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We present a dynamic model of the subfiltered scales in plane parallel geometry using a generalized,
stochastic rapid distortion theory~RDT!. This new model provides expressions for the turbulent
Reynolds subfilter-scale stresses via estimates of the subfiltervelocities rather than velocity
correlations. Subfilter-scale velocities are computed using an auxiliary equation which is derived
from the Navier–Stokes equations using a simple model of the subfilter energy transfers. It takes the
shape of a RDT equation for the subfilter velocities, with a stochastic forcing. An analytical test of
our model is provided by assuming delta-correlation in time for the supergrid energy transfers. It
leads to expressions for the Reynolds stresses as a function of the mean flow gradient in the plane
parallel geometry and can be used to derive mean equilibrium profiles both in the near-wall and core
regions. In the near-wall region we derive a general expression for the velocity profile which is
linear in the viscous layer and logarithmic outside. This expression involves two physical
parameters: the von Karman constant and the size of the viscous layer~which can be computed via
a numerical implementation of our model!. Fits of experimental profiles using our general formula
provides reasonable values of these parameters (k50.4 tok50.45, the size of the viscous layer is
about 15 wall units!. In the core region, we find that the shape of the profile depends on the
geometry of the flow; it ranges from algebraic in channel flow, to exponential in the bulk of
boundary layers, and linear in plane Couette flow. This classification is consistent with Oberlack’s
system, which is based on symmetry arguments. Fits of boundary layer flows or channel flows at
different Reynolds number over the whole flow region are performed using our results, and are
found to be in very good agreement with available data. ©2001 American Institute of Physics.
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I. INTRODUCTION

Turbulent shear flows are widespread and their struc
has been investigated extensively for many decades in l
ratory and numerical experiments. It was commonly
cepted that the mean velocity profile across the channe
piecewise; a linear ‘‘viscous profile’’ near the wall, a log
rithmic profile away from the wall, followed by an algebra
profile1 in the center of the channel. This description a
peared to be supported by a simple dimensional analysis
to von Karman and by several matched asymptotic theo
~see, e.g., Refs. 2 and 3! which all led to the famous log law
of the wall under appropriate asymptotic limits.

More recently, a controversy arose when Barenbl4

used a dimensional argument combined with an assump
of incomplete similarity to obtain a family of power laws
with logarithmic envelope, as the description of the me
velocity profile in a channel. In his theory, the index of t
power law varies with the Reynolds number. This dep
2041070-6631/2001/13(7)/2045/20/$18.00
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dence was subsequently detected in the high Reynolds n
ber data of Nikuradze,5 but found to be weak, like 1/ln~Re!.
As a consequence, mean velocity profiles measured at di
ent Reynolds number tend to scatter slightly and reveal o
the envelope of the family of curves, i.e., the log-law. Th
controversy reached a climax when a team from Prince
used measurements made at the Super Pipe facility to tes
Barenblatt theory. The Reynolds numbers obtained in
configuration are quite large, even larger than those obta
in the experiment of Nikuradze. The final result apparen
contradicted Barenblatt’s theory, and was more consis
with the log-law, preceded by an algebraic profile with Re
nolds independent index.6 Barenblatt and Chorin have rean
lyzed these data, and claim to have found a roughness
pendence of the result which makes them less suitable to
their theory than the Nikuradze data.

Another recent theory for turbulent pipe/channel a
boundary layer flow has been developed by Georgeet al.7,8

This theory is also based on dimensional analysis
5 © 2001 American Institute of Physics

AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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matched asymptotic expansions, however this group b
their analysis directly on the Reynolds-averaged Navi
Stokes equations. They determined that the correct velo
to scale the outer region isU` , while the friction velocityu*
should be used to scale the inner region near the wall. B
regions follow Reynolds number dependent power laws,
with different constants and origins. However, they fou
that the Reynolds number dependence should be much s
ger for a zero-pressure gradient boundary layer than for p
and channel flows~where Reynolds number dependence
negligible!. Note that they assume the same Reynolds nu
ber dependence as Barenblatt. The two different forms
the inner and outer scaling imply the existence of a me
layer in which dissipative scales are not fully separated fr
the energy and Reynolds stress producing ones. The m
layer follows a power law in boundary layers and a logari
mic law in pipe and channel flow. In both cases the profi
are functions ofy1a rather thany alone ~where a is an
arbitrary constant!. Their theory also matches the Super Pi
data very well.

At the same time new results were obtained which o
added to the confusion. Oberlack9 used a Lie group analysi
of the equations of motion to classify all the possible eq
librium velocity profiles allowed by the symmetry of th
Navier–Stokes equation. The results include the logarith
law, the algebraic law, the viscous sublayer, the linear pro
and the exponential profile as particular cases. This st
was followed by a data analysis to try to determine the ac
conditions required for each law to be realized. Analyzi
Niederschulte’s data,10 Oberlack found evidence of an alge
braic law extending almost to the center of the channel,
scaling with the channel’s half-width instead of with the ‘‘in
ner scale’’ ~viscous scale! predicted in Barenblatt’s theory
Moreover, the index of the power law measured by Oberl
was significantly larger~one order of magnitude! than that
predicted by the theory. An analysis of the Super Pipe d
of Zagarola11 confirmed the existence of this algebraic la
covering 80% of the center of the pipe.12 More recently, the
same data have been shown to fit a modified cosh-pro
arising from a new closure equation.13 Since all the theories
describing these results can be put on the same phenom
logical ~dimensional or closure-like! footing, it is hard to
decide which is right and in which cases. In a previo
paper,14 we derived the equilibrium velocity profile for
flow in the near-wall region using a WKB method gener
izing rapid distortion theory, using a simplified assumpti
about the generation of small-scales. The main element
this approach can be most easily explained using the simp
example of two-dimensional shear flow turbulence~see Refs.
15 and 32!. Specifically, we modeled the debris of the ne
wall vortices penetrating the outer regions as a weak exte
forcing acting at small-scales. This simplification allows o
to assume nonlocality, e.g., to neglect interactions betw
the small scales in comparison with their interactions wit
well separated in scale mean flow. In turn, this allows ex
analytical solutions, with the celebrated log law of the w
being one of them in the case of a forcing with short cor
lation in time and statistically homogeneous in space.

Note that the role of nonlocal and local interactions
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
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wall bounded turbulence is related to an old and yet un
solved controversy about applicability of RDT to such tu
bulence. Recent numerical simulations suggest that even
isotropic 3D turbulence, a combination of RDT and a sc
dependent eddy viscosity provides a realistic description
both the small-scale spectra and the higher cumulants rel
with intermittency.16 In wall bounded flows, the presence o
the strong mean makes interaction of small scales even m
nonlocal and dominating over the eddy viscosity effect. R
cent numerical and new experimental evidence of nonlo
ity in such turbulence was reported in Refs. 17 and 18. Ho
ever, our understanding of the role of nonlocality is still f
from being complete and the approach developed in Refs
and 15, and the present paper should be treated as amodel,
rather than a rigorously validated theory.

From a theoretical point of view, the approach dev
oped in Ref. 14 is interesting because it suggests a wa
approaching the mean profile controversy which is not ba
on dimensional arguments and similarity assumptions ab
the solution of the Navier–Stokes equations, but rather
the statistical properties of the energy transfers between l
and small scales. In this respect, the work described in R
14 is incomplete, because it only characterizes the condit
for existence of the log and algebraic laws, and does
relate the realizability of these conditions to the geometry
a particular flow. Thus, it does not specify where these v
ous profiles should be expected~e.g., near the wall, in the
core region or in the outer region!. A basic fact therefore
remains unexplained: why does the shape of the equilibr
profile change from a log-law near the wall19 to an algebraic
or exponential9 defect law further away? This transitio
probably reflects some changes in the generation of
small-scales which needs to be taken into account by a s
consistent model of the forcing. The purpose of the pres
paper is to derive such a self-consistent model of chan
flow by making two modifications of the WKB-RDT mode
of Ref. 14. These changes make it suitable for future us
numerical large eddy simulations~LES!.

First, we replace the statistical averaging procedure
the previous paper with space averages, which are more
able for numerical and laboratory experiments. Indeed,
numerical simulation, one either performs horizontal av
ages over the streamwise directions, or spatial average o
given scale, representing the smallest resolved scale in
simulation ~large eddy simulation approach!; in laboratory
experiments one usually performs time averages which
then translated into spatial averages using Taylor’s hypo
esis. In contrast, statistical averages require a large num
of realizations of the same flow, which, although useful the
retically, is often impractical.

The second new element of our model is that the ex
nal forcing is chosen based on physical requirements, suc
zero turbulent stress at the wall, and takes exactly into
count the supergrid energy transfers. The complete mod
described in Sec. II.

In a second part~Secs. III and IV!, we test the physica
soundness of our model by computing the equilibrium p
files within the whole domain under the approximation
delta-correlation in time for the supergrid energy transfe
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2047Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
like in the WKB-RDT model. By moving from this mode
with external forcing to our LES-RDT model with sel
consistent forcing, we give up the possibility of exact an
lytical solutions because of the nonlinear dynamical c
pling. We show here that some simple physical assumpt
lead to a solution where the subfilter Reynolds stresses
be expressed as functions of the resolved quantities and s
numerical constants~which cannot be derived analytically!.
Thus, the corresponding set of closed equations for the
solved velocities can be integrated further analytically,
semianalytically, to find qualitatively the equilibrium profil
in any part of the channel. We find that the qualitative pro
changes from a log-law near the boundary, to an algeb
~exponential! defect law for a flow within a closed chann
~over a flat plate!.

Let us be aware however that the practicality of t
space average comes at expense of the theoretical comp
~the mean of the mean is not equal to the mean, etc.!. In
particular there will be greater variety of terms correspo
ing to the turbulent stresses to describe which one ha
sacrifice rigor and resort to simplified models. Therefore,
present paper is not intended to be as fully rigorous as
previous one. We allow ourselves the liberty, when nec
sary, of making simplifying assumptions which are not fu
justified. We will attempt to minimize the arbitrariness of o
assumptions by providing technical or mathematical jus
cations where possible. However, to simplify the paper,
have placed the technical details of the derivation in the A
pendices.

