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Abstract. Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) is an

extension of Large Eddy Simulation that uses a wavelet filter-based dynamic grid

adaptation strategy to solve for the most energetic coherent structures in a turbulent

flow field, while modelling the effect of the less energetic ones. A localized dynamic

subgrid scale model is needed to fully exploit the ability of the method to track coherent

structures. In this paper, new local Lagrangian models based on a modified Germano

dynamic procedure, redefined in terms of wavelet thresholding filters, are proposed.

These models extend the original path-line formulation of Meneveau et al [J. Fluid

Mech., 319, 1996] in two ways: as Lagrangian path-line diffusive and Lagrangian

path-tube averaging procedures. The proposed models are tested for freely decaying

homogeneous turbulence with initial Reλ = 72. It is shown that the SCALES results,

obtained with fewer than 0.4% of the total non-adaptive nodes required for a DNS with

the same wavelet solver, closely match reference DNS data. In contrast to classical

LES, this agreement holds not only for large scale global statistical quantities, but also

for energy and, more importantly, enstrophy spectra up to the dissipative wavenumber

range.
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1. Introduction

Although turbulence is common in engineering applications, a solution to the

fundamental equations that govern turbulent flow still eludes the scientific community.

Due to the prohibitively large disparity of spatial and temporal scales, direct numerical

simulation (DNS) of turbulent flows of engineering interest are impossible, even with the

aid of the fastest supercomputers that exist or will be available in the foreseeable future.

Large eddy simulation (LES) is often viewed as a feasible alternative for turbulent flow

modeling, e.g., [1]. The main idea behind LES is to resolve only the large-scale motions,

while modeling the effect of the unresolved subgrid scale (SGS) eddies.

When dealing with complex turbulent flows, current LES methods rely on, at best,

a zonal grid adaptation strategy to minimize the computational cost. This mesh is

typically non-adaptive and chosen in a somewhat ad hoc manner to adequately resolve

the flow. While an improvement over the use of regular grids, these methods fail to

resolve the high wavenumber components of the spatially and temporarily intermittent

coherent structures characteristic of turbulent flows, thus neglecting valuable physical

information. At the same time, the flow is over-resolved in regions between the coherent

structures, which wastes computational resources. Finally, as pointed out by [2], the

local filter width in LES implementations is typically proportional to local mesh size,

which makes LES results highly dependent on the computational grid.

We have recently introduced a novel approach to turbulent flow simulation, called

Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) [3, 4]. This method

addresses the above mentioned shortcomings of LES by using a wavelet thresholding

filter to dynamically resolve and track the most energetic coherent structures during

the simulation, while modeling the effect of the unresolved less energetic modes. We

showed that the residual motions are composed of a small number of coherent modes

that dominate the total SGS dissipation and a large number of incoherent modes that,

due to their decorrelation with the resolved modes, add little to the total subgrid scale

dissipation [3, 5]. Therefore, in this work, as in much of classical LES, only the coherent

part of the unresolved modes is modelled using a deterministic SGS stress model.

The first step towards the construction of SGS models for SCALES was undertaken

in [4], where we developed a global dynamic Smagorinsky eddy viscosity model based on

the classical Germano procedure redefined in terms of two wavelet thresholding filters.

The main drawback of this formulation is the use of a global (spatially non-variable)

model coefficient. The use of a global dynamic model unnecessarily limits the SCALES

approach to flows with at least one homogeneous direction. This is unfortunate since the

dynamic adaptability of SCALES is ideally suited to fully inhomogeneous flows. In this

paper a local dynamic model is developed to extend SCALES to fully inhomogeneous

turbulent flows. The proposed models are based on two different extensions of the

original Lagrangian path-line formulation of [6], namely Lagrangian path-line diffusive

and Lagrangian path-tube averaging procedures.

The paper is organized as follows. The SCALES methodology for the numerical
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solution of turbulent flows is reviewed briefly in §2. The local dynamic Smagorinsky

model with Lagrangian path-line/tube averaging is discussed in detail in §3. The results

for the numerical simulations are presented in §4 and, finally, some concluding remarks

are made in §5.

