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A conservative adaptive wavelet method for the shallow water
equations on staggered grids
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This paper presents the first dynamically adaptive wavelet method for the
shallow water equations on a staggered hexagonal C-grid. Pressure is located
at the centres of the primal grid (hexagons) and velocity is located at the edges
of the dual grid (triangles). Distinct biorthogonal second generation wavelet
transforms are developed for the pressure and the velocity. These wavelet
transforms are based on second-order accurate interpolation and restriction
operators. Together with compatible restriction operators for the mass flux
and Bernoulli function, they ensure that mass is conserved and that there is
no numerical generation of vorticity when solving the shallow water equations.
Grid refinement relies on appropriate thresholding of the wavelet coefficients,
allowing error control in both the quasi-geostrophic and inertia-gravity wave
regimes. The shallow water equations are discretized on the dynamically
adapted multiscale grid using a mass and potential-enstrophy conserving finite-
difference scheme. The conservation and error control properties of the method
are verified by applying it to a propagating inertia–gravity wave packet and to
rotating shallow water turbulence. Significant savings in the number of degrees
of freedom are achieved even in the case of rotating shallow-water turbulence.
The numerical dissipation introduced by the grid adaptation is quantified.
The method has been designed so it can be extended easily to the icosahedral
subdivision of the sphere. This work provides important building blocks for the
development of fully adaptive general circulation models. Copyright c⃝ 0000
Royal Meteorological Society
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1. Introduction

1.1. Adaptive methods for climate and weather models

Atmospheric and oceanic flows span a wide range of scales
and at the same time are organized into wave packets,
eddies, jets and currents. Therefore it seems likely that
numerical modelling of the atmosphere and oceans would
be more efficient and accurate if the model resolution was
not uniform but refined locally where small-scale features
need to be resolved. To some extent this idea has gained

in popularity in recent years with the increasing use of
stretched grids (Krinner et al. 1997) and nested models
to achieve higher resolution locally for regional numerical
weather forecasting or regional climate modelling. However
the grid refinement remains static (i.e. the grid does not
evolve in time) in operational practice. While this can
be justified when there is a priori knowledge of the
location of the small-scale features, such as ocean boundary
currents, this is a strong limitation since many small
scale features (e.g. fronts, hurricanes or oceanic eddies)
occur at unpredictable locations. To efficiently resolve
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such phenomena, dynamic grid adaptivity is necessary, and
indeed the idea of dynamic grid adaptivity for numerical
modelling of the atmosphere and ocean was explored
as early as the 1980s (Skamarock et al. 1989). Despite
continuous progress on dynamically adaptive methods for
numerical modelling of the atmosphere and ocean (Ruge
et al. 1995; Bacon et al. 2000; Läuter et al. 2007; St-
Cyr et al. 2008; Jablonowski et al. 2009; Weller et al.
2009; Nikiforakis 2009; Chen et al. 2010), it is fair to
say that dynamical adaptivity has not yet made its way
into operational models, with the notable exception of
the Operational Multiscale Environment Model with Grid
Adaptivity (OMEGA, Bacon et al. 2000). This state of
affairs is caused by a number of issues specific to the
modelling of the atmosphere and ocean. Prominent amongst
these are the numerical properties of adaptive methods, the
grid refinement criteria, the complexity versus efficiency
trade-off, and the interplay with subgrid scale physics. We
address these issues at least partially in the present work,
with the exception of subgrid scale physics.

As discussed in more detail in the next subsection, numer-
ical models of the atmosphere and ocean prefer numerical
methods with exact discrete conservation properties since
they improve the stability and fidelity of these under-
resolved models. Devising non-adaptive numerical methods
with such properties is not straightforward, and any adaptive
method with inferior conservation properties would be of
questionable interest. How to exacly conserve total mass
is well understood when grid refinement is obtained by
recursive subdivison of control volumes (e.g. Berger and
Oliger 1984; St-Cyr et al. 2008) or by remapping (e.g.
Farrell et al. 2009), but we are not aware of dynamically
adaptive methods with a consistent treatment of vorticity.
Furthermore no existing approach seems applicable to the
case of a hierarchy of non-nested control volumes, like
spherical-hexagonal grids. In this case a fine-resolution
hexagon overlaps with several coarse-resolution hexagons,
and a simple flux-counting approach fails. More generally,
the need for dynamical adaptivity should not restrict the
set of available numerical schemes. Instead, an approach
is needed that can render dynamically adaptive any ap-
propriate numerical method. The wavelet-based approach
we develop here can be tailored to a wide range of pre-
existing numerical methods, including non-Cartesian stag-
gered grids, with the restriction that discrete differential
operators should possess a compact stencil.

Dynamical adaptivity needs refinement criteria to refine
and coarsen the computational mesh at each time step.
Coarsening is important since the failure to coarsen
regions where it would have been acceptable increases the
computational cost without increasing the fidelity of the
simulation. Refinement ensures uniform accuracy, or more
importantly allows resolution of phenomena that would
otherwise remain unresolved. Often heuristic, gradient-
based or vorticity-based refinement criteria are used (St-Cyr
et al. 2008). For numerical weather forecasting (NWP), it is
unacceptable to miss small-scale high-impact phenomena
due to inappropriate refinement criteria, but the additional
cost of the refinement should not prevent the forecast
from being calculated in a reasonable time. For climate
modelling any systematic bias introduced by the refinement
criteria would be problematic. Thus, the development of
robust, objective, and sharp refinement criteria remains an
open problem (e.g. Berger and Colella 1989; Nikiforakis
2009; Weller 2009) and their suitability to the various

forms of atmosphere and ocean modelling needs to be
demonstrated. The refinement strategy we propose uses
in a novel way the error-control capabilities inherent to
wavelet decompositions. A refinement strategy based on
error control is not suitable in all situations, especially when
subgrid scale physics come into play, and our strategy is not
universally applicable, especially when complex physics
and dynamics are coupled. Nevertheless our results suggests
that our approach is effective and robust in idealized
situations, where a priori knowledge of the dominant
balances is available.

Dynamically adaptive methods can appear complicated.
This complexity seems incompatible with the need of
community-based research codes to evolve continuously
and to be easily modified to explore new ideas. This sets the
bar high for the efficiency gains that must be demonstrated
in order for adaptive methods to gain acceptance and
means that efficient implementations on present and future
massively parallel architectures are needed. We do not
address here the computational challenge, which is not
specific to applications to the atmosphere and oceans.
However, experience in other fields, such as the FLASH
(Fryxell et al. 2000) code used by the astrophysics
community, suggests that it is possible to build efficient
and easily modifiable dynamically adaptive codes (Popinet
2003). However, we do provide partial answers to the
question of whether a substantial gain in computational
efficiency can be achieved in practice. This is clearly
the case for the favourable situation of a small coherent
structure isolated in a laminar flow, but we show it
is also true for the more realistic situation where the
computational domain is densely populated by a large
number of interacting coherent structures which move
and evolve unpredictably. Indeed, a common source of
skepticism towards dynamical adaptivity is that it should
not, for example, track only a few oceanic mesoscale eddies,
but a whole field of eddies, while still delivering significant
efficiency gains.

Finally, a formidable issue is the interaction between a
dynamically adaptive method and subgrid scale physics.
Even with dynamically adaptive grids, numerical simula-
tions of the atmosphere and the ocean will remain spatially
unresolved for the decades to come. Subgrid scale physics
will therefore remain an essential part of the models,
adaptive or not. How the parameterization of subgrid scale
phenomena varies with the local resolution, how it interacts
with the numerics, and how the refinement strategy should
incorporate subgrid scale phenomena are open problems.
This work does not adress this issue. We note, however, that
the

advent of variable-resolution static grids has stimulated
research on scale-aware parameterizations (Chen et al.
2011).

1.2. Adaptive numerical methods for geophysical flows

There are four main approaches to increase accuracy
and efficiency in numerical methods for solving partial
differential equations (PDEs): h-refinement, p-refinement,
r-refinement and mimetic methods. In h-refinement
increased accuracy is achieved by fixing the order of the
method (e.g. a second-order finite volume discretization)
and refining or coarsening the grid locally to achieve
a constant error tolerance. This approach is best for
problems with non-smooth solutions, or when high-order
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discretizations are not available. In p-refinement the grid
resolution is kept fixed and the order of the method is
modified locally (e.g. spectral element methods). This
approach is optimal for problems with smooth solutions
where higher-order discretizations are available. It is
possible to combine these approaches in hp−refinement,
such as hp−FEM finite element methods, where one seeks
a compromise between a high order method on a coarse
grid where the solution is smooth and a low order method
on a fine grid where the solution is not smooth. Finally,
r-refinement conserves the number of grid points (or
computational elements), but redistributes them to minimize
the error. r-refinement is commonly used in finite element
methods, and vortex methods (Cottet and Poncet 2002)
may be considered a type of r-refinement method. Note
that for problems with a fixed distribution of active scales,
for example linear advection, h- and r-refinement are
essentially equivalent.

Mimetic approaches, in contrast, do not attempt to
decrease the error by changing the distribution of grid points
or the order of the discretization, rather they ensure that
the discrete version of the PDE retains important symmetry
and conservation properties of the continuous equations.
For example, if the continuous differential operator is skew-
symmetric the discretization of this operator would also
be skew-symmetric. Similarly, the discrete equations could
ensure mass conservation, or have a discrete maximum
principle equivalent to that of the continuous equations.
Mimetic discretizations are especially useful when h- or p-
refinement is not sufficient to resolve all the active scales
of motion, i.e. the simulation must remain under-resolved
because of limited computational resources. Climate and
weather models are important examples of such under-
resolved simulations, since the active scales of motion
in the atmosphere and oceans range from O(104) km to
fractions of a millimetre, making fully-resolved simulations
impossible, even with optimal adaptive techniques. It is
often claimed that mimetic methods produce qualitatively
more accurate results than non-mimetic methods, especially
for under-resolved problems (Verstappen and Veldman
1997a,b). In other words, mimetic methods produce
consistent approximations even when the convergence error
is large.

The so-called TRiSK scheme introduced recently by
Ringler et al. (2010) is a mimetic finite volume/finite
difference method that discretizes the rotating shallow water
equations on arbitrarily structured C-grids on the sphere and
ensures discrete conservation of mass and either total energy
or potential enstrophy (to within time integration error).
This discretization also ensures that the potential enstrophy
is compatible and consistent. Compatibility means that
there is no spurious numerical generation of potential
vorticity and consistency means that a constant potential
vorticity field q remains constant for all time: Dtq = 0. The
TRiSK scheme is a generalization of the mimetic C-grid
scheme first investigated by Sadourny (1975). The mimetic
properties of the TRiSK scheme ensure that it performs well
for under-resolved problems like climate modelling and
weather prediction. However, convergence tests show that it
is a low-order method, with convergence rates between first-
and second-order accuracy. Thus, a dynamically adaptive
h-refinement grid structure is needed to fully exploit its
mimetic properties while ensuring sufficiently accurate
results on inhomogeneous and non-stationary problems,
such as atmosphere and ocean dynamics. (p-refinement

is not possible since the scheme has fixed order.) The
goal of the present work is to develop a dynamically
adaptive multiscale wavelet h-refinement grid structure for
the TRiSK discretization that retains its important mimetic
properties.

