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We show that the stochastic differential equationsSDEd model for the merger of two identical
two-dimensional vortices proposed by Agullo and Vergaf“Exact two vortices solution of Navier–
Stokes equation,” Phys. Rev. Lett.78, 2361s1997dg is a special case of a more general class of SDE
models forN interacting vortex filaments. These toy models include vorticity diffusion via a white
noise forcing of the inviscid equations, and thus extend inviscid models to include core dynamics
and topology changese.g., merger in two dimensions and vortex reconnection in three dimensionsd.
We demonstrate that although theN=2 two-dimensional model is qualitatively and quantitatively
incorrect, it can be dramatically improved by accounting for self-advection. We then extend the
two-dimensional SDE model to three dimensions using the semi-inviscid asymptotic approximation
of Klein et al. f“Simplified equations for the interactions of nearly parallel vortex filaments,” J.
Fluid Mech. 288, 201 s1995dg for nearly parallel vortices. This model is nonsingular and is shown
to give qualitatively reasonable results until the approximation of nearly parallel vortices fails. We
hope these simple toy models of vortex reconnection will eventually provide an alternative
perspective on the essential physical processes involved in vortex merging and reconnection.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1932310g

I. INTRODUCTION

Vortex interactions are fundamental to moderate and
high Reynolds number flows. The dynamics of jets, fluid-
structure interaction, and mixing layers are all governed by
large-scale coherent vortices. It is also believed that the dy-
namics of high Reynolds number turbulence is dominated by
vortex interactions. In particular, most enstrophy dissipation
is probably due to the vortex reconnection. Many turbulent
flows are forced by vorticity production at the wall, and drag
reduction techniques attempt to modify the wall vortices.
Vortex-based methods are used to simulate fluid flow in both
two and three dimensions.1 It is thus clearly important to
understand and analyze all stages of vortex reconnection.

Unfortunately, there is still no simple mathematical
model for vortex reconnection. This is because viscous dif-
fusion is necessary for full vortex reconnection, and viscosity
renders slender vortex models, with their relatively simple
Hamiltonian dynamics, inapplicable. Despite this, many
semi-inviscid models have been developed that include a
steady approximation for core dynamics.2–5 These models
fail once the vortices approach within a core radius, which
leads to the development of a singularity in curvaturescalled
a hairpin or kinkd. Various more or lessad hoc ways of
dealing with reconnection have been proposed.6,7 These
methods use a physically based algorithm to give the end
result of the reconnection. Obviously, the intermediate stages
of the reconnection are not resolved.

Of course, vortex reconnection can be calculated accu-
rately using full direct numerical simulationsDNSd of the
Navier–Stokes equations.8,9 However, DNS is computation-
ally expensive and gives little insight into the fundamental

physical mechanisms involved. In addition, DNS is limited
to moderate Reynolds numbers since its space-time compu-
tational complexity scales like Re3 sunless an adaptive
method is usedd. For these reasons a simple analytic or semi-
analytic model for interacting vorticity filaments is desirable.

Agullo and Verga10 claimed to have produced an “exact
two vortex solution of the Navier–Stokes equations,” i.e., an
equation for the interaction of two identical two-dimensional
vortices whose solution can be approximated asymptotically.
They simply took the inviscid equation for two interacting
point vortices and turned it into a stochastic differential
equationsSDEd by adding white noise forcing. The positions
of the point vortices become random variables, and the vor-
ticity distribution is given by the probability density function
sPDFd for the positions of the point vortices. Although the
equations do produce a single merged vortex, as we show in
Sec. II, the dynamics and vorticity distribution are both
quantitatively and qualitatively incorrect. In fact, the solution
involves a severe simplification of the nonlinear term of the
vorticity equation: only pairwise interactions between the
point vortices are included in each realization. In the com-
plete vorticity equations the vorticity at each point is ad-
vected by the vorticity at all other points simultaneously. It is
this approximation that distinguishes Agullo and Verga’s ap-
proach from numerical vortex methods, where many point
vortices are included simultaneously in order to approximate
a continuous vortex distribution.1 Despite its shortcomings,
Agullo and Verga’s approach does suggest a general way of
extending inviscid models to include diffusion, and hence
topology change. We will explore this idea, and try to evalu-
ate its usefulness, in the present paper.