2. Stochastic coherent adaptive large eddy simulation

2.1. Wavelet Thresholding Filter

Let us very briefly outline the main features of the wavelet thresholding filter. More

details can be found, for instance, in [7]. A velocity field ui(x) can be represented in

terms of wavelet basis functions as

ui(x) =
∑

l∈L0

c0
l
φ0

l
(x) +

+∞
∑

j=0

2n−1
∑

µ=1

∑

k∈Kµ,j

dµ,j
k
ψµ,j

k
(x), (1)

where φ0
l

and ψµ,j
k

are n-dimensional scaling functions and wavelets of different families

and levels of resolution, indexed with µ and j, respectively. One way to think of a

wavelet decomposition is as a multi-level or multi-resolution representation of ui, where

each level of resolution j (except the coarsest one) consists of a family of wavelets ψµ,j
k

having the same scale but located at different positions. Scaling function coefficients

represent the averaged values of the field, while the wavelet coefficients represent the

details of the field at different scales.

Wavelet filtering is performed in wavelet space using wavelet coefficient

thresholding, which is a nonlinear filter that depends on each flow realization. The

wavelet thresholding filter is defined by,

ui
>ǫ(x) =

∑

l∈L0

c0
l
φ0

l
(x) +

+∞
∑

j=0

2n−1
∑

µ=1

∑

k ∈ Kµ,j

|dµ,j

k
| > ǫ‖ui‖WTF

dµ,j
k
ψµ,j

k
(x), (2)

where ǫ > 0 stands for the non-dimensional (relative) threshold parameter, ‖·‖
WTF

being

the Wavelet Threshold Filtering (WTF) norm that provides the (absolute) dimensional

velocity scale in the i-th direction. For instance, the (absolute) dimensional scaling can

be specified as the L2 norm (‖ui‖WTF
= ‖ui‖2) or the L∞ norm (‖ui‖WTF

= ‖ui‖∞).

Note that once the WTF-norm ‖ · ‖
WTF

is specified, the wavelet thresholding filter (2)

is uniquely defined by the nondimensional threshold parameter, ǫ. Also note that for

simulation of homogeneous turbulence the same scaling is used in all three directions,

e.g. ‖ui‖WTF
= ‖u‖2.

The major strength of wavelet filtering is its ability to compress the solution. For

turbulent fields, which contain isolated high-energy coherent structures on a low-energy

background, most wavelet coefficients are small. Thus, a good approximation can

be retained even after discarding a large number of wavelets with small coefficients.

Intuitively, in the wavelet decomposition (1), the coefficient dµ,j
k

is small unless ui has

significant variation on the level of resolution (scale) j, in the immediate vicinity of

wavelet ψµ,j
k

(x).
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Figure 1. Volume rendered vorticity magnitude (left) and corresponding

computational grid (right) for SCALES simulations. Points of different levels of

resolution are shown in different color.

2.2. Wavelet-filtered Navier-Stokes equations

When applying the wavelet thresholding filter to the Navier–Stokes equations,

each variable should be filtered, according to (2), with a corresponding absolute

scale. However, this would lead to numerical complications due to the one-to-one

correspondence between wavelet locations and grid points. In particular, each variable

would be solved on a different numerical grid. In order to avoid this difficulty, the

coupled wavelet thresholding strategy is used in the present study. Namely, after

constructing the masks of significant wavelet coefficients for each primary variable, the

union of these masks results in a global thresholding mask that is used for filtering

each term. Note that additional variables, e.g. vorticity or strain rate, can be used to

construct the global mask.

Once the global mask is constructed, one can view the wavelet thresholding

procedure as local low-pass filtering. Such an interpretation highlights the similarity

between SCALES and classical LES approaches. However, the wavelet filter is drastically

different from the LES filters because it adapts dynamically to the solution. This

generates an adaptive computational grid that tracks the areas of locally significant

energy in physical space as illustrated, for instance, in Fig.1 where volume rendered

vorticity magnitude and corresponding computational grid used in SCALES simulations

are shown.

