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Abstract 

This thesis considers wireless multi-input multi-output (MIMO) communication sys­

tems in block flat-fading environments. It develops novel designs of transmis ion and 

reception schemes for single-user and multi-user systems. The designs are developed 

under different models for the information about the communication channel that is 

available at the transmitter. 

For single-user systems, the thesis studies the class of non-linear MIMO 

transceivers that implement sequential interference (pre-) subtraction, namely 

transceivers with Tomlinson-Harashima precoding (THP) and transceivers with de­

cision feedback equalization (DFE). For these transceivers a novel design framework 

is developed to unify the design of these two dual systems when channel state infor­

mation ( CSI) is available at both the transmitter and the receiver. The framework 

encompasses a broad range of performance criteria, and generates closed-form ex­

pressions for the optimal designs under these criteria. The framework reveals that a 

single transceiver design is optimal for a large subclass of these performance criteria 

and shows t hat this unique optimal design is (strictly) superior to the correspond­

ing optimal linear transceiver for the same performance criterion. The framework 

also characterizes another class of design criteria for which the optimal non-linear 

transceiver reduces to the optimal linear transceiver for the same criterion. This 

novel design framework brings the design of non-linear MIMO transceivers to a level 
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of maturity similar to the linear counterparts, and will impact the design of prac­

tical wireless communication systems that implement these interference subtraction 

schemes. The framework is then generalized to the case of DFE transceivers that 

satisfy an additional zero-forcing (ZF) constraint and operate in a "limited feedback" 

regime in which CSI is available only to the receiver and there is a limited rate 

feedback channel between the receiver and the transmitter. The proposed limited 

feedback system is the first that involves a "precoded" DFE transceiver. 

The multi-user part of the thesis develops multi-user transceivers that are robust 

to uncertainties in the available information about the users' channels. These uncer­

tainties are inevitable in most practical multi-user communication systems, and can 

result in significant performance degradation. 

The first component of the multi-user part develops robust broadcast channel 

transceivers with quality of service (QoS) requirements for communication scenarios 

with bounded channel uncertainty at the transmitter. It formulates design prob­

lems for QoS requirements that can be expressed as constraints on the signal-to­

interference-plus-noise-ratio (SINR) of each user, or as constraints on the mean square 

error (MSE) each user's received signal. For both formulations, convex and efficiently­

solvable design approaches are proposed. These design approaches are used to derive 

solutions to other related design problems, such as robust counterparts of the fair 

broadcasting problem. 

The second component of the multi-user part develops robust designs for multi­

user transceivers that minimize different MSE criteria subject to a power constraint. 

The designs are obtained for different models of channel uncertainty: stochastic un­

certainty models and bounded uncertainty models. For each channel uncertainty 

model, the robust multi-user designs are developed for both linear and non-linear 

MIMO transceivers, for both broadcast channels (BC) and multiple access channels 
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(MAC). 


Simulation studies demonstrate the impact of the proposed robust designs on the 

performance of multi-user systems, and show that by incorporating robustness in 

the design one can significantly reduce the sensitivity of these systems to channel 

uncertainty and mitigate its deleterious effects. 
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Chapter 1 

Introduction 

This thesis considers the (joint) design of the transmitter and receiver for mult iple­

input mult iple-output (MIMO) communications system . The designs include both 

linear and non-linear t ransmission and reception techniques, for both single-user and 

multi-user systems, and they are based on different assumptions of the nature and 

the extent of the available channel knowledge. In this chapter , we will highlight some 

of the desirable features of MIMO communication systems t hat make them suitable 

for wireless communications. 1 We will also present the cont ribut ions of the thesis to 

the development of this area. 

1.1 	 Wireless Communications and MIMO Sys-

terns 

Wireless communication systems const itute a substantial and rapidly growing sec­

tor of the communication industry. In addition to the almost-ubiquitous cellular 

1The vector model of MIMO systems can also be applied to wired mult i-channel systems such as 
Digital Subscriber Line (DSL) systems. 
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telephone networks, wireless local area networks are covering an increasing number 

of business and educational environments, and wireless wide area networks are ex­

tending to many areas in which installing wired communication networks is a less 

economical option. The mobility offered by the wireless communication systems and 

the relatively low cost of deployment has spawned a variety of services, from con­

ventional voice, email, internet access, and audio and video conferencing, to remote 

sensing and distributed control, such a5 monitoring the elderly and automation of the 

transportation networks. 

However, the wireless medium possesses some characteristics that can make reli­

able communication rather challenging. One of these characteristics is the multipath 

fading phenomenon, which results from the propagation of the transmitted signal 

along different paths to the receiver. Each path has its own attenuation and delay, 

and these different multipath components do not necessarily add in a constructive 

manner at the receiver. Furthermore, small changes in the position of the trans­

mitter, the receiver, or the scatterers can result in substantial changes in the phase 

relationships between these paths, and hence the received signal power may fluctu­

ate quite rapidly. \Vhen the relative delays between the multiple propagation paths 

are significantly smaller than the signaling interval, the accumulated gains of these 

paths can be approximated by a complex scalar, and the channel is said to be a 

flat fading channel. \Vhen this condition does not hold, the channel is said to be a 

frequency-selective fading channel. In the frequency selective scenario, multi-c,arrier 

transmission techniques can be used to partition the transmitted signal over a (large) 

number of parallel subchannels, each of which can be treated as a flat-fading channel; 

e.g., [1]. 2 Hence, fiat fading channels will be considered throughout this thesis. This 

thesis will also adopt an independent block fading channel model in which the fading 

2Typically, the design of multi-carrier techniques is more involved than those for a single flat 
fading channel. 
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gains are considered constant for few channel uses, and then they take on independent 

values. This model well approximates a wide range of communication scenarios with 

slow fading; e.g., [2]. For this model, channel state information can be obtained at 

the receiver u ing training techniques. When transmission and reception ru·e multi­

plexed in t ime with a short "ping-pong" time, the reciprocity of the channel allows 

the transmitter to obtain an estimate of the communication channel. Otherwise, ob­

taining channel state information at the transmitter would require feedback from the 

receiver; e.g. [2]. 

One of t he potential applications of multiple antennas systems is to meet the 

challenge of fading. MIMO systems can exploit the availability of the different com­

munication links between each transmit and receive antennas to enhance the quality of 

the received signal. One way of doing so is by through sending lineru·ly scaled versions 

of the same data stream from the different transmit antennas in a way that enables 

the signals from the received antennas to be lineru·ly combined in a construct ive way 

to extract the transmitted data. In this way multiple fading link are combined in 

a controlled way to construct a more reliable channel. This approach is often called 

beamforming, and is an example of lineru· transmitter and receiver processing. In 

these beamforming MIMO systems, the optimal design of the scaling weights of each 

transmit antenna and the combining weights of the receive antennas typically requires 

the availability of the channel state informat ion (CSI) at both the transmitter and 

the receiver [3,4] . 

Other challenging characteristics of wireless communication are the limitations on 

the bandwidt h and power of the transmitted signal that are imposed by the transmis­

sion device (e.g. , a cell phone), or the standards of the particular wireless application. 

