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Abstract

Potential flow and two-dimensional Navier–Stokes calculations are used to investigate the role of vortex shedding in
the non-resonant flow-induced vibration of periodic tube arrays. This dual approach untangles the effects of potential
and vortical flow. The negative damping theory is shown to be inconsistent with the Navier–Stokes simulations, and
allowing only a single degree of freedom in tube motion significantly overestimates the critical velocity. In contrast,
Navier–Stokes simulations which allow all tubes to move in both the transverse and streamwise directions give results
in good agreement with experiment. Somewhat surprisingly,potential flow calculations including an artificial phase
lag between fluid force and tube motion give reasonably accurate results for a wide range of phase lags. This may be
due to the fact that the most unstable mode at onset appears tobe streamwise anti-phase (not whirling), as observed
in the potential flow case.
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1. Introduction

The role of vortex wake dynamics in the flow-induced vibration of isolated freely oscillating cylinders is now quite
well understood (Williamson and Govardhan, 2004). In particular, Williamson and Govardhan (2004) discovered that
for low mass damping ratios there exists a critical mass ratio below which the regime of high amplitude oscillations
extends to infinite velocities. They also found that as velocity increases at fixed (small) mass damping there is a jump
in oscillation amplitude associated with a switch from the 2S to 2P vortex shedding mode (and associated jump in the
phase lag between vortex force and cylinder oscillation). These observations show that vortex-induced vibration is
sensitive to the detailed dynamics of vortex shedding.

In this paper we consider the case of the free vibration of circular cylinders in a tightly packed periodic square in-
line array of cylinders with a pitch to diameter ratioP/D = 1.5. The role of vortex wake dynamics in the flow-induced
vibration of tube arrays is still not well understood, particularly for inline arrays (whose wake dynamics are character-
ized by incomplete vortex shedding). Two principal theories have been advanced to explain the vibrational instability
of such tube arrays:negative damping(which requires only that one tube move relative to its fixed neighbours), and
stiffness controlled(which requires that adjacent tubes move out of phase in a “whirling” mode). We use appropriate
numerical simulations to investigate both scenarios.

If a single cylinder free to vibrate in the transverse direction is surrounded by fixed cylinders (a common experi-
mental configuration), the flow asymmetries caused by the movement of the central cylinder relative to its neighbours
generates a “galloping” type instability in addition to thepure vortex-induced vibration of the isolated cylinder case.
Although this galloping is often treated as a purely potential flow instability mechanism (except in the resonant vortex
shedding caseU∗ ≈ 1/S t), the necessary forces and phase lag are determined by the interaction of the wake of the
moving cylinder with the surrounding cylinders.

Price and Paı̈doussis (1988) developed a simple negative damping theory of fluidelastic instability in tube bundles
by assuming a phase lag between the cylinder motion and totalfluid force. (If there is no phase lag, the dynamics
is purely potential and only a non-oscillatory divergent instability is possible.) Consider an array of cylinders as in
figure 1(a) in which the central cylinder is free to vibrate inthe y−direction transverse to the mean flow (all other
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cylinders are fixed). If the response of the cylinder is modelled as a simple harmonic oscillator, the equation of motion
for the vibrating cylinder is

ÿ+
δ

π
ωN ẏ+ ω2

N y =
Fy

m
, (1)

whereωN is the natural frequency,m is the mass (including added mass) andδ is the logarithmic decrement (i.e.
mechanical damping). For small displacements quasi-static theory gives the total fluid force as

Fy(t) ≈
1
2
ρU2D

dCL

dy
y(t − τ) −

1
2
ρUDCD ẏ(t), (2)

where the first term is the force due to the cylinder displacement and the second term is the fluid damping.CL andCD

are respectively the lift and drag coefficients at equilibrium, whereCL = 0 due to symmetry. Note that we assume a
time lagτ between the cylinder displacement and the resulting force.This time lag leads to an additional drag term
sincey(t) is assumed to be sinusoidal. Substituting (2) in (1), assuming thatτ ≈ µD/Ug ≪ 1 (whereUg is mean
velocity in the gap between the cylinders andµ ∼ O(1)) and setting the total drag equal to zero gives the critical
velocity for the negative damping instability,

Ug

fND
= U∗crit =

[

4
−CD − µDdCL/dy

] (

mδ
ρD2

)

. (3)

This expression suggests thatdCL/dymust be large and negative for instability. This is consistent with vortex shedding
flows since a positive vortex is shed from the lower side of a cylinder when its displacement is maximal. Note that in
practice the phase lag parameterµ and the linear force coefficientsCD anddCL/dymust be measured experimentally.