Therefore, the SCALES equations for incompressible flow, which describe the

evolution of the most energetic coherent structures, are obtained by applying the wavelet

thresholding filter to the incompressible Navier–Stokes equations:

∂ui
>ǫ

∂xi

= 0, (3)
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∂ui
>ǫ

∂t
+
∂(ui

>ǫ uj
>ǫ)

∂xj

= −
1

ρ

∂p>ǫ

∂xi

+ ν
∂2ui

>ǫ

∂xj∂xj

−
∂τij
∂xj

, (4)

where ρ, ν are the constant density and kinematic viscosity, and p stands for the pressure.

As a result of the filtering process, the unresolved quantities

τij = uiu
>ǫ
j − u>ǫ

i u>ǫ
j , (5)

commonly referred to as SGS stresses, are introduced. They represent the effect of

unresolved (less energetic) coherent and incoherent eddies on the resolved (energetic)

coherent vortices. As usual in a LES approach, in order to close Eqs. (4), a closure model

is needed to express the unknown SGS stresses in terms of the resolved wavelet-filtered

field. Note that analogous to LES with non-uniform filter width [8, 9, 10] there is a

commutation error between wavelet filtering and derivative operators, the effect of which

is not considered in this paper. However, a significant number of wavelets below the

thresholding level, ǫ‖ui‖WTF
, are retained due to the adjacent zone and reconstruction

check procedures [11, 12, 13]) in the regions of the energetic vortices, which results in a

significant reduction of the commutation error.

2.3. Numerical implementation

The SCALES methodology is implemented using the adaptive wavelet collocation

method (AWCM), e.g. [11]. The wavelet collocation method employs wavelet

compression as an integral part of the numerical algorithm such that the solution is

obtained with the minimum number of grid points for a given accuracy.

Briefly, the AWCM is an adaptive, variable-order method for solving partial

differential equations with localized structures that change their location and scale.

Since the computational grid automatically adapts to the solution, both in position and

scale, the regions of high gradients or localized structures do not need to be known

a priori . Also, the method is based on second-generation wavelets [14], which allow

the order of the wavelet (and hence of the numerical method) to be varied easily. The

method has a computational complexity O(N), where N is the number of wavelets∗

retained in the calculation, i.e. those wavelets with significant coefficients plus nearest

neighbors. As far as computational cost is concerned, it should be noted that the

adaptive wavelet collocation code is about two to three times slower per grid point

than the non-adaptive finite difference code, so a compression factor of 260 (that is

retaining 0.385% of the total non-adaptive nodes) as reported in Section 4 represents

an acceleration of about 90 times with respect to the non-adaptive case.

3. Lagrangian dynamic SGS model

The main objective of the current work is to develop a local SGS model for SCALES

of inhomogeneous turbulent flows. One way to achieve this goal would be to use the

∗
N is also the number of grid points due to one-to-one correspondence between wavelet locations and

grid points.
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local Smagorinsky model based on a modified Germano dynamic procedure, redefined

in terms of the wavelet thresholding filters introduced in [4]. However, as in the classical

LES approach, e.g., [15], the local formulation would lead to numerical instability. The

volume averaging procedure, introduced in [4] to stabilize the solution, leads to the

definition of a global (spatially non-variable) coefficient. This limits the applicability of

the model to flows with at least one homogeneous direction.

We now extend the Lagrangian dynamic path-line averaging approach of [6] and

apply it to SCALES. Following [4], where the SGS stresses (5) were shown to scale

like ǫ2, the deviatoric part (hereafter noted with a star) of the SGS stress tensor is

approximated by the Smagorinsky eddy-viscosity model

τ ∗ij
∼= −2CS∆2ǫ2

∣

∣S
>ǫ∣
∣Sij

>ǫ
, (6)

where Sij
>ǫ

= 1/2 (∂ui
>ǫ/∂xj + ∂uj

>ǫ/∂xi) is the resolved rate-of-strain tensor,
∣

∣S
>ǫ∣
∣ =

(

2Sij
>ǫ
Sij

>ǫ)1/2
, and ∆(x, t) is the local characteristic filter length-scale. The

latter is the key-parameter in the SCALES formulation as it strictly reflects the adaptive

nature of the method. Once a wavelet threshold is given, the corresponding thresholding

mask implicitly defines a point-wise time-dependent filter width. This is different from

classical LES where the local, possibly non-uniform, filter width is defined a priori and

does not depend on the actual flow realization.

