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Abstract 

We introduce a new phase field technique that incorporates the periodic nature of 
a crystal lattice by considering a free energy functional that is minimized by periodic 
density fields. This free energy naturally incorporates elastic and plastic deformations 
and multiple crystal orientations. The new phase field technique can be used to 
study a host of important phenomena in material processing that involve elastic and 
plastic effects in phase transformations. This novel phase field approach is used to 
study elastic and plastic deformation in nanocrystalline materials with a focus on the 
"reverse" Hall-Petch effect. In addition we apply the method to dendritic solidification 
in binary alloys and the role of dislocations in spinodal decomposition. 
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Chapter 1 

Introduction 

One of the very basic results of materials research is the notion that most 

properties of solids depend on the underlying microstructure. Understanding mi­

crostructure evolution and interactions of microstructure with defects enables us to 

predict the materials behaviour in practical applications. For example, in polycrys­

talline metals - the primary focus of the thesis - mechanical properties are influenced 

by the size of the crystallites, or grains [l ]. Another example is an interaction of 

dislocation with second- phase particles or interactions between dislocations. 

Over the years , numerous experimental and theoretical studies were devoted 

to study strengthening mechanisms in solids. For example, in the mid 1950's two 

researchers independently showed that as grain size decreases , the strength of mate­

rials will increase. This behaviour was attributed to the interaction of line defects , or 

dislocations , with grain boundaries and became commonly known as the Hall-Petch 

effect (HPE). As progress in materials processing technologies was made, it became 

possible to synthesize materials with a grain size in the order of nanometers, where 

little or no dislocations are present. While HPE proved to be very reliable to predict 

strength in materials where grains are tens to hundreds of micrometers in size, mate­

rials with grain size of a few nanometers pose a challenge to the validity of the HPE. 

These materials were first considered by Gleiter [2], who named them nanocrystalline 

materials and defined them as microstructurally heterogeneous materials consisting 

of nanometer- sized crystallites and grain boundaries (GBs). The synthesis, charac­

terization, and processing of nanocrystalline materials are part of a rapidly growing 

field referred to as nanotechnology. 

Progress in materials processing and synthesis was followed by advances in 
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microscopy, X-ray diffraction, and mechanical, and numerical testing. New tools ca­

pable of characterizing materials with force , displacement , and spatial resolution as 

small as picoNewton (pN = 10-12 N) , nanometer (nm= 10-9 m) , and Angstrom (A= 

10-10 m) became available. Increasing computer power as well as new numerical tech­

niques allowed the study of bigger samples in more det ail, often employing hundreds 

of computers in parallel. These experimental and computational techniques allowed 

significant progress in our understanding of the structure and mechanics of nanocrys­

talline metals. On the other hand, in spite of the increasing computer power, the 

atomistic computer simulations, often used to simulate processes in nanocrystalline 

materials, are usually confined to limited sample sizes and very short times. As a 

result of these limitations , less progress has been made on generalizing the results of 

atomic-scale simulations from nanocrystalline metals to more coarse grained metals 

and longer time scales. Direct extrapolations might be misleading, as new processes 

become active upon increase in grain size from the nanoscale length scale or as pro­

cesses become diffusional. 

In this thesis, we present a new modeling formalism that is able to describe 

processes on nanometer length scales and microscopic time scales (e.g. dislocation 

glide), together with processes observed over longer periods of time and distance (e.g. 

grain growth, dislocation climb) , defined by diffusion time and length. Having a model 

with such properties is very useful , as we will be able to describe processes that occur 

in the nanoscale regime without being limited to the short time scales of molecular 

dynamics. A good example of such a process is the break down of the HPE [3 , 4, 5] 

as nanoscale grain sizes are approached or non-equilibrium microstructure formation 

such as spinodal decomposition and solidification of pure or binary systems. 

The study of non-equilibrium microstructure formation has seen considerable 

advances through the use of the phase field approach [6] [7]. This methodology models 

the dynamics of various continuum fields that collectively characterize microstruc­

ture in phase transformations. In these phenomena, the evolution of the appropriate 

field(s) (e.g., solute concentration in spinodal decomposition) is assumed to be dissi­

pative and driven by the minimization of a phenomenological free energy functional 

[7]. 
Advances in the phase field modeling of solidification phenomena have followed 

a progression of innovations, beginning with the development of free energies that cap-
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ture the thermodynamics of pure materials [8] and alloys [6]. Several modification 

were then proposed to simplify numerical simulations and improve computational ef­

ficiency. Perhaps the most important innovation was the development of matched 

asymptotic analysis techniques that directly connect phase field model parameters 

with the classical Stefan (or sharp-interface) models of pure materials or alloys [9]. 

These techniques were complimented by new adaptive mesh refinement algorithms 

[10], whose improved efficiency significantly increased the length scales accessible 

through numerical simulations , thus enabling the first experimentally relevant simu­

lations of complex dendritic structures and their interactions in organic and metallic 

alloys [11 J. 
A weakness of the traditional phase field methodology is that it is usually for­

mulated in terms of fields that are spatially uniform in equilibrium. This eliminates 

many physical features that arise due to the periodic nature of crystalline phases, 

including elastic and plastic deformation, anisotropy, and multiple orientations. To 

circumvent this problem, traditional phase field models have been augmented by the 

addition of one or more auxiliary fields used to describe the density of dislocation 

continuum stress, strain fields , and orientation fields [12, 13, 14]. Nevertheless, it has 

proven quite challenging to incorporate elasto-plasticity, diffusive phase transforma­

tion kinetics, and anisotropic surface energy effects into a single, thermodynamically 

consistent model. 

Very recently, a new extension of phase field modeling has emerged an be­

come known as the phase fi eld crystal method (PFC) [15, 16, 17]. This methodology 

describes the evolution of the atomic density of a system according to dissipative 

dynamics that are driven by free energy minimizat ion. In the PFC approach, the 

free energy functional of a solid phase is minimized when the density field is peri­

odic. The periodic nature of the density field naturally gives rise to elastic effects, 

multiple crystal orientations, and the nucleation and motion of dislocations. While 

these physical features are included in other atomistic approaches (such as molecular 

dynamics) , a significant advantage of the PFC method is that , by construction, it 

is restricted to operate on diffusive time scales as opposed to the prohibitively small 

time scales associated with atomic lattice vibrations. In the case of pure materials , 

the PFC approach has been shown [15, 16] to model many phenomena dominated by 

atomic scale elastic and plastic deformation effects. These include grain boundary 
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interactions , epitaxial growth, and the yield strength of nano-crystals. 

The original PFC model is among the simplest mathematical descriptions that 

can self-consistently combine the physics of atomic-scale elasto-plasticity with the dif­

fusive dynamics of both phase transformations and microstructure formation . Similar 

to traditional phase field modeling of solidification, however further work is required 

to fully exploit the methodology. More specifically, it is important to be able to 

generalize the method to more complex situations (binary alloys , faster dynamics , 

different crystal structures, etc.) , so as to develop more efficient numerical techniques 

and make a direct connection of the parameters of the model to experimental syst ems. 

Several innovations toward this goal have already been made. Goldenfeld et al. [18] 

have recently derived amplitude equations for the PFC model that are amenable to 

adaptive mesh refinement schemes. This work has the potential to enable simulations 

of mesoscopic phenomena (µm ---+ mm) that are resolved down to the atomic scale 

and incorporate all the physics discussed above. 

In this thesis , we introduce two new contribution to PFC technique: 

• The first is the inclusion of higher order t ime derivatives in the dynamics so as, 

to simulate "instantaneous" elastic relaxation [19]. This extension is important 

for modeling complex stress propagation and externally imposed strains. Taking 

full advantage of this improvement, we study HPE in nanocrystalline materials. 

• The second is linking the PFC method to the formalism of the classical den­

sity functional theory (DFT) of freezing as formulated by Ramakrishnan and 

Yussouff [20]. The PFC method is then used to develop a model for binary 

alloys. 

The thesis is divided into three main parts. In Part I we review current 

literature relevant to the topic of nanocrystalline metallic materials . We begin our 

discussion in chapter 2 with the classification and processing methods of nanocrys­

talline materials. Classification is followed by a review of the processing techniques 

of nanocrystalline materials . Then we review mechanical properties of polycrystalline 

materials as observed in experiments and in computational simulations. Chapter 4 

of the thesis summarize deformation modes in polycrystalline materials. Chapter 5 

introduces the topic of spinodal decomposition in binary alloys. In particular , we 
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focus on the interplay between growing compositional domains, dislocations , and the 

effect on of dislocations strengthening in binary alloys. 

In Part II , the phase field crystal modeling (PFC) technique is reviewed. We 

begin in chapter 7.2 with an outline of basic terms used in the classical density func­

tional theory of freezing. In the PFC approach, the free energy functional is written 

in terms of the time averaged atomic density field, p, (PA and p8 in binary systems) 

and expanded around a liquid reference state that exists along the liquid/solid co­

existence line. Formally, the expansion contains the n-point correlation functions of 

the liquid state. In this work, the series expansion of the free energy is truncated at 

the 2-point correlation function , C(r1 , f2) 1
. Within this framework , the derivation of 

a phase diagram for pure material is shown in section 7.3. 

In chapter 8, we introduce our first main contribution; a modified phase field 

crystal model (MPFC) . The MPFC model includes diffusive dynamics and elastic in­

teractions. This inclusion is achieved by exploiting the separation of time scales that 

exist between diffusive dynamics and elastic relaxation processes in solids. In particu­

lar , the MPFC model is constructed to transmit long wavelength density fluctuat ions 

with wave modes that propagate up to a time scale tw , after which the strain-relaxed 

density field continues to evolve according to diffusive dynamics. The key feature 

of our approach is that the value of tw can be chosen to be much smaller than the 

characteristic time scale of diffusion, and much longer than 1/w 0 ~ 10-13s, where w0 

denotes the Debye frequency. The MPFC model has the ability to simulate atomic­

scale interactions and dynamics on time scales that are many orders of magnitude 

longer than those of molecular dynamics. Most importantly, our modified model nat­

urally incorporates instantaneous elastic interactions. In section 8.1 , we study the 

propagation of elastic perturbations in a linearized version of the MPFC by way of 

Floquet stability analysis. The analysis shows how the two time scale are separated 

and how they relate to varying sample size. ext, we compare our model to the one 

derived by Majaniemi et. al. [21] from more fundamental principles. The analysis 

shows that our original modified phase field crystal (MPFC) model follows the correct 

approach to elastic relaxation. To illustrate the essential properties of MPFC model , 

we applied the model to solidification, grain growth, grain boundary energy study, 

1The two-point correlation function , roughly speaking, represents a time-averaged of the two­
particle interaction potential of molecular dynamics. 
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and deformation in elastic bars. These four test cases show that the model correctly 

reproduces processes on both diffusive and instantaneous time scales. Moreover , the 

final example shows a correct distribution of strains in a one dimensional sample. 

In chapter 9, our second main contribution is considered, a PFC model for 

binary system. Similar to the case of pure material , the free energy expansion of a 

binary alloy will be truncated at the 2-point correlation functions for each atomic 

species , which are then characterized by three parameters. It is shown that the "reg­

ular" solution model used in materials physics for alloys can be obtained directly from 

DFT. This chapter also provides insight into the concentration dependence of vari­

ous properties of the crystalline phase of a binary alloy, such as the lattice constant , 

effective mobilities, and elastic constants. 

In the rest of the chapter 9, a simplified version of the binary alloy free energy 

is derived. This is done in order to provide a mathematically simpler model that 

can more transparently illustrate the use of PFC formalism while simultaneously 

modeling diverse processes such as solidification, grain growth, defect nucleation, 

phase segregation, and elastic as well as plastic deformation. This chapter also shows 

that the free energy of the simplified alloy PFC model reproduces two common phase 

diagrams associated with typical binary alloys in materials science. Some of the more 

tedious calculations in the derivation of the simplified model are shown in Appendix B. 

In section 9.6, the dynamical equations of motion that govern the evolution of the 

solute concentration and density field of the binary alloy are derived. Finally, the 

simplified binary alloy model is used to demonstrate the phase transformation kinetics 

associated with solidification. 

The solution of the partial differential equation of motion poses a challenge to 

computational resources , in particular when large samples are studied. To circumvent 

this issue, we developed a semi-implicit multigrid solver described in chapter 10. 

In the Part III of the thesis, we apply the single component and binary 

MPFC model to study a set of problems that are currently of interest in the scientific 

community. To calibrate the model and to verify essential deformation processes, we 

measure the velocities of individual dislocations and strain distribution in a single 

crystal. Exploiting a unique combination of accessible length scales and time scales 

of the MPFC model, we simulated grain size dependence in the deformation of NC 

materials. By increasing the grain size from a few nanometers to approximately 30 
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nanometers , we observe changes in microstructure and strength while applying a load. 

Simulation results are then compared to experimental results. 

The third part of the thesis continues with a study of spinodal decomposition 

in binary alloys. First we examine the basic kinetics of spinodal decomposition in 

a perfect crystal, then the growth rate of compositional domains is measured and 

compared to growth rate observed when dislocations are present in the microstructure. 

Simulation results are again compared to previously published data and discussed. 

Finally, we present an extension of the PFC technique to three dimensions by 

using a direct two point correlation function for copper. 
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Chapter 2 

Processing and Characterization of 

Nanostructured Metals and Alloys 

2.1 Categorization of Nanostructured Materials 

Since the emergence of materials with a microstructure modified on the atomic 

level various structures has been synthesized. In the semiconductor industry we can 

find materials with reduced dimensions in the form of nanometer-sized particles, thin 

wires or films . Another group of materials is represented by materials with reduced 

size microstructure localized to layers only a few nanometers in thickness . Such 

coatings are used to improve corrosion resistance, hardness and wear resistance. The 

last group of materials with nanometer sized microst ructure includes bulk solids. 

This thesis will focus on a microstructurally heterogenous materials consisting of 

crystallites (grains) with various orientations separated by grain boundaries [2]. 

Materials with a nanometer-sized (typically 1- lOOnm) microstructure are called 

Nanostructured materials (NsM) or synonymously - Nanocrystalline (NC) materials. 

These two terms are typically used interchangeably. Metals and alloys with average 

grain size levels in the 100 - lOOOnm range are defined as ultrafine crystalline (UFC) 

metals and alloys. Their microcrystalline (MC) counterparts have an average grain 

dimension of a micrometer or larger. The synthesis, characterization and processing 

are part of a rapidly growing field referred to as nanotechnology [22]. 
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2.2 Processing Techniques 

Nanocrystalline materials are prepared by either breaking down bulk pieces of 

materials into nanosized particles or an atomistic assembly process. The first group 

is called top-down and the latter bottom up. 

The oldest method to produce nanocrystalline samples is the inert gas conden­

sation (IGC) technique [23] . A material is evaporated in a high purity atmosphere 

of He (0.1- 1 kPa pressure) contained in a pre-baked ultra high vacuum evaporator. 

Thermal energy of evaporated metal atoms is transferred to He molecules. Subse­

quently evaporated metal condenses in the form of nanometer sized crystals , which 

accumulate at the surface of a cold finger . After restoring ultra high vacuum con­

ditions, the crystals are scraped off the cold finger and are consolidated, using hy­

drostatic pressure of 5GPa, into a dense polycrystalline material. The size of the 

crystals depends on the pressure and the evaporation rate. IGC has certain limita­

tions , including specimen volume, sample porosity and costly equipment. Calls for 

reduction in processing defects , such as impurities and porosity, lead to the develop­

ment of new and improved technologies. State-of-the-art IGC technologies produce 

cleaner powders improved densities , ranging from 70% - which was common value in 

early days of NsM - to 98% of fully dense value [24, 25]. Various metals have been 

successfully processed using IGC method e.g. Cu, Pd [26, 27]. 

Another common method for a preparation of NC metals and alloys is the 

electrodeposition (ED) by means of pulse electrolysis. A soluble anode of deposited 

metal and insoluble cathode are placed in the electroplating bath. After the deposition 

the final product can be scraped of the cathode. Advantages of this method are its 

relative simplicity and low cost as well as its ability to form nanostructure deposits 

in various shapes and sizes. Using process parameters such as bath temperature 

and composition and current density, the modulation grain size of NC material can 

be tuned to values between 10-lOOnm. Electrodeposited samples have virtually no 

porosity and do not require a consolidation step. NC Ni , Co, Pd, Cu and their alloys , 

such as Ni-W, i-Cu, Ni-P and Ni-Fe, have been successfully prepared by the ED 

method [28, 29, 30]. Coatings of NC Ni have been successfully applied in the industry 

to repair tubing in nuclear power plants, improving mechanical properties and thermal 

stability [31]. Crystallization from amorphous alloys is a method with a higher yield of 

10 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

ip 

Figure 2.1: Severe plastic deformation method. Left: Equal-channel angular pressing 
setup. Right: High-pressure torsion setup [32]. 
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NC material than IGC. The basic idea of the method is that , that during annealing 

of an amorphous alloy the crystallization will occur, which involves the formation 

of clusters and the nucleation and growth of nanocrystallites. An amorphous alloy 

usually takes the form of a ribbon, stripes or a powder and is prepared by a number of 

rapid quenching methods. Bulk NC alloy specimens can be made by cold compaction 

after crystallization. This method is limited to alloys that can be transformed into a 

glassy state and produces porous free samples (e.g. iP) [33, 34]. 

Strength of metals after plastic deformation usually increases while its ductil­

ity decreases. However, it was shown that nanocrystalline materials prepared by a 

top-down method of severe plastic deformation (SPD) possess an extraordinary com­

bination of strength and ductility. During SPD, bulk material is deformed by large 

shear strain under high pressure while the work-piece dimensions remain unchanged. 

Two of the most widespread methods are equal channel angular pressing (ECAP) and 

high pressure torsion (HPT) [35] [32]. In ECAP, a material is pressed a number of 

times through the same die (Fig. 2.lleft). In HPT, a rotating plunger imposes large 

shear strains onto a sample (Fig. 2.lright). Samples are usually disks sized 20 x lmm 

that contain high dislocation densities and high internal elastic strains. 

The last method of NsM preparation, mentioned later in our text , is the top­

down, solid-state processing method of mechanical attrition and mechanical alloying 

known as ball milling. In this process, lattice defects are produced within the ini­

tially single-crystalline powder particles. The internal refining process results from 

the creation and self-organization of dislocation cell networks and the subsequent for­

mation of small and high-angle GBs during the mechanical deformation process. A 

broad range of chemical compositions and atomic structures can be synthesized using 

this method. Limiting factors include the porosity and a possible contamination of 

powder particles by milling tools and the surrounding atmosphere [36]. 

2.3 Characterization of NC M aterials 

As mentioned in the previous section, most of the methods used to prepare 

NsM introduce various flaws (pores, microcracks) into the material. Before valid com­

parisons can be made between empirical measurements of the mechanical properties 

of NC metals and the model predictions, it is necessary to ensure that experimental 

12 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

NsM data represents the inherent behavior of the material and are not compromised 

by sample imperfections. Indeed, as will be seen from the following literature review, 

there is a plethora of often contradictory data in NsM, which can make a unified 

characterization of NsM properties difficult [37, 38, 25]. 
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Figure 2.2: Left: Stress-Strain results of tensile tests on NC powder. Beneficial 
effects of polishing. Surface flaws were related through Griffith criteria to a critical 
surface crack with a magnitude of about 2µm frequent ly observed in 'as compacted ' 
NsM. Right: Influence of porosity on the Vickers hardness. Straight line: best 'fit ' to 
the data for samples with average density 87-943; Data points: sample with average 
density above 983 . Figures adapted from: [25 , 39, 40]. 

2.3.1 Density 

After examining initial measurements of the mechanical properties of NC met­

als produced by the IGC method [26, 34], Nieman et .al [40] pointed out that strength 

of tested NC samples could be limited by processing flaws (such as porosity and sur­

face flaws) rather than by the intrinsic behavior of the material. As a result of these 

findings , several improvements to the production methods have been made, and sev­

eral methods of studying porosity in NC material have been developed. The basic 

method for measuring sample density remains based on the Archimedes principle, 

where samples are first weighed in the air and then submerged into liquid. Later , 
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small angle neutron scattering was employed to recognize pores in the range of 1-

lOOnm [41]. All of the above mentioned methods can be coupled with optical, SEM, 

and TEM observations, which describe the more qualitative characteristics of the 

present pores. The profound influence of sample quality on the Vickers hardness and 

stress-strain results are displayed on Fig. 2.2. 

2.3.2 Determination of Grain Size 

When plotting Hall-Petch plot the grain size determination becomes an impor­

tant factor. Errors in grain size determination can shift the curve to higher or lower 

values, making it difficult to accurately pinpoint the grain size at which a transition 

to different deformation behavior will occur. 

Transmission electron microscopy has been used to observe the shape of the 

grains [26, 34, 42] the twins [43], the character of grain boundaries (Fig. 3.13) , and to 

determine the size distribution. The drawbacks of this method are that only a small 

number of grains is included in the observation, the lengthy sample preparation, and 

destructive nature of the sample preparation [40]. 

Another approach to the determination of grain size is the non-destructive 

technique of X-ray diffraction (XRD). The advantage of XRD is that a large number 

of grains are included in the grain size estimation. While the position of the peaks in 

an XRD profile determines the phase, grains size is a function of the width of the peak. 

Width is measured at a half maximum peak intensity. One commonly used XRD 

method is the Scherrer method [34, 40] which calculates grain size as D = >.. /w1cose, 
where w 1 is the width at half-maximum intensity, >.. is the wavelength of the X­

ray radiation, D is the average crystallite size and e is the Bragg angle [44]. The 

Scherrer method is not sufficient when lattice strains are present in the sample, which 

is common if the sample is prepared by severe plastic deformation (see section 2.2) . 

Lattice strains have a similar widening effect on the peak as the grain size. To separate 

the effect of lattice strains and determine the correct grain size, the shape of the peak 

is analyzed by Fourier analysis . The Stokes-Wilson method and Warren-Averbach 

method both incorporate this approach [44, 40] . 
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Chapter 3 

Mechanical Properties of 

Nanostructured Metals and Alloys 
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Figure 3.1: Hall-Petch plot for Cu alloy [1]. 
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The successful application of 

nanocrystalline metals as struc­

tural materials in industrial appli­

cations requires a detailed knowl­

edge of mechanical properties and 

understanding of deformation be­

havior . This chapter reviews 

the elastic and plastic mechanical 

properties of NsM, with an em­

phasis on grain structure, defects 

and sample preparation. 

Most engineering materi­

als are composed of tiny crystal­

lites - called grains. It is a well 

known fact that mechanical prop­

erties of materials crucially de­

pend on the grain size. In the mid 

50's of the last century, Hall and 

Petch showed that , for low carbon 

steels with grain sizes in the mi-
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crometer range, the yield strength is inversely proportional to the square root of the 

average grain size (Fig. 3.1) [3, 4]. The question now posed on this relationship is how 

far the strength of a material may be increased by refining its grain size. In early 90 's, 

experiments on copper, palladium, and NiP alloy [26, 34] specimens showed behaviour 

opposite - or the 'reverse ' - of what was predicted by the Hall-Petch relationship. 

These studies found decreasing hardness of a polycrystalline material with decreasing 

grain size (Fig. 3.2) . From then forward , experimental studies of mechanical prop­

erties of nanocrystalline metals have concentrated on the grain size dependence of 

strength, usually determined by hardness measurements. 
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Figure 3.2: Variation in hardness with d-1/ 2 for NC Cu and Pd reported for the first 
time by Chokshi et. al. [26]. 

3 .1 Mechanical Testing 

3 .1.1 Elastic Properties 

Initial measurements of elastic properties estimated the Young's modulus of 

the NC metals to be significantly lower than measured on conventional materials [40] . 

It was suggested and later confirmed , that these low modulus measurements were 

caused by porosity, which is typically present in NC materials produced by IGC. Later 

experiments showed the Young 's modulus to be slightly lower than the reference value. 
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Modulus appears to decrease exponentially with increasing porosity. Typical values 

for Young's modulus of Cu and Pd are depicted in Fig. 3.3, where curves extrapolated 

to 0% porosity intercept the modulus axis with values very close to those of bulk 

samples with large grain sizes: Ecu(coarse) =128GPa and EPd(coarse) =133GPa [45]. 
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Figure 3.3: Young's modulus as a function of porosity for NC Pd and Cu [45] . 

3.1.2 Grain Size Dependence of Strength 

M icro hardness 

Because of the small size of most C samples, studies of strength are usually 

confined to hardness measurements. Chokshi, Rosen, Karch and Gleiter were the 

first to report on the variation in the hardness with grain size for C materials. 

