
MEI - A MODULE SYSTEM

FOR MECHANIZED MATHEMATICS SYSTEMS

MEI - A MODULE SYSTEM FOR

MECHANIZED MATHEMATICS SYSTEMS

By

JIAN Xu, M.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Ph.D.

©Copyright by Jian Xu, January 2008

ii Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

PH.D. (2008)
(Computer Science)

TITLE:

AUTHOR:

SUPERVISOR:

McMaster University
Hamilton, Ontario

Mei - A Module System for Mechanized Mathematics Systems

Jian Xu, M.Sc. (McMaster University, Canada)

Dr. William M. Farmer

NUMBER OF PAGES: viii, 194

Abstract

This thesis presents several module systems, in particular Mei and DMei, designed
for mechanized mathematics systems. Mei is a ..\-calculus style module system that
supports higher-order functors in a natural way. The semantics of functor application
is based on substitution. A novel coercion mechanism integrates a parameter passing
mechanism based on theory interpretations with simple ..\-calculus style higher-order
functors. DMei extends Mei by supporting dependent functor types. Mei is the first
module system that successfully supports both higher-order functors and a parameter
passing mechanism based on theory interpretations.

Ill

Acknowledgments

I would first like to express my sincere thanks and appreciation to my supervisor,

Dr. William M. Farmer, for his insight, thoughtful guidance and constant encourage­
ment throughout my study.

Thanks to the members of my Supervisor Committee: Dr. Jacques Carette,

Dr. Tom Maibaum, and Dr. Jeffery I. Zucker, for many valuable discussions and com­
ments. Thanks to all my other professors for their help in these four years. Thanks

to friends in ITC 206 for the time we shared together.
Thanks to my brother, Qin, for his encouraging words "You might not be born

to be creative, however you can work hard to be creative.". Thanks to my sister,
Yanping, and my brother, Jianping for pushing me forward constantly.

Last but not least, many thanks to my parents for their support, my daughters,
Katie and Kasidy, for the happiness they brought to me, and my wife, Yan Li, for
her love and encouragement.

I am grateful to have been partially supported by postgraduate scholarships from

the Natural Sciences and Engineering Research Council of Canada (NSERC) and
Ontario Graduate Scholarships in Science and Technology (OGSST).

IV

Contents

Abstract

Acknowledgements

1 Introduction
1.1 Background study

1.1.1 ML-family module systems .. .

1.1.2 Algebraic specification systems

1. 2 Design goals

1.3 Overview

1.4 Major contributions .

2 A simple module system - Mei Basic
2.1 Informal presentation

2 .1.1 Theories

2.1.2 Theory extension, renaming, and union

2.1.3 Parameterized theories

2.2 Syntax

2.3 Rules

2.3.1 Rules for types

2.3.2 Rules for typing module expressions .

2.4 Semantics

2.4.1 Substitution of module expression .

2.4.2 Operational semantics

2.4.3 Denotational semantics

2.5 Issues about conservative extensions of theories

v

iii

iv

1

2

3

7

10
13

15

17
17

17

20
24

29

31

31

31

33
33

34

42

47

vi Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

3 A module system with subtyping and coercion - Mei
3.1 Subtyping

3.1.1 Naive subtyping rules

3.1.2 Algorithmic subtyping rules

3.1.3 New typing rule

3.1.4 Instantiation of functors
3.2 Syntax of Mei Core . .
3.3 Semantics of Mei Core
3.4 Coercion

3.4.1 Theory interpretation .

3.4.2

3.4.3
3.4.4

Views and coercions .
Extended module expressions

Coercion functor for general theory views .

3.4.5 Functor instantiation
3.5 Syntax of Mei . .
3.6 Semantics of Mei

3.7 Casting

4 A module system with bounded universal types - DMei
4.1 Motivation

4.1.1 Type variables and new typing rules
4.1.2 Subtyping rules .

4.2 Syntax of DMei Core ...

49
49

51
51

53
54

54

57
62

64

65
74
74
75

77

80
81

84
84

85
88
96

4.3 Semantics of DMei Core . 104
4.4 Integration with coercion . 110
4.5 Tradeoff between Mei and DMei 116
4.6 A simplified module system with dependent functor types - SDMei 116

4.6.1 Motivation. 116
4.6.2
4.6.3

4.6.4

Intuition
SDMei Core

Integration with coercion .

5 Comparison of Mei with other module systems
5.1 ML-family module systems

5.2 Algebraic specification languages
5.2.1 Maude . .

5.2.2 Specware

117
118

119

120

120
121
121

126

CONTENTS

5.2.3 CASL

5.2.4 An algebraic framework for higher-order modules.

5.3 Theorem provers

5.3.1 IMPS

5.3.2 PVS ..

5.3.3 Isabelle

5.3.4 Coq ..

5.3.5 Automath

5.4 Computer algebra systems

5.4.1 Maple

5.4.2 Mathematica

5.4.3 Axiom

5.4.4 Aldor

5.4.5 Focal . .

5.4.6 Magma

5.5 An expressive language of signatures

6 Possible extensions of Mei
6.1 Theory definition . .

6.2 Hiding and revealing

6.3 Local theories

6.4 Functor composition

6.5 View lifting, view union, and view composition .

7 A structural implementation of Mei
7.1 Structure of the implementation .

7.2 Identifiers

7.3 Abstract syntax for MMS ..

7.4 Abstract syntax for Mei Core

7.5 Environment and context ...

7.6 Type checking and evaluation of Mei Core

7. 7 Theory translation

7.8 Abstract syntax for Mei

7. 9 An application over a system of first-order logic

8 A module system for multi-logic MMSs

vii

128

130

133

133

135

137

139
139

141

141

143

144

147

149

151

152

154
154

155

157

158

159

161
161

163
164

166

168

169

173

174

176

179

viii Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

9 Conclusion and future work 183

Chapter 1

Introduction

A mechanized mathematics system (MMS) is a computer system that supports and
improves mathematical processing, by which we mean building mathematical models

of the real world, and formulating and reasoning about properties of the real world
within the context of the mathematical models. Examples of MMSs are theorem

provers and computer algebra systems. Although it is important for an MMS to
have an expressive and practical logic, an efficient proof engine, and a friendly user
interface, it is barely useful without a powerful library. A powerful library for an
MMS should (1) contain sufficient mathematical knowledge to support mathematical
activities, and (2) be well organized so that new knowledge can be easily developed
from existing knowledge. Currently, more and more mathematical knowledge is being
formalized in different systems, which largely achieves the first goal. Thus, a good
module system is necessary for MMSs in order to organize this mathematical knowl­

edge. A good modularity mechanism aids the expressivity of MMSs. It helps to build
up contexts and allows the user to reuse the theorems developed within one context in
other contexts with similar structure. However, the development of the module sys­
tems for MMSs significantly lags behind the development of underlying logics, proof
strategies, computational power, algorithms etc. Very few MMSs have a sophisti­
cated module system that supports the development of large pieces of mathematical

knowledge.

In this thesis, we will present several related module systems designed for MMSs.
In this chapter, we will investigate some existing module systems, present our design

goals, give an overview of our systems, and state our major contribution.

1

2 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

1.1 Background study

Most programming languages and specification languages have module systems for

organizing large software developments and specifications. In this section we will

review two families of module systems, namely, the ML-family module systems and
the algebraic specification module systems.

Modular programming is a way to structure a large software system consisting of

a collection of small pieces of codes. Though modular programming can be done in
any programming language with sufficient discipline from programmers [75], many
modern languages provide facilities for expressing and automatically checking their

modular structures. The module systems of programming languages emphasize the
decomposition of a large software development into smaller components. Code reuse

and parallel software development are important for them. On the one hand, it is

desirable to decompose programs into modules that are as independent as possible.
On the other hand, these modules have to interact within some program, which
requires an interface to express the essential information for communication. Among

many modular mechanisms, the ML-family module systems are of particular interest
because it treats parameterized modules as functors, i.e. functions from modules
to modules. The module system itself is a small typed functional language, where
structures and functors are objects and signatures are types. Hence researchers in
this area enjoy a type-theoretic formalism approach to their module system [47, 57].

There are efforts to extend proof assistant systems with an ML-family module system,
e.g. in Coq [18].

Algebraic specification languages are another area enjoying modularity. The mod­
ule systems of specification languages stress a refinable way of specification develop­
ments. Theories and axioms are important for them; however, logical reasoning is
not one of their concerns. A module of a specification language is an algebraic speci­
fication consisting of a signature and a set of axioms, roughly equal to our definition
of a theory. The researchers in this area favour a category-theoretic approach where

specification morphism (or simply morphism) plays a central role. A morphism is a
homomorphic map from the sorts and operators of one specification to the sorts and
operators of another such that axioms of the source specification are translated to
axioms (or more generally, theorems) of the target specification. Most model specifi­
cation languages provide some specification-building operations to form more complex
specifications from smaller specifications, such as extension, union, renaming, and pa­
rameterized specification [71].

1. Introduction 3

Both of these approaches developed a lot of great ideas to support modularity.

Our work borrows ideas from both and integrates these ideas to build a module
system that is suitable for MMSs. For instance, we like the idea of higher-order

functors from ML-family module systems and the so-called fitting morphism style
parameter passing mechanisms from algebraic specification languages. However, no
current module system supports them both.

1.1.1 ML-family module systems

ML is a functional language, originally designed by R. Milner, with a family of descen­

dants [59, 66]. Despite various extensions, every ML family language has a functional
core language (with or without imperative features) and a module language. The core
language is used to specify algorithms and data structures, and the module language
is used to specify the structures of large software systems.

Signatures, structures, and functors. In an ML-family module language, the
definitions of components in the core language are grouped into structures. Signatures
are used to specify the interface of structures, by declaring or defining types and

specifying functions with their types. A structure realizes a signature by defining the

types and implementing all the specified components. In other words, a signature is
a type representing a class of structures.

A functor is a parameterized structure that maps one structure to another struc­
ture, i.e. a function over structures. A signature is used to specify the parameter
structures to which a functor can be applied. The body of a functor is defined with
respect to an arbitrary structure, represented by a structure variable, satisfying the
formal parameter signature. The functor can be applied to any structure that real­
izes its parameter signature. The semantics of instantiations of functors is defined via

substitutions, as illustrated in Figure 1.1. The result is a concrete implementation
of the functor body, which is a structure. Note that the body definition may or may
not employ the formal parameter, although, in most cases, the body definition is
an extension of the formal parameter. In other words, the body is defined in terms
of arbitrary module expressions over the formal parameter. Since renaming is not
supported, there is at most one occurrence of the formal parameter within the body
definition. However, there are cases when we want to have more than one occur­
rence of the formal parameter within the body definition. For example, there are two

monoid structures residing in a ring structure.

4 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

type matching

parameter
structure

Figure 1.1: ML Style Functor Application

Parameter passing. The parameter passing mechanism of an ML-family module

system is based on a matching between a formal signature and an actual structure,
which is a purely syntactical issue. For example, if a signature S with an abstract
type t specifies the input interface of a functor, only the structures, in which the type
t is either declared or defined, can be used to instantiate the functor. The type t

may have a concrete representation in an actual parameter structure, e.g. t = int.

This effectively links the abstract type t and the concrete type int and separates the
outside view of a structure from its concrete representation. By keeping the parameter
matching purely syntactical, we can get a statically decidable type checker.

Looking from another angle, if we treat both signatures and structures as some
kind of mathematical theories, type definitions such as t = int are a variant of symbol
mappings from a theory to another theory, resembling theory translation as defined
in Chapter 3.4.1. The differences are: (1) a mapping is embedded in a structure so
that a structure can only be used for certain signatures, which is not flexible, and (2)

a mapping is restricted to map type symbols, not function symbols (function symbols
are matched purely by their names). A more general parameter passing mechanism
should separate a mapping from a structure, which has an explicit theory translation
style. This would allow a group structure (representing a group theory) to be used
where structures of a monoid signature are required, even though they do not share

the same names.

1. Introduction 5

Higher-order functors. The functors introduced so far are first-order in the sense
that they are functions over structures. The notion of higher-order functor is a gen­
eralized notion of functor such that (possibly high-order) functors can be used as the
actual parameters and return values of other functors, just as higher-order functions
can take other functions as input and return functions as output1 . Extending the
ML-family module systems to support higher-order functors involves the following
issues:

(1) Phase separation and separate compilation A module is separated into a
static part (type information) and a dynamic part (code). Type checking does
not require any information from the dynamic code part. Typical solutions are
Harper and Lillibridge's "translucent sums" and Leroy's "manifest types", in
which a module system is a stratified layer on top of a core language. The
major idea is that all information required by interactions between modules
is captured by the signatures of modules. Concrete information required for
interactions between modules is modeled by transparent (or manifest) types,
which support separate compilation [47, 57].

Let us look at an example from [57]. In SML, assume that S: E and E specifies
a type component t. Even though the signature E does not say anything about
the implementation oft, another structure S' can rely on S.t being implemented
as some particular type, say, int. This is because that type specifications in SML
signatures are transparent and SML is defined as "an interactive language". The
latter implies that users are expected to build their programs linearly in strict
bottom-up order. Hence, the fact that tis implemented as int is available when
defining S'. However, if we want to define S and S' in different compilation
units, the implementation defining S' therefore cannot be typechecked until the
implementation defining S has been written. The reason is that S : E does not
suffice to determine whether it is correct to assume S.t to be int. The solution
is to make type specifications in signatures opaque and enrich signatures with
manifest type specifications, type t = T.

This issue is not a problem for most MMSs because: (1) most MMSs are de­
signed as an interactive language like SML, and (2) manifest types can be built
in most MMSs. In MMSs, all types are abstract; their behaviours are defined
by axioms. The concrete type representation t = int can be expressed by two

1The usage of higher-order functors was shown in [14, 15] which employed Ocaml's higher-order
functors extensively.

6 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

abstract type declarations and an axiom expressing their equality. Users can
choose to expose only the abstract type t or both t and int and the axiom. The

latter choice effectively simulates a manifest type.

(2) Generativity A functor is called applicative if two instantiations of it with the

same actual parameter are compatible; otherwise it is called generative [62]. A
generative functor creates a new type for each of its instantiations, i.e. instances
of an abstract type are distinct. The question of which approach is better is

still an open debate.

Note that the notion of generative functor is necessary only when the behaviour
of a functor depends on a stateful object. In other words, the behaviour of an
instantiation of a functor varies according to the value of an object, which varies

according to the state of the system. A stateful object necessarily stands outside
a functor and its actual parameter, i.e. it is global in some sense. As discussed
later in §1.2, a module in an MMS is not only a name space mechanism, but
also a reasoning context. Consequently, there is no global object that can be
accessed by more than one theory. To access an object, one has to import it

in some way. In this sense, there is no place for generative functors, unless a
module is only used to solve name conflicts, as in Coq. We thus favour the

notion of applicative functor.

(3) Modules as first-class values Some ML-family modules are first-class ob­

jects [62]. This means that a module has the full properties of any other object
of the core language. For instance, modules can be used as an actual argu­
ment of a normal function of the core language. This requires building data
types representing modules within the core language. For instance, in a system
supporting constructive type theory, structures can be formalized as depen­
dent records, signatures as dependent record types, and functors as functions
over record types [21, 22]. Higher-order functors are natural, since functions
are higher-order. One advantage of this approach is that users can exploit the

computation mechanisms of the core language in the construction of modules.
The biggest drawback of this approach is that we are forced to amalgamate a
module language with a core langauge. This adds additional requirements on
the expressivity of the core language and restricts the application of a module

system.

In this thesis, we will not consider "modules as first-class values" for two reasons:
(1) since a module language is merely used to express how to build theories from

1. Introduction 7

other theories (and/or functors), a simple notion of computation is enough for
that purpose, and more importantly, (2) a module system should be orthogonal
to underlying systems, so that it is applicable to arbitrary systems.

1.1.2 Algebraic specification systems

Specification languages are used to specify the software development process in terms

of a sequence of progressively refined descriptions of a software system, resulting in
a possibly executable program and its documentation. At each step, a description
specifies what a software system must do, not how it will do it. Equational logic was

extensively adopted as the basic formalism of specifications. The concern of modular­
ity was presented in the early development of algebraic specification languages, since

specifications are used to model abstract data structures.

Institutions. A notion of an institution [71], based on category theory, was intro­

duced as the framework for formalizing logic-independent module systems.

Definition 1.1.1. Let Set be the category of sets and Cat the category of small
categories. An institution consists of:

(1) a category Sig of signatures,

(2) a functor Sen : Sig --+ Set giving, for each signature E, the set of sentences
Sen(E), and for each signature morphism <7: E--+ E', the sentence translation

map Sen(<7) : Sen(E)--+ Sen(E'),

(3) a functor Mod : Sig --+ Cat giving, for each signature E, the category of models
Mod(E), and for each signature morphism <7: E--+ E', the reduct (forgetful)
functor Mod(<7) : Mod(E') --+ Mod(E),2

(4) for each E E Sig, a satisfaction relation I= E, such that for each <7 : E --+ E' E E,

M' E Mod(E') and <.p E Sen(E):

M' l=E' <7(<.p) if and only if Mod(<7)(M') l=E <.p.

2Notice the type of Mod(u) is the reverse of that of Sen(u) regarding the positions of E and
E'.

8 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Based on a particular institution, specifications can be defined in two ways. (1) A
specification is a pair consisting of a signature E and a set E ~ Sen(E) of equations.
The category of syntactical specifications is the category whose objects are all such

pairs (E, E) and whose morphisms a- : (E, E) --+ (E', E') are signature morphisms
a- : E --+ E' such that Sen(o-)[E] ~ E'. 3 (2) A specification is a pair consisting

of a signature E and a set M ~ Mod(E) of models. The category of semantics

specifications is a category whose objects are all such pairs (E, M) and whose mor­
phisms a- : (E, M) --+ (E', M') are signature morphisms a- : E --+ E' such that

Mod(o-)[M'] ~ M [71]. 4

Specification building operations. Most algebraic specification languages sup­

port a set of specification building operations, such as extension, union, renaming,
and first-order parameterized specification. Two approaches to define the semantics
of these operations are based on the category of syntactical specifications and the

category of semantics specifications respectively. (1) The operations do not add any
expressive power to the underlying system, in the sense that a structured specifica­
tion is equivalent to a large unstructured specification. The semantics is built at the
syntactical level, i.e. over the category of syntactical specifications. However, there
is nothing preventing one from defining the semantics of the operations over the cat­

egory of semantics specifications. Some systems define both of them and show their
compatibility, e.g. the specification language CASL [48] does this. (2) Other systems
let extra these operations provide extra power, i.e. a specification built using these
operations may not be equivalent to any unstructured specification. Their semantics
is defined at the model level, since some set of models may not have any corre­
sponding syntactical descriptions. Thus it is defined over the category of semantics
specifications, for instance, in the specification language ASL [97].

Parameterized specifications. As functors in the ML-family module systems,
parameterized specifications are the most important operation. There is no separate
notion of interface in that specifications serve the role of interfaces as well. Only
first-order parameterized specifications are supported in most algebraic specification
languages. A parameterized specification is defined as an extension of its formal
parameter specification. In other words, there is exactly one occurrence of formal
parameter specification within the body definition of a parameterized specification,

3Sen(CT)[E] = {Sen(CT)('P) I 'PEE}.
4 Mod(CT)[M'] = {Mod(CT)(M') IM' EM'}.

1. Introduction 9

which is not adequate as indicated in § 1.1.1.

Instantiation and parameter passing. To instantiate a parameterized specifi­
cation, we need to provide an actual parameter specification. A matching between a
formal parameter specification and an actual parameter specification is specified by a
fitting morphism between them. Fitting morphisms are essentially theory interpreta­
tions, if we treat specifications as theories. Fitting morphisms are more flexible than
the parameter passing mechanism of ML-family functor. In particular, the language
of a specification does not matter, while the structure of a specification is crucial.

The semantics of an instantiation of a parameterized specification with a proper
actual parameter and fitting morphism is defined as the pushout of the diagram
consisting of the formal parameter specification, the actual parameter specification,
the parameterized specification, the fitting morphism, and the embedding morphism
between the formal parameter specification and the parameterized specification [71].
(See Figure 1.2.) The formal parameter specification identifies the shared portion of
the actual parameter specification and the parameterized specification.

translation by
/ lifted fitting morphism

occurrence

fitting morphism

instantiated

specification

0)
substitution

actual

parameter

specification

Figure 1.2: Parameterized Specification Application

The pushout is unique up to isomorphism; it specifies the structural constraints
of a specification. In other words, given a parameterized specification and an actual
parameter specification, the instantiation may have a totally different signature from
the signatures of the parameterized specification and the actual parameter specifica-

10 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

tion, as long as the instantiation satisfies the structural constraints. This uncertainty
of the resulting signature of an instantiated specification may not be a problem for
most algebraic specification systems since they support only first-order parameterized

specifications. It is even an advantage since it allows an implementation to choose a
more meaningful signature for the instantiated specification following then that of the
actual parameter specification. Figure 1.2 illustrates this reasonable implementation.

This uncertainty may, however, make higher-order parameterized specifications

impractical. Assume that we are defining a specification by extending another speci­
fication, which is defined via a sequence of (higher-order) parameterized specification

instantiations. In order to decide the symbols we can use to define the extension
specification, it is necessary to evaluate the sequence of parameterized specification

instantiations. While it is not a big job for first-order parameterized specification
instantiations, it could be a huge effort for higher-order parameterized specification
instantiations. Also, note that this is not a problem for the ML-family system, since
types help users to figure out the set of symbols that can be used.

It is also not obvious if it is possible to define the semantics of higher-order pa­

rameterized specifications and instantiations purely within category theory. At least,
the category of specifications is not enough, since there are no representations of

higher-order parameterized specifications in that category.

1. 2 Design goals

In this section, we present the major design goals we want to achieve. Some of them
are addressed in §1.1 and are presented briefly here, while others are discussed in

detail.

Design Goal 1 (DG 1). The module system should be independent of the language

and logic of the underlying MMS.

Although most languages and MMSs have their own module systems, we believe a
module system should be independent of languages and logics. We want our module
system to be orthogonal to the underlying MMS, i.e. it should be a stratified layer on

top of the underlying MMS. Thus a module cannot be a first class object. However, we
need to emphasize that there is nothing to prevent users from adopting ideas presented

in this thesis to build a module system where modules are first class objects.

Design Goal 2 (DG2). Mathematical knowledge is organized as theories.

1. Introduction 11

In our module systems, the basic building block is a theory. A theory5 consists of

a language L, a set <I> of axioms, and a set ~ of theorems that are proved from the

axioms in a sound proof system. (Refer to §2.1.1 for the formal definitions.)
Note that a theory contains only those theorems that are already proved, in con­

trast to approaches (as in most algebraic specification languages) where a theory
contains all theorems that are provable. In other words, each theory is a concrete
representation of some mathematical theory. In order to extend a theory with a

theorem, it is necessary to provide a proof together with the sentence that is proved.

Design Goal 3 {DG3). The theories of the module system are organized according

to the little theories method.

Our notion of theory is based on the little theories approach [38], in contrast to
the modules in most programming language paradigms which are based on the big
theory approach [38]. In the big theory approach, one powerful set of axioms is used

to model all objects of interest. Consequently, a module is a name scope mechanism,
where an object developed in one module can be referred to from within another
module by qualifying the object name. In the little theories approach, reasoning is

carried out under different, separate contexts, modeled by theories. To use an object

developed in another theory under the current context, we need to build a theory
interpretation between them. Effectively, it will import a translated version of that
theory implicitly or explicitly.

Design Goal 4 {DG4). There are theory building operations that construct new

theories from existing theories.

Although we can always build a theory from scratch, it is better if we can reuse
previously developed theories. Our system should support the usual theory building
operations as supported in most algebraic specification systems, i.e. theory extension,
union, and renaming. In particular, renaming helps users to express a theory in a
different language in a simple way.

Design Goal 5 {DG5). There is support for parameterized modules, called functors.

The most important modular mechanism supporting reuse might be parameter­
ized modules such as the functors of ML-family module systems and parameterized
specifications of algebraic specification languages. Our module system should support
parameterized modules, called functors, which are functions over theories.

50ur notion of a theory may be called a theory presentation in some other systems.

12 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Design Goal 6 (DG6). Functors can be higher-order.

While first-order functors, where parameters may be theories but not other func­
tors, are a very useful parameterized mechanism, higher-order functors will provide

higher level abstractions. As shown in §1.1.1, higher-order functors are a generaliza­

tion of first-order functors that manipulate functors as well as theories as values. A
module system with higher-order functors should resemble the >.-calculus, in which
theories are values and functors are functions. Higher-order functors are then handled
in a uniform way as in the >.-calculus.

Design Goal 7 (DG7). Functors can be defined in terms of arbitrary module ex­

pressions over the parameter theories.

In most systems, a first-order parameterized specification is defined as an extension

of its parameter specification. A generalization of that would be allowing a first­
order functor to be defined as an arbitrary expression over the parameter theory as
in the ML-family module systems. For examples, there may be no occurrence of
the parameter theory in the expression or there may be two or more copies of the

parameter theory in the expression. Module expressions can express more complicated
theory constructions, e.g. functor application and renaming, because our systems
support operations other than extension. This makes the functors behave more like
functions.

Design Goal 8 (DG8). Functors are applicative.

As discussed in § 1.1.1, our systems support applicative functors only.

Design Goal 9 (DG9). There is a type system to classify module expressions by
their values, which are theories or functors.

A notion of a type of a theory is used to specify a class of theories. For instance,

the class of theories that can be used to instantiate a functor is specified by a type.
A type of a theory is also used to specify an interface of the theory, i.e. the exported
language and sentences. Casting the type of a theory effectively changes its interface.
In case higher-order functors are supported, a notion of functor type is used to specify
a class of expressions, whose values are functors.

Design Goal 10 (DGlO). There is a subtyping mechanism that allows users to treat

an object of one type (subtype) as an object of another type (supertype).

1. Introduction 13

By using a type system to classify module expressions by value, we are forced to
define distinct functors with similar behaviour over different types. We thus need a
way to define polymorphic functors. This can be handled by a subtyping relation in
the sense that a functor defined over a type is applicable to any of its subtypes. In
general, a subtype is more informative than its supertype. Thus, it is safe to use an

object in the subtype in the places where an object of the supertype is required. Note
that, because there is no state, subtyping does not involve all the problems associated

with inheritance.

Design Goal 11 (DGll). An actual parameter is passed to a functor via a mech­
anism similar to a fitting morphism.

During a functor application, in order to pass an actual parameter to the functor,

we need to match the actual parameter with the formal parameter. As shown in §1.1,
one way is type matching, another way is providing a fitting morphism. While the
former way is very simple, the latter way provides greater flexibility, in the sense that
a theory expressed in a different language from the formal parameter can be used for

instantiation. It is also desirable to generalize fitting morphisms so that a theory that
is formalized in a different axiomatization can be used as a valid actual parameter.

1.3 Overview

In this thesis we present a hierarchy of module systems. A child system extends its

parent system with additional mechanisms. In this section, we briefly describe these
systems and state their major contributions to give readers the big picture.

Mei Basic. Mei Basic is the simplest system in the hierarchy. It satisfies all the
design goals except DGlO and DGll.

Mei Basic organizes mathematical knowledge as theories. It supports several oper­
ations to construct theories from those existing theories, including extension, renam­

ing, and union. Mei Basic supports parameterized theories, called functors, which
are applicative and can be higher-order. A notion of a type of a theory or a functor is

used to specify a class of theories or functors. A first-order functor is defined in term
of an arbitrary expression of its formal parameter. Basically, Mei Basic resembles an
ML-family module system modeled on the typed >.-calculus.

14 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Mei Core. Extending Mei Basic by a subtyping relation over (parameterized) theo­
ries, we get Mei Core, which satisfies DGlO as well as the design goals that Mei Basic
satisfies. For example, let Group be a theory of groups and be of type Group. Let

Monoid be the type of theories of monoids. Let F be a functor whose formal argument
is type Monoid. It is thus reasonable to allow the application of F to Group, since
Group is a subtype of Monoid. This idea is generalized to functor types as well.

Mei. Mei6 is Mei Core plus a powerful coercion mechanism. A notion of a view is

supported in Mei. It is the smallest system satisfying all 11 design goals. A view
shows how an object in one (target) type can be treated as an object in another

(source) type in a more general way than that of a subtyping relation. The simplest

views between theory types are similar to fitting morphisms (DGll). Views between

functor types are defined in terms of views between their source and target types
inductively.

Intuitively, a view shows how an object in its target type can be treated as an

object in its source type by providing the information expressed by the source type
but missed by the target type. The semantics of a view is then a functor in Mei Core,
called a coercion functor, that adds the missing information to any objects in the
target type. Effectively, a coercion functor generated from a view transfers an object
in the target type to an object in the source type. By doing so systematically, ex­

pressions in Mei are transferred to those of Mei Core. Thus, the semantics of Mei is
defined in terms of that of Mei Core.

Partial work on Mei was presented in Programming Languages for Mechanized

Mathematics Workshop (PLMMW) [98].

DMei Core and DMei. In Mei, the result type of a functor type is fixed in the
sense that it is independent of the argument type. The type of a functor application is
then fixed no matter what parameter is used. In other words, some type information
of the actual parameters is lost. There are cases when users might want to keep (or
get back) the type information of actual parameters. This necessarily requires that
the result type of a functor type is defined in terms of its argument type. Then, we
can type functor applications by replacing each occurrence of the argument type in

the result type by the actual type of the parameter. These are so-called dependent

functor types.

6 Mei is the Chinese name of Prunus mume, a species of Asian plum in the family Rosaceae. The
tree flowers in late winter, typically late January or February in East Asia.

1. Introduction 15

Generalizing Mei Core to support dependent functor typing, we get DMei Core.
DMei Core gives more precise typing information for functor applications, though it

necessarily complicates the typing system. Accordingly, extending DMei Core by the

coercion mechanism, we get DMei.

1.4 Major contributions

The design goals we presented in §1.2 are not new. They are supported in various

module systems. However, none of the current module systems supports all these
goals. For instance, Leroy's manifest types is an ML-family module system [57], which

is designed to be language independent (DG 1). Signatures are types of structures
and functors (DGlO), and subtyping is supported (DGll). It has applicative higher­

order functors (DG5,6,7,8). However, DG4 and DG9 are not fulfilled. It does

not support module renaming, though other module building operations, such as
extension and union, may be simulated by functors. More importantly, parameter
passing is based on type matching, which is not as flexible. DG2 and DG3 are not
necessary for a module system of programming languages. Another approach is to
formalize modules as dependent records in type theory [62]. This approach is similar
to the first one with the advantage that modules are first class objects, which is not

a design goal. However, this formalism is not logic independent (DGl) because the
underlying logic has to be powerful enough to formalize dependent records.

Most module systems of algebraic specification languages are logic independent
(DGl), with the notion of a logic formalized as an institution. Normally, they fol­
low the little theories approach (DG3), though usually not specified by the system.
The specification building operations (DG4) are supported, as well as parameterized
specifications (DG5,8). Specifications (DG2) are used as both objects and types
(DGl0,11), though there is not an explicit type system. Fitting morphisms are used
for parameter passing (DG9). However, higher-order functors are usually not sup­

ported (DG6). In addition, parameterized specifications are defined as an extension
of their formal parameter, not an arbitrary expression (DG7).

Our major achievement is to design module systems that fulfil all the design goals
stated in §1.2: Mei and DMei. In particular, an ideal module system, in our opinion,
is a system that integrates higher-order functors (DG6) and a parameter passing
mechanism using fitting morphisms (DG9). Although there are a few unsuccessful

efforts (we will investigate one incomplete proposal in Chapter 5), our systems are

16 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

the first ones in which these mechanisms are fully integrated. This is achieved by

a novel notion of a view and its coercion semantics. A view is a generalization of a
fitting morphism which accounts for functors as well as theories. Instead of defining
the semantics of functor application with views directly, we define the semantics of
a view as a coercion functor, which transfers an actual parameter justified by the

view to a new actual parameter (which should be equivalent to the original actual
parameter in some sense) that can be justified by type matching.

Although Mei satisfies all the design goals, it is relatively simple. Moreover, there
is a strong, rather beautiful analogy between Mei and the typed A-calculus. It is easy

to put Mei (in fact Mei Basic) into the typed A-calculus frame as follows. The theory
types and the functor types are the base types and function types respectively. Module
expressions are terms, where functor abstractions (definitions) are A-abstractions,
and functor applications (instantiations) are function applications, whose semantics is

given by ,6-reduction. The theory operators are analogous to extra term constructors,
like the arithmetic operators, in many functional languages.

The rest of this thesis is organized as follows. Chapter 2 presents Mei Basic.
Chapter 3 gives two extensions of Mei Core and Mei. Chapter 4 presents DMei Core

and DMei. In Chapter 5, we show the power of a simple system by comparing Mei

with the module systems of some specification languages and MMSs. Some possible
extensions of Mei are given in Chapter 6. A simple implementation of Mei is presented
in Chapter 7. Chapter 8 presents a skeleton of a module system designed for multi­
logic MMS systems. The thesis ends with a short conclusion in Chapter 9.

Chapter 2

A simple module system

Mei Basic

In this section we present a simple ML-family module system, Mei Basic. We first
informally present the features of Mei Basic, followed by a formal presentation of its

syntax and semantics.

2.1 Informal presentation

As indicated in §1.3, Mei Basic is a module system enjoying the beauty of the typed
>.-calculus. Mathematical knowledge is organized as modules called theories. Theories
are objects and parameterized theories are functions. We will present the mechanisms
supported by Mei Basic in this section.

2.1.1 Theories

Although there are different ways to present mathematical theories, we prefer the
axiomatization approach. A theory in Mei Basic consists of a language (a set of
symbols used by the theory), a set of axioms, and a set of theorems provable from
the axioms in a sound proof system. In other words, a theory in Mei Basic is a finite

concrete representation of a mathematical theory. In general, the set of axioms of a

17

18 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

particular theory could be infinite. However, they must be finitely representable, for

example, by a finite set of axiom schemes.
Both the syntax and the semantics of Mei Basic are defined in terms of theories.

We define language, sentence, proof, and theory in a very abstract way and give
examples to clarify them.

Definition 2.1.1 (Languages). A language L is a set of symbols (often of various
categories) that we can use to build syntactic objects. We will write £., for the set of

all L.

Definition 2.1.2 (Sentences). The set of all sentences over a language L E £, de­

noted by Sen(L), is a set of syntactic objects constructed inductively via a set of
sentence constructors.

Clearly, Sen(L1) <;;; Sen(L2) if L1 <;;; L2. A set <I> of axioms is a set of sentences,
i.e. <I><;;; Sen(L). We will use AL for the set of all such <I>, which is the power set of

Sen(L). A is then the union of AL for all LE£.

Definition 2.1.3 (Proofs). Each MMS supports a set of proof strategies to derive

sentences from sentences using certain (either predefined or user defined) inference
rules. A sentence <p is provable from a set of sentences <I> if it is derivable from
<I>. A proof of <p is then any derivation of <p from <I>. Given a language L, a set
<I><;;; Sen(L) of axioms, and a sentence <p E Sen(L), we denote the set of proofs of <p

by Proof(L, <I>, <p).

Again the style of proofs stays unspecified, although we assume that there exists
a set of inference rules such that a proof of a formula can be inductively derived

following these rules. This necessarily implies that, if L1 <;;; L2 and <I>1 <;;; <I>2, then

Proof(L1 , <I>1, <p) <;;; Proof(L2, <I>2, <p).

Example 2.1.4. A language L for a many-sorted first-order logic is a set of symbols
presented as a tuple (S, e, ~, '.P) where

(a) Sis a set of sort symbols si, s2 ,

(b) e is a set of constant symbols c1, c2,
a sort symbol s E S.

Each constant symbol is associated with

(c) ~is a set of (primitive or basic) function symbols f: s1 x · · · x Sm-----+ s (m ~ 1).
Each symbol f has a type s1 x · · · x Sm -----+ s, where m ~ 1 is the arity off.

2. A simple module system - Mei Basic 19

(d) '.P is a set of (primitive or basic) predicate symbols p : s1 x · · · x Sm (m ~ 1). Each
symbol p has a type s1 x · · · x Sm, where m ~ 1 is the arity of p.

In this case, there are four categories of symbols, namely sort symbols, constant
symbols, function symbols, and predicate symbols. We can define terms and formulas
in the usual way. A sentence is then a closed formula, i.e., a formula in which no
free variable occurs. An example of a proof system is a Hilbert-style proof system. A
proof of a sentence is a derivation of the sentence starting from the axioms (logical and
non-logical axioms) and then applying the inference rules (such as modus ponens).

Definition 2.1.5 (Specification environment). A specification environment e is a pair
(Le, <I>e) where:

(a) Le E £ is a language.

(b) <I>e ~ Sen(Le) is a set of axioms.

A specification environment records the symbols and axioms currently visible. It
grows when a symbol or an axiom is declared.

Definition 2.1.6 (Specifications). Let e = (Le, <I>e) be a specification environment.
A specification S under e is a 4-tuple (L, <I>, D., 0) where:

(a) Lis a set of symbols such that L n Le = 0 (the empty set) and LU Le E £ is a
language.

(b) <I>~ Sen(L U Le) is a set of axioms where <I> n <I>e = 0.

(c) D. is a set of theorems, i.e. pairs (<p, pf), where <p E Sen(L U Le) is the sentence
of the theorem and pf E Proof(L U Le, <I> U <I>e, <p) is its proof.

S is called closed if the symbols used in <I> and D. are in L and the axioms used in the
proofs of D. are in <I>, i.e. e is empty.

A specification is always defined under some specification environment.

Definition 2.1. 7 (Theories). A theory T is a closed specification, abbreviated as
(L, <I>, D.).

We will write 'JJC for the class of all theories, sen(D.) = {<p I (<p, pf) ED.} for the
set of all sentences in D., and lang(T) for the language L of the theory T.

20 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Remark 2.1.8. Note that a theory in Mei Basic contains only those theorems that are

already proved, in contrast to approaches where a theory contains all the theorems
that are provable. A theory in Mei Basic may be called a theory representation

in those approaches. However, our notion of a theory is widely adopted in many
theorem proving systems. Consequently a theory in Mei Basic is a syntactic object in
terms of the underlying MMS. In other words, our system manipulates only syntactic
representations of mathematical theories.

Remark 2.1.9. As indicated in §1.2, a theory is a closed reasoning context. An object
defined in one theory cannot be referred to from within another theory. There are
no global objects. In other words, an object is always local to a theory, i.e. it is

developed and employed within a theory. As a result, the meaning of a theory is

totally determined by its definition, not something outside the theory.

Remark 2.1.10. In terms of implementation, languages, sentences, and proofs are
abstract types whose concrete representations are determined by the underlying MMS.

The type for theories is then defined in terms of the abstract types for languages,

sentences, and proof.

Remark 2.1.11. Note that we make very few assumptions about the underlying logic.
The underlying logic will be specified by how a sentence is built on top of a language

which is not part of our module system. For instance, we do not assume that the
underlying logic is classical or constructive. However, our module system does work
better for some particular logics. For instance, although our module system can be
built on top of a logic without the CRI property, it will possess the Modularization
Property only if the underlying logic possesses the CRI property (see §2.5 for details).

2.1.2 Theory extension, renaming, and union

Mei Basic supports several operations to construct new theories from existing theories.
As in most algebraic specification languages, Mei Basic supports theory extension,
renaming, and union.

