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ABSTRACT 

The Volta River Authority (VRA) is responsible for the generation 

and transmission of power in Ghana. For this purpose, VRA owns 

and operates two hydroelectric generating stations (at Akosombo 

and Kpong) with a combined installed capacity of 1060 Kw. The 

Akosombo plant is served by the Lake Volta Reservoir. Prediction 

of inflows into the Volta Lake is one of the important functions 

of the reservoir management group. 

For this project, some of the more recent methods of mathematical 

modelling are investigated with a view to building a simple 

stochastic model which adequately represents and forecasts the 

Volta river average monthly flow. The Box-Jenkins family of 

models are employed in this exercise. A parsimonious model in the 

form of a seasonal autoregressive integrated moving average 

(SARIMA) model is arrived at which adequately models and 

forecasts the available data. 

The selected model is reasonably easy to set up, has few 

parameters to estimate and therefore making the updating of these 

parameters a relatively simple task. 

'ii 



ACJCNOVLIDGIMENTS 

I wish to extend my gratitude to Dr. A. A. Smith who supervised 

this project and enthusiastically assisted me in various ways. I 

also wish to thank Dr. G. Patry for the valuable discussions we 

had. I acknowledge with thanks the assistance of the Volta River 

Authority who financed and provided the data for this work. I 

also want to thank Dr K. W. Hipel and Dr. A. I. McLeod who kindly 

permitted the use of their time series package for this exercise. 

I wish also to acknowledge the assistance of Acres Consulting 

Services of Canada, who permitted me access to computer 

facilities. I also wish to thank Ontario Hydro for administering 

the program. A special thank you to the Engineering Department of 

VRA for allowing me the time to complete this project and finally 

to my wife for bearing with me. 

iii 



TABLE OF COHTElfTS 

ABSTRACT 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST or TABLES 

CHAPTER Page 

1. INTRODUCTION AND SCOPE or WORK 1 


2. THE VOLTA RIVER SYSTEM 

2.1. Catchment Basin 6 


2.2. Climate 7 


2.2.1. Rainfall 8 


2.2.2. Temperature 8 


2.2.3. Evaporation 9 


2.2.4. Surf ace Wind 9 


2.3. Hydrology 9 


iv 



3. THE EXISTING FORECASTING SYSTEM 


3.1. Introduction 	 12 


3.2. Historical and real-time data collection 	 12 


3.3. Data transmission 	 13 


3.4. Data base management 	 14 


3.5. Forecasting procedure 	 14 


3.6. Forecast dissemination services 	 15 


3.7. Forecast evaluation and updating 	 17 


4. STOCHASTIC METHODS 

4.1. Introduction 	 18 


4.2. Stochastic process 	 19 


4.3. Stochastic models 	 20 


4.3.1. Stationary models 	 21 


4.3.2. Nonstationary models 	 21 


4.3.3. Seasonal models 	 23 


4.4. Formulation of stochastic models 	 23 


4.4.1. Autoregressive models (AR) 	 27 


4.4.2. Moving average models (MA) 	 28 


4.4.3. Autoregressive moving average 	 29 


4.4.4. 	Autoregressive integrated moving average models 


30 


4.5. Stochastic modelling 	 31 


4.5.1. Identification 	 31 


4.5.1.1. Plot of the original series 	 33 


v 



34 4.5.1.2. Plot of autocorrelation function 

4.5.1.3. Plot of partial autocorrelation function 

37 


4.5.2. 	Estimation 39 


4.5.3. 	Diagnostic checks 40 


4.5.3.1. Overfitting 	 40 


4.5.3.2. Independence of residuals 	 41 


4.5.3.3. Bomoscedasticity of residuals 	 43 


4.5.3.4. Normality of residuals 	 43 


4.5.4. 	Box-Cox Transformation 44 


4.5.5. 	Akaike information criterion (AIC) 46 


5. FORECASTING SEASONAL TIME SERIES 

5.1. Introduction 	 48 


5.2. Modelling monthly river flow series 	 49 


5.2.1. 	Periodic autoregressive model (PAR) 49 


5.2.2. 	Deseasonalized models 50 


5.2.3. 	Seasonal autoregressive integrated moving 


average models 51 


5.3. Forecasting monthly river flow series 	 55 


5.3.1. 	Introduction 55 


5.3.2. 	Three forms of the arima model 56 


5.3.2.1. 	Difference equation form of arima model 


56 


5.3.2.2. Random shock form of arima model 	 57 


vi 




5.3.2.3. Inverted form of arima model 

5.3.3. Minimum mean square error forecasts 

5.3.3.1. Difference equation form 

5.3.3.2. Random shock form 

5.3.3.3. Inverted form 

5.3.4. Methodology 

6. MODEL SELECTION METHODOLOGY 

6.1. Introduction 

6.2. Data availability 

6.2.1. Rain gauge stations 

6.2.2. Flow Stations 

6.3. Analysis 

6.3.1. The Periodic Autoregressive Model 

6.3.2. The Deseasonalized Model 

6.3.2.1. Plot of the original data 

6.3.2.2. Plot of sample autocorrelation 

6.3.2.3. ARMA model identification 

6.4. Summary 

7. SELECTED MODEL FOR THE VOLTA RIVER 

7.1. Introduction 

59 

60 

60 

60 

62 

63 

65 

65 

67 

67 

68 

68 

70 

70 

function 

71 

79 

82 

83 

7.2. Seasonal autoregressive integrated moving average model 

vii 

83 



7.2.1. Identification 84 


7.2.1.1. Plot of original data series 84 


7.2.1.2. Plot of sample autocorrelation function 

85 


7.2.2. Estimation 86 


7.2.2.1. The Mathematical Model 86 


7.2.3. Diagnostic checking of fitted model 89 


7.2.3.1. Overfitting 90 


7.2.3.2. Independence of residuals 92 


7.2.3.3. Homoscedasticity of residuals 95 


7.2.3.4. Normality of residuals 95 


7.3. Comments 96 


8. FORECASTING THE VOLTA RIVER FLOWS 

8.1. Introduction 97 


8.2. Computer software 98 


8. 2.1. Program "USED" 98 


8.2.1.1. Input data required 99 


8.2.1.2. Output data listed 100 


8.2.2. Program "USFO" 101 


8.2.2.1. Input data required 102 


8.2.2.2. Output data listed 103 


8.2.3. Program "DRUSMAIN" 104 


8.3. Model validation 105 


8.3.1. Data formulation 106 


8.3.2. Results 106 


viii 




8.3.2.1. One Step Ahead Forecasts 106 


8.3.2.2. Minimum Mean Square Error Forecasts 109 


8.4. Summary 119 


9. UTILISING THE FORECAST DATA 

9.1. Introduction 120 


9.2. HYDR0170 121 


9.2.1. Required data input 121 


9.2.2. Output listing 123 


9.3. HYDR0824 124 


9.3.1. Required data input 124 


9.3.2. Output listing 126 


9.4. GFEPM 127 


9.4.1. Required data input 128 


9.4.2. Output listing 129 


9.5. Comments 130 


10. DISCUSSION, CONCLUSION AND SUGGESTED WORK 132 


BIBLIOGRAPHY 

APPENDIX 

ix 



LIST OF FIGURES 


Page 

Figure 1.1 River Basin 2 


Figure 2.1 Mean annual evaporation 10 


Figure 3.1 Average annual flows 16 


Figure 4.1 Stationary Process 22 


Figure 4.2 Non stationary process 24 


Figure 4.3 Seasonal Process 25 


Figure 4.4 Nonseasonally differenced series 32 


Figure 5.1 Seasonally differenced series 54 


Figure 6.1 Average monthly flow 69 


Figure 6.2 Sample autocorrelation function 72 


Figure 6.3 Seasonal sample autocorrelation function 73 


Figure 6.4 Deseasonalized SACF 75 


Figure 6.5 Deseasonalized SSACF 76 


Figure 6.6. Log deseasonalized SACF 77 


Figure 6.7 Log deseasonalized SSACF 78 


Figure 6.8 Log deseasonalized RACF [AR (1) ] 80 


Figure 6.9 Log deseasonalized SRACF [AR(l)] 81 


Figure 7.1 Sample autocorrelation function 87 


Figure 7.2 Seasonal SACF 88 


x 



93 Figure 7.3 Residual autocorrelation function 

Figure 7.4 Seasonal RACF 

Figure 8.1 Volta river flow forecasts 

Figure 8.2 Volta river flow forecasts 

Figure 8.3 Volta river flow f orecasU 

Figure 8.4 Volta river flow forecasts 

Figure 8.5 Volta river flow forecasts 

Figure 8.6 Volta river flow forecasts 

Figure 8.7 Volta river flow forecasts 

Figure 8.8 Volta river flow forecasts 

Figure 8.9 Volta river flow forecasts 

94 


(1956-1959) 110 


(1966-1969) 111 


(1966-1969) 112 


(1981-1984) 113 


(1975-1978) 114 


(1981-1984) 115 


(1981-1984) 116 


(1981-1984) 117 


(1981-1984) 118 


,· 


xi 




LIST or TABLES 

Table 8.1 Data formulation 106 

Table 8.2 R - squared values 107 

xii 



1. IRTRODUCTIOR ARD SCOPI or YORI 

The Volta River Authority (VRA) is responsible for generation and 

transmission of power in Ghana. For this purpose, VRA owns and 

operates two hydroelectric generating stations with a combined 

installed capacity of 1060 Mw. 

VRA supplies power directly to aajor consumers in Ghana and to 

Electricity Corporation of Ghana (ECG). In addition VRA exports 

power to Communaute Electrique du Benin (CEB) which supplies 

power to Togo and Benin and also VRA has an exchange agreement 

with Energie Electrique de la Cote d'Ivoire (EECI). 

The two generating stations operated by VRA are the Akosombo and 

Kpong generating stations whose locations are as shown on Figure 

1. It should be noted that though there exists some diesel 

generation in Ghana the total output capability does not amount 

to more than 30 Mw in total, accordingly hydro power plays an 

important role in the Energy sector of Ghana and it's 

neighbouring countries. 

The Kpong generating station, a run-of-river plant situated 25 km 

downstream of the Akosombo generating station, has pondage of 

approximately 0.1% of the storage capacity of the Akosombo plant. 
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Figure 1.1 - River Basin 

(Reproduced with permission of Acres International Ltd.) 
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Hence the effect of local inf lows into the Kpong headpond is 

negligible in terms of power flows. The Akosombo plant however is 

served by the Lake Volta Reservoir which has a storage capacity 

of 149900 mcm covering an area of approximately 8400 km2 at full 

supply level. The drainage area is estimated at 390 000 km2 • 

The Akosombo reservoir (Lake Volta) is a large reservoir with 

multi-year storage capability. It is usually allowed to fluctuate 

between full supply level of 84.13 m and 75.59 m the minimum 

operating level for regulation of power flows. Inflow into this 

reservoir was estimated from measurements made at a gauging 

station near Senchi, a town midway between Akosombo and Kpong. 

Following the regulation of flow since the commissioning of 

Akosombo in 1964, natural monthly runoff has been synthesised 

based on operation records at Akosombo with adjustments for 

rainfall and evaporation. This reservoir has three major 

tributaries: White Volta, Black Volta and Oti river on which 

gauging stations are located. Gauging stations are also located 

at the periphery of the reservoir. 

Computation of inflows into the Volta Lake is one of the critical 

functions of the reservoir management group. This function 

includes prediction of flows into the lake especially in months 

preceding attainment of peak levels at the dam site. This 

activity though conducted year round attains heightened 

importance during the 'wet season' of the year due to several 



reasons including flood prediction/protection, power and energy 

studies relating to optimum operations over the next hydrologic 

year as well providing the necessary data base for negotiations 

concerning contractual obligations to VRA's international 

customers. 

Traditionally, prediction of inflows has been effected using 

various methods including graphical adaptive forecasts and 

regression equations relating rainfall and runoff at upstream 

gauges to measured flow at Akosombo. These methods involved 

plotting discharges on graph paper, then extrapolating curves 

drawn through the resulting points, and then updating the 

forecasts by modifying the extrapolations by eye. In the case of 

the regression method, equations used are based on data available 

as at 1975. At worst these equations will have to be updated in 

light of more current data and coded into a computer to 

facilitate use of such equations. 

It would however be recommended that some of the more recent 

methods of forecasting should be employed by way of building a 

simple deterministic I stochastic model which ideally would 

incorporate as many physically-based parameters as possible. Some 

consideration can be given to utilising rainfall I runoff data 

available for areas including the catchments of the three main 

tributaries. By way of data availability, daily and monthly 

streamflow records are available for gauging stations located on 



5 

these tributaries. Monthly rainfall summaries are also available 

for various stations across the country. The length of available 

data varies from as short as 42 years to over a hundred. 

The above method of forecasting is being suggested for various 

reasons including the ease of not only setting up the model in 

question but also ease of updating relevant parameters of the 

model(s). This model will, in conjunction with existing methods 

of forecasting in VRA, , provide convenient computational methods 

suitable for implementation on Personal Computers. 

It is believed that the development of such model(s) could be 

attained using some of the well established algorithms from Box 

and Jenkins (1976] as well the extensive work done by 

personalities like Hipel (1977], McLeod (1977], Kottegoda (1980]. 



2. THE VOLTA RIVER SYSTEM 

2.1. Catchment Basin 

The Volta river basin is situated between 6°N - 14°N latitudes 

and 5°15'V - 2°10'1 longitudes, and lies in six countries namely 

Ghana, Bourkina Faso, Togo, Benin, Mali and Cote D'ivoire. Most 

of the upper catchment is in Bourkina Faso and the lower 

catchment in Ghana. A sizeable portion of one of the sub­

catchments is in Togo. 

The catchment area of the Volta River is 398 373 km2 of which 

163,382 km2 are in Ghana. The principal tributaries to the Volta 

River proper are the White Volta, Black Volta and the Oti Rivers 

with individual catchment areas of 104 753, 148 498 and 72779 km2 

respectively. The sources of the Black Volta and the White Volta 

are in Bourkina Faso flow generally south through Ghana joining 

to form.the Volta proper at about 483 km upstream from its mouth. 

The Oti river however rises in Benin, runs through the northern 

part of Togo, joins the Volta proper about 250 km downstream of 

the confluence of the White and Black Volta rivers. The Volta 

river itself runs generally south-east across the southern part 

of Ghana joining the Gulf of Guinea about 89 km east of Accra, 

6 
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the capital. At the Akosombo dam site however, the area of the 

Volta basin is 396 503 traz. 

2.2. Climate 

The climate in the Volta River basin is dictated by the movement 

of two main principal air masses, the southerly monsoons and the 

northerly trade winds. The boundary where these two air masses 

converge is known as the Inter-Tropical Boundary (ITB) or Inter-

Tropical Convergence Zone (ITCZ). The monsoon air masses 

originate from the South Atlantic Ocean anti-cyclone and 

generally have a long history of sea track before reaching the 

West African coast. Since the coast is to the north of the South 

Atlantic cyclone, the air masses cross the coast from the south­

east and turns to the south-west on meeting the north-east trade 

winds (Sahara anti-cyclone) to the north of the ITCZ. In general 

the south-easterly wind is heavily moisture laden and 

convectively unstable on its northward pass over Ghana. The 

Northerly trades, which originate from the Azores anti-cyclone 

extending over the Sahara desert, have a long history of desert 

track before reaching the Volta Basin area as a north-easterly 

wind known locally as the Barmattan. 
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2.2.1. Rainfall 

The average annual rainfall for the Volta basin as a whole is 

about 1100 mm with a complex distribution governed by number of 

factors which have a wide range of movement. In the northern 

areas where the effect of the monsoons is least, mean annual 

rainfall is about 650 mm while it can be as high as 1500 mm in 

the south. The rain belt is closely associated with the seasonal 

movement of the ITCZ, following it in a northerly direction from 

April to mid-September and preceding it in a southerly direction 

from mid-September to December. As a result, the northern portion 

of the basin experiences only one rain season when the IT~Z 

reaches the apogee of its northward pass while the lower, 

southern belt of the basin experiences two rain seasons reaching 

maxima in June to mid-July and mid-September to October, the 

latter season being invariably drier than the former. 

2.2.2. Temperature 

The mean temperature over the basin shows only moderate 

variations, varying from about 26°C near the coast (latitude 5°N 

to 6°N) to about 29°C in the far north of the catchment. 

Variations in the mean temperature from year to year is also 

small. Seasonal change in average daily temperature is only 3 to 

6°C. The maximum daily temperature occurs in March preceding the 
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rain season and the minimum temperatures in August. The mean 

daily range of temperatures varies from about 7°C in the coastal 

areas to about 11°C in the north. 

2.2.3. Evaporation 

Evaporation values have been estimated using various methods 

including Penman's method. As shown on Figure 2.1, these vary 

from about 1300 mm (51.18 in.) on the coast to 2000 mm (78.74 

in.) in the north. Over the Volta reservoir itself it has been 

estimated that annual evaporation loss from the reservoir surface 

is between 1400 mm (55 in.) and 1780 mm (70 in.). 

2.2.4. Surface Wind 

Surface winds are generally very low with average speeds varying 

from 8 km/h to 16 km/h on the coast to about 8 km/h inland. The 

maximum gust associated with thunderstorms and line squalls has 

been observed up to 110 km/h at Tamale and 105 km/h at Accra. 

2.3. Hydrology 

The hydrology of the Volta river is best characterised by the 

hydrology of its main tributaries, the White Volta, Black Volta, 
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Oti river and the lfram river. 


Mean annual flow for the Black Volta at Bui is about 200 m3 /s, 


White Volta at Yapei is about 300 a3 is (estimate) and Oti at 


Saboba 272 a3 /s. This is a total of 772 a3 /s compared with the 


average annual flow of 1183 aa/s measured at lkosombo. 




