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Abstract

A dynamic adaptive numerical method for solving partial differential equations
on the sphere is developed. The method is based on second generation spherical
wavelets on almost uniform nested spherical triangular grids, and is an extension
of the adaptive wavelet collocation method to curved manifolds. Wavelet decom-
position is used for grid adaption and interpolation. An O(N ) hierarchical finite
difference scheme based on the wavelet multilevel decomposition is used to approxi-
mate Laplace–Beltrami, Jacobian and flux-divergence operators. The accuracy and
efficiency of the method is demonstrated using linear and nonlinear examples rel-
evant to geophysical flows. Although the present paper considers only the sphere,
the strength of this new method is that it can be extended easily to other curved
manifolds by considering appropriate coarse approximations to the desired manifold
(here we used the icosahedral approximation to the sphere at the coarsest level).

Key words: Wavelets, Lifting scheme, Second generation wavelets, Partial
differential equations, Spherical triangulation, Adaptive grid, Numerical method.

1 Introduction

Wavelet methods have been used to develop accurate and fast algorithms for
integral and differential equations, especially those whose solutions are highly
localized in position and scale. The numerical solution of such problems on
uniform grids is impractical since high resolution computations are required
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only in regions where sharp transitions occur. However, until now these adap-
tive wavelet methods have been limited to flat geometries (i.e. manifolds with
zero curvature).

The efficient numerical solution of partial differential equations (PDEs) de-
fined on the sphere is necessary in geodesy, climate modelling, and numer-
ical weather prediction. Current climate and weather models are not adap-
tive, which means local features (e.g. hurricanes) are not resolved properly
and must be parameterized [1]. Other PDEs on the sphere arise from mean
curvature flow, surface diffusion flow [2], Willmore flow [3] and the reaction–
diffusion equations modeling morphogenesis [4,5]. These PDEs are often solved
on spherical triangular grids. Spherical triangular grids avoid the so-called pole
problem that exists in conventional latitude–longitude grids. The singularities
at the poles lead to a variety of numerical difficulties, including a severe lim-
itation on the time step size unless special measures are undertaken (such as
local re-scaling of the equations). Because they avoid these problems, quasi-
uniform triangulations are gaining popularity in the climate modelling com-
munity. These almost uniform spherical triangular grids are the fundamental
idea behind second generation spherical wavelets. We limit ourselves here to
the construction of bases arising from interpolating subdivision schemes.

In recent years, there has been a growing interest in developing wavelet based
adaptive numerical algorithms for solving PDEs [6–10]. In flat geometries the
adaptive wavelet collocation method (AWCM) was pioneered by Bertoluzza [11]
for time-independent problems, and has since been developed for more general
problems using second generation wavelets [12–15]. This approach combines
the adaptivity and error control of the adaptive wavelet method with the flex-
ibility of collocation. Wavelets are used to adapt the computational grid (and
hence compress the solution), while finite differences are used to approximate
derivatives. The accuracy of both the solution and derivatives are controlled
by a tolerance parameter ǫ. The objective of the present work is to extend
the AWCM to PDEs defined on the sphere, or, more generally, on curved
manifolds.

There are two classes of numerical methods for solving PDEs on curved sur-
faces. In the explicit approach considered here the surface is approximated
explicitly using Delaunay triangulation and Voronoi diagrams. This approach
has been popular in computer graphics [16,17], climate modelling [18] and
aeronautical engineering [19]. In the implicit approach [20] the surface is first
embedded in a higher dimensional computational space (e.g. a 2-D surface
is embedded in a flat 3-D space) using an appropriate embedding function.
The location of the surface is defined as a level set of the embedding function.
The embedded PDE is then solved on a fixed Cartesian grid in the higher
dimensional space using any suitable method (e.g. finite differences or particle
methods), but only in a small band near the level set.
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Implicit (or level set) methods have two principal advantages compared with
explicit methods. First, they inherit the simplicity, efficiency and good conver-
gence properties of numerical methods defined on Cartesian grids. Secondly,
they deal easily with surfaces whose shape or topology changes since the shape
of the surface is encoded by a (time-dependent) embedding function and thus
the computational grid does not need to change. This feature is especially
important for biological applications such as cell morphogenesis. The level set
method also allows surfaces to be constructed from experimentally derived
image data [21]. In an interesting recent paper Bergdorf & Koumoutsakos [22]
have combined a wavelet multi resolution analysis with a particle-based im-
plicit method to solve PDEs on one-dimensional curves embedded in a flat
two-dimensional space. This work shows that implicit methods can be made
adaptive. However, the computational overhead could be significant for adap-
tive implicit methods on two-dimensional surfaces since the adaptivity must
necessarily take place in the three-dimensional embedding space. In addition,
as noted by Bergdorf & Koumoutsakos [22], for nonlinear problems areas of
high strain could lead to artificially small time steps.

While explicit methods based on triangulated surfaces are simple and fast,
they often have a lower order of accuracy and less stability than methods
based on Cartesian grids. However, in this paper we show that the convergence
error can be controlled using adaptive wavelet refinement of the triangulated
grid, as in the case of Cartesian grids. In the case of the sphere, using the
optimal spherical geodesic grid [23] ensures convergence in terms of local mean
curvature. The optimal spherical grid also has a lower truncation error than
conventional spherical geodesic grids. We will show that our adaptive explicit
method has no difficulty solving nonlinear problems.

On balance, adaptive explicit methods, such as the one presented in this paper,
are usually preferred when high accuracy is required on fixed, relatively simple,
surfaces. On the other hand, an implicit method is usually the best choice when
the shape or topology of the surface is changing.

A multiresolution analysis (MRA) of the sphere using second generation wave-
lets was proposed over 12 years ago by Schroder & Sweldens [24]. However,
until now no one has attempted to use this MRA as the basis for an adaptive
PDE solver. In fact, the MRA on the sphere and other curved manifolds has
been used almost exclusively by the computer graphics community for surface
mesh refinement (e.g. [16,25]).