Extension. Extending an existing theory by adding new symbols is the simplest
way to form a structured theory hierarchy. To develop a new theory, instead of

starting from scratch, we can start from an existing theory and extend it by adding
new language symbols and axioms. For instance, to build a theory of groups, we
might rather start by inheriting the language and axioms of a theory of monoids.

2. A simple module system - Mei Basic 21

Renaming. There are two basic reasons that we need a renaming mechanism: (1)

to avoid name conflict for use in the union operation below, and (2) to name symbols
in a meaningful way according to the intended semantics. For instance a theory of
rings may be built from a theory of groups and a theory of monoids. It is quite

possible that both theories use o as the name of their binary operators, therefore, one

of them has to be renamed. In another example, one may use "mm" as the name of
the sort in a theory of monoids, representing the carrier set of a monoid. A theory
of groups can be defined by extending the theory of monoids, and it is natural to
rename "mm" to "gg", representing the carrier set of a group.

Example 2.1.12. Let L = (S, e, '.f, '.P) be the language of the many-sorted first-order
logic defined in 2.1.4. A renaming of Lis a pair (L, p), where p: L ~ L' is a symbol

mapping consisting of four one-to-one functions p8 , Pc, p1, pp:

(1) p8 maps each sort symbol of L to another sort symbol.

(2) Pc [p1, pp, respectively] maps each constant symbol [function symbol, predicate
symbol] in L to a constant symbol [function symbol, predicate symbol] respect­

ing its type (and arity).

This forms a new language L', written p(L) = (Ps(S), Pc(e), P1('.f), Pp('.P)).

p is a mapping from L to its image language p(L). We can define, induc­

tively over the structure of sentences, the sentence translation Psen' the mapping
from Sen(L) to Sen(p(L)), which maps each sentence c.p E Sen(L) to a sentence
Psen(c.p) E Sen(p(L)) (refer to the example in §3.4.1 for details). Similarly we
can define inductively the proof translation PP!' the mapping from Proof(L, <I>, r.p)
to Proof(p(L),Psen(iP),Psen(c.p)), where <I> ~ Sen(L),c.p E Sen(L), and Psen(<I>) =
{p sen (i/J) I i/J E <I>}. A theory translation Pthy of a theory T = (L, <I>, ~)

is a triple (p, Psen' Ppf), which maps T to its image theory, written Pthy(T) =
(p(L),Psen(<I>),Pthm(~)), where Pthm(~) = {(Psen(c.p),PpJ(pf)) I (r.p,pf) E ~}. When
there is no ambiguity, we may drop all subscripts.

Note that a renaming is just a special case of a translation defined in §3.4.1, where
p is one-to-one and the target language is unspecified.

Union. To build a theory based on two or more existing theories, we need the
union operation. For instance, a natural way to build a theory of rings is to extend

the combination of a theory of groups and a theory of monoids.

22 Jian Xu - Ph.D. Thesis - Department of ·cAS, McMaster University

I

g g '

r
T,

T,

Figure 2.1: Amalgamated union

There are two approaches we can follow to construct a theory from existing the­
ories, set-theoretic union and amalgamated union. Figure 2.1 illustrates the idea of
amalgamated union. Let To = (Lo, <I>o, D.o), Ti = (Li. <I>i, D-1), and T2 = (~, <I>2, D-2)
be theories. The amalgamated union of T1 and T2 with respect to T0 is the disjoint
union of T1 and T2 modulo the equivalence relation induced by f and g. Note that
the images of T0 in T1 and T2 may have totally different syntactic representations,
though they must share the same structure. In other words, To identifies the common
parts of T1 and T2 via f and g, and thus, they will be mapped to the same images
by f' and g'. Information that is not identified by To must be distinguished in the
amalgamated union regardless of its original syntactic representation in T1 and T2 .

For example, assume that both T1 and T2 have a symbol a, which is not in f(To) or
g(T0), then a has to be mapped to two distinct symbols, say a 1 and a2 , in the amal­
gamated union by f' and g'. This is a so-called pushout in the category theory, where
theories are objects and theory morphisms are morphisms. Clearly, the amalgamated
union approach is more general than the set union approach. In the simplest case,
Lo= L1 n ~ and the amalgamated union of T1 and T2 w.r.t. T0 is equivalent to the
set-theoretic union I'J = (L1 U ~. <I>1 U <I>2, D-1 U D-2).

However, it seems that, with the help of renaming, we can simulate amalgamated
union by the set-theoretic union. By using the renaming mechanism, we can force
the common parts to be syntactically identical and the other parts to be syntactically
distinct. In fact, we can regard the renamings as an explicit representation of the
morphisms f and g. This idea is illustrated in the following example:

2. A simple module system - Mei Basic

Example 2.1.13.

Monoid = language sort mm

canst e: mm

Group

func o : mm2
---* mm

axioms Vx1, x2, X3 : mm. X1 o (x2 o x3) = (x1 o x2) o X3

\f x : mm. x o e = x /\ e ox = x

theorems ...

Monoid with {mm f-t gg} extended by

language func -l : gg---* gg

axioms \fx : gg. x o x- 1 = e

\fx : gg. x-1 ox = e

theorems ...

Ring (Group with {gg f-t rr, e f-t 0, o f-t +} EB

Monoid with {mm f-t rr, e f-t 1, o f-t *}) extended by

language

axioms \fx, y, z: rr. x * (y + z) = (x * y) + (x * z)

theorems ...

23

By renaming, we identify the sorts mm and gg as rr, separate e as 0 and 1, and

separate o as + and *· Although we do not define the syntax of the underlying core
language and symbol mapping, the meaning of the above example should be clear.

There is still the danger that unintended name collapses may happen when the

union operation is embedded in a parameterized theory body (see §2.1.3), e.g. the
actual parameter theory and the parameterized theory body may share some symbols
that are not supposed to be identical. The solution is to use types (see §2.1.3) to
identify the amalgamated part of the two theories, i.e. T 0 in Figure 2.1. The main
idea is: (1) the union of two types is the set-theoretic-union of them, (2) two symbols
are considered identical if they are identical in the type specification, and (3) two
symbols are considered distinct otherwise (and therefore have to be renamed). Our
approach is a variant of the amalgamated union where the amalgamated part T 0

is identical with its images in both T 1 and T 2 . The formal definition of the union

24 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

operation is in §2.4.2. Also note that this is just a side-use of types. Since the types

are not only used for specifying the amalgamated part of theories, they contain more
information as defined in §2.1.3.

Remark 2.1.14. Name conflict is always an issue for large system development. There

are basically two approaches to solve this issue: (1) Names from different modules

are distinct. Sharing of names is expressed by equational constraints [57]. (2) Names
from different modules are not distinct. Sharing is expressed by names [3]. Renaming
is used to solve unintended name conflict. A side-effect of the little theories approach
is that a theory is a simple name scope which isolates the names in one theory from

those in other theories. However, name spaces can not be nested. Since we have

a renaming mechanism, we prefer approach (2) within a theory. When a theory is
constructed from two or more component theories, we adopt the convention that the

same name refers to the same object regardless where it comes from. In the above

example, we give the same name to the carrier sets of the group theory and the
monoid theory to force them to be identical in their union. The renaming mechanism
then can be used to distinguish their respective binary operators as the addition and
the multiplication operators in the ring theory1

.

2.1.3 Parameterized theories

Parametrization is a key concept of a module system for structuring and reusability
of modules. A parameterized theory is a generic theory with respect to its formal
parameter theory (the argument type). It can be instantiated provided that the
actual parameter theory matches the argument type. We use the notion functor for
a parameterized theory. It is illustrated best by the following example. Note that the
language of the underlying MMS we use in the following exam pl es is not defined in
this thesis. We hope the meaning is clear from the context.

Example 2.1.15. A functor Comm may be defined as follows to add the commutative

1There is a question here: "Does the amalgamated union exist?" In terms of category theory:
"Do pushouts exist?" Pushouts may not always exist when we require the morphisms preserving
some properties [49]. However, since a renaming gives an isomorphism that will preserve almost all
properties, it is reasonable to assume the the existence of the pushout corresponding to the above
example. For example, it exists for the order-sorted algebraic specifications as shown in Theorem 1
in [49].

2. A simple module system - Mei Basic

axiom to any theory with a binary operator.

Comm = functor X :

language sort ele

func o : ele2
---+ ele.

X extended by

axioms Vx, y : ele. x o y = yo x

theorems

Let Monoid be a monoid theory defined as follows:

Monoid = language sort ele

const e: ele

func o : ele2
---+ ele

axioms Vxi, x2, x3 : ele. x1 o (x2 o x3) = (x1 o x2) o x3

Vx : ele. x o e = x A e ox = x

theorems ...

25

The application of Comm to the actual parameter theory Monoid results in the com­
mutative monoid theory by substituting Monoid for X. It is equivalent to the following
flat theory:

CommMonoid language sort ele

const e: ele

func o : ele2
---+ ele

axioms Vx1, x2, X3 : ele. x1 o (x2 o x3) = (x1 o x2) o X3

Vx : ele. x o e = x A e ox = x

Vx, y : ele. x o y = yo x

theorems ...

Figure 2.2 illustrates the instantiation of a first-order functor. It is similar to
the ML-family functor application as illustrated in Figure 1.1, except that, with the
help of theory operations described in §2.1.2, more than one occurrence of the formal
parameter theory can be in the functor body. It is also similar to the instantiation of
a parameterized specification as illustrated in Figure 1.2, except that the parameter
passing mechanism is not as general, i.e. type matching is used instead of a fitting
morphism.

26 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Remark 2.1.16. In the case when there is an axiom declared for X, the parameter
theory of Comm, any reference to the axiom in a proof of a theorem of Comm will
be replaced by the corresponding axiom or theorem in Monoid. This correspondence

is expressed by the type matching as shown later.

substitution

type matching

Figure 2.2: First-order Functor Application

actual
parameter

theory

Types of theories. Note that we use a notion of a type of a theory to specify the

class of theories that can be used to instantiate a functor.

Definition 2.1.17 (Types). Let Thy= (L, <I>,~) be a theory. A type T of Thy is a
pair (LT, <I>T) such that:

(a) LT <;;;; L.

(b) <I>T <;;;; (<I> U sen(~)).

The extension of the type T is Ext (T)

sen(~))}.

{(L,<I>,~)

Note that, by definition, a theory can have more than one type. This is natural,
since the type of a theory provides an outside view of the theory, which is not unique.

2. A simple module system - Mei Basic 27

In fact, we use the type of a theory as an interface for that theory which determines
what information is exposed to the outside world. However, the entire language and
all facts (axioms and theorems) are not necessarily exported. For example, auxiliary
theorems may be hidden.

However, a module expression which represents a theory may have only one type,

called the principal type. The principal type of a module expression is decided by
the typing rules. For example, if the theory CommMonoid is defined from scratch,

its principle type may be

CommMonoid = language sort ele

const e: ele

func o : ele2
--t ele

axioms Vx1, x2, X3 : ele. x1 o (x2 o x3) = (x1 o x2) o X3

\:Ix : ele. x o e = x /\ e o x = x

\:Ix, y : ele. x o y =yo x

However, if it is defined from an instantiation of Comm as in Example 2.1.15, its
principle type will be

CommMult = language sort ele

func o : ele2
--t ele

axioms \:Ix, y : ele. x o y = yo x

This is decided by the typing rules defined in §2.3.2.

Higher-order functors. Mei Basic supports higher-order functors, in the sense

that functors can be used as parameters as well as return values of other functors. This
provides more flexible reusability of theories as illustrated in the following example:

Example 2.1.18. Let Ring be the type of ring theories, AbsPoly be the type of
abstract polynomial theories, and Ring --t Abs Poly be the type of functors that take
any theory that is a ring and return an abstract polynomial theory. MakePoly,
defined as follows, is a second-order functor that takes a theory of rings and a concrete
representation theory and returns a concrete polynomial theory with the indicated
representation.

MakePoly functor Coe : Ring.

functor MakeAbsPoly Ring --t AbsPoly.

MakeAbsPoly Coe

28 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Let Real : Ring be the theory of real numbers and MakeDensePoly : Ring --+ AbsPoly
be a functor taking a theory of type Ring that returns a polynomial theory over
that theory with the dense representation. A polynomial theory over reals with

dense representation is derived by applying MakePoly to Real and MakeDensePoly

as follows:

DenRealPoly = MakePoly Real MakeDensePoly

The semantics of the instantiation of higher-order functors is based on substitu­

tions as for first-order functors, except that functors can be used in substitutions.
As a result, we need a notion of a type of a functor to specify the class of functor

parameters or the class of resulting functors.

Remark 2.1.19. We use the curried version of higher-order function nota­
tion. We assume that functor application associates to the left, i.e.

MakePoly Real MakeDensePoly = (MakePoly Real) MakeDensePoly.

Types of functors. Since functors are functions from theories to theories, or more
generally functors to functors, we define functor types for functors as usual. For
example, the functor Comm has the functor type Mult--+ CommMult, where Mult is

defined as follows and CommMult is defined as above.

Mult = language sort ele

func o : ele2
--+ ele

axioms

The intuition of this functor type is that the functor Comm takes any theory that
has a single sort ele and a binary operator o as input and returns a theory with an

additional commutative axiom. This justifies the reason that CommMonoid has the
type CommMult if it is derived from the instantiation of Comm.

Remarks 2.1.20.

(1) It is straightforward to extend the Mei Basic to support higher-order functors
by defining functor types for functors as in typed ,\-calculus. The substitution
mechanism used for defining the semantics of first-order functor applications can

be easily generalized to account for higher-order functors. The simple parameter
passing mechanism, type matching, makes the generalization easy. However,

there is no obvious way to generalize the pushout semantics to account for

2. A simple module system - Mei Basic 29

instantiations of higher-order parameterized specifications. This is the main

reason that we start our system from an ML-family module system which makes
the generalization of higher-order functors easy. The remaining question is how
to generalize our system to allow a parameter passing mechanism similar to the

fitting morphism that fits our higher-order functors well.

(2) The type Mult---+ CommMult reveals no information about how a result theory
is constructed from a parameter theory. For example, both the functor Comm
and a functor that defines a theory of CommMult from scratch without actually
making use of the parameter are of type Mult---+ CommMult.

Remark 2.1.21. As shown in §1.4, it is easy to put Mei Basic into the >.-calculus
framework. The theory types and functor types are the base types and function

types respectively. Module expressions are terms, where functor abstractions are
>.-abstractions and functor applications are function applications.

2.2 Syntax

The following is the concrete syntax of Mei Basic. A module expression represents
a theory (or functor). It specifies the way a theory (or functor) is constructed. For
example, they can be defined from scratch, from the operations over theories such as
extension, union, and renaming, and from functor applications.

EXPR ··- MOD-CONST ..

TYPE-SPEC THY-SPEC

TYPE-SPEC EXPR

EXPR extended by SPEC

EXPRE9 EXPR

EXPR with MAPPING

functor VAR : TYPE. EXPR

EXPR EXPR

TYPE ··- TYPE-CONST ..

TYPE-SPEC

TYPE ---+ TYPE

30 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

THY-SPEC (LANG,AXIOMS,THMS)

TYPE-SPEC (LANG, AXIOMS)

MOD-CONST IDENTIFIER

TYPE-CONST IDENTIFIER

VAR ::= IDENTIFIER

An object in EXPR is called a module expression, which represents a theory (or func­

tor), denoted by a sans-serif E with subscripts when necessary. It describes the way
in which a theory (or functor) is constructed. An object in TYPE is called a module
type, which represents a class of theories (or functors), denoted by a sans-serif T.

We assume that a module expression and a module type can be named. Therefore
a module identifier [type identifier, respectively] is a module expression [module type].
They act as abbreviations for defined modules or types respectively. In fact we keep
an environment of named module expressions and module types, defined as follows,
which is used to search for the module expression or module type associated with a
module identifier or a type identifier respectively. A module identifier [type identifier,
respectively] is then nothing more than a constant that has a module expression
[module type] as its value.

Definition 2.2.1 (Environment). An environment O' is a set of pairs (C, E/T) where
(1) C is a unique module identifier in O', and (2) E (or T) is a module expression (or
a module type) associated with the identifier C. We will write O'(C) for the module
expression E (or module type T) if E (or T) is associated with C in O'.

We leave the syntax of the categories LANG, AXIOMS, THMS, IDENTIFIER, and
MAPPING unspecified, since it should be part of the underlying mechanized mathe­

matics system. However, we write source(p) [target(p)] for the set of source [target]
symbols of a mapping p.

Some other name conventions: S, 51 , ... range over SPEC, p, p1 , ... range over
MAPPING, L, L1, ... range over LANG, <I>, <1>1, ... range over AXIOMS, .6., .6.1, ... range

over THMS.

2. A simple module system - Mei Basic 31

2.3 Rules

We define the proper module expressions and module types via sets of rules.

2.3.1 Rules for types

type(T) is read as "T is a module type". closed(L, <I>) asserts that every symbol

used in <I> is in L.

T = (L, <I>) closed(L, <I>)

type(T)

type(T1) type(T2)

type(T 1 -----+ T 2)

(THY-TYPE)

(FUNC-TYPE)

= means syntactically identical. We have two categories of module types: theory
types and functor types, for theory objects and functor objects respectively. Functor

types associate to the right, i.e. Ti -----+ T 2 -----+ T 3 means Ti -----+ (T 2 -----+ T 3).

2.3.2 Rules for typing module expressions

r f-- E T is read as "E is a module expression of type T under the context I'".
r = {X1 : T 1 , ... } is a context that binds type variables with module types. A context
is built from functor abstractions which express the type assumptions of variables. If
r is empty, we write f-- E: T. We will writer, X: T for ru{X: T}. We assume that
theory variables are distinct, since they can be represented as identifiers internally
which are freshly generated for each variable declaration (see §7.2 for details).

We use a sans-serif X for variables and sans-serif C for constants. closed(L, <I>, ~)
asserts that every symbol used in <I> is in L and every axiom used in a proof in ~ is in
<I>. map(p) asserts that pis a mapping, i.e. a set of symbol pairs, where source(p)
[target(p)] is the domain [range] of p. p(L) is the image of L via p and p(<I>) is the
translation of <I> in which each symbol in Lis replaced by its image in p(L).

(ASS UMP)

32 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

CJ(C) = E r f-- E : T

f f--C: T

LT~ L <I>T ~(<I> U sen(~)) closed(L, <I>,~)
f-- (LT' <I>T) (L, <I>' ~) : (LT' <I>T)

r f-- E : (LE, <I>E) L ~ LE <I> ~ <I>E
r f-- (L, <I>) E: (L, <I>)

r f-- E: (LE, <I>E) closed(LE u L, <I>E u <I> u sen(~))
r f-- E extended by (L, <I>, ~) : (LE u L, <I>E u <I> u sen(~))

r f-- Ei : (L1, <I>1) r f-- E2 : (L2, <I>2)
r f-- Ei EB E2: (L1 U L2, <I>1 U <I>2)

r f-- E: (L, <I>) map(p) source(p) = L

r f-- E with p: (p(L), p(<I>))

r f-- Ef : T 1 ----+ T 2 r f-- Ep : T 1
r f-- Ef EP: T2

(CONST)

(BASIC)

(CAST)

(EXT)

(UNION)

(REN)

(ABS)

(APP)

We will drop parentheses whenever there is no loss of meaning. Functor applica­
tions associate to the left, i.e. E1 E2 E3 means (E1 E2) E3. Also note that the type
checking rules defined above are syntax-directed.

Theorem 2.3.1. Type checking of Mei Basic is decidable.

Proof. By induction on the syntax of module expressions. Since the type checking
rules are syntax-directed, type-checking of a module expression can always be reduced
to that of a subexpression of it that is strictly smaller than it. Since the size of a
module expression is finite, the problem will be reduced to the type-checking of one
of the base cases, such as theory definition. D

2. A simple module system - Mei Basic

Corollary 2.3.2. Type inference of Mei Basic is decidable.

Remark 2.3.3. We choose not to use a more general (BASIC) rule,

LT ~ L <I>T ~ (<I> U sen(~))
f- (L, <I>, ~) : (LT, <I>T)

(BASIC')

33

since it is not deterministic. It returns a set of possible types, which makes the type­
checking algorithm inefficient. In fact, the algorithm has to guess a type for a theory
definition expression, which could easily fail. Therefore, we choose to explicitly cast
every theory definition with its intended type.

Remark 2.3.4. Although the rule (BASIC) is concerned with casting module ex­
pressions, it does not compromise the rule (CAST), because (1) (BASIC) is only
applicable to theory definitions, and (2) it allows one to define a theory with the same
language but a different set of axioms from its type.

2.4 Semantics

2.4.1 Substitution of module expression

We can see that the syntax of module expressions follows the A.-calculus style. It is
thus not a surprise that we need a notion of substitution to define the semantics. The
substitution function, E[X := Ep], is defined as follows:

C[X := Ep]

(LT, <l>T) (L, <I>, ~)[X := Ep]

((LT,<I>T) E)[X := Ep]

(E extended by S)[X := Ep]

(E1 EB E2)[X := Ep]

(E with p)[X := Ep]

{

EP if X = Y

Y otherwise.

c
(LT, <l>T) (L, <I>, ~)

(LT, <l>T) E[X := Ep]

E[X := Ep] extended by S

Ei[X := Ep] EB E2[X := Ep]

E[X := Ep] with p

34 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Y is not free in Ep

Y is free in Ep

functor Y: T1. E2 Y:=X.

where, in the second case2 for functor abstraction, E; = E2 [Y := Z] and Z is a fresh
variable. The most important cases are the variable case and the third subcase of the

functor abstraction case. They are the base cases for the inductive definition.

Definition 2.4.1. Two module expressions are a-equivalent, written E1 =a E2 , if they
are only different in the names of the bound variables.

We will consider two module expressions to be equal if they are a-equivalent.

2.4.2 Operational semantics

Following the normal operational semantics of the ,\-calculus, we define the opera­
tional semantics of Mei Basic via evaluation rules, which transfer a module expression
to another preserving its type. The evaluation eventually converges in the sense that
it terminates in finitely many steps at a normal form (NF): a module expression that
is either a theory definition (similar to a primitive value) or a functor abstraction
(similar to a,\ abstraction).

NF TYPE-SPEC THY-SPEC

functor VAR: TYPE. EXPR

2We rename the bound variable to avoid the variable capture problem. It is not a problem for
the implementation since identifiers, which are all distinct, are used to represent variables as shown
in §7.2.

2. A simple module system - Mei Basic 35

For convenience, we will write N, N1 , ... for module expressions in NF, the set of
normal forms.

Let U be the standard union and LJ be the disjoint union.

Definition 2.4.2. 1±1 is an amalgamated union operation with respect to types poly­

morphically defined as follows:

(a) Li1±1L2 = (LT1 U LT2) LJ (L1 \01 LJ ~\LTJ·

(b) <l>11±1<I>2 = (<I>i1 u<I>r2)LJ(<l>1\<I>i1 LJ<l>2\<I>r2
), where <I>°[;= {<p E <l>i I lang(<p) ~

LTJ, for i = 1, 2, and lang(<p) refers to the set of symbols occurring in <p.

(c) fli1±1fl2 = (fli1 U flr2
) LJ (fl1\fli1 LJ fl2\flr2

), where fl°[i = {(<p,pf) E

fli I lang(<p) ~ LTJ, for i = 1, 2.

(2) Let (0, <I>T) (L, <I>, fl) be a theory definition and (Ls, <I>s, fls) be the extensions
as in rule (EXT).

(a) Ll±!Ls =(LT U Ls) LJ (L\LT)·

(b) <I>l±J<I>s = (<I> TU <I>D LJ (<I>\ <I> T LJ <I>s \ <I>D, where <I> T = { <p E <I> I lang(<p) ~ LT}
and <I>~ = { <p E <I>s I lang(<p) ~ 0 }.

(c) fll±lfls = (flT U flD LJ (fl\flT LJ fls\flD, where flT = {(<p,pf) E

fl I lang(<p) ~LT} and fl~= {(<p, pf) E fls I lang(<p) ~LT}.

The idea is that two symbols are considered identical in the union if they are
identical in the type specifications and are considered distinct otherwise. For example,

let Mult be a type declaring a sort ele and a binary operator o and Monoid be a
theory of a monoid with an additional constant e. According to the evaluation rule
(*) below, the language of (Mult) Monoid E9 (Mult) Monoid contains one ele, one o,
but two copies of e, since e is not in Mult. The two e's have to be systematically or
heuristically renamed to be distinct.

Definition 2.4.3. Let (LT, <I>T) (L, <I>, fl) be a theory definition. p[] is a translation
operation via a mapping p : LT ---"* L~ with respect to types polymorphically defined
as follows:

(a) p[L] = p(LT) LJ (L\LT).

(b) p[<I>] = p(<I>T) LJ (<I>\<I>T), where <I>T = {<p E <I>llang(<p) ~LT}·

36 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

The purpose is to avoid accidental name collisions between the translated symbols
and the "local" symbols that should not be affected by the translation representing
a renaming.

Evaluation rules. The following evaluation rules define the evaluation of module
express10ns:

c ____, O"(C)

T (T' (L, <P, ~)) ____, T (L, <P, ~)

E ____, E'
TE____, TE'

((LT, <PT) (L, <P, ~)) extended by (Ls, <Ps, ~s)

(CONST)

(THY-CAST)

(CAST)

(THY-EXT)

____,(LT U Ls, <PT U <Ps U sen(~s))(Ll±ILs, <Pi±i<Ps, ~l±l~s)

E_, E'
(EXT)

E extended by S ____, E' extended by S

(LTp <PTJ (L1, <Pi, ~1) EB (LT2, <PT2) (L2, <P2, ~2)
(THY-UNION)

____, (LT1 u LT2, <PT1 u <PTJ (L11±1L2, <P11±1<P2, ~11±1~2)

(UNIONl)

2. A simple module system - Mei Basic 37

((LT, <I>T) (L, <I>, ~)) with p (THY-REN)

-----+ (p(LT), p(<I>T)) (p[L], p[<I>], p[~])

E-----+ E'
(REN)

E with p-----+ E' with p

(APP-SUB)

Ef EP -----+ E~ Ep
(APP)

Note that (APP-SUB) is ,6-reduction. By using (EXT), (UNIONl), (UNION2),
(REN), and (APP), we are following the normal order reduction of >.-calculus.

Remarks 2.4.4.

(1) The evaluation rules are syntax-directed in the sense that, given a module ex­
pression, at most one rule is applicable.

(2) The evaluation rules implement lazy evaluation (i.e. parameters are evaluated
only as needed). It is not hard to change the evaluation rules to implement
eager evaluation.

Soundness of the type system. A sound type system guarantees that a well­
typed expression cannot get into a wrong state. This can be shown by the following
two theorems. Theorem 2.4.5 (progress) says that either a well-typed module expres­
sion is already in its normal form or there is an evaluation rule applicable to it, i.e.
it will not get stuck. Theorem 2.4.6 (preservation) states that the type of a module
expression is kept by all evaluation rules, i.e. evaluation does not break well-typedness
of a module expression.

Theorem 2.4.5. If f- E: T, then either EE NF or else there is an E' =I= E such that
E-----+ E'.

Proof. By induction on a typing derivation of E.

Theorem 2.4.6. If f- E: T and E-----+ E', then f- E': T.

Proof. By induction on a typing derivation of E.

D

D

38 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Normalization of well-typed module expressions. We want to show that the

evaluation of a well-typed module expression is guaranteed to halt in finitely many
steps, i.e. well-typed expressions are normalizable. Since there is at most one evalua­
tion rule applicable to a module expression, there is only one notion of normalization3 .

Definition 2.4. 7. A normalizable module expression E, written El, is a module
expression that is derivable from the following rules:

NE NF

Nl
E----+ E' E' l

El

Lemma 2.4.8. If E----+ E', then El iff E' l.

Proof. (~) trivial. (::::}) follows from the fact that there is at most one evaluation
rule applicable for E. D

To prove that every well-typed module expression is normalizable, we will follow

the routine of normalization proofs in two steps: (1) construct a set SN of mod­
ule expressions that are normalizable, and (2) show that every well-typed module

expression is an element of SN.

Definition 2.4.9. For each type T, the set SNT of strongly normalizable4 module
expressions is defined inductively as follows:

E: (L, <I>) El
EE SN(L,'P)

VEp E SNT1· E Ep E SNT2

EE SNT1->T2

Then, SN= {SNT IT is a type}

Lemma 2.4.10. If EE SN, then El.

Proof. By induction on T.

(1) T = (L, <I>). Directly follows from Definition 2.4.9.

(2) T = Ti ---+ T2 and E E SNT1_,T2· Let Ep E SNT1 be an arbitrary module
expression. By Definition 2.4.9, E Ep E SNT2, because E E SNT1_,T2· By the
induction hypothesis, (E Ep)l, which implies El.

3 .>.-calculus distinguishes weak and strong normalization with respect to reduction paths.
4Here, we are defining "strong" normalization with respect to functor applications.

D

2. A simple module system - Mei Basic 39

Note that a functor expression E is strongly normalizable if E itself is normaliz­
able and each of its instantiations E Ep is strongly nomalizable when Ep is strongly
normalizable. This stronger assumption over strongly normalizable expressions will
be crucial in the following proofs.

Lemma 2.4.11. If E-------+ E', then EE SN iff E' E SN.

Proof. By induction on T.

(1) T = (L, <I>). Directly follows Lemma 2.4.8 and Definition 2.4.9.

(2) T = Ti ---+ T 2-

(*)Let Ep E SNT1 be an arbitrary module expression. Since EE SNT1_,T2 ,

by the definition of SN, E Ep E SNT2 • Since E Ep -------+ E' Ep, by the induction
hypothesis, E' Ep E SNT2 • Since the choice of Ep is arbitrary, definition of SN

gives the result.

(-<=) Analogous to (::::}).

D

The following lemma will be used to prove Theorem 2.4.13 below. This is the typ­
ical case where, in order to prove a theorem, we need a stronger induction hypothesis,
which is embodied in the lemma.

Lemma 2.4.12. If ff--- E: T, f = X1: Ti, ... ,Xn: Tn, and E1 E SNT1 ,. .• ,En E
SNT"' then E[X1 := E1] ... [Xn :=En] E SNT.

Proof. By induction on the derivation of r f--- E : T. Let r = X1 : Ti, ... , Xn : T n in
the following proof.

ASSUMP. E = X; and T = T;. Trivial.

CONST. E = C. Assume a(C) = E'. Since C[X1 := E1] ... [Xn := En] = C, it is
sufficient to show C E SNT. By the typing rule CONST, f--- E' : T since C : T.
By the induction hypothesis, E' E SNT. But C -------+ E', so by Lemma 2.4.11,

c E SNT.

BASIC. E = (LT, <I>T) (L, <I>, ~). Since Eis of a theory type, it is sufficient to prove
E[X1 := E1] ... [Xn ·- Enll· But E[X1 := E1] ... [Xn := En] = E is already in
normal form.

40 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

CAST. E = (L, <I>) E'. Since E is of a theory type, it is sufficient to prove E[X1 :=
E1] ... [Xn := Enll· Assumer f- E': (L', <I>'). By the induction hypothesis,

((L,<I>) E')[X1 := Ei] ... [Xn :=En] (L,<I>) (E'[X1 := Ei] ... [Xn :=En])

------* (L, <I>) ((L'' <I>') (LE'' <I>E'' ~E'))

------* (L, <I>) (LE'' <I>E'' ~E')

which is in normal form.

EXT. E = E' extended by (Ls, <I>s, ~s). Since Eis of a theory type, it is sufficient
to prove E[X1 := E1] ... [Xn := Enll· Assumer f- E' : (L', <I>'). By the induction
hypothesis,

(E' extended by (Ls, <I>s, ~s))[X1 := Ei] ... [Xn :=En]

(E'[X1 := E1] ... [Xn := En]) extended by (Ls, <I>s, ~s)

------* ((L', <I>') (LE', <I>E', ~E')) extended by (Ls, <I>s, ~s)

------* (L' U Ls, <I>' U <I>s U sen(~s)) (LE1 li:JLs, <I>E1 li:J<I>s, ~E'li:J~s)

which is in normal form.

UNION. E = E' EB E". Since E is of a theory type, it is sufficient to prove E[X1 :=
E1] ... [Xn := EnJl· Assume r f- E' : (L', <I>') and r f- E" : (L", <I>"). By the
induction hypothesis,

and

2. A simple module system - Mei Basic 41

Let us assume E'[X1 := Ei] ... [Xn := En] ---+ (L', <I>') (LE', <I>E', b.E1) and

E"[X1 := Ei] ... [Xn :=En]---+ (L",<I>") (LE'', <I>E", b.E11).

(E' E9 E") [X1 := Ei] ... [Xn := En]

(E'[X1 := Ei] ... [Xn := En]) E9 (E"[X1 := Ei] ... [Xn := En])

---+ (L'' <I>') (LE'' <I>E'' b.E') EB (L"' <I>") (LE"' <I>E"' b.E")

---+ (L' u L"' <I>' u <I>") (LE' l±JLE"' <I>E' l±J<I>E"' b.E' i±Jb.E")

which is in normal form.

REN. E = E' with p. Since E is of a theory type, it is sufficient to prove E[X1 :=
Ei] ... [Xn := Enll· Assume r f- E' : (L', <I>'). By the induction hypothesis,

(E' with p)[X1 := Ei] ... [Xn :=En]

(E'[X1 := Ei] ... [Xn :=En]) with p

---+ ((L', <I>') (LE', <I>E', b.E')) with p

---+ (p(L'), p(<I>')) (p[LE'], p[<I>E'], p[b.E'])

which is in normal form.

ABS. E =functor X: T'. E" and T = T'---+ T". In order to prove

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E SNT'->T",

it is sufficient to prove

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E' E SNT",

where E' is an arbitrary module expression of type T'. Without lose of the
generality, we assume X ¢. X; for 1 ::::; i ::::; n. We have

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E'

(functor X: T'. E"[X1 := Ei] ... [Xn := En]) E'

---+ E"[X1 := Ei] ... [Xn :=En] [X := E'].

42 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Since r, X : T' I- E" : T" is in the premise, by the induction hypothesis (in the
reverse direction)

By lemma 2.4.11,

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E' E SNT"·

APP. E = E' E". Assume r I- E' : T" --+ T and r I- E" : T" are in the premise. By

the induction hypothesis,

and

By Definition 2.4.9,

(E' E") [X1 := Ei] ... [Xn := En]

(E'[X1 := Ei] ... [Xn := En]) (E"[X1 := Ei] ... [Xn := En])

E SNT.

Theorem 2.4.13. If I- E: T, El.

Proof By Lemma 2.4.12, EE SNT. By Lemma 2.4.10, El.

2.4.3 Denotational semantics

D

D

We will define the denotational semantics of module types and module expressions

via a set of valuation functions, one for each category of syntactic objects.

2. A simple module system - Mei Basic 43

Semantics of module types. The valuation function for module types, []t, is a
total function on module types such that:

(1) [(L, <l>)]t = {(L, <I>) (Ly, <l>y, ~y) I (Ly, <l>y, ~y) E 'J'.J-{ and L ~ Ly and <I> C

<l>y U sen(~y)}.

(2) [T 1 --+ T 2]t = [T dt --+ [T 2]t, that is the function space from the valuation of T 1

to the valuation of T 2 .

Definition 2.4.14.

(1) A variable assignment cp is a function that maps each variable X: T to a value v

of [T]t.

(2) Given a variable assignment cp, a variable X : T, and a value v E [T]t, cp[X : T I--* v]
is the variable assignment such that a substitution of cp is,

cp[X : T I--* v] (Y : T') = { v
cp(Y: T')

if X = Y and T = T'

otherwise.

Semantics of module expressions. The valuation function for typed module
expressions, []~/''P, maps each typed module expression to an assertion that [E]~,r,'P
is a member of [T]t:

[E : T]~/,<p = [E]~,r,<p E [T]t

Note that the valuation function for types, []t, is defined above, while the valuation
function for module expressions, []~,r,<p, is not yet defined. Therefore, we will define
[]~,r,'P next. Given a module expression E of type T, [E]~,r,'P returns a value in the
domain [T]t.

Remarks 2.4.15.

(1) Both [K/''P and []~,r,'P are defined with respect to an environment CT, a context
r, and a variable assignment cp.

(2) []~,r,'P is a partial function. We will use j to represent the undefined (divergent)
value. For instance, the value for a wrongly typed module expression should be
undefined.

44 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

ASSUMP. E = X:

{

'P(X : T) if X : T E r

i otherwise.

CONST. E = C:

{

[E']a,r,cp if a(C) = E'
[C]~,r,cp '.::'. j e

otherwise.

{

(LT, <PT) (L, <I>, ~) if (L, <I>,~) E 'JJ{

i otherwise.

CAST. E = (LT, <PT) E':

otherwise.

EXT. E = E' extended by S:

I
Eeval if [E']~,r,cp = (LT', <PT') (LE', <PE', ~E')

[E' extended by S]~,r,cp c::: and S = (Ls, <I>s, ~s) and Eeval E 'JJ{

i otherwise,

5 Eeval may not be in '.T'.}{ because <I>s may use symbols that are neither in LT' nor in Ls.

2. A simple module system - Mei Basic

I
Eeval if [Ei]~,r,cp = (LTp <I>TJ (LE1, <I>Ep ~EJ

[Ei (fl E2]~,r,cp ::= and [E2]~,r,cp = (LT2, <I>T2) (LE2, <I>E21 ~E2)

i otherwise,

where Eeval = (LT 1 U LT 2, <I>T 1 U <I>T 2) (LE1 l±JLE2, <I>E1 l±l<I>E2, ~E1 l±l~E2) ·

REN. E = E' with p:

I
Eeval if [E']~,r,cp = (Lr1 , <I>T1) (LE'1 <I>E1 1 ~E1)

[E' with p]~,r,cp ::= and source(p) = LT'

i otherwise.

where Eeval = (p(LT'), p(<I>T')) (p[LE'], p[<I>E1], p[~E']).

ABS. E =functor X: Ti. E2:

[functor X: Ti. E2]~,r,cp

is a function F : [T i] 1 -----> [T 2]1 such that

Vv E [Ti]~,r,cp. F(v) = [E2]~,r,cp[X>-->vJ.

In particular,

where E2[X := Eµ] is the substitution function defined in §2.4.1.

45

Correctness of the operational semantics. The following theorem shows the
correctness of the denotational semantics of Mei Basic with respect to the operational
semantics:

Theorem 2.4.16. If E : T and E -------> E', then [E]~,r,cp = [E']~,r,cp for all environ­

ments CT, all contexts r, and all variable assignments <p.

46 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Proof. By induction on the operational evaluation rules of E. D

We would also like to prove that the operational semantics is correct with respect
to the denotational semantics. However, the following statement is not true:

Statement 2.4.17. If [Ei]~,r,rp = [E2]~,r,rp for all environments O", all contexts r,
and all variable assignments <p, there exist module expressions E~ and E; such that

E~ =a E;, Ei ---+ E~, and E2---+ E;.

The counterexample is E1 = functor X : T. En and E2 = functor X : T. E22

where En #-a E22 . Although it is possible that all the instantiations of E1 and E2

can be reduced to the same module expression which means that they share the
same functionality (denotational semantics), they are already in the normal form and

cannot be reduced further and they are not a-equivalent.

