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Abstract

Potential flow and two-dimensional Navier—Stokes caldéoihet are used to investigate the role of vortex shedding in
the non-resonant flow-induced vibration of periodic tubrags. This dual approach untangles tlieets of potential
and vortical flow. The negative damping theory is shown torfleemsistent with the Navier—Stokes simulations, and
allowing only a single degree of freedom in tube motion digantly overestimates the critical velocity. In contrast,
Navier—Stokes simulations which allow all tubes to movedthtthe transverse and streamwise directions give results
in good agreement with experiment. Somewhat surprisimgitential flow calculations including an artificial phase
lag between fluid force and tube motion give reasonably ateuesults for a wide range of phase lags. This may be
due to the fact that the most unstable mode at onset appeaesstoeamwise anti-phase (not whirling), as observed
in the potential flow case.
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1. Introduction

The role of vortex wake dynamics in the flow-induced vibratid isolated freely oscillating cylinders is now quite
well understood (Williamson and Govardhan, 2004). In patér, Williamson and Govardhan (2004) discovered that
for low mass damping ratios there exists a critical mass taiow which the regime of high amplitude oscillations
extends to infinite velocities. They also found that as vigfdncreases at fixed (small) mass damping there is a jump
in oscillation amplitude associated with a switch from tiset@ 2P vortex shedding mode (and associated jump in the
phase lag between vortex force and cylinder oscillatiort)esSe observations show that vortex-induced vibration is
sensitive to the detailed dynamics of vortex shedding.

In this paper we consider the case of the free vibration etidar cylinders in a tightly packed periodic square in-
line array of cylinders with a pitch to diameter raBpD = 1.5. The role of vortex wake dynamics in the flow-induced
vibration of tube arrays is still not well understood, pautarly for inline arrays (whose wake dynamics are characte
ized by incomplete vortex shedding). Two principal theshave been advanced to explain the vibrational instability
of such tube arraysiegative dampingwhich requires only that one tube move relative to its fixe@jhbours), and
stiffness controlledwhich requires that adjacent tubes move out of phase in a@findi’ mode). We use appropriate
numerical simulations to investigate both scenarios.

If a single cylinder free to vibrate in the transverse di@tis surrounded by fixed cylinders (a common experi-
mental configuration), the flow asymmetries caused by theemewt of the central cylinder relative to its neighbours
generates a “galloping” type instability in addition to §here vortex-induced vibration of the isolated cylinderecas
Although this galloping is often treated as a purely potgtitbw instability mechanism (except in the resonant vortex
shedding cas&)* ~ 1/S1), the necessary forces and phase lag are determined byténacdtion of the wake of the
moving cylinder with the surrounding cylinders.

Price and Paidoussis (1988) developed a simple negatnpidg theory of fluidelastic instability in tube bundles
by assuming a phase lag between the cylinder motion andftoi@iforce. (If there is no phase lag, the dynamics
is purely potential and only a non-oscillatory divergergtability is possible.) Consider an array of cylinders as in
figure 1(a) in which the central cylinder is free to vibratetfie y—direction transverse to the mean flow (all other
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cylinders are fixed). If the response of the cylinder is miedhs a simple harmonic oscillator, the equation of motion
for the vibrating cylinder is
g+ Sany+edy= =2, )
T m
wherewy is the natural frequencyn is the mass (including added mass) anid the logarithmic decrement (i.e.
mechanical damping). For small displacements quasiegtatbry gives the total fluid force as
R ~ 5pUD ¥t -1) - 3pUDCO I, @

where the first term is the force due to the cylinder displam@and the second term is the fluid dampi@g.andCp

are respectively the lift and drag d@eients at equilibrium, wher€_ = 0 due to symmetry. Note that we assume a
time lagt between the cylinder displacement and the resulting fofbés time lag leads to an additional drag term
sincey(t) is assumed to be sinusoidal. Substituting (2) in (1), agsgiihatr ~ uD/Ug < 1 (whereUg is mean
velocity in the gap between the cylinders gnd- O(1)) and setting the total drag equal to zero gives the atitic
velocity for the negative damping instability,
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This expression suggests tli}, /dy must be large and negative for instability. This is consistéth vortex shedding
flows since a positive vortex is shed from the lower side oflander when its displacement is maximal. Note that in
practice the phase lag parameieand the linear force cdéigcientsCp anddC,_ /dy must be measured experimentally.