Following the modified dynamic procedure of [4], the residual stress tensor at the

test-filter level is defined as

Tij = uiuj
>2ǫ − ui

>2ǫ uj
>2ǫ, (7)

where (·)
>2ǫ

corresponds to the wavelet test filter at twice the threshold, i.e. the test

filter is defined by Eq. (2) with ǫ replaced by 2ǫ. Since the wavelet filter is a projection

operator it satisfies (·)
>ǫ>2ǫ

≡ (·)
>2ǫ

. Therefore, by filtering (5) at the test filter level

and combining it with (7), the following modified Germano identity for the Leonard

stresses is obtained:

Lij ≡ Tij − τij
>2ǫ = ui

>ǫuj
>ǫ>2ǫ

− ui
>2ǫ uj

>2ǫ. (8)

Exploiting the model (6) and the analogous relation for the test filtered SGS stresses

T ∗
ij
∼= −2CS∆2 (2ǫ)2

∣

∣

∣
S

>2ǫ
∣

∣

∣
Sij

>2ǫ
, (9)

one obtains

2CS∆2ǫ2
∣

∣S
>ǫ∣
∣Sij

>ǫ>2ǫ

− 2CS∆2 (2ǫ)2
∣

∣

∣
S

>2ǫ
∣

∣

∣
Sij

>2ǫ
= L∗

ij . (10)

As in classical dynamic LES, a least square solution to (10) leads to the following local

Smagorinsky model coefficient definition:

CS(x, t)ǫ2 =
L∗

ijMij

MhkMhk

, (11)

where

Mij ≡ 2∆2

[

∣

∣S
>ǫ∣
∣Sij

>ǫ>2ǫ

− 4
∣

∣

∣
S

>2ǫ
∣

∣

∣
Sij

>2ǫ
]

. (12)
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The coefficient CS can be actually positive or negative, which allows for local backscatter

of energy from unresolved to resolved modes. However, it has been found that negative

values of CS cause numerical instabilities. To avoid this, the Lagrangian dynamic model

formulation of [6] is exploited by taking the following statistical averages along the

trajectory of a fluid particle:

ILM (x, t) =
1

T

∫ t

−∞

e
τ−t
T Lij (x (τ) , τ)Mij (x (τ) , τ) dτ, (13)

IMM (x, t) =
1

T

∫ t

−∞

e
τ−t
T Mhk (x (τ) , τ)Mhk (x (τ) , τ) dτ. (14)

This leads to the definition of the local Smagorinsky model coefficient:

CS(x, t)ǫ2 =
ILM

IMM
. (15)

To avoid the computationally expensive procedure of Lagrangian path-line averaging,

(13) and (14) are differentiated with respect to time leading to the evolution equations

for ILM and IMM :

∂ILM

∂t
+ u>ǫ

m

∂ILM

∂xm
=

1

T
(LijMij − ILM), (16)

∂IMM

∂t
+ u>ǫ

m

∂IMM

∂xm
=

1

T
(MhkMhk − IMM). (17)

The relaxation time scale T is defined as T (x, t) = θ∆ (ILMIMM )−1/8, where θ is a

dimensionless parameter of order unity, which is one of the options suggested by [6].

