
MULTIPARAMETER SENSITIVITY OF LINEAR TIME-INVARIAJ'ff 

NETWORKS 



MULTIPARAMETER SENSITIVITY OF LINEAR TIME-INVARIANT 

NETWORKS 

by 

WALTER J. BUTLER, B.A., B.A.I. (DUBLIN) 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfilment of the Requirements 

for the Degree 

Doctor of Philosophy 

McMaster University 

March 1970 



DOCTOROF PHILOSOPHY (1970) 
(Electrical Engineering) 

McMASTER UNIVERSI1Y 
Hamilton, Ontario 

TITLE: Multiparameter Sensitivity of Linear Time-invariant Networks 

AUTHOR: WalterJ. Butler, B.A. (Dublin) 
B.A.I. (Dublin) 

SUPERVISOR: Professor S. S. Haykim 

NUMBER OF PAGES: 212, xv 

SCOPE AND CONTENTS: 

The realization of inductorless filters by means of RC-gyrator 

structures has been investigated, and the sensitivity of their response 

characteristics with respect to supply voltage variations has been measured. 

A critical appraisal is made of the various multiparameter sensitivity 

functions which have already been proposed in the literature, and the methods 

by which these sensitivity criteria may be computed are surveyed. A new 

index of performance, by which the multiparameter sensitivity of a linear, 

time-invariant network may be evaluated, is proposed. Furthermore, a new 

method of computing sensitivity indices is described and is shown to be 

highly efficient from a computational point of view. The index has been 

used to investigate the sensitivity performance of a wide range of passive 

and active filter structures. It has also been used to generate a so~ 

cal led "optimum tolerance set" for the elements of such fi 1 ters and the 

effect of employing these optimum tolerance sets has been investigated. 
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The index of perfonnance and the concept of the optimum tolerance set is 

extended to the case of RC active filters. A "two-level" optimization 

procedure is proposed, whereby an optimum nominal element value set may be 

combined with the corresponding optimum tolerance set to obtain a marked 

improvement in the sensitivity performance of the network. Finally, the 

synthesis of a highly selective RC-active filter is considered, and it is 

shown how an optimal structure and tolerance set can be obtained for such 

a network. 
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ABSTRACT 

The realization of inductorless filters by means of RC-gyrator 

structures has been investigated. A procedure has been proposed whereby 

a conventional LC-ladder filter may be transformed into an inductorless 

filter which uses capacitors a11d grounded three-terminal gyrators. The 

predistortion technique has been used to compensate for the effect of the 

parasitics associated with a practical gyrator circuit. The procedure 

has been used to construct low-pass and a~~rrrun~t_ric band-pass filters and 

close agreement with theory is reported. The sensitivity of the response 

of these networks with respect to variations in supply voltages has been 

measured and the results indicate that the filters are remarkably 

insensitive to such variations. 

In order to investigate the effect of simultaneous variations 

in several or all component parameters of such networks, a new multiparameter 

sensitivity index of performance has been proposed for use with linear, 

time-invariant networks. An algorithm has been devised for computing this 

index. The algorithm derives partial derivatives of network functions 

with respect to component network parameters exactly and efficiently. It 

also avoids the need for repeated analyses of adjoint or auxiliary net-

k d b d 1 th d . 1 d . . d wor s an may e.use to eva uate n -or er part1a er1vat1ves an 

corresponding sensitivity functions. The index of performance has been 
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used to evaluate the effects of varying the order of complexity, passband 

ripple, dissipation and source/load resistance ratio upon the overall 

sensitivity performance of low-pass LC-ladder filters. 

A procedure has been developed which determines for a given 

filter, an "optimum tolerance set" which ensures that the various element 

changes ~on tribute equally to the total change in the filter performance. 

The effect of using such optimum tolerance sets has been investigated, and 

it is shown that such use leads to a considerable improvement in the 

sensitivity performance of a network. 

The procedure has also been used to obtain pptimum tolerance 

sets for the variations in pole-zero locations of various low-pass filters. 

This approach is particularly suitable for the synthesis of active net­

works where higher-order filters may be realized by a cascade of second­

order sections isolated by buffer amplifiers. In the synthesis of such 

second-order sections, optimal search techniques have been used in con­

junction with the index of performance to obtain optimum nominal element 

value sets for a particular configuration. This "two-level" optimization 

technique is then shown to be highly effective in the optimal design of a 

highly-selective RC-active filter. 
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CHAPTER I 

INTRODUCTION 

The sensitivity problem is one which has been receiving much 

attention both in control and network theory in recent years. The problem 

is usually expressed in terms of a sensitivity function (e.g., pole-zero 

sensi ti vi ty) or index of performance which defines the influence of a 

variation in one or more network parameters on the performance of the net­

work. The sensitivity criterion thus chosen is used to obtain an optimwn 

design by indicating an optimum choice of realizable network structure, or 

the element values for a less sensitive structure. 

In network theory, the early sensitivity studies were concerned 

with a single variable, such as the sensitivity of some network function 

with respect to a particular parameter. HoHever, with the increased use 

of the digital computer as a design tool, we are now ab le to tackle the 

more complex problem of evaluating the sensitivity of a network to 

simultaneous variations in a multitude of network parameters. Also, the 

advent of integrated and other micro-electronic circuitry has brought the 

multi parameter sensi ti vi ty problem into further prominence, since, with such 

networks, we can no longer call for close tolerances indiscriminately, nor 

can we expect a high degree of parameter consta:acy even from passive 

elements. 

"' 1 -
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In this thesis, some new concepts and ideas are introduced and are 

used to investigate and optimize the multiparaineter sensitivity performance 

of a wide range of LC-passive and RC-active filter structures. 

(1) In Chapter II, the use of gyrators in the synthesis of inductorless 

filters is considered, and the sensitivity of several such RC-gyrator 

structures to variations in supply voltages is investigated. It is shown 

that these networks are particularly insensitive to such perturbati_ons. 

This result was not unexpected, as the gyrators which were used were 

specifically designed to be practically independent of variations in the 

active parameters. Clearly, however, this type of sensitivity measure is 

of somewhat limited use in a practical situation, where, for example, we 

might wish to realize an RC-gyrator filter in integrated form. In such a 

situation, we would be concerned with the sensitivity of the network 

response to simultaneous variations in some or all of the network parameters 

It was, therefore, considered necessary to define a multiparameter 

sensi ti vi ty index of ;erformance by which a more meaningful measure of the 

sensitivity performance of linear time-invariant networks (in general) might 

be obtained. 

(2) In Chapter III, the sensitivity problem in network theory is surveyed 

in some detail, with emphasis being placed on multiparameter sensitivity. 

During the course of this survey, the various multiparameter sensitivity 

criteria which have already been proposed in the literature, and the methods 

by which such criteria may be computed, are critically appraised, and their 

inherent limitations are discussed. 
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(3) In Chapter IV, a new multiparameter sensitivity index of performc..nce 

for use with linear, time-invariant networks is proposed, and a procedure 

for determining a so-called "optimum tolerance set" for a given network 

is described. In Chapter V, the problem of computing the index of 

performance is discussed, and a new computational procedure is described. 

The procedure is shown to be highly efficient with respect to computer 

time and storage requirements. 

(4) The index of performance has been used to investigate the dependence 

of the sensitivity performance of low-pass LC-ladder filters on the order 

of complexity, the magnitude of the passband ripple, the amount of 

dissipation and the source/load resistance ratio of such networks. Optimum 

tolerance sets have been obtained for a number of networks, and the 

improvement in sensitivity performance obtained through use of these 

optimum tolerance sets has been investigated. In Chapter VI, the computa­

tional techniques used to undertake these investigations and the results 

obtained are discussed in detail. 

(5) In Chapter VII, the index of performance and the concept of the 

optimum tolerance set is extended to the case of active filters. In the 

case of such filters, the second-order section is of particular import­

ance as higher order networks may be realized by a cascade of a number 

of such sections. The index of performance has been used to evaluate the 

multiparameter sensitivity performance of several alternative second­

order sections thus facilitating the choice of the particular section to 

be used. It has also been used, in conjunction with optimal search 

techniques, to obtain the optimum element value set for the chosen section, 

the optimum tolerance set for such optim~~ nominal set then being obtained. 
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Finally, the optimum tolerance sets for the various second-order sections 

thus obtained are related to each other by defining the variables of the 

overall network to be its pole coordinates in the complex frequency 

plane. The optimum tolerance set for such pole coordinates is then 

obtained. This set, in defining the limits of pole migration for each 

pole relative to the others, may then be used to obtain the absolute vaiue 

of the tolerance on each element of the entire network. 



2.1 Introduction: 

CHAPTER II 

RC-GYRATOR FILTERS 

The classical network synthesis problem involves two steps: 

(i) the approximation problem, and, (ii) the realization problem. The 

approximation problem is one of deriving an approximating function which 

minimizes the error between itself and the desired response function over 

a band of frequencies, while at the same time satisfying certain realiz­

ability conditions. Having determined such a function, we may then 

proceed to realize the network in a suitable form. In the case of passive 

networks, many suitable synthesis procedures have been developed over the 

years. In particular, we have the very powerful techniques of Foster, 

Cauer, Brune, Bode and Darlington for the classical synthesis of networks 

containing lumped, linear, finite, passive and bilateral elements. 

Due to the accelerated growth of solid-state technology since the 

early 1950's, the interest in filter theory has shifted significantly 

from the area of passive filters to that of RC-active filters, i.e., filter 

structures which use resistors, capacitors and active devices only. One 

advantage of this type of structure is that the need for inductors, which 

are less nearly ideal than are resistors and capacitors, and which become 

extremely bulky at very low frequencies, is eliminated. Furthermore, the 

(5) 
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recent advent of thin-film and integrated circuit methods of micromin1aturi­

zation has generated a real need for frequency selective networks which do 

not require inductors, as it has been found that the quality: of an indLtctor 

deteriorates rapidly with decreasing volume. 

In the case of a network structure consisting of resistors and 

capacitors only, the natural frequencies of the network are restricted to 

lie exclusively on the negative real axis of the complex frequency plane. 

This, therefore, means that in the case of a passive RC filter, the poles 

of the transfer function, which are the natural frequencies of the network, 

can only occur on the negative real axis. This restriction seriously 

limits the degree of selectivity that can be obtained from such networks. 

However, by including one or more active elements in the network, it is 

possible to shift these poles anywhere in the left half of the complex 

frequency plane, and thus realize the same degree of selectivity that is 

obtainable from an LC filter. 

Significant contributions to the theory of active network synthesis 

have been made by Linvill, Yanagisawa, Sandberg, Kinarawala, Horowitz and 

Calahan, to name but a few. The most commonly used RC-active synthesis 

procedures are based on the partitioning of the network function of interest 

into one of two forms : 

(i) Positive RC-negative RC partitioning in which the numerator and/or 

denominator of the network function are formed by the sum of positive and 

negative RC immittances, and in which a negative impedance converter is 

used to implement the subtraction process. A negative impedance converter 

(NIC), in its ideal form, is defined as a two-port network for which the 

input impedance at either port is proportional to the negative of the 
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impedance connected across the other port. For example, if an ideal NIC, 

with conversion ratio k, is terminated with an impedance z1 as depicted 

in Figure 2.l(a), then the impedance looking into the input terminals of 

the NIC is given by 

Z. = -kZ1 in 
(2 .1) 

The conversion ratio, k, is usually assigned a nominal value of unity. 

(ii) Positive RC-positive RL partitioning, in which the numerator and/or 

denominator are formed by the sum of positive RC and positive RL 

immittances. In this case, a gyrator terminated with a suitable RC network 

may be used to implement the RL immittance. A gyrator in its ideal form 

is characterized by the voltage-current relations 

= 

= 

where r is the gyration resistance. Thus, the impedance measured, looking 

into either port of a gyrator is proportional to the impedance connected 

across the other port. For example, if an ideal gyrator is termined with 

an impedance z
1

, ·as depicted in Figure 2 .l(b), then the impedance looking 

into the input terminals is given by 

z. 
in 

= 
2 . r 

·zL 
(2. 2) 

Thus, an ideal gyrator, terminated with a capacitance C, is equivalent 

2 to an inductance with a value of r C. 

In the early sensitivity studies of RC-active filters, the network 

sens i ti vi ty wa·s 
p. 

S 1
, defined by 

x 

usually defined in terms of the pole-sensitivity function, 

p. 
s l 

x = 
dp. 

l 

dx/x (2.3) 



Ideal NIC 
with 

conversion ratio k 

Z. = -kZL 
in 

z. 
in 

Ideal gyrator 
with 

gyrator resistance r 

2 
r 

;:::: 

ZL 
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(a) 

(b) 

Figure 2.1: (a) Ideal NIC terminated with load impedance ZL 

(b) Ideal gyrator terminated with load impedance ZL 
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where x is the variable parameter of interest. It can be shown that when 

the characteristic polynomial of the network contains two or more pairs 

of complex conjugate roots, then terms of the form (s. - s.), if j, will 
l. J 

appear in the denominator of each pole sensitivity function. Hence, 

should the separation between the various poles become small, the pole-

sensitivity of the network would become so inordinately large that a 

practical realization of the filter using a single RC-active section would 

not be feasible. Consequently, we find that when a network function has 

more than one pair of complex-conjugate poles, it is often realized as a 

cascade of second-order sections suitably isolated by means of buffer 

amplifiers where necessary. For this reason, the second-order section is 

of fundamental importance in the synthesis of RC-active filters, and the 

choice of structure for its implementation warrants careful consideration. 

Such a choice will be based on several factors, e.g., economy of 

components, suitability for integration, and, of course, sensitivity 

considerations. The relative insensitivity of a gyrator filter is a 

1 2 characteristic which has been observed by several authors ' In the first 

place, negative feedback is employed in the realization of a gyrator, 

whereas in the case of a NIC, positive feedback is used. We would there-

fore expect the gyrator to be the less sensitive structure. Secondly, a 

synthesis procedure which is based on the addition of functions (as in 

the case of a positive RC-positive RL decomposition) is obviously less 

sensitive to parameter variation than is one which is based on the 

difference of two functions (as is the case in positive RC-negative RC 

decompositions). 1 Furthermore, Calahan has shown that regardless of the 

degree of the polynomial being decomposed, whenever an RC-RL decomposition 
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is possible at all, such a decomposition can be found which results in a 

lower pole-sensitivity than any RC-NIC decomposition. 

In the case of a second-order transfer function, with zeros at 

infinity, an RC-RL decomposition always exists. We may therefore conclude 

that in the case of an active-RC filter which is to be realized as a 

cascade of such second-order sections, an RC-gyrator structure appears 

most attractive from the sensitivity point of view. As a first step in the 

investigation of the sensitivity of a wide range of linear time-invariant 

networks, both to active and passive parameter variations, a number of 

RC-gyrator filters were constructed and the sensitivity of their response 

characteristics to supply voltage variations was measured. 

2.2 The Gyrator and its Practical Implementation: 

2.2.1 The Y-model gyrator 

The practical realization of a gyrator may begin with the de­

composition of the admittance matrix, as shown by3 , 4 , 5 

that is, 

y = y 
a 

+ 

(2 .4) 

(2 .5) 

The admittance matrices, Ya and Yb' may then be implemented in circuit 

form, and connected in parallel. The resulting circuit consists of two 

ideal voltage-controlled current sources, one transmitting in the forward 

direction only, with control parameter equal to g21 , the second transmitting 

in the reverse direction only, with control parameter equal to -g12 as 
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shown in Figure 2.2. A simple, but effective, implementation has been 

proposed by Haykim4 , in which Y is realized by two common emitter a 

stages, each with its own local series feedback as shown in Figure 2.3(a). 

Provided that resistors R and 
a R satisfy c the conditions 

h. 

R >> 
1e1 

a 1 + hf 
el 

(2.6) 

and 

h. 

R 
1e2 

>> 
c 1 + h fe2 

(2.7) 

where the hie and hfe are the common emitter h-parameters of the pertinent 

transistors, then y21 approximates closely to ~/RaRc and the other 

parruneters are negligibly small and can justifiably be ignored. In a 

similar manner Yb_ can be implemented by a single common-emitter s.tage, 

with local series feedback provided by R , as shown in Figure 2 .3(b). 
e 

Provided that 

>> (2 .8) 

then y12 is clearly equal to -1/Re and the remaining y-parameters are 

negligibly small. 

The gyrator is realized by connecting these two circuits in 

parallel. The resulting circuit is shown in Figure 2 .4, where, for 

convenience of biasing, we have used PNP and NPN transistors. If the 

gyrator is to be passive, then y21 = -y12 , and the necessary condition is 

that 
R e = 

RR a c 

~ 
(2.9) 
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1 2 

_J 
I 

1' 2 

t 
g12v2 v2 

I 

Figure 2.2: "Y-model" representation of gyrator 
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(a) 

1 

(b) 

1' 2' 
n-~----~~~--------~~~--o 

Figure 2.3: Gyrator realization: (a) forward transmission 

(b) reverse transmission 
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Figure 2.4: Three-transistor gyrator 
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The inclusion of biassing resistors Rf and Rd as shown in Figure 

2 .4 degrades the performance of the gyrator in as much as the y 
11 

and 

y 22 are no longer negligibly small. This problem may be overcome by 

modifying the circuit to reduce these parasitic effects and by using the 

predistortion technique to compensate for whatever residual parasitics 

remain after such modification. 

In our particular case, the resistors Rf and Rd were replaced by 

equivalent current sources as is sho~TI in Figure 2.5. Having performed 

this step, the parasitics were measured and were found to be sufficiently 

small so that the predistortion technique could be used without further 

modification. However, in the event that the measured parasitics were 

still too large to be accommodated by the predistortion technique, it is 

possible to use field-effect transistors at the input of both the forward 

and reverse transmission paths. In this way, advantage can be taken of 

their high input impedance to further reduce the unwanted parasitics. 

Several such networks were constructed, and Q-factors up to 700 were 

measured. A typical circuit diagram for such a gyrator is shown in 

Figure 2.6. 

2.2.2 The Z-model gyrator 

The various circuits proposed thus far for the gyrator are based 

on the Y-model representation in which the gyrator is realized by a 

parallel-parallel connection of two voltage-controlled current sources, 

with one source transmitting in the forward direction and the other in 

the reverse direction. In this section, an altern;:;.tive Z-model realization 

of the gyrator is describe-cl. The gyrator, in this case, is characterized 
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Figure 2.5: Improved version of gyrator 



Figure 2.6: Gyrator containing field-effect transistors 

Rl = 25 .oo Rll = ll .80 

R2 = 4.90 Rl2 = 2.90 

R3 = 4.70 R13 = 1.00 

R4 = 4.15 Rl4 = 15.00 

RS = 4.80 RlS = 15. 20 

R6 = 4.15 Rl6 = 14 .80 

R7 = 0.39 Cr,= 10.00 

R3 = 4.20 Cz = 10 .oo 

R9 = 1.00 c3 = 10.00 

l\o = 5.90 c4 = 10.00 

(All resistances in Kilo-ohms, 
all capacitances in Micro-farads) 
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Figure 2 .6: Gyrator containing field-effect transistors 
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by the impedance matrix Z, where 

(2.10) 

Decomposing this matrix into the form 

z ::: 

[
o ol + [o ~rrl 
rf oj o o J 

(2. ll) 

we obtain the model shown in Figure 2.7. It consists of two current-

controlled voltage sources connected in series at their input and output 

ports. One controlled source transmits in the forward direction, and has 

a control parameter equal to rf, the other transmits in the reverse 

direction with control parameter equal to -r . 
r· 

The use of bipolar transistors, on account of their low input 

resistances, is ideally suited for the practical implementation of the 

controlled current sources in Figure 2.7. In a practical circuit, however, 

we find that the elements on the principal diagonal of the z-matrix in 

Equation 2 .10 are small but, nevertheless, finite. Furthermore, the 

control parameters of the controlled sources may not be exactly equal in 

magnitude. We may, therefore, represent the z-matrix of a practical gyrator 

circuit based on the z-parameters model as follows 

z = -::J (2.12) 



Amplifier 1 

Il + I 
r£11 I 

I I 
L ____ - - - _ _J 

r- -- ---, -------
I 
r 

L_ _ _J 

Amplifier 2 

+ I 
2 

Figure 2. 7: "Z-model" representation of gyrator 
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Such a gyrator would be active if 

> 4 r.r 
i 0 

20 

(2.13) 

Suppose the non-ideal gyrator is terminated with a perfect capacitor C; 

the resulting input impedance is, therefore, 

z. = in ri + r + l/sC 
0 

(2.14) 

where s is the complex frequency variable. The impedance Z. may be in 

represented by the equivalent network shown in Figure 2.8. i.e. the 

input impedance is of the form 

z. = in (2.15) 

where the corner frequencies w
1 

and w
2 

are defined by 

= 

= 1 
Cr 

0 

r. 
i 

Within the frequency band defined by w2 

impedance of an inductor with inductance 

L = 

(2.16) 

> w > w. , Z. approximates to the 
i in 

(2 .17) 



1 

l' 

r., 
l 

Figure 2.8: Equivalent circuit of capacitively 

terminated lossy gyrator 
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The logarithmic plot of I Z. 1
2 

against frequency can be approximated in · 

asymptetically by a straight line with positive slope of 6dB/octave 
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between the corner frequencies w
1 

and w
2

. We may use this predicted response 

as a measure of the performance of the gyrator. 

