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Stochastic differential equation models of vortex merging and reconnection
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We show that the stochastic differential equati@DE) model for the merger of two identical
two-dimensional vortices proposed by Agullo and Veftfaxact two vortices solution of Navier—
Stokes equation,” Phys. Rev. Left8, 2361(1997] is a special case of a more general class of SDE
models forN interacting vortex filaments. These toy models include vorticity diffusion via a white
noise forcing of the inviscid equations, and thus extend inviscid models to include core dynamics
and topology changge.g., merger in two dimensions and vortex reconnection in three dimehsions
We demonstrate that although thie=2 two-dimensional model is qualitatively and quantitatively
incorrect, it can be dramatically improved by accounting for self-advection. We then extend the
two-dimensional SDE model to three dimensions using the semi-inviscid asymptotic approximation
of Klein et al. [“Simplified equations for the interactions of nearly parallel vortex filaments,” J.
Fluid Mech. 288 201 (1995] for nearly parallel vortices. This model is nonsingular and is shown
to give qualitatively reasonable results until the approximation of nearly parallel vortices fails. We
hope these simple toy models of vortex reconnection will eventually provide an alternative
perspective on the essential physical processes involved in vortex merging and reconnection.

© 2005 American Institute of PhysidDOI: 10.1063/1.1932310

I. INTRODUCTION physical mechanisms involved. In addition, DNS is limited
to moderate Reynolds numbers since its space-time compu-
Vortex interactions are fundamental to moderate andational complexity scales like Re(unless an adaptive
high Reynolds number flows. The dynamics of jets, fluid-method is used For these reasons a simple analytic or semi-
structure interaction, and mixing layers are all governed byanalytic model for interacting vorticity filaments is desirable.
large-scale coherent vortices. It is also believed that the dy- Agullo and Vergd® claimed to have produced an “exact
namics of high Reynolds number turbulence is dominated bywo vortex solution of the Navier—Stokes equations,” i.e., an
vortex interactions. In particular, most enstrophy dissipatiorequation for the interaction of two identical two-dimensional
is probably due to the vortex reconnection. Many turbulentvortices whose solution can be approximated asymptotically.
flows are forced by vorticity production at the wall, and drag They simply took the inviscid equation for two interacting
reduction techniques attempt to modify the wall vortices.point vortices and turned it into a stochastic differential
Vortex-based methods are used to simulate fluid flow in botlequation(SDE) by adding white noise forcing. The positions
two and three dimensiorislt is thus clearly important to  of the point vortices become random variables, and the vor-
understand and analyze all stages of vortex reconnection. ticity distribution is given by the probability density function
Unfortunately, there is still no simple mathematical (PDF for the positions of the point vortices. Although the
model for vortex reconnection. This is because viscous difequations do produce a single merged vortex, as we show in
fusion is necessary for full vortex reconnection, and viscositySec. 1, the dynamics and vorticity distribution are both
renders slender vortex models, with their relatively simplequantitatively and qualitatively incorrect. In fact, the solution
Hamiltonian dynamics, inapplicable. Despite this, manyinvolves a severe simplification of the nonlinear term of the
semi-inviscid models have been developed that include gorticity equation: only pairwise interactions between the
steady approximation for core dynamfc§.These models point vortices are included in each realization. In the com-
fail once the vortices approach within a core radius, whichplete vorticity equations the vorticity at each point is ad-
leads to the development of a singularity in curvatia@led  vected by the vorticity at all other points simultaneously. It is
a hairpin or kink). Various more or lesad hoc ways of  this approximation that distinguishes Agullo and Verga’s ap-
dealing with reconnection have been propoSédrhese proach from numerical vortex methods, where many point
methods use a physically based algorithm to give the endortices are included simultaneously in order to approximate
result of the reconnection. Obviously, the intermediate stagea continuous vortex distributichDespite its shortcomings,
of the reconnection are not resolved. Agullo and Verga’s approach does suggest a general way of
Of course, vortex reconnection can be calculated accuextending inviscid models to include diffusion, and hence
rately using full direct numerical simulatiofDNS) of the  topology change. We will explore this idea, and try to evalu-
Navier-Stokes equatiofis. However, DNS is computation- ate its usefulness, in the present paper.
ally expensive and gives little insight into the fundamental ~ The SDE toy models considered in this paper are closely
related to, but distinct from, the stochastic vortex method
¥Electronic mail: kevlahan@mcmaster.ca introduced by Chorift! Chorin proposed his vortex method
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as a way of efficiently solving the two-dimensional Navier—vorticity field is given by the PDF of its solution. These toy
Stokes equations at high Reynolds numbers. The continuousodels should eventually give a new insight into the essen-
vorticity field is divided into N vortex blobs, i.e., o tial physics of vortex merger and reconnection, and can even

