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Abstract

An adaptive multilevel wavelet collocation method for solving multi-dimensional
elliptic problems with localized structures is described. The method is based on
multi-dimensional second generation wavelets, and is an extension of the dynami-
cally adaptive second generation wavelet collocation method for evolution problems
[Int. J. Comp. Fluid Dyn. 17 (2003) 151]. Wavelet decomposition is used for grid
adaptation and interpolation, while a hierarchical finite difference scheme, which
takes advantage of wavelet multilevel decomposition, is used for derivative calcu-
lations. The multilevel structure of the wavelet approximation provides a natural
way to obtain the solution on a near optimal grid. In order to accelerate the con-
vergence of the solver, an iterative procedure analogous to the multigrid algorithm
is developed. The overall computational complexity of the solver is O(N ), where N
is the number of adapted grid points. The accuracy and computational efficiency of
the method are demonstrated for the solution of two- and three-dimensional elliptic
test problems.
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1 Introduction

Elliptic partial differential equations (PDE) are common in many areas of
physics and engineering. There have been several promising attempts to de-
velop adaptive methods for these equations, most notably those based on
adaptive finite elements [1–4]. However, little has been proved regarding the
convergence of these schemes. In contrast, substantial progress has been made
recently in proving convergence of wavelet-based adaptive methods for elliptic
PDEs. In particular, it has been proved that the adaptive wavelet scheme con-
verges for a variety of elliptic PDEs, as well as for singular integral equations
[5]. Furthermore, it was shown that adaptive wavelet schemes are asymptoti-
cally optimal for elliptic equations, in the sense that the rate of convergence
to the exact solution with respect to the number of degrees of freedom is the
same as the rate of convergence of the best N -term approximation, which is
obtained by retaining the N largest wavelet coefficients of the exact solution
[6,7].

In recent years, there has been a growing interest in developing wavelet-based
numerical algorithms for both elliptic problems [5–9] and evolution problems
[10–23]. The existing wavelet-based numerical algorithms can be roughly clas-
sified as either adaptive wavelet Galerkin methods (AWGM) [6–14] or adaptive
wavelet collocation methods (AWCM) [15–23]. The major difference between
these approaches is that AWGM algorithms solve problems in wavelet coef-
ficient space and, in general, can be considered as gridless methods, while
AWCM solve problems in physical space on an adaptive computational grid.
Two difficulties associated with AWGM are the treatment of nonlinearities
and general boundary conditions, although different possibilities of dealing
with these problems have been proposed [24–29]. AWCM, on the other hand,
do not have these difficulties and the treatment of nonlinearities and general
boundary conditions is a relatively straightforward task. The main advantage
of AWGM is they generate a sparse operator representation [24], which is
the reason research efforts were initially concentrated on the development of
AWGM solvers. To the best of our knowledge this paper is the first attempt
to develop a AWCM based elliptic solver.

The major strength of wavelet-based methods is their ability to adapt the
computational grid (basis) to the solution. In AWCM every wavelet is uniquely
associated with a collocation point, and thus grid adaptation is based simply
on the analysis of wavelet coefficients: i.e. at any given time the computational
grid consists of points corresponding to wavelets whose coefficients are greater
than a given threshold (a parameter that controls the accuracy of the solution).
With this adaptation strategy a solution is obtained on a near optimal grid
for a given accuracy. This means that the compressed solution is obtained
directly, as opposed being the result of a posteriori compression, as is done in
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data analysis. We emphasize here that the adaptation of the computational
grid does not require additional effort, and consists merely in turning on and
off wavelets at different locations and scales. Furthermore, grid adaptation is
achieved by analyzing the solution, and not by applying ad hoc assumptions,
as is often the case in conventional adaptive mesh algorithms [30,31].

Traditionally, wavelet-based numerical methods make use of first generation
wavelets that are constructed by discrete (typically dyadic) dilation and trans-
lation of a single mother wavelet ψ(x). This results in the construction of first
generation wavelets [32,33] that are defined either in infinite or periodic do-
mains. It is desirable in many engineering applications to have a larger class
of wavelets that can be defined in general domains and/or on irregular sam-
pling intervals. In order to achieve this, the translation and dilation relations
of the first generation wavelets must be abandoned, and wavelets are con-
structed in physical space rather than in Fourier space. Recently, a new class
of wavelets, currently referred to as second generation wavelets [34,35], has
come to the fore. The main advantage of second generation wavelets is that
they are constructed in the spatial domain and thus can be custom designed for
the complex geometry and nonuniform sampling intervals commonly found in
engineering and physical applications, e.g. heat transfer in complex geometry
with localized heat source.

The general framework of the second generation adaptive wavelet collocation
method has been developed by Vasilyev and Bowman [22] and Vasilyev [23]
in context of evolution problems. The objective of the present work is to
extend the method to the solution of multi-dimensional elliptic problems with
localized structures. Two different issues are addressed in this paper. The first
concerns the development of a general adaptive elliptic solver that obtains a
solution on an optimal (compressed) grid. The second is the development of
an efficient multilevel elliptic solver for an adaptive, but fixed, computational
grid. The multilevel structure of the wavelet approximation provides a natural
framework to establish an iterative algorithm, which is similar in spirit to
multigrid methods [36]. These two techniques are then combined to produce an
adaptive multilevel elliptic solver. The main differences between the proposed
multilevel elliptic solver and multigrid methods are the structure of the nested
grids and the use of wavelet interpolation for both prolongation and restriction
operators.