These constrained resources limit the growth of the achievable data rates. MIMO 

3 




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

Receiver 
with 

Nrantennas 

----......... ----­, ' , 
/ " ' \L,,­

/ ' \ 
\I 
II 

) \ 
I 

I Channel matrix ( 

I 
I H 

/ 

I 
I I 

,­
/ 

I 

,,,./ ...... _____ ,,, 

Transmitter 

with 


Nt antennas 


Figure 1.1: A single-user MI1\t10 system with Nt transmit antennas and Nr receive 

antennas. The element Hii of the channel matrix H represents the gain from the Ph 
transmit antenna to the 7th receive antenna. 

communication systems provide the potential for a significant increase in the achiev­

able data rate by facilitating the transmission of multiple simultaneous data streams. 

This characteristic of MIMO systems is termed spatial multiplexing, and it offers 

a new dimension to the conventional time and frequency multiplexing dimensions 

in single-input single-output (SISO) systems. For example, consider a single-user 

MIMO communication system with Nt transmit antennas and Nr receive antennas 

as depicted in Fig 1.1. In a richly scattered environment, at moderate to high signal­

to-noise-ratios (SNRs), the gTowth of the achievable data rate with the (logarithm 

of the) transmitted power in this MIMO system is min(Nt, Nr) times that of the 

corresponding SISO system. 

4 
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1. 1.1 Single-user Systems 

One approach to employing spatial multiplexing to achieve these potential gains is 

through sending a different linear combination of the multiple data messages from 

each transmit antenna , and processing the received signals linearly to separate these 

data message . This linear approach to transmitter processing (preceding) and re­

ceiver processing (equalization) generalizes beamforming to the case of simultaneous 

transmission of mult iple data streams. Because of the rather low computational com­

plexity of the joint linear transmitter and receiver (transceiver) approach, its optimal 

designs were studied for a large number of design objectives; e.g., [5] , and a unifying 

design approach for many of these objectives was developed in [6]. These designs 

considered scenarios in CSI is available at both the receiver and the transmitter. 

An attractive alternative to linear transceiver design is the clas of non-linear 

MIMO transceivers. These transceivers have t he potential for significant gains over 

linear transceivers, and yet can be implemented with comparable complexity. The 

performance gains are achieved by implementing sequential interference (pre-) sub­

traction at eit her t he transmitter , as in Tomlinson-Harashima Preceding (THP) sys­

tems, or at the receiver, as in sy terns with Decision Feedback Equalization (DFE). 

Interference subtraction in these systems i implemented in a way that mitigates the 

interference that is created by the channel. Hov. ever , because of the non-linearity 

of the e systems, the joint design of the transmitter and the receiver has been more 

challenging than in t he case of linear transceivers. ' i\Thile the optimal transceiver 

design is known for a few communication design object ives [7] the optimal designs 

for many other objectives have remained an open problem. 

In the single-user part of this thesis, we study the optimal design of this class 

of non-linear transceivers for a wide range of communication objectives, and we de­

velop a unifying design framework that complements the existing framework for linear 

5 
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transceivers [6). In Chapter 2, we focus on communication scenarios that assume the 

availability of perfect (CSI) at both the transmitter and the receiver, and in Chap­

ter 3 we generalize the optimal designs and the unifying framework to scenarios with 

limited feedback that assume perfect CSI at the receiver only and a low-rate feedback 

channel between the receiver and the transmitter. 

1.1.2 Multi-user Systems 

In multi-user scenarios, the design of the processing schemes at the transmitter and 

receiver becomes more dependant on the availability of the users' diannel state in­

formation, due to the physically disjoint nature of the users. For example, consider 

a broadcast channel (BC) that uses Nt antennas at the base station to simultane­

ously send independent data streams to K users, each with one receive antenna. The 

users of this BC are unable to cooperate, and hence they can not jointly detect their 

data messages. In this scenario, precoding at the transmitter plays a critical role in 

mitigating interference at the receivers, but its effectiveness is rather sensitive to the 

available channel knowledge. In particular, let s E CK denote the vector of symbols 

intended to each user, hk E cixNt denote the kth user's channel, P denote the linear 

precoding matrix used at the transmitter, and Pi denote the lh column of P. Then, 

the received signal, Yk at the kth user can be written as 

Yk = hkpksk + L hkpjSj + nk, (1.1) 
ji-k 

where the first term represents the useful signal carrying the intended messages, the 

second term represents the multi-user interference, and the third term is the additive 

noise of the kth receiver. From (1.1), it is apparent that the design of the precoder 

P in order to mitigate the interference terms at the receivers will depend on the 

availability (and quality) of the information that the transmitter has regarding each 

6 
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user 's channel. 

In practical communication systems1 the CSI available at the transmitter is usu­

ally imperfect. For example1 in broadcast systems with uplink-downlink reciprocity 

(e.g. 1 time division duplex systems) 1 the base station can estimate the users ' channels 

by exploiting the fact that it acts as receiver during some of the time slots. In a 

slow fading environment 1 the dominant impartment in this estimate is that due to 

estimation error . In systems in which users can estimate their channel1 quantize 

it 1 and feed it back to t he transmitter, e.g. [8, 9], the uncertainty in the channel is 

usually dominated by quantization errors. The performance of broadcasting systems 

is quite sensitive to these uncertainties, which can result in serious degradation of the 

quality of the signal received by each user [8] . These facts , motivate the multi-user 

part of this thesis, in which we study the design of multiuser transceivers, both lin­

ear and non-linear , under different models of channel uncertainty. In that part , t he 

thesis considers two broad classes of transceiver de ign problem. In the first class, 

the objective is to minimize the transmission power necessary to guarantee pecified 

quality of service (QoS) requirement for each user. In the other class, the objective 

is to optimize t he fidelity of the users ' signals subject to a power constraint at t he 

transmitter. 

1.2 Thesis Contributions 

The focus of the thesis is on the design of MIMO transceivers for both single-user 

and multi-user systems for different channel state information assumptions. 
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1.2.1 Contributions to Single-user MIMO Systems 

Chapter 2, develops a novel and broadly applicable framework for the the design 

of non-linear transceivers with Tomlinson-Harashima precoding or decision feedback 

equalization. The framework unifies the design of these dual systems. It uses concepts 

from majorization theory and convex optimization theory to develop optimal closed­

form designs for a broad range of objectives. In addition, scenarios under which 

the optimally designed non-linear transceivers are (strictly) superior to their linear 

counterparts are characterized. One of the interesting results of this unified framework 

is that one of the derived optimal designs can simultaneously optimize a large class 

of performance objectives, including maximizing the Gaussian mutual information, 

minimizing the total bit error rate and minimizing the total mean square error - a 

property that can not be achieved by a linear transceiver. This class is characterized 

through the use of majorization theory. Another interesting result is that for a second 

class of design objectives, the optimal non-linear transceiver reduces to the optimal 

linear transceiver for the same design objective. 