Dynamically adaptive wavelet Galerkin and finite-
difference/finite-volume methods for PDEs have been
developed over the past 15 years (Vasilyev and Bowman
2000; Vasilyev and Paolucci 1996; Kevlahan and Vasilyev
2005; Fröhlich and Schneider 1996, 1997; Schneider et al.
1997; Roussel et al. 2003; Roussel and Schneider 2010;
Dumont and Lebon 1998) for a variety of nonlinear
PDEs, especially in fluid dynamics and combustion. In
particular, Cohen et al. (2003) developed an adaptive
wavelet multiresolution method for conservation laws on
a triangular grid that shares some features of the method
we develop here. In fact, we previously developed an
adaptive wavelet collocation (AWCM) method for solving
PDEs on the sphere using second-generation biorthogonal
wavelets (Mehra and Kevlahan 2008). These adaptive
wavelet methods dynamically refine the computational grid
to achieve the desired error tolerance at each time step. In
particular, it can be shown that nonlinear wavelet filtering
(the basis of wavelet adaptivity) gives an optimal N -
term approximation to a sufficiently smooth function(Cohen
et al. 2002). However, to the best of our knowledge all these
methods use collocated grids and tensor-products of one-
dimensional (i.e. separable) wavelets.

Another way of achieving adaptivity is to use a so-
called adaptive mesh refinement (AMR) method such as
GEOCLAW (George and LeVeque. 2006). As in the TRiSK
method, GEOCLAW also uses a conservative finite-volume
approach, but on a logically Cartesian grid mapped to the
sphere. The similarities and difference between the AMR
and wavelet methods for providing dynamically adaptive
grids are discussed in more detail in Sec. 4.

Although these approaches work well for fully-resolved
simulations, or when efficient sub-grid scale models are
available (Goldstein et al. 2005), they cannot be used for
the numerical models of geophysical fluid dynamics which
use staggered grids for pressure and velocity and mimetic
discretizations. In particular, in the C-grid used in the
TRiSK model pressure is discretized at the centres of a
primal hexagonal grid, while vorticity is discretized at the
centres of the dual triangular grid (velocity components are
located at the mid-point of the triangle edges). Developing
an adaptive wavelet method for such a C-grid discretization
presents new fundamental challenges compared with all
existing approaches on collocated Cartesian grids:

1. Separate wavelet transforms (and associated
wavelets) are required for the pressure and velocity
variables.

2. The grids for pressure (hexagons) and velocity
(triangles) are non-Cartesian and the hexagons are not
nested when the grid is refined.

3. A non-separable vector-valued transform is required
for the velocity. Such vector-valued wavelet trans-
forms do not currently exist.

4. The dynamical refinement of the pressure and
velocity grids must produce consistent, controllable,
errors for the tendencies ∂tp and ∂tu. This is non-
trivial since each tendency involves both independent
variables.
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5. The adaptive scheme must retain the important
mimetic properties of the original TRiSK scheme:
conserve mass and use a compatible and consistent
discretization of the potential vorticity.

Although our ultimate goal is to develop an adaptive wavelet
method for the TRiSK scheme on the sphere, in order
to simplify the presentation the current paper derives and
verifies the method for the planar C-grid. The hexagonal–
triangular planar C-grid is topologically similar to the
subdivision of the icosahedral grid on the sphere considered
by Ringler et al. (2010), apart from the 12 pentagonal
points. The main differences are technical and due to the
non-uniformity of the dyadically subdivided grids on the
sphere and the method presented here is currently being
extended to the sphere.

The dynamically adaptive wavelet method derived here
represents a new class of adaptive wavelet methods for
PDEs on non-Cartesian staggered grids. It also forms part
of a broader effort to investigate the potential of adaptive
numerical methods for climate and weather models to
increase accuracy (by ensuring spatially and temporally
uniform error control) and to make optimal use of the
available computational resources. In the present method
the local resolution of the pressure and velocity grids is
controlled by a single tolerance parameter which coarsens
or refines the local grid by locally removing or adding scales
to the dyadic multiscale grid to maintain the desired L∞

error in the pressure and velocity tendencies at each time
step. Because this is a multiscale method using a hierarchy
of grids, the adapted grid is always structured and there are
no spurious errors associated with jumps in grid spacing. In
addition to providing dynamically adaptive grid refinement,
this approach also allows for static grid refinement and
natural for multiscale modelling of physical processes.

In the following section we derive the relevant wavelet
transforms and introduce the adaptive wavelet method for
the TRiSK scheme. In section 3 the error control estimates
are verified and the method is used to solve the problem
of a propagating wave packet in the inertia–gravity wave
regime and rotating shallow water turbulence in the quasi-
geostrophic regime.

2. Method

2.1. TRiSK discretization of the rotating shallow water
equations

In preparation for deriving the dynamically adaptive
wavelet method we briefly review the relevant properties
of the TRiSK scheme. For complete details the reader is
referred to the original papers (Ringler et al. 2010; Thuburn
et al. 2009). The discrete equations are derived from the
vector-invariant form of the momentum equations,

∂p

∂t
= −div(pu), (2.1)

∂u

∂t
= −q (pu⊥)− gradB, (2.2)

where p is the fluid pressure (proportional to fluid
thickness), u is the fluid velocity, u⊥ = k× u, q = (k ·
curlu+ f)/p is the potential vorticity, B = p+ gb+K
is the Bernoulli function and K = 1

2 |u|
2 is the kinetic

energy. The three parameters in the system are gravity,
g, the Coriolis parameter, f = 2Ω sinϕ (where Ω is the
rotation of the Earth and ϕ is the latitude), and bottom
topography, b. For simplicity we assume b = 0 and g = 1 in
the remainder of the paper. Velocity divergence and vorticity
(which together form a complete description of the flow
field) are derived from the velocity equation (2.2).

The vector-invariant rotating shallow water equations
(2.1, 2.2) are discretized on the staggered C-grid. On this
grid pressure and divergence are located at the centres of the
primal grid (the hexagon centres, or triangle vertices) and
vorticity (or circulation) is located at the centres of the dual
grid (the triangle centres, or hexagon vertices). Gradients,
fluxes and velocities located at the coincident mid-points of
the triangle and hexagon edges. The C-grid configuration is
shown in Fig. (2.1). The resulting discretized system is

∂pi
∂t

= −[div Fe]i, (2.3)

∂ue

∂t
= F⊥

e q̂e − [grad Bi]e, (2.4)

where Fe = p̂eue is the thickness flux (i.e. the flux of
pressure normal to a hexagon edge) and F⊥

e is the thickness
flux in the direction perpendicular to Fe (i.e. the flux of
pressure normal to a triangle edge). Ringler et al. (2010)
show that with appropriate definitions for the four discrete
scalars (p̂e, q̂e, Ki, F⊥

e ) and the three discrete differential
operators ( [k · curl( )]v, [grad( )]e, [div( )]i) the associated
potential vorticity equation is consistent with an underlying
thickness evolution equation and is compatible with the
discrete momentum equation. As mentioned earlier, the
TRiSK scheme can conserve either the total energy or
potential enstrophy; we choose to implement the latter
version in the adaptive wavelet method.

The TRiSK scheme for the rotating shallow water
equations thus consists of prognostic finite volume
equations for pressure (2.1) and finite difference equations
for velocity (2.2) which specify the derived scalars p̂e, q̂e,
Ki, F⊥

e . Although the discrete equations do not include
either physical or numerical dissipation of total energy,
the adaptive wavelet method introduces dissipation due to
the coarsening associated with neglecting weak gradients
during grid adaptation. This numerical dissipation is
quantified for rotating shallow water turbulence simulations
in section 3.

In the remainder of this section we derive the
dynamically adaptive wavelet method for the TRiSK
discretization of the rotating shallow water equations (2.1)
and (2.2). This method is based on a biorthogonal second-
generation wavelet multiresolution analysis, and retains
the conservation, consistency and compatibility properties
of the TRiSK discretization, while providing dynamical
error control by automatically coarsening or refining the
computational grid to maintain a desired error tolerance
ε in the tendencies ∂tp and ∂tu at each time step. The
next section reviews briefly the main features of a second-
generation biorthogonal wavelet transform.

2.2. Biorthogonal second generation wavelet transform

A wavelet transform takes a signal on a fine grid and
decomposes it into a sequence of increasingly smooth
approximations (spanned by the scaling functions) and the
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Figure 2.1. Discrete system for the rotating shallow water equations on
the C-grid with hexagonal primal mesh cells Pi and triangular dual mesh
cells Dv . Pressure pi is located at the hexagon centres xi (indicated by the
blue circles and the subscript i), vorticity ωv is located at triangle centres
xv (indicated by the red triangles and subscript v). Velocity components
ue are located at the intersection of the triangle and hexagon edges xe

(indicated by the black arrows and the subscript e) and are normal to the
hexagon edges and tangential to the triangle edges. U , V , and W are
the projections of the velocity vector in the three directions tangential to
the triangle edges. Mass is integrated over the hexagons and circulation is
integrated over the triangles.

Figure 2.2. Lifted wavelet transform using linear interpolation. The thick
line is the original signal on the fine grid and the thin line is the smooth
signal on the coarse grid obtained by linear interpolation and lifting.
The first stage in the smoothing (or restriction) is simply to neglect the
odd points x2k+1. The wavelet coefficient x̃m is then the difference
between the actual signal value x2k+1 and the value predicted by linear
interpolation (indicated by the open red circle). In order to retain the
moving average of the signal, the coarse grid values x2k and x2+1 are
lifted by adding x̃m/4 to obtain the coarse values yk and yk+1. (Fig.
adapted from Daubechies and Sweldens 1998.)

details which are lost between successive smooth approx-
imations (spanned by the wavelets). Biorthogonal second-
generation wavelets (Sweldens 1996) are particularly well-
suited to numerical approximation of PDEs since in this
case the scaling functions and wavelets correspond directly
to unique grid points. Such wavelets can be constructed in
physical space using a simple procedure called lifting. In
this section we give the basic idea behind the biorthogonal
wavelet transforms used in this paper. The interested reader
is referred to Mallat (1998) for full details about wavelet
multiresolution analysis and wavelet filtering.

The wavelet transform can be understood by considering
a single two-scale transform from a fine scale j + 1 to
a coarse scale j. Following Daubechies and Sweldens
(1998), let us consider a signal x = {xk}k∈Z , xk ∈ R.
The first step in the wavelet transform is the restriction
(or coarse-graining) of the signal, which in the simplest
case splits the signal into even components xe = {x2k} and
odd components xo = {x2k+1} and then deletes the odd
components (i.e. sub-samples). The deleted points are then
predicted (or prolonged) using the coarse values x2k, for
example using polynomial interpolation P . The difference
between the predicted and the actual deleted points are
the wavelet coefficients x̃ = {x̃m}, i.e. x̃ = xo − P (xe),
where the wavelet locations m are the locations of the

Algorithm 1 General two-scale lifted wavelet transform
from fine scale values {xj+1

2k , xj+1
2k+1} to coarse scale values

xjk and wavelet coefficients x̃jm. Kj
m is the stencil for the

prediction at wavelet point x̃jmand Mj
k is the stencil for the

update at coarse point xjk. s̃jk,m and sjk,m are respectively
the filter coefficients for the predict and update steps.
Analysis:

xjk = xj+1
2k ,

x̃jm = xj+1
2k+1 −

∑
k∈Kj

m

s̃jk,mx
j
k,

xjk = xjk +
∑

m∈Mj
k

sjk,mx̃
j
m.

Synthesis:

xjk = xjk −
∑

m∈Mj
k

sjk,mx̃
j
m,

xj+1
2k = xjk,

xj+1
2k+1 = x̃jm +

∑
k∈Kj

m

s̃jk,mx
j
k.

odd values x2k+1. Computing a prediction and recording
the detail is the first lifting step. At this stage we have a
transform (xe, xo) → (xe, x̃). The prediction step using
linear interpolation is described graphically in Fig. 2.2. If
the wavelet coefficient is small, then the associated point at
the finer scale can be interpolated with high accuracy from
the coarse points. In other words, the wavelet coefficient
measures the variation of the signal (or, equivalently, the
local interpolation error) at a particular location and scale.