On the other hand, if neighbouring tubes can move out of phasethen tube vibration may be amplified via the
stiffness-controlled mechanism. Linear stability analysis (Connors, 1978) then gives

U∗crit = C

(

mδ
ρD2

)1/2

. (4)

Observations suggest that the dominant vibrational instability is a whirling mode where adjacent tubes along a column
transverse to the mean flow move in phase, while every other tube moves anti-phase: i.e.x j = x j+1, y j = y j+1, but
x j+1 = −x− j−1, y j+1 = −y j−1. Adjacent columns of tubes move approximately anti-phase.Assuming such a whirling
vibrational mode, Connors (1978) used linear stability analysis to show that the critical velocity coefficientC can be
expressed in terms of the linear fluid force coefficients (which can be measured experimentally).

Experimentally, it is found that if the mass damping ratiomδ/ρD2 > 0.7 the critical velocityU∗crit follows an
approximately square root dependence on the mass damping ratio as in (4). However, there is significant scatter in the
measured values forC, with C ≈ 3.4±1.4 for inline square arrays (Blevins, 2001). Despite their qualitative differences,
equations (3) and (4) give similar results for mass damping ratios smaller than 100 provided the relevant parameters
are measured experimentally. Although these expressions are based on an essentially inviscid quasi-static analysis,
the effect of the vortex shedding wakes is encoded in the parameters. It is still unclear to what extent the negative
damping and stiffness-controlled theories can predict flow-induced vibration, even when the relevant parameters are
measured experimentally (Whiston and Thomas, 1982).

In tube arrays vortex shedding is considered to the be the primary cause of instability only whenU∗ ≈ 1/S t. How-
ever, vortex-induced vibration (VIV) and fluidelastic instability (FEI) are clearly not separate effects since, according
to potential theory,dCL/dy> 0 and there is no phase lag between cylinder motion and the fluid force. The goal of this
paper is to help elucidate the relative roles of potential flow and vortex effects in generating flow-induced vibration in
tube arrays.

We focus on the following questions:

• Are the 2-D Navier–Stokes simulation results consistent with the negative damping (single degree of freedom)
theory?

• Do the single moving cylinder and multiple moving cylinder cases give similarly accurate estimates of the
critical flow velocity for instability?
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• What is the role of vortex-induced vibration in non-resonant fluidelastic instability?

• How accurate are periodic potential flow simulations for predicting FEI (i.e. estimating the critical velocity
coefficientC)?

• How accurate are 2-D periodic Navier–Stokes simulation forpredicting FEI?

Since our goal is to evaluate the relative contributions of potential flow and vortex shedding to flow-induced instability,
we use two distinct numerical methods: a charge simulation method for potential flow on doubly-periodic domains
Amano et al. (2001) and a penalized pseudo-spectral method for the 2-D Navier–Stokes equations on periodic domains
Kevlahan and Wadsley (2005). The response of the cylinder ismodelled as an harmonic oscillator forced by the fluid
forces (either potential alone or potential and vortical together).

2. Method

In order to evaluate the relative contributions of potential flow and vortex shedding to the flow-induced instability,
we use two distinct numerical methods. We calculate thepotentialflow through the periodic tube array using a
modified version of the charge simulation method Amano et al.(2001); Amaya and Sakajo (2008) . The complex
potentialw(z) for the periodic two-dimensional flow aroundJ disks with centresδ j and radiisj is given by

w(z) =
J

∑

j=1

N−1
∑

k=1

ck j log

[

θ1((z− ζk, j)/Lx, exp(−πLy/Lx)))

θ1((z− ζk+1, j)/Lx, exp(−πLy/Lx))

]

, (5)

wherec jk are the strengths of theN charges located in the interior of each of thej = 1, . . . , J disks at pointsζk, j =
δ j + 0.7sj exp(2πik/N). The charge strengths are found by enforcing the no-penetration (inviscid) velocity boundary
conditions at the collocation pointszk, j = δ j + sj exp(2πik/N) on the disks. The Jacobiθ−functionθ1(u; q) formulation
ensures doubly-periodic boundary conditions, with periods Lx andLy in the x− andy−directions, respectively. Note
that the cylinders can be given an instantaneous velocity bysuitably modifying the boundary conditions on the disks.
This method produces highly accurate results (to machine precision). Figure 3(a) shows streamlines for a typical
example.