The paper is organized as follows. Section 2 gives a brief introduction to the
second generation wavelets and wavelet compression. The adaptive wavelet
collocation method for solving elliptic PDEs is introduced in §3. Finally, §4
presents some applications of the method to the solution of the Poisson equa-
tion, along with quantitative convergence results. The main results are sum-
marized, and future research directions are outlined in §5
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2 Second generation wavelets

Second generation wavelets [34,35] are a generalization of biorthogonal wavelets
[32,33] which are more easily applied to functions defined on domains more
general than Rn. Second generation wavelets form a Reisz basis for L2 space.
The basis is local in both space and frequency, and can have many vanishing
polynomial moments. However, the translation and dilation invariance of their
biorthogonal cousins is lost. Despite the loss of two fundamental properties
of wavelet bases, second generation wavelets retain the most useful features
of biorthogonal wavelets, including the existence of a fast transform. In this
section we briefly summarize wavelet decomposition. For details of multires-
olution wavelet analysis and construction of second generation wavelets we
refer the reader to [34,35].

In this work we use tensor product second generation wavelets [23,35] that are
constructed on a set of nested grids

Gj =
{
xjk ∈ Ω : k ∈ Kj

}
, j ∈ J , (1)

where j is the level of resolution, k = (k1, . . . , kn), and the grid points
xjk = (xj1,k1 , . . . , x

j
n,kn

) are constructed as a tensor product of uniformly or
non uniformly spaced one-dimensional nested grids [23]. Since each individ-
ual set of one-dimensional grids is nested (xjm,kl = xj+1

m,2kl
, m = 1, . . . , n) the

resulting set of n-dimensional grids is also nested, i.e. Gj ⊂ Gj+1. Following
the construction of second generation wavelets described in [23,35], we con-
struct n-dimensional tensor product scaling functions φjk(x) (k ∈ Kj) and
wavelets of different families ψµ,jl (x) (l ∈ Lµ,j) such that a function u(x) can
be decomposed as

u(x) =
∑
k∈K0

c0kφ
0
k(x) +

+∞∑
j=0

2n−1∑
µ=1

∑
l∈Lµ,j

dµ,jl ψµ,jl (x). (2)

One may think of a wavelet decomposition as a multilevel or multiresolu-
tion representation of a function, where each level of resolution j (except the
coarsest one) consists of wavelets ψjl or family of wavelets ψµ,jl having the same
scale but located at different positions. Note that scaling function coefficients
represents a smoothed version of the function at the current scale, while the
wavelet coefficients represent the details of the function between the current
scale and the next finest scale. Also note that in n-dimensions there are 2n−1
distinct n-dimensional wavelets [37].

The major strength of wavelet decomposition (2) is the ability to compress
functions. For functions that contain isolated small scales on a large-scale back-
ground (i.e. intermittent functions), most wavelet coefficients are small. Thus,
we can retain a good approximation, even after discarding a large number of
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wavelets with small coefficients. Intuitively, the coefficient dµ,jl is small unless
the u(x) has variation on the scale of j in the immediate vicinity of wavelet
ψµ,jl (x). More precisely, if we rewrite (2) as the sum of two terms composed of
wavelets whose amplitudes are respectively above and below some prescribed
threshold ε,

u(x) = u≥(x) + u<(x), (3)

where

u≥(x) =
∑
k∈K0

c0kφ
0
k(x) +

+∞∑
j=0

2n−1∑
µ=1

∑
l ∈ Lµ,j
|dµ,j

l
| ≥ ε

dµ,jl ψµ,jl (x), (4)

u<(x) =
+∞∑
j=0

2n−1∑
µ=1

∑
l ∈ Lµ,j
|dµ,j

l
| < ε

dµ,jl ψµ,jl (x), (5)

then, following Donoho [38], it can be shown that for a sufficiently smooth
function u(x)

|u(x)− u≥(x)| ≤ C1ε. (6)

This implies that the number of significant wavelet coefficients N is bounded
by ε as

N ≤ C2ε
−n
p , (7)

where p is the order of the wavelet (the number of neighboring points used for
wavelet construction during the prediction phase of wavelet transform [35]),
n is the dimensionality of the problem and coefficients Ci depend on u(x)
(but are of order unity). Note that p controls the number of zero moments
of the interpolating scaling function. Also note that the second generation
wavelet transform is characterized by another parameter p̃ (the number of
neighboring points, or the stencil size, used for wavelet construction during
the update phase of wavelet transform [35]), which controls the number of
zero moments of the wavelets.

Combining (6) and (7) we have the following bound on an error in terms of
N

|u(x)− u≥(x)| ≤ C3N−p/n. (8)

This error estimate is consistent with numerical experiments for both one-
dimensional [22] and two-dimensional cases [23].

5



3 Numerical method

A linear elliptic partial differential equation may be written in the general
form,

Lu = f , (9)

where L is a linear elliptic operator (including boundary conditions), and f is
a source term. In the following we describe an efficient multilevel AWCM for
determining u to within a specified residual tolerance ||Lu− f ||p < ε given L
and f . One notable feature of the method is that the minimum grid resolution
is determined automatically, given the tolerance ε.