The SDE toy models considered in this paper are closely
related to, but distinct from, the stochastic vortex method
introduced by Chorin.11 Chorin proposed his vortex methodadElectronic mail: kevlahan@mcmaster.ca
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as a way of efficiently solving the two-dimensional Navier–
Stokes equations at high Reynolds numbers. The continuous
vorticity field is divided into N vortex blobs, i.e., v
=o j=1

N v j, with the corresponding stream function,

csrd = o
j=1

N

G jc
0sr − r jd, s1d

where the smoothed kernelc0srd is given by

c0srd =5
1

2p
ln r, r ù s,

1

2ps
r, r , s. 6 s2d

Distant vortex blobs interact as point vortices ands is a
cutoff which regularizes the logarithmic singularity of the
point vortex kernel. The motion of the vortex blobs is then
calculated by a split-step particle method where the particles
are first advected using the streamfunctions1d sexcluding
self-advectiond, and then perturbed by a stochastic white
noise forcing swhich models diffusiond. Chorin saw this
method as especially useful for high Reynolds number flows
because it is gridless and because the error in approximating
the advection term due to the random walk isOsRe−1/2d.
Chorin applied this simple vortex blob method to flow past a
circular cylinder, where the no-slip boundary condition is
enforced by the creation ofM vortices sof the appropriate
strengthd along the cylinder boundary at each time step.M
depends on the time step: as the time step decreases more
vortices must be created.

In two dimensions the SDE model discussed in this pa-
per is closely related to Chorin’s model. There are, however,
several important differences compared with Chorin’s and
other more recent vortex methods.1,12–14

s1d We use point vortices instead of vortex blobs.
s2d We consider only the interaction of initially well-

separated physical vortices.
s3d Each physical vortex is represented by only one point

vortex. In vortex methods a large numberstypically tens
or hundreds of thousandsd of discrete vortices are used
simultaneously.13,15

s4d The actual vorticity field is given by the ensemble aver-
agesor PDFd of many realizations.

Perhaps the most important difference, however, is our
ultimate goal. We arenot interested in the accurate numerical
approximation of the vorticity equations svortex
methods1,12–14,16–19are already highly accurate in both two
and three dimensionsd, but rather in the construction of
simple toy models of vortex interaction which allow topol-
ogy change. These models are not rigorously justified, but
are intended to capture the minimal physics needed to quali-
tatively describe vortex interaction. In fact, the two-
dimensional case is just the simplest of a class of such SDE
toy models that extend semi-inviscid vortex filament equa-
tions to include vorticity diffusion by the addition of white
noise forcing. This converts the inviscid partial differential
equation into a stochastic differential equation, where the

vorticity field is given by the PDF of its solution. These toy
models should eventually give a new insight into the essen-
tial physics of vortex merger and reconnection, and can even
admit analytical solution in certain cases.10

The paper is organized as follows. In Sec. II A we re-
view Agullo and Verga’s SDE model for the interaction of
identical two-dimensional vortices, and compare its solution
with a full DNS in Sec. II B. The main source of error is
identified and a simple correction is proposed in Sec. II C.
This corrected model is shown to be qualitatively accurate.
Then in Sec. III we extend the SDE model to the case ofN
interacting nearly parallel vortices via a simple modification
of asymptotic semi-inviscid model by Kleinet al.2 for nearly
parallel vortices. Agullo and Verga’s model is a special case
of this new model whenN=2 and vortex curvature is ne-
glected. Because it is not a straightforward asymptotic ap-
proximation of the incompressible Navier–Stokes equations,
the qualitative accuracy of this stochastic toy model is as-
sessed by comparing it with a pseudospectral DNS of the
reconnection of antiparallel vorticessi.e., the Crow instabil-
ityd. Finally, we make some concluding remarks and outline
future research directions in Sec. IV.

II. TWO-DIMENSIONAL TWO VORTEX SDE MODEL

A. Basic model

Agullo and Verga10 proposed the following simple
model for the interaction of two identical point vortices:

]c1

]t
= 2i

c1 − c2

uc1 − c2u2
+ Î2n8b1, s3d

]c2

]t
= − 2i

c1 − c2

uc1 − c2u2
+ Î2n8b2, s4d

wherec jstd=xjstd+ i yjstd are the positions of the two vorti-
ces sexpressed as complex numbersd and bjstd are indepen-
dent white noisessthe derivative of a Wiener processd. Time
has been rescaled by 4p so viscosity is also rescaled,n8
=4pn. Note that the first term on the right-hand side is sim-
ply the snonlineard advection by the other point vortex, and
the second term is a white noise forcing which represents
diffusion. The vortex positionsc1 and c2 are random vari-
ables. The vorticity field is given by the ensemble average of
many realizations ofc1std andc2std swhich is an estimate of
their PDFsd, and the center of rotation of the vortices is given
by the expectationskc1stdl, kc2stdl. In each realization the
initial condition is the same: a pair of identical point vortices
with circulationG=1.

