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Abstract 

Credit risk is the risk of losses due to the failure to fulfil the obliged payment from a 

debtor or a counterparty. It is one of the three major components of risks that a bank 

faces as defined in the new Basel Accord. The credit risk literature has experienced 

similar rapid growth as the credit market itself. There are currently four different 

approaches to analyzing credit risk: structural, reduced-form, incomplete information 

and hybrid models. Even though there are large volumes of published research papers 

and books on credit risk, our understanding and management skills in this area are 

still very limited as evidenced by the recent crash of the subprime market. This 

thesis combines three working papers on credit risk modeling and aims at adding some 

insights and contributions to the current credit risk literature. 

In the first paper, we propose to randomize the initial condition of a generalized 

structural model, where the solvency ratio instead of the asset value is modeled ex­

plicitly. This initial randomization assumption is motivated by the fact that market 

players cannot observe the solvency ratio accurately. We find that positive short 

spreads can be produced due to imperfect observation on the risk factor. The two 

models we have considered, the Randomized Merton (RM)-II and the Randomized 

Black-Cox (RBC)-II, both have explicit expressions for Probability of Default (PD), 

Loss Given Default (LGD) and Credit Spreads (CS). In the RM-II model, both PD and 

LGD are found to be of order of ./T, as the maturity T approaches zero. It therefore 
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provides an example that has no well-defined default intensity but still admits positive 

short spreads. In the RBC-11 model, the positive short spread is generated through 

the positive default intensity of the model. Because explicit formulas are available, 

these two Randomized Structure (RS) models are easily implemented and calibrated 

to the market data. This is illustrated by a calibration exercise on Ford Motor Corp. 

Credit Default Swap (CDS) spread data. 

In the second paper, we introduce the inverse-CIR (iCIR) intensity model of credit 

risk. A multi-firm intensity-based model is constructed where negative correlations are 

built through the negative correlation between the Cox-Ingersoll-Ross (CIR) process 

and its inverse. This parsimonious setting allows us to form rich correlation structures 

among short spreads of different firms, while keeping nonnegative conditions for interest 

rates and short spreads. The bond prices are given by explicit expressions involving 

confluent hypogeometric functions. This model can be regarded as an extension of the 

Ahn & Gao (1999) one factor iCIR model on interest rates to a multi-factor framework 

on credit risk. 

In the third paper, we derive several forms of the equity volatility as a function 

of the equity value, from the structural credit risk literature. We then propose a new 

jump to default model by taking the equity volatility to be of the form implied by the 

models of Leland (1994) and Leland & Toft (1996). This model involves a process we 

call the Dual-Jacobi process and which has explicit formulae for its moments. Gram­

Charlier expansions are then applied to approximate bond and call prices. Our model 

generalizes Linetsky (2006) by incorporating a local volatility which is bounded below 

by a positive constant. This local volatility will decrease to a positive constant for 

increasing stock prices, making the stock process asymptotic to Geometric Brownian 

Motion (GBM). In this sence, our model is more realistic than Constant Elasticity of 

Variance (CEV) models. 
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Chapter 1 

Introduction 

1.1 Background: The 2008 Credit Crisis 

The subprime mortgage market in the United States began to enter a "meltdown" 

in late 2006 and became a global financial crisis in July 2007, see Wikipedia (2007). 

Many banks, hedge funds and mortgage lenders have suffered, and continue to suf­

fer, tremendous losses as a result of defaults from subprime mortgage borrowers. As 

of November 12, 2007, more than $40 billion had been lost from Wall Street top in­

vestment banks, including Citigroup Inc., Merrill Lynch & Co. and Morgan Stanley. 

Consequently, the CEOs of both Citigroup Inc. and Merrill Lynch & Co. were forced 

to resign. Numerous other companies have either filed bankcruptcy or have also suf­

fered significant losses. Lehman Brothers, JPMorgan and some other investment banks 

have announced job cutting in residential mortgages and structured finance. 

The U.S. Federal Reserve made a dramatic intervention in financial markets by 

slashing its interest rate by 50 basis points (bps) on September 18 and by 25 bps 

again on October 31, 2007. These decisions were designed to stimulate the market 

and to prevent the subprime turmoil from denting the economy, see BBCNews (2007). 
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The September 19 announcement made the Dow Jones industrial average increase by 

2.45% on one single day. The interest rate cut in the U.S. has also strengthened the 

Canadian dollar, which hit parity against the U.S. dollar on September 20, 2007 for the 

first time in thirty-one years. However, these and further interventions have not ended 

the credit crisis. Recently, there have been warnings from several U.S leading banks 

that the subprime lending crisis will contribute to another round of losses in the fourth 

quarter of 2007. The already realized $40 billion losses from financial institutions is 

just the tip of the iceberg of much larger losses that may end up in hundreds of billions 

of dollars, according to Djsblack (2007). This credit crisis has become much worse than 

the collapse of Long Term Capital Management in 1998. 

The reasons for the meltdown of subprime mortgage market are complicated and 

varied. However, what is clear is that global financial institutions, including leading 

investment banks, have exhibited poor risk management in the credit risk area. The 

subprime lenders made too many loans to borrowers with poor credit ratings. As of 

March 2007, the outstanding U.S. subprime mortgages were estimated at $1.3 trillion, 

and of these about 30 to 40 percent will default, according to Taub (2007). According 

to JPMorgan, as of August 2007, the value of global Collateralized Debt Obligations 

(CDOs) was estimated at $1.5 trillion of which about $500 billion to $600 billion in 

structured finance CDOs backed by subprime mortgages, see Anderson & Timmons 

(2007). Fund and portfolio managers blamed financial engineers that their models 

systematically underestimated the credit risk and did not prevent CDOs problems. 

Financial engineers defended themselves by saying that fund and portfolio managers 

rarely use their models correctly. The rating agencies, such as S&P, Fitch Ratings and 

Moody's have been criticized by investors, saying their ratings on structured finance 

CDOs did not reflect the real default rate. 

The deficiency of credit risk management in the finance industry has long been 

recognized in the last century by the Basel Committee on Banking Supervision, which 
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began the process of drafting a new Basel Accord and published the first consultation 

paper in June 1999. This new framework was modified in the course of ongoing dis­

cussions, based on feedbacks from banks and supervisory authorities. In June 2004, 

The Bank for International Settlements (BIS) released the final version of the Basel 

II Capital Accord, see BIS (2004). This new Basel II Accord refines risk classification 

and requires banks to calculate their regulatory capital based on three major com­

ponents of risks: credit risk, operational risk and market risk. Banks may choose to 

calculate their credit risk either through the standardized approach, the foundation 

Internal Ratings-Based (IRB) approach or the advanced IRB approach. PD, LGD 

and Exposure At Default (EAD) need to be determined to calculate credit risk under 

the Basel II framework. As of November 2007, banks from Canada and many other 

countries have approved and started implementing Basel II in their risk management 

system. It is ironic that, on November 2, 2007, the Federal Reserve Board of United 

States finally approved Basel II accord too late to avert the subprime crisis. 

The calculation of credit risk requires sophisticated mathematical modeling and 

statistical techniques. The aim of this thesis is to provide further insights into modeling 

methodologies on credit risk and its linkage with incomplete information, interest rates 

and equity derivatives. It is hoped that our results will prove useful to researchers and 

practitioners in credit markets. Before we move on to the detailed contributions of this 

thesis, let us first look at the existing modeling approaches in the credit literature. 

1.2 Literature Review 

Quantitative modeling of credit risk is becoming the essential tool to assess and con­

trol credit exposure for banks and other financial institutions. One can identify four 

different approaches to analyzing credit risk: structural, reduced form (or intensity­

based), incomplete information and hybrid. The classical structural approach starts 
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by modeling the firm asset dynamics and defines default to be the time when the asset 

is insufficient according to some measure. The intensity-based approach assumes the 

firm will default with an exogenously given hazard rate, without specifying the firm 

asset dynamics. The incomplete information approach generalizes the classical struc­

tural approach by incorporating the impacts of inaccurate observations. The hybrid 

modeling approach differs from the other approaches in that it models the pre-default 

equity price and combines market risk and credit risk in a unified framework. The 

following four subsections provide a brief review of these four different approaches 

respectively. For a more comprehensive review of credit risk literature, please refer 

to Giesecke (2004b), Duffie & Singleton (2003), Schonbucher (2003) and Bielecki & 

Rutkowski (2004). 

1.2.1 Structural Modeling 

The seminal work of Black & Scholes (1973) not only provided a risk-neutral pricing 

mechanism for European call options, but also paved the way for later development 

of credit risk models. The second part of Black & Scholes (1973) pointed out that 

corporate liabilities can be viewed as options on the asset value of the firm. Following 

the idea of Black & Scholes (1973), Merton (1974) put the corporate liability arguments 

into a more rigorous mathematical framework and studied the model implied credit 

spreads. He modeled the asset value to be a Geometric Brownian Motion ( GBM) 

under the risk-neutral measure. The default time was then defined to be the maturity 

of the bond if the firm asset is insufficient to pay back the debt. The Modigliani­

Miller theorem was found to hold in Merton's model. Merton (1974) also argued that 

the equity of a leveraged firm should be at least as risky as the firm as a whole. As 

documented in Altman, Resti & Sironi (2004), the expected recovery rate is an output 

of Merton's model and it increases as PD decreases. 
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Empirical tests show that options buyer's prices are higher than those predicted by 

the Black-Scholes formula and it is well documented in the literature that the Term 

Structure of Credit Spreads (TSCS) generated by Merton's model is too low, especially 

for short maturities, see Black & Cox (1976) and Giesecke & Goldberg (2004). The 

short spread in Merton's model is zero, which is counterfactual to empirical data, see 

Giesecke & Goldberg (2004). 

Many researchers have since generalized Black-Scholes-Merton to take account of 

more empirical facts. Black & Cox (1976) used the same setting as in Merton's model, 

but redefined the default time to be the first time that the firm asset value passes 

some pre-determined barrier, to incorporate the effect of safety covenants in bond 

indentures. Longstaff & Schwartz (1995) extended Black & Cox (1976) to incorporate 

stochastic interest rates and found a strong negative correlation between credit spreads 

and the level of interest rates. Their result is consistent with the empirical findings in 

Duffee (1998). Leland (1994) and Leland & Toft (1996) introduced the idea that the 

default trigger is set by maximizing the equity value of a firm whose debt structure is 

assumed to be stationary. Leland & Toft (1996) provided a broad picture of the firm's 

capital structure in the context of credit risk, where tax benefits of debt, bankcrutcy 

cost and agency cost are all considered. It was noticed by Black & Cox (1976) that it is 

the ratio of asset to debt, rather than the actual values of asset or debt, that plays the 

major role in their analysis. This fact motivated Collin-Dufresne & Goldstein (2001) to 

model the log of asset over debt (solvency ratio) as a mean-reverting process, reflecting 

the ability of firms to adjust their capital structure. Fouque, Sircar & Solna (2006) 

added stochastic volatility to asset dynamics and studied its effects on credit spreads. 

They found that fast mean-reverting volatility significantly raises the credit spreads 

at short maturities. 

However, none of the models mentioned above can produce positive short spreads. 

Zhou (2001b) was the first to inroduce jump diffusions to credit risk. Hilberink & 
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Rogers (2002) then extended the Leland-Toft model by generalizing the firm value 

process to be an exponential Levy with no upward jumps. Chen & Kou (2006) in­

troduced double exponential jumps to Leland-Toft and studied their implications on 

credit spreads and implied volatility. These jump diffusion structural credit models 

successfully guarantee positive short spreads. Another advantage of these models is 

that the expected LGD is not a constant, but implied from the model itself. Introduc­

ing jumps, however, adds enormous mathematical and computational complexity. 

Structural models are widely applied by practitioners in many ways. Based on 

Merton's model, Moody's KMV designed the well known Portfolio Manager software 

package for banks to use to manage credit risk exposures, see Crosbie & Kocagil (2003). 

Zhou (2001a) extended the first passage time model to a multi-firm setting and studied 

the default correlation. Li (2000) introduced copulas to the structural credit literature 

and applied a multi-firm model to price first-to-default swaps. Hull & White (2004) 

applied copula models to the pricing of CDOs and nth-to-default CDS. Baxter (2006) 

and Moosbrucker (2006) built multi-name correlated models by applying the time 

change technique used in variance-gamma processes, see Madan & Seneta (1990) and 

Madan, Carr & Chang (1998). These time changed models are found to fit the market 

CDS Index (CDX) tranche prices very well. Despite their popularity in industry, 

structural models are found to have very limited explanatory power for the changes 

of credit spreads, as suggested by Collin-Dufresne, Goldstein & Martin (2001). An 

empirical study by Elton, Gruber, Agrawal & Mann (2001) reported that expected 

losses from default can only account for 203 of the credit spread. 

1.2.2 Intensity-based Modeling 

Intensity-based modeling dates back to Artzner & Delbaen (1995), Jarrow & Turn­

bull (1995) and Madan & Unal (1998). Under the intensity-based approach, the firm 
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asset value is not modeled, but rather the firm is assumed to default with an exoge­

nously given hazard rate. The modeling of hazard rates then becomes the focus of 

the intensity-based approach on credit risk. Intensity-based models are also known as 

reduced-form models. 

Jarrow, Lando & Turnbull (1997) extended Jarrow & Turnbull (1995) by modeling 

the default process as a discrete Markov chain to incorporate credit rating migrations. 

Lando (1998) introduced the Cox process to intensity-based modeling and generalized 

Jarrow et al. (1997) by allowing correlations between stochastic interest rates and the 

bankruptcy process. This credit migration idea was implemented by Gupton, Finger 

& Bhatia (1997) from CreditMetrics and further investigated by Chen & Filipovic 

(2005), Albanese & Chen (2005) and Hurd & Kuznetsov (2007). 

Duffie & Singleton (1999) enriched the intensity-based approach by studying dif­

ferent recovery rate assumptions. They showed that under the recovery of market 

value assumption a defaultable bond can be calculated as if it is default-free using the 

interest rate adjusted by the hazard rate. Belanger, Shreve & Wong (2004) generalized 

Duffie & Singleton (1999) to include the case when default can only happen at specific 

times. 

Reduced form models share many similarities with interest rate models. The term 

structure theory in interest rate modeling, see Dai & Singleton (2000), is thus widely 

applied to credit risk. Schonbucher (1998) represented defaultable bonds in terms of 

defaultable forward rates as in Heath, Jarrow & Morton (1992). Duffie, Filipovic & 

Schachermayer (2003) and Duffie (2005) laid out the theoretical foundation for affine 

processes and their applications in credit risk. Dai & Singleton (2003) gave a compre­

hensive survey of credit term structural models. Madan & Unal (2000) and others then 

extended the intensity-based approach to a multi-factor model setting. Affine mod­

els facilitate computations and hence are easily calibrated. Duffee (1999) estimated 

a three factor CIR model for 161 firms using an extended Kalman filter (EKF), as 
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did Chen & Scott (2003) and Duan & Simonato (1999). The EKF is recommended 

by Duffee & Stanton (2004), where maximum likelihood estimation (MLE), method 

of moments (MM) and EKF are compared. Bakshi, Madan & Zhang (2006) empiri­

cally tested a three-factor hazard rate model and concluded that interest rate risk is 

of first-order importance in explaining corporate bond yields variations. 

Mathematical tractability of the intensity-based approach has stimulated empirical 

studies in the credit market. CDS and CDOs can be priced in an efficient way under 

the intensity-based approach, see Hull & White (2000), Hull & White (2001), Duffie 

& Garleanu (2001) and Laurent & Gregory (2005). Hull, Predescu & White {2004) 

studied the relationship between CDS spreads and bond yields and concluded that 

the interest swap rate is a better benchmark of the default-free interest rate than the 

treasury yield. This finding was confirmed by Houweling & Vorst (2005). Longstaff, 

Mithal & Neis (2005) claimed that there is a non-default component in corporate bond 

spreads can be explained by liquidity. Using U.S. data, Blanco, Brennan & Marsh 

{2005) and Zhu (2006) both found that CDS spreads and corporate bond spreads 

move together in the long run, but not necessarily in the short run. In addition, they 

claimed that price discovery takes place first in the CDS market rather than the bond 

market. Chan-Lau & Kim (2004) looked at the emerging market of some developing 

countries and obtained mixed results for price discovery. The work of Norden & Weber 

(2004) documented the importance of taking into account of equity market information 

when doing credit risk analysis. 

Portfolio credit reduced-form models, where the individual firm intensities are mod­

eled first, such as Schonbucher & Schubert (2001), are termed "bottom-up models". 

Errais, Giesecke & Goldberg (2007) and Giesecke & Goldberg (2007), on the other 

hand, proposed a top down approach by modeling the aggregate credit loss directly. 

In their top down approach, the aggregate credit loss is modeled as a self-exciting pro­

cess, whose intensity depends on the history of the process itself. This model captures 
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the contagion effects observed in credit markets, while it avoids an ad hoc choice of 

copulas. 

The intensity-based approach has received intensive application in industry. The 

well known CreditRisk+ by Credit Suisse Financial is essentially an implementation of 

intensity-based models. Crouhy, Galai & Mark (2000) provided a comparative analysis 

of existing models implemented in industry. 

1.2.3 Incomplete Information Approach 

The first incomplete information model was introduced by Duffie & Lando (2001 ). 

They set up their model in a structural form, but the asset value was assumed to be 

observed at discrete times with random noise. This noise leads to a positive short 

spread which makes the original structural model look like a reduced form model. 

Kusuoka (1999) and Nakagawa (2001) applied the filtering theory to an extention of 

Duffie & Lando (2001) with continuous imperfect observations of asset values. Jarrow 

& Protter (2004) provided an information-based perspective on relationships between 

structural and reduced form models. Cetin, Jarrow, Protter & Yildirim (2004) and 

Guo, Jarrow & Zeng (2007a) also obtained reduced form models by constructing an 

economy where only a reduction of the manager's information set is revealed in the 

market. Jeanblanc & Valchev (2005) studied three cases of incomplete information 

on asset values and found that credit spreads increase with the reductions of the 

information sets. 

Giesecke & Goldberg (2004) on the other hand argued that investors cannot ob­

serve the default barrier, even if the asset value process can be observed accurately. 

They found that their incomplete information model reacts faster to new information 

than the classical structural models. Giesecke (2004a) constructed a multi-firm cor­

related default model with incomplete information about the default barriers. They 

9 




observed contagious jumps in credit spreads of other firms when one firm goes to 

bankruptcy. Giesecke (2006) generalized Duffie & Lando (2001) by considering both 

incomplete information about firm asset value and incomplete information about the 

default barrier. The reduced form approach of Duffie & Singleton (1999) was gen­

eralized by Giesecke (2006) in the sense that the security pricing formulae can be 

expressed in terms of the accumulated intensity. This generalization was also indepen­

dently introduced by Elliott, Jeanblanc & Yor (2000), Jeanblanc & Rutkowski (2000) 

and Bielecki & Rutkowski (2004). Based on the idea of Collin-Dufresne & Goldstein 

(2001), Coculescu, Ceman & Jeanblanc (2006) added incomplete information to the 

underlying state variable triggering default. This state variable may typically be the 

solvency ratio of the company. Guo, Jarrow & Zeng (2007b) built a stochastic recovery 

model based on incomplete information setting in Guo et al. (2007a). 

Largely due to its complexity, the incomplete information approach has not yet 

been widely used in the industry. 

1.2.4 Hybrid Models 

Empirical studies from both reduced form and structural models have already pointed 

out that the equity market information should not be ignored for credit risk anal­

ysis. Jarrow (2001) and Janosi, Jarrow & Yildirim (2003) provided a methodology 

for estimating default parameters using both debt and equity prices. Hull, Nelken & 

White (2004) proposed a calibration scheme of Merton's structural model using im­

plied volatilities from equity options. Based on a dataset of 120,000 individual CDS 

quotes, they reported that the mean CDS observed spread is about 95 bps higher than 

the mean implied spread from the model. 

