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Abstracts

The main body of this thesis deals with three related concepts pertaining
to vaccination strategies for childhood infectious disease. Chapter 2 deals
with the implications of reversion in the Oral Polio Vaccine on global po-
lio eradication programs. Chapter 3 explores the phenomenon of contact or
secondary vaccination in the use of live-attenuated virus vaccines. Chapter
4 explores the importance of demographic stochasticity in pulse vaccination
campaigns, largely focusing on measles dynamics. Abstracts for each chapter
are given below.

Chapter 2 Abstract

Poliomyelitis vaccination via live Oral Polio Vaccine (OPV) suffers from the
inherent problem of reversion: the vaccine may, upon replication in the
human gut, mutate back to virulence and transmissibility resulting in cir-
culating vaccine derived polio viruses (¢VDPVs). We formulate a general
mathematical model to assess the impact of cVDPVs on prospects for polio
eradication. We find that for OPV coverage levels below a certain threshold.
¢VDPVs have a small impact in comparison to the expected endemic level
of the disease in the absence of reversion. Above this threshold, the model
predicts a small but significant endemic level of the disease, even where stan-
dard models predict eradication. In light of this, we consider and analyze
three alternative eradication strategies involving a transition from continu-
ous OPV vaccination to either continuous Inactivated Polio Vaccine (IPV),
pulsed OPV vaccination. or a one-time IPV pulse vaccination. Stochastic
modeling shows continuous [PV vaccination is effective at achieving eradi-
cation for moderate coverage levels, while pulsed OPV is effective if higher
coverage levels are maintained. The one-time pulse [PV method may also be
a viable strategy, especially in terms of the number of vaccinations required
and time to eradication, provided that a sufficiently large pulse is practically
feasible. More investigation is needed rcgarding the frequency of revertant
virus infection resulting directly from vaccination, the ability of IPV to in-
duce gut immunity, and the potential role of spatial transmission dynamics
in eradication efforts.
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Chapter 3 Abstract

Viruses contained in live-attenuated virus vaccines (LAVV) can be trans-
mitted between individuals, resulting in secondary or contact vaccinations.
This fact has been exploited successfully in the use of the Oral Polio Vaccine
(OPV) to better control wild polio viruses. In this work we analyze general
LAVYV vaccination models for infections that confer lifelong immunity. We
consider both standard (continuous) vaccination strategies and pulse vacci-
nation programs (where mass vaccination is carried out at regular intervals).
For continuous vaccination, we provide a complete global analysis of a very
general compartmental ordinary differential equation LAVV model. We find
that the threshold vaccination level required for eradication of wild virus
depends on the basic reproduction numbers of both the wild and vaccine
viruses, but is otherwise independent of the distributions of the durations in
each of the sequence of stages of disease progression (e.g.. latent, infectious,
etc.). Furthermore, even for vaccine virnses with reproduction numbers be-
low one, which would naturally fade from the population upon cessation of
vaccination, there can be a significant reduction in the threshold vaccination
level. The dependence of the threshold vaccination level on the virus re-
production numbers largely generalizes to the pulse vaccination model. For
shorter pulsing periods there is negligible difference in threshold vaccination
level as compared to continuous vaccination campaigns. Thus, we conclude
that current policy in many countries to employ annual pulsed OPV vacci-
nation does not significantly diminish the benefits of contact vaccination.

Chapter 4 Abstract

In the last two decades, many countries have implemented pulse vaccination
for infectious diseases (mass vaccination campaigns repeated annually or at
other regular intervals). Based on deterministic mathematical models, pre-
vious work has shown that the total expected cost of control or eradication
(measured by the number of vaccine doses required) is identical for pulse
vaccination (with any pulse interval) and for traditional, continuous vaccina-
tion. We reconsider this problem using stochastic epidemic models (both by
direct simulation and by employing a momnient closure approximation). We
focus on measles and show that demographic stochasticity has a large impact
on the relative success of pulse and continuous vaccination programs, even
for well-mixed populations as large as 10 million.



Acknowledgements

I would like to thank my family for their support through my many vears of

study. my supervisor David Earn for his invaluable guidance. and my friends.

vi



Contents

o

Preliminaries
1.1 Introduction . . . . . . ...
1.1.1  Standard Models . . . . . .. ...
1.1.2  Focusof this Work . . . . . ... ... ... ... ...
Circulating Vaccine Derived Polioviruses
2.1 Imtroduction . . . ..o Lo
2.2 The Basic SIR Model . . . . . . ... .00
2.2.1  Analysis of the basic SIR model . . . . . . . ... .
2.3 The Live-Attenuated Vaccine NMaodel: Modeling OPV .. . .
2.3.1  Epidemiological parametcors for Poliomyvelitis . . . . ..
2.4 Analysis of the OPV model . . . . . . . ... ... .. ..
241 Equilibria ... 000000000
D42 Stability . . ...
2.4.3  Implications for Continuous OPV Vaccination . . . . .
25 Final Eradication Strategies . . . . . . . ... ...
2.5.1 Pulse Vaccination Models . . . . ... 000000
2.5.2  Stochastic Simulations = . . . . ... 000000
2.6 Discussion . . . . ...
2.7 Appendix ...
2.8 Appendix .. ...
29 Appendix . . ...
Contact Vaccination
3.1 Introduction . . . . . ...
3.2 LAVV Models . . . . . . .o
3.2.1  Global stability of gencralived LAVV models . . . . ..

3.2.2  Equilibria

vil

13
13

~
{

-19

21
23
24
24
26
36
43
45

54
56
58
60

67
67



[}

3.2.3  Global Stability Conditions . . . . . . . .. ... ... 84

3.2.4 Disease and Vaccine-Induced Mortality . . . . . . . .. 98
3.2.5 Realistically distributed ~tage durations . . . . . . .. 102
3.3 Contact Vaccination within a Pulse Vaccination Campaign . . 105
3.3.1 Existence of the Diseasc I'ree T-Periodic Solution . . . 106
3.3.2  Stability of the T-Periodic Disease Free Solution . . . . 110
3.4 Control of Wild Virus Spread . . . . . . . .. .. ... . .. 119
3.4.1 Definitions and Terminology . . . . . . .. . . 119
3.42 Numerical Results . . . . . . . .. ... 122
3.5 Discussion . . .. ..o 130
3.6 Appendix . ... 135
3.7 Appendix ... 136
3.8 Appendix .. L 137
The Effects of Demographic Stochasticity in Pulse Vaccination
4.1 Introduction . . . . . . . ... 145
4.1.1 Methods of Analysis . . . . . . . .. ... 149
4.2 Results . . . . .. 162
4.2.1 Stochasticity and Pulse Vaccination . . . . . . . . . . 162
4.2.2  Comparison of Pulse and Continuous Vaccination . . . 172
4.2.3 Deep Troughs and the Pulse Interval Length . . . . . . 176
4.3 Discussion . . ... .. 179
Conclusions 190

Vil

Campaigns145



List of Figures

2.1 Flow diagram: OPV Reversion AModel . . . . . . . .. .. . .. 23
2.2 Frequency of Damped Oscillations . . . . . . . . .. ... . 33
2.3 Local Rate of Convergence . . . . . . . . .. . ... .. ... 30
2.4  Prevalence and Cases of Paralytic Polio . . . . . .. . ... . . 37
2.5 Effect of Reversion on Prevalence . . . . . 0 0 . ... 39
2.6 Effect of Realistic Infectious Periods . . . . . . ... ... . . 44
2.7 Probability of Eradication . . . . . . T 48
2.8 Distribution of Time to Eradicaiion . . . . . . . . .. . . .. 49
2.9  Probability of Eradication:Single Pulse . . .. . .00 . H2
2.10 Distribution of Time to Eradication: Single Pulse . . . . . .. a3
3.1 Flow diagram for SINR model . . . . . . . . ... ... .. .. 71
3.2 Flow diagram SEIVR model . . . . . . . .. .. .. . ... .. 7
3.3 Flow diagram. LAVV staged progression model . . . . . . .| 74
3.4 Critical Vaccination Proportion . . . . . . .. ... ... ... 75
3.5 Erlang Probability Density . . . . . . .. .. .. ... 104
36 Coexisting DFS . . . . . .. .o 117
3.7 Critical Vaccination levels, Ry =0 . . . . . . . .. .. .. .. 123
3.8 Dependence of peg ey on Ry and T 0 .. . .. 0 .. . T 2
3.9 Comparison of peg crie a0d Pputsecric -« -« « oo 127
3.10 Dependence of Pegr crits Pputsecriv 011 infectious period length . . 129
4.1 Prevalence: Pulse Vaccination, (villespie simulations . . . . . . 163
4.2  Eradication Probability: Gillespie Algorithm Simulations . . . 166
4.3 FEradication Probability: Erlang Distributed Periods . . . . . . 167
4.4 Prevalence: Pulse vaccination MVN moment closure model . . 169
4.5  Coefhicient of Variation: MVN moment closure model . . . . . 170
4.6 Prevalence: Continuous Vaccination Gillespie simulations . . . 174
4.7 Dependence of Eradication Probability onpeg . . . . . . . .. 175

X



4.8 Effect of Pulse Interval on Epidemic Peaks and Troughs . . . . 177



List of Tables

Epidemiological Parameter estiinates for Poliomyelitis.
Table of Notation . . . . . .. . . .. ...

Event Rates for the Stochastic SEIR Model . . . . .0 . . . ..
Event Rates for the SIR Model \Without Vital Dynamics

Xi



Chapter 1

Preliminaries

1.1 Introduction

Childhood infectious disease has a significant impact on morbidity and mor-
tality, particularly, in the developing world. Measles infections can result in
pneumonia and encephalitis while poliomyelitis infections may leave individ-
uals with lifelong paralysis [9. 10, 11]. The commonality between these and
many other childhood diseases is that they are largely preventable through
vaccination.

Without a doubt the greatest achievement of modern vaccination pro-
grams is the global eradication of smallpox. Traceable as far back as 6000
BC the first true smallpox vaccinations were originated in 1726 using cowpox
virus [38] . Despite this, it was not until 1978 that the last naturally occur-
ring smallpox infection was recorded in Somalia, marking the eradication of
the disease {12]. The lessons of smallpox underscore that eradication can

only be achieved through a well organized global vaccination program.
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To date the World Health Organization has aggressively pursued vacci-
nation campaigns in the developing world for polio and measles. Measles
remains highly endemic in the developing world (and endemic in the devel-
oped world) accounting for roughly 1 million deaths per year [9, 10]. Natu-
rally occurring polio, though eliminated in the developed world, persists at
low but significant levels in the developing world [11]. As long as the threat
of transmission remains, worldwide vaccination levels must be maintained.
Should vaccination wane, introduction of a handful of infectious individuals
in an otherwise infection free population can result in epidemics.

Global eradication represents the ultimate goal of any vaccination cam-
paign. Only at this point may vaccination be ceased. This goal is important
not only from the standpoint of the alleviation of human suffering, but also
from an economic étandpoint. The WHO) estimates polio eradication alone
would save $1.5 billion per year in vaccination and treatment costs [11].

Mathematical modelling has an important role to play in the development
of global vaccination strategies. Therc is a rich history of mathematical
contributions to epidemiology. A good place to begin is with the seminal
paper of Kermack and McKendrick [27]. This work established that the
density of susceptible individuals must cxceed a critical threshold in order
for an epidemic to occur. Though a standard idea today, it forms the basis
for all (deterministic) vaccination models.

Models of the type posed by Kermack and Mckendrick are phrased in the

language of differential equations, dividing the population into homogeneous
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compartments such as susceptible, infectious or immune. The rate of appear-
ance of new infections (incidence rate) is. in its simplest form, proportional
to the product of the densities of susceptible and infectious individuals. This
proportionality is commonly referred to as mass action mizing. Systems of
increased complexity may be considered by adding additional classes that
may, for example, be based on age [7, 39]. presence of maternal antibodies.
multiple stages of infection [17], or geographic heterogeneities. Time varying
transmission rates may also be considered reflecting the natural seasonality of
disease transmission [16. 35], and more generalized versions of the mass action
interaction can be used to reflect the cffect of population density on trans-
mission rates [30]. Such compartmentalized mathematical models have been
used successfully to explain a variety of cpidemiological phenomena. These
phenomena include changes in the time patterns of recurrent epidemics {1 {]
as well as the paradoxical increase in magnitude of some epidemics associated
with increased hygiene in the 19th and 20th centuries [3].

Compartmental epidemiological models are not limited strictly to child-
hood disease. From a mathematical standpoint the childhood disease is dif-
ferentiated from other disease models by two qualities; ideally infection (and
vaccination) result in complete and lifelong immunity, and (in the absence of
vaccination) transmission rates are sufficiently high that the average age of
infection is during childhood. Of course in reality previous infection and vac-
cination do not guarantee immunity. However this represents a reasonable

approximation and further complexity may be straightforwardly added to
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models to take into account vaccine failures and less than perfect immunity
when appropriate.

Though differential equation based compartmental models often give great
insight into the dynamics of epidemiological systems, analysis cannot be lim-
ited to these methods. As differential cquations deal with continuous flow
between compartments they ignore the fact that populations are made up of
a discrete finite number of individuals., and infection and recovery are ran-
dom processes. While compartmental models may be sufficiently predictive
at large populations, for smaller populations this demographic stochasticity
may have significant effects on the system dynamics.

The effects of demographic stochasticity were first observed by ficld epi-
demiologists who noted that for small, isolated populations, recurrent measles
epidemics may be prevented by randon: extinctions [5]. The first mathe-
matical treatments of this phenomena were given in the influential work of
Barlett [5, 6]. These works established the idea of the critical community
size (CCS); the minimum population sizc required to prevent stochastic ex-
tinction (for some fixed finite time).  The topic of stochastic extinction
and critical community sizes remains an important topic of research to this
day [1. 2, 24, 25, 33, 34, 36], and has important implications for vaccination
strategies.

In this work we analyze a number of different vaccination strategies with
respect to their ability to control disease spread and ultimately achieve com-

plete eradication. We approach these problems using both deterministic com-
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partmental differential equation models as well as stochastic methods. We
begin with a review of some of the standard epidemiological models on which

this work is based.

1.1.1 Standard Models
SEIR Model with Continuous Vaccination

The SETR model with continuous vaccination represents one of the simplest
possible predictive models of childhood infectious disease transmission [19].
Vaccinations are assumed to be performed as soon as maternal antibodies

have waned. The model is given by

%S— :(1-p)l/N - -:?:]S‘,UJS (11a>
dE 3 ’

- = NIS —(u+0)E (1.1b)
ar

EE:UE—(#+7)] (1.1c)
%1; =pvN ++41 — uR (L.1d)

The compartments S. E, I, R represent rvespectively the number of suscepti-
ble, infected but not yet infectious (latent), infectious, and immune individ-
uals. The total population is given by N = S+ E + [ + R. The parameters
v and p represent the per capita birth and death rates, while % and }, repre-

sent, the mean latent and infectious periods. The parameter p represents the
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newborn vaccination proportion.

From Eq. (1.1¢) we see that the population may undergo exponential
growth. As we are concerned with the proportion of the population which is
infected or infectious, it is convenient to transform the model(!.!) via

~ X

X—>X= ‘]\7 (12)

Noting that N
dX 1dX (v—wX

PR TR Ca (13)
Eq. (* 1) may be rewritten in terms of proportions [I8, 19] as
Z—fz(l~p)u—3i§~u§ (14a)
E — -

%? =0IS—(v+0o)FE (1.4b)
% = oE — (v+ 7)7 (1.4¢)
dR ~ =~

’ =pv+vyl -vR (1.4d)

The long time behaviour of system () is determined by two parameters,
the vaccination proportion p and the basic reproduction number which is
defined to be the average number of secondary infections resulting from a

single infectious individual in an otherwisce susceptible population. The basic
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reproduction number for the model (1.:) is given by

s
Ro = (0 +v)(y+v)’ (1.9)

In the case of constant population, (1.7) may be understood as a product of

1

the transmission rate (., the mean time spent in the infectious class et

and the probability that an individual will move to the infectious class [ from

the exposed class E before decath (Uiu). System (!.1) has two equilibria: an

endemic equilibrium given by

S =1- 731—0 : (1.6a)
A (1-%_;9), o)
and a disease free equilibrium (DFE) given by
SP=1-p (1.7a)
E% =9 (1.7b)
°=0. (1.7¢)

i’

Lyapnuov function methods may be used to establish that the endemic equi-
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librium is globally asymptotically stable when it exists [29)], i.e., if

1
P 2 Perit = 1 TRy (1.8)

while the disease free equilibrium is globally asymptotically stable above this
threshold vaccination level. For this deterministic model, peye gives the crit-
ical vaccination proportion for eradication. The use of Lyapunov functions
for epidemic models is expanded on in chapter 5 . Analogous results for the
continuous vaccination STR model, which lacks the latent class £ are given

in chapter 2

Pulse vaccination SIR model

In pulse vaccination strategies, mass vaccinations are performed at regular
intervals rather than continuously. This strategy is currently utilized for
measles and polio vaccination in a number of countries, though often in
conjunction with standard continuous vaccination [4, 13] . In its simplest

form, the pulse vaccination strategy can be represented by an SIR model
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[10, 42] of the type

ds x B

— =V = BIS = VS — ppusc z:(:) 6(t — nT)S(nT™) (1.9a)

C%:615—(l/+7)1 (1.9b)

dR = .

—= = Poukse gé(t —nT)S(nT~) — vR (1.9¢)
S(nT~™) = 1ir(r)1+ S(nT —¢€) (1.9d)

Eq. (1.9) is phrased in terms of proportions of the population as in Eq. (1. 1).
The parameter pyuise represents the proportion of susceptibles vaccinated in
each pulse. while T is the pulse interval. As in (1.1), v represents the per
capita birth rate while % is the mean infectious period. Note that unlike the
SEITR model there is no latent period included in (1.1).

System (1.9) possesses a unique T periodic disease free solution which

can be straightforwardly computed. For (0 < ¢ < T the solution is given by

[10]

ol Pp se€”” t
Sty =1- uls - .
( ) evT — (1 - ppu]se)e (1 103’)

Ppulse (1 - ppmseeUT e—”T) /t (S(t — T)
P evT — (1 - Ppulse) 0

Ity =0 (1.10b)

Local stability analysis shows that the T-periodic DFS will be asymptotically
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stable whenever

1
1.11
/Sd 3 -z (111)

Full details of the local stability analysis computations are given in [40], §4.1.
The condition (1.11) actually implies global stability of the DFS as is proved
in [13]. Substituting the expression for S(t) (1.10) into condition (1.11) yields
the result that for any given pulse vaccination proportion ppyse, there exists a
maximal pulsing interval Ti,. below which the T-periodic DFS is (globally)
asymptotically stable. An approximation for T, is explicitly worked out in

[40] §4.1 and is given by

YPpulse
T ~ Poise (1.12)
ﬁu(l - ppnlse/Q - 7/6)

For T" > T,ax the disease persists and periodic epidemics as well as chaotic
behaviour can be observed [40]. Note that chaotic behaviour something that
is impossible for the continuous vaccination SR model. In this work we also
investigate pulse vaccination models basced on the SETR model in which a

latent or exposed class is included.

1.1.2 Focus of this Work

This work concentrates on three primary topics, all related to feasibility of

disease control and eradication under diffcrent vaccination programs.

10
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Reversion in the Oral Polio Vaccine

The Oral Polio Vaccine (OPV) is recommended for use in developing coun-
tries [21]. OPV provides a strong immuuc response with long lasting immu-
nity [3]. Unlike the inactivated vaccine (1IPV) OPV is composed of live atten-
uated viruses (LAVVs). These viruses may, via mutation, regain virulence
and transmissibility [22]. Polio outbreaks of revertant virus have been docu-
mented, some in regions that were previously certified as polio free [20]. As
wild poliovirus eradication gets closer. the impact of these revertant viruses
may be a significant obstacle to the eventual cessation of vaccination pro-
grams.

We construct and analyze a compartimental model to analyze the impact
of revertant viruses on polio eradication for continuous vaccination OPV
campaigns. We then provide and analy'/,;! a number of possible transition or
endgame strategies to achieve complete cradication and allow for the cessa-

tion of vaccination.

Contact Vaccination in Live-Attenuated Virus Vaccines

Live-attenuated virus vaccines (LAVVs) differ from inactivated viruses in
that they are live viruses, which can be transmitted person to person. Al-
though this transmission can have unwanted consequences in the form of
reversion or back mutation to virulence, there are also potential benefits. In
the absence of mutation, transmission of vaccine virus results in secondary

or contact vaccinations enhancing vaccination coverage. Contact vaccination

11
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is observed in the use of OPV as well as simallpox vaccines [37] | and is cited
by the WHO as a reason for the use of OPV in the developing world [23]. We
investigate the significance of contact vaccination in the control of wild virus
spread. We construct and analyze a gencral compartmental ordinarv equa-
tion model for continuous vaccination LAVV campaigns. We then extend

our results to pulse vaccination campaighs.

Pulse Vaccination and Stochastic Eradication

Pulse vaccination campaigns, whereby mass vaccinations are performed at
regular intervals. are currently used in numerous countries for both measles
and polio [41, 13]. We analyze the effeet of demographic stochasticity on
disease eradication in pulse vaccination strategies in comparison to contin-
uous vaccination strategies. Analytical as well as Monte-Carlo™ simulation

methods are used in our analysis.

12



Chapter 2

Circulating Vaccine Derived

Polioviruses

2.1 Introduction

" Vaccination for a number of diseases is currently performed through ad-
ministration of live-attenuated virus vaccines. Attenuation means that the
virus has been altered genetically into a state of low virulence and low trans-
missibility. Attenuation is often accomplished by passage through successive
animal host tissues in which there is sclective pressure for mutations that
reduce the virulence and transmissibility in humans; this differs from inacti-

vated virus vaccines where the virus is killed by treatment with a chemical

1Previously published material: Wagner, B.G and Earn, D.J.D. . Circulating Vaccine
Derived Polioviruses and their Impact on Global Polio Eradication. Bulletin of Mathe-
matical Biology (2008) 70:253-280.
Printed with permission of Society for Mathematical Biology and D.J.D. Earn

13
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agent or some physical process [29]. An intrinsic problem with live-attenuated
virus vaccines is that of back mutation or reversion, whereby the live virus,
upon replicating in its human host, may regain its virulence and transmissi-
bility, potentially causing infection in the vaccinee and his or her contacts.
Reversion to higher transmissibility is a potentially serious barrier to disease
eradication.

An important and well documented cxample in which reversion takes
place is in the use of Oral Polio Vaccine (OPV). Poliovirus is an RNA virus,
and may appear in one of three antigenic types. Transmission may be either
fecal to oral, or oral to oral. Initially the virus resides in the pharynx and
intestines of the host. Subsequently it may invade the local lymphoid tissue,
entering the blood stream and eventuallv invading the motor neurons. Dam-
age to these neurons may result in varving degrees of paralysis. [t should
be noted that there is no cross immunity between antigenic types. As well,
the standard formulation of OPV is triwalent: it contains attenuated ver-
sions of all three types (each of which is capable of undergoing reversion and
potentially causing paralysis [1]).

In cases where OPV vaccination results in paralysis, this effect is com-
monly referred to as vaccine associated paralytic polio (VAPP). Vaccine
viruses which have regained transmissibility and neurovirulence are referred
to as circulating vaccine derived polioviruses (¢cVDPVs) [17].

Though largely replaced in the developed world by the Salk injectable

inactivated polio virus vaccine (IPV) [6]. OPV is still the primary vaccine in

14
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the developing world. Since 1988, the World Health Organization (WHO)
has advocated the exclusive use of OPV for polio eradication, citing five
primary factors: (1) low cost, (2) simple administration (oral), (3) high ef-
fectiveness for a small number of doses. (4) ability to induce a high level of
intestinal immunity, and (5) the possibility of contact vaccination whereby
vaccinated individuals may spread the vaccine virus resulting in secondary
immunizations [17].

While the efficacy of OPV is generally excellent, it has been shown to
induce a reduced immune response in some individuals living in regions where
diahrrcal disease is highly endemic. Recent work has traced the problem to
the use of trivalent OPV. Studies now show that inonovalent OPV can be
used to achieve a high level of efficacy in the regions where standard trivalent
OPV has been problematic [14]. Consequently, vaccine efficacy should not
presently represent a concern for OPV.

The drawbacks of OPV are the risk of VAPP and the creation of cVDPVs.
IPV, on the other hand, involves no risk of reversion as it is a killed virus.
However, TPV has the disadvantages that it is roughly five times more expen-
sive to produce [25], must be injected, cannot produce contact vaccinations,
and is believed to induce a lower level of intestinal immunity [20]. Intestinal
immunity is important as vaccinated individuals with no intestinal immunity
can still have polio virus replicating in their intestines, and thus serve as car-
riers of the disease (in spite of being iimmnune themselves). Recent studies

show enhanced potency [PV (eIPV) provides improved intestinal immunity,

15
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but eIPV is still believed to be inferior to OPV in this respect [20].

