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We present a dynamic model of the subfiltered scales in plane parallel geometry using a generalized,
stochastic rapid distortion theoffRDT). This new model provides expressions for the turbulent
Reynolds subfilter-scale stresses via estimates of the subfittecities rather than velocity
correlations Subfilter-scale velocities are computed using an auxiliary equation which is derived
from the Navier—Stokes equations using a simple model of the subfilter energy transfers. It takes the
shape of a RDT equation for the subfilter velocities, with a stochastic forcing. An analytical test of
our model is provided by assuming delta-correlation in time for the supergrid energy transfers. It
leads to expressions for the Reynolds stresses as a function of the mean flow gradient in the plane
parallel geometry and can be used to derive mean equilibrium profiles both in the near-wall and core
regions. In the near-wall region we derive a general expression for the velocity profile which is
linear in the viscous layer and logarithmic outside. This expression involves two physical
parameters: the von Karman constant and the size of the viscoug\ayieh can be computed via

a numerical implementation of our mogleFits of experimental profiles using our general formula
provides reasonable values of these parameters)(4 to «=0.45, the size of the viscous layer is
about 15 wall units In the core region, we find that the shape of the profile depends on the
geometry of the flow; it ranges from algebraic in channel flow, to exponential in the bulk of
boundary layers, and linear in plane Couette flow. This classification is consistent with Oberlack’s
system, which is based on symmetry arguments. Fits of boundary layer flows or channel flows at
different Reynolds number over the whole flow region are performed using our results, and are
found to be in very good agreement with available data.2@21 American Institute of Physics.
[DOI: 10.1063/1.1378038

I. INTRODUCTION dence was subsequently detected in the high Reynolds num-
ber data of Nikuradze put found to be weak, like 1/(RRe).
Turbulent shear flows are widespread and their structur@s a consequence, mean velocity profiles measured at differ-
has been investigated extensively for many decades in lab@nt Reynolds number tend to scatter slightly and reveal only
ratory and numerical experiments. It was commonly acthe envelope of the family of curves, i.e., the log-law. This
cepted that the mean velocity profile across the channel isontroversy reached a climax when a team from Princeton
piecewise; a linear “viscous profile” near the wall, a loga- used measurements made at the Super Pipe facility to test the
rithmic profile away from the wall, followed by an algebraic Barenblatt theory. The Reynolds numbers obtained in this
profile* in the center of the channel. This description ap-configuration are quite large, even larger than those obtained
peared to be supported by a simple dimensional analysis due the experiment of Nikuradze. The final result apparently
to von Karman and by several matched asymptotic theoriesontradicted Barenblatt's theory, and was more consistent
(see, e.g., Refs. 2 and &hich all led to the famous log law with the log-law, preceded by an algebraic profile with Rey-
of the wall under appropriate asymptotic limits. nolds independent indéxBarenblatt and Chorin have reana-
More recently, a controversy arose when Barenblatt lyzed these data, and claim to have found a roughness de-
used a dimensional argument combined with an assumptigpendence of the result which makes them less suitable to test
of incomplete similarity to obtain a family of power laws, their theory than the Nikuradze data.
with logarithmic envelope, as the description of the mean  Another recent theory for turbulent pipe/channel and
velocity profile in a channel. In his theory, the index of the boundary layer flow has been developed by Geawal.”®
power law varies with the Reynolds number. This depen-This theory is also based on dimensional analysis and
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matched asymptotic expansions, however this group basegall bounded turbulence is related to an old and yet unre-
their analysis directly on the Reynolds-averaged Navier-solved controversy about applicability of RDT to such tur-
Stokes equations. They determined that the correct velocitpulence. Recent numerical simulations suggest that even for
to scale the outer region i$,,, while the friction velocityu,, isotropic 3D turbulence, a combination of RDT and a scale
should be used to scale the inner region near the wall. Botdependent eddy viscosity provides a realistic description of
regions follow Reynolds number dependent power laws, buboth the small-scale spectra and the higher cumulants related
with different constants and origins. However, they foundwith intermittency'® In wall bounded flows, the presence of
that the Reynolds number dependence should be much strotite strong mean makes interaction of small scales even more
ger for a zero-pressure gradient boundary layer than for pipaonlocal and dominating over the eddy viscosity effect. Re-
and channel flowgwhere Reynolds number dependence iscent numerical and new experimental evidence of nonlocal-
negligible. Note that they assume the same Reynolds numity in such turbulence was reported in Refs. 17 and 18. How-
ber dependence as Barenblatt. The two different forms foever, our understanding of the role of nonlocality is still far
the inner and outer scaling imply the existence of a mesofrom being complete and the approach developed in Refs. 14
layer in which dissipative scales are not fully separated fromand 15, and the present paper should be treatednasde)
the energy and Reynolds stress producing ones. The mestther than a rigorously validated theory.
layer follows a power law in boundary layers and a logarith- ~ From a theoretical point of view, the approach devel-
mic law in pipe and channel flow. In both cases the profilesoped in Ref. 14 is interesting because it suggests a way of
are functions ofy+a rather thany alone (wherea is an  approaching the mean profile controversy which is not based
arbitrary constant Their theory also matches the Super Pipeon dimensional arguments and similarity assumptions about
data very well. the solution of the Navier—Stokes equations, but rather on
At the same time new results were obtained which onlythe statistical properties of the energy transfers between large
added to the confusion. Oberldaksed a Lie group analysis and small scales. In this respect, the work described in Ref.
of the equations of motion to classify all the possible equi-14 is incomplete, because it only characterizes the conditions
librium velocity profiles allowed by the symmetry of the for existence of the log and algebraic laws, and does not
Navier—Stokes equation. The results include the logarithmicelate the realizability of these conditions to the geometry of
law, the algebraic law, the viscous sublayer, the linear profila particular flow. Thus, it does not specify where these vari-
and the exponential profile as particular cases. This studgus profiles should be expect¢e.g., near the wall, in the
was followed by a data analysis to try to determine the actuatore region or in the outer reginA basic fact therefore
conditions required for each law to be realized. Analyzingremains unexplained: why does the shape of the equilibrium
Niederschulte’s dat¥, Oberlack found evidence of an alge- profile change from a log-law near the walto an algebraic
braic law extending almost to the center of the channel, andr exponential defect law further away? This transition
scaling with the channel’s half-width instead of with the “in- probably reflects some changes in the generation of the
ner scale” (viscous scalepredicted in Barenblatt's theory. small-scales which needs to be taken into account by a self-
Moreover, the index of the power law measured by Oberlackconsistent model of the forcing. The purpose of the present
was significantly largefone order of magnitudethan that paper is to derive such a self-consistent model of channel
predicted by the theory. An analysis of the Super Pipe datflow by making two modifications of the WKB-RDT model
of Zagarola! confirmed the existence of this algebraic law of Ref. 14. These changes make it suitable for future use in
covering 80% of the center of the pipeMore recently, the numerical large eddy simulatiofsES).
same data have been shown to fit a modified cosh-profile First, we replace the statistical averaging procedure of
arising from a new closure equatiGhSince all the theories the previous paper with space averages, which are more suit-
describing these results can be put on the same phenomerable for numerical and laboratory experiments. Indeed, in
logical (dimensional or closure-likefooting, it is hard to  numerical simulation, one either performs horizontal aver-
decide which is right and in which cases. In a previousages over the streamwise directions, or spatial average over a
papert* we derived the equilibrium velocity profile for a given scale, representing the smallest resolved scale in the
flow in the near-wall region using a WKB method general-simulation (large eddy simulation approaghn laboratory
izing rapid distortion theory, using a simplified assumptionexperiments one usually performs time averages which are
about the generation of small-scales. The main elements dfien translated into spatial averages using Taylor’s hypoth-
this approach can be most easily explained using the simplessis. In contrast, statistical averages require a large number
example of two-dimensional shear flow turbulerisee Refs. of realizations of the same flow, which, although useful theo-
15 and 32. Specifically, we modeled the debris of the near-retically, is often impractical.
wall vortices penetrating the outer regions as a weak external The second new element of our model is that the exter-
forcing acting at small-scales. This simplification allows onenal forcing is chosen based on physical requirements, such as
to assume nonlocality, e.g., to neglect interactions betweerero turbulent stress at the wall, and takes exactly into ac-
the small scales in comparison with their interactions with acount the supergrid energy transfers. The complete model is
well separated in scale mean flow. In turn, this allows exactlescribed in Sec. Il.
analytical solutions, with the celebrated log law of the wall In a second partSecs. Ill and 1V, we test the physical
being one of them in the case of a forcing with short corre-soundness of our model by computing the equilibrium pro-
lation in time and statistically homogeneous in space. files within the whole domain under the approximation of
Note that the role of nonlocal and local interactions indelta-correlation in time for the supergrid energy transfers,
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like in the WKB-RDT model. By moving from this model B. Resolved scale equations
with external forcing to our LES-RDT model with self-

consistent forcing, we give up the possibility of exact ana
lytical solutions because of the nonlinear dynamical cou- o
pling. We show here that some simple physical assumptions u=u+u’'=U+u’, 2

lead to a solution where the subfilter Reynolds stresses Ca8Phere the average is taken via a filferhich is defined and
be expressed as functions of the resolved quantities and SOMEscussed in Appendix A; see EA3)]. Note that from now
numerical constantéwvhich cannot be derived analytically o e shall refer tar as the resolved velocity, as distin-
Thus, the corresponding set of closed equations for the reguished from the mean velocityu) which is obtained by
solved velocities can be integrated further analytically, or

: ; : 2 e ' “'averaging the velocity horizontally and in time. Applying
semianalytically, to find qualitatively the equilibrium profile . decomposition to the Navier—Stokes equatithsand

in any part of the channel. We find that the qualitative prOf”e_taking into account the fact that the averaging and the

changes from a log-law near the boundary, to an algebraig_.,mnonent of the Laplacian for the horizontal velocity do
(exponentigl defect law for a flow within a closed channel not commute(see Appendix A we obtain the following

To derive the large-scale equations, we decompose the
ields into their resolved and subfilter parts

(over a flat platg o equation for the resolved streamwise velocity:
Let us be aware however that the practicality of the o
space average comes at expense of the theoretical complexity 9,U;+d;ujuj=— 3P+ vAU;+8(2) 51+ 0. 3

(thef mleanthof the.lznsan IS ?Ot eqpa;l tof E[he mean,.ekt. d Here, S(z) are the surface terms, due to the boundary con-
particuiar there will be greater vari€ly ol terms COrmespondyy;;, g These surface terms depend on the geometry of the
ing to the turbulent stresses to describe which one has
sacrifice rigor and resort to simplified models. Therefore, the
present paper is not intended to be as fully rigorous as the  Schanner ui(g3(z—d)+gg(z+ d)),
previous one. We allow ourselves the liberty, when neces- o
sary, of making simplifying assumptions which are not fully ~ Scouets= Ux (93(z—d) —gs(z+d))
justified. We will attempt to minimize the arbitrariness of our dgs dgs
assumptions by providing technical or mathematical justifi- +vUg| 4 (z—d)— ——(z+d) |, 4

. . — dz dz
cations where possible. However, to simplify the paper, we
have placed the technical details of the derivation in the Ap- dgs

. 2

pendices. SeL= U (93(2) + vu. - (z—h).

