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The realization of inductorless filters by means of RC-gyrator
structures has been investigated, and the sensitivity of their response
characteristics with respect to supply voltage variations has been measured.
A critical appraisal'is made of the various multiparameter sensitivity
functions which have already been proposed in the literature, and the methods
by which these sensitivity criteria may be computed are surveyed. A new
index of performance, by which the multiparameter sensitivity of a linear,
time-invariant network may be evaluated, is pfoposed. Furthermore, a new
method of computing sensitivity indices is described and is shown to be
highly efficient from a computational point of view. The index has been
used to investigate the sensitivity performance of a wide range of passive
and active filter structures. It has also been used to generate a so-
called "optimum tolerance set'" for the elements of such filters and the

effect of employing these optimum tolerance sets has been investigated.
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The index of performance and the concept of the optimum tolerance set is
extended to the case of RC active filters. A 'two-level' optimization
procedure is proposed, whereby an optimum nominal element value set may be
combined with the corresponding optimum tolerance set to obtain a marked
improvement in the sensitivity performance of the network. Finally, the
synthesis of a highly selective RC-active filter is considered, and it is
shown how an 0ptiﬁa1 structure and tolerance set can be obtained for such

a network.
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ABSTRACT

The realization of inductorless filters by means of RC-gyrator
structures has been investigated. A procedure has been proposed whereby
a conventional LC-ladder filter may be transformed into an inductorless
filter which uses capacitors and grounded three-terminal gyrators. The
predistortion technique has been used to compensate for the effect of the
parasitics associated with a practical gyrator circuit. The procedure
has been used to construct low-pass and a;xmmgtric band-pass filters and
close agreement with theory is reported. The sensitivity of the response
of these networks with respect to variations in supply voltages has been
measured and the results indicate that the filters are remarkably
insensitive to such variations.

In order to investigate the effect of simultaneous variations
in several or all component parameters of such networks, a new multiparameter
sensitivity index of performance has been proposed for use with linear,
time-invariant networks. An algorithm has been devised for computing this
index. The algorithm derives partial derivatives of network functions
with respect to component network parameters exactly and efficiently. It
also avoids the need for repeated analyses of adjoint or auxiliary net-
works and may be used to evaluate nth—order partial derivatives and

corresponding sensitivity functions., The index of performance has been

()



used to evaluate the effects of varying the order of complexity, passband
ripple, dissipation and source/load resistance ratio upon the overall
sensitivity performance of low-pass LC-ladder filters.

A procedure has been developed which determines for a given
filter, an "optimum tolerance set'' which ensures that the varibus element
changes contribute equally to the total change in the filter performance.
The effect of using such optimum tolerance sets has been investigated, and
it is shown that such use leads to a considerable improvement in the
sehsitivity performance of a network.

The procedure has also been used to obtain optimum tolerance
sets for the variations in pole-zero locations of various low-pass filters.
This approach is particularly suitable for the synthesis of active net-
works where higher-order filters may be realized by a cascade of secoﬂd—
order sections isolated by buffer amplifiers. In the synthesis of such
second-order sections, optimal search techniques have been used in con-
junction with the index of performance to obtain optimum nominal element
value sets for a particular configuration. This "two-level' optimization
- technique is then shown to be highly effective in the optimal design of a

highly-selective RC-active filter.
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CHAPTER I

INTRODUCTION

The sensitivity problem is one which has been receiving much
attention both in control and network theory in recent years. The problem
is usually expressed in terms of a sensitivity function (e.g., pole-zero
Sensitivity) or index of performance which defines the influence of a
variation in one or more network parameters on the performance of the net-
work. The sensitivity criterion thus chosen is used to obtain an optimum
design by indicating an optimum choice of realizable network structure, or

the element values for a less sensitive structure.

In network theory, the early sensitivity studies were concerned
with a single variable, such as the sensitivity of some network function
with respect to a particular parameter. However, with the increased Qse
of the digital computer as a design tool, we are now able to tackle the
more complex problem of evaluating the sensitivity of a network to
simultaneous variations in a multitude of network parameters. Also, the
advent of integrated and other micro-electronic circuitry has brought the
multiparameter sensitivity problem into further prominence, since, with such
networks, we can no longer call for close tolerances indiscriminately, nor
can we expect a high degree of parameter constancy even from passive

elements.



In this thesis, some new concepts and ideas are introduced and are
used to investigate and optimize the multiparameter sensitivity performance
of a wide range of LC-passive and RC-active filter structures .

(1) In Chapter II, the use of gyrators in the synthesis of inductorless
filters is considered, and the sensitivity of several such RC-gyrator
structures to variations in supply voltages is investigated. It is shown
that these networks are particularly insensitive to such perturbations.

This result was not unexpected, as the gyrators which were used were
specifically designed to be practically independent of variations in the
active parameters. Clearly, however, this type of sensitivity measure is

of somewhat limited use in a practical situation, where for example, we
might wish to realize an RC-gyrator filter in integrated form. In such a
situation, we would be concerned with the sensitivity of the network
response to simultaneous variations in some or all of the network parameters
It was, therefore,-considered necessary to define a multiparameter
sensitivity indexof erformance by which a more meaningful measure of the
sensitivity performance of linear time-invariant networks (in general) might
be obtained.

(2) In Chapter III, the sénsitivity problem in network theory is surveyed
in some detail, with emphasis being placed on multiparameter sensitivity.
During the course of this survey, the various multiparameter sensitivity
criteria which have already been proposed in the literature, and the methods
by which such criteria may be computed, are critically appraised, and their

inherent limitations are discussed.



(3) In Chapter IV, a new multiparameter sensitivity index of performance
for use with linear, time-invariant networks is proposed,'and a procedure
for determining a so-called "optimum tolerance set" for a given network

is described. In Chapter V, the problem of computing the index of
performance is discussed, and a new computational procedure is described.
The procedure is shown to be highly efficient with respect to computer
time and storage requirements.

(4) The index of performance has been used to investigate the dependence
of the sensitivity performance of low-pass LC-ladder filters on the order
of complexity, the magnitude of the passband ripple, the amount of
dissipation and the source/load resistance ratio of such networks. Optimum
tolerance sets have been obtained for a number of networks, and the
improvement in sensitivity performance obtained through use of these
optimum tolerance sets has been investigated. In Chapter VI, the computa-
tional techniques used to undertake these investigations and the results
obtained are discussed in detail.

(5) In Chapter VII, the index of performance and the concept of the
optimum tolerance set is extended to the case of active filters. In the
case of such filters, the second-order section is of particular import-
ance as higher order networks may be realized by a cascade of a number

of such sections. The index of performance has been used to evaluate the
multiparameter sensitivity performance of several alternative second-
order sections thus facilitating the choice of the particular section to
be used. It has also been used, in conjunction with optimal search
techniques, to obtain the optimum element value set for the chosen section,

the optimum tolerance set for such optimum nominal set then being obtained.



Finally, the optimum tolerance sets for the various second-order sections
thus obtained are related to each other by defining the variables of the
overall network to be its pole coordinates in the complex frequency

plane. The optimum tolerance set for such pole coordinates is then
obtained. This set, in defining the limits of pole migration for each
pole relative to the others, may then be used to obtain the absolute value

of the tolerance on each element of the entire network.



CHAPTER 1II

RC-GYRATOR FILTERS

2.1 Introduction:

The classical network synthesis problem involves two steps:

(i) the approximation problem, and, (ii) the realization problem. The
approximation problem is one of deriving an approximating function which
minimizes the error between itself and the desired response function over
a band of frequencies, while at the same time satisfying ceftain realiz-
ability conditions. Having determined sﬁch a function, we may then
proceed to realize the network in a suitable form. In the case of passive
networks, many suitable synthesis procedures have been developed over the
years. In particular, we have the very powerful techniques of Foster,
Cauer, Brune, Bode and Darlington for the classical synthesis of networks
containing lumped, linear, finite, passive and bilateral elements.

Due to the accelerated growth of solid-state technology since the
early 1950's, the interest in filter theory has shifted significantly
from the area of passive filters to that of RC-active filters, i.e., filter
structures which ﬁse resistors, capacitors and active devices only. One
advantage of this type of structuré is that the need for inductors, which
are less nearly ideal than are resistors and capacitors, and which become

extremely bulky at very low frequencies, is eliminated. Furthermore, the

(5)



recent advent of thin-film and integrated circuit methods of micromimaturi-
zation has generated a real need for frequency selective networks which do

not require inductors, as it has been found thét the quality of an induactor
deteriorates rapidly with decreasing volume.

In the case of a network structure consisting of resistors and
capacitors only, the natural frequencies of the network are restricted to
lie exclusively on the negative real axis of the complex frequency plane.
This, therefore, means that in the case of a passive RC filter, the poles
of the transfer function, which are the natural frequencies of the network,
can only occur on the negative real axis. This restriction seriously
limits the degree of selectivity that can be obtained from such networks.
However, by including one or more active elements in the network, it is
possible to shift these poles anywhere in the left half of the complex
frequency plane, and thus realize the same degree of selectivity that is
obtainable from an LC filter.

Significant contributions to the theory of active network synthesis
have been made by Linvill, Yanagisawa, Sandberg, Kinarawala, Horowitz and
Calahan, to naﬁe but a few. The most commonly used RC-active synthesis
procedures are based on the partitioning of the network function of interest
into one of two forms:

(i) Positive RC-negative RC partitioning in which the numerator and/or
denominator of the network function are formed by the sum of positive and
negative RC immittances, and in which a negative impedance converter is
used to implement the subtraction process. A negative impedance converter
(NIC), in its ideal form, is defined as a two-port network for which the

input impedance at either port is proportional to the negative of the



impedance connected across the other port. For example, if an ideal NIC,

with conversion ratio k, is terminated with an impedance Z as depicted

L
in'Figure 2.1(a), then the impedance looking into the input terminals of
the NIC is given by

Z, = -kzZ (2.1)

The conversion ratio, k, is usually assigned a nominal value of unity.
(ii) Positive RC—positivé RL partifioning, in which the numerator and/or
denominator are formed by the sum of positive RC and positive RL
immittances. In this case, a gyrator terminated with a suitable RC network.
may be used to implement the RL immittance. A gyrator in its ideal form
is characterized by the voltage-current relations

V1 = -rl,

V2 = rI1
where r is the gyration resistance. Thus, the impedance measured, looking
into either port of a gyrator is proportional to the impedance connected
across the other port. For example, if an ideal gyrator is termined with

an impedance Z ,"as depicted in Figure 2.1(b), then the impedance looking

L,
into the input terminals is given by
r2
Z, = o 2.2
in Z (2.2)

Thus, an ideal gyrator, terminated with a capacitance C, is equivalent
to an inductance with a value of rZC.

In the early sensitivity studies of Rc?active filters, the network
sensitivity was usually defined in terms of the pole-sensitivity function,

Py ,
SX , defined by P. dp.

i i '
Sx 7 dx/x (2.3)



o
Ideal NIC
conversion ratio k
o
Zin - -kZL
PG
Ideal gyrator
— WIt}} 7 )
|gyrator resistancer L
O
2
=X
in ZL

Figure 2.1: (a) Ideal NIC terminated with load impedance ZL

(b) Ideal gyrator terminated with load impedance ZL



where x is the variable parameter of interest. It can be shown that when
the characteristic polynomial of the network contains two or more pairs
of complex conjugate roots, then terms of the form (si - sj), i#j, will
appear in the denominator of each pole sensitivity function. Hence,
should the separation between the various poles become small, the pole-
sensitivity of the network woﬁld become so inordinately large that a
practical realization of the filter using a single RC-active section would
not be feasible. Consequently, we find that when a network function has
more than one pair of complex-conjugate poles, it is often realized as a
cascade of second-order sections suitably isolated by means of buffer
amplifiers where necessary. For this reason, the second-order section is
of fundamental importance in the synthesis of RC-active filters, and the
choice of structure for its implementation warrants careful consideration.
Such a choice will be based on several factors, e.g., economy of
components, suitability for integration, and, of course, sensitivity
conéiderations. The relative insensitivity of a gyrator filter is a
characteristic which has been observed by several authorsl’z. In the first
place, negative feedback is employed in the realization of a gyrator,
whereas in the case of a NIC, positive feedback is used. We would there-
fore expect the gyrator to be the less sensitive structure. Secondly, a
synthesis procedure which is based on the addition of functions (as in
the case of a positive RC-positive RL decomposition) is obviously less
sensitive to parameter variation than is one which is based on the
‘difference of two functions (as is the case in positive RC-negative RC
decompositions). Furthermore, Calahan1 has shown that regardless of the

degree of the polynomial being decomposed, whenever an RC-RL decomposition
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is possible at all, such a decomposition can be found which results in a
lower pole-sensitivity than any RC-NIC decomposition.

In the case of a second-order transfer function, with zeros at
infinity, an RC-RL decomposition always exists. We may therefore conclude
"that in the case of an active-RC filter which is to be realized as a
cascade of such second-order sections, an RC-gyrator structure appears
most attractive from the sensitivity point of view. As a first step in the
investigation of the sensitivity of a wide range of linear time-invariant
networks, both to active and passive parameter variations, a number of
RC-gyrator filters were constructed and the sensitivity of their response

characteristics to supply voltage variations was measured.

2.2 The Gyrator and its Practical Implementation:

2,2.1 The Y-model gyrator

The practical realization of a gyrator may begin with the de-

composition of the admittance matrix, as shown by3’4’5

Y = = + (2.4)
g1 O 1821 0 0 0
that is,
Y = Ya + YB (2.5)

The admittance matrices,Ya and Y, , may then be implemented in circuit

form, and connected in parallel. The resulting circuit consists of two
ideal voltage-controlled current sources, one transmitting in the forward
direction only, with control parameter equal to 851> the second transmitting

in the reverse direction only, with control parameter equal to -8y, as
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shown in Figure 2.2. A simple, but effective, implementation has been
proposed by Haykim4, in which Yé'is realized by two common emitter
stages, each with its own local series feedback as shown in Figure 2.3(a).

Provided that resistors Ra and Rc‘satisfy the conditions

h.
, ie;
Ra 7 Twh, (2.6)
fe
1
and
h.
ie,
Re > 1771 (2.7)
fe2

where the hie and h. are the common emitter h-parameters of the pertinent

fe
transistors, then Yo1 approximates closely to Rb/RaRc and the other
parameters are negligibly small and can justifiably be ignored. In a
similar mahner YB« can be impleménted by a single common-emitter stage,
with local series feedback provided by Re, as shown in Figure 2.3(b).

Provided that
h,

R > —>2 (2.8)

then Y12 is clearly equal to —l/Re and the remaining y-parameters are
negligibly small. |

The gyrator is realized by connecting these two circuits in
parallel. The resulting circuit is shown in Figure 2.4, where, for

convenience of biasing, we have used PNP and NPN transistors. If the

gyrator is to be passive, then Yo1 = Yoo and the necessary condition is
that RaRC
= )
Ry R (2.9)

b
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1 2
© 1 O
V1 g,1V1
o- 0,
1 2
g1,Y, v,

Figure 2.2: "Y-model" representation of gyrator
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The inclusion of biassing resistors Rf and Rd as shown in Figure
2.4 degrades the performance of the gyrator in as much as the Y11 and
Y5, are no longer negligibly small. This problem may be overcome by
modifying the circuit to reduce these parasitic effects and by using the
predistortion technique to compensate for whatever residual parasitics
remain after such modification.

In our particular case, the resistors Rf and Ry were replaced by
equivalent current sources as is shown in Figure ‘2.5. Having performed
this step, the parasitics were measured and were found to be sufficiently
small so that the predistortion technique could be used without further
modification. However, in the event that the measured parasitics were
still too large to be accommodated by the predistbftion technique, it is
possible to use field-effect transistors at the input of both the forward
and reverse transmission paths. In this way, advantage can be taken of
their high input impedance to further reduce the unwanted parasitics.
Several such networks were constructed, and Q-factors up to 700 were

measured. A typical circuit diagram for such a gyrator is shown in

Figure 2.6.

2.2.2 The Z-model gyrator

The various circuits proposed thus far for the gyrator are based
on the Y-model representation in which the gyrator is realized by a
parallel-parallel connection of two voltage-controlled current sources,
with one éource transmitting in the forward direction and the other in
the reverse direction. In this section, an alternative Z-model realization

of the gyrator is described. The gyrator, in this case, is characterized
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Figure 2.5: Improved version of gyrator



Figure 2.6: Gyrator containing field-effect transistors

Ry = 25.00 Ry, = 11.80
R, = 4.90 R, = 2.90
R, = 4.70 Ryz = 1.00
R, = 4.15 R, = 15.00
Re = 4.80 Ryg = 15.20
Rg = 4.15 R = 14.80
R, = 0.39 C,-. = 10.00
Rg = 4.20 - C, =10.00
Rg = 1.00 C, = 10.00
Ry= 5.90 c, =10.00

(A1l resistances in Kilo-ohms,
all capacitances in Micro-farads)
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Figure 2.6: Gyrator containing field-effect transistors
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by the impedance matrix Z, where

7 = (2.10)

Z = + (2.11)

=]

[e]
o
o

we obtain the model shown in Figure 2.7. It consists of two current-
controlled voltage sources connected in series at their input and output
ports. One controlled source transmits in the forward direction, and has
a control parameter equal to Tes the other transmits in the reverse
direction with control parameter equal to -T .

The use of bipolar transiétors, on account of their low input
resistances, is ideally suited for the practicél implementation of the
controlled current sources in Figure 2.7. 1In a practical circuit, however,
we find that the elements on the principal diagonal of the z-matrix in
Equation 2.10 are small but, nevertheless, finite. Furthermore, the
control parameters of the controlled sources may not be exactly equal in

magnitude. We may, therefore, represent the z-matrix of a practical gyrator

circuit based on the z-parameters model as follows

Z = ' : (2.12)
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Amplifier 2
Figure 2.7:

"Z-model'" representation of gyrator
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Such a gyrator would be active if

(rf - rr)2 > 4 T, T, ‘ (2.13)

Suppose the noﬁ-ideal'gyrator is terminated with a perfect capacitor C;
the resulting input impedance is, therefore,

Tely
Zin = Tt T+ 1/sC

- (2.14)
where s is the complex frequency variable. The impedance Z;, may be

represented by the equivalent network shown in Figure 2.8. i.e. the

input impedance is of the form

rr [s + w ]
Z. = r +-LT [ 1 (2.15)
S+w2

where the corner frequencies w0y and w, are defined by

T,
1

1 = C(r.r_+ 1
i‘o

frr)

1
) e (2.16)
o)

Within the frequency band defined by wy > W >y, Zin approximates to the

impedance of an inductor with inductance

Ty
L = Cr.r 1+ = Cr.r (2.17)
T T
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Figure 2.8: Equivalent circuit of capacitively

terminated lossy gyrator
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The logarithmic plot of ,Zinlz against frequency can be approximated
asymptetically by a straight line with positive slope of 6dB/octave
betwéen the corner frequencies 0y and Wy We may use this predicted response
as a measure of the performance of the gyrator,

The gyrator circuit diagram is given in Figure 2.9. Transistors
T1 and T, constitute amplifier i of Figure 2.7. Advantage has been taken
of the low input and low output impedances of the common-base and common-
collector modes, respectively. To reduce these impedances further, a

negative feedback loop through transistor T, is added, the transistor

3
providing the required phase reversal. Resistor R, provides a means of
varying the amount of feedback and can thergfore be adjusted for optimum
operation of the circuit within the required frequency range. Transistors
T4, T5 and T6 constitute amplifier 2 of Figure 2.7. Again, advantage has
been taken of the characteristics of the common-base and common-collector
modes, and a negative feedback path through R11 and C5 has been added fo
further reduce the input and output impedance leveis. VRll, the variable

Capacitors C.,, C

feedback resistor, performs the same function as R 7s Cg

2
and C9 are used for high frequency stability. Capacitor C3 presents a
negligible impedance inside the useful frequency band, shorting the d.c.
power lines for amplifiers 1 and 2 to a.c. signals, thercby completing the
series-series connection of the two amplifiers as required. Transistors
T7 and T8’ simulating constant current sources, isolate the common point
of the two amplifiers from the d.c‘,ﬁqwer supply lines.