Adaptive solution of PDEs on curved manifolds requires a non-trivial exten-
sion of adaptive wavelet methods for flat space. The main difficulty is due
to the fact that we require simultaneous convergence of the approximations
to both the differential operator and the local geometry of the surface (e.g.
local mean curvature) as the mesh is refined. The convergence of differen-
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tial operators on curved manifolds was not well understood until recently.
In fact, some commonly used approximations have been shown to be non-
convergent [23]! For this reason, even non-adaptive numerical methods for
PDEs on the sphere [5] and on other curved manifolds [20,21,26] remain an
active area of research.

The spherical advection equation in flux form is the simplest model of large
scale atmospheric dynamics, and is a special case of the shallow water equa-
tions. The shallow water equations have been solved previously on non-adaptive
spherical grids using finite difference and finite volume methods [18,27,28,5].
However, these methods are nonadaptive. Our adaptive wavelet method pro-
vides local grid refinement and error control. This approach should allow the
climate modelling community to perform large scale simulations of of atmo-
sphere and ocean dynamics. The present method is particularly well suited
to problems which require resolution of localized structures with both very
small and very large scales (e.g. long distance propagation of Tsunami waves).
Current simulations do not make optimal use of computational resources be-
cause adaptive error-controlled methods are not used in operational weather
forecasting and climate modelling. We focus here on spatial discretization
using adaptive wavelet methods. Improved time integration schemes will be
developed in future work. To the best of our knowledge this paper is the first
attempt to solve PDEs on the sphere using the AWCM.

Atmospheric turbulence is approximately two-dimensional, and is therefore a
good application for the spherical AWCM. Past research in the application
of wavelets to two-dimensional turbulence been restricted to flat geometries,
which is severely limiting for geophysical applications. In this paper we also
measure how well the spherical AWCM compresses two-dimensional turbu-
lence on the sphere. Nonlinear wavelet filtering splits the flow field into co-
herent and incoherent parts, corresponding to the weak and strong wavelet
coefficients, respectively. This filtering is the basis of coherent vortex simula-
tion (CVS), introduced in [29]. CVS separates the Gaussian (noise) and non-
Gaussian (coherent) parts of a two-dimensional turbulent flow, and is an effi-
cient method for computing and modeling two-dimensional turbulence [29,30].
In this paper we are taking the first step towards developing CVS for two-
dimensional turbulence on the sphere.

The paper is organized as follows. Section 2 gives a brief introduction to sec-
ond generation wavelets on the sphere. The AWCM for solving spherical PDEs
is introduced in section 3. An application of the method to the compression
of turbulence flow data concludes this section. Finally, section 4 presents nu-
merical results for the solution of a variety of linear and nonlinear PDEs. The
main results are summarized and future directions are outlined in section 5.

4



Level 0 Level 1
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Fig. 1. Dyadic icosahedral triangulation of the sphere.

2 Wavelets on the sphere

2.1 Subdividing the sphere

The construction of spherical wavelets in [24] relies on a recursive partitioning
of the sphere into spherical triangles. This is done starting from a platonic
solid whose faces are spherical triangles. Fig. 1 shows this subdivision scheme
for several levels, beginning with the icosahedron. Choosing the icosahedron
as the starting point, the resulting triangulation has the least imbalance in
area between its constituent triangles. Such imbalances, starting from the
tetrahedron or octahedron, can lead to visible artifacts. Here we will consider
only the icosahedral subdivision for which #Kj = 10 × 4j + 2 at subdivision
level j.

Let S be a triangulation of the sphere S and denote the set of all vertices
obtained after subdivisions with Sj = {pj

k ∈ S|k ∈ Kj}, where Kj is an index
set. The vertices of the original platonic solid are in S0, S1 contains those
vertices and all new vertices on the edge midpoints. Since Sj ⊂ Sj+1 we also
let Kj ⊂ Kj+1. Let Mj = Kj+1/Kj be the indices of the vertices added when
going from level j to j + 1.
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2.2 Second generation wavelets

Wavelets are basis functions which represent a given function at multiple levels
of detail. Due to their local support in both space and frequency, they provide
sparse approximations of functions. Locality in space follows from their com-
pact support, while locality in frequency follows from their smoothness and
vanishing moment properties. Fast O(N ) algorithms (where N is the number
of significant wavelet coefficients) exist to calculate the wavelet coefficients.
These properties make wavelets efficient for many computational problems.

In the classical wavelet setting, i.e. on the real line, wavelets are defined from
the dyadic translates and dilates of a scaling function. The idea behind second
generation wavelets is to build wavelets which retain desirable properties like
localization and fast wavelet transform, but adapted to a much more general
setting than the real line, e.g. complex geometries or curved manifolds. In order
to consider wavelets on a manifold we need to construct wavelets adapted to
the desired surface.

Adaptive construction relies on the observation that translation and dilation
are not fundamental to obtain wavelets with the desired localization prop-
erties. Classical wavelets and their corresponding filters are constructed via
the Fourier transform. This is because translation and dilation become alge-
braic operations after Fourier transform. In the setting of second generation
wavelets, translation and dilation invariance are lost, and the Fourier trans-
form method can no longer be used. In order to define second generation
wavelets, we first introduce the multiresolution analysis (following [31]).

A second generation multiresolution analysis of the sphere provides a sequence
of subspaces Vj ⊂ L2(S), with j ≥ 0 and sphere S = {p = (px, py, pz) ∈ R

3 :
‖p‖ = a} such that

• Vj ⊂ Vj+1 (subspaces are nested),
•

⋃

j≥0 Vj = L2(S),

• Each Vj has a Riesz basis of scaling functions {φj
k|k ∈ Kj},

Since φj
k ∈ Vj ⊂ Vj+1, for every scaling function φj

k filter coefficients hj
k,l exists

such that

φj
k =

∑

l∈Kj+1

hj
k,lφ

j+1
l . (1)

Note that the filter coefficients hj
k,l can be different for every k ∈ Kj at a given

level j ≥ 0. Therefore each scaling function satisfies a different refinement re-
lation. Each multiresolution analysis is accompanied by a dual multiresolution
analysis consisting of nested spaces Ṽj with bases given by the dual scaling
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functions φ̃j
k, which are biorthogonal to the scaling functions:

〈φj
k, φ̃

j

k
′ 〉 = δk,k

′ for k, k
′

∈ Kj, (2)

where 〈f, g〉 =
∫ ∫

S fg dw is the inner product on the sphere. The dual scaling
functions satisfy refinement relations with coefficients h̃j

k,l.