However, after this basic restriction and prolongation
lifting step the frequency localization is poor due to aliasing
and the average is not conserved, i.e. xe ̸= x. To correct
these (or other) deficiencies additional lifting steps can
be performed. These additional lifting (or update) steps
modify the values at the coarse grid points by adding
linear combinations of the wavelet coefficients, i.e. y =
xe + U(x̃). For example, to preserve the running average
the missing grey area in Fig. 2.2 must be restored. This
can be achieved for the linear prolongation operator by
adding x̃m/4 to the neighbouring values on the coarse
grid. Note that the complete transform from values on
even and odd points to smoothed values on a coarse grid
and wavelet coefficients on the neglected grid, (xe,xo) →
(y, x̃), is fully invertible. The general two-scale lifted
wavelet transform is given in algorithm (1).

For a one-dimensional signal of length 2J the two-
scale transform described above is repeated 2J−1 times to
generate the complete wavelet transform,

x →
{
x0k, x̃

j
m

}
, k ∈ K0, j = 0, . . . , J − 1, m ∈ Mj .

(2.5)
The full wavelet transform (2.5) has linear computational
complexity,O(N), for a signal of lengthN and is invertible.
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Figure 2.3. Arrangement of scaling function and wavelet coefficients on
the multiscale triangular-hexagonal C-grid. Top: pressure on the hexagonal
grid. Bottom: velocity on the triangular grid. Left: scaling function
coefficients at the fine scale j + 1. Right: scaling function and wavelet
coefficients at the coarse scale j. The coarse scaling function coefficients
pj and uj , vj , wj are smoothed versions of the pressure and velocity
respectively. The wavelet coefficients are the difference between the exact
value on the fine grid and the value interpolated from the coarse grid
using the coarse scaling function coefficients. On each coarse triangular
edge the two velocity wavelet coefficients are equal and opposite, e.g.
ũj
−1,−2 + ũj

1,−2 = 0.

The two-scale wavelet transform given by algorithm (1)
is very general: for such a transform to exist in any number
of dimensions one simply needs a multiscale sequence of
grids, a restriction operator from grid j + 1 to grid j and
a prolongation operator from grid j to grid j + 1 (the
prediction). One can then define suitable lifting (or update)
steps to improve the properties of the wavelet transform
(e.g. increase the number of vanishing moments or conserve
the mean).

Fig. 2.3 shows the positions of the scaling functions
and wavelets for pressure and velocity for one coarsening
step of the C-grid. We use this multiscale grid structure
to construct the adaptive wavelet scheme for the TRiSK
equations. Note that although the grid points for the pressure
are nested (i.e. xji ⊂ xj+1

i ), the associated hexagonal finite
volumes containing the mass are not. Conversely, the grid
points for velocity are not nested, but the triangular finite
volumes containing the circulation are. The fact that the grid
points and finite volumes are not nested makes developing
the wavelet transforms for pressure and velocity more
challenging.

Finally, note that if a wavelet coefficient is smaller than
the desired tolerance ε then the associated grid point may
be neglected since it can be interpolated from values at
the coarse grid points with error O(ε). Removing wavelets
with small magnitude is called nonlinear wavelet filtering.
Nonlinear wavelet filtering generates a multiscale hierarchy
of adapted grids and ensures that the pressure and velocity
can be constructed to the desired tolerance ε on the adapted
grid. This error control is at the heart of the method that we
develop in the following subsections.

The next section describes the algorithm for calculating
the tendencies ∂tp and ∂tu on the adapted grids, and

the subsequent two sections derive the wavelet transforms
for the pressure and velocity satisfying the particular
requirements of the tendency algorithm. Finally, we analyze
the conditions for the stability of the grid adaptation
algorithm and determine the appropriate scalings for the
pressure and velocity filter thresholds to control the
tendency error.

2.3. Algorithm for calculating the tendency

In the adaptive scheme, adaptivity is achieved by neglecting
those wavelet coefficents p̃jm and ũjn that are below a
predefined threshold. Therefore, the quantities evolved in
time are the (active) wavelet coefficients p̃jm and ũjn,
together with the scaling coefficients p0i and u0e at the
coarsest scale. A standard time-stepping scheme is used.
The main task is then to compute the tendencies ∂tp̃jm,
∂tũ

j
n, ∂tp0i , ∂tu0e from p̃jm ,ũjn, p0i and u0e. This procedure

involves the calculation of various intermediate quantities
such as the scaling coefficients pji and uje and their
tendencies ∂tp

j
i and ∂tuje, as well as the mass flux F j

e and
the Bernoulli function Bi as depicted in Figs. 2.4 and 2.6.
As discussed below the adaptive computation of tendencies
depicted in Fig. 2.4 does not guarantee that total mass∑

i p
0
i is conserved. Therefore we introduce and implement

a slightly different method depicted in Fig. 2.6, which
does guarantee conservation of total mass and a consistent
vorticity budget across scales.

Both adaptive calculations involve two categories of
discrete operators:

• One-scale operators involve a single resolution level
j. These operators compute the mass flux F j

e , kinetic
energy Kj

i , Bernoulli function Bj
i , potential vorticity

qe, rotated mass flux F⊥
e from which the tendencies

∂tp
j
i and ∂tuje are computed. One-scale operators are

given by the underlying numerical method, in this
case the TRiSK scheme.

• Two-scale operators involve two resolution levels j
and j + 1. These operators perform the interpolation
and restriction steps of the wavelet transforms
for pressure and velocity. They are essentially
independant from the equations being solved. In the
conservative method distinct restriction operators for
the mass flux F j

e and Bernoulli function Bj
i are

introduced.

Non-conservative, adaptive algorithm

Let us first describe and discuss the non-conservative
computation of tendencies depicted in Fig. 2.4. The
computation involves three steps:

1. An inverse wavelet transform is executed to compute
the scaling coefficients pji and uje from p̃jm ,ũjn, p0i
and u0e. The data flow is from the coarsest level to
the finest level at which non-zero wavelet coefficients
exist.

2. The TRiSK operators are applied separately at each
grid level to compute the tendencies ∂tp

j
i and ∂tuje.

3. A forward wavelet transform is executed to compute
the tendencies ∂tp̃

j
m, ∂tũjn, ∂tp0i , ∂tu0e from the

tendencies ∂tp
j
i and ∂tuje. The data flow is from the

finest level to the coarsest level.
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Adaptive wavelet method for shallow water equations 7

The total operation count is proportional to the number
of active wavelet coefficients provided all the above steps
are actually performed on a subset of the indices e and i
only. This is possible because the task is only to compute
∂tp̃

j
m, ∂tũ

j
n wherever the coefficients p̃jm, ũ

j
n are active.

Notice that steps 2 and 3 can provide two conflicting
values for ∂tp

j
i and ∂tu

j
e. Indeed, ∂tp

j
i and ∂tu

j
e can

be obtained either from pji and uje by applying the one-
scale operators (step 2), or from ∂tp

j+1
i and ∂tu

j+1
e by

applying the restriction operators (step 3). The latter must
be preferred when possible because fine-grid computations
are more accurate. The appropriate subsets would therefore
be determined as follows, following the data flow of the
calculation backwards:

1. Given the set of active wavelet coefficients, determine
separately at each level j those indices i and e that are
required to compute ∂tp̃jm, ∂tũjn from the tendencies
∂tp

j+1
i and ∂tu

j+1
e . This depends on the stencil of

two-scale operators.
2. Starting from the finest level, find which ∂tp

j
i and

∂tu
j
e can be obtained by applying the restriction

operators to ∂tp
j+1
i and ∂tu

j+1
e . For those which

cannot (because not all the necessary ∂tp
j+1
i and

∂tu
j+1
e are available) , determine those indices i and

e for which we need pji and uje as an input to the one-
scale (TRiSK) operators. This depends on the stencil
of the one-scale operators.

3. Given those indices i and e for which we need pji and
uje as an input to the one-scale (TRiSK) operators,
find the minimal set of indices i and ewhich allow the
inverse wavelet transform to be performed. Indeed,
we must guarantee that all indices needed at level j to
interpolate to level j + 1 where required are present.
This is done starting from the finest level.

In this process the adapted grids emerge as sets of indices
i and e and are a by-product of the set of active wavelet
coefficients and the stencils of the one-scale and two-scale
operators.

An important role of the two-scale operators is to
blend together the computations performed at various
resolution levels. This blending occurs when one chooses
between applying the finite-difference operators on the
current resolution level and applying a restriction operator
to tendencies already computed at the immediately finer
level. However this blending also breaks the exact discrete
conservation of total mass. In fact, the property

∑
i ∂tp

0
i =

0 relies on ∂tp0i being computed as the divergence of the
mass flux, and on the overall cancellation of the mass fluxes
as each flux is counted once positively and once negatively.
This cancellation does not occur in the presence of a mix
of ∂tp0i computed as a flux divergence and ∂tp0i computed
as the restriction from ∂tp

1
i . To recover the exact discrete

conservation of total mass we introduce a new, conservative
adaptive algorithm.

Conservative adaptive algorithm

The most obvious way to recover the property
∑

i ∂tp
0
i = 0

is to insist that all ∂tp0i be computed as the divergence of
a mass flux. This is what we do in the algorithm depicted
in Fig. 2.6. In this modified algorithm the restriction
operator is not applied to the pressure tendency ∂tp

j+1
i
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Figure 2.4. Non-conservative computation of the tendencies ∂tp̃
j
m, ∂tũ

j
n,

∂tp0i , ∂tu0
e from p̃jm ,ũj

n, p0i and u0
e . In the above method conservation of

total mass is not guaranteed. Blue arrows correspond to step 1, red arrows
to step 2 and green arrows to step 3. The interpolation, restriction and
TRiSK operators are labeled as I, R and T respectively. Dashed arrows
indicate that either restriction or TRiSK operators are used. In this minimal
example the finest level is at j = 2. Therefore the lowermost red T -arrow
is solid as no data is available from level j + 1 to apply the restriction
operators. Additional levels can be added by repeating the intermediate
line j = 1.

❇
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Figure 2.5. Commutation diagram of gradient, divergence and curl with
the appropriate restriction operators.

but to the mass flux F j+1
e instead. This modification is

admissible if the flux restriction operator, the discrete
divergence operator, and the pressure restriction operator
are compatible in the following sense: restricting the mass
flux from level j + 1 to level j then computing the discrete
divergence on level j must produce the same result as
computing the mass flux divergence at level j + 1 then
restricting this pressure tendency to level j, i.e. the diagram
presented in Fig. 2.5 commutes. This property means that
the mass budget can be expressed in a consistent way at all
resolution levels. We address the problem of constructing
the restriction operator for the mass flux together with the
description of the wavelet transform for pressure.

A similar idea is applied to the gradient of the Bernoulli
function: instead of restricting [grad Bi]e, we restrict Bi

and compute its gradient at each scale. This guarantees
the absence of spurious generation of vorticity by the
adaptive method. As explained in subsection 2.5, the
compatible restriction operator for the Bernoulli function
is simply the subsampling operator Bj+1

i 7→ Bj
i = Bj+1

i .
With these modifications, the computation involves four
steps (algorithm 2).

For algorithm 2 to work, one must take care that each
operator finds the input data it needs to compute the
output data needed by the next operator. Therefore, before
the computation is performed, the subsets of indices on
which each operator is applied is determined following the
data flow backwards (algorithm 3). Starting from the set
of active wavelet coefficients, other subsets are computed
in sequence by taking into account the stencil of each
operator encountered during the algorithm. An important
resulting subset is the subset of scaling coefficients needed
as input by the TRiSK operators. Notice that, because
the TRiSK operators also use values from first or second
neighbours as input, this “input” subset is wider than
the “output” subset of scaling coefficients, tendencies
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8 T. Dubos, N.K.-R. Kevlahan

Algorithm 2 Conservative adaptive computation of
tendencies.

1. Execute an inverse wavelet transform to compute the
scaling coefficients pji and uje from p̃jm ,ũjn, p0i and u0e.
The data flow is from the coarsest level to the finest
level at which non-zero wavelet coefficients exist.

