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Incidence of infection time series data for the childhood diseases measles, chicken
pox, rubella, and whooping cough are described in the language of multifractals.
We explore the potential of using the wavelet transform maximum modulus
(WTMM) method to characterize the multiscale structure of the observed time
series and of simulated data generated by the stochastic SEIR epidemic model.
The singularity spectra of the observed times series suggest that each disease
is characterized by a unique multifractal signature, which distinguishes that
particular disease from the others. The wavelet scaling functions confirm that
the times series of measles, rubella and whooping cough are clearly multifractal,
while chicken pox has a more monofractal structure in time. The stochastic SEIR
epidemic model is unable to reproduce the qualitative singularity structure of
the reported incidence data: it is too smooth and does not appear to have a
multifractal singularity structure. The precise reasons for the failure of the SEIR
epidemic model to reproduce the correct multiscale structure of the reported
incidence data remain unclear.

1. Introduction

Accurate modelling of the transmission of vaccine-preventable childhood
infectious diseases is of great importance as morbidity and mortality rates continue
to be significant, particularly in some developing nations1. Our understanding
of the origin of recurrent outbreaks2,3 and changes in the period between
successive outbreaks4–6 has improved substantially in the last few decades.
Further developments in our understanding of these dynamics will enhance our
ability to identify models that can guide the design of effective control and
eradication strategies7.

In this paper we focus on two fundamental questions related to the statistical
analysis of epidemiological times series. First, is it possible to identify a disease
from a statistical analysis of incidence time series data alone? Secondly, does the

Interface 1–23; doi: 10.1098/rspa.00000000
November 2011

This journal is c© 2011 The Royal Society



2

standard susceptible-exposed-infectious-recovered (SEIR) epidemic model capture
the multiscale time structure of the observed incidence data?

Power spectra (based on the Fourier transform) are traditionally used to
characterize the frequency content of a signal, but they provide no information
about the frequency content at a particular time. That is, Fourier methods work
well for stationary time series, but not for non-stationary signals, where the
frequency content changes over time. Scalograms based on the wavelet transform
provide simultaneously both time and frequency information, which is important
information for epidemiological data where the frequency content is typically
complex and non-stationary in time.

Wavelet analysis can also characterize the smoothness of time series by using
the wavelet transform maximum modulus (WTMM) technique8–10 to construct
the singularity spectrum associated with the fractal or multifractal structure of
the data. The singularity spectrum is a particularly useful tool for analyzing
and comparing time series with irregular (possibly chaotic) multiscale structure.
The WTMM method has been used to analyze a wide variety of time series data
from biological systems, such as electrocardiographic (ECG) signals11, human gait
recordings12, electroencephalographic (EEG) signals13, and functional magnetic
resonance imaging (fMRI) time series14. In particular, it has been suggested that
the width and peak value of the singularity spectrum of ECG signals are influenced
by disease and ageing, and may therefore have diagnostic value. Indeed, in a recent
article Chiu et al15 claim that a particular heart drug can actually restore the
normal singularity spectrum of heart beat time series in patients with advanced
congestive heart failure! These investigations suggest that singularity spectra
constructed using the WTMM method are a valuable tool for understanding and
classifying the statistics of complex biological time series.

A number of studies have already used wavelet based techniques to analyze
recurrence in epidemiological time series16,17. They used local wavelet power
spectra to investigate patterns of recurrence in the incidence of infection time
series for childhood diseases, however they did not look for any associated fractal
structure.

In this paper we use wavelet-based multifractal analysis to characterize and
understand the incidence of infection time series for a number of important
childhood diseases. We also investigate whether synthetic data generated by
the stochastic SEIR epidemic model can be made to match qualitatively the
singularity spectrum (and hence multifractal structure) of the observed time series
data for common childhood diseases. In brief, our aims are to determine whether
infectious disease time series can be characterized by “multifractal signatures” and,
if so, whether the standard stochastic SEIR model can reproduce these signatures.
We show that each infectious disease does indeed appear to be characterized by
a unique multifractal signature, but we have not been able to reproduce these
signatures with the stochastic SEIR model. We believe that this is the first study
to apply the language of multifractal analysis to epidemiological time series.

Section 2 introduces the wavelet based multifractal formalism, section 3
describes the epidemiological time series and stochastic SEIR model. In section 4
the main results are presented and a brief discussion and conclusions are given in
section 5.
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2. Wavelet theory and data analysis

The wavelet transform of a signal s(t) is given by

s̃(a, b) =

+∞∫

−∞

s(t)ψa,b (t) dt (2.1)

where the “mother wavelet” ψ(t) has been shifted to time b and dilated or
compressed to scale a,

ψa,b(t) =
1

a1/p
ψ

(

t− b

a

)

. (2.2)

In this definition, p= 2 gives L2 normalization, which is used when calculating
wavelet power spectra, while p=1 gives L1 normalization, which is used when
measuring local regularity. A large amplitude wavelet coefficient s̃(a, b) indicates
that at time b the signal has significant variation at frequency 1/a.