One of the crucial steps when building a multiresolution analysis is the con-
struction of the wavelets. They encode the difference between two successive
levels of representation, i.e. they form a Riesz basis for the space Wj, which
is the complement of Vj in Vj+1 (i.e. Vj+1 = Vj ⊕Wj). By construction the
wavelets form a Riesz basis for L2(S) and allow a function to be represented
by its wavelet coefficients. Since Wj ⊂ Vj+1, we have

ψj
k =

∑

l∈Kj+1

gj
k,lφ

j+1
l . (3)

The spherical wavelets ψj
m have d̃ vanishing moments if d̃ independent poly-

nomials Pi, 0 ≤ i < d̃ exist such that

〈ψj
m, Pi〉 = 0 ∀ j ≥ 0,m ∈ Mj, (4)

where Mj is an index set. Here the polynomials Pi are defined as the restriction
to the sphere of polynomials on R

3.

2.3 Interpolating subdivision schemes and fast wavelet transform

Scaling functions {φj
k | j ≥ 0, k ∈ Kj} are called interpolating if a set of points

{pj
k|j ≥ 0, k ∈ Kj} with pj

k = pj+1
2k exists, so that

∀k, k
′

∈ Kj : φj
k(p

j

k
′ ) = δk,k

′ . (5)

In the case of interpolating scaling functions, we can always take the dual
scaling functions to be Dirac distributions, φ̃j

k(p) = δ(p− pj
k), which are nec-

essarily biorthogonal. The set of filters resulting from interpolating scaling
functions (with Diracs as their formal dual), can be seen as a dual lifting of
the Lazy wavelet [31]. So we have an interpolating multiresolution analysis
which is dually lifted from the Lazy wavelet. The Lazy wavelet transform [31]
is an orthogonal transform that simply subsamples the coefficients. The filters
of the Lazy wavelet transform are given as

hj
k,l = h̃j

k,l = δk,l and gj
k,l = g̃j

k,l = δm,l.

For a vertex-based scheme we may think of the grid points m ∈ Mj as located
on the midpoint of some parent edge, while the endpoints of a given edge
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e4 e3

e2e1

f1

f2

v1 v2

m

Fig. 2. The members of the neighborhoods used in wavelet bases (m ∈ Mj ,
Km = {v1, v2, f1, f2, e1, e2, e3, e4}). The open circles and dashed lines represent the
grid at the next finer level of resolution j + 1.

form the even indices k ∈ Kj, and their union is l ∈ Kj ∪Mj = Kj+1 given
the set of all indices. We consider all index sets as defined locally around a
point pj+1

m which is locally denoted by m ∈ Mj in Fig. 2. For each m the
filters range only over some small neighborhood. We will refer to elements in
these neighborhoods by a local naming scheme, k ∈ Km ⊂ Kj. For all vertex
bases the unlifted scaling coefficients are simply subsampled during analysis
and upsampled during synthesis, while finding the wavelet coefficients involves
some additional computation.

Analysis I(j) :

∀k ∈ Kj : cjk = cj+1
k ,

∀m ∈ Mj : dj
m = cj+1

m −
∑

k∈Km

s̃j
k,mc

j
k,

(6)

Synthesis II(j) :

∀k ∈ Kj : cj+1
k = cjk,

∀m ∈ Mj : cj+1
m = dj

m +
∑

k∈Km

s̃j
k,mc

j
k.

(7)

The linear interpolatory basis uses the stencil k ∈ Km = {v1, v2} (see Fig. 2)
for analysis and synthesis

dj
m := cj+1

m −
1

2
(cj+1

v1
+ cj+1

v2
),

cj+1
m := dj

m +
1

2
(cj+1

v1
+ cj+1

v2
).

(8)

The resulting scaling function is the hat function which is continuous, but
not differentiable. The butterfly basis uses a stencil with 8 neighboring points
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(see Fig. 2) and is differentiable if a smooth map exists from the sphere to a
regular planar triangulation. The filter coefficients for the butterfly basis are
s̃v1

= s̃v2
= 1/2, s̃f1

= s̃f2
= 1/8, s̃e1

= s̃e2
= s̃e3

= −1/16, as proposed by
Dyn et al. [17].

A disadvantage of this multiresolution analysis is that it cannot provide Riesz
bases for L2(S). The dual functions do not even belong to L2(S). It turns
out that the wavelet does not have a vanishing integral since it coincides
with a scaling function. One can apply the primal lifting scheme to overcome
this drawback by ensuring that the primal wavelet has at least one vanishing
moment. This yields

h̃j
k,l = δk,l +

∑

m

sj
k,mg̃

j
m,l,

gj
m,l = δm,l −

∑

m

sj
k,mh

j
k,l.

(9)

The resulting wavelet can be written as

ψj
m = φj+1

m −
∑

k∈Km={v1,v2}

sj
k,mφ

j
k. (10)

The weights sj
k,m are chosen so that resulting wavelet has a vanishing integral

sj
k,m = Ij+1

m /2Ij
k with Ij

k =
∫ ∫

S
φj

k dw. (11)

During analysis lifting is done (at each level j) after the dj
m computation, while

during synthesis it is the first step, followed by the regular synthesis step.

Analysis II(j) :

∀m ∈ Mj,∀k ∈ Km = {v1, v2} : cjk = cjk + sj
k,md

j
m,

Synthesis I(j) :

∀m ∈ Mj,∀k ∈ Km = {v1, v2} : cjk = cjk − sj
k,md

j
m.

(12)

Lifting does not improve compression, but reduces error for the same com-
pression rate.

