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that the space–time method uses roughly 18 times fewer space–time grid points
and is roughly 4 times faster than a dynamically adaptive explicit time marching
method, while achieving similar global accuracy.

Key words: wavelets; lifting scheme; second generation wavelets; partial
differential equations; elliptic problem; adaptive grid; numerical method;
multilevel method; multigrid method

∗ Corresponding author
Email addresses: alamj@math.mcmaster.ca (Jahrul M. Alam),

kevlahan@mcmaster.ca (Nicholas K.-R. Kevlahan),
Oleg.Vasilyev@Colorado.EDU (Oleg V. Vasilyev).

Preprint submitted to Elsevier Science 21 October 2005



1 Introduction

Mathematical modeling of problems in science and engineering, (e.g. turbu-
lence, reactive or non-reactive flows [1]) typically involves solving nonlinear
partial differential equations (PDEs). A wide range of spatial and temporal
scales must often be resolved in order to properly solve these equations [2].
However, in many situations the small spatial scales are highly localized, and
thus efficient solution of the problem requires a locally adapted grid. A uni-
formly fine grid is clearly inefficient for such problems. Turbulence is a well
known example of a problem with high intermittency [3,4]. In high Reynolds
number turbulence the number of degrees of freedom scales like the cube
of Reynolds number, Re3, in a uniform mesh that resolves the smallest ac-
tive structures in space and time [5]. Since turbulence usually occurs at high
Reynolds number (e.g. Re ∼ 106 for a typical aeronautical flow), it is clear that
any successful direct numerical simulation (DNS) of turbulence must take ad-
vantage of the flow’s high intermittency [6,7]. Because of this intermittency, we
expect that minimum number of computational elements required is actually
much smaller than Re3.

Recently there has been increasing interest in developing adaptive [8–15] nu-
merical methods for solving elliptic [16–20] and time-dependent [21–35] par-
tial differential equations. Existing adaptive numerical methods fall into two
classes: error indicator based (where the grid is refined to resolve gradients
of a physically relevant quantity), and error control based (where the error is
estimated and the grid is refined to ensure this error is less than a prescribed
tolerance). The error-indicating strategy does not control the error directly,
but instead controls the mesh coarsening and refinement. The error-estimating
strategy minimizes the error as measured in an appropriate norm, which leads
to an optimal mesh size distribution.

Wavelets have proved to be an efficient tool in developing adaptive numerical
methods which control the global (usually L2) approximation error
[17,18,21,24,26,35]. The goal of the collocation-based nonlinear wavelet ap-
proximation is to obtain the best approximation of a function on a near op-
timal grid. The collocation approximation has a one-to-one correspondence
between the wavelet expansion coefficients and grid points. Thus, nonlinear
filtering of wavelet coefficients automatically refines the computational grid.
Since functions and operators can be computed with a given accuracy, adap-
tive wavelet method provides global error control for the adaptive solution of
differential equations.

Liandrat & Tchamitchian [21] proposed the first wavelet-based adaptive method
for partial differential equations. Until the work of Sweldens [36], the research
effort was focused on compressing both the differential operators and the solu-
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tion using Galerkin projection. The early work found in [37–39] demonstrated
the use of wavelets to find the numerical solution of PDEs with periodic bound-
ary conditions. Galerkin based wavelet methods for linear elliptic problems
were studied in [16,40–42]. Schneider [43] used reliable and efficient a posteri-

ori error estimates for adaptive multi-scale wavelet-Galerkin schemes for linear
elliptic PDEs. The error achieved by adaptive wavelet schemes [16,17,19] is
proportional to the smallest error realized by the wavelet approximation, i.e.
these schemes are asymptotically optimal for elliptic problems [20]. In addi-
tion, adaptive wavelet methods are fast (at least for large problems) since the
computational complexity scales like the number of wavelets retained in the
approximation, O(N ).

Adaptive wavelet schemes have also been used for solving time dependent par-
tial differential equations [21,22]. A more detailed derivation of fast and adap-
tive algorithms, projection of the solution and spatial derivatives on wavelet
space, relationship between sparseness of the discretized system and the van-
ishing moment property of wavelets was developed by Beylkin [29]. Debuss-
che et al. [44] developed a multilevel Fourier–Galerkin method for homoge-
neous turbulence. The main difficulties of a Galerkin-based wavelet method
are the efficient computation of nonlinear operators, and the implementa-
tion of general boundary conditions. These difficulties led to the develop-
ment of collocation-based adaptive wavelet methods, e.g. [25,26,28]. Follow-
ing the second-generation multi-resolution approximation of Sweldens [45],
a multilevel adaptive wavelet collocation method was developed by Vasilyev
and Bowman [34], which was applied to a wide variety of initial value prob-
lems problems [35]. The adaptive wavelet collocation method (AWCM) has
since been used to construct a multilevel adaptive elliptic solver [46], two-
and three-dimensional simulation of fluid–structure interaction [47–49], and a
wavelet-based alternative to large eddy simulation [50].

To the best of our knowledge, all existing wavelet methods for time-dependent
problems adapt the spatial grid dynamically in the region of intermittency.
This means that mesh refinement or coarsening is automatic if the solution
develops strong gradients, or if these gradients diffuse. If the solution is inter-
mittent in both space and time, one adapts the spatial mesh to the solution
at a fixed time and uses an adjustable time step to control the local error in
time [22]. This approach enforces the same time step for all spatial locations,
which is clearly not optimal for problems which are simultaneously intermit-
tent in both space and time.

Following the classical time marching technique, an adaptive wavelet method
discretizes the PDE to produce a system of ODEs with wavelet coefficients as
time-dependent unknowns (in the Galerkin formulation), or nodal approxima-
tions as time-dependent unknowns in the collocation approach. This method
adapts the spatial grid as shocks or any localized structures develop or move
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in a time-dependent solution. The dynamically adjusted time stepping proce-
dure determines the maximum allowable time step for the spatially adapted
grid, or for all the wavelet modes, at any instant. However, although the spa-
tial error is controlled by the adaptive wavelet approximation, the global error
in time is uncontrolled. There is no guarantee that the temporal truncation
error will not accumulate over time and eventually exceed the desired error
tolerance. Often one needs to integrate the PDE for an arbitrarily long period
of time. The spurious effect of accumulated error can cause the results of the
calculation to become unreliable, even though the spatial error is controlled
at each time step.

Two approaches have been proposed to control the global error in time. The
first is the variational integrator approach developed by Marsden et. al [51–
56], where the global time integration error is reduced significantly so that
the appropriate conservation laws are satisfied to within a desired tolerance
for arbitrary times. An example of the second approach is the recent work
of Tremblay et. al. [57] who use a time-continuous space–time finite element
formulation. This method, however, does not use automatic grid adaptation
in the space–time computational domain.

In this paper we develop a simultaneous space–time AWCM for time-dependent
PDEs. Our aim is to address the two shortcomings of current numerical meth-
ods mentioned above: the inefficiency of using a single time step for all spatial
locations, and the lack of control of the global error in time. The simultaneous
space–time adaptive wavelet solution should produce accurate solutions for
arbitrary times on a near-optimal space–time grid.

The paper is organized as follows. In §2 we briefly review the AWCM. §3 de-
scribes the proposed numerical method. The ideas behind the wavelet-based
time integration technique for ODEs and the space–time integration technique
for PDEs are explained in §3.2 and §3.3. §3.6 outlines the wavelet-based full
approximation scheme (FAS) we have developed for solving the nonlinear al-
gebraic problem which results from full discretization of the time-dependent
PDE. In §3.8 we describe a way of splitting the space–time domain into sub-
domains in the time dimension. This allows for calculation over arbitrary long
times given the available computational resources. In §4 we present the results
of numerical experiments using the (1D + t) Burgers equation and (2D + t)
vorticity equation in order to verify the efficiency and accuracy of the proposed
numerical method. We summarize the paper and discuss future research di-
rection in §5.
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2 Second generation adaptive wavelet discretization of PDEs

Our AWCM is based on the second generation wavelets developed by Sweldens
[45,58,59], and we will consider general boundary value problems of the form

Lu= f in Ω, (1)

Bu= g in ∂Ω, (2)

where L is a general partial differential operator and B is an operator that
defines proper boundary conditions. Ω is a space–time domain such that

Ω = D × (0, T ) (3)

where D ⊂ R
n, T ∈ R

+, Ω is open, connected, and bounded set with boundary
∂Ω, i.e. Ω̄ = Ω ∪ ∂Ω. A point in Ω̄ is denoted by x = {x1, x2 . . . xn, xn+1}T .
If n = 0, then Ω̄ = [0, T ] is a closed interval. When n=1, we will be using
(x, t) ∈ Ω to denote points in Ω. We will assume that all functions are from
the function space L2(Ω) unless otherwise stated.