The choice of analyzing wavelet (mother wavelet) is guided by the application,
as well as by the structure of the data to be analyzed. Complex-valued wavelets,
such as the Morlet wavelet, are ideal for capturing a signal’s oscillatory behaviour
(e.g., local wavelet power spectra) as they provide information about both
amplitude and phase. Real valued wavelets, such as the Gaussian family of
wavelets, return only a single component making them well suited to measure
local regularity (i.e., local singularity strength). The appropriate choice of mother
wavelet will be discussed separately for the computation of the wavelet power
spectrum and the measurement of local regularity.

Power Spectra

The wavelet power spectrum, also known as the scalogram, is defined as

P (a, b) = |s̃(a, b)|2 , (2.3)

and the total energy of a signal s is its wavelet power spectrum integrated over
all scales and times,

E =

∫
∞

−∞

∫
∞

0
P (a, b) da db . (2.4)

To compute scalograms we adapted the on-line wavelet toolbox provided by
Torrence and Compo18, which includes a guide for wavelet spectral analysis.
Before taking the wavelet transform of the time series data, we normalize the
data by subtracting its mean and dividing by its standard deviation. It can
be shown that for Gaussian white noise with mean zero and variance one the
expectation of P (a, b) is one. Thus, using the previous normalization, P (a, b)
directly measures the power of the scalogram relative to white noise. This provides
a useful diagnostic for noisy data since we can say, with 95% confidence, that the
part of the wavelet power spectrum above the P (a, b) = 2 contour is significant
(i.e., not due simply to random white noise fluctuations). We plot this 95%
confidence contour on all scalogram plots to identify the most significant features.
Note that shifting by the mean and normalizing by the standard deviation also
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makes it easy to compare the periodic structure of different data sets (provided
the sampling rate is also taken into account).

We approximated continuous wavelet transforms using the fast Fourier
transform (FFT). If the data are not periodic, the FFT introduces edge effects
(discontinuities at the edge of the time series). To reduce this problem, zeros were
added to both ends of the time series before transforming (this is known as zero
padding). Two contours identifying the so-called cone of influence of the edge
effects are plotted on the scalograms to indicate which areas in position and scale
may be influenced by non-periodicity of the data; between these contours, edge
effects are considered negligible.

Consistent with Grenfell et al.17 we chose the Morlet wavelet,

ψ(t) = cσπ
−1/4e−

1

2
t2eiω0t, (2.5)

to compute scalograms for each of the data sets. For the Morlet wavelet with
ω0 =6 the value of the Fourier period is λ≃ 1.03, so scale and period are nearly
equivalent18. This allows us to easily plot period versus time (rather than scale
versus time). More importantly, Heisenberg’s uncertainty principle means there
is a tradeoff between localization in frequency and and localization in time. The
Morlet wavelet provides excellent frequency resolution at the expense of temporal
resolution. This trade-off is near-optimal for scalograms, but better temporal
resolution is needed for analyzing local singular structure, as we explain in the
following section.

Singularity Spectra

The decay of wavelet coefficients is determined by the local regularity of
the signal, and therefore the local regularity of a signal may be determined by
measuring the rate of decay of the wavelet coefficients. This is the basis of the
WTMM method.

The Lipschitz (or Hölder) exponent, α, is a measure of the local regularity of
a function. A function, f(t), satisfies a Lipschitz condition of order α at a point,
t, if there is a non-negative real number k such that

|f(t+∆t)− f(t)| ≤ k|∆t|α as ∆t→ 0. (2.6)

f being Lipschitz of order 0 is equivalent to being bounded. If k=0 then the
Lipschitz condition is equivalent to the ordinary definition of continuity. The local
Hölder exponent α(t) is defined to be the maximum exponent for which the above
condition holds, i.e., α(t) = sup{α0 : f is Lipschitz of order α0 at the point t}.
The function f(t) is said to be singular at the point t if α(t)< 1 and the strength
of the singularity is greater if α(t) is further from 1.

If −1/2<α< 0 the data are persistent or positively correlated, with long-term
memory effects, while if −1<α<−1/2 the data are anti-persistent or negatively
correlated (α=−1/2 implies white noise, i.e., the temporal autocorrelation
function is a δ-function).