2. Compute the mass flux Fe, Bernoulli function Bi and
and potential vorticity flux F⊥

e q̂e in a loop starting at
the finest level:

(a) Compute Bj
e , F j

e by restriction from level j + 1
where possible.

(b) Where restriction is not possible, compute F j
e

andBj
e using the TRiSK operators applied to pji

and uje.
(c) ComputeF j⊥

e q̂je by restriction from level j + 1
where possible.

(d) Where restriction is not possible, compute F j⊥
e

from F j
e and q̂je from uje and pji using the TRiSK

operators.

3. At each level separately, apply the TRiSK operators
to Bj

e , F j
e and F j⊥

e q̂je to compute ∂tp
j
i and ∂tuje then

obtain the tendencies ∂tp̃jm, ∂tũ
j
n.

Algorithm 3 Subsets involved in the adaptive computation
of tendencies.

1. Given the set of active wavelet coefficients, determine
separately at each level j those indices i and e that are
required to compute ∂tp̃jm, ∂tũjn from the tendencies
∂tp

j
i and ∂tu

j
e. Then determine which F j

e and Bj
i

need to be computed.
2. Starting from the finest level,

(a) find which F j⊥
e q̂je can be obtained by applying

the velocity restriction operator. For those
which cannot, determine which pji , uje and F j

e

are needed as an input to the TRiSK operators.
(b) find which F j

e and Bj
i can be obtained by

restriction from level j + 1. For those which
cannot, determine which pji and uje are needed
as an input to the TRiSK operators.

3. Given those indices i and e for which we need pji
and uje as an input to the TRiSK operators, find the
minimal set of indices i and e which allow the inverse
wavelet transform to be performed.

of which are computed. Nevertheless all the necessary
“input” scaling coefficients can always be computed by
the inverse wavelet transform, even if this computation
involves inactive wavelet coefficients. Indeed, in that case
the missing wavelet coefficients are simply assumed to be
zero, and the inverse wavelet transform effectively performs
an interpolation. This way the multiscale nature of the grid
is hidden from the TRiSK operators, which continue to
operate on their full, unmodified stencil.

2.4. Wavelet transform of pressure

To define the wavelet transform of pressure one needs to
define an interpolation and a lifting. Since pressure sits
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Figure 2.6. Conservative adaptive computation of the tendencies ∂tp̃
j
m,

∂tũ
j
n, ∂tp0i , ∂tu0

e from p̃jm ,ũj
n, p0i and u0

e . In the above method
conservation of total mass is guaranteed. Blue arrows correspond to step
1 (synthesis, algorithm 1), red arrows to step 2 and green arrows to step
3. The interpolation, restriction and TRiSK operators are labeled as I,
R and T respectively. Dashed arrows indicate that either restriction or
TRiSK operators are used. In this minimal example the finest level is at
j = 2. Therefore the lowermost red T -arrow is solid as no data is available
from level j + 1 to apply the restriction operators. Additional levels can be
added by repeating the intermediate line j = 1.
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Figure 2.7. Stencils of the interpolation, lifting and restriction operators
for pressure.

at hexagon centres, at scale j + 1 one can distinguish
between hexagons whose centres coincide with the centre
of a larger hexagon from level j, and the remainder
which we call “new” hexagons. The interpolation formula
interpolates from the centres of larger hexagons to the
centres of ’new’ hexagons. We choose a second-order
centred linear interpolation formula. The resulting stencil
for the computation of the wavelet coefficients is presented
in Fig. 2.7 (left).

The lifting step serves to define the restriction operator.
The restricted pressure is defined on the coarser grid level
j as a linear combination of the pressure at the finer level
j + 1 at the same point and the nearby wavelet coefficients.
We choose to use only wavelet coefficients from nearest
neighbours. Elementary linear algebra shows that with a
weight of 1/8, the restricted pressure field has the same
average as the fine pressure field. The corresponding stencil
is presented in Fig. 2.7 (centre). Combining this stencil with
a stencil for the wavelet coefficient one obtains the stencil of
the restriction operatorRj

p : pj+1
i 7→ pji (Fig. 2.7, right). We

decompose the pressure restriction operator into two parts,

Rj
p = Rj

0 + δRj
p,

where Rj
0 is an area-weighted restriction operator (with

weights 1/4 and 1/8) and δRj
p is a remainder (Fig. 2.8).

The construction of the pressure wavelet transform is
then a straightforward application of the lifting scheme. We
now describe a novel aspect, which is the definition of a
mass flux restriction operator compatible with the pressure
restriction (Fig. 2.5). The problem is to find an operator Rj

f
such that

divj(Rj
f (F

j+1
e )) = Rj

p (divj+1(F j+1
e )).
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Adaptive wavelet method for shallow water equations 9

Figure 2.8. Decomposition of the pressure restriction operator Rj
p (left) into a sum of an area-weighted restriction operator Rj

0 (middle) and a remainder
δRj

p (right). The remainder δRj
p is proportional to the 7−point Laplacian on the coarse grid.

Fig. 2.9 (top) shows the decomposition ofRj
p ◦ divj+1 (left)

into two operators: Rj
0 ◦ divj+1 (centre) and δRj

p ◦ divj+1

(right). There is a natural flux restriction Rj
0f compatible

with Rj
0: assuming that the flux divergence is constant

within each fine hexagon, on can compute a flux through
the edges of coarse hexagons. The stencil of this basic flux
restriction operator R0f is presented in Fig. 2.9 (bottom).
Concerning the remainder δRj

p ◦ divj+1, it turns out that
δRj

p has non-zero weights only at coarse points, and
that those weights are proportional to the 7-point finite-
difference Laplacian (Fig. 2.8). It is therefore already in
divergence form δRj

p = divj ◦Dj whereDj is proportional
to a finite-difference gradient. Then

Rj
p ◦ divj+1 = divj ◦Rj

0f + divj ◦Dj ◦ divj+1.

This provides a solution for Rj
f

Rj
f = Rj

0 +Dj ◦ divj+1.

The stencils of the corrective flux restriction Dj ◦ divj+1

and the final flux restriction Rj
f are presented in Fig. 2.9

(bottom).
Notice that the weights presented in Fig. 2.9 omit

the metric factors (multiplication/division by lengths and
areas). As a result the weights of the flux restriction
operators presented in Fig. 2.9 (bottom) must be multiplied
by 2. One can then check that Rj

0f is exact for all affine
vector fields. Furthermore the corrective flux restriction
Dj ◦ divj+1 vanishes on affine vector fields since such
fields have a constant divergence and Dj vanishes on
constant fields. Rj

f is exact on affine vector fields and is
therefore second-order accurate.

2.5. Wavelet transform of velocity

The wavelet transform of velocity on the adapted grid must
conserve circulation and, because the velocity is defined
in terms of its tangential components (U, V,W ) on the
edges of the triangular grid, it is a vector-valued (non-
separable) transform. Further, we show in section 2.6 that
the interpolation operator (i.e. the prolongation operator)
used in the wavelet transform must be at most second-
order accurate to ensure stability of the dynamically adapted
grid for the second-order finite volume operators used
in the TRiSK scheme. Finally, the interpolation stencil

must be consistent with both the valence five (pentagonal)
and valence six (hexagonal) points on subdivisions the
icosahedral sphere.

In the following derivation we consider two scales: a
coarse scale j and a fine scale j + 1, where the fine
grid is obtained as the bisection of the coarse triangle
edges. As explained above, the wavelet coefficients are
the differences between the actual velocity values on the
fine grid and the values predicted by interpolating from
neighbouring velocities on the coarse grid. The circulation-
conserving restriction is simply the average of the two
neighbouring fine velocities on a coarse edge (the interior
fine velocities are not involved in the restriction). Because
the discrete gradient is simply a finite difference between
two neighbouring vertices, the restriction operator for the
Bernoulli function compatible with the velocity restriction
is simply the subsampling operator Bj+1

i 7→ Bj
i = Bj+1

i .

Indeed Bj
l −Bj

n =
(
Bj

l −Bj
m

)
+
(
Bj

m −Bj
n

)
where l

and n are coarse-grid points and m is their midpoint.
Fig. 2.10 shows the geometry of the velocity interpolation
and restriction. The wavelet transform is implemented
hierarchically, starting from the finest scale J , in the usual
way and no additional lifting steps are required.

Let us consider interpolating the two fine velocity values
u−1,−2 and u1,−2 shown in Fig. 2.10. (By symmetry,
the fine v and w velocities on the other coarse edges
are interpolated in a similar way.) The two-dimensional
linear interpolating function for the velocity IU(x, y) =
(IUx(x, y), IUy(x, y)) has the form

IUx(x, y) = a1 + a2 x+ a3 y,

IUy(x, y) = b1 + b2 x+ b3 y,

where the interpolated velocities on triangle edges
IU, IV, IW are defined in terms of IUx and IUy

by suitable projections. Thus, six equations for the six
unknown coefficients (a1, a2, a3, b1, b2, b3) are needed to
determine the velocity interpolation operator.

To approximate the rotational part of the velocity field,
and to conserve circulation around the coarse triangle, the
first three equations ensure that the line integral of the
interpolated velocity along each of the coarse triangle edges
equals the line integral of the actual velocity:

U0,−2 = IU(0,−2),

V−2,0 = IV (−2, 0),

W0,0 = IW (0, 0).
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Adaptive wavelet method for shallow water equations 11

(Note that taking point values of the interpolated velocities
is exact for linear functions.) The final three equations
approximate the irrotational part of the velocity and
involve line integrals along the outer edges of the three
neighbouring coarse triangles,

U0,−2 − V2,0 = IU(0, 2)− IV (2, 0),

W−4,0 − U−4,2 = IW (−4, 0)− IU(−4, 2),

V2,−4 −W0,−4 = IV (2,−4)− IW (0,−4).

The alternating signs of the velocity on each pair of exterior
edges (shown by the arrows in Fig. 2.10) captures the
irrotational component of the velocity field. These rotational
and irrotational conditions on the line integrals form a
linear system with a unique solution for the unknown
interpolation coefficients. To reduce the error of this second-
order approximation the interpolation is made symmetrical
by averaging the values for u−1,−2 and u1,−2 with those
obtained using the mirror image stencil indicated by the
dotted lines in Fig. 2.10. Interpolation formulas for the
remaining coarse edge velocities v−2,−1, v−2,1, w1,−1,
w−1,1 are obtained by rotation of the stencil for the u coarse
edge velocities.

After all fine velocities on bisections of coarse edges
(red arrows on Fig. 2.10) have been obtained using the
interpolation described above, the velocities on the edges
of the fine triangle in the interior of the coarse triangle (blue
arrows on Fig. 2.10) are found by assuming that vorticity is
constant over the coarse triangle, for example:

u−1,0 =
1

2
(U0,−2 + V−2,0 +W0,0)− v−2,1 − w−1,1.

Since the restriction operator is the average of
neighbouring fine velocities and the restriction of a
prolongation must be the identity (i.e. R ◦ I = Id), the
wavelet coefficients on coarse edges are redundant,

ũ−1,−2 = −ũ1,−2,

ṽ−2,−1 = −ṽ−2,1,

w̃1,−1 = w̃−1,1.

Thus, there are nine linearly independent wavelet
coefficients associated to the coarse velocities
U0,−2, V−2,0, W0,0: ũ−1,−2, ṽ−2,−1, w̃1,−1, ũ−1,0, ũ1,0,
ũ1,0, ṽ0,−1, ṽ0,1, w̃−1,−1, w̃1,1.