The gyrator was terminated with a low-loss capacitor, The driving-

point impedance at its input terminals was measured as a function of



Figure 2.3 Circuit diagram of z-model gyrator

R, = 0.47 R, = 3.30 C, = 10.0
R, = 10.00 R 5 = 12.00 C, = 10.0
Ry, = 3.30 Ry, = 82.00 Cy = 10.0
R, = 82.00 R. = 3.30 c, = 10.0
R, = 12.00 R = 3.30 C; = 10.0
R, = 6.81 R, = 3.30 Cg = 10.0
R, = 0.22 R g = 40.00 C, = 10.0
Rg = 5.60 Ry = 3.30 C, = 330 pfd.
Rg = 5.60 Ry, = 0.22 Cg = 330 pfd.
Ryg = 0.47 Ry, = 39.00 Cg = 330 pfd.
Ry, = 10.00 R,, = 0.22

Ry = 0.22

(A1l resistances in Kilo-ohms, all capacitances in

micro-farads except where stated to the contrary)
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Figure 2,9: Circuit diagram of Z-model gyrator

¢C



24

frequency, and the results obtained are shown plotted in Figure 2,10 where
close agreement with the predicted impedance response is observed. The
small deviation at low frequencies may be attributed in part to the
effects of decoupling and bypass capacitors in this frequencylrange.

An alternative criterion of performance is the Q-factor of the
simulated inductance. Some representative values of the measuredQ-factor

for the capacitively terminated gyrator are given in Table 2.1.

0 2.2 KHz. 3.8¢ KHz. 4.3 KHz.

Qfactor 16.8 77.2 54.0

Table 2.1

2.3 RC-Gyrator Ladder Filters:

The gyrator can be used in the synthesis of inductorless filters
in two basic ways:
(1) The filter may be realized by a cascade of second-order sections
suitably buffered by means of isolation amplifiers. Each such section
consists of a pair of two-port RC networks coupled by a gyrator.
(2) A conventional LC ladder filter is first designed to meet the
prescribed specifications. Each inductor in the filter is then replaced
by a gyrator terminated with an appropriate capacitor. In this way, it
is possible to make use of the various classical synthesis techniques
which have been developed for LC passive filters in the synthesis of an RC-

active network. This procedure, however, may require the use of a
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floating gyrator. Such a need may be eliminated, at the expense of an
increase in the number of three-terminal gyrators used, by employing the
following procedure.

Consider, for example, thé fourth—drder low-pass filter of
Figure 2.11(a). Working from the source to the load, and recognizing that
a shunt capacitor connected across the output port of a gyrator is equiva-
lent to a series inductor at the input port, we can eliminate the need for
series inductor L2 by inserting a gyrator with gyration resistance T
as depicted in Figure 2.11(b). Effectively, the T-section made up of

inductors L, and L, and the capacitor Cq has been replaced by a m-section

t f 1
consisting of capacitors CZ’ C, and inductor L,, which are defined by

4 3’
! 2
2 = & L
' _2.C
Lz = 1 G
! 2
Cs = 8 Ly
' 2 5
R2 = 1 /R2 ( .18)~
f
Next, to eliminate the inductor L3 in Figure 2,11(b), we introduce a
second gyrator of gyration resistance r,, as in Figure 2.11(c), where
"o 20 22
C3 = &by = 71803
" 2.t 2.2
L4 = r2C4 = glrzL4 (2.19)
" 2,0 2.2

Ry = 1/Ry = g T)R,
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(a)
(b)
R”
(c) 2
g5 = 1/7g
/\
@ :':Cs) < =15

Figure 2.11: Low-pass filter; gyrator-capacitor

equivalent circuit
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"

Finally, to eliminate the'inductor_L in Figure 2.11(c), we introduce a

4
third gyrator of gyration resistance Ty, as in Figure 2.,11(d), where
"t 2 " _ 2 2 2
Co = &by = 8175830y
(2.20)
m _ 2 n _ 2 2 2
Ry = w3/Ry = Tigm3/Ry

The resulting ﬁetwork is thus an inductorless 16w—pass filter
consisting of a cascade of grounded three-terminal gyrators with shunt
capacitors accounting for the cut-off at high frequencies. In general,
to realize a filter of order n, the procedure requires the use of (n-1)
grounded gyrators. On the other hand, the direct replacement of series
inductors with capacitively terminated gyrators a minimum of n/2 floating
gyrators if n is even, or (n-1)/2 floating gyrafors if n is odd.

In a similar manner, we can obtain the gyrator-RC equivalents for
other filter configurations. Figures 2.12 and 2,13 for example, show
these equivalents for a high-pass and an asymmetric band-pass filter,
respectively. In-the case of the high-pass filter, the inductors appear
as shunt elements, and may therefore be directly replaced with grounded

gyrator-RC combinations, thereby reducing the number of gyrators needed.

2.3.1 Low-pass filter

To illustrate the synthesis procedure, we will consider the design
of a fourth-order, low-pass Butterworth filter with a cut-off frequency
of 500 Hz. The filter is to be driven by a current source and is to be

terminated with a 1 Kilo-ohm load. To compensate for the degrading effect
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Figure 2.12:

High-pass filter; gyrator-capacitor

equivalent circuit
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of the parasitic immittances of the imperfect gyrators, the predistortion
technique of conventional filter theory is used.

The first step in the procedure is to obtain a suitable transfer
function, which, in this case, is available from published'tables7, and

determine its pole locations. The function is given by

1
2108 = G I T T2 (s v 9289 T 5 .3877)
[

The poles of 221(5) are now predistorted by an amount S in this case
%, is chosen to be 0.2. In other words, a transformation of s = p - 0.2

is made, yielding the new impedance function

' - .
2, () = Z,,(s) b0 (2.22)
that is
' 1
2)1(P) T G I8IT T 9259)(p ¢ L7237 £ 5.3827) (2.23)
or
' ! 2.2
2P = (2.24)

p* + 1.1813p> + 2.087p° + 1.529p + .595

from which we obtain an expression for Zyyt

4 2
2, = P + 2.0§7p + .595 (2.25)
1.813p" + 1.529p

Expanding z,, as a continued fraction expansion, we obtain the network

22
of Figure 2.14(a).



(a)

(b)

(c)

Figure 2.14:

RC-gyrator equivalent circuit for

low-pass LC-ladder filter

Low-pass filter:

1.
1.

1130F.
4585F.

(-
N

1.8785H.
0.5514H.

RL = 1.000%

Low-pass filter with uniform dissipation:

Ry
R,

= 4.
= 0.

4920Q
37574

3.42800
£.1103¢%

RC-gyrator equivalent circuit:

ci'= 0
cy=0
Cé =0
Cg =0
T = 3
T, = 2
r, =0

.1654 mfd.
.0987 mfd.
.5370 mfd.
.1756 mfd.

.650 K-ohm
.445 K-ohm
.943 K-ohm

=
[

X X

~ &
NP N

i}

9.600 K-ohms
16.10 K-ohms
2.960 K-ohms
9.070 K-ohms
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If we now arrange to have uniform dissipation across each element
of this filter, the effect will be to shift the poles away from the jw-axis
in a direction parallel to the real axis. By choosing the correct amount
of dissipation we arrange to have the poles shift to the positions held
before transformation, and in this way we are able to obtain an exact
response. The circuit with dissipative elements inser;ed is shown in
Figure 2.14(b).

It is now necessary to choose an RC-gyrator configuration which is
equivalent to the circuit of Figure 2.14(b). Using the y-parameter model
of the gyrator, a suitable equivalent circuit is shown in Figure 2.14(c).
The resistances R, through R4 represent the parasitics of the imperfect

1

gyrators. The parameters T through r3 represent the effective gyration
resistances, the subscript referring to the pertinent gyrator.

Each element of the circuit of Figure 2.14(c) can now readily be
identified with a corresponding element of the circuit of Figure 2.14(b).
The resulting relationships enable us to determine the aliowablevvalues of
parasitics and capacitor values to be used. The constraints on the values
of the parasitics are used to determine the values of biasing the resistors
necessary, the problem now being reduced to one of determining suitable
d-c operating points for all transistors within the framework of these
constraints.

The circuit diagram for the complete filter is shown in Figure 2.15.
Because of direét coupling between stages, it was unnecessary to include
resistor Rd of Figure 2.4 in either gyrator 1 or 2; it was also convenient

to combine resistor Rd of gyrator 3 with the load resistor. All resistors

and capacitors in Figure 2.15 have been denormalized with respect to a



Figure 2,15:

RC-gyrator low-pass filter; circuit diagram

R1 = 9.74 , R12 = 2.29
R2 = 10.0 R13 = 25.1
R3 = 2.56 R14 = 0.93
R4 = 17.3 R15 = 7.60
R5 = 12.0 R16 = 0.90
R6 = 4.81 C1 = 0.1654
R, = 2.97 C2 = 0.0987
Rg = 4.70 C3 = 0.5370
R9 = 1.50 C4 = 0.1756
RlO = 3.60

Rip = 7.20

(A1l resistances in Kilo-chms and all

capacitances in micro-farads.)
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load resistance of 1 Kilo-ohm and a cut-off frequency of 500 Hz,

The mezsured filter response is shown plotted in Figure 2,16, where
ZZIn‘denotes the transfer impedance of the filter normalized with respect
to the zero frequency value. It is hoted that close agreement with the
predicted response is observed, ‘The noise performance and harmonic
distortion performance of the filter were investigated. The results indicate
that the noise ievel was never less that 80 dBs below signal level in the
range covered (20 Hz to 1 KHz). The output levels of the second through
fifth harmonics of an input signal of 80 Hz were measured as the level of
the input signal was increased from 1 millivolt to 1 volt. No significant

increase in the harmonic content of the output signal was observed until

the input level exceeded 0.7 volts.

2.3.2 Band-pass filter

The second configuration studied was that of an asXTmetxicalwpand—
pass filter with upper cut-off frequency of 10 KHz, bandwidth of 3 KHz,
1 dB ripple in the passband, and cut-off rates of 6 dB/octave and
18 dB/octave, respectively, at low and higb frequencies. The filter was
driven by a current source and terminated with a 10 K-ohm load resistor,

The general expression characterizing this type of response is given by

|2,,|? = —— (2.26)

2.2
1+ n"lg]
. . . . . 2.
where n is a constant which determines the ripple magnitude and |g|” is the
characteristic function defining the insertion loss of the filter, A

suitable function for [g]z is given by8
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le]? = 37 [w8 - 2.935 u® + 3.165 w* - 1.4844 w2 + .25578]
w
............. (2.27)
from which we obtain
2 00565 w2
|221' = 78 6 : g y) (2.28)
w =~ 2.935 w + 3.165 w - 1.4787 w~ + .25578

putting w2 = —52, and retaining those poles in the left half of the s-

plane, we obtain an expression for 221(5)

2. (s) = .075188s
21 (s + .081995 £ j.715) (s + .081995 = j.98474)

(2.29)

To compensate for the parasitics of the imperfect gyrators we use the
predistortion technique by applying the transformation s = p - 0.05 to
the denominator only, with the numerator being left unchanged. We thus

obtain

(2.30)

' .075188p
Zn® = 3 3 2
p + .12798p™ + 1.487p" + .0949p + .49726

from which we determine

3
. - .12798p™ + .0949p (2.31)

22 5% 4 1.a87p% + 49726

:It now remains to choose an RC-gyrator configuration which is
equivalent to this circuit. Such a circuit is shown in Figure 2.17(b),
where R1 through R4

is an additional resistor included to obtain equal dissipation across C

represent the parasitics of the two gyrators, and R5

3



T x

Figure 2.1% Asympstric band-pass filter

(a) With uniform dissipation:
C1 = 7.7960 F, L1 = 0.1316 H. R1 = 2.5650
C2 = 7.8130 F. L2 = 0.0608 H. R2 = ,00658
L3 = 0.1300 H. R3 = .,00304
34 = 0.0065
RS = 2.5600
R6 = 1.0000
(b) RC-gyrator equivalent circuit:
c'l' = 0.01265 mfd. RY = 24.76 K-ohms. 1, = 1.074 K-ohms.
: Cé = (0.01784 mfd. Ré = 18.18 K-ohms. r, = 1.094 K-ohms.
cé = 0.00814 mfd. Ré = 18.40 K-ohms.
C, = 0.01724 mfd. R, = 25.59 K-ohns.
C5 = 0.01243 mfd. RS = 39,33 K-ohms.
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The equivalence of this network to that of Figure 2.17(a) is
apparent on looking in through terminals 22'. In this way we can
identify each glement of the network with a corresponding element of the
network of Figure 2.17(a). The resulting relationships are used to
determine the necessary parasistic and capacitor values. The measured
parasitics may then be adjusted to satisfy these constraints.

The complete circuit diagram is shown in Figure 2.18, in which all
components have been denormalized with respect to an upper cut-off
frequency of 10 KHz and a load resistance of 10K-ohms. In the network of

Figure 2.18, transistors Tl, T and T10 have been introduced as

5, T6,

current generators, replacing biasing resistors Rf and Rd of Figure 2.4,

Resistors R18’ ng, R2

input ports of both gyrators to the required values. R11 adjusts the

0 and R21 are used to adjust the parasitics at the

parasitic at the output port of gyrator 1 to the required value, and Ry
accounts for the combined effect of the load resistance paralleled by the
pertinent parasitic at the output port of gyrator 2. The parallel
combination of C3 and R5 of the circuit of Figure 2.17(b) has been replaced
by its series equivalent:to prevent any change in the d-c operating point
of either gyrator.

The measured filter response is shown plotted in Figure 2.19 where

close agreement with the predicted response is again observed.

2.3.3 Sensitivity considerations

The sensitivity of the network response to variations in supply
voltage was investigated for both the low-pass and the band-pass filters.

In the case of the low-pass filter, some typical results are given in



Figure 2.18:

Asynnetric band-pass filters; circuit diagram
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Table 2.2. We note that the overall response remains essentially the
same although bias supplies were reduced to as little as 15% of their

nominal value.

Frequency Nominal ~ Output with Output with
(Hz) Output d-c supplies “d-c supplies
(mV) at 50% of at 15% of
nominal nominal
100 1.000 1.000 1.000
200 1.000 1.000 1.000
300 0.975 0.975 0.968
400 0.915 0.917 0.888
500 0.707 0.698 0.663
600 0.415 0.400 0.363
700 0.024 0.023 0.021
1000 6.006 0.006 0.005

Table 2.2: Effect of supply voltage variation ;

low-pass filter

In the case of the band-pass filter both supplies were varied by
as much as +50% and the .most extreme changes in the filter response are
shown in Figure 2.20. We note, again, that the response is remarkably

insensitive to supply variations.
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2.4 Conclusion:

A procedure for developing RC-gyrator networks equivalent to LC
ladder filters has been described. The procedure has been used to
construct unifdrmly dissipative low-pass and band-pass filtérs, with
measured responses showing very close agreement with theory. In
synthesising the predistorted dissipation-compensated RC-gyrator filter,
it is convenient to use the Y-model for characterizing the imperfect
gyrator if shunt capacitors are connected directly across the input and
output ports of the gyrator. On the other hand, if capacitors are
connected in series with the input and output ports, then it is more
convenient to use the Z-model characterization,.

The sensitivity of the filter response to changes in the level
of the dc-supply voltages was measured, and the experimental results
obtained indicate that substantially large changes in supply voltages
affect the measured loss characteristic only slightly. However, it is
clear that such a sensitivity measure is of limited practical value, in
that it is only adequate for the case of a lumped-element realization of
the filter, in which the passive elements are not considered as variable
parameters. However, in many practical situations (integrated circuits,
for example), all of the network elements are subject to change. In such
cases, there is a need for a quantitative measure of the multiparameter
sensitivity performance of the network. It was, therefore, decided that
an investigation of this problem should be undertaken. In the following
chapter, a survey of the literature as it pertains to the multiparameter
sensitivity problem in network theory is presented. In particular, a

critical appraisal is made of several multiparameter sensitivity functions,
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and problems involved in their computation are considered. Several
procedures for their evaluation are described, with attention focussed on
the auxiliary network approach of Leeds and Ugron, and the adjoint network

approach of Director and Rohrer.



CHAPTER TIII

THE MULTIPARAMETER SENSITIVITY PROBLEM

3.1 Introduction:

In the early studies of the sensitivity problem in network theory
the problem was defined in terms of the sensitivity, Si(s), of some network
function with respect to a single parameter, x. A formal definition of
the sensitivity function was first proposed by Bode9 in 1945. Mason10
used the reciprocal of Bode's definition and this has turned out to be

the accepted definition of the classical sensitivity function as shown by

sTs) = dinT(s)] (3.1)
x d[1n x]
or equivalently,
T _ o dr/T
SX(S) = a—}-('/—}-:- (3.2)

According to Equation 3.2, we may interpret the sensitivity
function as the ratio of the fractional change in the network function,
T(s), to the fractional change in the parameter x which caused the initial
change in T(s), provided that all changes considered are differentially
small, For the case of large parameter changes, we may use Horowitz's

11

definition as follows:

T AT/T
S (s) = BT, (3.3)

(46)
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where AT is the change in T due to the change Ax in x, and Tf and x; are
the final values of the network function and of the parameter under
consideration, respectively. When the leakage transmission through the
network is zero (that is, T(s) is zero when x is zero), Horowitz has
shown that the classical definition of Equation 3.2 and that of Equation
3.3 have the same value, although they are defined differently.

Returning to Equation 3.2, suppose we define the network function
T(s) in terms of its poles and zeros as follows:

I(s + zi)

= Hﬁ—t's—T—P—iT (3.4)

T(s)

where H is a scale factor, and the z, and p; are the zeros and poles of

T(s), respectively. Then using Equation 3.4 in 3.2 we obtain:

P: z,
. st st

sies) = sleg X ;5 X (3.5)

X X . s +p. . S+ zZ,

1 1 1 1

where
H _ dH/H

5S¢ = dx/x (3.6)

- z,
and le and le are the pole and zero sensitivities, respectively,

defined by
P dp;
SX = 'a;/—f (3.7)
and
z. dz.
st - X (3.8)
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Equation 3.5 shows that the poles and zeros of the network function, T(s),
make up the poles of the sensitivity function with residues equal to SXi
and'-Sii.

Up to this point we have oniy considered the sensitivity of a
network function with respect to variations in a single parameter. How-
ever, in a practical situation (e.g., in the design of an integrated
circuit), we have to accommodate simultaneous variations in several
parameters of the network. In an early contribution to the study of
multiparameter sensitivity, a complete generalization of the concept and
various theorems on return difference from the single-loop case to the
multiple loop case was made by Sandberglz. During the early 1960's,
several multiparameter sensitivity functions were proposed. In the
following sections, we will consider these various functions, examine
their properties, the methods which have been proposed for their evaluation,

and we will discuss their inherent limitations.