Equations (16) and (17) should be solved together with the governing equations,

(3) and (4), resulting in the availability of the local Smagorinsky model coefficient at

every time step. It should be noted that both ILM and IMM have higher frequency

content when compared to the velocity field. This is due to two main factors: the

quartic character of nonlinearity of ILM and IMM with respect to velocity and the

creation of small scales due to chaotic convective mixing. One way to deal with this

problem is to use the original formulation of Meneveau et al. [6] that does not solve

equations (16) and (17) directly. Instead the linearized version of characteristics is

used to solve Eqs. (16) and (17), which introduces sufficient numerical diffusion that

no stabilization is necessary. Since AWCM uses high order central difference scheme

for derivative operators, the resulting numerical approach does not have numerical

diffusion and in order to adequately resolve both ILM and IMM , one would need to

have a substantially finer computational mesh than the one required by the velocity field,

which is impractical. To by-pass this problem we consider two different extensions of

the original Lagrangian path-line averaging procedure: Lagrangian path-tube averaging

and Lagrangian path-line diffusive averaging.

The Lagrangian path-tube averaging consists of taking the statistically filtered

averages over the trajectory of a fluid particle:

ILM (x, t) =
1

T

∫ t

−∞

∫∫∫

D

e
τ−t
T G

(

y − x (τ) , x (τ)
)

Lij (y, τ)Mij (y, τ) dτdy, (18)
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IMM (x, t) =
1

T

∫ t

−∞

∫∫∫

D

e
τ−t
T G

(

y − x (τ) , x (τ)
)

Mhk (y, τ)Mhk (y, τ) dτdy, (19)

where G (ξ, x) is the local, location dependent, low-pass filter with the second variable

denoting filter location. Note that the low-pass filter averages the values in the

neighborhood of the path-line, effectively making it path-tube averaging. Also note

that if G (ξ,x) = 1, i.e. no additional spatial filter is applied, the formulations are

identical to the one in [6]. This modified averaging procedure leads to the following

evolution equations for the auxiliary variables ILM and IMM :

∂ILM

∂t
+ u>ǫ

l

∂ILM

∂xl
=

1

T

(

LijMij

LP
− ILM

)

, (20)

∂IMM

∂t
+ u>ǫ

m

∂IMM

∂xm
=

1

T

(

MhkMhk

LP
− IMM

)

, (21)

where (·)
LP

denotes low-pass filtering based on G (ξ,x).

In the Lagrangian path-line diffusive averaging approach an additional artificial

diffusion term is added to the evolution equations:

∂ILM

∂t
+ u>ǫ

l

∂ILM

∂xl
=

1

T
(LijMij − ILM) + DI

∂2ILM

∂xl∂xl
, (22)

∂IMM

∂t
+ u>ǫ

m

∂IMM

∂xm
=

1

T
(MhkMhk − IMM) + DI

∂2IMM

∂xm∂xm
. (23)

To avoid the creation of small scales, the diffusion time scale, ∆2/DI , should be smaller

than the convective time scale associated with local strain, i.e.
∣

∣S
>ǫ∣
∣

−1
, which results

in DI = CI∆
2
∣

∣S
>ǫ∣
∣ , where CI is a dimensionless parameter of order unity. Note that

the Lagrangian path-line diffusive averaging procedure can be formally derived by using

differential implicit filters described in Appendix A. Substituting the implicit integro-

differential form (A.11) of the Lagrangian path-tube averaging into Eqs. (18) and (19)

and assuming, for simplicity, DILM
= DIMM

= DI one can derive Eqs. (22) and (23).

Combining these two approaches results in the Lagrangian path-line/tube diffusive

averaged equations:

∂ILM

∂t
+ u>ǫ

l

∂ILM

∂xl

=
1

T

(

LijMij

LP
− ILM

)

+ DI
∂2ILM

∂xl∂xl

, (24)

∂IMM

∂t
+ u>ǫ

m

∂IMM

∂xm

=
1

T

(

MhkMhk

LP
− IMM

)

+ DI
∂2IMM

∂xm∂xm

. (25)

Note that the case G = 1 and CI = 0 is equivalent to the original Lagrangian formulation

of [6].