2.1 Multi-scale decomposition

In the second generation multi-resolution approximation, functions are ap-
proximated using tensor product second generation wavelets that are con-
structed on a nested set (Gj ⊂ Gj+1) of collocation points

Gj = {xj
k ∈ Ω̄ : xj

k = xj+1
2k , k ∈ Kj, j ∈ Z}, (4)

where k denotes the position, j denotes the level or scale, and xj
k are the

collocation points in Ω̄ with n = 0. Here Z and Kj are some suitable index
sets. Note that collocation points xj

k can be distributed uniformly, xj
k = 2−jk,

or non-uniformly [34].

To illustrate the second generation wavelet discretization of partial differential
equations, let us consider the multi-scale decomposition of a function u(x) at
a certain level of resolution J ≥ 0:

uJ(x) =
J∑

j=0

∑

k∈Kj

dj
kψ

j
k(x), J →∞, (5)

where ψj
k(x) are localized basis functions (wavelets) and dj

k are expansion
coefficients [60]. The major strength of the wavelet decomposition (5) is that
the wavelet coefficient dj

k measure the local variation of u(x) at scale 2−j near
xj

k. These coefficients should decay quickly to zero in the smooth regions, and
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should be large only in the region where the gradient of u(x) is large. This
behavior suggests that there exists a decreasing sequence of positive numbers
εJ such that ∀j ≥ J, |dj

k| < εJ . In other words, any truncation of the above
infinite sum over j is an approximation of u(x) at scale 2−j. Secondly, if
u(x) is smooth, except at some isolated points, the above truncation requires
a small number of coefficients to approximate u(x). Thus, the multi-scale
decomposition not only approximates a function, it also compresses it.

2.2 Adaptive approximation

For intermittent functions, the coefficients dj
k’s are large only for those posi-

tions k where the function has a steep gradient. Therefore, discarding coeffi-
cients whose magnitudes are smaller than a given threshold ε truncates the
infinite sum (5) to a finite sum, as well as compressing the function. The trun-
cated sum uJ(x) is a good approximation of u(x) at level J in the weighted
residual sense, i.e.

∫

Ω
(u(x)− uJ(x))δ(x− xJ

k )dx = 0. (6)

This restriction establishes a one-to-one correspondence between dJ
k and xJ

k .
The grid adaptation strategy is based on the fact that discarding a wavelet
coefficient is equivalent to discarding the corresponding collocation point. To
construct a grid that adapts to the intermittent solution we collect all collo-
cation points xj

k such that |dj
k| ≥ ε; i.e.

Gj
ε = {xj

k ∈ Ω : xj
k = xj+1

2k , k ∈ Kj, j ∈ Z, |dj
k| ≥ ε}. (7)

Adaptive second generation wavelet decomposition then takes the following
form

uJ
ε (x) =

J∑

j=0

∑

k∈Kj

|dj

k
|≥ε

dj
kψ

j
k(x). (8)

For functions that have localized structure in Ω, Gj
ε is much more compressed

than Gj for all j. The decomposition (8) is usually known as nonlinear ap-
proximation in a wavelet basis.

2.3 Computing derivatives on adaptive grids

Approximating derivatives of a function in a collocation based method is
straightforward. Analogous to the continuous case, the derivative of a function
is approximated from the approximation of the function on a grid GJ ; i.e. from
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the nodal values of the function. The derivative Dmu of order m is computed
on a grid Gj from the values u(xj

k) of the function u(x),

Dmu(xj
k) =

∑

l

Dmj
kl u(x

j
k). (9)

The entries Dmj
kl can be determined by applying a finite difference formula

on uj(x); i.e. we can apply the finite difference approximation to uj(x) on
grid Gj. When the grid is not uniform (e.g. Gj

ε), we can use a procedure in
computing derivatives as explained by Vasilyev & Bowman [34] and Vasilyev &
Kevlahan [46]. This procedure corresponds to a local finite difference operator
that uses neighboring points of xj

k to compute Dmu(xj
k) at the appropriate

level of resolution [34].

Thus, the adaptive wavelet method combines the fast second generation wavelet
transform with finite difference approximation of derivatives. For intermittent
functions, the number of active collocation pointsN is minimal (see [19,60,20]).
The computational cost of calculating the derivatives is only O(N ), which is
the same as the computational cost of wavelet transform. The accuracy and
efficiency of the adaptive lifted interpolating wavelet differentiation is exam-
ined by Vasilyev [35]. On a uniform grid, this technique is consistent with
standard finite difference stencils.

2.4 Analytical error estimates

Let us truncate the sum (5) at level J and define the residual of truncation by

rJ(x) = u(x)− uJ(x). (10)

In multi-level wavelet approximation of functions and derivatives, the er-
ror depends on the wavelet thresholding parameter ε and the order of the
wavelets [61]. Due to the one–to–one correspondence between the wavelets and
the collocation points, one can relate the error with the active grid points. The
most important feature is that the approximation error has a global control
throughout the domain. For sufficiently smooth functions u(x), we can find an
ε such that |dj

k| < ε, ∀j ≥ J and so the residual of approximation at level J
is upper bounded as [61]

|rJ(x)| ∼ ε, ε→ 0. (11)

Equation (11) is independent of the dimensionality of the problem. Since the
number of active collocation points depends on the dimension and the order
of wavelets being used, one can show that the number of active coefficients
satisfies

N ∼ ε−n/p, ε→ 0, (12)
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where p is the order of wavelets used and n is the dimensionality. In other
words, the truncation error is related to the number of terms retained as

||rJ(x)||2 ∼ N−p/n, ε→ 0. (13)

The accuracy of the differentiation procedure was examined by Vasilyev and
Bowman [34] for the one-dimensional case and by Vasilyev [35] for the multi-
dimensional case. The error in the adaptive wavelet approximation of deriva-
tives is

||Dm
xi
u(x)−Dm

xi
uj

ε(x)||2 ∼ N−(p−m)/n, ε→ 0, (14)

where Dm
xi

stands for derivative of order m in the xi direction.

3 Proposed numerical method

3.1 Background and motivation

Let us consider the general parabolic initial value problem:

du

dt
=F(u, t), u ∈ R

n, t ∈ (0, T ), (15)

u(0) =u0, (16)

where F represents any function (usually nonlinear). In the classical time-
marching scheme, we divide the interval [0, T ] into N sub-intervals such that
tn = n∆t, where ∆t is the width of each of the sub-intervals. We consider
a single sub-interval [tn, tn+1], for some n, and assume that u at t = tn is
known. Using a suitable numerical method (e.g. forward difference in time),
we can compute u at t = tn+1 and repeat for the next sub-interval [tn+1, tn+2].
Thus, starting with the initial value, we march forward in time to compute the
solution at each of the discrete temporal locations. In other words, we solve
a sequence of algebraic problems, each of which is defined a sub-interval of
[0, T ].

Two major difficulties arise in the time marching scheme. First, the truncation
error accumulates in time. Let us assume that the local truncation error of
the scheme is O(∆tα). Then the global error after N time steps is O(∆tα−1),
where it is assumed that N ∼ 1/∆t. However, it is easy to see that global error
may become arbitrarily large if N � 1/∆t. Reducing the time step reduces
the error locally, but provides no global error control [62]. For example, if we
consider a scheme with α = 2 and ∆t = 10−2, we expect the global error at the
end of 102 time steps (i.e. N ∼ 1/∆t) to be O(10−2). This error will be O(1)
after 104 time–steps, if we continue marching. Clearly, reducing the time step

8



will reduce the error only locally: the time integration error will continue to
accumulate. Secondly, this process uses the same time step for all components
of u ∈ R

n even though the problem may have multiple time scales.

When the problem (15–16) is nonlinear, there is no simple way to adopt a
non-uniform time stepping such that different components of u use different
time steps. The conventional dynamically adjusted time stepping procedure
only determines the maximum allowable time step at any particular time; it
does not resolve the natural time scales of the governing dynamical system.
Our goal in the following is to develop an AWCM based method that addresses
both these problems: global error control in time and local time stepping.