The gyrator circuit diagram is given in Figure 2.9. Transistors 

T
1 

and T2 constitute amplifier 1 of Figure 2.7. Advantage has been taken 

of the low input and low output impedances of the common-base and common-

col.le ct or modes, respectively. To reduce these impedances further, a 

negative feedback loop through transistor T
3 

is added, the transistor 

providing the required phase reversal. Resistor R
2 

provides a means of 

varying the amount of feedback and can therefore be adjusted for optimum 

operation of the circuit within the required frequency range. Transistors 

T
4

, TS and T
6 

constitute amplifier 2 of Figure 2.7. Again, advantage has 

been taken of the characteristics of the common-base and common-collector 

modes, and a negative feedback path through Rll and CS has been added to 

further reduce the input and output impedance levels. R
11

, the variable 

feedback resistor, performs the same function as R
2

. Capacitors c
7

, CS 

and c
9 

are used for high frequency stability. Capacitor c
3 

presents a 

negligible impedance inside the useful frequency band, shorting the d.c. 

power lines for amplifiers 1 and 2 to a.c. signals, thereby completing the 

series-series connection of the two amplifiers as required. Transistors 

T7 and TS, simulating constant current sources, isolate the common point 

of the two amplifiers from the d,c __ power supply lines. 

The gyrator was terminated with a low-loss capacitor, The driving-

point impedance at its input terminals was measured as a function of 



Figure 2.9: Circuit diagram of z-model gyrator 

Rl = 0.47 Rl2 = 3.30 c1 = 10.0 

R2 = 10.00 Rl3 = 12 .oo ("' = 10.0 '-'2 

R3 = 3.30 Rl4 = 82.00 c3 = 10 .0 

R4 = 82.00 RlS = 3.30 c4 = 10.0 

RS = 12.00 Rl6 = 3.30 cs = 10.0 

R6 = 6.81 Rl7 = 3.30 cs = 10.0 

R7 = 0.22 Rl8 = 40.00 c6 = 10.0 

R8 = S.60 Rl9 = 3.30 c7 = 330 pfd. 

Rg = S.60 R20 = 0.22 cs = 330 pfd. 

RlO = 0.47 R21 = 39.00 cg = 330 pfd. 

Rll = 10 .00 R22 = 0.22 

R23 = 0.22 

(All resistances in Kilo-ohms, all capacitances in 

micro-farads except where stated to the contrary) 
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Figure 2,9: Circuit diagram of Z-model gyrator 
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frequency, and the results obtained are shown plotted in Figure 2.10 where 

close agreement with the predicted impedance response is observed. The 

small deviation at low frequencies may be attributed in part to the 

effects of decoupling and bypass capacitors in this frequency range. 

An alternative criterion of performance is the Q-factor of the 

simulated inductance. Some representative values of the measured'. Q-factor 

for the capacitively terminated gyrator are given in Table 2.1. 

f 2.2 KHz. 3.86 KHz. 4.3 KHz. 0 

Q.factor 16.8 77 .2 54.0 

Table 2 .1 

2.3 RC-Gyrator Ladder Filters: 

The gyrator can be used in the synthesis of inductorless filters 

in two basic ways: 

(1) The filter may be realized by a cascade of second-order sections 

suitably buffered by means of isolation amplifiers. Each such section 

c~nsists of a pair of two-port RC networks coupled by a gyrator. 

(2) A conventional LC 1 adder filter is first designed to meet the 

prescribed specifications. Each inductor in the filter is then replaced 

by a gyrator terminated with an appropriate capacitor. In this way, it 

is possible to make use of the various classical synthesis techniques 

which have been developed for LC passive filters in the synthesis of an RC­

active network. This procedure, however, may require the use of a 
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floating gyrator. Such a need may be eliminated, at the expense of an 

increase in the number of three-terminal gyrators used, by employing the 

following procedure. 

Consider, for example, the fourth-order low-pass filter of 

Figure 2 .11 (a). Working from the source to the load, and recognizing that 

a shunt capacitor connected across the output port of a gyrator is equiva-

lent to a series inductor at the input port, we can eliminate the need for 

series inductor L2 by inserting a gyrator with gyration resistance r 1 , 

as depicted in Figure 2.ll(b). Effectively, the T-section made up of 

inductors L2 and L4 and the capacitor c3 has been replaced by a n-section 
I I I 

consisting of capacitors c2, c4 and inductor L3 , which are defined by 

= 

I ~ 
L3 = .rl c 3 

I 2 
c4 = gl L4 

I 2 
R2 = rl /R2 (2.18) 

I 

Next, to eliminate the inductor L3 in Figure 2.ll(b), we introduce a 

second gyrator of gyration resistance r2' as in Figure 2.ll(c), where 

II 2 I 2 2 
c3 = g2L3 = r1gf 3 

II 
2 ' 2 2 

L4 = rf 4 = glr2L4 (2.19) 

II 2 I 2 2 
R2 = r/R2 = glr2R2 



(a) 

(b) v1 

(c) v1 

(d) 
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2 

gl = l/rl 

~ 

Rl LI 
3 I clT C' c' R2 2 4 

II 

gl = l/rl g2 = l/r2 L4 

~ ~ 

Rl 
c" " c1 c2 R 

3 2 

gl = l/rl g2 = l/r2 g3 = l/r3 

-.....--.~·----~-----~-----

c' 
2 

Figure 2.11: Low-pass filter; gyrator-capacitor 

equivalent circuit 
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tr 
Finally, to eliminate the inductor L4 in Figure 2.ll(c), we introduce a 

third gyrator of gyration resistance r3' as in Figure 2.ll(d), where 

I II 2 II 2 2 2 
c4 = g3L4 = glr2g3L4 

(2.20) 

Ill 2 II 2 2 2 
R2 = r/R2 = rlg2r3/R2 

The resulting network is thus an inductorless low-pass filter 

consisting of a cascade of grounded three-terminal gyrators with shunt 

capacitors accounting for the cut-off at high frequencies. In general, 

to realize a filter of order n, the procedure requires the use of (n-1) 

grounded gyrators. On the other hand, the direct replacement of series 

inductors with capacitively terminated gyrators a minimum of n/2 floating 

gyrators if n is even, or (n-1) /2 floating gyrators if n is odd. 

In a similar manner, we can obtain the gyrator-RC equivalents for 

other filter configurations. Figures 2 .12 and 2 .13 for example, show 

these equi val en ts for a high-pass and an as)!mme~ric band-pass filter, 

respectively. In ·the case of the high-pass filter, the inductors appear 

as shunt elements, and may therefore be directly replaced with grounded 

gyrator-RC combinations, thereby reducing the number of gyrators needed. 

2.3.1 Low-pass filter 

To illustrate the synthesis procedure, we will consider the design 

of a fourth-order, low-pass Butterworth filter with a cut-off frequency 

of 500 Hz. The. filter is to be driven by a current source and is to be 

terminated with a 1 Kilo-ohm load. To compensate for the degrading effect 



Figure 2.12: High-pass filter; gyrator-capacitor 

equivalent circuit 
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Figure 2.13: Asym1net-ric band-pass filter; 

gyrator-capacitor equivalent circuit 
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of the parasitic irrunittances of the imperfect gyrators, the predistortion 

technique of conventional filter theory is used. 

The first step in the procedure is to obtain a suitable transfer 

7 function, which, in this case, is available from published tables , and 

determine its pole locations. The function is given by 

1 = (s + .3827 ± j.9239) (s + .9289 ± j .3827) 
' 

---------- (2.21) 

The poles of z21 (s) are now predistorted by an amount cr
0

; in this case 

cr is chosen to be 0.2. In other words, a transformation of s = p - 0.2 
0 

is made, yielding the new impedance function 

I 

221CP) = z21 (s) 
s = p - 0.2 

(2.22) 

that is 
I 

Z21CP) 
1 

= (p + .1827 ± j .9239)(p + .7237 ± j .3827) (2.23) 

or 

I 

Z2l(p) 
1 (2.24) = 4 3 2 

p + l.1813p + 2.087p + l.529p + .595 

from which we obtain an expression for z22 : 

= 
4 2 p + 2.087p + .595 

l.813p3 
+ l.529p 

(2.25) 

Expanding z22 as a continued fraction expansion, we obtain the network 

of Figure 2.14(a). 



(a) 

Figure 2.14: RC-gyrator equivalent circuit for 
low-pass LC-ladder filter 

Low-pass filter: 

c1 = 1.1130F. 12 = l.8785H. \ = 1.00011 

c3 = l.4585F. L4 = 0.5514H. 

(b) Low-pass filter with unifonn dissipation: 

(c) 

R
1 

= 4.4920rt 

R
2 

= 0 .37570. 

RC-gyrator equivalent 

C'" = 
1 

0.1654 mfd. 

c" = 0.0987 mfd. 2 
C' = 0 .5370 mfd. 3 
C' = 0 .1756 mfd. 

4 

rl = 3.650 K-ohm 

r2 = 2 .445 K-ohm 

r3 = 0.943 K-ohm 

R
3 

= 3.42800. 

R
4 

= 0 .1103<J 

circuit: 

R"' = 
1 

Ru = 2 
R' = 3 
R4 = 

9.600 K-ohms 

16 .10 K-ohms 

2.960 K-ohms 

9 .070 K-ohms 
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If we now arrange to have uniform dissipation across each element 

of this filter, the effect will be to shift the poles away from the jw-axis 

in a direction parallel to the real axis. By choosing the c·orrect amount 

of dissipation we arrange to have the poles shift to the positions held 

before transformation, and in this way we are able to obtain an exact 

response. The circuit with dissipative elements inserted is shown in 

Figure 2.14(b). 

It is now necessary to choose an RC-gyrator configuration which is 

equivalent to the circuit of Figure 2.14(b). Using the y-parameter model 

of the gyrator, a suitable equivalent circuit is shown in Figure 2.14(c). 

The resistances R
1 

through R4 represent the parasitics of the imperfect 

gyrators. The parameters r1 through r 
3 

represent the effective gyration 

resistances, the subscript referring to the pertinent gyrator. 

Each element of the circuit of Figure 2.14(c) can now readily be 

identified with a corresponding element of the circuit of Figure 2.14(b). 

The resulting relationships enable us to determine the allowable values of 

parasitics and capacitor values to be used. The constraints on the values 

of the parasitics are used to determine the values of biasing the resistors 

necessary, the problem now being reduced to one of determining suitable 

d-c operating points for all transistors within the framework of these 

constraints. 

The circuit diagram for the complete filter is shown in Figure 2.15. 

Because of direct coupling between stages, it was unnecessary to include 

resistor Rd of Figure 2.4 in either gyrator 1 or 2; it was also convenient 

to combine resistor Rd of gyrator 3 with the load resistor. All resistors 

and capacitors in Figure 2.15 have been denormalized with respect to a 



Figure 2.15: RC-gyrator low-pass filter; circuit diagram 

Rl = 9.74 Rl2 = 2 .29 

R2 = 10.0 Rl3 = 25.l 

R3 = 2.56 Rl4 = 0.93 

R4 = 17.3 RlS = 7.60 

RS = 12.0 Rl6 = 0.90 

R6 = 4.81 c1 = 0.1654 

R7 = 2.97 c2 = 0.0987 

R8 = 4. 70 c3 = 0.5370 

R9 = 1.50 c4 = 0 .1756 

RlO = 3.60 

Ru = 7.20 

(All resistances in Kilo-ohms and all 

capacitances in micro-farads.) 
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load resistance of 1 Kilo-ohm and a cut-off frequency of 500 Hz. 

The measured filter response is shown plotted in Figure 2 .16, where 

z21n denotes the transfer impedance of the filter normalized with respect 

to the zero frequency value. It is noted that close agreement with the 

predicted response is observed. The noise performance and harmonic 

distortion performance of the filter were investigated. The results indicate 

that the noise level was never less that 80 dBs below signal level in the 

range covered (20 Hz to 1 KHz). The output levels of the second through 

fifth harmonics of an input signal of 80 Hz were measured as the level of 

the input signal was increased from 1 millivolt to 1 volt. No significant 

increase in the harmonic content of the output signal was observed until 

the input level exceeded 0.7 volts. 

2.3.2 Band-pass filter 

The second configuration studied was that of an as_r~tJr,2t:i.~icaL ~Jnd­

pass filter with upper cut-off frequency of 10 KHz, bandwidth of 3 KHz, 

1 dB ripple in the passband, and cut-off rates of 6 dB/octave and 

18 dB/octave, respectively, at low and high frequencies. The filter was 

driven by a current source and terminated with a 10 K-ohm load resistor. 

The general expression characterizing this type of response is given by 

1 
(2.26) 

where n is a constant which determines the ripple magnitude and 1~1 2 is the 

characteristic .function defining the insertion loss of the filter. A 

suitable function for 1~1 2 
is given by

8 
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Figure 2 .16: RC-gyrator low-pass filter response 
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1·;1 2 = ~ fw8 
- 2.935 w

6 
+ 3.165 w

4 

w 

from which we obtain 

.00565 w2 
= 

2 1.4844 w + .25578] 

w
8 - 2.935 w

6 
+ 3.165 w

4 - 1.4787 w
2 

+ .25578 
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(2. 27) 

(2. 28) 

putting w
2 = -s 2

, and retaining those poles in the left half of the s-

plane, we obtain an expression for z21 (s) 

.075188s (2.29) = (s + .081995 ± j .715) (s + .081995 ± j.98474) 

To compensate for the parasitics of the imperfect gyrators we use the 

predistortion technique by applying the transformation s = p - 0.05 to 

the denominator only, with the numerator being left unchanged. We thus 

obtain 

' z21CP) = .075188p (2.30) 4 3 2 p + .12798p + l.487p + .0949p + .49726 

from which we determine 

= 
3 .12798p + .0949p (2.31) 

4 2 p + l.487p + .49726 

It now remains to choose an RC-gyrator configuration which is 

equivalent to this circuit. Such a circuit is shown in Figure 2.17(b), 

where R1 through R
4 

represent the parasitics of the two gyrators, and R
5 

is an additional resistor included to obtain equal dissipation across c
3

. 



Figure 2 .17: Asyll}f'.stxic band-pass fi 1 ter 

(a) With uniform dissipation: 

c1 = 7.7960 F. Ll 0 .1316 H. Rl 2.S6SO 

c2 = 7.8130 F. L2 = 0.0608 H. R2 = . 006S8 

L3 = 0 .1300 H. R3 = .00304 

R4 = 0.006S 

Rs = 2.S600 

R6 = 1.0000 

(b) RC-gyrator equivalent circuit: 

II 
R" c1 0.0126S mfd. 24.76 K-ohms. rl = 1.074 K-ohms. 1 

c' 0.01784 mfd. R' = 18 .18 K-ohms. r2 = 1.094 K-ohms. 
2 2 

c' = 0.00814 mfd. R' = 18.40 K-ohms. 3 3 
c' = 0.01724 mfd. R' = 2S.S9 K-ohms. 4 4 
cs = 0.01243 mfd. RS = 39.33 K-ohms. 
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The equivalence of this network to that of Figure 2.17(a) is 

' apparent on looking in through terminals 22 In this way we can 
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identify each element of the network with a corresponding element of the 

network of Figure 2.17(a). The resulting relationships are used to 

determine the necessary parasistic and capacitor values. The measured 

parasitics may then be adjusted to satisfy these constraints. 

The complete circuit diagram is shown in Figure 2.18, in which all 

components have been denormalized with respect to an upper cut-off 

frequency of 10 KHz and a load resistance of lOK-ohms. In the network of 

Figure 2.18, transistors T1, T
5

, T
6

, and t 10 have been introduced as 

current generators, replacing biasing resistors Rf and Rd of Figure 2.4. 

Resistors R18 , R19 , R20 and R21 are used to adjust the parasitics at the 

input ports of both gyrators to the required values. Rll adjusts the 

parasitic at the output port of gyrator 1 to the required value, and R27 

accounts for the combined effect of the load resistance paralleled by the 

pertinent parasitic at the output port of gyrator 2. The parallel 

combination of c3 and R5 of the circuit of Figure 2.17(b) has been replaced 

by its series equivalent· to prevent any change in the d-c operating point 

of either gyrator. 

The measured filter response is shown plotted in Figure 2.19 where 

close agreement with the predicted response is again observed. 

2.3.3 Sensitivity considerations 

The sensitivity of the network response to variations in supply 

voltage was investigated for both the low-pass and the band-pass filters. 

In the case of the low-pass filter, some typical results are given in 



Figure 2 .18: Asy~metr:ic band-pass filters; circuit diagram 

Rl 19.20 Rl3 = 19.2 R2S = 3.90 

R2 = 0.820 Rl4 0.82 R26 = S.90 

R3 = 1.000 RlS = 1.00 R27 = 6.80 

R4 = S.100 Rl6 = s .10 c1 = O.Ol26S 

RS = 3.700 Rl7 = 3.66 c2 = 0.01784 

R6 = 1.000 Rl8 = 33.0 c3 = 0.00814 

R7 18.80 Rl9 = 27.0 c4 = 0.01724 

R8 = 1.200 R20 = 68.0 cs = 0.01243 

Rg = S.900 R21 = 120.0 c6 = 10.0 

RlO S.900 R22 = 1.00 c7 = 10.0 

Rll = 27 .00 R23 = 18.8 c8 = 10 .0 

Rl2 = 0 .100 R24 2.20 cg = 10.0 

(All resistances in Kilo-ohms; all capacitances in microfarads) 
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Table 2.2. We note that the overall response remains essentially the 

same although bias supplies were reduced to as little as 15% of their 

nominal value. 

Frequency 

(Hz) 

100 

200 

300 

400 

500 

600 

700 

1000 

Nominal Output with Output with 
Output d-c supplies ·· d-c supplies 

(mV) at 50% of at 15% of 
nominal nominal 

1.000 1.000 1.000 

1.000 1.000 1.000 

0.975 0.975 0.968 

0.915 0.917 0.888 

0.707 0.698 0.663 

0.415 0.400 0.363 

0.024 0.023 0.021 

0.006 0.006 0.005 

Table 2. 2: Effect of supply voltage variation; 

low-pass filter 

In the case of the band-pass filter both supplies were varied by 

as much as ±50% and the .most extreme changes in the filter response are 

shown in Figure 2.20. We note, again, that the response is remarkably 

insensitive to supply variations. 
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2. 4 Conclusion: 

A procedure for developing RC-gyrator networks equivalent to LC 

ladder filters has been described. The procedure has been used to 

construct uniformly dissipative low-pass and band-pass filters, with 

measured responses showing very close agreement with theory. In 

synthesising the predistorted dissipation-compensated RC-gyrator filter, 

it is convenient to use the Y-model for characterizing the imperfect 

gyrator if shunt capacitors are connected directly across the input and 

output ports of the gyrator. On the other hand, if capacitors are 

connected in series with the input and output ports, then it is more 

convenient to use the Z-model characterization. 

The sensitivity of the filter response to changes in the level 

of the de-supply voltages was measured, and the experimental results 

obtained indicate that substantially large changes in supply voltages 

affect the measured loss characteristic only slightly. However, it is 

clear that such a sensitivity measure is of limited practical value, in 

that it is only adequate for the case of a lumped-element realization of 

the filter, in which the passive elements are not considered as variable 

parameters. However, in many practical situations (integrated circuits, 

for example), all of the network elements are subject to change. In such 

cases, there is a need for a quantitative measure of the multiparameter 

sensitivity performance of the network. It was, therefore, decided that 

an investigation of this problem should be undertaken. In the following 

chapter, a survey of the literature as it pertains to the multiparameter 

sensitivity problem in.network theory is presented. In particular, a 

critical appraisal is made of several muJtiparameter sensitivity functions, 
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and problems involved in their computation are considered. Several 

procedures for their evaluation are described, with attention focussed on 

the auxiliary network approach of Leeds and Ugron, and the aajoint network 

approach of Director and Rohrer. 



CHAPTER III 

THE MULTIPARAJ\IBTER SENSITIVITY PROBLEM 

3.1 Introduction: 

In the early studies of the sensitivity problem in network theory 

the problem was defined in terms of the sensitivity, ST(s), of some network x 

function with respect to a single parameter, x. A formal definition of 

9 10 the sensitivity function was first proposed by Bode in 1945. Mason 

used the reciprocal of Bode 1s definition and this has turned out to be 

the accepted definition of the classical sensitivity function as shown by 

= 

or equivalently, 

= 

d[ln T(s)] 

d[ln x] 

dT/T 
dx/i 

According to Equation 3.2, we may interpret the sensitivity 

(3 .1) 

(3. 2) 

function as the ratio of the fractional change in the network function, 

T(s), to the fractional change in the parameter x which caused the initial 

change in T(s), provided that all changes considered are differentially 

small. For the case of large parameter changes, we may use Horowitz's 

d f . . . 11 f 11 e 1n1t1on as o ows: 

= (3.3) 

(46) 
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where t..T is the change in T due to the change t..x in x, and Tf and xf are 

the final values of the network function and of the parameter under 

consideration, respectively. When the leakage transmission through the 

network is zero (that is, T(s) is zero when xis zero), Horowitz has 

shown that the classical definition of Equation 3.2 and that of Equation 

3.3 have the same value, although they are defined differently. 

Returning to Equation 3. 2, suppose we define the network function 

T(s) in terms of its poles and zeros as follows: 

T(s) 
II(s + z.) 

l. 

= HIT (s + P·) 
l. 

(3 .4) 

where H is a scale factor, and the z. and p. are the zeros and poles of 
l. l. 

T(s), respectively. Then using Equation 3.4 in 3.2 we obtain: 

p. z. 

ST (s) SH 
s l. s l. 

~ 
x 

~ 
x = + -x x i s + p. 

i 
s + z. 

l. l. 

