
A METRIC INTERVAL-BASED TEMPORAL DESCRIPTION LOGIC

A METRIC INTERVAL-BASED TEMPORAL DESCRIPTION

LOGIC

By

MORTEZA YOUSEF SANATI, B.Sc., M.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

c© Copyright by Morteza Yousef Sanati, February 2015

DOCTOR OF PHILOSOPHY (2015) MCMASTER UNIVERSITY

(Computing & Software) Hamilton, Ontario

TITLE: A Metric Interval-based Temporal Description

Logic

AUTHOR: Morteza Yousef Sanati

B.Sc., M.Sc.

SUPERVISOR: Prof. Thomas S.E. Maibaum

CO-SUPERVISOR: Prof. Wendy MacCaull

NUMBER OF PAGES: xvi, 234

ii

To my dear wife, Zahra, and my beloved mother for her support

Abstract

Because of the importance of undecidability and the concern with the high

complexity of automated reasoning, a few interval-based temporal description

logics (ITDLs) have been designed. Moreover, most existing ITDLs are not

able to specify the lengths of intervals. In other words, they are not metric. On

the other hand, some domains (e.g., medicine) are inherently interval-based,

and require a metric logic in order to formalize defined processes and to check

process consistency. Hence, a metric interval-based temporal description logic

is required. In this thesis, we introduce such a logic (MITDL) along with two

algorithms for the satisfiability checking of its formulas.

We first introduce an interval-based temporal logic, called IMPNL, inspired

by Metric Propositional Neighbourhood Logic. We also present a sound, com-

plete and terminating tableau-based algorithm for checking the satisfiability

of IMPNL formulas. Afterwards, we combine a restricted version of IMPNL

(IMPNL without a negation operator) with the ALC description logic to form

a MITDL. We propose two tableau-based algorithms for checking the satisfia-

bility of MITDL formulas. We show and prove they are sound, complete and

terminate. These algorithms have PSpace and 2NExp-Time complexities.

As a proof of concept, we use IMPNL and MITDL to model some clinical

practice guidelines (CPG) and check their consistency. We compare MITDL

with several languages commonly used for modeling CPGs.

iv

List of Acronyms

ABox Assertional Box

ACTL A temporal logic

AIDS Acquired Immunodeficiency Syndrome

AL Attributive description logic Language

ALC Attributive Concept Language

ALC(D) Attributive Concept Language with Concrete domain

ALCF A description logic

ALCN A description logic

ALCO A description logic

Asbru A clinical modeling language

BCDT+ Branching CDT

BNF Backus-Naur Form

CD4 Cluster of Differentiation 4

CDT Venema’s interval-based temporal logic

Condor A description logic reasoner

CPG Clinical Practice Guideline

CPT-4 A medical ontology

CTL Computation Tree Logic

DL Description Logic

v

ECTL A temporal logic

EL A basic description logic

ELHIFR+ A description logic

EON An architecture for protocol-based decision support

ExpSpace Exponential Space

ExpTime Exponential Time

FACT++ A description logic reasoner

FF Finder Function

FL0 Frame-based description Logic

FOL First Order Predicate Logic

GLIF GuideLine specification method and Interchange Format

HeCaSe2 The name of a platform

Hermit A description logic reasoner

HIV Human Immunodeficiency Virus

HS Halpern-Shoham

ICD-9-CM A medical ontology

IMPNL A metric interval-based temporal

ITDL Interval-based Temporal Description Logic

ITL Interval Temporal Logic

KIV Karlsruhe Interactive Verifier

LOINC-3 A medical ontology

LN The name of a function

LTL Linear time Temporal Logic

MITDL Metric Interval-based Temporal Description Logic

MITDL SAT The name of an algorithm

MPNL Metric Propositional Neighbourhood Logic

vi

MPNLl Metric Propositional Neighbourhood Logic

NExp-Time Non-Deterministic Exponential Time

NNF Negation Normal Form

Pellet A description logic reasoner

PIT L Propositional Interval Temporal Logic

PNL Propositional Neighbourhood Logic

PRODIGY A guideline modeling language for chronic disease management

PROforma A formal knowledge representation language

PSpace Polynomial Space

QPTL Quantified Propositional Temporal Logic

SAT The name of an algorithm

Sub The name of a function

SubD The name of a function

SHIQ A description logic

SHOIN (D) A description logic

SMV Symbolic Model Verifier

SNOMED CT Systematized Nomenclature of Medicine–Clinical Terms

SOS Structural Operational Semantics

SPIN A model checker

T -ALC A temporal description logic

T ALC A temporal description logic

TB Tuberculosis

TBox Terminological Box

TDL Temporal Description Logic

TL Temporal Logic

vii

T L-ALCF A temporal description logic

T L-SHION (D) A temporal description logic

T L-F A temporal description logic

T LU-FU A temporal description logic

T LF−5 A temporal description logic

TSB Temporal Subset Blocking

UML Unified Modeling Language

UMLS The name of a medical ontology

Uruz The name of an environment

viii

Contents

Abstract . iv

List of Acronyms . v

List of Figures . xiv

List of Tables . xv

List of Algorithms . xvi

1 Introduction 1

2 Description Logic 7

2.1 Basic Definitions . 7

2.2 A tableau algorithm for ALC 21

2.3 Relationship between Description Logic and FOL 27

3 Temporal Logic 30

3.1 Point-based Temporal Logics 31

3.2 Interval-based Temporal Logic 32

3.3 Structure of Time Intervals . 32

3.4 Possible relations between two intervals 34

3.4.1 Allen’s modalities . 36

3.5 Some interval-based temporal logics 36

3.5.1 Interval Temporal Logic (IT L) 37

ix

3.5.2 The Halpern-Shoham logic (HS) 38

3.5.3 CDT and BCDT+ . 40

3.5.4 Propositional Neighbourhood Logic (PNL) 41

3.5.4.1 A Tableau-based algorithm for PNL+ 43

3.5.5 Metric Propositional Neighbourhood Logic (MPNL) . . 47

4 IMPNL: A Logic Inspired by MPNLl 51

4.1 IMPNL . 52

4.1.1 Syntax and Semantics 52

4.1.2 Restrictions of IMPNL 54

4.1.3 Tableau-based algorithm for IMPNL formulas 55

4.1.3.1 Annotation of Input Formula 56

4.1.3.2 A Finder Function (FF) 59

4.1.3.3 Tableau Construction. 60

4.1.4 Soundness of the tableau algorithm for IMPNL 69

4.1.5 Completeness of the tableau algorithm for IMPNL . . . 71

4.1.6 Complexity of the tableau algorithm for IMPNL 74

4.2 Conclusion . 75

5 Metric Interval-based Temporal Description Logic 76

5.1 Syntax . 76

5.2 Semantics . 77

5.3 Tableau-based algorithm for checking the satisfiability of a MITDL

formula . 79

5.3.1 Satisfiability checking of a simple formula 80

5.3.2 Termination of the algorithm for simple MITDL formulas 86

5.3.3 Complexity of the algorithm for simple MITDL formulas 99

5.3.4 A PSpace implementation of the tableau algorithm . . 101

x

5.3.5 Tableau-based algorithm for checking the satisfiability

of a generic MITDL formula 107

5.3.6 Soundness of the algorithm for generic MITDL formulas 113

5.3.7 Completeness of the algorithm for generic MITDL for-

mulas . 114

5.3.8 Termination of the algorithm for generic MITDL formulas118

5.3.9 Complexity of the algorithm for generic MITDL formulas 124

5.4 Related Works . 127

5.4.1 Schmiedel’s formalism 127

5.4.2 T ALC and T LF−5 . 128

5.4.3 T L-ALCF . 128

5.4.4 T L-SHOIN (D) . 128

5.4.5 T L-F . 129

5.4.6 T LU -FU . 129

5.4.7 T -ALC . 129

5.5 Conclusion . 129

6 Case Study: Modeling Clinical Practice Guidelines 131

6.1 Diagnosis and Treatment of HIV/AIDS 132

6.1.1 Modeling HIV/AIDS guideline with IMPNL 134

6.1.2 Checking the quality of HIV/AIDS Guideline 137

6.1.3 A concrete model . 140

6.2 Modeling Diagnosis and Treatment of HIV/AIDS with MITDL 141

6.2.1 Domain information 143

6.2.2 Checking the quality of the HIV/AIDS Guideline . . . 145

6.2.3 A concrete model . 147

6.3 Treatment of Tuberculosis . 150

xi

6.3.1 Modeling Treatment of TB Guideline with IMPNL . . 151

6.3.2 Modeling Treatment of TB Guideline with MITDL . . 152

6.4 Multi treatment of an HIV/AIDS-TB patient 157

6.4.1 Modeling HIV/AIDS-TB guideline with IMPNL 157

6.4.2 Modeling HIV/AIDS-TB guideline with MITDL 162

6.5 A comparison of Guideline modelling languages 168

6.5.1 Brief description of other languages 168

6.5.2 Comparison Criteria 170

6.6 Conclusion . 175

7 Conclusion and Future work 176

7.1 Future Work . 178

A Proof of Soundness Theorem (IMPNL) 201

B Proof of Soundness Theorem (MITDL) 207

C Tableaus in Detail 216

C.1 Tableau for ϑHIV . 217

C.2 Tableau for ξHIV . 220

C.3 Tableau for ψ
′
HIV−TB . 225

C.4 Tableau for ϕ
′
HIV−TB . 229

xii

List of Figures

2.1 Completion Rule for ALC . 23

2.2 Tableau for satisfiability checking of concept description C . . 25

2.3 Completion Rule for ALC . 26

3.1 With linear interval property, Without linear interval property 33

3.2 Allen’s relations with alternative notations 35

3.3 Venema relation . 36

3.4 Fragments of AABB and AAEE 39

3.5 Intuitive semantics of C, D and T modalities 40

3.6 Tableau for ψ = ♦r�rp ∧ ♦r¬p 48

3.7 MPNL family and their expressivity 50

4.1 Satisfaction of ♦−r ♦
∗
l p10 . 63

4.2 Satisfaction of ♦z
′

r ϕ (top),♦z
′

l ϕ (bottom) 64

5.1 The temporal label of a on [c2, c6 91

5.2 Tableau for ♦∗r((a : ∃R.∀S.∃P.D)5∧(a : ∀R.∀P.(Dt∃S.(DuE)))5) 97

5.3 Tableau for ♦∗r((a : D)5 ∧ (∃R.C = >)5) 109

6.1 HIV Stages . 133

6.2 HIV/AIDS diagnosis and treatment 134

6.3 One period of ψ1 when the patient is not in the last stage 136

6.4 One period of ψ1 when the patient is in the last stage 136

6.5 Concrete Model for HIV case study 141

xiii

6.6 Schematic illustration of ϕHIV 142

6.7 Treatment of a typical TB patient with positive sputum smear 153

6.8 TB Treatment Timeline (A typical scenario) 153

6.9 Timeline of the closed branch in ψ
′
HIV−TB 162

6.10 Abstract of the tableau for ϕ
′
HIV−TB (Modeled in MITDL) . . 167

C.1 Tableau for ϑHIV (Modeled in IMPNL) 217

C.4 Tableau for ξHIV (Modeled in MITDL) 220

C.9 Tableau for ψ
′
HIV−TB (Modeled in IMPNL) 225

C.13 Tableau for ϕ
′
HIV−TB (Modeled in MITDL) 229

xiv

List of Tables

2.1 Description Logic Syntax and Semantics 10

2.2 Computational complexity of Subsumption 21

2.3 Computational complexity of Satisfiability 22

2.4 DL Naming Convention . 22

6.5 Comparison of Guideline Modeling Languages 174

xv

List of Algorithms

1 PSpace implementation of tableau algorithm 102

2 Subroutine SAT . 103

xvi

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 1

Introduction

The aim of this thesis is to introduce a metric interval-based temporal

description logic.

In computer science, an ontology is a formal representation of the knowl-

edge of a domain in terms of the domain concepts and the relationships between

them; e.g., SNOMED CT is a comprehensive clinical terminology [1] which

includes: clinical findings, symptoms, diagnoses, procedures, body structures,

organisms and other etiologies, substances, pharmaceuticals, devices and spec-

imen [2]. Moreover, an ontology can be used to reason about the entities of

the domain [3].

One important logical formalism for representing an ontology is Descrip-

tion Logics (DL). Description logic is a family of fragments of predicate logic

which can be used to define the static aspects 1 of a domain. An important

feature of the logic is decidability of reasoning; i.e., there is a sound, complete

and terminating method for the reasoning in the logic which always returns

1In this thesis, we restrict the static aspects of a domain to the aspects which can be
modeled using unary and binary predicates.

1

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

the answer in a finite time [4]. There are many different DLs which are con-

structed on top of the three basic logics, AL, FL0, EL [5]. The basic logics

are extended by various constructors, e.g., Nominals, Concrete domains [6],

and there are some tools for the logics which provide many useful reasoning

services, e.g., satisfiability checking, subsumption checking, equality checking,

instance checking and consistency checking [7, 8].

To model the dynamic aspect of a domain, another kind of logic is needed.

Since time is a crucial part of the dynamic aspect, a temporal logic (TL) is

necessary in order to represent time constraints in the domain. Generally,

two kinds of temporal logics exist, point-based [81] and interval-based [83]. In

point-based TL, the main ontological element is a time point. Hence, this logic

is mostly suitable to model durationless events. Sometimes a user needs to

model events which have duration or to determine whether two events overlap.

An interval-based TL is able to deal with these situations. In some interval-

based TLs, i.e., metric interval-based TLs (e.g., MPNLl), a user can bind the

duration of an event to a specific amount of time. Generally, these logics are

more expressive than non-metric versions of interval-based TLs.

Neither a DL alone nor a TL alone is sufficient to describe both dynamic

and static aspects of a domain. A combined logic, a temporal description logic

(TDL), is needed. Having chosen a domain, one should select the most suitable

TDL in order to model the domain. For instance, in the domain of medicine,

most activities occur over an interval and it is not possible to model them as

occurring at a time point, e.g., infusion of blood serum; thus, an interval-based

TDL is required. On the other hand, the execution duration of some activities

is generally restricted to a specific amount of time, e.g., take Ibuprofen for

2 days; therefore, the TDL must allow a user to specify the duration of an

activity. In other words, a metric version of a TDL is needed.

2

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

To the best of our knowledge, there is only one metric TDL, Schmiedel’s

formalism; this formalism has no negation [9], and no algorithm has been

designed for reasoning (satisfiability and subsumption reasonings) in this for-

malism [10]. The aim of this research is to design a metric TDL along with

a sound, complete and terminating algorithm for checking the satisfiability of

the logic formulas. Satisfiability checking is an important reasoning service of

a logic because if we find that a formula is not satisfiable, it indicates that

the formula contain an inconsistency. In some domains (e.g., medicine), it is

very important to find such information. We will explain the importance of

satisfiability checking in the domain of medicine later.

In order to design MITDL, we have designed a temporal logic inspired

by MPNLl [11, 12] as the temporal logic part of our metric TDL. MPNLl,

proposed by D. Bresolin et al. in 2010, is a metric interval-based temporal

language which has two modal operators, meet and met-by. In terms of ex-

pressivity, MPNLl is expressive enough to model a metric form of all Allen’s

relations between intervals, with the exception of during [11]. MPNLl does

not meet all the requirements for formalizing static aspects of the domain of

medicine because it is a propositional logic and does not allow us to define a

relation between the elements of the domain; e.g., we are not able to model

that Kaletra has a contraindication with Rifampin. Having designed a logic

inspired by MPNLl, we have selected ALC to create a metric TDL with the

goal of maintaining the decidability of reasoning (i.e., existence of an effec-

tive method for reasoning). We believe the resulting logic will be very useful

in many domains, especially medicine. The domain of medicine is inherently

interval-based and many of its events have specific durations. Therefore, our

logic is intended to help medical experts to formally design clinical practice

3

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

guidelines (CPGs), and check their satisfiability before they are used by clini-

cians. If a CPG is not satisfiable, it indicates that the CPG contains an incon-

sistency (e.g., two prescribed medicines are contraindicated), and it should not

be used for a patient because it may be harmful for the patient. Sometimes,

two CPGs cannot be used together because there are some contraindications

between medicines used in the CPGs. Experts can test whether it is possible

to use more than one guideline simultaneously for a patient who has different

diseases.

The main objective of the dissertation is to propose a metric interval-based

temporal description logic (MITDL) which supports the decidable satisfiabil-

ity checking of its formulas. MITDL is a combination of IMPNL and ALC

and benefits a user in different ways by providing an ability to describe the

concepts of a domain with respect to time intervals along with the relationship

between them using roles. We provide decidable tableau-based algorithms for

checking the satisfiability of IMPNL and MITDL formulas. We prove that the

satisfiability reasoning in these logics is decidable by proving the soundness,

completeness and termination of the algorithms.

The remaining chapters of this thesis are organized as follows.

• In chapter 2, an overview of description logic is provided. In this chapter,

some basic definitions, different kinds of reasoning in description logic

and the syntax of a specific description logic, called ALC, are presented.

Afterwards, a tableau algorithm for checking the satisfiability of an ALC

formula is explained. Finally, the relationship between description logic

and first order predicate logic is discussed.

• In chapter 3, preliminary material about temporal logic is provided. This

4

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

material includes a short discussion of both point-based and interval-

based temporal logics, as well as the structure of time intervals and

possible relations between intervals. Also, some temporal logics, IT L,

HS, CDT, BCDT+, and PNL, are briefly explained. Then, a tableau

algorithm for PNL+ is presented. The last section of this chapter is

devoted to the explanation of an important interval-based temporal logic,

called Metric Propositional Neighbourhood logic.

• In chapter 4, a temporal logic called IMPNL is introduced. After inves-

tigating the difference between IMPNL and MPNL, a tableau-based al-

gorithm for checking the satisfiability of an IMPNL formula is proposed.

Further, the soundness and completeness of the algorithm is proved.

Moreover, some case studies are provided in order to demonstrate how

this language can be used to model some medical guidelines.

• In chapter 5, an interval-based temporal description logic (called MITDL),

a combination of ALC and a restricted version of IMPNL, is proposed.

Then, a tableau-based algorithm for checking satisfiability of some MITDL

formulas, called Simple formulas, is developed. Also, the termination and

the PSpace complexity of the algorithm is proved. Next, the tableau-

based algorithm is extended in order to be able to check the satisfiability

of any MITDL formula. It is shown that the extended algorithm termi-

nates and has 2ExpTime complexity. At the end, we review existing

interval-based temporal description logics.

• In chapter 6, three clinical practice guidelines are modeled with IMPNL

and MITDL, and the satisfiability of the guidelines is checked with the

proposed tableau-based algorithm. Finally, MITDL is compared with

5

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

five existing languages used for the modeling of clinical practice guide-

lines.

• In chapter 7, the summary of the thesis is presented, and possible future

work is discussed.

6

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 2

Description Logic

One important family of logical formalism for representing an ontology is

Description Logics (DLs). “Description Logics (DL) are a well-investigated

family of logic-based knowledge representation formalisms, which can be used

to represent the conceptual knowledge of an application domain in a structured

and formally well-understood way” [7]. A key feature of DLs is decidability

of reasoning, as this property makes it possible to develop automated tools

to support their use. For example, satisfiability (resp. subsumption) check-

ing reasoning in a DL is decidable when there exists an effective method for

determining satisfiability of a concept (resp. determining whether a concept

is subsumed by another concept) in the logic. In terms of usefulness, descrip-

tion logics are employed in many areas such as software engineering, medicine,

information systems and importantly, development of ontologies.

2.1 Basic Definitions

In description logic languages, users may define the important notions

(classes, relations, objects) of the domain using concepts, roles, and individuals

7

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[7]. A concept is a set of individuals, and a role is a binary relationship between

individuals [8]. A non-atomic concept, i.e., a concept description, equivalently,

a defined concept, is a concept built from atomic concepts (unary predicates)

and roles (binary predicates) using concept constructions. In some description

logic languages, it is possible to define features which are partial functions.

We will present an example of a feature later.

A DL-signature Σ of a description logic, is a tuple Σ=(C, R, I, >, ⊥)

[13] which contains a set of concept names (C), a set of role names (R), a

set of names of individuals (I) and two constant names, > (Top concept) and

⊥ (Bottom concept); some description logics have a set of feature names (F)

and a set of extra predicates (P) associated with concrete domains (see Page

15); thus their signature is of the form (C, R∪P, I, F, >, ⊥). We can define

DL-Sentences and DL-Schemas over a DL-signature Σ. A DL-Schema is a

concept construction used to define a concept description, and a DL-Sentence

is a description logic axiom that can be one of the following items.

1. C v D C,D ∈ C;

Intuition: C is subsumed by D. In other words, every individual of C is

an individual of D; e.g., Cat v Animal: every cat is an animal.

2. C ≡ D C,D ∈ C;

Intuition: Every individual of C is an individual of D and vice versa;

e.g., Male t Female ≡ Child t Adult: every male or female is a child

or is an adult, and every child or adult is a male or is a female. We will

explain the t construction later.

3. R v S R, S ∈ R;

Intuition: Every individuals, which are related by R, are semantically

related by S. In other words, R role (relation) is a fragment of S role

8

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

(relation); e.g., isProperSubsetof v isSubsetof : If a set (say Male) is

proper subset of another set (say Human), Male is subset of Human.

4. C(i) C ∈ C and i ∈ I;

Intuition: i is an individual of C; e.g., Adult(John): John is an adult.

5. R(i0,i1) R ∈ R and i0, i1 ∈ I.

Intuition: i0 and i1 are related by R; e.g., Married(John, Sue): John is

married to Sue.

Description logic, like first order logic, has a model-theoretic semantics [8].

Thus, as usual in a Σ-Model of a description logic language, we need a non-

empty set and an interpretation. Formally, a Σ-Model is a pair I = (∆I , .I)

where ∆I is a non-empty set, called the domain of interpretation, and .I

is an interpretation function which assigns to every concept name C, a set of

domain elements, i.e., CI ⊆ ∆I ; to every role name R, a set of pairs of domain

elements, i.e., RI ⊆ ∆I × ∆I , to every individual name i ∈ I, an element of

the domain, i.e., iI ∈ ∆I ; to the Top concept, >, all individuals in the domain,

i.e., >I = ∆I ; and to the Bottom concept, ⊥, the empty set, i.e., ⊥I = ∅. We

can extend .I to DL-axioms (see Table 2.1) as well as DL constructions. Before

we explain the DL constructions, we define a notion required for defining the

semantics of some constructions. Henceforth we abuse notation by saying a

concept C (or role R) where we mean concept name C (or role name R). Also,

note that a user can use the DL constructions only in a language equipped

with the required constructors.

Definition 1 ([15]). Given an interpretation I, a role R and an individual x,

an RI-Successor-of x denotes any individual y such that 〈x, y〉 ∈ RI .

• Concept Construction

9

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Table 2.1: Description Logic Syntax and Semantics [8, 14, 15, 16]

Name Syntax Semantics
ABox Axiom

Concept Assertion C(a) aI ∈ CI
Role Assertion R(a, b) 〈aI , bI〉 ∈ RI

TBox Axiom
Concept Inclusion C v D CI ⊆ DI

Concept Definition C ≡ D CI ⊆ DI and DI ⊆ CI

Role Inclusion R v S RI ⊆ SI

The constructed concepts which can be used in the definition of a concept

description are as follows.

> Concept: ¬C

∗ Constructor name: Complement;

∗ Description: This concept denotes the individuals in the do-

main which are not individuals of concept C;

∗ Semantics: (¬C)I = ∆I\CI ;

∗ Example: ¬Female;

∗ Description of Example: This expression denotes the individu-

als who are not Female.

> Concept: C uD

∗ Constructor name: Conjunction;

∗ Description: This concept denotes the individuals which are

simultaneously individuals of C and individuals of D;

∗ Semantics: (C uD)I = CI ∩ DI ;

∗ Example: Female u Employee;

10

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Description of Example: Employees who are female are deter-

mined by this expression.

> Concept: C tD

∗ Constructor name: Disjunction;

∗ Description: This concept denotes the individuals which are

either individuals of C or individuals of D;

∗ Semantics: (C tD)I = CI ∪ DI ;

∗ Example: Female tMarried;

∗ Description of Example: All individuals who are either female

or married are denoted by this expression.

> Concept: ∀R.C

∗ Constructor name: Value Restriction (Universal Restriction

[15]);

∗ Description: This concept denotes the individuals whose prop-

erty is that all RI-Successors-of them are in CI ;

∗ Semantics: (∀R.C)I ={x| all RI-Successors-of x are in CI};

∗ Example: ∀Managedby.Male;

∗ Description of Example: Assume Managedby is a role which

denotes that an individual is managed by another individual.

The expression determines the set of individuals whose man-

agers are male.

> Concept: ∃R.>

∗ Constructor name: Limited Existential Restriction;

∗ Description: This concept denotes the individuals which have

participated in a certain role as a first argument;

11

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Semantics: (∃R.>)I ={x|〈x, y〉 ∈ RI};

∗ Example: ∃Managedby.>;

∗ Description of Example: This expression determines the indi-

viduals who have a manager.

> Concept: ∃R.C

∗ Constructor name: Full Existential Restriction;

∗ Description: This concept denotes the individuals who are re-

lated to an individual of concept C by a certain role R s.t. the

individual of concept C is the second argument of the role;

∗ Semantics: (∃R.C)I ={x| some RI-Successor-of x is in CI};

∗ Example: ∃Managedby.Male;

∗ Description of Example: This concept denotes the individuals

which have at least one male manager.

Two constructions, V alue Restriction and Existential Restriction

can be used to restrict both the domain and also the range of

a role. The expression ∃Managedby.> v Male restricts the do-

main of the Managedby role to males, and the expression > v

∀Managedby.Female confines the range of the Managedby role to

females.

> Concept: {a}

∗ Constructor name: Nominal;

∗ Description: This concept has exactly one individual in its in-

terpretation [17], so is modelled as a singleton set [14]. For

more information see [8];

∗ Semantics: ({a})I ={aI};

12

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Example: {Iran};

∗ Description of Example: The expression denotes a singleton set

consisting only of Iran.

Note that in a language which supports the disjunction operator,

a user can enumerate a set with its constituent nominals, e.g.,

Countries ≡ {France} t {Italy} t {Iran}.

> Concept: ≤ n R C

∗ Constructor name: At-most Qualifying Number Restriction;

∗ Description: This concept denotes the individuals which are

related to at most n individuals of concept C via the role R;

∗ Semantics: (≤ n R C)I = {x| at most n RI-Successors-of x are

in CI};

∗ Example: ≤ 5 Manages Female;

∗ Description of Example: This expression determines the indi-

viduals who manage at most 5 females.

> Concept: ≥ n R C

∗ Constructor name: At-least Qualifying Number Restriction;

∗ Description: This concept denotes the individuals which are

related to at least n individuals of concept C via the role R;

∗ Semantics: (≥ n R C)I = {x| at least n RI-Successors-of x are

in CI};

∗ Example: ≥ 5 Manages Female;

∗ Description of Example: This expression determines the indi-

viduals who manage at least 5 females.

> Concept: ≤ n R

13

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Constructor name: At-most Number Restriction;

∗ Description: This concept denotes the individuals which are

related to at most n individuals via the role R;

∗ Semantics: (≤ n R)I ={x|#{(x, y) ∈ RI } ≤ n};

∗ Example: ≤ 10 Manages;

∗ Description of Example: The individuals who manage at most

10 individuals are determined by this expression.

> Concept: ≥ n R

∗ Constructor name: At-least Number Restriction;

∗ Description: This concept denotes the individuals which are

related to at least n individuals via the role R;

∗ Semantics: (≥ n R)I ={x|#{(x, y) ∈ RI } ≥ n} [14];

∗ Example: ≥ 2 Manages;

∗ Description of Example: The individuals who manage at least

2 individuals are denoted by this expression.

• Role Construction

The following roles are used in the concept constructions (e.g., in the

concept ∃R.C).

> Role: R−

∗ Constructor name: Inverse Role;

∗ Description: This role is the inverse of the role R.

∗ Semantics: (R−)I ={〈y, x〉|〈x, y〉 ∈ RI};

∗ Example: Manages ≡Managedby−;

∗ Description of Example: The Manages role is the inverse of

the Managedby role.

14

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

> Role: R|C

∗ Constructor name: Role Restriction;

∗ Description: This role is obtained by confining the range of a

certain role R to the individuals of a certain concept C;

∗ Semantics: (R|C)I = {〈x, y〉| RI-Successor-of x is in CI};

∗ Example: Managedbyfemales ≡Managedby|Female;

∗ Description of Example: The Managedbyfemales role is a role

that contains the pairs from the Managedby role which have a

female as their second argument.

> Role: TR(R)

∗ Constructor name: Transitive Role;

∗ Description: This constructor specifies that the role R is tran-

sitive;

∗ Semantics: (TR(R))I : if 〈x, y〉 ∈ RI and 〈y, z〉 ∈ RI , then

〈x, z〉 ∈ RI [18];

∗ Example: TR(Partof);

∗ Description of Example: The Partof role is a transitive role.

• Language Construction

> Language: DL(D1, ...,Dk) where D1, ...,Dk are domains.

∗ Constructor name: Concrete Domain [19];

∗ Description: This construction allows the user to employ strings,

numbers or other domains in a description logic language [20].

A DL language can be equipped with several domains, DL(D1,

..., Dk), together with partial functions (fi) and additional

predicates.

15

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Semantics: A feature fIi is a partial function from ∆I to
⋃

1≤j≤n

∆Dj , and a predicate p with arity n ≥ 0 is a set pDi , s.t. pDi ⊆

(∆Di)n [19]. Every concrete domain ∆Di has an associated set

of predicates (pred(Di)). In fact, p(f1, ..., fk) for p ∈ pred(Di)

is interpreted as { d ∈ ∆I | ∃y1, ..., yk ∈ ∆Di : fIj = yj for

1 ≤ j ≤ k ∧ (y1, ..., yk) ∈ pDi};

∗ Example: EL(integer) equipped with a feature Wage which

returns the monthly wage of an individual and a predicate ≥5000

which is a unary predicate with its obvious meaning over the

integers;

∗ Description of Example: With the above language, specifying

all individuals that manage at least three females each of whom

earn 5000 dollars or more every month, is modelled by (≥ 3

Manages Females u ∃Wage. ≥5000).

A DL-knowledge-base (i.e., Σ-kn= 〈TBox,ABox〉) [21] is a finite set of DL-

Sentences and the interpretation .I is a model for the knowledge base Σ-kn

if and only if I satisfies all the sentences in Σ-kn. Also, a Σ-kn is divided

into two parts, TBox Sentences and ABox Sentences, where TBox and ABox

are, respectively, the abbreviations of Terminological Box and Assertional Box.

TBox statements describe “the relevant notions of an application domain by

stating properties of concepts and roles, and relationships between them – it

corresponds to the schema in a database setting” [22], and ABox statements

are the axioms about a specific application situation stated by introducing

named individuals (e.g., Lecturer(Franz), Course(C1)) and relating them by

using roles (e.g., teaches(Franz, C1)) [23]. They constitute the “facts” of the

domain. A TBox in a knowledge-base can be empty, cyclic or acyclic (see

Definition 2). Below, we present the ALC language and an example of an

16

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

acyclic TBox and an ABox in the ALC language.

Definition 2 ([24]). A TBox T is called cyclic iff it contains a cycle, i.e., there

exists an atomic concept defined (in)directly in terms of itself; otherwise T is

called acyclic.

Definition 3 ([7]). ALC Concept Descriptions

Let NC be the set of all concept names and NR the set of all role names; a

concept description is inductively defined as follows:

• An atomic concept name is a concept description.

• if C ∈ NC and D ∈ NC are concept descriptions and r ∈ NR is a role

name, then ¬C, C uD, C tD, ∃r.C, ∀r.C are concept descriptions.

The following example includes an ABox and an acyclic TBox, generated

by the ABox and the TBox axioms mentioned in the Table 2.1. The TBox

and ABox describe a small part of an education system [25]. Here Person and

Course are atomic concepts and teaches and attends are roles while Lecturer,

Student, BusyLecturer are concept descriptions.

Example 1. A simple description of an education system:

TBox Axioms:

Lecturer ≡ Person u ∃teaches.Course

Student ≡ Person u ∃attends.Course

BusyLecturer ≡ Lecturer u (≥ 3 teaches.Course)

Lecturer u Student v ⊥

ABox Axioms:

Lecturer(Franz), Course(C1), teaches(Franz, C1),

Course(C2), Course(C3), Course(C4)

Person(Franz), Person(John), Student(John)

attends(John,C1), teaches(Franz, C3), teaches(Franz, C4)

17

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Having identified TBox and ABox axioms, one can use a reasoner to make

inferences, i.e., deduce implicit knowledge (e.g., Franz is a BusyLecturer)

from the explicitly represented knowledge [26] in the system. A reasoner is

a program which uses the TBox and the ABox, to draw inferences. To this

point in time, many reasoners have been developed, e.g., Pellet [27], FACT++

[28], Condor, Hermit [29]; different reasoners are optimized to provide different

reasoning services, e.g., classification [30, 31, 32, 33, 34], “the computation of

subsumption hierarchies for classes and properties” [35]. Generally, there are

six primitive reasoning types in two categories.

• TBox reasoning [36]

1. Satisfiability Checking

A concept C is satisfiable w.r.t. a TBox T if there exists a model

I of T s.t. CI is non-empty (CI 6= ∅). In the Example 1, all

the concepts are satisfiable because we can instantiate at least one

individual for each concept. Suppose we add one axiom, Stu Lec =

Lecturer u Student, to the TBox of Example 1. The new concept

(Stu Lec) describes the people who are a student and a lecturer

simultaneously. On the other hand, the axiom LectureruStudent v

⊥ states that nobody can be a student and a lecturer at the same

time. The definition of Stu Lec contradicts the axiom Lecturer u

Student v ⊥. It is not possible to find an individual for Stu Lec;

thus Stu Lec is not satisfiable.

2. Subsumption Checking

With respect to T , we say C is subsumed by D, equivalently, D

subsumes C, if every instance of concept C is an instance of concept

D. This means CI ⊆ DI for every model I of T . For example,

18

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

BusyLecturer v Person, because based on the TBox axioms, ev-

ery BusyLecturer is a Lecturer and every Lecturer is a Person;

therefore, every BusyLecturer is a Person.

3. Equivalence Checking

Two concepts C,D are equivalent if they always have the same

interpretation in a model w.r.t. a particular TBox.

4. Disjointness Checking

With respect to T , two concepts C, D are disjoint if they have no

common individual. Hence, we have CI ∩DI = ∅ for every model

I of T . As can be seen in the TBox of Example 1, Student and

Lecturer are disjoint in the sense that it is not possible to have an

individual who is a lecturer and a student at the same time.

• ABox reasoning [36]

1. Consistency Checking

An ABox is consistent w.r.t. a TBox if there is a model I for both

the ABox and the TBox. The ABox of Example 1 is consistent, but

if we add Lecturer(John) to the ABox, it is no longer consistent,

because a TBox axiom states that Student and Lecturer are disjoint

but John is an individual who is both.

2. Instance Checking

Checking whether an individual is an instance of a concept (i.e.,

aI ∈ CI).

Indeed, in order to ensure the reasonable and predictable behaviour of a

DL system, the aforementioned reasoning types should be decidable with

a low computational complexity [7]. Table 2.2, shows the complexity of

19

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

subsumption reasoning in some basic description logics and Table 2.3

describes the complexity of satisfiability in some of the nonbasic descrip-

tion logics. There is a trade off between expressivity and complexity;

generally, a more expressive logic has a higher computational complex-

ity of (TBox, ABox) reasoning. For example, ELHIFR+ (See Table 2.4)

is an extension of EL which contains role hierarchies, inverse, functional

roles but has no tractable reasoning algorithm [37].

Practically, in most cases, one type of reasoning can be reduced to an-

other. Thus, a reasoner needs to implement some of the reasoning types

as primitive services, and performs the other types based on the im-

plemented ones. The reductions are as follows. Suppose C and D are

concepts and a is an individual.

– Reduction to Subsumption [8]

∗ Unsatisfiability to subsumption: C is unsatisfiable ⇔ C v ⊥

∗ Equality to subsumption: C ≡ D ⇔ C v D and D v C

∗ Disjointness to subsumption: C,D are disjoint ⇔ C uD v ⊥

– Reduction to Unsatisfiability [8]

∗ Subsumption to unsatisfiability: C v D ⇔ C u¬D is unsatis-

fiable.

∗ Equality to unsatisfiability: C ≡ D ⇔ C u ¬D and ¬C u D

are unsatisfiable.

∗ Disjointness to unsatisfiability: C,D are disjoint ⇔ C u D is

unsatisfiable.

– Reduction of Instance Checking to Inconsistency [8]

∗ ABox A |= C(a) ⇔ A t {¬C(a)} is inconsistent.

20

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

– Reduction of Satisfiability to Consistency [8]

∗ C is satisfiable ⇔ {C(a)} is consistent.

As we already mentioned in the introduction, there are many different kinds

of description logics. Three of them, AL, EL and FL0 mentioned in the first

part of the Table 2.4 are basic logics, and the others are constructed by adding

some constructors to these basic logics (see the second part of the Table 2.4).

For example, ALC is the AL language equipped with complete negation (C),

while SHIQ has many constructors [38]: Top concept, Bottom concept, Con-

junction, Disjunction, Complete Negation, Existential Restriction, Universal

Restriction and Qualifying Number Restriction. SHIQ is based on the AL

language.

Table 2.2: Computational complexity of Subsumption [7, 39]

Assumption Language Complexity
Empty TBox FLo Polynomial
General TBox FLo ExpTime-Complete
General TBox EL Polynomial
General TBox ALC ExpTime

2.2 A tableau algorithm for ALC

A tableau algorithm can be designed to check the satisfiability of a concept

description in a description logic. For example, in order to check the satis-

fiability of a given ALC concept description C0, a tableau algorithm tries to

construct a finite interpretation I that satisfies C0 [41]. Before we explain the

details of the algorithm, we define the following notion.

21

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Table 2.3: Computational complexity of Satisfiability [40]

Assumption Language Complexity
- ALC PSpace-Complete
- ALCO PSpace-Complete

Empty TBox ALCF PSpace-Complete
- ALCF ExpTime-Complete

Empty TBox ALCN PSpace-Complete
- ALCN ExpTime-Complete

Acyclic TBox ALCF NExpTime-Hard
- SHIQ ExpTime-Complete

Table 2.4: DL Naming Convention [5]

Symbol Description

AL Atomic negation, Concept intersection, Value restrictions, Limited ex-
istential quantification.

FL Concept intersection, Value restrictions, Limited existential quantifica-
tion, Role restriction.

EL Concept intersection, Full existential quantification.

S An abbreviation for ALC with transitive roles.

FL− A sub-language of FL, without role restriction. Equivalent to AL
without atomic negation.

FLo A sub-logic of FL−, without limited existential quantification.

EL++ Alias for ELRO.

H Role hierarchy.

O Nominal.

Q Qualified cardinality restrictions.

I Inverse role.

(D) Use of datatype properties, data values or data types.

N Cardinality restrictions.

F Functional properties.

E Full existential qualification.

U Concept union.

C Complex concept negation.

R Limited complex role inclusion axioms; reflexivity and irreflexivity; role
disjointness.

22

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 4. A concept description is in Negation Normal Form (NNF) when

the negation operator (¬) is allowed to appear only before the atomic concepts.

It is more efficient to build a tableau to check the satisfiability of a concept

description when all concepts are in NNF [41, 42]. Using negation normal form

of concept descriptions in the construction of a tableau decreases the number

of completion rules (see Figure 2.1) [43] and reduces the size of a tableau. In

order to find the NNF of a formula, we need to push the negations inside the

concept description using de Morgan’s laws [44]. In fact, a concept description

can be transformed to NNF in linear time [41] by applying the following rules.

1. ¬(¬C)⇔ C

2. ¬(C tD)⇔ ¬C u ¬D

3. ¬(C uD)⇔ ¬C t ¬D

4. ¬(∀R.C)⇔ ∃R.¬C

Example 2. Let C = ¬(∀R.(D t E)). The NNF of C is ∃R.(¬D u ¬E).

• The →u-rule
A′ := A∪{C1(x), C2(x)} if A contains (C1uC2)(x), but not both C1(x)
and C2(x)

• The →t-rule
A′ := A∪{C1(x)}, A′′ := {C2(x)} if A contains (C1tC2)(x), but neither
C1(x) nor C2(x)

• The →∃-rule
A′ := A∪{C(y), R(x, y)} (y is an individual name not occurring in A) if
A contains (∃R.C)(x), and there is no individual name z s.t. C(z) and
R(x, z) are in A.

• The →∀-rule
A′ := A ∪ {C(y)} if A contains (∀R.C)(x) and R(x, y), but it does not
contain C(y).

Figure 2.1: Completion Rule for ALC [36, 45]

23

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Let T be a TBox, and let C be a concept description in NNF. In order

to check the satisfiability of C w.r.t. T , the algorithm starts with an ABox,

A0 = T ∪ {C(a0)} and applies the completion rules (see Figure 2.1) in an

arbitrary order where each rule produces one or two new ABoxes. These rules

preserve the consistency of a concept. Applying the →t-rule produces two

new ABoxes such that A0 is consistent iff at least one of the new ABoxes is

consistent.

Definition 5 ([41]). Let C be a concept description, and let a0 be an individ-

ual. An ABox contains a clash iff it contains C(a0) and ¬C(a0) simultaneously.

An ABox is called closed if it contains a clash, and is called open otherwise.

A concept description C is satisfiable if one of the ABoxes, produced while

applying the completion rules, remains open and no rule is applicable to any

axiom in the ABox. If all the ABoxes are closed, C is unsatisfiable. When the

TBox is empty or acyclic, the algorithm always terminates in a finite number

of steps (see the proof in [46]), but if we have a cyclic TBox, the algorithm

may not terminate. For example, let C be a concept description; let R a role

name, and let T = {C ≡ ∃R.C}. The process of checking the satisfiability

of C is started with A0 = {C ≡ ∃R.C,C(a0)} and never terminates. Figure

2.2 exhibits a fragment of the tableau for C. This process does not terminate

because there is a cycle (recall Definition 2) in T ; so a technique is required

to detect the cycles and to prevent the non-termination. So far, different

techniques have been proposed in the literature, e.g., subset blocking [46],

dynamic blocking [46] and dynamic double blocking [47].

Definition 6 ([25]). (Subset Blocking.) Let a, b be two individuals in A. b is

blocked by a iff {C|C(b) ∈ A} ⊆ {C|C(a) ∈ A}.

24

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

A0 = {C ≡ ∃R.C,C(a0)}

?
Applying →∃-rule

A1 = {C ≡ ∃R.C,C(a0), R(a0, a1), C(a1)}

?
Applying →∃-rule

A2 = {C ≡ ∃R.C,C(a0), R(a0, a1), C(a1), R(a1, a2), C(a2)}

?
Applying →∃-rule

A3 = {C ≡ ∃R.C,C(a0), R(a0, a1), C(a1), R(a1, a2), C(a2), R(a2, a3), C(a3)}

Never terminates!

Figure 2.2: Tableau for satisfiability checking of concept description C

Here we adopt the subset blocking technique in order to resolve the termi-

nation issue. Definition 6 presents the notion of a blocked individual. Based

on this notion, we have modified the completion rules (see Figure 2.3), so they

are not allowed to be applied on blocked individuals. When b is blocked by a, b

can use the role successors of a; so it is no longer needed to generate a new in-

dividual. For example, we can construct an alternative version of Figure 2.2 in

which a1 would be blocked by a0, and we would use a1 rather than generate a2.

Hence, we would have A2 = {C ≡ ∃R.C,C(a0), R(a0, a1), C(a1), R(a1, a1)},

and no further rule is applicable, which means the algorithm terminates. Note,

in some cases, two individuals a and b can block each other. This situation is

called cyclic blocking and should be prevented by the algorithm. To do so, we

consider an enumeration of all the individuals. We allow an individual a to

block the individual b if a appears before b in the enumeration. In ALC, using

subset blocking along with prevention of cyclic blocking guarantees that the

algorithm always terminates.

Theorem 1. The tableau algorithm for checking satisfiability of a concept

description C in ALC always terminates.

25

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• The →u-rule
A′ := A∪{C1(a), C2(a)} if a is not blocked and A contains (C1uC2)(a),
but not both C1(a) and C2(a)

• The →t-rule
A′ := A ∪ {C1(a)}, A′′ := {C2(a)} if a is not blocked and A contains
(C1 t C2)(a), but neither C1(a) nor C2(a)

• The →∃-rule
A′ := A ∪ {C(b), R(a, b)} (b is an individual name not occurring in A)
if a is not blocked, and A contains (∃R.C)(a), but there is no individual
name c s.t. C(c) and R(a, c) are in A.

• The →∀-rule
A′ := A ∪ {C(b)} if a is not blocked and A contains (∀R.C)(a) and
R(a, b), but it does not contain C(b).

Figure 2.3: Completion Rule for ALC [36, 45]

Proof. Let T be a TBox; let A be an ABox; let C,D be two concept descrip-

tions, and let sub(O) be the set of all subconcepts of the concepts appearing

in A together with all subconcepts of NNF(¬C) t D for each C v D ∈ T .

The termination is a consequence of following facts [48]:

• A rule replaces an ABox with at most two ABoxes.

• The ABoxes are built in a monotonic way in relation to the size of the

ABox.

• Let |C| be the string length of concept description C. The number of

concept assertions which can be added during the process is restricted

to the following number:

sub(O) ≤ ΣC⊆D∈O(2 + |C|+ |D|) + Σa:C∈O|C|

It can be proved by induction that sub(C) ≤ |C|.

• When we use subset blocking, if a is blocked, no rule can be applied on

26

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

a; so there can be at most 2sub(O) individuals in an ABox.

Hence, the ABoxes which are built during the satisfiability checking of a

concept will be complete in the sense that each of them either may contain

a clash, or is consistent, and no further rule is applicable to any axiom in it.

Therefore, the algorithm terminates.

Since there are many different members in the family of description logics,

different tableau rules and different blocking techniques should be used for

reasoning in them. For the details see [41, 42, 44, 46, 47, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60, 61]

2.3 Relationship between Description Logic and

First Order Predicate Logic

Most of description logics are decidable fragments of first-order logic [62].

Therefore, sometimes we can use a translation into predicate logic to define the

semantics of description logic formulas. Generally, this transformation yields a

first order formula but there are some situations which we cannot transform to

first order formulas, e.g., those involving a transitive role, or nominals. Since

we do not have any variables in the syntax of a DL, translation of a concept

name yields a formula with one free variable while a role name is translated

to a formula with two free variables [21, 36, 62]. A translation is given by

a mapping πx from DL concepts into predicate logic formulas with one free

variable and a mapping πx,y from DL roles into predicate logic formulas with

two free variables. The translation is inductively defined as follows [36].