II. THE DYNAMIC MODEL

A. Notations and constitutive equations

We consider an incompressible velocity fieldu(x,t) sat-
isfying the Navier–Stokes equations,

] iui50,
~1!

] tui1] j~uiuj !52] i p1nDui1s i ,

wherep is the pressure,n is the kinematic viscosity, ands is
an external forcing. Note that for the pressure driven flo
~channel, pipe! the external pressure gradient is included
s ~rather than¹p) in our notations. We have set the~con-
stant! density equal to one for simplicity.

In this paper we shall consider two types of geomet
plane channel flow~where the flow is bounded by two infi
nite flat rigid plates separated by a vertical distance 2d) and
a flat plate boundary layer~where the fluid is parallel to and
bounded by a single flat plate!. In the first case, the forcing i
via a constant pressure gradient applied in thex direction
parallel to the platess5(2dP* /dx;0,0), or by constant
movement of plates in opposite directions~plane Couette
flow!. In the second case, we assume no external forc
(s50), but we allow for a free stream velocityu` at the
outer ~infinite! edge of the boundary layer. We assume n
slip boundary conditions for the velocity on the rigid plate
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
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B. Resolved scale equations

To derive the large-scale equations, we decompose
fields into their resolved and subfilter parts

u5ū1u8[U1u8, ~2!

where the average is taken via a filter@which is defined and
discussed in Appendix A; see Eq.~A3!#. Note that from now
on we shall refer toū as the resolved velocity, as distin
guished from the mean velocitŷu& which is obtained by
averaging the velocity horizontally and in time. Applyin
this decomposition to the Navier–Stokes equations~1! and
taking into account the fact that the averaging and
y-component of the Laplacian for the horizontal velocity
not commute~see Appendix A!, we obtain the following
equation for the resolved streamwise velocity:

] tUi1] juiuj52] i P1nDUi1S~z!d i11s i . ~3!

Here,S(z) are the surface terms, due to the boundary c
ditions. These surface terms depend on the geometry of
flow

Schannel5u
*
2 ~g3~z2d!1g3~z1d!!,

SCouette5u
*
2 ~g3~z2d!2g3~z1d!!

1nU0S dg3

dz
~z2d!2

dg3

dz
~z1d! D , ~4!

SBL52u
*
2 ~g3~z!!1nu`

dg3

dz
~z2h!.

Here, h is the height of the boundary layer andU0 is the
speed of the plates for the plane Couette flow (U56U0 at
z57d). The functiong3(z) is the correction due to the filte
which depends explicitly on the filter choice and on the c
off scale in the vertical direction.

If we use the decomposition~2!, we can divide the non-
linear terms of~3! into several parts,

] tUi1] jUiU j1] j^Uiuj81U jui8&1] jui8uj8

52] i P1n] j j Ui1S~z!d i11s i . ~5!

The resolved scale motions depend on the subfilter scale
two terms: the usual Reynolds stresses, involving o
subfilter-scale quantities, and an unusual cross term betw
subfilter and resolved quantities. Traditional LES usua
models these two terms together. However, recent nume
experiments by Domaradzkiet al.17 indicate that in a channe
flow, these two terms have very different influence on t
mean flow: the subfilter–subfilter term appears to be ab
50% smaller than the subfilter-resolved component. In
sequel of the paper, we show that we are able to model
two terms separately, and hence are able to better cap
their different properties by computing them via the evo
tion of the subfilter-scale velocities. This evolution is give
by subfilter-scale equations.

C. Subfilter-scale equations

To find the subfilter-scale equations, we consider
subfilter component of the constitutive Eqs.~1!,
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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] iui850,
~6!

] tui81] i~uiuj2uiuj !52] i p81nDui82S~z!d i1 .

Note that the subfilter part of the~constant! external forcing
s is zero. At this level, we see that the small scales
generated via two types of terms: the subfilter part of
nonlinear cascade from large to small scales@as expressed by
the second term of the lhs of~6!#, and the surface term. Thi
is consistent with the physics of the problem: small-sc
turbulence is generated at the surface or by a transfe
energy to smaller scales~termed forward scatter!.

Now we can use decomposition~2! to split the nonlinear
part of ~6! into terms involving resolved-subfilter-scale pro
ucts and subfilter–subfilter-scale products~the resolved–
resolved-scale term is zero because of the plane paralle
ometry!. The relative magnitude of these terms has be
estimated by Domaradzkiet al.17 and Hersantet al.20 in a
low Reynolds number numerical simulation of channel flo
and by Carlieret al.18 in a high Reynolds number exper
mental boundary layer. They found that the subfilte
subfilter energy transfer at subfilter-scales is between
and two orders of magnitude smaller than the energy tran
induced by subfilter-resolved~nonlocal! interactions. For this
reason it is reasonable to retain thenonlocal interactions ex-
actly in the small-scale equation and to model the subfilt
subfilter terms via a turbulent viscosity. The correspond
equations are our subfilter-scale model~see below!. This
model has been validated in 2D and 3D homogene
turbulence21 by comparison with direct numerical simula
tions.

Retaining only the nonlocal interactions, our subfilte
scale model becomes

] juj850,
~7!

] tui81U j] jui81uj8] jUi52] i p81~n1n t!Dui81Fi ,

wheren t is the turbulent viscosity, which needs to be pr
scribed to close the model. In 2D, we have shown that
energy condensation at large scale renders small scale i
action nonlocal and, therefore,n t can be taken as 0. In plan
parallel geometry there is no energy condensation, but
presence of a strong mean flow also induces substantial
local effects, e.g., changing the slope of the energy spect
from 25/3 to 21.22 In the sequel, we therefore adoptn t

50, to keep the number of free parameters in our analyt
solutions as small as possible. This is not necessary, h
ever, if this model is used for numerical simulations. In th
case, one may even allown t to be scale dependent, as w
done in Ref. 16 for the case of isotropic 3D turbulence.

Note that this model is in fact an auxiliary equation f
the subfilter velocities. It enables us to obtain an express
for the Reynolds stresses via a direct estimate of veloc
rather than velocitycorrelations, as is usual. This idea wa
used for the first time in Ref. 23. In this work, the subfilt
velocities are computed from the resolved velocities by
quiring that they should coincide after suitable filtering. Ev
though this procedure is in the spirit of the dynamic mode
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
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Bardinaet al.,24 it contains no kinetic information regardin
the interactions between resolved and small scales. This
formation is contained in the Navier–Stokes equation, wh
we use as an input of our estimate procedure. Also, note
our procedure is derived directly from the Navier–Stok
equations, in contrast toK –e models, which also involve the
solution of an auxiliary equation.

Note also that the plane parallel geometry does not p
clude horizontal variation of the subfilter-scale quantitie
this creates ‘‘pseudoforces’’Fi ,

Fi52S~z!d i11] j~UiU j2UiU j !1] jU jui81] jUiuj8.
~8!

We call them pseudoforces because they depend linearl
the averaged part of the subfilter-scale motions. We w
eventually simplify them by replacing them with prescrib
external forces, in order to get analytical solutions.

Equation~8!, although superficially complicated, has
simple structure; it is a linear inhomogeneous equation
the subfilter motion. The forcing comes from the subfilt
part of the nonlinear cascade amongst the resolved scale
motion. This forcing is internal in the sense that it describ
the momentum transfer between the resolved and the su
ter fluid components which is not caused by an external p
sure gradient. The linearity of such a forcing is the essen
simplification which makes it possible in certain cases
solve the subfilter model analytically in terms of the resolv
quantities. By substituting the solution back into the larg
scale equation, we obtain a closed problem for the resol
scales.

To take advantage of small-scale inhomogeneity~e.g.,
turbulent spots or streaks!, we now decompose the smal
scale equation into its Gabor modes~which are localized in
both wave numberk and positionx). The mathematical defi-
nition of the Gabor transform is given in Appendix B 1. W
now take the Gabor transform of Eq.~7! and use~B5!. To
leading order in the scale separation~see Ref. 14 for rigorous
justifications! and dropping primes for simpler notations~this
means that from now on, we denote average quantities
capital letters, and fluctuating quantities by lower case
ters! we obtain the following equations:

] j û j50,
~9!

] tûi1U j] j ûi1] j~Umkm!]kj
ûi

52 ik i p̂2û j] jUi2nk2ûi1F̂ i ,

wherek5(kx ,ky ,kz) is the wave number. Note that in th
Gabor transformation, we do not take into account surf
terms because we chose for simplicity zero boundary co
tions at the boundary for all subfilter quantities~for both the
velocity and its derivative!. Other choices of boundary con
ditions could lead to additional surface terms, which wou
be important only near boundary~more precisely at a dis
tance from the boundary less than the typical scale of
function f ).

The set of Eqs.~9! can be put into the form of a set o
ray equations by introducing the total derivative,
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2049Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
Dt[] t1U j] j2] j~Umkm!]kj
, ~10!

which is a time derivative along raysk(t) andx(t),

ẋi5Ui ,
~11!

k̇i52kj] iU j .

These ray equations describe the motion of wave pac
advected passively in position and wave number by a la
scale flow. Using the incompressibility to eliminate the pre
sure, we can finally re-express the system~9! as

Dtûi5S 2kikm

k2
2d imD û j] jUm2nk2ûi1F̂ i

' , ~12!

whereFi
' are the divergence free components of the forc

Fi
'5S d im2

kikm

k2 D Fm . ~13!

The set of Eqs.~5! and~12!, where the Reynolds stresses a
computed using~B6! constitute the main equations of ou
subfilter-scale model. This model is dynamical becaus
allows a time and space evolution of the Reynolds stres
has been derived directly from the Navier–Stokes equat
under the approximation of nonlocality of the supergrid e
ergy transfer. Note that this subfilter-scale modeling is in
spirit of a recent model by Domaradzki and Saiki19 in which
the subfilter velocity~rather than energy tensor! is estimated
which permits the detailed computation of all terms appe
ing in the Reynolds stresses. Note also that because we
used the Gabor transform~as opposed to the Fourier tran
form!, the subfilter-scale energy spectrum can vary in spa
which allows for inhomogeneous turbulence.

