(
1− e−t/ǫ

)
. (30)

Note that the error in the gradient at the surface of the obstacle is exponentially
small. The fact that the solution has continuity C1 at the boundary (but is
smooth elsewhere) should help in choosing an appropriate numerical method.

In the penalization method the force on an obstacle is calculated by an
integration over its volume. We calculate the force by integrating (20) from
−∞ to 0 (i.e. over the solid) which leads to:

d

dt
Fǫ +

1

ǫ
Fǫ =

1

ǫ

∂uǫ
∂x

(0, t) =
1

ǫ

1√
πνt

(
1− e−t/ǫ

)
.

This equation has the solution

Fǫ(t) = Ce−t/ǫ + e−t/ǫ

∫ t

0

es/ǫ
1

ǫ

1√
πνs

(
1− e−s/ǫ

)
ds, (31)
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where C is a constant. Since we are interested in the limit ǫ → 0 with t fixed,
we neglect the first term. The integral in (31) can be evaluated, giving

Fǫ(t) = e−t/ǫ

(
1√
ǫν

erfi

(√
t

ǫ

)
− 2

ǫ

√
t

πν

)
,

where erfi(x) = −ierf(ix). Again, we neglect the second term and approximate
the first term for large t/ǫ using

erfi(x) =
ex

2

√
π x

(
1− 1

2

1

x2
+O(

1

x4
)

)
.

which gives the following expression for the penalized approximation to the
force,

Fǫ(t) =
1√
πνt

(
1− ǫ

2t
+O(ǫ2)

)
. (32)

Note that the error in the force compared with the exact result (19) is O(ǫ), i.e.
much smaller than the error in the boundary condition (which is is O(ǫ1/2)).

Although Stokes flow is linear and uni-directional, it generates a solution to
the three-dimensional Navier–Stokes equation. One might naturally ask whether
the situation described above is exceptional or gives some indication of the gen-
eral solution to the Navier–Stokes equations. It can be argued that in the
evanescent layer of thickness O(

√
ǫ) near a smooth boundary, the flow is ap-

proximately linear (since the convective terms become negligible with respect
to the diffusive and penalized terms) and parallel to the boundary. Thus the
results obtained above for the error and behaviour of the penalized solution
should also hold for most three-dimensional flows.

An important result of this section is that even though the boundary con-
dition is enforced to O(ǫ1/2) by the penalization method, the error in the force
on the obstacle is only O(ǫ)(see 32). The shear stress at the boundary is per-
haps the most physically important quantity, and (30) shows that its error is
exponentially small. Furthermore, the error in the velocity decreases rapidly
away from the boundary (see 29). Taken together, these results suggest that
overall the Brinkman penalization may be expected to give better than O(ǫ1/2)
accuracy (indeed Khadra et al. [9] found numerical evidence for O(ǫ) accuracy
in two-dimensional flows). Finally, we concluded that an adaptive numerical
method need only calculate the fictitious flow inside the obstacle to a skin-depth
of O(ǫ1/2).

3 Numerical method

3.1 Pseudo-spectral scheme

We use a standard pseudo-spectral method on a rectangular domain with pe-
riodic boundary conditions to discretize (12) (see, e.g., [14] for details). This
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means that derivatives are calculated in Fourier space, while products are calcu-
lated by returning to physical space. The diffusion term ∂2ω/∂x2 is integrated
exactly in time (by solving the diffusion equation in Fourier space), while a
2nd-order Adams–Bashforth scheme is used for the rest of the right hand side.
The resulting scheme is

ω̂n+1 = ω̂ne
−νk2 ∆t +

3

2
∆t ĝne

−νk2 ∆t − 1

2
∆t ĝn−1e

−νk2 2∆t, (33)

where k = (k1, k2) is the wavenumber, k = |k|, ∆t is the time step and

ĝ(k) = −Ĵ(ψ, ω) + i

ǫ

(
k1

̂
χ0

∂ψ

∂x1
+ k2

̂
χ0

∂ψ

∂x2

)
. (34)

Note that the first term on the right hand side is the Fourier transform of the
Jacobian, while the second is the Fourier transform of the penalization. Thus
the mask χ0 is applied to derivatives of the stream function (the velocity) in
physical space and the product is then transformed back to Fourier space.