3. IIISTIRG FORICASTIRG SYSTlll 

3.1. Introduction 

The existing flow forecasting system is essentially spawned from 

work done on a flood management system designed primarily to 

minimise flood risk levels at Kpong during construction of Kpong 

Hydroelectric Station. It was also meant to improve general 

effectiveness of a flood management system at Akosollbo. It may be 

worthy of mention here that the largest peak flow of the Volta 

river in recorded history occurred at Akosombo during 

construction of the dam in 1963. 

3.2. HISTORICAL ARD RIAL-TIME DATA COLLJ:CTIOR 

The above mentioned flood management program identified five 

rainfall stations located in the lower reaches of the drainage 

basin as well as two flow stations whose data was judged as being 

reliable and pertinent to prediction of flows at Akosombo. See 

Figure 1. 
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Rain Stations: 

- ICintampo 

- Bui 

- ICpando Prison 

- Bo 

- ICete Krachi 

Flow Stations: 

- Bui 

- Saboba 

Data from the above stations are collected by various local and 

governmental agencies. 

3.3. DATA TRAHSKISSIOH 

Transmission of data from the collection sites to the central 

offices is mostly done by telephone and hardcopy. Processed data 

is then sent on to head offices of organizations concerned which 

are mostly located in the capital Accra. 

Personnel from VRA however also visit data collection stations 

regularly to obtain hardcopies of data pertinent to flow 

prediction at Akosombo. The frequency of collection is increased 

during the wet season when data is required at shorter time 

intervals. 

Plant and reservoir data from hydrostations are transmitted by 
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telephone to the VRA hydrologist at the Engineering off ice which 

is located at the Kpong Hydroelectric station at Akuse. 

3.4. DATA BASI !AHAGIMllfT 

The Engineering department of the Volta River Authority has 

responsibility for, among other things, the management of 

pertinent data relating to system planning and operation. 

The Civil Engineering section of the above department is 

entrusted with the hydrometeorological data base management which 

includes processing, organization and storing of incoming data. 

The data resides on files in the form of hardcopies as well as on 

magnetic media for computers. This facilitates access to data for 

applications including forecasting and power and energy studies. 

3.5. FORICASTIRG PROCEDURE 

Prediction of inf lows has been effected using various methods 

including graphical adaptive forecasts and regression equations 

relating rainfall and discharge at the previously mentioned seven 

stations to measured flow at Akosombo. 

The previous method involves plotting discharges on graph paper, 

then extrapolating curves drawn through the resulting points. The 

forecast is updated by modifying the extrapolations by eye. 
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Regression equations were derived which related a combination of 

rainfall and runoff at selected upstream stations with discharge 

at Akosombo for various lag periods ranging from one to five 

months. The equations used are based on data available as at 

1975. These equations should be updated in light of the extended 

recorded data currently available and coded into a computer for 

ready accessibility. 

3.6. FORECAST DISSl!IIHATIOR SERVICES 

When forecasts are made solely for purposes of flood forecasting, 

forecast information dissemination to various parties becomes 

very important since adequate time would be needed in order to 

pursue the necessary activities to mitigate the effects of 

floods. A cursory look at the plot of the average annual flow at 

Akosombo (FIG 3.1) however quickly reveals the fact that the 

current hydrological regime can hardly be associated with any 

expectation of floods. 

Nevertheless it is still necessary to predict inflow into the 

Volta reservoir in order to enable power and energy studies to be 

made. This usually culminates in the operating strategy over 

subsequent months as well as a draw down policy for the next 

hydrological year. Fortunately flow predictions and energy 

studies are undertaken by the same department and therefore the 

information disseminated is usually in the form of expected 
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reservoir levels and available energy as well recommended plant 

operating strategy. 

3.7. FORECAST IVALUATIOR ARD UPDATIRG 

Predicted values of inflow, reservoir elevations at Akosombo and 

expected energy generation are constantly updated as new 

information becomes available. 

Graphical methods of prediction are updated by plotting observed 

values of flows and thereby correcting extrapolated curves drawn 

by eye. 

Regression equations are more difficult to modify in light of 

individual deviates from predicted values. The tendency is not to 

modify regression equations unless they show persistent and 

consistent errors. 



4. STOCHASTIC KBTBODS 


4.1. Introduction 

Modelling of climatic phenomena has engaged the attention of 

people for a long tiae in view of the importance climate plays in 

survival or decline of civilizations. In particular modelling of 

river flow is of considerable importance considering the fact 

that most civilizations were founded close to available sources 

of water [Kottegoda, 1980]. Kottegoda (1980] cites for example 

the waters of the Hile, the rivers of Mesopotamia, the irrigation 

system of the Indus and China's Yellow River. The use of water is 

of no less importance today than it has ever been. The many ways 

in which available water plays important roles in today's 

civilization include the source of cheap hydroelectric power. 

From the design stages through operation of a hydroelectric power 

system, it is necessary to characterise the nature and quantity 

of inf low into reservoirs so as to provide an efficient design of 

the reservoirs and also to facilitate efficient operation of the 

power plant. It is, however, impossible to exactly characterise 

or model the nature of river flow. This fact is easily seen on 

examining some of the various processes which interact to produce 

18 
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river flow. River flow is primarily a function of antecedent 

precipitation. The relationship between these two variables 

however should take cognisance of river catchment physiography, 

spacial and temporal distribution of effective rainfall. A host 

of other factors include antecedent soil moisture conditions, 

variable evapotranspiration, vegetation, aquifer conditions, land 

use (interventions} etc. Even if all these processes were fully 

understood, measurements of these parameters are bound to include 

errors which are random in nature. Therefore there is a strong 

argument for modelling river flows as random or probabilistic 

processes. 

4.2. STOCHASTIC PROCESS 

A set of observations that measure the variation in time of some 

aspect of some phenomenon, such as the rate of river flow, water 

level, dissolved oxygen level in a reservoir is termed a time 

series [Kottegoda 1980). These observations can further be 

described as the various states of this phenomenon at 

corresponding stages. A time series can consist of either 

continuous or discrete measurements. However with the ease and 

speed of computation afforded with the advent of electronic 

computers which are generally digital machines, continuous 

measurements are invariably transformed into discrete series for 

their processing on computers. Events like river flow which can 
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be quantified are termed random or stochastic events since their 

outcomes are uncertain. A collection or set of observations of 

actually measured values are termed a stochastic process if these 

outcomes are uncertain as in the case of river flow. If the set 

of outcomes is arranged chronologically then it forms a time 

series. It is important to characterise a set of historical data 

of measured river flow as one realization out of several equally 

likely sets of an underlying stochastic process. 

4.3. STOCHASTIC MODELS 

Stochastic modelling sets out to represent the generating 

mechanism of the time series including the various trends and 

periodicities inherent in the series. A family of models now 

commonly known as Box-Jenkins models are typically used in the 

formulation of these models. 

These models are generally linear models which can be classified 

into: 

1. Stationary models 

2. Nonstationary models 

3. Seasonal models 
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4.3.1. Stationary models 

A process is said to be stationary if all moments including the 

mean, standard deviation and higher moments (e.g. µ, a, g) are 

independent of the time of observation, in other words its 

statistical properties are constant over time. This is termed 

strict (or strong) stationarity. 

In reality strict stationarity is not realised and it therefore 

becomes necessary to assume a weaker form of stationarity. ror 

practical purposes stationarity is often limited to the mean and 

standard deviation. When a process possesses a constant mean it 

is said to be first-order stationary. When the variance is also 

stationary it is said to possess second order stationarity. An 

example of a data series exhibiting stationary behaviour is 

depicted in Figure (4.1). 

4.3.2. Nonstationary models 

Many time series occur which do not appear to have a fixed mean 

or level. These series often constitute data which does not 

fluctuate around any apparent state or level and thus the 

statistical "mean" will have little practical significance. Some 

of these series nevertheless exhibit some homogeneity in that 

different parts of the series behave in similar fashion though at 

different levels and may also show some trends. Others posses no 
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apparent trends and have different levels at different time 

periods. An example of a data series exhibiting nonstationary 

behaviour is depicted in Figure (4.2). 

4.3.3. Seasonal models 

Many geophysical phenomena like monthly river flow exhibit 

periodic behaviour. Periodic effects in hydrological time series 

are however deterministic in nature [Kottegoda 1980] with regard 

to their frequency of occurrence since they are caused by cyclic 

phenomena with fixed periods. The main periodic component is 

caused by the earth revolving around the sun in the elliptical 

orbit while itself rotating on an axis which is inclined to the 

orbital plane. The consequence is the seasonal effect shown in 

most closely spaced observations like monthly river flow 

measurements. An example of a data series exhibiting seasonal 

behaviour is depicted in Figure (4.3). From the plots, one can 

also observe the changing variance of the data. 

4.4. FORMULATION OF STOCHASTIC MODELS 

Stationary time series are generally represented by the class of 

linear models known as the Box-Jenkins family of models. This 

same formulation can be utilised in modelling non-stationary time 
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series. When dealing with data with nonstationarities such as 

trends, seasonality, time varying variance (heteroscedasticity), 

stationarity can be induced by invoking a suitable transformation 

such as applying a power transformation like the Box-Cox 

transformation and I or differencing the original data. 

Consider a highly dependent time series (ie a series which is 

serially correlated at one or more lags) represented by the set 

of observations zt' zt-l' zt_2, ••• measured at time t, t-1, t-2, 

This series can be thought of as being generated from a series of 

independent "shocks" at [Box and Jenkins, 1976]. These 

shocks are assumed to be randomly drawn from a fixed distribution 

usually assumed to be Normal with zero mean and variance a!. This 

sequence of random variables at' at-l' at_2, ••• is known as a 

white noise process. 

The white noise process at is supposed to be transformed into the 

zt series by a suitable linear filter of the form which takes a 

weighted sum of previous values of zt as shown below 

(4.1)zt =µ+at + 'lat-1 + '2at-2 + ••• + 

= µ + t(B)at (4. 2) 

where B is the backward shift operator ie Bzt= zt-l , Bkzt = zt-k 

and 

t(B) = 1 + t B1+ t B~ + ••• + (4.3) 

In this case µ can be thought of as a parameter that defines the 

level of the process and t(B) is known as the transfer function 

of the linear filter that transforms at into zt. 
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4.4.1. AUTOREGRESSIVE MODELS (AR) 

In this formulation, the current value of zt is expressed as a 

linear aggregate of previous values of the series zt-l' zt_2, etc 

If zt, zt-l' zt_2, ••• , represent the observations at equispaced 

times t, t-1, t-2, ••• of a process at equilibrium aboutµ, and 

denote the deviations of zt from µ by z i.e. zt = zt - µ, then 

zt = -lzt-1 + -2zt-2 + -3zt-3 + ••• + -pzt-p + atc4•4> 

is called the autoregressive process of order p. The equation 

(4.5) 

called the autoregressive operator enables us to write the above 
AR(p) model compactly as 

(4.6) 

The above model contains p + 2 parameters (µ, -1 , ••• ,-P, aa) 

which are estimated from the available data. It can be shown that 

-(B)zt = a (4.6)
t 

is equivalent to 

(4.7) 

with 
-1

t(B) = -(B) (4.8) 

The parameters - 1, - 2, ••• , -p' of the equation 

zt = -lzt-1 + -2zt-2 + -3zt-3 + ••• + -pzt-p + at 

i.e. 

(4.9) 

must satisfy certain conditions in order to be stationary. If we 

denote the following 



(4.10) 

as the characteristic equation for the autoregressive process, 

then the stationarity condition for the autoregressive process 

can be expressed by saying that the roots of the characteristic 

equation must lie outside the unit circle. Equivalently, the 

zeroes of the polynomial -(B) must lie outside the unit circle. 

It must be noted that the series 
2 pn(B) = -(B) = 1 - -(l)B - -(2)B - ••• - -(q)B (4.11) 

is finite so there are no constraints on the parameters of the 

autoregressive process to ensure invertibility [Box and Jenkins]. 

4.4.2. MOVING AVERAGE MODELS (MA) 

The autoregressive model describes a stationary series as a 

linear aggregate of p previous values of the series zt-l'zt_2 , ••• 

plus a random shock at. Equivalently it expresses zt as an 

infinite weighted sum of a's. 

The moving average model expresses zt as a finite linear function 

of q previous values of a's. Therefore 

(4.12) 

is called the moving average process of order q. The equation 

(4.13) 

called the moving average operator, enables us to write the above 

MA(q) model compactly as 

z=O(B)at (4.14) 
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The above model contains q + 2 parameters (µ, e1, ••• ,ep, aa} 

which are estimated from the available data. 

The parameters e1, e2, ••• , eq' of the equation 

z =at - elzt-1 - e2zt-2 - ••• - eqzt-q (4.12) 

must satisfy invertibility conditions. In order for the moving 

average representation to be invertible, the roots of 

e(8} = 1 - e 8 - e 8 2 - - e Bq = 0 (4.15)1 2 q 

the characteristic equation for the moving average process, must 

lie outside the unit circle. Equivalently, the zeros of the 

polynomial 9(8) must lie outside the unit circle. 

It is worthy of note that the series 

£(8) = 9(8) = 1 - 9(1)8 - 9(2)82 - ••• - 9(q}Bq (4.16) 

is finite so there are no constraints on the parameters of the 

moving average process to ensure stationarity. 

4.4.3. AUTOREGRESSIVE-MOVING AVERAGE MODELS (ARMA} 

The autoregressive and moving average models can usefully be 

combined to achieve greater flexibility in the fitting of 

stationary stochastic models [Box and Jenkins 1976]. These models 

are of the form 

zt = -lzt-1 + -2zt-2 + ••• + -pzt-p +at - 91at-l - ••• - eqat-q 

(4.17) 

or 

(4.18) 
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The above involves (p+q+2) unknown parameters µ, - 1•••• , -p' 

e1, ... ,e , a2, which are estimated from the actual time series. 
q a 

Box and Jenkins (1976) note that in practice p and q are hardly 

greater than 2 for AR(p) or KA(q) or ARKA(p,q) models which are 

used in representing actual time series. 

4.4.4. AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS (ARIKA) 

The linear stochastic models shown [AR(p), KA(q) and ARKA(p,q)] 

are adequate in representing data which are stationary. Many 

series encountered in practice have some form of nonstationarity 

or the other. Most series however exhibit homogeneity of some 

kind. These can conveniently be represented by introducing a 

generalised autoregressive operator •(B), in which one or more of 

the zeros of the polynomial •(B) =O is unity [Box and Jenkins, 

1976). The operator •(B) can then be expressed as 

•(B) = -(B) (1 - B)d (4.19) 

where -(B) is a stationary operator. Therefore a general model 

which will adequately represent homogeneous nonstationary 

behaviour is of the form 

•(B)z(t) = -(B) (1 - B)dz(t) = e(B)a(t) (4.20) 

or 

-(B)w(t) = e(B)a(t) (4.21) 

where 

w(t) = Vdz(t) (4.22) 
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and V =backward difference operator ie Vz(t) = z(t) - z(t-1). 

In practice, therefore, an actual series is differenced d times 

until stationarity is attained after which a stationary model is . 

fitted to the resulting data. This general model is the 

autoregressive integrated moving average model ARIMA(p,d,q) of 

order (p,d,q). For example Figure (4.4) shows a plot of Figure 

(4.2) after differencing the data of Figure (4.2) once. Comparing 

the plots Figure (4.2) and Figure (4.4) one can immediately 

discern that stationarity has been induced in the data both in 

terms of the level and variance. 

4.5. STOCHASTIC MODELLING 

It is generally recommended to follow an identification, 

estimation and diagnostic checking procedure as developed by Box 

and Jenkins [1976]. 

4.5.1 Identification 

The purpose of identification is to determine the differencing 

required to produce stationarity and also to ascertain the order 

of both the seasonal and nonseasonal AR and MA parameters for the 

time series under consideration [Hipel, McLeod &Lennox 1977]. At 

this stage it is determined whether the original data series will 
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need soae form of transformation and I or deseasonalization in 

order to induce stationarity and also normality in the residuals, 

in order to satisfy the basic computational requirements 

underlying the theoretical assumptions of the linear stochastic 

models. In certain cases a transformation (such as the Box-Cox 

transformation) may change the form of the model to be fitted to 

the data. This will be evidenced when the diagnostic checks are 

performed and therefore a proper model could be fitted. It is 

also recomaended by Box and Jenkins [1976] to use at least 50 

data points in order to obtain reasonably accurate maximum 

likelihood estimates of the parameters. 

4.5.1.1. Plot of the original series 

The plot of the original time series reveals some obvious 

characteristics of the series. Seasonality, trends in either the 

mean level or variance, persistence, long term cycles and extreme 

values can be observed in a visual inspection of this plot. From 

the plot of the available data (Figure 6.1), the inherent within­

year periodic nature of the flows are revealed. Also an 

examination of the annual flows plot (Figure 3.1) reveals some 

form of oscillatory behaviour about the mean. This can also be an 

indication of some cyclical characteristic of the climatic 

patterns prevailing in the Sahelian zone. In fact Lavender and 

Anderson [1984] postulate a 30 to 35 year periodicity. 
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4.5.1.2. Plot of autocorrelation function 

The autocorrelation function is a measure of the amount of linear 

dependence between observations in a time series at fixed time 

periods apart. The covariance between a value z(t) and another 

value z(t+k) separated by k time periods apart is defined in 

terms of the theoretical autocovariance at lag k which is given 

by 

(4.23) 

From this definition when k=O, the autocovariance becomes the 

variance of the series ie to = az 2 • 

Similarly the autocorrelation at lag k is defined as 

E[(zt - µ) (zt+k - µ)]
d = (4.24) 
k .f I l[(zt - µ) 2]E[(zt+k - µ)2] I 

E[(zt - µ) (zt+k - µ)] 
= (4.25) 

a2 
z 

since for a stationary process, the variance a2 
z = to is the 

same at time t+k as at time t. 