When a persistent time series increases/decreases from tn−1 to tn then it is
expected to increase/decrease from tn to tn+1. Conversely, for an anti-persistent
time series an increase is expected to be followed by a decrease. The smoothness
of a function as measured by its local Hölder exponent is summarized in table 1.
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Hölder exponent α Singularity type Example
α> 1 continuous, differentiable Smooth curve
α=1 continuous, differentiable almost everywhere
0<α< 1 continuous, non-differentiable Brownian motion: α=1/2

−1<α≤ 0 discontinuous, non-differentiable Heaviside function: α=0
Gaussian noise: α=−1/2

α≤−1 not locally integrable Dirac pulse: α=−1

Table 1. Interpretation of Hölder exponent α in terms of the local regularity of a function. Note
that if f(t) has exponent α then df/dt has exponent α− 1 and

∫
t

0
f(u) du has exponent α+ 1.

If f is Lipschitz α uniformly (for the same k) in a neighbourhood of a point t, and α>n (n a
positive integer), then f is n-times continuously differentiable in this neighbourhood9.

A signal is said to have a multifractal structure when the Hölder exponent
varies in time. In contrast, a monofractal signal has the same Hölder exponent at
each time point in the signal. The spectrum of singularities of the entire signal
can be estimated using the Wavelet Transform Maximum Modulus (WTMM)
Method9 described below.

A WTMM9 is a point (a0, b0) in scale-time space at which |s̃(a0, b)| attains a
strict local maximum at a fixed scale a= a0. This implies, in particular, that

∂s̃(a, b)

∂b

∣

∣

∣

∣

(a0,b0)

= 0. (2.7)

The existence of a singularity at a point b= b∗ means that there is a sequence of
local wavelet maxima at each scale that converges to the point b∗ as scale a0 → 0.
Only the largest amplitude WTMM in each interval of size a0 is retained at each
scale a0, and these WTMM are connected across scales to form the WTMM
lines. The rate of decay of the wavelet moduli along the WTMM lines with
decreasing scale estimates the pointwise Lipschitz regularity. If |s̃(a, b)| has no
modulus maxima at fine scales, then f is locally regular.

The distribution of singularities is described by the singularity spectrum, D(α),
which represents the proportion of Lipschitz α singularities that occur at any time
for a given scale a. The regularity of a signal is thus characterized by the regularity
of its subsets.

Define a set {bn(a)}n∈Z to be the temporal positions of the local maxima at
a fixed scale a. Now, define a partition function Z:

Z(a, q) =
∑

n

|s̃(a, bn)|
q. (2.8)

This function measures the sum at a power q of all the aforementioned local
modulus maxima. The wavelet itself defines the shape of the partitions and the
scale parameter dictates the size. WTMM are used to indicate how the partitions
should be taken at each scale. The scaling exponent τ(q) measures the asymptotic
decay of Z(a, q) at fine scales a for each q ∈R.

τ(q) = lim inf
a→0

logZ(q, a)

log a
. (2.9)
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The scaling exponent τ(q) is the Legendre transform of the singularity spectrum
D(α)9. Jaffard10 generalized the result of8 which relates the scaling exponent,
τ(q), to the singularity spectrum.

Suppose the support of D(α) is Λ= [αmin, αmax]. Let ψ be a wavelet with
n> αmax vanishing moments. If f is self-similar then:

τ(q) =min
α∈Λ

(

q

(

α+
1

2

)

−D(α)

)

. (2.10)

Computing the derivative of equation 2.10 reveals q(α) = dD
dα . From this

computation and using the fact that τ(q) is at a minimum we derive that D(α) is
a convex function, and τ(q) is an increasing and convex function. For the Legendre
transform to be invertible, D(α) must be convex. Details of the proof are given
in10. Note that the negative of the scaling function is used in the computation
giving a concave spectrum,

D(α) =min
q∈R

q
(

α+
1

2

)

− τ(q). (2.11)

D(α) is the fractal dimension of the set with Holder exponent α. If the set of
points where the signal is Lipschitz/Holder α is an empty one, by convention
D(α) =−∞.

A closer look at equation 2.10 shows that the maximum or peak of the
singularity spectrum occurs at q =0,

−τ(0) =max
α

f(α). (2.12)

The right side of D(α) is computed from negative q, and the left from positive
values of q.

Classifying a signal as either monofractal or multifractal is an important, but
delicate, aspect of multifractal analysis. In principle, the singularity spectrum of a
true monofractal should be a single point, D(α0) = 1. However, the wavelet based
multifractal formalism often generates spurious data points in the singularity
spectrum which cause the singularity spectrum of a monofractal to have a finite
(although small) width. This may lead to the false conclusion that a signal is a
multifractal, when it is in fact a monofractal.

Notice from equation 2.10 that there is an important linear relationship
between τ(q) and the Hurst exponent19, h=α0 + 1/2, for monofractal signals,

τ(q)≈ qh− 1. (2.13)

Therefore, linear behaviour of τ(q) (and the narrow width of the singularity
spectrum) indicates the presence of a monofractal, while non-linear behaviour
(and a wide singularity spectrum) indicates multifractality.

Numerical implementation of the WTMM method

The numerical analysis tools required to implement the WTMM method are
modifications of codes which are readily available from Wavelab20, an open source
wavelet toolbox for signal processing.

