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Abstract 


Statistical analysis of panel count data is an important topic to a number of applied 

fields including biology, engineering, econometrics, medicine, and public health. Panel 

count data include observations on subjects over multiple time points where the re

sponse variable is a count or recurrent event process when only the numbers of events 

occurring between observation time points are available. The choice of method for 

analyzing panel count data usually depends on the relationship between the observa

tion times and the response variable and questions of interest. Most of the previous 

research was done when the observation times are fixed. If the observation times 

are random, the data structure becomes more challenging since the observation times 

for individual subjects vary in addition to the incompleteness of observations. The 

model-based approach was used to deal with such data. However, this method relies 

on extra assumptions on the observation scheme and thus is restrictive in practice. In 

this dissertation, we discuss the problem of multi-sample nonparametric comparison of 

counting processes with panel count data, which arise naturally when recurrent events 

are considered. For the problem considered, we develop some new nonparametric tests. 

First, we construct a class of nonparametric test statistics based on the integrated 

weighted differences between the estimated mean functions of the count processes, 
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where the isotonic regression estimate is used for the mean functions. The asymptotic 

distributions of the proposed statistics are derived and their finite-sample properties 

are examined through Monte Carlo simulations. A panel count data from a cancer 

study is analyzed and presented as an illustrative example. 

As shown through Monte Carlo simulations, the nonparametric maximum like

lihood estimator (NPMLE) of the mean function is more efficient than the nonpara

metric maximum pseudo-likelihood estimator (NPMPLE). However, no nonparametric 

tests have been discussed in the literature for panel count data based on the NPMLE 

since the NPMLE is more complicated both theoretically and computationally. It is, 

therefore, particularly important to develop nonparametric tests based on the NPMLE 

for panel count data. 

In the second part of the dissertation, we focus on the situation when treatment 

indicators can be regarded as independent and identically distributed random variables 

and propose a nonparametric test in this case using the maximum likelihood estimator. 

The asymptotic property of the test statistic is derived. Simulation studies are carried 

out which suggest that the proposed method works well for practical situations, and is 

more powerful than the existing tests based on the NPMPLEs of the mean functions. 

In the third part of the dissertation, we consider more general situations. We 

construct a class of nonparametric tests based on the accumulated weighted differences 

between the rates of increase of the estimated mean functions of the counting processes 

over observation times, where the nonparametric maximum likelihood approach is 

used to estimate the mean functions instead of the nonparametric maximum pseudo

likelihood. The asymptotic distributions of the proposed statistics are derived and 

their finite-sample properties are evaluated by means of Monte Carlo simulations. The 
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simulation results show that the proposed methods work quite well and the tests based 

on NPMLE are more powerful than those based on NPMPLE. Two real data sets are 

analyzed and presented as illustrative examples. 

The last part of the dissertation discusses a special type of panel count data, namely, 

current status or case 1 interval-censored data. Such data often occur in tumorigenicity 

experiments. For nonparametric two-sample comparison based on censored or interval

censored data, most of the existing methods have focused on testing the hypothesis 

that specifies the two population distributions to be identical under the assumption 

that observation or censoring times have the same distribution. We consider the non

parametric Behrens-Fisher hypothesis (NBFH) under this settings. For this purpose, 

we study the asymptotic property of the nonparametric maximum likelihood estimator 

of the probability that an observation from the first distribution exceeds an observation 

from the second distribution. A nonparametric test for the NBFH is proposed and the 

asymptotic normality of the proposed test is established. The method is evaluated 

using simulation studies and illustrated by a set of real data from a tumorigenicity 

experiment. 
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Chapter 1 

Introduction 

1.1 Panel Count Data 

Statistical analysis of panel count data is an important topic in applied fields including 

biology, engineering, econometrics, medicine, and public health. By panel count data, 

we mean that, for each subject at study, observations are taken at several distinct time 

points and only the numbers of recurrent events that have occurred before observation 

times are known or only the numbers of events occurring between observation time 

points are available. No information is available on the exact times of the recurrent 

event during the study. In addition, the number of observation times and observa

tion times may vary from subject to subject. Such data frequently occur in medical 

follow-up studies, reliability experiments, AIDS clinical trials, animal tumorigenicity 

experiments, and sociological studies, for example. 

When each subject is observed at a single time point, panel count data are referred 

to as current status or case 1 interval-censored data; when each subject is observed 
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exactly twice, panel count data are referred to as case 2 interval-censored data. 

1.1.1 Bladder Tumor Study 

The bladder tumor study presented here was conducted by the Veterans Adminis

tration Co-operative Urological Research Group (VACURG). It is a follow-up study 

on patients with bladder tumors. The data are presented in Andrews and Herzberg 

(1985). The data were obtained from a randomized clinical trial. All patients had 

superficial bladder tumors when they entered the trial, and they were assigned ran

domly to one of three treatments: placebo, thiotepa and pyridoxine. At subsequent 

follow-up visits, any tumors noticed were removed and treatment was continued. The 

data consist of the number of recurrences experienced for each of 116 patients, the 

number of tumors present initially at the time of randomization in the trial and the 

diameter of the largest of these, the months from the beginning of the study until each 

recurrence, the number of tumors present at each recurrence, and the diameter of the 

largest of these. The main objective of this study is to determine the effect of treat

ment on the frequency of tumor recurrence. For this purpose, many authors analyzed 

these data using different methods of inference; see Byar et al. (1977), Byar (1980), 

Wellner and Zhang (2000), Sun and Wei (2000), Zhang (2002), Sun and Fang (2003), 

Zhang (2006), and Park et al. (2007), among others. Sun and Wei (2000) and Zhang 

(2002) concluded that thiotepa effectively reduces the recurrence of tumors. However, 

the results from the analysis in Sun and Fang (2003), Zhang (2006), and Park et al. 

(2007) suggested that the effect of treatment is not significant on the rate of tumor 

recurrence. 
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1.1.2 Floating Gallstone Study 

Schoenfield et al. (1981) and Thall and Lachin (1988) described the recurrent biliary

symptom data from the National Cooperative Gallstone Study (NCGS). It is a follow

up study on patients with floating gallstones. The NCGS was a ten year multicenter, 

double blind, and placebo-controlled clinical trial on the usage of chenodiol for the 

dissolution of cholesterol gallstones (Schonefield et al., 1981). In this study, there 

were 916 patients who were randomized to placebo, low dose, or high dose group. The 

problem of interest here is to determine difference between the high-dose chenodiol and 

placebo groups in terms of the incidence rates of nausea since the low dose proved to 

be ineffective. The patients were scheduled to return for clinical visits at prespecified 

times. However, actual visit times differ from patient to patient and for each patient, 

observations include the numbers of nausea, a symptom relating to the disease, between 

clinical visits. So the data consist of the successive visit times and the associated 

counts of episodes of nausea for 113 patients with floating gallstones in the high dose 

and placebo groups. Thall and Lachin (1988) analyzed the study using some grouping 

techniques and suggested that the incidence of nausea in the high-dose chenodiol group 

differs significantly from that of the placebo group over the first year. Schoenfield et al. 

(1981) concluded that chenodiol was not more effective than placebo in reducing the 

number of episodes of nausea based on a simpler analysis. Sun and Fang (2003) and 

Park et al. (2007) suggested that the incidence rates of nausea do not differ significantly 

between the high-dose chenodiol and placebo groups by applying the nonparametric 

tests based on isotonic regression and the nonparametric maximum pseudo-likelihood, 

respectively. 
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1.1.3 Lung Tumors in Mice 

Hoel and Walburg (1972) described an example from a tumorigenicity study; see also 

Dinse and Lagakos (1983), Finkelstein and Wolfe (1985), Finkelstein (1986). 144 RFM 

mice were assigned randomly to one of two groups: the germ-free and conventional 

environment, and they ware examined at sacrifice or death for evidence of malignancy. 

The purpose of this study is to compare the time from beginning of the study until 

the time to observe a tumor to determine whether a suspected agent accelerates the 

time to lung tumor onset. Since lung tumors are nonlethal and cannot be observed 

before death in RFM mice, it is appropriate to treat these data as current status or 

case 1 interval censored data. 

In this study, data on only the age at death and whether the tumor is present at that 

time are available. The dataset includes 96 conventional mice and 48 germ- free mice, 

of which 27 conventional mice and 35 germ-free mice developed lung rumors. These 

data have been examined by Hoel and Walburg (1972) for illustrating the importance 

of identifying left-censored data, and was also analyzed by Dinse and Lagakos (1983), 

Finkelstein and Wolfe (1985), Huang (1996), Sun (1999), and Shen (2000). 

1.2 Analysis of Panel Count Data 

The analysis of Panel Count Data has recently attracted considerable attention (e.g. 

Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000; Sun and Wei, 2000; Cheng and 

Wei, 2000; Zhang, 2002; Sun and Fang, 2003; Hu et al.; 2003; Zhang and Jamshidian, 

2003; Wellner et al. 2004; Sinha and Maiti, 2004; Zhang, 2006; Huang et al., 2006; Park 
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et al., 2007; Sun et al., 2007). Panel count data include the number of observation times 

(K), discrete observation times (T = (TK, 1 , ... , TK,K)) and the counts of recurrent 

event (N = (N(TK, 1 ), ... , N(TK,K)) for each study subject i, where N(t) represents 

the total number of recurrent events occurring up to time t. The main goals are to 

estimate the mean function of N(t) and compare the effects of treatment. 

When observation times are fixed and the same for each subject, a number of 

methods have been developed. Kalbfleisch and Lawless (1985) discussed the fitting of 

a finite state Markov model to panel count data. Hinde (1982) and Breslow (1984) 

considered regression analysis of Poisson count data. Thall (1988) investigated some 

regression models for mixed Poisson processes. Liang and Zeger (1986) and Thall and 

Vail (1990) presented quasi-likelihood regression models with a generalized estimating 

equation (GEE) approach by treating panel count data as longitudinal count data. 

Also, Cameron and Trivedi (1998) provided a review of parametric and semiparametric 

methods for the regression analysis of panel count data. 

When observation times are random, there exists limited research. Sun and Kalbfleisch 

(1995) applied isotonic regression techniques to estimate the mean function. Well

ner and Zhang (2000) studied two nonparametric estimators based on the maximum 

pseudo-likelihood and the maximum likelihood approaches assuming that the count

ing process N(t) is a non-homogeneous Poisson process and is independent of K and 

T. Wellner and Zhang (2000) also investigated the asymptotic properties of both 

estimators and showed that the isotonic regression estimator is equivalent to a pseudo

maximum likelihood estimator. However, the pseudo-maximum likelihood estimator is 

established by ignoring the dependence among the counts within a subject and is less 

efficient than the maximum likelihood estimator, a fact seen through simulation stud
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ies. Zhang and Jamshidian (2003) introduced the gamma frailty variable to account 

for correlation among the panel counts and still used the maximum pseudo-likelihood 

approach to estimate the mean function. 

For treatment comparison based on panel count data, most of the existing meth

ods focus on semiparametric regression analysis based on the models of rate and mean 

functions. Sun and Wei (2000) and Zhang (2002) discussed regression analysis of 

panel count data by using estimating equation-based methods and the semiparametric 

pseudo-likelihood approach, respectively, under the assumption that the observation 

times are independent of occurrences of the recurrent event under study given co

variates. Wellner et al. (2004) also investigated maximum likelihood estimation for 

regression analysis under this assumption. Cheng and Wei (2000) and Hu et al. (2003) 

also investigated estimating equation approaches for the case when observation and 

censoring times are independent of the event process and the case when censoring time 

is independent of observation times, event process and covariates, but observation times 

may depend on the event process through covariates, respectively. Sinha and Maiti 

(2004) developed a Bayesian analysis of panel count data when the censoring time may 

be correlated with the underlying counting process of interest by assuming that all the 

subjects have fixed observation times. Huang et al. (2006) studied nonparametric and 

semiparametric models that allow observation times to be correlated with the event 

process through a frailty variable, and used the conditional likelihood approach to 

estimate the baseline function and the regression parameters. Sun et al. (2007) also 

investigated semiparametric models for rate functions of the observation process and 

the event process, where both processes may be correlated through a subject-specific 

latent variable or frailty, and used the same approach as that in Sun and Wei (2000) 
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for estimation of regression parameters. However, the estimating equation approach 

still ignored correlations among event counts within a subject. 

For the analysis of panel count data, three model-free approaches are available in 

the literature. One is given by Thall and Lachin (1988) who suggested to use specially 

defined intervals. The test result may depend on the specific way of grouping the data. 

Sun and Fang (2003) presented a model-free approach based on the assumption that 

the treatment indicators can be regarded as independent and identically distributed 

random variables, where the isotonic regression estimator is used for the mean function. 

However, this assumption is quite strong and may not hold in practice. Park et 

al. (2007) presented a class of nonparametric two-sample tests based on the isotonic 

regression estimator. Zhang (2006) also presented nonparametric k-sample tests by 

using nonparametric maximum pseudo-likelihood approach. To relax the assumptions 

about weight processes required by Zhang (2006), one needs to modify the proofs for 

asymptotic properties of the test statistic given by Zhang (2006). This issue will be 

discussed in Chapter 2. No methods have been developed based on the nonparametric 

maximum likelihood approach. This motivates our research in Chapters 3 and 4. 

1.3 Analysis of Interval-Censored Data 

Interval-censored data are a special type of panel count data. When each subject expe

riencing recurrent events over time in an experiment is observed at only one time point 

and no information is available on subjects between their entry time and observation 

time point, such data are referred to as current status or case 1 interval-censored data 

(Groeneboom and Wellner, 1992). When each subject during the study is observed 
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at only two time points and no information is available on subjects among their entry 

time and two observation time points, such data are referred to as case 2 interval

censored (Groeneboom and Wellner, 1992). One field in which interval-censored data 

often occur is periodic follow-up studies where patients are supposed to be inspected 

at prespecified observation times. In this case, it is common that patients miss some 

prespecified observations and/or are observed at different times rather than the pre

specified times, thus resulting in interval-censored failure time. One such example from 

a cancer study is provided in Finkelstein (1986). Another field which commonly pro

duces interval-censored failure time data is tumorigenicity experiments. An example 

from a tumorigenicity experiment is provided in Dinse and Lagakos (1983) and will be 

discussed in more detail in Chapter 5. 

Survival comparison is usually one of the mam goals in survival studies. For 

the problem, when right-censored failure time data are available, a number of well

established methods have been developed (Fleming and Harrington, 1991; Kalbfleisch 

and Prentice, 2002). For the case of interval-censored failure time data, many au

thors have discussed the problem. For example, Peto and Peto (1972) considered the 

two-sample comparison problem under the Lehmann-type alternatives G2 (t) = Gf (t), 

where G1 and G2 are survival functions corresponding to the two different samples 

and (} is a parameter. In this case, the comparison problem reduces to testing (} = 1 

and they suggested to use the score test, which they referred to as the log-rank test. 

Assuming the proportional hazards model, a special case of Lehmann-type alterna

tives, Finkelstein (1986) investigated the general k-sample comparison problem. For 

the problem, she also suggested to apply the score test for testing regression parame

ters equal to zero. Following Finkelstein (1986), Sun (1996) studied the same problem 
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without assuming the proportional hazards model and developed a nonparametric test 

using the idea of the log-rank test for right-censored data (Kalbfleisch and Prentice, 

2002). Groeneboom and Wellner (1992) studied nonparametric maximum likelihood 

estimation of the distribution function with interval-censored data. The nonparametric 

maximum likelihood estimator converges to the true distribution at rate n 1
/ 3 , unlike 

the empirical distribution function, or the Kaplan-Meier estimator, both of which con

verge at the more familiar n 1/ 2 rate. Its limiting distribution is not Gaussian, but a 

more complex distribution associated with two-sided Brownian motion (Groenboom 

and Wellner, 1992). Furthermore, Huang and Wellner (1995) show that nonparametric 

maximum likelihood estimates of smooth functionals for case 1 interval-censored data 

converge at rate n 112 . Andersen and Ronn (1995) constructed a nonparametric two

sample test based on the asymptotic results for case 1 interval-censored data. Zhang 

and Liu (2001) developed a nonparametric two-sample test based on a smooth func

tional of the nonparametric maximum pseudo-likelihood estimator for case 2 interval

censored data. Sun et al. (2005) presented a class of nonparametric tests to the case 

of interval-censored data, which are generalizations of the log-rank test statistic given 

in Peto and Peto (1972). Zhao et al. (2008) also developed nonparametric test proce

dures for partly interval-censored data which are generalizations of the log-rank test 

statistic discussed in Peto and Peto (1972) and those in Sun et al. (2005). Some other 

existing test procedures for interval-censored data can be found in Sun (1998, 2006) 

and Zhu et al. ( 2008). 

For the problem of two-sample comparison with interval-censored data, the existing 

test procedures usually focus on the identity hypothesis. No methods have been devel

oped for testing other null hypothesis based on interval-censored data. In particular, 

9 




Troendle and Yu (2006) applied nonparametric likelihood techniques to obtain tests 

for either the identity hypothesis or the nonparametric Behrens-Fisher hypothesis for 

right-censored data, but the asymptotic distributions of the test statistics under the 

null hypothesis are not established. This motivates our research in Chapter 5. 

1.4 Counting Processes 

In this section, we give a brief introduction of some basic concepts about counting 

processes, which play an essential role in the development of statistical models for 

event history analysis. Aalen (1975, 1978) made a significant contribution for event 

history analysis based on counting processes. He showed how the theory of multivariate 

counting processes provides a general framework for event history analysis (Andersen 

and Borgan, 1985). Andersen et al. (1993) provided a detailed description for use of 

counting processes in statistical analysis. 

Let (D, .1", P) be a probability space and T = [O, T) be a continuous time interval, 

where T is a given terminal time, 0 < T ::; oo. A stochastic process X is a family 

of random variables { X (t) : t E T}. A filtration or history, (Ft : t E T), is as an 

increasing right-continuous family of sub-O"-algebras of :F such that :Ft contains all the 

information generated by the stochastic process X on [O, t]. The process X is said to 

be adapted to the filtration if X(t) is :Fi-measurable for every t E T . A process X 

is predictable with respect to :Ft if X(t) is known given the history :Ft- where :Ft- is 

generated by (X(s), 0::; s < t). 

A counting process is a stochastic process { N (t); t 2: 0} such that N (0) = 0 and 

N(t) < oo a.s., and the paths are right-continuous with probability one, piecewise 
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constant, and have only jump discontinuities with jumps of size +1. 

A Poisson process is a counting process { N (t); t 2: 0} such that 

P{N(t + dt) - N(t) = ljFt-} = >.(t)dt + o(dt) 

and 

P{N(t + dt) - N(t) 2: 2IFt-} = o(dt) 

where >.(t) 2: 0 is a left continuous function satisfying J~ >.(s)ds = A(t) < oo. Here, 

.A(t) and A(t) are called the intensity and cumulative intensity functions ofthe Poisson 

process. The above conditions can also be equivalently written as 

P{N(t + dt) - N(t) = llFt-} = .A(t)dt + o(dt) 

and 

P{N(t + dt) - N(t) = OIFt-} = 1 - >.(t)dt + o(dt). 

The Poisson process defined above is also known as a nonhomogeneous Poisson process. 

If >..(t) is time invariant, it is called a homogeneous Poisson process. For a Poisson 

process {N(t);t 2: O}, we have N(t) ""'Poisson(A(t)). Note that E(N(t)) = A(t). 

Therefore, A(t) is also called the mean function of the Poisson process. 

1.5 Empirical Processes 

Empirical process theory has provided a collection of extremely powerful tools for 

establishing asymptotic properties of test statistics. In this dissertation, large sample 

properties of all the proposed test statistics will be studied by using empirical process 

theory. Here, we briefly introduce some notation, definitions and useful results on 
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empirical processes. The detailed theory can be found in Var der Vaart and Wellner 

(1996). 

Let (D, A, P) be an arbitrary probability space and T : n t-7 Ran arbitrary map. 

The outer integral of T with respect to P is defined as 

E*T = inf {EU : U 2: T, U : n t-7 Rmeasurable and EU exists} . 

For any B E D, the outer probability of B is 

P*(B) =inf {P(A) : A::::> B, A EA}. 

Let X 1, ... , Xn be a random sample on a measurable space (X, A). The empirical 

measure Pn is defined by 
1 n 

Pn =-~bxn6 ' 
i=l 

where Dx is the dirac measure. Let F be a collection of measurable functions f : X --t 

R. Then the empirical measure induces a map from F to R given by 

Here, we use the abbreviation Qf = Jf dQ for f E F and measure Q. Let P be the 

common distribution of the Xi· The F-indexed empirical process Gn is defined by 

Define 

llQll.r = sup{IQJI : f E F}. 

A class Fis called a P-Glivenko-Cantelli class if 

llPn - Pll.r---> 0. 
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A class :F is called a P-Donsker class if CGn = y'ii(Pn - P) converges weakly to CG, 

where the limit CG is a tight Borel measurable and uniformly bounded function on :F. 

The covering number N(c., :F, II· II) is defined as the minimal number of balls {g: 

11 g - f 11 ::; c.} of radius c. needed to cover the set :F. The centers of the balls need not 

belong to :F, but they should have finite norms. The entropy is the logarithm of the 

covering number. 