Instead of Statement 2.4.17, we present the following conjecture:

Conjecture 2.4.18. If f- E : (L, <I>) is a module expression of theory type, then
[E]~,r,rp E NF and E ---+ [E]~,r,rp for all environments O", all contexts r, and all

variable assignments <p.

Remark 2.4.19. To prove Conjecture 2.4.18, there are two cases we need to consider:

(1) E does not have subexpressions of functor type and (2) E has subexpressions
of functor type. Case (1) is easy to prove. Case (2) is the hard part, since we
need a hypothesis not only over module expressions of theory type but also over
module expressions of functor type. Intuitively, the hypothesis should state that
an instantiation of a module expression of functor type (well typed) either can be

reduced to a normal form or is a module expression of functor type (well typed). It is
likely that we need another conjecture for module expressions of functor type, which
possibly has to be proved mutually with Conjecture 2.4.18.

The following conjecture follows directly Conjecture 2.4.18 showing that, if two
module expressions of theory type have the same denotational semantics, they can
be reduced to the same normal form, namely their denotational semantics, by the

evaluation rules.

Conjecture 2.4.20. If f- E1 : (L, <I>), f- E2 : (L, <I>), and [Ei]~,r,rp = [E2]~,r,rp for all

environments O", all contexts r, and all variable assignments <p, then E = [Ei]~,r,rp E

NF, E1 ---+ E, and E2 ---+ E.

2. A simple module system - Mei Basic 47

2.5 Issues about conservative extensions of theo-

.
r1es

Definition 2.5.1. A theory T2 is a conservative extension of another theory T1 , if
T2 is an extension of T1 and every provable sentence of T2 that involves only symbols
of T1 is also provable in T1.

The notion of conservative extension of theories is interesting due to

Theorem 2.5.2. If T2 is a conservative extension of T1 and T1 is consistent, then

T2 is consistent as well.

Hence, it will be useful if we can infer that a theory is a conservative extension of

another theory, since conservative extensions will not introduce new inconsistencies.
For instance, let F = functor X : (L, <I>). X extended by S be a first-order functor
and T1 = (L, <I>, D.) where ,6. is empty. Assume that F T1 = (L, <I>, D.) extended by S
is a conservative extension of T1 . We would expect that, for an arbitrary theory T of
type (L, <I>) that is consistent, (F T) would be consistent and a conservative extension
of T. This property is formalized as the Modularization Property in [28, 31, 92]. Not
all logics possess the Modularization Property, but many useful logics do, for example,
many-sorted first-order logic possesses the Modularization Property [92]. [31] shows
that the Modularization Property is equivalent to the Craig Robinson Interpolation
(CRI). Formally, this result is

Theorem 2.5.3. Let F = functor X : (L, <I>). X extended by S be a first­
order functor and T1 = (L, <I>, D.) where D. is empty. Assume that F T1 =
(L, <I>, D.) extended by S is a conservative extension of T1 . For an arbitrary con­
sistent theory T: (L, <I>) in some logic L, if L has CR!, then (FT) is a conservative
extension of T.

Proof. Since T : (L, <I>), there is a trivial interpretation from T1 to T. The rest of the
proof follows directly from the Modularization Theorem in [31]. D

Theorem 2.5.3 states that in the case when the underlying logic possesses the
Modularization Property, if a Mei Basic functor is defined properly, its instantiation
will give a good result.

Although it is good for the user to acknowledge this information, it will greatly
reduce the flexibility of Mei Basic functors if only this kind of functor is admitted
because:

48 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

(1) The body of a Mei Basic functor might not be an extension of its parameter.
For instance, the body may not have any occurrence of the parameter or the
parameter may be renamed in the functor body. For the latter case, we can

still talk about conservative extension on the model level but not on the syntax
level as in Definition 2.5.1.

(2) Some useful functors produce an extension of its parameter, but not a conservative
extension, e.g. the functor Comm produces an extension of its parameter of type

Mult (refer to §2.1.3 for definitions of Comm and Mult) but not a conservative
extension.

Chapter 3

A module system with subtyping

and coercion - Mei

The module system we built so far is very close to the ML-family module system. Both
systems support higher-order functor abstractions and applications. The semantics

of functor application is defined via a substitution function. However, a renaming

operator is supported by Mei Basic but not by ML's module system. As in an ML­
family module system, parameter matching of functor applications in Mei Basic is
based purely on syntax. The advantage is that type checking is decidable. However,
the parameter passing mechanism is rigid in the sense that some reasonable functor
applications are ruled out by the typing rules. We address this problem in this chapter
and extend Mei Basic with two new mechanisms, subtyping and coercion, to solve it.

3.1 Subtyping

By Definition 2.1.17, every theory in Mei Basic can have more than one type. For

instance, the theory Monoid is of both type Monoid and Mult. Thus we can use
Monoid as the actual parameter of Comm, which requires a theory of type Mult as
input. However, this idea does not work for functors as shown in the following two
examples:

49

50 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Example 3.1.1.

CommAssoc functor X :

language sort ele

func o : ele2
-t ele.

X extended by

axioms Vx, y : ele.x o y = yo x

Vxi, x 2, x 3 : ele. xi o (x2 o x 3) = (xi o x 2) o x 3

Clearly, CommAssoc is a functor of type Mult -t CommAssocMult, where CommAs­
socMult is defined as follows:

CommAssocMult = language sort ele

func o : ele2
-t ele

axioms Vx, y : ele.x o y = yo x

Vxi, x2, X3 : ele. xi o (x2 o x 3) = (xi o x 2) o x 3

However, it is reasonable that CommAssoc can be used in the place where a functor

of type Mult -t CommMult is required, since it does provide the functionality that
Mult -t CommMult requires and even more. In other words, CommAssoc should be
considered as an element of Mult -t CommMult in some sense.

Example 3.1.2. Let F be a functor of type Mult -t T, where Tis an unspecified type.

It is reasonable that F can be used in the place where a functor of type Monoid -t T
is required, since any theory of type Monoid is also of type Mult and the instantiation
does output a theory of T. In other words, F should be considered as an element of
Monoid -t T in some sense.

Now, it is clear that we need a uniform mechanism for both theories and functors
that can treat an object of one type as an object of another type when it is reasonable
to do so. One natural approach will be subtyping, which gives a way to regard an
object of subtype Ti as an object of its supertype T2 . In general, the subtype Ti
is more informative than the supertype T2 . Thus, it is safe to use an object of Ti
in the place where an object of T 2 is required. Subtyping is interpreted as a subset
relation in many languages. Another interpretation of subtyping is coercion, i.e. Ti

is a subtype of T2 if there is a coercion function that maps every object in Ti to
an object in T2 . Both Coq and Lego implement coercive subtyping [5, 44]. At the

3. A module system with subtyping and coercion - Mei 51

module level, a coercion function corresponds to a projection function over record

types. Clearly, there is only one way to coerce a record encoding the theory of rings

to a record encoding the theory of monoids by syntactic projection. In terms of

Amokrane Sa!bi's Inheritance Graph [86], there is at most one path between two
classes.

3.1.1 Naive subtyping rules

The following are the most natural subtyping rules we can find in many languages.

Ti= (Li,<I>i) Tz = (L2,<I>2) L2 S: Li <I>2 S: <I>i

Ti <: Tz

Ts2 <: Ts1 Tt1 <: Tt2

Ts1 -+ Tt1 <: Ts2 -+ Tt2

Ti <: Tz Tz <: T3

Ti <: T3

(FUNC-SUB)

(TRAN)

(THY-SUB)

Note that, in the premises of rule (FUNC-SUB), the subtype relation between
the argument types is reversed (contravariant), while that between result types has
the same direction (covariant) as that between the functor types. If F: T51 -+ Tt1
is a functor, it can be seen as a functor in T52 -+ Tt2 as well. Because F accepts
any object in Ts1 as input, it will thus also accept any object in T52 , since T52 <: T51 .
In addition, an instantiation of F that returns an object in Tt1 can thus also return
an object in Tt2, since Tt1 <: Tt2· Refer to Examples 3.1.1 and 3.1.2 for concrete
examples.

3.1.2 Algorithmic subtyping rules

We can observe that the subtyping rules in §3.1.1 are not syntax-directed, thus they
are not algorithmici, i.e. they cannot give a subtype checking algorithm directly. The

1 By "algorithmic rules", we mean that we can derive a type checking algorithm from the rules
directly. We assume that types are not annotated for all subexpressions and thus the rules are used
bottom-up to infer the types of the subexpressions.

52 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

problem is rule (TRAN). Since both Ti and T3 are metavariables, they can match
any types. Another problem is that T 2 is in both premises of (TRAN) but not in the
conclusion. Thus we have to guess a value for it and check the premises, and there is
little chance to succeed. The good news is that we can eliminate rule (TRAN) by

the following theorem:

Theorem 3.1.3. If we can derive Ti <: T2, we can derive it without using the rule

(TRAN).

Proof. Prove by induction on the subtyping derivation. Let us consider the cases of

the last step of the derivation.

(1) Case (THY-SUB) trivial.

(2) Case (FUNC-SUB) Ti= Ts1 -----+ Tt1 and T2 = Ts2 -----+ Tt2·

Ts2 <: Ts1 Tt1 <: Tt2
Ts1 -----+ Tt1 <: Ts2 -----+ Tt2

Since both the size of T52 <: T51 and Tt1 <: Tt2 are strictly smaller than that of
T51 -----+ Tt1 <: T52 -----+ Tt2, the latter can be derived without using rule (TRAN)
directly from the induction hypothesis.

(3) Case (TRAN)

Ti<: T T <: T2
Ti <: T2

By the induction hypothesis, we can assume that both Ti <: T and T <: T2
can be derived without using rule (TRAN). There are thus two subcases2 for
the derivation of Ti <: T and T <: T 2 as follows:

(i) Ti= (Li, <Pi), T2 = (L2, <P2), and T = (L, <P).

L <::;;; Li <P <::;;; <Pi L2 <::;;; L <P2 <::;;; <P

can be replaced by

Ti= (Li,<Pi) T2 = (L2,<P2) L2 <::;;;Li <P2 <::;;;<Pi
Ti <: T2

2The case in which (THY-SUB) and (FUNC-SUB) are used together is not possible because
T 1 and T 2 must be either both theory types or both functor types.

3. A module system with subtyping and coercion - Mei 53

(ii) T1 = Ts1 ---* Tt1, T2 = Ts2 ---* Tt2, and T =Ts---* Tt.

The derivation

Ts1 ----"* Tt1 <: Ts----"* Tt Ts----"* Tt <: Ts2 ----"* Tt2
Ts1 ----"* Tt1 <: Ts2 ----"* Tt2

can be reorganized as the following derivation

Again, since both the size of Ts2 <: Ts1 and that of Tt1 <: Tt2 are strictly

smaller than that of T si ----"* T ti <: T s2 ----"* T 12 , the latter can be derived
without using rule (TRAN) directly from the induction hypothesis.

D

Theorem 3.1.3 shows that the algorithmic subtyping rules are both sound and
complete with respect to the naive subtyping rules. Also notice that, the algorithmic
subtyping rules are syntax-directed and checking a subtype relation can always be
reduced to checking smaller subtype relations. This justifies the following proposition.

Proposition 3.1.4. Subtype checking is decidable for the algorithmic subtyping rules.

3.1.3 New typing rule

We need a new typing rule to say that, if Eis an object of T1 and T1 <: T2, then E
is an object of T 2 . Instead of the most general subsumption rule,

r f- E: T1 T1 <: T2
r f- E: T2

we choose to use an enhanced functor application rule

r f- Ef : T 1 ----"* T 2 r f- Ep : T p T p <: T 1
r f- Ef Ep: T2

(APP).

The reason is that the subsumption rule is not algorithmic in that E in the conclusion

is a metavariable that can match arbitrary expressions. Also, the only place we need

54 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

the subtype relation in typing a module expression is in the functor application when

the actual parameter type does not match the argument type of the functor. The
justification of using rule (APP) instead of the subsumption rule is similar to that
of the elimination of rule (TRAN) in §3.1.2, but more tedious. Similar justification

for simply typed .A-calculus with subtyping can be found in §16.2 in [80].

3.1.4 Instantiation of functors

With the help of subtype relations, a functor can accept more objects as input as

shown in Figure 3.1.

type matching

Figure 3.1: Functor Application with Subtyping

3.2 Syntax of Mei Core

The syntax and rules of Mei Core are similar to those of Mei Basic except for the
subtyping rules (§3.1.2) and the new (APP) rule (§3.1.3). This subsection presents
the concrete syntax and rules of Mei Core. The parts that are different from Mei Basic
are put in boxes. We will use this "box" convention in the following chapters too.

3. A module system with subtyping and coercion - Mei

EXPR · · - MOD-CONST

TYPE-SPEC THY-SPEC

TYPE-SPEC EXPR

EXPR extended by SPEC

EXPREB EXPR

EXPR with MAPPING

functor VAR : TYPE. EXPR

EXPR EXPR

TYPE ··- TYPE-CONST

TYPE-SPEC

TYPE -----t TYPE

THY-SPEC ::= (LANG, AXIOMS, THMS)

TYPE-SPEC ··- (LANG, AXIOMS)

MOD-CONST ::= IDENTIFIER

TYPE-CONST ::= IDENTIFIER

VAR ::= IDENTIFIER

Rules for types.

T = (L, ~) closed(L, ~)
type(T)

type(T1) type(T2)
type(T 1 -----* T 2)

55

(THY-TYPE)

(FUNC-TYPE)

56 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Subtyping rules.

T1 = (L1, <I>1) T2 = (L2, <I>2) L2 ~ L1 <I>2 ~ <I>1
T1 <: T2

Ts2 <: Ts1 Tt1 <: Tt2
Ts1 --+ Tt1 <: Ts2 --+ Tt2

Rules for typing module expressions.

X:TEr
rf-X:T

O"(C) = E r f- E : T
rf-C:T

LT CL <I>T C (<I> U sen(~)) closed(L, <I>,~)

f- (LT' <I>T) (L, <I>' ~) : (LT' <I>T)

r f- E: (LE, <I>E) (LE, <I>E) <: (L, <I>)
r f- (L, <I>) E : (L, <I>)

r f- E: (LE, <I>E) closed(LE u L, <I>E u <I> u sen(~))
r f- E extended by (L, <I>, ~) : (LEU L, <I>E U <I> U sen(~))

r f- E1 : (L1, <I>1) r f- E2 : (L2, <I>2)
r f- E1 EB E2: (L1 U L2, <I>1 U <I>2)

r f- E : (L, <I>) map(p) source(p) = L
I' f- E with p: (p(L),p(<I>))

rf-Er:T1 --+T2 I'f-Ep:Tp Tp<:T1
I' f- Er Ep : T2

I (THY-SUB) I

I (FUNC-SUB) I

(ASS UMP)

(CONST)

(BASIC)

(CAST)

(EXT)

(UNION)

(REN)

(ABS)

I (APP) I

3. A module system with subtyping and coercion - Mei 57

3. 3 Semantics of Mei Core

The semantics of Mei Core is exactly the same as that of Mei Basic, since there is no
new syntactic classes introduced. One difference is that a functor can be applied to

more module expressions due to the new (APP) rule and the subtyping arguments.
The evaluation of these functor applications still follows the substitution semantics

as in Mei Basic.

Remark 3.3.1. Though we choose to keep the semantics of Mei Core the same as
Mei Basic, it is possible to define a new rule for the functor application where the
argument is of theory type, in which the argument theory is cast to the right type

before the substitution.

The motivation of this rule is illustrated in the following example. Let

F = functor X : Mult. functor Y : Mult. XEt1Y

be a functor. (F Monoid Monoid) should contain one sort ele, one operator o, but
two copies of the constant e, because the sharing of ele and o is specified by the
argument type Mult, but the sharing of e is not. Therefore, e might be renamed
automatically. Since we are not sure if the renaming is necessary at the time of the
functor application, we have to propagate the casting information and postpone the

renaming to the union operator to resolve it.
Note that, in contrast to the coercion semantics approach of subtyping, it is not

necessary to cast functors when it is used to instantiate other functors. The reason
is shown in the following artificial example. Assume that functors can be cast.

Which type should (L, <I>, D.) be cast to, (01 , <I>TJ or (02 , <I>T2)? The answer should
be (LT11 <I>T1), because (LT11 <I>T1) specifies how (L, <I>, D.) should be treated in the

body of the functor. (Also note that 0 1 ~ 0 2 ~ L.) In other words, how to
rename (L, <I>, D.) to solve the name conflict depends on the behaviour of the functor,
in particular the "real" argument type of the functor, not that expressed in the type
of the functor. The type of the functor only specifies which theories can be used for
instantiation. Since casting a functor does not change its behaviour, we should not

cast functors for the sake of simplicity.

58 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

The reason that we do not choose it is that this approach rules out the possibility

that, in some cases, we may want to force the result of (F Monoid Monoid) to have
one copy of the constant e. We choose to put the onus on the user, i.e. the user can
manually cast the argument theories into the intended shapes, which is more flexible.

Soundness of the type system. Similar to that of Mei Basic, the soundness of
the type system of Mei Core is shown by the progress and preservation theorems as

follows:

Theorem 3.3.2. Let E be a well-typed module expression. Then either E E NF or

else there is an E' such that E ___, E'.

Proof By induction on a typing derivation of E. D

Theorem 3.3.3. If E: T and E ___, E', then E': T.

Proof By induction on a typing derivation of E. D

Normalization of well-typed module expressions. The proof of the normaliza­
tion theorem, Theorem 3.3.9, follows exactly in the same fashion of that of Theorem
2.4.13, i.e. in two steps: (1) construct a set SN of expressions that are normalizable,
and (2) show that every well-typed module expression is an element of SN.

The major differences between the normalization proofs in this section and the
normalization proofs for Mei Basic are those difficulties introduced by the subtype
relation. For instance, given a module expression E of type T, substituting strongly
normalized expressions for the free variables in E respecting their types produces a

module expression of a subtype of T, not necessarily T, as shown in Lemma 3.3.8.

Lemma 3.3.4. If E ___, E', then El iff E' 1.

Definition 3.3.5. The set SN of module expressions is defined inductively as follows:

E: (L, <P) El
EE SN(L,if!)

\ITp <:Ti. \IEp E SNTp· E Ep E SNT2

EE SNT1->T2

Lemma 3.3.6. If E E SN, then El.

Proof By induction on T.

(1) T = (L, <P). Directly follows Definition 2.4.9.

3. A module system with subtyping and coercion - Mei 59

(2) T ::::=Ti ----+ T2 . Let Ep E SNTu clearly Ti<: Ti. By Definition 3.3.5, E Ep E
SN T 2 . By the induction hypothesis, (E Ep) l, which implies El.

D

Lemma 3.3.7. If E----+ E', then EE SN iff E' E SN.

Proof. By induction on T.

(1) T = (L, <I>). Directly follows from Lemma 3.3.4 and Definition 3.3.5.

(2) T:=Ti----+Tz.

(=}) Let T P <: Ti and EP E SN T P be an arbitrary module expression. E Ep E
SN T 2 by definition of SN. By the induction hypothesis, E' Ep E SN T 2 • Since
the choice of T P and Ep is arbitrary, the definition of SN gives the result.

(<==) Analogous to (=}).

D

Lemma 3.3.8. If r \- E : T, r =Xi : Ti, ... ,Xn : Tn, Tu <:Ti, ... , Tnn <: Tn,
and Ei E SNT11 , ••• , En E SNT""' then E[Xi := Ei] ... [Xn := En] E SNTsub' for some
Tsub <: T.

Proof. By induction on the derivation of r \- E : T. Let r = Xi : Ti, ... , Xn : T n in
the following proof.

ASSUMP. E = X; and T = T;. Trivial.

CONST. E = C. Assume IT(C) = E'. Since C[Xi := Ei] ... [Xn := En] = C, it is
sufficient to show C E SN Tsub for some T sub <: T. Since \- E' : T is in the
premise, by the induction hypothesis, E' E SNTsub' for some Tsub <: T. But
(----+ E', by Lemma 3.3.7, CE SNTsub·

BASIC. E = (LT, <l>T) (L, <I>, ~). Since E is of theory type, it is sufficient to prove
E[Xi := Ei] ... [Xn := Enll· But E[Xi ·- Ei] ... [Xn := En] = E is already in
normal form.

CAST. E = (L, <I>) E'. It is sufficient to prove E[Xi := Ei] ... [Xn := Enll· Assume
r \- E': (L', <I>'). By the induction hypothesis,

E'[Xi := Ei] ... [Xn :=En] E SN(L' cf/)
sub' sub

60 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

where (L~ub' <I>~ub) <;;;; (L', <I>'). Assume E'[X1 := E1] ... [Xn := En] ---7

(L~ub' <I>~ub) (LE', <I>E'' ~E') ·

((L, <I>) E')[X1 := E1] ... [Xn :=En] (L, <I>) (E'[X1 := Ei] ... [Xn :=En])

---7 (L,<I>) (L~ub,<I>~ub) (LE1 ,<I>E',~E1))

---7 (L, <I>) (LE'' <I>E'' ~E')

EXT. E = E' extended by (Ls, <I>s, ~s). It is sufficient to prove E[X1 ·­
E 1] ... [Xn := EnJl · Assume r f- E' : (L', <I>'). By the induction hypothesis,

E'[X1 := Ei] ... [Xn := En] E SN(L' <P')
sub' sub

where (L~ub' <I>~ub) <;;;; (L', <I>'). Assume E'[X1 := Ei] ... [Xn := En] ---7

(L~ub' <I>~ub) (LE'' <I>E'' ~E') ·

(E' extended by (Ls, <I>s, ~s))[X1 := Ei] ... [Xn :=En]

(E'[X1 := Ei] ... [Xn := En]) extended by (Ls, <I>s, ~s)

---7 ((L~ub' <I>~ub) (LE', <I>E', ~E1)) extended by (Ls, <I>s, ~s)

---7 (L~ub U Ls, <I>~ub U <I>s U sen(~s)) (LE1 l±-JLs, <I>E1 l±-J<I>s, ~E'l±-J~s)

Clearly (L~ub U Ls, <I>~ub U <I>s U sen(~s)) <: (L' U Ls, <I>' U <I>s U sen(~s)).

UNION. E = E' EB E". It is sufficient to prove E[X1 := Ei] ... [Xn := Enll· Assume
r f- E' : (L', <I>') and r f- E" : (L", <I>"). By the induction hypothesis,

E'[X1 := Ei] ... [Xn := En] E SN(L' <P')
sub' sub

where (L~ub' <I>~ub) <;;;; (L', <I>'), and

E"[X1 := E1] ... [Xn :=En] E SN(L" <P")·
sub' sub

where CI}:ub' <I>:ub) C (L", <I>"). Assume E'[X1 ·- Ei] -.. [Xn
En] ---7 (L~ub,<I>~ub) (LE', <I>E', ~E') and E"[X1 ·- E1] ... [Xn :=En]
(L:ub,<l>:ub) (LE"' <l>E", ~E").

(E' EB E")[X1 := Ei] ... [Xn := En]

(E'[X1 := Ei] ... [Xn := En]) EB (E"[X1 := E1] ... [Xn := En])

---7 (L~ub,<I>~ub) (LE', <l>E', ~E') EB (L:ub,<I>:ub) (LE", <l>E", ~E")

---7 (L~ubuL:ub' <l>~ubu<I>:ub) (LE1 l±-JLE", <l>E1 l±-J<l>E", ~E'l±-J~E'')

Clearly, (L~ub U L:ub' <I>~ub U <I>:ub) <: (L' UL", <I>' U <I>").

3. A module system with subtyping and coercion - Mei 61

REN. E = E' with p. It is sufficient to prove E[X1 := Ei] ... [Xn := Enll· Assume
ff- E': (L', <I>'). By the induction hypothesis,

E'[X1 := Ei] ... [Xn :=En] E SNcu <I>' l·
sub' sub

where (L~ubi <I>~ub) ~ (L", <I>"). Assume E'[X1 ·- Ei] ... [Xn ·- En] ->

(L~ubi <l>~ub) (LE', <l>E', ~E').

(E' with p)[X1 := Ei] ... [Xn :=En]

(E'[X1 := Ei] ... [Xn := En]) with p

-> ((L~ubi <I>~ub) (LE', <I>E', ~E')) with P

-* (p(L~ub), p(<l>~ub)) (p[LE'], p[<l>E'], P[~E'])

Clearly, (p(L~ub), p(<I>~ub)) <: (p(L'), P(<I>'))·

ABS. E = functor X : T'. E" and T = T' --t T". In order to prove

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E SNT'-->T"
sub

where T' --t T~ub <: T' --t T" and hence T~ub <: T", it is sufficient to prove

(functor X: T'. E")[X1 := Ei] ... [Xn :=En] E~ub E SNT"
sub

for some T~ub <: T", where T~ub <: T' and E~ub : T~ub· Without loss of generality,
we assume X =/=- X; for 1 ~ i ~ n. We have

((functor X: T'. E")[X1 := Ei] ... [Xn :=En]) E'

(functor X: T'. E"[X1 := Ei] ... [Xn := En]) E'

-t E"[X1 := Ei] ... [Xn := En] [X := E'].

Since f, X: T' f- E" : T" is in the premise, by the induction hypothesis,

for some T~ub <: T". By lemma 3.3.7,

((functor X: T'. E")[X1 := Ei] ... [Xn :=En]) E~ub E SNT"·

62 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

APP. E = E' E". Assume r f- E' : T"---+ T, r f- E" : T~ub' and T~ub <: T" are in the
premise. By the induction hypothesis,

and

E"[X1 := E1] ... [Xn :=En] E SNT" '
subsub

where T~up---+ Tsub <: T"---+ T and T~ubsub <: T~ub· From T~up---+ Tsub <: T"---+
T, we have T" <: T~up and Tsub <: T, hence T~ubsub <: T~up by rule (TRAN)
of subtyping. (Note that Theorem 3.1.3 allows us to use rule (TRAN) when

reasoning about the subtype relation.) By Definition 3.3.5,

(E' E")[X1 := E1] ... [Xn :=En]

(E'[X1 := E1] ... [Xn := En]) (E"[X1 := E1] ... [Xn := En])

E SNTsub'

Theorem 3.3.9. If f- E: T, then El.

D

Proof. By Lemma 3.3.8, EE SNTsub for some Tsub <: T. By Lemma 3.3.6, El. D

3.4 Coercion

As discussed in §3.1, the subtyping mechanism allows us to regard an object of one
type as an object of its supertype. However, it is limited: (1) Theories specified in
different languages are not related to each other. For instance, the theory Monoid

defined in §2.1.2 (not the theory Monoid defined in §2.1.3) is not of type Mult defined
in §2.1.3, although they share similar structure. Only after renaming can we regard
Monoid as of type Mult. (2) Two different axiomatizations of the same mathematical

theory may not be related. For instance, let Nat be a theory of natural numbers with
the zero element, the successor function, and corresponding axioms. Let NatNat be
another theory of natural number with constants zero, one, ... , and functions plus,
minus, times, and corresponding (possibly infinitely many) axioms. Though they

should be equivalent, neither of them is a subtype of the other in Mei Core. (3) One

3. A module system with subtyping and coercion - Mei 63

type is regarded as a subtype of another only in one way since the subtype relation is

based purely on syntax. However, in mathematical experience, some theories can be
viewed as instances of other theories in more than one way. For instance, a theory of
rings can be treated as a theory of monoids in two ways because there are two copies

of monoids with respect to addition and multiplication residing in a ring structure.

We thus need a mechanism to relate theories and types similar to a fitting mor­
phisms to overcome these limitations. However, we want to stay within the simple

,\-calculus style system, in particular, keep the substitution semantics. This leads to

our approach, coercion.

When we want to use a theory T E T t in the place where a theory of Ts is required
and Tt <: Ts is not derivable, we (1) first coerce T to T' E Tu such that Tu <: Ts
is derivable, and then (2) use T' instead of T. The coercion functor is a functor

of Mei Core of type Tt --t Tu. In other words, instead of changing the parameter

passing mechanism of functor application, we transfer and put the input theory in a
shape that can be accepted by the functor. This is similar in spirit to the coercion
semantics of the subtype relation, but more general. The coercion functor cannot be
built automatically, since we need to justify why /how the objects in T t can be treated

as the objects in Ts. The coercion functor can then be built from the view from Ts to
Tt that justifies the treatment of an object of Tt as an object in Ts. Syntactically, the

simplest view is a theory translation that maps an expression of one theory (source)
to an expression of another theory (target). However, in most cases, we want it to be
a theory interpretation that preserves the validity of the sentences (refer to §3.4.1 for
the definition of a theory interpretation). Building a view over functor types follows
exactly the same way of defining the subtype relation over functor types.

The following example illustrates how to build a coercion functor from a given the­
ory interpretation. The idea can be generalized over functor types straightforwardly.

Example 3.4.1. Let Monoid and Group be the theory types defined as follows:

Monoid language sort mm

const e: mm

func o : mm2
--t mm

axioms Vx1, X2, X3 : mm. x1 o (x2 o X3) = (x1 o x2) o X3

'\Ix : mm. x o e = x f\ e ox = x

64 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Group language sort gg

const e: gg

func o : gg2 ~ gg

-1: gg ~ gg

axioms Vx1 , x2 , x 3 : gg. x1 o (x2 o x 3) = (x1 o x2) o x 3

\:Ix : gg. x o e = x /\ e ox = x

\:Ix : gg. x o x-1 = e

The trivial interpretation is the mapping {mm f-+ gg, e f-+ e, o f-+ o }. The coercion
functor that coerces a theory of type Group to that of Monoid can be defined as
follows:

functor X : Group. X with {gg f-+ mm, e f-+ e, o f-+ o, - 1
f-+ -

1
}

Although the example is not very interesting in practice, it clearly illustrates the
idea of coercion.

3.4.1 Theory interpretation

Theory interpretation3 is a standard notion in first-order logic, referring to a mapping
of expressions of a theory T1 (source theory) to expressions of a theory T2 (target
theory) and preserves the validity of sentences. It is used to transform theorems
and problems from one context to another. In practice, most MMSs are based on
some version of higher-order logic. Different notions of theory interpretation need to

be defined for different versions of higher-order logic. For instance, if subtyping is
admitted, a type in the source theory can be associated with a subtype in the target
theory. Moreover, if partial functions are admitted, proof obligations other than
those from axioms in the source theory are generated, such as the proof obligation
concerning the definability of a function.

As an example, we present here a formalism of theory interpretation in terms of
first-order logic. Theory interpretations for most versions of higher-order logics can

be derived by lifting the first-order notion and adding specific mechanisms.

Definition 3.4.2. A translation, from a (source) theory T1 to another (target) theory
T2 , is a triple (T1 , T2 , p) where pis a symbol mapping consists of four functions p8 ,

Pc, p1, pp, such that:

3This subsection is adapted, almost literally, from [34].

3. A module system with subtyping and coercion - Mei 65

1. Ps maps each type symbol in the language of T1 to a type symbol in T2 injectively.

2. Pc [p1, pp, respectively] maps each constant symbol [function symbol, predicate
symbol] in the language of T1 to a constant symbol [function symbol, predicate
symbol] or a closed term [functional expression, predicate expression] in T2
respecting its type (and arity).

Assume that we have the following term constructors:

t ::= x I c I f (t1, ... , tn)

where x is a variable, c is a constant, and f is an n-ary function symbol; and the
following formula constructors:

where p is an n-ary predicate symbol.

Definition 3.4.3. An expression r.p of T1 is then translated to an expression, written
<I>(r.p), in T2 via the translation <I>::::::::: (T1,T2,p). It is inductively defined on the
structure of terms and formulas:

1. <I>(x) = x.

2. <I>(c) = p(c).

3. <I>(f(t1, ... , tn)) = p(f)(<I>(t1), ... , <I>(tn)).

4. <I>(p(t1, ... , tn)) = p(p)(<I>(t1), ... , <I>(tn)).

5. <I>(r.p1 o r.p2) = <I>(r.p1) o <I>(r.p2), where o is /\, V, =?, or ¢:?.

6. <I>(V'x. r.p) = V'x. <I>(r.p), where V' is V or :3.

Definition 3.4.4. A translation is an interpretation if <I>(<p) is a theorem in T2 for
each theorem <p of T1.

Theorem 3.4.5. A translation is an interpretation if each of the obligations, i.e. the
translations of the axioms of T1, is provable in T2.

3.4.2 Views and coercions

The syntax and rules of Mei extend those of Mei Core by adding a new syntactic
class, view, and a new kind of module expressions, functor application with views.

66 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Syntax and rules for views. The notion of a view is a generalization of both a

theory interpretation (a view can be defined over functor types) and a subtype relation
(a symbol mapping is involved in a view). A view from Ts to Tt shows explicitly how

an object in Tt can be treated as an object in Ts. The simplest views are the views
between theory types, which are theory translations that map the expressions of one

theory (the source) to the expressions of the other theory (the target). Syntactically,
it is a triple (Ts, Tt, p), in which Ts and Tt are the source and target theory types
respectively and p is a mapping that maps symbols in Ts to those in Tt. Views
between functor types are defined in terms of the views between their source and

target types inductively.

VIEW ::= (TYPE, TYPE, MAPPINGS)

MAPPINGS ::= MAPPING I (MAPPINGS, MAPPINGS)

view(V) is read as "V is a view object". Views can be derived by the following

syntactic rules:

map(p) source(p) =Ls target(p) ~Lt
view((Ls, <I>s), (Lt, <I>t), p)

view(Tt1 , Ts1 ,p1) view(Ts2 , Tt2 ,p2)
view(Ts1 --+ Ts2 , Tt1 --+ Tt2 , (p1, P2))

view(T1, T2,P1) view(T2, T3,P2)
view(T1, T3,P1 o P2)

(THY-VIEW)

(FUNC-VIEW)

(COMP-VIEW)

Remark 3.4.6. Syntactically, a theory view is not necessarily a theory interpretation,
i.e. it need not to be meaning preserving. However, a good theory view should be a

theory interpretation, but this is not enforced by Mei. The underlying MMS system
is responsible for guaranteeing that a view is indeed an interpretation, i.e. for pro­
viding the proofs for the obligations. In other words, the view rules are syntactically
decidable.

Remark 3.4.7. It is interesting to compare our notion of a view with P. Wadler's
notion [93]. Although both provide a way to treat an object of one type as an object

of another type, there are a number of differences:

3. A module system with subtyping and coercion - Mei 67

(1) Our views specify homomorphisms between module types, whereas Wadler's views
specify isomorphisms between data types.

(2) In Wadler's views, there is a bijection between the viewing type and a subset of
the viewed type. Reasoning over these two types can thus be mixed via a pair
of functions representing the bijection. However, the purpose of our views is to
match as many "reasonable" module expressions as possible with an argument
type of a functor. It is thus naturally unidirectional.

(3) Our views are also defined for functor types, which is not found elsewhere.

(4) Our views for theory types can also be seen as a formalization of adapter pat­
terns [42] from object-oriented design in our module system, where the mapping
p plays the role of adapter methods within an adapter class.

Core, inner and outer extension of types. In §2.1.3 we defined the extension
of a theory type. Now, we extend this idea to include functor types and distinguish
three different kinds of extensions.

Definition 3.4.8. Let T be a module type. The core extension of T is defined
inductively as follows:

(a) If T = (Lr, <"h), then Ext core (T)
sen(~))}.

{(L, <P, ~)

Definition 3.4.9. Let T be a module type. The inner extension of T is defined by
reference to its core extension and subtype relations.

Extinner(T) = {Obj E Extcore(Tsub) I Tsub <: T}.

For a theory type, its core extension and inner extension coincide.

Definition 3.4.10. Let T be a module type. The outer extension of T is defined by
reference to its core extension and views.

Extouter(T) = {Obj E Extcore(Tsub) I :3 p. view(T, Tsub, p)}.

68 · Jian Xu - Ph.D. Thesis - Department of CAS, MoMaster University

Remarks 3.4.11.

(a) The core extension of a type is handled by the module expression typing rules.

(b) The inner extension of a type is handled by the subtype rules.

Now we need a way to treat an object in the outer extension of a type as an
object in either its inner or core extension. This is illustrated in Figure 3.2. We need

outer

Figure 3.2: Core, inner, and outer extensions

a coercion functor that transfers objects of the outer extension to objects of the inner
extension, which are equivalent in terms of being mutually viewable (i.e. mutually
interpretable for theories). A functor should be automatically constructed from a
given view.

Coercion semantics of views. The intention of both the views and the coercion
functors is to provide a way to regard one theory (or functor) as another theory (or
functor). It is then natural to define the semantics of a view as a coercion functor.

3. A module system with subtyping and coercion - Mei 69

Intuitively, if V = (Ts, Tt, p) is a view from Ts to Tt, then its semantics, denoted
by [V]v : Tt -+ Tu, is a functor in Mei Core, called a coercion functor, that converts
an object in Tt to an object in Tu, where Tu <: Ts. For the sake of simplicity, at
this moment, we assume that a theory view is one-to-one and maps a symbol in the
source theory to a symbol (not an expression) in the target theory. We will discuss
more general cases in §3.4.4.

(1) Theory view. V =((Ls, <I>s), (Lt, <l>t), p).

Let p' = lift(p-1 , Lt) be the function that adds to p-1 the homomorphic identity

maps for the symbols in Lt but not in the range set of p. Then

is the functor:

functor X: (Lt, <I>t). (X extended by (L0, <I>0, ~obi)) with p',

where Lf/J is the empty language, <I>0 is the empty axiom set, and ~obi is the
set of obligations generated by the view V.4 The obligations are the images
of axioms of the source theory of V via its mapping p, i.e. p(<I>s)· Clearly,

Ls ~ Ltt, since p is one-to-one. <l>s ~ <I>u, since the obligations are added. Thus

(Lu, <I>u) <: (Ls, <I>s)· [V]v coerces a theory X of type (Lt, <l>t) to a theory of
type (Lu, <I>tt) by (1) adding the proof obligations to the theory showing that
the target theory can be regarded as the source theory, and (2) translating the
theory according to the view p. Note that it is not necessary to cast it to type
(Ls, <I>s), since that can be handled by the subtype relation.

(2) Functor view. V = (Ts1 -+ Ts2 , Tt1 -+ Tt2 , (P1,P2)).

Let C1 = [Ttn Tsu P1]v be the coercion functor of type Ts1 -+ Tss1 where
Tss1 <: Tt1 and c2 = [Ts2 , Tt2 , p2]v be the coercion functor of type Tt2 -+ Ttt2

where Tu2 <: Ts2 • Then

41n the case when the theory view is indeed a theory interpretation where each obligation is
discharged by a proof, the coercion functor will produce a theory equivalent to the original theory.
However, if the theory view cannot be proved to be a theory interpretation, the coerce functor will
produce a theory which may not be equivalent to the original theory. This means that our approach
guarantees a correct result only if the theory view is a theory interpretation. Otherwise it will give
a syntactically correct but semantically wrong result.