The importance of jointly managing of both market risk and credit risk has been 

recognized by industrial practitioners. Iscoe, Kreinin & Rosen (1999) proposed a model 
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which integrates both market risk and credit risk. It was then improved by Prisco, 

Iscoe, Jiang & Mausser (2007) with Monte-Carlo simulation. This joint modeling idea 

originated from convertible bonds literature.1 Davis & Lischka (2002) first introduced 

a jump-to-default model where the stock price jumps to zero with a local intensity 

when the firm defaults. If the default intensity is assumed to be a negative-power 

of the stock price, empirical estimates of the power are in the range -2.0 to -1.2, see 

Muromachi (1999). Bloch & Miralles (2002) specified the local intensity function as 

a negative natural log function of the stock price. Arvanitis & Gregory (2001) chose 

a negative-exponential function of the stock price as the default intensity. Almost 

all the existing models on convertible bonds rely on numerical algorithms to solve 

the related Partial Differential Equation (PDE). A binomial lattice algorithm was 

proposed by Derman (1994). Andersen & Buffum (2004) provided a calibration and 

implementation scheme with finite difference methods. Linetsky (2006) studied the 

local intensity model (with constant volatility) proposed by Davis & Lischka (2002) 

and derived an explicit expression for the transition density of the underlying pre­

default stock price. Consequently, explicit pricing formulae for both corporate bonds 

and equity derivatives were obtained. Carr & Linetsky (2006) extended Linetsky (2006) 

to incorporate constant elastisity volatility effect and also found an explicit expression 

for the transition density of the underlying pre-default stock price. These jump-to­

default models are able to generate reasonable term structure of credit spreads and 

implied volatility surfaces simultaneously. 

However, Carr & Wu (2006) pointed out that the changes of the stock option 

price and the CDS spread are perfectly correlated locally since the pre-default stock 

price is the only source of uncertainty. They then considered a jump-to-default model 

1Early studies of convertible bonds include Brennan & Schwarz (1980), McConnell & Schwarz 

(1986), Cheung & Nelken (1994), Derman (1994), Ho & Pfeffer (1996) and Tsiveriotis & Fernandes 

(1998). Ayache, Forsyth & Vetzal (2003) provided a survey of existing models and their limitations 

on convertible bonds. 
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with mean-reverting stochastic volatility and stochastic hazard rate. The stochastic 

hazard rate was assumed to be a positive constant times the stochastic volatility, plus 

an independent mean-reverting factor. This specification captures the positive co­

movements of CDS spreads and implied volatilities and also accommodates the fact 

that the credit market and the equity market are not perfectly correlated. The model 

was calibrated on four companies using both time series of implied volatilities and CDS 

spreads. However, calibration of the model by Carr & Wu (2006) does not provide 

satisfactory results on swap spreads: only about 50 percent of the variation in the CDS 

spreads on General Motors and only 30 percent on Altria Group can be explained by 

their model. 

The classification we used here for credit risk models is general and conventional, 

but it by no means exhausts all existing models. Bielecki, Jeanblanc & Rutkowski 

(2004) applied a utility-based approach to defaultable claims, where dynamic pro­

gramming techniques are used. More recent papers on utility-based credit models 

include Sircar & Zariphopoulou (2007a), Sircar & Zariphopoulou (2007b), Bielecki & 

Jang (2007) and Lakner & Liang (2007). 

1.3 Contributions of This Thesis 

As the size of the credit market has grown in recent years, so has the credit risk 

literature. Even though there are large volumes of published research papers and 

books on credit risk, the recent failure of the subprime market is an evidence that our 

understanding and management skills on credit risk are still very limited. This thesis 

combines three working papers on credit risk modeling and aims to add some insights 

and contributions to the current state of credit risk management. 

Chapter 2, based on the working paper of Yi, Tchernitser & Hurd (2007), titled 

"Randomized Structural Models of Credit Spreads'', belongs to the incomplete informa­
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tion approach. The existing models under the incomplete information approach usually 

either have too many parameters or are too complicated to implement. In this paper, 

we propose to randomize the initial value of the solvency ratio process to take account 

of incomplete information. We recommend two models of very few parameters, both of 

which generate positive short spreads and varying realistic shapes of TSCS. Explicit 

formulae for PD, LGD and CS are all obtained, allowing fast calibration of the model. 

The RM-II model provides an example that has no well-defined default intensity but 

still admits positive short spreads. The RBC-II model generates positive short spreads 

through its positive default intensity. This randomization technique can be applied 

to different processes of the underlying risk factor with different assumptions on its 

inital value. Most of the work of this paper was done during my internship in Market 

Risk at BMO in summer 2006. This paper was presented at the Third International 

Conference on Credit and Operational Risk, April 12-13 2007, HEC Montreal. 

Chapter 3, based on the working paper of Hurd & Yi (2007b), titled "Inverse CIR 

and Semi-affine Intensity-based Modeling on Credit Risk", belongs to the intensity­

based approach. The existing multi-factor models under the intensity-based approach 

are usually unable to produce rich correlation structures among the credit spreads of 

different firms, while preserving the nonnegativity restrictions on interest rates and 

credit spreads, see Duffee (1999). In this paper we propose a new multi-factor model 

where the iCIR process is introduced. By introducing the iCIR process as a new factor, 

we are able to form rich correlation structures among the short spreads of different 

firms, while the non-negativity conditions for interest rates and short spreads are 

satisfied. This paper was accepted by the 7th Annual Hawaii International Conference 

on Statistics, Mathematics and Related Fields, January 17-19 2008. 

Chapter 4 is based on the working paper of Hurd & Yi (2007a), titled "In Search 

of Hybrid Models for Credit Risk: from Leland-Toft to Carr-Linetsky". This paper 

belongs to hybrid models. The CEV setting for local equity volatility in Carr & 
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Linetsky (2006) is inappropriate for many firms which have large equity values and 

are also very volatile, such as internet technology companies. In a CEV setting, the 

equity volatility always vanishes to zero, when the stock price approaches infinity. We 

propose a new jump-to-default model by taking the equity volatility to be of the form 

implied from Leland & Toft (1996). This local volatility decreases to a positive constant 

with increasing stock prices, making the stock an asymptotic GBM. Therefore, our 

model is more realistic than CEV models. The model specification allows us to use the 

Gram-Charlier approximation for fast computation of the bond and call prices: our 

approximation scheme is more than 70 times faster than the classical finite difference 

method as demonstrated in the numerical examples. 

The current author is the primary author of all the three working papers. All these 

three papers are in preparation for submission for publication. 
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Chapter 2 

Randomized Structural Models of 

Credit Spreads 

In this chapter, we propose to randomize the initial value of the solvency ratio process 

and study its implications of the term structure of credit spreads. This chapter is 

organized as follows. In Section 2.1, we give a brief introduction of our motivation. In 

Section 2.2, we briefly review Merton's model. In Section 2.3, we introduce the idea of 

modeling the solvency ratio. The Black-Cox model is treated in a simplified version in 

Section 2.4. In Section 2.5, two versions of the RM model are introduced with different 

assumptions on the initial distribution. In Section 2.6, two versions of the Randomized 

Black-Cox (RBC) model are introduced, where the default time is defined similarly 

as in the Black-Cox model. Section 2.7 provides a delayed information perspective 

on the RS model. In Section 2.8, we study another two RS models, which assume 

mean-reverting solvency ratio. In Section 2.9, a calibration exercise is conducted. We 

summarize this chapter in Section 2.10. All pFOofs are given in the appendix of this 

chapter. 
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2.1 Introduction 

In Merton's model, the asset and debt values enter into the formula of credit spreads 

as a single parameter: asset over debt. Motivated by this fact, we treat the log of asset 

over debt (or solvency ratio) as one single risk factor and model it as a Stochastic 

Differential Equation (SDE), without specifying the dynamics of asset value and debt 

structure. The idea of directly modeling the solvency ratio is also utilized in Coculescu 

et al. (2006). 

As pointed out by Duffie & Lando (2001), market players do not have full infor­

mation of firm's capital structure in real time. Instead, the observed solvency ratio is 

contaminated with some random noise. We therefore propose to randomize the initial 

value of the solvency ratio process to take account of this imperfect information. 

This randomization technique could be applied to both Merton and Black-Cox type 

models, where the major difference of the two models are the definition of default. 

Different assumptions on the distribution of the initial value will also have different 

effects on the short spreads of the model. In this chapter, we consider four different 

models: the RM-I, the RM-II, the RBC-I and the RBC-II, which cover both definition 

of default and different assumptions on the initial distribution. We focus on how the 

randomization affects the term structure of credit spreads, particularly on the short 

end. Another two randomized structural models with mean-reverting solvency ratio 

are also discussed. 

2.2 Merton's Model 

Merton (1974) assumed that the firm's value Vt follows a GBM under the risk-neutral 

measure, starting from a known constant Vo at time zero. That is 

dvt = rVtdt +aVtdWt, 
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where r denotes constant interest rate, a is the volatility, and Wt is a Standard Brow­

nian Motion (SBM). 

The firm is obliged to pay the debt holders a constant K at maturity T. Default 

happens at maturity T, when the firm has insufficient funds to pay back to the debt 

holders at that time, namely when Vr < K. Thus, the probability of default PD(T), 

as a function of maturity T, can easily be calculated through 

PD(T) .- P(Vr < K) 

<I> (-log~ + (r - !a
2 )T) (2.1)

av'T ' 

where <I> stands for the Cumulative Distribution Function ( cdf) of a standard normal 

distribution. 

Following Altman et al. (2004), the expected recovery rate RR(T) (under the risk­

neutral measure), as a function of maturity T, given default at maturity T, can be 

evaluated as1 

RR(T) 

where PD(T) is the probability of default given in (2.1). 

Expected LGD (under the risk-neutral measure), LGD(T), as a function of matu­

rity T, is defined to be LGD(T) := 1- RR(T). 

Under the assumption of a constant interest rate, the TSCS in Merton's model can 

1This recovery rate is the recovery of face value of the bond. Other recovery rate assumptions 

include recovery of treasury and recovery of market value, see Duffie & Singleton (1999) for a discus­

sion. 
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be expressed as 

1
CS(T) := -T log[l - PD(T) x LGD(T)] (2.2) 

= _.!_log (<I>( log~+ (r - ~CT2)T) +Vo erT<I>( log~ + (r + ~CT2 )T ) 
T CT./T K CT../T ) ' 

which is a function of maturity T, interest rate r, asset volatility CT and the initial 

leverage ratio ~. Setting interest rate r to 0.02 and initial leverage ratio ~ to 0.8, 

Figure 2.1 plots Merton's TSCS given by equation (2.2), for varying volatility CT. 

The short spread is defined to be the right limit of CS as maturity T goes to zero. 

CS(+O) := lim CS(T) = lim PD(T) * LGD(T). 
T--++0 T--++O T 

If V0 > K, using L'Hospital's rule, one can show that Merton's short spread is always 

zero. If Vo < K, Merton's short spread is positive infinity. 
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Figure 2.1: Merton's term structure of credit spreads, varying asset volatility CT. We 

set ~ = 0.8 and r = 0.02. 
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2.3 Modeling The Solvency Ratio 

Merton (1974) modeled the firm's asset value Vt explicitly as a GBM and the debt 

Kt as a constant K. As a consequence, the solvency ratio in Merton's model, i.e. 

log(yt/Kt), is a drifted Brownian Motion (BM). Instead of specifying the dynamics of 

the firm's asset value and the debt value separately, we can model the solvency ratio 

itself directly. 

Assume that the solvency ratio Xt follows a drifted BM under the risk-neutral 

measure 

Xt = xo + µt + crWt, (2.3) 

where x 0 is a constant. Default happens at time T if Xr < 0. Then, the probability of 

default PD(T), expected recovery rate RR(T) and the credit spread CS(T) are given 

by 

P D(T) .- P(Xr < 0) = <P (- x:-i;T) , 

(p (-xo+µT+u 2T) exo+µ,T+~u2T 
[ Xrl l .,.JTRR(T) .- lE e Xr < 0 = ----(---)---,<P _xo+µT

u./T 

CS(T) = -~log (<P(Xo + µT) + <P(- Xo + µT + cr2T )exo+µ,T+~u2T) . 
T cr../T' er..ff' 

This is exactly Merton's model with the following parameter constraints: 

x0 = log(Vo/K), 
1 2 1 2 

µ r - 2cr > -2cr . 

Our setting here is more general than Merton (1974), since we do not specify either as­

set or debt processes. The debt can be a constant, a random variable, such as Giesecke 

(2006) or a stochastic process, such as Collin-Dufresne & Goldstein (2001). Practi­

cally speaking, corporate restructuring is allowed in this model, but not in Merton's 

model. By Ito's lemma, it is easy to see that the drift of the solvency ratio µ equals 
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the default free interest rate r minus half of the squared volatility of the solvency ratio 

in Merton (1974). This implies that the drift of the solvency ratio has to be larger 

than negative half of the squared volatility of the solvency ratio in Merton's model, 

considering positive interest rates. However, we do not impose any restriction on the 

relationship between the drift and volatility of the solvency ratio. We have a broader 

set of admissible parameters than in Merton's case. 

2.4 The Black-Cox Model 

In Merton's model, the default event can only happen at the maturity. However, in 

reality, defaults could happen before the maturity of an indenture. Black & Cox (1976) 

then proposed the well known first passage time model. Instead of describing what 

Black and Cox have done exactly in the 1976 paper, we give a simplified version of the 

model which maintains the essence of the original one. 

For a given company, let its solvency ratio Xt be a drifted BM given by Equation 

(2.3) (under the risk-neutral measure). In addition, we impose positivity assumption 

on x0 to ensure that no default has happened up to now. The risk-neutral default time 

T is defined as the first time Xt crosses the zero boundary, i.e. 

T = inf{t 2'. O; Xt = O}. (2.4) 

For a given future time T> 0, the default probability P(T < TIXo = x0 ) can be 

calculated using the reflection principle of Brownian motion and it is given by 

P(T < TIXo = xo) = 4> (-x:+;rT) + e-2xw/u
2 

q> (-x:lrT). (2.5) 

Detailed derivation could be found in Steele (2004). Note that the first term is exactly 

the Merton's default probability (the probability of default at T). The second term 

comes from possibilities of default before T. 
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Assuming constant risk-neutral LGD = l, then the TSCS is given by 


1

CS(T) = -T log[l - lP(T < TIXo = xo)]. (2.6) 

This TSCS has similar shapes as in Figure 2.1. Define the default intensity>. at time 

zero as 
, ·- 8P(T < TIXo = xo) I (2.7)/\ .- 8T T=O· 

Using L'Hospital's rule, one can show that >. = 0 in the Black-Cox model. Conse­

quently, the short spread in this model is always zero. 

2.5 Randomized Merton Model 

In the classical structural models discussed previously, the solvency ratio Xt has a 

constant initial value Xo = x0 . This means that we can fully observe the solvency 

ratio at current time. However, in reality, the current solvency ratio cannot be exactly 

observed by the market players. It is therefore reasonable to randomize the initial 

value Xo. 

Assume that the solvency ratio Xt follows a drifted BM under the risk-neutral 

measure 

(2.8) 

with a random initial value X0 . At time zero, we cannot observe the initial value X0 

accurately, but instead, we observe X0 plus some random noise. We also assume that 

Xo and Wt are independent for all t > 0. This is a reasonable assumption, since the 

noise should not affect the evolution of the solvency ratio process. However, it does 

contaminate the information observed by market players. 

In the following two subsections, the solvency ratio is assumed to follow Equation 

(2.8). The default probability is defined as in Merton's model. The interest rate is 
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assumed to be constant and the credit spread is calculated using Equation (2.2). Two 

models with different assumptions on the initial randomization are studied respectively. 

We focus on how the the short spread is influenced by the randomization of the initial 

value. 

2.5.1 Randomized Merton I (RM-I) 

In this RM-I model, we assume the following distribution for X 0 

• RM-I Assumption on X0 : Xo ,...., N(xo, o-5). 

This is a natural assumption, since the drifted BM is normally distributed. It follows 

that Xr ,...., N(x0 +µT, o-5 + o-2T). As in Merton's model, we define the default time to 

be T, if Xr < 0. The default probability P D(T), the expected recovery rate RR(T) 

and the credit spreads CS(T) are given by 

When o-0 = 0, this becomes the original Merton's model. When T = 0, both PD(O) 

and RR(O) are positive constants. As a result, the short spread becomes positive 

infinity. Therefore the RM-I model is inappriate for pricing the short spread. 
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2.5.2 Randomized Merton II (RM-II) 

In the RM-I model, infinite short spread is due to nonzero default probability at time 

zero, which in turn is due to the positive probability that X0 < 0. In this RM-II 

model, we assume the following distribution for X0 , which has no mass on (-oo, 0). 

• 	 RM-II Assumption on X 0 : its Probability Density Function (pdf) f(x0 ; Yo, o-o) is 

given by 

</J(xo; Yo, o-o)/if>(yo/o-o) if Xo ~ 0
f (xo; Yo, o-o) = 	 (2.9)

{ 0 	 if Xo < 0. 

2where function </J(x; µ,a-) denotes the pdf of N(µ, o- ) given by 

1 (x-ul2 

</J(x; µ,a-)= ..fiiW'ie-""Tu2 	 (2.10) 

This initial randomization will ensure zero default probability at time zero, namely 

P(Xo < 0) = 0. 

Remark 2.5.1. As time progresses from zero tot E (0, T), the solvency ratio Xt can 

be negative without triggering a default in Merton's model. Therefore, the nonnegative 

assumption on X 0 is not a consistent assumption for a dynamic model. Nevertheless, 

this assumption is reasonable for a static model which can be used to price the current 

short spread. 

The default probability PD(T) and the recovery rate RR(T) can be calculated by 

conditioning 

PD(T) .- IE[P(Xr < O!Xo)J, (2.11) 
IE[IE[eXT l{xT<O} IXo]]

RR(T) .-	 (2.12)
lE[P(Xr < O!Xo)] . 

The following Proposition gives explicit formulas for PD(T), RR(T) and CS(T), as 

well as their asymptotics when T -+ +0. 
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Proposition 2.5.1. In the RM-II model, the default probability PD(T), the recovery 

rate RR(T) and the credit spreads CS(T) have the following representations2 

A
PD(T) (2.13)

'P(yo/uo)' 
BeYO+tLT+!u2T+!u~ 

RR(T) 

CS(T) = 

(2.14) 

(2.15) 

where the function 'P2 (xi, x2 , p) denotes the cdf of a bivariate normal distribution with 

marginal distributions being standard normal and correlation coefficent p ancF 

'P ( Yo + µT Yo uo )A = 2 
J u5 + u2T' Uo' - J u5 + u2T ' 

..n ( Yo + µT + u5 + u
2
T Yo uo )B = '±'2 - , - + Uo, - · 

Ju5 + u2T uo Ju5 + u2T 

Moreover, we have 

l' PD(T) uf (O; Yo, uo)
Im = (2.16)

T-.+o VT ./'ii 
l' LGD(T) u./'ii
Im = -- (2.17)

r-.+o VT 4 

u 2f (O; Yo, uo)
lim CS(T) (2.18)

T-.+O 4 

From the above proposition, we can see that PD(T) indeed vanishes to zero as 

maturity T approaches zero. When there is no random noise of the initial observation, 

i.e. u0 = 0, the RM-II model reduces to Merton's model. Both PD(T) and LGD(T) 

are found to have an order of VT, as T-+ +0. As a result, the default intensity does 

not exist in the RM-II model, but it can still generate positive short spread. This 

positive short spread has an explicit formula given by Equation (2.18). 

2Pykhtin (2003) obtained a similar expression for the recovery rate in his recovery risk model. 
3 A series expansion of these functions are given by Vasicek (1998). We thank Michael Gordy for 

pointing out this. 
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The short spread only depends on a, y0 and a0 , and it does not depend on the drift 

µ. However, if we allow y0 to be a function of µ, the short spread may depend on µ 

indirectly, as we can see in section 2.7. Equation (2.18) implies that the short spread 

increases when a increases while holding other parameters constant. If we fix a and 

ao, the short spread is a decreasing function of y0 /a0 • The ratio y0 /ao can be regarded 

as Distance to Default (DD). More uncertainty about the observed solvency ratio 

indicates higher risk and hence the short spread should be higher. This uncertainty 

should be measured by DD instead of a0 • This result may also imply that a firm's 

credit spreads will fall after its annual report. This awaits empirical results from testing 

the model. The situation for a0 is more complicated. When a0 increases from zero, 

the short spread first increases to a maximum and then decreases. The maximum is 

reached at a a()-iax, which solves the following equation 

This equation is obtained by setting the first order derivative of CS(+0) with respect 

to a0 to be zero. 