Here, h is the height of the boundary layer atd}, is the
speed of the plates for the plane Couette fld<=U, at
Il. THE DYNAMIC MODEL z=%d). The functiongs(z) is the correction due to the filter
A. Notations and constitutive equations which depends explicitly on the filter choice and on the cut-
off scale in the vertical direction.
If we use the decompositiof2), we can divide the non-
linear terms of(3) into several parts,

We consider an incompressible velocity fieltk,t) sat-
isfying the Navier—Stokes equations,

aiui=0, ﬁtUi+ﬂjUin+aj<Uin’+Ujuil>+ajuirujl

(1) :_(9|P+V§“U|+S(Z)5|1+O'| (5)

The resolved scale motions depend on the subfilter scales via
two terms: the usual Reynolds stresses, involving only
ssubfilter-scale quantities, and an unusual cross term between
subfilter and resolved quantities. Traditional LES usually
models these two terms together. However, recent numerical
experiments by Domaradzkt al!’ indicate that in a channel
flow, these two terms have very different influence on the
‘mean flow: the subfilter—subfilter term appears to be about
50% smaller than the subfilter-resolved component. In the
sequel of the paper, we show that we are able to model the
two terms separately, and hence are able to better capture
their different properties by computing them via the evolu-
tion of the subfilter-scale velocities. This evolution is given
by subfilter-scale equations.

&tui+(9j(uiuj)=—(7ip+ VAUi+0'i,

wherep is the pressurey is the kinematic viscosity, and is

an external forcing. Note that for the pressure driven flow
(channel, pipethe external pressure gradient is included in
o (rather thanVp) in our notations. We have set tlieon-
stan) density equal to one for simplicity.

In this paper we shall consider two types of geometry
plane channel flowwhere the flow is bounded by two infi-
nite flat rigid plates separated by a vertical distandg @nd
a flat plate boundary laydwhere the fluid is parallel to and
bounded by a single flat platdn the first case, the forcing is
via a constant pressure gradient applied in thdirection
parallel to the platesr=(—dP, /dx;0,0), or by constant
movement of plates in opposite directiofidlane Couette
flow). In the second case, we assume no external forcin
(0=0), but we allow for a free stream velocity, at the
outer (infinite) edge of the boundary layer. We assume no-  To find the subfilter-scale equations, we consider the
slip boundary conditions for the velocity on the rigid plates. subfilter component of the constitutive Edq$),

%. Subfilter-scale equations
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au/ =0, Bardinaet al,?* it contains no kinetic information regarding
(6) the interactions between resolved and small scales. This in-
Ul + (U, —_u-u-)= —op' +vAu —S(2)6,, formation is contained in the Navier—Stokes equation, which
i iVHiHj i i i il-

we use as an input of our estimate procedure. Also, note that

Note that the subfilter part of theonstant external forcing our procedure is derived directly from the Navier—Stokes
o is zero. At this level, we see that the small scales aréquations, in contrast #§—e models, which also involve the
generated via two types of terms: the subfilter part of thesolution of an auxiliary equation.
nonlinear cascade from large to small scilssexpressed by Note also that the plane parallel geometry does not pre-
the second term of the lhs 68)], and the surface term. This clude horizontal variation of the subfilter-scale quantities,
is consistent with the physics of the problem: small-scaldhis creates “pseudoforcesF;,
turbulence is generated at the surface or by a transfer of — _— —
energy to smaller scalésermed forward scattgr Fi==8(2) 811+ 9;(UiUj = UiUj) + ;U ui + d;Uiu;.

Now we can use decompositi¢®) to split the nonlinear (8)
part of (6) into terms involving resolved-subfilter-scale prod- we call them pseudoforces because they depend linearly on
ucts and subfilter—subfilter-scale produdtbe resolved— the averaged part of the subfilter-scale motions. We will
resolved-scale term is zero because of the plane parallel geventually simplify them by replacing them with prescribed
ometry. The relative magnitude of these terms has beemxternal forces, in order to get analytical solutions.
estimated by Domaradzidt al!” and Hersanet al® in a Equation (8), although superficially complicated, has a
low Reynolds number numerical simulation of channel flow,simple structure; it is a linear inhomogeneous equation for
and by Carlieret al*® in a high Reynolds number experi- the subfilter motion. The forcing comes from the subfilter
mental boundary layer. They found that the subfilter—part of the nonlinear cascade amongst the resolved scales of
subfilter energy transfer at subfilter-scales is between ongotion. This forcing is internal in the sense that it describes
and two orders of magnitude smaller than the energy transfehe momentum transfer between the resolved and the subfil-
induced by SUbf”ter'reSOIVddlonloca} interactions. For this ter fluid Components which is not caused by an external pres-
reason it is reasonable to retain thenlocalinteractions ex-  sure gradient. The linearity of such a forcing is the essential
actly in the small-scale equation and to model the subfilter-simplification which makes it possible in certain cases to
subfilter terms via a turbulent viscosity. The correspondingsolve the subfilter model analytically in terms of the resolved
equations are our subfilter-scale modske below. This  quantities. By substituting the solution back into the large-

model has been validated in 2D and 3D homogeneouscale equation, we obtain a closed problem for the resolved
turbulencé* by comparison with direct numerical simula- scgles.

tions. To take advantage of small-scale inhomogenégyg.,
Retaining only the nonlocal interactions, our SUbﬁ'ter-turbu|ent spots or streakswe now decompose the small-
scale model becomes scale equation into its Gabor modgshich are localized in
) both wave numbek and positiorx). The mathematical defi-
Jju; =0, nition of the Gabor transform is given in Appendix B 1. We
(7)  now take the Gabor transform of Ef) and useB5). To
aui +Ujguf +uj ;U= —aip’ + (v+v)Auj +F;, leading order in the scale separatigee Ref. 14 for rigorous

. . ] ) justificationg and dropping primes for simpler notatiofibis
where v, is the turbulent viscosity, which needs to be pre-\,eans that from now on, we denote average quantities by

scribed to close the model. In 2D, we have shown that theapita| letters, and fluctuating quantities by lower case let-
energy condensation at large scale renders small scale 'nt%'rs) we obtain the following equations:

action nonlocal and, therefore, can be taken as 0. In plane

parallel geometry there is no energy condensation, but thg.aj:o,

presence of a strong mean flow also induces substantial non- i i 9)

local effects, e.g., changing the slope of the energy spectrumu; + U;d;U; + (U Kem) 9 U

from —5/3 to —1.22 In the sequel, we therefore adopt :

=0, Fo keep the number of 'free parameters in our analytical _ —ikiﬁ—ﬁjajUi— Wk20,+E;

solutions as small as possible. This is not necessary, how-

ever, if this model is used for numerical simulations. In thiswherek= (k, ,ky ,k,) is the wave number. Note that in the

case, one may even allow to be scale dependent, as was Gabor transformation, we do not take into account surface

done in Ref. 16 for the case of isotropic 3D turbulence. terms because we chose for simplicity zero boundary condi-
Note that this model is in fact an auxiliary equation for tions at the boundary for all subfilter quantitiéer both the

the subfilter velocities. It enables us to obtain an expressiomelocity and its derivative Other choices of boundary con-

for the Reynolds stresses via a direct estimate of velocitieditions could lead to additional surface terms, which would

rather than velocitycorrelations as is usual. This idea was be important only near boundakynore precisely at a dis-

used for the first time in Ref. 23. In this work, the subfilter tance from the boundary less than the typical scale of the

velocities are computed from the resolved velocities by refunction f).

quiring that they should coincide after suitable filtering. Even ~ The set of Eqs(9) can be put into the form of a set of

though this procedure is in the spirit of the dynamic model ofray equations by introducing the total derivative,
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D=0+ Uj&j_&j(umkm)ak-a (10) I1l. EQUILIBRIUM PROFILES IN THE DELTA-
! CORRELATED APPROXIMATION
which is a time derivative along raygt) andx(t), A. The time and horizontally averaged equations
xi=Uj, From now on, we concentrate on the derivation of equi-
L (1) librium profiles in a plane parallel geometry. Namely, we
ki=—kjaiU;. wish to derive the possible shapes &)= ((U)(z),0,0),
These ray equations describe the motion of wave packetwhere now() refers to a horizontal and time average. The
advected passively in position and wave number by a largehorizontal averaging can be performed easily in our LES
scale flow. Using the incompressibility to eliminate the pres-formalism by taking constant functions as filters in the hori-
sure, we can finally re-express the systé@nas zontal direction[i.e., g1(X)=g,(y)=1/L, wherelL is the
horizontal scale over which the horizontal average is per-
Dt = ( 2kikm formed|. Then,(U) can be obtained easily by taking only a
i k2 time average of the corresponding resolved velotitySo,
N ) from now on, we use constant horizontal filters, and consider
whereF;- are the divergence free components of the force, hat() denotes a time average. In order to obtain true parallel
Kk geometry, long time averages are necessary. Note that large-
Fii:( Sim— '_Zm) Frn (13)  scale fluctuations in the mean profile.g., bursting events
k are taken into account by the forcing term, i.e., in the term

