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Abstract

Driving has become a very common activity for most of the people around the
world today. People are becoming more and more dependent on vehicles,
contributing to the growth of automotive industry. New vehicles are released
regularly into the market in order to meet the high demand. With the increase in
demand, the importance of vehicle testing has also increased by many folds.
Besides testing new vehicles for their performance prediction, existing vehicles

also need to be tested in order to check their compliance to safety standards.

Drive Cycles that have been traditionally defined as velocity over time profiles
are used as vehicle testing beds. The need for re-defining drive cycles is
demonstrated through the high deviations between the predicted and the actual
performance values. As such, a new approach for defining automotive drive
cycles, Journey Mapping, is proposed. Journey Mapping defines a drive cycle
more realistically as the journey of a particular vehicle from an origin to the
destination, which during its journey is influenced by various conditions such as

weather, terrain, traffic, driver behavior, road , vehicle and aerodynamic.

This concept of Journey Mapping has been implemented using AMESim for a
Ford Focus Electric 2012. Journey Mapping was seen to predict its energy
consumption with about 5% error; whereas, the error was about 13% when it was
tested against the US06 cycle, which provided the most accurate results out of the

various traditional drive cycles used for testing for the selected scope.
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Notation and Abbreviations

CAN

DEM

ECE

EPA

EUDC

EUDCL

EV

FUDS

FTP

GIS

GPS

HEV

HFEDS

HWFET

HYZEM

ICE

Controller Area Network

Digital Elevation Model

Economic Commission for Europe

Environmental Protection Agency

Extra Urban Driving Cycle

Extra Urban Driving Cycle for Low-powered Vehicles

Electric vehicle

Federal Urban Drive Cycle

Federal Test Procedure

Geographic Information System

Global Positioning System

Hybrid Electric Vehicle

Highway Fuel Economy Driving Schedule

Highway Fuel Economy Test

Hybrid Technology Approaching Efficient Zero Emission Mobility

Internal Combustion Engine
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Lb-ft

LFP

MARC

MPG

MPGe

NEDC

NYCC

PHEV

PID

RAV

RPM

UDDS

Inspection and Maintenance

Pound-foot

Lithium Iron Phosphate

McMaster Automotive Resource Center

Miles per Gallon

Miles per Gallon Equivalent

New European Driving Cycle

New York City Cycle

Plug-in Hybrid Electric Vehicle

Proportional Integral Derivative

Recreational Activity Vehicle

Revolutions per Minute

Urban Dynamometer Driving Schedule
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Notations

acc
advAnt
AR

brak

dw

Drim

err

f

FL,front

F L,rear

FN,front

FN,rear

Faero

Fcl

Road slope in %

Driver acceleration control

Advance time for control anticipation in seconds

Aspect ratio

Driver braking control

Air penetration coefficient

Rotary stick velocity threshold for longitudinal slip in rev/min

Wheel rim diameter in meters in AMESim simulation model

Error on speed in m/s

Coulomb friction coefficient

Front axle longitudinal slip in %

Rear axle longitudinal slip in %

Front normal force in Newtons

Rear normal force in Newtons

Aerodynamic drag in Newtons

Climbing resistance in Newtons
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GA(ZCC

GAbr

Glacc

Gl

GPacc

GPy,

height

mass

Maistrib

M,

Driving Force in Newtons

Total resistive force in Newtons

Gravity of acceleration in m/s"2

Anticipative gain for acceleration control loop

Anticipative gain for braking control loop

Integral gain for acceleration control loop

Integral gain for braking control loop

Proportional Gain for acceleration control loop

Proportional Gain for braking control loop

Tire height in % in AMESim simulation model

Tire sidewall height in feet

Wheel inertia in kgm”2 in AMESim simulation model

Viscous friction coefficient in 1/ (m/s)

Total vehicle mass in kg in AMESim simulation model

Mass distribution in %

Tire mass in slugs



Myen Total vehicle mass in kg accounting for wheel inertia effect in

AMESim simulation model

M, Wheel mass in slugs

Pair Air density in kg/m”3

RI; Rotational Inertia of the tire in kgm”2

RI, Rotational Inertia of the wheel in kgm”2

Rayn Dynamic wheel radius in meters

R; Tire radius in feet

R, Wheel radius in feet

Ry Wheel radius in meters in AMESim simulation model
S Vehicle active area for aerodynamic drag in m”2
\Y} Longitudinal slip in %

Sw Wheel size in inches

Tyi Tire width in mm

U Tire to ground grip coefficient

v Vehicle linear velocity in m/s

VeontAnt Control speed at time t + advAnt



VCOTlt

Vveh

Vwind

width

Wi

wind

Wrel

Vehicle control speed in m/s

Vehicle speed in m/s

Wind speed in m/s

Tire width in meters in AMESim simulation model

Overall Wheel Inertia in kgm”2

Windage coefficient in 1/ (m/s) "2

Relative wheel rotary velocity in rev/min

Tire weight in pounds

Wheel rotary velocity in rev/min

Wheel weight in pounds

xi



Contents

Abstract iv
Acknowledgements %
Notation and Abbreviations Vi
1 Introduction 2

LI MOUIVALION. ..ot e e 2

1.2 Problem Statement. .........ooveee e A

121 SOIULION. ..ot 5
1.3 Thesis Contributions............ccoviiiiiii e, 6
1.4 Scope Of RESEArCh. ... ..vovii i 6
1.5 Thesis Organization............coouiriiiiiiiii e 7
Fundamentals of Hybrid and All-Electric Vehicles 9
2.1 Introduction to Hybrid and All-Electric Vehicles....................... 9
2.2 Types and Degrees of Hybridization.....................c.oooiiiiin, 10

2.3 Classification of Hybrid Electric Vehicles based on

varying powertrain configurations....................coeiiiiiinna. 11
2.4 Electric Machines for Hybrid and All-Electric Vehicles............. 14
2.5 Benefits and Limitations..............ccoeiiiiiiiiiiiiiieeeee, 15

xii



2.6 Currently existing Hybrid and All-Electric Vehicles...................... 17

Conventional Drive Cycles 20

3.1 Standard Drive Cycle Definitions and Examples.....................coee. 20
3.2 Currently Existing Drive Cycle Models..............cooooeiiiiiiiii, 25
3.3 Types of Drive CYCIeS. .. ..ovviniiii e 28
3.4 APPHCALIONS. ...ttt 31
S5 LIMITATIONS ..ottt 32
Journey Mapping Concept 34
4.1 Proposed Journey Mapping Definition.....................oooiiiiinn 34
4.2 Conditions governing the Journey Mapping Concept....................... 36
4.3 Data ColleCtion.........cooviuii i 39
4.4 Benefits and Applications. ..o 41
4.5 LIMITAtIONS. ...ttt 42
Modeling and Simulations 43
5.1 Ford Focus Electric Model..............coooiiiiii 43
52 ToyotaPrius Model...........coooi i 86

Xiii



5.3 SIMUIAtION RESUILS. ..o e 95

5.4 Sensitivity ANalySiS.........ooiiiiiiiii 121
5.5 DISCUSSTON. .« ettt 128
6 Conclusion and Future Work 130
6.1 CONCIUSIONS. ...ttt 130
6.2 Scope of Future WOrk.........o.ooviiiii e 131
Appendix A 134
Appendix B 147
Appendix C 167
Appendix D 186
References 194

Xiv



List of figures and tables:

2.1 Vehicle Propulsion Architecture for a Series HEV

Generated iN AULONOMIE. .. ...t eaies 12
2.2 Vehicle Propulsion Architecture for a
Parallel HEV generated in AULONOMIE. .........coviiiriiiiii e 13

2.3 Vehicle Propulsion Architecture for a Series-Parallel HEV generated in

U 0] 1o 1 TP 14
3.1 UDDS drive cycle generated in AUtONOMIE............coviviiiiiiiiiiininnn, 21
3.2 JCO8 drive cycle generated in Autonomie............cocoviiiiiiiiiiiiienn, 22
3.3 NEDC drive cycle generated in AUtONOMIE.........oevviviiiieiiiiiiiieeeenen, 23
3.4 US06 drive cycle generated in AUtONOMIE. ... .....cooiviiiiiiiiiiiiiiiiiiannn, 24
4.1 Journey Mapping Model............oooiiiiiii 35
4.2 CAN Data 1og@er SCtUP.....verteetett ettt ettt ettt ae e 40
5.1 Journey Mapping Model Developed in AMESIM.............ccoeviiiiiiinnn... 44
5.2 AMESim Battery Parameters for Ford Focus Electric 2012...................... 46

5.3 AMESim Battery Thermal Parameters for Ford Focus Electric 2012...........46

5.4 AMESIm Battery Safety Control Unit Parameters for

Ford FOCUS EIECIIIC 2002, ..ottt e, 48

5.5 AMESim Motor Parameters for Ford Focus Electric 2012....................... 49

XV



5.6 AMESIim Motor Thermal Parameters for Ford Focus Electric 2012........... 49

5.7 Route for Journey Mapping.........ccoeoneiniiiinii e 51
5.8 Mission Profile Parameters for Journey Mapping 1................c..oooeenen.. 53
5.9 Ambient Conditions Parameters for Journey Mapping 1........................ 54
5.10 Driver Behavior Parameters for Journey Mapping 1........................... 56
5.11 Vehicle Parameters for Journey Mapping 1............coooiiiiiiiiiiiniin.n, 58
5.12 Vehicle and Control Speed for Journey Mapping 1..............ccooiivinnnn, 61
5.13 Mission Profile Parameters for Journey Mapping 2..............ccccoeveenen... 62
5.14 Ambient Conditions Parameters for Journey Mapping 2....................... 63
5.15 Vehicle Parameters for Journey Mapping 2..........c.ccoovviviiiiniiiiiannnnn, 64
5.16 Vehicle and Control Speed for Journey Mapping 2.............coeevvveninnnnn. 66
5.17 Mission Profile Parameters for Journey Mapping 3.............cocoevvivinnnnn. 67
5.18 Ambient Conditions Parameters for Journey Mapping 3....................... 68
5.19 Vehicle Parameters for Journey Mapping 3...........ccooeiiiiiiiiiniininnn.. 69
5.20 Driver Behavior Parameters for Journey Mapping 3...............c..ooeeeen. 70
5.21 Vehicle and Control Speed for Journey Mapping 3..............coeiivinninn. 71
5.22 Mission Profile Parameters for Journey Mapping4.............ccooovevennn... 72

XVi



5.23 Ambient Conditions Parameters for Journey Mapping4....................... 73

5.24 Vehicle Parameters for Journey Mapping 4..........cccooviiiiiiiiiiiiiiinnn, 74
5.25 Vehicle and Control Speed for Journey Mapping 4..............coooeivinninn. 75
5.26 AMESim Model for Testing Against Standard Drive Cycles.................. 76
5.27 Vehicle Parameters for Standard Drive Cycle Testing.......................... 77
5.28 Driver Behavior Parameters for Standard Drive Cycle Testing............... 78
5.29 Mission Profile Parameters for UDDS...............cooiiiiiiiiiiiii 79
5.30 Vehicle and Control Speed for UDDS.............cooiiiiiiiiiie, 79
5.31 Mission Profile Parameters for NEDC...............oooiiiiiiiiiiiii 80
5.32 Vehicle and Control Speed for NEDC............cooiiiiiiiii, 80
5.33 Mission Profile Parameters for JCO8.............cccoiiiiiiiiiiiiieeen, 81
5.34 Vehicle and Control Speed for JCO8...........covviviiiiiiiiiieeee, 81
5.35 Mission Profile Parameters for FTP 75.........cooiiiiiiiiiiii, 82
5.36 Vehicle and Control Speed for FTP75.........ccooooiiieiiiece e 82
5.37 Mission Profile Parameters for US06G.............c.cooeiiiiiiiiiiiiiiinn, 83
5.38 Vehicle and Control Speed for USO6..............cooiiiiiiiiiiiiieee, 83
5.39 Autonomie model for Ford Focus Electric.............cooooviiiiiiiiiiiinn, 84

XVii



5.40 Vehicle Propulsion Architecture for Ford Focus Electric....................... 85

5.41 AMESIm Model for Toyota Prius.............cooiiiiiiiiiiiiiieceeea, 88
5.42 Mission Profile Parameters for Toyota Prius...............cccooviiiiiiiiinn, 89
5.43 Vehicle Parameters for Toyota Prius..............ccoovveiiiiiiiiiie e, 90
5.44 Driver Model for Toyota Prius...........coooiviiiiii e, 91
5.45 Driver Behavior Parameters for Toyota Prius.................cooeeiiiiiinn.n. 91
5.46 Autonomie Model for Toyota Prius...........covviiiieiieceeeen 93
5.47 Vehicle Propulsion Architecture for Toyota Prius...................ccocoeneent. 94
5.48 Energy Consumption ReSUlItS. ...........cooiiiiiiiiii e 95
5.49 Energy Consumption Results Graph..................cooooiiiiiiiiiii 96
5.50 Energy Consumption Deviation..............coooviiiiiiniiiiii e 97
5.51 Energy Consumption Deviation Graph..............ccoooiiiiiiiiiiiiinne, 98
5.52 Journey Mapping Battery CUrrent..............oooiieiiiiiiiiiiieeeean, 99
5.53 Standard Drive Cycles’ Battery Current............c.ccoeviiiiiiiiinininennn.. 99
5.54 Journey Mapping Battery Voltage..............ccooveiiiiiiiiiiiiie, 100
5.55 Standard Drive Cycles’ Battery Voltage.............ccooviiiiiiiiiiiiiniinn, 100
5.56 Journey Mapping Motor Speed............c.oviiiiiiiii i 101

XViii



5.57 Standard Drive Cycles’ Motor Speed...........oovviiiiiiiiiiiiiiiiiiiiinn 101

5.58 Journey Mapping Motor TOrQUE.........ovineiniiiiie e 102
5.59 Standard Drive Cycles” Motor TOrqUe. .........coveriiriiiiiniiiiiinienennns 102
5.60 Journey Mapping Battery SOC..........coiiiiiiiiii i, 103
5.61 Standard Drive Cycles’ Battery SOC.........c..cooiiiiiiiiiiiiiiiiiii e, 103
5.62 Journey Mapping Velocity Profile..................coooiii 104
5.63 Standard Drive Cycles’ Velocity Profile................c.oooiiiiiiiiiiiii 104
5.64 CAN2 Battery ResUltS. .........c.oieiiii e 105
5.65 CAN2 MOtOr RESUILS. .....veeee e 105
5.66 CAN2 Velocity Profile...........coooiiiii e, 106
5.67 CAN3 Battery ReSUILS. ........ccoviniiiiie e 106
5.68 CAN3 MOtOr RESUILS. .. ..veeeite e, 107
5.69 CAN3 Velocity Profile...........coooiiiii e, 107
5.70 CAN 4 Battery ReSUItS. ........oviniieiii e 108
5. 71 CAN 4 MOtor ReSUIS. .....vnie e, 108
5.72 CAN 4 Velocity Profile...... ..o 109
5.73 Comparison between Autonomie, AMESIm and True Results............... 110

XiX



5.74 Graph Comparing Autonomie, AMESim and True Results................... 111

5.75: Graph Comparing Autonomie and AMESim results with the true results..112

5.76 AMESim Toyota Prius’ NEDC Results for Battery current, voltage and

5.78 AMESim Toyota Prius’ NEDC Results for Engine speed, Torque and Fuel

CONSUMPLION. .. e e e 114
5.79 AMESiIm Toyota Prius’ NEDC Results for Velocity Profile.................. 115
5.80 Toyota Prius CAN Results for Battery current, voltage and SOC............ 116
5.81 Toyota Prius CAN Results for Motors’ speed and torque..................... 116
5.82 Toyota Prius CAN Results for Engine Speed.............cccoviviiiiiiinnnn 117
5.83 Toyota Prius CAN Results for Velocity Profile................................ 117

5.84 Comparing True and Autonomie MPG results for various drive cycles.....118
5.85 Graph Comparing True and Autonomie MPG results for Toyota Prius.....119
5.86 Comparison Between Ford Focus Electric and Toyota Prius MPG.......... 119
5.87 Graph Comparing the MPGe and MPG for Ford Focus Electric and Toyota
Prius reSPeCtiVElY . ... ..o 120

5.88 Sensitivity Analysis Results for Simulation Parameters........................ 123

XX



5.89 Sensitivity Analysis Chart for Simulation Parameters....................... 124

5.90 Sensitivity Analysis Results for True CAN Parameters..................... 125
5.91 Sensitivity Analysis Chart for True CAN Parameters........................ 125
5.92 Driver Behavior Comparison for Toyota Prius...............ccceeveiinnn... 127
7.1 HWFET drive cycle generated in Autonomie. ..............covvveveininennnn, 135
7.2 Artemis Urban driving cycle generated in Autonomie......................... 136
7.3 Artemis Highway driving cycle generated in Autonomie...................... 137
7.4 New York City driving cycle generated in Autonomie......................... 138
7.5 Artemis Extra Urban drive cycle generated in Autonomie..................... 139
7.6 505 drive cycle generated in Autonomie...............ccooiviiiiiiiiiiinann.n. 139
7.7 ECE drive cycle generated in AUtONOMIE. ..........ccoovviviiiniiiiiieeie, 140
7.8 EUDC drive cycle generated in AUtONOMIE. ... ....ovviiiiiiniiiinienenenn, 140
7.9 Japan 10 drive cycle generated in AUtONOMIE..........coviiviiiinininennen. 141
7.10 Japan 1015 drive cycle generated in Autonomie..............covevviininnn.. 141
7.11 Japan 15 drive cycle generated in AUtONOMIE..........covviviiniiniiiininn, 142
7.12 SCO3 drive cycle generated in Autonomie..............cccevvvviieiiininnnn.n 142
7.13 IM240 drive cycle generated in Autonomie.............ccoeevviiniiiiiininnnnn, 143
7.14 LA92 drive cycle generated in AUtONOMIE. .........coovveiniiiiiiiinieinnn, 143

XXi



7.15 Rep05 drive cycle generated in AUtONOMIE. .........oovvviiviiiiiiianinnne. 144

7.16 India highway drive cycle generated in Autonomie........................... 144
7.17 India urban drive cycle generated in Autonomie..................ccccoeevenn.n. 145
7.18 New York bus drive cycle generated in Autonomie........................... 145
7.19 New York drive cycle generated in Autonomie....................ccccoeevene 146