:E}\':le, with the corresponding stream function, admit analytical solution in certain cases.
N The paper is organized as follows. In Sec. Il A we re-
_ . view Agullo and Verga's SDE model for the interaction of
W= glrllﬁo(r i), @ identical two-dimensional vortices, and compare its solution
with a full DNS in Sec. Il B. The main source of error is
where the smoothed kerngf(r) is given by identified and a simple correction is proposed in Sec. Il C.
1 This corrected model is shown to be qualitatively accurate.
—Inr, r=o, Then in Sec. Il we extend the SDE model to the cas&l of
o(r) = 2m 2) interacting nearly parallel vortices via a simpl;a modification
1 of asymptotic semi-inviscid model by Klekt al” for nearly
%r, r<o. parallel vortices. Agullo and Verga’s model is a special case

of this new model whem\N=2 and vortex curvature is ne-
Distant vortex blobs interact as point vortices amds a  glected. Because it is not a straightforward asymptotic ap-
cutoff which regularizes the logarithmic singularity of the proximation of the incompressible Navier—Stokes equations,
point vortex kernel. The motion of the vortex blobs is thenthe qualitative accuracy of this stochastic toy model is as-
calculated by a split-step particle method where the particlesessed by comparing it with a pseudospectral DNS of the
are first advected using the streamfunctidn (excluding  reconnection of antiparallel vorticése., the Crow instabil-
self-advection, and then perturbed by a stochastic whiteity). Finally, we make some concluding remarks and outline
noise forcing (which models diffusion Chorin saw this future research directions in Sec. IV.
method as especially useful for high Reynolds number flows
because it is gridless and because the error in approximating
the advection term due to the random walk Q$Re /3.
Chorin applied this simple vortex blob method to flow past a
circular cylinder, where the no-slip boundary condition isA. Basic model

enforced by the creation d¥l vortices (of the appropriate Agullo and Verg&’ proposed the following simple

strength along thg cylinder boundary at each time stbp. model for the interaction of two identical point vortices:

depends on the time step: as the time step decreases more

vortices must be created. I _ o - 20 3)
In two dimensions the SDE model discussed in this pa- a [y — 4)? Ny b

per is closely related to Chorin’s model. There are, however,

several important differences compared with Chorin’s and gy, L — iy

H /
other more recent vortex methot¥* —Em 25+ N2v'by, (4)
dt | = o

II. TWO-DIMENSIONAL TWO VORTEX SDE MODEL

(1) We use point vortices instead of vortex blobs.

(2) We consider only the interaction of initially well-
separated physical vortices.

(3) Each physical vortex is represented by only one poin
vortex. In vortex methods a large numkgpically tens
or hundreds of thousandsf discrete vortices are used
simultaneously>*®

(4) The actual vorticity field is given by the ensemble aver-
age(or PDP of many realizations.

where (1) =x;(t) +i y;(t) are the positions of the two vorti-
ces(expressed as complex numbeasid b;(t) are indepen-
dent white noisegthe derivative of a Wiener proces§ime

Thas been rescaled bym4so viscosity is also rescaled;
=4v. Note that the first term on the right-hand side is sim-
ply the (nonlineaj advection by the other point vortex, and
the second term is a white noise forcing which represents
diffusion. The vortex positiongs, and i, are random vari-
ables. The vorticity field is given by the ensemble average of

Perhaps the most important difference, however, is ouf"any realizations ofi;(t) andy,(t) (which is an estimate of
ultimate goal. We areotinterested in the accurate numerical th€ir PDF3, and the center of rotation of the vortices is given
approximation of the vorticity equations (vortex ~PY the expectationg; (1)), (¢»(t)). In each realization the
method$ 2416 1%e already highly accurate in both two in?tial gondition is the same: a pair of identical point vortices
and three dimensiofsbut rather in the construction of With circulationl’=1. . .
simple toy models of vortex interaction which allow topol-  Before considering the solution of the basic mofi8)
ogy change. These models are not rigorously justified, pugnd (é_l)], let us recall the full two-dimensional vorticity
are intended to capture the minimal physics needed to qualgduation,
tatively describe vortex interaction. In fact, the two- dw
dimensional case is just the simplest of a class of such SDE —_ =~-U- Veo+rvie. 5
toy models that extend semi-inviscid vortex filament equa-
tions to include vorticity diffusion by the addition of white Note that the vorticity is confined to thedirection, i.e.,®
noise forcing. This converts the inviscid partial differential =(0,0,w). The velocity is a functional of the vorticity, given
equation into a stochastic differential equation, where thdoy the Biot—Savart law,
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boundaries Again, this probabilistic model is only valid

sefl;fgffﬁfgm when many fluid particles are considered simultaneously. In
contrast, in Agullo and Verga’s model each vortex is repre-
1 sented by only a single point vortex in each realization.

Although the SDE model involves a rather severe ap-
proximation of the Navier—Stokes equations it does have
some attractive features.

advection

(1) Analytic solutions or approximations are possible in
some casege.g., Agullo and Verg).
(2) Numerical solutions are efficient, even at large Reynolds
Approzimated numbers, because the method is gridless. In addition, the
cthcrsdecnan SDE model reduces the dimension of the vortex merger
problem from two to zerdi.e., from the continuous two-
dimensional vorticity equation to point vortex interac-

FIG. 1. Schematic illustration of the approximation to the nonlinear term in tions)' A similar SDE mOdeI(see Sec. Il reduces the

the basic SDE model. The shaded regions indicate the actual vorticity field ~ vortex reconnection problem from three dimensions to

qnd the blz_ick_circles indicate the position of th(—_:t point vo_rtices in this par- one dimension.

ticular realization. We are considering the velocity advecting vortex 1. 3) Existing inviscid or semi-inviscid models can be ex-
tended easily to include topology change. This removes
the finite time singularities associated with these models.