The set of Eqs(5) and(12), where the Reynolds stresses are?j(UiU;—U;jUj). These fluctuations are large scéad so
computed usingB6) constitute the main equations of our cannot be combined wi_th_ the turbulence fluctuatjpbst are
subfilter-scale model. This model is dynamical because &N €xtra source of vorticity and thus can be added to the 3D
allows a time and space evolution of the Reynolds stress. forcing. The fluctuations are largely due to ejections or burst-
has been derived directly from the Navier—Stokes equation&d from the boundary layer and are thus highly intermittent.
under the approximation of nonlocality of the supergrid en-We therefore assume delta-correlation in time. Note that this
ergy transfer. Note that this subfilter-scale modeling is in theSsumption is only required for deriving the mean profiles.
spirit of a recent model by Domaradzki and S&kin which _ The equ_ations for the mean profile can be obtained via a
the subfilter velocityrather than energy tensds estimated ~time averaging of5),
which permits the detailed computation of all terms appear- o o o
ing in the Reynolds stresses. Note also that because we have d,(Uw)+ d,(uw)=—d,P+ vd, U+ oy+S(2),
used the Gabor transforfas opposed to the Fourier trans-
form), the subfilte_r-scale energy spectrum can vary in space, ‘92<U_W>:01 (14)
which allows for inhomogeneous turbulence.
Leaving the numerical implementation of this model to —
further work, we focus here on possible analytical test of our IAW) == 9;P.
model. Indeed, there is no guarantee that our model will i
naturally lead to realistic mean shear flow profiles. By anaf€ré, we have taken into account the plane parallel geom-
lytical integration, we show that our model automatically €Y, @nd the fact that, for constant horizontal averages, terms
leads to shapes which are consistent with experimental da{gvolw_ng horizontal derlvayves vanish. The _flrst equat_lon of
and theoretical analysis based on the symmetry of th&l4 gives the mean profile. The second is a consistency
Navier—Stokes equations. equation for the subfilter stresses, to avoid the generation of
Technically, the possibility of analytical derivation SPanwise mean velocity. The third equation expresses the
arises because after time and horizontal averaging, the large/drostatic equilibrium in the vertical direction. _
scale velocity profile is parallel to the plate-lirection, and ~ The subfilter Reynolds stresses can be found by consid-
depends only on the direction perpendicular to the plat€'ing the ray equationgl) in a plane parallel geometry.
(z-direction: (u)=(U(2),0,0). (This implies a clever choice TheY are
of the filtering, which is discussed in Appendix)@ such a
simple situation, the equations of motions become solvable ~ kf— kf,—ka .
analyticallyif the forces are prescribed D= Twazu —vkoutFy,
Note that boundary layer flows are not strictly parallel.
However, since the streamline curvature is usually very ol Kk
small, the flow may be considered to be locally parallel. ~ ERyKy ~ 27 Bl
Also, OberlacR showed that it is possible to take into ac- Dw= K2 wo U=k +F, (15
count the streamwise dependence of the mean velocity pro-
file by using as an outer length scale the Rotta—Clauser ok k
lengthA= [§({u.)—(u))/u,dz, where(u) is the mean ve- DW= —2wa,U — vk2W+ FL .
locity and u, is the friction velocity, given byd,u(z=0) k2
=uZ and(u,) is the mean velocity at the outer edge of the
boundary layer. The corresponding ray equations are in this geometry,

_§im uj(?ij— Vl(zl’:li""’iiL s (12)
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Dx=U, (U(x,k,t)FH(x k', t"))
D,y=Dz=0, U (X, 1) F2(|x" —X|/2)FT(F) (k+ k') e*> Tk *'st—t7),
(16) (19
Diky=Dk,=0, .
where FT means Fourier transform. We now show that our
Dk,= —k,d,U. assumptions allow the small scales and the subfilter stresses

to be expressed in terms of the mean velocity profile.

B. The internal forcing C. Subfilter-scale solution

In general, the ray equationdl) and (12) have no
simple analytical solution because the motion of the smal]f
and large scales are implicitly nonlinearly coupled via the
forces; these forces determine the behavior of the small x=U(z)(t—ty)+Xg, Y=VYo, Z=Xy0,
scales, but they depend on both large and small scales in a (20)
nontrivial way. This means that equilibrium solutions can in Kx=Kxo, ky=Kyo, Kz=kzo—kxdU(t—1o),
general only be found numerically, by a recursive procedurewherex,, Yo, Zo, Ky, kyo, andk are the initial conditions
The situation is much simpler if one allows anposteriori  of the ray. This equation shows that the parameger
characterization of the forces, by considering them as some k, /k, can be used instead bto label the trajectories. To
sort of external noise, with simple prescribed statistics, or, ifyrther simplify the notation we introduce
our case, simple time averaging properties. This idea was
already used in the previous papér. kn= VKt kj,

Therefore, from now on we consider the fordes, F,, o= arctarik, /k,)
andF,, appearing in(7) and (9) to be external forces, with yi
prescribed averaging properties. The simplest choice we caNote thatk,, and 6 are constant along the rays. With this
make is to assume that the forces @reorrelated in time. notation the subfilter-scale equatiofi) become
The idea is that because of Taylor's hypothesis space aver-

The integration 0f(16) with respect to time is straight-
orward in the plane parallel case, and gives

(21)

ages are, loosely speaking, equivalent to time averageg -_ _ 2cosf 1 v vki (1+R))0

Then, because of the chaotic nature of the flow, solutions - 1+R2 cosé cos 6a,U

with different initial conditions have very different behavior.

Thus, it seems reasonable to assume that the average of the 1 EL

product of two quantities starting at different times is zero. coshi,U Y’

We shall refer to this as thé correlation assumption. In Ref. _ )

14 it is shown that this property allows us to write the cor-py ~_ _ 2sin 0\7v+ vk (1+R%)p— 1 £l

relation of two Gabor transforms corresponding to rays start- < 1+R2 cos 64d,U coshi,u v’

ing from same origin as (22
(FHOx K DFT (K)o A (K) 8K +K) 8(t—t'), . 2R . vk3 - 1.,

J (17 DPrW=- iRV coseaU (A+ROW= s 0&ZUFW'

where the coefficient of proportionality depends only on thenote that the two-dimensional case can be found easily by
mean gradients and on the angle between the vector compgutting #=0. Note also that when the forces are symmetric

nents ofk. When the internal forcing is iSOtrOpiC, one may with respect tw_>_y, their Gabor transform is also sym-
assume that the functioA;; takes the following standard metric with respect tk,— —ky, i.e., 60— — 0.

form: Since the forces are external, we can find the subfilter-
scale motions as the solution of a coupled linear inhomoge-
_3FK 1, _ neous system of ordinary differential equationRinin Ap-
8k pendix E, we show that this can be written as

Isotropy can be safely assumed in the core region, which is (a . \7v)(R)= JR (a 3 Vv)(R Ro)dRy 23
the region we are most interested in. It is not expected to Y e 0 '

hold near the wall. Furthermore, we shall assume that the o~ o~ )
forcing is symmetric with respect o —y (see Ref. 14 and where (,v,w)(R,R) are solutions of the homogeneous part
below). of (22) (i.e., with no force term such that aR=R,,

Since the forces are due to the energy cascade from large
to small scale, it also seems reasonable to assume that they (U,v,W)(Rg,Rg)=—
are correlated with the resolved velocity field. Using the
s-correlation assumption, we show in Appendix D that theThis property can be used to compute formally the first sub-
Gabor transforms of the resolved velocity field and the forcedilter term(Uw). Indeed, as shown in Appendix E, this term
obey can be written

M(Ft ’F# Fw)(Ro). (29
z
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(U_W>=f:def:khdkhfldRfi(U(x,R,kh,—0)

XW(R,Ry,kp,0))dRy,. (25)

Using the solutions of the homogeneous system given in

Appendix E, and using the correlation betwééandF (19),
(25) becomes

U T o0 o0
0 wd&Jo khdkhjide

R )
% [ FTRD (s ke

ukﬁf§0(1+x2)dx
><1+R§ ®H ™ 9,U cose .
1+ R? cos o Ro
=-0 " (26)
z

Note that in the limitv—0, the integral diverges a®
= /2, but the viscosity regularizes this singular behavior. It
is shown in Appendix F that in the limit where— 0, expres-

sion (26) can actually be expanded as

noln(vk2/9,U)+ 7,

2
U +0(vk2/3,U), (27)

W:

wherek, is a typical horizontal wave number ang=0 for

isotropic forcing neaz=0.

Similar results can be obtained for the other Reynolds
stresseguw). One find$* that the Reynolds stresses diverge

in the limit v—0 and can be written as

—
(uw)= -5 (29
with
\od,U In(vk2/39,U)
A= 22 N, +O(vk213,U). (29)

vk? ' dU

A detailed proof of this can be found in Ref. 14 and will not €S
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= osdl D ul—02+w? cosaD —_—
uw=cos R > sno sl UV
— mDR[RUW]) (31)

Inserting(31) in (30) and exchanging the order of integrals
overR andRy, we find

(=55
B _ (32
xz—f def dkhf dRy(cos #3,U)?
—ar 0 —

u2—p2+w?
2

cosfO -

X — — -
sin e[uv]

where the notatiora|§o stands fora(») —a(R,). Using the

initial and asymptotic values af, v andw, one finds finally
that

>\=—Jw deJ dkhJ’ dR,
- 0 -

FLFL(1+Rdarctari1/R,)
X —
cosé

|Fal?