The creation of cVDPVs from OPV poses an obstacle to eventual polio
eradication. Since 2000, four outbreaks of cVDPVs have been identified in
Madagascar, the Philippines, Hispaniola and China [16]. In the cases of
China and Hispaniola, these outbreaks occurred more than five years after
the regions had been certified as polio free. It is important to note that
detection of ¢VDPVs is complicated bv the fact that most polio infections
cause little or no illness: the ratio of paralvtic to inapparent or asymptomatic
polio has been estimated to be 1:200 [6. 6]

In this work we investigate an infectious disease transmission model that
includes the possibility of reversion. We pravide tools to assess the epi-
demiological impact of reversion, and the creation of ¢VDPVs, assuming the
present polio vaccination strategy in developing countries (continuous OPV
vaccination). We then address the problem of polio eradication, presenting
three alternative polio eradication stratcgies involving both IPV and OPV
and comparing their effectiveness. The mathematical model is built from the
basic SIR model, which we review first. Although we focus on polio here, we
emphasize that the model is relevant to many diseases for which live virus

vaccines exist.

16
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2.2 The Basic SIR Model

The basic Susceptible-Infected-Removed or SIR model is the simplest trans-
mission model for diseases that confer lifclong immunity. In spite of its sim-
plicity, it successfully predicts the shape of epidemic curves [18] and yields
useful quantitative predictions of eradication thresholds [3].

We will assume initially that the population is sufficiently large that we
can treat the number of individuals who are susceptible (S), infected (J)
or removed (R) as continuous variables. Note that “infected” individuals
are assumed to be infectious and “removed” individuals are immune to the
pathogen. If a vaccine exists and a fixed proportion of individuals is vacci-

nated as soon as any maternally-acquircd immunity has waned, the model

can be written

dS R B ‘
i (1 —p)yN — WIS — S (2.1a)
i ~

de = 7,\715 —(p+yI (2.1Db)
d N .

-d? =pvN +~I — uR (2.1¢)

Here. the total population is N = S + / + R. The parameters of the model
are the proportion vaccinated (p), the birth rate (v. for natality), the trans-
mission rate (3), the recovery rate (v) and the natural death rate (u, for
mortality). The mean infectious period is 1/v. The model assumes that

immunity is lifelong and that there is no disease-induced mortality (or that
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disease-induced mortality is sufficiently rare that its dynamical effect is neg-
ligible). It should also be noted that individuals may be asymptomatic for
part (or all) of the infectious period.

Equation (2.1) is forward invariant in the non-negative orthant {(S. 7, R) |
S > 0. I > O,}? > 0}, so initially non-negative solutions can never become
negative. To see this, note that if S = 0 then dS’/dt > 0 (and similarly for /
and R).

It is more convenient to work with the SIR model in terms of proportions

of the population, so we apply the variable transformations

(2.2)

=] =

/

If the population is constant (i.e., v = u. which is an excellent approximation
when looking at short time scales) then equation (2.2) simply represents
scaling by a constant. More generally, N will grow (or decay) at exponential
rate v — . Noting that

dX 14X X dN
dt Ndt N2dt’

(2.3)
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where X is S, I or R, we obtain the SIR model in terms of proportions:

%? =(1-p-—-3IS—-vS (2.4a)
% = BIS —~yI —vI (2.4b)
%}; =pv+vyl —vR (2.4¢)

The forward invariance of equation (2.1) in the non-negative orthant implies
that equation (2.1) is forward invariant in the simplex {(S,1) ] 0 < S <
1.0<T1<1,0< S+ 1 <1}, Furthermore, as S+ I + R = 1, one of these
equations is redundant, so we drop equation (2 ).

In subsequent sections we will emplov cquations (7. 1) to model continuous

IPV vaccination, as reversion is not an issue for the killed virus vaccine.

2.2.1 Analysis of the basic STR model

A key characteristic of an infectious discasc in a given population is its basic
reproductive ratio, Ry, which is defined to be the average number of sec-
ondary infections caused by a single infected individual in a population with
no immunity. Ry is the product of the transmission rate and the mean time
that an individual is infectious, hence for the model given by equation (2. 1)

(with constant p\opulat,ion)

_ T_{__I—j‘ . (2.5)
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System (2.1) has two equilibria. Denoting the equilibrium proportions of
individuals that are susceptible and infected by S* and I*, respectively, the

disease free equilibrium (DFE) is
Si=1-p, I} =0. (2.6)

The endemic equilibrium is

1 v 1
Sy = —, 5= ] — — — . 2.7
2 Ry’ 2 7le/< Ra P) ( )

It is convenient to define two further dimensionless quantities in terms of the

model parameters:
1%

f=— (2.8)

which is the mean time spent in the infected class as a fraction of mean

life-span (assuming a constant population) and

1

Perit = 1 — ﬁo. (2.9)

We can then express the endemic equilibrium as

Sy = — I3 = f (Perit — p) (2.10)

from which we see that p.; is the critical vaccination level: the endemic

equilibrium exists (i.e., is positive and hence biologically meaningful) if and
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only if p < perie. It can be shown that if the vaccination proportion p > peit
then the DFE is globally asymptotically stable (states near the DFE stay
near the DFE and every solution eventually approaches the DFE). Similarly,
if p < perip then any initial condition with I(0) > 0 eventually converges to
the endemic equilibrium [15, 19]. Biologically, perit is an eradication thresh-
old: the disease will persist if and only if p < pcit. Note that this critical
vaccination proportion is determined solely by the basic reproductive ratio
Ro. The proportion of the population that is immune at a given time is often
called the degree of herd immunity. Thus. peic is the level of herd immunity
that must be maintained to prevent persistence should an eradicated disease

be re-introduced.

2.3 The Live-Attenuated Vaccine Model: Mod-
eling OPV

To account for the effects of a live-attenuated virus vaccine such as OPV. we
assume a fixed proportion of those vaccinated will become infected by the
revertant virus. All other vaccinations arc taken to be successful at conferring
immunity without illness. Leaving the other aspects of the SIR model intact,

the new model can be depicted graphicréxllyr as in Figure 2.1 and expressed
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mathematically (in terms of proportions S, I and R) via

%z(l—p)u—ﬁ[S—uS (2.11a)
ar .

- = opv + BIS — [ — vl (2.11Db)
% =(1—¢)pv+yI —vR (2.11¢)

Here ¢ is the reversion factor, i.e., the proportion of those vaccinated who
become infected by the revertant virus (0 < ¢ < 1). As in equation (7 1),
equation (. 11¢) is superfluous and we deal with the two-dimensional system
defined by equations (2.1 1a) and (2.1 ). Note that since the threc types
of polio do not interact immunologicallv. we have not included any strain
structure in the model.

There has been considerable recent interest in models that include a sep-
arate compartment for vaccinated individuals [9], rather than simply the
proportion vaccinated as specified by p in equation (2. 11). A separate vacci-
nated compartment can be important if the vaccine has limited efficacy (or
if vaccine-induced immunity wanes) because vaccinated individuals may re-
main (or become) partially susceptible. The “breakthrough infections” that
occur in this situation typically lead to multiple endemic equilibria and back-
ward bifurcations [9]. However, as mentioned in the introduction, OPV is
highly efficacious and yields lifelong immunity, so we have not included a sep-
arate vaccinated compartment. Our reversion model formalizes the effect of

immediate infection that results occasionally from vaccination, as opposed to
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Birth | v

Vaccination

Recovery

Figure 2.1: Flow diagram for the live-attcnuated vaccine model that we use
to investigate the effects of OPV on polio transmission. The flow diagram for
the basic SIR model (equation 2.1) is obtained by setting the reversion factor
¢ to zero. The model (for any value of @) is expressed in equation (7.11) in
terms of proportions of the population that are susceptible, infectious or
removed.

susceptibility to infection from subsequent exposures following vaccination.

2.3.1 Epidemiological parameters for Poliomyelitis

Epidemiological parameter estimates for poliomyelitis and OPV are given in
Table 1. The vaccine reversion factor () is estimated indirectly from two
parameters that have been estimated previously: the mean number of para-
Iytic polio cases as a proportion of total polio cases (7para) and the incidence
of paralytic polio in newly vaccinated infants (Vipgane). Assuming that VAPP
in infants really does result directly from vaccination (as opposed to contact

with an infected individual) and that any increase in mpar, With age can be
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Table 2.1: Epidemiological Parametcr estimates for Poliomyelitis.

Parameter Symbol | Estimate | Source

Basic Reproductive Ratio R 6 13

Mean Infectious Period 1/5 16 days [3]

Birth Rate, developed countries | v 0.02year ' | [23, O]

Birth Rate, developing countries | v 0.04 year™ ' | [9]

=, developed countries f 8.76 x 10~* | Equation 2.~ (§2.2.1)
vTVu’ developing countries f 1.75 x 1072 | Equation 2.5 (§2.2.1)
Infant VAPP Incidence Vintant 1/1400000 | [0]

Paralytic Polio/Total Polio Cases | Mpaa 1/200 [6, 4]

OPV Reversion proportion ) 107 Equation 2 7 (§2.3.1)

ignored, the reversion proportion for OPV is

meant

b = ~ 1071 (2.12)

T para

Note that since OPV contains attenuated versions of all three antigenic types,
any of which may revert, we may treat ¢ as an upper bound for reversion in

each type.

2.4 Analysis of the OPV model

2.4.1 Equilibria

Unlike typical epidemiological models, the OPV model (2.11) has no DFE.
Instead, for any parameter set with ¢ > (). there is a single (endemic) equilib-

rium. Indeed, setting the derivatives to zcro in equations (2.11a) and (2.11h)
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and summing the resulting two equations vields

S*:l—p(l—@)—%l*, (2.13)

where S* and I* denote equilibrium valucs. Inserting (2.173) into (2.111)) (set

to zero) then yields

1
?1*2—(pc,-n—p(l—(a))l‘——— =0. (2.14)

Solving this quadratic for I* (and insisting that it be non-negative) yields

the unique solution

I" = %f (Perit — p(1 = ) + \/[lf (heie —p(1 = )| + pol (2.15)

2 Ro

Note that pyuwe = p(1 — @) is the true vaccination proportion, i.e., the pro-

portion of vaccinations that are successful. It is convenient to define

Ap = peris — p(1 — ). (2.16)
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The equilibrium defined by equations ( ) and (2.15) may then be more

: simply expressed as

S = 1—p(l—¢)— <A, Ia 2+@ 2.17a)
=1-p(1-¢ 58P =1/ |54 Re (2.17a
_ |l 1 ’ 24

I'=f 2Ap+\/[2ApJ R (2.17b)

This equilibrium is always biologically mecaningful: it can be shown that
(S*, I*) lies in the region {(S,I): S > 0.7 >0,5+7 <1} if0<p<1and

0 < ¢ <1 (see appendix 2.7).

2.4.2 Stability

In this section we show that the equilibrium (2.17) is globally asymptoti-
cally stable. Biologically, this means that regardless of the proportions of
the population that are susceptible (S), infectious (7) and immune (R), the
model predicts the virus will persist and approach the endemic prevalence
level given by (2 171).

We begin by considering how the systcein behaves if it is perturbed slightly
away from the equilibrium. We show that the equilibrium (S*, I*) is not only
locally stable but always hyperbolic, i.e.. that the Jacobian matrix of the sys-
tem at (S, I*) never has eigenvalues with zero real parts. Hyperbolic stabil-
ity implies that for any initial conditions sufficiently close to the equilibriam,

the solution trajectory converges exponcutially to the equilibrium.
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Local Stability
Linearizing equations (2.11a) and (2.1 ) about the equilibrium (2.17) and
computing the Jacobian matrix we find

Jo| T R (2.18)

ar 35" —(y+v)

If ¢ = 0, the system (7.11) reduces to the standard STR model (- 1) and
the equilibrium given by equations (2 : ) corresponds to either the endemic
equilibrium (2.6) of the standard STR maodel (for p < perit) or the DFE (2 :1)
of the standard STR model (for p > p.,i(). In either case, the equilibrium
in qu—estion is locally asymptotically stable and, provided p # pe. it is
hyperbolic {15] (J has no eigenvalues on the imaginary axis). If p = pe
then the DFE of the standard SIR model (¢ = 0) is locally asymptotically
stable but non-hyperbolic.

The eigenvalues of J can be written

Ai=7+”{—<1+f)+7zo(5*—l*>

2

+ \/[RO(S* Y- (- ) - 47335*1*}. (2.19)

Note that the dependence of these eigenvalues on ¢ is hidden in the expres-
sions for S* and [* (equation 2.17). Since Ay depend continuously on ¢,

to prové hyperbolic stability of the equilibrium (2.17) for any ¢ > 0 and
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P # Derit it suffices to show that no eigenvalue of J crosses the imaginary axis
as ¢ is varied, for an arbitrary fixed p # paic. Given this, and the fact that
the eigenvalues of J are also continuous functions of p, it will follow that the
equilibrium is hyperbolicglly stable also for p = p¢. if we can show that J
cannot have an eigenvalue with zero real part for any ¢ > 0.

Eigenvalues may cross the imaginary axis either at 0 or at Az where A # 0.
We treat these cases separately. Supposc first that 0 is an eigenvalue of J.

Then the determinant of J must be zero. i.e.,

BIr'(v+v) —vBS" +v(v+v)=0. (2.20)

Using equation (2.13) to write S* in terms of I*, and after some algebraic

manipulation, we find

9
1= Ap. 2.21)
7 (

Inserting (2.171) for I* into (2 21) yields

\/ (%pr)Q + pf;]; C o (2.22)

But this is impossible for ¢ > 0, so J does not have a zero eigenvalue.

Now suppose that J has a purely imaginary eigenvalue Ai. Then

det(J — Ail) = (=3I" —v — AD(35" — (v ++) — A1) =0, (:

3]
[\
o
=
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where [l is the 2x 2 identity matrix. Exanmiining the imaginary part of equation

(2.23) and simplifying vields

v 1
- =4+ 5 —-— =0 2.24
5 Re (2.24)

Using (2.133) to express S* in terms of " and rearranging yields

(14 1+ % = ot = P (2.25)
As I" > 0. the left hand side of (2.27) is strictly positive. Thus if periy < Pirue
we have a contradiction. If pgic > puue then from equation (2.175) it is
apparent that if @ > 0 then * > fAp = f(Pait — Perve). Substituting this
inequality into equation (2.23) gives a left hand side that is strictly greater
than pery — Perve. and V\;e have a contradiction.

Thus. the eigenvalues of J do not cross the imaginary axis for anv ¢ > 0.

and the endemic equilibrium given by cquation 2.7 is hyperbolically. and

hence locally asymptotically stable.

Global Stability

As the system is two-dimensional, global asymptotic stability can be estab-

lished by applying Poincaré-Bendixson theory and Dulac’s Criterion [20)].
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Consider an autonomous system of ordinary differential equations,

%;E = f(r.y) (2.26a)
d .
:i% =g(z.y) (2.26b)

where f and ¢ are continuously differentiable, and suppose that D is a
bounded region in the plane such that there exists a single stable equilib-
rium point, of (2.26) in the closure of D. If a given orbit remains in D for all
t > 0 then the Poincaré-Bendixson theorem says that the orbit must either
have a non-trivial periodic orbit as its w-limit set or tend asymptotically to
the equilibrium.

Dulac’s Criterion states that given a simply connected region D in the
plane. with f and ¢ continuously differentiable as above, if there exists a
continuously differentiable function C(z.y) such that the divergence of the
vector field 0,(C f) +0,(Cg), is not identically zero and does not change sign
in D, then there can be no non-trivial periodic orbits contained in D.

Our live-attenuated virus model is a two-dimensional system with or-
bits bounded (in forward time) in the closure of the triangular region whose
boundary is formed by the lines S =0, / =0 and S+ = 1 (as discussed for
the basic SIR model in §2.2). In fact, we have the stronger condition that the
interior of this set, which we denote as B = {(S,[) | S > 0,1 > 0,S+7T < 1},
is forward invariant and for all initial conditions on its boundary the flow is

into B (see Appendix 2.4). There is onc (hyperbolically) stable equilibrium
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point in the closure of B, located in B itself (see Appendix 2.7), and given
by equation (2.17). The functions f(S.7) and ¢(S,I) given by (2.11:) and
(2.111) are infinitely differentiable with respect to both S and I. Therefore,
applying the Poincaré-Bendixson theory. any orbit must be periodic, have
another non-trivial periodic orbit as its .w-limit set. or tend asymptotically
to the equilibrium (2.17). To establish that every orbit must in fact tend to
the equilibrium, we rule out the existence of periodic orbits in the closure of
B using the Dulac function

C(S, 1) — ; (2.27)

Notice that C(S. I) is infinitely differentiable in B. Therefore, applying Du-

lac’s criterion yields

8s(Cts. 1)‘2—?) + a,(C(S, I

dI) _ _(12;6+1/I+p¢1/)

= 72 (2.28)

Equation (2.28) is strictly negative for all points in B. Hence, no periodic
‘orbits can exist and by the Poincaré-Bendixson theorem, all orbits must

converge to the (hyperbolically) stable equilibrium (2.17).

Damping Frequencies and Rate of Convergence for Polio

Damping Frequencies Figure 2.2 shows the frequency of damped oscilla-
tions onto the equilibrium (2.17) as a function of the vaccination proportion
p. The birth rate used is representative of developed countries (Table 2..).

The dashed curve shows the results in the case of zero reversion (¢ = 0).
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corresponding to the standard SIR model. while the solid curve shows re-
sults for the estimated OPV reversion proportion (¢ = 1074, Table 2 1). The

damping frequency Fyamp is given by

(2.29)

damp

A
g e
()

where A is either of the two eigenvalues given in equation (2.19).

Figure 2.2 illustrates that for the estimated value of ¢ and other epidemi-
ological parameters corresponding to polio (Table 2. 1), the difference in the
frequency of damped oscillations compared to zero reversion is negligible.
The maximum difference occurs near the SIR model’s eradication threshold,
p ~ 0.83. As p is increased , the DFE ( ) changes from unstable to glob-
ally asymptotically stable. The solid curve in Figure 2.2 shows a frequency
Fiamp = 0 for p > 0.83. Note that the DI'E is never approached by damped
oscillations.

While the unique equilibrium of the live-attenuated vaccine model (2.1 7)
is always endemic (and stable). the manner in which it is approached parallels
the distinct behaviours near each of the stable equilibria of the standard SIR.
model. Figure 2 2 shows that there is a threshold level of vaccination below
which the endemic equilibrium is reached by damped oscillations, and above
which there is no oscillatory behaviour. This threshold is lower than the
SIR model’s threshold ~ 0.83, though for ¢ = 10™* the difference between

the thresholds is only 0.4%. Numerical explorations like in Figure 2.2 for a
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Figure 2.2: Frequency of damped oscillations (Faamp, Eq. 2.29) about the
globally asymptotically stable endemic equilibrium (2.17) of the OPV model
(2.11) and the reversion-free SIR polio model, as a function of vaccination
proportion (p). The curves are shown only over the narrow range of p for
which there is a non-negligible difference in the damping frequencies for the
two models. Parameter values, including the estimated OPV reversion pro-
portion (@), are given in Table 2.1 (the hirth rate is that listed for developed
countries). For these parameters both models exhibit a vaccination thresh-
old beyond which the globally stable cquilibrium is no longer reached by
damped oscillations. The threshold is slightly below pe;; for the SIR model.
Increasing the value of the reversion proportion ¢ leads to a decrease in this
threshold value. For the estimated value of ¢ ~ 107* (Table 2.1) this de-
crease represents only a 0.4% reduction from p = 0.83 in the reversion-free
model. Similar results are obtained if the OPV reversion proportion is taken
an order of magnitude higher: ¢ ~ 1073 viclds a threshold of p ~ 0.81.
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wide range of reversion proportions (10% < ¢ < 1072%) indicate that there
is a threshold value pgamp such that damped oscillations occur if and only if

P < Pdamp- MoOTEOVEr, Pgamp decreases as o is increased.

Rate of Convergence To quantify the attractivity of the (globally stable)
equilibrium of the OPV model (2.11), Figure 2.3 shows the minimal rate of
convergence of solutions in a sufficiently sinall neighbourhood of the equilib-
rium (7. 17), as a function of the vaccination proportion p. The dashed curve
shows the convergence rate for the estimated OPV reversion proportion ¢
(Table 2. 1), while the solid curve shows the convergence rate for the case of
no reversion (¢ = 0), which corresponds to the standard SIR model. The

minimal rate of convergence is calculated as

Tmin = min{ =R, ). ~R(A_)} (2.30)

where \i are the eigenvalues given in Eq. (.19). Note that in the zero rever-
sion case, the convergence rate shown is always to the globally asymptotically
stable equilibrium (the endemic equilibrium for p < p and the DFE for
P > Perit)-

Figure 2.3 shows that for the estimated value of the OPV reversion pro-
portion (Table 2.1) the rate of convergence onto the globally asymptotically
stable equilibrium (2.17) differs negligiblv from the rate for the standard SIR
polio model when the vaccination proportion is either significantly greater

or significantly smaller than the theoretical SIR eradication threshold peig.
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Figure 2.3: Local minimum rate of convergence (rmin, Eq. 2.30) of solutions
to the globally asymptotically stable equilibrium for the OPV polio model
and the standard SIR polio model without vaccine reversion, as a function
of vaccination proportion p. Values of parameters. including the estimated
OPV reversion proportion ¢ are given in Table 2.1. Birth rates used are for
developed countries. For high and low levels of vaccination the local rates of
convergence are very similar. However, as the vaccination proportion is in-
creased towards the theoretical vaccination threshold for the SIR polio model,
Perit ~ 0.83, the rate for OPV increases sharply to a maximum followed by an
equally sharp decrease to rates comparable to those in the SIR polio model.
It should be noted that as p = pgy is a point of stability exchange between
the endemic equilibrium and disease frec cquilibrium in the SIR model, the
rate of convergence is zero at this point.
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However, when p approaches pe, the rate of convergence for the OPV model
increases sharply, attaining a maximum. and then sharply decreases to the
levels of the SIR polio model. In contrast. in the SIR model, as there is an
exchange of stability between the endemic and the disease free equilibrium
at p = perit, the rate of convergence is ncar zero for p in a neighbourhood of
Perit- When the reversion proportion ¢ is taken orders of magnitude higher or
lower, results are qualitatively similar. As & is increased, the maximum value

of the rate ryn 18 increased and attaincd at a lower vaccination proportion

p.

2.4.3 Implications for Continuous OPV Vaccination

Figure 2. | shows. as a function of the vaccination proportion p, the predicted
equilibrium number of infectives and anmal expected cases of paralytic polio
in a (constant) population of one hundred million (i.e., I*N with I* from
Eq. (2 17h) and N = 10%). Since the mcan time spent in the infected class
is 1/(v + v), and the probability that polio will become paralytic is mpara
(Table . 1), the number of cases of paralyvtic polio expected in time T as a

proportion of the population is
P(T) = mpara" (v + ) T (2.31)

The solid curve in Figure 2.1 is based on the parameter estimates in Table 2.1

(birth rates used are for developed countries), whereas the dotted (dashed)
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curve uses a value of ¢ that is an order of magnitude below (above) the
estimated value. Note that the range of p shown in Figure 2. | is mostly

beyond the eradication threshold for the standard SIR (peic &~ 0.83).
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Figure 2.4: Equilibrium number of infectives and expected cases of Para-
lytic Polio annually per hundred million population as a function of OPV
vaccination proportion p, for p > 0.82 The solid line represents results for
the estimated value of the reversion proportion, ¢ ~ 107% A small but
significant endemic level of the disease is predicted. Dashed lines represent
reversion proportions an order of magnitude above and below the estimated
value (107 and 1075). Note that for the standard SIR model, eradication of
the disease is predicted for all p > p.i¢ = 0.83.

For the estimated value of the reversion factor (¢ ~ 107%), Figure - |

indicates that even in a population with 90-95% vaccination coverage the
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model predicts persistence of the diseasc at an endemic level of 20 to 30
infected individuals per hundred million. and an event rate of two or three
cases of paralytic polio per hundred million per year. This prediction agrees
closely with the observed event rate in the United States from 1988 to 2000
when OPV was in use (810 cases of paralytic polio annually in a population
~ 300 million; [6]). This agreement suggests that the estimated ¢ is of
the right order of magnitude. since the cvent rate predicted in Figure 2.+ is
sensitive to ¢.