(3.5) 

where 

SH = dH/H 
x dx/x (3.6) 

p. z. 
and S l. and S l. are the pole and zero sensitivities, respectively, x x 

defined by 
p. dp. 

s l. l. = dx/x x (3.7) 

and 
z. dz. 

s 1 1 = dx/x x (3. 8) 
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Equation 3.5 shows that the poles and zeros of the network function, T(s), 
p. 

make up the poles of the sensitivity function with residues equal to S 1 

x 
zi 

and -S . x 

Up to this point we have only considered the sensitivity of a 

network function with respect to variations in a single parameter. How-

ever, in a practical situation (e.g., in the design of an integrated 

circuit), we have to accommodate simultaneous variations in several 

parameters of the network. In an early contribution to the study of 

mul tiparameter sensitivity, a complete generalization of the concept and 

various theorems on return difference from the single-loop case to the 

12 multiple loop case was made by Sandberg During the early 1960's, 

several multiparameter sensitivity functions were proposed. In the 

following sections, we will consider these· various functions, examine 

their properties, the methods which have been proposed for their evaluation, 

and we will discuss their inherent limitations. 

3.2 Multiparameter Sensitivi.!J Fun_stions: 

To a first order of approximation, the fractional change in 

T(s,x.) for small variations in x. is given by 
l l 

!:.T -r= d(ln x.) 
l 

(3. 9) 

where x. (i = 1, 2, ... , n) =the variable parameters of the network. If 
l 

·we let the set of fractional parameter increments, d(ln x.), be considered 
l 

as a vector, dY, i.e., 

dY {d(ln x.), d(ln x
2
), ... d(ln x ) } 

i n 
(3 .10) 
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and we put y. = ln x. j then Equation 3.9 becomes 
l 1 

(3 .11) 

Thus, the fractional change in the network function T(s,x.) depends on the 
]. 

gradient vector V(ln T). Accordingly, Goldstein and Kuo13 have suggested 

that the multiparameter sensitivity, ST 
x.' be defined as 

l 

ST = V(ln T) x. (3 .12) 
l 

i.e. 

ST {nn T aln T aln ~J = x. aln x
1 ' oln x2 

, ... aln 
l 

(3 .13) 

The magnitude of the sensitivity function, which gives the maximum rate 

of change of ln T with respe~t to ln 

2. 
= 

T* s x. 
l 

x.' 
l 

is given by 

where the asterisk denotes the complex conjugate. 

(3.14) 

Clearly, Equation 3.12 is a logical extension of the classical 

sensitivity function for the single parameter case. The fact that it is 

comprised of n single parameter sensitivity functions, as is evident in 

Equation 3.13, poses the question as to whether relationships exist 

between h . . . . f . Oln T t e various component sens1t1v1ty unctions, ~i The function 
o n x. 

l 
ST has been defined on the basis of the fact that the n parameters x. 

l 

T(s, x.) can 
1 

vary simultaneously and independently, and thus may be 

of 

considered as n linearly independent vectors. However, it is possible 
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that some of these parameters may be linearly dependent with respect to 

T(s, x.) in the sense that the variation of T(s, x.) due to a change in 
1 1 

one of the parameters might also be effected by a change in one or more 

of the other parameters for all values of s. This possibility has been 

14 considered by Lee , who has introduced the concept of a "sensitivity 

group". Such a group is defined as the largest sub-group of component 

parameters, the members of which are linearly dependent with respect to 

T (s, x.) . In other words, if a parameter x. varies by an arbitrary 
1 1 

amount Ax., and this variation results in a change in T(s, x.) which we 
1 . 1 

will denote by ATIAxi' and if there exists a parameter xj such that 

ATIAxi = ATIA x. 
J 

(3.15) 

where 

AX. = kji AX. 
J 1 

(3.16) 

for all values of s, and if further, kji is a non-zero constant which is 

independent of s, then we find that any variation of T (s, x.) due to Ax. 
1 1 

can equivalently be obtained from ~x., and therefore x., x. are linearly 
J 1 J 

dependent with respect to T. A sensitivity group is thus defined as the 

largest sub-group of such parameters, all the members of which are linearly 

dependent in T(s, x.) 
1 

The multiparameter sensitivity function, 

in terms of these sensitivity groups as follows: 

ST may now be defined 
x.' 

1 

If we let the scalar 

sum of the single-parameter sensitivities of all the elements of the jth 

sensitivity group be denoted by S., i.e., 
J 
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j 

n. 
J 

= 2: 
i=l 

o (ln T) 
O(ln x .. ) 

1J 
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(3.17) 

where n. defines the number of elements in this sensitivity group, and 
J . 

· h ·th 1 f h . th . . . t th th It. t x .. 1st e 1 e ement o t e J sens1t1v1 y group, en emu iparame er 
1J 

sensitivity function may be expressed as 

= 
Jti· 

2: 
j=l 

s .. s. 
J J 

(3 .18) 

where the s. are unit vectors, and m denotes the number of sensitivity 
J 

groups. 

3.3 Properties of Sensitivity Functions: 

It is informative to consider further the effects of grouping the 

single-parameter sensitivity functions according ~o element type. In this 

respect, an important contribution was made by Blostein15 in which he 

shows that multiparameter sensitivity theory can be used effectively to 

contribute quantitative insight into the sensitivity behaviour of net-

works. Let the network which is· described by the transfer function, 

T(s, x.), have l inductors, r resistors, and c capacitors, i.e., 
1 

n = l + r + c (3.19) 

Also, let the individual components be denoted by l., r. and c., and let 
]. 1 ]. 

their reciprocals be denoted by y., g., and e., respectively. From the 
1 1 1 

amplitude scaling property of networks, it follows that 

T(ar., aL, ae., s) = aT(r., l., e., s) 
l l l l 1 ]. 

(3.20) 
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where a is an arbitrary scaling factor. Differentiating Equation 3.20 

with respect to a, and letting a equal unity we obtain 

R.. 
ST 

r 
ST c ST l: + l: + E ;:: 1 (3.21) 

i;::l L 
i=l r. i=l 

e. 
1 1 1 

Now 

ST ::: -ST (3. 22) x. l/x. 
l 1 

therefore 

ST + ST ST = 1 (3. 23) 
R L c 

where 

ST 
r 

ST ::; E etc. 
R i:::l r. 

1 

It follows that if T(s, x.) were an admittance or dimensionless transfer 
1 

function, then the right-hand side of Equation 3. 23 would be -:-1. or, zero_, 

respectively. 

A further relationship can be established by employing the 

concept of frequency scaling, according to.which 

T(r.,aR...,ac.,s)::: T(r.,L,c.,as) 
1 1 1 1 1 l 

(3.24) 

where T may be any network function. Using the same procedure as before, 

we obtain 

+ ::: 
d (ln T) 
d(ln s) (3 .25) 
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That is, the sum of the sensitivities with respect to all capacitors and 

inductors is equal to the sensitivity with respect to the complex 

frequency variable, s. Furthermore, by letting s = jw, we obtain 

and 

where 

and 

1i\.e s~ (jw) + 'fR.e s~ (jw) = 
da(w) 

.d ln(w) 

1m S~(jw) + ~m S~(jw) = WTd 

a(w) = lnlTCjw)I = attenuation function 

6(w) = arg T(jw) = phase function 

= dS (w) 
dw = group delay function 

(3.26) 

(3. 27) 

Equation 3.26 may be interpreted physically as follows: In any network, 

if all inductances and· capacitances undergo equal normalized perturbations, 

the resulting change in the magnitude characteristic is independent of the 

realization technique used to obtain the network and depends only on the 

slope of the prescribed attenuation curve. 

These multiparameter sensitivity properties were later used by 

Blostein16 to investigate the effects of incidental dissipation and stray 

terminations on the transmission characteristics of resistively terminated 

LC two-port networks. Bounds on such errors were obtained, and these 

were shown to be invariant for all equivalent two-port realizations of a 

given transfer function. 

The property of sensitivity invariance has generated much interest 

in the literature. Leeds and Ugron17 considered the network-function 
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sensitivity of a class of continuously equivalent networks. Their 

investigation led to a conjecture that the sum of the elemental sensitivity 

functions (over all components of each continuously equivalent LC-network) 

is invariant with respect to the various equivalent LC-networks. The 

proof of this conjecture is, of course, implicit in Equation 3.25, and 

18 19 formal proofs have since been given by several authors ' . The following 

specific conclusions have been reached: 

(i) The sum of the sensitivities with respect to all elements in a 

general RLC network is invariant under continuously equivalent trans­

, 15 19 20 
formations ' ' . 

(ii) The sum of the sensitivities with respect to all elements of one 

kind is a constant for all equivalent networks (though it is a function 

21 of frequency) . 

(iii) The sum of the sensitivities of an RC network function is invariant 

for all netwrks described by the same network function18 

(iv) The sum of the sensitivities of an LC network is given by the 

. 15 18 frequency sensitivity of the network function ' . 

(v) The sum of the sensitivities of an LR network is invariant over all 

k f 
. 18 networ unctions . 

(vi) The individual sensitivity for capacitances and inductances is 

invariant if there are no capacitance loops and inductance cut-sets in 

19 the network . 

The concept of summed sensitivity has also been extended to the case of 
"2.'2; 2. 3 

RC-active networks containing all possible types of controlled. . Sou.'f'ces. 

The summed sensitivity function may also be expressed in terms 

of the pole- and zero-sensitivities of the network. 24 Kumpel has 
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considered this possibility, and has shown that in the case of two-

element-kind networks, the sum of the pole- and zero-sensitivities is 

again invariant. It is also pointed out that in the case where a network 

function is being approximated by use of its dominant poles and zeros 

only, the sum of the sensitivities for these singularities can be less 

than that for the poles and zeros which have been neglected. This, naturally, 

could lead to incorrect conclusions in an optimization procedure, for 

example. 

It is also of interest to note that in the case of a single-loop 

feedback systeJ!l, Huang has shown that the sum of the sensitivities of a 

closed-loop pole with respect to variations in the open-loop poles and 

zeros of the system is equal to unity. 

3 .4 Continuously Equivalent Network Approach to Optimal Synthesis: 

It is, indeed, in the area of optimal synthesis (optimal in the 

sense that the multiparameter sensitivity performance of the network has 

been minimized) that the concept of sensitivity invariance is of great 

importance. The synthesis of optimal networks has been considered by 

26 several authors. Schoeffler uses the theory of continuously equivalent· 

networks to generate a sequence of networks whose transfer functions are 

identical, but whose elements differ from one network to another by an 

incremental amount. A multiparameter sensitivity performance criterion, 

~, is defined as 

= 1 
2 l: 

i 
(3 .28) 
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The index ~ is used to find the optimum network from the sequence which 

has been generated. 

The generation of such a sequence consists of first defining what 

network characteristics are to remain constant. This fixes certain entries 

in a transformation matrix, but leaves others free of constraint. The 

free entries are chosen arbitrarily. The matrix is used to obtain 

differential equations in a dummy variable X. The differential equations 

for the sensitivity of the transfer function to changes in the network 

parameters are then derived. The differential equations in both cases 

are linear homogeneous, with the elements of the transformation matrix 

as the independent variables. Consequently, they are a function of X. 

Thus, one may choose a value of X which minimizes the performance criterion 

~. If a new set of arbitrary entries in the transformation matrix is 

selected, a new sequence of continuously equivalent networks and a new 

minimum value of performance index will result. Thus, the problem is to 

determine the value of X and the arbitrary entries in the transformation 

matrix which will minimize the index over the allowable choices. 

17 Leeds and Ugron , in the course of their minimization procedure 

based on Schoeffler's approach, found that the optimum network selected 

from a series of continuously equivalent networks tends to have the value 

of the summed sensitivities distributed uniformly with respect to the net-

work elements. This, of course, is to be expected, in view of the 

invariance property of the summed sensitivities and the nature of the 

index used. In other words, the absolute minimum of the sum of the magni-

tude squared criterion will result when all the parts of the sum are equal. 
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The requirements for a network to be potentially optimally 

insensitive according to Schoeffler' s criterion were investigated by Holt 

and Fidler27 . They show that in the case of an LC network, such as that 

considered by Leeds and Ugron, the coefficients of the numerator and 

denominator polynomials of the pertinent transfer function must be such 

that each element appears in all coefficients of the complex frequency 

variable, s, unless a coefficient corresponds to either (but not both) 

the highest or the lowest power of s in the network function. 

The theoretical limitations of the continuously-equivalent net­

'>l 
work approach were considered by Schmidt and Kasper~ , who conclude that 

networks with substantially lower sensitivity can be obtained only if 

the number of nodes, i.e., the number of network elements, is allowed to 

increase sufficiently. 

3.5 Methods of Computing Sensitivity Functions: 

In performing a sensitivity analysis, or during the course of an 

optimal synthesis procedure, it is often necessary to calculate either 

the sensitivity of a large number of network functions with respect to a 

single parameter, or alternatively, the sensitivity of a single network 

function with respect to a large number of parameters. Such calculations 

are invariably tedious and time consuming, and considerable effort has 

been expanded in devising efficient methods and algorithms for their 

evaluation. There are several ways of approaching this problem: 

3.5.1 The Feedback Theory approach 

According to Bode's theory of feedback, based on the concept of 

return difference, we may express the sensitivity of a network function, 
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9 10 28 29 
T(s), with respect to a specified parameter,~· as follows ' ' ' 

= 

I 

1 
F (s) 
~ 

1 
(3.29) I 

F~ (s) 

where Fx. and F are the return difference and null return difference, 
K Xk 

both with respect to~· When~ is the control parameter of a controlled 

source embedded in the network, we have 

= 1 + ~t(s) (3.30) 

where t (s) is defined as the negative of the controlling signal that is 

developed when the externally applied excitation is reduced to zero and 

the, controlled source in question is replaced with an independent source 
r 

of unit strength. The null return difference, F , is defined in a 
·~ 

similar way, except that in this case, the externally applied excitation 

is adjusted to reduce the signal developed across the load to zero. 

Assuming that the network function, T(s), relates the lth nodal 

voltage (or loop current) to the independent source at the first node 
I 

(or in the first loop), we may express F 
~ 

and F 
~ 

as follows: 

= 

where ~o is obtained from the circuit determinant, ~. by setting ~ 

equal to zero, and 

' F (s) 
xk 

= 

(3.31) 

(3.32) 



59 

0 where ~ll is obtained from the cofactor ~ll by setting~ equal to zero. 

Hence we may express the sensitivity function ST as 
~ 

(3.33) 

3.5.2 The Bilinear Theorem approach 

(a) Parker's Procedure: This procedure is based upon the use of the 

bilinear theorem, according to which the dependence of the network 

function, T(s, ~), on a change, ~~' in a particular bilateral element, 

30 
~· can be expressed as follows : 

T(s, ~~) = 
W(s) T(s,O) + ~ T(s,00

) 

W(s) + ~~ 
(3 .34) 

where T(s,O) and T(s, 00
) are the limiting values of the network function 

for~~ equal to zero and infinity, respectively, and W(s) is the Thevenin 

immittance which is measured looking back into the network from the 

terminals of the adjustable parameter~~' as depicted in Figure 3.1 in 

which ~o denotes the nominal value of the parameter~· 

We note that T(s,O) represents the nominal value of the network 

function. Subtracting T(s,O) from the T(s,~xk) of Equation 3.34 and 

al lowing ~~ to approach zero, we obtain in the limit 

dT T(s ,oo) - T(s,0) 
d~ 

= I 

~o + W (s) 
(3.35) 

Where 
I 

W (s) = W(s) - x ko 
(3.36) 



W(s) 

l 2 

1 1 2 I 

Figure 3.1: Bilinear theorem approach, 

Parker's Procedure 

60 
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' that is, W (s) is the Thevenin inunittance measured looking into the net-

work at the terminal pair 3-3' of Figure 3.1. The sensitivity function 

with respect to the parameter xk is therefore. given by 

ST (s) 
~ 

= rT(s ,oo) _ l] 
lT(s,O) 

(3.37) 

Thus, we can evaluate the sensitivity function of the network without 

actually performing a differentiation. 

Example 3.1 

Consider the network shown in Figure 3.2. To determine the 

differential sensitivity 

T (s, 0) = 

dT 
dL' say, we find by inspection, that 

l/LC 

s 2 + s { Rl + _l } 
L CR2 

1 
+ LC 

T(s,00
) = 0 

W(s) = 

Therefore, substituting in Equation 3.37, 'we obtain 

= L - ~R s(l + SCR2) T(s,O) 
2 

(3. 39) 

(b) Sorensen's Procedure: The use of the bilinear theorem has been 

- 31 
extended by Sorensen to include the effect of changes in unilateral 

elements (e.g., controlled sources). It is shown that 
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L 

+ t 
c 

Figure 3.2: Network for Example 3.1 
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dT 
;:: 

d~ 
T(s, 00

) - T(s,O) 
1 

~o + t(s) 

(3.40) 

where ~ is the control parameter of a controlled source embedded in the 

network. The ~o' T(s,O) and T(s, 00
) are as previously defined, and t(s) 

is as defined under the feedback theory approach. It is noteworthy that 

when the parameter ~ is a bilateral element, we find that l/t(s) takes 
I 

on. a role identical to that of the W (s) of Equation 3.35. 

3.5.3 Approaches based on the use of a related network 

In a multiparameter sensitivity analysis, each of the procedures 

thus far described requires at least as many network analyses as there 

are variable parameters. Obviously, therefore, these approaches become 

highly inefficient when considering networks with a large number of 

variable parameters. It is in this kind of situation that the use of a 

related network as proposed by Leeds and later extended by Director and 

Rohrer becomes so highly effective. 

(a) Leeds 1 Auxiliary Network Procedure: The network considered by 

32 Leeds is one in which each branch may contain a linear time-invariant 

resistor, capacitor or inductor. Each branch may al so contain an independent 

current and/or voltage source as well as a dependent current source. The 

configuration of a typical branch, the jth, say, is shown in Figure 3.3, 

for which the branch relations are given by 

v ;:: 
vbj + v ej sj 

(3 .41) 

I ej = I sj + Ibj I cj 



+ 

I . 
CJ -

~ 

I . 
eJ 

I . 
SJ 

+ 

v . 
e 

Z. 
J 

v. 
SJ 
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+ 

Figure 3.3: Leeds' Procedure; the jth typical branch 
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and the element equations will be one of the following 

v . = Rj I 
eJ ej 

vej = sL. I 
ej J 

(3. 42) 

I = sC. v ej J ej 

In addition, for the controlled current source we have 

I = f3 I 
cj mj em (3.43) 

Differentiating Equation 3.4l with respect to~· the element in the kth 

branch, we obtain 
I 

v . 
eJ 

I 

I . 
eJ 

= 

= 

(3 .44) 
I 

I . 
CJ 

where the prime denotes partial differentiation with respect to ~, and 

where derivatives with respect to the independent sources have been set 

equal to zero. 

Differentiating 

I 

The I . will have the form 
CJ 

' I 

I = f3 • I cj mJ em 

I I 

1ck = ~ I + I em em 

Equation 3.42 we obtain 

' ' v = R. I ej J ej 

' I 

v = sL. I ej J ej 
I I 

I = sC. v ej J ej 

f3 • f x. mJ K 

(3.45) 

(3.46) 
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and 
I ' vek i= ~ 1ek + 1ek ~ = ~ 

' I 

vek = sLk Iek + 51ek ~( = Lk (3 .47) 

I I 

1ek = sCk Vek + svek ~ = ck 

The network may be described in matrix form as 

= 0 

(3 .48) 

= 0 

where B and A are the fundamental loop and reduced-incidence matrices for 

the network, and Vb and lb are branch voltage and branch current vectors, 

respectively. Differentiating Equations 3.48 with respect to~· we 

obtain the sensitivity equations 

Substituting Equations 3.44 in 3.49, we obtain 

I 

B V = 0 e 

I 

AI e 
I 

+ A I c = 0 

(3 .49) 

(3.50) 

Substituting Equations 3.47 and 3.48 into 3.50, we see that the 

equations for the sensitivity calculation differ from those describing 

the original network in three ways: 
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(1) All independent sources of the original network have been set equal 

(2) 

to zero. 

th The k branch now includes a new driving source which may be 

represented in one of the following ways, depending on the element 

(a) Resistor: A voltage source of value Iek placed in series 

with the element~· 

(b) Inductor: A voltage source of value slek placed in series 

with the element Lk. 

(c) Capacitor: A current source of value sVek placed in parallel 

with the element ck. 

(3) If the Smk = ~' a current source of value rem is placed in parallel 

with the existing controlled current source. 

Thus, the procedure for calculating the sensitivity of the various 

network voltages and currents to variations in a single parameter, ~' 

reduces to the following: 

(1) Construct an auxiliary network which is a duplicate of the original 

network, with all independent sources set equal to zero. 

(2) Drive this auxiliary network by means of a dependent current source 

th placed across the k branch. The source is proportional to the 

current flowing in the kth branch of the original network if 

~ f Smk. The constant of proportionality is - ~ for resistors and 

inductors, and~ for capacitors. For the case where Smk = ~' the 

current source is I em 
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(3) The voltages and currents in the auxiliary network are the voltage 

and current sensitivities of the original network with respect to a 

variation of the parameter ~' respectively. 

17 For the case of reciprocal networks, Leeds and Ugron have shown 

that the sensitivity of a network function with respect to all variable 

parameters of the network may be determined by a single analysis of the 

auxiliary network. The procedure for this evaluation is as follows: 

(1) Place a current source of value unity with zero phase in the auxiliary 

(2) 

(3) 

network in parallel with the network element, ~· with respect to 

which the sensitivity of the network function is required. 

The voltage across any othar element in the auxiliary network, V., 
J 

multiplied by the current through the corresponding element in the 

original network and divided by the element value itself will give 
dV. 

the voltage sensitivity, d J (For capacitors, the sign is reversed.) 
~ 

The sensitivity of a single network function of all elements can be 

obtained by repeating (2) for all elements of the network. 