70 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

is the functor:

Notice that, as in the subtype relation of function types, the view component
for the argument type is reversed (contravariant), while that for the result type
has the same direction (covariant) as for the functor view. It follows the subtype
relation since this is a generalized subtype relation. A functor in Tt1 -+ Tt2 is

coerced to (or viewed as) a functor in Ts1 -+ T u2 , which is an element of the

inner extension of Ts1 -+ Ts2 by (FUNC-SUB). In some sense, Tt1 -+ Tt2 is a

"subtype" of Ts1 -+ Ts2 , since it accepts an object of Ts1 that can be coerced to
an object of Tt1 as input, and returns an object in Tt2 that can be coerced to

an object in Ttt2 , which in turn is an inner object of Ts2 •

(3) View composition. V = (T1 -+ T3,(P1 op2)), V1 = (T1-+ T2,P1), and V2 =
(T2-+ T3,P2).

Let [V dv be the coercion functor of type T 2 -+ T 22 where T 22 <: Ti and [V 2]v
be the coercion functor of type T 3 -+ T 33 where T 33 <: T 2. Then

is the functor:

Again [V]v transfers an outer object of T1 to an inner object, since T22 <: T1.

Proposition 3.4.12. If V is a view, then [V]v is a functor in Mei Core.

Proof. Straightforward induction on the definition of []v. D

Proposition 3.4.13. If V = (Ts, Tt, p) is a view, then [V]v : Tt-+ Tu is a functor,

where Tu <: Ts.

Proof. Straightforward induction on the definition of []v· D

3. A module system with subtyping and coercion - Mei 71

Algorithmic views. Similar to the subtyping rules in §3.1.1, the rules for views
defined above are not syntax-directed, and thus cannot give a view checking algorithm
directly even when the view is given in the conclusion. The problem is the rule
(COMP-VIEW). Since both T1 and T3 are metavariables, they can match any
types. Also T 2 is in both premises of (COMP-VIEW) but not in the conclusion,
and we thus have to guess a value for it, and check the premises and there is little
chance of success. Similarly to the elimination of rule (TRAN) (Theorem 3.1.3), we
might eliminate rule (COMP-VIEW) if we can prove the following theorem:

Theorem 3.4.14. If we can derive view(Ts, Tt, p), we can derive it without using

rule (COMP-VIEW).

Proof The proof resembles that of Theorem 3.1.3. Let us consider cases of the last
step of the derivation.

(1) Case (THY-VIEW) trivial.

view(Tt11 Ts11 P1) view(Ts2 , Tt2 , P2)
view(Ts1 -+ Ts2 , Tt1 -+ Tt2 , (pi, P2))

Since the sizes of both view(Tt11 Ts11 P1) and view(Ts2 , Tt2 , P2) are strictly
smaller than that of view(Ts1 -+ Ts2 , Tt1 -+ Tt2 , (p1, P2)), the latter can be de­
rived without using rule (COMP-VIEW) by the induction hypothesis.

(3) Case (COMP-VIEW)

view(Ts, T, P1) view(T, Tt, P2)
view(Ts, Tt, Pio P2)

By the induction hypothesis, we can assume that both view(Ts, T, p1) and
view(T, Tt,p2) can be derived without using rule (COMP-VIEW). There are
thus two subcases for the derivation of view(Ts, T, p1) and view(T, Tt, p2) as
follows:

(i) Ts:= (Ls, <I>s), Tt :=(Lt, <I>t), and T := (L, <I>).

map(p1) source(p1) =Ls map(p2) source(p2) = L
view(Ts, T, p1) view(T, Tt, p2)

72 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

can be replaced by

map(p1 o p2) source(p1 o p2) =Ls target(p1 o p2) ~Lt

view(Ts, Tt, P1 o P2)

Since the composition of two mappings is still a mapping, map(p1 o p2)

can be derived from map(p1) and map(p2).

(ii) Ts= Tsi ---+ Ts2, Tt = Tti ---+ Tt2, and T = T1---+ T2.

The derivation

view(T1, Tsi,Psi) view(Ts2, T2,Ps2)

view(Tsi ---+ Ts2, Ti ---+ T 2, (Psi, PsJ)

view(Ttu T1,PtJ view(T2, Tt2,Pt2)

view(T i ---+ T 2, Tti ---+ Tt2, (Pti, PtJ)

can be reorganized as the following derivation

view(Tti' Ti,PtJ view(T1, Tsi,PsJ view(Ts2, T2,PsJ view(T2, Tt2,PtJ

view(Tti' Tsi' Pti o Psi) view(Ts2' Tt2' Ps2 o Pt2)

Again, smce the sizes of both view(T ti, T si, Pti o Psi) and
view(Ts2, Tt2, Ps2 o Pt

2
) are strictly smaller than that of

view(Tsi ---+ Ts2, Tti ---+ Tt2, (Pti o Psi, Ps2 o PtJ), the latter can be de­
rived without using rule (COMP-VIEW) by the induction hypothesis,.

D

Theorem 3.4.14 shows that the algorithmic rules for views are both sound and
complete with respect to the original rules with (COMP-VIEW). Also notice that
the algorithmic rules are syntax-directed and checking a view relation can always be
reduced to checking smaller view relations. This justifies the following proposition:

Proposition 3.4.15. For algorithmic view rules, view checking is decidable.

Proof. Straightforward induction on the derivation of views, based on the fact that
is_view is syntactically decidable. D

Note that "good view" checking is generally not decidable since it requires proving

the obligations.

3. A module system with subtyping and coercion - Mei 73

View constructions. We can see that the cost of the justification of a view is far

more than that of a subtype relation. For instance, a symbol mapping is needed and
it may be necessary to prove the mapping actually gives an interpretation when the

module system is integrated with a particular MMS. It is thus worthwhile to save a
view for later use, for example, name it and then put it in an environment.

In this case, the (COMP-VIEW) rule is useful in that it allows us to construct
new views from existing views. The metavariables in the premise are not problem­

atic, since the rule is used forwardly in the construction, not backwardly as in the
derivation. We are not trying to find all possible compositions. Instead we are trying

to build a new view by composing existing views. The construction rules are shown

as follows:

(EXT-VIEW)

view((Ls1 , <I>s1), (Ltu <I>tJ, P1) view((L52 , <I>s2), (4.2 , <l>t2), P2) consist(p1, p2)

view((Ls1 U Ls2 , <l>s1 U <I>s2), (Lt1 U Lt2 , <l>t1 U <I>t2), P1 U P2)
(UNI-VIEW)

view((L1, <I>1), (L2, <I>2), p1) view((~, <I>2), (L3, <l>3), p2)

view((Li, <I>1), (L3, <l>3), P1 o P2)
(COMP-VIEW)

The function lift is a function that adds the homomorphic identity maps for the
symbols declared in LE to the given mapping. consist(p1, p2) means that p1 and
p2 must be consistent with respect to L51 n L52 , i.e. for each symbol x E L51 n L52 ,

p1(x) = p2(x). The first rule asserts that, given a theory view, the lifted mapping
gives a theory view between certain extensions of the source and target theories. The
second rule asserts that, given two theory views, the "union" of them is also a theory
view. The third rule is the composition rule based on the fact that the composition of
two theory interpretations is an interpretation. o represents the composition operator

for binary relations. The soundness of these three rules is trivial.
These construction rules are not used in the view derivation; only the results

of the construction are used. Before we start a view derivation, we first match it
with the constructed views. If the matching succeeds, it is a view. In this sense,
the constructed views serve the role of axioms in the logic. The soundness of the

construction rules guarantees that the constructed views are views.

74 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

3.4.3 Extended module expressions

We can then extend the module expressions by a new form of functor application:

EXPR EXPR with view VIEW

The typing rule is defined by:

r f- Ef: Ti--+ T2 r f- Ep: Tp view(T1 , Tp,p)

r f- (Ef Ep with view (T1, Tp,p)): T2
(APP-VIEW)

3.4.4 Coercion functor for general theory views

In general, a view between two theory types is not necessarily one-to-one and it may
map a symbol in the source theory to an expression in the target theory. However, we

can always translate a general view to a restricted view. We illustrate this approach

with the following examples:

Example 3.4.16. Let V = ((Ls, <Ps), (Lt, <Pt), p) be a view. Assume pis not one-to­

one such that p(fs) =ft and p(gs) =ft, where f s, gs E Ls are distinct. Let gt rf_ Lt be

a fresh symbol. We can define [V]v: (Lt, <Pt) --+ (Ltt, <Ptt) as the functor

functor X: (Lt,<Pt)· (X extended by ({gt}, {'Pt}, ~obi)) with lift(p'-1
),

where 'Pt is an axiom asserting that ft = gt and p' is the mapping

1 { p(x) if x "¢ gs
p (x) =

gt otherwise,

Essentially, a dummy symbol is added to the parameter theory to be used as the

image symbol.

Example 3.4.17. Let V = ((Ls, <Ps), (Lt, <Pt), p) be a view. Assume that p(fs) = exprt,
where exprt is an expression of Lt. Let ft rj:_ Lt be a fresh symbol. We can define

[V]v: (Lt, <Pt)--+ (Ltt, <I>tt) as the functor

functor X: (Lt,<Pt)· (X extended by ({ft}, {'Pt}, ~ob1)) with lift(p'-1
),

where 'Pt is an axiom asserting that ft = exprt and p' is the mapping

{

p(x) if x ¢ f s
p'(x) =

ft otherwise.

3. A module system with subtyping and coercion - Mei 75

Again a dummy symbol is added to the parameter theory to be used as the image
symbol.

The mechanisms shown in the above two examples can be combined to generate
coercion functors automatically from the given views for theory types. It is then
straightforward to define the coercion functors over functor types inductively based
on those over theory types.

3.4.5 Functor instantiation

With the help of coercion functors, the instantiation of functors can accept more
objects as input, as shown in Figure 3.3.

+

type matching

coerce

type matching

I
-1- - - - - - .J

2

Figure 3.3: Functor Application with Coercion

76 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Remark 3.4.18.

(1) By Proposition 3.4.13, if V = (Ts, Tt,P) is a view, then [V]v : Tt ---+ Tu is a
functor where Tu <: Ts. Thus rectangle 1 in Figure 3.3 commutes.

(2) Since V is a functor of type Tt ---+ Tu, by the typing rule for functor application,
rectangle 2 in Figure 3.3 commutes.

Note that, by using coercion functors, we keep our module system as simple as the

simply typed >.-calculus, while supporting a very general mechanism for higher-order

functors. The steps shown in Figure 3.3 are syntactically decidable.

The following example illustrates a functor application with views:

Example 3.4.19. Group and Set are two theory types and GroupAct is a functor
representing a generic group action theory.

Group = language sort gg

const e: gg

func o : gg2
---+ gg

-1: gg---+ gg

axioms Vx1, x2, x 3 : gg. x1 o (x2 o x3) = (x1 o x2) o X3

'\Ix : gg. x o e = x /\ e ox = x

Vx : gg. x o x-1 = e = x-1 ox

Set language sort ss

GroupAct

axioms ...

functor X : Group. functor Y : Set. (X EBY) extended by

language func act : gg x ss ---+ ss.

axioms Vx: ss. act(e, x) = x

'\Jg, h: gg, x: ss. act(g oh, x) = act(g, act(h, x))

Let Ring be the ring theory defined in Example 2.1.13. We can partially instantiate
GroupAct by Ring with a view as follows:

GroupAct Ring with view (Group, Ring, {gg f-+ rr, e f-+ 0, of-+ +})

where Ring is the type of Ring. The resulting functor is trivial. The corresponding

coercion functor is

functor X: Ring. X with {rr f-+ gg, 0 f-+ e, + f-+ o, 1f-+1, * f-+ *}

3. A module system with subtyping and coercion - Mei 77

3.5 Syntax of Mei

The syntax and rules of Mei extend those of Mei Core by adding new syntactic classes:
view and mapping, and a new module expression: functor application with views.

This subsection presents the concrete syntax and rules of Mei as a whole. The parts

that are different from Mei Core are boxed.

EXPR ··- MOD-CONST

TYPE-SPEC THY-SPEC

TYPE-SPEC EXPR

EXPR extended by SPEC

EXPR + y EXPR

EXPR with MAPPING

functor VAR : TYPE. EXPR

EXPR EXPR

I EXPR EXPR with view VIEW I

TYPE ··- TYPE-CONST

TYPE-SPEC

TYPE---* TYPE

THY-SPEC .. - (LANG, AXIOMS, THMS)

TYPE-SPEC .. - (LANG, AXIOMS)

I VIEW ::= (TYPE, TYPE, MAPPINGS) I

I MAPPINGS . ·- MAPPING I (MAPPINGS' MAPPINGS) I

MOD-CONST · ·- IDENTIFIER

TYPE-CONST ::= IDENTIFIER

VAR ::= IDENTIFIER

78 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Rules for types.

T = (L, <I>) closed(L, <I>)

type(T)

type(T1) type(T2)

type(T i ----* T 2)

Subtyping rules.

T = (L1, <I>1) T = (L2, 1>2) L2 ~ L1 1>2 ~ 1>1

T1 <: T2

Ts2 <: Ts1 Tt1 <: Tt2

Ts1 ----"* Tt1 <: Ts2 ----"* Tt2

View derivation rules.

map(p) source(p) = Ls target(p) ~ Lt

view((Ls, <I>s), (Lt, <I>t), p)

view(Ttl' Ts1'P1) view(Ts2, Tt2,p2)

view(Ts1 ----"* Ts2 , Tt1 ----"* Tt2, (pi,p2))

View construction rules.

view((L5, 1>5), (Lt, <I>t), p) p' = lift(p)

(THY-TYPE)

(FUNC-TYPE)

(THY-SUB)

(FUNC-SUB)

I (THY-VIEW) I

I (FUNC-VIEW) I

I (EXT-VIEW) I

view((L51 , <f>5i), (Ltl' <l>t1), P1) view((Ls2 , <I>s2), (Lt2, <I>t2), P2) consist(P1, P2)

view((L51 U L52 , <I>s1 U <I>s2), (Lt1 U Lt2, <l>t1 U <l>t2), P1 U P2)

(UNI-VIEW)

view((L1, <I>1), (L2, <I>2), P1) view((L2, <I>2), (L3, <I>3), P2) I (COMP-VIEW) I
view((L1, 1>1), (L3, <l>3), P1 o P2)

3. A module system with subtyping and coercion - Mei

Rules for typing module expressions.

X: TE f
ff---X:T

o-(C) = E r f--- E : T
f f---C: T

LT~ L <I>T ~ (<I> U sen(~)) closed(L, <I>,~)
f--- (LT, <l>T) (L, <I>, ~) : (LT, <l>T)

r f--- E: (LE, <I>E) (LE, <I>E) <: (L, <I>)
f f---(L,<I>) E: (L,<I>)

r f--- E: (LE, <I>E) closed(LE u L, <l>E u <I> u sen(~))
ff--- E extended by (L, <I>, ~) : (LEU L, <I>E U <I> U sen(~))

r f--- Ei : (Li, <I>1) r f--- E2 : (L2, <I>2)
r f--- Ei EB E2 : (L1 U L2, <I>1 U <I>2)

r f--- E: (L, <I>) map(p) source(p) = L
r f--- E with p: (p(L),p(<I>))

r, X : T 1 f--- E2 : T 2

r f--- Ef : T 1 --+ T 2 r f--- Ep : T p T p <: T 1
r f--- Ef Ep : T2

r f--- Ef: Ti--+ T2 r f--- Ep: Tp view(T1, Tp,p)
r f--- Ef Ep with view (Ti, T P> p) : T 2

Theorem 3.5.1. Type checking of Mei is decidable.

79

(ASS UMP)

(CONST)

(BASIC)

(CAST)

(EXT)

(UNION)

(REN)

(ABS)

(APP)

I (APP-VIEW) I

Proof. Straightforward induction on the type derivation, since the typing rules are
syntax-directed. For the case (APP-VIEW), by Proposition 3.4.15, view(Ti, Tp,p)
is decidable. D

80 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

3. 6 Semantics of Mei

We define the semantics of Mei, [], in terms of module expressions of Mei Core in

the sense that we translate every module expression of Mei to a module expression of
Mei Core. In other words, we treat the new mechanisms of Mei as syntactic sugar.

VAR. E =:X:

[X] = X

CONST. E = C:

[C] = c

BASIC. E = (L, ~' ~):

[(LT, ~T) (L, ~' ~)]

CAST. E =TE':

[T E'] = T [E']

EXT. E = E' extended by S:

[E' extended by S] = [E'] extended by S

REN. E = E' with p:

[E' with p] = [E'] with p

ABS. E =functor X: T 1 . E2 :

3. A module system with subtyping and coercion - Mei 81

APP-VIEW. E = Ef Ep with view V:

[Ef Ep with view V] = [Ef] ([V]v [Ep])

Lemma 3.6.1. Let EE Mei be a module expression. Then [E] is a module expression
in Mei Core.

Proof. Straightforward induction on the definition of[]. For case (APP-VIEW), use
Proposition 3.4.12 to show that [V]v is a functor in Mei Core. D

Lemma 3.6.2. Let E E Mei be a module expression. If r I- E : T, then r I- [E] : T
in Mei Core.

Proof. Straightforward induction on the definition of[]. Only the case (APP-VIEW)
is interesting.

Let E = Ef Ep with view v, where v = (T1, T Pl p). r I- E: Tis derived as follows:

r I- Ef : T 1 --7 T r I- Ep : T p view(T i, T Pl p)
r I- Ef Ep with view (T1, Tp,p): T

By the induction hypothesis, r I- [Ef] : T 1 --7 T and r I- [Ep] : T p· By Proposition
3.4.15, view(T i, T p, p) is decidable. By Proposition 3.4.13, [V]v : T P --7 T PP and
Tpp <: T1. Then the following derivation finishes the proof.

r I- [Ef] : Ti --7 T
[V]v : T p --7 T PP r I- [Ep] : T p

r I- [V]v [Ep]: Tpp
r I- [Ef] ([V]v [Ep]) : T

Theorem 3.6.3. If I- E: T, then [E]l.

Tpp <: T1

D

Proof. By Lemma 3.6.1 and 3.6.2, [E] : Tis a well-typed expression in Mei Core. The
result follows directly from Theorem 3.3.9. D

3.7 Casting

In both Mei Basic and Mei Core, we have two casting rules, {BASIC) and {CAST).
{BASIC) helps the user to choose the principal type of a theory, while (CAST) lets
the user cast a module expression of a theory type (subtype) to another theory type

82 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

(supertype). (CAST) can be generalized for all module expressions including functor

expressions:

r f- E: TE TE <: T

r f- (T) E: T
(CAST)

This is so-called up-casting, which assigns a supertype of the type of E to it. The
type checker can check if Tis a supertype of TE by the subtyping rules. The evaluator
will simply ignore the type annotation and evaluate E as usual. Up-casting is a kind

of abstraction, since it forgets some information about TE· For instance, we can cast

the theory Group of type Group to the type Monoid.

Another kind of casting, down-casting, let the user assign a module expression
to a module type that cannot be derived syntactically. For instance, if we have a
theory Group of type Monoid, we may want to cast it back to type Group. This is

not syntactically checkable since we need to evaluate Group to make sure that it is
of type Group. The casting rule would be as follow:

ff-E:TE

r f- (T) E: T
(CAST')

The type checker simply trusts the user and keeps on type checking. Clearly, this will
compromise the soundness of the type system, since the user might make a wrong
casting, and then (1) the evaluation rules cannot preserve the type of the expression
and (2) a well-typed expression might get stuck. To solve the first problem, we need
to move some type checking work to the runtime system. For instance, we cannot
simple ignore the casting information when evaluating a module expression, instead
we need to check if its value is in fact of the new type.

f- N: T
(CAST')

(T) N--+ N

This will recover the type preservation property. Note that this runtime type checking
is decidable and quick. The second problem can be handled by raising certain system

exceptions.
We have also lost the normalization property in that some well-typed module

expressions may not pass the runtime type checking and hence runtime exceptions
are caught. However, we do not totally lose the normalization property, in the sense

that, if the module expression passes the runtime type checking, it will be evaluated
to some value. The good news is that we will not run into a divergent state with the
help of the type system.

3. A module system with subtyping and coercion - Mei 83

Remarks 3.7.1.

(1) In Mei Core, with the help of the subtype relation, it is not necessary to do
up-casting. Therefore, the typing rule CAST is redundant. However, we keep
it there to make it easy to extend Mei Core to support down-casting.

(2) In Mei, since the notion of view generalizes the subtype relations, the subtype
relation can be expressed as a special view where the mapping is the identify
on everything. We choose to keep the subtype relation because (1) we do not
have to explicitly cast the actual parameter theory when building the coercion
functors from views and (2) expressing subtype relations as views is not efficient
since we need to build an identity functor and apply it.

Chapter 4

A module system with bounded

universal types - DMei

4.1 Motivation

The original motivation of this chapter comes from the following example:

Example 4.1.1. Let us recall the Example 2.1.15 in §2.1.3. The theory CommMonoid
is typed CommMult by the following derivation:

r f-- Comm: Mult---> CommMult r f-- Monoid: Monoid Monoid <: Mult

r f-- Comm Monoid: CommMult

In the module system presented so far, the theory Monoid can be used as a theory
of type Mult, either because Monoid is a theory of type Mult or because the type of
Monoid is Monoid which is a subtype of the type Mult. For both considerations, the
information that Monoid is also a theory of type Monoid gets lost. As a result, the
instantiated theory CommMonoid is typed CommMult as shown in the type derivation.
However, there are cases for which the user will want to use CommMonoid as a theory
of CommMonoid.

Basically there are two ways to solve this issue: (1) Let the user be able to add the
lost information back to the type. (2) Try to keep the information during the type

derivation. The solution following the first approach is the down-casting mechanism

84

4. A module system with bounded universal types - DMei 85

shown in §3.7. To get this information back to the type, we need to cast the theories
(or the functors) down to the subtypes of their principal types.

To keep the information of parameter within the result type of the instanti­

ated module expression, the simplest way is to use type variables. The result type
of a functor type is defined in terms of the type variable, which represents the
type of the parameter. The type of the functor is then a universal type over all

possible parameter types. For instance, the type of Comm is forall TX· T x ~

(T x extended by axioms V x, y : ele.x o y = yo x). When Monoid is used to instanti­
ate Comm, its principal type Monoid is used to substitute T x in the type expression,
giving type CommMonoid as expected. The problem is that the type variable in the
type of Comm forgets the information that we want the parameter theory to be a

theory of type Mult or that of a subtype of Mult, i.e. a theory with at least a binary
multiplication operation. Thus we need a way to constrain the type variable. This

leads to a bounded universal type, i.e. the parameter theory may not be an arbitrary
type, but must, for example, be a subtype of Mult. The subtype relation here is

necessary to help keep the type information [80].

4.1.1 Type variables and new typing rules

The intuition of the bounded universal type is that we can type Comm as

forall T x <: Mult. T x ~ (T x extended by axioms \;/ x, y : ele.x o y = yo x).
Following the approach of F <: [80], a type system with bounded quantification, we

need two abstract typing rules for function abstractions and type abstractions respec­
tively.

(ABS)

(TABS)

However, a full type abstraction rule provides more than what we need. For example,
the type forall T x <: T. T x, which is the type of the polymorphic constants, is

useless for our purpose. In fact, we only need type variables for polymorphic functors,
so that the result type can be specified precisely with respect to the argument type.
More importantly, in F <:i since type variables occur not only in the type expressions,
but also in the module expressions, they can be used as the bound types in the

type abstractions, e.g. forall T x <: T. forall Ty <: TX· This will result in

86 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

the undecidability of the subtype relation for F <:· In [79], the subtyping rules were

used to simulate a two-counter machine (a variant of Turing machines). The halting
problem of the two-counter machine reduces to that of the subtype relation.

We propose to combine the two abstraction rules above as a single abstraction
rule.

(ABS)

Note that the type variables play only one role, as the polymorphic argument

type of a functor type. This allows us to abbreviate for all T x <: Ti· T x --t T 2 as

Functor T x <: Ti. T2 without any ambiguity. ABS is then reformed as follows:

r, T x <: Ti, X: T x f- E2 : T2

r f- functor X: Ti. E2: Functor Tx <:Ti. T2
(ABS)

This is similar to the dependent functor types in many other systems, e.g. OCaml [57,

58].

Remarks 4.1.2.

(1) The rule is similar to the abstraction rule in Mei Core, except that the type

variable T x might occur in the type expression T 2 . Hence it can be replaced by

a concrete type when the functor is instantiated.

(2) The type variables occur only in the type expression, not in the module ex­
press10n. As a result, they cannot occur on the right hand side of the subtype
relation.

(3) The type variables are tied with the module variables. If a module expression
is closed, its type expression is also closed, i.e. it is without free type variables.

(4) The type variables are handled (generated) by the system. We assume that
they are all distinct.

We thus only need rule(s) for functor applications.

r f- Ef: Functor Tx <:Ti. T2 r f- Ep: Tp r f-Tp <:Ti

r f- Ef Ep: T2[Tx := Tp]
(APP)

The premises of the rule are almost identical to that of the functor application rule
in Mei Core. In the conclusion of the rule, the concrete type of the actual parameter
expression simultaneously replace all occurrences of T x in T 2 . This effectively does
the functor type application inside the rule APP. Note that the formal definition of
type substitutions is presented later in §4.2.

4. A module system with bounded universal types - DMei 87

Remark 4.1.3. We are "eagerly" reducing type expressions. This is why we have
T2[Tx := Tp] instead of (Functor Tx <:Ti. T2) Tp in (APP). Type reduction is
built into the rules.

Another issue is how to express the dependency between the parameter type and
the result type, i.e. how to express T 2 in terms of TX· Clearly, theory types and functor
types are not enough. As in the above example, it is necessary to describe in the type
of Comm the fact that any result theory is derived by adding the commutative axiom
to the parameter theory. The types then contain the information about how theories
(functors) are constructed, for example, by extension, union, renaming, and functor
application.

r f- E: TE r f- TE <: (L', <I>') closed(L' u L, <I>' u <I> u sen(D.)) (EXT-VAR)
r f- E extended by (L, <I>, D.) : TE extended by (L, <I> U sen(D.))

ff-Ei:Ti ff-E2 :T2 ff-Ti<:(L~,<I>~) ff-T2<:(L;,<I>;)(UNI-VAR)
r f- Ei EB E2 : Ti + T 2

r f- E: T r f- T <: (L', <I>') map(p)
r f- E with p : T with p

(REN-VAR)

ff-Ef:Tf ff-Tf<:FunctorTx<:Ti.T2 ff-Ep:TP ff-Tp<:Ti

ff- Ef Ep : Tf T P
(APP-VAR)

Note that TE in EXT-VAR, Ti and T2 in UNI-VAR, Tin REN-VAR, Tf and
possibly T Pin APP-VAR all contain type variables, otherwise rules EXT, UNION,
REN, and APP will be applied.

Remark 4.1.4. Pierce's minimal type approach (see Chapter 28 in [80]) is not satis­
factory for our purpose. In [80], suppose

f = ..\X <: Nat~ {a: Nat} . ..\y: X. y 5;

f : VX <: Nat~ {a: Nat}. X ~{a: Nat}

g = ..\x: Nat.{ a= x, b = x};

g : Nat ~ {a : Nat, b : Nat}

88 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Then

f (Nat---+ {a: Nat, b: Nat}) g {a: Nat}

We would prefer {a : Nat, b : Nat} as the result type. Following our approach using

their notation, f will be typed as follows:

f =).X <:Nat---+ {a: Nat}.).y: X. y 5;

f : VX <: Nat---+ {a: Nat}. X---+ (X Nat)

Since the evaluation of (X Nat) is postponed until the type of g is available, the result
type is {a : Nat, b : Nat} as desired.

4.1.2 Subtyping rules

Naive subtyping rules. First, we need subtyping rules for theory types and func­
tor types as in Mei Core. The most obvious definitions resemble those of Mei Basic.

T1 = (L1,<I>1) T2 = (L2,<I>2) L1 s;;; L2 <I>1 s;;; <I>2
f-T1<:T2

r f- Tu<: T1 r f-T2[Tx := T1] <: T22[Tx :=Tu]
r f- Functor Tx <: T1. T2 <:Functor Tx <:Tu. Tn

(S-THY)

(S-FUNC)

Note that S-FUNC ignores the construction information embedded in the result type
by instantiating it with the parameter type. This gives the order (and the equality)
between those functor types with different constructions, which is more than we need

as shown in the following example:

Example 4.1.5. Let Monoid and Group be the theory type defined in Example 3.4.1.

4. A module system with bounded universal types - DMei 89

We can define two functor types as follows:

GroupFromMonoid = Functor T x <: Monoid.

(T x with {mm~ gg, e ~ e, o ~ o}) extended by

language -l : gg --t gg

MakeGroup

axioms Vx : gg. x o x-1 = e

Functor T x <: Monoid.

language sort gg

const e: gg

opr o : gg2
--t gg

-1 : gg --t gg

axioms Vx1, x2, X3 : gg. x1 o (x2 o x3) = (x1 o x2) o X3

Vx : gg. x o e = x /\ e ox = x

Vx : gg. x o x-1 = e

GroupFromMonoid <: MakeGroup and MakeGroup <: GroupFromMonoid by (S­
FUNC). They are equal with respect to the subtype relation. However, let Ring
be a theory type of rings. Then GroupFromMonoid Ring <: MakeGroup Ring is
derivable, but not MakeGroup Ring <: GroupFromMonoid Ring. Thus, the de­
sired subtyping rules should admit GroupFromMonoid <: MakeGroup, but not
MakeGroup <: GroupFromMonoid.

The key point is that, given

r f- Functor T x <: T1. T2 <:Functor T x <:Tu. T22,

r f- T2[T x := T p] <: T22 [T x := T p] is not derivable (not monotonic), where T P <: Tu.
This motivates a new (S-FUNC) rule.

r,Tx <: Tn f-T2 <: T22
(S-FUNC)

r f- Functor T x <: Ti. T2 <: Functor T x <: Tu. T22

Clearly, monotonicity can be derived easily from the above rule. (Refer to Lemma
4.2.6 for the formal presentation.)

Second, we need the subtyping rules for the type variables, extension types, union
types, renaming types, and application types. The following are the most obvious
definitions:

Tx <:TE r

r f- T x <: T x
(S-REF)

90 Jian Xu Ph.D. Thesis - Department of CAS, McMaster University

Tx<:TEf
r f- T x <: T

r f- T1 extended by S <: T2 extended by S

r f- T1 extended by S <: (L2 U Ls, <I>2 U <I>s)

r f- T 1 <: Tu r f- T 2 <: T 22
r f- T 1 + T 2 <: Tu + T 22

r f- T1 <: (Lu, <I>u) r f- T2 <: (L22, <I>22)
r f- T1 + T2 <: (Lu U L22, <I>u U <I>22)

r f- T1 <: (Lu, <I>u) T2 = (L22, <I>22)
r f- T1 + T2 <: (Lu U L22, <I>u U <I>22)

T1 =(Lu, <I>u) r f- T2 <: (L22, <I>22)
r f- T1 + T2 <: (Lu U L22, <I>u U <I>22)

r f- T1 with p <: T2 with p

r f- Ti <: T 2 r f- T P1 <: T P2

r f- T1 Tp
1

<: T2 Tp
2

r f-T1 <:Functor Tx <: T2.T22 f f-Tp <: T2
r f-T1 Tp <: T22[Tx := T2]

r f- T1 <: T2 r f- T2 <: T3
ff-T1<:T3

(S-VAR)

(S-EXT)

(S-VAR-EXT)

(S-UNION)

(S-VAR-UNIONl)

(S-VAR-UNION2)

(S-VAR-UNION3)

(S-REN)

(S-VAR-REN)

(S-APP)

(S-VAR-APP)

(S-TRAN)

4. A module system with bounded universal types - DMei 91

Algorithmic subtyping rules. As in Mei Core, the transitivity rule S-TRAN is
still problematic, since it is not algorithmic. In this case, we cannot simply elim­
inate the transitivity rule. For example, let us assume r f- T x <: (Li, <I>i) and
r f- (Li, <I>i) <: (Li, <I>2). In order to derive r f- T x <: (L2, <I>2), we have to use
the transitivity rule. In system F <: the transitivity rule is changed to a special form,

ff-Tx<:T2 ff-T2<:T3
ff-Tx<:T3

where the left premise can be derived from (S-VAR). Our system is more com­
plicated and thus the above rule is not applicable. For example, let us assume

r f- T x <: (Li, <I>i), r f- T v <: (L2, <I>2), and r f- (Li U L2, <I>i U <I>2) <: (L, <I>). The
above transitivity rule is not enough to derive r f- T x + Ty <: (L, <I>). The left
premise cannot be derived from (S-VAR) directly. It has to be derived from the rule
(S-VAR-UNIONl), which calculates the minimal upper bound of T x +Ty, in this

case, (Li U L2, <I>i U <I>2). In general, the left premise of our transitivity rule, must
be derived from S-VAR, S-VAR-EXT, S-VAR-UNIONl, S-VAR-UNION2,S­
VAR-UNION3, S-VAR-REN, and S-VAR-APP. Effectively, this calculates the
minimal upper bound of the left-hand-side of the conclusion based on the informa­
tion from S-VAR, which can be compared with the right-hand-side. The main point
is that the intermediate types (the minimal upper bound) used in the transitivity
rule are fixed by the calculation, which eliminates the nondeterminism. To distin­
guish these calculation derivations, we use <:: for those subtype relations derived
only by S-VAR, S-VAR-EXT, S-VAR-UNIONl, S-VAR-UNION2, S-VAR­
UNION3, S-VAR-REN, and S-VAR-APP. The subtyping rules are then refor­
mulated as follow:.

Ti= (Li,<I>i) T2 = (L2,<I>2) Li~ L2 <I>1 ~ <I>2

r f- Functor Tx <:Ti. T2 <:Functor Tx <: Tn. T22

Tx <:TE r
r f- T x <: T x

r f- Ti extended by S <: T2 extended by S

(S-THY)

(S-FUNC)

(S-REF)

(S-EXT)

92 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

r f-- T 1 <: Tu r f-- T 2 <: T 22
r f-- Ti + T 2 <: Tu + T 22

r f-- T 1 with p <: T 2 with p

r f-- Ti <: T 2 r f-- T Pi <: T p2

r f-- Ti T Pi <: T 2 T p2

r f-- T1 <:: Tz r f-- T2 <: T3
ff--T1<:T3

Tx <:TE r
r f--Tx <:: T

r f-- T1 extended by S <:: (L2 U Ls, <I>2 U <I>s)

I' f-- T1 <:: (Lu, <I>u) I' f-- T2 <:: (L22, <I>22)
r f-- T1 + T2 <:: (Lu U L22, <I>u U <I>22)

r f-- T1 <:: (Lu, <I>u) T2 = (L22, <I>22)
r f-- T1 + T2 <:: (Lu U L22, <I>u U <I>22)

T1 = (Lu, <I>u) r f-- Tz <:: (L22, <I>22)
ff--T1 + T2 <:: (L11UL22,<I>11U<I>22)

r f-- T1 <::Functor Tx <: T2.T22 I' f--TP <: Tz
r f--T1 Tp <:: T22[Tx := T2]

(S-UNION)

(S-REN)

(S-APP)

(S-TRAN)

I (S-VAR-EXT) I

(S-VAR-UNIONl)

(S-VAR-UNION2)

(S-VAR-UNION3)

(S-VAR-REN)

(S-VAR-APP)

Now let us show that the (<:) rules define a total algorithm for the (<:) relation.
This is shown by by assigning a complexity that is a natural number to each subtype
relation.

4. A module system with bounded universal types - DMei 93

Definition 4.1.6. We first define the complexity of a type T within a context r,
written com plr (T).

complr (L, <I>) = 1

complr (T x) = complr (T) if Tx <:TE r
complr (T extended by S) = complr (T) + 1

complr (Ti + T2) = complr (Ti)+ complr (T2) + 1

complr(T with p) = complr (Ti)+ 1

complr (Tt T p) = complr (Tt) + complr (T p)

complr (Functor T x <:Ti. T2) = complr,Tx <:Ti (T2) + 1

The complexity of the subtype relations is defined based on that of the types.

complr (Ti <: T 2) = complr (Ti) + 2

complr (Ti <:: T2) = complr (Ti)+ 1

Note that we increase the complexity by 2 for <: to distinguish it from <:: .

This is important in the proof of the following theorem for the case corresponding to
the rule (S-TRAN).

Theorem 4.1. 7. The subtyping algorithm defined above is total.

Proof. In any subtyping rule of <: and <::, the complexity of the conclusion is
strictly greater than that of any of the premises. D

Equivalence of naive and algorithmic subtyping rules. It is sufficient to prove
the following theorem; the other direction is trivial.

Lemma 4.1.8.

(1) If r f- Ti <: T2 and r f- T2 <: T3, then r f- Ti <: T3.

(2) If r f- Ti <: T2 and r f- T2 <:: T3, then r f- Ti <:: T3.

Proof. We prove both statements simultaneously by induction on the sum of the sizes
of the two derivations.

(1) Let the left derivation be

S-THY. Trivial.

94 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

S-FUNC. Directly from the induction hypothesis.

S-REF. The right derivation gives the result.

S-EXT.

r f-- T~ extended by S <: T; extended by S

Two subcases for the right derivation.

S-EXT.

r f-- T; extended by S <: T~ extended by S

By the induction hypothesis of (1), r f-- T~ <: T~ and the result follows
directly from the rule (S-EXT).

S-TRAN.

r f-- T; <:: (L2, <I>2) S = (Ls, <I>s))
I'f-- (L2ULs,L2ULs <: T3 r f-- T; extended by S <:: (L2 U Ls, <I>2 U <I>s)

S-APP.

r f-- T; extended by S <: T 3

By the induction hypothesis of (2), r f-- T~ <:: (L2, <I>2). Replacing T;
in the above derivation by T~ gives the result.

r f-- T~ <: T; r f-- T Pi <: T p2

r f-- T~ T Pi <: T; T p2

Two subcases for the right derivation.

S-APP.

r f-- T; <: T~ r f-- T p
2

<: T p
3

r f-- T; T p
2

<: T~ T p
3

The result follows from the induction hypotheses and an application
of the rule (S-APP).

S-TRAN.

r f--T; <::Functor Tx <: T22.T222 r f--Tp
2

<: T22
r f-- T; T p

2
<:: T222[T x := T22]

4. A module system with bounded universal types - DMei 95

By the induction hypothesis of (1), r f- T P1 <: T 22 By the induction
hypothesis of (2), r f- T~ <::Functor Tx <: T22 .T222 . In the above
derivation, replacing T; and T p2 by T~ and T Pi respectively gives the
result.

The proofs of cases (8-UNION) and (8-REN) are similar to that of (8-EXT).

(2) Let the left derivation be

S-THY. Trivial, since r f- (L, <I>) <:: T3 is not derivable.

S-FUNC. Trivial, since r f- (Functor Tx <: T22 .T222) <:: T3 is not derivable.

S-REF. The right derivation gives the result.

S-EXT.

r f- T~ extended by S <: T; extended by S

The right derivation must be

r f- T; extended by S <:: (L3 U Ls, <l>3 U <I>s)

where T3 = (L3 U Ls, <l>3 U <I>s). By the induction hypothesis of (2),
T~ <:: (L3, <I> 3). Replacing T; by T~ in the above derivation gives the
result.

S-APP.

r f- T~ <: T; r f- T Pi <: T p2
r f- T~ T Pi <: T; T p2

The right derivation must be

r f-T; <::Functor Tx <: T22.T222 ff- Tp2 <: T22
r f- T; TP2 <:: T222[Tx := T22]

where T 3 = T 222 [T x := T 22]. By the induction hypothesis of
(1), r f- TP1 <: T22· By the induction hypothesis of (2), r f­
T~ <:: Functor T x <: T 22. T 222. In the above derivation, replacing T; and
T p2 by T~ and T Pi respectively gives the result.