The main purpose of the OPV model (2.11) is to help understand the
significance of emergent cVDPVs. This is perhaps best illustrated in Figure
2.5, which shows the difference between the endemic number of infectives
predicted by the OPV model, Eq. (2. ), and the number of infectives
predicted by the standard SIR model, Eq. (2.6) or (2.10) (the SIR endemic
level is also plotted for comparison). For p < 0.75, the difference is negligible
(two orders of magnitude smaller than tlic number of infectives predicted by
the standard SIR model). The difference is maximal {(~ 380 per hundred
million population) for p = 0.83 =~ p. the eradication threshold in the
absence of reversion.

We infer that for levels of vaccination even five percent below the the-
oretical eradication threshold in the absence of reversion (pet), the impact
of ¢cVDPVs is likely to be negligible compared to the impact of the native
viruses. Consequently, if coverage levels cannot be brought close to pe.; then

use of OPV is likely to be easy to justitfy. However, in situations like the
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Figure 2.5: Effects of reversion on the endemic number of infective individuals
at equilibrium. The solid line shows, as a function of vaccination proportion
p, the predicted endemic equilibrium for the standard SIR model (2. 1) (which
may be thought of as a model of IPV vaccination or a theoretical OPV that
never reverts). The dotted curve shows the difference between the predicted
endemic number of infectives in the (continuous) OPV vaccination model
(2.17) (with reversion) and the standard SIR model. For vaccination levels
even five percent below p. = 0.83, the cffect of reversion is negligible. As
the vaccination level approaches pe;, the reversion-free SIR model predicts
eradication of the disease, while the OPV model with reversion predicts a
small but significant endemic level of the disease (note the different scales on
the left and right axes of the plot). For the estimated parameters in Table
2.1, the difference between the models is maximized near pe¢, though this is
not the case for much larger values of the reversion proportion ¢.
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present, where coverage levels reaching p.; are plausibly within reach. it
appears that OPV can itself become the primary impediment to eradication.

It should be noted that although Figures 2.1 and 2.% are plotted using
birth rates for developed countries (Table 2.1), the shape of the curves is
practically invariant to the birth rate v. To see this, note that the equations
for the proportion of infected individuals at the endemic equilibrium in the
SIR model (2.6) and the equilibrium in the OPV model (2. 1715) scale linearly
with f (2.%) and are otherwise independent of v (notwithstanding the negli-
gible dependence of Ry on v). Thus Figures 2.1 and 2.5 will scale essentially
linearly with birth rates (for birth rates in a realistic range). For example,
to produce these figures for birth rates representative of developing countries

(Table 2.1) one need only scale both vertical axes by a factor of 2.

Sensitivity to Distribution of Infectious Period

In both the SIR model (2.1) and our OPV reversion model (2.17), there is
an implicit assumption that infectious periods are exponentially distributed.
This assumption is usually made in epidemiological modelling because it
greatly simplifies the mathematical formulation, yielding a small system of
ordinary differential equations. For arbitrary distributions of stage durations,
the models become more complex systcms of integro-differential equations

In general, real distributions of infectious periods are not well-fitted by

exponential distributions [21]. In the context of OPV, there is one poten-
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tially advantageous aspect of the expouncential distribution: its extremely
long tail, i.e., finite probability of individuals remaining infectious for an
extremely long time. This may be reasonable for polio because some indi-
viduals (with severely compromised immune systems) have been observed to
shed poliovirus for extremely long periods [7]. Nevertheless, the existence of
chronic shedders is unlikely to result in a precisely exponential distribution
of infectious periods.

Does the implicit assumption of an exponential distribution of infectious
periods affect our conclusions? To address this, we examine how the predicted
endemic level of infectives (2.1 7h) changes as the shape of the infectious pe-
riod distribution is changed from extremelv broad (exponential) to extremely
narrow (almost no variation about the nmecan infectious period, 1/7v).

We suppose the distribution of infectious periods is a Gamma distribution
Gamma(n, n—lv), with mean 1/v and shape parameter n. The probability

density for the distribution Gamma(n, ) is

1 n—1 AT~ YT
glzin, 4y = T (2.32)

ny I(n)

For n = 1 we obtain the exponential distribution and the limit n — oo yields
a Dirac delta distribution. The probability densities for several values of n
are shown in Figure 2.va.

For integer n, a standard trick [2, & 21] allows us to express our OPV
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model as a system of n + 1 ordinary diffcrential equations:

% =1 -pv—3IS-vS (2.33a)
dly , )

o = opv + 8IS — (ny+v)y (2.33h)
dl

d_tg =nyl — (ny + v)ls (2.33c)
di,

T nyl_1 — (ny+v)1, (2.33d)
a

d—}t% = (1= @)pv + nyl, — vR (2.33e)

Here. the proportion of infectious individuals is [ = >0, Iy and the new
infectious subclasses I represent a mathematical device with no intended
biological interpretation. .

In Appendix 2.5, we show that Eq. { i) has a unique endemic equilib-
rium for any n (not just the case n = 1 as considered in previous sections).
We computed this endemic equilibrium using the estimated OPV parameters
(Table 2.1), for a large range of shape parameters from n = 1 to 1000. For
each n, we verified that the equilibrium is locally stable by numeric compu-
tation of the eigenvalues (using the MATLAB function eig).

Figure 2.6b shows the relationship between the equilibrium endemic level
of infection (/*) and the shape parameter (n) for a specific vaccination pro-
portion (p = 0.85). For this particular p. it is clear that the effect of distri-

bution shape on I* is negligible. More generally, for any p € [0, 1], I'* varies
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by less than 0.1% if n is varied from 1 to 1000. Thus the predicted endemic
level appears to be robust with respect o the distribution of the infectious

period.

2.5 Final Eradication Strategies

It is not likely to be possible to eradicate polio using a continuous OPV vac-
cination strategy. because a continuous source of infectives is inevitable (as
a result of reversion). We therefore explore the benefits of several alternative
polio vaccination strategies that may eliminate the continuous source of new

infectious individuals:

1. Pulsed OPV vaccination. Mass vaccinations are to be performed at
regular intervals such as every year or every other year [1, 24]. A

revised model incorporating pulsed vaccination is described below.

2. Switch to continuous [PV vaccination. The standard SIR model is

appropriate for IPV because there is no reversion.

3. One-time mass vaccination with IPV. While continuous IPV vaccina-
tion at a high level may not be financially and logistically feasible,
given a high level of herd immunity following a broad OPV vaccination
program, a single mass IPV campaign might be sufficient to extinguish
the disease. The model required is just a simplification of the pulsed

vaccination model (without repeats).
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Figure 2.6: The effect of the shape of the infectious period distribution on
the endemic level of infection in the OPV model (see §2. 1.3 and Appendix
2.2). (a) Probability density functions for Gamma distributions with mean

= 16 days and shape parameter n (sec Eq. 2.32). Note that n = 1 yields
the exponential distribution. For n = 1000 the peak density value is 0.789.
(b) Endemic number of polio infectives per hundred million as a function of
distribution shape, for fixed vaccination proportion p = 0.85. Epidemiologi-
cal parameters are as given in Table 2 ' for developing countries. For fixed
mean infectious period, the shape of the full distribution of infectious periods
has a negligible effect on the endemic level of polio infection.

2 TS

44



Bradley G. Wagner- PhD Thesis Chapter 2

Since genuine eradication means reducing the infective population to zero,
the problem can be properly addressed only in a stochastic setting with
finite populations. After introducing a model for pulsed vaccination, we
turn to stochastic simulations to investigate the above three proposed polio

eradication strategies.

2.5.1 Pulse Vaccination Models

A pulsed version of our live-attenuated vaccine model (2.1 1) can be expressed

as the following set of impulsive differential equations.

% =v — (B8] +v)S — ppuse Z S(nT7)é(t — nT) (2.34a)

Ei—[ = 315 — (v + ) + dppul.. Z S(nT™Yo(t — nT) (2.34h)

dt . .

dR .

=1+ (1= 0)ppue > S(nT7)8(t —nT) — vR (2.34c)
S(nT™) = ,l_i,%L S(nT —¢) (2.34d)

where the sums are over all non-negative integers n. In this pulsed model,
vaccinations are performed only at intervals of period T, not continuously.
At each pulse time, a proportion p,yse 0f the susceptible population receives
the vaccine. The above equations generalize the pulse vaccination model of
Stone and colleagues [27] to include the reversion factor ¢.

If there is only one pulse (at time T'). and we consider IPV (no reversion),
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then the equations simplify to

% =v— (8] +v)S — ppuseS(T7)o(t = T) (2.35a)
‘;—f; =BIS - (v+7)I (2.35D)
% = T + pouseS(TV3(t = T) — VR (2.35¢)
S(T7) = gli»r(% S(T —¢) (2.35d)

2.5.2 Stochastic Simulations

Egs. (2 1).(2.31), and (2.39), represent deterministic models that can be used
to explore the three proposed alternative vaccination strategies. However,
integrating the differential equations will not allow us to estimate the proba-
bility that a given strategy will successfullv lead to polio eradication. To that
end, we recast these models as continuous time Markov processes, which are
fully stochastic and involve finite populations. We use the standard Gillespie
algorithm [13], in which the various terms in the differential equations are
interpreted as event rates for the various Markov processes involved. (Figure
2.1 shows all the state transitions that occur, with their rates.)

We are thinking of each of the threc proposed strategies as final eradi-
cation strategies after a normal, continuous OPV vaccination program has
come as close as possible to eradication. Therefore, we take as the initial
conditions for our simulations the equilibrium of our model (2.11) with an

assumed OPV coverage level p = 0.85 (slightly above the eradication thresh-
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old in the absence of reversion, peic ~ 0.83). In all simulations we used a
population of one hundred million (N = 10®), and the birth rate was taken to
be representative of the developing world (Table 2.1). The pulsing period was
taken to be one year (T = 1yr) and the first pulse was applied immediately
after ceasing the continuous OPV program. The one-time IPV vaccination
was also applied immediately after ceasing OPV vaccination. The pulse vac-
cination proportion ppuse in Eq. (2.31) was varied over the range 0-0.35 while

Ppuse 1N Eq. (2.35) was varied over the range 0-0.40.

Pulsed OPV versus continuous IPV. -

Figure 2.7 shows, for the strategies of pulsed OPV and continuous [PV vacci-
A
nation in a developing region, the probability of polio eradication within four
years as a function of the effective number of vaccinations performed. Here
we define the effective number to be the munber of vaccinations performed on
susceptible individuals, noting that undcr a realistic pulse vaccination strat-
egy one might expect the true number of vaccinations to exceed the effective
number due to duplicate vaccinations. It should be noted that this definition
of effective number has no relationship to reversion. In order to simplify
the comparison of the continuous and pulse vaccination strategies, we intro-

duce the idea of the effective vaccination proportion for a pulse vaccination

strategy, which can be expressed as follows:

<l

(T)
TNv

Deff = (2.36)
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Figure 2.7: Probability of Polio eradication within 4 years as a function of
the average annual effective number of vaccinations, for annually pulsed OPV
(dashed curve) and continuous IPV vaccination (solid curve) in a population
of one hundred million (with birth rates typical of developing countries; Ta-
ble 2.1). The lower horizontal axis gives the average annual effective number
of vaccinations as a proportion of the average annual births as defined by
Per 1N Eq. (2.56) (for T = 1). For continuous vaccination this reduces to
the vaccination proportion p in Eq. (¢ ). The upper horizontal axis gives
the raw annual average number of vaccinations (in millions per 100 million
population). Continuous IPV campaigns are successful for moderate vacci-
nation coverage (peg 2 0.7). For very low vaccination coverage (peg < 0.3)
pulsed OPV campaigns are no better than ceasing vaccination altogether,
due in part to the introduction of infectives through vaccination. However,
pulsed OPV can also be successful if a moderate coverage level is achieved
(peg > 0.75), though the vaccinationglevel required is greater than that re-
quired for continuous IPV.
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Figure 2.8: Probability of Polio eradication as a function of time for a 4
year continuous IPV vaccination program with vaccination proportion p =
0.7 (solid curve) and pulse OPV with vaccination parameter pyyuse = 0.2
and pulse period T = lyr, corresponding to peg ~ 0.7 (see Eq. 2.1). The
population size is one hundred million with birth rates typical of developing
countries (Table 2.1). Nonzero probability of eradication is apparent slightly
after half a year for both strategies. For OPV pulses. there is little increase in
eradication probability for roughly half a vear following each pulse, due to the
pulse introducing a significant number of infectives via vaccine reversion. It
should be noted that both strategies exhibit quickly diminishing returns, with
the bulk of eradications occurring within the first two years of simulations.
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where T is the pulsing period, V(T) is the average effective number of vacci-
nations per pulsing period, N is the population size and v is the birth rate.
Thus, under this definition, a continuous vaccination strategy with vaccina-
tion proportion p = p.g would vaccinate the same number of individuals as
the corresponding pulse strategy in a given pulsing period.

Substantial effects of stochasticity arc evident in Figure 2.7. Even if we
cease vaccination altogether (left limit of Figure 2.7) there is a non-zero prob-
ability that polio will go extinct within four years. In developing countries
(the situation depicted in Figure 2.7) this fadeout probability is very small
(less than one percent) but it should be noted that the probability of fade-
out after stopping vaccination altogether is much greater for smaller bicth
rates; in particular, for birth rates typical of developed countries (Table 2 1),
the one-year fadeout probability upon ccasing vaccination is 17%. Sensitiv-
ity of fadeout probabilities to birth rates occurs for two reasons: the birth
rate determines the rate at which new susceptible individuals are recruited
into the population and the equilibrium number of infected individuals is
(approximately) proportional to the birth rate Eq. (2.17h)].

Continuing to focus on birth rates appropriate for developing countries,
we see from Figure 2.7 that for any peg < 0.3 the four-year fadeout proba-
bility remains negligible if pulsed OPV is employed, and small (~ 10%) if
continuous [PV is used. However, modcrate vaccination levels (peg ~ 0.7)

yield great improvement. The four-year fadeout probability reaches 90% for

Det ~ 0.75 using OPV or peg ~ 0.7 with IPV.
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In general, pulsed OPV vaccination is less effective than the correspond-
ing IPV strategics with the same number of doses. For small OPV pulses,
the probability of eradication is no better than if no OPV vaccination is per-
formed at all (due to the introduction of infectives via reversion). However,
for sufficiently large OPV pulses, increasced herd immunity outweighs the in-
put of infectives and switching from continuous OPV vaccination to pulsing
is likely to be very helpful. In particular. Figure 2.7 indicates that switching
from 85% continuous OPV vaccination to 85% pulsed OPV vaccination once
per year will change the probability of fadeout within four years from zero

to nearly 1 using the same number of doses.

Single pulse OPV versus single pulse IPV.

The most effective strategy might be the application of one large pulse of
IPV, following a successful continuous OPV vaccination campaign. Figure
2.4 shows the probability of eradication within one year as a function of the
effective number of IPV or OPV vaccinations in a one-time pulse. As an
example, note from the figure that an application of five million effective
doses. representing less than 35% of the susceptible population, leads to a
one-year fadeout probability of less than 80% if OPV is used but greater than
95% if IPV is used. Furthermore, as illustrated by Figure 2. 10, eradication is
witnessed in shorter time intervals following IPV vaccination as compared to
an equivalent OPV pulse. Thus, a one-time IPV pulse may be desirable both

from the perspectives of total number of vaccinations and time to eradication.
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Figure 2.9: Probability of Polio eradication within one year, as a function of
the effective number of vaccinations for « single vaccine pulse of [PV or OPV
in a population of one hundred million (with birth rates typical of developing
countries; Table 2.1). The lower horizontal axis shows the proportion of
susceptibles vaccinated (parameter pous. in Eq. (2.35); note that ¢ = 0 for
IPV as there is no reversion). The upper horizontal axis shows the total
number of vaccinations given. IPV achieves superior eradication probabilities
in comparison to OPV for equivalent nuinbers of vaccinations. Note that for
less than five million IPV vaccinations, corresponding to less than 35% of the
susceptible population (as given by Eq. =~ “a), the probability of eradication
within one year is 95%.
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Figure 2.10: Probability of polio eradication as a function of time, for a single
vaccine pulse of IPV (¢ = 0) or OPV (¢ as in Table 2.1) with ppuse = 0.28
(where ppyise is the susceptible vaccination proportion in Eq. 2.35). The
population is one hundred million (with birth rates typical of developing
countries; Table 2.1). For IPV, nonzero probability of eradication is apparent
for shorter time intervals in comparison to OPV. Nonzero probability of
eradication for OPV is observed almost {wo months later than for IPV.
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Rational policy options

Our models indicate that one-time mass and continuous IPV coverage are
effective eradication strategies, even at moderate coverage levels, while pulsed
OPV vaccination may be a viable option as long as a sufficiently high level
of coverage is maintained. Note that while OPV is much cheaper and easier
to administer than I[PV, the logistical advantage of needing to reach a much
smaller proportion of the population for the same payoff in probability of
eradication is an important benefit of 1PV,

It should also be noted that in this discussion the IPV model assumes
full intestinal immunity of the vaccinated individual. This is of course a
simplification, and [PV is generally thought to induce lower levels of intesti-
nal immunity compared to OPV [20]. Consequently, it is likely that the
eradication probabilitieé that we have predicted for the IPV programs are
overestimated (by an unknown amountj. The significance of lowered gut
immunity is still an open question, though as previously mentioned, recent
studies suggest that enhanced potency [PV (elPV) induces an improved level

of intestinal immunity over previous IPV offerings [20].

2.6 Discussion

We have presented a compartmental modcl that takes into account the possi-
bility of reversion in live attenuated virus vaccines (Figure 2.1 and Eqs. (2.11)).

For a nonzero reversion proportion of the vaccine (¢ > 0), the model has one
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biologically meaningful (endemic) equilibrium, which is globally asymptoti-
cally stable.

We applied the model to polio dynamics, assuming oral polio vaccine
(OPV) is given to a fixed proportion of newborns (p), and investigated the
impact of circulating vaccine derived polio viruses (cVDPVs). For our es-
timated value of the reversion proportion (¢ ~ 1074 Table 2.1), we found
that for vaccination levels (p) less than 75% the effect of cVDPVs is negligi-
ble compared to the expected endemic level of the disease in the abscence of
reversion. We concluded that if OPV coverage levels are below the critical
level required for eradication in the abscnce lof reversion (p < peic =~ 0.83)
then it is best to focus on trying to increase OPV coverage levels (the benefits
of increased coverage far outweigh the negative impact of vaccine reversion).
However, if p can be brought close to p. then other strategies should be
considered to increase the probability of eradication (the inevitable input of
new cVDPVs resulting from continuous OPV vaccination must be avoided).

We considered three alternative eradication strategies that eliminate con-
tinuous input of cVDPVs: pulsed OPV vaccination, continuous injectable po-
lio vaccine (IPV) vaccination, and one-tiine mass IPV vaccination. Based on
simulations of stochastic models, we found that continuous or mass 1PV vac-
cination achieves a higher probability of cradication (per dose) than pulsed
OPV. In spite of the much greater cost per dose for IPV, we expect that
investment in IPV vaccination following a successful continuous OPV cam-

paign will be more effective because the time to eradication is likely to be
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substantially shorter (Figures 2.~ and ).

The key parameter in our models is the reversion factor ¢, which can
be estimated only crudely. Our modeling would benefit from a more precise
estimate of ¢, noting that by reversion we mean regaining both virulence and
transmissibility. Revertant vaccine viruses probably do not always regain full
transinissibility, so an estimate of Rq for revertant strains would be helpful.

We have ignored the benefit of contact vaccination via OPV: because the
vaccine is live, vaccinated individuals can transmit the vaccine and thereby
immunize non-vaccinated individuals. This effect should (slightly) lower the
predicted endemic number of infectives helow that predicted by our model.

With respect to final eradication strategies, a more thorough understand-
ing of [PV’s effectiveness in inducing gut immunity is needed. In addition,
polio models accounting for spatial heterogeneity and seasonality in trans-
mission rates should be investigated, since synchronization of fadeouts could

increase the probability of eradication [111. 11, 12].

2.7 Appendix

We show here that if 0 < p < 1 and 0 < ¢ < 1 then the equilibrium given
by (2.17) is contained in the biologically relevant region B = {(S,1) : § >
0,1>0,5+1<1}
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First, if p¢ > 0 then
1 ? p@ 1
—A > 1=A 2.37
\/{2 | + 5> [he (2.37)
so I* > 01in Eq. (2.17h).
Second, we can re-express Eq. (2.17 ) as
$* 21 = pee + 2A LUNS R (2.38)
= Derit 5 Yy 5 p Re . "
Since 1 — peic = 1/Ryg, we therefore have
S*>0<:>—1—+1A > 1A 2+p¢ (2.39a)
Re 277 2°P TR, i
R SR S B O
— + =A — — 2.39b
= (R0+2 p) >[2Ap] +R0 (2.39b)
1 Ap  po A
= = = > 2.39¢
R6 R() R() ( ()
1 ]
= 1——}—p(1- (2.39d
T ( Ro) p(i — @) > po (2.39d)
— p<l. (2.3%)
Finally. summing Eqs. (2 17%) and (-~ 1)) to obtain
o= Y pap— o pf[tag] 4 22 (2.40)
- R() .2 P ( 2 p RO 3 .
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and defining

F(f)=1—(5+17, (2.41)

we must show F(f) > 0 for all relevant values of f (i.e., for 0 < f < 1 from

definition (2.%)). To see this, note that

1
F) =1 = Ap=p(1-9¢) 20 (2.42)

0

and

dF 1

- __Ap- 2.43¢

d 2 (2.432)
< 0 for all f. (2.43b)

so F(fy>0forall f<1.

2.8 Appendix

We formally calculate the endemic equilibrium of the Gamma distributed
OPYV reversion model (2.:33). We use the superscript * to denote the equilib-

rium value and we define the dimensionless parameter

Ja = : (2.44)
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For n = 1. f, reduces to f, as defined in Eq. (2.5). For the Gamma dis-

tributed SIR model, the basic reproductive number Ry is given by [2¥]
By n :
Ro = ;(1 — (1= fu)"). (2.45)

In terms of Ry, the critical vaccination proportion (which is meaningful in
the absence of reversion) is still given by the usual formula (2.9).

Setting Eq. (2.33) to zero, for k > 2 we find

==, (2.46)
and hence
I=01-f)"1. (2.47)
We therefore have
. 1_(1—fn)n 1_(1_’fn)n
I = [} = ]t = Ir. 2.48)
kz___;k 1_(1_fn) ! fn ! (

Summing Eqgs. (2.33a) and (2.331) at equilibrium yields
. N
S*=1-p(l—0)— —I. (2.49)

n

Substituting Eq. (2.19) into (2.33h) (sel to zero), expressing I* in terms of
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I¥ via (2.1%) and simplifying in terms Ry yields the quadratic equation

1 n
L1 e —p(1— o 1r = P2

=0. 2.50
- R (2.50)

This quadratic equation for IT has exactlyv the same form as Eq. (2.1 1) for [*
in the case n = 1. Asin §2.1.1, defining Ap = peye — p(1 — @) and solving the

quadratic for 7 (insisting that it be non-ncgative) vields the unique solution

As expected, for the exponential distribution (n = 1), Eq. (2.52) reduces to

(2.17).

2.9 Appendix

Here we show that for the live attenuated virus model (2.11), if 0 < p < 1
and 0 < ¢ < 1 then the region B = {(S.I): S >0, >0,5+1 <1} is

forward invariant, and for all initial conditions along the boundary of B the
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flow of Eq. (2.11) is into B.

As shown in §2.3, since the model () is constructed in terms of pro-
portions, the closure of B is forward invariant. Therefore it is sufficient to
show that the flow of (2.11) along the boundary of B is into B.

The boundary is given by the lines S =0, I =0and S+ 1 = 1. Along

the line S = 0, the flow of (2.1 1) is given by

as

i = (1 -p)v, (2.53)

S=0

which is positive for any p < 1. Hence the flow along the line S = 0 is into

B. Similarly, if I = 0 then

dl

I=0

which is positive provided p > 0 and ¢ > 0. Finally, along the line S+1 = 1.

a(S +1)

ai = —(1=¢)pv —~vI < —(1 — ¢)pv, (2.55)

S+1=1

which is negative provided ¢ < 1 and p > 0. Thus, the flow along the

boundary lines is into B.
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Chapter 3

Contact Vaccination

3.1 Introduction

Both currently and historically live-attennated virus vaccines (LAVV) have
been emploved against a wide range of viral diseases. Examples include the
smallpox vaccine, the Oral Polio Vaccine (OPV), measles vaccine, and HIV
vaccines currently under development [G. 33].

Unlike an inactivated vaccine, a LAVV is a functioning, replicating virus
which has been significantly reduced in virulence and transmissibility through
the attenuation process. Typically this attenuation is achieved by passing
the virus through a sequence of animal host tissues where there is sclective
pressure for mutations which reduce its virulence [33].

