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Abstract

We study the generation of three-dimensional vorticity in tightly packed tube bun-
dles. In particular, our goal is to investigate which conditions (if any) enable the flow
to remain two-dimensional for Re > 180. We calculated two- and three-dimensional
flow through periodic rotated square tube bundles with tight packing, P/D = 1.5,
using a high resolution pseudo-spectral code with penalization. The tubes are cylin-
ders whose response is modelled as a rigid harmonic oscillator forced by the flow-
induced lift. We find that at Re = 200 tube motion completely suppresses the
three-dimensional instability. At Re = 1 000 tube motion does not suppress the
three-dimensional instability, although the flow does have increased spanwise corre-
lation and the Strouhal number for the two- and three-dimensional flows is approx-
imately the same. The tight packing alone does not suppress the three-dimensional
instability. Three-dimensional vorticity drastically reduces fluid forces acting on the
tube compared with an equivalent two-dimensional flow.

1 Introduction

The wake of an isolated cylinder first becomes three-dimensional at Re ≈ 180
via the formation of regular streamwise vortices with a spacing of about three
cylinder diameters [the mode A instability identified by Williamson (1989)].
At Re ≈ 230 a second vortex mode appears [the mode B instability identified
by Williamson (1989)], characterized by irregular streamwise vortices with
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a spacing of one cylinder diameter (Williamson, 1989). As Reynolds num-
ber increases further, the wake becomes increasingly complicated (possibly
via period-doubling) until it is completely turbulent. In contrast, the transi-
tion to three-dimensionality in tightly coupled tube bundles is still not well
understood. Indeed, in some experiments it appears that the flow and cylin-
der response remain roughly two-dimensional for Reynolds numbers well be-
yond 180 (Weaver, 2001). For example, Price et al. (1995) find that Strouhal
frequency and rms drag do not change greatly with Reynolds number for
Re > 150. Blevins (1985) demonstrated that acoustic forcing of an isolated
cylinder at its Strouhal frequency is able to produce nearly perfect spanwise
correlation of pressure for 20 000 ≤ Re ≤ 40 000. He conjectured that similar
effects might be observed in tube bundles. Blevins’ investigations confirmed
earlier work by Toebes (1969) who showed that a cylinder vibration amplitude
of A/D ≥ 0.125 was required to achieve a high degree of spanwise correlation.
In the case of tube bundles, it has also been suggested that it is the tight
spacing of the bundle that suppresses three-dimensional instability.

In this paper we attempt to understand which conditions (if any) enable the
flow to remain two-dimensional for Re > 180. It is also possible that some as-
pects of the flow remain two-dimensional (e.g. spanwise correlation of vortex
shedding), while others become fully three-dimensional (e.g. development of
streamwise vorticity). To investigate these questions we calculate two- and
three-dimensional flow through periodic rotated square tube bundles with
spacing P/D = 1.5. We consider two types of bundles: fixed cylinder and mov-
ing cylinder bundles. The natural frequency of the moving cylinders is tuned
to match the Strouhal frequency in order to maximize the moving cylinder ef-
fect. All cylinders move in phase, which corresponds to the acoustic resonance
conditions investigated by Blevins (1985).

The mathematical formulation of the problem is described in Section 2 and the
penalized pseudo-spectral method used to solve the equations is outlined in
Section 3. The simulations are described in Section 4 and results are presented
in Section 5. The main conclusions are summarized in Section 6.

2 Problem formulation

Let us consider a viscous incompressible fluid governed by the Navier–Stokes
equations

∂u

∂t
+ (u + U∞) · ∇u +∇P = ν∆u, (1)

∇ · u = 0, (2)
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where u is the velocity, P is the pressure and U∞ is an imposed upstream
flow velocity. We focus here on the case where the fluid occupies the com-
plement in the plane R3 of a periodic lattice of cylinders Oi (with diameter
D) oriented with their axes in the x3 direction. The external boundary con-
ditions associated with this problem are therefore that u is Q-periodic on
]0, L1[ × ]0, L2[× ]0, L3[, with no-slip boundary conditions on the surface of
the (moving) obstacle,

u + U∞ = Uo on ∂Oi, ∀i (3)

where Uo is the velocity of the obstacle. Note that all quantities (e.g. Strouhal
number, Reynolds number and time) will be nondimensionalized using the up-
stream flow velocity U∞, the cylinder diameter D and the kinematic viscosity
ν.