27

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

πx(>) = true πx(⊥) = false

πx(A) = A(x) πx(¬A) = ¬πx(A)

πx,y(R) = R(x, y) πx,y(R
−) = πy,x(R)

πx(C uD) = πx(C) ∧ πx(D) πx(C tD) = πx(C) ∨ πx(D)

πx(∃R.C) = ∃y.πx,y(R) ∧ πy(C) πx(∃R.>) = ∃y.πx,y(R)

πx(∀R.C) = ∀y.πx,y(R)→ πy(C) πx(a) = F (x) where ∀xF (x) = a

πx,y(R|C) = πx,y(R) ∧ πy(C)

πx(≥ n R) = ∃y1, . . . , yn.(
∧
i 6=j yi 6= yj ∧

∧
i πx,yi(R))

πx(≤ n R) = ∀y1, . . . , yn+1.(
∧
i 6=j yi 6= yj →

∨
i ¬πx,yi(R))

πx(≥ n R C) = ∃y1, . . . , yn.(
∧
i 6=j yi 6= yj ∧

∧
i(πx,yi(R)) ∧ πy(C)))

πx(≤ n R C) = ∀y1, . . . , yn+1.(
∧
i 6=j yi 6= yj →

∨
i ¬(πx,yi(R))→ πy(C)))

When we transform a DL concept to a formula in predicate logic, we pre-

serve the satisfiability of the concept in the sense that if the predicate formula

is satisfiable, the translated DL concept is also satisfiable. Given a TBox

T = {Ci v Di|1 ≤ i ≤ n1} ∪ {Ci ≡ Di|1 ≤ i ≤ n2} ∪ {Ri v Si|1 ≤ i ≤ n3}

and a translation π from description logic concepts into first order formulas,

we define

π(T) = ∀x.
∧n1

i=1(πx(Ci)→ πx(Di)) ∧ ∀x.
∧n2

i=1(πx(Ci)↔ πx(Di))

∧ ∀x, y.
∧n3

i=1(πx,y(Ri)→ πx,y(Si))

Now, we have:

• C is satisfiable w.r.t. T iff the formula πx(C) ∧ π(T) is satisfiable;

• C v D is satisfiable w.r.t. T iff πx(C) ∧ ¬πx(D) ∧ π(T) is unsatisfiable;

• C ≡ D is satisfiable w.r.t. T iff πx(C) ∧ ¬πx(D) ∧ π(T) and ¬πx(C) ∧

πx(D) ∧ π(T) are unsatisfiable;

• R v S is satisfiable w.r.t. T iff πx,y(R)∧¬πx,y(S)∧π(T) is unsatisfiable;

28

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• An ABox {Rk(ai, aj)| all applicable i, j, k} ∪ {Cj(ai)| all applicable i,j}

is consistent w.r.t. T iff the following formula is satisfiable, where ais

are constants corresponding to the individuals in the ABox.∧
i,j,k Rk(ai, aj) ∧

∧
i,j πx(Cj)(ai) ∧ π(T)

29

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 3

Temporal Logic

A temporal logic is used to model any system of rules and symbolism in

order to represent and to reason about propositions qualified in terms of time.

These logics are useful in many different areas, e.g., it has enough power to

model the behaviours of some systems in terms of logical formulas, including

temporal constraints, events, and the relationships between them [64]. More-

over, temporal logic can be used for the formal verification of a software or a

hardware system. For instance, a statement like “whenever a request is made,

access to a resource is eventually granted, but it is never granted to two re-

questors simultaneously” [63] can be easily modeled by a temporal logic, and

then a model checker [65] (e.g., SPIN [66]) or a theorem prover [67] (e.g., KIV

[68]) is used to determine if this statement is always true in the system.

In the domain of medicine, most events and procedures are time-dependent,

e.g., when symptoms for an illness occur [69]; therefore, temporal logic plays an

important role in this domain because it can be used to describe such events or

procedures. Moreover, a temporal logic can model the properties that should

hold whenever an event occurs (e.g., after any Insulin shot, the blood sugar

eventually drops) or during a procedure (e.g., during an operation, the heart

30

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

rate of a patient must always be monitored).

Until today, several temporal logics have been designed in order to be used

in various areas. Generally, these logics are divided into two main categories:

point-based temporal logics and interval-based temporal logics. We explain

these categories below.

3.1 Point-based Temporal Logics

A point-based temporal logic is essentially an extension of a propositional

logic using some modalities, e.g., the necessity modality [70]. These modali-

ties allow one to add dynamicity to classical logic. It means that a formula

of a point-based temporal logic is evaluated on a set of time points. This set

of time points is called linear, if each moment in time has a unique possible

future; otherwise it is called branching, i.e., several possible futures may exist

for each moment in time [71]. Based on these notions (linear or branching),

point-based temporal logics are classified into two categories: linear time point-

based temporal logics (e.g., linear time temporal logic (LTL) [72], Quantified

Propositional Temporal Logic (QPTL) [73]) and branching time point-based

temporal logics (e.g., Computation Tree Logic (CTL) [71, 74], CTL∗ [75]).

These languages have different expressivity. For instance, CTL∗ is more ex-

pressive than CTL and LTL. Note that sometimes the expressivity of two

temporal logics are not comparable. For example, the expressivity of LTL and

the expressivity of CTL are not comparable in the sense that LTL is able to

model some situations that CTL cannot model, and vice versa.

The main ontological element of point-based logics is a time instant (point),

which is a durationless element [76]. Therefore, these logics are mostly suitable

for modelling instantaneous events (or actions) in a system. Moreover, most

31

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

of these logics are decidable and have good computational properties [77]. For

more information, we refer the reader to [78, 79, 80, 81, 82].

3.2 Interval-based Temporal Logic

There are many scientific areas, e.g., philosophy, linguistics, artificial in-

telligence and computer science [83] which involve processes which have du-

rations. It is difficult to model processes with durations using a point-based

temporal logic. Furthermore, there are other situations that a point-based

temporal logic is not able to model, e.g., expressing the decomposition of one

time interval into several [84]. To resolve these issues, a temporal logic, called

interval-based temporal logic, may be used. In this kind of logic, a formula is

evaluated on a set of time intervals. In the next section we will talk about the

structure of a time interval in more detail.

In some interval-based temporal logics, time intervals are defined in terms

of one of their endpoints. In these logics, a locality assumption, which says

an atomic proposition is true if and only if it is true at the first point of the

interval, reduces intervals to time points [83]. Thus, these logics turn out to be

point-based temporal logics. In this thesis, time intervals will be considered as

primitive entities [76] in the logics; so the logics are inherently interval-based,

and it is not possible to reduce them to point-based temporal logics.

3.3 Structure of Time Intervals

Definition 7. Let D = 〈D, <〉 be a partially ordered set (see [85]).

• An interval in D is a pair [a,b], where a,b ∈ D and a < b or a = b.

32

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• If a < b, the interval is called strict or proper, otherwise, it is called a

point interval.

• The set of strict intervals are denoted by I(D)− while the set of all non-

strict intervals is denoted by I(D)+.

• By I(D) we will denote either I(D)+ or I(D)−.

• An interval structure is a pair 〈D, I(D)〉 [76].

Definition 8. An interval structure is linear if every two points are compa-

rable.

Also, a partial ordering has the linear interval property if every interval in

the structure is linear. Formally,

∀x∀y(x < y → ∀k1∀k2(x < k1 < y ∧ x < k2 < y → k1 < k2 ∨ k1 = k2 ∨ k2 < k1))

Figure 3.1 exhibits an interval structure with(out) the linear interval prop-

erty. Note that every linear interval structure has the linear interval property.

Figure 3.1: With linear interval property (left), Without linear interval prop-
erty (right)

A linear interval structure can be:

• finite, if it has finitely many points [76].

• unbounded above (below), if every point has a successor (predecessor)

[76].

33

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• dense: Between every two distinct points, a third point exists, ∀x, y(x <

y → ∃z x < z < y);

• discrete: Every point in the flow with a successor/predecessor has an

immediate successor/predecessor.

– ∀x, y(x < y → ∃z(x < z ∧ ¬∃x < u < z)

– ∀x, y(x < y → ∃z(z < y ∧ ¬∃z < u < y)

• dedekind complete: Every non-empty set of points which is bounded

above has a least upper bound [76].

Note that in this thesis, we use Z as our linear interval structure.

3.4 Possible relations between two intervals

Generally, thirteen relations can be defined between two intervals. Allen

introduced them in [86] and, hence, the relations are called Allen’s relations

[87] (see Figure 3.2). Moreover, the three following natural relations between

two intervals can be defined [88] based on Allen’s relations. Let D be a partially

order set, and let [ci, cj] and [ci′ , cj′] be two intervals.

• [ci′ , cj′] is a sub-interval of [ci, cj] iff ci ≤ ci′ and cj′ ≤ cj.

This relation corresponds to the Equal∪Starts∪During∪Ends relation.

Formally, [ci′ , cj′] ≡ 〈=〉[ci, cj] ∨ 〈B〉[ci, cj] ∨ 〈D〉[ci, cj] ∨ 〈E〉[ci, cj].

• [ci′ , cj′] is a proper sub-interval of [ci, cj] iff [ci′ , cj′] is a sub-interval of

[ci, cj] and [ci′ , cj′] 6= [ci, cj].

This relation corresponds to the Starts ∪During ∪Ends relation. For-

mally, [ci′ , cj′] ≡ 〈B〉[ci, cj] ∨ 〈D〉[ci, cj] ∨ 〈E〉[ci, cj].

34

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 3.2: Allen’s relations with alternative notations [11, 83]

• [ci′ , cj′] is a strict sub-interval of [ci, cj] iff ci < ci′ and cj′ < cj.

This relation corresponds to the During relation. Formally, [ci′ , cj′] ≡

〈D〉[ci, cj].

In [89], Venema has introduced a ternary relation (named A) between

intervals. Figure 3.3 exhibits the semantics of this relation [89]. Note that

some logics (e.g., CDT, BCDT+) are defined based on the A relation.

Aijk holds iff i starts k and i meets j and j ends k

where i, j, k are three intervals.

35

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 3.3: Venema relation

3.4.1 Allen’s modalities

Based on Allen’s relations, thirteen different modalities are defined. These

modalities are 〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈E〉,〈E〉, 〈B〉,〈B〉, 〈D〉,〈D〉, 〈O〉,〈O〉, 〈=〉 which

respectively stand for meet, met-by, after, before, ends, ended-by, starts,

started-by, during, contain, overlaps, overlapped-by and equal. These modal-

ities are unary modalities. We give an example to show how these modalities

are used. Let ψ and ϕ be two formulas. The formula ψ = 〈B〉ϕ states that

the intervals on which that ψ and ϕ are true start at the same time while

the length of the interval on which ϕ is true is shorter than the length of

the interval on which ψ is true (the current interval). Note that some of the

modalities can be defined in terms of other modalities, e.g., 〈B〉ϕ = 〈A〉〈A〉ϕ,

〈D〉ϕ = 〈B〉〈E〉ϕ, 〈L〉ϕ = 〈A〉〈A〉ϕ [90]. Due to this fact, some logics may

contain few modalities while they are able to model many of Allen’s relations.

For instance, a logic which has the 〈A〉, 〈A〉, 〈L〉, 〈L〉, 〈E〉 and 〈E〉 modalities,

is able to model all of Allen’s relations [91].

3.5 Some interval-based temporal logics

In this section, we consider some of the logics that are genuinely interval-

based in the sense that they cannot be directly translated into a point-based

logic, and they do not assume locality or any semantic restrictions that reduce

the interval-based semantics to the point-based semantics [11].

36

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

3.5.1 Interval Temporal Logic (IT L) [92, 93]

IT L, introduced by Halpern, Monna and Moszkowski [93], is used to de-

scribe the behaviour of software and hardware. For instance, in [92], IT L has

been used to describe and to reason about the structure and dynamics of a

wide variety of timing-dependent digital circuits. This logic is an extension of

linear time temporal logic (LTL), while the notion of time in IT L is bounded

for the past, unbounded for the future, discrete and linear [93]. However a

model of LTL consists of infinite state sequences while a model of IT L con-

sists of finite state sequences, called intervals [94]. The length of an interval

is equal to the number of states existing in a the sequence. We present the

syntax of propositional IT L (PIT L) below.

Definition 9 ([92]). Let p be a proposition, and let n ∈ N. A PIT L formula,

denoted by P , is defined inductively as follows.

P ::= p | false | ¬P | P ∨ P | ©P | P ;P

Since IT L is considered as an extension of LTL with the semicolon oper-

ator, the semantics of the ¬,∨ and © operators is the same as the semantics

of these operators in LTL (see [95]). The semantics of the semicolon operator

is the same as for the semantics of the Venema relation which we described

in the previous section. Note that the truth of formulas does not depend on

states, but on intervals.

However because of the existence of the semicolon operator, IT L is un-

decidable [92, 93], the decidability of PIT L can be recovered by constraining

atomic propositions to be point-wise and by adopting the locality assumption

[76]. In other words, the main ontological element in the decidable PIT L is

a time point. It follows that the decidable PIT L is not genuinely an interval-

based temporal logic.

37

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

3.5.2 The Halpern-Shoham logic (HS)

HS is an interval-based temporal logic that allows one to express all Allen’s

relations between intervals [96]. This logic does not assume anything about

the nature of an interval structure; so the interval structure can be discrete or

dense, linear or branching, dedekind complete or not [97].

Let AP be a set of propositional variables, and p ∈ AP . A formula of HS,

ψ, is defined inductively as follows [98].

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈A〉 ψ | 〈B〉 ψ | 〈E〉 ψ | 〈A〉 ψ | 〈B〉 ψ | 〈E〉 ψ

As seen in the syntax of the logic, there are only 6 modalities for defining a

formula. Recall that the other Allen’s modalities are definable based on these

6 modalities. A model for an HS formula is a 3 tuple M = (D, I(D),V) where

(D, I(D)) is an interval structure and V : I(D) → 2AP is a valuation function

that assigns to every interval the set of propositions which are true there. The

semantics of HS is defined based on the satisfiability relation (|=) as follows

[88]. Let [i, j] be an interval.

• M, [i, j] |= p iff p ∈ V ([i, j]), for any p ∈ AP ;

• M, [i, j] |= ¬ψ iff it is not the case that M, [i, j] |= ψ;

• M, [i, j] |= ψ1 ∧ ψ2 iff M, [i, j] |= ψ1 and M, [i, j] |= ψ2;

• M, [i, j] |= 〈A〉ψ iff there exists h ≥ j such that M, [j, h] |= ψ;

• M, [i, j] |= 〈B〉ψ iff there exists i ≤ h < j such that M, [i, h] |= ψ;

• M, [i, j] |= 〈E〉ψ iff there exists i < h ≤ j such that M, [h, j] |= ψ;

• M, [i, j] |= 〈A〉ψ iff there exists h ≤ i such that M, [h, i] |= ψ.

• M, [i, j] |= 〈B〉ψ iff there exists h > j such that M, [i, h] |= ψ.

38

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• M, [i, j] |= 〈E〉ψ iff there exists h < i such that M, [h, j] |= ψ.

Figure 3.4: Fragments of AABB and AAEE over strongly discrete linear
orders [99]

HS is undecidable for most classes of interval structures (e.g., any class

of ordered structures with an infinitely ascending sequence [88]) . Although

most fragments ofHS on most natural classes of interval structures (e.g., N,Z)

are undecidable [90, 100], there are still many decidable fragments [99]. For

example, the logic which contains the 〈D〉, 〈D〉, 〈B〉, 〈B〉, 〈L〉, 〈L〉 modalities is

the maximal decidable fragment over dense interval structures [11]. In terms

of expressivity, there are exactly 44 expressively different decidable fragments

of HS over discrete linear orders (see Figure 3.4), and their complexity ranges

from NP to ExpSpace [99]. Later, we discuss one of the decidable fragments

of HS, called PNL.

39

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

3.5.3 CDT and BCDT+ [83, 88, 89]

CDT, proposed by Venema in [89], is the most expressive propositional

interval logic over a (non-strict) linear ordering [83, 88]. BCDT+ is an ex-

tension of CDT to partial orderings with the linear interval property. Besides

the usual boolean operators, the language of these logics contains three binary

modal operators, C, D and T and a propositional constant π. A formula of

these logics, denoted by ψ, is defined recursively as follows:

ψ ::= p | ¬ψ | ψ ∨ ψ | π | ψ C ψ | ψ D ψ | ψ T ψ

Figure 3.5 intuitively exhibits the semantics of the C, D and T operators.

current interval︷ ︸︸ ︷
i j

ψ1︷ ︸︸ ︷ ψ2︷ ︸︸ ︷
i h j

ψ1 C ψ2 :

︸ ︷︷ ︸
ψ2

ψ1︷ ︸︸ ︷
h i j

ψ1 D ψ2 :

︸ ︷︷ ︸
ψ2

ψ1︷ ︸︸ ︷
i j h

ψ1 T ψ2 :

Figure 3.5: Intuitive semantics of C, D and T modalities [89]

The satisfiability relation of π and the C, D and T modalities is defined as

follows [88]. Let M be a model similar to what we defined for the HS logic,

and let [i, j] be an interval.

• M, [i, j] |= π iff i = j;

• M, [i, j] |= ψ1 C ψ2 iff there exists i ≤ h ≤ j such that M, [i, h] |= ψ1

and M, [h, j] |= ψ2;

40

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• M, [i, j] |= ψ1 D ψ2 iff there exists h ≤ i such that M, [h, i] |= ψ1 and

M, [h, j] |= ψ2;

• M, [i, j] |= ψ1 T ψ2 iff there exists h ≥ j such that M, [j, h] |= ψ1 and

M, [i, h] |= ψ2;

Note that in the following sense, HS logic is considered as a subset of CDT

[83, 88].

• 〈B〉ψ = ψ C (¬π)

• 〈E〉ψ = (¬π) C ψ

• 〈A〉ψ = (¬π ∧ ψ) T >

• 〈B〉ψ = (¬π) T ψ

• 〈E〉ψ = ψ D (¬π)

• 〈A〉ψ = (¬π ∧ ψ) D >

Since HS logic is undecidable, CDT and BCDT+ are also undecidable.

For instance, CDT is undecidable over almost all interesting classes of linear

orderings, e.g., N,Z [88].

3.5.4 Propositional Neighbourhood Logic (PNL)

PNL [101] is nearly a maximal decidable fragment [102] of HS logic which

consists of two temporal modalities (〈A〉, 〈A〉).

The language of PNL consists of a set AP of atomic propositions (e.g.,

p), logical operator, or (∨) and negation (¬) and two temporal operators

meet (♦r) and met-by (♦l) [103]. The formulas of PNL are generated by the

following syntax rules [101, 102].

ψ ::= p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ♦rψ | ♦lψ

Note that in some of the literature 〈A〉 (resp. 〈A〉) is used to model the

meet (resp. met-by) relation between intervals in the context of strict interval

41

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

structures while ♦r (♦l) is used in the context of non-strict interval structures.

In this thesis, we use these notations interchangeably.

Two modalities �r and �l are respectively defined as the dual operators

of ♦r and ♦l, i.e., �rψ = ¬♦r¬ψ and �lψ = ¬♦l¬ψ. Also, two propositional

constants true (>) and false (⊥) can be defined as usual.

Given a model M (which is the same as a model for a HS formula), the

semantics of the logic is defined as follows [101, 102, 104].

• M, [i, j] |= p iff p ∈ V ([i, j]), for any p ∈ AP ;

• M, [i, j] |= ¬ψ iff it is not the case that M, [i, j] |= ψ;

• M, [i, j] |= ψ1 ∨ ϕ2 iff M, [i, j] |= ψ1 or M, [i, j] |= ψ2;

• M, [i, j] |= ψ1 ∧ ϕ2 iff M, [i, j] |= ψ1 and M, [i, j] |= ψ2;

• M, [i, j] |= ♦rψ iff there exists h ≥ j such that M, [j, h] |= ψ;

• M, [i, j] |= ♦lψ iff there exists h ≤ i such that M, [h, i] |= ψ;

• M, [i, j] |= �rψ iff for every h ≥ j we have M, [j, h] |= ψ;

• M, [i, j] |= �lψ iff for every h ≤ i we have M, [h, i] |= ψ.

To have a better intuition about the usage of PNL, suppose, we want to

encode the statement Right after John completes the writing of his thesis, he

has to submit it to the graduate office, where we know that John is completing

the writing of his thesis now. The formula ψ = ϕ1 ∧ ♦rϕ2 describes the

statement: ϕ1 is John is completing the writing of his thesis and ϕ2 is John

submits his thesis to the graduate office.

It is worthwhile mentioning that in the context of non-strict (resp. strict)

interval structures, PNL is called PNL+ (resp. PNL−). PNL+ can be extended

42

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

with a propositional constant, π, in order to specify a point interval, i.e., an

interval whose end points coincide. The satisfiability of this constant over an

interval is defined as follows:

• M, [i, j] |= π iff i = j.

3.5.4.1 A Tableau-based algorithm for PNL+

The content of this section is essentially the same as Section 9 in [101]. In

this section we work in the context of a non-strict interval structure and present

an algorithm to check the satisfiability of a PNL+ formula. The algorithm can

be modified in order to obtain an algorithm for checking the satisfiability of a

PNL− formula. We refer the reader to [101] to see the necessary modifications.

Definition 10. We recall some basic definitions:

• A finite tree is a finite directed connected graph in which every node

(except the root) has exactly one incoming edge.

• A successor of a node n is a node n
′

s.t. there is an edge from n to n
′
.

• A leaf is a node which has no successor.

• A path is a sequence of nodes n0,...,nk such that, for all i = 0, ..., k − 1,

ni+1 is a successor of ni.

• A branch is a path from the root to a leaf.

• The height of a node n is the maximum number of edges of a path from

n to a leaf. If n, n
′

belong to the same branch and the height of n is

less than or equal to the height of n
′
, we write n ≺ n

′
. We remark that

we follow [105] in using a nonstandard definition of height.

43

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 11. Let C = 〈C, <〉 be a finite partial order.

• A labeled formula, with label in C, is a pair (ψ,[ci, cj]), where ψ ∈ PNL+

and [ci, cj] ∈ I(C)− and ci < cj.

• The decoration v(n) for a node n in a tree T is a triple ((ψ, [ci, cj]),C,un),

where (ψ, [ci, cj]) is a labeled formula, with label in C, and un is a lo-

cal flag function which associates a value, 0 or 1, with each branch B

containing n.

• A decorated tree is a tree in which every node has a decoration v(n).

The formula in v(n) is denoted by Φ(n). Note that the value 0 for a node

n with respect to a branch B indicates that n can be expanded on B. For

every decorated tree, we define a global flag function u acting on pairs (node,

branch through that node) as u(n, B) = un(B). Sometimes, for convenience,

we will include in the decoration of the nodes the global flag function instead

of the local ones.

If B be a branch in a tree, CB is the (partially) ordered set in the decoration

of the leaf of B. Also, B.n denotes the result of the expansion of B with the

node n (i.e., the addition of an edge connecting the leaf of B to n). Similarly,

B.n1.n2 denotes the expansion of the branch B.n1 with n2. Also, B.n1|...| nk
denotes the result of the expansion of B with k direct successor nodes n1...

nk. A tableau for a set of PNL+ formulas is a special decorated tree.

Definition 12. Given a decorated tree T , a branch B in T , and a node n ∈ B

such that v(n) =((ψ, [ci, cj]),CB,u), with u(n,B) = 0, the expansion rule for

B and n is defined as follows (in all the cases considered, u(n
′
, B

′
) = 0 for all

new pairs (n
′
, B

′
) of nodes and branches).

44

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

R¬¬: If ψ = ¬¬ϕ, then expand the branch to B.n1, with v(n1) = ((ϕ,[ci, cj]),

CB, u);

R∧: If ψ = ϕ0 ∧ ϕ1, then expand the branch to B.n0.n1, with v(n0) =

((ϕ0,[ci, cj]), CB, u) and v(n1) = ((ϕ1,[ci, cj]), CB, u);

R∨: If ψ = ϕ0 ∨ ϕ1, then expand the branch to B.n0|n1, with v(n0) =

((ϕ0,[ci, cj]), CB, u) and v(n1) = ((ϕ1,[ci, cj]), CB, u);

R�r : If ψ = �rϕ and c is the least element of CB such that cj ≤ c and c has

not beed used yet to expand n on B, then expand the branch to B.n1,

with v(n1) = ((ϕ,[cj, c]), CB, u);

R�l : If ψ = �lϕ and c is the greatest element of CB such that c ≤ ci and c has

not beed used yet to expand n on B, then expand the branch to B.n1,

with v(n1) = ((ϕ,[c, ci]), CB, u);

R♦r : If ψ = ♦rϕ, then expand the branch to B.nj|. . .nn|n
′
j|. . . |n

′
n, where

1. for all j ≤ k ≤ n, v(nk) = ((ϕ,[cj, ck]), CB, u) and

2. for all j ≤ k ≤ n, v(n
′

k) = ((ϕ,[cj, c]), Ck, u) where, for j ≤ k ≤

n−1, Ck is the linear ordering obtained by inserting a new element

c between ck and ck+1 in CB, and for k = n, Ck is the linear ordering

obtained by inserting a new element c after cn in CB.

R♦l : If ψ = ♦lϕ, then expand the branch to B.n1|. . .ni|n
′
1|. . . |n

′
i, where

1. for all 1 ≤ k ≤ i, v(nk) = ((ϕ,[ck, ci]), CB, u) and

2. for all 1 ≤ k ≤ i, v(n
′

k) = ((ϕ,[c, ci]), Ck, u) where, for 2 ≤ k ≤ i, Ck

is the linear ordering obtained by inserting a new element c between

ck−1 and ck in CB, and for k = 1, C1 is the linear ordering obtained

by inserting a new element c before c1 in CB.

45

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Note that for any node m(6= n) in B and any branch B
′

extending B, let

u(m,B
′
) be equal to u(m,B), and for any branchB

′
extendingB, u(n,B

′
) = 1,

unless ψ = �lϕ or ψ = �rϕ (in such cases u(n,B
′
) = 0). The universal formula

�rϕ (resp. �lϕ) states that, for all cj ≤ c (resp. c ≤ ci), ϕ holds over [cj, c]

(resp. [c, ci]). As a matter of fact, the expansion rule imposes such a condition

for a single element c in CB (the least (resp. greatest) element which has not

been used yet), and it does not change the flag (which remains equal to 0).

In this way, all elements will be eventually taken into consideration, including

those elements greater (resp. smaller) than cj (resp. ci) that will be added to

CB in some subsequent steps of the tableau construction.

Definition 13. A node n in a decorated tree T is available on a branch B it

belongs to iff u(n, B)=0.

An expansion rule is applicable to a node n on a branch B if the node is

available on B and the application of the rule generates at least one successor

node with a new labeled formula. This second condition is needed to avoid

looping of the application of the rule on universal formulas (�rϕ, �lϕ).

Definition 14. A branch B is closed if the following condition holds:.

∗ There are two nodes n, n
′ ∈ B such that v(n) = ((ϕ,[ci, cj]), C, u) and

v(n
′
) = ((¬ϕ,[ci, cj]),C

′
, u) for some formula ϕ and ci, cj ∈ C ∩ C′ ;

If the above condition does not hold, the branch is open, which means that

there is no inconsistency between the labeled formulas residing on the branch

and we are able to build a class of models based on the labeled formulas.

Definition 15. For a branch B in a decorated tree T , the expansion strategy

is defined as follows:

1. Apply the expansion rule to a branch B only if it is open;

46

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

2. If B is open, apply the expansion rule to the closest available node to

the root node (say n) in B to which the expansion rule is applicable (if

any).

Definition 16. An initial tableau for a given formula ψ ∈ PNL+ is the finite

decorated tree T shown below.

[root] ((ψ,[c0, c1]), {c0 < c1},0)

Definition 17. A tableau for a given formula ψ ∈ PNL+ is a finite decorated

tree T obtained by expanding the initial tableau for ψ, through successive

applications of the expansion strategy to the existing branches.

Definition 18. A tableau for a formula in PNL+ is closed if and only if every

branch in it is closed, otherwise it is open.

Example 3. Figure 3.6 exhibits an example of a tableau for ψ = ♦r�rp ∧

♦r¬p.

Note that in order to make the tableau more understandable to the reader,

we have provided two descriptive elements in the tableau: a number and text

surrounded by a rectangle for each node and each transition respectively; e.g.,

a transition label 3-R♦r states that the following node of the transition is

produced by applying R♦r to the node 3.

3.5.5 Metric Propositional Neighbourhood Logic (MPNL)

There is an interesting family of extensions of PNL with metricity over the

natural numbers, called Metric Propositional Neighbourhood Logics (MPNL).

Figure 3.7 exhibits the members of this family along with the expressivity

relation between them.

47

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

1 [root]((♦r�rp ∧ ♦r¬p,[c0, c1]), c0 < c1, 1)

1-R∧

2 ((♦r�rp,[c0, c1]), c0 < c1, 1)

1-R∧

3 ((♦r¬p,[c0, c1]), c0 < c1, 1)

�
�

2-R♦r

4 ((�rp,[c1, c1]), c0 < c1, 0)
@
@ 2-R♦r

5 ((�rp,[c1, c2]), c0 < c1 < c2, 0)

4-R�r

7 ((p,[c1, c1]), c0 < c1, 0)

�
�

3-R♦r

8 ((¬p,[c1, c1]), c0 < c1, 0)

Branch Closed!

@
@ 3-R♦r

9 ((¬p,[c1, c3]), c0 < c1 < c3, 0)

4-R�r

10 ((p,[c1, c3]), c0 < c1 < c3, 0)

Branch Closed!

5-R�r

11 ((p,[c2, c2]), c0 < c1 < c2, 0)

@
@ 3-R♦r

14 ((¬p,[c1, c4]), c0 < c1 < c2 < c4, 0)

Branch Closed!

�
�

3-R♦r

12 ((¬p,[c1, c1]), c0 < c1 < c2, 0)

Open Branch!

3-R♦r

13 ((¬p,[c1, c2]), c0 < c1 < c2, 0)

Open Branch!

Figure 3.6: Tableau for ψ = ♦r�rp ∧ ♦r¬p

48

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

As seen in Figure 3.7, MPNLl, Propositional Neighbourhood Logic, with

atomic length constraints, is the most expressive logic [11] in the family. The

language of MPNLl includes all syntax of PNL and is enriched as follows

[12, 106].

• ψ ::= lenCk , k ∈ N, C ∈ {≤, <,=, >,≥}.

The semantics of the aforementioned case is defined as follows [107].

• M, [i, j] |= lenCk iff |j − i| C k.

This logic is a metric logic, in the sense that a user can specify the length

of an interval on which a proposition should be true. For example, a formula

ψ = (p ∧ len=k) is true when p is true and the length of the interval on which

we evaluate the formula is k. Indeed, this is a crucial feature because in some

domains (e.g., medicine), it is necessary to determine the length of an event.

Assume John needs to take B12 tablets for 2 weeks ; thus, in order to define

this statement in MPNLl, the user has to use the len operator to model the

duration of 2 weeks; obviously, other operators of the logic are not able to

restrict the length of an interval.

In terms of expressivity, MPNLl is able to model a metric version of all

Allen’s relations with the exception of the during relation [12].

In the next chapter, we introduce a new interval-based temporal logic,

inspired by MPNLl.

49

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 3.7: MPNL family and their expressivity [107]

50

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 4

IMPNL: A Logic Inspired by

MPNLl

In this thesis, we combine an interval-based temporal logic and a de-

scription logic in order to design a interval-based temporal description logic.

MPNLl is not a good candidate for this goal; because if we combine MPNLl

with a DL, the combined logic is undecidable [108]. In this chapter, we in-

troduce a new logic, named IMPNL, inspired by MPNLl. Then, we design

a sound and complete tableau-based algorithm for checking the satisfiability

of IMPNL formulas. We show that this algorithm always terminates. There-

fore, the satisfiability problem of an IMPNL formula is decidable. We pro-

pose a non-deterministic implementation for the algorithm which has PSpace

complexity. In the next chapter, we combine IMPNL (without its negation

operator) with the description logic ALC and discuss its properties.

51

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

4.1 IMPNL

The language of IMPNL consists of a set, AP , of propositional variables,

logical operators atomic negation (¬), or (∨), and (∧), and temporal opera-

tors, ♦r, ♦l, corresponding to Allen’s relations meet and its inverse, met-by.

This logic has two constants > (True) and ⊥ (False) defined as usual.

4.1.1 Syntax and Semantics

The formulas, denoted by ϕ, ψ, ..., are recursively defined using BNF,

where pk is a propositional variable. Note, the subscript of an atomic formula

denotes the length whereas, the subscript of a non-atomic formula denotes

an index and is used to distinguish the formula from other formulas. We

sometimes use pk → ψ to denote ¬pk ∨ ψ.

ψ = p
k
| ¬p

k
| >

k
| ⊥

k
| ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ♦rψ | ♦lψ

where k ∈ N

Note that in IMPNL, a user must specify the length of an interval as a

subscript of a propositional variable. Therefore, it is not possible to have a

propositional variable (without specifying the length) as an atomic formula.

The semantics of IMPNL is based on a 3 tuple structure M = 〈D, I−(D),

V〉 where the pair 〈D, I−(D)〉 is a strict interval structure (see Definition 7 on

Page 32) and V: I−(D) → 2AP is a valuation function that assigns to every

interval the set of propositional variable which are true on that interval. A

satisfaction relation is defined as follows:

1. M, [i, j] |= p
k

iff j− i = k and ∀i′ , j ′ , if [i
′
, j
′
] ⊆ [i, j] then pk′ ∈ V ([i

′
, j
′
])

where j
′ − i′ = k

′
;

52

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

2. M, [i, j] |= ¬p
k

iff j − i = k and ∀i′ , j ′ , if [i
′
, j
′
] ⊆ [i, j] then pk′ /∈

V ([i
′
, j
′
]) where j

′ − i′ = k
′
;

3. M, [i, j] |= >
k

iff j − i = k;

4. M, [i, j] |= ⊥
k

never;

5. M, [i, j] |= ψ1 ∨ ψ2 iff M, [i, j] |= ψ1 or M, [i, j] |= ψ2;

6. M, [i, j] |= ψ1 ∧ ψ2 iff M, [i, j] |= ψ1 and M, [i, j] |= ψ2;

7. M, [i, j] |= ♦rψ iff there exists h > j such that M, [j, h] |= ψ;

8. M, [i, j] |= ♦lψ iff there exists h < i such that M, [h, i] |= ψ.

We say a formula ψ is satisfiable if there exists a structureM and an interval

[c0,c1] s.t. M, [c0, c1] |= ψ. Also, it is easy show that ♦z(ψ1∨ψ2)⇔ ♦zψ1∨♦zψ2

(z ∈ {r, l}) and ♦z(ψ1 ∧ ψ2)→ ♦zψ1 ∧ ♦zψ2 (z ∈ {r, l}).

Consider the differences between lMPNL and MPNLl:

• IMPNL has negation only for atomic formulas.

• IMPNL has no �z (z ∈ {r, l}) (necessity) operator.

• In IMPNL, the length of every atomic proposition must be specified.

• IMPNL has a homogeneity assumption; i.e., if a formula is true (false)

on an interval, it is true (false) in every subinterval of that interval.

• IMPNL has a tableau algorithm to support analysis, but to our knowl-

edge, no tableau algorithm has been designed for MPNLl.

• Checking the satisfiability of an IMPNL formula has PSpace complexity.

53

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

4.1.2 Restrictions of IMPNL

We have some restrictions in IMPNL: it is not possible to model every

natural language requirement, but sometimes we can provide a reasonable

alternative, as we show below:

1. The “At least” condition, e.g., “The patient should give at least 3 sputum

during the diagnosis”.

In this case we are not able to model the statement with a formula of

finite length, because an upper bound is unspecified. Some cases can be

fixed by making suitable assumptions because in the domain of medicine,

most events have a maximum length (worst case: lifetime of a patient,

e.g., 120 years). Therefore, it is frequently easy to find an upper bound

for situations governed by “at least”; e.g., in the above example, we can

assume that the patient gives at most 5 sputum.

2. Statements using “any”, e.g., “The patient should fast for 12 hours be-

fore any blood work, which includes testing fasting sugar”.

There is no general solution for this case but we may find a solution for

some particular cases; e.g., Kaletra and Rifampin are contraindicated

and should not be taken simultaneously, in the sense that a patient is

not allowed to take Kaletra during the period in which (s)he takes Ri-

fampin. We are not able to say there is no interval during which the

patient takes these medicines simultaneously. Therefore, we model this

statement in another way, i.e., we say the patient takes neither Kale-

tra nor Rifampin or (s)he takes Kaletra but not Rifampin or vice versa:∧z
k=1hour[(¬TakingKaletrak∧¬TakingRifampink)∨(TakingKaletrak∧

¬TakingRifampink)∨ (¬TakingKaletrak∧TakingRifampink)] where

z is a natural number constant and is equal to the number of hours that

54

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

exists in 120 years.

3. A loop with an undetermined number of repetitions, e.g., one which uses

“Until”.

Generally, we are not able to model this kind of loop. In some cases

we can make suitable assumptions and model the guideline, but it is

not always possible. For example, the CD4 level of an HIV-infected

patient should be monitored until his death. The time of death is

unknown so we assume that the patient will live for 120 years (max-

imum lifetime of a person), and model it with HIV Patient1hour →

♦l♦rCD4Monitoring120years.

4.1.3 Tableau-based algorithm for IMPNL formulas

In this section we present a tableau-based algorithm for the satisfiabil-

ity checking of a formula of IMPNL. This algorithm is a modification of

the algorithm which was introduced in [109]. In the algorithm, we have

changed the strategy for selecting an interval required for satisfying ♦z
′

z ϕ

(z ∈ {r, l}, z′ ∈ {+,−}); as a consequence, some of the expansion rules (rules

for ♦z
′

z (z ∈ {r, l}, z′ ∈ {+,−}), in Definition 5 in [109]) are slightly different

here in Definition 23 (on Page 66). Due to this change, we are able to apply

the expansion rules in Definition 27 in an arbitrary order (on Page 68): in

[109], we needed to apply the rules in a specific order. Also, in this algorithm,

we have removed the notion of decoration and the notion of local flag function.

There are some tableau algorithms that use the negation of a formula to

construct a tableau, while other tableau algorithms use the original formula

to create the tableau. In our algorithm, we use an annotated version of the

original formula to derive the tableau. The annotated version of the formula

55

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

is equi-satisfiable with the original formula (Lemma 1). The root node of the

tableau is created based on Definition 28 (on Page 68). Then, the expansion

strategy, defined in Definition 27 (on Page 68), indicates how the tableau rules

(Definition 23 on Page 66) should be used to derive the tableau. If one of the

fully expanded branches is open (Definition 25 on Page 67), the formula is

satisfiable (Theorem 4 on Page 73). If all branches are closed, the formula is

not satisfiable. We begin by introducing some definitions and functions needed

in the tableau rules.

4.1.3.1 Annotation of Input Formula

In this section, we annotate occurrences of ♦z (z ∈ {r, l}) in a (sub) formula

♦zϕ to indicate to what extent the length of the interval required for the

satisfaction of ϕ is known. We first need to make the following definition.

Definition 19. In a formula, an occurrence of a propositional variable is called

a free occurrence if it is not bound by any temporal operators.

Example 4. In the formula p3 ∨ (q8 ∧ ♦r(r7 ∨ p3)), the first occurrence of

propositional variable p3 and the only occurrence of propositional variable q8

are free occurrences.

Generally, the operator ♦z (z ∈ {r, l}) can appear in a formula ψ in three

different ways.

I. The length of the interval required for the satisfaction of the formula

following ♦z is known.

For example, in the formula ♦r(pk ∧ ♦rqm), the length of an interval

required for the satisfaction of pk∧♦rqm is k. In other words, there is an

interval with length k right after the current interval on which pk ∧♦rqm
is true.

56

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

II. The length of the interval required for the satisfaction of the formula

following ♦z is not yet determined.

For example, in the formula ♦r(♦rpk), the length of an interval needed

for the satisfaction of ♦rpk is not yet determined.

III. The combination of the two previous cases, which means that the length

of the interval required for satisfaction of part of the formula following

♦z is known and is not yet determined for the other part.

For example, in the formula ♦r(pk ∨ ♦rqm), the length of the interval

required for the satisfaction of pk is known, but it is not yet determined

for the satisfaction of ♦rqm, and we only need to satisfy one of them.

Based on the aforementioned cases, we annotate a formula ψ so that if ψ has

a subformula ♦zϕ of Form I, it will be changed to ♦∗zϕ; if it has a subformula

♦zϕ of Form II, it will be changed to ♦−z ϕ, and if it has a subformula ♦zϕ of

Form III, it will be changed to ♦+z ϕ, using the following steps. Let ψ be a

formula with at least one subformula of the form ♦zϕ.

1. If ϕ is an atomic formula, change all instances of ♦zϕ in ψ to ♦∗zϕ.

2. If ϕ = ϕ1∧ϕ2 and ϕ has at least one free occurrence of any propositional

variable, change all instances of ♦zϕ in ψ to ♦∗zϕ.

3. If ϕ = ϕ1 ∨ ϕ2 and both ϕ1 and ϕ2 have at least one free occurrence of

any propositional variable, change all instances of ♦zϕ in ψ to ♦∗zϕ.

4. If ϕ = ϕ1 ∨ ϕ2 and (wlog) ϕ1 has at least one free occurrence of any

propositional variable and ϕ2 has no free occurrence of any propositional

variable, change all instances of ♦zϕ in ψ to ♦+z ϕ.

5. If none of the above rules is applicable to ♦zϕ in ψ, change it to ♦−z ϕ.

57

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Let IMPNLa denote the set of annotated versions of formulas built using

the syntax of IMPNL.

Example 5. Let ψ = ♦r(p3 ∧ ♦r((♦rq1 ∨ ♦rr7) ∨ p4)) ∨ ♦l(♦rp9 ∧ ♦lq2). The

annotated version of ψ is ♦∗r(p3 ∧ ♦+
r ((♦∗rq1 ∨ ♦∗rr7) ∨ p4)) ∨ ♦−l (♦∗rp9 ∧ ♦∗l q2).

The annotating steps are as follows.

Step 1. Based on rule 1, we have, ♦r(p3∧♦r((♦∗rq1∨♦∗rr7)∨p4))∨♦l(♦∗rp9∧

♦∗l q2).

Step 2. Since rule 1 is no longer applicable, we use rule 2.

– Rule 2 is not applicable on ♦l(♦∗rp9∧♦∗l q2), since both operands

of the ∧-operator have no free occurrence.

– The occurrence p3 is a free occurrence in ♦r(p3 ∧♦r((♦∗rq1 ∨

♦∗rr7)∨p4)). Because one of the operands of the ∧-operator is a free

occurrence, we change the subformula to ♦∗r(p3∧♦r((♦∗rq1∨♦∗rr7)∨

p4)).

Step 3. Since rule 2 is no longer applicable, we use rule 3. In the sub-

formula ♦r((♦∗rq1 ∨ ♦∗rr7) ∨ p4), the occurrence p4 is a free occurrence,

and the subformula (♦∗rq1 ∨ ♦∗rr7) contains no free occurrences, there-

fore rule 3 is not applicable here, and the result of applying rule 4 is

♦+r ((♦∗rq1 ∨ ♦∗rr7) ∨ p4).

Step 4. Based on the annotation rules (rule 5), the unchanged cases of ♦z

must be changed to ♦−z . Finally, the annotated version of the formula is

♦∗r(p3 ∧ ♦+r ((♦∗rq1 ∨ ♦∗rr7) ∨ p4)) ∨ ♦−l (♦∗rp9 ∧ ♦∗l q2).

Lemma 1. A formula ψ and the annotated version of ψ are equi-satisfiable.

58

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof. Each of the annotations {∗,+,−} is syntactic sugar, so, if ψ is satisfi-

able, then the annotated version of ψ is satisfiable and vice versa.

4.1.3.2 A Finder Function (FF)

Let 2N
O denote the set of non descending ordered lists built from the subsets

of N. Candidates for the length of the interval for the satisfaction of a formula

are determined using a function FF : IMPNLa → 2N
O, which assigns to every

formula, a non descending ordered list of interval lengths. The formula itself

provides constraints that exclude most lengths from being candidates for the

interval required for its satisfaction. The following example explains the idea.

Example 6. Suppose we want to determine if a formula is satisfiable, e.g.,

the formula ψ = pk∧♦r(qm∨sn) (m 6= n). To do so, we need an interval. This

interval is called the current interval; i.e., given M, [i, j] |= ψ, the interval

[i, j] is the current interval for ψ. Trivially, we could test all possible intervals,

but this is not pragmatic; we require a function in order to find a candidate

length for an interval that makes the formula satisfiable, before we begin the

satisfiability checking. Intuitively, an interval [c0, c1] with length k is a good

choice here, since pk could be true on it. If pk′ ∈ V [c
′
0, c

′
1] where k

′
= c

′
1 − c

′
0

for all [c
′
0, c

′
1] ⊆ [c0, c1], we construct a model M , s.t. M, [c0, c1] |= pk. We

could test intervals with lengths 6= k but none of them would satisfy pk.

Based on rule 4 of the semantics, in order to satisfy ψ, we should have

M, [c0, c1] |= pk and M, [c0, c1] |= ♦r(qm ∨ sn). The latter case is satisfied

if we find an h s.t. M, [c1, h] |= (qm ∨ sn). We can test all different intervals

starting at c1 to find the suitable interval to check the satisfiability of (qm∨sn).

Obviously, this is not a reasonable way forward; we need a function to find a

suitable h for us. Equivalently, the function finds the length of [c1, h] in order

59

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

to determine h. Since in order to satisfy qm (resp. sn) we need an interval

with length m (resp. n), the function should return a list of possible lengths

which, for this example, is 〈m,n〉 (wlog m ≤ n).

The function FF is defined below. We use FF i(ψ) to denote the ith element

of FF (ψ). The ~ operator creates a non descending ordered list by merging

two non descending ordered lists. We note that for the ∧-operator, using

the lengths of both operands does not change the final result of satisfiability

checking; however, using the length of one operand is enough since the length

of the two operands must be equal; otherwise the formula is unsatisfiable.

1. FF (ψ)=〈k〉 if ψ ∈ {pk,¬pk,>k,⊥k}

2. FF (ψ)=〈〉 if ψ = ♦z
′

z ϕ and z ∈ {r, l} and z
′ ∈ {∗,−,+}

3. FF (ψ)=FF (ϕ1) ~ FF (ϕ2) if ψ = ϕ1 ω ϕ2 where ω ∈ {∨,∧}

4.1.3.3 Tableau Construction.

The tableaux idea and proof of its soundness are in many ways analogous

to [101, 105]. We have adapted some steps and some details of the proof in

[105], and have augmented them with metricity-related details.

Recall Definition 10. Let C be a set, and a distance function f (f : C×C →

N; f(i, j) = |j − i| where i, j ∈ C) can be defined on the set, and let LC be

a ternary relation, and LC ⊆ C × C × N, consisting of tuples (i, j, k) where

[i, j] is a strict interval and k = f(i, j). This relation is used in the following

definition to keep track of the lengths of the intervals which are considered in

the construction of a tableau.

Definition 20. Let C = 〈C, <,LC〉 be a finite partial order equipped with

the LC relation.