On the other hand, if neighbouring tubes can move out of ptrese tube vibration may be amplified via the
stiffthess-controlled mechanism. Linear stability analysimft@os, 1978) then gives
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Observations suggest that the dominant vibrational inlitiais a whirling mode where adjacent tubes along a column
transverse to the mean flow move in phase, while every otloer muoves anti-phase: i.e = Xj.1, Yj = Yj+1, but
Xj+1 = =X j-1, Yj+1 = —Yj-1. Adjacent columns of tubes move approximately anti-phassuming such a whirling
vibrational mode, Connors (1978) used linear stabilitylgsia to show that the critical velocity citcientC can be
expressed in terms of the linear fluid force fia@ents (which can be measured experimentally).

Experimentally, it is found that if the mass damping ratié/pD? > 0.7 the critical velocityU;, follows an
approximately square root dependence on the mass damgimgsan (4). However, there is significant scatter in the
measured values f@, with C ~ 3.4+1.4 for inline square arrays (Blevins, 2001). Despite thealdative diferences,
equations (3) and (4) give similar results for mass dampatigos smaller than 100 provided the relevant parameters
are measured experimentally. Although these expressiensased on an essentially inviscid quasi-static analysis,
the dfect of the vortex shedding wakes is encoded in the paramdtdssstill unclear to what extent the negative
damping and sfiness-controlled theories can predict flow-induced vibrateven when the relevant parameters are
measured experimentally (Whiston and Thomas, 1982).

In tube arrays vortex shedding is considered to the be tinegpyicause of instability only whdu* ~ 1/St How-
ever, vortex-induced vibration (VIV) and fluidelastic iabtlity (FEI) are clearly not separat&ects since, according
to potential theorydC, /dy > 0 and there is no phase lag between cylinder motion and tlieffitce. The goal of this
paper is to help elucidate the relative roles of potential #md vortex &ects in generating flow-induced vibration in
tube arrays.

We focus on the following questions:

e Are the 2-D Navier—Stokes simulation results consistett tie negative damping (single degree of freedom)
theory?

e Do the single moving cylinder and multiple moving cylindexrses give similarly accurate estimates of the
critical flow velocity for instability?



e What is the role of vortex-induced vibration in non-resatrfandelastic instability?

e How accurate are periodic potential flow simulations fordiceng FEI (i.e. estimating the critical velocity
codficientC)?

e How accurate are 2-D periodic Navier—Stokes simulatiorpfedicting FEI?

Since our goal is to evaluate the relative contributionsaéptial flow and vortex shedding to flow-induced instailit
we use two distinct numerical methods: a charge simulatiethod for potential flow on doubly-periodic domains
Amano etal. (2001) and a penalized pseudo-spectral metidigef 2-D Navier—Stokes equations on periodic domains
Kevlahan and Wadsley (2005). The response of the cylindeodelled as an harmonic oscillator forced by the fluid
forces (either potential alone or potential and vorticgktiher).

2. Method

In order to evaluate the relative contributions of potdiiltiav and vortex shedding to the flow-induced instability,
we use two distinct numerical methods. We calculatepgbtential flow through the periodic tube array using a
modified version of the charge simulation method Amano ef2401); Amaya and Sakajo (2008) . The complex
potentialw(z) for the periodic two-dimensional flow arouddisks with centreg; and radiis; is given by
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wherecy are the strengths of thié¢ charges located in the interior of each of the 1,..., J disks at pointg; =
dj + 0.7s; exp(2rik/N). The charge strengths are found by enforcing the no-patimtr(inviscid) velocity boundary
conditions at the collocation poingg; = d; + S; exp(2rik/N) on the disks. The Jacobtfunctionéy(u; q) formulation
ensures doubly-periodic boundary conditions, with pesiodandL, in the x— andy-directions, respectively. Note
that the cylinders can be given an instantaneous velociguligbly modifying the boundary conditions on the disks.
This method produces highly accurate results (to machieeigion). Figure 3(a) shows streamlines for a typical
example.