3.2 Wavelet based adaptive integration

We now propose a wavelet based technique to handle the difficulties associated
with the classical time stepping schemes in the previous section. In contrast to
time marching, where a sequence of discrete algebraic sub-problems are solved,
we propose to reduce the PDE to a single algebraic problem in the entire time
domain [0, T ]. Thus, to develop an AWCM integration technique for solving
equation (15), we consider a pseudo boundary value problem in [0, T ] with
a Dirichlet condition at t = 0 and a suitable terminal condition at t = T .
Since the problem (15) is well-posed (i.e. its solution is uniquely determined
from the available boundary data), adding a terminal condition makes the
problem overdetermined. However, the numerical method needs information
to correctly evolve the solution at the t = T boundary from the initial data
given on the t = 0 boundary. The correct procedure is to determine the value
of the wavelet coefficients at the t = T boundary using nearest neighbours

such that the gradient of the solution is properly calculated at t = T . This
ensures that the solution u(x, T ) is determined from u(x, t < T ). We call the
constructed problem a pseudo boundary value problem because the proposed
terminal condition

du

dt
(T )−F(u, T ) = 0 (17)

is a dynamic condition at t = T , which we call an evolution condition. This
boundary condition does not make the problem overdetermined and is not
necessary for the existence or uniqueness of the solution. This is in contrast
to the artificial or numerical boundary conditions that are sometimes used to
determine the interior solution in a hyperbolic system [63].

Consider second generation bi-orthogonal wavelets on dyadic grids of [0, T ],
i.e. tjk = 2−jk for all j ≥ 0. Let N j + 1 be a total number of grid points on
level j. We now expand u(t) and du/dt in multi-scale wavelet basis at scale
2−j to get the following:
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u(tj0) = u0(t
j
0) (left boundary),

du

dt
(tjk)−F(u(tjk), t

j
k) = 0, 1 ≤ k ≤ N j − 1 (internal points),

du

dt
(tjk)−F(u(tjk), t

j
k) = 0, k = N j (right boundary).

Since we are using a collocation based weighted residual approximation of
functions in wavelet basis, the derivatives of u(t) at each of the collocation
points tjk are computed from the approximation of u(t) according to some
discretization stencil (explained later). Using equation (9), the above system
of difference equation thus reduces to the following algebraic problem:

LjU j = F j, (18)

where F j and U j are (N j + 1) × 1 vectors and Lj is an (N j + 1) × (N j + 1)
matrix. The entries of the matrix Lj depends on the function F such that

LjU j =







u(tjk) for k=0

du
dt

(tjk)−F(u(tjk), t
j
k) for 1 ≤ k ≤ N j − 1

du
dt

(tjk)−F(u(tjk), t
j
k) for k = N j

and the entries of the vector F j are given by

F j =







u0(t
j
k) for k=0

0 for 1 ≤ k ≤ N j − 1

0 for k = N j.

The solution of the nonlinear algebraic problem (18) gives the approximate
solution u(tjk) of the initial value problem (15) at each tjk = 2−jk. The main
advantages of this approach are the following:

• Global error control. Since u(t) is approximated in the whole time in-
terval [0, T ], the approximation error is bounded globally by the wavelet
thresholding parameter according to equation (11).
• Natural time stepping. Time steps can be adapted easily to the natu-

ral time scale of each of the components of u ∈ R
n since the expansion

coefficients dj
k’s are large if the solution is temporally intermittent. The im-

plementation of natural time adaptation is a recursive process and is similar
to that described by Vasilyev & Kevlahan [46] for the elliptic case.
• Reduced computational complexity. In second generation wavelet dis-

cretization, the entries of the matrix Lj do not need to be computed explic-
itly. The entries of the vector LjU j are computed directly in O(N ) opera-
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tions, where N is the number of the active degrees of freedom (independent
of the dimensionality of the problem). Thus, the computational cost of ob-
taining the global algebraic problem does not exceed O(N ). More details
on this estimate are given in [46]. The multi-scale wavelet decomposition
provides a natural frame work to construct the algebraic problem (18) on
nested dyadic grids of [0, T ]. Thus, a multi-grid strategy (discussed later) is
a natural choice to solve the algebraic problem, which is optimal in solving
algebraic problems.

Thus, in contrast to the classical approach, where a sequence of algebraic
problems is solved, we construct a single algebraic problem that can be solved
optimally using a multiresolution (multigrid) strategy.

3.3 Simultaneous space-time pseudo boundary value problem

Vasilyev & Kevlahan [46] developed a multilevel AWCM to solve elliptic par-
tial differential equations. We have described the adaptive wavelet decompo-
sition technique in section §2, and presented a wavelet based adaptive time
integration technique in section §3.2. In this subsection, we describe how to
extend this wavelet-based adaptive integration technique to solve a nonlinear
time-dependent partial differential equation. Since the algorithm is similar to
the multilevel elliptic-AWCM described in [46], we only discuss the differences
and mathematical aspects here. Interested readers who need a more details
of the adaptive wavelet collocation method should refer to the work of Vasi-
lyev & Bowman (2000) [34] and Vasilyev (2003) [35] [and the refs. therein].

To make the time dependence explicit in (1), we split the partial differential
operator L,

Lu ≡ ∂u

∂t
+Hu = f, (19)

where we now assume that u(x, t) is a function that depends on one spatial
variable x, and H is an operator that consists of partial derivatives with re-
spect to x only. For simplicity, we consider the case of one spatial dimension.
Extension of this method to multiple spatial dimensions is straightforward in
principle, but requires more care in implementation to ensure computational
efficiency (e.g. improving the data structure and parallelizing the algorithm).
In order to solve equation (19) in the space–time domain [−1, 1] × [0, T ], we
use the following boundary conditions

B−u = g−, for x = −1, t ∈ (0, T ), (20)

B+u = g+, for x = 1, t ∈ (0, T ), (21)

u(x, 0) = u0(x), for x ∈ [−1, 1], t = 0, (22)
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where the operators B± can be specified to impose Dirichlet, Neumann, mixed,
or periodic boundary conditions. While equations (19-22) define an initial–
boundary value problem that can be solved uniquely, we are interested here in
constructing a (pseudo) boundary value problem in the space–time domain.
For this purpose, as mentioned previously, we propose an evolution condition
at t = T

∂u

∂t
(x, T ) +Hu(x, T ) = f(x, T ). (23)

If this boundary condition is added to the initial boundary value problem
defined by equations (19-22), we can construct a boundary value problem in
the space–time domain, without overdetermining the problem [64].

3.4 Discretization of a general boundary value problem

We have seen that the boundary value problem given by equations (1-2) can
be used to represent an initial value problem or an initial-boundary value
problem with the proper choice of the operator L, the domain Ω, and an
evolution condition at the long time boundary t = T . The procedure for
approximating any function and its derivatives described in §2 can now be
applied to discretize the general boundary value problem (1). Let us construct
a tensor product space–time dyadic grid G

j of Ω := I ⊂ R × (0, T ) at level
j. An example of a space–time dyadic grid is shown in figure 1. The partial
differential operator L := ∂

∂t
+H(∂x, ∂xx, . . . ) is approximated on each of the

blue points in the space-time grid. This is supplemented by the approximation
of the associated boundary conditions on each of the red points.

j=1 j=2

Fig. 1. An example of space–time dyadic grid at levels j = 1 and j = 2, where the
horizontal and vertical axes corresponds to the space and time directions respec-
tively, and filled or non-filled circles indicate if a point belongs to the interior or the
boundary of the space-time domain respectively.

Let U j = [u(xj
k, t

j
n)]T be the one-dimensional vector containing the adap-

tive points of the nodal approximations of u(x, t) at level j. In a collocation
method, the derivative of u(x, t) at t = tjn, x = xj

k is computed using the
values of u(x, t) at some neighboring grid points according to a discretization
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(a) (b)

Fig. 2. (a) Explicit stencil. (b) Implicit stencil of discretization, where the horizon-
tal direction corresponds to space and the vertical direction corresponds to time.
The non-filled point corresponds to the location of wavelet where the equation is
approximated, and the filled points are the nearest neighbors.

stencil. An example of a discretization stencil for a low-order approximation
of the derivative, when L := ∂t − ν∂xx, is presented in figure 2, which corre-
sponds to a uniform mesh. In practice, we compute derivatives on simultaneous
space–time adaptive grid with higher order accuracy [34]. It is easy to show
that second generation wavelet collocation discretization of temporal and spa-
tial derivatives in the space–time domain along with the discretized boundary
conditions reduces the problem to a system of algebraic equations

LjU j = F j, (24)

where Lj is a N ×N matrix, U j is a N ×1 vector containing nodal values, F j

is a N ×1 vector that represents the source of the problem, and N is the total
number of adaptive points on a space-time computational grid. The entries of
LjU j are computed in a similar way as in equation (18). The construction of
this algebraic problem costs only O(N ) operations and the matrix Lj is never
multiplied by the vector U j explicitly. Therefore, any initial value problem
may be reduced to a single (large) algebraic problem.