Leaving the numerical implementation of this model
further work, we focus here on possible analytical test of
model. Indeed, there is no guarantee that our model
naturally lead to realistic mean shear flow profiles. By a
lytical integration, we show that our model automatica
leads to shapes which are consistent with experimental
and theoretical analysis based on the symmetry of
Navier–Stokes equations.

Technically, the possibility of analytical derivatio
arises because after time and horizontal averaging, the l
scale velocity profile is parallel to the plate (x-direction!, and
depends only on the direction perpendicular to the p
(z-direction!: ^u&5(U(z),0,0). ~This implies a clever choice
of the filtering, which is discussed in Appendix C.! In such a
simple situation, the equations of motions become solva
analytically if the forces are prescribed.

Note that boundary layer flows are not strictly parall
However, since the streamline curvature is usually v
small, the flow may be considered to be locally paral
Also, Oberlack9 showed that it is possible to take into a
count the streamwise dependence of the mean velocity
file by using as an outer length scale the Rotta–Clau
lengthD5*0

`(^u`&2^u&)/u* dz, where^u& is the mean ve-
locity and u* is the friction velocity, given byn]zu(z50)
5u

*
2 and^u`& is the mean velocity at the outer edge of t

boundary layer.
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
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III. EQUILIBRIUM PROFILES IN THE DELTA-
CORRELATED APPROXIMATION

A. The time and horizontally averaged equations

From now on, we concentrate on the derivation of eq
librium profiles in a plane parallel geometry. Namely, w
wish to derive the possible shapes for^Ui&5(^U&(z),0,0),
where now^& refers to a horizontal and time average. T
horizontal averaging can be performed easily in our L
formalism by taking constant functions as filters in the ho
zontal direction@i.e., g1(x)5g2(y)51/L, where L is the
horizontal scale over which the horizontal average is p
formed#. Then,^U& can be obtained easily by taking only
time average of the corresponding resolved velocityU. So,
from now on, we use constant horizontal filters, and consi
that^& denotes a time average. In order to obtain true para
geometry, long time averages are necessary. Note that la
scale fluctuations in the mean profile~e.g., bursting events!
are taken into account by the forcing term, i.e., in the te
] j (UiU j2UiU j ). These fluctuations are large scale~and so
cannot be combined with the turbulence fluctuations!, but are
an extra source of vorticity and thus can be added to the
forcing. The fluctuations are largely due to ejections or bu
ing from the boundary layer and are thus highly intermitte
We therefore assume delta-correlation in time. Note that
assumption is only required for deriving the mean profile

The equations for the mean profile can be obtained v
time averaging of~5!,

]z^Uw&1]z^uw&52]xP1n]zzU1sx1S~z!,

]z^vw&50, ~14!

]z^w
2&52]zP.

Here, we have taken into account the plane parallel ge
etry, and the fact that, for constant horizontal averages, te
involving horizontal derivatives vanish. The first equation
~14! gives the mean profile. The second is a consiste
equation for the subfilter stresses, to avoid the generatio
spanwise mean velocity. The third equation expresses
hydrostatic equilibrium in the vertical direction.

The subfilter Reynolds stresses can be found by con
ering the ray equations~15! in a plane parallel geometry
They are

Dtû5
kx

22ky
22kz

2

k2
ŵ]zU2nk2û1F̂u

' ,

Dtv̂5
2kxky

k2
ŵ]zU2nk2v̂1F̂v

' , ~15!

Dtŵ5
2kxkz

k2
ŵ]zU2nk2ŵ1F̂w

' .

The corresponding ray equations are in this geometry,
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Dtx5U,

Dty5Dtz50,
~16!

Dtkx5Dtky50,

Dtkz52kz]zU.

B. The internal forcing

In general, the ray equations~11! and ~12! have no
simple analytical solution because the motion of the sm
and large scales are implicitly nonlinearly coupled via t
forces; these forces determine the behavior of the sm
scales, but they depend on both large and small scales
nontrivial way. This means that equilibrium solutions can
general only be found numerically, by a recursive procedu
The situation is much simpler if one allows ana posteriori
characterization of the forces, by considering them as so
sort of external noise, with simple prescribed statistics, or
our case, simple time averaging properties. This idea
already used in the previous paper.14

Therefore, from now on we consider the forcesFu , Fv ,
and Fw appearing in~7! and ~9! to be external forces, with
prescribed averaging properties. The simplest choice we
make is to assume that the forces ared-correlated in time.
The idea is that because of Taylor’s hypothesis space a
ages are, loosely speaking, equivalent to time avera
Then, because of the chaotic nature of the flow, soluti
with different initial conditions have very different behavio
Thus, it seems reasonable to assume that the average o
product of two quantities starting at different times is ze
We shall refer to this as thed-correlation assumption. In Re
14 it is shown that this property allows us to write the co
relation of two Gabor transforms corresponding to rays st
ing from same origin as

^F̂ i
'~x,k,t !F̂ j

'~x,k8,t8!&}Ai j ~k!d~k81k!d~ t2t8!,
~17!

where the coefficient of proportionality depends only on
mean gradients and on the angle between the vector com
nents ofk. When the internal forcing is isotropic, one ma
assume that the functionAi j takes the following standard
form:

Ai j ~k!5
3F~k!

8pk4
~k2d i j 2kikj !. ~18!

Isotropy can be safely assumed in the core region, whic
the region we are most interested in. It is not expected
hold near the wall. Furthermore, we shall assume that
forcing is symmetric with respect toy→2y ~see Ref. 14 and
below!.

Since the forces are due to the energy cascade from l
to small scale, it also seems reasonable to assume that
are correlated with the resolved velocity field. Using t
d-correlation assumption, we show in Appendix D that t
Gabor transforms of the resolved velocity field and the for
obey
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^Û~x,k,t !F̂ i
'~x8,k8,t8!&

}U~x,t ! f 2~ ux82xu/2!FT~Fi
'!~k1k8!eik"x1 ik8"x8d~ t2t8!,

~19!

where FT means Fourier transform. We now show that
assumptions allow the small scales and the subfilter stre
to be expressed in terms of the mean velocity profile.

C. Subfilter-scale solution

The integration of~16! with respect to time is straight
forward in the plane parallel case, and gives

x5U~z!~ t2t0!1x0 , y5y0 , z5xz0 ,
~20!

kx5kx0 , ky5ky0 , kz5kz02kx]zU~ t2t0!,

wherex0 , y0 , z0 , kx0 , ky0 , andkz0 are the initial conditions
of the ray. This equation shows that the parameterR
5kz /kx can be used instead oft to label the trajectories. To
further simplify the notation we introduce

kh5Akx
21ky

2,
~21!

u5arctan~ky /kx!.

Note thatkh and u are constant along the rays. With th
notation the subfilter-scale equations~15! become

DRû52F2 cosu

11R2
2

1

cosuG ŵ1
nkh

2

cosu]zU
~11R2!û

2
1

cosu]zU
F̂u

' ,

DRv̂52
2 sin u

11R2
ŵ1

nkh
2

cosu]zU
~11R2!v̂2

1

cosu]zU
F̂v

' ,

~22!

DRŵ52
2R

11R2
ŵ1

nkh
2

cosu]zU
~11R2!ŵ2

1

cosu]zU
F̂w

' .

Note that the two-dimensional case can be found easily
putting u50. Note also that when the forces are symmet
with respect toy→2y, their Gabor transform is also sym
metric with respect toky→2ky , i.e., u→2u.

Since the forces are external, we can find the subfil
scale motions as the solution of a coupled linear inhomo
neous system of ordinary differential equations inR. In Ap-
pendix E, we show that this can be written as

~ û,v̂,ŵ!~R!5E
2`

R

~ ũ,ṽ,w̃!~R,R0!dR0 , ~23!

where (ũ,ṽ,w̃)(R,R0) are solutions of the homogeneous pa
of ~22! ~i.e., with no force term!, such that atR5R0 ,

~ ũ,ṽ,w̃!~R0 ,R0!52
1

cosu]zU
~Fu

' ,Fv
' ,Fw!~R0!. ~24!

This property can be used to compute formally the first s
filter term ^Uw&. Indeed, as shown in Appendix E, this ter
can be written
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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^Uw&5E
2p

p

duE
0

`

khdkhE
2`

`

dRE
2`

R

^Û~x,R,kh ,2u!

3w̃~R,R0 ,kh ,u!&dR0 . ~25!

Using the solutions of the homogeneous system given
Appendix E, and using the correlation betweenU andF ~19!,
~25! becomes

^Uw&52
U

]zU
E

2p

p

duE
0

`

khdkhE
2`

`

dR

3E
2`

R

FT~Fw
'!~k1k0!e

ikx(R1R0)z

3
11R0

2

11R2

expF2
nkh

2*R0

R ~11X2!dX

]zU cosu
G

cosu
dR0

[
U

]zU
h~z!. ~26!

Note that in the limit n→0, the integral diverges atu
5p/2, but the viscosity regularizes this singular behavior
is shown in Appendix F that in the limit wheren→0, expres-
sion ~26! can actually be expanded as

w5
h0ln~nk

*
2 /]zU !1h1

]zU
1O~nk

*
2 /]zU !, ~27!

wherek* is a typical horizontal wave number andh050 for
isotropic forcing nearz50.

Similar results can be obtained for the other Reyno
stresseŝuw&. One finds14 that the Reynolds stresses diver
in the limit n→0 and can be written as

^uw&5
l

]zU
, ~28!

with

l5
l0]zU

nk
*
2

1l1

ln~nk
*
2 /]zU !

]zU
1l21O~nk

*
2 /]zU !. ~29!

A detailed proof of this can be found in Ref. 14 and will n
be repeated here. We can, however, make some rem
about the sign ofl by using the following results: as show
in Appendix E, the averaged product^uw& can also be writ-
ten as a function of the product of solutions of the homo
neous part of~22! ũw̃ as

^uw&52E
2p

p

duE
0

`

dkhE
2`

`

dR~cosu]zU !

3E
2`

R

^ũw̃~R,R0!&dR0 . ~30!