The complex forcé- on the diskj is then found by evaluating the integral
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which is discretized (to exponential accuracy) using thcation pointsz ;. To the best of our knowledge, this is
the first time the charge simulation method has been api#idit—structure interaction.
The two-dimensionaVortical flow through the periodic tube array is calculated by solving following L2-

penalized equations,

ou -V VP—iAu—}(xt)(u—u) V-u=0 (6)

ot +U-VU+ ~ Re T]X s 0)s =0,
where the last term on the rhs of (6) approximates the nobsljmdary conditions on the surface of the cylinder
moving with velocityup asy — 0 (where the characteristic functigiix, t) = 1 or O in the solid and fluid regions of
the flow, respectively). Note thatis the union of the characteristic functions corresponttingach cylindey(x, t).
The Reynolds numbd&e= U, D/v, whereU,, is the mean velocity over both the solid and fluid parts of thequlic
domain (equivalent to the free stream mean flow upstreamwb@adrray), and is the tube diameter. Note that the
force on a cylinder can be found simply by integrating itsgdezation term,

1
F= fEXj(x, t)(u - uo) dx. (7)

The penalized Navier—Stokes equations (6) are solved askaurier transform based pseudo—spectral method
in space (e.g. Vincent and Meneguzzi, 1991) and a Krylov oeih time (Edwards et al., 1994). The pseudo-
spectral method is computationallgfieient and highly accurate for spatial derivatives, while Krylov method is
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a stiffly stable explicit method with an adaptive step-size to na@in& specified error tolerance. We consider only
two-dimensional flow at a Reynolds numbiRe = 200 (based on the free stream mean velocity). At this Reynold
number the flow is still approximately two-dimensional, andharacterized by strong periodic vortex shedding.

In both the potential and vortical flow simulations the resm® of cylinderj is modelled as a forced simple
harmonic oscillator,

5,0+ Sy, 0 + Ry,) = Fi(0/m ®)

wherem is the mass (including added mas$)s the logarithmic decrement (i.e. mechanical damping),is the
natural frequency anH; is the total fluid force (vortex and potential) on cylindeWe assume that all cylinders are
mechanically identical (i.em, § andwy are the same for all cylinders). The cylinders are free eith®scillate in
both directions, or only in the direction transverse to treamflow. By coupling the potential flow force calculation
to the oscillator equations (8), and introducing an ardfitime lagz in the fluid forcing, i.e. Fj(t) — F;(t - 1),
one can derive a set of ordinaryfldirential delay equations to model the negative dampingliilgy. In the vortical
flow case the cylinder motion is coupled to the fluid motion pylating the mask functions(x, t) according to the
coupled oscillator equations (8).

3. Results

3.1. Configuration

We investigate the flow through inline square arrays withtahpto diameter ratid®>/D = 1.5 as shown in fig-
ure 1(a,b). The periodic unit cell contains between four avehty-five complete cylinders (depending on the case),
and either all cylinders can move in both streamwise andstense directions (multiple degrees of freedom), or we
allow only transverse motion of the central cylinder (sendegree of freedom). All vortical simulations are done at
Reynolds numbeRe= 200.

It is important to note that there are two distinct definisaf mean velocity: the mean velocity over the entire
domain (including the cylinderd).,, and the velocity averaged across the gap between theltlgp&k, corresponds
to the mean velocity upstream of a tube array, and measuwesttd mass flux through the array, whilg measures
the typical velocity through the array. If all flow must paksough the array (i.e. for an infinite array, or for ducted

arrays)
P .
Ug = muw =3U, if P/D=15. 9
Note that the Reynolds number basedyyis also largerRg = 3Re= 600 in our case.
As emphasized below, relation (9) dasst hold for an isolated bundle of tubes. In this case some of tkarm

flow can by-pass the array due to the blockaffjeat andJy is correspondingly lower.