As noted earlier, since the time marching technique updates the solution for
a fixed time, local truncation error increases at each time step. If the accu-
mulated error is bounded above by some exponential function of time, then
the numerical scheme is called stable [65]. However, if simultaneous space–
time discretization is used, then the entire space–time mesh is solved at once
and can be used by an error estimator to iteratively compute a new adapted
space–time mesh. With this approach, the wavelet coefficients measure the lo-
cal fluctuation of the solution simultaneously in space and time, and provide
global control of the of both spatial and temporal error.

3.5 Implementation of the boundary conditions

In the collocation approach implementation of general boundary conditions is
straightforward. The given differential equation is approximated only for those
collocation points that do not belong to the boundary, and the boundary con-
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ditions are approximated only at those collocation points that belong to the
boundary. The algebraic problem (24) consists of the discretized PDE sup-
plemented by the discrete approximation of the boundary conditions, which
constitute an algebraic system, where the number of equations equals the
number of unknowns.

3.6 Nonlinear multilevel adaptive solver

We have demonstrated a new procedure of numerically solving ordinary or
partial differential equations using the AWCM. Our method constructs a sin-
gle algebraic problem in the whole space–time domain. If the function F in
equation (15), or the partial differential operator H in equation (19) is non-
linear, the algebraic problem (24) is also nonlinear. We now explain how to
extend the AWCM multilevel solver developed in Vasilyev & Kevlahan [46] to
nonlinear problems.

One way of extending the AWCM multilevel solver to nonlinear problems is
to use Newton’s method. This produces a linear equation for the correction
term at each iteration, one can then use the AWCM multilevel solver to solve
this linear equation. However, this does not take full advantage of the multi-
grid approach. The linear error equation is a local correction to the solution,
and thus does not significantly influence the global rate of residual reduction.
A more detailed discussion, with numerical examples of elliptic problem, can
be found in Briggs et. al. [66]. The multilevel structure of the wavelet ap-
proximation gives us a natural frame-work to establish a wavelet-based full
approximation scheme (WFAS), based on the concept of the full approxima-
tion scheme (FAS), which was originally developed for multigrid methods by
Brandt [8,67,68]. Multigrid methods are very similar to AWCM in the sense
that they both represent the solution on a nested sequence of grids. Pre-
vious research has shown how the FAS can be incorporated into multigrid
schemes [8,66,69–72]. Here the main difference is that the fast adaptive sec-
ond generation lifted interpolating wavelet transform is used for both recursive
prolongation and restriction on a grid that adapts to the solution after each
V-cycle iteration.

Let us take equation (24) to be the fine grid problem at level J and ŨJ to
be an approximate solution of the fine grid problem. Let RJ be the wavelet
restriction operator defined by

UJ−1 = RJ−1UJ

and let

rJ := F J − LJ ŨJ (25)

14



be the residual of the approximate solution at level J . A two level approach
aims to compute a correction V (usually called coarse grid correction) to the
approximate solution ŨJ by solving the problem (coarse grid problem)

LJ−1UJ−1 = LJ−1(RJ−1ŨJ) +RJ−1rJ

︸ ︷︷ ︸

F J−1

, (26)

which is defined on the coarse grid. The coarse grid correction V is obtained
by prolonging the estimated error on the coarse grid as

V ← RJ (ŨJ−1 −RJ−1ŨJ)
︸ ︷︷ ︸

coarse grid error

. (27)

The solution at level J is thus updated by

UJ ← ŨJ +RJ(ŨJ−1 −RJ−1ŨJ). (28)

Thus, we need to restrict both the residual and the solution from fine grid to
coarse grid. This is in contrast to the linear case, where only the residual is
restricted [69].

An iterative method for solving a system of algebraic equations is called a
relaxation technique if the high frequency components of error are reduced
rapidly in a few iterations [70]. The general multigrid strategy relies on the idea
that the solution is relaxed at the fine scales. Since the smooth components
of error appear to be non-smooth on coarser scale, recursive restriction of
smooth error to coarser and coarser scale is carried out to reach the coarsest
scale where the error of approximation is computed. A recursive prolongation
procedure propagates coarse grid error to finer and finer grids. Finally, the fine
grid approximation is updated to get the next iterate. One cycle from finest
grid to coarsest grid and from coarsest grid to finest grid is called a multigrid
V-cycle iteration [69]. At each step of V-cycle restriction and prolongation, a
suitable relaxation scheme is used to smooth out the high frequency component
of the error.

The main difference between the linear V-cycle and the nonlinear V-cycle is
that both the fine grid residual and the fine grid approximation are restricted
to coarser grid. We have implemented a Newton smoother for the nonlinear
Burgers equation, which is computationally more efficient because the Ja-
cobian matrix is neither computed explicitly nor multiplied by any solution
vector explicitly. A locally linearized operator is discretized to solve for the
correction term in the Newton iteration. Vasilyev & Kevlahan [46] introduced
the AWCM multilevel solver for elliptic problems, and showed how it differs
from the classical linear elliptic multigrid solver. Note that the AWCM elliptic
solver and the space–time WFAS solver both solve PDEs on a near optimal
grid such that the global error is controlled by the a priori tolerance. Conven-
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tional linear multigrid solver and nonlinear FAS solver invert elliptic operators
with reduced computational cost such that the global error is reduced depend-
ing on how fine the finest grid is. These methods start with a given fine grid
and perform most of the computational work in coarser grids [73]. In contrast,
our method starts with a coarser grid and, given an error tolerance, seeks an
accurate solution on a near optimal refined grid. A detailed discussion of dif-
ferent smoothing strategies is beyond the scope of the present paper, where
we are mainly interested on global error control and multiple time stepping.

3.6.1 Smoothing in the simultaneous space–time domain

We now briefly outline how the approximate solution to a given equation is
relaxed in a simultaneous space–time domain. Let us re-write equation (24)
for fixed resolution 2−J as:

f(u) = 0, (29)

where u = UJ is the solution vector for a given J and f is a N × 1 vector. Let
v denotes the error at scale 2−J . One can determine v by solving the following
linear equation,

J (u)v = −f(u),

where J is the Jacobian of f . The correction u← u + v constitutes one step
of Newton’s iteration and the smoothing strategy is described in algorithm 2
in terms of equation (24). Note that the method converges quadratically if
provided with a ‘good’ initial guess. However, the computational cost of the
error equation is larger than the overall computational cost of the AWCM
(which is O(N )). This is clearly not efficient.

To improve the efficiency of the method, we introduce an alternate approach
that requires only O(N ) computations to obtain the error equation, where
we linearize the original PDE about an approximate solution. As an example,
consider uk to be an approximate solution of Burgers equation,

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0,

which can be updated as uk ← uk + v by solving

∂v

∂t
+ u

∂v

∂x
+ v

∂u

∂x
− ν ∂

2v

∂x2
= −f(u)

for v. We now discretize this equation to produce J (u)v = −f(u). Thus the
computational cost for the Jacobian equation remains the same as that of the
wavelet transform. To complete the smoothing stage at each level of resolution,
we perform 3 sweeps of weighted Jacobi iteration to compute v, which is than
followed by another 3 sweeps of Newton iteration to update u.
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WHILE ||F J − LJUJ ||2 ≥ δ
rJ := F J − LJUJ

for j = J : 1 : −1
DO ν1 steps of smoothing
RESTRICT solution and residual

end

Solve LjU j = F j for j = jmin

for j = 1 : J : 1
ESTIMATE coarse grid error
PROLONG error to fine grid
DO ν2 steps of smoothing

end

UPDATE solution UJ ← UJ + V
end

Algorithm 1. Adaptive WFAS V-cycle iteration

Although this approach works with reasonable efficiency with the fast lifted
interpolated wavelet transform, difficulties arise if the nonlinear term has the

form of g(u)
∂u

∂x
, where the explicit form of g(u) is not known. This is the case in

solving the vorticity form of the Navier–Stokes equation. In order to mitigate
this difficulty, and reduce the computational effort due to the inversion of the
Jacobian, let us solve each of the equations in the system (29) for separate
components of u. In other words, we propose to solve i–th nonlinear equation
for i–th component of u using Newton’s method. A given ui is now updated
by a few sweeps of

ui ← ui −
fi([. . . ui . . . ])

∂fi/∂ui

, (30)

where the second term in equation (30) can be thought as a local correction
to each of the components of u. In order to synchronize this local correction,
we can incorporate this in algorithm 2 by replacing the Jacobian with the
diagonal matrix,

J (u) := diag

[

∂fi

∂ui

]

.