5.2 Multiparameter Sensitivity Functions:

To a first order of approximation, the fractional change in

T(s,xi) for small variations in X5 is given by

AT . 3(InT)
T 7 Eymmxy d0nxg) (3.9)
i i -
where X, (i=1, 2, ..., n) = the variable parameters of the network. If

-we let the set of fractional parameter increments, d(ln xi), be considered

as a vector, dY, i.e.,

dY = {d(n xi), d(1n x2), ... d(1n xn)} (3.10)
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and we put Yi = In X then Equation 3.9 becomes

AT
- = V{ln T(yl, Yoo wves yn)}.dY - . (3.11)

Thus, the fractional change in the network function T(s,xi) depends on the
gradient vector V(In T). Accordingly, Goldstein and Kuo13 have suggested

that the multiparameter sensitivity, Si , be defined as

i

T

Sx = V(In T) (3.12)
i

i.e.

T 8ln T 9ln T oln T

Sx. - {aln x; 2 3ln x, > °°° 3ln X } (3.13)
i 1 2 n

The magnitude of the sensitivity function, which gives the maximum rate

of change of In T with respect to 1ln Xs5 is given by

= S s (3.14)

where the asterisk denotes the complex conjugate.

Clearly, Equaticn 3.12 is a logical extension of the classical
sensitivity function for the single parameter case. The fact that it is
comprised of n single parameter sensitivity functions, as is evident in

Equation 3.13, poses the question as to whether relationships exist

between the various component sensitivity functions, g%%—grn The function

51 has been defined on the basis of the fact that the n parameters of

i
T(s, xi) can vary simultaneously and independently, and thus may be

considered ag n linearly independent vectors. However, it is possible
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that some of these parameters may be linearly dependent with respect to
T(s, xi) in the sense that the variation of T(s, xi) due to a change in
one of the parameters might also be effected by a change in one or more
of the other parameters for all values of s. This possibility has been
considered by Lee14, who has introduced the concept of a "sensitivity
group'. Such a group is defined as the largest sub-group of component
parameters, the members of which are linearly dependent with respect to
T(s, xi), Iﬁ other words, if a parameter X5 Variés by an arbitrary
amount Axi, and this variati&n results in a change in T(s, xi) which we

will denote by AT| , and if there exists a parameter xj such that

AX,
i

AT (3.15)

Ax

Ax,
1

where

bxs = I Ax, (3.16)

for all values of s, and if further, kji is a non-zero c&nstant which is
independent of s, then we find that any variation of T(s, Xi) due to Axi
can equivalently be obtained from ij, and therefore Xy, Xj are linearly
dependent with respect to T. A sensitivity group is thus defined as the
largest sub-group of such parameters, all the members of which are linearly
dependent in T(s, xi)

The multiparameter sensitivity function, Si., may now be defined

i
in terms of these sensitivity groups as follows: If we let the scalar

+

sum of the single-parameter sensitivities of all the elements of the j“h

sensitivity group be denocted by Sj, i.e.,
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J o aanT)
S, = L SOn x. ) (3.17)
= 1 J .

where nj defines the number of elements in this sensitivity group, and

xij is the ith'element of the jth sensitivity group, then the multiparameter

sensitivity function may be expressed as

(3.18)

”
N
TSR]
o

"

vhere the ¢, are unit vectors, and m denotes the number of sensitivity

~ groups.

3.3 Properties of Sensitivity Functions:

It is informative to consider further the effects of grouping the
single-parameter sensitivity functions according to element type. In this
respect, an important contribution was made by Blostein15 in which he
shows that multiparameter sensitivity theory can be used éffectively to
contribute quéﬁtitative insight into the sensitivity behaviour of net-
works. Let the network which is described by the transfer function,

T(s, xi), have £ inductors, r resistors, and c capacitors, i.e.,
n = £L+1r+c (3.19)

Also, let the individual components be denoted by li, T, and C:s and let
their reciprocals be denoted by Yy 8o and €. respectively. From the

amplitude scaling property of networks, it follows that

T(ari, aﬂi, ae., s) = aT(ri, Ki, e s) (3.20)
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where a is an arbitrary scaling factor, Différentiating Equation 3.20

with respect to a, and letting a equal unity we obtain

£ T ¢
DS, + I S+ % SZ = 1 (3.21)
i=1 “i e R i=1 i
Now
T T
Sx. = "Sl/x. (3.22)
i
therefore
T T T )
Sp + S, -~ S. = 1 (3.23)
where
hi
ST = h) ST etc
R . T,
i=1 i

It follows that if T(s, xi) were an admittance or dimensionless transfer
function, then the right-hand side of Equation'3.23 would be rlﬁorvzero,
respectively.

A further relationship can be established by employing the

concept of frequency scaling, according to.which

T(ri, aﬂi, ac, , s) = T(ri, Zi’ <> as) (3.24)

where T may be any network function. Using the same procedure as before,

we obtain

T T _ dinT) _ T
o=
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That is, the sum of the sensitivities with respect to all capacitors and
inductors is equal to the sensitivity with respect to the complex

frequency variable, s. Furthermore, by letting s = jw, we obtain

T.. T,. _ d o(w)
ﬂ{e SL(Jw) +“{e SC(JN) * T In(a) (3.26)
and
In sTw) + Jn TGy = wr, (3.27)
L C d ’
where
a(w) = ln[T(jw)[ = attenuation function
B(w) = arg T(Jw) = phase function
and
Ty T 9%%&1. = group delay function

Equation 3.26 may be interpreted physically as follows: In any network,
if all inductances and capacitances undergo equal normalized perturbations,
the resulting change in the magnitude characteristic is independent of the
realization technique used to obtain the network and depends only on the
slope of the prescribed attenuation curve.

These multiparameter sensitivity properties were later used by
Blostein16 to investigate the effects of incidental dissipation and stray
terminations on the transmission characteristics of resistively terminated
LC two-port networks. Bounds on such errors were obtained, and these
were shown to be invariant for all equivalent two-port realizations of a
~given transfer function.

The property of sensitivity invariance has generated much interest

X . 7 . ;
in the literature, Leeds and Ugron1 considered the network-function
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sensitivity of a class of continuously equivalent networks. Their
investigation led to a conjecture that the sum of the elemental sensitivity
functions (over all components of each continuously equivalent LC-network)
is invariant with respect to the various equivalent LC-networks. The
proof of this conjecture is, of course, implicit in Equation 3.25, and

formal proofs have since been given by several authorsls’lg.

The following
Specific conclusions have been reached:
(i) The sum of the sensitivities with respect to all elements in a
~general RLC network is invariant under continuously equivalent trans-
R 15,19,2

formations "’ "7’ 0.
(ii) The sum of the sensitivities with respect to all elements of one
kind is a constant for all equivalent networks (though it is a function

21
of frequency) .
(iii) The sum of the sensitivities of an RC network function is invariant

; . 18
for all netwrks described by the same network function
(iv) The sum of the sensitivities of an LC network is given by the
‘s . 15,18

frequency sensitivity of the network function .
(v) The sum of the sensitivities of an LR network is invariant over all

X 18
network functions
(vi) The individual sensitivity for capacitances and inductances is
invariant if there are no capacitance loops and inductance cut-sets in

19
the network ~.
The concept of summed sensitivity has also been extended to the case of
22,2%

RC-active networks containing all possible types of controlled Sou¥vCes,

The summed sensitivity function may also be expressed in terms

of the pole-~ and zero-sensitivities of the network. Kumpel24 has
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considered this possibility, and has shown that in the case of two-
element-kind networks, the sum of the pole- and zero-sensitivities is
again invariant. It is also pointed out that in the case where a network
function is being approximated by use of its dominant poles and zeros
only, the sum of the sensitivities for these singularities can be less
than that for the poles and zeros which have been neglected. This, naturally,
could lead to incorrect conclusions in an optimization procedure, for
example.

It is also of interest to note that in the case of a single-loop
feedback system, Huang has shown that the sum of the sensitivities of a
closed-loop pole with respect to variations in the open-loop poles and

zeros of the system is equal to unity.

3.4 Continuously Equivalent Network Approach to Optimal Synthesis:

It is, indeed, in the area of optimal synthesis (optimal in the
sense that the multiparameter sensitivity performance of the network has
been minimized) that the concept of sensitivity invariance is of great
importance. The synthesis of optimal networks has been considered by
several authors. Schoeffler26 uses the theory of continuously equivalent -
networks to generate a sequence of networks whose transfer functions are
identical, but whose elements differ from one network to another by an
incremental amount. A multiparameter sensitivity performance criterion,

@, is defined as

-3

(3.28)

e
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The index ¢ is used to find the optimum network from the sequence which
has been generated.

The generation of such a sequence consists of first aefining what
network characteristics are to remain constant. This fixes certain entries
in a transformation matrix, but leaves others free of constraint, The
free entries are chosen arbitrarily. The matrix is used to obtain
differential equations in a dummy variable X. The differential equations
for the sensitivity of the transfer function to changes in the network
parameters are then derived. The differential equations in both cases
are linear homogeneous, with the elements of the transférmation matrix
as the independent variables. Consequently, they are a function of X.
Thus, one may choose a value of X thch minimizes the performance criterion
@. If a new set of arbitrary entries in the transformation matrix is
selected, a new sequence of continuously equivalent networks and a new
minimum value of performance index will result. Thus, the problem is to
determine the value of X and the arbitrary entries in the transformation
matrix which will minimize the index over the allowable choices.

Leeds and Ugron17, in the course of their minimization procedure
based on Schoeffler's approach, found that the optimum network selected
from a series of continuously equivalent networks tends to have the value
of the summed sensitivities distributed uniformly with respect to the net-
work elements. This, of course, is to be expected, in view of the
invariance property of the summed sensitivities and the nature of the
index used. In other words, the absolute minimum of the sum of the magni-

tude squared criterion will result when all the parts of the sum are equal.
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The requirements for a network to be potentially optimally
insensitive according to Schoeffler's criterion were investigated by Holt
and Fidler27° They show that in the case of an LC network, such as that
considered by Leeds and Ugron, the coefficients of the numerator and
denominator polynomials of the pertinent transfer function must be such
that each element appears in all coefficients of the complex frequency
variable, s, unless a coefficient corresponds to either (but not both)
the highest or the lowest power of s in the network functionm.

The theoretical limitations of the continuously-equivalent net-
work approach were considered by Schmidt and Kasperzl, who conclude that
networks with substantially lower sensitivity can be‘obtained only if
the number of nodes, i.e., the number of network elements, is allowed to

increase sufficiently.

3.5 Methods of Computing Sensitivity Functions.

Iﬁ performing a sensitivity analysis, or during the course of an
optimal synthesis procedure, it is often necessary to calculate either
the sensitivity of a large number of network functions with respect to a
single parameter, or alternatively, the sensitivity of a single network
function with respect to a large number of parameters. Such calculations
are invariably tedious and time consuming, and considerable effort has
been expanded in devising efficient methods and algorithms for their

evaluation. There are several ways of approaching this problem:

3.5.1 The Feedback Theory approach

According to Bode's theory of feedback, based on the concept of

return difference, we may express the sensitivity of a network function,
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T(s), with respect to a specified parameter, X , as follows9’10’28’29

ST = e o (3.29)

§
where F_ and Fx are the return difference and null return difference,

both with respeci to x . When X is the control parameter of a controlled
source embedded in the network, we have
ka(s) = 1+ xkt(s) (3.30)
where t(s) is defined as the negative of the controlling signal that is
developed when the externally applied excitation is reduced to zero and
the: controlled source in question is replaced with an independent source
of unit strength. The null return difference? F' , is defined in a
similar way, except that in this case, the externally applied excitation
is adjusted to reduce the signal developed across the load to zero.
Assuming that the network function, T(s), relates the Kth nodal

voltage (or loop current) to the independent source at the first node

. %
(or in the first loop), we may express F_ and F_ as follows:

(3.31)

o . . . . . .
where A~ is obtained from the circuit determinant, A, by setting X

equal to zero, and

F;k(s) - | (3.32)
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o . .
d A
where AlK is obtained from the cofactor )

Hence we may express the sensitivity function ST as

by setting X equal to zero.

' A
S, = T -~ T— (3.33)

3.5.2 The Bilinear Theorem approach

(a) Parker's Procedure: This procedure is based upon the use of the
bilinear theorem, according to which the dependence of the network
function, T(s, xk), on a change, Axk, in a particular bilateral element,

X, can be expressed as follows30

W(s) T(s,0) + X T(s,%)

W(s) + Axk (3.34)

T(s,Axk)

where T(s,0) and T(s,x®) are the limiting values of the network function
for Axk equal to zero and infinity, respectively, and W(s) is the Thevenin
immittance which is measured looking back into the network from the
terminals of the adjustable parameter bx, , as depicted in Figure 3.1 in
which X6 denotes the nominal value of the parameter X -

We note that T(s,0) represents the nominal value of the network
function. Subtracting T(s,0) from the T(s,Axk) of Equation 3.34 and

allowing 4x to approach zero, we obtain in the limit

dr _ _ T(s,=) - T(s,0) (3.35)

dx X, * W' (s)

where

W(s) = W(s) - x (3.36)

ko



W(s)

) 3!

l'o— o 2

Figure 3.1: Bilinear theorem approach,

Parker's Procedure

60
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1
that is, W (s) is the Thevenin immittance measured looking into the net-
work at the terminal pair 3-3' of Figure 3.1. The sensitivity function

with respect to the parameter X is therefore given by

T ~ %o T(s,) |
S"k(s) = Wy Ty 1} (3.37)

Thus, we can evaluate the sensitivity function of the network without

actually performing a differentiation.

N

Examgle 3.1

Consider the network éhown in Figure 3.2. To determine the

differential sensitivity. 2%3 say, we find by inspection, that

T(s,0) = R 1/LC ‘ R
52+5{_.1_+_.1._} L {“_l}
L CR2 LC R2
T(s,®») = 0 (3.38)
R2
NEs) = sb+ Ry * Tsew;
Therefore, substituting in Equation 3.37, ‘'we obtain
T L
S:(s) = -~ 3— s(1 + SCR,) T(s,0) (3.39)
L R, 2

(b) Sorensen's Procedure: The use of the bilinear theorem has been

extended by Sorensen31 to include the effect of changes in unilateral

elements (e.g., controlled sources). It is shown that
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I
<
o

Figure 3.2: Network for Example 3.1



63

dT - T(s,®) -~ T(s,0)

d
L3 o * :

‘t(s)

(3.40)

where X is thg control parameter of a controlled source embedded in the
network. The Ko T(s,0) and T(s,») are as previously defined, and t(s)
is as defined under the feedback theory approach. It is noteworthy that
when the parameter X is a bilateral element, we find that 1/t(s) takes

. t
on a role identical to that of the W (s) of Equation 3.35.

3.5.3 Approaches based on the use of a related network

In a multiparameter sensitivity analysis, each of the procedures
thus far described requires at least as many network analyses as there
are variable parameters. Obviously, therefore, these approaches become
highly inefficient when considering networks with a large number of
variable parameters. It is in this kind of situation that the use of a
related network as proposed by Leeds and later extended by Director énd
Rohrer becomes so highly effective.

(a) Leeds' Auxiliary Network Procedure: The network considered by

Leeds32 is one in which each branch may contain a linear time-invariant
resistor, capacitor or inductor. Each branch may also contain an independent
current and/or voltage source as well as a dependent current source. The
configuration of a typical branch, the:jth, say, is shown in Figure 3.3,
for which the branch relations are given by
Yej = Tog T Vs
(3.41)

Iej Isj bj cj
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I .
— R
\/
A2 \'"
e SJ
— =1 O
+ Iej
Vbj
2\

sj

Figure 3.3: Leeds' Procedure; the jth typical branch
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and the element equations will be one of the following

VY. = R, I,
ej joej
v = sL, I, 3.42
ej j el ( )
. = sC.V .
ej joej

In addition, for the controlled current source we have

cj = ij Iem : (3.43)

Differentiating Equation 3.4l with respect to X » the element in the kth

branch, we obtain

Yej = s

(3.44)
Ii I' |
ej T i " lej

where the prime denotes partial differentiation with respect to X s and
where derivatives with respect to the independent sources have been set

1
equal to zero. The ch will have the form

1 f

ch - ij Iem ij # *x
(3.45)

] ]

Ick = xk Iem * Iem Bmk = xk

Differentiating Equation 3.42 we obtain

v R, I 4R

ej = j e 75
v, 1

V. = sL, I, L. 3.46
ej j e X # L (3.46)
1 ]

I, = sC,V , X C.

ej joej k7 J
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and

Vek = st Iek + sIek X = Lk (3.47)
1! ' C
ek = SOk Ver * SVex T %
The network may be described in matrix form as
B Vb = 0
(3.48)
A.Ib = 0

where B and A are the fundamental loop and reduced-incidence matrices for
the network, and VB and Ib are branch voltage and branch current vectors,
respectively. Differentiating Equations 3.48 with respect to X, we

obtain the sensitivity equations

By =0
(3.49)
!
ATl =0
Substituting Equations 3.44 in 3.49, we cobtain
1
BY = 0
e
(3.50)
AI + AI = 0

Substituting Equations 3,47 and 3.48 into 3.50, we see that the
equations for the sensitivity calculation differ from those describing

the original network in three ways:



(1)

(2)

(3)

All independent sources of the original network have been set equal
to zero,
th X cos .
The k™~ branch now includes a new driving source which may be
represented in one of the following ways, depending on the element
type (x # B )
(a) Resistor: A voltage source of value Iek placed in series
with the element R
(b) Inductor: A voltage source of value sIek placed in series
with the element Lk.
(c¢) Capacitor: A current source of value sVek placed in parallel
with the element Ck’
If the Bmk = X, @ current source of value Iem is placed in parallel

with the existing controlled current source,

Thus, the procedure for calculating the sensitivity of the various

network voltages and currents to variations in a single parameter, X

reduces to the following:

(1

(2)

Construct an auxiliary network which is a duplicate of the original
network, with all independent sources set equal to zero.

Drive this auxiliary network by means of a dependent current source
placed across the kth branch. The source is proportional to the
current flowing in the kth branch of the original network if

X # Bmk' The constant of proportionality is - l—-for resistors and
inductors, and L for capacitors. For the case where Bmk = X, the

current source is I
em
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(3) The voltages and currents in the auxiliary network are the voltage
and current sensitivities of the original network with respect to a
variation of the parameter X s respectively.

For thé case of reciprocal networks, Leeds and Ugron17 have shown
that the sensitivity of a network function with respect to all variable
parameters of the network may be determined by a single analysis of the
auxiliary network. The procedure for this evaluation is as follows:

(1) Place a current source of value unity with zero phase in the auxiliary

‘network in parallel with the network element, X with respect to
which the sensitivity of the network function is required.

(2) The voltage across any other element in the auxiliary network, Vj’
multiplied by the current through the corresponding element in the
original network and diviged by the element value itself will give
the voltage sensitivity, a;i . (For capacitors, the sign is reversed.)

(3) The sensitivity of a single network function of all elements can be
obtained by repeating (2) for all elements of the network.