3.2. Potential flow

We first consider the case of potential flow, where the peciadit cell contains % 2 complete cylinders free to
oscillate in both the transverse and streamwise direc(ibrestransverse-only mode is stable). Since the tube array
does not have a vibrational instability mode for zero phasge(bnly a divergent mode), we perform a nonlinear
stability analysis for a range of non-zero phase lags fromTBO degrees. In order to determine the critical velocity
for each phase lag we simply solve the relevant delay equa(tescribed ig2) for the system of coupled oscillator
ordinary diferential equations, with the fluid forcing for each cylindietermined by the numerical potential flow
calculation. The results for the critical velocity dheientC do not depend on the mass damping ratio, at least in the
range [01, 100], and are not significanthffeacted by using more than four cylinders in the periodic uelit ¢

Figure 2 shows that the potential flow results for the criticglocity codficient,C ~ 5.2 for phase lag® €
[40, 140], is surprisingly close to the experimental data. Fegushows that that potential flow results are within the
experimental scatter for square arrays for phasedagpl0, 140]. However, as we will see below, the actual phase lag
measured in the Navier—Stokes simulations is about,8Bich corresponds to a significantly larger~ 7.6. This
suggests that the potential flow results, although acculataot adequately approximate the vortical flow dynamics.
In addition, the vibrational mode is strictly streamwise tfoe potential flow, with adjacent cylinders vibrating anti
phase. This is quite fferent from the fully developed whirling mode seen in volititaws where the vibration
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Figure 1: (a) Tube configuration for a square array of cinceldinders. We consider only inline flow. (b) Vortex wake dynics for two-
dimensional flow aRe= 200 with all cylinders fixed.

mode is essentially transverse (see 4(b)). This showslikgiliase lag does not correctly model thie@ of vortex
shedding, even though it gives a reasonable estimate feritital velocity.

This result appears to be inconsistent with Paidoussis €t%82)'s potential flow calculations, who found critical
velocities three to five times higher than the experimensdlies. This discrepancy may be due to the fact that
Paidoussis et al. (1982) apparently made their linearlgtabnalysis using small (non-periodic) arrays assumiag t
the gap velocitydy = P/(P—-D)U.. However, as mentioned earlier, this relation does not fosliolated arrays, due
to the blocking &ect which diverts the mean flow around the array. In fact, bliation significantly overestimates
the gap velocity for isolated arrays (by a factor of aboubXds a 3x 3 array withP/D = 1.5), which would therefore
overestimate the critical velocity by a factor of abolB® ~ 2.4. Note that this overestimation is not improved by
using larger arrays.

3.3. Vortical flow

We now consider numerical solutions of the full 2-D Navieek®s equations @&e = 200, which allows us
to directly measure the parameters in (3) and to performineat stability analyses including vorticaffects. At
Re= 200 the flow is still approximately two-dimensional, and licacterized by strong periodic vortex shedding at
a Strouhal frequencg t= 1.08. In order to ensure that we are well outside the domaineoféhonant vortex-induced
vibration instability, we choose the natural frequencyhef tylinderfy = 1, mean flow velocityd,, = 5 (Ug = 15),

6 = 0.1 and mass damping ratins/(pD?) = 1.0 . Since the Strouhal frequen8yt= 1.08 atRe= 200, this choice of
parameters ensures that we focus on the non-resonant dislidelegimeU* > U, > 1/St We consider periodic
unit cells containing betweenx22 and 5x 5 cylinders (see figure 1(a) and figure 4(a)).

When the cylinders are fixed figure 1(b) shows that the vortgses do not undergo complete vortex shedding (i.e.
complete detachment of the shed vortices). Neverthelessyake develops periodic transverse oscillations which
produce a periodic oscillation of the lift force with an amypde of 0.333 (normalized bygy) and frequency 1.08.
Cylinder motion generates complete vortex shedding, amtd von Karman vortex shedding in the isolated cylinder
case (see Williamson and Govardhan, 2004) and in the rotalbedarray configuration (see Price et al., 1995). This
observation indicates that the vibrational instabilityaiform of singular perturbation that qualitatively chantfes
wake dynamics.