1 ( (x-y) (4) The Hamiltonian structure of the original inviscid equa-

H=-— X ,Hdy, 6 i i i
u(x,t) 27 ] ix=yP w(y,t)dy (6) tions is retained.

where the integral is over the entire fluid. The interaction ofFor these reasons it is interesting to evaluate the SDE model,

two identical vortices corresponds to specifying an appropri&nd determine how it might be improved or extended.
ate initial condition, e.g., with an initial separatiog

w(x,y;0) = 8(=r1¢/2,0) + &(r¢/2,0). (7)

o o - ) We now compare the basic SDE model solution with a
This is also the initial condition used in the SDE model. | pNS. We use a high resolution adaptive wavelet direct
Comparing(6) with the SDE model, we see immediately merical simulatiof WDNS) of the vorticity equatior(for
that the SDE model involves a drastic simplification of the yatails see Vasilyev and Kevlatdn The WNDS uses an
advection term. In fact, only the pairwise nonlinear |nterac-(,idam\/e high-order explicit stiffly stable Krylov method in

tions of point vortices are included in each realization. As We&ime 22 The key property of WDNS is that the computational
will see later, it is useful to divide the neglected part of the '

advection into two components: the advection of the point?rid adapts automatically to the solution at each time step,
v ) efining or coarsening locally as necessary. One can therefore
vortex due toself-advectior(i.e., due to the rest of the vor- 9 g Y Y

. . think of the WDNS as a sort of constrained vortex method,
tex) and the advection due to the vorticity of the rest of theWhere the adapted arid points correspond to vortices. Indeed
other vortex(i.e., due to the fact that the actual vorticity field we use the fa?st m?JIti E)Jle meth%f’dap roximation to. the '
is distributed and not concentrated at a single poiflhese P PP

neglected parts of the nonlinear advection are sketched iﬁlot—Savart law to find the velocity field given the vorticity

Fig. 1. The key approximation of the SDE model is thus aat the adapted grid points. Thus, the number of points in the

pointwise approximation to the advecting velocity field, adapted grid gives an idea of the number of vortices required

where onlyone point(which is itself a stochastic variables to fully represent the. solution and its dynamlc.s. .
used in any given realization. The WDNS solution for the merger of two identical vor-

Note that the effect of self-advection is entirely ne- tices with circulation’=1 and initial separatiomy=1 was
glected in the SDE model. We will see that the neglect ofcOMPuted at ReE/»=1000 on a domain of-2.5,2.9
self-advection is by far the largest source of error in thisX[~2.5,2.8 with a maximum resolution of 2048grid
model. Interestingly, in the case of one vortex the SDEPOINTS. Thel? norm tolerances for grid adaptation and time

model is exact, since the nonlinear term is zero and the dyintegration were set to I@ Note that the WDNS is
namics are purely diffusive. dealiased: the actual grid used is twice as fine as the grid

One can construct valid probabilistic approximations, ornecessary to resolve the solution to the desired tolerance. The
even representations, of the vorticity equations. For example/orticity field at nine different times is shown in Fig. 2, while
numerical vortex methods use a pointwise approximation othe associated adapted grid is shown in Fig. 3. Times are
the vorticity field, but in this case the vorticity of a vortex is normalized by the initial rotation period of the pair of point
distributed over many point vorticés.qg., tens of thousangds vortices. Figure 4 shows that about 8000 grid points were
On the other hand, Busnelt al?® have shown that one can used in the simulation, with a maximum of about 10 000
construct an exact SDE representation of the vorticity of gpoints att=1.37. This suggests that roughly*lioint vorti-
three-dimensional viscous fluid oR® (i.e., without solid ces would be required simultaneously for a complete repre-

B. Comparison of the basic SDE model with a DNS
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FIG. 2. Vorticity field. Vortex merging at Re=1000, full adaptive wavelet FIG. 4. Number of grid points in adaptive wavelet solution as a function of
solution. time.

sentation of the vorticity dynamics. Recall that only two- realization$ is shown in Fig. 5. A comparison of Figs. 2 and
point vortices are used in any given realization of the SDE5 reveals that the basic SDE model is both qualitatively and
model. quantitativelyincorrect Although the long-time solution is a
The vortices are pushed together by the irrotationakingle Gaussian vortex in both cases, the intermediate dy-
strain generated by the spiral vorticity filaments. This con-namics and time scale for final merging are very different. In
vective stage of merger is described in detail by Medflier the basic SDE model the intermediate solution is a diffusing
and by Cerretelli and Williamsof. The vortices are fully  vortex ring, and the vortices have still not completely merged
merged(i.e., the vorticity field has a single maximyrafter  pyt=2.25. Indeed, merging is a diffusive process in the basic
1.5 pair rotation periods, and a single Gaussian vortex hagsDE model, whereas the actual merging process is advection
formed after two rotations. The asymptotic long time state isjominated, with diffusion important only in the final
therefore a single Gaussian vortex at the center of rotation ojtagesz? In the following section we propose a corrected
the initial conditions. The dynamics in the final stage aremodel that gives a qualitatively accurate solution and iden-

purely diffusive and therefore linear. tify the main source of error in the basic model.
We now solve the basic SDE model equations numeri-

cally, using the Euler—Maruyama mett8avith a small time  C. Corrected model
step ofAt:LL"' to ensure accuracy. Note that since the drift
coefficienty2v' is constant, the Euler—Maruyama method is
equivalent to the Milstein meth68and has strong order 1.
The vorticity field (which is the ensemble average of°10

The error in the basic SDE model is due to the approxi-
mation of the nonlinear advection term by pairwise point
vortex interactions. As mentioned above, this error may be
divided into self-advection errofneglected entirely and