3 Adaptive wavelet collocation method

3.1 Grid adaptation

The major strength of wavelet decomposition is its ability to compress func-
tions. In comparison with other common bases for function spaces on the
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sphere, such as spherical harmonic or spherical splines, wavelet bases allow for
simultaneous localization in both space and frequency. For functions contain-
ing isolated small scales on a large-scale background (i.e. intermittent func-
tions) most wavelet coefficients are small. These small wavelet coefficients can
be neglected, thus compressing the function. By contrast, such functions have
slowly decaying spectral coefficients, and therefore truncation of the spherical
harmonics leads to spurious oscillations. The spherical spline basis coefficients
cannot be truncated efficiently.

Grid adaptation occurs naturally in wavelet methods (e.g. [8,9]). Note that all
the adaptive wavelet algorithms cited in the literature can be considered from
two quite different points of view. First, they can be considered as providing
compression on some fine, but fixed, level: many wavelet coefficients are small
and can be replaced by zero. This is the point of view taken by wavelet al-
gorithms for data compression, or for the sparse representation of non-local
operators such as integral of pseudo differential operators. Secondly, they can
be considered to be closely related to classical h-versions of adaptive finite
element methods, i.e. higher accuracy of the approximation is achieved by
locally refined grids instead of by increasing the degree of the trial functions
(p-refinement). We will take the second point of view in order to exploit the
localization properties of the wavelet multiscale basis to develop an adaptive
multiscale algorithm for PDEs on the sphere.

Following the construction of second generation spherical wavelets in section
2.2, a function u(p) ∈ L2(S) can be approximated as

u(p) =
∑

k∈K0

c0kφ
0
k(p) +

∞
∑

j=0

∑

m∈Mj

dj
mψ

j
m(p). (13)

More precisely, we can rewrite Eq. (13) as the sum of two terms composed of
wavelets whose amplitudes are respectively above and below some prescribed
threshold ǫ,

u(p) = u≥(p) + u<(p), (14)

where

u≥(p) =
∑

k∈K0

cJ0

k φ
J0

k (p) +
∞
∑

j=J0

∑

m∈Mj

|dj
m|≥ǫ

dj
mψ

j
m(p), (15)

u<(p) =
∞
∑

j=J0

∑

m∈Mj

|dj
m|<ǫ

dj
mψ

j
m(p), (16)

where J0 is the coarsest level of approximation. Donoho [32] has shown that,
for smooth enough u,

||u(p) − u≥(p)||∞ ≤ c1ǫ, (17)
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and the number of significant coefficients N(ǫ) = N depends on ǫ,

N(ǫ) ≤ c2ǫ
−n/d, (18)

where d is the order of interpolation, n is the dimension of the problem and
the coefficients ci depend on u(p). Combining relations (17) and (18) gives the
following bound on the error in terms of N(ǫ)

||u(p) − u≥(p)||∞ ≤ c3N(ǫ)−d/n. (19)

Note that d controls the number of zero moments of the interpolating scaling
function. Relation (19) shows that the wavelet basis can represent a function
with significantly fewer degrees of freedom, while still retaining an accuracy
O(ǫ). However, in order to realize the benefits of wavelet compression, we need
to be able to reconstruct u≥(p) from the subset N(ǫ) ⊂ N of significant grid
points. Note that every wavelet ψj

l (p) is uniquely associated to a collocation
(or grid) point. Consequently, a collocation point should be omitted from the
computational grid if the associated wavelet is omitted from the approxima-
tion. This procedure results in a set of nested adaptive computational grids
Sj
≥ ⊂ Sj, such that Sj

≥ ⊂ Sj+1
≥ for any j < J − 1, where J is the finest level

of resolution in approximation u≥(p).

When solving the evolution equations an additional criterion for grid adaption
should be added. The computational grid should consist of significant grid
points and those grid points that could become significant during a time step.
In other words, at any instant of time the computational grid should consist
of the N(ǫ) significant grid points plus those grid points in an adjacent zone
in both position and scale that could become significant in one time step. We
say that the wavelet ψj′

l (p) belongs to the adjacent zone of wavelet ψj
k(p) if

the following relations are satisfied,

|j − j′| ≤ L, |2j′−jk − l| ≤M, (20)

where L determines the extent to which coarser and finer scales are included
in the adjacent zone. This allows for the development of details on finer scales
such as shocks or eddies. For quadratic nonlinearities L = 1 (since the scale
resolution is dyadic) [8]. The parameter M defines the width of adjacent zone
at the same level. This allows for the transport of information along charac-
teristics. A CFL criterion of one corresponds to M = 1.

The grid adaptation algorithm is described in algorithm 1. The application of
this algorithm is illustrated in the following examples.
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Choose Parameters:

• A coarsest level J0.
• A threshold parameter ǫ > 0.
• Positive adjacent zone constants M and L.

Iterative grid adaptation:

m = 0
S≥,m = SJ0

do while m = 0 or S≥,m 6= S≥,m−1 or ||u− u≥,m||∞ > ǫ
Sample function u(p) on S≥,m to give u≥,m.
m = m+1
Forward wavelet transform

Compression: retain only significant coefficients |dj
k| ≥ ǫ to initialize S≥,m.

Reconstruction check: (described in [12]))
add grid points needed to calculate significant coefficients.
add all points at coarsest level: SJ0 ⊂ S≥,m.

Adaptation: add grid points associated with adjacent zone.
Inverse wavelet transform: interpolates u≥,m onto new grid S≥,m

end

Converged results: S≥ = S≥,m, u≥ = u≥,m.

Algorithm 1. Grid adaptation.

3.1.1 Example 1: grid adaptation to a localized test function

In this example we choose a localized test function that should be well com-
pressed in a wavelet basis. The function

u(θ, φ) = 2 exp

[

−
(θ − θ0)

2 + (φ− φ0)
2

ν

]

− tanh

[

cos(θ) sin(φ) + sin(π/3)

2τ

]

(21)
is a superposition of a Gaussian peak and a circular shock, where −π ≤ θ ≤ π
and −π/2 ≤ φ ≤ π/2 are longitude and latitude respectively. This function is
displayed in Fig. 3.

We have verified relation (18) for linear wavelets (i.e d = 2) in Fig. 4. Relation
(19), which was proved in [33], is verified in Fig. 5(a). Fig. 5(b) shows that
the error ‖u(p) − u≥(p)‖∞ < Cǫ, and can therefore be controlled by setting
the tolerance ǫ to the desired error. Fig. 5 shows that the Butterfly wavelets
perform better than linear bases, confirming our assertion that smoother bases
give more compression and lifting schemes give smaller errors.