Given two functions l and u, the bracket [l, u] is the set of all functions f with 

l ::; f ::; u. An c.-bracket is a bracket [l, u] with llu - lll < c.. The bracketing number 

No(c,:F, II· II) is the minimum number of c-brackets needed to cover :F. The entropy 

with bracketing is the logarithm of the bracketing number. Here the upper and lower 

bounds u and l of brackets need not belong to :F themselves but they are assumed to 

have finite norms. Obviously, 

N(e,,:F, II· II) :S No(2c,:F, II· II). 

We write N(c, :F, Lr(Q)) and No(c, :F, Lr(Q)) for covering and bracketing numbers 

with respect to Lr(Q) norm 

respectively. 

An envelope function of a class :Fis any function x 1-t F(x) such that If (x) I ::; F(x), 

for every x and f. The minimal envelope function is x t-t sup1 lf(x)!. 

The uniform entropy numbers with Lr are defined as 

sup log N(sllFllQ,r, :F, Lr(Q)), 
Q 
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where the supremum is over all probability measures Q on (X, A), with 0 < QFr < oo. 

Define a seminorm pp by 

pp(!)= (P(J - PJ)2)1;2. 

The empirical process is asympotically continuous, if for every E > 0, 

limlimsupP*{ sup IGn(J-g)j} =0. 
alO n->oo pp(f-g)<a 

It is equivalent to the following statement: for every decreasing sequence c5n l 0, 

where 

Fa= {f- g: f,g E F,pp(f- g) < c5}. 

Var der Vaart and Wellner (1996) showed that 

(1) if 

then F is P-Donsker. 

(2) If 
00 

f sup J1ogN(i::llFllQ,2,F, L2(Q)) di::< oo,
lo Q 

then Fis P-Donsker for P such that P*F 2 < oo for some envelope function F 

and the classes Fa and F'/x, are measurable for every c5 > 0. 

(3) If Fis P-Donsker, then Gn is asymptotically continuous. 
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1.6 Outline of the Dissertation 

This dissertation discusses the problem of multi-sample nonparametric comparison of 

counting processes with panel count data, which arise naturally when recurrent events 

are considered. For the problem considered, we develop some new nonparametric tests. 

The rest of the dissertation is organized as follows. 

In Chapter 2, we construct a class of nonparametric test statistics based on the 

integrated weighted differences between the estimated mean functions of the count 

processes, where the isotonic regression estimate is used for the mean functions. The 

asymptotic distributions of the proposed statistics are derived and their finite-sample 

properties are examined through Monte Carlo simulations. A panel count data from 

a cancer study is analyzed and presented as an illustrative example. 

In Chapter 3, we focus on the situation when treatment indicators ca.n be regarded 

as independent and identically distributed random variables and propose a nonpara

metric test using the maximum likelihood estimator. The asymptotic distribution of 

the test statistic is derived. Simulation studies are conducted to evaluate the per

formance of the proposed test. The proposed test procedure is then applied to the 

analysis of a floating gallstones study to present as an illustrative example. 

In Chapter 4, we consider more general situations. We construct a class of non

parametric tests based on the accumulated weighted differences between the rates of 

increase of the estimated mean functions of the counting processes over observation 

times, where the nonparametric maximum likelihood approach is used to estimate 

the mean functions instead of the nonparametric maximum pseudo-likelihood. The 

asymptotic distributions of the proposed statistics are derived and their finite-sample 
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properties are evaluated through Monte Carlo simulations. Two real data sets are 

analyzed and presented as illustrative examples. 

Chapter 5 discusses a special type of panel count data, namely, current status or 

case 1 interval-censored data. We consider the nonparametric Behrens-Fisher hypoth

esis (NBFH) in this situation. For this purpose, we study the asymptotic property of 

the nonparametric maximum likelihood estimator of the probability that an observa

tion from the first distribution exceeds an observation from the second distribution. 

A nonparametric test for the NBFH is proposed and the asymptotic normality of the 

proposed test is established. The method is evaluated by means of simulations and 

illustrated by a set of real data from a tumorigenicity experiment. 

Chapter 6 presents brief conclusions and some directions for possible future re

search. 
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Chapter 2 

Multi-sample Nonparametric 

Comparison of Counting Processes 

with Panel Count Data 

2.1 Introduction 

Consider a study that concerns some recurrent event and suppose that each subject in 

the study gives rise to a point process N(t), denoting the total number of occurrences 

of the event of interest up to time t. Also suppose that for each subject, observations 

include only the values of N(t) at discrete observation times or the numbers of occur

rences of the event between the observation times. Such data are usually referred to 

as panel count data (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). Our focus 

here will be on the situation when such a study involves k groups. Let A1(t) denote the 

mean function of N(t) corresponding to the lth group for l = 1, ... , k. The problem 
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of interest is then to test the hypothesis H0 : A1( t) = · · · = Ak (t). 

Several authors have discussed the analysis of recurrent event data when each sub

ject in the study is observed continuously over an interval or when the exact times of 

occurrences of the recurrent event are known. For example, the book by Andersen et 

al. (1993) presents many of the commonly used statistical methods for the analysis 

of recurrent event data. In contrast, there exists limited research on the analysis of 

panel count data. Sun and Kalbfleisch (1995) and Wellner and Zhang (2000) studied 

estimation of the mean function of N(t). Sun and Wei (2000) and Zhang (2002) dis

cussed regression analysis for such data. To test the hypothesis H0 , Thall and Lachin 

(1988) suggested to transform the problem to a multivariate comparison problem and 

then apply a multivariate Wilcoxon-type rank test. Sun and Fang (2003) proposed 

a nonparametric procedure for this problem, but their procedure depends on the as

sumption that treatment indicators can be regarded as independent and identically 

distributed random variables, which may not be the case in practice. In addition to 

follow-up studies and reliability experiments, panel count data are also encountered in 

AIDS clinical trials, animal tumorgenicity experiments, and sociological studies. 

The remainder of this chapter is organized as follows. Section 2.2 discusses a 

nonparametric test for the hypothesis H0 when only panel count data are available 

and then presents a class of nonparametric test statistics. The statistics, motivated 

by similar statistics in survival analysis, are formulated as the integrated weighted 

difference between the estimated mean functions corresponding to the pooled data and 

each group. To estimate the mean function, the isotonic regression estimate is used 

(Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). In Section 2.3, the asymptotic 

normality of these test statistics is established. In Section 2.4, finite-sample properties 
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of the proposed test statistics are examined through Monte Carlo simulations. In 

Section 2.5, we apply the proposed methods to a data from a bladder tumor study. 

Finally, in Section 2.6, some concluding remarks are made. 

2.2 Statistical Methods 

Consider a longitudinal study that is concerned with some recurrent event and involves 

n independent subjects, n1 in the lth group with n 1 + · · · + nk = n. Let Ni(t) denote 

the point process arising from subject i and A1(t) (l = 1, ... , k) be defined as before, 

for i = 1, ... , n. Suppose that each subject is observed only at discrete time points 0 < 

ti,I < · · · < ti,k; and that no information is available about Ni(t) between observation 

times; that is, only panel count data are available. Let ni,j = Ni (ti,j) be the observed 

value of Ni at ti,j, j = 1, ... , ki, i = 1, ... , n. 

To propose the test statistics, we first introduce the isotonic regression estimator 

of the mean functions (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). For 

simplicity, assume that H0 is true, and let A0 (t) denote the common mean function 

of the Ni(t)'s. Further, let s1 , ... , Sm denote the ordered distinct observation times in 

the set { ti,j; j = 1, ... , ki, i = 1, ... , n} and We and fie be the number and mean 

value, respectively, of observations made at time se, £ = 1, ... , m. Then, the isotonic 

regression estimator An(t) is defined as a nondecreasing step function with possible 

jumps at the se 's, and is given by 

A ( ) • L~=r Wv fiv . L~=r Wv fiv Ii lAn se = max min ""'s = min max ""'s , .(. = , ... ,m, 
rs_e s?_e L..Jv=r Wv s?_e rs_e L..Jv=r Wv 

the isotonic regression of the fie's with weights we's (Robertson et al., 1988). Wellner 

and Zhang (2000) established its consistency and also derived its asymptotic distribu
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tion at a fixed time point. Note that the well-known Nelson-Aalen estimator is not 

available here, since it is applicable only for recurrent event data (Andersen et al., 

1993). 

Let An1 denote the isotonic regression estimate of A1 based on samples from all the 

subjects in the lth group. To test the hypothesis H0 , motivated by an idea commonly 

used in survival analysis (Pepe and Fleming, 1989; Cook et al., 1996; Zhang et al., 

2001), we propose the statistic 

An1(t)}dGn(t), l=l, ... ,k, 

where T is the largest observation time, W~l) (t) 's are bounded weight processes, and 

Gn(t) is defined by 
l n k; 

Gn(t) = ;; L L l(ti,j :::; t), 
i=l j=l 

where I(s :::; t) = 1, if t 2 s; otherwise, I(s :::; t) = 0. The statistic UA1
) is the 

integrated weighted difference between An and An1• It is important to mention that 

some statistics similar to UA1
) are commonly used in survival analysis. For the two-

sample survival comparison with right-censored data, for example, Pepe and Fleming 

(1989) proposed some test statistics that have a form similar to UA1
) with An and An1 

replaced by the corresponding estimated survival functions. Petroni and Wolfe (1994) 

and Zhang et al. (2001) used similar methods for the comparison of treatments based 

on interval-censored data. Cook et al. (1996) presented similar tests for treatment 

comparisons based on recurrent event data. 

When we rewrite the test statistic UA1
) as 
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we observe that UAl) is also a Wilcoxon-type statistic. Similar statistics are often used 

in the analysis of repeated measurement data; see, for example, Davis and Wei (1988). 

Based on Zhang (2006), we can consider a class of test statistics as follows 

Zhang (2006) obtained the asymptotic distribution of vJl) when WA1) = Wn and Wn 

satisfies a stronger condition (the composition of the inverse function of A0 and the 

limit process W(t) of Wn(t) and Wn(t) themselves are monotone). In addition, the 

proof of Theorem 1 of Zhang (2006) may not be rigorous. These will be discussed with 

more details in next section. 

For the selection of the weight process W~l)(t), a simple and natural choice is 

w~l,l)(t) = 1, l = 1, ... 'k. Another natural choice is WA2
'
1)(t) = Yn(t) = L~=l I(t:::: 

ti,kJ /n, l = 1, ... , k, in which case weights are proportional to the number of subjects 

under observation. Yet another choice for the weight process W~l)(t) is 

where g is a fixed function, and Yn1(t) (l = 1, ... , k) are defined as Yn(t) with the 

summation being only over subjects in the Zth group. Some weight processes similar 

to W~3) have been used when recurrent event data are observed; see Andersen et al. 

{1993). 

In the next section, we will present the asymptotic distributions of 

and 
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in order to construct the tests for the null hypothesis. 

2.3 Asymptotic Results 

Let A0 (t) denote the true mean function of the Ni(t)'s under H 0 . Suppose that K is an 

integer-value random variable and T = {Tk,j, j = 1, ... , k, k = 1, 2, ...} is a random 

triangular array, and that ki and ti,j = tki,j 's are realizations of them. We assume 

that {(Ki; T Ki,i, ... ,TKi,Ki) ; i = 1, ... , n} are independent and identically distributed, 

and are independent of the Ni's. Let X = (K, TK, NK ), where Tk is the kth row of 

the triangular array T and Nk = (N(Tk,i), ... ' N(Tk,k)). Then, xi = (Ki, TKil Ni,KJ, 

i = 1, ... , n, is a random sample of size n from the distribution of X. For establishing 

asymptotic results on An(t) and Un, we need the following regularity conditions: 

A. The mean function Ao is strictly increasing such that A0 (T) ::;: M for some 

constant ME (0, oo); 

B. There exists a constant Ko such that Pr{K ::;: Ko} = 1 and that the random 

variables Tk,/s take values in a bounded set [To, T] and Pr{TK,i = To} > 0, where 

0 <To< T < oo; 

C. Pr{limsupn___.00 maxiNi(T) < oo} = 1 and E((Ni(T)) 4 
)::;: Mi, where Mi is a 

constant. 

Now, let An(t) be the isotonic regression estimate of A0 (t) under H0 given in Section 

1. Also let A0i denote the inverse function of A0 , and let W o A0i denote composition 

of two functions Wand A0i. First, we present the asymptotic normality of functional 

of An· 
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Theorem 2.3.1 Suppose that Conditions A, B and C hold. Further, suppose that 

W (t) is a bounded weight process such that W o A01 is a bounded Lipschitz function. 

Let G(t) = E [2:f=1 I(TK,j::; t)]. Then as n -too, 

7 

Jn 1W(t){An(t) - Ao(t)} dG(t) -t Uw 

in distribution, where Uw has a normal distribution with mean zero and variance 

(2.1) 

that can be consistently estimated by 

Proof. First, note that 

where 

l1n = fo(Pn - P) [tW(TK,;){Ao(TKJ) -An(TKJ)}] , 

I2n = VriPn [t,w(TKJ){An(TK,j) - N(TK,jn]' 

and 

l3n = foPn [tW(TKJ){ N(TKJ) - Ao(TKJ)}l · 
where Pn is the empirical measure corresponding to (N, T, K), Pis the corresponding 

underlying true measure, Pnf = ~ L~=l Ji and Pf= J fdP. It is easy to see that hn 

is a U-statistic and has an asymptotic normal distribution with mean zero and variance 
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that can be consistently estimated by 0-~ in the theorem. Hence, it is sufficient to show 

that both 11n and 12n converge in probability to zero. 

We will show the convergence of 11n first. Note that Condition C implies 

limsup An(T) < oo 
n-+oo 

almost surely. Note that An(To) -t A0 (To) a.s. So, for every 0 < E < Ao(To), there exist 

two positive constants Mc: > A0 (T) and Le:< Ao(To) such that 

supPr{An(To) <Le:}+ supPr{An(T) >Mc:}< E. 
n n 

Let 

:F= {A: [0,T] ~ [O,oo) IA is nondecreasing, A(O) = O} 

and 

Define An,c: as 

where n is the class of nondecreasing step functions with possible jumps only at the 

observation time points {TKi,i' j = 1, ... , Ki, i = 1, ... , n}. Let 11n,c: denote the 

version of I 1n obtained by replacing An with An,c:· Then, to prove that I 1n converges 

to zero in probability, it is sufficient to show that 11n,c: = op(l) since 

By using arguments similar to those in Sun and Fang (2003), it can be shown that 
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Next, we show the convergence of I 2n. By using the same block argument as in 

Proposition 1.2 in Part II of Groeneboom and Wellner (1993), we have for any real 

function h, 

L
m 

h(An(s£))wp{N£ - An(s£)} = 0, 
£=1 

where the S£'s, we's and f\1£ = fie are as defined in Section 2.2. Hence, we can rewrite 

where W0 = W o A0
1

. By Condition C, there exists a constant Ne: such that 

Let 

and for A E Fe:, let 

K 

fA(X) = L{Wo(Ao(TK,j)) - Wo(A(TK,j))}{A(TK,j) - N(TK,j)}, 
j=l 

K 

9A(X) . L {Wo(Ao(TK,j)) - Wo(A(TK,j))}{A(TK,j) - Ao(TK,j)}, 
j=l 

and 
K 

hA(X) = L{Wo(Ao(TK,j)) - Wo(A(TK,j))}{Ao(TK,j) - N(TK,j)}. 
j=l 

Then, we have 

where 
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~3n ynP {hAJX)I(N(T)::; Ne)} 

ynP{hAJX)}-vnP{hAJX)J(N(T) >Ne)} 

- -ynP {hAJX)I(N(T) >Ne)}, 

and 

For ~3n and ~4n, we have Vb> 0, 

and 

P{l~4nl > 8} :S P(A~) < c. 

Let ~ln,e denote the version of ~In obtained by replacing An by An,e· Since Wo is a 

bounded Lipschitz function, it can be shown that 

is P-Donsker using the bracket entropy theorem of Van der Vaart and Wellner (1996, 

pp. 127-159) and arguments similar to those in Huang and Wellner (1995). Moreover, 

Theorem 4.1 of Wellner and Zhang (2000) yields 

where 
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Hence, it follows from the uniform asymptotic equicontinuity of the empirical process 

(Van der Vaart and Wellner, 1996, pp. 168-171) that .6.1n,c: = op(l). Then, we have 

.6.1n = op(l) since 

For .6.2n, since Wo is a bounded Lipschitz function, it follows that 

where c1 is a constant. To prove that fod2(A-ni A0 ) = op(l), we only need to show 

that fod2 (An,c:,Ao) = op(l). We shall now show that d(An,c:,Ao) = Op(n-~). 

To establish the rate of convergence for An,c:, we shall apply Theorem 3.2.5 of Van 

der Vaart and Wellner (1996). Define 

K 

mA(X) = L{N(TK,j) logA(TK,j) - A(TK,j)} 
j=l 

and M(A) = PmA(X). Let cp(x) = x(logx - 1) + 1. Then cp(x) 2:: i(x - 1)2 for x in a 

neighbourhood of x = 1. Thus, in a neighbourhood of A0 , 

M(Ao) - M(A) 


- P [t,{Ao(TKJ) log Ao(TKJ) - Ao(TKJ)}l 

-P [t, {Ao(TKJ) logA(TKJ) - A(TKJ)}] 

= P [t,A(TKJ)9' ( ~(~::])l 
= j A(t)cp ( ;gj) dG(t) 
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2
> ~ J(Ao(t) - A(t)) dG(t) 
- 5 A(t) 

1 2
2:: 5Mc d (A, Ao), 

and hence the separation condition of the theorem is satisfied. Also, let 

F8,c ={A: d(A,Ao):::;; 8,A E Fe} (8 > 0) 

and 

For A E F8,c, it is easily shown that PlmA(X) - ffiA0 (X)l 2 :::;; c282 and llmA(X) 

ffiA0 (X) Iloo :::;; c3 for some constatnts c2 and c3 . Since we have 

where c4 is a constant which depends only on Mc, then 

18 
J1 +log No (TJ, M8,c, L2(P)) dTJ 

8:::;; 1Vl + C4T]-l dTJ 

:::;; J8 + C418 

TJ-~ dry 

for some constant c5 . Hence, by applying Lemma 3.4.2 of Van der Vaart and Wellner 

(1996), we have 

for some constant c6 , where E* denotes the outer expectation, and ¢n(8) = 8~ +8- 1n-~. 

Now, upon using Theorem 3~2.5 of Van der Vaart and Wellner (1996), d(A.. n,c, A0 ) 
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converges in probability to zero of order at least n-L This shows that ~2n = op(l) 

which completes the proof of the theorem. D 

Remark. For the proof of Theorem 1 of Zhang (2006), the author claimed that 

llmi(X) - m~(X)IJ~,B :'.S Cc2 where mi(X), and mi(X) are as defined in Zhang (2006, 

pp. 786). From 

mr(X) - m~(X) = t {N(TK,j) log ~Ii~K·~j - A;(TK,i) + A~(TK,i)},
j=l 	 i K,J 

one can see that a positive lower bound for Ai(t) is required to derive I lmi(X) 

mi(X)JJ~,B :::; Cc2 . However, this property may not be obtained by the setting of 

Ai(X) given in Zhang (2006, pp. 786). It is for this reason we have considered a 

smaller class Fe: and An,c: instead of An· 

Now, we derive the asymptotic distributions of Un and V n· Let S1 d.enote the set 

of indices for subjects in group l, l = 1, ... , k. 

Theorem 2.3.2 Suppose that Conditions A, B and C hold. Further, suppose that 

W~1)(t) 's are bounded weight processes and that there exists a bounded function W(t) 

such that W o A01 is a bounded Lipschitz function, and 

112[Jor {W~l) (t) - W(t)} 2 dG(t)
] 

= op(n-116 
) , l = 1, ... , k. (2.2) 

Also suppose that nz/n --+ P1 as n --+ oo, where 0 < p1 < 1, l = 1, ... , k, and 

P1 + · · · +Pk = L Then under Ho : Ai = · · · = Ak = Ao, 

(i) 	Un has an asymptotic normal distribution with mean vector 0 and covariance 

matrix 

(2.3) 
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where 

VPi-[f; ffe 

./Pl $2- ff; 
(2.4)r= 

and aI =···=a~= a~ given in (2.1}. 

(ii} 	V n has an asymptotic normal distribution with mean vector 0 and covariance 

matrix 

:Evw 	= H diag(ai, a~,···, a~) H', (2.5) 

where 

0 0-ff; ff;Pl 

0 	 0-ff; ff;
Pl (2.6) 

0 0 

H= 

-ff; 	 It 
and a[ is as given in (i). 

(iii} In addition, if 

2 
max E [~ {W(l)(TK. ·) - W(TK. ·)} ] ~ 0 (2.7)

" 1 " 31<i<n ~ n 
- - j=l 

for l = 1, ... , k, then :Evw and :Evw can be consistently estimated by 

(2.8) 


and 

(2.9) 
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where 

~-fini ~ ~ 

~ n2 ~~-{[; 
(2.10)rn = 

~ ~ ~-~nk 

0 0-fi ff; 
0 0-fi ff; (2.11)Hn= 

-fi 0 0 ~ 
and 

A2 1 n [ K;
al - -:;;, ~ f; W~1)(TKi,j) { Ni(TKi>i) - An(TKi,j)}

r (2.12) 

for l = 1, ... , k. 