2.6. Error control and adaptivity

2.6.1. Adaptivity

In the preceding sections we derived a scalar wavelet
transform for the pressure pi and a vector wavelet
transform for the velocity components ue, ve, we. These
wavelet transforms are both based on linear polynomial
interpolation (and hence are second-order accurate), but
they use different stencils and implicitly define different
wavelets and scaling functions. A wavelet transform of a
function f is

f = f0kϕ
0
k +

J−1∑
j=0

∑
m∈Mj

f̃ jmψ
j
m, (2.6)

where ϕ0k are the scaling functions spanning the coarsest
scale j = 0 and ψj

m are the wavelet functions spanning

−4,0

u−1,−2

2,−4V

U0,2

u1,−2

Stencil for interpolating fine u velocities on
a subdivision of a coarse edge

−U

0,−4

W0,0

−4,2

−W

Complete stencil for all velocities

w−1,1

v0,−1

u−1,0

w−1,−1

−V2,0

U0,−2

−2,0V

w1,−1v−2,−1

v−2,1

W

Figure 2.10. Stencil for circulation-conserving second-order interpolation
of velocity. Velocities on the bisection of coarse edges (red arrows) are
obtained by linear interpolation. The velocities on inner fine triangle (blue
arrows) are then obtained by assuming constant circulation over the coarse
triangle. The dotted lines indicate the mirror-symmetric stencil. This stencil
works for both valence six points (hexagon points) and and valence five
points (pentagon points) on subdivisions of the icosahedral sphere.

the difference between two successive scales j + 1 and j.
As described in section 2.2, the wavelet coefficient f̃ jm
measures the interpolation error at a particular location m
and scale j. Adaptive biorthogonal wavelet methods are
based on the fact that removing wavelet coefficients with
a magnitude lower than a particular threshold εf (and the
associated grid points) generates an adaptive grid, and the
error of a function f> reconstructed on the adaptive grid is
controlled by εf (Vasilyev and Bowman 2000),

||f> − f ||∞ ≤ C1 εf , (2.7)

||f> − f ||∞ ≤ C2N
−m/D, (2.8)

where N is the number of grid points in the adapted grid, m
is the order of interpolation and D is the dimension. Here
m = 2 and D = 2 and so

||f> − f ||∞ ≤ C2N
−1. (2.9)
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12 T. Dubos, N.K.-R. Kevlahan

Combining inequalities (2.7) and (2.9) shows that the
number of active grid points N scales like 1/εf . Since one
order of accuracy is lost with each derivative, if the wavelet
coefficients for f are filtered with a threshold ε the error
control relation for the k–th derivative Dkf is given by

||Dkf> −Dkf ||∞ ≤ ckε
1−k/m
f . (2.10)

An adaptive wavelet collocation method for a time-
dependent PDE filters the solutions at each time step and
then adds an adjacent zone of neighbouring points in
position and scale to allow for the change in the solution
over one time step (Vasilyev and Bowman 2000; Kevlahan
and Vasilyev 2005). One nearest neighbour in position is
sufficient for a CFL value of one, and one neighbour in
scale is sufficient for quadratic nonlinearities (which can at
most reduce the scale by a factor of two in one time step).
An important feature of the method is that its computational
complexity is linear in the number of active grid points N .

In the following two sections we show that since the
TRiSK discretization is less than second-order accurate the
wavelet transforms for pressure and velocity should be at
most second-order accurate, and we determine how to scale
the separate thresholds for pressure, εp and velocity εu to
ensure a uniform relative error ε for both tendencies ∂tp
and ∂tu.

2.6.2. Stability of the adaptive method

It is reasonable to assume that the grid adaptation strategy
for the numerical solution of a time-dependent PDE
depends on the order of accuracy of the discretization. In
AWCM methods on collocated grids this is not an issue
since differential operators are approximated using the same
polynomial interpolation as used in the wavelet transform.
However, in general different interpolations are used for the
discretization of the dependent and independent variables.
In this section we analyze how the order of accuracy of the
discretization of a PDE constrains the order of the wavelet
transform used to adapt the grid.

Because this is essentially a problem of advective
stability, let us consider the linear advection equation

∂p

∂t
+ u · ∇p = 0. (2.11)

We assume that the velocity and length scales are
respectively U and L, the fluctuations of p are of order δp
and the local grid size is h. If the polynomial interpolation
used in the prolongation (i.e. prediction) operators of the
wavelet transform are order m, then equation (2.7) shows
that the error in p due to wavelet filtering with threshold
εp = ε δp is

Err(p) ∼ ε δp ∼ hm p(m) ∼ δp

(
h

L

)m

. (2.12)

Now, if the pressure gradient is discretized using an n-th
order accurate method, the discretization error of ∇p can be
estimated as

Err(∇p) ∼ hn p(n+1) ∼ δp

h

(
h

L

)n+1

. (2.13)

Combining (2.12) and (2.13) relates the error in the pressure
gradient due to wavelet filtering to that due to the discrete

approximation of the gradient operator,

ε∇p ∼ δp

h
ε(n+1)/m.

Now, if we assume explicit time-stepping and demand
that each time step introduces an error smaller than εp (so
the time integration error does not cause run-away grid
refinement), we find that

U ∆t
δp

h
ε(n+1)/m < ε δp,

or,
U ∆t

h
< ε(m−n−1)/m. (2.14)

The left hand of equation (2.14) is the CFL stability
criterion, and thus in order for the limit on the time step
imposed by the grid adaptation to be no stricter than that
imposed by the time integration scheme, we require that
m ≤ n+ 1. On the plane the TRiSK scheme is second-
order accurate, however on the sphere it is only between
first- and second-order accurate due to grid deformation
(Ringler et al. 2010). Thus we require thatm ≤ 2.Choosing
second-order interpolation for prediction step in the wavelet
transform therefore ensures that grid adaptation is stable
when combined with a time integration scheme stable for
a CFL criterion less than one.

2.6.3. Controlling the error in the tendencies ∂tp and ∂tu

Here we identify suitable thresholds for the pressure and
velocity coefficients ensuring a prescribed relative error
in the tendencies ∂tp and ∂tu. Because our method uses
different wavelet transforms for pressure and velocity (and
these quantities exist on dual grids), and because the
approximation of differential operators are not the same as
the interpolation operators used in the wavelet transforms,
error control of the tendency is non-trivial.

In the inviscid shallow water equations (2.1, 2.2) we
assume that pressure fluctuations are weak, p = c2 +
δp, δp≪ c2 (where c is the wave speed), and that the flow
has characteristic velocity and length scales U and L. We
further assume that the Burgers number Bu = (c/fL)2 =
O(1). To simplify the analysis we consider both the inertia–
gravity wave and geostrophic regimes. Each regime leads
to different relative scalings of the pressure and velocity
thresholds to provide a uniform error bound on the errors
in the tendencies ∂tp and ∂tu.

In the inertia–gravity wave regime the relevant (fast) time
scale is T ∼ L/c, and energy is equally divided between
kinetic and potential (e.g. gravity waves),

δp ∼ cU, ∂tp ∼ c2
U

L
, ∂tu ∼ U

c

L
.

The equations may then be linearized to give the linear
inertia–gravity wave equations

∂p

∂t
+ c2 ∇ · u = 0,

∂u

∂t
+ fu⊥ +∇p = 0.

Our goal is to ensure that filtering the pressure and velocity
with thresholds εp and εu respectively produces the same
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Adaptive wavelet method for shallow water equations 13

relative error ε in the tendencies ∂tp and ∂tu, i.e. we require
that

ε
c2U

L
∼ Err(∂tp) ∼ c2 Err(∇ · u) ∼ c2

h
εu,(2.15)

ε
cU

L
∼ Err(∂tu) ∼ f Err(u⊥) + Err(∇p),

∼ fεu +
1

h
εp. (2.16)

Equation (2.16) shows immediately that

εp ∼ ε
h

L
Uc.

Taking the strictest of the conditions imposed by equations
(2.15) and (2.16) shows that

εu ∼ ε
h

L
U Min

(
1,
Rd

h

)
∼ ε

h

L
U,

where we used the fact that Rd/h > 1 since the Rossby
radius Rd = c/f must be resolved. Thus, in the inertia–
gravity wave regime the relative scalings of the pressure and
velocity thresholds εp and εu to ensure a relative error ε in
the tendency are

εp
cU

∼ εu
U

∼ ε
h

L
. (2.17)

If m = 2, then equation (2.12) shows that h/L ∼ ε1/2, and
finally

εp ∼ cU ε3/2, (2.18)

εu ∼ U ε3/2. (2.19)

Filtering the pressure and velocity (and hence adapting the
grid) using the above wavelet thresholds ensures that the
tendencies in pressure and velocity have a relative error no
larger than ε at each time step.

In the quasi-geostrophic regime the Rossby number is
small, Ro = U/fL≪ 1, the flow is close to geostrophic
balance, f u⊥ ≃∇p, and the pressure fluctuations scale like
δp ∼ Lf U . The flow then changes on the slow time scale
T = L/U ≫ L/c, and then magnitude of the tendencies are
estimated as ∂tp ∼ U2f, ∂tu ∼ U2/L. As for the inertia–
gravity wave case, but using the slow time scale and without
linearizing the pressure tendency, the errors in the trends are

ε fU2 ∼ Err(∂tp) ∼ c2 Err(∇ · u) + U Err(∇p),

∼ c2

h
εu +

U

h
εp, (2.20)

ε
U2

L
∼ Err(∂tu) ∼ f Err(u⊥) + Err(∇B),

∼ fεu +
1

h
εp. (2.21)

The scaling of εp and εu are determined by the strictest of
conditions (2.20) and (2.21). The pressure threshold is

εp ∼ εhfU Min (1, Ro) ∼ ε
h

L
U,

Scale

Inactive waveletsAdjacent wavelets

1

2

3

0

4

5

Active wavelets

Figure 2.11. One-dimensional example showing adjacent wavelets in
position and scale that are added to the grid of active wavelets to account
for the change in the solution over one time step.

and the velocity threshold is

εu ∼ εU Min
(
hfU

c2
, Ro

)
,

∼ εRoU Min
(
Bu−1 h

L
, 1

)
,

∼ ε
Ro

Bu

h

L
U.

Thus, in the quasi-geostrophic regime the relative scalings
of the pressure and velocity thresholds εp and εu to ensure
a relative error ε in the tendency are

εp
c2

∼ εu
fL

∼ ε
h

L

U2

c2
.

Since Bu = O(1) and L ∼ c/f for geostrophic flows,
the final scalings for the pressure and velocity thresholds
become

εp
fLU

∼ εu
U

∼ ε
δ

L
Ro. (2.22)

As in the inertia–gravity regime h/L ∼ ε1/2, and so the
resolution-independent scalings in the quasi-geostrophic
regime are

εp ∼ f U LRo ε3/2, (2.23)

εu ∼ U Ro ε3/2. (2.24)

If we compare the scaling (2.18, 2.19) in the inertia-
gravity wave regime to the scaling (2.23. 2.24) in the quasi-
geostrophic regime, we remark that the ratio εp/εu is the
same, and that the quasi-geostrophic scaling of εp, εu is
more stringent by a factorRo≪ 1. Therefore when both the
fast and slow modes are important, the quasi-geostrophic
scaling will provide adequate error control.

We have therefore shown that wavelet filtering with the
appropriately scaled thresholds εp and εu provides uniform
control of the tendencies ∂tp and ∂tu at each time step.
As mentioned earlier, once the pressure and velocity fields
have been filtered, adjacent points must be added in position
and scale to allow for the translation or steepening of
the solution after one time step. The active and adjacent
zone wavelets are shown for a one-dimensional example
in Fig. 2.11. One further modification to the adapted grid
determined must also be made. In some cases the pressure
may be much smoother than the velocity (or vice versa).
This could lead to a grid that is inconsistent with the
finite volume discretization of the shallow water equations.
In other words, there may not be enough pressure (or
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14 T. Dubos, N.K.-R. Kevlahan

velocity) points present locally to properly approximate the
fluxes and source terms in the shallow water equations at
the appropriate points. For example, we require accurate
pressure gradient estimates at velocity points to evaluate the
velocity tendency. To correct this possible inconsistency of
the pressure and velocity grids, a final step is added to the
grid adaptation strategy to ensure that velocity points have
a sufficient number of pressure point neighbours (and vice
versa).