Therefore the theoretical autocorrelation at lag k is given by 

tk 
d - -- (4.26) 
k 

from which do = 1 

The autocorrelation coefficient is therefore dimensionless and 

also independent of the scale of measurement. The possible range 

of values of dk is from -1 to 1 and the value at lag zero is 1. 

The plot of autocorrelation versus lag is known as the 
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theoretical autocorrelation function (TACF). The ACF is symmetric 

about lag zero and therefore in practice it is only necessary to 

plot the positive lags from lag one onwards against the 

autocorrelation values. 

In practice, the autocorrelation function has to be estimated 

from the available sample data of the time series. From various 

methods studied by Jenkins and Watts (1968) it is concluded that 

the most satisfactory estimate of the lag k autocorrelation dk is 

given by 

r = (4.27) 
k 

where 

1 H-k 
c = - I (z - z)(z - z), k =0,l,2,3, ••• ,K 
k H t=l t t+k 

is the estimate of the autocovariance tk' and z is the mean of 

the time series. In practice it is necessary to use at least 50 

observations in the estimation of the sample autocorrelation 

function and then plot values of r(k), k = 0,1, ••• ,K where K is 

not greater than about R/4 or 5s where s is the seasonality of a 

periodic series and Ss < R/4. Procedures for the computation of 

the standard errors of the ACF are given by Box and Jenkins 

(1976]. 

The first step in the use of the above is to examine the plot of 

the sample autocorrelation function to determine the presence or 

absence of nonstationarity in the time series. For nonseasonal 

data, if the sample autocorrelation function fails to damp out 



quickly this indicates nonseasonal nonstationarity. This 

therefore indicates a need to difference the time series. For the 

case of seasonally correlated data with seasonality s, the sample 

autocorrelation function will follow a wave pattern with peaks at 

a period s. As in the case of the nonseasonal data, if the sample 

autocorrelation function fails to damp out at integral multiples 

of s, then seasonal differencing is required to induce seasonal 

stationarity. Also if the sample autocorrelation function fails 

to damp out at values in-between integral multiples of s, then 

additional nonseasonal differencing may be required to induce 

stationarity in the data. 

After the original data has been differenced accordingly as 

required, the sample autocorrelation function of the resultant 

differenced series can be examined to determine the order of the 

autoregressive (AR) and moving average (MA) parameters needed in 

order to correctly specify the model. 

In some cases no differencing of the data is required. It may 

also be possible to obtain a series which is white noise in which 

case the sample autocorrelation function is normally 

independently distributed with mean zero and variance 1/n i.e. 

HID(0,1/n). This result enables one to test whether a series is 

white noise by plotting approximate confidence limits on the 

sample autocorrelation function to see if a number of the plotted 

autocorrelation values fall outside the limits. This test will 

show if a significant number of the values are significantly 

different from zero. If the series is shown not to be white noise 



37 

then the following can be used as a guide to identify the type 

and order of model required. 

For nonseasonal models, r(k) truncates after lag q for a moving 

average process MA(O,d,q). If the r(k) values tail off and do not 

truncate, this indicates that autoregressive parameters are 

needed in the model. 

In the case of seasonal models, r(k) truncates and is not 

significantly different from zero after lag q + sQ for a seasonal 

moving average process MA(O,d,q)x(O,D,Q). If r(k) attenuate at 

lags that are integral multiples of s then seasonal AR parameters 

are required in the model. If also the r(k) values attenuate for 

lags in between the seasonal peaks then nonseasonal AR parameters 

are required. 

4.5.1.3. Plot of partial autocorrelation function 

Another useful tool in the identification stage of a stochastic 

process is the partial autocorrelation function [MacGregor 1986]. 

The partial autocorrelation function at lag k represents the 

residual autocorrelation between points separated by k time 

periods (ie z[t], z[t+k]) after the correlation effects at lags 

1,2, •• ,k-1 have been taken into account. This can also be shown 

to be the last coefficient -(kk) in an AR(k) approximation to the 

stochastic process. A plot of -(kk) against lag k is known as the 

partial autocorrelation function. 
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The partial autocorrelation function (PACF) behaves differently 

and opposite to the sample autocorrelation function. This is 

advantageous considering the fact that for an autoregressive 

process, the sample autocorrelation function tails off 

infinitely. In contrast, the PACF for a pure nonseasonal 

autoregressive process AR(p) cuts off after lag p. This means the 

partial autocorrelation function is nonzero before and at lag p 

and is significantly not different from zero after lag p. After 

lag p, the -(kk) is approximately NID(0,1/n). 

If the partial autocorrelation function fails to truncate after 

lag p, moving average parameters may be needed in the model. In 

fact it can be shown that the partial autocorrelation function 

for a pure moving average process consists of a mixture of 

sinusoids and exponentials [MacGregor 1986]. 

In the case of data which exhibits seasonal behaviour, for a 

seasonal autoregressive process AR(p,d,O)x(P,D,0) the partial 

autocorrelation function cuts off and is not significantly zero 

after lag p + sP. After lag p + sP, the -(kk) is approximately 

NID(0,1/n). 

If the partial autocorrelation function {-(kk)I exhibits a 

pattern which damps at lags that are integral multiples of s then 

seasonal MA parameters are required in the model. If also the 

-(kk) values fail to truncate at lags in-between the seasonal 

lags then nonseasonal MA parameters are required. 
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4.5.2. Estimation 

After the identification stage a tentative formulation of the 

model is arrived at. The estimation process is then to provide 

efficient estimates of the parameters after which diagnostic and 

goodness of fit tests are performed to verify the chosen model. 

It is important that efficient estimates are arrived at else the 

diagnostic checks may invalidate a model though the model form is 

appropriate [Box and Jenkins 1976]. Box and Jenkins suggest that 

the approximate maximum likelihood estimate (MLE) for the 

autoregressive integrated moving average model (ARIMA) parameters 

be obtained by using the unconditional sum of squares method. 

With this method the unconditional sum of squares function is 

minimised to obtain the least squares estimates of the 

parameters. 

Various optimization techniques exist for the minimization of the 

unconditional sum of squares. During the estimation stage, values 

are computed for the AR and MA parameters unless the exact values 

are known beforehand. This is usually the case for the estimation 

of the mean of the series [Hipel et al. 1977]. If the data has 

been differenced either seasonally or nonseasonally then the 

mean value is assumed to be zero unless a trend component is to 

be incorporated into the model. 



4.5.3. Diagnostic checks 

lf ter the identification and parameter estimation stages have 

been completed, one arrives at a tentative model to represent the 

original or transformed time series. This tentative model is then 

subjected to diagnostic checks to determine the "goodness of fit" 

and adequacy. It is important to carry out this step of the model 

building in order to find out whether the major assumptions of 

the model appear to be valid [Bipel et al.]. The assumption of 

independent identically distributed (white noise) residuals or 

innovations is very important if the model is to be used for 

simulation and/or forecasting. Simultaneously the estimated 

parameters could be inefficient when the above conditions are not 

fulfilled. The model order is verified through a technique called 

overfitting but the other assumptions are mainly done through 

tests on the estimated residuals. If found to be inappropriate 

changes are made to the model accordingly. 

4.5.3.1. Overfitting 

Overfitting is the term given in Box and Jenkins [1976] to the 

situation where after arriving at a model believed to be the 

correct one, a more elaborate model is fitted to the data. This 

is done especially when the direction in which the model is 

likely to be inadequate is known or suspected. Caution needs to 
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be exercised when adding parameters to either side of the ARMA 

equation. In particular, care must be taken to avoid parameter 

redundancy by adding parameters to both sides of the equation 

simultaneously. This procedure can be employed if the 

autocorrelation function appears to have significant values at 

certain lags. If the maximum likelihood estimate of the extra 

parameter fitted has a magnitude three or four times its standard 

error this could indicate that a more elaborate model is needed 

to adequately describe the process. 

4.5.3.2 •• Independence of residuals 

The residuals or innovations are assumed to be normally 

independently distributed with zero mean and variance a{a). Tests 

done on the residuals to validate this assumption constitute one 

of the main verification procedures for the identified model. A 

visual inspection of the residuals is recommended since it could 

immediately reveal any discrepancies that may exist. 

An important verification procedure is to plot the residual 

autocorrelation function (RACF) to check the independence 

criterion. If the residual series is white noise the residual 

autocorrelation function would be expected not have any values 

significantly different from zero i.e. not to be autocorrelated. 

Further the residual autocorrelation function would be normally 

independently distributed with zero mean and variance l/N. The 
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approximate standard error can then be computed from the square 

root of the variance. A plot of the autocorrelation function with 

approximate significance limits would reveal if a significant 

number of the autocorrelations lie outside the chosen confidence 

limits. Box and Jenkins [1976] refer to the work of Box and 

Pierce [1970] where it is pointed out that at low lags the 

residuals tend to be highly correlated and the standard errors 

tend to be much less than 1/N. There could be an underestimation 

therefore of the statistical significance of apparent departures 

from zero of the autocorrelation at low lags. They explain that 

this method can however be used for higher lags. 

Another technique which is suggested to address the above 

difficulties is the Box-Pierce portmanteau lack-of-fit test. This 

method seeks to take into account the joint effect of say the 

first 10 to 25 values of the serial correlations r(l) of the 

sequence of estimated residuals. It can be shown that if the 

model is appropriate, 

(4.28) 

is approximately distributed as a Chi-squared distribution with 

(K-p-P-q-Q) degrees of freedom and n = N - d is the number of 

data points used in fitting the model. Since this method has low 

power for small samples n should be 15 to 25 for nonseasonal data 

and 4s for seasonal data. In practice the chi squared value 

computed from the data is compared to the actual value read from 

a table for a chosen significance level. If the computed value is 
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higher than the tabulated value the identified model is rejected 

and appropriate changes made to it. 

An alternative method commonly used especially in the case of 

seasonal data is the cumulative periodogram of the residuals. As 

pointed out by Hipel et al. [1977] however, this test is known to 

be inefficient in the case of residuals and that the cumulative 

periodogram of ten fails to indicate model inadequacy due to 

dependence of the residuals unless the model is a very poor fit 

to the available data. 

4.5.3.3. Homoscedasticity of residuals 

McLeod (1974) has proposed a test for checking whether the 

constant variance (homoscedasticity) assumption for the residuals 

is valid. As mentioned before, the residuals are assumed to 

follow a normal independent distribution with constant variance. 

If the residuals are found to be heteroscedastic then an 

appropriate procedure such as the Box-Cox transformation can be 

applied to the data and in most cases this is sufficient to 

rectify the problem. 

4.5.3.4. Normality of residuals 

The normality assumption for the residuals can be confirmed 
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through several methods. The most direct fashion is to compute 

the skewness and kurtosis of the residuals. The skewness gi is 

computed from the residuals a(t) as follows 

. g = (!. f ; 3 
> I (!. f ;2 )3/2 (4.29) 

1 n t=l t n t=l t 
where g is approximately N (0, 6/n).

1 

:The kurtosis g is computed from the residuals a(t) as follows
2 

; 4 	 ·2 2 
g 	 . ::: (!. f > I (!. f a ) 3 (4.30) 

2 n t=l t n t=l t 

where g is approximately N (0, 24/n).2 

If the residuals are normally distributed they would posses no 

significant skew or kurtosis. If these statistics are found to be 

significant then a suitable Box-Cox transformation would usually 

rectify the situation. 

4.5.4 .• Box-Cox Transformation 

As can be inf erred from the above a suitable power transformation 

is sometimes required to aid in the identification of a time 

series. In Box-Jenkins modelling, as the above linear stochastic 

models are often called, the residuals are assumed to be 

independent, homoscedastic and usually normally distributed. The 

independence assumption being the most important for the correct 

specification of the identified model. The constant variance and 

independence assumptions are required for the computation of 

efficient parameter estimates. 
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For practical purposes it is advantageous to - satisfy the 

normality assumption in order to be able to compute confidence 

intervals for forecasted data. This is achieved by transforming 

the original data series by a suitable power transformation as 

the Box-Cox shown below as follows 

0 -1 0 
= 0 [(zt + cons} - 1 ] 0 ~ 0 (4.31)zt 

_,..·,,, . ·-·~'.;:'.~-.,.,.~,~:~. • ·.,,..,­

0 
= ln (zt + cons} 0 = 0 (4.32)zt 

...,_·c 

where cons = constant. 

The transformation described above can be specified in various 

ways. Sometimes it is known in advance the appropriate value of o 

is for a particular type of series. In such cases the value of o 

is specified before the estimation stage. Some data series are 

normalised when they undergo square root transformation (o = 0.5) 

or natural logarithm (o = 0.0) as in the case of average monthly 

river flow. In this case the value of the constant is set to zero 

if there are no zero values present in the series. If some of the 

data have zero value then the constant is set to a small positive 

value in order to take the natural logarithm.. 

There are cases however where the standard transformations of 

square root and natural logarithm do not result in the necessary 

normal and homoscedastic distributions and therefore require that 

the maximum likelihood estimate of o be computed. This is usually 

done at the estimation stage of the model building. In such 

cases, the value of the constant is set to a value such that all 

the data in the series assume positive values and the maximum 
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likelihood value of the value of ~ is estimated. 

The computation of the maximum likelihood value of the value of ~ 

involves a significant increase in computer time compared to when 

the best value of ~ is not computed. It is therefore not 

recommended to do this computation unless the diagnostic checks 

reveal inadequacies in the model with respect to the normality 

further. e'conomis; on .. ·-· -· ..-».-· , •.and homoscedasticity assumptions. To 

computer time or in situations where the facility for estimating 

the maximum likelihood value of the value of ~ is not available 

then an approach can be adopted where different values of ~ are 

used and then the most appropriate one is selected. 

4.5.5. Akaike information criterion (AIC) 

Box and Jenkins [1976] emphasise the need to use as few 

parameters as possible i.e. the model should be parsimonious. 

Certain situations also arise where there are competing models 

for the same set of data. In such cases one needs to discriminate 

between the models to arrive at the one which performs best under 

the diagnostic checks. One mathematical formulation of the 

parsimony requirement is the Akaike information criterion (AIC) 

which is given by [Hipel, 1981] as 

AIC = -2ln ML + 2k (4.33) 

where ML denotes maximum likelihood and k the number of 

independently estimated parameters within the chosen model. It 
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will be noted that this formulation includes a term for good 

statistical fit (first term on right hand side) and also an 

inclusion for the parsimony requirement (second term on right 

hand side). This formula allows for the selection of a "best" 

model from alternatives by calculating the AIC for the various 

models and then choosing the one with the minimum AIC. This is 

referred to as the minimum AIC estimation (MAICE). Although 

·· 	 sometimes a "best" model can be obtained from the estimation and 

diagnostics stage, sometimes it becomes necessary to entertain 

two or three models. The final one can then be selected using the 

MAICE formulation. 



5. FORECASTING SEASONAL TIME SERIES 

5.1. Introduction· 

Many geophysical phenomena exhibit cyclic behaviour of one form 

or another. Average monthly river flow measurements constitute an 

example of a time series which shows a periodicity of twelve, 

corresponding to the number of months in a year. The methods 

described for fitting linear stochastic models to nonstationary 

data can be extended to the case of seasonal data. Various 

methods exist and are described in water resources literature. 

Hipel [1981] and Noakes, McLeod & Hipel [1985] describe various 

methods applicable to modelling seasonal time series. These 

methods usually involve fitting a separate autoregressive model 

to each season in the period, removing the seasonal component of 

the time series and thereafter fitting an appropriate form of 

Box-Jenkins type of model or differencing the data series 

seasonally to induce stationarity. 

48 
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5.2. MODELLING MONTHLY RIVER FLOV SIRIIS 

The original use of seasonal models ·. applicable to monthly time 

series is credited to Thomas and riering [1962]. Later 

developments in research has led to a number of seasonal models.' ­

The three main seasonal models are: 
.:" 

1. Periodic Autoregressive model (PAR) 

2. Deseasonalized model 

3. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

5.2.1. PERIODIC AUTOREGRESSIVE MODEL (PAR) 

The periodic autoregressive model (PAR) which is also known as 

monthly autoregressive model Bipel [1981], is basically a system 

of taking cognisance of the fact that the autocorrelation 

structure between different seasons within a year may be 

different from season to season. It also affords a way of 

avoiding differencing the data in order to induce stationarity. 

The periodic autoregressive model (PAR) model is simply 

formulated by fitting a separate autoregressive (AR) model to 

each month of the year Noakes, McLeod & Bipel [1985]. Therefore 

one arrives at essentially s different independent models each of 

which describe a different season within the year where s is the 

periodicity of the available data. It has been noted that though 
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I 
the above technique could theoretically be extended into a 

periodic ARMA (PARMA) formulation Noakes, McLeod &Bipel [1985], 

introduction of moving average parameters into the model also 

introduces difficulties in obtaining maximum likelihood estimates,., 

of model parameters. 

.~ •' ~ 'l; 

5.2.2. DESEASOHALIZED MODELS 


This approach is commonly used to model seasonally varying 

geographic time series. The methodology involves removing the 

seasonality inherent in the data by introducing a deterministic 

component into the model and then modelling the resulting 

nonseasonal series by means of a nonseasonal autoregressive 

moving average model (ARMA). 

The data may be transformed using an appropriate power 

transformation like the Box-Cox transformation to remove 

nonnormality and correct any heteroscedasticity present in the 

residuals of the ARMA model which is fit to the deseasonalized 

data. To deseasonalize the data series the following standard 

equations have been used 

1f. • = z~l>~ - 11 • (5.1)
1,J 1,J J 

and 

w. . = ( z ~l)~ - µ.) I a. (5.2)1,J 1,J J J 

where Z~l>~ =the transformed observation for the itb year and jtb
1,J 
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month, µj is the fitted mean for month j, aj is the fitted 

standard deviation for month j, and 6 is the exponent of an 
' i., 

· appropriate Box-Cox transformation applied to the data. This 

process of transformation is often referred to as prewhitening. 