Because the Fourier series is truncated, the wavenumbers are bounded as
−N1/2 ≤ k1 ≤ N1/2 = k1max and −N2/2 ≤ k2 ≤ N2/2 = k2max where N1 and
N2 are the numbers of grid points in the x1 and x2 directions. Note that the grid
is uniform. In order to avoid the creation of scales too small to be resolved on
the grid (i.e. wavenumbers n kmax, n = 2, 3, 4, . . .) by terms involving products,
the vorticity is de-aliased at each time step by truncating in wavenumber space
using the 2/3-rule,

ω̂(k, t) =





0 if
(

k2

1

2/3N1

)2
+
(

k2

2

2/3N2

)2
≥ 1,

ω̂(k, t) if
(

k2

1

2/3N1

)2
+
(

k2

2

2/3N2

)2
< 1.

(35)

Working in the ω–ψ formulation is computationally efficient in two dimen-
sions. However, the vorticity is less smooth than the velocity (in fact we expect
that ω ∈ C0). Thus, this application is an extreme test of the general appli-
cability of the penalization method, since spectral methods are poorly adapted
to functions with strong gradients (although they have been used to calculate
shocks, usually with some form of high wavenumber filtering [15]).

The explicit time scheme used here has the drawback of linking the time
step ∆t and the penalization parameter ǫ. Since the problem is stiff and we use
an explicit method, we require ∆t ∼ ǫ to ensure numerical stability. This is a
drawback, although in practise we are able to use a sufficiently small value, ǫ ≈
10−3. In the following section we use a Krylov sub-space method (which allows
ǫ to be chosen independently of ∆t) to investigate the convergence properties of
the pseudo-spectral method in the case of one-dimensional channel flow (similar
to the case discussed in §2.3).
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3.2 Analysis of pseudo-spectral method for channel flow

In this section we investigate the numerical properties of the pseudo-spectral
method for the Brinkman penalization by applying it to the one-dimensional
primitive equation (20) for uni-directional channel flow. Because of the sim-
plicity of the equation, and the availability of analytic solutions for both the
penalized equations and the physical equations, this is an ideal problem for
studying the convergence properties of the numerical method. So that ǫ may
be varied independently of ∆t we employ a GMRES Krylov sub-space method
in time (see [16] for a discussion of the Krylov method). The Krylov method
has the advantage that it is stiffly stable for linear problems and the order of
the method can be easily changed by changing the dimension of the Krylov
subspace.

The physical problem is similar to the Stokes flow considered in §2.3, except
that the flow is now bounded by two parallel walls. If the flow is assumed to
remain uni-directional the velocity can be easily calculated (see [17]),

u(x2, t) =
2u0
π

∞∑

n=1

1

n
exp

(
−n2π2 νt

d2

)
sin
(nπx2

d

)
(1− (−1)n) (36)

where u = u1, u0 is the initial velocity, and d is the width of the channel. (Note
that this flow can be calculated on a periodic domain.) For short times and near
the walls (while the velocity is close to u0 in the centre of the flow) the solution
of the associated penalized equations is given by (29) appropriately shifted and
scaled.

Because we are using the penalized equations, rather than the Navier–Stokes
equations there are in fact two types of error. The first type of error is the pure
numerical error associated with solving the penalized equation numerically. The
second error is the ‘net’ physical error which is a combination of the numerical
error and the penalization error. Because we know both the exact solution of
the penalized equations (given by 29 for small times) and the exact solution
of the physical problem (given by 36) we can quantify both sources of error
separately.

We found that the convergence of L1 error of the pseudo-spectral method
compared to the solution (36) was only linear with ∆x, except for a special
relation between ǫ and ∆x (ǫ = ∆x2.3 for the pseudo-spectral method and
ǫ = ∆x3 for the finite difference method) which lowered the error to O(∆x2).
However, the convergence of the error compared to the exact solution of the
penalized equations was always linear. Although the convergence of the physical
error is only linear in general (consistent with the C1 continuity of the penalized
solution) the actual error is quite small (10−3 for 128 points), and there is no
sign of Gibbs oscillations.