The transceiver design framework in Chapter 2 assumes the availability of accurate 

channel information at both the transmitter and the receiver. In many practical 

schemes the receiver can estimate the channel using a training sequence, but the 

channel information available at the transmitter can be rather limited. The design 

of non-linear MIMO transceivers with limited channel information at the transmitter 

results in an even more challenging design problem. Chapter 3 generalizes the design 

framework developed in Chapter 2 to scenarios with limited CSI at the transmitter. 

In particular, we consider a communication system with a linear precoder at the 

transmitter, zero-forcing decision feedback equalization at the receiver, and a low-rate 

feedback channel that enables communication from the receiver to the transmitter. In 

this limited feedback scheme, receiver selects a suitable precoder from a codebook and 
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feeds back the index of this precoder to the transmitter. In this chapter, the statistical 

distribution of the optimal precoder in a standard Rayleigh fading environment is 

characterized for a broad range of design objectives. This distribution is then used 

to show that codebooks constructed from Grassmann packings minimize an upper 

bound on average distortion measures for this range of objectives. The proposed 

limited feedback system is, to the best knowledge of the author, the first that involves 

a "precoded" DFE transceiver. 

The contribution of the single-user part of this thesis ware summarized in the 

following two journal articles 

• 	 M. Botros Shenouda and T. N. Davidson, "A framework for designing MIMO 

systems with decision feedback equalization or Tomlinson Harashima precod­

ing," IEEE J. Select. Areas Commun., vol. 26, no. 2, pp. 401-411, Feb. 

2008, 

• 	 M. Botros Shenouda and T. N. Davidson, "A design framework for limited 

feedback MIMO systems with zero-forcing DFE," Submitted to IEEE J. Select. 

Areas Commun., Accepted March 2008. 

and were presented in the following conferences 

• 	 M. Botros Shenouda and T. N. Davidson, "A framework for designing MIMO 

systems with decision feedback equalization or Tomlinson-Harashima precod­

ing," in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Honolulu, 

April 2007, pp. III-209 - III-212. (Finalist Best Student Author Award.) 

• 	 M. Botros Shenouda and T. N. Davidson, "Minimum SER zero-forcing trans­

mitter design for MIMO channels with interference pre-subtraction," in Proc. 

IEEE Veh. Technol. Conj., Dublin, 2007, pp. 2109-2113. 
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• 	 M. Botros Shenouda and T. N. Davidson, "Limited feedback design of MIMO 

system5 with zero-forcing DFE using Grassmann codebooks," in Proc. IEEE 

Canadian Wrkshp Info. Theory, Edmonton, June 2007, pp. 118-123. 

1.2.2 Contributions to Multi-user MIMO Systems 

This section will describe the contributions of this thesis to the robust design of 

multi-user transceivers that explicitly include the nature of channel uncertainty in 

the design formulations. Chapters 4 and 5 study the design of robust transceivers 

for cmmnunication schemes with quality of service (QoS) requirements for each user, 

while Chapters 6 and 7 study the design of robust transceivers based on mean-square 

error (MSE) performance criteria subject to a transmission power constraint. 

1.2.2.1 Robust Broadcasting Transceivers with QoS Constraints 

Chapters 4 and 5 consider the design of broadcasting schemes with quality of service 

constraints and uncertain channel information. 'fransceiver designs that guarantee 

QoS are essential for practical communication systems with interactive data, such 

as video and audio conference applications, and in cellular systems in which users 

are offered different grades of service. A central design problem in this area is that 

of designing the transmitter of the downlink so as minimize the transmission power 

required to to guarantee that all users' QoS requirements are satisfied. When accu­

rate channel information of all users is available, the transmitter employs transmit 

precoding techniques to spatially precode the messages intended to different users in 

a way that mitigates the multiuser interference at the (non-cooperating) receivers. 

The transmitter's ability to mitigate interference at the receivers is dependent on the 

availability of (accurate) channel state information for all the users' channels. When 

the channel state information is imperfect, the QoS of all users may incur significant 
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degradation. 

Chapter 5 considers a deterministically-bounded model for the channel uncert ainty 

of each user, and the goal is to design a robust linear precoder that minimizes the 

total transmission power required to satisfy the users ' signal-to-interference-plu -noise 

(SINR) constraints for all channels within a specified uncertainty region around the 

transmitter 's estimate of each user 's channel. The constraints on the received SINR 

of each user can be translated to into equivalent constraints on the symbol error 

rate or the achievable data rate of the user, and hence they constitute a general 

constraint on the quality of service. Chapter 5 demonstrates that thi QoS problem 

is equivalent to a semi-infinite convex optimization problem whose tractability is still 

an open problem. The theories of robust and convex optimization are then used 

to derive three conservative design approaches that yield efficiently-solvable convex 

design formulations that guarantee that the SINR constraints are met. The e three 

approaches yield semidefinite program (SDP) formulations that offer different trade­

offs between the degree of conservatism and the size of the SDP. It will be also shown 

that these three approaches can be used to solve other related problems, such as the 

robust counterpart of the fair transceiver design problem that seeks to maximize the 

QoS of the "weakest" user subject to a given power constraint. For these problems 

conservative, but efficiently-solvable, quasi-convex design formulations are derived. 

Chapter 6 formulates each user 's QoS requirement as a constraint on the mean 

square error (MSE) in each user's received signal, and shows that these MSE con­

straints imply constraints on the received SINR of each user. Using the MSE con­

straints, this chapter presents a unified design approach for robust linear and non­

linear tran ceivers with QoS requirements. The proposed designs provide an exact 

solution to the robust transceiver problem with MSE constraints, thus overcoming the 

need for the conservative designs that are presented in Chapter 5. Furthermore, this 
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approach provides computationally-efficient design formulations for a general model 

of channel uncertainty that subsumes many natural choices for the uncertainty region. 

As in Chapter 5, the designs can also be utilized to solve the robust fair transceiver 

design problem. 

The contributions of the first component of the multi-user part of the thesis were 

summarized in the following journal articles 

• 	 M. Botros Shenouda and T. N. Davidson, "Convex conic formulations of robust 

downlink precoder designs with quality of service constraints," IEEE J. Select. 

Topics Signal Processing, vol. 1, no. 4, pp. 714-724, Dec. 2007. 

• 	 M. Botros Shenouda and T. N. Davidson, "Non-linear and linear broadcasting 

with QoS requirements: Tractable approaches for bounded channel uncertain­

ties/' Submitted to IEEE Trans. Signal Processing Dec. 2007. Revised May 

2008. See also http://arxiv.org/abs/0712.1659vl. 

and also presented in the following conferences: 

• 	 M. Botros Shenouda and T. N. Davidson, "Linear matrix inequality formula­

tions of robust QoS precoding for broadcast channels," in Proc. IEEE Canadian 

Conj. Elec. €1 Cornp. Engineering, Vancouver, April 2007, pp. 324-328. 

• 	 M. Botros Shenouda and T. N. Davidson, "Quality constrained broadcasting 

with channel uncertainty: Semidefinite and quasi-convex formulations," in Proc. 

Int. Conj. Continuous Optimization, Hamilton, Aug. 2007. 