In the inviscid limit, straightforward manipulations of~22!
produces the following relation between solutions of the
mogeneous system:
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
in

t

s

rks

-

-

ũw̃5cosuS DRF ũ22 ṽ21w̃2

2
G2

cosu

sin u
DR@ ũṽ#

2
1

sin u
DR@Rṽw̃# D . ~31!

Inserting~31! in ~30! and exchanging the order of integra
over R andR0 , we find

^uw& 5
l

]zU
,

~32!

l52E
2p

p

duE
0

`

dkhE
2`

`

dR0~cosu]zU !2

3F ũ22 ṽ21w̃2

2
G2

cosu

sin u
@ ũṽ#2

1

sin u
@Rṽw̃#uR0

` ,

where the notationauR0

` stands fora(`)2a(R0). Using the

initial and asymptotic values ofũ, ṽ andw̃, one finds finally
that

l52E
2p

p

duE
0

`

dkhE
2`

`

dR0

3F2
Fu

'Fw
'~11R0

2!arctan~1/R0!

cosu

1
uFw

'u2

2 S 11R0
222R0~11R0

2!arctan~1/R0!

2~11R0
2!2arctan2~1/R0!

sin2 u

cos2 u
D G

5E
2p

p

duE
0

`

dkhE
2`

`

dR0

3F

16pkh
2~11R0

2!

3S 12
sin2 u

cos2 u
arctan2~1/R0!D . ~33!

Here, we have used~18! to simplify the expression. Expres
sion ~33!, which is derived in the inviscid limit, shows inter
esting features. First, note that removing the angular inte
tion and settingu50, we obtain the expression ofl in the
two-dimensional limit. This expression only depends onF,
and is clearlypositive. This means that the ‘‘turbulent’’ Rey
nolds stress2^uw̄& has the opposite sign of the viscou
stressn]zU. This result was previously obtained in Ref. 1
It might be a consequence of the inverse cascade of en
arising in two-dimensional turbulence. In the thre
dimensional case, expression~33! is actually divergent, as
noted in Ref. 14. Taking into account the fact that viscos
regularizes the Reynolds stress atu5p/2, here we note tha
the divergence makes the expression ofl negative. This
means that for small enoughn ~large Reynolds number!, the
turbulent stress can be expected to change sign and hav
samesign as the viscous stress. This discussion is stri
only valid for isotropic forcing.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Summarizing, we have found that the two Reyno
stresses appearing in our model can be expressed as~28! and
~27!. Hereh, andl are functions ofz (l is only via ]zU)
and are the only parameters~functions! appearing in our
model. They are not arbitrary free parameters, however,
are connected with the energy cascade from the large sc
to the small scales. Of course, the amount of energy cas
ing depends upon the filter which is used, so these const
are filter-dependent. The exact values ofh and l can be
obtained, in principle, from a numerical LES simulatio
where the contribution from the subfilter-scales, expres
by Eqs.~28! and~27! are computed self-consistently at ea
time step via the forces~8!.

D. Resolved scale solution

Upon substitution of the Reynolds stresses by their
pression, and neglecting the terms involving the viscos
which are important only close to the surface~but see Sec.
IV B for inclusion of these terms!, we obtain the resolved
scale equations,

]zS h^U&
]z^U&

1
l

]z^U& D52u
*
2 g3~z!2^sx&. ~34!

We now nondimensionalize the length byL5d ~channel
case! or L5h ~boundary layer case! and the velocities by
u* . Note thatl is dimensionally equivalent to an energ
transfer (V3/L). So we may write

l5
u
*
3

L
l̃, ~35!

wherel̃ is a nondimensional constant. We stress again thl̃
might be filter dependent, and that its exact value can
obtained via a LES simulation. For the termh, we note that
the dimension ofh is V2/L. So, we write it as

h5
u
*
2

d
h̃, ~36!

where thẽ refers to nondimensionalized quantities, such
z/L. With this nondimensionalization, and after one integ
tion over z̃ of ~34!, we obtain the ordinary differential equa
tion,

h̃
Ũ

] z̃Ũ
1l̃

1

] z̃Ũ
5E

z0

z̃
~S~x!1^sx&!dx. ~37!

Here, we have introduced the locationz0 where the total
~viscous plus turbulent! Reynolds stresses vanish~e.g., z0

50 for channel flows!. The mean profile can then be ob
tained via integration of~37! as a function ofz, for a given
filter shape, once the value ofl̃ and h̃ is fixed. This shape
can be found in principle from a numerical implementati
of our subfilter model. Leaving this for future work, we pr
fer instead to examine the qualitative behavior of the para
eters of our model, in order to construct qualitative analyti
mean profiles.
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E. Qualitative behavior of the model parameters

Our model involves three parameter functions:h̃, l̃ and

H5E
z0

z̃
~ S̃~ z̃8!1^s1&dz̃8!. ~38!

Their qualitative behavior can be found, for a given filt
shape, via their definition and their high Reynolds numb
expansion. For example, it is convenient to use a Gaus
filter of width l * , leading to g3(z)5N21( l * )
3exp@2z2/(2l

*
2 )#, where N( l * ) is a suitable normalizing

quantity.
The computation of the functionH from its definition

~38! is straightforward, andH is shown in Figs. 1 and 2. Note
the linear~channel case! or constant~boundary layer! behav-
ior in the core or bulk region, and the deviations from t
linear law near the boundaries. To examine the qualita
behavior ofh̃ we use the expansion~27! and consider two
interesting limits. In the near-wall limit,] z̃Ũ→u* d/n, and
so the contribution proportional toh0 ~logarithmic in ]zU)
tends to zero. Then, to leading order in the viscosity,h̃ tends
to a constant. In the core region, the forcing is isotropic, a
h0 tends to zero. Again,h̃ is approximatively constant with
only a weak Reynolds number dependence. It is reason
to assume thath̃ is piecewise constant~one constant near th
wall, matched to another constant in the core!.

For l̃, we use expansion~27! and arguments similar to
those used above: near the wall, we find thatl̃ tends to a

FIG. 1. FunctionH defined by~38! ~see appendices for details! for a channel
with a Gaussian filter.

FIG. 2. FunctionH defined by~38! ~see appendices for details! for a bound-
ary layer with a Gaussian filter.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2053Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
constant, with correction in the form of a power series
]zŨ2R1 . Since the turbulent Reynolds stresses at the w
must be zero, the constant is necessarily zero, and the ex
sion of l̃ starts with a term linear in (]zU2R1). This prop-
erty is used in Sec. IV B. In the core, the forcing is isotrop
andl1 vanishes, giving no logarithmic correction in]zU to
l. Since]zŨ→0 in the core, the main behavior ofl̃ is then
constant, with corrections proportional to (]zU)2; see Sec.
IV A. Because of the isotropy in the core region, this co
stant is expected to be negative.

IV. MEAN VELOCITY PROFILE IN PLANE PARALLEL
GEOMETRY

A. Velocity defect laws in the core region

Equation~37! is valid far from the wall throughout the
core region. To integrate it more easily, we introduce
path variable

s52E
0

z̃ h̃~z8!dz8

*z0

z8~S~x!1^sx&!dx
. ~39!

In terms of this path variable~37! becomes simply

dŨ

ds
5~U* 2U !, ~40!

whereU* 52l̃/h̃. Since h̃ and l̃ are a priori both func-
tions of s, U* is also a function ofs. In the core regionU*
is approximatively constantU* (s)5Uc and ~40! can be in-
tegrated to give

Uc2U5~Uc2UD!es2sD, ~41!

wheresD is the value of the path variable at the edge of
core region~where our approximations fail!, and UD the
value of the velocity at this location. Equation~41! is a ve-
locity defect law, where the universal scaling function d
pends on the path variable, i.e., on the forcing and surf
terms. Since these terms depend on the flow geometry
can expect different velocity defect laws depending on
particular geometry of the flow.

1. Channel flows

In the case of channel flows, the surface terms are c
centrated near the wall, and there is a constant stream
pressure gradient. The typical behavior ofH5dz/ds ands is
shown schematically in Fig. 1 near the channel center. N
the center of the channel the surface terms vanish, and
constant or slowly varyingh̃ the functionH is linear in z̃,
which produces a logarithmic dependence of the path v
able onz̃. Closer to the wall, the surface terms play a larg
role, and small deviations from the logarithmic behavior
s appear. These deviations are not universal, and dep
weakly on the filter shape.

With a logarithmically varying path variable~41! leads
to analgebraicdefect law for the mean velocity,

Uc2U5~Uc2UD!U z

zD
Ug

, ~42!
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whereg52h̃/^sx&. Oberlack9 showed that this type of law
is a consequence of a basic symmetry of the Navier–Sto
equations. It corresponds to the solution with the high
degree of symmetry. As such, he argued that the validity
this type of law is more likely to be confined to the chann
center~as we have found where! than in the near-wall region
as claimed by Barenblatt.4 This assertion was supported by
careful analysis of various high and low Reynolds numb
numerical and experimental data.9 At high Reynolds number
~between 18 000 and 40 000!, Oberlack foundg51.69, zD

50.8d, andUc2UD54u* . At lower Reynolds number, the
exponent of the power law appeared to increase, sugges
thatg depends weakly on Reynolds number. In terms of o
model this is not surprising, sinceg is proportional toh̃, i.e.,
inversely proportional toUc , which increases slowly with
Reynolds number. The form of the dependence on Reyn
number can be derived using similarity arguments.19 One
finds thatUc5(1/K)ln R12Uc0, whereK is the von Karman
constant,R15u* d/n is the Reynolds number based on t
wall shear velocity andUc0 is a constant which may depen
on the geometry. If this law is valid, and ifl does not de-
pend on the Reynolds number, then our model predicts
the exponent of the algebraic law should decrease like

g5
g0

ln~R1 /R10!
.

This is exactly the dependence assumed by Barenblatt4 and
which leads, in the infinite Reynolds number limit, to the lo
defect law of the wall. Note, however, that we predict th
behavior for thevelocity defect lawin the core region, using
the outer variablez, while Barenblatt assumed this law in th
near wall region, using the inner variablez15R1(1
1z/d). A recent analysis of Super Pipe data by Zagar
et al.6,11 seems to contradict the theory by Barenblatt, wh
the study of Oberlack9,12 seems to confirm the existence
the algebraic defect law, even in the pipe geometry.