Example 3.2

To illustrate this procedure, consider again the network of

Figure 3.2. The sensitivity function, SE, is given by

STAdT/T=£1__i\iZ.=£1__V_£I}_ (3.51)
L L T T vV & TV, L '

where I is the current through the inductor L in the original network:

L
, A }
'IL = R ) (3.52)
R, + sL + -———2———-
1 1 + sCR
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where'% is the voltage across R2 in the auxiliary network (see Figure 3.4):

N RZVT _ o
v = (3.53)
"2 R, * R (I + SCR,) _
with
R 1 1+ sCR2
VT = Rz (3.54)
Ry + sk + 10—

2

From Equations 3.51 to 3.54, we thus obtain

w
n
1
qu*

s(1 + sCRZ) T(s) (3.55)
2

(b) Director and Rohrer's Adjoint Network Approach: The approach by..

Leeds and Ugron has been extended to the case of non-reciprocal networks

33,34 through the use of a so-called '"adjoint" net-

by Director and Rohrer
work., This approach-allows the sensitivity of any network function with
respect to all of the variable parameters to be ascertained by only two
network analyses per frequency point over the frequency rangé of interest.
The adjoint network, ﬁ, is derived from the originally specified
network, N, through use of Tellegen's theorem. The requirement'that both
N and ﬁ have the same topology, but not necessarily the same element types

in corresponding branches, is first imposed so that Tellegen's theorem may

be applied as follows

™
~3
-
n
(o]

i+ ! (3.56)

[ ]
-3 >
—
"
[ew]
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Figure 3.4:

Leed's auxiliary network for Example 3.2
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where the ii and Qi refer to the adjoint network, and where the summation
is taken over all branches of the networks N and &. If the element values
of the network N are now perturbed, thus causing a variation in the branch
voltages and cufrents (which we will denote by AVi and AIi’ respectively),

we may write

1
o

LAy, I, - AL V) (3.57)

i
For sensitivity calculations, we are usually interested in the sensitivity
of a network response with respect to variations in the network elements,
not with respect to variations in branch voltages and/or currents.
Accordingly, we ‘relate the AVi and AIi to the changes in element values;

that is, if

V. = Fi(xi)
i (3.58)
Ii = Gi(xi)
then
9F.
AV, = —1 Ax
1 axi 1
(3.59) -
3G,
AT = 1 AX
i 9X, 1
i
Hence,
9P, . 3G. . ‘
P> I, - V.pAX, = 0 (3.60)
< loX. L X. 1 1
i i b
that.is
BFi N BGl ~
Er o B ol P (3.61)
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We can now interpret Equation 3.60 as the branch relationship for the ith
branch of the adjoint network. In this way all of the elements of the
adjoint network may be determined.

Thus, Qe find that the adjoint network, ﬁ, is topologically
equivalent to the originally specified network, N, and is defined as
follows (éee Tables 3.1 and 3.2):

(1) All resistance, capacitance and inductance branches and transformers
in N are associated with resistance, capacitance and inductance branches
and transformers in ﬁ, respectively.
(ii) All gyrators in N with gyration resistance r become gyrators in N
with gyration resistance -r.
(iii) All voltage-controlled voltage sources in N become current-
controlled current sources in ﬁ with controlling and controlled branches
reversing roles, and with voltage amplification factor, u, becoming
current amplification factor -u.
(iv) All current-controlled current sources in N become voltage-
controlled voltage sources in ﬁ with controlling and controlled branches
reversing roles, and with current amplification factor, BC, becoming
voltage amplification factor, -BC
(v) All voltage-controlled current sources and current-controlled voltage
sources have their controlling and controlled branches in N reversed in ﬁ.
(vi) All the independent sources in N, excepf the sources relevant to
the network function under consideration, are associated with zerc valued
sources in ﬁ. The relevant sources have the following inputs in N and ﬁ:
(a) For the computation of the sensitivities of a driving-point

impedance (admittance) at port k, insert a unit current
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(voltage) source for Eoth N and ﬁ.

(b) For the computation of the sensitivities of a transfer
impedance (admittance) between ports j and k, insert a unit
current (voltage) source at port j and insert a zero valued
current (voltage) source at port k in the original network,
and vice versa in the adjoint network &.

(¢) For the computation of the sensitivities of a current
(voltage) transfer ratio between ports j and k, insert a unit
current (voltage) source at port j, and a zero valued voltage
(current) source across port k for the original network. A
zero valued current (voltage) source is inserted at port j and
a unit voltage (current) source is inserted at port k in the
adjoint netwoxk.

The differential sensitivities, dT/dxi, are defined in terms of
the voltage or current responses in the pertinent branches of the original
and the adjoint networks, as listed in Tables (1) and (2).

The significance of the Director-Rohrer approach is that the
sensitivity of any network function with respect to all of the network
variables can be obtained by appropriate application of unity and zero-
valued sources to the original and the adjoint networks. in other words,‘
by two runs of a network analysis program, all the various dT/dx.l can be
evaluated simultaneously. The methods has recently been extended to the
case where second-~derivative sensitivities are required35’36.

It is noteworthy that the computational effort that is required
for the analysis of the original network and its mutually reciprocal

adjoint network may be reduced considerably by taking advantage of the
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fact that the nodal admittance matrix of the adjoint network is merely the
transpose of the nodal admittance matrix of the original network, and by
: . . . 36
then applying LU factorization
To illustrate this point, we first note that the branch relations

for the original network N can be written as

I = Yy | (3.62)

where ¢ is the branch admittance matrix, I, is the branch current vector,

b

and Vb is the branch voltage vector. The nodal admittance matrix, Y, is

defined as

t

Y = AjA (3.63)

where A is the reduced nodal incidence matrix-and A" :ds its transpese. The
adjoint network N has the same topology as the original network and,
therefore, has the same nodal incidence matrix A. The branch relations

of the adjoint network are

~ A

[b = be (3.64)

where Ib’ y and Vb are as defined previously, except that they now refer

to the adjoint network, N. The nodal admittance matrix of N is

Y = At | (3.65)
and since
' ~ t . .
y = 4y _ (3.66)
therefore |
Y = Y , (3.67)

i.e., the nodal admittance matrix for N is simply the transpose of that

for N,
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In order to calculate the first-order sensitivities of the network,
it is necessary to calculate all the node voltages of the original and

adjoint networks. This requires the solution of the following equations

v = vl
(3.68)
v = 1l
. . -1 . t.-1 ~1.t
One possible approach is to calculate Y = once, noting that [Y '] = = [Y "] .

The inverse matrix, Y-l, may be computed by means of Gaussian elimination37
which involves p3 operations (one operation is defined as either one
multiplication and addition or one division) where p is the order of the
nodal admittance matrix, Y. An additional p2 operations are required to
compute Ynll, so that at least p3 + 2p2 operations are necessary to calculate
the required nodal voltages by the matrix inversion method.

On the other hand, a significant reduction in operations
necessary can be obtained by means of LU factorization. The admittance
matrix, Y, can be decomposed into a product of a lower triangular matrix,
L, and an upper triangular matrix, U, i.e.,

Y = 1U

where U has each diagonal term equal to unity. This decomposition may be

accomplished by 1/3p (p2 - 1) operations by means of standard Guassian

eliminationss. The nodal equations for N may now be written as
v = I (3.69)

The voltage vector V can be determined by first computing a temporary

vector, b, say, by forward substitution, that is

b = I (3.70)
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which requires p(p + 1)/2 operations. Then, we use b to find Y by back-

ward substitution,
UV = b (3.71)

which requires p(p - 1)/2 operations. Thus a total of 2p2 operations are
required-to obtain all the nodal voltages in N and &. This means that a
total of 1/3p(p2 - 1) + 2p2 operations are necessary to determine all of
the first-derivative sensitivity functions using the LU factorization
method. In other words, a savings of 1/3p(2p2 + 1) operations is obtained
by use of this method. In a similar manner; it can be shown that the same

savings results when second derivative sensitivities are required.

Exaggle 3.3

To illustrate the Director-Rohrer approach, consider again the net-
work of Figure 3.2 and its mutually adjoint network as shown in Figure 3.5.

By inspection, we have

I = — 2 (3.72)

and ~

from which

[l
ne>

= — sL 1 : (3.74)

= s(1 + SCR,) T(s)



-

Figure 3.5: Director and Rohrer's adjoint

network for Example 3.3
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Examgle 3.4

As another example of the Director-Rohrer method, consider the
network of Figure 3.6(a) which contains a voltage-controlled current

v
source ng + The transfer function, T(s), is chosen as —2-. The mutually

1

1
reciprocal adjoint network corresponding to this network is shown in
part (b) of the diagram. Suppose it is required to determine g%—. According

m
to the Director-Rohrer procedure, we may write

(3.75)

where the voltages V1 and V2 are as defined in parts (a) and (b) of
Figure 3.6, respectively. By inspection, the nodal equations for the

original network are

1 G1 + sC1 -sC1 V1
= (3.76)
0 g, - sC1 G, + s(C1+C2) V2
and for the adjoint network, they are
A
0 Gl + sCl & " sCl Vl
= (3.77)
- A
1 —sCl G2 + s(C1 + CZ) V2

Equations 3.76 and 3.77 show, as expected, that the nodal admittance
matrix of the adjoint network is the transpose of the nodal admittance

matrix of the original network.
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Figure 3.6: Original and adjoint networks for Example 3.4
(a) Originally specified network

(b) Its mutually reciprocal adjoint network
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Using Equations 3.76 and 3.77 to evaluate V1 and V2’ respectively,

and substituting in Equation 3.75, we obtain

2
s°C,{C,+C.)) + s(C,G, + C,G, + C.G,) + G.G .
JU1NTL T2 171 271 172 172 (3.78)

|

m 2
s C1C2 + s(ClG1 + C2G1 + ClG2 + Clgm) + Gle

3.5.4 Connection between the Feedback Theory and the Director-Rohrer

Approaches

As pointed ouf earlier, Director and Rohrer have made use of
Tellegen's theorem to derive their method of sensitivity calculation. It
is also possible to use Bode's feedback theory as an alternative way of
deriving their method.

Consider the network of Figure 3.7. For convenient analysis, we
will assume the network consists of linear time-invariant resistors,
capacitors, inductors and voltage-controlled current sources. The network
is shown with a particular &oltage—controlled current source singled out

for special consideration. According to the Director-Rohrer method, the

v
partial derivative of the transfer function, T(s) = T23 with respect to
1
the parameter, gm, is given by
aT o
55;' = Vij Vkl (3.79)

where Vij is the control voltage developed between nodes i and j of the
original network, and»%&’is the control voltage developed between nodes
k and % of the adjoint network, N, shown in Figure 3.8. When the variable

parameter is a bilateral element, of admittance Y, connected between

nodes k and 2, Equation 3.79 takes on the special form
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Figure 3.7: The original network N with a voltage-controlled
' current source singled out for special consideration
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T o
¥ © Vke'ke (3.80)

Using the nodal method of analysis, we may express the transfer

v

function T(s) as follows

A12
T(S) = T . . (3.81)

where A is the circuit determinant of the network N, defined by

Y11 Y12 0 Y 13 © * YIn
Y21 Y22 - ¢ Yy Y23 © o Yo
(3.82)
A= Y1 k2 0 Ykitqm Y% 0 0 Yk
M Y2 %% % "Em "in
Ya1 Yn2 © ° Tni ynj ©* Vm

and A12 is the cofactor of'yl2 in A. In Eguation 3.82 the various y's

denote the self- and mutual-admittances of the network of Figure 3.7

exclusive of the controlled source ngij. By expanding the determinant

of Equation 3.82, we obtain

o, - 5
A = A+ gm{Aki - A - Akj + Alj} (3.83)

where A° is obtained from A by putting g equal to zero. Similarly, we
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may express A12 as

[s) : '
bz = 12 gplhp ks P12 s T B2, kg T Ba2,eg

0
where Alz

According to Bode's feedback theory’, the sensitivity of T(s)

is obtained from qz by putting &n equal to zero.

with respect to g can be expressed as follows

o a°
st A /T _ oA 12 (3.85)
A

A12

, we obtain

Using Equations 3.81 through 3.85 to evaluate 22
m

5T 1
7 {[AAIZ,ki - Byp Byl

@
oQ

8

>

- [AAlz,zi -4y Azi]

= [8805 15 = 812 Ayl

£ 1801, 45 - B, Alj]} (3.86) -

However, from the theory of determinants, we have the identity

AA‘atb,cd " fap 8cd T Pad P (3.87)
Hence, we may rewrite Equation 3.86 as
A, A, - . ‘
ar gl 1] %2 % S (3.88)
%L, A A TR )
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For the case of network N, we recognize that (with the independent current
source Il‘= 1 amp) the node voltages Vi and Vj, with respect to the

reference node, are given by

V. = Rt | (3.89)
i~ 8 '

v o= ol
] A

On the other hand, for the adjoint network, N, we recognize that (again
with the independent current source I, =1 amp) the node voltages \71( and

V2 are given by

io-
X =
~ (3.90)
- bag
Vo = —
A

where A is the circuit determinant of the adjoint network N. Since, by
definition, the nodal admittance matrix of the adjoint network is the

transpose of the original network, we have

-

A = A

Azk = AkZ (3.91)
Aae = By2
Hence,
G A2 | |
kK = A (3.92)
A A
v, o= X2
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Clearly, by combining Equatiéns 3.88, 3.89 and 3.90, we obtain the result
gifén in Equation 3.79. In a similar manner, we can derive Equation 3.80
for the case of a bilateral element by placing the controlled source and
the control voltage across the same pair of terminals in Figures 3.7 and

3.8.

3.5.5 Other approaches

I . . . .
In a recent contribution 9, Neill derives an approximate linear
relationship between - the network function and component parameter
deviations. The relationship is expressed in the form

T(s,xi) = T(s,xio) + yi(s) éxi (3.93)

1

n Mg

i
where T(s,xio) is the exact response, X, Trepresents the normalized
deviation of the ith parameter, and Yy is a rational function with known
coefficients. Equation 3.93 is, in effect, a first-order Taylor series
expansion of the changed function T(s,xi) about its nominal value
T(s,xio). The modification necessary to incorporate second-order terms in
the expansion for the case of linear and non-linear systems has been
described by the same author40’41.

Goddard and Spence42 have also proposed a method for calculating
first-~ and second-order sensitivities. Their results have been compared

with those obtained by Neill, and the compatibility of the two sets of

] 4
results is demonstrated 3.
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3.6 Conclusion:

In the optimum design of a network based on sensitivity considerationms,
we need a sensitivity criterion, or index of performance, wHich_gives a
meaningful measure of the multiparameter sensitivity of the network.
Several such indices have been proposed in the literature, and some have
been used in optimal synthesis procedures. However, all of these indices
appear to have the following limitations:

*

(1) In a sensitivity criterion of the {%1'.Sii} type, unifovm weighting
is automatically assigned to each elementai sensitivity function. Now
this may be justified in those cases where, for example, the parameters
have uniform tolerances, or where all the parameters have equal temperature
coefficients. However, in many cases these conditions do not apply, and
in such cases some means of accommodating a non-uniform weighting among
individual sensitivities should be incorporated into the index,
(2) No allowance has been made for the possibility of a change in one
parameter compensating for the effect of a change in another.
(3) The minimization of a sensitivity criterion at a single frequency,
as proposed by Schoeffler, leads to a network which is optimally
insensitive at that particular frequency. In some cases, this may mean
that the network is also optimally insensitive at all other frequencies17
However, there is evidence to suggest that this is not always the case44,
and that an index based on a range of frequencies may be more informative
than one evaluated at a single frequency.

For these reasons, it is considered appropriate to define a new

multiparameter sensitivity index of performance which will accommodate
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non-~uniform weighting among elemental sensitivities, and at the same time
will not exclude the possibility of sensitivity compensation occurring.

This is done.in Chapter IV. 1In Chapter V, a new method of computing
sensitivity functions is described; The method is based on an algorithn
which allows the differentiation operation to be performed directly on any
network function of interest. The method requires but one network analysis?
regardless of the number of frequency points at which the index is to be
computed, and regardless of the number of iterations in the optimal search

routine,



CHAPTER IV

THE MULTIPARAMETER SENSITIVITY INDEX OF PERFORMANCE

4.1 Introduction:

The multiparameter sensitivity problem is usually expressed in
terms of a sensitivity function or index of performance which defines
the influence of simultaneous variations in some or all of the network
parameters on the performance of the network. The sensitivity criterion
thus chosen is used to obtain an optimum design by indicating an optimum
choice of -realizable network structure, or the element values for a less
sensitive structure.

In network theory, as has been pointed out in Chapter III, the
early sensitivity studies were concerned with a single variable, such as
the sensitivity of some network function with respect to a particular
parameter. However witﬁ the increased use of the digital computer as a
design tool, we are now able to tackle the more difficult problem of
evaluating the sensitivity of a network to variations in a multitude of
network parameters. Also, the advent of integrated circuitry has brought
the multiparameter sensitivity problem into further prominence. With such
networks, no longer can we call for close tolerances nor can we expect a
\high degree of parameter constancy even from passive elements.

In this chapter, we shall define a ﬁeW‘multiparameter sensitivity
index of performance, and we shali descriﬁe, in some detail, a new method

for the evaluation of sensitivity functions. The index has been applied

(91)
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to the important cases of low-pass LC-ladder and RC-active filters. In
particular, it was used to evaluate the effect of increasing the filter
order, varyiné the magnitude of the passband ripple, varying the amount of
dissipation and varying the source/load resistance ratio'upon the overall
sensitivity performance of LC-~ladder filters. We shall also outline a
procedure for determining, for a given network, an "optimum tolerance set"
which ensures that the various element changes contribute eQually to the

total change in the network response,

4.2 A New Multiparameter Sensitivity Index of Performance;

The use of an index of performance as an aid in the optimal
synthesis of control systems is a well established procedure, and while
several such indices have been proposed for use in network theory, their
practical use in this area to date has been limited. The choice of such
an index is most important; it should be general enough to be widely
applicable, yet selective enough to make the best or optimum network readily
discernable. It should be both reliable and realistic, reliable in the
sense that one should have confidence in the results obtained when using
it, regardless of the network being analysed, and realistic in fhe sense
that it should give a meaningful indication of the sensitivity performance
of the network in question. Because the choice of index is so important,
we will approach our definition in a step by step fashion, and we will
try to justify each such step wherever necessary.

A-fCQQsider“thé'caseijla lumped linedar -time- ‘invariant.network. Let
%héghétWQrk”fuhc%iéﬂ‘ofwiﬁterest be denoted by

T(s,x) = g—%—’% (4.1)
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where N (s,x) and D(s,x) are polynomials in the complex frequency variable,
s, with coefficients that are functions of one or more of the network
variables, x, where

't

x = [xl, Xoy + « o an (4.2)

If we are concerned only with the realization of a given characteristic
without regard to its sensitivity, then an index of performance that

- gives a measure of the extent to which the chosen network structure and
nominal element set approximates to the given network function is suitable.
Such an index may be defined in terms of the absolute error between the

actual and desired response functions. In other words, the problem is

one of minimizing the error between é desired and a realizable characteristic,
and in this case, the absolute error is a suitable criterion for determining
the extent to which the desired characteristic is being approximated.