Proof. (i) Let 
l Ki 

Gn1(t) = - LL J(TKi.i ~ t)
n1 . s . 1 

t€ l J= 

for l = 1, ... , k. To obtain the asymptotic distribution of Un, we first note that U~1 ) 

can rewritten as 

uco = uco - fiuc1) 
n In 2n'vnl 

where, for l = 1, ... , k, 
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and 

Further 

where 

7 

Ii~ Vn1{W~O(t) - W(t)}{A.n(t) - Ao(t)} dGn(t) 

7 

1- Vn1{W~ )(t) - W(t)}{A.n(t) - Ao(t)} dG(t) + op(l), 

and 
7 

I~~= Vn1W(t){A.n(t) - Ao(t)} dG(t). 

First, we show that Ii~ = op(l), l = 1, ... , k. Using Cauchy-Schwarz inequality and 

the proof of Theorem 2.3.1, we have 

7 1lvn1{W~ l(t) - W(t)}{A.n(t) - Ao(t)} dG(t)l l{An(T)~Me} 
112 	 112 

< 	 Vn {[ (W~'J(t) - W(t) )2 dG(t)} {[ (J..n,,(t) - A0(t) )2 dG(t)} 

----+ 0 

in probability, since 

Hence, Ii~ = op(l), l = 1, ... , k. Now, as in the proof of Theorem 2.3.1, it can be 

shown that I~~ = op(l), l = 1, ... , k. Also, it follows from Theorem 2.3.1 that 

7 

I~~ = Vn1W(t){N(t) - Ao(t)} dGn(t) + op(l) 
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for l = 1, ... , k. Hence, we have 

u{~ = vn 1T W(t){N(t) - Ao(t)} dGn(t) + Op(l)' l = 1, ... ' k. 

Similarly, we can show that 

7 

U~~ = Vnz 1W(t){N(t) - Ao(t)} dGn1(t) + op(l) , l = 1, ... , k. 

Let 
7 

Yn = yn1W(t){N(t) - Ao(t)} dGn(t) 

and 
7 

y~l) = Vnz 1W(t){N(t) - Ao(t)} dGn1(t), for l = 1, ... , k. 

Evidently, yJI) 's are i.i.d., and JnYn = 2::7=1y'n!YJ1l. Then, 

u(l) = 
n 

and so 

where r n and r are as given in the theorem, and 

converges in distribution to Y w having a k-dimensional normal distribution with mean 

vector 0 and covariance matrix diag(ai, ... , a~). Thus, we have Un converging in 

distributio.n to a random variable Uw that has a normal distribution N(O, :Ew), in 

which :Ew is presented in part (i) in the theorem. 
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(ii) We note that v~l) = u2,l) - UAl)' l = 2, ... 'k, where uAI,l) is defined as UA1
) by 

replacing W2) with wJ1
) for l = 2, ... , k. Then, (ii) follows from (i). 

(iii) To show that a[ - a; = Op(l) for l = 1, ... 'k, we set 

</>(~,A, X) = L
K 

~(TK,j) {N(TK,j) - A(TK,j)} 
j=l 

al - a~ - Pn { </>2 (W~1), An, X) - </>2 (W~1), Ao, X)} 

+Pn {</>2 (W~l), Ao, X) - </> 2(W, Ao, X)} 

+(Pn - P)</>2 (W, Ao, X). 

It can be easily shown .that 

and 

Since it follows from Conditions A and B that 

!<P(W~t), Ao, X) - <P(W, Ao, X) I = !<P(W~t) - W, Ao, X) I 

< c1{N(T) + M} L
K 

1w~1)(TK,j) - W(TK,j)i 
j=l 

with probability 1 for some constant c1 and 

i<P(W~t), Ao, X) + </>(W, Ao, X) I = i<P(W~l) + W, Ao, X) I 

< c2{N(T) + M}} 
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with probability 1 for some constant c2 , then we have from the Cauchy-Schwarz in

equality, Condition C, and (2. 7) 

E l</>2 (W~1), A0 , Xi) - </>
2 (W, Ao, Xi) I 


<'.'. c,E [{N,(r) + M}
2 {t,1wl'l(TK,J) -W(TK,J)I}] 


<'.'. C3 [E{N;(r) + M}'j11
' [ E {t, JWl'l(TK.,;) - W(TK.,;)J rJ 112 

112 

<'.'. c• ,IJ!:'t. [E {t, Jwl'l(TK;J) - W(TK..;)1 2
}] 

----+ 0 

where c3 and c4 are finite positive constants , which completes the proof of part (iii). 

Hence, the proof of the theorem is completed. D 

Clearly, 

Here, we need 

n116d(w<z) W) -t 0 
n ' p 

and (2. 7) for weight processes wJO, l = 1, ... , k. For example, wJ1·1
) and wJ2

·l) given 

1in Section 2.2, 1 - wJ2
• ), Yn1 and 1 - Yn1 all satisfy these conditions. The weight 

Now, we are ready to present the nonparametric k-sample tests for panel count 

data. Let U0 denote the first (k - 1) components of Un and i:0 the matrix obtained 

by deleting the last row and column of i:un. Then, using Theorem 2.3.2, two tests of 

T ~ -1
the hypothesis Ho can be carried out by means of the statistics T1 = U 0 ~o U 0 and 
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T2 = V~tv: Vn' which have asymptotically a central x2-distribution with (k - 1) 

degrees of freedom. This can be seen readily from the proof of the theorem. 

2.4 Simulation Study 

To examine the finite-sample properties of the proposed test statistic T1 and compare 

its power with T2 , we carry out a simulation study for the three-sample comparison 

problem. To generate panel count data {ki,tij,nij,j = 1, ... ,ki,i = 1, ... ,n}, we 

mimic medical follow-:-up studies such as the example discussed in the next section. 

We first generate the number of observation times ki from the uniform distribution 

U{l, ... , 10}, and then, given ki, we generate observation times ti/s from U{l, ... , 10}, 

for simplicity. To generate nij 's, we assume that Ni's are nonhomogeneous Poisson or 

mixed Poisson processes. In particular, let {vi, i = 1, ... , n} be i.i.d. random variables, 

and given vi, let Ni(t) be a Poisson process with mean function Ai(t) = vit for i E S1, 

Ai(t) = vit exp(,81 ) for i E S2 and Ai(t) = vit exp(,82) for i E S3 . 

We consider two cases: vi = 1 and vi ,....., Gamma(2, 1/2). For each case, we 

consider two sample sizes, n 1 = n2 = n3 = 50 and 100, respectively. As mentioned 

earlier in Section 2.2, we choose the three weight processes: W~1 ' 1\t) 1, l = 1, ... , k, 

W~2,l)(t) = Yn(t) = L~=l I(t::; ti,kJ /n, l = 1, ... 'k, and W~3' 1 )(t) 1 -Yn(t). Let 

w~j)(t) = (w~j,l)(t), ... , w~j,k)(t)), j = 1, 2, 3. 

All the results reported here are based on 1000 Monte Carlo replications. 

Tables 2.1-2.4 present the estimated sizes and powers of the tests T1 and T2 at 

significance level o: = 0.05 for different values of ,Band the three weight processes based 
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on the simulated data for the two cases, respectively. In the first case, the Ni (t) 's are 

Poisson processes. In the second case, the Ni(t)'s are mixed Poisson processes. Tables 

2.1 and 2.3 are for the situation with the total sample size of 150 and Tables 2.2 and 

2.4 are for the situation with the total sample size of 300. For the situation considered 

here, the tests seem to have good powers, the powers of two tests are close for the 

three weight processes with the weight process wJ!l showing a little higher power, and 

T1 is slightly powerful than T2 . As expected, the power increases when the sample 

size increases, and the power decreases in the presence of variability. To evaluate the 

asymptotic result given in Theorem 2.3.2, the quantile plots of the test statistic T1 

against the chi-square distribution with 2 degrees of freedom are constructed. Figures 

2.1 and 2.2 present the plots for the cases with Wn(t) = W~1)(t) and n = 150 and 

n = 300, respectively, and they clearly reveal that the asymptotic approximation is 

quite good. Similar plots were obtained for other situations as well. 

In the above simulation study, we did examine all three weight processes suggested 

earlier in Section 2.2, and in all situations considered here, the weight process W~1 ) 

yielded slightly higher power than the other two weight processes. This may not 

always be true as one can see from the next section and simulation results presented 

by Zhang (2006). In general, one should select appropriate weight processes based on 

the behavior of the mean functions to improve power. Zhang (2006) provided a detailed 

discussion about the roles of these weight processes through Monte Carlo simulations. 

In addition to the three processes considered here, some other weight processes can be 

found in Andersen et al. (1993), which discusses nonparametric treatment comparison 

based on recurrent event data. It would, therefore, be of great interest to investigate 

the problem of the selection of a weight process based on data. 
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Table 2.1: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for Poisson processes ( n1 = n2 = n3 = 50) 

(f31, f32) 

(-0.5,-0.5) 

(-0.3,-0.5) 

(-0.3,-0.3) 

(-0.1,-0.5) 

(-0.1,-0.3) 

(-0.1,-0.1) 

(0.0,-0.5) 

(0.0,-0.3) 

(0.0,-0.1) 

(0.0,0.0) 

(0.0,0.1) 

(0.0,0.3) 

(0.0,0.5) 

(0.1,0.1) 

(0.1,0.3) . 

(0.1,0.5) 

(0.3,0.3} 

(0.3,0.5) 

(0.5,0.5) 

T1 T2 


wJI) (t) wJ2l (t) wJ3l (t) wJI) (t) wJ2l(t) wJ3l(t) 


1.000 

1.000 

0.969 

1.000 

0.903 

0.224 

1.000 . 

0.974 

0.253 

0.053 

0.267 

0.993 

1.000 

0.273 

0.963 

1.000 

0.995 

1.000 

1.000 

1.000 

1.000 

0.936 

1.000 

0.853 

0.195 

1.000 

0.950 

0.214 

0.049 

0.234 

0.981 

1.000 

0.223 

0.939 

1.000 

0.985 

1.000 

1.000 

1.000 

1.000 

0.949 

1.000 

0.870 

0.203 

1.000 

0.959 

0.229 

0.048 

0.247 

0.987 

1.000 

0.236 

0.952 

1.000 

0.989 

1.000 

1.000 

1.000 

1.000 

0.968 

1.000 

0.898 

0.218 

1.000 

0.965 

0.239 

0.052 

0.266 

0.993 

1.000 

0.270 

0.960 

1.000 

0.995 

1.000 

1.000 

1.000 

1.000 

0.931 

1.000 

0.851 

0.187 

1.000 

0.946 

0.205 

0.050 

0.233 

0.980 

1.000 

0.221 

0.934 

1.000 

0.984 

1.000 

1.000 

1.000 

1.000 

0.949 

1.000 

0.867 

0.193 

1.000 

0.953 

0.217 

0.047 

0.244 

0.987 

1.000 

0.236 

0.949 

1.000 

0.986 

1.000 

1.000 
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Table 2.2: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for Poisson processes (n1 = n2 = n 3 = 100) 

(!31, !32) 


(-0.5,-0.5) 

(-0.3,-0.5) 

(-0.3,-0.3) 

(-0.1,-0.5) 

(-0.1,-0.3) 

(-0.1,-0.1) 

(0.0,-0.5) 

(0.0,-0.3) 

(0.0,-0.1) 

(0.0,0.0) 

(0.0,0.1) 

(0.0,0.3) 

(0.0,0.5) 

(0.1,0.1) 

(0.1,0.3) 

(0.1,0.5) 

(0.3,0.3) 

(0.3,0.5) 

(0.5,0.5) 

T1 T2 

w2l(t) w~2l (t) w~3l (t) w2l(t) w~2l(t) W~3l(t) 

1.000 

1.000 

1.000 

1.000 

0.997 

0.466 

1.000 

1.000 

0.438 

0.056 

0.491 

1.000 

1.000 

0.450 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.993 

0.373 

1.000 

1.000 

0.388 

0.049 

0.432 

1.000 

1.000 

0.371 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.996 

0.394 

1.000 

1.000 

0.403 

0.054 

0.449 

1.000 

1.000 

0.388 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.996 

0.463 

1.000 

1.000 

0.434 

0.055 

0.488 

1.000 

1.000 

0.450 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.993 

0.373 

1.000 

1.000 

0.382 

0.056 

0.429 

1.000 

1.000 

0.368 

0.999 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

0.995 

0.390 

1.000 

1.000 

0.403 

0.055 

0.447 

1.000 

1.000. 

0.388 

0.999 

1.000 

1.000 

1.000 

1.000 
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Table 2.3: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for mixed Poisson processes (n1 = n2 = n3 = 50) 

(f31, !32) 

(-0.5,-0.5) 

(-0.3,-0.5) 

(-0.3,-0.3) 

(-0.1,-0.5) 

(-0.1,-0.3) 

(-0.1,-0.1) 

(0.0,-0.5) 

(0.0,-0.3) 

(0.0,-0.1) 

(0.0,0.0) 

(0.0,0.1) 

(0.0,0.3) 

(0.0,0.5) 

(0.1,0.1) 

(0.1,0.3) 

(0.1,0.5) 

(0.3,0.3) 

(0.3,0.5) 

(0.5,0~5) 

T1 T2 


w~1) (t) iv~2)(t) W~3)(t) w2)(t) w~2)(t) W~3)(t) 


0.773 

0.635 

0.348 

0.657 

0.251 

0.088 

0.715 

0.331 

0.074 

0.060 

0.082 

0.381 

0.815 

0.086 

0.317 

0.741 

0.323 

0.654 

0.769 

0.761 

0.629 

0.344 

0.642 

0.244 

0.085 

0.706 

0.326 

0.075 

0.059 

0.086 

0.386 

0.811 

0.086 

0.312 

0.736 

0.325 

0.655 

0.767 

0.769 

0.615 

0.342 

0.654 

0.243 

0.083 

0.722 

0.334 

0.077 

0.057 

0.074 

0.357 

0.805 

0.073 

0.300 

0.723 

0.296 

0.630 

0.745 

0.779 

0.617 

0.348 

0.648 

0.250 

0.077 

0.713 

0.327 

0.068 

0.056 

0.078 

0.379 

0.814 

0.085 

0.300 

0.731 

0.317 

0.647 

0.765 

0.763 

0.614 

0.332 

0.637 

0.246 

0.081 

0.709 

0.321 

0.070 

0.060 

0.075 

0.369 

0.813 

0.086 

0.303 

n.121 

0.324 

0.650 

0.764 

0.772 

0.615 

0.337 

0.645 

0.243 

0.076 

0.708 

0.314 

0.069 

0.057 

0.078 

0.372 

0.791 

0.068 

0.285 

0.729 

0.308 

0.629 

0.744 
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Table 2.4: Percentage of null hypothesis rejection at significance level 5% based on 

1000 replications for mixed Poisson processes (n1 = n2 = n3 = 100) 

(f31, f32) 

(-0.5,-0.5) 

(-0.3,-0.5) 

(-0.3,-0.3) 

(-0.1,-0.5) 

(-0.1,-0.3) 

(-0.1,-0.1) 

(0.0,-0.5) 

(0.0,-0.3) 

(0.0,-0.1) 

(0.0,0.0) 

(0.0,0.1) 

(0.0,0.3) 

(0.0,0.5) 

(0.1,0.1) 

(0.1,0.3) 

(0.1,0.5) 

(0.3,0.3) 

(0.3,0.5) 

(0.5,0.5) 

T1 T2 


wJ1)(t) wJ2l(t) wJ3)(t) wJ1)(t) wJ2)(t) wJ3l(t) 


0.976 

0.902 

0.609 

0.933 

0.501 

0.119 

0.966 

0.593 

0.105 

0.053 

0.109 

0.676 

0.989 

0.117 

0.539 

0.956 

0.606 

0.937 

0.976 

0.971 

0.901 

0.598 

0.929 

0.487 

0.123 

0.961 

0.579 

0.106 

0.056 

0.108 

0.668 

0.987 

0.116 

0.534 

0.953 

0.600 

0.934 

0.975 

0.970 

0.894 

0.617 

0.932 

0.494 

0.118 

0.961 

0.577 

0.099 

0.054 

0.109 

0.655 

0.982 

0.097 

0.513 

0.958 

0.575 

0.938 

0.976 

0.976 

0.901 

0.603 

0.931 

0.493 

0.119 

0.961 

0.583 

0.097 

0.054 

0.103 

0.668 

0.988 

0.117 

0.535 

0.956 

0.602 

0.935 

0.979 

0.973 

0.899 

0.595 

0.926 

0.481 

0.121 

0.957 

0.578 

0.097 

0.057 

0.105 

0.659 

0.985 

0.116 

0.533 

0.949 

0.599 

0.933 

0.975 

0.972 

0.892 

0.615 

0.930 

0.493 

0.116 

0.960 

0.576 

0.096 

0.052 

0.104 

0.656 

0.982 

0.098 

0.491 

0.955 

0.573 

0.929 

0.977 
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Figure 2.1: Simulation study. Chi-square quantile plot for T1 (n = 150) 
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Figure 2.2: Simulation study. Chi-square quantile plot for T1 (n = 300) 
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2.5 An Illustrative Example 

To illustrate the proposed method, we consider the data from a bladder tumor study 

conducted by the Veterans Administration Co-operative Urological Research Group 

(VACURG), and the data are presented in Andrews and Herzberg (1985). For some 

analyses of these data, one may refer to Byar et al. (1977), Byar (1980), Wellner and 

Zhang (2000), Sun and Wei (2000), and Zhang (2002, 2006). The data were obtained 

from a randomized clinical trial. All patients had superficial bladder tumors when 

they entered the trial, and they were assigned randomly to one of three treatments: 

placebo, thiotepa and pyridoxine. The study included 116 patients, of which there 

were 4 7 in placebo group, 38 in thiotepa group and 31 in pyridoxine. At subsequent 

follow-up visits, any tumors noticed were removed and treatment was continued. We 

can get a set of panel count data {ki, tij' nij, j = 1, ... , ki, i = 1, ... , n} where for the 

ith patient, ki is the number of visits, tij 's are all visit times, and nij is total number 

of tumors until tij (j = 1, ... , ki)· The objective of the study is to determine the effect 

of treatment on the frequency of tumor recurrence. 

Let G1 (t), G2 (t) and G3 (t) be as defined in Theorem 2.3.1 for the placebo, thiotepa 

and pyridoxine groups, respectively. We need to check G1 (t) = G2 (t) = G3 (t). This 

can be done by the Kolmogorov-Smirnov test. Let 

which is the empirical estimator of G1(t), l = 1, 2, 3, where n 1 = 48, n2 = 38, n3 = 31 

and n = 116. Let's carry out the Kolmogorov-Smirnov test to check the equality of 
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each pair. Define the two-sample Kolmogrov-Smirnov test statistics as follows 

and 

All three pairs of the empirical functions are shown in Figure 2.3. Using two-sample 

bootstrap method presented by Van der Vaart and Wellner (1996, pp. 365), we obtain 

p-values 0.213, 0.806 and 0.385 for three Kolmogorov-Smirnov tests under the null 

hypotheses G1(t) = G2 (t), G1(t) = G3 (t) and G2(t) = G3 (t), respectively. These 

results suggest that the null hypotheses cannot be rejected. Sun and Wei (2000) and 

Hu et al. (2003) analyzed the data from the placebo and thiotepa groups using the 

regression model method and concluded that the mean function G1(t) of the counting 

process arising from observation times depends on the group indicator. However, their 

results depend on the expression of the model used and model checking is needed. 

Now we can illustrate the application of our method to the bladder tumor study 

based on the Kolmogorov-Smirnov test results. Let A1 (t), A2 (t) and A3 (t) be the 

mean functions corresponding to the three treatment groups: ·placebo, thiotepa and 

pyridoxine, respectively. The estimated mean functions from the three groups and 

from the pooled data are presented in Figure 2.4. 

We observe from Figure 2.4 that the difference of the three groups becomes larger 

when the time increases. To test the null hypothesis Ho : A1(t) = A2(t) = A3 (t), 

we applied the proposed method to this panel count data and computed T1 = 6.139 
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Figure 2.3: Bladder tumor study. Empirical estimates of the mean functions of count

ing processes from observation times 
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Figure 2.4: Bladder tumor study. Estimates of the mean functions 
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and p-value = 0.046 with WJ1)(t) = WJ1
'
1)(t), T1 = 4.768 and p-value = 0.092 with 

WJ1)(t) = WJ2
'
1)(t), and T1 = 7.024 and p-value = 0.030 with WJ1)(t) = WJ3

'
1)(t) = 

1-Ynz (t), respectively. These results suggest that the frequency of tumor recurrence are 

significantly different for the patients in the three groups at 103 level of significance. 