To model the no-slip boundary conditions without explicitly imposing Eqs. (3)
we follow Angot et al. (1999) by replacing Eqs. (1–3) by the following set of
L2-penalized equations:

∂uη
∂t

+ (uη + U∞) · ∇uη +∇Pη = ν∆uη −
1

η
χ(x, t)(uη + U∞ −Uo), (4)

∇ · uη = 0, (5)

where Uo is the obstacle’s velocity. Note that Eqs. (4–5) are valid in the entire
domain Ω: the last term on the right hand side of (4) is a volume penalization
of the flow inside the obstacle. Here 0 < η � 1 is a penalization coefficient
and χ denotes the characteristic function (or mask)

χ(x, t) =





1 if x ∈ Oi,

0 otherwise.
(6)

This approximation is called Brinkman penalization, and models flow through
a porous medium with fixed porosity and (very small) permeability η. Angot
(1999) proved that the solution of the penalized Eqs. (4-5) converge to that of
the Navier–Stokes Eqs. (1-2) with the correct boundary conditions (3) as η →
0. More precisely, the upper bound on the global error of the L2-penalization
was shown to be (Angot, 1999)

||u− uη||H1(Ω) = O(η1/4). (7)

In the specific case of impulsively started flow over a plane Kevlahan and
Ghidaglia (2001) showed analytically that the error in approximating (3) is
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actually lower: O(η1/2). It seems reasonable that this is the sharp estimate in
the general case as well. Note that the velocity is continuous and differentiable,
due to the instantaneous smoothing action of the Laplacian operator term (i.e.
viscous diffusion).

This volume penalization has been implemented in a finite difference code
(Khadra et al., 2000) for two-dimensional flow around an isolated cylinder, and
was found to give good results. It is important to note that η is an arbitrary
parameter, independent of the spatial or temporal discretization, and thus the
boundary conditions can be enforced to any desired accuracy by choosing η
appropriately. This property distinguishes the Brinkman method from other
penalization schemes and allows the error to be controlled precisely.

Another advantage of the Brinkman penalization is that the force Fi acting
on an obstacle Oi can be found by simply integrating the penalization term
over the volume of the obstacle:

Fi =
1

η

∫

Oi

(uη + U∞ −Uo) dx. (8)

Thus, the calculation of lift and drag on an obstacle can be made simply,
accurately and at low cost. This is helpful when calculating fluid–structure
interaction, where the force must be updated at each time step. Kevlahan
and Ghidaglia (2001) showed analytically that the error in calculating the
force over a flat plate using (8) is only O(η). We have found numerically that
η = 10−4 gives drag curves correct to within 1%.

The cylinders move as forced simple harmonic oscillators according to the
equation

(m+mA)
d2xo
dt2

+ b
dxo
dt

+ kxo = Fw(t), (9)

where xo(t) is the cylinder position, m is the cylinder mass, mA is the added
mass, b is the damping, k is the spring constant. The fluid forcing Fw(t) (due to
wake vorticity) is calculated as a volume integral using (8). Thus the penalized
Navier–Stokes Eqs. (4–5) are fully coupled to the cylinder motion equation (9)
via the fluid force Eq. (8).

In this paper take the cylinder diameter D = 1, and consider square cylinder
arrays where the ratio of pitch (cylinder spacing) to diameter P/D = 1.5
(tightly packed). Figure 1 shows the tube bundle geometry. This configuration
models flow in the interior of a very large periodic array. The periodic domain
contains only one cylinder, and thus all (image) cylinders move in phase. This
corresponds to the case of acoustic resonance, caused by a standing acoustic
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Fig. 1. Tube bundle geometry. Note that there is one tube per periodic domain
(indicated by dashed lines), and the mean flow is at 45◦ to the array axis (i.e. this is
a staggered or rotated square array). The tubes are free to oscillate in the transverse
direction only.

wave between the duct walls. Although modelling all cylinders as moving in
phase is unrealistic for some flows, it should maximize any suppression of
three-dimensional instabilities via spanwise correlation of the vorticity. The
cylinders move freely in the transverse direction due to the fluid-induced lift
force.

3 Numerical method

The penalized Navier–Stokes equations are solved using a Fourier-transform-
based pseudo-spectral method in space [e.g. Vincent and Meneguzzi (1991)]
and a Krylov method in time (Edwards et al., 1994). The pseudo-spectral
method is computationally efficient and highly accurate for spatial derivatives,
while the Krylov method is a stiffly stable explicit method with an adaptive
stepsize to maintain error to a specified tolerance.