Before considering the solution of the basic modelfs3d
and s4dg, let us recall the full two-dimensional vorticity
equation,

]v

]t
= − u · = v + nDv. s5d

Note that the vorticity is confined to thez direction, i.e.,v
=s0,0,vd. The velocity is a functional of the vorticity, given
by the Biot–Savart law,
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usx,td = −
1

2p
E sx − yd

ux − yu2
3 vsy,tddy, s6d

where the integral is over the entire fluid. The interaction of
two identical vortices corresponds to specifying an appropri-
ate initial condition, e.g., with an initial separationr0,

vsx,y;0d = ds− r0/2,0d + dsr0/2,0d. s7d

This is also the initial condition used in the SDE model.
Comparings6d with the SDE model, we see immediately

that the SDE model involves a drastic simplification of the
advection term. In fact, only the pairwise nonlinear interac-
tions of point vortices are included in each realization. As we
will see later, it is useful to divide the neglected part of the
advection into two components: the advection of the point
vortex due toself-advectionsi.e., due to the rest of the vor-
texd and the advection due to the vorticity of the rest of the
other vortexsi.e., due to the fact that the actual vorticity field
is distributed and not concentrated at a single pointd. These
neglected parts of the nonlinear advection are sketched in
Fig. 1. The key approximation of the SDE model is thus a
pointwise approximation to the advecting velocity field,
where onlyone pointswhich is itself a stochastic variabled is
used in any given realization.

Note that the effect of self-advection is entirely ne-
glected in the SDE model. We will see that the neglect of
self-advection is by far the largest source of error in this
model. Interestingly, in the case of one vortex the SDE
model is exact, since the nonlinear term is zero and the dy-
namics are purely diffusive.

One can construct valid probabilistic approximations, or
even representations, of the vorticity equations. For example,
numerical vortex methods use a pointwise approximation of
the vorticity field, but in this case the vorticity of a vortex is
distributed over many point vorticesse.g., tens of thousandsd.
On the other hand, Busnelloet al.20 have shown that one can
construct an exact SDE representation of the vorticity of a
three-dimensional viscous fluid onR3 si.e., without solid

boundariesd. Again, this probabilistic model is only valid
when many fluid particles are considered simultaneously. In
contrast, in Agullo and Verga’s model each vortex is repre-
sented by only a single point vortex in each realization.

Although the SDE model involves a rather severe ap-
proximation of the Navier–Stokes equations it does have
some attractive features.

s1d Analytic solutions or approximations are possible in
some casesse.g., Agullo and Verga10d.

s2d Numerical solutions are efficient, even at large Reynolds
numbers, because the method is gridless. In addition, the
SDE model reduces the dimension of the vortex merger
problem from two to zerosi.e., from the continuous two-
dimensional vorticity equation to point vortex interac-
tionsd. A similar SDE modelssee Sec. IIId reduces the
vortex reconnection problem from three dimensions to
one dimension.

s3d Existing inviscid or semi-inviscid models can be ex-
tended easily to include topology change. This removes
the finite time singularities associated with these models.

s4d The Hamiltonian structure of the original inviscid equa-
tions is retained.

For these reasons it is interesting to evaluate the SDE model,
and determine how it might be improved or extended.

B. Comparison of the basic SDE model with a DNS

We now compare the basic SDE model solution with a
full DNS. We use a high resolution adaptive wavelet direct
numerical simulationsWDNSd of the vorticity equationsfor
details see Vasilyev and Kevlahan21d. The WNDS uses an
adaptive high-order explicit stiffly stable Krylov method in
time.22 The key property of WDNS is that the computational
grid adapts automatically to the solution at each time step,
refining or coarsening locally as necessary. One can therefore
think of the WDNS as a sort of constrained vortex method,
where the adapted grid points correspond to vortices. Indeed,
we use the fast multipole method23 approximation to the
Biot–Savart law to find the velocity field given the vorticity
at the adapted grid points. Thus, the number of points in the
adapted grid gives an idea of the number of vortices required
to fully represent the solution and its dynamics.

The WDNS solution for the merger of two identical vor-
tices with circulationG=1 and initial separationr0=1 was
computed at Re=G /n=1000 on a domain off−2.5,2.5g
3 f−2.5,2.5g with a maximum resolution of 20482 grid
points. Thel2 norm tolerances for grid adaptation and time
integration were set to 10−4. Note that the WDNS is
dealiased: the actual grid used is twice as fine as the grid
necessary to resolve the solution to the desired tolerance. The
vorticity field at nine different times is shown in Fig. 2, while
the associated adapted grid is shown in Fig. 3. Times are
normalized by the initial rotation period of the pair of point
vortices. Figure 4 shows that about 8000 grid points were
used in the simulation, with a maximum of about 10 000
points att=1.37. This suggests that roughly 104 point vorti-
ces would be required simultaneously for a complete repre-

FIG. 1. Schematic illustration of the approximation to the nonlinear term in
the basic SDE model. The shaded regions indicate the actual vorticity field
and the black circles indicate the position of the point vortices in this par-
ticular realization. We are considering the velocity advecting vortex 1.
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sentation of the vorticity dynamics. Recall that only two-
point vortices are used in any given realization of the SDE
model.