The transmission of LAVVs, so-called inadvertent, or contact vaccinations

is the focus of this work. Although the transmissibility of LAVVs is signif-
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icantly reduced compared with native or virulent forms, it has long been
recognized that LAVYV transmission can bhe sufficient to have an important
effect on the epidemiological dynamics at the population level. The World
Health Organization (WHO) has cited contact vaccination as one of the five
primary reasons for use of OPV in the developing world [18]. In this case it is
seen as a benefit, as the transmission of vaccine virus lowers the proportion
of the population that must be directly vaccinated to control the spread of
the wild virus.

Contact vaccination may have played an important role in leading the
eradication of smallpox in the 1970s. However, observed smallpox contact
vaccination [27] is currently viewed negatively because it implies a risk of
serious allergic reaction in individuals who haven’t chosen to be vaccinated.
In addition, as for any LAVV, the smallpox vaccine virus has the potential
to mutate and thereby revert to the original wild form {33]. The potential
to re-introduce an eradicated pathogen makes contact vaccination a very
dangerous risk in this case.

We focus our attention specifically on LAVV vaccination for infectious
diseases that generally confer lengthy or lifelong immunity to the infecting
pathogen. These include polio and smalipox, but also childhood infectious
diseases such as measles, mumps, rubella and pertussis. We investigate the
significance of the role of contact vaccination in decreasing the required vacci-
nation coverage to control pathogenic wild virus spread, specifically deriving

analytical expressions for the critical vaccination coverage levels for eradica-
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tion of the wild virus in terms of epidemiologically measurable quantities.

The first part of our analysis deals with LAVV programs in which vacci-
nation takes place continuously. We begin by presenting the simplest LAVV
models, which are variants of the standard Susceptible-Infected-Removed
(SIR) and Susceptible-Exposed-Infectious-Removed (SEIR) models; we then
proceed to expand the results to a very general staged progression model,
which among other things allows us to examine more realistically distributed
latent and infectious periods for both the wild and vaccine viruses.

The second part of our analysis deals with pulse vaccination LAVV pro-
grams. In such programs mass vaccinations are performed at regular time
intervals. This analysis has particular rclevance to polio, as some form of
annual pulse OPV campaign is currently in use in 55 countries around the
globe [1]. i

Throughout this work we make the simplifying assumption that the vac-
cine virus cannot undergo reversion (a return to its virulent form via mu-
tation). While this ignores a potentially critical biological process, we have
previously shown that reversion is likelv to contribute significantly to the
population dynamics of the pathogen only when considering strategies for
vaccine cessation [32]. In this paper we focus on the eradication of the wild
virus strain, minimizing the total virus transmission but not necessarily elim-
inating it fully due to the possibility of rcversion of the vaccine strain. We
do not consider the “endgame”, strategics for withdrawal of vaccine cover-

age, in this paper. Thus ignoring reversion does not represent a significant
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approximation.

Some previous mathematical modelling of LAVV transmission has been
carried out for HIV [6] and OPV [12]. In the case of HIV, LAVV transmission
was investigated in the context of an imperfectly attenuated vaccine, which -
in addition to having limited efficacy-—had the potential to cause the disease
itself. irrespective of reversion. In the casc of OPV, a simple LAVV model was
formulated and a partial local analysis performed [12]; a full global analysis
of this OPV model is a special case of the general results we derive in the

following sections.

3.2 LAVYV Models

The simplest LAVV model is based on the standard SIR model {2, 17] and
can be represented as a flow chart (Figure @ 1) or as a set of coupled ordinary

differential equations (ODEs),

% (1= ply = 815 = BVS - vS (3.1a)
% — BUS = (v + ) (3.1b)
% =pv+ VS — v+ W)V (3.1¢)
%? =yl +wV —-vR (3.1d)

The host population is split into homogceneous classes representing the pro-

portions of individuals who are susceptible (S), infectious with wild virus (1),
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Birth
Vaccination

(- p)vN

Figure 3.1: Flow diagram for the SIVR inodel, the simplest LAVV model.
The ODE formulation of this model is given, in terms of proportions of the
population, by svstem (.. 1).

infectious with attenuated vaccine virus (V') or immune (R). The parameters
Bi. By, % and % represent. the transmission rates and mean infectious periods
for the wild and vaccine viruses. respectively. In the flow chart, both birth
(at per capita rate v) and natural death (at per capita rate p) are shown.
However, because Eqs. (:3.1) are written in terms of proportions rather than
numbers of individuals in each compartment, only v appears in the ODEs
[16, 32]. The parameter p is the proportion of individuals who are vaccinated
before entering the susceptible class (in practice, there is often a substantial
delay between birth and vaccination so that maternally-acquired immunity
has had a chance to wane). These vaccinated individuals then enter the

attenuated-virus infectious class (V') and are able to pass the vaccine virus
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to susceptible individuals. resulting in contact vaccinations. The model (4. 1)
assumes that there is no disease-specific mortality, that vaccination—whether
direct or inadvertent—confers lifelong immunity, and that the vaccine virus
does not evolve (and hence cannot revert to the virulent form). The agsump-
tion of lifelong and complete immunity is particularly valid in the case of
LAV Vs for childhood diseases, as they provide an active immune response
very similar to natural infection [28].

We denote the basic reproduction numbers of the wild and vaccine viruses
as Ry and Ry, respectively. The basic reproduction number is defined in the
standard manner as the average number of secondary infections (or secondary
immunizations) caused by a single infectious individual in a fully susceptible
population. As the vaccine virus is attennated, substantially reducing both
transinissibility as well as virulence, we impose the condition Ry < Ryg.
Furthermore we consider Ry > 1 as otherwise the virus would fade out from
the population naturally without vaccination.

The ODE system (3.1) was originally proposed by Eichner and Hadeler
[12] to model polio dynamics when vaccinating with Oral Polio Vaccine
(OPV). They showed that system (3.1) exhibits a disease free equilibrium

(DFE), which is (locally) asymptotically stable, whenever

(3.2)

where perit i1s the minimum proportion of the population that must be vacci-
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nated to eradicate a disease with a vaccine that is not transmissible, i.c.,

1

Perit = 1 — Ra” (3.3)
It is important to note that contact vaccination leads to a significant reduc-
tion in the threshold vaccination proportion pei; even for Ry < 1 ,in which
case we expect the vaccine virus to fade {rom the population upon cessation
of vaccination. This reduction of critical proportion is demonstrated in Fig-
urc - i which compares the critical proportion under contact vaccination to
Perie (standard vaccination) for various fixed Ry values across a range of R
values.

Below threshold (:3.2), system (:3.1) has a biologically meaningful endemic
equilibrium. We demonstrate below that the DFE is, in fact, globally asymp-
totically stable if condition (13.2) holds and that the endemic equilibrium is
globally asymptotically stable whenever it exists. These conclusions are also
valid for models that incorporate latent periods (delays between the time
of infection or vaccination and the onsct of infectiousness); see the SEIVR
model depicted in Figure 3.2. Much more generally, we show in this paper

that these global stability results are valid for any staged-progression LAVV

model (depicted generically in Figure 5 ).
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Vaccination

(1~ pywN

Figure 3.2: Flow diagram for the SEIVIR model. The compartments Fy and
Ey represent, exposed classes of individuals who have been infected. respec-

tively. by the vaccine and wild virus but are not yet infectious. The mean

latent periods for the vaccine and wild virus are given by -+ and Ui]

av

Birth

Vaccination

(- pN

ul, ul,

Figure 3.3: Flow diagram for the general staged progression
SLiL, - - LViVa---V,R model, which includes an arbitrary number of
stages of infection for both the wild and vaccine viruses.
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Figure 3.4: Critical vaccination proportion (:3.2) as a function of wild virus
basic reproduction number R, for fixed values of vaccine virus basic repro-
duction number Ry (solid line). Also shown is the standard critical vaccina-
tion level pe.i, (dashed line) corresponding to Ry = 0. Contact vaccination
leads to a significant reduction in the critical vaccination proportion even for
Rv < 1 and relatively high Ry values.
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3.2.1 Global stability of generalized LAVV models

We show that for the very general class of LAVV models depicted in Figure
3.5, there is always a unique DFE and a critical vaccination threshold that

is always given by Eq. (.2). If p > pei (1 — %) then the DFE is globally

Ry
Ro

asvimptotically stable, while if p < pei (1 — =¥) there exists a unique globally

asvmptotically stable endemic equilibriuin.
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The General Staged Progression LAVV Model

We begin by formulating the general staged progression LAVV model de-

picted in Figure :i.3 as the following system of ODEs.
ds LI 5 .
- =0 =P =3 BV,S= BLS—vS (3.42)
7=1 7=1
dy — v v .
—dt—zpl/-l—Zﬂj V;S— (v + W)W (3.4D)
7=1

A% , :

=NV (v (3.4c)
av; .

EJ_ = ’Y}—lvj—l —(v+ “/'; ) Vi (3.4d)
av, . .

e ’yZ_an_l — (l/ + 7,\) Va (3.4e)
Al < [ L
—dt—:Z/BjIjAS'—(I/—*—’}-I)]l (34“)
7=1

dl.

—r=nh = (v+m) b (3.4g)
dl;

=2 =Yl = (v +m) ] (3.4h)
dl

Etlﬁ = 'y,lc_lIk_l — (1/ + 'y{:))lk (3.41)
dR , :
i =Y%le + 73 Vo — VR (3.4))
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In system (21 1), the variables V; represent infected stages (latent if the trans-
mission rate 8 = 0 and infectious if 3} > 0). Similarly, the I; represent
wild virus infected stages and ;3][- are the transmission rates in these stages.
We denote the numbers of vaccine virus and wild virus infected classes by n
and k. respectively. Without loss of gencrality, we assume V,, and I, are the
final vaccine and wild virus stages with nonzero infectivity (further classes
with 3Y = 0 or 3] = 0 could be absorbed into the removed class R). As in
(:3.1) the model (:3.1) is written in terms of proportions, so only the per capita
birth rate v appears and not the per capita death rate . The parameters
A

v
7

- and —71—, represent the mean duration of the jth vaccine and wild virus
j J

infected stages respectively, and p is the proportion of newborns which are
successfully vaccinated (after maternal autibodies have waned).
We denote the state of the svstem () as

X = (S,‘/l‘/:_)‘ ..... V;I.ll,lg,....]k.R) (35)

and the biological meaningful set, as we are dealing with proportions, is
defined as

B={X:X;>0. ) X;=1}, (3.6)

The set B is positively invariant. From the form of the equations it is straight-
forwardly scen that if all initial states are non-negative, they remain non-

negative for all positive time. Furthermore summing Eqs. (3. 1:)-(14. 11) yields
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the differential equation

¢ (ZXZ) e YX, (37)

which has a single equilibrium at >". X; = 1. Since by definition any initial
condition in B satisfies ) . X;(0) = 1. () trivially implies that >, X(¢) =
1Vt > 0. Thus, X(t) € B vt > 0 and the model(’; 1) is biologically well
posed.

Note that since Eqs. (i3 f:)- (3. 11) are independent of R, we need only
deal directly with this subsystem, ignoring Eq. (5 1:). Thus, it is convenient

to express B as
n k
B={SVili:SV.;20. S+> Vi+Y <1} (3.8)
i=1 i=1

where it is understood that R =1-5 ~ S * V; = S35 I,

Basic reproduction numbers

We calculate the basic reproduction numbers of the vaccine (Ry) and wild
virus (Rg). defined to be the number of secondary transmissions of a single
infectious individual in an otherwise fully susceptible population. From the
definition, we see that each virus must he considered independently. If con-
sidering the vaccine virus we fix all wild virus classes to zero, and vice versa.

and set vaccination to zero. Applying the next generation method [7. 31] to
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the resulting system yields the reproduction numbers,

N N o

RV_(W+;(V+% (H 1/+% )) (352)
k ,| 3—1

Ro = ( T +Z (11 V+’Yl >) (3.9b)

J=2

The next generation method provides a straightforward algorithm to obtain
reproduction numbers by examining the stability of the svstem at the DFE.
For staged progression models, reproduction numbers are worked out explic-

itly in [31]. along with a complete discussion of the method.
Eqgs. (1.9) can be also understood at a heuristic level. For example (for

v

constant population) the term Zu—flm can he understood as the average num-
ber of people infected (in a fully susceptible population) by an individual in
. s . . ) S | ‘yly . . R
the jth class. while the product term []/_ =) represents the probability
that an individual beginning in the first class will proceed to the jth class

before dying. Summing over all classes gives the total average number of

infections.

3.2.2 Equilibria

For svstem (:3.1). we explicitly compute the disease free equilibrium (DFE.
which always exists and is unique) and the endemic equilibrium (EE. which
is unique whenever it exists).

We note that for any equilibrium X* such that (S*,V*, ") > 0, Vi must
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in fact lie in the biologically meaningful set B. To see this observe that at

equilibrium Eq. (3.1]) implies

R == (Vo +wIe") - (3.10)

|

The assumption that V*. I,* are non-ncgative then implies that R* > 0.
and thus all states are non-negative. As previously shown by (3.7) at any

equilibrium we must have

n k
NoX; =S+ R+ Vit LT =1 (3.11)
3 1= i=1

implying that X* € B. We make use of {his result in the computation of the
disease free and endemic equilibrium.
The Disease Free Equilibrium

By definition, the DFE has [;* = 0 for all j, and we notice from (5. i) that

at equilibrium we must have

\/
Yi-1 , .
7 (I/“*—'}/;/) 71 .7 - ( )

Summing Eqgs. (3. 1a) and (3. 1h) at equilibrium yields the relation

Vv
S*:l—wm*. (3.13)

1/
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Expressing V" in terms of V" via Egs. ( 12), (3.9) and substituting (5 i)

into (5.1h) at equilibrium yields the quadratic equation

pv

(V + 'Ylv) 2 1 > .
A—V - V- — 3.14
! Rv) ' Ry(w+7) (3.14)
We compute the unique positive solution of (1.11) vielding the DFE,
s=1-ta-1 La 1)2+p (3.15a)
_ (1 — —\y_ (1 = — — 15a
2 Ry 2 Ry Ry
v 1 1 1 1\ p , \
Vi ——o |l -(1- +4/ (=0~ =] + = 3.151
! (l/ + ’)Y) 2( RV) \/(2( Rv)) RV ( ))
J v 2
. v Yio1 1 1 1 1 p
A e S N - —(1- — £
O (E@m) 3 Rv)+\/(2( RJ) "R
(3.15¢)

It should be noted that the equilibrium mumber of susceptibles, S*, depends
only on the reproduction numbers Ry m]d Rv, and not on the durations
of any of the stages. The non-negativity of the equilibrium (established
in Appendix A of [32]) implies that the equilibrium lies in the biologically

meaningful set B.
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Endemic Equilibrium

Ry ] . o - R o .
For p < peic(1 — R—O) there exists a unique endemic equilibrium. To see this,
we first note that (3.12) holds, as does the analogous relationship for the
infected classes,

1
Yi-1 .

J

J

Applying Eqs. (07 16) and (1) to (i 11) at equilibrium yields

(v+71) (1 =RyS™) =0, (3.17)
which is equivalent, to
{
S* = — 3.18
Ry ' ( )

Similarly. applying (5.17), (".9) and (5. ) to Eq. (- 11) vields

prRy .
V¥ = — 3.19
P(v+ ) (Ro = Ry) (3.19)

which is positive under the attenuation condition that Ry < Rg. Substitut-
ing expression (11 10) into (3. 11) at equilibrium and again using (3.12), (:1.9)

and ( 10) yields

L A AR SN _Rv
iy (“ Ry’ ’(”mwm)) (3.20)
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We see that I1" > 0 if and only if p < (1 - %;)(1 — %) and the endemic

equilibrium may be expressed as

o= % (3.21a)
0

* pl/R() )

e <(v +m) (Ro —Rv)) (3.21D)
- prRa oYy,

v —((V+”,})(R0—R\)> (g5/+72’)> (3.21¢)
1=2,....n
R — s R

b= ((V—Fw{)) <<1 Ry p(l ' (RO—RV)>) (3.21d)
"= ’ T Sy Ry

v ((”“'D) (g (”%‘?) (( Ry’ p(” (RO—RV-)))

(3.21¢)

] =2, k

Again, the fact that the equilibrium is nonnegative implies that it lies in the

biologically meaningful state region B.

3.2.3 Global Stability Conditions

We use Lyapunov’s direct method [23] to establish that the DFE is globally

asvmptotically stable if p > pe(1 — %) and that the endemic equilibrium

T\’\; )

is asymptotically stable if p < perie(1 — )

The Lyapunov functions we construct are related to those used by Guo
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and Li [15] to prove global stability in a standard epidemiological staged
progression model. The Guo-Li functions are in turn generalizations of Lva-
punov functions recently developed to prove global stability for a variety of
epidemiological and ecological models [i5. 19, 20, 21]. The primary reason
that these methods work for a wide range of high-dimensional ecological and
epidemiological models is that they do not rely on explicit equilibrium expres-
sions. Instead, we only require implicit. rclationships among the parameters
and equilibria (which are straightforwardly derived directly from the differ-
ential cquations) and the positive invariance of the positive cone with respect

to the dynamical system.

Global Stability of the Disease Free Equilibrium

To establish the global asymptotic stability of the DFE (:3.15) when p >

Perie(1 — ZL) we first note that this condition is equivalent to the condition
t Ro

ST < ;l— (Appendix 3.7). We then proceed to construct a Lyapunov function
<o E

of the forin

Lppg = LII)FE + L%FE (3.22a)
k
Lipg = I + Zaj[j (3.22h)
j=2
Lipe = (S —5"In(8)) + (Vi = Vi In (W})) (3.22¢)

+ Db (V= VI (1))
=2
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where a;,b; are appropriately chosen positive coefficients and * denotes the
equilibrium value at the DFE. We note that Lppg has a global minimum
(with respect to the positive cone) located at the DFE which we denote as

E® = (§*. V... V*,0,...0) and furthermore that for any variable P.

0 P>
—(P-P'In(P))=1-—. 2
gp(P—Pn(Ph=1-—5 (3.23)

Construction of Ligg
We observe that Egs. (5 1)—(53.11) can be written in the form
L \ (Z?zld}ljS\ ( I \
d I 0 Iy ,
ail . = : -V : ) (3.24)
s)o\o )
where the k x k maftrix V is given by
~(v+)
Mmoo —wim)
V= (I O SR (3.25)
\ Ny —(w+L)

The matrix V has a non-negative inverse which can be computed directly

as
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: )

(v +Iv{)
T 1
V-l — (V+7i2(1{+7{>) (v +17%)
MY Yo 1
L+ D+ +48) +B)+) +9)

(3.26)

?

Furthermore. Ry can be expressed in a straightforward manner [7. 31] in

terms of V as

L)

0
Ry = < g3 ) v (3.27)

Motivated by (3.2 1) and (:5.27). we choose the coeflicients a; as

1
(1 as ... ak>:7—z*o(3f 3 ... 311:)1}—1’ (3.28) .

where we note that the leading coefficient is equal to 1 by construction

(Eq. (51)).
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It then follows from (3.220), (5.24), (7)), and (3.2

)x) that

d . d| I 1 e -
ELDFE = 1 as ... a a ) = (S - 7_?:"0) Zﬂj[j- (3-“9)
’ : j=1

)

Construction of L}z,

We first write obtain the required implicit equilibrium expressions among t1

state variables at S and V4, ..., V,, namely

(1 -plv= Z /31\ VISt +vST (3.30a)
1=1
SV =W+l —py (3.30b)
j=1
Vo oy
Lol e oo (3.30¢)
(v +17)
From expressions (53.22¢) and (13 23) we sce that
d S*.dS v d\’ = dV
— 2 - =)= 1 3.3
dt PFE T = S’ dt - dt (3.31)
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We select the coefficients b; using the sanic inductive algorithm presented by

Guo and Li [15], which yields

AR

b, = T 3.32¢
(v+Y) (3.320)
b‘+]"}/\-/ + BVS*

b, = 1232 J =2 ..n—1. 3.321

j (v 1Y) J N (3.32h)

We note that the definition as V), as the final class with nonzero vaccine virus
infectivity, 3Y > 0. ensures that b; > 0 for all 7, and that recurrence relation

(5.32) can be straightforwardly solved [17] to yield

n vV * (1%
n VS

bj = .
T )Y

J=2,....n. (3.33)
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We compute the first term of (:5.31) as

S.,ds

—5) =0y u-ZaVvs Zﬁ‘]S—uS

—(1- p)l/tq: + ;5;’\35* + ;ﬂjljs* +vS*
- Z,a;’v;*s* +vST — Z ENE i“‘ﬁ;ljs —vS
~23Vw—: S ZBVVS*+ZB‘IS +use
P
=S <2 - 5 - %) - Z 38 + iﬁ,‘-ljs*
0
_ZJ VS TZB‘\,S*JFZJVV G ZB‘ o
- Zﬁ;fjs + Zﬁ]‘.ljs* - ZﬁVVS + Zﬁ"\/ S

1=1 1=1

+Zﬁ"v G i;;'S:.
. Jj=1

IA

(3.34)

In Eq. (¢ 1) we substitute for (1—p)v using (3.5500) and in the final inequality
we use the fact that (2 — si — %—) < 0 with equality only if § = §*. This
inequality is just a corollary of the fact that the arithmetic mean is always

greater than or equal to the geometric mean (Appendix 3.6).
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Computing the second term of (3.31). using (3. 1) and (33.3003), we find

Ve d | v
(1“—‘/T>EVIZPV* 7 d]-VjS~(z/+’y'1)V1

(v+w) Vo

k..

:2pV~p

J=
§ \% E Vi r* o
j=1 j=1

G = (v ) T
=1

Now we proceed as in [17] to make the inductive choice of the coefficients b,

clear. For j > 2,

V*\ d ;
bj(1~—]> V*b]/] Viaa 1}_,(u+”y})Vj

V. ) dt .
j » | (3.36)
by A )Yy
Using the choice of the coefficients b; ( ), we find
D BYViS = (v ) Vit Db Vi = b (v ) Y
j=1 j=2
=(8YS* = (v + ) + o) Vi o+ (BYS* = b (v + ) )WVar
h (3.37)
+ > (8)S" + by =0, (v )Y,
ji=2

= (85 = (v+v) + b)) V1.
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Eq. (5 57) may be further simplified by substituting from Eq. (3.35) for by

and emploving (3 3il) and (5 5ic). In this way we find

(BYS* = (v+) + b))V
noBYVrS*
_ Vgr _ v ZJ=2'J' J Viv,
(61 (V+’Y1)+ A ) 1
3.38
v, (3.38)
Vv

- (— v+ )W+ 3 vrs
3=1

Vi

‘/fl* ”

= — pv
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Therefore, collecting terms from (3.37). (%), (3.37) and (33.31), we see that

LDFE (ZﬁI[S* Zﬁ115>+pu<2—§//{—l‘//}>
" by ViV

BVV* svvsﬁh RS hLE AP R
(TS 2

+~< @(u+vy)%”+2§:ﬁy%ﬁ¢)
=2 j=1

k
(Z 81,5% - ZBI[ 5)

=1 7=1

~~
F

(Smsos

Z biyy Vi Vi VY
V.

j=2 /
G
(ij v 2 Y )
J=1 3=2

-

H
(3.39)
with equality if and onlv if § = §* and V; = V{*. The terms G and H
may be simplified to show G+ H < (. precisely as in [15]. We include
the argument here for the sake of completeness. Using the solution of the
inductive relationship for the terms b; (v + ") V* (3.133) yields
n

H=Y b (v+))Vy+2) BV S =) G+ 1)3V5.  (340)

Jj=2 j=1 j=1
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Substituting for b; in terms of (3.33), applying the equilibrium relationship

(:i.30¢) and exchanging the order of summation, yields

J'YJ 1 J 1V* _ - VV* . ’73 1V] L
; ;;5 VW)V
ey (3.41)
— * \% * T .
;;ﬁvvs‘;w _;3 VST— er*l.

Using (:3.1%3) and (3.41) yields the desired result

e s S
G+H::Bl‘v1$(2——8——s*)

AR AL
MATACH 1—~—————— T} (342
+ ;3 ((] +1) SV 2 T, (3.42)

<0.

with cquality if and only if S = 5%, V| = V", ..., V; =V, since the arith-
metic mean is always greater than the geometric mean (Appendix ).