Example 3.2 

To illustrate this procedure, consider again the network of 

T Figure 3.2. The sensitivity function, SL' is given by 

A 
== 

dT/T = 
dL/L (3.51) 

where r
1 

is the current through the inductor L in the original network: 

= (3.52) 
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where v
2 

is the voltage across R2 in the auxiliary network (see Figure 3. 4) : 

" 
" R2VT 
v2 = R1(1 + sCR2) R2 + 

(3. 53) 

with 

sL {R1 + R2 } 
1 + sCR2 

VT = 
R2 

R
1 

+ sL + 1 + sCR2 

(3.54) 

From Equations 3.51 to 3.54, we thus obtain 

ST L s (1 + scR2) T(s) = - R2 L (3.55) 

(b) Director and Rohrer' s Adjoint Network Approach: The approach by 

Leeds and Ugron has been extended to the case of non-reciprocal networks 

33 34 by Director and Rohrer ' through the use of a s::>-called "adjoint" net-

work. This approach allows the sensitivity of any network function with 

respect to all of the variable parameters to be ascertained by only two 

network analyses per frequency point over the frequency range of interest. 

The adjoint network, N, is derived from the originally specified 

network, N, through use of Tellegen's theorem. The requirement that both 

N and N have the same topology, but not necessarily the same element types 

in corresponding branches, is first imposed so that Te llegen 's theorem may 

be applied as follows 

1: v. I. - 0 
i 1 1 (3.56) 

1: v. L - 0 
i 1 1 
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t t 
1 

L c 

Figure 3.4: Leed's auxiliary network for Example 3.2 
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where the I. and V. refer to the adjoint network, and where the summation 
l l 

is taken over all branches of the networks N and N. If the element values 

of the network N are now perturbed, thus causing a variation in the branch 

voltages and currents (which we will denote by !:i.V. and ti.I., respectively), 
l l 

we may write 

l: {ti.V, I. 
l i i 

A 

AL V.} 
1 1 

0 (3.57) 

For sensitivity calculations, we are usually interested in the sensitivity 

of a network response with respect to variations in the network elements, 

not with respect to variations in branch voltages and/or currents. 

Accordingly, we -relate the D.V. and AI. to the ch:i.nges in element values~ 
l. l. 

that is, if 

v. = F. (x.) 
l l l. 

(3.58) 

I. = G. (x.) 
i i i 

then 
aF. 

tiV. l. ti.x. = 
l. ax. 1 

i (3.59) 

aG. 
Al. 1 ti.x. = ax. i i 

i 

Hence, 

vJ t· A aG. 
}.; _1_ L 1 Ax. 0 (3 .60) = ' ax, i ax. ). 
1 ). ). 

that is 

aF. aG. l._ A i v. (3.61) -I = ax. ax. i i 
1 l 
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. E . 3 60 h b h 1 . h" f h .th We can now interpret quat1on . as t e ranc re at1ons ip or t e l 

branch of the adjoint network. In this way all of the elements of the 

adjoint network may be determined. 

Thus, we find that the adjoint network, N, is topologically 

equivalent to the originally specified network, N, and is defined as 

follows (see Tables 3 .1 and 3. 2): 

(i) All resistance, capacitance and inductance branches and transformers 

in N are associated with resistance, capacitance and inductance branches 

and transformers in N, respectively. 

(ii) All gyrators in N with gyration resistance r become gyrators in N 

with gyration resistance -r. 

(iii) All voltage-controlled voltage sources in N become current-

controlled current sources in N with controlling and control led branches 

reversing roles, and with voltage amplification factor, µ, becoming 

current amplification factor -µ. 

(iv) All current-controlled current sources in N become voltage-

controlled voltage sources in N with controlling and controlled branches 

reversing roles, and with current amplification factor, S , becoming c 

voltage amplification factor, -S . 
c 

(v) All voltage-controlled current sources and current-controlled voltage 

sources have their controlling and controlled branches in N reversed in N. 

(vi) All the independent sources in N, except the sources relevant to 

the network function under consideration, are associated with zero valued 

sources in N. The relevant sources have the following inputs in N and N: 

(a) For the computation of the sensitivities of a driving-point 

impedance (admittance) at port k, insert a unit current 
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A 

Network N Adjoint network N 
Branch A Branch 

Element Type Relation I I Relaqon dT 

~ ~ dx. in N in N 1 

A 

v .... v 

R R A A dT A 

Resistance v = RI O--Vv\/'----0 o---/\AA-o v = RI -= -II 
dR 

L L 

o---fYIYL.o o----fYYYL-.o A A uT A 

Inductance v = sLI v = sLI dL = -sII 

c c 

I~ 11 
A A dT A 

Capaci ta nee I = sCV 0 0 (). 0 I = sCV -= sVV dC 

Table 3 .1 
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12 

Adjoint Network N 

--L 0--:rl 
A 

~-- tr --rc ~ !2 Branch + -- 1 "A + + A--- Branch 
Element Type Relation v1 v2 v1 v2 Relation dT 

in N o-:-1 ~ ().- 1--o in N dx 
i - -

:J'lC :J'lC A A 

v2 = nV1 v2 = nV1 dT A A 

Transformer A A 

-(VlI2+I2Vl) Il = -nI 2 Il = -nI 2 
dn = 

r r A 

JCC 
A 

v1 = rI
2 JCC v1 = -rI 2 dT A A 

Gyrator A A dr = -(I2Il-Ill2) 
v2 = -rl v2 = rI 1 1 

6 3 fC 
A A 

v2 = µVl 0 Il = -µI2 Voltage-controllet + dT A 

-= -Vll2 voltage source 
II 0 v1 v 0 

dµ 
= = 

0 - 2 

A A 

12 = Sell 3 € 3 
0 VI = -s v + c 2 dT A 

Current-controlled A 

II V2 v A dr3 = 
.current source VI = 0 2 12 = 0 c 2 

- -0 

A A 

Voltage-controlled 12 = gmVl 0 El ~mV2 ~ 
0 I :::; gmV2 + + A 1 dT A 

current source VI v2 
A erg :::; v1v2 Il :::; 0 12 = 0 

- - 0 
m 

0 

A A 

Current-controlled v2 = rmll o I <?:rm~ ~mi2 :9 E v1 = rml2 
dT A voltage source 

o--:J 
A 

dr = -IlI2 
v1 = 0 v2 = 0 

m 

Talile 3.2 
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(voltage) source for both N and N. 

(b) For the computation of the sensitivities of a transfer 

impedance (admittance) between ports j and k, insert a unit 

current (voltage) source at port j and insert a zero valued 

current (voltage) source at port k in the original network, 

and vice versa in the adjoint network N. 

(c) For the computation of the sensitivities of a current 

(voltage) transfer ratio between ports j and k, insert a unit 

current (voltage) source at port j, and a zero valued voltage 

(current) source across port k for the original network. A 

zero valued current (voltage) source is inserted at port j and 

a unit voltage (current) source is inserted at port k in the 

adjoint network. 

The differential sensitivities, dT/dx., are defined in terms of 
1 

the voltage or current responses in the pertinent branches of the original 

and the adjoint networks, as listed in Tables (1) and (2). 

The significance of the Director-Rohrer approach is that the 

sensitivity of any network function with respect to all of the network 

variables can be obtained by appropriate application of unity and zero-

valued sources to the original and the adjoint ne·tworks. In other words, 

by two runs of a network analysis program, all the various dT/dx. can be 
1 

evaluated simultaneously. The methods has recently been extended to the 

' . 35 36 case where second-derivative sensitivities are required ' . 

It is noteworthy that the computational effort that is required 

for the analysis of the original network and its mutually reciprocal 

adjoint network may be reduced considerably by taking advantage of the 
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fact that the nodal admittance matrix of the adjoint network is merely the 

transpose of the nodal admittance matrix of the original network, and by 

h 1 . LU f . . 36 
t en app yrng actoruation . 

To illustrate this point, we first note that the branch relations 

for the original network N can be written as 

= (3.62) 

where y is the branch admittance matrix, lb is the branch current vector, 

and Vb is the branch voltage vector. The nodal admittance matrix, Y, is 

defined as 

t ::X = AljA (3 .63) 

.+ 
where A is the reduced' n-6dal inci~ence matrix and A .. :ls i:ts transpose. The 

adjoint network N has the same topology as the original network and, 

therefore, has the same nodal incidence matrix A. The branch relations 

of the adjoint network are 

= (3 .64) 

where lb, CJ and Vb are as defined previously, except that they now refer 

to the adjoint network, N. The nodal admittance matrix of N is 

and since 

thexefore 

y = 

CJ = 1/ 

y t = y 

(3.65) 

(3.66) 

(3.67) 

i.e., the nodal admittance matrix for N is simply the transpose of that 

for N. 
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In order to calculate the first-order sensitivities of the network, 

it is necessary to calculate all the node voltages of the original and 

adjoint networks. This requires the solution of the following equations 

= 
(3 .68) 

-1 . [ t]-1 l'\,~-l]t One possible approach is to calculate Y once, not1.ng that Y = L... • 
. . 

Th . . y-l b d b f G . l" . . 37 
e inverse matrix, , may e compute y means o aussian e imination 

which involves p3 operations (one operation is defined as either one 

multiplication and addition or one division) where p is the order of the 

nodal admittance matrix, Y. An additional p2 operations are required to 

-1 3 2p2 . 1 1 compute Y I, so that at least p + operations are necessary to ca cu ate 

the required nodal voltages by the matrix inversion method. 

On the other hand, a significa~t reduction in operations 

necessary can be obtained by means of LU factorization. The admittance 

matrix, Y, can be decomposed into a product of a lower triangular matrix, 

L, and an upper triangular matrix, U, i.e., 

Y = LU 

where Uhas each diagonal term equal to unity. This decomposition may be 

accomplished by l/3p (p
2 

- 1) operations by means of standard Guassian 

1
. • . 38 e 1mination . The nodal equations for N may now be written as 

LUV = I (3.69) 

The voltage vector V can be determined by first computing a temporary 

vector, b, say, by forward substitution, that is 

l,b ;:; . [ (3.70) 
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which requires p(p + 1)/2 operations. Then, we use b to find V by back-

ward substitution, 

UV = b (3. 71) 

which requires p(p - 1)/2 operations. Thus a total of 2p 2 operations are 

required to obtain all the nodal voltages in N and N. This means that a 

total of l/3p(p2 - 1) + 2p2 operations are necessary to determine all of 

the first-derivative sensitivity functions using the LU factorization 

method. In other words, a savings of l/3p(2p2 
+ 1) operations is obtained 

by use of this method. In a similar manner, it can be shown that the same 

savings results when second derivative sensitivities are required. 

Example 3.3 

To illustrate the Director-Rohrer approach, consider again the net-

work of Figure 3. 2 and its mutually adjoint network as shown in Figure 3 .5. 

By inspection, we have 

(3. 72) 

(3.73) 

(3. 7 4) 



L ! 
c 

Figure 3.5: Director and Rohrer's adjoint 

network for Example 3.3 
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Example 3.4 

As another example of the Director-Rohrer method, consider the 

network of Figure 3.6(a) which contains a voltage-controlled current 
v2 

source gmV
1

• The transfer function, T(s), is chosen as r-. The mutually 
1. 

reciprocal adjoint network corresponding to this network is shown in 

part (b) of the diagram. Suppose it is required to determine ~T . According 
gm 

to the Director-Rohrer procedure, we may write 

dT 
dg . m 

= (3.75) 

where the voltages v1 and v2 are as defined in parts (a) and (b) of 

Figure 3 .6, respectively. By inspection, the nodal equations for the 

original network are 

1 

= 
0 

and for the adjoint network, they are 

0 G
1 

+ sC
1 

= 
1 -sC1 G2 + 

-sC 
1 

g -m 
sC 1 

s(C1 + C2) 

(3.76) 

" v1 
(3. 77) 

"" v2 

Equations 3.76 and 3.77 show, as expected, that the nodal admittance 

rnatri.x of the adjoint network is the transpose of the nodal admittance 

matrix of the original network. 
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I 
t t 

Il 1 v1 Rl 
1 c2 gmVl v2 = -~ 

I 

t 

Figure 3.6: Original and adjoint networks for Example 3.4 

(a) Originally specified network 

(b) Its mutually reciprocal adjoint network 

81 

I =l 
2 

(a) 

(b) 
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Using Equations 3.76 and 3.77 to evaluate v1 and v2 , respectively, 

and substituting in Equation 3.75, we obtain 

dT 
2 s c1(c 1+C2) + s(C1G1 + c2G1 + c1G2) + G1G2 (3.78) dg = . m 2 

s clc2 + s(ClGl + C2Gl + ClG2 + Clgm) + GlG2 

3.5.4 Connection between the Feedback Theory and the Director-Rohrer 
Approaches 

As pointed out earlier, Director and Rohrer have made use of 

Tellegen's theorem to derive their method of sensitivity calculation. It 

is also possible to use Bode's feedback theory as an alteniative way of 

deriving their method. 

Consider the network of Figure 3. 7. For convenient analysis, we 

will assume the network consists of linear time-invariant resistors, 

capacitors, inductors and voltage-controlled current sources. The network 

is shown with a particular voltage-controlled current source singled out 

for special consideration. According to the 

partial derivative of the transfer function, 

the parameter, gm, is given by 

Director-Rohrer method, the 
v2 

T(s) = Y-• with respect to 
1 

(3. 79) 

where V .. is the control voltage developed between nodes i and j of the 
l.J 

original network, and Vkl, is the control volt.age developed between nodes 

" k and Q, of the adjoint network, N, shown in Figure 3.8. When the variable 

parameter is a bilateral element, of admittance Y, connected between 

nodes k and i, Equation 3.79 takes on the special form 



II 

I 

. 

i 

g Y .. 
m l.J 

v .. __ 
l) 

j 
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t 
v2 

I 
j_ 
r:-

Figure 3.7: The original network N with a voltage-controlled 
current source singled out for special consideration 
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1 

i j 

Figure 3.8: The adjoint network N 
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(3.80) 

Using the nodal method of analysis, we may express the transfer 

function T(s) as follows 

T(s) (3.81) 

where 6 is the circuit determinant of the network N, defined by 

(3. 82) 
6 = 

Yu y.Q;2 

and 6
12 

is the cofactor of"y
12 

in 6. In Equation 3.82 the various y's 

denote the self- and mutual-admittances of the network of Figure 3.7 

exclusive of the controlled source g V... By expanding the determinant 
m lJ 

of Equation 3.82, we obtain 

-'· 
6 = 6o + g~{6ki - 6.Q;i - Akj + 6ij} (3 .83) 

where A 
0 is obtained from A by putting g equal to zero. Similarly, we . m 
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may express 612 as 

lll2 

--.,.--- (3.84) 

0 where 612 is obtained from 11_2 by putting gm equal to zero. 

9 According to Bode 1 s feedback theory , the sensitivity of T (s) 

with respect to g can be expressed as follows 
m 

0 
ti0 til2 

= 
-;- 6 12 

aT 
Using Equations 3. 81 through 3. 85 to evaluate -- , we obtain 

a gm 

oT 1 
ag 

m 
= 

ti 2 {r66 12 ,ki - ti 12 tiki] 

- [titil2 ,.H - 612 tiQ,i] 

- [ 6til2,kj - 6 12 6kj] 

+ [••12,ij - "12 •,j1} 

However, from the theory of determinants, we have the identity 

Hence, we may rewrite Equation 3.86 as 

(3. 85) 

(3 .86) . 

(3.87) 

(3.88) 
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For the case of network N, we recognize that (with the independent current 

source r1 ·= 1 amp) the node voltages Vi and Vj, with respect to the 

reference node, are given by 

v. 
J 

(3.89) 

On the other hand, for the adjoint network, N, we recognize that (again 
A 

with the independent current source r2 = 1 amp) the node voltages Vk and 

v9., are given by 

v 
62k = A k 6 (3.90) 

vt 
62Q, 

= A 

6 

where 6 is the circuit determinant of the adjoint network N. Since, by 

definition, the nodal admittance matrix of the adjoint network is the 

transpose of the original network, we have 

6 = 6 

A 

62k = b.k2 (3 .91) 

b. 29., = 6Q,2 

Hence, 

vk 
6k2 

= r;- (3.92) 

v Q, 

69.,2 
= 6. 
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Clearly, by combining Equations 3.88, 3.89 and 3.90, we obtain the result 

given in Equation 3.79. In a similar manner, we can derive Equation 3.80 

for the case of a bilateral element by placi.ng the controlled source and 

the control volt.age across the same pair of terminals in Figures 3. 7 and 

3.8. 

3.5.5 Other approaches 

I "b . 39 N . 11 d . . l" n a recent contr1 ut1on , e1 e~1ves an approximate inear 

relationship between the network function and component parameter 

deviations. The relationship is expressed in the form 

T(s,x.) 
1 

= T(s,x.) + 
10 

n 
E 

i=l 
y. (s) ex. 

1 1 

where T(s,x. ) is the exact response, x. represents the normalized 
10 1 

(3.93) 

d . . f h . th d . . 1 f . . h k ev1at1on o t e i parameter, an y. is a rationa unction wit nown 
i 

coefficients. Equation 3.93 is, in effect, a first-order Taylor series 

expansion of the changed function T(s,x.) about its nominal value 
1 

T(s,x. ). The modification necessary to incorporate second-order terms in io 

the expansion for the case of linear and non-linear systems has been 

d "b db h th 40 •41 escri e y t e same au or . 

42 Goddard and Spence have also proposed a method for calculating 

first- and second-order sensitivities. Their results have been compared 

with those obtained by Neill, and the compatibility of the two sets of 

43 
results is demonstrated . 
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3.6 Conclusion: 

In the optimum design of a network based on sensitivity considerations, 

we need a sensitivity criterion, or index of performance, which gives a 

meaningful measure of the multiparameter sensitivity of the network. 

Several such indices have been proposed in the literature, and some have 

been used in optimal synthesis procedures. However, all of these indices 

appear to have the following limitations: 

(lJ In a sensitivity criterion of the {sT .sTJ type, unifovm weighting x. x. 
1 

is automatically assigned to each elemental sensitivity function. Now 

this may be justified in those cases where, for example, the parameters 

have uniform tolerances, or where all the parameters have equal temperature 

coefficients. However, in many cases these conditions do not apply, and 

in such cases some means of accommodating a non-uniform weighting among 

individual sensitivities should be incorporated into the index. 

(2) No allowance has been made for the possibility of a change in one 

parameter compensating for the effect of a change in another. 

(3) The minimization of a sensitivity criterion at a single frequency, 

as proposed by Schoeffler, leads to a network which is optimally 

insensitive at that particular frequency. In some cases, this may mean 

that the network is also optimally insensitive at all other frequencies
17 

44 
However, there is evidence to suggest that this is not always the case 

and that an index based on a range of frequencies may be more informative 

than one evaluated at a single frequency. 

For these reasons, it is considered appropriate to define a new 

mul tiparameter sensi ti vi ty index of performance which will accommodate 
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non~uniform weighting among elemental sensitivities, and at the same time 

will not exclude the possibility of sensitivity compensation occurring. 

This is done.in Chapter IV. In Chapter V, a new method of computing 

sensitivity functions is described. The method is based on an algorithm 

which allows the differentiation operation to be performed directly on any 

network function of interest. The method requires but one network analysis, 

regardless of the number of frequency points at which the index is to be 

computed, and regardless of the number of iterations in the optimal search 

routine. 



CHAPTER IV 

THE MULTIPARAMETER SENSITIVITY INDEX OF PERFORMANCE 

4.1 Introduction: 

The multiparameter sensitivity problem is usually expressed in 

terms of a sensitivity function or index of performance which defines 

the· influence of simultaneous variations in some or all of the network 

parameters on the performance of the network. The sensitivity criterion 

thus chosen is used to obtain an optimum design by indicating an optimum 

choice of -realizable network structure, or the element values for a less 

sensitive structure. 

In network theory, as has been pointed out in Chapter III, the 

early sensitivity studies were concerned with a single variable, such as 

the sensitivity of some network function with respect to a particular 

parameter. However with the increased use of the digital computer as a 

design tool, we are now able to tackle the more difficult problem of 

evaluating the sensitivity of a network to variations in a multitude of 

network parameters. Also, the advent of integrated circuitry has brought 

the mul tiparameter sensi ti vi ty problem into further prominence. With such 

networks, no longer can we call for close tolerances nor can we expect a 

high degree of parameter constancy even from passive elements. 

In this chapter, we shall define a new multiparameter sensitivity 

index of performance, and we shall describe, in some detail, a new method 

for the evaluation of sensitivity functions. The index has been applied 

(91) 
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to the important cases of low-pass LC-ladder and RC-active filters. In 

particular, it was used to evaluate the effect of increasing the filter 

order, varying the magnitude of the passband ripple, varying the amount of 

dissipation and varying the source/load resistance ratio upon the overall 

sensitivity performance of LC-ladder filters. We shall also outline a 

procedure for determining, for a given network, an "optimum tolerance set" 

which ensures that the various element changes contribute equally to the 

total change in the network response. 

4.2 A New Multiparameter Sensitivity Index of Performance; 

The use of an index of performance as an aid in the optimal 

synthesis of control systems is a well established procedure, and while 

several such indices have been proposed for use in network theory, their 

practical use in this area to date has been limited. The choice of such 

an index is most important; it should be general enough to be widely 

applicable, yet selective enough to make the best or optimum network readily 

discernable. It should be both reliable and realistic, reliable in the 

sense that one sho"uld have confidence in the results obtained when using 

it, regardless of the network being analysed, and realistic in the sense 

that it should give a meaningful indication of the sensitivity performance 

of the network in question. Because the choice of index is so important, 

we will approach our definition in a step by step fashion, and we will 

try to justify each such step wherever necessary. 

