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Abstract

This thesis considers wireless multi-input multi-output (MIMO) communication sys-
tems in block flat-fading environments. It develops novel designs of transmission and
reception schemes for single-user and multi-user systems. The designs are developed
under different models for the information about the communication channel that is
available at the transmitter.

For single-user systems, the thesis studies the class of non-linear MIMO
transceivers that implement sequential interference (pre-) subtraction, namely
transceivers with Tomlinson-Harashima precoding (THP) and transceivers with de-
cision feedback equalization (DFE). For these transceivers, a novel design framework
is developed to unify the design of these two dual systems when channel state infor-
mation (CSI) is available at both the transmitter and the receiver. The framework
encompasses a broad range of performance criteria, and generates closed-form ex-
pressions for the optimal designs under these criteria. The framework reveals that a
single transceiver design is optimal for a large subclass of these performance criteria,
and shows that this unique optimal design is (strictly) superior to the correspond-
ing optimal linear transceiver for the same performance criterion. The framework
also characterizes another class of design criteria for which the optimal non-linear
transceiver reduces to the optimal linear transceiver for the same criterion. This

novel design framework brings the design of non-linear MIMO transceivers to a level
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of maturity similar to the linear counterparts, and will impact the design of prac-
tical wireless communication systems that implement these interference subtraction
schemes. The framework is then generalized to the case of DFE transceivers that
satisfy an additional zero-forcing (ZF) constraint and operate in a “limited feedback”
regime in which CSI is available only to the receiver and there is a limited rate
feedback channel between the receiver and the transmitter. The proposed limited
feedback system is the first that involves a “precoded” DFE transceiver.

The multi-user part of the thesis develops multi-user transceivers that are robust
to uncertainties in the available information about the users’ channels. These uncer-
tainties are inevitable in most practical multi-user communication systems, and can
result in significant performance degradation.

The first component of the multi-user part develops robust broadcast channel
transceivers with quality of service (QoS) requirements for communication scenarios
with bounded channel uncertainty at the transmitter. It formulates design prob-
lems for QoS requirements that can be expressed as constraints on the signal-to-
interference-plus-noise-ratio (SINR) of each user, or as constraints on the mean square
error (MSE) each user’s received signal. For both formulations, convex and efficiently-
solvable design approaches are proposed. These design approaches are used to derive
solutions to other related design problems, such as robust counterparts of the fair
broadcasting problem.

The second component of the multi-user part develops robust designs for multi-
user transceivers that minimize different MSE criteria subject to a power constraint.
The designs are obtained for different models of channel uncertainty: stochastic un-
certainty models and bounded uncertainty models. For each channel uncertainty
model, the robust multi-user designs are developed for both linear and non-linear

MIMO transceivers, for both broadcast channels (BC) and multiple access channels



(MAC).

Simulation studies demonstrate the impact of the proposed robust designs on the
performance of multi-user systems, and show that by incorporating robustness in
the design one can significantly reduce the sensitivity of these systems to channel

uncertainty and mitigate its deleterious effects.
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Chapter 1

Introduction

This thesis considers the (joint) design of the transmitter and receiver for multiple-
input multiple-output (MIMO) communications systems. The designs include both
linear and non-linear transmission and reception techniques, for both single-user and
multi-user systems, and they are based on different assumptions of the nature and
the extent of the available channel knowledge. In this chapter, we will highlight some
of the desirable features of MIMO communication systems that make them suitable
for wireless communications.! We will also present the contributions of the thesis to

the development of this area.

1.1 Wireless Communications and MIMO Sys-
tems

Wireless communication systems constitute a substantial and rapidly growing sec-

tor of the communication industry. In addition to the almost-ubiquitous cellular

1The vector model of MIMO systems can also be applied to wired multi-channel systems such as
Digital Subscriber Line (DSL) systems.
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telephone networks, wireless local area networks are covering an increasing number
of business and educational environments, and wireless wide area networks are ex-
tending to many areas in which installing wired communication networks is a less
economical option. The mobility offered by the wireless communication systems and
the relatively low cost of deployment has spawned a variety of services, from con-
ventional voice, email, internet access, and audio and video conferencing, to remote
sensing and distributed control, such as monitoring the elderly and automation of the
transportation networks.

However, the wireless medium possesses some characteristics that can make reli-
able communication rather challenging. One of these characteristics is the multipath
fading phenomenon, which results from the propagation of the transmitted signal
along different paths to the receiver. Each path has its own attenuation and delay,
and these different multipath components do not necessarily add in a constructive
manner at the receiver. Furthermore, small changes in the position of the trans-
mitter, the receiver, or the scatterers can result in substantial changes in the phase
relationships between these paths, and hence the received signal power may fluctu-
ate quite rapidly. When the relative delays between the multiple propagation paths
are significantly smaller than the signaling interval, the accumulated gains of these
paths can be approximated by a complex scalar, and the channel is said to be a
flat fading channel. When this condition does not hold, the channel is said to be a
frequency-selective fading channel. In the frequency selective scenario, multi-carrier
transmission techniques can be used to partition the transmitted signal over a (large)
number of parallel subchannels, each of which can be treated as a flat-fading channel;
e.g., [1].2 Hence, flat fading channels will be considered throughout this thesis. This

thesis will also adopt an independent block fading channel model in which the fading

2Typically, the design of multi-carrier techniques is more involved than those for a single flat
fading channel.
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gains are considered constant for few channel uses, and then they take on independent
values. This model well approximates a wide range of communication scenarios with
slow fading; e.g., [2]. For this model, channel state information can be obtained at
the receiver using training techniques. When transmission and reception are multi-
plexed in time with a short “ping-pong” time, the reciprocity of the channel allows
the transmitter to obtain an estimate of the communication channel. Otherwise, ob-
taining channel state information at the transmitter would require feedback from the
receiver; e.g., [2].

One of the potential applications of multiple antennas systems is to meet the
challenge of fading. MIMO systems can exploit the availability of the different com-
munication links between each transmit and receive antennas to enhance the quality of
the received signal. One way of doing so is by through sending linearly scaled versions
of the same data stream from the different transmit antennas in a way that enables
the signals from the received antennas to be linearly combined in a constructive way
to extract the transmitted data. In this way, multiple fading links are combined in
a controlled way to construct a more reliable channel. This approach is often called
beamforming, and is an example of linear transmitter and receiver processing. In
these beamforming MIMO systems, the optimal design of the scaling weights of each
transmit antenna and the combining weights of the receive antennas typically requires
the availability of the channel state information (CSI) at both the transmitter and
the receiver [3,4].

Other challenging characteristics of wireless communication are the limitations on
the bandwidth and power of the transmitted signal that are imposed by the transmis-
sion device (e.g., a cell phone), or the standards of the particular wireless application.

These constrained resources limit the growth of the achievable data rates. MIMO
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. \ : .
Transmitter / Channel matrix \ Receiver
. ] N
with " H L with
N; antennas \ / N; antennas

Figure 1.1: A single-user MIMO system with N; transmit antennas and N, receive
antennas. The element H;; of the channel matrix H represents the gain from the 5!

transmit antenna to the i*" receive antenna.

communication systems provide the potential for a significant increase in the achiev-
able data rate by facilitating the transmission of multiple simultaneous data streams.
This characteristic of MIMO systems is termed spatial multiplexing, and it offers
a new dimension to the conventional time and frequency multiplexing dimensions
in single-input single-output (SISO) systems. For example, consider a single-user
MIMO communication system with N; transmit antennas and N, receive antennas
as depicted in Fig 1.1. In a richly scattered environment, at moderate to high signal-
to-noise-ratios (SNRs), the growth of the achievable data rate with the (logarithm
of the) transmitted power in this MIMO system is min(N;, N,) times that of the

corresponding SISO system.
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1.1.1 Single-user Systems

One approach to employing spatial multiplexing to achieve these potential gains is
through sending a different linear combination of the multiple data messages from
each transmit antenna, and processing the received signals linearly to separate these
data messages. This linear approach to transmitter processing (precoding) and re-
ceiver processing (equalization) generalizes beamforming to the case of simultaneous
transmission of multiple data streams. Because of the rather low computational com-
plexity of the joint linear transmitter and receiver (transceiver) approach, its optimal
designs were studied for a large number of design objectives; e.g., [5], and a unifying
design approach for many of these objectives was developed in [6]. These designs
considered scenarios in CSI is available at both the receiver and the transmitter.

An attractive alternative to linear transceiver design is the class of non-linear
MIMO transceivers. These transceivers have the potential for significant gains over
linear transceivers, and yet can be implemented with comparable complexity. The
performance gains are achieved by implementing sequential interference (pre-) sub-
traction at either the transmitter, as in Tomlinson-Harashima Precoding (THP) sys-
tems, or at the receiver, as in systems with Decision Feedback Equalization (DFE).
Interference subtraction in these systems is implemented in a way that mitigates the
interference that is created by the channel. However, because of the non-linearity
of these systems, the joint design of the transmitter and the receiver has been more
challenging than in the case of linear transceivers. While the optimal transceiver
design is known for a few communication design objectives [7], the optimal designs
for many other objectives have remained an open problem.

In the single-user part of this thesis, we study the optimal design of this class
of non-linear transceivers for a wide range of communication objectives, and we de-

velop a unifying design framework that complements the existing framework for linear
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transceivers [6]. In Chapter 2, we focus on communication scenarios that assume the
availability of perfect (CSI) at both the transmitter and the receiver, and in Chap-
ter 3 we generalize the optimal designs and the unifying framework to scenarios with
limited feedback that assume perfect CSI at the receiver only and a low-rate feedback

channel between the receiver and the transmitter.

1.1.2 Multi-user Systems

In multi-user scenarios, the design of the processing schemes at the transmitter and
receiver becomes more dependant on the availability of the users’ channel state in-
formation, due to the physically disjoint nature of the users. For example, consider
a broadcast channel (BC) that uses N; antennas at the base station to simultane-
ously send independent data streams to KX users, each with one receive antenna. The
users of this BC are unable to cooperate, and hence they can not jointly detect their
data messages. In this scenario, precoding at the transmitter plays a critical role in
mitigating interference at the receivers, but its effectiveness is rather sensitive to the
available channel knowledge. In particular, let s € CX denote the vector of symbols
intended to each user, hy € C** denote the k" user’s channel, P denote the linear
precoding matrix used at the transmitter, and p; denote the j** column of P. Then,
the received signal, y, at the k™ user can be written as

ye = hiprsk + thpjsj + Nk, (1.1)

ik

where the first term represents the useful signal carrying the intended messages, the
second term represents the multi-user interference, and the third term is the additive
noise of the k" receiver. From (1.1), it is apparent that the design of the precoder
P in order to mitigate the interference terms at the receivers will depend on the

availability (and quality) of the information that the transmitter has regarding each
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user’s channel.

In practical communication systems, the CSI available at the transmitter is usu-
ally imperfect. For example, in broadcast systems with uplink-downlink reciprocity
(e.g., time division duplex systems), the base station can estimate the users’ channels
by exploiting the fact that it acts as receiver during some of the time slots. In a
slow fading environment, the dominant impartment in this estimate is that due to
estimation errors. In systems in which users can estimate their channel, quantize
it, and feed it back to the transmitter, e.g., [8,9], the uncertainty in the channel is
usually dominated by quantization errors. The performance of broadcasting systems
is quite sensitive to these uncertainties, which can result in serious degradation of the
quality of the signal received by each user [8]. These facts, motivate the multi-user
part of this thesis, in which we study the design of multiuser transceivers, both lin-
ear and non-linear, under different models of channel uncertainty. In that part, the
thesis considers two broad classes of transceiver design problem. In the first class,
the objective is to minimize the transmission power necessary to guarantee specified
quality of service (QoS) requirement for each user. In the other class, the objective
is to optimize the fidelity of the users’ signals subject to a power constraint at the

transmitter.

1.2 Thesis Contributions

The focus of the thesis is on the design of MIMO transceivers for both single-user

and multi-user systems for different channel state information assumptions.



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

1.2.1 Contributions to Single-user MIMO Systems

Chapter 2, develops a novel and broadly applicable framework for the the design
of non-linear transceivers with Tomlinson-Harashima precoding or decision feedback
equalization. The framework unifies the design of these dual systems. It uses concepts
from majorization theory and convex optimization theory to develop optimal closed-
form designs for a broad range of objectives. In addition, scenarios under which
the optimally designed non-linear transceivers are (strictly) superior to their linear
counterparts are characterized. One of the interesting results of this unified framework
is that one of the derived optimal designs can simultaneously optimize a large class
of performance objectives, including maximizing the Gaussian mutual information,
minimizing the total bit error rate and minimizing the total mean square error — a
property that can not be achieved by a linear transceiver. This class is characterized
through the use of majorization theory. Another interesting result is that for a second
class of design objectives, the optimal non-linear transceiver reduces to the optimal
linear transceiver for the same design objective.

The transceiver design framework in Chapter 2 assumes the availability of accurate
channel information at both the transmitter and the receiver. In many practical
schemes the receiver can estimate the channel using a training sequence, but the
channel information available at the transmitter can be rather limited. The design
of non-linear MIMO transceivers with limited channel information at the transmitter
results in an even more challenging design problem. Chapter 3 generalizes the design
framework developed in Chapter 2 to scenarios with limited CSI at the transmitter.
In particular, we consider a communication system with a linear precoder at the
transmitter, zero-forcing decision feedback equalization at the receiver, and a low-rate
feedback channel that enables communication from the receiver to the transmitter. In

this limited feedback scheme, receiver selects a suitable precoder from a codebook and
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feeds back the index of this precoder to the transmitter. In this chapter, the statistical
distribution of the optimal precoder in a standard Rayleigh fading environment is
characterized for a broad range of design objectives. This distribution is then used
to show that codebooks constructed from Grassmann packings minimize an upper
bound on average distortion measures for this range of objectives. The proposed
limited feedback system is, to the best knowledge of the author, the first that involves
a “precoded” DFE transceiver.

The contribution of the single-user part of this thesis ware summarized in the

following two journal articles

e M. Botros Shenouda and T. N. Davidson, “A framework for designing MIMO
systems with decision feedback equalization or Tomlinson Harashima precod-
ing,” IEEE J. Select. Areas Commun., vol. 26, no. 2, pp. 401-411, Feb.
2008,

e M. Botros Shenouda and T. N. Davidson, “A design framework for limited
feedback MIMO systems with zero-forcing DFE,” Submitted to IEEFE J. Select.
Areas Commun., Accepted March 2008.

and were presented in the following conferences

e M. Botros Shenouda and T. N. Davidson, “A framework for designing MIMO
systems with decision feedback equalization or Tomlinson-Harashima precod-
ing,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Honolulu,
April 2007, pp. 11I-209 — III-212. (Finalist Best Student Author Award.)

e M. Botros Shenouda and T. N. Davidson, “Minimum SER zero-forcing trans-
mitter design for MIMO channels with interference pre-subtraction,” in Proc.

IEEE Veh. Technol. Conf., Dublin, 2007, pp. 2109-2113.
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e M. Botros Shenouda and T. N. Davidson, “Limited feedback design of MIMO
systems with zero-forcing DFE using Grassmann codebooks,” in Proc. IEEE

Canadian Wrkshp Info. Theory, Edmonton, June 2007, pp. 118-123.

1.2.2 Contributions to Multi-user MIMO Systems

This section will describe the contributions of this thesis to the robust design of
multi-user transceivers that explicitly include the nature of channel uncertainty in
the design formulations. Chapters 4 and 5 study the design of robust transceivers
for communication schemes with quality of service (QoS) requirements for each user,
while Chapters 6 and 7 study the design of robust transceivers based on mean-square

error (MSE) performance criteria subject to a transmnission power constraint.

1.2.2.1 Robust Broadcasting Transceivers with QoS Constraints

Chapters 4 and 5 consider the design of broadcasting schemes with quality of service
constraints and uncertain channel information. Transceiver designs that guarantee
QoS are essential for practical communication systems with interactive data, such
as video and audio conference applications, and in cellular systems in which users
are offered different grades of service. A central design problem in this area is that
of designing the transmitter of the downlink so as minimize the transmission power
required to to guarantee that all users’ QoS requirements are satisfied. When accu-
rate channel information of all users is available, the transmitter employs transmit
precoding techniques to spatially precode the messages intended to different users in
a way that mitigates the multiuser interference at the (non-cooperating) receivers.
The transmitter’s ability to mitigate interference at the receivers is dependent on the
availability of (accurate) channel state information for all the users’ channels. When

the channel state information is imperfect, the QoS of all users may incur significant

10
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degradation.

Chapter 5 considers a deterministically-bounded model for the channel uncertainty
of each user, and the goal is to design a robust linear precoder that minimizes the
total transmission power required to satisfy the users’ signal-to-interference-plus-noise
(SINR) constraints for all channels within a specified uncertainty region around the
transmitter’s estimate of each user’s channel. The constraints on the received SINR
of each user can be translated to into equivalent constraints on the symbol error
rate or the achievable data rate of the user, and hence they constitute a general
constraint on the quality of service. Chapter 5 demonstrates that this QoS problem
is equivalent to a semi-infinite convex optimization problem whose tractability is still
an open problem. The theories of robust and convex optimization are then used
to derive three conservative design approaches that yield efficiently-solvable convex
design formulations that guarantee that the SINR constraints are met. These three
approaches yield semidefinite program (SDP) formulations that offer different trade-
offs between the degree of conservatism and the size of the SDP. It will be also shown
that these three approaches can be used to solve other related problems, such as the
robust counterpart of the fair transceiver design problem that seeks to maximize the
QoS of the “weakest” user subject to a given power constraint. For these problems,
conservative, but efficiently-solvable, quasi-convex design formulations are derived.

Chapter 6 formulates each user’s QoS requirement as a constraint on the mean
square error (MSE) in each user’s received signal, and shows that these MSE con-
straints imply constraints on the received SINR of each user. Using the MSE con-
straints, this chapter presents a unified design approach for robust linear and non-
linear transceivers with QoS requirements. The proposed designs provide an exact
solution to the robust transceiver problem with MSE constraints, thus overcoming the

need for the conservative designs that are presented in Chapter 5. Furthermore, this

11
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approach provides computationally-efficient design formulations for a general model
of channel uncertainty that subsumes many natural choices for the uncertainty region.
As in Chapter 5, the designs can also be utilized to solve the robust fair transceiver
design problem.

The contributions of the first component of the multi-user part of the thesis were

summarized in the following journal articles

e M. Botros Shenouda and T. N. Davidson, “Convex conic formulations of robust
downlink precoder designs with quality of service constraints,” IEEE J. Select.

Topics Signal Processing, vol. 1, no. 4, pp. 714-724, Dec. 2007.

e M. Botros Shenouda and T. N. Davidson, “Non-linear and linear broadcasting
with QoS requirements: Tractable approaches for bounded channel uncertain-
ties,” Submitted to IEEE Trans. Signal Processing Dec. 2007. Revised May
2008. See also http://arxiv.org/abs/0712.1659v1.

and also presented in the following conferences:

e M. Botros Shenouda and T. N. Davidson, “Linear matrix inequality formula-
tions of robust QoS precoding for broadcast channels,” in Proc. IEEE Canadian

Conf. Elec. & Comp. Engineering, Vancouver, April 2007, pp. 324-328.

e M. Botros Shenouda and T. N. Davidson, “Quality constrained broadcasting
with channel uncertainty: Semidefinite and quasi-convex formulations,” in Proc.

Int. Conf. Continuous Optimization, Hamilton, Aug. 2007.

e M. Botros Shenouda and T. N. Davidson, “Tractable approaches to fair QoS
broadcast precoding under channel uncertainty,” in Int. Conf. Acoustics,

Speech, Signal Processing, Las Vegas, April 2008, pp. 3125-3128.

12
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e M. Botros Shenouda and T. N. Davidson, “Design of fair multi-user transceivers
with QoS and imperfect CS1,” in Commun. Networks Services Research Conf.,

Halifax, May 2008, pp. 191-197.

1.2.2.2 Robust MSE Designs of Multi-user Transceivers

Chapters 6 and 7 consider robust minimum MSE designs for multi-user transceivers
for linear and non-linear transceivers, respectively, subject to a transmission power
constraint. They consider robust transceiver designs for both multiple access channels
and broadcast channels, with emphasis on the BC case, under two different models for
the uncertainty in the information regarding each users’ channel: a stochastic model,
and a deterministically-bounded model.

The stochastic model of channel uncertainty suits communication systems in which
channel uncertainties are dominated by estimation errors; e.g., time division duplex
systems. For this uncertainty model, the designs are based on a derived generaliza-
tion of the mean square error (MSE) duality between the broadcast channels (BC)
and multiple access channels (MAC) to scenarios with uncertain channels. The exis-
tence of such duality complements the proven lack of duality of the users’ signal-to
interference-plus-noise-ratio (SINR) region for the same stochastic channel model.
Using this duality, it can be shown that the achievable regions for the average, over
channel uncertainty, of users’ MSEs are equivalent for the BC and MAC. The equiv-
alence of the MSE regions holds under a linear transformation between the BC and
MAC transceivers. As a result, the design of robust transceivers for the BC so as to
optimize objectives that are arbitrary functions of the average MSEs can be solved
by obtaining the optimal MAC transceivers for the same objective and then applying

this linear transformation. For example, the joint design of the linear transceiver for

13
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the BC so as to minimize the total average MSEs is a non-convex problem. How-
ever, using the derived duality result the non-convex BC transceiver design can be
obtained as an affine transformations of the corresponding optimal transceiver for
the dual MAC, which is itself a convex optimization problem that can be efficiently
solved.

The deterministically-bounded channel uncertainty models suit communication
systems in which quantized channel feedback is employed. For these systems, the
broadcast channel and multiple access channel transceivers are designed to minimize
the worst-case value of the total MSE, over all admissible channels. While it is shown
that the design problem is non-convex, an efficient iterative optimization algorithm
that is based on efficiently-solvable convex conic formulations is proposed. The de-
signs are also generalized to the case when the channel uncertainty is described using
the intersection of multiple uncertainty sets. The framework is quite flexible, and
can incorporate different bounded uncertainty models as well as a variety of power
constraints, such as per-antenna power constraints and spatial shaping power con-
straints.

The contributions of the second component of the multi-user part of the thesis

were summarized in the following journal articles

e M. Botros Shenouda and T. N. Davidson, “On the design of linear transceivers
for multi-user systems with channel uncertainty,” To appear in JEEE J. Select.

Areas Commun., Accepted Jan. 2008.

e M. Botros Shenouda and T. N. Davidson, “Tomlinson-Harashima precoding for
broadcast channels with uncertainty,” IEEE J. Select. Areas Commun., vol.
25, no. 7, pp. 1380-1389, Sept. 2007.

and were presented in the following conferences

14
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e M. Botros Shenouda and T. N. Davidson, “Robust linear precoding for uncertain
MISO broadcast channels,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, Toulouse, May 2006, pp. IV-37-IV-40. (Best Student Author
Award.)

e M. Botros Shenouda and T. N. Davidson, “Transmitter design with interference
pre-subtraction for uncertain broadcast channels,” in Proc. Allerton Conf.

Comm., Control, Computing, Monticello Illinois, Sept. 2006.

e M. Botros Shenouda and T. N. Davidson, “Minimax linear precoding for MISO
broadcast channels with bounded uncertainty,” in Proc. IEEE Global Telecom-

mun. Conf., San Francisco, Nov. 2006, pp. 1-6.

e M. Botros Shenouda and T. N. Davidson, “Non-linear transceiver design for
broadcast channels with statistical channel state information,” in Proc. IEEFE

Int. Symp. Signal Processing Inform. Tech., Cairo, Dec. 2007, pp. 311-316.

e M. Botros Shenouda and T. N. Davidson, “Statistically robust transceiver
design for broadcast channels with uncertainty,” in JEEE Canadian Conf. Elec.

& Comp. Engineering, Vancouver, April 2007, pp. 320-323.

e M. Botros Shenouda and T. N. Davidson, “Linear multiuser transceivers: Ro-
bustness via worst scenario MSE approach,” in Wireless Commun. Networking

Conf., Las Vegas, March 2008, pp. 1008-1013.

e M. Botros Shenouda and T. N. Davidson, “Sequential interference subtrac-
tion multi-user transceivers: Designs for general bounded channel uncertainty

models,” To appear Proc. IEEE European Singnal Process. Conf., August 2008.

Finally, the thesis is concluded by Chapter 8, which also provides suggestions for

further research directions.
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Single-user Systems
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Chapter 2

A Unified Design Framework for
Non-Linear MIMO Transceivers

In this chapter, we consider joint transceiver design for general single-user (point-to-
point) multiple-input multiple-output communication systems that implement inter-
ference (pre-) subtraction; i.e., Decision Feedback Equalization (DFE) or Tomlinson-
Harashima precoding (THP). For systems in which perfect channel state information
(CSI) is available, a unified framework is developed for joint transceiver design of
these two dual systems by considering design criteria that are expressed as functions
of the (logarithm of the) Mean Square Error (MSE) of the individual data streams. By
deriving two inequalities that involve the logarithms of the individual MSEs, optimal
designs are obtained for two broad classes of communication objectives, namely those
that are Schur-convex and Schur-concave functions of these logarithms. These two
classes embrace several design criteria for which the optimal transceiver design has
remained an open problem. For Schur-convex objectives, the optimal design results in

data streams with equal MSEs. In addition to other desirable properties, this design
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simultaﬁeously minimizes the total MSE and the average bit error rate, and maxi-
mizes the Gaussian mutual information; a property that is not achieved by a linear
transceiver. Moreover, we show that the optimal design yields objective values that
are superior to the corresponding optimal objective value for a linear transceiver. For
Schur-concave objectives, the optimal DFE design results in linear equalization and
the optimal THP design results in linear precoding. The proposed design framework
embraces a wide range of design objectives and can be regarded as a counterpart of

the existing framework of linear transceiver design.

2.1 Introduction

In the previous chapter, we have mentioned that one of the key advantages of Multiple-
Input Multiple-Output (MIMO) communications schemes is that they facilitate the
simultaneous transmission of multiple data streams. In single-user (point-to-point)
applications, such schemes typically involve processing of the data streams at the
transmitter (precoding) to “match” the transmission to the channel and processing
of the received signals (equalization) to mitigate the interference between the re-
ceived streams at reasonable computational cost. One approach to the design of such
a scheme is to focus on linear precoding and linear equalization; e.g., [5,6]). An al-
ternative approach that offers the potential for performance improvements over the
linear approach is to allow interference (pre-)subtraction at either the transmitter
or the receiver. This approach includes schemes with linear precoding and Decision
Feedback Equalization (DFE), and schemes with Tomlinson-Harashima precoding
(THP) and linear equalization, and will be the focus of this chapter. The DFE and
THP schemes were initially introduced as receiver and transmitter (pre)equalization

schemes, respectively, for single input single output (SISO) channels with inter-symbol
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interference, e.g., [10].

A large number of joint design strategies have been proposed for the class of lin-
ear MIMO transceivers (e.g., [5]), and a unified framework that encompasses many
of these designs was proposed in [6]. That framework is based on the classes of com-
munication objectives that are Schur-convex or Schur-concave functions of the mean
square error (MSE) of each data stream, and encompasses a broad range of design
objectives. For DFE-based systems, joint transceiver designs based on a minimum
MSE criterion were considered in [7,11-13], and designs subject to a zero-forcing
constraint were considered in [14,15]. However, for many of the design criteria for
which (jointly) optimal linear transceivers are known, the jointly optimal DFE-based
transceiver has remained an open problem. Furthermore, the development of a uni-
fying design framework for DFE-based transceivers that encompasses these designs
has appeared to be a challenging problem. For THP schemes, designs based on min-
imum MSE criteria were considered in [10,13], and designs subject to a zero-forcing
constraint were considered in [10,16]. However, the approach in [13] considers a lower
bound on the MSE, and the approaches in [10,16] do not use all the degrees of design
freedom available in a single-user system. Hence, the approaches in [10,13,16] yield
suboptimal designs. In addition to the absence of a minimum MSE transceiver, the
design of (jointly) optimal TH-based transceivers for other design criteria, and the
development of a unifying framework have remained open problems.

In this chapter, we develop a broadly applicable framework for joint transmitter
and receiver design for MIMO systems with DFE or THP. (A related DFE-centric
framework was developed, independently, in [17,18].) We consider the broad range of
design criteria that can be expressed as either Schur-convex or Schur-concave func-
tions of the logarithm of the MSE of each data stream, and we provide optimal

transceiver designs for these two classes. In addition to providing a generalization of
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existing DFE designs based on the overall MSE, these classes of functions embrace
other design criteria, such as minimizing the maximum of the individual MSEs, min-
imizing a general p-norm of the MSEs, and minimizing the product of the individual
MSEs, which is equivalent to maximizing the Gaussian mutual information. More-
over, design criteria expressed in terms of the signal-to-interference-plus-noise ratio
(SINR) and bit error rate (BER) of each stream are included in the set of objectives
covered by these classes; e.g., maximizing the harmonic mean of the SINRs, maximiz-
ing a general p-norm of the SINRs, and minimizing the the total BER of all streams.
Interestingly, the optimal design for both Schur-convex and Schur-convex objectives
yields a diagonal MSE matrix. Hence, communication over the MIMO channel is
decomposed into a number of uncorrelated subchannels. For Schur-convex objec-
tives the optimal design results in data streams with equal MSEs. This property
is not achieved by the previously proposed (suboptimal) designs for THP systems
(e.g., [10,13]), and hence ordering the symbols prior to interference subtraction is
necessary for those designs, as it is in multi-user schemes [19]. This ordering is un-
necessary for the optimal transceiver designs derived herein. Another property of
our optimal design for Schur-convex objectives is that it simultaneously minimizes
the total MSE, minimizes the average bit error rate, and maximizes the Gaussian
mutual information. This property is not achieved by the optimal linear transceiver.
For any Schur-convex objective, our optimal design yields an objective value that is
superior to the corresponding optimal objective value for a linear transceiver. For
Schur-concave objectives, the optimal DFE design results in linear equalization and
optimal THP design results in linear precoding. From a broader prospective, the
proposed framework can be viewed as a counterpart for the design of DFE-based and
TH-precoding-based transceivers of the unified framework for the design of linear

transceivers in [6)].
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Figure 2.1: Single-user MIMO transceiver using Decision Feedback Equalization.
2.2 Two Dual Non-Linear MIMO Transceivers

We consider a generic MIMO communication system described by the channel matrix
H e C"*M e.g., [20], and we denote by K the number of data streams transmitted
simultaneously over the channel. We will consider the design of two communication
architectures: systems with linear precoding (pre-equalization) at the transmitter
and DFE at the receiver; and systems with Tomlinson-Harashima precoding at the
transmitter and linear equalization at the receiver. We will assume that full channel
state information (CSI) is available at both the transmitter and the receiver. However,
the framework developed herein will be extended to scenarios with limited CSI at the

transmitter in Chapter 3.

2.2.1 Transceivers with Decision Feedback Equalization

As shown in the DFE model in Fig. 2.1, the vector s € C¥ that contains the current
data symbol of each stream is linearly precoded by the matrix P € CN**X to generate

the transmitted vector

X == P8, (2.1)

where we assume, without loss of generality, that E{ss”} = I. Hence, the average

transmitted power constraint can be written as E¢{xfx} = tr(P#P) < Pa. The
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received vector y is

y =HPs +n, (2.2)

where n is the vector of additive noise samples which is assumed to have zero-
mean and a covariance matrix E{nn”} = R,. As shown in Fig. 2.1, the DFE is
implemented using a feedforward matrix G € CX*" and a feedback matrix filter
B € CE*K 1In this scenario, the detection of the k*" symbol is preceded by subtract-
ing the effect of previously decoded symbols. Assuming correct previous decisions,

the input to the quantizer, 8§, can be written as (e.g., [7])
Sprg = (GHP — B)S + Gn, (23)

where B is a strictly lower triangular matrix.> Using the error signal e = $prg — s,

we can define the Mean Square Error matrix,
E = E,{ee’’} = CC¥ —-CP"H"G? —-GHPC" +GHPP”H” G +GR,G¥, (2.4)

where C = I + B is a unit diagonal lower triangular matrix.