Figures 2.2 and 2.3 show term structure of credit spreads for varying a0 and µ 

respectively, while holding other parameters constant. The short spread of the RM­

I! model is clearly above zero as seen from both figures. Figure 2.2 also shows that 

CS(T) may decrease when a0 increases. Some people may argue that this is counter­

intuitive, since more uncertainty about the current observation should require to pay 

more for the protection of default. Hence the credit spread should be higher for 

larger a0 • This argument is only correct if we replace the risk measure a0 by DD 

(i.e. Yo/ao). The credit spread is indeed a monotone decreasing function of DD. 

Figure 2.3 also demonstrates that the RM-II model is capable of generating upwarding 

term structure of credit spreads by choosing sufficient negative µ. Merton's model 

cannot produce upward increasing term structure of credit spreads because of the 

nonnegativity restriction on the constant interest rate. In the RM-II model, however, 
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we do not specify the dynamics of the asset value Vt. We allowµ+ !a2 to be negative 

in the RM-II model, becauseµ+ !a2 does not necessarily represent the interest rate. 

As a result, the RM-II model is able to generate varying shapes of term structure of 

credit spreads. 

Figure 2.4 plots the short spread defined in Equation (2.18) as a function of y0 , ao 

and DD. The middle picture in Figure 2.4 shows a hump-shaped curve of the short 

spread as a function of a0 . The maximum short spread is achieved at a0ax = 0.4167, 

in the case when a = 0.12 and y0 = 0.35. 
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Figure 2.2: Term structure of credit spreads of RM-II model for varying a0 : µ = 0.01, 

a = 0.12, Yo = 0.35. 

We have used the technique of randomizing the initial condition of the solvency 

ratio and have studied two models with Merton's definition of default. The short 

spread in RM-I model is infinity while the RM-II model successfully generates positive 

short spreads. We conclude that the RM-I model is inapproriate for modeling short 

spreads and the RM-II model is recommended. 
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Figure 2.4: RM-II short spread as a function of yo, <70 and DD. 
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In order to prove Proposition 2.5.1, the following two lemmas are needed. 

Lemma 2.5.2. Let (X, Y) be a bivariate normal with correlation coefficient p and 

marginals X "' N (µx, a;), Y "' N (µy, a;). Then the following equation holds 

Lemma 2.5.3. As T-+ +0 the following expansion holds 

2.6 Randomized Black-Cox (RBC) Model 

As mentioned in the Remark 2.5.1, the assumption that X 0 > 0 is inconsistant for a 

dynamic model in Merton's definition of default. However, it is natural to make this 

assumption in the Black-Cox setting. 

In this section, we apply the randomization technique to the Black-Cox model and 

study two different models which have different assumptions on the initial distribution. 

In the following two subsections, the solvency ratio is still assumed to follow Equation 

(2.8). The default time is assumed to be the first passage time defined by Equation 

(2.4). The interest rate and the expected recovery rate are assumed to be constant 

and the credit spreads are calculated using Equation (2.6). 

2.6.1 Randomized Black-Cox I (RBC-1) 

In this RBC-I model, we make the following assumption about X 0 

• RBC-I Assumption on X0 : assume the pdf of X 0 is given by Equation (2.9). 
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The probability of default P(T < T) can be calculated through 

P(T < T) = lE[P(T < TIXo)J, (2.21) 

where P(T < TIXo = x0 ) is given by Equation (2.5). The following Proposition gives 

an explicit expression of the default probability. 

Proposition 2.6.1. For the RBC-I model, the default probability has the following 

expression 

P(T < T) 

UQ )

y'u~+u2T 
(2.22) 

Moreover, we have4 

lim P(T < T) = 2af(O;yo,ao) (2.23) 
T->+O ..fl' .,/'Fff 

This Proposition implies that P(T < T) has an order of ..fl', as T --+ +0. For 

constant LG D assumption, the short spread in the RBC-I model becomes infinity. 

Similar to the RM-I, the RBC-1 model is inappropriate for modeling the short spread. 

Different choices of the distribution of the initial state X 0 will yield different order of 

convergence for P(T < T), as T--+ +0. The next session provides a better alternative. 

2.6.2 Randomized Black-Cox II (RBC-11) 

In this RBC-11 model, we propose the following distribution for X0 : 

4The Right Hand Side (RHS) of Equation (2.23) is exactly twice of the RHS of Equation (2.16). 

This implies that the ratio of the first passage default probability and the Merton's default probability 

is 2 when T ---+ +O, see Yi (2006) for a discussion. 
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• RBC-II Assumption on X0: its pdf f(x0 ; a, v0 , ao) is assumed to be 

4>(xo;a+vo,uo)-e-2avo/u~4>(xo;vo-a,uo) if Xo ~ 0cI>(a+vo)-e-2avo/u~cI>(v0 -a)f ( Xo; a, Vo, <70 ) = "O "O (2.24) 
{ 0 if Xo < 0 


where a0 > 0 and a> lvol· 


Direct integration shows that f(x0 ; a, v0 , a 0) is indeed a valid pdf. Figure 2.5 shows an 

example of the pdf. 
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Figure 2.5: Probability Density Function f(x0 ; a, v0 , a 0 ) with parameters a = 0.4, 

Vo= 0.1 and ao = 0.3. 

The motivation of this distribution is that the conditional first passage probability 

P(t < T < TIT > t) can be written as an integral of a pdf which has a form of 

f(x0 ; a, v0 , a0 ) defined above. Using Lemmas 2.5.2 and 2.5.3, the explicit formula for 

P(T < T) and its asymptotics (as T-+ +0) are given by the following Proposition. 

Proposition 2.6.2. For the RBC-II model, the default probability has the following 
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expression 

P(r < T) = A+ B - C - D ' 
q> ( a!:o) _ c2avo/u5q> ( vff~a) 

where 

A = q> (-a + Vo + µT a + Vo ) 
. I 2 ' 'p '2 
v a0 + a2T ao 


2 2
B = q> (-a+ Vo - 2µag/a - µT a+ Vo - 2µag/a ) e2µ,2u5/u4_2µ,(a+vo)/u2
2 . I 2 2T ' 'p 	 ,v a0 +a 	 ao 

.m. ( Vo - a + µT Vo - a ) _2avo/u20C = '±'2 - -- p e 
Jag + a2T ' ao ' ' 


2 2

D = q> (-Vo - a - 2µa5/a - µT Vo - a - 2µag/a ) e2µ,2u5/u4-2avo/u5-2µ,(vo-a)/u2

2 
. I 2 2T ' 'p 	 ' ya0 +a 	 ao 

Moreover, we have 

lim P(r < T) 

T->+0 T 
 q> ( a!:o) _ e-2avo/u5 q> ( v~~a) 

= 	 a28f(xo; a, vo, ao) I 
2 8xo xo=O· 

The above Proposition ensures positive intensity for the RBC-II model. Conse­

quently, positive short spreads are generated in the RBC-II model. Note that we have 

obtained an equivalent expression of the intensity as in Duffie & Lando (2001). In 

their model, the log of asset value follows drifted BM with a constant initial value z0 : 

Zt = zo+mt+aWt. The default timer is defined to be r := inf{s > 0: Zs= O}. Con­

sider fixed time t > 0, assume the only information available is 1tt := {l{'T>s} : s ~ t}. 

Conditional on r > t, Zt has a conditional density /(-) which is bounded and has 

bounded derivative with f(O) = 0 and f'(O) is defined from the right. Duffie & Lando 

(2001) stated that, the default intensity >. := limh_,+0 P(t < r ~ t + hlr > t)/h, is 

given by !a2 J'(O). However, in their model, there is perfect information at time zero 
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and they can only establish the existence of an intensity for t > 0. By randomizing 

the initial value of the solvency ratio, the RBC-II model avoids this difficulty. 

Example 2.6.1. When µ/r5 2 = v0/r5J. 


In this case, the probability of default is reduced to 


4> (- a+vo+ T ) + e-2aµju2 4> (- a-vo-µT ) _ 4> (-!!±!!!!.) _ 24> (~)e-2aµ/u
u2T+u~ v'u2T+u~ uo uo 

P(r < T) = --------~---.,....----'-----,--.,.....--------
4> ( a!~o) _c2avo/u~4> ( v~~a) 

where 4>2 functions disappear and only 4> functions are involved. The reduction of 

dimensionalities of the integrals can be proved either by Vasicek's expansions, or by 

separation of integration techniques. 
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Figure 2.6: Term structure of credit spreads of RBC-II model for varying a: µ 

-0.0417, r5 = 0.2030, v0 = 0.2402, r5o = 0.2162 and l = l. 

Figures 2.6 and 2.7 show that the TSCS increases as a or v0 decreases. Since for 

smaller a or v0 , the initial distribution of X0 has more mass close to zero. It is therefore 

more likelly to default which in turn implies higher credit spreads. Figure 2.8 shows 
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Figure 2.9: RBC-11 short spread as a function of a, v0 , u0 and u. 

that the credit spread does not depend on u0 in a monotonic way. For some maturities 

the credit spread increases with u0 while it may decrease with u0 for other maturities. 

Figure 2.9 shows the short spread as a function of parameters a, v0 , u0 and u. The 

short spread increases as a decreases, or v0 decreases or u increases. As similar to the 

RM-II model, the short spread of the RBC-11 model first increases to a maximum and 

then decreases, as u0 increases from zero. This maximum achieved at some u0 which 

can be solved by setting 8CS(+0)/8u0 = 0. 
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2.7 	 Delayed Information vs. Randomized Struc­

ture Model 

Randomization of the initial value in the RS model may look awkward at first glance. 

This section gives a natural construction of the RS model through delayed information. 

2.7.1 	 Delayed Information vs. RM-II 

Assume the solvency ratio Xt is given by Equation (2.3) with constant initial value 

X 0 = x0 . Let time t be the current time and T be a future time. Let E be a small 

positive number. At the current time t, we assume two sets of information available. 

First, we assume Xt > 0. Second, Xt is not observed, but the delayed solvency 

ratio Xt-e = a is realized at time t. Then, conditional on Xt-e = a, we have Xt "' 

N(a + µE, a 2E). This is because 

The conditional default probability can be calculated through 

P(Xr < OIXt > O,Xt-e =a) = P(Xr < 0, -Xt ~ OIXt-e =a) 
P(-Xt < OIXt-e =a)

4> ( a+µ T-t+e a+Jl ______YJ:__)
2 - u 	 T-t+E ' u E '-~ 

4>(~) 
This is equivalent to the RM-II model if we set y0 = a+ µE and a0 = aJE. This 

construction suggests that uncertainty about the current solvency ratio may come from 

the delayed realization of the solvency ratio. The longer the observation is delayed (i.e. 

for larger E), the more uncertainty is the current solvency ratio (i.e. larger a0 ). The 

short spread derived from this construction becomes 
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The short spread derived from this delayed information depends on the drift parameter 

µthrough y0 • This is because y0 is a linear function ofµ. Figure 2.10 shows that the 

short spread increases as a orµ decreases, or er or E increases. This indicates that the 

longer the information is delayed, the higher the short spread. 
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2.7 .2 Delayed Information vs. RBC-11 

This delayed information approach can easily be extended to first passage models, 

where the default time T is defined as in Equation (2.4). As before, Xt denotes the 

solvency ratio process which we assume has stationary increments. At the current time 

t, we assume the following information is available. First, default has not happened 

up to now, namely T > t is known. Second, at current time t, we can only observe 

the path of the solvency ratio up to a previous time t - E, particulary Xt-f = a > 0 

is realized at time t but Xt is not. Let Ft-f denote the filtration generated by the 

solvency ratio process up to time t - E. Then, the default time for a given future time 

T > t can be calculated through 

P(t < T < TIFt-f) 
P(T > t!Ft-f) 

P(E < T < T- t +EjX0 =a)
= P(T > EjX0 =a) 

P(T < T- t + EjX0 =a) - P(T < EjX0 =a) 
(2.25)

1 - P(T < E!Xo =a) 

The above formula can be calculated explicitly if P(T < EjX0 = a) has an explicit 

expression. The default intensity is then given by 

At= 8P(T < 'f"/ +EjX0 = a)/8TJl11=o (2.26)
P(T>EIXo=a) . 

Note that the numerator is exactly the pdf of the first passage time taking value at E. 

We thus have obtained positive intensities through delayed information. 

Consider the case when Xt is a drifted BM. We know that P(T < EjX0 =a) has 

explicit formula given by Equation (2.5). Then the default probability is given by 

2q> ( ~) _ e-2aµ/u q> ( ~) 
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This is equivalent to the RBC-II model discussed in Example 2.6.1 with vo = µf. and 

a5 = a 2E. These parameter constraints satisfy µ/a2 = v0/a5. The default intensity At 

has the following elegant expression: 

(2.27) 

Note that this construction only makes sense when t > E > 0, since ;::_€ is not well­

defined here. We can therefore only establish the existence of an intensity for t > 0 

through the construction of delayed information. The Duffie-Lando approach is thus 

equivalent to the delayed information approach. 

2.8 Mean-reverting Solvency Ratio (MRSR) 

In previous models, we assumed that the solvency ratio follows a drifted BM. Many 

researchers propose that the solvency ratio is more likely to be mean-reverting, such as 

Collin-Dufresne & Goldstein (2001). Next, we consider the case when the solvency ratio 

is modeled by an Ornstein-Uhlenbeck (OU) process (under the risk-neutral measure) 

given by 

(2.28) 

with random initial value X0 • In the following two subsections, we assume that Xt is 

given by Equation (2.28). 

2.8.1 RM-II with MRSR 

In this section we make the following assumptions about default time and the distri­

bution of X0 : 

• Default time: the firm defaults at time T, when XT < 0. 
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• Distribution of Xo: its pdf f (x0 ; y0 , ao) is given by Equation (2.9). 

For fixed T, Xr is normal with mean µx and variance a; given by 

(2.29) 

(2.30) 

Similarly, we can derive the PD, LGD, and CS. We state the following propositions 

without proofs. 

Proposition 2.8.1. In this RM-II with MRSR model, the PD(T), RR(T) and CS(T) 

have the fallowing representations 

<1>2(-µx/ax, Yo/ao, p)
PD(T) 

<P(yo/ao) 

<1>2(-µx/O"x - O"x, Yo/ao - PO"x, p)eµx+~u~
RR(T) 

<1>2(-µx/O"x, Yo/ao, p) 

1 (<P(yo/ao)-A+ Beµ,,+~"~)CS(T) = -T log <P(yo/ao) ' 

where µx, ax are given in equations (2.29-2.30} and 

A = <1>2(-µx/ax, Yo/ao, p), 

B = <1>2(-µx/ax - O"x,Yo/ao - PO"x,p). 

Moreover, we have 

1
. PD(T)Im _ _,....._ 

T-++0 VT 
af (O; yo, ao) 

y'2; 

lim LGD(T) 
T-++0 VT 

a.J'i;
-4-, 

lim CS(T)
T-++O 

= a2f (O; Yo, ao) 
4 
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Corollary 2.8.2. In this RM-II with MRSR, we have 

lim PD(T) = 
uo-++0 

lim RR(T)
uo-++O 

Note that this short spread is exactly the same as in the original RM-II model. This 

tells us that the short spread does not directly depend on the drift of the solvency ratio. 

When T is sufficient large, XT will be normal with mean approximately equal to (} > 0. 

Hence, the default probability will converge to a positive constant which is larger than 

1/2 and less than 1. As a result, PD* LGD can never converge to 1 as T -t +oo. 

This eventually leads CS to zero, as T -t +oo. It therefore results in a hump-shaped 

TSCS. 

2.8.2 RBC-11 with MRSR 

In this RBC-II with MRSR model, we need two assumptions from the original RBC-II 

model. 

• Default time T: is defined by Equation (2.4). 

• Distribution of X0: is given by Equation (2.24). 

This model generalizes Collin-Dufresne & Goldstein (2001). However, we lose ana­

lytical tractability due to the complexity of the first passage time density of an OU 

process. 

Therefore, we propose to use the delayed information construction. The probability 

of default and the default intensity are given by Equations (2.25) and (2.26). The pdf 
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of the first passage time of an OU process is needed to calculate these equations ex­

plicitly. Thanks to Alili, Patie & Pedersen (2005), three semi-explicit representations 

of the first passage time density of an OU process are available: the series expan­

sion representation, the integral representation and the Bessel bridge representation. 5 

Collin-Dufresne & Goldstein (2001) also provided an efficient numerical scheme to cal­

culate the first passage time probability of an OU process by utilizing Fortet's lemma. 

Lemma 2.8.3. Collin-Dufresne and Goldstein (2001): Discretize time into n 

equal intervals, and define date t3 = jT/n := jb.t, for j E (1, 2, ... , n). Let Xt be an 

OU process defined in Equation (2.28). Default time r is defined in Equation {2.4). 

The default probability P(r < TIXo = x0) can be calculated through: 

j 

P(r < t3IX0 = xo) = L:qi, j = 2,3, ... ,n 
i=l 

<P(ai)
qi = <P(b(1/2))' 

qi = [<!>(a;) - ~ q;<i>(b;-;+l/2)l/<i>(b(1/2))' 

M(ib.t) L(ib.t)
ai = i = 2,3, ... ,n

S(ib.t) ' bi= S(ib.t)' 

M(t) x0e-•.:t + 0(1 - e-•.:t), 

L(t) = 0(1 - e-i.:t), 
2 

S2(t) = ;K (1 - e-2i.:t). 

As T --t +oo, we can see from Equation (2.6), under the assumption of a constant 

interest rate and constant LG D (assume less than 1), the long term spread will even­

tually go to zero. Although, Collin-Dufresne & Goldstein (2001) showed an upward 

5Full explicit representation for the first passage density of an OU process is available only when 

the barrier coincides with the asymptotic mean of the OU process. In this case, the cdf of the first 

passage time admits an even simpler representation as discussed in Yi (2006). 
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sloping TSCS in their paper for the time span from 0 to 20 years, the TSCS is in fact 

hump-shaped when extending the spreads over longer maturities, such as 50 years. 

We conclude that the mean-reverting solvency ratio can not make the asymptotic long 

term spreads higher. 6 

2.9 Calibration Exercise 

In this section, we demonstrate the incomplete information effects on TSCS by fitting 

the theoretical CS in both the RM-II model and the RBC-II model to the observed 

CDS spread curve. A thorough investigation of an optimal calibration procedure is 

beyond the scope of this paper. 

In the RM-II model, the parameters of interest are µ, a, y0 and a0 • In the RBC-II 

model, the parameters of interest areµ, a, a, v0 and a0 . In this calibration exercise, 

we set the LGD = 1 for the RBC-II model and the Black-Cox model. 

For comparison, we also fit the Merton's CS and the Black-Cox's CS to the market 

data. The parameters of interest in both the Merton and the Black-Cox models are 

µ,a and y0 . However, in fact, only two parameters need to be calibrated in Merton's 

model because µ and a are related through r = µ + 0.5a2 , where the short rate r is 

proxied by the 1-month U.S Treasury yield. Parameters are calibrated by minimizing 

the cross-sectional Mean Absolute Error (MAE). 

We take the CDS curve of Ford Motor Corp. on March 16, 2007, with 0.25-, 1-, 2-, 

3-, 4-, 5-, 7-, and 10-year maturities.7 The short rater is taken to be 5.18%, which is 

6In practice, the longest time to maturity we are interested in is 30-year. For certain parameters, 

we can generate TSCS which is upward sloping in the range of 0 to 30-year. Even Merton's model 

can do this. 
7The 3-month CDS is not directly available from Bloomberg. It is interpolated from its nearest 

two points available, namely 1-year and 2-year CDS data. 
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the 1-month U.S Treasury yield on March 16, 2007. 

Figures 2.11 and 2.12 show the calibrated results. It can be seen from the picture 

that both RM-II and RBC-II models outperform the classical structural models in 

fitting the CDS spreads, especially for short maturities. We also find that the RBC­

II model fits better than the RM-II model. In fact, the MAE for the RBC-II, the 

RM-II, the Black-Cox and the Merton's model are 7 bps, 15 bps, 68bps and 30 bps 

respectively. For the short end maturities, such as 3-month, both Merton's and Black­

Cox's spreads are close to zero (0.3709 bps and 4bps respectively), but catering for 

incomplete information allows the RM-II and RBC-II to generate a positive value of 

83.327 bps and 89 bps respectively. 