The vortices are pushed together by the irrotational
strain generated by the spiral vorticity filaments. This con-
vective stage of merger is described in detail by Meunier24

and by Cerretelli and Williamson.25 The vortices are fully
mergedsi.e., the vorticity field has a single maximumd after
1.5 pair rotation periods, and a single Gaussian vortex has
formed after two rotations. The asymptotic long time state is
therefore a single Gaussian vortex at the center of rotation of
the initial conditions. The dynamics in the final stage are
purely diffusive and therefore linear.

We now solve the basic SDE model equations numeri-
cally, using the Euler–Maruyama method26 with a small time
step ofDt=10−4 to ensure accuracy. Note that since the drift
coefficientÎ2n8 is constant, the Euler–Maruyama method is
equivalent to the Milstein method26 and has strong order 1.
The vorticity field swhich is the ensemble average of 105

realizationsd is shown in Fig. 5. A comparison of Figs. 2 and
5 reveals that the basic SDE model is both qualitatively and
quantitativelyincorrect. Although the long-time solution is a
single Gaussian vortex in both cases, the intermediate dy-
namics and time scale for final merging are very different. In
the basic SDE model the intermediate solution is a diffusing
vortex ring, and the vortices have still not completely merged
by t=2.25. Indeed, merging is a diffusive process in the basic
SDE model, whereas the actual merging process is advection
dominated, with diffusion important only in the final
stages.25 In the following section we propose a corrected
model that gives a qualitatively accurate solution and iden-
tify the main source of error in the basic model.

C. Corrected model

The error in the basic SDE model is due to the approxi-
mation of the nonlinear advection term by pairwise point
vortex interactions. As mentioned above, this error may be
divided into self-advection errorsneglected entirelyd and

FIG. 2. Vorticity field. Vortex merging at Re=1000, full adaptive wavelet
solution.

FIG. 3. Adaptive wavelet grid for vortex merging at Re=1000.

FIG. 4. Number of grid points in adaptive wavelet solution as a function of
time.

FIG. 5. Vorticity field. Vortex merging at Re=1000, basic SDE model.
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other vortex interaction errorsthe effect of the other vortex is
approximated by concentrating all the vorticity at a single
pointd.

A pair of inviscid point vorticesswithout white noise
forcingd simply rotate around their center of rotation at a
constant rate. We therefore propose to advect the point vor-
tices in the SDE model by the velocity field of Gaussian
vorticessof the correct aged at the positions of the inviscid
point vortices. It is easy to find an analytic expression for
this velocity field. Because the velocity is an integral of the
vorticity, we expect it to be relatively insensitive to the pre-
cise location and form of the vortices. Besides correcting the
basic SDE model, this approach also allows us to separate
the effects of self-advection and other vortex advection. The
corrected equations are

]c1

]t
= iU1sc1,td + Î2n8b1, s8d

]c2

]t
= iU2sc2,td + Î2n8b2, s9d

whereU1sz,td and U2sz,td are thescomplexd velocities ad-
vecting vortices 1 and 2, respectively.

Let u1 andu2 be the velocities of Gaussian vortices at the
locations of inviscid point vortices with initial positions of
vortices 1 and 2, respectively, and letVsc1,c2d=2sc1

−c2d / uc1−c2u2 be the advecting velocity in the basic SDE
model. In order to identify the main source of error in the
basic SDE model we consider three different cases: self-
advection, other advection, and both, as summarized in
Table I.

Because the distance between the inviscid point vortices
never decreases, we must eventually replace the two advect-
ing Gaussian vortices by a single vortex at their center of
rotation. Cerretelli and Williamson25 find that merging oc-
curs when the vortex core sized<0.29r0. We use this time
si.e., tc=1.07d to switch to a single vortex. The single vortex
must conserve the maximum vorticity and total circulation of
the two vortices it replaces. Although this switch to a single
vortex is ratherad hoc, it does give reasonable results. Note
that for tù tc all three models described in Table I are
identical.

The corrected SDE models are compared with the full
WDNS solution in Fig. 6. Figures 6scd and 6sdd show that the
main source of error in the basic SDE model of Agullo and
Verga is self-advection. If the effect of self-advection is ap-
proximated as described above, the solution of the SDE
model is much more accurate. If the effect of the continuous
vorticity of the other vortex is included as well, the SDE
solution is qualitatively correct, and has approximately the
right time scale. It is perhaps not surprising that self-
advection is the largest source of error: it is completely ne-
glected in the basic SDE model.

Although the goal of this paper is to develop and analyze
the qualitative accuracy of simple SDE toy models for vortex

TABLE I. Corrected SDE models.