60

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• A labeled formula, with label in C, is a pair (ψ, [ci, cj]), where ψ ∈

IMPNLa and [ci, cj] ∈ I−(C) and ci < cj and (ci, cj, |cj − ci|) ∈ LC.

• A node n in a tree T is a pair ((ψ, [ci, cj]), C), where (ψ, [ci, cj]) is a

labeled formula, with label in C.

• For any branch B in a tree, CB is the partially ordered set in the leaf of

B.

Example 7. C = ({c0, c1, c2, c3}, {c0 < c1 < c2 < c3}, {(c1, c2, 4), (c0, c3, 12),

(c2, c3, 8)}).

Note that the main ontological element in IMPNL is an interval, and we

are not able to identify a time point in the logic. Therefore the closedness

or openness of intervals in I−(C) is not important, and has no effect on the

satisfiability of any formula.

Henceforth, we use a compact representation of C in the sense that we just

mention the last two components (which are sets) of the 3 tuple C. It is easy

for the reader to find the first component based on the other two components.

Definition 21. Let NT and BT , respectively, be the set of nodes and the set

of branches of a tree T . A flag function u : NT × BT → {0, 1} is a function

which assigns a value 0 to a pair (n,B) consisting of a node n and a branch B

through n, if n is expandable (i.e., an expansion rule (Definition 23) can be

applied to n) w.r.t. branch B, and assigns a value 1 to the pair otherwise.

For every tree we define a flag function associated with it, and we use it

during the expansion of the nodes of the tree. If B is a branch, then B.n

denotes the result of the expansion of B with the node n (i.e., the addition of

an edge connecting the leaf of B to n). Also, B.n1|...| nk denotes the result of

the expansion of B with k direct successor nodes n1, ..., nk.

61

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Before we present the tableau rules, we should explain the way in which

we deal with some operators, in particular, with {♦−r ,♦−l ,♦+r ,♦
+
l }. While it

is straightforward to determine the successors of a node when we expand it

using the rules for an operator in {∧,∨,♦∗r,♦∗l }, there is a subtle point for

the expansion of the node when we use the rules for the remaining operators.

The problem is to find a way to specify a length for an interval that can be

used during the application of tableau rules to a subformula ♦+z ϕ or ♦−z ϕ of

a formula ψ when the length is not determined. We select a length for these

intervals in such a way that no overlap exists between the intervals already

used in the process of satisfying ψ and the intervals needed for the satisfaction

of ϕ. If two intervals overlap, the probability of having a clash increases:

intervals may individually contain consistent propositions, but when we check

their satisfiability in a common interval, they may be inconsistent.

Let ψ be a formula, and suppose we wish to determine if we can satisfy

ψ. We present a strategy for selecting suitable intervals. LN(ψ) denotes

the sum of the lengths of propositions appearing in ψ. In other words, LN(ψ)

determines the maximum time needed for satisfying the propositions (assuming

that the required intervals are laid end to end, in some order). We select an

arbitrary constant κ ∈ N ≥ LN(ψ). We use this constant when we want to

find a candidate interval for the satisfaction of ♦z
′

z (z ∈ {r, l}, z′ ∈ {+,−}).

The use of this constant alone is not sufficient to find the interval. We define

a sequence of constants b1, b2, . . . , where bv = 2v−1, i.e., every element of this

sequence is the sum of the previous elements plus one. We assign a superscript

bv to every ♦z
′

z (z ∈ {r, l}, z′ ∈ {+,−}) so that the v reflects their order of

appearance in the formula. For convenience, we put the constants as left

superscripts of the operator, e.g., 1♦−r ϕ. Now, we use the following strategy to

find a suitable interval to check the satisfiability of ♦z
′

z (z ∈ {r, l}, z′ ∈ {+,−}).

62

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 22. (Selection Strategy). To check the satisfiability of bv♦−r ϕ (resp.

bv♦−l ϕ) on [ci, cj], we select an interval [cj, ck] (resp. [ck, ci]) where ck = bv∗κ+cj

(resp. ck = ci − bv ∗ κ), and use it to check the satisfiability of ϕ.

Our selection strategy assures that there is no possibility of overlap between

intervals used for satisfaction of any subformula of ϕ and the intervals already

used in the process of satisfaction. We prove the soundness of this in Lemma

2. However, we note that sometimes the strategy of selecting intervals is not

important, and the satisfaction of ϕ is completely independent of the selection

strategy: The length of the interval used to satisfy ♦z
′

r succeeded by ♦z
′′

l ϕ or

♦z
′

l succeeded by ♦z
′′

r ϕ is not important. For example, the following figure

exhibits the satisfaction of ♦−r ♦
∗
l p10 on [c0, c1]. As can be seen in the figure,

the length of [c1, c2] is not important, and has no effect on the satisfiability of

♦∗l p10 or p10. We are able to select any c2 greater than c1, and the result is the

same.

♦∗l p10︷ ︸︸ ︷p10︷ ︸︸ ︷
c0 c1 c2

Figure 4.1: Satisfaction of ♦−r ♦
∗
l p10

Lemma 2. Let ψ be a formula, and let ♦z
′

z ϕ (z ∈ {r, l},z′ ∈ {+,−}) be one

of its subformulas. When we use our selection strategy, there is no overlap

between intervals used for the satisfaction of ϕ and the intervals already used

in the process of satisfaction of ψ when we check the satisfiability of ♦z
′

z ϕ.

Proof. Suppose we want to check the satisfiability of ♦z
′

z ϕ on [ci, cj] where cs

and cf are, respectively, the minimum and the maximum time points which

are used in the process of satisfaction of ψ before we begin to check the satis-

fiability of ♦z
′

z ϕ (see Figure 4.2). Also, assume M is the sum of the lengths of

63

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

propositions satisfied before we begin to check the satisfiability of ♦z
′

z ϕ. Let

h = |cf − cs|, and let κ be a positive integer constant κ ≥ LN(ψ). In Figure

2, Q is the length of a gap appearing due to using our selection strategy. In

order to prove the theorem, it is sufficient to show that Q ≥ LN(ϕ). Since

LN(ϕ) = LN(ψ)−M , we can equivalently prove Q ≥ (LN(ψ)−M).

We prove Q ≥ (LN(ψ)−M) when Q is defined as follows:

• if we want to check the satisfiability of ♦z
′

r ϕ, Q = |cj + 2v−1 ∗κ− cf | (see

Figure 4.2 (top)).

• if we want to check the satisfiability of ♦z
′

l ϕ, Q = |cs − (ci − 2v−1 ∗ κ)|

(see Figure 4.2 (bottom)).

|2v−1∗κ|︷ ︸︸ ︷︸ ︷︷ ︸
h

︸ ︷︷ ︸
Q

cs ci cj cf cj+2v−1∗κ

|2v−1∗κ|︷ ︸︸ ︷︸ ︷︷ ︸
h

︸ ︷︷ ︸
Q

ci−2v−1∗κ cs ci cj cf

Figure 4.2: Satisfaction of ♦z
′

r ϕ (top),♦z
′

l ϕ (bottom)

The worst scenario for the first case is to have cj = cs. Since we have

already satisfied v − 1 occurrences of ♦z
′

z , we have h ≤ M + Σv−1
y=1(2

y−1 ∗ κ).

Proof of the second case is analogous to the following, but where the worst

case scenario is ci = cf .

64

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Q = |cs + 2v−1 ∗ κ− cf | (cs = cj)

= |2v−1 ∗ κ− h| (h = |cf − cs|)

≥ |2v−1 ∗ κ−M − Σv−1
y=1(2

y−1 ∗ κ)| (h ≤M + Σv−1
y=1(2

y−1 ∗ κ))

= |2v−1 ∗ κ−M − (2v−1 ∗ κ− κ)| (Σv−1
y=1(2

y−1 ∗ κ) = 2v−1 ∗ κ− κ)

= |κ−M |

≥ |LN(ψ)−M | (κ ≥ LN(ψ))

Theorem 2. (Soundness of our selection strategy.) If a formula ψ is not

satisfiable when our selection strategy is used to specify the length of intervals,

it is not satisfiable with any other selection strategy.

Proof. By Lemma 2, our selection strategy provides enough of a gap for the

satisfaction of a subformula, and prevents the overlap between the intervals

required for the satisfaction of the subformula and the intervals already used

in the process of satisfaction of the formula, therefore we are sure that the

inconsistency is not removed by expanding, shrinking or removing the gap.

Formally, LN : IMPNLa → N calculates the sum of the lengths of the

propositions appearing in the formula, and is inductively defined as follows.

1. LN(ψ)=〈k〉 if ψ ∈ {pk,¬pk,>k,⊥k}

2. LN(ψ)=LN(ϕ) if ψ ∈ {♦∗zϕ,♦+z ϕ,♦−z ϕ}

3. LN(ψ)=LN(ϕ1)+LN(ϕ2) if ψ = ϕ1 ω ϕ2 where ω ∈ {∨,∧}

65

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 23. Given a tree T , a branch B in T , and a node n ∈ B such

that n =((ψ, [ci, cj]), CB), with u(n,B) = 0, the expansion rule for B and n is

defined as follows. Note, we use our interval selection strategy in the definition

of the rules.

R∧: If ψ = ϕ0 ∧ ϕ1, then expand the branch toB.n0.n1, s.t. n0 = ((ϕ0,[ci, cj]),

CB) and n1 = ((ϕ1,[ci, cj]), CB);

R∨: If ψ = ϕ0 ∨ ϕ1, then expand the branch toB.n0|n1, s.t. n0 = ((ϕ0,[ci, cj]),

CB) and n1 = ((ϕ1,[ci, cj]), CB);

R∗r: If ψ = ♦∗rϕ, then expand the branch toB.n1|...|nf , s.t. n1 = ((ϕ, [cj, ck1]),

CB1) and cj < ck1 , and (cj, ck1 , FF
1(ϕ)) ∈ LCB1 ; ... ; nf = ((ϕ,[cj, ckf]),

CBf) and cj < ckf , and (cj, ckf , FF
f (ϕ)) ∈ LCBf ; here f = |FF (ϕ)|.

For any m, 1 ≤ m ≤ f , if ckm is already in CBm and LCB = LCBm then

CBm = CB; otherwise CBm is obtained by inserting ckm in CB and LCBm

by inserting (cj, ckm , FF
m(ϕ)) in LCB .

* Note that R∗l , R+
l , R−l are respectively analogous to R∗r, R+

r , R−r with a

small difference in the intervals used for the satisfaction of formulas.

R∗l : If ψ = ♦∗lϕ, then expand the branch to B.n1|...|nf , s.t. n1 = ((ϕ, [ck1 , ci]),

CB1) and ck1 < ci, and (ck1 , ci, FF
1(ϕ)) ∈ LCB1 ; ... ; nf = ((ϕ,[ckf , ci]),

CBf) and ckf < ci, and (ckf , ci, FF
f (ϕ)) ∈ LCBf ; here f = |FF (ϕ)|. For

any m, 1 ≤ m ≤ f , if ckm is already in CBm and LCB = LCBm , then

CBm = CB; otherwise CBm is obtained by inserting ci and ckm in CB, and

LCBm is obtained by inserting (ckm , ci, FF
m(ϕ)) in LCB .

R−r : If ψ = bv♦−r ϕ, then expand the branch to B.n0, s.t. n0 = ((ϕ,[cj, ck0]),

CB0) where cj < ck0 and ck0 = cj + bv ∗ κ. CB0 is obtained by inserting

ck0 in CB and LCB0 is obtained by inserting (cj, ck0 , bv ∗ κ) in LCB .

66

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

R−l : If ψ = bv♦−l ϕ, then expand the branch to B.n0, s.t. n0 = ((ϕ,[ck0 , ci]),

CB0) where ck0 < ci and ck0 = ci − bv ∗ κ. CB0 is obtained by inserting

ck0 in CB and LCB0 is obtained by inserting (ck0 , ci, bv ∗ κ) in LCB .

R+
r : If ψ = bv♦+

r ϕ, then expand the branch to B.n0|(n1|...|nf), s.t. n0 =

((ϕ,[cj, ck0]), CB0) and cj < ck0 and ck0 = cj+bv∗κ and n1 = ((ϕ,[cj, ck1]),

CB1) and cj < ck1 , and (cj, ck1 , FF
1(ϕ)) ∈ LCB1 ; ... ; nf = ((ϕ,[cj, ckf]),

CBf) and cj < ckf , and (cj, ckf , FF
f (ϕ)) ∈ LCBf ; here f = |FF (ϕ)|. CB0

is obtained by inserting cj, ck0 in CB, and LCB0 is obtained by inserting

(cj, ck0 , bv∗κ) in LCB . For any m, 1 ≤ m ≤ f , if ckm is already in CBm and

LCB = LCBm , then CBm = CB; otherwise CBm is obtained by inserting cj

and ckm in CB, and LCBm is obtained by inserting (cj, ckm , FF
m(ϕ)) in

LCB .

R+
l : If ψ = bv♦+l ϕ, then expand the branch to B.n0|(n1|...|nf), s.t. n0 =

((ϕ,[ck0 , (ci)]), CB0) and ck0 < ci and ck0 = ci−bv∗κ and n1 = ((ϕ,[ck1 , ci]),

CB1) and ck1 < ci, and (ck1 , ci, FF
1(ϕ)) ∈ LCB1 ; ... ; nf = ((ϕ,[ckf , ci]),

CB1) and ckf < ci, and (ckf , ci, FF
f (ϕ)) ∈ LCBf ; here f = |FF (ϕ)|. CB0

is obtained by inserting ci, ck0 in CB, and LCB0 is obtained by inserting

(ck0 , ci, bv∗κ) in LCB . For any m, 1 ≤ m ≤ f , if ckm is already in CBm and

LCB = LCBm , then CBm = CB; otherwise CBm is obtained by inserting

ckm in CB, and LCBm is obtained by inserting (ckm , ci, FF
m(ϕ)) in LCB .

In all the cases considered, u(n
′
, B

′
) = 0 for all new pairs (n

′
, B

′
) of nodes

and branches and u(n,B) = 1 for the node which is expanded.

Definition 24. A node n in a tree T is expandable with respect to a branch

B iff u(n, B)=0.

67

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 25. A branch B is closed if at least one of the following conditions

holds:

1. There are two nodes n, n
′ ∈ B such that n = ((pl,[ci0 , cj0]), CB) and n

′
=

((¬pm,[ci1 , cj1]),C
′
B) for some atomic formula p and [ci0 , cj0]∩[ci1 , cj1] 6= ∅;

2. There is a node n ∈ B such that n = ((pk,[ci, cj]), CB) and (ci, cj, k) ∈

LCB and |cj − ci| 6= k;

3. There is a node n ∈ B s.t. n = ((pl,[ci, cj]), CB) while pl is an atomic

formula and ∃k1, k2 ∈ CB s.t. (ci, cj, k1) ∈ LCB and (ci, cj, k2) ∈ LCB and

k1 6= k2.

If none of the above conditions hold, the branch is open, which means that

there is no inconsistency between the labeled formulas residing on the branch,

and as we shall see by Lemma 5 and Theorem 4, we are able to build a class

of models satisfying the labeled formulas on the branch.

Definition 26. A tableau for a formula in IMPNLa is closed if and only if

every branch in it is closed, otherwise it is open.

Definition 27. For a branch B in a tree T , the expansion strategy is defined

as follows:

1. Apply an expansion rule to a branch B only if it is open;

2. If B is open, apply the expansion rule to any node (say n) in B to which

the expansion rule is applicable (if any).

Definition 28. An initial tableau for a given formula ψ ∈ IMPNLa is a finite

tree T shown below.

68

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[root] ((ψ,[c0, c1]), {{c0 < c1},{(c0, c1, k)}})
where k ∈ N is an arbitrary constant.

Lemma 3. If ψ ∈ IMPNL, ψ and ♦rψ are equi-satisfiable over (Z, <).

Proof. We prove the first case. Suppose that ψ is satisfiable on [ci,cj]. Since

ci and cj are finite positive integers, we can find a ck ∈ Z such that ck < ci.

Based on the semantics of IMPNL, ♦rψ is satisfiable on [ck,ci]. Now, assume

♦rψ is satisfiable on [cm, cn]. This means there is an interval [cn, ck0] such that

ψ is satisfiable.

Since in this thesis we use Z as our linear interval structure, we proved

the above lemma for (Z, <). The main idea for proving the lemma for (R, <),

(Q, <), (N, <) is the same.

Definition 29. A tableau for a given formula ψ ∈ IMPNL is a finite tree

T obtained by expanding the initial tableau for the annotated version of

♦rψ through successive applications of the expansion strategy to the exist-

ing branches.

4.1.4 Soundness of the tableau algorithm for IMPNL

formulas

Definition 30. A strict model is a model in which every interval is a strict

interval.

Definition 31. Given a set S of labeled formulas with labels in C, we say

that S is satisfiable over C if there exists a strict model M = 〈D, I−(D), V 〉

such that D is an extension of C and M,[ci, cj] |= ψ for all (ψ, [ci, cj]) ∈ S.

Theorem 3. (Soundness). If ψ ∈ IMPNL and a tableau T for the annotated

version of ♦rψ is closed, then ψ is not satisfiable.

69

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof. Let C be the interval structure in n. P (m) is the statement: if the

following conditions hold:

1. n is a node;

2. the height of n is m;

3. every branch through n is closed;

then the set S(n) of all labeled formulas in the nodes between n and the root

is not satisfiable over C. We will prove P (m) is true for all m ≥ 0 using strong

induction. We present the general sketch of the induction here. We refer the

reader to Appendix A for the details of proof.

(Base case) If m = 0, then n is a leaf, and the unique branch B containing

n is closed. Then, we have one of the following cases.

1. S(n) contains both the labeled formulas (ps,[ck1 , cl1]) and (¬pr,[ck2 , cl2])

where ([ck1 , cl1] ∩ [ck2 , cl2] 6= ∅).

2. S(n) contains the labeled formula (ps,[ck, ck0]) and (ck0 , ck, s) ∈ LC and

|ck − ck0| 6= s.

In both cases, we are not able to construct a model for the labeled formulas

in set S(n). Hence, S(n) is not satisfiable over C.

(Induction Case) Assume P (m) holds for all m, 0 ≤ m ≤ t. We want to

prove P (t+1) holds. Suppose the height of n is t+1, and C={c0,...,cn}. There

are two cases to consider; (1) when n is the direct successor which results after

applying the R∧ rule on node g s.t. g = (ϕ0 ∧ ϕ1,[ci, cj], C), and (2) when an

expansion rule is applied to n s.t. n = ((ψ,[ci, cj]), C) or an expansion rule is

applied to some labeled formula (ψ,[ci, cj]) ∈ S(n)− {Φ(n)} (i.e. the existing

formula in n) to extend the branch at n. In both cases S(n) is not satisfiable

over C (see the details in Appendix A).

70

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

4.1.5 Completeness of the tableau algorithm for IMPNL

formulas

Definition 32. A set S of labeled formulas is a downward saturation set if

and only if it has the following properties.

1. if (pk, [ci, cj]) ∈ S, then |cj − ci| = k, and there is no (¬pk′ , [ci′ , cj′]) ∈ S

s.t. [ci′ , cj′] ⊆ [ci, cj];

2. if (¬pk, [ci, cj]) ∈ S, then |cj − ci| = k, and there is no (pk′ , [ci′ , cj′]) ∈ S

s.t. [ci′ , cj′] ⊆ [ci, cj];

3. if (ϕ1 ∧ ϕ2, [ci, cj]) ∈ S, then (ϕ1, [ci, cj]) ∈ S and (ϕ2, [ci, cj]) ∈ S;

4. if (ϕ1 ∨ ϕ2, [ci, cj]) ∈ S, then (ϕ1, [ci, cj]) ∈ S or (ϕ2, [ci, cj]) ∈ S;

5. if (♦u
′

r ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}, then (ϕ, [cj, cm]) ∈ S for some

cm;

6. if (♦u
′

l ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}, then (ϕ, [cn, ci]) ∈ S for some

cn.

Note that when the expansion of the tableau for ψ is finished, there is no

node in any open branch B to which any expansion rule is applicable.

Lemma 4. The set of labeled formulas occurring on an open branch B forms

a downward saturation set.

Proof. Let S be the set of labeled formulas occurring on B. Since B is an open

branch, in particular, it should not satisfy the first two conditions mentioned in

Definition 25 (on Page 67). Equivalently, S should satisfy the first and second

properties of a downward saturation set. Suppose (ψ, [ci, cj]) ∈ S; based on

Definition 27 (on Page 68), we have the following cases:

71

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• ψ = (ϕ1 ∧ ϕ2, [ci, cj]) ∈ S, then based on R∧ in Definition 23 (on Page

66), (ϕ1, [ci, cj]) ∈ S and (ϕ2, [ci, cj]) ∈ S;

• ψ = (ϕ1∨ϕ2, [ci, cj]) ∈ S, then based onR∨ in Definition 23, (ϕ1, [ci, cj]) ∈

S or (ϕ2, [ci, cj]) ∈ S;

• ψ = (♦u
′

r ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}, then based on Rd

r in

Definition 23, (ϕ, [cj, cm]) ∈ S for some cm;

• ψ = (♦u
′

l ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}, then based on Rd

l in

Definition 23, (ϕ, [cn, ci]) ∈ S for some cn.

Therefore, S satisfies the properties of a saturation set.

Lemma 5. (Hintikka-style Lemma) Every downward saturation set [110] oc-

curring on an open branch B is satisfiable.

Proof. Recall, length of a formula, ψ, is the cardinality of the multi set of

operators occurring in it. P (m) is the statement: There is a model M for the

labeled formulas of length at most m in a downward saturation set S. We will

prove P (m) is true for all m ≥ 0 using strong induction.

(Base Case) In this case (m=0), we consider atomic formulas in S. We con-

struct a model M : for every labeled formula (pk, [ci, cj]) ∈ S ((¬pk, [ci, cj]) ∈

S), let V ([c
′
i, c
′
j]) = {pk′}({¬pk′}) where k

′
= c

′
j − c

′
i and [c

′
i, c
′
j] ⊆ [ci, cj]. Such

a construction is possible, and M, [ci, cj] |= pk(¬pk), since based on Definition

32, item 1 (Definition 32, item 2), |cj − ci| = k and there is no labeled atomic

formula which causes an inconsistency.

72

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

(Induction Case) Assume that P (m) is true for all 0 ≤ m ≤ t. We prove

P (t + 1) is true. For every (ψ, [ci, cj]) ∈ S such that the length of ψ is t + 1,

consider the following cases.

• (ψ = ϕ1 ∧ ϕ2, [ci, cj]) ∈ S. Based on Definition 32, item 3, we know

(ϕ1, [ci, cj]) ∈ S and (ϕ2, [ci, cj]) ∈ S. Since the length of ϕ1 (ϕ2) is less

than the length of ψ, by the induction assumption, there is a model M

such that M, [ci, cj] |= ϕ1 and M, [ci, cj] |= ϕ2, so M, [ci, cj] |= ψ.

• (ψ = ϕ1 ∨ ϕ2, [ci, cj]) ∈ S. Based on Definition 32, item 4, we know

either (ϕ1, [ci, cj]) ∈ S or (ϕ2, [ci, cj]) ∈ S. Since the length of ϕ1 (ϕ2) is

less than the length of ψ, by the induction assumption, there is a model

M such that M, [ci, cj] |= ϕ1 or M, [ci, cj] |= ϕ2, so M, [ci, cj] |= ψ.

• (ψ = ♦u
′

r ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}. Based on Definition 32,

item 5, we know (ϕ, [cj, cm]) ∈ S for some cm. Since the length of ϕ is

less than the length of ψ, by the induction assumption, there is a model

M such that M, [cj, cm] |= ϕ, M, [ci, cj] |= ψ.

• (ψ = ♦u
′

l ϕ, [ci, cj]) ∈ S where u
′ ∈ {∗,+,−}. Proof of this case is

analogous to the previous case; use Definition 32, item 6 and change

[cj, cm] to [cn, ci].

Corollary 1. Based on Lemma 5, we can find a model for the set of formulas

residing on the nodes of an open branch, in particular the formula ψ which

resides on the root of the tableau.

Theorem 4. (Completeness). If ψ ∈ IMPNL and a tableau T for the anno-

tated version of ♦rψ is open, then ψ is satisfiable.

73

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof. Recall that ϕ, ♦rϕ and the annotated version of ♦rϕ are equi-satisfiable.

The result follows by Corollary 1.

4.1.6 Complexity of the tableau algorithm for IMPNL

formulas

Definition 33. The string length of a formula ψ is the cardinality of the

multi set consisting of propositional variables and operators appearing in ψ; it

is denoted by STLength(ψ). The length of the longest branch in a complete

tableau for formula ψ is denoted by Lengthbr(ψ), and is inductively defined as

follows:

• Lengthbr(ψ) = 1 iff ψ ∈ {pk,>k,⊥k,¬pk}

• Lengthbr(ψ) = Max{Lengthbr(ψ1), Lengthbr(ψ2)}+1 iff ψ = ψ1∨ψ2

• Lengthbr(ψ) = Lengthbr(ψ1)+Lengthbr(ψ2)+1 iff ψ = ψ1∧ψ2

• Lengthbr(ψ) = Lengthbr(ψ1) + 1 iff ψ ∈ {♦∗rψ1,♦−r ψ1,♦+r ψ1}

Theorem 5. For every formula ψ, Lengthbr(ψ) ≤ STLength(ψ).

Proof. This theorem is easy to prove by induction on the string length of the

formula.

Lemma 6. The longest branch is finite.

Proof. Since the string length of a formula is finite, by Theorem 5, the length

of the longest branch is finite.

Theorem 6. The complexity of satisfiability reasoning in IMPNL is PSpace

when the length of an interval is a constant.

74

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof. Recall that every labeled formula consists of an IMPNL formula and

an interval. Obviously, the space required for storing an interval is a constant.

Since the string length of an IMPNL formula in any node of a tableau is equal

or less than the string length of the formula in the initial node of the tableau,

and the lengths of intervals are fixed constants, the space required for storing

a node is PSpace. Now, the theorem is a direct consequence of Theorem 5

and Lemma 6.

4.2 Conclusion

In this chapter, we introduced a metric interval-based temporal logic suit-

able for modeling many processes in different domains (e.g., CPGs in the

domain of medicine). Then, we presented a decidable tableau-based algorithm

for checking the satisfiability of a formula of IMPNL. The soundness of our

algorithm implies that any temporal inconsistency in a process is detectable,

and completeness of the algorithm ensures that we are able to find a (class of)

model(s) for a process when there is an open branch in its tableau.

In IMPNL, modeling the static aspects of a process is an issue which we

cannot easily deal with. For example, we are not able to model drug contraindi-

cations in the domain of medicine. In the next chapter, we will introduce a

metric interval-based temporal description logic which addresses this problem.

75

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 5

Metric Interval-based Temporal

Description Logic

As we mentioned in the previous chapter, there are some issues which

we cannot easily deal with when we use IMPNL, e.g., drug contraindications

in the domain of medicine. In this chapter, we combine IMPNL with the

description logic ALC. The combined logic, called Metric Interval-based Tem-

poral Description Logic (MITDL), is powerful enough to model both the dy-

namic aspects (e.g., time constraints) and the static aspects (e.g., relation

between concepts in a domain) of many domains, e.g., medicine. More pre-

cisely, MITDL, is a combination of a description logic, ALC, and a restricted

version of IMPNL (IMPNL without its negation operator).

5.1 Syntax

A signature Σ of MITDL is a 5 tuple Σ=(C, R, I, >, ⊥) where C is a

set of concept names, R is a set of role names, I is a set of individual names,

and> (Top concept) and⊥ (Bottom concept) are two constant concept names.

76

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 34. Let D be a concept description (see Definition 3 on page 17);

let R be a role name; let a, b be two individual names, and let k ∈ N; a

MITDL-formula ψ over Σ is defined recursively as follows:

ψ = (D = >)
k
| (a : D)

k
| R(a, b)

k
| >

k
| ⊥

k
| ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ♦rψ | ♦lψ

Let D and E be two concept descriptions. A GCI D v E, can be written

in an equivalent form ¬DtE = >. Also, (D = E) ≡ ((D v E)∧ (E v D)) ≡

((¬D t E = >) ∧ (D t ¬E = >)); so in MITDL, we can write (¬D t E =

>)
k
∧ (D t ¬E = >)

k
in order to model (D = E)k.

5.2 Semantics

The semantics of MITDL is based on a structure M = (D, I−(D),S) where

the pair (D, I−(D)) is a strict interval structure, and S is a set of ALC inter-

pretations over the intervals defined: S = {S[i, j] | [i, j] ∈ I(D) and S[i, j] =

(∆[i,j], D
[i,j]
0 , D

[i,j]
1 , D

[i,j]
2 , ..., R

[i,j]
0 , R

[i,j]
1 , R

[i,j]
2 , ..., a

[i,j]
0 , a

[i,j]
1 , a

[i,j]
2 , ...) is a DL-inter-

pretation on interval [i, j]}. Recall that a DL-interpretation is a DL structure

(DL model) in which ∆[i,j] is a non-empty set of domain elements, D
[i,j]
m is a

DL-concept description, R
[i,j]
m is a DL role name and a

[i,j]
m is a DL-individual

name.

Remark 1. In this thesis, we assume that D = Z.

Remark 2. In this thesis, we adopt the expanding domain assumption [111],

i.e., ∆[i,j] ⊆ ∆[c,d] where d ≥ j and i ≥ c.

Given an interpretation S[i, j], the concept descriptions are interpreted as

follows:

77

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• >[i,j] = ∆[i,j]

• ⊥[i,j] = ∅

• D[i,j] ⊆ ∆[i,j]

• R[i,j] ⊆ ∆[i,j] ×∆[i,j]

• (D u E)[i,j] = D[i,j] ∩ E[i,j]

• (D t E)[i,j] = D[i,j] ∪ E[i,j]

• (¬D)[i,j] = ∆[i,j]\D[i,j]

• (∃R.D)[i,j] = {x|(x, y) ∈ R[i,j] and y ∈ D[i,j]}

• (∀R.D)[i,j] = {x|(x, y) ∈ R[i,j] implies y ∈ D[i,j]}

The satisfaction relation for a given model M and an interval [i, j] is defined

as follows:

• M, [i, j] |= >k iff j − i = k

• M, [i, j] |= ⊥k never

• M, [i, j] |= (D = >)k iff j − i = k and ∀i′ , j ′ , if [i
′
, j
′
] ⊆ [i, j] then

D[i
′
,j
′
] = >[i

′
,j
′
]

• M, [i, j] |= (a : D)k iff j − i = k and ∀i′ , j ′ , if [i
′
, j
′
] ⊆ [i, j] then

a[i
′
,j
′
] ∈ D[i

′
,j
′
]

• M, [i, j] |= R(a, b)k iff j − i = k and ∀i′ , j ′ , if [i
′
, j
′
] ⊆ [i, j] then

(a[i
′
,j
′
], b[i

′
,j
′
]) ∈ R[i

′
,j
′
]

• M, [i, j] |= ψ1 ∨ ψ2 (ψ1 ∧ ψ2) iff M, [i, j] |= ψ1 or (and) M, [i, j] |= ψ2;

• M, [i, j] |= ♦rψ iff there exists h > j such that M, [j, h] |= ψ;

• M, [i, j] |= ♦lψ iff there exists h < i such that M, [h, i] |= ψ.

Note that ♦z(ψ1 ∨ ψ2) ⇔ ♦zψ1 ∨ ♦zψ2 (z ∈ {r, l}) and ♦z(ψ1 ∧ ψ2) →

♦zψ1 ∧ ♦zψ2 (z ∈ {r, l}).

78

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 35. A simple formula is a MITDL formula which does not contain

a formula (D = >)k as a subformula, where D is a concept description, and

k is a positive integer. An arbitrary MITDL formula may be referred to as a

generic formula.

5.3 Tableau-based algorithm for checking the

satisfiability of a MITDL formula

In this section we present two tableau-based algorithms for the satisfiabil-

ity checking of MITDL formulas. The first algorithm is an extension of the

algorithm which we introduced in Section 4.1.3. We have added new expan-

sion rules, called DL rules, required for dealing with DL-formulas (Definition

36 on Page 81). We designed these rules by adding a temporal dimension

to the rules presented in [112]. The first algorithm is used for checking the

satisfiability of a simple formula. We will later prove that this algorithm has

PSpace complexity.

We then extend and modify the first algorithm to obtain an algorithm (sec-

ond algorithm) for checking the satisfiability of a generic MITDL formula. To

accomplish this, and motivated by [25], we have designed a temporal version of

the subset blocking technique (Definition 43 on page 110) required for ensuring

the termination of the second algorithm in the case that the algorithm falls

into a cycle. We will show that the complexity of this algorithm is 2ExpTime.

Similar to the proposed tableau algorithm for IMPNL (Section 4.1.3 on

Page 55), we here use the annotated version of the original formula to derive

the tableau. Note that the annotation process of a MITDL formula is exactly

the same as the annotation process for an IMPNL formula (see Section 4.1.3.1

79

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

on Page 56). Recall that the annotated version of the formula is equi-satisfiable

with respect to the original formula (Lemma 1 on Page 58). The root node

of the tableau is created based on Definition 28 (on Page 68). Then, the

expansion strategy, defined in Definition 27 (on Page 68), indicates how the

tableau rules (Definition 44 on Page 111) should be used to derive the tableau.

If one of the fully expanded branches is open (Definition 37 on Page 85), the

formula is satisfiable (Theorem 13 on Page 114). If all branches are closed,

the formula is not satisfiable. We begin by introducing some definitions and

functions needed in the tableau rules. Recall, it is more efficient to assume

that all concept descriptions appearing in a formula are in NNF (see Definition

4 on Page 23).

5.3.1 Satisfiability checking of a simple formula

In this section, we give the details of the tableau construction for checking

the satisfiability of a simple formula. Let MITDLa denote the set of annotated

versions of formulas built using the syntax of MITDL. The definition of a

labelled formula is analogous to Definition 20 (on Page 60) with the exception

that ψ ∈ MITDLa. Also, the definition of the FF function is analogous to

the definition of the FF function in Section 4.1.3.2 (on Page 59) with the

exception that

• FF : MITDLa → 2N
O, and

• the first line of the definition is changed to: FF(ψ)=〈k〉 where ψ ∈ {(a :

D)k, R(a, b)k, (D = >)k,>k,⊥k} and a, b are two individuals, D is a

concept description and R is a role name.

Morover, the definition of the LN function is analogous to the definition

of the LN function on page 65 with the exception that

80

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• LN : MITDLa → N, and

• the first line of the definition is changed to: LN(ψ)=〈k〉 where ψ ∈ {(a :

D)k, R(a, b)k, (D = >)k,>k,⊥k} and a, b are two individuals, D is a

concept description and R is a role name.

Suppose that (wlog) all concept descriptions are in NNF. The following

definition presents the tableau expansion rules. Note that the temporal rules

mentioned in the following definition are identical to the temporal rules pre-

sented in Definition 23 (on Page 66) except that we have ψ, ϕ, ϕ1, ϕ2 ∈MITDL

here.

Definition 36. Given a tree T , a branch B in T , and a node n ∈ B such

that n =((ψ, [ci, cj]),CB), with u(n,B) = 0, the expansion rule for B and n is

defined as follows.

• Temporal Rules

R∧: If ψ = ϕ0 ∧ ϕ1, then expand the branch to B.n0.n1, s.t. n0 =

((ϕ0,[ci, cj]), CB) and n1 = ((ϕ1,[ci, cj]), CB) and let u(n,B) = 1;

R∨: If ψ = ϕ0 ∨ ϕ1, then expand the branch to B.n0|n1, s.t. n0 =

((ϕ0,[ci, cj]), CB) and n1 = ((ϕ1,[ci, cj]), CB) and let u(n,B) = 1;

R♦∗r : If ψ = ♦∗rϕ, then expand the branch to B.n1|...|nf , s.t. n1 =

((ϕ,[cj, ck1]), CB1) and cj < ck1 , and (cj, ck1 , FF
1(ϕ)) ∈ LCB1 ; ... ;

nf = ((ϕ,[cj, ckf]), CBf) and cj < ckf , and (cj, ckf , FF
f (ϕ)) ∈ LCBf ;

here f = |FF (ϕ)|.

For any m, 1 ≤ m ≤ f , if ckm is already in CBm and LCB = LCBm ,

then CBm = CB; otherwise CBm is obtained by inserting ckm in CB
and LCBm is obtained by inserting (cj, ckm , FF

m(ϕ)) in LCB . Let

u(n,B) = 1;

81

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

R♦−r : If ψ = bv♦−r ϕ, then expand the branch toB.n0, s.t. n0 = ((ϕ,[cj, ck0]),

CB0) where cj < ck0 and ck0 = cj + bv ∗ κ. CB0 is obtained by in-

serting ck0 in CB and LCB0 is obtained by inserting (cj, ck0 , bv ∗ κ)

in LCB . Let u(n,B) = 1;

R♦+r : If ψ = bv♦+r ϕ, then expand the branch to B.n0|(n1|...|nf), s.t. n0

= ((ϕ,[cj, ck0]), CB0) and cj < ck0 and ck0 = cj + bv ∗ κ and n1 =

((ϕ,[cj, ck1]), CB1) and cj < ck1 , and (cj, ck1 , FF
1(ϕ)) ∈ LCB1 ; ... ;

nf = ((ϕ,[cj, ckf]), CBf) and cj < ckf , and (cj, ckf , FF
f (ϕ)) ∈ LCBf ;

here f = |FF (ϕ)|. CB0 is obtained by inserting cj, ck0 in CB and

LCB0 is obtained by inserting (cj, ck0 , bv ∗ κ) in LCB . For any m,

1 ≤ m ≤ f , if ckm is already in CBm and LCB = LCBm then CBm =

CB; otherwise CBm is obtained by inserting cj and ckm in CB and

LCBm is obtained by inserting (cj, ckm , FF
m(ϕ)) in LCB . Let u(n,B)

= 1;

* R♦∗l , R♦+l , R♦−l are respectively analogous to R♦∗r , R♦+r , R♦−r with a

small difference in the intervals used for the satisfaction of formulas.

R♦∗l : If ψ = ♦∗lϕ, then expand the branch to B.n1|...|nf , s.t. n1 =

((ϕ,[ck1 , ci]), CB1) and ck1 < ci, and (ck1 , ci, FF
1(ϕ)) ∈ LCB1 ; ... ;

nf = ((ϕ,[ckf , ci]), CBf) and ckf < ci, and (ckf , ci, FF
f (ϕ)) ∈ LCBf ;

here f = |FF (ϕ)|.

For any m, 1 ≤ m ≤ f , if ckm is already in CBm and LCB = LCBm ,

then CBm = CB; otherwise CBm is obtained by inserting ci and ckm

in CB and LCBm is obtained by inserting (ckm , ci, FF
m(ϕ)) in LCB .

Let u(n,B) = 1;

R♦−l : If ψ = bv♦−l ϕ, then expand the branch toB.n0, s.t. n0 = ((ϕ,[ck0 , ci]),

82

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

CB0) where ck0 < ci and ck0 = ci − bv ∗ κ. CB0 is obtained by in-

serting ck0 in CB and LCB0 is obtained by inserting (ck0 , ci, bv ∗κ) in

LCB . Let u(n,B) = 1;

R♦+l : If ψ = bv♦+l ϕ, then expand the branch to B.n0|(n1|...|nf), s.t. n0

= ((ϕ,[ck0 , ci]), CB0) and ck0 < ci and ck0 = ci − bv ∗ κ and n1 =

((ϕ,[ck1 , ci]), CB1) and ck1 < ci, and (ck1 , ci, FF
1(ϕ)) ∈ LCB1 ; ... ;

nf = ((ϕ,[ckf , ci]), CBf) and ckf < ci, and (ckf , ci, FF
f (ϕ)) ∈ LCBf ;

here f = |FF (ϕ)|. CB0 is obtained by inserting ck0 , ci in CB and

LCB0 by inserting (ck0 , ci, bv ∗ κ) in LCB . For any m, 1 ≤ m ≤ f , if

ckm is already in CBm and LCB = LCBm then CBm = CB; otherwise

CBm is obtained by inserting ckm and ci in CB and LCBm is obtained

by inserting (ckm , ci, FF
m(ϕ)) in LCB . Let u(n,B) = 1;

• DL Rules

Ru: If ψ = (a : C u D)k, then if B does not contain both (or one of

the) two nodes (say n0, n1) s.t. n0 = (((a : C)k,[ci, cj]), CB) and n1

= (((a : D)k,[ci, cj]), CB), then expand the branch to B.n0.n1. Let

u(n,B) = 1;

Rt: If ψ = (a : C tD)k, then if B does not contain both two nodes (say

n0, n1) s.t. n0 = (((a : C)k,[ci, cj]), CB) and n1 = (((a : D)k,[ci, cj]),

CB), then expand the branch to B.n0|n1. Let u(n,B) = 1;

R∃: If ψ = (a : ∃R.C)k, then if there is no individual (say b) s.t. two

nodes (say m, s) s.t. m = (((R(a, b))k′ ,[ci0 , cj0]), CB) where [ci, cj] ⊆

[ci0 , cj0] and s = (((b : C)k′′ ,[ci1 , cj1]), CB) where [ci, cj] ⊆ [ci1 , cj1]

exist in the branch B, then expand the branch to B.n0.n1, n0 =

(((b : C)k,[ci, cj]), CB) and n1 = ((R(a, b)k,[ci, cj]), CB) [113]. Note,

83

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

individual b has not appeared elsewhere in the tree. In other words,

it is a new individual name. Let u(n,B) = 1;

R∀: If ψ = (a : ∀R.C)k, then if there is a node (say m) in branch

B s.t. m = (((R(a, b))k′ ,[ci0 , cj0]), CB) where [ci, cj] ∩ [ci0 , cj0] =

[ci2 , cj2] 6= ∅, and there is no node (say l) in branch B s.t. l =

(((b : C)k′′′ ,[ci3 , cj3]), CB) where [ci3 , cj3] ⊆ [ci2 , cj2], then expand

the branch to B.n0, where n0 = (((b : C)k′′ ,[ci2 , cj2]), CB), and

k
′′

= |cj2−ci2|. CB2 is equal to CB and LCB2 is obtained by inserting

(ci2 , cj2 , k
′′
) in LCB .

In order to apply a rule, the conditions mentioned in the description of the

rule must be satisfied; otherwise the rule is not applicable. Also, note that

R∀ can be applied many times, each time adding a new node to the branch;

therefore, we have not mentioned the value of u(n,B) in the definition of the

rule.

Remark 3. Let B be a branch; let ϕ be a formula; let [ci0 , cj0], [ci1 , cj1] be

two intervals, and let n1=((ϕ, [ci1 , cj1]),CB) be a node added by applying

a rule to a node residing on B. If there is a predecessor of node n1 (say

n0=((ϕ, [ci0 , cj0]),CB)) s.t. [ci1 , cj1] ⊆ [ci0 , cj1], let u(n1,B)=1. By homogene-

ity (see Page 53), this remark indicates that it is not necessary to expand a

node which carries no new information.

Remark 4. The lemma 3 (on Page 69) and its proof and the definitions 24

(on Page 67), 26 (on Page 68), 27 (on Page 68), 28 (on Page 68), 29 (on Page

29) should be redefined for MITDL formula and for a tableau for a MITDL

formula. Since the new definitions and the new lemma and its proof would

be identical to the ones which we have mentioned above, we do not redefine

them.

84

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Definition 37. A branch B is closed if at least one of the following conditions

holds:

1. There is a node n ∈ B such that n = ((pk,[ci, cj]),CB) and (ci, cj, k) ∈ LCB

and |cj − ci| 6= k where pk is an atomic formula;

2. There is a node n ∈ B s.t. n = ((pl,[ci, cj]),CB) while pl is an atomic

formula and ∃k1, k2 ∈ CB s.t. (ci, cj, k1) ∈ LCB and (ci, cj, k2) ∈ LCB and

k1 6= k2.

3. There are two nodes n,n
′ ∈ B such that n = (((a : C)l,[ci, cj]),CB)

and n
′

= (((a : ¬C)m,[ci′ , cj′]),C
′
B) for some concept description C and

[ci, cj] ∩ [ci′ , cj′] 6= ∅;

If none of the above conditions holds, the branch is open, i.e., there is

no node with inconsistent information and, further, there is no inconsistency

among the labeled formulas residing on the branch. We will show that we are

able to build a class of models satisfying the labeled formula on the branch.

Since the soundness proof and the completeness proof of this algorithm is

similar to the proofs of these theorems for the algorithm for generic formulas

(see Section 5.3.5 - Page 107), we will respectively prove the soundness and

the completeness of the algorithm for the generic formulas in Section 5.3.6

(Page 113) and Section 5.3.7 (Page 114). The only difference between the

proofs of soundness and completeness for these algorithms is to consider the

application of the R= rule in the soundness proof and the completeness proof

for the generic algorithm.

85

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

5.3.2 Termination of the tableau algorithm for simple

MITDL formulas

Theorem 7. (Termination). There cannot be an infinite sequence of rule

applications when we build a tableau for a simple formula.

General sketch of proof. We will show that in order to prove this theorem, it

is sufficient to demonstrate the number of nodes residing on a branch is finite

(see just below, paragraph titled “Proof in detail”). We first prove that the

branching factor of a tableau is finite. Then, we define the notion of temporal

degree (Definition 39 on Page 88) and use it to divide the nodes of a branch into

two categories: temporal nodes and non-temporal nodes. We prove that the

number of temporal nodes on a branch, as well as the number of non-temporal

nodes on the branch, are finite.

• The number of temporal nodes is finite.

Every application of a temporal rule adds a finite number of (non-)

temporal nodes to a branch. Also, the (string) length of the formula

in a node, added by applying a temporal rule on a temporal node (say

m), is strictly less than the (string) length of the formula in node m.

Based on these facts, the number of application of temporal rules in the

construction of a branch is finite. Having this and the fact that the only

way to add a temporal node to a branch is to apply a temporal rule on

a temporal node (Lemma 8 on Page 89), we conclude that the number

of temporal nodes on a branch is finite.

• The number of non-temporal nodes is finite.

We first define the notions of Temporal label and Full Label of an indi-

vidual w.r.t. a branch (Definition 40 on Page 90). A full label of an

86

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

individual is a multi-set that records the concept descriptions of which

the individual is a member. Also, we define the notion of repetitive

nodes, i.e., the nodes that contain no new information (Definition 42 on

Page 94). To be able to demonstrate the finiteness of the number of

non-temporal nodes, we prove the following facts.

1. The number of distinct intervals appearing in the nodes of a tableau

is finite (Lemma 10 on Page 92).

2. A full label of an individual contains a finite number of concept

descriptions (Corollary 4 on Page 95).

We first define the notion of sub-description of a concept description

(Definition 41 on Page 92). Based on the definition of this notion

we show that the number of distinct concept descriptions in the

nodes of a tableau is finite (Lemma 12 on Page 94). Also, we prove

that the number of repetitive nodes is at most twice the number of

non-repetitive nodes (Theorem 8 on Page 95). Finiteness of a full

label of an individual is an easy consequence of these facts.