The calibrated parameters are illustrated in Table 2.1. Note that µ + 0.5a2 is 

negative (-0.1033) in the RM-II model, which does not represent the interest rate. 
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Figure 2.11: RM-II model vs. Merton model fit to Ford Motor CDS curve on March 

16, 2007. 
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Figure 2.12: RBC-11 model vs. Black-Cox model fit to Ford Motor CDS curve on 

March 16, 2007. 

Model µ a Yo Vo a II MAE (bps) I 

Merton -0.2449 0.7703 1.4852 30 

RM-II -0.1432 0.2825 0.4926 0.2045 15 

Black-Cox -0.3220 0.6288 1.9588 68 

RBC-II -0.0417 0.2030 0.2162 0.2402 0.4615 7 

Table 2.1: Calibrated parameters for the three models. 

2.10 Summary 

Motivated by Merton's model, we proposed to treat the solvency ratio directly as the 

risk factor. Based on the classical structural models, we then proposed to randomize 

the initial value of the solvency ratio to take account of imperfect information. We 

have mainly looked at four different RS models, which cover two types of definition of 

default and different assumptions on the initial randomization. 

44 




From the RM-II and the RBC-II models, we found that positive short spreads 

can be produced due to imperfect observation on the solvency ratio. We also found 

that various shapes of the term structure of credit spreads can be generated. The 

PD, the LGD and the CS are given in explicit formulae for both models, which have 

explicit expressions for their short spreads. In the RM-II model, we found that both 

PD(T)/.../T and LGD(T)/VT converge to positive constants as T --t +0. The default 

intensity is thus not defined in the RM-II model, but positive short spreads can still 

be produced. In the RBC-II model, we found that PD(r < T)/T converges to a 

positive constant. Therefore, the default intensity does exist in the RBC-II model and 

it generates positive short spreads under the assumption of constant LGD. 

Merton's model becomes a special case of the RM-II model while the Black-Cox 

model is a special case of the RBC-II model. Numerical analysis and a calibration 

exercise illustrate that the randomized structural models outperforms the classical 

structural model in fitting the term structure of credit spreads, especially for short 

maturities. These two RS models generalize the classical structural models in two 

folds. First, instead of modeling the asset value and debt separately, we modeled the 

solvency ratio directly as a drifted BM. Second, imperfect information is considered 

and positive short spreads are generated. From the RM-I and the RBC-I, we also 

noticed that the short spread may become infinity if the random initial distribution 

has too much mass close to the default barrier. 

We next provided a delayed information perspective on the RS models. The models 

constructed through delayed information are special cases in our general RS models in 

two ways. First, number of parameters are reduced due to some parameter constrains. 

Second, positive short spreads can be generated for only t > 0. 

We finally studied two alternative models whose solvency ratio is modeled as a 

mean-reverting process. We found that the mean-reverting effect does not affect the 

short end of the TSCS. However, the long term spread of these alternative models is 
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found to converge to zero when T tends to infinity. 

2.11 Appendix I 

• 	 Proof of Proposition 2.5.1: 


From Equations (2.9-2.12), we have 


1 1+00
PD(T) = 'P(yo/ao) P(XT < OIXo = xo)<P(xo; Yo, ao)dx0 

0 

1 1+oo ( x0 + µT)
'P(yo/ao) 'P - a../T <P(xo; Yo, ao)dxo,

0 

ip 	 (- •+~ ~ q )2 ~u~+u2T' ITO' ~ 

'P(yo/ao) 

r+oo exo+µT+!u2Tcp (-xo+µ,T+u2T) ,;..(x . y CT )dxJo 	 .,.JT '+' o, o, o o 
RR(T) 

'P(yo/ao)PD(T) 

eYo+µT+!(u~+u2T) r+oo cp (- xo+µT+u2T) ,;..(X • y + (12 CT )dxJo .,.JT '+' o, 0 O' 0 0 

'P(yo/ ao)P D(T) 

We have used Lemma 2.5.2 for the last steps of each calculation. Then the 

formula for CS(T) comes in handy. For the asymptotics, Equation (2.16) is a 

direct result from Lemma 2.5.3. Note that LGD(T) = 1 - RR(T), Equation 

(2.17) is obtained by applying Lemma 2.5.3 to 1 - RR(T). Equation (2.18) is a 

direct result of Equations (2.16) and (2.17). 

• 	 Proof of Lemma 2.5.2: 

The Left Hand Side (LHS) of Equation 2.19 is the probability that both X and Y 

are less than zero, i.e. P(X < 0, Y < 0). We can also calculate this probability 
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by conditioning 

For the second step, we have used the fact that X is still normally distributed 

conditional on Y = y, i.e. XIY = y"" N(ypax/ay - µypax/ay + µx, ax0-{ft). 

• Proof of Lemma 2.5.3: 

From Lemma 2.5.2, the LHS of Equation (2.20) can be written as 

1 1+00 ( x + µT) -cx-y~>2LHS = ~ e 2"o dx 

~ o av'T 


2av'T f,+oo (zuVT-µT-y 0 ) 

= ~ ~(-z)e 2"5 dz 
µ./T/u 

f,
+oo -2yozuVT+O(T) 

aVT</J(O; Yo, ao) ~(-z)e 2"5 dz 
µ./T/u 

aVT</J(O; Yo, ao) f+oo ~(-z)[l + YozaVT /a5 + O(T)]dz 
}µ./T/u 

--+ a</J(O; Yo, ao)v'T + Yoa2¢(0; Yo, ao)T + O(T3f2) . 
../2i 4a5 

For the last step, we have used the following two equalities 

1
00+ 1 r+oo 1 
~(-z)dz = -, Jo z~(-z)dz = 4. 

0 ..j2i 

• Proof of Proposition 2.6.1: 
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Recall that P(T < TIXo = x0 ) is given by Equation (2.5), we have 

Lemma 2.5.2 is used for the last step. From Lemma 2.5.3, we have 

. P(T < T)
1Im--=-­

T-++O VT 
2a¢(0; Yo, ao) 
./2iif>(yo/ao). 

• Proof of Proposition 2.6.2 

00 

P(T < T) P(T < TIXo = xo)f(xo; a, Vo, ao)dxo1:
A+B-C-D 

<p ( a~:o) _e-2av0/u~<p ( v~~a) ' 
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where A, B, C and D are given by 

A 

B 

c 

D = 

Note that B and D can also be written as 

*1+oo cI> ( x:-:;;.T) ¢(xo; a+ Vo - 2µu5/u2, uo)dxo, 

D e-2avo/u~-2µ(vo-a)/u2+2µ2u~/u4 

1
00 

Xo - µ 	 2 2* + cl> ( - uv'rT) 4>(xo;vo - a - 2µu0 /u , uo)dxo. 
0 

Explicit expressions for A, B, C and D are finally obtained by invoking Lemma 

2.5.2. The asymptotic equation of P(T < T) is obtained by using Lemma 2.5.3 

and the following identities: 

¢(0; a+ vo, uo) 	 ¢(0; Vo - a, O"o)e-2avo/u~ 


e2µ2uUu4-2µ(a+vo)/u2 ¢(0; a+ Vo - 2µu5f u2, O"o) 


e2µ2uUu4-2avo/u~-2µ(vo-a)/u2¢(0; Vo - a - 2µu5f 0"2' O"o). 
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Chapter 3 

Inverse CIR and Semi-affine 

Intensity-based Models 

In the previous chapter, the interest rate is assumed to be a constant and credit 

spreads are derived by modeling the solvency ratio. In this chapter, we assume that 

the interest rate r(t) is an iCIR process and model the short spread directly as a 

nonnegative process correlated with the short rate. This section assumes constant 

Recovery of Market Value (RMV) under the Duffie-Singleton framework, 

see Duffie & Singleton (1999). In Section 3.1, we give a brief introduction of our 

motivation and the model. In Section 3.2, we study the CIR and the iCIR processes 

and recall some elementary results from Ahn & Gao (1999). In Section 3.3, we model 

the interest rate as an iCIR process, and assume a two-factor model for the short 

spread. In Section 3.4, both default-free and defaultable zero coupon bond prices are 

given in explicit formulae. In Section 3.5, we focus on the correlation structure among 

short spreads of different firms, and the correlation structure between each firm's short 

spreads and the default-free interest rates. In Section 3.6, some numerical analysis is 

provided. Calibration issues are discussed in Section 3.7. In Section 3.8, we discuss an 
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extension of our model. Section 3.9 summarizes this chapter. All proofs are given in 

the appendix of this chapter. 

3.1 Introduction 

The CIR process was first introduced and used to model the default-free interest rate 

by Cox, Ingersoll & Ross (1985). Since then, it has received great attention by both 

academic researchers and industrial practitioners. The CIR process has become so 

popular because it is the simplest nonnegative process which admits an affine term 

structure of bond pricing formulae. However, the empirical study by Pearson & Sun 

(1994) rejected CIR as a good candidate for describing the Treasury market. Duan 

& Simonato (1999) also provided support in favor of rejection. In order to capture 

the general shapes of the yield curves, two additional CIR factors may be needed as 

suggested by Chen & Scott (2003). Although multi-factor models are generally better 

than single factor models for the default-free interest rate, the expense is the addition 

of too many parameters. 

Chan, Karolyi, Longstaff & Sanders (1992) assumed that the volatility of the short 

rate is a power function of the form ur(t)P. Their estimation of the volatility is very 

accurate and their results strongly suggest that (3 = 1.5 instead of simply 0.5 (i.e. the 

square root). Without specifying the parametric form of the short rate process r(t), 

econometricians, such as Ait-Sahalia (1996a), Ait-Sahalia (1996b) and Stanton (1997), 

applied nonparametric techniques to estimate the drift and diffusion as a function of 

the short rate. Their findings suggest that the drift is non-linear in r(t). Moreover, they 

also find that the volatility is proportional to r(t)l.5 , which is similar to that estimated 

by Chan et al. (1992). Inspired by these findings, Ahn & Gao (1999) proposed a non­

affine model where the diffusion of the short rate is proportional to r(t)i.5 and the 

drift is quadratic in r(t). It turns out that their model is the same as an inverse of the 
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CIR process. Their empirical studies also show that the iCIR model outperforms the 

one-factor affine type models in fitting the default-free yield curves. 

The CIR process has been widely used in the literature of credit risk as well, ever 

since Lando (1998) and Duffie & Singleton (1999) built the foundations for intensity­

based approach to credit risk. Duffee (1999) empirically estimated a model with two 

CIR factors for the short rate process r(t) and three CIR factors for the hazard rate 

process hi(t) for firm j, i.e. 

r(t) = -1 + X1(t) + X2(t), 

hi(t) = ai + f31,jX1(t) + f32,jX2(t) + }j(t), 

where Xi(t), i = 1, 2 and }j(t), j = 1, .. ., n are independent CIR factors, and ai, {3i,j 

are constants. He found that most f3i,j are negative. As a consequence, the interest 

rate and the hazard rate are found to be negatively correlated, which is consistent 

with most empirical findings, such as Longstaff & Schwartz (1995). However, negative 

coefficients are problematic. First, there is a positive probability that the hazard rate 

process hi(t) will go below zero, which is counterfactual. Second, if all the {3i,j are 

negative, the correlations between any two firms' hazard rates can only be positive, 

which is too restrictive. In order to have the nonnegativity property of hazard rates 

for this model, we have to impose nonnegative coefficients. But, if all f3i,i are positive, 

neither the negative correlation between interest rates and hazard rates is captured, 

nor can this model produce a rich correlation structure among hazard rates. This well 

known dilemma is not only for this model, but it is faced by all classical factor models, 

as discussed by Schonbucher (2003) and Duffie & Singleton (2003). 

A good model should be able to reflect realistic properties as much as possible, 

while maintaining analytical tractability. For a good intensity-based factor model, we 

would like the following realistic properties to be satisfied. 

• Nonnegativity: interest rates and short spreads should be nonnegative. 
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• 	Rich Correlation Structure: first, interest rates and short spreads should be neg­

atively correlated in most cases as suggested in the empirical literature; second, 

both negative and positive correlations among different firms should be possible. 

• 	Analytical Tractability: the pricing formulae should admit explicit expressions 

for both default-free and defaultable bonds. 

In this paper, we propose a parsimonious model which is flexible enough to produce 

rich correlation structures among short spreads of differerent firms, while satisfying 

nonnegativity conditions. Following Ahn & Gao (1999), we model the interest rate 

r(t) as an iCIR process. We then extend Ahn & Gao (1999) to a two-factor model for 

the short spread. More specifically, we model the short spread as a linear combination 

of the interest rate, the inverse of the interest rate and another idiosyncratic CIR 

factor. The coefficients of the interest rate and the short spread are imposed to be 

nonnegative, in order to maintain the nonnegativity property. Our model is then 

able to generate rich correlation structures among short spreads of different firms, 

while capturing the empirical fact that interest rates and short spreads are negatively 

correlated in most cases. This model remedies the deficiency for affine intensity-based 

factor models, which can only produce very restrictive correlation structures among 

short spreads of different firms. The pricing formulae of default-free and defaultable 

bonds are non-affine, but are obtained in explicit forms using the recent findings of 

stochastic integrals by Hurd & Kuznetsov (2006). 

3.2 CIR and iCIR 

We start with some simple facts about the CIR process and its inverse. Let X(t) be a 

CIR process, starting at X(O) = x0 > 0 , specified as 

dX(t) =(a - bX(t))dt + cJX{t)dW(t), 	 (3.1) 
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3.2 

where a, b, care positive constants and W(t) is standard Brownian motion. We denote 

this CIR process as CIR(a,b,c,x0 ). The conditional and unconditional means and 

variances are well known and are given by 

a a bt ()IEX(t)[l ;;+(x0 -;;)e-, 
a 

IE[X] = b' (3.3) 

ac? c? a -bt c? a _2bt )
Var [X(t)] b2 + b(x0 - ;;)e + b( b - xo)e , (3.42 2

ac?
Var[X] = (3.5)2b2 ' 

The CIR process X(t) has unattainable boundaries if and only if a~ ~c?. Given this 

condition, the iCIR process, Y(t) will be well defined through 

1 
(3.6)Y(t) = X(t). 

Ito's formula implies that Y(t), starting from Y(O) := y0 = ..!., has the followingxo 

dynamics 

dY(t) = [b - (a - c2 )Y(t)]Y(t)dt - cY(t)i.5dW(t). (3.7) 

Ahn & Gao (1999) used this iCIR process to model the default-free interest rate. 

They provided the necessary and sufficient conditions for iCIR to have stationarity 

and unattainability of the boundaries. These conditions require that a > c2 and b > 0, 

which in turn implies that the original CIR has unattainable boundaries. Ahn & 

Gao (1999) also derived the iCIR's conditional density as well as all the conditional 

and unconditional moments. We write the conditional and unconditional means and 

variances as follows, which will be needed later. 
r-,te-Ut 

JE[Y(t)] --M(q, 1 +q,ut), (3.8)
q 
2b

JE[Y] (3.9)
2a - c2' 
([e-Ut [M(q-l,l+q,ut) - e-UtM(q,l+q,ut)2

]'Var[Y(t)] (3.10)
q q-l q 

2b2c?
Var[Y] (3.11)

(a - c2)(2a - c2)2 ' 
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where 

2b 
(t = c2 (1 - e-bt)' 

(Ut = tXoe-bt ' 
2a _ 1 q = c2 ' 

and M(·, ·, ·) is the confluent hypergeometric function, which can be represented as 

hypergeometric series or integral form 

a a(a+l)z2 

M(a, b, z) = 1 + bz + b(b + l) 2! + ... 

f(b) {1 eztta-l(l - t)b-a-ldt. 
f(b - a)f(a) }0 

Following Ahn & Gao (1999), we will model the default-free interest rate as an iCIR 

process, as seen in next section. 

3.3 Semi-affine Intensity-based Model 

In this section, all the dynamics specified are under the physical measure. The default­

free interest rate, r(t), and the short spread h3(t), for firm j,j = 1, ... , n, are specified 

as follows: 1 

r(t) Y'(t), (3.12) 

h3(t) = a3X(t) + {33Y'(t) + X3(t), (3.13) 

where 0:3, {33, j = 1, ... , n, are nonnegative constants, and X3(t) are independent 

CIR(a3, b3, c3,:i{), j = 1, ... , n, i.e. 

(3.14) 

1Alternatively, one can assume constant recovery of the market value as in Duffie & Singleton 

(1999), and then model the hazard rate. Here, we model the product of loss given default and the 

hazard rate directly. 
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where ai, bi, Cj are nonnegative constants, and Wi(t) are standard BM. We also 

assume independence between X(t) and Xj(t), for all j. Therefore, Xi(t) denotes the 

idiosyncratic factor for firm j. Since all the coefficients are nonnegative and the CIR 

processes are nonnegative, this implies that the interest rate r(t) and the short spread 

hj(t) are all nonnegative. 

If ai > 0 and f3J > 0, from the definition of hi(t), we see that hi(t) 2'.: 2..;aJJ"j, 

which puts a lower bound for the short spreads. Considering that the interest rates are 

small, say around 5%, X(t) will be very big, comparatively speaking, say magnitude 

of 20. The short spread hi(t) is also very small in reality, say 10 basis points for a 

BBB company. This reality implies that ai will be very small. For considerable /3j, 

the lower bound of hi(t) will be a very small positive number. Lower bounded short 

spreads implied from this model are not unrealistic at all. The fact that any company 

might default in the next infinitesimal time requires a premium in order to compensate 

for this risk. 

Note that the short spreads specified in our model have three components, although 

only two CIR factors are used for each firm. The only common factor that is shared 

by every company is the economic systematic factor X (t), which is the inverse of the 

interest rate process. Our model is significantly different from others in factor-model 

literature, because the common factors are shared in different ways. In traditional 

factor models, the short spreads only depend linearly on the common factor, such as 

Duffie & Singleton (1999), Duffee (1999), Duffie & Liu (2001), Schonbucher {2003), 

to mention a few. In our model, the short spreads not only depend linearly on the 

common factor, but also depend linearly on the inverse of the common factor. As a 

consequence, an increase of the common factor X (t), will have two folded influences on 

the short spreads, given positive coefficients /3i and ai. Increasing X(t) will increase 

the first component of hi(t), but the second component will be decreased. This feature 

adds more flexibility to generate rich correlation structures among the short spreads 
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of different firms. We will save this discussion for Section 3.5. 

We list some simple facts about the mean and variances of h3(t) and X3(t) as 

follows for later use. 

IE[h3(t)] = a31E[X(t)] + ,831E[Y(t)] + IE[X3(t)], (3.15) 

IE[h3] = a3JE[X] + ,831E[Y] + IE[X3], (3.16) 

Var[h3(t)] a]Var[X(t)] + 2a3,B3(l - IE[X(t)]IE[Y(t)]) (3.17) 

+,BJVar[Y(t)] + Var[X3(t)], (3.18) 

where E[X(t)],IE[X], Var[X(t)], Var[X],IE[Y(t)],IE[Y], Var[Y(t)], Var[Y] are given in 

equations (3.2-3.5) and equations (3.8-3.11) respectively, and IE[X3(t)] and Var[X3(t)] 

are the mean and variance of CIR(a3, bi, c3, xio). 

3.4 Bond Prices 

The previous section completes our specification of a two-factor model for a multi­

firm setup, under the physical measure. In this section, we provide the formulae for 

computing zero coupon bond prices for both default-free and defaultable bonds. In 

order to do so, we need to change the measure to the risk-neutral measure Q. 

Assume that, under the risk-neutral measure Q, there exist some constants Ai, A2, 

and ,\{, ,\t j = 1, ... , n, such that W(t) and W3(t), for j = 1, ... , n are independent 

Q-Brownian motions, given by 

W(t) 
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This implies that, under the risk-neutral measure Q, the dynamics of X(t) and Xj(t) 

can be written as 

dX(t) [(a - ,\1 ) - (b + ,\2)X(t)]dt + cJX(t)dW(t), (3.20) 

dXi(t) = [(ai - ,\{) - (bi+ ,\~)Xj(t)]dt + cijX;WdWi(t). (3.21) 

In order to procure the equivalence of the two measures, the following conditions are 

required: ,\1 <a - ~c2, .X{ < ai - ~c], ,\2 > -band,\~ > -bi. Our market price of 

risk specification precludes arbitrage opportunities, see Cheridito, Filipovic & Kimmel 

(2007) for a disscussion. 