A second-order finite difference method was also applied to the same prob-
lem, and showed similar convergence properties. The main difference was that
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Figure 2: Error as a function of number of grid-points N for optimum choice of
ǫ = ∆xp. — pseudo-spectral, − · − 2nd-order finite difference, - - - N−2.

the actual physical error was approximately twice as small as for the pseudo-
spectral method. The error results for spectral and finite differences are shown
in figure 2 for the optimal relation between ∆x and ǫ.

These results suggest that in general the overall error of the pseudo-spectral
method should be between linear and quadratic, and that Gibbs oscillations
should not be important. Of course, in two dimensions we use the ω−ψ formu-
lation which might be expected to have some Gibbs oscillations and a slightly
higher error (since vorticity is less smooth than velocity). The nonlinear term
might make some difference, although it should not be important in the bound-
ary layer near the surface of the obstacle. In the following section the numerical
results for the two-dimensional simulation are compared with results from lab-
oratory experiments.

4 Results

4.1 Widely separated cylinders

In order to check that the pseudo-spectral method applied to the Brinkman pe-
nalization gives reasonable results we first apply it to the case of widely separated
cylinders in long rectangular domains. This configuration was chosen because
it approximates an isolated cylinder for moderate times (until shed vortices exit
and re-enter the domain). The two-dimensional flow past a circular cylinder has
also been calculated recently using a formally second-order accurate immersed
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boundary technique by Lai & Peskin [13]. The resolution used for the simula-
tion is 512 × 128 grid points and the physical dimensions are 20 × 5 cylinder
diameters. The transition to vortex shedding at Re = 200 (based on cylinder
diameter and mean flow velocity) is shown in figure 3. The simulation shows
clearly the growth of the instability and the establishment of a regular vortex
shedding regime. Note that some Gibbs oscillations are present around the
cylinder, but these are small in amplitude and do not grow or perturb the rest
of the flow. It appears that the oscillations are benign, as was observed by Gold-
stein et al.[2] who used a different penalization method with a pseudo-spectral
scheme to calculate flow around a cylinder. The Strouhal vortex shedding fre-
quency calculated from the oscillating lift force is St = fD/U∞ = 0.218, which
is within 10% of the value of St = 0.195 found by Williamson [18] for a truly
isolated cylinder.

The Gibbs oscillations, although benign, are unphysical and it would be
better to eliminate them. To do this we tried smoothing the edge of the mask
χ0 over seven grid points. The smoothed cylinder generated much smaller os-
cillations, but also had increased drag and lift (and a slightly smaller Strouhal
number) than the non-smoothed case, see figure 4. This suggests that smooth-
ing the edge of the cylinder changes the physics of the flow–obstacle interaction
significantly. We are, in effect, calculating the flow around a slightly ‘fuzzy’
cylinder (a tennis ball?). In any case, we will see in the following section that at
higher Reynolds numbers the Gibbs oscillations become completely negligible.

In this section we have seen that the combination of Brinkman penalization
with the pseudo-spectral method gives reasonable results for the well-understood
case of an isolated cylinder. In the following section we investigate the indus-
trially important, but more complicated case of closely spaced periodic arrays
of cylinders.

4.2 Closely spaced square cylinder arrays

The case of flow through closely spaced periodic cylinder arrays is important for
many industrial applications, e.g. flow around nuclear fuel rods, flow past heat
exchange coils in steam generators. At moderate to high Reynolds numbers the
flow past cylinder arrays can generate strong oscillating forces that can destroy
a heat exchanger if these forces are close to the resonant frequency of the tubes.
It is thus important to understand how such forces arise, and how they vary in
different tube configurations. One important question is how the flow regime
changes as a function of the angle of incidence of the mean flow with respect
to the axis of the tube array. Because of its periodic boundary conditions, the
pseudo-spectral method is ideally suited to investigating flow in tube bundles.
Although this flow is important industrially, it has received little attention from
the fluid dynamics community.