2. Boundary layer

In the boundary layer, there is no pressure gradient,
surface terms are important both near the surface and a
top of the boundary layer. The typical behavior ofH
5dz/ds ands can then be shown by Fig. 2; in the core of th
boundary layer the surface terms vanish, andh̃ and the func-
tion H are constant, resulting in a linear dependence of
path variable onz̃. Near the surface and at the top of th
boundary layer the surface terms become more import
and small deviations from the linear behavior fors appear.
As in the case of the channel, the deviations are not unive
and depend weakly on the filter shape.

With a linearly varying path variable, Eq.~41! leads to
an exponentialdefect law for the mean velocity,

U`2U5~U`2UD!e2bz/zD, ~43!

where b52h̃/H(h/2). This type of law is also a conse
quence of a basic symmetry of the Navier–Stok
equations.9 The experimental validation of this law is diffi
cult, as discussed by Oberlack.9 To check it one needs to
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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subtract the free velocityU` . Therefore, a few percent erro
in this quantity results in a large error in the determination
the coefficients, and a bad determination of the unive
curve in log-coordinates. Oberlack nevertheless obtaine
very good agreement with experimental data forb59.46,
zD5Dc , the Rotta–Clausius length, andU`2UD

510.34u* .
To our knowledge, our model is the first dynamical de

vation of this exponential defect law predicted by Oberla
on symmetry arguments. Our model also explains why
type of law is observed in the boundary layer, rather than
channel flows; this appears to be linked to the absenc
pressure gradients.

3. Plane Couette flow

Plane Couette flow represents an interesting special c
because of the antisymmetry of the problem with respec
z→2z, the mean flow is necessarily zero at the center. T
has some important consequences on energy production
transfers in the core: in a shear flow, energy production
nonlinear transfers occur mainly as a result of interact
with the mean pressure gradient, or nonlocal nonlinear in
actions with the mean flow. We thus expect the ‘‘forcing
~nonlinear energy transfer! on the small-scales to be zero
the core, i.e.,h̃ should be zero at the center of the chann
With zero h̃, we may redefine the path variable as

s52E
0

z̃ l̃dz8

*z0

z8~S~x!1^sx&!dx
. ~44!

Since there are no pressure gradients, this path variab
linear in z, as in the boundary layer case. The integration
~37! then leads to

U5b z̃, ~45!

where b5l/H(0). This linear law at the center is also
special case of symmetric solution of Navier–Stok
equations.9 In fact, it corresponds to the solution with th
lowest degree of symmetry. Investigation of experimenta
numerical data led Oberlack to conclude that this linear
was valid to very high accuracy over about 80% of the c
region.9 It is remarkable that our model also leads to th
linear case as a special outcome of the~anti!-symmetry of the
mean flow~Table I!.

B. Near-wall region and universal log-laws

We just saw that our model leads to general predicti
about mean equilibrium profiles in the core region which
in remarkable agreement with those obtained using sym
try by Oberlack.9 It is thus natural to investigate the kinds
predictions we can get from our model in the near-wall
gion. For this, we need the behavior of our subfilter tens
near the wall. We use~27! and~29! to perform simple Taylor
expansions in the near-wall region, as a function of]zŨ.
Specifically, we consider first the functionl̃. For our subfil-
ter tensors to be zero at the wall, as required by bound
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conditions, we must havel̃1h̃Ũ50 at the wall. This is
guaranteed if and only ifl̃ is itself zero at the wall. We may
then expand it near the wall as

l̃5l0~]zU2R1!1l1~]zU2R1!21¯, ]zU→R1 ,
~46!

wherel0 andl1 are some constants, and the Reynolds nu
ber R15u* L/n is the nondimensional value of the viscou
flux at the wall. We have kept the largest relevant order,
we shall see later. Forh̃, we use the qualitative behavio
discussed in Sec. III E and take it to be a constant~which can
be zero!.

To obtain the equilibrium equation in the near-wall r
gion, we then substituted this development into the origi
Eq. ~14!. After series expansions and rearrangements, th
equations become@after a change of variable from outer t
inner variablesz̃→z15R1(11 z̃)]

11KR* h̃Ũ

U̇
5KR* S z1

R*
21D1~11KR* !U̇, ~47!

where the dot refers to a derivative with respect toz1 and we
have introduced

K5
1

R1~12l1R1!
,

~48!
R* 5R1~11l022l1R1!.

Equation ~47! encompasses two kinds of variation: ve
close to the wall, forz1!uR* u, where l'l0 and U/R1

!1, we have the usual viscous behavior]z1
Ũ51, Ũ5z1 .

This suggests thatuR* u should be interpreted as the size
the viscous sublayer, which is usually observed to be of
order of 10 wall inner units. Further away from the wall, f
uR* u!z1,z0 , the equation can be simplified to

11KR* h̃Ũ

U̇
5Kz1 . ~49!

TABLE I. Parameter used for the expression of the fitted functionsH(z)
andh(z).

Cases Superpipe Channel Boundary layer

zw 0 21 0

zc R* zt zt

dHw
KR1

11KR*

KR1

11KR*

KR1

11KR*

dHc – 2
KR*

11KR*
S11

R1~11zt!

R*
D 0

hw h0

KR1

11KR*
0 0

hc 0 adHc

1

U`

R1

KR*
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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This equation has two types of solutions for slowly varyi
K, R* and h̃: when h̃ is different from zero, the solution is
algebraic in the inner variable,

U2
1

KR* h̃
5S U02

1

KR* h̃
D S z1

z0
D a

,

~50!
a5h̃R* .

This solution is thegenericnear-wall solution in the presen
model. It would be exactly the solution proposed
Barenblatt4 if we allowed the~unknown! parametera to de-
crease with the Reynolds number likea;1/ln(R1 /R0). At
the present time, we have no means to checking this po
bility. We note, however that Zagarolaet al.’s6 analysis of
the Super Pipe data indicates the existence of a power
regime for 50,z1,500 which would correspond tol̃50
anda50.137. In this near-wall region, curvature effects a
very small, and the pipe geometry is equivalent to a pla
parallel geometry, so we may interpret this finding as a c
firmation of our generic solution.

Whenh̃50, we obtain the celebrated log law of the wa

Ũ5
1

K
ln z11B, ~51!

which shows thatK may be interpreted as the von Karma
constant. Note that we can obtain an exact expression ofB in
the case whereR* andK are constants, independent ofz1 .
Indeed, whenh̃50, there is an exact analytical solution
~47!

D~z1!5A~12z1 /R* !214
11KR*
~KR* !2

, ~52!

U̇5
KR*

2~11KR* ! S 12
z1

R*
1D D ,

~53!

U52
KR

*
2

4~11KR* !
@~12z1 /R* !2

1~12z1 /R* !D~z1!] 2
1

K
ln~2D~z1!

12~12z1 /R* !)1
R*
2

1
1

K
ln

4~11KR* !

KR*
.

Note that~53! is thegenerictwo parameter formula describ
ing the whole near wall behavior, from the viscous subla
to the logarithmic region. This formula is a direct cons
quence of our subfilter model, and could be used, for
ample, to better estimate the friction velocity at the wall.

For z1@R* , this solution reduces to

U5
1

K
ln z11B,

~54!

B5
1

2K
~11KR* 12 ln~K !!.
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This fixes the value ofB as a function ofK and R* . The
general formula agrees very well with some old bound
layer data.25 In Fig. 3, we show a comparison of formula~53!
with the data of Kestin and Richardson.25 This best fit is
obtained with R* 516.35 andK50.425, resulting inB
57.34. We also tried to fit our general formula with the mo
recent Super Pipe data. The best fit, obtained withR*
514.5 andK50.45, leading toB56.59 ~independent of
Reynolds number! is shown in Fig. 4, where the solutio
~53! is compared with the data taken at 26 different Reyno
numbers spanning three decades. We resolve the trans
between the viscous sublayer to the log-layer very well, a
this fit captures the universal log-law observed at the diff
ent Reynolds numbers. However, in the transition zone
tween the viscous layer and the log-region, there is an a
tional bump in the data which is not captured by the mod
Re-examining the data analysis by Zagarolaet al., we see
that this bump is possibly associated with an algebraic in
mediate region. Such algebraic behavior can be obtai
within our model only if h̃ is different from zero. On the
other hand, the existence of the log-law forz1 larger than a

FIG. 3. Velocity profiles: our model~line!, data of Kestin and Richardson
~Ref. 25! ~symbol!.

FIG. 4. Velocity profiles obtained with our model~line! (R* 514.5, K
50.45, andh50) compared to the data of Zagarola~Ref. 11! ~symbols!:
results for 26 values ofR1 between 3.15E104 and 3.52E107.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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few R* precludes the possibility thath̃ is different from zero
for z1@R* . We then explored a simple refinement of o
procedure, in whichh̃ is taken as a constant over 0,z1

,R* , and in which, for universality reasons, this constan
proportional to the Reynolds numberh̃5h0R1 ~Fig. 6!.
Tuning the three constantsK,R* andh0 in this new model,
we get the best fit as shown in Fig. 5 withK50.45, R*
56.8, andh050.185. The fit is excellent over the who
spatial range, and over four decades of Reynolds num
which, for a three parameter model, is encouraging.

C. Models for the whole flow

To push our model to the limit, we now use it to devel
a single model for the entire flow region, from the visco
layer to the core region or the top of the boundary la
~depending on the flow geometry!. For this, we employ
matched asymptotic expansions between the core re
~Sec. IV A! and the near-wall region~Sec. IV B!. The idea is
to use the asymptotic constraints onl̃ andh̃ at the wall and
in the core, obtained through boundary conditions and
series~28! and ~27!. This results in a constanth̃ at the wall
and in the core~the two constants can be different!. The

FIG. 6. Functionh(z1) used in our model to fit the data of Fig. 5~see
appendices for expression!.