The complex forceF on the diskj is then found by evaluating the integral

F =
iρ
2

∮

C j

(

dw
dz

)2

dz,

which is discretized (to exponential accuracy) using the collocation pointszk, j. To the best of our knowledge, this is
the first time the charge simulation method has been applied to fluid–structure interaction.

The two-dimensionalvortical flow through the periodic tube array is calculated by solvingthe following L2-
penalized equations,

∂u
∂t
+ u · ∇u + ∇P =

1
Re
∆u − 1

η
χ(x, t)(u − uO), ∇ · u = 0, (6)

where the last term on the rhs of (6) approximates the no-slipboundary conditions on the surface of the cylinder
moving with velocityuO asη → 0 (where the characteristic functionχ(x, t) = 1 or 0 in the solid and fluid regions of
the flow, respectively). Note thatχ is the union of the characteristic functions correspondingto each cylinderχ j(x, t).
The Reynolds numberRe= U∞D/ν, whereU∞ is the mean velocity over both the solid and fluid parts of the periodic
domain (equivalent to the free stream mean flow upstream of a tube array), andD is the tube diameter. Note that the
force on a cylinder can be found simply by integrating its penalization term,

F =
∫

1
η
χ j(x, t)(u − uO) dx. (7)

The penalized Navier–Stokes equations (6) are solved usinga Fourier transform based pseudo–spectral method
in space (e.g. Vincent and Meneguzzi, 1991) and a Krylov method in time (Edwards et al., 1994). The pseudo-
spectral method is computationally efficient and highly accurate for spatial derivatives, while the Krylov method is
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a stiffly stable explicit method with an adaptive step-size to maintain a specified error tolerance. We consider only
two-dimensional flow at a Reynolds numberRe= 200 (based on the free stream mean velocity). At this Reynolds
number the flow is still approximately two-dimensional, andis characterized by strong periodic vortex shedding.

In both the potential and vortical flow simulations the response of cylinderj is modelled as a forced simple
harmonic oscillator,

ÿ j(t) +
δ

π
ωN ẏ j(t) + ω

2
N y j(t) = F j(t)/m, (8)

wherem is the mass (including added mass),δ is the logarithmic decrement (i.e. mechanical damping),ωN is the
natural frequency andF j is the total fluid force (vortex and potential) on cylinderj. We assume that all cylinders are
mechanically identical (i.e.m, δ andωN are the same for all cylinders). The cylinders are free either to oscillate in
both directions, or only in the direction transverse to the mean flow. By coupling the potential flow force calculation
to the oscillator equations (8), and introducing an artificial time lagτ in the fluid forcing, i.e. F j(t) → F j(t − τ),
one can derive a set of ordinary differential delay equations to model the negative damping instability. In the vortical
flow case the cylinder motion is coupled to the fluid motion by updating the mask functionsχ j(x, t) according to the
coupled oscillator equations (8).

3. Results

3.1. Configuration

We investigate the flow through inline square arrays with a pitch to diameter ratioP/D = 1.5 as shown in fig-
ure 1(a,b). The periodic unit cell contains between four andtwenty-five complete cylinders (depending on the case),
and either all cylinders can move in both streamwise and transverse directions (multiple degrees of freedom), or we
allow only transverse motion of the central cylinder (single degree of freedom). All vortical simulations are done at
Reynolds numberRe= 200.

It is important to note that there are two distinct definitions of mean velocity: the mean velocity over the entire
domain (including the cylinders)U∞, and the velocity averaged across the gap between the tubesUg. U∞ corresponds
to the mean velocity upstream of a tube array, and measures the total mass flux through the array, whileUg measures
the typical velocity through the array. If all flow must pass through the array (i.e. for an infinite array, or for ducted
arrays)

Ug =
P

P− D
U∞ = 3U∞ if P/D = 1.5. (9)

Note that the Reynolds number based onUg is also larger:Reg = 3Re= 600 in our case.
As emphasized below, relation (9) doesnot hold for an isolated bundle of tubes. In this case some of the mean

flow can by-pass the array due to the blockage effect andUg is correspondingly lower.