3. The number of individuals appearing in the nodes of a tableau is

finite.

We divide the individuals into two categories: old individuals and

new individuals. Based on the definition of old individuals, the

number of old individuals is finite. We prove that the number of

new individuals is finite (Lemma 13 on Page 95).

Having these facts, we show that the number of non-temporal nodes is

finite (Theorem 9 on Page 97). Finally, we present the proof of termina-

tion.

87

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof in detail. Consider the following lemma.

Lemma 7. The branching factor of a tableau for a MITDL formula is finite.

Proof. Recall the definition of a tableau for a simple formula (see Remark 4

on Page 84 and Definition 29 on Page 69). Also, note that by the definition,

the FF function (on Page 60) always returns a finite list. By the definition

of expansion rules, it is easy to show that every expansion rule adds a finite

number of branches to the tableau. Therefore, the branching factor of a tableau

is finite.

Recall that a tableau is a tree and contains no cycle. On the other hand,

each application of a rule on a node adds one or more nodes to the branch on

which the node resides. Also, by Lemma 7, the branching factor of a tableau is

finite. Therefore, if the number of nodes residing on any branch of the tableau

is finite, the total number of nodes in the tableau is finite, and consequently

the tableau construction terminates. Hence, in order to prove the theorem, it

is sufficient to show that the number of nodes residing on an arbitrary branch

of the tableau is finite. Consider the following theorem, lemmas and definitions

required for the proof.

Definition 38. The length of a formula (resp. axiom, concept description),

denoted by |.|, is its string length.

Definition 39. • The Temporal Degree of a formula is the number of tem-

poral operators it contains, i.e. {∧,∨,♦zr,♦zl } (z ∈ {∗,+,−}), appearing

in the formula.

• A node (say n) in a tableau is called a temporal node if the temporal

degree of Φ(n) > 0; otherwise it is called a non-temporal node.

88

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Lemma 8. The following claims hold.

1. A temporal rule cannot be applied on a non-temporal node.

2. A DL rule cannot be applied on a temporal node.

3. Applying a DL rule on a non-temporal node cannot add a temporal node

to a tableau.

4. Let s be a node which is added to a branch by applying a temporal rule

on a temporal node (say n). |Φ(s)| < |Φ(n)|.

5. Due to the application of a rule (whether a temporal rule or a DL rule)

on a node residing on a branch, one or more nodes is added to the branch.

Proof. Let m (resp. n) be a temporal (resp. non-temporal) node residing on

a branch of a tableau. Also, let ϕ0 and ϕ1 be two formulas; let D be a concept

description; let a, b be two individuals; let R be a DL role, and let k ∈ N.

1. Since the temporal degree of n = 0, Φ(n) ∈ {(a : D)k, R(a, b)k}. Because

of the form of Φ(n), none of the temporal rules is applicable to n (see

Definition 36 on Page 81).

2. Since the temporal degree of m > 0, Φ(m) ∈ {ϕ0∧ϕ1, ψ0∨ψ1,♦∗rϕ0,♦+r ϕ0,

♦−r ϕ0,♦∗lϕ0,♦
+
l ϕ0,♦

−
l ϕ0}. Because of the form of Φ(n), none of the DL

rules is applicable to n (see Definition 36).

3. Let n0 be a node which is added to a branch by applying a DL rule to

n. Based on the definition of DL rules, Φ(n0) ∈ {(a : D)k, R(a, b)k};

so the temporal degree of n0 = 0, which indicates that n0 is certainly a

non-temporal node.

89

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

4. Since, based on the definition of temporal rules, Φ(s) is a subformula of

Φ(n), and Φ(s) 6= Φ(n), we have |Φ(s)| < |Φ(n)|.

5. Obvious from the definition of expansion rules (see Definition 36).

First we prove that the number of temporal nodes is finite. Then, we will

prove that the number of non-temporal nodes is also finite.

Lemma 9. Let ψ be a formula. Temporal rules can be applied only finitely

often during the construction of a tableau for ψ.

Proof. As a corollary of Lemma 8, the only way to add a temporal node to a

branch is to apply a temporal rule on a temporal node. Also, based on Lemma

8 (claims 4,5), when a rule is applied on a node (say n), it always adds one or

two nodes to the tableau each containing a shorter formula than the formula

in n to which the rule was applied. Therefore, since the length of ψ is finite,

the sequence of the application of temporal rules is finite.

Corollary 2. The number of temporal nodes in a tableau is finite.

Corollary 3. The number of non-temporal nodes added by the application of

temporal rules is finite.

We define below the notions of temporal label and full label for an individual

occurring in the formula of a node. We use these notions in order to prove the

finiteness of the number of non-temporal nodes.

Definition 40. Let B be a branch of a tableau; let D be a concept description;

let a be an individual, and let [i, j] be an interval.

• A temporal label of a on an interval [i, j] w.r.t. B, denoted by L[i,j]
B (a),

is a multi-set {D | (a : D)k occurs as the formula in a node (say n) on

B, and [i, j] is a subinterval of the interval in n }.

90

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• The full label of an individual a w.r.t. B (denoted by LB(a)) is a multi-

set {D | D occurs in a temporal label of a w.r.t. B}.

Example 8. Figure 5.1 (top part) exhibits some nodes of a branch of a

tableau. Also, the bottom part of the figure represents the information con-

tained in these nodes in a more intuitive manner. The temporal label of a

on [c2, c6] is {E u ∀R.F, ∃R.∃S.D,E u ∀R.F}. The full label of a is {E u

∀R.F, ∃R.D, ∃R.∃S.D,E u ∀R.F,C tD}.

((a : ∃R.D)8,[c0, c4]), {{c0 < c4},{(c0, c4, 8)}})

(((a : E u ∀R.F)11,[c1, c7]),
{{c0 < c1 < c4 < c7},{(c0, c4, 8), (c1, c7, 11)}})

(((a : C tD)10,[c3, c8]),
{{c0 < c1 < c3 < c4 < c7 < c8},{(c0, c4, 8), (c1, c7, 11), (c3, c8, 10)}})

(((a : ∃R.∃S.D)7,[c2, c6]),
{{c0 < c1 < c2 < c3 < c4 < c6 < c7 < c8},{. . . , (c3, c8, 10), (c2, c6, 7)}})

(((a : ∀R.F)3,[c3, c5]),
{{c0 < c1 < c2 < c3 < c4 < c5 < c6 < c7 < c8},{. . . ,(c2, c6, 7),(c3, c5, 3)}})

(((a : E u ∀R.F)14,[c1, c8]),
{{c0 < c1 < c2 < c3 < c4 < c5 < c6 < c7 < c8},{. . . , (c3, c5, 3), (c1, c8, 14)}})

c2 c6c0 c4

a:∃R.D

c1 c7

a:(Eu∀R.F)

a:(Eu∀R.F)

c3 c8

a:(CtD)

c2 c6

a:∃R.∃S.D

c5

a:F

Figure 5.1: The temporal label of a on [c2, c6] is {Eu∀R.F, ∃R.∃S.D,Eu∀R.F}

Before we prove that the number of non-temporal nodes is finite, we need

91

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

to show that (1) the number of distinct intervals in the nodes of a tableau

is finite, (2) a full label of an individual contains a finite number of concept

descriptions, and (3) the number of individuals appearing in the nodes of a

tableau is finite.

Lemma 10. The number of distinct intervals in the nodes of a tableau for a

simple formula is finite.

Proof. Based on Lemma 9, the number of distinct intervals introduced by

applying the temporal rules on the temporal nodes is finite. Let n be a node.

We have two cases to consider: (1) Apply one of the rules {Ru, Rt, R∃} to

n, (2) Apply the R∀ rule to n.

1. Applying one of the rules {Ru, Rt, R∃} to n can add two nodes to a

tableau. Based on the definition of these rules, the interval in each of

the two added nodes is the same as the interval in n.

2. The interval in a node added by applying R∀ to n is a subinterval of the

interval in n. Since in this thesis we are assuming that time is discrete

(see Remark 1 on Page 77), the number of distinct subintervals of an

interval is finite.

Therefore, applying DL rules to the nodes of a tableau cannot introduce an

infinite number of distinct intervals.

Analogous to the notion of subformula of a formula in first order logic, we

define below the notion of sub-description of a concept description.

Definition 41. Let D,E, F be three concept descriptions, and let R be a DL

role. The sub-descriptions of D, denoted by SubD(D), are recursively defined

as follows:

92

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• SubD(D) = {D} where D is a concept name

• SubD(D) = {E} ∪ {F} ∪ SubD(E) ∪ SubD(F) where D = E u F

• SubD(D) = {E} ∪ {F} ∪ SubD(E) ∪ SubD(F) where D = E t F

• SubD(D) = {E} ∪ SubD(E) where D = ∃R.E

• SubD(D) = {E} ∪ SubD(E) where D = ∀R.E

Remark 5. Let D be a concept description. It is easy to show by induction

that the cardinality of SubD(D), denoted by #SubD(D), is less than or equal

to |D|.

Lemma 11. Let ψ be a formula. The number of distinct (sub-) descriptions

of the concept descriptions in ψ is less than |ψ|.

Proof. The total length of the concept descriptions in ψ is less than |ψ|. There-

fore based on Remark 5, the number of distinct (sub-) descriptions of the

concept descriptions in ψ is less than |ψ|.

Consider the following facts derived from the definition of the expansion

rules (Definition 36 on Page 81). We will use these facts in the proof of

subsequent theorems.

• (Monotonicity) Applying a DL rule to a node adds one (or two) node(s)

to a branch, and consequently adds a (two) new concept description(s)

to some temporal labels of an individual, and never removes any concept

description from any temporal label of the individual.

• (Shrinkage) Let T be a tableau; let B be a branch of T ; let m, n be two

nodes; let a, b be two individuals; let D, E be two concept descriptions,

and let k, k
′ ∈ N. Here, a (resp. k) can be equal to b (resp. k

′
).

93

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Assume m (Φ(m) = (b : E)k′) is added to B by applying a DL rule to n

(Φ(n) = (a : D)k). Based on the definition of DL rules, E ∈ SubD(D).

If a non-temporal node n (Φ(n) = (a : D)k) is added by applying a

DL rule to a node, the concept description D is a sub-description of a

concept description appearing in the root node of T .

Lemma 12. Let ψ be a formula, and let T be a tableau for ψ. The number

of distinct concept descriptions in the nodes of T is less than |ψ|.

Proof. Based on Shrinkage, every concept description in the labelled formula

of the nodes of T is a (sub-) concept description of a concept in ψ. By Lemma

11, we may conclude that the number of distinct concept descriptions in the

nodes of T is less than |ψ|.

Before we prove the next theorem, we divide the individuals into the two

categories.

1. Old individual: An individual which appeared in the formula of the root

node.

2. New individual: An individual which is not an old individual. These

individuals are created during the construction of a tableau.

Remark 6. Let ψ be a formula; the number of old individuals is less than |ψ|.

Below, we define the notion of a repetitive node. We use this notion during

the proof of termination and the proof characterizing the complexity of the

tableau algorithm.

Definition 42. Let n, m be two non-temporal nodes s.t. n is a successor

of m, and both of them contain a concept assertion. n is a repetitive node

if the labelled formula in n is exactly the same as the labelled formula in m;

otherwise n is a non-repetitive node.

94

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Remark 7. All repetitive nodes occur in the situation described in Remark 3

(on Page 84); therefore it is not necessary to expand the repetitive nodes.

Obviously, we should consider all the nodes of a branch whether they are

repetitive or not, in order to prove the termination and in order to find the

complexity of the algorithm.

Theorem 8. Let B be a branch of a tableau for a simple formula; let D be a

concept description. For a given individual a, the number of repetitive nodes

on B that contain a : D is at most twice the number of non-repetitive nodes

on B that contain a : D.

Proof. Based on Lemma 12 and Lemma 10, the number of non-repetitive nodes

on the branch B which contain a : D is finite. Let w be the number of these

nodes. By Remark 7, repetitive nodes cannot be expanded. As can be seen

in the definition of the R∀ and R∃ rules, application of these rules does not

add any repetitive nodes. Therefore, the only way to add a repetitive node is

to apply the R∧ or R∨ rule to the non-repetitive nodes which contain a : D.

Based on the definition of these rules, only one rule is applicable to a node;

then the node cannot be expanded again. Hence, the number of applications

of the R∧ and R∨ rules is w. Therefore, the number of repetitive nodes is at

most 2w.

Corollary 4. For any individual a and any branch B, the full label of a w.r.t.

B is finite.

Lemma 13. Let ψ be a simple formula, and let T be a tableau for ψ. The

number of new individuals appearing in the nodes of T is finite.

Proof. Let a be an old individual; let b be a new individual; let R be a role,

and let k, k
′ ∈ N. The number of non-temporal nodes that contain R(a, b)k

95

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

is bounded by the total number of existential restrictions existing in all full

labels of a. Therefore, the number of new individuals that are R-successors of

the old individuals is bounded by the total number of existential restrictions

in all full labels of old individuals. Let c be a new individual, and let S be

a role. S (resp. k) can be equal to R (resp. k
′
). For any S, the number of

non-temporal nodes that contain S(b, c)k′ is bounded by the total number of

existential restrictions existing in all full labels of b. Therefore, the number

of new individuals which are S-successors of the existing new individuals (the

new individuals that are R-successors of the old individuals) is bounded by the

number of existential restrictions in any full labels of existing new individuals.

We can use similar reasoning to prove that the new individuals that are role-

successors of other new individuals is also finite. Now, it remains to show that

the successor chains of new individuals is finite. Since b is a new individual,

it is only related to a with the relation R. In fact, b is not related to another

individual or even to a by any relation other than R. Because of this fact

and based on the definition of DL rules, the length of the maximal concept

description in any full label of b is strictly less than the length of the maximal

concept description in any full label of a; hence, since the length of a concept

description is greater than zero, a successor chain of new individuals is finite.

Therefore, the number of new individuals is finite.

Example 9. As can be seen in Figure 5.2, there is only one branch in the

tableau. The full label of a w.r.t. the existing branch is {∃R.∀S.∃P.D,

∀R.∀P.(D t ∃S.(D u E))} and the full label of b w.r.t. the existing branch is

{∀S.∃P.D, ∀P.(D t ∃S.(D u E))}. Consider the two following points:

1. Obviously, the length of the maximal concept description in the full

96

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

label of b, i.e., ∀P.(D t ∃S.(D u E)) is strictly less than the length of

the maximal concept description in the full label of a, i.e., ∀R.∀P.(D t

∃S.(D u E)).

2. (Example of Shrinkage fact). The concept assertion b : ∀P.(Dt∃S.(Du

E)) in Node 7 is achieved by applying the R∀ rule to node 4, which

contains a : ∀R.∀P.(D t ∃S.(D u E)). Clearly, ∀P.(D t ∃S.(D u E)) is

a sub-description of ∀R.∀P.(D t ∃S.(D u E)).

1 [root] ((♦∗r((a : ∃R.∀S.∃P.D)5 ∧ (a : ∀R.∀P.(D t ∃S.(D u E)))5),[c0, c1]),

{{c0 < c1},{(c0, c1, 2)}})
1-R∗r

2 (((a : ∃R.∀S.∃P.D)5 ∧ (a : ∀R.∀P.(D t ∃S.(D u E)))5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

2-R∧
3 (((a : ∃R.∀S.∃P.D)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

2-R∧
4 (((a : ∀R.∀P.(D t ∃S.(D u E))5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

3-R∃
5 (((b : ∀S.∃P.D)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

3-R∃
6 ((R(a, b)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

4-R∀
7 ((b : ∀P.(D t ∃S.(D u E)))5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})
No more rules are applicable! The formula is satisfiable.

Figure 5.2: Tableau for ♦∗r((a : ∃R.∀S.∃P.D)5∧(a : ∀R.∀P.(Dt∃S.(DuE)))5)

Theorem 9. Let ψ be a simple formula, and let B an arbitrary branch in a

tableau for ψ. The number of non-temporal nodes on B is finite.

Proof. Let ψ be a formula; let a, b be two old individuals; let c, d be two

new individuals; let D be a concept description; let R be a role, and let

97

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

k, k
′ ∈ N. The finiteness of the number of non-temporal nodes on B is an easy

consequence of the following facts.

• The number of non-temporal nodes that contain R(a, b)k is finite.

Since no DL rule adds a node that contains a role assertion about two old

individuals, such a role assertion should be a subformula of ψ in order

to appear in the tableau. Therefore, the number of such non-temporal

nodes is bounded by the number of non-temporal nodes which are added

to a tableau by the application of temporal rules. Based on Corollary 3

(on Page 90), the number of non-temporal nodes that contain R(a, b)k

is finite.

• The number of non-temporal nodes (on B) that contain a concept asser-

tion (e.g., a : D) is finite. Since the number of individuals is finite, and

the number of concept description in each full label of each individual is

finite (Corollary 4 on Page 95), the number of non-temporal nodes that

contain a concept assertion (e.g., a : D) is thus finite.

• The number of non-temporal nodes (on B) that contain R(a, c)k′ (or

R(c, d)k′) is finite.

OnlyR∃ rules can add nodes that contain a role assertion between an old

individual and a new individual (or two new individuals). Every applica-

tion of the R∃ rule introduces a new individual and adds two nodes to a

branch. One node contains a concept assertion about the new individual

and the other node contains a role assertion about that individual. The

number of R∃ rule applications is bounded by the number existential

restrictions in the full labels of all individuals. Since the number of the

individuals is finite (see Remark 6 (on Page 94) and Lemma 13 (on Page

95)), the number of non-temporal nodes (on B) that contain R(a, c)k′ or

98

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

R(c, d)k′ is finite.

Proof. (Theorem 7 on Page 86.) Assume that there can be an infinite sequence

of rule applications during the construction of a tableau. Also, the branch-

ing factor of the tableau is a finite number (see Lemma 7 on Page 88), and

every rule application adds one (or more) nodes to the tableau. Therefore,

there should be a branch with an infinite number of nodes. Since the num-

ber of temporal nodes as well as the number of non-temporal nodes residing

on this branch are both finite, the number of nodes of the branch cannot be

infinite. Therefore, there cannot be an infinite sequence of rule applications,

and consequently, the tableau construction terminates.

5.3.3 Complexity of the tableau algorithm for simple

MITDL formulas

Before we present our implementation of the tableau algorithm for checking

the satisfiability of a simple formula, we prove the following theorems, which

we will use to show that our implementation has PSpace complexity.

Lemma 14. Let ψ be a formula; let B be a branch of a tableau for ψ. The

number of temporal nodes on B is O(|ψ|).

Proof. The number of temporal rule applications for constructing B is equal to

the number of temporal operators in ψ (see the definition of temporal rules).

99

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

This number is less than |ψ|. On the other hand, each temporal rule appli-

cation may add at most two nodes to B. Hence, after applying the temporal

rules, the number of existing nodes on B is O(|ψ|).

Suppose that in order to construct a tableau for a simple formula we first

exhaustively apply all the temporal rules and then we apply the DL rules.

Now consider the following theorems.

Lemma 15. Let ψ be a formula. After applying the temporal rules (before

applying the DL rules), the number of non-temporal nodes on a branch is

O(|ψ|).

Proof. Applying a temporal rule may add at most two non-temporal nodes

to the branch. By Lemma 14, before applying the DL rules, the number of

non-temporal nodes on a branch is O(|ψ|).

Lemma 16. Let ψ be a simple formula. The number of distinct intervals in

the nodes of a branch is O(|ψ|2).

Proof. ApplyingRt orRu does not introduce any new interval. Thus, the only

way to have a new interval is to apply the R∀ rule on a node. Before applying

any DL rules, the number of non-temporal nodes is O(|ψ|) (see Lemma 15).

This indicates that the number of distinct intervals in these non-temporal

nodes is O(|ψ|). Based on the definition of R∀, the interval in a node added by

the application of the R∀ rule is an intersection of two existing intervals. This

means that by the application of the R∀ rule at most O(|ψ|2) new intervals

are introduced. Therefore, the number of distinct intervals in the nodes is

O(|ψ|2).

100

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

5.3.4 A PSpace implementation of the tableau algo-

rithm

In this section, we describe MITDL SAT algorithm (Algorithm 1), an im-

plementation of the tableau algorithm for checking the satisfiability of a simple

formula. Given a formula, this non-deterministic algorithm decides whether

the formula is satisfiable. Algorithm 1 uses a recursive routine, called SAT

(Algorithm 2), which is responsible for adding new nodes that contain new

individuals, and for expanding them as much as possible.

The algorithm expands a tableau in a depth first manner in the sense that

it builds one branch of the tableau during the execution before turning to

the next. While the positive output (“satisfiable”) of the algorithm shows

that the formula is satisfiable, the negative output (“not satisfiable”) only

indicates that the branch is closed.

101

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Algorithm 1 PSpace implementation of tableau algorithm

1: procedure MITDL SAT(ψ)
2: Build a tableau T which contains exactly one node (root node) (see

Definition 28)
3: while a temporal rule is applicable to T do
4: Apply the rule, if it is a rule from {R∨, R♦−r , R♦+r , R♦−l , R♦+l },

non-deterministically pick one choice and add a new node to T
5: if T contains a clash then
6: return “not satisfiable”
7: while a DL rule, with the exception of R∃, is applicable to T do
8: Apply the rule, if it is a Rt rule, non-deterministically pick one

choice and add a new node to T
9: if T contains a clash then

10: return “not satisfiable”
11: Let S be a list of nodes on which R∃ is applicable
12: while S 6= ∅ do
13: n ← pick one of the elements in S
14: r ← the leaf of the branch
15: if SAT(n,T , r) = “not satisfiable” then
16: return “not satisfiable”
17: Remove n from S
18: return “satisfiable”

102

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Algorithm 2 Subroutine SAT

1: procedure SAT(n, T , rl)
2: Apply R∃ rule on n
3: Apply the R∀ rule on the existing nodes
4: while a DL rule, with the exception of R∃, is applicable to fresh nodes

in T do
5: Apply the rule, if it is a Rt rule, non-deterministically pick one

choice and add a new node to T
6: if T contains a clash then
7: return “not satisfiable”
8: Let New be the list of the nodes on which R∃ is applicable and they

are successors of n
9: while New 6= ∅ do

10: m ← pick one of the elements in New
11: r ← the leaf of the branch
12: if SAT(m,T , r) = “not satisfiable” then
13: return “not satisfiable”
14: Discard the nodes which are successors of rl
15: Remove m from New

103

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

First, all the temporal rules are applied (Algorithm 1 - Line 3-4). After this

step, we have a branch that contains both temporal nodes and non-temporal

nodes. Since no more temporal rules are applicable, temporal nodes cannot be

expanded anymore. On the other hand, the temporal rules are not applicable

to the non-temporal nodes (Lemma 8 on Page 89); therefore, after this step,

the algorithm does not consider the application of temporal rules.

Algorithm 1 exhaustively expands the non-temporal nodes by applying DL

rules with the exception of theR∃ rule (Line 7-10); at the completion of Line 7-

10, the tableau contains some (non-)temporal nodes which are not expandable

and some non-temporal nodes, called old nodes, that can be expanded, in

particular, by applying the R∃ rule. Note that the tableau contains only one

branch. This algorithm uses Algorithm 2, the SAT routine, to expand each

of the old nodes in turn. More precisely, in each round, the routine expands

an old node and the nodes (called fresh nodes) that are added to the branch

by the routine. First, the R∃ rule is applied to the node that is passed as

the input parameter of the routine (Line 2). Then the R∀ is applied on all

nodes of the branch (Line 3); this may add some fresh nodes to the branch.

Afterward, all DL rules (except R∃) are applied on the fresh nodes (Line 4-5).

If there is a fresh node that contains an existential restriction in its formula,

SAT is recursively called to expand that node as well. If during the expansion

of a node a clash is detected, the algorithm returns “not satisfiable”, which

means the branch is closed, and we should execute MITDL SAT again in order

to investigate the other possible choices which were not considered during

the previous execution of the algorithm. If all the old nodes are successfully

expanded and no clash is detected, the algorithm returns “satisfiable” which

indicates that the formula is satisfiable. Note that, based on Theorem 7 (on

Page 86), this recursion always terminates.

104

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Theorem 10. (PSpace Complexity Theorem.) The complexity of the MITDL SAT

algorithm (resp. the SAT algorithm) is PSpace.

Before we prove this theorem, we analyze the MITDL SAT and SAT algo-

rithms in detail.

• Line 1-6 of Algorithm 1: Based on Lemma 14 (on Page 99), the number

of the nodes which are added to the tableau by executing these lines is

O(|ψ|).

Theorem 11. Let ψ be a simple formula; let B be a branch, and let a be an

old individual. Before the execution of Line 11 of Algorithm 1, the cardinality

of the full label of a w.r.t. B is O(|ψ|3).

Proof. Since the number of distinct intervals is O(|ψ|2) (Lemma 16 on Page

100) and the number of distinct concept descriptions is less than |ψ| (Lemma

12 on Page 94), the number of non-repetitive nodes which contain a concept

assertion about a is O(|ψ|3). Note, the number of repetitive nodes (Theorem

8 on Page 95) does not change the complexity of the cardinality of the full

label of a.

• Line 7-10 of Algorithm 1: Based on Remark 6 (on Page 94) and Theorem

11, the number of possible non-temporal nodes that can be added to the

branch by applying DL rules (except R∃) is O(|ψ|4).

• Line 11 of Algorithm 1: Since the number of existing nodes is O(|ψ|4),

the cardinality of S is O(|ψ|4).

• Line 12-17 of Algorithm 1: In order to find the complexity of execut-

ing these lines, we should analyze the complexity of executing the SAT

routine. We will show that the space complexity of the SAT is PSpace.

105

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

– Line 2 of Algorithm 2: Applying the R∃ rule always adds two nodes

to the branch. Based on the definition of the R∃ rule, the formulas

in these nodes contain a new individual (say b).

– Line 3-7 of Algorithm 2: Since the number of distinct intervals

is O(|ψ|2) (Lemma 16 on Page 100), and the number of distinct

concept descriptions is less than |ψ| (Lemma 12 on Page 94), the

number of non-repetitive nodes which contain a concept assertion

about b is O(|ψ|3). Note, the number of repetitive nodes (Theorem

8 on Page 95) does not change the complexity of the number of the

nodes which are added by the execution of these lines. Therefore,

the number of the nodes added by the execution of these lines is

O(|ψ3|). Since O(|ψ|4) +O(|ψ|3) = O(|ψ|4), the number of existing

nodes is still O(|ψ|4).

– Line 8 of Algorithm 2: Since the number of existing nodes isO(|ψ|4),

the cardinality of S is O(|ψ|4).

– Line 9-14 of Algorithm 2: The number of recursive calls of SAT is

bounded by the length of the longest successor chain of existential

restrictions existing in the full label of b; this length is bounded

by the length of ψ. This means that the algorithm adds at most

|ψ| ∗ O(|ψ|3) = O(|ψ|4) nodes to the tableau. Note, SAT discards

the unnecessary nodes in order to use the memory for the executing

rest of algorithm.

Proof. (Theorem 10.) Based on the above analysis, the number of the nodes in

the tableau is O(|ψ|4). Since the memory required for storing a node is O(|ψ|),

the memory required for checking satisfiability of ψ is O(|ψ|5). Therefore, the

complexity of Algorithm 1 (resp. Algorithm 2) is PSpace.

106

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

5.3.5 Tableau-based algorithm for checking the satisfi-

ability of a generic MITDL formula

In this section, we explain how the previous algorithm should be modified

in order to have an algorithm for checking the satisfiability of a generic formula.

In fact, most of the definitions and the other details are exactly same as before.

Hence, we explain the differences here.

Let D be a concept description, and let k ∈ N. Since a formula may contain

a general conclusion as a subformula (e.g., (D = >)k), the algorithm presented

in Section 5.3.1 must be augmented; first we propose that we add the R= rule

to the DL rules (Definition 36 on Page 81) of the algorithm.

R=: If ψ = (D = >)k, then

– if there is a node (say m1) on the branch B s.t. m1 = (((a :

E)k′ , [ci0 , cj0]),CB) (resp. m1 = (((a : ¬E)k′ , [ci0 , cj0]),CB)) where

[ci, cj]∩[ci0 , cj0] = [ci1 , cj1] 6= ∅, and there is no node (say m2) on the

branch s.t. m2 = (((a : D)k′′ , [ci2 , cj2]),CB) and [ci1 , cj1] ⊆ [ci2 , cj2],

expand the branch to B.n0, s.t. n0 = ((a : D)k′′′ ,[ci1 , cj1]), CB0)

where k
′′′

= |cj1 − ci1|. CB0 is equal to CB and LCB0 is obtained by

inserting (ci1 , cj1 , k
′′′

) in LCB .

However if we check the satisfiability of ψ = (a : D)5 ∧ (∃R.C = >)5 with

this algorithm, we will see that the algorithm does not terminate. Let κ = 10.

Figure 5.3 exhibits a fragment of a tableau for ψ. As seen in the figure, the

R∃ rule generates a new individual, then the R= rule is applied on the added

node. Afterwards, the R∃ rule generates another new individual, and the R=

rule is applied again. The bis (i ∈ N) in the figure have the same type in the

sense that all of them are individuals of the same concept. The process of

107

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

generating a new individual and applying the R= rule never ends; we say the

algorithm has run into a cycle. Clearly, the algorithm never terminates.

Let ψ be a formula; let D,E be two concept descriptions; let R be a DL

role, and let k ∈ N. If both of the following conditions hold, the algorithm

may run into a cycle.

1. (D = >)k is a subformula of ψ.

2. D is equal to ∃R.E or ∃R.E is a sub-description of D.

If a formula ψ does not contain a subformula (D = >)k, ψ would be a

simple formula, and because of the shrinkage fact (see Page 93), the algorithm

never runs into a cycle. The only rule which produces a new individual is

the R∃ rule; therefore, if the formula ψ is equal to ∃R.E or contains ∃R.E,

the application of the R= rule adds one or more nodes to the tableau s.t. the

expansion of the added nodes will introduce some new individuals. By the

definition, the R= rule is again applicable because of the presence of the new

individuals. Then, the expansion of the nodes added by application of R=

will introduce more new individuals and this process never ends. The above

conditions are not sufficient conditions for having a cycle in a tableau. For

example, a tableau for ψ = (a : ∃R.E)5 ∧ ♦r((∃R.E = >)6) does not run into

a cycle while, obviously, the both conditions hold. We leave to the reader to

investigate this situation.

In order to ensure termination of the tableau algorithm, we will define

the notion of Temporal Subset Blocking (TSB) based on the notion of subset

blocking [46] (see Definition 6 on Page 24). TSB detects situations in which

a cycle may occur and prevents it if it occurs. In fact, the idea is to use an

existing individual instead of generating a new individual. In other word, if

an individual b is blocked by a, we can use an existing role successor (say

108

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

1 [root] ((♦∗r((a : D)5 ∧ (∃R.C = >)5),[c0, c1]), {{c0 < c1},{(c0, c1, 2)}})
1-R∗r

2 (((a : D)5 ∧ (∃R.C = >)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

2-R∧
3 (((a : D)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

2-R∧
4 (((∃R.C = >)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

4-R=

5 (((a : ∃R.C)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

5-R∃
6 ((R(a, b1)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

5-R∃
7 ((b1 : C,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

4-R=

8 (((b1 : ∃R.C)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

8-R∃
9 ((R(b1, b2),[c−1, c1]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

8-R∃

10 ((b2 : C,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

4-R=

11 (((b2 : ∃R.C)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

11-R∃
12 ((R(b2, b3),[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

11-R∃

13 ((b3 : C,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

4-R=

14 (((b3 : ∃R.C)5,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2), (c1, c2, 5)}})

Never Terminates!

Figure 5.3: Tableau for ♦∗r((a : D)5 ∧ (∃R.C = >)5)

109

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

R-successor) of a rather than generating a new R-successor of b. For example

in Figure 5.3, instead of generating a new R-successor for b2 (i.e., b3), we can

use the R-successor of b1 (i.e., b2). This yields a class of models for ψ, i.e,

(D, I−(D),S) where D = {c1, c2} s.t. c1 < c2, I−(D) = [c1, c2] and S[c1, c2]

defined as follows:

• ∆[c1,c2] = {a, b1, b2}

• D[c1,c2] = {a}

• C [c1,c2] = {b1, b2}

• R[c1,c2] = {(a, b1), (b1, b2), (b2, b2)}

A problem which sometimes arises is cyclic blocking, i.e., blocking an in-

dividual a by an individual b and vice versa. Suppose that a is blocked by

b. As we will see later in Definition 44, the nodes which contain concept as-

sertions about a are not expanded, because the expansion of the nodes which

contain concept assertions about b add sufficient information for checking the

satisfiability of the formula in the initial node. If b is also blocked by a, the

nodes which contain concept assertions about b are not expanded and some

information is lost. Therefore, cyclic blocking should be avoided.

We will enumerate all individual names to avoid cyclic blocking of indi-

viduals in the algorithm. A necessary condition for blocking a by b is that a

appears after b in the enumeration: we write b ≺≺ a [46]. Now, consider the

following definition.

Definition 43. (Temporal Subset Blocking) Let B be a branch; let D,E be

two concept descriptions; let a, b be two individuals, and let [ci, cj], [ci0 , cj0], [ci1 , cj1]

be three intervals.

a is blocked on [ci, cj] by b if

110

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

{D | (((a : D)k, [ci0 , cj0]),CB) ∈ B and [ci, cj] ⊆ [ci0 , cj0]}

⊆

{E | (((b : E)k′ , [ci1 , cj1]),CB) ∈ B and [ci, cj] ⊆ [ci1 , cj1] }

and b ≺≺ a in the enumeration.

Below we redefine the DL rules. The new definitions of DL rules (with the

exception of the R= rule) are same as the definitions of the rules in Definition

36 (on Page 81) except that we add the assumption that the individual a

should not be blocked on [ci, cj].

Definition 44. DL rules:

R=: If ψ = (D = >)k, then

– If there is a node (say m1) on the branch B s.t. m1 = (((a :

E)k′ , [ci0 , cj0]),CB) (resp. m1 = (((a : ¬E)k′ , [ci0 , cj0]),CB)) where a

is a non-blocked node on [ci0 , cj0] and [ci, cj]∩[ci0 , cj0] = [ci1 , cj1] 6= ∅,

and there is no node (say m2) on the branch s.t. m2 = (((a :

D)k′′ , [ci2 , cj2]),CB) and [ci1 , cj1] ⊆ [ci2 , cj2], expand the branch to

B.n0, s.t. n0 = ((a : D)k′′′ ,[ci1 , cj1]), CB0) where k
′′′

= |cj1 − ci1|.

CB0 is equal to CB and LCB0 is obtained by inserting (ci1 , cj1 , k
′′′

) in

LCB .

– If no other expansion rule (with the exception of the R=) is appli-

cable, then let u(n,B) = 1;

Ru: If ψ = (a : D u E)k and a is not blocked on [ci, cj] then if B does not

contain both (or one of the) two nodes (say n0,n1) s.t. n0 = (((a :

D)k,[ci, cj]), CB) and n1 = (((a : E)k,[ci, cj]), CB), then expand the

branch to B.n0.n1, s.t. n0 = (((a : D)k,[ci, cj]), CB) and n1 = (((a :

E)k,[ci, cj]), CB). Let u(n,B) = 1;

111

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Rt: If ψ = (a : D t E)k and a is not blocked on [ci, cj] then if B does not

contain both two nodes (say n0,n1) s.t. n0 = (((a : D)k,[ci, cj]), CB) and

n1 = (((a : E)k,[ci, cj]), CB), then expand the branch to B.n0|n1, s.t. n0

= (((a : D)k,[ci, cj]), CB) and n1 = (((a : E)k,[ci, cj]), CB). Let u(n,B)

= 1;

R∃: If ψ = (a : ∃R.D)k and a is not blocked on [ci, cj] then if there is no indi-

vidual (say b) s.t. two nodes (say m, s) where m = (((R(a, b))k′ ,[ci0 , cj0]),

CB) where [ci, cj] ⊆ [ci0 , cj0] and s = (((b : D)k′′ ,[ci1 , cj1]), CB) where

[ci, cj] ⊆ [ci1 , cj1] exist in the branch B, then expand the branch to

B.n0.n1, s.t. n0 = ((R(a, b)k,[ci, cj]), CB) and n1 = (((b : D)k,[ci, cj]),

CB) [113]. Note, individual b is not appeared elsewhere in the tree. In

other word, it is a new individual name. Let u(n,B) = 1;

R∀: If ψ = (a : ∀R.D)k and a is not blocked on [ci, cj] then if there is a

node (say m) in branch B s.t. m = (((R(a, b))k′ ,[ci0 , cj0]), CB) where

[ci, cj] ∩ [ci0 , cj0] = [ci2 , cj2] 6= ∅, and there is no node (say l) in branch

B s.t. l = (((b : D)k′′′ ,[ci3 , cj3]), CB) where [ci3 , cj3] ⊆ [ci2 , cj2], then

expand the branch to B.n0, s.t. n0 = (((b : D)k′′ ,[ci2 , cj2]), CB) where

k
′′

= |cj2 − ci2|. CB2 is equal to CB and LCB2 is obtained by inserting

(ci2 , cj2 , k
′′
) in LCB .

By the definition of DL rules applying the R= rule and the R∀ rule may

add many new nodes to the branch. Also, note that in all DL Rules (with the

exception of the R= rule), if a is a blocked individual, let u(n,B) = 1.

112

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

5.3.6 Soundness of the tableau algorithm for generic

MITDL formulas

Definition 45. Given a set S of labeled formulas with labels in C, we say that

S is satisfiable over C if there exists a strict model M = 〈D, I−(D),S〉 such that

D (see Definition 30 on Page 69) is an extension of C and M,[ci, cj] |= ψ for all

(ψ, [ci, cj])∈ S.

Theorem 12. (Soundness). If ψ ∈MITDL and a tableau T for the annotated

version of ♦rψ is closed, then ψ is not satisfiable.

Proof. Let C be the interval structure in n. P (m) is the statement: if the

following conditions hold:

1. n is a node;

2. the height of n is m;

3. every branch through n is closed;

then set S(n) of all labeled formulas in the nodes between n and the root is

not satisfiable over C. We will prove P (m) is true for all m ≥ 0 using strong

induction. We present the general sketch of the induction here. We refer the

reader to Appendix B for the details of proof.

(Base case) If m = 0, then n is a leaf, and the unique branch B containing

n is closed. Then, we have one of the following cases.

1. S(n) contains the labeled formula (ps,[ck, ck0]) and (ck0 , ck, s) ∈ LC and

|ck − ck0| 6= s where ps is an atomic formula.

2. S(n) contains both the labeled formulas (a : C,[ck1 , cl1]) and (a : ¬C,[ck2 , cl2])

where ([ck1 , cl1] ∩ [ck2 , cl2] 6= ∅).

113

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

In both cases, we are not able to construct a model for the labeled formulas

in set S(n). Hence, S(n) is not satisfiable over C.

(Induction Case) Assume P (m) holds for all m, 0 ≤ m ≤ t. We want to

prove P (t+1) holds. Suppose the height of n is t+1 and C={c0,...,cn}. There

are two cases to consider; (1) when n is the direct successor which results after

applying the Rθ (θ ∈ {∧,u, ∃}) rule on node g s.t. g = (ψ,[ci, cj], C), and (2)

when an expansion rule is applied to n s.t. n = ((ψ,[ci, cj]), C) or an expansion

rule is applied to some labeled formula (ψ,[ci, cj]) ∈ S(n) − {Φ(n)} (i.e. the

existing formula in n) to extend the branch at n. In both cases S(n) is not

satisfiable over C (see the details in Appendix B).

5.3.7 Completeness of the tableau algorithm for generic

MITDL formulas

Theorem 13. (Completeness). If ψ ∈ MITDL and a tableau T for the anno-

tated version of ♦rψ is open, then ψ is satisfiable.

General sketch of proof. Let B be an open branch in T . We first define a set of

interpretations S using existing information on the branch, so that, S satisfies

all the role assertions on B. Then we use strong induction to show that S

also satisfies all the concept assertions on B. Finally, we let D be a partially

ordered set which consists of all points (both start points and end points of

intervals) appearing on B and use strong induction to prove that a three tuple

M = (D, I−(D),S) is a model for the annotated version of ♦rψ.

Proof in detail. Recall that ϕ, ♦rϕ and the annotated version of ♦rϕ are equi-

satisfiable. Also, recall we are working in the context of expanding domains,

i.e., ∆[i,j] ⊆ ∆[c,d] where d ≥ j and i ≥ c (Remark 2 on Page 77). We prove the

114

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

theorem by constructing a class of models; we define a set of interpretations S

where S[i, j] (see Section 5.2) is as follows.

1. ∆[i,j]={ a | ((a : D)k, [i
′
, j
′
]) ∈ B or ((a : ¬D)k, [i

′
, j
′
]) ∈ B where

[i, j] ∩ [i
′
, j
′
] 6= ∅ }

2. For all atomic concepts C, we define C [i,j]={ a | ((a : C)k, [i
′
, j
′
]) ∈ B

where [i, j] ⊆ [i
′
, j
′
] }

3. For all roles R, we define R[i,j] = { (a, b) | (R(a, b)k, [i
′
, j
′
]) ∈ B where

[i, j] ⊆ [i
′
, j
′
] }

By this definition, S[i, j] |= a : C where C is an atomic concept, and ((a :

C)k, [i
′
, j
′
]) ∈ B for [i, j] ⊆ [i

′
, j
′
], and S[i, j] |= R(a, b) where (R(a, b)k, [i

′′
, j
′′
]) ∈

B and [i, j] ⊆ [i
′′
, j
′′
]. Clearly, the above definition satisfies the definition of

expanding domain. Note that the length of a concept description is the car-

dinality of the multi set of DL-operators occurring in it. Let B be an open

branch in T ; let [i, j] be an interval; P (m) is the statement: let D be a con-

cept description of length m and suppose ((a : D)k, [i
′
, j
′
]) ∈ B (respectively,

((a : D)k, [i
′
, j
′
]) /∈ B) where [i, j] ⊆ [i

′
, j
′
]; then S[i, j] |= a : D (respectively,

S[i, j] |= a : ¬D). We use strong induction to prove P (m) is true for all m ≥ 0.

(Base case) If m = 0, then D is an atomic concept and the claim is true by

the definition of D[i,j]. If m = 1, then D = ¬C where C is an atomic concept

and since ((a : ¬C)k, [i
′
, j
′
]) ∈ B follows that ((a : C)k, [i

′
, j
′
]) /∈ B, by the

definition of C [i,j], a /∈ C [i,j]; hence a ∈ (∆[i,j] − C [i,j]) and the claim is true.

(Induction case) Assume P (m) is true for all 0 ≤ m ≤ t. We prove P (t+ 1) is

true. Consider the following cases: Assume [i, j] ⊆ [i
′
, j
′
].

• If D = ¬E, we have ((a : ¬E)k, [i
′
, j
′
]) ∈ B. It follows that ((a :

E)k, [i
′
, j
′
]) /∈ B and since the length of E is less than the length of ¬E,

by the induction assumption, S[i, j] |= a : ¬E.

115

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• If D = (E u F), we have ((a : E u F)k, [i
′
, j
′
]) ∈ B. Then by the

definition of the expansion rules we have ((a : E)k, [i
′
, j
′
]) ∈ B and

((a : F)k, [i
′
, j
′
]) ∈ B. Since the length of E and the length of F are both

less than the length of D, by the induction assumption, S[i, j] |= a : E

and S[i, j] |= a : F ; therefore S[i, j] |= a : D.

• If D = (E t F), we have ((a : E t F)k, [i
′
, j
′
]) ∈ B. Then by the

definition of the expansion rules we have ((a : E)k, [i
′
, j
′
]) ∈ B or ((a :

F)k, [i
′
, j
′
]) ∈ B. Since the length of E and the length of F are both less

than the length of D, by the induction assumption, S[i, j] |= a : E or

S[i, j] |= a : F ; therefore S[i, j] |= a : D.

• If D = (∃R.E), we have ((a : ∃R.E)k, [i
′
, j
′
]) ∈ B. Then by the

definition of the expansion rules we have ((R(a, b))k, [i
′
, j
′
]) ∈ B and

((b : E)k, [i
′
, j
′
]) ∈ B. Since the length of E is less than the length of D,

by the induction assumption, S[i, j] |= b : E. Also, S[i, j] |= R(a, b) by

the definition S[i, j]; therefore, we have S[i, j] |= a : D.

• If D = (∀R.E), we have ((a : ∀R.E)k, [i
′
, j
′
]) ∈ B. Then by the def-

inition of the expansion rules if we have ((R(a, b))k, [i
′
, j
′
]) ∈ B then

((b : E)k, [i
′
, j
′
]) ∈ B. S[i, j] |= R(a, b) by the definition S[i, j]. Since the

length of E is less than the length of D, by the induction assumption,

S[i, j] |= b : E; therefore, we have S[i, j] |= a : D.

A three tuple M = (D, I−(D),S) is a model for the annotated version of

♦rψ denoted by γ. P (m) is the statement: Let B be an open branch in

a tableau for γ; let [i, j] be an interval; let ϕ be a MITDL formula which

has m occurrences of temporal operators, and suppose (ϕ, [i, j]) ∈ B; then

M, [i, j] |= ϕ. We use strong induction to prove P (m) is true for all m ≥ 0.

116

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Assume that [i, j] ⊆ [i
′
, j
′
], [i, j]∩[i

′′
, j
′′
] = [i

′′′
, j
′′′

] 6= ∅, k = |j−i|, k′ = |j ′−i′|

and k
′′′

= |j ′′′ − i′′′ |.

(Base case) If m = 0, then consider the following cases; where D is a

concept description,

• Let ϕ = (a : D)k; we have ((a : D)k, [i, j]) ∈ B. By previous induction,

S[i, j] |= a : D. Since we have S[i, j] |= a : D and k = |j − i|, by

the definition of the satisfaction relation, M, [i, j] |= (a : D)k. Note, if

k 6= |j − i| the branch could not be open (see the definition of an open

branch in Definition 37 on Page 85).

• Let ϕ = R(a, b)k. Based on the above definition of S[i, j], S[i, j] |=

R(a, b). Since S[i, j] |= R(a, b) and k = |j − i|, by the definition of the

satisfaction relation, M, [i, j] |= R(a, b)k.

• Let ϕ = (D = >)k. Based on the R= rule, if ((a : E)k′′ , [i
′′
, j
′′
])∈ B

or ((a : ¬E)k′′ , [i
′′
, j
′′
])∈ B, then ((a : D)k′′′ , [i

′′′
, j
′′′

]) ∈ B. Since for

any individual and any concept E and any interval [i
′′
, j
′′
] s.t. ((a :

E)k′′ , [i
′′
, j
′′
])∈ B or ((a : ¬E)k′′ , [i

′′
, j
′′
])∈ B, R= is applied, then for all

individuals appearing on [i, j] we would have (((a : D)k′′′ , [i
′′′
, j
′′′

]) ∈ B).

Therefore M, [i, j] |= (D = >)k.