In the following section we verify the error control
estimates for wavelet filtering of p, u, ∂tp, and ∂tu, derived
in this section and apply the complete adaptive wavelet
algorithm to solve the rotating shallow water equations for
a wave packet (in the inertia–gravity wave regime) and
shallow water turbulence (in the geostrophic regime). The
TRiSK equations on the wavelet-adapted grid are integrated
in time using the explicit strongly stability preserving
five stage fourth-order Runge–Kutta method of Spiteri and
Ruuth (2002)which is stable for a CFL limit ≤ 1.5.

3. Verification of error control and examples

3.1. Inertia-gravity wave and quasi-geostrophic test
cases

As mentioned in the previous section, the rotating shallow
water equations have two principal regimes: gravity
waves (where acceleration and pressure gradient are
approximately balanced) and quasi-geostrophic (where the
Coriolis force is balanced by the pressure gradient). We
consider test cases that focus on each of these regimes. The
parameters for the gravity wave and quasi-geostrophic cases
are shown in table 1.

The initial condition for the inertia-gravity wave case is
a wave packet with wavenumber k and frequency ω. The
packet has a Gaussian envelope and contains approximately
four wavelengths. The wave packet initial condition is

u(x, y) = U cos(kx− ωt) e−r2/L2

,

v(x, y) =
Uf

ω
sin(kx− ωt) e−r2/L2

,

P (x, y) = c2
(
1 +

Uk

ω
cos(kx− ωt))

)
e−r2/L2

,

where f = 1, c = 1, k = 4π, ω = k ≃
(
f2 + k2c2

)1/2
,

U = 0.1 . These choices satisfy the requirement that
kU/ω = 0.1 ≪ 1 and ensure that perturbations from rest
P = c2, u = 0 are small. We consider both the linear and
nonlinear inertia–gravity wave cases, in order to separate
the effect of advection from the effect of generation
of small scales, which is only present in the nonlinear
case. The physical domain is a lozenge 16L on each
side and the coarsest scale has 322 grid points. In the
linear case the number of levels of resolution is controlled
only by the tolerance ε, while in the nonlinear case the
maximum number of levels is set to 6, corresponding to
a maximum resolution 20482, because the nonlinear case
quickly develops a shock in pressure which would require
an infinite number of levels to resolve. Fig. 3.1 shows the
gravity wave initial condition and the associated adapted
grid determined by a relative tendency tolerance ε ≃ 0.05
(corresponding to pressure and velocity tolerances εP =
εu = 1.1× 10−3). The gravity wave simulations include a

Laplacian viscous term with a small kinematic viscosity
ν = 10−4 in the velocity equations. The computed solutions
should remain well-localized for all times and are a test
of how well the adaptive wavelet approach can track the
advection of an isolated solution with small scale internal
structure in the gravity wave regime.

The second test case is more challenging: decaying
rotating shallow water turbulence in the quasi-geostrophic
regime. This case is challenging because the flow is
statistically homogeneous and isotropic at intermediate
times (when it is strongly turbulent) and the grid adaptation
must track the development of small scales via the
enstrophy cascade, and the subsequent coarsening as the
nonlinearity is depleted at long times. It is not obvious a
priori that an adaptive method is advantageous in this case.
The initial condition is an array of nine vortex pairs, each of
which is generated by the perturbed pressure field

P (x, y) = c2
(
1 +

2l

L
e−r2/L2

)
with c = 10. The velocity is then found from the pressure
by assuming geostrophic balance of the Coriolis force
and pressure gradient. Here L = 1 and l = 0.15 to ensure
that the rms velocity u = 1 and the initial eddy turnover
time L/u = 1. The corresponding Taylor (or friction)
scale λ =

√
EK/Ω = 0.4, where EK = 1

2

´
|u|2 dA is the

kinetic energy and Ω(t) = 1
2

´
ω2 dA is the enstrophy. It is

important to note that essentially all energy and enstrophy
dissipation is due to the wavelet filtering (ν = 0), which
smooths sufficiently weak velocity and pressure gradients
at all scales (i.e. gradients are retained at the smallest scales
if they are sufficiently intense). As we will see below,
this flow develops intense turbulence with an effective
Taylor-scale Reynolds number Reλ = uλ/νeff (ε) ≈ 300.
Fig. 3.2 shows the potential vorticity and active points
for the turbulence initial condition. The initial grid is
not strongly compressed because the initial condition is
relatively homogeneous. The physical domain is a lozenge
9L on each side and thus contains 22.5 Taylor scales. The
coarsest scale has 2× 2 grid points and up to 10 levels
of refinement are permitted for a maximum of 11 dyadic
scales, or a maximum resolution of 20482. Note that only 8
out of a maximum of 11 levels are used to resolve the initial
condition, although all 11 are needed at later times.

3.2. Error control of pressure, velocity and tendency

Before considering the adaptive simulation of the rotating
shallow water equations, we first verify that our method
does indeed adaptively control the errors in the pressure
and velocity for the turbulence initial condition. For this
we evaluate the initial fields on a fine grid of resolution
81922, compute the wavelet coefficients, discard those
less than a threshold ε, and compute the filtered values
(scaling coefficients) on the fine grid by inverse discrete
wavelet transform. The difference with the unfiltered initial
condition, measured in various norms, is plotted as a
function of ε in Fig. 3.3 (left). The error scales linearly with
ε, confirming that separate nonlinear wavelet filtering of the
pressure and velocity wavelet coefficients controls the error.
Furthermore the numberN(ε) of active wavelet coefficients
scales as expected for second-order interpolation, N(ε) ∝
ε−1 (center). Note that control of pressure and velocity
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Adaptive wavelet method for shallow water equations 15

Case c f U L T Ro Bu Rd Fr

Gravity wave 1 1 0.1 1 10 0.1 1 1 0.1
Quasi-geostrophic 10 10 1 1 1 0.1 1 1 0.1

Table 1. Parameters for gravity wave and quasi-geostrophic decaying turbulence test cases.

Figure 3.1. Initial conditions for inertia-gravity wave case: the maximum allowable resolution is 20482 and the period cell has sides of length 16. The
left hand Fig. shows the velocity divergence and the right hand Fig. shows the initial adapted grid (pressure and velocity wavelet points) used for the
simulations. The tendency threshold is set to ε = 0.05, corresponding to pressure and velocity thresholds εP = εu = 1.118× 10−3.

errors does not depend on the whether the test field is in
the gravity wave or geostrophic regime.

Having demonstrated the error control properties of the
scalar- and vector-valued wavelet transforms, we still need
to verify that we can control the errors in the tendencies
∂tp and ∂tu by filtering the pressure and velocity using the
scalings derived in section 2.6. The inertia–gravity wave
and geostrophic regimes have different scalings and so
we consider both the gravity wave and turbulence initial
conditions as test cases. Now a reference value of the
tendencies is computed on the fine grid using the TRiSK
operators and the fine-grid initial condition. The tendencies
of the active wavelet coefficients are computed using the
adaptive algorithm 2 then inverse-wavelet-transformed to
yield tendencies of the pressure and velocity on the fine
grid. Differences with the reference tendencies measured
various norms are plotted in Fig. 3.4 as a function of the
threshold ε determining the thresholds εp and εu. Fig. 3.4
(left) confirms that if the pressure and velocity thresholds
are scaled as in equation (2.17) then the relative errors
in both the pressure and velocity tendencies are of the
same order and are both controlled by the single tendency
threshold ε. (This test uses a homogeneous version of the
gravity wave initial condition, rather than the wave packet
version, to avoid the weak potential enstrophy and non-
periodic boundary effects associated with the wave packet
envelope.) Similarly, in the quasi-geostrophic case Fig. 3.5
confirms that if the pressure and velocity thresholds are
scaled as in equation (2.22) then the errors in both the
pressure and velocity tendencies are of the same order and
both are controlled by the single tendency threshold ε. Both
Figs. show that the error drops abruptly at a critical small
value of ε. This value corresponds to the point at which
the maximum allowed number of levels has been reached
and thus ε no longer determines the maximum scale (which
should be larger). Since the error is compared with the
tendency on the non-adapted (full) grid, further reduction
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Figure 3.4. Control of tendency error in inertia-gravity wave regime. The
thresholds for pressure and velocity are respectively εP = cU ε3/2 and
εu = U ε3/2, to ensure that the error in the tendencies ∂tp and ∂tu are
O(ε).

in ε simply fills out the grid and leads to an artificially
low error. (A maximum level is required since these
convergence studies require calculating the tendency on the
equivalent non-adapted grid, and available computational
resources limit this grid to 81922.)

Finally, we perform a convergence study of the linear
gravity wave case to show that the tendency tolerance ε
does indeed control the accumulated time integration error
for p and u. The simulation parameters are as in 1, the
computational domain is 8L on each side, the kinematic
viscosity is set to zero (so that any dissipation is due
entirely to the adaptivity) and the equations are integrated
until time T = 8 (i.e. one orbit of the periodic domain).
The errors of the adaptive simulations are calculated with
respect to an equivalent single-scale non-adaptive inviscid
TRiSK simulation at the maximum allowed resolution of
10242. (We use a smaller resolution and domain size due to
the computational expense of the non-adaptive simulation.)
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16 T. Dubos, N.K.-R. Kevlahan

Figure 3.2. Initial conditions for turbulence case: the maximum resolution is 20482 and the periodic cell has sides of length 9 (22.5 Taylor scales λ). The
left Fig. shows the potential vorticity and the right Fig. shows the initial adapted grid (pressure and velocity points) used for the turbulence simulation.
The tendency threshold is set to ε = 0.15, which corresponds to pressure and velocity thresholds εp = εu = 5.8095× 10−2 .
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L1 error norm, + is the L2 error norm and ∗ is the L∞ error norm. The straight lines give the theoretical scalings for second-order accurate interpolation
in two dimensions (i.e. error ∝ N−1, and N ∝ ε−1). Note that the most important property is that the error is proportional to (and hence controllable
by) the threshold ε.

Fig. 3.6 shows that the accumulated relative error scales
as ε3/2 in the L1, L2, and L∞ error norms, which means
that the tendency error is proportional to the pressure and
velocity thresholds εp and εu in this case. Most importantly,
the scalings for tolerances εp and εu derived in section
2.6.3 have ensured the same relative errors for pressure and
velocity. Note that the error scaling for the highly localized
wavepacket case considered here is better than the estimated
upper bound scaling of ε found for the homogeneous gravity
wave case (Fig. 3.4). As for all time marching numerical
schemes, the accumulated error grows linearly in time.

3.3. Simulations of inertia-gravity waves

We now perform numerical simulations using the adaptive
evaluation of tendencies. The velocity divergence field and
the grid of active wavelets for the linear and nonlinear
inertia-gravity wave cases after one orbit of the periodic
domain are shown in Figs. 3.7 and 3.8 respectively. In
both cases the adaptive grid has tracked the advection
of the wave packet, retaining a significant compression
ratio. In the linear case the wave packet does not steepen,
although it spreads in the y direction. Both the spreading
and the lack of generation of small scales are reflected in
the active grid. The isolated grid points in the wake of
the wavepacket in Fig. 3.7 are the remains of the very
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weak wave train left behind the wavepacket (which has
been largely dissipated). In contrast, as shown in Fig. 3.8,
nonlinearity steepens the waves making up the wavepacket
which generates a sequence of very strong gradients. The
active grid has successfully refined to track the local
steepening and spreading of the wavepacket.