3.2. Potential flow

We first consider the case of potential flow, where the periodic unit cell contains 2× 2 complete cylinders free to
oscillate in both the transverse and streamwise directions(the transverse-only mode is stable). Since the tube array
does not have a vibrational instability mode for zero phase lag (only a divergent mode), we perform a nonlinear
stability analysis for a range of non-zero phase lags from 0 to 180 degrees. In order to determine the critical velocity
for each phase lag we simply solve the relevant delay equations (described in§2) for the system of coupled oscillator
ordinary differential equations, with the fluid forcing for each cylinderdetermined by the numerical potential flow
calculation. The results for the critical velocity coefficientC do not depend on the mass damping ratio, at least in the
range [0.1, 100], and are not significantly affected by using more than four cylinders in the periodic unit cell.

Figure 2 shows that the potential flow results for the critical velocity coefficient, C ≈ 5.2 for phase lagsφ ∈
[40, 140], is surprisingly close to the experimental data. Figure 5 shows that that potential flow results are within the
experimental scatter for square arrays for phase lagsφ ∈ [40, 140]. However, as we will see below, the actual phase lag
measured in the Navier–Stokes simulations is about 168o, which corresponds to a significantly largerC ≈ 7.6. This
suggests that the potential flow results, although accurate, do not adequately approximate the vortical flow dynamics.
In addition, the vibrational mode is strictly streamwise for the potential flow, with adjacent cylinders vibrating anti-
phase. This is quite different from the fully developed whirling mode seen in vortical flows where the vibration
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D = 1

P = 1.5

U θ = 45 (rotated), or 0 (inline)
o o

(a)

Figure 1: (a) Tube configuration for a square array of circular cylinders. We consider only inline flow. (b) Vortex wake dynamics for two-
dimensional flow atRe= 200 with all cylinders fixed.

mode is essentially transverse (see 4(b)). This shows that the phase lag does not correctly model the effect of vortex
shedding, even though it gives a reasonable estimate for thecritical velocity.

This result appears to be inconsistent with Paidoussis et al. (1982)’s potential flow calculations, who found critical
velocities three to five times higher than the experimental values. This discrepancy may be due to the fact that
Paidoussis et al. (1982) apparently made their linear stability analysis using small (non-periodic) arrays assuming that
the gap velocityUg = P/(P−D)U∞. However, as mentioned earlier, this relation does not holdfor isolated arrays, due
to the blocking effect which diverts the mean flow around the array. In fact, thisrelation significantly overestimates
the gap velocity for isolated arrays (by a factor of about 1.55 for a 3×3 array withP/D = 1.5), which would therefore
overestimate the critical velocity by a factor of about 1.552 ≈ 2.4. Note that this overestimation is not improved by
using larger arrays.

3.3. Vortical flow

We now consider numerical solutions of the full 2-D Navier–Stokes equations atRe = 200, which allows us
to directly measure the parameters in (3) and to perform nonlinear stability analyses including vortical effects. At
Re= 200 the flow is still approximately two-dimensional, and is characterized by strong periodic vortex shedding at
a Strouhal frequencyS t= 1.08. In order to ensure that we are well outside the domain of the resonant vortex-induced
vibration instability, we choose the natural frequency of the cylinderfN = 1, mean flow velocityU∞ = 5 (Ug = 15),
δ = 0.1 and mass damping ratiomδ/(ρD2) = 1.0 . Since the Strouhal frequencyS t= 1.08 atRe= 200, this choice of
parameters ensures that we focus on the non-resonant fluidelastic regimeU∗ ≫ U∗crit ≫ 1/S t. We consider periodic
unit cells containing between 2× 2 and 5× 5 cylinders (see figure 1(a) and figure 4(a)).

When the cylinders are fixed figure 1(b) shows that the vortex wakes do not undergo complete vortex shedding (i.e.
complete detachment of the shed vortices). Nevertheless, the wake develops periodic transverse oscillations which
produce a periodic oscillation of the lift force with an amplitude of 0.333 (normalized byUg) and frequency 1.08.
Cylinder motion generates complete vortex shedding, similar to von Karman vortex shedding in the isolated cylinder
case (see Williamson and Govardhan, 2004) and in the rotatedtube array configuration (see Price et al., 1995). This
observation indicates that the vibrational instability isa form of singular perturbation that qualitatively changesthe
wake dynamics.