In contrast to the Hall-Petch relationship (HPR) their results showed a decrease in 

hardness with a decrease as grain size decreased from 20 to 5 nm for NC copper and 

palladium produced by IGC [26]. Deviations from the HPR were also observed in 

studies on NC samples of Ni-P alloy with average grain sizes less than 37nm [34], 

C nickel with average grain sizes less than 20nm [46] and Al-1.5%Mg alloy [47]. 

Later measurements suggested opposite behaviour (Fig. 3.4 after [40]) . Initially, the 
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Figure 3.4: Hall-Petch plot of Vickers microhardness Hv for NC Cu and Pd. The 
results of [26](see Fig: 3.2) are compared with those of [40]. Whereas magnitudes 
of the hardness values are comparable in these two investigations, the slopes are 
markedly different. Heat treated samples were annealed to produce grain growth. 

discrepancy was partly explained by sample porosity of and the observation that 

hardening and softening of C metals can depend upon the method used to vary the 

grain sizes. For example annealing a sample to produce grain growth can result in 

hardness values greater than those as-prepared samples with similar grain sizes [27]. 

It is also worth mentioning that , when drawing results between microhardnes Hv 

and grain size d- 1/ 2 , one should consider error not only for Hv but also account for 

consider 10-50% uncertainty in the measured grain size. 

More recent measurements on copper confirmed the validity of grain size 

strengthening down to 10 nm [48] while achieving compressive strength up to 3GPa. 

Besides the high strength, summary plot Fig. 3.5 points out that variation in pro­

duction methods can have a strong influence on nanocrystalline materials properties. 

Points above the expected HP line are prepared by SPD method with a high dislo­

cation density while porosity was attributed to samples with hardness below the HP 

line. 
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Figure 3. 5: Variation of hardness (left) and yield stress (right) with 1 / Jd for various 
samples reported in literature [48]. Samples produced by severe plastic deformation 
are above HP line while porous samples are below the expected HP line. (a, b, c, d, e, 
f, g , h , i, j , k, 1, m, n , o, p- [48 , 49, 50, 45 , 35 , 50, 51 , 52, 53 , 54, 55 , 43, 56, 32, 57, 58]), 
respectively. 

Tensile and Yield Strength 

Early measurements on the NC palladium reported that for samples with 

average grain sizes of 25nm, the yield stress was 185MPa, values twice as large as 

reported for coarse grained samples (e.g. 50µm [40]) . The tensile data again showed 

an apparent flaw sensitivity [59]. A lower density of the NC sample or a few large 

grains in the NC sample can cause a decrease in the yield strength by a factor of 

two. Measurements on samples with improved porosity showed the yield strength to 

be 10- 15 times those in the coarse-grained, annealed metal [45]. For a NC sample of 

copper with an average grain size of 30nm, the yield strength was measured as high 
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as 760MPa [60] or even lGPa with twin boundary refinement [43]. These and similar 

results from other studies suggest that grain refinement leads to a large increase in 

the yield strength. This gain is at the expense of ductility though, as shown for NC 

copper and palladium [39, 61]. Tensile tests on NC nickel showed that the Hall-Petch 

slope becomes negative for grain sizes below lOnm (see Fig.3.6). Typical strain rates 

during tensile tests were in the range of 10-5 s-1 to 10-3 s - 1 . 
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Figure 3. 6: Yielding strength of nano crystalline nickel [ 61]. 

It was predicted [23] that traditional dislocation mechanisms cease to operate 

in nanocrystalline materials while diffusional creep mechanisms are enhanced due to 

reduction of grain size. 

Creep tests on NC palladium and copper produced by IGC initially did not 

show a significant room temperature creep rate under loads much larger than the yield 

stress of coarse-grained samples [59, 40]. Measurements on NC nickel showed that 

a creep mechanism can be significant only at high stress levels and that the average 
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grain size of NC sample must be below lOnm. Later measurements [62 , 42] showed 
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Figure 3.7: Creep plot for a constant stress, room temperature creep test on a 
nanocrystalline (lOnm) Pd sample [40]. 

the presence of creep strain rates on the same order to be consistent with the Coble 

Creep mechanism [63]. These experiments were carried out at room temperature 

to prevent grain growth. It was shown that strain rates are lowered below values 

expected by Coble creep when grains are allowed to grow during the test or vacancies 

are generated due to consumption of grain boundaries [64]. Microhardness creep 

measurements (Fig. 3.8) on NC Cu [65] and Al [66] showed a decrease in hardness 

with increasing dwell time as well as rapid grain growth. 

Flaws, D uctility and Strain Rate Sensitivity 

Earlier NC samples were prone to low ductility and fracture due to presence 

of flaws (Fig. 2.2) . In 2000, Lu [42] synthesized high purity Cu samples without 
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Figure 3.8: Hardness of nanocrystalline copper (IGC) and coarse grained copper (CG) 
as a function of nanoindenter dwell time [65]. 

significant porosity and was able to obtain elongation of 50003 as shown on Fig. 3.9. 

After repeated cold rolling, the initial sample measuring 16 x 4 x lmm became a long 

ribbon approximately 20µm thick with no surface cracks. Typical copper samples 

break at approximately 8003 extension. 

Similarly, C Cu samples without flaws reported 11 times higher tensile strength 

than conventional coarse-grained copper, while retaining a 143 uniform tensile elon­

gation [67]. The limiting factor to high ductility was thickness of the samples, as thin 

samples were failing prematurely due to increased sensitivity to surface cracks. 

Early studies on NC materials [61] further emphasized the strain-rate sensitiv­

ity of NC materials . It has been shown that for the same material , the yield strength 

varies with the loading rate (i.e. a higher loading rate may give rise to a higher yield 

strength). 

Strain rate sensitivity of the flow stress is represented as o-r = K f.'T , where Er is 
true strain rate , m is the strain rate sensitivity, and K is a constant. The maximum 

strain sensitivity is 1 as the stress increases linearly with strain rate - a viscous 
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Figure 3.9: Superplastic behaviour of NC Cu sample deformed by cold rolling to 
elongations up to 51003 [42] . 

solid. High values of m indicate resistance to necking and renders these materials 

superplastic. As displayed on Fig. 3.10, strain-rate sensitivity for nanocrystalline 

materials increases by about an order in magnitude when grain size is reduced to 

nanocrystalline size. It is expected that NC material possess superplastic properties. 

3.1.3 X-ray Diffraction and Microscopic Studies 

Microscopy and X-ray analysis has been used to determine the grain size distri­

bution as mentioned in section 2.3.2 , providing another tool with which to underst and 

the mechanical behavior of NC materials. 

X-ray Diffraction 

In section 2.3.2, we pointed out that both the grain size and strains in the 

sample will result in the broadening of the XRD profile peak. Hemker [69] pointed 

out that dislocations can be sources of inhomogeneous strains in the sample and will 

contribute to the peak broadening. Newly developed techniques allowed in situ peak 
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Figure 3.10: Room temperature strain rate sensitivity m as function of grain size for 
Copper. Note the steep increase in C regime [68]. 

profile analysis of samples to be deformed in the high power Swiss synchrotron light 

source. These in situ observations were in agreement with previous studies on C 

materials . When NC Ni was loaded, the XRD peak widened and then it was com­

pletely reversed upon unloading. This result is in agreement with molecular dynamics 

simulation predictions (section 3.2) , suggesting that dislocation are generated at the 

GB upon loading and are absorbed by GBs after unloading, leaving no dislocation 

debris [70] in the sample. 

Scanning Electron Microscopy (SEM) 

SEM is usually employed to examine fracture surfaces in samples. Fracture 

observations in NC Ni-P alloy showed traces of plastic deformation on the samples 

from 9nm to 37nm, though no traces of deformation were found above 37nm grain 

size. The authors concluded that the sample with smaller grains (less than 37nm in 
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Figure 3.11: High resolution TEM images of the nc-Ni showing a clean atomically 
faceted grain boundary [22]. 

size) have a stronger tendency toward a plastic deformation (i .e. a lower strength an 

observation that implied a "reversing" of the HPR [34]). 

Transmission Electron Microscopy (TEM) 

TEM is the usual technique used to characterize NC grain boundaries. In the 

early days of nanotechnology, high resolution TEM studies indicated that the GBs 

in the as-prepared samples are in a non-equilibrium state and may be transparent to 

dislocations [39, 47]. Evaluation of grain boundaries of samples with average grain 

sizes of less than lOnm revealed considerably thicker grain boundaries, which sup­

ported the theory that grain boundary thickness increases with decreasing grain size, 

which in turn may have an effect on hardness in the GB region [29]. More recent 

experiments, however, suggested that GBs in NC materials are not anomalous but 
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similar to those found in polycrystalline materials and showed an absence of any 

grain boundary phase or amorphous regions (Fig. 3.11). The postmortem (after the 

deformation) TEM observations of deformed nanocrystalline metals have failed to un­

cover any evidence of dislocation activity, which suggests that traditional dislocation 

sources cease to operate below lOOnm average grain sizes. 

More recent in situ studies of C materials deformation under TEM revealed 

evidence of dislocation motion. Kumar [22] concluded that the sources of plasticity 

during the deformation of NC Ni included dislocation activity, void nucleation, and 

void growth. Besides dislocation activity, deformation twins were found in ex-situ 

samples. Presence of deformation twins suggested part ial dislocations activity in the 

samples. Samples of NC aluminum with average grain sizes ranging from 10- 35nm 

revealed the formation of deformation twins [71] (Fig. 3.12) . Further experiments us­

ing NC Ni showed that the formation of deformation twins depended on temperature. 

During uniax:ial tensile test at cryogenic temperatures, severe partial dislocations me­

diated deformation was observed [72]. The generation of twin interfaces and stacking 

faults offers an alternative mechanism, to dislocation pile-up at grain boundaries, to 

explain the continuous grain size strengthening of C materials. 

Before we move on, it is interesting to point out that, while experimental observa­

tion usually precedes theoretical explanation, this was not the case for the mechanism 

of twinning in nanocryst alline aluminum. Twinning was, for the first time, observed 

using large scale computer simulation [73, 74] and then later confirmed by the above 

mentioned TEM studies. 

3.2 Computer Simulation Studies 

Advances in computing have made it possible to study systems of millions of 

atoms, enough to represent physical structures on the nanometer scale. Modeling 

the NC microstructure at the atomic level is widely known as atomistic computer 

simulation. Simulations performed on massively parallel supercomputers can provide 

details on deformation processes at the atomic level. One can perform virtual tensile­

strength tests, stretching the crystal and seeing how individual atoms move. The 

position of every atom in the sample during the course of deformation is determined 
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Figure 3.12: Nanoscale deformation. High-resolution transmission electron micro­
graph of a twin in deformed nanocrystalline aluminum [71]. This atomic resolution 
image illustrates the mirror symmetry between the twin and the matrix. The pres­
ence of the twin and the fact that it extends from one side of the grain to the other 
is unique to nanocrystalline aluminum. 

and recorded. In present time, it is possible to simulate samples of three-dimensional 

networks of up to the order of 15 grains with a 20nm diameter , or 100 grains with a 

lOnm diameter , as depicted on Fig. 3.13. The main advantage of computer simula­

t ions is that they allow the non-invasive study of deformation processes. They also 

allow us to virtually synthesize and investigate NsM that are free of defects (pores , 

etc). The main atomistic-scale simulations that have been applied to NC metals are 

Molecular Dynamics (MD) . The main part of MD simulation is the physical model 

of the system. In MD, Newton's second law is solved numerically for all atoms in the 
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system. 

(3.1) 

where V ( r 1 , · · · , r N) represents a potential energy. Potential energy describes the 

forces of interaction between particles. The validity of simulation results then depends 

on how realistic the description of the physical system a given potential energy offers. 

Examples of types of atomistic simulations are ab-initio, classical potential methods 

and semi-empirical methods. 

The first group, as the name suggests, calculates forces between atoms from 

the first principles and is characterized by high accuracy, long simulation times, and 

high demand on computational resources . 

The second approach calculates interaction between a pair of atoms based on 

a pair potential, such as the Lennard-Jones Potential or the Boyer Potential [75]. The 

shortcoming of this approach is that it does not correctly represent interactions in 

metallic materials. 

To alleviate the above mentioned problem, semi-empirical methods are used, 

where pair potential is replaced with many-body potential, which takes into account 

t he interactions between many atoms. 

Without going further into the details of these simulations, let us now mention 

some of their interesting results. 

In 1998 Schi¢tz et al. [5 , 77] simulated the MD of crystals with grain sizes 

of 3- 6nm using an inter atomic potential for copper. When uniaxial deformation 

was applied, the stress-strain variation showed the expected yield and plastic flow. 

When these results were correlated with the grain size, they indicated a reverse HPR 

- a stress reduction with decreasing size. They predicted yield strength in the range 

of 1 - 1.2GPa for corresponding grain sizes of 6 - 3nm. The absence of thermally 

activated process in these simulations, made a direct comparison of these results 

with those of other experiments difficult . Interestingly, these simulations revealed 

the deformation processes that occur inside deforming material. The deformation 

process was characterized as grain boundary sliding, with an occasional nucleation 

of a partial dislocation from GBs. We know from dislocation theory [78] that the 

positions of atoms between two Shockley partial dislocation are altered. Similarly 
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Figure 3.13: Grain boundaries at nanoscale. 37x37x37nm sample of Ni with mean 
grain size lOnm contains 4.6 million of atoms. Gray atoms sit in perfect crystalline 
positions, colored atoms are grain boundary atoms [76]. 

as partial dislocation emitted from GB moved through a grain, a stacking fault was 

created. 

Yamakov et. al. (Fig. 3.14) studied systems of 4 columnar, hexagonally shaped 

grains with sizes ranging from 20 to 70 nm. In smaller samples they observed the 

emission of partial dislocations 1/ 6[112] from GBs. As the moving partial dislocation 

passed through the grain , a stacking fault was left behind, increasing the energy of 

the crystal. At higher grain sizes, the energy became too high and a second partial 

dislocation was emitted from the grain boundary, 'healing' the stacking fault and 

creating an extended dislocation - 1/ 2[110]. Authors Yamakov et. al. concluded 

that the type of dislocation nucleated depends on the grain size and resolved shear 

stress. They rationalized the mechanism by comparing the distance r between two 

partial dislocation and average grain size d. The splitting distance r depends on the 

stacking fault energy r , the resolved shear stress O" , and the Burgers vector of partials 

b according to equation [80]: 

Kib2 

r= ---r - K20" 
(3 .2) 
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Figure 3.14: Sample with d = 20nm at 14.6ps nucleated a partial dislocation 1/ 6[112]. 
Contrary the sample with the 30nm grain size nucleated an extended 1/ 2[011] dis­
location at 27.6ps. The extended dislocation consists of two partials connected by 
stacking fault . Applied stress is 2.3G Pa in both cases [79]. 

where K1 , K 2 are materials constants. Large applied st resses , which are characteristic 

for MD, will result in significant values of r . Values of r higher than the grain sized 

might prevent nucleation of full dislocation. The actual deformation mechanism will 

depend on the interplay between r , a- and d. We will consider the following cases. If 

d < r split and a- > a- flow , partial dislocations are nucleated from the grain boundary, 

but limited by the grain size, and the emitted partial dislocation will be absorbed by 

the opposite GB before an extended dislocation can be nucleated. On the other hand, 

if the grain size is bigger then r split, then an extended dislocation will be formed. In 

the case when resolved shear stress is less then the flow stress, other than dislocation 

mediated deformation mechanism will prevail. 

The further study of the NC Al system uncovered the presence of deformation 

twinning [73]. Twins were formed by the concurrent emission of partial dislocations 

from the same GB and the splitting and subsequent migration of GB. Deformation 

twinning is well known in FCC systems, such as brass, but was not expected in 

aluminum given the high stacking fault energy of Al. As in the previous case, these 

studies pointed out significance of stacking fault energy and its effect on the strength of 
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NC materials. In addition to processes inside the grains , the interaction of dislocation 

and GB was revealed. As seen on Fig. 3.15, after a 123 deformation GBs that were 

originally flat became rough even as new grain was nucleated at the center of the 

sample. 

Yamakov et. al. [81] further studied samples of NC Al with average grain sizes 

of 7, 10, 18, 24 and 32nm to uncover the transition from the strengthening effect 

of grain refinement to reversed behaviour. Similar to the above paragraph, they 

observed no dislocation activity, only a partial dislocation mediated deformation for 

the smallest grains. In the largest grains dislocation slip was observed. Analyzing the 

plastic strains in the sample during the deformation they were able to pinpoint the 

transition to reversed behaviour the 18nm grain size. 

Schi0tz and Jacobsen [82] explored grain size dependence of flow stress in C 

Cu samples with grain size ranging from 5 to 50 nm. They showed an increase in the 

flow stress with increasing grain size for samples up to 12nm. Observations of the 

microstructure during the course of deformation uncovered grain boundary sliding 

mediated deformation . The flow stress began to decrease for grain sizes above 15nm. 

In this case, deformation was primarily mediated by dislocation motion through the 

grains, although in some grains , grain boundary sliding was observed. Plotting the 

flow stress against the grain size showed that the grain size with the highest flow 

stress - the ,, strongest size,, - is in the range of 12 to 15nm. Another important 

feature observed during the deformation was the formation of dislocation pileups (see 

section 4.1) in grains sized 50nm. Pileups contained 5-6 dislocations and were 35 to 

40 nm long. 

3.2.1 Current Status and Limitations 

Even though atomic-scale simulations contributed to the understanding of NC 

materials , one has to be aware that they cannot be directly applied to the deformation 

of common engineering metals as they are currently limited to sample sizes of about 

lOOnm. 

More importantly, the typical time step of molecular dynamics simulation is 

of the lfs (10-15 ) order , below the vibrational period of an atom. As a result the 

strain rate required to achieve acceptable simulation time has to be at least 107 s- 1
. 
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For example, the transition to reverse 'HPR' in [82] was observed under strain rates 

5 x l08s-1 within the 200ps of simulation time. This is to be contrasted with the 

much slower experimental strain rates of 10-5 to 10-3s-1 reported in section 3.1.2. 

Moreover, to achieve the deformation of 1% in about lns very high applied stresses 

have to be used. For example, the above mentioned studies by Yamakov et. al. [81] 

used a constant tensile stress of 2GPa applied to each sample. Unusually high ap­

plied stresses and strain rates raise the question to what extent MD simulations are 

comparable with experiments. 

Van Swygenhoven [83] suggested that macroscopic stress-strain curves from 

MD might be misleading and the only meaningful information obtained from MD 

simulations are observations and a classifications of the atomistic processes during 

the deformation. 
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Chapter 4 

Deformation Mechanisms of 

N anocrystalline Metals: A 

Summary 

In the previous chapter we described the mechanical behavior of NC materials 

as observed in experimental studies and in numerical simulations. In this chapter we 

will attempt to collect these separate results into a single picture describing a proposed 

deformation mechanism of metals with a decreasing average grain size. Using the same 

philosophy as in the introduction we can divide the scope of our new plot into three 

groups. Micro-, ultrafine- and nanocrystalline metals . 

4.1 Microcrystalline Metals 

It was mentioned in chapter 3 that the relationship between the yield strength 

and the grain size has been of interest to many authors. We also reviewed (Fig. 3.1) 

the work that was performed by Hall and Petch [3, 4], where they plotted yield 

strength <7y against the inverse square root of the grain diameter d to obtain a linear 

relationship later known as the Hall-Petch relationship. This relationship can be 

written as follows : 
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grain 1 

Figure 4.1: Schematic illustration of a pile-up formed in grain 1 and applied resolved 
shear stress r . S2 is a source in grain 2. Dashed line would represent preferred slip 
planes [84]. 

where, k is a measure of the stress required ahead of the array of dislocations for the 

propagation of yield or cracking [85]. O"o is the friction stress that opposes the motion 

of the dislocations. 

This theory was rationalized through the pileup of dislocations at grain bound­

aries , created in the process of plastic deformation. Consider a grain with a dislocation 

source at S 1 [grain 1 on Fig. 4.1]. Suppose that that the stress required to operate 

the source has been achieved. Dislocations emitted from Sl will experience repulsion 

near the the grain boundary interface. Dislocations will pile up along the glide plane 

behind the grain boundary film. The stress concentrations cause the GB to yield. 

Deformation is then transferred to the next grain [grain2 on Fig. 4.1], where a second 

dislocation source starts to operate. 

The MD simulations on NC copper reviewed in section 3.2 revealed the pres­

ence of dislocations pileups inside grains larger or close to 50nm. These observations 

suggested that indeed the dislocation pileups are the mechanism behind the grain size 

strengthening. 

It was shown that O"o reduces the stress produced ahead of the array of disloca-
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Figure 4.2: Tensile Engineering Stress-Strain curves of two NC Cu samples compared 
with UFC Cu [60]. 

tions piled up against the grain boundary film , and that it depends in part upon the 

frictional forces exerted by solute atoms, precipitates, and on the dislocation arrays 

that propagate the yield. It was also proved that O"o increases when the solute atom 

concentration is increased, by nitriding or by quenching and ageing [86]. 

4.2 Ultrafine Crystalline Materials 

Results reviewed in previous chapter (Fig. 3.5 and Fig. 3.6) suggested t hat 

strength increases with decreasing grain size up to grain sizes somewhere in the neigh­

borhood of 50nm grains sizes. As displayed on Fig. 4.2 and Fig. 3.5j ,o tensile tests 

on UFC Cu with grain size close to 200nm showed yield strength of 400MPa, which 

is more than double that of their microcrystalline counterparts displayed on Fig. 3.1. 

SEM micrographs of these samples revealed a dimpled fracture surface, which sug­

gested that fracture in ultrafine grained material was ductile i.e. mediated by plastic 

deformation [60, 54, 57]. More detailed exploration of UFC silver samples by HREM 
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confirmed signs of plasticity in grains with sizes of 200nm [87]. Deformation strains 

concentrated inside the grains suggested that dislocation mediated deformation is the 

dominant deformation mechanism in ultrafine grained materials. 

4.3 N anocrystalline Materials 

Experimental results and atomistic simulations both suggested that below cer­

tain grain size ( ::::::lOOnm) overall dislocation activity decreases and dislocation pro­

cesses at the GBs become more dominant. An important question regarding grain 

boundary strengthening is what will happen with decreasing grain size below ::::::lOOnm. 

The main theoretical arguments claim that as the grain size in a polycrystalline ma­

terial decreases , there arrives a point at which each individual grain will no longer 

be able support more than one dislocation; at this point the Hall-Petch relationship 

will no longer hold. From another point of view, when the grain size approaches zero, 

the material essentially becomes amorphous. The grain boundary strengthening ef­

fect will then disappear. The strength will reach a maximum where the Hall-Petch 

relation is fulfilled , but at the same time the dislocation microstructure is also favor­

able. This is schematically illustrated in Fig. 4.3. It was also shown in the previous 

section that at the critical grain size, the two mechanisms of grain boundary sliding 

and dislocation mediated deformation compete. 

4.3.1 NC Materials - Strength Above Critical Grain Size 

Summarizing experimental evidence from chapter 3, it is indicated that NC 

materials exhibit significantly higher yield strength than coarse grained materials. 

Furthermore, hardness and yield strength have been found to increase with decreasing 

grain size up to grain sizes 15 - 20nm. As the grain size decreases to the NC regime, 

dislocation activity shifts to GBs until it ceases at the critical grain size. Little is 

known about this process. Atomistic simulations partially uncovered that, as grain 

size decreases below 50nm, only grain boundaries act as sources of partial or full 

dislocations depending on grain size and the stacking fault energy associated with 

partial dislocations. The presence of partial dislocations and stacking faults lead 

to the formation of deformation twins . The generation of stacking faults and twins 
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Figure 4.3: Deformation mechanism map for copper. Adapted from [38]. 

can be one way to rationalize strengthening below grain size of 50nm, where only 

small numbers of dislocations are present . These results allow one to predict the 

deformation mode, but to characterize it , some theoretical model is needed. Asaro 

et . al. [88] developed a theoretical model for deformation of nanocrystals considering 

the emission of partial dislocation from the GBs. Another recently published model 

suggests theoretical transformation of low and high angle grain boundaries under 

plastic deformation. In this model, decayed low angle and bowed high angle GBs act 

as active dislocations sources [89] . 

4.3.2 Softening of NC Materials - Strength Below Critical 

Grain Size 

For grain sizes approaching ;::::;1Q-20nm, experimental evidence (see section 3.1.2) 

and computer simulations (see section 3.2) have indicated a decrease in the strength 

and hardness. It is expected that other than dislocation processes will govern defor-
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mation below ~20nm. 

Grain Boundary Energy Models 

Gleiter [2] argued that grain boundaries in NC materials are essentially dif­

ferent from those in conventional materials; they are of low density and in a gas like 

state of disorder. On the other hand, some studies of NC materials suggested that 

GBs in C materials have a lower interfacial energy due to high- volume fraction of 

GBs. This decrease of interfacial energy should result in a decrease in the ability 

to cease movement of dislocations at the GB. In other words, grain boundaries will 

exhibit certain transparency to dislocation movement , allowing dislocation to extend 

into several neighboring grains [90]. Neither of these t heories have been proved by 

direct observations using TEM (Fig. 3.11) or atomic simulations Fig. 3.13, [91 , 92]. 