The adaptive computational grid S≥ is presented in Fig. 6 for different J for
the test function shown in Fig. 3. The grid is fine only in regions where the
function has a strong gradient.
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Fig. 3. Test function (21) with θ0 = 0, φ0 = 0, ν = 1/(2π2), τ = 10−2.
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Fig. 4. Relation between N(ǫ) and ǫ for linear wavelets.

3.1.2 Example 2: grid adaptation to 2D turbulence

In this example we study the compression of turbulence data by spherical
wavelets. This is necessary for the efficient storage or transmission of the
enormous amounts of meteorological and climatological data resulting from
numerical simulation or observation. We use a random phase multiscale model
for the turbulence data, where the energy spectrum is given in terms of total
spherical harmonic wavenumber n by

E(n) =
Anγ/2

(n+ n0)γ
, (22)

and the complex phase of each mode is chosen randomly. The value of A
determines the r.m.s. velocity U , while the parameters n0 and γ, are used to
control, respectively, the peak location and the width of the spectrum. The
turbulence data corresponding to γ = 20 and n0 = 7 in (22) is shown in Fig. 7.
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Fig. 5. Convergence result of the u≥(p) for the test function as shown in Fig. 3 for
different choices of bases. (a) Error as a function of the number of grid points N(ǫ).
(b) Error as a function of the tolerance ǫ.

In Fig. 8 we compare the energy spectra obtained by retaining only the 40%
and 1% most significant coefficients. At 40% we retain 95.14% of the total
energy, and accurately reproduce the energy spectrum at all scales. Note that
even the 1% case (i.e. a compression of 100 times) reproduces qualitatively
the energy spectrum at all scales.

The relation between ǫ and N(ǫ) is shown in Fig. 9. Note that even when
the wavelet threshold parameter ǫ → 0, the number of discarded incoherent
wavelet modes may be still large due to the good compression properties of
wavelets for turbulence. In Fig. 9 the total number of modes is O(107), but
with only minimal thresholding (ǫ = 10−7) we achieve a compression rate of 10
times. This reflects the fact that many wavelet coefficients are essentially zero
and can therefore be discarded without losing a significant amount of energy.

Percentage relative error as a function of percentage of coefficients used is
shown in Fig. 10. When we increase ǫ, the compression rates get distinctly
better, as shown in Fig. 10. For example, only 67% of coefficients are required
to achieve an error of order 0.01%.

3.2 Calculation of differential operators on an adaptive grid

When solving PDEs numerically, it is necessary to approximate differential
operators of a function from the value of the function at collocation points.
A procedure for approximating differential operators, which takes advantage
of multiresolution wavelet decomposition, fast wavelet transform, and finite
difference differentiation is discussed in detail by Vasilyev and Bowman [12]
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(a) J = 1, N(ǫ) = 42, #K1 = 42 (b) J = 3, N(ǫ) = 343, #K3 =
642

(c) J = 5, N(ǫ) = 2891, #K5 =
10242

(d) J = 7, N(ǫ) = 20353, #K7 =
163842

Fig. 6. Adapted grid S≥ for the test function as shown in Fig. 3 at ǫ = 10−5 and
M, L = 1 for J = 1, 3, 5, 7.

for the one-dimensional case and by Vasilyev [13] for multiple dimensions, but
restricted to rectangular domains and flat geometries.

We will consider the spherical advection and spherical diffusion equations
in the following section. Therefore, we outline the procedure for finding the
flux term present in spherical advection equation and for approximating the
Laplace–Beltrami operator. It is well known that any vector field may be
separated into curl-free and divergence-free parts using Helmholtz’s decompo-
sition. On a two-dimensional surface these two components can be expressed
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Fig. 7. Turbulence data corresponding to γ = 20 and n0 = 7.
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Fig. 8. Energy spectrum of turbulence data in Fig. 7.

in terms of scalar potential fields,

V = k ×∇ψ + ∇χ, (23)

where k is the unit vector normal to the surface, ψ is the stream function rep-
resenting the divergence-free part, and χ is the velocity potential representing
the curl-free part. Then the flux term in the spherical advection equation can
be expressed in the form of flux divergence and Jacobian operators,

∇ · (Vu) = ∇ · (u∇χ) − J(u, ψ), (24)

where the Jacobian operator is defined by J(α, β) = k·(∇α×∇β) for arbitrary
scalars α and β.

Now we describe the approximation of the Laplace–Beltrami, Jacobian and
flux-divergence operators on triangulated spheres, which takes advantage of
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Fig. 9. Relation between ǫ and N(ǫ) using different bases for the turbulence data
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Fig. 10. Relative error as a function of the number of coefficients used for different
choices of basis functions for turbulence data.

the multiresolution properties of the wavelet multiresolution analysis. For any
point p on the surface of S, it is known that [34]

∆Sp = 2H(p) ∈ R
3, (25)

where H(p) is the mean curvature normal at p, i.e. ‖H(p)‖ is the mean cur-
vature, H(p)/‖H(p)‖ is the unit surface normal. Let pj

i be a vertex of the
triangulation at resolution j; and pj

k, k ∈ N(i) be the neighbouring vertices
around pj

i . The numerical approximation of the Laplace–Beltrami operator on
the sphere ∆S as proposed in [35] is then

∆Su(p
j
i ) =

1

AS(pj
i )

∑

k∈N(i)

cotαi,k + cot βi,k

2
[u(pj

k) − u(pj
i )], (26)
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Fig. 11. The definition of the angles αi,j , βi,j , neighbouring vertices and area AS

used in evaluating derivatives on a spherical triangulation of a surface. Note that
these parameters encode information about the local curvature of the surface.

where αi,k and βi,k are the angles shown in Fig. 11, N(i) is the set of nearest
neighbour vertices of the vertex pj

i . AS(pj
i ) is the area of the one-ring neigh-

bourhood given by

AS(pj
i ) =

1

8

∑

k∈N(i)

(cotαi,k + cotβi,k)‖p
j
k − pj

i‖
2. (27)

Using Gauss’s theorem we can approximate the Jacobian and the flux diver-
gence similarly,

JS(u(pj
i ), ψ(pj

i )) =
1

6AS(pj
i )

∑

k∈N(i)

(u(pj
i ) + u(pj

k))(ψ(pj
k+1) − ψ(pj

k−1)), (28)

∇S .(u(p
j
i ),∇Sχ(pj

i )) =

1

2AS(pj
i )

∑

k∈N(i)

cotαi,k + cot βi,k

2
(u(pj

i ) + u(pj
k))(χ(pj

k) − χ(pj
i )).