4. Results

In this section we apply the proposed SCALES model to incompressible isotropic

decaying turbulence. Though the proposed localized models are specifically designed

to simulate complex inhomogeneous turbulent flows, it is nevertheless enlightening to

test them for a case for which well known theoretical and experimental results exist.
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Figure 2. Energy decay for SCALES with the Lagrangian path-line diffusive ( )

and path-tube averaging ( ) models, SCALES with global dynamic model

( ), SCALES with no model ( ), reference LES with global dynamic model

( ), and wavelet filtered DNS (◦).

In addition, the homogeneous turbulence case allows a detailed comparison with the

existing reference solutions for DNS, LES, and SCALES (with global dynamic model).

Moreover, decaying turbulence is a challenging example of statistically unsteady flow

that stands as a good test-case for a-posteriori verifying the accuracy of the proposed

SGS stress model. The initial velocity field is a realization of a statistically stationary

turbulent flow at Reλ = 72 (λ being the Taylor microscale) that is provided by a fully

de-aliased pseudo-spectral DNS with 1283 Fourier modes [5]. Due to the finite difference

nature of the AWCM solver, the initial SCALES resolution in each direction must be

doubled in order to retain the spectral energy content. In other words, SCALES is run

using a maximum resolution corresponding to 2563 grid points. Note that due to the

nature of the decaying turbulence, 2563 resolution is only required during initial times

with gradual decrease of the maximum level of resolution as turbulence kinetic energy

decays and Taylor microscale Reynolds number decreases.

The choice of the thresholding parameter, ǫ, in (2) is somewhat arbitrary: the

smaller it is, the weaker the SGS dissipation is, with SCALES approaching Coherent

Vortex Simulation [16, 4] and wavelet-based DNS for even smaller values of ǫ ≤ 10−3.

On the other hand, when ǫ is too large, too many modes are discarded and the energy

cascade is no longer captured. All the SCALES results reported in this paper have been

obtained using the wavelet thresholding parameter ǫ = 0.43 as a compromise between

these limits.

The Lagrangian local modelling variables are initialized as IMM = MhkMhk and
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Figure 3. Field compression: SCALES with the Lagrangian path-line diffusive

( ) and path-tube averaging ( ) models, SCALES with global dynamic model

( ), and SCALES with no model ( ).

ILM = C̄sǫ
2IMM , where C̄s is the volume averaged Smagorinsky model coefficient (11).

For the relaxation time scale, the value θ = 0.75 suggested by [6] is chosen. For

Lagrangian path-line diffusive averaging, a diffusion coefficient CI ≥ 5 has been found

to produce acceptable results while approaching the global dynamic model for very

large values of the coefficient. In the case of Lagrangian path-tube averaging, the same

stabilizing effect is obtained by means of local volume averaging along the path-line,

provided that the linear cross-sectional dimensions of the path-tube are not smaller

than the local characteristic filter width, ∆.

In figures 2–4 the resolved kinetic energy decay, grid compression (percentage

of the discarded grid points), and modelled SGS dissipation (percentage of the total

dissipation) for proposed SCALES are compared to: a-posteriori wavelet filtered DNS,

classical LES, SCALES with global dynamic model, and SCALES with no model. The

LES is performed using the non-adaptive wavelet collocation solver on a regular 643

grid. The solution is de-aliased by performing a wavelet transform on the velocity field

and zeroing the highest level wavelet coefficients for each time step. As to figure 2,

the resolved kinetic energy is normalized with respect to the initial unfiltered DNS

energy content. The grid compression is evaluated with respect to the maximum field

resolution. The time scale used to report the results corresponds to approximately ten

initial eddy-turnover times.

As can be seen from the energy decay plot in figure 2, the case of SCALES with no

model is only slightly under-dissipative. From figure 5 we see that this case accurately

captures the energy and enstrophy spectra. By examining the grid compression reported

in figure 3 we can see that due to the adaptive nature of the numerical algorithm, the
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Figure 4. Percentage of SGS (modelled) dissipation: SCALES with the Lagrangian

path-line diffusive ( ) and path-tube averaging ( ) models, SCALES with

global dynamic model ( ), and reference LES with global dynamic model ( ).