2.2.2 Transceivers with Tomlinson-Harashima Precoding

As shown in Fig. 2.2(a), in a THP system the transmitter performs successive interfer-
ence pre-subtraction and precoding using the strictly lower triangular matrix B and
the precoding matrix P, respectively. We assume that the elements of s are chosen
from a square QAM constellation S with cardinality M and that Eg{ss¥} = I. The
Voronoi region, V, of this constellation is a square whose side length is D. Following
pre-subtraction of the effect of previously precoded symbols, the transmitter uses the

modulo operation so that the symbols of v lie within the boundaries of V. The effect

1Tn general, the estimator in (2.3) is biased, but the effect of this bias can be mitigated by scaling
the decision regions of the quantizer [21]. At operating points at which one can reasonably assume
correct previous decisions, the effect of the bias is typically small {21].
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Figure 2.2: (a) MIMO transceiver with Tomlinson-Harashima precoding (b) Equiva-

lent linear transmitter model for Tomlinson-Harashima precoding system

simag

of the modulo operation is equivalent to the addition of iy = i}*D + j i, 7D to s,
where if¢, i;"® ¢ Z. Using this observation, we obtain the linearized model of the

transmitter shown in Fig. 2.2(b), e.g., [10], in which
v=(I1+B)"u=Clu, (2.5)

where u = i+s is the modified data symbol and C = I+B. As a result of the modulo
operation, the elements of v are almost uncorrelated and uniformly distributed over
the Voronoi region V [10, Th. 3.1], [16, Fig. 3]. Therefore, the symbols of v will have
slightly higher average energy than the input symbols s. This slight increase in the
average energy is termed precoding loss [10]. For example, for square M-ary QAM
we have 07 = E{|vi|*} = 575 E{|sk|?} for all k except the first one [10, Sec. 3.2.6].
For moderate to large values of M this power increase can be neglected and the
approximation E{vv¥} = I is often used; e.g., [16], [13]. We will assume negligible
precoding loss, and hence the average transmitted power constraint can be written

as E,{xf'x} = tr(P¥P) < Piotal-
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The vector of received signals in a THP system can be written as
y = HPC 'u +n, (2.6)

where n is the vector of additive noise which is assumed to have zero-mean and a
covariance matrix E{nnf} = R,,. At the receiver, the feedforward processing matrix
G is used to obtain an estimate i = GHPC~!u+Gn of the modified data symbols u.
Following this linear receive processing step, the modulo operation is used to obtain
Stup by eliminating the effect of the periodic extension of the constellation caused by

the integer vector 1. In terms of the modified data symbols, the error signal

I

e=u—u=GHPv+Gn-Cv (2.7)

can be used to define a Mean Square Error matrix
E = E,{ee”} = CC! —CP*H"G" -GHPC"+GHPP"HG"+GR,G". (2.8)

Assuming negligible precoding loss and that the vector 1 is eliminated by the receiver
modulo operation (which occurs with high probability, even at reasonably low SNRs),
the error signal in (2.7) is equivalent to Stuyp —s. Hence, the mean square error matrix,
E, of the estimate S§tup of the THP model is the same as that of the estimate Sppg

of the DFE model under the assumption of correct previous decisions in the DFE.

2.2.3 General Model

From (2.4) and (2.8). we observe that the MSE matrix of both systems can be rewrit-
ten as:

E = cc” - cp"H*G"” - GHPC” + GR,G", (2.9)
where R, = HPPH¥ + R,,. It can also be observed that linear transceivers are a
special subclass of both system models with the feedback matrix B = 0 (or, equiv-

alently, C = I); see Figs 2.1 and 2.2. Our objective is to jointly design the matrices
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G, C and P according to criteria that are functions of E, subject to a constraint on

the average transmitted power.

2.3 Optimal feedforward and feedback matrices

We will consider the joint design of the transceiver matrices G,C and P so as to
optimize system design criteria that are expressed as (increasing) functions of the
(logarithm of the) MSE of each individual data stream, E;;, subject to the transmitted
power constraint tr(P7P) < P, We will adopt a three-step design approach. First,
an expression for the optimal feedforward matrix G will be found as a function of C
and P. Second, using the expression for the optimal G, an expression for the optimal
C will be found as a function of P. Finally, using the obtained expressions for the

optimal G and C, we will design the optimal precoder P.

2.3.1 Optimal feedforward matrix G

For given C and P, the MSE of the i'" data stream, E;;, is a convex quadratic function
of the i*" row of G, and is independent of other rows. Therefore, the rows of G can
be independently optimized to minimize the individual MSEs, and the resulting G is
optimal for any transceiver objective that is an increasing function of the individual
MSEs. (A similar property was observed in [6] for linear transceivers.) Since G is
unconstrained and the MSE of the i" data stream is a smooth convex function of the

jth

i"" row of G, we can obtain an expression for optimal G by setting the gradient of

E;; with respect to the i*" row of G to zero. Hence, the optimal G can be written

as (e.g., [7]):
G =CPYH"R". (2.10)
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Using this expression, the MSE matrix for a system with the optimal G
E = C(I+PYHYR;'HP)"!C¥ = CMC¥, (2.11)

where the matrix inversion lemma has been used, and M = (I + PFHYR'HP)™..

2.3.2 Optimal feedback matrix B

From (2.11) we observe that the MSE of each data stream, E;;, is a convex quadratic
function of the i*" row of C = I + B and is independent of the other rows. Using
a similar argument to that for G above, the matrix C whose rows independently
minimize the individual MSEs is optimal for the transceiver objectives that we will
consider. However, C is constrained to be a unit diagonal lower triangular matrix
and these constraints must be incorporated in the design. To do so, we observe that
the matrix C that minimizes the individual MSEs can be obtained by minimizing
any convex combination of E;;. By choosing that convex combination to be the sum,
our goal reduces to minimizing tr(CMC¥) subject to C being unit diagonal lower

triangular matrix. Using the Cholesky decomposition
M = LL”, (2.12)

where L is a lower triangular matrix with positive real diagonal elements, we can
rewrite the objective as tr(CMC#) = ||CL|)%,, where the product CL is a positive
definite lower triangular matrix [22]. Let A;(CL) > ... > Ax(CL) and 0,(CL) >
... > ok (CL) denote the ordered eigenvalues and singular values, respectively, of the

matrix CL. Then the unit diagonal lower triangular C that minimizes tr(CMCH)
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can be obtained using the following lower bound,

K K
ICL|: =) o(CL) > ) A(CL) (2.13)
i=1 1;1 «
= ) [CLE=) L, (2.14)

where the bound in (2.13) is obtained by applying Weyl’s inequality [23], and (2.14)
follows from the fact that CL is lower triangular and C is unit diagonal. The expres-
sion on the right hand side of (2.14) is a lower bound on ||CL||% that is independent
of C. Furthermore, the inequality in (2.13) is satisfied with equality when the matrix
is normal [23]. Since our matrix CL is a triangular matrix, it can only be normal if
it is diagonal [22, pp 103]). Therefore, the matrix C that attains the lower bound in

(2.14), and hence is optimal, is
C = Diag (Lyy,...,Lgk) L7 (2.15)
Using this optimal C, the MSE matrix can be rewritten as
E = Diag (L%, ...,L%x). (2.16)

We observe that for any given precoding matrix P, the optimal feedforward and
feedback matrices will yield a diagonal MSE matrix, with the individual MSEs being
E; = L2.

2.3.3 Optimality in the sense of maximizing individual

SINRs

For any given channel and precoder, the minimum MSE design of the matrices G and
B for a DFE system, is also optimal in sense of maximizing the signal-to-interference-

plus-noise (SINR) of each stream [24-26]. Using this optimal minimum MSE design of
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the feedforward and feedback matrices, the SINR of the i** stream is given by [24,27)

Under the assumptions stated in Section 2.2, the estimate vector §tgp has the same
covariance matrix as the vector Sprg at the input to the quantizer in the DFE sys-
tem. Hence, the individual SINRs for both systems are the same for any given input
covariance matrix, E{ss}, and noise covariance matrix, R,. An analogous rela-
tion between SINR; and E;; holds under a zero-forcing constraint for both the DFE
model (e.g., [27]), and the THP model under similar assumptions to those stated in
Section 2.2; e.g., [16]. (Similar relations also hold in the multiuser case; e.g., [28].)
Since linear precoding is a special subclass of both models when B = 0, the same
relation between SINR; and E; holds for minimum MSE design of the receiver matrix
G; e.g., [6]. Using the expression for the individually minimized MSEs in (2.16), the

individually maximized SINR. of each data stream is given by

SINR; = (1/L%) — 1. (2.18)

2.4 Design of the Precoding matrix: Preliminaries

Given the expressions for the optimal G and C, the remaining step is to design a
precoding matrix P to optimize design criteria that are expressed as functions of the
individual MSE of each stream, L%. We will first derive two inequalities involving
L;; that will enable us to characterize the optimal precoder. These inequalities will

depend on the concepts of multiplicative and additive majorization [29].
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2.4.1 A Multiplicative Majorization Inequality

The first inequality is derived using the concept of multiplicative majorization [23,

26,29).

Definition 2.1 (Multiplicative Majorization). For a vector a € R¥, let apy, . . ., aK)
denote the re-ordering of the elements of a in a non-increasing order; i.e., ap) > ... >
aix). Let R, denote the set of positive real numbers, and let a,b € Rf . The vector

b s said to multiplicatively majorize a, a <« b, if

[T,ay <[l_,by forj=1,....,K—1, (2.19)
T1Z, ag = [1.<, by (2.20)

An important example of the multiplicative majorization is the relation between
the eigenvalues and singular values of a square matrix, and is given by the following

lemma.

Lemma 2.1 (Weyl [23]). Let A € CK*K gnd let \(A) and oi(A) de-
note the eigenvalues and singular values of A, respectively. Then we have
[AA), ..., Ak(A)F] <« [03(A), ..., o%(A)]. If A is normal, then |\(A)| =
ai(A). d

Applying the above lemma to the positive definite lower triangular matrix L, we

obtain

[L2,,... Lay] <x [03(L),. .., 0% (L)]. (2.21)

2.4.2 An Additive Majorization Inequality

The second inequality involves the more common notation of additive majorization

[29].
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Definition 2.2 (Additive Majorization). Let a, b € RX. The vector b is said to

majorize a, a < b, if

J J
ZaMSme fori=1,...,K -1, (2.22)
i=1 i=1
Y ag = i by (2.23)
]

We observe that if elements of a and b are positive, then a <x b <« log(a) <

log(b). Consequently, (2.21) can be written as:
l <m, (2.24)

where I = [logL?,,...,logL% ] and m = [logo}(L), ..., log o} (L)].

To derive the second inequality, we will use the following consequence of additive
majorization: Any vector a € R¥ majorizes its mean vector @, whose elements
are all equal to the mean; ie., @, = % Zf‘:l a;. That is, @ < a. Now, since
M = LL#, we know that [[, L2 = det(LLH) = det(M). As a result, we have

ZK l; = logdet(M) and hence

i=1

<, (2.25)

where I; = % logdet(M).

2.4.3 Schur-convex and Schur-concave functions

The proposed designs will be based on the following classes of functions [29].

Definition 2.3 (Schur-convex and Schur-concave functions). A real-valued function
f(x) defined on a subset A of RX is said to be Schur-conver ifa <bonA = f(a) <
f(b), and is said to be Schur-concave if a < b on A= f(a) > f(b). O
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In particular, we will consider communication objectives that can be expressed
as the minimization of increasing functions of the MSEs of each data stream,
gL, ..., L%y) = g(e",...,e'%) = g(e'), that are either Schur-convex or Schur-

concave functions of [.

2.5 Optimal Precoding Matrix: Schur-convex ob-
jectives

In this section, we will present a closed-form expression for the optimal precoding
matrix P for the class of Schur-convex objectives. We will also study the properties
of the optimal solution and compare it to optimal linear transceiver designs. Finally,
we will present examples of design objectives g(e') that are Schur-convex functions of

l.

2.5.1 Optimal Precoding Matrix

If g(e!) is a Schur-convex function of I, then from (2.25) we have that g(e!) < g(e'),
and that equality is obtained if the elements of I are equal. Our approach to finding
the optimal precoder is to characterize the family of precoders that minimize the
lower bound g(e!) subject to the power constraint, and then to show that within this
family there is a precoder that results in all of the elements of I being equal, and
hence attains the minimized lower bound.

Since the objective is an increasing function of the individual MSEs, and since

L= 7 log det(M), where M was defined following (2.11), the problem of minimizing
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the lower bound subject to the power constraint can be formulated as:

max  log det I+ PYHYR'HP) (2.26a)

subject to  tr(PHP) < Pal. (2.26b)

This formulation is equivalent to maximizing the Gaussian mutual information, and
hence the family of optimal precoders is obtained using a standard water-filling algo-

rithm [30]. To state this family, we use the eigenvalue decomposition
Ry = H'R,'H = UyAxUf, (2.27)

where Ag = Diag(Ag,...), and Ag; are eigenvalues of Ry in descending order. In
the water-filling algorithm. power is allocated to Kyr eigenvalues of Ry, where Ky
is the maximum integer j satisfying (Peotal + Y ooy M) = J/Amj, [30]. If we define

~

K = min(Ky;, K), the family of optimal precoders can be written as
P = Uy, dV = Uy, [® 0]V, (2.28)

where Uy ; € CM*K contains the eigenvectors of Ry corresponding to the largest
K eigenvalues, V € CK*K ig a unitary matrix degree of freedom, and the diagonal
matrix ® is
®; = p— 1/ m,, (2.29)
where the “water” level u is given by —;;(P + }:{;1 Ari)-
To complete the design of P, we need to select the unitary matrix V in (2.28) so
that the minimized lower bound is attained; i.e., so that the Cholesky decomposition

of M = LL¥ yields an L factor with equal diagonal elements. Using (2.28),

M = (VH(I + éTAH,Ié)—I/ﬂ) (a+ $TAw1$)/2V)
- LLY = R"R = (QR)?(QR), (2.30)
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where Ay is the diagonal matrix containing the largest K eigenvalues of Ry, and
Q is a matrix with orthonormal columns. Hence, finding V is equivalent to finding a
V such that QR decomposition of (I + T Ay ®)"/2V has an R-factor with equal
diagonal. This problem was solved in [14] and V can be obtained by applying the
algorithm in [14] to the matrix (I + ®TAg,9)~V2; see also [7,31,32].

2.5.2 Properties of the optimal design

In this section we describe some interesting properties of the optimal transceiver

design for Schur-convex objectives.

2.5.2.1 Independence of the optimal transceiver design on the design ob-

jective g(e!)

We observe that the above derivation of the optimal precoder design is independent
of the actual design objective, g(e'). (A similar property holds for linear transceiver
design, but with objectives that are Schur-convex functions of the individual MSEs
themselves.) Therefore, the desirable properties of the DFE transceiver that mini-
mizes the total MSE generalize to other Schur-convex objectives for both DFE and
THP models. For example, the DFE transceiver that minimizes the total MSE has
asymptotically the same symbol error rate as the transceiver that employs the optimal
precoder with maximum likelihood detection [32]. This property is now applicable to

all DFE and THP transceivers with Schur-convex objectives.
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2.5.2.2 For any Schur-convex objective g(e!), the optimal transceiver is

information lossless

Since maximizing the Gaussian mutual information is a Schur-convex objective, it
follows that the optimal design for any Schur-convex objective is information loss-
less, in the sense that optimizing the chosen objective does not incur any reduction
of the Gaussian mutual information. In addition to being information lossless, the
properties of the matrix V in Section 2.5.1 mean that the optimal Schur convex de-
sign results in a uniform decomposition of the mutual information [32]. As a result,
the SINR on each subchannel is the same. This result generalizes the information
lossless property of MMSE-DFE receivers (e.g., [11,25]), and that of minimum MSE
DFE-based transceivers [7], to designs for DFE and THP transceivers with an arbi-
trary Schur-convex objective, g(e!). This property does not hold in general for the
linear transceiver designs because the precoder that maximizes the Gaussian mutual

information does not necessarily optimize other criteria.

2.5.2.3 Relation to linear transceiver designs

Using the majorization results in (2.24) and (2.25), we can show the following inter-

esting result for any Schur-convex objective g(e').

Proposition 2.1. For design criteria with a Schur-convez objective g(e*), the optimal
THP or DFE design yields a lower bound on the objective value obtained by any linear

transceiver. O

Proof. For any linear transceiver, C = I. It follows from (2.15) that L is diagonal
and hence L2 = o2(L), or equivalently | = m. Since the optimal THP or DFE
transceiver corresponds to I = I and we have I < m, it follows that g(I) < g(m), for

any Schur-convex objective g(-). O
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This result shows that the optimal DFE or THP transceiver for any Schur-convex
objective g(e') will yield an objective value that is less than or equal to the objective
value achieved by the optimal linear transceiver for the same objective. Furthermore,
a stronger results can be obtained by considering the subclass of strictly Schur-convex
objectives. For this class of objectives, f(a) < f(b), whenever a < b and a is not a
permutation of b. Since the optimal transceiver corresponds to ! = I, and any linear
transceiver corresponds to [ = m, it follows from I < m that g(e?) < g(e™), for every
strictly Schur-convex function g(-) whenever m is not equal to a permutation of .
Since all elements of I are equal, it follows that g(e!) < g(e™) whenever I # m. The
case [ = m corresponds to the optimal design of L being a diagonal matrix with equal
diagonal elements; i.e., a scaled identity matrix. This case can arise from water-filling

over K < K¢ equal eigenvalues of the matrix Ry.

2.5.3 Examples of Schur-convex objectives

In this section we present examples of design objectives that are Schur-convex func-
tions of I, the vector of logarithms of the individual MSEs. (Sketches of the proofs are
provided in Appendix A.) Before we do so, we point out that by using the composition

properties of Schur-convex functions [29] one can prove the following resuit.

Lemma 2.2. Lety = e*. If g(y) is Schur-convez in 'y, then g(e') is Schur-conver in

l.

Using this lemma and the results in {6], functions such as the total MSE and
the average BER can be shown to be to Schur-convex functions of I. However, by
analyzing g(e!) directly, we will obtain stronger results. For example, we will show
that the total MSE is strictly Schur-convex in I. (It is not strictly Schur-convex in the

MSEs themselves.) We will also show that the average BER of certain constellations,
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including 16-QAM, is a Schur-convex function of I for the entire range of the MSE,
whereas it is a Schur-convex function of the MSEs only for limited ranges of the
MSE [6]. In addition, by taking the direct approach we will be able to show that
several objectives that are not Schur-convex functions of the MSEs are Schur-convex
functions of the logarithm of the MSEs; e.g., the Gaussian mutual information and

the geometric mean of the SINRs.

2.5.3.1 Minimization of the total MSE

Minimization of total MSE (or the arithmetic mean of the MSEs) corresponds to

minimization of
gl = 30K ek, (2.31)

which is a strictly Schur-convex function of I. Hence, the optimal precoder is given by
the closed-form expression derived in Section 2.5.1. For the DFE model, transceiver
design based on minimization of the total MSE was considered in [7], and the solution
therein is, as expected, the same as that in Section 2.5.1. For the THP model,
a design approach based on a bound on the total MSE was presented in [13], but
that approach does not necessarily minimize the total MSE. Furthermore, the THP
designs in [10, 16] do not exploit all the available degrees of design freedom. Using
the approach presented in this section, we obtain a jointly optimal design for THP

model for the total MSE objective.

2.5.3.2 Minimization of product of MSEs and maximization of Gaussian

mutual information

Given the diagonal structure of the matrix E in (2.16), minimization of the product
of the MSEs (or the geometric mean of the MSEs) is equivalent to minimization of the

determinant of E. Furthermore, maximization of the Gaussian mutual information is
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equivalent to minimization of logdet(E), [11]. Therefore, these three objectives are

equivalent and correspond to minimization of
K4, K
g(e') =log[T:Z, e = ¥, L. (2.32)

In Appendix A. we show that g(e') is both a Schur-convex and a Schur-concave func-
tion of I. Hence, the optimal design in (2.28) is information lossless for both the
DFE and THP models. (This is consistent with the MMSE-DFE being a ‘canonical
receiver’ [11], and examples of existing designs that apply these criteria to DFE-based
transceivers appear in [7,11,12].) Since the expression in (2.32) is also Schur-concave,
a design that maximizes the Gaussian mutual information can also be obtained using
the Schur-concave approach in Section 2.6, below. That approach results in a lin-
ear transceiver with a standard water-filling power allocation [30]. (Of course, both

approaches yield the same maximized Gaussian mutual information.)
2.5.3.3 Minimization of maximum MSE (Maximization of minimum
SINR)

Minimization of the maximum MSE corresponds to minimization of the following

Schur-convex function of [

g(eh) = max (e*). (2.33)

1<i<K
According to (2.17), the stream with the maximum MSE is the one with the minimum

SINR. Hence, this objective is equivalent to maximization of the minimum SINR.

2.5.3.4 Minimization of p-norm of MSEs

In this case, the objective is to minimize
& S K Li\p l/p = 2 34
9(‘3)—(21':1(6) ) 5 B2 1. (2.34)

37



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

This design criteria includes the minimization of total MSE, p = 1, and the mini-
mization of the maximum MSE, p = oo, among several other norms of the vector of
MSEs of each data stream.

2.5.3.5 Maximization of the harmonic mean of SINRs

In this case, the objective is to minimize
K K
gle') = D imt §TNiﬁZ =2 i1 E—Y]T"]’ l; <0. (2.35)

2.5.3.6 Maximization of product of SINRs

Maximization of the product of the SINRs (or the geometric mean of the SINRs) can

be expressed as the minimization of
glehy = —log [T, (e —1) = = K  log(e% ~ 1). (2.36)

2.5.3.7 Minimization of average BER

Assuming that each each data stream employs the same constellation, the average

BER is given by
g(eh) = }: BER(SINR;) = % Zl ,BER(e™! — 1), (2.37)

where BER(-) is the bit error rate of the chosen constellation as function of the SINR.
For many constellations, such as M-ary QAM, the bit error rate function BER(SINR)

can be closely approximated by [33, eq. 18], [34, eq. 13]:

BER(SINR) = ¢; Q(v/e1 SINR), (2.38)

where ¢; and ¢, are constants that depend on the size of constellation M, and Q(z) =

T/lé‘}" [ e~**/2dz. For BPSK and QPSK, we have ¢; = ¢; = 1 and the approximation
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becomes exact. In Appendix A we show that the objective in (2.38) is a Schur-convex
function of I for BPSK and M-ary QAM up to M = 16, and that for higher-order
QAM it is Schur-convex under the mild constraint that the SINR is above a small
threshold. (The design of DFE-based systems with an average BER objective was

considered in [7].)

2.6 Optimal Precoding Matrix: Schur-concave ob-

jectives

2.6.1 Optimal Precoding Matrix

If g(e!) is a Schur-concave function of I, then from (2.24) we have g(e™) < g(e'), and

the optimal value is obtained when
Lii = O'i(L). (239)

According to Lemma 2.1, this equality holds when L is normal matrix. Since L is
a lower triangular matrix, in order to be normal it must be a diagonal matrix [22].
The optimal C in that case is I, and hence the optimal feedback matrix is B = 0.
That is, in the case of Schur-concave functions of I, the optimal DFE design results
in linear equalization and optimal THP design results in linear precoding.

This result shows that for Schur-concave objectives the design problem reduces
to that for the special subclass of linear transceivers; e.g., [5,6]. What remains is to
compare the direct linear designs with those that we have derived from the optimiza-
tion of DFE and THP transceivers with Schur-concave objectives of the logarithm
of the individual MSEs, g(e'). Using the composition properties of Schur-concave

functions [29] the following counterpart to Lemma 2.2 can be established.
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Lemma 2.3. Let y = e'. If g(e') is Schur-concave in 1, then g(y) is Schur-concave
my.

A consequence of this result is that the optimal DFE or THP transceiver design
for an objective that is Schur-concave in the logarithm of the individual MSEs is
the optimal linear transceiver for the corresponding Schur-concave function of the
individual MSEs themselves. As shown in [6], that optimal precoder will depend on
the objective. This is in contrast to the Schur-convex designs, which are independent

of the objective; see Section 2.5.

2.6.2 Examples of Schur-concave objectives

We now briefly present some examples of design objectives that are Schur-concave

functions of I. (Sketches of the proofs are provided in Appendix B.)

2.6.2.1 Minimization of harmonic mean of MSEs
This objective corresponds to the minimization of
1

gleh) = TR O (2.40)

t==l e
2.6.2.2 Maximization of p-norm of SINRs

In this case, the objective is to minimize
gle) = ~(TE et -17)”, pz L (2.41)
2.6.2.3 Minimization of a subclass of weighted products of MSEs
(weighted geometric mean of MSEs) |
The minimization of the weighted product of MSEs is equivalent to minimization of
g(e") =log ]_Ifil(e‘i)ai = Zfil al;, (2.42)
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where, without loss of generality, we may assume that the MSEs are arranged in
a decreasing order; ie. I, > ---,> lx. For this ordering, g(e') is Schur-concave

whenever the weights are in ascending order.

2.7 Simulation Studies

In this section, we provide some simulation results for systems designed using the
proposed framework. We consider systems that transmit vectors of 16-QAM symbols
over an independent Rayleigh fading channel (with perfect channel state information
at both the receiver and transmitter). The same constellation is used for each data
stream because the optimal transceiver design for the class of Schur-convex objec-
tives results in equal SINR on each data stream; cf. Section 2.5.2.2. The coefficients
of the N, x N; channel matrix H are modelled as being independent rotationally-
symmetric complex Gaussian random variables with zero mean and unit variance,
and the elements of the additive noise vector n are modelled as being independent
rotationally-symmetric complex Gaussian random variables with zero mean and equal
variance. For each design we will plot the average bit error rate (BER) of the K data
streams against the signal-to-noise ratio (SNR), which is defined as the ratio of the

total average transmitted power, E{x'x}, to the total receiver noise power, E{n¥n}.

2.7.1 Validation of the design assumptions

In this section, we validate the assumptions that we made in the development of
the proposed designs. For DFE systems we made the standard assumption that the
previously detected symbols were correctly detected, and for THP systems we made
the assumption of no precoding loss; see Section 2.2. To validate these assumptions,

we consider the case of systems optimized for Schur-convex objectives. These designs
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minimize the total MSE, as well as minimizing the average BER and maximizing
the Gaussian mutual information. In Fig. 2.3 we compare the actual performance
of the proposed designs to the performance that would have been achieved if the
assumptions held precisely, in the case of a system with N; = N, = K = 4. In
Fig. 2.3 the practical performance of the proposed jointly optimal THP transceiver is
very close to that of a system that assumes no precoding loss, and the impact of the
standard assumption of correct decisions in a DFE system is quite mild, especially
at high SNRs. Indeed, the four curves coalesce at high SNRs. The slight advantage
of the THP transceiver in Fig. 2.3 over the DFE transceiver can be attributed to
the fact that interference subtraction at the transmitter is, inherently, free from error

propagation.

2.7.2 Comparisons with linear transceivers

In this section, we compare the performance of the proposed (jointly optimal) DFE
and THP transceiver designs to that of (jointly-optimized) linear transceivers. We
compare the performance of the optimal Schur-convex design for the DFE and THP
transceivers, which simultaneously minimizes the total MSE, minimizes the average
BER and maximizes the Gaussian mutual information, with that of the (different)
optimal linear transceivers that: minimize the total MSE, e.g., [5]; minimize the av-
erage BER [6,35]; and maximize the Gaussian mutual information, e.g., [6,30]. For
reference, we also provide performance comparisons with a transceiver that imple-
ments maximum likelihood (ML) detection at the receiver and employs the precoder
in (2.28) at the transmitter. (That precoder is the optimal Schur-convex design
for the DFE receiver.) We compare the performance of these five methods in an
N, = N, = K = 4 scenario in Fig. 2.4. By comparing the curves for the DFE and

THP transceivers with that of the minimum BER linear transceiver, one can quantify

42




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

Average BER of K streams
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Figure 2.3: BERs of the optimal Schur-convex design of a DFE transceiver (DFE-
SConvex), and a THP transceiver (THP-SConvex) for a system with N; = N, = K =
4. Also plotted is the BER of the optimal Schur-Convex DFE design in the absence
of error propagation (DFE-SConvex-No Error Propag.), and the BER of the optimal
Schur-Convex THP design with no precoding loss (THP-SConvex-No Precoding Loss).
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Average BER of K streams
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Figure 2.4: BERs of the optimal Schur-convex designs of DFE (DFE-SConvex)
and THP (THP-SConvex), the optimal linear transceivers: minimum MSE (Linear-
MMSE) e.g., [5], minimum average BER (Linear-Minimum BER) [6, 35, and maxi-
mum mutual information (Linear-Det(E)) e.g., [6,30], and the transceiver that imple-
ments maximum likelihood (ML) detection at the receiver and employs the precoder

in (2.28) at the transmitter, for a system with Ny = N, = K = 4.

the statement in Proposition 1 that for Schur-convex design objectives, the DFE and
THP transceivers provide provably better performance than the corresponding linear

transceiver.

2.7.3 Comparisons with other designs for interference

(pre)subtraction transceivers

In this section, we compare the performance of the proposed jointly optimal DFE and

THP transceiver designs to that of some existing suboptimal designs for systems that
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employ MMSE interference (pre-)subtraction. In particular, we will provide compar-
isons to systems with an identity precoder at the transmitter and an MMSE-DFE
receiver with the ‘BLAST’ [36] detection ordering [10,37], or an unordered MMSE-
DFE receiver. We will also provide comparisons with the performance of the MMSE-
THP transceiver design in [10], with both BLAST ordering and the natural ordering,
and for reference we will also provide performance comparisons with a transceiver
that implements maximum likelihood (ML) detection at the receiver and employs the
precoder in (2.28) at the transmitter. We compare the performance of these seven
methods in an N; = N, = K = 4 scenario in Fig. 2.5, and inan N; =K =4, N, =5
scenario in Fig. 2.6. These comparisons are appropriate because the MMSE-DFE
approach in [10,37] and the MMSE-THP design in [10] can be represented by special
cases of our system model in which the precoder P is restricted to be a permutation
matrix. The significantly lower BERs of the proposed designs demonstrate that the
exploitation of all the available degrees of design freedom in the proposed approach
can have a substantial impact on performance. (In fact, the performance of the opti-
mized DFE transceiver is close to that of the transceiver with ML detection and the
optimized precoding matrix.) Moreover, the permutation-based approaches in [10,37]
result in data streams with different MSEs (and SINRs), and hence different ordering
algorithms are required for different performance objectives. For example, for error
performance criteria the BLAST ordering [36] is appropriate, as it attempts to max-
imize the SINR of the weakest data stream, but maximizing the Gaussian mutual
information requires a different ordering [38]. In contrast to these permutation-based
approaches, the proposed approach exploits all the degrees of design freedom in the
system and results in data streams with equal SINRs, and hence no ordering algorithm
is necessary. It is worth pointing out that while precoding generalizes ordering for

point-to-point DFE or THP models, in the corresponding multi-user models ordering
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Average BER of K streams
3

—w— MMSE DFE transceiver no ordering
~—e— MSE THP transceiver no ordering
~—&— MMSE DFE transceiver BLAST ordering
—é&— MSE THP transceiver BLAST ordering
105k ~—&— DFE-Sconvex

: | =& THP-SConvex
e ML

Figure 2.5: BERs of the optimal Schur-convex designs for DFE (DFE-SConvex) and
THP (THP-SConvex) transceivers, other interference (pre-)subtraction approaches:
MMSE DFE with BLAST ordering [10,37], and MMSE DFE with no ordering, THP
transceiver MMSE design in [10] with BLAST ordering and with no ordering, and the
transceiver that implements maximum likelihood (ML) detection at the receiver and

employs the precoder in (2.28) at the transmitter, for a system with N; = N, = K = 4.

must be considered in conjunction with precoder design because on the uplink the

transmitters cannot cooperate, and on the downlink the receivers cannot cooperate;

cf. [19].