7.20 New York City composite truck drive cycle generated in Autonomie...... 146

7.21 Autonomie Ford Focus Electric Results for Battery Current and SOC......168

7.22 Autonomie Ford Focus Electric’s UDDS Results for Motor Speed and

7.23 Autonomie Ford Focus Electric’s UDDS Result for Velocity Profile....... 169

7.24 Autonomie Ford Focus Electric’s NEDC Results for Battery Current and

7.26 Autonomie Ford Focus Electric’s NEDC Results for Velocity Profile......170

7.27 Autonomie Ford Focus Electric’s JC08 Results for Battery current and

XXii



7.28 Autonomie Ford Focus Electric’s JCO8 Results for Motor speed and

7.32 Autonomie Ford Focus Electric’s FTP 75 Results for Velocity Profile......173

7.33 Autonomie Ford Focus Electric’s US06 Results for Battery current and

7.35 Autonomie Ford Focus Electric’s US06 Results for Velocity Profile....... 175

7.36 Autonomie Toyota Prius’ UDDS Results for Engine Speed and Torque...175

7.37 Autonomie Toyota Prius” UDDS Results for Motors’ speed and torque.....176

7.38 Autonomie Toyota Prius’ UDDS Results for Battery SOC, voltage and

o 1 ¢ (=] 0| P 176

7.39 Autonomie Toyota Prius’ UDDS Results for Velocity Profile............... 177

7.40 Autonomie Toyota Prius’ NEDC Results for Engine speed and torque.....177

XXii



7.41 Autonomie Toyota Prius’ NEDC Results for Motors’ speed and torque.....178

7.42 Autonomie Toyota Prius’ NEDC Results for Battery SOC, voltage and

(o] | (=1 1] SR 178

7.43 Autonomie Toyota Prius’ NEDC Results for Velocity Profile............... 179

7.44 Autonomie Toyota Prius’ JCO8 Results for Engine speed and torque........179

7.45 Autonomie Toyota Prius’ JCO8 Results for Motors’ speed and torque......180

7.46 Autonomie Toyota Prius’ JCO8 Results for Battery SOC, voltage and

(o1 | (=1 1| U 180

7.47 Autonomie Toyota Prius’ JCO8 Results for Velocity Profile.................. 181

7.48 Autonomie Toyota Prius’ FTP75 Results for Engine speed and torque.....181

7.49 Autonomie Toyota Prius’ FTP75 Results for Motor speed and torque...... 182

7.50 Autonomie Toyota Prius’ FTP75 Results for Battery SOC, voltage and

o 1 (=] 0| PP 182

7.51 Autonomie Toyota Prius’ FTP75 Results for Velocity Profile................ 183

7.52 Autonomie Toyota Prius’ US06 Results for Engine speed and torque...... 183

7.53 Autonomie Toyota Prius’ US06 Results for Motors’ speed and torque......184
7.54 Autonomie Toyota Prius’ US06 Results for Battery SOC, voltage and
(011 1 184

7.55 Autonomie Toyota Prius’ US06 Results for Velocity Profile..................185

XXiv



1 Introduction

1.1 Motivation

Vehicle Drive Cycles have been originally defined as velocity over time profiles.
There are two major parts associated with the traditional definition of a drive
cycle — the vehicle profile as well as the driver information. Most of the known
standard drive cycles can be divided into three major categories- European,
Japanese and US. Most of these standard drive cycles such as the New European
Driving Cycle (NEDC), Urban Dynamometer Driving Schedule (UDDS) and
others have been defined with the use of a velocity versus time profile. These
drive cycles, ideally, are unique for a particular route and a particular driver.
However, generalizations are usually made based on the standard drive cycles.
European (excluding Hybrid Technology Approaching Efficient Zero Emission
Mobility or Hyzem cycles) and Japanese drive cycles, being modal, do not
represent real-life scenarios. However, the US drive cycles, being transient,

represent real life conditions [1].

Drive cycles such as NEDC assume flat roads and the absence of wind for their
drive cycle definition. Road conditions, weather conditions and terrain influence
the vehicle profiles for velocity over time, quite heavily. However, they are not

directly represented in all of the drive cycle definitions (terrain is included in



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

some definitions); although, selection of a specific region for the drive cycle
development in- directly implies the above conditions. As such, the traditional
definition of velocity over time profile is insufficient to accurately describe a
particular vehicle’s behavior on a particular road. Drive cycles have also been
defined as “test procedures” [2], “standardized driving pattern”[3] and as “a
journey of a vehicle in which the engine temperature has been raised from cold
(below 49 deg C) to normal operating temperature (above 71 deg C)” [4] (not part
of standard drive cycles). However, none of the drive cycle definitions provide
accurate vehicle behavior information in its entirety as they do not represent the
concept of a vehicle travelling from an origin to a destination, directly. In
addition, most of these drive cycle definitions are applicable to common on-road
driving. Un-common off-road driving such as on hills, mountains and other terrain

for applications such as military is completely ignored. As such, there is a

significant need to develop a new definition for drive cycles.

A Drive Cycle can be re-defined as a vehicle’s journey from an origin to a
destination that is influenced by weather conditions, road conditions, terrain,
vehicle condition, traffic and driver behavior. This new definition will aim

towards bridging the gap in understanding a vehicle’s drive cycle.
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1.2 Problem Statement

Predicting how a vehicle will behave on the road has become a major concern for
the auto-makers, governments and the researchers. It is extremely important to test
any new vehicle for its performance before it is released into the market. Along
similar lines, it is also important to verify already existing vehicles’ performance
on the road in order to make sure that the vehicle’s performance has not
significantly degraded over time. For any such vehicle tests it will be practically
impossible to test every single vehicle physically on the road in their particular
driving conditions. As such, standard drive cycles are generally used to simulate
general conditions of the drive. However, since most of the standards are simply
generalized velocity versus time profiles, it does not provide a complete picture of
what the vehicle might actually go through on the road. This is mainly because the
velocity profile might be affected by many different conditions at different times

such as weather, traffic, terrain, road, driver behavior and so on.

Inadequate test standards might eventually result in deviated or inaccurate vehicle
performance results. In other words, in order to have accurate vehicle performance
results, it is very important to have accurate drive cycles which serve as test beds
for these simulations. Accurate vehicle behavior prediction can be very helpful in
preventing many accidents that have been occurring on the road due to the

unknown driving conditions. In essence, there is an immense need of proposing a
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new or revised definition of drive cycles that can provide a more complete picture
of the vehicle’s behavior on the road. Even though it might be very difficult to
create an entirely accurate system, there is a necessity of improving the definition

as much as possible in order to predict vehicle performance more accurately.

1.2.1 Solution

A solution that has been proposed in this thesis is geared towards re-defining the
existing concept of drive cycles as “Journey Mapping”. Journey Mapping
proposes to define a drive cycle as the journey of vehicle from a particular origin
to a destination which during the journey is influenced by several conditions such
as road, traffic, terrain, weather, driver behavior and vehicle’s aerodynamic
conditions. This Journey Mapping concept has been incorporated in the form of a
simulation model in this thesis. This definition is able to better predict the actual
vehicle performance on the road by calculating parameters that are much closer to
the true values. This concept will not only be helpful in anticipating if the existing
vehicles are in good condition for continued usage, but will also be very helpful in
analyzing if any of the new designs can be released into the market or not. In
essence, any type of simulation-based vehicle testing can be carried out more

accurately with the use of the proposed Journey Mapping concept.
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1.3 Thesis Contributions

This thesis proposes a new approach for defining automotive drive cycles —
Journey Mapping. The drive cycles were traditionally defined as velocity over
time profiles. Journey Mapping acts as a more realistic as well as an accurate
driving simulation technique for vehicle testing and performance prediction.
Journey Mapping defines drive cycle as the journey of a particular vehicle from an
origin to a destination which during its journey is influenced by several conditions
such as weather, traffic, road, terrain, driver behavior, vehicle, aerodynamic and

SO on.

There was a significant deviation noticed between the EPA labels for fuel
economy and energy consumption and the true values measured. Also, the
deviation was significant for the values predicted by standard drive cycles, namely
UDDS, NEDC, JC08, Federal Test Procedure (FTP) 75 and US06 when compared
to the true values. This demonstrates a need for re-defining drive cycles. Journey
Mapping fills this gap. Journey Mapping is able to predict vehicle performance

with about five percent error when compared to the true data.

1.4 Scope of Research

In order to implement the proposed Journey Mapping concept, it was very
important to select a certain route and vehicle as varying all the constraints at the

same time would give misleading results. As such, for the purposes of this thesis,
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the Ford Focus Electric 2012 and Toyota Prius 2004 were selected. The origin of
the journey was selected to be the McMaster Automotive Resource Center
(MARC) located at 200 Longwood Rd. S, Hamilton, Ontario and the destination
was selected as Mohawk College situated at 135 Fennel Avenue West, Hamilton,
Ontario. Thus, the scope of this research was restricted only to one hybrid and one
all electric vehicle implementation. Also, the vehicles were only tested in city
driving conditions. Although the Journey Mapping concept comprises a lot of
conditions such as road, terrain, weather, traffic, driver behavior and vehicle’s
aerodynamic conditions, only the road, terrain, weather and the vehicle’s
aerodynamic conditions have been considered in this thesis. Traffic, driver
behavior and any other drive conditions that might impact a vehicle’s performance
have not been included in this thesis’ scope. Although, the traffic and driver
behavior were not used in the modeling, their impact has been briefly studied in

the results section.

1.5 Thesis Organization

This thesis is divided into six different chapters. The first chapter provided an
introduction to the problem as well as the proposed solution. The scope of this
study was also identified. The second chapter highlights fundamental concepts
about hybrid and electric vehicles. Their classifications, electric machines used for
them, their benefits and limitations, in addition to currently existing models in the

market have been discussed. The third chapter describes about the conventional

7
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drive cycles, their types, benefits and limitations. The fourth chapter highlights the
concept of Journey Mapping, conditions governing it, its data collection, its
benefits and limitations. The fifth chapter consists of AMESim and Autonomie
simulation modelsand their results for the Ford Focus Electric 2012 and Toyota
Prius. The corresponding true results collected using the Controller Area Network
(CAN) data logger have also been described as applicable. A sensitivity analysis
of various parameters as well as a general discussion is also included. The sixth
chapter is the final chapter concluding the work described in this thesis and

suggesting future work.
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2 Fundamentals of Hybrid and All-Electric Vehicles

2.1 Introduction to Hybrid and All-Electric Vehicles

The concept of electric vehicles is not a new idea. Instead, the original idea was
from more than a hundred years ago [5]. However, due to the concern arising from
poor battery capacity and short driving range, conventional internal combustion
engine vehicles seemed to be a more feasible option at the time. In addition, the
1973 Middle East crisis dropped the oil prices immensely. This increased the

importance of the fossil fuel vehicles [6].

However, due to the increased risk of greenhouse gas emissions, long term supply
concerns and vastly increasing oil prices, auto-makers have been under pressure to
come up with better alternatives [5]. Due to these driving forces, electric vehicles
have been coming back into the market again. A lot of research has been ongoing
to improve the battery capacity, driving range and other challenging aspects of an

electric vehicle which have always been considered as a hindrance to their growth.

This compromise between increased pollutants resulting from internal combustion
engine vehicles versus the short driving range and limited battery capacities has
always left the auto market in a confusion as to which would be a better option.
This gave rise to the idea of hybrid electric vehicles which carry the advantages of

the electric vehicle as well as the internal combustion engine vehicles.
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2.2 Types and Degrees of Hybridization [6]

The term “Hybridization” is usually generalized to drive-train hybridization. In
other words, whenever a hybrid vehicle is referred to, it is assumed to be a
combination of electric and the internal combustion engine vehicles. However,
this is not completely representative of what it actually means. Hybridization
means a combination of any two entities or features. When applied to vehicles,
this hybridization could take two different forms, namely — fuel hybridization or
drive train hybridization. Drive train hybridization will be described in further
details in the next section titled Classification of Hybrid Electric Vehicles based
on varying powertrain configurations. As far as fuel hybridization is concerned, as
it can be understood from the name, it refers to the usage of more than one type of
fuel within an internal combustion engine vehicle. Some flexible fuel vehicles can
function with gasoline as well as natural gas. Also, some vehicles that consist of a
certain type of fuel such as gasoline can be modified to work with an alternate
type of fuel such as ethanol, methanol, bio gas, natural gas, gasol, hydrogen gas et
cetera. Please note that almost all gasoline powered vehicles can be filled with ten

to fifteen percent ethanol without making any major technical modifications.

Hybridization in vehicles also comes in various degrees. This classification of
hybrid electric vehicles based on the degree of hybridization is in general relevant
to drive-train hybridization type. There are three different degrees of hybridization

— full, assist and mild hybrid electric vehicles. A full hybrid vehicle is the one that
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can run completely on the engine, on the battery or on a combination of both.
Toyota Prius and Ford Escape are examples of such vehicles. When such vehicles
are working only on a battery, it needs to be made sure that the battery being used
is of a very high capacity. An assist hybrid vehicle uses the engine mainly for the
majority of the power. The electric motor is only needed when extra torque boost
is required such as when turning the engine on or during hard acceleration. Since,
the vehicle mostly runs on the engine, the electric power needed is not as much as
a full hybrid vehicle. Thus, the batteries in assist hybrid vehicles are usually of
less capacity compared to full hybrid vehicles. Mild hybrid vehicles have the least
fuel economy of all. Their motors help the vehicle to reach its operating speed

first and then add the fuel as required.

2.3 Classification of Hybrid Electric Vehicles based on varying powertrain
configurations

This classification of hybrid electric vehicles is completely based on the different

ways various components within a hybrid electric vehicle connect with each other.

There are three major types — series, parallel and power split.

Series hybrid electric vehicles have the batteries majorly powering the car. The

engine does not power the car directly at all. It is only used for powering up an

electric generator.

11
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A series midsized fixed gear two wheel drive hybrid electric vehicle’s vehicle

propulsion architecture was generated in Autonomie using the library files as

follows:
0 =
[ | S| Tectical
'I. n Accessory
Power
Energy Storage Converter
Ll
| , : l_-r’ I
G.f 1 5 | |
b b '
. Motor Torque Final Wheel Chassis
Engine Mechanical Torque Coupling 2 Drive
Accessory Coupling
A
".l li@ Generator
$

Figure 2.1: Vehicle Propulsion Architecture for a Series HEV generated in
Autonomie
Parallel hybrid vehicles consist of a configuration where both the internal
combustion engine and the electric motor powered by the battery can be

connected to the transmission to drive the vehicle.

A parallel integrator starter alternator midsized automatic hybrid electric vehicle’s

vehicle propulsion architecture was generated in Autonomie using the library files

as follows:

12
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: [\
9, 4 o
@] 10 l
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Mechanical Clutch/ Torque Gearbox Final Drive Chassis

Accessory Converter

Energy
Storage

Electrical
*_; Accessory

Power Converter

Figure 2.2: Vehicle Propulsion Architecture for a Parallel HEV generated in

Autonomie

A power split hybrid vehicle is a combination of the series and parallel

configurations. It is also known as a series-parallel configuration.

A series-parallel midsized Automatic Manual Transmission two wheel drive

hybrid electric vehicle’s vehicle propulsion architecture was generated in

Autonomie using the library files as follows:
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Figure 2.3: Vehicle Propulsion Architecture for a Series-Parallel HEV generated

in Autonomie

2.4 Electric Machines for Hybrid and All-Electric Vehicles

Hybrid and electric vehicles come with varying powertrain configurations. There
is a heavy amount of power electronics involved in building these vehicles. Also,
there are a lot of different electric machines used within the vehicle ensuring their
normal operation as well as for increasing their efficiency. This section

summarizes some of these major concepts.

Some types of motors that are used in these vehicles include brushed direct
current motor, brushless direct current motor, switched reluctance motor,
synchronous permanent magnet outer rotor motor and axial flux ironless

permanent magnet motor.
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The brushed direct current motor consists of windings in the rotor. The stator can
either have permanent magnets or windings. Its advantage over internal
combustion engine cars is that it provides its maximum torque over lower speeds.
However, one of its disadvantages is the excessive amounts of heat generated in
the center of the motor, due to the losses in the rotor, making it difficult for the
heat to be removed; which in turn results in limiting the power that can be

delivered by the motor [6].

Power Electronic converters or drives are also vital to describing electric
machines used for such vehicles. Mainly, inverters, rectifiers and two-quadrant
converters are used. Inverters are used to convert direct current into alternating
current. Rectifier offer an opposite application of converting alternating current
into direct current. Two quadrant converters can behave both as rectifiers and
inverters. Since, regenerative braking is a very advantageous phenomena in

Hybrid Electric Vehicles (HEVS), these converters can become very applicable

[6].

2.5 Benefits and Limitations

One of the major advantages of hybrid and all-electric vehicles arises from the
major disadvantage of the internal combustion engine cars — greenhouse gas
emissions. HEVs and EVs are very environmentally friendly. They can also be

major contributors for renewable energy initiatives by using renewable modes of
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power generation such as solar, wind, hydro, et cetera for generating electricity
that is needed for their charging. Due to increasing oil prices, they are also being

viewed as a feasible alternate option.

When the hybrid vehicles, specifically, are compared to Internal Combustion
Engine (ICE) vehicles it can be noted that the efficiency is much higher for the
hybrid vehicles as they provide much higher fuel economy. Also, the engine in
hybrid vehicles is able to work in their highest efficiency range. The presence of
an electric motor helps in generating high torques at lower speeds. In addition, the
concept of regenerative braking where part of the vehicle’s kinetic energy can be
captured and used for recharging the batteries saves a lot of energy from being
wasted as heated which is usually what happens in ICE cars due to the mechanical
braking. The reduced noise pollution and maintenance required is another attribute
of hybrid vehicles that makes them a more attractive option when compared to

ICE vehicles [6].

On the other hand, some aspects of electric vehicles which inhibit their growth
include range problems, extra weight and vehicle space added due to the battery
packs, high cost and safety factors of the batteries, charging problems due to lack
of infrastructure and so on [7]. Thus, the hybrid vehicles seemed to be a more
feasible option as they combined the advantages of both electric and ICE vehicles.

Some of the disadvantages of hybrid vehicles could be their increased cost

16
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compared to similar ICE vehicles. In addition, the infrastructure for plug-in hybrid
vehicle charging is still quite limited. Also, the increased weight of the car in
addition to the safety concerns arising from the presence of a large battery pack
adds to its disadvantages. Due to the addition of sophisticated components within
the car, their replacement or maintenance can sometimes become a challenge.
These negative aspects of hybrid vehicles can most probably be eradicated in the

near future with the growth of research in this field [8].

2.6 Currently existing Hybrid and All-Electric Vehicles

There are a lot of different models of HEVs and EVs existing in the market. Ford,
Honda, Toyota and so on are some of the biggest makers of such vehicles.
According to the U.S. News and World Report, the Toyota Camry Hybrid, Ford
Fusion Hybrid, Honda Accord Hybrid, Toyota Prius V and Toyota Avalon Hybrid
have been ranked as the top five hybrid cars (ranked from top one to top five) for
2014 [9]. These cars have been ranked on the basis of performance, interiors,

safety, reliability and critics’ rating.

The 2014 Toyota Camry Hybrid, which has been ranked as the best hybrid car of
2014 has a Miles per Gallon or MPG of 43 for city and 39 for highway driving.
The engine’s net horsepower at 5700 RPM is 200 and the net torque at 4500 RPM
is 156 Ib-ft [10]. The 2014 Ford Fusion Hybrid, which is ranked as the second

best, has a MPG of 44 for city and 41 for highway driving. The net engine
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horsepower is 188 at 6000 RPM and the net torque is 129 Ib-ft at 4000 RPM [11].
The 2014 Honda Accord Hybrid, which is ranked the third best has a MPG of 50
for City and 45 for highway driving. The engine’s net horsepower is 195 at 6200
RPM and the net torque is 122 Ib-ft at 3500 RPM [12]. Toyota Prius V which has
been ranked as the fourth best hybrid car has a MPG of 44 for city and 40 for
highway driving. Its engine has a net horsepower of 134 at 5200 RPM and 105 Ib-
ft torque at 4000 RPM [13]. Lastly, the Toyota Avalon Hybrid, which was ranked
fifth best hybrid car has a MPG of 40 for city and 39 for highway driving. The net
engine horsepower is 200 at 5700 RPM and the torque is 156 Ib-ft at 4500 RPM

[14].