(29)

The differentiation procedure is based on the interpolating properties of sec-
ond generation wavelets. We recall that the wavelet coefficients measure the
difference between the approximations of a function at successive levels of res-
olution j and j+1. Thus, if there are no points in the immediate vicinity of a
grid point pj

i , i.e. |dj
k| < ǫ for all k ∈ N(i) and the points pj+1

k , k ∈ N(i), are
not present in Sj+1

≥ , then there exists some neighbourhood of pj
i , Ωj

i , where the

function can be interpolated by a wavelet interpolant based on sj
k,m (k ∈ Km),

∣

∣

∣

∣

∣

∣

u(p) −
∑

k∈Km

sj
k,mφ

j
k(p)

∣

∣

∣

∣

∣

∣

≤ c3ǫ, (30)

where the coefficients sj
k,m can be chosen according to stencil in Fig. 2. The

procedure for finding derivatives at all grid points is given in the following
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For a function u(p) defined on S≥,
• Forward wavelet transform.
• Recursively reconstruct the function starting from the coarsest level of res-

olution. On each level j find derivatives of the function at grid points that
belong to Mj

≥ using the appropriate weighted average (26,28,29).

Algorithm 2. Approximation of differential operators on an adaptive grid.
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Fig. 12. Convergence result for the approximate Laplace–Beltrami operator on an
adaptive grid for the test function in Fig. 3. (a) Error as a function of the number
of grid points N(ǫ). (b) Error as a function of the tolerance ǫ.

algorithm The wavelets are used to do what they do well: compress and inter-
polate. Finite differences do the rest: differentiate polynomials. At the end of
this procedure we have derivatives at all grid points with a uniform bound on
the approximation error. The computational cost of calculating derivatives is
same as the cost of forward and inverse transforms.

Next we examine the accuracy of our calculation of the Laplace–Beltrami
operator on an adaptive grid. Numerical differentiation will reduce the order
of scheme by one. Therefore, in light of relation (19), we have the following
error bound on the derivative

||∆Su(p) − ∆Su≥(p)||∞ ≤ c4ǫ ≤ c5N(ǫ)−(d−2)/n. (31)

The relation (31) is verified numerically for the test function presented in
Fig. 3 and convergence results are presented in Fig. 12.

Furthermore, for any arbitrary scalars α and β the analytic operators satisfy
∫ ∫

S
∆SαdB = 0,

∫ ∫

S
JS(α, β)dw = 0,

∫ ∫

S
∇S(α,∇Sβ) = 0, (32)

where the integrations are carried over the entire sphere. Therefore, the nu-
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merical approximation of these operators on an adaptive grid should satisfy

∑

J0≤j
i∈Kj

AS∆Su(p
j
i ) = O(ǫ),

∑

J0≤j
i∈Kj

ASJS(u(pj
i ), ψ(pj

i )) = O(ǫ),

∑

J0≤j
i∈Kj

AS∇S(u(pj
i ),∇Sχ(pj

i )) = O(ǫ).
(33)

Relations (33) have been verified numerically. Eq. (33) also shows that the
AWCM conserves kinetic energy and enstrophy under advection in purely
rotational flows.

3.3 Numerical algorithm for PDEs

We now have all the ingredients necessary to construct a dynamically adaptive
algorithm for the solution of PDEs on the sphere. The three basic steps of this
algorithm are as follows:

(1) Knowing the solution u≥(t) on the adaptive grid, we compute the values
of wavelet coefficients corresponding to each component of the solution
using the fast wavelet transform. For a given threshold ǫ we update St+∆t

≥

based on the magnitude of wavelet coefficients. We also add an adjacent
zone to the significant coefficients to allow for the change in the solution
during one time step, as described in section 3.1.

(2) If there is no change between computational grids St
≥ and St+∆t

≥ , we go
directly to next step. Otherwise we interpolate the values of the solution
at the collocation points St+∆t

≥ , which are not included in St
≥.

(3) We integrate the resulting system of ordinary differential equations in
time (e.g. using Runge–Kutta) to obtain new values u≥(t+ ∆t) at posi-
tions on adaptive grid St+∆t

≥ , and go back to step 1.

The bold symbols u = (u1, · · · , un) and k = (k1, · · · , kn) denote n-dimensional
vectors. The adjacent zone allows the grid to automatically refine or coarsen
as necessary to resolve the solution at each time step. The adaptive wavelet
method provides an optimal N -term approximation to the solution at each
time step, given the desired accuracy ǫ.

4 Adaptive solution of PDEs on the sphere: example problems

In order to illustrate the accuracy and efficiency of the proposed numerical
method, we apply it to the spherical diffusion equation, the spherical advection
equation (which is a standard geophysical test known as the advection of a
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cosine bell) and a nonlinear reaction–diffusion equation. For simplicity, we
consider the radius of sphere to be a = 1.

4.1 Problem formulations

4.1.1 Spherical Diffusion Equation

For the first test problem we consider diffusion equation

ut = ν∆Su+ f, (34)

where f is a localized source chosen such a way that the solution of diffusion
equation is given by

u(θ, φ, t) = 2 exp

[

−
(θ − θ0)

2 + (φ− φ0)
2

ν(t+ 1)

]

. (35)

The initial condition is obtained from the analytical solution, and the problem
is solved for parameters values ν = 1/(4π2), θ0 = 0, φ0 = 0.