When the central cylinder is free to move in the transversectlon, and all other cylinders are fixed, it undergoes
large periodic oscillations. Figure 3(b) confirms that tloetex wake dynamics is strongly modified by the cylinder
motion. The wake is stabilized (i.e. it becomes essent@ilgntial flow) at the narrow gap side, while the wide gap
side allows for complete vortex shedding. Comparing figl@d and figure 4(a) suggests visually (as confirmed
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Figure 2: Nonlinear stability calculations for periodicteotial flow with 2x 2 unit cell. The potential flow value of the critical velocitpeficient
C is close to the experimental data for a wide range of phase lag

by quantitative calculations) that thex33 periodic unit cell captures the main vortex wake dynamigigure 6(a)
shows that the vortex contribution to the total lift is larggbout twice as large in magnitude as the contribution
from the potential flow. However, since the contributiorafirthe vorticity and potential flow are exactly anti-phase,
the maximum amplitude of the total lift force is is similar tioat of the potential flow alone. It is important to
remember, however, that the potential force is proportitmaylinder displacement, and so the vortex force will
strongly dominate for small amplitude vibrations. The eartorce is anti-phase with the cylinder motion (and hence
the potential force) because a positive vortex is shed fl@idwer side of the cylinder when cylinder displacement
y(t) is maximum, thus generating a strong downward force. Thedmental dierence between the potential flow
and vortical flow is illustrated by figure 3(c), which showsithlvortex shedding reverses the sign(fy), breaks
monotonicity and introduces significant hystere€is depends on the velocity of the cylinder as well as its pasjtio
In particular, maximum lift force is achieved for intermaté (not maximum) displacements of the cylinder in the
vortical flow.

Itis interesting to check whether the negative dampinghéR) is consistent with the Navier—Stokes simulation
results. Curve fitting shows that the cylinder displacenaet lift force (normalized by the gap velocityy = 3U.,)
are respectively

0.27 sin 11wnt,
—0.7y(t - 0.03)- 0.19 sinGtU,/D 2xt).

y(t)
CL(t)

These results confirm that, as required for the negative dagmipstability mechanism (3gC_/dy = -0.7 < 0 and
there is a phase lag between the fluid force and the cylindéomof ¢ = wr = 7 — 0.2 (taking into account the
change in sign). Note the distinct Strouhal frequency dbution toC, (t) due to vortex shedding.

However, the actual numerical results of the Navier—Stalesilation are inconsistent with negative damping
theory, even in the ideal case when only a single tube is frebrate transverse to the mean flow and the relevant
parameters are measured precisely. Substituting the alimuivalueCp = 0.27,u = T Uy/D = 0.45 anddC_/dy =
—0.7 into (3) gives a critical velocity ’;, = 89, which is much larger than the actual valg, = 8.7+ 0.1 measured
for the Navier—Stokes simulation, which is in turn much &rthan the experimental value of abaljf; ~ 3.4. These
results suggest that considering only a single (transyeibeational mode significantly overestimates the critica
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Figure 3: Flow induced vibration in an inline tube array wRpD = 1.5. The central cylinder is free to move in the transversectioe only.
(a) Potential flow streamlines. (b) R2OO vorticity (red is positive, blue is negative). (c) Comipan of lift force (normalized byJg) as a function
of cylinder position for potential flow and Navier—Stokeswflat Re = 200. The lift force for the Navier—Stokes flow has been awedagver
many periods of cylinder oscillation. The dotted line-€ (y) for the potential flow and the arrows give the direction offrjer motion (note
hysteresis).

velocity. Figure 5 shows each of these results comparedthétiexperimental data.

On the other hand, if all cylinders are free to vibrate in baditections, the 2-D Navier—Stokes simulation gives
estimates for the critical velocity in good agreement with experimental data for a wide range of mass damping
ratios, as shown in figure 5. Although these results wereitztted for a fixed Reynolds numb&e= 200, they should
be relatively robust as the force amplitudes do not depensitsesly on Reynolds number once vortex shedding has
developed. It is interesting to note that tingial instability at onset is in fact streamwise (as in the potdritow
case), although the vibration quickly switches to an esantransverse (or, more precisely, whirling) mode, as
observed in experiments. This may explain why linear stgtahalysis based on an anti-phase whirling mode have
not successfully predicted the critical velocity in inliagays (Whiston and Thomas, 1982).