The numerical method is formally derived by evaluating the governing partial
differential equations at collocation points. In order for the algorithm to resolve
all the structures appearing in the solution, and yet be efficient in terms of
minimizing the number of unknowns, the computational grid should adapt to
reflect local changes in the solution, i.e. high resolution computations should
be carried out only in those regions where sharp transitions occur.

3.1 Grid adaptation

Grid adaptation occurs naturally in wavelet methods, e.g. [10,15]. To illus-
trate the algorithm, let us consider a function u(x), defined on a closed n-
dimensional rectangular domain Ω. Relations (6) and (8) give us the framework
for representing a function with significantly fewer degrees of freedom, while
still retaining a good approximation. However, in order to realize all the ben-
efits of the wavelet compression, we need to be able to reconstruct u≥(x) from
the subset of N significant grid points. We recall that every scaling function
φjk(x), k ∈ Kj, is uniquely associated with a grid point xjk, while each wavelet
ψµ,jl (x), l ∈ Lµ,j is uniquely associated with a corresponding collocation point,
e.g. two-dimensional wavelets ψ1,j

(l1,l2)
(x), ψ2,j

(l1,l2)
(x), and ψ3,j

(l1,l2)
(x) are respec-

tively associated with (xj+1
1,2l1+1, x

j
2,l2

), (xj1,l1 , x
j+1
2,2l2+1), and (xj+1

1,2l1+1, x
j+1
2,2l2+1) grid

points. So once the wavelet decomposition is performed, each grid point is
uniquely associated either with the wavelet or the scaling function at the coars-
est level of resolution. Consequently, the collocation point should be omitted
from the computational grid if the associated wavelet is omitted from the
approximation. Note that for the stability of a reconstruction algorithm we
need to keep all the grid points associated with the scaling function at the
coarsest level of resolution. This procedure results in a set of nested adaptive
computational grids Gj≥ ⊂ Gj, such that Gj≥ ⊂ G

j+1
≥ for any j < J − 1, where

J is the finest level of resolution present in the approximation (4). It should
be noted that additional procedure, called the perfect reconstruction check , is
necessary. This procedure ensures that all grid points required for the recursive
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sample a function u(x) on a grid GJ or G≥
perform forward wavelet transform
forall levels j = 1 : 1 : J

create a mask M for |dµ,jl | ≥ ε
end
include into mask M all points at level j = 1
forall levels j = J − 1 : −1 : 1

extend mask M to include the minimal set of points for |dµ,jl | ≥ ε
end

Algorithm 1. Reconstruction check procedure for the wavelet transform.

computation of the wavelet coefficients dµ,jl (hereafter referred as minimal set
of grid points), present in the approximation (4) are available. For details of
the perfect reconstruction check procedure and its implementation in multiple
dimensions we refer to Ref. [23]. The pseudocode for the perfect reconstruc-
tion check procedure is shown in Algorithm 1. At the end of this procedure we
have the complete maskM, from which we can easily construct a set of nested
adaptive computational grids Gj≥. The perfect reconstruction check procedure
guarantees that all wavelet coefficients obtained by performing the wavelet
transform on the adapted grid are the same as those found by performing the
wavelet transform of u≥(x) on the complete grid.

3.2 Global elliptic solver

The strategy for constructing the adaptive computational grid, or equivalently
the maskM, which is discussed in previous section assumes knowledge of the
solution on the finest level and results in a compressed solution. However, one
would like to obtain a compressed solution without the additional overhead of
finding solution everywhere on a non-adaptive grid. This overhead could be
substantial if a solution is highly localized. In order to solve elliptic problems
with highly localized solutions in an efficient manner, an iterative procedure
of grid refinement should be used. One way to organize such a procedure is
to start the calculations on a coarse grid. Once the solution is obtained, the
computational grid must be extended to include grid points associated with
wavelets whose coefficients are, or can possibly become, significant during the
next iteration. In other words, as suggested by Liandrat and Tchamitchian
[10], the computational grid should include not only points associated with
wavelets whose coefficients are greater than the threshold ε, but also those
points associated with wavelets belonging to an adjacent zone. We say that
the wavelet ψµ

′,j′

l′ (x) located at xj
′+1
k′ belongs to the adjacent zone of wavelet
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initial guess (m = 0): umk and Gm≥
while m = 0 or m > 1 and

[
Gm≥ 6= Gm−1≥ or ‖umk − um−1k ‖∞ > δε

]
m = m+ 1
perform forward wavelet transform for each component of umk
forall levels j = J : −1 : 1

create a mask M for |dµ,jl | ≥ ε
end
extend the mask M with adjacent wavelets (Eq. (10)
perform the reconstruction check procedure (Algorithm 1)
construct Gm+1

≥
if Gm+1

≥ 6= Gm≥
interpolate umk to Gm+1

≥
end if
solve Eqs. (9) using Local Multilevel Elliptic Solver (Algorithm 4)

end

Algorithm 2. Global Elliptic Solver.