Fig. 3.9 displays the evolution with time of several
measures of the efficiency of the adaptive method : number
N(t) of active points (top-left), cpu cost per active point
(top-right), compression ratio (bottom-left) and cpu cost per
time step (bottom-right). The steepening of the nonlinear
inertia-gravity wave is reflected in the development of the
grid. The compression ratio decreases as the wavefront
broadens and steepens however, the computational cost
per grid point is roughly constant. This shows that
the computational cost is approximately proportional to
the number of active points (i.e. linear computational
complexity), as needed for an effective dynamically
adaptive method. In contrast, the number of active grid
points for linear inertia-gravity wave is approximately
constant (results not shown). This is expected since the
linear wave packet is simply advected and spread out, which
should conserve the total number of active points.
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Figure 3.9. Compression properties of nonlinear inertia-gravity wave
computation. The compression decreases as the wave packet steepens and
broadens, but the cpu time per active point is approaximately constant.

3.4. Rotating shallow water turbulence

This case tests the ability of the adaptive wavelet method
to provide high compression and accurate results in the
quasi-geostrophic regime. We are particularly concerned
with the effect of the choice of tendency tolerance ε
on the turbulence simulations. Although we consider the
case of freely decaying turbulence to avoid issues with
the precise nature of the forcing, the initial condition is
sufficiently energetic that the flow develops a strongly
turbulent quasi-stationary regime at t ≈ 25 that lasts for
about 20 eddy turnover times. Turbulence intensity later
decreases due merging of like-sign vortices until at about
t = 100 only one positive and one negative vortex remain.
This scenario is qualitatively the same as the dynamics of
two-dimensional incompressible Navier-Stokes turbulence
(Boffetta and Ecke 2012). Because the energy dissipation
rate determines the effective Reynolds number, in Fig. 3.10
we compare two simulations with tolerances ε = 0.15 and
ε = 0.30 to investigate how changing the tolerance affects
the turbulence. Fig. 3.11 shows how the grid progressively
coarsens as the potential vorticity decays.

Fig. 3.12 compares the potential vorticity and active
wavelets points for the high and low tolerance simulations
just after the onset of turbulence. (Note that the turbulence
takes 20-25 eddy turnover times to develop because
the vortex array initial condition is geostrophic, and
thus meta-stable. This instability takes slightly longer
to develop in the ε = 0.15 case.) Both simulations are
qualitatively similar: as in two-dimensional incompressible
Navier-Stokes turbulence the flow is dominated by large-
scale coherent vortices and small-scale vorticity filaments.
However, in the ε = 0.30 case the filaments are slightly
less intense since this flow is a bit more dissipative. The
active wavelet points shown in Fig. 3.10 indicate that the
filaments in the ε = 0.15 are resolved to scales about twice
as small as in the ε = 0.30 case (j = 11 compared to j =
10). It is important to recall, however, that unlike a large
eddy simulation (LES) the adaptive wavelet simulation does
resolve the same proportion of total energy for all scales, i.e.
all scales are available if they are sufficiently energetic.

A major question of this section is whether the adaptive
wavelet method can still achieve significant compression
ratios for statistically homogeneous and isotropic flow
with a dense distribution of coherent structures. Fig. 3.10
has already revealed that even in the strongly turbulent
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Figure 3.7. Velocity divergence and active wavelets for the linear inertia-gravity wave at t=16 (one orbit of periodic domain). Note that the grid has
tracked the advection and spreading of the wavefront.

Figure 3.8. Computed solution for nonlinear inertia-gravity wave at t=16 (one orbit of periodic domain), zoomed to show small scale structure. The grid
has tracked the advection and steepening of the nonlinear wave.

regime there are significant sub-regions of the flow that
need only be resolved coarsely. In fact, the effective
resolution varies from 20482 (j = 11) in the most intense
vorticity filaments to an effective resolution of only 322

(j = 5) or 642 (j = 6) in the regions outside the coherent
vortices and filaments. The coherent vortices are resolved
at effective resolutions of 2562 (j = 8) or 5122 (j = 9).
The properties of the grid compression are summarized
in Fig. 3.12, which shows that the compression ratio is
about 50 times when the turbulence is most active (between
t = 25 and t = 40) and then rises monotonically to about
280 times during the final period of decay. As in the
inertia–gravity wave case, the computational cost per active
point is approximately constant (i.e. linear computational
complexity on the adapted grid).

An important characteristic of turbulence is that its en-
ergy spectrum should follow a power-law, typically about
E(k) ∝ k−3.3 for decaying two-dimensional incompress-
ible Navier-Stokes turbulence (Boffetta and Ecke 2012).
There are no theoretical predictions for rotating shallow wa-
ter turbulence, but one expects power-law scaling because
of the similar structure of the equations. In order to calculate
the Fourier energy spectra the velocity is first interpolated

onto the full j = 11 (20482) grid before calculating the vor-
ticity and velocity divergence and transforming to Fourier
space using the appropriate lozenge-shaped periodic unit
cell. Note that because the periodic unit cell is a lozenge the
maximum available isotropic wavenumber is smaller than
for the usual square periodic unit cell.

Fig. 3.13 compares the isotropic energy spectra for the
rotational and divergent parts of the flows at same times
as the fields shown in Fig. 3.12. One of the principal
advantages of wavelet-based adaptive methods compared to
large eddy simulation (LES) is that wavelet methods capture
the full range of active length scales, even at high tolerances
ε. This is clear from Fig. 3.12, where the vortical energy
spectra of both simulations are very similar over the full
range of length scales. Unsurprisingly, the vortical energy
spectra scale like k−4 over most length scales due to the
predominance of vorticity filaments. The main difference
between the two simulations is in the divergent energy
spectrum: the ε = 0.30 simulation actually has significantly
more rotational energy, except at small scales. This may
be because the velocity divergence in the higher tolerance
simulation is noisier at intermediate and small scales.
Both simulations show an equipartition of energy between
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Figure 3.10. Potential vorticity and adapted grids for decaying quasi-geostrophic turbulence just after the turbulence is fully-developed. Top : t = 25.03
for tolerance ε = 0.15 ; bottom : t = 21.80 for tolerance ε = 0.30 (bottom Fig.). Two and three levels of refinement have been added, respectively,
compared to the initial condition. There are significant coarse regions between the coherent structures and filaments.

vortical and divergent modes at small scales, possibly with a
short range of k−3 scaling for both modes. In brief, although
the higher tolerance simulation is more dissipative it still
captures the correct scaling of the energy spectra over the
full range of scales.

As mentioned above, energy and potential enstrophy
dissipation are due to the wavelet filtering process. Fig.3.14
shows the decay of (available) energy E(t) and (available)
potential enstrophy Z(t) :

E(t) =
1

2

ˆ
p(p+ |u|2)dA− c4

2
A

Z(t) =
1

2

ˆ
(f + ω)2

p
dA− f2

2c2
A

where ω = curlu, and A = 81×
√
3/2 is the area of

periodic domain. Notice that we subtract the values
corresponding to the state of rest to emphasize the non-
trivial variations. There is an initial rapid decrease in energy
for 0 ≤ t ≤ 20 as the instability develops, followed by
a period of slower decay associated with the decaying
two-dimensional turbulence. In contrast, the potential
enstrophy decreases most rapidly just after the turbulence
forms due to the formation and dissipation of intense
small scale vorticity filaments. The higher tolerance ε =
0.30 simulation destabilizes to turbulence earlier (t = 18
compared to t = 25) and, as expected, is more dissipative
once the turbulence has developed. As explained below, the

decay rate of energy and enstrophy is relatively insensitive
to the tolerance level ε except during the most turbulent
period.

Although it is clear that the ε = 0.15 simulation is less
dissipative and more turbulent than the ε = 0.30 simulation,
it is useful to quantify this difference in terms of an effective
Reynolds number. To define an effective Reynolds number
we need to estimate an effective viscosity νeff due to the
wavelet filtering. For quasi-geostrophic flows the equation
for the total kinetic energy is approximately

dE(t)

dt
= −2ν c2 Ω(t),

Since we know E(t) and Ω(t) we can calculate an effective
viscosity due to the wavelet filtering,

νeff (t) =
−dE(t)/dt

2 c2 Ω(t)
(3.1)

and hence an effective time-dependent Reynolds number

Reλ(t) =
u(t)λ(t)

νeff (t)
. (3.2)

This dynamic Reynolds number measures the turbulence
intensity at any time and would be roughly constant for
a statistically stationary flow. Tests of equation (3.1) on
non-adaptive simulations suggest that the estimate of the
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Figure 3.11. Potential vorticity and adapted grids for decaying quasi-geostrophic turbulence computed with tolerance ε = 0.15 at intermediate (t =
39.8, top) and late (t = 74.8, bottom) times.

effective viscosity is accurate to within less than one percent
for the resolutions considered here.

Fig. 3.15 shows the energy decay rate, Taylor scale,
effective viscosity and effective Reynolds numbers as a
function of time for the two turbulence simulations. Because
we use a biorthogonal basis and the exact (i.e. non-adaptive)
dissipation is zero, the effective viscosity should scale
with the tolerance ε roughly like νeff ∝ dE/dt = 0 +
O(ε), and Reλ = O(ε−1). The results confirm that the
Reynolds number is roughly proportional to 1/ε once the
turbulence has developed, 25 ≤ t ≤ 100, with Reλ(ε =
0.15) ≈ 387± 62 and Reλ(ε = 0.30)⟩ = 199± 58. For
comparison, the two-dimensional soap film turbulence
experiments of Kellay and Goldburg (2002) had a Taylor
Reynolds number of about 100.

The relation between energy decay rate and effective
viscosity and Reynolds number is not straightforward.
During the initial laminar period, before the instability has
developed, the effective viscosity and Reynolds numbers
of the two simulations are similar. However, once the
instability has developed the expected scaling with ε is
maintained throughout both the turbulent, 25 ≤ t ≤ 50,
and final decay, t > 50, periods. Interestingly, Fig. 3.15
shows that the decay rate of total energy, dE/dt, is
approximately proportional to ε only during the most
turbulent phase. During the initial laminar and final decay
periods the energy decay rate is almost equal for both the
ε = 0.15 and ε = 0.30 simulations, presumably because

the flow is much smoother outside the turbulent regime
and thus less dissipative. The energy decay rate is actually
relatively insensitive to ε, probably because the wavelet
coefficients in the adjacent zone are not reset to 0 at
each time step. Nevertheless, because the equations for the
effective viscosity (3.1) and Reynolds number (3.2) involve
other time-dependent quantities Ω, u, and λ, the effective
viscosity and Reynolds numbers do scale approximately as
expected with ε once the unstable dynamics has developed.

The effective Reynolds number defined here allows
one to accurately estimate the time-dependent Reynolds
number of any turbulence simulation involving non-
physical dissipation, such as adaptive mesh refinement
(AMR), hyper-dissipation and numerically dissipative
schemes (e.g. upwind schemes). It could also be useful
even when a standard Laplacian dissipation term is used
since it measures the actual effective Reynolds number
depending on the dynamics of the flow at a particular time.
As mentioned earlier, one of the main advantages of the
wavelet approach is that because it filters weak gradients,
not small scales, it models a higher Reynolds number for a
given number of grid points and captures the full range of
active length scales. For fixed initial conditions, we found
that the Taylor Reynolds number scales roughly like 1/ε,
but this scaling might change for higher Reynolds numbers
as the active small scales become increasingly concentrated.
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Figure 3.12. Adaptive properties of the turbulence simulation with tolerance ε = 0.15. The total number of active points is greatest when the turbulence
is most intense (around t = 25). The upper right Fig. shows that the computational cost per grid point is roughly constant, independent of number of
active points and the compression. The lower left Fig. shows the compression based on the maximum active scale at any given time (and hence jumps
when the maximum active scale changes), while the lower right Fig. shows the compression rate measured based on the maximum allowable resolution
(i.e. 20482).
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Figure 3.14. Total energy and potential enstrophy for the turbulence simulation with tolerance ε = 0.15 (—) and ε = 0.30 (- - -).