2.8 Conclusion

In this chapter, a unified framework was developed for joint transceiver design for
interference (pre-)subtraction schemes for communication over generic point-to-point

MIMO channels, and we have obtained optimal designs for two broad classes of
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Average BER of K streams

Figure 2.6: BERs of the optimal Schur-convex designs for DFE (DFE-SConvex) and
THP (THP-SConvex) transceivers, other interference (pre-)subtraction approaches:
MMSE DFE with BLAST ordering [10,37], and MMSE DFE with no ordering, THP
transceiver MMSE design in [10] with BLAST ordering and with no ordering, and the
transceiver that implements maximum likelihood (ML) detection at the receiver and
employs the precoder in (2.28) at the transmitter, for a system with N; = K = 4,

N, =5,
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communication objectives, namely those that are Schur-convex and Schur-concave
functions of the logarithms of the (individual) MSEs of each data stream. For Schur-
convex objectives, the optimal transceiver results in equal individual MSEs, and si-
multaneously minimizes the total MSE, minimizes the average bit error rate, and
maximizes the Gaussian mutual information. Furthermore, that design yields ob-
jective values that are superior to the corresponding optimal objective value for a
linear transceiver. For the class Schur-concave objectives, the optimal DFE design
results in linear equalization and the optimal THP design results in linear precoding.
The developed framework will be extended to communication scenarios with limited

channel state information at the transmitter in the next chapter.
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Chapter 3

Design Framework for Limited
Feedback MIMO Systems with
Zero-Forcing DFE

The previous chapter presented a unifying design framework for non-linear MIMO
transceivers that implement interference (pre-)subtraction. The framework provided
optimal transceiver designs for a wide range of design objectives. These designs were
obtained for communication scenarios that assume perfect channel state information
(CSI) at both the transmitter and the receiver. In this chapter, we will generalize
that framework to scenarios with limited CSI at the transmitter. We will consider
the design of multiple-input multiple-output communication systems with a linear
precoder at the transmitter, zero-forcing decision feedback equalization (ZF-DFE) at
the receiver, and a low-rate feedback channel that enables communication from the
receiver to the transmitter. The channel state information available at the receiver is

assumed to be perfect, and based on this information the receiver selects a suitable
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precoder from a codebook and feeds back the index of this precoder to the transmit-
ter. Our approach to the design of the components of this limited feedback scheme is
based on the development, herein, of a unified framework for the joint design of the
precoder and the ZF-DFE under the assumption that perfect CSI is available at both
the transmitter and the receiver. The framework is the zero-forcing counterpart of
the one developed in Chapter 2, and it enables us to characterize the statistical distri-
bution of the optimal precoder in a standard Rayleigh fading environment. Using this
distribution, it will be shown that codebooks constructed from Grassmann packings
minimize an upper bound on an average distortion measure, and hence are natural
candidates for the codebook in limited feedback systems. Our simulation studies
show that the proposed limited feedback scheme can provide significantly better per-
formance at a lower feedback rate than existing schemes in which the detection order

is fed back to the transmitter.

3.1 Introduction

In many communication schemes, such as frequency division duplex systems, obtain-
ing accurate CSI at the transmitter may require a considerable amount of feedback to
the transmitter. An approach that allows the designer to limit the required amount
of the feedback is to quantize the transmitter design. In these limited feedback
schemes [39], the receiver uses its CSI to choose the best transmitter design from
a codebook of available designs, and then feeds back the index of this precoder
to the transmitter. This strategy has been considered for beamforming schemes
(e.g., [40-46]), diagonal precoding [47], unitary precoding with linear equalization
(e.g., [48]), and unitary precoding for orthogonal space time block codes [49,50]. For

zero-forcing DFE schemes, a limited feedback scheme in which the receiver feeds back
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the order of interference cancellation was proposed in [51,52].

In this chapter, we consider the design of a limited feedback scheme for systems
with a (general) linear precoder at the transmitter and zero-forcing DFE at the re-
ceiver. Our designs are based on a unified framework, developed herein, for the joint
design of the precoder and the ZF-DFE in the presence of perfect CSI. Similar to
the framework that is obtained in absence of the zero-forcing criteria, it embraces a
wide range of design criteria that can be expressed as Schur-convex or Schur-concave
functions of the logarithm of the mean square error (MSE) of each data stream. In
particular, it will be shown that the optimal precoder for the rich class of Schur-
convex objectives is a scaled unitary matrix that is isotropically distributed (over
the Stiefel manifold of unitary matrices). Using this distribution, it will be shown
that codebooks constructed from Grassmann subspace packings minimize an upper
bound on an average distortion measure, and hence are excellent candidates for the
codebook in limited feedback schemes for systems with zero-forcing DFE. In contrast,
the application of Grassmann codebooks in limited feedback schemes with linear re-
ceivers (e.g., [48]) involves an inherent compromise, because the optimal precoder in
the presence of perfect CSI and a total power constraint is not unitary. Since the
scheme that we propose involves the construction of codebooks for isotropically dis-
tributed unitary matrices, our scheme subsumes that in [51,52], in which the precoder
is, by construction, a permutation matrix. Our simulation studies suggest that the
additional degrees of freedom available in our approach enable our scheme to provide
significantly better performance than that in [51, 52] while using a lower feedback

rate.
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3.2 Zero-forcing DFE with Limited Feedback

We consider a point-to-point communication system with N; transmit antennas and
N, receive antennas that transmits K data streams simultaneously, where K is no
greater than the rank of the channel matrix H. We adopt a narrow band block fading
channel model, and we consider MIMO communications systems that use (general-
ized) zero-forcing decision feedback equalization, e.g., [7,11], for spatial equalization.
Similar to the DFE system model in Section 2.2.1, the input data vector at the trans-

mitter, s, is linearly precoded using P to generate the transmitted data vector x,
x = Ps. (3.1)

Without loss of generality, we will assume that E{ss¥} = I, and hence the total
transmitter power constraint can be written as E{x?x} = tr(P¥P) < Pta.

The vector of received signals is given by
y = HPs + n, (3.2)

where H is the channel matrix and n is the vector of additive noise which is assumed
to have zero-mean and a covariance matrix E{nn’} = ¢2I. As illustrated in Fig. 3.1,
following linear processing using the feedforward matrix G, the receiver makes succes-
sive decisions on each symbol by subtracting the effect of previously decided symbols.
Hence, the feedback matrix B is strictly lower triangular. This system model em-
braces linear precoding and equalization as a special case when B = 0. Assuming

correct previous decisions, the vector of inputs to the quantizer is given by

(GHP — B)s + Gn. (3.3)

§

fl
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s x y s
— P |— — G > Quantizer >
A
B
Selection
Index of selected from
precoder Codebook

Figure 3.1: MIMO transceiver with DFE using limited feedback.

Using the error signal e = s — §, the mean square error matrix can be written as

E = E{eef} = CCH — CPYH#GH — GHPC" + GHPPYH!"GH + 02GG#
(3.4)

where C = I 4 B is a unit diagonal lower triangular matrix.
We will consider communication schemes in which perfect CSI is available only at
the receiver. Based on its channel knowledge, the receiver selects a suitable precoding

, and feeds that index back to the

matrix from a codebook of precoders P of size |P
transmitter using log, |P| information bits; see Fig 3.1. In order to develop effective
methods for quantizing the precoding matrix, we first need to characterize the optimal
precoding matrix for different design criteria in the presence of perfect CSI. We will
then use the statistical distribution of this optimal precoder to define the distortion

measures that are required to design the codebook for the limited feedback scheme.

3.3 Unified Framework for Zero-Forcing DFE

In this section, we develop a general framework for the joint design of the transceiver
matrices G, C = I+ B, and P in the presence of perfect CSI and a zero-forcing crite-
rion. The proposed framework embraces a wide range of design objectives that can be

expressed as functions of the (logarithm of the) MSE of the individual data streams
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E;; It includes objectives for which the optimal designs of ZF-DFE transceivers are
already available (e.g., the total MSE, [7]), and several other objectives for which the

optimal transceiver design has remained an open problem.

3.3.1 ZF-DFE Receiver Design

The zero-forcing design criterion implies
GHP -B=1 (3.5)
Given the assumption that K < rank(H), the condition in (3.5) can be achieved so
long as P is chosen such that rank(HP) = K. In that case, the feedforward matrix
G is given by
G = C(HP)'. (3.6)
Since HP has full column rank, the pseudo-inverse in (3.6) can be written as
HP)! = (PPHYHP) 'PYHY. (3.7)
Using the expression for G in (3.6), the MSE matrix in (3.4) reduces to
E = CNC¥, (3.8)

where N = o2(PPHHHP)™! is a positive definite Hermitian matrix. Using the
derivation in Section 2.3.2, the optimal matrix C, that minimizes the MSE of each
individual data stream, subject to being unit diagonal and lower triangular, is given
by

C = Diag (Ly;,...,Lgg) L7, (3.9)
where N = LL¥ is the Cholesky factorization of N, and L is a lower triangular matrix
with strictly positive diagonal entries. Using this optimal C, the MSE matrix can be

rewritten as

E = Diag (L%,,...,Lx) » (3.10)
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where L;; is the i*" diagonal element of L. Hence, the SNR of each data stream is

i I R

= —. 3.11

3.3.2 Transmitter Design

Given the optimal G and C, our next step is to design a precoding matrix P so as
to optimize design criteria that are expressed as functions of the (logarithm of the)

MSE of each individual stream,
L={lnE, ks (3.12)

The following lemma provides two main inequalities that include the logarithm of
the MSEs,l, and can be proved using similar arguments to those used in deriving the

inequalities in (2.24) and (2.25).

Lemma 3.1. For the Cholesky factorization N = LL¥ | the following inequalities
hold:

Indet(N
%,()(1,...,1) <1< (InMMN), ..., InAg(N)),
where \i.(N) is the k™ largest eigen value of N. O

Let HPH = UgAxUE be the eigen value decomposition of H?H such that the
entries of the diagonal matrix Ay are squared singular values of H, 07(H), in descend-
ing order. Let Uy, and Ag; be the first K columns of Uy and Ag, respectively.
The optimal precoders for the two classes of Schur-convex and Schur-concave design

criteria are given by the following theorem.

Theorem 3.1. The optimal precoder for the class of objectives for which g(e') is a
Schur-convex function of the logarithm of the MSEs is independent of the actual form
of g(-) and is given by:

P
Piss %ﬂUHJV(AHJ), (3.13)

55



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

where V(Aw1) is a unitary matric that results in the QR decomposition of
Aﬁ]i/ 2V(AHJ) = QR having an R factor with equal diagonal elements.

For the class of objectives for which g(e') is a Schur-concave function of the logarithm
of the MSEs, the optimal solution results in B = 0, and hence the optimal zero-forcing

linear transceiver is an optimal transcewer for a system with a zero-forcing DFE.

Proof. See Appendix C. O

As we mentioned in Chapter 2, algorithins for obtaining a matrix ¥ such that the
R-factor of the QR decomposition of AW has equal diagonal elements were introduced
in [14,53], and V in (3.13) can be obtained by applying the algorithms therein to the
matrix A;III/ 2,

For design objectives that are expressed as functions of the vector of MSE of
each data stream, ¢!, the Schur-convexity and Schur-concavity classification of these
objectives with respect to I are the same as their classification in Sections 2.5.3 and
2.6.2 in absence of the zero-forcing design criteria. However, for the design objectives
that are expressed as functions of the vector of the SINR of each data stream, e,
and hence the bit error rate of each stream, the classification may be different from
their classification in Sections 2.5.3 and 2.6.2, in which the absence of the zero-forcing
criteria means that SINR = ¢~! — 1. For example, maximization of the product of
the SINRs is now a Schur-convex and Schur-concave objective of I, while in absence
of the zero-forcing constraint it is only a Schur-convex objective. Also, maximization
of the Gaussian mutual information is now strictly Schur-convex, while in absence of
the zero-forcing constraint it is both Schur-convex and Schur-concave. The following

examples provides the Schur-convexity /Schur-concavity classification of some design

objectives that are embraced by the design framework.

e Minimization of the sum of the individual MSEs: In this case the objective is
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to minimize ¥
gle) =) e, (3.14)
k=1
which is Schur-convex function of [.

o Minimization of the mazimum MSE / Mazimization of minimum SNR: In this

case the objective is to minimize
g(e") = max(e™), (3.15)
which is Schur-convex function of I.

e Minimization of the average Bit Error Rate: This corresponds to the minimiza-

tion of the objective

K K
1
g(eh) = : Y BER(SNRy) = Y BER(e™), (3.16)
=1 k=1

where the BER expression will depend on the constellation used, and we have
assumed that the same constellation is used for each element of s in (3.1). Sim-
ilar to the proof in Appendix A, It can be verified that under a mild constraint
on the SNR, the BER expressions for BPSK and M-QAM constellations are

convex functions of I. Hence, g(e') is a Schur-convex function of 1.

e Mazimization of Gaussian mutual information This corresponds to the mini-

mization of
K

g(e!) = Z —log(1 + %), (3.17)

k=T
which takes the form 21{}’:1 h(l;.) for the convex function h(l;) = —log(1+e %),

and hence it is a Schur-convex function of [.

e Minimization of the product of MSEs: Minimization of the product of the in-

dividual MSEs (or equivalently, the geometric mean of the MSEs) corresponds
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to the minimization of
K K
g(é") = log H ek = Z l;, (3.18)
Fe=1 k=1

which is both Schur-convex and Schur-concave. Furthermore, since 22‘;1 Iy =
— Z,’f:] log(SNR), at high SNR the minimization of the product of the MSEs

corresponds to the maximization of the Gaussian mutual information.

As demonstrated by Theorem 3.1 and the above examples, the optimal precoder
for a system with zero-forcing DFE and a design objective from the Schur-convex class
simultaneously optimizes the total MSE, the average bit error rate, and the Gaussian
mutual information. MIMO systems with linear precoding and equalization do not
achieve this simultaneous optimality, and in the general case each of these objectives
results in a different optimal precoder [6]. For design criteria that can be expressed as
the minimization of objectives that are both Schur-convex and Schur-concave, both
the optimal Schur-convex design in (3.13) and the optimal linear transceiver will
yield the same objective value. In the following sections, we will consider the efficient
design of codebooks for limited feedback systems with Schur-convex objectives. Our

first step will be to obtain the statistical distribution of the optimal precoder.

3.4 Statistical Distribution of Optimal Precoder
for Schur-Convex Objectives

The optimal precoder for the Schur-convex class of objectives can be written as

_ Ptotal =

where the matrix P = Uy V(Ag,) belongs to the Stiefel manifold S(N;, K) of

complex N; x K matrices with orthonormal columms. The statistical distribution of
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P in (3.19) plays a key role in the design of the codebooks, and is established in

Theorem 2 below. First, we establish an intermediate result.

Lemma 3.2. For an i.i.d. Rayleigh fading channel matriz H, the matrices Un,; and
V(An,) are statistically independent. Furthermore, Un, is isotropically distributed

over the manifold S(Ny, K).

Proof. The proof follows directly from the isotropic distribution of the eigen vectors

of the Wishart distributed matrix H?H and its independence of the eigen values. [

Theorem 3.2. For an i.i.d. Rayleigh fading channel matriz H, the normalized opti-

mal precoder matriz P is isotropically distributed over the Stiefel manifold S(Ny, K).

Proof. We first observe from Lemma 3.2 that Uy is isotropically distributed over
the manifold S(N, K'). Hence, its probability distribution p(Ug ;) is unaffected by

post-multiplication by any deterministic unitary matrix Z; i.e., p(Ugn,1) = p(Un, 1 Z).

Hence,
p®) = [p®V)pV)av (3.20)
~ [ p(Us) p(V) @V = p(Un,), (3.21)
Since Uy, is isotropically distributed, then so is P. O

It is worth noting that for MIMO systems with linear precoding and equalization,
the optimal precoder will not be isotropically distributed. That is true for a wide range
of objectives under a total power constraint (e.g., [6] and the references therein), and
holds for both zero-forcing and MMSE linear receivers. That said, some quantization
methods for linear transceivers have been based on a suboptimal underlying scheme
that selects the best unitary precoding matrix; e.g., [48]. In that case the distribution
of the unquantized precoder is isotropic. In the case of systems with a zero-forcing

DFE, we have shown that selection of the best unitary precoding matrix is optimal.
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3.5 Precoder Selection and Codebook design

In order to study the codebook design problem, we will first consider the selection

method for choosing the best precoding matrix from a given codebook P.

3.5.1 Precoding Matrix Selection

Given a codebook for quantizing the normalized optimal precoding matrix P, P =
{?j, j=1,...,|Pl}, and a cost function g(-) associated with the design criterion, the
receiver will select a normalized precoding matrix from the codebook that yields the
minimum value for the cost function; i.e., the receiver will select the index

arg min elj . 3.22
g min_g(c") (3.22)

where I7 is the vector containing the logarithm of the diagonal elements of L7, the
Cholesky factor of N7 = afl(—ﬁt—%f’_j Hygn H_I;j)_l. The quality of a given codebook
can be measured in terms of the average degradation in the value of the objective that
is incurred by using a precoder from the codebook rather than the optimal precoder
in Theorem 1. Borrowing terminology from the source coding literature, we will

refer to this degradation, and various bounds thereon, as distortion measures for the

quantization scheme.

3.5.2 Grassmann Packing and Codebook Design

In the following section we will consider the design of codebooks to minimize distor-
tion measures for the broad class of objectives g(e') that are Schur-convex in I. As
shown in the previous section, for these objectives the optimal normalized precoder is

uniformly distributed over the Stiefel manifold S(V;, K'). We observe that the range
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of the columns of any normalized precoding matrix P represents a K dimensional sub-
space, Rg, of CMt. Hence, the desired codebook P = {P—j, j=1,...,|P|} represents a
set of subspaces R = {Rg:,j = 1,...,|P|}, and each of these subspaces can be repre-
sented as a point in the associated quotient space, namely the Grassmann Manifold;
e.g., [54,55]. In the next section, we will relate the problem of designing codebooks
that minimize suitable distortion measures to the Grassmann packing problem that
selects a set of subspaces such that the minimum pairwise distance between any two
subspaces in the packing is maximized. The distances between two subspaces Rg
and Rg:z can be defined in different ways [56]. For example, the projection 2-norm is

defined as

distyroe(P, P°) = ”Fl pY_P ’132””2, (3.23)
while the Fubini-Study distance is defined as
distps(ﬁl,ﬁz) = arccosldet(l_’lH ?2)‘. (3.24)

For a given set or a packing of subspaces and a given distance measure, we will denote
the minimum pairwise distance between any two subspaces in the packing by

d= min dist(P,P). (3.25)

1<i<i<|Pl

In addition to the minimum distance of the packing d, we will also be interested in its
density D; e.g., [56]. In our context, the density is the probability that the range space
of an isotropically distributed unitary matrix falls within a distance d/2 of any of the
subspaces of the packing, and is function of d, |P] and the volume of the manifold;
see [56]. In the following two sections, we will show that codebooks from certain
optimized Grassmann packings minimize distortion measures that are appropriate
for two subclasses of the Schur-convex objectives: the strict Schur-convex objectives,

and the objectives that are both Schur-convex and Schur-concave functions of [.
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3.5.3 Codebook Design Criteria for Strictly Schur-convex
Objectives

In this section we will present suitable distortion measures for objectives g(e') that are
Schur-convex functions of [ and are not Schur-concave; e.g., the sum of the MSEs, the
maximum MSE and the BER. From the first principles, we can obtain the following

bounds on the these objectives:

e Minimization of the sum of MSE:

K
K _
«l = lk < K’ . lk = —, 3.26
oleh) = ) < K mpeel = ooy (3.26)
e Minimization of the mazimum MSE / Mazimization of minimum SNR:
g(€") = max(et) = 1 (3.27)
ko miny, e~% ’
e Minimization of the average Bit Error Rate:
K
g(e") =Y BER(e™™) <K BER (min ) (3.28)

k=1
We observe that each of these bounds is expressed in terms of the minimum SNR
over the K data streams, SNRyn = ming e,

Since each of these terms is bounded by the minimum SNR, a natural choice for
the distortion measure for a given codebook is the average loss in the minimum SNR

that one incurs by using a normalized precoder P™™ chosen from the codebook P

instead of using the optimal normalized precoder P™" That is,

£ = EH{SNRmm(P*"“’) — SNRu, (1‘3‘*”"’“)}

Ex{ %/detA J
= n{ {/de H’l}—EH{ max  min e"lk}, (3.29)

o? 1<j<|P|1<k<K

62




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

where (3.29) follows by observing that the optimal P results in I}, = li’-d—‘;;ﬁm for every
k. Consider the second term in the distortion measure in equation (3.29). From the
definition of the majorization relation a < b, we have a;; < by). Hence, from

Lemma 1 we have
2

o
< = —_—T .
max I < In \y(N) 1:1(0121[1in (HP)), (3.30)
from which it follows that
HPJ)
> mm . .
N (3:31)
Hence, the distortion measure in (3.29) is upper bounded by
Ex{ {/det A P’
£< nl YdetAna} En{ max T (HP7) | (3.32)
oz 1<i<iPl o

When codebooks are designed from a Grassmann packing using the projection 2-norm

distance in (3.23), the expectation on the right hand side of (3.31) satisfies [48],

@
i > proJ2 .
En{ max o%n(HP)} > En{ok(H)) Dy (1~ 22%),  (333)

where dpyj2 is the minimum pairwise distance of the packing (cf. (3.25)) for the
projection 2-norm distance, and Dy, is the corresponding packing density; cf. [56].
In addition, for a given |P| the right hand side of (3.33) is an increasing function of
the packing distance dp050. Using the inequality in (3.32), we obtain the following

upper bound on the distortion:

EH{ X/det Am} EH{UK(H)} Diroj2 (1 _ ﬁi‘ﬁ) , (3.34)

o2 o2 4

which, for a given |P|, is a decreasing function of the packing distance dproj2. The
bound on the right hand side of (3.34) can be minimized by choosing the codebook
from a Grassmann packing that is designed to maximize the packing distance d in
(3.25) with projection 2-norm as the distance metric. Such designs correspond to

minimizing the bound on the distortion.
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Since permutation matrices are special cases of unitary matrices, the limited feed-
back approach in [51,52], in which the precoder is chosen from a codebook of per-
mutation matrices, is a special case of the codebooks that we consider. However, the
resulting codebooks do not necessarily have the maximum packing distance. Further-
more, the size of the codebook in the approaches in [51,52] is fixed for a given N;
and K, while the Grassmann packings can be constructed for an arbitrary number of

codewords.

3.5.4 Codebook Design Criteria for Objectives that are Both

Schur-convex and Schur-concave

For communication objectives g(e!) that are both Schur-convex and Schur-concave
functions of I, such as the minimization of product of the MSEs, we observe that
the design problem corresponds to maximization of det(P#H”HP)/o2. Hence, a

suitable distortion measure for the codebook is
£ = EH{det ——opt HHHH—-opt) de t(—quant HHHHI—)quant> }/0’3 (335)

= En{det Ap,}/02 — EH{ max de‘r(P "HHHP )}/02

1<<|P)
< Ex{det Ap,}/0? ~ Egr{det AHJ}EH{ s det(P’ U, UR P )} Jo?.
<j
(3.36)
Here, (3.36) follows from the independence of Uy and Ayx. When codebooks are
designed from a Grassmann packing using the Fubini-Study distance in (3.24), the

last expectation on the right hand side of (3.36) satisfies the following inequality [48]:
EH{ max_det(P’ " Uy, UH P )} > Dys cos*(dps/2). (3.37)
1<i<|P)
Hence, we obtain the following upper bound on the distortion:

£ S EH{det AH,] } (1 — DFS COSQ(dFs/Q))/Ui, (338)
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which, for a given |P|, is a decreasing function of the packing distance dps. A similar
upper bound was proposed for designing codebooks for MIMO systems with linear

receivers [48].

3.5.5 Comparison with ZF-Linear Schemes

In this section, we will show that for a given codebook, the performance of the zero-
forcing DFE with limited feedback provides an upper bound on the performance of
its linear zero-forcing counterpart for any Schur-convex performance objective g(et).
As stated in the following lemma, this is true for any codebook, including those

codebooks constructed from non-unitary matrices.

Lemma 3.3. Consider a codebook of precoding matrices, P, and a Schur-conver
performance g(e'). For any given channel H, let I, denote the vector U in (3.12)
when the precoder P7 is used, and let the I, denote the corresponding vector for the

case of linear equalization. Then

min g(el{)FE)S min g(el{in).

j=1,...|P| j=1,..|P|

Proof. Consider a given channel H and any precoding matrix P € P. For the linear
zero-forcing receiver we have C = I. It follows from (3.9) that the corresponding
matrix N’ and its Cholesky factor L’ are diagonal. Hence, (L},)> = \(INY), or,
equivalently,

U, = (n X (NY), ... In A (N7)).

On the other hand, for the DFE receiver we have
ljDFE = (ln(L{1)2, e »111(L1<K)2)'
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From Lemma 3.1, we have I{ ., < I, hence gletbre) < g(e'in) and

. lj . lj.
min €DFE) <  min e'Lin),
j:l,...,)P]g( )< j=1,..-,!7’lg( )

3.6 Simulation Studies

In this section, we simulate the performance of the proposed limited feedback MIMO
schemes over a standard i.i.d. Rayleigh block fading channel model.! For the error
rate performance comparisons, we use 16-QAM signaling and we plot the average bit
error rate (BER) of the K data streams against the signal-to-noise-ratio, which is
defined as the ratio of the total average transmitted power Py, to the total receiver
noise power E{n¥n}. We compare the performance of the proposed codebook de-
signs for systems with zero-forcing DFE with that of the optimal zero-forcing DFE
transceiver for the case of perfect CSI that was presented in Section 3.3. For the
proposed limited-feedback schemes, the Grassmann codebooks are constructed us-
ing the design approach in [57]; see also [48]. (Grassmann codebooks could also be
constructed using the optimization algorithms in [54,55]). We also provide simulation-
based comparisons with the two limited feedback schemes for zero-forcing DFE sys-
tems in [52]. In addition, we provide performance comparisons with limited feedback
schemes for linear zero-forcing transceivers that use Grassmann codebooks [48], and
with the optimal zero-forcing linear transceiver designs for the case of perfect CSI for

minimum MSE and minimum bit error rate design criteria [58].

IThe coefficients of the channel matrix H are modelled as independent circularly symmetric
complex Gaussian random variables with zero mean and unit variance.
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3.6.1 Comparisons with Limited Feedback Zero-forcing DFE

Schemes

In Fig 3.2, we consider a MIMO system with N; = 6 transmit antennas and N, = 3
receive antennas that transmits K = 3 independent data streams. We compare the
performance of the proposed schemes with Grassmann codebook designs and precoder
selection based on the minimization of the sum of the MSEs (Grassmann-6 bits- Sum
MSE), minimization of the average BER (Grassmann-6 bits- Min BER), and the
minimization of the maximum MSE (Grassmann-6 bits- Max MSE) which is equiv-
alent to the maximization of minimum SINR. The codebooks consist of 64 unitary
matrices, and hence 6 bits of feedback are used per block. We also make comparisons
with the limited feedback schemes in [52] (Ordering Feedback ZF-DFE and Ordering
Feedback2 ZF-DFE) in which the receiver feeds back the index of the selected permu-
tation of the columns of H from the set of possible Py* = N;!/(N; — K)! permutation
matrices. For the system under consideration, the number of possible permutations
matrices is 120, almost twice the size of the Grassmann codebook. In the scheme
denoted Ordering Feedback ZF-DFE the permutation matrix is selected based on the
norms of the columns of H, while the scheme denoted Ordering Feedback2 ZF-DFE
the permutation is selected based on a greedy ordering of the QR decomposition of
the channel matrix H. In Fig. 3.2, we observe the close performance of the proposed
codebooks with different Schur-convex selection criteria. This is to be expected, be-
cause in the limit of infinite feedback (i.e., perfect CSI), all these objectives result
in the same optimal precoder design. We also observe that the Grassmann code-
books provide significantly better performance than the schemes that are based on
precoding with permutation matrices, even though they employ fewer feedback bits.

This is because codebooks constructed from permutation matrices are special cases
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Figure 3.2: BER performance of various MIMO transmission schemes with zero-
forcing DFE for a system with N; = 6, N, = 3, and K = 3 simultaneously transmitted
16-QAM data streams. The schemes considered are: the proposed codebook designs
for the objectives of minimization of the sum of MSEs (Grassmann-6 bits- Sum MSE),
minimization of the average BER (Grassmann-6 bits- Min BER); the optimal zero-
forcing design for any Schur-convex design objective with perfect CSI (ZF DFE -
Perfect CSI); and the limited feedback schemes in [52], which are based on feeding
back the detection ordering (Ordering Feedback - ZF DFE) and (Ordering Feedback2 -
ZF DFE). The lower curve for each method represents the BER performance obtained

under the assumption of correct previous decisions.
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Figure 3.3: BER performance of various MIMO transmission schemes with zero-
forcing DFE for a system with N; = 5, N,, = 4, and K = 4 simultaneously transmitted
16-QAM data streams. The schemes considered are: the proposed codebook designs
for the objectives of minimization of the sum of MSEs (Grassmann-6 bits- Sum MSE).,
minimization of the average BER (Grassmann-6 bits- Min BER); the optimal zero-
forcing design for any Schur-convex design objective with perfect CSI (ZF DFE -
Perfect CSI); and the limited feedback schemes in [52], which are based on feeding
back the detection ordering (Ordering Feedback - ZF DFE) and (Ordering Feedback2
- ZF DFE).
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Figure 3.4: Average of Gaussian mutual information in (3.17) for various MIMO
transmission schemes with zero-forcing DFE for a system with N; = 5, N, = 4, and
K = 4. The schemes considered are: the proposed codebook designs for Gaussian
mutual information objective (Grassmann-6 bits- Mutual info); the optimal zero-
forcing design for any Schur-convex design objective with perfect CSI (ZF DFE -
Perfect CSI); and the limited feedback schemes in [52], which are based on feeding
back the detection ordering (Ordering Feedback - ZF DFE) and (Ordering Feedback?2
- ZF DFE).
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of those constructed from unitary matrices, and they do not necessarily minimize
the distortion measures. Note that for all error performance figures in this paper,
the simulation results of all ZF-DFE methods include the effect of error propagation.
For reference, in Fig 3.2 we also provide the performance under the assumption of
correct previous decisions; i.e., no error propagation. We observe that at high SNRs,
the practical performance of the optimal zero-forcing DFE transceiver for the case
of perfect CSI and the proposed designs based on Grassmann codebooks are close to
their corresponding performance in absence of error propagation. This also holds for
the permutation feedback scheme (Ordering Feedback2 ZF-DFE).

Analogous performance advantages to those in Fig 3.2 are observed in Fig 3.3,
which shows the performance for a MIMO system with N; = 5 transmit antennas
and N, = 4 receive antennas that transmits K = 4 data streams. The size of
each permutation-based codebook is 120 matrices, while the size of each Grassmann
codebook is 64 matrices.

In Fig 3.4 we compare several different methods in terms of the Gaussian mutual
information that they achieve. We consider a system with Ny =5, N, =4, and K = 4,
and we plot the average, over 1000 channel realizations, of the Gaussian mutual
information achieved by the ZF-DFE transceiver with the quantized precoder; i.e., the
average of the values of (3.17) achieved by the quantized precoder. For the proposed
scheme we consider a Grassmann codebook design and precoder selection based on
the maximization of the Gaussian mutual information (Grassmann-6 bits- Mutual
info.), and a codebook that consists of 64 unitary matrices. We make comparisons
with the limited feedback schemes in [52] (Ordering Feedback ZF-DFE and Ordering
Feedback2 ZF-DFE), whose permutation-based codebooks contain 120 matrices. We
observe that the proposed Grassmann codebook with precoder selection based on the

maximization of the Gaussian mutual information provides the closest performance
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to the optimal ZF-DFE design for the case of perfect CSI, which was presented in

Section 3.3.