Similarly, electric cars have also been rated by CNET in terms of range on a
charge, Miles per Gallon Equivalent or MPGe as well as the cost. According to
CNET, the Tesla Model S, Nissan Leaf, Ford Focus Electric, Fiat 500e and
Toyota RAV4 electric have been ranked as the top five electric cars for 2013-2014

( ranked from top one to five) [15].

The Tesla Model S is one of the most powerful electric cars around. There are two
different variations for the 2014 Tesla Model S. The first type has 270 kW motor
and 85 kWh battery pack. This type has a combined (highway and city) MPGe of

89 and a range of 265 miles on a single charge. The second type of 2014 Tesla
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Model S has a 225kW motor and 60 kWh battery pack. This has a combined

MPGe of 95 and a range of 208 miles [16].

Similar to the Tesla, most of these other electric vehicles have several models and
types. Each model has its own specifications. For simplicity purposes, only one
common model will be discussed for each of the following vehicles. The Nissan
Leaf, which has been ranked as the second best, has a 80 kW motor giving a
combined MPGe of 114 [17]. In addition, the range on a single charge is 73 miles
[15]. The Ford Focus Electric which has been ranked as the third best electric car
has a 107 kW electric motor giving a range of 81 miles and a combined MPGe of
105 [16]. The Fiat 500 e, which has been ranked as the fourth best electric car has
a range of 87 miles and MPGe of 116 [15]. It has a 83 kW electric motor [18].
Finally, the fifth best electric car, Toyota RAV4 electric has a 115 kW electric
motor giving a combined MPGe of 76 and range of 103 miles on a single charge

[16].
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3 Conventional Drive Cycles

3.1 Standard Drive Cycle Definitions and Examples

Drive Cycles have been traditionally defined as vehicle speed and gear selection
over time profiles [1]. There have been many different drive cycle standard
definitions created keeping in mind the driving scenarios such as city or highway
driving. Also, different standard drive cycles have been created for different type
of vehicles. These standards were originally created so that the conventional
internal combustion engine cars could be tested for wvehicle emissions and
pollutants. Since it would be very difficult for every vehicle to be tested on the
actual road, the standard drive cycles were to be used as test-beds for testing the
quality of the car. As the research in the automotive sector progressed, the
standard drive cycles were used as a testing standard for almost any kind of
vehicle simulation. In essence, all the way from real vehicles to simulated vehicles
are all tested using certain standard driving cycles. This ensures a practical,

economic and timely method for testing vehicles.

There are over two hundred different drive cycle standards. Some examples of
standard drive cycles have been generated using the Autonomie libraries as
follows. Please note that only one cycle of each drive cycle has been shown here.

Also, the x axis or time is in seconds and the y axis or the vehicle speed is in m/s :
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|s:r_:y:Ia

Figure 3.1: UDDS drive cycle generated in Autonomie
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Please refer to figures 7.1 to 7.20 in Appendix A for some other examples of

traditional drive cycles.

3.2 Currently existing drive cycle models

As stated above, most of the standards define drive cycles as a velocity over time
profiles. The only difference is in terms of conditions under which these
standardized driving patterns are created. Also, the location, application, type of
driver and vehicle varies for each standard. However, the underlying idea of
representing driving patterns in terms of velocity over time profiles is the same

across all these standards.

An effort, however, has already been made by many in order to develop particular
drive cycle models for their specific applications. This section will provide a

summary of some such work.

A company known as FleetCarma developed a web portal based on a unique
concept of duty cycles. According to them, duty cycles were vehicle plots or
models developed based on a specific vehicle’s daily utilization. They developed
this concept mainly as a part of their Plug-in BC program. By installing portable
data loggers in many vehicles, they collected a lot of data for vehicle utilization.
Based on this data, they created a web portal where any vehicle could be matched

to a correct duty cycle. The idea was to make sure that their EV was capable of
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running for the entire distance that the user needs in a day without losing the
charge in addition to making sure that the cost of the vehicle is efficiently utilized.
For Plug-in Hybrid Electric Vehicle (PHEVS), the goal was to use the electrical
mode for as long as possible. The web portal that was developed would provide an
accurate EV solution according to drivers’ specific needs based on their daily
utilization [20]. Although, the duty cycle models include the average daily
utilization as one of the constraints, many external factors such as weather, traffic
or driver’s behavior patterns were not included. These conditions could alter the

duty cycles significantly on a day to day basis.

There is another novel Drive Cycle Generation Tool model implemented in [21].
Their model uses a combination of different ideologies such as standard drive
cycles governed by velocity over time profiles for vehicles, duty cycles in terms of
the power demand versus time, driving patterns which include environment as
well as driver behavior, driving profiles including all the different drive cycle in
the life time of a vehicle, driving scenarios identified by the topography such as
highway versus city driving and finally, driving pulses which are basically the
data collected between two idle events [21]. Although, their model is very
comprehensive, it is not location specific. As such, a vehicle being tested under
similar conditions but at a different location with varied terrain, traffic and so on

can produce different vehicle performance results.
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Another drive cycle generator model that generates velocity over time profiles
based on the standard UDDS is discussed in [22]. Although, they have included a
lot of different external parameters such as the vehicle’s aerodynamic coefficients
and the gradient coefficient, they are a part of the vehicle’s dynamics or
simulation model; they haven’t been explicitly included in the drive cycle
definition [22]. Also, once again their model is not location, traffic or drive

behavior specific.

Another concept was developed in [23] which included a linear car following
model and a lane changing model in order to represent a unique driver-vehicle
pair. This information was then used to generate a driving cycle represented in the
form a velocity over time profile [23]. Once again, the varying parameters have
been implemented in the vehicle simulation; however, the definition of drive
cycles has not been altered. Also, changes in the driver behavior according to the

varying weather or traffic conditions were not considered.

Another model proposed in [24] includes the driving style and driving conditions
in the simulations. However, once again, the basic definition of the drive cycle is

still represented in terms of a velocity over time profile.

Many such concepts and models including [25] try to propose a more efficient

manner for carrying out vehicle simulations by adding some external parameters.
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However, these models do not alter the basic idea of defining drive cycles as
velocity over time. Also, these models are not location specific, in addition the
concept of varying all the parameters simultaneously in real time is not considered

as a part of the drive cycle definition.

3.3 Types of Drive Cycles

There are mainly two different types of drive cycles — transient and modal. The
transient cycles represent real driving patterns and on-road conditions. These
cycles may cover many speed changes throughout the cycle. However, modal
cycles are not representative of real-life conditions. In other words, they do not
represent the changes in the driver behavior. These cycles may contain straight

acceleration and constant speed periods [26].

Based on these definitions, the standard drive cycles are divided into three main
groups — European driving cycles, US driving cycles and Japanese driving cycles.
The European driving cycles can in turn be categorized into four main cycles —
Economic Commission for Europe (ECE 15), Extra Urban Driving Cycle
(EUDC), Extra Urban Driving Cycle for Low-powered Vehicles (EUDCL) and

New European Driving Cycle or NEDC [3].

ECE 15 mainly represents urban driving where the speeds are relatively low in

addition to an exhaust temperature and engine load that are also low. EUDC has
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higher speeds and acceleration compared to ECE 15 as it is based on a suburban
driving scenario where highway driving is introduced towards the end of the
cycle. EUDCL is similar to EUDC but mainly for low powered vehicles. Lastly,
the NEDC or the ECE cycle is one of the most famous driving cycles used for
vehicle testing. It consists of four ECE 15 cycles followed by either an EUDC or
an EUDCL cycle [3]. Since, these European cycles are mostly modal; they are not
completely representative of real driving patterns. As such, another category of
cycles called Hyzem cycles were created. These Hyzem cycles; although are
unofficial; they are mainly used since being transient, they represent real driving
patterns in Europe. They are comprehensive in the sense that they contain urban,

extra urban as well as highway driving scenarios [3].

The US driving cycles are mainly transient; as such, they provide a better
understanding of the real driving patterns. Some common cycles belonging to this
category include FTP 72 or UDDS, SFUDS, FTP 75, Highway Fuel Economy
Driving Schedule (HFEDS), Inspection and Maintenance (IM) 240, LA-92, New

York City Cycle (NYCC) and US 06 [3].

FTP 72 is one of the most common US driving cycles used for vehicle testing. It
has many other names including UDDS, Federal Urban Drive Cycle (FUDS) or
LA-4. This cycle starts with a cold start phase. After the cold start, a transient

phase is included with many speed peaks. This cycle is mostly used for urban

29



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

driving. The SFUDS cycle was mainly developed to graph the phenomenon of
charging and discharging of an Electric Vehicle (EV) during a trip. Most of these
cycles are nearly identical to each other; there are usually just one or two features
modified for each one. FTP 75 is very similar to FTP 72. The only addition is of
an extra phase at the end of the cycle in order to model hot engine. The HFEDS
cycle represents highway as well as extra urban driving. The IM 240 cycle is
mainly used for periodic emissions or more generally, maintenance tests. The
LA-92 cycle is similar to the FTP 72 cycles just with higher speeds, on average.
The NYCC represents urban roads in New York, generally characterized by low
speeds, on average. Finally, the US 06 cycle is an aggressive cycle developed for

modeling high engine loads [3].

Finally, the last category of driving cycles is Japanese cycles. These cycles are
also modal, similar to the European cycles. The Japanese cycles can be further

categorized into 10 Mode, 15 Mode and 10-15 Mode [3].

The 10 Mode cycle mainly represents urban road; whereas, the 15 Mode cycle
represents both an urban and an extra-urban road. Lastly, the 10-15 Mode cycle,
as the name suggests, is a combination of both the 10 Mode and the 15 Mode.
There is 10 Mode cycle repeated three times. It has a 15 Mode cycle both at the

beginning and the end of the 10 Mode cycle occurrences [3].
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3.4 Applications

Some of these standard drive cycles are more applicable than the others. However,
the usage, or selection, of a particular drive cycle depends on their application.
These drive cycles are in general used as test beds or testing standards for almost
any kind of vehicle testing — real or simulated designs. The concept of driving
cycles was mainly introduced because it seemed as a more feasible, timely and a
cost-effective option to test vehicles on a standardized driving pattern rather than

testing them physically.

One of the major applications is for maintenance or emissions tests. The Fuel
consumption of a particular vehicle can be evaluated when the drive cycle is run
on a dynamometer. For EVs, energy consumption can be evaluated instead of the
fuel consumption. In addition to emissions and energy or fuel consumption, many
other vehicle parameters such as the mechanical power, electrical energy and so

on can be evaluated [3].

Also, most of the vehicle simulations use a specific drive cycle to test their
individual vehicle’s specific designs. Since these drive cycles serve as a major
testing tool in order to evaluate a vehicle’s performance, it becomes very
important for the cycles to be as accurate and precise as possible. It is also
important for the specific drive cycles to represent the actual utilization of the

vehicle as well as the specific driving conditions that the vehicle might encounter
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in its specific trips. In essence, the main usage of drive cycles is to evaluate or test
vehicles in order to predict their performance on the road before-hand. This in turn
can be very helpful in understanding how the real-life vehicles or the simulation
designs can be modified in order to meet market, business as well as the

government requirements.

3.5 Limitations

Drive cycles are one of the major testing standards used for vehicle testing and
evaluation in order to predict their performance on the road. The vehicle
performance prediction can only be accurate if the test-beds, drive cycles that they
are tested upon, are representative of the respective driving conditions. It is
extremely important to also notice that no matter how accurate and precise the
drive cycles are in themselves, they will not contribute much to accurate vehicle
testing and performance prediction unless they represent drive conditions that very
similar, if not exactly the same, to what the vehicle will experience on a specific
road at a specific time and when driven by a specific driver. Since, external
conditions such as weather, traffic, driver behavior, road conditions, terrain and
vehicle conditions can actually impact the vehicle performance it is essential to
include those conditions’ effect in the drive cycle definition; not just the
simulation parameters, in order to calculate accurate vehicle performance results.
In addition, not all the standard drive cycles are representative of real driving

conditions. For example, the modal cycles — namely, European and Japanese
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cycles are stylistic drive cycles [3]. The vehicle performance is highly location
dependent. As such, it will be very difficult to expect accurate performance
prediction based on standardized patterns as the real-life scenario for a particular

trip might be quite different.

Although, it is extremely important for the auto industry as well as the
government to have accurate drive cycles for vehicle evaluation, it will be a very
challenging task to come up with a scenario that might be applicable for every
single trip of any particular vehicle. However, by using guided change
management techniques, simulation options could be created where the drive
cycles could be defined more accurately than the currently pre-existing ones, if

not exactly representing the driving scenarios.
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4 Journey Mapping Concept

4.1 Proposed Journey Mapping Definition

The idea of Journey Mapping was born from the limitations of the existing
standard drive cycles as well as generic drive cycle models. Since drive cycles are
primarily used for vehicle testing and vehicle performance prediction; unless they
are very accurate, similar results cannot be expected. In order to predict how a
vehicle will behave during a particular trip, it is essential to model exact or very
similar drive conditions that the vehicle will encounter during the trip. As such, a
new approach for defining drive cycles- Journey Mapping was proposed as

follows:

Journey Mapping defines a vehicle’s drive cycle as the journey of that particular
vehicle from its origin to destination on that particular road which is affected by
various conditions; some of which are terrain, weather, road conditions, traffic,
driver Dbehavior, vehicle condition et cetera. This definition is pictorially

represented as follows:
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Figure 4.1: Journey Mapping Model
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4.2 Conditions governing the Journey Mapping Concept

In theory, a vehicle is affected by various conditions during its drive such as
terrain, weather, traffic, driver behavior, road conditions and vehicle conditions in
addition to the changes in its velocity profile which in some cases might be a
result of the above conditions as well as any changes in the auxiliary power load
and so on. As such, implementation of these conditions in the drive cycle
definition in order to test that particular vehicle will definitely result in accurate
performance prediction by enabling modeling scenarios closer to the real-life

situations.

However, it would be practically impossible to include all the conditions that a
vehicle might encounter during its trip in the simulation model. In addition,
AMESIim, the vehicle simulation software used for implementing journey
mapping, has some limitations in terms of the conditions that it can model. As
such, only the conditions for which data could be collected as well as modeled

have been included.

In the simulation model, many different parameters have been included that
represent various conditions. Some parameters provide a representation for more
than one condition. For example, the modeling of friction or tire to ground
coefficients can represent road conditions as well as the vehicle’s condition. A

detailed list of parametric values used and their description for various iterations
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will be described in the Modeling and Simulations chapter. A summarized list of

the major parameters is described below.

Mission profile parameters such as wind speed, air density and ambient
temperature, which model weather conditions, are constant values for one trip.
However, they vary for every iteration or trip. Also, varying terrain is modeled
using road grade or slope. This parameter varies with distance traveled by the
vehicle throughout a trip. In addition, varying vehicle parameters such as its
velocity profile as well as the gearbox ratio are also modeled as part of the

mission profile. These parameters change with respect to time throughout a trip.

Ambient conditions parameters model weather conditions. Parameters such as the
altitude of observation, albedo or ground reflection coefficient, linke turbidity
factor and cloud cover factor in addition to the localization parameters such as the
latitude, longitude, time zone, exact date and time at the start of the trip are
modeled in this section. These parameters change for every trip or iteration, but
are constant throughout a single trip. The ambient conditions parameters result in
the calculation of the solar azimuth angles and solar altitude which varies with

time throughout a trip.

Driver parameters enable in modeling driver behavior. Although, the simulation

model does not include the exact behavior of the actual drivers that drove the test
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vehicles in order to collect the true data, a generic driver behavior and its impact
on the vehicle performance can be seen. The driver model is conditioned using a
Proportional Integral Derivative (PID) controller. Derivative, proportional and
integral gains for the acceleration as well as the braking control are specified here.
Also, the advance time for control anticipation as well as the duration between the
beginning of pull away and the braking pedal lift is also specified here. These
parameters are constant throughout a trip, but change for every trip. These help in
the calculation of the driver acceleration and braking control throughout the trip,

which vary with respect to time throughout a trip.

Vehicle parameters have been used to model aerodynamic, road as well as vehicle
conditions. Aerodynamic and rolling parameters such as coulomb friction
coefficient, air penetration coefficient, aerodynamic drag area, stiction coefficient
and tire to ground grip coefficients have been modeled. These parameters are
constant for one trip, but change for every trip. The vehicle parameters help in the
calculation of braking and driving force, climbing resistance, aerodynamic drag,
front and rear axle slip as well as rolling resistance. These vary with time

throughout a trip.

Besides, the simulation parameters described above, CAN data logger parameters
also model certain conditions. In the Ford Focus Electric 2012, the vehicle

velocity data and auxiliary power is collected in order to model vehicle
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conditions. The outside temperature information models weather conditions. In
addition, driver behavior is also monitored using a driver eco score which is
calculated based on average velocity, % hard acceleration (how hard a driver
accelerates), % hard braking (how hard a driver brakes) and number of idle
events. The driver eco score is calculated within a range of 0 to 100 where 0
represents highly aggressive driving and 100 represents very efficient driving.
Similarly, for the Toyota Prius 2006, the velocity as well as absolute load value
have been collected for vehicle conditions. Outside temperature information is
also collected to model weather conditions. Similar to the Ford Focus Electric, the
driver behavior information is collected in terms of a driver eco score. Traffic
information has also been collected using typical traffic data posted by Google
Maps for the respective day and time of the trip. A traffic score of 1 to 4 was
assigned where 1 corresponded to a very slow traffic, 2 corresponded to a slow

traffic, 3 corresponded to a moderate traffic and 4 corresponded a fast traffic.

4.3 Data Collection
The data has been collected through various techniques which will be described
below. It was not possible to have all the data collected through the same means

because of a lack of equipment.

The terrain information, which was modeled using road grade, was mainly
acquired through high accuracy Geographic Information System (GIS) software

known as ArcGIS. Accurate Digital Elevation Model (DEM) data was received
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from McMaster University’s Scholar’s Geoportal. This data was then modeled
using ArcGIS in order to acquire accurate terrain information. Terrain information
was also collected using a Garmin Nuvi Global Positioning System (GPS) as well

as a GateTel CAN data logger, GT-GE910-GNS.

The CAN data logger was plugged into the vehicle’s CAN bus. There was also an

attachment to measure GPS data. The CAN data logger setup was done as shown

below for Toyota Prius 2006.

Figure 4.2: CAN Data logger setup

The traffic data was approximated using Google Maps. A typical traffic data
depending on the day and time was acquired. The vehicle velocity data was
acquired using the Garmin Nuvi GPS as well as the CAN data logger. The
weather information was acquired using the CAN data logger as well as the hourly
data files from Environment Canada. Lastly, the driver behavior information was

collected using the CAN data logger.
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4.4 Benefits and Applications

Journey Mapping provides a means for accurate vehicle testing and performance
prediction by enabling the modeling of real-life conditions. It could serve as an
accurate testing bed for various new and existing vehicles. This in turn could be
helpful in revising the Environmental Protection Agency (EPA) energy
consumption and fuel economy labels to reflect information that is closer to what

drivers might actually see on the roads.