T

14+ R3—2Ry(1+ R3)arctari1/R,)
sir? 0)
cos 6

m = ® 3F
= def dkf dRy————
f_w o ") Rolewkﬁ(uRg)

sir?

—(1+R3)2arctarf(1/R,)

X| 1=

7]
arctart(1/R,)

cog 6 ' 33

Here, we have used8) to simplify the expression. Expres-
sion (33), which is derived in the inviscid limit, shows inter-
ting features. First, note that removing the angular integra-

be repeated here. We can, however, make some remarkgn @nd settingg=0, we obtain the expression afin the

about the sign ok by using the following results: as shown
in Appendix E, the averaged prodyetw) can also be writ-

two-dimensional limit. This expression only dependsfn
and is clearlypositive This means that the “turbulent” Rey-

ten as a function of the product of solutions of the homogenolds stress—(uw) has the opposite sign of the viscous

neous part of22) uw as

<Wv>=—f daf dkhf dR(cos 63,U)
- 0 — o0

R ~—~
X f_w<uw(R,Ro)>dRo. (30)

In the inviscid limit, straightforward manipulations ¢22)

stressvd,U. This result was previously obtained in Ref. 15.

It might be a consequence of the inverse cascade of energy
arising in two-dimensional turbulence. In the three-
dimensional case, expressigd3) is actually divergent, as
noted in Ref. 14. Taking into account the fact that viscosity
regularizes the Reynolds stressdat /2, here we note that

the divergence makes the expressionioinegative This
means that for small enough(large Reynolds numbgrthe
turbulent stress can be expected to change sign and have the

produces the following relation between solutions of the hosamesign as the viscous stress. This discussion is strictly

mogeneous system:

only valid for isotropic forcing.
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Summarizing, we have found that the two Reynolds 1.0
stresses appearing in our model can be express&tBpaand
(27). Here , and\ are functions oz (\ is only via 9,U) 0.5
and are the only parameteffunctions appearing in our
model. They are not arbitrary free parameters, however, but T 0.0
are connected with the energy cascade from the large scales
to the small scales. Of course, the amount of energy cascad- —0.5
ing depends upon the filter which is used, so these constants
are filter-dependent. The exact values mpfand A can be -1.0 , , ,
obtained, in principle, from a numerical LES simulation -1.0 -=0.5 0.0 05 1.0
where the contribution from the subfilter-scales, expressed z/d

by Egs.(28) and(27) are computed self-consistently at each

time step via the forceéB). FIG. 1. FunctiorH defined by(38) (see appendices for detaifer a channel

with a Gaussian filter.

D. Resolved scale solution

Upon substitution of the Reynolds stresses by their exE Qualitative behavior of the model parameters

which are important only close to the surfagmit see Sec.

IV B for inclusion of these terms we obtain the resolved z 3‘~z )+ {0 )dz (39)
scale equations, !
77<U) A Their qualltatlve behavior can be found, for a given filter

) —u2g3(2)— (o). (34  shape, via their definition and their high Reynolds number
expansion. For example, it is convenient to use a Gaussian
filter of width 1,, leading to gs;(z)=N"%(l,)
x exp[—Z/(212)], where N(I,)) is a suitable normalizing
quantity.
Y The computation of the functiorl from its definition
(38) is straightforward, an#ll is shown in Figs. 1 and 2. Note
Us3<~ the linear(channel caseor constantboundary layerbehav-
A= T)\, (35 ior in the core or bulk region, and the deviations from the
linear law near the boundaries. To examine the qualitative

whereX is a nondimensional constant. We stress againkhat Penavior of7 we use the expansiof27) and consider two
might be filter dependent, and that its exact value can béteresting limits. In the near-wall limity;U—u, d/v, and
obtained via a LES simulation. For the term we note that SO the contribution proportional tg, (logarithmic ind,U)

the dimension ofy is VZ/L. So, we write it as tends to zero. Then, to leading order in the viscosityends

to a constant. In the core region, the forcing is isotropic, and
70 tends to zero. Againg is approximatively constant with
only a weak Reynolds number dependence. It is reasonable
to assume thag is piecewise constaiione constant near the
where the refers to nondimensionalized quantities, such asyall, matched to another constant in the dgore

z/L. With this nondimensionalization, and after one integra- For X, we use expansiof27) and arguments similar to

tion overz of (34), we obtain the ordinary differential equa- those used above: near the wall, we find tRatends to a
tion,

{0) " 30y

We now nondimensionalize the length ly=d (channel
cas¢ or L=h (boundary layer cageand the velocities by
u, . Note that\ is dimensionally equivalent to an energ
transfer {/3/L). So we may write

2
Uy~

n= g (36)

_ U 0.5
77—~+)\— f (S(X)+(oy))dx. (37
g;U
0.0,

Here, we have introduced the locati@g where the total
(viscous plus turbulentReynolds stresses vanigb.g., z, T
=0 for channel flows The mean profile can then be ob- —0.5
tained via integration of37) as a function ofz, for a given
filter shape, once the value af and7 is fixed. This shape
can be found in principle from a numerical implementation -1.0 ' ' '
of our subfilter model. Leaving this for future work, we pre- 0.0 0.2 0.4 0.6 0.8 1.0
fer instead to examine the qualitative behavior of the param- z/h
eters of our model, in order to construct qualitative analyticakg, 2. FunctiorH defined by(38) (see appendices for detaifsr a bound-
mean profiles. ary layer with a Gaussian filter.
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constant, with correction in the form of a power series inwherey= _;]/<0'x>- OberlacR showed that this type of law
a,U—R. . Since the turbulent Reynolds stresses at the walls a consequence of a basic symmetry of the Navier—Stokes
must be zero, the constant is necessarily zero, and the expagguations. It corresponds to the solution with the highest

sion of X\ starts with a term linear ind,U —R_..). This prop-

degree of symmetry. As such, he argued that the validity of

erty is used in Sec. IV B. In the core, the forcing is isotropic, this type of law is more likely to be confined to the channel

and\ ; vanishes, giving no logarithmic correction iU to
\. Sinced,U—0 in the core, the main behavior dfis then
constant, with corrections proportional td,J)?; see Sec.
IV A. Because of the isotropy in the core region, this co
stant is expected to be negative.

IV. MEAN VELOCITY PROFILE IN PLANE PARALLEL
GEOMETRY

A. Velocity defect laws in the core region

center(as we have found wheréhan in the near-wall region,
as claimed by BarenblattThis assertion was supported by a
careful analysis of various high and low Reynolds number

n-numerical and experimental datat high Reynolds number

(between 18 000 and 40 0QMberlack foundy=1.69, zp
=0.8d, andU,—Up=4u, . At lower Reynolds number, the
exponent of the power law appeared to increase, suggesting
that y depends weakly on Reynolds number. In terms of our
model this is not surprising, sinceis proportional toy, i.e.,
inversely proportional tdJ., which increases slowly with

Equation(37) is valid far from the wall throughout the Reynolds number. The form of the dependence on Reynolds
core region. To integrate it more easily, we introduce thenumber can be derived using similarity argumént©ne

path variable

7 p(z)dz
s:_fz _mz) _ (39
0 JZ(S(X) + (o)) dx
In terms of this path variablé37) becomes simply
75 = (Us—U), (40)

whereU, = —\/7. Since7 andx area priori both func-
tions ofs, U, is also a function o&. In the core regiorJ
is approximatively constarit, (s)=U_. and(40) can be in-
tegrated to give

U.~U=(U.,~Up)e’ o, (47

finds thatU .= (1/K)In R, —U, whereK is the von Karman
constantR, =u, d/v is the Reynolds number based on the
wall shear velocity andl;, is a constant which may depend
on the geometry. If this law is valid, and i does not de-
pend on the Reynolds number, then our model predicts that
the exponent of the algebraic law should decrease like

_ Yo
TIn(R, IR, )

This is exactly the dependence assumed by Bareflzat
which leads, in the infinite Reynolds number limit, to the log
defect law of the wall. Note, however, that we predict this
behavior for thevelocity defect lawn the core region, using
the outer variable, while Barenblatt assumed this law in the
near wall region, using the inner variable, =R, (1

wheresy, is the value of the path variable at the edge of thet+z/d). A recent analysis of Super Pipe data by Zagarola

core region(where our approximations fajland Uy the
value of the velocity at this location. Equatiofl) is a ve-

et al®! seems to contradict the theory by Barenblatt, while
the study of Oberlack!? seems to confirm the existence of

locity defect law, where the universal scaling function de-the algebraic defect law, even in the pipe geometry.
pends on the path variable, i.e., on the forcing and surface

terms. Since these terms depend on the flow geometry, we

can expect different velocity defect laws depending on the?- Boundary layer

particular geometry of the flow.
1. Channel flows

In the case of channel flows, the surface terms are co
centrated near the wall, and there is a constant streamwise

pressure gradient. The typical behaviottbf dz/ds andsis

n_

In the boundary layer, there is no pressure gradient, and
surface terms are important both near the surface and at the
top of the boundary layer. The typical behavior bff
=dz/ds ands can then be shown by Fig. 2; in the core of the

boundary layer the surface terms vanish, gnahd the func-

shown schematically in Fig. 1 near the channel center. Nedfon H are constant, resulting in a linear dependence of the
the center of the channel the surface terms vanish, and fgrath variable ore. Near the surface and at the top of the

constant or slowly varyingy the functionH is linear inz,

boundary layer the surface terms become more important,

which produces a logarithmic dependence of the path vari@hd small deviations from the linear behavior ®appear.

able onz. Closer to the wall, the surface terms play a large
role, and small deviations from the logarithmic behavior for
s appear. These deviations are not universal, and depend

weakly on the filter shape.
With a logarithmically varying path variabl@ll) leads
to analgebraicdefect law for the mean velocity,

z |7

Us.—U=(U,—Up) : (42

Zp

rAs in the case of the channel, the deviations are not universal

and depend weakly on the filter shape.
With a linearly varying path variable, E¢41) leads to
an exponentialdefect law for the mean velocity,