Combining (- 20, (5:.39) and (3.42) vields

d d * 1 : 1 9 49
2 Lore = Lbee + dtLDFE < (S - F0) jzz;ﬁjljs (3.43)

Applying the result of Appendix 3.7, which states

1 Ry
S < — =% P> P (1 = —”) , (3.44)
Ro )
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we obtain the desired result

R d ,
P 2 Perit (1 - 7%) == d_tLDFE <0. (3.45)

with equality in Eq. (1.1)) along a subsct of K = {(S,V1,... Vo, L ..., i) :
§=8 V=V ...,V; =V} containing the first n + 1 coordinates of the
DFE. X". Notice that if §* = 7—21—0 then cquality in (5. 15) holds evervwhere
in K. However, it is evident from (1. 1) that X is the only invariant subset
of K. Hence, the LaSalle Invariance Principle [23. 24] guarantees that X is

globally asymptotically stable. completing the proof.

Global Stability of the Endemic Equilibrium -

We employ a Lyapunov function of the standard form to prove that the en-

demic equilibrium (3.2 1) is globally asymptotically stable whenever it exists,

e, if p < pei(l — 77%:)’ ). The Lyapunov function is

Lep = (S — S I (S)) + (L — L (1)) + (Vi — VP In(V))  (3.46)

+ znjcj (V; = V' In(V;)) + Zdj (; = ;" In(Z;))

=2
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where * denotes the value at the endemic equilibrium (3.21). Again we choose

the a;. b; by the inductive algorithm presented in [15], such that

Cp = (1%-%%5 (3.47a)

¢ = cj*zz;:;%vs* j=2. . .m-1 (3.47D)
7

dy = (7%—%5 (3.47¢)

djzw i=2 k-1 (3.47)
(v +7)

Much of the analysis is identical to that of §3.2.7% of this paper and §5 of [17].
so we highlight only the differences. _
The equilibrium relationships, (3.3¢ ) and (i.30¢), still hold for the en-

demic equilibrium as they did for the DFE. However, Eq. (:.500) is now

replaced by the expression
n k
(L-pw =3 BYVS +> BIL*S" +vS* (3.48)

j=1 i=1

and we now have the equilibrium relationships

E 311 S*=(v+ 'yl) (3.49a)
'Yj—llj—l .

B L LA 3.491
) )
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We compute the first term of 4 7 Lee analogously to (3.31), employing (:i.1>).

et (1-5)

] n ) n , n ' 8*2
/ * Vy/* Qx Vyx
+ (—Zﬁ}vmzf;vjs IDICAEED DS )
i=1 J=1 Jj=1 J=l
k k k k g+2
+ (~ Zﬁ;/js DALY G =308, /j*—S—>
7=1 7=1 J=1 7=I1
- / g Yk . [ Y 7% vk - *‘5’*2
é(—Zﬁ}vaﬂW Y BVIS =35, S)
j=1 j=1 j=1 j=1

Ay
: i k k 5*2
! ( S LS+ S AL - YA - Y 5}@-*“?)
j:l j:l ]':1 jzl
A

with equality only when S = S*. We now can split our calculations into

%LEE < <Av+ (1 > Vit Zc]( >%vj)
+(AI+<1—~>—]1+Zd( )i[)

The first term of (:3.71) is exactly that computed in Egs. (53.:31)—(.3~), while

the second term is exactly that computed in Egs. (25)-(33) of [15]. We
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therefore conciude that

d
—L 20, 3.52
di END S U, ( )

with equality if and only if S=5*V; =V*,.. ., V; =V L =1,". .. .. I, =

1;*. This confirms that the endemic equilibrium (:3.21) is globally asymptot-

J

ically stable when it exists.

3.2.4 Disease and Vaccine-Induced Mortality

The model (3.1) does not take into account the effects of disease or vaccine
induced mortality. Using a related modcl. we take these factors into account.
We demonstrate that inclusion of these effects does not change the qualitative
results (stability thresholds). The staged-progression model we consider may

be phrased in the following manner,

dS L K

—=0-pB -} 3ViS-> BL,S-uS (3.53a)
3=1 1=1

dvl - Vy/ Vv \Y% P

—Zi_t_:pB+Z’3j ViS = (u+m' +¢]) Vi (3.53b)

j=1

dv:

=WV (prn +5) Y (3.53¢)

dv; ,

— =V = () + )V (3.53d)

d‘/n v \ \% G e

—d?_ = 7n—1Vn—1 - (/’L + ’\:"11 + En) Vn (3530)
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k
dl, :
@ XA et v (3.531)
dl.
E.t% =1l — (p++eb) I (3.53g)
dl; P
_C.EJ = fy]I_l[j_l - (/1, + 7; + 6;) I (3.53h)
df .
—C—i—; =Y Je-1 — (1 + Ve + 52))& (3.53i)
dR o
P Vel + %YV;z - uhR (3.53))

In contrast to (:3.1) the system (3.0 1 is phrased in terms of total popu-
lation N rather than proportions. The total birth rate is give by B. SJV and
5} represent the vaccine and wild virus-induced death rates in each stage,
while p is the per capita natural death rate. The terms ﬁ;’,ﬁ; represent
the total transmission rate of vaccine and wild virus in each stage. Note
that this model assumes pseudo-mass action incidence J as opposed to stan-
dard incidence 7?7. The previous LAVV models considered assumed standard
incidence. Other parameters are as defined in (3. 1).

The motivation for our departure from using proportional models is strictly
mathematical in nature. As demonstrated in [16] for the proportional version
of the standard SIR model with diseasc-induced mortality, inclusion of dis-

ease induced mortality results in quadratic terms not present in the original

proportional model. Due to this fact, the form of Lyapunov functions used
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to show stability in the absence of vaccine and disease-induced mortality can
not, be straightforwardly employed. However, the Lyapunov functions can be
straightforwardly employed to the model written in terms of total population
(3.53). In the absence of vaccine and discase induced mortality there is no
difference between the models (3.53) and (13.1) after the lattier is expressed
In proportions.

Since the total birth rate is fixed. the model (::.75) will be valid over
time periods for which the total birth rate is relatively stable. As previ-
ously noted the model (73 1) employs pscudo-mass action mixing as opposed
to standard mass action mixing. This assumption is not biologically unreal-
istic, as pseudo-mass action mixing has heen shown to successfully predict
transitions in dynamics of childhood discases [5, 11].

For system (3.533) the basic reproduction of the wild and vaccine virus

are [15, 31

B 8 - 3 H !
Ry = — 1 T S 1, I :
p\(p+tmte)) S(p+a)+e) \ 1wty +e)

(3.54D)

Straightforward computation establishes that system (13.53) has a unique
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DFE given by

. B 1 1 1 FN
> ‘Z(I“EU_R—V)_\/(JI"RQ) "Ry

(3.55a)

B 1 1 1 1N\ p
V= —(1— = “(1- = L 3.551

and a unique endemic equilibrium given by

B

*

pBR, >
(1 +7) +¢)) (RO*R\)

H
/‘\t

f I

( pBRO > fI ’)z 1
(w477 +€Y) (Ro— Ry) (17 +

H
//“\
‘&:

+
:2
_1._
,S“
v
/‘:\
|
3|~
|

3
/’_\

X
<

+ m)) (3.56d)
. _Rv_

) =P (1 R - )

(3.56¢)
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By employing Lvapunov function analogous to those used to show global
stability of the DFE and EE for the LAVV model (1. 1), it is seen that the EE

) while the DFE is

is globally asymptotically stable whenever p < peie(1 — RX

Ro
globally asymptotically stable whenever p > peri(1 — %—‘é) The computations
follow exactly from the stability proofs for system (:3.1), therefore we don’t
repeat them here.

We see that incorporating vaccine and wild virus induced death rates, the
stability threshold for wild virus eradicarion remains the same. specified by

the reproduction numbers of the vaccine and wild virus.

3.2.5 Realistically distributed stage durations

An important feature of the general staged progression model that we have
considered (:1.1) is that any of the stages of infection can have durations that
are distributed realistically (as opposed to exponentially). To illustrate this.

we highlight the most important special case of (3. 1), which is specified by

v, =no j=1,....n (3.57a)
v, = (m—n)y" j=n+1,...,m (3.57b)
) = lo' j=1,....1 (3.57¢)
v = (k= 1)y j=l+1... .k (3.57d)
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3}’:() j=1,....n (3.57e)

Qv _ v .

8 =3 j=n+1,...,m (3.57f)

5]1_:() j=1,....1 (3.57¢g)

5]1:,31 j=1l+1,... .k (3.57h)
Here, Eqs. (:3.57+) and (i1 77) define the first n vaccine virus compartments

and [ wild virus compartments to be latent. With these parameter relation-
ships, the differential equations (7 1) model the situation where there is a
single latent and infectious stage for cach of the wild and vaccine viruses.
but, the stage durations are distributed according to Erlang distributions.

The Erlang distribution is a special case of a Gamma distribution, namelyv

Gamma(n. Z) , (3.58)

n

where n is a positive integer specifying the shape of the distribution and
T is the mean of the distribution (for the parameter choices indicated in
Eq. (* >7), the means are T = 1/0V. 1/~Y. 1/o" and 1/4'). The distribution
Gamma(n, %) has a probability density given by

N _ (/T o e v
g(rng):—r—(n—)x tena/T | (3.59)

The Erlang distribution is representative of realistic latent and infectious

periods, as it may be narrowly focused about the mean [3, 14, 25, 26, 32].
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The extreme limits are the exponential distribution (n = 1) and the delta
distribution (n — o0). Figure .7 shows the probability density for Erlang

distributions with shape parameter ranging from 1 to 1000.

0.7 . - -
—n=1
---n=10
0.6t n=50
"\ n=100
%05 f ——n=1000
7] il
[ ”.
S04 iy ]
z ¥
S o3l j k
: |
%02 i
N
01 y\\;’:%\é\\
! RS
0 AT B v
0 10 20 30 40 50

Time (in days)

Figure 3.5: Probability density for an Erlang distribution of Gamma(n, er)
with mean 16 days and shape parameter n ranging from 1 (exponential) to
1000. As the shape parameter is increased the distribution becomes more
closely focused about the mean.

While Eq. (3 57) specifies the paraniwcter conditions that yield an SEIR
model with Erlang distributed latent and infectious periods, the same ap-
proach can be applied to any stage of an arbitrary staged progression model.
Consequently, our results are valid for the very general situation in which
there are an arbitrary number of infectious stages for the wild and/or the vac-
cine virus. and where each stage has an Erlang distributed duration. Thus,
regardless of how complex the sequence of infected stages are, the threshold

for eradication is given by Eq. (:.2) and depends only upon the reproduction
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numbers Ry and R,.

3.3 Contact Vaccination within a Pulse Vac-
cination Campaign

Contact vaccination within a pulse vaccination campaign may be described
by the following equations, where the (ime interval between vaccination
pulses is 7. The underlying structurc is based upon the standard (SIR)

model [2].

%g = V- IBI(HIS - 6v(t)VS - VS - /)nulse Z S<nT_>6(t - nT) (3603)

dav _ v Vi .

— = Pouise > S(nT7)s(t — nT) + BV (VS ~ (v + ")V (3.60b)
1

%7 =3 IS - (v +NI (3.60c)

%? =~AT+4YV — VR (3.60d)

Here, we use the notation

SnT™) = lim S(nT —¢). (3.60¢)

e—0*
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and we assume

gY@t +T) =3V (3.60f)

At +T)= 3. (3.60g)

Here, we ignore wild virus and vaccine virus specific death and express the
model in terms of proportions. The parameter phuie 15 the pulse vaccination
proportion. i.e., the proportion of susceptibles who are vaccinated during
each vaccination pulse. Other quantities in (1 601) have the same nicanings
that they do in systems (3.1) and (3. 1). For the sake of generality, we allow

the vaccine virus transmission rate 3Y (/) and the wild virus transimission

rate 3'(¢) to be time-dependent. However. we asswine that the transmission
rates are continuous functions of time and T-periodic. In practice, the pulse
interval T' will always be a multiple of one year, so we are including the
possibility of any seasonal changes in (ransmission rates for any realistic

pulse interval.

3.3.1 Existence of the Disease Free T-Periodic Solution

We prove in this subsection that for the svstem given by (.3.40) a biologically
meaningful T-periodic disease free solution (DFS) always exists. The sta-
bility of this solution, and the existence of multiple T-periodic disease free
solutions, will be discussed in subsequent subsections.

Existence is shown in the following manner. Firstly, we enforce the disease
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free condition, I = 0, so Eq. (}.6(lc¢) is automatically satisfied and we are left

with the reduced system

ds
7 =V =BV (VS = VS ~ ppue Y S(rT7)8(t = nT) (3.61a)

N

dv , : o
—r = Poule > STt —nT) + 3 (VS ~ (v+4")V . (3.61b)

Eq. (.61) is two dimensional and non-autonomous. Nevertheless, existence
of a T-periodic solution may be shown by exploiting the theory of impulsive
differential equations. We proceed by applying the methods described in
[1]. The necessary definitions and notation (as in [{}) are summarized in
Appendix 3 ~ for reference. -

We note that our system (:i.::1) can be rewritten in the form of Eq. (1))

in Appendix 3.8 as

fz% =v-3V()WVS-vS T
Py = g(t,x) t#£ kT (3.62)
@V avinve _ LV
o BY(OVS — (v+y)V J
AS
—(P-T) t = kT
AV |4
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where AX = X(kT*) — X(kT7), Z is the identity matrix and

1- Poulse 0

P = (3.63)

Ppulse 1
As we are dealing with proportions of the population, the biologically mean-
ingful set is B={(S,V): S>0,.V>0.5+V <1}

By assumption, 8Y(#) in (% 112) is continuous. In addition, conditions
and } of Appendix > are satisfied dircctly by Egs. (3.02) and (.70) with
2 = B. The set B is canonical in the sense of Appendix 5. ~: Firstly, B is
compact (closed and bounded) and convex. Secondly, B is specified by three

inequalities, which—together with their 1@spective Jacobians—are

0P, I
o =-5<0 ; =| — 64¢
1(x) S a5y | 1 0} (3.64a)
od, I
(I)() ) =-V < 0 -z ~ = — /r. 341
() =~V < i R YT
0P i ,
P3(z) = F—-1< - = 3.64¢
3(z)=85+V ~-1<0 TEV) -1 1] (3.64c)
We next note that for z € 9B
lea(z) ifS=0 (3.65a)
2€a(z) V=0 (3.65b)
Jeafz) HS+V=1 (3.65¢)
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where a(z) = {i: ®;(z) = 0}, as defined in Appendix 3.x. This implies that

for 7 € a(z) and z € OB

%(%(x)g(t, z)=—v (3.66a)
00 (z)g(t,z) =0 (3.66b)
ox
)
O (glt.2) = "V <0 (3.66¢)
ox
Additionally
S
@ | P <0 (3.67)
v

since P is a linear function whose matrix representation has non-negative
entries and column sums equal to one (.- ) (hence P maps B to B). From a
biological perspective. P moves individuals from the susceptible to the vacci-
nated class but does not result in a net change in the number of individuals,
hence maintaining the positive invariance of B.

Therefore, by Theorem | of Appendix 5, the system (13.61)—and hence

the original pulse vaccination system given hy (13.6)-——possesses a biologically

meaningful T-periodic DFS.
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3.3.2 Stability of the T-Periodic Disease Free Solution
Necessary Conditions

Having shown that a disease free T-periodic solution always exists, we now
seck to discover under what conditions this solution is asymptotically stable.
To this end we investigate the variational equation obtained from lineariza-
tion of system (.Gi)) about the diseasc free T-periodic solution which we
denote {S(t) = éz?), V(t) = ‘7(?), I(t) = 0}. The variational equation that
governs the growth and decay of small perturbations (s,v. i) about the DFS

is given as follows, where & denotes the time derivative of x. For ¢ # kT,

e m— ———

3 V()W) —v —~8V(t)5(1) -3 ws@) Y [s
ol =1 8'0VE  8Y®SO - iv+qY) 0 v
i 0 0 ASE -+ ) \i

(3.68a)

while for t = kT

s(kT) (t—p) 0 0) [s(kT™)
v(kT) | = p 1 0| |vkT)| - (3.68b)
i(kT) 0 0 1) \ikT)
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The fundamental matrix solution ¥(t) of (.68a) is defined to be

S1 S2 83

U(t)= v, m s (3.69a)
17 a2 13

V(=7 (3.69b)

where each column of (13 194) is a solution of (3.6x4). The stability of the 7
periodic solution is determined by the cigenvalues of ¥(¢) evaluated at time
t = T. This result is explained by standard Floquet theory [26].  For any
small perturbation from the DFS which we denote €%, ¥, €9, the growth of

the perturbation is given to first order in € as

es(T) €%
ep(T) | =WIT) | &9 (3.70)
€]<T) 5(}
Eq. (:1.70) implies that
(DI < B = o A(ETNE. (371)

where A; denotes an eigenvalue of W(T"). Therefore, if all eigenvalues of W(7')
have magnitude less than one, any perturbations will decay at least geo-

metrically with every period 7" and the DFS will be (locally) asymptotically
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stable.

Although there is no general method for constructing the fundamental
matrix, much can still be said about it. It can be seen from (35.(8a) that the
equation for the perturbation i(¢) is decoupled from the rest of the system

and thus can be explicitly solved as
i(t) = i(0)elo 81 rSr~trar (3.72)

As a result, we can slightly simplify the {orm of the fundamental matrix and

write
U (T) ¥ia(T) ¥13(T)
U(T) = | On(T) Wan(T) Wo3(T) : (3.73)
0 0 oJa1BOSE -y de

Because the eigenvalues of block diagonal matrices are the eigenvalues of each
of the blocks, the form of (13.73)) implies that one of the eigenvalues of ¥(T)
is

Ag = elfo 81 @S - +)T (3.74)

The T-periodic solution (DFS) will be local asymptotically stable if

2_r:nl&’x?)fg]Ai(\ll(.l N <1, (3.75)
and only if
_rﬁr\]@)x3|/\i(\ll('/‘))i <1. (3.76)
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Inserting (3.7 1) in (3.71)) gives a necessary condition for stability,
T A
] <1 <= / AU S () dt < (v + DT (3.77)
0

A complete closed-form analytical expression for the W;; cannot in general be
computed, so we will be forced to complete the stability analysis numerically.
If condition (:3.77) is satisfied then the stability of the DFS will be determined
by the eigenvalucs of the smaller matrix

Ui (1) Pie(T)

\I,reduccd(T) - . (378)
o (1) Wao(T)

VUiedueed (1) may be thought of as the fundamental matrix solution of the
variational equation (:3.G~a) restricted to the (S, V) plane. In the following
sections we will numerically investigate the eigenvalues of this matrix to
determine the stability of the DFS.

It is enlightening to note that if the transmission rate g'(¢) = 3., a
constant, then expression (:3.77) simplifics to the ubiquitous condition (8, 29,

30]

1 (T~ Y+ 1 '
= t < = —, 3.79
7 Sha<it= o (3.79)

which states that the average proportion of the population that is susceptible

(over a pulse interval T') must be kept helow the threshold level The

1
Ro*

general necessary condition (1.77) is different only in that the average of
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—

S(t) is weighted by the oscillation in transmission rate.

Sufficient conditions for Stability

For the remainder of our analysis, we focns on the case of constant transmis-
sion: 3V(t) = 3V, 8Y(t) = B'. The T-periodic DFS will be asymptotically

stable whenever

1/TS/""\I)dt< ! (3.80a)
— ol _— (o8 a
T 0 RO

max A (Wrequeea (7))] < 1 (3.80b)

In Eq. (3 ~0b) X; denotes the floquet multipliers, eigenvalues of W equcea(T).
where W equcea(t) is fundamental matrix solution of the variational equation

about the T-periodic DFS (ST(?) \7(?)) The variational equation is given by

e —

§ -3V ({t) — v —BYSil) s B
= o o t#kT  (3.81a)
v gYVv(ty  8VS@t) - (v +V) ] \v
s(kT) = (1 — ppuie) S(ET7) (3.81D)
" W(ET) = w(kT) + pouee (KT (3.81¢)
s(KT7) = lim s(k7 ) (3.81d)
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As there is no general analytical method for computing the fundamental ma-
trix solution of the non-autonomous equation (3 x1) we compute the eigenval-
ues of Wyequeea(7") numerically. We define a non-linear map as the integration
fOT of system (3.01) using a fourth-order Runge Kutta scheme with stepsize
of % day. The T periodic DFS is the fixed point of this map. Beginning from
a known solution (Ry = 0) or one obtaincd numerically from successive inte-
grations of the map. we use the bifurcation and continuation analysis software
CONTENT 1.5 [22] to numerically contime the T periodic DFS as a function
of the system parameters and compute the Floquet multipliers (5.x<i). We
subsequently investigate global stability via simulation in MATLAB, using a
fourth order adaptive stepsize routine.

So far. we have focused on the T-periodic DFS that we know exists. Our
analysis does not. rule out the possibility of multiple coexisting period-T or
period-kT disease free solutions, or morce complicated dynamics. We address

these issues in our numerical analysis in the next subsection.

Uniqueness of Disease Free Solutions

Pulse vaccination without transmission of vaccine virus (Ry = 0) has been
well studied. In this case there exists a unique T-periodic DFS which can be
computed straightforwardly. Furthermorc. for a given vaccination proportion
of susceptibles (ppuise 10 (13.1i(1)) there exists a maximum pulsing period Tinax
for which this DFS is globally asymptotically stable [10, 30, 29]. The funda-

mental idea that local stability of the T-periodic DFS in fact implies global
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stability has been extended to SEIR type models with Gamma distributed
latent and infectious periods [8, Y].

In the numerical analvsis we now describe, we considered vaccine virus in
the fairly large range 0 < Ry < 7. The birth rate was fixed at v = 0.02yr™*
and the vaccine virus infectious period was taken to be %V = 16 days, roughly
corresponding to wild poliovirus [2]. For Ry < 5and T = 1,2, 3 years, the T-
periodic DFS was computed via continuation in CONTENT 1.5, and found to
be always locally stable in the (S, V) plane (:.80h). Subsequent simulations
indicated that the computed DFS is likely the unique stable DFS in this
parameter range. For T' = 6 vears, the same results hold for 0 < Ry < 4.
with a seemingly unique DFS that is locally asymptotically stable in the
(S. V) plane. (We note that in their continuous OPV vaccination models,
Eichner and Hadeler [12] considered Ry == 12 and Ry = 3.)

For higher Ry, holding Ry fixed and varying the pulsing proportion
(0 < ppuise < 1) we observe a sequence of limit point bifurcations resulting
in bistability and hysteresis. As a two-parameter bifurcation in (ppuse. Rv')
space. this is manifested as a cusp bifurcation starting at Ry > 4. Figure 5.1
shows the coexisting stable and unstable DFS in (S, V) space for T = 6.
Ry = 7. The bifurcation parameter is the pulse vaccination proportion ppuse
while the vertical axis gives the proportion of the susceptible population
immediately before the vaccination pulsc. which we denote S(T7). The solid
line denotes stable solution branches in {S. V) space, while the dashed lines

denote unstable branches.
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Figure 3.6: Bifurcation diagram for the 7" = 6 periodic disease free solution
in the (S.V) plane (Ry = 7, ;]\—, = 1Gdays, v = 0.02). The bifurcation
parameter is ppuse, the pulse vaccination proportion. while the dependent
parameter is S(77), the proportion of susceptibles immediately before the
vaccination pulse. The (S, V) stable solution branches are shown with solid
lines, unstable branches with dashed lines. Black rectangles indicate the
location of the limit point bifurcations. The system exhibits bistability and
hysteresis in the narrow range 0.030 < p,uee < 0.035.
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There are two coexisting (S,V) stable DFSs in a narrow range of the
proportion of susceptibles vaccinated (0.030 < pouce < 0.035). For smaller
Ry this window is even narrower and closer to zero. The significance of the
two coexisting DFSs is negligible in practice. These coexisting solutions are
asymptotically stable in the (S, V) planc: however, to be stable in the full
(S, V. I) space (:5.60), condition (33.7) must also be satisfied. For the range
of ppuise Where there is bistability, computing the average level of susceptibles
for each DF'S over the pulsing period 7. and enforcing the stability condition

(3 79). we find numerically that

1 7 — 1
— < ~ A‘ K
T/o S(t)dt ___R——O — Rv=TRy (3.82)

So. the coexisting (S, V') stable DFSs will be stable in the full (S, V, I) space
only if Ry = Ry. Result (}.~2) may be intuitively obvious as the parameter
range of bistability occurs when ppyie is very close to zero. For example, if
a single vaccinated person were introducced into a population with no other
vaccination, the wild virus could only be cradicated if Ry > Ry. This is to
say that the vaccine virus must out-compete the wild virus. Similarly for
only a small amount of vaccination, the vaccine virus must remain alinost as
competitive as the wild virus in order to achieve eradication.