4.1.2 Advection of the cosine bell

As a second test problem we consider a case which is very similar to the solid
body rotation test case suggested by Williamson [36]. This test case uses the
spherical advection equation,

∂u

∂t
+ V · ∇Su = 0. (36)

The stationary divergence-free advecting velocity field V = (v1, v2) is given
by

v1 = u0

(

cos(φ) cos(α) + sin(φ) cos(θ +
3π

2
) sin(α)

)

,

v2 = −u0 sin(θ +
3π

2
) sin(α).

(37)

where u0 the advection speed and α is the angle between the axis of solid body
rotation and the polar axis of spherical coordinate system. We set u0 = 2πa
so that the rotation period is equal to one. The initial condition is

u(θ, φ) =







1
2

(

1 + cos(πr
R

)

if r < R

0 if r ≥ R,
(38)
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where radius R = a/3 and r = a arccos[sin(φc) sin(φ) + cos(φc) cos(φ) cos(θ −
θc)], which is the geodesic distance between (φ, θ) and the centre (φc, θc) =
(0, 0). This pattern is simply advected without changing shape.

4.1.3 Nonlinear reaction–diffusion equation

Finally, we consider a nonlinear PDE. Solving a nonlinear PDE tests the abil-
ity of our adaptive method to track the development of localized structure
from an unstructured initial condition. We solve a nonlinear reaction–diffusion
equation on the sphere [4],

∂u1

∂t
= αu1(1 − r1u

2
2) + u2(1 − r2u1) +Dδ∆Su1 (39)

∂u2

∂t
= βu2(1 +

αr1
β
u1u2) + u1(γ + r2u2) + δ∆Su2 (40)

The parameters are chosen as in the first case considered in [4]: r1 = 3.5,
r2 = 0, D = 0.516, δ = 0.0045, α = 0.899, β = −0.91 and γ = −α. This choice
of parameters eventually produces a system of bands with defects (spots) at
both poles. The fact that the solution of this nonlinear equation on the sphere
is one of the few known qualitatively makes it a good test case.

The initial conditions are u1 = u2 = 0, except on a narrow band near the
equator, where u1 and u2 take random values between 0 and 0.5. Note that
the evolution to the steady state is extremely slow: Varea et al. [4] required
over 1.5 million time steps to reach the stationary banded solution at t = 1 500.
In order to efficiently calculate such slow dynamics we use the stiffly stable
Krylov time integration technique [37] for this calculation. Unlike the Runge–
Kutta method used in the other cases, the Krylov method allows for very
large time steps during the slow evolution characteristic of this problem. We
continue the calculation until the banded structure is well established.

4.2 Numerical results

4.2.1 Spherical diffusion equation

This example tests the AWCM’s ability to accurately and efficiently solve a
diffusive equation on an adapted grid. In this case, the refined part of the grid
should spread and coarsen as time increases. The initial grid is determined
from the initial condition using algorithm 1. The solution of the diffusion
equation and the dynamically adapted computational grids St

≥ are shown in
Fig. 13 for ǫ = 10−4. In order to demonstrate the efficiency of the adaptive
algorithm we need to compare the number of grid points used in the adaptive
and nonadaptive methods. This can be measured by compression coefficient
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(a) t = 0 (b) t = 0

(c) t = 0.5 (d) t = 0.5

(e) t = 10 (f) t = 10

Fig. 13. Evolution of the solution and dynamically adapted grid St
≥ for the spherical

diffusion equation with tolerance ǫ = 10−4.
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Fig. 14. The compression coefficient C as a function of time for the spherical diffusion
equation with tolerance ǫ = 10−4.

C = N(ǫ = 0)/N(ǫ). The larger the compression rate, the more efficient the
adaptive algorithm. A compression coefficient of one indicates that there is no
compression (i.e. the grid is nonadaptive).

The time evolution of the compression coefficient is shown in Fig. 14. Ini-
tially at t = 0 approximately 16 times fewer grid points are required for the
computation (compared to a non-adaptive calculation), and the compression
coefficient decreases as the initial Gaussian peak diffuses.

Next, we study the convergence of the AWCM. Eq. (18) predicts that de-
creasing ǫ reduces the error (by increasing the number of grid points N(ǫ)).
Hence, the approximation of the solution is controlled by ǫ and d. In Fig. 15,
we present the results of a convergence study for the Butterfly wavelet using
the diffusion equation. This shows that we can control the error at a partic-
ular fixed time (using a given time integration scheme) by adjusting ǫ. These
results confirm the analytical error estimate (17).

4.2.2 Advection of Cosine Bell

This case consists of advecting the cosine bell with a stationary velocity field
(37). We run the test for α = π

2
− 0.05 (this is the most unfavourable case

for latitude longitude grids). To get a better idea of how the adaptive wavelet
algorithm distributes points in position and scale we have plotted the initial
grid at each scale in Fig. 16 (a-e) and whole adaptive grid at the finest scale in
Fig. 16(f). Choosing smaller ǫ leads to denser computational grids, and hence
require more computation. Typically, ǫ = O(10−3) gives acceptable accuracy
for time-dependent PDEs. The numerical solution obtained with the AWCM
at t = 1 is presented in Fig. 17(a) and compared with the analytical solution
by taking the slice in one direction is presented in Fig. 17 (b). The dynamically
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Fig. 15. The L∞ error of the solution (solid line) at time t = 0.5, ǫ = 10−4 for the
spherical diffusion equation. The dashed line shows the value of ǫ as a function of
N(ǫ)

(a) #M1 = 29 points. (b) #M3 = 98 points. (c) #M5 = 386
points.

(d) #M7 = 2456
points.

(e) #M9 = 6172
points.

(f) #K9 = 13993
points.

Fig. 16. The initial adaptive grid for the advection of the cosine bell, St=0
≥ for

tolerance ǫ = 10−5. (a–e) Grids at scales 1,3,5,7,9 respectively. (f) The complete
grid, which is the union of the grids at scales 0 to 9.
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Fig. 17. Solid body rotation of cosine bell using AWCM after one rotation (t = 1)
with tolerance ǫ = 10−5. (a) Solution. (b) Cross section through peak compared to
exact solution.

adapted grid for the solution of Fig. 17(a) is shown in Fig. 18. We see that
the grid refinement somewhat trails the rotating cosine. This systematic dif-
ference is probably due to the dispersive error of the finite difference method.
However, this dispersive error does not grow with time and therefore does not
significantly perturb the calculation. The compression coefficient is shown in
Fig. 19. It oscillates, but its average is roughly constant (about 17 times com-
pression). The slight decrease in the compression coefficient over time is due
to the fact that spurious dispersive oscillations behind the moving bell errors
are resolved.