1=0.25 t=0.5 t=0.75
# s t=0.25
o @
W‘h i
[e=1 =125 =15 max
=175 4
FIG. 3. Adaptive wavelet grid for vortex merging at Re=1000. FIG. 5. Vorticity field. Vortex merging at Re=1000, basic SDE model.
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TABLE I. Corrected SDE models. Let u; andu, be the velocities of Gaussian vortices at the
i ~ locations of inviscid point vortices with initial positions of
Case Advecting velocities - \ortices 1 and 2, respectively, and 18y, 1) =2(i4,
Self-advection Up=u+V, Uy=u,—V — )|y — > be the advecting velocity in the basic SDE
Other advection Uy=Uy, Uy=uy model. In order to identify the main source of error in the
Both U;=Up+Uy, Up=up+u, basic SDE model we consider three different cases: self-
advection, other advection, and both, as summarized in
Table I.

_ . _ Because the distance between the inviscid point vortices
other vortex interaction errdthe effect of the other vortex is neyer decreases, we must eventually replace the two advect-
approximated by concentrating all the vorticity at a singlejng Gaussian vortices by a single vortex at their center of
poing. _ _ _ _ rotation. Cerretelli and Williamsdh find that merging oc-

A pair of inviscid point vortices(without white noise  cyrs when the vortex core sizé~0.29,. We use this time
forcing) simply rotate around their center of rotat|0n_ at a(j.e., t.=1.07 to switch to a single vortex. The single vortex
constant rate. We therefore propose to advect the point vogy st conserve the maximum vorticity and total circulation of
tices in the SDE model by the velocity field of Gaussianine two vortices it replaces. Although this switch to a single
vortices (of the correct ageat the positions of the inviscid \ortex is rathermd hog it does give reasonable results. Note
point vortices. It is easy to find an analytic expression fory,5t for t=t. all three models described in Table | are
this velocity field. Because the velocity is an integral of thejjentical.
vorticity, we expect it to be relatively insensitive to the pre- The corrected SDE models are compared with the full
cise location and form of the vortices. Besides correcting theypns solution in Fig. 6. Figures(6) and &d) show that the

basic SDE model, this approach also allows us to separai@ain source of error in the basic SDE model of Agullo and
the effects of self-advection and other vortex advection. ThQ/erga is self-advection. If the effect of self-advection is ap-

corrected equations are proximated as described above, the solution of the SDE
gy - model is much more accurate. If the effect of the continuous
I:'Ul(‘ﬂl’t)*' ‘/Zbli ®) vorticity of the other vortex is included as well, the SDE
solution is qualitatively correct, and has approximately the
P — right time scale. It is perhaps not surprising that self-
' iUo(¢2,t) + V20" Dy, (9  advection is the largest source of error: it is completely ne-
glected in the basic SDE model.
where U4(z,t) and U,(z,t) are the(complex velocities ad- Although the goal of this paper is to develop and analyze
vecting vortices 1 and 2, respectively. the qualitative accuracy of simple SDE toy models for vortex

(a) (b) © (C) (e)

o0 (0 oo

FIG. 6. Vorticity field. Two-dimensional vortex merger at tinte<0.5, 1.25, 2(a) Full WDNS solution.(b) Uncorrected SDE modelc) SDE model corrected
to include self-advectiond) SDE with other vortex advection correctdd) SDE model with both self-vortex and other vortex corrections.
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cal accuracy to the stochastic solution of the SDE model
with a time step of 10 and 10 realizations. Table Il shows
the CPU times for each of the examples considered. Note
that the WDNS require a maximum resolution of between
512 and 32 (depending on the timgand a maximum of
2586 wavelets. The WDNS of the PDE version of the SDE
model is the fastest: 3.6 times faster than the exact WDNS
and 49 times faster than the stochastic solution of the SDE
model. The slowness of the stochastic simulation is due to
the slow square root convergence of the stochastic approxi-
mation of the diffusion ternidiscussed beloyy The WDNS

of the PDE version of the SDE model is faster than the
WDNS of the exact equations due to three factors.

(1) There is no need to calculate the velocity from the vor-
ticity (a time consuming part of the WDNS

(2) The Krylov time scheme used in the WDNS is very

FIG. 7. The distance between the centers of rotation of the vortices as a  efficient for linear equations, which allows much larger

function of time. —, exact WNDS- - -, corrected SDE model. time steps.

(3) The code uses a coarser grid resolution to achieve the
same tolerancéwice as coarse at many times

interaction, it is also instructive to examine their errors quan-
titatively. An important quantitative measure of two- These observations suggest that in two dimensions it is

dimensional vortex merger is the distance between vortexnore numerically efficient to solve the PDE, rather than the
centers as a function of time(t). Figure 7 shows(t) for the  stochastic, version of the SDE model.