Case Advecting velocities

Self-advection U1=u1+V, U2=u2−V

Other advection U1=u2, U2=u1

Both U1=u1+u2, U2=u1+u2

FIG. 6. Vorticity field. Two-dimensional vortex merger at timest=0.5, 1.25, 2.sad Full WDNS solution.sbd Uncorrected SDE model.scd SDE model corrected
to include self-advection.sdd SDE with other vortex advection corrected.sed SDE model with both self-vortex and other vortex corrections.
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interaction, it is also instructive to examine their errors quan-
titatively. An important quantitative measure of two-
dimensional vortex merger is the distance between vortex
centers as a function of time,rstd. Figure 7 showsrstd for the
exact WDNS solution and the corrected SDE model. Note
that we have actually shown the WDNS solution of the PDE
version of the corrected SDE modelsi.e., a linearized form of
the vorticity equation with the advecting velocity as in the
SDE modeld. This allows us to easily measurerstd at each
time step and eliminates the random noise of the numerical
solution of the SDE. The PDE version of the SDE model is
solved to the samel2 tolerance used for the exact equations,
i.e., 10−4. The vortex centers were calculated using separate
equations for each vortex, which allows the two vortices to
remain identifiable for the whole simulation. The corrected
model merges the vortex on approximately the correct time
scale, although some detailsfsuch as the oscillations inrstd
at the later stages of mergingg have been lost. It is interesting
to note thatrstd begins to decrease well beforet= tc, when the
two advection vortices are replaced by a single one.

A finer quantitative comparison is given by Fig. 8, which
compares cuts through the vortex maxima for the exact
WDNS solution and the corrected modelssolved as a PDEd.
The agreement is reasonable until the switch to the single
vortex, at which point the corrected model has much less
vorticity at the center of the merging vortices. The reason is
clear from Figs. 6 and 9: because the vortex maxima are still
relatively far apart att= tc, the switch to a single advecting
vortex leads to a rapid wind-up of vorticity accompanied by
a spurious increase in enstrophy dissipation. In addition, the
single advecting vortex does not move the vortex maxima
together as fast as in the exact case. Despite these significant
quantitative errors, the time scale for the merger and the final
vortex radius are reasonable.

Finally, we would like to compare the numerical effi-
ciencies of each method. We take a spatial tolerance for grid
adaptation of 10−2 and a time integration tolerance of 10−4

for the WDNSsexact vorticity equation, and PDE version of
SDE modeld. These WDNS are then comparable in numeri-

cal accuracy to the stochastic solution of the SDE model
with a time step of 10−4 and 105 realizations. Table II shows
the CPU times for each of the examples considered. Note
that the WDNS require a maximum resolution of between
5122 and 322 sdepending on the timed, and a maximum of
2586 wavelets. The WDNS of the PDE version of the SDE
model is the fastest: 3.6 times faster than the exact WDNS
and 49 times faster than the stochastic solution of the SDE
model. The slowness of the stochastic simulation is due to
the slow square root convergence of the stochastic approxi-
mation of the diffusion termsdiscussed belowd. The WDNS
of the PDE version of the SDE model is faster than the
WDNS of the exact equations due to three factors.

s1d There is no need to calculate the velocity from the vor-
ticity sa time consuming part of the WDNSd.

s2d The Krylov time scheme used in the WDNS is very
efficient for linear equations, which allows much larger
time steps.

s3d The code uses a coarser grid resolution to achieve the
same tolerancestwice as coarse at many timesd.

These observations suggest that in two dimensions it is
more numerically efficient to solve the PDE, rather than the
stochastic, version of the SDE model.

Figure 10 illustrates the way the noise of the SDE model
decreases with the number of realizations. From the central
limit theorem, it is clear that the noise should decrease like
1/ÎN, whereN is the number of realizations. The computa-
tional complexity of the SDE model isOsNN /Dtd, i.e., it is
proportional to the number of interacting vortices and the
number of realizations, and inversely proportional to the time
step. As in all Lagrangian methods, the time step is not lim-
ited by the Courant–Friedrichs–Lax criterion. Kloeden and
Platen26 show that the time step of the Euler–Maruyama
scheme for a SDE must satisfyDt,2/U2u−U+1/s4ndu,
whereU is the drift velocity.