They are more likely to suggest grain boundary properties similar to those in coarse 

grained materials i.e. materials with grain size in micrometer range. 

Creep and Grain Boundary Sliding Models 

It was suggested in the early days of NC materials that below the critical 

grain size - in other words below the size when dislocation activity has ceased - the 

mechanism for deformation will be creep-like - based on Coble creep. The theory 

of Coble creep is simple. The energy that is required to form a vacancy at the top 

or bottom surface of the grain (Fig. 4.4) is different from the energy required to 

create vacancy at a side surface if a vertical tensile stress is applied to the grain. 

From knowledge of the rate of flow of vacancies , it is possible to calculate the rate of 

change of the grain dimension in the direction of the applied stress [93]. When grain 

boundary diffusion is added to lattice diffusion , a formula for the Coble creep rate 

will be: 

. Ba-MJD9b 

E = d3kT (4. 1) 

where B is a constant , a is applied stress, o is the boundary thickness, n is the atomic 

volume, and D9b is the boundary diffusion coefficient. Thus NC creep rates would 

be enhanced by a factor of 109 compared to those for micrometer grain size materi­

als. Even though the calculation for copper suggested creep rates of 6 x 10-3 s - 1 for 
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Diffusion motion of atoms 

Diffusion motion of vacancies 

Figure 4.4: a) Mass motion of vacancies and atoms across a small grain and at a 
high temperature under applied stress. b) Change in shape of a grain under the mass 
motion shown in (a) [93]. In Coble creep mechanism mass transport is more narrowly 
focused to the GB region. 

O"=lOOMPa and d=5nm, direct creep measurements on NC Cu a Pd did not prove [59] 

this explanation and thus this remains an unanswered question. By contrast MD sim­

ulations [81] suggested creep like deformation mechanism with strain rates consistent 

with Coble creep mechanism. Other MD simulations [77, 82] and theoretical stud­

ies [94] suggested a deformation by the grain boundary sliding mechanism. However, 

it has to be pointed out that these two process must act in parallel to prevent inter­

nal void or cracks. After the grain is deformed by diffusional creep (Fig. 4.4b) one 

dimension is extended and the other lowered; to compensate for this change grain 

boundaries must slide by exactly the distance changed by diffusional creep. This the­

oretical observation would reconcile discrepancies between observations of both Coble 

creep and GB sliding. 

From other proposed mechanisms for deformation on the lowest grains size level 
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let us mention the mechanism of rotational deformation in nanostructures suggest 

by Ovidko et.al. [95]. As plastic deformation proceeds, two grains might rotate and 

coalesce or bring their orientation closer together. The proposed mechanism suggested 

that deformation is mediated by a motion of line defects - disclinations. 

In general, the results of all proposed theoretical models and NC copper obser­

vations data are summarized in Fig. 4.3, which describes the deformation of copper 

from micro- to nano-scale. 
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Chapter 5 

Compositional Domain Boundaries 

and Strengthening: Role of 

Dislocations in Spinodal 

Decomposition 

The experiments and computational simulations discussed in the previous sec­

tions suggested that the strength of materials is effectively increased by hindering 

the dislocation motion through the introduction of grain boundaries. Other obstacles 

such as solute atoms or second phase particles, have produced a similar effects. In 

the case of a second phase particle, the change in concentration between the matrix 

and a particle is rather sharp, as seen on schematic 5.lb. This is not the case during 

the process of spinodal decomposition were at early stages of phase separation the 

fluctuations in concentration are smooth - Fig. 5. la. The rest of this chapter will 

discuss the process of spinodal decomposition and how these smooth compositional 

domain boundaries interact with dislocations and thus contribute to binary alloy 

strengthening. 

Consider a binary alloy of composition X 0 , with a phase diagram with a mis­

cibility gap as shown in Fig. 5.2, heated to a temperature T1 and quenched to T2 . 

Initially the composition will be homogeneous everywhere (first slide on Fig. 5.la) 

and its free energy will be G0 . The free energy is plotted under the phase diagram on 

Fig. 5.2 . The alloy will be unstable and the initial homogeneous phase will sponta-
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Figure 5.1 : Growth of homogeneous fluctuation (a) and heterogeneous nucleation and 
growth (b) [96]. 

neously decompose into two daughter phases, lowering the total free energy (second 

slide on Fig. 5.la). This mechanism of growth is only observed in the center part of 

the coexistence region, which is limited by the spinodal curve. This process is called 

spinodal decomposition. Entropy of mixing will increase with increasing concentra­

tion of species A or B, causing the free energy to decrease on both sides of the free 

energy diagram. Furthermore, we can see from Fig. 5.2 that the free energies for 

concentrations X1 and X2 lie on the linear line defined by the lever rule. Inside the 

coexistence region, free energy has a metastable part with a positive curvature and 

an unstable part with a negative curvature. The transition from negative to positive 

curvature defines the location of the spinodal line, or line which defines if domains 

will grow by nucleation and growth mechanism or by spinodal decomposition. The 

free energy for phase separation by spinodal decomposition is written as: 

F = j [! (c) + K(\7c) 2] dV, (5.1) 
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where f (c) is the free energy of homogeneous composition, it has two wells . One 

for each phase. The second term, K:(V'c) 2
, is the additional free energy density to 

account for gradients in concentration, where K: is a constant that sets the scale of 

the gradients energy due to compositional variations [97]. 
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Figure 5.2: Alloy with concentration X 0 will decompose into coherent phases a 1 and 
a 2 without having to overcome an activation barrier. Transformation of an alloy with 
concentration X 0' must proceed by nucleation and growth [96]. 

During the process of spinodal decomposition, the domains of alternating con­

centration grow and coarsen to a scale of tens of nanometers . Although concentration 

fluctuations , displayed on Fig. 5.la, are smooth and less pronounced in the beginning 

of the growth process it was shown that they interact with the dislocations. Cahn [99] 

and Kato et.al [100] studied how internal elastic fields and concentration gradients ex­

ert force on dislocations. Cahn analyzed dislocations in several slip systems in FCC to 

find strengthening effect similar to that previously found in the systems with discrete 
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Figure 5.3: Leonard and Desai showed the presence of immobile (uncooperative) 
dislocations influences phase separation. Both bottom and top figures represents the 
same time. The alloy at the bottom contains dislocations while the alloy at the top 
is dislocation free [98]. 

particles. If the spacing between particles was small, the strengthening effect (stress 

to push a dislocation through "compositional" obstacles) would be linearly dependent 

on spacing. For particles with large distances the strengthening effect was inversely 

proportional to 2/3 power of the distance. In the above cases, a force balance on an 

individual dislocation was used to calculate the interaction between microstructure 

and dislocation stress field . 

The kinetics of phase separation was later studied using the previously men­

tioned free energy F = J[J(c) + K,(\lc) 2]dV and diffusional phase field dynamics: 

(5.2) 

The free energy in Eq. 5.1 can be expanded by replacing free energy density f with 

f + w where w accounts for elastic free energy density. Cahn was the first to calculate 
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that the driving force for the nucleation of an incoherent second phase precipitate is 

higher on a dislocation than in the bulk solid [101]. A similar result was obtained 

by Dollins [102] for a coherent precipitate in the presence of edge dislocation with 

isotropic elastic properties in solid solution. Leonard and Desai [98] used Ginsburg­

Landau formalism to write the free energy of the system. They analytically solved 

terms for elastic energies due to a) dislocations and b) the interaction between com­

positional stress field and dislocations. These elastic terms were then added to the 

general expression for the free energy. This, in turn, was used in a Cahn-Hilliard type 

dynamic equation to study the effects of static dislocations on the kinetics of phase 

separation. According to their findings , presence of dislocations changed both mor­

phology and kinetics of spinodal decomposition. From Fig. 5.3, we can see that the 

compositional field is trying to accommodate stress field from immobile dislocations. 

Kinetics was affected only at the early stages of decomposition where accelerated 

phase separation was found. Hu et. al [13] expanded on the work of Leonard and 

Desai using a phase field model to simulate dislocation response to elastic field ex­

erted by compositional inhomogeneities as well as by structural defects such as other 

dislocations , grain boundaries, cracks and inclusions. 

Haataja et al. recently introduced mobile dislocations into a phase field model 

that couples two burgers vector fields to solute diffusion and elastic strain relax­

ation. It was shown that mobile dislocations altered the early and intermediate time 

coarsening regime in spinodal decomposition [12, 103]. Specifically, it was found 

that coherent strain at phase boundaries decreases the intermediate coarsening rate, 

since it increases stored elastic energy in the system. As dislocations migrate toward 

moving interfaces, they relax the excess strain energy, thus increasing the coarsening 

rate [103]. The growth regimes predicted by the model in Ref. [103] are in general 

agreement (i .e. display behaviour consistent) with several experimental studies of 

deformation on spinodal age hardening [104, 105, 106]. 
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Chapter 6 

Summary of Outstanding Issues 

This chapter lists several unresolved issues in previous studies of nanocrys­

talline deformation in materials. The items on this list were chosen as they describe 

a suite of problems that are most likely to be (or are presently) amenable to a new 

generation of phase field modeling, toward which this thesis will make two new con­

tributions. Summarized below are some of the unresolved issues that have emerged 

from previous studies on deformation in nanocrystalline materials: 

• The interpretation of experiments have raised controversy about the interpre­

tation of results and sample quality preparation. 

• Empirical models suggest different mechanisms for the transition to 'reverse ' 

the Hall-Petch relationship. 

• Atomistic simulations are limited to high strain rates with time step of picosec­

onds, orders of magnitude faster than any situation in an experiment. 

• The presence and properties of mobile dislocations and their effect on domain 

growth in spinodal decomposition. 
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Part II 

Phase Field Crystal Modeling of 

N anocrystalline Materials 
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Make everything as simple as possible, but not simpler. A . Einstein 

It was shown that the numerical tools that are presently used to examine mechan­

ical properties of NC materials have certain pitfalls. Atomistic simulations have shed 

some light on behaviour and are currently able to describe: a) NC materials with 

grain sizes up to 50nm, b) time scales of picoseconds, which means that only begin­

ning of the deformation processes can be observed. Moreover as was stated in the 

previous chapter, materials with sufficiently small grain sizes will exhibit creep-like 

deformation. 

10
4 r ...-, I TC . I a st mg 

3 
10

2 
""' 

I Solidification ~ .!! 
ra _J_ u 

VI 
Heat 41 

10° .... I ~ E 
i= I Transfer 

10·2 .... I Microstructure ':"" 

I FEM model 
formation 

10·4 
""' 

I -
l 

10·6 .... Expected I Traditional -
breakdown ~ phase field model 
Hall-Petch 

I ' 10·8 .... -Relationship I \ r-------------- - 1 Modified Phase Field : l J - 1 Crystal Model 1 10·9 I- -Atomic movement L-------------
10·10 MD/ Atom!tic 

J_ .l .l 
10·10 10·8 10·6 10·4 10·2 10° 

Length Scale (m) 

Figure 6.1: Plot of length scales and time scales accessible by common computational 
methods [107]. Characteristic processes for each length and time scale are in italics. 
Modeling techniques are in bold letters below. Dashed line highlights the modified 
phase field crystal (MPFC) methodology discussed in this thesis. 
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It is presently difficult to extrapolate results of atomistic simulation to the 

micrometer range. In order to describe deformation behavior as suggested on the 

Fig. 4.3, we need a computational methodology that can easily simulate grain sizes 

from nm to lOµm and time scales from seconds to hours. One way of solving this 

problem is to develop a phenomenological model, which is derived from fundamental 

principles but is robust enough to be solved at a variety of length and time scales. 

The objective of this thesis is to develop a new continuum field theory approach for 

modeling elastic and plastic deformation, free surfaces and multiple crystal orien­

tations in systems with both hexagonal and cubic symmetry. The methodology is 

based on free energy and its dynamics - based on free energy minimization - incor­

porates both diffusive and elastic relaxation in solids. One of the models that we 

introduce is coined the modified phase field crystal model (MPFC). By introducing 

a variable elastic time, this model is able to maintain mechanical equilibrium while 

simulating microstructural evolution on time scales well beyond those accessible by 

conventional atomistic simulation methods. We apply this model to elucidate the role 

of defects and dislocations in fine grained crystal deformation and phase transforma­

tions - spinodal decomposition. Fig. 6.1 reviews time and length scales accessible by 

various computational tools and shows where our model will fit. 
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Chapter 7 

A New Atomistic Modeling 

Formalism 

The main principle underlying the new modeling formalism at the heart of 

this thesis and most materials processes is that macroscopic properties are governed 

by conservation laws and broken symmetries. In a system of particles, the number of 

particles, energy, and momentum are conserved. At high temperatures , the arrange­

ment of particles is disordered, uniform, isotropic and uncorrelated. This implies a 

state of full rotational and translational symmetry. Symmetry of the system is low­

ered with decreasing temperature. A periodic crystal is invariant only with respect 

to a discrete set of translations. Broken symmetry is associated with distortion and 

defects. These defects control the properties (e.g. mechanical) of crystalline phases 

and materials. 

In this chapter, we will introduce a new modeling technique using a density 

functional theory description of a crystal/liquid system written in terms of the local 

time averaged density field p(i, t) . This representation of a crystal forming system 

will be then used to derive a free energy as a functional of this local density field. 

Based on variations in the free energy, a model producing periodic phase fields (i .e. 

crystals) and their dynamics will be constructed. 
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7 .1 Atomic Density Field and P article Interactions 

7.1.1 Atomic D ensity 

Consider a local, time averaged density field p( x, t). By this description, the 

liquid state is represented by a uniform p and the crystal state is described by the 

density that has the same periodic crystal symmetry as a given crystalline lattice. 

In this chapter we will elaborate on this density field. The starting point is the 

instantaneous number density of particles per unit volume at position x [(x,y,z) in 

three dimensions], which can be defined by the following expression: 

n(x) = .L 6(x - x~), (7.1) 

where 8 is Dirac delta distribution and x 0 is the position of particle a at time t. n(x) 

is called the number density operator and is a function of the variable x 0 . 

Taking the average of the density operator (n(i)) (i.e. the local atomic density) 

for the different position x (and a large enough volume) in liquid we would find that 

(n(i)) is independent of x and is simply the average density n = N / V , where N 

is a number of particles and V is a volume. This implies that liquids are spatially 

homogeneous. Thus, is if one would rotate fluid around an arbitrary axis or translate 

it through any vector , the measured density of fluid would (on average) always be 

the same. In other words, liquids remain invariant to these symmetry operations. 

In crystals , (n(i)) becomes a periodic function of x and the number of symmetry 

operations leaving the crystal unchanged is limited. As a consequence, crystals have 

a lower symmetry than liquids. This is illustrated in Fig.7.1. 

When a crystalline phase is formed , atoms are arranged in a periodically 

repeated structural unit called a unit cell. Equivalent points in unit cells in d­

dimensional crystals lie on a periodic lattice consisting of a mathematical array of 

points. Any latt ice point can be specified by a linear combination of independent 

primitive translation vectors 51, ... ,ad, (for ad-dimensional lattice): 

(7.2) 

where vector f indexes a particular unit cell and Rr specifies its position in real space. 
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Figure 7.1: Hard sphere representation of liquid on top and solid at the bottom. 
Measuring the instant density in the control volume (marked dashed black) for number 
of time steps (right) will result in constant density profile in a liquid where at oms 
are constantly moving. Contrary in solids where atoms are moving only around the 
equilibrium position the atomic density profile will be a periodic field with periodicity 
of the lattice. 

53 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

The translation vector f = Rr- Rp connects equivalent points in the lattice. The 

collection of lattice points in coordinate space is called the direct lattice. In an ideal 

crystal, consisting of a single type of atom located in each lattice site, the number 

density can be described as: 

n(x) _ I: J(x - Rr) 
r 

(7.3) 

As mentioned above, the density of perfect crystal is invariant with respect to set of 

translations. One of these is translation through a lattice vector n(x) = n(x + T). If 

we consider imperfections (such as vacancies , dislocations, etc.) , we can consider the 

time-averaged density as having the periodicity of a perfect crystal: 

(p(x)) = (p(x + f) ) (7.4) 

In this case, the effect of defect is represented through changes in amplitude of (p( x)). 
Atomic planes in a periodic lattice can be defined by the reciprocal lattice 

vector G. Lattice vectors in a given plane are perpendicular to G and satisfy G · f = 

27rn. The vectors G form a periodic lattice, called a reciprocal lattice, with primitive 

translation vectors b1 . . . bd. The relation between primitive translation vectors and 

reciprocal lattice vectors is b1 = 27r(a2 x a3)/ [a1 · (a2 x 0:3 ) ] . Reciprocal vectors b2 and 
~ 

b3 can be obtained by cyclically permuting vectors a1 , 52 and a3. 

It was stated above that the average density given by Eq. 7.4 has a periodicity 

of a perfect crystal and that the crystal can be described by the set of reciprocal 

lattice vectors G. Combining these two concepts and using Fourier transformation 

theory we can express the time-averaged mass density in a periodic solid represented 

by its Fourier components (pa) and reciprocal lattice vectors G 

(p(i)) =Po+ L(P(a)) eiG·x 
a 

or in terms of deviation of the density from the average density p0 : 

(Jp(i)) = (P(x)) - Po = L P(a)eiG·x. 
a 
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Since (6P(x)) is real P(c) = P(-G) in order to make the density real. 

7 .1. 2 Correlation Function 

In this section we will explain direct correlation functions, which are later used 

to describe interaction between particles in a density field. 

To describe correlation of density (i.e . particles) between two points, the two­

point density-density correlation function is used. This function is an average of the 

product of the density at two different points i 1 and i 2 . The average is taken over 

different realizations of the material as its state fluctuates in time: 

(7.7) 
a: ,a:' 

For systems we will be considering, p2 depends only on x]_ - x2. For example, in a 

non-interacting system, p(2) becomes a product of averages of one-particle densities 

p(2) (x1 , x2) = p(x1)p(x2) i.e. the probabilities of finding particles at x1 and x2 are 

uncorrelated. 

The total pair correlation function gives a measure as to what extent (i.e. with 

what probability) a particle at x1 correlates with a particle at x2 . 

(7.8) 

We can see that h2 is zero for uncorrelated particles. For interacting particles, it 

measures correlations (i .e. interactions in a time-averaged statistical sense) with 

reference to a system of non-interacting particles. This is visualized on Fig. 7.2, where 

we can see an atomic configuration in liquid. Let us draw two small circles with radius 

r and r + dr around a randomly selected particle. Counting atoms with centers lying 

between these two circles, we would see that (statistically) there is a near-neighbor 

shell consisting of approximately six particles. We say that there is a short range 

correlation in the position of particles. Then, leaving this shell and drawing two 

slightly bigger circles, a dip in density will occur. Drawing another pair of circles 

further in will cause an increase of density, however , less atoms can be correlated 

with original particle. 
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Figure 7.2: Representation of atomic configuration in a hard-sphere fluid (bottom). 
T he pair correlation function can be obtained by choosing a particle as the origin and 
counting the number of atoms whose centers lie within a distance dr of a circle of 
radius r of the origin. 
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Finally, we consider the so-called direct correlation function between two par­

ticles , denoted cC2l(xl., x2), which can be obtained from MD simulations or from X-ray 

or neutron scattering experiments, and is related to h 2 as follows: 

(7.9) 

A typical direct correlation function for Copper, found by MD simulation, is illus­

trated in frequency space in Fig. 7.3. Expanding C(k) in a Taylor series around the 
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Figure 7.3: Direct correlation function for Cu [108]. 

peak wave vector gives a correlation function of the form 

(7.10) 

(in real space this corresponds to a differential operator C = ( 60 - C2 \7 2 + C4 \74 
-

· · · )6(r-r) , where the gradients are with respect tor). In this manner , the properties 
A A A 

of the material are parameterized by the three variables, C0 , C2 and C4 . To fit the 
..... A A ;.. 

first peak in C the variables C0 , C2 and C4 must be negative, positive and negat ive, 

respectively. These variables are related to three basic properties of the material ; 

the liquid phase isothermal compressibility (,...._, (1 - pC0 )) , the bulk modulus of the 

crystal ("-' pCi/IC4 I) and the lattice constant (,...._, (C2/ IC4 1) 112 ). In other words, the 

k = 0 term (i.e. that controlling correlations at the largest distances) is related to the 
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liquid phase isothermal compressibility, the height of the first peak is related to the 

bulk modulus of the crystalline phase, and the position of the first peak determines 

the lattice constant. 

It is important to note that, at this level of simplification, the material is only 

defined by three quantit ies which may not be enough to fully parameterize any given 

material. For example, this simple three-parameter model always predicts triangular 

symmetry in two dimensions and BCC symmetry in three dimensions. Other crystal 

symmetries can be obtained by using more complicated 2-point correlation functions 

or by including higher order correlation functions defined below [75]. 

7.2 Density Functional Theory and Phase Field 

Crystal Models 

In what follows we will introduce classical density functional theory (DFT) of 

nonuniform fluids . The theory was previously successfully applied to study liquid­

solid and liquid-gas transition [20, 109, 110] . DFT gives rise to phase field crystal 

models, which are the main topic of this thesis . 

In the density functional theory, an interacting system of particles is described 

by a functional of a field variable - the atomic number density, p( T). As described in 

the previous section p(T) is highly non-homogenous and possesses the crystal spatial 

symmetries in the solid while it remains constant in the liquid. This approach implic­

itly integrates out phonon modes 1 in favour of a statistical view of the ordered phase 

that changes on diffusive time scales. In terms of p(x), the free energy functional is 

written as 

j di [p(T) ln (p(T) / P1) - b"p(T)] 

00 1 
- L.:-

n=2 n! 
j Il dfib"p(fi)Cn(i1 , i; , f3 , . . . , in) , 

i=l 

(7.11) 

where Fe is the free energy corresponding to the density p( T) minus that at the 

constant density p1, which is the liquid density at solid-liquid coexistence and serves 

1The fundamental quanta of lattice vibrations are called phonons, by analogy with the quanta of 
light (photons). 
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as a reference state for the expansion in Eq. 7.11 . T he Cn functions are n point 

direct correlation functions of an isotropic fluid described in a previous chapter. For 

example, C2 is cC2) described above. C3 describes correlations between particles 1 and 

2 in the presence of interactions with a third particle. 

To understand the basic features of this free energy functional , it is useful to 

expand the expression under both integrals in F. Using the Taylor series expansion 

of the density p(i) around p1 we expand the first part of the integral: 

p ln £.. = ~ (p - P1 + (p - P1)
2 

_ (p - P1)
3 + 2(p - P1)

4
) 

Pl Pl Pl 2p1 2 6p1 3 24p14 
' 

(7.12) 

The correlation terms are truncated to the second order, C2 . This function is ex­

panded according to the series expansion C2 = C0 + C2k2 + C4k4 , where k is a wave 

vector. In real space, this corresponds to an operator of the form C = ( C0 + C1 \7
2 + 

C2 \7
4 )6(i - i'). The free energy is then 

(7.13) 

Using 6p _ p - p1 and n = 6p/ p1 (i.e. a normalized atomic density field) we obtain 

where B s is the bulk modulus and B 1 is the isothermal compressibility, 

B 1 
- B s = -a(Tmelting - T) = -r. (7.15) 

After further manipulation we arrive at: 

(7.16) 
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Equation 7.16 can be directly related to the so-called Swift-Hohenberg equation used 

in polymer science to describe patterning in block co-polymers [15]. Equation 7.16 

can be further simplified by the following rescalings: p = n - 1/ 2, 'U = 1/ 3, B 1 = 

a6.T + >.qci + 1/ 4, B 8 = 4>.qci, R = 1//(.2q0 ) , after which the free energy functional 

becomes 

(7.17) 

The next section will analyze the properties of the free energy in Eq. 7. 17. 

7.3 Free Energy and the Equilibrium Phase Dia­

gram of a Pure Material 

Equation 7.17 derived in the previous section represents the simplest form of 

free energy F that gives raise to periodic structures below a threshold temperature, 

represented in this model by the parameter 6.T. For convenience, it is useful to 

rewrite the free energy in dimensionless units: 

a6.T 
r = ck6 ' 

c2ks-d 
T = r>.kgt and Fo - 0 

u 

In dimensionless units free energy becomes: 

where, w(\72 )'!/; - [r + (1 + \72
)

2]'!/; = 'l/; + r 'l/; + 2\72'1/; + \74 '!/; . 