We have examined this technique (i.e. replacing the smoother in the WFAS
algorithm by the solution of a nonlinear elliptic equation), and noticed that
only one Newton’s sweep in (30) is sufficient for convergence. In fact, for the
linear case the method reduces to Jacobi iteration.

The WFAS strategy for nonlinearities is outlined in algorithm 1, while the
smoothing technique is outlined in algorithm 2.
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Given an initial guess UJ

DO ν1 steps
Solve J (UJ)V = −F (UJ) := F J − LJUJ

Correct UJ ← UJ + V
end

Algorithm 2. Adaptive Newton smoother. J is the Jacobian.

3.7 Construction of adaptive space-time grid

In the finite element approach an adaptive grid is constructed by refining
and coarsening according to a posteriori local error indicators [20]. Mesh re-
finement in wavelet based techniques is somewhat different. The multilevel
structure of wavelet decomposition provides a natural framework for mesh
coarsening and refinement, and grid adaptation is automatic [34]. A wavelet
coefficient dj

k, by measuring the local fluctuation of a function in the neigh-
borhood of a collocation point xj

k, acts as a local error estimator. As described
earlier, the error-balancing grid adaptation strategy aims to find the best rep-
resentation of a function (e.g. lowest L2 norm error) for a given number of grid
points N . This is called an optimal N -term approximation to the function. In
the proposed method, an optimal N -term to a parabolic PDE is sought in the
whole space–time domain such that the L2 norm residual error is less than a
specified tolerance.

The method starts with a suitable initial space–time grid G
j and an ini-

tial guess for the solution of equation (1), which incorporates the Dirichlet
boundary values. When j is small and the solution is intermittent the residual
||u−uj||2 is large, but it decreases as j →∞. We now aim to find the smallest
possible G

j+1 ⊃ G
j such that ||u − uj+1||2 = α||u − uj||2, where α ∈ (0, 1).

The properties of the wavelet coefficients dj
k guarantee that there exists a J

such that G
J+1 = G

J contains the minimal set of N points [19]. On this grid,
we obtain the best N -term approximation for the given tolerance. Since the
wavelets are located simultaneously in both space and time, the number of
degrees of freedom N is also minimized in space and time and the global error
is estimated by the magnitude of the smallest wavelet coefficients retained.
Thus, accuracy is controlled not by the range of the wavelet spectrum (i.e.
range of scales j), but rather by the intensity of the spectrum. This is in con-
trast to the spectral method where the accuracy is increased by increasing the
range of the resolved spectrum (i.e. adding larger wavenumbers). For more
technical details of constructing the optimal adaptive wavelet grid, we refer
the readers to [46, and the references therein].
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3.8 Flip and solve method

When the actual computational time interval is very large, the size of the al-
gebraic problem on the space–time domain can exceed the available computer
memory. To overcome this technical limitation, we propose to decompose the
space–time domain into a collection of sub-domains in the time direction. Let
us partition the interval

(0, T ) =
n=N−1⋃

n=1

(Tn, Tn+1), with T1 = 0, TN = T. (31)

Thus, the space–time domain Ω = (−1, 1)× (0, T ) can be decomposed into a
collection of sub-domains as

Ω :=
n=N−1⋃

n=1

(−1, 1)× (Tn, Tn+1). (32)

Let Ωn = (−1, 1) × (Tn, Tn+1). A schematic diagram of this sub-division is
shown in figure 3. Thus, the problem in Ω can be solved as a sequence of
sub-problems in each of the domains Ωn, n = 1 . . . N − 1. In other words,
we solve a problem Pn in domain Ωn with boundary condition at t = Tn as
Dirichlet type and at t = Tn+1 as evolution type. For fixed n, to solve a problem
Pn in Ωn, Dirichlet boundary values at t = tn are known from the solution of
problem Pn−1. Since the boundary t = Tn (with a non-uniform adapted grid) is
common to domains Ωn and Ωn−1, we can flip the domain Ωn and the problem
Pn over Ωn−1 and Pn−1 respectively. Thus, solving the problem Pn in domain
Ωn is equivalent to solving a new flipped problem P ′

n−1 in Ωn−1. To this end
we call Pn as forward problem and P ′

n−1 as backward problem. By proceeding
in the same way, we can flip and put all the sub-domains over the domain
Ω1. This allows us to construct a sequence of problems on Ω1 corresponding
to each of the sub-domains. Note that we still retain global error control over
the entire domain Ω.

In this construction the PDE remains forward if the orientation of the cor-
responding domain is unchanged, and a problem changes to backward if the
corresponding domain is flipped.

Let us now call a problem is backward if we change the direction of t, consider
the given spatial boundary conditions and switch the boundary conditions at
t = T1 with that at t = T2. Once the actual problem is solved in Ω1, we flip
the problem, take the computed solution at t = T2 as initial condition and
leave the boundary at t = T1 as evolution type. The solution of the flipped
problem in Ω1 is now the solution of the actual problem in Ω2. The process is
continued until the desired maximum T is achieved.
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x = 1

Fig. 3. Schematic diagram of the space-time domain and sub-domains.

The flip–and–solve technique resolves the difficulty associated with the avail-
able computer memory (when the total space–time degrees of freedom is too
large) by solving a sequence of space–time problems. This is a technical im-
plementation of the proposed space–time AWCM and does not affect the con-
vergence of the algorithm. It is apparent that the terminal solution in the
first space–time grid is used as the initial condition in the second space–time
grid. This injects an error of O(ε) in the increasing time direction. However,
since the error in the multilevel adaptive wavelet approximation is controlled
by the same wavelet thresholding parameter ε [61], this injected error remains
local and does not accumulate globally. This has been verified by numerical
experiments.

4 Results and discussion

4.1 Model problems

The accuracy and efficiency of the proposed numerical method is now veri-
fied by solving nonlinear parabolic PDEs with highly intermittent solutions.
Since our ultimate goal is the study of high Reynolds number turbulent flows,
we will consider three simplified problems that capture the main features of
turbulence dynamics. We first consider two related one-dimensional problems:
the one-dimensional model of the Navier–Stokes equations known as Burgers
equation [74] with fixed and moving shocks. These one-dimensional problems
(solved on a (1D + t) dimensional space–time domain) allow us to carefully
evaluate the performance of the space–time algorithm. We are particularly
interested in grid adaptation (e.g. local time step) and global error control in
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the space–time domain. We then analyze a much more realistic problem: the
merger of two identical vortices at Re = 1 000 calculated by solving the two-
dimensional vorticity equations on a three-dimensional space–time domain.
This problem shows that the space–time method performs well in higher di-
mensions on problems with more complex dynamics.

4.2 Problem formulation

4.2.1 Fixed shock

To examine the delicate balance between the nonlinear advection and the
diffusion, we consider the boundary value problem for Burgers equation with
periodic boundary condition in space (x-periodic), a smooth initial profile, and
an evolution condition for the final time. The proposed forward and backward
problems (notation explained in §3.8 are described below:

Forward problem: We construct a space-time forward boundary-value prob-
lem by considering long-time boundary as evolution type:

−ν ∂
2u

∂x2
(x, t) + u(x, t)

∂u

∂x
(x, t) +

∂u

∂t
(x, t) = 0, (33)

u(−1, t) = u(1, t), t ∈ (0, T ),

u(x, 0) = sin(πx), x ∈ (−1, 1)

−ν ∂
2u

∂x2
(x, T ) + u(x, t)

∂u

∂x
(x, T ) +

∂u

∂t
(x, T ) = 0.

Let us call this solution u1(x, t) in the first space–time grid [−1, 1]× [0, T ]. The
solution u2(x, t) in the second space–time grid [−1, 1]× [T, 2T ] is obtained by
solving the following backward problem.

Backward problem: We now construct a space-time backward boundary-
value problem:

−ν ∂
2u

∂x2
(x, t) + u(x, t)

∂u

∂x
(x, t)− ∂u

∂t
(x, t) = 0,

u(−1, t) = u(1, t), t ∈ (0, T ),

u(x, T ) = u1(x, T ), x ∈ (−1, 1),

−ν ∂
2u

∂x2
(x, 0) + u(x, t)

∂u

∂x
(x, 0)− ∂u

∂t
(x, 0) = 0.
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Fig. 4. Exact solution of the Burgers equation at different values of t.

The solution of the forward problem has a fixed shock that steepens as t
increases with vanishing viscosity. Even with a relatively large viscosity con-
sidered here, ν = 10−3/π, the change from a uniformly smooth distribution to
the shock structure is observed as early as 0 ≤ t ≤ 1/π. This, in turn, results
in the growth of the wavelet coefficients near x = 0 as t increases. Note that
in order to resolve the shock structure we need to compute the solution up to
scale J such that [26]

2−J ≤ [∂u/∂x]−1. (34)

In the above formulation we consider the final time T = 0.4, which is sufficient
for smooth initial condition to become highly intermittent.