ψµ,jl (x) located at xj+1
k if the following relations are satisfied:

|j − j′| ≤ L, |2j′−jkm − k′m| ≤M, m = 1, . . . n, (10)

where L determines the extent of which coarser and finer scales are included
into the adjacent zone and M defines the width of the adjacent zone in physical
space. The values of L and M affect the total number of collocation points
present in the grid G≥. For efficiency we should keep the number of collocation
points in the adjacent zone as small as possible. We have found that the
optimal values are L = M = 1. In other words, the adjacent zone includes only
the nearest neighbors at the same, one above, and one below the resolution
level associated with the current grid point. This grid refinement procedure
may be continued iteratively until both the solution and grid converge.

The adaptive grid refinement procedure provides a way to obtain the solution
on an optimal (compressed) grid. This strategy has been already tested for
obtaining the compressed form of the initial conditions for evolution problems
in different physical settings, e.g. [21–23,39–42,?]. What is different in this
work is that the same procedure is applied in the context of elliptic partial
differential equations. In this case the PDE must be solved during each grid
iteration. For this purpose the elliptic multilevel wavelet collocation solver (see
§3.2) is used. The pseudocode for the iterative global elliptic solver is shown
in algorithm 2. Note that umk denotes the vector function u evaluated at the
grid points xJk ∈ Gm≥ during m-th iteration.

With such an algorithm the grid of collocation points is continuously refined to
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resolve the local structures that appear in the solution. Note that by omitting
wavelets with coefficients below a threshold parameter ε we automatically
control the error of approximation. Thus, the wavelet collocation method has
another important feature: active control of the accuracy of the solution. The
smaller ε is chosen to be, the smaller the error of the solution is. In typical
applications the value of ε varies between 10−3 and 10−6, assuming that the
unknown dependent variables have been properly normalized. If the variables
are not normalized, the threshold parameter for each variable is scaled by
either the maximum value of the variable or an a priori prescribed scale. Note
also that the smallest scale is also controlled by the parameter ε, since new
small scales are added automatically as needed via the adjacent zone.

The algorithm can use different criteria for adaptation of the collocation grid.
For example, one can construct a computational grid based on the analysis
of wavelet coefficients of both the function and its derivatives. If a system
of equations is solved, the adaptation of the computational grid Gm≥ should
be based on the analysis of wavelet coefficients associated with all dependent
variables. The adaptive grid Gm≥ can be constructed as the union of irregular
grids corresponding to each dependent variable. Note that the algorithm can
be easily extended to the case where each variable is treated on a separate
computational grid. The mapping from one grid to another can be achieved
via wavelet interpolation. This may be important for problems where scales
associated with different variables are considerably different, such as combus-
tion problems where the combustion reaction takes place on a much smaller
scale than the scale of turbulence.

3.3 Calculation of spatial derivatives on an adaptive grid

When solving partial differential equations numerically, it is important to ob-
tain derivatives of a function from its values at collocation points. The pro-
cedure of finding derivatives, which takes advantage of the multiresolution
wavelet decomposition, fast wavelet transform, and finite difference differentia-
tion is discussed in detail by Vasilyev and Bowman [22] for the one-dimensional
case and by Vasilyev [23] for multiple dimensions. In this paper, we briefly out-
line this procedure.

The differentiation procedure is based on the interpolating properties of sec-
ond generation wavelets. We recall that wavelet coefficients dµ,jl measure the
difference between the approximation of the function at the j + 1 level of res-
olution and its representation at the j level of resolution. Thus, if there are
no points in the immediate vicinity of a grid point xjk, i.e. |dµ,jm | < ε for all
the neighboring points, and points xj+1

(2k1±1,2k2±1 are not present in Gj+1
≥ , then

there exists some neighborhood of xjk, Ωj
k, where the actual function is well
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perform forward wavelet transform for each component of umk
forall levels j = 1 : 1 : J − 1

perform one step of inverse wavelet transform for level j

find derivatives at grid points that belong to Dj≥
end

Algorithm 3. Calculation of derivatives on the adapted grid.

approximated by a wavelet interpolant based on cjm (m ∈ Kj), i.e.∣∣∣∣∣∣u(x)−
∑

m∈Kj
cjmφ

j
m(x)

∣∣∣∣∣∣ ≤ C4ε, x ∈ Ωj
k. (11)

Thus, differentiating this interpolant will give us the value of the derivative
of the function at that particular location. Let us denote by Dj≥ a collection
of such points at each level of resolution. The pseudocode for the procedure
for finding derivatives at all grid points is given in algorithm 3. At the end of
this procedure we will have derivatives of the function at all grid points. The
computational cost of calculating spatial derivatives will be roughly the same
as the cost of forward and inverse wavelet transforms.

The accuracy of this differentiation procedure was examined by Vasilyev and
Bowman [22] for the one-dimensional case and by Vasilyev [23] in multiple
dimensions. It was shown that the error bound on the derivative is given by

|Dxiu(x)−Dxiu≥(x)| ≤ C5N−(p−1)/n, (12)

where Dxi stands for the derivative operator in the xi direction. This relation
was verified numerically for both one-dimensional [22] and two-dimensional
cases [23]. Note that the error bound (12) is also correct for the second-order
derivative if a symmetric stencil is used.