In the pseudo-spectral method derivatives are calculated in Fourier space with
exponential accuracy, while nonlinear terms (i.e. the advection and penaliza-
tion terms) are calculated in physical space. This approach has zero numerical
dissipation, which is important for accurate simulation of moderate to high
Reynolds number calculations. The incompressibility condition is enforced by
projecting the velocity in Fourier space onto the plane normal to the wave
vector k. A constant equivalent upstream flow U∞ is imposed by setting the
time evolution of the zero wavenumber mode to zero. Note that the pitch ve-
locity Up (i.e. the average velocity between the tubes) is greater than U∞:
Up = U∞(VΩ/VF ), where VΩ/VF is the ratio of total volume to fluid volume.
The difference between U∞ and Up should be remembered when comparing
the present results to those for isolated cylinders. All quantities are nondimen-
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sionalized with respect to U∞. Note that enforcing a constant upstream flow
is equivalent to adding energy to the system to compensate the energy lost to
dissipation.

Although the mask χ(x, t) used to define the position of the tubes is discon-
tinuous, the velocity remains continuous and differentiable. This ensures that
Gibbs oscillations are small, and we have found they do not perturb the cal-
culation, even in the vorticity formulation (Kevlahan and Ghidaglia, 2001).
One of the main advantages of the Brinkman penalization is that it allows us
to use a Cartesian (rectangular) computational grid, which is computationally
efficient. By performing grid convergence studies, we have found that a grid
spacing of h = δ/6 in the wall normal direction (where δ = Re−1/2 is the
boundary layer thickness) is sufficient to give fully converged results.

The three-dimensional calculations are large (2882 × 96 grid points) and time
consuming (especially at Re = 1 000), and so we have developed a parallel
version of the code. The Fourier transforms are performed using fftw (Frigo
and Johnson, 1998), which parallelizes the calculation by decomposing the
domain into spanwise slabs (one per processor). The Krylov time scheme is
also parallelized using mpi. The resulting code scales surprisingly well for such
a tightly coupled calculation: for example, each time step is 2.5 times faster on
48 processors than on 16. All parallel calculations were carried on McMaster
University’s sharcnet cluster idra, which has 128 processors linked by a
Quadrics network.

One drawback of the penalization approach is that the small parameter η
makes the equations stiff. Because of this stiffness, stepsizes are bounded by the
penalization parameter, i.e ∆t < η, unless we employ a stiffly stable method
in time. To obtain an accurate force calculation we must also use a high-
order method that automatically adjusts the time step to maintain the desired
tolerance. We have found that the Krylov time-stepping method developed by
Edwards et al. (1994) works very well for the present problem. This approach
is based on the Krylov method for solving a linear system, and its accuracy (in
the linear case) is O(K), where K is the dimension of the Krylov subspace used
to approximate the matrix representing the right hand side of the equation.
We have found that K = 10 is optimal for computational efficiency, and gives
sufficient accuracy. The step size is set to ensure that the L2 error in the
approximation of ∂u/∂t is smaller than the desired tolerance. This is done
by comparing the exact value for ∂u/∂t (given by the right hand side of the
equation) to the approximation to ∂u/∂t given by differentiating the Krylov
approximation to u(t). We have found that the Krylov approach gives good
results, especially when the cylinder is moving. In our calculations we use
K = 10, and set the L2 error tolerance to 10−3. With these parameters we
achieve a cfl value of 2 to 6.
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Fig. 2. Drag for impulsively started flow past a cylinder at Re = 550.

To eliminate noise in the force calculation when the cylinder is moving which
is caused when grid points move in or out of the mask, we slightly smooth the
edge of the mask. The mask is smoothed over a distance of only h/6 (i.e. 1/6
of a grid point). This smoothing completely eliminates the noise, and changes
the force by less than 1%. One can view this slight smoothing as rounding
the step-like edge of the cylinder due to the Cartesian grid approximation
of its boundary. Figure 2 shows the drag for impulsively started flow around
a two-dimensional cylinder at Re = 550 calculated with the present method
(on a large L1 = L2 = 20 domain so L1 � U∞T ) compared with results
from a vortex method (Koumoutsakos and Leonard, 1995), and the short
time asymptotic solution (Bar-Lev and Yang, 1975). The good agreement
demonstrates that our penalized pseudo-spectral method gives reliable force
results.