The attenuation process results in vaccine virus reproduction munbers
Rv that are significantly lower than the wild virus Rg; hence, we expect the

coexisting DFS to be unstable in the full sense of the model (.0t for all
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realistic parameters. Furthermore, no bifurcations— cusp or otherwise - were
detected for T = 1,2, 3 years. Thus, we find that for realistic epidemiological
parameters the full epidemiological systein exhibits at most one asymptoti-

cally stable DFS.

3.4 Control of Wild Virus Spread

We now consider the control implications of the combination of pulse vaccina-
tion and contact vaccination, which we will abbreviate to “PC vaccination”
for convenience. We analyze our model (1) with two comparisons in mind,
both related to the ability of contact vaccination to help control wild virus

spread.

3.4.1 Definitions and Terminology
PC versus standard pulse vaccination

Firstly. we wish to compare the efficacy of PC vaccination to that of stan-
dard pulse vaccination (i.e., pulse vaccination in the absence of vaccine virus
transmission). This comparison may be achieved straightforwardly by exam-
ining ppuisecrit, the threshold level of the pulse vaccination parameter ppuise
required for asymptotic stability of the DES (note that pyuse e depends on

the pulse interval T').
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For convenience, we define a normalized critical pulse proportion as

~ Ppulse,crit(RV 3 RO) q Qf
ulse,cri Rv.Rp) = . 3.83
pp tse. t( v 0) Dpnlse‘crit(ow RO) ( )

which represents the value of ppuisecrit normalized by the value of ppyise crit
in the absence of contact vaccination (Ry = 0). Therefore, definition (1;.~1)
gives the critical pulse vaccination proportion as a proportion of the critical

value under standard pulse vaccination.

PC versus CC vaccination

Secondly, we wish to answer whether—in tlie presence of contact vaccination-—
pulise vaccination camp?;igns (i.e., PC vaccination) will be more or less effec-
tive in controlling wild virus spread than continuous vaccination campaigns
(i.e.. CC vaccination). This second question is not as straightforward to
answer. as there are many ways to compare the continuous (3 1) and pulse
(-3 6t) vaccination models.

One relevant measure of comparison is the critical effective pulse vacci-
nation proportion Peg cri¢ required to ensure stability of the DFS. We define

the effective pulse vaccination proportion to be the number of successful vac-

cinations per pulsing period as a proportion of births over that same period,

vaccinations per pulse interval T
vl

Peft = (384)

Definition (3.51) is natural since in the case of continuous vaccination it re-
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duces to the standard parameter p, the proportion of newborns vaccinated.
Thus, for continuous vaccination peg it can be computed analytically. while
for pulse vaccination we compute it numerically. The critical values for con-

tinuous and pulse vaccination are given, respectively, by

R
Pett.crit(Rv, Ro) = Derit (1 — RV> continuous (3.85a)
0
ulse,cri S Tﬁ\
Pesterit( Ry, Ro) = Poute. tT ) pulse (3.85h)
v

In Eq. (5.~00), S(T7) is the proportion of the population that is susceptible
immediately before the vaccination pulse (in the T-periodic DFS with pyuse =
Ppulse.crit)- -

In the absence of contact vaccination (Ry = 0) the value of peg cr¢ is
in fact equivalent for both continuous and pulse vaccination, independent.
of the vaccination period T [3, 29]. This fact is illustrated in Figure 3.7a
which shows pegorie for Ry = 0 as a function of Rq for pulsing periods of
T =1,2,3.6 years. The result is a single curve peic = (1 — %o) as predicted
by Eq. (3 50a).

Due to this equality it is useful to define normalized quantities to compare
CC and PC vaccination programs. We normalize by the value pey, the value

of pegreric When Ry = 0. We define Durere to be the normalized critical

effective vaccination proportion which can be expressed for continuous and
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pulse vaccination programs respectively as

Pefr crit(Rv; Ro) = 1 — % continuous (3.86a)
o~ peff.criL(RV: ’R'(),) P
off crit ( 1OV » = : ulse 3.86h
Pt (R Ra) = =700 R P (3-86b)
peff,crit(oa RO) = Perit (386()

3.4.2 Numerical Results
PC versus CC

Figures 5 ~(a)-(d) show the normalized critical effective vaccination propor-
tion Der oric @s a function of Ry for wild viruses with Rg = 6,9, 14, 16. Vaccine
virus reproduction numbers are considered in the range 0 < Ry < 4. The
solid line in each figure represents Peg it for continuous vaccination given by
the analytical expression (:3.~i:).

It is apparent that continuous vaccination gives a lower bound for Deg cric-
Furthermore, we see that for the pulse vaccination strategies Peg cyie increases
as both the pulsing period and Rg are incrcased. However, for annual pulsing,
Det,crit differs negligibly from the threshold (.1.x6:1) for continuous vaccination.
The two curves are indistinguishable for Ry = 6, and even for Ry = 16. Peg c1it
values differ by less than 4%. For biennial pulses there is little difference be-
tween the pulse and the continuous vaccination value of Deg crit, especially for
lower Ry values. For Ry = 16, the biennial pulse and continuous vaccination

curves differ maximally by less than 6%. tor T = 6, the pulse and continuous
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Figure 3.7: (a) Critical effective vaccination proportion peg cri¢ in the absence
of contact vaccination (Ry = 0) as a [unction of wild virus reproduction
basic reproduction number R,. For continuous vaccination as well as pulse
vaccination the curve is given by Pegeit = Perit = (1 — 7%1—0) independent of
the pulsing period T'. (b) Critical pulse vaccination proportion ppuise.crit in
the absence of contact vaccination Ry = ) as a function of wild virus basic
reproduction number Ry. Pulsing periods of T' = 1, 2, 6 years are considered.
Ppulsecrit 1iCreases non-linearly with Ry. Note that higher 7" and Ry values
necessitate vaccination of nearly all susceptibles. However, for annual and

biennial pulses ppuisecrit Temains in a realistic range
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Figure 3.8: Normalized critical effective vaccination proportion Peg ceiy (13361)
as a function of vaccine virus basic reproduction number Ry for pulse and
continuous vaccination campaigns across range of wild virus basic reproduc-
tion values Rg. Continuous vaccination is optimal in the sense of peg it given
by Eq. (i.56a). As the period of vaccination T and Ry are increased Deg crit
increases. For relatively long vaccination periods and high values of Ry there
is little advantage as compared to standard vaccination, however for annual
vaccine pulses there remains a significant advantage and negligible difference
with the continuous vaccination curve.
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vaccination results are similar for lower values of Ryg, but the values of Peg it
deviate greatly for higher Ry values. For Ry = 16 with T = 6, Der cri¢ remains
above 95% for Ry = 4. while for continuous vaccination it has dropped to
80%.

From an epidemiological standpoint. the increase in Peg e With pulsing
period 7" and Ry in Figure 3.~ can be cxplained in a relatively straightfor-
ward manner. As the pulsing period 7" and Rq are increased, the number of
individuals that must be vaccinated in cach pulse must also increase to keep
the susceptible population below threshold level. Although pulse vaccination
creates individuals infected with vaccine virus who can cause secondary im-
munizations, it is at the same time removing members from the susceptible
class, depleting the reservoir of individuals for the newly immunized indi-
viduals to vaccinate by contact. Therefore although there is a larger pool
of vaccine infectious individuals, each one is passing on the virus to fewer
individuals.

Thus, continuous vaccination is — from the point of view of contact vac-
cination -- an optimal strategy, in that removing susceptibles continuously
maximizes the benefit of contact vaccination. We stress that we say op-
timal only in the sense of contact immunization, as there are a variety of
other reasons why pulse vaccination as an overall strategy may be superior

to continuous vaccination [28, 32].
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PC versus standard pulse vaccination

It is useful to note that if S(T7) is independent of Ry then Egs. (3 ~7) and
(3.56) straightforwardly imply that Douwecerit = Defierit- FOr the parameter
values considered in this work, we have scen that S(T7) depends extremely
weakly on Ry. Consequently, graphs that we have drawn as a function
of Dereriv differ negligibly from the corresponding graphs as a function of
Dpulse.crit; this equivalence is illustrated in Figure i 9 which shows Dpuise.crit
(0 (a) and Pesrere (39(b) as a function of Ry for Ry = 12. At the scales
represented there is no detectable differcice between the curves.

Since the behaviour of Pest crit and Ppusecrit 1S Practically equivalent, the
discussion of Figure 3.~ in section §5.1 applies t0 Dpuise.crit- Hence, we see
that for pulse vaccination the critical pulse vaccination proportion is bounded
below by

Ry

ppulse,crit(RV: RQ) 2 ppulse.c;rir(()-, RO) (1 - 'ﬁ") : (387)
0

where ppusecrit(0. Ro) is the critical pulse vaccination proportion for stan-
dard pulse vaccination (no contact vaccination). Reiterating the statements
of section §3.1.2, there is little difference between the bounding curve for
continuous vaccination and the one for annual vaccination pulses, but the
difference increases as the pulsing period T is increased.

Values of ppuise.crit (0, Rp) are shown in Figure 3.7(b) for pulsing periods of
1, 2 and 6 years. Notice that for T = 6 and Ry = 17 in the absence of contact

vaccination nearly 100% of the susceptible population must be vaccinated in
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Figure 3.9: Normalized critical effective vaccination proportion Deg e (43 D01)
(a) and Normalized critical pulse vaccination proportion pPoyise.crit (351 (b)as
a function of vaccine virus basic reproduction number (Ry) for a wild virus
of Ry = 12 and a range of pulsing periods. Notice Dpuse.crit = Deffcrit- L his
approximate equality holds across the range of childhood diseases 0 < Ry <
30 and is a direct result of the fact that S(7™) though strongly dependent
on Ry depends very weakly on Ry (3.~

) (5.86h).
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every pulse, which is unrealistic. Howevcr, for biennial and shorter pulsing

periods, Ppuise.crit (0, Ro) lies in a realistic range.

Dependence on Infectious Period

The previous numerical results assumed « vaccine virus mean infectious pe-
riod of ;% = 16days, which corresponds approximately to the infectious
period of wild poliovirus [2]. However, the results we have described are in
fact valid much more generally, demonstrating only a very weak dependence
on the length of infectious period (for Ry fixed). Figure 3. i) shows the
normalized critical pulse vaccination proportion Ppyisecric, and the normal-
ized critical effective vaccination proportion Pegcrir as a function of Ry for
annual pulse vaccination campaigns and vaccine virus infectious periods of
% = lday, 16 days and 1 year. The wild virus reproduction number is set
at Rg = 16. The range of mean infections periods up to a year includes all
childhood infections, of which most have duration less than 1 month {2].

In Figure 3. .ii(a), Dpusecrit 15 indistinguishable for the three different
mean infectious periods. again lying slightly above the line 1 — % In Fig-
ure 5. i1i(b), for the vaccine virus infectious periods of 1 day and 16 days, the
Det crit Values are indistinguishable from cach other, as well as from the corre-
sponding normalized curves Ppyise it in Figure 3.10(a). For the much larger
vaccine virus infectious period of 1 year. there is a slight decrease (< (0.04) in
Deft crit: 10 fact differing negligibly with p ¢ for the continuous vaccination

model.
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Figure 3.10: (a) Normalized critical effective vaccination proportion Peg crit
(1 =) for an annual pulse vaccination campaign (R = 16) as a function
of vaccine virus reproduction number Ry. Curves show a range of vaccine
virus infectious periods % from 1 day to 1 year. The curves for vaccine virus
infectious periods of 1 day and 16 days arc indistinguishable, while for 1 year
there is a slight decrease in Deg e differing negligibly with the continuous
vaccination model (:.564). (b) Normalized critical pulse vaccination propor-
tion Ppulse,crie for annual pulse vaccination campaigns as a function of vaccine
virus reproduction numbers; parameter values as in (a). For vaccine virus
mean infectious periods ranging from 1 day to 1 year there is negligible dif-
ference in ppuise crit- As well for mean vaccine virus infectious periods of 1 and
16 days the curves of Ppysecrit are negligibly different from the corresponding
curves for Degerie I (@) as explained in scction 5. 17

129




Bradley G. Wagner- PhD Thesis Chapter 3

Biologically, this decrease in peg orir for longer vaccine virus mean infec-
tious periods is a result of the fact that a longer period gives a higher prob-
ability that an individual will still be vaccine infectious long after the pulse
at which time susceptibles will have becn replenished via births. This allows
for the infectious individual to have a greater number of secondary transmis-
sions. However, this effect is noticeable only for very long infectious periods
(as long as the pulsing period itself). l‘or childhood diseases, we conclude
that stability has no significant dependence on the vaccine virus infectious pe-
riod. Since the stability threshold (33.5i) derived analytically is independent
of the wild virus mean infectious period. we conclude that—Ilike for contin-
uous vaccination-—for pulse vaccination the stability threshold depends in

practice only on the reproduction numbhcrs Ry and Ry.

3.5 Discussion

We investigated the phenomenon of contact vaccination in the use of live-
attenuated virus vaccines. Specifically. we focused on the ability of contact
vaccination to reduce the critical vaccination proportion to control/eradicate
the wild virus strain in comparison to vaccination with an inactivated or
dead vaccine. Most of our results are applicable to any live-attenuated virus
vaccine system, but our primary focus was childhood infectious diseases. The
use of the Oral Polio Vaccine (OPV) was of particular interest as in this case

the practical benefit of contact vaccination has long been recognized.
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We investigated modcls of both continuous and pulse vaccination under
the assumption that the vaccine virus is stable with respect to back-mutation
or reversion [32]. In the case of continuous vaccination in a homogeneously
mixed population, a very general control criterion was established that de-
pends only on the reproduction numbers of the wild pathogenic (Rgy) and
vaccine viruses (Ry). If the proportion (p) of the population that is vacci-

nated before entering the susceptible pool satisfies

Ry
P 2 Perit <1 - J~> ; (3.88)

then the wild virus will be eradicated independent of the initial makeup of
the population in terms of susceptible and infectious individuals. In expres-
sion (\1.N%), peie = (1 — Rio) represents the critical vaccination proportion
in the absence of any contact vaccination (Ry = 0). This general crite-
rion is valid regardless of the number of infectious stages and the distribu-
tions of durations in the various stages, for both the vaccine and pathogenic
wild virus (§3.2.3). Thus, even if a vaccine virus and pathogenic wild virus
have markedly different distributions of latent and/or infectious periods the
threshold is unchanged, depending only on the virus reproduction numbers.
Even for Ry < 1, under which the vaccine virus would naturally fade from
the population upon cessation of vaccination, Eq. (i} ~~) shows that there can
be epidemiologically significant reduction of the critical proportion (Figure

3.4). Below this threshold level of vaccination it was shown that the virus
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remains endemic in the pépulation with prevalence given by the analytical
expression (3.21) (i.e., that there is a globally asymptotically stable endemic
equilibrium).

With respect to pulse vaccination. we restricted attention to exponen-
tially distributed infectious periods for the vaccine and wild pathogenic virus.
Many of our results are analogous to those obtained previously for contin-
uous vaccination in simple contact vaccination models. We calculated the
threshold vaccination level for eradication: we expressed this in terms of the
number of vaccinations as a proportion of births during a pulse interval.
We refer to this quantity as peg. This definition facilitates comparison with
continuous vaccination strategics as in the continuous case peg reduces to
the standard model parameter p (the proportion of vaccinated newborns).
Furthermore, this quantity is of interest ~ince in the absence of contact vac-
cination (Ry = 0) both pulse and continnous vaccination campaigns predict
the same critical or threshold value of p. for pathogen eradication, indepen-
dent of the pulsing period [5, 29].

Taking contact vaccination into account. there are noticeable differences
in the critical values of p.g between the pulse and continuous vaccination
strategies. Our numerical results showed that for pulse vaccination with a
vaccine virus of a given Ry > 0. the continuous vaccination strategy gives a
lower bound on the critical effective vaccination proportion. In other words,
continuous vaccination is optimal in the sense of maximizing the effect of

contact vaccination. Furthermore, the threshold value of peg is seen to in-
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crease with increased pulsing period T and increased wild pathogenic virus
reproduction number Ry. Biologically, this increase in peg results from the
fact that vaccination pulses simultaneouslv result in a sudden increase in the
pool of vaccine virus infectious individuals and a sudden decrease of equal
magnitude in the susceptible population. This decrease results in fewer sec-
ondary vaccine virus transmissions for cach individual, lowering the overall
effect of contact, vaccination.

For pulsing periods of several years. ihie benefits of contact vaccination
are significantly reduced; however, for annual pulsing the critical effective
vaccination proportion remains very close to the value for continuous strat-
egy, even at relatively high Ry values. This is particularly important in the
context of OPV, as some form of annual pulse vaccination campaign is cur-
rently in use in 55 countries around the world. [1] We conclude that there is
no significant decrease in the bhenefits of contact vaccination for annual pulse
OPYV campaigns, noting that there may also be other epidemiological [32] as
well as practical reasons for pursuing pulse campaigns [2%, 30].

The pulse vaccination results were shown analytically to be independent
of the length of wild virus infectious period, and numerically were demon-
strated to have only weak dependence on the vaccine virus infectious period
(and negligible dependence for infectious periods less than a month. which
are characteristic of childhood diseases). We add that although the threshold
vaccination levels were computed in termns of local stability of the discase free

solution, numerical simulations with randomized initial conditions indicate
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these local results are in fact most likely true globally, i.e., regardless of initial
conditions.

In previous work, based on a highly idealized model, a simple threshold
criterion was derived for eradication of wild virus using live-attenuated virus
vaccines [12]. We have shown that this same threshold (3.x%), which depends
only on the basic reproduction numbers of the wild and vaccine viruses.
applies to inuch more general and more realistic models, and does not depend
on initial conditions.

Compared to use of an inactivated (non-live) vaccine. even for low vac-
cine virus reproduction numbers (Ry < 1), there is a significant reduction
of threshold vaccination levels. However. to assess the importance of con-
tact vaccination quantitatively for a given pathogen, an estimate of Ry is
required. Beyond anecdotal evidence and limited case studies [27], there has
been no emphasis on the estimation of vaccine-virus reproduction numbers.
Such estimation is extremely difficult as. short of performing detailed sero-
logical studies, there is no way to distinguish immunity acquired from the
wild or vaccine virus.

The models that we have considered here assume that infection and vacci-
nation (whether primary or contact) result. in complete and lifelong immunity.
This is an excellent approximation for most childhood diseases [17], but for
other diseases more work is needed to address the role of partial and decay-
ing immunity. Firstly, the level of immunity provided by contact vaccination

must be compared to primary vaccination. Secondly, in cases where primary
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immunization results in only partial or decaying immunity, the role of contact,
vaccination in boosting immunity levels needs to be addressed. In addition to
contact vaccination of completely susceptible individuals, boosting immunity
levels in previously vaccinated individuals may be another significant benefit

of live-attenuated virus vaccines.

3.6 Appendix

A standard result is that for any set of positive real numbers
g7,>0 Z:l.m, (389)
the arithmetic mean is greater than or cqual to the geometric mean. i.e.,
1 m 1 l/m
o Zgi > (H Qi) : (3.90)
=1 1=
If 12, g: = 1, then it follows immediately that
m
m=Y g <0, (3.91)
i=1

with equality if and only if g; = 1 for all 4.
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3.7 Appendix

It can be shown by a sequence of elementary arguments that for the disease

free equilibrium

1 1 Ry
STL— <= p2{l-—]1-— 3.92
Ro g ( Ro)( Ro) ( )
From (3.17+) we have
1 1 1 1 v 1
S =stom /(-5 )+ o < = 3.93;
5 me \/4( Ro) R SR (3.93a)
11 1 1 1 P
= b - <1 = )24+ = (3.93
2 QRV Rt) - \/4( RO) +RV (393))
We note that since Ry < Rg and Ry > 1 we have % + 57%7 - ﬁl(j > (.

Therefore. we have

.1 |
T P (RN 3.94¢
Gromy =) St R TRy (3.94a)
Rv Ry 1
ESp>l-t v - — 3.941
P2l-gr o~ & (3.94b)
— >(1—3—> Ry(m — =) (3.94¢)
P=\U"R) TR T R2 e
1 Ry
<:>p2<1—~> (1——l> (3.94d)
0 RO
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3.8 Appendix

We utilize the following results proved in [{]. Consider a system

% — flt.2), t £7 (3.95)

Az = Ly(z) t =Tk

where Az = 2(7]) —z(r;),and t e R. k€ Z,z € Q CR". The following

conditions are also imposed,

1. ft+T.x)= f(t.z), Li+g(x)=Li(r). Topq=7c+T.3gEN
2. the function f: R x Q — R"™ is continuous.

3. The functions Ly(x) are continuous for x € §)

Furthermore a set D C  is defined to be canonical if it satisfies the

following three properties:
4. the domain D is a bounded convex sci

5. the closure of D can be expressed by « finite number of inequalities

O,(z) <0 (3.96)
where &; : R® — R are smooth functions.

6. if both z € 0D and ®;(z) = 0 then the Jacobian matrix Q%(x) # 0

The primary result we apply may be stated as follows [4] :
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Theorem 1. Suppose the conditions /- are satisfied, the set D is canonical,
O, (z+ Lip(x)) < 0,Yi,Vx € D and lastly the directional derivative of ® along
the flow at the boundary must satisfy

od;
Oz

() f(t,2) <0 (teR.ze€dD.ic€ alr) (3.97)

where a(x) = {i: &,(z) = 0}
Then Eq. (:.95) has a T-periodic solution y(t) which is contained in D for
allt € R.

It should be noted that conditions { *i7) combined with the condition
O, (x + Lg(x)) < 0.Vi,Vz € D are equivalent to the property that the set D

is positively invariant with respect to the system (3 95).
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Table 3.1: Table of Notation

Symbol  Definition Place Define
D (continuous) vaccination proportion 64.2

Gt wild virus transmission rate g2

oAl vaccine virus transmission ratc §3.2.1

! wild virus recovery rate §5.2.1

vV vacecine virus recovery rate §.0.2.1

el wild virus specific death rate §3.2.1

gv vaccine virus specific death rate 8.7

B total birth rate §1.2.1

Ro wild virus basic reproduction number §3.2 and 5.7
Ry vaccine virus basic reproduction number §!72and 3.2
Perit critical (continuous) vaccination proportion Ry = 0 g5

S susceptible class §h2

Ey vaccine virus latent class g2

Ly wild virus latent class §.1.2

Vv vaccine virus latent or infectious class 95,21

/ wild virus latent or infectious class §.3.2

R immune class §1.2.1

N total population size §3.2.1

Lpre Lyapunov function for the discase free equiltbrium §1.2.3

LEE Lyapunov function for the endemic equilibrium §3.2.3

v per capita birth rate g3

7 per capita natural death rate g2

Ppuise pulse vaccination proportion §3.3

T period of pulse vaccination §3.5

U (t) fundamental matrix solution 6.2

Deft effective vaccination proportion 6301

Deff crit critical effective vaccination proportion 85

Deff crit normalized critical effective vaccination proportion 8311
S(T~)  proportion of susceptibles immediately before vaccination pulse §.}.1.1
Ppulsecrit  Critical pulse vaccination proportion §.3.1.2
Ppulse.crit Normalized critical pulse vaccination proportion §3.1.2

D open set Appendix 3.

139



Bibliography

i

(5]

(2008), Polio Eradication.org. Technical report, URL

polioeradication.org/content/f xed/national .html.

R. M. Anderson and R. M. May (1991), Infectious Diseases of Humauns.

Dynamics and Control, Oxford Scicnce Publications.

'N. T. J. Bailey (1954), A statistical method for estimating the periods of

incubation and infection of an infectious disease, Nature 174, 139-140.

D. Bainov and P. Simeonov (1993). Impulsive Differential Equations:

Periodic Solutions and Applications. Longman Scientific and Technical.

C. T. Bauch and D. J. D. Earn (2003), Transients and attractors in
epidemics, Proceedings of the Royal Society of London Series B. 270,
1573 1578.

S. M. Blower, K. Koelle, D. E. Kirschner, and J. Mills (2001). Live

attenuated HIV vaccines: predicting the trade-off between efficacy and

140


http:predict.in
http:Eradication.org

Bradley G. Wagner- PhD Thesis Chapter 3

[10]

(1]

[12]

safety. Proceedings of the National Academy of Sciences 98(6). 3618
3623.

O. Dickmann, J. A. P. Heesterbeek. and J. A. J. Metz (1990), On the
definition and the computation of the basic reproduction ratio RO in
models for infectious-diseases in heterogeneous populations, Journal of

Mathematical Biology 28(4), 18.

A. d’Onofrio (2002), Stability properties of pulse vaccination strategy

in SEIR epidemic model, Mathematical Biosciences 179, 57-72.

7

A. d’Onofrio (2004), Mixed pulse vaccination strategy in epidemic model
with realistically distributed infectious and latent times, Applied Math-

ematics and Computation 151, 181 187.