3.4 Multilevel iterative wavelet collocation elliptic solver

The algorithm presented above can be used as part of the elliptic solver to
obtain the solution of an elliptic equation during iterative grid refinement as
discussed in §3.1 and §3 or as a part of differential constraint for the evolution
problems, such as the continuity equation in the incompressible Navier–Stokes
equations. In the latter case the Poisson equation for the pressure is solved in
order to enforce the incompressibility condition.

The multilevel structure of the wavelet approximation gives us a natural frame-
work to establish a V-cycle on an adaptive computational grid G≥. We recall
that the adaptive computational grid G≥ = GJ≥ is constructed as a set of nested
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while ‖fJ − LuJ≥‖∞ > δε
rJ = fJ − LuJ≥
forall levels j = J : −1 : jmin + 1

do ν1 steps of approximate solver for Lvj = rj

rj−1 = Ij−1w (rj − Lvj)
enddo

end
Solve for j = jmin level: Lvj = rj

forall levels j = jmin + 1 : +1 : J
vj = vj + ω0I

j
wvj−1

do ν2 steps of approximate solver for Lvj = rj enddo
end
uJ≥ = uJ≥ + ω1v

J

do ν3 steps of exact solver for LuJ = fJ enddo
end

Algorithm 4. Local multilevel elliptic solver using V-cycles.

adaptive computational grids Gj≥ ⊂ G≥, such that Gj≥ ⊂ G
j+1
≥ for any j < J−1,

where J is the finest level of resolution. This nested grid structure provides a
framework that allows the approximation from coarser levels of resolution to
be used to improve the approximation at the finest level. The multilevel itera-
tive algorithm is similar in spirit to multigrid methods [36], but is very different
in the details of its implementation. First, the structure of the nested grids
is different. In particular, in contrast to multi-grid methods, the lower level
grid is not necessarily coarser at every region of the domain. Secondly, lower-
order wavelet differentiation is used for the approximate solver (smoother).
Thirdly, wavelet interpolation is used for both prolongation and restriction
operators. Finally, as in the usual multi-grid methods, either bi-cgstab [43]
or gmres [44] is used as exact solver.

The pseudocode for the full local elliptic solver (without grid adaptation) is
given in algorithm 4, where jmin and J are respectively the lowest and the
highest levels of resolution, ν1 and ν2 are respectively the number of pre- and
post-relaxations, ν3 is the number of iterations of exact solver, ω0 and ω1 are
the dumping parameters, and Ij−1w and Ijw are respectively the restriction and
interpolation wavelet-based operators. In the numerical results presented in
this paper the same damping parameters have been used after each cycle.
Finally the weighted Jacobi second-order iterative solver was used as an ap-
proximate solver. The weight for the weighted Jacobi method was set to the
theoretically predicted value of 2/3 for optimal convergence. Numerical exper-
iments confirmed this weight to be the optimal for adaptive calculations as
well.
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It is important to note that special care should be taken in situations where
the elliptic operator is constructed as a product of two operators that are
approximated discretely, such as ∆ = div(grad). In this case the use of
symmetric stencils for derivative operators would result in either complete
uncoupling of odd–even points,or, at very best, a weak coupling, for which it
is impossible to construct efficient iterative solvers. To make such operators
better conditioned, and thus suitable for the elliptic solver, we found that the
simple strategy of making one operator upwind-biased and another downwind-
biased works well. This strategy has been used for the pressure Poisson solver
in a Navier–Stokes solver [?].

4 Results and discussion

In order to illustrate the accuracy and efficiency of the proposed numerical
method, we will apply it to the solution of some two- and three-dimensional
test problems. Both of these test problems are linear elliptic equations. The
case of nonlinear elliptic equations is not considered in this paper since it is
a more or less straightforward extension of the method (since our method is
collocation-based). In addition to the solution of the linearized linear elliptic
problem, one would need to set up a fixed point iteration to treat the nonlin-
earity. The process of grid adaptation would be roughly the same, except the
adjacent zone definition may need to be modified to reflect the nature of the
nonlinearity.

4.1 Problem formulation

I. Two-Dimensional Elliptic Problem. For the first test problem we consider
the two-dimensional Poisson equation

∆u = f, (13)

where the operator ∆ is the Laplacian operator

∆ =
∂2

∂x21
+

∂2

∂x22
(14)

and f is the localized source chosen such a way that the solution of the Poisson
equation is given by

u (x1, x2) = 1 + exp

(
−(x′1)

2 + (x′2)
2

2µ1

)
+ exp

(
−(x′′1)2

2µ2

− (x′′2)2

2µ3

)
, (15)
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where x′ = x − x0, x′′ = R (x− x1), x0 and x1 are constants, and R is a
rotation matrix

R =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ,

defined by the angle θ. The initial and Dirichlet boundary conditions are ob-
tained from the analytical solution (15). The problem is solved for parameter
values
x0 = (0.2, 0.1), x1− = (−0.25,−0.25), θ = 60◦, µ1 = 10−2, µ2 = 10−3,
µ3 = 10−1.