Incidentally, through a regression analysis of the data from two treatments, placebo 

and thiotepa, Sun and Wei (2000) and Zhang (2002) concluded that thiotepa effectively 

reduces the recurrence of tumors. Zhang (2006) obtained p-values 0.0851, 0.1445 and 

0.0840 by using weight processes Wn = 1, Yn(t) and 1 - Yn(t), respectively. If we 

assume that treatment indicators are independent and identically distributed random 

variables, then the test presented by Sun and Fang (2003) would yield p-value = 0.082 

with the treatment indicators Zi = -1, 1, 0 for i E S1 , S2 , S3 , p-value = 0.696 with 

the treatment indicators Zi = -1, 0, 1 for i E S1 , S2 , S3 , p-value = 0.064 with the 

treatment indicators Zi = 0, -1, 1 for i E S1 , S2 , S3 , p-value = 0.139 with the treatment 

indicators Zi = 0, 1, -1 for i E S1 , S2 , S3 , p-value = 0.628 with the treatment indicators 

Zi = 1, 0, -1 for i E S1 , S2 , S3 , and p-value = 0.109 with the treatment indicators 

Zi = 1, -1, 0 for i E S1 , S2 , S3 . One possible reason for such a difference between these 

p-values is the assumption that treatment indicators are independent and identically 

distributed random variables, which may not be true if we look at the difference in 

sample sizes of the groups. 

This example illustrates that different weights may result in different conclusions, 

and the tests with appropriate weight process could lead to better power of the test. 

Therefore, the selection of a suitable weight process would be important for detecting 

difference between groups. 
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2.6 Concluding Remarks 

This chapter discusses the problem of the multi-sample comparison of point processes 

when only panel count data are available. A class of nonparametric tests are proposed 

for the problem and the asymptotic properties of the test statistics are derived. Sim

ulation studies are carried out and they suggest that the proposed method works well 

for practical situations. The proposed method applies to more general situations than 

the existing methods (Thall and Lachin, 1988; Sun and Fang, 2003; Zhang, 2006). 

A direction for future research is to study the properties of the test statistics under 

alternatives for selection of weight processes W~l) 's. One can discuss the local asymp

totic power of the tests and drive optimal tests along the lines of Anderson et al. (1993, 

pp. 372-379). 

The proposed inferential procedures are established under the assumption that the 

observation scheme is the same for different treatment groups. This assumption may 

not be satisfied in many practical applications. Zhang (2006) discussed the problem 

and proposed an alternative test statistic which involves the estimation of c;(t), where 

G1( t) is the mean function of the count process arising from observation times for group 

l. For the problem, we prefer to construct some test statistics which do not involve 

the estimation of c;(t) and are easily computable. This is in progress. 

Further research is to replace the isotonic regression estimates by maximum likeli

hood estimates for the mean function in the statistic Un. Wellner and Zhang (2000) 

showed that the nonparametric maximum likelihood estimator (NPMLE) of the mean 

function is more efficient than the nonparametric maximum pseudo-likelihood estima

tor (NPMPLE, the isotonic regression estimator) by means of Monte Carlo simulations. 
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From this, one would naturally expect that the tests based on the NPMLE could be 

more efficient than the proposed tests based on the NPMPLE. However, unlike the 

isotonic regression estimate, the maximum likelihood estimate has no closed form and 

its computation requires an iterative convex minorant algorithm. 
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Chapter 3 

A New Nonparametric Test for the 

Equality of Counting Processes 

with Panel Count Data 

3.1 Introduction 

Consider a study that concerns some recurrent event and suppose that each subject 

in the study gives rise to a counting process N(t), denoting the total number of oc

currences of the event of interest up to time t. Also suppose that for each subject, 

observations include only the values of N(t) at discrete observation times or the num

bers of occurrences of the event between the observation times. Such data are usually 

referred to as panel count data (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). 

Our focus here will be on the situation when such a study involves k (2: 2) groups. Let 

A1(t) denote the mean function of N(t) corresponding to the Zth group for l = 1, ... , k. 
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The problem of interest is then to test the hypothesis Ho : A1(t) = ... = Ak(t). 

A number of authors have discussed the analysis of recurrent event data when each 

subject in the study is observed continuously over an interval or when the exact times 

of occurrences of the recurrent event are known. For example, the book by Andersen 

et al. (1993) presents many of the commonly used statistical methods for the analysis 

of recurrent event data. In contrast, there exists limited research on the analysis of 

panel count data. Sun and Kalbfleisch (1995) and Wellner and Zhang (2000) studied 

estimation of the mean function of N(t). Sun and Wei (2000), Zhang (2002), Hu, 

Sun and Wei (2003) and Sun, Tong and He (2007) discussed regression analysis for 

such data. To test the hypothesis H0 , Thall and Lachin (1988) suggested to trans

form the problem to a multivariate comparison problem and then apply a multivariate 

Wilcoxon-type rank test. Sun and Fang (2003) proposed a nonparametric procedure 

for this problem under the assumption that treatment indicators can be regarded as in

dependent and identically distributed random variables. Park et al. (2007) proposed a 

class of nonparametric tests for the two-sample comparison based on the istonic regres

sion estimator of the mean function of counting process. Zhang (2006) also presented 

nonparametric tests for the problem based on the nonparametric maximum pseudo

likelihood estimator that is equivalent to the istonic regression estimator (Wellner and 

Zhang, 2000). Also, Wellner and Zhang (2000) showed through Monte Carlo simula

tions that the nonparametric maximum likelihood estimator (NPMLE) of the mean 

function is more efficient than the nonparametric maximum pseudo-likelihood estima

tor (NPMPLE). However, no nonparametric tests have been discussed in the literature 

for panel count data based on the NPMLE since the NPMLE is more complicated both 

theoretically and computationally. It is, therefore, particularly important to develop 
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nonparametric tests based on the NPMLE for panel count data. However, unlike the 

isotonic regression estimate, the maximum likelihood estimate has no closed-form ex

pression and its computation requires an iterative convex minorant algorithm. In this 

chapter, for simplicity, we focus on the situation considered by Sun and Fang (2003) 

and propose a nonparametric test using the maximum likelihood estimator and then 

compare its power with those of existing tests for the problem of two-sample nonpara

metric comparison of counting processes with simulated panel count data. 

The rest of this chapter is organized as follows. Section 3.2 discusses estimation of 

the mean function and the existing nonparametric tests for the hypothesis Ho when 

only panel count data are available. Section 3.3 presents a new nonparametric test 

statistic motivated by the property of the NPMLE and the idea used by Sun and Fang 

(2003). Also, the asymptotic normality of the test statistic is established. In Section 

3.4, finite-sample property of the proposed test statistic is examined through Monte 

Carlo simulations. In Section 3.5, we apply the proposed method to a data from a 

floating gallstones study. Finally, some concluding remarks are made in Section 3.6. 

3.2 	 Nonparametric Maximum Likelihood Estima

tion of Mean Function 

Wellner and Zhang (2000) studied two estimators of the mean of a counting process 

with panel count data: the nonparametric maximum pseudo-likelihood estimator and 

the nonparametric maximum likelihood estimator. To describe the test statistics, we 

first introduce the NPMLE. Suppose that N = { N(t) : t 2=: O} is a non-homogeneous 
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Poisson process with the mean function E(N(t)) = A0 (t). Suppose that K is an 

integer-valued random variable and T = {Tk,j, j = 1, ... , k, k = 1, 2, ...} is a random 

triangular array, where Tk,j-l < Tk,j and Tk,O = 0, for j = 1, ... , k and k = 1, 2, .... We 

assume that {(K;TK,1, ... , TK,K)} are independent of N. Let X = (K, TK, NK), where 

Tk is the kth row of the triangular array T and Nk = (N(Tk, 1), ... , N(Tk,k)). Then, 

Xi= (Ki, TKi' Ni,KJ, i = 1, ... , n, is a random sample of size n from the distribution 

of X. Let X = (X 1 , ... , X n). Then the log likelihood function for the mean function 

A is 

n ~ n 

ln(AIX) =LL (Ni(TKi,j) - Ni(TKi,j-1)) log (A(TKi,j) - A(TKi,j-1)) - L A(TK;,KJ 
i=l j=l i=l 

after omitting the parts independent of A. 

Let t1 < ... < tm denote the ordered distinct observation time points in the set of 

all observation time points {TKi,j' j = 1, ... , Ki, i = 1, ... , n}. Then the NPMLE of 

A0 , An, is defined to be the nondecreasing, non-negative step function with possible 

jumps only occurring at te, C= 1, ... , m, that maximizes ln(AIX). Wellner and Zhang 

(2000) gave the characteristic and the algorithm for computing this estimator, and 

studied its asymptotic properties. 

The existing nonparametric tests (Park et al., 2007; Zhang, 2006) are based on the 

asymptotic normality of a smooth functional of the nonparametric maximum pseudo

likelihood estimator An (the istonic regression estimator). However, it is unknown if 

the asymptotic normality of the functional of the nonparametric maximum likelihood 

estimator still holds because of the complexity of the NPMLE. We observe that the 

test presented by Sun and Fang (2003) is related to the characteristic of the An given 
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by 
n Ki 

L L(An(TKi,j) - Ni(TKi,j)) = 0. (3.1) 
i=l j=l 

However, from equation (2.14) of Wellner and Zhang (2000), the corresponding char

acteristic of the NPMLE can be written as 

(3.2) 

the structure of (3.2) is different from that of (3.1) and considerably more complicated. 

Therefore, we need to develop a new form of test statistic when the NPMLE is used 

to estimate the mean function of counting process with panel count data. 

3.3 A Nonparametric Test with Panel Count Data 

Consider a longitudinal study that is concerned with some recurrent event and involves 

n independent subjects from k different groups. Let Zi denote the group indicator of 

subject i (i = 1, ... , n) and assume that group indicator is a scalar variable. Let Ni(t) 

denote the counting process arising from subject i and A1(t) (l = 1, ... , k) be defined 

as before, for i = 1, ... , n. Suppose that each subject is observed only at discrete 

time points 0 < TKi, 1 < ... < TKi,Ki and that no information is available about Ni(t) 

between observation times; that is, only panel count data are available. Also assume 

that Ni and (Ki, TKi, 1 , .•. , TKi,KJ are independent of Zi· For simplicity, assume that 

Ho is true, and let A0 (t) denote the common mean function of the Ni(t)'s. 

55 




Let An be the nonparametric maximum likelihood estimate of Ao based on the 

combined data. To test the hypothesis H0 , motivated by the characteristic of the 

NPMLE and an idea used in Sun and Fang (2003), we propose the statistic 

Let B denote the collection of Borel sets inn, and let B[o,T] = {B n [O, T], BE B}. On 

([O, T], B[o,Tj), set 

00 k 

µ(B) = L P(K = k) L P(Tk,j E BIK = k). 
k=l j=l 

For establishing asymptotic result on Un, we need the following regularity condi

tions: 

Condition 1. There exists a constant Ko such that pr{K ~ K0} = 1 and that the 

random variables Tk/s take values in a bounded set [To, T], where To, T E (0, oo); 

Condition 2. The mean function Ao is continuous such that Ao(To) > 0 and A0 (T) ~ 

M for some constant M E ( 0, oo); 

Condition 3. There exists a constant Lo such that 

Condition 4. E{N(t)}2 ~ M1 for all t ~ T where M1 is a constant; 

Condition 5. µ({To})> 0 and for all To< T1 < T2 < T, A0 (T1) < A0 (T2) < A0 (T) 

implies µ((T1,T2)) > 0. 
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Condition 3 holds if Ao is differentiable, A~ has a positive lower bound in [To, T], and 

P{min1:s;j:s;x(Tx,j - Tx,j-l) 2 s0 } for some fixed time s0 , where s0 can be considered 

as the smallest length of consecutive observation times. Condition 5 holds if Ao is 

strictly increasing, P{Tx,1 = To} > 0 and µ'(t) > 0 fort E (To, T). The asymptotic 

distribution of Un is as presented in the following theorem. 

Theorem 3.3.1 Suppose that Conditions 1-5 hold. Also suppose that Zi 's are inde

pendent and identically distributed random variables. Then as n ---+ oo, 

in distribution, where U has a normal distribution with mean zero and variance a 2 

with 

which can be consistently estimated by 

where Z = I::~=l Zifn. 

Proof. Let 

F= {A: [0,T]---+ [O,oo)IAis nondecreasing, A(O) = O}, 
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and let d be the £ 2 (µ) metric on F. Then for A1 , A2 E F, 

d2(A1, A2) = JIA1(t) - A2(t)\ 2dµ(t) 

E [t{A,(TK,;) - Az(TK4)}2
]. 

Wellner and Zhang (2000) showed 

and hence the uniform consistency of An can be shown by using the similar arguments 

to Proposition 5 of Schick and Yu (2000); that is, Conditions 1-2, 4 and 5 imply that 

sup \An(t) - Ao(t)\ ~ 0. 
tE[To,Tj 

Note that the uniform consistency of An implies for every 0 < 80 < min(L0/2, A0(To)) 

and any E > 0, there exists a positive integer Ne: such that 

sup P{ sup \An(t) - Ao(t)\ > 80} < E. 
n>N. tE[To,T] 

Here, we fix 80 . Let 

Fo ={A: A E F, sup \A(t) - Ao(t)\ ~ 80}. 
tE[To,T] 

Define A~ as 

where 0 is the class of nondecreasing step functions with possible jumps only at the 

observation time points {TK;,j, j = 1, ... , Ki, i = 1, ... , n}. Clearly, we have 

sup P(An f. A~) ~ sup P{ sup \An(t) - Ao(t)\ > 80} < E. 
n>N" n>Ne tE[To,T] 
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Let 

h(X A)= I:A(T ·) {t1N(TK,j+I) _ !1N(TK,j)} +A(T ) {i- !1N(TK,K)}. 
' j=l K,J t1A(TK,j+l) !1A(TKi>]) K,K !1A(TK,K) 

From equation (3.2), we have 

n

L h(Xi, An) = 0. 
i=l 

Now Un can be expressed as 

where 

and 
1 n A 

t1n = Vn ~{Zi - E(Zi)}{h(Xi, An) - h(Xi, A0 )} 

It is easy to see that Vn is a U-statistic and has an asymptotic normal distribution with 

mean zero and variance a 2 that can be consistently estimated by &2 presented earlier 

in Theorem 3.3.l. Hence, it is sufficient to show that t1n converges in probability to 

zero. 

Let 1:1~ denote the version of t1n obtained by replacing An with A~. Then, to prove 

that t1n converges to zero in probability, it is sufficient to show that 1:1~ = op(l) since 

P{An =I- A~} < c:. From the assumption that Z is independent of (N, K, T), we have 

2 n 2 

E { (!1~) 2 IX1, ... , Xn} = ~ L {h(Xi, A~) - h(Xi, Ao)} 
i=l 

where a;= E{Z - E(Z)} 2 < oo. Also from the definition of A~ and Conditions 1-3, 

we have 

0 <Ao( To) - 80:::; Ao(t) - 80:::; A~(t) :::; Ao(t) + 80:::; Ao(T) + 80 :::; M + 80 
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for t E [To, T] and 

for j = 1, ... ,Ki, i = 1, ... , n with probability 1. Hence, we have 

Ki-1 

< c1 L D..Ni(Txi,j+l) { IA~(Txi,j) - Ao(Txi,j)I + IA~(Txi,j+l) - Ao(Txi,j+i)I} 


j=l 

Ki-1 


+c2 L D..Ni(Txi,j) { IA~(Txi,j) - Ao(Txi,j)I + IA~(Txi,j-1) - Ao(Txi,j-1)1} 

j=l 


+IA~(Txi,xJ - Ao(Txi,xJI 
Ki-1 

+c3 L D..Ni(Txi,xJ { IA~(Txi,xJ - Ao(Txi,xJI + IA~(Txi,Ki-i) - Ao(Txi,Ki-i)I} 
j=l 

< c4 {1 + f D..Ni(Txi,j)} sup IA~(t) - >.o(t)i
j=l . tE[To,T) 

- c4 {1 + Ni(Txi,xJ} sup IA~(t) - >.o(t)I, 
tE[To,T) 

Thus, D..~ = op(l). This completes the proof of the theorem. D 

Remark. Note that the asymptotic result requires Z/s as independent and identically 

distributed random variables. For example, this assumption is satisfied in randomized 

clinical trials, where all patients in the study are randomly assigned to one of the 

treatments. 
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3.4 Simulation Study 

To examine the finite-sample property of the proposed test statistic and compare it 

with those of the tests presented by Sun and Fang (2003), Park et al. (2007) and Zhang 

(2006), we carry out a simulation study for the two-sample comparison problem. When 

k = 2, then the null hypothesis can be tested by T = Un/a which has asymptotic 

standard normal distribution, where Un and (J are as presented in Theorem 3.3.1. Let 

TsF denote the test proposed by Sun and Fang (2003), and let ~ (i=l, 2, 3) denote 

the tests presented by Park et al. (2007) and Zhang (2006) with three different wight 

processes: wJ1
l(t) = 1, wJ2

l(t) = Yn(t) = L~=l I(t :::; TKi,KJ/n, and wJ3
l(t) = 

{Yn 1 Yn 2 }/Yn(t), where Yn1 = LiESi I(t:::; TKi,KJ/nz, S1 denotes the set of indices for 

subjects in group l and n1 is the number of subjects in group l, l = 1, 2. To generate 

panel count data {Ki,TKi,j,Ni(TKi,j),j = l, ... ,Ki,i = 1, ... ,n}, we mimic medical 

follow-up studies similar to the example discussed in the next section. We first generate 

the number of observation times Ki from the uniform distribution U { 1, ... , 10}, and 

then, given Ki, we generate observation times TKi,/s from U{l, ... , 10}, for simplicity. 

To generate Ni (TK;,j) 's, we assume that Ni's are nonhomogeneous Poisson or mixed 

Poisson processes. In particular, let {vi, i = 1, ... , n} be independent and identically 

distributed random variables, and given vi, let Ni(t) be a Poisson process with mean 

function Ai(t) = vit for i E S1 , Ai(t) = vit exp(/3) for i E S2 . Here, it is assumed that 

Zi = 0 for i E S 1 and Zi = 1 for i E S2 . 

We consider two cases: vi = 1 and vi ,...., Gamma(2, 1/2). For each case, we consider 

two sample sizes, n 1 = n 2 = 50 and 100, respectively. The NPMLE An is computed 

by using the modified iterative convex minorant algorithm (MICM); see Wellner and 
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Zhang (2000). All the results reported are based on 1000 Monte Carlo replications 

using R software. 

Table 3.1: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for Poisson processes 

{3 T TsF T1 T2 T3 

ni n2 50 

0.0 0.051 0.047 0.053 0.055 0.055 

0.1 0.298 0.207 0.214 0.200 0.200 

0.2 0.855 0.693 0.697 0.667 0.665 

0.3 1.000 0.979 0.981 0.974 0.974 

ni = n2 = 100 

0.0 0.049 0.041 0.043 0.047 0.047 

0.1 0.553 0.422 0.423 0.405 0.405 

0.2 0.990 0.957 0.958 0.948 0.947 

0.3 1.000 1.000 1.000 1.000 1.000 
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Table 3.2: Percentage of null hypothesis rejection at significance level 5% based on 

1000 replications for mixed Poisson processes 

{3 T TsF T1 T2 T3 

n1 n2 - 50 

0.0 0.046 0.044 0.045 0.047 0.047 

0.1 0.098 0.083 0.084 0.085 0.085 

0.2 0.223 0.183 0.185 0.184 0.184 

0.3 0.450 0.370 0.380 0.375 0.375 

n1 = n2 = 100 

0.0 0.043 0.046 0.048 0.045 0.045 

0.1 0.141 0.111 0.114 0.111 0.111 

0.2 0.411 0.316 0.317 0.307 0.307 

0.3 0.710 0.590 0.596 0.592 0.592 
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Figure 3.1: Simulation study. Normal quantile plot (n = 100). 

64 




Normal Q-Q Plot 
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Figure 3.2: Simulation study. Normal quantile plot (n = 200). 
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Tables 3.1 and 3.2 present the estimated sizes and powers of the proposed test 

statistic T, the test TsF (Sun and Fang, 2003) and the test statistics T,/s (Park et 

al., 2007 and Zhang, 2006) at significance level a = 0.05 for different values of f3 for 

the two cases, respectively. In the first case, the Ni (t) 's are Poisson processes. In the 

second case, the Ni(t)'s are mixed Poisson processes. The first part of the table is for 

the situation with the total sample size of 100 and the second part is for the situation 

with the total sample size of 200. For the situation considered here, the proposed test 

displays the highest power. As expected, the power increases when the sample size 

increases, and the power decreases in the presence of more variability. To evaluate 

the asymptotic result presented in Theorem 3.3.1, the quantile plots of the proposed 

test statistic T against the standard normal distribution are constructed. Figures 3.1 

. and 3.2 present the plots for n = 100 and n = 200, respectively, and they clearly 

reveal that the asymptotic approximation is quite good. From Tables 3.1 and 3.2, 

we conclude that the proposed test based on the NPMLE is more powerful than the 

existing tests based on NPMPLE. 

3.5 An Illustrative Example 

To illustrate the proposed method, we consider a floating gallstones study presented 

by Thall and Lachin (1988). The data comprise the first year follow-up of the patients 

in two study groups, placebo (48) and high-dose chenodiol (65), from the National 

Cooperative Gallstone Study. The data include the successive visit-times in study 

weeks and the associated counts of episodes of nausea. The whole study consists of 916 

patients who were randomized to placebo, low dose, or high dose group and followed 
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for up to two years and one of the objectives of the study is to test the difference of 

the two treatments with respect to the incidence rate of nausea. 