FIG. 5. Velocity profiles obtained with our model~line! (R* 56.8, K
50.45, andh50.185) compared to the data of Zagarola~Ref. 11! ~sym-
bols!: results for 26 values ofR1 between 3.15E104 and 3.52E107.
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asymptotic constraints forl̃ at the wall are given by~46!. In
the core, or at the top of the boundary layer, the constra
are obtained by the requirement of afinite subfilter tensor at
the location]zU50 ~the channel center, or the top of th
boundary layer!. This fixes the development ofl̃ as

l̃52h̃Uc1lz]zU2n t~]zU !21¯, ]zU→0. ~55!

Here,Uc is the velocity at the channel center or at the top
the boundary layer, andlz andn t are unknown functions of
z. The parametern t is the equivalent of a nondimension
turbulent viscosity~see Sec. IV D!. With this expansion, the
total equation~14! becomes

h̃~U2Uc!

~R1
211n t!]zU

5
^sx&z̃2lz

R1
211n t

1]zU. ~56!

This equation is similar to the near-wall equation, except
the ‘‘forcing function’’ Hcore5(^sx&z̃2lz)(R1

211n t). This
suggested to us the following procedure for fitting the wh
flow: solve the equation

leff1h̃effU

]zU
5Heff1]zU, ~57!

whereHeff is a continuous function going from its near-wa
behaviorH52KR* /(11KR* ) to the core behaviorHcore,

FIG. 7. Velocity profile at Re5 587.19: Moser’s data~Ref. 26! ~symbol!,
our analytical law~line!.

TABLE II. Parameter used for the fit of Moser’s data.

Reynolds zt R* a

178.82 20.800 19 1.04
392.27 20.900 16 1.68
587.19 20.924 14 1.85
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2057Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
and leff and heff are simple smooth functions going from
their near wall value~see Sec. IV B!, to their ‘‘core’’ value
~Sec. IV A!. We obtained the following results.

1. Channel flows

In this geometry, the integrated momentum flux must
zero at the center. This fixeslz50. The simplest smooth
function which extrapolates the near-wall behavior, and
linear in the core and zero at the center is shown in Fig
We fixed the constant in the near-wall region so that
log-law is obtained with a von Karman constant of 0.45. W
also fixed the velocity at the centerUc . We are then left with
three free parameters: the location of the transition betw
near-wall and core behaviorzt ~see Fig. 7!, the value ofh
and the value ofR* , which governs the viscous/turbulen
transition. We varied the three parameters and used a le
square procedure to choose the best value to fit the data
example of a fit of the numerical data is shown in Fig. 7. W
fitted the numerical data of Moseret al.26 which are avail-
able on the web athttp://www.tam.uiuc.edu/
Faculty/Moser/Channel . The parameters for each o
the three Reynolds number are listed in Table II. This fit w
obtained with the functionHeff andh̃ shown in Figs. 8 and 9
The corresponding turbulent momentum flux is shown
Fig. 10. It agrees very well with data from numeric
simulations.23

FIG. 8. Functionh̃eff( z̃) used to fit the data in Fig. 7~see appendices fo
expression!.

FIG. 9. FunctionHeff( z̃) used to fit the data in Fig. 7.
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2. Boundary layer

In this geometry, there is no pressure gradient, but th
can be a nonzero integrated momentum flux near the to
the boundary layer. The simplest smooth function extrapo
ing the near wall behavior and constant near the top of
boundary layer is shown in Fig. 13. We fixed the constan
the near-wall region so that the log-law is obtained with
von Karman constant of 0.44. We also fixed the velocity
the top of the boundary layer toU` . We are then left with
three free parameters: the location of the transition betw
near-wall and core behaviorzt ~see Fig. 11!, the value ofh
and the value ofR* , which governs the viscous/turbulen
transition. We varied the three parameters and used a le
square procedure to choose the best value to fit the data
example of a fit to the numerical data of Nockemannet al.27

is shown in Fig. 11. This fit was obtained with the functio
Heff and h̃ shown in Figs. 12 and 13.

FIG. 10. Turbulent momentum fluxt31 .

FIG. 11. Velocity profile at Re5 20 920: Nockemann’s data~Ref. 27!
~symbol!, our analytical law~line!.
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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D. Discussion

Traditional stochastic averaged approaches for sh
flows usually attempt to model the entire Reynolds str
t135^(u1U)(w1W)&. In the present approach, howeve
we first use a spatial vertical filter to separate the veloc
into its resolved and subfilter-scale parts, and then mo
each term separately via a nonlocal approximation. We
tained the final result,

t135
l1h^U&

]z^U&
, ~58!

wherel andh are functions of]zU only and depend on the
energy transfers from the resolved to the subfilter scales
addition, their behavior is not knowna priori, but we were
able to obtain their near-wall and core behavior fro
asymptotic expansions, which provides a more quantita
picture oft31. Using this expansion the Reynolds stress c
be put in the form

t3152n t* ] z̃^U&1t* 1
l01h0^U&

]z^U&
, ~59!

wheren t* , t* , l0 , andh0 are constants which are differen
in the near-wall and core regions. The first term in~59! is the
standard eddy-viscosity. A striking consequence of this
sult is that in order to fit the whole turbulent channel flo
data, one needs to impose apositive eddy viscosity at the
wall, of the order ofn t5KR* ut

2/n'3ut
2/n, and anegative

eddy viscosity at the core, of the order ofn t523/(2R1).
This last result is in good agreement with a previous theo

FIG. 12. Functionh̃eff( z̃) used to fit the data in Fig. 11~see appendices fo
expression!.

FIG. 13. FunctionHeff( z̃) used to fit the data in Fig. 11~see appendices fo
expression!.
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ical asymptotic expansion for periodic shear flows~no
boundary or wall regime!, which showed that any eddy vis
cosity will necessarily becomenegativebeyond a certain
critical Reynolds number.28

Our analytical integration shows that our subfilter mod
naturally leads to all the different mean profiles which ha
been experimentally observed. Moreover, we have sho
how boundary conditions and external pressure lead to
selection of a peculiar profile, and how a smooth matching
the ‘‘external’’ ~at the boundaries! and ‘‘internal’’ ~at the
center! solution led to velocity profiles in very good agre
ment modern available data. The only uncertainty lies in
values of the numerical constants which appear in the a
lytical integration ~e.g., the von Karman constant, or th
value ofh near the wall!, which we cannot predict analyti
cally a priori since they are related to the energy casca
from large to small scales via the forcing~which we have
prescribed!. The ultimate test of our model will thus be
numerical implementation, which will produce numeric
values of the constants which can then be compared w
analytical data.

From a theoretical point of view, our analytical approa
leads to a number of new results regarding shear flow
namics and modeling. Our study first shows that alinear
mechanism of rapid distortion of the small, turbulent scal
by the mean large-scale flow is responsible for the variety
shear profiles which are observed experimentally~log, linear,
algebraic, and exponential!. This result can be seen as th
physical counterpart of the mathematical result obtained
Oberlack using a Lie group analysis of the Navier–Stok
equations. This result also complements the analysis
Farell and Ioannou29 who showed that in a shear flow th
solutions of the linearized equations of motion, forced by
stochastic noise are the various coherent structures~streaks,
hairpin vortices, . . . ! identified in numerical simulations o
experiments of shear flows. This supports the hypothesis
the small-scale structure is determined mainly by interact
with the mean flow.

From a practical point of view, our asymptotic expa
sion leads to an analytic expression for the transition
tween the viscous- and log-layer. This formulation depen
on three parameters: the von Karman constantK, the size of
the viscous layerR* , andh which characterizes the mea
forcing acting on the subfilter velocities in the mean strea
wise direction. The first two parameters are sufficient to
scribe the transition from the linear viscous profile near
wall, to the log-profile away from the wall. The third param
eter h is required to describe the ‘‘bump’’ observed in th
high Reynolds number Super Pipe data. This parame
however, does not correspond to any classical turbulent
cosity. It is therefore interesting to compare our formulatio
with previous empirical models of the turbulent subfilte
scale tensor. This is traditionally obtained via a turbule
viscosity model,

t135n t]zU, ~60!

where n t is the turbulent viscosity. In order to reproduc
accurately the profile variations near the wall, one is usua
forced to take a turbulent viscosity that varies withz, such
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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2059Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
that it is zero at the wall. One popular model30 includes
exponential damping of the viscosity at the wall, over so
characteristic length scalel * 526n/u* . In our case, we have
taken into account the near-wall damping in our asympto
expansion. It occurs over a length-scalel * 5R* n/u*
'7n/u* . The shape of the damping in our case, can
found by comparing~60! with ~59!. Our description corre-
sponds to an ‘‘effective’’ turbulent viscosity,

n t
eff5n t* 1

t*
]z^U&

1
l01h0^U&

~]z^U&!2
. ~61!

Thus, in our model the damping occurs self-consistently
the velocity gradients.

It is also interesting to interpret the ‘‘turbulent’’ length
scale implied by our model. This length-scale appears w
the turbulent viscosity is expressed as a function of the m
shear]z^U&,

n t5Cl2]z^U&. ~62!

Comparison of our model with~62! shows that the two mod
els are compatible provided the turbulent length-scale va
like

l;
Al̃1h̃U

]z^U&
. ~63!

Such a shape has so far never been proposed in a turb
model based on dimensional arguments. Its is therefore
ful to compare it with standard empirical models. Near t
wall, the velocity profile is logarithmic and the mean velo
ity is small so the corresponding length-scale varies linea
with the distance from the wall. This is in agreement with t
standard single length-scale description of turbulent flo
near the wall. Farther from the wall the change in leng
scale depends on the geometry. For channel flows, one
actually show that the mean velocity profile in the core
gion varies algebraically~see Sec. IV A! with the distance
from the core, and one can expect a weak variation of
length-scale in the bulk of the flow, followed by a divergen
at the center of the channel. This divergence may explain
scatter in measurements of the turbulent length-scale at
location. Note that the inverse dependence of the len
scale~63! on the mean gradient is similar to the empiric
description of the length-scale proposed by Huntet al.,31

1

l
5

A

z1
1B

]zU

A^w2&
, ~64!

where z1 is the distance from the wall, andA and B are
arbitrary parameters. This description gives the same qu
tative behavior as ours; near the wall the behavior is do
nated by the first term~giving the usual linear law for the
length scale!, while far from the wall the second term dom
nates~giving a linear dependence of 1/l with the mean ve-
locity gradient!. This is precisely the dependence predict
by our model.
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V. SUMMARY

In this paper we have developed a new model for pla
parallel flows which involves the coupling of two dynamic
equations: one for the resolved scales~which depends upon
the Reynolds stresses generated by the subfilter motio!,
and one for the subfilter-scales~which can be used to com
pute the subfilter-scale Reynolds stresses!. The subfilter-
scales evolve according to a linear inhomogeneous equa
which is forced by the energy cascade from resolved
subfilter-scales. Under the assumption ofd-correlations of
the forces the subfilter-scale equation can be formally in
grated, which leads to an expression for the subfilter-sc
as a function of the resolved motions only.