3.6.2 Comparisons with Limited Feedback Linear Zero-
forcing Schemes

In Fig 3.5, we consider a MIMO system with Ny = 5 transmit antennas and N, = 4
receive antennas that transmits K = 4 independent data streams. We compare the
performance of the proposed ZF-DFE schemes that use Grassmann codebooks with
that of the corresponding linear zero-forcing schemes that use Grassmann codebooks
with the same feedback rate [48]. We consider linear limited feedback schemes with
different precoder selection criteria, namely minimization of the total MSE (LinZF-
Grassmann-6 bits Sum MSE), and maximization of the minimum eigen value of the
overall channel HP (LinZF-Grassmann-6 bits Max MSE), which corresponds to min-
imization of the maximum MSE [48]. We also provide performance comparisons with
the zero-forcing DFE transceiver design for perfect CSI that simultaneously optimizes
any Schur-Convex design criteria, and with the corresponding optimal zero-forcing lin-
ear transceiver designs for perfect CSI that minimize the total MSE or the average
BER. Unlike the DFE case, these two design criteria result in different precoder de-
signs [58]. In Fig. 3.5, we observe that the proposed zero-forcing DFE systems with
limited feedback perform better than the corresponding linear schemes; as is to be
expected, c¢.f. Lemma 3.3. Similar performance advantages are observed in Fig 3.6
for a MIMO system with IV, = 4 transmit antennas and NV, = 3 receive antennas that

transmits K = 3 independent data streams.
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Figure 3.5: BER performance of various MIMO transmission schemes with zero-
forcing linear and DFE systems with N, = 5, N, = 4, and K = 4 simultaneously
transmitted 16-QAM data streams. The schemes considered are: the proposed code-
book designs for the objectives of minimization of the sum of MSEs (Grassmann-6
bits- Sum MSE), minimization of the average BER (Grassmann-6 bits- Min BER);
the optimal zero-forcing design for any Schur-convex design objective with perfect
CSI (ZF DFE - Perfect CSI); the optimal linear zero-forcing design for minimum
MSE (LinZF Min-MSE Perfect CSI) and minimum average BER (LinZF Min-BER
Perfect CSI) [58]; and the linear zero-forcing limited feedback schemes in [48] for
minimum total MSE (LinZF-Grassmann-6 bits Sum MSE) and minimum maximum

MSE (LinZF-Grassmann-6 bits Max MSE).
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Figure 3.6: BER performance of various MIMO transmission schemes with zero-
forcing linear and DFE systems with NV, = 4, N, = 3, and K = 3 simultaneously
transmitted 16-QAM data streams. The schemes considered are: the proposed code-
book designs for the objectives of minimization of the sum of MSEs (Grassmann-6
bits- Sum MSE), minimization of the average BER (Grassmann-6 bits- Min BER);
the optimal zero-forcing design for any Schur-convex design objective with perfect
CSI (ZF DFE - Perfect CSI); the optimal linear zero-forcing design for minimum
MSE (LinZF Min-MSE Perfect CSI) and minimum average BER (LinZF Min-BER
Perfect CSI) [58]; and the linear zero-forcing limited feedback schemes in [48] for
minimum total MSE (LinZF-Grassmann-6 bits Sum MSE) and minimum maximum

MSE (LinZF-Grassmann-6 bits Max MSE).
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3.7 Conclusion

In this chapter, we considered the design of multiple-input multiple-output commu-
nication systems with zero-forcing decision feedback equalization (DFE) when only
limited rate feedback from the receiver to the transmitter is available. We consid-
ered schemes in which the receiver uses its CSI to select the best available precoder
from a codebook of precoders and then feeds back the index of this precoder to the
transmitter using a small number of bits. To facilitate the development of the limited
feedback scheme, a unified design framework was developed for the joint design of the
precoder and the zero-forcing DFE receiver when perfect channel state information is
available at both the transmitter and the receiver. We then characterized the statis-
tical distribution of the optimal precoder in a standard Rayleigh fading environment,
and showed that codebooks constructed from Grassmann packings minimize an up-
per bound on an average distortion measure. Our simulation studies showed that the
proposed limited feedback scheme can provide significantly better performance with
a lower feedback rate than the existing schemes in which the detection order is fed

back to the transmitter.
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Multi-user Systems
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Chapter 4

Robust Linear Broadcasting with
QoS Constraints: SINR

Formulations

In the first part of the thesis, we considered single-user MIMO systems, and we
proposed novel design frameworks for non-linear MIMO transceivers that employ
interference (pre-)subtraction. These design frameworks were developed for commu-
nication scenarios that assume the availability of perfect channel state information
(CSI) at both the transmitter and the receiver, and scenarios with limited feedback
that assume perfect CSI at the receiver only and a low-rate feedback channel between
the receiver and the transmitter. However, as we pointed out in Chapter 1, the perfor-
mance of multi-user systems is more dependent on the availability (and the quality)
of the users’ channel state information, and hence the focus of the second part of this
thesis will be on the design of robust multi-user transceivers that explicitly take into
account channel uncertainty in their design formulations.

In this chapter, we consider the design of linear precoders (beamformers) for
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broadcast channels with Quality of Service (QoS) constraints for each user, in sce-
narios with uncertain channel state information at the transmitter. We consider a
deterministically-bounded model for the channel uncertainty of each user, and the goal
is to design a robust precoder that minimizes the total transmission power required
to satisfy the users’ QoS constraints for all channels within a specified uncertainty
region around the transmitter’s estimate of each user’s channel. Since this problem is
not known to be computationally tractable, we will derive three conservative design
approaches that yield convex and computationally-efficient restrictions of the original
design problem. The three approaches yield semidefinite program (SDP) formula-
tions that offer different trade-offs between the degree of conservatism and the size
of the SDP. We will also show how these conservative approaches can be used to
derive efficiently-solvable quasi-convex restrictions of some related design problems,
including the robust counterpart to the problem of maximizing the minimum signal-
to-interference-plus-noise-ratio (SINR) subject to a given power constraint. Our sim-
ulation results indicate that in the presence of uncertain CSI the proposed approaches
can satisfy the users’ QoS requirements for a significantly larger set of uncertainties

than existing methods, and require less transmission power to do so.

4.1 Introduction

The design of wireless broadcasting schemes that satisfy the quality of service (QoS)
requirements of the intended receivers (users) is of growing interest in interactive com-
munication applications and in the downlink of cellular systems with differentiated
services. Employing multiple antennas at the transmitter (base station) of a wireless

downlink offers the potential for a substantial improvement in the quality of service
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(QoS) that the base station can offer to the assigned users. This potential can be real-
ized by precoding the data symbols intended for each user in a manner that mitigates
the multiuser interference at the (non-cooperating) receivers, and hence improves the
fidelity of the received signals. The transmitter’s ability to mitigate interference at
the receivers is dependent on the availability of (accurate) channel state information
(CSI) for all the users’ channels. For scenarios in which one can assume perfect CSI
is available at the transmitter, the problem of designing a linear precoder' that min-
imizes the transmitted power required to satisfy a set of QoS constraints specified by
the users has been considered in [59-64], and in [28,65-68] for the case of non-linear
precoding.

In practice, the CSI that is available at the transmitter is subject to uncertainties
that arise from a variety of sources, such as estimation error, channel quantization
and short channel coherence time, and downlink precoder design methods that as-
sume perfect CSI are particularly sensitive to these uncertainties; e.g., [8,9]. This
suggests that one ought to incorporate robustness to channel uncertainty into the
formulation of the precoder design problem. One approach to doing so is to consider
a bounded model for the errors in the transmitter’s estimate of the (deterministic) au-
tocorrelation matrices of the channel [61,69]. This uncertainty model may be suitable
for systems with uplink-downlink reciprocity in which the transmitter can estimate
the users’ channels. We will adopt an alternative approach in which we consider
a bounded model for the error in the transmitter’s estimate of the channels. This
uncertainty model is particularly useful for systems in which users feed back quan-
tized channel measurements to the transmitter, as knowledge of the quantization
codebooks can be used to bound the quantization error. For this bounded channel

uncertainty model, we consider the design of a linear precoder that minimizes the

I1Since we will focus on scenarios in which each user has a single antenna, linear precoding is
analogous to downlink beamforming.
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transmitted power required to ensure that each user’s QoS requirement is satisfied
for all channels within the specified uncertainty region. This problem is not known
to be computationally tractable [70], and in order to obtain design methods that are
known to be tractable we will obtain three conservative design approaches that yield
convex and computationally-efficient restrictions of the original design problem.? The
three approaches yield semidefinite program (SDP) formulations that offer different
trade-offs between the degree of conservatism and the size of resulting SDP.

We will also show how these conservative design approaches can be used to obtain
efficiently-solvable quasi-convex formulations of certain restrictions of related design
problems. In particular, we consider the problem of determining the largest uncer-
tainty region for which the QoS requirements can be satisfied for all channels within
the region using finite transmission power. This problem is of considerable interest
in scenarios in which the channel uncertainty is dominated by the quantization error
incurred in a quantized feedback scheme. In that case, one might wish to choose the
rate of the channel quantization scheme to be large enough (and the quantization cells
small enough) for it to be possible to design a robust precoder with finite power. We
provide quasi-convex formulations of conservative approaches to this problem that
can be efficiently solved using a one-dimensional bisection search. We also consider
the robust counterpart of the problem of maximizing the weakest user’s signal-to-
interference-plus-noise-ratio subject to a given power constraint on the transmitter
(e.g., [63,64]), and we provide quasi-convex formulations of conservative approaches
to that design problem, too. Our numerical experiments will illustrate the impact
that our proposed designs can have on a number of performance metrics. In particu-

lar, these experiments indicate that proposed approaches can satisfy the users’ QoS

2Since these problems are restrictions of the original problem, the transmission power of the
designed precoder is larger than (or equal to) the power that would be required if a tractable
method for solving the original problem was available.
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requirements for a significantly larger set of uncertainties than existing methods, and

require less transmission power to do so.

4.2 System Model

We consider a broadcast scenario with N; antennas at the transmitter which are used
to send independent messages to K receivers, each of which has a single antenna. Let
s € CK be the vector of data symbols intended for each receiver. The transmitter

generates a vector of transmitted signals, x € C™, by linearly precoding the vector s

K
x=Ps= ijsj, (4.1)
J=1

" column of the precoding matrix P, and s; is the j element of

where p; is the j*
s. Without loss of generality, we will assume that E{ss”} = I, and hence, the total

transmitted power is given by
K
te(PEPY= ¥ [’ (4.2)
k=1
At the k'™ receiver, the received signal y; is given by
e = hpx + ny, (43)

where hy € C*M is a row vector® representing the channel gains from the trans-
mitting antennas to the k" receiver, and ny represents the zero-mean additive white
noise at the k'™ receiver, whose variance is o2, . We will find it convenient to use the
vector notation:

y=Hx+n, (44)

3Although treating hy. as a row vector is a mild abuse of notation, it is standard practice.
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where H is the broadcast channel matrix whose k*® row is hy, and the noise vector n
. . H . - 2 2
has covariance matrix E{nn"} = Diag(o;,...,07, ).
We consider broadcast scenarios in which each receiver has a quality of service
requirement that is specified in terms of a lower bound on its signal-to-interference-

plus-noise-ratio
|hyps|®
e
Zj;l,j;ék |hyp;|?2 + 03,
This SINR constraint represents a rather general constraint on the minimum quality

SINRA = Z Y. (45)

of service received by the k™ user. Indeed, the SINR constraint can be translated

into an equivalent constraint on the symbol error rate or the achievable data rate;

e.g., [71].

4.2.1 Precoding with QoS Constraints: Perfect CSI Case

Given perfect CSI at the transmitter, the design of a precoder that minimizes the
total transmitted power required to satisfy the users’ QoS constraints can be stated

as:

K
min Y |pell® (4.62)

subject to - [l ‘ > Y (4.6b)
Zj:l,j;ﬁk |hyp;|* + o7,

This is a convex optimization problem in the precoding matrix P, and can be effi-

ciently solved [59—64}. Indeed, if we make the following definitions,

b = | Refh Im{he |- (4.7)

P — Re{P} Im{P} | (48)
—Im{P} Re{P}

b, = fetp) ; (4.9)
_—Im{Pk}
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we can formulate (4.6) as the following second order cone program (SOCP) with real

variables* [64]:

%ntl t (4.10a)
subject to ||vec([p,, ..., P,J)|| <1, (4.10Db)
|, on]|| < Bibyp, 1<Ek<K, (4.10¢)

where G = /14 1/ .

The primary goal of this chapter is to obtain robust counterparts to (4.10) that
mitigate the impact of imperfect CSI. Before we derive those counterparts, we would
like to point out that when H has full row rank (which requires that K < N;), the
perfect CSI problem (with finite SINR requirements) is always feasible. (The ro-
bust counterparts will not share this property.) Indeed, one feasible solution is to
chose P to be the product of the right inverse of H and a diagonal power loading
matrix with sufficiently large loadings. In practice, however, one may wish to con-
strain the transmission power in various ways, such as constraining the average power
transmitted by each individual antenna (e.g., [72]), E{|z,|*} < P,, 1 < n < N,. An-
other useful power constraint arises from the imposition of a spatially-shaped bound
(e.g., [73], [74]) on the transmitted power, E{x?Q(6)x} < Puape(f) for all § € O,
where Q(6) = v(0)v¥(6), with v(f) being the “steering vector” (e.g., [75]) of the
transmitter’s antenna array in the direction €, Piape(f) is the maximum allowable
power in the direction of #, and © is the set of angles of interest. The later case
is of particular interest in cellular systems in which interference to neighboring cells
needs to be controlled; e.g., [3,76]. Although we will focus on robust versions of the

formulation in (4.10) in the presence of channel uncertainty, in Appendix D we will

“In this chapter and the following one, we have preferred to use formulations with real variables in
order to facilitate computational cost comparisons of different proposed approaches; See Tables 4.1
and 5.1.
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show how these two types of power constraints can be easily incorporated into our

robust formulations.

4.2.2 Bounded Channel Uncertainty Model

We will model the channel uncertainty using a deterministically-bounded additive

uncertainty set. More specifically, we will model the £*® user’s channel as:
hy = hy + ey, (4.11)

where flk is the transmitter’s estimate of the k'™ user’s channel, and e, is the corre-
sponding estimation error. In order to avoid making any assumptions on the statistics
of e, we will merely assume that it lies in the ball ||ex|| < 0k, for some given d;. This
model is a convenient one for systems in which the channel state information is quan-
tized at the receivers and fed back to the transmitter; e.g., [8]. In particular, if the
quantizer is (almost) uniform, then the quantization cells in the interior of the quan-
tization region can be “covered” by balls of size d;. A similar bounded uncertainty
model has been used in the context of generic beamforming systems [77-79], where
it is the error in the estimate of the steering vector that is being bounded, and in
CDMA systems [80].

By using the vector e, = [Re{e;},Im{e;}|. the uncertainty set of each channel

can be described by the following (spherical) region:

U (6r) = {h; | by = hk + e, llell < ok} (4.12)
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4.3 Precoding with QoS Constraints: Uncertain
CSI Case

Given the model for the channel uncertainty in (4.12), our goal is to design a robust
precoding matrix that minimizes the transmitted power required to ensure that the
users’ QoS requirements are satisfied for all channels h, within the uncertainty region
Uy (8x). Using the SOCP formulation in (4.10), this design problem can be formulated
as the following semi-infinite SOCPS:

min t (4.13a)

P,
s. t. ||vec([gl, BA])H <t, (4.13b)
| P,  on,]|| < Behyp,, Vh, e Up(dr), 1<k<K. (4.13¢)

For later convenience, any precoder of finite power that satisfies (4.13¢) will be said
to provide a robust QoS guarantee.

Since h,, is present on both the left and right hand sides of each SOC constraint
in (4.13c), the left and right hand sides of (4.13c) vary together and share the same
ellipsoidal uncertainty region. That joint variation appears to make this problem
difficult to solve, but the formal treatment of the computational tractability of this
problem remains an open problem {70, 81]. Some insight can be obtained by using
a standard transformation (via the Schur Complement Theorem [22]) to write the
SOC constraint ”[b_,c_P_, ank]” < Bebyp, as an equivalent linear matrix inequality

(LMI) [82]
ﬁkhkgk [l—lk.B7 ank]

P, on]" (Bebip,) Lok

SObserve that (4.13c) contains an infinite number of second-order cone constraints, one for each
h; € Uy(ék). '

Fi(B,hy) = > 0. (4.14)
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By substituting h;. = ﬁk + e, in (4.14), the inequality Fx(P,h,) > 0 takes the form:
Fi(P, by, My) = Fi(P, hy) + MyR«(P, ;) + R{ (B, 8:)M} > 0, (4.15)

where the matrices M. and Ry(P, k) are:

M = Ipkio) ® e, (4.16)
»
—/j“p L .P.v 0
R:.(P,6x) = 2R [1 ] : (4.17)
0 (38 ex+1) @ P,

From (4.16), we observe that the uncertainty matrix M. belongs to a subspace M of

block diagonal matrices with equal blocks. Specifically,
M={M|M = Ik Qe, e € RM*2Ne}, (4.18)

Hence, the spectral norm of My, is |[My|| = ||e,|| < dx. Using (4.14)—(4.18), the robust
QoS design problem in (4.13) can also be formulated as the following semi-infinite

robust semidefinite program (SDP):
min ¢ (4.19a)
55

o ”vec([E], BK])H ) (4.19b)

F.(P,h,,M;) >0, VM, € M, |[Mi| <&, 1<k<K  (4.19)

A general instance of (4.19) is NP-hard for a general subspace M, [83]; see
also [81,84]. This result and the undetermined tractability of the robust SOCP in
(4.13) suggest that in order to obtain a robust design technique that is guaranteed
to be computationally tractable, we will need to modify the formulation of (4.13) or
(4.19). In the following section, we will present three conservative design approaches
that yield convex and efficiently-solvable restrictions of (4.13) and (4.19). These ap-

proaches are conservative in the sense that they guarantee that the SINR constraints
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are satisfied for a larger set of channel uncertainties than that described in (4.12), and
hence the resulting transmission power is larger than (or equal to) that of an optimal
solution to (4.13), if such a solution could be found. The three approaches yield SDP
formulations that offer different trade-offs between the degree of conservatism and

the size of the resulting SDP (and hence its computational cost).

4.4 Conservative Approaches to Robust Precoder

Design with QoS Constraints

4.4.1 Robust SOCP with Independent Uncertainty

In this section, we will work directly with the robust SOCP formulation in (4.13).
The presence of h, on both the left and right hand sides of each SOC constraint in
(4.13c) means that these terms vary together and share the same ellipsoidal uncer-
tainty region. We will obtain a conservative robust design by assuming independent
uncertainties for h;, on the left and right hand sides of (4.13¢). Relaxing the com-
mon uncertainty structure in this way will result in a tractable restriction of (4.13)
that can be formulated as an SDP. To obtain that SDP, we will use the following

lemma [81]:

Lemma 4.1. Consider the robust SOCP:
T

min. ¢'x
X

s.t. ||JAx+b]|<ffx+g VA € Y,f e W,

where the ellipsoidal uncertainty regions Y = {A|A = A°+ 3 6, A, |0] <1}
and W= {f [f=1£'+3" ¢ f/, |@|l <1} are independent. This robust SOCP is
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equivalent to the following SDP:

min c¢’x
X, 1, A
A= 1 0 (A% + b)T
s. .10 mi [Alx ... Afxl
| A%x+b [Alx ... A¥%] Al
et g— A [fx ... £f4Tx] i
7% ... 7% T x+g-NI |

O

By writing h, = h, +e, = h, +du, |Jul| < 1, and invoking Lemma 4.1, we obtain

the following SDP formulation of a conservative version of (4.13):

s i
s. 6. ||vec(lpy, -5 PRI S8
Ak — Pk 0
Ap(P, A, o, 1) = | O i Lan,
P, 0] [P, 0"

Bhup. — X SuBip. X
BB Ao, b, o) = | PeBeBe— e Bubip,

6k-/3kgk

(Bk-likgk =

(4.22a)
(4.22b)
[_flk.Bs U?rk]
k[P, 0] >0, 1<k<K,
/\kI(2K+1)
(4.22¢)
>0, 1Sk <E
i) Iow,
(4.22d)

This problem can be efficiently solved using general purpose implementations of in-

terior point methods; e.g., SeDuMi [85].
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4.4.2 Robust SDP with Unstructured Uncertainty

In this section and the following one, we will obtain two conservative robust designs
from the SDP formulation in (4.19) of the original design problem. The difficulty of
solving (4.19) arises from the particular structure that the matrix M must possess.
In this section we will show that if we restrict the robust design so that the SINR
targets are to be satisfied for all |Mg| < & rather than just those My € M that
satisfy |[Mg| < &, then one can obtain an efficiently-solvable problem. That is, we

will show that by replacing (4.19¢) by
Fk(gﬁ_lzl.k*Mk) 2> 07 v ”Mk” < ‘Ska 1 < k < A’: (423)

one can obtain a restriction of (4.19) that can be efficiently solved.

Although (4.23) is simpler than (4.19c¢), it still represents an infinite set of LMIs,
one for each M, that satisfies |[My| < éx. However, by using the following lemma,
which is a special case of a more general result in [84], this semi-infinite LMI constraint

can be precisely transformed into a single LMI.

Lemma 4.2. Let F(x) be a symmetric matriz, and let F(x) and R(x) be affine

functions of x. Then
F(x,M) = F(x) + MR(x) + R"(x)M” >0, V|M]| </ (4.24)

if and only if there exists a scalar T such that
F(x)—7I RT(x)
R(x) 76721
O

By applying the result of Lemma 4.2 to the LMIs in (4.23), we obtain the fol-

lowing efficiently-solvable SDP formulation for a conservative approach to the robust
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precoder design problem:

min t (4.25a)
P.t.71,...,TK
s. t. [Jvec(lp,s -+ P <t (4.25b)
Fio(P.hy) — 7% Iiaks2y RT(P, i
KB hy) — 7 Lok o) (B, Br) >0, 1<k<K, (4250
R(_Ea ﬂk) Tk(s]:QIq

where F.(P, ﬁk) and R(P, 8.) were defined in (4.14) and (4.17), respectively, and
q=4N,(K +1).

4.4.3 Robust SDP with Structured Uncertainty

The efficiently-solvable conservative formulation in (4.25) was obtained by relaxing
the structural constraint M € M in (4.19). In this section we will obtain a less
conservative formulation of (4.19) that results in an SDP that retains this structural
constraint.

We begin with a definition. Given an arbitrary subspace of matrices M, let B,

denote the following set of matrices associated with M:

By, = {(S,T,G)|SM = MT, GM = -M'G”, vM e M}. (4.26)

S

For the subspace M in (4.18), applying (4.26) yields:
T=S®Ly, G=0, (4.27)

where S € RZE+2)x(2K+2)  Although the construction of B may appear to be
arbitrary, it enables us to develop an SDP formulation of a conservative design that
retains the structure My € M. To do so, we will use the following result, which is a

special case of a more general result in [84].
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Lemma 4.3. Consider the following robust SDP problem:

min ¢/x

X

s. t. F(x,M)=F(x)+MR(x)+R7'xM?” >0, YMeM, |[M| <3,

where F(x) and R(x) are affine functions of x, and the subspace M is arbitrary. Let
B, denote the set of matrices in (4.26) associated with M. An upper bound on the
optimal value of this robust SDP and a corresponding solution x can be obtained by
solving the following SDP:
min_ ¢’x
x.S,T.G
s. t. (S,T,G) € Bp,
S >0,
F(x)-S RTx)+G
R(x)— G 67°T
O

By applying Lemma 4.3 to (4.19), using the characterization of Bps in (4.27), it
can be shown that the solution of the following SDP generates a conservative solution

to the original design problem:

min t (4.30a)
Pt
Sk=SZ, 1<k<K

gt ddivee((p,; voi PR llSE, (4.30b)
F.(P.hy) — S RT(R.6)
R(P, () 8 %Sk ® L,

>4

— b

1<k<K, (430c)

where Fk(_l?_,ﬁk) and R(P, ;) are as defined in the previous section, and we have

exploited the fact that (4.30c) implies that S; ® I > 0 and hence that S; > 0, which
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eliminates the constraints that would have been generated by the constraint S > 0 in
Lemma 4.3. We would like to point out that the SDP in (4.25) is the special case of
the SDP in (4.30) that is obtained when Sy = 7.I. Therefore, the solution of (4.30)
yields a tighter upper bound on the minimum power required to solve the original

problem than the solution of (4.25).

4.4.4 Some Comparisons

As we have just pointed out, the structured robust SDP in (4.30) yields a tighter
upper bound on the minimum transmission power than the unstructured SDP in
(4.25). Furthermore, our numerical experiments suggest that the unstructured SDP in
(4.25) provides a tighter upper bound than that obtained from the robust SOCP with
independent uncertainties in (4.22). Given this performance hierarchy, it is of interest
to examine the relative size and structure of each of the proposed formulations, and
that of the design problem for the case of perfect CSI; c.f. (4.10). We have collected
this information in Table 4.1, where the “core” design variables are the 2/N; K unique
elements of P and the scalar ¢. In the robust SOCP formulation, each (unique)
element of P enters all of the LMIs in (4.22¢) and one of the LMIs in (4.22d), and in
the robust SDP formulations, each element of P enters all the LMIs. The additional
variables in the robust SOCP formulation are the 2K scalars, Ay and u. Each Ay is
involved in 2 LMIs (one from the set in (4.22¢) and one from the set in (4.22d)) and
each p. is involved in only one. The additional variables in the unstructured robust
SDP formulation are the K scalars 73, and each one is involved in only one LMI. In
the structured robust SDP formulation, the additional variables take the form of the
K symmetric matrices Sy, each of which is of size (2K +2) x (2K +2) and is involved
in only one LMI. In addition to the structure of the additional variables, Table 4.1 also

emphasizes the fact that the constraints in the two robust SDP approaches have the
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same structure, while that of the robust SOCP approach is somewhat simpler. These
observations show that the improved bounds provided by the robust SDP approaches
do incur an increase of the size of the SDP. However, our numerical experiments in
Section 4.6 suggest that in some applications the improved performance will justify

this increase in size.
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Table 4.1: A comparison of the size and structure of various design methods

Method Number of Variables Number of Constraints
Core Additional SOC LMI
num; size num; size
Perfect CSI (4.10) 2N K +1 12N K +1
K K+2

K lin. equalities

Robust SOCP (4.22) INK +1 2K 1; 2N K + 1 K; 2N, + 2K +2

K 2N, +1
Robust SDP, Unst. (4.25) INK+1 K 1; 2N K + 1 K; 2(K + 1)(2N, + 1)
Robust SDP, Struct. (4.30) 2N, K +1 K(K+1)(2K +3) 1;2NK +1 K; 2(K + 1)(2N, + 1)
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4.4.5 Maximum Allowable Uncertainty Size

Up until this point, we have focused on problems in which the goal has been to
minimize the transmission power required to guarantee that the SINR of each user
exceeds the required value for every channel uncertainty in the bounded set in (4.12).
As mentioned in Section 4.2, for the class of systems with full row rank channel
matrices, H, the QoS requirements can always be satisfied in the absence of channel
uncertainty, but this is not the case when the transmitter’s model for the channel
is inaccurate. This fact raises the question of whether one can determine, for a
given set of channel estimates, the largest uncertainty set for which the robust QoS
guarantee can be made. That is, find the largest value of J, namely dy,ax, such that
(4.13) (or (4.19)) has a finite solution. This problem is of interest in the design of
quantization codebooks for feeding back estimates of the channel to the transmitter.
In particular, one may wish to choose the rate of the codebooks to be large enough
(and the quantization cells small enough) so that it is possible to design a robust
precoder with finite power. As we will point out below, we can obtain efficiently
solvable formulations for lower bounds on d,,.x by using the conservative approaches
to the robust QoS design problem.

Using the first conservative approach in Section 4.4.1, it can be shown that the

optimal value of the following problem is a lower bound on ay:

Joax - p (4.31a)
S. t: Ak(E /\k,ﬂk,p) Z 0, 1 S k S K, (431b)
Bk(_l?_’ Akvp,' /gk) 2 0, 1 S k S I(. (431(‘)

where Ai(P, A, ik, p) and By (P, Ak, p, Bi) are as defined in (4.22¢) and (4.22d), re-
spectively. Although similar to (4.22), the above problem is not jointly convex in P

and p, since the constraints (4.31b) and (4.31¢) are not jointly affine. However, this
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problem is quasi-convex (c.f. [82]), and an optimal solution can be efficiently found
using a one-dimensional bisection search on p in which the problem solved at each
step is the convex feasibility problem corresponding to (4.31) with a fixed value for
p.

Using the structured robust SDP approach in Section 4.4.3, it can be shown that
Omax > (a*)™V2, where a* is the optimal value of the following quasi-convex opti-

mization problem

min et (4.32a)

P.o

t

S,=8T, 1<k<K
Fi(P,h,) ~S; RT(P,5
5. t. «(Bby) =S RUE.G) >0, 1<k<K.  (4.32b)
R(Eq )Bk) aSy ® I?N¢
(The unstructured robust SDP approach leads to the special case in which S = 7;I.)

This problem can be solved using bisection search on a. Furthermore, by observing

that the constraints in (4.32b) can be written as

10 0 | “Fu(®hy) +8: —R"(B,5) S0, 1<k<K. (433)
0 Si® Iy, ~R(P, 6k 0

one can show that (4.32) is equivalent to minimizing the largest generalized eigen

value of a pair of (block diagonal) symmetric matrices that depend affinely on the

decision variables [84,86]. Identifying (4.32) as lying within this class of problems is

of interest because efficient algorithms that exploit the structure of the constituent

matrices in (4.33) are available for such problems; c.f. [86,87].

4.5 Fair SINR Maximization

In the previous section, we considered problems that required each user to be provided

with an SINR that is at least as large as a given SINR requirement, even in the
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presence of uncertainty. In this section, we consider the related problem of maximizing
the SINR of the “weakest” user subject to a transmitted power constraint, in scenarios
with uncertain CSI. Problems of this form are sometimes called max-min fair SINR
problems; e.g., [63,64]. While most formulations of max-min fair SINR problems have
focussed on the case of perfect CSI, under the bounded uncertainty model in (4.12)

the robust max-min fair SINR problem can be stated as®

max "o (4.34a)

Py

s. t. SINRi > 70, Vh, € Up(6), 1<k<K, (4.34b)
Sr(PP) < P, (4.340)

By defining 3y = /1 + 1/ and using the SOC characterization of the QoS con-
straints in (4.10c), this problem can be cast as the following (semi-infinite) quasi-
convex optimization problem (see [64] for a related formulation for the case of perfect

CST)

in Bo (4.35a)
s. t. ||, onl| < Gobyp,, Vb €U(d), 1<k<K, (4.35b)
||vec([_p_1. ER])“ < Piia (4.35¢)

6Although we will not discuss them here, the “per-antenna” and “shaping” power constraints
discussed in Appendix D can be easily incorporated into the proposed framework.
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Efficient formulations for precoders that minimize upper bounds on Gy (and hence
maximize lower bounds on ~p) can be obtained by applying the conservative ap-
proaches of Section 4.4 to (4.35). In particular, by applying the robust SOCP ap-

proach in Section 4.4.1, one obtains the following quasi-convex problem:

E,r;?.l},lﬁo Bo (4.36a)
s. t. Ap(P,Ar, i, 01) >0, 1<k<K, (4.36b)
Bi(P, A\, 0k, ) >0, 1<k<K, (4.36¢)
Hvec([El, EA])” < Piotals (4.36d)

where Ay (P, Ay, ttx, 0x) and Bi(P, Ay, 0k, 0p) were defined in (4.22c¢) and (4.22c), re-
spectively. This problem can be efficiently solved by using a bisection search on 3y
in which problem solved at each step is the convex feasibility problem generated by
(4.36) with a fixed value of fy. Similarly, the structured robust SDP approach of
Section 4.4.3 yields the following quasi-convex problem that can also be efficiently

solved using a bisection search on fy:

min 4.37a
.Ea/a() ﬁo ( )
8,=Si.1<k<K

F«(P,h,) - S, RT(P,
s. t. B by =8 RUB M) 0, 1<k<K, (4.37h)

R(P,5) 8281 ® Loy, -

vec([p,, -+ Pil)|| < Potar- (4.37c)

4.6 Numerical Results

In this section we will compare the performance of the three proposed approaches to
robust QoS precoding, namely the robust SOCP design (RSOCP) with independent
uncertainty in Section 4.4.1, the unstructured robust SDP (RSDP-Unstruct.) in
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Section 4.4.2, and the robust SDP that preserves structure (RSDP-Struct.) in Section
4.4.3. We will also provide performance comparisons with some existing approaches,
namely the robust autocorrelation matrix approach in [61,62] (Robust Correl. Appr.),
and the robust downlink power loading approach in [69]. The approach in [69] requires
the beamforming vectors to be specified, and we will consider two choices: the columns
of the pseudo-inverse of H (Robust Power Load. 1); and the beamforming vectors
obtained by assuming that H is the actual channel and using the existing methods
for QoS precoding with perfect CSI [59-64] (Robust Power Load. 2). The approaches
in [61,62] and [69] are based on uncertainty models that are different from the one in
(4.12), and from each other. The approach in [61,62] considers a model in which the
spectral norm of the error in the (deterministic) autocorrelation matrix C; = h'h,
is bounded, and in the approach in [69] the Frobenius norm of the error in Cy is
bounded. However, by bounding these norms of Cj in terms of the norm of e, a
comparable uncertainty set can be generated.” We will compare these schemes in an
environment with N; = 3 transmit antennas and K = 3 users. In our experiments,
we will evaluate performance statistics for the standard case of independent Rayleigh
fading channels in which the coefficients of the fading channels are modeled as being
independent proper complex Gaussian random variables with zero-mean and unit
variance, and the receivers’ noise sources are modeled as zero-mean, additive, white,
and Gaussian with unit variance.

In our first experiment, we randomly generated 2000 realizations of the set of

channel estimates {ﬁk},{_":l and examined the performance of each method in the

7A bound on the spectral norm of the error in the matrix Cj, can be obtained as follows: II( hy +
e) (By+ex)—hi by || = B e-+ell y+efley]| < [ ex|+ e hyll+]lefex | = 2(/hyllllex | +]lex]
The same bound also holds for the Frobenius norm, since the matrices on the immediate right hand
side of the inequality are all rank one. Furthermore, the uncertainty e, = d;hy / ||f1k|| achieves this
upper bound with equality for both norms. (See also [88].) That said, the uncertainty models
in [61,62,69] accommodate matrices that are not positive semidefinite, whereas the model proposed
in Section 4.2.2 always results in a positive semidefinite autocorrelation.