The proofs for cases (8-UNION) and (8-REN) are similar to that for (8-EXT).

96 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

D

Theorem 4.1.9. If T1 <: T2 is derivable from the naive rules, it is derivable from

the algorithmic rules.

Proof. By Lemma 4.1.8.

4.2 Syntax of DMei Core

DMei Core is an extension of Mei Core that supports dependent functor types.

EXPR · ·- MOD-CONST

TYPE-SPEC THY-SPEC

TYPE-SPEC EXPR

EXPR extended by SPEC

EXPREB EXPR

EXPR with MAPPING

functor MOD-VAR: TYPE. EXPR

EXPR EXPR

TYPE ··- TYPE-CONST

JTYPE-VARJ

TYPE-SPEC

j TYPE extended by TYPE-SPEC I
TYPE+ TYPEI

TYPE with MAPPING I

Functor TYPE-VAR<: TYPE. TYPEj

TYPE TYPEI

THY-SPEC ::= (LANG, AXIOMS, THMS)

TYPE-SPEC ::= (LANG, AXIOMS)

D

4. A module system with bounded universal types - DMei 97

MOD-CONST ::= IDENTIFIER

TYPE-CONST ::= IDENTIFIER

MOD-VAR ::= IDENTIFIER

TYPE-VAR ::= I IDENTIFIERJ

Rules for types. type(T) asserts that T is a type. closed(L, <I>) asserts that

lang(<I>) ~ L.

Tx <:TE r
r f- type(T x)

T = (L, <I>) closed(L, <I>)
f- type(T)

r f- type(T) r f- T <: (L, <I>) closed(L U Ls, <I> U <I>s)
r f- type(T extended by (Ls, <I>s))

r f- type(T 1) r f- type(T 2)
r f- type(T1 + T2)

I (VAR-TYPE) I

(THY-TYPE)

I (EXT-TYPE) I

I (UNION-TYPE) I

r f- type(T) r f- T <: (L, <I>) map(p) source(p) = L I (REN-TYPE) I
r f- type(T with p) . .

r f- type(T 1) r, T x <: T 1 f- type(T 2)
r f- type(FunctorTx <:Ti. T2)

r r- type(Tf) r r- type(T p)
r f- type(Tf T p)

I (FUNC-TYPE) I

I (APP-TYPE) I

98 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Rules for subtyping.

T1 =(L1,1>1) T2=(L2,1>2) L1 ~ L2 1>1 ~ 1>2

l--T1<:T2

r 1-- Functor Tx <: T1. T2 <:Functor Tx <:Tu. T22

Tx<:TEr

rl--Tx<:Tx

r 1-- T1 extended by S <: T2 extended by S

rl--T1 <:Tu rl--T2 <:T22

r 1-- T1 + T2 <:Tu + T22

r 1-- T 1 with p <: T 2 with p

r 1-- T 1 <: T 2 r 1-- T p
1

<: T p
2

r 1-- T 1 T Pi <: T 2 T p2

r 1-- T1 <:: T2 r 1-- T2 <: T3

r 1-- T1 <: T3

Tx <:TE r

r 1--Tx <:: T

r 1-- T1 extended by S <:: (L2ULs,1>2 U <f>s)

(S-THY)

I (S-FUNC) I

I (S-REF) I

I (S-EXT) I

I (S-UNION) I

I (S-REN) I

I (S-APP) I

I (S-TRAN) I

I (S-VAR) I

I (S-VAR-EXT) I

4. A module system with bounded universal types - DMei 99

r f- T1 <:: (Lu, <I>u) r f- T2 <:: (~2, <1>22)
r f- T1 + T2 <:: (Lu U L22, <l>u U <1>22)

r f- T1 <:: (Lu, <I>u) T2 = (~2, <1>22)
ff-T1 + T2 <:: (LuUL22,<l>uU<l>22)

T1 =(Lu, <I>u) r f- T2 <:: (L22, <1>22)
r f- T1 + T2 <:: (Lu U ~2, <l>u U <1>22)

r f-T1 with p <:: (p(~),p(<I>2))

r f-T1 <::Functor Tx <: T2.T22 r f-Tp <: T2
r f-T1 Tp <:: T22[Tx := T2]

I (S-VAR-UNIONl) I

I (S-VAR-UNION2) I

I (S-VAR-UNION3) I

I (S-VAR-REN) I

I (S-VAR-APP) I

Type evaluation function and type substitution. From §4.1, we can see that
we also need a substitution function for type variables. In addition, after the type
variable is replaced by a type expression, we need to simplify the type expression,
i.e. we need to evaluate the type expression to its normal form just as we do for the

module expressions.

The type evaluation function, Ueva1, and the type substitution function for type
expressions, T[T x := T p], are defined simultaneously as follows:

[T x]eva1 T x

[(L, <I>)]eval (L, <I>)

I
(~ U Ls, <PT U <I>s)

[T]eval extended by S

[T extended by S]eval

if [T]eval = (~,<PT)

and S = (Ls, <I>s)

otherwise.

100 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[T 1 + T 2]eval

if [Tdeval = (L1, <I>1)

and [T2]eva1 = (L2, <I>2) I
(L1 U L2, <I>1 U <I>2)

[T 1] eval + [T 2] eval otherwise.

[T with P]eva1 { (p(L)' p(<I>)) if [T]eval = (L, <I>)

[T]eval with p otherwise.

Functor T x <: Ti. [T2]eval

{

T2[T x := T p] if [T]eval =Functor T x <: Ti.T2

[T]eval [T p]eval otherwise.

(L, <I>)[Tx := Tp]

(T extended by S) [T x := T p]

(T1 + T2) [Tx :=Tp]

(T with p) [Tx := Tp]

{

Tp if Tx =Ty

Ty otherwise.

(L,<I>)

[(T [T x := T p]) extended by S]eval

[(T1 [Tx := TP]) + (T2 [Tx := Tp])]eva1

[(T [T x := T p])wi th P]eval

[Functor Ty<: T1. T2 [Tx := Tp]]eval

if T x ¢. Ty and Ty is not free in T P

[Functor T z <: Tl· T; [T x := T p]]eval

if T x ¢. Ty and Ty is free in T P

Functor Ty <: T1. T2 if Tx =Ty.

where, in the second case1 for functor types, T; = T 2 [Ty : = T z] and T z is a fresh
type variable.

1 We rename the bound variable to avoid the variable capture problem. It is not a problem for
the implementation since identifiers, which are all distinct, can be used to represent type variables.

4. A module system with bounded universal types - DMei 101

Definition 4.2.1. Two module types are a-equivalent, written T 1=aT2, if they differ
only in the names of the bound variables.

We will consider two module types to be equivalent if they are a-equivalent.

Lemma 4.2.2. If f = Tx1 <: T1, ... ,Txn <: Tn and r f- type(T), then

[T[T X1 := Ti] ... [T Xn := T n]]eval is either

(1) a theory type (L, <I>), or

(2) a functor type Functor Tx <: T1. T2.

Proof. By induction on the rules for types.

Corollary 4.2.3. If f- type(T), then [T]eval is either

(1) a theory type (L, <I>), or

(2) a functor type Functor Tx <: T1. T2.

Proof. By Lemma 4.2.2.

Lemma 4.2.4.

(1) If f f-T1 <: T2, then ff- [T1]eva1 <: [T2]eval·

(2) If r f- T1 <:: T2, then ff- [Ti]eval <:: [T2]eval·

0

0

Proof. Simultaneous induction on the derivations of <: and <:: respectively. 0

Lemma 4.2.5 (Monotonicity of substitution w.r.t. body). Let T1, T2, and T be type

expressions. If f f-T1 <: T2, then r f-T[Tx := T1] <: T[Tx := T2]·

Proof. By induction on the complexity of T. Only the cases for functor types and
application types are interesting.

(1) T =Functor Ty<: Ts. Tt. If Tx =Ty, it is trivial. Assume Tx t Ty,

(Functor Ty<: Ts. Tt)[Tx := T1]

Functor Ty<: Ts. (Tt[Tx := T1]) by definition

<: Functor Ty<: Ts. (Tt[Tx := T2]) by i.h. and rule S-FUNC

(Functor Ty <: Ts. Tt)[T x := T2] by definition

102 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

(Tt Tp)[Tx :=Ti]

[Tt[Tx :=Ti] Tp[Tx := Ti]]eval by definition

<: [Tt[T x := T 2] T p[T x := T 2]]eva1 by i.h., rule S-APP, Lemma 4.2.4

(Tt Tp)[Tx := T2] by definition

D

Lemma 4.2.6 (Monotonicity of substitution w.r.t. parameter).

(1) If r, Tx <: T f- Ti<: T2, then for all Tp such that r f-TP <: T, r f- Ti[Tx :=

Tp] <: T2[Tx := Tp]·

(2) If r, T x <: T f- Ti <:: T2, then for all T P such that r f- T P <: T, r f- T i[T x :=

Tp] <:: T2[Tx := Tp]·

Proof. Simultaneous induction on the derivations of <: and <:: respectively. D

Rules for typing module expressions.

X:TEf
ff-X:T

e7(C) = E r f- E : T
ff-C:T

L-r ~ L <I>T ~(<I> U sen(~)) closed(L, <I>,~)

f- (LT' <I>T) (L, <I>' ~) : (LT' <I>T)

r f- E: (LE, <I>E) (LE, <I>E) <: (L, <I>)
r f- (L, <I>) E: (L, <I>)

r f- E extended by (L, <I>, ~) : (LE u L, <I>E u <I> u sen(~))

(ASS UMP)

(CONST)

(BASIC)

(CAST)

(EXT)

4. A module system with bounded universal types - DMei

ff-E:TE ff-TE<: (L',<I>') closed(L'UL,<l>'U<l>Usen(~))

r f-E extended by (L,<I>,~): TE extended by (L,<I>Usen(~))

103

I (EXT-VAR) I

r f- Ei : (Li, <I>i) r f- E2 : (~, <I>2)
r f- Ei EB E2 : (Li U 12, <I>i U <I>2)

(UNION)

r f- Ei : Ti r f- E2 : T2 r f- Ti <: (L~, <I>~) r f- T2 <: (L;, <I>;)
r f- Ei EB E2 : Ti + T 2

r f- E : (L, <I>) map(p) source(p) = L
r f- E with p: (p(L),p(<I>))

r f- E: T r f- T <: (L', <I>') map(p)
r f- E with p: T with p

r, T x <: Ti, X : T x f- E2 : T 2
r f- functor X: Ti. E2: Functor Tx <:Ti. T2

r f- Ef: Functor Tx <:Ti. T2 r f- Ep: Tp r f-Tp <:Ti
r f- Ef Ep: T2[Tx := Tp]

I (UNI-VAR3) I

(REN)

I (REN-VAR) I

\(APP) I

104 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

I' f-- Er: Tr I' f-- Tr <: Functor T x <: Tl· T 2 I' f-- Ep: T P I' f-- T P <: Ti

I' f-- Er Ep : Tr T P

I (APP-VAR) I

Remark 4.2. 7. The evaluation order of the above rules does matter. For instance, we

want to apply the rule EXT before applying the rule EXT-VAR in order to avoid

further need of type reduction. In other words, we want to derive the evaluated type

directly.

Theorem 4.2.8. Type checking of DMei Core is decidable.

Proof. By induction on the syntax of module expressions. Clearly the type check­

ing rules defined above are syntax-directed. For each module expression, there is a
rule either giving the type of the module expression or reducing it to type-checking
a subexpression which is strictly smaller than the original module expression with

possibly a subtype checking. The result follows directly from the fact that subtype
checking is decidable as shown in Theorem 4.1. 7. D

Corollary 4.2.9. Type inferencing of DMei Core is decidable.

4.3 Semantics of DMei Core

The semantics of DMei Core is exactly the same as that of Mei Core, since there are

no new syntactical classes introduced. The only difference is that the result type
of a functor application will keep the information contained in the parameter type.
Therefore, the result module expression can be employed in more contexts. However
the evaluation of these functor applications follows exactly the same substitution

semantics as in Mei Core and Mei Basic. The proof of the normalization theorem,
Theorem 4.3.6, follows exactly the same pattern as that of Theorems 2.4.13 and 3.3.9.

Normalization of the well-typed module expressions. The normalization

proof for DMei Core resembles that for Mei Core, i.e. in two steps: (1) construct
a set SN of expressions that are normalizable and (2) show that every well-typed

module expression is an element of SN.

4. A module system with bounded universal types - DMei 105

Due to the existence of type variables, the major change in the normalization
proofs in this section from the normalization proofs for Mei Basic and Mei Core is to
reduce type expressions via the type evaluation function and the type substitution
function.

Lemma 4. 3.1. If E ---t E', then El ifJ E' 1.

Definition 4.3.2. The set of module expressions, SN, is defined inductively as fol­
lows:

E: (L,<I>) El
EE SN(L,if>) EE SN Functor Tx <: T1 . T2

Lemma 4.3.3. If E E SN, then El.

Proof. By induction on T.

(1) T = (L, <I>). Directly follows from Definition 2.4.9.

(2) T =Functor Tx <: T1. T2. Let Ep E SNT11 clearly T1 <: T1. By Definition
4.3.2, E Ep E SNT2[Tx:=Ti]· By the induction hypothesis, (E Ep)l, which implies
El.

Lemma 4.3.4. If E ---t E', then E E SN iff E' E SN.

Proof. By induction on T.

(1) T = (L, <I>). Directly follows Lemma 4.3.1 and Definition 4.3.2.

(2) T :=Functor T x <: T1. T2.

D

(==?)Let Tp <: T1 and Ep E SNTp be an arbitrary module expression. E Ep E

SNT2[Tx:=Tp] by definition of SN. By the induction hypothesis, E' Ep E

SN T2[Tx:=Tp]· Since the choice of T P and EP is arbitrary, definition of SN gives
the result.

(¢::) Analogous to (==?).

D

Lemma 4.3.5. If r I- E: T, r = Tx1 <:T1,X1: Tx11 ••• ,Tx" <:Tn,Xn: Tx"·
Let I- Tu <: T1, ... , I- Tnn <: Tn and E1 E SNT11 , ... , En E SNTnn· Then E[X1 :=
E1]. · · [Xn :=En] E SNT[Tx1 :=T11] ... [Txn:=Tnn]·

106 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Proof. By induction on the derivation of r f- E : T. Let r :::::: X1 :
T x1 , T x1 <: T 1, ... , Xn : T Xn in the following proof.

ASSUMP. E = X; and T = T;. Trivial.

CONST. E :::::: C. Assume dC) = E'. Since C[X1 := Ei] · .. [Xn := En] :::::: C, it is
sufficient to show CE SNT[Tx

1
:=Tu] ... [Txn==Tnn]· Since f- E': Tis in the premise,

T[Tx1 :=Tu] ... [Txn := Tnn] = T. By the induction hypothesis, E' E SNT.
But C----+ E', so by Lemma 4.3.4, CE SNT.

BASIC. E:::::: (LT,<I>T) (L, <I>,~). Note that T:::::: (LT,<I>T), hence, T[Tx1 :=
T 11] ... [T Xn := T nn] = T. Since E is of theory type, it is sufficient to prove
E[X1 := Ei] ... [Xn := Enll· But E[X1 := Ei] ... [Xn := En] = E already in normal
form.

CAST. E :::::: (L, <I>) E'. Assume r f- E' : (L', <I>'). By the induction hypothesis,

((L,<I>) E')[X1 := Ei] ... [Xn :=En] (L,<I>) (E'[X1 := Ei] ... [Xn :=En])

----+ (L,<I>) ((L',<I>') (LE1 ,<l>E',~E1))

----+ (L, <I>) (LE', <PE', ~E')

E SN(L,<P)

SN T[Tx1 := Tu] ... [Txn :=Tnn]

EXT. E:::::: E' extended by (Ls, <I>5 , ~s). There are two subcases corresponding to
the rules EXT and EXT-VAR.

(i) EXT. Assumer f- E': (L', <I>') is in the premise. By the induction hypoth­
esis,

4. A module system with bounded universal types - DMei

Let us assume E'[X1 := E1] ... [Xn :=En] ----+ (L', <I>') (LE', <l>E', ~E').

(E' extended by (Ls, <l>s, ~s))[X1 := E1] ... [Xn :=En]

(E'[X1 := E1] ... [Xn := En]) extended by (Ls, <l>s, ~s)

----+ ((L', <I>') (LE', <I>E', ~E')) extended by (Ls, <l>s, ~s)

107

----+ (L' U Ls, <I>' U <l>s U sen(~s)) (LE1 l±1Ls, <I>E1 l±l<l>s, ~E'l±l~s)

E SN(L'uLs, <I>'U<l>5Usen(~s))

SN(L', <I>') extended by (Ls, <I>s, ~s)

SNT

SN T[Tx1 :=T11] ... [Txn:=Tnn]

(ii) EXT-VAR. Assume r f- E' : T' and r f- T' <: (L, <I>) are in the premise.
By the induction hypothesis,

E'[X1 := E1]. · · [Xn :=En] E SNT'[Tx
1
:=T11] ... [Txn:=Tnn]·

By Lemmas 4.2.6, f- T'[Tx1 := Tu] ... [Txn := Tnn] <: (L,<I>). Hence
T'[T x1 := Tu] ... [T Xn := T nn] is a theory type. Let us assume T'[T x1 :=
Tu] ... [T Xn := Tnn] = (L', <I>') and E'[X1 := E1] ... [Xn := En] ----+

(LE', <l>E', ~E').

(E' extended by (Ls, <l>s, ~s))[X1 := E1] ... [Xn :=En]

(E'[X1 := E1] ... [Xn := En]) extended by (Ls, <l>s, ~s)

----+ ((L',<I>') (LE', <I>E', ~E')) extended by (Ls, <l>s, ~s)

----+ (L' U Ls, <I>' U <I>s U sen(~s)) (LE'l±ILs, <I>E1 l±l<l>s, ~E'l±l~s)

E SN (L' u Ls, <I>' U <I>s U sen(~s))

SN(L', <I>') extended by (Ls, <I>s, ~s)

SNT'[Tx1 :=T11] ... [Txn:=Tnn] extended by (Ls, <I>s, ~s)

SN(T' extended by (Ls, <I>s, ~s))[Tx1 :=T11] ... [Txn:=Tnn]

SN T[Tx
1

:=T11] ... [Txn:=Tnn]

UNION. E = E' EBE". Similar to the proof of theory extension. We need to consider
four cases corresponding to the rules UNION, UNI-VARl, UNI-VAR2, and
UNI-VAR3 respectively.

REN. E = E' with p. Similar to the proofs of theory extension and union. We
need to consider two cases corresponding to the rules REN and REN-VAR
respectively .

108 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

ABS. E = functor X : T'. E" and T = Functor T x <: T'. T". Without loss of
generality, we assume X ¢.Xi for 1 ::; i ::; n. In order to prove

(functor X: T'. E")[X1 := Ei] ... [Xn :=En]

E SN(Functor Tx <: T'. T11)[Tx1 :=T11] ... [Txn:=Tnn]

SN Functor Tx <: T'. (T11 [Tx1 :=T11] ... [Txn:=Tnn])'

it is sufficient to prove

for arbitrary T P <: T' and Ep : T p· We have

((functor X: T'. E11)[X1 := Ei] ... [Xn :=En]) Ep

(functor X: T'. E11 [X1 := Ei] ... [Xn := En]) Ep

_., E11 [X1 := Ei] ... [Xn :=En] [X := Ep]·

Since r, T x <: T', X : T x f- E" : T" is in the premise, by the induction hypothe­

sis,

By lemma 4.3.4,

APP. E = E' Ep. There are two subcases corresponding to the rules APP and

APP-VAR.

(i) APP. Assumer f- E': Functor Tx <: T". T, r f- Ep: TP, and Tp <: T"
are in the premises. By the induction hypothesis,

and

4. A module system with bounded universal types - DMei 109

Thus,

(E' Ep) [X1 := E1] ... [Xn := En]

(E'[X1 := E1] ... [Xn := En]) (Ep[X1 := E1] ... [Xn := En])

E SNT[Tx
1
:=T11] ... [Txn:=Tnn][Tx:=(Tp[Tx

1
:=Tu] ... [Txn:=Tnn])] by Definition 4.3.2

SN (T[Tx:=Tp])[T x
1
:=T11] ... [T Xn:=Tnn] ·

(ii) APP-VAR. Assume ff- E': T', ff- T' <:Functor T x <: T". T, ff- Ep:
T Pl and r f- T p <: T" are in the premises. By the induction hypothesis,

and

Ep[X1 := E1]. · · [Xn :=En] E SNTp[Tx
1

:=T11] ... [Txn:=Tnn]·

By Lemma 4.2.6,

f-T'[Tx1 :=Tu] ... [Tx" := Tnn]

<: (Functor Tx <: T". T)[Tx1 :=Tu] ... [Tx" := Tnn]

Functor Tx <: T". (T[Tx1 :=Tu] ... [Tx" := TnnD·

We thus can assume

T'[Tx1 := Tn] ... [Txn := Tnn] =Functor Tx <: T~LIP" Tsub (4.1)

where f- T" <: T~up and T x <: T" f- Tsub <: (T[T x1 ·- T 11] ... [T Xn :=
TnnD·

(E' Ep)[X1 := E1] ... [Xn :=En]

(E'[X1 := E1] ... [Xn := En]) (Ep[X1 := E1] ... [Xn := En])

E SNTsub[Tx:=(Tp[Tx
1
:=Tn] ... [Txn:=Tnn])] by Definition 4.3.2

SN(T'[Tx1 :=T11] ... [Txn:=Tnn]) (Tp[Tx1 :=T11] ... [Txn:=Tnn])
by (4.1) and type evaluation

SN(T' Tp)[Tx1 :=T11] ... [Txn:=Tnn]·

Theorem 4.3.6. If f- E: T, El.

Proof. By Lemma 4.3.5, E E SN T· By Lemma 4.3.3, El.

D

D

110 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

4.4 Integration with coercion

The integration of the coercion mechanism with dependent functor types is not trivial.
The notion of theory view concerns only the relation between theories, not the way

they are constructed. However the whole idea of dependent functor types is to embed
the construction information in the functor types. Thus, a view from a dependent
functor type to another must reflect the construction information. It is at least as

complicated as the subtype relation, since the subtype relation is embedded in the
view relation. We claim that, although to find a good definition of views between the

dependent functor types is of theoretical interest, it is not of practical significance for
two reasons: (1) it makes the module system too complicated, and (2) there is little

chance for the user to use the views between dependent functor types. As a result,
we make the design decision to integrate only the theory views with DMei Core to

form DMei, which is nice and simple.
All mechanisms we need for DMei are already explained. We only need to assemble

them to form DMei.

EXPR

TYPE

MOD-CONST

TYPE-SPEC THY-SPEC

TYPE-SPEC EXPR

EXPR extended by SPEC

EXPR EB EXPR

EXPR with MAPPING

functor MOD-VAR: TYPE. EXPR

EXPR EXPR

I EXPR EXPR with view VIEW I

TYPE-CONST

TYPE-VAR

TYPE-SPEC

TYPE extended by TYPE-SPEC

TYPE + TYPE

TYPE with MAPPING

Functor TYPE-VAR<: TYPE. TYPE-VAR--> TYPE

TYPE TYPE

4. A module system with bounded universal types - DMei 111

THY-SPEC ::= (LANG, AXIOMS, THMS)

TYPE-SPEC ::= (LANG, AXIOMS)

lvrnwl \::=\ j(TYPE, TYPE, MAPPING)'

MOD-CONST ::= IDENTIFIER

TYPE-CONST ::= IDENTIFIER

MOD-VAR ::= IDENTIFIER

TYPE-VAR ::= IDENTIFIER

Rules for types. type(T) asserts that T is a type. closed(L, <I>) asserts that

lang(<I>) ~ L.

Tx <:TE f
r f- type(T x)

T = (L, <I>) closed(L, <I>)
f- type(T)

r f- type(T) r f- T <: (L, <I>) closed(L U Ls, <I> u <I>s)
r f- type(T extended by (Ls, <I>s))

r f- type(Ti) r f- type(T2)
r f- type(Ti + T2)

r f- type(T) r f- T <: (L, <I>) map(p) source (p) = L
r f- type(T with p)

r f- type(Ti) r, T x <:Ti f- type(T2)
r f- type(FunctorTx <:Ti. T2)

rt- type(Tt) rt- type(T p)
r f- type(Tf T p)

(VAR-TYPE)

(THY-TYPE)

(EXT-TYPE)

(UNION-TYPE)

(REN-TYPE)

(FUNC-TYPE)

(APP-TYPE)

112 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Rules for subtyping.

Ti= (Li,<I>i) T2 = (L2,<I>2) Li~ L2 <Pi~ <I>2

f- Ti <: T2

r f- Functor Tx <:Ti. T2 <:Functor Tx <:Tu. T22

Tx <:TE r

r f- T x <: T x

r f- Ti extended by S <: T2 extended by S

rf-Ti<:Tu rf-T2<:T22

r f- Ti + T 2 <: T 11 + T 22

r f- Ti with p <: T2 with p

r f- Ti <: T 2 r f- T p1 <: T P2

r f- Ti T Pi <: T 2 T p2

r f- Ti <:: T2 r f- T2 <: T3

r f- Ti <: T3

Tx <:TE r

r f- T x <:: T

r f- Ti <:: (L2, <I>2) S =(Ls, <I>s)

r f- Ti extended by S <:: (L2 U Ls, <I>2 U <I>s)

(S-THY)

(S-FUNC)

(S-REF)

(S-EXT)

(S-UNION)

(S-REN)

(S-APP)

(S-TRAN)

(S-VAR)

(S-VAR-EXT)

4. A module system with bounded universal types - DMei 113

r f- T1 <:: (Lu, <I>u) r f- T2 <:: (~2, <I>22)
r f- T 1 + T 2 <:: (Lu U L22, <l>u U <1>22)

r f- T1 <:: (Lu, <I>u) T2 = (~2, <1>22)
r f- T1 + T2 <:: (Lu U ~2, <I>u U <1>22)

T1 = (Lu, <I>u) ff- T2 <:: (~2, <1>22)
r f- T1 + T2 <:: (Lu U L22, <I>u U <1>22)

r f-T1 with p <:: (p(~),p(<I>2))

r f-T1 <::Functor Tx <: T2.T22 f f-Tp <: T2
r f-T1 Tp <:: T22[Tx := T2]

View derivation rules.

map(p) source(p) =Ls target(p) ~Lt
view((L5, <I>s), (Lt, <I>t), P)

View construction rules.

view((L5, <1>5), (Lt, <I>t), p) p' = lift(p)

(S-VAR-UNIONl)

(S-VAR-UNION2)

(S-VAR-UNION3)

(S-VAR-REN)

(S-VAR-APP)

I (THY-VIEW) I

I (EXT-VIEW) I

view((L51 , <l>5i), (Ltp <l>t1), P1) view((Ls2, <I>s2), (Lt2, <l>t2), P2) consist(p1' P2)
view((L51 U L52 , <l> 51 U <I>s2), (Lt1 U Lt2, <l>t1 U <l>t2), P1 U P2)

(UNI-VIEW)

view((L1, <1>1), (L2, <I>2), P1) view((L2, <I>2), (L3, <l>3), P2) /(COMP-VIEW)\
view((L1, <I>1), (L3, <l>3), P1 ° P2)

114 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Rules for typing module expressions.

X:TEf
fl-X:T

O"(C) = E r 1- E: T
fl-C:T

LT ~ L <I>T ~ (<I> U sen(~)) closed(L, <I>,~)
I- (LT, <l>T) (L, <I>, ~) : (LT, <l>T)

r 1- E: (LE, <I>E) (LE, <I>E) <: (L, <I>)
r I- (L,<I>) E: (L,<I>)

r I- E: (LE, <I>E) closed(LE u L, <I>E u <I> u sen(~))
I' I- E extended by (L, <I>, ~) : (LEU L, <I>E U <I> U sen(~))

(ASS UMP)

(CONST)

{BASIC)

{CAST)

{EXT)

r I- E: TE r I-TE <: (I}, <I>') closed(L' u L, <I>' u <I> u sen(~))
r I- E extended by (L, <I>,~) : TE extended by (L, <I> U sen(~))

{EXT-VAR)

r I- Ei : (Li, <I>i) r I- E2 : (L2, <I>2)
I' I- Ei EB E2: (Li U L2, <I>i U <I>2)

r I- Ei: Ti r I- E2: T2 r I- Ti <: (L~, <I>~) T2 = (L2, <I>2)
I' I- Ei EB E2 : Ti+ T2

r I- Ei: Ti r I- E2: T2 Ti= (Li, <I>i) r I- T2 <: (L;, <I>;)
I' I- Ei EB E2 : Ti + T 2

{UNION)

{UNI-VARl)

{UNI-VAR2)

r I- Ei : Ti r I- E2 : T2 r I- Ti <: (L~, <I>~) r I- T2 <: (L;, <I>;)
f 1-EiEB E2: Ti+ T2

{UNI-VAR3)

4. A module system with bounded universal types - DMei

r I- E: (L, <I>) map(p) source(p) = L
r \- E with p: (p(L),p(<I>))

r \- E: T r \- T <: (L', <I>') map(p)
r \- E with p : T with p

r I- functor X: Ti. E2: Functor Tx <:Ti. T2

r I- Ef: Functor Tx <:Ti. T2 r I- Ep: Tp r 1-Tp <:Ti
r I- Ef Ep: T2[Tx := Tp]

115

(REN)

(REN-VAR)

(ABS)

(APP)

r \- Ef : Tf r I- Tf <: Functor T x <: Ti· T 2 r I- Ep : T P r I- T p <: Ti
r I- Ef Ep : T f T P

(APP-VAR)

rl-Ef:Tf rl-Tf<:FunctorTx<:Ti.T2 r\-Ep: Tp view(Ti,Tp,p)
r I- Ef Ep with view (Ti, Tp, p): Tf (lift(p-i)(Tp))

I (APP-VAR-VIEW) I
The semantics of the view is defined as in §3.4.2. Consequently, the semantics of

DMei is defined in terms of DMei Core in exactly the same way as Mei is defined in
terms of Mei Core in §3.6. The following lemmas and theorem can thus be proved
using the proofs of Lemmas 3.6.1 and 3.6.2 and Theorem 4.4.3 as guides respectively.

Lemma 4.4.1. Let EE DMei be a module expression, [E] is a module expression in
DMei Core.

Lemma 4.4.2. Let EE DMei be a module expression. If r \- E : T, r \- [E] : T in

DMei Core.

Theorem 4.4.3. If\- E: T, [E]l.

http:rl-Tf<:FunctorTx<:Ti.T2

116 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

4.5 Tradeoff between Mei and DMei

As shown in §4.1, the advantage of DMei is to preserve the precise type information
during functor application. The tradeoff is a necessarily more complicated type sys­

tem, especially the subtype relation which is difficult to understand and implement.
In addition, views are only definable for theory types, not functor types. While, in
practice, the latter may not be a problem, the former is definitely not desirable.

As the designer, we prefer Mei for its simplicity. The lost type information may

be added by allowing down-casting as indicated in §4.1. This postpones some type
checking issues to the evaluation phase, which is not necessarily bad. In fact, in
DMei some evaluation issues are moved to the type checking phase by expressing
construction information in types, which, in our opinion, is just as bad as down­
casting. In order to preserve the precise type information during functor application,

we are forced to mix type checking with expression evaluation. The question is then
in which phase we should put this mixed part. Our preference is to put it in the
evaluation phase, which is in Mei. However, we should indicate that DMei has its

own theoretical interest.

4.6 A simplified module system with dependent

functor types - SDMei

4.6.1 Motivation

In §4.5, we argued that the subtype relation of DMei is too complicated for prac­
tical use. It is then desirable to simplify those rules. Looking at a functor type
Functor T x <:Ti. T2 , one observation is that Ti has a role of upper bound. In
most cases, the user is concerned with "what" it is, not "how" it is constructed. In
other words, Ti does not have to be a "dependent functor type". When we apply the

above functor to some actual parameter with type T, we need to justify that T <: Ti.
Thus, we only need subtype relations in the form of T <: Ti where T is a (possibly)
dependent type and Ti is a "simple functor type" or theory type as in Mei.

4. A module system with bounded universal types - DMei 117

4.6.2 Intuition

Note that, for a functor type Functor T x <: Ti· T 2, if there is no occurrence of T x in
T 2, it is not a dependent functor type. In other words, it is equivalent to the functor
type Ti --+ T 2 in Mei. Therefore we can abbreviate Functor T x <: Ti· T 2 as Ti --+ T 2
if there is no occurrence of T x in T 2.

Definition 4.6.1. A type Tis called simple if it is a theory type T = (L, <I>) or it is
functor type of the form T = Ti --+ T 2 where both Ti and T 2 are simple.

Note that a simple type in DMei corresponds to a type in Mei.
In order to relate a DMei type to a simple type by a subtype relation, we need to

reduce a DMei type to a simple type. The simplest way to do this is to replace all type
variables in the DMei type with the bound type of the type variable. The reduction

function, []red, is defined formally as follows. Let us assume that Tis evaluated, and
then by Corollary 4.2.3, we only need to consider two cases.

{

[Ti]red--+ [T2 [Tx := [Tdred]]red if T =Functor Tx <:Ti. T2
[T]red =

T otherwise.

Proposition 4.6.2. If 1- T is derivable in DMei Core, [T]red is simple.

Proof. By induction on compl(T), where

{

compl(T i) + compl(T 2) + 1
compl(T) =

0

if T =Functor T x <:Ti. T2

otherwise.

i.e. the number of occurrences of dependent functor type abstractions in T. D

With the help of the reduction function, we can define the subtyping rule we want
as follows. simple(T) asserts that a type T is simple.

simple(T2) [Tdred <: T2

Ti <: T2

The other subtyping rules are those for simple types as in Mei.
We can justify the above rule by showing that, if a subtype relation can be derived

by the new subtyping rules, it can also be derived by the subtyping rules of DMei.
This is formally presented later in Theorem 4.6.4.

118 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

4.6.3 SDMei Core

Syntax of SDMei Core

SDMei Core is an simplified version of DMei Core. The abstract syntax is the same
as DMei Core shown in 4.2.

Rules for types. Same as DMei Core shown in 4.2.

Rules for subtyping.

T1 = (L1,<I>1) T2 = (L2,<I>2) L1 ~ L2 <I>1 ~ <I>2
f-T1<:T2

T52 <: T51 Tt1 <: Tt2 simple(T51 , T52 , Tt11 Tt2)

Ts1 --t Tt1 <: Ts2 --t Tt2

simple(T2) [Tdred <: T2
T1 <: T2

Lemma 4.6.3. f- T <: [T]red is derivable in DMei Core.

Proof. This follows directly the Monotonicity Lemma 4.2.6.

(S-THY)

I (S-FUNC) I

I (S-DPT) I

D

Theorem 4.6.4. If f- T1 <: T2 is derivable in SDMei Core, it is also derivable in

DMei Core.

Proof. By induction on the subtyping rules defined above. For the case S-DPT, we
use Lemma 4.6.3. D

Rules for typing module expressions. Same as for DMei Core shown in 4.2.

Semantics of SDMei Core

The semantics of SDMei Core is exactly the same as that of DMei Core, since there
are no new syntactical classes introduced. The only difference is that the subtype
relation is smaller than that of DMei Core. Therefore, there are fewer well-typed

module expressions. This is not necessarily bad, as we argued in §4.6.1.

4. A module system with bounded universal types - DMei 119

The proof of the normalization property follows directly from the fact that, if a
module expression is well-typed in SDMei Core, then it is well-typed in DMei Core,
as shown in the following theorem.

Theorem 4.6.5. If f- E: T, then it is derivable in DMei Core.

Proof. Since the only difference between SDMei Core and DMei Core is their subtyp­
ing rules, this follows directly from Theorem 4.6.4. D

Corollary 4.6.6. If f- E: T, El.

4.6.4 Integration with coercion

Clearly, it is easy to extend SDMei Core by views over theory types as in DMei. How­
ever, since the subtype relation of SDMei Core is so simple, we would like to ask "Can
we integrate views for functor types as well as for theory types with SDMei Core?"
We leave this for future work.

Chapter 5

Comparison of Mei with other

module systems

We show, in this chapter, that a very simple module system like Mei can be power­
ful. We show that many modular mechanisms supported by various systems can be
implemented directly or indirectly in Mei. In particular, we investigate ML-family

module systems, the modularity mechanisms for algebraic specification languages and
MMSs (theorem provers and computer algebra systems), and an expressive language
of signatures.

5.1 ML-family module systems

As we noted in §1.3 and §1.4, an ML-family module system that supports higher-order
functors (not all dialects of ML supports higher-order functors) is similar to Mei Core,
a subsystem of Mei. In other words, every mechanism useful for an MMS that is

supported by an ML-family module system is also supported by Mei. For instance,
higher-order functors and subtyping are supported. In addition, Mei supports views
which are not supported in any ML-family module system.

There are features of some ML-family module systems that are not supported

by Mei. For instance, generative functors, modules as first-class values, and the big
theory approach. Some of them are not suitable for MMSs, such as the big theory

120

5. Comparison of Mei with other module systems 121

approach. Others are are not necessary, as discussed in § 1.1.1. Therefore they are

not included in our design goals. In addition, ML-family modules also provide a
namespace management mechanism, while in Mei renaming is used to solve name

conflicts, as stated in Remark 2.1.14.

It is worthwhile mentioning Leroy's modular module system [58], which is also
designed to be language independent as Mei. In fact, the implementation of Mei in

Chapter 7 is inspired largely by [58].

5.2 Algebraic specification languages

While most specification languages support the extension, union, and renaming oper­
ations as in Mei, they usually have a different parameterized specification mechanism.

The body of the parameterized specification is, in general, defined as an extension of
the parameter specification(s). Therefore, only one copy of the parameter occurs in
the body definition. Parameter passing is via fitting morphisms, another name for

theory views. The semantics is defined by pushouts and only first-order parameterized

specifications are supported, which can be simulated easily in Mei. Most languages
discussed in this section follow this approach. Many specification languages support
their own modular mechanisms other than those stated above. Some of them are not
supported directly in Mei. However, most of them can be implemented in Mei in a

different way.
It is also worth indicating that R. Jimemez and F. Orejas presented a framework in

which the body of the parameterized theory is defined as an arbitrary expression over

the parameter, including >.-abstraction and application [54]. As in Mei, it supports
higher-order parameterized specifications with a fitting morphism style parameter
passing mechanism. However, its ,6-reduction is not properly defined, making its
semantics not operational, as fully discussed in 5.2.4.