• 	 M. Botros Shenouda and T. N. Davidson, "Tractable approaches to fair QoS 

broadcast precoding under channel uncertainty," in Int. Conj. Acoustics, 

Speech, Signal Processing, Las Vegas, April 2008, pp. 3125-3128. 
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• 	 M. Botros Shenouda and T. N. Davidson, "Design of fair multi-user transceivers 

with QoS and imperfect CSI," in Commun. Networks Services Research Conj., 

Halifax, May 2008, pp. 191-197. 

1.2.2.2 Robust MSE Designs of Multi-user Transceivers 

Chapters 6 and 7 consider robust minimum MSE designs for multi-user transceivers 

for linear and non-linear transceivers, respectively, subject to a transmission power 

constraint. They consider robust transceiver designs for both multiple access channels 

and broadcast channels, with emphasis on the BC case, under two different models for 

the uncertainty in the information regarding each users' channel: a stochastic model, 

and a deterministically-bounded model. 

The stochastic model of channel uncertainty suits communication systems in which 

channel uncertainties are dominated by estimation errors; e.g., time division duplex 

systems. For this uncertainty model, the designs are based on a derived generaliza­

tion of the mean square error (MSE) duality between the broadcast channels (BC) 

and multiple access channels (MAC) to scenarios with uncertain channels. The exis­

tence of such duality complements the proven lack of duality of the users' signal-to 

interference-plus-noise-ratio (SINR) region for the same stochastic channel model. 

Using this duality, it can be shown that the achievable regions for the average, over 

channel uncertainty, of users' MSEs are equivalent for the BC and MAC. The equiv­

alence of the MSE regions holds under a linear transformation between the BC and 

MAC transceivers. As a result, the design of robust transceivers for the BC so as to 

optimize objectives that are arbitrary functions of the average MSEs can be solved 

by obtaining the optimal MAC transceivers for the same objective and then applying 

this linear transformation. For example, the joint design of the linear transceiver for 
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the BC so as to minimize the total average MSEs is a non-convex problem. How­

ever, using the derived duality result the non-convex BC transceiver design can be 

obtained as an affine transformations of the corresponding optimal transceiver for 

the dual MAC, which is itself a convex optimization problem that can be efficiently 

solved. 

The deterministically-bounded channel uncertainty models suit communication 

systems in which quantized channel feedback is employed. For these systems, the 

broadcast channel and multiple access channel transceivers are designed to minimize 

the worst-case value of the total MSE, over all admissible channels. While it is shown 

that the design problem is non-convex, an efficient iterative optimization algorithm 

that is based on efficiently-solvable convex conic formulations is proposed. The de­

signs are also generalized to the case when the channel uncertainty is described using 

the intersection of multiple uncertainty sets. The framework is quite flexible, and 

can incorporate different bounded uncertainty models as well as a variety of power 

constraints, such as per-antenna power constraints and spatial shaping power con­

straints. 

The contributions of the second component of the multi-user part of the thesis 

were summarized in the following journal articles 

• 	 M. Botros Shenouda and T. N. Davidson, "On the design of linear transceivers 

for multi-user systems with channel uncertainty," To appear in IEEE J. Select. 

Areas Commun., Accepted Jan. 2008. 

• 	 M. Botros Shenouda and T. N. Davidson, "Tomlinson-Harashima precoding for 

broadcast channels with uncertainty," IEEE J. Select. Areas Commun., vol. 

25, no. 7, pp. 1380-1389, Sept. 2007. 

and were presented in the following conferences 
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• 	 M. Botros Shenouda and T. N. Davidson, "Robust linear precoding for uncertain 

MISO broadcast channels ," in Proc. IEEE Int. Conj. Acoustics, Speech, Signal 

Processing, Toulouse, May 2006, pp. IV- 37- IV- 40. (Best Student Author 

Award.) 

• 	 M. Botros Shenouda and T. . Davidson, "Transmitter design with interference 

pre-subtraction for uncertain broadcast channels,' in Proc. Allerton Conj. 

Comm. , Control, Computing, Monticello Illinois, Sept. 2006. 

• 	 M. Botros Shenouda and T. . Davidson, "Minimax linear precoding for MISO 

broadcast channels with bounded uncertainty " in Proc. IEEE Global Telecom­

mun. Conj., San Francisco, ov. 2006 , pp. 1- 6. 

• 	 M. Botros Shenouda and T. N. Davidson, "Non-linear trru1sceiver design for 

broadcast chrumels with statistical channel state information " in Proc. IEEE 

Int. Symp. Signal Processing Inform. Tech. , Cairo, Dec. 2007, pp. 311- 316. 

• 	 M. Botros Shenouda and T . N. Davidson, Statistically robust transceiver 

design for broadcast channels with uncertainty " in IEEE Canadian Conj. Elec . 

f3 Comp. Engineering, Vancouver, April 2007, pp. 320- 323. 

• 	 M. Botros Shenouda and T . N. Davidson, "Linear multiuser transceivers: Ro­

bustness via worst scenario MSE approach," in Wireless Commun. Networking 

Conj. Las Vegas, March 2008, pp. 1008- 1013. 

• 	 M. Botros Shenouda and T. . Davidson, "Sequential interference subtrac­

tion multi-user transceivers: Designs for general bounded channel uncertainty 

models " To appear Proc. IEEE European Singnal Process. Conj. , Augu st 2008. 

Finally, the thesis is concluded by Chapter 8 which also provides suggestions for 

further research directions. 
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Chapter 2 

A Unified Design Framework for 


Non-Linear MIMO Transceivers 


In this chapter, we consider joint transceiver design for general single-user (point-to­

point) multiple-input multiple-output communication systems that implement inter­

ference (pre-) subtraction; i.e., Decision Feedback Equalization (DFE) or Tomlinson­

Harashima precoding (THP). For systems in which perfect channel state information 

( CSI) is available, a unified framework is developed for joint transceiver design of 

these two dual systems by considering design criteria that are expressed as functions 

of the (logarithm of the) Mean Square Error (MSE) of the individual data streams. By 

deriving two inequalities that involve the logarithms of the individual MSEs, optimal 

designs are obtained for two broad classes of communication objectives, namely those 

that are Schur-convex and Schur-concave functions of these logarithms. These two 

classes embrace several design criteria for which the optimal transceiver design has 

remained an open problem. For Schur-convex objectives, the optimal design results in 

data streams with equal MSEs. In addition to other desirable properties, this design 
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simultaneously minimizes the total MSE and the average bit error rate, and maxi­

mizes the Gaussian mutual information; a property that is not achieved by a linear 

transceiver. Moreover, we show that the optimal design yields objective values that 

are superior to the corresponding optimal objective value for a linear transceiver. For 

Schur-concave objectives, the optimal DFE design results in linear equalization and 

the optimal THP design results in linear precoding. The proposed design framework 

embraces a wide range of design objectives and can be regarded as a counterpart of 

the existing framework of linear transceiver design. 