99



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

presence of equal uncertainty, d; = 8, Vk. The QoS requirement of each user is that
the SINR is at least 10 dB. For each set of channel estimates and for each value of §
we determined whether each design method is able to generate a precoder (of finite
power) that guarantees that the SINR constraints are satisfied in the presence of the
modeled uncertainty. In Fig. 4.1 we provide the percentage of the 2000 channel real-
izations for which each method generated a precoder with finite power, as a function
of the size of the uncertainty. From this figure, it is clear that the RSDP approach
that preserves the structure of the uncertainty is able to provide robust QoS guaran-
tees for a significantly larger percentage of the channels and for significantly larger
uncertainty sets than the other methods. The unstructured SDP approach provides a
reasonable degree of robustness to channel uncertainty compared to that provided by
the RSOCP approach, the robust autocorrelation approach in [61,62], and the robust
power loading approach in [69].

In our second experiment, we selected those sets of channel estimates from the
2000 sets used in the first experiment for which all design methods were able to pro-
vide robust QoS guarantees for all uncertainties with ¢ < 0.015. We calculated the
average, over the 609 such channel environments, of the transmitted power required
to achieve these robust QoS guarantees and we have plotted the results for different
values of ¢ in Fig. 4.2(a). The average transmitted power approaches infinity for a
certain value of 6 when for one (or more) of the channel estimates the method un-
der consideration cannot provide the robust QoS guarantee with finite power. The
excellent performance of the structured RSDP method and the good performance
of the unstructured RSDP method that were apparent in Fig. 4.1 are also apparent
in Fig. 4.2(a). In Fig. 4.2(b), we provide a detail of Fig. 4.2(a) in order to demon-
strate the relative difference in the performance of the RSOCP approach, the robust

autocorrelation approach in [61,62], and the robust power loading approach in [69].
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Figure 4.1: Percentage of channel realizations for which the robust QoS guarantee

can be made against the uncertainty size 9§, for a system with N, = 3 and K = 3.

In the third experiment, we used the 2000 randomly generated realizations of
the estimates of the channel environments from the first experiment, and for each
scenario we used the methods in Section 4.4.5 to find lower bounds on the value of
the uncertainty, dyayx. above which each design method is unable guarantee the SINR
requirements in the presence of the modeled uncertainty. In these experiments the size
of uncertainty was the same for each user (i.e., 6, = 4, Vk), and the minimum SINR
requirement of each user was 10 dB. In Fig. 4.3 we plot the cumulative distribution
function (CDF) of the lower bound on dy,ax for each method. From this figure, it is
clear that the relative performance of each method under this performance metric is
similar to that established from the first two experiments.

In the fourth experiment, we examine the performance of the 2000 randomly
generated realizations of the set of channel estimates {ﬁk},{)’:] in the presence of equal

uncertainty, 6, = ¢ = 0.05, Vk. The SINR requirements of the three users are equal
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Figure 4.2: Average of the transmitted power tr(P”P), on a linear scale, versus

uncertainty size § for a system with Ny = 3 and K = 3. Part (b) is a detail of
part (a).
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Figure 4.3: The (empirical) cumulative distribution function (CDF) of lower bounds

on Opyax for a system with N, = 3 and K = 3.

and varied from 0 to 25 dB. For each set of channel estimates and for each value of
the required SINR we determined whether each design method is able to generate a
precoder (of finite power) that guarantees the required SINRs. In Fig. 4.4 we provide
a histogram of the fraction of the 2000 channel realizations for which each method
generated a precoder with finite power. From this figure, it is clear that both robust
SDP approaches are able to provide robust QoS guarantees for a wider range of
required SINRs than the other methods, with the structured SDP approach having a
significant advantage.

In the fifth experiment, we selected all the sets of channel estimates from the 2000
sets used in the previous experiment for which all design methods were able to provide
robust QoS guarantees for all SINRs less than or equal to 6dB. We calculated the
average, over the 264 such channel environments, of the transmitted power required

to achieve these robust QoS guarantees. We have plotted the equal SINR requirement
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Figure 4.4: Percentage of channel realizations for which the robust QoS guarantee

can be made against the required SINRs, for a system with N; = 3 and K = 3.

of each user versus the average transmitted power in Fig. 4.5. In order to assess the
additional power required to achieve robustness, we have included the corresponding
curve for the case of perfect CSI at the transmitter; c.f. [59-64] and (4.10). This figure
illustrates the saturation effect that channel uncertainty imposes on the growth of the
SINR of each user with the transmitted power. This effect was observed in [8] for
non-robust linear precoding on the MISO downlink with quantized CSI. Fig. 4.5 also
illustrates the role that robust precoding can play in extending the SINR interval over
which linear growth with the transmitted power can be achieved. This is particularly
evident for the robust SDP approaches.

In the sixth experiment, we examine the performance of the 2000 randomly gen-
erated realizations of the set of channel estimates {h;l}{‘:1 in the presence of equal
uncertainty, d; = 6 = 0.05, Yk. The SINR requirements of the three users are equal

and varied from 0 to 25 dB. For each set of channel estimates, we determine the
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Figure 4.5: Maximum achievable (equal) SINRs against the average transmitted

hower, for a system with N; = 3 and K = 3.
I ;

maximum value of the SINR, SINR,,.x, above which each design method is unable
to guarantee the SINR requirements. In Fig. 4.6 we plot the CDF of SINR,,.x for
each method. From this figure, it is clear that the three proposed approaches are able
to provide SINR guarantees for significantly larger values of SINR than the robust
power loading approaches in [69] and the robust autocorrelation approach in [61,62].

In the last experiment, we assess the degree of conservatism of each method by
studying the statistics of the actual received SINRs for channel realizations within
a given uncertainty bound. Scenarios in which the actual SINRs are likely to be
significantly higher than the requested SINRs indicate that the transmitter adopts
a more conservative approach that requires higher transmitted power. Ideally, when
perfect CSI is available at the transmitter, the actual received SINRs are equal to
the requested ones, i.e., all QoS constraints are achieved with equality [59-64]. In

this experiment, we selected the sets of channel estimates from the 2000 sets used in
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Figure 4.6: The (empirical) cumulative distribution function (CDF) of SINRax for
a system with Ny =3 and K = 3.

the first experiment for which all design methods were able to provide robust QoS
guarantees of 10 dB for all users for the uncertainty bound § = 0.015. For each of
the 609 such channel environments, we randomly generated 100 channel uncertainties
that were uniformly distributed in direction and whose norms were equal to 0.01.
In Fig. 4.7 we plot the CDF of the actual received SINRs for each design method.
To help interpret this figure, in Tab. 4.2 we have provided the average transmission
powers of each design method. It is apparent from Fig. 4.7 and Tab. 4.2 that the
proposed approaches are able to save transmission power by reducing the likelihood

that a user’s SINR requirement is substantially over-satisfied.
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Figure 4.7: The (empirical) cumulative distribution function (CDF) of the actual

received SINRs for a system with N; = 3 and K = 3 and a target SINR of 10 dB.

Table 4.2: Transmission powers for Fig. 4.7

Approach Transmission Power, tr(P¥P)
Robust Power Load. 1 44.70
Robust Power Load. 2 42.64
Robust Autocorr. 42.60
RSOCP 39.19
RSDP-Unstruct 27.31
RSDP-Struct 22.49
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4.7 Conclusion

In this chapter, we have considered linear precoding (beamforming) for broadcast
channels with QoS constraints in the presence of uncertain CSI at the transmitter.
We studied the design of a robust linear precoder that minimizes the total transmitted
power while satisfying the users’ QoS constraints for all channel realizations within
a bounded uncertainty region around the transmitter’s estimate of each user’s chan-
nel. Since that problem is not known to be computationally tractable, we presented
three conservative design approaches that yield convex and computationally-efficient
restrictions of the original design problem. We also showed how the conservative
design approach could be used to obtain efficiently-solvable quasi-convex restrictions
of some related problems, including the robust counterpart of the problem of maxi-
mizing the minimum SINR subject to a given power constraint. As illustrated by the
simulations, the proposed approaches can satisfy the users’ QoS requirements for a
significantly larger set of uncertainties than existing methods, and require less trans-
mission power to do so. In the following chapter, we present a different approach to
the design of robust broadcast channels with QoS requirements in which each user’s
QoS requirement is formulated as a constraint on the mean square error in its signal.
This approach can be applied to both linear and non-linear transceivers, and robust
design formulations can be obtained for a more general class of bounded uncertainties

than those in treated by the approaches presented in this chapter.
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Chapter 5

Robust Non-Linear and Linear
Broadcasting with QoS

Constraints: MSE Formulations

In the previous chapter, we developed robust linear precoding designs for broadcast
channels with users’ QoS requirements in the presence of bounded uncertainty at the
transmitter. The QoS requirements were formulated as constraints on the SINR of
each user’s received signal. In this chapter, we adopt a different approach to the design
of robust transceivers for broadcast channels with bounded uncertainty. We formulate
each user’s QoS requirement as a constraint on the mean square error (MSE) in its
received signal, and we show that these MSE constraints imply constraints on the re-
ceived signal-to-interference-plus-noise-ratio (SINR). Using the MSE constraints, we
present a unified approach to the design of linear and non-linear transceivers with QoS
requirements that must be satisfied in the presence of bounded channel uncertainty.
The proposed designs overcome the limitations of the approaches of Chapter 4 that

provide conservative designs or are only applicable to the case of linear precoding.
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Furthermore, we provide computationally-efficient design formulations for a rather
general model of bounded channel uncertainty that subsumes many natural choices
for the uncertainty region. We also consider the problem of the robust counterpart
to precoding schemes that maximize the fidelity of the weakest user’s signal subject
to a power constraint. For this problem, we provide quasi-convex formulations, for
both linear and non-linear transceivers, that can be efficiently solved using a one-
dimensional bisection search. Our numerical results demonstrate that in the presence
of bounded uncertainty in the transmitter’s knowledge of users’ channels, the pro-
posed designs provide guarantees for a larger range of QoS requirements than other
approaches that consider bounded channel uncertainty models, and require less trans-

mission power in providing these guarantees.

5.1 Introduction

For the downlink of cellular systems in which each receiver has a single antenna and
the QoS requirements were formulated as constraints on the signal-to-interference-
plus-noise (SINR) of each user, the design of a linear precoder that minimizes the
transmitter power required to guarantee that each user’s QoS requirement is satis-
fied for all admissible channels was considered in Chapter 4. While the methods
proposed in Chapter 4 provide tractable design formulations and significant improve-
ments in performance over previous existing designs, those approaches have two limi-
tations. First, they are not directly applicable to non-linear precoding schemes, such
as Tomlinson-Harashima precoding (THP). Second, when QoS is quantified in an
SINR sense, the robust linear QoS problem resulted in designs whose tractability
is an open problem; see also [70]. In order to obtain tractable designs, a conserva-

tive design approach was taken, and that approach requires the SINR constraints
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to be satisfied for a superset of channels that subsumes the original bounded set of
admissible channels.

In this chapter, we address both these limitations by providing tractable formu-
lations (in the form of semidefinite programs) of both linear and non-linear downlink
precoding schemes that minimize the transmitted power required to ensure that each
user's QoS requirement is satisfied for all admissible channels, without expanding
the admissible set. We formulate each user’s QoS requirement as a constraint on
the mean square error (MSE) in each user’s received signal, and we show these MSE
constraints imply constraints on the received SINR of each user. Since the QoS is
measured in terms of MSE, our approach is immediately applicable to non-linear
Tomlinson-Harashima precoding, and the resulting designs include those for linear
precoding as a special case. Furthermore, the proposed designs (for the linear case)
are obtained with lower computational cost than those based on SINR formulations
of the QoS requirements in Chapter 4.

We will present a unified treatment of a rather general bounded model for the
channel uncertainty that can represent uncertainty regions resulting from a variety of
sources of imperfection, including channel quantization errors. The model naturally
includes channel uncertainty regions that are described using intersection of multiple
uncertainty sets, e.g., the interval constraints on the entries of each user’s channel
that would arise from scalar quantization. While we will provide exact robust de-
sign formulations for these types of uncertainties, we will also provide conservative
formulations that reduce the computational complexity of the design for these cases.

Analogous to Sections 4.4.5 and 4.5, the proposed design approaches of this chap-
ter can be extended to obtain efficiently-solvable quasi-convex formulations of some
related design problems. In particular, we consider the robust counterpart of the

problem of maximizing the fidelity of the weakest user’s signal (minimizing the largest
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MSE among the users). For precoding schemes that assume perfect CSI at the trans-
mitter, this problem was studied for the case of linear precoding schemes in [63,64].
For the bounded channel uncertainty model, tractable conservative approaches to the
robust counterpart of this problem for linear precoders were provided in Section 4.5
(for the case of SINR constraints), but the problem has remained open for the case of
non-linear precoding. We provide quasi-convex formulations of this robust minimax
problem (for MSE constraints), for both non-linear and linear precoding schemes.
These formulations can be efficiently solved using a one-dimensional bisection search,
or by formulating the problem as a generalized eigenvalue problem; e.g., [86].

We also consider the problem of determining the largest uncertainty region for
which the QoS requirements can be satisfied for all admissible channels using finite
transmission power. This problem is of considerable interest in the design of quan-
tization codebooks for quantized channel feedback schemes. In that case, one might
wish to choose the rate of the channel quantization scheme to be large enough (and
the quantization cells small enough) for it to be possible to design a robust precoder
with finite power. We provide quasi-convex formulations of this problem, too.

Our numerical results demonstrate the effectiveness of the proposed approach.
In particular, the proposed designs provide guaranteed satisfaction of a larger set of
QoS requirements than other approaches that consider bounded channel uncertainty
models, even when the QoS requirements are specified in terms of SINRs, and that

they expend less transmission power in satisfying these requirements.

5.2 System Model

We consider the downlink of a multiuser cellular communication system with NV,

antennas at the transmitter and K users, each with one receive antenna. We consider
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systems in which Tomlinson-Harashima precoding (THP) is used at the transmitter
for multi-user interference pre-subtraction; e.g., [10,16]. As shown in Fig. 5.1, TH
precoding can be modelled using a feedback matrix B € CKX*X and a feedforward
precoding matrix P € CM*X_ Since linear precoding is the special case of the THP
model in which B = 0, we will focus our development on the THP case and will
extract the special case results for linear precoding as they are needed.

The vector s € CX in Fig. 5.1 contains the data symbol destined for each user,
and we assume that s is chosen from a square QAM constellation § with cardinality
M and that E{ss”’} = I. The Voronoi region of the constellation V is a square whose
side length is D.!' In absence of the modulo operation, the output symbols of the
feedback loop in Fig. 5.1, v;, would be generated successively according to v, = s —
}:;‘;11 B, jv;,, where only the previously precoded symbols v, .., vx_; are subtracted.
Hence, B is a strictly lower triangular matrix. The role of the transmitter’s modulo
operation is to ensure that v, remains within the boundaries of V, and its effect is
equivalent to the addition of the complex quantity i = #§¢ D + j i;"’ D to wy,
where i}¢, i,"* € Z, and j = v/—1 . Using this observation, we obtain the standard
linearized model of the transmitter that does not involve a modulo operation, as

shown in Fig. 5.2; e.g., [10]. For that model,
v = (I+B)u, (5.1)

where u = i+ s is the modified data symbol. As a result of the modulo operation,
the elements of v are almost uncorrelated and uniformly distributed over the Voronoi
region V [10, Th. 3.1]. Therefore, the symbols of v will have slightly higher average
energy than the input symbols s. (This slight increase in the average energy is termed

precoding loss [10].) For example, for square M-ary QAM we have o? = E{|v;|*} =

!The length of the side of the constellation D is equal to v/Md, where d is the distance between
two successive constellation points along either of the basis directions.
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Figure 5.1: Broadcast channel with Tomlinson-Harashima precoding at the transmit-

ter.

B

Figure 5.2: Equivalent linear model for the transmitter.

L-E{|sx|*} for all k except the first one [10]. For moderate to large values of M this
power increase can be neglected and E{vv"} = I is often used; e.g., [10,13,16]. Hence,
the average transmitted power constraint can be written as Ey{xx} = tr(P7P).

The signals received at each user, y, can be written as
Y = hyx + g = e P(I+ B) 'u+ ny, (5.2)

where h;, € C*? is a row vector representing the channel gains from the transmitting
antennas to the k" receiver, and n; represents the zero-mean additive white noise at
the k™ receiver, whose variance is o2, . At each receiver, the equalizing gain g is used
to obtain an estimate i, = gihxP(I + B)™'u + ggn; of the modified data symbol uy.

Following this linear receive processing step, the modulo operation is used to obtain
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§. In terms of the modified data symbols, we can define the error signal
Gy — up = (grhieP — my — by)v + grny, (5.3)

where m;. and b, are the £" rows of the matrices I and B, respectively. The error
signal in (5.3) is equivalent to §; — sx when the integer i, is eliminated by the modulo
operation at the receiver, which occurs with high probability even at reasonably low
SINRs. Using this error signal, the Mean Square Error (MSE) of the &' user is given
by

MSE;, = E{|llk B Uk|2} = ”gkhkP —=TF] bk,”2 e |g1,, 252

g

H [gkhk.P ~ g — by gkak] H2 (5.4)

5.3 Transceiver Design with MSE Constraints:

Perfect CSI case

In this chapter, we will consider downlink scenarios in which each user has a quality
of service constraint that is expressed in the form of an upper bound on its mean
square error, MSE;. The formulation of QoS design problem in terms of the MSEs is

motivated by the following result.

Lemma 5.1. For any given set of user’s channels {hy }X_, , if there exists a transceiver
design P, B, g;. that guarantees that MSE;. < (x, then that design also guarantees that
SINRy. 2 (1/¢) — L.

Proof. See Appendix E. O

As we will point out below, in the case in which accurate CSI is available at the

transmitter, a stronger result holds, namely that SINR; = (1/(x) — 1. The statement
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in Lemma 5.1 implies that if we guarantee that the MSE is below a certain threshold
for all channels in a given set, then this implies a guarantee on the SINR for all
channels in the same set. This implication enables us to develop robust QoS designs
based on MSE constraints. As we will show in the remaining sections of the chapter,
doing so leads to designs with better performance, lower complexity and broader
applicability than existing designs in [62,69] and in Chapter 4, that are based on
SINR constraints, even though the QoS constraints are specified in terms of SINR.
In order to facilitate our development of robust precoding schemes with QoS con-
straints, we will briefly consider the design problem for the case in which the trans-
mitter has accurate knowledge of the users’ channels. Iterative design approaches
for the perfect CSI case have been considered in [28,66,68], and the design problem
was considered under zero-forcing criteria in [65,67]. Our approach to the perfect
CSI case includes deriving a convex conic formulation of the Tomlinson-Harashima
transceiver with QoS constraints. This formulation will enable us to develop robust
counterparts for the case of bounded channel uncertainty, and will allow the incorpo-
ration of different power constraints on the transmitter. In the case of perfect CSI,
the design of the downlink transceiver components P, B and g, so as to minimize
the total transmitted power subject to satisfying the users’ MSE requirements can be

formulated as

PmBjn || vec(P)||? (5.5a)

3,9k

2
subject to “ [gk.hkP — my — by, gkcrk] H < (. (5.5h)

In the following lemma, we will show that g can be chosen to be real without loss

of generality.

Lemma 5.2. Consider the design problem in (5.5). If {|gi| €%}, P, and B are the

optimal equalization gains, precoding matriz and feedback matriz, respectively, then
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{lgx|}, P Diag(e’®,...,e’%), Diag(e™%,... e %) B Diag(e’®,..., e/ ) are also

’

optimal.
Proof. Consider the transceiver whose parameters are {|gi|}, P Diag(ei®,. .., e/%),
Diag(e =3 ,...,e %) B Diag(e?®,...,e’%). Then, the left hand side of the MSE
constraint of the &' user in (5.5b) can be written as
B . By - ! e
efle1=0) (|9k|hkP1530k - bk,l) (|9k|610"hkpl = bk,l)
el @-1=06) (| gi|hypr—167% — br 1) (|gxle?® hypr—1 — brg—1)
(g hypre’® — 1) ¥ (lgxle’® hepy — 1)
ek =0 (|gi|hypxei) (lgx|e’*hipi)
¢ |9k | o ; i |gx| €7% oy, ;
(5.6)
where p; is the j* column of P. By extracting the unitary factor

Diag(e/(®1—%) 10k —0k) ¢=J%) right hand side of (5.6) and exploiting the unitary
invariance of the 2-norm, we obtain the equality in (5.6). The right hand side of (5.6)
is the MSE of k™ user for the transceiver whose parameters are {|g| ¢/}, P, and

B. Furthermore, both transceivers have the same total transmitted power. O

Using the result of Lemma 5.2, the definitions in (4.7-4.9), and the following

definitions
by = [ Refbib/g Tmfbi}/a - 6.7
me = | Refm) Im{m} |, (5.8)
fe = 1/gk; (5.9)
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where, by definition, Im{my,} = 0, the design problem in (5.5) can be formulated as

a convex Second Order Cone Program (SOCP)

min ¢t (5.10a)

P.B. fi, t
subject to  ||vec(P)]| <, (5.10b)
IbP ~ fimy by on ]l < VS 1<Sk<K. (5.100)

This problem can be efficiently solved using general purpose implementations of inte-
rior point methods [89,90]; e.g.. SeDuMi [85]. It can be shown using a contradiction
argument that the solution to (5.10) results in MSE; = (. for all k. This equality
enables a stronger conclusion than that Lemma 5.1, namely that in the case of per-
fect CSI, SINR; = 1/MSE; — 1, e.g., [28]. Another advantage of the convex conic
formulation in (5.10) is the possibility to include shaping constraints (e.g., [73,91])
on the power transmitted from the antennas; See Appendix D. These constraints
are expressed as either second order cone or positive semidefiniteness constraints on
the precoding matrix P. The SOCP formulation can also incorporate multi-cell de-
signs with per-cell power constraints on sets of antennas that belong to the same
cell. These per-cell power constraints can also be formulated as second order cone
constraints on P; See [92,93]. More importantly, however, the convex formulation in
(5.10) enables us to derive robust counterparts of the original design problem in (5.5)

for the uncertainty models presented in the following section.
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5.4 General Class of Bounded Channel Uncer-

tainty Models

We will consider an additive uncertainty model of the form:
A~ ~ J . -
Ur(Ok, ., Qi) = {by | by = by + & =y + Y we, wiQuwi <67}, (5.11)
j=1

where hy is the transmitter’s estimate of the k" user’s channel, and ey is the cor-
responding error. The above model enables us to treat several different uncertainty

regions in a unified way. For example, it can model the following uncertainty sets:

¢ Ellipsoidal and Spherical Uncertainty Sets: By choosing Q. = I, the uncertainty
set in (5.11) describes an ellipsoidal uncertainty region around the channel es-
timate ﬁk The spherical uncertainty set in (4.12) with center _lik and radius
dr is the special case that arises when ®;, the matrix whose rows are ¢}’ )| is

selected to be Ioy,.

e Interval Uncertainty Sets: Interval constraints on each element of h, can also
be modeled as uncertainty sets of the form in (5.11). By taking ®; to be Iy,
and Qi to be the matrix whose only non-zero element is Q;; = 1, then the

uncertainty set in (5.11) models an interval constraint on the i*®

entry of the
error h;. Interval constraints on multiple entries of h, can be represented as

the intersection of uncertainty sets on the form (5.11); see Section 5.5.1.

The additive uncertainty model in (5.11) is useful for systems in which the chan-
nel state information is quantized at the receivers and fed back to the transmitter;
e.g.. [8,9,79,94,95]. If a vector quantizer is employed at the receivers, then the quan-

tization cells in the interior of the quantization region can be often approximated by
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ellipsoids [96]. This ellipsoidal approximation can be substantially better than spher-
ical approximation when the channel coefficients are correlated, e.g., [97,98]. On the
other hand, if a simple scalar quantizer is employed, the quantization regions can be

modeled using a set of interval constraints.

5.5 Transceiver Design with MSE Constraints:

Uncertain CSI Case

In this section, we will design a robust transceiver that minimizes the total trans-
mitted power necessary to guarantee that the users’” MSE requirements are satisfied
for all admissible channels h, in the uncertainty region U (d;) in (5.11). Using the

formulation in (5.10), this robust problem can be stated as

min ¢ (5.12a)
PB, fi.t
5.t |lvec(R)|| <, (5.12b)
[P — femy — by on,]| < VGfie  Vhy€lUi(s), 1<k<K.
(5.12¢)

This is a semi-infinite conic programming problem. In particular, the constraint
(5.12c) represents K infinite sets of second order cone (SOC) constraints, one for
each h; € Ui(dx). However, we can precisely characterize each of these infinite sets
of SOC constraints using a single Linear Matrix Inequality (LMI), as stated in the

following formulation. (A derivation of this formulation is provided in Appendix F.)

Design Formulation 1. The robust transceiver design problem in (5.12) is equivalent
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to the following semidefinite program (SDP)

min (5.13a)
n,t
P.B.fi
gL ||vec(£)|| £ 1 (5.13b)
Ay(Gr,0x) =
VG fi — 1 0 [h,P — m, fi — by, on,]
0 pie Qi o [®:P, 0] 2 0,
: T
P — fimy, — by, 0] &[®P, 0] Vil
1<k<K. (5.13c¢)
O

This result shows that the original design problem in (5.12) with an infinite set
of constraints is equivalent to the convex SDP in (5.13) that can be efficiently solved
using interior point methods, e.g., [85]. Such equivalence is an advantage of the struc-
ture of the uncertain parameter of the SOC representation, in (5.12¢). In these SOC
constraints, the channels h,, and consequently the uncertain parameters, exist only
on one side of the SOC. Hence, exact characterization of these SOC with uncertain
parameters can be obtained. In contrast, when the QoS requirements are of the form
of bounds on the SINR, then even in the case of linear precoding, both sides of the
SOC constraints that enforce the QoS requirement depend on h,, and the resulting
design problem is not known to be tractable [70, pp. 7]. In Chapter 4 this unknown
tractability was addressed by taking a conservative approach to the robust design
problem. As demonstrated by (5.13), for the case of MSE constraints the robust QoS

design problem can be efficiently solved without introducing conservatism.
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5.5.1 Case of Intersecting Uncertainty Sets for each h;

The formulation of the design problem in (5.12) extends naturally to the case in which
the uncertainty region for each hy. is described as the intersection of more than one

uncertainty set U¢ of the form (5.11); that is, the uncertainty set is of the form

L
U = () UilSr, B, Q). (5.14)

=1
Note that there is no restriction in assuming that each Uy has the same uncertainty
parameters §; and ®;, since QX in (5.11) can be chosen to accommodate different sizes
and geometrical regions. Examples of constraint sets of the form in (5.14) include
the interval constraints on each entry of h, that arise when scalar quantization is
employed.

Although the design formulation involving uncertainty sets of the form (5.14) is
natural extension of that in (5.12), it can be shown, based on [99], that the resulting
problem is NP-hard. In particular, the transformations that lead to the efficiently-
solvable formulations of (5.12) [ef. (5.13)] do not extend to this case. However, by
adopting a conservative approach one can obtain an efficiently-solvable approxima-
tion to the problem with the uncertainty set in (5.14). This conservative approach
involves enveloping (5.14) in a superset that can be described more efficiently, and
then requiring the MSE constraints to be satisfied for all channels in this superset.
Using the derivation in Appendix F, one obtains the following conservative design

formulation that has the same number of LMIs as that in (5.13).

Design Formulation 2. The solution of robust transceiver design problem in (5.12)

for the intersection of uncertainty sets in (5.14) is upper-bounded by the solution of
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the following SDP

min ¢ (5.15a)
Mt
B!gsfk
5.t Hvec(B)H &, (5.15b)
Bi.(Ck, 0k) =
Vel — i 1 0 [P — fmy — by, oy,]
0 L QL 6[@P, 0] >0,
s T
[b,P — fim, — by, 04,] 0&[®P, 0" Cifil
1<k<K. (5.15¢)
O

5.5.2 Largest Feasible Uncertainty Size

In this section we consider the related design problem of finding the largest value of
the uncertainty size ¢, namely d,ax, for which there exists a robust transceiver of finite
power that satisfies the MSE constraints for all admissible channels in the uncertainty
region of size dyax. As demonstrated in Section 4.4.5, this problem is connected
to the problem of designing codebooks for the quantization of the users’ channels.
The codebook design needs to yield quantization regions that can be “covered” by
uncertainty sets of size dpax in order for the robust transceiver design problem to
be feasible. Using the problem formulation in (5.13), finding the value of dpax is

equivalent to solving

5.16
P s O (Pelbe)
8. b T ARG 20, 1<k < K, (5.16b)
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where A.((r, p) is defined in (5.13¢). Since p is an optimization variable rather than
a design parameter, the bilinear terms in A;((x, p) mean that the design problem in
(5.16) is not jointly convex in the design variables p and P. However, the problem
is quasi-convex (c.f. [82]), and an optimal solution can be efficiently found using a
one-dimensional bisection search on p in which the problem solved at each step is the
convex feasibility problem corresponding to (5.16) with a fixed value for p. For the
case of the intersection of uncertainty regions in (5.14), the conservative constraint
Bi(¢k,p) in (5.15¢) may be used in place of (5.16b). In that case, the optimal value
of the design problem becomes a lower bound on dyax. It is worth observing that
largest uncertainty size for the special case of linear precoding is less than that of its
THP counterpart. This follows by observing that finding d,y.x in the linear precoding

case solves a restriction of the problem (5.16) in which B is set to 0.

5.5.3 Robust Broadcasting with QoS requirements: MSE

versus SINR constraints

In Section 5.5 we presented design formulations for non-linear and linear broadcasting
transceivers with QoS requirements under bounded channel uncertainty. These QoS
requirements are formulated as MSE constraints. This design approach provides some
attractive features compared to conservative design approaches in Chapter 4 in which
the QoS requirements were formulated as constraints on the SINR. With that formu-
lation of QoS constraints, the work in Chapter 4 was restricted to linear precoders
and to uncertainty models consisting of a single spherical uncertainty region for each
channel. Furthermore, in order to ensure tractability, a conservative design approach

was taken in the design. Beside being applicable to non-linear Tomlinson-Harashima
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precoding schemes, the design approach of Section 5.5 provides exact design formula-
tions for a class of uncertainty models that encompasses many common uncertainty
regions. Furthermore, it enables generalization to the case in which the uncertainty
is described by multiple, and possibly different, intersecting regions. Finally, the de-
sign approach proposed in Section 5.5 requires substantially less computational effort
than the approach in Chapter 4. In Table 5.1, we provide comparisons of the sizes
of the SDPs associated with Design Formulation 1, for both linear and non-linear
transceivers, and for that of the best conservative approach, namely the “Structured
SDP” approach in Section 4.4.3. For the sake of comparison, we would like to point
out that the dimension of the uncertainty ellipsoid, J, is less than or equal the dimen-
sion of e; which is 2/N,. For spherical uncertainty regions J = 2N;. It can be seen
from this table that the proposed approaches requires O(K?) fewer variables than the
“Structured SDP” approach for linear precoding in Section 4.4.3, and that the size

of the linear matrix inequalities (LMI) is also reduced from O(K N;) to O(K + N,).
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Table 5.1: A comparison of the sizes of Design Formulation 1 and that of the Structured SDP approach in Sec-

tion 4.4.3
Method Number of Variables Number of Constraints

SOC LMI

num; size num; size
Structured SDP KK+1D2K+3)+2NK+1 1;2NK +1 K; 2K +1)(2N: + 1)
Design Form. 1 - Linear 2N, +2)K + 1 L 2N K +1 K 2(K+1)+J
Design Form. 1 - THP N+ K+1)K+1 1; 2N K + 1 K:2(K+1)+J
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5.6 Robust Counterpart of Fair Minimax
Transceiver Design

In the previous section, the focus was on the robust counterpart of the transceiver
design problem that minimizes the total transmitted power subject to the satisfac-
tion of the users’ MSE constraints. In this section, we consider the related problem
of minimizing the maximum MSE among all users subject to a transmitted power
constraint, in scenarios with uncertain CSI. This design problem provides a notion
of fairness amongst the users based on the value of their MSEs. The problem was
addressed in Section 4.5 for a notion of fairness that is based on the SINR of the
users’ signals. We can formulate the robust counterpart of the design problem of
minimizing the maximum MSE among all users under the channel uncertainty model

in (5.11) as the following semi-infinite quasi-convex optimization problem

i 5.17a
e VO i)
s. t. || — fimg — by, on,]] < Vo, Vh, € Up(ox), 1<k<K,
(5.17b)

1 5
5“‘(&’) < Pial: (5.17c)

Using the characterization in (5.13c) of the infinite set of SOC constraints in (5.17b),

this design problem can be formulated as the following quasi-convex optimization

problem
min 5.18a
P, B, fx, Vo \/a ( )
Bt Ak((o,(sk) > 0, 1 . k 3 I( (518b)

“vec(E)H < V2 Ptal. (5.18c¢)
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This problem can be efficiently solved by using a bisection search on 1/, in which
problem solved at each step is the convex feasibility problem generated by (5.18) with
a fixed value of 1/{y. Alternatively, we can observe that each constraint in (5.18b)

can be written as

fi 0 0O
Velo o o |-
0 0 fl
ik 0 ~[bP — fim, — by, 0,,]
0 tr Qi —0;[®P, O] 2> 0.