We suggested above that real wavelets are an appropriate choice for examining
the local regularity of a signal. To choose the best wavelet for the WTMM method
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amongst the real wavelets available we consider various intrinsic properties of the
mother wavelet.

A function ψ(t) is said to have p vanishing moments if

+∞∫

−∞

tkψ(t)dt= 0 (2.14)

for 0≤ k < p. Wavelets with n vanishing moments can only detect the regularity,
α, of f for α<n. Theorem 6.5 of Mallat’s book9 proves that choosing a Gaussian
wavelet guarantees that all maxima lines propagate to the finest scales. The family
of Gaussian wavelets includes all derivatives of the Gaussian function. They have
infinitely many vanishing moments and the nth derivative of a Gaussian can
measure Lipschitz exponents up to order α< n.

It is advantageous to choose a wavelet with a high number of vanishing
moments to measure higher orders of regularity, but increasing the number of
vanishing moments also increases the number of WTMM lines in the cone of
influence21. The presence of many lines makes it more difficult to track the
WTMM lines and accurately detect the singularities present in the time series.
Therefore, the number of vanishing moments should be kept to a minimum
consistent with the expected regularity of the signal to be analyzed.

The childhood infection time series are highly oscillatory with many isolated
singularities. Therefore, choosing a wavelet with minimal effective compact
support increases the resolution in our analysis of the singularity structure because
the larger the effective compact support is, the more wavelets there are that
intersect a particular singularity. As the order of the Gaussian derivative increases
the number of wavelet oscillations increase. To find the correct balance between
having enough zero crossings and a minimal compact support, a range of Gaussian
wavelets were tested on the infectious disease time series.

3. Data sets

Our study compares the multifractal singularity structure of incidence time
series for several childhood infectious diseases (measles, chicken pox, rubella, and
whooping cough, from several geographic locations) with synthetic data produced
by the stochastic SEIR model.

Reported incidence time series

The time series used in this study can be found at the International Infectious
Disease Data Archive (IIDDA), an online resource for infectious disease data22.
In the rare instances where data points were missing, the values were interpolated
with cubic splines so as to minimize any effects on the singularity spectrum.
Any negative interpolations were set to zero. We analyzed data for four common
childhood infectious diseases (measles (meas), rubella (Rub), whooping cough
(WC) and chicken pox (CP)) from four Canadian provinces (British Columbia,
Saskatchewan, Manitoba and Ontario), two American cities (New York and
Baltimore) and two British cities (London and Liverpool).
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Figure 1. (a) Reported monthly measles cases in Ontario, 1904–1989. (b) Corresponding wavelet
power spectrum computed using the Morlet wavelet. The 95% confidence level (compared to
Gaussian white noise) is indicated by black contours. The cone of influence indicates that part
of the wavelet power spectrum that is contaminated by end effects.

Figure 1 shows (a) measles incidence in Ontario (1904–1989) and (b) the
corresponding wavelet power spectrum. High amplitude wavelet coefficients are
isolated by dark contours and reveal a distinctive period one recurrence in the
time series. An annual rise in infections is attributed to an increase in contact
rates at the beginning of the school year3,4, while the presence of significance
contours at non-integer values of the period indicates non-seasonal recurrence23.
After mass measles vaccination was introduced in the late 1960s, the number of
cases dropped dramatically. A distinct decrease in the number of high amplitude
wavelet coefficients is apparent from the scalogram.

A strong yearly recurrence of chicken pox is unmistakable in figure 2. These
monthly data were collected from 1928–1972 in New York City.

The incidence of whooping cough, as reported in Ontario from 1904–1989, is
plotted in figure 3 (a). The wavelet scalogram in figure 3(b) demonstrates period
3-5 year recurrence after 1945.

Figure 4(a) shows monthly incidence of rubella in Ontario from 1929-1989.
The scalogram illustrates complex patterns of recurrence with both seasonal and
non-seasonal peaks.

Simulated incidence time series

The WTMM method was also applied to incidence data generated by the
standard stochastic SEIR epidemic model7,24. The SEIR model divides the host
population into compartments containing susceptible (S), exposed (E), infectious
(I), and recovered (R) individuals. Susceptibles have no immunity and can become
infected upon contact with an infectious individual. Exposed individuals have been
infected but are not yet infectious. Infectious individuals can infect susceptibles
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Figure 2. (a) Reported monthly chicken pox cases in New York City, 1928–1972.
(b) Corresponding wavelet power spectrum as in figure (1).

who they contact. Recovery is assumed to entail lifelong immunity. Assuming a
mass-action contact process, the mean-field in the large population size limit25 is
governed by the standard deterministic SEIR model7,26, which is specified by the
following set of differential equations.