The first transformation (5.1) is applicable in situations where 

monthly means tend to be different from month to month but the 

monthly variances are approximately the same across the months 

within a year. In situations where both means and variances of 

the z series change from month to month, the second 

transformation (5.2) is then more appropriate. Bipel [1981] gives 

the AIC formula for the deseasonalized model. 

5.2.3. SEASONAL AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS 

This model formulation is also known as the multiplicative 

seasonal model and is described in detail by Box and Jenkins 

[1976]. The seasonal autoregressive integrated moving average 

(SARIMA) model follows directly from ideas introduced in the 

formulation of nonseasonal linear stochastic models. For a time 

series of periodicity s, it is easily seen that data sets s time 

periods apart tend to behave in similar patterns. It therefore 

becomes necessary to introduce operators which act on data s time 

periods apart. The multiplicative model takes seasonality into 

account by including operations on data separated by one time 

period as well as s time periods apart. Consider a seasonal time 
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series z(t), z(t-1), ••• occurring at time periods t, t-1, ••• 

where data points s time periods are similar in pattern. The data 

s time periods apart can be related by a model of the form given 

by 

(5.3) 

s s

where s = 12 for monthly river flows, 's = 1 - B , B zt = zt-s 

t(Bs),Q(Bs) are polynomials in Bs of degrees P and Q respectively 

and also satisfy conditions of stationarity and invertibility as 

explained in Box and Jenkins [1976]. If similar models are 

specified for each of the s periods in the year or cycle, it 

would seem reasonable to assume that values of parameters which 

form the polynomials t and Q would be similar for different 

months. Considering equation (5.3) it is easily seen that the 

error terms (a's) will be correlated with each other since 

equation (5.3) takes only seasonal correlation into account. 

Therefore to account for residual correlation between the a's, a 

second model of the form below is postulated 

-(B)Yd at = e(B)at (5.4) 

where at is now a normally independently distributed (white noise 

process), and -(B),e(B) are polynomials in B of degrees p and q 

respectively and also satisfy conditions of stationarity and 

invertibility respectively. The Y in (5.4) is also y =1 - B. 

Substituting for a in equation (5.4) from (5.3) gives 

(5.5) 


which is the so called general multiplicative seasonal model of 
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order (p,d,q) X (P,D,O)a. 


Box and Jenkins [1976] postulate that seasonalities of 


multiplicity greater than two can be modelled along similar lines =· 

. ' . . ~ 

by extending the arguments outlined above. 

In practical applications of the seasonal multiplicative model 

the available data is differenced seasonally enough times to 

induce seasonal stationarity and . then···.· again differenced 

nonseasonally to induce stationarity. The combined operator for , ..; . 

seasonal and nonseasonal differencing is 

(5.6) 


where 6 is the exponent of a suitable Box-Cox transformation 

which has been applied to the raw data. For the case of monthly 

river flow it has been observed that a lognormal transformation 

(corresponding to 6 = 0) is usually sufficient to correct any 

problems due to nonnormality and I or heteroscedasticity inherent 

in the data. To illustrate the effect of the seasonal 

differencing operation the seasonal data plotted in FIG(4.3) is 

seasonally differenced once and the resultant series plotted in 

FIG(S.1). From this plot it can be seen that seasonal variation 

of the variance is more or less confined to constant limits. 
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5.3. FORECASTING MONTHLY RIVER FLOW SERIES 


5.3.1. Introduction 

After identifying a suitable model to adequately represent a set 

·of real data, diagnostic checks are performed to test that the 

model satisfies the basic assumptions and criteria underlying the 

formulation of the model namely, stationarity, normality of 

residuals and constant variance. Estimates are computed for the 

parameters included in the model to a sufficient degree of 

accuracy to ensure that a good fit is obtained. 

The model thus identified can be used to generate synthetic sets 

of data which bear a statistical resemblance to the original 

data. These sets of data can be used to test the design and 

planning of water resource systems by simulating different 

possible inputs into the various alternative designs. 

The identified model can also be used to forecast future inflows 

into a hydroelectric system with a view to finding the optimal 

policy which maximizes the hydrological output subject to 

physical, economical, and political constraints [Hipel 1985]. 

Box and Jenkins [1976] show how forecasts can be directly 

computed from a linear stochastic model once a suitable form of 

model has been identified and its parameters estimated. 
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5.3.2. THREE FORMS OF THE ARIMA MODEL 

To show how minimum mean square error forecasts are obtained it 

is useful to consider the three explicit forms in which the 

general autoregressive integrated moving average model can be 

expressed. The current value z(t) of a series described by the 

ARIMA(p,d,q) model of the form (4.20) 

•(B)zt = O(B)at (5.7) 

where •(B) = ;(B)Vd, can be expressed in the following three 

explicit forms 

a. 	 in terms of previous values of z's and current and previous 

values of a's, by the use of the difference equation. 

b. 	 in terms of current and previous shocks a(t-j) only 

c. 	 in terms of a weighted sum of previous values z(t-j) of the 

process z and the current shock a(t). 

5.3.2.1. DIFFERENCE EQUATION FORM OF ARIMA MODEL 

Recalling equation (4.17) 

zt =;lzt-1 + ;2zt-2 + ··· + ;pzt-p +at - 61at-l - ··· - 9qat-q 

(5.8) 
and 	also equation (4.20) 

•(B)z(t) = ;(B) (1 - B)dz(t) = O(B)a(t) 	 (5.9) 
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a general difference equation for zt can then be written as 

zt = ·1zt-l + ·•· + ·p+dzt-p-d +at - elat-1 - ••• - eqat-q 

(5.10) 

This form of the model therefore allows for computation of the 

current value of z(t) using previous values of z as well as the 

current value of the random shock a(t) and previous values of 

a's. Box and Jenkins [1976] emphasise that the above formulation 

of the ARIMA(p,d,q) model is useful for many purposes especially 

in the computation of minimum mean square error forecasts. 

5.3.2.2. RANDOM SHOCK FORM OF ARIMA MODEL 

This form of the model computes z(t) as a weighted sum of the 

current random shock a(t) and previous values of a's. From (4.1) 

the current value of z(t) can be expressed as 

or 

(5.11) 

(5.12) 

=at +.E-1E.at .J- J -J 

= E(B)at (5.13) 

However since we are considering nonstationary processes whose 

models include a differencing parameter d ~ 1, µ can be taken to 

be effectively zero. The z values can therefore be used in place 

of deviations from the mean µ which in this case is equal to 



58 

zero. The formulations arrived at are however valid for cases 

where d = O if deviations of z from the mean are substituted for 

values of z in the equations arrived at. Equation (5.12) can 

therefore be written as 

(5.14) 

which is a form expressing the process z(t) as an output of a 

linear filter whose input is white noise or a series of 

uncorrelated shocks a(t). This form of the model is also useful 

in several ways but its main function with respect to forecasting 

is that it allows for computation of the variance of generated 

forecasts. 

It is also useful to express the random shock form of the ARIMA 

process as a sum of a weighted finite sum of t-k current and 

previous shocks occurring after some reference point k, and a 

complementary function Ck(t-k) as: 

zt = Ck(t-k) +j=~+lEt-jaj (5.15) 

from which the complementary function is seen to be the truncated 

infinite sum 

(5.16) 

The complementary function of (5.16) is later shown to be the 

minimum mean square error forecast of z(t) made at time origin k. 
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?.3.2.3. INVERTED FORM OF ARIMA MODEL 

Since £(B) can be treated as an algebraic operator (5.14) can 

therefore be expressed as 

(5.15) 


or 

• j
n(B)zt = (1 -t~lnjB )zt = at (5.16) 

zt can then be expressed as 

(5.17)zt = nlzt-1 + 0 2zt-2 + ··· +at 

which is an infinite weighted sum of previous values of z, plus a 

random shock a(t). The n(B) expression must however satisfy 

invertibility conditions ie n(B) must converge on or within the 

unit circle. 

Box and Jenkins (1976) show that for d ~ l, the n's sum up to 

unity. This provides an interesting interpretation of (5.17), 

viz., the current value z(t) of a nonstationary process can be 

computed from a weighted average of an infinite number of 

previous values of z, plus a random shock a(t). In practice 

however it is known that the convergent n series die out rapidly 

and therefore implying that though theoretically z(t) is supposed 

to be dependent on an infinite number of n weights, it is 

actually dependent only on recent past values. 
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5.3.3. 	MINIMUM MEAN SQUARE ERROR FORECASTS 

.. 
&. 

The minimum mean square error forecast can be obtained from the 

three formulations of the general autoregressive integrated 

moving average model. To forecast a value zt+l , where 1 ~ 1 from 

a reference point t, it is said that the forecast is made at 

origin t for lead time 1. The three explicit forms of the model 

can be rewritten replacing t by t+l. This gives the following 

5.3.3.1. Difference equation form 

Replacing t by t+l in (5.10) gives 

zt+l =	·1zt+l-l + ••• + ·p+dzt+l-p-d + at+l - elat+l-1 ­

- e a (5.18)q t+l-q 

5.3.3.2. Random shock form 

Replacing t by t+l in (5.14) gives 

zt+l = .ttl 't+l · a. = .~o '· at+l · 	 (5.19)J=-- -J J J~ J -J 

where =1. The e's can be obtained as follows. Operate on bothe0 

sides of (5.14) with the generalised autoregressive parameter 

•(B) to obtain 

•(B)zt =•(B)e(B)at 

However from (5.9) 
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•(B)z(t) = 9(B)a(t) 

therefore 

•(B)t(B)at =9(8) (5.20) 

Expanding (5.19) gives 

(5.21) 

The t weights are obtained from (5.20) by equating coefficients 

of 8, 82, 83, ••• , and computing recursively from the following 

t(l) = -(1) - 9(1) 

t(2) = -(l)t(l) + -(2) - 8(2) 

t(3) = -(l)t(2) + -(2)t(l) + -(1) - 9(3) 

. . . . 
t(j) = -(l)t(j-1) + + -(p+d)i(j-p-d) - e(j) (5.22) 

Box and Jenkins give the minimum mean square error forecast as 

(5.23) 

where f [zt+ll is the conditional expectation of zt+l given all 

knowledge of z's up to time t. Expanding (5.19) gives 

(5.24) 


from which it is seen that et(l) is the error of forecast tt(l) 

at lead time 1 from origin t. 

From (5.23) the computed t weights may be used directly to 

compute the forecasts z(l) and when (5.23) is regarded as a 

function of 1, the equation is known as the forecast function for 
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the origin t. It is understood that t is fixed. 


The variance of the forecast error can also be shown to be 


(5.25)V(l) =var[et(l)] = (1 + i 1 
2 + i 

2 
2 + ••• 

where a! is the variance of the white noise process at. 

Substituting 1 = 1 into (5.24) gives the one step ahead forecast 

as 

(5.26) 

This result implies that the random shocks which generate the 

process are in reality one step ahead forecast errors. Though one 

step ahead forecast errors must be uncorrelated, errors for 

longer lead times tend to be correlated. In fact forecast errors 

for different lead times made from the same origin tend to be 

correlated. This fact leads to the forecast function lying either 

wholly above or below the actual series when these become known. 

5.3.3.3. Inverted form 

Recalling (5.17) and substituting t+l for t gives 

= j~l njzt+l-j + at+l 

It will be noted that though theoretically an infinite number of 

n's are required to compute a forecast from (5.27), in practice 

due to the invertibility constraints, only a few n's are really 

needed to compute forecasts to a reasonable degree of accuracy. 

-

(5.27) 
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5.3.4. METHODOLOGY 

In summary all three formulations can be used to compute minimum 

mean square error forecasts from the ARIMA model. However the 

simplest and most elegant means of deriving the forecast in 

practice is to employ the difference equation (5.18) directly 

[Box and Jenkins, 1976]. 

zt+l 	= ·1zt+l-l + ••• + ·p+dzt+l-p-d + at+l - elat+l-1 - ••• 

- eqat+l-q 

After expressing the forecast z(l) in terms of the difference 

equation (or any of the other two explicit forms) one then 

proceeds according to the following rules (from Box and Jenkins, 

1976) 

1. 	 the z(t)'s (j=0,1,2, ••• ) which have already occurred up to 

time t are left unchanged. 

2. 	 the z(t+j)'s (j=l,2, ••• ) which are yet to occur are replaced 

by their forecasts z(l) at origin t. 

3. 	 the a(t-j)'s (j=0,1,2, ••• ) which have occurred are available 

from zi-J - zt-J-1(1). 

4. 	 the a(t+j)'s (j=l,2, ••• ) which are yet to occur are replaced 

by zero. 

The techniques outlined here for ·forecasting nonseasonal 

nonstationary models · can easily be extended to the case of 

seasonal models. As mentioned before the best method for direct 

computation of forecasts is by means of the difference equation. 



Equation (5.5) for example could be rearranged into the 

difference form of representation from which the forecasts are 

readily obtained. As in the case of nonseasonal models, the 

minimum mean square error forecast at lead time 1 is given by the 

conditional expectation of z(t+l) taken at origin t. The 

application of this formulation is basically possible, because 

the invertible models which are fitted to actual data, usually 

have forecasts which depend aostly on recent values of the 

series. It has also been demonstrated in Box and Jenkins [1976] 

that forecasts are insensitive to small changes in parameter 

values such as those introduced by estimation errors. 



6. MODEL SELECTIOR METHODOLOGY 

6.1. Introduction 

The previous chapter demonstrates how data exhibiting seasonality 

can be modelled. It is also shown how minimum mean square error 

forecasts can be obtained directly from the identified models. 

There are however alternative methodologies for representing 

seasonally varying time series. In this chapter, we attempt to 

find which class of seasonal model best describes the average 

monthly flow measured at Senchi. 

6.2. DATA AVAILABILITY 

Various climatological, meteorological and hydrological data are 

collected and documented by various agencies and organizations in 

the Volta basin area. 

The Hydrological Services Department of the Ministry of Works and 

Housing in Ghana collects and maintains a data base which 

includes rainfall, evaporation, temperature, gauge and discharge 

data for the Volta river basin as well other major rivers in 

65 
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Ghana. Data is also collected by the Meteorological Services 

Department in Ghana. 

In view of the role which the Volta river system plays in the 

region, daily flow data are collected at various sites for the 

Black Volta, White Volta and the Oti rivers (Figure 1.1). Average 

monthly flow data are then obtained by processing the daily flow 

data. 

Daily rainfall data are also collected at various locations 

around the country. These are also summarised into average 

monthly values. With respect to reservoir water balance 

computation, three rainfall stations which are very often used 

are situated at Tamale, Akuse and Ho all located around the 

periphery of the reservoir area. 

In the case of evaporation data, numerous studies have shown that 

annual evaporation is almost constant at 1524 mm (60 in.) in the 

region of the Volta Reservoir. The monthly distribution of 

evaporation is then obtained by utilising measured pan 

evaporation data around the reservoir area. 

In addition to the above, average monthly natural flow data exist 

for the Volta river at Senchi (Figure 1.1) for the period 1936­

1963 after which impoundment of the Volta Lake commenced. From 

1964 todate, natural flow data has been synthesised using the 

reservoir characteristics (area, elevation, volume curves) 

various plant operating records including power flows, reservoir 

elevation as well as long term average evaporation and monthly 

rainfall values for Akuse and Tamale (Figure 1.1). 
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For the purpose of developing a stochastic model with the 

objective of forecasting natural river flow at Senchi, data from 

six rainfall stations as well as average monthly flow from four 

flow gauge sites on the Black Volta, White Volta, the Oti River 

and the Volta river itself were examined. The data availability 

is as follows 

6.2.1. Rain gauge stations 

- Wa : Rainfall data (1939 to 1982) 

- Wenchi : Rainfall data (1939 to 1982) 

- Yendi : Rainfall data (1939 to 1982) 

- Ho : Rainfall data (1945 to 1982) 

- Tamale Rainfall data (1945 to 1982) 

- Kumasi Rainfall data (1945 to 1982) 

6.2.2. Flow Stations: 

- Nawuni White Volta River flow (1954 to 1976) 

- Bui Black Volta River flow (1944 to 1984) 

- Saboba Oti River flow (1944 to 1984) 

- Senchi Volta River flow (1936 to 1984) 
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6.3. ANALYSIS 

In order to develop suitable models adequately preserving 

statistical properties of measured natural flow at Senchi, all 

the above data was examined with a view to finding out which set 

or data set combination would be most useful in the formulation 

of a suitable Box-Jenkins linear stochastic model. 

A plot of average monthly natural flow at Senchi (Figure 6.1) 

immediately reveals the seasonal nature of the data. It is 

therefore logical to consider seasonal types of models namely, 

1. The Periodic Autoregressive Model 

2. The Deseasonalized Model 

3. The SARIMA (p,d,q,) X (P,D,Q) 

6.3.1. The Periodic Autoregressive Model 

As mentioned previously in section 5.2.1., the periodic 

autoregressive model consists of s independent autoregressive 

models representing data for each separate season of the year. To 

build the necessary models, 12 different AR(p) moldels will have 

to be identified for each of the twelve months of the year 

Noakes, McLeod & Hipel [1985]. This will therefore result in a 

collective model with at least 12 parameters. For the purpose of 
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this exercise, it was felt that a model of this nature would 

defeat the objective of finding a very simple and parsimonious 

representation of the average monthly flows at Senchi. The 

periodic autoregressive model was therefore rejected as being 

unsuitable model. It was therefore decided to investigate other 

alternatives as regards seasonal models namely deseasonalized 

models and seasonal multiplicative models. 