When the central cylinder is free to move in the transverse direction, and all other cylinders are fixed, it undergoes
large periodic oscillations. Figure 3(b) confirms that the vortex wake dynamics is strongly modified by the cylinder
motion. The wake is stabilized (i.e. it becomes essentiallypotential flow) at the narrow gap side, while the wide gap
side allows for complete vortex shedding. Comparing figures3(b) and figure 4(a) suggests visually (as confirmed
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Figure 2: Nonlinear stability calculations for periodic potential flow with 2× 2 unit cell. The potential flow value of the critical velocitycoefficient
C is close to the experimental data for a wide range of phase lags.

by quantitative calculations) that the 3× 3 periodic unit cell captures the main vortex wake dynamics.Figure 6(a)
shows that the vortex contribution to the total lift is large: about twice as large in magnitude as the contribution
from the potential flow. However, since the contributions from the vorticity and potential flow are exactly anti-phase,
the maximum amplitude of the total lift force is is similar tothat of the potential flow alone. It is important to
remember, however, that the potential force is proportional to cylinder displacement, and so the vortex force will
strongly dominate for small amplitude vibrations. The vortex force is anti-phase with the cylinder motion (and hence
the potential force) because a positive vortex is shed from the lower side of the cylinder when cylinder displacement
y(t) is maximum, thus generating a strong downward force. The fundamental difference between the potential flow
and vortical flow is illustrated by figure 3(c), which shows that vortex shedding reverses the sign ofCL(y), breaks
monotonicity and introduces significant hysteresis (CL depends on the velocity of the cylinder as well as its position).
In particular, maximum lift force is achieved for intermediate (not maximum) displacements of the cylinder in the
vortical flow.

It is interesting to check whether the negative damping theory (3) is consistent with the Navier–Stokes simulation
results. Curve fitting shows that the cylinder displacementand lift force (normalized by the gap velocityUg = 3U∞)
are respectively

y(t) = 0.27 sin 1.1ωNt,

CL(t) = −0.7y(t − 0.03)− 0.19 sin(S t U∞/D 2πt).

These results confirm that, as required for the negative damping instability mechanism (3),dCL/dy = −0.7 < 0 and
there is a phase lag between the fluid force and the cylinder motion of φ = ωτ = π − 0.2 (taking into account the
change in sign). Note the distinct Strouhal frequency contribution toCL(t) due to vortex shedding.

However, the actual numerical results of the Navier–Stokessimulation are inconsistent with negative damping
theory, even in the ideal case when only a single tube is free to vibrate transverse to the mean flow and the relevant
parameters are measured precisely. Substituting the simulation valuesCD = 0.27,µ = τUg/D = 0.45 anddCL/dy=
−0.7 into (3) gives a critical velocityU∗crit = 89, which is much larger than the actual valueU∗crit = 8.7± 0.1 measured
for the Navier–Stokes simulation, which is in turn much larger than the experimental value of aboutU∗crit ≈ 3.4. These
results suggest that considering only a single (transverse) vibrational mode significantly overestimates the critical
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Figure 3: Flow induced vibration in an inline tube array withP/D = 1.5. The central cylinder is free to move in the transverse direction only.
(a) Potential flow streamlines. (b) Re=200 vorticity (red is positive, blue is negative). (c) Comparison of lift force (normalized byUg) as a function
of cylinder position for potential flow and Navier–Stokes flow at Re = 200. The lift force for the Navier–Stokes flow has been averaged over
many periods of cylinder oscillation. The dotted line is−CL(y) for the potential flow and the arrows give the direction of cylinder motion (note
hysteresis).

velocity. Figure 5 shows each of these results compared withthe experimental data.
On the other hand, if all cylinders are free to vibrate in bothdirections, the 2-D Navier–Stokes simulation gives

estimates for the critical velocity in good agreement with the experimental data for a wide range of mass damping
ratios, as shown in figure 5. Although these results were calculated for a fixed Reynolds number,Re= 200, they should
be relatively robust as the force amplitudes do not depend sensitively on Reynolds number once vortex shedding has
developed. It is interesting to note that theinitial instability at onset is in fact streamwise (as in the potential flow
case), although the vibration quickly switches to an essentially transverse (or, more precisely, whirling) mode, as
observed in experiments. This may explain why linear stability analysis based on an anti-phase whirling mode have
not successfully predicted the critical velocity in inlinearrays (Whiston and Thomas, 1982).