U.—U=(U,—Up)e FZ%w, (43

where B=—73/H(h/2). This type of law is also a conse-
quence of a basic symmetry of the Navier—Stokes
equations. The experimental validation of this law is diffi-
cult, as discussed by Oberlatklo check it one needs to
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subtract the free velocity ... Therefore, a few percent error TABLE I. Parameter used for the expression of the fitted functidifz)
in this quantity results in a large error in the determination of2"d 7(2)-
the coefficients, and a bad determination of the universaf e

Superpipe Channel Boundary layer
curve in log-coordinates. Oberlack nevertheless obtained &
very good agreement with experimental data ¢ 9.46, Zw 0 -1 0
zp=A., the Rotta—Clausius length, andJ,—Up Z R, z z,
=10.34, . KR, KR, KR,
To our knowledge, our model is the first dynamical deri- 9" 1+KR, 1+KR, 1+KR,
vation of this exponential defect law predicted by Oberlack
on symmetry arguments. Our model also explains why this dH, - - 1EE*R* (1+ R*(Fzrz‘)) 0
type of law is observed in the boundary layer, rather than in
channel flows; this appears to be linked to the absence of KR,
pressure gradients. T MTFKR, 0 0
1 R,
Ne 0 adH, U. KR,

3. Plane Couette flow

Plane Couette flow represents an interesting special case:
because of the antisymmetry of the problem with respect to
z— —z, the mean flow is necessarily zero at the center. This

has some important consequences on energy production aggnditions, we must hava +70=0 at the wall. This is

transfers in the core: in a shear flow, energy production an teed if and onlv & is itself tth W
nonlinear transfers occur mainly as a result of interactiorpuaranteed it and only it 1S 1tselt zero at the wail. e may

with the mean pressure gradient, or nonlocal nonlinear intert-hen expand it near the wall as

actlorjs with the mean flow. We thus expect the “forcing X =No(d,U—R,)+ A (,U—R, )2+, d,U—R,,
(nonlinear energy transfeon the small-scales to be zero at (46)
the core, i.e..7 should be zero at the center of the channel.

With zero, we may redefine the path variable as where\y and\; are some constants, and the Reynolds num-

berR, =u,L/v is the nondimensional value of the viscous

- Ndz' flux at the wall. We have kept the largest relevant order, as
S=- fo " : (44 we shall see later. Fop, we use the qualitative behavior
I2(8(X) + (o)) dx discussed in Sec. Il E and take it to be a constasfich can
be zerg.

Since there are no pressure gradients, this path variable Is

linear in 2 as in the boundary laver case. The intearation of To obtain the equilibrium equation in the near-wall re-
I Nz as . y'ay ' integrat gion, we then substituted this development into the original
(37) then leads to

Eq. (14). After series expansions and rearrangements, these

U=4z, (45) equations becngafter a chagge of variable from outer to
inner variablez—z, =R, (1+2)]

where B=\/H(0). This linear law at the center is also a s

special case of symmetric solution of Navier—Stokes 1+KR,7nU

equations. In fact, it corresponds to the solution with the T

lowest degree of symmetry. Investigation of experimental or

numerical data led Oberlack to conclude that this linear lawwhere the dot refers to a derivative with respect tcand we

was valid to very high accuracy over about 80% of the coréhave introduced

region? It is remarkable that our model also leads to this

linear case as a special outcome of ¢het)-symmetry of the K= 1

mean flow(Table ). R.(1-MRy)°

V4
=KR*<—+—1

= +(1+KR,)U, (47

(48)

B. Near-wall region and universal log-laws Ry =R (1+Xo=2MRy).

We just saw that our model leads to general predictiondquation (47) encompasses two kinds of variation: very
about mean equilibrium profiles in the core region which areclose to the wall, forz, <|R,[, wherex~\, and U/R,
in remarkable agreement with those obtained using symme<1, we have the usual viscous behavigru=1, U=z, .
try by Oberlack It is thus natural to investigate the kinds of This suggests thdR, | should be interpreted as the size of
predictions we can get from our model in the near-wall re-the viscous sublayer, which is usually observed to be of the
gion. For this, we need the behavior of our subfilter tensorgrder of 10 wall inner units. Further away from the wall, for
near the wall. We us@7) and(29) to perform simple Taylor |R, |<z, <z,, the equation can be simplified to
expansions in the near-wall region, as a functionagh. _——
Specifically, we consider first the function For our subfil- M: Kz. . (49)
ter tensors to be zero at the wall, as required by boundary U B
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This equation has two types of solutions for slowly varying R =16.35, K=0.425

~ ~ . . . . 30 .
K, R, and»: when 7 is different from zero, the solution is ; .
algebraic in the inner variable, 25: /

-
_ 1~:(U0— 1~)(Z—+) : 20; /
KR, 7 KR, 7/ \ %0 -
- (50) U, 15t £
a=7nR, . r /

This solution is thegenericnear-wall solution in the present ! 0:
model. It would be exactly the solution proposed by st /
Barenblatt if we allowed the(unknown parameter to de- /
crease with the Reynolds number like~1/In(R, /Ry). At P SN T I R B
the present time, we have no means to checking this possi- 1 10 100 1000 1t 10°
bility. We note, however that Zagarokt al’s® analysis of +

the Super Pipe data indicates the existence of a power lagig, 3. Velocity profiles: our mode(line), data of Kestin and Richardson

regime for 58<z, <500 which would correspond th=0  (Ref. 25 (symbo).

anda=0.137. In this near-wall region, curvature effects are

very small, and the pipe geometry is equivalent to a plane

parallel geometry, so we may interpret this finding as a conThis fixes the value oB as a function oK andR, . The

firmation of our generic solution. general formula agrees very well with some old boundary
When7=0, we obtain the celebrated log law of the wall layer dat&® In Fig. 3, we show a comparison of formug)

with the data of Kestin and Richards&hThis best fit is

obtained withR, =16.35 andK=0.425, resulting inB

=7.34. We also tried to fit our general formula with the most

_ _ recent Super Pipe data. The best fit, obtained viRth
which shows thaK may be interpreted as the von Karman _ 14 5 andk =0.45 leading toB=6.59 (independent of

constant. Note that we can obtain an exact expressi@imof Reynolds numberis shown in Fig. 4, where the solution

the case wher®, andK are constants, independent@f. (53 js compared with the data taken at 26 different Reynolds
Indeed, wheny=0, there is an exact analytical solution of humbers spanning three decades. We resolve the transition

~ 1
U=Inz,+8, (51

(47) between the viscous sublayer to the log-layer very well, and
1T KR this fit captures the universal log-law observed at the differ-
A(z,)= \/(1_2+ IR, )2+ 4 * (52) ent Reynold; numbers. However, in thg transition zone bg—
(KR, )? tween the viscous layer and the log-region, there is an addi-
tional bump in the data which is not captured by the model.
: KR, Zy Re-examining the data analysis by Zagareteal, we see
U=s-r———|1-=—+A], . ; : : . o
2(1+KR,) R, that this bump is possibly associated with an algebraic inter-
) (53  mediate region. Such algebraic behavior can be obtained
U=— * [(1-z, IR,)? within our model only if7 is different from zero. On the
4(1+KR,) M other hand, the existence of the log-law for larger than a
1
+(1—z+/R*)A(z+)]—RIn(ZA(z+) . . . . .
30¢f ]
R, 1 4(1+KR,)
+2(1_Z+/R*))+7+RInT. 25F ]
Note that(53) is thegenerictwo parameter formula describ- =0f ]
ing the whole near wall behavior, from the viscous sublayer =1
o . . : . 15} ]
to the logarithmic region. This formula is a direct conse-
qguence of our subfilter model, and could be used, for ex- 10F ]
ample, to better estimate the friction velocity at the wall. F,
Forz, >R, , this solution reduces to 5t ]
1 O Tl ool vl ] il il
107! 10! 108 10°
U= Rln z,.+B, Z

1 (54) FIG. 4. Velocity profiles obtained with our modéline) (R, =14.5, K
B=-—(1+KR, +2In(K)). =0.45, andyp=0) compared to the data of ZagardRef. 1) (symbols:
2K results for 26 values dR. between 3.18+04 and 3.5E+07.
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30 & 20
R5¢ ] 15}
20 C 7] D 10 L
:)J, L
15} 5t
101 1 0 : A
st ] 1072 107" 10° 10' 10°
L Z,
oL Tl v o cvnd il el
107! 10! 10° 10°

Zy

FIG. 5. Velocity profiles obtained with our modéline) (R, =6.8, K
=0.45, and7=0.185) compared to the data of Zagar¢Ref. 1) (sym- )
bols): results for 26 values dR, between 3.16+04 and 3.5E+07.

few R, precludes the possibility tha is different from zero 0 ;
for z, >R, . We then explored a simple refinement of our -1.0 -05 00 05 1.0
procedure, in whichy is taken as a constant ovex@, z/d

<R, , and in which, for universality reasons, this constant iSric. 7. Velocity profile at Re= 587.19; Moser’s datéRef. 26 (symbo),
proportional to the Reynolds numbey= 7R, (Fig. 6.  our analytical law(line).

Tuning the three constanks, R, and 7, in this new model,

we get the best fit as shown in Fig. 5 wikh=0.45, R, . . ~ .
=6.8, and7,=0.185. The fit is excellent over the whole asymptotic constraints fox at the wall are given by46). In

spatial range, and over four decades of Reynolds numbef8€ COre, or at the top of the boundary layer, the constraints
which, for a three parameter model, is encouraging are obtained by the requirement ofiaite subfilter tensor at

the locationg,U=0 (the channel center, or the top of the
C. Models for the whole flow boundary layer This fixes the development aof as

To push our model to the limit, we now use it to develop ~ X=—7U +\,d,U— 1(d,U)%+---, 3,U—D0. (55
a single model for the_ entire flow region, from the V'SCOUSHere,UC is the velocity at the channel center or at the top of
layer to the core region or the top of the boundary layer .
(depending on the flow geomelryFor this, we emplo the boundary layer, and, and v, are unknown functions of

P 9 . geo y ' PIOY" 5 The parametew, is the equivalent of a nondimensional
matched asymptotic expansions between the core region : . . . .