Using Ito's formula, the Q-dynamics for the iCIR process, Y(t), can be written as 

dY(t) = [(b + ,\2) - (a - ,\1 - c2)Y(t)]Y(t)dt - cY(t)i.5dW(t). (3.22) 

In order for this to be well defined, the unattainable boundary conditions require that 

A1<a-c2. 

Recall from Duffie & Singleton (1999), the price for a default-free zero coupon 

bond, P(t, T), and the price for a defaultable zero coupon bond, Pi(t, T), for firm j, 

can be calculated through 

P(t, T) = E~ [exp (- [T r(s)ds)], 

Pi(t, T) = E~ [exp (-1T r(s) + hi(s)ds)] . 

The following propositions give explicit formulae for computing these bond prices. 

Proposition 3.4.1. Assume that the default-free interest rate r(t) is specified as in 

equation (3.12}. The risk-neutral dynamics for factor X(t) is specified in equation 

2(3.20), such that a > c , b > 0, c > 0, ,\1 < a - c2 and ,\2 > -b. At time t, assume 

X(t) = Xt = 1/rt. The time t value, P(t, T), for a default-free T-bond is then given by 

P(t, T) = cCIR(a-)q,b+>.2 ,c>(t, T, Xt, 0, 1), (3.23) 
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where the function GCIR(a,b,c)(t, T, Xt, l 1, h) associated with Xt,..., CIR(a, b, c) is given 

by 

(3.24) 

The explicit formula for the G function is given in the appendix. This formula is 

also derived in Ahn & Gao (1999) using the PDE approach. 

Proposition 3.4.2. Assume that the short spreads hi(t) for firm j are modeled as 

in equation (3.13). The risk-neutral dynamics of factors X(t), Xi(t), are specified 

in equations (3.20-3.21}, such that a > c?, b > 0, c > 0, ai > 0, bi > 0, ci > 0, 

Ai< a-c?, A2 > -b, A{< ai- ~Sand A~> -bi, ai ~ 0, (3i ~ O, for j = l, ... ,n. At 

time t, assume X (t) = Xt and Xi (t) = x{. The time t value, Pj (t, T), for a defaultable 

T-bond of firm j is then given by 

Pj(t, T) = 	 cCIR(a->.i,b+>.2,c)(t, T, Xi, O'.j, 1 + (3j) 

xGCIR(a;->.{,b;+>.~,c;)(t, T, x{, 1, 0) (3.25) 

Proposition 3.4.2 states that the defaultable bond prices can be evaluated as a 

product of two acrn{-,-,)(·, ·, ·, ·, ·) functions. The first one is a function of the common 

factor Xt and it does not depend on the idiosyncratic factor x{. The second one is 

a function of the idiosyncratic factor x{ and it is independent of the common factor 

Xt. From the proof of Proposition 3.4.2 in the appendix, it is easy to see that the last 

QCIR{-,·,)(·, ·, ·, ·, ·) function in equation (3.25) has a well known affine term structure 

in zj, 
cCIR(a;->.{,b;+~,c;)(t T x{ 1 0) =A ·(t T)e-B;(t,T)x{ (3.26)

' ' t' ' J ' ' 
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where 

= ( 2ry3exp{(T-t)(b3+-X4+7J3)/2} )2a3/c~ 
(b3 + -X4 + ry3)(exp{(T - t)ry3} - 1) + 2ry3 

2(exp{(T - t)ry3} - 1) 

Proposition 3.4.2 provides an explicit formula for computing defaultable zero coupon 

bond prices. Since coupon bonds can be expressed as linear combinations of zero 

coupon bonds, we can also obtain an explicit formula for computing defaultable coupon 

bond prices. Calculating bond prices is reduced to computing QCIR(·,.,.)(·, ·, ·, ·, ·) func­

tions, which involves confluent hypergeometric functions. 

The yields to maturity for the default-free bond, R(xt, t, T), the yields to maturity 

for the defaultable bond, R3(xt, zj, t, T), and the credit spreads for the defaultable 

bond C S3(Xt, x!, t, T), for j = 1, ... , n, are defined respectively as follows 

logP(t, T) 
T-t 

log P3(t, T)
R3(xt,zj, t, T) 

T-t 
CS3(xt, zj, t, T) R3(Xt,zj, t, T) - R(xt, t, T). 

Applying Propositions 3.4.1 and 3.4.2 and equation (3.26) we obtain 

= __1_ [logGCIR(a-.\1,b+.\2,c)(t TX 0 1)] (3.27)T-t ' ' t, ' ' 

1= --- [logGCIR(a-,\1,b+.\2,c)(t TX a· f.I. + 1)
T-t ' ' t, 3 'tJ3 

+log A3(t, T) - B3(t, T)zj] , (3.28) 

__l_ [logGCIR(a-.\i,b+.\2,c)(t TX a· f.I. + 1)
T - t ' ' ti 3 ' /JJ 

- log GCIR(a-.\i,b+.\2,c)(t, T, Xt, 0, 1) 

(3.29) 
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As we can see from the formula for function GCIR(·,-,-)(·, ·, ·, ·, ·), the yields to matu­

rity, R(xt, t, T), for default-free bonds are non-affine in Xt· Similarly for defaultable 

bonds, the yields Ri(xt, zj, t, T) are non-affine in Xt· However, both Rj(Xt, zj, t, T) 

and csj (Xt' zj' t, T) are affine in the idiosyncratic factors zj' as indicated from the 

above equations. We say that this intensity-based model is semi-affine. This semi­

affine property is very important when it comes to the calibration issue, which we will 

discuss in later sections. 

3.5 Correlation Structure 

In this section, we focus on the correlations between short spreads and interest rates, 

and the correlations among the short spreads of different firms. Both conditional 

(conditional on the initial state) and unconditional (stationary state) correlations are 

studied. Rich correlation structures are generated, while nonnegative interest rates 

and nonnegative short spreads are maintained. 

3.5.1 Correlation of r(t) and hj(t) 

Most empirical studies, such as Longstaff & Schwartz (1995), Duffee (1999) and Collin­

Dufresne et al. (2001), find that the default-free interest rate r(t) and the credit spread 

hi(t) are negatively correlated. Our model is flexible enough to allow both negative 

and positive correlations between r(t) and hi(t). We first give a heuristic argument. 

Referring to equations (3.12-3.13), the correlations between r(t) and hi(t) are solely 

determined by the coefficients ai and /3j. Considering an extreme case when ai = 0 

and /3j > 0, then the correlation between r(t) and hi(t) is clearly positive. On the 

other hand, when /3i = 0 and ai > 0, r(t) will be negatively correlated with hi(t), 

since X(t) and Y(t) are negatively correlated. 
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Next, let us give a quantitative analysis of the correlation structure. The covariance 

of r(t) and hi(t) can be directly calculated through (conditional on time zero) 

Cov[r(t), hi(t)] = ai(l - E[X(t)]E[Y(t)]) + /3i Var[Y(t)], (3.30) 

where E[X(t)], E[Y(t)] and Var[Y(t)] are given in equations (3.2-3.5) and equations 

(3.8-3.11). As time t ---t +oo, the covariance Cov[r(t), hi(t)] will converge asymptoti­

cally to the unconditional covariance 

(3.31) 

where E[X], E[Y] and Var[Y] are given in equations (3.2-3.5) and equations (3.8-3.11). 

This can be simplified into 

c2 
Cov[r, hi] = 2 (D2/3j - ai). (3.32)

2a-c 

where 

(3.33) 


Recall that a > c2, therefore, both 2a - c? and a - c2 are positive, which implies that 

D2 > 0. The sign of the asymptotic correlation of r and hi is hence determined by the 

sign of D2/3j - ai. If ai = /3jD2, then Cov[r, hi] = O; if ai > /3jD2, then Cov[r, hi] < O; 

if ai < /3iD2, then Cov[r, hi] > 0. Since empirical findings suggest that the interest 

rate and short spreads are mostly negatively correlated, we expect to have most of the 

cases that ai > /3iD2. 

The correlation coefficient of r(t) and hi(t), Pi(t), and its asymptotic limit Pi, can 

thus be calculated by 

.­
Cov[r(t), hi(t)] 

y'Var[Y(t)]Var[hi(t)]' 
(3.34) 

Pi .­
Cov[r,hi] 

y'Var[Y]Var[hiJ' 
(3.35) 

where Cov[r(t), hi(t)] and Cov[r, hi] are given in equations (3.30) and (3.31) respec­

tively. 
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3.5.2 Correlation of hi(t) and hj(t) 

The short spreads hi (t) and hi (t), for different firms i and j, can be positively or 

negatively correlated as well. As in the previous section, a similar heuristic argument 

can be given for the correlation between hi(t) and hi(t). Recall the following equations, 

for if. j, 

hi(t) = aiX(t) + f3iY(t) + Xi(t), 

hi(t) = aiX(t) + {3iY(t) + Xi(t). 

The correlation between hi(t) and hi(t) is solely determined by ai, ai, f3i and f3i· 

Consider an extreme case when ai = ai = 0 and f3i > 0, {3i > 0 (or ai > 0, ai > 0 and 

f3i = {3i = 0), the correlation between hi(t) and hi(t) will be positive. On the other 

hand, when ai = {3i = 0 and f3i > 0, ai > 0 (or ai = f3i = 0 and {3i > 0, ai > 0 ), hi(t) 

will be negatively correlated with hj(t), since X(t) and Y(t) are negatively correlated. 

The covariance of hi(t) and hi(t), Cov[hi(t), hi(t)] can be expressed as (conditional 

on time zero) 

Cov[hi(t), hi(t)] = 	 aiaiVar[X(t)] + f3if3iVar[Y(t)] 

+(aif3i + aif3i)(l - IE[X(t)]IE[Y(t)]), (3.36) 

where Var[X(t)], Var[Y(t)], IE[X(t)] and IE[Y(t)] are given in previous sections. As 

t -+ +oo, the above equation tends to the unconditional covariance 

which can also be written as 
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This expression will be very useful for calibration of O'.j and {3i, if we believe that the 

observed time series of r(t), hi(t) and hi(t) are stationary. Some simple algebra will 

lead to an explicit expression of Cov[hi, hi] as follows 

Cov[hi,hi] = 2a~c2 [a.i (~ -{3i) +f3i(D2{33 -aj)], (3.38) 

where D2 is given in equation (3.33) and D1 is defined as 

2b2 

D1= . (3.39)
a(2a - c2) 

It is easy to see that D2 > D 1 > 0, given that a > c2. 

The correlation coefficient of hi(t) and hj(t), Pii(t), and its asymptotic limit, Pii 

can thus be calculated by 

(3.40) 

(3.41) 

where Cov[hi(t), hi(t)] and Cov[hi, hi] are given in equations (3.36) and (3.38) respec­

tively, and Var[hj(t)] and Var[hj], for j = 1, ... , n, are given by 

Var[hi(t)] = a.JVar[X(t)] + f3JVar[Y(t)] + 2a.i{3i(l -1E[X(t)]JE[Y(t)]) + Var[Xi(t)], 

Var[hi] = a.JVar[X] + f3JVar[Y] + 2a.i{3i(l -1E[X]JE[Y]) + Var[Xil· 

All of these formulae can be written in explicit forms. 

The correlations we have discussed so far are under the physical measure. Similar 

arguments will follow if we consider the correlations under the risk-neutral measure. 

The formulae for Cov[r(t), hj(t)] and Cov[hi(t), hj(t)], under the risk-neutral measure, 

will be the same as in equations (3.30) and (3.36) respectively, with a replaced by 

a - .X1 and b replaced by b + .X2. The formulae for Pi(t) and Pii(t), under the risk­

neutral measure will be the same as in equations (3.34) and (3.40), with a, b, ai and 

bi replaced by a - .X1, b+ .X2, ai - .X{ and bi+ .X~ respectively. 
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3.6 Numerical Illustration 

Figure 3.1 plots the time series of U.S. 5-year treasury yields versus the 5-year Financial 

Sector CDS spreads of AA-rated, which are daily market data taken from Bloomberg 

from the same period: March 4, 2002 to August 30, 2006. It can be seen from the 

graph that the 5-year treasury yield went down first from March 2002 and then went 

up from October 2003 and continued the upward trend to August 2006. The 5-year 

CDS spread behaved in an inverse pattern: it went up first and then went down. The 

statistical correlation coefficient in Figure 3.1 is calculated as if the two time series 

have reached a stationary state. The calculated number -0.5741 only serves as an 

estimate from the two time series. The accuracy of the estimate may be questioned, 

but what is more important is a strong negative correlation is presented. 2 

a b c Xo ai bi C1 xi
0 a1 /31 .A1 .A2 _Al1 .A~ 

3.09 0.13 1.3 18 0.006 3 0.002 0.001 0.0001 0.002 0 0 0 0 

Table 3.1: Base Case Parameters for Simulation. 

Figure 3.2 shows simulated sample paths of the interest rate and the short spread 

processes using parameters given in table 3.1.3 It is clear from the graph that the simu­

lated interest rate process is negatively correlated with the short spread process, hence 

mimicking the real observed time series shown in Figure 3.1. This is not surprising, be­

cause for the base case parameters, we can easily deduce that D2 /31 = 1.0754 x 10-5 < 

a 1 = 0.0001. To quantify this negative correlation, Figure 3.3 plots the correlation 

coefficient of r(t) and h1 (t) from equations (3.34) and (3.35). We see that the strength 

2Treasury yield time series are available for maturities 1/12, 3/12, 6/12 1, 2, 3, 5, 7, 10, and 

20-year. Financial AA CDS time series are available for maturities 1, 3, 5 and 10-year. These time 

series show a similar fashion as in Figure 3.1. The reason we choose 5-year data for illustration is 

because the the 5-year CDS has best liquidity. 
3As recommended by Alfonsi (2005), the explicit discretization scheme was used to simulate CIR 

processes. 
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of the negative correlation diminishes gradually to the asymptotic correlation as time 

progresses. 
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Figure 3.1: Time series of 5-year Treasury yield vs. time series of 5-year CDS spreads 

(daily) of Financial Sector, AA-rated. Dates: March 4, 2002 to August 30, 2006. 

Resources: Bloomberg. The statistical correlation coeffcient between the two time 

series is -0.5741. 

Figure 3.4 shows the term structure of treasury yields, corporate yields and credit 

spreads with base case parameters. The term structure of treasury yields and corporate 

yields are hump-shaped for the base case parameters and the term structure of credit 

spreads is upward sloping. However, various shapes of these term structures could be 

generated using different parameters, including flat, humped, upward and downward. 
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Figure 3.2: Simulated Sample Paths of the Interest Rate and the Short Spread Pro­

cesses with Base Case Parameters. 
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Figure 3.3: Correlation Coefficients of Interest Rates and Short Spreads with Base 

Case Parameters. 
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Figure 3.4: Simulated 'freasury Yields Curve, Corporate Yields Curve and Credit 

Spreads Curve (at time 0) with Base Case Parameters. 

3.7 Calibration Issues 

Despite the elegant mathematics of our model, it is unfortunately the case that the 

calibration has proved to be difficult. In this section, we outline our proposed method 

and give possible reasons why we were unable to complete it. 

We propose a two-step calibation of our model by using the Extended Kalman Filter 

(EKF) in conjunction with the Quasi-Maximum Likelihood Estimation (QMLE).4 The 

first step is to calibrate the iCIR interest rate process to observed 'freasury yield time 

series with different maturities. The measurement equation of the EKF is given by 

Equation 3.27. Since the 'freasury yield is non-affine in the iCIR-factor, linearization 

of the measurement equation is needed for the EKF scheme. The transition equation 

for the EKF is obtained by discretizing the iCIR SDE given by Equation 3.7. Assume 

4The readers are directed to Duffee (1999), Chen & Scott (2003), Duan & Simonato (1999) and 

Yi (2005) for more information on EKF and QMLE. 
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that we have backed out the parameters in the iCIR interest rate model and have 

filtered out the time series of the interest rate in the first step. Therefore, parameters 

a, b, c, A1 and A2 , and the time series of the common factor X(t) are known in step 

two. 

In the second step, for each company j, the short spread process can be calibrated 

by using the Kalman Filter (KF) combined with QMLE. The measurement equation 

of the KF is given by Equation (3.28) or (3.29). The transition equation is obtained 

by discretizing the CIR SDE given by Equation 3.14. As we have discussed, both the 

corporate yields Ri(xt, x{, t, T) and the credit spreads CSj(Xt, x{, t, T) are affine in the 

idiosyncratic factor Xi(t). Hence, the standard KF can be used. The parameters ai, 

bj, Cj, A{, At O'j and {3i are obtained from step two. The time series of the idiosyncratic 

factor Xi(t) are filtered out from this step as well. 

A number of difficulties were encountered when we empirically implemented the 

EKF and QMLE scheme for the first step. These difficulties possibly come from 

the following reasons. First, since the linearization of the measurement equation is 

a first order Taylor approximation of a very complicated function, the accuracy of 

the approximation should be questioned. Second, the innovations in the transition 

equation are non-Gaussian, where the standard KF requires Gaussian innovations. 

This condition is violated for both CIR and iCIR models. Duan & Simonato (1999) 

claimed that QMLE is still a consistent way to estimate parameters for the CIR interest 

rate model. However, we are not clear if this is the case for the iCIR interest rate model. 

Another major obstacle is computing the hypergeometric function for different 

parameters for hundreds of times (in both steps). Although this function is a Matlab 

built-in function, that algorithm is not able to calculate for certain input parameters. 

A better numerical approximation of the hypergeometric function may be needed, 

which is beyond the scope of this paper. 
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3.8 Extension of the Model 

We have considered a model where r(t) is assumed to be a one factor iCIR process 

and the short spread hj(t) is assumed to be a two factor model. However, this model 

is not restrictive and it can be easily generalized to a model which has three or more 

factors. 

The interest rate and the short spreads could be modeled as multi-CIR-factor, or 

multi-iCIR-factor, or even linear combinations of CIR and iCIR factors. Negative 

correlations between the interest rate and the short spread are generated through the 

common CIR factor (factors) and its (their) inverse(s). 

It can be proved that, if Cov[r, hi] < 0 and Cov[r, hi] < 0, then Cov[hi, hi] > 0 

for the semi-affine intensity-based model we have discussed. However, in reality, the 

short spreads of two firms are not necessarily positively correlated given that they are 

both negatively correlated with the interest rate. To the author's best knowledge, the 

extant factor models in the literature are not able to incorporate this feature without 

violating the nonnegativity property. However, our model can easily be adjusted to 

do so by adding one additional CIR factor to the short spread as follows: 

1
r(t) 

X(t)' 

where Pi, qi are nonnegative constants and H(t) is an independent CIR(ah,bh, 1) with 

ah > 1 and bh > 0. The factor H(t) is thus shared by all the firms, but not by the 

interest rate. The correlations between hi(t) and hj(t) are thus determined not only by 

ai, ai, /3i and /3i, but also Pi, Pi• qi and qi. To see that Cov[r, hi] < 0, Cov[r, hi] < 0 

and Cov[hi, hi] < 0 can coexist for the model specified above, let us consider the 

following example. Consider two firms i and j, assume that /3i = /3i = Pi = qi = 0 and 
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PJ > 0, Qi > 0. Therefore 

1 ­
= aiX(t) +Qi H(t) + Xi(t), 

aiX(t) +PiH(t) + Xi(t). 

It is obvious that both hi(t) and hi(t) are negatively correlated with the interest rate 

r(t). In this case, the covariance of hi(t) and h1(t), Cov[hi(t), hj(t)], can be written as 

1 
Cov[hi(t), h1(t)] = aiajVar[X(t)] +QiPiCov[H(t), H(t)]. 

Since Cov[H~t), H(t)] < 0, negative Cov[hi(t), hj(t)] can be obtained by choosing suf­

ficiently large product of Qi and Pi· 

The present work of this paper could thus be regarded more as a framework of 

multi-factor models which can generate rich correlation structures and maintain non­

negativity rather than a simply the illustrative model we have discussed in previous 

sections. 

3.9 Summary 

In this chapter, we have introduced the iCIR process to the literature of intensity-based 

factor models on credit risk. In this framework, the short spread for each firm not only 

depends on the common factor, but also depends on the inverse of the common factor. 

By doing this, we added much flexibility of correlation structures among the interest 

rates and the short spreads, and among the short spreads of different firms, while both 

the interest rates and the short spreads remain nonnegative. 