Ṡ = ν(1− p)− βSI − µS (3.1a)

Ė = βSI − σE − µE (3.1b)

İ = σE − γI − µI (3.1c)

Ṙ= νp+ γI − µR (3.1d)

The total population size is N = S +E + I +R. ν is the birth rate, which varies
seasonally in reality27 but is usually assumed constant or very slowly varying4,28. p
is the proportion of individuals who are vaccinated before encountering infectious
individuals. µ is the per capita death rate (from “natural” causes; disease-induced
mortality is negligible for the diseases we consider here). If ν = µN thenN remains
constant (which was true in our simulations). β is the transmission rate, which is
typically time-varying for childhood infections (as a result of the aggregation of
children in schools in term-time3). In our simulations we used sinusoidal seasonal
forcing,

β = b0
(

1 + b1 cos(2πt)
)

. (3.2)

Thus, b0 is the mean transmission rate and b1 is the amplitude of seasonality. σ is
the (constant) rate at which exposed individuals become infectious (so the mean
latent period is 1/σ). γ is the (constant) rate of recovery, so the mean infectious
period is 1/γ. The basic reproduction number, the average number of secondary
infections caused by an infectious individual in a wholly susceptible population,
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Figure 3. (a) Reported monthly whooping cough cases in Ontario, 1904–1989. (b) The
corresponding wavelet power spectrum as in figure (1).

is7

R0 =
βσ

(γ + µ)(σ + µ)
. (3.3)

We implemented the stochastic SEIR model using the standard Gillespie
algorithm29 with event rates given by each of the terms in equations
(3.1). While the SEIR model ignores many aspects of real demographic and
epidemiological interactions, it nevertheless successfully captures many features
of real epidemics7,28.

Figures 5 and 6 show simulation time series and wavelet power spectra
for comparison with the reported incidence in the earlier figures. Figure 5 was
generated with parameter values appropriate for measles (R0 = 17, 1/σ =8 days,
1/γ =5 days, amplitude of seasonal forcing b1 =0.08) and a population of two
million. The scalogram in Figure 5(b) exhibits the same period one recurrence
observed for the Ontario measles data in figure 1, but shows significant period
2 recurrence which is not present in the Ontario data and fails to capture the
complexity of recurrence over larger intervals of time.

Figure 6 is based on a simulation of chicken pox dynamics (R0 =10.5, 1/σ= 8
days, 1/γ = 5 days, b1 = 0.08) and N = 10 million. Again, significant period one
coefficients reveal an annual pattern of recurrence in Figure 6(b). A similar pattern
was observable from the reported incidence of chicken pox in New York City shown
in figure 2.
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Figure 4. (a) Reported monthly rubella cases in Ontario, 1929–1989. (b) The corresponding
wavelet power spectrum as in figure (1).

4. Results

(a)Analysis of incidence of infection time series data

To select the optimal wavelet for the time series we computed the singularity
spectrum D(α) using Gaussian analyzing wavelets of increasing order with
q ∈ [−5, 5]. Figure 7(a) shows the spectra computed from the monthly Ontario
measles incidence. The figure is a representative example of convergence results
for measles data, but the location of the peak varies with geographic location. The
fourth-order Gaussian wavelet was the lowest order Gaussian wavelet for which
we observed convergence, and therefore was the optimal choice.

Figure 7(b) shows that D(α) for weekly reported chicken pox in Ontario is
also convergent, having similar peak locations and overall shapes for all orders of
wavelets tested. All of the available chicken pox, whooping cough and rubella data
also produced convergent spectra and confirmed that the fourth order wavelet is
an appropriate choice for comparisons of the observed time series.

Figure 8 shows that the distribution of singularities is nearly identical for
the chicken pox time series from British Columbia, Saskatchewan, Manitoba, and
Ontario. These results suggest that the nature of the disease itself may determine
the shape of the singularity spectrum. We propose that this characteristic shape
is the multifractal signature of the disease.

Figure 9 compares the singularity spectra for measles incidence in several
widely separated geographic locations. This figure shows that measles incidence
appears to have a distinctive singularity structure, regardless of location. All
of the measles singularity spectra share the same qualitative features: they are
all smooth on the top with a wide base (characteristic of a true multifractal
statistical structure in time). This distinguishes the measles spectra from the
chicken pox spectra which have pointed tops with a narrow base (suggestive of
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Figure 5. (a) Simulated weekly measles incidence, generated by the stochastic SEIR model with
basic reproduction number R0 = 17, mean latent period 1/σ = 8 days, mean infectious period
1/γ =5 days, seasonal amplitude b1 = 0.08, and a population of N = 2 Million. (b) Corresonding
wavelet power spectrum as in figure (1).

an approximately monofractal statistical structure in time). The scaling functions
produced by the chicken pox data sets are more linear than that of measles. This
indicates that chicken pox incidence is approximately monofractal while measles
incidence has a true multifractal structure (recall that τ(q) is a straight line for
a true monofractal). Indeed, measles incidence appears to be more singular in
structure than the chicken pox incidence, i.e., the peaks of the measles singularity
spectra are generally located at smaller values of α.