During the study, patients were scheduled to return for clinical visits at 1, 2, 3, 6, 9, 

and 12 months. In reality, most of the patients visited about six times within the first 

year, but actual visit times differed from patient to patient. Some patients had only 

one visit and some had 9 visits. As pointed out by Thall and Lachin (1988), there is no 

evidence that the number of observations and actual observation times are related to 

the incidence of nausea, and so it seems reasonable to assume that conditions required 

for the asymptotic result are satisfied. 

Define Zi = 1 for patients in the placebo group and Zi = 0 otherwise. To test 

the difference between the two groups, we apply the proposed method to the data 

from 113 gallstone patients in the two groups and obtain T = 0.264 which yields a 

p-value of 0.792 for testing H0 based on the asymptotic result in Theorem 3.3.1. This 

result suggests that the incidence rates of nausea were not significantly different for 

the patients in the two groups, which agrees with the findings of Schoenfield et al. 

(1981), Sun and Fang (2003) and Park et al. (2007). 

3.6 Concluding Remarks 

This chapter discusses the problem of the nonparametric comparison of counting pro

cesses when only panel count data are available. The nonparametric maximum like

lihood estimators are used to estimate the mean functions of counting processes. A 

new nonparametric test is proposed for the problem and the asymptotic property of 

the test statistic is derived. Simulation studies are carried out which suggest that the 
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proposed method works well for practical situations, and is more powerful than the 

existing tests based on the nonparametric maximum pseudo-likelihood estimators of 

the mean functions. 

Note that the proposed procedure depends on the assumption that treatment in

dicators can be regarded as independent and identically distributed random variables. 

Next chapter will be to develop a class of tests applicable to general situations by 

using the nonparametric maximum likelihood estimates instead of the nonparametric 

maximum pseudo-likelihood estimates for the mean functions. 
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Chapter 4 

New Nonparametric Tests for 

Panel Count Data Based on 

Likelihood Approach 

4.1 Introduction 

Consider a study that concerns some recurrent event and suppose that each subject 

in the study gives rise to a counting process N(t), denoting the total number of oc

currences of the event of interest up to time t. Also suppose that for each subject, 

observations include only the values of N(t) at discrete observation times or the num

bers of occurrences of the event between the observation times. Such data are usually 

referred to as panel count data (Sun and Kalbfleisch, 1995; Wellner and Zhang, 2000). 

Our focus here will be on the situation when such a study involves k (2: 2) groups. Let 

A1(t) denote the mean function of N(t) corresponding to the lth group for l = 1, ... , k. 
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The problem of interest is then to test the hypothesis H0 : A1(t) = · · · = Ak(t). 

A number of authors have discussed the analysis of recurrent event data when each 

subject in the study is observed continuously over an interval or when the exact times 

of occurrences of the recurrent event are known. For example, the book by Andersen et 

al. ( 1993) presents many of the commonly used statistical methods for the analysis of 

recurrent event data. In contrast, there exists limited research on the analysis of panel 

count data. Sun and Kalbfleisch (1995) and Wellner and Zhang (2000) studied esti

mation of the mean function of N(t). Sun and Wei (2000) and Zhang (2002) discussed 

regression analysis for such data. To test the hypothesis H0 , Thall and Lachin (1988) 

suggested to transform the problem to a multivariate comparison problem and then 

apply a multivariate Wilcoxon-type rank test. Sun and Fang (2003) proposed a non

parametric procedure for this problem, but their procedure depends on the assumption 

that treatment indicators can be regarded as independent and identically distributed 

random variables, which may not be the case in practice. Park et al. (2007) proposed a 

class of nonparametric tests for the two-sample comparison based on the istonic regres

sion estimator of the mean function of counting process. Zhang (2006) also presented 

nonparametric tests for the problem based on the nonparametric maximum pseudo

likelihood estimator which is equivalent to the istonic regression estimator (Wellner 

and Zhang, 2000). Also, Wellner and Zhang (2000) showed through Monte Carlo sim

ulations that the nonparametric maximum likelihood estimator (NPMLE) of the mean 

function is more efficient than the nonparametric maximum pseudo-likelihood estima

tor (NPMPLE). However, no nonparametric tests have been discussed in the literature 

for panel count data based on the NPMLE since the NPMLE is more complicated both 

theoretically and computationally. It is, therefore, particularly important to develop 
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nonparametric tests based on the NPMLE for panel count data. One would naturally 

expect the tests based on the NPMLE to be more powerful than the tests based on the 

NPMPLE. However, unlike the isotonic regression estimate, the maximum likelihood 

estimate has no closed-form expression and its computation requires an iterative con

vex minorant algorithm. In this chapter, we propose some nonparametric tests based 

on the maximum likelihood estimator and then compare them with the existing tests 

for the problem of multi-sample nonparametric comparison of counting processes with 

panel count data. 

The rest of this chapter is organized as follows. Section 4.2 discusses estimation of 

the mean function and the existing nonparametric tests for the hypothesis Ho when 

only panel count data are available. The asymptotic normality of the functional of the 

NPMLE is established, while its proof is presented in Section 4.6. Section 4.3 presents 

two classes of nonparametric test statistics. The statistics, motivated by the property 

of the NPMLE and the idea used in survival analysis, are formulated as the integrated 

weighted difference between the rates of increase of the estimated mean functions 

corresponding to the pooled data and each group or two groups. The asymptotic 

normality of these test statistics is also established, while proofs are given in Section 

4.6. In Section 4.4, finite-sample properties of the proposed test statistics are examined 

through Monte Carlo simulations. In Section 4.5, we apply the proposed methods to 

two data from a floating gallstones study and a bladder tumor study, respectively. 

71 




4.2 Nonparametric Maximum Likelihood Estima

tion of Mean Function 

Wellner and Zhang (2000) studied two estimators of the mean of a counting process 

with panel count data: the nonparametric maximum pseudo-likelihood estimator and 

the nonparametric maximum likelihood estimator. To describe the test statistics, we 

introduce first the NPMLE. Suppose that N = { N(t) : t ~ O} is a non-homogeneous 

Poisson process with the mean function E(N(t)) = A0 (t) . Suppose that K is an 

integer-valued random variable and T = {Tk,j, j = 1, ... , k, k = 1, 2, ...} is a random 

triangular array, where Tk,j-l < Tk,j and Tk,o = 0, for j = 1, ... , k and k = 1, 2, .... We 

assume that {(K; Tx,1, ... , Tx,K)} are independent of N. Let X = (K, Tx, Nx ), where 

Tk is the kth row of the triangular array T and Nk = (N(Tk, 1), ... , N(Tk,k)). Then, 

Xi = (Ki, Txi, Ni,KJ, i = 1, ... , n, is a random sample of size n from the distribution 

of X. Let X = (X1, ... ,Xn)· Then, the log-likelihood function for the mean function 

A is 

n Ki 
LL (Ni(Txi,j) - Ni(Txi,j-1)) log (A(Txi,j) - A(Txi,j-1)) 
i=l j=l 

n 

- LA(Txi,xJ 
i=l 

after omitting the parts independent of A. 

Let t 1 < · · · < tm denote the ordered distinct observation time points in the set of 

all observation time points {TKi,j, j = 1, ... , Ki, i = 1, ... , n}. Then the NPMLE of 

A0 , An, is defined to be the nondecreasing, non-negative step function with possible 

jumps only occurring at te, R. = 1, ... , m, that maximizes ln(AjX). Wellner and Zhang 

(2000) gave the characteristic and the algorithm for computing this estimator, and 
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studied its asymptotic properties. 

Next, we need some more notation, some of which were introduced by Schick and 

Yu (2000) and Wellner and Zhang (2000). Let B denote the collection of Borel sets 

in R, and let B[o,7 ] = {B n [O, r] : B E B}. Define measures µ 1 , µ 2 , µ3 and v on 

([O, r], Bro,TJ) by 

00 k 

µl(B) = L P(K = k) L P(Tk,j E BIK = k), 
k=l j=l 

00 k 

µ2(B1 x B2) = L P(K = k) L P(Tk,j-1 E B1, Tk,j E B2IK = k), 
k=l j=l 

µ3(B1 x B2 x B3) 
00 k-1 

= L P(K = k) L P(Tk,j-1 E B1, Tk,j E B2, Tk,j+l E B3IK = k), 
k=2 j=l 

and 

v(B1 x B2) = L
00 

P(K = k)P(Tk,k-1 E B1, Tk,k E B2IK = k) 
k=l 

The existing nonparametric tests (Park et al., 2007; Zhang, 2006) are based on the 

asymptotic normality of a smooth functional of the nonparametric maximum pseudo

likelihood estimator (the istonic regression estimator) An, 

[ W(t){A.(t) - A0(t)}dµ 1{t) = P [t W(TKJ){i\..(TK,;) - Ao(TK,;)}l· 
where W(t) is a weight function, and Pis the probability measure of X, Pf= J fdP. 

However, it is unknown if the asymptotic normality of the functional of the nonpara

metric maximum likelihood estimator, J; W(t){An(t) - A0 (t)}dµ 1(t), still holds. We 

73 




observe a key to the proof of such asymptotic normality is to use an important char

acteristic of the An given by 

n Ki

LL<p(An(Txd))(An(TK;,j) - Ni(Tx;,j)) = 0 ( 4.1) 
i=l j=l 

for any real function <p. However, from (2.13) of Wellner and Zhang (2000), the 

corresponding characteristic of the NPMLE can be written as 

(4.2) 

where 

and 

(2.2) can be extended to the form 

(4.3) 

which will be shown in Lemma 4.6.1. Clearly, the structure of (4.3) is different from 

that of (4.1) and is much more complicated. This is why the derivation of the asymp

totic property of J; W(t){An(t) -A0 (t)} dµ 1(t) has not been done yet. So, we need to 

develop a new form of the test statistic when the NPMLE is used to estimate the mean 

function of counting process with panel count data. Motivated by such characteristic 
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of the NPMLE, we define 

~W(T ·)A(T ·) { LlAo(Tx,J+1) _ LlAo(Tx,j)}
L......t K,J K,J L\A(T . ) L\A(T ·)
j=l K,J+l K,J 

LlAo(Tx,x)} (4.4)+W(Tx,K )A(Tx,K) { 1 - L\A(Tx,K) . 

It is easy to see that PfA ( X) can be expressed as 

PfA(X) 

{Ao(v) - A0 (u) Ao(u) - Ao(t)} 
= W(u)A(u) A(v) _ A(u) - A(u) _ A(t) dµ 3(t, u, v) JJ J 

{ Ao(u) - Ao(t)}
+ W(u)A(u) 1 - A(u) _ A(t) dv(t, u).J J 

For establishing asymptotic results on P !J...JX), we need the following regularity 

conditions: 

A. There exists a constant K0 such that P{K ::; Ko} = 1 and that the random 

variables Tk/s take values in a bounded set [70,T], where To,T E (O,oo); 

B. The mean function A0 is strictly increasing such that A0 (T0 ) > 0 and A0 (T) ::; M 

for some constant M E ( 0, oo); 

C. There exists a constant L 0 such that 

D. E {ecN(t)} is uniformly bounded fort E [O, T] and some constant c; 

Condition C holds if A0 is differentiable, A~ has a positive lower bound in [To, T}, 

and P{min1:<:;j:<:;x(Tx,j - Tx,j-i) 2: s0 } = 1 for some fixed time s0 , where s0 can be 
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considered as the smallest length of consecutive observation times. Condition E holds 

if P{Tx,1=To}> 0 and µ~(t) > 0 fort E (To, T). 

Now let A01 denote the inverse function of A0 , and let W o A01 denote composition 

of two functions W and A0
1 

. Zhang (2006) established the asymptotic normality of 

J; W(t){An(t) - A0 (t)}dµ 1(t) when W o A01 is not only bounded Lipschitz but also 

monotone. However, the assumption that W o A01 is monotone is not required for 

the tests with interval-censored data as a special case of panel count data; see Huang 

and Wellner (1995) and Zhang et al. (2001). Here, we do not need this monotonicity 

condition for W o A0
1

. 

Theorem 4.2.1 Suppose that Conditions A, B, C, D and E hold. Further, suppose 

that W (t) is a bounded weight process such that W oA01 is a bounded Lipschitz function. 

Then as n ---+ oo, 

(4.5) 


in distribution, where Uw has a normal distribution with mean zero and variance a~ 

with 

a2 ·)A (T ·) { tlN(Tx,j+i) _ tlN(Tx,j)}E [I:W(T
w 

j=l K,J ° K,J tlA0 (TK,j+I) llAo(Tx,j) 

2 
tlN(Txx) }] (4.6)+W(Tx,x)Ao(Tx,x) { 1- llAo(T~,x) 

which can be consistently estimated by 

(4.7) 
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4.3 Nonparametric Tests 

Consider a longitudinal study that is concerned with some recurrent event and involves 

n independent subjects, n1 in the lth group with n 1 + · · · + nk = n and k ~ 2. Let 

Ni(t) denote the counting process arising from subject i and A1(t) (l = 1, ... , k) be as 

defined before, for i = 1, ... , n. Suppose that each subject is observed only at discrete 

time points 0 < Txi, 1 < · · · < Txi,Ki and that no information is available about Ni(t) 

between observation times; that is, only panel count data are available. For simplicity, 

assume that H0 is true, and let A0 (t) denote the common mean function of the Ni(t)'s. 

Let An1 denote the nonparametric maximum likelihood estimate of A1 based on 

samples from all the subjects in the lth group, and An based on the pooled data. To 

test the hypothesis H 0 , motivated by our asymptotic results in Section 4.2 and an 

idea commonly used in survival analysis (Andersen et al., 1993 , Pepe and Fleming, 

1989; Petroni and Wolfe, 1994; Cook et al., 1996; Zhang et al., 2001; Park et al., 2007; 

Zhang, 2006), we propose the statistics 
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(for l = 2, ... , k), and wJ1l(t)'s are bounded weight processes. The statistic U~l) is 

the integrated weighted difference between the rates of increase of An and An1 over 

the observation times and the statistic vJ1l has a similar meaning. For the selection of 

the weight process wJ1l(t), a simple and natural choice is w2·1)(t) = 1, l = 1, ... 'k. 

Another natural choice is wJ2
•
1
l(t) = Yn(t) = L~=l I(t ~ TKi,KJ /n, l = 1, ... 'k, 

in which case weights are proportional to the number of subjects under observation. 

Based on groups, one may choose the weight process wJ0 (t) as 

where Yn1 (t) (l = 1, ... , k) are defined as Yn(t) with the summation being only over 

subjects in the lth group. Some weight processes similar to wJ3l have been used 

when recurrent event data are observed; see Andersen et al. (1993). In addition, 

.L:~=l I(t > TK;,KJ /n is also chosen as another weight process by Zhang (2006). Some 

other possible choices are: 

1- Yn1(t) (l -Yn1 (t))(l-Yn1 (t)) 
l-Yn(t)' 1 - Yn(t) 

Now, we state the asymptotic distribution of Un = (U~1 ), ..• , U~k)f and V n 

(vJ2l, ... , v~k)f. 

Theorem 4.3.1 Suppose that Conditions A, B, C, D and E hold. Further, suppose 

that wJO (t) 's are bounded weight processes and that there exists a bounded function 
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W(t) such that W o A01 is a bounded Lipschitz function, and 

{T l1/2
Jo 	 {W~1)(t) - W(t)} 2 dµ 1(t) = op(n-116

) , l = 1, ... , k. (4.10)[ 

Also suppose that nz/n ---+ p1 as n ---+ oo, where 0 < p1 < 1, l = 1, ... , k, and 

P1 + · · · +Pk = 1. Then, under Ho : Ai = · · · = Ak = Ao, 

(i) 	Un has an asymptotic normal distribution with mean vector 0 and covariance 

matrix 

(4.11) 


where 

VPi- ff; ffi 

fol ffe-ff;r= 

and ar = ... =a£= (J~ given in (4.6). 

(ii) 	V n has an asymptotic normal distribution with mean vector 0 and covariance 

matrix 

(4.12) 

where 

0 0-ff; ff; 
0 	 0-ff; ff;H= 

0 0-ff;Pl 

and a[ is as given in (i). 
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(iii) In addition, if 

for l = 1, ... , k, then ~Vw and ~Vw can be consistently estimated by 

(4.14) 


and 

(4.15) 

where 

0-fi ff; 0 

0-fi ff;0 

-fi 0 0 

and 

for l = 1, ... , k. 
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Let U 0 denote the first (k - 1) components of Un and :E0 the matrix obtained by 

deleting the last row and column of :Eun· Then, using Theorem 4.3.1, two tests can be 

carried out for testing H0 by means of the statistic x6 = Uif:E01 U0 and V~:tv.:vn, 

which have asymptotically a central x2-distribution with (k - 1) degrees of freedom. 

This can be seen readily from the proof of the theorem. 

REMARK 1. If the weight process w~l) is symmetric about X1, ... 'Xn, then (4.13) 

is equivalent to 

REMARK 2. For selection of weight processes, Zhang (2006) required that Wn(t), 

W(t) and W oA01 are monotone. These monotonicity assumptions restrict availability 

of weight processes. For example, the weight process :.:: 1(~;~;~ (~~) is often used in 2
survival analysis, but it is not monotone. In addition, the monotonicity assumption 

on the weight process is not appropriate for deriving optimal tests under alternatives. 

In the above theorem, we have removed these assumptions. Therefore, compared to 

those stated in Zhang (2006), more weight processes are available here. It can be easily 

shown that the weight processes mentioned earlier all satisfy the conditions required 

by the theorem. 

4.4 Simulation Study 

To examine the finite-sample properties of the proposed test statistics and compare 

them with those of the tests presented by Sun and Fang (2003), Park et al. (2007) 

and Zhang (2006), we carry out a simulation study for the two-sample comparison 
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problem. When k = 2, then the null hypothesis can be tested by T1 = u~l) I0-u and 

T2 = vJ2l / 0-v which have asymptotic standard normal distribution, where 

and U~1l, vJ2l and 0-1 are as given in (4.8), (4.9) and (4.16), respectively. Let TsF, 

Tpsz and Tz denote the tests presented by Sun and Fang (2003), Park et al. (2007) 

and Zhang (2006), respectively. Here, we focus on evaluating the performance of T1 

and T2 and comparing them to those of Tpsz, Tz and TsF· Note that Tz = Tpsz 

for k = 2. To generate panel count data {ki, tij, nij, j = 1, ... , ki, i = 1, ... , n}, we 

mimic medical follow-up studies such as the examples discussed in the next section. 

We first generate the number of observation times ki from the uniform distribution 

U{l, ... , 10}, and then, given ki, we generate observation times ti/s from U{l, ... , 10}, 

for simplicity. To generate ni/s, we assume that N/s'are nonhomogeneous Poisson or 

mixed Poisson processes. In particular, let {vi, i = 1, ... , n} be independent and 

identically distributed random variables, and given vi, let Ni(t) be a Poisson process 

with mean function Ai(tlvi) = E(Ni(t)lvi)· Let S1 denote the set of indices for subjects 

in group l, l = 1, 2. For the objective of the study, we consider two cases as follows: 

Figures 4.1-4.2 display the graphs of the true mean functions for two cases with 

v = 1 and different values of /3. It can be seen that the two mean functions do not 
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Figure 4.1: True mean functions for Case 1 with v = 1 and f3 = 0.1, 0.2. 
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Figure 4.2: True mean functions for Case 2 with v = 1 and f3 =:;; 3, 5. 

83 




overlap in Case 1 and they cross over in Case 2. 

For each case, we consider vi = 1 and vi ,...., Gamma(2, 1/2) corresponding to 

Poisson and mixed Poisson processes, respectively. For each setting, we consider two 

sample sizes, n 1 = n2 = 50 and 100, respectively. As mentioned earlier in Section 

4.3, we choose the four weight processes: 

1 (2) - - 1 ~ w~ l (t) = 1, Wn (t) - Yn(t) - - ~ I(t:::; tki,k;), 
n i=I 

w<3l(t) = Yni (t)Yn2 (t) and W(4l(t) = 1 - Y. (t) = ~ ~ I(t > t .).
n Y. (t) ' n n n ~ k,,k, 

n i=l 

The NPMLEs An and An1 are computed by using the modified iterative convex mino

rant algorithm (MICM); see Wellner and Zhang (2000). All the results reported here 

are based on 1000 Monte Carlo replications using R software. 

Tables 4.1-4.4 present the estimated sizes and powers of the proposed test statistics 

T1 and T2 and those of the test statistics Tpsz, Tz and TsF (Park et al., 2007; Zhang, 

2006; Sun and Fang, 2003) at significance level a = 0.05 for different values of /3 and 

the four weight processes based on the simulated data for the two cases with vi = 1 and 

vi ,...., Gamma(2, 1/2), respectively. When vi = 1, the Ni(t)'s are Poisson processes; 

when vi ,...., Gamma(2, 1/2), the Ni(t)'s are mixed Poisson processes. The first part 

of the table is for the situation with the total sample size of 100 and the second part 

is for the situation with the total sample size of 200. For Case 1 considered here, 

the proposed tests display good power properties and the powers are close for the four 

weight processes. As expected, the power increases when the sample size increases, and 

the power decreases in the presence of more variability. As seen in Tables 4.1 and 4.2, 

the proposed tests with w2) (t) have the best power performance, and the proposed 

tests based on the NPMLE are more powerful than the tests based on NPMPLE when 
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more variability exists, as one would expect. For Case 2 considered here, the proposed 

tests also display good power properties, but the powers rely on choices of weight 

processes. As seen in Tables 4.3 and 4.4, the proposed tests with wJ4
) have the best 

power performance, and the proposed tests with appropriate weights based on NPMLE 

are much more powerful and more robust than those based on NPMPLE in this case. 