II. Three-Dimensional Elliptic Problem. As a second test problem we consider
three-dimensional Poisson equation (13) with three-dimensional Laplacian op-
erator

∆ =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
. (16)

The localized source f is chosen such a way that the solution of the Poisson
equation is given by

u (x1, x2) = 1 + exp

(
−(x′1)

2 + (x′2)
2 + (x′3)

2

2µ1

)

+ exp

(
−(x′′1)2

2µ2

− (x′′2)2

2µ3

− (x′′3)2

2µ4

)
, (17)

where x′ = x − x0, x′′ = R (x− x1), x0 and x1 are constants, and R is a
rotation matrix

R =

 cos(ζ) cos(η) cos(ξ)− sin(ζ) sin(ξ) cos(ζ) cos(η) sin(ξ) + sin(ζ) sin(ξ) − cos(ζ) sin(η)

− sin(ζ) cos(η) cos(ξ)− cos(ζ) sin(ξ) − sin(ζ) cos(η) sin(ξ) + cos(ζ) cos(ξ) sin(ζ) sin(η)

sin(η) cos(ξ) sin(η) sin(ξ) cos(η)



defined by the angles ξ, η, and ζ. The initial and Dirichlet boundary con-
ditions are obtained from the analytical solution (17). The problem is solved
for parameters values x0 = (−0.5,−0.5,−0.5), x1 = (0.2, 0.15, 0.1), ξ = 45◦,
η = −45◦, and ζ = 30◦, µ1 = 5 × 10−2, µ2 = 5 × 10−2, µ3 = 2 × 10−2,
µ4 = 5× 10−1.
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4.2 Numerical results

4.2.1 Convergence of the global elliptic solver

We start by considering the adaptive grid refinement strategy discussed in
algorithm 2. The progressive adaptation of the computational grid Gm≥ for the
first test problem is shown in Fig. 1 for wavelets of order p = p̃ = 6 and
wavelet threshold ε = 10−5. Comparing the grid structure with the converged
solution shown in Fig. 2, it can be easily seen that the high resolution region
simply follows the peaks in the solution, thus permitting proper resolution of
the localized structures. Note that the computational grid for the cylindrical
structure does not change between 5-th and 6-th iterations, indicating proper
resolution of the structure for a given tolerance specified by the threshold
parameter ε.

Figures 1 and 2 provide a qualitative understanding of the global grid adap-
tation. In order to provide quantitative information, one needs to perform the
convergence study for the algorithm. The convergence study for the adaptive
wavelet algorithms with ε 6= 0 should be distinguished from the refinement
study. The latter is done by setting ε to zero and progressively refining the
computational grid, i.e. increasing the maximum allowable level of resolution
J . On the other hand, in the convergence study the maximum allowable level
of resolution is not fixed and can be as high as needed. The convergence study
is performed by progressively decreasing the threshold parameter ε and ob-
taining the globally converged solution for the specified ε. The decrease of ε
will result in an increase in the number of grid points and number of levels
of resolution. If the numerical method is convergent, then the computational
error of the solution should be proportional to ε. Furthermore, the number of
grid points should scale as predicted by (8), while the accuracy of the solution
should scale according to (12). In order to increase computational savings, the
threshold parameter ε was progressively decreased from 10−1 to the specified
level. We found that the best strategy is simply to decrease the threshold by a
factor of 10 each iteration until the desired value of ε is achieved. After that,
the threshold is kept unchanged until both solution and computational grids
are converged as described in algorithm 2.

The results of the convergence study for the two-dimensional elliptic problem
are presented in Fig. 3(a), where the pointwise l∞-error of the solution as
a function of grid points is shown for different order wavelets. It is clearly
seen that the convergence is consistent with analytical predictions of Eq. (12),
shown by triangles. The dependence of the number of grid points N on the
threshold parameter ε is shown in Fig. 3(b). Once again, the dependence of
N on ε is consistent with theoretical estimate given in (8), as shown by the
triangles. These figures clearly demonstrate the convergence of the numerical
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method with the decrease of ε. Note that the actual error of the solution is
typically larger then ε, but is of the same order. Thus, by prescribing the value
of ε, we can actively control the accuracy of the solution.

The results presented above clearly demonstrate that the solution converges
with the decrease of ε. However, they do not show how fast the method con-
verges. The efficiency of the algorithm is demonstrated in Fig. 4(a), which
shows the rapid (an order of magnitude per iteration) convergence of the so-
lution until ε stops decreasing as shown in Fig. 4(b). At that point the level
of resolution continues to increase with iterations until all the structures are
resolved and solution is converged. Note that the small dip in the error is mis-
leading due to the fact that the solution is not fully resolved, and the error is
calculated only at the points on the adaptive grid. Interpolation of the solution
to the finer grid results in increase of the error, as clearly seen in Fig. 4(a).
The progressive increase of the number of grid points N and the maximum
level of resolution J with iterations is respectively shown in Figs. 5(a) and
5(b).

Finally, in order to demonstrate the tremendous savings of the adaptive algo-
rithm it is illustrative to compare the number of grid points used in the adap-
tive and nonadaptive methods with adequate resolution. This can be easily
measured by the compression coefficient C = 1 −

(
N /NJ

)
, where N is the

actual number of grid points used in the calculations and NJ is the number of
collocation points, required for the non-adaptive algorithm to solve the same
problem with the comparable resolution. In other words, the compression co-
efficient measures the percentage of grid points that are not included to the
adaptive grid Gt≥. The larger the compression coefficient, the more efficient
the adaptive algorithm. A compression coefficient 0% indicates that there is
no adaptation. The compression coefficient monotonically increases with each
iteration until the grid converges. Another way to look at the compression is
to use the compression ratio CR = NJ/N , which measures the ratio of the
total number of collocation points, required for the non-adaptive calculation,
to the actual number of grid points used in the adaptive calculation. Note
that when both solution and grid are converged, the number of grid points on
adaptive grid is approximately twenty times less than on non-adaptive grid,
i.e. CR ≈ 20. The compression ratio can be even higher for more localized
structures.