The pricing formulae of both the default-free and defaultable bonds were derived 

in explicit forms by utilizing the recent findings of stochastic integrals by Hurd & 

Kuznetsov (2006). The term structure of the credit spreads are non-affine in the 

common factor, but are affine in the idiosyncratic factor. This allows us to use the KF 
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and QMLE to conduct the calibration of the short spread process, once the interest 

rate process is fitted. The affine intensity-based modeling is thus extended to a more 

general semi-affine family. 

Numerical illustrations showed that our model is able to generate various shapes of 

the term structure of credit spreads which are consistent with the empirical findings. 

In addition, we were able to generate negatively correlated time series of interest rates 

and short spreads, without violating the nonnegativity property, mimicking the real 

observations as seen in Figure 3.1. 

3.10 Appendix II 

Lemma 3.10.1. {Hurd & Kuznetsov (2006}} Let X(t) be a CIR process given by 

equation {3.1}. Let CIR{a,b,c) denote this process with parameters a, b, c. Assume that 

X(t) = Xt and it has unattainable boundaries. Define function QCIR(a,b,c)(t, T, Xt, l 1 , h) 

associated with this CIR{a,b,c) as follows 

cCIR(a,b,c)(t,T,xt,li,l2) =Et [exp (- iT(liX(s) + xl(s))ds)]' 

where li, h are constants. Then, the function cCIR(a,b,c)(t, T, Xt, li, l2) admits explicit 

expression given by 
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where 

b - JlJ2 + 2lic2 

c2 
2J(2a - c2)2 + 8l2c2 - (2a - c ) 

2c2 

-y(t, T) = 
c2(1 - exp{-(T ­ t)Jb2 + 2lic2})' 

Xt"((t, T) 2 exp{-(T - t)Jb2 + 2lic2 }
y(xt, t, T) 

Vi+ -y(t, T) 

Please refer to Hurd & Kuznetsov (2006) for the proof. 

• 	Proof of Proposition 3.4.1: From equation (3.23), the default-free zero coupon 

bond price, P(t, T), can also be written as 

where the Q-dynamics of X(t) is given by equation (3.20). The second step 

comes from invoking the above lemma. 

• 	 Proof of Proposition 3.4.2: According to equation (3.23), applying equa­

tions (3.12) and (3.13), the defaultable zero coupon bond price, P3(t, T), can be 

calculated as 

P3(t, T) = JE~ [exp (-1T(X~s) + a3X(s) + {33X~s) + X3(s))ds)] 

IB:iQ [exp (-1T(a3X(s) + ~~~3 )ds)] JE~ [exp (-1T X3(s)ds)] 

= cCIR(a->.i,b+>.2,c)(t T x "'. 1 + /3·)
' ' t, u.3, J 

For the second step, we utilized the fact that X 3(t) are independent of X(t), for 

j = 1, ... , n. The last step follows by invoking the above lemma. 
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Chapter 4 

Hybrid Credit Risk Models 

The models discussed in previous chapters are designed to manage or price credit 

derivatives only. In this chapter, we propose a new jump-to-default model, which can 

price both credit and equity derivatives in a unified framework. In Section 4.1, we 

give an introduction of related literature and our motivation. In Section 4.2, we derive 

some functional forms of equity volatility from the structural credit risk modeling 

literature. Our new jump-to-default model is then described in Section 4.3. In Section 

4.4, we discuss pricing of both credit and equity derivatives. Section 4.5 studies the 

Dual-Jacobi process, which is related to the pre-default stock price. In Section 4.6, the 

Gram-Charlier expansion is u~ed to approximate call and bond prices. Some numerical 

analyses are provided in Section 4. 7. In Section 4.8, we discuss an extension of our 

model. Section 4.9 summarizes this chapter. All proofs are given in the appendix of 

this chapter. 
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4.1 Introduction 

Classical structural models of credit risk start from modeling the dynamics of firm 

asset value as a discounted martingale under the risk-neutral measure, such as Merton 

(1974), Black & Cox (1976) and Leland (1994). The equity and defaultable bonds 

are then priced under this discounted martingale assumption on the asset value. In 

reality, common stocks rather than the firm's assets are publicly traded and hence 

should be considered to be a discounted martingale under the risk-neutral measure. 

This alternative approach, recently taken by Linetsky (2006) and Carr & Linetsky 

(2006), is to directly model the stock price as a risk-neutral discounted martingale. 

Credit risk is incorporated in this equity modeling approach by assuming that the 

stock price St at time t can jump to zero with an intensity h(St), which is assumed to 

be a function of St. 

Linetsky (2006) considered a constant volatility model with the hazard rate chosen 

to be a negative power function of the stock price. The pre-default stock price St under 

the risk-neutral measure is thus assumed to follow: 1 

(4.1) 


(4.2) 

with initial value S0 at time t = 0, where Wt denotes a standard BM. The constant r 

denotes the default-free interest rate, and a, p and u are positive constants. 

Let ~ denote the bankruptcy state when the firm defaults at time T. Then we can 

also write the dynamics for the stock price subject to bankruptcy Sf as follows: 

dSf = st_ [rdt + udWt - dMt], 

1Linetsky (2006) and Carr & Linetsky (2006) also assumed a dividend yield q, which we set to 

zero here for simplicity. 
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where 

is a martingale. 

Note that the hazard rate function goes to infinity as the stock price approaches 

zero. Unbounded intensity kills the pre-default process almost surely by a jump­

to-default instead of diffusing down to zero. The valuations of corporate liabilities 

and equity derivatives are then reduced to evaluation of the following risk-neutral 

expectations 

{4.3) 


where 'ljJ is any payoff function. Proposition 2.1 in Linetsky {2006) states that 

{4.4) 


where t is the expectation with respect to a new probability measure P under which 

Wt := Wt - at is a standard BM. Under the new measure P, the dynamics of the 

stock prices St has the same form as in equation ( 4.1), with r replaced by r + a 2 • The 

SDE of the stock price has an explicit transition density representation solved by a 

change of variables Z := SP. This closed form transition density is closely related to the 

Bessel process as discussed in Appendix B of Linetsky {2006). The pricing formulae for 

defaultable bonds, European puts, and European calls can thus be derived explicitly 

based on the known distribution of St under the P measure. The firm's asset value is 

not of interest and is therefore not discussed in this paper. 

Carr & Linetsky {2006) extended Linetsky's model by combining a jump-to-default 

model with CEV models. The pre-default stock price is assumed to have the following 

dynamics 

S -{3 
a t ' 

{4.5) 


{4.6) 


{4.7) 
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where a, b, c and f3 are nonnegative constants. It was found by Carr & Linetsky (2006) 

that the process specified in equation ( 4.5) can be represented as a re-scaled and time­

changed power of a Bessel process. The valuations of corporate liabilities, credit quality 

derivatives, and equity derivatives are then reduced to calculating expectations of a 

known function of a standard Bessel process evaluated at a changed time. 

The choices of functions h(St) and a(St) specified in equations (4.6) and (4.7) cap­

ture a positive relationship between the default intensity and the equity volatility, and 

the leverage effect between volatility and stock prices. A good property of their choice 

is that analytical tractability of the formulae is obtained. Theoretically speaking, one 

can generalize Carr & Linetsky (2006) by assuming different functional forms of h(St) 

and a(St)· However, not all functional forms of h(St) and a(St) will be economical 

appealing and mathematical attractive. A disadvantage of the CEV models is that the 

equity volatility will vanish to zero as the stock price approaches infinity. As a result, 

CEV models may not be appropriate to describe the stock dynamics of companies with 

high equity but low debt (i.e. low financial leverage). This fact motivates us to search 

for better alternatives. 

4.2 	 Implied Equity Volatility from Structual Credit 

Literature 
• 

We now explore some implied functional forms of a(St) found in the structural credit 

literature. Particularly, we are interested in the form implied by Leland (1994) and 

Leland & Toft (1996). Structural modeling approach on credit risk goes back to Merton 

(1974). Before we move on to Leland (1994), let us first look at Merton's implied equity 

volatility. 
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4.2.1 Merton (1974) 

Merton (1974) assumes that the firm's asset value V follows a GBM under the risk­

neutral measure with interest rate r as its drift and volatility u. Under Merton's 

assumption, the equity of the firm E can be evaluated as a call option on the asset 

value V, with the debt value K as the strike price and the debt maturity T as the 

maturity of the call option. The equity value is hence given by the celebrated Black­

Scholes formula 

(4.8) 


where <I>(·) stands for the cumulative distribution function ( cdf) of a standard normal 

random variable and d± are given by 

d _ log jf + (r ± ~u2)(T - t) 
± - uJT- t . 

The Black-Scholes-Merton equation can also be written in terms of asset, equity and 

debt as follows 

If we assume that equity follows the dynamics given by the following equation 

then the equity drift µE and the equity volatility <7E can be recovered by applying Ito's 

lemma to equation (4.8). It is not surprising that µE turns out to be the default-free 

interest rate r. The equity volatility <7E satisfies the following equation, 

(4.9) 


which is also derived in Hull, Nelken & White (2004). The equity volatility <7E can 

thus be regarded as a function of E implicitly solved from equation (4.8) and (4.9). 

As seen in Figure 4.1, these two equations imply that the equity volatility <7E goes to 

infinity as the equity E approaches zero, and tends to the asset volatility u as E goes 
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to infinity. Figure 4.1 demonstrates that equity volatility O"E is bounded below by the 

asset volatility O". The implied equity volatility is found to be a decreasing function of 

maturity T. This implied local volatility should not be confused with Dupire's implied 

local volatility. Dupire (1994) derived the famous implied local volatility equation 

from arbitrage arguments on pricing options on the stock without considering default 

risk. The local volatility obtained here is derived from Merton (1974) credit structural 

model, without considering pricing options on the equity. 

10 
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Figure 4.1: Local equity volatility implied from Merton (1974) as a function of equity. 

The x-axis denotes the equity-debt ratio, E / K. The y-axis denotes the normalized 

equity volatility, O"E / O". 

4.2.2 Leland (1994) and Leland-Toft (1996) 

This section shows that the implied equity local volatility from Leland (1994) behaves 

like a power decay function of equity, while bounded below by the asset volatility. 
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Leland (1994) introduced the concept of endogenous bankruptcy by maximizing 

the equity value of the firm, whose debt promises a perpetual coupon payment C. As 

in Merton (1974), he started with the assumption that the asset value of the firm V 

is a GBM with drift of interest rater and volatility a under the risk-neutral measure. 

Tax benefits of debt financing allow the firm to deduct a fraction T of the coupon 

payments as long as it is solvent. The firm will suffer from a bankruptcy cost aVB 

when its asset value first hits the bankruptcy level VB. The value of the equity, E, is 

then derived by the formula that the equity equals the asset value V plus tax benefits 

minus bankruptcy cost and minus the debt.2 This yields equation (13) in Leland 

(1994), which is 

(4.10) 

where X = 2r/a2
, b = (1-T)C/r. The optimal bankruptcy level VB is then determined 

endogenously by solving the smooth-pasting condition: dE(V)/dV lv=vB= 0, which 

gives 

VB= (1-T)C. (4.11) 
r + 0.5a2 

The equity E(V) as a function of the asset value is thus obtained explicitly by plugging 

the optimal VB into equation (4.10), which yields 

E(V) = V +av-x -b, (4.12) 

where a is given by 
~+ixx 

(4.13)a= (X + l)X+l. 

However, Leland (1994) did not address the dynamics of the equity E and left the 

unanswered question of whether the firm's asset is a traded asset.3 We answer this 

question here by analysing the stochastic dynamics of the equity. Applying Ito's lemma 

2We will assume constant total number of shares, N. The equity E equals total number of shares 

times the stock prices, i.e. E =NS. 
3See footnote 11 on page 1217 of Leland (1994) 
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to E(V), we obtain the following SDE for E 

where µE and aE denote the drift and volatility respectively, which solve the following 

equations 

b 
µE = r(l + E)' (4.14) 

E+l = E&E+(EO-E/X+E+l)-x, (4.15) 

where E and 0-E are normalized equity and normalized volatility of the equity respec­

tively, which are defined as E = E/b, (TE := aE/a. Note that the drift µE is always 

bigger than the interest rate r unless the firm has full tax benefits, namely T = 1. 

It turns out that E + b is a discounted martingale under the risk-neutral measure, 

but Eis not. This contradicts the fact that stocks are commonly traded in the mar­

ket. This non-martingale property mainly comes from the assumption of the constant 

perpetual debt services. Similarly, we can show that the equity is not a discounted 

martingale in Leland & Toft (1996), where they assume stationary debt structure with 

finite maturity. 

Nevertheless, we are interested in the implied equity volatility a E as a function of 

equity itself implicitly solved from eqution (4.15). Particularly, when X = 1 (same as 

r = 0.5a2
), we can obtain an explicit formula for <lE given by 

(4.16) 


The above local volatility function has very broad financial implications. First, the 

equity volatility is always bigger than the asset volatility, which echoes the arguments 

in Merton (1974) that the equity of a levered firm must be at least as risky as the 

firm's asset. Second, the equity volatility is a decreasing function of the equity value, 

which is known as leverage effect discussed in Black (1976). More precisely, the equity 
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volatility is a decreasing function of the equity/ debt ratio, considering that b denotes 

the total debt service deducted by tax benefits if there is no default. We notice that 

the equity volatility specified in equation ( 4.16) is a power decay function of the equity 

value, which coincides with the power law of CEV models. For CEV models, the local 

volatility is specified as aE-13, where a and (3 are positive numbers. The local volatility 

of CEV models and the implied local volatility in Leland (1994) both go to infinity 

when the equity tends to zero. For small E, the equity volatility specified in equation 

5(4.16) is O(E-0· ). Finally, when equity E tends to infinity, the equity volatility aE 

converges to the asset volatility a. As a consequence, the equity will behave much like 

GBM for large E. This is different from CEV models, because CEV local volatility will 

vanish to zero when equity goes to infinity. The above properties are not only true for 

the special case of aE, but are also true for all the aE implicitly solved from equation 

(4.15) as seen from numerical illustration. Figure 4.2 plots aE as a function of E for 

varying X. The graph demontrates that the equity volatility is an increasing function 

of X, when holding other parameters constant. This implies that stocks are more 

volatile in an economy with low interest rate than in an economy with high interest 

rate. 

We have derived implicit equity local volatility function implied by Leland (1994) in 

this section. This local volatility is found to be bounded below by a positive constant 

which differs from the specification in Carr & Linetsky (2006). 

4.3 A New Jump to Default Model 

Motivated by Carr & Linetsky (2006), we have derived some implied functional forms 

of equity volatility from structural credit literature. In CEV models, when the equity 

is large, the equity volatility approaches zero. The CEV specification of the equity 

volatility is consequently inappropriate for many existing firms with large equity and 
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Figure 4.2: Local equity volatility implied from Leland (1994) as a function of equity. 

The x-axis denotes the normalized equity, E /b. The y-axis denotes the normalized 

equity volatility, uE/u. 

small debt (i.e. low financial leverage). These models predict that firms' equity values 

will grow linearly with almost no volatility for large equity companies. However, most 

high-tech firms, such as the Internet and biotechnology companies, are highly volatile, 

while having almost no debt as pointed out by Chen & Kou (2006). Consequently, the 

Carr-Linetsky model might under price deep in-the-money calls or deep out-of-money 

puts. The implied equity volatility function of Leland (1994) is more realistic, because 

it captures the fact that equity should be at least as risky as the asset value of the 

firm, of which the asset volatility should not be regarded as zero. In this section, 

we propose a new jump-to-default model with equity volatility bounded below by a 

positive constant, which can be regarded as the asset volatility. 

Assume that the pre-default stock price St has the following risk-neutral dynamics 

(4.17) 
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where the constant r denotes the default-free interest rate; a, c, b, and p are positive 

constants. This specification of the pre-default stock price has the form of equation 

(4.5) with volatility and hazard rate functions given by 

a(St) = cJ1 + bSt-v, (4.18) 

h(St) = as;v. (4.19) 

The volatility function a(St) specified in equation (4.18) is bounded below by a pos­

itive constant c. When St is large, a(St) is almost a constant, becoming asymptoti­

cally the case of constant volatility studied in Linetsky (2006). When St is close to 

zero, J1 + bS;v can be approximated as .Jbs;vl2 • Consequently, our model becomes 

asymptotically CEV case studied in Carr & Linetsky (2006) when the company is close 

to default. If we allow b to be zero, then this model is reduced to a constant volatility 

case studied in Linetsky (2006). 

The hazard rate function h(St) is related to the volatility function a(St) through 

the following equation 

h(St) = ~(a
2

~~t) - 1). 

As the stock price increases, the equity volatility declines to constant c and the hazard 

rate approaches zero, making the stock prices asymptotically GBM. The default time 

is defined to be the first jump time of a Cox process with intensity given by the hazard 

rate h(St)· The pricing of equity derivatives can therefore be performed using standard 

reduced-form intensity-based credit risk framework as discussed in Duffie & Singleton 

(1999). 

4.4 Pricing 

Similarly, as in Linetsky (2006), pricing equity derivatives can be reduced to computing 

the expectations of the form in equation (4.3). This simplification is because of the 
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choice of the hazard rate function. Since the hazard rate will go to infinity when the 

stock price vanishes to zero, the pre-default process will be almost surely killed by a 

jump-to-default instead of diffusing to zero. Proposition 2.1 in Linetsky (2006) can be 

generalized as follows: 

Proposition 4.4.1. Assume that the pre-default stock price St has risk-neutral dy­

namics 

starting from S0 > 0 at time t = 0. Then for any payoff function ,,P, the claim price 

can be written: 

(4.20) 

where t is the expectation with respect to a new probability measure P under which 

Wt:= Wt - J~ a(Su)du is a standard Brownian motion and 

(4.21) 

Particularly, for the equity volatility and hazard rate functions given by equations 

(4.18) and (4.19), the new dynamics of the pre-default stock price St can be written 

as 

(4.22) 

which has the same form as in the original measure, but with r replaced by r +c2 and 

a replaced by a + bc2. 

Proposition 4.4.1 can be applied immediately to obtain the pricing formulae for the 

defaultable zero-coupon bond, European calls and European puts. For a zero-coupon 

bond with unit face value, let R denote the constant recovery rate paid at the maturity 

T. A European call option with strike price K has payoff (ST - K)+ at expiration 

date T if there is no default and it has no recovery if the firm defaults before T. A 
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European put option promises a payoff (K - Sr)+ at expiration if no default happens 

and a recovery payment K at expiration in the event of bankruptcy before expiration 

date T. Then, the values of a zero coupon bond, BR(S0 , T), the call, CK(So, T) and 

the put, PK(S0 , T), take the following forms respectively 

BR(So, T) e-rrR + (1 - R)SolE[S.z;1
], (4.23) 

CK(So, T) = SolE[(l - KS,z;1)+], (4.24) 

PK(So, T) SolE[(KST"1 
- 1)+] + K(e-rT - S0JE[S.z;1]). (4.25) 

Note that the put-call parity still holds here 

(4.26) 


When a= 0, the bond becomes a default-free bond which only depends on the interest 

rater and maturity T. When S0 is close to zero, the company is almost in default. As 

a result, the call price and the zero bond with zero recovery will worth almost nothing. 

From the put-call parity, the put price will be close to the discounted value of the 

strike price when S0 is close to zero. For very large S0 , the hazard rate will be very 

small and the equity volatility will be almost a constant. Consequently, the bond price 

will be close to that of a default-free bond and the call price will be close to Black­

Scholes price with parameters of interest rate r and volatility c. In order to obtain 

general explicit expressions for these formulae, we need to study the distribution of 

the pre-default stock price Sr under the hat measure. 

4.5 The Dual-Jacobi Process 

Since the distribution of the pre-default stock price Sr under the hat measure and the 

risk-neutral measure are in the same distribution family, we will consider the format 

in equation ( 4.17) for the sake of simplicity. Let Yt := Sf, where St is specified as in 
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equation (4.17): then the SDE for Yt can be written as follows using Ito's lemma 

This SDE takes the form of equation ( 4.17). Therefore, in order to obtain the distri­

bution of Sr for a general p, it is sufficient to study the case when p = 1. 

Considering the case when p = 1, equation ( 4.17) is simplified into the following 

SDE (we use notation Xt instead of St here for this particular SDE) 

(4.28) 


with initial value X 0 := x 0 > 0 at time t = 0. Note that this process has the form 

resembling a Jacobi process, but in fact it is not. For a Jacobi process, its volatility 

term typically looks like cJbXt - X[, which restrict the process itself to lie in the 

finite interval (0, b).4 In our model, however, the volatility term is cJbXt + Xf and 

the process lies in the half positive domain (0, +oo). We will refer to this SDE as the 

Dual-Jacobi process. 