. T .
—hP - fim;, —b,. 0,,] —6&[P:P, 0]7 0
(5.19)

Hence, (5.17) is equivalent to minimizing the largest generalized eigenvalue of a pair
of (block diagonal) symmetric matrices that depend affinely on the decision variables

[84,86] — a problem that takes the form

min - a (5.20a)
s. t. aAl(x) - A%(x) >0, (5.20b)
A'(x) > 0. (5.20¢)
B(x) > 0. (5.20d)

This observation allows us to employ more efficient algorithms, e.g., [86,87], that

exploit the structure of the constituent matrices in (5.19).
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5.7 Numerical Studies

In this section, we demonstrate the performance of the proposed robust QoS designs
for non-linear Tomlinson-Harashima precoding (RTHP-order 1, 2) and linear precod-
ing (RLin) that were presented in Section 5.5, provides comparisons with other ex-
isting approaches that assume bounded channel uncertainty models. For Tomlinson-
Harashima precoding, ordering of the users’ channels is necessary prior to precoding.
Finding the optimal ordering requires an exhaustive search over all possible permu-
tations of the transmitter’s estimate of the users’ channels h,, and instead of that
we have implemented two suboptimal ordering methods. The first method applies
the BLAST ordering in [36] to the transmitter’s estimate of the users’ channels. The
second method is a generalization of the ordering method in [38] that selects a chan-
nel ordering that minimizes the reciprocals of the received SINRs when the precoder
matrix P is an identity matrix. In our generalization, the ordering selection criterion
is minimizing the sum of each user’s SINR requirements divided by its received SINR
(when P = I), a quantity that is proportional to the power necessary for each user
to achieve its SINR requirement.

In our numerical studies we consider a spherical uncertainty region of radius §;, for
each user. This model will facilitate the comparisons with other existing approaches
for the linear precoding model, namely the robust autocorrelation matrix approach
in [61,62] (Robust Correl. Appr.), the robust power loading approach (RLin-PL1)
using SINR constraints in [69], and the robust power loading approach (RLin-PL2)
using MSE constraints in [79]. We will also provide comparisons with the conservative
approach to robust linear precoding with SINR constraints in Chapter 4. The work
in Chapter 4 presented three conservative approaches and we are comparing with the

best conservative approach, namely the “Structured SDP” approach in Section 4.4.3.
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As we make the comparisons, we would like to point out that these approaches to ro-
bust linear QoS precoding do not extend to Tomlinson-Harashima precoding, but the
approaches proposed herein are inherently applicable to both linear and Tomlinson-
Harashima precoders.

In order to totally specify the schemes used in our comparisons, we point out
that the approaches in [69] and [79] require the beamforming vectors (normalized
columns of P) to be specified. We will use the zero-forcing beamforming vectors (the
columns of the pseudo-inverse of H). In addition, the approaches in [61,62] and [69]
are based on uncertainty models that are different from the one in (5.11), and from
each other. The approach in [61,62] considers a model in which the spectral norm of
the error in the (deterministic) autocorrelation matrix C; = hfh; is bounded, and
in the approach in [69] the Frobenius norm of the error in Cy is bounded. However,
by bounding these norms of Cy in terms of the norm of e, we can obtain the smallest
uncertainty set for Cy that contains all the channels in the set specified by |lex] <
6e. Furthermore, the uncertainty e, = dihy/[|hy|| lies on the boundaries of the
uncertainty sets for Cy in [61,62] and [69].2 We will compare these schemes in an
environment with N; = 3 transmit antennas and K = 3 users. In our experiments,
we will evaluate performance statistics for the standard case of independent Rayleigh
fading channels in which the coefficients of the fading channels are modeled as being
independent circular complex Gaussian random variables with zero-mean and unit

variance, and the receivers’ noise sources are modeled by zero-mean, additive, white,

2As mentioned in Chapter 4, a bound on the spectral norm of the error in the matrix Cy can
be obtained as follows: ||(hy + e;)7 (hy + e;) — hh,|| = |[hffe; + effhy + efer| < |[hifer] +
llef hy || + lefe] = 2||hy||]lex]| + llex]|2. The same bound also holds for the Frobenius norm, since
the matrices on the immediate right hand side of the inequality are all rank one. Furthermore, the
uncertainty e, = dxhy /I | achieves this upper bound with equality for both norms. Therefore,
the chosen bound on Cy is the smallest (achievable) bound such that all the channels in the set
specified by |le;|| < d; lie in the uncertainty sets of the methods in [61,62,69], and the admissible
uncertainty e = 6,hy/||hi|| lie on the boundaries of these sets. (See also [88].)
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and circular Gaussians with unit variance.

5.7.1 Performance Comparisons against SINR Requirements

In this comparison, we randomly generated 2000 realizations of the set of channel
estimates {h;}X , and examined the performance of each method in the presence
of uncertainties of equal sizes, J = § = 0.05, Yk. The SINR requirements of the
three users are also equal. For each set of channel estimates and for each value of
the required SINR we determined whether each design method is able to generate
a precoder (of finite power) that guarantees the required SINRs. In Fig. 5.3 we
plot the fraction of the 2000 channel realizations for which each method generated
a precoder with finite power against the (equal) SINR requirements of the users.
From this figure, it clear that the proposed robust designs for linear (RLin) and
non-linear (RTHP-order 1, 2) precoding satisfy the SINR requirements for larger
percentages of channels. The robust conservative approach for linear precoding (RLin-
Conservative) in Section 4.4.3 and the power loading method in [79] achieve the QoS
requirements for a percentage of channels that is quite close to that of the proposed
linear approach (RLin). However, the proposed approach (RLin) has a significantly
lower computational cost than the conservative approach (RLin-Conservative); see
Table 5.1. Furthermore, this approach is also applicable to non-linear Tomlinson-
Harashima precoding (RTHP-order 1, 2) with a slight increase in the computational
cost.

For the robust linear power loading approach (RLin-PL2) in [79], the QoS design
problem in terms of MSE constraints was justified as a heuristic measure for the
SINR requirements. However, using Lemma 5.1 we showed that the MSE constraint
of each user implies a minimum achieved SINR. Furthermore, there does not appear

to be a direct extension of the power loading approach in [79] (nor that in [69]) to
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Figure 5.3: Percentage of the 2000 channel realizations for which the robust QoS
guarantee can be made against the required SINRs, for a system with N, = 3 and

K =3.

TH precoding.

For the comparison in Fig. 5.4(a), we selected all the sets of channel estimates
from the 2000 sets used in the previous experiment for which all design methods were
able to provide robust QoS guarantees for all SINRs less than or equal to 6dB, and we
calculated the average, over the 274 such channel environments, of the transmitted
power required to achieve these robust QoS guarantees. We have plotted the average
transmitted power versus the equal SINR requirement of each user in Fig. 5.4(a).
This figure demonstrates the saturation effect that channel uncertainty imposes on
the growth of the SINR of each user with the transmitted power for both of linear and
non-linear precoding. The SINR saturates at the value of SINR for which the method

under consideration cannot provide the robust QoS guarantee with finite power for
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one (or more) of the channel estimates. A related effect was observed in [8] for non-
robust linear precoding on the MISO downlink with quantized CSI. Fig. 5.4(a) also
illustrates the role that robust precoding can play in extending the SINR interval over
which linear growth with the transmitted power can be achieved. This is particularly
evident for the robust non-linear approaches (RTHP-order 1, 2) and the robust linear
approach (RLin). We also observe that the second ordering method for Tomlinson-
Harashima precoding provides better performance than the first one, since it selects
the channel ordering in a way that attempts to minimize the sum of powers necessary
to achieve each SINR requirement. Since the previous experiments consider scenarios
with equal SINR requirements for all users, the performance comparison curves can
also be interpreted as comparisons of different approaches for the robust fair broad-
casting problem simply by transposing the axes. For example, in Fig. 5.4(b) we have
computed the solution to the robust fair design in Section 5.6 for the communications
scenario of the second experiment, and it can be seen it is the transposed version of

Fig. 5.4(a).

5.7.2 Performance Comparisons against Uncertainty Size

In this comparison, we used the 2000 randomly generated realizations of the set
of channel estimates {h;}X | to examine the performance of each method in the
presence of equal uncertainty, §p = 6, Vk. The QoS requirement of each user is
such that the SINR is at least 10 dB. In Fig. 5.5 we provide the percentage of the
2000 channel realizations for which each method generated a precoder with finite
power as a function of the size of the uncertainty. From this figure, it is clear that
for a large range of uncertainty sizes, the proposed non-linear approaches (RTHP-
Order 1, 2) satisfy the SINR requirements for many more channel realizations than

other approaches. This is due to the fact that the proposed linear approach is a

133



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering

30+ -
251 &
8 20l -
&
g
E 15+ E
& —6— RTHP-Order2
E ——&— RTHP-Order1
10 el H | .
— & - RLin-Conservative
— + - RLin-PL2
5 — # — RLin-Correl Appr. 1
- & - RLin-PL1
.'. ; : :
0 5 10 15 20 25

SINR of each user (dB)

(a) Average transmitted power versus (equal) SINR requirements.

25 T T T T T T
—o&— RTHP-Order2
—=s— RTHP-Order1
201 ;
—— RLin
— & — RLin-Conservative
- + - RLin-PL2
515_ ~ # - RLin-Correl Appr.
3 - & - RLin-PL1
£}
8
k]
g1
@»
R . - o\l NPT ST I SR 3 T
[

Transmitted Power (dB)

(b) Fair (equal) SINRs against the average transmitted power
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QoS design problem and the robust fair problem for a system with N; = 3 and K = 3.
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Figure 5.5: Percentage of the 2000 channel realizations for which the robust QoS
guarantee can be made against the uncertainty size J, for a system with N, = 3, and

K =3.

special case of the proposed THP design, and the other existing linear approaches
are either conservative or restricted to the optimization of powers for given transmit
directions. While the performance of the conservative linear precoding approach
(RLin-conservative) in Section 4.4.3 and the robust linear power loading approaches
(RLin-PL2) in [79] is quite close to that of the proposed linear design (RLin) in
terms of number of channel realizations for which the method satisfies the robust
(SINR-based) QoS requirements, they use more power in order to achieve the QoS
requirements, as shown in Fig 5.6.

In Fig 5.6, we selected those sets of channel estimates from the 2000 sets used in
the previous experiment for which all design methods were able to provide robust QoS
guarantees for all uncertainties with § < 0.015. We calculated the average, over the

614 such channel environments, of the transmitted power required to achieve these
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Figure 5.6: Average of the transmitted power tr(P¥P), on a linear scale, versus

uncertainty size 0 for a system with Ny = 3 and K = 3.

robust QoS guarantees and we have plotted the results for different values of ¢ in
Fig. 5.6. The average transmitted power approaches infinity for a certain value of
0 when for one (or more) of the channel estimates the method under consideration
cannot provide the robust QoS guarantee with finite power. It is clear from Fig. 5.6
that the proposed robust Tomlinson-Harashima designs are capable of (robustly)
satisfying the SINR requirements for larger values of uncertainty sizes than the other

approaches. It is also apparent that they expend less power in doing so.

5.8 Conclusion

In this chapter, we have presented a unified approach to the design of robust lin-
ear and non-linear transceivers with user-specified QoS requirements subject to
deterministically-bounded channel uncertainty model. The proposed approach for-

mulated the QoS requirements in terms of MSE constraints and showed that these
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constraints imply corresponding constraints on the achieved SINR of each user. Our
approach provided (convex) semidefinite program formulations of the design problem
that can be efficiently solved. Furthermore, these design formulations were obtained
for a rather general model of bounded channel uncertainty that include many uncer-
tainty regions. We also showed how these designs can be used to provide quasi-convex
formulations for the robust counterpart of the problem of fair transceiver design that
maximizes the signal quality of the user with the weakest signal. Numerical results
demonstrated that under bounded uncertainty conditions, the proposed designs pro-
vided guaranteed satisfaction of a larger set of QoS requirements than the existing
approaches that considered bounded uncertainty models, and that they require less
transmission power in order to satisfy these requirements.

While Chapters 4 and 5 studied the design of robust designs of broadcast channels
with QoS requirements for each user, in the following two chapters we will consider
the complementary problem of optimizing the fidelity of the users’ signals subject
to a power constraint at the transmitter. In particular, we will study robust MSE
designs for linear and non-linear multi-user transceivers subject to a transmission
power constraint. These robust designs will be developed for both broadcast channels
and multiple access channels under two different models for users’ channel uncertainty:
a stochastic model, and a deterministically-bounded model that is similar to the one

considered in this chapter and Chapter 4.
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Chapter 6

Robust Linear Transceivers for

Multi-user Systems

In Chapters 4 and 5, we considered robust designs for linear and non-linear broadcast
channels with quality of service constraints and uncertain channel state information
(CSI) at the transmitter. In this chapter, we consider the complementary problem of
optimizing the fidelity of the users’ signals, measured in terms of the mean-square-
error (MSE), subject to a power constraint at the transmitter. In particular, we study
robust minimum MSE designs for linear multi-user transceivers, with an emphasis on
downlink, that explicitly take into account the nature of channel uncertainty that
arise in communication systems. For systems with uplink-downlink reciprocity, we
consider a stochastic model for the channel uncertainty, and we propose an efficient
algorithm for the joint design of the linear precoding matrix at the base station and
the equalizing gains at the receivers so as to minimize the average mean-square-
error (MSE) over the channel uncertainty. The design is based on a generalization,
derived herein, of the MSE duality between the broadcast and multiple access channels

(MAC) to scenarios with uncertain CSI, and on a convex formulation for the design
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of robust transceivers for the dual MAC. For systems in which quantized channel
feedback is employed, we consider a deterministically-bounded model for the channel
uncertainty, and we study the design of robust downlink transceivers that minimize
the worst-case MSE over all admissible channels. While we show that the design
problem is non-convex, we also propose an iterative local optimization algorithm that
is based on efficiently-solvable convex conic formulations. Our framework is quite
flexible, and can incorporate a variety of power constraints. It can also be generalized
to scenarios in which channel uncertainty is described as intersection of more than
one bounded uncertainty region. In particular, we study a “system-wide” uncertainty
model, and although the resulting design problem is still non-convex, it does result in
a significantly simpler iterative local design algorithm than the “per-user” uncertainty
model. Our approaches to the minimax design for the downlink can be extended to
the uplink, and we provide explicit formulations for the resulting uplink designs.
Simulation results indicate that the proposed approaches to robust linear transceiver
design can significantly reduce the sensitivity of the downlink to uncertain CSI, and

can provide improved performance over that of existing robust designs.

6.1 Introduction

As discussed in Chapter 1 and Chapters 4 and 5, the provision of multiple antennas at
the base station facilitates the transmission of independent messages to different users
on the downlink of a multiuser system; e.g., [62]. For these broadcast channels, the
availability of accurate channel state information (CSI) at the transmitter is required
in order to spatially multiplex the messages for different users by precoding them in
a way that mitigates the effects of multiuser interference. Assuming that perfect CSI

is available, several precoding techniques have been proposed, including the class of
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schemes that apply linear precoding at the transmitter jointly with linear equaliza-
tion at each receiver. Those schemes offer a desirable trade-off between performance
and transmitter complexity, and examples include zero-forcing techniques for chan-
nel inversion {100, 101], regularized channel inversion [102], minimum mean square
error (MMSE) techniques [103,104], and beamforming with a prespecified signal to
interference plus noise ratio (SINR) at the receivers [62,63].

Many precoding schemes assume that the transmitter has perfect channel knowl-
edge of all the users’ channels, but in practice the CSI at the transmitter suffers
from inaccuracies caused by errors in channel estimation and/or limited, delayed or
erroneous feedback, and as we mentioned in Section 4.1 the performance of downlink
linear precoding systems is rather sensitive to these channel uncertainties. For exam-
ple, it was shown [8] that imperfect channel knowledge at the transmitter can result
in the downlink becoming interference limited; i.e., the growth of SINR of each user
with the transmitted power saturates.

Due to the inevitability of imperfect channel information, robust communication
schemes that take into account the channel uncertainty are of interest in practice;
e.g., [40,105]. The goal of the work herein is to propose robust linear transceivers for
the downlink that explicitly take into account the uncertainties in the channel model,
with an emphasis on systems with a single antenna at each receiver. In systems with
reciprocity between the uplink and the downlink (e.g., time division duplex systems),
the base station can estimate the channel and the channel uncertainty is mainly due
to channel estimation errors. In that case, a stochastic model for the uncertainty
in the channel model is appropriate, and possible design approaches include those
based on average performance measures, and those based on notions of outage. For
these systems, we consider the joint design of the linear precoder matrix and the

users’ equalizing gains so as to minimize the average, over the channel uncertainty,
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of the sum of the MSEs of each user. Since this design objective is not a jointly
convex function of the precoding matrix and the equalizing gains, previous robust
approaches considered a simpler design problem that restricts the equalizing gains to
be equal (e.g., [106] [107]), or used a simpler detection model [108,109]. The proposed
approach for solving the general design problem (without restricting the equalizing
gains), involves the generalization of the MSE duality between the broadcast chan-
nel and multiuser access channel (MAC) [110,111] to scenarios with uncertain CSI.
Using this duality, we obtain a closed-form expression that relates the desired ro-
bust broadcast transceivers to the corresponding transceivers that optimize the same
performance metric for the dual MAC. The solution to the robust transceiver design
problem for the dual MAC results in a closed-form expression for the optimal equal-
izer, and a convex conic formulation for the dual MAC optimal transmitters. Hence,
by exploiting the MSE duality between BC and MAC in scenarios with uncertain CSI,
we are able to transform the non-convex design problem for the BC into a convex
and efficiently-solvable equivalent design problem.

For systems in which the channel is estimated and quantized at the receiver and
then fed back to the transmitter (e.g., [8,9,94,95]), one has a bound on the (quantiza-
tion) error and hence an appropriate approach to robust design would be to optimize
the worst-case performance over errors of that size. For these systems, we study
the design of robust downlink transceivers that minimize the worst-case MSE over
a bounded uncertainty model of each user’s channel. While we show that that de-
sign problem is non-convex, we propose an iterative local optimization algorithm
that is based on efficiently-solvable convex conic formulations. The problem formula-
tion and proposed algorithms can incorporate different bounded uncertainty models,
and they can be applied to systems with per-antenna, per cell, and spatial-shaping

power constraints, as well as the standard constraint on the total transmitted power.
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In particular, we study a “system-wide” uncertainty model as an alternative to the
“per-user” model that is suitable for large cells and for multi-cell designs. While the
resulting design problem is still non-convex, it results in a significantly simpler iter-
ative local design algorithm than the “per-user” uncertainty model. Our approaches
to the minimax design for the downlink can be extended to the uplink, and we pro-
vide explicit formulations for the resulting uplink designs. Our simulation results
demonstrate that the proposed approaches to robust linear transceiver design can
significantly reduce the sensitivity of the downlink to uncertain CSI, and can provide

improved performance over that of existing robust designs.

6.2 Broadcast Channel with Linear Transceivers

Similar to Section 4.2, we consider broadcast channels with N; antennas at the trans-
mitter and K receivers, each with a single antenna. Let s € C¥ be the vector of data
symbols intended for the receivers. The transmitter linearly precodes the vector s to

form x € CM,

K
X:PS:ZPJ'SJ', (61)
J=1

where p; is the j'' column of the precoding matrix P; i.e., the beamforming weights for
the j™ user. Without loss of generality, we will assume that E{ss”} = I, and hence,
the total transmitted power constraint E{x*x} < Pta reduces to tr{P7P} < Py

The signal y;,, received by the k'™ user is given by
yr = hex + ny, (6.2)

where h; € C**M is a row vectorrepresenting the channel gains from the transmitting
antennas to the k" receiver, and n; is the additive zero-mean white noise at the k"

receiver whose variance is o2. Collecting the received signals in the vector y, we will
n ?
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find it convenient to use the vector notation y = Hx + n, where H is the broadcast
channel matrix whose k'™ row is hy, and the covariance matrix of the noise vector n
is E{nn'} = ¢2I. Due to the decentralized nature of the receivers, joint processing
of the received vector y is not possible. Instead, each receiver will process its received
signal y; independently using a single equalizing gain g; to obtain an estimate of its
intended symbol

Sk = GrYk- (6.3)

Using (6.3), the mean square error MSE;. associated with the £™ symbol can be

written as:
K

MSEx = E{|& — s’} =) loxl’p} (hf'hi)p; + o2lgkl* — grhupi — gf pihy +1
j=1

= |lgcheP — my|? + o7 |gx|%, (6.4)

where my, is the i row of I. Similarly, the total MSE can be written as:

MSE = E{||8 — s|*} = XK: MSE;, = tr{(GHP - I)”(GHP - 1)} + o2|g|®>, (6.5)
k=1
where g = (¢1,...,9x) and G = Diag(g).

The purpose of this chapter is to determine efficient algorithms for the joint design
of P and g with the goal of minimizing the MSE, in the presence of channel uncer-
tainty. We will adopt the common implementation (e.g., [102,106,107,109-111]) in
which P and g are jointly designed at the basestation (using the available CSI), and
the basestation informs each receiver of the equalizing gain, gi, that it is to use.
Actually, from (6.4) and (7.5) it can be seen that the phase component of each g
can be absorbed into p, without affecting either MSE;. or MSE, and hence only the
magnitude of g needs to be sent to the receiver k; e.g., [110,111]. We will point out
below that this observation also applies to robust transceiver designs for scenarios

with uncertain CSI that we will consider herein.
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6.3 Channel Uncertainty Models

We consider additive uncertainty models for the CSI available at the transmitter:
h, = flk + ey, (66)

where by, is the transmitter’s estimate of h;, and e;, is the corresponding error. This
can be equivalently written as H = H + E, where ey is the k™ row of E. We will
develop design formulations for robust transceivers under two broad models for the

channel uncertainty.

6.3.1 Stochastic uncertainty model

The first model is suitable for communication schemes with reciprocity between the
uplink and the downlink, which allows the transmitter to estimate the users’ channels
on the uplink. We will adopt a model in which the estimation errors are modelled
by zero-mean random variables with covariances E{ef e;} = o2 I, where o2 depends
on the uplink SNR of user k. This model is appropriate for scenarios in which the
elements of h; have zero mean and are uncorrelated with each other and those of
other users, and linear minimum mean-square error estimation is used to estimate the
channels on the uplink.! For this stochastic uncertainty model, robust transceivers

based on the average MSE will be presented in Section 6.4.

6.3.2 Bounded uncertainty model

In the second model, the error e, is assumed to be deterministically bounded. We

will use the general bounded uncertainty model in Section 5.4. In this model, the

1All our derivations extend directly to the case in which E{ef’e;} is an arbitrary symmetric
positive definite matrix, but for simplicity we will focus on the stated model.
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uncertainty set of each user channel is given by:

J
U(0k, 1, Qi) = {hi | i = b + e =hi + Y w0, wiQuwi <2} (6.7)

j=1
While Chapters4 and 5 adopted an equivalent real formulation to (6.7), cf. (5.11),
in order to facilitate computational cost comparisons of different transceiver designs
with QoS, it is now more convenient to adopt the above compact complex formulation
of the uncertainty model. As we mentioned in Section 5.4, the above model allows
the treatment of several different uncertainty regions in a unified way. For different
choices of ® and Q, it can model elliptical or spherical uncertainty sets, such as
those resulting from using vector quantization at each user. For some other choices
of ® and Q, It can model an interval constraint on one entry of hy; See Section 5.4.
Furthermore, we can extend this model to the case in which the uncertainty region
for each hy, is described as the intersection of more than one uncertainty set Uy of the

form (6.7). In that case, the uncertainty set is of the form

L
U = ) Us(or, @1 Q). (6.8)

=1
This is particularly useful to model interval or box constraints on each entry of hy
such as those resulting from using scalar quantizer at each user; See Section 5.4. For
this “per-user” bounded uncertainty model, minimax robust downlink transceivers
based on the worst-case MSE will be presented in Section 6.5, for the uncertainty
region in (6.7), as well as other regions.
As an alternative to this “per-user” uncertainty model, the transmitter can con-
sider a bounded model for the error matrix |[E|| < A, where an estimate of |E||

is

K
IE| < \ 3 flexl2 (6.9)
=]
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For this “system-wide” uncertainty model, the channel uncertainty set can be de-
scribed by
Up)={H|/H=H+E, |E| <A}, (6.10)

and a minimax robust downlink transceiver will be presented in Section 6.6.

6.4 Statistically Robust design Via BC-MAC du-
ality

For the stochastic uncertainty model, our objective is to jointly design the precoding
matrix P and the receivers’ equalizing gains g, so as to minimize the average, over
the channel estimation error, of the total MSE:
K
SE = MSE;,, (6.11)

k=1

where each MSEy is given by:
: K
MSE; = Z lgr P (BT hy, + 02 I)p; + o2|gil* — gxhepr — g PE +1. (6.12)
=1

It can be seen from (6.12), that each MSE, is not a jointly convex function of P
and gi.? To overcome this problem, previous approaches to the design of robust
BC transceivers have considered simplifying the design by restricting all g to be
equal [106,107], or by using a simpler detection model [108]. In our approach, we
will obtain a computationally efficient solution for the P and g that jointly minimize
(6.11) by exploiting the duality between the broadcast channel (BC) and the multiple
access channel (MAC). We will start by briefly reviewing (e.g., [60,110-115]) the dual
MAC for the BC presented in Section 6.2.

2Tt can also be seen from (6.12) that the phase component of gi can be absorbed in p; without
changing MSE;, and hence that the basestation need only send [gi| to receiver k. This can be
considered as the stochastic-model counterpart of Lemma 5.2.
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6.4.1 Dwual Multiple Access Channel with Linear

Transceivers

By switching the roles of the transmitter and the receiver in the broadcast channel,
we obtain the dual MAC that consists of K transmitters, each with a single antenna,
and a receiver with N, antennas. The channel matrix for the dual MAC is H”.
Similar to the MSE expressions obtained for the BC in (6.12), we will be interested in
obtaining corresponding expressions of individual MSEs in the dual MAC with linear
precoding and linear multiuser reception. Because the transmitters in the dual MAC
are decentralized and each have only one transmit antenna, linear precoding reduces

to power loading;:

ZMAC _ JMACMAC (6.13)
where sMAC and 2}A€ are the data symbol and the transmitted signal of the &' trans-
mitter. Without loss of generality, we will assume that E{SMACSMACH} = I. Hence, a

total power constraint on all the transmitters can be written as 31 [pMA€)? < Pigtal.

The vector of received signals yMAC is given by

yMAC — JHYMAC | \MAC (6.14)

nMAC

where is the zero-mean receiver noise vector whose covariance matrix is

: H : ; . .
E{nMACQMACTY — 421 Using a linear multiuser receiver, ghMA® € C'*M the

base station obtains an estimate of the symbol transmitted by the k' user, $MAC =

MAC.,MAC
. Y .

Using the stochastic channel uncertainty model, the average over the channel

aMAC

estimation errors of the MSE associated with the estimation of §;*“ can be written
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M AC T H
I\ISE Zl MAC,z IIXIAC(hJth +0,3j1)g24AC

2_MAC_MACH MAC‘H MACH MAC_MAC{.H
+ 0.8r 8k h.g; —pr g “hy +1

(6.15)

6.4.2 BC-MAC Duality with Stochastic Uncertainty and Lin-

ear Transceivers

In this section, we will present the MSE duality result for the BC and MAC channels
under the stochastic channel uncertainty model described in Section 6.3. This duality
result generalizes the MSE duality between the BC and MAC channels for the perfect
channel knowledge case [60,110-114] to scenarios with uncertain CSI.* The duality
relation will be useful in obtaining a robust BC transceiver that minimizes the average
MSE in terms of the corresponding transceiver of the dual MAC that minimizes the

same objective.

Theorem 6.1. Under the same total transmitted power constraint, the sets of indi-
vidual average MSEs for the BC, {MSE}, and for the dual MAC, {MSE',ICM AC}, are

equal when one uses the following transceiver designs:

H H
P =wigh ', g =w ' (6.16)
where the vector of positive constants w = (w1, .. .,wk) s given by:
. T
w' =M [pliacpz, L pphaac | (6.17)

3Note that SINR duality does not extend to the statistical model of uncertain CSI [116].
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and the matriz M is given by:

- MAC|2 H H 3
Zf;ék |p; I MAC(hHh +o2 T)g) MACH ghacghact 1 _
My, =
MAC/2 5
__Ip&g | MAC(hHhk + 02 I)gMACH k # j.

A sketch of the proof of this result is provided in Appendix G. It is a generalization
of the proof in [111] to scenarios with channel uncertainty.® Using Theorem 6.1, the
broadcast precoder P and receiver gains g; that jointly minimize a general function
of the users’ average MSEs under a total power constraint can be obtained by first
obtaining the MAC transceiver that jointly minimizes the same objective and then
applying the transformation in (6.17) to obtain the optimal BC transceiver. In the
following section we will consider the sum of the average MSEs as an example, and
we will obtain an efficiently solvable formulation for the jointly optimal transceivers

for the dual MAC that minimize that objective.

6.4.3 Statistically Robust Transceiver Design for the Dual

MAC
Our objective here is to find the dual MAC transmitters pMA® and receivers gMA® that
jointly minimize the average MSE, MSE™° = Z,{( 1 MSEMAC First, we will obtain

an analytic expression for the optimal receiver gh'A¢ for a given set of transmitters

pMAC. Using these expressions we will then obtain a convex formulation for the
optimal pMA€ under a total power constraint.