Figure 10 shows the same data as Figure 9, but the weekly Liverpool and
London time series have been aggregated four-weekly to approximate a monthly
reporting interval. This temporal aggregation shifts the peak of the spectrum to
the left and narrows the base of the spectrum (for both cities). It is evident from
a comparison of Figures 9 and 10 that changes in the reporting interval can have
non-negligible effects on the singularity spectrum. Comparisons of different data
sets should be made using the same (or a similar) reporting interval.

Extending the analysis to rubella and whooping cough reveals that each
disease is characterized by a unique singularity structure as evinced by the
qualitative differences between their respective singularity spectra. Figure 11
illustrates these differences between singularity spectra computed from monthly
reported incidence. The qualitative shape of the whooping cough spectrum
starkly contrasts the narrow pointed shape of the chicken pox spectrum and
their associated scaling functions confirm that the former exhibits a broader
multifractal structure. These comparisons, together with the very similar chicken
pox spectra from different geographical locations, support the idea that each
disease is characterized by a unique multifractal signature.

Comparisons of the spectra resulting from higher frequency (weekly) incidence
from each of the diseases confirm the presence of such signatures and an example
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Figure 6. (a) Simulated weekly chicken pox cases, generated by the stochastic SEIR model with
basic reproduction number R0 =10.5, mean latent period 1/σ =8 days, mean infectious period
1/γ =5 days, seasonal amplitude b1 = 0.08, and a population of N = 107. (b) Corresponding
wavelet power spectrum as in figure (1).
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Figure 7. Wavelet choice: the multifractal singularity spectra computed from (a) measles
incidence of infection data reported monthly in Ontario Canada from 1904–1989, and (b) the
number of chicken pox cases reported weekly in Ontario from 1925–1958. Gaussian wavelets
were tested against the data using an increasing number of vanishing moments. The order of
the wavelet and thus the number of vanishing moments of the wavelet is given by the number
of derivatives of the Gaussian (DG) function.

is presented in figure 12. This higher frequency (weekly) whooping cough data
produces a more distinctly multifractal spectrum than was observed in the
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Figure 8. (a) The singularity spectra for weekly chicken pox incidence in British Columbia (BC),
Manitoba (MB), Ontario (ON) and Saskatchewan (SK). (b) The associated scaling functions.

Figure 9. (a) Singularity spectra computed from reported measles incidence in Ontario Canada
(ON), London England (LON), Liverpool England (LPL), and Baltimore (BALT) in the United
States. (b) The associated scaling functions.

monthly case. Again, each disease appears to have a unique singularity structure
that can be identified qualitatively.

We propose that the singularity spectrum provides a distinctive signature
that may be used to characterize different diseases based solely on a statistical
analysis of incidence time series. An accurate numerical model should be able
to reproduce this multifractal signature, at least qualitatively. In section b we
investigate whether the stochastic SEIR epidemic model, which is the standard
mathematical model for the childhood diseases we have examined, is capable of
reproducing the multifractal structure we have detected in the incidence data.
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Figure 10. Effects of temporal aggregation of data on singularity spectra (a) and scaling functions
(b). The weekly measles incidence data analyzed in Figure 9 were aggregated four-weekly to
approximate monthly data.
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Figure 11. (a) Singularity spectra computed from monthly incidence for several different diseases:
whooping cough (WC), rubella (Rub), chicken pox (CP) and measles (Meas). (b) Scaling
functions.

Previous work4,23,28 has demonstrated that substantial changes in susceptible
recruitment rates (determined by birth and vaccination rates) induce dynamical
transitions. We therefore divided several time series into segments of
approximately constant recruitment and recomputed the singularity spectra for
each segment separately (we did this for whooping cough in London and measles
in London and Liverpool). Our investigation into the effects of these dynamical
transitions is restricted by the limitations of the WTMM method, which requires
large numbers of data points to accurately measure the local regularity of a time
series. For this reason, we considered only weekly data for this analysis.
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Figure 12. (a) Singularity spectra for weekly reported cases of whooping cough (WC), rubella
(Rub), chicken pox (CP) and measles (Meas). (b) Scaling functions.

Changes in London whooping cough incidence were strongly influenced by the
introduction of whole cell vaccination in 195730. Figure 13 shows the singularity
spectrum for each period of approximately constant susceptible recruitment. The
main qualitative difference is that the peak location for the full time series is more
negative (i.e., more singular) than the peak locations of those spectra generated
by the divided regions. Although the peak locations vary slightly, the qualitative
signature of the data is similar for all three time periods.

Figure 13. (a) Singularity spectrum for whooping cough in London England 1948–1991. The
data are split into sections of roughly constant recruitment as described in23. (b) The scaling
function.