6.3.2. The Deseasonalized Model 

This approach to modelling seasonal data basically employs the 

introduction of a deterministic component into the formulated 

model to account for seasonality. The resulting nonseasonal 

series is then modelled as a nonseasonal autoregressive moving 

average model (ARMA). Sometimes, the data will need to be 

transformed using an appropriate power transformation to induce 

normality in the residuals. This method is applied to measured 

average monthly flow at Senchi with a view to fitting a suitable 

deseasonalized model. The approach outlined in Chapter 5 is 

followed in this case. 

6.3.2.1. Plot of the original data 

The plot of original series is shown in Figure 6.1. It is 
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difficult to discern any apparent trends though seasonality is 

evident in the plot. The sample autocorrelation function is 

therefore plotted. 

6.3.2.2. Plot of sample autocorrelation function 

The sample autocorrelation function plot is shown in Figure 6.2. 

This clearly exposes the seasonal character of the data. The 

peaks and troughs of the SACF coincide with integral multiples of 

sand s/2 respectively (wheres in this case is 12). The periods 

indicated in the SACF would imply data 12 time periods apart are 

similar (either high or low). The troughs at lags s/2 which 

implies negative correlation, would imply that data 6 time 

periods apart are opposite in behaviour (ie high and low and vice 

versa). The sample autocorrelation function is also plotted for 

lags which are integral multiples of 12 and shown in Figure 6.3. 

The values of the SACF are seen to tail off as opposed to 

truncating at a particular lag. This would indicate the necessity 

to include seasonal AR parameters to account for the seasonal 

dependence in the data. However, for this method of approach, an 

attempt is made to account for seasonality by employing the 

standardization equation (5.2) 

(~)
w•• = < z. . - µ.) I a. (6.1)
1,J 1,J J J 

where Z~~~ = the transformed observation for the ith year and jth
1,J 
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month, µj is the fitted mean for month j, aj is the fitted 

standard deviation for month j, and 6 is the exponent of an 

appropriate Box-Cox transformation applied to the data. 

The plot showing the autocorrelation function of the data after 

deseasonalization is shown in Figure 6.4. This shows a remarkable 

reduction in magnitude of the values of the autocorrelation 

function at seasonal lags (ie integral multiples of s). This fact 

is shown more clearly in Figure 6.5 where the autocorrelation 

function of the deseasonalized data is plotted for seasonal lags. 

This deseasonalization procedure is supposed to effectively 

remove seasonal trends in the data. 

It was however noticed that the coefficient of skew was 

significant and therefore the log transform of the original data 

was performed to induce normality in the data. Figures 6.6 and 

6.7 show replotted values of the sample autocorrelation function 

for serial and seasonal lags. It is noticed that the log 

transform does not aid in removal of seasonality. It only induces 

normality in the data. The coefficient of skew, used in 

determining normality of the data was computed as follows 

g = I c! f ;2 >3/2 (6.2) 
1 n t=l t 

The value gi was reduced from 1.2097 to -0.4382 in this case. 

After the seasonal component had been removed and normality 

accounted for, an ARMA model was fitted to the data. 
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6.3.2.3. ARMA model identification 

To aid in identifying the appropriate model to fit to the 

deseasonalized log transformed data, the plot of the 

corresponding sample autocorrelation function (Figure 6.6) was 

reexamined. It is noticeable that the first few lags exhibit high 

values yet the whole function does not truncate at any particular 

lag. It is therefore reasonable to include AR parameters in the 

model. An AR(l) model was fitted to the data and the 

autocorrelations of residuals plotted. The residual 

autocorrelation function (RACF) is plotted for both serial and 

seasonal lags and shown in Figures 6.8 and 6.9 respectively. 

Figure 6.8 shows that at most lags, the RACF is contained within 

the 95% confidence limits. This fact is mathematically confirmed 

using the portmanteau lack-of-fit test. The value of Q (from 

4.28) computed for the residuals is 69.47 on 59 degrees of 

freedom, which compares with 79.1 from the table of the chi 

squared distribution, shows that the model could be considered 

adequate. However two facts militate against acceptance of this 

model especially with a view to using it as a forecasting tool. 

1. 	 The Q statistic computed for residuals at the seasonal 

lags does not pass the portmanteau lack-of-fit test. 

The Ostatistic value computed on 20 degrees of freedom 

is 49.43 which compares with chi squared value of 31.4 

from the tables. This implies some form of seasonal 
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dependence in the residuals. This can be observed from 

the plot of seasonal residual autocorrelation function 

Figure 6.9. 

2. 	 The value obtained for the coefficient of determination 

(R squared) is 48.43%. The R squared value indicates 

degree of, or as in this case, lack of forecastibility 

of the fitted aodel. Kottegoda [1980] indicates that 

the R squared value, which is also the square of the 

multiple correlation coefficient, gives a measure of 

predictability of the given series. 

6.4. 	SUMMARY 

Due to the above, it is deemed inappropriate to accept the 

deseasonalized AR(l) model as a suitable model for average 

monthly flows at Senchi. It is therefore necessary to investigate 

the alternate approach of Box and Jenkins [1976] viz the general 

multiplicative model or seasonal autoregressive integrated moving 

average model (SARIHA). 

The SARIHA model building is described in the next chapter. 



7. SELICTID MODEL FOR TRI VOLTA RIVER 

7.1. Introduction 

The previous chapter describes atteapts at identifying a suitable 

model adequately preserving statistical properties of the Volta 

river in the Periodic Autoregressive and Deseasonalized model 

forms. These attempts have not yielded any acceptable models and 

therefore an attempt is made to fit a general multiplicative 

seasonal model. 

7.2. SEASONAL AUTOREGRISSIVI IHTIGRlTID MOVING AVERAGE MODELS 

This form of dynamic representation of a data series which 

exhibits stochasticity or randomness, is usually applied to data 

which is seasonal in nature. Since this model has previously been 

described, [Sec. 5.2.3.] we proceed directly to the model 

building. 
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7.2.1. Identification 

The identification stage of the model building process will 

indicate if seasonal and I or nonseasonal differencing is 

required to produce stationarity in the data, what transformation 

is needed to normalise the data and also to ascertain the order 

of both seasonal and nonseasonal AR and MA parameters for the 

time series under consideration. The data available consists of 

average monthly flow measurements of the Volta river at Senchi 

from 1936 to 1984. It will be noted therefore, that, there are 

588 data points available for use in model parameter estimation. 

It will therefore be expected that efficient maximum likelihood 

estimates will be found for these parameters. The identification 

procedure followed is as outlined in Chapter 4. 

7.2.1.1. Plot of original data series 

The plot of the original series is shown in Figure 6.1 and its 

pertinent characteristics are discussed under deseasonalized 

models. To gain further insight into the characteristics of the 

data, the sample autocorrelation function plot is examined. 



7.2.1.2. Plot of sample autocorrelation function 

The sample autocorrelation function plot is as shown in Figure 

6.2. As discussed previously under deseasonalized model 

formulation, the seasonal nature of the data is clearly exposed. 

The peaks and troughs of the SACF coincide with integral 

multiples of sand s/2 respectively (wheres in this case is 12), 

indicating the period of seasonality. The seasonal sample 

autocorrelation function is also shown in Figure 6.3. Values of 

the seasonal sample autocorrelation (SSACF) are seen to tail off 

indefinitely. This indicates some form of seasonal differencing 

may be required to induce seasonal stationarity in the data. It 

is also known before hand that a log transform (corresponding to 

6=0 in the Box-Cox transformation) is appropriate for monthly 

river flow series to induce normality. The log of original data 

is therefore taken. Following the observation of the seasonal 

SACF, the data is differenced once seasonally according to the 

procedure 

The sample autocorrelation function for the differenced data is 

shown in Figures 7.1 and 7.2 for both serial and seasonal lags. 

The SACF for serial lags shows values which though significant at 

lag 1, decay rapidly to zero. This would suggest the need to 

incorporate an autoregressive parameter in the nonseasonal 

component of the model. 
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The seasonal SACF also shows a relatively significant value at 

lag 1 after which the next few values appear to be close to zero. 

This behaviour is symptomatic of a pure moving average process 

where values of the autocorrelation function are truncated after 

lag q. This suggests the inclusion of a moving average parameter 

in the seasonal component of the multiplicative model. 

7.2.2. Estimation 

Following deductions from plots of the sample autocorrelation 

functions, a SARIMA(l,0,0) X (0,1,1) model was fitted to the data 

and the resulting residuals examined. The model parameters 

estimated were as follows 

-(1) : 0.6955 Q(l) : 0.9146I 

7.2.2.1. The Mathematical Model 

To arrive at the final mathematical representation of the 

identified model, we consider the general multiplicative seasonal 

process model which is expressed as 

(7.2) 


with order (p,d,q) X (P,D,Q). For a SARIMA (1,0,0) X (0,1,1) 
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model, d = q = P = 0 • Deleting these values in (7.2) gives the 

more parsimonious 

(7.3) 


Substituting for estimated parameters in equation (7.3) obtains 

(1 - 0.69558) v12 zt = (1 - 0.9146812} at (7.4) 

which can be written explicitly as 

(1 - 0.69558) (zt - zt_12> = at - 0.9146at_12 (7.5) 

or 

zt - zt_12 - 0.6955zt-l + 0.6955zt_13 = at - 0.9146at_12 (7.6) 

z(t) can then be expressed as 

zt =at+ zt_12 + 0.6955zt-l - 0.6955zt_13 - 0.9146at_12 (7.7) 

It is observed therefore that twelve previous values of 

innovations and thirteen previous values of z's values will be 

required as starting values for the computation of forecasts. 

7.2.3. Diagnostic checking of fitted model 

The SARIMA (1,0,0) x (0,1,1) model obtained from the 

identification stage of the model building process is a very 

parsimonious representation of the original data. It must however 

be verified through a series of tests designed to expose any 

deficiencies which might be inherent in the fitted model. These 

tests are performed.mainly on the residuals to ensure that the 

fitted model satisfies the basic requirements of independence and 
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normality in the residuals. The order of the fitted model is also 

checked through the process of overfitting. These so called 

diagnostic checks are outlined in Chapter 4. 

7.2.3.1. Overfitting 

This mode of checking a model involves fitting a more 

sophisticated model than that which has been identified to see 

whether it brings any improvement to the identified model. It 

presupposes that one already has an indication of which direction 

the deficiency in the identified model might take. To decide in 

which areas the identified SARIMA (1,0,0) X (0,1,1) model might 

be deficient, the sample autocorrelation coefficient is examined. 

The plot of the SACF Figure 7.1 indicates that values of the 

autocorrelation function at the first few lags are significant. 

This could indicate the necessity of including nonseasonal 

autoregressive parameters. The fitted model however has only one 

nonseasonal AR parameter. One could therefore suppose that an 

increase in the nonseasonal AR parameters might improve the 

model. 

As a diagnostic check a SARIMA (2,0,0) X (0,1,1) model is fitted 

to the data and compared with the SARIMA (1,0,0) X (0,1,1) model. 

It was found that the SARIMA (2,0,0) X (0,1,1) model resulted in 

a marginal increase in the value of the coefficient of 

determination R squared (from 92.95% to 92.97%). However the 
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value of the second AR parameter computed was not significant. 

SECOND AR PARAMETER 

VALUE STANDARD ERROR 

-0.0496 0.0416 

Additionally, the computed value for the Akaike Information 

Criteria (equation 4.33) increased. The values of AIC obtained 

for the two models are as follows 

AIC FOR SARIMA (1,0,0) X (0,1,1) = 5788.29421 

AIC FOR SARIMA (2,0,0) X (0,1,1) = 5788.84699 

The extra autoregressive parameter was therefore deemed not 

necessary. 

Considering the fact that the maximum likelihood estimate of the 

Box-Cox parameter 6 can be computed, it was judged prudent to 

test the assumption that the appropriate value of 6 was actually 

zero (log transform). This test was therefore carried out by 

fitting the SARIMA (1,0,0) X (0,1,1) model form with a 

simultaneous computation of the maximum likelihood estimate (MLE) 

of 6. The value of 6 computed was 0.0369 with a standard error of 

0.1274. This shows that the computed KLE of 6 is not 

significantly different from zero. The model form SARIMA (1,0,0) 

X (0,1,1) is therefore fitted to the data leaving the Box-Cox 

transformation parameter at 6=0. It is also believed that it is 

easier to explain a log transform than a transform (equations 
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4.31 and 4.32) with ~ ~ 0.0 • 

7.2.3.2. Independence of residuals 

The residuals obtained after fitting an identified model are 

assumed to be normally, independently distributed with constant 

variance. The independence criterion is the most critical test 

which is performed. According to Hipel, McLeod and Lennox (1977] 

if some values of the residual autocorrelation function (RACF) 

are significantly different from zero, this indicates an 

inadequate model and therefore the model will have to be changed. 

A visual inspection of the plot of the residual autocorrelation 

function Figure 7.3 shows that the function is mostly contained 

in the 95% confidence boundaries. This fact is also confirmed by 

the Box-Pierce portmanteau lack-of-fit test which is computed 

according to the following equation (4.28) 

(7.8) 


The computed value of Q is compared with the value from the chi 

squared distribution. The test was done for both serial and 

seasonal autocorrelations. For both tests, no inadequacy was 

indicated in the identified model. 
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7.2.3.3. Homoscedasticity of residuals 

The less important assumption of constant variance of the 

residuals is also corroborated in the diagnostic checking 

procedure. It is generally known that an appropriate Box-Cox 

transformation is usually sufficient to induce homoscedasticity 

in the residuals. The output listing (see appendix) shows that 

the log transform induces constant variance in the residuals. 

7.2.3.4. Normality of residuals 

The normality assumption for the residuals, though of secondary 

importance with respect to parameter estimation, is critical in 

forecasting applications. This is because the computation of 

confidence limits of the forecasts is dependent on the normality 

assumption of the residuals [Hipel, McLeod and Lennox 1977]. To 

verify that the residuals are normal, the skewness coefficient is 

computed according to the following (4.29) 

g = (! f ;3 > I (! f ;2 >3/2 (7.9) 
1 n t=l t n t=l t 

As seen in the output listing, the value of g computed is 0.0948 

with a significance level of 0.343515. The residuals are 

therefore seen to be Normally distributed. 
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7.3. COMMENTS 

From the foregoing discussions, it is seen that a parsimonious 

model [SARIMA (1,0,0) X (0,1,1)) is arrived at which adequately 

represents average monthly flow measured at Senchi. The model 

identification is greatly aided by sample and residual 

autocorrelation functions which are plotted to assist in the 

visual inspection of various characteristics exhibited by the 

data. The square of the multiple correlation coefficient obtained 

for this model is 92.95% which compares with 48.43% obtained for 

the Deseasonalized model fitted previously. 

It is also noted that the model building procedure was 

accomplished with reasonable ease compared to other seasonal 

model forms. This fact is important because model parameters will 

need to be continually estimated since the data base is 

constantly updated. 

For the purpose of this exercise, an adequate model has been 

selected through the process of identification, parameter 

estimation and subsequent diagnostic checks. It will however be 

prudent to validate the model form in addition to verification 

procedures (diagnostic checks} which have already been performed. 

This verification procedure involves taking subsets of the 

available data and comparing forecasts generated by the model 

against measured data. 



8. FORECASTIRG THE VOLTA RIVER FLOWS 

8.1. Introduction 

In previous chapters, it is shown how a seasonal autoregressive 

integrated moving average model of the form denoted by SARIMA 

(1,0,0) X (0,1,1) is· arrived at as a suitable and parsimonious 

representation of the average monthly flows of the Volta river. 

Diagnostic checks were performed on the identified model to 

verify underlying assumptions of normal independent residuals 

with constant variance. Adequacy of the number of estimated 

parameters was also tested by the overfitting process. 

After its form is verified by means of diagnostic checks, it 

remains to show the model's adequacy for practical use. The model 

form is thus validated by demonstrating its ability to forecast 

the modelled monthly flows. This is accomplished by retaining the 

final four years of measured flow and employing the previous flow 

data to forecast these four years. This process is repeated for 

varying lengths of data selected from different periods in the 

historical data set. 
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To facilitate the computational effort required in processing the 

data, two programs (USED and USFO) [developed by Dr. Keith W. 

Bipel, Department of Systems Design Engineering, University of 

Waterloo; and Dr. A. Ian McLeod, Department of Statistical and 

Actuarial Sciences, University of Western Ontario] were obtained 

and modified into one program DRUSKAIN. A brief description of 

these computer packages are provided below. 

8.2. COMPUTER SOFTWARE 

The computer software used for this project was obtained by kind 

permission of Dr. Hipel and Dr. McLeod, from the Niagara Falls 

office of Acres Consulting Services Limited. 

This program was then used to compute relevant parameters needed 

to help identify and build the correct model for the data and 

also compute both one step ahead (5.26) and minimum mean square 

error forecasts (sect. 5.3.3.). 

8.2.1. Program "USED" 

This is a univariate stochastic estimation and diagnostics 

program which forms part of the so called KCLEOD-HIPEL TIME 

SERIES PACKAGE. It is mainly a parameter estimation program which 

requires for input among others, model form and raw data. Its 



99 

output includes values of residual autocorrelations and other 

parameters pertinent to residual analysis. This therefore makes 

it suitable for identification and diagnostic checking as well as 

parameter estimation. 