; . . turbulent viscosity(see Sec. IV [ With this expansion, the
(Sec. IV A) and the near-wall regiofSec. IV B). The idea is .
) A ~ total equation(14) becomes

to use the asymptotic constraints prand » at the wall and ~ ~
in the core, obtained through boundary conditions and the n(U—-U,) B (o)Z— N,
series(28) and (27). This results in a constanj at the wall (R: 1) d,U B R+,
and in the corethe two constants can be differénThe

+a,U. (56)

This equation is similar to the near-wall equation, except for

the “forcing function” H o= ({(0)Z— \,) (R; 1+ ;). This
0.20 ' ' ' ' ' suggested to us the following procedure for fitting the whole
flow: solve the equation

)\eff""’;?effu
U H et d,U, (57)

] whereH g is a continuous function going from its near-wall
behaviorH=—-KR, /(1+KR,) to the core behavioH e,

TABLE Il. Parameter used for the fit of Moser’s data.

0.00 L L ' Reynolds z R, Y
107! 10 10° 10°
z+ 178.82 —0.800 19 1.04
392.27 —0.900 16 1.68
FIG. 6. Functionp(z.) used in our model to fit the data of Fig. (See 587.19 —0.924 14 1.85

appendices for expressipn
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o FIG. 10. Turbulent momentum fluxs; .
FIG. 8. Functionzi(z) used to fit the data in Fig. {see appendices for
expression

2. Boundary layer

and A and ne are simple smooth functions going from In this geometry, there is no pressure gradient, but there
their near wall valugsee Sec. IV B to their “core” value  can be a nonzero integrated momentum flux near the top of
(Sec. IV A).. We obtained the following results. the boundary layer. The simplest smooth function extrapolat-

ing the near wall behavior and constant near the top of the
boundary layer is shown in Fig. 13. We fixed the constant in
the near-wall region so that the log-law is obtained with a
von Karman constant of 0.44. We also fixed the velocity at
In this geometry, the integrated momentum flux must bethe top of the boundary layer td... We are then left with
zero at the center. This fixes,=0. The simplest smooth three free parameters: the location of the transition between
function which extrapolates the near-wall behavior, and imear-wall and core behaviag (see Fig. 11, the value ofy
linear in the core and zero at the center is shown in Fig. 6and the value oR, , which governs the viscous/turbulent
We fixed the constant in the near-wall region so that thetransition. We varied the three parameters and used a least-
log-law is obtained with a von Karman constant of 0.45. Wesquare procedure to choose the best value to fit the data. An
also fixed the velocity at the centél,. We are then left with  example of a fit to the numerical data of Nockemaral >
three free parameters: the location of the transition betweeis shown in Fig. 11. This fit was obtained with the function
near-wall and core behaviag; (see Fig. 7, the value ofzn Hs and % shown in Figs. 12 and 13.
and the value oR, , which governs the viscous/turbulent
transition. We varied the three parameters and used a least-
square procedure to choose the best value to fit the data. An

1. Channel flows

example of a fit of the numerical data is shown in Fig. 7. We 30F ' ' ' -
fitted the numerical data of Moset al?® which are avail-

. 25k ]
able on the web athttp://www.tam.uiuc.edu/ 9
Faculty/Moser/Channel . The parameters for each of _Ot ]
the three Reynolds number are listed in Table Il. This fit was S 15 ]
obtained with the functiokl . and% shown in Figs. 8 and 9. ok y ]
The corresponding turbulent momentum flux is shown in
Fig. 10. It agrees very well with data from numerical 5f 1
simulations® 0 s R

107! 10° 10! 10* 10°® 10*
Z,

30F

25 E
20 E
= 15 E
10f E

5F 1
0 .

: : : 00 02 04 06 08 1.0
-1.0 =05 00 05 1.0 2/h

z/d

B FIG. 11. Velocity profile at Re= 20 920: Nockemann's datéRef. 27
FIG. 9. FunctionH(z) used to fit the data in Fig. 7. (symbo), our analytical law(line).
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0 ical asymptotic expansion for periodic shear flowuso
-20f boundary or wall regime which showed that any eddy vis-
_aof cosity will necessarily becomeegativebeyond a certain
critical Reynolds numbet®
& 60y Our analytical integration shows that our subfilter model
—-80¢ naturally leads to all the different mean profiles which have
—100F been experimentally observed. Moreover, we have shown
—120 , , , - how boundary conditions and external pressure lead to the
0.00 0.02 0.04 0.06 0.08 0.10 selection of a peculiar profile, and how a smooth matching of

z/h the “external” (at the boundarigsand “internal” (at the
centej solution led to velocity profiles in very good agree-
ment modern available data. The only uncertainty lies in the
values of the numerical constants which appear in the ana-
lytical integration (e.g., the von Karman constant, or the
value of » near the wall, which we cannot predict analyti-
cally a priori since they are related to the energy cascade
Traditional stochastic averaged approaches for shedfom large to small scales via the forcinghich we have
flows usually attempt to model the entire Reynolds stresgrescribedl The ultimate test of our model will thus be a
T13=((u+U)(Ww+W)). In the present approach, however, numerical implementation, which will produce numerical
we first use a spatial vertical filter to separate the velocitwalues of the constants which can then be compared with
into its resolved and subfilter-scale parts, and then modeinalytical data.
each term separately via a nonlocal approximation. We ob-  From a theoretical point of view, our analytical approach
tained the final result, leads to a number of new results regarding shear flow dy-
A+ 7(U) namics gnd modelling.. Our study first shows thalinear
Tlgzw, (58 mechanism of rapid distortion of the small, turbulent scales,
z by the mean large-scale flow is responsible for the variety of
where\ and # are functions o,U only and depend on the shear profiles which are observed experiment@dly, linear,
energy transfers from the resolved to the subfilter scales. Ialgebraic, and exponentjalThis result can be seen as the
addition, their behavior is not knowa priori, but we were physical counterpart of the mathematical result obtained by
able to obtain their near-wall and core behavior fromOberlack using a Lie group analysis of the Navier—Stokes
asymptotic expansions, which provides a more quantitativequations. This result also complements the analysis of
picture of 73;. Using this expansion the Reynolds stress carfarell and loannoil who showed that in a shear flow the
be put in the form solutions of the linearized equations of motion, forced by a
stochastic noise are the various coherent struct{stesaks,
Ao+ 7o(U) T . . P : . :
- 7 (59 hairpin vortices. . .) identified in numerical simulations or
dAU) experiments of shear flows. This supports the hypothesis that
wherev,, , 7, , Ao, andz, are constants which are different the small-scale structure is determined mainly by interaction
in the near-wall and core regions. The first tern{5) is the ~ with the mean flow.
standard eddy-viscosity. A striking consequence of this re- From a practical point of view, our asymptotic expan-
sult is that in order to fit the whole turbulent channel flow Sion leads to an analytic expression for the transition be-
data, one needs to imposepasitive eddy viscosity at the tween the viscous- and log-layer. This formulation depends
wall, of the order ofv,=KR, ui/yzguf/v, and anegative  On three parameters: the von Karman conskarthe size of
eddy viscosity at the core, of the order of= —3/(2R,). the viscous layeR, , and » which characterizes the mean

This last result is in good agreement with a previous theoretforcing acting on the subfilter velocities in the mean stream-
wise direction. The first two parameters are sufficient to de-

scribe the transition from the linear viscous profile near the

FIG. 12. Functionye«(z) used to fit the data in Fig. 1(see appendices for
expression

D. Discussion

T31= ~ Vix (92<U>+ T T

15 ; : : : wall, to the log-profile away from the wall. The third param-
eter » is required to describe the “bump” observed in the
101 ] high Reynolds number Super Pipe data. This parameter,
however, does not correspond to any classical turbulent vis-
T 5f ] cosity. It is therefore interesting to compare our formulation,
with previous empirical models of the turbulent subfilter-
0 ] scale tensor. This is traditionally obtained via a turbulent
viscosity model,
-5 . . , .
0.00 0.02 0.04 0.06 0.08 0.10 T13= 11d;U, (60)

h . . .
2/ where v, is the turbulent viscosity. In order to reproduce

FIG. 13. FunctiorH4(z) used to fit the data in Fig. 1(see appendices for accurately the profile Variati(_)ns near the wa!l, one is usually
expression forced to take a turbulent viscosity that varies withsuch
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that it is zero at the wall. One popular motfelncludes V. SUMMARY

exponential damping of the viscosity at the wall, over some

characteristic length scalg = 26v/u,, . In our case, we have In this paper we have developed a new model for plane
taken into account the near-wall damping in our asymptotigarallel flows which involves the coupling of two dynamical
expansion. It occurs over a length-scale=R, v/u, equations: one for the resolved scafeich depends upon
~7vlu, . The shape of the damping in our case, can bdghe Reynolds stresses generated by the subfilter mgtions
found by comparing60) with (59). Our description corre- and one for the subfilter-scaléahich can be used to com-

sponds to an “effective” turbulent viscosity, pute the subfilter-scale Reynolds stregséhe subfilter-
scales evolve according to a linear inhomogeneous equation,
T Ao+ 76(U) which is forced by the energy cascade from resolved to
Vfﬁ: Vi T . . (61 subfilter-scales. Under the assumption &torrelations of
&Z<U> ((92<U>)2 .

the forces the subfilter-scale equation can be formally inte-
agrated, which leads to an expression for the subfilter-scales
as a function of the resolved motions only.