The strong unique solution of the Dual-Jacobi process is guaranteed by the Yamada 

& Watanabe (1971) theorem.5 This solution is a nonnegative diffusion which, provided 

a> ~c2b has unattainable boundaries on both zero and infinity. When Xt is large, the 

volatility of the Dual-Jacobi process is approximately cXt. Therefore, for large Xi. the 

Dual-Jacobi can be approximated as 

This process has a well-known explicit solution.6 This result allows Linetsky (2006) 

to write a spectral representation of the transition density of their stock dynamics. 

The transition density has both discrete and continuous spectrums which are related 

4It is known as Wright-Fisher diffusion in probability literature, see Feng & Wang (2007) 

5See Karatzas & Shreve (1991), page 291. 

6See Karatzas & Shreve (1991), page 360. 
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to Whittaker functions and Laguerre polynomials. For sufficient large Xt when the 

effect of a can be neglected, we can also think of GBM as a proxy of the Dual-Jacobi 

process. When Xt is small, the volatility of the Dual-Jacobi is approximately c..;;JX;. 

Consequently the Dual-Jacobi can be approximated by a CIR process which follows 

non-central chi-square distribution. However, to the author's best knowledge, no ex­

plicit formula for the transition density has been found for the Dual-Jacobi process. 

One may resort to PDE approach and try to solve numerically. Let f(t,x) denote 

the probability density function (pdf) of Xt at time t. This pdf satisfies the Kolmogorov 

Forward Equation, or Fokker-Planck Equation given by7 

(4.29) 

for x > 0 with initial condition and boundary conditions given by 

f(O, x) = 8(x - xo), 

J(t,O) f(t,+oo) = 0, Vt 2: 0. 

Since f(t, x) is a pdf, it is nonnegative and it also satisfies the integrability condition 

100 

f (t, x)dx = 1, Vt 2'. 0. 

One nice property about Dual-Jacobi SDE is that all its moments can be explicitly 

calculated. The following proposition gives a recursive equation for the moments of 

the Dual-Jacobi process. 

Proposition 4.5.1. Let Xt be a Dual-Jacobi process given by (4.28} with initial value 

Xo = Xo. Let am(t) := E[X;n], m = 0, 1, 2, ... , with ao(t) = 1. Then am(t) for 

7This PDE is closely related to singular Sturm-Liouville problem with semi-infinite domain. 
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m = 1, 2, ... , satisfies the following iterative equation 

am(t) x:;iermt + llm 1t erm(t-s)O!m-1(s)ds, ( 4.30) 

1 
rm .- m[r + 2c2(m - 1)], 

1 
am .- m[a + 2bc2(m - 1)]. 

Explicit formulae for all positive moments can therefore be calculated by direct 

integration or applying Laplace transforms to equation ( 4.30). Particularly, the first 

four moments are given by 

a) rt aa1(t) (x0 + - e - -, 
r r 

a2(t) = (x~ + A2 - B2)er2t - A2ert + B2, 

0!3(t) (x~ + A3 - B3 + C3)erat - A3er2 t + B3ert - C3, 

a4(t) = (x~ + A4 - B4 + C4 - D4)er4t - A4erat + B4er2t - C4ert + D4. 

where 

A = a2(xo + ;) , B2 = aa2,2 
r2 - r rr2 

A3 = a3(x~ + A2 - B2), B3 = a3A2' 03 = a3B2' 

r3 - r2 r3 - r r3 


A a4(x~ + A3 - B3 + C3)' B a4A3 ' a4B3 ' 4 4 = 04 = 
r4 - r3 r4 - r2 r4 - r 

Proposition 4.5.1 motivates us to approximate the pdf of a Dual-Jacobi process by 

using these explicit moments. 

4.6 The Gram-Charlier Approximation 

In this section, we first transform our original stock price dynamics to a Dual-Jacobi 

process. Gram-Chartier Expansions are then used to obtain explicit asymptotic ex­

pansions of both zero coupon bond prices and European call prices. 
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Proposition 4.6.1. Assume that the stock price St has risk-neutral dynamics specified 

in equation (4.17). Let Yi := Sf with Yo := S'&· Then under the hat measure, Yi 

satisfies the following Dual-Jacobi SDE 

dyt = (a+ fYi)dt +cJY? + bytdWt, (4.31) 

1a p[a + 2bc(p + 1)], (4.32) 

1f = p[r + 2c 2 (p + 1)], (4.33) 

c = pc. (4.34) 

This proposition can be shown by applying the hat measure change to SDE (4.27). 

From Proposition 4.5.1, all the moments of Yr under the hat measure are finite and 

have explicit expressions. This fact motivates us to use these finite explicit moments 

to approximate bond and call prices. The zero coupon bond with zero recovery and 

the European call price can thus be expressed as 

Bo(So, T) SolE[Y;11P], (4.35) 

CK(So,T) = SolE[(l - KY;11P)+]. (4.36) 

Jarrow & Rudd (1982) were the first to introduce the Gram-Charlier expansion to the 

quantitative finance literature.8 Ever since, the Gram-Charlier expansion has been 

widely used in option pricing, for example Madan & Milne (1994) and Jondeau & 

Rocldnger (2001) etc. These expansion theories have a very old history in statistics 

literature and they arise from approximating the distribution of a sum of independent 

random variables, see Cramer (1946). 

Let f(y) denote our unknown target pdf with unknown cdf F. Let g(y) denote 

our known base pdf with known cdf G. Let o{ and af denote the i-th moments 

of distribution F and G respectively, for i = 1, 2, 3, .... Assume all these moments 

8Jarrow & Rudd (1982) named Edgeworth series in their paper, but in fact, the series expansions 

they used are Gram-Charlier. 
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are finite and have explicit expressions. Let Kf and Kf denote the i-th cumulants of 

distribution F and G respectively. All Kf and Kf will be known explicitly, since all 

moments are known. The following gives the algebraic relationships between cumulants 

and moments up to the fourth order 

K1 (4.37) 

,,.
"-2 

-­ ,.,, ,.,,2
'-'2 - "'1' 

K3 a3 - 3a2a1 + 2a~, 

K4 a4 - 4a3a1 - 3a~ + 12a2a~ - 6at. 

Let Ei := Kf - Kf. The Gram-Char lier expansion considers the following expression as 

a candidate to approximate the true pdf f(y). 

1 

= (y) - 'f/19 (y) + 'f/29,, (y) - 'f/39"' (y) +f(y) (4.38)9 1! 2! 3! ... , 

where 'f/i, i = 1, 2, ... are given by 

'f/1 = E1, ( 4.39) 

2
'f/2 E2 + E1, 


'f/3 = €3 + 3E2E1 + E~, 


'f/4 = €4 + 4E3E1 + 3E~ + 6E2E~ +Et, 


Jarrow & Rudd (1982) and Cramer (1946) provided a detailed derivation of the above 

algebraic relationships. 

In our case, the target pdf is the pdf of YT under the hat measure. For a given 
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function 'lj;(y), the expectation JE['lj;(Yr )] can be expanded as 

lE['lj;(Yr)] .- 1+oo 'lj;(y)J(y)dy, (4.40) 

1+00 'lj;(y)g(y)dy - i~ 1+00 'lj;(y)g' (y)dy 

'T/2 f +oo II 'T/3 r+OO Ill 
+ 2! Jo 'lj;(y)g (y)dy - 3! Jo 'lj;(y)g (y)dy + ··· 

The zero coupon bond and the European call can be priced using these expansions. 

Different choices of the base pdf will yield different expansions. The base pdf is usually 

chosen to be a normal or log-normal distribution. Considering that Yr is nonnegative, 

it is more appropriate to choose log-normal as the base pdf. 

Proposition 4.6.2. Assume the base pdf g(y) is log-normal with parameters fl and 

0-2 • Then the prices of a zero coupon bond with zero recovery and the European call 

can be expanded as 

'T/1Z1 'TJ'2(l + p)z2 'TJ3(l +p)(l + 2p)z3

Bo(So, T) = Zo - - + 21 2 - 31 3
p .p .p 

'T/4(1 +p)(l + 2p)(l + 3p)z4
+ 4!p4 + ... 

[So<I>(d1) - KOo] + 'T/1K01 - 'T/2 [ So g(KP) + K(l + p)02] (4.41) 
p2p 2! pKP 

'T/3 [_§_ '(KP) So(l + p) (KP) K(l + p)(l + 2p)03]
+ 3! pKPg + (pKP)2 g + p3 


_ 'T/4 [_§_ "(KP) So(l + p) '(KP) So(l + p)(l + 2p) (KP)

4! pKPg + (pKP)2 g + (pKP)3 g 

+ K(l +p)(l ::p)(l + 3p)04] + ... 

where 

-plogK + u 

_ i!.±!!22 •+(l+n{)
2 

,y2 
Zn = S0e v µ. 2v , 

On = Zn<I>(d1 -
1 + npa). 

p 
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For log-normal base pdf, them-th moments are all finite and given by 

With explicit expressions of a:::i and a~, the coefficients 'f/m in the above proposition 

can be computed by equations (4.37) and (4.39). These coeffi.cents depend on the 

model parameters a, r, c, b, p as well as the initial stock price 80 • The following 

lemma will be needed in order to prove the above proposition. 

Lemma 4.6.3. Assume that the random variable X is log normal with parameters µ 

and a2 • Let g(x) denote its pdf. Then, for any real number a and K > 0, the following 

equation holds 

1
2 

+oo 0 ( )d oµ+!o2u2""" (- log K + µ + aa )xgxx=e 2 '±' • 
K a 

Log-normal distributions are determined by two parameters. There are many pos­

sible ways to choose these two parameters, such as matching the first two moments 

of the target distribution. We can also match instantaneous drift and volatility. The 

following are some examples. 

Example 4.6.1. Asymptotic match. 

The base pdf is chosen to be a GBM with drift f and volatility c. The log-normal 

parameters for the base pdf are given by 

1 
p[logS0 + (r + 2c2)T], 

p2c2T. 

The first term for Bo(So, T) becomes the default-free bond price. The first term for 

CK(S0 , T) becomes the Black-Scholes price with no default parameters. The rest of the 

terms are corrections accounting for default possibilties and local volatility effects. 
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Example 4.6.2. Matching the first two moments. 

Parameters P, and fr2 are chosen to match the first two moments of the target distri­

bution. More specifically, these parameters are given by 

P, = 2log[af] - ~ log[af], 

fr2 = log[af] - 2 log[af]. 

This specification allows standard Gram-Charlier expansion as follows 

( ) - f.3 d3g(y) f.4 d4g(y) - f.5 d5g(y)
!(y) -- g y 3! dy3 + 4! dy4 5! dy5 + ... 

Example 4.6.3. Matching instantaneous drift and volatility. 

The base pdf is chosen to be a GBM with drift f + Q.S0P and volatility cJ1 + bS0P. 

The log-normal parameters for the base pdf are then given by 

P, p[log S0 + (r + ~c2)T +(a+ ~bc2)TS0P], 
2fr2 = p c2T(l + bS0P). 

Remark 4.6.1. It is known that the Gram-Charlier expansion is not guaranteed to 

converge. Cramer {1946) has studied the Gram-Charlier expansion when the base pdf 

is standard normal. He showed that if the target pdf f(y) is of bounded vairation 

in (-oo, +oo) and r~:: eY
2
14J(y)dy is convergent, then the Gram-Charlier expansion 

will converge to f(x) in every continuity point of f(y). However, in reality, there is 

only a small class of distributions that will validate the Gram-Charlier expansion. In 

practice, most of these expansions are of the asymptotic type that they will converge 

for a small number of terms and then diverge, see Barndorff-Nielsen & Cox (1989). 

But, this does not mean these expansions will not be useful. Because if a small number 

of terms (usually not more than two or three) suffice to give a good approximation, it 

does not concern us much whether the infinite series is convergent or divergent. On 

the other hand, a convergent series is of little practical value if a large number of terms 

are required to be calculated in order to have a reasonable approximation, see Cramer 

{1946) for a discussion. 
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4.7 Numerical Analysis 

As mentioned in the preceding remark, our expansions are not necessarily convergent. 

However, we will numerically show that a small number of terms suffice to provide 

very good approximations. Numerical examples are used to study the residual errors 

and the price sensitivity to our model parameters. The Gram-Charlier approximation 

is much faster than the finite difference method for pricing securites. We also use 

numerical examples to illustrate implied volatility surface/skew and credit spreads. 

4.7.1 Residual Error and Sensitivity 

In this numerical analysis, we study two Gram-Charlier approximations which are 

decribed in Examples 4.6.2 and 4.6.3. We use three terms for the first approximation 

and four terms for the second approximation. The parameters in Table 4.1 is the 

base case parameters used for comparison study. Since no explicit pricing formulae 

are available, Monte-Carlo prices are used as the benchmark. Prices calculated using 

a numerical PDE approach (implicit finite difference method) are also provided. 

I I r I I b I I So I T I K I R Ia c P 

13.6421 I0.0518 I0.2923123.5930 11.8751 11.551 o.517.551 o.32281 

Table 4.1: Base Case Parameters for Numerical Analysis. 

Table 4.2 illustrates the bond prices for varying parameters. Around 500 points 

per path and 10000 paths are used for one Monte-Carlo price simulation with variance 

reduction techniques. For the finite difference method, the step sizes for the stock 

price and the maturity are $0.5 and 5/2400-year respectively. The first row of prices 

are calculated with the base case parameters given in Table 4.1. The rest of the rows 

are obtained by changing one parameter, while holding the other parameters constant 
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as in the base case. Comparing with Monte-Carlo prices, our approximations are very 

good as seen in "El" and "E2" columns: there are only a few bps difference across 

all our considerations. The Mean Relative Error (MRE), calculated based on the 15 

samples, are around 0.314% and 0.24% for the two approximations respectively. 

Note that our model prices are consistantly smaller than the default-free bond 

prices. This is largely due to none-zero default parameters a and p. When a increases 

or p decreases, the credit quality deteriorates and hence the bond price drops. Our 

model prices will go down when the interest rate r or maturity T increase. When 

the volatility parameter c increases, the bond price will go down to reflect more risk. 

For a larger initial stock price S0 , the bond price will be higher since the company is 

less likely to default. We also find that the bond price is relatively insensitive to the 

parameter b. 

Table 4.3 shows the European call prices for various scenarios. The Black-Scholes 

price in Table 4.3 is calculated by imposing a = b = 0. Our approximations are 

reasonably good compared with the Monte-Carlo price. The MREs for the two ap­

proximation approaches are around 0.3885% and 1.2290% respectively. The call prices 

are found to be under valued by Black-Scholes' formula, compared with our model 

prices. The call prices will go up as interest rate r rises, or volatility c increases, or 

maturity T increases, or the initial stock price S0 becomes higher, or the strike price K 

becomes smaller. This is consistent with the Black-Scholes formula. When a increases 

or p decreases, or b increases, the call prices will go up to compensate for more risks. 
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II DF MC FD Al A2 El E2 

base case 0.9744 0.9468 0.9472 0.9440 0.9454 -0.2957 -0.1479 

a= 4.6421 0.9744 0.9404 0.9404 0.9374 0.9348 -0.3190 -0.5955 

a= 2.6421 0.9744 0.9543 0.9543 0.9508 0.9562 -0.3668 0.1991 

r = 0.0618 0.9696 0.9425 0.9426 0.9394 0.9407 -0.3289 -0.1910 

r = 0.0418 0.9793 0.9513 0.9518 0.9486 0.9502 -0.2838 -0.1156 

c = 0.3923 0.9744 0.9446 0.9451 0.9366 0.9437 -0.8469 -0.0953 

c = 0.1923 0.9744 0.9485 0.9485 0.9478 0.9496 -0.0738 0.1160 

b = 28.593 0.9744 0.9468 0.9470 0.9429 0.9437 -0.4119 -0.3274 

b = 18.593 0.9744 0.9477 0.9474 0.9451 0.9457 -0.2743 -0.2110 

p = 2.0751 0.9744 0.9558 0.9559 0.9553 0.9550 -0.0523 -0.0837 

p = 1.6751 0.9744 0.9344 0.9346 0.9307 0.9313 -0.3960 -0.3318 

T = 1.00 0.9495 0.8968 0.8968 0.8951 0.8938 -0.1896 -0.3345 

T = 0.25 0.9871 0.9732 0.9734 0.9722 0.9723 -0.1028 -0.0925 

So= 8.55 0.9744 0.9526 0.9527 0.9502 0.9514 -0.2519 -0.1260 

So= 6.55 0.9744 0.9394 0.9393 0.9351 0.9367 -0.4577 -0.2874 

R = 0.4228 0.9744 0.9513 0.9512 0.9485 0.9568 -0.2943 0.5782 

R = 0.2228 0.9744 0.9432 0.9432 0.9395 0.9407 -0.3923 -0.2651 

MRE 0.3140 0.2411 

Table 4.2: Zero coupon bond prices. "DF" denotes the default-free price. "MC" 

denotes the Monte-Carlo price. "FD" denotes the finite difference price. "Al" denotes 

the first approximation price. "A2" denotes the second approximation price. The 

relative error (in %) "El" is defined as El:=(Al-MC)/MC. The signed relative error 

(in%) "E2" is defined as E2:=(A2-MC)/MC. "MRE" denotes the mean relative error 

(in %). 
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II BS MC FD Al A2 El E2 

base case 0.7148 0.9881 0.9884 0.9856 0.9836 -0.2530 -0.4554 

a= 4.6421 0.7148 1.0287 1.0249 1.0232 1.0253 -0.5347 -0.3305 

a= 2.6421 0.7148 0.9542 0.9522 0.9484 0.9388 -0.6078 -1.6139 

r = 0.0618 0.7336 1.0100 1.0075 1.0048 1.0008 -0.5149 -0.9109 

r = 0.0418 0.6962 0.9673 0.9694 0.9665 0.9625 -0.0827 -0.4962 

c = 0.3923 0.9223 1.2351 1.2351 1.2274 1.1998 -0.6234 -2.8581 

c = 0.1923 0.5078 0.7530 0.7479 0.7540 0.7624 0.1328 1.2483 

b = 28.593 0.7148 1.0143 1.0143 1.0084 0.9987 -0.5817 -1.5380 

b = 18.593 0.7148 0.9670 0.9615 0.9620 0.9637 -0.5171 -0.3413 

p = 2.0751 0.7148 0.9025 0.9001 0.9012 0.8997 -0.1440 -0.3102 

p = 1.6751 0.7148 1.1167 1.1152 1.1079 1.0992 -0.7880 -1.5671 

T = 1.00 1.0590 1.4985 1.4979 1.4964 1.4858 -0.1401 -0.8475 

T = 0.25 0.4873 0.6591 0.6567 0.6605 0.6576 -0.2124 -0.2276 

so= 8.55 1.4160 1.6794 1.6781 1.6794 1.6487 -0.0000 -1.8280 

so= 6.55 0.2565 0.4874 0.4845 0.4833 0.4972 -0.8412 2.0107 

K = 8.55 0.3354 0.5456 0.5488 0.5485 0.5571 -0.5315 2.1078 

K = 6.55 1.3356 1.6221 1.6210 1.6237 1.5864 -0.0986 -2.2009 

I MRE I 0.3885 I 1.2290 III 
Table 4.3: European call prices. "BS" denotes the Black-Scholes price. "MC" denotes 

the Monte-Carlo price. "FD" denotes the finite difference price. "Al" denotes the 

first approximation price. "A2" denotes the second approximation price. The relative 

error (in %) "El" is defined as El:=(Al-MC)/MC. The signed relative error (in %) 

"E2" is defined as E2:=A2-MC. "MRE" denotes the mean relative error (in%). 

4.7.2 Accuracy versus Speed 

For the finite difference method in Tables 4.2 and 4.3, the average computational time 

is 0.1442 second per call price and 0.1353 second per bond price. For the first ap­
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proximation scheme in Tables 4.2 and 4.3, the average computational time is 0.002 

second per call price and 0.0012 second per bond price. The Gram-Charlier approxi­

mation scheme is more than 70 times faster than the implicit finite difference method 

on pricing calls, and more than 100 times faster on pricing bonds. 