For example, when {3 = 5, 8 for mixed Poisson processes, the new tests with wJ4
) 

have good powers, but the tests Tpsz & Tz (Park et al., 2007; Zhang, 2006 ) with 

four weights and TsF (Sun and Fang, 2003) have very poor powers. For all situations 

considered here, the performance of T1 and T2 are the same. 

Note that the tests with different weights have different powers for Case 2. Let's 

explain why these results are reasonable. In this case, two true mean functions cross 

over at time t = {3, the differences before this time point and after this time point have 

different signs, the difference after this point seems to dominate the difference before 

this point for the cases of {3 = 3, 5 and seems to be dominated by the difference before 

this point for the case of {3 = 8. When {3 = 3, 5, the tests with w2) and wJ4
) have 

better powers than those with wJ2l and wJ3l' and the test with wJ4l has the largest 

power since it weights the difference at later times more than those with w2)' wJ2l 

and wJ3
). In particular, when {3 = 5, the powers of the tests with wJ2l and wJ3l are 

very poor. This is because the small difference with large weights before this point 

and the large difference with small weights after this point seem to cancel each other. 

When {3 = 8, the tests with wJ2l, wJ3
) and wJ4

) perform better than the test with 

.w2). When {3 = 8, the biggest difference between two mean functions occurs at earlier 

time so that the tests with wJ2l and wJ3
) have reasonable powers. But the test with 

wJ1l = 1 has a poor power though the difference at earlier times seems to dominate 
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Table 4.1: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for Poisson processes in Case 1 

{3 T2 Tpsz & Tz TsF 

wJll wJ2l wJ3l wJ4l wJll wJ2l wJ3l wJ4l 

ni = n2 = 50 

0.0 0.060 0.058 0.058 0.056 0.063 0.061 0.061 0.063 0.061 

0.1 0.298 0.210 0.209 0.194 0.214 0.200 0.200 0.204 0.207 

0.2 0.858 0.747 0.748 0.790 0.697 0.667 0.665 0.695 0.693 

0.3 1.000 0.987 0.983 0.986 0.981 0.974 0.974 0.968 0.979 

ni = n2 = 100 

0.0 0.047 0.047 0.047 0.049 0.044 0.046 0.046 0.045 0.043 

0.1 0.542 0.472 0.471 0.489 0.423 0.405 0.405 0.411 0.422 

0.2 0.993 0.967 0.964 0.991 0.958 0.948 0.947 0.952 0.950 

0.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

T1 T1 


ni = n2 = 50 ni = n2 = 100 


0.0 0.052 0.051 0.051 0.053 0.051 0.049 0.049 0.050 

0.1 0.340 0.218 0.218 0.220 0.548 0.479 0.474 0.492 

0.2 0.868 0.787 0.764 0.798 0.996 0.976 0.974 0.993 

0.3 1.000 0.997 0.995 0.991 1.000 1.000 1.000 1.000 
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Table 4.2: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for mixed Poisson processes in Case 1 

f3 T2 Tpsz & Tz TsF 

w~i) w2) w~3) w~4) w~i) w~2) w~3) w~4) 

ni = n2 = 50 

0.0 0.043 0.040 0.042 0.045 0.037 0.040 0.040 0.042 0.035 

0.1 0.100 0.097 0.097 0.099 0.084 0.085 0.085 0.086 0.083 

0.2 0.221 0.205 0.207 0.204 0.185 0.184 0.184 0.180 0.183 

0.3 0.458 0.407 0.408 0.415 0.380 0.375 0.375 0.379 0.370 

ni = n2 = 100 

0.0 0.043 0.041 0.041 0.046 0.048 0.045 0.045 0.044 0.046 

0.1 0.140 0.125 0.125 0.138 0.114 0.111 0.111 0.112 0.111 

0.2 0.410 0.364 0.362 0.368 0.317 0.307 0.307 0.314 0.316 

0.3 0.708 0.663 0.662 0.672 0.596 0.592 0.592 0.593 0.590 

Ti Ti 


ni = n2 = 50 ni = n2 = 100 


0.0 0.054 0.048 0.048 0.046 0.048 0.047 0.047 0.051 

0.1 0.108 0.102 0.102 0.100 0.142 0.126 0.123 0.137 

0.2 0.216 0.205 0.206 0.207 0.412 0.388 0.390 0.391 

0.3 0.474 0.404 0.402 0.437 0.710 0.672 0.670 0.671 
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Table 4.3: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for Poisson processes in Case 2 

f3 T2 Tpsz & Tz TsF 

w2) wJ2) wJ3) wJ4) w2) w2) wJ3) wJ4l 

n1 = n2 = 50 

3 1.000 0.787 0.766 1.000 0.956 0.900 0.899 1.000 0.955 

5 0.969 0.080 0.077 1.000 0.189 0.113 0.111 0.880 0.188 

8 0.127 0.674 0.688 0.993 0.403 0.559 0.562 0.069 0.400 

n1 = n2 = 100 

3 1.000 0.964 0.960 1.000 0.999 0.993 0.993 1.000 0.999 

5 1.000 0.078 0.079 1.000 0.290 0.140 0.139 0.988 0.284 

8 0.222 0.935 0.939 1.000 0.670 0.843 0.846 0.082 0.667 

T1 T1 

n1 = n2 = 50 n1 = n2 = 100 

3 1.000 0.784 0.769 1.000 1.000 0.958 0.955 1.000 

5 0.969 0.088 0.086 1.000 1.000 0.084 0.083 1.000 

8 0.130 0.675 0.689 0.995 0.232 0.932 0.935 1.000 
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Table 4.4: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for mixed Poisson processes in Case 2 

(3 T2 Tpsz & Tz TsF 

wJI) wJ2) wJ3l wJ4l wJI) wJ2) wJ3l wJ4l 

ni = n2 = 50 

3 0.858 0.301 0.294 0.992 0.386 0.321 0.318 0.708 0.380 

5 0.424 0.078 0.078 0.943 0.089 0.071 0.071 0.289 0.086 

8 0.062 0.255 0.263 0.771 0.117 0.158 0.158 0.039 0.111 

ni = n2 = 100 

3 0.992 0.534 0.530 1.000 0.695 0.594 0.594 0.949 0.691 

5 0.677 0.071 0.072 1.000 0.100 0.065 0.065 0.473 0.095 

8 0.096 0.434 0.437 0.961 0.185 0.280 0.280 0.067 0.182 

T1 T1 

ni = n2 = 50 ni = n2 = 100 

3 0.858 0.299 0.289 0.991 0.993 0.533 0.529 1.000 

5 0.396 0.074 0.074 0.942 0.685 0.068 0.066 1.000 

8 0.063 0.259 0.268 0.771 0.094 0.432 0.438 0.960 
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the difference at later times. This can be understood from the expressions of the test 

statistics Un and V n where the differences with different signs multiplied by the value 

of the mean function may cancel each other since the mean function takes small values 

at earlier times and large values at later times. When f3 = 8, the test with W~4) still 

perform well. This is because it puts zero weight at earlier times and heavily weight 

at later times. Similar situations happened in real examples considered in the next 

section. 

To evaluate the asymptotic result given in Theorem 4.3.1, the quantile plots of 

the test statistic T2 against the standard normal distribution are constructed. Figures 

4.3 and 4.4 present the plots for the cases with Wn (t) = w2) (t) and n = 100 and 

n = 200, respectively, and they clearly reveal that the asymptotic approximation is 

very good. Similar plots were obtained for test statistic T1 and other situations as 

well. 
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Figure 4.3: Simulation study. Normal quantile plot for T1 (n = 100). 
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Figure 4.4: Simulation study. Normal quantile plot for T2 (n = 200). 

In the above simulation study, we did examine all four weight processes suggested 

earlier in Section 4.3, and in Case 1, the weight process wJ1l yielded slightly higher 

power than the other three weight processes, and in Case 2, the weight process wJ4l 

yielded the largest power. These simulation results suggest that, when the mean func

tions do not cross over, the test with the equal weight has a good power; otherwise, the 

test with the unequal and appropriate weight will also have a good power. In general, 

one can choose the weight process based on the behavior of the NPMLEs of the mean 

functions to improve power since the true mean functions are unknown. When the 

difference of mean functions at earlier times dominate the difference at later times, 

the tests with wJ2l and wJ3l tend to have good powers; when the difference of mean 

functions at later times dominate the difference at earlier times, the test with wJ4l 

tends to have a good power. In addition to the four processes considered here, some 

other weight processes can be found in Andersen et al. (1993), which discusses non
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parametric treatment comparison based on recurrent event data. It would, therefore, 

be of great interest to investigate the problem of the selection of a weight process based 

on data. 

The new tests based on the NPMLE are more powerful and more robust than 

the existing tests based on the NPMPLE. One possible reason is that the NPMLE is 

more efficient than the NPMPLE. The main drawback of the NPMPLE is that the 

dependence of events within a subject is ignored. Another reason is that the structure 

of new test statistic is more reasonable since it is based on the characteristic of the 

NPMLE. 

4.5 Illustrative Examples 

To illustrate the proposed method, we consider here two examples: a floating gallstones 

study and a bladder tumor study. 

4.5.1 A Floating Gallstones Study 

Thall and Lachin (1988) described a follow-up study on patients with floating gall

stones. The data consist of the first year follow-up of the patients in two study groups, 

placebo (48) and high-dose chenodiol (65), from the National Cooperative Gallstone 

Study. The observed data include the successive visit-times in study weeks and the 

associated counts of episodes of nausea for patients in different treatment groups; see 

Table 1 of Thall and Lachin (1988). The whole study consists of 916 patients who were 

randomized to placebo, low dose, or high dose group and followed for up to two years. 
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During the study, patients were scheduled to return for clinical visits at 1, 2, 3, 6, 9, 

and 12 months. In reality, most of the patients visited about six times within the first 

year, but actual visit times differ from patient to patient. Some patients had only one 

visit and some had 9 visits. As pointed out by Thall and Lachin (1988), there is no 

evidence that the number of observations and actual observation times are related to 

the incidence of nausea, and so it seems reasonable to assume that conditions required 

for the asymptotic results hold in this case. The problem of interest here is to compare 

the two treatment groups in terms of the incidence rates of nausea. 
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Figure 4.5: Floating gallstone study. Estimates of the mean functions . 

. To test the difference between the two groups, we treated the placebo group as 

group 1 (A1(t)) and the high-dose chenodiol group as group 2 (A2 (t)) and applied 

the proposed method to the data from 113 gallstone patients in the two groups to 

test the null hypothesis H 0 : A1(t) = A2 (t). The nonparametric maximum likelihood 

estimators of the incidence rates of nausea and the increments of the estimators are 
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Figure 4.6: Floating gallstone study. Increments of the estimated mean functions. 

shown in Figures 4.5 and 4.6. We obtained T1 = 0.175 and T2 = 0.206 with Wn(t) = 

wJ1
) (t), giving p-values of 0.861 and 0.837 based on the standard normal distribution, 

and T1 = -337.221, -494.571 and 241.159 and T2 = -193.238, -283.739 and 138.311 

with Wn(t) = wJ2
) (t), wJ3

) (t) and l-WJ2
) (t) which correspond top-values« 0.0001. 

The proposed tests with appropriate weights suggest that the incidence rates of nausea 

were significantly different for the patients in the two groups and this agrees with the 

results given in Thall and Lachin (1988); the proposed unweighted test fails to reject 

H0 . This can be easily understood by looking at the behavior of increments of the 

estimators. From Figure 4.6, we can see clearly that the increment of the mean event 

rate in the placebo group is higher than that in the high dose group at earlier times 

and in contrast, the irn;rement of the mean event rate in the high dose group is higher 

than that in the placebo group at later times in the year. So, the test with equal 

weights couldn't detect the difference between two groups. In comparison, the use of 

94 




the approach in Sun and Fang (2003) gave a p-value of 0.1428, Park et al. (2007) 

gave p-values: 0.454, 0.417 and 0.413 with three weights, respectively, and the tests 

presented by Zhang (2006) would give the same result as above. Thus, none of the 

existing tests based on NPMPLE can detect the difference of two treatments, and the 

proposed tests with suitable weights have detected successfully that, as we expected. 

One possible reason for this is that the nonparametric maximum likelihood estimator 

is more efficient than the nonparametric pseudo-likelihood estimator. 

4.5.2 A Bladder Tumor Study 

We consider a bladder tumor study conducted by the Veterans Administration Co

operative Urological Research Group (VACURG), and the data are presented in An

drews and Herzberg (1985). For some earlier analyses of these data, one may refer to 

Byar, Blackard and The VACURG (1977), Byar (1980), Wellner and Zhang (2000), 

Sun and Wei (2000), and Zhang (2002, 2006). The data were obtained from a random

ized clinical trial. All patients had superficial bladder tumors when they entered the 

trial, and they were assigned randomly to one of three treatments: placebo, thiotepa 

and pyridoxine. At subsequent follow-up visits, any tumors noticed were removed and 

treatment was continued. The study included 116 patients, of which there were 47 in 

placebo group, 38 in thiotepa group and 31 in pyridoxine. We can get a set of panel 

count data {ki,tij,nij,j = l, ... ,ki,i = 1, ... ,n} where for the ith patient, ki is the 

number of visits, tij 's are all visit times, and nij is total number of tumors until tij 

(j = 1, ... , ki)· The objective of the study is to determine the effect of treatment on 

the frequency of tumor recurrence. 
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Figure 4.8: Bladder tumor study. Increments of the estimated mean functions. 
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Let A1(t), A2 (t) and A3 (t) be the mean functions corresponding to the three treat

ment groups: placebo, thiotepa and pyridoxine, respectively. The nonparametric max

imum likelihood estimators of mean functions and their increments from the three 

groups are presented in Figures 4.7 and 4.8, respectively. We observe from Figure 7 

that the difference of the three groups becomes larger when the time increases. To test 

the null hypothesis H0 : A1(t) = A2 (t) = A3 (t), we applied the proposed method 

to this panel count data. We obtained x6 = 3.617, 3.269 and p-value = 0.164, 0.195 

with Wn(t) = 1, x6 = 1196123, 300179.2 and p-values < 10-8 with Wn(t) = Yn(t), 

and x6 = 489000.4, 121908.1 and p-values < 10-8 with Wn(t) = 1 - Yn(t), based 

on the asymptotic distributions for test statistics Un and V n given in Theorem 3.1, 

respectively. The proposed tests having weights suggest that the frequency of tumor 

recurrence are significantly different for the patients in the three .groups at 0.01 level 

of significance, while the proposed unweighted test fails to detect the difference. This 

can also be understood from the behavior of the increments of the estimated mean 

functions shown in Figure 4.8. Incidentally, through a regression analysis of the data 

from two treatments, placebo and thiotepa, Sun and Wei (2000) and Zhang (2002) 

concluded that thiotepa effectively reduces the recurrence of tumors. However, the 

existing test procedures (Sun and Fang, 2003; Zhang, 2006) based on NPMPLE fail to 

reject the null hypothesis at level 0.05. 

These examples illustrate that different weights may result in different conclusions, 

and the tests with appropriate weight process could lead to better power of the test. 

Therefore, the selection of a suitable weight process would be important for detecting 

difference between groups. 
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4.6 Proofs 

In this section we present the proofs of Theorems 4.2.1 and 4.3.l. 

4.6.1 Proof of Theorem 4.2.1 

We begin with some preliminary results. For convenience, let us first recall some 

notation given in Wellner and Zhang (2000). Set 

:F ={A: [O, Tj---+ [O, oo)IA is nondecreasing, A(O) = O}. 

Let t 1 < t2 < · · · < tm denote the ordered distinct observation time points in the set 

of all observation time points {TKi,i• j = 1, ... , Ki, i = 1, ... , n}. Also let 0 = {u = 

( U1' U2, ... 'Um) : 0 ::; U1 ::; .•. ::; Um < 00} and the map A : :F ---+ n be defined by 

u = A(A) = (A(t1), A(t2), ... , A(tm)) for all A E :F, 

We also define a rank function R: {TKi,j : j = 1, 2, ... , Ki; i = 1, 2, ... , n} ---+ 

{1, 2, ... , m} such that 

Then, the log-likelihood function can be rewritten as 

</>(ulX) = t [~ {N;(TK;,;) - N;(TK<J-i)} 

X log { UR(TKi,j) - UR(TKi,j-1)} - UR(TKi,Ki)] 

and the NPMLE An of A0 is then given by 
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Set 

8</>(ulX) n 
<t>e(u) = au = L:: <t>i,e(u) fore= 1, 2, ... , m, 

e i=I 

where 

</>i,e(u) 

Lemma 4.6.1 Let r.p be any real function. Then 

(4.17) 

Proof. Let aj = An(tj) - An(tj_1), j = 1, ... , m. Using arguments similar to 

Proposition 2.1 of Groenebom (1996), we have 

m 8</>(u) . .L ~ = 0 if ai > 0 or i = 1. 
j=i J 

m n

LL </>i,e(u) = o, j = 1, ... ,p, 
f=kj i=l 

and so 

L L
n 

</>i,e(u) = o, j = 1, ... ,p - 1. 
kj 5o€<kj+1 i=l 

Thus 
n

L r.p(ue)L<l>i,e(u)=O, j=l,···,p-l, 
kj'.5o€<kj+1 i=l 
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since ite = A(te) is a constant for kj :SR< kj+I· Therefore, we conclude that 

m n

L 'P(ite) L </>i,e(ft) = 0. 
f=l i=l 

Hence, the lemma follows. 

Now, let µi be as defined in Section 4.2, and let di be the L2(µi) metric on :F, 

i = 1, 2. Then for A1 , A2 E :F, 

JIA1(t) - A2(t)J2dµ1(t) 

E [t{A1(TK,;) -A,(TK,;)}'l (4.18) 

and 

d~(A1, A2) 

= J J l(A1(s) - A1(t)) - (A2(s) - A2(t))J2dµ2(s, t) 

~ E [t{(A1(TK,;) -A1(TKJ-t)) - (A2(TK,;) - A,(TK,;-1))}'] · {4.19) 

If P(K :S K0 ) = 1 for some constant K0 , then we have 

(4.20) 

Wellner and Zhang (2000) showed that 

(4.21) 

and hence that the uniform consistency of An can be shown by using arguments similar 

to Proposition 5 of Schick and Yu (2000) under Conditions A, B, D and E; that is, 

sup IAn(t) - Ao(t)i ~ 0. (4.22) 
tE[ro,r] 
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Note that the uniform consistency of An implies for every 0 < 80 < mir{ Lo/2, Ao(To)} 

and any c > 0, there exists a positive integer NC such that 

sup P { sup IAn(t) - Ao(t)I > 80} < c. ~ (4.23) 
n>Ne tE[ro,r] I 

Here, we fix 80 . Let 

Fo ={A: A EF, sup IA(t) - Ao(t)I ::; 80}. (4.24) 
tE[ro,r] 

Define A~ as 

where n is the class of nondecreasing step functions with possible ju ps only at the 

observation time points {TKi,j' j = 1, ... ,Ki, i = 1, ... , n}. Clearly, we h ve 

sup P(An =/:.A~) ::; sup P { sup IAn(t) - Ao(t)I > 80} < c. (4.25) 
n>N, n>Ne tE[ro,r] 

I 

Proof. To establish the rate of convergence for A~, we shall apply Tieorem 3.2.5 of 

Van der Vaart and Wellner (1996). Define 

mA(X) = L
K 

[(N(TK,j) - N(TK,j-1)) log{A(TK,j) - A(TK,j-l)} 
j=l 

-{A(TK,j) - A(TK,j-1)}] I (4.26) 

and 

M(A) = PmA(X). i (4.27) 

Let h(x) = x(log(x) - 1) + 1. Then, h(x) 2'. /;(x - 1)2 for x in a nethbourhood of 

x = 1. Thus, in a neighbourhood of Ao, 
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I 

M(A0 ) - M(A) 
I 

I 

K I 

= P 
[ 
L{(Ao(TK,j) - A0 (TK,j-i)) log (A~~~K,j~ =~(VK~~±)))
j=l K,J K,J ~ 

-(Ao(TK,j) - Ao(TK,j-1)) + (A(TK,j) - A(TK,j-1))}] 

= p [~{A(T ·) -A(T . )}h (Ao(TK,j) -Ao(TK,j-1))j:. 
~ K,J K,J-l A(T ·) - A(T ._ ) ' 
j=l 	 K,J K,J 1 . 

(A0 (u) - Ao(v)) 
= {A(u) - A(v)}h A(u) _ A(v) dµ2 (u, v)J J 

2 
1 J J {A0 (u) }- A0 (v)2: 5 {A(u) - A(v)} A(u) _ A(v) - 1 dµ2 (u, v) 

2J J {(A0 (u) 	 (= 	~ - A(u)) - (A0 (v) - A(v))} d ) 
5 A(u) -A(v) µ 2 u,v 

2: c1 di(A, Ao) 

for some constant c1 , and hence the separation condition of the theor m is satisfied. 