(Induction case) Assume that P (m) is true for all 0 ≤ m ≤ t. We prove

that P (t+ 1) is true. Consider the following cases.

• Let ϕ = ϕ0 ∧ ϕ1. By the R∧ rule, (ϕ0, [i, j]) ∈ B and (ϕ1, [i, j]) ∈ B.

Since the number of temporal operators in ϕ0(ϕ1) is less than the number

of temporal operators in ϕ, by the induction assumption, M, [i, j] |= ϕ0

(M, [i, j] |= ϕ1); it follows that M, [i, j] |= ϕ.

117

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• Let ϕ = ϕ0∨ϕ1. By the R∨ rule, (ϕ0, [i, j]) ∈ B or (ϕ1, [i, j]) ∈ B. Since

the number of temporal operators in ϕ0(ϕ1) is less than the number of

temporal operators in ϕ, by the induction assumption, M, [i, j] |= ϕ0 or

M, [i, j] |= ϕ1; it follows that M, [i, j] |= ϕ.

• Let ϕ = ♦zrϕ0 (z ∈ {∗,+,−}). By the R♦zr rule, (ϕ0, [j, h]) ∈ B (j < h).

Since the number of temporal operators in ϕ0 is less than the number of

temporal operators in ϕ, by the induction assumption, M, [j, h] |= ϕ0; it

follows that M, [i, j] |= ϕ.

• Let ϕ = ♦zlϕ0 (z ∈ {∗,+,−}). By the R♦zl rule, (ϕ0, [h, i]) ∈ B (h < i).

Since the number of temporal operators in ϕ0 is less than the number of

temporal operators in ϕ, by the induction assumption, M, [h, i] |= ϕ0; it

follows that M, [i, j] |= ϕ.

5.3.8 Termination of the tableau algorithm for generic

MITDL formulas

Theorem 14. (Termination). Let ψ be a formula; let T be a tableau for ψ.

There cannot be an infinite sequence of rule applications in order to construct

T .

General sketch of proof. We pursue the same strategy of proof as the strategy

which we had in Section 5.3.2 (on Page 86). Hence, we prove that the number

of temporal nodes, as well as the number of non-temporal nodes residing on a

branch are finite. Consider the following items.

• The number of temporal nodes is finite.

118

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Since we have not changed the definition of temporal rules, based on

Corollary 2 (on page 90), the number of temporal nodes is finite.

• The number of non-temporal nodes is finite.

To demonstrate the finiteness of the number of non-temporal nodes, we

prove the following facts.

1. The number of distinct intervals in the nodes of a tableau is finite

(Lemma 17 on Page 120).

2. A full label of an individual contains a finite number of concept

descriptions (Corollary 5).

3. The number of individuals appearing in the nodes of a tableau is

finite.

We first define the notion of non-blocked individuals (Definition

46). We divide the individuals into two categories: old individuals

and new individuals (see Page 87). Based on the definition of old

individuals, the number of old individuals is finite. Then we prove

that the number of non-blocked individuals is finite (Lemma 18).

Consequently, the number of the application of R= is finite (Lemma

19). Eventually, we prove that the number of individuals is finite

(Lemma 20 on Page 122).

Having these facts, we show that the number of non-temporal nodes

is finite (Theorem 16 on Page 124). Finally, we present the proof of

termination.

Proof in detail. In order to prove the termination, we should prove the follow-

ing theorems.

119

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Lemma 17. The number of distinct intervals in the nodes of a tableau is

finite.

Proof. In Lemma 10 (on Page 92), we proved that the number of intervals in-

troduced either by applying the temporal rules or by applying Ru,Rt,R∃,R∀
rules is finite. Based on the definition of the R= rule, applying this rule on

a node (say n) may introduce a new interval which is a subinterval of the

interval in n. Based on Remark 1 (on Page 77), the number of subintervals of

an interval is finite. Having these facts, the number of distinct intervals in the

nodes of a tableau is finite

Theorem 15. Let B be a branch of a tableau for a formula; let D be a concept

description. For a given individual a, the number of repetitive nodes on B that

contain a : D is at most twice the number of non-repetitive nodes on B that

contain a : D.

Proof. Since an application of the R= rule does not add any repetitive node

to B, the proof of this theorem is similar to the proof of Theorem 8 (on Page

95).

Corollary 5. For any individual a and any branch B, the full label of a w.r.t.

B is finite.

Definition 46. An individual a is a non-blocked individual if there is an

interval on which a is not blocked by another individual.

Lemma 18. The number of non-blocked individuals in the nodes of a tableau

is finite.

Proof. Let T be a tableau. Let M (resp. N) be the number of distinct (sub)

intervals (resp. concept descriptions) appearing in the nodes of T . Recall

120

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

that every node that contain a concept assertion have an individual name,

a concept description and an interval in its labelled formula. The number

of distinct combinations of a concept description and an interval is equal to

M ×N . In other words, given an individual a, the number of distinct labelled

formulas which can contain a concept assertion about a (e.g., ((a : D)k, [ci, cj])

where D is a concept description, and [ci, cj] is an interval) is M × N . Note

that, for an individual a, some of these labelled formulas usually appear in

the tableau. Therefore, for a given individual a, there are 2M×N different

sets of these labelled formulas that can appear in the tableau. Now, we show

that the maximum number of non-blocked individuals is 2M×N . Suppose that

there is 2M×N + 1 non-blocked individuals. Therefore, there must be two

individuals (say a,b) s.t. the difference between the labelled formulas that

contain a concept assertion about a and the labelled formulas that contain

a concept assertion about b is only the individual names. Hence, based on

the definition of temporal subset blocking, one of these individuals must be

blocked by another individual. This means both of these individuals cannot be

non-blocked individuals. Consequently, the number of non-blocked individual

is bounded by 2M×N .

Lemma 19. The R= rule cannot be applied infinitely often during the con-

struction of a tableau for a formula.

Proof. Since the number non-blocked individuals (Lemma 18), the number

of distinct concept descriptions (Lemma 12 on Page 94) and the number of

distinct intervals (Lemma 17) are all finite, the number of non-temporal nodes

that contain distinct concept assertions about non-blocked individuals is finite.

By its definition, the R= rule cannot be applied either on a node that contains

a concept assertion about a blocked individual or on a repetitive node (see

121

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Remark 7 on Page 95). Therefore, the number of the R= rule application is

bounded by the number of the aforementioned non-temporal nodes.

Lemma 20. Let T be a tableau for a formula. The number of the individuals

in the nodes of T is finite.

Proof. Let i, s ∈ N; let ri be a tableau rule, and let r1, r2, r3, . . . be the sequence

of rule applications for the construction of T . Based on Lemma 9 (on Page 90)

and Lemma 19, we can find a rule rs s.t. ∀i≥s ri ∈ {Ru,Rt,R∃,R∀}. Therefore,

we divide the sequence of the rules into two subsequences, i.e., r1, . . . , rs−1

and rs, rs+1, Obviously, the first subsequence contains a finite number of

elements. Since application of any rule adds a finite number of nodes to T ,

after the application of rs−1, T contains a finite number of temporal nodes

(Corollary 2 on Page 90) and a finite number of non-temporal nodes. Some of

these non-temporal nodes are not expandable because they are either repetitive

nodes or they contain concept assertions about blocked individuals.

In the rest of proof, we divide the individuals appearing in the tableau into

two categories: first-generation individuals and non-first-generation individu-

als. The individuals appearing in the tableau before the application the rs rule

(excluding the rs rule) are called first-generation individuals. Some of these

individuals are old individuals, and some of them are new individuals. Note

that an old individual always is a first-generation individual. The individuals

appearing in the tableau after the application the rs rule (including the rs

rule) are called non-first-generation individuals. Since a non-first-generation

individual is introduced during the construction of a tableau, it is considered

a new individual.

Since right after applying the rs−1 rule, the number of existing non-temporal

nodes is finite, the number of first-generation individuals in the existing nodes

122

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

is also finite. The number of old individuals is finite (Remark 6 on Page 94).

We show that the number of non-first-generation individuals is finite.

Let a be a first-generation individual; let b be a non-first-generation indi-

vidual; let R be a role, and let k, k
′ ∈ N. The number of non-temporal nodes

that contain R(a, b)k is bounded by the number of existential restrictions in the

full labels of a. Therefore, the number of non-first-generation individuals that

are R-successors of the first-generation individuals is bounded by the number

of existential restrictions in any full labels of the first-generation individuals.

Let c be a non-first-generation individual, and let S be a role. S (resp. k)

can be equal to R (resp. k
′
). For any S, the number of non-temporal nodes

that contain S(b, c)k′ is bounded by the number of existential restrictions in

the full labels of b. Therefore, the number of non-first-generation individuals

which are S-successors of the existing non-first-generation individuals (the

individuals that are R-successors of the first-generation individuals) is bounded

by the number of existential restrictions in any full labels of existing non-first-

generation individuals. We can use similar reasoning to prove that the number

of non-first-generation individuals that are role-successors of other non-first-

generation individuals is also finite.

Now, it remains to show that the successor chains of non-first-generation

individuals is finite. Since b is a new individual, it is only related to a by

the relation R. In fact, b is not related to another individual or even to a by

any relation other than R. Because of this fact and by the definition of DL

rules, the length of maximal concept description in any of the full labels of b

is strictly less than the length of maximal concept description in any of the

full labels of a; hence, since the length of a concept description is greater than

zero, a successor chain of non-first-generation individuals is finite. Therefore,

the number non-first-generation individuals is finite.

123

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Theorem 16. Let ψ be a formula. The number of non-temporal nodes in a

tableau for ψ is finite.

Proof. Similar to the proof of Theorem 9 (on Page 97).

Now we are able to prove the termination theorem.

Proof. (Theorem 14 on Page 118.) Similar to the proof of Theorem 7 (on Page

86).

5.3.9 Complexity of the tableau algorithm for generic

MITDL formulas

In Sections 5.3.6 and 5.3.7, we proved that the algorithm is sound and

complete when the expansion rules are applied in an arbitrary order. In this

section, we assume that we first exhaustively apply the temporal rules; then

we apply the DL rules. Before we calculate the number of nodes in a tableau,

we should prove some theorems.

Lemma 21. Let ψ be a formula. The number of distinct intervals in the nodes

of a branch is O(|ψ|2).

Proof. Applying Rt, Ru do not introduce any new interval, but the applica-

tion of the R∀ rule or the R= rule on a node may introduce a new interval.

When applying the temporal rules is finished, the number of non-temporal

nodes is O(|ψ|) (see Lemma 15 on Page 100). This indicates that the num-

ber of distinct intervals in these non-temporal nodes is O(|ψ|). Based on the

124

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

definition of the R∀ (resp. R=) rule, the interval in a node added by the ap-

plication of the R∀ (resp. R=) rule is equal to an intersection of two existing

intervals. This means that by the application of these rules at most O(|ψ|2)

new intervals is introduced . Therefore, the number of distinct intervals in the

nodes is O(|ψ|2).

Theorem 17. Let ψ be a formula; let T be a tableau for ψ; let B be a branch

of T . The number of non-temporal nodes on B resulting from the application

of DL rules is O(2|ψ|
3
).

Proof. The number of the non-temporal nodes on B is the summation of the

following numbers. Let D be a concept description; let a, b be two old indi-

viduals; let c, d be two new individuals, and let R be a role.

• O(2|ψ|
3
) - The number of non-temporal nodes on B that contain a con-

cept assertion.

Based on Remark 5 (on Page 93), the order of concept descriptions ap-

pearing in ψ along with their sub-descriptions is O(|ψ|). Also, based on

Lemma 21, the number of distinct intervals in the nodes of T is O(|ψ|2).

As we mentioned in the proof of Lemma 18 (on Page 120), the maximum

number of non-blocked individuals is 2|ψ|
2∗|ψ|. Therefore, the number of

concept assertions that can appear in the nodes is the product of these

recent numbers, i.e., it is O(2|ψ|
3 ∗ |ψ| ∗ |ψ|2). If due to the application of

any rule, a new node, which contain a concept assertion, is added to the

branch, this now is a repetitive node or it contains a concept assertion

about a blocked node. In both cases, the new node is not expandable.

On the other hand, based on the definition of R= and R∀, none of them

can be applied on the existing non-temporal nodes. It is easy to see that

the number of nodes added to the branch by applying R∧, R∨, R∃ is

125

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

twice the number of existing non-temporal nodes. Therefore, the total

number of the nodes that contain a concept assertion is still O(2|ψ|
3
).

• O(|ψ|) - The number of non-temporal nodes (on B) that contain R(a, b).

Since no DL rule adds a node that contain a role assertion about two

old individuals, this kind of assertions should already exist in ψ (as

subformulas of ψ) in order to appear in the tableau. Therefore, the

number of this kind of non-temporal node is bounded by the number of

non-temporal nodes which are added to a tableau by the application of

temporal rules (see Lemma 15 on Page 100). In fact, these nodes are a

subset of the non-temporal nodes which we considered in the previous

case.

• O(2|ψ|
3
) - The number of non-temporal nodes (on B) that contain R(a, c)

or R(c, d).

Only the R∃ rule can add a node that contains a role assertion between

an old individual and a new individual (resp. two new individuals). By

the definition of this rule, every application of the R∃ rule introduces a

new individual and adds two nodes to a branch. One node contains a

concept assertion about the new individual, and the other node contains

a role assertion about that individual. Since the number of concept

assertions in T is O(2|ψ|
3
), the number of the R∃ rule applications is

O(2|ψ|
3
). Therefore, the number of non-temporal nodes that contain

R(a, c)k′ or R(c, d)k′ is O(2|ψ|
3
).

Therefore, the number of the nodes on B is O(2|ψ|
3
).

Theorem 18. (Worst case complexity.) The complexity of the tableau algo-

rithm for checking the satisfiability of a formula is 2ExpTime.

126

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Proof. A tableau for a formula consists of two parts: the top part and the

bottom part. The top part is created during the application of temporal rules

while the bottom part is created by the application of DL rules. After applying

the temporal rules, the algorithm expands the existing branches by applying

DL rules. The length of the longest branch in the top part of the tableau is

less than |ψ| (see Theorem 5 on Page 74); so the maximum number of the

nodes in the top part is (|ψ|(|ψ|+1))/(|ψ − 1|). Also, the number of the leaves

of top part is |ψ||ψ|. In other words, there are |ψ||ψ| branches that should

be expanded by applying DL rules. Based on this fact and Theorem 17, the

number of the nodes in the bottom part of a tableau is O(|ψ||ψ| ∗2|ψ|
3
). Hence,

the total number of the nodes in a tableau is O(|ψ||ψ| ∗ 2|ψ|
3

+ (|ψ|(|ψ|+1) +

1)/(|ψ| − 1)). Since this number is O(22|ψ|), the complexity of the algorithm

is 2ExpTime.

5.4 Related Works

Because of the importance of undecidability and the concern with the high

complexity of automated reasoning, a few interval-based temporal description

logics have been designed. To the best of our knowledge, these logics are:

T L-ALCF [9, 10, 21, 108, 114, 115], T L-F [9, 108], T LU -FU [9, 108, 116],

T L-SHOIN (D) [115, 117], T LF−5 [118, 119], Schmiedel’s formalism [9, 120],

T ALC [9, 118, 119] and T -ALC [121]. We consider each of them in detail.

5.4.1 Schmiedel’s formalism

As a first attempt to combine an interval-based temporal logic (ITL) with

a DL, in 1990, A. Schmiedel extended a terminological logic with two tempo-

ral operators (limited universal and existential quantification) over intervals

127

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[118]. This formalism is able to encode all of Allen’s relations. Moreover, it

is possible to specify the length of an interval in it. There is no negation in

this logic[120] and, no algorithm was designed for the subsumption reasoning

in this formalism. This problem for the formalism extended by negation is

Π1
1-hard [9].

5.4.2 T ALC and T LF−5

In 1993, C. Bettini proposed a family of logics which identify intervals with

their endpoints. Some of the members of this family are able to model all of

Allen’s relations. The major problem of this family of logics is undecidabil-

ity of subsumption reasoning in (R,≤),(Z,≤),(N,≤). Note, Bettini proposed

another logic called T LF−5 [118] which has polynomial time complexity. This

logic does not allow disjunction and negation which is a significant restriction.

5.4.3 T L-ALCF

All of Allen’s relations can be modeled in this logic. Unfortunately, it is

not possible to bind the duration of an interval with a specific number. In

other words, it is not a metric logic. Also, the temporal part of T L-ALCF

does not support full negation. While the complexity of satisfiability checking

in the logic is PSpace-complete [10], adding full negation to it makes the

satisfiability problem undecidable.

5.4.4 T L-SHOIN (D)

This logic is achieved by extending the non-temporal part of T L-ALCF ,

by SHOIN (D) [122]. As with the previous logic, this logic is also not able

128

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

to bind a specific number for the duration of an interval. The complexity of

satisfiability of a knowledge-base in this logic is NExpTime.

5.4.5 T L-F

This logic has no negation and disjunction; therefore, it is not expressive

enough for modeling events in many domains, e.g., medicine.

5.4.6 T LU-FU

The logic T LU -FU adds the disjunction operator to both the temporal

and non-temporal parts of T L-F . Certainly, it is more expressive than T L-F ,

but it does not include the negation operator. The subsumption problem has

NP-Complete complexity.

5.4.7 T -ALC

This temporal description logic was designed by Liu et al. in 2012. Indeed,

a time interval is attached to every instance of the axioms in an ABox while the

TBox has no temporal aspect; therefore, the main reasoning type in the logic

is ABox consistency. We only have temporal instances rather than temporal

concepts. Note, the complexity of instance checking in the logic is PSpace-

complete.

5.5 Conclusion

In this chapter, we introduced a metric interval-based temporal descrip-

tion logic, called MITDL. Using the temporal part of MITDL, we were able to

model the dynamic aspects of a process while the DL part of this logic encoded

129

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

the static aspects of the process. We identified a set of formulas of MITDL

(simple formulas) and developed a tableau-based algorithm for checking the

satisfiability of these formulas. We proved that the algorithm always termi-

nates. Moreover, we showed that the complexity of the algorithm is PSpace.

Then we extended and modified the existing algorithm to obtain an algorithm

for checking the satisfiability of a generic MITDL formula. We proved the

termination of the algorithm. We also proved that the algorithm is sound and

complete. The soundness of our tableau algorithm states if a tableau of a for-

mula is closed, the formula is not satisfiable while its completeness states that

if there is an open branch in a tableau for a formula, the formula is satisfiable,

and consequently, we are able to construct a class of models for the formula.

Also, we showed that this algorithm has 2ExpTime complexity.

130

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 6

Case Study: Modeling Clinical

Practice Guidelines

In this chapter, we provide many case studies from the domain of medicine.

We will show that Clinical Practice Guidelines (CPGs) can be modeled with

IMPNL (resp. MITDL) and then checked to see if they are consistent. In

other words, if there are any inconsistent conditions in a guideline modeled

with IMPNL or MITDL, our algorithm determines that the guideline is not

satisfiable.

We consider three CPGs, Diagnosis and Treatment of HIV/AIDS, Treat-

ment of Tuberculosis, Multi treatment of an HIV/AIDS-TB patient. The first

and the second guidelines are extracted from a well-known medical reference,

[123] by an infection diseases specialist. He has also removed some details

which were not important for us in this research. The last guideline is a com-

bination of the other guidelines. We designed the third guideline in order to

show that our algorithm can be used to detect inconsistencies when two or

more guidelines are simultaneously followed for a patient with multiple dis-

eases. We will first describe each guideline; then will model each of them with

131

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

IMPNL and MITDL. In order to have a self contained MITDL case studies, we

have repeated some descriptions which we have already mentioned in IMPNL

sections. Note that we assume the granularity of time is an hour (denoted by

h), but for ease of understanding we use day (denoted by d), month (denoted

by m) and year (denoted by yr) were applicable.

6.1 Diagnosis and Treatment of HIV/AIDS

In this guideline we need to model some periodic events; thus, we first

present a technique for modelling periodic events before we explain the guide-

line. Both IMPNL and MITDL are able to model this kind of event if the

duration of a period is constant and the number of the occurrences of periods

is also known and constant, e.g., a patient should take an IBuprofen tablet

every six hours for three days. In the domain of medicine, if the total number

of the occurrences of the periods is unknown, we are able to assume that this

periodicity would terminate within a reasonable maximum lifespan (e.g., 120

years). So we can model many periodic events in this domain. We define a

non-primitive temporal operator 	 to model periodic events in this case study.

Definition 47. 	x ϕ = ϕ ∧ ♦r(ϕ ∧ ♦r(ϕ ∧ ...(♦rϕ)...))︸ ︷︷ ︸
ϕ occurs x times

Generally, HIV disease has three major stages, as shown in Figure 6.1. The

first stage, Acute Infection lasts 6-8 weeks. In this stage, a patient may have

different symptoms, e.g., Fatigue, Headache [124]. After this stage, the patient

goes to the next stage, Clinical Latency, and may have no symptoms at all.

This stage may last 8-10 years. The last stage is called AIDS, and the patient

should use different medications. Generally, an AIDS patient may live at most

20 years after this stage has started while the patient is under treatment. The

132

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

diagnostic process of the disease, as well as its treatment process, are the same

for any HIV/AIDS patient in any of the stages. Figure 6.2 shows the guideline

for HIV/AIDS diagnosis and treatment.

Figure 6.1: HIV Stages [125]

As can be seen in Figure 6.2, three blood-works should be performed to

make sure that the patient has an HIV infection. Results for each blood-

work take approximately 1 day. The registration may take 4 days. Routinely,

the CD4 blood level of an infected patient should be investigated every 3

months. If the level is fine, and the patient has no sign of AIDS, i.e., no,

so called AIDS-Defining Conditions, (e.g., Candidiasis of bronchi, trachea, or

lungs, Cryptococcosis, Extrapulmonary Tuberculosis [126]), no medication is

needed, but if the level of CD4 is not acceptable, or there is at least one AIDS-

Defining Condition, the patient should take 3 medications every day. Also, the

patient should see a medical doctor every 30 days. During these visits, the

doctor ensures that the patient takes the right medicines with the right dosages

and renews the prescriptions for the patient. There are different possible

combinations of medicines for the treatment. We consider one combination

here, i.e., Kaletra, Tenofovir, Lamivadin.

133

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 6.2: HIV/AIDS diagnosis and treatment

6.1.1 Modeling HIV/AIDS guideline with IMPNL

We have selected meaningful names for the propositions in the formula

ψHIV (Formula 6.1) which describes the guideline. Formula ψ0 describes the

diagnosing and the preparation phase of the guideline. The propositions

Elisa#1 and Elisa#2 respectively denote the first and second occurrences of

blood-work (Elisa method).

ψHIV =Elisa#1
1d ∧ ♦r(Elisa

#2
1d ∧ ♦r(WesternBlot1d ∧ ♦r(Registration4d︸ ︷︷ ︸

ψ0

∧ ♦rψ1))) (6.1)

134

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Formalizing the monitoring and the treatment phase is more complicated.

As we already mentioned, an HIV infected patient should take the medications

if (s)he is in the AIDS stage; otherwise, no medication is needed. Formula 6.2

defines a periodic event which occurs 80 times at most because the duration

of a period is 3 months, and the patient may live for at most 20 years after

the AIDS stage has started.

ψ1 =	80 (>90d ∧ ♦l♦rCD4Check1d ∧ ♦l♦rψ2) (6.2)

The reason why we have used ψ2 in the formula is because in the last stage

of the disease, a patient should see the doctor every month as well as taking the

medication every day. Also, (s)he should have a CD4Check every 3 months.

>90d in this formula specifies the length of a period. Note that >90d can be

removed from ψ1 because the length of interval required for satisfying ψ2 is 90

days which is equal to the desired period (i.e., 3 months), but it is not always

the case when we model a periodic formula; so it would be always better to

specify the length of a period using >x where x is the length of the period. As

can be seen in the following formula, if HasAIDS is false, no visit occurs and

no medications are taken.

ψ2 = 	3 (>30d

∧ ♦l♦r(HasAIDS1h → (Visit1h

∧ ♦l♦r(TakeKaletra30d ∧ TakeTenofovir30d

∧ TakeLamivadin30d)))) (6.3)

135

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

>90d︷ ︸︸ ︷
CD4Check1d︷︸︸︷︸ ︷︷ ︸

>30d

︸ ︷︷ ︸
>30d

︸ ︷︷ ︸
>30d

Figure 6.3: One period of ψ1 when the patient is not in the last stage

>90d︷ ︸︸ ︷
CD4Check1d︷︸︸︷
V isit1h︸ ︷︷ ︸

TakeX30d︸ ︷︷ ︸
>30d

V isit1h︸ ︷︷ ︸
TakeX30d︸ ︷︷ ︸
>30d

V isit1h︸ ︷︷ ︸
TakeX30d︸ ︷︷ ︸
>30d

Figure 6.4: One period of ψ1 when the patient is in the last stage

Figure 6.3 exhibits schematic presentations of ψ1 and ψ2 when the pa-

tient is in not in the last stage. In Figure 6.4, TakeX30d ∈ {TakeKaletra30d,

TakeTenofovir30d, TakeLamivadin30d}. This figure shows the situation when

the patient is in the last stage.

Another important point is to take into account drug contraindications

when we model the guideline: two incompatible medicines should not be ad-

ministrated to a patient simultaneously. We need to change the formula to

reflect that this should not happen. For example, we know that Kaletra has

a contraindication with some medicines, e.g., Alfuzosin, Cisapride, Rifampin,

Pimozide [127]. We change Formula 6.3 to the following formula to model this

fact. We leave it to the reader to update formula ψ
′
2 with respect to other

drug contraindications.

136

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψ
′

2 = 	3 (>30d

∧ ♦l♦r(HasAIDS1h → (Visit1h

∧ ♦l♦r(TakeKaletra30d ∧ ¬TakeAlfuzosin30d

∧ ¬TakeCisapride30d ∧ ¬TakeRifampin30d

∧ ¬TakePimozide30d ∧ TakeTenofovir30d

∧ TakeLamivadin30d)))) (6.4)

6.1.2 Checking the quality of HIV/AIDS Guideline

In order to use the tableau algorithm, we recall that in our language a→ b

denotes ¬a ∨ b, and replace the periodic events with their expanded form.

Due to lack of space, we assume that the periodic event occurs once during

the diagnosis and the treatment (Formula 6.5). We use the function defined in

section 4.1.3.1 to determine the annotated version of ϑHIV = ♦rψHIV (Formula

6.6). Also, we have added superscripts for ♦z
′

z where z ∈ {r, l}, z′ ∈ {+,−}

required for the selection strategy.

137

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψHIV = Elisa#1
1d ∧

♦r(Elisa#2
1d ∧

♦r(WesternBlot1d∧

♦r(Registration4d∧

♦r(>90d∧

♦l♦r(CD4Check1d∧

♦l♦r(>30d∧

♦l♦r(¬HasAIDS1h∨

(Visit1h∧

♦l♦r(TakeKaletra30d ∧ ¬TakeAlfuzosin30d

∧ ¬TakeCisapride30d ∧ ¬TakeRifampin30d ∧ ¬TakePimozide30d

∧ TakeTenofovir30d ∧ TakeLamivadin30d))))))))) (6.5)

138

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϑHIV = ♦∗r(Elisa#1
1d ∧

♦∗r(Elisa#2
1d ∧

♦∗r(WesternBlot1d∧

♦∗r(Registration4d∧

♦∗r(>90d∧
1♦−l ♦

∗
r(CD4Check1d∧

2♦−l ♦
∗
r(>30d∧

4♦−l ♦
∗
r(¬HasAIDS1h

∨ (Visit1h∧
8♦−l ♦

∗
r(TakeKaletra30d∧

¬TakeAlfuzosin30d ∧ ¬TakeCisapride30d∧

¬TakeRifampin30d ∧ ¬TakePimozide30d∧

TakeTenofovir30d ∧ TakeLamivadin30d)))))))))) (6.6)

Before we build a tableau for the formula, we select a constant κ =

338d2h(= LN(ϑHIV)). The construction of a tableau for ϑHIV is straight-

forward. Figures C.1, C.2 and C.3 show the tableau for the formula. As can

be seen in Figure C.3, there is an open branch in the tableau, which means the

formula is consistent. There is a subtle point here: the first branch determines

the situation in which the patient is not in the AIDS stage, but we know that

in order to have a completely consistent guideline, we should check whether

the other branch remains open or not. If the branch remains open, it means we

have a consistent guideline even if the patient is in the AIDS stage. We need

to have both branches open because we have modelled the whole guideline

139

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

with one formula but we know a patient who comes for the diagnosis and the

treatment of HIV, can be in any the stages of HIV (or does not have HIV).

We could define three formulas for these three stages but in that case two of

the formulas are the same since the process of the diagnosis and the treatment

of HIV for a patient in the first or second stages of HIV is the same.

6.1.3 A concrete model

In this section, we construct a concrete model for the previous case study

based on the nodes residing on an open branch shown in Figures C.1, C.2 and

C.3. We should first select one open branch. Here, we construct a model for

nodes 1 to 27. Now, it is sufficient to assign suitable values to the cis. Let c0

be “Feb 22, 2014 at 14:30”. Based on the information existing at the nodes,

we have:

• c1 =“Feb 22, 2014 at 16:30” - Node 1

• c2 =“Feb 23, 2014 at 16:30” - Node 2

• c3 =“Feb 24, 2014 at 16:30” - Node 5

• c4 =“Feb 25, 2014 at 16:30” - Node 8

• c5 =“Mar 1, 2014 at 16:30” - Node 11

• c6 =“May 29, 2014 at 16:30” - Node 14

• c7 =“Mar 28, 2013 at 14:30” - Node 17

• c8 =“Mar 2, 2014 at 16:30” - Node 18

• c9 =“Apr 24, 2012 at 12:30” - Node 21

140

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• c10 =“Mar 31, 2014 at 16:30” - Node 22

• c11 =“Jun 18, 2010 at 8:30” - Node 25

• c12 =“Mar 1, 2014 at 17:30” - Node 26

We are able to arbitrarily assign any value to other cis which do not appear

in this branch. To give better intuition, we have exhibited the information in

Figure 6.5. In this scenario, the patient does not have AIDS yet, and (s)he

is still in the Acute Infection or in the Clinical Latency stage. It is not so

difficult to construct models for the other open branch in Figures C.1, C.2 and

C.3. We leave this to the reader.

10:30
Jun 18
2010

10:30
Apr 24
2012

14:30
Mar 28
2013

14:30
Feb 22
2014

16:30
Feb 22
2014

16:30
Feb 23
2014

16:30
Feb 24
2014

16:30
Feb 25
2014

16:30
Mar 1
2014

17:30
Mar 1
2014

16:30
Mar 2
2014

16:30
Mar 31
2014

16:30
May 29
2014

Elisa#1︷ ︸︸ ︷
︸ ︷︷ ︸
Elisa#2

WesternBlot︷ ︸︸ ︷
︸ ︷︷ ︸

Registration

¬HasAIDS︷ ︸︸ ︷
︸ ︷︷ ︸

CD4Check

Figure 6.5: Concrete Model for HIV case study

6.2 Modeling Diagnosis and Treatment of

HIV/AIDS with MITDL

In order to have an understandable formula, we have selected meaningful

names for the concepts and roles used in the formula ϕHIV (Formula 6.7)

which describes the guideline. The following formula (with the exception of

the ♦rϕ1 subformula) describes the diagnosing and the preparation phase of

the guideline (see Figure 6.6).

141

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϕHIV = (p:Patient)120yr∧

♦l♦r((e1:Elisa)1d ∧ PerformTest(p, e1)1d∧

♦r((e2:Elisa)1d ∧ PerformTest(p, e2)1d∧

♦r((w:WesternBlot)1d ∧ PerformTest(p, w)1d∧

♦r((r:Registration)4d ∧ AdministrativeAction(p, r)4d ∧ ♦rϕ1)))) (6.7)

.

(p:Patient)120yr︷ ︸︸ ︷
(e1:Elisa)1d︷ ︸︸ ︷︸ ︷︷ ︸

PerformTest(p, e1)1d

(e2:Elisa)1d︷ ︸︸ ︷
︸ ︷︷ ︸

PerformTest(p, e2)1d

(w:WesternBlot)1d︷ ︸︸ ︷︸ ︷︷ ︸
PerformTest(p, w)1d

(r:Registration)4d︷ ︸︸ ︷
︸ ︷︷ ︸

AdministrativeAction(p, r)4d

ϕ1︷ ︸︸ ︷

Figure 6.6: Schematic illustration of ϕHIV

As we already mentioned, MITDL is more expressive than IMPNL. This

fact is obvious when ψHIV (Formula 6.1) and ϕHIV are compared. In ϕHIV ,

we have defined some binary relations (e.g., PerformTest) which we were

not able to do in IMPNL. Also, in ψHIV we have implicitly assumed that the

propositions (e.g., WesternBlot) are about a particular patient while in ϕHIV

we have explicitly expressed that using (p:Patient)120yr axiom. The same issue

is true for the rest of the MITDL formulas in this chapter.

Formalizing the monitoring and the treatment phase is more complicated.

As we already mentioned, an HIV infected patient should take the medications

if (s)he is in the AIDS stage; otherwise, no medication is needed. Formula 6.8

defines a periodic event which occurs 80 times at most because the patient may

live for at most 20 years after the AIDS stage has started, and the duration

142

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

of a period is 3 months.

ϕ1 =	80 (>90d ∧ ♦l♦r((c:CD4Check)1d ∧ PerformTest(p,c)1d) ∧ ♦l♦rϕ2)

(6.8)

The reason why we have used ϕ2 in the formula is because in the last stage

of the disease, a patient should see the doctor every month as well as should

take the medication every day. Also, (s)he should have a CD4Check every

3 months. As can be seen in the following formula, if patient has no AIDS

(equivalently, p is an individual of ¬HasAIDS concept), no visit or taking

medications occurs.

ϕ2 =	3 (>30d∧

♦l♦r((p:¬HasAIDS)1h∨

((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧

♦l♦r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d∧

TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d∧

TakeMedicine(p,l)30d))) (6.9)

6.2.1 Domain information

When we model the guideline, we have to take into account the possible

drug contraindications , i.e., two incompatible medicines should not be admin-

istered to a patient simultaneously, in the sense that a patient is not allowed

to take the first medicine during the period in which (s)he takes the second

one. We should consider this kind of fact when we model medical guidelines.

143

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

We can model the facts, separately, and consider them when we check the

satisfiability of a formula. For example, we know that Kaletra, Norvir and

Aptivus [128] are Protease inhibitors (Fact 1), and Protease inhibitors have a

drug contraindication with some medicines (Fact 2), e.g., Rifampin [127]. In

ALC, these facts can be modeled using the following axioms. Assume that

TakeMedicine is an ALC role which keeps track of the medicines which a

patient may take during the treatment.

• (Fact 1) Kaletra t Norvir t Aptivus @ ProteaseInhibitors

This axiom indicates that Kaletra, Norvir and Aptivus [128] are Protease

inhibitors. Equivalently, we can model this with (¬Kaletra u¬Norvir

u¬Aptivus) t ProteaseInhibitors = >.

• (Fact 2) ∃TakeMedicine.Rifampin u∃TakeMedicine.ProteaseInhibitors =

⊥

This axiom states that there is no patient who takes Rifampin and a Pro-

tease inhibitors medicine simultaneously. The axiom can be equivalently

modeled with ∀TakeMedicine.¬Rifampin t∀TakeMedicine.¬ ProteaseIn-

hibitors = >.

We want to model these axioms in MITDL. These axioms are true during

the lifetime of a patient (assuming that the lifespan of a patient is 120 years

at most); so we model them as follows.

ϕFact1 =((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr

ϕFact2 =(∀TakeMedicine.¬Rifampint

∀TakeMedicine.¬ProteaseInhibitors = >)120yr

144

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

6.2.2 Checking the quality of the HIV/AIDS Guideline

In order to use the tableau algorithm, we replace the periodic events with

their expanded form. Due to the lack of space, we assume that the periodic

event occurs once during the diagnoses and the treatment (Formula 6.10). We

conjoin Fact 1 and Fact 2 to ϕHIV , and use the function defined in Section

4.1.3.1 to determine the annotated version of ξHIV = ♦r(ϕHIV ∧ϕFact1∧ϕFact2)

(Formula 6.11). Also, we have added superscripts for ♦z
′

z where z ∈ {r, l}, z′ ∈

{+,−} required for the selection strategy.

ϕHIV = (p:Patient)120yr∧

♦l♦r((e1:Elisa)1d ∧ PerformTest(p,e1)1d∧

♦r((e2:Elisa)1d ∧ PerformTest(p,e2)1d∧

♦r((w:WesternBlot)1d ∧ PerformTest(p,w)1d∧

♦r((r:Registration)4d ∧ AdministrativeAction(p,r)4d∧

♦r(>90d∧

♦l♦r((c:CD4Check)1d ∧ PerformTest(p,c)1d∧

♦l♦r(>30d∧

♦l♦r((p:¬HasAIDS)1h∨

((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧

♦l♦r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d

∧ TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d

∧ TakeMedicine(p,l)30d)))))))))) (6.10)

145

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ξHIV = ♦∗r(((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr∧

(∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors = >)120yr

∧ (p:Patient)120yr∧
1♦−l ♦

∗
r((e1:Elisa)1d ∧ PerformTest(p, e1)1d∧

♦∗r((e2:Elisa)1d ∧ PerformTest(p,e2)1d∧

♦∗r((w:WesternBlot)1d ∧ PerformTest(p,w)1d∧

♦∗r((r:Registration)4d ∧ AdministrativeAction(p,r)4d∧

♦∗r(>90d∧
2♦−l ♦

∗
r((c:CD4Check)1d ∧ PerformTest(p,c)1d∧

4♦−l ♦
∗
r(>30d∧

8♦−l ♦
∗
r((p:¬HasAIDS)1h∨

((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧
16♦−l ♦

∗
r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d∧

TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d∧

TakeMedicine(p,l)30d))))))))))) (6.11)

Let κ = 360yr316d3h(= LN(ξHIV)). The construction of a tableau for

ξHIV is straightforward. Figures C.4, C.5, C.6, C.7 and C.8 show the tableau

for the formula. As can be seen in Figure C.8, there is an open branch in

the tableau which means the formula is consistent. We observe that the same

subtle point exists here as with the IMPNL tableau for the guideline (see Page

139).

146

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

6.2.3 A concrete model

In this section, we construct a concrete model for the previous case study

based on the nodes residing on an open branch shown in Figures C.4, C.5 ,

C.6, C.6 and C.8. We should first select one open branch. Here, we construct

a model for the branch ending with the node 68. In this scenario, the patient

does not have AIDS yet and (s)he is still in the Acute Infection or in the

Clinical Latency stage. First we need to assign suitable values to the cis. Let

c0 be “Feb 22, 2014 at 14:30”. Based on the information existing at the nodes,

we have the following values for the cis. Note that we are able to arbitrarily

assign any value to other cis which do not appear in this branch.

• c1 =“Feb 22, 2014 at 16:30” – see Node 1

• c2 =“Feb 22, 2134 at 16:30” – see Node 2

• c3 =“Feb 23, 2014 at 16:30” – see Node 10

• c4 =“Feb 24, 2014 at 16:30” – see Node 15

• c5 =“Feb 25, 2014 at 16:30” – see Node 20

• c6 =“Mar 1, 2014 at 16:30” – see Node 25

• c7 =“May 30, 2014 at 16:30” – see Node 30

• c8 =“Mar 2, 2014 at 16:30” – see Node 34

• c9 =“Mar 31, 2014 at 16:30” – see Node 39

• c10 =“Mar 1, 2014 at 17:30” – see Node 43

• c−1 = (c1 − κ) – see Node 9

147

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• c−2 = (c6 − 2κ) – see Node 33

• c−3 = (c6 − 4κ) – see Node 9

• c−4 = (c6 − 8κ) – see Node 42

The interpretations can be as follows:

• S[c1,c3]:

– ∆[c1,c3] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c1,c3] = {John}

– Elisa[c1,c3] = {John Elisa Test1}

– PerformTest[c1,c3] = {(John, John Elisa Test1)}

– ProteaseInhibitors[c1,c3] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c3,c4]:

– ∆[c3,c4] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c3,c4] = {John}

– Elisa[c3,c4] = {John Elisa Test2}

– PerformTest[c3,c4] = {(John, John Elisa Test2)}

– ProteaseInhibitors[c3,c4] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c4,c5]:

148

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

– ∆[c4,c5] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c4,c5] = {John}

– Elisa[c4,c5] = {John WesternBlot}

– PerformTest[c4,c5] = {(John, John WesternBlot)}

– ProteaseInhibitors[c4,c5] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c5,c6]:

– ∆[c5,c6] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c5,c6] = {John}

– Elisa[c5,c6] = {Registration of John}

– AdministrativeAction[c5,c6] = {(John,Registration of John)}

– ProteaseInhibitors[c5,c6] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c6,c10]:

– ∆[c6,c10] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c6,c10] = {John}

– HasAIDS[c6,c10] = {}

– ProteaseInhibitors[c6,c10] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c6,c8]:

149

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

– ∆[c6,c8] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c6,c8] = {John}

– CD4Check[c6,c8] = {John CD4Check}

– PerformTest[c6,c8] = {(John, John CD4Check)}

– ProteaseInhibitors[c6,c8] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

• S[c8,c2]:

– ∆[c8,c2] = {John, John Elisa Test1, John Elisa Test2, John WesternBlot,

Registration of John, John CD4Check}

– Patient[c8,c2] = {John}

– ProteaseInhibitors[c8,c2] = {John, John Elisa Test1, John Elisa Test2,

John WesternBlot, Registration of John, John CD4Check}

As seen in the above interpretations, the interpretations of ProteaseIn-

hibitors are wrong in the sense that none of the elements in the interpretation is

a medicine. This problem arises from the incomplete description of the domain

information. For instance, we should add the ¬Patient t ¬ProteaseInhibitors

= >)120yr axiom to the guideline in order to prevent John is from being con-

sidered a ProteaseInhibitor. But for the ease of constructing a tableau for the

HIV/AIDS guideline, we did not add the fact to the guideline.

6.3 Treatment of Tuberculosis

In this case study we use IMPNL (resp. MITDL) to formalize a real-life

guideline which describes the process of treatment of Tuberculosis (TB) with

150

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

a positive sputum smear test, based on [129]. Figure 6.7 exhibits the guideline

which was simplified by an infection disease specialist.

Generally, the TB treatment has two major phases, the Initial phase and

the Continuation phase [130]. The initial phase lasts two months during which

the patient should be administrated four medicines, i.e., Rifampin, Isoniazid,

Pyrazinamide, Ethambutol plus VitaminB6. The patient also needs to take

Rifampin, Isoniazid and VitaminB6 during the continuation phase which lasts

4 months. Three sputum smear tests are performed at the end of the 2nd,

4th and last month of the treatment. Each of these tests typically takes 3

days. If the result of one of these tests is positive, the patient is directed to

TB services, otherwise the treatment process is completed and the disease is

successfully healed. Note, the patient still takes his/her medicines during the

SputumSmearTests with the exception of the last test.

Regardless of the modeling language, this guideline is satisfiable. Since

checking the satisfiability of this guideline with the proposed tableau-based

algorithms has no new features, we leave to the reader to use the algorithm

and check its satisfiability.

6.3.1 Modeling Treatment of TB Guideline with IMPNL

Formula ψTB (Formula 6.12) models the guideline. Similar to the previous

case study, we have selected meaningful names for the propositions; so it is easy

for the reader to understand the formula. Figure 6.8 exhibits a typical scenario

for this guideline. Note that we should add the drug contraindications to ψTB

to make it complete, then check the formula using the tableau algorithm. Since

modeling the guideline using MITDL is more complex than modeling it using

IMPNL, we leave the process of modeling the guideline using MITDL in detail

to the next section.

151

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψTB = TakeRifampin60d ∧ TakeIsoniazid60d ∧ TakePyrazinamide60d

∧ TakeEthambutol60d ∧ TakeVitaminB660d∧

♦r♦l(¬SputumSmearTest#1
3d →

♦r(TakeRifampin60d ∧ TakeIsoniazid60d ∧ TakeVitaminB660d∧

♦r♦l(¬SputumSmearTest#2
3d →

♦r(TakeRifampin60d ∧ TakeIsoniazid60d ∧ TakeVitaminB660d

∧ ♦r(SputumSmearTest#3
3d → ♦rTBServicesDirection1h))

∧ (SputumSmearTest#2
3d → ♦rTBServicesDirection1h)))

∧ (SputumSmearTest#1
3d → ♦rTBServicesDirection1h)) (6.12)

6.3.2 Modeling Treatment of TB Guideline with MITDL

In this case study, we use MITDL to model the TB guideline. We first need

to review the guideline (see Section 6.3) and recognize possible candidates for

DL concepts or DL roles. Based on the given description of the TB guideline,

possible candidates for DL concepts are Patient, Initial Phase, Continuation

Phase, Rifampin, Isoniazid, Pyrazinamide, Ethambutol, VitaminB6, Positive,

Negative, TB Service Direction, Sputum Smear Test, and candidates for DL

roles are Take Medicine, Refer, Has Sputum Smear Test, Has Test Result,

Has Test. As we go further, we may find that some of these DL concepts, or

DL roles are not needed. For example, we can model the concept Negative

with ¬Positive. It is not necessary to select a time interval or a time unit

(e.g., hour, month, day) as a DL concept, because it is considered as a length

for an interval, e.g., (a : C)30d.

152

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 6.7: Treatment of a typical TB patient with positive sputum smear
[129]

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
¬SputumSmearTest#1

3d
¬SputumSmearTest#2

3d
¬SputumSmearTest#3

3d

TakeRifampin60d

TakeIsoniazid60d

TakePyrazinamide60d

TakeEthambutol60d

TakeV itaminB660d

TakeRifampin60d

TakeIsoniazid60d

TakePyrazinamide60d

TakeEthambutol60d

TakeV itaminB660d

TakeRifampin60d

TakeIsoniazid60d

TakePyrazinamide60d

TakeEthambutol60d

TakeV itaminB660d

Figure 6.8: TB Treatment Timeline (A typical scenario)

153

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

The process of the treatment of a TB patient takes 6 months in total;

so the axiom (p : Patient)6m states that an individual p is a patient for 6

months. In the initial phase of the treatment, the patient should take var-

ious medicines. In order to model this fact, we use the TakeMedicine role

which keeps track of the medicines which a patient may take during the treat-

ment. We know that the patient should take Rifampin for two months (60

days). So we define an individual of Rifampin ((r1 : Rifampin)60d); then

model the fact with TakeMedicine(p, r1)60d. Since (r1 : Rifampin)60d and

TakeMedicine(p, r1)60d must be true on the same interval, we simply model it

with (r1 : Rifampin)60d ∧ TakeMedicine(p, r1)60d. Analogously we define the

axioms for taking other medicines. Since all the medicines of the initial phase

should be taken simultaneously, it is enough to make a simple combination

(ϕinimed) conjoining the axioms.