(7.18) 

(7.19) 

The free energy of the form in Eq. 7.19 gives rise to densities whose spatial 

structure corresponds to a solid with two dimensional hexagonal structure. By ad­

justing the parameters q0 , ,\ , and u , we can set the inter-atomic distance and bulk 

modulus. To obtain different structures, such as a square lattice, the form of the 

correlation function C2 in the previous section has to be changed. 

Because the density (p(i)) (or 'l/; in the dimensionless equation 7.19) is averaged 

over millions of atomic vibrations and over several atomic spacings , the fundamen­

tal time scale for changes in (p(i)) is the diffusion t ime. At the atomic level, this 

time scale would correspond to the inverse of the vacancy-hopping frequency in the 

60 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

crystal lattice. This is because the vacancy- hopping time sets the scale over which a 

continuous atomic probability density can be defined at each lattice site. 

The time-averaged density (p(i)) and the free energy represented by it (e.g. 

Eq. 7.19) formally describe a situation of local thermodynamic equilibrium in either 

the solid or liquid phases. As a result, dynamics that will be driven (see below) by free 

energy minimization - as in traditional phase field models - must necessarily represent 

evolution of diffusive time scales. In other words, in this formalism, dynamic density 

changes must occur so as to ensure a state of pseudo-equilibrium from the point of 

view of the free energy functional in Eq. 7.19. 

7.3.1 Properties of the Free Energy in One Dimension 

Typical representatives of the one-dimensional periodic system are crystals, 

liquid crystals, and block copolymers. Although the latter two are not primary targets 

of our investigation, it is useful to demonstrate properties of the periodic system 

on these simple examples. Let us demonstrate the properties of periodic systems 

arising from the simple free energy in Eq. 7.19, using spatially periodic density 

p ~ Asin(qx) + p0 . Substitution of this function into Eq. 7. 19 gives: 

(7.20) 

When Eq. 7.20 is minimized with respect to the structure parameters of wave vector 

q and amplitude A, the minimum free energy per unit length is then: 

pstr r2 P6 (1 - r) 5p6 
- =-- + --

L 6 2 4 
(7.21) 

i.e. the total free energy of a striped phase depends on the temperature (through r) 

and average density p0 . 
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7.3.2 Properties of the Free Energy in Two Dimensions -

Phase Diagram 

To determine the properties of a two-dimensional periodic state, it is useful to 

take a so-called first mode approximation of the hexagonal density field . Using the 

same approach as mentioned in Eq. 7.6, we can describe this density field by: 

(7.22) 
n ,m 

where, § = nb~ + mb~ and the vectors b~ and b~ are reciprocal lattice vectors and, as 

mentioned previously, p0 is the average system density. For a triangular lattice, the 

reciprocal lattice vectors can be written, 

b- 27r ( /;;/ A A/ ) b- 27r A 
1 = r,; v 3 2x + y 2 , 2 = r,; y 

av3/ 2 av3/2 
(7.23) 

where a is the distance between the nearest neighbor local maxima of p and corre­

sponds to the atomic positions. x and f) are unit vectors. Since p is a real function 

the Fourier coefficients must satisfy following relationship an,m = a - n ,m = a n ,-m· 

The lowest order of approximation vector G has a length of 27r/(av'3/2) . This set 

of vectors includes (n , m) = (±1, 0), (0, ±1), (1 , -1) and (-1, 1). Considering both 

constraints we can write for coefficients a: 

a±1 ,o = ao,±1 = a1,-1 = a-1,1 (7.24) 

Using the above mentioned expressions, we can represent the two dimensional hexag­

onal solution for p by: 

Phex = Ahex [cos( QhexX) COS ( q~y) - ~ COS ( ~QhexY) ] +Po , (7.25) 

where Ahex is an unknown constant and Qhex = 27r/a. Substituting Eq. 7.25 into Eq. 

7.19, minimizing with respect to Ahex and Qhex gives, 

_ _ = {2 ~ { 2 Y Phex (\72) Phex F hex a d .ill! d [ 4 l 
S - lo a/2 lo aJ3/2 2 w Phex + 4 
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1 ( 2 13 4) P6 ( 7 ) -- r + -p + - 1+-r 
10 50 ° 2 25 

4po V 2 (4p6 r) +- -15r - 36p0 - + -
25 5 3 , 

(7.26) 

where 

(7.27) 

qhex = v'3/2, and S is a unit area. To determine the phase diagram between a two­

dimensional , hexagonally closed packed (HCP) crystal and its liquid , the energy for 

HCP Eq. 7.26 has to be compared to that of liquid state in which density is a constant 

i.e. Ptiquid = Po : 
pliq 2 4 

min _ ( l + r) Po + Po 
s 2 4 

(7.28) 

To determine the phase diagram between striped phases (in polymer systems) and 

HCP phases we can compare phex(Eq. 7.26) to pliq(Eq. 7.28) and striped state pstr 

(Eq. 7.21). Doing so the phase diagram in Fig. 7.4 can then be calculated from 

the free energy curves by the usual double-tangent construction, using the average 

density p0 as the conserved quantity. The complete phase diagram consists of stable 

phase-fields of liquid, hexagonal and one dimensional periodic structures divided by 

coexistence regions between two phase systems. This phase diagram shows that we 

can simulate first order transition when liquid is undercooled into the area of solid 

hexagonal structure. 

To make the phase diagram in Fig. 7.4 match that of a real material more 

precisely, a higher order expansion in correlation functions (i.e. interactions) and a 

more accurate reference for free energy would be required in Eq. 7.11. Moreover, the 

density expansion in Eq. 7.22 must incorporate higher order reciprocal lattice vectors. 

Nevertheless , as shown in Fig. 7.4, a small portion of the temperature-density plane 

of the phase diagram of our simplified model can be made - by suitable re-scaling 

- to match a portion of the argon phase diagram or any other phase diagram of a 

pure material. Thus, some of the generic features required to examine a first order 

transition are encapsulated in the original free energy in Eq. 7.11. As an example, we 

show the superposition of the portion phase diagram corresponding to Eq. 7.19 onto 

the argon phase diagram. 

The derived phase diagram will be used below to obtain the initial conditions 
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Figure 7.4: Two dimensional phase diagram corresponding to the free energy in 
Eq. 7.19(left) . Hatched areas in the figure corresponds to coexistence region. The 
small region enclosed by a dashed box is superimposed on the argon phase diagram 
on the right. 

for the crystalline structure with desired properties and orientations. 

7.3.3 Elastic Properties 

The elastic behaviour of periodic systems is of interest, because it allows us 

to simulate elastic - and later , plastic - deformations of crystalline materials . In the 

simplest case, consider a one dimensional structure with lattice parameter a = 27r / q. 

The free energy of the periodic or striped phase can be written by subtracting the 

minimum free energy Eq. 7.21 from the general form of free energy Eq. 7.20, which 

gives: 
pstr p strm.in 

2 - - = ( K /2) (a - ao) 
a a 

(7.29) 

where K = -8(r + 3p0 )/3 is the bulk modulus and a0 is the lattice constant that 

minimizes the free energy. In other words, this system automatically has an energy 
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that increases when the lattice constant deviates from the equilibrium or minimum 

value. Perhaps more importantly, it highlights the fact that the energy can be written 

in a Hooke's law form of E = E0 + (k<5a) 2
. In higher dimensions, the elastic const ants 

can be formally obtained by considering the deformation of the equilibrium (minimum 

free energy) state Pmin(f +ii) , where i1 is the displacement vector. Expanding to the 

lowest order in the strain tensor gives; 

F =Fa+ j dr(Cijkl uij ukl + · · ·) (7.30) 

where cij,kl are the elastic constants given by 

c. kl=~ _a_2H_I 
i], 2! au .. aukl 

iJ eq 

(7.31) 

In Eq. 7.30, the Einstein summation convention is used. Eq. 7.31 indicates that the 

elastic constants are related to the curvature of the free energy along the given strain 

directions. In addition, this result shows that the symmetry properties of Cijkl are 

contained in H which is a function of equilibrium density field P eq· 

7 .3.4 Diffusional Dynamics 

The dynamics (i.e. density field changes) are assumed to be driven by mini­

mization of F. These general ideas lead to the equation describing the relaxational 

dynamics: 

(7.32) 

where r is a phenomenological constant (relaxation time chosen to make set the time 

scale of changes of p) , and T/ is a Gaussian stochastic field (noise) chosen to recover the 

correct equilibrium atomic fluctuation spectrum. Noise is important in the nucleation 

process of a new stable phase, but it contributes less during subsequent growth of the 

stable phase and is often neglected. The dimensionless equation of motion becomes, 

(7.33) 
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where (( (f'1 , t 1 ) ((TS, t 2 )) = V\7 26 (r1 - TS) b (T1 - T2) and V - ukBTq~-4/c2 The no­

tation (( (f'1 , t 1 ) ( (r2 , t 2 )) implies that the random noise fluctuations are uncorrelated 

and individually distributed according to a gaussian distribution. 

The model described by Eq. 7.33, or similar partial differential equations de­

scribing the evolution of a time-averaged atomic density field (through an appropriate 

free energy construction) , was originally developed by Elder et. al. in 2002 [15] and 

has come to be known as the "phase field crystal" model, or PFC for short . In the 

next chapter , we will highlight some shortcomings of the model, in particular as it 

is applied to strain-induced phase transformations and nanocrystalline deformation. 

We will then introduce the first of our main contributions: a modification of the PFC 

model whose dynamics incorporate two time scales in order to rapidly relax strains 

without the need for simulating real phonons as in molecular dynamics. This will 

make it possible to emulate rapid relaxation processes on time scales such as those 

over which diffusion takes place. 
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Chapter 8 

A New Phase Field Crystal 

Formalism: Incorporating Dynamic 

Elastic Interactions 

The experimental work on mechanical propert ies of NC materials reviewed 

in chapter 3 revealed deformation processes ranging from atomic shuffling and slid­

ing at the grain boundaries, to dislocation motion and pile up, to void nucleation 

and growth, or necking. These processes, summarized on Fig. 4.3, operate on length 

scales and time scales spanning several orders of magnitude. It was also discussed 

in section 3.2 that MD simulations are limited to the lower length scales ( ~ 10-9m) 

and time scales ( ~ 10-12 s). This limitation is most severe when developing simula­

tion models to study the physics and mechanics of nanostructured materials , where 

the relevant length scales are mesoscopic. Progress towards alleviating this limita­

tion was made by the introduction of the phase field crystal model presented in the 

chapter 7.3. Unfortunately, as seen from Eq. 7.33, the original phase field crystal 

method evolves mass density only on diffusive time scales. In particular, it does not 

contain a mechanism for simulating elastic interactions. This precludes the study of 

phase transformation phenomena in the presence of complex mechanical deformat ions. 

While homogeneous deformations can be imposed through an affine transformation, 

this method is inapplicable in cases where nonhomogeneous stress distributions arise. 

As will be demonstrated below, these serious shortcomings of the original PFC model 

can be circumvented in a way that allows us to preserve the quintessential advan-
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tage of the PFC model; namely, the ability to simulate atomic-scale interactions and 

dynamics on time scales that are many orders of magnitude longer than those of 

molecular dynamics. Most importantly, our modified model naturally incorporates 

instantaneous elastic interactions. 

In this chapter, we introduce a modified phase-field crystal (MPFC) model that 

includes diffusive dynamics and elastic interactions. This is achieved by exploiting the 

separation of time scales that exist between diffusive dynamics and elastic relaxation 

processes in solids. In particular, the MPFC model is constructed to transmit long 

wavelength density fluctuations with wave modes that propagate up to a time scale tw, 

after which the strain-relaxed density field continues to evolve according to diffusive 

dynamics. The key feature of our approach is that the value of tw can be chosen to 

be much smaller than the characteristic time scale of diffusion, and much longer than 

1/wv ~ 10-13s , where wv denotes the Debye frequency. 

We proposed a modified phase field crystal model (MPFC) given by the fol­

lowing equation [19, 111] 

(8.1) 

whereµ= bF[p; T ]/fJp is the chemical potential. The free energy F within this ex­

pression is the same as discussed in sections 7.2 and 7.3, and is given by Eq. 7.17. 

Parameters {3 and a are phenomenological constants, which are related to the effec­

tive sound speed and vacancy diffusion coefficient , as described in section 8.1 below. 

Equation 8.1 is of the form of a damped wave equation, containing two propagating 

density modes at early time and one diffusive mode at late times. The fast dynamics 

of the MPFC model are governed by the first term of Eq. 8.1, while the late time 

dynamics are governed by diffusional dynamics define by Eq. 7.32. 

In simple terms, the idea of this model is as follows: initially, perturbations 

in the atomic density will propagate their effect (i.e. strain through the crystal) very 

rapidly. This will be driven by the first term in Eq. 8.1. As these strain "waves" relax 

-due to the damping provided for in the equation- the equation turns itself into a 

diffusion equation exactly analogous to the original PFC model introduced in the last 

chapter. So long as perturbations in the strain relax faster than the time it takes for 

anything interesting to happen from diffusion, then the model is effectively emulating 
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rapid (ie. " instantaneous") elastic interactions. 

The derivation of the equation Eq. 8.1 can be argued as follows; In addition to 

a continuum atomic density field a local effective continuum velocity field iJ is defined. 

The combined evolution of p and iJ are governed, respectively, by mass conservation, 

and momentum conservation 

op = -\l · piJ at (8.2) 

(8.3) 

where er~ represents the reactive part of a generalized stress tensor , and where di rep­

resents a generalized dissipation tensor. The second equality in the previous equation 

tacitly assumes that we can also express the free energy F in terms of the local dis­

placements ui of the density field . The dissipation tensor can take on various forms. 

The simplest one is to make it locally dependent on the local velocity. This form for 

the dissipative term arises quite naturally from the coupling between smooth elastic 

displacement fields and defect current in a more sophist icated and involved treatment 

that is explained in section 8.2. 

8.1 Floquet Stability Analysis 

Equation 8.1 is a nonlinear equation and cannot be solved analytically. To 

understand the behavior of this equation, we linearized the equation and performed a 

Floquet stability analysis. This analysis examines the way a perturbation propagates 

in the linearized version of Eq. 8.1, assuming a perturbation in the density of the 

form 

Pp= Peq + bp, (8.4) 

where 

+ '"""°' iGn m ·r Peq = Po ~ an,me · 
n,m 
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8p = L bn,m(t)eiGn,m·f'+iQ·r, (8.5) 
n,m 

with Po the average density, Gn,m = nx + (n + 2m)/V3f; the triangular reciprocal 

lattice vectors , and an,m their corresponding amplitudes. 

The vector Q is a perturbation wave vector and bn,m(t) is the perturbation 

amplitude associated with the perturbation of the steady state mode ( m , n) . To get 

a linear form of Eq. 8.1 we substitute Eq. 8.4 into Eq. 8.1 and expand it to a linear 

order. We will study only the mode with the fastest growth rate , equal to m = n = 0, 

d
2

boo dboo 2 { 2 ( 2 2) 2 9 } dj2 + f3dt = -aQ 3po + r + qo - Q + gAmin boo (8.6) 

Equation 8.6 determines us how the perturbation will grow, decay or travel. 

The leading order mode satisfies bo,o ""' e'iwt with the dispersion relation 

w(Q) = i~ ± A~Q) , (8.7) 

where 

A(Q) = - (32 + 4a2Q2 [3p; + r + (Q2 - q~)2 + ~A~in]. (8.8) 

Here, Amin is the equivalent of Eq. 7.27 

(8.9) 

and denotes the amplitude of P eq within a single-mode approximation [15]. 

Note that when 4a2Q2 [3p; + r + .\(Q2 - q;) 2 + 9/8A~inl » (32 (i.e. when 

Q --+ 0, which implies long wavelength perturbat ions) , the dispersion is approximately 

w(Q) ~ i~ ± 2aQ 3p; + r + (Q2 - q~ ) 2 + ~A~in i~ ± VeJJQ . (8.10) 

This dispersion describes a pair of density waves that propagate undamped for time 

tw ~ 2(3- 1 and distance L ""' Vefftw = 4aj3p; + r + q~ + 9/8A~in/ (3, after which 

they become effectively diffusive as in Ref. [16],with an effective vacancy diffusion 
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coefficient 

3 2 4 9A2 
D = a2 Pa+ r + qo + 8 min 

{3 
(8.11) 

The above analysis demonstrates that Eq. 8.1 admits propagating solutions for den­

sity disturbances with a tunable elastic interaction length L and a tunable elastic in­

teraction time on the order of tef 1. As an illustration, let L * = max [ Lx , Ly] denote the 

largest dimension of the system under consideration and ~= (3p~ + r + q; + 9/8A~in) . 

Since D = a 2 ~ / {3, L ~ 4a v1f5.. / {3 and we require 

L = 4D > L* 
av175.. - ' (8.12) 

this implies 

4D 
a< f'A ' - L*v~ 

(8.13) 

After choosing the appropriate value for a, {3 is determined from 

(8.14) 

For example, to simulate a system with D ~ 10-18m 2/ s and L ~ 10-7m , one would 

choose a = 4 x 10- 11m / s for the effective speed of sound and {3 = 1.6 x 10- 3s - 1 . 

Contrast this with MD simulations where a,..., 103m/ s . 

8.2 Comparison with Hydrodynamics of Isother­

mal Solids 

Majaniemi et al. [21] derived generalized hydrodynamics for solids, partly with 

the aim of expanding on the nature and origins of Eq. 8.1. 

Their model uses density-functional theory based free energy and a Poisson 

Bracket formalism, which allows them to consider nonlinearities in density, momen­

tum density and elastic fields 1
. As a result , a set of three equations of motion was 

1This is a method that treats the atomic density as a continuum - as do we- and combines it 
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obtained: 

BtP = -\7 · §; 

Btff = L§ + ku - p'Vµ(p) ; 
_.,. 1_ ""' _.,. 

Btu= -g + AKu; 
Po 

(8.15) 

Where p(r, t) is the mass density, g(r, t) is the momentum, U(r, t) is the displacement 

field and µ[p] is the chemical potential, which depends on the local atomic density. 

Dissipative effects of the phonon current are described by the constant tensor Aij = 
a<5ij and those of the momentum flow are given through (Lg)i Lij9j where Lij = 
v18i8j + v2<5ij \72 with the shear and bulk viscosities given by v1 and v2 . The elastic 

operator (Ku) i _ k ijUj where k ij >. 1aiaj+>.2<5ij \72 with the shear and bulk moduli 

)q , and >.2 , and finally ).. = ).. 1 + >. 2 , v - v1 + v2 . Equations 8.15 were written in 

terms of the Fourier-Laplace transformations of the density and displacement. The 

dynamics of the density and displacement fields were separated into a contribution 

moving transversely and parallel (longitudinally) to a particular wave vector k. For 

example, to linear order, the longitudinal disturbance of the density and displacement 

vector x(k , s) follows the relation ALx = £, where 

(8.16) 

where k = lkl , c1 - a>., C3 =>./ po and d2 = (1+r)+3p6 + (9/8)A2
. 

The model operates on one fast timescale, propagating sound waves and two 

slow timescales , for diffusive phenomena. In the longitudinal direction, Majaniemi et. 

al obtained a sound velocity Vs = y'c3 + d2 ; diffusion constant D = c1d2/(c3 +d2 ) and 

sound attenuation coefficient r = ( c1 +v-D) /2 while transversal modes consisting of a 

pair of sound waves: S± = ±ivslkl-f'k2
. The transversal sound velocity Vs= J>.if p0 

and attenuation r = ( C1 + 1/1) I 2. 

The authors compared the structure factor S(k,t) from our model (Eq. 8.1) 

with a momentum and displacement field . The dynamics of these fields are then determined from 
the variation of a Hamiltonian-like energy, written in terms of these fields. The formalism parallels 
that of classical mechanics whereby the evolution of discrete particle positions and their momenta 
are determined by the variation of a classical hamiltonian energy [112]. 
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to an analytical prediction from their own Eqs.8.15 and found good agreement for 

wavelengths satisfying 

(8.17) 

The analysis of Majaniemi et. al. implies that the simplified MPFC model we pro­

posed follows the correct approach to elastic relaxation on time scales many times 

longer than those on which real phonons propagate and on length scales many times 

greater than the scale of the atom (i.e. the smallest physically resolvable feature in 

our model). Indeed, to make this point clear, the apparent wave modes propagated 

by our model have been coined "quasi-phonons" to make the distinction from real 

phonons clear. 

8.3 The Diffusive Limit of the Model: Polycrys­

talline Nucleation and Growth 

Equation 8.1 can describe several physical phenomena depending on the initial 

conditions, which can be prepared with the help of the phase diagram displayed on 

Fig. 7.4. As mentioned above, we would like to use this model to study deformation 

processes in crystalline materials. In order to do so , we would like to nucleate and 

grow crystals separated by grain boundaries, including defects and other structural 

elements. One way to achieve such a structure is through heterogeneous nucleation 

from a supercooled liquid. From the phase diagram, we chose values for density 

and temperature that lay in a hexagonal region - average dimensionless density p0 = 
0.29 and r (representation of normalized temperature) equals -1/ 4. Eq. 8.1 was 

numerically solved on a discretized uniform grid of system size 512~x x 512~x where 

grid spacing ~x was chosen as 7r / 4. Parameters a and {3 were chosen to be equal 

1. In order to start the heterogeneous nucleation process, gaussian fluctuations with 

amplitude 0.01 were introduced into the liquid density field with initially constant 

average density of p0 . The positions of the fluctuation defined the position of a later 

nucleus. As a result of randomness in initial conditions, the evolving crystallites 

have a different orientation. After the initial growth stage, crystallites impinge and 

form low and high angle grain boundaries (Fig. 8.1). During solidification, we found 
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that the effect of the first term in Eq. 8.1 was negligible , and the growth rates and 

morphology were essentially indistinguishable from those described by Eq. 7.33.In 

other words , solidification was essentially controlled by diffusive dynamics , which is 

no surprise. 
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8.4 Grain Boundary Interactions 

As we showed in the previous section, after the solidification of crystallites the 

grain boundaries will form. In two dimensions, we can consider a tilt boundary that 

will arise when one grain is rotated by a rotation angle e. If the change of crystal 

orientation across the boundary is small (less than 10°) the entire boundary can be 

regarded as a line containing a regular array of dislocations. There is a relation 

between the length of Burgers vector b (or dislocation core size), the spacing between 

dislocations d, and the orientation angle e. For small angles this relation is e = b Id 

(Fig.8.2). 

b . .............. 1-...... -1--.. ····--+-···· .. -t.. --t-+-tli IT-t--11----+--LJ 

e 

.'.! 

Figure 8.2: Left: Portion of tilted GB with(} = 6.4°. R ight: A simple small-angle 
boundary formed from edge dislocations. Adapted from [113] 

In large-angle types of boundaries (more than 10°), dislocations lie so close 

together that it is difficult to distinguish one from another. Such an arrangement of 

dislocations creates a disordered monolayer of material between the grains. 

For the total energy /length in two dimensions, Read-Shockley derived the 

following equation: 

F = bY2 [~ - ln (2rra)J 
L 8rrd 2 d 

(8.18) 

To examine the validity of Eq. 8.18, the grain boundary energy was measured as a 

function of angle. Parameters of the simulations were set to (r , p0 , 6.x , 6.t , a , [3 ) 
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(-0.2, 0.25, 7r / 4, 0.001 , 1, 1) . The initial conditions were set for a different orientation 

of angles and the system was evolved for 100,000 time steps. The increase in the 

free energy due to the increase of misorientation angle was plotted against the angle 

e. We found a good agreement with the numerical simulation and with Eq. 8.18 for 

small angles (Fig. 8.3 left) . For higher angles , we had to adjust parameter Y2 to fi t the 

experimental results with Shockley formula (Fig. 8.3 right). Free energy is symmetric 

around the 30° point. 

2x10-4 

....J -LL 

1x10-4 

sx10-s 
• MPFC model 

Read-Shockley Eq. 

0 ...... ------------.---
0 2 4 6 Angle [deg] 10 

1.0 
E 

LL 

~ 
0.8 

0.6 

0.4 

0.2 

0.5 

• • 

.6. Tin, 8m=l2.2° 

• Lead, 8m=25.0° 

c Copper, 8m=25.0° 

• PFC model, 8m=27.85° 

• MPFC model, 8m=29.7° 

1 

Figure 8.3: The GB energy plotted as a function of mismatch angle. The solid line 
corresponds to Shockley calculations. The measurements agree with theory for small 
angles (left). Comparison with experimental results and PFC model (right) . 
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8.5 Elastic Strain Relaxation Properties of the Model 

A tensile load applied to a semi-infinite continuum elastic bar can be theoret­

ically modeled as an array of coupled masses and springs along the x-axis (Fig. 8.4). 