We consider only the simplest case of a single fixed cylinder per period in
two-dimensional flow. The case of elastic cylinders is under investigation, and is
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t=8

t=16

t=24

Re = 200       20x5 (512x128) without smoothing

t=40

t=32

Figure 3: Development of vortex shedding around a single cylinder at Re = 200.
Resolution is 512× 128 and positive vorticity is red, negative vorticity is blue.
Note that some Gibbs oscillations are present, but they don’t appear to grow
in time or perturb the flow.
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Figure 4: Forces on single cylinder as a function of time: — without smoothing,
- - - with smoothing. (a) Drag Cd. (b) Lift Cl. Note that smoothing the
edge of the cylinder significantly increases the drag and lift, although the vortex
shedding frequency is not affected greatly.

particularly easy to implement with the penalization scheme (the mask changes
in position and form in response to the flow forces). Note that it is generally
believed that the flow in tube bundles remains largely two-dimensional (even at
high Reynolds numbers) because of the close packing of the tubes and because
cylinder oscillations tend to correlate the fluid motion along the array axis. For
this reason a two-dimensional simulation should give useful results in this case.

The cylinder array considered here is a square array where the pitch to
diameter ratio is fixed at P/D = 1.5 (see figure 5). The cylinder is fixed and
there is one cylinder per periodic cell (which limits the largest flow structures).
Two cases are considered: in-line (mean flow along the axis of the cylinder array)
and rotated (mean flow along a diagonal of the array). To apply the mean flow
a uniform velocity (i.e. a nonzero k = 0 Fourier mode) is added at the desired
angle. These two cases were chosen because experimental results suggest they
produce very different flow regimes [19], and there is some controversy over the
precise nature of vortex generation in each regime.

The flow through the two cylinder arrays (in-line and rotated) were cal-
culated at 23 Reynolds numbers (based on cylinder diameter and mean flow
velocity) in the range 10 ≤ Re ≤ 4 000. At each Re ≤ 1 000 the de-aliased
resolution was adjusted so that there are at least 4 points across the boundary
layer (Re−1/2/(3/2∆x) ≥ 4) and from 1 000 < Re ≤ 4 000 we ensured the that
Re−1/2/(3/2∆x) ≥ 2. This criterion was checked using a grid refinement study
at low Reynolds number, and ensuring the error in the RMS (root mean square)
drag was less than 2.5%. The maximum resolution used was 288× 288 and the
minimum resolution was 128× 128. In all simulations we set ǫ = 10−3. To save
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Figure 5: Configuration of periodic cylinder arrays.

computer time the instability was triggered by slightly oscillating the cylinder at
the beginning of the simulation. Drag, lift, vorticity and Strouhal number were
measured for each flow. Since there are many different shedding frequencies at
higher Reynolds numbers, the Strouhal number is defined using the peak of the
lift force frequency spectrum.

A typical snap-shot of the flow through the in-line array at Re = 1 000 is
shown in figure 6(a). The flow has a characteristic jet shear-layer structure, and
there is no sign of vortex shedding behind the cylinders. However, it appears
that vortices are generated by a shear-layer instability at the edge of the shear-
layer between the cylinders. The overall form of the flow and the generation of
vorticity via a shear-layer instability is also seen in the laboratory experiment of
Ziada & Oengören [20] reproduced in figure 6(b). In contrast, the flow past the
rotated array (see figure 6c) exhibits a completely different flow regime. The
flow is characterized by the periodic generation and shedding of vortices from
the cylinders, and the region between the cylinders resembles two-dimensional
turbulence (with strong vortex–vortex interactions). The production of vorticity
in the rotated array is the same as in an isolated cylinder. The vortex shedding
observed here is qualitatively similar to that seen in laboratory experiment
of Weaver et al. [21] shown in figure 6(d). It is clear that the flow regimes
are completely different for the in-line and rotated square arrays, even though
the Reynolds numbers are identical. Thus, our numerical results confirm the
experimental observations of different mechanisms of vortex generation in in-
line and rotated square arrays made by Ziada and Weaver. The precise nature
of vortex generation mechanisms in cylinder arrays was previously unclear.