4 Simulations

In each of the following cases we do four simulations: two-dimensional with
fixed and moving cylinders, and three-dimensional with fixed and moving
cylinders. This allows us to directly compare the two- and three-dimensional
flows in order to determine the degree of suppression of three-dimensional
instability. The Reynolds number is defined as Re = |U∞|D/ν (where the
upstream velocity |U∞| = 1, and the cylinder diameter D = 1), and the
flow is at 45◦ to the axis of the square cylinder array (this is referred to
as a rotated square array). The computational domain contains one cylinder
and has dimensions L1 × L2 = 1.5 × 1.5 in the plane perpendicular to the
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Re Dimension Resolution L3 m∗ b f

200 2-D 1282 6.0 5 0 0.98

200 3-D 1282 × 64 6.0 5 0 0.98

1 000 2-D 2882 1.5 5 0 1.00

1 000 3-D 2882 × 96 1.5 5 0 1.00

Table 1
Parameters for the numerical simulations. Fixed and moving cylinder runs are done
for each of the above cases.

cylinder axis (see Figure 1). In each case the spring frequency f is chosen
to match the Strouhal frequency of the fixed two-dimensional cylinder, the
cylinder is undamped (b = 0), and the nondimensional tube mass per unit
length is m∗ = m/(ρD2/2) = 5. We set the total nondimensional mass to be
m∗ + π/2 (where π/2 = m∗A is the nondimensional added mass), and thus the
tube is forced by the wake force only, as in Shiels et al. (2001). The param-
eters for each simulation are summarized in Table 1. Note that we consider
two Reynolds numbers: Re = 200 (just above the mode A three-dimensional
transition), and Re = 1 000 (when the flow should be fully three-dimensional).
This allows us to compare the effect of tube motion on weakly and strongly
three-dimensional flows.

The computational grid is 1282 × 64 for the Re = 200 simulations, and the
length of the domain in the spanwise direction is 6 (sufficient to capture the
streamwise vorticity, which has a wavelength of about 3 − D). Although the
spanwise direction is not as finely resolved as the other directions (h = 3/4δ,
compared with h = δ/6 for the other directions), we have checked a posteriori
that three-dimensional vorticity is sufficiently well resolved. This is actually
slightly more than the spanwise resolution used in the finite volume calcula-
tions of Persillon and Braza (1998). The normalized spring constant is set to
k∗ = k/(ρU 2

∞/2) = 451.1 in order to match the Strouhal number St = 1.32 of
the fixed two-dimensional cylinder.

At Re = 1 000 we kept the same streamwise resolution as for Re = 200 (i.e.
h = δ/6), but found that we needed to increase the spanwise resolution to
h = δ/2. The computational grid is thus 2882 × 96, and the length of the
domain in the spanwise direction is 1.5 (i.e. the domain is cubic). As we will
see, the shorter spanwise domain is sufficient due to the smaller size of the
streamwise vortices at this Reynolds number. The normalized spring constant
is set to k∗ = 130 in order to match the peak Strouhal number St = 1.00 of
the fixed two-dimensional cylinder.
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Fig. 3. Lift curves for Re = 200 case. (a) Fixed cylinder, short times: 2-D and 3-D
results match. (b) Fixed cylinder, long times: 2-D has fixed amplitude, while 3-D
has modulated amplitude. (c) Moving cylinder, short times: 2-D and 3-D results
match. (d) Moving cylinder, long times: 2-D and 3-D results match.

5 Results

5.1 Reynolds number 200

Figure 3 shows the lift curves at short and long times for the fixed and moving
cylinders at Re = 200. In both cases the lift curves agree at short times (be-
fore the three-dimensional instability has developed). However, at longer times
the three-dimensional fixed cylinder’s lift amplitude is modulated in a non-
stationary way, whereas the the moving cylinder’s lift still closely matches that
of the moving two-dimensional cylinder. Table 2 lists the peak lift frequencies
for each of the cases. The frequencies of the two- and three-dimensional mov-
ing cylinder cases match, while those of the fixed cases differ by about 0.14.
Note that the Strouhal number of the three-dimensional fixed tube is 1.18.
This value is much higher than the experimental value of 0.18 for an isolated
tube (Williamson, 1989), but is consistent with the value of 1.25± 0.1 found
for rotated square tube bundles with P/D = 1.5 by Price et al. (1995).