1c~ms.~dex th.e cas.·e :of ·a ly.rr,ped :}.tnec\.r .. t.:lme. invariant cnetwork. Let 

+h .. e' h~th'ork.' Junc.tion· of interest be denoted by 

T(s,x) = 
N (s ,x) 
D(s,x) 

( 4 .1) 
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where N (s,x) and D(s,x) are polynomials in the complex frequency variable, 

s, with coefficients that are functions of one or more of the network 

variables, x, where 

(4 .2) 

If we are concerned only with the realization of a given characteristic 

without regard to its sensitivity, then an index of performance that 

gives a measure of the extent to which the chosen network structure and 

nominal element set approximates to the given network function is suitable. 

Such an index may be defined in terms of the absolute error between the 

actual and desired response functions. In other words, the problem is 

one of minimizing the error between a desired and a realizable characteristic, 

and in this case, the absolute error is a suitable criterion for determining 

the extent to which the desired characteristic is being approximated. 

On the other hand, in sensitivity studies, we are primarily 

concerned with the effect of parameter changes on the shape of the response 

characteristic. In this case, an index of sensitivity performance is best 

defined in terms of the fractional, rather than the absolute, error 

between the nominal and perturbed network characteristic. The reason for 

this is two-fold. In the first place, when evaluating the sensitivity of 

the network element values, we might want to allocate equal weighting to 

the error which occurs within the passband as without. In other words, 

it is often just as important th~t unwanted frequencies should be suppressed 

as it is that the frequencies of interest should be transmitted with a 

minimum of attenuation. The second reason is closely related to the first, 
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and is best described by means of an example. Let us consider two hypo-

thetical networks, Na and Nb' both of which have the same structure, and 

each of which has an iueal low-pass response characteristic _as is shown 

in Figure 4 .1. Let us now apply an equal fractional change to the k th 

element of each network. Let the resulting changes in the network response 

characteristics by oTa and oTb, respectively, as depicted in the diagram. 

By inspection, the networks are equally sensitive to this perturbation. 

However, if we were to define their sensitivities in terms of the absolute 

value of the error, we would find that network N is ten times as sensitive 
a 

as network Nb' simply because the level of transmission through Na is ten 

times that through Nb. Clearly, it is the fractional error that should be 

considered in such a case, and accordingly, it is the fractional change 

in T(s,x) that is considered in the following development. 

Suppose we let the element ~ be changed by an incremental amount 

~ Th 1 . f . 1 h . T ( ) · 1 ClT o~ u~. e resu ting ract1ona c ange 1n s,x is equa to a~·--r--

where ~T is a function of s, and o~ can be a positive or negative real 
~ 

mnnber. Assuming that all the network variables change simultaneously, 

the total fractional change in T(s,x) due to all such changes, to a first-

order approximation, is given by 

T = 
n ~r ax. 
~ -"- 1 

i::l axi T 

T 
ox. 

s 1 
x. x. 

1 1 

where s~., the elemental sensitivity function, is defined by 
i 

ST 
x, 

i 

x. 
1 

T 

(4.3) 

(4.4) 
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Figure 4.1: Nominal and perturbed response characteristics 
of hrpotheticai networks Na a'ld Nb 
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and n denotes the number of variables in question. t.T 
Thus,-;y-, which is a 

function of s, defines the fractional error in the network response due 

to simultaneous parameter variations. 

We note that oxi acts as a weighting function, in that the 
x. 

contribution to the total error by the element x. is determined by the 
·10. 

product of the elemental sensitivity function, ST and this weighting x.. , ox. . 
1 function, Accordingly, we may write x. 

1 

t.T 
-:-r- = 

n 
~ 

i=l 
ST X· 

x. 1 
1 

l. 

ox. 
1 where x. = 

1 x. 
1 

is a positive or negative real number. 

(4.5) 

There are now two meaningful approaches which may be taken for 

defining an index of performance and which differ only in the. way that 

values are assigned to the weighting function x. : 
1 

(i) The set of n network parameters may be considered as consisting of a 

number of sub-sets, each of which is assigned a weighting function which 

has the same magnitude for all the elements of that sub-set. For example, 

in the case of an LCR network, for which, say, the tolerance of the 

inductors, capacitors and resistors is 5, 5 and 1 per cent, respectively, 

it would be appropriate to assign all reactive elements to one sub-set, and 

all the resistive elements to a second sub-set. One might then assign a 

magnitude of 5 to the weighting functions associated with the elements of 

the first sub-set, and a magnitude of unity to those associated with the 

elements of the second sub-set. Having thus assigned magnitudes to the 

various x., we now allow each to assume a positive or a negative algebraic 
1 

sign. t.T n In other words, - can be any one of 2 different functions, 
T 
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depending on the particular combination of signs involved. If we are 

interested in the magnitude of the error (or the squared magnitude), we 

may arbitrarily assign x
1

, say, a positive (or negative) algebraic sign. 

Having chosen this particular frame of reference, the other possible sign 

combinations define 2n-l different functions. We may, therefore, write 

= {6;} 2 
J 

x-} l. . 
J 

2 n-1 
j = 1,2,. . .,2 

------- (4.6) 

where each value of j corresponds to one such combination of algebraic 

signs. 

For any given frequency, the right-hand side of Equation 4.6 may 

n-1 have any one of 2 different values. As such, it may be regarded as a 

random variable, with its value being detennined by the pertinent 

combination of signs of the various X· . If we now assume that each such 
l. 

combination of signs is equally likely, then the probability of occurrence 

hT} . I n-l d of any one value of L"T"° . is l 2 , and the mean or expecte value is 
J 

given by 

E 
2 

= x-J l. . 
J 

(4. 7) 

We note that the error function, E, is a function of the real 

frequency variable, w. The question now is, at what frequency or band 

of frequencies should this function be evaluated. Taking a general 

approach, we will evaluate it over the entire positive frequency range by 

means of an integration, but we introduce a frequency sensitive weighting 

function, iJ;(w), the purpose of which will be to determine what frequency 
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or frequencies are to be considered and what relative weighting is to be 

assigned to each. In other words, if we were simply to integrate E over 

a wide frequen_cy range, a possibility would exist that such <i:n integration 

might mask the effect of component changes at some critical frequency. 

We avoid this possibility by choosing a suitable l/!(w). 

We can now define a multiparameter sensitivity index of performance 

as 

pl 
g ( E l/!(w)dw (4.8) 

or 

tJ. l· ( 
2n-l r n 

ST 
2 

pl = 
2n-l I: 

\i:l 
x-} I/! (w) dw (4.9) 

J=l 
x. l. . 

1 J 

(ii) An alternative approach to that described in (i) above is one in 

which both the magnitude and the algebraic sign of each X· is determined 
1 

by some statistical process. We might, for example, allow the set of 

elements to vary in some random manner between a set of specified tolerances. 

In this way, a random choice of x would define a particular set of X· both 
1 

in magnitude and in algebraic sign. 

defined by 

fl P. 
J 

The random variable, p., which is 
J 

2 
I/! (w) dw (4.10) 

could th.en be computed a number of times, each time us i_ng a different set 

of randomly generated \· We therefore define an alternative index, P2 , 

as the mean or expected value of p., i.e., 
J 



E{p.} = 
J 

1 oo, Q n '{ - L: L: 
Q Io J=l i=l 

where Q is the number of different sets of X· used. 
1 

4 .3 Choice of Weighting Function ijJ (w) : 

99 

2 
ijJ (w) dw ( 4 .11) 

The role of iji(w) is to bring into prominence any critical frequency 

or frequency range, so that the effect of component changes at such 

frequencies will not be masked by the integration. 

Perhaps the most fundamental question to be asked is whether an 

integration is necessary at all. Is it possible, for example, that the 

evaluation of the sensitivity performance as defined by the error function 

E, at a single frequency is sufficient? There is, in fact, some evidence 

h . ff s h ffl I • • 
26 . 1 d . 1 f tot is e ect: c oe er s criterion is eva uate at a singe requency 

and his choice of the optimum from a number of continuously equivalent 

networks is based on this index. Leeds and Ugron report that an integration 

17 is unnecessary for a class of networks , although they fail to identify 

the particular class. We, however, have found that an integration is 

indeed necessary if the results are to be truly meaningful in a general 

sense. 

This conclusion is based on a simple argument: The index is to 

be used when networks are to be compared with respect to their multiparameter 

sensitivity performance. If an integration is ~required, in other 
,, 

words, if evaluation of E at a single frequency were sufficient, then we 

should find that the relative sensitivity performance of one network in 

comparison to that of another should be the same at all frequencies. In 

other words, the ratio of the E of one network to that of another network 
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should be the same for all frequencies. We have applied this test to a 

number of related networks and the results, shown plotted in F.igures 4.2 

and 4.3 not only demonstrate that this, in fact, is not the case, but 

also, by illustrating the dependence of E on frequency, they give an 

indication of the type of weighting function which should be used. 

We have also applied the test using an index of the ~ js~. 1
2 

type 
1 1 

as defined by Schoeffler. The results, shown plotted in Figure 4.4 

correspond to those obtained using the error function E. We, therefore, 

conclude that an index based on an integral is more informative than one 

evaluated at a single frequency, as it is apparent that the relative 

sensitivity performance of a network is not, in general, independent of 

frequency. 

The information contained in Figures 4.2 and 4.3 may now be used 

as a guide in the choice of a suitable weighting function, ~(w). Thus, 

in these figures, for example, we note that 

(i) The error at very low frequencies is insignificant. 

(ii) There is an increased sensitivity to component change in the 

vicinity of the cut-off frequency, w = 1. 

(iii) Although the error is relatively large at high frequencies, it is 

of little practical importance because we are dealing with a low-pass 

network. 

Three possible choices for ~(w) in this case are 

(a) Ideal low-pass window with cut-off at w = 1, 

(b) Ideal low-pass window with cut-off greater than 1' 

(c) Ideal band-pass window centred at w = 1. 



4.0 

E 

2.0 

1.0 

0.5 
(c) 

0.1 0.5 1.0 5,0 

- Frequency--.. 

Figure 4 .2: Integrand E for second-order Butterworth passive filters 
(a) With source/load resistance ratio = 00 

(b) With source/load resistance ratio = 2 
(c) With source/lnRd TR~i~+anrA Ta+;n • l 

...... 
0 ...... 



10,0 

t 
E 

1.0 

0.1 

I . 
cc) I 

. . 
I . 

1.0 

102 

'· --· -- . -- -· 

10.0 

- Frequency-
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The first choice, (a), may be justified on the basis that we are deali_ng 

with a low-pass structure and as such we should primarily be concerned 

with frequencies wi.thin the passband. This choice, however, fails to 

include the reiatively critical frequency range immediately outside the 

passband. For this reason, the second choice, (b), appears more appropriate; 

yet it includes, perhaps unnecessarily, the very low frequency range where 

the error is n_egl_igible. The third choice, that of a bandpass window 

centred at w = 1, is therefore perhaps the most appropriate of all three, 

and accordingly, has been chosen for the evaluation of the various results 

reported herein, except where stated to the contrary. 

4 .4 Optimum Tolerance ·Sets: 

From the definition of the sensitivity index, it is apparent that 

some elements will contribute to its magnitude to · a greater extent than 

will others, i.e., the overall performance of a network is more sensitive 

to some elements than to others. Intuitively, we feel that the tolerance 

of a "sensitive" element should be less than that of an "insensitive" one 

if the overall sensitivity performance of the network is to be optimized. 

We, therefore, define an "optimum tolerance set" as that set of element 

tolerances which allows each element to contribute equally to the overall 

error. In other words, if 

QX, 12 l. 
x. 

l. 

ISx. 

ip(w)dw 5- 12 
x. 

J 
ip(w) dw ( 4 .12) 

for all i, then the· set of ~ for which this equation holds is defined x. 
l. 

as _the optimum tolerance set for the network under consideration, and will 

be denoted by ~x0 • In this way it is ensured that no single element 
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dominates the overall error. 

Perhaps it should be noted that the net result, i.e. , having each 

element of the network contribute equally to the total error, iS similar 

17 to that of other optimization procedures In this case the sensitivity 

functions, ST are fixed and the tolerance set is chosen to obtain the x,' 
1 

desired effect. In other cases, the tolerances are fixed and the network 

configuration and/or nominal element value set is chosen such that the 

objective of equal contribution is attained. 

These optimum tolerance sets have been obtained for a number of 

low-pass LC ladder filters and they have also been obtained and used in 

the synthesis of active-RC filters. The performance of networks using 

optimum tolerance sets has been evaluated and the results are given in 

Chapter VI. 

4.5 Conclusion: 

In this chapter, a new multiparameter sensitivity index of 

performance has been proposed for general use with linear, time-invariant 

networks. Two forms of t11e index have been defined: 

(l) the index Pl, in which a deterministic perturbation is applied, and 

(2) the index p2' in which a probabalistic perturbation is applied to 

the nominal values of the network parameters of interest. 

In addition, a procedure has been described for obtaining, for a 

given network, an optimum tolerance set by which each element is made to 

contribute equally to the total error in the network response. In the 

next chapter , a new method of computing these indices of performance is 

described in detail, and its computational efficiency is compared with 

other procedures. 



CHAPTER V 

COMPUTATIONAL PROCEDURES 

5.1 Introduction: 

The problem of computing sensitivity indices of performance is 

one of funda,,-,ental importance. These indices do not, in general, lend 

themselves to analytical or closed-form solution. Rather, they are most 

conveniently evaluated by means of a digital computer. In Chapter III, 

we have described several powerful methods by which such indices may be 

computed. These procedures have one characteristic in common, i.e., they 

all obtain the elemental sensitivities, ~T , without actually performing 
oX. 

1 

a differentiation operation. Also, they can all lead to analytical 

oT expression for the ax. . However, if the order of complexity of the 
1 

network is high, then it may not be convenient to attempt to obtain the 

oT ' 1 . 1 f -~~in ana ytica orm. ox. 
This difficulty may be overcome by the use of 

1 

a new direct approach which is based on the use 9f a computer. 
i 

This 

approach enables the network function and its partial derivatives 

to be obtained in analytical form. 

(106) 
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To obtain the partial derivatives of the network function in 

analy'tical form, it is first necessary to have the network function itself 

in such a form, i.e., a form in which the explicit dependence of the 

coefficient of each power of s on the various network parameters is readily 

apparent. To obtain the network function in this form may require a 

considerable computational effort in the case of complex networks. For 

example, in the case of a tenth-order doubly-terminated LC-ladder filter, 

if the transfer function T(s,x.) were expressed as a ratio of polynomials 
l 

in s, wherein the dependence of each coefficient of each power of s on the 

twelve network parameters is given explicitly, we would find that the 

denominator would contain 486 terms, each unique in its dependence on the 

network variables. An algorithm which allows the explicit dependence of 

the coefficients on the network variables to be maintained while performing 

standard mathematical operations, and which may be used to obtain nth 

order partial derivatives and corresponding sensitivity functions has been 

45 devised by Temple and Butler . 

5.2 The Computational Algorithm: 

The algorithm involves the representation in array form of 

information contained in elementary polynomials. Each self- and mutual-

admittance of the network, analyzed on a nodal-basis, say, is represented 

as an array of numbers in which each term of the pertinent admittance 

corresponds to a row of the array. If the network has n parameters, one 

or more of which may be variable, then each row of the array has n + 2 

elements. The first element of such a row represents the algebraic 

coefficient of the particular term which it represents, and is set equal 
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to the numerical value of that coefficient. Each one of the next n 

elements of the rm·t represents one of the n network parameters. If a 

term contains the parameter ~ raised to power m, then the a~ray element 

representing x. is set equal tom. Finally, the last element of the row, 
. K 

which represents the complex frequency variable, s, is set equal to the 

power of s. The representation of polynomials in array form is best 

illustrated by means of an example. 

Example S.l(a): Array Representation 

Consider, again, the network of Figure 3.6(a). Analysis on a 

nodal-basis yields 

yll = Gl + sc1 (5 .1) 

yl2 = -sC1 cs. 2) 

y21 :: gm sC 1 (5. 3) 

y22 = G2 + sC + sC
2 (5 .4) 

1 

t.i = y lly22 - y 12y 21 cs .5) 

f.112 = -Y21 (5 .6) 

Following the procedure outlined above, we may represent the admittances 

yll ;:::; 

Algebraic 
c·oefficient 

1.0 

1.0 

1 0 

0 1 

s 

0 0 0 0 

0 0 0 1 



Algebraic 
Gl c1 Coefficient 

-

I yl2 = -1.0 0 1 

1.0 0 0 

= 
-1.0 0 1 

1.0 0 0 

;: 1.0 0 1 

1.0 0 0 

c2 G2 

0 0 

0 0 

0 0 

0 1 

0 0 

1 0 

gm 

0 

1 

0 

0 

0 

0 

s 

1 

0 

1 

0 

1 

1 

-sC 
1 

-sC_ 
1 
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These arrays, representing the various network admittance functions, 

Y •. , are easily manipulated by the computer when performing the various 
1J 

mathematical operations necessary to obtain the network function of 

interest and its partial derivatives with respect to the variable parameters. 

The partial derivatives may then be used to evaluate any desired sensitivity 

function. 

To illustrate the procedure further, we now consider the problem 
v2 

of obtaining the transfer function T = I and its partial derivative with 
.. 1 

respect to the parameter gm. The problem entails array multiplication, 

addition (subtraction) and partial differentiation, examples of which now 

follo~. 
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Example S.l(b): Array Multiplication 

Two rows may be multiplied together simply by adding the last 

n+l elements of one row to the corresponding elements of the other, and 

multiplying the first elements of the rows together. Thus, for example, 

0 L 0 ,o 0 1 I x 
-1.0 0 1 0 0 0 1 

f -1.0 

1.0 0 0 0 0 1 0 

-1.0 0 1 0 0 1 1 
= 

1.0 0 2 0 0 0 2 

i.e., yl2y21 -sC
1
g + 2c2 (5. 7) = s 1 m 

and for Y
11

Y
22 

we have. 

1.0 0 0 0 1 0 0 
1.0 1 0 0 0 0 0 

1.0 0 1 0 0 0 1 x 
1.0 0 1 0 0 0 1 

1.0 0 0 1 0 0 1 

1.0 1 0 0 1 0 0 

1.0 1 1 0 0 a 1 

1.0 1 0 1 0 0 1 
;::; 

1.0 0 1 0 1 0 1 

1.0 0 2 0 0 0 2 

1.0 -o 1 1 0 a 2 

i.e. 
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Example 5.l(c): Array Addition or Subtraction 

To add (or subtract) two, arrays, we first compare the rows of one 

array to those of the other, so that we may identify those like rows of 

the two arrays that represent tenns of the same kind. If we find that the 

two arrays possess 9.lch rows, we add (or subtract) their respective first 

elements and store the sum (or difference) in a resultant array; if the 

sum (or difference) is zero, we may obviously omit the row in question 

from the resultant array. As for the remaining rows of the two arrays, 

we store them in the resultant array unchanged (except for an appropriate 

sign change of the first element of a row which is being subtracted). Thus, 

for example, for Y
11

Y22 - Y12Y21 = t:,., we have 

1.0 1 0 0 1 0 0 

1.0 1 1 0 0 0 1 

1.0 1 0 1 0 0 1 -1.0 0 1 0 0 1 1 

1.0 0 1 0 1 0 1 1.0 0 2 0 0 0 2 

1.0 0 2 0 0 0 2 

1.0 0 1 1 0 0 2 

1.0 1 0 0 1 0 0 

1.0 1 1 0 0 0 1 

1.0 1 0 1 0 0 1 = /:,. 
1.0 0 1 0 1 0 l 

1.0 0 1 0 0 1 1 

1.0 0 1 1 0 0 2 
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Hence, by inspection, 

= 

------- (5.9) 

With t.12 = -Y21 = sc 1 "". gm' and the required transfer function b_eing 

def~ned by 

T 
£\12 

= --A 
(5 .10) 

We have 

T = 

(5.11) 

Example S.l(d); Differentiation of an Array 

The derivative of an array with respect to a parameter ~ may be 

obtained by considering each row of the array in turn, reducing by one 

the (k+l)th element of the row, which is equal to the power m of~· and 

multipl~ the first element of the row by m. Rows which have their algebraic 

coefficients equal to zero (corresponding to terms which are independent 

of ~) may then be omitted. 
at. Thus, for example, for -
3
-, we have 
gm 

'dli [i'.o 0 1 0 0 0 1 sC
1 

;:; = 
~ag 

m 

(5 .12) 

oT , therefore, we have For --'dg 
m 

'dT 1 {~ 'dl\12 M} = 
62 ag- - t.12 'dgm ag m m 

(5 .13) 
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i.e. 

at = ag (5 .14) 
m 

The procedure is not limited to first-order sensitivity functions. 

It ~ay be used to obtain second- or higher-order derivatives by simply 

repeating the partial derivative operation on the various arrays in an 

appropriate manner. However, in such cases, the storage requirements 

increase rapidly with the order of complexity of the network. This 

problem can be overcome to a considerable extent by modifying the mapner 

in which the various polynomial terms are represented in array form. One 

such modification will now be described. 

5.3 A Coding Technique for Reduced Storage: 

From Example 5.1, it is clear that most array elements in the 

non-coded form are integers. As such, they may be coded into a form which 

makes it possible to reduce the storage requirements of the algorithm 

considerably. One such code is one in which eac.:h pair of digits of a 

fourteen significant figure number represents one of the last n+l elements 

of each array row. By letting even and odd ntunbers represent positive 

and negative powers, respectively, as illustrated in Table 5.1, it is 

possible to code seven variables, with powers ranging from -50 to +49 

into a single number. Thus, for example, we would represent the admittance 

Y12 of the network of F.igure 3 .6(a), in coded form as 

= = -1.0 

Al~braic 
coefficient 

0 

G, 
.1 

I I 

O•O 
I 

2 : 0 
I 

0 I 0 
; 

I 

0 0 o: 0 2 ' 0 

s 

------- (5 .15) 

0 
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If the number of network parameters exceeds six, additional fourtecn­

figure numbers, each able to accommodate up to seven additional parameters 

may be used,· 

Thus, it is possible to reduce the storage requirements consider­

ably by use of a coding technique. For the given example, the storage 

requirement' for Y12 is reduced by a factor of three using this particular 

code. The reduction becomes even more significant as the number of 

variables is increased; the maximum reduction being limited, of course, 

by the number of significant figures available from the computer. 