In fact, the MSE duality result for the stochastic uncertainty model extends directly to the case
of multiple antennas at the receivers and multiple data streams per user, analogous to the case of
perfect channel knowledge in [111].
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To design the gMAC | we observe from (6.15) that each MSE, " is a convex function

of gy and is independent of the other g)'A°, j # k, and hence that it can be

minimized independently. Setting the derivative of MSE,IZIA with respect to gMAC to

zero, we obtain the following expression for the optimal gMAC:

glkmc — MAC hy (Zz~ |pMAC|2( hHh + o2 1) + 021) -1 (6.19)
Using this optimal value, the average total MSE reduces to
MSE ' = K — N, + o2tr(d71), (6.20)

where ® = 3% |pMAC2(hHh, + 02 1) + 021
The next step is to design the p}C that minimize (6.20) subject to a total trans-
mitted power constraint Y r_, [pMAC[2 < P, By defining gr = [p}AC|2, that prob-

lem can be formulated as:

-1

min tr(Zz L qi(hFh; + o2 1)+ o2I)” (6.21a)
i

s.t. 20, i=1,..K, K 4 <P (6.21b)

Using techniques similar to those in [117], this problem can be transformed into the

following (convex) Semidefinite Program (SDP):

min tr(S) (6.22a)
q:.S

S1I
s. t. >0, (6.22b)

I (XK, g:(hfh; +021) + 021)

>0, i=1,...K, X ¢ < Poa (6.22¢)

This SDP can be efficiently solved using self-dual interior point methods; e.g., [85].°

SWithout loss of generality, we can choose each p}MAC to be the positive square root of g, then
since wy, in (6.16) is real, each optimal g5 will be real.
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6.5 Downlink Minimax Robust Design with Indi-
vidual Channel Uncertainties

In this section we present a robust transceiver design that does not rely on a statistical
model of channel uncertainty, but merely assumes that the each user’s channel lies
within a given uncertainty set Uy (0, ®r, Qi); c.f. (6.7). As mentioned in Section 6.3,
this uncertainty model is a convenient one for systems in which a channel estimate is
quantized at the receiver and fed back to the transmitter. For this type of channel
uncertainty, our goal is to jointly design the precoder P and equalization gains g, so
as to minimize the worst-case MSE over all admissible channels h;, € U,.(d;.), subject

to a total power constraint. That is,

K

min max hP —m.|?+ o2 2 6.234
pin | mex, 3 loheP —mif+oe] (6.230)

s. t. |[vec(P)]|? < Pital- (6.23b)

By introducing the auxiliary variables i, 0 < k < K, this minimax problem can be

written as the following minimization problem:

A 2 :
min ; £ (6.24a)
Sy ||gkhkP e mk|| < Vi<k< K. ht Uk(ék., D,.. Qk)» (624b)
anllgll < to, (6.24c¢)

along with (6.23b).° The constraint in (6.24b) represents K infinite sets of second
order cone (SOC) constraints (e.g., [82, 118]), with one constraint for each h; €

Uy (6x). However, these infinite sets of constraints can be precisely characterized by

6As was the case in the previous section, the formulation in (6.24) shows that phase component
of gr can be absorbed into py. Indeed, if {|gx| e/%} and P are an optimal solution of (6.24), then
{lgx|} and P Diag(e’®,..., €7%%) are also optimal.
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the following set of K inequalities [81]:
e~ i 0 (9xhxP — my)
0 e Q 3 (9: ®P) >0, 1<k<K, (625
. H
(grhiP —my) S(g®P)? 41

where @ is the matrix whose rows are ¢, Using the characterization in (6.25), the

robust transceiver design can be formulated as:

P’gr’nir}w a (6.26a)
st [l <a (6.26b)
b — ik 0 (gxhiP — my)
0 1 Q 5 (g ®P) >0 1<k<K,
(9P —my)” (g ®P)7 11
(6.26¢)
Ivec(P)|I* < Protal, (6.26d)

where we have used the fact that the optimal value for t is o,||g||. The constraint in
(6.26c) represents a set of K bilinear matrix inequalities and hence the optimization
problem in (6.26) is non-convex. (In the general case, optimization problems with
bilinear matrix inequalities are NP hard [119].) However, given initial values for P
and g, one can find a locally optimal solution by iteratively optimizing over P for
fixed g, and over g for fixed P. Each of those problems is implicit in (6.26) and is a
convex conic program that can be efficiently solved; e.g., [85]. One natural choice of
the starting point for this iterative design would be the transceiver designed for the
case in which the estimates hy, are assumed to be the actual channels; e.g., [102,110].

The formulation in (6.23) employs a simple constraint on the transmitted power.

However, other types of power constraints can be incorporated into the design without
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compromising the convex conic nature of the steps in the proposed iterative algorithm.
In particular, one can incorporate per-antenna power constraints, per-cell power con-
straints, and spatial masking constraints as second order cone (SOC) constraints or

linear matrix inequality constraints on P; See Appendix D.

6.5.1 Multiple Intersecting Uncertainties for Each User

The problem formulation in (6.23) can be generalized to the case in which the un-
certainty region U for each hy is described as the intersection of more than one
uncertainty set of the form (6.7); cf. (6.8). In that case, the problem is at least as
hard as the case of a single uncertainty set (the special case of (6.8) when L = 1).
In particular, in the general case when U is replaced by Uy it is not possible to
characterize the infinite set of constraints of the form in (6.24b) by a polynomial
(in N;) number of constraints [99]. Therefore, the number of constraints in the sub-
problems in an iterative local optimization algorithm analogous to to that described
above for the problem in (6.26) grows faster than any polynomial in ;. As a result,
each of these subproblems is NP-hard, even though they remain convex. However,
by adopting a conservative approach one can obtain an efficiently-solvable approxi-
mation to the problem with the uncertainty set in (6.8). This conservative approach
involves enveloping (6.8) in a superset that can be described more efficiently, and
then minimizing the maximum MSE in this superset. Using the superset character-
ization in [99] of sets of the form (6.8), it can be shown that the solution of robust

transceiver design problem in (6.23) for the intersection of uncertainty sets in (6.8) is
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upper-bounded by the solution of the following optimization problem

mn a (6.27a)
P,g,
t, .
st TR < e, (6.27b)
th=eme 0 (gihyP — my)
0 Qe 0k(9x®4P) > 0, (6.27c)

(gehiP — mp) 5.(g: @ P)7 1,1

[vec(P)]|? < Piotal- (6.27d)

Similar to (6.26), a local optimal solution can be found by employing an alternative
optimization algorithm that optimizes over P and B for fixed g, and over g and B
for fixed P. In this conservative approach, those (convex) problems can be efficiently

solved.

6.6 Downlink Minimax Robust Design with Over-
all Channel Uncertainty

The robust minimax design in (6.26) for the “per-user” channel uncertainty model
contains K bilinear matrix inequalities, one for each user. In this section, we consider
the alternative “system-wide” channel uncertainty model in (6.10), namely ||E|| < A,
and we will show that the resulting robust minimax design involves only one nonlinear
matrix inequality. Therefore, the computational cost of the conic programs used in the
iterative algorithm is reduced. This approach may be suitable for downlink systems
involving cells with large number of users or for multi-cell designs.

As in the previous section, our goal is to jointly design the precoder P and the
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equalization gains g, so as to minimize the worst-case MSE over all admissible chan-

nels, subject to a total power constraint. The design problem can be formally stated

as.
i x tr{(I- GHP)?(I - GHP)} + o2||g|? 6.28a
R mak r{( )7 ( )} +aullgll (6.28a)
s. t.  |[vec(P)||? < Piotals (6.28b)

and using the auxiliary variables w, and w,, that minimax problem can be precisely

transformed into the following minimization problem:

e Py (6.29a)
P,G=Diag(g),wo,w1

st. trI—GH+EP) I-GH+E)P)<w;, V|E|<A,

(6.29b)
anllgl? < wo, (6.29¢)
[vec(P)||? < Piotal. (6.29d)

Like (6.24), this problem has an infinite set of constraints, namely (6.29b). (Fur-
thermore, we can also choose g to be a real vector, without loss of generality.) The
first step in the transformation of (6.29b) into a single constraint is the application

of the following lemma.

Lemma 6.1 ( [120]). Let M € CX*K be o Hermitian matriz. Then there exists a

scalar s and a matrizc Z > 0 such that the constraint tr(M) < t is equivalent to the
following representation:

t— Ks—tr(Z) >0, (6.30)

M<Z+sl (6.31)

While Lemma 6.1 considers a single matrix M, it can be directly extended to a

set of matrices by applying the lemma to an element of that set of matrices with the
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largest trace. Applying that extension to (6.29b) yields a single constraint of the form
in (6.30) and the set of constraints (I — G(H + E)P)¥(I - G(H + E)P) < Z + sI,
V||E|| < A. Using the Schur Complement Theorem [22], that set of quadratic matrix

inequalities can be transformed into the following set of bilinear matrix inequalities:

Z + sI (I- G(H+E)P)H

A >0 V|[E|<A. (6.32)
(I- G(H +E)P)

By moving terms containing E to the right-hand side of the inequality, we can re-write

(6.32) as:
Z + sl I- GHP)H 0 PH
. ( s E[P 0]+ E”[o GH]
(I- GHP) I G 0

VIE| <A. (6.33)

To cast (6.33) as a single matrix inequality we use the following lemma:

Lemma 6.2 ( [121]). Let A be a Hermitian matriz. Then A > CFX*B + BfXC
for all | X|| < A if and only if there exists a A > 0 such that

A -)CHC -ABY
~-AB Al

Applying Lemma 6.2 with B = [P 0], and C = [0 G*], the robust minimax
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design in (6.28) can be formulated as

P,G:%liig(g),z., wo + W (6.34a)
S, A wo, w1
Z + s1 (I- GHP)? _APH
s.t. | I-GHP) I-)GG 0 >0 (6.34b)
—~AP 0 A
wy — Ks—tr(Z) >0, (6.34c)
$>0, (6.34d)
aallgll® < wo, (6.34e)
[vee(P) 1> < Potar- (6.34f)

Although this problem has a finite number of inequalities, like (6.26), the presence of
the non-linear matrix inequality in (6.34b) renders (6.34) a non-convex optimization
problem. However, one can use an iterative algorithm to obtain a locally optimal
solution. For the iterations with fixed g, the problem in (6.34) represents a convex
conic optimization problem that can be solved more efficiently than the corresponding
problem in the case of “per-user” channel uncertainty model, c.f., (6.26). For the
iterations with fixed P, one can interchange the choices of B and C in the application
of Lemma 6.2 to obtain an equivalent inequality to (6.34b) that is linear in g. The
resulting problem is also an efficiently-solvable convex conic optimization problem.
As was the case with the results in Section 6.4.2, the results in this section extend
directly to the case of multiple antennas at the receivers and multiple data streams

per user. For such scenarios, G is a block diagonal matrix (with rectangular blocks).
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6.7 Uplink Minimax Robust Designs

The proposed design framework for minimax robust transceivers for the downlink is
quite general and can be applied to uplink systems as well. In this section we will
provide explicit formulations of the minimax robust designs for the dual MAC. As
mentioned in Section 6.4, the channel matrix for the dual MAC is H, and we will
define pMAC = (pMAC, .. pMAC) and GMAC to be the matrix whose rows are gMAC.
To derive the robust “per-user” minimax design, we first observe that MSE ex-
pression for the k% user in the uplink is function is function of all channels, not just

its own. While these multiple sources of uncertainty can complicate the design, one

can write the total MSE as

K
MSEMAC — z |GMACHH pMAC _ T2 4 52¢r((GMAC)H GMAC) (6.35)
k=1

where each term of the summation is subject to uncertainty from one source only.
Using (6.35) and the analysis in Section 6.5, the uplink robust minimax design with

the “per-user” uncertainty model can be formulated as

GM,{E}EMAC 3 (6.36a)
Ap, B
it [ ety ]| <8 (6.36)
[ e — 0 (GMARY P} — mf)"
0 i1 5 (GMACpMAC)H >0,
] (GMACﬁi[plgiAC _ m{) §k(GMACpII§{AC) Al

1<k<K, (6.36¢)

PN < Protar. (6.36d)
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Similarly, the uplink robust minimax design with the “system-wide” model of uncer-

tainty can be formulated as

mi wo + Wy (6.37a)
Sic i
VA o SI (I o GNIACﬁHPLIAC)H —A(PMAC)H
gkl - GMACI:IHPMAC) I — AGMAC(GMAC)H 0 >0
—APMAC 0 /\I
(6.37b)
s 20, (6.37¢)
o2 |lvec(GMA9)|1* < wo, (6.37d)
IPMACNI? < Protar- (6.37e)

As with the case with the downlink, these optimization problems are non-convex, but
one can employ a local iterative algorithm in which a convex conic program is solved

at each iteration.

6.8 Simulation Studies

In order to compare the performance of the proposed robust designs with existing
approaches, we have simulated these methods for the cases of uncoded QPSK and 16-
QAM transmission over independent block fading Rayleigh channels (without shad-
owing). We considered downlink scenarios with N; = 4 and 5 antennas, and K = 4
users, at different distances from the base station. The first two users are assumed to
be far from the base station and their channels coefficients are modeled as being in-
dependent circularly symmetric complex Gaussian random variables with zero mean

and unit variance. The other two users are assumed to be closer to the base station
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and their channel coefficients are generated using the above model but with variances
equal to 10.” We will plot the average bit error rate (BER) over all users against the
signal-to-noise-ratio, which is defined as SNR = Pita1/(K0?2). We will also plot the
average BER over each pair of near and far users. The BERs are averaged over 500
channel realizations, H. For each realization, we construct 100 channel estimates, H,
using (6.6). For each estimate, we compute the robust precoder and the equalizing
gains, inform each receiver of the equalizing gain g, that it is to use, and transmit a

packet of 200 uncoded symbols.

6.8.1 Statistically robust transceiver design

The channel estimation error e, = hp — flk was modelled by generating e, from a

2

¢ I, where we will use the same

zero-mean Gaussian distribution with E{ef'e;} = o
o?, for all users. This model is appropriate for a scenario in which the uplink power
is controlled so that the received SNRs on the uplink are equal and independent from
the downlink SNR. For convenience, we define € = E{exef } = Nio?,.

In Fig. 6.1 we compare the performance of the statistically robust transceiver
proposed in Section 6.4 with that of the regularized channel inversion approach in
[102,122], and that of the channel inversion approach in [100,101], for a system with
4 transmit antennas, 4 users, QPSK signalling, and € = 0.01. It can be seen that the
performance of a linear transceiver in the broadcast channel is rather sensitive to the
mismatch between the actual CSI and the transmitter’s estimate of CSI; see also [8].
It can be also seen that while the effect of noise is dominant at low SNR, the channel

uncertainty dominates at high SNR, where the proposed robust transceiver design

performs significantly better than the other two approaches. Fig. 6.1 also shows that

"In practice, a scheduler may select the users to which data is transmitted, but in order to focus
on the impact of the proposed designs, no scheduling will be considered in the simulations.
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Figure 6.1: Comparison between the performance of the proposed statistically robust
transceiver, the channel inversion approach in [100, 101], and regularized channel
inversion [102,122] for values of channel uncertainty ¢ = 0.01 for a system with
N; = 4 and K = 4 using QPSK signalling. The curves with (+) markers and no

markers represent the average BER of the two near and the two far users, respectively.

in the presence of channel uncertainty, both the regularized channel inversion and
channel inversion designs have the same performance limit at high SNR. This is due
to the fact that the regularized method involves the addition of a regularization term
whose value is inversely proportional to Piota/(Ko?); see [102].

In Fig. 6.2 we compare the performance of the statistically robust transceiver with
that of channel inversion approach in [100,101], and regularized channel inversion ap-

proach in [102,122], for a system with 5 transmit antennas, 4 users, QPSK signalling,
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Figure 6.2: Comparison between the performance of the transceivers considered in
Figure 6.1 for a system with N, = 5 and €* = 0.1. The legend is the same as that in

Figure 6.1.

and uncertainty value €2 = 0.1. The impact of the robust design is apparent in the av-
erage performance of the two near users for the whole SNR range, and in the average
performance of all users at high SNRs.

For Fig. 6.3 we consider a system with 16-QAM signalling, 5 transmit antennas
and 4 users, and we compare the performance of the proposed statistically robust
transceiver with that of the robust regularized channel inversion approach in [107],
which restricts all the receiver gains g; to be equal. It can be seen from Fig. 6.3 that
significant improvement in the performance of the near users can be achieved by the

proposed robust design, as it offers more degrees of freedom in the choice of the gains

k-
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Figure 6.3: Comparison between the performance of the proposed statistically robust
transceiver and the robust regularized channel inversion approach in [107] for values
of channel uncertainty ¢ = 0.03 for a system with N; = 5 and K = 4 using 16-QAM
signalling. The curves with (+) markers and no markers represent the average BER

of the two near and the two far users, respectively.
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6.8.2 Robust minimax transceiver designs

In systems that use feedback to provide the transmitter with quantized version of
the CSI, the information available to the transmitter will include the designed quan-
tization codebooks and the statistics of the error resulting from the use of these
codebooks; e.g., E{(hg — hy)(hy —hi)#} = €2. Since we assume each user’s channel is
independent from the others, the transmitter can model the error matrix E as being
zero mean with independent rows and second order statistics given by E{EE#} = €1
Thus, we have |[E{EEf}| = ¢%. To simulate quantization errors, we will generate
matrices E such that the real and imaginary parts of each element E;; are drawn inde-
pendently from uniform distribution U (—\/zzMe, \/%6), and hence E{EE?} = ¢I.
Given that the transmitter will have access to ¢, and since A? = |[E#E||, an appro-
priate choice for A, for the “system-wide” uncertainty model, is e. For the “per-user”
uncertainty model, when all users are using the same codebooks, all §; are equal and
one can use equation (6.9) to set & = ¢/VK.

In Fig. 6.4 the performance of the proposed robust minimax approaches with “per-
user” and “system-wide” uncertainty models is compared to that of the regularized
channel inversion approach in [102,122] in the presence of uniformly distributed quan-
tization errors with €2 = 0.03 for a system with N; = 5, K = 4 and 16-QAM signalling.
It can be seen that performance of the minimax approach with the “system-wide”
uncertainty model is reasonably close to the minimax approach with “per-user” un-
certainty, especially in terms of the average performance of all users. Both approaches
provide improved performance over the non-robust approach in terms of the average
BER and significantly improved performance in terms of the BER of the near users.
In Fig. 6.5, a comparison is made with the non-robust of channel inversion approach
in [100,101], for a similar system with ¢ = 0.05, and similar performance advantages

are observed.
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Figure 6.4: Comparison between the performance of the proposed robust minimax
approaches with “per-user” and “system-wide” uncertainty models, and the regular-
ized channel inversion approach in [102,122] in the presence of uniformly distributed
quantization errors with € = 0.03 for a system with N; = 5 and K = 4 using 16-QAM
signalling. The curves with (+) markers and no markers represent the average BER

of the two near and the two far users, respectively.
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Figure 6.5: Comparison between the performance of the proposed robust minimax
approaches with “per-user” and “system-wide” uncertainty models, and the channel
inversion approach in [100,101] in the presence of uniformly distributed quantization
errors with €2 = 0.05 for a system with N; = 5 and K = 4 using 16-QAM signalling.
The curves with (+) markers and no markers represent the average BER of the two

near and the two far users, respectively.
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6.9 Conclusion

In this chapter, we considered statistical and minimax robust joint designs for linear
transceivers for multiuser communication systems. For the statistical approach, we
have presented a robust design for the broadcast channel transceivers that jointly
minimize the average, over the channel estimation errors, of the sum of the MSEs
of each user. By generalizing the MSE duality between the broadcast channel (BC)
and multiple access channel (MAC) to schemes with channel estimation errors, we
have shown that the robust design for the broadcast channel can be obtained from
an efficiently-solvable conic programming formulation for the robust transceivers for
the dual MAC. For the minimax approach, we have provided a formulation for the
robust downlink transceivers that maximize the worst-case performance for “per-user”
and “system-wide” channel uncertainty models. We also proposed computationally-
tractable iterative algorithms for obtaining locally optimal solutions to these two
design problems. The problem formulation and proposed algorithms can be applied
to systems with per-antenna, per-cell, and spatial-shaping power constraints, as well
as a constraint on the total transmitted power. We showed that proposed minimax
downlink transceiver designs can be applied to the design of uplink transceivers as
well. Our simulation results demonstrated that the proposed approaches to the robust
linear transceiver design can significantly reduce the sensitivity of the downlink to
uncertain CSI, and can provide improved performance over that of existing robust
designs. In the next chapter, we will demonstrate how these robust designs can be

generalized to non-linear transceivers.
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Chapter 7

Robust Non-Linear Transceivers

for Multi-user Systems

In Chapter 6, we studied the design of linear multi-user transceivers that are ro-
bust to uncertainty in the users’ channel state information (CSI). In this chapter, we
generalize those robust design approaches to non-linear transceivers under stochas-
tic and deterministically-bounded models of channel uncertainty. For the stochastic
model, we study the joint design of a Tomlinson-Harashima precoder (THP) at the
base station and the equalizing gains at the receivers so as to minimize the average,
over channel uncertainty, of the total mean-square-error (MSE). By generalizing the
MSE duality between the broadcast channel (BC) with THP and the multiple access
channel (MAC) with decision feedback equalization (DFE) to scenarios with uncer-
tain CSI, we obtain a relation between the desired robust broadcast transceivers and
the corresponding transceivers that optimize the same performance metric for the
dual multiple access channel. For the deterministically-bounded model of the chan-
nel uncertainty, we study the robust design of THP transceivers for the BC that

minimize the maximum MSE over all set admissible channels. Similar to the case of
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linear transceiver, we show that the design problem is non-convex and we propose
an iterative local optimization algorithm that is based on efficiently-solvable convex
subproblems. The robust minimax framework is also generalized to multiple access
channels with DFE and bounded channel uncertainty. Simulation results show the
proposed robust approaches can result in significant reduction of the sensitivity of

THP transceivers to channel uncertainty.

7.1 Introduction

A fundamental assumption of Tomlinson-Harashima Precoding (THP) is the avail-
ability of perfect Channel State Information (CSI) at the transmitter. Perfect CSI
enables the transmitter to precisely pre-subtract the terms that would interfere at
the receivers. Based on the assumption of perfect CSI at the transmitter, several
different approaches for designing THP for broadcast channels have been proposed,
including zero-forcing designs [16,123-125], and minimum mean square error (MMSE)
designs [126,127].

In practical downlink scenarios, the CSI available at the transmitter is generally
inaccurate; see Sections 4.1 and 6.1. Furthermore, the performance of THP is partic-
ularly sensitive to inaccuracies in CSI, e.g., [128]. Motivated by the sensitivity of both
broadcast channels and THP to channel uncertainty, we design, herein, robust THP
transceivers under two different models of the uncertainty in the CSI: a stochastic
model, and a deterministically bounded model.

As mentioned in Section 6.3.1, the stochastic model of channel uncertainty is
particularly suitable for systems in which the uncertainty is dominated by the ef-

fects of channel estimation errors, such as time division duplex systems with short
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“ping-pong” time. For these systems, we consider the joint design of a Tomlinson-
Harashima precoder and the users’ equalizing gains to minimize the average, over the
channel uncertainty, of the total MSE. Previous attempts to solve this problem have
considered a simpler design problem by restricting all the users’ equalizing gains to be
equal [106,129], or by using a simpler detection model [109]. In our approach we will
preserve all the degrees of freedom, and will exploit the duality, derived herein, be-
tween the broadcast with THP and the multiple access channel (MAC) with decision
feedback equalization (DFE), under a statistical model of CSI. More generally, the
duality result that we will derive will enable us to obtain robust designs for broadcast
channels with THP that optimize objective functions of the the average MSEs, by
solving the same design problem for a dual MAC with a DFE. By doing so, we extend
to the case of imperfect CSI earlier work on the duality, in the MSE sense, of the BC
with THP and MAC with a DFE assuming perfect CSI [127,130].

The bounded model of channel uncertainty, cf. Section 6.3.2, can be suitable for
systems in which each user quantizes its channel information and feeds it back to the
transmitter using a limited feedback channel. Using the general bounded uncertainty
model in Section 6.3.2, we consider the design of robust THP transceivers for the
downlink that minimize the maximum MSE over all admissible channels. We show
that the design problem is non-convex and we propose an iterative local optimization
algorithm that is based on efficiently-solvable convex subproblems. We also general-
ize the robust minimax designs to multiple access channels with DFE and bounded
channel uncertainty. Simulation results show the proposed robust approaches can
result in significant reduction of the sensitivity of THP-based transceivers to chan-
nel uncertainty, and can provide improved performance over that of existing robust

designs.
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7.2 System Model

We consider broadcast channels (BC) with N; antennas at the base station and
K users, each with one antennas. The focus of this chapter will be on BC
transceivers that employ Tomlinson-Harashima precoding (THP) at the transmit-
ter. As mentioned in Section 5.2, multi-user interference pre-subtraction and spatial
pre-equalization are implemented using feedback and feed forward processing, respec-
tively, as shown in in Fig. 7.1. The elements of the vector output, v, of the feedback
loop in Fig. 7.1 are generated sequentially by computing vy = s — Z]k;]l Byjv;, where
si is the symbol intended for the £*™® user, which is chosen from a constellation whose
Voronoi region is V, and B € CEX*K is a strictly lower triangular feedback matrix.
To prevent vy from growing outside V, the modulo operation is then applied to each
vg. The vector v is subsequently linearly precoded using the feed forward matrix

P € CM*K to generate the transmitted vector x,
x = Pv. (7.1)

As mentioned in Chapters 2 and 5, when the elements of s are chosen from a square
QAM constellation with cardinality M, the Voronoi region V is a square of length
D, and the modulo operation with respect to V corresponds to performing separate
modulo-D operations on the real and imaginary parts of v;. This is equivalent to the
addition of the complex quantity i = i¢ D + j i;"* D to v, where i, i}"" € Z,
and j = /=1, and using this observation leads the standard linearized model of the
transmitter as shown in Fig. 7.2; e.g., [10]. For this equivalent model, the vector v

is a linear function of the modified data vector u = s + 1,
v=(1+B)u (7.2)

As aresult of the modulo operation at the transmitter, the elements of v are almost

uncorrelated and uniformly distributed over V, [10, Th. 3.1], and hence they will have
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Figure 7.1: BC with Tomlinson-Harashima precoding.
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Figure 7.2: Equivalent linear model for the transmitter.

slightly higher average energy than the input symbols of s; something that is often
called precoding loss [10]. For example, for square M-ary QAM we have E{|vx*} =
2LE{|sk|?} for k = 2,...,K, and E{|v:[*} = E{|s1/*}, [10]. For moderate to large
values of M this power increase can be neglected and the approximation E{vv#} =1
is often used; e.g., [13,16]. Under the assumption of negligible precoding loss, the
average transmitted power constraint becomes E,{x”x} = tr(P¥P) < P,gtal.

The signal received by the k' user, y., can be written as
Uk = hpx + ny, (7.3)

where h;, € C*M is a row vector representing the channel gains from the transmitting
antennas to the k' receiver, and ny is the additive zero-mean white noise at the k*

receiver whose variance is 02. The K equations on the form (7.3) can be written as

y=Hx+n,
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where h;, is k*" row of the broadcast channel matrix, H, and the noise vector n
has zero-mean and covariance matrix is E{nn'} = ¢21. Since the receivers operate
independently, each receiver processes its received signal y; using a single equalizing
gain g, to obtain the estimate, @ = gy, followed by a modulo operation to obtain
Sg. Assuming negligible precoding loss and that the vector i is eliminated by the
receivers’ modulo operation, the error signal @ — uy is equivalent to §; — s, and can

be used to define the mean square error,

MSE: = Eo{lix —ul’} = 350, lox*pY (W hy)p; + 0|9 — grhipi — i hfl gf!
k—1 k-1 k-1
- pI'h{gf! By, = > Bligihyp; + Y B> +1
Jj=1 =21 g=1
= |lgchieP — my — by||® + o7 |gi [, (7.4)

where my. and by, are the " row of I and B, respectively. Similarly, the total MSE

can be written as:

=
MSE = 3 MSE, = tr{(GHP — I - B)¥(GHP — 1 - B)} + o?|gl?,  (7.5)
=1

where g = (g4, .., gk ) and G = Diag(g).

7.3 Statistically Robust design Via BC-MAC du-
ality

For the statistical uncertainty model in Section 6.3.1, our objective is to jointly design
the feedback and precoding matrices, B and P, and the receivers’ equalizing gains,

gk, S0 as to minimize the average, over the channel estimation error, of the total MSE:

MSE = &, MSE;, (7.6)
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where each MSE;, is given by (cf. (7.4))

MSE: = Y°10; lgx|*p¥ (B by + 02, 1)p; + 02|gx/? — gihipi — i B gff

k—1 k—1 k—1
~ SN PRl By - 3 Bilgup; + 3 1BylP + 1. (7.7)
j=1 j=1 j=1

Previous attempts to this design problem have involved the restriction that all g be
equal [106,129], or have employed a simpler detection model [109]. In our approach
we will preserve all the degrees of freedom, and will exploit the duality, derived herein,
between the broadcast channel with TH precoding and the multiple access channels
with DFE, under a statistical model of the error of the CSI. Using this duality, we
will jointly design the transceiver parameters B, P, and g; so as to minimize (7.6).
Our duality result also enable us to obtain robust designs of broadcast channels with
TH precoding that optimize objectives that are functions of the the average MSEs,

not just the sum, by solving the same design problem for a dual MAC with a DFE.

7.3.1 Dual Multiple Access Channel with Non-Linear
Transceivers

By reversing the direction of the communication in the broadcast channel (BC) with
Tomlinson-Harashima precoding in Fig. 7.1, we obtain a dual multiple access channel
(MAC) in which K transmitters, each with a single antenna, communicate to a a base
station with N, antennas that employ successive interference cancelation detector
based on decision feedback equalization (DFE); see Fig 7.3. To obtain duality, the
users are detected using the reverse order of the BC precoding order; i.e., detection
starts with the K*" user. Because the transmitters in the dual MAC are decentralized

and each has only one transmit antenna, linear precoding reduces to power loading:

.fL‘glAC MACSi\CJAC

= D (7.8)

b
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Figure 7.3: The Dual MAC with decision feedback equalization.

where sMA® and 2}MA¢ are the data symbol and the transmitted signal of the k™" trans-
mitter. Without loss of generality, we will assume that E{sMACsMAC® ) — 1. Hence, a
total power constraint on all the transmitters can be written as Z{‘z R P

The channels between the transmitters and the receiver of the dual MAC can be

represented by H (e.g., [115]) and hence the vector of received signals yMAC is given
by
yMAC _ FH4MAC 4 [ MAC (7.9)
JAC. - : ; . FAG MACH .
where nM4€ is the zero-mean receiver noise vector with E{nMACnMAC™} = 521 As

shown in Fig. 7.3, the operation of the DFE can be represented by a feedforward

matrix GMA® € C**M and a strictly upper triangular feedback matrix BMAC €

CK*K " Assuming correct previous decisions, the input to the quantizer, $M4€, can
be written as

gMAC _ (GMACHHPMAC _ BMAC)MAC | GMAC) MAC. (7.10)
where PMAC = Diag(p}A€, ... pMAC). Using the stochastic channel uncertainty
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model in Section 6.3.1, the average over channel estimation errors of the MSE as-

aMAC ;

sociated with the estimate §;% is

—a=MAC
MSE, _Z ,pMAc MAC hHh +o? I)gMAC + O_ZgglACgMAcH MAcHh gMAcH

K
_ gklAChH MAC _ Z (pj\IAC Hﬁjglrc\lAcH BMAC + BkIACH MAcﬁH I_VIAC)
j=k+1
K
+ > [BMACP 41, (7.11)
j=k+1

where gM4C is the &'" row of GMAC.

7.3.2 BC-MAC Duality with Stochastic Uncertainty and

Non-Linear Transceivers

In this section, we will present the MSE duality result between the broadcast channel
with TH precoding and the multiple access channel with DFE under the stochastic
channel uncertainty model described in Section 6.3.1. This duality result generalizes
the MSE duality between the BC with TH precoding and the MAC with DFE for the
perfect channel knowledge case [127,130] to scenarios with uncertain CSI. It is also a

generalization of the duality results for linear transceivers in [92,93].

Theorem 7.1. Assume that there is no precoding loss in the THP in the BC and no
error propagation in DFE in the dual MAC. Then, under the same constraint on the

total transmitted power, the sets of individual average MSEs for the BC, {MSE;},

and for the dual MAC, {kac}, are the same for the following transceiver design
pr = wighM g = wripMact By = 5—234{/’0 (7.12)

where the vector of positive constants w = (ws,...,wk) 1S given by:
W =M [ pphacp e ] (7.13)
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and the elements of the matric M are given by:

([ |pMac) H :
—*—g—g,MAC(hHhk + aekI)gMAC ]
MAC)|2 H BMAC2 “H
o lpk‘72 I C(hHhk _i_UqI)gMAc I ;721 ! angAChH MACBMA(
o BMAC MACHh gMACH fom i
H ;
e L S et
(7.14)

The proof is similar to that presented in Appendix G. Using Theorem 7.1, an
optimal design of the BC transceiver that jointly minimizes the sum of the average
MSEs, MSE, under a total power constraint can be obtained by first obtaining the
optimal MAC transceiver that jointly minimizes mMAC, and then applying the
transformation (7.13) to obtain the optimal BC transceiver. Although, this duality
extends to arbitrary functions of the set of average MSEs {MSE;}, and is not re-
stricted to the sum, for reasons of simplicity we will focus on the case of the sum in

the next section.

7.3.3 Statistically Robust Transceiver Design for the Dual
MAC

In this section, we will obtain a statistically robust design of the dual MAC transceiver

=—e=MAC e MAC

that jointly minimizes MSE = Zf (MSE," . We will first obtain an analytic

expression for the optimal receiver, BMAC and gMA®, for a given set of transmitters

MAC MAC

pp ", and then we will then obtain an optimization formulation for the optimal p;
under a total power constraint.

From equation (7.11), we observe that each MSE,I:'mC is a smooth convex function
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of the &' row of BMAC and is independent of the other rows. Hence, MSE,J:/IAC can

be minimized independently. Indeed, by setting the stationary point MSE,c “ with

respect to k" row of BMAC to zero, we obtain the optimal values of the elements of

BMAC
BMAC = gMAC th p?dAC. (7.15)

Substituting the resulting expression for the optimal BMAC in (7.11), we find that

MAC MAC for

each resulting MSEk “ is a convex function of gy " and is independent of g;

j # k. Hence, each MSEk “is optimized by setting
1 Hy
go ¢ = pp Sy, (7.16)

where

k
= (X 1PN P (0 hi + 020) + o21) (7.17)
i=]
Using the optimal receiver parameters in (7.15) and (7.16), the sum of the average

MSEs can be expressed as
MSE" ¢ Z IPMAC12h, S, hY. (7.18)

Similar to scenarios in which channel state information is available [130], the ex-
pression in (7.18) is differentiable function of [pMA€|%, and hence a (locally) optimal
solution to the minimization of (7.18) under a total power constraint can be found

by applying a standard iterative algorithm.