Figure 14 shows the singularity spectra for weekly measles incidence in
(a) London and (b) Liverpool. The partition of the data was determined by
the time of introduction of measles vaccine. For Liverpool, the spectra for
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post-vaccination data lies further to the right (i.e., smoother) than for the
pre-vaccination era. This suggests that the introduction of the vaccine caused
the disease dynamics to become more regular. For London, the pre-vaccination
spectrum is much broader (i.e., more multifractal) than the post-vaccination
spectrum, but the peak location changes very little. This indicates that the
introduction of the vaccine made the time series more monofractal (i.e., regularly
irregular).

The pre-vaccination spectra from London and Liverpool are qualitatively
different. The reasons for these differences are unclear, though we note that the
birth rate was much higher in Liverpool and that this induced an annual cycle of
epidemics in Liverpool and a biennial cycle in London4.
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Figure 14. (a) Singularity spectrum for measles time series taken from London England 1950-
1988. (b) Singularity spectrum for measles time series taken from Liverpool England 1944-1988.
The data is split into sections of roughly constant recruitment as described by Bauch23.

(b)Singularity spectra of SEIR epidemic simulations

The WTMM method was applied to incidence times series generated by the
stochastic SEIR epidemic model with parameters typical of measles in the pre-
vaccination era (R0 =17, 1/σ =8 days, 1/γ = 5 days) and a population of two
million people. For comparison with the reported data, the optimal analyzing
wavelet is found by computing the singularity spectra using increasing orders, n,
of Gaussian analyzing wavelets.

Figure 15 shows singularity spectra for simulated measles incidence with
seasonal forcing amplitude b1 =0.08. The spectrum shifts monotonically to the
right as n increases from 2 to 16. The same result was found for simulations
with other seasonal amplitudes b1. The spectrum clearly does not converge
with increasing order of analyzing wavelet, and much of the DG16 spectrum
extends to α≥ 1, suggesting large subsets of the signal are in fact continuous
and differentiable.

The optimal wavelet analysis was repeated for simulated chicken pox incidence
with a population size of ten million (R0 =10.5, 1/σ =8 days, 1/γ =5 days) in
figure 16. The regularity of the simulated chickenpox data varies significantly over
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Figure 15. (a) Singularity spectra computed from measles simulations using wavelets from the
Gaussian family. The amplitude of seasonal forcing was b1 =0.08 with a population of two million
people. Derivatives of the Gaussian function are denoted DG and the order, or the number of
derivatives taken, is the same as the number of vanishing moments of the wavelet. (b) The
associated scaling functions.

time, so we have deliberately selected one of the less smooth regimes. Although the
simulation spectra seem to share the pointed peak characteristic of real chicken
pox data, the simulation data are much smoother. As for measles, the location
of the peak of the singularity spectrum shifts monotonically to the right as the
order of the Gaussian analyzing wavelet increases.

Since a wavelet of order n is capable of detecting singularities of order α<n,
the spectrum of a fractal signal is expected to converge to a unique spectrum
once the highest order singularities present in the signal are resolved. Lack of
convergence suggests that the simulated data are smoother than the analyzing
wavelets. For all of the simulated data the scaling function becomes more linear
with increasing n, which suggests that higher order singularities are not present
in the signal. The linearity of the scaling function, τ(q), usually indicates a
monofractal structure, but the lack of convergence provides evidence that the
data are dominated by smooth sub-intervals.

Mallat9 proved that smooth perturbations of a multifractal signal introduce a
bias in the singularity spectrum and proposed that this bias be detected by varying
the order of the analyzing wavelet, n. The presence of smooth sub-intervals can
inhibit the tracking of WTMM lines (discussed in section 2) causing the spectrum
to vary with the order of the analyzing wavelet.

Numerical tests of SEIR simulation data for a range of model parameters have
confirmed the presence of smooth sub-intervals in the simulated time series. This
behaviour is qualitatively different from the singularity spectra produced by the
reported data shown in Figure 7, which exhibits convergence with n. The time
series generated by the stochastic SEIR model produces fewer high amplitude
wavelets coefficients at the finest scales, which further demonstrates that the
simulated incidence data are significantly smoother than the reported incidence
data.
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Figure 16. (a) Singularity spectra for SEIR simulations with chicken pox parameters. The
amplitude of seasonal forcing was b1 =0.08 with a population of ten million people. Derivatives
of the Gaussian function are denoted DG and the order, or the number of derivatives taken,
is the same as the number of vanishing moments of the wavelet. (b) The associated scaling
functions.

Overall, our analysis strongly suggests that the time series produced by the
stochastic SEIR epidemic model are only weakly singular and are unlikely to be
multifractal or even monofractal. This contrasts sharply with the reported data,
which are clearly multifractal and strongly singular. It appears that the stochastic
SEIR epidemic model does not capture the singular multiscale time structure that
characterizes the reported incidence data.