2 .1 Introduction 

In the previous chapter, we have mentioned that one of the key advantages of Multiple­

Input Multiple-Output (MIMO) communications schemes is that they facilitate the 

simultaneous transmission of multiple data streams. In single-user (point-to-point) 

applications. such schemes typically involve processing of the data streams at the 

transmitter (precoding) to ''match" the transmission to the channel and processing 

of the received signals (equalization) to mitigate the interference between the re­

ceived streams at reasonable computational cost. One approach to the design of such 

a scheme is to focus on linear precoding and linear equalization; e.g., [5, 6). An al­

ternative approach that offers the potential for performance improvements over the 

linear approach is to allow interference (pre-)subtraction at either the transmitter 

or the receiver. This approach includes schemes with linear precoding and Decision 

Feedback Equalization (DFE), and schemes with Tomlinson-Harashima precoding 

(THP) and linear equalization, and will be the focus of this chapter. The DFE and 

THP schemes were initially introduced as receiver and transmitter (pre )equalization 

schemes, respectively, for single input single output (SISO) channels with inter-symbol 
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interference, e.g., [10]. 

A large number of joint design strategies have been proposed for the class of lin­

ear MIMO transceivers (e.g., [5]), and a unified framework that encompasses many 

of these designs was proposed in [6]. That framework is based on the classes of com­

munication objectives that are Schur-convex or Schur-concave functions of the mean 

square error (MSE) of each data stream, and encompasses a broad range of design 

objectives. For DFE-based systems, joint transceiver designs based on a minimum 

MSE criterion were considered in [7, 11-13}, and designs subject to a zero-forcing 

constraint were considered in [14, 15). However, for many of the design criteria for 

which (jointly) optimal linear transceivers are known, the jointly optimal DFE-based 

transceiver has remained an open problem. FUrthermore, the development of a uni­

fying design framework for DFE-based transceivers that encompasses these designs 

has appeared to be a challenging problem. For THP schemes, designs based on min­

imum MSE criteria were considered in [10, 13}, and designs subject to a zero-forcing 

constraint were considered in [10, 16]. However, the approach in [13) considers a lower 

bound on the MSE, and the approaches in [10, 16] do not use all the degrees of design 

freedom available in a single-user system. Hence, the approaches in [10, 13, 16] yield 

suboptimal designs. In addition to the absence of a minimum MSE transceiver, the 

design of (jointly) optimal TH-based transceivers for other design criteria, and the 

development of a unifying framework have remained open problems. 

In this chapter, we develop a broadly applicable framework for joint transmitter 

and receiver design for MIMO systems with DFE or THP. (A related DFE-centric 

framework was developed, independently, in [17, 18).) We consider the broad range of 

design criteria that can be expressed as either Schur-convex or Schur-concave func­

tions of the logarithm of the MSE of each data stream, and we provide optimal 

transceiver designs for these two classes. In addition to providing a generalization of 
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existing DFE designs based on the overall MSE, these classes of functions embrace 

other design criteria, such as minimizing the maximum of the individual MSEs, min­

imizing a general p-norm of the MSEs, and minimizing the product of the individual 

MSEs, which is equivalent to maximizing the Gaussian mutual information. More­

over, design criteria expressed in terms of the signal-to-interference-plus-noise ratio 

(SINR) and bit error rate (BER) of each stream are included in the set of objectives 

covered by these classes; e.g., maximizing the harmonic mean of the SINRs, maximiz­

ing a general p-norm of the SINRs, and minimizing the the total BER of all streams. 

Interestingly, the optimal design for both Schur-convex and Schur-convex objectives 

yields a diagonal MSE matrix. Hence, communication over the MIMO channel is 

decomposed into a number of uncorrelated subchannels. For Sdmr-convex objec­

tives the optimal design results in data streams with equal MSEs. This property 

is not achieved by the previously proposed (suboptimal) designs for THP systems 

(e.g., [10, 13]), and hence ordering the symbols prior to interference subtraction is 

necessary for those designs, as it is in multi-user schemes [19]. This ordering is un­

necessary for the optimal transceiver designs derived herein. Another property of 

our optimal design for Schur-convex objectives is that it simultaneously minimizes 

the total MSE, minimizes the average bit error rate, and maximizes the Gaussian 

mutual information. This property is not achieved by the optimal linear transceiver. 

For any Schur-convex objective, our optimal design yields an objective value that is 

superior to the corresponding optimal objective value for a linear transceiver. For 

Schur-concave objectives, the optimal DFE design results in linear equalization and 

optimal THP design results in linear precoding. From a broader prospective, the 

proposed framework can be viewed as a counterpart for the design of DFE-based and 

TH-precoding-based transceivers of the unified framework for the design of linear 

transceivers in [6]. 
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Figure 2.1: Single-user MIMO transceiver using Decision Feedback Equalization. 

2.2 Two Dual Non-Linear MIMO Transceivers 

We consider a generic MIMO communication system described by the channel matrix 

H E c nr XNt' e.g. [20] and we denote by J( the number of data streams transmitted 

simultaneously over the channel. ~ e will consider the design of two communication 

architectures: systems with linear precoding (pre-equalization) at the transmitter 

and DFE at t he receiver; and systems with Tomlinson-Harashima precoding at the 

transmitter and linear equalization at the receiver. We will assume that full channel 

state information (CSI) is available at both the transmitter and the receiver. However, 

the framework developed herein will be extended to scenarios with limited CSI at the 

transmitter in Chapter 3. 

2.2.1 Transceivers with Decision Feedback Equalization 

As shown in the DFE model in Fig. 2.1, the vectors ECK that contains the current 

data symbol of each stream is linearly precoded by the matrix P E CNt x K to generate 

the transmitted vector 

x = Ps , (2.1) 

where we assume, without loss of generality, that E{ ssH} = I. Hence, the average 

transmitted power constraint can be written as Es{xHx } = tr(P HP ) :::; P total· The 
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received vector y is 

y= HPs+n, (2.2) 

where n is the vector of additive noise samples which is assumed to have zero­

mean and a covariance matrix E{nnH} = Rn. As shown in Fig. 2.1, the DFE is 

implemented using a feedforward matrix G E cKxnr and a feedback matrix filter 

BE cKxK. In this scenario, the detection of the kth symbol is preceded by subtract­

ing the effect of previously decoded symbols. Assuming correct previous decisions, 

the input to the quantizer, s, can be written as (e.g., [7]) 

snFE = (GHP - B)s + Gn, (2.3) 

where B is a strictly lower triangular matrix.1 Using the error signal e = snFE - s, 

we can define the Mean Square Error matrix. 

where C =I+ B is a unit diagonal lower triangular matrix. 