We have also tested the AWCM for α = 0 and observed no significant de-
pendence of the grid structure on α. This confirms the quasi-uniformity of
the reduced grid and the stability of our scheme. The dynamically adapted
grid at t = 1 is shown in Fig. 18 and the time evolution of the L∞ error is
shown in Fig. 20. The grid shows some spurious upwind refinement, but is
still quite close to the initially adapted grid in Fig. 16(f). The error increases
monotonically, as expected in any time marching method.

4.2.3 Nonlinear reaction–diffusion equation

We now present the solution of the nonlinear reaction–diffusion equation. The
evolution of the solution and corresponding adaptive grid using the AWCM
are shown in Figs. 21 and 22 respectively. The compression coefficient of the
initial condition is 6.4. It then decreases until t ≈ 34 before increasing again
to reach a roughly constant value of 10 (i.e. ten times compression). It is
interesting to note that although u is initially confined to a single narrow
band, the AWCM is able to track the emergence of banded structures over
the entire sphere. This demonstrates that our adaptive method is able to
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Fig. 18. Adapted grid for the solution presented in Fig. 17 (a).
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Fig. 19. The compression coefficient C for the advection of the cosine bell as a
function of time with toleranceǫ = 10−5.

efficiently and accurately capture the emergence of the localized structures
which characterize the solution of nonlinear PDEs.

5 Summary and future work

In this work a complete adaptive wavelet collocation method (AWCM) for
the numerical solution of PDEs on the sphere has been developed. Wavelet
decomposition is used for grid adaption and interpolation, while an O(N ) hi-
erarchical finite difference scheme over the triangulated surface is used for the
Laplace–Beltrami, Jacobian and flux divergence differential operators. This
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Fig. 20. Time evolution of the pointwise L∞ error of the advected cosine bell solu-
tion.

(a) t = 0 (b) t = 9 (c) t = 18

(d) t = 34 (e) t = 50 (f) t = 1000

Fig. 21. The solution of the nonlinear reaction–diffusion equation for tolerance
ǫ = 10−2. Only the first component u1 is shown.

finite difference scheme takes advantage of wavelet multilevel decomposition
and the adaptive grid. The method is verified by solving the spherical diffu-
sion equation and spherical advection equation (which is a simplified form of
the shallow water equation on the sphere). The results show that the compu-
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(a) t = 0 (b) t = 9 (c) t = 18

(d) t = 34 (e) t = 50 (f) t = 1000

Fig. 22. The dynamically adapted grid for the solution of the nonlinear reaction–d-
iffusion equation. The grids correspond to the solutions shown in Fig. 21.

tational grid adapts efficiently to the local gradients of the solution, refining
or coarsening as necessary to satisfy the specified error tolerance. This error
control is done automatically by specifying one parameter at the beginning of
the simulation: the wavelet filtering parameter ǫ. Furthermore, the solution is
obtained on a near optimal grid: the AWCM uses the minimal number of grid
points necessary to obtain the specified error O(ǫ). The localized advection
and diffusion problems considered here arise, for example, in the tracking of
storm fronts, hurricanes and breaking waves in the the simulation of global
atmospheric dynamics.

We have also solved a nonlinear reaction–diffusion equations, starting from an
unstructured initial condition. We show that our adaptive method is able to
correctly predict the emergence of banded structures over the whole sphere
starting from a random initial condition localized near the equator. The ability
of an adaptive method to track emergent structure is essential for solving
nonlinear problems.

As a first step towards applying our method to two-dimensional turbulence
on the sphere we studied the compression of model atmospheric turbulence
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data by spherical wavelets. We found that approximately half of the modes are
sufficient to achieve 10−2 accuracy in the reconstructed velocity field, and that
1% of the modes are sufficient to qualitatively capture the energy spectrum
at all scales.

The simple examples considered here suggest that the AWCM may prove
useful in the many large-scale geophysical simulations of atmosphere and ocean
dynamics. Specific examples include the simulation of transport of pollutants
in the Earth’s atmosphere as well as the forecasting of moisture and cloud
water fields in numerical weather prediction and climate models.

The multilevel adaptive approach used here is in some respects similar to [22],
where a wavelet MRA is used to provide adaptive re-gridding for a Lagrangian
particle based level set method. It would be interesting to combine the level
set idea with the well-established adaptive wavelet collocation method on a
three–dimensional Cartesian grid [14].

It should be noted that the overall accuracy of the algorithm depends on
the accuracy of the derivatives. The current approximations are only first- or
second-order accurate, but we are currently investigating wavelets based on
optimal spherical triangulations [23]. The advantages of such triangulations
are that the discrete mean curvature approximation is exact, and truncation
error of derivatives is minimized.

Another future area of research is the incorporation of a multilevel elliptic
solver to solve PDE constraints for evolution problems, such as the Poisson
equation in the pressure correction method for the incompressible Navier–
Stokes equations. This would allow us to solve the full incompressible Navier–
Stokes equations on the sphere, taking advantage of wavelet multilevel decom-
position and compression. In flat geometries this has been done successfully
in [14]. This work is currently underway.

In this paper we developed an AWCM method on the sphere, but our ap-
proach can be extended to other curved manifolds as follows. For an arbitrary
manifold M we need to construct wavelets which are parameterized over a
polyhedral base mesh. The initial step of converting an arbitrary surface into
a multiresolution form is therefore to determine a base mesh K0 that is topo-
logically equivalent to the given surface. One then finds appropriate parame-
terizations of M over K0 as described in [16]. Once the parameterizations are
found for a given polyhedral surface, the base mesh can be sub-divided, as in
the case of the sphere, to generate a multi-resolution analysis of M .
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