exact WDNS solution and the corrected SDE model. Note  Figure 10 illustrates the way the noise of the SDE model
that we have actually shown the WDNS solution of the PDEdecreases with the number of realizations. From the central
version of the corrected SDE modek., a linearized form of  |imit theorem, it is clear that the noise should decrease like
the vorticity equation with the advecting velocity as in the 1/\,W, whereN is the number of realizations. The computa-
SDE model. This allows us to easily measuré) at each  tional complexity of the SDE model ©(NA/AY), i.e., it is
time step and eliminates the random noise of the numericglroportional to the number of interacting vortices and the
solution of the SDE. The PDE version of the SDE model isnumber of realizations, and inversely proportional to the time
solved to the samk tolerance used for the exact equations,step. As in all Lagrangian methods, the time step is not lim-
i.e., 10 The vortex centers were calculated using separatiged by the Courant—Friedrichs—Lax criterion. Kloeden and

equations for each vortex, which allows the two vortices toplaterf® show that the time step of the Euler-Maruyama
remain identifiable for the whole simulation. The correctedscheme for a SDE must satisft<2/U?-U+1/(4v)],

model merges the vortex on approximately the correct timgvhereU is the drift velocity.
scale, although some detaflsuch as the oscillations ir(t) A rough solution of the SDE can be found quickly and
at the later stages of mergihgave been lost. Itis interesting then improved progressively as required; this is not possible
to note that (t) begins to decrease well befdret;, when the  with the PDE formulation. In addition, because the realiza-
two advection vortices are replaced by a single one. tions are independent, the method can be easily parallelized
Afiner quantitative comparison is given by Fig. 8, which on any computer cluster and scales to an arbitrarily large
compares cuts through the vortex maxima for the exachumber of processors. These advantages are more significant
WDNS solution and the corrected modsblved as a PDE  when the SDE approach is applied to vortex reconnection in
The agreement is reasonable until the switch to the singlénree dimensions, as proposed in the following section. Note
vortex, at which point the corrected model has much lesshat we have chosen a very conservative time dt&p
vorticity at the center of the merging vortices. The reason is=10%), but we also obtain reasonable results for time steps
clear from Figs. 6 and 9: because the vortex maxima are stithf 1072 or larger. If CPU time were an issue, we could use
relatively far apart at=t, the switch to a single advecting one of the more sophisticated adaptive time step methods for

vortex leads to a rapid wind-up of vorticity accompanied bySDEs, such as the one proposed recently by Burrage and
a spurious increase in enstrophy dissipation. In addition, thgurragez_7

single advecting vortex does not move the vortex maxima
together as fast as in the exact case. Despite these significant
guantitative errors, the time scale for the merger and the fingl|, THREE-DIMENSIONAL NEARLY PARALLEL N
vortex radius are reasonable. VORTEX SDE MODEL
Finally, we would like to compare the numerical effi- A Derivation of the model
ciencies of each method. We take a spatial tolerance for grid”
adaptation of 1% and a time integration tolerance of 10 We now explain how the basic SDE model of Agullo and
for the WDNS(exact vorticity equation, and PDE version of Verga® for the interaction of two identical two-dimensional
SDE mode). These WDNS are then comparable in numeri-vortices can be extended td three-dimensional vortices
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FIG. 8. Vorticity along cuts through the vortex maxima: —, exact WDNS-, corrected mode{WDNS solution of PDE version

with different circulations. The simplest model for the inter- although vortex stretching by other vortices is included.
action of three-dimensional vortex filaments is the semi-These equations are remarkably simple and are easy to solve
inviscid asymptotic theory for the interaction &f nearly  numerically to high precision. The numerical solutions pre-
parallel vortices derived by Kleiet al” They assume that sented in Ref. 2 show that, when applied to the Crow insta-
the vortices are nearly aligned.g., with thez axis) and that  jjity of antiparallel vortices, the vortices develop a kink

the perturbation amplitudes of the vortex centerlines arg oo the filaments are closest. At this point the theory
much smaller than the perturbation wavelengths, which ar%reaks down and the solution is singular. This semi-inviscid

also much larger than the core radius. As usual in such sem):

inviscid theories, they also assume that the separation bebeory 'S thus unable to resolve vortex reconnection or pre-

tween vortices is much larger than the vortex core radiusq'Ct the final configuration of the vortices. ) )

With these assumptions the interaction between vortex fila- W€ Propose to extend the theory of Kieit al. to in-
ments is approximated asymptotically by two-dimensionalclude diffusion(and core dynamigsby adding white noise
point (i.e., potential vortex interaction in planes perpendicu- forcing to the filament equations, following the approach of
lar to thez axis, while the self-advection is given by a geo- Agullo and Verga® This produces the following SDE toy
metrically simple form of the local induction approximation. model for the diffusive interaction ofN nearly parallel

Nonlocal self-stretching and mutual induction are neglectedyortices:
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FIG. 9. Enstrophy as a function of time: —, exact WDNS solution -, some aspects of vortex reconnection. This is likely the sim-
corrected modefWDNS solution of PDE version plest SDE model with this property.

WhenN=2, we can use the complex notation of Ref. 2

to derive the following equations for the interaction of a pair

N of filaments:
IX; X;=X PXi | —
7”[2 ZFK&TT)Z} ”{Fiﬁl} il L A
k] i~ Ak —1:2i1"1—22+i—1+ V2v'by, (1)
(10) ot [ =wl* 07
where Xi(z,t)=[x;(z,1),yi(z,t)], j=1,...,N are the coordi-
i i j 9 - P —
nates of the vortex centerlinek; are their circulations, We_ ilﬂl—lﬂz2 + iﬁ +v2v'by, (12
ot 4 — 74
0 -1
J= 1 0| where ¢;=x(z,t) +iy;(z,1), bj(z,t)=bj;+ibj,, we have set
I=1,T=I,/T;.
and b;(z,t)=[b;4(z,1) ,bj5(z,t)] whereb;; and b;, are inde- If we neglect the curvature term if10) and takez=0