In addition, it could also be applied to conventional, off-road, military or
emergency vehicles. Journey Mapping would be able to predict the vehicle
performance before-hand, which could be very helpful for emergency vehicles
which undergo trips with completely unknown conditions. Similarly, the Journey
Mapping concept could be applied to bikes, aircrafts or even under-water vehicles

in order to predict their performance before-hand.

It could also serve as a vehicle prediction tool and a means for intelligent decision

making for autonomous-capable vehicles, when integrated with vehicle-to-

vehicle, vehicle-to-infrastructure and advanced sensor information.

If commercialized through a simple web portal, any car driver would be able to

predict their vehicle’s performance for a particular trip before- hand just by
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entering the trip information. This could also help in making route-specific

decisions.

4.5 Limitations

The Journey Mapping concept can very accurately predict vehicle performance
because it aims to include most of the real-life conditions that a vehicle might
experience during its trip from origin to destination. However, it is practically
impossible to collect data for all the conditions to be able to simulate those
simultaneously. The present Journey Mapping model does not include traffic
conditions and true driver behavior. In addition, some of the road and weather
parameters are modeled as constants for a single trip, but as variables for different
iterations due to the limitation of the simulation software being used. Thus, when
the bigger picture is considered, Journey Mapping needs to be associated with
accurate weather and traffic prediction models as Journey Mapping’s basis 1S

constituted by the various conditions it is governed by.
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5 Modeling and Simulations

5.1 Ford Focus Electric Model

A 2012 Ford Focus Electric was used for the purposes of this research. A model
was constructed both in AMESim as well as Autonomie. The Autonomie model
was used for testing the Ford Focus Electric against five different standard drive
cycles. The AMESIm model was used to test against the standard as well as the
journey mapping drive cycles. Two different software packages had to be used as
Autonomie was found incapable of considering all the different conditions such as
road, terrain, driver behavior, weather and aerodynamic simulatenously for
calculating the resulting vehicle behavior. As such, the Autonomie simulation
model has been included here only to offer a comparison between the two

software packages for standard vehicle testing.
AMESIim Simulation for 2012 Ford Focus Electric:

This model was developed based on an existing model for an electric vehicle with
battery safety control unit in AMESim’s vehicle integration library. This model
was mainly chosen as it consisted of components that are similar to Ford Focus
Electric. Also, this was one of the models that allowed to incorporate a lithium-ion
battery pack. Modifications were made to this model according to the
specifications provided by Ford [27] in order to reflect Ford Focus Electric 2012.
The main specifications that were incorporated into the simulation model include

for the tires, motor, battery and the vehicle itself. An attempt was made to model
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the parameters as closely as possible to the Ford Focus Electric 2012 model;

however, some approximations had to be made for the battery and the electric

motor in order to incorporate some limitations of the simulation software. The

exact parameters used for different components in the model will be described in

detail below. The overall AMESIm model for the implementation of Journey

Mapping on the Ford Focus Electric 2012 is as follows:
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Figure 5.1: Journey Mapping Model Developed in AMESIim
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The description of various components, major user-defined parameters and

conditions modeled through them for different Journey Mapping iterations is as

follows.

The motor and battery models are inherent to the vehicle. As such, they are kept

consistent throughout all the iterations.

Battery model: the battery parameters are as follows:

Minimum Maximum
Title Value Unit (Min) Default (Max)
state of Charge 100 % 0 60 100
diffusion
overvoltage 0 \Y -1.00E+06 0 1.00E-06
filtering capacitance 0.001 F 1.00E-30 0.001 1.00E+30
battery
architecture:
number of elements
in series in one
branch 100 1 1.00E+00 1.00E+08
number of branches
in parallel 29 1 1.00E+00 1.00E+08
element nominal
capacity 2.3 Ah 1.00E-06 2.3 1.00E+30
limits:
warning
limits management message 1 2 3.00E+00
scope of the limits pack 1 2 2.00E+00
state of charge range
limitation yes 1 1 2.00E+00
maximum
temperature 1.00E+30 degC -273.15 1.00E+30 1.00E+30
minimum
temperature -273.15 degC -273.15 -273.15 1.00E+30
high current limit 1.00E+30 A 1.00E+30
low current limit -1.00E+30 A -1.00E+30
high voltage limit 1.00E+30 \ 1.00E+30
low voltage limit 0.00E+00 \% 0.00E+00
numerical
parameters:
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charge/discharge

transition type sharp 1 1.00E+00 2

input voltage

initialization automatic 1 1.00E+00 2

interpolation
parameters:

discontinuity
handling

active 1 2.00E+00 2

Table 5.2: AMESim Battery Parameters for Ford Focus Electric 2012

The Ford Focus Electric 2012 has a 23 kWh lithium-ion liquid cooled battery. The
above battery has been modeled to have the same capacity as Ford Focus Electric.
As such, the battery architecture has been adjusted accordingly. The rest of the
parameters have been left as default. This battery pack consists of high power

Lithium Iron Phosphate or LFP-C cells. Each cell’s nominal capacity is 2.3 Ah.

The Battery’s thermal properties are as described below.

Title Value Unit Min Default Max
solid type index 1 1 1 99
material definition user defined 1 2 17
type of definition constant values 1 2 3
minimal temperature -100 degC | -273.15 -100 1.00E+06
maximal temperature 660 degC | -273.15 660 1.00E+06
density of the
material 2028 kg/m”3 0 2700 1.00E+06
specific heat of the
material 2000 JIkg/K 0 900 1.00E+07
thermal conductivity
of the material 23 W/m/K 0 150 1.00E+07
AMESIim
name of the solid battery material aluminum

Table 5.3: AMESim Battery Thermal Parameters for Ford Focus Electric 2012
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The Battery safety control unit’s parameters are as follows. Most of the battery

safety control unit’s parameters were kept the same as default values; however,

the battery architecture was modified to reflect the correct arrangement used in the

battery model.

Title Value Unit Min Default Max
element max continous
charge current 20 A 1.00E-34 20 1.00E+34
element max pulse charge
current 30 A 1.00E-34 30 1.00E+34
element max continous
discharge current 20 A 1.00E-34 20 1.00E+34
element max pulse
discharge current 30 A 1.00E-34 30 1.00E+34
pulse duration 10 S 1.00E-34 10 1.00E+03
element min voltage 2.95 \% 1.00E-34 2.5 1.00E+34
element max voltage 3.65 V 1.00E-34 3.65 1.00E+34
max operating
temperature 30 deg C 0.00E+00 30 1.00E+03
max temperature 65 deg C 0.00E+00 65 1.00E+03
battery characteristics:
battery architecture:
number of elements in
series in one branch 100 1.00E+00 1 1.00E+08
number of branches in
parallel 29 1.00E+00 1 1.00E+08
battery physical
parameters:
temperature dependence yes 1 2 2
charge/discharge
resistance modeling yes 1 2 2
charge internal resistance | data_R_ch
data file .data 0.005
discharge internal data_R _dc
resistance datafile h.data 0.005
numerical parameters:
charge/discharge
transition type sharp 1 1 2
interpolation
parameters:
discontinuity handling active 1 2 2
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interpolation type linear 1 1 2
datafile linear data out of | extreme
range mode value 1 2 2

Table 5.4: AMESim Battery Safety Control Unit Parameters for

Ford Focus Electric 2012

Motor model: The Ford Focus Electric has a 107 kW electric motor. The electric
motor’s specifications have been included in this model though a series of data
tables as it can be seen below. The input voltage, rotary velocity and temperature
are used to get the maximum motor and generator torque. The motor parameters

are as follows:

Title Value Unit Min Default Max
torque 0 Nm -1.00E+16 0 1.00E+16
max/min input voltage,
electromagnetic | rotary velocity
torque as a and
function of temperature 1 1 4
input voltage,
torque, rotary
losses as a velocity and
function of temperature 1 1 4
torque time
constant 0.01 S 1.00E-16 0.1 1.00E+16
max motor TM_TorqueM TM_TorqueM
torque datafile | ax_UWT.data ax_UWT .data
max generator | TM_TorqueM TM_TorqueM
torque data file | in_UWT.data in_UWT .data
TM_ Losses U TM_Losses U
losses datafile WT .data WT.data
interpolation
parameters:
interpolation
type linear 1 1 2
linear data out linear
of range mode extrapolation 1 1 2
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discontinuity

handling inactive

numerical
parameters:

motor/generator

transition type smooth

min speed for
motor/generator

transition 0.1

rev/min

1.00E-12

0.1

10

min voltage 0.01

\%

1.00E-06

0.001

Table 5.5: AMESim Motor Parameters for Ford Focus Electric 2012

The electric motor’s thermal properties were left to be as default. They are as

follows:

Title Value Unit Min Default Max
solid type index 2 1 1 99
user
material definition defined 1 2 17
constant
type of definition values 1 2 3
min temperature -100 deg C | -273.15 -100 1.00E+06
max temperature 660 degC | -273.15 660 1.00E+06
density of the material 2700 kg/m”3 0 2700 1.00E+06
specific heat of the material 900 J/kg/K 0 900 1.00E+07
thermal conductivity of the
material 150 W/m/K 0 150 1.00E+07
motor AMESIm
name of the solid material aluminum

Table 5.6: AMESim Motor Thermal Parameters for Ford Focus Electric 2012
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The parameters specific to the vehicle were used consistently throughout all the
iterations of the simulations. However, certain parameters are modified for every
iteration of the Journey Mapping as well as standard drive cycle simulations.
Firstly, the various Journey Mapping iterations, conditions governing them and
the parameters used to model those conditions would be described. Then, the
various standard drive cycles and the parameters used to model those would be

shown.

The Journey Mapping data for the Ford Focus Electric was collected over the span
of about ten months. An attempt was made to collect data over varying external
conditions. Based on the real-life conditions observed, the Journey Mapping
simulation parameters were modified accordingly to understand the effect of these
parameters on the vehicle performance. The route for all these iterations was kept
constant, only the different varying external conditions were evaluated. The route
was kept constant in order to make sure that the results, mainly in terms of energy
consumption, were not biased. Even though the route was kept constant, it was
selected such that drastically varying terrain could be experienced. For the driver
behavior data collection described in this thesis, two different drivers have driven

the test vehicles. They will be referred to as driver 1 and driver 2.
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The Journey Mapping route, from the origin, MARC (43.2591280, -79.9023940)
situated at 200 Longwood Road South, Hamilton, Ontario to the destination,
Mohawk College (43.2393830, -79.8876790) situated at 135 Fennell Avenue
West, Hamilton, Ontario is as shown in Figure 5.7. It is to be noted here that the
trip for Journey Mapping was only a one-way trip and not a round trip. As
highlighted in the future work section, this study could be extended to include a

round trip in order to increase the reliability of the results.

Drive 2

Figure 5.7: Route for Journey Mapping
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The Journey Mapping conditions for various iterations as well as their respective
simulation parameters are described below. For every iteration of Journey
Mapping, corresponding actual results from the CAN data logger have also been
recorded. Only Journey Mapping 1 does not have corresponding data logger
results as the data logger was not purchased at that time of the iterations. The
actual results and their comparison to the Journey Mapping results will be

described in the Simulation Results section.

Journey Mapping 1:

The data for the first Journey Mapping iteration was collected on 24 February,
2014 between 1:35 p.m. to 1:59 p.m. It was clear sky with not too much snow on
the roads. The average outside temperature was -8 degrees Celsius and the
average wind speed was 29 km/h. The Ford Focus Electric was being driven by
driver 1 for this iteration. Although, traffic conditions have not been incorporated
into the current simulation model, they were observed for any relevant future
work. The traffic during this iteration was seen to be moderate. There were a few
spots with traffic congestion due to ongoing construction work. The parameters

used to reflect the above drive’s conditions are described below.

Mission Profile: The wind speed, air density, ambient temperature as well as the
road grade, gearbox ratio and vehicle velocity profiles were modified from the

default values to reflect this iteration of Journey Mapping.
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Title Value Unit Min Default Max
driving cycle personal 1 2 10
data out of
range mode extreme value 1 2 3
discontinuity
handling active 1 2 2
vehicle load
profile between
two stops constant 1 1 2
wind speed 29 km/h | -150 0 150
air density 1.307 kg/m”3 0 1.205 2000
ambient
temperature -8.5 deg C 0 25 50
filename for
road slope [%]
= f(vehicle
displacement: JourneyMappingl
x[m]) roadslopefinal.data 0*x+0
filename for
vehicle load
[kg] = f(vehicle
displacement:
x[m]) 0*x+0 0*x+0
filename for
vehicle velocity
[m/s] = JourneyMappingl MyVelocityFile.
f(time[s]) Velocity.data data
filename for
gearbox ratio
[null] = JourneyMappingl GearRatioFile.
f(time[s]) GearRatio.data data

Table 5.8: Mission Profile Parameters for Journey Mapping 1

Ambient Conditions: This block helps in modeling weather conditions. The

parameters are as follows:
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Title Value Unit Min | Default | Max

ambient conditions index 1 1 1 99

all by
solar variables correlation 1 1 3
calculation mode
solar calculations parameters:
altitude of observation 126.023 m 0 6 2500
albedo (ground reflection
coefficient) 0.2 null 0 0.2 1
Linke turbidity factor 4.5 null 0 3 10
cloud cover factor 0.3 0
localization:
GPS

position setting coordinates 1 2 2

latitude 43.2591 degree | -90 45,78 90
longitude -79.9024 degree | -180 4.85 180

time zone (GMT+ or -) -4 null -12 0 14

daylight saving time observed 1 1 2

starting time and date

year 2014 1900 2000 2099

month February 1 1 12

day 25 1 1 31

hour 1 0 0 23

minute 37 0 0 59

second 0 0 0 59

Table 5.9: Ambient Conditions Parameters for Journey Mapping 1

The albedo coefficient, linke turbidity factor and cloud cover factor have been
selected based on manual observation of weather during the various Journey
Mapping iterations. They have been selected for every iteration relatively to the
other iterations. The albedo or ground reflection coefficient signifies the reflection

of sunlight by the ground. It ranges from 0 to 1 where 0 is a ground fully
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absorbing sunlight and 1 is a ground completely reflecting sunlight. Linke
Turbidity factor deals with the haziness of atmosphere in the sky or in other
words, the amount of particles in the atmosphere. This ranges from 3 to 7, where 3
is a completely clear atmosphere and 7 is an atmosphere with most particles.
Finally, the cloud cover coefficient explains the coverage of clouds in the sky. It
ranges from 0 to 1, where O is a completely clear sky and 1 is a completely dark
sky. In addition, time and space localization parameters are set in order to

synchronize with the corresponding simulation time.

Based on these parameters entered, the solar radiation angles — solar altitude and
solar azimuth are calculated in the background. These angles are calculated using
a “set_sun_angles” utility in AMESim which uses various astronomical equations

[28].

Driver behavior model: The driver model incorporated in this simulation is a
generic driver model. The anticipative, integral and proportional gains for
acceleration and braking control have been selected in order to give the closest
vehicle speed in relation to the vehicle control speed. As such, the driver

parameters enabling a successful simulation were selected through manual tuning.

Title Value Unit Min Default Max
cycle with
cycle type slopes 1 1 2
advance time for
control anticipation 2 S 1.00E-05 2 5
acceleration control:
integral part 0 m -1.00E+06 0 1.00E+06
anticipative gain 0.75 1/(m/s/s) 0 0.25 1.00E+06
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proportional gain 0.62 1/(m/s) | 0.00E+00 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06
braking control:
integral part 0 m -1.00E+06 0 1.00E+06
anticipative gain 0.75 1/(m/sls) 0 0.25 1.00E+06
proportional gain 0.62 1/(m/s) 0 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06
stops:
braking when vehicle
stopped yes 1 2 2.00E+00
duration between pull
away beginning and
braking pedal lift 0.5 S 0.2 0.5 1.00E+00

Table 5.10: Driver Behavior Parameters for Journey Mapping 1

Based on the above provided parameters, the driver acceleration control and the

braking control are calculated in the background as follows [29]:
First, the error signal is evaluated as follows:

err = Veont = Vien

The acceleration control is then calculated as follows [29]:

acc = GPyee * err + Gl * [ err.dt + GAgee * dveonAnt
Where,

VcontAnt - Vcont
advAnt

AVeoneAnt =

Similarly, the braking control is calculated as follows [29]:
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brak = —GPy, x err — Glp, * f err.dt — GAp, * dvpneAnt

The true driver behavior could not be incorporated into this model because of
AMESIm library model’s limitations. In addition, there was a discrepancy
between the metrics that have been used by the CAN data logger to acquire driver
behavior information, when compared to the ones used by AMESim. As CAN
data could not be collected for the first iteration, the true driver behavior will be

described from the next iteration onwards.

Vehicle model:

Some of the parameters in this model are inherent to the vehicle; whereas, the

others are used to model road and vehicle conditions. The parameters are as

follows:
Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 | 0.00E+00 | 1.00E+06
vehicle linear
displacement 0 m -1.00E+06 | 0.00E+00 | 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip
configuration slip 1 1 2
total vehicle mass 1674 kg 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.747 kgm”?2 -1.00E+06 0.5 1.00E+06
tyre width 225 mm 50 195 500
tyre height 50 % 25 65 8.50E+01
wheel rim diameter 17 in 10 15 23
wheel dynamic radius | 0.97*Rw 0.97*Rw

57




M.A.Sc. Thesis — Kavya Prabha Divakarla

McMaster — Electrical Engineering

aerodynamic and
rolling parameters:

coulomb friction
coefficient (rolling

resistance) 0.05 null 0 0.01 1.00E+06
viscous friction
coefficient (rolling
resistance) 0 1/(m/s) 0 0 1.00E+06
windage coefficient
(rolling resistance) 0 1/(m/s)"2 0 0 1.00E+06
air penetration
coefficient (Cx) 0.295 null 0 0.3 1.00E+03
vehicle active area for
aerodynamic drag 4685.1 in"2 0 2 1.00E+06
stiction coefficient 1.2 null 1 1.2 1.00E+02
brake characteristics:
maximum braking
torgue on rear axle 3000 Nm -1.00E+06 1000 1.00E+06
maximum braking
torgue on front axle 3000 Nm -1.00E+06 1000 1.00E+06
rotary stick velocity
threshold for brake 1.00E-06 rev/min 0 1.00E-06 | 1.00E+06
tyre longitudinal slip
parameters:
tyre/ground grip
coefficient 0.8 null 0 1 1.00E+06
rotary stick velocity
threshold for
longitudinal slip 0.01 rev/min 0 0.01 1.00E+06

Table 5.11: Vehicle Parameters for Journey Mapping 1

The vehicle mass, tire width, height, wheel rim diameter, air penetration

coefficient and aerodynamic drag area were modeled according to the Ford Focus

Electric 2012’s specifications [27]. The wheel inertia was calculated as follows:

Ry, =S, /24

M, = W, /32.2
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Mt = Wt/32'2

AR
Hes = (Twi * (755)/253995)/12

R, = R, + Hy
RI, = 0.5 * M,, * R2,

RI, = 0.5 * M, * (R% + R2)
WI = RI, + RI,

The various coefficients of friction such as coulomb, stiction and tire to ground
grip coefficients were selected relatively for each iteration in order to model the
applicable drive conditions. The various calculations relating to vehicle, road and
aerodynamic conditions are as follows [30]. These calculations happen in the
background of the model simulation in order to display the final vehicle

performance results.