5.2.1 Maude

Maude [19, 31, 32, 33] is a specification language based on a rewriting logic. Modules
are the basic building blocks of Maude. A module consists of sorts, operators on these

sorts, and equations (axioms) specifying how they interact. Effectively a module in
Maude defines the initial algebra specified by its axioms. In other words, the carrier
set only consists of the generated terms and these terms are distinct. "Theory" in

122 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Maude is a notion similar to module. The only difference is that theories have loose

semantics, i.e. there is no additional constraint other than the equations specified.
While the distinction between initial and loose semantics is necessary for equational

logic systems, it is not necessary for the higher-order logic systems, since induction
principles can be employed to make the distinction. As in many other languages, the

basic services for module hierarchies are module importing, summation importing,
and module renaming. There are three different modes of importation: protecting,

extending, and including. These modes put semantic constraints on the inclusion rela­
tion between submodules and supermodules, but they are the user's promises and are

not checked and discharged by the system. "protecting" means that the imported
module is not changed in anyway, intuitively no junk or confusion is added. Thus
the importing module is a conservative extension of the imported module. "Junk"

means that new terms are added to the carrier set. "Confusion" means that distinct

terms in the imported module are identified in the importing module. "extending"
means that junk is allowed, but not confusion. This allows new elements to be added,
whereas the predefined data remains unchanged. "including" is the most general

form with only a few requirements; for example "protecting" and "extending" im­
portation are not destroyed down the hierarchy. Again, this mechanism is necessary

for the equational logic systems, not higher-order logic systems.

The most powerful modular mechanism of Maude is parameterized modules. Pa­
rameterized theories and parameterized views are two novel parametric mechanisms

of Maude.

Parameterized modules. A parameterized module takes a module as input and

returns a module as output, similar to a first-order functor in Mei. For example,

(fmod SET(X: :TRIV) is

sorts Set(X) NeSet(X) .

endf m)

defines a module SET parameterized by a theory TRIV.

A theory is used to declare the interface of a parameterized module. This is the
reason that a theory has loose semantics. For example, the interface theory TRIV can

be defined as follows:

(fth TRIV is

sort Elt

endfth)

5. Comparison of Mei with other module systems 123

A view is a named theory interpretation from a (source) theory to a (target)
module that specifies how the target module satisfies the source theory. It is used as
the parameter passing mechanism for the instantiation of a parameterized module.
Similarly as in Mei, whether a view is indeed an interpretation is not checked by
Maude. For example,

(view Int from TRIV to INT is

sort Elt to Int .

endv)

defines a view named Int from the generic theory TRIV to the concrete module INT.

It can then be used to instantiate the parameterized module SET (X: : TRIV) to obtain
a concrete module for a set of integers as in: SET(Int).

Parameterized views. While a module can be built by instantiating a parame­
terized module with a view, there are cases where users want to build a new param­
eterized module from existing parameterized modules. This is achieved in Maude as
parameterized views and instantiations of parameterized modules with parameterized
views. For instance, LIST (X: : TRIV) and SET (X: : TRIV) are two parameterized mod­
ules. Suppose we want to build a parameterized module LIST-SET(X: :TRIV) from
them. We can define a parameterized view named Set as follows:

(view Set(X::TRIV) from TRIV to SET(X) is

sort Elt to Set(X) .

endv)

LIST(Set), an instantiation of List with the view Set, is then a parameterized
module of lists of sets of elements. It can be instantiated by modules like NAT. As
shown in Figure 5.1, a structured module is used in the instantiation and the structural
information of the parameter module is kept. In fact, this is a composition of two
parameterized modules in the sense that an application of SET is fed to LIST with
the view Set.

This can be simulated in Mei as follows. Let LIST : TRIV ~ LIST and SET :
TRIV ~SET be functors. Define

LIST-SET::= functor X: TRIV. LIST (SET X with view V),

where V is a view similar to the view Set in Maude. By a little abuse of notation,
LIST-SET= LIST o SET, the composition of List and Set. Clearly LIST-SET func­
tions in the same way as LIST(Set).

124 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

LIST(Set)

Nat

embedding

eni>edding

>------

-----------ernbeckjing I

I

- - - - L

.-ng

>---------------------

Figure 5 .1: Instantiation by parameterized view

J

In addition, there is a notion of instantiation of parameterized views with views in
Maude. For instance, Set(Nat), an instantiation of the parameterized view Set with
the view Nat, is a view from TRIV to SET(Nat), a set of natural numbers. As seen
in Figure 5.2, this is a composition of the view Set with a view from SET(X::TRIV)
to SET(Nat), which is a view lifted from Nat. It can then be simulated in Mei by
the view composition and view lifting mechanisms. In other word, an instantiation
of parameterized views is indeed a view composition.

Parameterized theories. Maude also supports a notion of a parameterized the­
ory, i.e. a theory that is parameterized by another (possibly parameterized) theory.
For instance, we can define LIST (X: : SET (Y: : TRIV)), where SET (Y: : TRIV) is a pa­
rameterized theory. Let FIN SET (Y: : TRIV) be a parameterized module of finite sets.
Then

(view FinSet(X: :TRIV) from SET(X) to FINSET(X) is
sort Set(X) to FinSet(X) .

endv)
is a parameterized view named FinSet. LIST(FinSet) is then a parameterized mod-

5. Comparison of Mei with other module systems

,---------- - -,

Set(Nat)

Nat

' ' \

I
embedding

\
I
I
I

Set(Nat) I

I I I
I

I I I

0
1 /

I
embedding embedding

>- - - - - - >- - -:- - -

LIST(Xo:TAIV)

Figure 5.2: Parameterized view instantiation

125

ule of lists of finite sets of elements and it can be instantiated by modules like NAT as
illustrated in Figure 5.3.

Note that LIST is not a higher-order parameterized module. Only modules can
be used to instantiate it, not parameterized modules. The instantiation of LIST is
enforced to be a parameterized module composition, since FinSet must be a parame­
terized view. In other words, a module parameterized by a parameterized theory can
only be used to compose with other modules, and the parameterized theory specifies
the class of modules with which it can be composed.

Parameterized theories correspond to a type (T 1 -+ T 2) T 1 that does not exist in
Mei. It specifies a class of expressions that have to be derived from functor applica­
tions. For instance, let F: T 1 -+ T 2 and X: T1, then (F X) is of type (T1 -+ T2) T1.

(F X) can then be used to instantiate a functor G: ((T1 -+ T2) T1)-+ T3 . In Maude
G is only used to compose with F as in the following context:

H= functor X: T1 . G (FX) = GoF

126 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

8 >---·-__ · g-- SET(Yo:TRIV)
embedding

FmSet

Figure 5.3: Instantiation of modules parameterized by parameterized theory

Parameterized theories also provide a simple sharing mechanism, e.g. there is one
copy of SET in any instantiation of MOD(X::LIST(Z::SET),Y::STACK(Z::SET)), but
two copies in one of MOD(X::LIST(Zl::SET),Y::STACK(Z2::SET)).

The new type is not necessary in Mei: (1) Declaring G : T 2 ---+ T 3 does not prevent
us from composing G with F. There is no need to make the restriction that G can only
be used to compose with F: Ti---+ T2 for some fixed Ti. (2) Sharing is expressed by
naming in Mei, i.e. the same name refers to the same object within a theory. (3) The
new type complicates the type system. For example, H defined above will be typed
Ti---+ ((((Ti---+ T2) Ti)---+ T3) ((Ti---+ T2) Ti)), which is hard to comprehend.

5.2.2 Specware

Specware [90] has a novel module system. It follows closely a category-theoretic ap­
proach. Specware supports mainly three specification structuring mechanisms: trans­
lation, importation, and a powerful colimit operation over diagrams. Translation and
importation are the same as our renaming and extension respectively. The colimit

5. Comparison of Mei with other module systems 127

operation over diagrams is the core modular mechanism of Specware. Although most
algebraic specification languages use the notion of a colimit to define the semantics,
very few of them directly support the colimit operation as in Specware.

A diagram is a directed multigraph where specifications are nodes and morphisms
are edges. A colimit of a diagram is a specification constructed by first taking the
disjoint union of the node specifications and then building the quotient from the

equivalence relations induced by the morphisms. The composition of specifications
is then constructed by building a diagram and calculating its colimit. For instance,

a parameterized specification can be seen as a diagram consisting of two nodes, the
actual parameter specification and the parameterized specification, and one edge,

the morphism between them. The instantiation of a parameterized specification is a
diagram obtained by expanding the diagram for the parameterized specification by a
node for the actual parameter specification and an edge for the corresponding fitting
morphism. The semantics of an instantiation is then defined as the colimit of the

appropriate diagram.

The current version of Specware supports a notion of substitution, which is similar

to parameterized specification. Instead of fixing the parameter, any subspecification
in the importation hierarchy can be used as the formal parameter. The formal pa­
rameter actually used for instantiation is determined by the fitting morphism, i.e.
its source specification. To make it more practical, it is necessary to build a more
sophisticated mechanism of parameterized specifications on top of the colimit mech­
anism. In fact, the parameterized theories and parameterized views in Maude can be
translated directly to diagram constructions, as shown in [33].

In one sense, the colimit operation is more general than the parametric mechanism
in Mei, since the colimit is defined over arbitrary diagrams that may not be repre­
sentable in Mei. In another sense, the parametric mechanism in Mei is more general,
since it supports higher-order functors, which do not have a counterpart in Specware.
In addition, functors in Mei may contain multiple copies of the parameter theory
along different morphisms. The semantics of functor instantiations is then akin to
the multiple pushouts in [71], which may not be expressed by the colimit operator.
One particular drawback of Specware is that a solid category theory background is

required in order to use it.

128 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

5.2.3 CASL

CASL [3, 4, 7, 48] is an algebraic specification language based on partial first-order
logic. A basic specification consists of a signature E and a set of sentences (axioms or

constraints) over E. A signature declares a set S of sorts, sets T Fw,s and P Fw,s of total
function symbols and partial function symbols respectively, and a set P w of predicate
symbols, where w is a sequence of argument sorts and s is a result sort, called function

and predicate profiles respectively. Signatures are related by a signature morphism:

(S, T F, PF, P) ---+ (S', T F', PF', P'), which consists of a mapping from S to S', and,
for each profile, a mapping between the corresponding sets of function and predicate
symbols respectively [3].

CASL provides a number of mechanisms for structuring specifications, summarized
as follows [48].

• Translation: SP with SM.

This is a renaming mechanism and SM is a symbol mapping. The signature E

given by SP and symbol mapping SM together determine a new signature E'
and a morphism from E to E'.

• Reductions: SP hide SL and SP reveal SM.

In the case of a hiding reduction, the signature E' determined by the signature

E given by SP and the set of symbols listed by SL is the largest subsignature
of E that does not contain any of the listed symbols. Note that hiding a sort

entails hiding all the operations and predicate symbols whose profiles involve
that sort.

In the case of a revealing reduction, the signature E' determined by the sig­
nature E given by SP and the set of symbols mapped by SM is the smallest
subsignature of E that contains all of the listed symbols. Note that revealing an
operation or predicate symbol entails revealing the sorts involved in its profile.

• Union: SP1 and ... and SPn.
The signature of the union is obtained by the ordinary union of the Ei (not
their disjoint union). Thus all (non-localized) occurrences of a symbol in the

SPi are interpreted uniformly. If the same name is declared both as a total
and as a partial operation with the same profile (in different signatures), the
operation becomes total in the union.

• Extension: SP1 then ... then SP n·

SP1 determines an extension from the local environment to a complete signature

5. Comparison of Mei with other module systems 129

L'i. For i = 2, ... , n each SPi determines an extension from Ei-1 to a complete
signature Ei. The signature determined by the entire extension is then En.

• Local specification: local SP1 within SP2 .

This is equivalent to: {SP1 then SP2 } hide SYi, ... , SYn,
where SY1 , ... , SYn are all the symbols declared by SP1 that are not already

in the current local environment.The hiding must not affect symbols that are

declared only in SP2.

• Named specification with parameters:
spec SN [SP1] ... [SPn] given SPr, .. ., SP':n = SP end.

This defines the name SN to refer to a generic specification with respect to a

(possibly empty) list of parameters SP1 , ... , SPn. SP~, ... , SP':n is a (possibly
empty) list of import specifications. The generic specification SP' is essentially
the union of imported specifications extended by the union of parameter speci­

fications, extended by the body SP:

{SPr and ... and SP':n} then {SP1 and ... and SPn} then SP
The generic specification can be instantiated as SN[FA1] ... [FAnJ, where FAi is

a fitting argument: SP~ fit SMi· Each FAi determines a fitting morphism
from SPi to SP~. The fitting argument morphism has to be the identity on
all symbols declared by SPr, ... , SP':n. Lifting the fitting morphisms FAi, ... ,
FAn yields a morphism FM applicable to SP'. The instantiated specification

SN[FA1] ... [FAn] is:
{SP' with FM} and SP~ and ... and SP~.

The instantiation is a push-out of the body and argument signatures. Param­
eter matching may also be achieved by (explicit) use of named views between
the parameter and argument specifications.

• View: view VN [SP1] ... [SPn] given SPr, ... , SP':n : SP to SP'= SM end
This defines, according to a symbol mapping SM, a morphism from SP to a
parameterized specification which has a body SP', a list of parameters SP1 ,

... , SPn, and a set of imports sPr, ... , SP':n. Therefore the same view can be
instantiated with different fitting arguments, giving compositions of the mor­
phism defined by the view with other fitting morphisms. Note that the source
SP of the view is not in the scope of the view parameters SPi, ... , SPn, and
view instantiation affects only the target of the generic view.

Most of these operations have their counterparts in Mei except for the specification

130 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

reductions, local specifications, and parameterized views.

(1) Specification reductions hide auxiliary information, which has the same function­
ality of up-casting in Mei, i.e. casting a theory to its supertype. The supertype

effectively shows the revealing part. Reductions can then be implemented in

terms of up-casting.

(2) Since local specification can be implemented on top of reduction, they can be

then implemented on top of upcasts.

(3) A view in CASL is a restricted version of a parameterized view in Maude, in that
(a) the parameter specification occurs only in the target specification, (b) the

parameter specification is not parameterized, and (c) the parameterized view
has to be instantiated when it is referred. Hence they can be implemented by

view compositions and view lifting in Mei, as shown in 5.2.1.

5.2.4 An algebraic framework for higher-order modules.

The module system [54] proposed by Jimemez and Orejas is the system closest to our
system. The major goal of this system is to integrate the >.-calculus style higher-order

modules and the flexible fitting morphism style parameter passing. In contrast to our
coercion approach, they adopt the pushout (in fact multiple pushout) style semantics

for the instantiation of the parameterized specifications, and generalize the idea to
account for higher-order modules.

A category, MSpec, is introduced to denote parameterized specifications. The
category Spec of basic specifications is a full subcategory of MSpec. The objects in

MSpec are either objects in Spec or triples (IMP, RES, F). IMP and RES are both
objects in MSpec. Fis a morphism from IMP to RES showing how IMP is used to
build RES. Note that an object in MSpec has two roles, as a specification and as a
type of specifications. IMP and RES are roughly the argument type and the result

type of a parameterized specification. Since (IMP, RES, F) is an object in MSpec, it
can be used as a type in defining other objects in MSpec. The morphisms between
objects in Spec are exactly morphisms in Spec. A morphism h: (IMP, RES, F) ----*

(IMP', RES', F') is a pair (h1 , h2), where h1 : IMP' ----* IMP and h2 : RES ----*

RES'. This is very similar to our definition of a view. One more restriction on a
higher-order morphism is that it must respect F and F', in the sense that RES' is
built from IMP' (expressed by F') following exactly the same way that RES is built

5. Comparison of Mei with other module systems 131

from IMP (expressed by F). A notion of instantiation is then defined over MSpec.
Given MSPact and MSP = (MSPl, MSP2, F/ in MSpec, the result of the instantiation
of MSP by MSPact via his a parameterized specification MSPres = MSP(MSPact)h
and a specification morphism h': MSP2 ~ MSPres·

A class of specification expressions, including >.-abstraction, application, and mor­
phism expressions, are then defined. A denotational semantics of the expressions is

defined in terms of MSpec. In particular, the semantics of application is defined via
the instantiation of parameterized specifications.

A notion of substitution is defined for the specification expressions, followed by a

definition of ,8-reduction, giving an operational semantics for the specification expres­
sion. The substitution is more general in the sense that the component specification
expressions, as well as the component morphism expressions involved, need to be
handled properly. By systematically manipulating the substitution of both specifica­

tion and morphism expressions, there is no need to coerce the parameter specification
before the instantiation of the parameterized specifications. This is the major contri­
bution of this work.

The operational semantics is proved to be correct with respect to the denotational

semantics. However, it is not completely operational for two main reasons:

(1) The substitution of a specification expression is defined in terms of the substitu­
tion of its component expressions, both specification and morphism expressions.
While the denotational semantics of the substitution of morphism expressions
is defined in terms of MSpec, its operational semantics is not defined. In other
words, the operational semantics of a specification expression is defined in terms
of the operational semantics of its component specifications and the denotational
semantics of its component morphisms. This makes the substitution of specifi­

cation expressions not operational. As a result, ,8-reduction is not operational.

We believe that the operational semantics of a specification expression should
be defined in terms of the operational semantics of its component specifications

and the operational semantics of its component morphisms. As a result, the
substitution function of a specification expression should return two values,
a specification expression and a morphism expression, that show the relation
between the expressions before and after the substitution, as in the definition
of instantiations for MSpec. Therefore, we might need to define substitution
functions for both specification expressions and morphism expressions mutually.

(2) Although it is declared that a specification expression of sort Spec can have com-

132 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

ponent expressions in MSpec, e.g. applications of parameterized specifications,
the substitution function of specification expressions is only defined for those

specification expressions of sort Spec whose components are in Spec. The sub­

stitution function is defined in terms of an unspecified function assign, which is
only defined over Spec. In other words, the substitution function will halt once
a specification expression of sort Spec is encountered, even though it may have
component expressions in MSpec.

The assign function is not fully specified in [54]; therefore there is no way

to justify its correctness. However, we can conclude that, since assign is not
defined in terms of the substitutions of its component expressions, ,6-reduction

is not operational. We believe that an explicit definition of the assign function,

mutually defined with the substitution function, is needed in order to give an

operational semantics, i.e. ,6-reduction.

Hence, the operational semantics does not provide an obvious guideline for the imple­
mentation. A complete operational semantics should define the assign function and

the substitution functions for specification and morphism mutually, which would be
much more complicated than the current definition. This added complexity is another
drawback of this system, making it both hard to understand and hard to implement.

In addition, using a (parameterized) specification in MSpec as the argument type

in defining another specification might possibly expose more information than we
want. In case the parameter itself is a parameterized specification, the fitting mor­
phism has to respect its argument and result specifications as well as the the morphism
from the argument to the result. This extra restriction is not an accident. However,

there are cases in which we do not want to show how the result specification is con­
structed from the argument specification in the type. Therefore all the parameterized
specifications with the right argument specification and result specification, regard­
less of how they are constructed, can be used as the actual parameter matching that

type. This case is not allowed in [54].
Nevertheless, we are in favour of our approach from the user's point, as shown in

the following example. Assume that we are defining a module expression "E extended

by S", where E is a complicated expression possibly containing functor applications.

Following our approach, we can figure out the set of symbols we can use in defining S
by the type of E. Following the approach in [54], we are forced to evaluate E in order

to figure out the set of symbols. In the presence of higher-order functors, evaluation
can be quite costly, while the type of Eis much easier to compute. On the other hand,
our approach can be seen as an instance of their approach where we fix the language

5. Comparison of Mei with other module systems 133

of the pushout to be an extension of that of the result type, i.e. derived from that of
the argument type instead of the parameter. However the structure of the parameter

is kept during coercion.

5.3 Theorem provers

We will see in this section that the modular mechanisms of theorem provers are weak,

making them the right application area for Mei. We will focus on the parametric
modular mechanisms in theorem provers.

In addition to the modularity mechanisms supported by Mei, we also discuss the

support of theory interpretation. Although a theory view in Mei is not necessary
a theory interpretation, it is intended to represent a theory interpretation. When
integrating Mei with a theorem prover, it is nicer when Mei can send a request to the

theorem prover to verify that a theory view is indeed a theory interpretation. Thus
it is important for a theorem prover to support a sophisticated theory interpretation
mechanism. In addition to being used as a parameter passing mechanism, a theory
interpretation helps a user to exploit a theory, i.e. prove more theorems, by reusing

the theorems developed in the other theories (contexts). It is worthwhile discussing
theory interpretations in both roles.

5.3.1 IMPS

IMPS is an interactive theorem prover designed to support mathematical reason­
ing [36, 37, 38]. Two of its key concepts are little theories and theory interpretation.
Theories are at least as important as their component theorems in IMPS. The activi­

ties of IMPS can be seen as creating, developing, and linking theories. Full discussions
of the little theories approach and theory interpretation can be found in [34, 38]. The
definition of theory interpretation in section 3.4. l is directly derived from IMPS.

An IMPS theory is constructed from a (possibly empty) set of subtheories, a

language, and a set of axioms. The subtheory relation and theory interpretation are
ways to relate theories. A theory hierarchy can then be constructed via the subtheory
relation. For instance, a theory of monoids is a subtheory of a theory of groups. In
Mei, this is expressed by the union and extension operations.

In IMPS, all theories are generic and defined over arbitrary types. They can be

instantiated in a polymorphic manner via an explicitly defined theory interpretation.

134 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

This is similar to the parameterized theories in the algebraic specification languages
and first-order functor in Mei, as shown in Figure 5.4.

translation by

lifted interpretation

theory

interpretation

parameter
theory

Figure 5.4: IMPS Parameterized Theory Application

parameter
theory

The major differences are : (1) In IMPS, there is no separate notion of param­
eterized theory. The subtheory used as the interface is identified at the time of
instantiation by building an interpretation from it to the actual parameter theory,
i.e. the target theory of the interpretation as in Specware. (2) Only one occurrence
of a subtheory can be replaced for each instantiation.

On the one hand, our parameterized theories in Mei are more general than generic
theories in IMPS, since we support high-order functors. On the other hand, they are
not as flexible, since the formal parameter theory is fixed, and hence can be instanti­
ated for fewer actual parameters. We consider this inflexibility as an advantage of our
approach. It gives more information about the intension of functors, and therefore,
is easier to use.

Beside being used as the parameter passing mechanism, an explicit interpretation
mechanism as in IMPS is very strong, flexible, and applicable in many circumstances.
For instance, theorems proved in an abstract theory can be used in any concrete
context via a theory interpretation. The advantages of this approach are: (i) prop­
erties of the abstract theory are proved once and for all; (ii) properties can be stated
neatly in that context and information is isolated by the abstraction. A special use
of this approach is an interpretation from an abstract theory to itself which sup-

5. Comparison of Mei with other module systems 135

ports symmetry and duality arguments in an automatic way. Rather than helping to
build new theories from existing ones, this kind of use of the theory interpretations
effectively links the theories and helps to exploit them further by using theorems de­

veloped under related contexts (theories). While our concerns is "How to construct
new modules", IMPS is concerned with another issue of a module system, "How to
link existing modules".

5.3.2 PVS

PVS stands for Prototype Verification System [72, 73, 7 4, 88]. It is an environment

for specification and verification. A PVS specification is a collection of theories. A

PVS theory consists of a theory name, a list of formal parameters, an export part,
an assumption part, and a theory body. The theory body is the main part of the
theory, consisting of top-level importations, axioms, and theorems. Exporting is a
mechanism to hide some names declared in the current theory, and it can be simulated
by up-casting in Mei as shown in §5.2.3. The assumption part gives constraints over

the current theory, which have to hold for any instance of the theory. Internally,
the assumptions are the same as axioms. Externally, they generate obligations which
must be proved for each import of the theory [72, 74]. The importation mechanism is
similar to that of IMPS and hence can be expressed by union and extension in Mei.

What we called "parameterized theories" are termed theories as parameter in
PVS [73]. They are roughly first-order functors in Mei.

group_b.omomorphism[Gl, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(£): bool FORALL x, y: f(x o y) f(x) o f(y)

END group_b.omomorphism

Symbol names are qualified by the theory names, i.e. we will have (unlike the case in
Mei) that G1. G i- G2. G. Effectively, two copies of the group theory are parameters
of the generic theory group_b.omomorphism. Theory interpretations are used as pa­
rameter passing mechanisms. Two different theory interpretations can be provided

to instantiate the theory group_b.omomorphism.

136 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Parameterized theories and theory interpretations. PVS provides two no­
tions related to theory interpretation: parameterized theory and explicit theory inter­
pretation [73].

A parameterized theory in PVS is parameterized by generic types and constants
specified in the formal parameter list. A generic type parameter is an uninterpreted
type. Axioms are simulated by the assumptions over these formal parameters. This

provides a way of presenting abstract theories. For example, an abstract theory of

groups is defined as follows:

group[G: TYPE, o · [G, G -> G], e: G, inv: [G -> G]]: THEORY

BEGIN

ASSUMING

a,b,c: VARG

associativity ASSUMPTION a o (b o c) (a o b) o c

ENDASSUMING

left cancellation THEOREM ...

END group
An instance of a group can be imported by providing all actual parameters of

group theory corresponding to the formal parameters, like group [int, +, 0, -] .

This actually supplies a translation from the abstract (source) theory to the concrete
(target) theory. The assumptions are then checked to generate TCCs (type correct­
ness conditions) which are essentially proof obligations. Once the TCCs are proved,

an interpretation is constructed and all interpreted theorems of the abstract group
theory are available in the (target) theory importing it.

The explicit interpretation mechanism resembles much of its theory parameteriza­
tions mechanism, with axioms replacing the corresponding assumptions. An explicit
mapping is specified for uninterpreted types and constants of the source theory into
the current theory. The interpreted theorems are considered proved and available for
use if they are proved in the abstract theory. The group example above can then be

reformalized as follows:

group: THEORY

BEGIN
G: TYPE
o: [G, G -> G]

5. Comparison of Mei with other module systems 137

associativity AXIOM FORALL a, b, c: a o (b o c) (a o b) o c

END group

The interpretation can then be used in the context when the group theory is imported.

IMPORTING group{{G := int, o := +, e := 0, inv := -}}

5.3.3 Isabelle

Isabelle [56, 70] is a generic theorem prover which supports user-defined logics. The

primitive theory system of Isabelle provides only a theory importation mechanism,

which can be expressed in Mei by the union and extension operations. Although
L. Paulson [76] proposed and D. Aspinall [2] implemented an ML-family module
system for Isabelle, it does not seem to be an official part of the current Isabelle

distribution. In addition, Isabelle's meta-logic is a higher-order constructive logic
with II and E types in which dependent records can be modeled. Modules can
then be represented as dependent records [22]. Since modules are first-class citizens,
functors are then functions over dependent record types. This will resemble the ML­
family module systems. However, no module system based on dependent records is

implemented in the current Isabelle distribution.

Axiomatic type classes and locales. Isabelle provides two other notions: ax­

iomatic type classes [96] and locales [6], for modular development of theories. Both
are intended to resolve the tension between theory reuse and the concise expression of
theorems, where the former desires minimal context but the latter asks for maximal
context. This is exactly the purpose of theory interpretations.

An axiomatic type class in Isabelle is similar to a type class in Haskell [27], a

functional programming language. A user can declare polymorphic constants over
types in a particular type class and assert axioms about these constants. Conse­
quently, theorems can be proved over these constants and types in this type class,
and can be reused within any types in this particular type class. In order to use the
theorems proved for a type class at a particular type, we need to prove that this type
is an instance of the type class. A mapping needs to be constructed to connect the
polymorphic constants declared in a type class (abstract theory) with a concrete ex­
pression over this particular type, which is essentially a translation from the abstract

138 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

theory to the concrete theory. Then all axioms asserted for the type class need proofs
with respect to the mapping in the context of the concrete type. This is exactly the

same as proving the obligations generated by an interpretation. However, there is
no syntactic mapping. That is, the fixed constants in the axiomatic class are the
same as those used the special type, although their definitions are not the same in

different concrete types. Similarly the theorems proved for the axiomatic class are

syntactically identical over all types in that class, although their meanings differ. In

particular, if some fixed constants in the axiomatic class are already defined in the
special type for other usage, there is no easy way to resolve the name conflict. This

significantly restricts the use of axiomatic classes. In addition, axiomatic type classes
currently relate to one type only, so that parameterisation involving multiple types is

not possible [77].

A locale is a device to isolate an environment for theorem development and theo­
rem reuse. A locale represents a theory. Within a locale, constants of the theory are

fixed and axioms are assumed. Consequently, theorems of the theory are expressed
over the constants and proved with respect to the axioms. Outside the locale, prim­
itive constants of the theory are parameters, and axioms are assumptions about the
formal parameters. Every locale effectively defines a predicate over parameters, which

encodes axioms. Then theorems of the locale can be exported to the outside world
with the defined predicate embedded as an assumption. The exported theorems are
generic, in that they can be applied to any concrete structure if we can show that
the predicate is true over the actual parameters. The matching of formal parameters
and actual parameters is indeed an interpretation (translation) and the predicate over
actual parameters is the encoding of the generated proof obligations in terms of IMPS
terminology. This is an advantage of locales over axiomatic type classes.

Locales can be imported, renamed, and merged. Effectively, locales are variants of
theory interpretations similar to the parameterized theory and theory interpretation
mechanism in PVS. Opening a locale in Isabelle is then the same as importing an
instantiation of a parameterized theory or importing an abstract theory with an
interpretation in PVS. However, the generic theorems exported by a locale can be
used individually without opening the locale, since the predicates embedded in the

theorems explicitly specify the language and axioms of the locale. Conceptually,
locales can replace Isabelle theories since they possesses all functionalities of theories.
Locale expressions provide a more flexible way for combining locales than theory
constructions, in particular locales can be renamed and merged. This is similar to

the theory operations in Mei. However, neither generic locales nor generic theories,

5. Comparison of Mei with other module systems 139

in the sense of functors, is supported in Isabelle [6].

5.3.4 Coq

Coq [63] is a theorem prover based on the Curry-Howard correspondence. Stating a
theorem is writing a well-formed type, and proving this theorem is finding a term of

that type. Consequently, proof checking is reduced to type checking. Although Coq's
logic is strong enough to formalize a module system as dependently typed records,
J. Chrzkszcz [17, 18] implemented a stratified ML-family module system following

Leroy's manifest type approach [57]. The basic module expressions include struc­

ture, signature, (higher-order) functor, and functor signature. Modules (structures)
group together related concepts, and higher-order modules (functors) provide module
abstraction. Structures, signatures, functors, and functor signatures correspond to

theories, theory types, functors, and functor types in Mei respectively.

Coq supports an importing mechanism akin to that of PVS. Whereas the import­
ing relation is transitive, the visibility is not. Considering the case that module M

imports module N and module N in turns imports module R, then N and R are respec­
tively visible in M and N, whereas R is not automatically visible in M. Using Require

Export R in module N makes it visible in M [63].

The module system of Coq is similar to Mei Core, except for its support of translu­
cent types. The major advantage of Mei over Coq's module system is the fitting mor­
phism style parameter passing mechanism, which allows modules defined in different
languages to instantiate a functor, as long as the modules share the same structure
with the formal parameter of the functor.

5.3.5 Automath

Automath [10, 11] is a language for expressing entire mathematical theories in such
a way that the their correctness can be verified by a computer system, e.g. a theorem
prover. Same as in Coq, Automath employs the Curry-Howard correspondence. Thus
stating a theorem is writing a well-formed type and proving this theorem is finding

a term whose type corresponds to the theorem in question. The major modularity
mechanisms of Automath are books and telescopes.

Mathematical knowledge is organized as Automath books1 . An Automath book

1 Most of this subsection about Automath is taken from [100].

140 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

consists of a sequence of lines. There are three kinds of lines:

(I) Context line.

A context line introduces a set of variables with certain types or satisfying

certain assumptions. Note that dependencies may happen here, in the sense

that Fi may employ a1, ... , ai-1·

(2) Definition line.

a1: F1, ... , an: Fn f- C := E: F

This introduces either a constant C of type F with the definition E, or a theorem
C where F is the sentence of C and E is one of its proofs.

(3) Primitive notion line.

a1 : Fi, ... , an: Fn f- C :=prim: F

This introduces either a primitive constant of type For an axiom (i.e. a sentence
with a primitive proof).

Essentially a book is a Mei theory. However contexts of different books are not related.
Theorems in different books have to be proved from their own contexts even though
they are essentially the same theorem. To deal with this problem, Automath uses the
notion of telescopes. A telescope encodes a context as follows:

For example a telescope representing a theory of groups is:

[99 : Type][e : 99][0 : 992
---+ 99][-l : 99 ---+ 99][p : Axiomgroup],

where Axiomgroup is the conjunction of the axioms for a theory of groups. A telescope
defines a "type". A sequence of values (v1 , ... , vn) fits a telescope if

V1: F1, ... ,and an: Fn.

As stated in [100], a telescope functions like a dependent record type [20]. The
idea behind telescopes is very similar to the idea behind Isabelle's locales. Both are
intended to solve the problem of theory reuse (which is closely related to generic
mechanisms like Mei's functors). The predicate induced by a locale can be seen as a
function whose argument type is a dependent record type which is indeed a telescope.

Roughly speaking a book can be seen as a theory, and a telescope as a theory type
in Mei.

5. Comparison of Mei with other module systems 141

5.4 Computer algebra systems

The modularity mechanisms of computer algebra systems are diverse. Some, like
Mathematica, only support preliminary modularity mechanisms. Others support

first-order parameterized modules under different terminologies. Since computation
is emphasized rather than theorem proving, theory interpretation is not employed.
Therefore, some kind of type matching is used for parameter passings.

5.4.1 Maple

Maple [67, 68] is a computer algebra system that combines a programming language
with an interface that handles mathematical expressions in traditional mathematical

notation. Maple is interactive and the programming language is interpreted and
dynamically typed.

The major modular mechanism of is Maple modules [68]. The following is a simple
Maple module:

module()
export el;
local a, b;
global message;
a := 2;

end module
A Maple module encapsulates a group of reusable variables and Maple commands.

Local variables are not visible outside the definition of the module in which they
occur [68]. The difference between global variables and exported local variables is
that exported local variables have to be accessed by using the : - member selection
operator. A Maple module is very similar to a Maple procedure. While a Maple

module has only one instance when it is loaded and exists until it is unloaded, a
Maple procedure can be called multiple times creating multiple instances, since local
variables of a Maple procedure can exist after the termination of the procedure.

Maple modules are used in various ways to model Pascal-style records, packages,
objects, as well as generic programming.

• A Pascal-style record is simulated by a module containing only exported local
variables. Syntactic sugar is provided so that the users can use Pascal-style
record syntax.

142 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

• Maple modules can be use to create a Maple package which is a collection of
procedures and other data that can be treated a whole. This is the typical

use of Maple modules. Maple modules and Maple packages are distinguished.

Maple packages can also be created by using tables which is not of our concern.

• Maple modules can be used to simulate objects with both state and behaviour.
The state of an object is represented by the local and exported local variables.

A constructor is simulated by wrapping a module with a procedure with certain
parameters. This is also called a parameterized module in Maple.

MakeComplex

module()

proc(real, imag)

description "a complex number";

export re, im, abs, arg;

re () -> real;

end module

end proc:

The value of the last statement within the procedure is returned as the value
of a procedure call. For example, MakeComplex (4, 5) returns a Maple module
representing a complex number. By wrapping a Maple module with a procedure,
we can have multiple instances of a Maple module with different states. This

essentially simulates objects where the Maple module is a class and a procedure
call of the constructor (the wrapping procedure) creates an object of that class.

• By supporting the notion of interfaces, Maple also supports generic program­
ming. A Maple interface is a sequence of symbols. For example, a Maple
interface for a ring can be written as

'\type/Ring\' := ' 'module' (

'+'::procedure,

zero, one

) ' :

5. Comparison of Mei with other module systems 143

A generic procedure can be defined as follows:

calRing proc (R: : Ring)

end proc:

A generic object constructor can be defined similarly.

newModule proc (R: :Ring)

module()

end module

end proc:

The Maple module defined within newModule can use symbols declared in the
type Ring to define new mechanisms. When newModule is applied to a Maple
module that is an instance of type Ring, a concrete instance of the Maple module
defined within newModule will be created.

While Maple provides several interesting use of Maple modules, the last use,
generic object constructors, is the most interesting one. This essentially simulates
Mei's first-order functors with the help of Maple procedures. The major difference is

that Maple's generic object constructors are generative functors that create incom­
patible instances of modules with states. Unlike Mei, Maple does not support module
operators such as extension, union, and renaming.

5.4.2 Mathematica

Mathematica [43] is a computer algebra system and the major competitor of Maple.
It provides an interface for creating and manipulating programmatic structures that
includes graphics, mathematics, program code etc.

Although Mathematica is a powerful system, it has a simple module notion, pack­
age. A package is a collection of functions, some of which are local to the package.
From the user point of view, a package is just a namespace for those exported sym­
bols. When a package is loaded, all its exported functions can be access directly if

the package is on the context path which is a set of package names.

144 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

5.4.3 Axiom

Axiom [53] is a computer algebra system that is especially useful for symbolic calcu­
lations, mathematical research, and the development of mathematical algorithms.
It has a strongly typed high-level programming language for expressing abstract

mathematical concepts. Axiom defines a strongly typed, mathematically correct

type hierarchy, for mathematical objects (such as rings, fields, and polynomials) as
well as data structures from computer science (e.g. lists, trees, and hash tables).
"The crucial strength of AXIOM lies in its excellent structural features and unlim­

ited expandability-it is an open, modular system designed to support an ever growing

number of facilities with minimal increase in structural complexity." [53] The major
modular notions of Axiom are packages, domains, and categories.

The most important modular mechanisms are domains and categories. Axiom
deals with many kinds of mathematical objects such as numbers and polynomials. It
organizes these objects using domains. Every Axiom object belongs to a domain. A
domain is an abstract data type whose data representations and behaviour implemen­
tations are hidden. Categories are types of domains. A domain can be asserted to be

in a category if it implements all the exported operations declared in the category.
In terms of our modular notions, a domain is roughly a theory, and a category is a
theory type. The crucial difference between domains and theories is that users can
refer to objects of other domains within the current domain since Axiom follows the

big theory approach2 as all other CASs. A typical definition of a domain is:

DomainForm : Exports == Implementation where

[type declarations]

Exports ==[Category Assertions] with

list of exported operations

Implementation == [Add Domain] add

[Rep : =Representation]

2 Axiom could follow the little theories approach, but in practice this does not seem to be the
case.

5. Comparison of Mei with other module systems 145

list of function definitions for exported operations

There are several interesting features in this simple definition form:

(1) The Category Assertions list all the categories of which the domain is a mem­

ber. Since categories are actually types of domains as we will investigate later,
Category Assertions are type annotations. Note that a domain can be of more
than one category.

(2) The list of exported operations declares a set of exported operations of the domain

which forms an interface of the domain. This, in our system, is handled by the

type of theories due to the dual roles of module types.

(3) The Add Domain can be seen as a domain on which the current domain is built.
If an implementation for an exported operation is not provided, Axiom will goes

to the add domain to find an implementation.

(4) The list of function definitions for exported operations provides the real imple­

mentations.

(5) The Representation is a really novel feature of Axiom. The representation is usu­
ally another domain which is the concrete representation of the current domain.
Within the implementation part, this representation domain is treated as equal
to the current domain. The implementation of operations of the current domain
will be written in terms of the operations of the representation domain. We may
view this as the adapter pattern in the object oriented design where the current
domain builds an adaptor between the export interface of the current domain
and the representation domain. In our module system, this can be simulated by
two abstract types within one theory in which the equivalence of these two types
is expressed axiomatically. However, only the type corresponding to the current
domain is declared in the type of the theory whereas the type corresponding to
the representation domain and the equivalence axiom are hidden. Although it

can be done in other systems as we showed above, we need to emphasize that
Axiom gives a neat way to present the idea of representations.