A. d’Onofrio (2005). On pulse vaccination strategy in the SIR epidemic
model with vertical transmission, Applied Mathematics Letters 18, 729~

732.

D. J. D. Earn, P. Rohani, B. M. Bolker, and B. Grenfell (2000), A

simple model for complex dynamical transitions in epidemics, Science

287, 667-670.

M. Eichner and H. K. P. (1995), Decterministic Models for the Erad-
ication of Poliomyelitis: Vaccination with Inactivated (IPV) and At-
tenuated (OPV) Polio Virus Vaccine, Mathematical Biosciences 127,

149-166.

141



Bradley G. Wagner- PhD Thesis Chapter 3

(13]

(14]

7]

(18]

[19]

20]

H. I. Freedman and J. W. H. So (1985), Global Stability and Persistence
of Simple Food Chains, Math. Biosci. 76, 69-86.

K. J. Gough (1977), The estimation of latent and infectious periods,
Biometrika 64, 559-565.

H. Guo and M. Y. Li (2006), Global Dynamics of a Staged Progression
Model for Infectious Diseases. Mathematical Biosciences and Engineer-

ing 3(3), 513-525.

D. He and D. J. D. Earn (2007). I'pidemiological effects of scasonal

oscillations in birth rates. Theoretical Population Biology 72, 274- 291.

H. W. Hethcote (2000), The Mathematics of Infectious Diseases. SIAM
Review 42(4), 599-653.

H. F. Hull, N. A. Ward, B. D. Hull. J. B. Milstien, and C. de Quadros
(1994), Paralytic Poliomyvelitis: seasoned strategies disappearing disease.

Lancet 343, 1331-1337.

A. Korobeinikov (2004). Lyapunov functions and global properties for
SEIR and SEIS epidemic models, Mathematical Medicine and Biology
21, 75-83.

A. Korobeinikov and P. K. Maini (2004), A Lyapunov Function and
Global Properties for SIR and SEIR Epidemiological Models with Non-
linear Incidence, Math. Biosci. Eng. 1(1), 57-60.

142




Bradley G. Wagner- PhD Thesis Chapter 3

[21]

22]

23]

[24]

[26]

[27]

28]

A. Korobeinikov and G. Wake (2002), Lyapunov Functions and Global
Stability for SIR, SIRS and SIS Epidemiological Models, Applied Math
Letters 15, 955-960).

Y. A. Kuznetsov (1998), CONTEN'T- integrated environment for anal-

ysis of dynamical systems. Tutorial .

J. P. La Salle and S. Lefschetz (1961), Stability by Liapunov’s direct

method with applications. Academic Press, New York.

J. Lasalle (1976), The Stability of Dynamical Systems, Regional Con-

ference Series in Applied Mathematics., STAM.

A. L. Lloyd {2001), Realistic Distributions of Infectious Periods in Epi-
demic Models: Changing Patterns of Persistence and Dynamics, Theo-

retical Population Biology 60, 59- 71.

J. Ma and D. J. D. Earn (2006), Gencerality of the final size formula for an
epidemic of newly invading infectious disease, Bulletin of Mathematical

Biology 68, 679-702.

J. M. Neff, J. M. Lane, V. A. Fulginiti, and D. Henderson (2002),
Contact-Vaceinia-Transmission of Vaccinia from Smallpox vaccination,

JAMA 288(15).

A. Sabin (1991), Mealses. killer of millions in developing countries:
strategies of elimination and continning control, European Journal of

Epidemiology 7, 1-22.

143




Bradley G. Wagner- PhD Thesis Chapter 3

[29]

32]

[33]

B. Shulgin, L. Stone. and Z. Agur (1998), Pulse vaccination strategy in
the SIR epidemic model. Bulletin of Mathematical Biology 60. 1123-

1148.

L. Stone, B. Shulgin. and Z. Agur (2000). Theoretical examination of
the pulse vaccination policy in the SIR epidemic model, Mathematical

and Computer Modelling 31, 207-215.

P. van den Driessche and J. Watmough (2002), Reproduction Numbers
and Sub-Threshold Endemic Equilihria for Compartmental Models of

Disease Transmission, Mathemiatcial Biosciences 180, 29-48.

B. G. Wagner and D. J. D. Earn (2008), Circulating vaccine derived
polioviruses and their impact on giobal polio eradication, Bulletin of

Mathematical Biology 70, 253-280).

G. C. Woodrow and M. M. Levine (1990), New Genearation Virus Vac-

cines. Marcel Dekker. Inc.

144


http:Bullet.in

Chapter 4

The Effects of Demographic
Stochasticity in Pulse

Vaccination Campaigns

4.1 Introduction

It has long been realized that demographic stochasticity can have important
consequences for epidemiological systemis. In the case of measles, a childhood
disease characterized by a relatively high transmission rate, field epidemiolo-
gists have observed apparently random cxtinctions or fade-outs, particularly
for small isolated populations [1 1]. Such observations motivated some of the
first mathematical discussions of the effects of stochasticity on pathogen per-

sistence and recurrent epidemics by Bartlett [7, 8, 10, 9, 11] in the late 1950s.
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Bartlett [3] introduced the important concept of the critical community size
(CCS). essentially the minimum population size for which a pathogen will
persist in a community without reintroduction.

Bartlett employed a compartmental stochastic model allowing for im-
migration of susceptible and infectious individuals but not deaths (either
natural or disease specific) [6, 7). Developing a recursive approximation for
the stationary distribution of the model. Bartlett derived a quantity similar
to the mean time to extinction which he termed the © mean recurrence time
to zero infectives ™ {10. 11]. The difference in terminology results from the
fact that use of stationary distributions necessitates the inclusion of some
immigration of infectious individuals in the model. To confirm the valid-
ity of his model. Bartlett compared his theoretical results as well as thosc
generated by Monte Carlo simulation mcthods to measles case notification
data from England and the U.S.A [8, 9}. This work represents a milestone in
understanding the importance of stochasticity in epidemiological dynamics.

Bartlett’s early work has been extended significantly, most notably with
the introduction of the idea of quasi-stationary distributions for finite state
continuous time Markov chains {138, 45]. In the context of compartmental
epidemiological models, much effort has heen focused on analytical approxi-
mations of the quasi-stationary distribution [, 45}, which may be thought
of as the stochastic analogue of a deterministic endemic equilibrium in a
differential equation model. There has heen particular interest in the com-

putation of the mean and distributions for the time to stochastic extinction
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of pathogens, as a function of population size [“) 44, 145, 52]. The dependence
of the mean time to extinction on the population size is used to give a value
for the CCS. Somie recent work has explored the significance of the distribu-
tion of latent and infectious periods on disease persistence at the population
level (by analytical methods [5] and by direct simulation [11]).

The effects of demographic stochasticity on the outcomes of continuous
vaccination campaigns have been investizated previously [35]. and analytical
approximations of the CCS have been dcrived [5] (in the large population
limit) as a function of the proportion of the population that is vaccinated.
The key approximation that is made is that the distribution of initial states
is the quasistationary distribution; from this it follows that the time to ex-
tinction is exponentially distributed {5, 5], and hence that the mecan time
to extinction specifies the full distribution of times to extinction (from which
the CCS can be inferred). This work shows-—in the large population limit--
that the CCS is inversely proportional to the square of the mean infectious
period.

The implications of stochasticity for pulse vaccination (wherehy mass
vaccination campaigns are undertaken at regular intervals) have yel to be
significantly explored [36]. Deterministic compartmental ordinary differen-
tial equation models of pulse vaccination for childhood diseases have been
explored extensively [1, 17, 22, 19, 20, 21, 46, 49, 50}. In particular, these
works establish that there is a critical pulse interval such that if a fixed pro-

portion of susceptibles is vaccinated in cach pulse, then the pathogen will
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certainly be eradicated if the pulse interval is shorter than the critical length
[20, 21, 49, 50]. The existence of this critical pulse interval has also been
proved for more general models, which include waning of maternal immunity
and realistically (Gamma) distributed latent and infectious periods [20. 21].

In the deterministic setting, the threshold effective vaccination level (num-
ber of doscs per unit time) required to cnsure eradication has been proven
to be identical in the simplest (SIR) framework [19, 50] and—-based on nu-
merical analysis—is conjectured to be identical more generally [21]. For
vaccination below this threshold level. complicated dynamics are possible,
including deterministic chaos for sufficiently long pulse intervals [19]. In
addition, the pulse vaccination model can cxhibit parametric resonance (res-
onant behaviour which appears when a control parameter exceeds a threshold
value {30]), which can have the counter-intuitive effect of increasing disease
prevalence when decreasing the pulse interval [17].

The stochastic epidemic theory cited above makes clear that demographic
stochasticity can lead to dynamics that are substantially different from the
behaviour of deterministic models. We are therefore motivated to inves-
tigate whether the conclusions drawn from deterministic pulse vaccination
models remain valid in the presence of a realistic amount of demographic
stochasticity. With specific emphasis on measles vaccination, we employ a
mix of computational and partially analvtical techniques. Our analysis has
considerable practical importance, becanse some form of pulse vaccination

is currently carried out for measles and poliomyelitis in many developing
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countries (typically in the form of annual national immunization days) [48].

4.1.1 Methods of Analysis

Our analysis is based upon the standard Susceptible-Exposed-Infectious-
Recovered (SEIR) compartmental framework [3, 33]. In its deterministic
form, the model can be represented by the following set of impulsive differ-

ential Eqgs. [20].

ds 3 - _ ‘

=N = 51— 1S — Py ; S(nT™)8(t — nT) (4.1a)

dt 3

iy o SN 4.11

= NS (u+o)FE ] (4.1b)

dl

— =0FE —{(u+v){ (4.1¢)

dt

R _ I N S(nT™)oit T R d

E"Y +ppulse; (’fl )(‘\,—TL )‘M (41 )
S(nT™) = -h%]+ S(nT — ¢) (4.1e)

Here, N is the total population size. Individuals are born into the susceptible
class at per capita rate v; regardless of disease status, individuals die at per
capita rate p, where ﬁ is the average life-span (we ignore any disease-induced
mortality). The fixed rates o and v imply that the latent and infectious peri-
ods are exponentially distributed with means (1; and }r,, respectively. Vaccina-
tion occurs in pulses separated by time 7 at each pulse, a proportion ppyise

of the susceptible population is vaccinated (and we assume that vaccination
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confers lifelong immunity). Standard incidence (8ST/N) is assumed, so the
transmission ratc is 8/N. The model ( ) is phrased in terms of absolute
number of individuals, but it can straightforwardly be phrased in terms of
proportions of the population by scaling the state variables (S, £,1, R) by
the population N [32, 53).

The basic reproduction number—the average number of secondary infec-
tions resulting from a single infectious individual in a fully susceptible pop-
ulation, in the absence of vaccination—is casily calculated [51] and found to

be
Jo

Ry = — )
0 (v + v)io +v)

(4.2)

Solutions of the deterministic model (. ) correspond to the ensemble mean
of the true stochastic system in the limit of large population size (N — o00)
[39, 10]. The differential equations in the deterministic model implicitly spec-
ify a stochastic model in which waiting timmes for each system event arc expo-
nentially distributed with rates dependent on the current state (S, F. [, R)
of the system. The population is made up of discrete individuals and each
stochastic event results in the transfer of a finite number of individuals from
one class to another. The transitions and rates associated with each event
type are given in Table -1.1.1. With the cxception of vaccination, all events
involve a single individual. The number of individuals who are vaccinated in
a given pulse depends on the number of susceptibles in the population at the

event time. Note that, unlike the other cvents, the timing of vaccinations is
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Event Rate Transition

Birth vN S—(S+1), N> N+1
Infection (B/N)IS S—S—-1,FE—-FE+1
Infectious oE EFE—-FE-1T—-T+1
Recovery 97 I— (-1

Natural death uX X—>(X~-1),N—>N-1
Vaceination S 00t = T ppuseS (L) S — 5 — | PpuseS |

Table'4.1: Event rates for the stochastic SEIR model with pulse vaccination.
X refers to any of the state variables (S. /7. [ or R). The notation |z| denotes
the largest integer less than or cqual to . Note that the pulse vaccination
term > o~ 0(t = nT)ppuseS(nT' ™) is deterininistic with respect to time, with
|PpuiseS(nT )| individuals vaccinated at { =nT, n =0,1.2...

deterministic, i.e., susceptible individuals are always vaccinated precisely at

time t = nT (forn=20,1,2,...).

The Gillespie Algorithm

We employ the standard Gillespie algorithm [27] to simulate the stochastic
process specified by Table i |. This algorithm is an iterative (or chain)
Monte Carlo method used to compute true realizations of (discrete state
space) continuous time Markov processcs (for which future system states
depend only on the current state). Realizations are “true” in practice to the
extent that our random number generators are truly random and generate
data of the correct distribution. FEach iteration of the algorithm has two
steps, the first step selecting the time to the next event, and the second step

selecting the event type.
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The algorithm may be fully explained as follows. At a fixed time
consider a Markov system defined by n possible events (transitions). We
assume the state of the system at time £y is known. We denote the rate
associated to each event as {a;}7,. Therefore the probability of an event
of type i occurring in time At is a; At + O(At?). We define two random
variables: T, the time to the next event (of any type), and I., the index of
the next event (i.e., the type of event that occurs next). The algorithm is
based on the computation of the distributions for these two random variables.

Following [27] we compute the distribution for 7,. Using conditional

probabilities for successive time intervals we may write

P(T, >t +At) = P(T. > t) (1 - f_:a,-m + 0(At2)> L (43)

i=1
In Eq. (1.3) the first term represents the probability that there are no events
in the time interval [tq, t+¢] while the sccond term represents the probability
that there are no events in the time interval [to +1¢. ¢+t + At]. Rearranging

Eq. (1.3) we see that

P(T. >t+ At) — P(T, > t)
N P(T. > t) ( Za,+0 At) (4.4)

Taking limits as At — 0in {{ 1) yields the linear differential equation
dP(T, > t) =
——— =PI, > t) | - . 4.5
- (7. > 1) ( > ) (45)
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Solving Eq. (1.1) (noting P(Te > 0) = | and P(T, < t) = 1— P(T, > t))

yields the distribution of T,
P(T,<t)=1—e Ximat (4.6)

Eq. (1.4) establishes that T, is exponentially distributed with parameter

Sor ,a;. Using the distribution of T the probability that the next event

occurs in the time interval [tg + t1,t9 + (| + At] and the event is of type j
(i.e., I, = j) may be calculated using conditional probabilities as

P(l,=j.T. € [t,t + At]) = P(T. > t) (a; At + O(AL?)) r

= e =% (g A+ O(AE)) "

As in the computations for 7, dividing by At and taking the limit in (1 7) as

At — 0 yields the probability density associated to the distribution P(7T, <

t, I =7j)
p(t.j) = aze” ==t (4.8)

The distribution of the random variable 7, may now be calculated by con-
ditioning the expression for P(7T, < t.[. = j) on the time to the next cvent

T.. Assuming the next event occurs in some arbitrary (measurable) set
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A C (0, 00), the expression for this conditional probability is

P(l.=3,T, € A)
P(T, € A)
a; fA e~ Lizi it
T o e Tieiddt

(I',i

S Xlie

P(fe=]'lTe€«4)=

(4.9)

Notice there is no dependence on the time of the event. Since the set A is
arbitrary, I5q. (1.11) implies that the index of the next event I, and the time to
the next event 7, are independent random variables. Thus, the distribution
of I, is simply

-

_ Z“—”J —. (4.10)
i=1""

Using these results, the Gillespie algorithm can be performed through two

independent steps:

1. The time to the next event 7, is chosen by selecting a variate from the

exponential distribution with rate 7 a,.

2. The index of the next event [, is sclected by choosing a variate from

the discrete distribution (i.101).

In practise, the two steps are most often achieved using a uniform random
number generator on the unit interval and straightforward transformations.

We refer the reader to [27] for a complete discussion of implementation issues.
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Event Rate Transition
Infection pIS S—S—~-1.1—>1+1
Recovery  ~/ [ —-T-1

Table 4.2: Events rates and transitions for the STR epidemic model without
vital dynamics.

Moment Closure Models

To complement our numerical analysis based on particular realizations of
the underlying Markov process specified in Table 1 1.1, we also consider dil-
ferential equations for the time-evolution of the ensemble variances of the
process. We derive these equations bascd on a moment-closure approxima-
tion [12, 15, 36, 37, 42).

To explain the derivation of the moment evolution equations, we consider
an oversimplified two-event-type model. For the more complicated model
that we have actually investigated, the cquations are derived in an identical
manner, but the algebra is much messier.

Consider a discrete-state, continuous-time Markov process with only two

event types: infection and recovery (the STR model without vital dynamics

[35]). The system is defined in Table : . For this Markov process. given a
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time t. the probability that the system is in state (S.I) at time t + At is

P(S, .t + At) = 3(S+ 1)(I — 1)P(S + 1,1 — 1,t)At
+yP(S. T+ 1,1)At (4.11)

+ P(S.1,t)(1 — 3STAt — vAt) + O(A)

The terms of Eq. (1 1) represent (in order) the probability of arriving at
state (S, I) by a single infection, single rccovery, or lack of any event in the
time At. The probability of arriving at the state (S, I) through multiple tran-
sitions is incorporated into the O(At?) term. Regrouping terms in Eq. (1.11)
and shrinking At to zero, we arrive at the differential equation

dP(S.1.t)

S =S+ DU - DP(S+ LT - 1Y)

+{U—lﬂ%&1—1¢) (4.12)

— (BIS +~+)P(S.1,1)

From Eq. (:.12) it is straightforward to obtain differential equations for the

moments (of any order) of S and I by suinming over all the system states,

d (517) . dP(S. 1, 1)
= [P\
@ T

, (4.13)
(S.1)

where (-) denotes ensemble average and the sum is over the set {(S,7): S >
0.1>0,0<S+1<N).

In principle, substituting Eq. (1.12) into the LHS of Eq. (1.1:}) specifies
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the differential equations for the system moments (since the LHS of (1.13) can
be expressed as a linear combination of powers of the two state variables). In
practice, it is more convenient to look at ODEs for the moment (or cumulant)
generating functions, the expansion cocfficients of which are the moments
(cumulants) of the system. The moment and cumulant generating functions

are defined, respectively, as

M(G],es) = <(,'0'[+9SS> (414&)

K(@[,Qs) = l()ig (M) . (4]41))

As in Eq. (1.13), the average in (1.11) is taken across all possible states
(S. 7). Differential equations for the moment (cumulant) generating function
are constructed completely analogously 1o Eq. (1.1:1)~ The explicit moment
equations up to second order for the ST cpidemic model (with vital dynam-
ics) are given in [12].

We now return our attention to the S/°/ R pulse vaccination model. Using
the methods just discussed we compute the moment equations. Following
[42], to simplify analvsis we ignore fluctnations in the total population N,
treating this term as deterministic. Also recall from the discussion of Gillespie
algorithm simulations that pulse vaccination is modelled as a deterministic

process. We use (X)) . var(X) and cov(X.Y) to denote the mean. variance
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and covariance. Similarly the third order central moment is

Ms(X,Y, Z) = (X = (X)) = (VINZ - (2))) . (4.15)

For the sake of generality. we give the equations for a mixed vaccination cam-
paign in which there is both a pulse and continuous vaccination component
with a proportion p of the population vaccinated at birth and a proportion
Ppuise Of susceptibles vaccinated in each pulse. The moment equations. up to

second order, arc then give by the following expression:

d(S '
L) g~ (8) — Zeovis ) - Zasy )
— Ppuse Y 8(t = nT) (S(nT7))  (4.16a)
n=0
d{kE [
-iit_z = %COV(S, I+ T[’é (S){Iy = (jt + o1) (E) (4.16h)
W om0 (4.160)
dvagt(S) =1 —p)wN + u(S) — 2uvar(S) + —]%COV(S, 1)
+ % (SY{I) — 2% ((S)ycov (S, I) +var(SYE(I) + M3(S. 1. 1))
— Dpuise(2 — Ppulse) Z o(t — nT)var(S(nT ™)) (4.16d)
n=0
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d"a;fE )+ o1) ((B) — 2var(E)) + %COV(S, 8
+ ]% (SY({I) + 2—;3\—[ ((S) cov(E,T) + cov(S, E) (I))
+ Q%Mg(é’, E,I) (4.16¢)
dvzj;([) = (u+y)({I) = 2var(D)) + o, ({E) + 2cov(E. 1)) (4.16f)

dcov(S, E)

dt

deov(S.T)
dt

deov(E, 1)
dt

v
dt

= —(2v + op)cov(S. F) — —;— (cov(S. ) + (S)(I))

{

B . .
- (SYycov(S, I)+ N(\m(S) (I) — (S)cov(E, I))
f

- i9—00\/(5, EY{I) — —

¥ (My(S,S.1) + M3(S, E, I))

= Ppuse 3 _ 6(t = nT)cov(S(nT™). E(nT ™))

n=0

(4.16g)

= —(2p + )eov(S. I) + arcov(S, E) — :\3_ ((S) var(T) + My(S. 1. 1))
— B {T) cov(S.T) = Pputse i §(t — nT)eov(S(nT™). I(nT™))
a (4.16h)
= —(2u+ 01 + w)eov(E, 1) — a1 ({E) — var(E))
+ % ((S) var(I) + cov(S. I) (I} + Ms(S. I, 1)) (4.161)
=(v— N (4.16§)

Notice that the system of equations (1.1 ) is not closed, as the rates of change

of second order moments depend on third order moments. In general, the

rates of change of the kth moments will depend on the (k -+ 1)th (and if

non-mass-action mixing were assumed then there would be dependence on
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higher order moments as well). In order to close the equations at some
order. assumptions are typically imposcd on the form of the distribution
of states. We assume that the states of the system have a multivariate
normal (MVN) distribution (i.e., at each time point, the distribution of states
across all possible realizations is MVN). With this assumption, the system
closes with moments no higher than second order, since third order central
moments vanish for the MVN distribution . The MVN moment closure model
is thus obtained by setting M3(X,Y,Z) = 0 in (1.16). MVN moment-closure
approximations for the SEIR model without vaccination are considered in
[12].

Moment closure approximations allow us to investigate the dependence of
results on population size without resorting to direct simulation. However, as
these methods assume the form of the enscmble distribution, they cannot be
used—at least not directly—to estimate the time to extinction. Furthermore,
as we are assuming normal distributions for non-negative state variables, we
expect that the approximation will become worse as the standard deviation
becomes comparable in size to the mean. Numerically, breakdown is mani-
fested by divergence of integrations of E¢. (1.16:). Such divergence has heen
noted for the standard MVN SIR and SEIR models in [42]. This breakdown
is not specific to the MVN approximation; it has also been observed when
analyzing a multivariate lognormal moment closure approximation [25].  Bi-
modal distributions have been considercd for simple two compartment SIS

models [37]. In contrast to the MVN model, such methods involve imposi-
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tion of a non-trivial functional relationship between higher and lower order
moments (as dictated by the distribution).

In spite of the limitations imposed Dby specifying the ensemble distribu-
tions as MVN, our model does provide useful indirect information about
the probability of extinction. We make indirect inferences by examining the

coefficient of variation (CV) of state variables; the CV of X is

CV(X) = ”(i%)— , (4.17)

where o(-) denotes standard deviation and (-) denotes mean. If CV(X) is
of order unity then X is frequently near zcro. Consequently, as CV(F) and
CV(I) approach unity, there will l;e a high probability of extinction or fade-
out. Unfortunately, as previously discusscd. when the coefficient of variation
approaches 1, the MVN approximation is more prone to error. Nevertheless.
we will show in the following sections that the MVN model makes useful
predictions regarding stochastic extinctions for the pulse vaccination model.
Some previous work has demonstrated MVN models often provide good ap-
proximations of the mean and variance, cven for true distributions that are

known to be far from normal [34].
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4.2 Results

In the following sections we focus specifically on vaccination for measles.
Unless otherwise noted, we assume standard epidemiological parameters for
measles (R = 17.5, mean latent. period 1 = 8 days, mean infectious period

L = 5 days). In addition, we assume a birth rate v = 0.02yr™!, a constant

~

i

transmission rate 8 (no temporal variation in 8), and identical rates of birth
and death (v = p).

We begin by describing the results of many Gillespie simulations covering
a range of population sizes and proportions vaccinated. These results are
compared with the predictions of the MVN pulse SEIR model. We highlight
the differences in measles extinction probabilities predicted by continuous
and pulse vaccination programs. We show that demographic stochasticity
leads to eradication thresholds that are much lower than those predicted by
the deterministic model (1.1). for populations of (at least) the size of large

cities and small countries.