ϕinimed = (r1:Rifampin)60d ∧ TakeMedicine(p,r1)60d

∧ (is1:Isoniazid)60d ∧ TakeMedicine(p,is1)60d

∧ (py:Pyrazinamide)60d ∧ TakeMedicine(p,py)60d

∧ (et:Ethambutol)60d ∧ TakeMedicine(p,et)60d

∧ (b61:VitaminB6)60d ∧ TakeMedicine(p,b61)60d

(p : Patient)6m and ϕinimed should be true on two intervals I1 and I2

which start at the same time. In other words, I1 starts with I2 where starts is

one of Allen’s relations [83]. Recall, 〈B〉ϕ = 〈A〉〈A〉ϕ, mentioned in Section

3.4.1 (on Page 36). In order to model this temporal relation, it is sufficient

to add ♦l♦r to the second formula. Thus, (p : Patient)6m ∧ ♦l♦rϕinimed is

the desired combination. Recall that based on the semantics of the language,

154

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

(p : Patient)6m can be true only on an interval of 6 months’ length while

ϕinimed can only be true on an interval of 60 days’ length; so forgetting to

put ♦l♦r before ϕinimed makes the combination unsatisfiable, because (p :

Patient)6m∧ϕinimed indicates that (p : Patient)6m and ϕinimed are true on the

same interval, and it is not possible to have an interval which has two different

lengths simultaneously. In some guidelines, we may have another of Allen’s

relations between two intervals on which the formulas are true. Fortunately,

MITDL is able to model the metric version of all of Allen’s relations, with the

exception of the during relation.

The first occurrence of Sputum Smear Test, which lasts 3 days, should be

performed on the patient in the three last days of initial phase; so there is a fin-

ishes relation, one of Allen’s relations, between interval I2 and I3 on which (s1 :

SuptumSmearTest)3d ∧ HasSputumSmearTest(p, s1)3d is true. In this for-

mula, HasSputumSmearTest is a DL role which keeps track of the sputum tests

which are performed for a patient during the treatment. We model the relation

by ϕinimed ∧ ♦r♦l((s1:SuptumSmearTest)3d∧ HasSputumSmearTest(p,s1)3d).

We define two more DL roles, HasTestResult and IsReferred. They respec-

tively keep track of the result of performed tests and the patients who are re-

ferred to TB Service Direction. The formula (s1 : ∃HasTestResult.¬Positive)1h

describes the situation where the result of test s1 is negative. We have assumed

that the result of the test appears at the last hour of the third day of the test.

Therefore, there is a finishes relation between two intervals I3 and I4 on which

(s1 : ∃HasTestResult.¬Positive)1h are, respectively, true. We model this by

♦r♦l(s1 : ∃HasTestResult.¬Positive)1h. A similar situation exists for the inter-

val I3 and the interval on which (s1 : ∃HasTestResult.Positive)1h is true. This

last formula shows the positive result for the test. When the result is positive,

the patient should be referred to TB Service Direction. We model this fact

155

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

with (p:∃IsReferred.TBDirectionService)1h. Immediately after the end of the

test, if the result of the test is negative, the first segment of the continuation

phase, which lasts two months, is started. Let ϕcon1 be the formula which

models this segment. There is a meet relation between two intervals I4 and I5

on which ϕcon1 is true (I4 meets I5). Recall, ♦r modeles this relation. See the

following formula.

ϕinimed ∧ ♦r♦l((s1:SuptumSmearTest)3d ∧ HasSputumSmearTest(p,s1)3d)

∧ ((♦r♦l(s1 : ∃HasTestResult.¬ Positive)1h ∧ ♦rϕcon1)

∨ (♦r♦l(s1 : ∃HasTestResult.Positive)1h

∧ ♦r(p : ∃IsReferred.TBDirectionService)1h))

The process of modeling ϕcon1 is straightforward in the sense that it is

sufficient to model that the patient takes three medicines for 60 days.

ϕcon1 =(r3:Rifampin)60d ∧ TakeMedicine(p,r3)60d

∧ (is3:Isoniazid)60d ∧ TakeMedicine(p,is3)60d

∧ (b63:VitaminB6)60d ∧ TakeMedicine(p,b63)60d

The second Sputum Smear Test is performed in the last three days of

the first segment of continuation phase. The encoding process for the second

segment of the continuation phase is similar to the previous segment. We

leave reader to model the rest of the guideline (ϕrest). The formula ϕTB is the

formulation of the TB guideline.

156

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϕTB = (p : Patient)6m ∧ ♦l♦r(ϕinimed∧

♦r♦l((s1:SuptumSmearTest)3d ∧ HasSputumSmearTest(p,s1)3d)∧

((♦r♦l(s1 : ∃HasTestResult.¬Positive)1h ∧ ♦r(ϕcon1 ∧ ♦rϕrest))∨

(♦r♦l(s1 : ∃HasTestResult.Positive)1h∧

♦r(p : ∃IsReferred.TBDirectionService)1h)))

6.4 Multi treatment of an HIV/AIDS-TB pa-

tient

In two previous case studies we showed how IMPNL and MITDL may be

used to formalize and to check the consistency of a guideline. In this case

study we demonstrate an inconsistent guideline. We check the guideline with

the proposed algorithms, and we show how an inconsistency is detected. Let us

consider a patient with two diseases: HIV/AIDS and TB. While there are some

specific guidelines for this kind of patient, e.g. [131, 132], we see what happens

when the two guidelines (in Sections 6.1 and 6.3) are followed simultaneously.

Note that since TB is considered as an AIDS-Defining condition, as soon as

the patient catches TB, (s)he should start to take the AIDS medicines.

6.4.1 Modeling Multi treatment of an HIV/AIDS-TB

patient with IMPNL

Since the patient is in the AIDS stage, HasAIDS1h is true, and the guide-

line of HIV/AIDS (see Formula 6.5 on Page 138) will be the following formula

denoted by ψAIDSHIV .

157

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψAIDSHIV = Elisa#1
1d ∧

♦r(Elisa#2
1d ∧

♦r(WesternBlot1d∧

♦r(Registration4d∧

♦r(>90d∧

♦l♦r(CD4Check1d∧

♦l♦r(>30d∧

♦l♦r(Visit1h∧

♦l♦r(TakeKaletra30d ∧ ¬TakeAlfuzosin30d ∧ ¬TakeCisapride30d

∧ ¬TakeRifampin30d ∧ ¬TakePimozide30d ∧ TakeTenofovir30d

∧ TakeLamivadin30d)))))))) (6.13)

The formalization of the new guideline is denoted by ψHIV−TB = ♦l♦rψAIDSHIV

∧♦l♦rψTB. The reason for adding ♦l♦r to the formulation of every guideline

is to prevent the occurrence of incorrect clashes. For example, if an event in

the first guideline which should be true on the current interval lasts 1 day,

and an event of the second guideline on the current interval lasts 3 days,

the conjunction of theses events can not be true on the current intervals at

the same time; thus, an incorrect clash occurs. We check the satisfiability of

ψHIV−TB using the proposed tableau method. The details are as follows. We

put another superscript for the propositions to make a distinction between TB

propositions and HIV propositions. This is just a syntactic annotation, and

does not change the semantics of the formula. The tableau for ψHIV−TB is a

very big tableau, and it is not possible to show the whole tableau in this thesis.

158

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

We make another assumption to make the formula easier to deal with. We

assume that the first SputumSmearTest is false. Formula 6.15 demonstrates

the annotated version of ♦rψHIV−TB denoted by ψ
′
HIV−TB. Also, we replaced

the implications with the equivalent form and equipped it with the required

numbers for the selection strategy.

159

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψHIV−TB =

♦l♦r(
HIV Elisa#1

1d ∧

♦r(
HIV Elisa#2

1d ∧

♦r(
HIV WesternBlot1d∧

♦r(
HIV Registration4d∧

♦r(>90days∧

♦l♦r(
HIV CD4Check1d∧

♦l♦r(>30days∧

♦l♦r(
HIV Visit1h∧

♦l♦r(
HIV TakeKaletra30d ∧ ¬HIV TakeAlfuzosin30d∧

¬HIV TakeCisapride30d ∧ ¬HIV TakeRifampin30d∧

¬HIV TakePimozide30d ∧HIV TakeTenofovir30d∧
HIV TakeLamivadin30d)))))))))∧

♦l♦r(
TBTakeRifampin60d ∧TB TakeIsoniazid60d ∧TB TakePyrazinamide60d

∧TB TakeEthambutol60d ∧TB TakeVitaminB660d∧

♦r♦l(¬TBSputumSmearTest#1
3d →

♦r(
TBTakeRifampin60d ∧TB TakeIsoniazid60d ∧TB TakeVitaminB660d∧

♦r♦l(¬TBSputumSmearTest#2
3d →

♦r(
TBTakeRifampin60d ∧TB TakeIsoniazid60d∧

TBTakeVitaminB660d∧

♦r(
TBSputumSmearTest#3

3d → ♦
TB
r TBServicesDirection1h))

∧ (TBSputumSmearTest#2
3d → ♦

TB
r TBServicesDirection1h)))

∧ (TBSputumSmearTest#1
3d → ♦

TB
r TBServicesDirection1h)) (6.14)

160

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ψ
′

HIV−TB =

1♦−r (2♦−l ♦
∗
r(
HIV Elisa#1

1d ∧

♦∗r(
HIV Elisa#2

1d ∧

♦∗r(
HIV WesternBlot1d∧

♦∗r(
HIV Registration4d∧

♦∗r(>90d∧
4♦−l ♦

∗
r(
HIV CD4Check1d∧

8♦−l ♦
∗
r(>30d∧

16♦−l ♦
∗
r(
HIV Visit1h∧

32♦−l ♦
∗
r(
HIV TakeKaletra30d∧

¬HIV TakeAlfuzosin30d ∧ ¬HIV TakeCisapride30d∧

¬HIV TakeRifampin30d ∧ ¬HIV TakePimozide30d∧
HIV TakeTenofovir30d ∧HIV TakeLamivadin30d)))))))))∧

64♦−l ♦
∗
r(
TBTakeRifampin120d ∧TB TakeIsoniazid120d∧

TBTakePyrazinamide120d ∧TB TakeEthambutol120d ∧TB TakeVitaminB6120d∧
128♦−r ♦

∗
l (
TBSputumSmearTest#2

3d ∨

♦∗r(
TBTakeRifampin60d ∧TB TakeIsoniazid60d ∧TB TakeVitaminB660d∧

♦∗r(¬TBSputumSmearTest#3
3d ∨

♦∗r(
TBTBServicesDirection1h)))∧

(¬TBSputumSmearTest#2
3d ∨ ♦

∗
r(
TBTBServicesDirection1h)))) (6.15)

In this case study κ = 1127d3h. As can be seen in the Figures C.9, C.10,

C.11 and C.12, a clash was detected, due to the occurrence of TBTakeRifampin120d

161

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

and ¬HIVTakeRifampin30d (Nodes 40 and 48 in Figure 6.9). Figure 6.9 clar-

ifies the situation. A dashed line exhibits the time at which a clash occurs.

This guideline states the patient should take Rifampin for the treatment of

TB while (s)he should not take Rifampin since it has a contraindication with

Kaletra. In other words, the closed branch exhibits a scenario of the treatment

which can be harmful for the patient.

d−6 d−5 d−4 d−3 d−2 d−1 d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

HIVElisa #1︷ ︸︸ ︷
︸ ︷︷ ︸

HIVElisa#2

HIVWesternBlot︷ ︸︸ ︷
︸ ︷︷ ︸

HIVRegistration

︸ ︷︷ ︸
??TBTakeRifampin??

HIVVisit︷ ︸︸ ︷
︸ ︷︷ ︸
HIVCD4Check

HIVTakeKaletra︷ ︸︸ ︷HIV¬TakeAlfuzosin
HIV¬TakeCisapride

?? HIV¬TakeRifampin??
HIV¬TakePimozide
HIVTakeTenofovir
HIVTakeLamivadin

Figure 6.9: Timeline of the closed branch in ψ
′
HIV−TB

6.4.2 Modeling Multi treatment of an HIV/AIDS-TB

patient with MITDL

Since the patient is in the AIDS stage, the patient is considered as an

individual of the concept HasAIDS, and the guideline of HIV/AIDS will be

the following formula denoted by ϕAIDSHIV .

162

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϕAIDSHIV = (p:Patient)120yr∧

♦l♦r((e1:Elisa)1d ∧ PerformTest(p, e1)1d∧

♦r((e2:Elisa)1d ∧ PerformTest(p,e2)1d∧

♦r((w:WesternBlot)1d ∧ PerformTest(p,w)1d∧

♦r((r:Registration)4d ∧ AdministrativeAction(p,r)4d∧

♦r(>90d∧

♦l♦r((c:CD4Check)1d ∧ PerformTest(p,c)1d∧

♦l♦r(>30d∧

♦l♦r(((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧

♦l♦r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d

∧ TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d

∧ TakeMedicine(p,l)30d))))))))) (6.16)

The formalization of the new guideline is denoted by ϕHIV−TB = ♦l♦rϕAIDSHIV

∧♦l♦rϕTB. Note that the reason for adding ♦l♦r was explained in the previ-

ous section. We check the satisfiability of ϕHIV−TB using the proposed tableau

method. The details are as follows. Similar to the previous section, we add

superscripts to the axioms to make a distinction between TB axioms and HIV

axioms. Since the tableau for ϕHIV−TB is very big, we assume that the first

SputumSmearTest is false. Formula 6.17 demonstrates the annotated version

of ♦rϕHIV−TB denoted by ϕ
′
HIV−TB. As before, we have replaced the implica-

tions with the equivalent form and equipped it with the required numbers for

the selection strategy.

163

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϕHIV−TB = ♦l♦r((p:Patient)120yr∧

♦l♦r((e1:Elisa)1d ∧ PerformTest(p, e1)1d∧

♦r((e2:Elisa)1d ∧ PerformTest(p,e2)1d∧

♦r((w:WesternBlot)1d ∧ PerformTest(p,w)1d∧

♦r((r:Registration)4d ∧ AdministrativeAction(p,r)4d∧

♦r(>90d∧

♦l♦r((c:CD4Check)1d ∧ PerformTest(p,c)1d∧

♦l♦r(>30d∧

♦l♦r(((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧

♦l♦r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d∧

TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d∧

TakeMedicine(p,l)30d)))))))))))∧

♦l♦r((p : Patient)6m∧

♦l♦r((r1:Rifampin)60d ∧ TakeMedicine(p,r1)60d ∧ (is1:Isoniazid)60d

∧ TakeMedicine(p,is1)60d ∧ (py:Pyrazinamide)60d ∧ TakeMedicine(p,py)60d

∧ (et:Ethambutol)60d ∧ TakeMedicine(p,et)60d ∧ (b61:VitaminB6)60d

∧ TakeMedicine(p,b61)60d∧

♦r♦l((s1:SuptumSmearTest)3d ∧ HasSputumSmearTest(p,s1)3d)∧

((♦r♦l(s1 : ∃HasTestResult.¬Positive)1h ∧ ♦r(ϕcon1 ∧ ♦rϕrest))∨

(♦r♦l(s1 : ∃HasTestResult.Positive)1h∧

♦r(p:∃IsReferred.TBDirectionService)1h))))

164

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

ϕ
′

HIV−TB =

1♦−r (2♦−l ♦
∗
r(((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr∧

(∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors = >)120yr)∧
4♦−l ♦

∗
r((p:Patient)120yr∧

8♦−l ♦
∗
r((e1:Elisa)1d ∧ PerformTest(p, e1)1d∧

♦∗r((e2:Elisa)1d ∧ PerformTest(p,e2)1d∧

♦∗r((w:WesternBlot)1d ∧ PerformTest(p,w)1d∧

♦∗r((r:Registration)4d ∧ AdministrativeAction(p,r)4d∧

♦∗r(>90d ∧16 ♦−l ♦
∗
r((c:CD4Check)1d ∧ PerformTest(p,c)1d∧

32♦−l ♦
∗
r(>30d ∧64 ♦−l ♦

∗
r(((p:HasAIDS)1h ∧ (p:∃Visitedby.Doctor)1h∧

128♦−l ♦
∗
r((k:Kaletra)30d ∧ (t:Tenofovir)30d ∧ (l:Lamivadin)30d∧

TakeMedicine(p,k)30d ∧ TakeMedicine(p,t)30d∧

TakeMedicine(p,l)30d)))))))))))∧
256♦−l ♦

∗
r((p : Patient)6m∧

512♦−l ♦
∗
r((r1:Rifampin)60d ∧ TakeMedicine(p,r1)60d ∧ (is1:Isoniazid)60d∧

TakeMedicine(p,is1)60d ∧ (py:Pyrazinamide)60d ∧ TakeMedicine(p,py)60d∧

(et:Ethambutol)60d ∧ TakeMedicine(p,et)60d∧

(b61:VitaminB6)60d ∧ TakeMedicine(p,b61)60d∧
1024♦−r ♦

∗
l ((s1:SuptumSmearTest)3d ∧ HasSputumSmearTest(p,s1)3d)∧

((2048♦−r ♦
∗
l (s1 : ∃HasTestResult.¬Positive)1h ∧ ♦

∗
r(ϕcon1 ∧ ♦∗rϕrest))∨

(4096♦−r ♦
∗
l (s1 : ∃HasTestResult.Positive)1h∧

♦∗r(p: ∃IsReferred.TBDirectionService)1h))))) (6.17)

165

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

In this case study κ = 1133d3h. As can be seen in the Figures C.13, C.14,

C.15, C.16, C.17, and C.18, three clashes were detected. Also, for the ease of

understanding, we have provided the abstract of the tableau in Figure 6.10.

The clashes are as follows:

• (k : ProteaseInhibitors)120yr (Node 81) and (k : ¬ProteaseInhibitors)120yr

(Node 83) in Figure C.18) while both formula are true on the same in-

terval, i.e., [e1, e3].

The branch, which contains nodes 57 and 82, is always closed because

of having Fact1 and Fact2 (see Section 6.2.1) and the fact that Kaletra is

a protease inhibitor medicine. Note that this closedness occurs whether

the patient has TB or not.

• (k : Kaletra)30d (Node 57) in Figure C.16 and (k : ¬Kaletra)120yr (Node

82) in Figure C.18, while [e7, e10] ∩ [e1, e3] = [e7, e10].

The branch, which contains nodes 57 and 82, is always closed because

of having Fact1 and Fact2 (see Section 6.2.1) and the fact that the pa-

tient takes Kaletra for the treatment of AIDS disease. Note that this

closedness occurs whether patient has TB or not.

• (k : ProteaseInhibitors)120yr (Node 81) and (k : ¬ProteaseInhibitors)120yr

(Node 83) in Figure C.18, while both formula are true on the same in-

terval, i.e., [e1, e3].

The branch, which contains nodes 81 and 83, is closed because the

patient takes Rifampin for the treatment of TB while Fact2 forces the

patient to not take Rifampin because of taking a protease medicine (e.g.,

Kaletra). This inconsistency never occurs when we only consider a pa-

tient who has TB or AIDS, but not both.

166

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Figure 6.10: Abstract of the tableau for ϕ
′
HIV−TB (Modeled in MITDL)

167

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

6.5 A comparison of Guideline modelling lan-

guages

In this section, we compare some guideline modeling languages: Asbru,

EON, GLIF, PRODIGY and PROforma with MITDL. These languages (ex-

cept MITDL) have been already compared in [133, 134].

6.5.1 Brief description of other languages

• EON [135, 136]

EON, developed at Stanford University, is a component-based architec-

ture for building protocol-based decision-support systems [137]. This

architecture contains a patient data information model, a medical con-

cept model and a task-based guideline model [133]. The medical con-

cept model in the architecture is used to encode the domain ontologies

[136, 138]. It is worthwhile mentioning that, due to the use of a task-

based approach for defining guidelines, different decision-support ser-

vices, defined by EON, can be implemented using alternative techniques

[139].

• GLIF [140]

GLIF was developed by the collaboration of Stanford Medical Infor-

matics, Harvard University, McGill University and Columbia University.

It was particularly designed to model and to execute clinical practice

guidelines. GLIF uses UML diagrams to model guidelines in terms of

structured steps which represent clinical actions and decisions. Also,

using this language, one can model domain ontologies [136, 138].

• PROforma [135, 136]

168

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

PROforma was developed at the Advanced Computation Laboratory of

Cancer Research, UK [134]. It is a general purpose process modeling

language using a task-based formalism which models clinical processes

as a collection of plans, decisions, enquires and actions [141]. While

the task model in PROforma is deliberately simple in order to be easy

to learn, it is expressive enough to model many guidelines [139]. It is

worthwhile to note that PROforma combines logic programming and

object-oriented modeling [133], and provides expressive constructs for

describing different aspects of a guideline.

• Asbru [135, 136, 142]

Asbru is a text-based, machine-readable [143] and general purpose pro-

cess modeling language. It models complex clinical guidelines as a net-

work of tasks; each task may consist of some steps which have a specific

function or a goal [135]. On the other hand, Asbru has a formal seman-

tics [144] defined in the style of state charts [145]. This enables one to

use a theorem prover or a model checker to verify a guideline, modeled

in Asbru, which consequently has the potential to improve the quality

of guidelines.

• PRODIGY

The PRODIGY project was developed in the University of Newcastle

upon Tyne [133]. The aim of this project was to produce the simplest,

most readily comprehensible model necessary to represent guidelines for

the management of the primary care chronic diseases (e.g., asthma, hy-

pertension) [134, 146].

Now, we compare these languages with MITDL.

169

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

6.5.2 Comparison Criteria

Since the aims of designing these languages were different, we discuss some

criteria that we believe are reasonable choice for comparing the languages (see

Table 6.5). These criteria are as follows:

• Executability

EON, PROforma, GLIF, PRODIGY and Asbru are designed to model

and to execute a CPG, but the goal of designing MITDL is to model a

guideline and check its consistency before that the CPG is used for any

patient; so MITDL is not an executable language.

• Formal Semantics

EON, GLIF and PRODIGY have no formal semantics [133] while the

semantics of Asbru and PROforma are defined based on a formalism

called Structural Operational Semantics (SOS) [147, 148]. MITDL is

also has a formal semantics defined in Section 5.2 (on Page 77).

• Tool support

So far, no tools has been developed for MITDL, but there are some tools

for other languages. Some of these tools are as follows:

– EON

∗ Protégé-2000

– GLIF

∗ Protégé

– PROforma

∗ Arezzor, Performer, Tallis [141]

– Asbru

170

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

∗ Asbru Interpreter, AsbruView

– PRODIGY

∗ Protégé

• Graphical/Text-based

EON, PRODIGY and GLIF are graphical languages while MITDL, As-

bru, Proforma [149] are text based languages. However, Asbru and

PROforma have some tools which help an expert to design a CPG in a

graphical environment.

• Ability to define temporal constraints

Asbru and PRODIGY are able to specify the start time, the end time

and the duration of a medical activity (action) whereas EON and GLIF

are able to specify only the start time and the duration of an activity.

PROforma specifies an interval by the start time and the end time. In

MITDL neither start time nor end time of a formula can be specified, but

it is possible to specify the duration of an axiom in the MITDL formulas

which do not contain ♦+r ,♦
−
r ,♦

+
l ,♦

−
l in their annotated version.

• Ability to define the domain knowledge (e.g., Medical knowledge)

While Asbru cannot model medical knowledge, a hierarchy of medical

concepts can be created in PRODIGY, EON and GLIF. MITDL is also

able to model any medical ontology that can be expressed by the ALC

language.

• Linkage to existing medical ontologies

PROforma and Asbru provide no intrinsic support to use existing medi-

cal ontologies, but some platforms may provide this ability (e.g., PROforma:

HeCaSe2 [150] supports the UMLS ontology, and Asbru: Uruz supports

171

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

the ICD-9-CM, CPT-4, LOINC-3 ontologies [151]). PRODIGY, GLIF

and EON can be bound to existing medical ontologies through the de-

fined medical concepts in the hierarchies. Any ALC (fragment of) med-

ical ontologies can be automatically transformed to MITDL.

• Formal analysis of CPGs

Since EON, GLIF and PRODIGY have no formal semantics, it is not

possible to formally verify the guidelines modeled in these languages.

Consider the following criteria.

– Checking consistency of a CPG

Most languages provide some (in)formal mechanisms (e.g., testing)

to make sure that a model is unambiguous and syntactically cor-

rect [147]. For example, Duftschmid and Miksch have designed an

approach to check the consistency of a guideline in Asbru. They

look for different anomalies, e.g., unsatisfiable conditions, redun-

dant parameter-value pairs within conditions and ambiguous state

transitions. In MITDL, we can easily use the tableau algorithm to

check the consistency of a guideline.

– Satisfaction of properties

∗ Model checking

Asbru can be automatically translated [144, 147] into the inter-

nal representation used by the SMV model checker [136, 142],

but only a restricted set of properties can be verified [147]. This

set contains the properties that can be formulated in ACTL.

Note that it is also possible to verify ECTL properties using

this method [144].

∗ Theorem proving

172

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Asbru can be also automatically translated [144, 147] into the

internal representation used by the KIV theorem prover [135,

152]. In this case, the properties are expressed in a variant of

Interval Temporal Logic [148].

– Consistency checking of joint CPGs for a pateint with multiple dis-

eases

Except for MITDL, no other languages can check the consistency

of joint CPGs.

• Complexity of analysis

Satisfiability checking of a simple formula in MITDL has PSpace com-

plexity while the satisfiability checking of a generic formula has 2Exp-

Time. In Asbru, every single component of a plan is checked for anoma-

lies within its own scope in polynomial time in the number of plans. Also,

detecting anomalies between two or more components of a single plan

needs polynomial time in the number of plans. Finally, the complexity of

checking whole plan hierarchy for anomalies, which may originate from

dependencies between two or more plans of the hierarchy, is ExpTime

[153].

173

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

A
sb

ru
G

L
IF

P
R

O
fo

rm
a

E
O

N
P

R
O

D
IG

Y
M

IT
D

L

1
E

x
ec

u
ta

b
il
it

y
Y

es
Y

es
Y

es
Y

es
Y

es
N

o

2
F

or
m

al
S
em

an
ti

c
Y

es
N

o
Y

es
N

o
N

o
Y

es

3
T

o
ol

S
u
p
p

or
t

A
sb

ru
In

-
te

rp
re

te
r,

A
sb

ru
V

ie
w

P
ro

té
gé

A
re

zz
o,

P
er

fo
rm

er
,

T
al

li
s

P
ro

té
gé

-
20

00
P

ro
té

gé
N

o
to

ol
s

so
fa

r

4
G

ra
p
h
ic

al
(G

)/
T

ex
t-

b
as

ed
(T

)
T

G
T

ex
t

G
G

T

5
T

em
p

or
al

C
on

st
ra

in
t

S
ta

rt
T

im
e

+
+

+
+

+
E

n
d
T

im
e

+
+

+
D

u
ra

ti
on

+
+

+
+

+
/-

1

6
D

efi
n
in

g
d
om

ai
n

k
n
ow

le
d
ge

N
o

in
tr

in
si

c
w

ay

H
ie

ra
rc

h
ie

s
of

co
n
ce

p
ts

N
o

in
tr

in
si

c
p

os
si

b
il
it

y

H
ie

ra
rc

h
ie

s
of

co
n
ce

p
ts

H
ie

ra
rc

h
ie

s
of

co
n
ce

p
ts

A
n
y
A
L
C

on
to

lo
gy

7
L

in
ka

ge
to

E
x
is

ti
n
g

O
n
to

lo
gi

es

N
o

in
tr

in
si

c
w

ay
b
u
t

th
ro

u
gh

p
la

tf
or

m

B
in

d
in

g
to

ex
is

ti
n
g

on
to

lo
gi

es
th

ro
u
gh

th
e

d
efi

n
ed

m
ed

ic
al

co
n
ce

p
ts

N
o

in
tr

in
si

c
w

ay
b
u
t

th
ro

u
gh

p
la

tf
or

m

B
in

d
in

g
to

ex
is

ti
n
g

on
to

lo
gi

es
th

ro
u
gh

th
e

d
efi

n
ed

m
ed

ic
al

co
n
ce

p
ts

B
in

d
in

g
to

ex
is

ti
n
g

on
to

lo
gi

es
th

ro
u
gh

th
e

d
efi

n
ed

m
ed

ic
al

co
n
ce

p
ts

E
x
is

ti
n
g

O
n
to

lo
gi

es
ca

n
b

e
au

to
m

at
i-

ca
ll
y

tr
an

s-
fo

rm
ed

to
M

IT
D

L
8

C
h
ec

k
in

g
co

n
si

st
en

cy
of

a
C

P
G

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

9
M

o
d
el

ch
ec

k
in

g
S
M

V
N

/A
N

/K
N

/A
N

/A
F

u
tu

re
W

or
k
s!

10
T

h
eo

re
m

p
ro

v
in

g
K

IV
N

/A
N

/K
N

/A
N

/A
F

u
tu

re
W

or
k
s!

11
C

on
si

st
en

cy
of

co
n
cu

rr
en

t
C

P
G

s
N

o
ab

il
it

y
N

o
ab

il
it

y
N

o
ab

il
it

y
N

o
ab

il
it

y
N

o
ab

il
it

y
A

b
le

to
ch

ec
k

12
C

om
p
le

x
it

y
of

fo
rm

al
re

as
on

in
g

E
x
p
T

im
e

N
/K

N
/K

N
/K

N
/K

2N
E

x
p
T

im
e

N
/A

:
N

ot
A

p
p

li
ca

b
le

N
/K

:
N

ot
K

n
ow

n
1

T
h

e
le

n
gt

h
of

an
in

te
rv

al
fo

r
ax

io
m

s
an

d
so

m
e

fo
rm

u
la

s
ca

n
b

e
sp

ec
ifi

ed
.

T
ab

le
6.

5:
C

om
p
ar

is
on

of
E

O
N

,
G

L
IF

,
P

R
O

D
IG

Y
,

P
R

O
fo

rm
a

an
d

M
IT

D
L

174

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

6.6 Conclusion

In this chapter, we presented some case studies from the domain of medicine.

We showed how IMPNL and MITDL are used to model some clinical practice

guidelines. Also, we used the tableau-based algorithm for checking the satis-

fiability of IMPNL (resp. MITDL) formulas to check the consistency of the

case studies. The first two guidelines were consistent, and the tableau-based

algorithm detected a hidden inconsistency in the third guideline. Note that

the domain of medicine contains a huge amount of knowledge. Designers of

clinical practice guidelines may not be able to maintain all of the knowledge in

their mind during the process of designing the guidelines; so they may not be

able to detect such inconsistencies. Therefore, these logics provide a reliable

way to check the consistency of clinical practice guidelines.

Finally, we compared MITDL with five CPG modeling languages: Asbru,

GLIF, PROforma, EON and PRODIGY. As seen in Table 6.5, one important

advantage of using MITDL is to have the ability to check the consistency of

concurrent CPGs while other languages are not able to provide such a feature.

Note that, in reality, there are many patients who suffer from different diseases

at the same time, and concurrent CPGs should be used for them to heal their

diseases.

Since the process of designing and modeling a guideline is an iterative pro-

cess, and we have not developed any tools for these logics yet, the construction

of a tableau for the guideline formula is very time consuming and error prone.

175

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Chapter 7

Conclusion and Future work

In this thesis, we introduced a metric interval based temporal description

logic (MITDL). We first proposed a new metric interval-based temporal logic,

called IMPNL, inspired by MPNLl. Then, we developed a sound and com-

plete tableau-based algorithm for checking the satisfiability of an IMPNL for-

mula. Next, we combined a restricted version of IMPNL with the description

logic ALC in order to design MITDL. We developed two sound and complete

tableau-based algorithms (one for simple formulas and one for generic formu-

las) for checking the satisfiability of MITDL formulas. We also proved that

checking the satisfiability of a MITDL formula with these algorithms always

terminates. We proved that the complexity of the algorithms are, respectively,

PSpace and 2ExpTime. Thus, the satisfiability checking service in MITDL

is decidable.

In this research, we (partially) addressed the following issues:

• No tableau-based algorithm exists for MPNLl.

MPNLl was introduced by Dr.Bresolin in 2010. To the best of our knowl-

edge, no tableau-based algorithm has been designed for checking the

176

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

satisfiability of MPNLl formulas. In this thesis, we designed a met-

ric interval-based temporal logic, called IMPNL, inspired by MPNLl.

We also developed a sound and complete tableau-based algorithm for

checking the satisfiability of an IMPNL formula. Moreover, we proved

that the construction of a tableau for a formula always terminates. We

showed that the complexity of IMPNL is PSpace. Therefore, satisfi-

ability checking in IMPNL is decidable. We believe that the proposed

algorithm for IMPNL can be modified in order to check the satisfiability

of MPNLl formulas, because IMPNL is a fragment of MPNLl. How-

ever, we do not have homogeneity in MPNLl which possibly presents

new problems.

• No metric interval-based temporal description language exists.

In order to model the processes existing in some domains, there should be

a logic which is able to model both the dynamic and the static aspects of

the processes. Moreover, in some of these domains, the duration of some

activities is generally restricted to a specific amount of time. Therefore,

the logic must be a metric logic in the sense that a user can specify the

duration of an activity. As we already mentioned in Section 5.4 (on Page

5.4), the existing interval-based temporal description logics non-metric

or they do not have decidable satisfiability checking algorithm.

Note that IMPNL and MITDL have some restrictions which we men-

tioned in Section 4.1.2 (on Page 54). In order to address these issues

we could increase the expressivity of the logic, e.g., adding full negation

to the temporal part. Unfortunately, increasing the expressivity of the

logic may make the satisfiability checking reasoning undecidable.

177

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

7.1 Future Work

Some possible future work includes the following.

• Optimizing the tableau-based algorithm for satisfiability checking of a

generic MITDL formula; e.g, using Normalization and Encoding Tech-

niques [42].

• Developing tools.

So far, no tools has been developed for modeling a process with MITDL.

This tool should provide the following facilities:

– An environment for writing MITDL formulas.

– Automated tableau-style theorem prover for MITDL (a MITDL

reasoner).

– The ability to import any ALC ontology.

For instance, the domain of medicine includes a huge amount of do-

main information, contained in different ontologies, e.g., SNOMED

CT, Galen, Vaccine [154]. We should automatically transform them

to the forms which can be expressed in MITDL.

• Developing an approach for model checking in IMPNL.

• Developing an approach for model checking in MITDL.

• Extending the description logic part of MITDL with the following items:

– (Qualifying) Number restrictions (ALCN , ALCQ)

In various domains, there are some situations where we need to

model quantitative restrictions. Some of these restrictions cannot

be modeled in MITDL. For example, “The normal resting adult

human heart rate ranges from 60-100 beats per minute” [155].

178

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

– Nominals

Consider the example: the patients who are hospitalized in Canada

must have a valid health card during their treatments in the hospi-

tal. In this example, Canada can be modeled as a nominal.

– Concrete domains (ALC(D))

Sometimes we need to model some feature, e.g., age, height and

weight of a patient. Then we are able to model some requirements

using these features. For instance, a child patient is a patient whose

age is less than 15 years.

179

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Bibliography

[1] Snomed ct, http://www.nlm.nih.gov/research/umls/snomed/snomed

main.html, (accessed November 17,2014).

[2] Snomed ct, http://en.wikipedia.org/wiki/snomed ct, (accessed August

17, 2014).

[3] Ontology (information science), https://www.princeton.edu/ achaney

/tmve/wiki100k/docs/ontology (information science).html, (accessed

November 21, 2014).

[4] Decidability (logic), http://en.wikipedia.org/wiki/decidability (logic),

(accessed November 18, 2014).

[5] Description logic, http://en.wikipedia.org/wiki/description logic, (ac-

cessed June 27, 2012).

[6] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL

envelope further. In Proceedings of the OWLED 2008 DC Workshop on

OWL: Experiences and Directions. Citeseer, 2008.

[7] Franz Baader. Description logics. In Sergio Tessaris, Enrico Franconi,

Thomas Eiter, Claudio Gutierrez, Siegfried Handschuh, Marie-Christine

180

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Rousset, and Renate Schmidt, editors, Reasoning Web. Semantic Tech-

nologies for Information Systems, volume 5689 of Lecture Notes in Com-

puter Science, pages 1–39. Springer Berlin / Heidelberg, 2009.

[8] Franz Baader and Werner Nutt. Basic description logics. In The descrip-

tion logic handbook, pages 43–95. Cambridge University Press, 2003.

[9] Alessandro Artale and Enrico Franconi. A survey of temporal extensions

of description logics. Annals of Mathematics and Artificial Intelligence,

30(1):171–210, 2000.

[10] Alessandro Artale and Carsten Lutz. A correspondence between tem-

poral description logics. Journal of Applied Non-Classical Logics, 14(1-

2):209–233, 2004.

[11] Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Mon-

tanari, and Guido Sciavicco. Metric propositional neighborhood logics.

Technical report, European Conference on Artificial Intelligence (ECAI),

2010.

[12] Davide Bresolin, Della Monica, D., Goranko, V., Montanari, A., and

Guido Sciavicco. Metric propositional neighbourhood logics: Expres-

siveness, decidability, and undecidability. In H. Coelho, R. Studer, and

Wooldridge M., editors, Proc. of the 19th European Conference on Arti-

ficial Intelligence (ECAI), pages 695–700. IOS PRESS, 2010.

[13] Till Mossakowski. Logic for computer scientists, ontologies: Descrip-

tion logics. http://www.informatik.uni-bremen.de/agbkb/lehre/ws09-

10/Logik/vl19.pdf, Winter 2009/2010 (accessed May 26, 2013).

181

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[14] Franz Baader and Carsten Lutz. Description logic. In Patrick Blackburn,

Johan van Benthem, and Frank Wolter, editors, The Handbook of Modal

Logic, pages 757–820. Elsevier, 2006.

[15] Markus Krötzsch, Frantǐsek Simanč́ık, and Ian Horrocks. A description

logic primer. Arxiv preprint arXiv:1201.4089, 2012.

[16] Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of

decidable first-order fragments and description logics. Journal of Rela-

tional Methods in Computer Science, 1(251-276):3, 2004.

[17] Yevgeny Kazakov, Markus Krötzsch, and Frantǐsek Simanč́ık. Practical

reasoning with nominals in the EL family of description logics. In Pro-

ceedings of the 13th International Conference on Principles of Knowledge

Representation and Reasoning (KR’12), 2012.

[18] Ian Horrocks and Ulrike Sattler. A description logic with transitive and

inverse roles and role hierarchies. Journal of logic and computation,

9(3):385–410, 1999.

[19] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL en-

velope. LTCS-Report LTCS-05-01, Chair for Automata Theory, Institute

for Theoretical Computer Science, Dresden University of Technology,

Germany, 2005. (http://lat.inf.tu-dresden.de/research/reports.html).

[20] Carsten Lutz. Description logics with concrete domains - a survey.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.6936

&rep=rep1&type=pdf, 2003 (accessed June 8, 2012).

[21] Alessandro Artale and Enrico Franconi. Temporal description logics.

Foundations of Artificial Intelligence, 1:375–388, 2005.

182

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[22] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics.

In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,

Handbook of Knowledge Representation, chapter 3, pages 135–180. Else-

vier, 2008.

[23] Franz Baader. What’s new in description logics. Informatik-Spektrum,

pages 1–9, 2011.

[24] Ming Zuo. High performance absorption algorithms for terminological

reasoning in description logics. PhD thesis, Concordia University, 2006.

[25] Franz Baader. Description logic tutorial (the 2005 logic sum-

mer school of the research school of information sciences and en-

gineering at the australian national university). http://lat.inf.tu-

dresden.de/ baader/Talks/, 2005 (accessed May 31, 2012).

[26] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics. In

Steffan Staab and Rudi Studer, editors, Handbook on ontologies, pages

21–43. Springer-Verlag, second edition, 2009.

[27] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Seman-

tics: science, services and agents on the World Wide Web, 5(2):51–53,

2007.

[28] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner:

System description. Automated Reasoning, pages 292–297, 2006.

[29] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient

owl reasoner. In Proceedings of the 5th International Workshop on OWL:

Experiences and Directions (OWLED 2008), pages 26–27, 2008.

183

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[30] Yevgeny Kazakov, Markus Krötzsch, and Frantǐsek Simanč́ık. Concur-

rent classification of el ontologies. The Semantic Web–ISWC, pages

305–320, 2011.

[31] Julian Alfredo Mendez. A classification algorithm for ELHI{R+
. Mas-

ter’s thesis, Technische Universität Dresden, 2011.

[32] Mina Aslani and Volker Haarslev. Tbox classification in parallel: Design

and first evaluation. In 23rd International Workshop on Description

Logics (DL2010), page 336, 2010.

[33] Mina Aslani and Volker Haarslev. Towards parallel classification of

tboxes. In Proceedings of the 2008 International Workshop on Descrip-

tion Logics (DL-2008), 2008.

[34] Mina Aslani and Volker Haarslev. Concurrent classification of owl ontolo-

gies – an empirical evaluation. In Proceedings of the 2012 International

Workshop on Description Logics (DL-2012), pages 400–410, June 7-10

2012.

[35] Birte Glimm, Ian Horrocks, Boris Motik, and Giorgos Stoilos. Optimis-

ing ontology classification. In The Semantic Web–ISWC 2010, pages

225–240. Springer, 2010.

[36] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,

and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press, New

York, NY, USA, 2nd edition, 2007.

[37] Quoc Huy Vu. Subsumption in the description logic in ELHI{R+ wrt

general tboxes. Master’s thesis, TU Dresden, Germany, 2008.

184

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[38] Yevgeny Kazakov. Consequence-driven reasoning for horn SHIQ ontolo-

gies. In Proceedings of the 21st International Conference on Artificial

Intelligence (IJCAI 2009), pages 2040–2045, July 11-17 2009.

[39] Arne Meier. Generalized complexity of alc subsumption. Arxiv preprint

arXiv:1205.0722, 2012.

[40] Evgeny Zolin. Complexity of reasoning in description logics,

http://www.cs.man.ac.uk/ ezolin/dl/, (accessed october 21, 2014).

[41] Franz Baader and Ulrike Sattler. Tableau algorithms for description log-

ics. In Automated Reasoning with Analytic Tableaux and Related Meth-

ods, pages 1–18. Springer, 2000.

[42] Ian Horrocks. Optimising tableaux decision procedures for description

logics. PhD thesis, Manchester, 1997.

[43] Alan JA Robinson and Andrei Voronkov. Handbook of automated rea-

soning, volume 1. Elsevier, 2001.

[44] Jocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for

the description logic. Journal of Applied Logic, 8(4):334–355, 2010.

[45] Jocelyne Faddoul. Reasoning Algebraically with Description Logics. PhD

thesis, Concordia University, 2011.

[46] Franz Baader and Ulrike Sattler. An overview of tableau al-

gorithms for description logics. Studia Logica, 69:5–40, 2001.

10.1023/A:1013882326814.

[47] Yu Ding. Tableau-based reasoning for description logics with inverse roles

and number restrictions. PhD thesis, Concordia University, 2008.

185

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[48] Uli Sattler. Modal logic and description logics - week 4. COMP61132:

Modal Logic and Description Logics, Manchester University,

http://studentnet.cs.manchester.ac.uk/pgt/2010/COMP61132/, 2010-

2011 (accessed May 7, 2014).

[49] Jie Bao, Doina Caragea, and Vasant G. Honavar. A distributed tableau

algorithm for package-based description logics. In the 2nd International

Workshop On Context Representation And Reasoning (CRR 2006), co-

located with ECAI 2006, 2006.

[50] Jie Bao, Dave Braines, and David Mott. A dis-

tributed tableau algorithm for the ALC description logic.

https://www.usukita.org/sites/default/files/2011-05-15 DisTab.pdf,

(accessed June 22, 2012).

[51] Jocelyne Faddoul and Volker Haarslev. Optimizing algebraic tableau

reasoning for shoq: First experimental results. In 23rd International

Workshop on Description Logics (DL2010), page 161. Citeseer, 2010.

[52] Petr Kremen. Tableau algorithm for ALC.

https://cw.felk.cvut.cz/wiki/ media/courses/a4m33rzn/alc-tableau-

algorithm.pdf (accessed August 22, 2013).

[53] Chan Le Le Duc, Myriam Lamolle, and Olivier Curé. A tableaux-

based algorithm for description logics with transitive closure of

roles in concept and role inclusion axioms. http://www.iut.univ-

paris8.fr/files/webfm/recherche/linc/RR201012A.pdf, (accessed May

30, 2012).

186

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[54] Thorsten Liebig and Felix Müller. Parallelizing tableaux-based descrip-

tion logic reasoning. In Proceedings of the 2007 OTM Confederated in-

ternational conference on On the move to meaningful internet systems,

pages 1135–1144. Springer-Verlag, 2007.

[55] Carsten Lutz and Maja Milicic. A tableau algorithm for dls with concrete

domains and gcis. In Description Logics, 2005.

[56] Carsten Lutz and M. Miličič. A tableau algorithm for description log-

ics with concrete domains and general tboxes. Journal of Automated

Reasoning, 38(1):227–259, 2007.

[57] Boris Motik, Rob Shearer, and Ian Horrocks. A hypertableau calculus

for shiq. In Proc. of the 2007 Description Logic Workshop (DL 2007),

volume 250. Citeseer, 2007.

[58] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in

description logics using hypertableaux. Automated Deduction–CADE-

21, pages 67–83, 2007.

[59] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning for

description logics. Journal of Artificial Intelligence Research, 36(1):165–

228, 2009.

[60] Felix Müller, Michael Hanselmann, Thorsten Liebig, and Olaf Noppens.

A tableaux-based mobile dl reasoner - an experience report. In Pro-

ceedings of the 2006 International Workshop on Description Logics (DL

2006), Lake District, UK, 2006.

[61] Satya S Sahoo and Krishnaprasad Thirunarayan. Tableau algorithm

187

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

for concept satisfiability in description logic ALCH. Kno.e.sis Center,

Technical report., 2009.

[62] Sebastian Rudolph. Foundations of description logics. In Reasoning Web.

Semantic Technologies for the Web of Data, pages 76–136. Springer,

2011.

[63] Temporal logic, http://en.wikipedia.org/wiki/temporal logic, (accessed

April 9, 2013).

[64] Pierfrancesco Bellini, Riccardo Mattolini, and Paolo Nesi. Temporal log-

ics for real-time system specification. ACM Computing Surveys (CSUR),

32(1):12–42, 2000.

[65] Model checking, http://en.wikipedia.org/wiki/model checking, (ac-

cessed August 14, 2014).

[66] Spin model checker, http://en.wikipedia.org/wiki/spin model checker,

(accessed August 14, 2014).

[67] Automated theorem proving, http://en.wikipedia.org/wiki/

automated theorem proving, (accessed August 14, 2014).

[68] The kiv system, http://www.informatik.uni-

augsburg.de/lehrstuehle/swt/se/kiv/, (accessed August 14, 2014).

[69] Lluis Vila. A survey on temporal reasoning in artificial intelligence. Ai

Communications, 7(1):4–28, 1994.

[70] Alessandros Artale. Lecture iii: Linear temporal logic. Formal methods,

Free University of Bolzano, http://web.iitd.ac.in/ sumeet/slide3.pdf,

2010 (accessed November 29, 2013).