In addition, there are parameterized domains in Axiom. Axiom has a notion of do­

main constructors which can take input and produce new domains. A domain is then
a domain constructor without any parameter. In this case, the Category Assertions
assert that all domains created by the constructor are members of these categories

146 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

regardless the value of the parameter. Domain constructors with parameters are sim­
ilar to our first-order functors. They are more general than first-order functors in the
sense that they can take any object as input, not necessarily a domain. For instance,
a domain constructor can take an integer as input to build a domain of vector spaces
with particular dimension. When a domain is required by a domain constructor, a

category is used to specify the collection of domains that can be used as input.
Packages are just special domains without states. A package does not denote a

class of objects but a collection of operations. Whereas a domain abstracts both data

and behaviour, a package abstracts only behaviour. Syntactically, a package definition

does not have Category Assertions, Add Domain, and Representation. Like domains,
packages can have parameters whose type can be either a category or a domain.

Now let us look at categories closely. Roughly speaking, a category is a type
representing a collection of domains. It specifies a set of operations exported by the

domains of the category. Moreover it specifies a set of properties by axioms that
must be satisfied by the domains of the category. This is similar to our theory types.

However, axioms are not presented in any domain.

In addition, a category can be built by extending another category. This effectively

builds a hierarchy of categories. For instance, a SemiGroup category can be built by
extending a Set category. There are several interesting issues regarding this category

hierarchy:

(1) There is a special category Type which is the root of the hierarchy.

(2) Two major branches in Axiom are the basic algebra hierarchy and the data struc­
ture hierarchy.

(3) The structure of a category specifies the construction of the category but not
the construction of the domains in this category. When a category is listed in
a Category Assertions part of a domain, only the flat content of the category
matters not its position in the hierarchy.

(4) The hierarchy of categories effectively defines a subtype relation between cate­
gories. If a category B extends another category A, then B is a subtype of A.
This is because that, if a domain is a member of a category B which extends
a category A, it is a member of the category A. This is similar to the idea of
subclass as subtype. It is safe here because that the category B inherits not
only the operation prototypes of the category A but also the behaviour of the

operations enforced by inheriting the axioms.

5. Comparison of Mei with other module systems 147

Like domains, categories that have parameters are called category constructors.
Note that a category constructor only expresses how a category can be constructed
from its parameter(s). In general, it says nothing about how a domain of a category

is constructed from its parameter(s). For instance, it is perfectly fine to assert a
domain constructor to be a member of a category without any parameter as long as
every domain constructed by the domain constructor is a member of the category.

Comparing Axiom's module system with Mei:

(1) Taking domains as theories and categories as theory types, Axiom supports union

and extension. However, renaming is not supported.

(2) Axiom supports first-order functors in terms of domain constructors. However,

higher-order functors are not available. Only a category or an instance of a
category constructor, not a category constructor alone, can be used to specify
the type of the parameter of a domain constructor.

(3) Axiom supports a subtyping over categories which is defined via the hierarchy of
categories. It is simpler than Mei's subtyping relation.

5.4.4 Aldor

Aldor [81, 94] was originally the programming language of Axiom but is now used more
in other settings. It combines imperative, functional, and object-oriented features. As
in Axiom, the major modular mechanisms are domains3 and categories. Categories
are types of domains. The other two novel features of Aldor are: (1) both types and
functions are first class values which can be constructed dynamically and manipulated
in the same way as any other values and (2) dependent types. Since both categories
and domains as well as types and functions are first class values, higher-order functors

are supported naturally as normal functions over categories and function types over
categories. Aldor has an elaborate type system to handle these features and others
like unions and records uniformly. Investigating the whole type system would be
a huge amount of work. Here we only discuss domains, categories, functions over

domains, function types over categories, and dependent types4 .

3Since the packages are special domains, we will not discuss packages here.
4We are only interested in dependent function types in which the result type may depend on the

argument type. We will not talk about dependencies between fields of records.

148 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

As presented in [81], the general form of a domain is :

where, for i = 1 ... n, Xi is an exported symbol, ~ is the type of it (possibly a

category), and ti is a term of ~. Rep is the representation type and T is the abstract
type corresponding the current domain. The type of it is a category:

There is a subtype relation over categories:

m ~ n P1, ... ,pm permutes 1, ... , m

However, the above subtype is not applicable to named categories. Named categories

follow Axiom's approach. A category Bis a subtype of a named category A only if B
extends A. In other words type expressions are not evaluated. This is an important
explicit design decision in Aldar.

Since categories are types of domains as other normal types, we can define func­

tions over categories as follows:

of type

where T is a category. Thus a function can be applied to any domain of cate­
gory T or any domain of a subtype of category T. The application is of type

T with{x1 : T1; ... ; Xn : Tn}· Clearly, higher-order functions over categories can
be defined straightforwardly as normal functions. With dependent function types, we
can do better:

(Tx: Category) : Tx---+ Tx with{x1 : T1; ... ; Xn: Tn} +->

(x: Tx): Tx with{x1: T1; ... ; Xn: Tn} +->x add{x1: T1 ==ti; ... ; Xn: Tn == tn}

of type

5. Comparison of Mei with other module systems 149

Here Tx : Category means that Tx is a variable of type Category, i.e. a category
variable. It can then be replaced by any category T. Applying this function above to
any category T and then to a domain of type T will give a domain of type T with { x1 :

T1 ; ... ; Xn: Tn} which will change according to the actual type T. By Tx : Category,
we are quantifying over all categories. However, the category variable is not bounded
by a particular category, i.e. the subtype relation is not used to bound universal
quantification as in DMei. We thus compare the modular mechanism of Aldor with
that of DMei as follows:

(1) Aldor supports dependent type over categories like DMei, but type variables may
not be bounded.

(2) Aldor supports subtyping over categories similar to the subtyping over theory
types in DMei. Also the subtyping in Aldor is extended to cover function types
over categories in the same way as in DMei (which is not presented above).

(3) Functions and types are first class values in Aldor. This implies more flexible
function definitions and type definitions which are not fully presented above.

(4) Aldor does not have a notion of view as in DMei. However, we believe, it is
possible to incorporate the idea of views with Aldor's type system.

5.4.5 Focal

Focal [64] is a language designed for the development of certified computer algebra
libraries. The computation part of a Focal code is compiled to an OCaml file. The
specification part of a Focal code is is compiled to a Coq file and then checked by
Coq. The basic building block of Focal is the notion of species which supports both
inheritance and parameterization.

A species consists of three parts: (1) A carrier represented by the rep keyword
which can be either abstract or bound with a concrete representation. The abstract
type can be referred to as self within a species. self and its concrete representation
are equivalent inside the species. This resembles the treatment of carrier type and its
representation used in Axiom and Aldor. (2) A computational part consisting of a set
of methods that are either declared or defined. Methods of a species can access both
the abstract type and the concrete representation of the carrier. (3) A specification
part consisting of properties (declared) and theorems (proved).

150 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Apart from species, Focal has two important notions of interfaces and collections.

An interface is a purely abstract species in which all methods are abstract. A col­
lection is a completely defined species in which all the methods are implemented.

Roughly speaking interfaces and collections corresponds to theory types and theories
in Mei. Species sit between interfaces and collections. An interface specifies the ab­

stract view of species and collections, i.e. the abstract carrier type and the prototypes
of exported methods. Each species or collection implicitly defines its corresponding
interface. Species serve as types of collections in the parameterized species introduced

later in this section. We do not have a counterpart of species in Mei. A theory type
plays two roles in Mei, as a type and as an interface.

Looking from another angle, interfaces, species, and collections are similar to

interfaces, abstract classes, and classes of object oriented languages. A species can

then inherit from one or several species as in class inheritance. While a species receives

all the declaration and definition of methods from its parent, it can redefine some of
the inherited methods but must keep the types. In this case, the proofs of theorems
that depend on the implementations of the method (so-called def-dependency) must
be transformed to properties and need to be reproved. This significantly differs from
the inheritance of Axiom's category and the theory extension operation of Mei.

Remark 5.4.l. Since overwriting is allowed in the inheritance, a child species might
not be seen as a subtype as its parent species. The behaviour of the child species

might be different from the behaviour of its parent species.

Species can also be parameterized by both values of particular type, called enti­
ties in Focal, and collections in some species. As in algebraic specification languages,
species are both types and objects. In the parameter list, a species is a type rep­
resenting a class of collections that implement the species. When a parameterized
species is instantiated, the instantiated species is an object. As in Axiom and Aldor,
the order of the parameter list is important since it is essentially a dependent record
type. The form

species modulo (r is int_ring, n in r) ...

defines a species that has two parameters, a collection t that implements the species
inLring and an entity n in this collection. Here the type of n depends on the value
of r.

Although we can see interfaces and collections as Mei's theory types and theo­
ries, the central notion of Focal is species. Only species can be parameterized, and
essentially a parameterized species is a first-order functor in Mei.

5. Comparison of Mei with other module systems 151

5.4.6 Magma

Magma [9] is a computer algebra system based on universal algebra and category
theory. Any object definable in Magma is an element of some algebraic structure.
Knowledge is organized as magmas, categories, and varieties in Magma. A many­

sorted algebra A (or the carrier set of A) is called a magma; a category is a class
of magmas satisfying a particular set of axioms and sharing a common representa­

tion; and a collection of categories whose magmas satisfy a common set of axioms

forms a variety [12]. Instead of providing a general modularity mechanism like Mei,

Magma provides a set of predefined constructors that allowing users to construct
new magmas in a particular way. These constructors are closely related to certain
algebra construction notions such as subalgebra5 etc. We will briefly describe how to

construct a magma in Magma. We will use many algebra notions without formally
introducing their definitions. Readers can refer to [9] or [65] for the definitions.

The creation of a magma M in the Magma system requires, in principle, two steps:

(1) The definition of an appropriate free magma F.

(2) The construction of the desired magma M from F by applying a sequence of
constructions.

Given a variety V (e.g., groups, rings), the free magma F in V with n genera­
tors6 is the unique algebraic structure whose elements are all possible finite algebraic
combinations of then generators, which corresponds to a term algebra [12].

FreeGroup is a predefined Magma function that constructs free magmas. Then

FG3<a,b,c> := FreeGroup(3);

creates a free magma, FG3, generated by three generators, a, b, and c. Now we can
construct a subalgebra from FG3 as follows:

G2<x,y>, i := sub<FG3 I a, a*b]>;

sub is a predefined subalgebra constructor. It takes a free magma and a set of
generators and returns two values, G2 and i. G2 is a magma that is a subalgebra of
the given free magma FG3 generated by {a, a * b} (which can be referred to as { x, y}

5 Informally a subalgebra of an algebra A is a subset of A that is closed under the algebra
operations of A.

6Informally, X <;;;; A is called the set of generators of an algebra A if the closure of X under the
algebraic operations of A equals A. Note that Magma talks about finitely generated algebras.

152 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

now). i is a morphism from G2 to FG3. Since the representation of G2 is irrelevant
to that of FG3, the morphism i is necessary to connect an element of G2 to the same
element in FG3 with possibly different representations.

Remarks 5.4.2. (1) Magma provides five magma constructor, sub, ncl, ideal, quo,
and ext, designating submagmas, normal closures (in the case of groups), ideals,
quotients and extensions [12].

(2) Magma provides five built-in magmas, IntegerRing, RationalField, Real­
Field, Strings, and Booleans.

(3) Magma provides shorthand constructors that allow users to construct magmas

without explicitly constructing the free magma.

(4) It is not clear if users can define new categories representing, say, abstract data
structures.

Magma's modularity mechanism follows a quite different approach form Mei.

Roughly speaking we can view magmas as theories, categories and varieties as the­
ory types. The magma constructors are then first-order functors. However, Magma

provides a fixed number of such functors. The users can employ these functors but
cannot add new functors. In other words, Magma provides a library of functors but

hides from users the details of the module system that constructs functors. It is thus
the implementors' (not the users') responsibility to provide a powerful library. Al­
though we do not think it is in general a good idea to hide the module system from
users, we believe Magma's five magma constructors are useful for many MMSs. It is
thus an interesting research topic to implement these magma constructors on top of
a MMS together with a module system, either Mei or DMei.

5.5 An expressive language of signatures

Dialects of ML usually have a rich module system. An ML-family module system
itself is a small typed functional language, where structures and functors are objects
and signatures are types. While modules can be manipulated in various ways, types
(signatures) are described by enumerating their parts. (This is also true for Mei.) N.

Ramsey, K. Fisher, and P. Govereau present a language that manipulates signatures,
e.g. two signatures can be combined to form a new signature [83]. It is important to

note that the operations over signatures are very different from DMei's module types

5. Comparison of Mei with other module systems 153

such as extension and union. The language of signatures exposes no information
about how a structure matches a signature. For instance, a signature that combines
two signatures is the same as the fiat signature that is the union of the two component

signatures. A structure that implements the combination signature also implements
the flat signature. However, in DMei a module expression of a union type must

be built from two subexpressions of corresponding component types. Looking from

another view, the language of signature can be seen as Mei on the module type level

in the sense that the operations are over module types instead of module expressions.
We briefly summarize the language of signatures as follows. Interested readers can
refer to [83] for details.

(1) Adding, removing, rebinding, and moving components. adding which adds new
components to a signature is similar to Mei's extension operation over theories.

There is no counterpart of removing which removes components of a signature
in Mei. Both rebinding and moving can be seen as a removing followed by an

adding where rebinding is "in place".

(2) Revealing and sealing types and modules. revealing makes an abstract type
manifest, i.e. binding with a concrete representation type. This can be seen in

Mei's terminologies as extending a theory by the concrete representation type
and an axiom specifying the equivalency of them. sealing makes a manifest
type abstract. It is much more complicated than removing the concrete repre­
sentation type and corresponding axioms. In fact, the concrete representation

type might not even be hidden. Only the equivalence axiom is removed. There
is no counterpart of sealing in Mei.

(3) Combining signatures. Roughly speaking, andalso which combines two signa­
tures is similar to the union operation of Mei. It is more complicated because

of the need to deal with the abstract and manifest types.

The motivation of the language of signatures is different from that of Mei. We
might say that Mei is an expressive language of theories. Interestingly they share a

number of mechanisms. It might be a good idea to build a language of theory types
for Mei, but not for DMei (since theory types of DMei is already quite complicated).

Chapter 6

Possible extensions of Mei

In Chapter 5, we investigate some existing module systems. We show that many

mechanisms supported by these systems can be simulated in Mei. However, it will
be quite heavy work if users are forced to do the simulation by themselves. A better

approach would be to define a set of new operations in terms of the existing operations.

In this section, we will discuss some of these extensions.

6.1 Theory definition

In §2.2, we assumed that a theory definition expression is explicitly annotated by
its intended type. If the user's intention is to expose all facts of a theory, it will be
tedious to repeat them in this type. In that case, we can allow the user to specify a
theory definition without explicit type casting. The default type casting information,
i.e. the language of the theory definition together with the axioms and sentences of
the theorems of the theory definition, is then added by the system automatically.

EXPR

THY-SPEC

The semantics of this new module expression is defined in terms of module expressions
of Mei. The semantics of the other module expressions can then be defined recursively.

Let use [] for the semantics functions as usual. Then

[(L, <I>,~)] = (L, <I> U sen(~)) (L, <I>,~)

154

6. Possible extensions of Mei 155

Note that the user has the freedom to choose the part of theory they want to
expose by casting it to the intended type. By exposing all axioms and theorems,
the theory may be used in a place where a theory axiomatized in a different way is
required, as long as the type of the latter theory is a subtype of the type of the former
theory, i.e. the axioms in the latter theory are theorems in the former.

6.2 Hiding and revealing

Theory hiding and revealing are two useful operations. The user may be able to hide
(or reveal) a list of symbols defined in a theory definition. These are similar to the
hiding and revealing operations in CASL [72].

EXPR

EXPR hide LANG

EXPR reveal LANG

Again, we define the semantics of the above syntactic sugaring in terms of module
expressions of Mei.

[(L, <I>,~) hide Lh]

[E hide Lh]

[(L, <I>,~) reveal Lr]

[E reveal Lr]

(Lfi, <I>fi) (L, <I>,~)

(Lfi, <I>fi) E

(Lrr, <I>r) (L, <I>,~)

(Lrr, <I>r) E

(6.1)

(6.2)

(6.3)

(6.4)

In (6.1), the simplest case is Lfi = L\Lh. Then <I>fi = { <p E <I>Usen(~) I lang(<p) <;;; Lfi},
where lang(<p) refers to the set of symbols occur in <p. Intuitively, <l>fi is the largest
subset of <I> whose members do not contain symbols listed in Lh. (6.2) is similar to
(6.1) except that it works over expressions of a theory type instead of over expressions
of theory definitions. Assume that the type of E is (L, <I>). Lfi is defined exactly as in
(6.1). Then <I>fi = {<p E <I> I lang(<p) <;;; ~}.

Remark 6.2.1. In case Lis many-sorted (typed), the definition of Lfi is more compli­
cated. Intuitively, if we hide a sort symbol, all operator symbols concerning this sort
symbol should be hidden. Assume L = L5 U L0 and Lh = L~ UL~, where L5 and L~
are sort symbols, and L0 and L~ are operator symbols. Then Lfi = L~ U Lfi, where
L~ = L5\L~ and Lfi = { o E L° I o (j. L~ /\ sort (o) <;;; Lfi}. sort (o) refers to the set of
sort symbols occurs in o.

156 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

In (6.3), Lrr =Lr. Then <I>r ={'PE <I> U sen(~) I lang('P) n Lrr-/= 0}. Intuitively,
<I>r is the smallest subset of <I> whose members contain at least one symbol listed in Lr.
(6.4) is similar to (6.3) except that it works over expressions of a theory type instead
of theory definitions. Assume that the type of E is (L, <I>). Lr is defined exactly as in

(6.3). Then <I>r ={'PE <I> I lang('P) nLrr-/= 0}.

Remark 6.2.2. In case Lis many-sorted (typed), if we reveal an operator symbol, all

of its sort symbols should be revealed. Assume L = L5 U L0 and Lr= L~ UL~. Then

Lrr = L~r UL~, where L~r = {s E L5 I s EL~ V ::lo. s E sort (o)}.

Remarks 6.2.3.

(1) It is very important to note that hiding a symbol is not the same as eliminating
it. It just prevents references to it from outside the theory. In other words, the

original theory should be a conservative extension of the revealed theory, i.e.
every sentence involving only the revealed symbols which is true in the original

theory, is also true in the revealed theory. For instance, we might hide the
inverse operator and the axioms defining it in the theory Group. However, in

the revealed theory, the theorem showing the existence of the inverse of every
group element is still valid. In this case, the original theory is just a definitional
extension of the result theory.

(2) It is also important to note that we cannot hide a particular axiom without hiding
any symbol. There is no point to just hiding an axiom, since hiding an axiom
does not cause its logical consequences (including the axiom itself) to be hidden.
Even worse, it may make the theory look like a different theory. For instance, let

CommGroup be a commutative group theory. Hiding the commutative axiom
does not invalidate the theorems proved by using the commutative axiom. Thus,
although the revealed theory looks like a group theory like Group, it will still
represents a commutative group theory.

We also note that, in order to define the semantics of a new module expression,
it is necessary to know the type of it subexpressions, which represents the original
expression. It is then necessary to lift the typing rules of Mei to account for these

new module expressions as follows:

closed(L, <I>,~) Lh ~ L
(HID El) r f- (L, <I>,~) hide Lh : (Lfi, <l>fi)

6. Possible extensions of Mei 157

r f- E: (L, <I>) Lh ~ L

r f- E hide Lh : (Lil, <I>il)
(HIDE2)

r f- (L, <I>, b.) reveal Lr: (Lrr, <I>r)
(REVEAL!)

f f- E : (L, <I>) Lr ~ L

r f- E reveal Lr: (Lrr1 <I>r)
(REVEAL2)

6.3 Local theories

Given the hiding operation, we can define a notion of a local theory, i.e. a theory

only visible within another theory. The symbols declared in a local theory are only
visible within the local theory and not within its surrounding theory. The axioms and

theorems of the local theory are visible inside its surrounding theory but not outside
its surrounding theory. Since local theories usually sit in a theory specification, we

rieed a new kind of theory specification as follows:

THY-SPEC

local EXPR within (LANG, AXIOMS, THMS)

Theory specification occurs only in theory definition and theory extension. We
define the semantics of these two cases in terms of module expressions of Mei:

[local E within S]
[E1 extended by (local E2 within S)]

(E extended by S) hide LE

((E1 EB E2) extended by S) hide LE2

where LE [LE2] is the language of the type of E [E2] and S = (L, <I>, b.).
As for hiding and revealing operations, in order to define the semantics of a local

theory expression, it is necessary to know the type of it subexpressions. It is then
necessary to lift the typing rules of Mei to account for the local theory expressions as
follows:

158 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

r f-- (E extended by S) hide LE : (L, <I> u sen(~))

r f-- local E within S: (L, <I> U sen(~))
(LOCALl)

r f-- ((E1 EB E2) extended by S) hide LE2 : (LE1 u L, <I>E1 u <I> u sen(~)) (LOCAL2)
r f-- E1 extended by (local E2 within 5): (LE1 UL, <I>E1 U <I> U sen(~))

wheres= (L, <I>,~), r f-- E: (LE, <I>E), r f-- E1 : (LE1' <I>EJ, and r f-- E2 : (LE2, <I>E2)·

Remark 6.3.1. One side condition for (LOCAL2) is that LE1 and LE2 must be disjoint,
because it makes no sense to allow a local theory LE2 to interfere with an outside

theory LE 1 • A practical solution is to systematically add a unique tag to all symbols
in LE2 • This will not affect other parts of a module expression in which this local
theory is a submodule expression, because all symbols in LE2 are immediately hidden.

6.4 Functor composition

A sequence of function applications is called a function composition. Since functors
are simply functions over theories, we can define a sequence of functor applications
as a functor composition following the definition of function composition:

EXPR

EXPR o EXPR

Again, we define the semantics of functor composition in terms of the module

expressions of Mei. Let Ef : Tf1 ---+ Tf2 and Eg: Tg
1

---+ Tg
2

•

Note that a functor composition requires that the result type of Eg matches the

parameter type of Ef by the subtype relation, i.e. Tg
2

<: Tf1 .

Since the notion of view is a generalization of the subtype relation, it is then
natural to use views instead of the subtype relation to connect the result type of
Eg and the parameter type of Ef. This gives us a more general form of functor

compositions.

EXPR

EXPR o EXPR with view VIEW

6. Possible extensions of Mei 159

The semantics of the functor composition with view is defined as follows. Let

Ef: Tf1 ----* Tf2 and Eg: Tg1 ----* Tg2.

This is exactly the same as the so-called parameterized module instantiation with the
parameterized view in Maude [19]. Our notion clearly indicates that this is a variant

of functor composition, not functor application. We believe that Maude's notion is
somewhat misleading. In addition, by explicitly representing functor composition,

there is no need to introduce the notion of parameterized view, since the parameter
is presented as the parameter of the second functor in the functor composition.

Note that we need the type information of Eg in order to define the semantics of

a functor composition Ef o Eg. It is then necessary to lift the typing rules of Mei to
account for functor compositions as follows:

r f- Ef: Tf1 - Tf2 r f- Eg: Tgl - Tg2 Tg2 <: Tf1

r f- Ef o Eg: Tg1----* Tf2

r f- Ef: Tf1 ----* Th r f- Eg: Tg1 ----* Tg2 view(Tfp Tg2,p)
r f- Ef o Eg with view (Tfp Tg2,p): Tg1 --* Th

(FCOMP)

(FCOMP-VIEW)

6.5 View lifting, view union, and view composition

In §3.4.2, we give three rules to construct new views from existing views. It would be
nice if we could provide some notation to express these view constructions as follows:

VIEW

lift VIEW by THY-SPEC

VIEW EB VIEW

VIEW o VIEW

160 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

They are called view lifting, view union, and view composition respectively. The
semantics of these new view objects is defined in terms of the views in Mei:

[lift ((Ls, <l>s), (Lt, <l>t), p) by (LE, <I>E)]

= ((Ls U LE, <l>s U <I>E), (Lt U p'(LE), <l>t U p'(<I>E)), p')

[lift V by S]

= [lift [V] by S]

[((Lsp <l>s1), (Ltp <l>tJ,p1) EB ((Ls2, <l>s2), (Lt2, <l>t2),p2)]

= ((Ls1 u Ls2, <l>s1 u <l>s2), (Lt1 u Lt2, <l>t1 u <l>t2), P1 u P2)

[V1 EB V2]

= [[Vi] EB [V2]]

[((L1, <I>1), (L2, <I>2),p1) o ((L2, <I>2), (L3, <l>3),p2)]

= ((L1, <I>1), (L3, <l>3), P1 o P2)

[V1 o V2]

= [[Vi] o [V2]]

The semantics of these new view objects are justified directly by the three view
construction rules in §3.4.2. It is possible to reformulate these rules as follows, so
that the view checking can be done before the translation.

view((Ls,<I>s),(Lt,<I>t),p) p' = lift(p,LE)
view(lift ((Ls, <l>s), (Lt, <l>t), p) by (LE, <I>E))

(EXT-VIEW)

view((Ls1, <l>s1), (Lt1, <l>tJ, P1) view((Ls2 , <l>s2), (Lt2, <l>t2), P2) consist(p1, p2)
view(((Lsp <l>sJ, (Ltp <l>tJ, P1) EB ((Ls2, <l>s2), (Lt2, <l>t2), P2))

(UNI-VIEW)

view((L1, <I>1), (L2, <I>2), p1) view((L2, <I>2), (L3, <l>3), p2)
view(((Li, <I>1), (L2, <I>2), P1) o ((L2, <I>2), (L3, <l>3), P2))

(COMP-VIEW)

As discussed in §5.2.1, the instantiation of a parameterized view can be easily
derived from view lifting and view composition. Also our notion is closer to standard
practice, in which an operation of this kind would be understood as a view composition

rather than as a view instantiation.

Chapter 7

A structural implementation of

Mei

In this section, we present an implementation of Mei. The implementation is written
in OCaml, extensively using the modular mechanisms of OCaml. The implementa­
tion is parameterized by the interfaces of an underlying language and a notion of
theory interpretation. The separation between Mei and an underlying MMS shows
the flexibility of Mei. The implementation is both a test of Mei and an argument
in favour of Mei, since the modular mechanisms used in the implementation are also
supported in Mei with some minor differences. The code of the implementation can

be found in the appendix of [99].

7 .1 Structure of the implementation

Figure 7.1 shows the structure of our implementation. The modules connected by

solid arrow lines are the implementation of Mei. A solid arrow line shows that the
target OCaml module is built on top of the source module. Another module, Fol

(stands for first-order logic), is an OCaml structure satisfying the signature MMS_SYN.

They are used together, shown by the dotted arrow lines, to build the top-level testing
environment consisting of Fol_MeiCore, Fol_MeiCore_Eval, and Fol_Mei.

MMS_SYN is a signature representing an MMS. MEICORE is a signature represent-

161

162 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Implementation of Mei

.....
.....

.....

-----~-=--=-~-=--=--=-~-:.
I

I
I

I
I

I Testing Environment

l---------

Figure 7.1: The structure of the implementation

ing Mei Core, which is built on top of MMS_SYN. MeiCore is a functor whose formal
parameter is MMS_SYN which implements MEICORE. ENV and CTX represent the environ­
ment and context of Mei Core, whose implementations are functors taking MEICORE

as a formal parameter. MEICORE_EVAL represents the type checker and evaluation
function, which is built on top of MMS_SYN, MEICORE, ENV, CTX. MeiCore_Eval is a
functor implementing MEICORE_EVAL. Similarly, Mei implements MEI, which is built
on top of MEICORE and represents Mei. The whole implementation can be seen as a
big "functor" parameterized by the signature MMS_SYN. Applying this big "functor"
to an OCaml module implementing a particular logic, say Fol, we get Mei over a
first-order logic. We can then do testing within the derived OCaml modules. The
whole structure follows Leroy's approach in [58].

7. A structural implementation of Mei 163

7.2 Identifiers

The idea of using identifiers instead of names as the reference of theories and functors
is borrowed from [58]. The purpose of using identifiers is to implement the static
binding between names and module expressions. A name used in a module expression

always refers to the object bound to it at the time when the module expression is
defined, not the one bound to it when we evaluate the module expression. In other

words, redefining a name will not affect the meanings of those module expressions
which are defined before the redefining of the name.

An identifier is a pair of a name and a stamp, where the stamp uniquely identifies
the module expression it refers to. The module names used in Mei are replaced by

identifiers in the abstract syntax trees representing the module expressions of Mei.
This can be during the parsing or as a separate pass before type checking. For

example, assume that a theory T is bound with a name N when we define a module
expression E. An identifier, say id, is generated and bound to T. In the representation

of E, N is replaced by id which is bound to T. Now redefine N such that it binds
with another theory, say T'. Then a new identifier, say id', is generated and bound
to the theory T'. Clearly, if we define a new module expression E' using the name N,
it will refer to T' since N will be replaced by id' which is bound to T'. However, if

we evaluate E now, id is found in the representation of E. Hence T will be used in
the evaluation. This is necessary as otherwise the redefinition of N might invalidate
the type argument of E established before the redefinition of N.

Remarks 7.2.1.

(1) A theory definition (or a functor abstraction) and a module name are like a
value and a variable in a functional language. They are statically bound as
shown above. However, it is very natural to develop a theory in several stages
at different times. It is thus important to distinguish these steps with the
redefinition of a module name since it is desirable to reflect the changes in this
case.

For example, taking Example 2.1.13, a theory of monoids is bound with a name

Monoid which is referred to by a module expression representing a theory of
rings. Later, we may explore the theory of monoids by proving new theorems.
In this case, the newly proved theorems are included in the result of the evalu­
ation of the module expression representing the theory of rings. This is not a

redefinition of the name Mono id where the name Monoid is bound with a totally

164 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

different theory (or even a module expression representing a functor). Thus we

support dynamic binding for theory exploration and static binding for module

name redefinition.

(2) By using identifiers instead of names as the internal representation, we do not
need to worry about the "variable capture" problem since all identifiers are

distinct by their stamps.

The syntax of identifiers is defined by the following signature:

{}

module type IDENT = sig
type t
val create: string -> t
val name: t -> string
val equal: t -> t -> bool

end

create returns a fresh identifier with the given name; name returns the name of the

given identifier; equal checks the equality of two identifiers. The following is a simple
implementation Ident of IDENT. The stamp of an identifier is an integer. The stamp
is increased by one at each create operation, giving a fresh identifier. The equality
of identifiers depends on the equality of stamps.

module Ident:IDENT = struct
type t = {name: string; stamp: int}

let currstamp = ref 0
let create s = currstamp := !currstamp + 1;

{name = s; stamp = !currstamp}

let name id = id.name
let equal id1 id2 = (id1.stamp = id2.stamp)

end

7.3 Abstract syntax for MMS

The abstract syntax tree representing the underlying MMS system should implement

the following signature:

7. A structural implementation of Mei

module type MMS_SYN sig

type language
type mapping

type sentence

type proof

val is_language: language -> bool
val is_sentence: language -> sentence -> bool

val is_mapping_of: language ->mapping-> bool
val is_proof: language -> sentence list -> sentence*proof -> bool

val empty_lang: language
val merge_lang: language -> language -> language

val is_sublang: language -> language -> bool
val lift: language -> mapping -> mapping

val inv: mapping -> mapping

165

val find_ren_ext: language*language -> language*language -> mapping
val find_ren_union: language*language -> language*language

-> mapping*mapping
val language_translate: language -> mapping -> language

val sentence_translate: sentence -> mapping -> sentence
val proof_translate: proof -> mapping -> proof

end

language represents symbols: sort symbols and operation symbols in equational logic;
sort symbols, constant symbols, function symbols, and predicate symbols in first­
order logic; or atomic types and constants in simple type theory. The type sentence
represents sentences: equations in equational logic; closed formulas in first-order logic;
or closed expressions of type boolean in simple type theory. The type proof represents
derivations of a sentence from a given list of sentences. The type mapping represents
symbol mappings between theories.

is_language, is_ sentence, is_mapping_of, and is_proof are the justifications

of well-formedness of the four syntactic classes respectively. Type checking of an MMS
is encoded in these four functions. For instance, in simple type theory, is_language
can justify the well-formedness of type expressions and bindings of a type expression
with a constant and is_sentence is the type checker of sentences with respect to type
expressions and type bindings of constants. Other functions are auxiliary functions
that are employed in module type checking and module expression evaluation. For

instance, empty _lang returns an empty language and merge_lang returns the union

166 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

of two given languages.

Remark 7.3.1. In fact, the signature MMS_SYNTAX can even be used to represent the
abstract syntax of programming languages. language represents the primitive types,
sentence represents the type expressions, and proof represents the implementations.

is_sentence is the justification of the well-formedness of the type expressions and
is_proof is the type checker of the proof with respect to the corresponding type
expression.

7.4 Abstract syntax for Mei Core

The following signature, MEICDRE, represents the abstract syntax tree of the module
expressions and module types of Mei. MEI CORE is built on top of an MMS, represented

by an OCaml structure Mms implementing the signature MMS_SYN.

module type MEICDRE = sig
module Mms:MMS_SYN
type thy_type = {

lang_type: Mms.language;
axioms_type: (Ident.t * Mms.sentence) list}

type mod_type =
Base of thy_type

I Arrow of mod_type * mod_type
type spec = {

lang_spec:Mms.language;
axioms_spec:(Ident.t * Mms.sentence) list;
thms_spec:(Ident.t * Mms.sentence * Mms.proof) list}

type mod_expr =
Ident of Ident.t
Theory of spec * thy_type
Cast of mod_expr * thy_type
Extension of mod_expr * spec
Rename of mod_expr * Mms.mapping
Union of mod_expr * mod_expr
Functor of Ident.t * mod_type * mod_expr
Apply of mod_expr * mod_expr

7. A structural implementation of Mei

val is_subtype: mod_type -> mod_type -> bool
val is_thytype: thy_type -> bool
val is_thy: spec -> bool
val subst: mod_expr -> (Ident.t * mod_expr) -> mod_expr
val is_thytype_of: spec -> thy_type -> bool
val merge_thytype: thy_type -> thy_type -> thy_type
val merge_spec: spec -> spec -> spec
val amal_ext: spec * thy_type -> spec -> spec * thy_type

167

val amal_union: (spec*thy_type)-> (spec*thy_type)-> (spec*thy_type)
val thy_type_translate: thy_type -> Mins.mapping -> thy_type
val spec_translate: spec -> Mins.mapping -> spec

end

mod_expr represents module expressions which evaluate to either theories or functors.
Theories built from scratch are represented by type spec. mod_ type denotes either
theory types or functor types. Theory types are represented by thy_ type.

Functions declared in MEICORE are auxiliary functions for module type checking
and module expression evaluation. For instance, is_subtype implements the subtyp­
ing rules, is_ thytype justifies the closedness of theory types, and is_ thy justifies the
closedness of theory expressions etc. The most important function is subst, which
implements the substitution function defined in 2.4.1.

The implementation of MEI CORE is a functor Mei Core that takes any module satis­
fying the signature MMS_SYNTX and returns a module satisfying the signature MEICORE.

module MeiCore(TheMms: MMS_SYN) =
struct

module Mms = TheMms
(*type definition is the same as in MEICORE*)
(*most functions are omitted*)
let rec subst me (id, me_sub) =

match me with
Ident id' -> if !dent.equal id id' then me_sub else me
Theory (thy,tp) ->me
Cast(me', tp) ->

let me''= subst me' (id, me_sub) in Cast(me'',tp)
Extension(me', spec) ->

let me''= subst me' (id, me_sub) in Extension(me'', spec)

168 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

end

Rename(me', rho)->
let me''= subst me' (id, me_sub) in Rename(me'',rho)

Union(me1,me2) ->
let me1' = subst me1 (id, me_sub) in
let me2' = subst me2 (id, me_sub) in
Union(me1' ,me2')

Functor(id', tp, me')->
if Ident.equal id id' then me
else let me'' = subst me' (id, me_sub) in
Functor(id', tp, me'')

Apply(me_f, me_p) ->
let me f' = subst me f (id, me_sub) in
let me_p' = subst me_p (id, me_sub) in
Apply(me_f',me_p')

7.5 Environment and context

ENV is a data structure recording the current bindings of identifiers with module
expressions or module types, represented by mod_expr and mod_ type.

module type ENV
sig

type mod_expr
type mod_type
type content
type t = (Ident.t * content) list
val empty: t
val add_expr: Ident.t -> mod_expr -> t -> t
val find_expr: Ident.t -> t -> mod_expr
val mem_expr: Ident.t -> t -> bool
val add_type: Ident.t -> mod_type -> t -> t
val find_type: Ident.t -> t -> mod_type
val mem_type: Ident.t -> t -> bool

end

7. A structural implementation of Mei 169

The environment is applicative in the sense that the two add functions leave the

original environment unchanged and returns a new environment with additional new
entries. Given an environment, identifiers are the abbreviations of those defined

module expressions and module types.
The implementation of ENV is a functor Env parameterized by a structure MEI CORE.

module Env (TheMod:MEICORE) =
struct

type mod_expr = TheMod.mod_expr
type mod_type = TheMod.mod_type
type content = Mod of mod_expr I Type of mod_type
type t = (Ident.t * content) list
(*function definitions omitted*)

end

The abstract types mod_expr and mod_type are bound to the concrete types

TheMod.mod_expr and TheMod.mod_type by the type equivalence constraints.
CTX is similar to ENV except that it is a set of bindings of identifiers with module

types. It represents the module type binding derived from the functor definition,

which is used for type checking. The definitions of CTX and Ctx are not presented

here.

7.6 Type checking and evaluation of Mei Core

We are now ready to define the signature for the type checking and evaluation func­
tions for Mei Core. It is built on top of four modules, Mms represents the underlying
MMS, Mod represents module expressions of Mei Core, Env represents an environment,
and Ctx represents a context.

module type MEICORE_EVAL sig
module Mms:MMS_SYN
module Mod:MEICORE
module Env:ENV with type mod_expr

type mod_type
module Ctx:CTX with type mod_type

Mod.mod_expr and
Mod.mod_type
Mod.mod_type

170 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

val type_of: Mod.mod_expr -> Ctx.t -> Env.t -> Mod.mod_type
val eval: Mod.mod_expr -> Env.t -> Mod.mod_expr

end

type_of infers the module type of the given module expression under the given envi­
ronment and context. eval type checks and evaluates the given module expressions
under the given environment.

The implementation is an OCaml functor parameterized by an MMS, Mei Core,
an environment, and a context. The last three are functors. Hence, MeiCore_Eval
is a higher-order functor. Note that module Mms = TheMms constrains the equality
between the submodule Mms in MEICORE and the argument module TheMms.

module MeiCore_Eval
(TheMms:MMS_SYN)
(TheModFunc: functor (TheMms:MMS_SYN) -> MEICORE with

module Mms = TheMms)
(TheEnvFunc: functor (TheMod:MEICORE) -> ENV with

type mod_expr = TheMod.mod_expr and type mod_type
(TheCtxFunc: functor (TheMod:MEICORE) -> CTX with

type mod_type = TheMod.mod_type)
struct
module
module
module
module

Mms
Mod
Env
Ctx

TheMms
TheModFunc(TheMms)
TheEnvFunc(Mod)
TheCtxFunc(Mod)

(*auxiliary functions are omitted*)
let rec type_of te ctx env =

match te with

TheMod.mod_type)

Mod.Ident id -> if Ctx.mem id ctx then Ctx.find id ctx
else (if Env.mem_expr id env
then type_of (Env.find_expr id env) ctx env
else raise (MEICORE_EVAL "Module identity not defined."))