The plots of vorticity in the in-line and rotated arrays showed very different
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Re = 1000, t = 10, 256x256, P/D = 1.5, no smoothing

0 115-115

Re = 1000, no smoothing, rotated square array, 288x288, t=10

(a)

(c)

(b)

(d)

Figure 6: Vorticity in closely-spaced square cylinder arrays (copied four times
for clarity). (a) Vorticity in in-line square array at Re = 1 000. Note the
presence of jet-like structures and the apparent absence of vortex shedding.
Vortices appear to be generated by shear instability along the jet shear layer.
(b) Laboratory photograph of jet shear layer in in-line array with P/D = 1.75
and Re = 730 [20]. (c) Vorticity in rotated square array (copied four times
for clarity) at Re = 1 000. The vorticity structure is completely different from
that of the in-line array: many small vortices are produced in the boundary
layer and shed downstream. The flow between the cylinders is reminiscent of
two-dimensional turbulence. (d) Laboratory photograph of vortex shedding in
a rotated square array with P/D = 1.5 and Re = 967 from Weaver et al. [21].
The vortex shedding mechanism and vortex scale are similar to that observed
in (c).
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mechanisms of vorticity generation at the same Reynolds number. Since vortex
shedding is the main source of force on the cylinder one would expect different
values of drag, lift, and Strouhal frequency for in-line and rotated arrays. The
RMS drag, RMS lift, RMS vorticity (spatially and temporally averaged) and
the Strouhal frequency are shown as a function of Re in figure 7. As expected,
the RMS drag is significantly higher in the rotated square array after about
Re = 40. Not much data is available on RMS drag in closely spaced cylinder
arrays, but the value 2.3 quoted by Price et al. [22] for an in-line array in the
range 1.7× 103 ≤ Re ≤ 105 is in reasonable agreement (note that the drag does
not appear to depend on Reynolds number in this range). The RMS lift is also
higher, and lift develops earlier in the rotated array (at Re = 60 compared to
Re = 100). The plots of vorticity suggest that more vorticity is produced in
the rotated array, and this is indeed borne out by figure 7(c). The Strouhal
frequency as a function of Reynolds number is shown for the in-line and and
rotated arrays in figure 7(d). The Strouhal frequency for the rotated array is
higher than that of the in-line array until about Re = 500. The shaded region
indicates the range of values found experimentally for different tube rows by
Price et al. [22] for a rotated square array. Note that the numerical results are
within the experimental range until Re = 500. This may indicate that the three-
dimensional effects become important at Re = 500 (note that this is much later
than for an isolated cylinder where three-dimensional effects become important
around Re = 180).

In summary, in-line arrays produce vorticity as a shear-layer and vortices
are generated by a shear-layer instability, whereas rotated square arrays produce
vorticity by vortex shedding as in the case of an isolated cylinder. The unsteady
forces on the cylinder are much stronger for the rotated array. The numerical
results compare well with available quantitative and qualitative experimental
data.

5 Summary and conclusions

The suitability of simulating flow through an array of solid obstacles at moder-
ate Reynolds number using a pseudo-spectral code with Brinkman penalization
has been investigated. The Brinkman penalization was introduced by Angot et
al. [7] based on the Brinkman equation for flow through a porous medium. An-
got et al [7] have shown analytically that the solution of the penalized equation
converges to that of the Navier–Stokes equations with the correct boundary con-
ditions when the penalization parameter ǫ → 0. The advantage of penalization
methods is that the way of introducing solid boundaries is independent of the
numerical method and grid used. To test the limits of this method we applied it
to pseudo-spectral simulation of flow through a periodic array of cylinders in two
dimensions using the ω−ψ formulation. This is perhaps the most extreme test
of the penalization since the Fourier basis has global support (which means it is
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Figure 7: Forces and Strouhal number as a function of Reynolds number for the
in-line (squares) and rotated square (triangles) arrays. (a) RMS drag compared
with laboratory value stated for the range 1.7 × 103 ≤ Re ≤ 105 by Price et
al. [22]. (b) RMS lift. (c) RMS vorticity ω. (d) Strouhal vortex shedding
frequency St = fD/U∞ compared with laboratory values (region indicated by
dotted line) for an rotated square array [22].
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poorly adapted to non-smooth functions) and the vorticity is a derivative of the
velocity (and is therefore less smooth). If the penalization method works rea-
sonably well in this application, then we would expect it to perform acceptably
with any numerical method.