The vehicle characteristics are calculated as follows [30]:
Rys = 0.5% D, +0.01 x height x width

Myen, = Mass + 4 * J,,/R,,s°

The driving forces are calculated as follows, when longitudinal slip is taken into

account while implementing Journey Mapping [30]:

R * L v
d w*T30 "
S, = 100 % —2~ 30

v
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The Normal forces are calculated as follows [30]:

distrib

m

Fy.frone =mass * g x cos(arctan(0.01 x a)) * (—57)
Myistrip

Fy rear = mass * g * cos(arctan(0.01 * a)) * (1 — W)

The longitudinal slip and then driving force is calculated as follows [30]:

Wrel
Fifront = W * Fy frone * tanh(2 = dw

)

Wrel
FL,rear = u* FN,rear * tanh(z * dW)

Fgr = FL,front + FL,rear

The road as well as vehicle conditions are also modeled using the resistive forces
such as climbing resistance, aerodynamic drag and rolling resistance. They are

calculated as follows [30]:

F.; = mass * g * sin(arctan(0.01 * a))
Faero = 0.5 % iy * C % S % (U + Vyying)?
Frou = mass = g * (f + k * v + wind * v?)
Fres = Foi + Faero + Fron

The vehicle speed compared to the control speed shows a successful simulation:
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Figure 5.12: Vehicle and Control Speed for Journey Mapping 1

Journey Mapping 2:

The data for the second Journey Mapping iteration was collected on 29 April,
2014 between 11:09 a.m. to 11:38 a.m. It was extremely foggy and was raining
very heavily. The average outside temperature was about 6.9 degrees Celsius and
the average wind speed was 16 km/h. The Ford Focus Electric was being driven
by driver 1 for this iteration. The traffic during this iteration was seen to be
moderate. However, visibility was very poor due to the weather conditions. The
parameters that have changed from the previous Journey Mapping iteration are

described below:
Mission profile:

The wind speed, air density, ambient temperature and the velocity profile was
modified to represent the respective drive conditions.The parameters for mission

profile are as follows:
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Title Value Unit Min Default Max
driving cycle personal 1 2 10
data out of range mode extreme value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile
between two stops constant 1 1 2
wind speed 16 km/h | -150 0 150
air density 1.237 kg/m”"3 0 1.205 2000
ambient temperature 6.91951 deg C 0 25 50
filename for road slope
[%] = f(vehicle JourneyMappingl
displacement: x[m]) roadslopefinal.data 0*x+0
filename for vehicle
load [kg] = f(vehicle
displacement: x[m]) 0*x+0 0*x+0
filename for vehicle
velocity [m/s] = JourneyMapping?2 MyVelocity
f(time[s]) Velocity.data File.data
filename for gearbox JourneyMappingl GearRatio
ratio [null] = f(time[s]) GearRatio.data File.data

Table 5.13: Mission Profile Parameters for Journey Mapping 2

Ambient Conditions: The weather parameters such as albedo coefficient, linke

turbidity factor and cloud cover factor in addition to the altitude of observation as

well as the date and time parameters were modified according to the observed

conditions. This iteration simulates an extreme weather condition with very poor

visibility.
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Title Value Unit Min | Default | Max

ambient conditions index 1 1 1 99

all by
solar variables correlation 1 1 3
calculation mode
solar calculations parameters:
altitude of observation 102.718 m 0 6 2500
albedo (ground reflection
coefficient) 0.4 null 0 0.2 1
Linke turbidity factor 6.5 null 0 3 10
cloud cover factor 0.85 0
localization:
GPS

position setting coordinates 1 2 2

latitude 43.2591 degree | -90 45,78 90
longitude -79.9024 degree | -180 4.85 180

time zone (GMT+ or -) -4 null -12 0 14

daylight saving time observed 1 1 2

starting time and date

year 2014 1900 2000 2099

month April 1 1 12

day 29 1 1 31

hour 11 0 0 23

minute 9 0 0 59

second 0 0 0 59

Table 5.14: Ambient Conditions Parameters for Journey Mapping 2

Vehicle model: The road conditions which were also affected by the weather
conditions in addition to the vehicle and aerodynamic conditions’ parameters were
modified to model the real driving situation during this iteration of Journey
Mapping. The coulomb friction, stiction and tire to ground grip coefficients were

modified accordingly.
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Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 0 1.00E+06
vehicle linear displacement 0 m -1.00E+06 0 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip
configuration slip 1 1 2
total vehicle mass 1674 kg 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.747 kgm”2 | -1.00E+06 0.5 1.00E+06
tyre width 225 mm 50 195 500
tyre height 50 % 25 65 8.50E+01
wheel rim diameter 17 in 10 15 23
expression for wheel 0.97* 0.97*R
dynamic radius Rw w
aerodynamic and rolling
parameters:
coulomb friction coefficient
(rolling resistance) 0.065 null 0 0.01 1.00E+06
viscous friction coefficient
(rolling resistance) 0 1/(m/s) 0 0 1.00E+06
windage coefficient (rolling /(m/s)»
resistance) 0 2 0 0 1.00E+06
air penetration coefficient
(Cx) 0.295 null 0 0.3 1.00E+03
vehicle active area for
aerodynamic drag 4685.1 in"2 0 2 1.00E+06
stiction coefficient 1 null 1 1.2 1.00E+02
brake characteristics:
maximum braking torque on
rear axle 3000 Nm -1.00E+06 | 1000 1.00E+06
maximum braking torque on
front axle 3000 Nm -1.00E+06 | 1000 1.00E+06
rotary stick velocity 1.00E- 1.00E-
threshold for brake 06 rev/min 0 06 1.00E+06
tyre longitudinal slip
parameters:
tyre/ground grip coefficient 0.7 null 0 1 1.00E+06
rotary stick velocity
threshold for longitudinal
slip 0.01 rev/min 0 0.01 1.00E+06

Table 5.15: Vehicle Parameters for Journey Mapping 2
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Driver behavior: Although, the driver model used in the AMESIim simulation was
not modified compared to the previous Journey Mapping iteration; since, the CAN
data logger data was available during this iteration, the true driver behavior data
was measured. As previously stated, the test drives were done by one of the two

drivers. Their information is as follows:

Driver 1:

Age: 32

Driving Experience: 14 years

Driver 2:

Age: 64

Driving Experience: 48 years

For this iteration of Journey Mapping, driver 1’s eco-driving score was calculated
as 66.66%. The % hard acceleration, % hard braking and number of idle events
during the trip were found to be 7, 4 and 2 respectively. The graph showing the
comparison between vehicle speed and the control speed shows a successful

simulation:

65



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

Py drv_driver_c2 - vehide speed at port 3 {(run "1™ [km/h]

- — drv_driver_c2 - vehide control speed {run "17) [km/h]

50 —

50 —

40 —

30 —f

ZD —

10 —
N L " 3

o | T T T [ T I ! T ' I T T T 1 T 1 10
0.0 .2 .4 a.o .8 1.0 1.2 1.4 1.5 1.8
¥ Time {run "17) [s]

Figure 5.16: Vehicle and Control Speed for Journey Mapping 2

Journey Mapping 3:

The data for the third Journey Mapping iteration was collected on 24 July, 2014
between 12:09 p.m. to 12:37 p.m. It was a very bright and sunny day. The
visibility was excellent. The average outside temperature was about 22.3 degrees
Celsius and the average wind speed was 9 km/h. The Ford Focus Electric was
being driven by driver 1 for this iteration. The traffic during this iteration was seen
to be quite heavy due to lunch hour rush. The parameters that have changed from

the previous Journey Mapping iterations are described below:
Mission Profile:

The wind speed, air density, ambient temperature and velocity profile were

modified according to the drive conditions. The parameters are as follows:

66



M.A.Sc. Thesis — Kavya Prabha Divakarla

McMaster — Electrical Engineering

Title Value Unit Min Default Max
driving cycle personal 1 2 10
data out of range mode extreme value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile
between two stops constant 1 1 2
wind speed 9 km/h -150 0 150
air density 1.171 kg/m”"3 0 1.205 2000
ambient temperature 22.3 deg C 0 25 50
filename for road
slope [%] = f(vehicle | JourneyMappingl
displacement: x[m]) | roadslopefinal.data 0*x+0
filename for vehicle
load [kg] = f(vehicle
displacement: x[m]) 0*x+0 0*x+0
filename for vehicle
velocity [m/s] = JourneyMapping3 MyVelocity
f(time[s]) Velocity.data File.data
filename for gearbox | JourneyMappingl GearRatio
ratio [null] = f(time[s]) GearRatio.data File.data

Table 5.17: Mission Profile Parameters for Journey Mapping 3

Ambient Conditions: The altitude of observation and weather parameters such as

albedo coefficient, linke turbidity factor and the cloud cover factor in addition to

the date and time settings were modified to model the conditions observed during

the drive for this iteration of Journey Mapping. The parameters for this model are

as follows:
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Title Value Unit Min Default | Max
ambient conditions index 1 1 1 99
all by
solar variables correlation 1 1 3
calculation mode
solar calculations
parameters:
altitude of observation 110.154 m 0 6 2500
albedo (ground reflection
coefficient) 0.1 null 0 0.2 1
Linke turbidity factor 3.5 null 0 3 10
cloud cover factor 0.1 0
localization:
GPS
position setting coordinates 1 2 2
latitude 43.2591 degree -90 45.78 90
longitude -79.9024 degree -180 4.85 180
time zone (GMT+ or -) -4 null -12 0 14
daylight saving time observed 1 1 2
starting time and date
year 2014 1900 2000 2099
month July 1 1 12
day 24 1 1 31
hour 12 0 0 23
minute 9 0 0 59
second 0 0 0 59

Table 5.18: Ambient Conditions Parameters for Journey Mapping 3

Vehicle model:

The coulomb friction, stiction and tire to ground grip coefficients were modified

to reflect the drive conditions for this iteration. The parameters are as follows:
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Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 0 1.00E+06
vehicle linear displacement 0 m -1.00E+06 0 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip
configuration slip 1 1 2
total vehicle mass 1674 kg 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.747 kgm”?2 -1.00E+06 0.5 1.00E+06
tyre width 225 mm 50 195 500
tyre height 50 % 25 65 8.50E+01
wheel rim diameter 17 in 10 15 23
expression for wheel 0.97* 0.97*
dynamic radius Rw Rw
aerodynamic and rolling
parameters:
coulomb friction coefficient
(rolling resistance) 0.027 null 0 0.01 1.00E+06
viscous friction coefficient
(rolling resistance) 0 1/(m/s) 0 0 1.00E+06
windage coefficient (rolling
resistance) 0 1/(m/s)"2 0 0 1.00E+06
air penetration coefficient
(Cx) 0.295 null 0 0.3 1.00E+03
vehicle active area for
aerodynamic drag 4685.1 in"2 0 2 1.00E+06
stiction coefficient 13 null 1 1.2 1.00E+02
brake characteristics:
maximum braking torque
on rear axle 3000 Nm -1.00E+06 1000 1.00E+06
maximum braking torque
on front axle 3000 Nm -1.00E+06 | 1000 1.00E+06
rotary stick velocity 1.00E- 1.00E-
threshold for brake 06 rev/min 0 06 1.00E+06
tyre longitudinal slip
parameters:
tyre/ground grip coefficient 1 null 0 1 1.00E+06
rotary stick velocity
threshold for longitudinal
slip 0.01 rev/min 0 0.01 1.00E+06

Table 5.19: Vehicle Parameters for Journey Mapping 3
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The anticipative and proportional gains were modified. The parameters are as

follows:
Title Value Unit Min Default Max
cycle with
cycle type slopes 1 1 2
advance time for
control anticipation 2 S 1.00E-05 2 5

acceleration control:
integral part 0 m 1.00E+06 0 1.00E+06
anticipative gain 0.75 1/(m/s/s) 0 0.25 1.00E+06
proportional gain 0.8 1/(m/s) | 0.00E+00 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06

braking control:
integral part 0 m 1.00E+06 0 1.00E+06
anticipative gain 0.75 1/(m/s/s) 0 0.25 1.00E+06
proportional gain 0.8 1/(m/s) 0 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06
stops:

braking when vehicle
stopped yes 1 2 2.00E+00

duration between pull

away beginning and
braking pedal lift 0.5 S 0.2 0.5 1.00E+00

Table 5.20: Driver Behavior Parameters for Journey Mapping 3

The driver 1’s eco-driving score was observed to be 53.98% for this iteration of
Journey Mapping. The % hard acceleration, % hard braking and number of idle

events during the trip were seen to be 14, 17 and 3 respectively.
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The graph comparing the vehicle and control speed shows a successful simulation:
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Figure 5.21: Vehicle and Control Speed for Journey Mapping 3

Journey Mapping 4:

The data for the fourth Journey Mapping iteration was collected on 23 September,
2014 between 11:14 a.m. to 11:44 p.m. It was a sunny day with clear sky but was
slightly chilly. The average outside temperature was about 19.38 degrees Celsius
and the average wind speed was 9 km/h. The Ford Focus Electric was being
driven by driver 1 for this iteration. The traffic during this iteration was seen to be
moderate. The parameters that have changed from the previous Journey Mapping

iterations are described below:
Mission profile:

The weather parameters such as wind speed, air density and the ambient
temperature were modified in addition to the applicable velocity profile for this

iteration. The parameters are as follows:
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Title Value Unit Min Default Max
driving cycle personal 1 2 10
data out of range mode extreme value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile
between two stops constant 1 1 2
wind speed 9 km/h -150 0 150
air density 1.183 kg/m”"3 0 1.205 2000
ambient temperature 19.38 deg C 0 25 50
filename for road
slope [%] = f(vehicle | JourneyMappingl
displacement: x[m]) | roadslopefinal.data 0*x+0
filename for vehicle
load [kg] = f(vehicle
displacement: x[m]) 0*x+0 0*x+0
filename for vehicle
velocity [m/s] = JourneyMapping4 MyVelocity
f(time[s]) Velocity.data File.data
filename for gearbox | JourneyMappingl GearRatio
ratio [null] = f(time[s]) GearRatio.data File.data

Table 5.22: Mission Profile Parameters for Journey Mapping 4

Ambient Conditions: Once again, the weather parameters such as albedo

coefficient, linke turbidity factor and the cloud cover factor were modified

according to the observed conditions. Also, the altitude of observation and the

date and time settings were modified accordingly.
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Title Value Unit Min | Default | Max

ambient conditions index 1 1 1 99

all by
solar variables correlation 1 1 3
calculation mode
solar calculations parameters:
altitude of observation 108.92 m 0 6 2500
albedo (ground reflection
coefficient) 0.3 null 0 0.2 1
Linke turbidity factor 5 null 0 3 10
cloud cover factor 0.25 0
localization:
GPS

position setting coordinates 1 2 2

latitude 43.2591 degree | -90 45.78 90
longitude -79.9024 degree | -180 4.85 180

time zone (GMT+ or -) -4 null -12 0 14

daylight saving time observed 1 1 2

starting time and date

year 2014 1900 2000 2099

month July 1 1 12

day 23 1 1 31

hour 11 0 0 23

minute 14 0 0 59

second 0 0 0 59

Table 5.23: Ambient Conditions Parameters for Journey Mapping 4

Vehicle model: The coloumb friction, stiction and tire to ground grip coefficients
were re-assigend according to the conditions observed during this iteration of

Journey Mapping. The parameters are as follows:
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Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 0 1.00E+06
vehicle linear
displacement 0 m -1.00E+06 0 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip
configuration slip 1 1 2
total vehicle mass 1674 kg 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.747 kgm”?2 -1.00E+06 0.5 1.00E+06
tyre width 225 mm 50 195 500
tyre height 50 % 25 65 8.50E+01
wheel rim diameter 17 in 10 15 23
expression for wheel 0.97* 0.97*
dynamic radius Rw Rw
aerodynamic and rolling
parameters:

coulomb friction
coefficient (rolling

resistance) 0.025 null 0 0.01 1.00E+06

viscous friction coefficient
(rolling resistance) 0 1/(m/s) 0 0 1.00E+06

windage coefficient

(rolling resistance) 0 1/(m/s)"2 0 0 1.00E+06

air penetration coefficient
(Cx) 0.295 null 0 0.3 1.00E+03

vehicle active area for

aerodynamic drag 4685.1 in"2 0 2 1.00E+06
stiction coefficient 1.2 null 1 1.2 1.00E+02

brake characteristics:

maximum braking torque

on rear axle 3000 Nm -1.00E+06 1000 1.00E+06
maximum braking torque
on front axle 3000 Nm -1.00E+06 | 1000 1.00E+06
rotary stick velocity 1.00E- 1.00E-
threshold for brake 06 rev/min 0 06 1.00E+06
tyre longitudinal slip
parameters:
tyre/ground grip
coefficient 1 null 0 1 1.00E+06

rotary stick velocity
threshold for longitudinal
slip 0.01 rev/min 0 0.01 1.00E+06

Table 5.24: Vehicle Parameters for Journey Mapping 4
74




M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

Driver Behavior: The driver model’s parameters were kept the same as the
previous iteration. However, there was a difference in the true driver data that was
measured for driver 1. The eco driving score, % hard acceleration, % hard braking

and number of idle events was seen to be 63.88%, 6, 10 and 7 respectively.

The comparison of the vehicle and the control speed below shows a successful

simulation:
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Figure 5.25: Vehicle and Control Speed for Journey Mapping 4

In addition to the Journey Mapping simulations described above, the Ford Focus
Electric 2012 was also tested against five different standard driving cycles to
provide a basis for comparison. The AMESIim model used for all the standard

drive cycle simulations is the same:
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Figure 5.26: AMESim Model for Testing Against Standard Drive Cycles

In addition, the vehicle models and driver models are as shown below. They have
also been used onsistently for all the drive cycle simulations. The motor and

battery model, being inherent to the vehicle, have not been modified.
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Vehicle parameters: The external conditions have been left as default for the

following simulations. The vehicle parameters used for standard drive cycle

testing are as follows:

Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 | 0.00E+00 | 1.00E+06
vehicle linear
displacement 0 m -1.00E+06 | 0.00E+00 | 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip without
configuration slip 1 1 2
total vehicle mass 1674 kg 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.747 kgm”2 -1.00E+06 0.5 1.00E+06
tyre width 225 mm 50 195 500
tyre height 50 % 25 65 8.50E+01
wheel rim diameter 17 in 10 15 23
expression for wheel
dynamic radius 0.97*Rw 0.97*Rw
aerodynamic and
rolling parameters:
coulomb friction
coefficient (rolling
resistance) 0.01 null 0 0.01 1.00E+06
viscous friction
coefficient 0 1/(m/s) 0 0 1.00E+06
windage coefficient 0 1/(m/s)"2 0 0 1.00E+06
air penetration
coefficient (Cx) 0.295 null 0 0.3 1.00E+03
vehicle active area for
aerodynamic drag 4685.1 in2 0 2 1.00E+06
stiction coefficient 1.2 null 1 1.2 1.00E+02
brake characteristics:
maximum braking
torque on rear axle 1000 Nm -1.00E+06 1000 1.00E+06
maximum braking
torque on front axle 1000 Nm -1.00E+06 1000 1.00E+06
rotary stick velocity
threshold for brake 1.00E-06 | rev/min 0 1.00E-06 | 1.00E+06

Table 5.27: Vehicle Parameters for Standard Drive Cycle Testing
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Similarly, the driver parameters have also been left as default. They are as

follows:
Title Value Unit Min Default Max
cycle with
cycle type slopes 1 1 2
advance time for control
anticipation 2 S 1.00E-05 2 5
acceleration control:
integral part 0 m -1.00E+06 0 1.00E+06
anticipative gain 0.25 1/(m/s/s) 0 0.25 1.00E+06
proportional gain 0.5 1/(m/s) | 0.00E+00 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06
braking control:
integral part 0 m -1.00E+06 0 1.00E+06
anticipative gain 0.25 1/(m/s/s) 0 0.25 1.00E+06
proportional gain 0.5 1/(m/s) 0 0.5 1.00E+06
integral gain 0 1/m 0 0 1.00E+06
stops:
braking when vehicle
stopped no 1 2 2.00E+00

Table 5.28: Driver Behavior Parameters for Standard Drive Cycle Testing

Mission Profile:

The only parameters that have been changing for the various standard drive cycles

are the mission profile parameters — vehicle velocity and gearbox ratio profiles.