If the row of atoms is pulled with a displacement Di to the left , a tensile stress wave 

will propagate to the right . When atomic oscillations stop, a linear displacement 

distribution will be established along the bar, which, according to Hooke 's law, will 

have a slope given by the applied load P, elastic constant E and the cross sectional 

area of the bar A 

(8.19) 

To demonstrate the presence of elastic relaxation modes in the MPFC model Eq. 8.1 , 

I 
I 
I 

Load : -;-,J\/VV' --:-,'V\JV,---,'/\f\J\;,---,f\/'j'vrT-, 1 I r' : \ I I : \ I I ; : : I 

111111111 ', I I ', I I \ / \ , \I I / 
1 -r' 1 - r" ... _... ... _... ,.. ...... 

,- ~-,~· ,-~ - , J\f\l'v.' ,-- - ,'A/'N/-',f\/Vv.' -~ i, I I \ I I \ I l . i I 1 1 
\ I I \ I t I ' I I 
'-~_,,' : ' f- ',J I ' .... _ ... ' '...._ _ _ , 't--:-" 

I D I I D I I I D 
I J I I 2 I ~· ·p 
i( )i ·~· D - Displacements · ' 
--Deformed state ············Initial state 

Figure 8.4: Atoms connected by strings. Masses and spring constants are the same. 

we performed simulations of an effectively one-dimensional single-crystal specimen 

under uniaxial tension. The system was prepared in the coexistence region as given by 

the phase diagram, and the solid sample was surrounded by liquid. Model parameters 

used were (r , p0 , 6.x, 6.t , a , (3 ) = (-0.4, 0.31 , rr /8, 0.001, 15, 0.9). Taking a = 5A, this 

combination of parameters implies that D ~ 5 x 10-i7 m 2 / s and L ~ 3.3 x 10- 8m. 

When an atom at the boundary is displaced by an amount Di to the left , a tensile 

stress wave will propagate to the right . When atomic oscillations stop, a linear 

displacement distribution, D(x) =Dix/ L, will be established along the bar. Plots of 

displacement vs. position in the case of constant strain rate applied to the boundary 

atom are shown in Fig. 8.5 at three different times. Here, the displacements were 
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Figure 8.5: The displacements along a one-dimensional sample in simple uniaxial 
tension at three different times. Linear profiles are consistent with linear elasticity 
theory. Strain rate €. = 6.5 x 10-4 . 

a =lS, j3=9 

... 

3 5 7 9 11 13 X [a, ] 11 

Figure 8.6: The displacements along a one-dimensional sample in simple uniaxial 
tension at three different times after a ten-fold increase in (3 when compared with 
Fig. 8.5. on-linear profiles suggest visco-elastic behavior. Strain rate€. = 6.5 x 10-4

. 

extracted by a peak t racking method, where the locations of local maxima in p were 

tabulated after each time step. The data clearly shows that the response of the 

system is consistent with elasticity theory. To make contact with the previous PFC 

formulation in Eq. 7.32, we repeated the same simulations with a ten-fold increase 

in the damping parameter (3 = 9, which corresponds to D ~ 5 x 10- 18m2 / s and 

L ~ 3.3 x 10-9m. The computed displacements , plotted in Fig. 8.6, show that the 

response becomes viscoelastic as damping is increased. Therefore, Eq. 7.32 alone 

does not adequately describe elastic responses in strained crystals at finite strain 

rates, while Eq. 8.1 naturally incorporates such phenomena. Indeed, this feature of 
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our approach opens a new computational window into studies of complex geometries 

and non-uniform stresses which are discussed in part of this thesis . 
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Chapter 9 

Extension to Binary A lloys 

In chapter 7, we described a new extension to phase field modeling known as 

the phase field crystal method (PFC). The methodology described the evolution of the 

atomic density of a system according to dynamics driven by free energy (Eq. 7.11 ) and 

minimization (Eq. 7.32). In the PFC approach, the free energy functional of a solid 

phase was minimized when the density field is periodic (section 7.3.2). As discussed 

in the prior section 7.3, the periodic nature of the density field naturally gives rise to 

elastic effects , multiple crystal orientations, and the nucleation and motion of dislo­

cations. However, all the applications mentioned previously were related to a single 

component system. The original PFC model (Eq. 7.32) is among the simplest math­

ematical descriptions that can self-consistently combine the physics of atomic-scale 

elasto-plasticity with the diffusive dynamics of phase transformations and microst ruc­

ture formation. Nevertheless, to be able to study more complex problems, further 

work was required to fully exploit the methodology. In chapter 8, we introduced a 

new innovation for simulation of rapid elastic relaxations. This extension proved im­

portant for modeling deformations in complex shapes. The purpose of this chapter is 

to further exploit the link between DFT and PFC (or MPFC) made in section 7.2 (or 

chapter 9) and to study non-equilibrium microstructure formation, such as spinodal 

decomposition and solidification in binary alloys. 

In what follows, a simple binary alloy free energy is derived. This is done 

in order to provide a mathematically simple model that can transparently illustrate 

the use of the PFC formalism in simultaneously modeling diverse processes such 

as solidification, grain growth, defect nucleation, phase segregation, and elastic and 
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plastic deformation. This section also shows that the free energy of the simplified alloy 

PFC model reproduces two common phase diagrams associated with typical binary 

alloys in materials science. Some of the more tedious calculations in the derivation of 

the simplified model are shown in the Appendix (Section B). 

In section 9.6 , dynamical equations of motion that govern the evolution of the 

solute concentration and density field of the binary alloy are derived. 

9 .1 Free Energy Functional for a Binary Alloy 

In this section, the free energy functional of a binary system is presented as it 

is derived from the classical density functional theory of freezing. In section 7.2 we 

introduced free energy for a single component system. Let us repeat Eq. 7.11 below: 

kF~ = j dx [p(f) ln (p(f)) - bp(f)] - f ~! j IT dfi6p(fi)Cn(i1 , TS, ... , fn) . 
B Pl n=2 i=l 

In contrast to the single component model, describing the binary alloy system 

requires two interwoven density fields PA and PB , to describe the A and B species. 

Similarly, the average reference density or density of liquid will become p~ for A 

atoms and p~ for B atoms. Furthermore the direct correlation function now has to 

describe the correlations between atoms of the same species CAA , CBB and their 

combination CAB. Taking the above into consideration, the free energy functional for 

a binary alloy made up of A and B atoms can be written to the lowest order in terms 

of the direct correlation functions as: 

F 
kBT J dr [p A ln ( ;; ) - 6 p A + p B ln ( ;; ) - 6 p Bl 

-~ J dr1dr2 [6pA(i1) cAA(i1 , f'2) 6pA(f2) 

+6pB(r1) CBB(f'1 , r2) 6pB(f2) 

+2 bp A (i1) cAB (i1 , TS) bp B(i2)] (9.1) 

where bpA - PA - p~ and bps = PB - pf are the deviations of densities from their 

average reference value, taken at solid-liquid co-existence. In order to make a con­

nection between the alloy free energy and standard phase field models it is useful to 
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define the total number density, 

p- PA+ PB (9.2) 

and a local concentration field 

c = PA / p. (9.3) 

In terms of these fields the atomic densities can be written as: 

PA= cp (9.4) 

and 

PB= p(l - c) . (9 .5) 

Furthermore it is useful to define 

P = P1+8p (9 .6) 

where p1 = pf +pf and Jc = 1/2 - c. Substituting t hese definitions into Eq. (9.1) 

gives (using Maple) , 

where 

j dr[p ln(p/ Pe) - 6p + {36c + F0 

1 
--Jp {c CAA+ (1 - c) CBB} Jp 

2 
+p{cln (c) + (1 - c) ln (1- c)} 

+pc{(CAA + CBB) / 2 - CAB}(l - c)p] 
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and 

To illustrate the properties of the alloy free energy in Eq. 9. 7, it useful to 

consider two limiting cases; a liquid phase at constant density and a crystalline phase 

at constant concentration. These calculations are presented in sections 9.2 and 9.3, 

respectively. 

9.2 Liquid Phase Properties 

In the liquid phase, p is constant on average and in the mean field limit can 

be replaced by p = j5. To simplify calculations, the case p = j5:::::::: Pe (or 6p:::::::: 0) will 

now be considered. As in the previous section 7.2, it is useful to expand the direct 

correlation functions of each species in Fourier space - where they each will exhibit a 

peak- in a Taylor series in the wave vector magnitude k = lkl , 

(9.10) 

where the subscript i and j refer to a particular element. Substituting the real-space 

counterpart of the Fourier expansion for (:i1 (to order k2 ) into Eq. 9. 7 gives , 

j di [ c ln ( c) + ( 1 - c) ln ( 1 - c) 

j56.Co e j56.C2 2] 
+ -

2
-c(l - c)+ 1 6c + -

2
-1Vcl , (9.11) 

where Fe is the total free energy minus a constant that that depends only on j5, p~ 
and Pk , 

l e= (Bf3 
- BfA) + f5 ln (pf/ Pt), 

6.Cn =: (j~A + C/;8 
- 2C~8 . 

(9.12) 

(9.13) 

and B~1 = 1 - j5C~1 is the dimensionless bulk compressibility. Equation 9.11 derives 

the regular solution model used in solution thermodynamics from the atomistic scale 

using the principles of classical density functional theory. 
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The coefficient of c(l - c) in Eq. 9.11 is given by 

(9.14) 

This result shows that in the liquid state the 'interaction' energies that enter regular 

solution free energies are simply the compressibilities (or the elastic energy) associated 

with the atomic species. The re term is also quite interesting as it is responsible for 

asymmetries in the phase diagram. Thus Eq. 9.12 implies that asymmetries can arise 

from either different compressibilities or different densities. 

Expanding Eq. 9.11 around c = 1/2 gives , 

6.F c j -[re 2 u 4 e K 2] 
pkBT = dr 28c + 4& +1be+ 2 jV'cj (9.15) 

where, !::i.Fc = Fe - pk8 T J dr(p6.C0 / 8 - ln(2)) , u = 16/3, re - (4 - p6.C0 ) and 

K = p6.C2 . The parameter re is related only to the k = 0 part of the two-point 

correlation function and can be written, 

(9.16) 

This result implies that the instability to phase segregation in the fluid is a compe­

t ition between entropy ( 4) and the elastic energy of a mixed fluid (2Bf8
) with the 

elastic energy associated with a phase separated fluid (BfA + Bf8
). Replacing the 

dimensionless bulk moduli with the dimensional version (i.e. , B = K,/k8 T) , gives the 

critical point (i.e. r1 = 0) as 

(9.17) 

where K, is the dimensional bulk modulus. 

The properties of the crystalline phase are more complicated but at the sim­

plest level the only real difference is that the elastic energy associated with the crys­

talline state must be incorporated. This is discussed in the next section. 
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9.3 Crystalline Phase Properties 

To illustrate the properties of the crystalline state, the case in which the con­

centration field is a constant is considered. In this limit the free energy functional 

given in Eq. 9. 7 can be written in the form 

- - dr pln - - 6p- -6pC 6p + G F J -[ (P ) 1 = l 
kaT Pe 2 

(9.18) 

where G is a function of the concentration c and p1 and couples only linearly to 6p. 

The operator C can be written as 

(9 .19) 

Thus in the limit that the concentration is constant this free energy functional is 

that of a pure material with an effective two point correlation function that is an 

average over the AA, BB and AB interactions. In this limit the calculations presented 

in section 7.2 can be repeated using the same approximations (i .e. , expanding p 

around Pe , expanding C to \74 and using a one mode approximation for 6p) to obtain 

predictions for the concentration dependence of various quantities. 

As a more specific example the equilibrium lattice constant which appears 

implicitly in the correlation functions in Eq. 9.19 [114] can be expanded around c = 
1/2 to obtain in two or three dimensions, 

(9.20) 

where 6c = c - 1/2 and T/ is the solute expansion coefficient given by, 

(9 .21) 

and where 

6C = (CAA - C88 )/C n - n n n (9.22) 

while Cn - Cn(& = 0) = (c:A + C/;8 + 26:8 )/4. 

This line of reasoning can also be used to understand the influence of alloy 

concentration on crystallization. Specifically, for the case of an alloy, the terms in 
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Eq. 7.26 become functions of concentration, since 6.B and Amin are concentration 

dependent. Here, 6.B can be expanded around c = 1/2, i.e., 

(9.23) 

where 6.Bo =Eb - B0, 6.B1 =Bi - Bf and 6.B2 = B~ - B?. are determined in the 

Appendix B. This would imply that in the crystalline phase the free energy has a 

term of the form , rc(bc) 2
, where 

(9.24) 

in two dimensions (in three dimensions the 3/8 factor is replaced with 3/4). This 

result indicates that crystallization (i .e., a non-zero Amin ) favours phase segregation, 

assuming ;;;AA+ ;;;BB < 2;;;AB· For example, when B?. = 0, the critical temperature 

increases and can be written, 

(9.25) 

or T(; = T~( l + 3A~in/4) in three dimensions. 

9.4 Simple Binary Alloy Model 

In this section a simple binary alloy model is proposed based on a simplification 

of the free energy in Eq. 9. 7. The goal of this section is to develop a mathematically 

simple model free energy for a binary system that can be used to simultaneously 

model grain growth, solidification, phase segregation in the presence of elastic and 

plastic deformat ion. To simplify calculations it is convenient to first introduce the 

following dimensionless fields, 

(PB - PB) / p. (9.26) 
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Also, it is convenient to expand Eq. 9.7 

in the following two fields , 

j dr[p ln(p/ Pe) - bp + {36c +Fa 

1 
--bp {cCAA + (1- c) CBB} bp 

2 
+p{cln (c) + (1- c) ln (1- c)} 

+pc{(CAA + CBB)/ 2 - CAB}(l - c)p] 

n 

8N 

nA +nB 
PB - PA (nB - nA) + _ . 

p 
(9.27) 

The following calculations will use the field 8N instead of be. Expanding Eq. 9.7 

around 8N = 0 and n = 0 gives a free energy of the form 1 

(9.28) 

The calculations presented in this section are for a two dimensional system. The 

constants (t , v , w, u, L , R , B 1 and Bs) as well as the details of going from Eq. 9.7 to 

Eq. 9.28 are shown in Appendix B. 

The transition from liquid to solid is intimately related to 6.B = B e - B s, 

as was the case for the pure material , and can be written in terms of a temperature 

difference, i.e. , Eq. 7.15. In addition, some of the polynomial terms in n and 8N 

have been multiplied by variable coefficients (t, v, w and u) even though they can 

be derived exactly as shown in Appendix B. For example, the parameter v = 1/ 3 

recovers the exact form of the n4 term derived in Appendix B. This flexibility in the 

choice of coefficients was done to be able to match the parameter of the free energy 

1 Most of these calculations are quite lengt hy and were done using the Maple software. Only 
the results of these lengthy manipulations are shown here, along with the explanation necessary to 
reproduce all of our steps. 
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with experimental material parameters [115]. L is a gradients energy coefficient and 

R sets the scale so the inter-atomic spacing of the total density n. 

To facilitate the calculation of the lowest order phase diagram corresponding 

to the free energy in Eq. 9.28, it is important to note that re-defined "concentra­

tion" field 5 N varies significantly over length scales much larger than the atomic 

number density field n. As a result , the density field can be integrated out of 

the free energy functional (i.e. treated as if it were a constant in the integrand 

of the free energy). Also, in the spirit of keeping calculations as simple as possible 

without losing the basic physics contained in the model, r = 0 in the free energy. 

In this instance, the one-mode approximation for the total density (Eq. 7.25) i.e. , 

n = A [cos(2qy/ J3)/2 - cos(qx) cos(qyJ3)] will be used. Substituting this expression 

into Eq. 9.28 and minimizing with respect to q and A (recalling that 5N is assumed 

constant over the scale that n varies) gives 

Qeq = ./3/(2R) (9.29) 

and 

A . = 
4 

t + )t2 
- l5v D.B 

mm 15v · (9.30) 

The free energy that is minimized with respect to amplitude and lattice constant is 

then, 

F w 5'N2 ~ 5'N4 2- ABA2 . - ..!_A3 . 
sol 

2 
U + 

4 
U + 

16 
Ll. mm 

16 
mm 

45v A 4 . 
+512 mm· 

(9.31) 

Most coefficients are dependent of the concentration 5 N. For mathematical 

simplicity, all further calculations will be limited to the approximations B f. = B& + 
B~(i5N) 2 and B s = B0. In this limit , analytic expressions can be obtained for a 

number of quantities and the free energy functional is st ill general enough to produce 

a eutectic phase diagram , for example. 
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9.4.1 Solid-Solid Coexistence of Phase Diagram 

It is relatively simple to calculate the solid-solid coexistance curves by expand­

ing Fsal to order (6N) 4
, which then yields the solid/solid coexistence concentrations 

at low temperatures according to 

6Ncoex = ±jlal/b (9.32) 

where a - w + 3B~ (A~in) 2 /8, b - u - 6(BD 2 A~in/ ( l5vA~in - 4t) and A~in = 
Amin(6N = 0) (which is thus a function of 6.B0).The critical temperature, 6.Bfj is 

determined by setting 6Ncaex = 0 and solving for !::.Bo , which gives , 

t::.Bg = ( l5wv - 2tJ-6B~w) / ( 6B~). (9.33) 

9.4.2 Solid-Liquid Coexistence 

To obtain the liquid/solid coexistence lines the free energy of the liquid state 

must be compared to that of the solid. The mean field free energy of the liquid state 

is obtained by setting n = 0 which gives , 

w 2 u 4 F',1 · = -6N + -6N . 
tq 2 4 (9.34) 

To obtain the solid-liquid coexistence lines it is useful to expand the free energy 

of the liquid and solid states around the value of 6N at which the liquid and solid 

states have the same free energy, i.e. , when Fsal = Ftiq· This occurs when, 6N1s = 
±J(t::.Bbs - 6.B0 ) /B~ , where 6.B0 =Eb- B0 and 6.Bbs = 8t2 /(135v) is the lowest 

value of t::.Bbs at which a liquid can coexist with a solid. To complete the calculations, 

Fsal and Ftiq are expanded around 6N1s to order (6N - 6N1s) 2 and Maxwell 's equal 

area construction rule can be used to identify the liquid/solid coexistence lines. The 

liquid/ solid lines are; 

1 + G ( 1 - Jbsoi/btiq) 

1 + G ( 1 - Jbtiq /bsol) · 
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where, G - -8t2 / (l35v(46.Bo - 36.Bb5
)), btiq = (w + 3n8N1~) / 2 and bsol = btiq + 

2B~(46.Bo - 36.Bb5 )/(5v) , for 8Ntiq > 0, 8Nsol > 0 and similar results for 8Ntiq < 0, 

8N801 < 0, since Fis a function of 8N2 in this example. The calculations in this section 

and the previous section are reasonably accurate when 6-Bbs > 6.B0, however in the 

opposite limit a eutectic phase diagram forms and the accuracy of the calculations 

decreases. This case will be discussed below. 

9.5 Calculation of Alloy Phase D iagrams 

To examine the validity of some of the approximations for the phase diagrams 

made in the previous section, numerical simulations were conducted to determine the 

properties of the solid and liquid equilibrium states. The simulations were performed 

over a range of 8N values , three values of 6.B0 (0.07, 0.02 and -0.03) and two values 

of w (0.088 and -0.04). The specific values of the other constants that enter the model 

are given in the figure caption of Fig. 9.1. In general the numerical results for the 

free energy, F , the lattice constant R and bulk modulus agreed quite well with the 

analytic one-mode predictions presented in the previous section for all parameters. 

Comparisons of the analytic and numerical predictions for the phase diagram are 

shown in Fig. 9.1 and Fig. 9.2 for w = 0.088 and -0.04, respectively. As seen in 

these, figures the agreement is quite good except near the eutectic point shown in 

Fig. 9.2. In this case, the analytic calculations (Eqns. 9.35 and Eqns. 9.32) for the 

coexistence lines break down at the eutectic point and higher order terms in 8N are 

needed to accurately predict the phase diagram. 

91 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

0 

co 
<:J 0 

-0.05 

-0.2 -0.1 

----··=·-·--·--··-·--· 

0 

oN 
0 .1 0 .2 

Figure 9.1: Phase diagram of !:lB0 Vs. bN for the parameters B0 = 1.00, Bf = 0, 
B~ = -1.80, t = 0.60, v = 1.00, w = 0.088, u = 4.00, L = 4.00, / = 0, Ro= 1.00 and 
R1 = 1.20 (see Eq. B.4 for definitions of R0 and R1) . The solid line is a numerical 
solution of the one mode approximation and the dashed lines are from Eq. 9.32 for the 
lower solid/solid coexistence lines and Eq. 9.35 for the upper liquid/solid coexistence 
lines. The solid points are from numerical solutions for the minimum free energy 
functional given in Eq. 9.28. [114] 
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Figure 9.2: Phase diagram of 6.B0 Vs. 6N for the same parameters as those used to 
generate Fig. 9.1 , with the exception that w = -0.04. The dotted lines below the 
eutectic temperature, 6.Bt ;:::::: 0.028, correspond to metastable states. [114] 
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9.6 Dynamics 

To simulate microstructure formation in binary alloys, dynamical equations of 

motions for the concentration and density fie lds need to be developed. The starting 

point is the full free energy in Eq. 9.1, written in terms of PA and PB , i.e. , F (pA , PB)· 

The dynamics of PA and p B is driven by free energy minimization. 

We consider changes in the continuum defined by the temporally coarse­

grained density fields PA and PB to be consistent with some effective velocity field iJ. 

Considering conservation of mass for each species within a control volume , we arrive 

at 

a;t = -V' ·(PAV)= - 8i(PAVi) 

BpB = -V' · (pBiJ) = -8i(PBVi) at (9.36) 

Changes to the net momentum of a control volume are similarly related to a divergence 

of a generalized stress tensor according to 

(9.37) 

Taking the divergence of both side of Eq. (9.37) gives 

(9.38) 

which, using both of Eqs. (9.36) into Eq. (9.38) , gives 

(9.39) 

where we have defined n = (PA + p B) / p and p is the average alloy density. We did 

this to arrive at a modified phase field crystal alloy model written in the same field 

variables as our original alloy model in Ref. [19]. 

For one component, the contraction of the stress tensor has be shown [21] to 
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be of the form 

(9.40) 

where £(p) represents a generalized dissipation tensor and where terms of order 

O(vivj) have been neglected. To pass onto the case of the alloy, we generalize Eq. 9.40 

to have contributions due to changes in both components, 

(9.41) 

The dissipation term has also be generalized to a function of both species densities. 

The simplest way to express the dissipation tensor £(pA , PB) is 

(9.42) 

where /3 is a phenomenological constant meant to make contact with the damping 

term in the MPFC model. While more formal expression exist [21] , our aim here 

is merely to relax density changes across scales orders of magnitude larger than the 

atomic spacing on time scales significantly larger than phonon time scales but still 

much slower than diffusion time scales. 

The chemical potential terms in Eq. 9.41 can be simplified as follows. We first 

write the free energy in terms of the variables n and c = (PB -pA)/p in order to make 

contact with the fields used in the alloy model of Ref. [114]. Doing so gives , 

(9.43) 

Using the definitions of n and c and adding the left hand sides of Eqs. 9.43, we arrive 

at 

'V· PA- +'V · PB- = n\7 +'Vn·\7 -( 
6F) ( 6F) { 2 } 6F 
6pA 6pB 6n 
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(9.44) 

Equation 9.44 can be cast into the simpler form, 

V' · PA - + V' · PB- = V' · n\i'- + V' · e\i'-( 6F ) ( 6F) - { -6F} - { -6F} 
bpA bpB On be 

(9.45) 

Substituting Eq. 9.45 and Eq. 9.42 into Eq. 9.39 gives the equation of motion 

for the density field , 

p- + -- = V' · n\i' - + V' · e\i'-[J2n Ian - { -6F} - { -6F} 
at2 {3 at bn be 

(9.46) 

The second term on the right hand side of Eq. 9.46 can be recognized as the divergence 

of a flux driven by change in the chemical potential with respect to the generalized 

concentration field e =(PB - PA)/p. While n must respond on two times scales to de­

scribe the so-called "quasi-phonon" behavior and the slower diffusive re-arrangement 

atoms, the field e is expected to change only on diffusive time scales, and is thus thus 

controlled by changes of solute diffusion. Its dynamics are thus expressed as 

v. {cvoF} = 2_ ae 
6c Mat 

(9.47) 

where M is proportional to the chemical mobility controlling the rate of inter-diffusion. 