2.2.2 Transceivers with Tomlinson-Harashima Precoding 

As shown in Fig. 2.2(a), in a THP system the transmitter performs successive interfer­

ence pre-subtraction and pree,oding using the strictly lower triangular matrix B and 

the precoding matrix P, respectively. We assume that the elements of s are chosen 

from a square QAM constellation S with cardinality M and that Es { ssH} = I. The 

Voronoi region, V, of this constellation is a square whose side length is D. Following 

pre-subtraction of the effect of previously precoded symbols, the transmitter uses the 

modulo operation so that the symbols of v lie within the boundaries of V. The effect 

1In general, the estimator in (2.3) is biased, but the effect of this bias can be mitigated by scaling 
the decision regions of the quantizer (21]. At operating points at which one can reasonably assume 
correct previous decisions, the effect of the bias is typically small [21). 
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Figure 2.2: (a) MIMO transceiver with Tomlinson-Harashima precoding (b) Equiva­

lent linear transmitter model for Tomlinson-Harashima precoding system 

of the modulo operation is equivalent to the addition of ik = ir;e D + j i~magD to sk, 

where ir;e, ii;11ag E Z. Using this observation, we obtain the linearized model of the 

transmitter shown in Fig. 2.2(b), e.g., [10), in which 

(2.5) 


where u = i+s is the modified data symbol and C = l+B. As a result of the modulo 

operation, the elements of v are almost uncorrelated and uniformly distributed over 

the Voronoi region V [10, Th. 3.1], [16, Fig. 3]. Therefore, the symbols of v will have 

slightly higher average energy than the input symbols s. This slight increase in the 

average energy is termed precoding loss [10]. For example, for square 111-ary QAM 

we have a; = E{lvkl 2
} = J!-1 E{lskl 2

} for all k except the first one [10, Sec. 3.2.6]. 

For moderate to large values of M this power increase can be neglected and the 

approximation E{vvH} =I is often used; e.g., [16], [13]. We will assume negligible 

precoding loss, and hence the average transmitted power constraint can be written 

as Ev{xHx} = tr(PHP) ~ ?total· 
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The vector of received signals in a THP system can be written as 

y = HPc- 1u + n, (2.6) 

where n is the vector of additive noise which is assumed to have zero-mean and a 

covariance matrix E{nnH} = Rn . At the receiver, the feedforward processing matrix 

G is used to obtain an estimate u= GHPC- 1u+Gn of the modified data symbols u. 

Following this linear receive processing step, the modulo operation is used to obtain 

sTHP by eliminating the effect of the periodic extension of the constellation caused by 

the integer vector i. In terms of the modified data symbols, the error signal 

e = u - u = GHPv + Gn - Cv (2.7) 

can be used to define a :Mean Square Error matrix 

Assuming negligible precoding loss and that the vector i is eliminated by the receiver 

modulo operation (which occurs with high probability, even at reasonably low SNRs), 

the error signal in (2. 7) is equivalent to §THP -s. Hence, the mean square error matrix, 

E, of the estimate sTHP of the THP model is the same as that of the estimate snFE 

of the DFE model under the assumption of correct previous decisions in the DFE. 

2.2.3 General Model 

From (2.4) and (2.8), we observe that the MSE matrix of both systems can be rewrit­

ten as: 

(2.9) 

where Ry= HPPHHH +Rn. It can also be observed that linear transceivers are a 

special subclass of both system models with the feedback matrix B = 0 (or, equiv­

alently, C =I); see Figs 2.1 and 2.2. Our objective is to jointly design the matrices 
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G C and P according to criteria that are functions of E , subject to a constraint on 

the average transmitted power. 

2.3 Optimal feedforward and feedback matrices 

We will consider the joint design of the transceiver matrices G , C and P so as to 

optimize system design criteria that are expressed as (increasing) function of the 

(logarithm of the) :tvISE of each individual data stream, Eii, subject to the tran mitted 

power constraint tr(P HP ) ::; ?total· We will adopt a three-step de ign approach. First , 

an expression for the optimal feedforward matrix G will be found a a function of C 

and P . Second, using the expression for the optimal G , an expression for the optimal 

C will be found as a function of P . Finally, using the obtained expressions for the 

optimal G and C , we will design the optimal precoder P . 

2.3.1 Optimal feedforward matrix G 

For given C and P , the MSE of the ith data stream, E ii, is a convex quadratic function 

of the ith row of G , and is independent of other rows. Therefore, the rows of G can 

be independently optimized to minimize the individual MSEs and the resulting G is 

optimal for any t ransceiver objective that is an increasing function of the individual 

MSEs. (A similar property was ob erved in [6] for linear transceivers.) Since G is 

unconstrained and the MSE of the ith data stream is a smooth convex function of the 

ith row of G , we can obtain an expression for optimal G by setting the gradient of 

E ii with re pect to the ith row of G to zero. Hence, the optimal G can be written 

as (e.g. , [7]): 

(2.10) 
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Using this expression, the MSE matrix for a system with the optimal G 

(2.11) 

where the matrix inversion lemma has been used, and M = (I+ pHffHR~1HP)-1 . 

2.3.2 Optimal feedback matrix B 

From (2.11) we observe that the MSE of each data stream, Eii, is a convex quadratic 

function of the ith row of C = I+ B and is independent of the other rows. Using 

a similar argument to that for G above, the matrix C whose rows independently 

minimize the individual MSEs is optimal for the transceiver objectives that we will 

consider. However, C is constrained to be a unit diagonal lower triangular matrix 

and these constraints must be incorporated in the design. To do so, we observe that 

the matrix C that minimizes the individual MSEs can be obtained by minimizing 

any convex combination of Eii. By d10osing that convex combination to be the sum, 

our goal reduces to minimizing tr(CMCH) subject to C being unit diagonal lower 

triangular matrix. Using the Cholesky decomposition 

(2.12) 

where L is a lower triangular matiix with positive real diagonal elements, we can 

rewrite the objective as tr(CMCH) = l/CLll},, where the product CL is a positive 

definite lower triangular matrix [22]. Let ,\1(CL) 2: ... 2: ,\K(CL) and 0'1 (CL) 2: 

... 2: O'J<(CL) denote the ordered eigenvalues and singular values, respectively, of the 

matri.x CL. Then the unit diagonal lower triangular C that minimizes tr(CMCH) 
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can be obtained using the following lower bound, 

K 	 K 

llCLll} = L o}(CL) > LAr(CL) (2.13) 
i=l i=l 

K K 

- L[CLJ;i = L L;i, (2.14) 
i=l i=l 

where the bound in (2.13) is obtained by applying Weyl's inequality [23], and (2.14) 

follows from the fact that CL is lower triangular and C is unit diagonal. The expres­

sion on the right hand side of (2.14) is a lower bound on llCLll} that is independent 

of C. Furthermore, the inequality in (2.13) is satisfied with equality when the matrix 

is normal [23]. Since our matrix CL is a triangular matrix, it can only be normal if 

it is diagonal [22, pp 103]. Therefore, the matrix C that attains the lower bound in 

(2.14), and hence is optimal, is 

C = Diag (Ln, ... , LKK) L-1
. 	 (2.15) 

Using this optimal C, the MSE matrix can be rewritten as 

(2.16) 


We observe that for any given precoding matrix P, the optimal feedforward and 

feedback matrices will yield a diagonal MSE matrix, with the individual MSEs being 

2.3.3 	 Optimality in the sense of maximizing individual 

SINRs 

For any given channel and precoder, the minimum MSE design of the matrices G and 

B for a DFE system, is also optimal in sense of maximizing the signal-to-interference­

plus-noise (SINR) of each stream [24-26]. Using this optimal minimum MSE design of 
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the feedforward and feedback matrices, the SINR of the ith stream is given by [24,27] 

(2.17) 


Under the assumptions stated in Section 2.2, the estimate vector §THP has the same 

covariance matrix as the vector soFE at the input to the quantizer in the DFE sys­

tem. Hence, the individual SINRs for both systems are the same for any given input 

covariance matrix, E{ssH}, and noise covariance matrix, Rn· An analogous rela­

tion between SINRi and Eii holds under a zero-forcing constraint for both the DFE 

model (e.g., (27]), and the THP model under similar assumptions to those stated in 

Section 2.2; e.g., (16]. (Similar relations also hold in the multiuser case; e.g., [28].) 