Power Code 

~so 99 

-49 97 

. . 

. . 
~l 01 

0 00 

+l 02 

+49 98 

Table S .1: Code for Reduced Storage 

S .4 Efficiency of Computation, a _Quantitative Comparison: 

A quantitative comparison was made between the direct approach 

and the adjoint network approach following the numerical analysis procedure 

as outlined by Director and Rohrer34 . The comparison was based on a steepest 

descent optimal search routine using the network of Fig. S, l. The re·sults 
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T 

Figure 5.1: Network used in optimization procedure 
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obtained are shown plotted in F_igure 5. 2, where the number of search 

iterations per unit computer time is plotted as a function of the number 

of frequency points at which the index of performance was to be evaluated. 

On the basis of these results, it would appear that the direct approach 

is considerably more efficient when the number of frequency points at 

which the index is to be computed is relatively large. A desirable feature of 

the direct approach is that after the initial network analysis, all the 

partial derivatives, of whatever order, are available in analytical form. 

In an optimal synthesis procedure, therefore, the index of performance 

can be computed at each and every frequency point of interest simply by 

substituting the known parameter values. In other \vords, the need for 

additional network analyses at each and every frequency point for each 

step of the optimization procedure is eliminated. Furthermore, the 

derivatives of the index itself with respect to the network parameters 

may also be obtained in analytical form, thus providing an efficient 

method of obtaining the desired trajectory in parameter space. 

It should be noted, however, that the algorithm used in the direct 

approach, in its present form, is based on ·cramer 's Rule for the solution 

of simultaneous equations. On the other hand, the Director-Rohrer 

procedure can readily use the Gauss elimination method of solution, which 

becomes highly efficient, in a comparative sense, whenever the order of 

the network determinant is high. We might, therefore, expect the direct 

approach to be relatively less advant.ageous in the case of complex 

networks. 
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5.5 Computer Programming: 

Having described the direct approach, by which all the results 

reported herein were obtained, we can now briefly describe, with the aid 

of flow-charts, some of the salient features of the computer programs 

used in the computation of the index of performance and the optimum 

tolerance sets. 

Figure 5 .3 shows a flow-chart representation of what we will call 

the 'network characterization' operation, which is performed at the 

beginning of all programs. During this operation, the network function 

and its partial derivatives with respect to all of the variable parameters 

are obtained in both array and polynomial form. Figure 5.4 shows the 

sequence of operations performed when computing the index P1, while 

Figure 5.5 shows the same for the case where the optimum tolerance sets 

are being obtained. 

When using the index of performance for comparing the sensitivity 

performance of c!ifferent networks, each employing a uniform tolerance set, 

the index P1 was used as the basis of comparison, and a value of unity 

was assigned to each X· weighting function. On the other hand, when 
. 1 

computing the index for a network with a non-uniform tolerance set, then 

a correspondingly non-uniform weighting was assigned to the various X· . 
1 

Furthermore, whenever an optimized network (i.e., one which had an optimum 

tolerance set or an optimum nominal element set or a combination of the 

tWQ) was compared with a non-optimized one, the index P? was used as the 

basis of comparison. 
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5 .6 Conclusion: 

A new procedure for the computation of sensitivity functions has 

been described. The procedure is quite general, and can be used to obtain 

nth-order partial derivatives and corresponding sensitivity functions. 

Because these sensitivity functions are obtained in analytical form, the 

procedure is very efficient when the sensitivity functions are required 

to be computed a great number of times, as is the case,. for example, in 

an optimization procedure. A quantitative comparison of the relative 

efficiency of this direct method and that of Director and Rohrer has been 

made for the case of a second-order RC-active filter. For the example 

considered, it appears that the direct method is considerably more 

efficient when the number of frequency points at which the index must be 

computed is large. 



CHAPTER VI 

A MULTIPARAMETER SENSITIVITY STUDY OF LOW-PASS LC LADDER FILTERS 

6.1 Introduction: 

A multiparameter sensitivity study of low-pass LC ladder filters 

was undertaken because the LC ladder filter is one of the most fundamental 

and most widely used forms of elec-trical network. Also, as explained in 

Chapter II, an LC ladder filter may be readily used to derive an equiv-

alent inductorless filter employing gyrators and capacitors only. The 

most commonly used procedure for the synthesis of a doubly-terminated LC 

ladder filter is the insertion loss method which was first proposed by 

Darlington in his classic 1939 paper. From a given specification function 

CIZ21 (jw)l
2 , for example), the squared magnitude of the reflection 

coefficient, Ip (j w) 1
2

, is determined. By p:.itting j w = s, the reflection 

coefficient, p (s), is then ~btained by choosing its zeros to be those 

zeros of lp(s) J
2 which lie in the left half (or right half) of the complex 

frequency plane. Obviously, for reasons of stability, the poles of p(s) 

must lie in the left half of the s-plane. The driving point impe<lance 

function, Z. (s), at the input port (see Figure 6.1), is then determined 
1n 

from 

Z. (s) 
1n = 1 - p (s) 

1 + p (s) 
(6 .1) 

and is synthesized using a suitahle driving point synthesis procedure. 

(123) 
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Figure 6.1: Doubly-terminated network 
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6.2 Standard LC Ladder Filters: 

In the design of LC filters, an established method of solving 

the approximation problem is to make use of different classes of poly-

nomials that are known to possess desirable properties, e.g., Butterworth, 

Chebyshev and Bessel polynomials. The use of these polynomials, in 

particular, leads to the realization of filters with maximally-flat magnitude, 

equi-ripple magnitude, and maximally-flat delay characteristics, respectively. 

Using the insertion loss technique, tables of element values have been 

compiled by a number of authors for a wide range of filter networks (see, 

] 
for example, Weinberg ) . In this chapter, we . limit ourselves to the multi-

parameter sensitivity study of low-pass Butterworth and Chebyshev filters. 

However, the procedures which were used to investigate this group of 

filters were quite general, and may equally be applied to any other group 

of filter networks. 

6 .3 Factors Affecting the Index of Perforrnan·ce: 

Using Weinberg's design data, the index P 
1 

was computed for a wide 

range of low-pass filters, a~d the results are tabulated in Tables 6.1 

and 6.2. Table 6.1 was obtained when an ideal low-pass window function 

(with cut-off frequency w = 1) was used for ~(w), while Table 6.2 was 

obtained when an ideal bandpass window (centered at w = 1 and with lower 

and upper cut-off frequencies of 0 .5 and 2 .0, respectively) was used for 

w(w). The dependence of the index P
1 

on the various filter characteristics 

was evaluated usi.ng the results listed in Tab le 6. 2, and is now described: 

(a) Order of Comp le xi tr: Figure 6. 2 shows the effect of increasing the 

order of complexity of the filter for ·fwo Butterworth filters with 
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Figure 6. 2: Variation of index P1 with order of filter for 

(a) Butterworth filters with source/load 
resistance ratio, RSL = 1 

(b) Butterworth filters with RSL = 1/ 4 
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different values of source/load resistance ratio, RSL. We observe that 

the sensitivity performance of the network deteriorates as the order of 

complexity increases. 

(b) Magnitude of Passband Ripple Figure 6.3 shows the effect of 

increasing passband ripple on the index P for three different filters. We 
1 

note that the index increases with increasing ripple. 

(c) Dissipation: Assuming the dissipation to be uniformly distributed 

amongst the reactive elements, we have investigated the effect of such 

dissipation on the sensitivity performance of a fifth-order singly-

terminated Butterworth filter. The results, showing the variation of 1 
with the Q of the lossy reactive elements, is shown plotted in Figure 6.4. 

We note that varying the amount of dissipation has relatively little 

effect on the index; with increasi~g dissipation or damping the sensitivity 

performance improves slightly. 

(d) Source/Load Resistance Ratio, R
5

L: Figures 6.5 and 6.6 show the 

effect of varying the source/load resistance ratio for a number of odd-

and even-ordered Butterworth filters, respectively. We note that the 

optimum termination occurs for RSL = 1, i.e., when load and source 

resistances are equal. Similar results have been observed for Chebyshev 

and maximally flat delay filters. 

6.4 Optimum Tolerance Sets: 

Optimum tolerance sets were obtained for a series of Butterworth 

filters, doubly terminated with ratio RSL equal.to tmity. The results 

are illustrated in Figures 6.7 and 6.8, where we have taken fifth- and 

ninth-order filters as examples. For this special case, Figure 6.7 
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indicates that changes in the inner elements of the filter have a more 

profolilld effect upon the overall £ilter performance, and must therefore be 

held within closer tolerance limits, than the outer elements of the 

filter. It should also be noted that the symmetry which occurs in 

Figure 6.7 is due to the symmetry of the filter itself. If, for example, 

we were to cha.nge the value of RsL. then this symmetry would be lost, as 

illustrated in Figure 6.9. 

6 .5 Comparison of Sensitivity Performance of Networks with Optimum 
and Uniform Tolerance Sets; 

The sensitivity performance of filters with optimum and lilliform 

tolerance sets were compared; the tolerance of the elements of the latter 

being made equal to the mean of the optimum tolerance set. Two criteria 

were used in making this comparison: 

(a) Frequency Response in which the bandwidth and the magnitude of the 

ripple in the passband were used as measures of performance, and 

(b) The Index of Performance, P2 in which the expected value of pj and 

its standard deviation were used as measures of performance. 

The procedure was essentially the same in all cases; a random sequence of· 

lilliformly distributed numbers was used to generate sets of element values 

(between specified tolerance limits) for filters using both optimum and 

lilli.forrn tolerance sets. The frequency response of both sample groups was 

then evaluated, with the ~agnitude of the ripple in the passband and the 

bandwidth bei.ng determined and the respective errors being recorded. The 

mean sq_uare errors f.or both sample. groups were obtained. As a measure of 

improvement obtained by the use of the optimum tolerance set, we define 
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Chebyshev filter, li4 dB ripple, with 
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improvement factors KB and KR, pertaining to the bandwidth and ripple 

errors, respectively, 

KB 
t:,. Mean sguare bandwidth error for uniform grouE 

Mean square bandwidth error for optimum group 

and 

~ ~ Mean sguare ripple error for uniform grou:e 

Mean square ripple error for optimum group 

In a similar manner, a random sequence of unifonnly distributed numbers 

was used to generate sets of nominal element values between specified 

tolerance limits for both sample groups. The expected value of p. 
J 

(the index P 
2

) and the standard deviation of p. was then obtained for 
J 

both groups, a~d two additional improvement factors were defined as 

follows: 

Expected value of pj for uniform group 

Expected value of pj for optimum group 

Standard deviation of p. for uniforin group 

Standard deviation of p. for optimum group 
J 

Table 6.3 gives these factors for a number of typical filters, 

where in each case we have used sample. groups of at least 100 samples to 

evaluate the various improvement factors. We see that in all cases 

substantial improvements in the performance of the filter result from 

us~ng the optimum tolerance set to define the tolerance limits for the 

various network parameters. 
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Table 6.1: Index~ using low~pass weighting function 

(a) Butterworth filters: 

Order of 
RSL=O RSL;:::l/8 R -·::;l/4 R ::;l/3 RSL;:::l/2 R =l 

filter SL SL SL 

2 1.266 1.958 1.756 1.651 1.487 1.076 

3 1.947 1. 750 1.639 1.595 1.558 1.707 

4 2.812 3.278 2.903 2.697 2.399 2 .036 

5 3.689 3 ,267 2.996 2.870 2.707 2.589 

6 4.519 4.704 4.262 3.999 3.608 3.132 

7 5.386 4,734 4.310 4 .118 3.873 3.593 

8 6.323 6.303 5.594 5.240 4.730 4.224 

9 7.266 6.333 5. 725 5.440 5.065 4. 777 

10 8 .180 7.897 7 .011 6.426 5.956 5.317 
I 

(0) Chebyshev filters with 1/10 dB ripple: 

Order of 
RSL =O RsL=l/8 RSL =l/4 Rsr:=I/3 RSL·=l/2 R ·=l 

filter SL 

2 1.036 1.137 0.972 0.891 0 .773 -
3 1.291 1.097 0.989 0.948 0.911 0.931 

4 2.206 2.721 2.315 2 .111 1.813 -
5 3 .610 3.068 2. 725 2.569 2.373 2.238 

6 5.182 5.181 4.463 4.109 3.608 -
7 7,134 6.018 5.307 4.973 4.546 4.204 

8 9.292 8.555 7,384 6.818 6.037 -
9 11.690 9,806 8.588 8 .028 7.293 6 .689 

10 14.300 12.680 I 10. 940 10 .110 8.978 -
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(c) Chebyshev filters with 1/4 dB ripple: 

Order of 
RSL'=O RSL"'l/8 RSL=l/4 RSL=l/3 RSL=l/2 RSL=l filter 

2 1.093 1.314 1.121 1.022 0.865 -
3 1.621 1.404 1.279 1.228 1.174 1.154 

4 2.914 3.256 2.795 2.549 2.194 -
5 4.457 3.814 3 .402 3.212 2.966 2. 771 

6 6.502 7 .289 5.425 4.995 4.377 -
7 8.806 7 .489 6.626 6.225 5.687 5.252 

8 11.310 10.260 8.859 8.175 7.218 -
9 14.090 11.930 10.500 9.832 8.955 8.209 

10 17.070 15.010 12.940 11 .sso 10.580 -
I 

(d) Chebyshev filters with 1/2 <lB ripple: 

Order of 
RsL=O R51 =1/8 RsL=l/4 I RSL =1/3 RSL =1/2 RSL =l filter 

2 1.187 1.504 1.795 1.149 0.898 -
3 2.031 1. 784 1.634 1.570 1.492 1.438 

4 3.661 3.844 3.297 3 .012 2.536 -
5 5.584 4.832 4.345 4 .115 3.816 3.564 

6 7.883 7 .417 6.391 5.784 5.076 -
7 10.500 9.016 8.040 7.581 6.975 6 .456 

8 13.320 11 .. 960 10 .300 9.488 8.281 -
9 16.500 14.080 12.500 11. 760 10. 770 9.931 

10 19.830 17.260 14.880 13.700 12.010 -
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(e) Chebyshev filters with 1 dB ripple: 

I 

Order of 
_;/ 

RS-L;:O RSL =1/8 . Psr,=1/4 R ·=1/3 RsL=l/2 RSL =l 
filter -. 

SL 

2 1.381 1.762 1.464 1.279 - -
3 2.661 2.374 2.193 2.148 2.007 1.922 

4 4. 709 - 4.687 4.001 3.620 - -
5 7 .019 6.170 5.616 5.376 5.015 4.724 

6 9.801 8.960 7.674 7.000 - -
7 12.830 11.190 10.ilO 9.605 8.936 8.369 

8 16.170 14.370 12.170 11.133 - -
9 19.740 17.100 15.400 14.605 13.540 12.650 

10 23.540 20.250 17.320 15.850 - -. 

(f) Chebyshev filters with 2 dB ripple: 

Order of -· 

filter RSL -=O RSL =1/8 Rstl/4 RSL =1/3 RSL =1/2 RSL. =1 

2 1. 788 2.131 - - - -
3 3.688 3.357 3.153 3.058 2.933 2.831 

4 6.354 5.991 - - - -
5 9.272 8.358 7.769 7.492 7.131 6.832 

6 12. 770 11.290 ~ - - -
7 16.410 14.680 13,570 13.040 12.370 11.810 

8 20.480 17.580 - - - -
9 24.790 21, 980 20. 220 19. 410 19.100 17.480 

10 29.150 24,570 - - - -
! 
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(g) Chebyshev filters with 3 dB ripple: 

Order of 
RSL =O RSL =1/8 RSL =1/4 R =1/3 RSL =1/2 RSL =l filter SL · 

2 2.225 2 .430 - - - -
3 4.648 4.314 4.099 4.001 3.872 3. 768 

4 7.903 7 .181 - - - -
5 11.380 10 .490 9.895 9.628 9.274 8.984 

6 15.530 13.430 - - - -
7 19.760 18.080 17.000 16.500 15.860 15.330 

8 24.510 20.690 - - - -
9 29.270 26.670 25.000 24.230 23.240 22.410 

10 34.440 28.620 - - - -
l 
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Table 6.2: Index Pt using ideal band-pass weighting function 

(a) Butterworth filters: 

Order of 
RSL-=O RSL=l/8 RSL=l/4 RSL=l/3 RSL =1/2 RSL =l filter 

2 3.46 5 .47 5.15 4.97 4.67 3.72 

3 7.09 6.76 6.53 6.42 6.24 5.97 

4 10.33 11.81 11.26 10.93 10.41 8.58 

5 14.30 13.60 13.08 12.81 12.41 11.89 

6 18.60 18.88 18.04 17.58 16.83 14.52 

7 22.22 21.11 20.29 19.87 19.21 18.13 

8 27.15 26.80 25.67 25.05 24.04 21.10 

9 30.85 29.34 28.24 27 .67 26.77 24.65 

10 35.81 35.47 34.04 33.40 32.00 28 .13 

(b) Chebyshev filters with 1/10 dB ripple: 

Order of 
RSL =0 RSL=l/8 RSL=l/4 RSL=l/3 RSL=l/2 RSL-=l filter 

2 2.39 3.89 3.47 . 3. 25 2.87 -
3 7.58 7.09 6.75 6.58 6.34 6.08 

4 13.12 14.24 13.34 12.84 11.99 -
5 19.70 18.42 17.49 17.01 16.28 15 .40 

6 25.97 . 26 .01 24.51 23.71 22.38 -
7 32.82 30.64 29.06 28.24 27 .02 25.57 

8 39.53 38.64 36.42 35.24 33.36 -
9 46.79 43 .48 41.13 39.94 38.16 36 .10 

10 54.75 52.61 49,39 47 .72 45.16 -
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(c) Chebyshev filters with 1/4 dB ripple: 

Order of 
RsL;::O RsL=l/8 RSL=l/4 RSL=l/3 RSL:::l/2 R =l 

filter SL 

2 3.0 4.72 4.26 3.99 3.51 -
3 8.52 7.99 7.62 7.43 7.15 6.87 

4 14.08 15.05 13.90 13.56 12.61 -
5 20.57 19.25 18.29 17.79 17.05 16.25 

6 27.24 27.01 25.40 24.53 23.07 -
7 34.34 32.02 30.36 29.51 28.26 26.05 

8 42.22 40.86 38.34 37.01 34.87 -
9 51.08 47.35 44.69 43.36 41.44 39.44 

10 61.60 58 .45 54.59 52.58 49.49 -
-· 

(d) Chebyshev filters with 1/2 dB ri12ple: 

Order of 
RsL=O RsL=l/8 I 

RsL=l/3 RsL=l/2 RSL =l filter RSL=l/4 

2 3.61 5.29 5.32 4.48 3.76 -
3 9.17 8.63 8.24 8.05 7. 77 7.50 

4 14,08 15.69 14.66 14.07 12.88 .. 
5 21.59 20.23 19.25 18.76 18.05 17.36 

6 28.76 28.15 26.38 25.41 23.66 -
7 36.55 30.48 32.35 31.48 30.24 29.03 

8 46.04 44 .17 41.26 39.72 37.08 -
9 56.99 52.87 49.95 48.51 46.46 44.49 

10 70.62 66.15 61.57 59.16 55.26 .. 
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(e) Chebyshev filters with 1 dB ripple: 

Order of 
Rs1=0 Rs1=1/8 RSL=l/4 RSL =1/3 RSL=l/2 Rs1=l filter 

'. 

2 4.35 5.80 5.22 4.82 - -
3 9.89 9,35 8.97 8.83 8.52 8.29 

4 16.14 16.45 15.29 14.58 - -
5 22.90 21.54 20.59 20 .11 19.46 18.87 

6 31.14 29.97 27.93 26.77 - -
7 40 .19 37.64 35.87 35.01 33 .81 32.73 

8 52 .45 48.95 45.93 44.00 - -
9 66.04 61.56 58.50 57.22 54.93 53 .07 

10 84.09 77.89 72 .16 69.09 - -
' 

(f) Chebyshev filters with 2 dB ripple: 

Order of 
1$1 =O R51=1/8 R51=1/4 I RSL "1/3 IR51=1/2 RSL=l filter 

2 5.29 6.30 - - - -
3 10.88 10.37 10.04 9.87 9.65 9.46 

4 17.86 17.54 - - - -
5 24.88 23.61 22.75 22.33 21. 78 21.30 

6 34.61 32.65 - - - -
7 45.54 43 .13 41.47 40.69 39.64 38.75 

8 61.20 56.83 .. - - -
9 77.70 74.26 71.31 69.90 68.44 66.46 

10 103 .10 94.50 - - - -
I - . 



(g) Chebyshev filters with 3 dB ripple: 

Order of 
filter RSL =O 

2 6.01 

3 11.80 

4 

5 

6 

7 

8 

9 

10 

19.33 

26.41 

37 .13 

49.45 

67.38 

87.40 

116 .89 

6.63 

11.34 

18150 

25.27 

34.54 

47.24 

61.96 

83.44 

106.50 

R =1/4 
SL 

11.03 

24.51 

45.85 

80.52 

10 .88 

24.15 

45.16 

79.68 

R =1/2 
SL 

10.70 

23.69 

44.28 

78.05 
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R =l 
SL 

10 .54 

23.31 

44.00 

76. 71 



Table 6.3 

'Filter 

I 
R , t Order Ripple at1.o KR KB KE 

(dB) RSL 

4th 1/2 8 2.17 1.55 1.40 

5th 1 1/4 2.18 1. 72 5.21 

6th 1 8 3.84 3.89 1.67 

7th 1/4 1/3 5.42 5.79 2.55 

t Note that RSL = source/load resistance ratio. 