4.2.2 Convergence of the local multilevel elliptic solver

The global convergence study presented in previous section only provides in-
formation about global convergence of the solution. Another factor that de-
termined the overall efficiency of the method is the rate of the convergence
of the local iterative multilevel elliptic solver discussed in Section 3.4. Due
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to similarities between proposed multilevel elliptic solver and multigrid meth-
ods, it is natural to expect linear convergence, i.e. the residual should decrease
approximately by the same factor with each iteration. To demonstrate the con-
vergence of the multilevel elliptic solver figures 7-9 show the l∞ norm of the
residual error as a function of local iterations (V-cycles) for different choices
of the iteration parameters. In particular, Fig. 7 demonstrates the influence
of the number of pre- (ν1) and post-relaxations (ν2) on the convergence of the
multilevel solver. Obviously, two relaxations is sufficient to smooth the solu-
tion. Increasing the number of relaxations slightly decrease the error, but does
not affect the rate of the convergence. The convergence rate is more sensitive
to the number of iterations of the exact solver (ν3), as clearly seen in Fig. 8.
It goes from one order per three iterations for no iterations of the exact solver
to two orders per three iterations with ν3 = 10. However, the computational
cost of both bi-cgstab and especially gmres is considerably more expensive.
In addition, the increase of iterations ν3 of the exact solver based on gm-
res, would make the Krylov space larger, which ultimately would result in an
increase of memory use. For that reason we found it is better to use either gm-
res with very few iteration of the exact solver or no iterations at all. Finally,
the influence of the relaxation parameters ω0 and ω1 on the convergence of
the method is demonstrated in Fig. 9. Due to optimality of the approximate
solver in terms of smoothing the solution, both under-relaxation (ω < 1) and
over-relaxation (ω > 1) of either ω0 and ω1 decreases the convergence of the
residual. However, for other choices of elliptic operators it might not be so.
For that reason the relaxation parameters could provide additional freedom
for improving the convergence of the algorithm 4.

4.2.3 Three-dimensional results

The proposed method works equally well for the solution of three-dimensional
elliptic problems. The numerical solution of the three-dimensional elliptic
problem is discussed in §4.1 and the corresponding computational grid is
shown in Fig 10. The results of the convergence study for the three-dimensional
elliptic problem are presented in Fig. 11(a), where the pointwise l∞-error of the
solution as a function of grid points is shown for different order wavelets. It is
clearly seen that, as in two-dimensional case, the convergence is consistent with
analytical predictions of Eq. (12), shown by triangles. The dependence of the
number of grid points N on the threshold parameter ε is shown in Fig. 11(b).
Once again, the dependence of N on ε is consistent with theoretical estimate
given in (8), as shown by the triangles. The other global convergence results
are similar to two-dimensional case. Finally, in order to demonstrate that the
local convergence of the three-dimensional multilevel elliptic solver is similar
to two-dimensional case, the l∞ norm of the residual error as a function of
local iterations (V-cycles) is shown in Fig. 12. The dependence of the rate of
convergence on the relaxation parameters ν1, ν2, ν3, ω0, and ω1 is similar to
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two-dimensional case.

5 Conclusions

The second generation wavelet collocation method [22,23] for solving evolu-
tion problems has been extended to the solution of elliptic problems using
a multilevel method. Wavelet decomposition is used for grid adaptation and
interpolation, while a O(N ) hierarchical finite difference scheme, which takes
advantage of wavelet multilevel decomposition, is used for derivative calcula-
tions. An efficient adaptive algorithm for solving elliptic problems is developed.
With this algorithm the solution is obtained on a near optimal grid for the pre-
scribed tolerance that is controlled by wavelet threshold parameter ε. In order
to accelerate the convergence of the adaptive method, an iterative multilevel
procedure analogous to the multigrid algorithm is developed.

Despite similarities with multigrid methods, the wavelet multilevel iterative
algorithm is different in several important ways. The major differences are in
the structure of the nested grids, the use of wavelet interpolation for both pro-
longation and restriction operators, and the use of either bi-cgstab or gmres
methods as the exact solver. The accuracy and computational efficiency of this
method are demonstrated for the solution of two- and three-dimensional Pois-
son equations with highly localized sources. Both global and local convergence
results are presented. The theoretical prediction for the convergence is verified
numerically. Linear convergence of the multilevel wavelet collocation solver is
demonstrated. The results indicate that the computational grid and associ-
ated wavelets can efficiently adapt to the local irregularities of the solution in
order to resolve sharp transition regions.