On the other hand, in sensitivity studies, we are primarily
concerned with the effect of parameter changes on the shape of the response
characteristic. In this case, an index of sensitivity performance is best
defined in terms of the fractional, réther than the absolute, error
between the nominal andvperturbéd network characteristic. The reason for
this is two-fold. 1In the first place, when evaluating the sensitivity of
the network element values, we might want to allocate equal weighting to
the error which occurs within the passband as without. In other words,
it is often just as important that unwanted frequencies should be suppressed
as it is that the frequencies of interest should be transmitted with a

minimum of attenuation. The second reason is closely related to the first,
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and is best described by means of an example. Let us consider two hypo-
thetical networks, Na and N , both of which have the same structure, and

each of which has an ideal low-pass response characteristic as is shown

in Figure 4.1. Let us now apply an equal fractional change to the kth

element of each network. Let the resulting changes in the network response
characteristics by 8T, and 6T, , respectively, as depicted in the diagram.
By inspection, the networks are equally sensitive to this perturbation.
However, if we were to define their sensitivities in terms of the absolute

value of the error, we would find that network N 1is ten times as sensitive
a

as network N, simply because the level of transmission through Na is ten

b’
times that through Nb' Clearly, it is the fractional error that should be

considered in such a case, and accordingly, it is the fractional change
in T(s,x) that is considered in the following development.

Suppose we let the element X be changed by an incrementgl amount
Sxk. The resulting fractional change in T(s,x) is equal to %§£u7;£
where %%; is a function of s, and ka can be a positive or negative real
number. Assuming that all the networkvariables change simultaneously,
the total fractional change in T(s,x) due to all such changes, to a first-

order approximation, is given by

. n 8X. n §X.
—-é.l—,l- = I %}-(— —,I'r]; = I Sz e (4.3)
i=1 °74 i=1 1 %4
where Si , the elemental sensitivity function, is defined by
i _ :
X,
st &2 i » (4.4)

X, 90X, T
i i
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and n denotes the number of variables in question. Thus,—%i , which is a

function of s, defines the fractional error in the network response due
to simultaneous parameter variations.
8x, X 5 . .
We note that 1 acts as a weighting function, in that the

X,
contribution to the total error by the element X is determined by the

product of the elemental sensitivity function, Si‘, and this weighting

éx. i
function, ;—l . Accordingly, we may write '
n
AT T ,
T = z SX Xi (405)
' i=1 i
8x,
where X; = ;—l is a positive or negative real number.
i

There are now two meaningful approaches which may be taken for
defining an index of performance and which differ only in the way that
values are assigned to the weighting function X; 2
(1) The set of n network parameters may be considered as consisting of a
number of sub-sets, each of which is assigned a weighting function which
has the same magnitude for all the elements of that sub-set. For examplé,
in the case of an LCR network, for which, say, the tolerance of the
inductors, capacitors and resistors is 5, 5 and 1 per cent, respectively,
it would be appropriate to assign all reactive elements to one sub-set, and
all the resistive elements to a second sub-set. One might then assign a
magnitude of 5 to the weighting functions associated with the elements of
the first sub-set, and a magnitude of unity to those associated with the
elements of the second sub-set. Having thus assigned magnitudes to the
various xi,‘we now allow each to assume a positive or a negative algebraic

sign. In other words,—%; can be any one of 2" different functions,
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depending on the particular combination of signs involved. If we are
interested in the magnitude of the error (or the squared magnitude), we
may arbitrarily assign X » say, a positive (or negative) algebraic sign.
Having chosen this particular frame of reference, the other possible sign

combinations define 2n-1 different functions. We may, therefore, write

2 n 2
AT T . n-1
{—T’-} = {.Z SX. Xi ) s J = 1,2,...,2
J i=1 i j

where each value of j corresponds to one such combination of algebraic

signs.
For any given frequency, the right-hand side of Equation 4.6 may

1 different values. As such, it may be regarded as a

have any one of 2"~
random variable, with its value being determined by the pertinent
combination of signs of the various X5 - If we now assume that each such

combination of signs is equally likely, then the probability of occurrence

of any one value of {%L is l/2n-l, and the mean or expected value is
j .

EQE{

We note that the error function, E, is a function of the real

given by

i n-1 n 2
1 2 T
= —7 b { -Z SX. Xl (4.7)
i=1 i j

5T
T
frequency variable, w. The question now is, at what frequency or band

of frequencies should this function be evaluated. Taking a general
approach, we will evaluate it over the entire positive frequency range by

means of an integration, but we introduce a frequency sensitive weighting

function, w(@), the purpose of which will be to determine what frequency
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or frequencies are té be conéidered and what relative weighting is to be
assignea to each. In other words, if we were simply to integrate é over
a wide frequency range, a possibility would exist that such an integration
ﬁight mask the effect of component changes at some critical frequency.
We avoid this possibility by choosing a suitable y(w).

We can now define a multiparameter sensitivity index of performance

as

e

P, r E y(w)ds | (4.8)
o]
or

(4.9)

o]
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(ii) An alternative appfoa;h to that described in (i) above is one in

which both the magnitude and the algebraic sign of each X3 is determined

by some statistical process. We might, for example, allow the set of
elements to vary in some random manner between a set of specified tolerances.
In this way, a random choice of x would define a particular set of X3 both
in magnitude and in algebraic sign. The random variable, pj, which is
defined by

n 2
I S X3 ¥ (w) dw (4.10)

e
fi>
3

could then be computed a number of times, each time using a different set
of randomly generated )&. We therefore define an alternative index, Pz,

as the mean or expected value of pj’ i.e.,
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2
Plw)de  (4.11)

ne>

o, Q n
1 T
P E{ .}=—J‘z z S
2 3 Vo j=1| li=1 * *

1 %5 Y

where Q is the number of different sets of X3 used,

4.3 Choice of Weighting Function ¢ (w):

The role of y(w) is to bring into prominence any critical frequency
or frequency range, so thatAthe effect of component changes at such
frequencies will not be masked by the integration.

Perhaps the most fundamental question to be asked is whether an
integration is necessary at all. Is it possible, for examﬁle, that the
evaluation of the sensitivity performance as defined by the error function
é, at a single frequency is sufficient? There is, in fact, some evidence
to this effect: Schoeffler's criterion26 is evaluated at a single frequency
and his choice of the optimum from a number of continuously equivalent
networks is based on this index. Leeds and Ugron report that an integration
is unnecessary for a class of networksl7, although they fail to identify
the particular class. We, however, have found that an integration is
indeed necessary if the results are to be_truly meaningful in a general
sense.

This conclusion is based on a simple argument: The index is to
be used when networks are to be compared with respect to their multiparameter
sensitivity performance. If an integration is not required, in other
word;, if evaluation of E at a single frequency were sufficient, then we
should find that the relative sensitivity performance of one network in
comparison to that of another should be the same at all frequencies. In

other words, the ratio of the E of one network to that of another network
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should be the same for all frequencies. We have applied this test to a
number of related networks and the results, shown plotted in Figures 4.2
and 4.3 not only demonstrate that this, in fact, is not the case, but
also, by illusfrating the dependence of ﬁ on frequency, they give an
indication of the type of weighting function which should be used.

We have also applied the test using an index of the & Si 2

i il
as defined by Schoeffler. The results, shown plotted in Figure 4.4

type

correspond to those obtained using the error function é, We, therefore,
conclude that an index based on an integral is more informative than one
evaluated at a single frequency, as it is apparent that fhe relative
sensitivity performance of a network is not, in general, independent of
frequency.

The information contained in Figures 4.2 and 4.3 may now be used
as a guide in the choice of a suitable weighting function, y(w). Thus,
in these figures, for example, we note that
(i) The error at very low frequencies is insignificant.

(ii) There is an increased sensitivity to component change in the
vicinity of the cut-off frequency, w = 1.

(iii) Although the error is relatively large at high frequencies, it is
of little practical importance because we are dealing with a low-pass
network.

Three possible choices for y(w) in this case are
(a) Ideal low-~pass window with cut-off at w = 1,

(b) Ideal low-pass window with cut-off greater than 1,

(c) Ideal band-pass window centred at w = 1.
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The first choice, (a), Amay be justified on the basis that we are dealing
with a low-pass strﬁcture and as such we should primarily be concerned

with frequencies within the passband. This‘choice, however, fails to
include the relatively critical frequency range immediately outside the
passband. For this reason, the second choice, (b), appears more appropriate;
yet it includes, perhaps unnecessarily, the very low frequency range where
the error is negligible. The third choice, that of a bandpass window .
centred at w = 1, is therefore perhaps the most appropriate of all three,

and accordingly, has been chosen for the evaluation of the various results

reported herein, except where stated to the contrary.

4.4 Optimum Tolerance Sets:

From the definition of the sensitivity index, it is apparent that
some elements will contribute to its magnitude to a greater extent than
will others, i.e., the overall performance of a network is more sensitive
to some elements than to others. Intuitively, we feel that the'tolerance
of a "sensitive' element shoﬁld be less than that of an "insensitive'" one
if the overall sensitivity performancé of the nethork is to be optimized.
Wé,therefore, define an "optimum tolerance set' as that set of element
tolerances which allows each element to contribute equally to the overall

error. In other words, if

1T Gxi 2 g o 8x,2
J Sx. ET—.I Y(w)dw = J Sx, ;Tl Y(w) do (4.12)
LA e = GO
8x,
for all i, then the set of-;Qi for which this equation holds is defined
i

as the optimum tolerance set for the network under consideration, and will

be denoted by 8xb. In this way it is ensured that no single element
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dominates the overall error.

Perhaps it should be noted that the net result, i.e., having each
element of the network contribute equally to the total errof, i% similar
to that of other optimization proceduresl7. In this case the sensitivity

. T . . .
functions, Sx , are fixed and the tolerance set is chosen to obtain the

i
desired effect. 1In other cases, the tolerances are fixed and the network

configuration and/or nominal element value set is chosen such that the
objective of equal contribution is attained.

These optimum tolerance sets have been obtained for a number of
low-pass LC ladder filters and they have also been obtained and used in
the synthesis of active-RC filters. The performance of networks using
optimum tolerance sets has been evaluated and the results are given in

Chapter VI.

4.5 Conclusion:

In this chapter,’a new multiparameter sensitivity index of
performance has been proposed for general use with linear, time-invariant
networks. Two forms of the index have been definedg

(1) the index P., in which a deterministic perturbation is applied, and

1’

(2) the index P,, in which a probabalistic perturbation is applied to

2
the nominal values of the network parameters of interest.

In addition, a procedure has been described for obtaining, for a
~glven network, an optimum tolerance set by which each element is made to
contribﬁte equally to the total error in the network response. In the
next chapter , a new method of computing these indices of performance is

described in detail, and its computational efficiency is compared with

other procedures.



CHAPTER V

COMPUTATIONAL PROCEDURES

5.1 Introduction:

The problem of computing sensitivity indices of performance is
one of fundamental importance. These indices do not, in general, lend
themselves to analytical or closed-form solution, Rather, they are most
conveniently evaluated by means of a digital computer. In Chapter III,
we have described several powerful methods by which such indices may be
computed. These procedures have one characteristic in common, i.e., they

%%*, without actually performing
i

a differentiation operation. Also, they can all lead to analytical

~all obtain the elemental sensitivities,

expression for the g%%n However, if the order of complexity of the -
network is high, thenlit may not be convenient to attempt to obtain the
%gf in analytical form, 'This difficulty may be overcome by the use of
a ;ew direct approach which is based on the uge of a computer. This

¥

approach enables the network function and its partial derivatives

to be obtained in analytical form.

(106)
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To obtain the partial derivatives of the network function in
analytical form, it is first necessary to have the network function itself
in such a form, i.e., a form in which the explicit dependence of the
coefficient of each power of s on the various network parameters is readily
apparent. To obtain the network function in this form may require a
considerable computational effort in the case of complex networks. For
example, in the case of a tenth-order doubly-terminated LC-ladder filter,
if the transfer function T(s,xi) were expressed as a ratio of polynomials
in s, wherein the dependence of each coefficient of each power of s on the
twelve network parameters is given explicitly, we would find that the
denominator would contain 486 terms, each unique in its dependence on the
network variables. An algorithm which allows the explicit dependence of
the coefficients on the network variables to be main%ained while performing
standard mathematical operations, and which may be used to obtain nth—
order partial dérivatives and corresponding sensitivity functions has been

devised by Temple and Butler4s.

5.2 The Computational Algcrithm:

The algorithm involves the répresentation in array form of
information contained in elementary polynomials. Each self- and mutual-
admittance of the network, analyzed on a nodal-basis, say, is represented
as an array of numbers in which each term of the pertinent admittance
corresponds to a row of the array. If the network has n parameters, one
or more of which may be variable, then each row of the array has n + 2
elements. The first element of such a row represents the algebraic

coefficient of the particular term which it represents, and is set equal
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to the numerical value of that coefficient. Each one of the next n
elements of the row represents one of the n network parameters. 1If a
term contains the parameter kk raised to power m, then the array element
representing X is set equal to m. Finally, the last element of the row,
which represents the complex frequency variable, s, is set equal to the
power of s. The representation of polynomials in array form is best

illustrated by means of an example.

Example 5.1(a): Array Representation

Consider, again, the network of Figure 3.6(a). Analysis on a

nodal-basis yields

Y, = 6, +sC (5.1)
Y, = -sC, (5.2)
Yor = A sCy (5.3)
Y22 = G2 + sC1 + sC2 (5.4)
A= MY - Yoty .5
b, = Yy, (5.6)

Following the procedure outlined above, we may represent the admittances

Y Y Y

11° Y120 Y21 and Y22 by the arrays

Algebraic c. C. G

Coefficient 1 "1 2 °2 %m °
1.0 1 0 0 0 0 0]G
1
a -~
1.0 0 1 0 0 0 1]sC
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Algebraic
_Coefficient 1 1 "2 72 °n

le = -1.0 | 0 1T 0 o0 0 1 -sc1
1.0 0 0 0 0 1 0 g
B 11}

Y =
21 -1.0 0 1 0 0o o0 1 -sc_l
1.0 0O 0 0 1 0 0 G,
Yz-z = 1.0 0 1 0 o0 0 1 sc1
1.0 0 0 1 o0 0 1 sC,

These arrays, representing the various network admittance functions,
Yij’ are easily manipulated by the computer when performing the various
mathematical operations necessary to obtain the network function of
interest and its partial derivatives with respect to the variable parameters.
The partial derivatives may then be used to evaluate any desired sensitivity
function.

To illustrate the procedure further, we now consider the problem

v

of obtaining the transfer function T = TE and its partial derivative with

respect to the parameter &y The problemventails array multiplication,
addition (subtraction) and partial differentiation, examples of which now

follow.



Example 5.1(b): Array Multiplication
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Two rows may be multiplied together simply by adding the last

n+tl elements of one row to the corresponding elements of the other, and

multiplying the first elements of the rows together.

for Y12Y21 we have

Thus, for example,

1.0 0 0 0 1 0
~1.0 0 1.0 0 ¢ 1 X
-1.0 1 0 0 0 1
-1.0 0 1.0 0 1 1
= = Y, Y
1.0 0 2 0 0 0 2 12721
i.e Y, Y = -sC,g + szc2 (5.7)
T 12721 1%m 1 :
and for ‘{11\[2‘2 we have
1.0 0 01 0 O
1000000 o 10 100 0 1
0 0 100 01 1.0 01 0 0 1
1.0 1 ¢ 0 1 0 0O
1.0 1 1.0 0 G 1
i} 1.0 1.0 1 0 0 1 Y Y,
1.0 0 1 0 1 0 1
1.0 0 2 0 0 0 2
1.0 -0 1 1 0 0 2
i.e
Y Y. = GG, +s(C 22
11%22 = G5, s(,lcl + 06y + Cle) + s (C1 + C,C) (5.8)
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Example 5.1(c): Array Addition or Subtraction

To add (or subtract) two.arrays, we first compare the rows of one
arréy to those of the other,‘so that we may identify those like rows of
the two arrays that represent terms of the same kind. If we find that the
two arrays possess such YoWws, we add (or subtract) their reépective first
elements and store the sum (or difference) in a resultant array; if the
sum (or difference) is zero, we may obviously omit the row in question
from the resultant array. As for the remaining rows of the two arrays,
we store them in the resultant array unchanged (except for an appropriate

sign change of the first element of a row which is being subtracted). Thus,

for example, for Y11Y22 - Y12Y21 = A, we‘havg

1.0 1 0 0 1 0 O
1.0 1 1 0 0 0 1
1.0 1 0 1 0 0 1 _ -1.0 0 1 0 0 1 1
1.0 0 1 0 1 0 1 1.0 0 2 0 2
1.0 0 2 0 0 0 2
1.0 01 1 0 0 2
1.0 1 0 0 1 0 O
1.0 1 1 0 O0 0 1
= 1.0 1 0 1 0 0 1 = A
1.0 01 0 1 0 1
1.0 0 1 0 0 1 1
1.0 0 1 1 0 0 2
G1 C1 C2 GZ g, S
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Hence, by inspection,

2
A = GlGZ + s(Glcl + G1C2 + G2C1 + Clgm) + s C1C2
------- (5.9)
With Al2 = -Y21 = sC1 il - and the required transfer function being
defined by
A
T = 11&2 (5.10)
We have
T = *sCy - gy
s C\C,y s(blcl * GG, + G0y +‘ng1) + 6,6,
------- (5.11)

Example 5.1(d):; Differentiation of an Array

The derivative of an array with respect to a parameter X may be
obtained by considering each row of the array in turn, reducing by one
the (k+l)th'e1ement of the row, which is equal to the power m of X and
multiply the first element of the row by m. Rows which have their algebraic

coefficients equal to zero (corresponding to terms which are independent :

of xk) may then be omitted. Thus, for example, for §§—3 we have
m
A '
— = 1.0 0 1 0 0 0 1} = sCl (5.12)
“agm
oT °
For o thereforc, we have
°8n
3A
gT - 1—2 b3 = - 412 2A (5.13)
8 A °8p 8
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2 -
o [ Cl(C1+C2) + S(C1G1+C2GI+L1G2) + GlGZ

m {sC1C2 + s(C1G1+C2G1+ClG2+C1gm) + GlGZ}

(5.14)

The procedure is not limited to first-order sensitivity functions.
It may be used to obtain second- or higher-order derivatives by simply
repeating the partial derivative operation on the various arrays in an
appropriate manner. However, in such cases, the storage requirements
increase rapidly with the order of complexity of the network. This
problem can be overcome to a considerable extent by modifying the manner
in.which_the various polynomial terms are represented in array form. One

such modification will now be described.

5.3 A Coding Technique for Reduced Storage:

From Example 5.1, it is clear that most array elements in the
non-coded form are integers. As such, they may be coded into a form which
makes it possible to reduce the storage requirements of the algorithm
considerably. One such code is cne in which each pair of digits of a
fourteen significant figure number represents one of the last n+l elements
of each array row. By letting even and odd numbers represent positive
and negative powers, respectively, as illustrated in Table 5.1, it is
possible to code seven variables, with.powefs ranging from -50 to +49
into a single number. Thus, for ekample, we would represent the admittance

le of the network of Figure 3.6(a), in coded form as

. i ¢ 1 1 [
Y, = ~sC, = ~1.0 0 0:0 2:0 0:0 0:0 0:0 2:0

I L] —_— -

Algbraic G, C o G g s
. 1
coefficient - 2 2 m
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If the number of network parameters exceeds six, additional.fourteen—
figure numbers, each able to accommodate up to seven additional parameters
may.be used, -

Thus, it is possible to reduce the storage requirements consider-
ably by use of a coding technique. For the given example, the storage
requirement- for Y12 is reduced by a factor of three using this particular
code, The reduction becomes even more significant as the number of
variables is increased; the maximum reduction being limited, of course,

by the number of significant figures available from the computer.