Improvement Factors Obtained in Evaluating 

Performance of Optimum Tolerance Sets 
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6 .6 Conclusion; 

In invest.igati.ng the multiparameter sensitivity of low-pass LC 

ladder filters, some rather interesting results were obtained: 
·. 3 

(1) Although it has been suggested by Orchard that the sensitivity 

performance of LC networks gets worse only by virtue of second-order 

effects becoming noticeable, nonetheless, it has been observed that 

increasing the order of complexity of the network has a significant effect 

on the value of the index P1 . 

(2) The optimum terminating conditions exist when the load and source 

resistances are equal. 

(3) Increasing the amount of dissipatlon improves the sensitivity 

performance of the network slightly. 

( 4) The optimum tolerance sets which were obtained for these networks 

indicate that the sensitive elements tend to be those which are located 

towards the center of the ladder, and the use of these optimum tolerance 

sets has been found to improve the sensitivity performance of the network 

considerably. 



7.1 Introduction; 

CHAPTER VII 

EXTENSION TO ACTIVE FILTERS 

In this chapter, we will deal with the extension of the index of 

performance and the concept of the optimum tolerance set to the case of 

RC.-active filters. As has been pointed out in Chapter II, in the case of 

highly selective active filters, it is ordinarily preferable to realize 

the network function as a cascade of second-order sections, each suitably 

isolated and thereby accounting for a single pair of ccmplex conjugate 

poles as shown in Figure 7.1. The extent to which variations in the 

elements of any such section affect the overall response of the network 

is determined by several factors. For example, the location, in the 

complex frequency plane, of the particular pole-pair to be realized, and 

the choice of structure for that section are both factors which influence 

the sensitivity of the overall response to variations in component 

parameters. 

The choice of structure for such a section is a particularly wide 

one at the present time, as many suitable networks using NIC 1s, gyrators, 

operational and fixed-gain amplifiers are available to the designer. This, 

naturally, raises the question as to whether an optimum choice of such 

secti.ons ex:tsts for a given filter specification, and if so, then to what 

extend is the choice 'Jf individual section influenced by the coordinates 

of the pole-pair which it is to realize. In addition, we might also wish 

(147) 
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to determine the manner in which the various pole and/or zero movements 

should be controlled, relative to each other, such that the overall effect 

of such migrations is minimized. 

In the following sections, we will consider these questions, and 

we will show that by extending the use of the index of performance and 

the concept of the optiinum tolerance set to this area, some useful results 

can be obtained. 