8.2.1.1. Input data required 

The input data required for correct running of program "USED" 

depends on which application it is being used for. In general 

however, the following constitute the main parameters which are 

required as input for this program: 

IP = order of nonseasonal AR component, p 

IQ = order of nonseasonal MA component, q 

IPS = order of seasonal AR component, p 

IQS = order of seasonal MA component, Q 

ISEA = seasonal period, s 

ITYPEl = 0, normal setting 

= 1, constrain some ~ parameters 


= 2, constrain mean component µ 


= 3, both 1 and 2 


ITYPE2 	 = 0, normal setting 

= 1, Box-cox transformation 

= 2, deseasonalize 

= 3, both 1 and 2 
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IEST = 0, modified sum of squares estimator 

=1, conditional estimator 

= 2, exact maximum likelihood estimator 

IOUT =0, create output file .USE 

= 1, output to terminal 

= 10, create output files .USE and .RSD 

= 11, output to terminal and create file .RSD 

= 20, create output files .USE, .RSD and .MOD 

= 21, output to terminal and create output files .RSD and 

.MOD 

ID =order of nonseasonal differencing, d 

IDS =order of seasonal differencing, D 

ALAMDA =Box-Cox exponent, ~ 

CONS = constant in Box-Cox transformation 

Z(I) = raw data to be analyzed 

8.2.1.2. Output data listed 

The output furnished by this routine includes intermediate files 

(if requested) which are utilised as input into accompanying 

simulation (.RSD) and I or forecasting (.MOD) programs. It also 

produces a standard list of output (in file .USE) which includes 

the following: 

a. model form for which parameters are estimated 
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for example : SARIMA( 1, 0, 0) ( 0, 0, 1)12 

b. 	 length of input time series 

c. 	 residual variance 

d. 	 coefficient of determination : R-SQ 

e. 	 Akaike information criteria AIC 

f. 	 Box-Cox transformation parameters : ~. CONS 

g. 	 fitted seasonal means and standard deviations 

(for deseasonalized model application) 

h. 	 estimated beta parameters and their standard errors 

g. 	 RESIDUAL ANALYSIS 

1. 	 Coefficients of SKEW and KURTOSIS 

2. 	 tests for heteroscedasticity 

3. 	 test for trends in the variance over time 

4. 	 residual and squared-residual autocorrelation functions 

5. 	 Box Pierce portmanteau statistic, Q for above 

6. 	 residual and squared-residual seasonal autocorrelations 

7. 	 Box Pierce portmanteau statistic, Q for above 

It will be noted that the above listed data input and output 

though comprehensive, are just a subset of the total number of 

parameters involved. 

8.2.2. Program "USFO" 

This 	 program is basically a univariate stochastic forecasting 
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routine which accepts input from the estimation and diagnostics 

program through an intermediate file (.MOD). Required input 

includes the identified model form as well as the estimated 

parameters. It also requires as input "initial" values to be used 

in recursive computation of forecasts. 

8.2.2.1. Input data required 

FILE2 = name of .MOD file to be used in forecasting 

The following data are transferred from "USED" through .MOD file 

N = number of data used in parameter estimation 

Z(I) = data used in parameter estimation 

TITLE = Title for data series 

MODEL = order of identified model is p, d, q, p, D, Q, s 

NBETA2 = number of parameters estimated 

BETA = estimated parameters 

ALAMDA = exponent of Box-Cox transformation, ~ 

CONS = constant in Box-Cox transformation 

ZKSEA = fitted seasonal means (for deseasonalized model) 

ZSSEA = fitted seasonal standard deviations (for deseasonalized 

model) 

A(I) = estimated residuals 
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The following are external data inputs: 


UPDATE =name of file (if any) containing measured data to be 


used in one step ahead forecasts. 

IORIG =origin (time period) after which forecasts are made 

LEAD = lead time for which forecasts are required 

8.2.2.2. Output data listed 

Output from this routine includes model parameters, computed 

forecasts both in transformed and original data states as well 

some measures of forecastibility. The output includes the 

following: 

a. title of data series being forecasted 

b. model parameters 

c. Box-Cox transformation parameters, ~ and CONS 

d. 1-step ahead forecasts in transformed state 

e. average mean square error for 1-step ahead forecasts 

f. coefficient of forecastibility for above 

g. Box-Tiao test for comparison of forecast with actuality 

h. forecasts in original data domain 

i. average mean square error for MMSE forecasts 

j. coefficient of forecastibility for above 

k. generalized autoregressive coefficients 

1. moving average term 
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m. 	 coefficients in moving average expansion ie t's 

n. 	 forecasting origin 

o. 	 initial observations used in forecasting 

p. 	 initial noise terms used for forecasting 

The above output list is not exhaustive. Additional output is 

furnished depending on which application the program is used for. 

8.2.3. Program "DRUSMAIN" 

The 	 two programs described above were obtained as source Fortran 

files suitable for compilation on a DEC VAX mini computer. To 

start with, these programs were adapted to be run on the IBM PC. 

Also in order to facilitate the use of these programs, especially 

by "non experts", an attempt is made to simplify data input and 

execution of both "USED" and "USFO". To this end, the two 

programs were modified and compiled together. Additionally, 

cursor control on the screen was handled by writing additional 

subroutines in order to provide an interactive "user friendly" 

environment for the running of programm "DRUSKAIN". As a result: 

1. 	 data input is simplified 

2. 	 on-line help is available for some input variables when 

required. 
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3. 	 input data correction can be made without quitting the 

program. 

4. 	 both estimation and forecasting can be done without exiting. 

5. 	 several sets of data can be processed and compared in one 

session. 

6. 	 pertinent results can be displayed after estimation portion 

to aid decision to rerun same set of data. 

7. 	 following 6. above, different model forms can be examined 

without the need to quit the program. This greatly helps at 

the identification stage of the process. 

8. 	 one selects exactly when to quit program. 

After the software modification was done, the resulting program 

was used to perform the computations described in this report. 

This includes a model validation process which is next described. 

8.3. 	MODEL VALIDATION 

In order to test the practical performance of the identified 

model, it is used to forecast four years of data based on 

different portions of the available data. Since this is designed 

to test the model form only, that is SARIMA(l,0,0) X (0,1,1)12, 

the same formulation is used for all data sets. However, for each 

data set, parameters in the model are estimated. 
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8.3.1. Data formulation 

The data arrangement for the model validation is as shown in 

Table 8.1. 

data period I years rorecasted period 

1936 to 1955 
1936 to 1965 
1936 to 1980 
1951 to 1980 
1955 to 1974 
1961 to 1980 
1971 to 1980 
1976 to 1980 
1977 to 1980 

20 
30 
45 
30 
20 
20 
10 

5 
4 

1956 to 1959 
1966 to 1969 
1981 to 1984 
1981 to 1984 
1975 to 1978 
1981 to 1984 
1981 to 1984 
1981 to 1984 
1981 to 1984 

8.3.2. RESULTS 

8.3.2.1. One Step Ahead Forecasts 

The program output for parameter estimation as well as both one 

step ahead and minimum mean square error forecasts are presented 

in Appendix A. The forecastibility of individual data series at 

various stages of the analysis is shown in Table 8.2 below: 
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R-SOUARED VALUES 


PERIOD SAMPLE TRAMS. STEP 

1936 to 1955 93.79 87.84 91.10 
1936 to 1965 93.30 94.28 76.40 
1936 to 1980 92.62 95.28 86.86 
1951 to 1980 91.60 95.25 87.15 
1955 to 1974 92.63 83.76 28.56 
1961 to 1980 91.53 95.03 86.72 
1971 to 1980 89.74 93.99 83.57 
1976 to 1980 82.87 92.71 70.55 
1977 to 1980 86.33 90.27 57.71 

Table 8.2 
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The results summarised in 8.2 show the coefficient of 

determination (R-SQ = square of multiple correlation coefficient) 

computed at the three stages of identification, estimation and 

forecasting. 

Values under heading "SAMPLE" are computed values of R squared 

after model parameters are estimated. These values therefore 

reflect how well the estimated model fits the original data. 

The values under "TRANS." is R squared computed for forecasted 

data in the transformed domain (ie forecasts obtained for the log 

and seasonal differenced data). This therefore represents the 

coefficient of forecastibility for transformed data. It must be 

noted that these are one step ahead forecasts. Observed data for 

the forecasted period are available in this case for one step 

ahead forecast computation. 

The values shown under "STEP" are R squared values computed when 

forecasted data is in the original (ie untransformed) domain. The 

forecasts in this case are also one step ahead forecasts. 

From column 2 of Table 8.2, it is observed that the model form 

performs reasonably well for shorter data spans even though 

identification was done on a longer data set. The values however 

fall below 90% for data sets of only 10 years or less. This would 

be expected since maximum likelihood estimates of model 
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parameters will not be efficient with fewer data points. 

Looking at column 3 of Table, one cannot discern any apparent 

patterns except the fact that data comprising of longer time 

spans (~ 30 years) exhibit consistent high values of R squared. 

The highest R squared value is obtained with the largest amount 

of data but the reverse is not true. Inconsistencies in values of 

R squared for data of shorter time spans (~ 20 years) create some 

doubt around their high R squared values. 

Column 4 of Table 8.2 exhibits the reverse of what is observed in 

column 3. In this case, the only inference that can be made from 

the computed values is that data of shorter spans have the worst 

forecastibility when actual d~ta is being examined. R squared 

values for longer data sets exhibit no particular patterns except 

they are higher than those obtained for shorter data sets. In 

this case the value of R squared corresponding to the period 1936 

to 1955 appears to be anomalous. 

8.3.2.2. Minimum Mean Square Error Forecasts 

Results obtained for minimum mean square error forecasts are 

graphically compared with observed values as well as one step 

ahead forecasts in FIGs 8.1 to 8.9. It is obvious from these 

graphs that one step ahead forecasts are superior to those made 

for lead times up to four years. This is to be expected since one 

step ahead forecasts are continually updated at each time step. 
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8.4. SUKMARY 

From the above observations, it is confirmed that shorter lengths 

of data do not provide models which forecast as well as those 

identified and estimated from longer data sets. In general 

however, the identified model form appears to be reasonably 

suitable even for shorter data spans taken from different parts 

of the historical data set. It is important however that model 

parameters and subsequently forecasts should be updated as soon 

as new observations are available. 
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9. UTILISING THE FORECASTED KOHTHLY FLOWS 

9.1. Introduction 

The previous chapter shows forecasts obtained by employing the 

identified model SARIMA (1,0,0,) X (0,1,1) with different data 

sets. These forecasts were generated to test the validity of the 

model form which had been selected to represent the average 

monthly flows of the Volta river measured at Senchi. 

In practice however, the forecasts generated by this model could 

be used in a number of ways especially as input into three Power 

and Energy , Simulation programs available to the Volta River 

Authority. These computer programs HYDR0170, BYDR0824 and GFEPM 

developed at Acres International of Canada, are capable of short, 

medium and long term simulation respectively. Together, 

therefore, they can be employed for short term operational policy 

decisions as well as long term planning studies. A brief 

description of these programs is provided below. 

120 
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9.2. BYDR0170 

This is a general purpose single reservoir power and energy 

program. After the program is set up (ie after constructing the 

basic input data) different flow scenarios may be investigated 

with very little input data change. 

9.2.1. REQUIRED DATA INPUT 

This program is the least demanding of the three in terms of 

input data requirement. The following are standard data input: 

1. name of input data file 

2. name of output data file 

3. title for particular scenario 

4. choice of units, ie metric or imperial 

5. number of years of flow data available 

6. number of years being simulated 

7. starting month of simulation 

8. twenty five optional outputs to be printed 

9. general hydro plant characteristics including, 

a. starting reservoir volume 

b. turbine head loss 

c. efficiency 

d. installed capacity 
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e. rated head 

10. reservoir characteristics, (elevation, area, volume curves) 

11. tail water elevation rating curve 

12. net evaporation for 12 months 

13. power rule curve 

14. minimum rule curve 

15. spill rule curve 

16. irrigation rule curve 

17. monthly average irrigation demand 

18. monthly average energy demand 

19. monthly average flow 

It also has inputs which determine power releases during periods 

of rationing (load shedding). 

The program is a "straight" simulation program which assesses the 

state of the reservoir at every stage and proceeds to allocate 

available energy (water) to power demand and irrigation after 

accounting for evaporation. This is done subject to the 

constraint of water level. All secondary energy is generated if 

there is enough power demand else the water is spilled after 

irrigation is taken into account. All energy is supplied subject 

to the constraint of the minimum rule curve. Any excess load is 

curtailed at the minimum rule curve. Below the irrigation rule 

curve, only power demand is supplied ie irrigation demand is 

curtailed below the irrigation rule curve. This program is handy 
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for preliminary examination of reservoir behaviour on a short 

term in view of the output furnished. 

9.2.2. OUTPUT LISTING 

The main output from this program includes the following which 

can optionally be selected through "switches" included in the 

input data file. 

1. monthly energy generated in gwh 

2. secondary energy generation in gwh 

3. primary energy generation in gwh 

4. non-firm energy generation in gwh 

5. power flows 

6. month end reservoir volumes 

7. month-end reservoir water elevations 

8. monthly and annual energy generation coefficients 

9. month-end reservoir spill volumes 

The output also includes a water balance check on the water 

allocations if required. This program is ideal for a quick 

evaluation of reservoir performance given inflow and power demand 

conditions. 

Traditionally, it has been used to compute the firm energy 

capability of a hydro plant by computing the expected energies 

produced using the whole of the historical inflow. 
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It is suggested here that this practice can be extended to 

include the use of forecasted inflow data to predict reservoir 

levels and energy availability over a short span of time. 

Specifically, it may be used to determine power and energy 

scheduling over the next hydrological year and also give an 

indication of expected reservoir elevations and power flows. 

9.3. BYDR0824 

This is a multi-purpose multi-reservoir hydro and thermal power 

and energy simulation model. It requires substantially more 

detailed data input than the single reservoir power and energy 

model described previously. It also affords the user the 

capability of defining thermal generating plants and when they 

come on line. Installation and availability of individual 

generating units at the hydro plants are required as input. The 

power demand is input as detailed monthly loads. 

9.3.1. REQUIRED DATA INPUT 

The main data input required are the following 

1. the title for the particular scenario 

2. name of hydro plants included in simulation 
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3. 	 numerical identification of hydro plants and their priority 

scheduling. 

4. 	 reservoir characteristics at various plants 

a. maximum volume 

b. minimum volume (dead storage) 

c. irrigation rule curve 

5. 	 minimum flow for salinity control 

6. 	 reservoir operating data at various plants 

a. upper rule curve 

b. intermediate rule curve 

c. lower rule curve 

d. spill rule curve 

7. 	 availability of hydro plant units 

8. 	 detail scheduling of hydro and thermal plants 

9. 	 load duration curves for the entire period under simulation 

10. 	 volume elevation curves for reservoirs 

11. 	 area elevation curves for reservoirs 

12. 	 capacity head curves 

13. 	 tail water rating curves 

14. 	 capacity factors (ie percentage of capacity I head curve) 

15. 	 net evaporation data for various reservoirs (evaporation 

minus rainfall) 

16. 	 demand data 

a. peak monthly power demand 

b. average monthly demand 

c. irrigation demand 
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17. average monthly flow data 

9.3.2. OUTPUT LISTING 

The output from this program includes an echo of all the input 

data as well as the following: 

1. monthly thermal peak output (expressed in megawatts) 

2. monthly thermal energy output (expressed in gigawatt hours) 

3. plant stacking in selected months (listed base to peak) 

4. monthly irrigation diversion requirement 

5. Load - Duration curve 

6. monthly hydro peak output (expressed in megawatts) 

7. monthly hydro energy output (expressed in gigawatt hours) 

8. monthly final flow into the atlantic ocean (MCM) 

9. monthly system load and hydro I thermal breakdown 

10. monthly system energy and hydro I thermal breakdown 

11. summary of energy generation for the run 

The input data outlined above is set up and is hardly modified. 

It makes investigating different scenarios relatively easy once 

the data is set up. However, it demands more detailed knowledge 

about hydro plant characteristics and operation.As in the case of 

the single reservoir program, historical data is used in 

simulating "future" conditions and expectations taken over the 

http:operation.As
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whole set of available data. It is suggested that with the use of 

forecasted flows, more realistic conditions may be simulated. 

The program allows the user to specify the total installed 

capacity at the inception of simulation. During the simulation 

period, additional generation may be selected from predefined 

hydro or thermal sets. 

Some optimization is done with respect to reservoir draw down 

scheduling between the various reservoirs. When hydro plants have 

more than enough potential energy to meet demand, reservoir 

levels are raised in reverse priority sequence to minimize spill. 

The program is currently configured to simulate the operation of 

three hydro plants in series corresponding to two existing plants 

and one planned addition. In addition, one can specify the 

addition of a number of fossil fueled, nuclear or mini hydro 

plants during the simulation period. This therefore makes it 

suitable for looking at the effects on the existing system (which 


is all hydro), of thermal complements. 


It is believed that with the availability of forecasted flows, 


one may be able to compute to within certain confidence limits, 


the system characteristics during a specified period with thermal 


installation. 


9.4. GFEPK 


This program is the most elaborate of the three and is called the 
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Ghana Financial and Economic Planning Model [Ghana Generation 

Planning 1986 Update I Training Seminar]. It is basically an 

extension of the capabilities of the above two programs in that 

it has financial and economic routines included to deal with the 

financial consequences of current and additional installed 

generation during the simulation period. It computes the present 

net worth benefits by recognising benefits (energy sales) and 

costs {operating, maintenance and capital cost of constructing 

new facilities, depreciation and loan servicing). The program 

also computes detailed financial statements for the whole Volta 

River Authority taking cognizance of old loans as well as 

committed loans. As a result of the depth of detail, data input 

is exacting and demands multi disciplinary effort. This program 

is thus best run by both civil engineers and finance and economic 

personnel. 