The parameters are as follows:
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UDDS:
Title Value Unit Min Default Max
driving cycle personal 1 2 10
extreme
data out of range mode value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile between
two stops constant 1 1 2
wind speed 0 km/h | -150 0 150
air density 1.205 kg/m”3 0 1.205 2000
ambient temperature 25 deg C 0 25 50
filename for road slope [%] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
filename for vehicle load [kg]
= f(vehicle displacement:
x[m]) 0*x+0 0*x+0
filename for vehicle velocity | cyc UDDS. MyVelocity
[m/s] = f(time[s]) data File.data
filename for gearbox ratio gear_UDDS GearRatio
[null] = f(time[s]) .data File.data

Table 5.29: Mission Profile Parameters for UDDS

The vehicle speed compared to the control speed showing a successful UDDS

drive cycle simulation is as follows:
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Figure 5.30: Vehicle and Control Speed for UDDS
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NEDC:
Title Value Unit Min | Default | Max
driving cycle NEDC 1 2 10
NEDC transmission type automatic 1 1 2
extreme
data out of range mode value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile between two
stops constant 1 1 2
wind speed 0 km/h -150 0 150
air density 1.205 kg/m"3 0 1.205 2000
ambient temperature 25 deg C 0 25 50
filename for road slope [%] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
filename for vehicle load [kg] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0

Table 5.31: Mission Profile Parameters for NEDC

The vehicle speed compared to the control speed showing a successful NEDC

drive cycle simulation is as follows:
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Figure 5.32: Vehicle and Control Speed for NEDC

80




M.A.Sc. Thesis — Kavya Prabha Divakarla

McMaster — Electrical Engineering

JCO8:
Title Value Unit Min Default | Max
driving cycle JCO08 1 2 10
engine temperature at cycle start cold 1 1 2
transmission type automatic 1 1 4
extreme
data out of range mode value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile between two
stops constant 1 1 2
wind speed 0 km/h -150 0 150
air density 1.205 kg/m”3 0 1.205 2000
ambient temperature 25 deg C 0 25 50
filename for road slope [%] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
filename for vehicle load [kg] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0

Table 5.33: Mission Profile Parameters for JC08

The vehicle speed compared to the control speed showing a successful JCO8 drive

cycle simulation is as follows:

o]
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Figure 5.34: Vehicle and Control Speed for JC08
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FTP 75:
Title Value Unit Min | Default | Max
driving cycle FTP-75 1 2 10
extreme
data out of range mode value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile between two
stops constant 1 1 2
wind speed 0 km/h -150 0 150
air density 1.205 kg/m”3 0 1.205 | 2000
ambient temperature 25 deg C 0 25 50
filename for road slope [%] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
filename for vehicle load [kg] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
Table 5.35: Mission Profile Parameters for FTP 75
The vehicle speed compared to the control speed showing a successful FTP 75

drive cycle simulation is as follows:

100 —

e/l —— drv_driver_c2 - vehicle speed at port 3 {run *17) [km/h]
drv_driver_c2 - vehide control speed {run "17) [kmh]

80 —

0.0

¥r Time {run "17) [s]
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20

a T T T
0.5 1.0 1.5

Figure 5.36: Vehicle and Control Speed for FTP75
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US06:
Title Value Unit Min | Default | Max

SFTP-

driving cycle US06 1 2 10
extreme

data out of range mode value 1 2 3

discontinuity handling active 1 2 2

vehicle load profile between two

stops constant 1 1 2

wind speed 0 | km/h -150 0 150

air density 1.205 | kg/m"3 0 1.205 | 2000

ambient temperature 25 | deg C 0 25 50

filename for road slope [%] =

f(vehicle displacement: x[m]) 0*x+0 0*x+0

filename for vehicle load [kg] =

f(vehicle displacement: x[m]) 0*x+0 0*x+0

Table 5.37: Mission Profile Parameters for US06

The vehicle speed compared to the control speed showing a successful US06 drive

cycle simulation is as follows:

Ink]

1 -{— ehice geedion ") fnk] L

I— vehice aniral speed (un 1) ]

X Tme fin 1)

Figure 5.38: Vehicle and Control Speed for US06

83




M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

Autonomie Simulation for Ford Focus Electric 2012:

A model for the Ford Focus Electric 2012 was also built on Autonomie to test
against the standard drive cycles. The Autonomie simulation for the Ford Focus
Electric is as described below. Since Autonomie libraries were not powerful
enough to model the exact vehicle parameters, an approximate model was created
using an Autonomie template for a mid-sized electric vehicle with fixed gear and

two-wheel drive. The simulation details are as follows:
Vehicle system:

A block diagram showing the connection of various components is as follows:

— Iﬁ -

Environment

£

Vehicle Propulsion

R1L1E 0 Controller

Vehicle Propulsion
Architecture

Figure 5.39: Autonomie model for Ford Focus Electric
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Vehicle Propulsion Architecture:

The various components that are a part of the vehicle propulsion architecture have

been highlighted below.

U

Eenrgy Storage Wheel

Povwer Converter Electrical Accessory

Figure 5.40: Vehicle Propulsion Architecture for Ford Focus Electric

The model shown above was used consistently for testing against UDDS, NEDC,
JCO08, FTP75 and US06. The appropriate drive cycle was tested for the standard
runs in order to acquire the relevant results. The next section on simulation results
will compare the results for these standard drive cycles with AMESim simulations

against the same standard drive cycles.
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5.2 Toyota Prius Model

A Similar analysis was done with the Toyota Prius 2006 by testing against the
same standard drive cycles as above — UDDS, NEDC, JC08, FTP75 and US06. A
simulation model was again built in AMESIm as well as Autonomie. The
AMESiIim model was tested against NEDC and the Autonomie model was tested
against the five standard drive cycles mentined above. In addition, the CAN data
logger for Ford Focus Electric 2012 was also modified to acquire data from the
Toyota Prius. These results will be compared in the next section on simulation

results.

AMESim model for Toyota Prius 2006:

The AMESIim model for Toyota Prius was acquired from AMESIm libraries.
Although, the model is for a 2004 Prius model, it could still be used for the
present analysis due to the similarity of the components. The default parameters
already model the real vehicle. As such, they have not been modified. In addition,
the model parameters have been configured such that it runs the NEDC drive
cycle as default. Although, the provided parameters have not been modified, they
have been listed here, in order to compare with the above described Ford Focus

Electric model parameters.
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The AMESIim model for the Toyota Prius shown in Figure 5.41 has been acquired
from the AMESIm automotive vehicle integration library. This model offers a
visual flow chart for hybrid vehicle thermal management. This model offers the
capability needed in this thesis in order to evaluate the Toyota Prius in addition to

modeling Prius like components.
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Mission Profile: This model simulates a NEDC drive cycle. The parameters are as

shown below.
Title Value Unit Min | Default | Max
driving cycle NEDC 1 2 10
NEDC transmission type manual 1 1 2
data out of range mode extreme value 1 2 3
discontinuity handling active 1 2 2
vehicle load profile between
two stops constant 1 1 2
wind speed 0 km/h -150 0 150
air density 1.205 kg/m”3 0 1.205 | 2000
ambient temperature Tamb deg C 0 25 50
filename for road slope [%] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0
filename for vehicle load [kg] =
f(vehicle displacement: x[m]) 0*x+0 0*x+0

Table 5.42: Mission Profile Parameters for Toyota Prius

Vehicle model: The parameters of the vehicle model are as follows. They have not

been modified as they reflect Toyota Prius already.

Title Value Unit Min Default Max
vehicle linear velocity 0 m/s -1.00E+06 0 1.00E+06
vehicle linear displacement 0 m -1.00E+06 0 1.00E+06
vehicle index 1 1 1 100
vehicle configuration road 1 1 2
longitudinal slip
configuration slip 1 1 2
total vehicle mass 1.36 tonne 0 1 1.00E+06
mass distribution 50 % 0 50 100
wheel inertia 0.5 kgm”?2 -1.00E+06 0.5 1.00E+06
tyre width 195 mm 50 195 500
65/
tyre height 1.08 % 25 65 8.50E+01
wheel rim diameter 15 in 10 15 23
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expression for wheel 0.97*R 0.97*
dynamic radius w Rw
aerodynamic and rolling
parameters:
coulomb friction coefficient
(rolling resistance) 0 null 0 0.01 1.00E+06
viscous friction coefficient
(rolling resistance) 0 1/(m/s) 0 0 1.00E+06
windage coefficient (rolling
resistance) 0 1/(m/s)*2 0 0 1.00E+06
air penetration coefficient
(Cx) 0.29 null 0 0.3 1.00E+03
vehicle active area for
aerodynamic drag 1.2 m”2 0 2 1.00E+06
stiction coefficient 1.2 null 1 1.2 1.00E+02

brake characteristics:

maximum braking torque

on rear axle 5000 Nm -1.00E+06 1000 1.00E+06
maximum braking torque
on front axle 5000 Nm -1.00E+06 1000 1.00E+06
rotary stick velocity 1.00E- 1.00E-
threshold for brake 06 rev/min 0 06 1.00E+06
tyre longitudinal slip
parameters:
tyre/ground grip coefficient 1 null 0 1 1.00E+06

rotary stick velocity
threshold for longitudinal
slip 0.01 rev/min 0 0.01 1.00E+06

Table 5.43: Vehicle Parameters for Toyota Prius

Driver behavior model:
The driver behavior has been modeled in AMESim libraries using a PID controller

as shown below.
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Pt

I'\_.-'"’"L Brake throttle postion

L

f[—‘ Sy B pmrmmimmmimmi e -
]
-3 [T b= —» P.LD. >—‘13 Torque request at the wheel

; HHHHH .M._a_<E| vehicle mass

Car velocity

Figure 5.44: Driver Model for Toyota Prius

The parameters for the PID controller are as follows. These values have also been

left as is.
Title Value Unit Min Default
dummy state variable for estimating
derivative part 1.39E-06 1/s | -1.00E+30 | 1.39E-06
integral part -4.89E-05 | null | -1.00E+30 | -4.88E-05
controller type PID 1 1
limit output no 1 1
proportional gain 5 null | -1.00E+30 2*1
integral gain 0.1 null | -1.00E+30 0.1
derivative gain 3 null | -1.00E+30 0
time constant for first order lag used to
estimate derivative 0.001 null | 1.00E-30 0.001

Table 5.45: Driver Behavior Parameters for Toyota Prius

Autonomie model for the Toyota Prius 2006:

An existing Toyota Prius 2004 model in the Autonomie libraries was used for the

analysis. Similar to the AMESim model, the 2004 Autonomie model could be
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used to represent a 2006 model due to the similarity in the components. The

model is as follows:
Vehicle system:

The vehicle system for the Toyota Prius is as shown below. A power split

architecture is shown in Figure 5.46.
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Environment

& .‘J
| Vehicle Propulsion
Controller
2

Vehicle Propulsion

[ [n -m Architecture

Figure 5.46: Autonomie Model for Toyota Prius
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Vehicle Propulsion Architecture:

The vehicle propulsion architecture components are as shown below:

Energy Storage  Power Converter 2

» ‘ 'ﬂ A Motor
u’ fl@;'_ L —

Mechanical
Engine Accessory Gearbox Final Drive

,‘ j@&' -fli!é,. i

Figure 5.47: Vehicle Propulsion Architecture for Toyota Prius

The above described Autonomie model for Toyota Prius was evaluated against the
standard drive cycles — UDDS, NEDC, JC08, FTP75 and US06. The results for

these simulations will be described in the next section on simulation results.
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5.3 Simulation Results

Ford Focus Electric 2012 AMESim and CAN results:

The main metric that was used for analyzing the Ford Focus Electric’s results was
energy consumption in kWh/100 mi as well as the MPGe. Please refer to
Appendix B for a detailed table highlighting the results for all the Journey
Mapping iterations, corresponding CAN data logger values collected as well as
the results obtained when simulated against UDDS, NEDC, JC08, FTP75 and

US06.

A summary of the energy consumption and MPGe values for various Journey
Mapping iterations have been compared with their corresponding CAN data
logger results as well as the standard drive cycle test results and the EPA values

for the Ford Focus Electric 2012 [31]

Energy Consumption (kWh/100 mi) | MPGe
JM1 56.58 59.56
JM2 66.50 50.67
CAN2 59.14 56.98
JM3 47.19 71.42
CAN3 48.89 68.93
JM4 44.32 76.04
CAN4 44.69 75.40
UDDS 33.48 100.64
NEDC 31.25 107.85
JCO8 32.05 105.14
FTP75 34.40 97.97
Us 06 45.28 74.42
EPA 32.00 110

Table 5.48: Energy Consumption Results
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The above results have been graphically represented as follows:
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Figure 5.49: Energy Consumption Results Graph

From above, it can be seen that the actual energy consumption was much more
than the EPA value or the ones predicted using the standard drive cycles. As such,
on similar terms, the actual MPGe was noticed to be much lower than the EPA
value or the ones predicted using the standard drive cycles. However, the Journey
Mapping models have been able to predict the respective energy consumption and
MPGe values quite closely to the actual values. This % error between the true and

the predicted as well as the EPA values are shown numerically in the table below:

96



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

JCO8 EPA
Iteration | JM and | UDDS NEDC and FTP75 USo06 and
# CAN and CAN | and CAN | CAN and CAN | and CAN | CAN
2 11.07 76.63 89.27 84.53 71.93 30.60 93.05
3 3.61 46.01 56.46 52.54 42.13 7.97 59.59
4 0.84 33.47 43.03 39.44 29.92 1.31 45.88
average
% error 5.17 52.04 62.92 58.84 47.99 13.29 66.17

Table 5.50: Energy Consumption Deviation

Thus, from the above table it can be seen that the % error between the Journey
Mapping and the true CAN data logger values is about 5% on average. The
standard deviation was seen to be about 8.7 for the various Journey Mapping
iterations. The % error was noticed to be the highest between the EPA labels and
the CAN data logger values. Amongst the various standard drive cycles tested,
US06 was seen to model the true vehicle performance most accurately. It is to be
noted here that the route selected for Journey Mapping was not a round trip. As
such, certain drive cycles might be less applicable than the others. This also
contributed to some deviation between the simulated and the actual results. This

variation in the percent error can be visualized through the graph as follows:
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Figure 5.51: Energy Consumption Deviation Graph

The individual vehicle results have been compared below for the various Journey

Mapping iterations as well as the corresponding CAN data logger values and the

results acquired from testing against the standard drive cycles.
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Battery SOC (24)
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The vehicle results collected from the CAN data logger for Ford Focus Electric

2012 are graphed below:

Results for the second iteration — CAN 2, third iteration — CAN 3 and the fourth

iteration — CAN 4 are as follows:
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Ford Focus Electric 2012 Autonomie Results:

The overall energy consumption and the MPGe was seen as shown in the table

below. The Autonomie results were compared to the AMESIm results for the

standard drive cycle simulations. It was seen that the AMESim results were more

accurate or were more closer to the true CAN data logger values. This could

mainly be because the AMESIim model represents the real Ford Focus Electric

vehicle more closely when compared to the Autonomie model. In addition, the

simulation and modeling capabilities are much higher for AMESim.

Autonomie | Autonomie Average CAN Autonomie/CAN | AMESim/CAN %
Drive Cycle Energy MPGe AMESim MPGe MPGe Published MPGe % error error
upDs 26.3340 127.9714 100.6430 67.1000 110.0000 90.7175 49.9896
NEDC 27.3410 123.2581 107.8461 £67.1000 110.00001 83.6932 60.7244
JC08 26.3700 127.7967 105.1449 67.1000 110.0000 90.4571 56.6988
FTP75 27.1110 124.3038 97.9655 67.1000 110.0000 85.2515 45.9993
Uso6 39.2840 85.7856 74.4191 67.1000 110.0000 27.8473 10.9077

Table 5.73: Comparison between Autonomie, AMESIm and True Results
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The above table has been graphically represented below:

140.0000
120.0000 \

100.0000 —_— \

o 80.0000
G
[a W
2= 50.0000
40.0000
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0.0000
UDDS NEDC JC0o8 FTP75 uso6
Drive Cycle
e AUtONOMie e AMESIim CAN EPA

Figure 5.74: Graph Comparing Autonomie, AMESim and True Results

The percent error between the Autonomie and AMESim results compared with the

true results is shown in Figure 5.75:
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Figure 5.75: Graph Comparing Autonomie and AMESim results with the true

results

As stated above, the AMESim simulations were seem to be more accurate. In
addition to the difference in the overall energy consumption, it was also noticed
that certain vehicle results calculated by Autonomie were quite unrealistic,

especially the Battery Voltage. As such, it has not been shown here.

The rest of the vehicle results calculated in Autonomie for various standard drive

cycles are shown in Figures 7.21-7.35 in Appendix C.
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AMESIim results for Toyota Prius:

The previously described Toyota Prius model was tested against NEDC drive

cycle in AMESIim. The vehicle results obtained from the simulation are as

follows:

|— ae_Battery_1 - potentiel at port 2 V]
|— ae_Battery_1 - current at port 2[A]
I— ae_Battery_1- state of charge at port 4 [nul]

1509

0

1005

)

- T T T - -
0.0 0.2 04 0.6 048 10
X: Time [5]

Figure 5.76: AMESim Toyota Prius” NEDC Results for Battery current,

voltage and SOC
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Motor Results

Time{sec)

——NMotor Speed (RPM]  ==—Maotor Torque (Nmj

Figure 5.77: AMESim Toyota Prius’ NEDC Results for Electric motor

speed and torque

3 — drv_engine2 - torque {output at port 1) [Nm]
0 .
6 - — drv_engine2 - engine speed [rev/min]
— drv_engine2 - fuel consumption [mg/s]
5
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i o i
T T’ st T T
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' — ’r
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Figure 5.78: AMESim Toyota Prius’ NEDC Results for Engine speed,

Torque and Fuel Consumption
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sl — drv_swheelsvehide - vehicle linear velocity at part 5 [m/s]

09

Figure 5.79: AMESim Toyota Prius” NEDC Results for Velocity Profile

The data logger that was initially used for the Ford Focus Electric 2012 was also
modified to record data from Toyota Prius 2006. This data was recorded on Nov
20, 2014 between 12:09 p.m. and 12:39 p.m. There were light snow flurries.
However, there was already a lot of snow accumulated on the roads. As such, the
roads were very slippery and wet. Driver 2 was driving the car for this test on

Toyota Prius. The true results collected with the CAN data logger are graphed as

below:
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1.77E+03 1.77E+03
1.79E+03 1.79E+03
1.84E+03 1.84F+03
1.87E+03 1.88F+03
1.90E+03 1.91E+03

L | L
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Please refer to Appendix D for the true vehicle results calculated for Toyota Prius
using a data logger. The fuel economy was calculated from the CAN data logger
results. These results will be compared with each other as well as the EPA values
after discussing Autonomie simulation results for Toyota Prius 2006. The analysis
conducted on Toyota Prius is not as detailed as for Ford Focus Electric 2012. This
is only a generic analysis in order to provide an overall basis for comparison
between an all-electric and a hybrid-electric vehicle. The Autonomie model for
Toyota Prius was tested on standard drive cycles — UDDS, NEDC, JC08, FTP75
and US06. The results for these simulations are shown in Figures 7.36-7.55 in

Appendix C.