Mod.Theory (thy, thytype) ->
if ((Mod.is_thy thy) && (Mod.is_thytype thytype)
&& Mod.is_thytype_of thy thytype) then Mod.Base thytype
else raise(MEICORE_EVAL "Theory definition not closed.")

Mod.Cast(te', thytype) ->if Mod.is_thytype thytype then

7. A structural implementation of Mei 171

(match type_of te' ctx env with
Mod.Base thytype' ->

if (Mod.is_subtype (Mod.Base thytype') (Mod.Base thytype))
then Mod.Base thytype
else raise (MEICORE_EVAL "Invalid casting.")

I _->raise (MEICORE_EVAL "Functors cannot be casted."))
else raise (MEICORE_EVAL "Theory type not closed.")

Mod.Extension(te',spec) ->(match type_of te' ctx env with
Mod.Base thytype ->

let thy_of_thytype = {Mod.lang_spec = thytype.Mod.lang_type;
Mod.axioms_spec = thytype.Mod.axioms_type;
Mod.thms_spec = []} in

if (Mod.is_thy (Mod.merge_spec thy_of_thytype spec))
then let get_axiom (id, phi, pf) = (id, phi) in

let thytype' = {Mod.lang_type = spec.Mod.lang_spec;
Mod.axioms_type = union spec.Mod.axioms_spec

(List.map get_axiom spec.Mod.thms_spec)} in
Mod.Base (Mod.merge_thytype thytype thytype')

else raise (MEICORE_EVAL "Extended theory not closed")
I_-> raise (MEICORE_EVAL "Functor cannot be extended."))

Mod.Rename (te', rho)-> (match type_of te' ctx env with
Mod.Base thytype ->

if Mms.is_mapping_of thytype.Mod.lang_type rho
then Mod.Base (Mod.thy_type_translate thytype rho)
else raise (MEICORE_EVAL "Bad renaming.")

I_-> raise (MEICORE_EVAL "Functors cannot be renamed."))
Mod.Union(te1,te2) ->

(match (type_of tel ctx env, type_of te2 ctx env) with
(Mod.Base thytypel, Mod.Base thytype2) ->

Mod.Base (Mod.merge_thytype thytype1 thytype2)
I _->raise (MEICORE_EVAL "Functors cannot be merged."))

Mod.Functor(id, tp, te') -> let ctx' = Ctx.add id tp ctx in
Mod.Arrow (tp, type_of te' ctx' env)

Mod.Apply(te_f, te_p) -> (match type_of te_f ctx env with
Mod.Arrow(tp_1,tp_2) ->

if Mod.is_subtype (type_of te_p ctx env) tp_l

172 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

then tp_2
else raise (MEICORE_EVAL "Parameter type mismatch.")
->raise (MEICORE_EVAL "Functor required."))

let rec eval te env =
match te with
Mod.Ident id -> if Env.mem_expr id env

then let te' = Env.find_expr id env in eval te' env
else Mod.Ident id

Mod.Theory (thy,tp) -> te
Mod.Cast(te', tp) -> let te_eval = eval te' env in

(match te_eval with
Mod.Theory (spec,typtype) -> Mod.Theory (spec,tp)

I _ -> Mod.Cast(te_eval, tp))
Mod.Extension(te',spec) ->let te_eval = eval te' env in

(match te_eval with
Mod.Theory (spec_eval, tp) -> let (new_spec, new_tp)

Mod.amal_ext (spec_eval,tp) spec
in Mod.Theory (new_spec, new_tp)

I _ -> Mod.Extension(te_eval, spec))
Mod.Rename(te', rho)-> let te_eval = eval te' env in

(match te_eval with
Mod.Theory (spec, thytype) ->Mod.Theory

(Mod.spec_translate spec rho,
Mod.thy_type_translate thytype rho)

I _ -> Mod.Rename(te_eval, rho))
Mod.Union(te1,te2) -> let tel_eval = eval tel env in

let te2_eval = eval te2 env in
(match (tel_eval, te2_eval) with

(Mod.Theory (spec1,tp1), Mod.Theory (spec2,tp2)) ->
let (new_spec, new_tp) =

Mod.amal_union (spec1,tp1) (spec2,tp2)
in Mod.Theory (new_spec, new_tp)

(_, _) -> Mod.Union(tel_eval, te2_eval))
Mod.Functor(id, tp, te') -> (match te' with

Mod.Apply(te'', Mod.Ident id')-> if Ident.equal id id'

7. A structural implementation of Mei

end

then eval te'' env else Mod.Functor(id, tp, te')
_ -> Mod.Functor(id, tp, te'))

Mod.Apply(te_f, te_p) -> (match eval te_f env with
Mod.Functor(id, tp, te') ->

eval (Mod.subst te' (id, te_p)) env
_->raise (MEICORE_EVAL "Funtor required."))

173

type_of is defined over the abstract syntax tree of module expressions and implements

the typing rules defined in §3.2. For instance, a functor is well-typed if the body of
the functor is well-typed with respect to the context enriched by the binding of the
argument identifier and the argument type. eval is defined over the abstract syntax
tree of module expressions and implements the evaluation rules defined in §2.4.2. For
instance, a functor application is evaluated based on the substitution function defined
in MEICORE.

7. 7 Theory translation

An implementation of following signature represents the abstract syntax tree of theory
translations. TRAN is built on top of a module of MMS_SYN and that of MEI CORE, since
it needs information from both the MMS and the module system.

module type TRAN = sig
module Mms: MMS_SYN
module Mod: MEICORE
val thm_from_obl: Mod.thy_type -> Mod.thy_type ->

Mms.mapping -> (Ident.t * Mms.sentence * Mms.proof) list
end

thm_from_obl takes a theory translation (the source type, the target type, and the
mapping) and generates a list of obligations. As indicated in Remark 3.4.6, although
our intention is that the implementation of TRAN should be an interpretation, it is not
forced by our implementation. A proper implementation of TRAN has to employ the
MMS and its proof system to check if a translation is an interpretation. This is not
part of our work.

The following is a toy functor Tran only for testing:

174 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

module Tran
(TheMms:MMS_SYN)
(TheModFunc: functor (TheMms:MMS_SYN) -> MEICORE with

module Mms = TheMms) = struct
module Mms = TheMms
module Mod = TheModFunc(TheMms)
let thm_from obl thytype1 thytype rho []

end

7. 8 Abstract syntax for Mei

A module representing the abstract syntax tree of module expressions in Mei should
satisfy the following signature. It is built on top of an MMS, Mei Core, and a theory
interpretation. The last one is used to build a representation of views from which
coercion functors are constructed.

module type MEI =
sig

module Mms: MMS_SYN
module Mod: MEICORE
module Tran: TRAN
type mappings = Single of Mms.mapping I Pair of mappings * mappings
type view = Mod.mod_type * Mod.mod_type * mappings
type mod_expr = Ident of Ident.t

I Theory of Mod.spec * Mod.thy_type
I Cast of mod_expr * Mod.thy_type
I Extension of mod_expr * Mod.spec
I Rename of mod_expr * Mms.mapping
I Union of mod_expr * mod_expr
I Functor of Ident.t * Mod.mod_type * mod_expr
I Apply of mod_expr * mod_expr
I V_Apply of mod_expr * mod_expr * view

val coerce: mod_expr -> Mod.mod_expr
end

view represents view as defined in §3.4.2. mod_expr represents module expressions
of Mei. In particular, a module expression can be a functor application with a view.

7. A structural implementation of Mei 175

coerce implements the semantics of Mei defined in §3.6, i.e. translates module ex­
pressions of Mei into module expressions of Mei Core.

The functor Mei is defined straightforwardly.

module Mei
(TheMms: MMS_SYN)
(TheModFunc: functor (TheMms:MMS_SYN) -> MEICORE

with module Mms = TheMms)
(TheTranFunc: functor (TheMms:MMS_SYN)

-> functor (TheModFunc: functor (TheMms:MMS_SYN)
-> MEICORE with module Mms = TheMms)

-> TRAN with module Mms = TheMms and
module Mod = TheModFunc(TheMms))

struct
module Mms = TheMms
module Mod = TheModFunc(TheMms)
module Tran= TheTranFunc(TheMms)(TheModFunc)
(*type definition is the same as in MEI*)
let rec functor_of_view v = match v with

(Mod.Base thytypel, Mod.Base thytype2, Single rho) ->
let rho' = Mod.Mms.lift thytype2.Mod.lang_type

(Mod.Mms.inv rho) in
let del Tran.thm_from_obl thytypel thytype2 rho in
let idX = Ident.create("X") in
let spec = {Mod.lang_spec = Mms.empty_lang;

Mod.axioms_spec = []; Mod.thms_spec = del} in
let mel Mod.Extension(Mod.Ident idX, spec) in
let me2 Mod.Rename(mel, rho') in
let me3 Mod.Cast(me2, thytypel) in
Mod.Functor (idX, Mod.Base thytype2, me3)

(Mod.Arrow (typel, type2), Mod.Arrow (typel', type2'),
Pair (rhosl, rhos2)) ->

let cl= functor of view (typel', type1,rhos1) in
let c2 =functor of_view (type2, type2',rhos2) in
let idX Ident.create("X") in
let idF Ident.create("F") in
let mel Mod.Apply (cl, Mod.Ident idX) in

176 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

let me2
let me3

Mod.Apply (Mod.Ident idF, me1) in
Mod.Apply (c2, me2) in

let me4 Mod.Functor (idX, type1, me3) in
Mod.Functor (idF, Mod.Arrow (type1', type2'), me4)

_ -> raise (MEI "Bad view")
let rec coerce me = match me with

Ident id-> Mod.Ident id

end

Theory (spec, tp) ->Mod.Theory (spec,tp)
Cast (me', btyp) ->Mod.Cast (coerce me', btyp)
Extension (me', spec)-> Mod.Extension (coerce me', spec)
Rename (me', rho) -> Mod.Rename (coerce me', rho)
Union (me1, me2) -> Mod.Union (coerce me1, coerce me2)
Functor (id, tp, me') ->Mod.Functor (id, tp, coerce me')
Apply (me_f, me_p) ->Mod.Apply (coerce me_f, coerce me_p)
V_Apply (me_f, me_p, v) ->

Mod.Apply (coerce me_f, Mod.Apply (functor_of_view v,coerce me_p))

Note that coerce employs an auxiliary function, functor_of_view, to calculate a

coercion functor from a given view. This implements the coercion semantics of views

defined in §3.4.2.

7. 9 An application over a system of first-order

logic

Now all the modules for Mei have been defined. Once we define an implementation of
MMS_SYN, we can build a module system on top of it. We first define a module Name.
We separate it from the definition of Mei so that it may be redefined later to account
for a more general implementation. In our implementation of Name, t = string.

module type NAME = sig
type t
val create: string -> t
val generate_name: string -> t
val name: t -> string

7. A structural implementation of Mei

val equal: t -> t -> bool
end

177

Given an implementation of NAME, the following implementation of MMS_SYN defines
an abstract syntax tree of a first-order logic.

module Fol =
struct

type sort = Name.t
type const = Name.t * sort
type func = Name.t * sort
type pred = Name.t * sort
type variable = Ident.t *
type term =

Var of variable
I Const of const
I App of f unc * term list

type formula =
Eq of term * term

list
list
sort

PredApp of pred * term list
And of formula * formula
Or of formula * formula
Imply of formula * formula
Nega of formula
Forall of variable * formula
Exist of variable * formula

* sort

type language = {sorts: sort list; consts: const list;
funcs: func list; preds: pred list}

type mapping = {sm: (sort * sort) list; cm: (const * const) list;
fm: (func * func) list; pm: (pred * pred) list}

type sentence = formula
type proof
(*functions are ommitted*)

end

As shown in §7.4, MeiCore is a functor that takes a module of type MMS_SYN as
a parameter. It defines the data types representing module types and module ex­
pressions based on the abstract types declared in MMS_SYN, e.g. language, mapping,

178 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

sentence, and proof. By applying Mei Core to Fol, in which the abstract types de­

clared in MMS_SYN are defined concretely, we derive a real implementation of Mei Core
over a first-order logic system represented by Fol as follows:

module Fol_MeiCore = MeiCore(Fol)

A concrete module type checker and a concrete module expression evaluator
are built by applying functor MeiCore_Eval to Fol (representing the syntax of a
first-order logic), MeiCore (representing module types and module expressions), and

Env and Ctx (representing the environment and context). First, we substitute Fol,

MeiCore, Env, and Ctx for the formal parameters TheMms, TheModFunc, TheEnvFunc,

and TheCtxFunc respectively. Then, the concrete representation of Mei Core over a
first-order logic, Mod in Mei Core, is constructed by applying MeiCore to Fol. Then the
environment and context are built by applying Env and Ctx to the derived concrete

representation of Mei Core. Finally, the module type checker and module expres­

sion evaluator of Mei Core are built on top of the derived concrete representation of
Mei Core, the environment, and the context as shown in §7.6.

module Fol_MeiCore_Eval =MeiCore_Eval(Fol)(MeiCore)(Env)(Ctx)

Similarly, an implementation of Mei is derived by applying functor Mei to Fol,

MeiCore, and Tran (representing a toy interpretation). Again, first a concrete imple­
mentation of Mei Core of a first-order logic is constructed by applying MeiCore to

Fol. The representation of Mei's module type and module expressions as well as the
coercion functions are then defined.

module Fol_Mei = Mei(Fol)(MeiCore)(Tran)

Note that the construction of these three modules is independent, in the sense that

the order of the construction is irrelative.
The three modules Fol_MeiCore, Fol_MeiCore_Eval, and Fol_Mei form the top­

level testing environment. A module expression of Mei is represented by the type
mod_expr in Fol_Mei. It can be translated to a module expression of Mei Core rep­

resented by the type mod_expr in Fol_MeiCore via the function coerce in Fol_Mei.
The translated module expression is then type checked and evaluated by the function
type_of and eval respectively in Fol_MeiCore_Eval. This finishes the implementa­

tion illustrated in Figure 7.1.

Chapter 8

A module system for multi-logic

MMSs

Although Mei is logic independent, it is assumed to be built on top of an MMS with

a particular logic. It is natural to ask if Mei can be applied on top of a system that
supports multiple logics, e.g. a logical framework [78].

In this chapter, we briefly present a skeleton of a module system for a logical
framework like multi-logic system.

(1) First, there is a logical framework supporting a module system, e.g. Mei, where

the logical framework's logic is a single logic. We will call this logic a meta-logic
since it is used to formalizing custom-designed logics.

(2) One more layer should be built on top of the logical framework's theories con­
sisting custom-designed logics and theories of a particular logic. (They will be
called logics and theories respectively in this chapter.) They are represented
internally as a logical framework's theories, which are called meta-theories in
this chapter. In particular, all theories within one logic will be represented as
meta-theories which share a common sub-meta-theory representing the logic as
shown in Figure 8.1.

(3) Although all meta-theories can be manipulated as in Mei, logics should be con­
structed by explicit definition, not derived from other logics. This makes sense
because only a few logics need to be formalized within the logical framework.

179

180 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

User's view

Logic 1 Logic 2

Logic Framework

System's view
Meta-Theory 1

Logic Framework

Figure 8.1: Logics and theories as meta-theories

(4) A network of logic interpretations in terms of meta-theory interpretations should
be constructed at the time when a logic is added to the logical framework. One
issue is that a logic interpretation may be very hard to build even though it
does exist. Generally speaking, this requires a formalization of one logic within
another logic.

(5) A theory is also represented as a meta-theory which has a particular sub-meta­
theory, called the logic of the theory. It is then easy to identify if two theories are
in the same logic or not. Theory operations such as extension, union, renaming,
functor application are only applicable to theories in the same logic.

(6) Theory interpretations can be defined between two theories from the same logic or

8. A module system for multi-logic MMSs 181

two different logics. Ideally, the user only needs to define a translation between
two theories without considering their logics. The translation between log­
ics should be attached automatically to form a meta-theory translation, which
should be checked to see if it is an interpretation. This is easy if both theories
are in one logic. (Mechanisms should be provided to avoid rechecking the iden­
tity logic part.) It is not obvious if this can be done if the two theories are in
different logics. This last issue is itself an interesting research topic.

(a) A theory specific symbol (non-logical symbol) in the source logic might not
have its counterpart in any theory of the target logic. For instance, as­
sume that the target theory has the logical symbols negation, conjunction,
disjunction, and implication, whereas the source logic has only the logical
symbols such as negation, conjunction, and disjunction. The implication
symbol will be defined as a non-logic symbol in some particular theory in
the source logic in terms of negation and conjunction. Clearly, there is no
non-logical symbol for implication in any theory in the target logic.

(b) There are cases that, although there is no logic interpretation (or the logic
interpretation is very hard to build) from a logic, say 1 1 , to another logic,
say 12, There is a logic interpretation from a sublogic of 1 1, say 1~, in
which a number of theories can be formalized easily, to ~- It is hard for
the system to identify such a sublogic where the logic interpretation exists.
It is possible to separate 1~ from 1 1 and build logic interpretations from
1~ to both 11 and 1 2 . This later approach will necessarily complicate the
logic network and it is better to be hidden from the user in the sense that
a service requirement to a theory in 1 1 using only 1~ will be redirected to
1~ under the screen as shown in Figure 8.2.

(7) A language should be defined to manipulate logics and theories as well as logic in­
terpretations and theory interpretations. The semantics of this language should
be defined in terms of the module expressions over meta-theories, which are
only presented in the abstract syntactic tree level to avoid exposure to the user.

The above discussion is based on logical frameworks such as LF [78] or Isabelle [70].
The logic interpretation can then be easily expressed as a meta-theory interpretation
over the meta-logic. In other words, the theory interpretations between theories from
different logics are reduced to those between meta-theories from the same meta-logic.
A further issue is how the ideas above fit in a framework where no single meta-logic

182 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

Use(s view

System's view

Figure 8.2: Sub-logic issue

is presented, e.g. FFMM [39, 40], a Formal Framework for Managing Mathematics.
This may require a different formalization of Mei, in which we need a formalism of
logics as well as theories. This is left for future work.

Chapter 9

Conclusion and future work

In this thesis we have presented several module systems, among which Mei is the most
important, designed for MMSs. Mei integrates most of the modular mechanisms from
both ML-family module systems and algebraic specification languages. In particular
Mei supports higher-order functors with a fitting morphism like parameter passing

mechanism. This provides a higher level of abstraction and module reusability. We
showed Mei's power by comparing it with some current module systems. Moreover,

Mei is relatively simple because of the use of views and coercion functors which
separate the concerns of parameter passing from functor application. The analogy

between Mei and type >.-calculus has a definite beauty.

There are two basic ways to use Mei:

(1) Build Mei as a module layer on top of an MMS, as we suggest in Chapter 7. The
module system Mei is conceptually implemented as a "functor" with respect to
an abstract signature MMS_SYN. Then we can formalize the underlying MMS
as a structure implementing the signature MMS_SYN. The module layer is then
built automatically by applying the functor to the structure. The implemen­
tation in Chapter 7 is an experiment. For practical use, we probably need a
more sophisticated implementation to integrate Mei with the reasoning mech­
anisms of the underlying MMS such as theory interpretations and proofs. The
implementation should also implement the features we present in Chapter 6.

(2) In addition to using Mei as a whole module system, some ideas of Mei can be
incorporated in existing module systems. In particular, the idea of views and

183

184 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

their coercion semantics can be easily integrated with an ML-family module
system. This can be seen from the relation between Mei and Mei Core. Views
can be defined for theories if theory interpretation is supported. It can be easily
extended for functors if there is some notion of a type of a functor when higher­
order functors are supported. The coercion semantics can be defined as in Mei.

This is essentially because the views and their coercion semantics are orthogonal
to the other mechanisms provided by Mei Core.

Future work includes: (1) a real implementation of Mei for an MMS, (2) a simpli­
fied version of DMei as discussed in §4.6, (3) a module system supporting multi-logic
as discussed in §8, and (4) a proof or refutation of Conjecture 2.4.18.

Bibliography

[1] Recent Trends in Algebraic Development Techniques, 14th International Work­
shop, WADT'99, Chdteau de Bonas, France, 1999, Selected Papers, 1827, 2000.

[2] D. R. Aspinall, "Isabelle modules - A new theory mechanism for Isabelle,"

Master's thesis, University of Cambridge, 1991.

[3] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Bruckner, P. D. Mosses, D. San­
nella, and A. Tarlecki, "CASL: the common algebraic specification language,''
Theor. Comput. Sci., vol. 286, no. 2, pp. 153-196, 2002.

[4] S. Autexier, D. Hutter, H. Mantel, and A. Schairer, "Towards an evolutionary
formal software-development using CASL,'' in WADT'99 [1], pp. 73-88.

[5] A. Bailey, "Coercion synthesis in computer implementations of type-theoretic
frameworks," in TYPES '96: Selected papers from the International Workshop
on Types for Proofs and Programs, (London, UK), pp. 9-27, Springer-Verlag,
1998.

[6] C. Ballarin, "Locales and locale expressions in Isabelle/Isar.,'' in Types for
Proofs and Programs, International Workshop, TYPES 2003, Torino, Italy,
April 30 - May 4, 2003, Revised Selected Papers (S. Berardi, M. Coppo, and
F. Damiani, eds.), vol. 3085 of Lecture Notes in Computer Science, pp. 34-50,
Springer, 2004.

[7] M. Bidoit, D. Sannella, and A. Tarlecki, "Architectural specifications in CASL,''
in AMAST '98: Proceedings of the 7th International Conference on Algebraic
Methodology and Software Technology, (London, UK), pp. 341-357, Springer­
Verlag, 1999.

185

186 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[8] T. Borzyszkowski, "Higher-order logic and theorem proving for structured spec­

ifications," in WADT'99 [1], pp. 401-418.

[9] W. Bosma, J. J. Cannon, and C. Playoust, "The magma algebra system i: The

user language," J. Symb. Comput., vol. 24, no. 3/4, pp. 235-265, 1997.

[10] N. Bruijn in Symposium on Automatic Demonstration (J. P. Seldin and J. R.
Hindley, eds.), Lecture Notes in Mathematics, pp. 29-61, Springer-Verlag, 1970.

[11] N. Bruijn, "A survey of the project AUTOMATH," in To H. B. Curry: Essays

on Combinatory Logic, Lambda Calculus and Formalism (J. P. Seldin and J. R.

Hindley, eds.), pp. 579-606, Academic Press, 1980. Reprinted in Selected Papers
in Automath, ed. R.P. Nederpelt and H. Geuvers (North-Holland, 1994), 141-

161.

[12] J. Cannon and C. Playoust, Algebraic programming with Magma I: An intro­
duction to the Magma langage. Secaucus, NJ, USA: Springer-Verlag NewYork,

Inc., 2006.

[13] J. Carette, W. Farmer, and J. Wajs, "Trustable communication between math­
ematics systems," in Calculemus 2003 {11th Symposium on the Integration of
Symbolic Computation and Mechanized Reasoning, Rome,Italy, September 2003
(T. Hardin and R. Rioboo, eds.), pp. 58-68, 2003.

[14] J. Carette, "Gaussian elimination: a case study in efficient genericity with
metaocaml," Sci. Comput. Program., vol. 62, no. 1, pp. 3-24, 2006.

[15] J. Carette and 0. Kiselyov, "Multi-stage programming with functors and mon­

ads: eliminating abstraction overhead from generic code," 2005.

[16] G. Castagna, "Covariance and contravariance: Conflict without a cause," ACM
Transactions on Programming Languages and Systems, vol. 17, no. 3, pp. 431-
447, May 1995.

[17] J. Chrzaszcz, Modules in Type Theory with Generative Definitions. PhD thesis,
Warsaw Univerity and University of Paris-Sud, Jan 2004.

[18] J. Chrzkszcz, "Modules in Coq are and will be correct," in Types for Proofs

and Programs, International Workshop, TYPES 2003, Torino, Italy, April 30 -
May 4, 2003, Revised Selected Papers (S. Berardi, M. Coppo, and F. Damiani,
eds.), vol. 3085 of LNCS, pp. 130-146, Springer, 2004.

BIBLIOGRAPHY 187

[19] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Martf-Oliet, J. Meseguer,
and C. Talcott, Maude manual, March 2004. Version 2.1. Available from
http://maude.cs.uiuc.edu/.

[20] R. L. Constable, "Recent results in type theory and their relationship to au­
tomath," in Thirty Five years of Automath, Applied Logic Series (F. Kamared­
dine, ed.), pp. 1-11, Kluwer Academic Publishers, 2003.

[21] T. Coquand, R. Pollack, and M. Takeyama, "Modules as dependently typed
records." citeseer.ist. psu.edu/ coquand02modules.html.

[22] T. Coquand, R. Pollack, and M. Takeyama, "A Logical Framework with Depen­
dently Typed Records," Fundamenta Informaticae, vol. 65, no. 1-2, pp. 112-
134, 2005.

[23] J. Courant, "An applicative module calculus," in TAPSOFT '91: Proceedings
of the 1th International Joint Conference CAAP /FASE on Theory and Practice
of Software Development, (London, UK), pp. 622-636, Springer-Verlag, 1997.

[24] J. Courant, "A module calculus for pure type systems," in TLCA '91: Pro­
ceedings of the Third International Conference on Typed Lambda Calculi and
Applications, (London, UK), pp. 112-128, Springer-Verlag, 1997.

[25] P. Cousot and R. Cousot, "Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints," m
POPL, pp. 238-252, 1977.

[26] R. David and K. Nour, "A short proof of the strong normalization of classical
natural deduction with disjunction," J. Symbolic Logic, vol. 68, pp. 1277-1288,
2003.

[27] A. J. T. Davie, An introduction to functional programming systems using
Haskell. New York, NY, USA: Cambridge University Press, 1992.

[28] T. Dimitrakos and T. Maibaum, "On a generalized modularization theorem,"
Information Processing Letters, vol. 74, no. 1-2, pp. 65-71, Apr. 2000.

[29] K. Donnelly and H. Xi, "A formalization of strong normalization for simply­
typed lambda-calculus and system F," Electron. Notes Theor. Comput. Sci.,
vol. 17 4, no. 5, pp. 109-125, 2007.

http:http://maude.cs.uiuc.edu

188 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[30] D. Dreyer, K. Crary, and R. Harper, "A type system for higher-order modules,"
in POPL '03: Proceedings of the 30th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, (New York, NY, USA), pp. 236-249,
ACM Press, 2003.

[31] F. Duran and J. Meseguer, "Parameterized theories and views in Full Maude
2.0,'' Electr. Notes Theor. Comput. Sci., vol. 36, 2000.

[32] F. Duran and J. Meseguer, "Structured theories and institutions," Theor. Com­
put. Sci., vol. 309, no. 1, pp. 357-380, 2003.

[33] F. Duran and J. Meseguer, "Maude's module algebra,'' Sci. Comp. Program.,
vol. 66, no. 2, 2007.

[34] W. M. Farmer, "Theory interpretation in simple type theory," in Higher-Order
Algebra, Logic, and Term Rewriting (J. H. et al., ed.), vol. 816 of Lecture Notes
in Computer Science, pp. 96-123, Springer-Verlag, 1994.

[35] W. M. Farmer, "STMM: A set theory for mechanized mathematics,'' Journal of
Automated Reasoning, vol. 26, pp. 269-289, 2001.

[36] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "IMPS: An Interactive Math­
ematical Proof System," Journal of Automated Reasoning, vol. 11, pp. 213-248,
1993.

[37] W. M. Farmer, J. D. Guttman, and F. J. Thayer, "The IMPS user's manual,"
Tech. Rep. M-93B138, The MITRE Corporation, 1993.

[38] W. M. Farmer, J. Guttman, and F. J. Thayer, "Little theories,'' in Automated
Deduction-CADE-11 (D. Kapur., ed.), vol. 607 of Lecture Notes in Computer
Science, pp. 567-581, Springer-Verlag, 1992.

[39] W. M. Farmer and M. v. Mohrenschildt, "A microkernel for a mechanized math­
ematics system,'' tech. rep., McMaster University, 2002.

[40] W. M. Farmer and M. V. Mohrenschildt, "An overview of a formal framework
for managing mathematics," Annals of Mathematics and Artificial Intelligence,
vol. 38, no. 1-3, pp. 165-191, 2003.

[41] S. Fechter, "An object-oriented model for the certified computer algebra li­

brary." Paper presented at FMOODS 2002 PhD workshop, Mar. 2002.

BIBLIOGRAPHY 189

[42] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements
of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[43] R. J. Gaylord, S. N. Kamin, and P.R. Wellin, An introduction to programming
with Mathematica. Cambridge, UK: Cambridge University Press, 2004.

[44] H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg, "A constructive alge­
braic hierarchy in Coq,'' J. Symb. Comput., vol. 34, no. 4, pp. 271-286, 2002.

[45] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, April 1989.

[46] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud, "Intro­
ducing OBJ,'' in Applications of Algebraic Specification using OBJ (J. Goguen,
ed.), Cambridge, 1993.

[47] R. Harper and M. Lillibridge, "A type-theoretic approach to higher-order mod­
ules with sharing,'' in 21st symposium Principles of Programming Languages,
pp. 123-137, ACM Press, 1994.

[48] A. Haxthausen and et.al., CASL - The common algebraic specifica­
tion language - Summary, March 2001. Version 1.0.1. Available from

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary /.

[49] A. E. Haxthausen and F. Nickl, "Pushouts of order-sorted algebraic specifi­
cations,'' in AMAST '96: Proceedings of the 5th International Conference on
Algebraic Methodology and Software Technology, (London, UK), pp. 132-147,

Springer-Verlag, 1996.

[50] J. J. Hickey, "Nuprl-light: An implementation framework for higher-order log­
ics,'' in Conference on Automated Deduction, pp. 395-399, 1997.

[51] D. Hutter, "Management of change in structured verification.,'' in Automated
Software Engineering, pp. 23-, 2000.

[52] D. Hutter and M. Kohlhase, "Managing structural information by higher-order
colored unification,'' Journal of Automated Reasoning, vol. 25, no. 2, pp. 123-

164, 2000.

http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary

190 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[53] R. D. Jenks and R. Sutor, AXIOM: the scientific computation system. New
York, NY, USA: Springer-Verlag New York, Inc., 1992.

[54] R. M. Jimenez and F. Orejas, "An algebraic framework for higher-order mod­
ules," in FM '99: Proceedings of the Wold Congress on Formal Methods in the

Development of Computing Systems- Volume II, (London, UK), pp. 1778-1797,
Springer-Verlag, 1999.

[55] S. Kahrs, D. Sannella, and A. Tarlecki, "The definition of extended ML: a gentle
introduction," Theor. Comput. Sci., vol. 173, no. 2, pp. 445-484, 1997.

[56] F. Kammuller, "Modular reasoning in isabelle." PhD thesis, University of Cam­
bridge, 1999. http://citeseer.ist.psu.edu/article/kammuller99modular.html.

[57] X. Leroy, "Manifest types, modules, and separate compilation," in 21st sympo­
sium Principles of Programming Languages, pp. 109-122, ACM Press, 1994.

[58] X. Leroy, "A modular module system," Journal of Functional Programming,

vol. 10, no. 3, pp. 269-303, 2000.

[59] X. Leroy, The Objective Caml system, May 2007. Release 3.10. Available from
http:/ /caml.inria.fr/pub/docs/manual-ocaml/index.html.

[60] Z. Luo, "Coercive subtyping," Journal of Logic and Computation, vol. 9, no. 1,
1999.

[61] Z. Luo and R. Pollack, "The LEGO proof development system: A user's man­
ual," Tech. Rep. ECS-LFCS-92-211, University of Edinburgh, May 1992.

[62] D. B. MacQueen, "Using dependent types to express modular structure," in
POPL '86: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, (New York, NY, USA), pp. 277-286, ACM
Press, 1986.

[63] The Coq Development Team, The Coq Proof
Manual. LogiCal Project, 2004. Version

http://coq.inria.fr/doc/main.html.

Assistant Reference
8.0. Available from

[64] The FoC Development Team, FoC Reference Manual, July 2003. Version 0.0.
Available from http://www-spi.lip6.fr/ foe.

http:http://www-spi.lip6.fr
http://coq.inria.fr/doc/main.html
http://citeseer.ist.psu.edu/article/kammuller99modular.html

BIBLIOGRAPHY 191

[65] K. Meinke and J. V. Tucker, "Universal algebra," in Handbook of logic in com­

puter science (vol. 1): background: mathematical structures, pp. 189-368, New
York, NY, USA: Oxford University Press, Inc., 1992.

[66] R. Milner, M. Tofte, and D. Macqueen, The Definition of Standard ML. Cam­
bridge, MA, USA: MIT Press, 1997.

[67] M. Monagan, K. Geddes, K. Heal, G. Labahn, S. Vorkoetter, J. McCarron, and
P. DeMarco, Maple 10 Introductory Programming Guide. Maplesoft, a division
of Waterloo Maple Inc., Waterloo, Ontario, Canada, 2005. 388 pages.

[68] M. B. Monagan, K. 0. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. Mc­
Carron, and P. DeMarco, Maple 10 Advanced Programming Guide. Waterloo
Maple Inc., 2005.

[69] T. Mossakowski, "Colimits of order-sorted specifications," in WADT '91: Se­

lected papers from the 12th International Workshop on Recent Trends in Al­

gebraic Development Techniques, (London, UK), pp. 316-332, Springer-Verlag,
1997.

[70] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof Assis­

tant for Higher-Order Logic, vol. 2283 of Lecture Notes in Computer Science.

Springer, 2002.

[71] F. Orejas, "Structuring and modularity," in Algebraic Foundations of System
Specification (E. Astesiano, E. Kreowski, and B. Bruckner, eds.), pp. 159-200,
Springer-Verlag, 1999.

[72] S. Owre, J. M. Rushby, , and N. Shankar, "PVS: A prototype verification
system," in 11th International Conference on Automated Deduction (CADE)

(D. Kapur, ed.), vol. 607 of Lecture Notes in Artificial Intelligence, (Saratoga,
NY), pp. 748-752, Springer-Verlag, jun 1992.

[73] S. Owre and N. Shankar, "Theory interpretations in PVS," Tech. Rep. SRI­
CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA,
April 2001.

[74] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert, PVS Lan­
guage Reference. Computer Science Laboratory, SRI International, Menlo Park,
CA, 1999.

192 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[75] D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"

Communications of the ACM, vol. 15(12), pp. 1053-1058, 1972.

[76] L. C. Paulson, "Theories as ML structures, signatures, and functors." University
of Cambridge, January 1991.

[77] L. C. Paulson, "Organizing numerical theories using axiomatic type classes.,"
J. Autom. Reasoning, vol. 33, no. 1, pp. 29-49, 2004.

[78] F. Pfenning and C. Schuermann, "Twelf user's guide," Tech. Rep. CMU-CS-
98-173, Carnegie Mellon University, September 1998.

[79] B. C. Pierce, "Bounded quantification is undecidable," Information and Com­
putation, vol. 112, no. 1, July 1994.

[80] B. C. Pierce, Types and Programming Languages. The MIT Press, 2002.

[81] E. Poll and S. Thompson, "The Type System of Aldar," Tech. Rep. 11-99,
Computing Laboratory, University of Kent at Canterbury, Kent CT2 7NF, UK,
July 1999.

[82] N. Ramsey, "ML module mania: A type-safe, separately compiled, extensible
interpreter.," Electr. Notes Theor. Comput. Sci., vol. 148, no. 2, pp. 181-209,
2006.

[83] N. Ramsey, K. Fisher, and P. Govereau, "An expressive language of signatures,"
in ICFP '05: Proceedings of the tenth ACM SIG PLAN international conference
on Functional programming, (New York, NY, USA), pp. 27-40, ACM Press,
2005.

[84] C. V. Russo, "Types for modules," 1998. PhD thesis, Univ. of Edinburgh.
http:// ci teseer. ist. psu. ed u / russo98types. html.

[85] C. V. Russo, "Non-dependent types for standard ML modules," in Principles
and Practice of Declarative Programming, pp. 80-97, 1999.

[86] A. Saibi, "Typing algorithm in type theory with inheritance.," in POPL,
pp. 292-301, 1997.

BIBLIOGRAPHY 193

[87] D. Sannella and A. Tarlecki, "A kernel specification formalism with higher
- order parameterisation," in Recent Trends in Data Type Specification. 7th
Workshop on Specification of Abstract Data Types, pp. 274-296, Springer LNCS
534, 1990.

[88] N. Shankar, S. Owre, J.M. Rushby, and D. W. J. Stringer-Calvert, PVS Prover
Guide. Computer Science Laboratory, SRI International, Menlo Park, CA, 1999.

[89] M. Shields and S. P. Jones, "First class modules for Haskell," in 9th Inter­
national Conference on Foundations of Object-Oriented Languages (FOOL 9),
Portland, Oregon, pp. 28-40, Jan. 2002.

[90] Y. V. Srinivas and R. Jullig, "Specware: Formal support for composing soft­
ware," in Mathematics of Program Construction, pp. 399-422, 1995.

[91] M. Sulzmann, M. Odersky, and M. Wehr, "Type inference wit~ constrained
types," in Fourth International Workshop on Foundations of Object-Oriented
Programming (FOOL 4), 1997.

[92] P. A. S. Veloso and T. S. E. Maibaum, "On the modularization theorem for
logical specifications.," Inf. Process. Lett., vol. 53, no. 5, pp. 287-293, 1995.

[93] P. Wadler, "Views: a way for pattern matching to cohabit with data abstrac­
tion," in POPL '87: Proceedings of the 14th ACM SIGACT-SIGPLAN sympo­
sium on Principles of programming languages, (New York, NY, USA), pp. 307-
313, ACM Press, 1987.

[94] S. Watt, Aldar User Guide. Aldor.org, 2nd ed., 2002.

[95] J. B. Wells, "Typability and type checking in system f are equivalent and un­
decidable," Annals of Pure and Applied Logic, vol. 98, no. 1-3, pp. 111-156,
1999.

[96] M. Wenzel, "Using axiomatic type classes in Isabelle," 2004. Technische Uni­
versitat Miinchen.

[97] M. Wirsing, "Structured algebraic specifications: A kernel language," Theoret­
ical Computer Science, vol. 42, pp. 123-249, 1986.

http:Aldor.org

194 Jian Xu - Ph.D. Thesis - Department of CAS, McMaster University

[98] J. Xu, "Mei - A module system for mechanized mathematics systems," in
Programming Lan!luages for Mechanized Mathematics Workshop, (Hagenberg,
Austria).

[99] J. Xu, "Mei - A module system for mechanized mathematics systems," Tech.
Rep. CAS-07-01-WF, McMaster University, Hamilton, Canada, 2007.

[100] J. Zucker, "Formalization of classical mathematics in Automath," in Colloque

International de Logique, pp. 135-145, Paris: CNRS, 1977. Reprinted in Se­
lected Papers in Automath, ed. R.P. Nederpelt and H. Geuvers (North-Holland,
1994), 127-139.

4566 04

	Structure Bookmarks