It is instructive to separate the contributions to the fluid force from the potential and vortical parts of the flow. Fig-
ure 6(a) shows the total lift force compared with its potential and vortical parts. This decomposition is done during the
Navier–Stokes simulation by first calculating the total force and then subtracting the potential force contribution cal-
culated based on the instantaneous position and velocity ofthe cylinder using the charge simulation method described
earlier. A curve fit shows that vortex force is almost exactlyout of phase with the cylinder motion,

CL VORTEX(t) = −2y(t − 0.01)− 0.203 sin(S t U∞/D 2πt + 0.03). (10)

Because the mass damping ratio is relatively small, the amplitude of motion is large (A = 0.27), and the size of the
potential force is also correspondingly large. Despite therelatively large potential force it is clear that the total force
is controlled by its vortical component, apart from a small change in amplitude.

We now propose a physical explanation for the phase lag, and give a rough estimate for its magnitude. If we assume
that the vortex force is generated by a vortex of strengthUg/DRe1/2 shed at speedUg in a direction 45o to the mean flow
direction (whereUg is the mean speed in the gap between cylinders), then the maximum lift force magnitude should be
approximatelyCL VORTEX = 1/

√
2Re1/2/Ug. For the case presented here, this givesCL VORTEX ≈ 0.667, in reasonable

agreement with the observed value 0.541 from equation (10). (In comparison, the potential forceCL POTENTIAL ≈ y for
tube arrays withP/D = 1.5.) Note that this approximation is strictly valid only for two-dimensional flows at moderate
Reynolds numbers. The phase shift may be estimated by notingthat the vortex shedding begins at maximum cylinder
amplitude (minimum gap). However the vortex initially moves vertically (generating no lift). The lift is maximum
when the vortex moves below the cylinder into the fast downstream flow. This givesφvortex ≈ π/8 D/Ug ω ≈ 0.18
in our case, in reasonable agreement with the observed value0.2 (the 1/8 of the circumference estimate was used
based on observing flow animations). This estimate agrees with the experimental observation thatτ ∝ D/Ug (Blevins,
2001).

Finally, we check that the cylinder is indeed stable when forced only by the potential part of the force, even when
the flow itself is vortical. Figure 6(b) shows the cylinder displacement as a function of time when forced by the total
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(a) (b)

Figure 4: (a) Vorticity field atRe= 200 for a 5× 5 periodic unit cell with the central cylinder free to move inthe transverse direction. (b) Cylinder
trajectories for a 5× 5 periodic unit cell with all cylinders free to move.

Figure 5: Potential flow and 2-D Navier–Stokes calculationscompared with data and theory. Results are normalized with respect to the gap velocity
Ug. (Modified from Blevins (2001) Fig. 5-6.)
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Figure 6: 2-D Navier–Stokes simulation results for a 3× 3 periodic array with the central cylinder free to move in thetransverse direction only and
a mass damping of one. (a) Total lift compared with its potential and vortical parts. (b) Cylinder amplitude when cylinder is forced by the total
force, only the potential force, or only the vortical force.

force, the potential force alone and the vortical force alone. This confirms that the overall vibrational mode is entirely
due to the vortical component of the force, even though the potential force is of comparable magnitude to the total
force. The crucial contribution of the vortex wake is to shift the force anti-phase to the cylinder displacement, and
to introduce a new Strouhal frequency component to the force. However, it is important to remember that in this
case only the central cylinder can move, and only in the transverse direction. When all cylinders can move theinitial
instability is potential in nature (although the fully-developed whirling instability is strongly vortical).

4. Conclusions

The results presented here have helped to untangle the rolesof vortex shedding and potential flow in the non-
resonant fluidelastic instability of tube arrays. We have shown that vortex wake dynamics (especially vortex shedding)
is the dominant factor determining the vibrational stability of inline tube arrays, even in the non-resonant case.