pendent Gaussian random variables with mean zero and vafiwithout loss of generality we obtain a SDE model for the
ance one. Time has been rescaled by sb v’ =4mv. The interaction ofN nonidentical two-dimensional vortices. If we

first term on the right-hand side ¢10) is the point vortex S€tI'=1,N=2, andz=0 and neglect curvature {if11) and
interaction inz planes, the second is the local induction ap-(12)] we recover the SDE model of Agullo and Ver@)

proximation i.e., curvature terj and the third is the white @nd(4)]. Agullo and Verga's model equation can thus be seen
noise forcing(which diffuses the vortices in the planes, S @ special case of a much wider class of SDE models for

which are the planes approximately perpendicular to the vorYOrtex interaction.
tex axi9. The initial conditions for these equations are non-  1he simple SDE toy mod¢(11) and(12)] can be solved
intersecting line vortices numerically using a split-step method similar to that used by
Formally, the only change with respect to the model ofKlein et al” We take periodic boundary condlthns inand _
Klein et al. is the addition of the white noise forcing. How- Solve exactly for the curvature term step using a Fourier
ever, the interpretation of the solution is very different. Thetransformation inz. The grid spacing irg, Az, should be
filament's shapeX;(t) is now a random variable, and the sufficiently small to resolve the smallest filament curvature,
vorticity distribution is given by its PDF. The position of the Put much larger than the amplitude of the white noise per-
vortex centerline is the mean & (t). We will see that the turbations to avoid resolving spurious small scale curvature
SDE model remains nonsingular for arbitrarily long times. fluctuations, i.e., we requir¢2v’'At<Az<\v', which can
be satisfied ifAt<1. The remaining two terms are solved as
in the two-dimensional case.

TABLE II. CPU times for different methods with the same numerical B. Evaluation of the model: Reconnection

accuracy. of antiparallel vortices

Case CPU times) This section is not intended to provide a quantitative
Exact WDNS 407 error analyqs pf the SDE tqy model or even to determine its
Corrected SDE moddPDE, WDNS solutioh 113 range (_)f vaI|d|_ty_. Our aim is to establ_|sh Whether the SDE
Corrected SDE moddbtochastic, 19realizations 5500 model is promising and merits further investigation. In order

to evaluate qualitatively the SDE model for nearly parallel
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FIG. 11. Initial configuration of vortex centerlines for the antiparallel vortex 0.
reconnection simulation. The positive vortex is in the half-spac®, and 1
the initial condition is mirror symmetric about the plaxe0.

vortices we compare it with the semi-inviscid model of Klein
et al.and to a full pseudospectral DNS of the reconnection of :
two equal strength antiparallel vortices. -1

In all simulations,I'=-1 and the initial conditions for FIG. 12. Centerlines of the positive vortex near\/2 att=0.52 just before

the vortex centerlines are the semi-inviscid vortices develop kinks and touch. Note that the SDE
1 model vortex matches the semi-inviscid vortex except near the kink, where
Uy(2,0)=—= - E—(l —i) (&2 - grizmhz) it remains smooth.
’ 2 J” '

and the model by Kleirt al. breaks down. It is interesting to
note that the two models agree, except in the region of the
kink where the SDE model remains smooth. This result is
where the amplitude and the wavelength of the perturbatioperhaps not surprising, but it does show that the SDE model
aree=0.2 and\=7.3, respectively. This initial condition cor- s physically reasonable: it remains close to the semi-inviscid
responds to a periodic perturbation of the vortices at the moshodel where the semi-inviscid model is valid, but avoids the
unstable mode of the Crow instabiliy.The nominal sepa- unphysical kink. This result also shows how nonsteady core
ration of the vortices iso=1. In the viscous caséSDE and  dynamics can control vortex curvature.
DNS) the vortex Reynolds number is RF#V:J.SOO, and In F|g 13 we compare the SDE model with the pseu-
the vortices |n|t|a”y have a Gaussian prOf”e with radius O.2.d05pectra| DNS at four different times. Isosurfaces of vortic-
The DNS uses the same initial conditions, grid resolu-iw at w=T"/(4mt)exp(-1) (i.e., the core radius of an equiva-
tion (128%) and domain sizg7.3) as the pseudospectral |ent Gaussian vorteare plotted. The DNS results show that
DNS of Marshallet al® They found that these parameters the vortices interact, and eventually reconnect, at the location
give well-converged results. We use a Krylov stiffly stablewhere they are closedt.e., atz=\/2). The reconnection
adaptive time scherigto ensurel2 norm time integration begins at the time the semi-inviscid theory faits=0.522,
accuracy of 10%. More details of this standard pseudospec-and the reconnected vortices are still joined by thin threads at

tral code are given in Ref. 29. t=1.27. Overall the SDE toy model performs reasonably
We construct a nonsingular Gaussian initial condition for

the SDE model by setting to zero all terms except the sto-
chastic term until the core has the desired thickness, i.e., 0.2. DNS, || DNS, |us| SDE, |u|
The length of the periodic computational domainzris A t=0.82
and is discretized using 128 poirss in the pseudospectral
DNS). The time step idt=10"3, and 3x 1C° realizations are
used in order to obtain reasonably smooth contours of core
vorticity. Note that if we were only interested in the geom-

_1 e N (i2mINZ _ ai2in
lrIIZ(Zi 0) - 2 2\,"5(1 +|)(el e 61

t=0.64

L\

TN
N

etry of the vortex centerlines, or the isosurfaces of vorticity, t=0.94 =_ <<
aboutO(10P) realizations would suffice. The initial condition /\' /J
for the SDE model and the model by Klegt al. is shown in 2197 " RE— e N
Fig. 11. : fj

Figure 12 compares the centerlines of the positive vortex
according to the m0d¢| by Kleiat al. and the present SDE FIG. 13. Isosurfaces of vorticity: comparison of the DNS with the SDE
model att-=0.52, i.e., just before the vortex develops a kinkmodel. Note that the semi-inviscid model of Kledt al. fails att=0.522.
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1=064 =094 =127 completely neglected in their model. With this correction

) 3 Agullo and Verga’s model gives qualitatively accurate results
when compared with a DNS.