7.4 Robust Design with Bounded Channel Uncer-
tainties

In this section we present a robust transceiver design for the second uncertainty region,

which does not rely on a statistical model of channel uncertainty, and merely assumes
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that the each user’s channel lies within a given uncertainty set Uj.(x., @, Qx) in (6.7).
For this type of channel uncertainty, our goal is to jointly design the transmitter (i.e.,
B and P), and the equalizing gains of the receivers, gi, so as to minimize the worst-
case MSE over all admissible channels hy € U (0, @i, Qs), subject to a total power

constraint, and B being a strictly lower triangular matrix. That is,

K
i : ByP — m;, — b|? + o3| ;
i max ; lgehxP — my, — by |* + o2|g]| (7.19)
Ivec(P)|I* < Piotal- (7.19¢)

This minimax problem can be simplified by rewriting it as the following minimization

problem
K
Bflll)i.lé’t Z ty (7.20a)
s.t. |lgehiP — my — b|| <t V1< k<K, h; €Uy, ®r,Qr), (7.20b)
onligll < to, (7.20¢)
B 0418 iS5k, (7.20d)
Ivec(P)[|* < Potal- (7.20e)
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Using the finite characterization of infinite second order cone (SOC), cf. (6.25), the

robust transceiver design can be formulated as:

min e} (7.21a)
B,P,g.t,ua
st 7B < e (7.21b)
te— e O ay,

akH (Sl,(gkq)P)H tkI

”VGC(P)“2 S Ptotala (7218)

where a;, is a placeholder for (gkflkP — my — by), and we have used the fact that
the optimal value for t is 0,||gl|. Similar to the linear transceiver case in Chapter 6,
the constraint in (7.21c) represents a set of K bilinear matrix inequalities and hence
the optimization problem in (7.21) is non-convex. (In the general case, optimization
problems with bilinear matrix inequalities are NP hard [119].) However, given initial
values for P, B and g, one can find a locally optimal solution by iteratively optimizing
over P and B for fixed g, and over g and B for fixed P. Each of those problems is
implicit in (7.21) and is a convex conic program that can be efficiently solved. The
choice of the initial point for this iterative design can be the transceiver designed for
the case in which the estimates hy, are assumed to be the actual channels; e.g., [127].

Similarly, for the case of uncertainty regions Uj, in (6.8) that are described as the
intersection of more than one uncertainty set of the form (6.7), it can be shown that

a conservative robust design can be formulated as:
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BI,Ig,I};, a (7.22a)
t,pl, o
st. %11 < o, (7.22b)
th— Do mi O ay
0 e Qi (g ®P) | 20, <E<K,  (7.22)
ay/ or(gp®cP)? 1,1
Bij=0 1<i<j<K, (7.22d)
[vec(P)[|* < Potar- (7.22¢)

Similar to (7.21), a local optimal solution can be found by employing an alternative
optimization algorithm that optimizes over P and B for fixed g. and over g and B

for fixed P.

7.5 Uplink Minimax Robust Designs

In this section we will provide explicit formulations of the minimax robust designs for
the dual MAC.

To derive the robust minimax design, we first observe that the MSE expression
for the k'™ user in the uplink is function is a function of all channels, not just its own.
While these multiple sources of uncertainty can complicate the design, one can write
the total MSE as

4
MSEMAC _ Z |GMACLHMAC _ iy H _ ((pMACYH |12 | ;24 r(GMAC)HGMAC)
. Dy . 3 e :

k=1

(7.23)
where each term of the summation is subject to uncertainty from one source only.

Using (7.23) and the analysis in Section 7.4, the uplink robust minimax design can
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be formulated as

A ac. (7.24a)
pMAC . 8
subject to (7.24b)
[N < 8, (7.240)
te— e O (aII:'IAC)H
0 i Qi Sr(pMACH, GMACY | >0, <k<K, (7.24d)
azIAC (Sk(pglAC‘I)kGMAC)H tkI
Bj=0 1<j<i<K, (7.24e)
IPMACN? < Potar, (7.24f)

where aMAC is a placeholder for GMAChE pMAC _ mT — (bMACYH  Similarly, con-
servative formulations can be obtained for the robust uplink designs with multiple
intersecting uncertainty sets for each channel. As was the case with the downlink,
both problems are non-convex, but one can employ a local iterative algorithm in
which a convex conic program is solved at each iteration. In the formulation in
(7.24), the power constraint is a constraint on the total power transmitted by the
users; cf. (7.24f). This constraint can be replaced by individual power constraints of

the form |pMA°)12 < Pgtarx without disturbing the convex structure of the problem.

7.6 Simulation Studies

In order to compare the performance of the proposed robust design with the ex-
isting approaches, we have simulated these methods for the cases of QPSK trans-
mission over independent Rayleigh fading channels. We will plot the average bit

error rate (BER) over all users against the signal-to-noise-ratio, which is defined as
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SNR = Piya1/(K0o?2). In our simulations, the coefficients of the channel matrix H
are modeled as being independent circularly symmetric complex Gaussian random
variables with zero mean. All THP transceivers assume a given ordering of the users.
Since finding an optimal ordering will involve an exhaustive search over K! possi-
ble arrangements, a suboptimal ordering is usually employed. We will choose the
suboptimal ordering proposed for MMSE Tomlinson-Harashima transceiver design
in [126], using the transmitter’s channel estimate H. This ordering will be used for

all methods, including the proposed robust transceiver.

7.6.1 Statistically Robust Designs

To model the error e, between the actual channel h;, and the estimated channel
at the transmitter ﬁk, e is generated from a zero-mean Gaussian distribution with
E{ef’e;} = o2 1. In our simulation, we will use the same o2 for all users. This
model is appropriate for a scenario in which the uplink power is controlled so that
the received SNRs on the uplink are equal and independent from the downlink SNR.
For convenience, we define €2 = E{eref} = Nyo?,.

In Fig. 7.4 we compare the performance of the statistically robust Tomlinson-
Harashima transceiver proposed in Section 7.3 with that of the zero-forcing
Tomlinson-Harashima transceiver design (ZF-THP) in [124, 125], and the MMSE
Tomlinson-Harashima transceiver design (MMSE-THP) in [126] for a system with
4 transmit antennas, 4 users, and QPSK signalling. In Fig. 7.4, the performance of
each method is plotted for values of € = 0.05,0.1. It can be seen that the perfor-
mance of Tomlinson-Harashima precoding in the broadcast channel is rather sensitive
to the mismatch between the actual CSI and the transmitter’s estimate of CSI. It can
be also seen that while the effect of noise is dominant at low SNR, the channel uncer-

tainty dominates at high SNR, where the proposed robust transceiver design performs
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BER
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Figure 7.4: Comparison between the performance of the proposed statistically robust
Tomlinson-Harashima transceiver, zero-forcing Tomlinson-Harashima transceiver de-
sign (ZF-THP) in [124,125], and the MMSE Tomlinson-Harashima transceiver design
(MMSE-THP) in [126] for values of channel uncertainty €? = 0.05,0.1 for a system
with NV; = 4 and K = 4 using QPSK signalling. The upper performance curve of

each method corresponds to channel uncertainty ¢ = 0.1

significantly better than the other two approaches. Fig. 7.4 also shows that in the
presence of channel uncertainty, both the ZF-THP and MMSE-THP designs have the
same performance limit at high SNR. This is due to the fact that the MMSE method
involves the addition of a regularization term whose value is inversely proportional to
Piota/(K0?); see [126].

For Fig. 7.5 we consider a system with N; = 4 antennas and K = 4 users. In

addition to the previous two designs, ZF-THP [124,125] and MMSE-THP [126], that
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Figure 7.5: Comparison between the performance of the proposed statistically robust
THP transceiver, zero-forcing THP transceiver design (ZF-THP) in [124, 125], and
the MMSE THP transceiver design (MMSE-THP) in [126], robust zero-forcing THP
(Robust ZF-THP) approach introduced in [106], and the robust MMSE Tomlinson-
Harashima (Robust MMSE-THP) approach introduced in [129], for values of channel
uncertainty € = 0.05 for a system with N; = 4 and K = 4 using QPSK signalling.

assume precise CSI, we will also compare the performance of the statistically robust
transceiver proposed in Section 7.3 with that of the robust zero-forcing Tomlinson-
Harashima (Robust ZF-THP) approach introduced in [106], and the robust MMSE
Tomlinson-Harashima (Robust MMSE-THP) approach introduced in [129]. These
two approaches restrict the all gains g; to be equal. It can be seen from Fig. 7.5 that
improvement in the performance can be achieved by the proposed robust design as it

offers more degrees of freedom in the choice of the gains gj.
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7.6.2 Minimax Robust Designs

We considered systems that use feedback to provide the transmitter with quantized
version of the CSI, and we assumed that all K users employ the same vector quanti-
zation codebooks. In these feedback systems, the information available to the trans-
mitter will include the users’ codebooks and the statistics of the error resulting from
the use of these codebooks. Since we assume that each user’s channel is independent
from the others, the transmitter can model the error matrix E as being zero mean
with independent rows e, and second order statistics given by E{EE"} = ¢%I. Thus,
we have |[E{EE”}| = €. To simulate quantization errors, we will generate matri-
ces E such that the elements are independent and uniformly distributed such that
E{EE#} = ¢’I. We will consider vector quantization schemes in which the transmit-
ter employs a robust THP transceiver designed using spherical uncertainty regions
llex]| < . To estimate d;, we observe that an appropriate estimate of ||E| can be e,
and since ||E[ < /3., €2, one can choose & = ¢/VK.

In the third experiment, we compare the performance of the robust minimax
Tomlinson-Harashima transceiver proposed in Section 7.4 with that of the zero-forcing
Tomlinson-Harashima transceiver design (ZF-THP) in [124, 125], and the MMSE
Tomlinson-Harashima transceiver design (MMSE-THP) in [126]. In Fig. 7.6, the per-
formance of each method is plotted for values of €2 = 0.03,0.05. It can be seen that
the performance of the downlink with interference pre-subtraction is rather sensitive
to the mismatch between the actual CSI and the transmitter’s estimate of CSI. It can
be also seen that while the effect of noise is dominant at low SNR, the channel uncer-
tainty dominates at high SNR, where the proposed robust transceiver design performs
significantly better than the other two approaches. Fig. 7.6 also shows that in the
presence of channel uncertainty, both the ZF-THP and MMSE-THP designs have the
same performance limit at high SNR. This is due to the fact that the MMSE method
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Figure 7.6: Comparison between the performance of the proposed robust minimax
Tomlinson-Harashima transceiver, zero-forcing Tomlinson-Harashima transceiver de-
sign (ZF-THP) in [124,125], and the MMSE Tomlinson-Harashima transceiver design
(MMSE-THP) in [126] for values of channel uncertainty ¢ = 0.03,0.05 for a system
with NV; = 4 and K = 4 using QPSK signalling. The upper performance curve of

each method corresponds to channel uncertainty €? = 0.05

involves the addition of a regularization term whose value is inversely proportional to
Protar/(K07); see [126].

In the fourth experiment, we simulate a scenario with two different sets of users’
locations from the base station. The first two users are assumed to be close to the
base station and their channel coefficients are generated using the above model but
with variances equal to 10. The other two users are assumed to be farther from the

base stations and their channel coefficients are generated using unit variance. We
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plot the average BER of all users in addition to the average BER of the two near
users and the far users for value of €2 = 0.1. It can be seen from Fig. 7.7 that the
advantage offered by using a robust design is even more significant in the case of the

near users.

7.7 Conclusion

In this chapter, we studied the design for robust non-linear transceivers with sequen-
tial interference subtraction that explicitly take into account the nature of channel
uncertainty. For the stochastic uncertainty model, we presented an optimal robust
design for THP transceivers for broadcast channels that jointly minimizes the average,
over channel estimation errors, of the sum of the MSEs of each user. By generalizing
the MSE duality between the broadcast channel with Tomlinson-Harashima precoding
and the multiple access channel with decision feedback equalization to schemes with
channel estimation errors, we have obtained the desired robust broadcast transceivers
in terms of the robust transceivers that optimize the same performance metric for
the dual multiple access channel. This approach allowed the derivation of an op-
timal statistically robust design that preserves all the available degrees of freedom.
For the bounded uncertainty model, we presented a minimax robust design of THP
transceivers that maximizes the worst-case performance. The proposed uncertainty
model is general and encompasses many bounded uncertainty regions. We also gen-
eralize the robust designs to the case in which the channel uncertainty is described
by multiple intersecting bounded regions, and to multiple access channels with DFE
transceivers and bounded channel uncertainty. Simulation studies demonstrated that
the proposed approaches can significantly reduce the sensitivity of the downlink to

uncertainty in the CSI, and can provide improved performance over that of existing
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Figure 7.7: Comparison between the performance of the proposed robust minimax
Tomlinson-Harashima transceiver, zero-forcing Tomlinson-Harashima transceiver de-
sign (ZF-THP) in [124,125], and the MMSE Tomlinson-Harashima transceiver design
(MMSE-THP) in [126] for values of channel uncertainty €* = 0.1 for a system with
N = 4 and K = 4 using QPSK signalling. The curves with (+) markers and no
markers represent the average BER of the two near and the two far users, respec-

tively.
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robust designs.
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Chapter 8

Summary and Future Directions

This chapter summarizes the contributions of this thesis, and proposes some future

research directions.

8.1 Summary

The thesis studied the joint design of the transmitter and the receiver for single-
user and multi-user MIMO systems. These transceiver designs are developed under
different assumptions of the available channel knowledge.

In the single-user part of the thesis, a novel design framework was developed
for non-linear MIMO transceivers with interference (pre-) subtraction that assume
perfect channel state information (CSI) at both the transmitter and the receiver.
The framework unifies the design of two dual non-linear MIMO systems: transceivers
with Tomlinson-Harashima precoding (THP), and transceivers with decision feedback
equalization (DFE). It provides optimal transceiver designs for many design objec-
tives that have been open problems. Using concepts from majorization and convex

optimization theories, the framework generates closed-form optimal designs for two
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broad classes of communication objectives, namely those that are Schur-convex and
Schur-concave functions of the logarithms of the MSEs of each data stream. For the
class of Schur-convex objectives, the optimal transceiver results in equal individual
MSEs, and simultaneously minimizes the total MSE, minimizes the average bit error
rate, and maximizes the Gaussian mutual information, among many other objectives.
This property cannot be achieved by any linear transceiver. Furthermore, that op-
timal design yields objective values that are superior to the corresponding optimal
objective value for a linear transceiver. For the class Schur-concave objectives, the op-
timal non-linear transceiver reduces to the optimal linear transceiver. The derivation
of this framework resulted in a more developed understanding of non-linear MIMO
transceivers that is comparable to that of the linear transceivers.

The single-user part of the thesis also presented a generalization of the framework
to communications schemes operating in a limited feedback regime and employing
zero-forcing decision feedback equalization. In that regime, only the receiver has CSI,
and it uses that CSI to select the best available precoder from a codebook of precoders
and then feeds back the index of this precoder to the transmitter over a limited rate
feedback channel. For these communication schemes, the statistical distribution of the
optimal precoder matrix was derived, and it was showed that codebooks constructed
from Grassmann packings minimize an upper bound on average distortion measures
for many design objectives.

The multi-user part of the thesis studied the design of robust multi-user
transceivers that explicitly include the channel uncertainty in the design formula-
tions.

The first component of the multi-user part developed robust broadcasting
transceivers that are designed to satisfy each user’s quality of service (QoS) re-

quirements subject to bounded channel uncertainty at the transmitter. The QoS
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requirements were formulated as either constraints on the signal-to-interference-plus-
noise-ratio (SINR) of each user or as constraints on the mean square error (MSE) each
user’s received signal. Using the theories of robust and convex optimization, efficiently
solvable convex design approaches were developed for both QoS formulations. These
design approaches were then employed to generate tractable quasi-convex design for-
mulations for other problems such as the robust fair broadcasting problem. It was
also shown that the MSE formulation of the QoS requirements can yield designs with
lower computational costs, and they can be obtained for a wider class of bounded
models of channel uncertainty.

The second component of the multi-user part developed robust multiuser
transceivers robust transceivers based on mean-square error (MSE) performance cri-
teria subject to a transmission power constraint. The transceivers were designed for
both broadcast channels (BC) and multiple access channels (MAC), and they include
both linear and non-linear designs. The designs were obtained for two main chan-
nel uncertainty models. The first model is the stochastic uncertainty model that
suits multi-user systems with uplink-downlink reciprocity. The robust transceivers
for this uncertainty model were designed so as to minimize the average, over channel
uncertainly, of functions of the MSEs, and they were obtained based on a derived
generalization of the mean square error (MSE) duality between the broadcast chan-
nels and multiple access channels to scenarios with uncertain channels. This duality
also showed that the optimal robust BC transceiver can be generated, using a lin-
ear transformation, from the corresponding MAC transceiver for the same objective,
thus allowing robust BC design problems to be obtained by solving the more tractable
MAC designs. The second channel uncertainty model is a deterministically-bounded
one that suits systems with quantized channel feedback from the users. The robust

transceivers for this uncertainty model were designed so as minimize the worst-case
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value of the total MSE, over all admissible channels. The results for this uncertainty
model included a proof of NP-hardness of the design problem, and computationally-
tractable iterative approaches that are based on convex formulation of each iteration.
The presented approach incorporated a wide range bounded uncertainty models as

well as a variety of power constraints.

8.2 Future Directions

The results presented in the thesis can be the basis for the pursuit of other related

future research directions. The following points are examples of these directions.

e It will be interesting to study the existence of a unifying design framework,
similar to the one developed in Chapter 2, for MIMO transceiver with maximum
likelihood (ML) receivers. Since MIMO transceivers with lattice-based detection
or with (vector) lattice precoding can be thought as generalizations of MIMO
transceivers with DFE or THP, respectively, it would also be worth studying

the development of a design framework for these two dual MIMO transceivers.

e The limited feedback scheme presented in Chapter 3 could be combined with
adaptive bit and/or power loading in order to bridge the gap between its perfor-

mance and that the corresponding system with perfect CSI at the transmitter.

e The proposed robust multi-user transceivers can be combined with multi-user
scheduling and selection algorithm that that would explicitly take into account

the nature of the channel uncertainty.

e Unifying design frameworks were developed for linear single-user MIMO
transceivers in [6] and for non-linear transceiver in Chapter 3, and those frame-

work unified the design for a wide range of design objectives. On the other
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hand, no such generalizing framework exists for multi-user transceivers, either
linear or non-linear. The lack of such frameworks is a significant hindrance
to the design of optimal transceivers for an arbitrary design objective in the
multi-user case. Possible future directions can explore the existence of such
framework in the multi-user case for both the broadcast channel and multiple

access channels.

These research directions, among other ones, are being considered by the author

of this thesis.
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Appendix A

Proofs of Schur-convex objectives

Minimization of total MSE The objective here is to minimize g(e!) = Zfil ek,

which has the form of g(e!) = Zf‘zl f(1;) for the strictly convex function f(x;) = e*:.

Hence, g(e') is a strictly Schur-convex function of 1, [29, p. 64].

Minimization of product of MSEs This objective can be written as: minimize
g(eh) = Z{‘Zl l;. Since this is the sum of each [;, it is both a Schur-convex and a

Schur-concave function of I, [29].

Minimization of p-norm of MSEs In this case, the objective is to minimize
g(eh) = (Zfil(e‘i)p)l/p, p > 1, which has the form g(e!) = h(f(l1),..., f(lk)),
where h(xy,...,xXg) = (Ef‘:] |x; [P )1/ * is Schur-convex and is an increasing function
of each argument, and f(z) = €* is a convex function. If follows from the composi-
tion properties of Schur-convex functions [29] that g(e!) is a Schur-convex function.
Although minimization of the total MSE is a special case of the p-norm minimization

for p = 1, the proof used for the total MSE case provides the stronger result of strict

Schur-convexity.
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Maximization of product of SINRs This objective can be written as: minimize
g(et) = =K log(e~% —1). Since —g(e') is the sum of the concave function f(z) =
log(e=* —1) applied to each l;, —g(e') is a Schur-concave function of I [29, p. 64], and

it follows that g(e!) is Schur-convex.

Maximization of harmonic mean of SINRs In this case the objective is to
minimize g(e!) = S5, s S —i—. L < 0. Since each MSE satisfies 0 <
e < 1, we will restrict our proof to the case of I; < 0. We observe that g(e') is a
sum of the strictly convex function f(z) = 1/(e™* — 1), for x < 0, applied to each [;.

Hence, g(e') is a strictly Schur-convex function.

Minimization of average BER Assuming that each each data stream employs the
same constellation, the average BER is g(¢!) = + Zf‘zl BER(SINR;), where BER(:) is
the bit error rate of the chosen constellation as a function of the SINR, and SINR; =
et — 1. As pointed out in Section 2.5.3, for many constellations the bit error rate

function BER(SINR) can be closely approximated by

BER(SINR) = ¢; Q(v/c1 SINR), (A.1)

where ¢; and ¢, are constants that depend on the constellation. If each
BERBER(e % — 1) is a (strictly) convex function of I;, it follows that their sum
g(e') is (strictly) Schur-convex. To show the convexity of BER(e % — 1), we obtain
the second derivative of (A.1) with respect to l;:
@ BER ¢’ e 307~
dIf 421 P2 (1 - y)32

where y = e*. Since the first term is non-negative for all values of the MSE, the sign

(20" - (a + Dy + ), (A.2)

of the second derivative is determined by the quadratic term (2y* — (c; + 1)y + ¢1).

To check the sign of this term, we have to consider two cases:
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e For values of the constellation constant ¢; such that the discriminant of the
quadratic equation is negative, the second derivative is non-negative for all the
range of the MSE. Hence, the expression for BER in (A.1) is convex function

of I;. This case includes BPSK and M-ary QAM with M < 16.

e For values of the constellation constant c¢; such that discriminant of the
quadratic equation is non-negative, the second derivative is non-negative for
the range of MSE y < y,, where y, = (01 + 1~ M)M is a root of
the quadratic equation. In this case, which applies to M -ary constellations with
M > 16, the BER expression in (A.1) will be convex for all SINRs above the
small threshold 1/y, — 1.
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Appendix B

Proofs of Schur-concave objectives

Minimization of harmonic mean of MSEs This corresponds to the minimiza-
tion of g(e!) = E;,:i_—,— where the denominator is the sum of a convex function
f(x) = e* applied to each l;. Hence, the denominator is a Schur-convex func-
tion [29, p. 64]. Since g(e') is a decreasing function of a Schur-convex function, it

follows that g(e') is Schur-concave [29, p. 61].

Maximization of p-norm of SINRs In this case, the objective is to minimize:
gle) =—(TE (el — 1y )l/p, p > 1. We observe that —g(e!) has the form g(e!) =
h(f(l1),-.., f(lk)), where h(xy,...,xk) = ( et 2 )1/’) is Schur-convex and is
an increasing function of each argument [29], and that f(z) = ¢ ® — 1 is a convex

function. It follows from composition rules of Schur-convex functions [29, p. 63] that

—g(e') is a Schur-convex function. Hence, g(€!) is Schur-concave.

Minimization of a subclass of weighted product of MSEs Minimization of
the weighted product of the individual MSEs (or, equivalently, the weighted geo-
metric mean of the MSEs) corresponds to minimization of the objective g(e') =

log [TX, (€%)” = YK, ail;. Assuming that I; are in decreasing order, then g(e) is a
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Schur-concave function when the weights a; are in ascending order [6,29]. A special
case of this objective is the unweighted product, for which all a;, = 1. That function

is both Schur-concave and Schur-convex; see Appendix A.
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Appendix C

Proof of Theorem 3.1

C.1 Optimal Precoder for Schur-convex Functions

If g(e') is a Schur convex function of I, then from Lemma 3.1 we have that
g(e") < g(é), (C.1)
and the optimal value is obtained when all I; are equal to

= i, Indet(N). (C.2)
K

Hence, all MSEs are equal to E; = L2 = ’{/(WN) Since the objective is an in-
creasing function of the individual MSEs, the design goal reduces to minimizing det N
subject to the power constraint on the precoder and to the constraint that diagonal
elements of the Cholesky factor of N are all equal. We will start by characterizing
the family of precoders that minimize det(N) subject to the power constraint, then
we will show that there is a member of this family that yields a Cholesky factor
of N with equal diagonal elements. Minimizing det(N) is equivalent to maximiz-
ing det(PYH#HP), and the family of optimal precoders to maximize this objective

subject to a power constraint is given by the following lemma.
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Lemma C.1. The family of optimal precoders that mazimizes det(P*H7YHP) subject
to a power constraint tr(PH P) < Piotal is given by:

P= P, total

2 UR,V, (C.3)

where Uy, € CM*E contains the eigen vectors of HYH corresponding to the K

largest eigen values, and V € CE*X is a unitary matriz degree of freedom.

Proof. Let HYH = UxgAgU} be the eigenvector decomposition of the H?H such
that eigenvalues are in descending order. Let the singular value decomposition of the
precoding matrix be given by:

P="Up (: V =Up PV. (C4)

Now, the objective of the maximization can written as:
det(P"H"HP) = det(V/®Ug ,UnAgUfUp 2V)
= det(W,7AgW,) det(®?) (C.5)

where W; = UllUp is a matrix with orthonormal columns (W# W, = I). Using
Hadamard inequality, the first term in Eq. (C.5) is maximized when W consists of
first K columns of I. Accordingly, Up; is the first K columns of Ug.

Next, we choose ® = Diag(®,;, ..., ®xx) to maximize det(P?) subject to
K ®2 = Py We observe that Indet(®?) = S°X In(®2) is a Schur-concave

function of ®2 and is maximized when all ®2 are equal to Fetal [29). O
143 1 K

To complete the design of P, we need to select V such that the Cholesky decom-
position of N = LL# yields an L factor with equal diagonal elements. Using (C.3)

we have that

N = ;‘t;l (VHA‘1/2) (A“WV)

= LL¥ = R¥R = (QR)7(QR), (C.6)
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where A is the diagonal matrix containing the largest K eigen values of H#H,
and Q is a matrix with orthonormal columns. Therefore, finding V is equivalent to
finding a V such that QR decomposition of (Ag 7 V) has an R-factor with equal
diagonal. This problem was solved in [14,53], and V can be obtained by applying the

algorithms therein to the matrix A;III/ g

C.2 Optimal Precoder for Schur-concave Func-
tions

If g(e') is a Schur-concave function of I, then from Lemma 3.1 we have that g(e!) is
minimized when L, = );(IN), and that this equality holds when L is normal matrix.
Since L is a lower triangular matrix, in order for it to be normal it must be a diagonal
matrix [22]. The optimal C in that case is I, and hence B = 0. That is, in the case
of Schur-concave functions of I, the optimal ZF-DFE design results in zero-forcing

linear equalization.
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Appendix D

Incorporating different power

constrains

In this appendix we show how different power constraints can be incorporated in our
formulations. Consider a set of per-antenna power constraints, E{|z,[*} < P,, one
for each 1 < n < N,, where P, is the bound on the power transmitted from the n*

antenna. Each of these constraints can be written as

K
Z[Ek]?l + [Bk]n—}—]\/t < B (D.1)

k=1
where [ - |, denotes the n'" element of a vector. This is a convex quadratic constraint
on the elements of P,, and can formulated as a second order cone constraint and
directly accommodated in (4.10) and all the subsequent robust counterparts.

The shaping constraint E{x7Q(#)x} < Puape(f) can be written as

P,Q(0)p, < Paape(d), VO € O, (D.2)

M>~

k=1

where Q(0) is defined analogously to (4.8). A convenient way in which this constraint
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can be incorporated into (4.10) is to write

Ivec(Q(0)[p,s -+ Pel) Il € /Panape®), VO € ©. (D.3)

Whenever the set © is discrete and finite, this set of SOCs constraints can be easily
incorporated in (4.10) without compromising our approach. Integral constraints of

the form

62 02
E{x# Q(6)x}df < / Pinapo(6)d0 (D.4)

01 01

can be accommodated in a similar way.
The power constraints considered above all have the SOCP formulations, but they

all fall into the more general class of shaping constraints
.:_ET_Q_B S Cshapea (D5)

for given Q > 0 and Cghape, that have been previously studied for the single user
case [71]. Using the Schur Complement Theorem [22], this constraint is equivalent to

the LMI
Cshape ET
C(P) = >0, (D.6)
P Q™
and hence constraints of the form in (D.5) can be easily incorporated into our ap-

proach.
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Appendix E

Proof of Lemma 5.1

Consider the quantity (i — u,) in equation (5.3). Assuming correct removal of iy,

we have
Sk — sk = (gphiP — my, — b)) v + ging, (E.1)
or equivalently,
5k = agsy + Z a;8; + apng, (E.2)
i€y

where T, is the set of interfering symbols with s;. Using (E.2), we can write!

E{(%"} = lal*+ > lail® + laolo?, (E3)
i€y,
E{l — se"} = lax = 1P + ) lasf* + |aolo (E4)
1€Ly
= E{|&[*} +1 - 2Re{ar}, (E.5)

We assume that the interfering symbols from the other users, {s;}ic7,, are independent from
each other, from s, and from the additive noise.
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Consider the MSE constraint E{|8; — s¢|? = E{|8:?} + 1 —2Re{ax}} < {x < 1. This

can can be written as

E{|3:*}(1 = ) < 2Re{ax}(1—G) - (1-G)? (E.7)
= ReY{a} — (Re{an}} — (1 - G))* < a2 (EB)

The latter inequality is equivalent to 1 4+ 1/SINR; < 1/(1 — (&), or equivalently
SINRk 2 (1/Gk) — 1.

207



Appendix F

Derivation of Design

Formulations 1 and 2

The derivations are based on the following lemma which is a concatenation of two

results in [99]:

Lemma F.1. Consider the SOC constraint ||Ax + b” <y for every [A7 b] in the

uncertainty region given by

w

U = {[A,b]][A b = [A, b + }: eev}

V = {BIGTQ‘BSI,Ezl,...,L}, (F.1)

where Qf > 0. Then the set S; of pairs (x,y) satisfying HAx + b” < y for every
[A, b] € U is subset of the set Sy of pairs (x,y) such that there exist non-negative

scalars it ..., u" satisfying
y— e 4t 0 (A% + b0)T
0 S 1Qf Alx+b' ... A'x+b]7 | > 0.

A%+ b  [Alx+Db' ... Alx+Db'] Yl
(F.2)
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WhC’I’LL=1,S] =82. O

To derive Design Formulation 1, we use the channel uncertainty model in (5.11)

to write the left hand side of each MSE constraint in (5.12¢) as follows

J
P~ fomg ~ by, ow] = [P fum—by  ow]+ ) w¢]B. 0

=1

&
= B - fum—by, on]+) 67 [GigB, 0],

J=

(F.3)

where 9,(5 ) = w,(j) /6x, hence 8} QB < 1. By comparing (F.3) to (F.1), we can invoke
Lemma F.1 with L = 1 to show the equivalence between the SOC constraints in
(5.12¢) and the corresponding LMIs in (5.13c). The non-negativity constraints on
each p is implied by positive semidefiniteness of the diagonal blocks of the matrices
in (5.12c). The derivation of Design Formulation 2 is similar, but when L > 2 the
application of Lemma F.1 results in a conservative design formulation, and hence an

upper bound on the required transmission power.
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Appendix G

Proof of Theorem 6.1

We start by considering linearly related transceivers for BC and dual MAC:

H / H
Pr = wk,g]I:{AC ) g = kallgAC ’ (Gl)

and we find the necessary conditions for wy and x; such that set of MSEs in BC and
dual MSE are equal. By setting MSE;, = I\_lg_EzlAC and substituting the values px and
gr from (G.1), we obtain a set of K equations. From the equality of coefficients the
term in pMACgMACHHE (or pMACH | eMACH Y o 1oth sides we have i = 1/wy. Using

this relation, the set of K equations reduces to the following linear system in w?:

‘ T
Mo = [ piop, g | (G2)

where M was defined in (6.18). We observe that M has strictly dominant diagonal
elements and negative off-diagonal elements, hence it is non-singular and the elements
of M~ are non-negative. Adding all equations in the linear system in (G.2) results
in K o2gMacgMact _ s~K 1 MACP2 ¢ total transmitted power in BC and dual

MAC are the same.
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