Itis instructive to separate the contributions to the flwicte from the potential and vortical parts of the flow. Fig-
ure 6(a) shows the total lift force compared with its potairdind vortical parts. This decomposition is done during the
Navier—Stokes simulation by first calculating the totakfBand then subtracting the potential force contributidn ca
culated based on the instantaneous position and velodheafylinder using the charge simulation method described
earlier. A curve fit shows that vortex force is almost exaotly of phase with the cylinder motion,

CL VORTEX(t) = —2y(t - 001)— 0.203 Sin(St UOO/D 2nt + 003) (10)

Because the mass damping ratio is relatively small, the il of motion is largeA = 0.27), and the size of the
potential force is also correspondingly large. Despiterthatively large potential force it is clear that the totaitde
is controlled by its vortical component, apart from a smhlwege in amplitude.

We now propose a physical explanation for the phase lag, @eégough estimate for its magnitude. If we assume
that the vortex force is generated by a vortex of strekigifDR€e"? shed at speeld in a direction 48to the mean flow
direction (wherdJg is the mean speed in the gap between cylinders), then themmaxiift force magnitude should be
approximatelyC, vorrex = 1/ V2Re"?/Uy. For the case presented here, this gi@esortex ~ 0.667, in reasonable
agreement with the observed value4l from equation (10). (In comparison, the potential f@c@orentiaL = Y for
tube arrays with?/D = 1.5.) Note that this approximation is strictly valid only fava-dimensional flows at moderate
Reynolds numbers. The phase shift may be estimated by ribtghe vortex shedding begins at maximum cylinder
amplitude (minimum gap). However the vortex initially meweertically (generating no lift). The lift is maximum
when the vortex moves below the cylinder into the fast doveash flow. This give®yorex ~ 7/8 D/Ug w ~ 0.18
in our case, in reasonable agreement with the observed 0&2ughe 18 of the circumference estimate was used
based on observing flow animations). This estimate agrelbsig experimental observation thak D/Ug (Blevins,
2001).

Finally, we check that the cylinder is indeed stable whenddronly by the potential part of the force, even when
the flow itself is vortical. Figure 6(b) shows the cylindespliacement as a function of time when forced by the total
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Figure 4: (a) Vorticity field aRe= 200 for a 5x 5 periodic unit cell with the central cylinder free to movetfire transverse direction. (b) Cylinder
trajectories for a & 5 periodic unit cell with all cylinders free to move.
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Figure 5: Potential flow and 2-D Navier—Stokes calculatiomspared with data and theory. Results are normalized edpect to the gap velocity
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Figure 6: 2-D Navier—Stokes simulation results for:a3periodic array with the central cylinder free to move in ttemsverse direction only and
a mass damping of one. (a) Total lift compared with its pasbraind vortical parts. (b) Cylinder amplitude when cylind forced by the total
force, only the potential force, or only the vortical force.

force, the potential force alone and the vortical force alorhis confirms that the overall vibrational mode is enyirel
due to the vortical component of the force, even though therg@l force is of comparable magnitude to the total
force. The crucial contribution of the vortex wake is to sliife force anti-phase to the cylinder displacement, and
to introduce a new Strouhal frequency component to the fok@wever, it is important to remember that in this
case only the central cylinder can move, and only in the W@nse direction. When all cylinders can move ihiéial
instability is potential in nature (although the fully-ddeped whirling instability is strongly vortical).

4. Conclusions

The results presented here have helped to untangle theablestex shedding and potential flow in the non-
resonant fluidelastic instability of tube arrays. We havaahthat vortex wake dynamics (especially vortex shedding)
is the dominant factor determining the vibrational stayitif inline tube arrays, even in the non-resonant case.