Also, let 

F0 ={A: di(A, Ao) :S 8, A E Fo} (8 > 0) (4.28) 

and 

(4.29) 

Note that F 8 is a class of monotone nondecreasing functions. Then, i~ follows from 
I 

Theorem 2.7.5 of Van der Vaart and Wellner (1996) that for any rJ > , there exists 

a set of brackets {[Af, Af] : i = 1, · · ·, J} where J :::; ec2f77 for some c nstant c2 and 

d1(Af, Af) :::; 'TJ such that for any A E F0 , Af :::; A :::; Af for some i w"th 1 :::; i :::; J. 

Note that Af, Af (i = 1, · · ·, J) may not belong to F 8 and so they ~ay not have a 

uniform positive lower bound and a uniform finite upper bound in [Tori· Also note 
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that for any A E F0 , we have from Conditions A, B and C that / 

0 < Ao (To) - Do ::; Ao (t) - Do ::; A ( t) ::; Ao (t) + Do ::; Ao (T) + Do ::; IM + Do 
' 

fort E [To, T] and 

for j = 1, ... , K with probability 1. Hence, for M 0 , we can construct a 13et of brackets 

{[Mf (X), MiR(X)] : i = 1, · · ·, J} as follows: 

Mf(X) = L
K 

[~N(TK,j) 
j=l 

x log {max (Af(TK,j) - Af(TK,j-1), ~Ao(TK,j) 2Do)} 

- {Af(TK,j) -Af(TK,j-i)}] - mA0 (X) 

and 

L
K 

[~N(TK,j) log {Af(TK,j) -Af(TK,j-i)} 
j=l 

1 
- {Af(TK,j) - Af(TK,j-1)}] - mA0 (X) 

Set II · llP,B be the Bernstein norm as defined in Van der Vaart and ellner (1996) 

and No the bracking number for the class M0 . Then, it follows from C ndition D that 

for some constant c3 and for any A E F0 , 

for some constant c4 • So 
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i 
I 

for some constant c5 . Hence, by applying Lemma 3.4.3 of Van der Vaalt and Wellner 

(1996), we have 

i 

for some constant c6 , where E* denotes the outer expectation, Pn isl the empirical 

measure corresponding to X, Pnf = 'L:~=l J(Xi)/n, and </>n(8) = 8~ +,8- 1n-~. Now, 

upon using Theorem 3.2.5 of Van der Vaart and Wellner (1996), d1 (A~ 1 Ao) converges 

in probability to zero of order at least n-~. This completes the proof of the lemma. 

Now we turn to the proof of Theorem 4.2.l. First, note that 

(4.30) 

where 

I1n = yn(Pn - P)fAn (X), 

vnPn [I: W(TK,j)An(TK,j) { f~,.J:(TK,j+i) - ~f!(T ,j)}
j=l ~An(TK,j+1) ~An( ,j) 

+W(TK,K)An(TK,K) {1- ~f!(TK,K) }] 
~An(TK,K) 

and 

cp [~W(T ·)A (T ·) { ~Ao(TK,j~1) - ~N(T ,j+i)
V Ii n ~ K,J n K,J ~A (T . ) ,

j=l n K,J+l ! 

_ ~Ao(TK,~) - ~N(T ,j)} 
~An(TK,j) 

+W(T )A (T )~N(TK,K) - ~Ao(TK,K l · 
K,K n K,K ~A (T ) 

n K,K 

Let 

~W(T ·)A(T ·) { ~Ao(TK,j+i) - ~N(TK,jti)9A(X) ~ K,J K,J ~A(T . ) :j=l K,J+l I 
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Note that 

where 

and 

It is easy to see that lsn is a U-statistic and has an asymptotic normal distribution 

with mean zero and variance a~ that can be consistently estimated by a~ as given in 

the statement of the theorem. Hence, it is sufficient to show that 11n, 12n and 14n all 

converge in probability to zero. 

We will show the convergence of fin first. Let I;n denote the version of 11n obtained 

by replacing An with A~. Then, to prove that 11n converges to zero in probability, it 

is sufficient to show that I;n = Op ( 1) since P {An =I- A~} < E. Let 

F1 = {fA(X) : A E Fo}. 

Also let {[Af, Af] : i = 1, · · ·, J} be a set of 'T]-brackets for covering F 0 with J::; ec/'r/ 

for some constant c by Theorem 2.7.5 of Van der Vaart and Wellner (1996). Then, for 

F 1 , we can construct a set of brackets {[!F(X), jiR(X)] : i = 1, · · ·, J} as follows: 

y: W(T ·) [ Af(TK,j)~Ao(TK,j+I)Jf(X) = 
j=l K,J Af(TK,j+I) - Af (TK,j) 

Af(TK,j)~Ao(TK,j) -i 

105 




+W(TK,K) [Af(TK,K) 

Af'(TK,K)Ao(TK,K) l 
and 

j=l 

It can be shown that 

for some constant c1 and for any A E :F0 , Pfl (X) ~ c2d~ (A, Ao) for some constant 

c2 . Hence, :F1 is a P-Donsker class and it follows from our Lemma 4.6.2 and Corollary 

2.3.12 of Van der Vaart and Wellner (1996) that I;n = op(l). 

Next, we show the convergence of I2n. Set W0 = W o A0
1

. Then, from Lemma 

4.6.1, we can rewrite I 2n as 
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where 

L\1n - vfn(Pn - P) [~{Wo(Ao(TK4)) - Wo(An(TK,;))}An(TK,;) 

x { 	~N(TK,j+I) _ ~N(TK,j)} 
~An(TK,j+l) ~An(TK,j) 

+{Wo(Ao(TK,K)) - Wo(An(TK,K))}An(TK,K) 

x {l _~N(TK,K) }] 
~An(TK,K) 

and 

L\2n - vfnP [~{Wo(Ao(TKJ)) - Wo(An(TKJ))}An(TK,;) 

x { 	 ~N(TK,j+1) _ ~N(TK,j)} 
~An(TK,j+l) ~An(TK,j) 

+{Wo(Ao(TK,K)) - Wo(An(TK,K))}An(TK,K) 

~N(TK,K) }] 
x { l - ~An(TK,K) . 

Let 	~in and ~2n denote the versions of ~In and ~2n obtained by replacing An 

with A~, respectively. Set 

K-l 
hA(X) = L {Wo(Ao(TK,j)) - Wo(A(TK,j))}A(TK,j) 

j=l 

x { 	~N(TK,j+1) _ ~N(TK,j)} 
~A(TK,j+I) ~A(TK,j) 

+{Wo(Ao(TK,K)) - Wo(A(TK,K))}A(TK,K) 

x {i - ~N(TK,K)} 
~A(TK,K) 

and 
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Note that the uniform covering entropy for :F0 is bounded by c/ry for some constant 

c from Theorem 2.7.5 of Van der Vaart and Wellner (1996). Since W0 is a bounded 

Lipschitz function, it can be shown that for A1 , A2 E :F0 , 

for some constant c3 and for any A E :F0 , 

for some constant c4 . Hence, the uniform entropy for :F2 is bounded by c/ry, and then 

:F2 is a P-Donsker class from Theorem 2.5.2 of Van der Vaart and Wellner (1996). 

Since d1 (A~, A0 ) ---+p 0, it follows from the uniform asymptotic equicontinuity of the 

empirical process (Van der Vaart and Wellner, 1996, pp. 168-171) that ~in = op(l). 

Then, we have ~In = op(l) since P{ ~In# ~in} < €. 

For ~2n, since W0 is a bounded Lipschitz function, it follows that 

where c5 is a constant. This shows, from Lemma 4.6.2 and P(An # A~) < E, that 

~2n = Op(l). 

For f4n, we let I4n denote the version of I4n obtained by replacing An with A~, and 

let 

We can use the same techniques as those used for proving the convergence of I In to 

show that :F3 is P-Donsker and P{gA(X) - 9A0 (X)} 2 ~ c6di(A, A0 ) for some constant 

c6 , and hence I4n = op(l) which completes the proof of the theorem. D 
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4.6.2 Proof of Theorem 4.3.1 

(i) To obtain the asymptotic distribution of Un, we first note that U~l) can rewritten 

as 

u(l) = ucl) - fEucz) + ucl) + ucl) + u(z) + u.Cl) ( 4.31) n ln vnz 2n 3n 4n 5n 6n' 

where for l = 1, ... , k, 

U (l) -
ln -

ucz)
4n VnP [~ {W~'i(TKJ) - W(TKJ)} A.(TKJ) 

x { .6.~n1(TK,j+i) _ .6.~n1 (TK,j)} 
.6.An(TK,j+i) .6.An(TK,j) 

109 




uj~ - VnP [~W(TKJ) { A.(TK,;) -An,(TKJ)} 

x { ~An1 (TK,j:;1) - ~Ao(TK,j+I) 
~An(TK,J+I) 

_ ~An1 (TK,~) - ~Ao(TK,j)} 
~An(TK,j) 

+W(T )A (T ) {-~An1 (TK,1!) - ~Ao(TK,K) }]
K,K n K,K ~A (T ) ,

n K,K 

and 

uJ~ - v'TiP [~W(TK,;)f...,(TKJ) { (Af..n,(TKJ+i) - Llf..0 (TKJ+1)) 

X ( Af..n(~Kj+l) AA.,(~KJ+l))-

-(~An1 (TK,j) - ~Ao(TK,j)) 

x ( AA.;TK,J)  AA.,~TK,J))} 
-W(TK,K)An1(TK,K) {~An1 (TK,K) - ~Ao(TK,K)} 

x { Af...(~K,K) - Af...,~TK,K)}l · 
From the proof of Theorems 4.2.1, we have for l = 1, ... , k, 

(I) ( )Uln = Yn +Op 1 

and 

rf l) = yci) +a (1)
2n n P ' 
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where 

r:::(P - P) [~W(T ·)A (T ·) { D.N(TK,j+i) - D.N(TK,j)} 
y n n ~ K,3 0 K,3 Di.A (T . ) bi.A (T ·)

j=l 	 0 K,3+1 0 K,3 

D.N(TKK)}]
+W(TK,K)Ao(TK,K) { 1- D.Ao(T;,K) 

and 

(l) 	 [~ . { D.N(TK,j+i) D.N(TK,j)}
Yn vnz(Pn1 - P) ~ W(TK,j)Ao(TI<,i) Di.A (T . ) - Di.A (T ·) 

j=l 0 K,3+1 0 K,3 

D.N(TK,K) }]
+W(TK,K)Ao(TK,K) { 1-	D.Ao(TK,K) , 

where PnJ = ~ LiESz f(Xi) and S1 denotes the set of indices for subjects in group 1 
l, l = 1, ... , k. Evidently, Y~l)'s are independent and identically distributed, and 

JnYn = 2::7=1 Jn[Y~l). Set z~l) = Yii-~y~l)' l = 1, ... , k and Zn= (Z~1 l, ... , z~klf. 

Then, 

Z (l) = ~·~iy(i) - ~y(l) l = 1 k n 	 ~ n n' , ... , ' 
i=l n n1 

and so 

Zn = r ny n = rYn + Op( 1)' 

where rn and rare as given in Theorem 4.3.1, and 

converges in distribution to Y w having a k-dimensional normal distribution with mean 

vector 0 and covariance matrix diag(ai, ... , a~), where a['s are given in the statement 

of the theorem. Thus, we have Zn converging in distribution to a random variable U w 

that has a normal distribution N(O, :Euw), where :Euw is given in (4.11) of Theorem 

4.3.l. 

111 




Now, we need to show that uj~, ul~, ui~, and uJ~ all converge in probability to 

U (/)* u(l)* T r(l)* d T r(l)* d h • f u(l) u(l) u(l) 0, l = 1, ... , k . Let 3n , 4n , U5n , an U6n enote t e VerSlOn 0 3n, 4n, 5n, 

and uJ~ obtained by replacing An with A~ and An1 with A~ , respectively. Then, to1 
prove that ui2' ul2' u~2' and uJ~ all converge in probability to 0, l = 1, ... 'k, it 

is sufficient to show that u~~*' ul2*' u~~*' and uJ~* all converge in probability to 0, 

l = 1, ... ,k. 

(l)*For U3n , set 

9 = {.;: [O, r] ~ [O, b]}, 

where bis the uniform upper bound of weight process w~l) (l = 1, ... , k), 

and for.; E 9, 

Note that it follows from Theorem 2.7.5 of Van der Vaart and Wellner (1996) that 

for some constant c1. Then, we have 

c382
, where c2 and c3 are universal constants for .; . Thus, 
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for some constant universal c4 . Hence, from Theorem 2.14.2 of Van der Vaart and 

Wellner (1996), we have 

E* { sup lvn(Pn - P)1fA1,A2(~, X)I} 
1/JA1 ,A2 (E,X)EIJ!6(E) 

< C5 [Jo(8, '118(~), L2(P)) + vnPV;{V; > vna(8)}]' 

where c5 is an universal constant and 

Then, it can be easily shown that 

limsupE* { sup lvn(Pn - P)1/;A1 ,A2 (~,X)I}:::;: c58112 
n->oo 1/JA1 ,A2 (E,X)EIJ!6(E) 

for some universal constant c6 . It follows from d1 (An, AnJ ~ 0 that 

Letting 8 ---+ 0, we have 

lim Elvn(Pn -P)V;;.,.. J...· (W~l),X)I = O 
n---+-oo n' nz 

which yields Ui~* = Op(l). 

For uJ~*, we note that 

1luJ2•1 s c, [VnP {t 1w~ >(TKJ-1) - w(TKJ-1ll 

x IA~(TK,j) - A~l(TK,j)I} 

+ VnP {t IW~')(TKJl - W(TK,;)llA:(TKJl -A;.,(TKJ)I} 

1+ VnP {t IW~' (TKJl - W(TK,;)I 

x IA~(TK,j-i) - A~l (TK,j-1)1}] 

c1(Al~ + A~1~ + A~~) 
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for some constant c7, where 

1A~~ - Vn JJJW~ )(u)- W(u)JJA~(v) -A~1 (v)J dµ2(u,v) 

1< Vn J J JW~ )(u) - W(u)JIA~(v) - Ao(v)I dµ2(u, v) 

1+vn j j IW~ )(u) - W(u)llA~1 (v) -Ao(v)I dµ2(u, v), 

1Agl - Vn 1T IW~ )(t) - W(t)llA~(t) - A~l(t)I dµ1(t) 

1< vn 1r IW~ )(t) - W(t)JJA~(t) - Ao(t)I dµ1(t) 

1+vn 1T JW~ )(t) - W(t)llA~l(t) - Ao(t)I dµ1(t) 

and 

1A~~ - Vn J J IW~ )(v) - W(v)JJA~(u) - A~1 (u)I dµ2(u, v) 

1< Vn J J IW~ )(v) - W(v)JJA~(u) - A0 (u)J dµ2(u, v) 

1+vn j j IW~ )(v) - W(v)JIA~1 (u) - Ao(u)I dµ2(u, v). 

Using the Cauchy-Schwarz inequality, we have 

1Vn J J IW~ )(u) - W(u)JJA~(v) - A0 (v)J dµ2(u, v) 

< c8 ,/n {[ (W~'l(t) - W(t) )2 dµ 1(t)} 
112 

x {[ (A:(t) - A0(t))2 dµ,(t) r' 
in probability, where c8 is a constant, since 
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Similarly, we have 

1vn J J \W~ )(u) - W(u)\\A~Jv) - A0(v)\ dµ2(u, v) = op(l). 

Thus, Ai~ = Op(l). Similarly, we have A~1~ = Op(l) and A~~ = Op(l). Hence, u~~* = 

Op (1), l = 1, ... , k. 

u:(l)* d u(1)* hFor 5n an fin , we note t at 

ju~·1 '.S eg [ y'nP { t IA:(TK.;) - Ao(TK,;)1 2 } 

+y'nP {t IA:,(TKJ) - Ao(TKJ)l 
2

} l 
cg{ vndi(A~, Ao)+ vndi(A~ , Ao)}1 

and 

for some constants Cg and C10. Hence, u~~* = Op(l) and u~~* = Op(l), l - 1, ... ' k. 

Therefore, the proof of part (i) is completed. 

(ii) We note that vJ1l = uJi,t) - uJl), l = 2, ... , k, where UJ1
'
1l is defined as uJ1l by 

replacing wJll with wJl) for l = 2, ... , k. Then, it follows from (i) that 

v:(l) = - !!iy(l) + {iiy(l) + 0 (1) 
n v~ n v~ n p 

for l = 2, ... , k and so 

where Hn and Hare given in the theorem. This completes the proof of part (ii). 
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a-2 - (J2
l w Pn { </>2 (W~l)' An, X) - </>2 (W~l)' Ao, X)} 

+Pn { </>
2 (W~1), Ao, X) - </>2 (W, Ao, X)} 

+(Pn - P)</>2 (W, Ao, X). 

It can be easily shown that 

and 

Since it follows from Condition C that 

\</>(W~l), Ao, X) - </>(W, Ao, X) \ = \</>(W~l) - W, Ao, X) \ 

< bi{l + N(TK,K)} L
K 

\W~1)(TK,j) - W(TK,j)\ 
j=l 

with probability 1 for some constant b1 and 

\</>(W~l), Ao, X) + </>(W, Ao, X) \ = \</>(W~l) + W, Ao, X) \ 

< b2K{l + N(TK,K)} 

with probability 1 for some constant b2 , then we have from the Cauchy-Schwarz in

equality, Conditions P{K:::; K 0 } = 1 and D, and (4.13) 
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0 

S b3E [ {1 + N;(TK.,K,)}
2 {t, IWJ'l(TK,4) - W(TK.,;)I}l 

112 

112s b, [E{l+ N,(TK,,K,)}
4

] [ E {t, IWJ'l(TK,,;) - W(TK,,;)I rJ 
12 

2
Sb, 1'!!~ [ E {t, IWJ'l(TK,J) - W(TK,,;)1 }] 1 

----7 0 

where b3 and b4 are finite positive constants , which completes the proof of part (iii). 

REMARK 3. The monotonicity assumption of the weight process required by 

Zhang (2006) can be removed by using the same techniques as those used here. 
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Chapter 5 

Nonparametric Behrens-Fisher 

Hypothesis Testing for Case 1 

Interval-Censored Data 

5 .1 Introduction 

This chapter discusses nonparametric comparison of distribution functions based on 

incomplete survival data: case 1 interval-censored or current status data (see, for 

example, Peto and Peto, 1972; Keiding, 1991; Groemeneboom and Wellner, 1992; 

Huang and Wellner, 1995; Sun, 1999). By current status data, we mean that for each 

subject, the event occurrence time is unknown but we know whether the event has 

occurred before the observation time. Current status data often occur in tumorigenicity 

experiments; see Dinse and Lagakos (1983), Dewanji and Kalbfleisch (1986), and Dinse 

(1994). In these studies, the time until the onset of a tumor is usually of interest and 
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the comparison of different treatments with respect to the tumor onset distributions 

is often required. However, the tumor onset time is not directly observable, and only 

the death time of animals under study and the status of tumor onset at the death 

time are observed. In this situation, the animals' death time serves as an observation 

or censoring time and could depend on the treatments. As pointed out by Dinse 

and Lagakos (1983), a comparison not accounting for differences in death times could 

overestimate or underestimate the treatment difference. As discussed in Sun (1999), 

tests assuming the same death distribution could overestimate the tumor rate difference 

when animals in one group have longer survival times and higher tumor rates than 

animals in the other group. 

Survival comparison is usually one of the main goals in survival studies. For the 

case of right-censored failure time data, there are a number of well-established methods 

(see, Fleming and Harrington, 1991; Kalbfleisch and Prentice, 2002). For the case of 

interval-censored failure time data, several authors have discussed the problem; see 

Peto and Peto (1972), Finkelstein (1986), Sun (1996, 1998), Zhang et al. (2001), 

Sun et al. (2005), Yuen et al. (2006), and Zhu et al. (2008). Most of the existing 

research have focused on testing the hypothesis that specifies the two distributions to 

be identical for censored or interval-censored data assuming observation or censoring 

times have the same distribution. For example, Peto and Peto (1972) considered the 

two-sample comparison problem under the Lehmann-type alternatives G2 (t) = G~(t), 

where G1 and G2 are survival functions corresponding to the two different samples 

and() is a parameter. In this case, the comparison problem reduces to testing () = 1 

and they suggested to use the score test, which they referred to as the log-rank test. 

Assuming the proportional hazards model, a special case of Lehmann-type alternatives, 
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Finkelstein (1986) investigated the general k-sample comparison problem. For the 

problem, she also suggested to apply the score test for testing regression parameters 

equal to zero. Following Finkelstein (1986), Sun (1996) studied the same problem 

without assuming the proportional hazards model and developed a nonparametric test 

using the idea of the log-rank test for right-censored data (Kalbfleisch and Prentice, 

2002). Sun et al. (2005) presented a class of generalized log rank tests for this type of 

survival data. In contrast, there exists limited research for the analysis of censored or 

interval-censored data when the distributions of censoring or observation times may 

be different for different groups. Sun (1999) discussed current status or case 1 interval

censored data with unequal censoring based on the proportional hazards model. More 

recently, Troendle and Yu (2006) considered another null hypothesis that specifies the 

probability an observation from the first distribution exceeds an observation from the 

second distribution equals the probability of the opposite ordering. This hypothesis 

is referred to as the nonparametric Behrens-Fisher hypothesis (NBFH) (see Brunner 

and Munzel, 2000). They developed a nonparametric test procedure by the using 

nonparametric likelihood approach and approximating the null distribution of the test 

statistic based on right-censored data. 