The fuel economy numbers calculated from the Autonomie Simulations in

addition to the true values recorded from the CAN data logger are compared in the

table below:
Autonomie Published |Autonomie/
Drive Cycle MPG CAN MPG MPG CAN % error
upbDs 74.8900 34.4500 48.0000 117.3875
NEDC 69.3500 34.4500 48.0000 101.3062
JCos 22.0100 34.4500 48.0000 138.0552
FTP75 69.5400 34.4500 48.0000 101.8578
usos 43,8700 34.4500 48.0000 27.3440

Table 5.84: Comparing True and Autonomie MPG results for various drive cycles
From the above table, it can be seen that there is a lot of difference between the
fuel economy values predicted by Autonomie and the true values recorded by the

CAN data logger. In addition, deviation can also be noticed between the true CAN
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data and the EPA fuel economy labels. These deviations demonstrate the need for

a revised drive cycle definition.

The above fuel economy numbers are represented in graphical format as follows:

90.00 82.01
80.00
___70.00
< 60.00
48.0000 48.0000 48.0000 48.0000 48,0000
= 50.00 :
> 40.00 34.4500 34.4500 34.4500 34.4500 342500
g 4o.
o
Q 30.00
S 20.00
[NN)
— 10.00
S
D 0.00
uDDS NEDC Jco8 FTP75 Uso6
Drive Cycle
e Autonomie CAN EPA

Figure 5.85: Graph Comparing True and Autonomie MPG results for Toyota Prius

A comparison is also done between the MPG values of Toyota Prius and MPGe

values of Ford Focus Electric as follows:

Toyota Prius 2006
Ford Focus Electric 2012 (MPGe) (MPG)
UDDS 100.64 74.89
NEDC 107.85 69.35
JCO8 105.14 82.01
FTP75 97.97 69.54
uso6 74.42 43.87
CAN Average 67.10 34.45
EPA Label 110.00 48.00

Figure 5.86: Comparison Between Ford Focus Electric and Toyota Prius MPG
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From the above it can be seen that, as expected, Ford Focus Electric offers a better
fuel or energy economy being an all-electric car. This information is also visually

represented below:

120.00

100.00

80.00

60.00

MPGe or MPG

40.00
20.00

0.00
ubDS NEDC JC08 FTP75 uso6 CAN Average EPA Label

Data collection technique

Ford Focus Electric 2012 Toyota Prius 2006

Figure 5.87: Graph Comparing the MPGe and MPG for Ford Focus Electric and

Toyota Prius respectively

Overall, from this simulation results section, some important conclusions could be
drawn. From the two vehicle simulation software packages used, AMESIim was
seen to more accurately represent the real-life scenario. In addition, from the
standard drive cycles used, US06 drive cycle was seen to model Ford Focus
Electric’s as well as Toyota Prius’ performance most accurately. The Journey
Mapping test on Ford Focus Electric showed that it was able to model the real-life

conditions very accurately with only an average error of about 5 percent. As
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previously stated, from the two test vehicles, Ford Focus Electric, being an all-
electric vehicle was seen to have a higher fuel or energy economy compared to
Toyota Prius. In addition, it was alarming to see a significant percent deviation
between the EPA fuel and energy economy labels and the true data logger values.
The energy consumption and the fuel consumption was noticed to be much higher
than the EPA label values. Also, a major deviation was noticed between the values
predicted by the standard drive cycles such as UDDS, NEDC, JC08, FTP75 and
US06 and the true data logger values. These deviations between the true and the
predicted or EPA label values demonstrate a major necessity of re-defining drive
cycles. Journey Mapping’s implementation on Ford Focus Electric 2012 shows its
realistic, accurate and practical approach of modeling as well as testing vehicles

for their performance.

5.4 Sensitivity Analysis:

The concept of journey mapping is governed by many different external
conditions such as weather, terrain, road, vehicle, aerodynamic, driver behavior,
traffic, et cetera. As previously described, many different parameters have been
used in the Journey Mapping simulation model in order to implement these real-
life conditions. The concept of Journey Mapping has been implemented from the
perspective of energy consumption. The goal of Journey Mapping is not to predict
the lowest energy consumption values possible but to predict accurate values that

are as close as possible to the true values. In other words, Journey Mapping aims

121



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

to predict the vehicle performance accurately based on the conditions that the
vehicle might be influenced during its trip.

Although, a lot of conditions affect a vehicle’s performance, not all conditions
affect it equally. Some conditions have a bigger impact than the others. As such, it
IS very important to carry out a sensitivity analysis to understand the relative

influence of each of the known factors on energy consumption.

Since, Journey Mapping results were collected through the CAN data logger as
well as calculated using the AMESim Journey Mapping model, two different
sensitivity analyses had to be carried out in order to understand the importance of
all the different simulated as well as real-life parameters. Both these sensitivity
analyses could not be combined, but had to be carried out separately because of a
difference between the time intervals of the measured results. This sensitivity
analysis was carried out by comparing the deviations between the various external
parameters to the deviation between the energy consumption. Deviations were

calculated between the neighboring time stamps.

Sensitivity analysis for the Journey Mapping parameters modeled in AMESim for
Ford Focus Electric is as follows. The values shown below are a summary of the

results calculated through a detailed sensitivity analysis.
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Sensitivity

VARIABLES M1 2 M3 IMa Percent
Braking Force 74,0709 | 60.0658 | 85.6702 | 87.3332 | 77.7850
Driving Force 18.5760 | 12,7334 | 10.0544 | 12.4203 | 13.4685
Climbing resistance £.9106 | 4.8102 0.0721 0.0868 2.9659
Aerodynamic Drag 0.3636 | 0.2081 0.0407 0.0357 0.1620
Front axle slip 0.0448 | 0.3608 0.03%0 | 0.0483 0.1232
Velocity profile 0.0129 | 0.0111 0.0035 0.0032 0.0052
Driver baking control 0.0086 | 0.0050 | 0.0137 | 0.0141 | 0.0113
Driver accelaration control 0.0033 | 0.0025 | 0.0019 | 0.0027 | 0.0026
Rolling resistance 0.0030 | 21.7452 | 0.0645 | 0.0555 | 5.4671
Solar Azimuth Angle (Degrees) | 0.0003 | 0.0021 | 0.0001 | 0.0000 | 0.0006
Solar Altitude (Degrees) 0.0000 | 0.0019 0.0000 | 0.0000 | 0.0005
Rear axle slip 0.0000 | C.0000 | 0.0000 | 0.0000 ([ O.0000

Table 5.88: Sensitivity Analysis Results for Simulation Parameters

As it can be seen from the above table, braking force has the most influence on the
energy consumption out of all the variable simulation parameters considered. The
influence distribution of various simulation parameters can be visualized from the

chart shown in Figure 5.89.
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Figure 5.89: Sensitivity Analysis Chart for Simulation Parameters
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Similarly, sensitivity analysis was carried out for the real parameters collected by

the CAN data logger. A summary of the results is displayed in the table below:

VARIABLES CAN2 CAN3 CAN4 Sensitivity Percent
Grade 30.83 80.37 98.54 69.91

Outside Air temperature | 0.01 0.00 0.17 0.06

Auxiliary Power 68.15 19.53 0.00 29.23

Vehicle velocity 0.11 0.06 0.13 0.10

Traffic conditions 0.90 0.04 1.16 0.70

Table 5.90: Sensitivity Analysis Results for True CAN Parameters

From the above, it can be seen that terrain, represented as the road grade has the
biggest impact on energy consumption out of the real-life parameters collected
using the CAN data logger. A visual representation of the above tabulated

sensitivity analysis results are as follows:

0.70
0109

m Grade

m Qutside Air
temparature

® Aux.Power

0.06

Vehicle velocity

m Traffic conditions

Figure 5.91: Sensitivity Analysis Chart for True CAN Parameters
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The above described parameters are variable parameters that change throughout
the trip with respect to time. However, there are also some parameters that stay
constant throughout a trip but change with every iteration. Such parameters might
also influence energy consumption. However, they could not be included in the
above sensitivity analysis. This is mainly because the deviation according to the
variation in each parameter was studied. As such, if there is no variation in the
parameter it could not be included as part of the above sensitivity analysis. Some
such simulation parameters include wind speed, air density, albedo coefficient,
linke turbidity factor and the cloud cover coefficient. However, these parameters
already play a role in the variables included in the above analysis. As such, their
influence has been indirectly accounted for. Similarly, for the results acquired
from the CAN data logger, the driver behavior parameters such as % hard
acceleration, % hard braking and the number of idle events were found constant
for the whole trip although, they varied for every iteration. Once again, due to
invariability of these parameters, they could not be included in the sensitivity
analysis above. However, a brief description of the driver behavior monitoring is

given below.

The CAN data logger was able to estimate the driver behavior using an eco-
driving score which was calculated based on % hard acceleration, % hard braking,
number of idle events and average vehicle speed. The driver behavior monitored

from two different trips is compared below. Both these trips were done through
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Toyota Prius. Different drivers were driving the vehicle for different trips. As

such, their behavior and their impact on fuel economy is evaluated here.

Driver 1 | Driver 2

Age 32 64
Driving experience in years | 14 48

% Hard acceleration 2 10

% Hard braking 5 10
Number of idle events 4 7
Eco-driving score 64.96 63.53
Fuel Economy (MPG) 48.81 39.46

Table 5.92: Driver Behavior Comparison for Toyota Prius

Although, the above comparison is not enough to make conclusions about the
effect of driver behavior on fuel economy, a generic trend can be noticed where a
higher fuel economy can be seen when the driver with a higher eco-driving score
drove the test vehicle. It is to be noted here that the age and driving experience of
the driver has only been included for information purposes. Their impact on fuel
economy was not studied and hence not implied. The difference in eco-driving
scores are not significant to make any strong sensitivity conclusions. In addition,
many other external parameters discussed previously, could also have impacted

the driver behavior during the trips.

In overall, it could be generally concluded that terrain in addition to the road and

vehicle conditions are the biggest influencers of energy consumption. In other
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words, energy consumption is the most sensitive to slightest changes in these
conditions. The effect of terrain could be studied through the sensitivity analysis
conducted on the CAN data logger results. The braking force is modeled as a
result of road and vehicle conditions in the AMESim Journey Mapping model. As

such, they could also be generalized as influencers of energy consumption.

5.5 Discussion

The main aim of the Journey Mapping concept was to re-define drive cycles in
order to provide a more realistic, accurate and practical method of estimating
vehicle performance. This goal was successfully accomplished; however a lot of

challenges were faced during the process.

A major challenge faced was the data acquisition. The Journey Mapping concept
needs accurate real-time variable data with many different external conditions.
However, due to the unavailability of such sophisticated equipment that was
capable of making all measurements, different means of data collection were
exercised. The data integration from all the different sources was a major
challenge because of the large amounts of unsynchronized data with respect to

time.

In addition, the unavailability of all the data needed contributed to many

challenges. Not all the data that was collected could be incorporated into the
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currently existing vehicle simulation software packages. On similar terms, the
various simulation parameters needed to model the real-life scenario as closely as
possible could not be collected in real-time due to the lack of such equipment. As
such, those parameters had to be manually estimated by observation or through

online databases available.

Also, modeling of the complete vehicles to reflect the real test vehicles as closely
as possible was another major challenge. Every vehicle consists of many sub
components and it was very difficult to find detailed information about all the

components. As such, some approximations had to be made as applicable.

In addition, collection as well as modeling of numerous parameters
simultaneously was also very difficult. Understanding the impact of all the
parameters on every component of the test vehicles was needed to finish the

simulations successfully.

Also, many problems were faced with the values collected from the data logger.
Sometimes, the logger was seen to record null or inappropriate values. However,

despite of many challenges, the main goals were successfully accomplished.
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6 Conclusion and Future Work

6.1 Conclusions

In overall, it could be seen that the main aim of re-defining drive cycles using the
concept of Journey Mapping and testing its implementation on Ford Focus
Electric was successfully fulfilled. The Journey Mapping model was able to
predict the energy consumption accurately with about 5 percent error on average
when compared to the true consumption and the standard deviation for the various
Journey Mapping iterations was noticed to be about 8.7. In addition, a major need
for re-defining drive cycles was demonstrated by displaying the significant

deviations between the EPA labels and the true measurements.

The Journey Mapping model provided a realistic and accurate approach of vehicle
testing and performance prediction within the considered scope. There was also a
major deviation noticed between the standard drive cycles considered in this thesis
and the true CAN values. As such, Journey Mapping attempted to identify means
to fill that gap. It is to be noted here that the goal of this thesis was not to prove
that Journey Mapping is a better technique for defining drive cycles than all the
currently existing ones, but to demonstrate a significant need for re-defining drive
cycles by conducting a preliminary study of the various external factors that could

impact a drive.
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In addition, various parameters were also assessed for their sensitivity from an
energy consumption perspective. Terrain, road and vehicle conditions were found
to be the biggest factors. Also, a comparative study was offered between the two
test vehicles — Ford Focus Electric and Toyota Prius. The former, being an all-

electric car was seen to be more fuel or energy efficient.

In conclusion, the Journey Mapping concept was developed as well as
successfully tested within the defined scope. It was found to provide a new and

realistic approach for vehicle testing and performance prediction.

6.2 Scope of Future Work

The real-time variable data collection as well as the implementation of driver
behavior [32] and traffic data would be the biggest opportunity for improvement
of the Journey Mapping model. An accurate real-time traffic data collection
equipment needs to be used. A low-cost technique would be to simply use

cellphone applications to collect traffic information [33].

In addition to above, the scope of the Journey Mapping concept could be extended
to be implemented on conventional vehicles, off-road vehicles, aircrafts, bikes,
under-water vehicles et cetera. Also, this concept could be extended to

autonomous-capable vehicles [34]. Journey Mapping can provide means for
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estimating accurate vehicle behavior which could then be integrated with vehicle-
to-vehicle as well as vehicle-to-infrastructure technology and advanced sensor
technology in order to provide means for intelligent decision making for

autonomous-capable vehicles.

Also, the accuracy of the model could be improved by collecting real-time
detailed information about road [35], vehicle and weather conditions. This real-
time information when incorporated into the simulation model could further
improve the accuracy of the Journey Mapping model. In addition, the Journey
Mapping route could be modified to include a round trip so that the results are
more representative of the journey. It would also provide better means of
comparison with the traditional drive cycles. The simulation models could further
be improved by incorporating symbolic models from MapleSim, especially for
modeling road conditions. In addition, the driver models could be improved by
using an appropriate controller tuning technique rather than manual tuning. The

simulation results can also be verified by testing the models using a dynamometer.

Furthermore, the study conducted in this thesis was majorly focused on Ford
Focus Electric 2012. The study conducted on Toyota Prius 2006 was a very basic
one due to the complexity of the model. As such, a detailed analysis could also be
carried out with Toyota Prius in order to provide better means of comparison for

the Journey Mapping model’s implementation.
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Lastly, the Journey Mapping concept could be extended to the commercialization
stage where a simple web portal could be developed, which could enable the users
to predict fuel economy, energy consumption or vehicle performance, in general,
when the trip details such as trip date and time, route, origin, destination, type of
driver and the vehicle being used are entered. For the implementation of this,
Journey Mapping would have to be integrated with accurate weather and traffic

prediction models.
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Appendix A

This Appendix provides examples of some traditional drive cycles generated using
Autonomie libraries. Please note that the x axis is time in seconds and the y axis is

the vehicle speed in m/s.
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Appendix B

This Appendix provides the Journey Mapping, CAN and the standard drive cycle
tests — UDDS, NEDC, JC08, FTP75 and US06 results for Ford Focus Electric
2012. Although, the simulation results were calculated for every 0.2 seconds, due

to the space limitations, the time interval has been increased in the tables here.
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Appendix C:

This Appendix provides the Autonomie results for Ford Focus Electric 2012 and
Toyota Prius 2006 when tested against some traditional drive cycles. Please note

that the x axis is time in seconds for the graphs included in this appendix.
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Figure 7.21: Autonomie Ford Focus Electric’s UDDS Results for Battery Current

and SOC
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Figure 7.22: Autonomie Ford Focus Electric’s UDDS Results for Motor Speed
and Torque
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Figure 7.23: Autonomie Ford Focus Electric’s UDDS Result for Velocity Profile
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Figure 7.24: Autonomie Ford Focus Electric’s NEDC Results for Battery Current

and SOC

169




M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

800 T

| | : | mot_plant_trg_out (Simulation?) [N.m] = 1
F ] [ [ R S mot_plant_spd_out (Simulation?) [radfs] x 1 (|
o —— e o e e -

- \ \ | \ |
o

200 400 600 800 1000 1200
time
Figure 7.25: Autonomie Ford Focus Electric’s NEDC Results for Motor Speed
and Torque
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Figure 7.26: Autonomie Ford Focus Electric’s NEDC Results for Velocity Profile
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Figure 7.27: Autonomie Ford Focus Electric’s JCO8 Results for Battery current

and SOC
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Figure 7.28: Autonomie Ford Focus Electric’s JCO8 Results for Motor speed and
torque
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Figure 7.29: Autonomie Ford Focus Electric’s JCO8 Results for Velocity Profile
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Figure 7.30: Autonomie Ford Focus Electric’s FTP 75 Results for Battery Current

and SOC
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Figure 7.31: Autonomie Ford Focus Electric’s FTP 75 Results for Motor Speed

and Torque
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Figure 7.32: Autonomie Ford Focus Electric’s FTP 75 Results for Velocity Profile

173



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

US06:

260

T
ess_plant_soc (Simulation?) [%] x 1
ess_plant_cur_out (Sirmulation?) [A] %1

0 | | | \ \
0 100 200 300 400 500 600

Figure 7.33: Autonomie Ford Focus Electric’s US06 Results for Battery current

and SOC
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Figure 7.34: Autonomie Ford Focus Electric’s US06 Results for Motor speed and

torque
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Figure 7.35: Autonomie Ford Focus Electric’s US06 Results for Velocity Profile
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Figure 7.36: Autonomie Toyota Prius’ UDDS Results for Engine Speed and