Agullo and Verga’s model may be seen as a special case
of a much wider class of simple SDE toy models for vortex
FIG. 14. Contours of vorticity in the vortex coreszat\/2 for the DNS and mteracyon..These r.nOdels extepq InV'ISCIQ and semi-inviscid
the SDE model(At t=0 the DNS vortices have a finite radiug=0.2) approximations to include vorticity diffusion and core dy-
namics by the addition of white noise forcing. This converts
the inviscid partial differential equation into a stochastic dif-

ferential equation, where the vorticity field is given by the

v_veII: It remains nonsingular, i_ts dynamics have_thg COMECHHE of its solution(which can be approximated as the en-
time scale, and the reconnection proceeds by thinning of thgemble average of many realizatipn this way, one can

vorticity to create threads. Comparison_ of isos_urfgcela)gf ._construct general SDE toy models for the interactionNof
::ioureDtl;lSthaemlja?kDEf Sshecl)xvsstrtafg]it:; irr?ilr?eqlsjglllztam/c? d:Ir rc;fh';_diff(?rent two- or_three—dime_nsional .vortices. In a single real-
L . ) ; ization the solution for the interaction &f vortices is geo-
threads joining the vor.tlces rapidly become very weak in themetrically simple: a set oN point vortices in two dimen-
SDE model, whereas in the DNS they strengthen due to thgions orN vortex filaments in three dimensions. Such toy

stretching. O:c course, thedSDE_ modebll 'nCqudT only the models have several attractive features: they have an associ-
component of vorticity, and so Is unable to fully reconnecty oy jnyiscid version, are computationally efficient, have

fche yortlces(compare thew| and|w3_| |sosu_rf_ace_s at=1.27_ nonsingular solutions, allow topology change, and retain the
In Fig. 13 to see the role of nonaxial vorticity in Comp'et'f‘g Hamiltonian structure of the original inviscid equations.
the reconnection The model thus becomes increasingly in- However, since they are not derived as rigorous approxima-

accurate fott>1.27, although it remains numerically stable. tions to the vorticity equation, the accuracy and applicability

The simple three-dimensional SDE toy model performsOf these SDE toy models is unclear.

better than the basic two-dimensional SDE model, probably SDE toy model for the interaction of three-

becaqse self-advegtlon IS approxmateq via the CurVam‘“ﬂimensional vortices has been evaluated. It is based on the
term (i.e., the local induction approximatipinstead of be- emi-inviscid theory of Kleiret al,? and is therefore valid

'Eg totf]:llydnegl_ecte((jj. Thls sug%estz that the cu;vz:cture pf'm r nearly parallel vortices. We used this model to calculate
the self-advection dominates that due to core deformation. y,q reconnection of identical antiparallel vortices, and com-

Einally, Fig. 14 compares the core structure of the Vorti'pared the results with a pseudospectral DNS. The model
ces in the SDE model with the DNS a£A/2. Seven con- avoids the finite-time curvature singularity of the semi-
_tours are pl_otted betvv_e_ew}nax and exp—1) wmay Wherewpay inviscid theory, and gives qualitatively reasonable results for
'S the maximum vorticity ag=A/2. The SDE model pro- 0 mediate times. However, it becomes unphysical at
duces Some elongation of the vortex core, althoug.h the dqbnger times, and is unable to produce complete reconnec-
formation is smaller due to the lack of self-stretching. Thetion. We conjectured that this problem is due primarily to the

lack of self-stretching also means that the SDE vortex COr€3ssumption of nearly parallel vortices and the neglect of self-
are much too weak, and hence too large. Nevertheless, tc}

f hat th s def d sh h bl aifi Ft’retching in the semi-inviscid model, and not to the stochas-
act that the core is deformed show that a suitably modifieg;, modeling of vorticity diffusion and the associated simpli-

SDE r|r|10del may bﬁ able to producl_e realistic core dynamICSﬁcation of the nonlinear terms of the vorticity equation. We
as well as giving the vortex centerline geometry. will investigate a more sophisticated SDE toy model, which

The “?S”'ts _presented in this section suggest that, unlikg, 1, des general vortex geometry and self-stretching, in fu-
the two-dimensional SDE model, the main sources of errof re work

in the three—dimen;ional SDE model are the aSSPmF’“O” " The SDE toy models for vortex interaction introduced
nearly p"?“a”e' voruce; a_nq the "".‘C" of self-stretching. Thes%ere have the potential to provide an alternative analytical or
assumptions are not justified during the later stages of reco%’emi-analytical description of all stages of vortex connec-
nection. The fact that the model is qualitatively correct at the,; )\ gacause of their low computational complexity, they

garly stages of rec.onnecti(')n Is consistent with the pbservqﬁay also allow vortex interaction and topology change to be

tlon_s of the p_re_ce_dlng section th"f‘t some self-advection mu%vestigated at very high Reynolds numbers. Much work re-

be included: it is included here via the curvature term. mains to be done in order to properly understand the accu-
racy and domain of validity of such simple SDE models for
vortex interaction.