Power Code
=50 99
-49 97

-1 01
0 00
+1 02
+49 98

Table 5.1: Code for Reduced Storage

5.4 Efficiency of Computation, a Quantitative Comparison:

A quantitative comparison was made between the direct approach
and the adjoint network approach following the numerical analysis procedure
as outlined by Director and Rohrer34. The comparison was based on a steepest

descent optimal search routine using the network of Fig. 5.1. The results
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Figure 5.1: Network used in optimization procedure
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obtained are shown plotted in Figure 5.2, where the number of search
iterations per unit computer time is plotted as a function of the number
of ffequency points at which the index of performance was to be evaluated.
On the basis of these results, it woﬁld appear that the direct approach

is considerably more efficient when the number of frequency points at
which the index is to be computed is relatively large. A desirablé fééfure'of
the direct approach is that after the initial network analysis, all the
partial derivatives, of whatever order, are available in analytical form.
In an optimal synthesis procedure, therefore,\the index of performance

can be computed at each and every frequency point of interest simply by
substituting the known parameter values. In other words, the need for
additional network analyses at each and every frequency point for each
step of the optimization procedure is eliminated. Furthermore, the
derivatives of the index itself with respect to the network parameters
may also be obtained in analytical form, thus providing an efficient
method of obtaining the desired trajectory in parameter space.

It should be noted, however, that the algorithm used in the direct
approach, in its present form, is based on'Cramer's Rule for the solution
of simultaneous equations. On the other hand, the Director-Rohrer
procedure can readily use the Gauss elimination method of solution, which
becomes highly efficient, in a comﬁarative sense, whenever the order of
‘the network determinant is high. We might, therefore, expect the direct
approach to be relatively less advantageous in the case of complex

networks.
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5.5 Computer Programming:

Having described the direct approach, by which all the results
reported herein were obtained, we can now briefly describe, with the aid
of flow-charts, some of the salient features of the computer programs
used in the computation of the index of performance and the optimum
tolerance sets.

Figure 5.3 shows a flow-chart representation of what we will call
the ‘'network characterization' operation, which is performed at the
beginning of all programs. During this operation, the network function
and its partial derivatives with respect to all of the variable parameters
are obtained in both array and polynomial form. Figure 5.4 shows the
sequence of operations performed when computing the index Pis while
Figure 5.5 shows the same for the case where the optimum tolerance sets
are being obtained.

When using the index of performance for comparing the sensitivity
performance of different networks, each employing a ﬁniform tolerance set,
the index P1 was used as the basis of comparison, and a value of unity
was assigned to each X5 weighting function. On the cther hand, when
computing the index for a network with a non-uniform tolerance set, then
a correspondingly non-uniform weighting was assigned to the various X -
Furthermore, whenever an optimized network (i.e., one which had an optimum
tolerance set or an optimum nominal element set or a combination of the

two) was compared with a non-optimized one, the index P, was used as the

basis of comparison.
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5.6 Conclusion:

A new procedure for the computation of sensitivity functions has
beeﬁ described. The procedure is quite general, and can be used to obtain
nth~order partial derivatives and cbrresponding sensitivity functions.
Because these sensitivity functions are obtained in analytical form, the
procedure is very efficient when the sensitivity functions are required
to be computed a great number of times, as is the case, for example, in
an optimization procedure. A quantitative comparison of the relative
efficiency of this direct method and that of-Director and Rohrer has been
made for the case of a second-order RC-active filter. For the example
considered, it appears that the direct method is considerably more
efficient when the number of frequency points at which the index must be

computed is large.



CHAPTER VI

A MULTIPARAMETER SENSITIVITY STUDY OF LOW-PASS LC LADDER FILTERS

6.1 Introduction:

A multiparameter sensitivity study of low-pass LC ladder filters
was undertaken because the LC ladder filter is one of the most fundamental
and most widely used forms of electrical network. Also, as explained in
Chapter II, an LC ladder filter may be readily used to derive an equiv-
alent inductorless filter employing gyrators and capacitors only. The
most comﬁonly used procedure for the synthesis of a doubly-terminated LC
ladder filter is the insertion loss method which was first proposed by
Darlington in his classic 1939 paper. From a given specification function
(IZZl(jw)lz, for example), the squared magnitude of the reflection |
coefficient; ]p(jm)[z, is determined. By putting jw = s, the reflection
coefficient, p(s), is then qbtained by choosing its zeros to be those
zeros of [p(s)|2 which lie in the left half (or right half) of the complex
frequency plane. Obviously, for reasons of stability, the poles of o (s)
must lie in the left hélf of the s-plane. The driving point impedance
function, Zin(s), at the input port (see Figure 6.1), is then determined
from |

_ 1 -0(s) '
Zin(S) = m (6.1)

and is synthesized using a suitahle driving point synthesis'procedure.

(123)
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in

Figure 6.1: Doubly-terminated network
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6.2 Standard LC Ladder Filters:

In the design of LC filters, an established method of solving
the approximation problem is to make use of different classes of poly-
nomials that are known to possess desirable properties, e.g., Butterworth,
Chebyshev and Bessel polynomials. The use of these polynomials, in
particular, leads to the realization of filters with maximally-flat magnitude,
equi-ripple magnitude, and maximally-flat delay characteristics, respectively.
Using the insertion loss technique, tables of element values have been
compiled by a number of authors for a wide range of filter networks (see,
for example, Weinberg7). In this chapter, we limit ourselves to the multi-
parameter sensitivity study of low-pass Butterworth and Chebyshev filters.
However, the procedures which were used to investigate this group of
filters were quite general, and may equally be applied to any other group

of filter networks.

6.3 Factors Affecting the Index of Performance:

Using Weinberg's design data, the index P, was computed for a wide

1
range of low-pass filters, and the results are tabulated in Tables 6.1

and 6.2. Table 6.1 was obtained when an ideal low-pass window function
(with cut-off frequency w = 1) was used for y(w), while Table 6.2 was
obtained when an ideal bandpass window (centered at w = 1 and with lower
and upper cut-off frequencies of 0.5 and 2.0, respectively) was used for
Y(w). The dependence of the index P, on the various filter.characteristics

was evaluated using the results listed in Table 6.2, and is now described:

(a) Order of Complekigz: Figure 6.2 shows the effect of increasing the

order of complexity of the filter for two Butterworth filters with
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different values of source/load resistance ratio, RSL' We observe that
the sensitivity performance of the network deteriorates as the order of
complexity increases.

(B) Magnitude of Passband Ripple. : Figure 6.3 shows the effect of

increasing passband ripple on the index % for three different filters. We
note that the index increases with increasing ripple.

(c) Dissipation: Assuming the dissipation to be wniformly distributed
amongst the reactive elements, we have investigated the effect of such
dissipation on the sensitivity performance of a fifth-order singly;
terminated Butterworth filter. The results, showimg the variation of %
with the Q of the lossy reactive elements, is shown plotted in Figure 6.4.
We note that varying the amount of dissipation has relatively little

effect on the index; with increasing dissipation or damping the sensitivity
performance improves slightly.

{d) Source/Load Resistance Ratio, Figures 6.5 and 6.6 show the

RSL:

effect of varying the source/load resistance ratio for a number of odd-

and even-ordered Butterworth filters, respectively. We note that the

optimun termination occurs for R, = 1, i.e., when load and source

SL
resistances are equal. Similar results have been observed for Chebyshev

and maximally flat delay filters.

6.4 Optimum Tolerance Sets:

Optimum tolerance sets were obtained for a series of Butterworth
filters, doubly terminated with ratio Rg; equal to unity. The results
are illustrated in Figures 6.7 and 6.8, where we have taken fifth- and

ninth-order filters as examples. For this special case, Figure 6.7
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indicates that changes in the inner elements of the filter have a more
profound effect upon the overall filter performance, and must therefore be
held within closer tolerance limits, than the outer elements of the
filter. It should also be noted that the symmetry which occurs in

Figure 6.7 is due to the symmetry of the filter itself. If, for example,
we were to change the value of Ry, then this symmetry would be lost, as
illustrated in Figure 6.9.

6.5 Comparison of Sensitivity Performance of Networks with Optimum
and Uniform Tolerance Sets;

The sensitivity performance of filters with optimum and uniform
tolerance sets were compared; the tolerance of the slements of the latter
being made equal to the mean of the optimum tolerance set. Two criteria
were used in making this comparison: |

(a) Frequency Response in which the bandwidth and the magnitude of the

ripple in the passband were used as measures of performance, and

(b) The Index of Performance, P, in which the expected value of P; and

2

its standard deviation were used as measures of'performance.
The procedure was essentially the same in all cases; a random sequence of
uniformly distributed numbers was used to generate sets of element values
(between specified tolerance limits) for filters using both optimum and
uniform tolerance sets. The frequency response of both sample groups was
then evaluated, with the magnitude of the ripple in the passband and the
bandwidth being deterﬁined and the respective errors being recorded.. The
mean square errors for both sample groups were obtained. As a measure of

improvement obtained by the use of the optimum tolerance set, we define
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Figure 6.9; Optimum tolerance set for a seventh-order
Chebyshev filter, 1/4 dB ripple, with
Rep = 1/3.
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improvement factors K, and KR, pertaining to the bandwidth and ripple

B

errors, respectively,

A Mean square bandwidth error for uniform group

Mean square bandwidth error for optimum group

and

ne

Mean square ripple error for uniform group

R

Mean square ripple error for optimum group

In a similar manner, a random sequence of uniformly distributed numbers
was used to generate sets of nominal element values between specified
tolerance limits for both sample groups. The expected value of pj

(the index P2) and the standard deviation of Pj was then obtained for

both groups, and two additional improvement factors were defined as

follows:
A Expected value of pj for uniform group
K. =
E Expected value of Pj for optimum group
. Standard deviation of PJ for uniform group
s =

Standard deviation of pj for optimum group

Table 6.3 gives these factors for a number of typical filters,
where in each case we have used sample groups of at least 100 samples to
evaluate the varjious improvement factors. We see that in all cases
substantial improvements in the performance of the filter result from
using the optimum tolerance set to defiﬁe the tolerance limits for the

various network parameters.



Table 6.1: Index P, using low-pass weighting function

(a) Butterworth filtexrs:
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Order of

firrer | Rsu®0  |Repl/8 | Rgpsl/4 |Rgl/3 |Rg=1/2 Ry =l
2 1.266 1.958 1.756 1.651 1.487 1.076
3 1.947 1.750 1.639 1.595 1.558 1.707
4 2,812 3.278 2.903 2.697 2.399 2.036
5 3.689 3,267 2.996 2.870 2.707 2.589
6 4.519 4.704 4.262 3.999 3.608 3.132
7 5.386 4,734 4.310 4.118 3.873 3.593
8 6.323 6.303 5.594 5.240 4.730 4.224
9 7.266 6.333 5.725 5.440 5.065 4.777
10 8.180 7.897 7.011 6.426 5.956 5.317
() Chebyshevy filters with 1/10 dB ripple:
hitew | R0 | Rgp=1/8 | Rg=1/4  |Rg=1/3 Rg=1/2 (R el
2 1.036 1.137 0.972 0.891 0.773 ;
3 1.291 1.097 0.989 0.948 0.911 0.931
4 2.206 2.721 2.315 2,111 1.813 ;
5 3.610 | 3.068 2.725 2.569 2.373 2.238
6 5.182 5.181 4.463 4.109 3.608 ;
7 7,134 6.018 5.307 4.973 4.546 4.204
8 9.292 8.555 7.384 6.818 6.037 -
9 11.690 9.806 8.588 8.028 7.293 6.689
10 14.300 | 12.680 | 10.940 | 10.110 8.978 -




(c) Chebyshev filters with 1/4 dB ripple:
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oiiiieif Rs1i~ Rsp=1/8 | Rgy=1/4  [|Rg=1/3  [Rg =1/2 | Rg =1
2 1.093 1,314 1.121 1.022 0.865 -
3 1.621 1.404 1.279 1.228 1.174 1.154
4 2.914 3.256 2.795 2.549 2.194 -
5 4.457 3.814 3.402 3.212 2.966 2.771
6 6.502 7.289 5.425 4.995 4.377 -
7 8.806 7.489 6.626 6.225 5.687 5.252
8 11.310 10.260 8.859 8.175 7.218 -
9 14.090 11.930 10.500 9.832 8.955 8.209
10 17.070 15.010 12.940 11.550 10.580 -

|

(d) Chebyshev filters with 1/2 dB ripple:

Crirren | Rgy=0 | Rgy=1/8 |Rg=1/4 |Rg=1/3 |Rg=1/2 | Rg =l
2 1.187 1.504 1.795 1.149 0.898 -
3 2.031 1.784 1.634 1.570 1.492 1.438
4 3.661 3.844 3.297 3.012 2.536 -
5 5.584 4.832 4.345 4.115 3.816 3.564
6 7.883 7.417 6.391 5.784 5.076 -
7 10,500 9.016 8.040 7.581 6.975 6.456
8 13.320 11.960 10.300 . 9.488 8.281 -
9 16.500 14.080 12.500 11.760 10.770 9.931
10 19.830 17.260 14,880 13.700 12.010 -




(e) Chebyshev filters with 1 dB ripple:
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Ogiiegf Rs =0 Rep=1/8 | Bgsl/4 | Rg=1/5 I Rgy=1/2 Rgp™!
2 1.381 1.762 1.464 1.279 - -
3 2.661 2.374 2.193 2.148 2.007 1.922
4 4,709 4,687 4.001 3.620 - -
5 7.019 6.170 5.616 5.376 5.015 4,724
6 9.801 8.960 7.674 7.000 - -
7 12.830 11,190 10.110 ¢.6065 8.936 8.369
8 16.170 14.370 12,170 11.133 - -
9 19.740 17.100 15.400 14.605 13.540 12.650
10 23,540 20.250 17.320 15.850 - -
(f) Chebyshev filters with 2 dB ripple:
O?ii(laiegf RsL=0 | Rgp=1/8 | Rgpl/4 IR =1/3 Ry =1/2 | Rg =1
2 1.788 2.131 - - - -
3 3.688 3.357 3.153 3.058 2.933 2.831
4 6.354 5.991 - - - -
S 9.272 8.358 7.769 7.492 7.131 6.832
6 12.770 11,290 - - - -
7 16.410' 14,680 13,570 13.040 12,370 11.810
8 20.480 17.580 - - - -
9 24,790 21,980 20,220 19.410 19.100 17.480
10 29,150 24,570 - - - -




(g) Chebyshev filters with 3 dB ripple:
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O??iiegf Rg=0 | Rgy=1/8 | Rg =1/4 R =1/3 1 Rg =1/2 | Rq =l
2 2.225 2.430 - - - -
3 4.648 4.314 4.099 4.001 3.872 5.768
4 7.903 7.181 - - B -
5 11,380 10.490 9.895 9.628 9.274 8.984
6 15.530 13.430 - - - i
7 19.760 18.080 17.000 16 .500 15.860 15.330
8 24,510 20.690 - - - -
9 29.270 26.670 25.000 24.230 23.240 22.410
10 34.440 28.620 - - - -




Table 6.2;
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Index P using ideal band-pass weighting function

(a) Butterworth filters:

O?ii:egf Rg0 Rgp=1/8 | Rg=1/4 | Rgp=1/3 3SL;1/2 Rgp, =1
2 3.46 5.47 5.15 .97 4.67 3.72
3 7.09 6.76 6.53 .42 6.24 5.97
4 10.33 11.81 11.26 10.95 10.41 8.58
5 14.30 13.60 13.08 12.81 12.41 11.89
6 18.60 18.88 18.04 17.58 16.83 14.52
7 22.22 21.11 20.29 19.87 19.21 18.13
8 27.15 26 .80 25.67 25.05 24.04 21.10
9 30.85 29 .34 28.24 27.67 26.77 24 .65
10 35.81 35.47 34.04 33.40 32.00 28.13
(b) Chebyshev filters with 1/10 dB ripple:
O?iiieif Rgp,=0 Rg=1/8 | Rgy=1/4 (R =1/3 Rg,=1/2 Rgp=t
2 2.39 3.89 3.47 3.25 2.87 -
3 7.58 7.09 6.75 6.58 6.34 6.08
4 13.12 14.24 13.34 12.84 11.99 -
5 19.70 18.42 17.49 17.01 16.28 15.40
6 25.97 126,01 24.51 23.71 22.38 -
7 32.82 30.64 29.06 28.24 27.02 25.57
8 39.53 38.64 36.42 35.24 33.36 -
9 46,79 43.48 41.13 39.94 38.16 36,10
10 54.75 52.61 49,39 47.72 45 .16 -




(c) Chebyshev filters with 1/4 dB ripple:
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Order of

fitter | Sst”0  |Rgp=l/8  |Rgi=1/4 R =1/3 R =1/2 | Rg =l
2 3.0 4.72 4.26 3.99 3.51 -
3 8.52 7.99 7.62 7.43 7.15 6.87
4 14.08 15.05 13.90 13.56 12.61 -
5 20.57 19.25 18.29 17.79 17.05 16.25
6 27.24 27.01 25.40 24,53 23.07 -
7 34.34 32.02 30.36 29.51 28,26 26.05
8 42.22 40.86 38.34 37.01 34.87 -
9 51.08 47.35 44 .69 43.36 41.44 39.44
10 61.60 58.45 54.59 52.58 45 .43 -
(d) Chebyshev filters with 1/2 dB ripple:
iresl |Rsy=0  |Rgy=l/s  (Rg=1/4  [Rgi=1/3  [Rg=1/2 | Rg -1
2 3.61 5.29 5.32 4.48 3.76 -
3 9.17 8.63 8.24 .05 7.77 7.50
4 14,08 15.69 14.66 14.07 12.88 -
5 21.59 20.23 19.25 18.76 18.05 17.36
6 28.76 28.15 2638 25.41 23.66 -
7 36.55 30.48 32.35 31.48 30.24 29.03
8 © 46.04 44.17 . | 41.26 39.72 37.08 -
9 56.99 52.87 49.95 48.51 46.46 44.49
10 70.62 66.15 57 59.16 55.26 -

61.




(e) Chehyshev filters with 1 dB ripple:
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Oigi:eif Rsp=0  [Rgy=l/8 | Rgp=1/4 | Rg;=1/3 R =1/2 | Rgp=l
2 4.35 5.80 5.22 4.82 - -
3 9.89 9,35 8.97 8.83 8.52 8.29
4 16.14 16.45 15.29 14.58 - -
5 22.90 21.54 20.59 20.11 19.46 18.87
6 31.14 29.97 27.93 26.77 - -
7 40.19 37.64 35.87 35.01 33.81 32.73
8 52.45 48.95 45 .93 44.00 - -
9 66.04 61.56 58.50 57.22 54.93 53.07
10 84.09 77.89 72.16 69.09 - -
(f) Chebyshev filters with 2 dB ripple:
°§§i§e§f & =0 Rgp=1/8  [Rgy=1/4 | Rg =173 Rg=1/2 Rgp =1
2 5.29 6.30 - -
3 10.88 10.37 10.04 9.87 9.65 9.46
4 17.86 17.54 i _
5 '24.88 23.61 22.75 22.33 21.78 21.30
6 34,61 32.65 - i
7 45.54 43.13 41.47 40.69 39.64 138.75
8 61.20 56.83 - -
9 77.70 74.26 71.31 69.90 68.44 66 .46
10 103.10 94.50 - - - -




(g) Chebyshev filters with 3 dB ripple:
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Oiffieif Rgp, =0 Rg=t/8  Rgp=1/4  Rg =1/3 [R5 =1/2 Rep ™t
2 6.01 6.63 - - - -
3 11.80 11.34 11.03 10.88 10.70 10.54
4 19.33 18.50 - - - i}
5 26.41 25.27 24.51 24 .15 23.69 23.31
6 37.13 34.54 - - - -
7 49.45 47.24 45 .85 45.16 44 .28 44 .00
8 67.38 61.96 - - - -
9 87.40 83.44 80.52 79.68 78.05 76.71
10 116.89 106.50 - - - -
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Table 6.3
Filter

T ‘ »
Order Rtggie R;tlo KR KB KE KS

SL
4t 1/2 8 2.17 | 1.55 | 1.40 | 1.70
5th 1 1/4 2.18 | 1.72 | 5.21 | 5.66
6t 1 8 3.84 | 3.8 | 1.67 | 1.84

th

7 1/4 1/3 5.42 | 5.79 | 2.55 | 3.08

+ Note that RSL = source/load resistance ratio.