9.4.1. REQUIRED DATA INPUT 

The data input required for this computer model includes 

financial, economic as well as reservoir and hydro plant 

parameters. In addition data is required for the planned 

generation expansion of the VRA system. A summary of the data 

input is as follows: 

1. load forecast 
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2. general plant data 

3. reservoir rule curves 

4. tariff structure 

5. processed average monthly flows 

6. old loans 

7. construction program 

8. fixed assets 

9. income sheet 

10. balance sheet 

11. rainfall data 

12. reservoir data 

9.4.2. OUTPUT LISTING 

The output from this program could be voluminous depending on 

which outputs are selected for optional printing. A brief summary 

of the output is listed below: 

1. an echo check of the input data 

2. detailed reservoir simulation data 

3. financial schedules 

4. detailed financial statements. 

It also prints out statistical summaries of the output data. 

Depreciation of fixed assets is taken into account while future 
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costs and benefits are discounted to present worth. 

It must be noted that the storage hydro portion of this program 

has been configured to take into account only the two existing 

hydro plants. It can however simulate the addition of different 

predefined thermal complements. The addition of thermal sets 

enable the program to be run to maximize annual average hydro 

energy in contrast to the practice before of maximizing firm 

hydro energy. 

The economic and financial portion of this program is fairly 

detailed. It takes into account all the existing financial 

operations of the Authority. Additionally, it computes the 

financial and economic consequences of added generation during 

the simulation period. 

This program therefore is the obvious choice for any study 

involving financial computations. It is especially suited to 

investigating the financial effect of any draw down policy 

scenario being studied. It also depicts the financial consequence 

of added generation during the period of simulation. 

9.5. COMMENTS 

To increase the authenticity of inf low assumptions made in any 

operational study, it may be more beneficial to employ predicted 

flows as input into the computer model in question. This could be 
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a more realistic assumption than assuming a repeat of the 

historical flow or else taking the expected results from using 

all the flows on record. 

To investigate the performance of a reservoir I hydro plant, it 

may be more useful to employ an identified stochastic model to 

generate different equally likely sequences of flow which 

preserve the statistical properties of the observed series of 

flow. This should provide a robust investigation of any study. 

With reference to water resources studies, Kottegoda [1980] 

describes the restriction of using only historical flows for 

input data, as being a serious draw back in view of the fact that 

a particular sequence of flows will never repeat itself. 

After all, it is highly unlikely that nature will run out of 

"random variables" and therefore decide to produce a "rerun" of 

the average monthly flow sequences in exactly the same order 

again and further more, decide to conveniently start the "reruns" 

exactly from the date of available record of flows. 



10. DISCUSSION, CONCLUSION AND SUGGESTED FURTHER STUDY 

10.l DISCUSSION 

The use of stochastic methods in the field of water resources 

especially hydrology has gained wide acceptance in recent years. 

This is due to a number of factors. Previously, purely 

deterministic methods were used to model and subsequently 

forecast hydrological phenomena which exhibited random behaviour. 

These models were however difficult to set up, involved too many 

parameters therefore making their updating very tedious [Fay, 

Watts and Watts, 1986]. This has led to the addition of 

probabilistic components in mathematical models which attempt to 

represent hydrologic phenomena. 

Box and Jenkins [1976] greatly enhanced the wide acceptance of 

this methodology, which dates back to the beginning of this 

century, by introducing a systematic approach to the application 

of these methods. The success of these stochastic models which 

are sometimes referred to as Box-Jenkins models, can be 

attributed to the small number of parameters (parsimony) involved 

which therefore leads to simple calibration as well as easy and 

fast updating [Fay, Watts and Watts, 1986],[0lason and Watt, 

'• )~ 132 
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1986]. Hipel [1985] mentions the use of stochastic modelling of 

river flow in the selection of the optimal design from 

alternative designs. This is accomplished by testing the physical 

and economic performance of the alternative designs by using 

different sets of simulated inputs into the system. After the 

design stage, stochastic modelling can assist in operations by 

forecasting input flows and demand on the hydroelectric system 

with a view to obtaining the optimal operating policy which 

maximizes production subject to physical, environmental, economic 

and political constraints [Hipel 1985]~ 

For the purpose of this exercise, data consisting of average 

monthly flows of the Volta river at Senchi, were analyzed with a 

view to finding a stochastic model which adequately represents 

and preserves all the statistics of these flow series. 

The process (recommended by Box and Jenkins [1976]), of 

identification, estimation and diagnostic checks was followed in 

building a suitable model from the available data. Three types of 

seasonal models were entertained namely periodic autoregressive 

models (PAR), deseasonalized models and finally the Box-Jenkins 

general multiplicative model or seasonal autoregressive 

integrated moving average model (SARIMA). 

The first two seasonal types of models were rejected as being 

unsuitable candidates for modelling the available data. The 

periodic autoregressive model form has 12 AR(p) models which are 
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fitted to each month of the year. This therefore results in many 

parameters to be estimated and demands a lot of computer time for 

the estimation of the parameters. Also for purpose of updating 

parameters, there would be too many parameters to be considered. 

Consequently, this method was rejected. 

For the case of the deseasonalized model, the R squared value 

obtained was 48.43%. Since this indicated a low predictability of 

the given series, this method was also rejected. 

The identified model form of SARIMA (1,0,0) X (0,1,1) was found 

to yield a model which passed the diagnostic checks done on the 

residuals. It was however necessary to invoke the Box Cox 

transformation (with ~=0) corresponding to taking natural logs of 

the original data, in order to remove non-normality and 

heteroscedasticity in the variance. The process of overfitting 

was also used to confirm the order of the identified model. The 

parameters of this model were estimated as: 

-(1) = 0.6955 ' 0(1) = 0.9146 • 

Substituting the values of these parameters into the general 

multiplicative model equation (7.2) and rearranging yields: 

zt = at+ zt_12 + 0.6955zt-l - 0.6955zt-lJ - 0.9146at_12 (10.1) 

The conditional expectation of z[t+l] given all knowledge of the 

z's and a's up to time t gives the minimum mean square error 

forecast at lead time 1, from origin t. This simple expression is 

the basis of computations performed within the program "DRUSMAIN" 
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to obtain minimum mean square error forecasts. 

The model form is further validated by generating forecasts (both 

one step ahead forecasts and MMSE) for lead time of four years 

with nine sets of data. In each of these cases, the same model 

forms are utilised but the parameters are estimated to reflect 

the particular data series being used. The resulting forecasts 

are compared to the observed data in Chapter 8. It is perhaps 

worth noting that the period 1981 to 1983 marked the worst 

inflows on record and forms part of the critical period. 

10.2 CONCLUSION 

It is seen that, the SARIMA (1,0,0) X (0,1,1) model form, fitted 

to the average monthly flow data of the Volta river from 1936 to 

1984, yielded a parsimonious representation of this set of data. 

Furthermore, the same model form was adequate in modelling 

subsets of the available data. The results presented in Chapter 8 

indicate the inability of models identified using short flow 

records (~ 20 years) to forecast as well as those identified from 

longer records. 

It has been demonstrated that it is reasonably simple and easy to 

identify this model type. The number of parameters involved are 

also found to be two. This therefore makes it easy to update the 
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estimates of these parameters if additional data becomes 

available. 

It is also noteworthy that this model is a univariate stochastic 

model. In effect the only data requirement is the historical flow 

at Senchi itself. This eliminates the problem of having to 

collect data for other stations (upstream) and the general 

handling of multiple inputs data. It therefore avoids the problem 

of verifying any other data sets except that from Senchi itself. 

It may however be helpful if additional work is done with respect 

to finding the most accurate way of forecasting the average 

monthly flows of the Volta river. 

10.3 SUGGISTID FURTHER VORK 

The model identified for the purpose of this exercise was 

obtained after viewing the residual autocorrelations. It may be 

worthwhile to investigate the possibility of deriving a better 

fit to the data by using the partial autocorrelation function 

(PACF). Additionally, some of the more recent advances in model 

identification proposed by Bipel, McLeod and Lennox (1977] could 

be used to see whether any improvements in the model are 

obtained. These developments include the inverse autocorrelation 

function (IACF), inverse partial autocorrelation function (IPACF) 

and the cumulative periodogram white noise test. 
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From Chapter 6, data from six rain gauge stations and four flow 

stations are available and could be of help in identifying a 

multiple input single output (KISO) model which may yield some 

improvements over the univariate model just identified. In 

particular, a transfer function noise (TFN) type model could be 

identified to check for the effects, if any, of the construction 

of the Akosombo dam. Bipel, McLeod and McBean [1977] note that 

the construction of a reservoir could result in a significant 

reduction in the mean of the average monthly river flow 

downstream of the dam. The use of the TFN for intervention 

analysis is noted in the literature [Bipel, 1985], [D'Astous and 

Hipel, 1979], [Hipel, McLeod and Noakes, 1982]. This could be 

used to estimate missing data in some of the data files mentioned 

in Chapter 6. These data sets may then be used in identifying 

MISO models to represent the flow at Senchi. It is reasonable to 

assume that the inclusion of flow and I or rainfall data upstream 

of Senchi may help identify models which may be more 

representative of the monthly average flows at Senchi. 
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Volta River Flows at Senchi (1936-1980) 

SARIMA( 1, 0, 0) ( 0, 1, 1)12 

TRANSFORMED DATA, ALAMDA = .OOOOOOD+OO CONS = .OOOOOOD+OO 

TREND COEFFICIENT RESIDUAL VARIANCE 
4.687846D-04 2.429629D-01 

GENERALIZED AUTOGRESSIVE COEFFICIENTS 
1: 
7: 

13: 

.656, 

.000, 
-.656, 

2: 
8: 

.000, 

.000, 
3: 
9: 

.000, 

.000, 
4: 

10: 
.000, 
.000, 

5: 
11: 

.000, 

.000, 
6: 

12: 
.000, 

1.000, 

1: 
7: 

MOVING 
.000, 
.000, 

AVERAGE TERM 
2: 
8: 

.000, 

.000, 
3: 
9: 

.000, 

.000, 
4: 

10: 
.000, 
.000, 

5: 
11: 

.000, 

.000, 
6: 

12: 
.000, 
.916, 

PIVOTAL VALUES FOR FORECASTING 
FORECASTING ORIGIN = 540 

OBSERVATIONS 
Z(525)= 8.853D+OO, Z(526)= 8.746D+OO, Z(527)= 7.315D+OO, Z(528)= 5.694D+OO 
Z(529)= 4.585D+OO, Z(530)= 3.871D+OO, Z(531)= 3.584D+OO, Z(532)= 3.784D+OO 
Z(533)= 4.625D+OO, Z(534}= 5.727D+OO, Z(535)= 6.706D+OO, Z(536}= 7.555D+OO 
Z(537}= 8.488D+OO, Z(538)= 8.380D+OO, Z(539)= 6.950D+OO, Z(540}= 5.328D+OO 

DISTURBANCES 
A(529)=-3.071D-Ol, A(530)=-2.140D-02, A(531)=-3.995D-02, A(532)=-1.715D-01 
A(533)= 9.502D-02, A(534}= 1.684D-01, A(535)= 2.270D-03, A(536)=-6.098D-02 
A(537)= 5.014D-02, A(538)= 1.906D-01, A(539)= 3.877D-01, A(540)=-1.052D-01 

Volta River Flows at Senchi (1981-1984) 

OBSERVED VALUES ARE THE BOX-COX TRANSFORMATION or THE ORIGINAL SERIES 

TIME OBSERVED 1-STEP AHEAD INNOVATION 
PERIOD VALUE FORECAST 


541 4.127134D+OO 4.626786D+OO -4.996514D-01 

542 3.433987D+OO 3.590797D+OO -1.568099D-01 

543 3.135494D+OO 3.333643D+OO -1.981483D-01 

544 3.332205D+OO 3.647766D+OO -3.155615D-01 

545 4.174387D+OO 4.241714D+OO -6.732718D-02 

546 5.267858D+OO 5.277277D+OO -9.418457D-03 

547 6.246107D+OO 6.402782D+OO -1.566757D-01 

548 7.095064D+OO 7.310132D+OO -2.150680D-01 

549 8.027150D+OO 8.140161D+OO -1.130108D-01 
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550 7.9193560+00 7.9034360+00 1.5920290-02 
551 6.4892050+00 6.2926450+00 1.9655980-01 
552 4.8675340+00 5.1224390+00 -2.5490460-01 
553 3.5553480+00 4.2833830+00 -7.2803480-01 
554 2.8332130+00 3.2028900+00 -3.6967670-01 
555 2.5649490+00 2.9232570+00 -3.5830770-01 
556 2.7725890+00 3.2474120+00 -4.7482360-01 
557 3.6109180+00 3.8692700+00 -2.5835230-01 
558 4.7004800+00 4.9071410+00 -2.0666030-01 
559 5.6767540+00 6.017780D+OO -3.4102620-01 
560 6.5279580+00 6.9189560+00 -3.9099780-01 
561 7.4604900+00 7.7589840+00 -2.9849390-01 
562 7.3524410+00 7.5333230+00 -1.808815D-01 
563 5.9215780+00 5.9374540+00 -1.5875770-02 
564 4.3040650+00 4.7290680+00 -4.2500270-01 
565 3.8066620+00 3.8532170+00 -4.6554160-02 
566 3.1354940+00 3.3374210+00 -2.0192680-01 
567 2.4849070+00 3.0921880+00 -6.072816D-01 
568 2.6390570+00 3.1556820+00 -5.1662510-01 
569 3. 7135720+00 3.7605180+00 -4.6945500-02 
570 5.1179940+00 4.9577200+00 1.602736D-01 
571 6.2225760+00 6.263785D+OO -4.1208370-02 
572 6.7105230+00 7.2449980+00 -5.3447500-01 
573 7.1989310+00 7.8543400+00 -6.5540860-01 
574 6.0378710+00 7.3470140+00 -1.309143D+OO 
575 4.0604430+00 5.073814D+OO -1.0133710+00 
576 2.8903720+00 3.4725270+00 -5.8215560-01 
577 2.5649490+00 2.9219570+00 -3.5700750-01 
578 2.3978950+00 2.5060570+00 -1.0816140-01 
579 2.6390570+00 2.557824D+OO 8.1233380-02 
580 3.4657360+00 3.2141670+00 2.5156870-01 
581 3.850148D+OO 4.299633D+OO -4.4948540-01 
582 5.5797300+00 5.0612150+00 5.185146D-01 
583 6.7968240+00 6.5638590+00 2.3296460-01 
584 7.6568100+00 7.5777110+00 7.9099090-02 
585 8.5227780+00 8.4211290+00 1.0164900-01 
586 8.3494840+00 8.1069930+00 2.4249090-01 
587 6.9565450+00 6.5067950+00 4.4975010-01 
588 5.4205350+00 5.3251440+00 9.5390630-02 

AVERAGE MEAN SQUARE ERROR = 1.6314810-01 
COEFFICIENT OF FORECASTIBILITY = 95.28% 

BOX-TIAO TEST FOR COMPARISON OF FORECAST WITH ACTUALITY 
CHI SQ DF S.L. 

32.23 48 .96075 

FORECASTS IN ORIGINAL DATA DOMAIN 
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TIME OBSERVED MINIMUM MSE 
PERIOD VALUE FORECAST 

541 6.200000D+Ol 1.153842D+02 
542 3.lOOOOOD+Ol 4.094700D+01 
543 2.300000D+01 3.166221D+Ol 
544 2.800000D+01 4.334743D+Ol 
545 6.500000D+01 7.850764D+01 
546 1.940000D+02 2.211316D+02 
547 5.160000D+02 6.814780D+02 
548 1.206000D+03 1.688530D+03 
549 3.063000D+03 3.872449D+03 
550 2.750000D+03 3.056169D+03 
551 6.580000D+02 6.104074D+02 
552 1.300000D+02 1.894112D+02 
553 3.500000D+01 8.184804D+01 
554 1.700000D+Ol 2.778153D+Ol 
555 1.300000D+Ol 2.100454D+Ol 
556 1.600000D+Ol 2.904638D+01 
557 3.700000D+Ol 5.409554D+01 
558 1.100000D+02 1.527224D+02 
559 2.920000D+02 4.637110D+02 
560 6.840000D+02 1.141887D+03 
561 1. 738000D+03 2.645104D+03 
562 1.560000D+03 2.110762D+03 
563 3.730000D+02 4.279197D+02 
564 7.400000D+Ol 1.278106D+02 
565 4.SOOOOOD+Ol 5.323404D+Ol 
566 2.300000D+Ol 3.178208D+Ol 
567 1.200000D+01 2.487018D+01 
568 1.400000D+Ol 2.650051D+01 
569 4.lOOOOOD+Ol 4.852111D+01 
570 1.670000D+02 1.606458D+02 
571 5.040000D+02 5.930425D+02 
572 8.210000D+02 1.582055D+03 
573 1.338000D+03 2.909747D+03 
574 4.190000D+02 1.751969D+03 
575 5.800000D+01 1.804214D+02 
576 1.800000D+01 3.637962D+Ol 
577 1.300000D+01 2.097725D+01 
578 1.lOOOOOD+Ol 1.383966D+Ol 
579 1.400000D+01 1.457497D+Ol 
580 3.200000D+01 2.809660D+01 
581 4.700000D+01 8.318895D+01 
582 2.650000D+02 1.781626D+02 
583 8.950000D+02 8.005833D+02 
584 2.115000D+03 2.206565D+03 
585 5.028000D+03 5.128713D+03 
586 4.228000D+03 3.746116D+03 
587 1.050000D+03 7.561780D+02 
588 2.260000D+02 2.319741D+02 
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AVERAGE MEAN SQUARE ERROR = 
COEFFICIENT or FORECASTIBILITY = 

TOTAL OBSERVED VOLUME MCM = 
TOTAL FORECASTED VOLUME MCM = 
ACCURACY OF VOLUME FORECAST = 

1.583376D+05 
86.86% 

8.167896D+04 
1.013032D+05 

75.97% 
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Volta River Flows at Senchi (1936-1984) 