We then used this analytical expression for the subfilt
scales to study the possible equilibrium profiles arising in
plane geometry. In the core region our classification of
equilibrium profiles agrees with the system derived
Oberlack12 from the basic symmetries of the Navier–Stok
equations. This shows that our model respects all the b
symmetries of the Navier–Stokes equations. In the near-w
region we used an asymptotic expansion to obtain a theo
ical description of the complete transition region between
viscous layer and the log-region. We showed that an ex
lent fit to the recent data from the Super Pipe experime
can be found from our theory, which includes a new quan
describing the effect of the energy cascade from resolve
subfilter-scales. Finally, we showed that our formulati
gives a description of the equilibrium profiles across t
whole turbulent channel via a simple matching procedure

From a theoretical point of view, it is interesting to com
pare the results of our approach with the recent simila
theories of Barenblatt4 and Georgeet al.7,8 In the near-wall
region, we find that the relevant scaling variables are
friction velocity and the inner length scalez1 , in agreement
with George. We also predict two different possible ne
wall velocity profiles, the algebraic profile of Barenblatt an
George, or the more traditional logarithmic profile. The s
lection of one or the other depends on the properties of
forcing due to the energy cascade from large to small sc
~see also Ref. 14!, which we cannot study analytically. O
the other hand, we have no clear indication that the expon
of the possible power law is Reynolds number dependent~as
predicted by Barenblatt and George!, nor do we obtain the
shifted logarithmic law predicted by George@our general for-
mula is given in~53! and is more complicated than a shifte
log-law#. In the core region, we find that the relevant scali
variables are the central velocity and the outer length sc
z/d, in agreement with George. We obtain various differe
velocity defect laws according to the geometry; in chan
flows, we predict the occurrence of algebraic~or logarithmic,
for very special energy cascades! velocity profiles, in agree-
ment with George. For zero-pressure boundary layer, h
ever, our prediction is an exponential velocity profile, in co
tradiction with the algebraic prediction of George. Note th
exponential laws might sometimes be confused with al
braic laws with very large exponent in a data analysis invo
ing large error bars. This is typically the case of bounda
layer experiments, since the determination of the veloc
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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defect law implies the very precise knowledge of t
asymptotic velocity, which is not always available.

Together, these results confirm the interest of our n
subfilter-scale approach, which uses an approximation
subfilter-scalevelocitiesto compute the subfilter-scale Re
nolds stresses~and hence equilibrium flow profiles!. We are
now attempting to numerically integrate our set of coup
equation in order to find completely quantitative solutions
the problem of plane parallel flows at high Reynolds numb

From a more general perspective, it is interesting to n
that the basic approximation use to derive our subfilter mo
from the Navier–Stokes equation~the nonlocality of subfilter
energy transfers! could be easily applied to other type o
flows ~including, e.g., temperature, magnetic fields, rotatio!
and geometry to derive equivalent subfilter models in a s
tematic way~see, e.g., Refs. 33–35!. The quality of the cor-
responding model would of course depend on the validity
the nonlocality approximation in the given flow and geo
etry, but it may be possible in some nonfavorable case to
appropriate modifications of the model which do not spoil
main feature~its linearity!. For example, we have recent
shown that in three-dimensional homogeneous turbule
with no mean flow, one can replace the local subfilter ene
transfer by a mere turbulent viscosity~instead of dropping
them! to obtain a model which reproduces all the mean a
statistical properties of the complete Navier–Stokes eq
tions.
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APPENDIX A: FILTER AND AVERAGE

In Appendices A–G, we present a number of techni
results necessary in the derivation of our resolved and s
filter equations.

1. Definition

In order to distinguish between large and small scales
introduce a filter functiong(x). For reasons of convenienc
which will become clear in Sec. II B, we choose the follow
ing separable function:

g~x!5P igi~xi !, ~A1!

where gi are positive functions, which are normalized
unity with a characteristic length-scalel i* . Thus, we can
write them as

gi~xi !5
1

l i*
g̃iS xi

l i*
D , ~A2!
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where theg̃i are functions which decay rapidly when the
argument is larger than one. The choice of the character
length-scalesl i* will be discussed further in Sec. III. Phys
cally, this scale represents a scale intermediate between
scale of the resolved field,L, and the scale of the subfilte
field l. In the sequel of the paper, we shall assume that
ratio l /L is a small parameter, called the scale separation

Note that the filter influences our results via consta
which are filter dependent. We shall mention this dep
dence where appropriate. Using this filter, we can now
compose the velocity field into its mean~large-scale! and its
fluctuating~small-scale! contribution,

u~x,t !5U~x,t !1u8~x,t !,
~A3!

U~x,t ![ū5E g~x2x8!u~x8,t !dx8.

Notice that our filtering only concerns spatial scales, not ti
scales. In experimental measurements, however, time
space filtering are often linked because of the use of
Taylor hypothesis. In this spirit, we allow the possibility o
adding time filtering to our spatial~or scale! filtering. This
freedom will be used in our analytical computations, to a
sume ad-correlation in time. We now summarize some s
lient properties of our filtering procedure.

2. Properties

Note that we employ scale filtering, and not a statisti
filtering via the usual ensemble averaging. This scale filt
ing is in the spirit of the LES, where large and small sca
are modeled separately in order to improve computatio
efficiency. In the present case, the separation between l
and small scales is dictated by physical considerations~Sec.
III ! which only apply because of the scale difference~scale
separation! between the two components. This means t
our hypothesis might not be valid for ensemble averagi
This also means that we should be cautious when averag
since for example the filtering of the product of two filtere
quantities is not necessarily the product of the filtered qu

tities, ūv̄Þuv. This happens when the filter size cannot
chosen to be too small because of insufficient scale sep
tion. Similarly, the filtering of a product of a small-sca
quantity and a large-scale filtered quantity is not necessa
zero. As we shall see, this produces additional terms in
averaged equations with respect to the usual Reynolds a
age, based on ensemble averaging.

Another important difference between the LES filterin
and the ensemble average is in the combination of der
tives and averaging; derivatives and averaging commute
ensemble averaging. For LES filtering, this is not the case
general. To see this, consider the average of some der
quantity, say]xu, and integrate by parts overx8. We get
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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]xu5E g~x2x8!]x8u~x8!dx8

5E dydzg~x2x8!u~x8!uxmin
xmax

2E ~]x8g~x2x8!!u~x8!dx8. ~A4!

By symmetry, the derivative overx8 in the second term o
the rhs of~A4! can be changed into minus a derivative ov
x, which can then be taken out of the integral, giving a te
]xū. We then see that average and derivative commute o
if the surface term~the first term in the rhs! is zero. If not,
this term has to be taken into account in the derivation
LES equations. When dealing with unbounded systems,
problem of commutativity is not important, since one usua
considers physical quantities which tend to zero at infin
The noncommutativity arises in finite size systems, wh
boundary conditions may reflect some physical processe
plane parallel flows this is the case in the vertical direction
the bottom of the layer where we have to take into acco
the momentum and heat flux at the surfacez50.

Finally, we can use the scale separationl /L!1 to esti-
mate the average of resolved~or subfilter quantities! because
the scale ofg is just intermediate betweenl andL. So, it is
large with respect tol, and small with respect toL. We then
find, for a quantityQ with averageQ and subfilter partQ8,

Q% 5E g~x2x8!Q~x8!dx8

'Q~x!E g~x2x8!dx85Q~x!,

~A5!

Q85E g~x2x8!Q8~x8!dx8'0.

Here, we have used the fact thatQ is a slow function with
respect tog and can be taken out of the integral. In the sa
way,g is a slow function with respect toQ8 and can be taken
out of the integral. This approximation is valid up to ord
e* 5 l * /L' l / l * ~if we take l * as the geometrical mean o
the large and small scales!.

APPENDIX B: GABOR TRANSFORM

1. Definition

Our ultimate goal is to write an equation for the sm
~subfilter! scales, as a function of the large~resolved! scales.
However, we would like to take into account the fact that t
small scales are strongly inhomogeneous in space. A g
way of representing inhomogeneous fields is to decomp
them into wave packets, using for example, the Ga
transformation36

û8~x,k,t !5E f ~x2x8!eik"(x2x8)u8~x8,t !dx8. ~B1!

For reasons of convenience which will become clear la
we choose heref (x)5Ag(x) ~sinceg is a positive function;
this is always possible!. We could also have achieved th
Downloaded 27 Aug 2001 to 130.113.234.100. Redistribution subject to 
r

ly

f
is

.
e
In
t
t

e

l

e
od
se
r

r,

same decomposition using a wavelet transformation,37 but it
is more complicated for analytical computations.

2. Useful properties of the Gabor transform

A few properties of the Gabor transformation~B1! are
worth mentioning at this point. First, the inverse Gabor tra
form is easily obtained by an integration overk,

f ~0!u8~x,t !5
1

~2p!DE û8~x,k,t !dk. ~B2!

Second, we note that as in filtering, the commutation of G
bor transform and partial derivative is subject to surfa
terms which depend on the boundary conditions~for reasons
analogous to those given in Appendix A 2!. Also, there is an
interesting approximation to the derivative of the Gab
transform,

] i û8' ik i û81O~1/~Lk!!, ~B3!

whereL is the typical scale of the large-scale flow. Techn
cally speaking,e51/(kL) labels the scale separation b
tween the large scales and the small scales. It is a param
less than one. Third, it is interesting to consider the Ga
transform of a quantity involving the product of a functio
varying over large scales~e.g., U) and a function varying
over small scales~e.g.,u8),

Uu8̂5E f ~x2x8!eik"„x2x8…U~x8,t !u8~x8,t !dx8. ~B4!