Improvement Factors Obtained in Evaluating

Performance of Optimum Tolerance Sets
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6.6 Conclusion;

In investigating the multiparameter sensitivity of low-pass LC
ladder filtérs, some rather interesting Tesults were obtained:
(1) Although it has been suggested by Orchar;'i3 that the sensitivity
performance of LC networks gets worse only by virtue of second-order
effects becoming noticeable, nonethéless, it has been observed that
increasing the order of complekity of the network has a significant effect
on the value of the index Py '
(2) The optimum terminating conditions exist when the load and source
resistances are equal.
(3) Increasing the amount of dissipation improves the sensitivity
performance of the network slightly,
(4) The optimum tolerance sets which were obtained for these networks
indicate that the sensitive elements tend to be those which are located
towards the center of the ladder, and the use of these optimum tolerance
sets has been found to improve the sensitivity performance of the network

considerably.



CHAPTER VII

" EXTENSION TO ACTIVE FILTERS

7.1 Introduction:

In this chapter, we will deal with the extension of the index of
performance and the concept of the optimum tolerance set to the case of
RC-active filters. As has been pointed out in Chapter II, in the case of
highly selective active filters, it is ordinarily preferable to realize
the network function as a cascade of second-order sections, each suitably
isolated and thereby accounting for a single pair of ccmplex conjugate
poles as shown in Figure 7.1, The extent to which variations in the
elements of any such section affect the overall response of the nctwork
is determined by several factors. For example, the location, in the
complex frequency plane, of the particular pole-pair to be realized, and
the choice of structure for that section are both factors which influence
the sensitivity of the overall response to variations in component
parameters.

The choice of structure for such a section is a particularly wide
one at the present time, as many suitable networks using NIC's, gyrators,
operational and fixed-gain amplifiers are available to the designer. This,
naturally, raises the question as to whether an optimum choice of such
sections exists for a given filter specification, and if so, then to what
extend is the choice of individual section influenced by the coordinates

of the pole-pair which it is to realize. In addition, we might also wish

(147)
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to determine the manner in which the various pole and/or zero movements
should be controlled, relative to each other, such that the overall effect
of such migrations is minimized.

In the following sections, we will éonsider these questions, and
we will show that by extending the use of the index of perfofmance and
the éoncept of the optimum tolerance set to this area, some useful results

can be obtained.

7.2 The Pole-Zero Index,ggpzz

The first step in the extension of the multiparameter sensitivity
index of performance to the case of RC-active filters is to redefine the
network parameters of interest to be the coordinates of the pole-zero
pattern of the network function of interest. It is rather convenient to
define the coordinates of the poies in terms of the relative damping
factor, z, and the undamped natural frequency of oscillation, NP and to
use a similar notation to define the coordinates of the zeros, although
it is recognized that in the case of zeros, such parameters do not have
the same physical significance. In this thesis, however, consideration of
zeros does not arise, as we are concerned with low-pass filters only, the
transmission zeros of which are all located at infinite frequency. By
redefining the network parameters in this way, it is pessible to obtain
an index of performance which is defined in terms of small variations in
pole~zero locations and which we will denote by sz.

In the same way that optimun tolerance sets were obtained for the
various network elements; we can now obtain optimum tolerance sets for the

various ci'and w, - The significance of this new optimum tolerance set,
i
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which we will denote by prz’ is that it defines the limits of pole-zero
migrations, such that each such migration contributes equally to the
total error in the network response. In other words, we now.have a means
of obtaining the optimal limits on the movements of one pair of complex-
conjugate poles relative to the movement of any other pair. This inform-
ation becomes particular1y~uséfu1 for the case of RC-active filters of an

order greater than two.

7.3 Computational Results:

The index, sz, and the optimum tolerance set prz, have been
obtained for a number of low-pass LC-ladder filters. The values obtained
for PPZ are tabulated in Tahles 7.1 and 7.2 where we have used, for the
frequency sensitive weighting function y(w), an ideal low-pass window
function with cut-off frequency of 1 radian per second and an ideal band-
paﬁs window function with lower and upper cut-off frequencies of 0.5 and
2.0 radians per second, respectively. The values obtained for sz correlate

closely with those obtained for the index P., which is to be expected.

1°
This correspondence is evidenced in Figures 7.2 and 7.3 where the variations
of the index sz with order of complexity of the network and wifh magnitude
of passband ripple is shown, respectively.

In Figure 7.4, we show the optimum migration areas for a tenth-
order, Butterworth filter as defined by the optimum tolerance set, prz,
for that network, Not uneﬁpectedly, these results show that the cptimum
tolerable limits on pole migration are less stringent as the pole moves

away from the jw-axis, corresponding to an increased relative damping

factor, .
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Figure 7.4: Optimum migration areas for a
‘ tenth-order Butterworth filter
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Order of Butterworth | 1/2 dB| 1 dB 2 dB 3 dB
filter ripple | ripple ripple ripple
2 5.55 4.89 5.29‘ - 5.32 6.65

3 6.26 8.13 9.57 12.13 14.68

4 10.40 15.08 18.14 23.63 29.13

5 12.54 22.40 28.09 38.18 48.18

6 17.05 33.67 42 .69 58.64 74 .41

7 19.24 46.21 59.63 83.31 106 .50

8 23.76 62.81 81.52 114.20 146 .20

9 26.25 81.29 106 .40 150.00 192 .40
10 30.91 103.90 136.30 192.10 246 .40

Table 7.1(a): Pole-zero index, P__, for various

low-pass LC ladder filters, using

ideal low-pass weighting function
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Order of Butterworth 1/2 dB 1 dB 2 dB 3 dB

Complexity ripple ripple ripple ripple
2 4,607 6.440 6.004 4.439 5.891
3 6,535 10.720 11.560 13.610 15.930
4 11.410 19.690 22.230 27.150 32.060
) 13.990 31.130 36.930 46.570 54.700
6 19.490 47.930 58.710 75.660 88.990
7 22,340 69.990 89.150 118.500 141.200
8 28.250 101.200 133.300 182.100 219.300
9 31.290 143.400 194 .900 272.400 331.000
10 37.230 200.500 290.400. 400.900 497 .300

Table 7.1{(b):

Pole-zero index, P 22 for various

low-pass ladder LC filters, using

ideal band-pass weighting function
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7.4 Sensitivity Analysis of Typical RC-active Second-order Sections:

The multiparameter sensitivity performance of five typical RC-
active second-order sections involving negative impedance converters,
~gyrators and operational amplifiers was investigated. These networks,
which have been synthesized by classical techniques46, are shown in
Figures 7.5 through 7.9. The element values in each case are given as
functions of ¢ and o . The multiparameter sensitivity performance of
these networks, as defined by the index Py, was computed for a number of
different values of 7, with the naturgl frequency of oscillation, W
normalized to unity. The computational results are shown plotted in
Figure 7.10. In performing this semsitivity analysis, the conversion
factor, k, of the negative impedance converter used in the network of
Figure 7.5 and the gyration resistance, r, of the gyrator used in the net-
work of Figure 7.6 were both considered network variables as were the
other network elements. The results show quite clearly that in the case
of each network considered, the sensitivity performance deteriorates as
the value of ¢ is decreased. Furthermore, we note that the network of
Figure 7.7, employing a single operational amplifier, gives the best

overall sensitivity performance of the five networks considered.

7.5 A New RC-active Second-order Section;

As an‘alternative to the networks discussed in the previous section,
a new network, consisting of a single-loop negative feedback system, is
now proposed. The new network contains an ideal voltage-controlled voltage
source, ﬁva, and an RC two-port network driven from a current sourée, Il’

as shown in Figure 7.11. This structure has a number of advantages when
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Figure 7.5: RC-NIC second-order low-pass filter
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Figure 7.6: RC-gyrator second-order low-pass filter
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Figure 7.8: RC-active second-order low-pass filter
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Figure 7.10: Sensitivity performance of various RC-active filters:
' (a) RC-NIC structure
(b) RC-gyrator structure
(c) Operational amplifier structure of Figure 7.7
(d) Operational amplifier structure of Figure 7.8

(e} Operational amplifier structure of Figure 7.9
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applied to the synthesis of RC-active filters:

(1) It can accommodate a finite source resistance in Rl’

(2) It is highly flexible in that the form of the network N; determines
the type of filtering characteristic realized. Thus, to realize a low-
pass filtering characteristic, we use a low-pass RC m-section as shown in
Figure 7.11(b).

(3) It requires a minimum number of elements to realize a prescribed
filtering characferistic.

(4) To realize high-order filters, we may cascade sections without the
need for isolation amplifiers.

All of the network components in Figure 7.11 are, in effect,
included in the feedback loop. Thus, the sensitivity of the natural
frequencies of the network to component parameter variations may be
effectively spread over all compcnents, thereby avoiding the need for
precise control over any particular parameter. For this reason, together
with the fact that the capacitors of network Na are grounded, it would

seem that the structure is well suited for integration.

7.6 Sensitivity Analysis and Optimal Synthesis of the Network:

7.6.1 Analysis of the network
Analysis of the network of Figure 7.11(a) in terms of the z-
parameters of the sub-network Na’ yields the following expression for the

transfer function:

<2

T(s) = <2 = e S (7.1)
L RiRe # 20 Ry + Rp) +uzp Ry
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If a low-pass filtering characteristic is required, we may use the
structure shown in Figure 7.11(b) for Na obtaining

T(s) = — K (7.2)

) 2
ST+ 20 w.Ss + w
n n

where .

W’ a Re * By v v (7.3)

n C2C4R1R3Rf

1 1 1 1
ZCLO = - + + (7.4)
n C2R3 C2R1 C4R3 CZRf
and
-y
K = ——ne (7.5)
C2C4R3

7.6.2 Synthesis of the network

The problem now remains to find an acceptable set of parameters
(RI’RS’CZ’C4’Rf and u) such that the constraints imposed by Equations 7.3
and 7.4 are satisfied. To obtain such a set, we can either adopt an
approach in which the sensitivity of the network is defined in terms of a
single-parameter sensitivity function, e.g., the pole sensitivity with
respect to the active parameter u, or alternatively, we can use some form

“of optimal search routine to find an optimum set of element values such
that the'multi?arameter sensitivity index of performance, P,, of the net-

work is minimized,
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We will consider both of these techniqueé in turn. In the first
instance, we will obtain a set of element values which are defined in
terms of r, whereupon we may make a direct multiparameter sensitivity
comparison with the five other RC-active filters previously discussed,
Following that, we will use optimal search techniques in conjunction with
the multiparameter sensitivity index of performance to find an optimum
set of element values. We will perform the search routine for a range of
different values of g, starting the search, in each case, from that point
in parameter space which is obtained by the classical procedure. In this
way, we shall be able to obtain a quantitative measure of the extent to
which the optimal search routine can improve the performance of the filter
for various values of z.

(a) The approach based on pole-scnsitivity consideraticns: Following

the procedure outlined in Appendix A we obtain the following expressions
for the various element values which define the dependence of these

nominal values on the relative damping factor, z.

) ' _2.55
_ R, = 1.667 c, = =
n
5,10
R, = 1.000 ¢, = =
n
Ry = 0.333
wo= 23320 g0 (7.5)
2

Using these element values, with the natural frequency of oscillation

normalized to unity, the multiparameter sensitivity index, P., was

1’

computed for a range of different values of 7. The results, which are
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shown plotted in Figure 7.12, indicate, as expected, that the sensitivity

performance of the network deteriorates as ¢ decreases.

(b) The optimal synthesis procedure: As an alternative to the previous

procedure, an optimal synthesis procedure was programmed on the CDC 6400
computer, The procedure uses the steepest-descent method of optimal
search to find a set of element values which tends to minimize -the index
of performance, Pl’ while at the same time satisfies the constraint
Equations 7.3 and 7.4,

1 is

interpreted as a surface in parameter space. The maximum change in P

In applying steepest-descent, the index of performance, P

1

occurs in the direction of the gradient vector, VPl, where

- -
aPl

axl

BPl

w. = x| 7.6

opP

1
9X
n

At each iteration of a simple steepest-descent routine, the gradient

vector VPl, is computed, and on this basis a corrective change in the
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parameter vector x is made according to the following:

§+1

x = % - ijPl (7.7)

where X is the vector parameter at the jth’iteration, and kj is a gain
parameter. The'kj is assumed positive, with a magnitude that is controlled
at each iteration to ensure reasonable convergence towards the optimum
value of Pl' The computer iterates this procedure until a stopping
condition is satisfied.

The problem that we are specifically faced with is one of non-
linear programming. That is, we have a non-linear index of performance,
Pl(s,x), which we wish to minimize subject to the non-linear equality
constraints of Equations 7.5 and 7.4 and to other inequality constraints
imposed by the requirement that the element values must fall within some
acceptable bounds. In the programs which were written in support of this
thesis, bounds were also placed on the value which the ratio, T, of any

two like elements, could assume, i.e.,

1
a‘— S < Q (7.7)

where the parameter o is chosen appropriately by the user.
Each.constrainf defines one or more regions in parameter spaces
which are not allowed as solutions. Multiple constraints simply increase
the disallowed volume. This principle i1s illustrated in Figure 7.13 for
the two parameter case,'uith_e%amples of the three types of constraints

mentions above,
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For the general n-parameter case, an equality constraint of the
form C(x) = 0 must be satisfied. One method of solution is to choose an
arbitrary starting point in parameter space and adjust this parameter
setting in steps (using steepest-descent perhaps) until the constraint is
satisfied. The search then procedes along, or close to, the C(k) =0
contour on the P1 surface in parameter space until the constrained minimum
value of Py is reached. This procedure is readily formulated using VC
(the gradient of C), and VP1C (the constrained gradient of Pl), which is
defined as that direction in parameter space along which Pymay be improved
without affecting C. The procedure may readily be extended to the case of
multiple equality constraints. A more detailed description of the
procedure is given elsewheré47’48’49.

Equality constraints may also be handled by the so-called elimination
method, in which one or more of the constraint equations are used to solve
for one or more network parameters in terms of the remaining ones. These
relationships are then substituted into the objective function. Thus,
the number of independent variables, and consequently, the complexity of
the problem is reduced. It should be noted that the method is not always
applicable, as it requires the initial solution of the constraint equations
in closed form,

In the case of the network of Figure 7.11, the elimination method
has been used to advantage. The network has a total of six variable
parameters, including ﬁ, However, only two equality ccnstraints, imposed
by the prescribed pole-pair coordinates in the'éomplek‘frequency plane,

and defined by~Equations 7.3 and 7.4 must be satisfied. We therefore have
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four degrees of freedom which may be used to reduce the multiparameter
sensitivity of the network. The first step in the pfocedure was to solve
Equations 7.3 and 7.4 for the control parameter, u, and for the feedback

resistor, Rf:

2
C,R (. C,CRRy ~ 1)

: 274°103 '
o= -1 (7.8)
226 C,C,R Ry - C,R; = C,Ry ~ C,R
and
C

1 1 1 2
=— = 2y C. = =— ~ =— =~ (7.9)
R n2 "Ry R C,R;

These values for p and Rf were then substituted into the expression for

the index Pl’ In this way, the problem was transformed into an optimal

search of four-dimensional space for that set of C2, C4, R1 and R3 which

(with the corresponding values of u and R_ as defined by Equations 7.8 and

f

7.9) minimizes P1 while realizing the prescribed pole-pair coordinates

exactly. A description of the optimal search routine now follows.

7.7 The Optimal Search Routine:

The unconstrained search of the four dimensional space bounded by
the acceptable values of the parameters x' 2 [CZ,C4,R1,R3]t is best
 described with the aid of a flow-chart (see Figure 7.14)

| The computer is programmed with a mathematical model (network
characterizatiocn block) and instructions for computing the indek Pl and its
_ gradient VPl. An initial parameter setting is read in, and thealue of ﬁ

and R_. which realize the prescribed pole-pair coordinates in the complex

£

frequency plain are then computed. A corrective adjustment in x' is then

- made. The magnitude of this adjustment is controlled by the gain constant
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K,

1
(0]
)

&xt = .«kjvp1 (7.10)

The new value of the index Pl is now computed and the actual change in

P1 is determined, and is compared with its predicted change. The magnitude
of the gain constant, kj, is controlled by the convergence characteristics
of the search routine. The steepest-descent procedure extrapolates from
the measured Plasurface slope components, thus approximating the Pl-surface
as a plane. The actual Pl-surface, in most cases, 15 more accurately
represented by a quadratic form, so that the planar approximation becomes
progressively poorer with increasing distance from the test point. Thus,

if kj is made too large, the actual value of P, may be far from the

1

predicted value at the new set point, and the procedure may fail to con-

verge to the optimum solution. We therefore control the magnitude of i’

at each adjustment step to prevent divergence. If the predicted and actual

change in P, differ appreciably, the magﬁitude of k? is decreased approp-

1
riately. By the same token, if the predicted and actual change are very
close to each other (suggesting that the step size is too small) the value
of kj iay be increased to speed up éonvergence.

The procedure is repeated until a stopping criterion is satisfied.
The stopping criterion is usually eipressed as || vp|| < % where > is a
positive constant chosen to terminate the computer run near the optimum
value of P,. 1In our case, we have an additional stopping criterion, as

defined by Equation 7.7, which causes the search to be terminated when any

parameter assumes an unacceptable value.
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7.8 Sensitivity Performance of Optimized Networks:

The index of performance, P., was used in conjunction with a

1,

steepest-descent optimal search routine to synthesize a number of RC-active

filters using the configuration of Figure 7.11.