absence of SGS dissipation results in energy transfer to the small scales, where the energy

is dissipated by viscous stresses. This process results in an increase in the number of

the degrees of freedom and causes the solution to approach CVS [4]. This effect would

be more pronounced for higher Reynolds number flows, since SCALES with no model

would have to resolve all the scales up to Kolmogorov scale and would rely on molecular

viscosity as the only dissipative mechanism. The adaptive nature of the AWCM makes

comparison of simulations tricky because the algorithm itself attempts to add resolution

if the physical problem is under resolved. In this case good results are obtained at the

cost of increased resolution. Another interesting observation is that despite the similar

initial compression, the local Lagrangian models show a higher level of SGS dissipation

because they capture the local structure of the flow, rather than simply providing the

necessary mean energy dissipation (as in the case of both the global dynamic model and

LES). This, in turn, results in higher compression for larger times. It worth noting that

the level of SGS dissipation of SCALES closely matches that of the global model and

reference LES.

Another crucial feature of the SCALES approach is seen in the energy and, more

importantly, enstrophy spectra, which are shown respectively in figures 5 and 6 for two

different times. In contrast to classical LES, the SCALES results match not only in terms

of temporal evolution of the total resolved turbulent kinetic energy, but also in terms

of the DNS energy and enstrophy density spectra up to the dissipative wavenumber

range. It is important to emphasize that this close match is achieved using less than

0.4% of the total non-adaptive nodes required for a DNS with the same wavelet solver.
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Figure 5. Energy density spectra at t = 0.08 (left) and t = 0.16 (right): SCALES with

the Lagrangian path-line diffusive ( ) and path-tube averaging ( ) models,

SCALES with global dynamic model ( ), SCALES with no model ( ),

spectral DNS ( ), wavelet filtered DNS (◦), and reference LES with global dynamic

model ( ).

To highlight the significance of such a close match, it is interesting to compare these

results with those of an LES with the global dynamic Smagorinsky model. Despite the

fact that LES uses almost four times the number of modes (1.56%), it fails to capture

the small-scale features of the spectrum. In addition, the total resolved LES kinetic

energy is noticeably below the filtered DNS curve for moderate and high wavenumbers.

These differences are even more pronounced for the enstrophy spectra.

It is worth stressing the unique feature of the SCALES approach, nameley the

coupling of modelled SGS dissipation to grid compression: more grid points are used for

models with lower levels of SGS dissipation. In other words, the SCALES approach

compensates for inadequate SGS dissipation by increasing the local resolution and,

hence, the level of resolved viscous dissipation. This can be seen clearly by comparing

to the SCALES results with no SGS model.

As stated earlier, the absence of SGS dissipation results in the transfer of energy

from low to high wavenumbers, filling the entire wavenumber range, bringing the energy

and enstrophy spectra close to the wavelet filtered DNS spectrum. This processes

continues until the lack of SGS dissipation is balanced by the viscous dissipation. Recall

that enstrophy and viscous dissipation spectra are identical if properly normalized.

Thus, an accurate enstrophy spectrum ensures proper viscous dissipation. On the other

hand, the increase of energy in high wavenumber range results in an increase of degrees

of freedom (active wavelet coefficients or grid points), as seen in figure 3. The energy and

enstrophy spectra for SCALES with local Lagrangian models closely match each other

and agree reasonably well with the spectra for filtered DNS. The non-local character of

the dissipation of the global dynamic model results in over-dissipation at small scales

and, subsequently, smaller wavelet coefficients on the finest level of resolution, which
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Figure 6. Enstrophy density spectra at t = 0.08 (left) and t = 0.16 (right):

SCALES with the Lagrangian path-line diffusive ( ) and path-tube averaging

( ) models, SCALES with global dynamic model ( ), SCALES with no

model ( ), spectral DNS ( ), wavelet filtered DNS (◦), and reference LES

with global dynamic model ( ).

ultimately results in the earlier removal of the finest level of resolution from the adaptive

computational grid.

Finally, SCALES with the local dynamic Smagorinsky model with both types of

Lagrangian averaging are virtually identical, which highlights the similarities of both

averaging approaches.