We then used this analytical expression for the subfilter-

scale implied by our model. This length-scale appears Wheﬁcales to study the possible equilibrium profiles arising in a

the turbulent viscosity is expressed as a function of the meaﬂlan,? g.eometry.. In the core region our classmcathn of the
sheard,(U) equilibrium profiles agrees with the system derived by
z L]

Oberlack? from the basic symmetries of the Navier—Stokes
ve=ClI2d,(U). (62) equatlons. This shows_ that our model r.espects all the basic
symmetries of the Navier—Stokes equations. In the near-wall

Comparison of our model witt62) shows that the two mod- region we used an asymptotic expansion to obtain a theoret-
els are compatible provided the turbulent length-scale variei§al description of the complete transition region between the

Thus, in our model the damping occurs self-consistently vi
the velocity gradients.
It is also interesting to interpret the “turbulent” length-

like viscous layer and the log-region. We showed that an excel-
lent fit to the recent data from the Super Pipe experiments
/X+7;U can be found from our theory, which includes a new quantity

(63) describing the effect of the energy cascade from resolved to
subfilter-scales. Finally, we showed that our formulation
ves a description of the equilibrium profiles across the
ﬁole turbulent channel via a simple matching procedure.
From a theoretical point of view, it is interesting to com-
pare the results of our approach with the recent similarity

T auy

. i
Such a shape has so far never been proposed in a turbuk%
model based on dimensional arguments. Its is therefore use-
ful to compare it with standard empirical models. Near the

wall, the velocity profile is logarithmic and the mean veloc- theories of Barenbldttand Georgeet al”® In the near-wall

ity is small so the corresponding length-scale varies Iinear|¥egion we find that the relevant scaling variables are the
with the distance from the wall. This is in agreement with thefriction’ velocity and the inner length scate , in agreement

standard single length-scale description of turbulent fI0W§N. h . . :
X . We al ff I -
near the wall. Farther from the wall the change in length- ith George. We aiso predict two different possible near

scale depends on the geometrv. For channel flows. one CwaII velocity profiles, the algebraic profile of Barenblatt and
P 9 y. net TIows, eorge, or the more traditional logarithmic profile. The se-
actually show that the mean velocity profile in the core re-,

. ; lqebraicall Sec. IV A with the dist lection of one or the other depends on the properties of the
gion varies algebraicallysee Sec. wi € distance forcing due to the energy cascade from large to small scales
from the core, and one can expect a weak variation of th

) . G(’see also Ref. D4 which we cannot study analytically. On
length-scale in the bulk of the flow, followed by a dlvergencethe other hand, we have no clear indication that the exponent

at the center of the channel. This divergence may explain th8 the possible power law is Reynolds number depentist
scatter in measurements of the turbulent length-scale at th {edicted by Barenblatt and Geojgeor do we obtain the

location. Note that the inverse dependence of the length-, . T .
SOV g hifted | hmic | b | for-
scale(63) on the mean gradient is similar to the empirical shifted logarithmic law predicted by Georlaur general for

S a1 mula is given in(53) and is more complicated than a shifted
description of the length-scale proposed by Henal, log-law]. In the core region, we find that the relevant scaling

variables are the central velocity and the outer length scale
}: A ;U (64) z/d, in agreement with George. We obtain various different
Iz \/<w2>' velocity defect laws according to the geometry; in channel
flows, we predict the occurrence of algebréic logarithmic,
where z, is the distance from the wall, andl and B are  for very special energy cascadle®locity profiles, in agree-
arbitrary parameters. This description gives the same qualiment with George. For zero-pressure boundary layer, how-
tative behavior as ours; near the wall the behavior is domiever, our prediction is an exponential velocity profile, in con-
nated by the first ternfgiving the usual linear law for the tradiction with the algebraic prediction of George. Note that
length scalg while far from the wall the second term domi- exponential laws might sometimes be confused with alge-
nates(giving a linear dependence ofl With the mean ve- braic laws with very large exponent in a data analysis involv-
locity gradienj. This is precisely the dependence predicteding large error bars. This is typically the case of boundary
by our model. layer experiments, since the determination of the velocity
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defect law implies the very precise knowledge of thewhere theg; are functions which decay rapidly when their
asymptotic velocity, which is not always available. argument is larger than one. The choice of the characteristic
Together, these results confirm the interest of our neWength-scales? will be discussed further in Sec. IIl. Physi-
subfilter-scale approach, which uses an approximation tea|ly, this scale represents a scale intermediate between the
subfilter-scalevelocitiesto compute the subfilter-scale Rey- scgle of the resolved field,, and the scale of the subfilter
nolds stressegand hence equilibrium flow profilgsWe are  fig|d |. In the sequel of the paper, we shall assume that the
now attempting to numerically integrate our set of coupledratio /L is a small parameter, called the scale separation.
equation in order to find completely quantitative solutions to  Note that the filter influences our results via constants
the problem of plane parallel flows at high Reynolds number,ynich are filter dependent. We shall mention this depen-
From a more general perspective, it is interesting to Not&apce where appropriate. Using this filter, we can now de-

that the basic approximation use to derive our subfilter mOdeéompose the velocity field into its medlarge-scalgand its
from the Navier—Stokes equatidthhe nonlocality of subfilter fluctuating (small-scalg contribution

energy transfejscould be easily applied to other type of

flows (including, e.g., temperature, magnetic fields, rotation

and geometry to derive equivalent subfilter models in a sys-

tematic way(see, e.g., Refs. 33—B5The quality of the cor- u(x,t)=U(xt)+u'(xt),

responding model would of course depend on the validity of (A3)

the nonlocality approximation in the given flow and geom-

etry, but it may be possible in some nonfavorable case to find

appropriate modifications of the model which do not spoil its U(X,t)EU:j g(x—x")u(x’,t)dx’.

main feature(its linearity). For example, we have recently

shown that in three-dimensional homogeneous turbulence

with no mean flow, one can replace the local subfilter energy

transfer by a mere turbulent viscosifinstead of dropping Notice that our filtering only concerns spatial scales, not time

them to obtain a model which reproduces all the mean andscales. In experimental measurements, however, time and

statistical properties of the complete Navier—Stokes equaspace filtering are often linked because of the use of the

tions. Taylor hypothesis. In this spirit, we allow the possibility of
adding time filtering to our spatigbr scale filtering. This
freedom will be used in our analytical computations, to as-
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APPENDIX A FILTER AND AVERAGE and small scales is dictated by physical consideratiGes.

In Appendices A—G, we present a number of technical!l) Which only apply because of the scale differertseale
results necessary in the derivation of our resolved and sutpeparation between the two components. This means that

filter equations. our hypothesis might not be valid for ensemble averaging.
This also means that we should be cautious when averaging,
1. Definition since for example the filtering of the product of two filtered

. quantities is not necessarily the product of the filtered quan-
In order to distinguish between large and small scaleswe,, — — This h hen the fil , b
introduce a filter functiorg(x). For reasons of convenience tities, up #Uv. This happens when the filter size cannot be

which will become clear in Sec. Il B, we choose the follow- chosen to be too small because of insufficient scale separa-
ing separable function: tion. Similarly, the filtering of a product of a small-scale

quantity and a large-scale filtered quantity is not necessarily

9(x) =T1,g;(x;) (A1 zero. As we shgll see, this produces additional terms in the

averaged equations with respect to the usual Reynolds aver-

where g, are positive functions, which are normalized to @3€, based on ensemble averaging.

unity with a characteristic length-scalé . Thus, we can Another important difference between the LES filtering
write them as and the ensemble average is in the combination of deriva-
tives and averaging; derivatives and averaging commute for
1. [ x, ensemble averaging. For L!ES filtering, this is not the case in
gi(x) = —*gi<:), (A2)  general. To see this, consider the average of some derived
I; I3 guantity, sayd,u, and integrate by parts over. We get
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_ , L same decomposition using a wavelet transformatidyt it
07xU=f g(x—=X")dy u(x")dx is more complicated for analytical computations.

, S\ xmax 2. Useful properties of the Gabor transform
=f dydzgx—x")u(x")|ymin prop
A few properties of the Gabor transformatioBl) are
worth mentioning at this point. First, the inverse Gabor trans-

_f (dg(x=x"))u(x")dx". (A4) " form is easily obtained by an integration over

By symmetry, the derivative ovet’ in the second term of 1 -

the rhs of(A4) can be changed into minus a derivative over ~ f(O)u’(x,t)= 5 Df u’(x,k,t)dk. (B2)

X, which can then be taken out of the integral, giving a term (2m)

d.u. We then see that average and derivative commute onl§econd, we note that as in filtering, the commutation of Ga-

if the surface ternthe first term in the rhsis zero. If not,  bor transform and partial derivative is subject to surface

this term has to be taken into account in the derivation oterms which depend on the boundary conditi¢ios reasons

LES equations. When dealing with unbounded systems, thianalogous to those given in Appendix A 2lso, there is an

problem of commutativity is not important, since one usuallyinteresting approximation to the derivative of the Gabor

considers physical quantities which tend to zero at infinity.transform,

The noncommutativity arises in finite size systems, where ~

boundary conditions may reflect some physical processes. In 9’ ~ikju"+O(1/(Lk)), (B3)

plane parallel flows this is the case in the vertical direction afyhereL s the typical scale of the large-scale flow. Techni-

the bottom of the layer where we have to take into accounta|ly speaking,e=1/(kL) labels the scale separation be-

the momentum and heat flux at the surface0. ~ tween the large scales and the small scales. It is a parameter
Finally, we can use the scale separatidn<1 to esti-  |ess than one. Third, it is interesting to consider the Gabor

mate the average of resolveat subfilter quantitiesbecause  transform of a quantity involving the product of a function

the scale ofg is just intermediate betwednandL. So, itis  yarying over large scalege.g.,U) and a function varying

large with respect té, and small with respect tb. We then  oyer small scalege.g.,u’),

find, for a quantityQ with averageQ and subfilter parQ’,

- _— Uu’'= | f(x—x")ektxDux’ tyu’ (x’,t)dx’. B4
szg(x—x')Q(x’)dx’ (x=X') (X', Hu’ (x',t) (B4)
Because the kernélvaries over scales of the order okd/
while U varies over scales of the order one can Taylor
expand the functiotd around the poink’. To first order in
(A5) €, and after integration by parts, we obtain