188

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[71] Victor Gutierrez-basulto. Branching temporal description logics: Rea-

soning about ctlalc and ctlel concepts. Master’s thesis, Technische Uni-

versität Dresden, January 2009.

[72] Madhavan Mukund. Linear-time temporal logic and büchi automata.

Tutorial talk, Winter School on Logic and Computer Science, Indian

Statistical Institute, Calcutta, 1997.

[73] Yih-Kuen Tsay. Büchi automata and model check-

ing. FLOLAC 2009, National Taiwan University,

http://flolac.iis.sinica.edu.tw/flolac09/lib/exe/linear temporal logic

4on1.pdf, 2009.

[74] Faron Moller and Alexander Rabinovich. On the expressive power of ctl.

In Logic in Computer Science, 1999. Proceedings. 14th Symposium on,

pages 360–368. IEEE, 1999.

[75] Moonzoo Kim. Temporal logic - ltl, ctl, and ctl*.

http://pswlab.kaist.ac.kr/courses/cs402-07, 2007 (accessed March

30, 2013).

[76] Dario Della Monica, Valentin Goranko, Angelo Montanari, and Guido

Sciavicco. Interval temporal logics: a journey. Bulletin of the EATCS,

3(105):73–99, 2011.

[77] Davide Bresolin and Angelo Montanari. A tableau-based decision pro-

cedure for a branching-time interval temporal logic. In Proc. of the 4th

Int. Workshop on Methods for Modalities, pages 38–53, 2005.

[78] Rajeev Alur and Thomas A Henzinger. Linear temporal logic.

189

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Model Checking, EPFL, http://mtc.epfl.ch/courses/ModelChecking-

2007/Notes/13.pdf, 2007 (accessed November 29, 2013).

[79] Djallel Bouneffouf. Temporal logic and its applica-

tions in natural language processing. http://hal.archives-

ouvertes.fr/docs/00/82/04/39/PDF/Temporallogic.pdf, 2010 (accessed

November 27, 2013).

[80] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic.

FM’99—Formal Methods, pages 253–271, 1999.

[81] E. Allen Emerson. Temporal and modal logic. In Handbook of theoretical

computer science, pages 995–1072. Elsevier, 1995.

[82] Michael David Fisher, Dov M Gabbay, and Lluis Vila. Handbook of

temporal reasoning in artificial intelligence, volume 1. Access Online via

Elsevier, 2005.

[83] Valentin Goranko, Angelo Montanari, and Guido Sciavicco. A road map

of interval temporal logics and duration calculi. Journal of Applied Non-

Classical Logics, 14(1-2):9–54, 2004.

[84] Ulle Endriss and Dov M Gabbay. Halfway between points and inter-

vals: A temporal logic based on ordered trees. In ESSLLI Workshop on

Interval Temporal Logics and Duration Calculi, pages 100–109, 2003.

[85] Partially ordered set, http://en.wikipedia.org/wiki/partially ordered set,

(accessed October 20, 2014).

[86] James F. Allen. Maintaining knowledge about temporal intervals. Com-

munications of the ACM, 26(11):832–843, 1983.

190

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[87] Angelo Montanari. A guided tour through interval tempo-

ral logics lecture 2: Interval structures, relations, and logics.

http://users.dimi.uniud.it/ angelo.montanari/aila2012lezione2.pdf, 2012

(accessed April 10, 2013).

[88] Davide Bresolin. Proof methods for Interval Temporal Logics. PhD thesis,

Dipartimento di Matematica e Informatica, Università degli Studi di

Udine, 2007. Forum Editrice, PhD Thesis Series CS 2007.

[89] Yde Venema. A modal logic for chopping intervals. Journal of Logic and

Computation, 1(4):453–476, 1991.

[90] Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Mon-

tanari, and Guido Sciavicco. Decidable and undecidable fragments of

halpern and shoham’s interval temporal logic: towards a complete clas-

sification. In Iliano Cervesato and Andrei Veith, Helmut anf Voronkov,

editors, Logic for Programming, Artificial Intelligence, and Reasoning,

volume 5330, pages 590–604. Springer, Springer Berlin / Heidelberg,

2008.

[91] Yde Venema. Expressiveness and completeness of an interval tense logic.

Notre Dame Journal of Formal Logic, 31(4):529–547, 1990.

[92] Benjamin Charles Moszkowski. Reasoning about digital circuits. PhD

thesis, Stanford University, 1983.

[93] Pierfrancesco Bellini, Giacomo Bucci, and Paolo Nesi. Interval Temporal

Logic for Real-Time Systems: Specification, Execution and Verification

Processes. PhD thesis, Univ. of Florence, Italy, 2001.

191

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[94] Howard Bowman and Simon Thompson. A tableau method for inter-

val temporal logic with projection. Automated Reasoning with Analytic

Tableaux and Related Methods, pages 108–123, 1998.

[95] Andrei Voronkov. Linear temporal logic LTL.

Logic and Modeling, University of Manchester,

www.voronkov.com/lics doc.cgi?what=chapter&n=14, 2013 (accessed

November 29, 2013).

[96] Davide Bresolin, Angelo Montanari, Pietro Sala, and Guido Sciavicco.

What’s decidable about halpern and shoham’s interval logic? the maxi-

mal fragment abbl. In 26th Annual IEEE Symposium on Logic in Com-

puter Science (LICS), pages 387–396. IEEE, 2011.

[97] Jerzy Marcinkowski and Jakub Michaliszyn. The last paper on the

halpern-shoham interval temporal logic. arXiv preprint arXiv:1010.4529,

2010.

[98] Joseph Y Halpern and Yoav Shoham. A propositional modal logic of

time intervals. Journal of the ACM (JACM), 38(4):935–962, 1991.

[99] Davide Bresolin, Dario Della Monica, Angelo Montanari, Pietro Sala,

and Guido Sciavicco. Interval temporal logics over strongly discrete

linear orders: the complete picture. arXiv preprint arXiv:1210.2479,

2012.

[100] Angelo Montanari. A guided tour through interval temporal logics lec-

ture 4: Interval logics: undecidability. http://users.dimi.uniud.it/ an-

gelo.montanari/aila2012lezione4.pdf, 2012 (accessed April 10, 2013).

192

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[101] Valentin Goranko, Angelo Montanari, and Guido Sciavicco. Proposi-

tional interval neighborhood temporal logics. Journal of Universal Com-

puter Science, 9:1137–1167, 2003.

[102] Davide Bresolin, Valentin Goranko, Angelo Montanari, and Guido Sciav-

icco. Propositional interval neighborhood logics: Expressiveness, decid-

ability, and undecidable extensions. Annals of Pure and Applied Logic,

161(3):289–304, 2009.

[103] Guido Sciavicco. Temporal reasoning in propositional neighborhood

logic. In Proc. of the 2nd Int. Conference on Language and Technol-

ogy, pages 390–395, 2005.

[104] Angelo Montanari and Guido Sciavicco. A decidable logic for time in-

tervals: Propositional neighborhood logic. In Proc. of the AAAI-2002

Workshop on Spatial and Temporal Reasoning, pages 27–34, 2002.

[105] Valentin Goranko, Angelo Montanari, Pietro Sala, and Guido Sciav-

icco. A general tableau method for propositional interval temporal log-

ics: Theory and implementation. Journal of Applied Logic, 4(3):305–330,

2006.

[106] Davide Bresolin, Valentin Goranko, Angelo Montanari, and Guido Sci-

avicco. Right propositional neighborhood logic over natural numbers

with integer constraints for interval lengths. In Software Engineering

and Formal Methods, 2009 Seventh IEEE International Conference on,

pages 240–249. IEEE, 2009.

[107] Davide Bresolin, Dario Della Monica, Valentin Goranko, Angelo Monta-

nari, and Guido Sciavicco. Metric propositional neighbourhood logics on

natural numbers. Software and Systems Modeling, 12(2):245–264, 2013.

193

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[108] Alessandro Artale and Enrico Franconi. A temporal description logic

for reasoning about actions and plans. Journal of Artificial Intelligence

Research, 9:463–506, 1998.

[109] Morteza Yousef Sanati, Wendy MacCaull, and Thomas SE Maibaum.

Analyzing clinical practice guidelines using a decidable metric interval-

based temporal logic. In FM 2014: Formal Methods, pages 611–626.

Springer, 2014.

[110] Adolfo Gustavo Serra Seca Neto and Marcelo Finger. Effective prover

for minimal inconsistency logic. In Max Bramer, editor, Artificial Intel-

ligence in Theory and Practice, volume 217 of IFIP International Fed-

eration for Information Processing, pages 465–474. Springer US, 2006.

[111] Holger Sturm and Frank Wolter. A tableau calculus for temporal de-

scription logic: the expanding domain case. Journal of Logic and Com-

putation, 12(5):809–838, 2002.

[112] Carsten Lutz and Ulrike Sattler. Esslli 2002 course on description

logics. http://www.informatik.uni-bremen.de/c̃lu/esslli.html, 2002 (ac-

cessed June 19, 2014).

[113] Jia Tao, Giora Slutzki, and Vasant Honavar. Pspace tableau algorithms

for acyclic modalized ALC. Journal of Automated Reasoning, 49(4):551–

582, 2012.

[114] Jie Zhang. Description logics and time.

https://cs.uwaterloo.ca/ david/cs848/presentations-jiezhang-slides.pdf,

2006 (accessed July 24, 2012).

194

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[115] Sang-Kyun Kim, Mi-Young Song, Chul Kim, Sang-Jun Yea, Hyun Chul

Jang, and Kyu-Chul Lee. Temporal ontology language for representing

and reasoning interval-based temporal knowledge. In The Semantic Web,

pages 31–45. Springer, 2008.

[116] Alessandro Artale and Enrico Franconi. A computational account for a

description logic of time and action. In Jon Doyle, Eric Sandewall, and

Pietro Torasso, editors, Proceedings of the 4th International Conference

on Principles of Knowledge Representation and Reasoning, pages 3–14.

Morgan Kaufmann, 1994.

[117] Natalya Keberle. Temporal classes and owl. In Proceedings of OWLED,

volume 9, 2009.

[118] Claudio Bettini. A family of temporal terminological logics. Advances

in Artificial Intelligence, pages 120–131, 1993.

[119] Claudio Bettini. Time-dependent concepts: representation and reason-

ing using temporal description logics. Data & Knowledge Engineering,

22(1):1–38, 1997.

[120] Albrecht Schmiedel. A temporal terminological logic. In Proceedings

of the eighth National conference on Artificial intelligence (AAAI’90),

volume 1, pages 640–645. AAAI Press, 1990.

[121] Wei Liu, Wenjie Xu, Dong Wang, Zongtian Liu, and Xujie Zhang. A

temporal description logic for reasoning about action in event. Informa-

tion Technology Journal, 11:1211–1218, 2012.

[122] Ian Horrocks and Peter Patel-Schneider. Reducing owl entailment to

195

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

description logic satisfiability. Web Semantics: Science, Services and

Agents on the World Wide Web, 1(4):345–357, 2004.

[123] Gerald Mandell, Raphael Dolin, John Bennett, Gerald L Mandell,

JE Bennett, et al. Mandell, Douglas, and Bennett’s principles and prac-

tice of infectious diseases. Churchill Livingstone Philadelphia, 2005.

[124] The U.S. Department of Health & Human Services. Hiv symp-

toms, http://womenshealth.gov/hiv-aids/what-is-hiv-aids/hiv-

symptoms.html, July 2011 (accessed December 4, 2013).

[125] The U.S. Department of Health & Human Services. Stages

of hiv, http://www.aids.gov/hiv-aids-basics/just-diagnosed-with-hiv-

aids/hiv-in-your-body/stages-of-hiv/, June 2009 (accessed December 4,

2013).

[126] Centers for Disease Control and Prevention (CDC). Appendix a mmwr

recommendation and reports - aids-defining conditions. Morbidity and

Mortality Weekly Report, 57, 2008.

[127] Kaletra faq, http://www.kaletra.com/information/faq.aspx, 2013 (ac-

cessed December 5, 2013).

[128] Protease inhibitor (pharmacology), http://en.wikipedia.org/wiki/protease

inhibitor (pharmacology), Feb 2014 (accessed February 07, 2014).

[129] Mahshid Nasehi and Laila Mirhaghani. A country guideline for fighting

Tuberculosis (In persian). Andishmand, 2010 (1389).

[130] Centers for Disease Control and Prevention (CDC). Tuberculosis (tb),

2012 (accessed December 08, 2013).

196

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[131] Centers for Disease Control and Prevention (CDC). Updated guidelines

for the use of rifabutin or rifampin for the treatment and prevention of

tuberculosis among hiv-infected patients taking protease inhibitors or

nonnucleoside reverse transcriptase inhibitors. Morbidity and Mortality

Weekly Report, 49, 2000.

[132] Centers for Disease Control and Prevention (CDC). Prevention and

treatment of tuberculosis among patients infected with human immun-

odeficiency virus: Principles of therapy and revised recommendations.

Morbidity and Mortality Weekly Report, 47, 1998.

[133] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox,

Robert A Greenes, Richard Hall, Peter D Johnson, Neill Jones, Anand

Kumar, Silvia Miksch, Silvana Quaglini, Anreas Seyfang, Edward H

Shortliffe, and Mario Stefanelli. Comparing models of decision and

action for guideline-based decision support: a case-study approach.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.18.6260

&rep=rep1&type=pdf, 2002 (accessed July 16, 2014).

[134] Mor Peleg, Samson Tu, Jonathan Bury, Paolo Ciccarese, John Fox,

Robert A Greenes, Richard Hall, Peter D Johnson, Neill Jones, Anand

Kumar, Silvia Miksch, Silvana Quaglini, Anreas Seyfang, Edward H

Shortliffe, and Mario Stefanelli. Comparing computer-interpretable

guideline models: a case-study approach. Journal of the American Med-

ical Informatics Association, 10(1):52–68, 2003.

[135] Arjen Hommersom, Perry Groot, Peter JF Lucas, Michael Balser, and

Jonathan Schmitt. Verification of medical guidelines using background

197

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

knowledge in task networks. IEEE Transactions on Knowledge and Data

Engineering, 19(6):832–846, 2007.

[136] Stefan Christov, Bin Chen, George S Avrunin, Lori A Clarke, Leon J

Osterweil, David Brown, Lucinda Cassells, and Wilson Mertens. For-

mally defining medical processes. Methods of Information in Medicine,

47(5):392–398, 2008.

[137] Mark A Musen, Samson W Tu, Amar K Das, and Yuval Shahar. Eon: A

component-based approach to automation of protocol-directed therapy.

Journal of the American Medical Informatics Association, 3(6):367–388,

1996.

[138] Open Clinical Knowledge Management for Medical Care. Eon.

http://www.openclinical.org/gmm eon.html, March 2004 (accessed

February 13, 2014).

[139] Mor Peleg. Computer-interpretable clinical guidelines: A methodological

review. Journal of biomedical informatics, 46(4):744–763, 2013.

[140] Open Clinical Knowledge Management for Medical Care. Glif.

http://www.openclinical.org/gmm glif.html, March 2006 (accessed

February 13, 2014).

[141] Open Clinical Knowledge Management for Medical Care. Pro-

forma. http://www.openclinical.org/gmm proforma.html, March 2006

(accessed February 13, 2014).

[142] Jonathan Schmitt, Alwin Hoffmann, Michael Balser, Wolfgang Reif, and

Marcos Mar. Interactive verification of medical guidelines. In Jayadev

198

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal

Methods, pages 32–47. Springer Berlin / Heidelberg, 2006.

[143] Yuval Shahar, Silvia Miksch, and Peter Johnson. The asgaard project:

a task-specific framework for the application and critiquing of time-

oriented clinical guidelines. Artificial intelligence in medicine, 14(1-

2):29–51, 1998.

[144] Simon Bäumler, Michael Balser, Andriy Dunets, Wolfgang Reif, and

Jonathan Schmitt. Verification of medical guidelines by model checking–

a case study. In Model Checking Software, pages 219–233. Springer, 2006.

[145] M. Balser, C. Duelli, W. Reif, and J. Schmitt. Formal semantics of

asbru–v2. 12. Technical report, Institut für Informatik, 2006.

[146] Open Clinical Knowledge Management for Medical Care. Prodigy.

http://www.openclinical.org/gmm prodigy.html, March 2005 (accessed

February 13, 2014).

[147] Arjen Hommersom, Perry Groot, Michael Balser, and Peter Lucas. For-

mal methods for verification of clinical practice guidelines. Computer-

based Medical Guidelines and Protocols: A Primer and Current Trends,

139:63–80, 2008.

[148] Laura Giordano, Paolo Terenziani, Alessio Bottrighi, Stefania Montani,

and Loredana Donzella. Model checking for clinical guidelines: an agent-

based approach. In AMIA Annual Symposium Proceedings, volume 2006,

page 289. American Medical Informatics Association, 2006.

199

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

[149] David R Sutton and John Fox. The syntax and semantics of the pro-

forma guideline modeling language. Journal of the American Medical

Informatics Association, 10(5):433–443, 2003.

[150] David Isern, David Sánchez, and Antonio Moreno. Hecase2: a multi-

agent ontology-driven guideline enactment engine. In Multi-Agent Sys-

tems and Applications V, pages 322–324. Springer, 2007.

[151] Yuval Shahar, Ohad Young, Erez Shalom, Alon Mayaffit, Robert

Moskovitch, Alon Hessing, and Maya Galperin. Degel: A hybrid,

multiple-ontology framework for specification and retrieval of clini-

cal guidelines. In Artificial Intelligence in Medicine, pages 122–131.

Springer, 2003.

[152] Michael Balser, Wolfgang Reif, Gerhard Schellhorn, Kurt Stenzel, and

Andreas Thums. Formal system development with kiv. In Tom

Maibaum, editor, Fundamental approaches to software engineering,

pages 363–366. Springer Berlin / Heidelberg, 2000.

[153] Georg Duftschmid and Silvia Miksch. Knowledge-based verification of

clinical guidelines by detection of anomalies. Artificial intelligence in

medicine, 22(1):23–41, 2001.

[154] Bioportal, https://bioportal.bioontology.org/ontologies, February 2014

(accessed February 7, 2014).

[155] Heart rate, http://en.wikipedia.org/wiki/heart rate, November 2014

(accessed November 9, 2014).

200

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Appendix A

Proof of Soundness Theorem

(IMPNL)

Theorem (Soundness). If ψ ∈ IMPNL and a tableau T for the annotated

version of ♦rψ is closed, then ψ is not satisfiable.

Proof. Let C be the interval structure in n. P (m) is the statement: if the

following conditions hold:

1. n is a node;

2. the height of n is m;

3. every branch through n is closed;

then the set S(n) of all labeled formulas in the nodes between n and the root

is not satisfiable over C. We will prove P (m) is true for all m ≥ 0 using strong

induction. Note that based on Theorem 2 (on Page 65), if a formula is not

satisfiable over C, it is not satisfiable at all.

(Base case) If m = 0, then n is a leaf, and the unique branch B containing

n is closed. Then, we have one of the following cases. Take any model M

201

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

=〈D, I(D), V 〉 where D is an extension of C.

1. S(n) contains both the labeled formulas (ps,[ck1 , cl1]) and (¬pr,[ck2 , cl2])

where ([ck1 , cl1] ∩ [ck2 , cl2] 6= ∅).

In this case, clearly M,[ck1 , cl1] |= ps if and only if M,[ck1 , cl1] 2 ¬ps
but there is a subinterval of [ck1 , cl1] such that M, [cm, cn] � ¬pw (w =

|cn− cm|); therefore M,[ck1 , cl1] 2 ps. With the same reasoning, it is easy

to show that M,[ck2 , cl2] 2 ¬pr.

2. S(n) contains the labeled formula (ps,[ck, ck0]) and (ck0 , ck, s) ∈ LC and

|ck − ck0| 6= s.

In this case, M,[ck, ck0] |= ps if and only if |ck − ck0| = s (iff (ck0 , ck, s) ∈

LC) and ps ∈ V ([ck, ck0]).

Based on the cases considered, we are not able to construct a model for the

labeled formulas in set S(n). Hence, S(n) is not satisfiable over C.

(Induction Case) Assume P (m) holds for all m, 0 ≤ m ≤ t. We want to

prove P (t+1) holds. Suppose the height of n is t+1, and C={c0,...,cn}. There

are two cases to consider; (1) when n is the direct successor which results after

applying the R∧ rule on node g s.t. g = (ϕ0 ∧ ϕ1,[ci, cj], C), and (2) when an

expansion rule is applied to n s.t. n = ((ψ,[ci, cj]), C) or an expansion rule is

applied to some labeled formula (ψ,[ci, cj]) ∈ S(n)− {Φ(n)} (i.e. the existing

formula in n) to extend the branch at n. Now, we consider these cases in

detail.

1. Suppose n
′

be the direct successor of n due to the application of the

R∧ rule on g. Because the height of n is t + 1, the height of n
′

is t.

Since every branch containing n is closed, then every branch containing

n
′

is closed. By the induction assumption, S(n
′
) is not satisfiable over

202

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C. Since S(n
′
) = {(ϕ0, [ci, cj]), (ϕ1, [ci, cj])} ∪ S(g), three cases should

be considered:

• If (ϕ1,[ci, cj]) is unsatisfiable then (ϕ0 ∧ ϕ1,[ci, cj]) is unsatisfiable

too. It follows that S(g) is not satisfiable over C. Since n is the

direct successor of g, S(g) ⊂ S(n). Hence, S(n) is not satisfiable.

• If (ϕ0, [ci, cj]) is unsatisfiable, then it immediately follows that S(n)

is not satisfiable over C.

• Clearly, if S(g) is not satisfiable then S(n) is not satisfiable.

2. Consider the possible cases for the expansion rule applied at n:

• Let ψ = ϕ0 ∧ ϕ1. There exists two nodes n0 ∈ B and n1∈ B such

that n0 = ((ϕ0,[ci, cj]), C), n1 = ((ϕ1,[ci, cj]), C), and, suppose

wlog, n0 is the successor of n, and n1 is the successor of n0. Since

every branch containing n is closed, then every branch containing

n1 is closed. Also, the height of n1 is less than the height of n

(the height of n1 is less than or equal to t); thus, by the induction

assumption, S(n1) is not satisfiable over C. Since every model over

C satisfying S(n) must, in particular, satisfy (ϕ0 ∧ ϕ1, [ci, cj]), and

thus (ϕ0, [ci, cj]) and (ϕ1, [ci, cj]), it follows that S(n), S(n0), and

S(n1) are equi-satisfiable over C. Therefore, S(n) is not satisfiable

over C;

• Let ψ = ϕ0 ∨ ϕ1. There are two successors n0 and n1 of n such

that n0 = ((ϕ0,[ci, cj]), C), n1 = ((ϕ1,[ci, cj]), C), and the height

of n0 and the height of n1 is less than n. Since every branch

containing n is closed, then every branch containing n0 and ev-

ery branch containing n1 is closed. By the induction assumption,

203

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

S(n0) and S(n1) are not satisfiable over C. Since S(n0) = S(n)

∪ {(ϕ0, [ci, cj])} and S(n0) is not satisfiable, it follows that S(n)

is unsatisfiable, or ϕ0 is unsatisfiable. If S(n) is unsatisfiable, we

have proved S(n) is not satisfiable; suppose S(n) is satisfiable but

ϕ0 is unsatisfiable. Now, we should consider the other case, i.e.,

S(n1)=S(n) ∪ {(ϕ1, [ci, cj])}. We have a similar reasoning here.

Assume that in this case, {(ϕ1, [ci, cj])} is unsatisfiable; therefore

based on the cases which we mentioned, ϕ0 and ϕ1 are unsatisfiable.

Recall {(ϕ0, [ci, cj]) ∨ (ϕ1, [ci, cj])} ∈ S(n). Since every model over

C satisfying S(n) must also satisfy (ϕ0,[ci, cj]) or (ϕ1,[ci, cj]), S(n)

is not satisfiable over C;

• Let ψ = ♦∗rϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I−(D), V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦∗rϕ, and hence, M, [cj, d] |= ϕ where cj < d; thus (ϕ,[cj, d]) is

satisfiable. Node n has f = |FF (ϕ)| direct successors named n1,

... ,nf . Since every branch through n is closed, then every branch

through n1 (n2, ... ,nf) is closed.

Now, consider the following three cases. Note that 1 ≤ m ≤ f .

– d ∈ C and (cj, d, |d−cj|) ∈ LC; then there is an direct successor

of n, named nm, s.t. nm = ((ϕ, [cj, cm]), Cm) and cm = d and

Cm = C. Since the height of nm is less than the height of n

and every branch through nm is closed, by the induction as-

sumption, S(nm) = S(n) ∪ {(ϕ,[cj, cm])} is not satisfiable over

C, which is a contradiction, because by the assumptions, S(n)

and {(ϕ,[cj, cm])} are satisfiable. Hence S(n) is not satisfiable

over C, or {(ϕ,[cj, cm])} is not satisfiable over C. If S(n) is

204

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

not satisfiable, we have proved the claim. If {(ϕ,[cj, cm])} is

not satisfiable, it follows that {(♦∗rϕ,[ci, cj])} is not satisfiable.

Since {(♦∗rϕ,[ci, cj])} ⊂ S(n), S(n) is not satisfiable over C.

– d ∈ C and (cj, d, |d−cj|) /∈ LC; then there is an direct successor

of n, named nm, s.t. nm = ((ϕ, [cj, cm]), Cm) and cm = d and

and Cm = C and LCm = LC ∪ (cj, d, |d− cj|). Since the height

of nm is less than the height of n and every branch through

nm is closed, by the induction assumption, S(nm) = S(n) ∪

{(ϕ,[cj, cm])} is not satisfiable over Cm, which is a contradic-

tion; because by the assumptions S(n) and {(ϕ,[cj, cm])} are

satisfiable. Hence S(n) is not satisfiable over C or {(ϕ,[cj, cm])}

is not satisfiable over Cm. If S(n) is not satisfiable, we have

proved the claim. If {(ϕ,[cj, cm])} is not satisfiable over Cm,

it follows that {(♦∗rϕ,[ci, cj])} is not satisfiable over C. Since

{(♦∗rϕ,[ci, cj])} ⊂ S(n), S(n) is not satisfiable over C.

– d /∈ C; then there is an direct successor of n, named nm, s.t.

nm = ((ϕ, [cj, cm]), Cm) and cm = d and Cm = C ∪ {d} and

LCm = LC ∪ (cj, d, |d − cj|). As in the previous case, we can

show that S(n) is not satisfiable.

• Let ψ = ♦+
r ϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I(D), V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦+r ϕ, and hence, M, [cj, d] |= ϕ where cj < d. Node n has f =

|FF (ϕ)|+1 direct successors named n0, ... ,nf . Since every branch

containing n is closed, then every branch containing n0 (n1, ... ,nf)

is closed. There are three cases similar to the cases discussed for

ψ = ♦∗rϕ. We do not repeat them here.

205

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• Let ψ = ♦−r ϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I(D)−, V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦−r ϕ, and hence, M, [cj, d] |= ϕ where cj < d. Node n has one

direct successor named n0. We know n0 = ((ϕ, [cj, d]), C0) and

C0 = C ∪ {cj, d} and LC0 = LC ∪ (cj, d, |d − cj|). Since every

branch containing n is closed, then every branch containing n0 is

closed. Also, the height of n0 is less than the height of n; thus,

by the induction assumption, S(n0) = S(n) ∪ {(ϕ,[cj, d])} is not

satisfiable over C0. As above, we can show S(n) is not satisfiable

over C.

• The cases ♦∗lϕ, ♦+
l ϕ, ♦−l ϕ are analogous to ♦∗rϕ, ♦+r ϕ, ♦−r ϕ, respec-

tively. Just change (cj, d) to (d, ci), (cj, d, |d− cj|) to (d, ci, |ci−d|),

(cj, cm) to (cm, ci) and cj < d to d < ci in the appropriate the proof.

206

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Appendix B

Proof of Soundness Theorem

(MITDL)

Theorem (Soundness). If ψ ∈ MITDL and a tableau T for the annotated

version of ♦rψ is closed, then ψ is not satisfiable.

Proof. Let C be the interval structure in n. P (m) is the statement: if the

following conditions hold:

1. n is a node;

2. the height of n is m;

3. every branch through n is closed;

then set S(n) of all labeled formulas in the nodes between n and the root is

not satisfiable over C. We will prove P (m) is true for all m ≥ 0 using strong

induction. Note that based on Theorem 2 of the Theorem 2 (on Page 63), if a

formula is not satisfiable over C, it is not satisfiable at all.

(Base case) If m = 0, then n is a leaf, and the unique branch B containing

n is closed. Take any model M =〈D, I(D), S〉 where D is an extension of C.

207

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Then, we have one of the following cases.

1. S(n) contains the labeled formula (ps,[ck, ck0]) and (ck0 , ck, s) ∈ LC and

|ck − ck0| 6= s.

In this case, M,[ck, ck0] |= ps if and only if |ck − ck0| = s (iff (ck0 , ck, s) ∈

LC) and ps ∈ V ([ck, ck0]).

2. S(n) contains both the labeled formulas ((a : C)s,[ck1 , cl1]) and ((a :

¬C)r,[ck2 , cl2]) where ([ck1 , cl1] ∩ [ck2 , cl2] 6= ∅).

In this case, clearly, M,[ck1 , cl1] |= (a : C)s if and only if M,[ck1 , cl1] 2 (a :

¬C)r but there is a subinterval of [ck1 , cl1] such that M, [cm, cn] � (a :

¬C)w (w = |cn − cm|); therefore M,[ck1 , cl1] 2 (a : C)s. With the same

reasoning, it is easy to show that M,[ck2 , cl2] 2 (a : ¬C)r.

Based on the cases, we are not able to construct a model for the labeled

formulas in set S(n). Hence, S(n) is not satisfiable over C.

(Induction Case) Assume P (m) holds for all m, 0 ≤ m ≤ t. We want to

prove P (t+1) holds. Suppose the height of n is t+1 and C={c0,...,cn}. There

are two cases to consider; (1) when n is the direct successor which results

after applying the Rθ (θ ∈ {∧,u,∃}) rule on node g s.t. g = (ψ,[ci, cj], C),

and (2) when an expansion rule is applied to n s.t. n = ((ψ,[ci, cj]), C) or an

expansion rule is applied to some labeled formula (ψ,[ci, cj]) ∈ S(n)− {Φ(n)}

(i.e. the existing formula in n) to extend the branch at n. Now, we consider

these cases in detail.

1. Suppose n
′

be the direct successor of n due to the application of the

Rθ (θ ∈ {∧,u, ∃}) rule on g. Because the height of n is t + 1, the

height of n
′

is t. Since every branch containing n is closed, then every

branch containing n
′

is closed. By the induction assumption, S(n
′
) is

not satisfiable over C. Consider the following cases.

208

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

• IfR∧ is applied on g (ψ = ϕ0∧ϕ1), since S(n
′
) = {(ϕ0, [ci, cj]), (ϕ1, [ci, cj])}∪

S(g), three cases should be considered:

– If (ϕ1,[ci, cj]) is unsatisfiable, then (ϕ0 ∧ ϕ1,[ci, cj]) is unsatisfi-

able too. It follows that S(g) is not satisfiable over C. Since n

is the direct successor of g, S(g) ⊂ S(n). Hence, S(n) is not

satisfiable.

– If (ϕ0, [ci, cj]) is unsatisfiable, then based on the induction as-

sumption, it follows that S(n) is not satisfiable over C.

– Clearly, if S(g) is not satisfiable then S(n) is not satisfiable.

• If Ru is applied on g (ψ = (a : D u E)k), since S(n
′
) = {((a :

D)k, [ci, cj]), ((a : E)k, [ci, cj])} ∪ S(g), three cases should be con-

sidered: Let n = ((a : D)k, [ci, cj]).

– If ((a : E)k,[ci, cj]) is unsatisfiable then ((a : D uE)k,[ci, cj]) is

unsatisfiable too. It follows that S(g) is not satisfiable over C.

Since n is the direct successor of g, S(g) ⊂ S(n). Hence, S(n)

is not satisfiable.

– If ((a : D)k, [ci, cj]) is unsatisfiable, then based on the induction

assumption, it follows that S(n) is not satisfiable over C.

– Clearly, if S(g) is not satisfiable then S(n) is not satisfiable.

• If R∃ is applied on g (ψ = (a : ∃R.D)k), and wlog adds two nodes

n = ((R(a, b)k,[ci, cj]), CB) and n
′

= (((b : D)k,[ci, cj]), CB) to the

branch, since S(n
′
) = {R(a, b)k, [ci, cj]), ((b : D)k, [ci, cj])} ∪ S(g),

and it is not possible for (R(a, b)k,[ci, cj]) or ((b : D)k, [ci, cj]) be

unsatisfiable (because b is a new individual name), it follows that

S(g) is unsatisfiable. Because S(g) ⊂ S(n), it follows that S(n) is

unsatisfiable.

209

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

2. Consider the possible cases for the expansion rule applied at n:

• Let ψ = ϕ0 ∧ ϕ1. There exists two nodes n0 ∈ B and n1 ∈ B such

that n0 = ((ϕ0,[ci, cj]), C), n1 = ((ϕ1,[ci, cj]), C), and, suppose

wlog, n0 is the successor of n and n1 is the successor of n0. Since

every branch containing n is closed, then every branch containing

n1 is closed. Also, the height of n1 is less than the height of n

(the height of n1 is less than or equal to t); thus, by the induction

assumption, S(n1) is not satisfiable over C. Since every model over

C satisfying S(n) must, in particular, satisfy (ϕ0 ∧ ϕ1, [ci, cj]), and

thus (ϕ0, [ci, cj]) and (ϕ1, [ci, cj]), it follows that S(n), S(n0), and

S(n1) are equi-satisfiable over C. Therefore, S(n) is not satisfiable

over C;

• Let ψ = ϕ0 ∨ ϕ1. There are two successors n0 and n1 of n such

that n0 = ((ϕ0,[ci, cj]), C), n1 = ((ϕ1,[ci, cj]), C), and the height

of n0 and the height of n1 is less than n. Since every branch

containing n is closed, then every branch containing n0 and ev-

ery branch containing n1 is closed. By the induction assumption,

S(n0) and S(n1) are not satisfiable over C. Since S(n0) = S(n)

∪ {(ϕ0, [ci, cj])} and S(n0) is not satisfiable, it follows that S(n)

is unsatisfiable or ϕ0 is unsatisfiable. If S(n) is unsatisfiable, we

have proved S(n) is not satisfiable; suppose S(n) is satisfiable but

ϕ0 is unsatisfiable. Now, we should consider the other case, i.e.,

S(n1)=S(n) ∪ {(ϕ1, [ci, cj])}. We have a similar reasoning here.

Assume that in this case, {(ϕ1, [ci, cj])} is unsatisfiable; therefore

based on the cases which we mentioned, ϕ0 and ϕ1 are unsatisfiable.

Recall {(ϕ0, [ci, cj]) ∨ (ϕ1, [ci, cj])} ∈ S(n). Since every model over

210

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C satisfying S(n) must also satisfy (ϕ0,[ci, cj]) or (ϕ1,[ci, cj]), S(n)

is not satisfiable over C;

• Let ψ = ♦∗rϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I−(D), V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦∗rϕ, and hence, M, [cj, d] |= ϕ where cj < d; thus (ϕ,[cj, d]) is

satisfiable. Node n has f = |FF (ϕ)| direct successors named n1,

..., nf . Since every branch through n is closed, then every branch

through n1 (n2, ... ,nf) is closed.

Now, consider the following three cases. Note that 1 ≤ m ≤ f .

– d ∈ C and (cj, d, |d−cj|) ∈ LC; then there is an direct successor

of n, named nm, s.t. nm = ((ϕ, [cj, cm]), Cm) and cm = d and

Cm = C. Since the height of nm is less than the height of n,

and every branch through nm is closed, by the induction as-

sumption, S(nm) = S(n) ∪ {(ϕ,[cj, cm])} is not satisfiable over

C, which is a contradiction; because by the assumptions, S(n)

and {(ϕ,[cj, cm])} are satisfiable. Hence S(n) is not satisfiable

over C, or {(ϕ,[cj, cm])} is not satisfiable over C. If S(n) is

not satisfiable, we have proved the claim. If {(ϕ,[cj, cm])} is

not satisfiable, it follows that {(♦∗rϕ,[ci, cj])} is not satisfiable.

Since {(♦∗rϕ,[ci, cj])} ⊂ S(n), S(n) is not satisfiable over C.

– d ∈ C and (cj, d, |d−cj|) /∈ LC; then there is an direct successor

of n, named nm, s.t. nm = ((ϕ, [cj, cm]), Cm) and cm = d and

and Cm = C and LCm = LC ∪ (cj, d, |d− cj|). Since the height

of nm is less than the height of n, and every branch through

nm is closed, by the induction assumption, S(nm) = S(n) ∪

211

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

{(ϕ,[cj, cm])} is not satisfiable over Cm, which is a contradic-

tion; because by the assumptions S(n) and {(ϕ,[cj, cm])} are

satisfiable. Hence S(n) is not satisfiable over C or {(ϕ,[cj, cm])}

is not satisfiable over Cm. If S(n) is not satisfiable, we have

proved the claim. If {(ϕ,[cj, cm])} is not satisfiable over Cm,

it follows that {(♦∗rϕ,[ci, cj])} is not satisfiable over C. Since

{(♦∗rϕ,[ci, cj])} ⊂ S(n), S(n) is not satisfiable over C.

– d /∈ C; then there is an direct successor of n, named nm, s.t.

nm = ((ϕ, [cj, cm]), Cm) and cm = d and Cm = C ∪ {d} and

LCm = LC ∪ (cj, d, |d − cj|). As in the previous case, we can

show that S(n) is not satisfiable.

• Let ψ = ♦+
r ϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I(D), V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦+r ϕ, and hence, M, [cj, d] |= ϕ where cj < d. Node n has f =

|FF (ϕ)|+1 direct successors named n0, ... ,nf . Since every branch

containing n is closed, then every branch containing n0 (n1, ... ,nf)

is closed. There are three cases similar to the cases mentioned in

ψ = ♦∗rϕ; we do not repeat them here.

• Let ψ = ♦−r ϕ. Assuming that S(n) is satisfiable over C, there is a

model M = 〈D, I−(D), V 〉, where D is an extension of C, such that

M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). In particular, M, [ci, cj] |=

♦−r ϕ, and hence, M, [cj, d] |= ϕ where cj < d. Node n has one

direct successor named n0. We know n0 = ((ϕ, [cj, d]), C0) and

C0 = C ∪ {cj, d} and LC0 = LC ∪ (cj, d, |d − cj|). Since every

branch containing n is closed, then every branch containing n0 is

closed. Also, the height of n0 is less than the height of n; thus,

212

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

by the induction assumption, S(n0) = S(n) ∪ {(ϕ,[cj, d])} is not

satisfiable over C0. As above, we can show S(n) is not satisfiable

over C.

• The cases ♦∗lϕ, ♦+
l ϕ, ♦−l ϕ are analogous to ♦∗rϕ, ♦+r ϕ, ♦−r ϕ, respec-

tively. Just change (cj, d) to (d, ci), (cj, d, |d− cj|) to (d, ci, |ci−d|),

(cj, cm) to (cm, ci) and cj < d to d < ci.

• Let ψ = (a : D u E)k. There exists two nodes n0 ∈ B and n1∈

B such that n0 = (((a : D)k,[ci, cj]),C), n1 = (((a : E)k,[ci, cj]),C),

and, suppose wlog, n0 is the successor of n, and n1 is the successor

of n0. Since every branch containing n is closed, then every branch

containing n1 is closed. Also, the height of n1 is less than the

height of n (the height of n1 is less than or equal to t); thus, by

the induction assumption, S(n1) is not satisfiable over C. Since

every model over C satisfying S(n) must, in particular, satisfy ((a :

D u E)k, [ci, cj]), and thus ((a : D)k, [ci, cj]) and ((a : E)k, [ci, cj]),

it follows that S(n), S(n0), and S(n1) are equi-satisfiable over C.

Therefore, S(n) is not satisfiable over C;

• Let ψ = (a : D t E)k. There are two successors n0 and n1 of n

such that n0 = (((a : D)k,[ci, cj]),C), n1 = (((a : E)k,[ci, cj]),C) and

the height of n0, and the height of n1 is less than n. Since every

branch containing n is closed, then every branch containing n0, and

every branch containing n1 is closed. By the induction assumption,

S(n0) and S(n1) are not satisfiable over C. Let S(n0) = S(n) ∪

{((a : D)k, [ci, cj])}, and let S(n1) = S(n) ∪ {((a : E)k, [ci, cj])}.

Since S(n0) is not satisfiable, it follows that S(n) is unsatisfiable,

or ((a : D)k, [ci, cj]) is unsatisfiable. If S(n) is unsatisfiable, we are

213

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

done. Suppose S(n) is satisfiable but ((a : D)k, [ci, cj]) is unsatis-

fiable. Now, we consider S(n1). We have a similar reasoning here.

Assume that in this case, {((a : E)k, [ci, cj])} is unsatisfiable; there-

fore based on the cases which we mentioned, ((a : D)k, [ci, cj]) and

((a : E)k, [ci, cj]) are unsatisfiable. Recall {((a : D)k, [ci, cj]) t ((a :

E)k, [ci, cj])} ∈ S(n). Since every model over C satisfying S(n)

must also satisfy ((a : D)k,[ci, cj]) or ((a : E)k,[ci, cj]), S(n) is not

satisfiable over C;

• Let ψ = (a : ∃R.D)k. There exists two nodes n0 ∈ B and n1∈

B such that n0 = (((b : D)k,[ci, cj]),C), n1 = ((R(a, b)k,[ci, cj]),C),

and, suppose wlog, n0 is the successor of n, and n1 is the succes-

sor of n0. Since every branch containing n is closed, then every

branch containing n0, and every branch containing n1 is closed.

Also, the height of n0 and the height of n1 is less than n; thus,

by the induction assumption, neither S(n0) nor S(n1) is satisfi-

able over C. b is a new individual name when the rule is ap-

plied, both (R(a, b)k, [ci, cj]) and ((b : D)k, [ci, cj]) are satisfiable.

S(n1) = {(R(a, b)k, [ci, cj]), ((b : D)k, [ci, cj])} ∪ S(n) is not satisfi-

able, thus S(n) is not satisfiable;

• Let ψ = (a : ∀R.D)k. Assuming that S(n) is satisfiable over C,

there is a model M = 〈D, I−(D), V 〉, where D is an extension of

C, such that M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). Since {(a :

∀R.D)k,[ci, cj]),(R(a, b)k′ ,[ci0 , cj0])} ∈ S(n) where [ci0 , cj0] ⊆ [ci, cj],

follows that, M, [ci, cj] |= (a : ∀R.D)k and M, [ci0 , cj0] |= R(a, b)k′ .

It is easy to show that M, [ci1 , cj1] |= (b : D)k′′ where k
′′

= |cj1− ci1|

and [ci1 , cj1] = [ci, cj]∩[ci0 , cj0]; thus ((b : D)k′′ ,[ci1 , cj1]) is satisfiable

over CB1 . Node n has one direct successor named n0. Since every

214

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

branch containing n is closed, then every branch containing n0 is

closed. Also, the height of n0 is less than the height of n; thus by

the induction assumption, S(n
′
) = {((a : D)k′′ , [ci1 , cj1])} ∪ S(n) is

unsatisfiable over CB1 . Since ((a : D)k′′ , [ci1 , cj1]) is satisfiable, S(n)

is not satisfiable over CB;

• Let ψ = (D = >)k. Assuming that S(n) is satisfiable over C,

there is a model M =〈D, I−(D), V 〉, where D is an extension of C,

such that M,[ci, cj] |= θ for all (θ, [ci, cj]) ∈ S(n). Since {((D =

>)k,[ci, cj]),((a : E)k′ ,[ci0 , cj0])} ∈ S(n) where [ci, cj] ∩ [ci0 , cj0] =

[ci1 , cj1] 6= ∅, follows that, M, [ci, cj] |= (D = >)k and M, [ci0 , cj0] |=

(a : E)k′ (k
′

= |cj0 − ci0|). It is easy to show that M, [ci1 , cj1] |=

(a : D)k′′ (k
′′

= |cj1 − ci1|); thus ((a : D)k′′ ,[ci1 , cj1]) is satisfiable

over CB1 . Node n has one direct successor named n0. Since every

branch containing n is closed, then every branch containing n0 is

closed. Also, the height of n0 is less than the height of n; thus,

by the induction assumption, S(n0)={((a : D)k′′ ,[ci1 , cj1])} ∪ S(n)

is not satisfiable over CB1 . Since ((a : D)k′′ , [ci1 , cj1]) is satisfiable,

S(n) is not satisfiable over C.

215

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Appendix C

Tableaus in Detail

216

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C.1 Tableau for ϑHIV

1 [root] ((♦∗r(Elisa
#1
1d ∧ ♦

∗
r(Elisa

#2
1d ∧ . . .)),[c0, c1]), {{c0 < c1},{(c0, c1, 2h)}})

1-R∗r
2 ((Elisa#1

1d ∧ ♦
∗
r(Elisa

#2
1d ∧ . . .),[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 1d)}})
2-R∧

3 ((Elisa#1
1d ,[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 1d)}})
2-R∧

4 ((♦∗r(Elisa
#2
1d ∧ ♦

∗
r(WesternBlot1d ∧ . . .)),[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 1d)}})
4-R∗r

5 ((Elisa#2
1d ∧ ♦

∗
r(WesternBlot1d ∧ . . .),[c2, c3]),

{{c0 < c1 < c2 < c3},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d)}})
5-R∧

6 ((Elisa#2
1d ,[c2, c3]),

{{c0 < c1 < c2 < c3},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d)}})
5-R∧

7 ((♦∗r(WesternBlot1d ∧ . . .),[c2, c3]),
{{c0 < c1 < c2 < c3},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d)}})

7-R∗r
8 ((WesternBlot1d ∧ ♦∗r(Registration4d ∧ . . .),[c3, c4]),
{{c0 < c1 < c2 < c3 < c4},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)}})

8-R∧

9 ((WesternBlot1d,[c3, c4]),

{{c0 < c1 < c2 < c3 < c4},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)}})
8-R∧

10 ((♦∗r(Registration4d ∧ . . .),[c3, c4]),
{{c0 < c1 < c2 < c3 < c4},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)}})

10-R∗r
11 ((Registration4d ∧ ♦∗r(>90d ∧ CD4Check1d ∧ . . .),[c4, c5]),
{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d)}})

11-R∧

12 ((Registration4d,[c4, c5]),

{{c0 < c1 < c2 < c3 < c4 < c5},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d)}})
11-R∧

13 ((♦∗r(>90d ∧ ♦−l ♦
∗
r(CD4Check1d ∧ . . .)),[c4, c5]),

{{c0 < c1 < c2 < c3 < c4 < c5},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d)}})
13-R∗r

14 ((>90d ∧ ♦−l ♦
∗
r(CD4Check1d ∧ . . .),[c5, c6]),

{{· · · < c2 < c3 < c4 < c5 < c6},{. . . , (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d), (c5, c6, 90d)}})
14-R∧

15 ((>90d,[c5, c6]),

{{· · · < c2 < c3 < c4 < c5 < c6},{. . . , (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d), (c5, c6, 90d)}})

Figure C.1: Tableau for ϑHIV (Modeled in IMPNL)

217

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued!