The exact solution of the forward problem can be determined easily using the
so-called Cole–Hopf transformation [75] and is given by

uex(x, t) = −
∫ +∞
−∞ sin (π (x− η)) exp

(

− cos(π(x−η))
2πν

)

exp
(

− η2

4νt

)

dη
∫ +∞
−∞ exp

(

− cos(π(x−η))
2πν

)

exp
(

− η2

4νt

)

dη
. (35)

The exact solution uex(x, t) plotted in figure 4 shows that Burgers equation
develops a very intermittent solution in both space and time. The time scale
is fastest where the gradient steepens.

4.2.2 Moving shock

We now study a problem where a localized structure (e.g. a shock) moves.
By adding a constant speed to the inertial term of the Burgers equation with
a shock type initial condition, we can construct a problem whose solution
contains a shock that does not change in time, but moves in space according
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to the added constant speed. Although the mathematical construction of this
problem is similar to the previous problem, additional numerical difficulties
appear when an adaptive numerical method is used. The spatial grid should
now refine and coarsen to follow the shock structure. In classical adaptive
numerical methods, a moving mesh approach is the popular choice in this
case [76]. In other words, a pre-calculated non-uniform grid is translated in
order to follow the moving shock. In our case the space–time grid adapts
iteratively and automatically to resolve the fine scale structure in space and
time.

Forward problem

−ν ∂
2u

∂x2
+ (v + u)

∂u

∂x
+
∂u

∂t
= 0, (x, t) ∈ (−1, 1)× (0, T ), (36)

u(±1, t) =∓1,

u(x, 0) =− tanh
(
x− x0

2ν

)

−ν ∂
2u

∂x2
+ (v + u)

∂u

∂x
+
∂u

∂t
= 0, t = T,

Backward problem

−ν ∂
2u

∂x2
+ (v + u)

∂u

∂x
− ∂u

∂t
= 0, (x, t) ∈ (−1, 1)× (0, T ), (37)

u(±1, t) =∓1,

−ν ∂
2u

∂x2
+ (v + u)

∂u

∂x
+
∂u

∂t
= 0, t = 0,

u(x, T ) =u1(x, T ).

We solve this problem for ν = 10−2, x0 = 0, v = 1, and T = 0.4.

4.2.3 Vortex merging in 2D turbulence

The space–time AWCM is applied here to study vortex merging, which is
known to be a fundamental nonlinear process in two-dimensional turbulence [43].
We solve the two-dimensional Navier–Stokes equation written in the velocity–
vorticity form,

∂ω

∂t
+ u · ∇ω − 1

Re
∇2ω = 0 in Ω. (38)

In two-dimensional flow, the vorticity is confined to the z-direction, and is
related to the velocity field via

∇× u = ω.
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One can show that the velocity is a functional of vorticity, given by the Biot–
Savart law,

u(x, t) = − 1

2π

∫
x− y

|x− y|2 × ω(y, t) dy, t ∈ [0, T ] (39)

where the integral is taken over the entire spatial domain [77,78]. Greengard
& Rokhlin [79,80] have developed a Fast Multiple Method (FMM) that we use
here to evaluate the above integral such that the velocity field is computed
from the vorticity field throughout the space–time domain.

The initial condition is two identical Gaussian vortices with vorticity given by

ω(x, y, 0) =
Γ

πσ2
exp

[

−((x− r cosφ)2 + (y − r sinφ)2)/σ2
]

,

where the circulation Γ = 1, the vortex radius σ =
√
νπ2, the vortex separation

2r = 1, and the vortex centres are located at angles φ = ±π/4. The Reynolds
number is Re = Γ/ν = 1 000. This Reynolds number is high enough that
the merging process generates intense intermittent vorticity in the form of
filaments.

The space–time domain Ω is the product of a doubly periodic spatial do-
main D = [−2.5, 2.5] × [−2.5, 2.5] and the time interval [0, 40]. As for the
other cases, we use an evolution condition at the final time boundary. We
construct a space–time grid with subdomains of size ∆T = 0.4, and solve
the problem recursively using the flip–and–solve algorithm discussed earlier.
In the absence of an exact solution, we verify the performance of the numer-
ical method by comparing it to similar AWCM which uses a classical time
marching scheme [47].

4.3 Results for Burgers equation

4.3.1 Progressive grid adaptation and reduction of error

The ability of the numerical method to adapt the computational grid progres-
sively is tested by setting the threshold parameter ε to some nonzero value,
and solving the problem on a suitable initial coarse grid. As described in Vasi-
lyev & Kevlahan [46], the initial grid is refined iteratively by analyzing the
wavelet coefficients and retaining only those whose values are larger than ε,
along with a ’security zone’ of nearest neighbor wavelets in position and scale.
Wavelet coefficients are added where where the solution has strong gradients
(i.e. small space scales and fast time scales). This iterative procedure produces
a sequence of grids and a sequence of solution surfaces, where the number of
grid points increases at each iteration. Since the wavelet coefficients dj

k vanish
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as the scale decreases for fixed position, after enough iterations the number
of grid points and maximum scale J no longer increase. This means that the
sequence of grids, and associated solutions, has converged.

The smallest resolved scale in our computation is controlled by the threshold
parameter ε. More importantly, in an error control based adaptive method the
tolerance and the maximum number of grid points are fixed [2]. In other words,
prescribing the tolerance ε also prescribes the smallest resolved scale. Thus,
progressive grid adaptation procedure continues adding smaller and smaller
scales until it finally reaches a steady state where the level of multi-resolution
and number of active points do not change. To show that the number of degrees
of freedom in a near optimal grid is fixed for a given tolerance, the scale as
a function of iteration and the corresponding number of active wavelets as a
function of iteration are plotted in figure 5 for the developing shock and in
figure 6 for the moving shock.

In order to visualize the progressive grid adaptation, we perform simulations
with an error tolerance of ε = 10−5 without fixing the maximum allowable
resolution. Due to the presence of localized structures, an initial space–time
grid that is relatively coarse compared to the smallest active scale is refined
progressively and grid points accumulate near the singularity. We present si-
multaneous space–time adaptive grids at various scales j with ε = 10−5 in
figure 7(b). The accumulation of grid points in the region of intermittency
and the non-uniformity of the time step in space shows the efficiency of the
method.

Due to the presence of localized structures, large scale computations have large
errors while the error decreases with scale. To show the progressive decrease
of error with scale, we plot in figures 7(a) the solution at t = 0 and at t = 0.4
in various scales respectively for the developing shock. The solution and grid
at the finest scale are shown in figure 8 for moving shock.

4.3.2 Global error control

One can easily show that the classical time marching procedure accumulates
error progressively as time increases. To reduce the globally accumulated er-
ror, one reduces the time steps. Since the reduction in the time step is lim-
ited by machine precession, there is no control on the global error accumu-
lation for arbitrarily long times. Analytical results shows that the global er-
ror in the domain where the wavelet transform is performed is bounded by
the threshold parameter ε [34,46]. Thus, a wavelet-based simultaneous space-
time adaptive method does not allow error to increase without bound. To
test this, we compute the evolution of the Lp norm of the error E(t) :=
{∫x |u(x, t) − uex(x, t)|pdx}1/p, and present the result with p = ∞ (i.e. the

25



5 6 7 8 9 10 114

6

8

10

j

(a)

5 6 7 8 9 10 110

1

2

3

4 x 104

Iteration

N(
ε)

(b)

Fig. 5. For ε = 10−5, the algorithm reaches a natural scale j = 10, and the number
of active wavelets N (ε) adapts with the solution of the developing shock problem
as the adaptive grid iteration proceeds.
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Fig. 6. For ε = 10−5, the algorithm reaches a natural scale j = 7 and the number of
active wavelets N (ε) adapts with the solution of the moving shock problem as the
adaptive grid iteration proceeds.

26



(a) (b)

−1 −0.5 0 0.5 1−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

u
Solution

t=0
t=0.4

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

t

Grid

−1 −0.5 0 0.5 1−1.5

−1

−0.5

0

0.5

1

x

u

Solution

t=0
t=0.4

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

t

Grid

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

x

u

Solution

t=0
t=0.4

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

t

Grid

Fig. 7. developing shock at scales j = 3, 5, 9 (top to bottom). (a) Solution. (b) Si-
multaneous space-time adaptive grid.

maximum error). In the developing shock problem, the sharp transition at
fixed position reaches a maximum at some time tc, and is then smoothed by
viscous forces. Thus, as pointed out by Vasilyev et. al. [26], the error should
be high in the neighborhood of maximum gradient as the solution is computed
from the best N term approximation determined by the wavelet coefficients.
This is seen in the temporal evolution of error in both of the problems (see
figure 9(a)&(b)).