Figure 4 shows the vorticity field at t = 50 (the point of maximum lift dur-
ing the vortex shedding cycle). It is clear from Figure 4(c) that the moving
cylinder completely suppresses the production of streamwise vorticity, while
Figure 4(a) shows the development of streamwise vortices at a spacing of about
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Fig. 4. Isosurfaces of three-dimensional vorticity at t = 50 for Re = 200. The
spanwise vorticity isosurfaces are at 0.25 of maximum vorticity magnitude, and the
transverse and streamwise vorticity isosurfaces are at 0.25/4 of maximum vorticity.
(a) Fixed cylinder, three components. Four streamwise vortices are evident, with
a spacing of about 1.5D. (b) Fixed cylinder, spanwise vorticity only. (c) Moving
cylinder, spanwise vorticity only.

1.5D, twice as close as the spacing of 3D seen in simulations of flow past an
isolated cylinder (Persillon and Braza, 1998). In fact, the spacing observed
here is much closer to the mode B spacing of about 1D. Finally, Figure 4(b)
shows that, although significant streamwise vorticity has been generated, the
spanwise vorticity is still largely two-dimensional except for some perturbation
at the trailing edge of the vortex sheets due to interaction with the streamwise
vortices.

These results show that at Re = 200 the in-phase ‘acoustic resonance’ move-
ment of the cylinders completely suppresses the development of any three-
dimensionality in the flow. Since the amplitude of cylinder oscillation is A/D =
0.23 > 0.125, these results are consistent with the observations of Toebes
(1969) that sufficiently large amplitude cylinder vibration amplitude should
produce a high degree of spanwise correlation. We also find that the tight
packing alone does not suppress three-dimensional instabilities.

5.2 Reynolds number 1 000

The drag and lift curves for the Re = 1 000 simulations shown in Figure 5
demonstrate that the three-dimensional forces are decorrelated from the two-
dimensional forces, and are of much lower amplitude for both the fixed and
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Case Re = 200 Re = 1 000

2-D, fixed 1.32 1.08

3-D, fixed 1.18 0.92

2-D, moving 0.95 0.75

3-D, moving 0.95 0.80

Table 2
Strouhal numbers for each simulation. The result for the Re = 1 000 moving cylinder
case is the average of the peaks at 0.92 and 0.67.

moving cylinder cases. The small amplitude of the force fluctuations in the
three-dimensional simulation is somewhat surprising. It is probably due to
the streamwise vortices decorrelating the spanwise vorticity, and hence reduc-
ing the fluctuating force caused by vortex shedding (see Figure 6). The tight
packing of the cylinders may enhance the decorrelating effect of streamwise
vorticity. However, Figures 5(a,d) indicate that cylinder movement does still
increase the spanwise correlation of spanwise vorticity compared with the fixed
cylinder case. The very large force amplitudes of the two-dimensional simula-
tion are clearly unphysical, as is seen from the fact that the two-dimensional
drag is often negative (see Figures 5(a,c)).

The lack of suppression of the three-dimensional instability is consistent with
the fact that, as shown in Figure 7, the cylinder vibration amplitude is only
A/D ≈ 0.05. This is less than the minimum threshold of 0.125 identified by
Toebes (1969).

Somewhat surprisingly, as shown in Table 2 and Figure 8, the peak Strouhal
frequency of the moving two-dimensional cylinder is approximately equal to
the average of the two peak Strouhal frequencies of the moving three-dimen-
sional cylinder. In contrast, the peak Strouhal frequencies of the fixed two-
and three-dimensional cylinders differ by 0.16. Recall that at Re = 200 the
Strouhal numbers of two- and three-dimensional cylinders differ by a similar
amount. These results show that, although three-dimensional vorticity is not
suppressed by cylinder motion at Re = 1 000, the average Strouhal numbers of
the two-dimensional and three-dimensional flows are approximately the same.
This suggests that cylinder motion decorrelates non-spanwise vorticity, reduc-
ing its effect on Strouhal number. Note also that the largest peak Strouhal
frequency is the same for the moving and fixed three-dimensional cylinders.
This shows that cylinder motion adds an additional shedding mode, but does
not perturb the fixed cylinder shedding mode. Figure 6(a,d) indicates that
the spanwise vorticity is more strongly correlated in the moving cylinder case
than in the fixed cylinder case. These results indicate that tuning the cylinder
response to the Strouhal frequency of the fixed cylinder does not produce suffi-
ciently large cylinder vibrations to suppress the three-dimensional instability.
On the other hand, cylinder motion does reduce the effect of three-dimensional
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Fig. 5. Drag and lift at Re = 1 000 case. In each figure the three-dimensional curve
is the one with the lower amplitude. (a) Drag, fixed cylinder. (b) Drag, moving
cylinder. (c) Lift, fixed cylinder. (d) Lift, moving cylinder.

vorticity on the average Strouhal frequency.