To understand analytically the properties of the penalized solution we con-
sidered the problem of impulsively started uni-directional flow over a flat plate
(Stokes flow). In this case the penalized equations can be solved analytically. It
was determined that the velocity is C1 at the solid boundary (the velocity and
its gradient continuous, but its second derivative is discontinuous). The error
in satisfying the boundary condition is O(ǫ1/2), but the error compared to the
exact solution is very small at a finite distance from the boundary. In addition,
the velocity inside the solid decreases exponentially away from the boundary (it
is evanescent) and is only significant to a skin-depth O(ǫ1/2). The error in the
force on the obstacle is only O(ǫ) and, surprisingly, the error in the shear stress
at the wall is exponentially small, O(exp(−t/ǫ)). The properties of the solution
near the boundary in general three-dimensional flows is expected to be similar.
These results suggest that the Brinkman penalization should give very accurate
simulations of the flow around obstacles. Numerical solution of the equations
for uni-directional channel flow (the periodic equivalent of Stokes flow) showed
linear convergence of the L1 error with ∆x for both 2nd-order finite difference
and pseudo-spectral methods. However, we observed a form of quadratic ‘super-
convergence’ for the particular relation ǫ ≈ ∆x2.5−−3. Although the order of the
pseudo-spectral method is in general only linear, the absolute value of the error
is quite small (10−3 for 128 points) and there is no sign of Gibbs oscillations.

The penalization method was then applied to a pseudo-spectral simulation of
two-dimensional flow through cylinder arrays. This problem was chosen because
it is well-adapted to the pseudo-spectral method (due to its periodic boundary
conditions) and because it is technologically relevant (to heat exchangers). The
physics of periodic cylinder arrays have also not been extensively studied by
the fluid mechanics community. The first configuration considered was widely
separated cylinders in long domains. This configurations approximates isolated
cylinders for moderates times and allows comparison with well-established re-
sults. The periodic shedding of vortices at Re = 200 was observed an the
Strouhal number was within 10% of that observed for a truly isolated cylinder
in a laboratory experiment.

The next configuration considered was a closely spaced square array of cylin-
ders with a pitch to diameter ratio of 1.5. This configuration is similar to that
of heat exchanger tubes in steam generators, and has been extensively stud-
ied by mechanical engineers [19]. We considered the case where the tubes are
fixed (they do not deform or move in response to the fluid forces). Two dif-
ferent cases were considered: in-line (mean flow along the array axis) and ro-
tated (mean flow along the array diagonal). Experiments have suggested that
these two cases have very different flow regimes. The penalized two-dimensional
vorticity–stream function pseudo-spectral code was solved at a Reynolds num-
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bers in the range 10 ≤ Re ≤ 4 000 for both cases. We confirmed that the in-line
and rotated arrays have different flow regimes at the same Reynolds number. In
particular, the form of vortex generation is different. In the in-line array vortic-
ity is present in the form of jet shear-layers, and vortices are generated through
a shear instability at the inner edge of the shear layer. In the rotated array,
however, vortices are generated by periodic shedding off the cylinder boundary
(as in the case of an isolated cylinder). Consequently, the rotated array has
significantly higher lift and drag at the same Reynolds number and the flow
becomes turbulent (i.e. characterized by coherent vortices and vorticity fila-
ments) at a lower Reynolds number. RMS drag for the in-line array agrees well
with high Reynolds number experiments, while the Strouhal frequency for the
rotated array agrees well up to Re = 500. These results suggest (as commonly
believed) that the forces generated in closely spaced cylinder arrays are largely
two-dimensional in origin.