Because the kernelf varies over scales of the order of 1/kc ,
while U varies over scales of the orderL, one can Taylor
expand the functionU around the pointx8. To first order in
e, and after integration by parts, we obtain

Uu8̂~x,k,t !5U~x,t !û81 i¹ i~U j~x,t !!¹ki
û8. ~B5!

This expansion will be useful in our derivations.
Finally, it is interesting to consider the average of t

product of two small-scale quantities, e.g., the Reyno
stressui8uj8. Using our definition of filtering~A3! and the
fact that (2p)Dd(x82x9)5*eik(x2x8)e2 ik(x2x9)dk and f 2

5g, we can write the Reynolds stress at pointx and timet as
a function of the Gabor transform,

ui8uj85
1

2~2p!DE ~ ûi8~k,x,t !û j8~2k,x,t !

1ûi8~2k,x,t !û j8~k,x,t !!dk. ~B6!

APPENDIX C: SPECTRA AND CHOICE OF THE
CUTOFFS

The definition of our filtering involves the choice of th
characteristic length scale of the filter. To choose this sc
in a physically meaningful way we can use the spectral m
surements of Ref. 22. Their result indicates that the stre
wise and vertical velocity components of a wall-bound
turbulent flow have different spectral characteristics. Bo
are characterized by a Kolmogorov energy spectrum at sm
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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scales (E(k);kx
25/3), and by an approximately flat spectru

at large scales. However, the wave number of the transi
between the two regions is approximately one order of m
nitude larger for the vertical component than for the strea
wise component@where an additional transition region whe
E(k);kx

21 is present over one decade before the spect
flattens#. These features suggest choosing the filtering sc
to be the scale corresponding to the peak wave number o
vertical velocity spectrum. In this way, we can expect t
resolved vertical velocity to be smaller than the streamw
resolved velocity, enabling a substantial simplification of t
resolved and subfilter-scale dynamics. Since this scale
nevertheless correspond to an inertial range scale of
streamwise velocity spectrum, the subfilter streamwise
locities should still be much smaller than the resolv
streamwise velocities. This guarantees that the dynamics
tween small and large scales will be essentially nonlo
~i.e., between resolved and subfilter scales only! at the sub-
filter level, allowing for a linearization of the small-sca
dynamics, and, therefore, analytical solutions.

APPENDIX D: CORRELATION BETWEEN FORCES
AND RESOLVED VELOCITY

In this appendix, we compute the correlation betwe
the Gabor transforms of resolved velocity and forces, us
the d-correlation assumption. Using definition of GT w
have

^Û~x1 ,k1 ,t1!F̂m
'~x2 ,k2 ,t2!&

5E f ~e* ux12x8u! f ~e* ux22x9u!eik1•(x12x8)1 ik2•(x22x9)

3^U~x8,t1!Fm
'~x9,t2!&dx8 dx9

5E f 2~e* ux12x8u!eik1•(x12x8)1 ik2•(x22x9)

3U~x8,t1!Fm
'~x9,t2!d~x82x9!d~ t12t2! dx8 dx9

5U~x1 ,t1! f 2~e* ux12x2u/2!d~ t12t2! eik2•x21 ik1•x1)

3FT~Fm
' !~k11k2!, ~D1!

where FT is the Fourier transform. When deriving~D1! we
took into account thatF' decays faster inr than f does~we
put x85x9 in f ). We also took into account thatU is a slow
function so that it can be taken out of the integral by sett
x85x1 .

APPENDIX E: ANALYTICAL SOLUTIONS OF SMALL-
SCALE EQUATION

In this appendix, we provide the analytical solution
the system of ray Eqs.~22!. To solve this system of equa
tions, we first solve the homogeneous system~i.e., with Fu

5Fv5Fw50). First, we note that by introducing

~u†,v†,w†!5~ û,v̂,ŵ!D,
~E1!

D5expS nk2

]zU
~R1R3/3! D ,
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we can eliminate the viscous terms from the homogene
equations. The ray equations can then be integrated in
standard way, starting fromŵ. We find three independen
solutions to the homogeneous system, two trivial ones,

ŵ15 v̂150, û15D,
~E2!

ŵ35û350, v̂35D,

and a more complicated one,

û2

D
52cosu

R

11R2
1

sin2 u

cosu
atanR,

v̂2

D
52sin uS R

11R2
1atanRD , ~E3!

ŵ2

D
5

1

11R2
.

Now, we introduce the 333 matrixK(R) whose columns are
made up of the three independent solutions. We also in
duce the vectorF5(]zU cosu)21(Fu

' ,Fv
' ,Fw

'). The general
solution of the inhomogeneous system~22! can then be writ-
ten f(R)5(û,v̂,ŵ), with

f~R!5K~R!K21~R0!f01K~R!E
R0

R

K21~r !F~r !dr.

~E4!

Taking as initial conditionf50 at R052` ~no small-
scales att52`), we can finally write the general solutio
as

f~R!5E
2`

R

K~R!K21~r !F~r !dr. ~E5!

Note that the integrand is just the solution of the homo
neous system, with initial conditionf(R5r )5F(r ). This
point is used in Sec. IV. Also, consider a product of tw
components off, sayfufw* 5ûŵ* . Upon using~E5!, and
the definition of the average using Gabor transform~B6!, we
can write

^uw&5 (
j ,l , j 8,l 851

2

( dukhdkhdRE
2`

R

dr0

3E
2`

R

dr1K1 j~R!K1 j 8
* ~R!K jl ~r 0!K j 8 l 8

* ~r 1!

3^Fl~r 0!Fl 8
* ~r 1!&. ~E6!

Because of the delta correlations of the force~see Ref. 14!,
the average brings down a factor2cosu]zUtd(r12r0) @be-
causet2t052cosu]zU(R2R0)], where t is a typical time
scale~necessary for dimensional reasons!. So after integra-
tion over say,r 1 , ~E6! becomes
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



-
on
e
e

ti

s
f

r
po
en

r
ese

2063Phys. Fluids, Vol. 13, No. 7, July 2001 A dynamic subfilter-scale model for plane parallel flows
^uw&52]zUtE cosudukhdkhdRE
2`

R

dr0k

3 (
j ,l , j 8,l 851

2

K1 j~R!K1 j 8
* ~R!K jl ~r 0!K j 8 l 8

* ~r 1!

3^Fl~r 0!Fl 8
* ~r 0!&. ~E7!

Here, the integrand of~E7! is just the product of two solu
tions of the homogeneous system with initial conditi
f(R5r )5F(r ). This property is also used in Sec. IV. W
stress once again that this simplification is only valid wh
one performs the averaging procedure.

APPENDIX F: DIVERGENCES

The expression~26! for ^Uw& involves a divergence in
the inviscid limit, which can be used to study the asympto
expansion of h̃. The divergence actually occurs atu
56p/2 due to the inverse cosine factor. To study it, we u
symmetries of the forcing to write theu dependent part o
the integral as

E
2p

p

du
FT~Fw

'!

cosu
eikhcosu(R1R0)e2nkh

2E
R0

R

(11X2)dX/cosu ]zU

54E
0

p/2

du
FT~Fw

'!

cosu
eikhcosu(R1R0)e2a/cosu, ~F1!

wherea5nkh
2*R0

R (11X2)dX/]zU will be our small param-

eter in the limitn→0 ~see Ref. 14!. A change of variables
cosu→s allows us to write the integral involved in~F1! as

4E
0

1S FT~Fw
'!~s!eikhs(R1R0)

sA12s2
2

FT~Fw
'!~0!

s D e2a/s

14E
0

1FT~Fw
'!~0!

s
e2a/s. ~F2!

The first integral is convergent ats50, and its leading-orde
approximation can be easily found by expanding the ex
nential. The second integral is proportional to the expon
tial integral functionEi(x)5*0

1e2t/xdt/t, whose expansion
nearx50 is

Ei~x!5C1 ln x1O~x!,

whereC is Euler’s constant. Overall, the expansion for^Uw&
is

^Uw&5h
U

]zU
,

h5h0ln a1h11O~a!,

h0524E
0

`

khdkhE
2`

`

dRE
2`

R

Fw
'~0,kh ,khR0!

11R0
2

11R2
,
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h1524E
0

`

khdkhE
2`

`

dRE
2`

R 11R0
2

11R2E0

1

ds

3FC FT~Fw
'!~0,kh ,khR0!

1
1

s S FT~Fw
'!~khs,khA ~12s2!,khR0!ekhs(R01R)z

A12s2

2Fw
'~0,kh ,khR0!D G . ~F3!

In the isotropic case@when Fw
' only depends onkh(1

1R0
2)], symmetries of the integral definingh0 make it equal

to 0.

APPENDIX G: ANALYTICAL EXPRESSION OF
FUNCTIONS USED TO FIT THE DATA

Two functionsH(z) andh(z) are used to fit the data fo
each comparison. We give the analytical expression of th
functions for each of the three cases.

1. Function Heff or H

Heff is computed from numerical integration ofH
5*dh/dz dz, where

dH

dz
5

dHw1dHc

2
f ~z!1

dHw2dHc

2
, ~G1!

where f (z) is a smooth function so that

f 511 for zw,z,zt ~near wall!,
~G2!

f 521 for zt,z,zc ~core region!,

and the integration constant is chosen so that

H~zw!5
2KR*

11KR*
. ~G3!

The expression of the slopes (dHw and dHc) are given in
Table I. We have chosen the following smooth functionf:

f ~z!5tanhFz2zt

5* zt
G . ~G4!

2. Function heff or h

This function is chosen so that

h5
hw1hc

2
f ~z!1

hw2hc

2
, ~G5!

where f (z) is the same smooth function than forH. The
expression of the constantshw andhc is given in Table I.

3. Table of fitted parameters

The fitted parameters are, in principle,R* , K, a, U` ,
h0 , andzt . For simplification, we only fittedK on the Zaga-
rola data, and fixedK50.45 (k50.44) in the channel flow
~boundary layer!, and the value ofU` .
AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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