3.5. Computational cost compared with a non-adaptive
method

In the previous section we verified that the computational
cost of the adaptive wavelet solver for the two-dimensional
rotating shallow water equations is proportional to the
number of points in the adaptive grid, i.e. the cpu time
per active grid point is approximately independent of
the number of grid points and number of refinement
levels. Combining the error control results from section
2.6 with the Reynolds number estimates from section3.4
suggests that the number of active grid points (and hence
computational cost) should scale likeN ∝ Re

3/2
λ consistent

with the estimate from the adaptive wavelet simulations of
Alam et al. (2007). Boffetta and Musacchio (2010)’s high
resolution pseudo-spectral direct numerical simulations of
forced two-dimensional Navier–Stokes turbulence suggest
that the ratio of the Taylor scale to the viscous scales

increases with Reynolds number like λ/lν ∝ Re2λ, and
thus the number of grid points required for a non-adaptive
simulation should increase like N ∝ Re4λ. Although no
similar results exist for rotating shallow water turbulence,
the structure of the two flows are very similar and thus it is
reasonable to expect that adaptivity will drastically reduce
the computational cost in this case as well and. As found by
Alam et al. (2007), the compression ratio should increase
significantly with increasing Reynolds number as the flow
becomes more intermittent.

In order to estimate the overhead of the adaptive wavelet
method, we have compared the actual computational times
of adaptive and non-adaptive non-multiscale (i.e. single
scale, uniform grid) simulations of the same problem
(vortex merging) using the TRiSK discretization of the
shallow water equations. Both methods were implemented
in matlab and run in serial on the same machine. The
actual difference in cpu time depends on the number
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Figure 3.13. Vortical and divergent parts of the energy spectrum for the
decaying shallow water turbulence simulations with tolerances ε = 0.15 at
t = 25.03 (left) and ε = 0.30 at t = 21.80 (right). Note that the vortical
part of the two spectra are very similar, while the divergent part of the
ε = 0.15 spectrum has less energy at intermediate and small scales.

of refinement levels and maximum resolution, but for a
maximum resolution of 10242 the adaptive wavelet code is
about 23 times slower per active grid point for 8 levels of
refinement and 9 times slower for 3 levels of refinement.
It turns out that most of the increased overhead is due
to the extensive use of sparse matrices in the adaptive
code to ensure that memory use scales with the number
of active grid points. Apparently the overhead due to
indirect addressing in three-dimensional models using an
unstructured horizontal grid experience can be made small
by an adequate implementation (MacDonald et al. 2011;
Skamarock et al. 2012). If indirect addressing is indeed
cheap in a realistic setting, the only remaining overhead
lies in the additional interpolation/restriction operations
required by the adaptive calculation. In order to measure
this overhead we force the non-adaptive code to use sparse
matrices as well and compare it to the adaptive code. In
that case the adaptive code is only 9 and 3 times slower
respectively per active grid point. Although the cost per
active grid point is higher, the high compression ratios
means that the adaptive code is nevertheless 7 times faster
with 8 levels of refinement and 18 times faster with 3 levels
of refinement than the non-sparse non-adaptive code. When
compared to the sparse non-adaptive code, the adaptive code
is 18 and 50 times faster for 8 and 3 levels of refinement
respectively. Because the sparse arithmetic and numerical
calculations are slow in matlab, we expect that the actual
overhead in a Fortran 95 implementation would be about
2-3 times.

Besides reducing the cpu time for intermittent and
inhomogeneous flows, the adaptive wavelet method also
decreases memory use. Without such an adaptive method,
memory limitations are often the main constraint in limiting
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the size of feasible problems. As stated in the introduction,
the adaptive wavelet method is best seen as a “capability”
method: it allows the computation of problems that would
not be feasible using non-adaptive method because of both
cpu and memory constraints. If the problem is small (or the
solution is homogeneous), it is better to use traditional non-
adaptive methods.

4. Conclusions and perspectives

This paper has presented a novel adaptive wavelet
implementation of the TRiSK method (Ringler et al. 2010)
for the rotating shallow water equations on a multiscale
structured staggered C-grid. The TRiSK scheme was
designed from the beginning to accomodate unstructured,
variable-resolution static grids (Ringler et al. 2011). The
approach followed here to make the TRiSK scheme
dynamically adaptive was not to deform the grid to provide
the high resolution where desired, but to work with a fixed
hierarchy of structured grids and neglect degrees of freedom
where and when they were deemed superfluous. It would
be interesting in the future to compare a static variant of
our dynamically adaptive method to the TRiSK scheme on
a variable-resolution grid, especially with respect to well-
known issues of statically refined grids like the spurious
reflection/refraction of marginally resolved waves (Long
and Thuburn 2011).

The approach proposed here has two main purposes.
First, it serves as the first step towards developing a fully
adaptive discretely conservative dynamical core for weather
and climate models on the sphere. Secondly, it initiates
a new class of adaptive wavelet solvers for conservative
PDEs on non-Cartesian staggered grids and introduces a
non-separable vector-valued wavelet transform. We have
verified that the algorithm provides effective error control
for numerical simulations of the rotating shallow water
equations on a flat two-dimensional periodic domain in both
the inertia–gravity wave and quasi-geostrophic regimes.
In addition, we have shown that the method has linear
computational complexity in the number of active grid
points, gives high grid compression ratios and is accurate
even for relatively large tolerances. We made a special
effort to understand the effect of nonlinear wavelet filtering
on energy dissipation and on the turbulence dynamics and
proposed an effective Taylor Reynolds number as a way of
characterizing the turbulence.

As mentioned in the introduction, the wavelet method
developed here share some features of the AMR schemes
popular in engineering and astrophysics. The main
difference is that in the AMR approach the numerical
discretization of the PDE is modified locally to be
consistent with the nested grid structure providing the
adaptivity (Berger and Leveque 1998). In contrast, the
wavelet approach isolates the multiscale grid structure and
dynamical adaptivity from the numerical discretization of
the PDE. The wavelet interpolation and restriction operators
provide the necessary input values to the underlying
numerical scheme, so that it does not “know” that it operates
on an adapted grid. Conversely the AMR algorithm does not
use interpolation and restriction operators (with appropriate
commutation properties) to calculate the tendencies and
other discretized quantities. Because of this, AMR methods
must treat the boundaries between refined patches explicitly
in order to avoid spurious errors. There are further
differences: the AMR approach typically uses relatively

coarse granularity where each refined patch contains
thousands of cells, whereas the wavelet method refines
individual grid points to control the error locally (although
granularity can be decreased using the wavelet blocks
approach described below). The two methods also use
different error control strategies. AMR uses a variety of
methods to control grid refinement, including Richardson
extrapolation with a grid twice as fine in each direction
as the existing grid to flag those cells requiring refinement
(Berger and Colella 1989). The coarse (i.e. actual) solution
is first projected onto the finer grid, and the fine grid
solution is advanced in time the equivalent of one coarse
time step. The difference between coarse and fine solutions
gives a direct estimate of the local truncation error in
time. In contrast, in the present wavelet approach the local
interpolation error is used directly to determine whether
the grid is sufficient to resolve the local structure that has
developed over one time step, or whether it needs to be
refined (or can be coarsened). Since an adjacent grid in scale
(i.e. at half the local scale) is added to the grid determined
by the local interpolation error, this also gives an estimate
of the local time integration error. Unlike wavelet methods,
AMR approaches do not guarantee control of the L∞ error.
Despite their differences, it is unclear at present which
method is more efficient and accurate in practice.

Atmospheric and oceanic flows are strongly turbulent,
with eddies developing virtually everywhere and on a wide
range of scales. This fact is a legitimate source of skepticism
towards the effectiveness of an adaptive strategy, since it
suggests that the grid would need to be refined everywhere.
Therefore we included a test case featuring a statistically
homogeneous and isotropic turbulent flow with a dense
distribution of coherent structures. Our results show that
high compression and physical fidelity can be achieved even
in this seemingly unfavourable situation.

The current adaptive wavelet approach has been
developed specifically for the TRiSK discretization, but it
would be relatively straightforward to modify it for other
discretizations of the shallow water equations on staggered
grids. The multiscale structure and conservative restriction
and prolongation operators developed here should also
be useful for static grid refinement in meteorology (e.g.
embedding a regional model in a global model) and
for analyzing observational and model-generated data.
Although the basic features of the method are well-
established and quite general, the particular implementation
presented here should be seen as a proof-of-concept, rather
than an operational code. In order to extend what has been
developed here to build a fully adaptive climate or weather
model on the sphere much computational and analytical
work remains.

First, the method needs to be extended to the sphere,
parallelized, and made computationally efficient for large
problems. Since we have been careful to develop the method
so that it is consistent with the multiscale spherical C-
grid (i.e. dyadic subdivisions of the icosahedron projected
onto the sphere) this should be relatively straightforward.
The main challenges are the non-uniformity of the grid on
the sphere (especially near the 12 valence 5 points) and
the need to encode the local discrete spherical geometry
in the calculation of fluxes and source terms. In addition,
the convergence of TRiSK or similar operators on arbitrary
refinements of the icosahedral grid is degraded, or lost,
even in the non-adaptive case, unless some global grid
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optimization is performed (Heikes and Randall 1995;
Tomita 2002; Xu 2006).

The principal computational challenge is efficient par-
allelization (including dynamic load balancing), although
we can take advantage of existing approaches used in
other adaptive methods, such as AMR. The extension of
the adaptive wavelet to spherical C-grids is underway. For
problems with relatively few points at the smallest scales,
computational efficiency could be improved by using mul-
tiscale time-stepping where coefficients at each scale j are
advanced using the time step ∆tj = 2−j∆t0 appropriate to
that scale (Domingues et al. 2008; Hejazialhosseini et al.
2010). Another technique for improving the computational
efficiency of an adaptive wavelet method is to use wavelet
blocks (Hejazialhosseini et al. 2010). The idea behind
wavelet blocks is to reduce the number of sequential op-
erations required to access a particular wavelet or scaling
coefficient by using a coarser data structure. Instead of using
a quad-tree data structure (as here) where each coefficient
is a leaf, granularity is increased by using leaves that are
large blocks of coefficients. This make the method less
adaptive, but reduces the cost of tree operations by an order
of magnitude or more. Varying the size of the blocks allows
the user to tune the method for the particular application,
and since the adapted grid is usually block-like the impact
on adaptivity should be small.

Secondly, the current two-dimensional method must be
extended to three dimensions. For geophysical flows on the
sphere the simplest strategy would be to use a constant
number of model levels, either terrain-following (for the
atmosphere) or terrain-intersecting (for the ocean), and
a horizontal adapted grid common to all levels. This
would facilitate whole-column calculations like convective
adjustment and radiative transfer, but would also mean
that there is no grid adaptivity in the vertical dimension.
In order to model ocean circulation, solid boundaries
would need to be introduced. Note that adaptive wavelet
methods are particularly well-adapted to vortical boundary
layer flows (Kevlahan and Vasilyev 2005) and so should
be advantageous for resolving features such as western
boundary currents.

Finally, although the adaptive wavelet approach allows
for uniform error control and should better resolve the small
scale active features of the flow, weather and climate models
will necessarily remain strongly under-resolved, at least for
some phenomena such as cloud formation. Thus, a major
research effort is required to analyze and understand the
interplay between a dynamically adapting grid and sub-
grid parameterizations. The lack of such understanding is
one of the principal reasons holding back the adoption
of dynamically adaptive weather and climate models. The
relatively simple case of sub-grid-scale modelling for
incompressible Navier–Stokes turbulence in LES suggests
that existing subgrid parameterizations might perform well
in an adaptive wavelet method (de Stefano and Vasilyev
2010; Vasilyev et al. 2008). In fact, Nikiforakis (2009)
proposed that adaptive sub-grid-scale parameterizations for
climate and weather modelling could be based on the
approaches used for LES. We hope that the results presented
here are a significant step forward in the effort to develop
the next generation of dynamically adaptive weather and
climate models.
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