Since linear precoding is a special subclass of both models when B = 0, the same 

relation between SINRi and Ei holds for minimum MSE design of the receiver matrix 

G; e.g., (6]. Using the expression for the individually minimized MSEs in (2.16), the 

individually maximized SINR of each data stream is given by 

(2.18) 


2.4 Design of the Precoding matrix: Preliminaries 

Given the expressions for the optimal G and C, the remaining step is to design a 

precoding matrix P to optimize design criteria that are expressed as functions of the 

individual MSE of each stream, LTi· \i\Te will first derive two inequalities involving 

Lii that will enable us to characterize the optimal precoder. These inequalities will 

depend on the concepts of multiplicative and additive majorization [29]. 

28 



Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

2.4.1 A Multiplicative Majorization Inequality 

The first inequality is derived using the concept of multiplicative majorization (23, 

26,29]. 

Definition 2.1 (Multiplicative Majorization). For a vector a E JRK, let a[i]i ... , a[K] 

denote the re-ordering of the elements of a in a non-increasing order; i.e., a[i] 2: ... 2: 

a[K]. Let lR+ denote the set of positive real numbers, and let a, b E JR~. The vector 

b is said to multiplicatively majorize a, a -<x b, if 

TI{=1 a[iJ :::; TI{=1 b[iJ forj = 1, ... ,K -1, (2.19) 

TI~1 a[iJ = TI~1 h[iJ· (2.20) 

An important example of the multiplicative majorization is the relation between 

the eigenvalues and singular values of a square matrix, and is given by the following 

lemma. 

Lemma 2.1 (Weyl [23]). Let A E CKxK and let .,\(A) and ai(A) de­

note the eigenvalues and singular values of A, respectively. Then we have 

[l,\1(A)l 2 
, J,\K(A)l 2

] -<x [ai(A), ... , ai-(A)]. If A is normal, then l,\i(A)I = 

ai(A). 

Applying the above lemma to the positive definite lower triangular matrix L, we 

obtain 

(2.21) 


2.4.2 An Additive Majorization Inequality 

The second inequality involves the more common notation of additive majorization 

(29]. 
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Definition 2.2 (Additive Majorization). Let a, b E JRK. The vector b is said to 

majorize a, a -< b, if 

j j

I:afi1 :::; I: briJ for j = 1, ... , K - 1, (2.22) 
i=l i=l 

(2.23) 


D 

\Ve observe that if elements of a and b are positive, then a -<x b ¢::} log(a) -< 

log(b). Consequently, (2.21) can be written as: 

l-< m, (2.24) 

where l = [logLi1 •... ,log Lid and m = [logo-i(L), ... ,logo-}(L)]. 

To derive the second inequality, we will use the following consequence of additive 

majorization: Any vector a E JRK majorizes its mean vector a, whose elements 

are all equal to the mean; i.e., ~ = k '2:[~ 1 ~· That is, a -< a. Now, since 

rM = LLH' we know that ni~l L~i = det(LLH) = det (M). As a result, we have 

'2:~ 1 li = log det(M) and hence 

l-< l, (2.25) 

where Ii l log <let (M). 

2.4.3 Schur-convex and Schur-concave functions 

The proposed designs will be based on the following classes of functions [29]. 

Definition 2.3 (Schur-convex and Schur-concave functions). A real-valued function 

f(x) defined on a subset A of IRK is said to be Schur-convex if a-< b on A=> f(a) :S 

f(b), and is said to be Schur-concave if a-< b on A=> f(a) 2: f(b). D 
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In particular, we will consider communication objectives that can be expressed 

as the minimization of increasing functions of the MSEs of each data stream, 

g(Li1, ... , Li<-K) = g (eli, ... , elK) = g(e1), that are either Schur-convex or Schur­

concave functions of l. 

2.5 	 Optimal Precoding Matrix: Schur-convex ob­

jectives 

In this section, we will present a closed-form expression for the optimal precoding 

matrix P for the class of Schur-convex objectives. We will also study the properties 

of the optimal solution and compare it to optimal linear transceiver designs. Finally, 

we will present examples of design objectives g(e1) that are Schur-convex functions of 

l. 

2.5.1 	 Optimal Precoding Matrix 

If g(e1
) is a Schur-convex function of l, then from (2.25) we have that g(e1) ~ g(el), 

and that equality is obtained if the elements of l are equal. Our approach to finding 

the optimal precoder is to characterize the family of precoders that minimize the 

lower bound g(e1) subject to the power constraint, and then to show that within this 

family there is a precoder that results in all of the elements of l being equal, and 

hence attains the minimized lower bound. 

Since the objective is an increasing function of the individual MSEs, and since 

li = }< log det (M), where M was defined following (2.11), the problem of minimizing 
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the lower bound subject to the power constraint can be formulated as: 

max logdet(I + PHHHR;:;-1HP) (2.26a)
p 

subject to tr(PHP) ~ Ptotal· (2.26b) 

This formulation is equivalent to maximizing the Gaussian mutual information, and 

hence the family of optimal precoders is obtained using a standard water-filling algo­

rithm (30]. To state this family, we use the eigenvalue decomposition 

(2.27) 


where Aa = Diag(..\a.1 , ... ), and AH.i are eigenvalues of Ra in descending order. In 

the water-filling algorithm, power is allocated to Kwf eigenvalues of Ra, where Kwr 

is the maximum integer j satisfying (?total+ E1=1 ..\H::i) :?:: j/..\a,J, [30]. If we define 

k = min(Kwf, K), the family of optimal precoders can be written as 

(2.28) 


where Ua,1 E CNtxk contains the eigenvectors of Ra corresponding to the largest 

K eigenvalues, V E i(KxK is a unitary matrix degree of freedom, and the diagonal 

matrix <I> is 

q> tz.. = µ - 1//\.'a.,i, (2.29) 

" t " 1 1 . · . b 1 (P "'k '-1 )where t he wa ,er eve µ is given y k + L..Ji=l "'a,i . 

To complete the design of P, we need to select the unitary matrix V in (2.28) so 

that the minimized lower bound is attained; i.e., so that the Cholesky decomposition 

of M = LLH yields an L factor with equal diagonal elements. Using (2.28), 

M (vH(I + ~rAa,1~)-1;2) ((1 + ~rAa,1~)-112v) 

- LLH = RHR = (QR)H(QR), (2.30) 
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where A8 ,1 is the diagonal matrix containing the largest k eigenvalues of RH, and 

Q is a matrix with orthonormal columns. Hence, finding V is equivalent to finding a 

V such that QR decomposition of (I+ 4'TAH,14')-112v has an R-factor with equal 

diagonal. This problem was solved in [14] and V can be obtained by applying the 

algorithm in [14] to the matrix (I+ 4'TA8 ,14')-1f 2; see also [7,31,32]. 