In this chapter, motivated by Troendle and Yu (2006), we develop nonparametric 

test procedures for case 1 interval-censored data. The test procedures are presented 

in Section 5.2. Also in Section 5.2, the asymptotic distribution of the proposed test 

statistic is derived. Section 5.3 reports some simulation results for evaluating the 

proposed test procedure which reveal that the approach works well for the practical 

situations considered. In Section 5.4, we apply the approach to a set of current status 

data from a tumorigenicity experiment while Section 5.5 contains some concluding 
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remarks. 

5.2 A Nonparametric Test for the NBFH 

Suppose that X and T have the cumulative distribution functions F1 and G1 , re

spectively, and that they are independent. Here, X is the variable of interest and 

T is a censoring variable. Also suppose that Y and U have the cumulative distri

bution functions F2 and G2 , respectively, and that they are independent. Here, Y 

is the variable of interest and U is a censoring variable. Suppose that the only ob

servable variables are (X, 8) and (Y, 17), where 8 = I(X ::S T) and 17 = I(Y :'.S U). 

Let (T1 , 81), ... , (Tn 1 , 8n2 ) be a random sample of size n 1 drawn from the distribution 

of (T, 8), and (U1 , 771), ... , (Un2 , 17n2 ) be another random sample of size n2 from the 

distribution of (U, 17). The identity hypothesis is that F1and F2 are identical, i.e., 

(5.1) 

Note that rejection of (5.1) does not really permit one to claim that the values in the 

first population are larger or smaller than those in the second population. To formally 

make such a claim, one might want to test a less specific null hypothesis whose rejection 

leads to a stronger claim. Define 

1 
p = P{X > Y} + 2P{X = Y}. 

Then the NBFH (nonparametric Behrens-Fisher hypothesis) is 

1 
p= -. (5.2)

2 

Note that a rejection of (5.2) with an estimate of p greater than 1/2 would allow one to 

conclude that the first population is, in this sense, larger than the second population. 
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In comparison to the identity hypothesis, rejecting the NBFH allows a stronger claim 

because the null consists of a larger class of distributions. 

Note that 

but F1 and F2 are unknown. In order to estimate p, we first introduce the nonpara

metric maximum likelihood estimators of F1 and F2 . The log-likelihood function for 

ln1 (F) = L
ni 

{bi log F(Ti) + (1 - bi) log(l - F('.li) )}, (5.3) 
i=l 

where F is a right-continuous distribution function. The nonparametric maximum 

likelihood estimator (NPMLE) of F 1 , F1,n1 , is defined to be the nondecreasing, non

negative step function with possible jumps only occurring at observation time points 

Ti, i = 1, ... , n 1 , that maximizes ln1 (F). Similarly, the nonparametric maximum 

likelihood estimator of F2 , F2,n2 , can be defined. 

Now, we need to determine F1,n1 (t) and F2,n2 (t). The nonparametric maximum 

likelihood estimators F1,n1 (t) and F2,n2 (t) of F1 and F2 can be characterized in terms of 

the self-consistency equations, and can be explicitly expressed via a max-min formula, 

respectively (Groeneboom and Wellner, 1992; Huang and Wellner, 1995). The self

consistency equations for F1,n1 (t) and F2,n2 (t) are given by 

(5.4) 

and 

(5.5) 

where F1,n1 and F2,n2 are the (unobservable) empirical distribution functions of ran

<lorn variables X 1 , ... , Xn 1 and Y1 , ... , Yn2 , respectively. Clearly, F1,n1 is the condi
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tional expectation of the empirical distribution function F 1,n1 at t, given the avail

able information { (T1, 81), ... , (Tn1 , 8n1)}; similarly, F2,n2 is the conditional expecta

tion of the empirical distribution function F2,n2 at t, given the available informa

tion { ( U1, T/l), ... , ( Un2 , TJn2 )}. As mentioned in Huang and Wellner ( 1995), the self-
A A 

consistency equations do not uniquely determine the NPML Es F1,n1 and F2,n2 • There

fore, we prefer to use the max-min formula. In order to present this formula, we 

relabel the data (T1,81), ... ,(Tnn8n1 ) in terms of the ordered values of T1, ... ,Tn1 

A A 

U(1) ::S • · • ::S U(n2 )· Then, Fl,ni and F2,n2 are given by 

i=l, ... ,n1 (5.6) 

and 

i = 1, ... , n2. (5.7) 

The max-min formula will be used below in simulation studies and in the example for 

computing the NPMLEs of F1,n1 and F2,n2 • 

The nonparametric maximum likelihood estimator p of p is then given by 

The asymptotic normality result for p is as follows. 

Theorem 5.2.1 Suppose that 

and G1 have densities f 1 and g1 with respect to Lebesgue measure, respectively. 
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Also suppose that the support of F2 is a bounded interval 12 = [O, M2], G2 « F2, 

F2 « G2, and F2 and G2 have densities h and g2 with respect to Lebesgue 

measure, respectively. 

2 _ 	 J F1 (x) (1 - F1 (x)) f 2 ( ) d 
a 1 = ( ) 2 x x < oo 

Ii 91 x 


and 


2 -1 F2 (x) (1 - F2 (x)) ! 2( ) d 
a2 = ( ) 1 x x < oo. 

h 92 x 

(iii) 	(f2/g1) o F1-
1 and (Jifg2 ) o F2-

1 are bounded Lipschitz functions on [O, l]. 

(iv) 	Let n = n 1 + n 2 , and~ ---t q E (0, 1). 

Then 

y'n(p- p) ~ N(O, a 2
), 


where 


1 1
a2 = 	 -a2 + --a2. 

ql l-q2 

Proof. Note that 

where 

and 
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Clearly, U2n can be rewritten as 

U2n = ~ {/(1- F2,n2) dF1 - J(l -F2) dF1} 

~J{(1 - F2,n2(x)) - (1 - F2(x))} fi(x) dx. 

From Theorem 5.1 of Huang and Wellner (1995), we have 

where a~ is as given in the theorem. 

Now we need to show that 

Since F1,n1 is independent of (U1, T/1) ... , (Un 2 , T/n2) and F2,n2, then 

J(F1,n1 - F1 )dF2,n2 

J(F1,n1 - Fi) dEFZ,nz (F2,n2 IU1, ... ' Unz' T/1, ... 'T/nz) 

EFZ,nz {! (F1,n1 - F1) dF2,n2 IU1, · · ·, Unz' T/1, · · · 'T/nz)} · 

Let Pn2 be the empirical measure of the random variables Y1 , ... , Yn 2 • Then, 

where 

and 
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Define 

:F = { F : F is a distribution function defined on [O, M2]}, 

and 

Q = {F(t)- F1(t): FE :F}. 

Then, :Fis a P-Donsker from the proof of Corollary 5.1 of Huang and Wellner (1995) 

and thus 9 is P - Donsker. Also note that F1,n1 E :F for all n sufficiently large and 

as n ---+ oo, we have that 

j \F1,n1 (t) - F1(t)\ 2 dP ~ o 

in probability from the strong consistency of F1,n1 • It thus follows from this and the 

uniform asymptotic equicontinuity of the empirical process resulting from the Donsker 

property (van der Vaart and Wellner, 1996, pp. 168-171) that 

in probability as n ---+ oo. Thus, we have 

where 

Vn =Fi J(F1,n1 (x) - F1(x)) f2(x)dx. 

Upon using Theorem 5.1 of Huang and Wellner (1995), we have 

where ai is as given in the theorem. This completes the proof. D 

Note that the expression of the variance a 2 involves unknown functions f 1 , F1 , 91 , 

Gi, f2, F2, 92 and G2. Clearly, Fk can be consistently estimated by Fk,ni and Gk can 
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be consistently estimated by the empirical estimator Gk,nk' k = 1, 2. However, the 

estimators of fk and 9k cannot be obtained by Fk,ni and Gk,nk' k = 1, 2 since such esti

mators are not smooth functions. For this reason, we apply the bootstrap resampling 

method to estimate the variance in our simulations and also in the application. Based 

on the theorem, we can then construct approximate confidence interval for p and also 

test the null hypothesis. 

5.3 Simulation Study 

To investigate the finite sample properties of the proposed procedure, simulation stud

ies are conducted. In the simulation, we consider the two-sample comparison problem, 

and mimic the set-up commonly used in periodic follow-up studies to generate case 1 

interval-censored data. All censoring times are generated from uniform distribution 

U(O, 81) for group 1 and U(O, 82) for group 2. The survival times are generated from 

the exponential distribution with rate >..k and Weibull distribution with shape ak and 

scale >..k for group k, k = 1, 2, which are often assumed in survival studies. Here, we 

consider three distribution pairs: 

Case 1: Population 1 = Exponential(>..1 = 1); population 2 = Exponential(>..2). 

Case 2: Population 1 = Weibull(a1 = 3, >.. 1 = 1); population 2 = Weibull(a2 = 

3, >..2). 

Case 3: Population 1 = Weibull(a1 = 1, >.. 1 = 1); population 2 = Weibull(a2 = 

1/2, >..2). 

For the distribution pairs in Cases 1 and 2, we can obtain null or alternative config
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Table 5.1: Percentage of null hypothesis rejection at significance level 53 based on 

1000 replications for three cases 

Dist. pair >.2 81 82 ni = n2 = 50 ni = n2 = 100 

Case 1 1.00 2 5 0.045 0.051 

0.50 2 5 0.375 0.596 

0.30 2 5 0.815 1.000 

0.10 2 5 0.985 1.000 

Case 2 1.00 2 2 0.045 0.049 

0.75 2 2 0.526 0.843 

0.50 2 2 0.961 1.000 

0.25 2 2 1.000 1.000 

Case 3 1.33 2 10 0.055 0.052 

0.50 2 10 0.384 0.602 

0.30 2 10 0.618 0.915 

0.10 2 10 0.865 1.000 
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urations for either the identity hypothesis or the NBFH by adjusting ,\. Distribution 

pair in Case 3 represents a case of the NBFH when ,\2 = 1.33. For each case, we 

consider two samples, n 1 = n 2 = 50 and 100, respectively. The NPMLEs F1,n1 and 

F2,n2 are computed by using the max-min formula given in (5.6) and (5.7). All the 

results reported here are based on 1000 Monte Carlo replications using R software. 

Table 5.1 present the empirical sizes and powers of the proposed test based on 

simulated current status data for different values of 01 and 02 and three different 

distributions. It can be seen from the table that the proposed test procedure seems to 

have the right size (nominal level 0.05 is used). The results indicate that the proposed 

test performs well under all situations considered here. It can be seen that when the 

sample size increases, the power increases as expected. 

To evaluate the normal distribution approximation given in the theorem to the 

finite distribution of the proposed test statistic, we studied the quantile plots of the 

test statistic against standard normal distribution under different set-ups. All of them 

suggest that the normal approximation works quite well. 

5.4 Application 

In this section, we apply the proposed test procedure to the data from a tumorigenicity 

experiment described in Hoel and Walburg (1972) and discussed by Hotel and Walburg 

(1972), Dinse and Lagakos (1983), Finkelstein and Wolfe (1985), Huang (1996), Sun 

(1999), and Shen (2000), among others. In this study, there were 144 male RFM 

mice. They were randomly assigned to one of two treatment groups: conventional and 

germfree environments, and then examined at death. The survival time of interest 
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is the lung tumor onset time, but it is not directly observable since lung tumors are 

usually regarded as relatively nonlethal in mice. The data set includes the death 

time of mice at study and the status of tumor onset at the death time. Among the 

155 mice, there were 96 mice in a conventional environment and 48 in a germfree 

environment. Let X and Y be the tumor onset times of mice in the conventional and 

germfree environments, respectively, and let T and U be the death time of mice in 

the conventional and germfree environments, respectively. Let 8 = l(X :::; T) and 

rJ = l(Y :::; U). Then, the observed data consist of {(ti, 8i), i = 1, ... , 96} for the 

conventional environment, and { ( ui, 'T/i), i = 1, ... , 48} for the germfree environment. 

In the conventional environment, 27 mice had lung tumor (8 = 1) and 69 mice did 

not have lung tumor (8 = O); in the germfree environment, 35 mice had lung tumor 

(rJ = 1) and 13 mice did not have lung tumor (rJ = 0). The focus here is on the effect 

of treatment on the development of lung tumor. 

Let p be the probability that tumor onset time of mice from the conventional 

environment exceeds that of mice from germfree environment. Using the observed data 

and the proposed method, we obtained p = 0.07939 with the standard error 0.0694, 

and Z = (p - 0.5)/0.0694 = -6.0609 which corresponds to a p-value « 0.0001 for the 

null hypothesis p = 1/2. From this, we conclude that there are strongly significant 

differences between the two treatments and that the mice in the germfree environment 

have lung tumors less than those in the conventional environment. The result agrees 

with those given in Hoel and Walburg (1972), Dinse and Lagakos (1883), Finkelstein 

and Wolfe (1985), Huang (1996), Sun (1999), and Shen (2000). 
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5.5 Concluding Remarks 

This chapter discussed the nonparametric two-sample problem with case 1 interval-

censored or current status data. For the considered problem, we obtained the asymp

totic normality of the nonparametric maximum likelihood estimator of the probability 

that an observation from the first distribution exceeds an observation from the second 

distribution. A nonparametric test for the nonparametric Behrens-Fisher hypothesis 

was proposed and the asymptotic normality of the proposed test statistic was also 

established. 

In comparison with the test procedures given in Sun (1999), our method is more 

nonparametric and robust since the distributions of censoring times are left unspecified, 

but the proportional hazards models for censoring times are assumed by Sun ( 1999). 

In comparison with the test procedures given in Troendle and Yu (2006), the asymp

totic distribution was derived here by using empirical process theory and it does not 

involve any permutation and simulation. In contrast, the test procedure for right-

censored data given in Troendle and Yu (2006) is more complicated by using the 

imputed permutation and simulation distribution for the approximation of the null 

distribution. Therefore, we need to develop a similar test procedure for right-censored 

data to the proposed one. 

To avoid resampling, we need to seek some consistent smoothed estimators f k and 

gk for fk and 9k (k = 1, 2) such that the variance a 2 can be consistently estimated by 
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where 

and 
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Chapter 6 

Conclusions and Future Research 

6.1 Conclusions 

This dissertation discussed the problems of the multi-sample comparison of counting 

processes when only panel count data are available. For the problems considered, we 

have developed some new nonparametric tests based on the nonparametric maximum 

pseudo-likelihood approach and the nonparametric maximum likelihood approach, re

spectively. 

Using the nonparametric maximum pseudo-likelihood approach, we have constructed 

two classes of nonparametric test statistics based on the integrated weighted differences 

between the estimated mean functions of the count processes, established their asymp

totic distributions, and examined their finite-sample properties through Monte Carlo 

simulations. The simulation results indicated that the proposed methods are good 

for practical use. Compared to the method presented by Sun and Fang (2003), the 

proposed method is applicable to more general situations. Compared to the method 
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presented by Zhang (2006), the weight processes used in the test statistics here have 

more options. 

Under the same setting for panel count data as Sun and Fang (2003), we have 

presented a new nonparametric test statistic based on the nonparametric maximum 

likelihood estimator of the mean function of the counting processes over observation 

times, derived its asymptotic distribution and also examined its finite-sample property 

through Monte Carlo simulations. The simulation results showed that the proposed 

method is good for practical use and also more powerful than the existing nonpara

metric tests based on the nonparametric maximum pseudo-likelihood estimator. 

Under a more general setting for panel count data, we have presented two classes of 

nonparametric tests based on the accumulated weighted differences between the rates 

of increase of the estimated mean functions of the counting processes over observation 

times, wherein the nonparametric maximum likelihood approach is used to estimate 

the mean functions instead of the nonparametric maximum pseudo-likelihood. The 

asymptotic properties of the test statistics were established and their performance 

were evaluated through Monte Carlo simulations. Simulation studies revealed that 

the proposed method works well in practical situations, and are also more powerful 

than the tests constructed with the use of nonparametric maximum pseudo-likelihood 

estimators of the mean functions. Compared to the existing methods (Park, Sun and 

Zhao, 2007; Zhang, 2006; Sun and Fang, 2003; Thall and Lachin, 1988), the proposed 

methods apply to more general situations, more powerful, and more robust. 

When each subject at study is observed only once, panel count data reduce to 

the case 1 interval-censored or current status data. In this case, the mean function 

of counting process is the distribution function of the event occurrence time, and 
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so the problem of interest is to compare the distribution functions between different 

samples. For nonparametric two-sample comparison based on censored or interval

censored data, most of the existing methods have focused on testing the hypothesis 

that specifies the two population distributions to be identical under the assumption 

that observation or censoring times have the same distribution. We have considered the 

nonparametric Behrens-Fisher hypothesis, and studied the asymptotic property of the 

nonparametric maximum likelihood estimator of the probability that an observation 

from the first distribution exceeds an observation from the second distribution. Based 

on the asymptotic result, we presented a nonparametric test for the NBFH, proved 

its asymptotic normality, and evaluated its performance by simulations in case of 

small samples. In comparison with the existing methods for testing equality of two 

distributions with current status data, it is not required in our case that observation or 

censoring times have the same distribution, and rejecting the nonparametric Behrens

Fisher hypothesis allows for a stronger claim. Compared to the method presented by 

Sun (1999), the proposed method is more nonparametric and more robust. 

6.2 	 Future Research 

6.2.1 	 Analysis of Panel Count Data with Unequal Observa

tion Times 

The existing nonparametric methods and the tests presented in Chapters 2-4 are based 

on the assumption that observation times have the same distribution for different 

treatment groups. This may not be true in practice. To remove this assumption, we 
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need to modify the test statistics. Zhang (2006) suggested a two-sample test statistic 

as 

where iJn1( t) (l = 1, 2) can be chosen as the reciprocal of the kernel-smoothed estimator 

of derivative of µ1 (t), 

for the lth sample, and 

Here, computation of vn(An1 , An2 ) is not straightforward since one needs to find a 

consistent estimator for µ'(t). To overcome this drawback, we wish to present a new 

test statistic which only involves An1 (or An1) and P,1 (t) (l = 1, 2) such that it is easily 

computable. Here, An1 and Anz denote the NPMPLE and NPMLE of the true mean 

function A1 from sample l, respectively. 

6.2.2 Analysis of Over/Under-dispersed Panel Count Data 

It is assumed that the counting process arising from each subject is a non-homogeneous 

Poisson process. However, it is equi-dispersed meaning that the mean is equal to 

the variance. In practice, the count process is not always a Poisson process since 

under/over-dispersed count data often occur in practice, and it might be represented 

by extended Poisson process. The weighted Poisson distributions are modified Poisson 

distributions that provide a unified approach to handle both over-dispersion and under-

dispersion; see, for example, Balakrishnan and Kozubowski (2008) and Kokonendji, 
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Mizere and Balakrishnan (2008), among others. It is therefore desirable to apply 

extended Poisson process models with the weighted Poisson distribution instead of 

Poisson distribution to the analysis of panel count data. 

6.2.3 	 Nonparametric Behrens-Fisher Hypothesis Testing Based 

on Mixed Case Interval-Censored Data 

We have discussed the problem of the nonparametric Brehrens-Fisher hypothesis test

ing for case 1 interval-censored data. Case 1 and Case 2 interval-censored data are 

special cases of mixed case interval-censored, with mixed case interval-censored data 

being a special type of panel count data. Let Yi be the event occurrence time for 

subject i, define the counting process arising from subject i as a one-jump process 

This type of panel count data are referred to as mixed case interval-censored data by 

Schick and Yu (2000). In this case, the mean function of the counting process is the 

distribution function of the event time. So, we wish to discuss the problem of the 

nonparametric Brehrens-Fisher hypothesis testing for such data. The key is to study 

the asymptotic property of 

p = j(l - Fn1 )dFn2 , 

where Fn1 is the nonparametric maximum likelihood estimator of the distribution func

tion F,, of the event occurrence time for sample l, l = 1, 2. 
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6.2.4 	 Nonparametric Behrens-Fisher Hypothesis Testing Based 

on Partly Interval-Censored Data 

We also wish to discuss the problem of the nonparametric Behrens-Fisher hypothesis 

testing based on partly interval-censored data. By partly interval-censored data, we 

mean that for some subjects, the exact event times are observed, but for the remaining 

subjects, the event time of interest is observed only as belonging to an interval instead 

of being exactly known or right-censored; see, for example, Peto and Peto (1972), 

Huang (1999), Kim (2003), and Zhao et al, the Framingham Heart Disease Study 

(Odell, Anderson and D'Agostino, 1992) and the Danish Diabetes Study (Ramlau-

Hansen, Jespersen and Andersen, 1987). For the problem considered, we needs to 

study the asymptotic property of the nonparametric maximum likelihood estimator 

for 

1 
p = P{X > Y} + 2P{X = Y}. 
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