Future areas of research include the generalization of the method to the so-
lution of evolution problems in the space–time domain. This approach will
provide a natural way of varying the time step based on location (in time and
space), and spatial scale. The effective time step will be smaller in regions
of rapid change (small local time scale), and larger in regions of slow change
(large local time scale). This work is currently underway.
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1-st iteration 2-rd iteration 3-rd iteration

4-th iteration 5-th iteration 6-th iteration

x1 x1 x1

x1 x1 x1

x2 x2 x2

x2 x2 x2

Fig. 1. Adaptive computational grids Gm≥ (m = 1, . . . , 6) for successive iterations

(ε = 10−5, p = p̃ = 6).

1-st iteration 2-rd iteration 3-rd iteration

4-th iteration 5-th iteration 6-th iteration

x1 x1 x1

x1 x1 x1

x2 x2 x2

x2 x2 x2

Fig. 2. Solution of elliptic problem (13) corresponding to adaptive computational
grids shown in Fig. 1 (ε = 10−5, p = p̃ = 6).
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N N

(a) (b)

‖u(x)− uex(x)‖∞

ε

Fig. 3. The pointwise L∞-error of the solution of elliptic problem (13) (a) and the
number of grid points as a function of ε (b) for different choices of parameters p,
and p̃: p = p̃ = 4 (◦); p = p̃ = 6 (�); p = p̃ = 8 (•). N is the actual number of
grid points used in the calculations. The triangles indicate the slopes respectively
predicted by Eqs. (12) and (8).

Global Iteration Global Iteration

(a) (b)

‖u(x)− uex(x)‖∞ ‖u(x)− uex(x)‖∞

Fig. 4. The pointwise L∞-error of the solution of elliptic problem (13) (a) and
the value of the threshold parameter ε (b) as a function of global iterations for
ε = 10−5 and different choices of parameters p, and p̃: p = p̃ = 4 (◦); p = p̃ = 6 (�);
p = p̃ = 8 (•).
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Global Iteration Global Iteration

(a) (b)

N J

Fig. 5. The total number of grid points N (a) and the maximum level of resolution J
(b) as a function of global iterations for ε = 10−5 and different choices of parameters
p, and p̃: p = p̃ = 4 (◦); p = p̃ = 6 (•); p = p̃ = 8 (�).

Global Iteration

C(%)

Global Iteration

CR

(a) (b)

Fig. 6. The compression coefficient C (a) and the compression ratio CR (b) as a
function of global iterations for ε = 10−5 and different choices of parameters p, and
p̃: p = p̃ = 4 (◦); p = p̃ = 6 (•); p = p̃ = 8 (�).
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Local Iteration

‖fJ − LuJ≥‖∞

Fig. 7. The L∞-norm of the residual for the multilevel wavelet collocation solver as
a function of local iterations (V-cycles) for ε = 10−5, p = p̃ = 6, ω0 = 2/3, ω1 = 1
and different choices of iterative parameters ν1, ν2, and ν3: ν1 = ν2 = 2, ν3 = 0 (◦);
ν1 = ν2 = 2, ν3 = 0 (�); ν1 = ν2 = 10, ν3 = 0 (•); ν1 = ν2 = 20, ν3 = 0 (�).

Local Iteration

‖fJ − LuJ≥‖∞

Fig. 8. The L∞-norm of the residual for the multilevel wavelet collocation solver as
a function of local iterations (V-cycles) for ε = 10−5, p = p̃ = 6, ω0 = 2/3, ω1 = 1
and different choices of iterative parameters ν1, ν2, and ν3: ν1 = ν2 = 2, ν3 = 0 (◦);
ν1 = ν2 = 2, ν3 = 2 (�); ν1 = ν2 = 2, ν3 = 4 (•); ν1 = ν2 = 2, ν3 = 10 (�).
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Local Iteration

‖fJ − LuJ≥‖∞

Fig. 9. The L∞-norm of the residual for the multilevel wavelet collocation solver
as a function of local iterations (V-cycles) for ε = 10−5, p = p̃ = 6, ν1 = ν2 = 2,
ν3 = 0 and different choices of iterative parameters ω0, and ω1: ω0 = 1, ω1 = 1 (+);
ω0 = 0.75, ω1 = 1 (◦); ω0 = 1.1, ω1 = 1 (•); ω0 = 1, ω1 = 0.75 (�); ω0 = 1, ω1 = 1.1
(�).

x
y

z

x
y

z

(a) (b)

Fig. 10. The solution of three-dimensional elliptic problem (13) (isosurface levels
are at 0.25 and 0.75) (a) and the coresponding adaptive computational grid G≥ (b)
(ε = 10−5, p = p̃ = 6).
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N N

(a) (b)

‖u(x)− uex(x)‖∞

ε

Fig. 11. The pointwise L∞-error of the solution of three-dimensional elliptic problem
(13) (a) and the number of grid points as a function of ε (b) for different choices of
parameters p, and p̃: p = p̃ = 4 (◦); p = p̃ = 6 (�); p = p̃ = 8 (•). N is the actual
number of grid points used in the calculations. The triangles indicate the slopes
respectively predicted by Eqs. (12) and (8).

Local Iteration

‖fJ − LuJ≥‖∞

Fig. 12. The L∞-norm of the residual for the three-dimensional multilevel wavelet
collocation solver as a function of local iterations (V-cycles) for ε = 10−5, p = p̃ = 6,
ω0 = 2/3, ω1 = 1, ν1 = ν2 = 3, ν3 = 0 (◦).
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