Equations 9.46 and 9.47 comprise a set of closed equat ions for the evolut ion of total 

density and density difference in a binary alloy For alloys near the spinodal concen­

tration c « 1 and the chemical flux term can be neglected on the right hand side 

of Eq. 9.46 compared to the first term. Applying this simplification, we arrive at a 

modified phase field crystal model 

a2n 1 an 
15 at2 + -g at 

ae 
at 

(9.48) 
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9. 7 Dendritic Solidification 

To illustrate the dynamics described by Eqs. 9.48, using the free energy in 

Eq. 9.28, a simulation of heterogeneous crystallization from liquid cooled to the co­

existence region in the phase diagram displayed on Fig. 9.1 was conducted. The 

simulation started with a small perturbation in the density introduced into super­

cooled liquid. To reduce computational time the size of the simulation lattice was 

gradually increased as the seed grew in size. The initial perturbation developed into 

a circular shape (Fig. 9.3a) at t=40000. At later stages (t=80000, 120000) of solid­

ification (Fig. 9.3b,c) , we observed the format ion of dendrite tips . Finally, a fully 

developed dendrite developed with signs of sidebranching. The dendrite developed 

and retained sixfold symmetry of underlining microstructure. The final shape of the 

dendrite, after 200000 time steps is shown on Fig. 9.4. To highlight the ability of 

the model to resolve multiple scales, a small portion of density field at solid-liquid 

interface is plotted in the top right corner of the Fig. 9.4. In other words, we can 

simulate the structure size of the dendrite while still retaining information on the 

atomistic level. This novel dendritic growth modeling can be used to study two main 

issues; the first being how atomic re-arrangement times at the interface can influ­

ence non-equilibrium solute partitioning during rapid solidification, the second being, 

the role that stresses applied to dendritic structures can have in leading to dendrite 

fragmentation. 

To test microsegregation along in the crystal, Fig. 9.5b plots a portion of 

the coexistence region phase diagram of Fig. 9.1. At t he bottom of the figure, t he 

microsegregation profile along the center of the dendrite Fig. 9.5a is plotted. It should 

be noted here that concentration and temperature are both in dimensionless units , 

causing the profile to appear different than usual concentration profile. Nevertheless , 

it can be seen from the profile of 6N that the solute is rejected from the solid. There 

is a build up of solute ahead of t he solid and in the beginning of the solidification 

(center of the dendrite) , an initial transient can be seen. Quantitative values from 

the profile can be related back to the phase diagram. Measurements such as these 

allow us to study microstructural properties such as the growth velocity of a dendrite 

tip or verify accuracy of concentration profiles with respect to the phase diagram 

and experimental measurements. We will explore more properties of the alloy PFC 

97 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

Figure 9.3: Four stages - time steps - of rapidly solidified dendrite crystal grown from 
supercooled liquid with dimensionless concentration 5N0 = 0.11 and dimensionless 
temperature 0.05 in two dimensions. Other parameters are the same as in Fig. 9.1 
except L = 1.2 and R i/ Ro = 1/ 4. Frames a, b, c and d correspond to times t = 40000, 
80000, 120000 and 160000 respectively. 

-500 nm 

Figure 9.4: A rapidly solidified dendrite crystal grown from supercooled liquid with 
dimensionless concentration 5N0 = 0.11 and dimensionless temperature 0.05 in two 
dimensions. Other parameters are the same as in Fig. 9.1 except L = 1.2 and Ri/ Ro = 
1/4. Time corresponds to t = 200000. Inset: A small portion of density field n at 
solid-liquid interface. 
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model and compare simulation results with the results from other simulations and 

experiments in section 11.9, which is devoted to spinodal decomposition studies. 
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Figure 9.5: a) Dendrite tip with highlighted line along which the microsegregat ion 
profile was plotted. b) A portion of the phase diagram Fig. 9.1. c) Micro segregat ion 
profile along the dendrite tip. 
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Chapter 10 

Efficient Semi-Implicit Solver 

Development 

In the previous section, we outlined theory and demonstrated elastic defor­

mations in a smaller scale model. In order to study problems such as the reversed 

Hall-Petch effect, we need to be able to simulate many nanocrystalline grains over 

longer periods of time. This poses a high demand on numerical efficiency of the solver 

. Currently, the size of the sample and the length of the simulation were both limited 

by the efficiency of explicit euler time marching methods. To circumvent the limi­

tations we developed a semi implicit multigrid solver which will be described in the 

following section. 

The MPFC equation of motion (Eq. 8.1) is challenging to solve numerically. 

The first challenge is posed by the sixth-order space derivative which introduces t ime 

step restrictions - stiffness. For the previously used explicit method, stability criteria 

is approximately t:lt < ~t:lx6 . The second challenge is that there is a cubic nonlinear 

term on the RHS, contributing to overall stiffness of the equation. To avoid the 6th­

order derivative limitation imposed by explicit methods, we employ a semi-implict 

numerical scheme. 

We begin by splitting the equations 8. 1 into a system of three second order 

equations as follows: 

[J2p(x ) f3 8p(x) - 2n2 ( ) 
fJt2 + ot - a v µ x ' (10.1) 
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µ(x) = rp(x) + p(x) + 2v + \72v(x) + p(x)3, 

v(x) = \72 p(x) 

(x E 0) 

Here x = (x1 , X2) and n c Risa given domain. We discretize the system 10.1 in 2D 

space as: 

82
ph(x , y) + {JfJph(x, y) _ 2\72 ( ) 

fJt2 fJt - 0: µh x' y ' 

µh(x , y) = rph(x , y) + Ph(x , y) + 2v + \72vh(x , y) + Ph(x , y)3, 

vh(x , y) = \72ph(x , y) 

((x , y) E Oh) 

(10.2) 

here his a discretization parameter and for square uniform grid we can write: Oh = 

{(x, y) : x =xi = ih , y =Yi = jh; 1~i~N, 1 ~ j ~ N}. Using the above discretiza­

tion in space we discretize the system in time by the following implicit type algorithm: 

n+l 2 n n - 1 {3 ( n+l n-1) 2( n+l / 2 n+l/ 2 n+l/ 2 n+l / 2 4 n + l / 2) 
Pi, j - Pi,j + Pi,j + Pi,j - Pi, j = o: µ i-1 ,i + µi+l,i + µi ,j+l + µi ,j-1 - µi,j (10_3) 

dt2 2dt h2 

vn+l . + vn+l . + vn+l + vn+l - 4vn+l 
n+l/ 2 = n + l + rpn+l + 2v n+l + i-1 ,J i+ l,J i,J +l i ,J-1 i,J + ).( n n+l) 

µi ,J Pi,J i,J i,J h 2 'f' µi,j ' µi ,j 

n+l + n+l + n+l + n+l 4 n+l + n + n + n + n 4 n 
n+1 Pi-1 ,j Pi+l ,i Pi,i+l Pi ,j- 1 - Pi,i Pi-1 ,i Pi+1 ,j Pi,i+l Pi,j - 1 - Pi,j 
~J = 2~ 

10.1 Iterative Solver 

Having set up an implicit system of equations we can solve the system m 

Eq. 10.3 iteratively by a method of choice such as Gauss Seidel or Successive overre­

laxation (SOR) [116]. The iteration update formula reads: 

( 

{Jdt/2 + 1 

(-1 - r) - 3/ 2 (P~/ + P7':/) 
2/ dx2 
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( 

2 n. + n~l ({3dt / 2 _ 1) + 4 2dt2 j d 2 ( m+l / 2 + m+l/ 2 + m+l / 2 + m+l / 2) ~ Pi,J Pi,J a x µi-1,J µi+l,J µi,J+l µi,J - 1 

(v~+11· + Vm++11· + Vm·++ll + vm.~l1)/dx2 + 1/2 (Pn 3 + pm.3) - 3/2 (Pn .2 + pm.2) pn . ( 0.4) 
i ,J i ,J i,J i,J i,J i,J i,J i,J i,J 

(p:_t,~ + PH.1~ + P7.}'.+-\ + P7.}~\ + Pi-1,j + Pi+1,j + Pi,j+l + Pi,j-1 - 4pi,j) / 2dx2 

Here m and m + 1 terms are approximations before and after iteration, respec­

tively. For each iteration step we solve Eqs. 10.4 by inverting 3 x 3 matrix. A severe 

problem with traditional matrix solvers is that they require of N 2 order iterations to 

converge to the answer of the next time step, where N is the number of nodes on a 

numerical mesh, see also Fig. 10. 7. This problem is addressed by using an efficient 

multi-grid solver , discussed next. 

Mesh 
Spacing 

h 

2h 

4h 

8h 

Figure 10.l: Left: Four level multigrid grid. Right: Density function in a multigrid 
representation. 

10.2 Multigrid Solver 

10.2.1 Introduction 

In this section, we will discuss a multigrid method and its application to the so­

lution of the MPFC equation of motion in Eq. 8.1 or the discrete analogue in Eq. 10.4. 

As the name suggests the multigrid method uses multiple grids - discretizations - to 
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Level 4-
Finest grid 

Four Grid V- Cycle, y=l 

Level 1- Coarsest grid 

Figure 10.2: Multigrid V-cycle. The defect equation is solved exactly on the coarsest 
level 1 (empty circle). On the levels 2 to 4 (full circles) only smoothing is performed 
by running k - grid cycles using level 1 grid as an approximation. Cycle index I = 1. 

represent discretized problem. Each grid (or synonymous mesh) differs in its dis­

cretizations parameter. From the finest grid (Dk) wit h discretization h, through more 

coarse grid (indexed as n k_ 1) with the discretization parameter 2h up to the coarsest 

grid (indexed as nk=O) where only 9 discrete points are involved. An illustration of 

such meshing is found on Fig. 10.1. 

Let us further explain the basic idea of a multigrid using the discrete poisson 

equation -'\Juh(x, y) = ff'( x, y) , (x, y) E Dh ; in a simplified notation: 

(10.5) 

where Lh = - '\J h is the standard five point stencil (i.e. a finite difference operation) 

for the second order differential operator, which can be written as: 

In multigrid we define an error by 

(10.7) 

which is the difference between uh and its approximation u'h, which is the solution 
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level 4-
Finest grid 

Level 1- Coarsest grid 

Four Grid W- Cycle, y=2 

Figure 10.3: Multigrid W-cycle. Distinction between V and W cycles is made through 
cycle index / . See text for details. 

approximated after m iterations of Eq. 10.4 on a mesh of grid parameter h. The 

difference between the right hand side fh and the left hand side operator Lhuh in 

Eq. 10.5, after m iterations (using, for instance, an iterative scheme such as Eq. 10.4) , 

is called a defect: 

(10.8) 

If we substitute Eq. 10.7 into Eq. 10.8, an equation for the error in terms of 

the defect (called the defect equation) can be written as Lhvf: = df:. The essence of a 

multigrid is that , instead of computing Vm on a current grid nk , we restrict the defect 

to a coarser grid nk-l· The restricted defect equation is then solved approximately, 

(or exactly on the lower grid,) to obtain the error vk=- 1 . The final step is to interpolate 

the error back to the higher level (denser) grid , thus obtaining v'f. The addition of 

v'f to the initial approximation after m iterations, u'f , can then be used to obtain 

the exact solution uh . This procedure, outlined here for two grid levels , can be made 

recursive so that the restricted defect equation, like the original Poisson equat ion, 

can itself only be approximated by referring to an even coarser mesh nk_ 2 , and so 

on, down to the coarsest possible mesh. One multigrid cycle is obtained by repeating 

the previous steps from the highest to lowest grid and back, as shown in Fig. 10.2, 

which is called a V-cycle. Because error is accrued in the procedure of solving defects 

on coarser grids (i.e. obtaining estimates of uh at the different levels) , the V-cycles 

illustrated in Fig. 10.2 may have to be repeated several times , serving as iteration 

cycles themselves. The advantage of the multigrid method is that only a few V-cycles 
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are required for convergence, and each V-cycle comprises only a few smoothing steps 

(i.e. iterations of Eq. 10.4) (1-2) per level. As a result the total iteration "investment" 

for multigrid convergence is much smaller than N 2 for traditional iterative solvers that 

work entirely on the finest mesh. Another type of cycle is known as a W-cycle, shown 

in Fig. 10.3. Distinction between V and W-cycle is made through cycle index I · 
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10.2.2 The Components of Multigrid 

In the following we will show a more formal description of the multigrid method 

and a characteristic multigrid cycle. We start by listing key components of the multi­

grid: 

• A sequence of progressively coarser grids Dk , characterized by a sequence 

of mesh sizes hk: De, De-1 , . .. , Do 

• Set of linear operators for each Dk . Q(Dk) denotes the linear space of grid 

functions on Dk . 

- Lk : Q(Dk) -+ Q(Dk)· Lk is the discretizations of L from Eq. 10.5 on Dk. 

Eq.10.5 then reads Leue = f e. 

- Smoothing operator: Sk : Q(Dk) -+ Q(Dk)· The operator Sk denote the 

linear operation of given smoothing method (for example, one iteration of 

Eqs. 10.4) . Applying v smoothing steps to discrete problem of the form 

Lkuk = fk with initial approximation wk. wk = SMOOT Hv(wk , Lk, fk)· 

- Restriction operator: 1:-1 
: Q(Dk) -+ Q(Dk-l) is a transfer operator for 

coarsening i.e. the grid transfer between the Dk with discretizations h and 

2h-grid Dk-1 · 

- Interpolation operator: 1:-1 
: Q(Dk_1) -+ Q(Dk) is a transfer operator for 

prolongation i.e. the grid transfer between the Dk-1 with discretizations 

2h and h Dk. 

• v1 and v2 define the number of pre-smoothing and post-smoothing steps 

respectively. 

• Cy cle index r specifies the number of cycles to be carried out on the current 

grid level , as displayed on Fig. 10.2 and Fig. 10.3. 
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Next we will use the definitions of the components from the previous page 

to describe a typical multigrid cycle. In each multigrid cycle, a calculation of a new 

iterate solution 'ur+1 from a given 'Uk will proceed according to the following recursive 

algorithm: 

Multigrid cycle ur+1 = MGCYC(k, /, ur , Lk , fk , v1 , v2) 

1. Presmoothing 

• Compute approximation ur by applying v1 smoothing steps tour 

2. Coarse grid correction 

• Compute the defect Jr= fk - Lkur. 

• Restrict the defect Jr_1 = 1~- 1 Jr. 

• Compute an approximate solution vJ;:.. 1 of the defect equation on nk- l 

(10.9) 

by 

k = 1, use a direct or fast iterative solver for Eq.10.9. 

k > 1, solve Eq. 10.9 approximately by performing / k-grid cycles 

using the zero grid (coarsest grid) funct ion as a first approximation. 

vk-l = MGCYC-Y = (k - 1, /, 0, Lk- 1, J r_1, v1 , v2) . 

• Interpolate the correction vr = IL 1 i)k- 1 • 

• Compute the corrected approximation on nk u;·after,CGC = ur + vk . 

3. Postsmoothing 

• Compute ur+1 by applying !12 smoothing steps to 'U; ,after,CGC : 
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Figure 10.4: Red-black distribut ion of grid points. 

To solve Eq. 8. 1 by multigrid , we used a so-called full approximation scheme 

(FAS) [117, 118]. The idea behind FAS is similar to t he linear mult igrid described 

above. The main difference is in the treatment of nonlinear terms. The nonlinearity 

is treated using one step of Newton's iteration. Details of the FAS numerical scheme 

multigrid cycle are given in Appendix C. The first step is applying v1 presmooting 

steps. The Gauss-Seidel method with red-black ordering is used as a smoothing 

formula in our implementation of the multigrid method. One of the advantages of 

this method is t hat relat ively fewer steps (as compared to other methods) are needed 

to smooth t he error. Moreover red-black ordering formula is easier to implement in 

a parallel environment i.e. solved on mult iple computers. This will be necessary to 

study large system as it is in our case. In a red-black ordering scheme t he grid points 

are divided into two groups - red and black (Fig. 10.4). The scheme is then executed 

in two half-steps. The first step updates the red points and the second step updates 

all black points using the values from t he previously updated red points. The details 

of smoothing operator are outlined in Appendix C, Eq. C. 6. 
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Figure 10.5: Bilinear interpolation used for the transfer to finer grid from the coarse 
grid marked by full circles. Numerics are given by the following stencils depending on 
the position of the calculation in the mesh. Full Circle: If»iv2h(x, y) = v2h(x, y) , Box: 
Ighv2h(x, y) = 0.5[D2h(x, y + h) + v2h(x , y - h)], Diamond: IghD2h(x, y) = 0.5[v2h(x + 
h, y) + v2h(x - h, y )], Empty Circle: I ghv2h(x , y) = 0.25[v2h (x + h, y + h) + v2h(x -
h, y - h) + v2h(x + h, y - h) + v2h(x - h, y + h)]. 

In the second step, a full weighting restriction operator was applied to map h 

grid Dk to 2h grid Dk-l· Applying this operator to a grid function in two dimensions 

dh(x, y) means 

d2h = J~hdh (x , y) = 
1

1

6 
[4dh (x, y) + 2dh (x + h, y) + 

2dh(x - h, y) + 2dh(x , y + h) + 2dh (x, y - h) + dh(x + h, y + h) + 
dh (x + h, y - h) + dh(x - h, y + h) + dh(.'E - h, y - h)] 

(10.10) 

which is a nine-point weighted average. To interpolate back from the 2h Dk-l grid to 

the h grid Dk , bilinear operator was used (see Fig. 10.5 for details). 

In addition to the numerical efficiency of t he multigrid, an advantage from a 

scientific point of view is the representation of the solution on different grids with 

changing resolution. As shown in the right portion of Fig. 10.1, the finest mesh 

contains detailed information on the atomistic structure while coarse grids carry in-
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formation about grain boundaries and other higher-scale microstructural components. 

10.3 Convergence and Efficiency of Multigrid Solver 

In this section, we will study the convergence and efficiency of the Full Ap­

proximation Multigrid Scheme as outlined in previous section. 

1.E-04 

1.E-05 

1.E-06 

1.E-07 

t5 1.E-08 
~ 
Q) 

O 1.E-09 

2 
Number of Multigrid Iterations 

4 6 8 10 12 

-+-V(1 , 1) 

--V(2, 1) 

"*V(1,2) 

-+V(2,2) 

--W(2,1) 

""*W(1 ,2) 

-+-W(2 ,2) 

--tr-W(1 ,1) 

Figure 10.6: The convergence history of different mult igrid cycles for MPFC model. 
V denotes a V-cycle and W a W-cycles , while the bracketed integers denote (v1 , nu 2 ) 

described in text. 

Multigrid convergence is closely related to the defect equation, which is an 

equation for the error in terms of the defect . By measuring the value of the defect 

(usually in terms of L2 norm) between multigrid iteration cycles, we can determine if 

the defect is reduced (i.e. multigrid method converges). Convergence depends on the 

main input parameters of the multigrid mentioned in the previous section. It depends 

on the shape of the cycle (V or W) defined by the cycle index r and the number of 

pre-smoothing and post-smoothing steps v1 and v2 . An example of typical notation 

for a multigrid cycle would be V(O , 1), meaning I = 1 with no presmoothing st eps 
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Multigrid Iteration Time 
Cycle Steps [sec] 

V(2, 1) 5 2.45 
V(2, 2) 4 2.47 
W(2, 1) 5 7.02 
W(2,2) 4 7.11 

Table 10.1: Wall clock times and number of iterations for a defect reduction of a 
factor 10-6 for different cycles when solving for Eq. 8.1. 

and one post smoothing step. Another example, W(2, 1) , would mean a W cycle with 

/ = 2, v1 = 2 and v2 = 1. In Fig. 10.6, the defect is plotted as a function applied to 

multigrid cycles for a number of combinations of V and W cycles. The figure suggests 

rapid convergence of the multigrid for cycles V(2, 1) , V(2, 2) , W(2, 1) , and W(2, 2). 

They reduce the defect by a factor of 10- 5 to 10- 9 within 6 multigrid iterations. Also, 

the benefits of processing the coarse grid levels more frequently is evidenced by much 

better convergence of W-cycles. 

In order to choose the most efficient solver, it is necessary to look at both 

its convergence speed and cost. In practice, the 'real time ' needed to achieve the 

solution is the most interesting value. Table 10.1 shows wall clock times and number 

of iterations for a defect reduction of a factor 10-6 for different cycles. The t imes 

were measured during above convergence measurements and were done on the same 

computer work station. The table gave us a different point of view when considering 

convergence data. Both W cycles (W(2, 1) and W(2, 2)) have the best convergence 

however, in the wall time measurements they appeared to be the slowest , with calcula­

tion times almost 3 times bigger the V cycles (V(2, 1) and V(2, 2)). This measurement 

played a significant role in choosing the V(2, 1) multigrid cycle as our main option 

for the large deformation simulations described in the following chapter. 

In the last numerical experiment shown here, we compared the complexity 

(number of arithmetic operations as a function of grid size) of the multigrid with a 

more traditional iterative solver. Figure 10. 7 gives a comparison of the complexity 

of 2 solvers, the successive overrelaxation (section 10.1) and the multigrid method 

described above. We plotted the number of operations against the grid size (i. e. 

total number of unknowns in the discrete system in Eq. 10.4), then calculated a 

trend for each solution method. We found that the multigrid follows the theoret ical 
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Figure 10. 7: Complexity of successive overrelaxation (SOR) and multigrid (MG) 
method. Both methods are solving model Eq. 8.1 The top and bottom lines represent 
the theoretical complexity for the SOR and multigrid approaches, respectively. SOR 
and multigrid are further compared during the solidification simulation experiment 
where the iterative method increases the number of operations with increasing sample 
size by a factor of 1.3, while multigrid method increases the same by a factor of 1.1. 
The performance of the multigrid approach improved when simulating a deformation 
in a perfect crystal. In this case, the number of operations increased 1.07 times with 
the number of computational nodes. 

slope of 1 closely, which means that the number of operations in our multigrid solver 

increased linearly with the number of computational nodes. This was not the case 

in the successive overrelaxation method, where the number of operation grew 1.32 

times along with the size of the grid. Moreover the slope of the multigrid curves 

depended on initial conditions and the type of the simulated problem. For example, 

solidification simulations were slower t han those of perfect crystal deformations. 
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Part III 

Application of Phase Field Crystal 

Modeling to the Study of 

Strengthening Mechanisms 
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This part of the thesis applies the Modified Phase Field Crystal Model out­

lined in chapter 8 to study deformations, deformation processes, and strengthening 

mechanisms in nanocrystalline materials. We will first outline the dynamics of indi­

vidual dislocations and strain distribution in NC samples. That is to be followed by 

a discussion on the strength dependence of a grain size in polycrystalline materials 

on a nanoscale. Finally, the binary alloy model derived in chapter 9, coupled to dy­

namical equations of motion derived in section 9.6, is used to demonstrate the effect 

of dislocation motion in spinodal decomposition. 
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Chapter 11 

Deformation of N anocrystalline 

Materials 

In this chapter we will first study dislocation glide in a single crystal sample. 

A single dislocation velocity is measured and plotted as a function of applied shear 

strain rate. Then the stress distribution in a double notch sample under uniaxial 

tension is compared with experimentally observed values. Finally, we will study 

series of polycrystalline samples with different grain sizes under uniaxial tensile load 

to explore their deformation mechanisms and stri::ngth. We will begin by discussing 

the initial conditions, boundary conditions, and set up of our simulations. 

11.1 Initial Conditions and Boundary Conditions 

An example of the simulation setup is displayed on Fig. 11.1. For all samples, 

periodic boundary conditions in all directions were used. As shown in the figure, the 

solid sample with the hexagonal crystal structure was placed in the pool of liquid 

surrounding it from both or all four sides depending on the type of simulation. This 

was done by choosing values of r and p0 from the coexistence region between hexagonal 

solid and liquid of the phase diagram on Fig. 7.4. Using a lever rule the amounts 

of liquid and solid in the simulated sample were set such that no crystallization or 

melting would occur. 

The set-up for the dislocation glide simulations shown on Fig. 11 .1 required 

the placement of a single dislocation into the center of the sample. This was done by 
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Figure 11.1: A port ion of the sample used to examine dislocation glide velocity. 
Parameters used: (r , p0 , tlx, tlt ,a, (3) = (-1 , 0.49,1T"/4,0.001, 15, 0.9). 

introducing one 'extra' row of atoms into the bottom part of the sample. Specifically, 

the top part of the crystal initially contained N atoms and the bottom part , N + 1. 

Init ial conditions for the crystalline part were set by setting the density in the form of 

a single mode approximation of the hexagonal crystal structure, expressed previously 

by Eq. 7.25 and Eq. 7.27. 

To prepare polycrystalline samples containing grains with various orientations, 

seeds with hexagonal symmetry (Eq. 7.25) and random orientations were placed into 

the undercooled liquid, similar to the simulation of polycrystalline nucleation and 

growth discussed in section 8.4. Init ial seeds were grown at high dimensionless tem­

perature , r = -0.3 in the phase diagram on Fig. 7.4, to prevent the formation of 

faceted grain boundaries. Fully grown samples were then used to prepare tensile 

samples by placing port ions of the 'high temperature' sample into the coexistence 

region at the low temperature (r = -0.6 in phase diagram on Fig. 7.4). As a result , 
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we obtained polycrystalline samples surrounded by liquid from all sides. The number 

of initial seeds defined the final number of grains and thus the average grain size, once 

a simulation box size was selected. 