5. Conclusions

The development of local SGS models is unavoidable for the application of SCALES

to practical engineering flows. In this work, new local SCALES models based on

Lagrangian path-line diffusive and path-tube averaging are developed and assessed

in terms of accuracy and efficiency. The results in this work show that localized

Lagrangian dynamic SGS models can be successfully used with the SCALES approach.

Further studies for strongly inhomogeneous higher Reynolds number flows are currently

underway and will be reported in a future publication.
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Appendix A. Differential Filters

The Lagrangian path-line diffusive averaging approach can be also derived by using

differential filters. To illustrate the derivation, for simplicity let us consider one-

dimensional spatial filtering

φ
LP

(x, t) =

∫

D

G (y − x, x)φ (y, t) dy. (A.1)

Performing Taylor series expansion of φ (y, t) around x yields

φ(y, t) =

+∞
∑

k=0

(y − x)k

k!

∂kφ

∂xk
(x, t) . (A.2)

Substituting Eq. (A.2) into Eq. (A.1) and changing the order of integration and

summation one can obtain

φ
LP

(x, t) =

+∞
∑

k=0

(
∫

D

(y − x)k

k!
G (y − x, x) dy

)

∂kφ

∂xk
(x, t) . (A.3)

Denoting the term in parenthesis as differential filter coefficient Mk and taking into

account that M0 = 1, filter (A.1) can be rewritten as an explicit differential filter

φ
LP

(x, t) = φ(x, t) +
+∞
∑

k=1

Mk
∂kφ

∂xk
(x, t) . (A.4)

This infinite series can be inverted and the differential filter can be rewritten in implicit

(Pade) differential form

φ
LP

(x, t) = φ(x, t) +
+∞
∑

k=1

Dk
∂kφ

LP

∂xk
(x, t) , (A.5)

where Dk are the implicit differential filter coefficients. This analysis can be easily

extended to multiple dimensions, e.g. [8, 9, 10]. Note that since the first moments

for most of the low-pass filters are always zero, the simplest inhomogeneous implicit

multi-dimensional differential filter is given by

φ
LP

(x, t) = φ(x, t) + D2 (x, t)
∂2φ

LP

∂xk∂xk

(x, t) , (A.6)

where repeated indices imply the summation.

The Lagrangian path-tube averaging along the trajectory of a fluid particle, x(t),

for the field variable φ(x, t) can be written as

Iφ (x, t) =
1

T

∫ t

−∞

∫∫∫

D

e
τ−t
T G

(

y − x (τ) , x (τ)
)

φ (y, τ) dτdy (A.7)



Lagrangian dynamic SGS model for SCALES 15

or using low-pass filter notation as

Iφ (x, t) =
1

T

∫ t

−∞

e
τ−t
T φ

LP (

x (τ) , τ
)

dτ. (A.8)

Substituting inhomogeneous differential implicit filter (A.6) into (A.8) yields

Iφ (x, t) =
1

T

∫ t

−∞

e
τ−t
T

(

φ
(

x (τ) , τ
)

+ D2

(

x (τ) , τ
) ∂2φ

LP

∂xk∂xk

(

x (τ) , τ
)

)

dτ. (A.9)

The deconvoluted implicit filter coefficient DIφ
can be introduced using the following

definition:
∫ t

−∞

e
τ−t
T DIφ

(

x (τ) , τ
) ∂2Iφ

∂xk∂xk

∣

∣

∣

∣

x(τ),τ

dτ =

∫ t

−∞

e
τ−t
T D2

(

x (τ) , τ
) ∂2φ

LP

∂xk∂xk

∣

∣

∣

∣

∣

x(τ),τ

dτ. (A.10)

Finally, with this definition Eq. (A.9) can be rewritten in the following implicit integro-

differential form:

Iφ (x, t) =
1

T

∫ t

−∞

e
τ−t
T

(

φ
(

x (τ) , τ
)

+ DIφ

(

x (τ) , τ
) ∂2Iφ

∂xk∂xk

(

x (τ) , τ
)

)

dτ. (A.11)
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