A rough solution of the SDE can be found quickly and
then improved progressively as required; this is not possible
with the PDE formulation. In addition, because the realiza-
tions are independent, the method can be easily parallelized
on any computer cluster and scales to an arbitrarily large
number of processors. These advantages are more significant
when the SDE approach is applied to vortex reconnection in
three dimensions, as proposed in the following section. Note
that we have chosen a very conservative time stepsDt
=10−4d, but we also obtain reasonable results for time steps
of 10−3 or larger. If CPU time were an issue, we could use
one of the more sophisticated adaptive time step methods for
SDEs, such as the one proposed recently by Burrage and
Burrage.27

III. THREE-DIMENSIONAL NEARLY PARALLEL N
VORTEX SDE MODEL

A. Derivation of the model

We now explain how the basic SDE model of Agullo and
Verga10 for the interaction of two identical two-dimensional
vortices can be extended toN three-dimensional vortices

FIG. 7. The distance between the centers of rotation of the vortices as a
function of time. —, exact WNDS; - - -, corrected SDE model.
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with different circulations. The simplest model for the inter-
action of three-dimensional vortex filaments is the semi-
inviscid asymptotic theory for the interaction ofN nearly
parallel vortices derived by Kleinet al.2 They assume that
the vortices are nearly alignedse.g., with thez axisd and that
the perturbation amplitudes of the vortex centerlines are
much smaller than the perturbation wavelengths, which are
also much larger than the core radius. As usual in such semi-
inviscid theories, they also assume that the separation be-
tween vortices is much larger than the vortex core radius.
With these assumptions the interaction between vortex fila-
ments is approximated asymptotically by two-dimensional
point si.e., potentiald vortex interaction in planes perpendicu-
lar to thez axis, while the self-advection is given by a geo-
metrically simple form of the local induction approximation.
Nonlocal self-stretching and mutual induction are neglected,

although vortex stretching by other vortices is included.
These equations are remarkably simple and are easy to solve
numerically to high precision. The numerical solutions pre-
sented in Ref. 2 show that, when applied to the Crow insta-
bility of antiparallel vortices, the vortices develop a kink
where the filaments are closest. At this point the theory
breaks down and the solution is singular. This semi-inviscid
theory is thus unable to resolve vortex reconnection or pre-
dict the final configuration of the vortices.

We propose to extend the theory of Kleinet al. to in-
clude diffusionsand core dynamicsd by adding white noise
forcing to the filament equations, following the approach of
Agullo and Verga.10 This produces the following SDE toy
model for the diffusive interaction ofN nearly parallel
vortices:

FIG. 8. Vorticity along cuts through the vortex maxima: —, exact WDNS; - - -, corrected modelsWDNS solution of PDE versiond.
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]X j

]t
= JFo

kÞ j

N

2Gk
sX j − Xkd
uX j − Xku2

G + JFG j
]2X j

]z2 G + Î2n8bj ,

s10d

where X jsz,td=fxjsz,td ,yjsz,tdg, j =1,… ,N are the coordi-
nates of the vortex centerlines,G j are their circulations,

J = F0 − 1

1 0
G ,

and bjsz,td=fbj1sz,td ,bj2sz,tdg where bj1 and bj2 are inde-
pendent Gaussian random variables with mean zero and vari-
ance one. Time has been rescaled by 4p so n8=4pn. The
first term on the right-hand side ofs10d is the point vortex
interaction inz planes, the second is the local induction ap-
proximationsi.e., curvature termd, and the third is the white
noise forcingswhich diffuses the vortices in thez planes,
which are the planes approximately perpendicular to the vor-
tex axisd. The initial conditions for these equations are non-
intersecting line vortices.

Formally, the only change with respect to the model of
Klein et al. is the addition of the white noise forcing. How-
ever, the interpretation of the solution is very different. The
filament’s shapeX jstd is now a random variable, and the
vorticity distribution is given by its PDF. The position of the
vortex centerline is the mean ofX jstd. We will see that the
SDE model remains nonsingular for arbitrarily long times.

This suggests that a toy model of this type could reproduce
some aspects of vortex reconnection. This is likely the sim-
plest SDE model with this property.

WhenN=2, we can use the complex notation of Ref. 2
to derive the following equations for the interaction of a pair
of filaments:

]c1

]t
= 2iG

c1 − c2

uc1 − c2u2
+ i

]2c1

]z2 + Î2n8b1, s11d

]c2

]t
= − 2i

c1 − c2

uc1 − c2u2
+ i

]2c2

]z2 + Î2n8b2, s12d

where c j =xjsz,td+ i yjsz,td, bjsz,td=bj1+ i bj2, we have set
G1=1, G=G2/G1.

If we neglect the curvature term ins10d and takez=0
swithout loss of generalityd, we obtain a SDE model for the
interaction ofN nonidentical two-dimensional vortices. If we
set G=1, N=2, andz=0 and neglect curvature infs11d and
s12dg we recover the SDE model of Agullo and Vergafs3d
ands4dg. Agullo and Verga’s model equation can thus be seen
as a special case of a much wider class of SDE models for
vortex interaction.