5. Discussion and conclusions

The WTMM multifractal formalism was used to analyze time series of reported
cases of measles, chicken pox, whooping cough and rubella from a variety
of geographic locations. A characteristic multifractal singularity spectrum
was identified for each disease. Multiple data sets from different locations
corresponding to the same disease produce singularity spectra with qualitatively
similar shapes, which distinguish them from spectra associated with the other
diseases (with some exceptions, e.g. measles in London versus Liverpool).

Table 2 shows that weekly incidence data for a given disease at different
geographical locations have similar characteristics, while Table 3 shows that
weekly incidence data for different infectious diseases differ significantly in both
in their irregularity and their degree of multifractality. The peak Hölder exponent
α ranges from -0.6 (indicating discontinuous data) to 0.6 (indicating continuous
but non-differentiable data). The degree of multifractality, measured by the width
of the singularity spectrum, ranges from 0.7 to 2.0. In fact, the chicken pox data
seem to be approximately monofractal (all others are clearly multifractal).

Visual comparisons of time series and conventional (periodicity) spectra of
infectious disease incidence or mortality suggest that weekly or monthly counts of
cases or deaths encode essential characteristics of different pathogens. However,
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Disease Peak Width Type
Chicken pox −0.6± 0.1 0.7 ± 0.1 approximately monofractal
Measles −0.5± 0.4 1.3 ± 0.1 multifractal

Table 2. Signatures of measles and chicken pox based on properties of the singularity spectra
of their time series data (weekly incidence data). Results are averages from four geographic
locations.

Disease Peak Width Type
Chicken pox -0.6 0.7 approximately monofractal
Measles -0.4 1.3 multifractal
Rubella 0.6 2.0 multifractal
Whooping cough 0.3 1.6 multifractal

Table 3. Distinguishing infectious diseases based on properties of the singularity spectra of their
time series data (weekly incidence data).

converting such visual impressions into a formal statistic is not straightforward
and has not been attempted to our knowledge. The approach we have presented
in this paper suggests that infectious diseases have multifractal signatures,
which are relatively easy to compute and provide a useful new way to describe
infectious disease data. These signatures might in certain cases permit a disease
to be identified purely on the basis of a statistical analysis of its reported
incidence or mortality time series. This approach could be used, in principle,
to confirm the cause of historical epidemics that have been identified by analysis
of ancient DNA31, to identify the causative agent of historical epidemics from
which direct evidence cannot be obtained, or to help isolate the causes of
transitions in disease dynamics that correlate with changes in the associated
multifractal signature. Moreover, the WTMM method can be used as a new way of
statistically validating models: accurate numerical simulations should reproduce
the multifractal signatures of the diseases they are intended to model.

We used the WTMM technique to analyze simulated incidence data generated
by the stochastic SEIR epidemic model. The simulated time series generated by
the stochastic SEIR model were much smoother than the observed data for all
of the diseases tested. In fact, by analyzing the data with Gaussian wavelets of
increasing order we found that the singularity spectra do not even converge. This
lack of convergence suggests that the simulated data generated by the stochastic
SEIR model are dominated by smooth sub-intervals and do not capture the full
multiscale structure of the real incidence data.

In particular, we found that real measles data are characterized by a broad
(multifractal) singularity spectrum, but after testing a range of model parameters
we concluded that the stochastic SEIR model could not reproduce such a such
spectrum, even qualitatively. Increasing the amplitude of seasonal forcing, b1, did
improve the fit of the model’s spectrum somewhat, but did not produce convergent
spectra. We investigated the effect of parameter changes in the SEIR model and
considered the effect of imperfect reporting in an attempt to better match the
qualitative statistical properties of the real data, but without success.
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The precise reasons behind the SEIR model’s inability to produce multifractal,
singular incidence data remain unclear. Possible reasons include stochastic
fluctuations in the fundamental parameters of the disease (such as transmission
rate), the existence of spatial hierarchies involving the interaction of urban centres
of different sizes, or time varying differences between the actual incidence rate and
the reported incidence rate. It is also possible that the dynamics of the stochastic
SEIR model do not adequately capture the richness of the dynamical system
governing the actual infectious disease transmission process.

Our analysis confirms that multiscale wavelet analysis offers powerful new
tools for classifying infectious diseases based on their incidence time series,
and for qualitatively comparing and fitting models to reported data. Accurate
mathematical models of infectious disease epidemics are an important tool for
public health decision makers, allowing them to successfully plan control and
eradication campaigns. We have shown that, as measured by the singularity
spectrum, the most popular epidemic model appears to miss some important
multiscale time structure clearly present in the reported data. We hope that the
results will lead to improved epidemic models, and a better understanding of the
mechanisms underlying the spread of infectious disease.
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