IV. CONCLUSIONS

In this paper we have evaluated the accuracy of AgulloackNOWLEDGMENTS
and Verga'¥’ remarkable SDE model for the merger of two
identical two-dimensional vortices. We demonstrated that The author would like to thank Oleg Vasilyev, who is a
this simple model is qualitatively and quantitatively incor- coauthor of the wavelet code used in Sec. Il. Research fund-
rect, due to its drastic simplification of the nonlinear term ofing from NSERC is gratefully acknowledged. This paper was
the vorticity equation. However, it can be dramatically im- written during a visit to DAMTP, University of Cambridge,
proved by approximating vortex self-advection, which isand the author would like to thank them for their hospitality.

Downloaded 21 Jun 2005 to 130.113.105.8. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



065107-11  Stochastic differential equation models Phys. Fluids 17, 065107 (2005)

This work benefitted from conversations the author had Wlth vortex elements,” Annu. Rev. Fluid Mecii7, 523 (1985.
Tom Hurd and Seraev Nazarenko. 5p, Koumoutsakos, “Inviscid axisymmetrization of an elliptical vortex,” J.
9ey Comput. Phys.138 821(1997.

1 . 163, Beale and A. Majda, “Vortex method I: Convergence in three dimen-
G. Cottet and P. Koumoutsakosprtex Methods: Theory and Practice  gions * Math. Comput39, 1 (1982.

(Cambridge University Press, Cambridge, 2000

2R. Klein, A. J. Majda, and K. Damodaran, “Simplified equations for the
interactions of nearly parallel vortex filaments,” J. Fluid Me&88 201
(1995.

3R. Klein and A. Majda, “Self-stretch of a perturbed vortex filament,”
Physica D49, 323(199).

AL Ting and R. Klein,Viscous Vortical FlowgSpringer, New York, 1991

5R. Klein, O. Knio, and L. Ting, “Representation of core dynamics in
slender vortex filament simulations,” Phys. Flui#s2415(1996.

SA. Chorin, “Hairpin removal in vortex interactions,” J. Comput. Phg4,

173. Beale and A. Majda, “Vortex method I1: High order accuracy in two and
three dimensions,” Math. CompuR9, 29 (1982.

18A. Chorin, Vorticity and TurbulencéSpringer, Berlin, 1994

19A. Chorin, “Vortex methods,” Les Houches Summer School of Theoretical
Phyics Technical Report No. 59, 1995.

20B. Busnello, F. Flandoli, and M. Romito, Proc. Edinb. Math. S@a.be

published.

O. V. Vasilyev and N. K.-R. Kevlahan, “Hybrid wavelet collocation-

Brinkman penalization method for complex geometry flows,” Int. J. Nu-

1 (1990 mer. Methods Fluids30, 531 (2002.

. ) .
’D. Kivotides and A. Leonard, “Computational model of vortex reconnec- - S- Edwards, L. S. Tuckerman, R. A. Friesner, and D. C. Sorensen,
tion,” Europhys. Lett.63, 354 (2003. Krylov methods for the incompressible Navier—Stokes equations,” J.

®0. Boratav, R. Pelz, and N. Zabusky, “Reconnection in orthogonally in-,, Comput Phys.110 82 (1994. . i
teracting vortex tubes: Direct numerical simulations and quantifications, L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,

Phys. Fluids A4, 581 (1992. J Comput. Phys73, 325(1987).

°J. Marshall, P. Brancher, and A. Giovannini, “Interaction of unequal anti- #%P. Meunier, “Etude éxpérimentale de deux tourbillons corotatifs,” Ph.D.
parallel vortex tubes,” J. Fluid Mechd46, 229 (2007). thesis, Université de Provence Aix-Marseille I, France, 2001.

190, Agullo and A. D. Verga, “Exact two vortices solution of Navier—Stokes - 'C- Cerretelli and C. Wiliamson, “The physical mechanism for vortex
equations,” Phys. Rev. LetfZ8, 2361(1997. merging,” J. Fluid Mech.475, 41 (2003.

1A, Chorin, “Numerical study of slightly viscous flow,” J. Fluid Mecb?, 2p, Kloeden and E. PlatetNumerical Solution of Stochastic Differential
785(1973. Equations(Springer, Berlin, 1992

12G -H. Cottet and P. Poncet, “Advances in direct numerical simulations of 'P. Burrage and K. Burrage, “A variable stepsize implementation for sto-
3D wall-bounded flows by vortex-in-cell methods,” J. Comput. PH\&3, chastic differential equations,” SIAM J. Sci. CompWUUSA) 24, 848
136 (2004. (2002.

8p Koumoutsakos and A. Leonard, “High-resolution simulations of the®S. Crow, “Stability theory for a pair of trailing vortices,” AIAA 38, 2172
flow around an impulsively started cylinder using vortex methods,” J. (1970.
Fluid Mech. 296, 1 (1995. N. K.-R. Kevlahan and J. Wadsley, “Suppression of three-dimensional
1A, Leonard, “Computing three-dimensional incompressible flows with flow instabilities in tube bundles,” J. Fluids Struéo be publishey

Downloaded 21 Jun 2005 to 130.113.105.8. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