After the simulation set-up, all samples were left to equilibrate until the free 

energy did not change with time, for example Fig.8. le. 

11.2 Strain Application 

Samples were deformed by shear strain (Fig. 11.1) or uniaxial tensile load 

(Fig. 11. 7) by applying traction boundary conditions. We incorporated traction 

boundary conditions in the phase field crystal model using new penalty term [19] . 

The penalty term is a positive definite term in the free energy of Eq. 7.17. It is the 

square of the difference of the density field and the imposed density field Psur f com­

prising an external surface. To emulate the boundary traction - or the traction at 

specific locations in the sample - the penalty term is modulated by a function M (x), 
which is zero outside the zone where the traction is being applied. Recall free energy 

as defined in Eq. 7.17. 

By adding a penalty term in the form of M(x)(p - Psur f ) 2 we will get free energy in 

the form: 

4 

F = j dr(~[a~T + c(k~ + Y'2)
2]p + u~ + !VI(x)(p - Psurf )

2
) (11.1) 

The modified free energy Eq. 11.1 can be used without modifying the original phase 

diagram. To study single-crystal deformations , the shape of surface density Psur f 

is in the form of a single mode approximation of the hexagonal crystal structure 

(Eq. 7.25 and Eq. 7.27). To accommodate various cryst al orientations in the case of 

polycrystalline materials the surface function was in the form of series of gaussians 

in two dimensions creating periodic field fitting the density of the original hexagonal 

lattice, 

p(x , y) = Aexp(-O"((x- G1(x)) 2 + (y-G1(Y)) 2
)) + (11.2) 
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Aexp(-O"((x - G2(x))2 + (y- G2 (Y))2)) + .. . 

+Aexp(-O"((x - Gn(x)) 2 + (y - Gn(Y)) 2
)) 

In Eq. 11.2, A is the amplitude (Eq. 7.27) , vectors G(x,y) are locations of the peaks 

in the density field Psurf , O" sets the width of peaks, and n is the total number of 

peaks in the boundary field. 

11.3 Strain Rates 

Strain rates used in our simulation ranged from 10-5 /t to 10-3 /t, where t is 

expressed in dimensionless units of time. To estimate strain rates in physical units , 

we matched the experimentally known vacancy diffusion coefficient of metals near 

the melting point to the one calculated for the MPFC model. The vacancy diffusion 

coefficient for typical metals such as Cu is in the range of 10-s to 10-13cm2 /sec [119] . 

An effective diffusion coefficient for PFC model was calculated from density profiles in 

Ref. [15]. Using an example for copper at 1063 °C, Dvcu = 10-9cm2 
/ s , acu = 3.6A 

and matching it to the model at the dimensionless temperature of r = -0.8, the 

vacancy diffusion coefficient was expressed in [17] as: 

Dv = l.78abu 
t 

(11.3) 

In the MPFC model, the effective vacancy diffusion is modified by the effective speed 

of sound a and the diffusion related coefficient /3, Eq. 8.11. Equation 11 .3 then 

becomes: 

D = a 2 1.78abu 
v f3t (11.4) 

Thus, the applied strain rates in our simulations convert to the range of 0.01/ s to 

0.005/ s . 
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[110] 

[110] (110] 
Shear, Compression 

Figure 11.2: A portion of atoms in a (111) plane in face centered cubic crystal or 
( 0001) basal plane in hep crystal. 

11.4 Crystal Structure 

The triangular lattice used in our simulations can be related to a { 111} family 

of planes in face centered cubic (fee) crystal (Fig. 11.2) or {0001} family of basal planes 

in hexagonal close packed (hep) structure. Slip will occur in(llO) type directions in an 

fee crystal and (1120) in an hep structure. In both cases, only three slip systems will 

operate in two dimensions (2D). One should also note that a stacking fault with the 

structure ABABIBABA has very high potential energy in 2D hexagonal lattice. As 

a result of the high stacking fault energy, dislocations in 2D systems do not dissociate 

into partials or extended dislocation as in the three dimensional fee case [120]. 

11.5 Strain Measurements and Data Interpreta­

tion 

Strain in the sample and the position of the dislocations were identified by 

locating peaks in the density field p(x, y). Peaks in the density field correspond to 

a location of atoms in the real material or MD simulation. If the atom has all six 
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neighbors, it is identified as part of a perfect crystal structure. If the atom had less 

then six neighbors it is identified as an atom neighbouring with a dislocation. By 

recording the position of the dislocation with time, we were then able to calculate the 

velocity of the dislocation. 

The average shear strain was calculated from the position of the peaks in 

p( x, y) by noting that , in a well equilibrated single crystal sample, each particle has 

another particle located in a vertical distance of 2ay (Fig.11.2). If the particle is 

shifted in the x direction by a distance dx , then the measured shear strain will be 

dx/2ay. Repeating the calculation for all N 'atoms ' (peaks in the density field) will 

give the average shear strain of the sample. 

1 N 
1= --_Ldxi 

2Nay i=l 
(11.5) 

A similar approach was taken when the average strain was measured in a 

polycrystalline sample. Here however the situation differed by the presence of multiple 

crystal orientations in the sample. In this case, we calculated the average strain by 

comparing the distance of the next nearest neighbors to that of a perfect crystal 

lattice parameter ax . If the distance of two nearest neighbors increased by dax, the 

strain was then calculated as dax / ax . The calculation was then repeated over all six 

neighbors and the average was taken as dax = (dax 1 + dax 2 + .. . + dax 6 )/ 6. Again, 

this calculation was repeated over all N particles in the sample as in the previous 

case and the average strain in the sample was calculated 

(11.6) 

11 .6 Dislocat ion Glide 

To uncover deformation processes in nanocrystals simulated by our phase field 

crystal methodology, we first examined the dynamics of individual dislocations. After 

the sample is equilibrated an edge dislocation formed and a constant shear strain rate 

was applied (Fig. 11 . l) . The time-averaged dislocation glide velocity v was found to 

be a linear function of the strain rate 1, consistent with classical dislocation theory 
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Figure 11.3: Dislocation glide velocity vs. applied strain rate. 

(Fig. 11.4) . This theory predicts that 

- I 
v = Pdb ' (11. 7) 

where Pd is the dislocation density and bis the magnitude of the Burger's vector [121]. 

To elucidate the local dynamics of individual dislocations, we computed the 

average strain in the crystal as a function of time for different strain rates. The first 

observation on Fig. 11.4 is the linear build-up of elastic strains in the sample before the 

dislocation slip. This observation once again shows a correct elastic response of the 

MPFC model to the applied strain. Further results, shown in Fig. 11.4, revealed two 

regimes of dislocation glide. The first was characterized by continuous glide (observed 

at large ..Y) and the second by a stick-slip gliding of the dislocation at low ..y. In both 

cases the applied plastic strain was relieved by the motion of the dislocation, and the 

time-averaged strain remained constant. 
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Figure 11.4: Two regimes of dislocation glide. For high strain rates (r = 8 x 10-5 /t) , 
we observed continuous glide, while at lower strain rate (r = 3.32 x 10-5 / t) , the 
dislocation set into a stick-slip motion. 

11.7 Modeling Strain Concentration and Fracture 

of N anocrystals 

To further demonstrate the properties of the MPFC model , the effect of uni­

axial tension in a notched sample was examined. Before we proceed, let us introduce 

basic terminology with the example of a circular hole in an infinite plate as plotted 

on Fig. 11.5. 

When uniaxial tensile stress is applied to the plate, stress distribution will vary 

with location in the sample.It can be shown analytically that the stress CJyy will vary 

with the distance from the center of the hole x and will be also a function of the hole 

diameter 2a. The variation of CJyy is given by CJyy = CJ(l +a2 /2x2 +3a4/2r4 ) [123]. We 

see that when x = oo, CJyy becomes equal to applied stress and when x =a, CJyy = 3CJ. 

The redistribution of the stress around the hole thus caused the development of the 

stress three times bigger than the applied stress. The hole acts as a stress concentrator 

with an elastic stress concentration factor of 3. 

Let us consider a double notched sample with geometry shown in Fig. 11.6a. 

Notches in the sample, similar to the previous example, will act as stress concen­

trators and have a significant effect on the stress distribution around them. It is 
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x 

Figure 11.5: Distribution of stress around circular hole in an infinite plate, subjected 
to a uniform stress, CJ. 
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Figure 11 .6: a) Geometry of the double U-notched sample used in the present test. b) 
Elastic stress distribution in a double notch sample measured by photoelasticity [122]. 
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difficult to calculate stress distribution analytically for this case. However, a se­

ries of experimental measurements, such as the one shown in Fig. 11.6b, provided 

us with good estimates for stress concentration factors and other authors developed 

very accurate empirical formulas of the stress distribution [124]. Using the geome­

try as displayed on Fig. 11.6a and values from our simulation geometry (Fig. 11 .7, 

L = 4.5ax , 2b = 22ax , r = 4.5ax), we expect an elastic stress concentration factor 

Kt = 1. 79 using the following formula 

The results of our simulation, plotted in Fig. 11.7, show that strain in a notched 

sample concentrated appropriately near the notches, as expected from linear elasticity 

theory. The result qualitatively agreed with an example photoelastic measurement on 

Fig. 11.6b. We then treated the case as a double notched plate with applied uniaxial 

stress and calculated the elastic stress concentration factor as Kt = O'~ax /C72y· We 

found a good quantitative agreement between the theoretical result in Eq. 11.8 and 

our simulation result 1.81. 

It is noteworthy that a simulation with the PFC model (Eq. 7.32) performed 

for the same system and using an affine transformation to approximate the strains in 

the sample, failed to produce the expected strain concentration. We also note that 

while the strains can be extracted in a straightforward manner (section 11.5), elastic 

stresses are currently obtained only within linear elasticity, as the nonlinear elastic 

properties of the PFC model have not been fully explored. This should be contrasted 

with MD, where the stresses in the crystal can be determined from e.g. the virial 

theorem, even in the nonlinear elastic regime. 

125 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

o: Eyy 
" 

,

0 0.14 : 
0 

aA 9 0.12 
<t 

0.1 

0.08 

o: 0.06 
0 

" -. 
0 

O"max ---- ------------ -------
0 

OOo CJo 

x 
0 1 2 3 4 5 6 

Lattice constant - a 

Figure 11 .7: MPFC simulation of strain concentration in a double notched sample 
under a uniaxial tension. Left: A strain map of the center portion of the sample 
displayed at the bottom. Boundary atoms are highlighted as dark blue circles. R ight: 
Plot represents a strain profile from the center of the sample into the root of the notch. 
The solid line is a guide to the eye. 

11.8 Deformation in Polycrystalline Material 

In previous sections we applied the MPFC model to deformations of single crys­

tal samples. We showed that strains are correctly distributed when load is applied 

and dislocation behaviour follows theoretical and experimental observations. In this 

section we will study deformation mechanism and strength of polycrystalline samples 

for various average grain sizes. More specifically, we will focus on the phenomenon of 

the reverse Hall-Petch effect discussed in chapters 3 and 4. The Hall-Petch relation­

ship (Fig. 3.1) predicts increasing yield stress with decreasing grain size. However, 

experimental results and MD computational simulations (section 3.2) paint a different 

picture for grain sizes below 50nm. As seen from Fig. 3.5, the strength in NC regime 

was shown to increase, decrease or plateau as a funct ion of grain size, at the lowest 
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grain size level. Difficulties in sample preparation are t he most often cited reason for 

inconsistency in experimental results. The computational approach offers the poten­

tial of preparing defect free samples and study the deformation processes during the 

course of deformation, which is usually prohibited in experimental work. The MD 

simulations discussed in section 3.2 have been used as a tool to study the deformation 

processes on a nanoscale. However, MD simulations were able to produce only very 

short simulations due to their limitation on time step in picoseconds. In this section, 

we circumvent the shortcomings of MD simulations using the MPFC model, which 

operates on time scales several orders of magnitude longer than MD simulations (sec­

tion 8.1). To study samples with multiple grains , relatively large system sizes had to 

be used, necessitating the use of the multigrid solver described in chapter 10. 

Sam ples 

As described in section 11.1 , samples were grown by heterogeneous nucleation 

and this growth introduced nucleation sites with various grain orientations. To facil­

itate the analysis of the simulations, we identified which atoms were located at the 

grain boundaries, around dislocations , or inside the grain by determining local crys­

talline order. Atoms in perfect hexagonal order ( 6 nearest neighbours) are considered 

to be inside a perfect crystal , while those with less that 6 nearest neighbours are con­

sidered to be at the grain boundary or near the dislocation. A fully developed grain 

boundary network structure with various grain orientations, including low angle and 

high angle grain boundaries, is displayed on Fig. ll.8b. Individual dislocations inside 

the grains are highlighted in Fig. 1 l.8b. 

To save computational time we studied polycrystalline nanocrystalline samples 

of two sizes; (1025~x x 1025~x) containing grains with smaller average grain size, and 

2049~x x 2049~x, used for larger grain sizes. The first sample holds approximately 

20000 atoms and the second sample holds approximately 80000 atoms. If we again 

use the example of copper, where the lattice parameter is 3.6A, the sample sizes are 

approximately 50 x 50nm and 100 x lOOnm, respectively. In total , we prepared 15 

samples with grain sizes ranging from 5nm to 30nm. The properties of individual 

samples are listed in Table: 11. l. 

Samples of square shape were surrounded by liquid and boundary loads (sec­

tion 11.2) were then applied to ~30 rows of atoms on two sides. After the equili-
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Table 11 .1: Samples Overview 
Sample number Sample size Number of grains Average Grain Size 

[grid size] [-] Cu example [nm] 
1 1025 x 1025 6 14.88 
2 1025 x 1025 15 7.94 
3 1025 x 1025 18 7.78 
4 1025 x 1025 19 7.67 
5 1025 x 1025 30 6.45 
6 1025 x 1025 23 6.84 
7 1025 x 1025 40 4. 97 
8 2049 x 2049 10 29.25 
9 2049 x 2049 18 21.57 
10 2049 x 2049 20 20.42 
11 2049 x 2049 37 14.69 
12 2049 x 2049 37 14.73 
13 2049 x 2049 53 12.06 
14 2049 x 2049 54 12.04 
15 2049 x 2049 86 9.4 

bration of the samples a uniaxial tensile load was applied at a slow constant st rain 

rate 0.001/ t . The simulation setup with parameters of simulations is displayed on 

Fig. ll.8a. During the simulation free energy was calculated using Eq. 7.17 and den­

sity profiles p(:r, y). The average strain in the sample was calculated for every 2000 

time steps. 
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Samples Above ~12 nm Grain Size 

Upon loading, all samples initially deformed elastically as seen from average 

strain build-up plotted on Fig. 11.14. At about 2 to 33 of deformation, individual 

dislocations started to glide to relieve applied stress. A typical example of this be­

haviour are the dislocations A, and C in Fig. 11 .9. Dislocations either relaxed towards 

the sample surface creating a ledge (dislocation A, Fig. 11.9), or were absorbed by a 

grain boundary (dislocation C, Fig. 11.9). Upon further loading, when all individual 

dislocations were exhausted, the load is carried only by the grain boundaries. Even 

the largest grains on a nanoscale are too small for traditional sources (such as the 

Frank-Read source) to operate. Grain boundaries are the only possible sources of 

dislocations. We observed low-angle grain boundaries beginning to decay and act 

as a source of dislocations (dislocation B, Fig. 11.9), thus contributing more gliding 

dislocations to plastic fl.ow. As the dislocation left the low angle grain boundary, the 

original grain rotated and was extended onto a neighboring grain, effectively causing 

a grain growth. On Fig. 11 .12, a portion of the sample with a small grain is displayed. 

At about 43 of deformation, the grain boundary of the displayed grain started to 

decay by the mechanism of dislocation glide. As a result , the grain rotated about 2° 

and its diameter decreased. 

Samples Below ~12 nm Grain Size 

As the grain size decreased, the fraction of the grain boundaries in the sample 

increased and fewer individual dislocations were observed. Moreover, some individual 

dislocations were 'trapped ' in the center of small grains and were prohibited from 

gliding. Upon loading, most of the load was immediately transferred to the grain 

boundaries. Initially, the deformation was accommodated by a series of short gliding 

events of free dislocations. Similar to behaviour in larger grains , low angle grain 

boundaries decayed and became sources of mobile dislocat ions. Contrary to the first 

case, fracture, and void creation, and growth was observed at triple junctions, crystal 

surfaces and high-angle grain boundaries. Voids contributed to decrease in strength. 

Once a nanovoid was nucleated, the resulting stress-free surface of the void caused a 

localized stress and strain concentration. Free dislocations and dislocations generated 

from the grain boundaries glided towards the stress contrectation around the void to 
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Figure 11.9: Deformation in the 50 x 50nm sample. Average grain size is 15nm. Dislocations A, C are absorbed by 
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Figure 11.10: Deformation in the 50 x 50nm sample. Average grain size is 15nm. Dislocations A, Care absorbed by 
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Figure 11.12: Two slides showing a portion of the sample with rotating grain. Initial 
time is t=30 and final time t=40. Dashed lines A and A' are parallel. The dotted line 
shows the original shape of the grain. It is superimposed onto the deformed grain on 
the right. 

relieve the stress. The process can be described as periodic nanovoid growth and 

nanovoid healing by annihilating dislocations. Once there was no mobile dislocat ions 

available in the proximity of the void, the deformation proceeded by void growth and 

fracture Fig. 11.13. 

To analyze the strength, we plotted an average strain in the crystal found 

by locating peaks in the density field (see section 11.5) against applied strain. A 

linear relationship was found up to about 2-33 of deformation, suggesting an elastic 

deformation i.e. on unloading the sample would return to its initial state. After about 

33 of deformation, all samples exhibited change in deformation behaviour from elastic 

to plastic deformation. Plastic deformation proceeded by dislocation glide, grain 

rotation and fracture, as discussed above. We measured two characteristic values 

on stress strain curves. The first was a average strain at the yield point which was 

determined as the intersection between the average strain curve and a line parallel to 

the linear part of the curve at 0.002 applied strain rate. When average yield strains 

in the sample were plotted against the grain size, we found an increase in the yield 

stress with increasing grain size, which suggest a 'reversed ' Hall-Petch effect on a 

nanoscale (Fig. ll.15left). At scales above 15 to 20nm, we found that curve started 

to plateau suggesting a turn to regular strengthening behaviour. Hall-Petch plot is 
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Figure 11.13: Three voids A, Band Care displayed in four consecutive times 25 , 35, 
45 and 50. Voids A and B are nucleated and continue to grow as simulation proceeds. 
In the second half (slides c, d) a third void C is nucleated while A and B void almost 
annihilate. It is also interesting to point out the dynamic nature of the process as 
the voids are 'gliding' along the grain boundary. 

usually plotted as function of 1/ ,;J,, where d is the grain size (Fig. 1 l.15top right 

panel). In this case, we found a linear dependence of strength on grain size. Finally 

we plotted average strain in the sample during the flow to find similar results as in 

the case of yield strength. 

Comparison with Experiments 

In our simulation measurements , we observed a decrease in the strength with 

decreasing grain size in samples with no porosity and on timescales comparable with 

experimental work. After the initial elastic deformation mode, plastic deformation 
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Figure 11.14: The effect of grain size on deformation. T he average strain in the sample 
as function of applied strain. The curves show materials response to mechanical 
deformation by uniaxial tensile load. At low strains deformation is mainly elastic. 
Above ~ 23 of deformation plastic deformation sets in and the material starts to 
flow and deform plastically. Dependence of flow stress on grain size is displayed on 
Fig. 11 .15. 

proceeded by dislocation glide, grain rotation, and grain growth. Decay of low angle 

gray boundaries was a source of mobile dislocations during plastic flow. This is in 

agreement with TEM studies (section 3.1.3) , where traces of dislocation activity was 

found. Moreover , we observed grain growth which is consistent with high resolution 

TEM (HRTEM) studies on NC Ag by Ichikawa et. al. [87]. Dislocation removed 

from or annihilated at the grain boundaries caused grains to rotate, as suggested by 

Murayama [125] , who observed rotational movement of grain in HRTEM of Fe. An 

increasing ratio of grain boundaries to bulk material in C materials caused a shift 

from dislocation mediated deformation to deformation carried by grain boundaries. 

As a result , we observed the formation of cracks at triple junctions and grain bound-
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aries for lower grain sizes as reported by Kumar [22]. We did not observe any partial 

dislocation activity which might be caused by high stacking fault energy inherent in 

our 2D system. When plotting the grain size dependence of the yield strains , we 

found a decreasing trend with decreasing grain size, which suggests 'reversed' Hall­

Petch behaviour. Limited by sample size we observed a plateau in the yield strain 

plot for grain sizes above 15nm. When the inverse square root of the grain size was 

plotted versus the yield strain, we found a negative linear relationship. 
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Figure 11.16: Left: Four time sequences in the evolut ion of the concentration field 
(gray scale) in a binary system with no dislocations present. superimposed on the 
corresponding density field. Dislocations are labeled by a square on the dislocation 
core surrounded by a circle. The time sequence (a)-(d) corresponds tot= 50, 200, 600 
and 2200. System size is: 800~x x 800~x , where ~x = 7r / 4. The density difference 
fJN = 0, while L = 2.65, Ri/ Ro = 1/4 (Ro = 1) and all other parameters are the 
same as Fig. 9.1. Right: 2D structure factor calculated for the concentration profiles 
on the left . 

11.9 Applications to Spinodal Decomposition 

In previous sections we have discussed the application of MPFC model to dis­

location behaviour, strain distribution, and strengthening effects in nanocrystalline 

materials due to grain boundaries. We continue our discussion by focusing on the 

study of strengthening by phase boundaries in spinodal decomposition. In chap­

ter 5, we discussed details of spinodal decomposition process, during which smooth 

fluctuations in concentration are created. Studies of the domain growth kinetics in 

solid mixtures showed that the characteristic linear dimension >. - the domain size -

grows according to a law given by >. ( t) ,....., t113 [126]. Dislocations have been found to 

change the domain growth kinetics. At early stages of domain growth, dislocations 

and domains are randomly distributed and only few dislocations interact with the 

domain interface. At this stage, domain growth is exponentially fast and unalt ered 

by dislocations. Later , when domains have grown in size, interfacial strain interacts 

with an increasing number of dislocations, dislocation density at the phase boundary 
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increases. Increasing dislocation density, together with mobility of the dislocations, 

are the limiting factors defining the growth rate of still relatively-fast moving inter­

face [12]. When the decreasing velocity of the interface is decreasing the mobility of 

the dislocations is no longer a limiting factor to domain growth. Accelerated domain 

growth is now facilitated by increased interfacial tension (Fig. 5.3). At late times , 

when the velocity of the interface is low, the presence of dislocations is no longer a 

limiting factor and dislocations move slowly with the interface at the growth rate of 

t 113 . Fully-developed domains interact with dislocations , hindering their motion, and 

causing material to harden. 

To validate our model and verify basic kinetics, we first studied spinodal de­

composition in a two dislocation-free systems. The first system was a binary mixture 

of A and B atoms with an atomic radii R A/ R 8 =0.1 (i.e. 10% difference) and in the 

second system, atomic sizes differed by 25%. 

Simulations began with a liquid phase of average dimensionless density differ­

ence 5N = 0, which first solidified into a polycrystalline solid phase then subsequently 

phase separated as the reduced temperature (!:::.B0 , Fig.9.1) was lowered below the 

spinodal. 

The morphology changed from initially random fi uctuations (Fig. 11 .16a) to 

smooth coarse fluctuations in concentration (Fig. 11.16b-d). To analyze the morphol­

ogy and kinetics of phase separation, we calculated structure factor by calculating 

a Fourier transformation of the concentration field. When plotted (Fig. 11.16e) , we 

observed a position of the maxima in structure factor - characteristic wavelength 

- of the morphology. From Fig. ll .16e, we see that the characteristic wave vector 

decreases with time (i.e . size of the domain increases with time) . By repeating the 

analysis over all time steps of the simulation, we obtained the time dependence of the 

characteristic domain wavelength. When plotted on log(t) - log(>.) , we were able to 

calculate growth rate and found a good agreement with t 113 growth rate Fig. 11.17. 

In the example on Fig.11.16 both crystal structures (for species A and B) 

matched perfectly at the interface plane. To maintain coherency the lattice was 

distorted by coherency strains due to misfit between lattice parameters. The strains 

associated with a coherent interface raise the total energy of the system, and for larger 

atomic misfit it becomes energetically favorable to accommodate the interfacial strains 

by a misfit dislocation. To better isolate the effect of phase separation on dislocation 
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Figure 11.17: Log-Log plot of the characteristic linera dimension (domain size) at time 
t after the quench, for the simulation shown in Fig. 11.16. Domain size is extracted 
from structure factor (Fig. ll.16e.) 
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Figure 11.18: A dislocation migrates toward a coherent phase boundary, thus relaxing 
mismatch strain. An 800 x 800 (units of .6.x) portion of the actual simulation domain is 
shown. The data shows four time frames in the motion of the dislocation. Parameters 
of the simulation are the same as in Fig. 11.16, except the misfit between the lattice 
parameters, which was increased to 0.5. 

we studied dislocation motion near a coherent interface in the alloy. 