4.2.1 Stochasticity and Pulse Vaccination
Gillespie simulations

Figure 4.1 shows the results of Gillespie simulations of the pulse SEIR vac-
cination model for measles, with pulse intervals (from top to bottom) of
T =1.2,3.6 years and an (initial) population size of 10 million. As a result

of demographic stochasticity. the actual population size fluctuates about the
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Figure 4.1: Prevalence time series for Gillespie simulations of the pulse SETR
mode! (i.!) in a population of 10 million. Initial conditions for are taken to
be the globally asymptotically stable equilibrium of ({. 1) for a previously
unvaccinated population. From top to hottom each row represents pulsing
periods of 1. 2, 3 and 6 years, with pulsc vaccination proportions of ppuse =
0.05,0.105.0.17 and 0.30, respectively. For T = 1,2,3 years, these values
correspond to peg &~ 0.16 (1.18). Panels in column (a) show thirty sample
realizations, while panels in column (b) give the mean of 1000 realizations.
Dashed curves in {b) denote differences of one standard deviation, while the
dotted curve gives the coefficient of variation for the prevalence CV(E + I)
(1.17). Longer pulsing periods give rise to higher epidemic peaks and deeper
epidemic troughs. For T' = 3 years, the standard deviation in the epidemic
trough is comparable in size to the mean. indicating a potential for stochastic
extinction.
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initial values. The left panel gives a 12 year time series of measles prevalence
(E + I for 30 stochastic realizations. The right hand side shows the ensem-
ble mean of 1000 realizations, with dashed lines indicating differences of one
standard deviation. Note that the proportion of susceptibles vaccinated in
each pulse (ppuise) is different in each of the four pairs of panels in Figure 1.1,
in order to keep constant the nhumber of doses administered over the 12 year
time period (facilitating a more useful comparison among the different pulse
intervals): we make this concept more precise is section §1.2.2.

The sane set of initial conditions is used for each realization, namely the
discrete state closest to the globally asyinptotically stable endemic equilib-
rium [31, 38] of the deterministic model (! 1) in the absence of vaccination.
The deterministic endemic equilibrium niay be thought of as the mean of the
quasi-stationary distribution of the corresponding stochastic model {2, 4].
From a biological perspective, these simulations amount to initiating a pulse
vaccination program in a population where measles is endemic and there has
previously been a negligible level of vaccination.

It is evident from Figure ! | that for periods of 2, 3 and 6 years, pulse
vaccination leads to substantially larger epidemic peaks. as well as deeper
epidemic troughs. Though larger epidemic peaks are an undesirable conse-
quence, lower epidemic troughs may incrcase the probability of stochastic
eradications. The effect of lower troughs is particularly evident for T = 3
years. The standard deviation is of comparable size to the mean in the epi-

demic troughs (as indicated by CV(E+ 1)), implying that stochastic fadeouts
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may be possible for slight increases in vaccination proportion ppyse -

We further investigate the possibility of stochastic extinction in Figure
1.2, which gives the probability of stochastic measles extinction within 12
years of the introduction of a pulse vaccination campaign as a function of
the pulse vaccination proportion ppuse. Curves are shown for population
sizes of 1, 5 and 10 million individuals, essentially representing small to large
metropolitan populations.

It is immediately apparent from Figure i that eradication is achieved at
feasible levels [54] of pulse vaccination, helow 35 percent for each of the pulse
intervals and population sizes considered. Systematic effects of demographic
stochasticity are also clear in this figurc: For fixed pulse intervals, the vac-
cination level at which complete measles eradication occurs increases with
population size, and there is a substantial narrowing of the range of p,yise
over which the probability of extinction rises from 0 to 1. For populations of
10 million, we see threshold-type behaviour, with almost zero probability of
extinction below the threshold and nearly certain extinction beyond it. This
feature is especially apparent for the 1. 2 and 3 year pulse intervals.

Deterministically, one would expect the pulse vaccination proportion re-
quired for eradication to increcase with pulse interval, but Figure | shows
that stochastically this is not necessarily the case. There is a small increase
in the required ppuse as the pulse interval is increased from 1 to 2 years, but,
at 3 years the required proportion decreases noticeably. We will discuss this

counter-intuitive result at length in §1. .. As alluded to in the discussion
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Figure 4.2: Probability of eradication within 12 years of initiation of vaccina-
tion for pulse vaccination with intervals of T = 1, 2, 3, 6 years and populations
of N = 1.2,10 million as a function of pulse vaccination proportion pyyge.
computed through Gillespie simulations hased on Table 1 i.1. Required vac-
cination levels for stochastic eradication are seen to increase with population
size IV, and there is a thresholding effect whereby the range of ppuse over
which the probability of eradication changes from 0 to 1 becomes extremely
narrow. Eradication is achieved for a 3 ycar pulse interval at a lower vaccina-
tion proportion than for annual or biennial pulses, suggesting the dynamics
arc non-trivially dependent on the length of pulse interval.
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Figure 4.3: Probability of measles eradication within 12 years of initiation of
annual pulse vaccination for Erlang (Gamma) distributed latent and infec-
tious periods Gamma(n, ), Gamma(n, --) as a function of pulse vaccination
proportion ppuse. 1he bottom right pancl shows the probability density for
selected Erlang distributions with shape parameter n and a mean infectious
period of 5 days. Eradication is seen to depend very weakly on changes in
distribution.
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of the prevalence time series, we will argue that (stochastically) eradication
potential is strongly and non-trivially dependent of the length of pulse inter-
val, not simply the pulse vaccination proportion or even the overall number
of vaccinations in a given time period.

Additionally, we note that behaviour is negligibly affected by the distribu-
tion of the latent and infectious periods. We performed Gillespie simulations
using more realistic Erlang distributed latent and infectious periods [28] with
the identical mean. The eradication probability for annual pulse campaigns
with Erlang distributed latent and infectious periods (both with the same
shape parameter n) is given in Figure . Note that n = 1 corresponds
to the exponential distribution of the SISIR model. Results are practically

identical, even for n = 40 which represents very tightly focused distribution.

MVN Model

Many of the results of the pulse SEIR Gillespie simulations in the previous
sections can be predicted-—some albeit indirectly—using the MVN moment-
closure approximation (! 16).

Figure | 1 shows the 12 year prevalence time series for the MVN model
(i.16) for the identical pulse vaccination proportions (and initial conditions)
depicted for the Gillespie algorithm simulations of Figure 1.1. The solid curve
denotes the mean, while dashed lines indicate differences of one standard
deviation. The MVN model captures the epidemic peaks and troughs of the

Gillespie simulations while giving comparable standard deviation values.
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Prevalence (104)

Time (yrs)

Figure 4.4. Prevalence (E+I) time serics for the pulse SEIR model as cal-
culated by the MVN moment closure model (1.16). From top to bottom
panels represent pulsing intervals T = 1.2. 3,6 years and pulse vaccination
proportions ppuse = 0.05,0.105,0.17 and 0.20. Note these are the identical
paramecters as in the Gillespie simulations of Figure 1.1, Solid curves in-
dicate the mean, while dashed curves indicate differences of one standard
deviation. Dotted curves give the coefficient of variation CV(E + 1) (1.17)
(right axis). The MVN model captures the epidemic peaks and troughs of the
Gillespie simulations while giving comparable standard deviation (coefficient
of variation) values.
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Figure 4.5: Coefficient of variation of disease prevalence, CV(E + ), as a
function of pulse vaccination proportion predicted by the MVN pulse SEIR
model (1.1¢) in a population of 10 million. Initial conditions correspond
to the Gillespie simulations of Figure . The dashed line indicates the
maximum over a 12 year period from the initial pulse, while the solid line
indicates the mean. The parameter range at which CV(E + I) increases
towards unity, indicating a high probability of stochastic eradication, exhibits
good agreement with the parameter region in which stochastic extinctions
occur in the corresponding Gillespie algovithm simulations in Figure 1.2.
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It is more instructive to look at the coefficient of variation for the preva-
lence CV(E + I). If this value tends towards one, fluctuations in prevalence
are nearly as large as the mean, indicating a high probability of stochastic
eradication. We compute the coefficient of variation as a function of the
pulse vaccination proportion ppuise, paying particular attention to the values
of ppuise for which eradication is observed in the Gillespie algorithm simu-
lations (Figure .2). In fact, results show that the MVN model is able to
successfullv predict the parameter ranges for which extinctions are likely.

Figure 7 shows (as a function of pulse vaccination proportion ppuse)
the coefficient of variation CV(FE + I) () of disease prevalence, for pulse
intervals of T = 1. 2, 3 and 6 vears and a population of N = 10 million in-
dividuals. The initial conditions are the same as in our Gillespie simulations
(Figure i1, 1.2). From the point of view of our moment-closure approxima-
tion ({ {i). these initial conditions correspond to setting the initial variances
and covariances to zero, since every realization of the process begins in ex-
actly the same state.

The solid curve in Figure | shows the mean CV(E + ) over a 12 vear
period while the dashed curve corresponds to the maximum. The results
accurately predict the parameter range in which stochastic extinctions are
observed i the Gillespie simulations depicted in Figure 1.2, For each pulse
interval T, as ppuse 18 increased the CV increases. eventually approaching
unity; at this point a high probability of extinction is expected (since fluc-

tuations are as large as the mean) and the MVN hypothesis itself begins
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to break down as the true distribution of states becomes far from normal.
Comparing the results to Figure 1.2, we sce that the parameter values where
CV(E + I) rapidly increases toward 1 correspond to the narrow range of
Ppuise ab which extinctions are observed in the Gillespie simulations. Note. in
particular, that the somewhal counter-intuitive result that a lower ppyse 15
required to achieve eradication for T = 3 vears (compared with T'= 1 or 2
vears) is clearly evident in Figure 1.5, There is a steep increase in CV(E +7T)
to a value above (.9 before ppuse = 0.19. at which point the MVN model be-
comes divergent as the hypothesis of a normal distribution of states breaks

down.

4.2.2 Comparison of Pulse and Continuous Vaccina-
tion

Continuous vaccination targets individuals at the moment that thev enter
the susceptible population, whereas pulse vaccination targets all susceptible
individuals, regardless of their age. Thus p is a proportion new recruits.
whereas ppuise 15 a proportion of all susceptibles. In order to make fair com-
parisons between continuous and pulse vaccination, we need to use the same
measure to assess both.

One sensible metric is the number of doses of vaccine administered per
unit time. Equivalently, we consider the ¢ffective vaccination proportion, p.g,

which we define to be the average numbher of vaccinations per pulse interval
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T, as a proportion of the input of new susceptibles (births) over the same
period, i.e.,

_ Vi)

Peit =~y (4.18)

where V(T') is the average number of vaccinations per pulse interval T'. For
continuous vaccination, we have V(7T") = pvTN for any time period T, so
pesr = p. Note that for any type of vaccination program, peg is directly pro-
portional to the cost of the campaign (ignoring logistical issues and associated
costs that differ among different strategics).

Twelve year prevalence time series for a continuous vaccination campaign
with peg == 0.16 are given in Figure 1 (.. Note that this is approximately the
same V—'a]ue of peg depicted for the 1, 2. and 3 year pulse interval Gillespie
algorithm simulations in Figure ([.1). In contrast to the pulse vaccination
results the continuous vaccination modcl does not exhibit substantial epi-
demic peaks or troughs and fluctuations in prevalence remain far less than
the mean (< 20%).

It is instructive to compare the stochastic eradication results for contin-
uous vaccination to the pulse results in terms of peg. Figure 1.7 gives the
probability of eradication within 12 years of the initiation of either annual
pulse or continuous vaccination campaigns (as a function of peg).

The continuous vaccination model exhibits the same thresholding effect
noted previously for pulse vaccination. However, even for populations of 5 or

10 million, the continuous vaccination threshold approaches the deterministic
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Figure 4.6: Prevalence time series for continuous vaccination Gillespie al-
gorithm simulations, p = peg = 0.16, N = 10,000.000. Panel (a) shows 20
realizations while panel (b) gives the mean for 1000 realizations. The bottom
panels (a) and (c) give the same prevalence as in (b) and (d) respectively,
but with a different prevalence scale (vertical axis). The scale in (a).(b) cor-
responds to Figure (1.1). Dashed lines in panels (b),(d) indicate differences
of one standard deviation, while the dotted curve in (d) gives the coefficient
of variation CV(E + 1) (1.17). In comparison to the 3 year pulse vaccination
campaign for the same value of pog ( Figure {.1), the continuous vaccination
strategy does not result in large epidemic peaks and troughs.

174


http:sooor~-~.~-~---~~~====~--==-=--10.25

Bradlev G. Wagner- PhD Thesis

Chapter 4

Popuiation=1000000

vy

o
o]

I
a

Eradication probability

o
[N

o
=2}
. e e e e e e

2
%

Eradication probability
(=]
(2]

‘KM e N
ARy .
L .

0.4 0.6 0.8 1
Effective vaccination proportion

Population=10000000

- O - 0 -0 0o

T ”j

0.2 04 06 08
Etfective vaccination proportion

Population=5000000

1 23
7
H
208 ¢ :
D [ L 2
8 ¢ '
© N
Sosl 7 i
§ N .
o4 v '
3 g ¢
w ¥ i
é
2 .
0.2+ : é
0 0.2 0.4 0.6 0.8 1

Effective vaccination proportion

—e— 1 yr pulse
¢ - 2 yr puise
—@- 3 yr pulse
- %~ 6 yr pulse
Continuous vaccination|

Figure 4.7: Probability of measles eradication within 12 years of initiation of
vaccination for pulse campaigns of 7' = 1.2, 3,6 years and continuous cam-
paigns with populations of 1,5, 10 million as a function effective vaccination
Deg (1.15). Results are computed through Gillespie simulations of (1 1) over
1000 realizations. Eradication occurs at a significantly lower value of peg for
pulse vaccination campaigns. As population size increases, in the continuous
vaccination campaigns the eradication threshold approaches the determinis-

tic threshold periy = 1 —

Ro
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limit (denoted by the vertical line),

Peft — Perit = 1 — ‘7;—0 : (4.19)
Deterministically. p., is the critical vaccination proportion required for erad-
ication. for both continuous and pulse vaccination [20, 50]. For Rq = 17.5.
Eq. (1.19) yields an eradication threshold of peg >~ 0.94.

For the 1 year pulse vaccination campaign, we see in Figure 1.7 that the
results are still far from deterministic, with eradication almost certain for
e < 0.8, even for populations of 10 willion. For longer pulse intervals,
the difference between the eradication thresholds for continuous and pulse

vaccination campaigns becomes extremely pronounced.

4.2.3 Deep Troughs and the Pulse Interval Length

For longer pulse intervals, we have obscrved a dramatic decrease in the ef-
fective vaccination proportion (peg) that is required for eradication. The
creation of deep troughs following vaccination pulses is the key to under-
standing why the effective vaccination proportion (peg) required for eradi-
cation decreases as the pulse interval (7') is increased. In the deterministic
limit, the disease fails to persist if and only if the total number of vaccina-
tions reaches a critical proportion of births. With a finite population size, the
depth of the inter-epidemic trough can he more important than the overall

number of individuals vaccinated (in terns of increasing the probability of
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Figure 4.8: Prevalence (E'+1) as a function of time as predicted by the MVN
pulse SEIR model (1.16) for (top panel) an annual pulse vaccination cam-
paign with peg = 0.17 (1.18) (ppuse = 0.05) and (bottom panel) a triennial
pulse vaccination campaign with peg = 0.16 { ppuse = 0.17) in a population
of N = 10 million. Time is measured from the initiation of the pulse vaccina-
tion campaign, and the population is assumed to be previously unvaccinated.
Dashed horizontal lines indicate the mean prevalence over the 12 vear pe-
riod. The 3 year pulse results in deeper troughs in prevalence (suggesting
increased probability of stochastic extinction), as well as substantially larger
peaks. However, the mean prevalence over the 12 year period for the two
scenarios is equivalent.
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extinction).

Figure |.~ shows the prevalence of infectious individuals as a function of
time over the 12 year period from the initiation of vaccination for annual (a)
and triennial (b) pulses both with peg = 0.16 (ppuise = 0.05,0.17) in a pop-
wlation of N = 10 million (using the MVN moment closure approximation
(i.16)). The solid line represents the mean prevalence while the dashed lines
denote differences of one standard deviation. The horizontal line represents
the time-average prevalence over the 12 vear period. As previously discussed
the triennial pulse exhibits significantlyv larger prevalence peaks and deeper
troughs. However (for equivalent peg), the annual, triennial pulse, and con-
tinuous strategyv (not shown) exhibit the same time-average prevalence over
the 12 year period. Thus in terms of eradication, the triennial pulse strategy
is superior in achieving eradication without adversely affecting mean preva-
lence despite its effect on increasing peak prevalence.

In the case of the annual pulse, we see that vaccination is applied as
prevalence is increasing, preventing the cpidemic from reaching its full peak
height, but at the same time resulting in higher troughs. In the case of the
triennial pulse the interval is long enough that the epideinic has reached its
maximum, and is descending rapidly into a trough. In this way vaccination
in the triennial pulse serves to deepen the epidemic troughs increasing the
potential for stochastic extinction.

The tendency for large amplitude oscillations in disease prevalence when

the pulse vaccination level is below the deterministic eradication threshold
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has been noted previously [17, 19], though the ramifications for stochastic
extinction have not been explored beforc. Higher peaks in prevalence are
clearly undesirable from a public health perspective, but the costs of these
temporary spikes in prevalence must be halanced against reduction in mean
prevalence (as compared to other strategies with equivalent peg) and the

higher probability of extinction.

4.3 Discussion

Previous work [20, 19, 50] based on deterininistic models has indicated that
continuous vaccination and pulse vaccination programs always incur the same
cost (in terms of the number of vaccine doses required to achieve eradication).
In this work, we have shown that significant differences arise when the effects
of demographic stochasticity are considered.

We tocused on measles vaccination and considered both continuous vac-
cination and pulse vaccination {with pulse intervals of 1, 2, 3 and 6 years).
We found that a given probability of eradication can be achieved using less
vaccine if pulse vaccination is employed rather than continuous vaccination,
and that less vaccine is generally required if a longer pulse interval is em-
ployed (assuming the same number of vaccinations per unit time). These
conclusions are valid for very large populations (up to at least 10 million).
Furthermore, the proportion of the susceptible population that must be vac-

cinated in each pulse is in a realistic range (less than 35% of susceptibles,
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even for triennial pulses, whereas the ability to reach 70% of all children has
been demonstrated in some cases [54]).

The length of the pulse interval is as important as the magnitude of the
pulse or the total number of vaccinations. Judicious choice of pulse intervals
can serve to deepen troughs in disease prevalence, increasing the probabilify
of stochastic fadeout.

We compared the results of many cxact realizations of stochastic epi-
demics [27] to a multivariate normal moment-closure approximation of the
underlving process [42]. The two approaches yielded similar results, and we
conclude that moment closure is an effective tool for analyzing the stochas-
tic effects of pulse vaccination programs on pathogen eradication. Moment
closure models cannot directly vield the distributions of states in the param-
eter range where pathogen extinction probability is high, but they accurately
predict the parameter ranges in which stochastic extinctions are significant.
Thus, these methods provide a useful wayv to examine effects of demographic
stochasticity without resorting to intensive computational simulations.

Throughout this work, we have assiumed that the populations we are
dealing with are isolated, and that transinission rates do not vary with time.
In reality, populations are linked by migration and travel, which can lead to
“rescue effects” [16] whereby infection is transferred into a community where
the pathogen has gone extinct. In addition, transmission rates for measles
and other childhood infectious diseases tvpically vary seasonally [13, 25, -13].

The present work represents a first step in the analysis of more realistic
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situations which would include spatially linked populations as well as seasonal
forcing.

Pulse vaccination has previously becn suggested as a strategy to avoid
rescue effects, as it might synchronize prevalence troughs in different spatial
locations [2:3, 24. 26, 29, 36]. How well this might work in practice has yet
to be determined. Continuous vaccination programs have been shown both
to increase and to decrease epidemic svichrony, depending on the disease
in question [47]. If future work establishes that pulse vaccination does have
the potential to synchronize prevalence troughs, then our present analysis
suggests that eradication efforts will be further enhanced by the stochastic

advantage of vaccinating in pulses.
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Chapter 5

Conclusions

In this work we dealt with a number of topics rela_ted to vaccination strate-
gies for the eradication of childhood infectious disease. We proposed and
analyzed “endgame” vaccination strategics for poliomyelitis to allow for the
worldwide cessation of vaccination. We investigated the dynamical effects
of contact vaccination in the use of live-attenuated virus vaccines, whereby
vaccine recipients may pass on the vaccine virus to contacts resulting in sec-
ondary immunizations. Lastly we looked at the stochastic implications of
pulse vaccinations, in which mass vaccinations are performed at regular in-
tervals (as opposed to continuously). Specifically we focused on the ability of
pulse vaccination to cause stochastic extinctions in measles vaccination cam-
paigns. The mathematical models emploved include standard STR or SEIR
[19] tvpe compartmental differential equations models and their analogous

representation as discrete state continuous time Markov chains for finite pop-
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ulations. We employed a mix of analytical and computational techniques. In
our analysis of stochasticity we used direct simulation methods as well as
moment closure approximation methods. In the analysis of compartmental
differential equations models we employed such analytical techniques as the
construction of Lyapunov functions [32] and the use of numerical bifurcation
analysis routines [31].

Our analysis of so called “endgame” strategies for poliomyelitis vaccina-
tion focused on the use of the Oral Polio Vaccine, the primary polio vaccine
used in the developing world [23]. Though providing an effective immune
response, this live-attenuated virus is genetically unstable and may revert
back to virulence and transmissibility resulting in circulating vaccine derived
polioviruses [28]. Through the use of a compartmental ordinary differential
equation model, we assessed the risks associated with reversion in continu-
ous OPV vaccination programs. We established that although the impact of
reversion is not significant when the wild virus is endemic, it is significant
from the standpoint of the eventual cessation of vaccination (when the wild
virus in nearly eradicated). We proposed and analyzed transition strategies
to achieve complete eradication and allow for the cessation of vaccination.
These strategies include the use of the Inactivated Polio Vaccine (IPV), the
use of strictly pulse-vaccination OPV, as well as a one time pulse vaccination
with IPV. Using stochastic simulation mcthods we found that a one time IPV
pulse may be feasible, while a strictly pulse OPV campaign can be effective

as long as a higher level of vaccination coverage is maintained.
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We examined the benefits of contact vaccination in lowering critical vac-
cination thresholds for the eradication ol wild viruses. For continuous vac-
cination programs, we established that thresholds are independent of the
latent and infectious period distributions of both viruses, depending only
on the reproduction numbers of both the wild and vaccine virus. Contact
vaccination substantially lowers the (wild virus) critical vaccination propor-
tion, even when the vaccine virus reproduction number is below 1, in which
case the vaccine virus fades from the population upon cessation of vaccina-
tion. We also examined the effects of contact vaccination in pulse vaccination
campaigns. Pulse vaccination leads to a decrease in the benefits of contact
vaccination. However, we concluded that for annual pulse OPV vaccina-
tions this decrease is not significant. This result is of practical importance
since some form of annual pulse OPV campaign is conducted in 55 countries
around the world [4], and the benefits of contact vaccination in OPV use
have long been empirically observed by ¢pidemiologists [23].

For pulse measles vaccination campaigns we found that, for populations
on the order of large cities or small countries, taking demographic stochastic-
ity into account may lead to significant diflerences with deterministic models.
Particularly, we found that stochastic eradication is predicted for significantly
lower levels of vaccination (in terms of total number of vaccinations) than
for deterministic models or the equivalent stochastic model for continuous
vaccination. The length of the pulse interval has a non-trivial effect on the

eradication threshold. A pulse interval of sufficient length to allow inter pulse
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epidemics to reach their maximum peak height can serve to deepen inter epi-
demic troughs, significantly increasing the probability of stochastic extine-
tion. Though the deepening of troughs is accompanied by a corresponding
increase in peak disease prevalence, the average prevalence over the entire
pulse interval differs negligibly from the continuous vaccination scenario (for
the equivalent number of vaccinations). hi light of recent results which show
pulse vaccination may be able to synchronize epidemic troughs in spatially
coupled populations [15, 26], our work suggests that there may be significant
stochastic advantages to employing pulse vaccination strategies worldwide.
A central theme of this thesis is that cradication of infectious discase is a
worldwide problem that requires well coordinated global solutions. In making
public policy decisions a multitude of factors must be considered ranging from
the specific characteristics of the vaccine to the timing of vaccinations. As
we have illustrated in this work, consideration of such factors may be the
difference between successful worldwide cradication and persistence of the
pathogen. Mathematical models. both stochastic and deterministic, can shed
light on the relative importance of these factors and allow us to formulate

and assess strategies to overcome potential barriers.
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