In particular, we have shown how flow asymmetry (a potent@h feffect) ensures that the vortex-generated
lift force dC_/dy < 0, which is necessary for the negative damping instabiligchanism. The negative damping
mechanism also requires that the fluid force lag behind thedsr motion and our results allowed us to measure this
phase lag, and to understand why it is proportion@tt)g, as observed experimentally. However, we found that the
simple negative damping theory is inconsistent with thelts®f the 2-D Navier—Stokes simulations, even when the
relevant parameters measured from the simulation are ogaedict the critical flow velocity. Moreover, we found
that the critical flow velocity measured in the 2-D Naviewsi&s simulations for a single cylinder moving transverse
to the flow is much higher than that measured in experimentsohtrast, nonlinear stability analysis using the 2-D
Navier—Stokes simulations of the case where all cylindezsfiize to move in both the streamwise and transverse
directions gave results consistent with the experimergs avarge range of mass damping ratios, from 1 to 100.

In order to check that the fully-developed vibrational aistity is controlled by the vortical part of the total fluid
force (and that the potential part does not play a direct) neke performed 2-D Navier—Stokes simulations where
the cylinder is forced either by the total force, or by thegmtial force alone, or by the vortical force alone. These
numerical experiments confirmed that the vibrational ipi$itst is due to the vortical part of the force, and that the
vortex shedding ensures that the force is approximatelypdaise to the cylinder motion (together with a Strouhal
frequency component).

Surprisingly, we found that the potential flow simulatiorzvg reasonably accurate predictions of the critical flow
velocity for a wide range of phase lags, provided all cylirsdre free to oscillate in both streamwise and transverse
directions. The instability mode in this case is essentisiteamwise, with adjacent cylinders moving anti-phase.
We conjecture that the accuracy of the potential flow catauta is due to the fact that the initial instability mode in
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the 2-D Navier—Stokes simulations is also streamwisedath the fully-developed instability mode is the so-called
whirling mode, as observed in experiments). This sugghstyiotential flow calculations may be far more accurate
than previously thought, provided the gap velocity is meadworrectly and that the cylinders are free to vibrate in
the streamwise direction. It also suggests that the limestability analysis of tube arrays should assume a stresenwi

anti-phase mode, rather than the usual whirling (or trarsyenti-phsase mode.

In summary, we found that 2-D Navier—Stokes simulationsesfqalic arrays of cylinders give good predictions
of the critical flow velocity for the vibrational instabyitof inline tube arrays over a wide range of mass damping
ratios. The fact that the potential flow stability analydsoayives reasonably good results for the critical flow vigjoc
is surprising and requires further analysis, focusing @nftlim of the initial instability mode. The initial instakit
mode is likely to be qualitatively fierent from the fully-developed mode because the dynamitteeofvake changes
qualitatively in inline arrays once the tubes start to vibrédirom jet-like to von Karman-like with complete vortex
shedding).
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Figure captions

Figure 1: (a) Tube configuration for a square array of cincajdinders. We consider only inline flow. (b) Vortex
wake dynamics for two-dimensional flowRe= 200 with all cylinders fixed.

Figure 2: Nonlinear stability calculations for periodictential flow with 2x 2 unit cell. The potential flow value of
the critical velocity cofficientC is close to the experimental data for a wide range of phase lag

Figure 3: Flow induced vibration in an inline tube array wRfD = 1.5. The central cylinder is free to move in
the transverse direction only. (a) Potential flow streagdin(b) Re-200 vorticity (red is positive, blue is negative).
(c) Comparison of lift force (normalized by,) as a function of cylinder position for potential flow and v
Stokes flow aRe = 200. The lift force for the Navier—Stokes flow has been avedaayer many periods of cylinder
oscillation. The dotted line isCy (y) for the potential flow and the arrows give the direction dfrayer motion (note
hysteresis).

Figure 4: (a) Vorticity field aRe = 200 for a 5x 5 periodic unit cell with the central cylinder free to movetire
transverse direction. (b) Cylinder trajectories fora 5 periodic unit cell with all cylinders free to move.

Figure 5: Potential flow and 2-D Navier—Stokes calculatiom&pared with data and theory. Results are normalized
with respect to the gap velocityy. (Modified from Blevins (2001) Fig. 5-6.) Figure 6: 2-D Naw&tokes simulation
results for a 3« 3 periodic array with the central cylinder free to move in trensverse direction only and a mass
damping of one. (a) Total lift compared with its potentiatiarortical parts. (b) Cylinder amplitude when cylinder is
forced by the total force, only the potential force, or orilg vortical force.
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