7,8.1 Optimization of second-order Butterworth Section
In the synthesis of an optimum second-order low-pass Butterworth

section, the magnitude of the index P, was reduced by approximately 30%

1
during the first ten iterations of the search routine as is illustrated

in Figure 7.15. The sensitivity performance of the original non-optimized
version and the resulting optimized version was compared, and typical
response curves are shown in Figure 7.16. The following procedure was
used to obtain these and other similar curves which follow in Figures 7.18
through 7.20. -A random sequence of uniformly distributed numbers was

used to generate sets of element values between specified tolerance limits
for both versions of the filter. The frequency response of the resulting
networks was then evaluated and the error in the response of the optimized
version at the cut-off frequency was noted. This procedure was repeated
25 times using different random number sequences. The curves of Figure
7.16 correspond to that set of randomly generated element values (between
. specified tolerance limits) which resulted in the largest such error. The
nominal values of'the.elements used in both cases and the resulting values

of the index P1 which correspond to the curyes of Figure 7.16 are tabulated

in Table 7.2,
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Network Non-optimized Optimized
element structure structure
Rl 1.0000 11.6845
C2 10.0000 10.0045
RS 10,0000 9.6951
C4 2.0600 '0.1038
Rf 0.0797 0.2488
, ! 1.4869 1.4845
Index P, 7.8220 5.4510

Table 7.2: Element nominal values and corresponding
value of the index P. for the optimized
and non-optimized ne%works used to obtain
the responses shown in Figure 7.16
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7.8.2 Statistical analysis of errors of optimized and non-optimized
versions of the fiiter

As a further indication of the improvement in performance of the
optimized version of the filter, the errors which occurred in the network
response (when the network elements were perturbed) were analyzed for
both the optimized and the non-optimized versions of the network described
in Table 7.2. These errors were computed for a number of frequency points
of interest, and thelr standard deviation was determined. The results
obtained are shown plotted in Figure 7.17. It is noted that in the case
of the optimized version of the filter, the standard deviation is considerably
less than that of the non-optimized version in the frequency band of interest.
Furthermore, these results confirm our earlier conclusion, viz., that the
network response is particularly sensitive in the vicinity of the cut-off
frequency.

The Chi-squared goodness-of-fit test was also applied to the error
data to determine the extent to which the distribution of these errors
appreximated to a normal or Gaussian distribution. Thé results of this
test are tabulated in Table 7.3, where the value of Chi-squared obtained, .
and the corresponding probability that the data was generated by a normal
process are tabled as a function of frequency. On the basis of these
results, which tend to be negative, we may conclude that the errors have
probably been generated by a process which is not ekactly normal, a
conclusion which is implied in Equation 4.3. As each of the 6xi have been
_ glven a rectangular distribution; it follows that é-'lz-will have a distribution

T

which tends towards a normal distribution as the number of parameters, X5
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tends to become large. In this particular example, there are but six
parameters; we would not, therefore, expect the distribution of ég-to be
particularly close to normal.

The index P2 was also computed, and the standard deviation of the
various Pj was’ determined, for both versions of the network. The results

are tabulated in Table 7.4. The Chi-squared test was again applied to the

pj data (50 samples) and the results were again negative.

7.8.3 Other optimized networks

(a) The synthesis of filters realizing several different values of
relative damping factor, ¢, was undertaken. The sensitivity performance
of the resulting optimized networks was again compared with that of the
non-optimized versions. The results are shown plotted in Figures 7.18,
7.19 and 7,20 for the case of ¢ = 0.9, ¢ = 0.6 and ¢ = 0.3, respectively.
The nominal element values for both versions of each filter‘are tabulated
in Table 7.5.

(b) For the case of a Chebyshev filter with 1 dB passband ripple, the
sensitivity performance of an optimized network was compared with that of
the network synthesized in Appendix "A". The set of element values
obtained in Appendix "A" was used as the starting point in parameter space
for the optimization procedure. The fesults of this sensitivity comparison
are shown plotted in Figure 7.21, and the nominal element values for both
yversions of the filter afe listed in Table 7.6.

(¢) Finally, the nominal element values which are defined in terms of ¢
by Equation 7:5 were chosen as starting points in parameter space and

optimal search was applied for a number of different values of . The
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Non~optimized Version

Optimized Version

Yalue Value
Frequency ';2§§é;§i Prob (Norm) ;ziaéﬁii Prob (Norm)

squared squared
0.2 9.2 42% 10.0 27%
0.4 6.4 60% 10.0 27%
0.6 10.8 22% 12.0 16%
0.8 9.2 34% 9.6 28%
1.0 16.8 4% 9.2 33%
1.2 10.8 22% 9.2 33%
1.4 12.0 14% 9.6 28%
1.6 12.0 14% 12.0 16%
1.8 10.0 27% 9.2 33%
2.0 6.4 60% 8.0 43%
2.2 6.4 60% 6.0 65%
2.4 5.6 69% 7.6 48%
2.6 5.6 69% 6.0 65%
2.8 5.6 69% 5.2 73%
3.0 6.4 60% 4.8 77%

Table 7.3: Chi-squared goodness-of-fit test

Non-optimized Version

Optimized Version

}ndex P2

(p.)
g pJ»

Index P2

o(Pj)

0.847 .

0.747

0.305

0.287

Tahle 7.4:

Indei P_ and

2

standard deviation of pj
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resulting reduction in the value of the index Py is shown in Figure 7.22,
where it is plotted as a function of z. It is noted that the reduction

becomes more significant as the value of z is increased.

7.9 A '"Two-level' Optimization Procedure:

In the synthesis of an RC-active filter, such as that shown in
Figure 7.11, optimal search techniques can be used to find the optimum
nominal element value set, In addition, the optimum tolerance set for
this optimum nominal set can then be obtained, and can be used to further
improve the performance of the network.

The effect of such a twc-level optimization procedure is illustrated
in Figures 7.23 and 7.24 where we compare typical response curves for
optimized and non-optimized versions of the network. The corresponding
nominal values and tolerances of the elements are listed in Table 7.7.

It is noted from these results that the combined effect of the optimal
nominal set and the optimum tolerance set results in a truly significant

improvement in the performance of the network.

7.10 Design of a Highly Selective RC-active Filter:

We will conclude this chapter with an outline of a procedure for
the optimum design of a highly selective RC-active filter. The procedure
incorporates many of the concepts and ideas which have already been
considered in this thesis, e.g., the'%ndei of performance Pl’ the elemental
optimum tolerance Se?; SXO; the pole-~zero oPtimum tolerance set, 6sz, and

the‘two-level'optimization procedUre.
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z Network Non~optimized Optimized
element structure structure
S22
R, 2.641 x 10 .019
c, 2.108 x 10 442 x 107!
0.9 R, 3.808 x 10 523 x 1071
(Fig. 7.18) c, 3.129 x 10 .289
R 3.201 x 10 397 x 10°
" 8.027 x 10° 415 x 10°
R, 5.134 x 1072 .031
c, 1.628 x 10 .134
0.6 R, 2.991 x 10 .159
(Fig. 7.19) c, 2.459 x 10 .275
R, 4.683 x 10° .883 x 10°
" 5.600 x 10° 594 x 10%
l 2
R, 2.053 x 10 .287 x 10
c, 1.684 412
3 2
0.3 R, 1.680 x 10 .381 x 10
(Fig. 7.20) c, 1.997 x 107} 731 x 1073
1.000 .000
Re
' 5 2
& 1.158 x 10 .540 x 10

Table 7.5 Nominal element values for the optimized and
o non-~optimized networks used to obtain the
results shown in Figures 7.18, 7.19 and 7.20
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Network Non-optimized Optimized
element structure structure
R1 1.0000 6.588
C2 1.5090Q 3,253
R3 3.0000 6.627
C4 4.5270 3.419
Rf 4.6275 3.271
u 100.0000 23.640

Table 7.6: Nominal element values used to
obtain the results shown in
Figure 7.21
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Element Non-optimized Optimized Normalized Tolerance Sets
Nominal values Nominal values Uniforn Optimum
R,y 30.8700 4,961 2.437 9.054
Cé 44,6800 1.402 2.437 1.103
R3 55.8700 2.193 2.437 1.101
Cy 44,5800 3.662 2.437 1.029
R5 0.0374 107.900 2.437 1.335
ﬁ 4245 .,0000 1192.000 2.437 1.000

Table 7.7: Element values and normalized tolerances
used to obtain the results shown in
Figures 7.23 and 7.24.
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The pole-zero optimum tolerance set, &X is particularly useful

pz’
for the case of active filters which are to be realized as a cascade of
second-order sections., This tolerance set, prz, defines the optimum
tolerable limits on the variations of each pole-pair of the network. These
limits may, in turn, be used to obtain the elemental optimum tolerance
.th

set, GXO , for the i sub-network element set.

i

The first step in the design procedure is to obtain SXPZ. We must
then choose a suitable structure for each of the various sub-sections of

the network. The index of performance, P., can be computed for each

1’
suitable sub-network, and the choice of such sub-network can be based on
the resulting sensitivity performance as defined by Pl' In other words,
the value of Pl obtained for‘a given 7 will determine the structure to be
used in the pertinent sub-section,

In the synthesis of such a sub-section, we may either use classical
techniques to obtain the nominal element value set, or better, we can use
optimal search techniques to obtain an optimum set of nominal values for
the elements of the network. The optimum tolerance set, 6X°, for the
optimum nominal set thus obtained can then be used to further improve the
performance of the network.

Finally, the last step in the design procedure, that of setting
tolerance levels of each stage relative to the others, may now be taken.
First, we define the'ith’P01e~pair parameters, gi'and @ in terms of
the network elements. From the known optimum tolerance ;et for these
elements, on(; we may obtain the standard deviation of ci'and W due to

1 .

1
random variations (between specified tolerance 1limits) of the elements, X -
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Let these standard deviations be denoted by c(;i) and o(wn ), respectively.
i
The elemental optimum tolerance set is now scaled by a factor that is chosen
such that neither Q[Ci) nor q(wn.) will exceed the optimum tolerance set
: i

for ciland w as obtained earlier. Having completed this step for each

nj
section, we now have an optimum tolerance set for all the elements of the
network, However, this set must now be assigned an absolute level, which
might, for example, be determined by the smallest permissible tolerance in

a given practical situation. The procedure is illustrated by means of a
numerical ekample which is given in detail in Appendix "B". In this example,
the sensitivity performance of an optimized version of a tenth-order
Butterworth low-pass filtef, employing an optimum tolerance set, is compared
with a non-optimized version of the same filter employing a uniform
tolerance set equal to the mean of the tolerance set used in the optimized
version, The results of this comparison are illustrated in Figure 7.25,

" where we observe a considerable improvement in the case of the optimum

filter in the region of the cut-off frequency.
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CHAPTER VI1I

CONCLUSIONS

An investigation of the multiparameter‘sensitivity of a wide
range of linear, time-invariant networks has been undertaken. As a first
step in this inveétigation, the sensitivity of a number of RC-gyrator
filters was considered. A procedure for developing gyrator-capacitor
equivalent networks for LC-ladder filters was developed. Thé procedure
was used to construct loﬁapass and bandpass filters with measured
responses showing very close agreement with theory. The sensitivity of
the response characteristics of these networks, with respect to variations
in- supply voltages, was measured, and the eXperimental results obtained
indicate that such filters are highly insensitive to such variations.

In the optimum‘design of a network based on sensitivity considera-
tions, however, we need a sensitivity criterion, or index of performance,
which gives a meaningful measure of the multiparameter sensitivity of the
network. The indices which have already been proposed in the literature
have been critically appraised, and some shortcomings have been pointed
out. A new multiparameter sensitivity index of performance has been
proposed. The index provides a quantitative measure of the fractional
change in the overall response of the network.dﬁe to simultaneous varia-
tions in some or all of the network parameters. The indeX has been used
as the basis of comparing the sensitivity performance of different net-

works, including LC-ladder and RC-active structures.

(197)
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The several methods which have been proposed for the computation
of sensitivity functions have also been critically reviewed, and a new
method, which involves the representation of polynomials in array form,
is described, The efficiency of computation of this method has been com-
pared with that of Director and Rohrer's adjoint network procedure, and it
is shown that for a class of networks, considerable advantage is to be

~gained by using the direct approach.

A procedure has been outlined for generating an optimum tolerance
set, which, when used to define the tolerance limits of the various
eiements of a given filter, ensures that the element changes contribute
equally to the total change in the filter performamce, thereby resulting
in a substantial improvement in the overall performance and reliability
as compared to the case of uniform tolerances.

The index of performance has been used to evaluate the multi-
parameter sensiti?ity of various second-order RC-active filter sections,
thus facilitating the choice of structure to be used for the synthesis of
filters involving the cascade of a number of second-order sections, It
_has also been used, in conjunction with optimal search techniques, to
obtain the optimun nominal set of element values for the chosen section.
The use of this optimum nominal set may be combined with an optimum
tolerance set, resulting in a further improvement in the performance of
the filter. In the case of a high~order filter, the optimum tolerance
sets for the various sub-sections of the filter are related to each other
by the pole-zero optimum tolerance set which defines the optimum migration

areas for each complex~conjugate pole-pair of the overall network.



APPENDIX A"

SENSITIVITY ANALYSIS BASED ON THE POLE-SENSITIVITY FUNCTION

In this Appendix, we first obtain an expression which will define
the pole sensitivity of the network with respect to the active parameter,
¥, in terms of the network parameters. We next obtain a set of nominal
element values for the nétwork, such that a prescribed pole-pair is
realized while at the same time the magnitude of the poie—sensitivity is
less than some prescribed value. 'Finally, we obtain the element values
as functions of the relative damping factor, z.

The first step in the procedure is to obtain an expression for
" the pole-sensitivity function, Sii. The transfer function of the network

is given as

K
C.C,R
2743
T(s) = ; (1)
s2+{1 L1, 1,1 }S+Rf+R1(1+‘*)
C2R3 C2Rl C4R3 CZRf C2C4R1R3Rf
from which
1 1 1 1 A
2zw = + + + = B (2)
n C2R3 Cle C4R3 C2Rf C
and
W2 . Re + BRI+ ) )
n C,.C,R.R_R

27413f

- (199)



200

Noting that zw_ is independent of ﬁ, and that the poles of the

network are given by

5. = ~zw_ * Jo Jl-’cz' (4)

i n n

we obtain

dS dg) Cw‘
. / d

n
a“ dy Jl- CZ du
From Equations 2 and 3, we obtain

-8

gf“ = (6)
4o, C,C,R:Re
and
:Pn' =2 é C R.R 7
W “n ~27473%¢

Substituting Equations 6 and 7 into 5, we obtain

ds1 .
a = -J 7 > (8)
2 C,C RR I - ¢
from which _
s1 A dslﬂ _ U
5 B v B ho- 2l ®
o 205 ColaRgReVD ~ 2

Suppose, for example, we wish to synthesize a network which will
satisfy the following specifications;
(1) The network is to have a second-order low-pass Chebyshev response

with 1 dB ripple in the passband.
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(1) The magnitude of the pole-sensitivity function, Sul’ is to be less

than wnity,.

(1i1) The maximum value that the ratio, r,, of any two like elements in

the network may assume is 10.0.

Normalizing the impedance level of the network by letting Rl =1,

letting x = 100, and choosing resistance and capacitance ratios as follows

4 2 | (10)

we obtain the following results:

Element Nominal Value ???lgn. Realized
SpeClIlcatlonS Values
R1 1.000 w_ = 1.05 w- = 1,05
n n
C2 1.509
R3 3.000 z = 0.5227 z = 0.5227
C4 4,527
' sk . sP = 0.63
Ry 4.627 lu|<1o Iu‘l 0.630
u 100.000 0.1 < rx < 10.0 0.2 < 1& < 5.0

To obtain a set of element values which arc defined in terms of
the relative damping factor, c,'we procede as follows; We first normalize
the impedance level of the network with respect to R;, say, whereupon we

have



Choosing

w ~
n C2C4R1Rf

C4 = 2C2

=
n

5/3 Ry

=
n

1/3 Ry

we obtain the following results

Element Nominal Value
Rl 1.667
C2 2.55/cwn
Rz 1.000
Cy 5.1/;wn
Rf 0.333
u 4.335/% ~ 1.20
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(11)

(12}

(13)



APPENDIX

HB!'

DESIGN OF A TENTH-ORDER BUTTERWORTH LOW-PASS RC-~ACTIVE FILTER

Let it be desired to synthesize a tenth-order Butterworth low-

pass filter by means of a cascade of five second-order sections. The

first step in the design procedure is to obtain the pole-zero optimum

tolerance set, &X
pz

, which is given in Table Bl.

(203)

Pole-pair Coordinates in Variable Nominal | Normalized
Number the s-plane paraneter value optimum
tolerance (%)
1. -0.1564 + j0.9877 w (1) 1.0000 0.2107
z (1) 0.1564 1.7630
2, ~0.4540 i'j0.8910 wn(Z) 1.0000 0.323¢
z(2) 0.4540 1.2180
3. «0.7071 + j0.7071 wn(S) 1.0000 0.3790
z (3) 0.7071 1.0790
4, -0.8910 t‘j0.4540 wn(4) 1.0000 0.4096
£(4) 0.8910 1.0220
5, «0.9877 * jQ.1564 w5(5) 1.0000 0.4235
;(5) 0.9877 1.0000
Table Bl
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On the basis of the relative sensitivity performance of the six
RC-~actiyve networks considered in Chapter VII, and on account of the
minimal number of components involved, and the fact that no isolaﬁion is
needed between stages, let us choose the network of Figure 7.11 for each
sub~section of the filter. The next step in the procedure is to find an
optimum nominal set and corresponding optimum tolerance set for each sub-
section of the filter. These sets have been obtained and are listed in
Table B2, where a non-optimum set of nominal values is also included.

The elements of each sub-section were next allowed to vary randomly
between the pertinent optimum tolerance limits, and the resulting changes

in the parameters Ci and w_  were computed. The standard deviation in

kY

i
each case was determined. The elemental optimum tolerance sets for each

seétion, 6Xo , were then scaled by a factor such that no standard

i
deviation exceeded the pertinent pole-zero optimum tolerance (Table Bl).

The overall elemental optimum tolerance set, SXO, was then scaled so that
the smallest tolerance limit was acceptable; in our example, this limit
was assigned the value of 1%. As for the upper tolerance limit, it must
be small enough to justify a first-order sensitivity analysis; in our case;
an upper tolerance limit of 20% was adcpted. The resulting tolerance set

is given in Table B3.



(a)

(®)

(c)
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®)
(c)

Nominal element values for
Optimum tolerance sets

_for

optimized version of filter
the optimized version of filter

Pole-Pair No.
Element _
1 2 3 4 5

R, 10,000 5.000 0.080 0.080 0.080 §'
c, 4,000 1.990 16.000 16.000 16.000 f%
Ry 6.000 | 2.981 2.400 2.444 2.400 |3
c, 8.000 3,991 §.000 lis.ooo 8.000 %-
R, 1.109 0.906 0.1127 0.0677 0.056 %.
" 211.900 | 20.256 32,209 18.963 15.495 3
R, 10.048 5.041 88.250 60.150 50.292
c, 2,263 1,351 16.408 16.264 16.216 S
Ry 2.556 1.369 0.1834 0.1434 0.1271 %:
C, 6.662 3.323 7.575 7.546 7.575 E
Re 11.863 | 734.500 0.1686 0.1438 0.1368 g.
" 455.000 | 4370 2.943 1.527 1.082 3

’ g
R, 26.224 | 10.011 2085 1476 1244 o
c, 1,033 1.208 1.218 1.294 1.330 %
R, 1.032 1.218 1.348 1.513 1.612 %
C, 1,009 1.070 1.229 1.326 1.382 %
R 1.157 1,554 1.670 1.882, 2.007 g
" 1.000 | 1.000 1.000 | 1.000 1.000 |

Table B2
(a) Nominal element values for non-optimized version of filter
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Pole-Pair No.
Element
1 2 3 4 )
Rl 20.00 11.02 20.00 20.00 20.60
C2 1.03 1.33 1.34 .1.43 1.47
R3 1.03 1.34 1.49 1.67 1.78
C4 1.01 1.18 1.36 1.46 1.52
Rf 1.00 1.10 1.10 1.10 1.10
Tdﬂe@i

Optimum tolerance set with lower and upper limits of
1 and 20 per cent, respectively
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