Table 4.4 illustrate a comparison of the computational time for using finite differ­

ence method versus the Gram-Charlier approximation to price bonds. As maturity T 

increases, while holding other parameters constant, the Gram-Charlier approximation 

becomes less accurate than the finite difference method. However, the finite difference 

method becomes much slower than the Gram-Charlier approximation. The computa­

tional time for the second approximation is constant 0.0012 second, which does not 

depend on maturity T. For the finite difference method, the computational time in­

creases almost 10 times, when T increases from 1-year to 10-year. There is a trade off 

between the accuracy and the computation speed. The accuracies of the approxima­

tions are not universally the same. The expansions may diverge for certain parameters 

if inappropriate terms are used. Therefore, we recommend using Monte-Carlo or PDE 

approach to check the numerical residual errors before using the asymptotic expan­

sions. 

4.7.3 The Implied Volatility Surface and Credit Spreads 

In this section, we apply our model to some real observed data and examine its good­

ness of fit. Figure 4.3(a) plots the observed implied volatility surface against moneyness 

(strike over spot) and maturity of the option. The real data is taken from Ford Motor 

Corp. on March 16, 2007 from Bloomberg. Figure 4.3(b) shows the theoretical implied 

volatility surface computed by using the calibrated parameters. We first calculate the 

model call price using the first approximation for a given moneyness and maturity 

and quote this value as a Black-Scholes implied volatility. The stock price of Ford on 
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II MC FD Al II TFD I TAl I 
T = 0.5 0.9806 0.9805 0.9806 0.1353 0.0012 

T=l 0.9602 0.9613 0.9613 0.2858 0.0012 

T=2 0.9207 0.9237 0.9238 0.5164 0.0012 

T=3 0.8880 0.8872 0.8880 0.8239 0.0012 

T=4 0.8478 0.8520 0.8540 1.0708 0.0012 

T=5 0.8165 0.8178 0.8218 1.3135 0.0012 

T=6 0.7811 0.7848 0.7914 1.5884 0.0012 

T=7 0.7487 0.7530 0.7627 1.8490 0.0012 

T=8 0.7121 0.7223 0.7355 2.1448 0.0012 

T = 9 0.6874 0.6928 0.7098 2.3755 0.0012 

T = 10 0.6564 0.6644 0.6855 2.6148 0.0012 

Table 4.4: Acuracy versus Speed. "MC" denotes the Monte-Carlo price. "FD" de­

notes the finite difference price. "Al" denotes the second approximation price. "TFD" 

denotes the computaional time for FD method (in seconds). "TAl" denotes the com­

putational time for Al method (in seconds). 

March 16, 2007 is $7.55. The short rater is taken to be 5.18%, which is the 1-month 

U.S Treasury yield on March 16, 2007. The parameters a, c, b, and pare calibrated 

by minimizing the differences of the observed and theoretical implied volatilities in the 

sense of the Root of Mean Square Error (RMSE). 

As seen in Figures 4.3(a) and 4.3(b), the theoretical surface is able to capture 

the main two properties of real implied volatility surface: a) negative skew for fixed 

maturity; b) as maturity increases, the skew becomes less pronounced. Table 4.5 

provides numerical details of the observed and model implied surfaces. The RMSE 

across all the data on the volatility surface is found to be 0.54723, which is very 

small. 
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Figure 4.4 demonstrates implied volatility skews from the model. Both the level 

and the slope (in absolute value) of the implied volatility skew increase as the cred­

itworthiness deteriorates (i.e. the default parameter a increases or p decreases). For 

large volatility parameters c and b, the level of the implied volatility will be higher but 

the slope of the skew is not affected very much. For higher moneyness, the implied 

volatility asymptotically goes down to the volatility parameter c. 

The term structure of CDS on March 16, 2007 from Ford is also taken from 

Bloomberg. We then estimate the recovery rate R, by minimizing the differences 

between the market CDS spreads and model CDS spreads, while holding the parame­

ters a, c, b and p constant as calibrated from the volatility surface. The recovery rate 

is estimated at 0.3228. However, the CDS term structure, generated by the parame­

ters calibrated from the volatility surface, is unable to match the real observed CDS 

term structure. As seen in Figure 4.5, the market CDS curve is upward sloping, but 

the model CDS curve implied from the volatility surface is downward sloped. This 

discrepancy may indicate either the model is wrong for Ford, or there exist arbitrage 

opportunities. 

As an inverse exercise, we can first calibrate the parameters by fitting the CDS curve 

and then compute the implied volatility surface using these calibrated parameters. For 

this exercise, we calibrate R, a, c, b, and p using the CDS data. As seen in Figure 

4.6, the calibrated CDS curve fits the market curve very well. The RMSE of the 

calibrated CDS curve is found to be 9.7122 bps, which is very small considering the 

large credit spreads of Ford. However, the implied volatility surface, calculated using 

the parameters calibrated from the CDS data, does not provide a good fit to the 

observed volatility surface. As seen in Table 4.6, this model implied volatility surface 

is too flat and too high compared with the observed surface. 
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... 

(a) Observed Implied Volatility Surface. (b) Model Implied Volatility Surface. 

Figure 4.3: Implied Volatility Surfaces: Observed vs. Model Implied. The observed 

surface is from Ford Corp. on March 16, 2007. The calibrated parameters are: a= 

3.6421, c = 0.2923, b = 23.5930, and p = 1.8751. 

... --­ . .. 

I Observed II 90 95 I 97.5 I 100 102.5 105 110 

T=2m 42.9223 40.5271 39.7240 39.1576 38.8114 38.6691 38.9445 

T=3m 43.3745 41.5105 40.6955 40.0286 39.5712 39.3848 39.9058 

T=6m 44.7892 43.0559 42.0286 41.0245 40.1506 39.5141 39.2246 

T=12m 47.3736 45.8992 45.2300 44.5992 44.0032 43.4409 42.4144 

T=18m 48.8218 47.5070 46.9075 46.3397 45.7997 45.2870 44.3412 

I Model II 90 95 I 97.5 I 100 I 102.5 I 105 110 

T=2m 43.4910 41.0786 40.2266 39.5444 38.9939 38.5458 37.8710 

T=3m 43.9048 41.7269 40.9028 40.2144 39.6368 39.1495 38.3823 

T=6m 45.2695 43.3181 42.5120 41.8007 41.1722 40.6158 39.6820 

T=12m 47.5087 45.7109 44.9216 44.1976 43.5332 42.9232 41.8471 

T=18m 49.0884 47.4113 46.6557 45.9506 45.2926 44.6784 43.5690 

Table 4.5: Implied Volatility Surfaces: Observed vs. Model Implied (in%). The row 

with 90, ... ,110, denotes moneyness (in%). The root mean square error is 0.5472%. 
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Figure 4.4: Model Implied Volatility Skew. Base parameters are chosen to be the 

parameters in Table 4.1. 

Table 4.7 illustrates the two sets of parameters calibrated using separate datasets of 

implied volatility and CDS data. The two sets of parameters are very different, except 

for p. One may want to calibrate the model using implied volatility and CDS data 

simultaneously. A more advanced calibration scheme is needed to do this, since the 

naive minimizing RMSE is not feasible here. First, these two datasets have different 

denominations. The implied volatility data is denominated in percentage, while the 

CDS data is usually expressed in bps. Even though we can express CDS in percentage, 

it is not clear how to compare 50% implied volatility to 5% CDS. This is similar to 

- - -
--p=1.8751 
. ­ . -

--­----­
0.3------------­

p=2.0626 


. p=1.6876 


-·-. 
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Figure 4.5: Term Structure of CDS Spreads. The dashed curve is calculated using 

the parameters calibrated from the implied volatility surface on March 16, 2007. The 

circles show the observed CDS term structure of Ford on March 16, 2007. The recovery 

rate is estimated at 0.3228. 

97.5 100 102.5 105 110I Model II 90 95 

63.524164.0690 63.8675 63.7885 63.7205 63.6614 63.6097T=2m 

64.1805 63.7749 63.7195 63.6250T=3m 63.9865 63.9071 63.8371 

64.2677 63.9929 63.887164.4496 64.1893 64.1179 64.0527T=6m 

64.2970 64.1965T=12m 64.6959 64.5432 64.4750 64.4115 64.3523 

64.2793T=l8m 64.6928 64.5694 64.5135 64.4610 64.4116 64.3650 

Table 4.6: Implied Volatility Surfaces (in %): using model parameters calibated from 

CDS spreads. The row with 90, ... ,110 denotes moneyness (in %). The root mean 

square error is 9.7122. 
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Figure 4.6: Fitting the Term Structure of CDS Spreads. The circles show the observed 

CDS term structure of Ford on March 16, 2007. The dashed-curve is model predicted 

CDS curve. Calibrated parameters are: a = 0.6417, c = 0.6252, b = 1.0071, p = 1.8865 

and R = 0.0094. 

asking if an orange is more beautiful than an apple. Second, there is no consensus on 

how to assign relative weights to different datasets. The calibrated parameters will be 

different for arbitrary choice of weights. The weights we use here for this exercise are 

0 for one dataset and 1 for the other. 

11 a c b p 

VolPara 3.6421 0.2923 23.5930 1.8751 0.3228 

CDSPara 0.6417 0.6252 1.0071 1.8865 0.0094 

R 

Table 4.7: Comparison of Calibrated Parameters. "VolPara" denotes the parameters 

calibrated from the implied volatility data of Ford Motor Corp. on March 16, 2007. 

"CDS Para" denotes the parameters calibrated from the CDS data of the same company 

on the same day. 
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Table 4.8 shows calibrated parameters from daily observed implied volatility surface 

data in March 2007. The calibrated parameters have large variations. The mean of 

the calibrated parameters are a = 1.1105, c = 0.1937, b = 47.6545 and p = 1.2973. 

We observe that parameter b is significantly larger than zero. This indicates that the 

component bS;P in the volatility function u(St) has large contributions to the observed 

implied volatility. 

In this calibration exercise, we find that our model is able to fit very well the 

market implied volatility surface and the market CDS curve separately on Ford's data. 

However, it is unsuccessful in fitting these two datasets jointly. Similar results have 

been obtained by Hull, Nelken & White (2004), who used implied volatility data 

to calibrate default parameters in Merton's model. They find that the model CDS 

spreads, calculated using the parameters calibrated from the implied volatility surface, 

is about 95 bps higher than the observed CDS spreads on average. Carr & Wu (2006) 

considered a two factor model with stochastic volatilities and stochastic hazard rates. 

Carr & Wu (2006) applied the EKF and calibrated their model using combined datasets 

of implied volatilities and CDS spreads. However, their calibration does not provide 

satisfactory results either, especially for fitting CDS spreads. About 50 percent of the 

variation in the CDS spreads on General Motors and only 30 percent on Altria Group 

can be explained by their model. 

4.8 Extension of the Model 

In our model, the local equity volatility is chosen to be of the form implied from the 

Leland-Toft structural model. A natural extension of the model is to choose the hazard 

rate function to be of the form implied from other structural models with jumps. 

One shortcoming of the Leland-Toft model is that the short spreads are zero. A 

natural approach to raise the short spreads above zero is to add jumps. Hilberink & 
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Rogers (2002) extended the Leland-Toft model by generalizing the firm value process 

to be an exponential Levy process with only downward jumps. Chen & Kou (2006) 

introduced double exponential jumps to Leland-Toft and studied their implication for 

credit spreads and implied volatility. We are interested in deriving the implied hazard 

rate in Hilberink & Rogers (2002) and Chen & Kou (2006) as a function of the equity. 

Both of the papers obtain an implicit expression of the hazard rate, h, as follows 

(4.42) 


where >. denotes the Poisson rate of exponentially distributed downward jumps with 

parameter 71. As before, VB denotes the default barrier determined endogenously and 

V denotes the asset value. However, neither of the studies give an explicit formula for 

has a function of the equity E. 

When V is close to VB, following Hilberink & Rogers (2002), we can approximate 

the equity as follows 

E ~ V - VB(l + log(V/VB)). (4.43) 

Then applying Taylor expansion, to the first order approximation, we obtain 

~~ ffE+l. (4.44)
VB yv; 

Therefore, equations (4.42) and (4.44) imply that the hazard rate, h(E), as a function 

of the equity can be approximated by 

ffE )-11
h(E) ~ >. y1f; + 1 ( 4.45) ( 

Several observations about the above implied hazard rate function are worth noting. 

First, the implied hazard rate is a decreasing function of E /VB. This captures a 

negative relationship of equity price and the hazard rate. Second, the implied hazard 

rate vanishes to zero as the equity E approaches infinity. This is reasonable since 

a company with infinite equity will not default. Third, the implied hazard rate is 
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bounded above by the Poisson rate of downward jumps >... The third observation 

differs significantly from the specification of hazard rate in Carr & Linetsky (2006) 

in that their hazard rate is unbounded, when the stock price goes to zero. An upper 

bounded hazard rate captures the fact that the firm value not only can jump-to-default, 

but also can diffuse down to the bankruptcy level. Figure 4.7 plots different curves of 

h(E), for varying fJ. 

Using the implied hazard rate function from Hilberink-Rogers, we are interested in 

the following model with the pre-default stock price St specified as 

dSt = [r + >..(a$i + 1)-11 ]Stdt + cStVI + bS!Pdwt. 

Gram-Charlier approximation is not feasible for this model, since we do not have 

explicit expressions for its moments. Instead a numerical PDE approach can be applied 

to study its properties and implications. 

4.9 Summary 

Motivated by Linetsky (2006) and Carr & Linetsky (2006), we have analyzed the 

implied equity volatility as a function of the stock price, from the structural credit 

risk literature. We have derived that the implied equity volatility in Leland-Toft was a 

power decay function of the equity, bounded below by a positive constant, which can 

be thought of as the asset volatility. We then proposed a new jump-to-default model 

with the local volatility implied from Leland & Toft (1996). All the moments can 

be calculated explicitly for the transformed pre-default stock process. Gram-Charlier 

expansions were then used to approximate bond and call prices. 

Numerical examples showed that the asymptotic approximation is very accurate 

and more than 70 times faster than the implicit finite difference method. The model 

was calibrated separately using one day implied volatility data and CDS data on the 
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Figure 4.7: Hazard Rate implied from Hilberink & Rogers (2002) as a function of 

equity. The x-axis denotes the normalized equity, E/Vs. The y-axis denotes the 

hazard rate with maximum >. = 1. 

same day for Ford Corp. We found that our model could fit the separate datasets very 

well respectively. However, it is unable to fit both the implied volatility surface and 

the CDS curve simultaneously. This indicates that either this model is not feasible for 

Ford or there exist arbitrage opportunities. 

Our model is different from Carr & Linetsky (2006) in that our local volatility 

specification is bounded below by a positive constant, while the volatility of the CEV 

model goes to zero when the stock price approaches infinity. Our model is more realistic 

for firms that have large equity but low debt. We also discussed an extension of the 

model, whose hazard rate function is implied from Hilberink & Rogers (2002) and 

Chen & Kou (2006). 
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4.10 Appendix III 

• 	 Proof of Proposition 4.4.1: 


From equation (4.5) we have 


_ 	S ef[ r+h(St)dt+J[ u(St)dWt-! J[ u 2 (St)dtST 	 - 0 , 

and therefore 

The proof is completed by invoking Girsanov's theorem. 

• 	Proof of Proposition 4.5.1: 

Ito's lemma implies that 

Integrating and then taking expectations will complete the proof. 

• 	 Proof of Proposition 4.6.2: 

We prove the result for B0 (S0 , T) here; the proof for CK(S0 , T) is analogous. The 

Gram-Charlier expansion implies that 

+00 'T/ s 1+00Bo(So, T) = So y-l/Pg(y)dy - ~ y-1/Pg' (y)dy10 1! 0 

+'f/2So 1+oo -1/p "( )d _ 'f/3So 1+oo -1/p "'( )d + , y g y y 31 y g y y ...
2• 0 	 • 0 

We then calculate term by term. 

1 ·+ 1 ·2--µ ;;::'J"O"So 1+00 y-1/Pg(y)dy = Soe P 2p • 

So 1+00 y-1/pg' (y)dy = 

So _llil!l..+(1+.,12 a-2 
-e P µ 2;'1""" . 
p 

We have used lemma 4.6.3 for the above calculations. The other terms can be 

calculated similarly. 
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Imm/dd/yy I a c b p 

03/02/07 0.1290 0.2253 53.8955 1.4321 

03/05/07 0.4328 0.1970 89.9888 1.5359 

03/06/07 0.9227 0.2019 53.7872 1.3986 

03/07/07 1.2158 0.2597 64.0233 1.8103 

03/08/07 1.0758 0.2002 86.7238 1.5823 

03/09/07 0.9820 0.1648 73.4251 1.3491 

03/12/07 0.2719 0.2007 80.0007 1.4426 

03/13/07 0.3554 0.1445 29.8695 0.7924 

03/14/07 1.3785 0.2562 30.0186 1.5021 

03/15/07 1.2250 0.2501 30.0157 1.4726 

03/16/07 3.6421 0.2923 23.5930 1.8751 

03/19/07 1.0784 0.1675 24.9472 1.1088 

03/20/07 0.2720 0.0913 29.9566 0.5109 

03/21/07 1.4006 0.2397 15.0315 1.3369 

03/22/07 1.8488 0.1903 51.6305 1.5006 

03/23/07 2.0773 0.2529 57.2209 1.7950 

03/26/07 1.5601 0.2069 44.2211 1.4781 

03/27/07 1.5739 0.2003 44.2211 1.4389 

03/28/07 1.5828 0.1913 44.2210 1.4144 

03/29/07 0.1413 0.0578 44.1666 0.1973 

03/30/07 0.1536 0.0771 29.7862 0.2684 

Mean 1.1105 0.1937 47.6545 1.2973 

(0.8372) (0.0611) (21.5153) (0.4688) 

Table 4.8: Calibrated parameters for Ford Motor Corp. from daily implied volatility 

surface data in March, 2007. The numbers in the parentheses are standard deviations. 
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Chapter 5 

Conclusions 

The three working papers that comprise the body of this thesis provide new ideas and 

insights on different perspectives of credit risk modeling. 

• Imperfect Information 

In reality, the information we receive about the credit quality of a company is 

always contaminated. The worse the contaminated information, the higher the 

short spreads. Therefore, it is important to consider the impact of incomplete 

information when we do quantitative modeling on credit risk. The new idea 

in the RS model is to take account of imperfect information by randomizing 

the initial condition of the risk factor. The RM-II model provides an example 

that admits no default intensity, yet still generates finite positive short spreads. 

The RBC-11 model generates positive short spreads through its positive default 

intensity. The RS model was also applied to a mean-reverting solvency ratio 

where again it can be seen to raise short spreads. 

• Rich Correlation Structure versus Nonnegativity 

For any company, both the interest rate and the short spread should be non­
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negative. In a multi-firm set up, both negative and positive default correlations 

should be possible among different firms. The extant intensity-based factor mod­

els are not easily able to generate rich correlation structures among different firms 

and preserve the nonnegativity constraints. The iCIR framework we present pro­

vides a new class of multi-factor semi-affine models that are able to generate rich 

correlation structures while preserving nonnegativity. 

• 	Integrated Market-Credit Risk 

The equity market contains information that is useful for credit risk analysis. 

Data in the credit market is usually scarce and contaminated, while data from 

the equity market is plentiful and more reliable. Therefore, it is not wise to 

ignore the equity market data while analyzing the credit market. Our new hybrid 

model introduces a way of pricing both equity and credit derivatives in a unified 

framework. This framework has broad financial implications and inherits the 

best features of many existing models on credit risk, from Leland-Toft to Carr­

Linetsky. 

• 	Model Usability 

The essence of credit models is to be applied in real life financial risk management. 

A good model should fit the facts with as few parameters as possible and take 

the shortest computational time. The RS models have few parameters and lead 

to explicit expressions for PD, LGD and CS. The iCIR model has only two CIR 

factors for each company and admits explicit expressions for both default and 

default-free bonds. The Gram-Charlier expansion used in the new hybrid model 

significantly speeds up the computation of bond and call prices. 

It would be interesting to empirically test if a firm's short spread will fall after its 

annual report. In the iCIR model, the calibration has proven to be difficult. Searching 

for a better calibration scheme is another direction for future research. In the hybrid 
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model, we are not able to fit the equity and credit market data at the same time. 

Further investigation is needed to either modify this model to fit both market data or 

use this model to search for arbitrage opportunities if any. 
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