As mentioned earlier, to efficiently use the available computer memory we im-
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Fig. 9. Global error in time. (a) developing shock. (b) Moving shock.

plement a ’flip-and-solve’ technique when the time interval is very large(§3.8).
Note that the global error retains the same bound if we use the ’flip-and-solve’
technique or use the entire domain. To show this we solve the developing shock
problem by dividing the space-time domain [−1, 1]×[0, 0.4] into two equal sub-
domains. The forward problem is solved in sub-domain [−1, 1] × [0, 0.2], and
the backward problem is solved in the sub-domain [−1, 1] × [0.2, 0.4]. In fig-
ures 10 and 11 we present the evolution of error in each of the domain as well
as the corresponding space–time grid. Clearly, the method retains the same
accuracy and a similar grid. Thus, we can use this algorithm to solve prob-
lems that must be integrated for arbitrarily long times. The compression of
the grid in the flip-and-solve technique is qualitatively the same if we compare
figure 10(a) and 11(a) with the bottom of figure 7(b).

To further analyze spurious globally accumulated error, we now solve the de-
veloping shock problem using a standard pseudo-spectral approach with de-
aliasing, where the time marching scheme is a hybridization of a third-order
Runge–Kutta for the nonlinear term and a Crank-Nicholson scheme for the

28



(a) (b)

−1 −0.5 0 0.5 10

0.05

0.1

0.15

0.2

x

t
Grid

0 0.05 0.1 0.15 0.20

1

2

3

4

5

6

7

8 x 10−5

t

||u
(x

,t)
−u

ex
(x

,t)
|| ∞

Fig. 10. Flip-and-solve results for first sub-domain. (a) Simultaneous space-time
adaptive grid of [−1, 1]× [0, 0.2]. (b) Global error in time.
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Fig. 11. Flip-and-solve results for second sub-domain. (a) Simultaneous space-time
adaptive grid of [−1, 1]× [0.2, 0.4]. (b) Global error in time.

linear viscous term. Although, there is no a priori estimates for the globally
accumulated error in a spectral time marching scheme, we expect that the
leading order behavior of the global error is dominated by the temporal trun-
cation error in the Crank-Nicholson scheme which is second order in time.
Thus, if ∆x ∼ ∆t = O(10−3) then after marching 100 time steps, we expect
that the error should accumulate at least to O(10−4), or higher, since there
are other sources of error. This accumulation of error is demonstrated in fig-
ure 12 (a) where we compare the growth of L∞ error in various time marching
schemes (with fixed time step) to the space–time method. The error increases
monotonically in time until about t = 0.3 in all the time marching schemes,
while in the space–time method the error is controlled by wavelet thresholding
parameter ε = 10−5. Figure 12 (b) shows that the error of the time marching
schemes varies significantly with position, and is largest where the gradient of
the solution is strongest (i.e. near x = 0). In contrast, the error of the space–

29



(a) (b)

0 0.1 0.2 0.3 0.410−6

10−4

10−2

100

t

E(
t)

space−time
spectral−marching
finite−difference
wavelet−marching

−1 −0.5 0 0.5 1

10−8

10−6

10−4

10−2

100

X

E(
x,

0.
4)

space−time
spectral−marching
finite−difference
wavelet−marching

Fig. 12. (a) Global L∞ error in time for the developing shock problem. Comparison of
the space–time method with various time marching methods (with fixed time step).
(b) Absolute difference between the numerical solutions and the exact solution at
t = 0.4. (Note that errors for the spectral and wavelet time marching simulations
largely overlap.)

time method is relatively homogeneous in space. The accumulation of error in
the time marching methods could be slowed by using an adaptive time step,
but it can never be eliminated entirely.

4.3.3 Accuracy and efficiency of the method

Equation (13) predicts that increasing the number of grid points will decrease
the global error by a factor of p/n, where n is the dimension of wavelet trans-
form (n = 2 in this case) and p is the number of vanishing moment of the
wavelet. Since n is fixed, increasing p decreases the error. On the other hand,
decreasing ε increases the number of grid points (12), and thus reduces the
error. Hence the best approximation of the solution is controlled by the pa-
rameters p, ε. To measure the accuracy of the proposed numerical method, we
compute equations (12) and (13) numerically for the fixed and moving shock
problems for values of p = 4 6 8. As expected, increasing p improves the ac-
curacy of the method. In figure 13, we present numerical results which agree
with the theoretical predictions in equations (12) and (13).

The asymptotic global error is given in terms of the threshold parameter ε by
equations (12) and (13). We present numerical results to verify the asymptotic
error estimates [46] given by equation (13) in figure 13(a), where the point-
wise L∞ norm of the error in simulations with tolerance ε = 10−5 is plotted
for p = 4, 6, 8. In figure 13(b), we present the effect of thresholding on the
number of active collocation points as predicted by equation (12). This shows
that the numerical method converges with sufficient accuracy, as predicted by
the analytical error estimates.
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31



4.4 Results for vortex merging

We now present numerical results for merger of two Gaussian vortices. The ini-
tial conditions and the computational domain are described in section §4.2.3.
The algorithm refines or coarsens the spatial mesh and the time step by the
same factor, i.e. if ∆x is changed to ∆x/2 then ∆t is changed to ∆t/2. We
therefore start with an initial coarse mesh with sufficient spatial resolution
to resolve the initial condition and such that ∆t/∆x ∼ min(|u|−1), where u

is the velocity field. This CFL-type condition is not a strict requirement for
convergence, and is only necessary to ensure that the grid resolution in space
and time is optimal. One could, in principle, start with a 2 × 2 × 2 mesh
and refines the spatial domain such that an acceptable ratio of the refinement
factor between x and t is obtained, which is the same as having a fixed ra-
tio between ∆x and ∆t. Since no information is available for t > 0 at this
moment, simply adapting the space–time mesh to the initial condition is not
appropriate. Moreover, the CFL-type criterion is reasonable for the simulation
of advection dominated flows.

In this simulation, we use an initial space–time grid of size 32 × 32 × 2 (see
fig. 16(a)). We allow three levels of grid refinement, which means the maxi-
mum resolution in any sub-domain of size [−2.5, 2.5]× [−2.5, 2.5]× [0, 0.4] is
256× 256× 16. The wavelet thresholding parameter ε = 10−5. Figure 16(b) is
the space–time grid of the first space–time sub-domain in the flip–and–solve
algorithm, and figure 16(c) is the grid of the last space–time sub-domain.
This result shows that the time steps are local and distributed according to
the temporal intermittency of the solution. To the best of our knowledge, this
is the first two-dimensional DNS of the vorticity or Navier–Stokes equations
that adapts the time step to match the natural local time scale.

Note that the vortex merging simulation is significantly different from two of
the previous problems because of the need to resolve both the velocity and
vorticity field in the space–time domain. The evolution of the vorticity field
is determined by solving the vorticity equation in simultaneous space–time
domain and by performing the FMM calculation at each V-cycle Wavelet-
based Full Approximation Scheme (WFAS) to find the velocity, which is then
used for next V-cycle iteration. Once the WFAS calculations have converged,
we use this solution to estimate the error and to adapt the space–time grid
according to the algorithm described by Vasilyev & Kevlahan [46].

We have compared the space–time results with the results of similar AWCMs
which use adaptive wavelets for spatial discretization and an adaptive time
marching scheme in the temporal direction [47]. We consider two time march-
ing schemes: an explicit Krylov method [81] and an implicit Crank–Nicolson
method. Although all methods use the same adaptivity in space, the global
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error of the space–time method is bounded by ε, while the time marching
schemes control only the local time integration error. For consistency the
tolerances of the time marching schemes are set such that the global time
integration error remains O(ε) (i.e. we set the tolerance such that the total
number of time steps times the local error is O(ε), with ε = 10−5). Note that
the number of time steps increases with decreasing tolerance, and it is there-
fore not surprising that we must use extremely small tolerances to match the
global error of the space–time method. We show the vorticity field computed
at t = 0.2, t = 9.6, and t = 25.2 in figure 14. The spatial grids at correspond-
ing time levels are shown in figure 15 for both methods. Note the similarity
of the final spatial grid in both methods, despite the very different numeri-
cal algorithms used. These results provide a good qualitative assessment of
the accuracy of the proposed numerical method compared with a standard
adaptive time marching simulation.