~Q00 [ 90x-x)dx =Q0x),

5=f g(x—x)Q'(x")dx' ~0. — o )
Uu’(x,k,t)=U(x,t)u’+|Vi(Uj(x,t))Vkiu’. (B5)

Here, we have used the fact t@tis a slow function with . . . . L
This expansion will be useful in our derivations.

respect tay and can be taken out of the integral. In the same ) . ; .
way, g is a slow function with respect Q' and can be taken Finally, it is interesting to con§|_der the average of the
out of the integral. This approximation is valid up to orderpmduc—t, O,f tWO, small-scalle. quantmgs, .e.g., the Reynolds
e, =1*/L~I/I* (if we take|* as the geometrical mean of stressu; uj. Using our definition of filtering(A3) and the
the large and small scales fact that (27)°8(x’—x")=felk~x)e kXK and f2
=(g, we can write the Reynolds stress at poirind timet as
a function of the Gabor transform,
APPENDIX B: GABOR TRANSFORM
—_ 1

1. Definition ui’uj’: 22 )Df (ﬂi’(k,x,t)ﬂj’(—k,x,t)
v

Our ultimate goal is to write an equation for the small
(subfilten scales, as a function of the largesolved scales. +U/ (- k,x,t)ﬁj’(k,x,t))dk. (B6)
However, we would like to take into account the fact that the
small scales are strongly inhomogeneous in space. A gOORPPENDlx C: SPECTRA AND CHOICE OF THE
way of representing inhomogeneous fields is to decomposg torrs
them into wave packets, using for example, the Gabor

transformatior® The definition of our filtering involves the choice of the
characteristic length scale of the filter. To choose this scale
u’(x,k,t)= f f(x—x")e* =Xy (x' t)dx’. (B1)  in a physically meaningful way we can use the spectral mea-
surements of Ref. 22. Their result indicates that the stream-

For reasons of convenience which will become clear laterwise and vertical velocity components of a wall-bounded
we choose heré(x) = \/g(x) (sinceg is a positive function; turbulent flow have different spectral characteristics. Both
this is always possibje We could also have achieved the are characterized by a Kolmogorov energy spectrum at small
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scales (—:(k)~kx_5’3), and by an approximately flat spectrum we can eliminate the viscous terms from the homogeneous
at large scales. However, the wave number of the transitioequations. The ray equations can then be integrated in the
between the two regions is approximately one order of magstandard way, starting from. We find three independent

nitude larger for the vertical component than for the streamsolutions to the homogeneous system, two trivial ones,
wise componeniwhere an additional transition region where

E(k)~k;1 is present over one decade before the spectrum \;vl:l}l:o,
flattengd. These features suggest choosing the filtering scale

U1:D,

to be the scale corresponding to the peak wave number ofthe » - _ o -~ _p s
vertical velocity spectrum. In this way, we can expect the U Tee
resolved vertical velocity to be smaller than the streamwisgyng a more complicated one,
resolved velocity, enabling a substantial simplification of the
resolved and subfilter-scale dynamics. Since this scale will 0, R Sir?
nevertheless correspond to an inertial range scale of the —=—cosé + atanR,
. : . . D 1+R%? cosd
streamwise velocity spectrum, the subfilter streamwise ve-
locities should still be much smaller than the resolved
streamwise velocities. This guarantees that the dynamics be- v, .
tween small and large scales will be essentially nonlocal p S ‘9( R2+atanR ’ (E3)

(i.e., between resolved and subfilter scales palythe sub-

filter level, allowing for a linearization of the small-scale
dynamics, and, therefore, analytical solutions. 22 )
D 1+R?

>

APPENDIX D: CORRELATION BETWEEN FORCES

AND RESOLVED VELOCITY Now, we introduce the 83 matrixK(R) whose columns are

made up of the three independent solutions. We also intro-
In this appendix, we compute the correlation betweerduce the vectoF=(d,U cosé) Y(Fi F. F.). The general
the Gabor transforms of resolved velocity and forces, usingolution of the innomogeneous systéa?) can then be writ-
the s-correlation assumption. Using definition of GT we ten ¢(R)=(1,0,w), with
have

(U(xq,kq,t) Fl(X2,kp,t2)) H(R)=K(RK™L(Ry) o+ K(R)fRRKfl(r)F(r)dr.

=f f(e*[xg—X'|) F(€*|xy—X"])elkr a=X) ko (xo=x") (E4)
Taking as initial condition=0 at Ry=— (no small-
scales at=—x), we can finally write the general solution
as

X(U (X't Fr(X",t5) )dx’ dX”

:f fz(e*|Xl—x’|)eikl‘(X1*X’)+ik2'(X2*XH)

qS(R):fiK(R)K’l(r)F(r)dr. (E5)

XU(X' 1) Fr(X" 1) 8(X" —X") 8(t,—t,) dx’ dx”

=U(xg,t) F2(€*[xy =Xl 12) 8(t1 — 1) €lke et haxa) Note that the integrand is just the solution of the homoge-
neous system, with initial conditiob(R=r)=F(r). This
point is used in Sec. IV. Also, consider a product of two

components ofp, say ¢,¢%=uw*. Upon using(E5), and

XFT(Fi)(k1+k2), (D1)

where FT is the Fourier transform. When derivi(igl) we

took into account thaE* decays faster im thanf does(we
putx’=x"in f). We also took into account that is a slow

the definition of the average using Gabor transf¢B), we
can write

function so that it can be taken out of the integral by setting

[
X' =Xq.

APPENDIX E: ANALYTICAL SOLUTIONS OF SMALL-

2

(uwy= >

R
> dekhdkhde dry
j,|,j/,|/:l —

SCALE EQUATION R . .
. . . . . X drlKlj(R)KljV(R)Kjl(rO)Kjrw(rl)
In this appendix, we provide the analytical solution to -

the system of ray Eqg22). To solve this system of equa-
tions, we first solve the homogeneous system, with F,
=F,=F,=0). First, we note that by introducing

X(Fi(ro)Ffi(ry))- (E6)
Because of the delta correlations of the fofsee Ref. 14
the average brings down a factercos#d,Ur&(r,—rg) [be-
causet—to= —cos#,U(R—Ry)], where 7 is a typical time
scale(necessary for dimensional reaspnSo after integra-
tion over sayy,, (E6) becomes

(ot wh=(u,0,w)D,
(ED)

D= vk R+R%3
=ex 5zU( + ) |,
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_ R 1+R3
(uw)y=—9,U | cos@dbk,dk,dR| drgk ——4f khdkhf de f
. —»]1+R?

X 2 Ky(RKT (RIK (1)K (ry)

i =1 C FT(Fy)(0kp,knRp)

*
X(Fi(ro)Fy(ro)). &7 FT(FL) (knS,kny (1— 82, kyRg) e s(Ro* R)2
Here, the integrand ofE7) is just the product of two solu- E J1—¢2

tions of the homogeneous system with initial condition
¢(R=r)=F(r). This property is also used in Sec. IV. We
stress once again that this simplification is only valid when
one performs the averaging procedure.

Fu(0Kn . KnRo) (F3)

In the isotropic casgwhen Fy, only depends onkp(1
+R2)], symmetries of the integral defining, make it equal

to 0.
APPENDIX F: DIVERGENCES

The expressiori26) for (W) involves a divergence in  AppENDIX G: ANALYTICAL EXPRESSION OF
the inviscid limit, which can be used to study the asymptoticeyNCTIONS USED TO FIT THE DATA

expansion of 7. The divergence actually occurs at . .
=+ 7/2 due to the inverse cosine factor. To study it, we use ' WO functionsH(z) and#(z) are used to fit the data for

symmetries of the forcing to write the dependent part of each comparison. We give the analytical expression of these

the integral as functions for each of the three cases.

J'W g |:T(|:jv) 1. Function Hgs or H

. R
0 e'kncos 0(R+Ro) g~ "kﬁf (1+X?)dX/cos 6 9,U
. cosé Ro

He is computed from numerical integration df
=[dh/dz dz where

7l L
:4f 240 T W) iy cos R+ Re) g acos 0 (F1) dH  dH,,+dH, dH,,— dH,
cos 6 ’ = (D)t (GY)
dz 2 2
where o= vk? fR (1+X?)dX/9,U will be our small param- wheref(z) is a smooth function so that
eter in the |Imltv—>0 (S(_ae Ref. .1)4 A change of _vanables f=+1 for z,<z<z (nearwal),
cosb—s allows us to write the integral involved iff1) as (G2)
f=-1 for z<z<z. (core region,
1 ikyS(R+Rp) 1
4f1 FT(Fy)(s)e™ ° _ FT(Fw)(0) eals and the integration constant is chosen so that
0 syl—¢? S —KR
H(zy) = . (G3
IFT(FL, 1O e " 1+KR,
4f0 S ' (F2) The expression of the slopedH,, anddH;) are given in

Table I. We have chosen the following smooth functfon
The first integral is convergent at=0, and its leading-order

approximation can be easily found by expanding the expo- f(z):tam{z—zt . G4
nential. The second integral is proportional to the exponen- 5% 7,
tial integral functionE;(x)=fje~Y*dt/t, whose expansion
nearx=0 is 2. Function 7.4 or n
E,(x)=C+1In x+0(x), This function is chosen so that
, o Twt” w7
whereC is Euler’s constant. Overall, the expansion oiw) = () + —— (GH)

2 2

where f(z) is the same smooth function than fet. The
expression of the constanig, and 7. is given in Table I.

is

Uw)=n——
(Uw)y= 7 ok
3. Table of fitted parameters

7= ol at 771+ O(e), The fitted parameters are, in principR, , K, a, U,

1+ R2 10, andz; . For simplification, we only fitte on the Zaga-
_ _4f khdkhf de L0k, thO) 0 rola data, and fixedK=0.45 (k=0.44) in the channel flow
(boundary layer, and the value obJ.,
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