The penalization method allows the obstacles to move or deform over time
with no additional complication of the code. This property should allow us
to truly model fluid–structure interaction by allowing the cylinders to move
or deform in response to fluid forces. This addition to the code is now under
investigation.

In the two-dimensional calculations we used a Adams–Bashforth method in
time for the nonlinear term, and this enforced the relation ǫ ∼ ∆t. Ideally,
ǫ should be varied independently of ∆t (that is one of the advantages of the
penalization), and the stiffly stable Krylov method used for the one-dimensional
flow allows this. We are currently implementing the Krylov method in the two-
dimensional code.

A major advantage of the pseudo-spectral method is that it is easy to im-
plement in three dimensions. The passage from two to three dimensions is
straightforward and will be undertaken soon.

The fact that the penalization method has proved useful, even when applied
to such a poorly adapted numerical method, indicates that Brinkman penal-
ization should be useful for a wide variety of flows and numerical methods. In
particular, this study is seen as the first step in developing a wavelet-based
method for the calculation of high Reynolds number flows in complex geome-
tries. Wavelets have the advantage of compact support (and are thus better
suited to functions with strong gradients), and adaptivity in space and scale
(one uses a uniform grid, but only calculates wavelet coefficients at the positions
and scales that are active). The implementation of the Brinkman penalization
to wavelet simulations is currently being studied.

The present investigation has shown the potential of the Brinkman penal-
ization for accurate simulation of flow through complex geometries, and has
suggested many directions for further work. The combination of penalization
with wavelet methods have the potential to allow high Reynolds number simu-
lation of turbulent flow in actual engineering configurations without turbulence
modelling.

21



Acknowledgments

This work is a result of the PPF programme on turbulence modelling of the Ecole
Normale Supérieure de Cachan and the Ecole Normale Supérieure de Paris. We
thank M. Farge and A. Poitou for bringing together many people interested in
CFD, and C. Bénard for her support. We would also like to thank K. Schneider
for help with development of the numerical codes used to produce the results
in this paper. We would especially like to thank P. Fabrie, P. Angot and C.-H.
Bruneau for explaining their penalization method to us. This work has been
improved by the suggestions of P. Roe, T. Hurd, J. Boland and L. Tuckermann.
N. Kevlahan thanks McMaster University and Ecole Normale Supérieure de
Cachan for their financial support. The authors acknowledge financial support
from Dassault-Aviation.

References

[1] C. S. Peskin, “Flow patterns around heart valves: a numerical method,”
J. Comput. Phys. 10, 252–271 (1972).

[2] D. Goldstein, R. Handler, and L. Sirovich, “Modeling a no-slip flow bound-
ary with an external force field,” J. Comput. Phys. 105, 354–366 (1993).

[3] D. Goldstein and T.-C. Tuan, “Secondary flow induced by riblets,” J. Fluid
Mech. 363, 115–151 (1998).

[4] E. M. Saiki and S. Biringen, “Simulation of boundary layer transition:
effects of a spherical particle,” J. Fluid Mech. 345, 133–164 (1997).

[5] J. Mohd-Yusof and J. L. Lumley, “Simulations of flow around cylinders
using boundary forcing,” Bull. of APS (DFD) 39(9), 1861 (1994).

[6] F. Tremblay, M. Manhart and R. Friedrich, “DNS of flow around a cir-
cular cylinder at a subcritical Reynolds number with cartesian grids,” In
Advances in Turbulence VIII , 659–662 (2000).

[7] P. Angot, C.-H. Bruneau, and P. Fabrie, “A penalization method to take
into account obstacles in viscous flows,” Numerische Mathematik 81, 497–
520 (1999).

[8] E. Arquis and J. P. Caltagirone, “Sur les conditions hydrodynamiques au
voisinage d’une interface milieu fluide - milieu poreux : application à la
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