The simple SDE toy modelfs11d ands12dg can be solved
numerically using a split-step method similar to that used by
Klein et al.2 We take periodic boundary conditions inz, and
solve exactly for the curvature term step using a Fourier
transformation inz. The grid spacing inz, Dz, should be
sufficiently small to resolve the smallest filament curvature,
but much larger than the amplitude of the white noise per-
turbations to avoid resolving spurious small scale curvature

fluctuations, i.e., we requireÎ2n8Dt!Dz!În8, which can
be satisfied ifDt!1. The remaining two terms are solved as
in the two-dimensional case.

B. Evaluation of the model: Reconnection
of antiparallel vortices

This section is not intended to provide a quantitative
error analysis of the SDE toy model or even to determine its
range of validity. Our aim is to establish whether the SDE
model is promising and merits further investigation. In order
to evaluate qualitatively the SDE model for nearly parallel

FIG. 10. The vorticity along they axis at t=0.75. sad 104 realizations,
compared with the PDE solution.sbd 105 realizations, compared with the
PDE solution.

FIG. 9. Enstrophy as a function of time: —, exact WDNS solution; - - -,
corrected modelsWDNS solution of PDE versiond.

TABLE II. CPU times for different methods with the same numerical
accuracy.

Case CPU timessd

Exact WDNS 407

Corrected SDE modelsPDE, WDNS solutiond 113

Corrected SDE modelsstochastic, 105 realizationsd 5500
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vortices we compare it with the semi-inviscid model of Klein
et al.and to a full pseudospectral DNS of the reconnection of
two equal strength antiparallel vortices.

In all simulations,G=−1 and the initial conditions for
the vortex centerlines are

c1sz,0d = −
1

2
−

e

2Î2
s1 − idsei2p/lz − e−i2p/lzd,

c2sz,0d =
1

2
−

e

2Î2
s1 + idsei2p/lz − e−i2p/lzd,

where the amplitude and the wavelength of the perturbation
aree=0.2 andl=7.3, respectively. This initial condition cor-
responds to a periodic perturbation of the vortices at the most
unstable mode of the Crow instability.28 The nominal sepa-
ration of the vortices isr0=1. In the viscous casessSDE and
DNSd the vortex Reynolds number is Re=G /n=1500, and
the vortices initially have a Gaussian profile with radius 0.2.

The DNS uses the same initial conditions, grid resolu-
tion s1283d and domain sizes7.33d as the pseudospectral
DNS of Marshallet al.9 They found that these parameters
give well-converged results. We use a Krylov stiffly stable
adaptive time scheme22 to ensurel2 norm time integration
accuracy of 10−4. More details of this standard pseudospec-
tral code are given in Ref. 29.

We construct a nonsingular Gaussian initial condition for
the SDE model by setting to zero all terms except the sto-
chastic term until the core has the desired thickness, i.e., 0.2.
The length of the periodic computational domain inz is l
and is discretized using 128 pointssas in the pseudospectral
DNSd. The time step isDt=10−3, and 33106 realizations are
used in order to obtain reasonably smooth contours of core
vorticity. Note that if we were only interested in the geom-
etry of the vortex centerlines, or the isosurfaces of vorticity,
aboutOs105d realizations would suffice. The initial condition
for the SDE model and the model by Kleinet al. is shown in
Fig. 11.

Figure 12 compares the centerlines of the positive vortex
according to the model by Kleinet al. and the present SDE
model att* =0.52, i.e., just before the vortex develops a kink

and the model by Kleinet al.breaks down. It is interesting to
note that the two models agree, except in the region of the
kink where the SDE model remains smooth. This result is
perhaps not surprising, but it does show that the SDE model
is physically reasonable: it remains close to the semi-inviscid
model where the semi-inviscid model is valid, but avoids the
unphysical kink. This result also shows how nonsteady core
dynamics can control vortex curvature.

In Fig. 13 we compare the SDE model with the pseu-
dospectral DNS at four different times. Isosurfaces of vortic-
ity at v=G / s4pntdexps−1d si.e., the core radius of an equiva-
lent Gaussian vortexd are plotted. The DNS results show that
the vortices interact, and eventually reconnect, at the location
where they are closestsi.e., at z=l /2d. The reconnection
begins at the time the semi-inviscid theory failsst<0.522d,
and the reconnected vortices are still joined by thin threads at
t=1.27. Overall the SDE toy model performs reasonably

FIG. 11. Initial configuration of vortex centerlines for the antiparallel vortex
reconnection simulation. The positive vortex is in the half-spacex,0, and
the initial condition is mirror symmetric about the planex=0.

FIG. 12. Centerlines of the positive vortex nearz=l /2 at t=0.52 just before
the semi-inviscid vortices develop kinks and touch. Note that the SDE
model vortex matches the semi-inviscid vortex except near the kink, where
it remains smooth.