Torque
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Figure 7.37: Autonomie Toyota Prius’ UDDS Results for Motors’ speed
and torque
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Figure 7.38: Autonomie Toyota Prius’ UDDS Results for Battery SOC,

voltage and current
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Figure 7.39: Autonomie Toyota Prius’ UDDS Results for Velocity Profile
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Figure 7.40: Autonomie Toyota Prius’ NEDC Results for Engine speed

and torque
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Figure 7.41: Autonomie Toyota Prius’ NEDC Results for Motors’ speed and
torque
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Figure 7.42: Autonomie Toyota Prius” NEDC Results for Battery SOC,

voltage and current
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Figure 7.43: Autonomie Toyota Prius” NEDC Results for Velocity Profile
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Figure 7.44: Autonomie Toyota Prius’ JCO8 Results for Engine speed and torque
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Figure 7.45: Autonomie Toyota Prius’ JCO8 Results for Motors’ speed and
torque
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Figure 7.46: Autonomie Toyota Prius’ JCO8 Results for Battery SOC, voltage and
current
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Figure 7.47: Autonomie Toyota Prius’ JCO8 Results for Velocity Profile
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Figure 7.48: Autonomie Toyota Prius’ FTP75 Results for Engine speed

and torque
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Figure 7.49: Autonomie Toyota Prius’ FTP75 Results for Motor speed and torque
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Figure 7.51: Autonomie Toyota Prius’ FTP75 Results for Velocity Profile
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Figure 7.52: Autonomie Toyota Prius’ US06 Results for Engine speed and
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Figure 7.54: Autonomie Toyota Prius’ US06 Results for Battery SOC, voltage and

current
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Figure 7.55: Autonomie Toyota Prius’ US06 Results for Velocity Profile
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Appendix D

This Appendix provides the true CAN data logger results for Toyota Prius

186



ineering

McMaster — Electrical Eng

M.A.Sc. Thesis — Kavya Prabha Divakarla

¥ET £LE1E8 0 £5°21 22886 E6ETEF 6291 0 Lt 0000°0 0T LL6}
9ze 91Z6ES L BY 6 61E8 6. LEETER BS 5.1 5811 or SETE L L LEeL
Z6lL ¥625 €8 55 £0°0 51186 9IETER SSELL 0 oF 0000°0 oLLesL
ZET 9LZ6E8 0 L8°6E 0292°6.- ZSETEY £9'g9l SE EZ6L oF reL08s 257594
¥ET P6Z5 €8 z Ji 22926 BEETEF SFELL S.°8.51 oF LEPE L EL LIS}
vee 202619 0 2565 LES26.L 9LETEY £e Ll SLBLEL oF LEPS L LLSLSL
0se 9285 19 ge- 2.4°55 09¥2 6. LBETEY L6581 0 oF 0000°0 reeerh
zel ZTEE 09 zF £9°51 |BES 6L TETTEY s9°8s5t 5410V 6E EFBL 0P BOEBE}
961 9LZE €D £E EER L BYES 6L ISETEY £0°85} ZELL 6E ZTEE0F ZOSLEL
¥z 206158 gi- 46°EF 9EYE 6. LIETEYR £5°/81 0 6E 000070 BOFEEH
22C 026058 £ BE 59 S9¥2 6. ST Er grEel ST L¥6L 6E SELE LS Zhiett
0ET r22ese g 2645 0952°6.- erve ey gsaLL LISL 2€ SLLY B BESLLL
YET 198998 0 £E°05 rESe 6. ZTEY ges SLESLHL 2€ DE06 FE 62 2804
9Kz 206 59 Fl- a8y LESE 6L ZSFTER Log 5L L0ET 2 429295 L6°E86
9€g +E22'so z 25 6F S0S2 6. LBFTEY £2'99 SZElEL 2 OLSY iF 96 086
OFE 20658 z 9.ar LLPE 6L BLSTEF 2209 5811 LE Z6E0°2E £0°€92
95z BS0LFS ok £4°0E ZIPE 6L FISTER 92°65 0 LE 000070 reeie
82¢ 208619 g 4502 00¥2 6. BIFTER 2EF9 0 9 0000°0 FOESL
91z 0000 08 5 9E 5t SI¥2 6. LEVTEY 60°89 SZresl 9 128295 SO°E0L
¥OZ Y6Z5 €8 i £2°5€ 6/58°6.- FESTEY 16'89 0 SE 000070 L0'9Es
9€z 206+ 59 L S0'LE 2192°6. BYSZEr e ze S06LL vE LSPL TR B2'€95
2FC BS0L ¥8 L LLEr BLI8°6. D9STER £'58 S2Z00L £ £989°51 16°86F
THT ELELED S gL Er SLI86L PISTER E0'L6 S.00LL ZE LFET 1 P 05T
ZET ELELED L gz ie LPEE 6L BESTEF 95°6L rogL LE 2605 FS 96 Z0F
9€T 928518 L S9°ES L0626 Z09T Y L2EL SZTOELL 0E 80.¢781 S6'F5E
0zt S9.1°18 z E0°0 L1626 LOSE EF s S.L0E1 22 £989°51 v L0€
222 ISLZBS 5i- 450 SLOB 6. rISTEY 92 5. 00ZL 12 JEEET £oese
202 226E 08 ¥ 0 6106 6. 855TEF 42 S.E0EL T reLo sl D6 E0E
FOT LSPL TS 9 0 £T0E 6. 95T ER i 5.°T6TL €T 20L181 FEErL
¥1Z 026059 z 0 ZT066.L- [ 12 SZZ0EL 6L 90.L+ 51 ZLSL
¥ET 22509 ¥ 0 00000 00000 0 9621 L BFST LL LLL
TN o | e | e | L | | e | AR | PR |
“gegnn | 05 #EgaH | S0 0 | #dSTSdD | TueTTsdo BTSdD | WY Sd9 | oy eubul preog anosay {s) 2w

187



ineering

McMaster — Electrical Eng

M.A.Sc. Thesis — Kavya Prabha Divakarla

L 4] £ STL L ZZ9 4] oraL- SL0 SI28F 5 SL0FL 0z L6l
6E 528571 £ SZLE 9% L S5k s2F e0L SI88F ZEOFL LE LFEL
¥ 4] € SZL85E 60F SLDFE ForL 60°0 SZO0E £ ZELFL 0L LeLL
¥ SIEFEE £ Si2°0E cogk S¥e GLEZ 28l 528571 S20FL gEL581L
SE SELEL0 € SZO°06 azs S0E GEEL 2Lo0k SZLE SL0FL = L N
a9 528571 £ Slge SECT SZ0e- 05e- 8.0k STR0EE S20FL LL'SESLE
aF 4] € SELELL- ZES L 4] 9z Z0 SI20% G ZEOFL FLBEFL
L1 SZLE £ STFLL Z9s S5 S96E L8 4] 626EL 60 EBEL
] SELEL0 € GEZ9SEL 164 SZE- €208 i SICFEE SlLFL Z0°SLEL
Fat 4] £ Gl ee 2051 4] E06E"- S0 SI88F 5 SL0FL 60 FEZIL
ag STLEL 0 € GLdL LEVE SrgEE 227 F2FL SL0FL ZL AL
15 STreL 0 z- ST6 20LE SLEGL- 2.2 5L ZELFL 66'5HLL
¥Ss SZLE z- SLE0L- 216k SEL- ot L0's S20FL 62 L8001
L5 SZLE g £1- 2061 o LESE co'elL ZELFL I6'CRE
2F STreL o z- SZ9E 2541 oz- 4 158 S20FL 96'0E6
aF 4] g ClgE- FriL SZYFL- Pl o o 9c'g ZELFL co'cog
£2 4] z- SCYEEL- SEF 4] 92z 60°0 S20FL FZZle
0z 4] z- SLLE Fir 4] £2gL- L0 SI20% G ZELFL F0'ESL
as STLeL 0 z- STl 5941 te- 229k SLFL SIEFEE SiLFL S0ENL
ac 4] z- 52945 LEEL 4] tSE- 60°0 SI20% G SlLFL L'9Eg
LE 4] - Si2FL SECL SL8- L0k 92 STR0EE S20FL 62°E85
6E SI20% G z- 9z- LekL 4] 69L- IEE SI20% G ZELFL L6261
¥ STR0GE z- 9z- 2551 4] SZE- ZEE SI88F 5 ZELFL #6055k
¥E SZO5°L z- SZLS GSZk Sl EeE ZelL 29'SE G295 1 ZELFL 96 Z0F
£F STLED L z- 9z- SES L 4] £k LE SI88F ZELFL S6'F5E
0 SICFEE z- eds 8 i 4] Go9F FOE SL80 ZELFL FOL0E
¥ SIEG0L- z- SZLES 06F L 4] 54 FOE SI88F S20FL £9'85E
0 SELEL0 - a £ 4] LFoF A0°E SL80 SL0FL 06 E0E
Z 52951 L- Sl 0 goL- 0 FEEF L'E SI20 SL0FL FEChL
0 SZO5°L z- a 0 4] 2.9F 60°E SL80 ZELFL 21’5
0 g i Z- ] € 0 Lok 6EE SI20 SiLFL L2
[udy tg wuye | [Dbapldway | [wpen nidle [wiyle WarlP22ds | foiE) e b9 wuye | [nw]abeyop, | SO
Ipseds yap, N4uas | Uoys g apising | buo) Ficaow aadggiopop nbuo ] | sopony (N[ n4uua | Buo nduy (s) auny

188



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

References:

[1] T. Barlow, S. Latham, 1. McCrae and P. Boulter, 'A reference book of driving

cycles for use in the measurement of road vehicle emissions’, TRL Limited, 20009.

[2] M. Andre, 'Real-world driving cycles for measuring car pollutant emissions-

Part A: The ARTEMIS European Driving Cycles', INRETS, Bron, 2004.

[3] 'Driving Cycles'. [Online]. Available:

http://www.metricmind.com/data/cycles.pdf. [Accessed: 01- Feb- 2014].

[4] Motorera.com, 'Automotive Dictionary - 'DR". [Online]. Available:

http://www.motorera.com/dictionary/dr.htm. [Accessed: 05- Dec- 2013].

[5] Texas Instruments, 'Hybrid and Electric Vehicle Solutions Guide', 2013.
[Online]. Available: http://www.ti.com/lit/ml/szza058c/szza058c.pdf. [Accessed:

03- Mar- 2014].

[6] Momoh, O.D.; Omoigui, M.O., "An overview of hybrid electric vehicle
technology," Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE ,

vol., no., pp.1286,1292, 7-10 Sept. 2009 doi: 10.1109/VVPPC.2009.5289703

[7] Joshi, R.P.; Deshmukh, A.P., "Hybrid Electric Vehicles: The Next Generation
Automobile Revolution,” Electric and Hybrid Vehicles, 2006. ICEHV '06. IEEE

Conference , vol., no., pp.1,6, 18-20 Dec. 2006 doi: 10.1109/ICEHV.2006.352287

[8] Afdc.energy.gov, 'Alternative Fuels Data Center: Benefits and Considerations
of Electricity as a Vehicle Fuel', 2014. [Online]. Awvailable:

189



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

http://lwww.afdc.energy.gov/fuels/electricity_benefits.html. [Accessed: 03- Dec-

2014].

[9] Usnews.rankingsandreviews.com, '‘Best Hybrid Cars Rankings | U.S. News
Best Cars', 2014. [Online]. Available:
http://usnews.rankingsandreviews.com/cars-trucks/rankings/Hybrid-Cars/.

[Accessed: 03- Dec- 2014].

[10] Hybrid, 2014 Toyota Camry Hybrid Reviews, Pictures and Prices | U.S.
News Best Cars', Usnews.rankingsandreviews.com, 2014. [Online]. Available:
http://usnews.rankingsandreviews.com/cars-trucks/Toyota_Camry-Hybrid/2014/.

[Accessed: 03- Dec- 2014].

[11] Usnews.rankingsandreviews.com, '2014 Ford Fusion Hybrid 4dr Sdn S FWD
Specs and Features | U.S. News Best Cars, 2014. [Online]. Available:
http://usnews.rankingsandreviews.com/cars-trucks/Ford_Fusion-

Hybrid/2014/specs/Fusion-Hybrid-4dr-Sdn-S-FWD-360665/. [Accessed: 03- Dec-

2014].

[12] Usnews.rankingsandreviews.com, ‘2014 Honda Accord Hybrid CVT Hybrid
Sedan Specs and Features | U.S. News Best Cars', 2014. [Online]. Available:
http://usnews.rankingsandreviews.com/cars-trucks/Honda_Accord-

Hybrid/2014/specs/Accord-Hybrid-CVT-Hybrid-Sedan-365119/. [Accessed: 03-

Dec- 2014].

[13] Usnews.rankingsandreviews.com, '2014 Toyota Prius V 5dr Wgn Two (Natl)

190



M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

Specs and Features | U.S. News Best Cars, 2014. [Online]. Available:
http://usnews.rankingsandreviews.com/cars-trucks/Toyota_Prius-

V/2014/specs/Prius-V-5dr-Wgn-Two-(Natl)-361068/. [Accessed: 03- Dec- 2014].

[14] Usnews.rankingsandreviews.com, '2014 Toyota Avalon Hybrid 4dr Sdn XLE
Premium (Natl) Specs and Features | U.S. News Best Cars', 2014. [Online].
Available: http://usnews.rankingsandreviews.com/cars-trucks/Toyota_Avalon-
Hybrid/2014/specs/Avalon-Hybrid-4dr-Sdn-XLE-Premium-(Natl)-363259/.

[Accessed: 03- Dec- 2014].

[15] YouTube, 'CNET On Cars - Top 5 electric cars (summer 2013)", 2014.
[Online]. Available: http://www.youtube.com/watch?v=5R3KjCPsGYE.

[Accessed: 03- Dec- 2014].

[16] Fueleconomy.gov, ‘All-Electric Vehicles: Compare Side-by-Side’, 2014.
[Online]. Available: http://www.fueleconomy.gov/feg/evsbs.shtml. [Accessed: 03-

Dec- 2014].

[17] Nissan USA, ‘2014 Nissan Leaf S’. [Online]. Available:
http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?loc
ale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40N

IC161A0,USC40FOC291A0,USC40NIC161C0,USC40NIC161B0

[18] Nissan USA, ‘2014 FIAT 500e Battery Electric’. [Online]. Available:

http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?loc

191


http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FOC291A0,USC40NIC161C0,USC40NIC161B0
http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FOC291A0,USC40NIC161C0,USC40NIC161B0
http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FOC291A0,USC40NIC161C0,USC40NIC161B0
http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FIC031A0,USC40NIC161C0,USC40NIC161B0

M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

ale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40N

IC161A0,USC40FIC031A0,USC40NIC161C0,USC40NIC161B0

[20] FleetCarma, 'Electric Vehicle Suitability Assessments with Plug in BC
Download | FleetCarma', 2014. [Online]. Available:
https://www.fleetcarma.com/resources/ev-suitability-bc-fleets/download-736599/.

[Accessed: 03- Dec- 2014].

[21] Schwarzer, V.; Ghorbani, R., "Drive Cycle Generation for Design
Optimization of Electric Vehicles," Vehicular Technology, IEEE Transactions

on, vol.62, no.1, pp.89,97, Jan. 2013 doi: 10.1109/TVT.2012.2219889

[22] Schwarzer, V.; Ghorbani, R.; Rocheleau, R., "Drive cycle generation for
stochastic optimization of energy management controller for hybrid
vehicles,” Control Applications (CCA), 2010 IEEE International Conference on ,

vol., no., pp.536,540, 8-10 Sept. 2010 doi: 10.1109/CCA.2010.5611150

[23] Boubaker, S.; Rehimi, F.; Kalboussi, A., "Estimating energy consumption of
hybrid electric vehicle and gazoline classical vehicle," Advanced Logistics and
Transport (ICALT), 2013 International Conference on, vol., no., pp.221,226, 29-

31 May 2013 doi: 10.1109/ICAdLT.2013.6568463

[24] Valera, J.J.; Heriz, B.; Lux, G.; Caus, J.; Bader, B., "Driving cycle and road
grade on-board predictions for the optimal energy management in EV-
PHEVs," Electric Vehicle Symposium and Exhibition (EVS27), 2013 World , vol.,
no., pp.1,10, 17-20 Nov. 2013 doi: 10.1109/EVS.2013.6914763

192


http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FIC031A0,USC40NIC161C0,USC40NIC161B0
http://compare.nissanusa.com/nissan_compare/NNAComparator/Compare.jsp?locale=en_US&#params:main=competitorselect~submenu=results~acodes=XGC40NIC161A0,USC40FIC031A0,USC40NIC161C0,USC40NIC161B0

M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

[25] Lintern, M.A.; Chen, R.; Carroll, S.; Walsh, C., "Simulation study on the
measured difference in fuel consumption between real-world driving and ECE-15
of a hybrid electric vehicle,” Hybrid and Electric Vehicles Conference 2013

(HEVC 2013), IET , vol., no., pp.1,6, 6-7 Nov. 2013 doi: 10.1049/cp.2013.1918

[26] Car Engineer, "The different driving cycles’, 2013. [Online]. Available:
http://www.car-engineer.com/the-different-driving-cycles/. [Accessed: 03- Sep-

2014].

[27] Model: Focus Electric, Ford, [online] 2014,

http://www.ford.com/cars/focus/trim/electric/ (Accessed: 22 April, 2014)

[28] Jean Meeus, Astronomical Algorithms, Willmann-Bell, 2nd ed, 1998.

[29] LMS Imagine, Driver, 2013.

[30] LMS Imagine, Constant Load Vehicle with or without slip, 2013.

[31] Fueleconomy.gov, 'Compare Side-by-Side', 2014. [Online]. Available:
http://lwww.fueleconomy.gov/feg/Find.do?action=shs&id=33024. [Accessed: 03-

Dec- 2014].

[32] Hess, R.A.; Modjtahedzadeh, A., "A control theoretic model of driver
steering behavior,” Control Systems Magazine, IEEE , vol.10, no.5, pp.3,8, Aug.

1990 doi: 10.1109/37.60415

[33] Magtoto, J.; Roque, A., "Real-time traffic data collection and dissemination
from an Android Smartphone using proportional computation and freesim as a

193


http://www.ford.com/cars/focus/trim/electric/

M.A.Sc. Thesis — Kavya Prabha Divakarla McMaster — Electrical Engineering

practical transportation system in Metro Manila,"TENCON 2012 - 2012 IEEE
Region 10 Conference, wvol., no., pp.l5 19-22 Nov. 2012

doi:10.1109/TENCON.2012.6412332

[34] Kuwata, Y.; Karaman, S.; Teo, J.; Frazzoli, E.; How, J.P.; Fiore, G., "Real-
Time Motion Planning With  Applications to Autonomous Urban
Driving,"” Control Systems Technology, IEEE Transactions on, vol.17, no.5,

pp.1105,1118, Sept. 2009 doi: 10.1109/TCST.2008.2012116

[35] Douangphachanh, V.; Oneyama, H., "Formulation of a simple model to
estimate road surface roughness condition from Android smartphone
sensors,” Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2014 IEEE Ninth International Conference on, vol., no., pp.1,6, 21-24

April 2014 doi: 10.1109/ISSNIP.2014.6827694

194