In simulations, we increased t he misfit between lattice parameters to 503 and 

placed a dislocation next to the interface. The dislocation was generated inside the 

perfect crystalline lattice using the same approach as in the section 11.6 where the 

dislocation glide was studied. After the initial equilibration, dislocation motion was 

visualized by locating a dislocation core. Fig. 11.18 demonstrates dislocation motion 

near the interface. The four frames on the figure show the dislocation moving to the 

interface, driven by coherency strains. Once the dislocat ion accommodated the misfit 

strain it became attached to the interface. 

Figure 11.19 shows the temporal evolution of the phases during spinodal de-
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Figure 11.19: Four time sequences in the evolution of the concentration field (gray 
scale) , superimposed on the corresponding density field. Dislocations are labeled by 
a square on the dislocation core surrounded by a circle. The time sequence (a)­
( d) corresponds to t = 100, 200, 800 and 2500, respectively. The system size is: 
1024b.x x 1024b.x, where b.x = 7r / 4. 
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Figure 11.20: The solid line represents a time dependence of inverse of the mean 
wave vector of the (circularly averaged) 2D structure factor of the concentration field 
corresponding to the simulation in Fig. 11.19. The dashed line is a guide to the eye 
at a slope t 113 . Growth regimes are outlined by dash-dotted vertical lines. Regime 
A is an initial growth with kinetics unaltered by dislocations. In regime B domains 
experience drag form the dislocations and slow down in growth rate. Regimes C, D 
are expanded in Fig.11.21. 

composition of a binary alloy with dislocations present. Figures 11.20 and 11 .21 show 

the corresponding growth rate of the domains. 

Simulation began as in the first case, with a liquid phase of average dimension­

less density difference 8N = 0, which first solidified into a polycrystalline solid phase 

then subsequently phase separated as the reduced temperature (6.B0 ) was lowered 

below the spinodal. Initial conditions were chosen such that a number of dislocations 

would be present in the solid after the solidification. In a gray scale, the darker color 

corresponds to B-rich concentration profile.Dislocations are labeled by a square on 

the dislocation core surrounded by a circle. The four slides indicate the initially ran­

dom distribution of dislocation through the sample (Fig. 11.19a, b) . In this regime we 

observed rapid changes in morphology. The growth rate calculated from the structure 
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Figure 11.21: The domain growth rate at late times for simulation displayed in 
Fig. 11.19. The dashed lines are guides to the eye at a slope t 113 . Growth regimes 
are outlined by dash-dotted vertical lines. Regimes C is an accelerated regime, D 
corresponds to asymptotical regime. 

factor is similar to the growth rate of the dislocation free system. This is displayed 

on Fig. 11.20 as regime " A". With continuous domain growth, the interfacial st rain 

increases and more dislocations are attracted to the phase boundary (Fig. ll.19c). 

Limited by dislocation mobility, we observed plateau - slow down- in domain growth 

(Fig. 11.20, regime "B"). At t~ 2000, almost all dislocations are attached to the grain 

boundary, which is manifested by accelerated domain growth. The accelerated regime 

is plotted separately on Fig. 11.21 as regime " C". Finally, at late times, a growth rate 

approaches the asymptotic regime (t113) (Fig. 11.21 as regime "D"). These findings 

are in agreement with the findings in Refs. [103, 12] . 
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Chapter 12 

Extension to Three Dimensions 

In the review of deformation processes in NC materials, we found that de­

formation is accompanied by a number of processes on multiple length and time 

scales. Deformation processes are sensitive to material structure. A simple example 

is a different number of slip systems in a face centered, body centered or hexago­

nal crystal structure. Another example mentioned was nucleation and propagation 

of partial dislocations during the deformation of NC materials observed by MD and 

XRD. Partial dislocations are due to the high stacking fault energy prohibitive in two 

dimensional systems. This is only a brief list of examples necessitating extension of 

MPFC modeling technique to three dimensions (3D). 

As was discussed in section 7.1.2 it is the correlation function that defines the 

crystal symmetry in DFT free energy. The free energy used in previous chapters takes 

the form of Eq. 7.17: 

(12.1) 

Here the term (k5 + \72
)

2 represents a two-point correlation function. The expression 

in Fourier space has the form (ko - k2
)

2
. When plotted, it has a clearly defined peak 

at k0 . The position of the peak represents an equilibrium wave vector in Fourier 

space, or the lattice spacing in real space. If used in the free energy without any 

other constraints, it will produce a triangular crystal lattice in 2D and BCC in 3D. 

Elder et. al. [127], for example, used this free energy to study dislocation and grain­

boundary melting in three dimensional BCC crystal structure. To simulate other 
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crystal structures, the correlation function entering the free energy must be modified 

(i.e. must contain more peaks to represent a real material). Each peak corresponds 

to the crystal structure parameter, reciprocal lattice vector. Kroger [75] noted that 

not only is the position of the peaks important , but that their relative height can 

change the crystal structure. A correlation function for a particular material can be 

found by performing a MD simulation. A typical example of the correlation function 

for copper is displayed on Fig. 7.3. The correlation function c(k) is measured in a 

frequency space and as such is a function of the wave vector. 

To simulate the 3D structure of copper, we used the same dynamics as in 2D 

case, Eq. 8.1. There were two possible approaches; either take an inverse Fourier 

transformation of c(k) and solve the dynamics equation (Eq. 8.1) in real space or 

transforming the equation into the Fourier (frequency) space. The latter approach 

has the advantage of avoiding a complicated solution of high order gradient terms, 

which was the main reason we favored the second approach. 

In frequency space, the equation of motion of the diffusional PFC (Eq. 7.33) 

becomes 

dpk 2 A A - A A dt =-!kl Pk - GN Lk - pC( lki)Pk (12.2) 

where Pk= F FT[p] (i.e. p(kx , ky , t) = F FT [p(x , y , t)) and GN Lk = F FT [\72(N L(p(x , y , t)))], 

where NL = (Pk) 2 / 2 - (Pk) 3 /3. 

Using full implicit discretization, we get: 

(12.3) 

where then and n + 1 means using the pat then and n + 1 times , respectively. This 

equation is algebraic and to solve it we separate out ;;~+ 1 , i.e., 

(12.4) 

We simulated the above equation using a mesh with periodic boundary con­

ditions. Init ial random fluctuations with the strength ~ = 0.25 were introduced into 

an undercooled melt to initiate the solidification process. The results are shown in 
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Figure 12.l: A single crystal growth with BCC and FCC structures simulated by Eq. 
12.2. Coordination numbers of crystalline structures indicate a coordination number 
8 in BCC and a coordination number 12 in FCC structure. 

Fig. 12.1, which illustrates a FCC structure. By changing the reference density p0 we 

were able to grow a stable BCC crystal using the same model as noted above. Having 

access to both BCC and FCC structure would allow us to look at the deformation 

processes of various crystal structures in the future. Fig. 12.1 shows a single crystal 

BCC structure as simulated by Eq. 12.4. 
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Chapter 13 

Conclusion 

This thesis presented and applied two new contributions to the phase field 

crystal modeling technique. The first was the development of a modified phase field 

crystal model (MPFC) . This methodology offers a unique combination of accessible 

length scales and time scales, which are suitable to address problems in deformation 

and phase transformations in nanocrystalline (NC) materials . The MPFC method 

exploits separation time scales by introducing fast time scale to the diffusional time 

scale of the original PFC model. The separation of timescales is controlled by tunable 

parameters a and /3 , which are related to the effective speed of sound and the vacancy 

diffusion coefficient , respectively. A stability analysis of the linearized equation of 

motion showed a critical elastic length scale that sets the distance over which the 

disturbance will " instantaneously" travel. The basic properties of the model were 

verified by plotting displacements in the case of an effectively one dimensional bar 

and two dimensional double notched sample. In both cases we found a good agreement 

with theoretical expectations and experimental results. Measurements of dislocation 

velocity were consistent with those predicted by the Orowan equation. We found 

a linear relationship between the applied shear rate and dislocation velocity. The 

model was then applied to study the grain size strength dependence in nanocrystalline 

materials. When plotting the grain size dependence of the yield strains, we found 

a decreasing trend with decreasing grain size, which suggests 'reversed ' Hall-Petch 

behaviour. We also observed a plateau in the yield strain plot for grain larger than 

above 15nm. At 15nm grain size, the deformation regime changed from dislocation­

controlled to a regime where most of the deformation was carried by grain boundaries 
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that manifested itself in grain rotation, grain growth, and void nucleation and growth. 

The second contribution presented in this thesis was the development and 

application of phase field crystal model to binary alloys. We examined connection 

between the density functional theory (DFT) of freezing and phase-field modeling. 

More specifically, it was shown that both the phase field crystal model and the regular 

solution commonly used in material science can be obtained from DFT, within certain 

limits. These calculations relied on parameterizing the direct two-point correlation 

function that enters DFT by three quantities related to the elastic energy stored in 

the liquid and crystalline phases, as well as the lattice constant. 

Using the DFT connection, a simple binary alloy model was developed that 

self-consistently incorporates physical features inaccessible through other phase field 

approaches. The simplified alloy PFC model was shown to be able to simultaneously 

model solidification, phase segregation, grain growth, and elastic as well as plastic 

deformations in anisotropic systems with multiple crystal orientations on diffusive 

time scales. In particular, this model was applied to the study of spinodal decom­

position. The model was calibrated and the basic kinet ics of spinodal decomposition 

was verified by studying decomposition in a perfect crystal. We observed the growth 

rate of compositional domains to be consistent with the reported value of t 113 . In 

the case where dislocations were present in the alloy sample, the kinetics was shown 

to be different as compared to the dislocation free sample. An initial slow down in 

the domain growth rate was observed, due to increased interface strains and the mo­

bility of the dislocation. With continuous growth, the number of dislocations at the 

phase boundary increased, thus increasing the elastic strain in the sample. Increased 

stresses resulted in accelerated growth. At late times , the t 113 growth rate is again 

attained. We found there to be good agreement between our results and those in 

previously published studies. 

Finally, we presented an extension of the model to three dimensions. The 

extension represents and important progress towards the simulation of real materials, 

since a number of deformation processes can be only observed in three dimensions. 

To obtain three dimensional structures, a correlation function for copper was used. 

This correlation function was found through molecular dynamics simulations and then 

used as an input to our model , as a function of wave vector k. This necessitated the 

solving of the equation of motion in a frequency space, through which we were able 
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to simulate single BCC and FCC crystals. 

To solve the partial differential equation of motion for the modified phase 

field crystal model (MPFC), I developed an efficient solver that utilizes a mult igrid 

technique. We measured its computational efficiency and convergence to find an 

improvement in both measures as compared to traditional iterative solvers. Moreover 

we found improved stability as compared to the explicit time marching scheme that 

had previously been used. 

It is expected that both the alloy MPFC formalism and the MPFC with in­

clusion of instantaneous elastic modes will play an important role in linking material 

properties to microstructure development in a manner that fundamentally links the 

meso-scale to the atomic scale. 
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Appendix A 

Deriving the New Phase-Field 

Crystal Model Starting from 

Hydrodynamics of Solids 

In this chapter we detail the derivation of the new phase-field crystal model 

from hydrodynamics of solids.We can motivate the derivation of our semi-empirical 

model by considering the laws for mass and momentum conservation applied to a 

crystal system described by Eq. 7.4. These are given by 

pV=g 

op= -v . ff at 
ogi R MI 
-=-'V ·rJ .+d=-­ot J tJ t 6ui (A.l) 

where p, g and iJ denote the local mass density (non-zero everywhere) , momentum 

and velocity, respectively (the subscript i denote their components) , while ui are the 

three components of the local displacement u. The tensor CJ~ is the reactive part of 

the stress (i.e. that which can be related to local thermodynamic quantities) [128], 

while di represent the three components of a local dissipative force acting on the 

crystal. The nature of d will be discussed further below. The term bTI/ 6ui in the last 

of Eqs. A.1 implies that we can equivalently derive momentum conservation from an 
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energy functional of the form 

II= { (f [p(i, t) ] + ~p(i, t)v 2 + uidi) dV 
Jsys 2 

(A.2) 

where the first term on the right hand side of Eq. A.2 is a phenomenological Gibb 's 

free energy density, the second term is the local kinetic energy and the last term 

is the work due to internal dissipative forces (di ) acting during solid deformation. 

The dissipation energy term gives rise so-called configurational forces on the system, 

which are created by the motion of defects , vacancies and grain boundaries [129]. 

In the context of the present study, the free energy density f [p(i, t)]) is chosen to 

be minimized by periodic crystal densities . It is the existence of such minima that 

leads to elastic energy of solids [16]. Namely, small deviations of the density from its 

equilibrium state give rise to (recoverable) elastic deformation energy. Density states 

with topological defects represent plastically deformed crystals, which are constrained 

in local (time-dependent) minima far from equilibrium. 

We can reduce the system of Eqs. A.1 into Eq. 8.1 as follows . We first take 

the time derivative of the (second) mass conservation equation and the divergence of 

the (third) momentum conservation equation. This gives , respectively, 

a2p a(\J·g) 
at at 

a(\J ·ff) = -\Ji bII 
at bui 

(A.3) 

Substituting for the first term in the second of Eqs. A.3 using the first equation, we 

arrive at 

(A.4) 

To proceed further II must be related explicitly to the density field p( i, t). 
A constitutive relation between the coarse-grained density p and the local crys­

tal displacement field ui is obtained by assuming that the density changes very slowly, 

allowing us to write p = p0 (i) +bp(i, t) , where p0 (i) is a reference (equilibrium) den­

sity field of the crystal. We next take the divergence of the first equation in Eq. ( A.1) 

and use the (second) mass conservation equation to eliminate ff. Expanding to linear 
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order in 6p, velocity and their gradients , we obtain 

(A.5) 

Equating the expressions in the brackets of the left and right hand sides of Eq. (A.5) 

we obtain 

( 
_) OUj OPo 

P - Po = - '\l · PoU = Po- - Uj-
OXj OXj 

(A.6) 

Returning to Eqs. A.4 , we perform the functional integral on the right hand 

side, obtaining 
MI = l 6f[p(x, t)J 6p(x' , t) d_, d - (~) 
6ui sys 6p(x' , t) 6ui(x, t) x + i u 

(A.7) 

We use the constitutive relation Eq. A.6 to simplify the expression 6pj6ui in Eq. A.7. 

Doing so we obtain 

(A.8) 

Substituting for Eq. A.8 in Eq. A.7 we obtain 

(A.9) 

where µ = 6 F / 6 p is the generalized chemical potential of the crystal. The simplest 

form we can take for the dissipation force is of the form 

di = f3p(x, t)il (A.10) 

where f3 is a constant. Substituting di and Eq. A.9 into Eq. A.4 finally gives Eq. 8.1. 

The dissipation force in Eq. A.10 depends on the velocities not their gradients , 

as is typically done in deriving the viscosity tensor in continuum mechanics. As 

mentioned above dis a a form of configurational force, arising directly from local 

changes in mass flux due to defects, vacancies and grain boundaries. In an infinite 

periodic crystal, this form of d would be incorrect since the system is translationally 

invariant . However , in a crystal containing free surfaces, at least one of which is always 

be constrained, translational invariance is broken and the form of the dissipative force 
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in Eq. A.10 is phenomenologically correct. We also note that when a crystal is in 

coexistence with its melt [16], the form of Eq. A.10 naturally gives rise to a St<Jkes­

type dissipation when coherent portions the crystal break off and move through hquid 

phase. 
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Appendix B 

Derivation of Simple Binary Alloy 

Model 

This appendix goes through the expansion required to arrive at the simplified 

alloy model presented in section 9. For this calculation the free energy functional in 

Eq. (9.7) is expanded in the variables n and bN, as defined in Eq. (9.27) , up to order 

four (noting that terms of order n or b N can be dropped since they integrate to zero 

in the free energy functional as they are all defined around their average values). In 

addition it will be assumed that bN varies on length scales much larger than n. This 

is a reasonable on long time (diffusion) times scales, where solute and host atoms 

intermix on length scales many times larger than the atomic radius. This assumption 

allows terms of order nbN to be eliminated from the free energy. The result of these 

expansions and approximations is that the free energy functional can be written as 

J 
n2 n3 n4 

dr[f +Be- - - +- +nF\72n 0 2 6 12 

+~ 1- bN 
bN ( cAA + cBB - 2cAB) 
2 4 

bN4 (3 
+12 + 

2
,0 (1- n3 )bN + nG\74n 

dC (( 2 2 3 ) J + 
4

,0 p - Pe) - pp_n ) bN (B.l) 
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where 

F 

G 

dC 

ln (L) -(1 - Pel p) - pCAB / 4 
2pe 0 

-~ (p + 2pV p- 4pe)(C~A + ctB) 

1 - pCo + -p- 1 ((3 + p~dCo/2)6N + 6N2 

--PC2 + p~d62 6N/2p 
"- 2 A 

-pC4 + PedC48N/2p 

CAA - CBB 
' 

while Cn (c:A + 6[!B + 2c:B)/4 and dCn - c:A - c:;B. 

(B.2) 

The previous equation can finally be cast into a form similar to that presented 

in Section 9.4 of the text , 

F 
pk BT 

j dr[fo +%[Be+ Bs(2R2 '\72 + R4 '\74
)] n 

n3 n 4 w 8N 4 £ 2 

6 + 12+28N2+12 + 2 l'78Nl2 

+ 18N + ~
4 

8N'\748N] 

(B.3) 

where B s = F 2 / (2G), R = J2G/ F , w = (1 - 6C0/ 2) , £ 2 = 6C2/2, H 2 = -6C4/2 
and 2p/ = (J( l - n3

) + dC((p- Pe)2 - p~n3)/2 (6Cn as in Eq. 9.13). 

The dependence of t he coefficients in B1, Be and R on the density difference 

can be explicitly obtained by expanding them in 8N as well. This gives , 

BS 

R 

where 

B~ + B f 6 N + B~ 8 N 2 

Bg + B~ 8N + B~ 8N2 + ... 

Ro + R1 8N + R2 8N2 + · · . 

e - "-B0 = 1- p Co , 
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- e 2 ~ 
pB1 = f3 + PedCo/2 , (B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

and 
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Appendix C 

Multigrid - Full Approximation 

Scheme 

In this section, we develop a nonlinear Full Approximation Storage (FAS) 

multigrid method to solve the system in equations 10.1 at the implicit time level. 

The fundamental idea of nonlinear multigrid is analogous to the linear case. First, 

the errors to the solution have to be smoothed so that they can be approximated on 

a coarser grid. An analogue of the linear defect equation is transformed to the coarse 

grid. The coarse grid corrections are interpolated back to the fine grid , where the 

errors are again smoothed. However, because the system is nonlinear we do not work 

with the errors, but rather with full approximations to the discrete solution on the 

coarse grid. 

Equations 10.1 can be rewritten as: 

(C.1) 

where 

N so (Un ' un+l, cn+l / 2 ' vn+l) = ( C.2) 

( (
{Jdt + 1) n+l + 2n2 n+l / 2 

2 ui,J a v ci ,J , 

159 



PhD thesis - Peter Stefanovic, McMaster - Materials Science and Engineering 

and source terms are 

(Jn n n) (2 n n - 1 ( (3dt 1) 0 v2 n ) , 9 , e = Pi,j + Pi,j 2 - , , Pi,j (C.3) 

In what follows , we assume a sequence of grids nk. vis the number of pre-smoothing 

and post-smoothing steps. An iteration step for the nonlinear multigrid method using 

the V-cycle is formally written as follows: 

FAS cycle 

(C.4) 

That is {Pk+ 1, µ;;i+112 , vk+1
} and {Pk+1,µ;;i- 112 ,vr} are approximations of 

Pk(xi, Y) ) and µk( xi, yj ) and vk(xi , yj) before and after FAS cycle, respectively. Now 

we define a FAS cycle: 

Presmoothing 

Compute {.Dk , µ;;i - 112
, vk'} by applying v smoothing steps to {pk' , µ;;i- 112

, vk'} 

(C.5) 

which means performing v smoothing steps with initial approximation Pk' , pk, , µ;;i- 112
, 

source terms f'f:, gJ: , ek, and the SMOOTH relaxation operator to get ,Dk , µ;;i- 112
, vk' 

One SMOOTH relaxation operator step consists of solving the system given 

below by 3 x 3 matrix inversion for each i and j . 

( 

(3dt / 2 + 1 

(-1- r) - 3/ 2 (Pi,/+ Pi:/) 
2/ dx2 
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4a 2dt2 / dx2 

1 

0 
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2 n n- 1 ({Jdt/2 1) 4 2dt2/d 2(-m-1/2 m-1 /2 m-1/2 -m-1/2) p · + p · - + a x µ ·-1 · + µ+1 · + µ ·+1 + µ - 1 i ,J i,J i ,J i ,J i ,J i ,J 

r;:- sourceterm 

(vZ:1,j + vH.1,j + Vw+1+v0-1)/dx2 +1/2 (P~/ +pr,/) - 3/2 (P~/ +Pi:/) Pij C.6) 

("fl:_1 ,j + PH.1 ,j + PiJ+1 + lf2i-1)/2dx2 ( +P~ 1 ,j + P":+l,j + P~i+l + P~j- l - 4p~i)/2dx2 

g k - sourceterm 

Compute Defect 

(d-lm d-2m d-3m) _ (Jn n n) NSQ (-= -='1"n - m-1 /2 - m) k, k, k - k , gk , ek - k Pk , Pk , µk , vk (C.7) 

Restrict the defect and {Pk , µ;;-112
, vr} 

(C.8) 

(
-=""Tt - m-1/2 -m ) Jk-1 (-='l"n -m- 1/2 -m) Pk- 1, µk-1 ,vk- 1 = k Pk , µk , vk (C.9) 

The restriction operator 1z-1 maps k-level functions to (k - 1)-level funct ions. 

A full weighting restriction operator is applied according to Eq. 10.11 . 

Compute the RHS 

Compute an approximate solution {pk=.-1 , µ;;_-/ 12} of the coarse grid equation 

on n k - 1 i.e. solve 

(C.11) 
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if k = 1, we explicitly invert 3 x 3 matrix to obtain the solution If k > 1 we 

solve Eq. C .11 by performing a FAS k-grid cycle using { .iJk_ 1 , p, :_-/ 12} as an initial 

approximation: 

{
Am Am-1 / 2 Am } 
Pk-1 , µk - 1 , vk-1 = 

FAS l {k 1 n - m -m-1/ 2 - m NSO Jn n n } 
eye e - , Pk-1• Pk-1 • µk-1 , vk , k- Ii k-1 ' 9k-l• ek-1• v 

Compute the coarse grid correction ( CGC) 

Al m Am -o'ln 

v k-1 = Pk-1 - Pk-1 

V2m-l / 2 _ Am-1/ 2 _ -m-1/ 2 
k-1 - µk-1 µk-1 

A3m Am - m 
v k-1 = vk-1 - vk-1 

Interpolate the correction ( CGC) 

Al m Jk Alm 
v k = k - lv k- 1 

A2m -l/ 2 _ Jk A2m-l / 2 
v k - k-1v k-1 

A 3m Jk A 3m 
v k = k-lv k-1 

(C .12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.17) 

(C.18) 

The interpolation operator It 1 maps (k - 1)-level functions to k-level func­

tions. Here, the coarse values are transferred to the four nearby fine grid points 

according to bilinear operator in Fig. 10.5. 

Compute the corrected approximation on Dk 

p:•afterc GC = 'fl:' + iJ l:;;1 

m-1/ 2,aftercGC _m-1/ 2 + A2m-l/ 2 
µk = µk v k 

m,aftercGC _ ,- m + A3m 
Vk - Uk V k 
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Postsmoot hing 

Compute {Pk+ 1, µ;:1+ 1! 2, vk+1
} by applying v smoothing steps to 

{ 
m ,after-CGC m-1 / 2,after-CGC m ,after-CGC} 

Pk , µk , vk 

{ 
m+l m+l / 2 m+l} _ Pk , µk ,vk -

SM QQT Hv ( n m ,after-CGC m - 1/ 2,after - CGC N SO Jn n n) Pk , Pk , µk , k, k , gk,ek , 

(C.22) 

which means performing v smoothing steps with initial approximation Pk , pk, , µ;:1- 112
, 

source terms f'k , gJ: , ek, and the SMOOTH relaxation operator to get Pk , p,;:1- 112
, vk 
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