14-R∧

16 ((1♦−l ♦
∗
r(CD4Check1d ∧2 ♦−l ♦

∗
r(>30d ∧ . . .)),[c5, c6]),

{{c0 < c1 < c2 < c3 < c4 < c5 < c6},{. . . , (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d), (c5, c6, 90d)}})
16-R−

l

17 ((♦∗r(CD4Check1d ∧2 ♦−l ♦
∗
r(>30d ∧ . . .)),[c7, c5]),

{{c7 < c0 < c1 < c2 < c3 < c4 < c5 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d),
(c5, c6, 90d), (c7, c5, 338d2h)}})

17-R∗r
18 ((CD4Check1d ∧2 ♦−l ♦

∗
r(>30d ∧ . . .),[c5, c8]),

{{c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d),
(c4, c5, 4d), (c5, c6, 90d),(c7, c5, 338d2h),(c5, c8, 1d)}})

18-R∧

19 ((CD4Check1d,[c5, c8]),

{{c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d),
(c4, c5, 4d), (c5, c6, 90d),(c7, c5, 338d2h),(c5, c8, 1d)}})

18-R∧

20 ((2♦−l ♦
∗
r(>30d ∧ . . .),[c5, c8]),

{{c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c6},{(c0, c1, 2h), (c1, c2, 1d), (c2, c3, 1d), (c3, c4, 1d),
(c4, c5, 4d), (c5, c6, 90d),(c7, c5, 338d2h),(c5, c8, 1d)}})

20-R−
l

21 ((♦∗r(>30d ∧ . . .),[c9, c5]),
{{c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c6},{(c0, c1, 2h), (c1, c2, 1d), (c2, c3, 1d), (c3, c4, 1d),
(c4, c5, 4d), (c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h)}})

21-R∗r
22 ((>30d ∧4 ♦−l ♦

∗
r(¬HasAIDS1hour ∨ . . .),[c5, c10]),

{{c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c10 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)
, (c4, c5, 4d), (c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h),(c5, c10, 30d)}})

22-R∧

23 ((>30d,[c5, c10]),

{{c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c10 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)
, (c4, c5, 4d), (c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h), (c5, c10, 30d)}})

22-R∧
24 ((4♦−l ♦

∗
r(¬HasAIDS1hour ∨ . . .),[c5, c10]),

{{c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c10 < c6},{(c0, c1, 2h), (c1, c2, 1d),(c2, c3, 1d), (c3, c4, 1d)
, (c4, c5, 4d), (c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h), (c5, c10, 30d)}})

24-R−
l

25 ((♦∗r(¬HasAIDS1hour ∨ . . .),[c11, c5]),
{{c11 < c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c8 < c10 < c6},{. . . , (c2, c3, 1d), (c3, c4, 1d), (c4, c5, 4d)
, (c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h), (c5, c10, 30d), (c11, c5, 1352d8h)}})

25-R∗r
26 ((¬HasAIDS1hour ∨ (V isit1h ∧ . . .),[c5, c12]),
{{c11 < c9 < c7 < c0 < c1 < c2 < c3 < c4 < c5 < c12 < c8 < c10 < c6},{. . . , (c3, c4, 1d), (c4, c5, 4d),
(c5, c6, 90d), (c7, c5, 338d2h), (c5, c8, 1d), (c9, c5, 676d4h), (c5, c10, 30d),(c11, c5, 1352d8h), (c5, c12, 1h)}})

Figure C.2: Tableau for ϑHIV – Modeled in IMPNL (continued)

218

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued

26-R∨

27 ((¬HasAIDS1hour,[c5, c12]),

{{c11 < · · · < c12 < c8 < . . . },{(c0, c1, 2h), . . . , (c5, c12, 1h)}})
No more expansion rule is applicable! The branch remained open!

28 ((V isit1hour ∧8 ♦−l ♦
∗
r(TakeKaletra30d ∧ . . .),[c5, c12]),

{{c11 < · · · < c12 < c8 < . . . },{(c0, c1, 2h), . . . , (c5, c12, 1h)}})
28-R∧

29 ((V isit1hour,[c5, c12]),

{{c11 < · · · < c12 < c8 < . . . },{(c0, c1, 2h), . . . , (c5, c12, 1h)}})
28-R∧

30 ((8♦−l ♦
∗
r(TakeKaletra30d ∧ . . .),[c5, c12]),

{{c11 < · · · < c12 < c8 < . . . },{(c0, c1, 2h), . . . , (c5, c12, 1h)}})

30-R−
l

31 ((♦∗r(TakeKaletra30d ∧ . . .),[c13, c5]),
{{c13 < c11 < c9 < · · · < c5 < . . . },{. . . , (c13, c5, 2704d16h)}})

31-R∗r

32 ((TakeKaletra30d ∧ ¬TakeAlfuzosin30d ∧ . . .),[c5, c10]),
{{c13 < · · · < c5 < · · · < c6},{. . . , (c13, c5, 2704d16h)}})

32-R∧

33 ((TakeKaletra30d,[c5, c10]),

{{c13 < · · · < c5 < · · · < c6},{. . . , (c13, c5, 2704d16h)}})
32-R∧

Expansion of this branch is easy and straightforward!

Eventually, the branch remains open!

Figure C.3: Tableau for ϑHIV – Modeled in IMPNL (continued)

219

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C.2 Tableau for ξHIV

1 [root] ((ξHIV ,[c0, c1]), {{c0 < c1},{(c0, c1, 2h)}})

1-R∗r
2 (((((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr ∧ . . .),[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})

2-R∧

3 (((((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})

2-R∧
4 (((∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors = >)120yr ∧ . . . ,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})

4-R∧

5 (((∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors = >)120yr,[c1, c2]),
{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})

4-R∧

6 (((p : Patient)120yr ∧1 ♦−l ♦
∗
r((e1 : Elisa)1d ∧ . . .),[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})
6-R∧

7 (((p : Patient)120yr,[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})
6-R∧

8 ((1♦−l ♦
∗
r((e1 : Elisa)1d ∧ . . .),[c1, c2]),

{{c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr)}})
8-R−

l

9 ((♦∗r((e1 : Elisa)1d ∧ . . .),[c−1, c1]),

{{c−1 < c0 < c1 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ)}})
9-R∗r

10 (((e1 : Elisa)1d ∧ PerformTest(p, e1)1d ∧ . . . ,[c1, c3]),
{{c−1 < c0 < c1 < c3 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d)}})

10-R∧

11 (((e1 : Elisa)1d,[c1, c3]),

{{c−1 < c0 < c1 < c3 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d)}})
10-R∧

12 ((PerformTest(p, e1)1d ∧ . . . ,[c1, c3]),
{{c−1 < c0 < c1 < c3 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d)}})

12-R∧

13 ((PerformTest(p, e1)1d,[c1, c3]),

{{c−1 < c0 < c1 < c3 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d)}})
12-R∧

14 ((♦∗r((e2 : Elisa)1d ∧ . . .),[c1, c3]),
{{c−1 < c0 < c1 < c3 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d)}})

14-R∗r
15 (((e2 : Elisa)1d ∧ . . . ,[c3, c4]),
{{c−1 < c0 < c1 < c3 < c4 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d)}})

Figure C.4: Tableau for ξHIV (Modeled in MITDL)

220

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued!

15-R∧

16 (((e2 : Elisa)1d,[c3, c4]),

{{c−1 < c0 < c1 < c3 < c4 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d)}})
15-R∧

17 ((PerformTest(p, e2)1d ∧ . . . ,[c3, c4]),
{{c−1 < c0 < c1 < c3 < c4 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d)}})

17-R∧

18 ((PerformTest(p, e2)1d,[c3, c4]),

{{c−1 < c0 < c1 < c3 < c4 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d)}})
17-R∧

19 ((♦∗r((w :WesternBlot)1d ∧ . . .),[c3, c4]),
{{c−1 < c0 < c1 < c3 < c4 < c2},{(c0, c1, 2h), (c1, c2, 120yr),(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d)}})

18-R∗r
20 (((w :WesternBlot)1d ∧ . . . ,[c4, c5]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c2},{. . . ,(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d)}})

20-R∧

21 (((w :WesternBlot)1d,[c4, c5]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c2},{(. . . ,(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d)}})
20-R∧

22 ((PerformTest(p, w)1d ∧ . . . ,[c4, c5]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c2},{. . . ,(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d)}})

22-R∧

23 ((PerformTest(p, w)1d,[c4, c5]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c2},{. . . ,(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d)}})
22-R∧

24 ((♦∗r((r : Registration)4d ∧ . . .),[c4, c5]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c2},{. . . ,(c−1, c1, κ), (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d)}})

24-R∗r
25 (((r : Registration)4d ∧ . . . ,[c5, c6]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c2},{. . . , (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d)}})

25-R∧

26 (((r : Registration)4d,[c5, c6]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c2},{. . . , (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d)}})
25-R∧

27 ((AdministrativeAction(p, r)4d ∧ . . . ,[c5, c6]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c2},{. . . , (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d)}})

27-R∧

28 ((AdministrativeAction(p, r)4d,[c5, c6]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c2},{. . . , (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d)}})
27-R∧

29 ((♦∗r(>90d ∧ . . .),[c5, c6]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c2},{. . . , (c1, c3, 1d),(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d)}})

Figure C.5: Tableau for ξHIV – Modeled in MITDL (continued)

221

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued!

29-R∗r
30 ((>90d ∧ . . . ,[c6, c7]),
{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c7 < c2},{. . . ,(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d),(c6, c7, 90d)}})

30-R∧

31 ((>90d,[c6, c7]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c7 < c2},{. . . ,(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d),(c6, c7, 90d)}})
30-R∧

32 ((2♦−l ♦
∗
r((c : CD4Check)1d ∧ . . .),[c6, c7]),

{{c−1 < c0 < c1 < c3 < c4 < c5 < c6 < c7 < c2},{. . . ,(c3, c4, 1d),(c4, c5, 1d),(c5, c6, 4d),(c6, c7, 90d)}})
32-R−

l

33 ((♦∗r((c : CD4Check)1d ∧ . . .),[c−2, c6]),

{{c−2 < c−1 < c0 < c1 < · · · < c2},{. . . ,(c4, c5, 1d),(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ)}})
33-R+

r
34 (((c : CD4Check)1d ∧ . . .),[c6, c8]),
{{c−2 < · · · < c5 < c6 < c8 < c7 < c2},{. . . ,(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ),(c6, c8, 1d)}})

34-R∧

35 (((c : CD4Check)1d,[c6, c8]),

{{c−2 < · · · < c5 < c6 < c8 < c7 < c2},{. . . ,(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ),(c6, c8, 1d)}})
34-R∧

36 ((PerformTest(p, c)1d ∧ . . . ,[c6, c8]),
{{c−2 < · · · < c5 < c6 < c8 < c7 < c2},{. . . ,(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ),(c6, c8, 1d)}})

36-R∧
37 ((4♦−l ♦

∗
r(>30d ∧ . . .),[c6, c8]),

{{c−2 < · · · < c5 < c6 < c8 < c7 < c2},{. . . ,(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ),(c6, c8, 1d)}})
37-R−

l

38 ((♦∗r(>30d ∧ . . .),[c−3, c6]),

{{c−3 < c−2 < · · · < c7 < c2},{. . . ,(c5, c6, 4d),(c6, c7, 90d),(c−2, c6, 2 ∗ κ),(c6, c8, 1d),(c−3, c6, 4 ∗ κ)}})
38-R∗r

39 ((>30d ∧ . . . ,[c6, c9]),
{{c−3 < c−2 < · · · < c9 < c7 < c2},{. . . ,(c−2, c6, 2 ∗ κ),(c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d)}})

39-R∧
40 ((>30d,[c6, c9]),

{{c−3 < c−2 < · · · < c9 < c7 < c2},{. . . ,(c−2, c6, 2 ∗ κ),(c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d)}})
39-R∧

41 ((8♦−l ♦
∗
r((p : ¬HasAIDS)1h ∨ . . .),[c6, c9]),

{{c−3 < c−2 < · · · < c9 < c7 < c2},{. . . ,(c−2, c6, 2 ∗ κ),(c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d)}})
41-R−

l

42 ((♦∗r((p : ¬HasAIDS)1h ∨ . . .),[c−4, c6]),

{{c−4 < c−3 < c−2 < · · · < c9 < c7 < c2},{. . . ,(c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),(c−4, c6, 8 ∗ κ)}})
42-R∗r

43 (((p : ¬HasAIDS)1h ∨ . . . ,[c6, c10]),
{{c−4 < c−3 < c−2 < · · · < c6 < c10 < c8 < . . . },{. . . ,(c6, c9, 30d),(c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

Figure C.6: Tableau for ξHIV – Modeled in MITDL (continued)

222

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued!

3-R=

44 ((p : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

3-R=

45 ((e1 : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

3-R=

46 ((e2 : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

3-R=

47 ((w : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

3-R=

48 ((r : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

3-R=

49 ((c : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

50 ((p : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

51 ((e1 : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

52 ((e2 : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

53 ((w : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

54 ((r : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

5-R=

55 ((c : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

50-Rt

2nd branch: Left to the reader56 ((p : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

51-Rt

2nd branch: Left to the reader
57 ((e1 : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c8, 1d),(c−3, c6, 4 ∗ κ),(c6, c9, 30d),. . . }})

Figure C.7: Tableau for ξHIV – Modeled in MITDL (continued)

223

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

Continued!

52-Rt

2nd branch: Left to the reader58 ((e2 : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

53-Rt

2nd branch: Left to the reader59 ((w : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

54-Rt

2nd branch: Left to the reader60 ((r : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

55-Rt

2nd branch: Left to the reader61 ((c : (∀TakeMedicine.¬Rifampin)120yr,[c1, c2]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

43-R∨

2nd branch: Left to the reader62 (((p : ¬HasAIDS)1h,[c6, c10]),
{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

44-Rt

2nd branch: Left to the reader63 (((p : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})
45-Rt

2nd branch: Left to the reader64 (((e1 : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})
46-Rt

2nd branch: Left to the reader65 (((e2 : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})
47-Rt

2nd branch: Left to the reader66 (((w : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})
48-Rt

2nd branch: Left to the reader67 (((r : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c0 < c1 < c3 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})
49-Rt

2nd branch: Left to the reader68 (((c : ProteaseInhibitors)120yr,[c1, c2]),

{{c−4 < · · · < c6 < c10 < c8 < · · · < c2},{. . . ,(c1, c2, 120yr), (c6, c9, 30d), (c−4, c6, 8 ∗ κ),(c6, c10, 1h)}})

No more rule is applicable. The branch is open.

Figure C.8: Tableau for ξHIV – Modeled in MITDL (continued)

224

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C.3 Tableau for ψ
′
HIV−TB

1 [root] ((1♦−r (2♦−l ♦
∗
r(
HIV Elisa#1

1d ∧ . . .) ∧
64 ♦−l ♦

∗
r(
TBTakeRifampin120d ∧ . . .)))),[d0, d1]),

{{d0 < d1},{(d0, d1, 2h)}})

1-R−r
2 ((2♦−l ♦

∗
r(
HIV Elisa#1

1d ∧ . . .) ∧
64 ♦−l ♦

∗
r(
TBTakeRifampin120d ∧ . . .)),[d1, d11]),

{{d0 < d1 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h)}})
2-R∧

3 ((2♦−l ♦
∗
r(
HIV Elisa#1

1d ∧ . . .)),[d1, d11]),
{{d0 < d1 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h)}})

2-R∧
4 ((64♦−l ♦

∗
r(
TBTakeRifampin120d ∧ . . .),[d1, d11]),

{{d0 < d1 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h)}})
3-R−

l

5 ((♦∗r(
HIV Elisa#1

1d ∧ . . .),[d−1, d1]),

{{d−1 < d0 < d1 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h), (d−1, d1, 6y64d6h)}})
5-R∗r

6 ((HIV Elisa#1
1d ∧ ♦

∗
r(
HIV Elisa#2

1d ∧ . . .),[d1, d2]),
{{d−1 < d0 < d1 < d2 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h), (d−1, d1, 6y64d6h),(d1, d2, 1d)}})

6-R∧

7 ((HIV Elisa#1
1d ,[d1, d2]),

{{d−1 < d0 < d1 < d2 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h), (d−1, d1, 6y64d6h),(d1, d2, 1d)}})
6-R∧

8 ((♦∗r(
HIV Elisa#2

1d ∧ ♦
∗
r(
HIVWesternBlot1d ∧ . . .)),[d1, d2]),

{{d−1 < d0 < d1 < d2 < d11},{(d0, d1, 2h), (d1, d11, 3y32d3h), (d−1, d1, 6y64d6h),(d1, d2, 1d)}})
8-R∗r

9 ((HIV Elisa#2
1d ∧ ♦

∗
r(
HIVWesternBlot1d ∧ . . .),[d2, d3]),

{{d−1 < d0 < d1 < d2 < d3 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d)}})
9-R∧

10 ((HIV Elisa#2
1d ,[d2, d3]),

{{d−1 < d0 < d1 < d2 < d3 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d)}})
9-R∧

11 ((♦∗r(
HIVWesternBlot1d ∧ ♦∗r(HIV Registration4d ∧ . . .)),[d2, d3]),

{{d−1 < d0 < d1 < d2 < d3 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d)}})
11-R∗r

12 ((HIVWesternBlot1d ∧ ♦∗r(HIV Registration4d ∧ . . .),[d3, d4]),
{{d−1 < d0 < · · · < d3 < d4 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d),(d3, d4, 1d)}})

12-R∧

13 ((HIVWesternBlot1d,[d3, d4]),

{{· · · < d2 < d3 < d4 < d11},{. . . , (d−1, d1, 218d1h),(d1, d2, 1d),(d2, d3, 1d),(d3, d4, 1d)}})
12-R∧

14 ((♦∗r(
HIV Registration4d ∧ ♦∗r(>90d ∧ . . .)),[d3, d4]),

{{· · · < d2 < d3 < d4 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d),(d3, d4, 1d)}})
14-R∗r

15 ((HIV Registration4d ∧ ♦∗r(>90d ∧ . . .),[d4, d5]),
{{· · · < d3 < d4 < d5 < d11},{. . . ,(d1, d2, 1d),(d2, d3, 1d),(d3, d4, 1d),(d4, d5, 4d)}})

Figure C.9: Tableau for ψ
′
HIV−TB (Modeled in IMPNL)
225

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

16 ((HIV Registration4d,[d4, d5]),

{{· · · < d3 < d4 < d5 < d11},{. . . , (d−1, d1, 6y64d6h),(d1, d2, 1d),(d2, d3, 1d),(d3, d4, 1d),(d4, d5, 4d)}})
15-R∧

16 ((♦∗r(>90d ∧4 ♦−l ♦
∗
r(
HIV CD4Check1d ∧ . . .)),[d4, d5]),

{{· · · < d3 < d4 < d5 < d11},{. . . , (d1, d2, 1d), (d2, d3, 1d), (d3, d4, 1d), (d4, d5, 4d)}})
16-R∗r

17 ((>90d ∧4 ♦−l ♦
∗
r(
HIV CD4Check1d ∧ . . .),[d5, d9]),

{{d−1 < · · · < d4 < d5 < d9 < d11},{(d0, d1, 2h), . . . , (d4, d5, 4d), (d5, d9, 90d)}})
17-R∧

18 ((>90d,[d5, d9]),

{{d−1 < · · · < d4 < d5 < d9 < d11},{(d0, d1, 2h), . . . , (d4, d5, 4d), (d5, d9, 90d)}})
17-R∧

19 ((4♦−l ♦
∗
r(
HIV CD4Check1d ∧ . . .),[d5, d9]),

{{d−1 < · · · < d4 < d5 < d9 < d11},{(d0, d1, 2h), . . . , (d4, d5, 4d), (d5, d9, 90d)}})
19-R−

l

20 ((♦∗r(
HIV CD4Check1d ∧ . . .),[d−2, d5]),

{{d−2 < d−1 < d1 < · · · < d11},{(d0, d1, 2h), . . . , (d4, d5, 4d), (d5, d9, 90d), (d−2, d5, 12y128d12h)}})
20-R∗r

21 ((HIV CD4Check1d ∧8 ♦−l ♦
∗
r(>30d ∧ . . .),[d5, d7]),

{{d−2 < d−1 < d1 < · · · < d7 < d9 < d11},{. . . , (d5, d9, 90d), (d−2, d1, 12y128d12h), (d5, d7, 1d)}})
21-R∧

22 ((HIV CD4Check1d,[d5, d7]),

{{d−2 < d−1 < d1 < · · · < d7 < d9 < d11},{. . . , (d5, d9, 90d), (d−2, d1, 12y128d12h), (d5, d7, 1d)}})
21-R∧

23 ((8♦−l ♦
∗
r(>30d ∧16 ♦−l ♦

∗
r(
HIV V isit1hour ∧ . . .)),[d5, d7]),

{{d−2 < d−1 < d1 < · · · < d7 < d9 < d11},{. . . , (d5, d9, 90d), (d−2, d1, 12y128d12h), (d5, d7, 1d)}})
23-R−

l

24 ((♦∗r(>30d ∧16 ♦−l ♦
∗
r(
HIV V isit1hour ∧ . . .)),[d−3, d5]),

{{d−3 < d−2 < d−1 < · · · < d7 < d9 < d11},{. . . , (d5, d7, 1d), (d−3, d5, 24yd256d)}})
24-R∗r

25 ((>30d ∧16 ♦−l ♦
∗
r(
HIV V isit1hour ∧ . . .),[d5, d8]),

{{d−3 < d−2 < · · · < d5 < d7 < d8 < d9 < d11},{. . . , (d−3, d5, 24yd256d), (d5, d8, 30d)}})
25-R∧

26 ((>30d,[d5, d8]),

{{d−3 < d−2 < · · · < d5 < d7 < d8 < d9 < d11},{. . . , (d−3, d5, 24yd256d), (d5, d8, 30d)}})
25-R∧

27 ((16♦−l ♦
∗
r(
HIV V isit1hour ∧ . . .),[d5, d8]),

{{d−3 < d−2 < · · · < d5 < d7 < d8 < d9 < d11},{(d0, d1, 2h), . . . , (d5, d7, 1d), (d5, d8, 30d)}})
27-R−

l

28 ((♦∗r(
HIV V isit1hour ∧ . . .),[d−4, d5]),

{{d−4 < d−3 < d−2 < · · · < d4 < d5 < . . . },{. . . , (d5, d7, 1d), (d5, d8, 30d), (d−4, d5, 49y156d)}})
27-R∗r

29 ((HIV V isit1hour ∧32 ♦−l ♦
∗
r(
HIV TakeKaletra30d ∧ . . .),[d5, d6]),

{{d−4 < d−3 < · · · < d5 < d6 < d7 < . . . },{(d0, d1, 2h), . . . , (d−4, d5, 49y156d), (d5, d6, 1h)}})

Figure C.10: Tableau for ψ
′
HIV−TB (Modeled in IMPNL)

226

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

30 ((HIV V isit1hour,[d5, d6]),

{{d−4 < d−3 < · · · < d5 < d6 < d7 < . . . },{. . . , (d−2, d5, 12y128d12h), (d5, d7, 1d), (d5, d6, 1h)}})
29-R∧

31 ((32♦−l ♦
∗
r(
HIV TakeKaletra30d ∧ . . .),[d5, d6]),

{{d−4 < d−3 < · · · < d5 < d6 < d7 < . . . },{. . . , (d−2, d5, 12y128d12h), (d5, d7, 1d), (d5, d6, 1h)}})
31-R−

l

32 ((♦∗r(
HIV TakeKaletra30d ∧ . . .),[d−5, d5]),

{{d−5 < d−4 < · · · < d4 < d5 < d6 < . . . },{(d0, d1, 2h), . . . ,(d5, d6, 1h),(d−5, d5, 98y312d)}})
32-R∗r

33 ((HIV TakeKaletra30d ∧ ¬HIV TakeAlfuzosin30d ∧ . . . ,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

33-R∧
34 ((HIV TakeKaletra30d,[d5, d8]),

{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})
33-R∧

35 ((¬HIV TakeAlfuzosin30d ∧ ¬HIV TakeCisapride30d ∧ . . . ,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

35-R∧

36 ((¬HIV TakeAlfuzosin30d,[d5, d8]),

{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})
35-R∧

37 ((¬HIV TakeCisapride30d ∧ ¬HIV TakeRifampin30d ∧ . . . ,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

37-R∧

38 ((¬HIV TakeCisapride30d,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

37-R∧

39 ((¬HIV TakeRifampin30d ∧ ¬HIV TakeP imozide30d ∧ . . . ,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

39-R∧
40 ((¬HIV TakeRifampin30d,[d5, d8]),

{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})
39-R∧

41 ((¬HIV TakeP imozide30d ∧HIV TakeTenofovir30d ∧ . . . ,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

41-R∧
42 ((¬HIV TakeP imozide30d,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

41-R∧
43 ((HIV TakeTenofovir30d ∧HIV TakeLamivadin30d,[d5, d8]),

{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})
43-R∧

44 ((HIV TakeTenofovir30d,[d5, d8]),
{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d5, d9, 90d), (d−2, d5, 12y128d12h), (d5, d8, 30d)}})

Figure C.11: Tableau for ψ
′
HIV−TB (Modeled in IMPNL)

227

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

43-R∧

45 ((∧HIV TakeLamivadin30d,[d5, d8]),

{{· · · < d4 < d5 < d6 < d7 < d8 < d9 < . . . },{. . . , (d−2, d5, 12y128d12h),(d5, d8, 30d)}})
4-R−

l

46 ((♦∗r(
TBTakeRifampin120d ∧ . . .),[d−6, d1]),

{{d−6 < d−5 < · · · < d−1 < d0 < d1 < . . . },{. . . , (d1, d8, 30d), (d−6, d1, 197y259d)}})
46-R∗r

47 ((TBTakeRifampin120d ∧TB TakeIsoniazid120d ∧ . . . ,[d1, d10]),
{{· · · < d−1 < d0 < d1 < d2 < · · · < d9 < d10 < d11},{. . . , (d1, d10, 120d)}})

47-R∧
48 ((TBTakeRifampin120d,[d1, d10]),

{{· · · < d−1 < d0 < d1 < d2 < · · · < d9 < d10 < d11},{. . . , (d1, d10, 120d)}})

A clash detected! This node clashed with 40

The branch is closed!!

Figure C.12: Tableau for ψ
′
HIV−TB (Modeled in IMPNL)

228

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

C.4 Tableau for ϕ
′
HIV−TB

1 [root] ((ψ
′
HIV−TB ,[e0, e1]), {{e0 < e1},{(e0, e1, 2h)}})

1-R∗r
2 ((2♦−l ♦

∗
r(((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr ∧ . . .) ∧4 ♦

−
l ♦
∗
r(. . .)

∧ . . . ,[e1, e2]),{{e0 < e1 < e2},{(e0, e1, 2h), (e1, e2, κ)}})
2-R∧

3 ((2♦−l ♦
∗
r(((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr ∧ . . .),[e1, e2]),

{{e0 < e1 < e2},{(e0, e1, 2h), (e1, e2, κ)}})
2-R∧

4 ((4♦−l ♦
∗
r((p : Patient)120yr ∧ . . .) ∧256 ♦−l ♦

∗
r((p : Patient)6m ∧ . . .),[e1, e2]),

{{e0 < e1 < e2},{(e0, e1, 2h), (e1, e2, κ)}})
4-R−

l

5 ((♦∗r(((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr ∧ . . .),[e−1, e1]),

{{e−1 < e0 < e1 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ)}})
5-R∗r

6 ((((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr ∧ . . . ,[e1, e3]),
{{e−1 < e0 < e1 < e3 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr)}})

6-R∧
7 ((((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors = >)120yr,[e1, e3]),
{{e−1 < e0 < e1 < e3 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr)}})

6-R∧

8 (((∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors = >)120yr,[e1, e3]),
{{e−1 < e0 < e1 < e3 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr)}})

4-R∧

9 ((4♦−l ♦
∗
r((p : Patient)120yr ∧ . . .),[e1, e2]),

{{e−1 < e0 < e1 < e3 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr)}})
4-R∧

10 ((256♦−l ♦
∗
r((p : Patient)6m ∧ . . .),[e1, e2]),

{{e−1 < e0 < e1 < e3 < e2},{(e0, e1, 2h), (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr)}})
9-R−

l

11 ((♦∗r((p : Patient)120yr ∧ . . .),[e−2, e1]),

{{e−2 < e−1 < e0 < e1 < e3 < e2},{. . . ,(e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr), (e−2, e1, 4 ∗ κ)}})
11-R∗r

12 (((p : Patient)120yr ∧ . . . ,[e1, e3]),
{{e−2 < e−1 < e0 < e1 < e3 < e2},{. . . , (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr), (e−2, e1, 4 ∗ κ)}})

12-R∧

13 (((p : Patient)120yr,[e1, e3]),

{{e−2 < e−1 < e0 < e1 < e3 < e2},{. . . , (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr), (e−2, e1, 4 ∗ κ)}})
12-R∧

14 ((8♦−l ♦
∗
r((e1 : Elisa)1d ∧ . . .),[e1, e3]),

{{e−2 < e−1 < e0 < e1 < e3 < e2},{. . . , (e1, e2, κ), (e−1, e1, 2 ∗ κ), (e1, e3, 120yr), (e−2, e1, 4 ∗ κ)}})
14-R−

l

15 ((♦∗r((e1 : Elisa)1d ∧ . . .),[e−3, e1]),

{{e−3 < e−2 < e−1 < · · · < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ)}})

Figure C.13: Tableau for ψ
′
HIV−TB (Modeled in MITDL)

229

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

15-R∗r
16 (((e1 : Elisa)1d ∧ . . . ,[e1, e4]),
{{e−3 < · · · < e1 < e4 < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d)}})

16-R∧
17 (((e1 : Elisa)1d,[e1, e4]),

{{e−3 < · · · < e1 < e4 < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d)}})
16-R∧

18 ((PerformTest(p, e1)1d ∧ . . . ,[e1, e4]),
{{e−3 < · · · < e1 < e4 < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d)}})

18-R∧

19 ((PerformTest(p, e1)1d,[e1, e4]),

{{e−3 < · · · < e1 < e4 < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d)}})
18-R∧

20 ((♦∗r((e2 : Elisa)1d ∧ . . .),[e1, e4]),
{{e−3 < · · · < e1 < e4 < e3 < e2},{. . . , (e1, e3, 120yr), (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d)}})

20-R∗r
21 (((e2 : Elisa)1d ∧ . . . ,[e4, e5]),
{{e−3 < · · · < e1 < e4 < e5 < e3 < e2},{. . . , (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d)}})

21-R∧

22 (((e2 : Elisa)1d,[e4, e5]),

{{e−3 < · · · < e1 < e4 < e5 < e3 < e2},{. . . , (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d)}})
21-R∧

23 ((PerformTest(p, e2)1d ∧ . . . ,[e4, e5]),
{{e−3 < · · · < e1 < e4 < e5 < e3 < e2},{. . . , (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d)}})

23-R∧
24 ((PerformTest(p, e2)1d,[e4, e5]),

{{e−3 < · · · < e1 < e4 < e5 < e3 < e2},{. . . , (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d)}})
23-R∧

25 ((♦∗r((w :WesternBlot)1d ∧ . . .),[e4, e5]),
{{e−3 < · · · < e1 < e4 < e5 < e3 < e2},{. . . , (e−2, e1, 4 ∗ κ), (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d)}})

25-R∧

26 (((w :WesternBlot)1d ∧ . . . ,[e5, e6]),
{{e−3 < · · · < e4 < e5 < e6 < e3 < e2},{. . . , (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d)}})

26-R∧
27 (((w :WesternBlot)1d,[e5, e6]),

{{e−3 < · · · < e4 < e5 < e6 < e3 < e2},{. . . , (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d)}})
26-R∧

28 ((PerformTest(p, w)1d ∧ . . . ,[e5, e6]),
{{e−3 < · · · < e4 < e5 < e6 < e3 < e2},{. . . , (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d)}})

28-R∧

29 ((PerformTest(p, w)1d,[e5, e6]),

{{e−3 < · · · < e4 < e5 < e6 < e3 < e2},{. . . , (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d)}})
28-R∧

30 ((♦∗r((r : Registration)4d ∧ . . .),[e5, e6]),
{{e−3 < · · · < e4 < e5 < e6 < e3 < e2},{. . . , (e−3, e1, 8 ∗ κ), (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d)}})

Figure C.14: Tableau for ϕ
′
HIV−TB (Modeled in MITDL)

230

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

30-R∗r
31 (((r : Registration)4d ∧ . . . ,[e6, e7]),
{{e−3 < · · · < e5 < e6 < e7 < e3 < e2},{. . . , (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d)}})

31-R∧

32 (((r : Registration)4d,[e6, e7]),

{{e−3 < · · · < e5 < e6 < e7 < e3 < e2},{. . . , (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d)}})
31-R∧

33 ((AdministrativeAction(p, r)4d ∧ . . . ,[e6, e7]),
{{e−3 < · · · < e5 < e6 < e7 < e3 < e2},{. . . , (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d)}})

33-R∧
34 ((AdministrativeAction(p, r)4d,[e6, e7]),

{{e−3 < · · · < e5 < e6 < e7 < e3 < e2},{. . . , (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d)}})
33-R∧

35 ((♦∗r(>90d ∧ . . .),[e6, e7]),
{{e−3 < · · · < e5 < e6 < e7 < e3 < e2},{. . . , (e1, e4, 1d), (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d)}})

35-R∗r
36 ((>90d ∧ . . . ,[e7, e8]),
{{e−3 < · · · < e5 < e6 < e7 < e8 < e3 < e2},{. . . , (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d)}})

36-R∧
37 (((>90d,[e7, e8]),

{{e−3 < · · · < e5 < e6 < e7 < e8 < e3 < e2},{. . . , (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d)}})
36-R∧

38 ((16♦−l ♦
∗
r((c : CD4Check)1d ∧ . . .),[e7, e8]),

{{e−3 < · · · < e5 < e6 < e7 < e8 < e3 < e2},{. . . , (e4, e5, 1d), (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d)}})
38-R−

l

39 ((♦∗r((c : CD4Check)1d ∧ . . .),[e−4, e7]),

{{e−4 < e−3 < · · · < e6 < e7 < e8 < e3 < e2},{. . . , (e6, e7, 4d), (e7, e8, 90d), (e−4, e7, 16 ∗ κ)}})
39-R∗r

40 (((c : CD4Check)1d ∧ . . . ,[e7, e9]),
{{e−3 < · · · < e6 < e7 < e9 < e8 < e3 < e2},{. . . , (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d), (e7, e9, 1d)}})

40-R∧
41 (((c : CD4Check)1d,[e7, e9]),

{{e−3 < · · · < e6 < e7 < e9 < e8 < e3 < e2},{. . . , (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d), (e7, e9, 1d)}})
40-R∧

42 ((PerformTest(p, c)1d ∧ . . . ,[e7, e9]),
{{e−3 < · · · < e6 < e7 < e9 < e8 < e3 < e2},{. . . , (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d), (e7, e9, 1d)}})

42-R∧

43 ((PerformTest(p, c)1d,[e7, e9]),

{{e−3 < · · · < e6 < e7 < e9 < e8 < e3 < e2},{. . . , (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d), (e7, e9, 1d)}})
42-R∧

44 ((32♦−l ♦
∗
r(>30d ∧ . . .),[e7, e9]),

{{e−3 < · · · < e6 < e7 < e9 < e8 < e3 < e2},{. . . , (e5, e6, 1d), (e6, e7, 4d), (e7, e8, 90d), (e7, e9, 1d)}})
44-R−

l

45 ((♦∗r(>30d ∧ . . .),[e−5, e7]),

{{e−5 < e−3 < · · · < e6 < e7 < e9 < . . . },{. . . , (e7, e8, 90d), (e7, e9, 1d), (e−5, e7, 32 ∗ κ)}})

Figure C.15: Tableau for ϕ
′
HIV−TB (Modeled in MITDL)

231

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

45-R∗r
46 ((>30d ∧ . . . ,[e7, e10]),
{{· · · < e6 < e7 < e9 < e10 < e8 < . . . },{. . . , (e7, e8, 90d), (e7, e9, 1d), (e−5, e7, 32 ∗ κ), (e7, e10, 30d)}})

46-R∧
47 ((>30d,[e7, e10]),

{{· · · < e6 < e7 < e9 < e10 < e8 < . . . },{. . . , (e7, e8, 90d), (e7, e9, 1d), (e−5, e7, 32 ∗ κ), (e7, e10, 30d)}})
46-R∧

48 ((64♦−l ♦
∗
r(((p : HasAIDS)1h ∧ . . .)),[e7, e10]),

{{· · · < e6 < e7 < e9 < e10 < e8 < . . . },{. . . , (e7, e8, 90d), (e7, e9, 1d), (e−5, e7, 32 ∗ κ), (e7, e10, 30d)}})
48-R−

l

49 ((♦∗r(((p : HasAIDS)1h ∧ . . .)),[e−6, e7]),

{{e−6 < e−5 < · · · < e6 < e7 < e9 < e10 < . . . },{. . . , (e−5, e7, 32 ∗ κ), (e7, e10, 30d), (e−6, e7, 64 ∗ κ)}})
49-R∗r

50 ((((p : HasAIDS)1h ∧ . . .),[e7, e11]),
{{· · · < e6 < e7 < e11 < e9 < e10 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})

50-R∧

51 (((p : HasAIDS)1h,[e7, e11]),

{{· · · < e6 < e7 < e11 < e9 < e10 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})
50-R∧

52 (((p : ∃V isitedby.Doctor)1h ∧ . . . ,[e7, e11]),
{{· · · < e6 < e7 < e11 < e9 < e10 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})

52-R∧

53 (((p : ∃V isitedby.Doctor)1h,[e7, e11]),
{{· · · < e6 < e7 < e11 < e9 < e10 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})

52-R∧
54 ((128♦−l ♦

∗
r((k : Kaletra)30d ∧ . . .),[e7, e11]),

{{· · · < e6 < e7 < e11 < e9 < e10 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})
54-R−

l

55 ((♦∗r((k : Kaletra)30d ∧ . . .),[e−7, e7]),

{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})
55-R∗r

56 (((k : Kaletra)30d ∧ . . . ,[e7, e10]),
{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})

56-R∧
57 (((k : Kaletra)30d,[e7, e10]),

{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})
56-R∧

58 (((t : Tenofovir)30d ∧ . . . ,[e7, e10]),
{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})

58-R∧

59 (((t : Tenofovir)30d,[e7, e10]),

{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})
58-R∧

60 (((l : Lamivadin)30d ∧ . . . ,[e7, e10]),
{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e−6, e7, 64 ∗ κ), (e7, e11, 1h), (e−7, e7, 128 ∗ κ)}})

Figure C.16: Tableau for ϕ
′
HIV−TB (Modeled in MITDL)

232

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

60-R∧

61 (((l : Lamivadin)30d,[e7, e10]),

{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})
60-R∧

62 ((TakeMedicine(p, k)30d ∧ . . . ,[e7, e10]),
{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})

62-R∧

63 ((TakeMedicine(p, k)30d,[e7, e10]),

{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})
62-R∧

64 ((TakeMedicine(p, t)30d ∧ . . . ,[e7, e10]),
{{e−7 < e−6 < e−5 < · · · < e6 < e7 < . . . },{. . . , (e7, e10, 30d), (e−6, e7, 64 ∗ κ), (e7, e11, 1h)}})

10-R−
l

65 ((♦∗r((p : Patient)6m ∧ . . .),[e−8, e1]),

{{e−8 < e−7 < · · · < e1 < e4 < . . . },{. . . , (e7, e11, 1h), (e−7, e7, 128 ∗ κ), (e−8, e1, 256 ∗ κ)}})
65-R∗r

66 (((p : Patient)6m ∧ . . . ,[e1, e12]),
{{· · · < e1 < e4 < · · · < e8 < e12 < e3 < e2},{. . . , (e−7, e7, 128 ∗ κ), (e−8, e1, 256 ∗ κ), (e1, e12, 6m)}})

66-R∧
67 (((p : Patient)6m,[e1, e12]),

{{· · · < e1 < e4 < · · · < e8 < e12 < e3 < e2},{. . . , (e−7, e7, 128 ∗ κ), (e−8, e1, 256 ∗ κ), (e1, e12, 6m)}})
66-R∧

68 ((512♦−l ♦
∗
r((r1 : Rifampin)60d ∧ . . .),[e1, e12]),

{{· · · < e1 < e4 < · · · < e8 < e12 < e3 < e2},{. . . , (e−7, e7, 128 ∗ κ), (e−8, e1, 256 ∗ κ), (e1, e12, 6m)}})
68-R−

l

69 ((♦∗r((r1 : Rifampin)60d ∧ . . .),[e−9, e1]),

{{e−9 < e−8 < · · · < e1 < e4 < . . . },{. . . , (e−8, e1, 256 ∗ κ), (e1, e12, 6m), (e−9, e1, 512 ∗ κ)}})
69-R∗r

70 (((r1 : Rifampin)60d ∧ . . . ,[e1, e13]),
{{· · · < e1 < e4 < · · · < e10 < e13 < e8 < . . . },{. . . , (e−9, e1, 512 ∗ κ), (e1, e13, 60d)}})

70-R∧
71 ((r1 : Rifampin)60d,[e1, e13]),

{{· · · < e1 < e4 < · · · < e10 < e13 < e8 < . . . },{. . . , (e−9, e1, 512 ∗ κ), (e1, e13, 60d)}})
70-R∧

72 ((TakeMedicine(p, r1)60d ∧ . . . ,[e1, e13]),
{{· · · < e1 < e4 < · · · < e10 < e13 < e8 < . . . },{. . . , (e−9, e1, 512 ∗ κ), (e1, e13, 60d)}})

72-R∧
73 ((TakeMedicine(p, r1)60d,[e1, e13]),

{{· · · < e1 < e4 < · · · < e10 < e13 < e8 < . . . },{. . . , (e−9, e1, 512 ∗ κ), (e1, e13, 60d)}})
72-R∧

74 (((is1 : Isoniazid)60d ∧ . . . ,[e1, e13]),
{{· · · < e1 < e4 < · · · < e10 < e13 < e8 < . . . },{. . . , (e−9, e1, 512 ∗ κ), (e1, e13, 60d)}})

Figure C.17: Tableau for ϕ
′
HIV−TB (Modeled in MITDL)

233

M. Yousef Sanati, PhD Thesis McMaster University, Computing & Software

8-R=

75 ((p : (∀TakeMedicine.¬Rifampin t ∀TakeMedicine.¬ProteaseInhibitors)120yr,[e1, e3]),

{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e12, 6m), (e−9, e1, 512 ∗ κ), (e1, e3, 120yr)}})
75-Rt

76 (((p : ∀TakeMedicine.¬Rifampin)120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e−9, e1, 512 ∗ κ), (e1, e3, 120yr)}})

76-R∀
78 (((r1 : ¬Rifampin)120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})
A clash detected! This node clashed with 71 .

77 (((p : ∀TakeMedicine.¬ProteaseInhibitors)120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})

7-R=

79 ((k : ((¬Kaletra u ¬Norvir u ¬Aptivus) t ProteaseInhibitors)120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})

79-Rt

80 (((k : (¬Kaletra u ¬Norvir u ¬Aptivus))120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})

80-Ru
82 (((k : ¬Kaletra)120yr,[e1, e3]),

{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})
A clash detected! This node clashed with 57 .

81 (((k : ProteaseInhibitors)120yr,[e1, e3]),

{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})
77-R∀

83 (((k : ¬ProteaseInhibitors)120yr,[e1, e3]),
{{· · · < e1 < e4 < · · · < e12 < e3 < e2},{. . . , (e1, e3, 120yr)}})
A clash detected! This node clashed with 81 .

Figure C.18: Tableau for ϕ
′
HIV−TB (Modeled in MITDL)

234

	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Description Logic
	Basic Definitions
	A tableau algorithm for ALC
	Relationship between Description Logic and FOL

	Temporal Logic
	Point-based Temporal Logics
	Interval-based Temporal Logic
	Structure of Time Intervals
	Possible relations between two intervals
	Allen's modalities

	Some interval-based temporal logics
	Interval Temporal Logic (ITL)
	The Halpern-Shoham logic (HS)
	CDT and BCDT+
	Propositional Neighbourhood Logic (PNL)
	A Tableau-based algorithm for PNL+

	Metric Propositional Neighbourhood Logic (MPNL)

	IMPNL: A Logic Inspired by MPNLl
	IMPNL
	Syntax and Semantics
	Restrictions of IMPNL
	Tableau-based algorithm for IMPNL formulas
	Annotation of Input Formula
	A Finder Function (FF)
	Tableau Construction.

	Soundness of the tableau algorithm for IMPNL
	Completeness of the tableau algorithm for IMPNL
	Complexity of the tableau algorithm for IMPNL

	Conclusion

	Metric Interval-based Temporal Description Logic
	Syntax
	Semantics
	Tableau-based algorithm for checking the satisfiability of a MITDL formula
	Satisfiability checking of a simple formula
	Termination of the algorithm for simple MITDL formulas
	Complexity of the algorithm for simple MITDL formulas
	A PSpace implementation of the tableau algorithm
	Tableau-based algorithm for checking the satisfiability of a generic MITDL formula
	Soundness of the algorithm for generic MITDL formulas
	Completeness of the algorithm for generic MITDL formulas
	Termination of the algorithm for generic MITDL formulas
	Complexity of the algorithm for generic MITDL formulas

	Related Works
	Schmiedel's formalism
	TALC and TLF5-
	TL-ALCF
	TL-SHOIN(D)
	TL-F
	TLU-FU
	T-ALC

	Conclusion

	Case Study: Modeling Clinical Practice Guidelines
	Diagnosis and Treatment of HIV/AIDS
	Modeling HIV/AIDS guideline with IMPNL
	Checking the quality of HIV/AIDS Guideline
	A concrete model

	Modeling Diagnosis and Treatment of HIV/AIDS with MITDL
	Domain information
	Checking the quality of the HIV/AIDS Guideline
	A concrete model

	Treatment of Tuberculosis
	Modeling Treatment of TB Guideline with IMPNL
	Modeling Treatment of TB Guideline with MITDL

	Multi treatment of an HIV/AIDS-TB patient
	Modeling HIV/AIDS-TB guideline with IMPNL
	Modeling HIV/AIDS-TB guideline with MITDL

	A comparison of Guideline modelling languages
	Brief description of other languages
	Comparison Criteria

	Conclusion

	Conclusion and Future work
	Future Work

	Proof of Soundness Theorem (IMPNL)
	Proof of Soundness Theorem (MITDL)
	Tableaus in Detail
	Tableau for HIV
	Tableau for HIV
	Tableau for 'HIV-TB
	Tableau for HIV-TB'