4.5 Comparison of computational complexity and cost

One of the main contributions of the space–time method is to achieve a pre-
scribed global space–time accuracy with reduced computational cost. Table 1
summarizes the total number of grid points, total CPU time, and the min-
imum and maximum ∆t used in the entire simulation for each of the three
methods. The number of active wavelets N (independent of the dimensional-
ity) measures the computational complexity of a wavelet based adaptive DNS
technique. Table 1 shows that the space–time method uses about 7 times fewer
space–time grid points than the Crank–Nicolson scheme, and about 18 times
fewer than the Krylov method. The reduction in CPU time is not as large,
although it is still significant: the space–time method is about twice as fast
as the Crank-Nicolson method and about four times as fast as the Krylov
method. There is clearly additional overhead associated with the iterative so-
lution of the vorticity equation on the space–time domain. It is also interesting
to compare the minimum time steps used in each method. Table 1 shows that
the space–time method uses a minimum time scale roughly 2 × 103 times
larger than the Crank-Nicolson method and 500 times larger than the Krylov
method while achieving a similar accuracy. Note that the smallest time steps
are applied only locally in the space–time method, while in the time marching
methods they are applied homogeneously to all grid points.

Let us define the ratios of grid points in a single space–time subdomain
RCN(t) = NCN(t)/NST(t) and RKRY(t) = NKRY(t)/NST(t). The space–time
subdomains are [−2.5, 2.5] × [−2.5, 2.5] × [tn, tn + 0.4], n = 0, . . . 100, t0 = 0.
ST denotes the space–time method, CN denotes the Crank-Nicolson method,
and KRY denotes the Krylov method. The plots of RCN(t) and RKRY(t) in fig-
ure 17 show how the computational complexity of the time marching schemes
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Space–time Crank–Nicolson Krylov

N 25 041 353 174 823 834 455 960 480

Ratio of grid points 1 7 18

CPU time (s) 6.4× 104 1.5× 105 2.5× 105

Ratio of CPU times 1 2.3 3.9

∆tmin 2.35× 10−2 1.2× 10−5 4.8× 10−5

∆tmax 2.0× 10−1 3.5× 10−2 6.3× 10−3

Number of time steps ≤ 1600 14 234 27 115

Table 1
Comparison of the computational complexity and cost of the space–time and time
marching DNS. Note that the equivalent number of time steps taken in the space–
time method depends on the spatial location.

change with respect to the space–time method. It is interesting to note that
the computational complexity of the Crank-Nicolson scheme decreases roughly
monotonically, while that of the Krylov scheme reaches a peak at around
t = 20 before finally decaying. This is likely due to the more accurate error
control scheme of the Krylov method [81], since both schemes are uncondi-
tionally stable. The time step selected by the Crank-Nicolson scheme simply
follows the average diffusion of vorticity (which decreases the average length
scale), while the Krylov scheme decreases the time step when the dynamics
are most rapid, i.e. during the intense vorticity filamentation that accompanies
merger at about t = 20. Not surprisingly, the space–time approach is most
advantageous when the dynamics are most intermittent (i.e. during filamen-
tation). At long times the vorticity simply diffuses and the flow is no longer
intermittent in time.

The time marching methods use more active grid points than the space–time
method because they do not exploit temporal intermittency (i.e. the time
step is the same for a locations) and they require much smaller time steps to
achieve the specified global time integration error. Note that if the natural
time scale were uniform over the entire spatial mesh (as is the case at long
times), all methods should use roughly the same number of grid points at
a given time. Figure 17 therefore demonstrates that the proposed method is
promising for highly intermittent problems. The reduction in the number of
degrees of freedom is achieved using wavelet compression in the time direction,
which adjusts the time step according to the natural local time scale of the
flow. In adaptive time stepping, time steps are determined according to the
smallest time scale at a fixed time. Thus, the slow time scale regions use an
inappropriately small time step. In an efficient numerical method, the total
computational cost should be proportional to the actual number of degrees of
freedom of the dynamical system. The space–time method attempts to achieve
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this.

5 Conclusions

The development of wavelet theory and its application to a wide variety of sci-
entific problems has been an active research area for the last two decades [82].
Although it has been shown that adaptive wavelet compression gives an op-
timal N -term approximation, and differential operators can be compressed
using wavelets, no one has previously attempted to solve initial value prob-
lems using an adaptive wavelet basis in both space and time. Dynamical sys-
tems governed by nonlinear ordinary differential equations are often difficult to
study numerically since conventional numerical schemes suffer not only from
globally accumulated error, but are also not easy to adapt to multiple time
stepping (i.e. different time steps for different scales or physical locations). A
common example of the first problem is the numerical simulation of advection
equations for arbitrarily long times [83,84]. Any Eulerian scheme is affected
by spurious diffusive and dispersive error due to inaccurate spatial discretiza-
tion [85]: this error becomes intolerable if the time interval is very long [83].
Multiple time scales are essential for the efficient simulation of equations which
have highly intermittent structure, such as turbulent flows.

The main contribution of this paper is the development of a simultaneous
space–time adaptive wavelet collocation method (AWCM) for nonlinear PDEs.
The space–time AWCM provides an elegant solution to both global error con-
trol in time and multiple time stepping. It is based on the multilevel AWCM
for elliptic equations developed by Vasilyev & Kevlahan [46] extended to non-
linear problems using the multigrid full approximation scheme (FAS) [8]. The
PDE is reduced to a single algebraic problem which is solved simultaneously
on a space–time domain with appropriate boundary conditions. If necessary,
the time domain can be split into sub-domains using the flip-and-solve method
described in the paper. This is useful for problems where using a very large do-
main in the time direction is impractical due to memory constraints, or where
the stopping time is not known a priori . The method has been illustrated here
by using it to solve the 1D+t-dimensional Burgers equation for fixed and mov-
ing shocks, and the 2D+ t-dimensional vorticity equation for merging vortices
at Re = 1000. In the vortex merging example we found that the space–time
method uses roughly 18 times fewer space–time grid points and is roughly 4
times faster than a dynamically adaptive Krylov time marching method, while
achieving similar global accuracy. The decrease in the number of grid points
is due to two properties of the space–time method: local time-stepping (i.e.
the size of time step adapts locally in space), and global control of the time
integration error (i.e. fewer time steps are required since the time integration
error is controlled globally and thus does not accumulate). The extension of
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(a) (b)

Fig. 14. Vortex merging at Re = 1000, vorticity field at times
t = 0.2, t = 9.6, t = 25.2 (from top to bottom). (a) Space–time AWCM
solution. (b) Krylov time marching AWCM solution.
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Fig. 15. Vortex merging at Re = 1000, grids at t = 0.1, 9.6, 25.2 (from top to
bottom). (a) Space–time AWCM. (b) Krylov time marching AWCM.
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Fig. 16. Development of the space–time adaptive grid. (a) Initial space–time grid.
(b) First space–time grid. (c) 100–th space–time grid.
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Fig. 17. The ratio of the number of grid points in each space–time sub-domain
as a function of time for the vortex merging simulation. RCN(t) is the ratio of
Crank-Nicolson to space–time, and RKRY(t) is the ratio of Krylov to space–time.

the method to three spatial dimensions is straightforward in principle, but
requires an efficient four-dimensional data-structure and parallelization of the
algorithm. We are currently working on this extension of the method to higher
dimensions.

The examples presented here show that the efficiency and accuracy of the
method is consistent with theoretical predictions. The algorithm finds the so-
lution of nonlinear evolution problems on a near optimal grid to a prescribed
tolerance controlled by the wavelet threshold parameter ε. In addition, the pro-
posed numerical method also provides global error control in time, something
which is impossible in conventional time-stepping schemes.

We have shown that one can apply a space–time wavelet adaptive method to
compute the intermittent solution of nonlinear evolution problems on a near
optimal grid in one and two spatial dimensions. Thus, this method should
be well-suited to direct numerical simulation (DNS) of turbulent flows. A
naive estimate based on Kolmogorov micro-scale predicts that the number of
active degrees of freedom in a DNS of turbulent flow scales like Re3 in space–
time domain, where Re is the Reynolds number and a uniform space–time
grid is assumed. However, when the flow is fully turbulent (and hence highly
intermittent) the actual number of degrees of freedom is much smaller than
this naive estimate. We expect that a simultaneous space–time AWCM will
approximate the actual number of active degrees of freedom in such flows
much better than classical time-stepping methods. In fact, we intend to use
the number of active wavelets in the space–time domain to estimate of how the
number of degrees of freedom actually scales with Reynolds number. We would
also like to apply the present method to a dynamical system that involve a
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wide range of time scales, such as a set of coupled reaction–diffusion equations
involving chemical reactions with widely varying time scales.
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