In particular, we have shown how flow asymmetry (a potential flow effect) ensures that the vortex-generated
lift force dCL/dy < 0, which is necessary for the negative damping instability mechanism. The negative damping
mechanism also requires that the fluid force lag behind the cylinder motion and our results allowed us to measure this
phase lag, and to understand why it is proportional toD/Ug, as observed experimentally. However, we found that the
simple negative damping theory is inconsistent with the results of the 2-D Navier–Stokes simulations, even when the
relevant parameters measured from the simulation are used to predict the critical flow velocity. Moreover, we found
that the critical flow velocity measured in the 2-D Navier–Stokes simulations for a single cylinder moving transverse
to the flow is much higher than that measured in experiments. In contrast, nonlinear stability analysis using the 2-D
Navier–Stokes simulations of the case where all cylinders are free to move in both the streamwise and transverse
directions gave results consistent with the experiments over a large range of mass damping ratios, from 1 to 100.

In order to check that the fully-developed vibrational instability is controlled by the vortical part of the total fluid
force (and that the potential part does not play a direct role) we performed 2-D Navier–Stokes simulations where
the cylinder is forced either by the total force, or by the potential force alone, or by the vortical force alone. These
numerical experiments confirmed that the vibrational instability is due to the vortical part of the force, and that the
vortex shedding ensures that the force is approximately anti-phase to the cylinder motion (together with a Strouhal
frequency component).

Surprisingly, we found that the potential flow simulations gave reasonably accurate predictions of the critical flow
velocity for a wide range of phase lags, provided all cylinders are free to oscillate in both streamwise and transverse
directions. The instability mode in this case is essentially streamwise, with adjacent cylinders moving anti-phase.
We conjecture that the accuracy of the potential flow calculations is due to the fact that the initial instability mode in

9



the 2-D Navier–Stokes simulations is also streamwise (although the fully-developed instability mode is the so-called
whirling mode, as observed in experiments). This suggests that potential flow calculations may be far more accurate
than previously thought, provided the gap velocity is measured correctly and that the cylinders are free to vibrate in
the streamwise direction. It also suggests that the linear instability analysis of tube arrays should assume a streamwise
anti-phase mode, rather than the usual whirling (or transverse) anti-phsase mode.

In summary, we found that 2-D Navier–Stokes simulations of periodic arrays of cylinders give good predictions
of the critical flow velocity for the vibrational instability of inline tube arrays over a wide range of mass damping
ratios. The fact that the potential flow stability analysis also gives reasonably good results for the critical flow velocity
is surprising and requires further analysis, focusing on the form of the initial instability mode. The initial instability
mode is likely to be qualitatively different from the fully-developed mode because the dynamics ofthe wake changes
qualitatively in inline arrays once the tubes start to vibrate (from jet-like to von Karman-like with complete vortex
shedding).
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Figure captions

Figure 1: (a) Tube configuration for a square array of circular cylinders. We consider only inline flow. (b) Vortex
wake dynamics for two-dimensional flow atRe= 200 with all cylinders fixed.

Figure 2: Nonlinear stability calculations for periodic potential flow with 2× 2 unit cell. The potential flow value of
the critical velocity coefficientC is close to the experimental data for a wide range of phase lags.

Figure 3: Flow induced vibration in an inline tube array withP/D = 1.5. The central cylinder is free to move in
the transverse direction only. (a) Potential flow streamlines. (b) Re=200 vorticity (red is positive, blue is negative).
(c) Comparison of lift force (normalized byUg) as a function of cylinder position for potential flow and Navier–
Stokes flow atRe= 200. The lift force for the Navier–Stokes flow has been averaged over many periods of cylinder
oscillation. The dotted line is−CL(y) for the potential flow and the arrows give the direction of cylinder motion (note
hysteresis).

Figure 4: (a) Vorticity field atRe= 200 for a 5× 5 periodic unit cell with the central cylinder free to move inthe
transverse direction. (b) Cylinder trajectories for a 5× 5 periodic unit cell with all cylinders free to move.

Figure 5: Potential flow and 2-D Navier–Stokes calculationscompared with data and theory. Results are normalized
with respect to the gap velocityUg. (Modified from Blevins (2001) Fig. 5-6.) Figure 6: 2-D Navier–Stokes simulation
results for a 3× 3 periodic array with the central cylinder free to move in thetransverse direction only and a mass
damping of one. (a) Total lift compared with its potential and vortical parts. (b) Cylinder amplitude when cylinder is
forced by the total force, only the potential force, or only the vortical force.
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