SARIMA( 1, 0, 0) ( 0, 1, 1)12 

LENGTH or THE INPUT TIME SERIES = 588 

LENGTH OF DIFFERENCED TIME SERIES = 576 

MODIFIED SUK OF SQUARES ESTIMATION 
SUK or SQUARES RESIDUAL VARIANCE R-SQ 
1.07084102D+07 2.35436711D-01 92.95% 

AIC BIC 
5.78829421D+03 -2.90290056D+03 

BOX-COX TRANSFORMATION PARAMETERS 
LAMDA SE(LAKDA) CONS 
.0000 .0000 .OOOOOOD+OO 

DETERMINISTIC COMPONENT 
SERIES TREND 

MEAN S.E. TERM S.E. 
-8.092909D-03 5.669448D-03 -2.463993D-03 1.751303D-03 

ESTIMATED BETA PARAMETERS 

BETA SE(BETA) 

.6955 .0299 

.9146 .0168 


CORRELATION MATRIX OF BETA 
1.000 


.005 1.000 


-------------------RESIDUAL 
ANALYSIS-------~----------------------------

SKEWNESS KURTOSIS 

Gl S.L. G2 S.L • 


•0948 .343515 2.2220 .000000 

TEST FOR HETEROSCEDASTICITY DEPENDING ON THE CURRENT LEVEL 

CHI SE(CHI) 


.004771 .031085 


TEST FOR TRENDS IN THE VARIANCE OVER TIME 
CHI SE(CHI) 
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.000896 .000354 

LAG 
1 

RESIDUAL AND SQUARED-RESIDUAL AUTOCORRELATIONS 
RA SE QA RAA 

.03563 .02898 .73 .05142 
QAA 
1.53 

2 
3 
4 
5 
6 
7 

- • 07310 
.01438 
.02145 
.00183 
.00631 

-.01606 

.03609 

.03907 

.04043 

.04107 

.04138 

.04153 

3.83 
3.95 
4.22 
4.22 
4.25 
4.40 

.18297 
-.01984 

.00178 
-.01618 
-.01509 
-.05588 

20.95 
21.18 
21.18 
21.33 
21.46 
23.29 

8 
9 

10 
11 
12 
13 

.00374 
-.00113 

.02438 

.09314 

.01114 
-.02554 

.04160 

.04163 

.04165 

.04166 

.03811 

.04166 

4.41 
4.41 
4.76 
9.87 
9.94 

10.33 

.03114 
-.06552 

.00280 
-.00083 

.01333 

.05332 

23.86 
26.38 
26.39 
26.39 
26.49 
28.17 

14 
15 
16 
17 
18 
19 

-.08271 
.03445 
.09437 

-.00234 
-.03745 

.04002 

.04167 

.04167 

.04167 

.04167 

.04167 

.04167 

14.38 
15.09 
20.38 
20.38 
21.22 
22.18 

.02251 
-.03197 
- .02713 
-.07062 
-.02013 

.02227 

28.47 
29.08 
29.52 
32.49 
32.73 
33.02 

20 
21 
22 
23 
24 
25 

.04066 

.03354 
-.01029 

.01035 
-.04167 

.03231 

.04167 

.04167 

.04167 

.04167 

.03871 

.04167 

23.17 
23.84 
23.91 
23.97 
25.02 
25.65 

-.01645 
-.04858 
-.01902 
-.01929 

.09248 

.01254 

33.19 
34.60 
34.82 
35.04 
40.20 
40.30 

26 
27 
28 

.04918 

.04414 

.02273 

.04167 

.04167 

.04167 

27.11 
28.29 
28.61 

.08476 
-.02528 

.01941 

44.65 
45.03 
45.26 

29 -.01272 .04167 28. 71 .02032 45.51 
30 
31 

-.04689 
.06296 

.04167 

.04167 
30.05 
32.47 

-.01209 
.00033 

45.60 
45.60 

32 .02061 .04167 32.73 .00411 45.61 
33 
34 

-.06093 
.04228 

.04167 

.04167 
35.00 
36.10 

.00867 

.02641 
45.66 
46.09 

35 -.02093 .04167 36.37 .07720 49.75 
36 -.03023 .03921 36.94 .07423 53.15 
37 .05350 .04167 38.70 -.00661 53.18 
38 -.02610 .04167 39.13 .04566 54.47 
39 .02721 .04167 39.58 .00546 54.49 
40 -.04220 .04167 40.69 -.03258 55.15 
41 -.03279 .04167 41.36 -.04509 56.41 
42 .05219 .04167 43.06 -.04337 57.58 
43 -.01631 .04167 43.22 -.00630 57.61 
44 .00195 .04167 43.23 -.04844 59.08 
45 -.02652 .04167 43.67 -.02441 59.45 
46 .01911 .04167 43.90 -.02884 59.97 
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44.12 59.9847 -.01865 .04167 -.00346 
46.33 64.6648 .05924 .03962 .08610 

49 -.05704 .04167 48.38 -.00247 64.66 
50 -.00447 .04167 48.40 -.05508 66.58 
51 -.05641 .04167 50.41 -.03799 67.50 
52 .00672 .04167 50.44 -.05445 69.38 
53 -.02773 .04167 50.93 -.03155 70.01 
54 .01646 .04167 51.11 .00143 70.01 
55 .01318 .04167 51.22 -.03259 70.69 
56 .05702 .04167 53.30 -.02622 71.13 
57 -.00244 .04167 53.30 .00836 71.18 
58 -.00580 .04167 53.32 .00266 71.18 
59 .06025 .04167 55.66 .04810 72.67 
60 -.04106 .03996 56.75 .04953 74.25 

Q(60) 56.75 ON 58 DF IS NOT SIGNIFICANT AT THE 5 PERCENT LEVEL= 
Q(60) 74.25 ON 60 DF IS NOT SIGNIFICANT AT THE 5 PERCENT LEVEL= 

RESIDUAL AND SQUARED-RESIDUAL SEASONAL AUTOCORRELATIONS 
LAG RAS QAS RAAS QAAS 

1 12 .01114 .07 .01333 .10 
2 24 -.04167 1.12 .09248 5.26 
3 36 -.03023 1.68 .07423 8.66 
4 48 .05924 3.90 .08610 13.33 
5 60 -.04106 4.98 .04953 14.92 
6 72 .02441 5.38 .05283 16.76 
7 84 -.06875 8.58 .03396 17.54 
8 96 .06140 11.19 .01627 17.73 
9 108 -.06188 13.92 -.00521 17.74 

10 120 -.01424 14.06 .01794 17.98 
11 132 .01937 14.35 -.00592 18.01 
12 144 -.01249 14.47 .01693 18.23 
13 156 -.08658 20.41 .05084 20.28 
14 168 -.03323 21.31 .01650 20.50 
15 180 -.02588 21.87 .02012 20.84 
16 192 .02496 22.41 .01662 21.08 
17 204 -.03281 23.38 .05210 23.51 
18 216 -.03667 24.62 -.00524 23.53 
19 228 .02864 25.40 -.00936 23.62 
20 240 -.00371 25.42 -.01069 23.73 

Q(20) = 25.42 ON 20 DF IS NOT SIGNIFICANT AT THE 5 PERCENT LEVEL 

Q(20) 23.73 ON 20 DF IS NOT SIGNIFICANT AT THE 5 PERCENT LEVEL= 
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Volta River Flows at Senchi (1936-1984) 

SARIMA( 1, 0, 0) ( 0, 1, 1)12 

TRANSFORMED DATA, ALAMDA = .OOOOOOD+OO CONS = .OOOOOOD+OO 

TREND COEFFICIENT RESIDUAL VARIANCE 
-2.463993D-03 2.354367D-01 

GENERALIZED AUTOGRESSIVE COEFFICIENTS 
1: .696, 2: .000, 3: .000, 4: .000, 5: .000, 6: .000, 
7: .000, 8: .000, 9: .000, 10: .000, 11: .000, 12: 1.000, 

13: -.696, 

MOVING AVERAGE TERM 
1: .000, 2: .000, 3: .000, 4: .000, 5: .000, 6: .000, 
7: .000, 8: .000, 9: .000, 10: .000, 11: .000, 12: .915, 

COEFFICIENTS IN THE MOVING AVERAGE EXPANSION 
1: .696, 2: .484, 3: .336, 4: .234, 5: .163, 6: .113, 
7: .079, 8: .055, 9: .038, 10: .026, 11: .018, 12: .098, 

13: .068, 14: .048, 15: .033, 16: .023, 17: .016, 18: .011, 
19: .008, 20: .005, 21: .004, 22: .003, 23: .002, 24: .087, 
25: .060, 26: .042, 27: .029, 28: .020, 29: .014, 30: .010, 
31: .007, 32: .005, 33: .003, 34: .002, 35: .002, 36: .086, 
37: .060, 38: .042, 39: .029, 40: .020, 41: .014, 42: .010, 
43: .007, 44: .005, 45: .003, 46: .002, 47: .002, 48: .086, 

PIVOTAL VALUES FOR FORECASTING 
FORECASTING ORIGIN = 540 

OBSERVATIONS 
Z(525)= 8.853D+OO, Z(526)= 8.746D+OO, Z(527)= 7.315D+OO, Z(528)= 5.694D+OO 
Z(529)= 4.585D+OO, Z(530)= 3.871D+OO, Z(531)= 3.584D+OO, Z(532)= 3.784D+OO 
Z(533)= 4.625D+OO, Z(534)= 5.727D+OO, Z(535)= 6.706D+OO, Z(536)= 7.555D+OO 
Z(537)= 8.488D+OO, Z(538)= 8.380D+OO, Z(539)= 6.950D+OO, Z(540)= 5.328D+OO 

DISTURBANCES 
A(529)=-3.027D-01, A(530)= 4.593D-03, A(531)=-1.225D-02, A(532)=-1.423D-01 
A(533)= 1.352D-01, A(534)= 2.025D-01, A(535)= 2.829D-02, A(536)=-3.352D-02 
A(537)= 8.528D-02, A(538)= 2.248D-01, A(539)= 4.154D-01, A(540)=-9.266D-02 

LEAD TIME FORECAST S.D. 

1 4.604894D+OO 4.852182D-01 

2 3.878396D+OO 5.910451D-01 

3 3.597266D+OO 6.359518D-01 

4 3.921396D+OO 6.565750D-01 

5 4.594304D+OO 6.663228D-01 
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6 5.517883D+OO 
7 6.531954D+OO 
8 7.462772D+OO 
9 8.342889D+OO 

10 8. 071185D+OO 
11 6.352702D+OO 
12 4.994822D+OO 
13 4.370778D+OO 
14 3.713096D+OO 
15 3.479830D+OO 
16 3.837250D+OO 
17 4.533314D+OO 
18 5.472998D+OO 
19 6.498271D+OO 
20 7.436880D+OO 
21 8.322416D+OO 
22 8.054481D+OO 
23 6.338620D+OO 
24 4.982563D+OO 
25 4.359788D+OO 
26 3.702988D+OO 
27 3.470336D+OO 
28 3.828183D+OO 
29 4.524543D+OO 
30 5.464433D+OO 
31 6.489850D+OO 
32 7.428559D+OO 
33 8.314165D+OO 
34 8.046278D+OO 
35 6.330450D+OO 
36 4.974417D+OO 
37 4.351658D+OO 
38 3.694869D+OO 
39 3.462225D+OO 
40 3.820077D+OO 
41 4.516441D+OO 
42 5.456334D+OO 
43 6.481753D+OO 
44 7.420463D+OO 
45 8.306070D+OO 
46 8.038183D+OO 
47 6.322356D+OO 
48 4.966323D+OO 

6.709877D-01 
6.732329D-01 
6.743164D-01 
6.748399D-01 
6.750930D-01 
6.752154D-01 
6.752746D-01 
6.769535D-01 
6.777642D-Ol 
6.781561D-Ol 
6.783456D-01 
6.784372D-01 
6.784815D-Ol 
6.785030D-Ol 
6.785134D-Ol 
6.785184D-01 
6.785208D-01 
6.785220D-01 
6.785226D-01 
6.798236D-Ol 
6.804520D-01 
6.807559D-Ol 
6.809028D-Ol 
6.809739D-Ol 
6.810083D-01 
6.810249D-Ol 
6.810330D-01 
6.810368D-Ol 
6.810387D-01 
6.810396D-Ol 
6.810401D-01 
6.823318D-01 
6.829559D-01 
6.832576D-Ol 
6.834035D-01 
6.834741D-Ol 
6.835082D-Ol 
6.835247D-Ol 
6.835327D-01 
6.835366D-01 
6.835384D-Ol 
6.835393D-Ol 
6.835398D-Ol 

FORECASTS IN UNTRANSFORMED DOMAIN 

ORIGIN TIME OBSERVED 
540 2.06000D+02 
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LEAD TIME NAIVE 90% PROBABILITY MMSE 
FORECAST INTERVAL FORECAST 

1 
2 
3 
4 

6 
7 
8 
9 

11 
12 
13 
14 

16 
17 
18 
19 

21 
22 
23 
24 

26 
27 
28 
29 

31 
32 
33 
34 

36 
37 
38 
39 

41 
42 
43 
44 

9.99724D+Ol 
4.83466D+Ol 
3.64983D+Ol 
5.04708D+01 
9.89193D+Ol 
2.49107D+02 
6.86739D+02 
1. 74197D+03 
4.20021D+03 
3.20089D+03 
5.74042D+02 
1.47647D+02 
7.91052D+Ol 
4.09805D+Ol 
3.24542D+01 
4.63977D+01 
9.30665D+Ol 
2.38173D+02 
6.63992D+02 
1. 69745D+03 
4.11509D+03 
3.14787D+03 
5.66015D+02 
1.45848D+02 
7.82406D+01 
4.05683D+Ol 
3.21475D+Ol 
4.59789D+01 
9.22537D+01 
2.36142D+02 
6.58424D+02 
1. 68338D+03 
4.08128D+03 
3.12215D+03 
5.61409D+02 
1.44664D+02 
7.76070D+01 
4.02403D+Ol 
3.18878D+Ol 
4.56077D+01 
9.15094D+01 
2.34237D+02 
6.53115D+02 
1.66981D+03 
4.04837D+03 

( 4.50054D+Ol, 2.22073D+02) 
( 1.82875D+Ol, 1.27814D+02) 
( 1.28228D+01, 1.03888D+02) 
( 1.71402D+01, 1.48616D+02) 
( 3.30593D+01, 2.95984D+02) 
( 8.26164D+01, 7.51114D+02) 
( 2.26918D+02, 2.07833D+03) 
( 5.74571D+02, 5.28127D+03) 
( 1.38420D+03, 1.27451D+04) 
( 1.05443D+03, 9.71680D+03) 
( 1.89062D+02, 1.74294D+03) 
( 4.86230D+Ol, 4.48338D+02) 
( 2.59791D+Ol, 2.40872D+02) 
( 1.34405D+Ol, 1.24950D+02) 
( 1.06373D+Ol, 9.90173D+Ol) 
( 1.52027D+01, 1.41603D+02) 
( 3.04896D+Ol, 2.84076D+02) 
( 7.80225D+Ol, 7.27052D+02) 
( 2.17508D+02, 2.02699D+03) 
( 5.56033D+02, 5.18193D+03) 
( 1.34797D+03, 1.25626D+04) 
{ 1.03114D+03, 9.60987D+03) 
{ 1.85407D+02, 1.72794D+03) 
{ 4.77747D+01, 4.45248D+02) 
{ 2.55741D+01, 2.39367D+02) 
{ 1.32467D+01, 1.24242D+02) 
( 1.04918D+Ol, 9.85020D+01) 
{ 1.50022D+01, 1.40916D+02) 
{ 3.00975D+01, 2.82773D+02) 
{ 7.70363D+Ol, 7.23854D+02) 
{ 2.14791D+02, 2.01835D+03j 
{ 5.49145D+02, 5.16033D+03) 
{ 1.33137D+03, 1.25111D+04) 
{ 1.01848D+03, 9.57092D+03) 
( 1.83138D+02, 1.72100D+03) 
{ 4.71912D+01, 4.43468D+02) 
{ 2.52626D+01, 2.38410D+02) 
( 1.30856D+Ol, 1.23746D+02) 
( 1.03643D+01, 9.81092D+Ol) 
( 1.48200D+01, 1.40355D+02) 
( 2.97322D+Ol, 2.81647D+02) 
{ 7.61013D+01, 7.20974D+02) 
( 2.12185D+02, 2.01032D+03) 
( 5.42482D+02, 5.13981D+03) 
( 1.31521D+03, 1.24613D+04) 

1.12462D+02 
5.75736D+01 
4.46781D+Ol 
6.26110D+01 
1.23507D+02 
3.11997D+02 
8.61414D+02 
2.18664D+03 
5.27426D+03 
4.02009D+03 
7.21015D+02 
1.85456D+02 
9.94755D+01 
5.15617D+Ol 
4.08447D+Ol 
5.84006D+Ol 
1.l7150D+02 
2.99815D+02 
8.35854D+02 
2.13681D+03 
5.18026D+03 
3.96268D+03 
7.12526D+02 
1. 83600D+02 
9.85800D+01 
5.11363D+01 
4.05303D+Ol 
5.79741D+Ol 
1.16327D+02 
2.97769D+02 
8.30267D+02 
2.12274D+03 
5.14649D+03 
3.93704D+03 
7.07939D+02 
1.82422D+02 
9.79490D+01 
5.08095D+Ol 
4.02715D+01 
5.76043D+Ol 
1.15585D+02 
2.95872D+02 
8.24977D+02 
2.10922D+03 
5.11371D+03 

46 
47 

3.09698D+03 
5.56884D+02 

( 1.00613D+03, 9.53287D+03) 
( 1.80917D+02, 1.71416D+03) 

3.91197D+03 
7.03431D+02 

48 1.43498D+02 ( 4.66188D+01, 4.41706D+02) 1.81261D+02 
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