6 Conclusions

We have used high resolution penalized pseudo-spectral simulations to inves-
tigate how and when in-phase cylinder vibration of tube bundles can sup-
press three-dimensionality. The in-phase cylinder vibration models the case of
acoustic resonance, which was observed by Blevins (1985) to induce nearly
perfect spanwise correlation of pressure for an isolated cylinder. We per-
formed two- and three-dimensional simulations of fixed and free transverse
vibrations of tube bundles at the relatively low Reynolds number Re = 200
(when only the mode A instability is present), and at the moderate Reynolds
number Re = 1 000 (when the flow around the fixed cylinder is highly three-
dimensional and the three-dimensional instability is more complicated and
much stronger).

We found that at Re = 200 the cylinder vibration is large enough (A/D =
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Fig. 6. Isosurfaces of three-dimensional vorticity magnitude at t = 15 for Re = 1 000.
All vorticity isosurfaces are at 0.15 of maximum vorticity magnitude. (a) Fixed
cylinder, spanwise vorticity. (b) Fixed cylinder, streamwise vorticity. (c) Moving
cylinder, transverse vorticity. (d) Moving cylinder, spanwise vorticity. (e) Moving
cylinder, streamwise vorticity. (f) Moving cylinder, transverse vorticity.
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Fig. 7. Cylinder motion at Re = 1 000: 3-D, — ; 2-D, - - - . (a) Amplitude. (b) Ve-
locity.
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Fig. 8. Lift spectra at Re = 1 000: (a) two-dimensional; (b) three-dimensional.

0.23 > 0.125) to completely suppress the three-dimensional instability. The
Strouhal frequency of the moving three-dimensional cylinder is therefore ex-
actly the same as that of the moving two-dimensional cylinder, and no stream-
wise or transverse vorticity is produced. Note that the tight packing P/D = 1.5
of the tube bundle is not sufficient by itself to suppress the three-dimensional
instability.

In contrast, at Re = 1 000 the cylinder vibration is insufficient (A/D ≈ 0.05 <
0.125) to suppress the three-dimensional instabilities, although the spanwise
vorticity is slightly more correlated. This may be due to the fact that signifi-
cant transverse and streamwise vorticity (which is uncorrelated in the spanwise
direction) is generated before the cylinder vibration is large enough to sup-
press the three-dimensional instability. This result does not agree with Blevins
(1985)’s observation that acoustic forcing at the Strouhal frequency should
correlate the flow in the spanwise directions, even at 20 000 ≤ Re ≤ 40 000.
In this case the tight packing of the tube bundle may actually reduce the
cylinder vibration amplitude compared to the single cylinder case considered
by Blevins. Despite the presence of three-dimensional vorticity, our results
show that the average Strouhal frequencies of the two- and three-dimensional
moving cylinder flows are similar. This is not true for the fixed cylinder case,
and suggests that cylinder motion decorrelates non-spanwise vorticity so much
that its effect on Strouhal frequency is negligible. In this sense, the moving
cylinder flow at Re = 1 000 may be described as partly two-dimensional. This
effect is likely to persist for larger Reynolds numbers.

By comparing two- and three-dimensional simulations, we showed that three-
dimensional vorticity drastically reduces the amplitude of fluid forces on the
cylinder (by as much as 10 times at Re = 1 000). This reduction in fluid forces
produces a corresponding reduction in cylinder vibration amplitude. It is clear
that the large forces of the two-dimensional flow at Re = 1 000 are unphysical;
indeed the drag is often negative in the two-dimensional case.

In summary, we have used two- and three-dimensional numerical simulations
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to show that resonant cylinder motion at Re = 200 completely suppresses the
generation of three-dimensional vorticity. At Re = 1 000 cylinder motion elim-
inates the effect of non-spanwise vorticity on the Strouhal number, although
the generation of three-dimensional vorticity is not suppressed. Tight packing
does not suppress the three-dimensional instability, and may actually reduce
cylinder vibration amplitude.
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