7.2 The Pole-Zero Index, P 
~~~~·~~~~~--''--~Z 

The first step in the extension of the multiparameter sensitivity 

index of performance to the case of RC-active filters is to redefine the 

network parameters of interest to be the coordinates of the pole-zero 

pattern of the network ftmction of interest. It is rather convenient to 

define the coordinates of the poles in terms of the relative damping 

factor, s, and the undamped natural frequency of oscillation, wn, and to 

use a similar notation to define the coordinates of the zeros, although 

it is recognized that in the case of zeros, such parameters do not have 

the same physical significance. In this thesis, however, consideration of 

zeros does not arise, as we are concerned with low-pass filters only, the 

transmission zeros of which are all located at infinite frequency. By 

redefining th.e network para.meters in this way, it is possible to obt<1in 

an index of performance which is defined in terms of small variations in 

pole~zero locations and which we will denote by P . pz 

In the same war that optimum tolerance sets were obtained for the 

various network elements, we can now obtain optimum tolerance sets for the 

various s, and w 
1 n. The significance of this new optimum tolerance set, 

i 
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which we will denote by 6x 1 is that it defines the limits of pole-zero 
pz 

migrations, such that each such migration contributes equally to the 

total error in the network response. In other words, we now have a means 

of obtaining the optimal limits on the movements of one pair of complex-

conjugate poles relative to the movement of any other pair. This inform-

ation becomes particularly useful for the case of RC-active filters of an 

order greater than two. 

7.3 Computational Results: 

The index, P , and the optimum tolerance set 6x , have been 
pz pz 

obtained for a mnnber of low-pass LC-ladder filters. The values obtained 

for P are tabulated in Tables 7 .1 and 7 .2 where we have used, for the 
pz 

frequency sensitive weighting flillction ij;(w), an ideal low-pass window 

function with cut-off frequency of 1 radian per second and an ideal band-

pass window function with lower and upper cut-off frequencies of 0.5 and 

2.0 radians per second, respectively. The values obtained for P correlate 
pz 

closely with those obtained for the index P1, which is to be expected. 

This correspondence is evidenced in Figures 7.2 and 7.3 where the variations 

of the index P with order of complexity of the network and with magnitude 
pz 

of passband ripple is shown, respectively. 

In Figure 7.4, we show the optimum migration areas for a tenth-

order, Butterworth filter as def.ined by the optimum tolerance set, ox , 
pz 

fo:r that network, Not unexpectedly, these results sh.ow that the cptimum 

tole:re\ole limi.ts on pole migration are less stri!1gent as the pole moves 

away ;from the j w-axi.s, corresponding to an increased relative damping 

;factor, z:;. 
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Order of 
filter 

2 

.3 

4 

5 

6 

7 

8 

9 

10 

Butterworth 1/2 dB 1 dB 2 dB 

5.55 

6.26 

10.40 

12.54 

17.05 

19.24 

23. 76 

26.25 

30.91 

Table 7 .l(a): 

ripple ripple ripple 

4.89 5.29 5.32 

8.13 9 .57 12.13 

15.08 18.14 23.63 

22.40 28.09 38.18 

33.67 42.69 58.64 

46 .21 . 59.68 83.31 

62.81 81.52 114.20 

81.29 I 150.00 

10~ 
I 

103.90 136.30 192.10 

Pole-zero index, P , for various 
pz 

low-pass LC ladder filters, using 

ideal lm·;-pass weighting function 
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3 dB 
ripple 

6.65 

14.68 

29.13 

48.18 

74.41 

106.50 

146.20 

192.40 

246.40 



Order of 
Complexity 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Butterworth 1/2 dB 1 dB 2 dB 

4.607 

6.535 

11.410 

13.990 

19.490 

22.340 

28.250 

31.290 

37.230 

Table 7.l(b): 

ripple ripple ripple 

6.440 6.004 4.439 

10. 720 11.560 13.610 

19.690 22.230 27.150 

31.130 36.930 46 .5 70 

47.930 58. 710 75.660 

69.990 89.150 118 .500 

101.200 133.300 182.100 

143.400 194.900 

l 
272 .400 

200.500 290.400 400.900 

Pole-zero index, P , for various pz 
low-pass ladder LC filters, using 

ideal band-pass weighting function 

155 

3 dB 
ripple 

5.891 

15.930 

32.060 

54.700 

88.-990 

141. 200 

219.300 

331.000 

497.300 
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7 .4 Sensitivity Analysis of Typical RC-active Second-order Sections: 

The multipa:rameter sensitivity performance of five typical RC-

active second·~·Jrder sections involving negative impedance converters, 

gyrators and operational amplifiers was investigated. These networks, 

which have been synthesized by classical techniques
46

, are shown in 

Figures 7 .5 through 7 .9. The element values in each case are. given as 

functions of s and w . The multiparameter sensitivity performance of 
n 

these networks, as defined by the index P1, was computed for a number of 

different values of r;, with the natural frequen;;y of oscillation, w , 
n 

normalized to unity. The computational results are shown plotted in 

Figure 7.10. In performing this sensitivity analysjs: the conversion 

factor, k, of the negative impedance converter used in the network of 

Figure 7.5 and the gyration resistance, r, of the gyrator used in the net-

work of Figure 7 .6 were both considered network variables as were the 

other network elements. The results show quite clearly that in the case 

of each network considered, the sensitivity performance deteriorates as 

the value of s is decreased. Furthermore, we note that the network of 

Figure 7. 7, employing a single operational amplifier, gives the best 

overall sensitivity performance of the five networks considered. 

7.5 A New RC-active Second-order Section; 

As an alteTI1ative to the networks discussed in the previous section, 

a new network 1 consisti.ng of a single-loop negative feedbad .. system, is 

now l?roposed. The new network contains an ideal voltage-controlled voltage 

source, µVa, and an RC two-port network driven from a current source, I 1 , 

as shown in Figure 7 .11. This structure has a number of advantages when 
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NIC 

Figure 7 .5: RC-NIC second-order low-pass filter 

Rl = 11.22 2. 22r; 

R3 = 1.0 

R4 = 2.22(1 r;) 

c2 
1 = w (1.122 - 0 .222r;) 

n 

C4 
1 = 2.22 w (1 -r;) 
n 
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r 

n-~~--~~~~--~~~--~r--~~~....,.._.~~~--~~~n 

Figure 7.6: RC-gyrator second-order low-pass filter 

Rl 
1 - r;,2 

= 
r;, 

R4 
1 

= 
r;, 

r = 1 

c2 
1 

= 
(I) (1 r;,2) -n 

c3 
1 

= 
(I) 
n 



159 

+ 

Figure 7.7: RC-active second-order low-pass filter 
employing one opera ti on al amplifier 

Rl = 1.0 

R2 = 0.5 

R3 = 1.0 

cl 
_2 

= r;w _n 

c2 = 
r; 

w n 



+ 

Figure 7.8: RC-active 
employi_ng 

Rl = 1.0 

R2 = 1.0 

R3 = 1.0 

R4 = 1.0 

-. 

second-order low-pass filter 
one operational amplifier 

c1 
1 = 

l';;W n 

c2 = I';; 

w n 
1 

c3 = r;;w n 
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7 .9; RC-active second-order 
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filter figure 
employi?g three operational amplifiers 

Rl 1.0 RS 
1 

;::; = -2 

1 
w 

Rz 
n 

= 2r;w R6 1.0 = n 

R3 = 1.0 cl = 1.0 

R4 = 1.0 Cz = 1.0 
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Figure 7.10: Sensitivity performance of various RC-active filters: 
(a) RC-NIC structure 
(b) RC-gyrator structure 
(c) Operational amplifier structure of Figure 7.7 
(d) Operational amplifier structure of Figure 7.8 
(e) Operational amplifier structure of Figure 7.9 
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'Figure 7 .11: RC~active filter employing a fixed-gain amplifier 

(a) General structure 

(b) Sub-network Na ;for a low-pass realization 
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applied to the synthesis of RC-active filters: 

(1) It can accommodate a finite source resistance in R1 . 

(2) It is- highly flexible in that the form of the network Na determines 

the type of filtering characteristic realized. Thus, to realize a low-

pass filtering characteristic, we use a low-pass RC ~-section as shown in 

Figure 7 .11 (b). 

(3) It requires a minimum number of elements to realize a prescribed 

filtering characteristic. 

(4) To realize high-order filters, we may cascade sections without the 

need for isolation amplifiers. 

All of the network corrrponents in Figure 7.11 are, in effect, 

included in the feedback loop. Thus, the sensitivity of the natural 

frequencies of the network to component parameter variations may be 

effectively spread over all components, thereby avoiding the need for 

precise control over any particular parameter. For this reason, together 

with the fact that the capacitors of network N are grounded, it would a 

seem that the structure is well suited for integration. 

7.6 Sensitivity Analysis and Optimal Synthesis of the Network: 

7,6.1 Analysis of the network 

Analysis of the network of Figure 7 .11 (a) in terms of the z­

parameters of the sub-network N , yields the following expression for the 
a 

transfer function: 

T(s) (7.1) 



If a low-pass filtering characteristic is required, we may use the 

structure shown in F.igure 7 .11 (b) for N obtaining a . 

where 

and 

T(s) 

2 
w = n 

2z;w 
n 

K 

= K 
2 2 s + 2z; w s + w n n 

Rf + R1 (1 + µ) 

CzC4R1R3Rf 

... )l 

7.6.2 Synthesis of the network 

1 

C2Rf 
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(7 .2) 

(7.3) 

(7 .4) 

(7.5) 

The problem now remains to find an acceptable set of parameters 

(R1 ,R3 ,c2 ,c4 ,Rf and µ) such that the constraints imposed by Equations 7.3 

and 7.4 are satisfied. To obtain such a set, we can either adopt an 

approach in which the sensitivity of the network is defined in terms of a 

single-parameter sensitivity function, e.g., the pole sensitivity with 

respect to the active parameter µ, or alternatively, we can use some form 

· of optimal search routine to find an optimum set of element values such 

that the mul tiparameter sensitivity index of performance, P 1 , of the net­

work. is minimized. 
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We will consider both of these techniques in turn. In the first 

instance, we will obtain a set of element values which are defined in 

terms of r:;, whereupon we may make a direct multiparameter sensitivity 

comparison with the five other RC-active filters previously discussed. 

Following that, we will use optimal search techniques in conjunction with 

the 1nultiparameter sensitivity index of performance to find an optimum 

set of element values. We will perform the search routine for a range of 

different values of r:;, starting the search, in each case, from that point 

in parameter space which is obtained by the classical procedure. In this 

way, we shall be able to obtain a quantitative measure of the extent to 

which the optimal search routine can improve the performance of the filter 

for various values of r:;. 

(a) The approach based on pole-sc:i.sitivity considerations: Following 

the procedure outlined in Appendix A we obtain the following expressions 

for the various element values which define the dependence of these 

nominal values on the relative damping factor, r:;. 

= 1.667 

;::; 1.000 

0.333 

µ 
4.335 

2 
1'; 

c2 

c4 

2.55 = r:;w 
n 

5.10 
;::; 

r:;w 
n 

.... 1.20 (7 .5) 

Usi:1g these element values, with the natural frequency of oscillation 

normalized to unity 1 the multiparameter sensi ti vi ty index, P 
1

, was 

computed for a range of different values of r:;. The results, which are 
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shown plotted in Figure 7.12, indicate, as expected, that the sensitivity 

performance of the network deteriorates as z;; decreases. 

(b) The optimal synthesis procedure: As an alternative to the previous 

procedure, an optimal synthesis procedure was programmed on the CDC 6400 

computer. The procedure uses the steepest-descent method of optimal 

search to find a set of element values which tends to minimize·the index 

of performance, P 1 , while at the same time satisfies the constraint 

Equations 7.3 and 7.4. 

In applying steepest-descent, the index of performance, P1 , is 

interpreted as a surface in parameter space. The maximum change in P1 

occurs in the direction of the gradient vector, VP 1, where 

aP1 
ax1 

aP1 

QPl ::: 
ax2 (7.6) 

At each iteration of a simple steepest-descent routine, the gradient 

vector VP
1

, is computed, and on this basis a corrective change in the 
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Figure 7.12; Vari.ation of index P1 with /:; for 

the network of Hgure 7 .11 



parameter vector x is made accordi.ng to the following: 

j+l x = 

169 

(7. 7) 

~.i:. - j . t.. t.. • th . . d kj . . 
wu~re x is tu.e vector parameter at tae J iteration, an is a gain 

parameter. The kj is assumed positive, with a magnitude that is controlled 

at each iteration to ensure reasonable convergence towards the optimum 

value of P1 . The computer iterates this procedure until a stopping 

condition is satisfied. 

The problem that we are specifically faced with is one of non-

linear programming. That is, we have a non-linear index of performance, 

P1(s,x), which we wish to minimize subject to the non-linear equality 

constraints of Equations 7.3 and 7.4 and to other inequality constraints 

imposed by the requirement that the element values must fall within some 

acceptable bounds. In the programs which were written in support of this 

thesis, bounds were also placed on the value which the ratio, 

two like elements, could assume, i.e., 

r ~ a x r 

where the parameter ar i!? chosen appropriately by the user. 

r , 
x 

of any 

(7.7) 

Each. constraint de;£ines one or more :regions in parameter spaces 

whi.ch. are not allowed as solutions. Multiple constraints simply increase 

the disallowed volume. This princi:rle is illustrated in F.igure 7 .13 for 

the two parameter case, with examples of the three types of constraints 

mentions above. 
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C(x) = 
.V-

1 
-< r 
a.r x 

< a 
r 

'figure 7 .13: Constrained search, two-parameter problem 
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For the. general n-parameter case, an equality constraint of the 

fonn C (x) := 0 must be satisfied. One method of solution is to choose an 

arbitrary starting point in parameter space and adjust this parameter 

setting in steps (usi.ng steepest-descent perhaps) until the constraint is 

satisfied. The search then rrocedes along, or close to, the C(x) = 0 

contour on the P1 surface in parameter space until the constrained minimum 

value of P
1 

is reached. This procedure is readily formulated using VC 

(the gradient of C), and VP lC (the constrained gradient of P 1), which is 

defined as that direction in parameter space along which P1 may be improved 

without affecting C. The procedure may readily be extended to the case of 

multiple equality constraints. A more detailed description of the 

• 47 48 49 
procedure is given elsewhere ' ' 

Equality constraints may also be handled by the so-called elimination 

method, in which one or more of the constraint equations are used to solve 

for one or more network parameters in terms of the remaining ones. These 

relationships are then substituted into the objective function. Thus, 

the number of independent variables, and consequently, the complexity of 

the problem is reduced. It should be noted that the method is not always 

applicable, as it requires the initial solution of the constraint equations 

in closed form. 

In the case of the network of f.igu:re 7 .11 1 the elimination method 

has been used to advant.age. The network has a total of six variable 

parameters, includi.ng µ, However 1 only two equality constraints, imposed 

by the prescribed pole-pair coordinates in the complex frequency plane, 

and defined by Equations 7 .3 and 7 .4 must be satisfied. We therefore have 
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four degrees of freedom which may be used to reduce the multiparameter 

sensitivi:ty of the network. The first step in the procedure was to solve 

Equations 7. 3 and 7 .4 for the control parameter, 11, and for the feedback 

µ 

and 

1 

Rf = 

- 1 (7 .8) 

(7 .9) 

These values for µ and R~ were then substituted into the expression for 
J: 

the index P 1 . In this way, the problem was transformed into an optimal 

search of four-dimensional space for that set of c2 , c4, R1 and R3 which 

(with the corresponding values of µ and Rf as defined by Equations 7. 8 and 

7.9)minimizes P
1 

while realizing the prescribed pole-pair coordinates 

exactly. A description of the optimal search routine now follows. 

7.7 The Optimal Search Routine: 

The unconstrained search of the four dimensional space bounded by 

the acceptable values of the parameters x' ~ 1C2,c4 ,R1,R3]t is best 

described with the aid of a flow-chart (see Figure 7 .14) 

The computer is p;rogrammed with a mathematical mode 1 (network 

characterization block) and in:;tructions ;for computing the index P 1 ;md its 

gradient VP 1 . An i.ni ti al parameter settipg is read in, and the mlue of µ 

and R;f which. reali.ze the prescribed pole~pair coordinates in the complex 

;frequency plain are then computed. A corrective adjustment in x' is then 

made. The magnitude of this adjustment is controlled by the gain constant 
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(7 .10) 

The new value of the index P 1 is now computed and the actual change in 

P1 is determined, and is compared with its predicted change. The magnitude 

of the gain constant, kj, is controlled by the convergence characteristics 

of the search routine. The steepest-descent procedure extrapolates from 

the measured P
1
-surface slope components, thus approximating the P

1
-surface 

as a plane. The actual P1-surface, in most cases, is more accurately 

represented by a quadratic form, so that the planar approximation becomes 

progressively poorer with increasing distance from the test point. Thus, 

if kj is made too large, the actual value of P1 may be far from the 

predicted value at the new set point, and the procedure may fail to con­

verge to the optimum solution. We therefore control the magnitude of kj 

at each adjustment step to prevent divergence. If the predicted and actual 

change in P1 differ appreciably, the magnitude of kj is decreased approp­

riately. By the same token, if the predicted and actual change are very 

close to each other (suggesting that the step size is too small) the value 

of kj may be increased to speed up convergence. 

The procedure is repeated until a stopping criterion is satisfied. 

The stopping criterion is usually expressed as I! ~p II <; t:p, where ~p is a 

poslti.ve constant drnsen to terminate the computer run nea.r the optimum 

value of P1 . In our case, we have an additional stopping criterion, as 

defJ:.ned by Equation 7. 7, which causes the search to be terminated when any 

parameter assumes an llllacceptable value. 
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Read input data 

Find point in parameter 
space which realizes 
prescribed pole pair 

Calculate index P1, and 

its gradient VP 1 

y' = X1 + &X 1 

NO 

Obtain new values of µ and Rf 

Calculate P 1 (y) 

Logic to control size of 0 

NO 

NO 
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STOP 

Figure 7.14: Flow chart representation of the optimal search 
:routine 
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7 .8 Sensi~ivi~y Pe:rfo:rmance o;f Optilr.ized Networks: 

The index o;f performance, P
1

, was used in conjunction with a 

steepest~descent optimal search. routine to synthesize a number of RC-active 

fi.1 ters using the configuration of Figure 7 .11. 

7,8.1 Optimization of second-order Butterworth Section 

In'the synthesis of an optimum second-order low-pass Butterworth 

section, th..e magnitude of th..e index P 
1 

was reduced by approximately 30% 

during the first ten iterations of the search .routine as is illustrated 

in Figure 7.15. The sensitivity performance of the original non-optimized 

version and the resulting optimized version was compared, and typical 

response curves are shown in Figure 7.16. The following procedure was 

used to obtain these and other similar curves which follow in Figures 7 .18 

' through 7 .20. ·A random sequence of uniformly distributed numbers was 

used to generate ~ets of element values between specified tolerance limits 

for both versions of the filter. The frequency response of the resulting 

networks was then evaluated and the error in the response of the optimized 

version at the cut-off frequency was noted. This procedure was repeated 

25 times using different random number sequences. The curves of Figure 

7.16 correspond to that set of randomly generated element values (between 

specified tolerance lirn:lt_s) which resulted in the largest such error. The 

nomi.nal values of the elements used in both cases and the resulting values 

o;f the index P
1 

which correspond to the curves of Figure 7 .16 are tabulated 

i.n Tab le 7. 2, 
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Figure 7 .15: Effect of optimization; second~order 
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Network Non-optimized Optimized 
element structu:re structure 

Rl 1.0000 11.6845 

c2 10.0000 10.0045 

R3 10.0000 9.6951 

c4 2.0000 ·o .1038 

Rf 0.0797 0.2488 

I 

µ 1.4869 1.4845 

Index pl 7 .8220 5.4510 

Table 7.2: Element nominal values and corresponding 
value of the index P for the optimized 
and non-optimized networks used to obtain 
the responses shown in Figure 7 .16 

178 
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7.8.2 Statistical analysis of errors of optimized and non-optimized 
versions of the filter 

As a further indication of the improvement in perfonnance of the 

optimized version of the filter, the errors which occurred in the network 

response (when the network elements were perturbed) were analyzed for 

both the optimized and the non-optimized versions of the network described 

in Table 7.2. These errors were computed for a number of frequency points 

of interest, and their standard deviation was determined. The results 

obtained are shown plotted in Figure 7.17. It is noted that in the case 

of the optim:i.zed version of the filter, the standard deviation is considerably 

less than that of the non-optimized version in the frequency band of interest. 

Furthermore, these results confirm our earlier conclusion, viz., that the 

network response is particularly sensitive in the vicinity of the cut-off 

frequency. 

The Chi-squared goodness-of-fit test was also applied to the error 

data to determine the extent to which the distribution of these errors 

approximated to a normal or Gaussian distribution. The results of this 

test are tabulated in Table 7.3, where the value of Chi-squared obtained, 

and the corresponding probability that the data was generated by a normal 

process are table<l as a function of frequency. On the basis of these 

results, which tend to be n.egati ve, we may conclude that the errors have 

probably been generated by a process which is not exactly normal, a 

conclusion which is i:uiplied in Equation 4. 3. 

given a rectangular distribution, it follows 

As each of the ox. have been 
l 

that ~; will have a distribution 

whi.dt tends towards a normal distribution as the number of parameters, x., 
l 
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Figure 7.17; Standard deviation of errors in network response 
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tends to become large. In this particular example, there are but six 

parameters; we would not, there;fore, expect the distribution of 1:::.; to be 

particularly close to normal. 

The index P2 was also computed, and the standard deviation of the 

various p.j was' determined, for both versions of the network. The results 

are tabulated in Table 7 .4. The Chi-squared test was again applied to the 

pj data (SO samples) and the results were again negative. 

7.8.3 Other optimized networks 

(a) The synthesis of filters realizing several different values of 

relative damping factor, s, was undertaken. The sensitivity performance 

of the resulting optimized networks was again compared with that of the 

non-optimized versions. The results are shown plotted in Figures 7.18, 

7.19 and 7.20 for the case of s = 0.9, s = 0.6 ands= 0.3, respectively. 

The nominal element values for both versions of each filter are tabulated 

in Table 7 .5. 

(b) For the case of a Chebyshev filter with 1 dB passband ripple, the 

sensitivity performance of an optimized network was compared with that of 

the network synthesized in Appendix "A". The set of element values 

obtained in Appendix "A" '\:<t"aS used as the starti.ng point in parameter space 

for the optimization procedure. The results of this sensitivity comparison 

are shown plotted in F.igure 7. 21, and the nominal element values for both 

versions o;f the filter are listed in Table 7.6. 

(c) 'Finally, the nominal element values which are defined in terms of s 

br Equation 7. 5 were chosen as starting points in parameter space and 

optimal search was applied for a number of different values of s. The 
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Non..,..optimized Version I Optimized Version 

Value Value 

Frequency obtained Pxob (Norm) obtained Prob (Norm) for Chi.,., for Chi-. 
squared squared 

0.2 9.2 42% 10.0 27% 

0.4 6.4 60% 10.0 27% 

0.6 10.8 22% 12.0 16% 

0.8 9.2 34% 9:6 28% 

1.0 16.8 4% 9.2 33% 

1.2 10.8 22% 9.2 33% 

1.4 12.0 14% 9.6 28% 

1.6 12.0 14% 12.0 16% 

1.8 10.0 27% 9.2 33% 

2.0 6.4 60g.; 8.0 43% 

2.2 6 .4 60% 6.0 65% 

2.4 5,6 6990 7.6 48% 

2.6 5.6 69% 6.0 65% 

2.8 5.6 69% 5.2 73% 

3.0 6.4 60% 4.8 77% 

Table 7 .3: Chi-squared goodness-of-fit test 

Non-optimized Version Optimized Version 

Index P2 cr(p .) Index P2 a (p .) 
J J 

0.847 0.747 0.305 0.287 

Table 7 .4: Index P 2 and standard deviation of p j 



183 

resul ti.ng reduction in the value of the index P1 is shown in Figure 7. 22, 

where i.t is plotted as a function of s. It is noted that the reduction 

becomes more s.ignificant as the value of s is increased. 

7 .9 A ''Two ... level" Optimization Procedure; 

In the synthesis of an RC-active filter, such as that shown in 

Figure 7.11, optimal search techniques can be used to find the optimum 

nominal element value set, In addition, the optimum tolerance set for 

this optimum nominal set can then be obtained, and can be used to further 

improve the performance of the network. 

The effect of such a two-level optimization procedure is illustrated 

in Figures 7.23 and 7.24 where we compare typical response curves for 

optimized and non-optimized versions of the network. The corresponding 

nominal values and tolerances of the elements are listed in Table 7 .7. 

It is noted from these results that the combined effect of the optimal 

nominal set and the optimum tolerance set results in a truly significant 

improvement in the performance of the network. 

7.10 Design of a Highly Selective RC-active Filter: 

We will conclude this chapter with an outline of a procedure for 

the optimum design of a highly selective RC-active filter. The procedure 

incorporates many of the concepts and ideas which have already been 

considered in this thesi.s, e .. g., the ~ndex of performance, P 1 , the elemental 

opti.rnurn tolerance se~, SX
0

, the pole~zero optimum tolerance set, oXp:z' and 

the two~level ·optimization procedure. 
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r.; Network Non-optimized Optimized 
element structure structure 

Rl 

c2 

0.9 R3 

(Fig. 7 .18) c4 

Rf 

µ 

Rl 

c2 

0.6 R3 

(Fig. 7 .19) c4 

Rf 

µ 

Rl 

C2 

0 • .3 R3 

(Fig. 7 .20) c4 

R;f 

p 

Table 7 .5: 
" ., ' ii \ ( ~ • 

2.641 x 10 .. 2 
5.019 

2.108 x 10 8.442 x 10-1 

3.808 x 10 9.523 x 10-1 

3.129 x 10 3 .289 

.3. 201 x 10 1.397 x 103 

8.027 x 105 3.415 x 103 

5.134 x 10""2 5.031 
' 

1.628 x 10 1.134 

2.991 x 10 1.159 

2.459 x 10 3.275 

4.683 x 102 3;883 x 103 

5.600 x 10
6 1.594 x 104 

2.053 x 10
2 

2.287 x 10 

1.684 4.412 

1.680 x 10
3 7.381 x 10 2 

1.997 x 10-1 3.731 x 10-3 

1.000 1.000 

1.158 x 105 2.540 x 102 

-

Nominal element values for the OJ?timized and 
non-optimized networks used to obtain the 
;result$ shown in F.igures 7 .18, 7 .19 and 7. 20 
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Network Non~optimized Optimized 
element structure structure 

Rl 1.0000 6.588 

c2 1.5090 3.253 

R3 3.0000 0.627 

c4 4.5270 3.419 

Rf 4.6275 3 .271 

µ 100.0000 I 23.640 

Table 7.6: Nominal element values used to 
obtain the results shown in 
Figure 7.21 
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Element Non-.optimized Optimized Normalized 

Rl 

c 
2 

R3 

c4 

RS 

µ 

Nominal values Nominal values 
Uniform 

30.8700 4.961 2.437 

44.6800 1.402 2.437 

55.8700 2.193 2 .437 

44.5800 3.662 2 .437 

0.0374 107.900 2.437 

4245.0000 1192.000 2.437 

Table 7. 7: Element values and normalized tolerances 
used to obtain the results shown in 
Figures 7.23 and 7.24. 
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Tolerance Sets 

Optimum 

9.054 

1.103 

1.101 

1.029 

1.335 

1.000 
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The pole-zero optimum tolerance set, oXpz' is particularly'useful 

for the case of active fil te;rs whiCh are to be realized as a cascade of 

second-order se~tions. This tolerance set, &X , defines the optimum pz 
tolerable limits on the variations of each pole-pair of the network. These 

limits may·, in turn, be used to obtain the elemental optimum tolerance 

set, SX , for the i th sub-.network element set. o. 
1 

The first step in the design procedure is to obtain BX 
pz 

We must 

then choose a suitable stru~ture for each of the various sub-sections of 

the network. The index of performance, P1, can be computed for each 

suitable sub-network, and the choice of such sub-network can be based on 

the resulting sensitivity performance as defined by P
1

. In other words, 

the value of P 
1 

obtained for a given /:;; will determine the structure to be 

used in the pertinent sub-section. 

In the synthesis of such a sub-section, we may either use classical 

techniques to obtain the nominal element value set, or better, we can use 

optimal search techniques to obtain an optimum set of nominal values for 

the elements of the network. The optimum tolerance set, OX , for the 
0 

optimum nominal set thus obtained can then be used to further improve the 

performance of the network. 

Finally, the last step in the des;Lgn procedure, that of setting 

tolerance levels of eadt st.age relative to the others, may- now be taken. 

!£! • d _.:• h •th 1 . . d · r d.rst / we e,.,;1,.ne t e 1 po e-pa:i..r parameters, 1:;;. an ~ , in terms o.I 
l i 

the network elements. From the known optimum tolerance set for these 

elements, oX , we may obtain the standard deviation of 1:;;. · and (.C due to 
o. 1 ni 

i 
random variations (between specified tolerance limits) of the elements, xi. 
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Let these standard devi.ations be denoted by cr(r;;.) and cr(u.J ) , 
1 n. respectively. 

1 

The elemental optimum tolerance set is now scaled by a factor that is chosen 

such that neither q(r;;,) nor q(w ) will exceed the optimum tolerance set 
1 ni ~ 

for r,;. · and w . as obtained earlier. Havipg completed this step for each l ni · 

section, we now have an optimum tolerance set for all the elements of the 

network. However, this set must now be assigned an absolute level, which 

might, for example, be determined by the smallest pennissible tolerance in 

a given practical situation. The procedure is illustrated by means of a 

numerical example which is given in detail in Appendix "B". In this example, 

the sensitivity performance of an optimized version of a tenth-order 

Butterworth low-pass filter, employing an optimlUll tolerance set, is compared 

with a non-optimized version of the sa~e filter employing a uniform 

tolerance set equal to the mean of the tolerance set used in the optimized 

version. The results of this comparison are illustrated in Figure 7.25, 

· where we observe a considerable improvement in the case of the optimlD'l1 

filter in the region of the cut-off frequency. 
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CHAPTER VI I I 

CONCLUSIONS 

An invest,igation of the multiparameter sensitivity of a wide 

range of linear, time-invariant networks has been undertaken. As a first 

step in this investigation, the sensitivity of a number of RC-gyrator 

filters was considered. A procedure for developing gyrator-capacitor 

equivalent netw-orks for LC~ladder filters was developed. The procedure 

was used to construct low-.,..pass and bandpass filters with measured 

responses showing very close agreement with theory. The sensitivity of 

the response characteristics of these networks, with respect to variations 

in supply voltages, was measured, and the experimental results obtained 

indicate that such filters are highly insensitive to such variations. 

In the optimum design of a network based on sensitivity considera­

tions, however, we need a sensitivity criterion, or index of performance, 

which gives a meaningful measure of the multiparameter sensitivity of the 

network. The indices which have already been proposed in the literature 

have been critically appraised, and some shortcomings have been pointed 

out. A new multiparameter sensitivity index of performance has been 

pr.orosed. The index provides a quantitative measure of the fractional 

c~nge in the overall response of the network due to simultaneous varia­

tions in some o.r al 1 of th..e netwo;rk parameters, The index has been used 

as tfLe basis of comparlng the sensitivitr per;fo.rmance of different net­

works, including LC-ladder and RC-active structures. 

(197) 
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The several methods wllich have been proposed for the computation 

of sensit;i.vi.ty functlons have also been critically reviewed, and a new 

method, which lnvolves the representation of polynomials in array form, 

is described. The efficiency of computation of this method has been com­

pared with that of Director and Rohrerts adjoint network procedure, and it 

is shown that for a class of networks, considerable advantage is to be 

gained by using the direct approach. 

A procedure has been outlined for generating an optimum tolerance 

set, which, when used to define the tolerance limits of the various 

elements of a given filter, ensures that the element changes contribute 

equally to the total change in the filter performance, thereby resulting 

in a substantial improvement in the overall performance and reliability 

as compared to the case of uniform tolerances. 

The index of perforrr:ance has been used to evaluate the multi­

parameter sensitivity of various second-oTder RC-active filter sections, 

thus facilitating the choice of structure to be used for the synthesis of 

filters involving the cascade of a number of second-order sections. It 

has also been used, in conjunction with optimal search techniques, to 

obtain the optimum nominal set of element values for the chosen section. 

The use o;f this ovtimum nominal set may be combined with an optimUi11 

tolerance set, resul ti_ng in a ;further improvement in the performance of 

the fi.J ter. In the case o;f a h;igh-o:rder ,fiJ ter, the optimum tolerance 

sets ;fo:r the various sub-sections of the filter are related to each other 

by the pole-zero optimum tolerance set which defines the optimum ~igration 

areas ;for each complex ..... conj.ugate pole-pair of the overall network. 



APPENDIX ''A" 

SENSITIVITY ANALYSIS BASED ON THE POLE-SENSITIVITY FUNCTION 

In this Appendix, we first obtain an e?(pression which wil 1 define 

the pole sensitivity of the network with respect to the active parameter, 

µ, in terms of the network parameters. We nex~ obtain a set of nominal 

element values for the network, such that a prescribed pole-pair is 

realized while at the same time the magnitude of the pole-sensitivity is 

less than some prescribed value; Finally, \~e obtain the element values 

as functions of the relative damping factor, s. 

The first step in the procedure is to obtain an expression for 
p. 

· the pole-sensi ti vi ty function, S 1 The transfer function of the network 
µ 

is given as 

T(s) = 

from which 

21".;w = n 

and 

2 
(I) = n 

2 { 1 5 + C R 
2 3 

1 1 

C2R3 
+ 

C2Rl 

Rf + Rl (1 + µ) 

Cf 4RlR3Rf 

-µ 

1 
+ 

C4R3 
+ 

(199) 

1 

C2Rf 
11 

Rf + Rl (1 + µ) 

C2C4RlR3Rf 

Ss 

(1) 

(2) 

(3) 
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Noting that l;;wn is independent of µ
1

. and that the poles of the 

network are. given by 

we obtain 

From Equations 2 and 3, we obtain 

and 

d . 
5...­
dµ = 

-s 

1 = 

Substituting Equations 6 and 7 into 5, we obtain 

-j 

from which 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Suppose, for exam~le, we wish to synthesize a network which will 

sattsfr the follo\d.ng specifications; 

(i) The network is to have a second-order low-pass Cheb;~shev response 

with 1 dB ripple in the passband. 
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p. 
(ii) The ~agnitude of the pole~sensitivity function, Sµ 1 , is to be less 

than tmity. 

(iii) The maximum value that the ratio 1 rx, of any two like elements in 

the network may assume is 10.0. 

Normalizing the impedance level of the network by letting R
1 

= 1, 

letting µ = 100, and choosi.ng resistance and capacitance ratios as follows 

c4 = 3C
2 (10) 

R3 = 3R
1 

we obtain the followi.ng results: 

Element Nominal Value Design Realized 
Specifications Values 

Rl 1.000 w = 1.05 w· = 1.05 
n n 

CZ 1.509 

R3 3.000 ?;; = 0.5227 ?;; = 0.5227 
-

c4 4,527 
,, 

Rf 4.627 jsHi < 1.0 I sPtl = 0.630 µ µ 

µ 100.000 0.1 ~ r ~ x 10.0 0 . 2 .:s rx ~ 5 . 0 

To obtain a set of element values which arc defined in terms of 

th.e relative dampfog ;factor, r;;, we procede as .follo\\"S: We first normalize 

the impedance level of th.e network with res;pect to 1~3 , say, whereupon we 

have 



Choosing 

we obtain the 

2r,;w 
n 

1 
"' c; .... 

2 Rf + R1 (1 + µ) 

wn "" Cf4R1Rf 

c4 I:: 2C
2 

Rl .. ::; 5/3 R3 

Rf I:: 1/3 R3 

following results 

Element Nominal Value 

RI 1.667 

c2 2.55/i;;w 
n 

R3 1.000 

c4 5 .l/1;;w n 

Rf 0.333 

µ 4.335/1;;
2 

"' 1.20 
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(12) 

(13) 



APPENDIX "B'' 

DESIGN OF A TENTH-OR.DER BUTTERWORTH LOW-PASS RC-ACTIVE FILTER 

Let it be desired to synthesize a tenth-order Butterworth low-

pass filter by means of a cascade of five second-order sections. The 

first step in the des.ign procedure is to obtain the pole-zero optimum 

tolerance set, oX , which is given in Table Bl. pz . 

Pole .. pair Coordinates in Variable Nominal Normalized 
Number the s-plane parameter value optimum 

tolerance 

1. -0.1564± j0.9877 w (1) 1.0000 0.2107 
n 

z; (1) 0 .1564 1.7630 

2. ,..,Q.4540 ± j0.8910 w (2) 1.0000 0.3230 
n 

z; (2) 0.4540 1.2180 

3, .. o. 7071 ± j0.7071 w (3) 
n 

1.0000 0.3790 

z; (3) 0. 7071 1.0790 

4. -0.8910 ± j 0 .4540 w (4) 1.0000 0.4096 
n 

t(4) 0.8910 1.0220 

5. .. o ,9877 ± j0.1564 w (5) n 
1.0000 0.4235 

z; (5) 0.9877 1.0000 

-

Table Bl 

(203) 

(%) 
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On the basis of the relative sensitivity performance of the six 

RC.,.active networks considered in Chapter VII, and on account of the 

minimal number of components involved, and the fact that no isolation is 

needed betw-een st.ages, let us choose the network of F.igure 7 .11 for each 

sub~section of the filter. The next step in the procedure is to find an 

optimum nominal set and corresponding optimum tolerance set for each sub-

section of the filter. These sets have been obtained and are listed in 

Table B2, where a non-optimum set of nominal values is also included. 

The elements of each sub-section were next allowed to vary randomly 

between the pertinent optimum tolerance limits, and the resulting changes 

in the parameters z;;. and w were computeJ. The standard deviation in 
1 n. 

1 

each case was determined. The elemental optiraum tolerance sets for each 

section, 8X , were then scaled by a factor such that no standard o. 
l 

deviation exceeded the pertinent pole-zero optimum tolerance (Table Bl). 

The overall elemental optimum tolerance set, SX , was then scaled so that 
0 

the smallest tolerance limit was acceptable; in our example, this limit 

was assigned the value of 1%. As for the upper tolerance limit, it must 

be small enough to justify a first-order sensitivity analysis; in our case, 

an upper tolerance limit of 20% was ad cpted. The resulting tolerance set 

is given in Table B3. 



(a) 

Co) 

(c) 

Pole-Pair No. 
Element 

1 2 3 4 5 

Rl 10.000 5.000 I 0.080 0.080 0.080 

c2 4.000 1.990 16.000 16.000 16.000 

R.3 6.000 2.981 I 2.400 2.444 2.400 

c4 8,000 3.991 8.000 8.000 8.000 

Rf 1.109 0.906 0 .1127 0 .0677 0.056 

µ 211.900 20.256 32,209 18.963 15.495 

Rl 10.0::t8 5.041 88.250 60.150 50.292 

c2 2,263 1.351 16 .408 16.264 16.216 

R3 2.556 1.369 0.1834 0.1434 0.1271 

c4 6.662 3.323 7 .575 7.546 7.575 

Rf 11.863 734.500 0.1686 0.14.38 0.1368 

µ 455.000 4370 2.943 1.527 1.082 

Rl 26.224 10.011 2085; 1470 1244 

c2 1.033 1.208 1.218 1.294 1.330 

R.3 1.032 1.218 1.348 1.513 1.612 

c4 1,009 1.070 1.229 1.326 1.382 

R;f 1.157 1,554 1.670 1.882. 2.007 
.. 
µ 

I 
1,000 1.000 1.000 1.000 1.000 

Table B2 

(a) Nominal element values for non-optimized version of filter 
(b) Nominal element values for optimized version of filter 
(c) Optimum tolerance sets for the optimized version of filter 
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Pole~Pair No. 
Element 

I I 

Rl 

c2 

R3 

c4 

Rf 

1 
.., 3 4 5 ... 

20.00 11.02 20.00 20.00 20.00 

1.03 1.33 1.34 _l.43 

1.03 1.34 1.49 1.67 

1.01 1.18 1.36 1.46 

1.00 1.10 1.10 1.10 

Table 83 

Optimum tolerai1.ce set with lower and upper limits of 
1 and 20 per cent, respectively 

1.47 

1. 78 

1.52 

1.10 
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