FIG. 13. Isosurfaces of vorticity: comparison of the DNS with the SDE
model. Note that the semi-inviscid model of Kleinet al. fails at t=0.522.
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well: it remains nonsingular, its dynamics have the correct
time scale, and the reconnection proceeds by thinning of the
vorticity to create threads. Comparison of isosurfaces ofuv3u
for DNS and SDE shows that the main qualitative error is
due to the lack of self-stretching in the SDE model. The
threads joining the vortices rapidly become very weak in the
SDE model, whereas in the DNS they strengthen due to the
stretching. Of course, the SDE model includes only thez
component of vorticity, and so is unable to fully reconnect
the vorticesscompare theuvu and uv3u isosurfaces att=1.27
in Fig. 13 to see the role of nonaxial vorticity in completing
the reconnectiond. The model thus becomes increasingly in-
accurate fort.1.27, although it remains numerically stable.

The simple three-dimensional SDE toy model performs
better than the basic two-dimensional SDE model, probably
because self-advection is approximated via the curvature
term si.e., the local induction approximationd instead of be-
ing totally neglected. This suggests that the curvature part of
the self-advection dominates that due to core deformation.

Finally, Fig. 14 compares the core structure of the vorti-
ces in the SDE model with the DNS atz=l /2. Seven con-
tours are plotted betweenvmax and exps−1dvmax, wherevmax

is the maximum vorticity atz=l /2. The SDE model pro-
duces some elongation of the vortex core, although the de-
formation is smaller due to the lack of self-stretching. The
lack of self-stretching also means that the SDE vortex cores
are much too weak, and hence too large. Nevertheless, the
fact that the core is deformed show that a suitably modified
SDE model may be able to produce realistic core dynamics,
as well as giving the vortex centerline geometry.

The results presented in this section suggest that, unlike
the two-dimensional SDE model, the main sources of error
in the three-dimensional SDE model are the assumption of
nearly parallel vortices and the lack of self-stretching. These
assumptions are not justified during the later stages of recon-
nection. The fact that the model is qualitatively correct at the
early stages of reconnection is consistent with the observa-
tions of the preceding section that some self-advection must
be included: it is included here via the curvature term.

IV. CONCLUSIONS

In this paper we have evaluated the accuracy of Agullo
and Verga’s10 remarkable SDE model for the merger of two
identical two-dimensional vortices. We demonstrated that
this simple model is qualitatively and quantitatively incor-
rect, due to its drastic simplification of the nonlinear term of
the vorticity equation. However, it can be dramatically im-
proved by approximating vortex self-advection, which is

completely neglected in their model. With this correction
Agullo and Verga’s model gives qualitatively accurate results
when compared with a DNS.

Agullo and Verga’s model may be seen as a special case
of a much wider class of simple SDE toy models for vortex
interaction. These models extend inviscid and semi-inviscid
approximations to include vorticity diffusion and core dy-
namics by the addition of white noise forcing. This converts
the inviscid partial differential equation into a stochastic dif-
ferential equation, where the vorticity field is given by the
PDF of its solutionswhich can be approximated as the en-
semble average of many realizationsd. In this way, one can
construct general SDE toy models for the interaction ofN
different two- or three-dimensional vortices. In a single real-
ization the solution for the interaction ofN vortices is geo-
metrically simple: a set ofN point vortices in two dimen-
sions orN vortex filaments in three dimensions. Such toy
models have several attractive features: they have an associ-
ated inviscid version, are computationally efficient, have
nonsingular solutions, allow topology change, and retain the
Hamiltonian structure of the original inviscid equations.
However, since they are not derived as rigorous approxima-
tions to the vorticity equation, the accuracy and applicability
of these SDE toy models is unclear.

A SDE toy model for the interaction of three-
dimensional vortices has been evaluated. It is based on the
semi-inviscid theory of Kleinet al.,2 and is therefore valid
for nearly parallel vortices. We used this model to calculate
the reconnection of identical antiparallel vortices, and com-
pared the results with a pseudospectral DNS. The model
avoids the finite-time curvature singularity of the semi-
inviscid theory, and gives qualitatively reasonable results for
intermediate times. However, it becomes unphysical at
longer times, and is unable to produce complete reconnec-
tion. We conjectured that this problem is due primarily to the
assumption of nearly parallel vortices and the neglect of self-
stretching in the semi-inviscid model, and not to the stochas-
tic modeling of vorticity diffusion and the associated simpli-
fication of the nonlinear terms of the vorticity equation. We
will investigate a more sophisticated SDE toy model, which
includes general vortex geometry and self-stretching, in fu-
ture work.

The SDE toy models for vortex interaction introduced
here have the potential to provide an alternative analytical or
semi-analytical description of all stages of vortex connec-
tion. Because of their low computational complexity, they
may also allow vortex interaction and topology change to be
investigated at very high Reynolds numbers. Much work re-
mains to be done in order to properly understand the accu-
racy and domain of validity of such simple SDE models for
vortex interaction.
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