2.5.2 	 Properties of the optimal design 

In this section we describe some interesting properties of the optimal transceiver 

design for Schur-convex objectives. 

2.5.2.1 	 Independence of the optimal transceiver design on the design ob­

jective g(e1
) 

We observe that the above derivation of the optimal precoder design is independent 

of the actual design objective, g(e1). (A similar property holds for linear transceiver 

design, but with objectives that are Schur-convex functions of the individual MSEs 

themselves.) Therefore, the desirable properties of the DFE transceiver that mini­

mizes the total MSE generalize to other Schur-convex objectives for both DFE and 

THP models. For example, the DFE transceiver that minimizes the total .MSE has 

asymptotically the same symbol error rate as the transceiver that employs the optimal 

precoder with maximum likelihood detection [32]. This property is now applicable to 

all DFE and THP transceivers with Schur-convex objectives. 
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2.5.2.2 	 For any Schur-convex objective g(el), the optimal transceiver is 

information lossless 

Since maximizing the Gaussian mutual information is a Schur-convex objective, it 

follows that the optimal design for any Schur-convex objective is information loss­

less, in the sense that optimizing the chosen objective does not incur any reduction 

of the Gaussian mutual information. In addition to being information lossless, the 

properties of the matrix V in Section 2.5.1 mean that the optimal Schur convex de­

sign results in a uniform decomposition of the mutual information (32]. As a result, 

the SINR on each subchannel is the san1e. This result generalizes the information 

lossless property of MMSE-DFE receivers (e.g., [11, 25]), and that of minimum MSE 

DFE-based transceivers [7], to designs for DFE and THP transceivers with an arbi­

trary Schur-convex objective, g(el). This property does not hold in general for the 

linear transceiver designs because the precoder that maximizes the Gaussian mutual 

information does not necessarily optimize other criteria. 

2.5.2.3 	 Relation to linear transceiver designs 

Using the majorization results in (2.24) and (2.25), we can show the following inter­

esting result for any Schur-convex objective g(el). 

Proposition 2.1. For design criteria with a Schur-convex objective g( el), the optimal 

THP or DFE design yields a lower bound on the objective value obtained by any linear 

transceiver. D 

Proof. For any linear transceiver, C = I. It follows from (2.15) that L is diagonal 

and hence Lii = o}(L), or equivalently l = m. Since the optimal THP or DFE 

transceiver corresponds to l =land we have I-< m, it follows that g(l) ~ g(m), for 

any Schur-convex objective g( ·). D 
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This result shows that the optimal DFE or THP transceiver for any Schur-convex 

objective g(e') will yield an objective value that is less than or equal to the objective 

value achieved by the optimal linear transceiver for the same objective. Furthermore, 

a stronger results can be obtained by considering the subclass of strictly Schur-convex 

objectives. For this class of objectives, /(a) < f(b), whenever a~ b and a is not a 

permutation of b. Since the optimal transceiver corresponds to l = l, and any linear 

transceiver corresponds to l = m, it follows from l ~ m that g(e1) < g(em), for every 

strictly Schur-convex function g(·) whenever m is not equal to a permutation of l. 

Since all elements of l are equal, it follows that g(e1) < g(em) whenever l-/:- m. The 

case l = m corresponds to the optimal design of L being a diagonal matrix with equal 

diagonal elements; i.e., a scaled identity matrix. This case can arise from water-filling 

over K ~ Kwr equal eigenvalues of the matrix Ra. 

2.5.3 Examples of Schur-convex objectives 

In this section we present examples of design objectives that are Schur-convex func­

tions of l, the vector of logarithms of the individual MSEs. (Sketches of the proofs are 

provided in Appendix A.) Before we do so, we point out that by using the composition 

properties of Schur-convex functions (29] one can prove the following result. 

Lemma 2.2. Let y = e'. If g(y) is Schur-convex in y, then g(e') is Schur-convex in 

l. 

Using this lemma and the results in [6], functions such as the total MSE and 

the average BER can be shown to be to Schur-convex functions of l. However, by 

analyzing g(e') directly, we will obtain stronger results. For example, we will show 

that the total MSE is strictly Schur-convex in l. (It is not strictly Schur-convex in the 

MSEs themselves.) We will also show that the average BER of certain constellations, 
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including 16-QAM, is a Schur-convex function of l for the entire range of the MSE, 

whereas it is a Schur-convex function of the MSEs only for limited ranges of the 

MSE [6]. In addition, by taking the direct approach we will be able to show that 

several objectives that are not Schur-convex functions of the MSEs are Schur-convex 

functions of the logarithm of the MSEs; e.g., the Gaussian mutual information and 

the geometric mean of the SINR5. 

2.5.3.1 Minimization of the total MSE 

Minimization of total MSE (or the arithmetic mean of the MSEs) corresponds to 

minimization of 

l K (2.31)g(e) = l:i=l el;' 

which is a strictly Schur-convex function of l. Hence, the optimal precoder is given by 

the closed-form expression derived in Section 2.5.1. For the DFE model, transceiver 

design based on minimization of the total MSE was considered in [7], and the solution 

therein is, as expected, the same as that in Section 2.5.l. For the THP model, 

a design approach based on a bound on the total MSE was presented in [13}, but 

that approach does not necessarily minimize the total MSE. Furthermore, the THP 

designs in [10, 16] do not exploit all the available degrees of design freedom. Using 

the approach presented in this section, we obtain a jointly optimal design for THP 

model for the total MSE objective. 

2.5.3.2 Minimization of product of MSEs and maximization of Gaussian 

mutual information 

Given the diagonal structure of the matrix E in (2.16), minimization of the product 

of the MSEs (or the geometric mean of the MSEs) is equivalent to minimization of the 

determinant of E. Furthermore, maximization of the Gaussian mutual information is 
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equivalent to minimization of logdet(E ), [11]. Therefore, these three objectives are 

equivalent and correspond to minimization of 

(2.32) 


In Appendix A. we show that g(el ) is both a Schur-convex and a Schur-concave func­

tion of l . Hence, the optimal design in (2.28) is information lossless for both the 

DFE and THP models. (This is consistent with the MMSE-DFE being a 'canonical 

receiver' [11] and examples of existing designs that apply these criteria to DFE-based 

transceivers appeai· in [7, 11,12].) Since the expression in (2.32) is also Schur-concave, 

a design that maximizes the Gaussian mutual information can also be obtained using 

the Schur-concave approach in Section 2.6, below. That approach results in a lin­

ear transceiver with a standard water-filling power allocation [30]. (Of course, both 

approaches yield t he same maximized Gaussian mutual information.) 

2.5.3.3 	 Minimization of maximum MSE (Maximization of minimum 

SINR) 

Minimization of the maximum MSE corresponds to minimization of the following 

Schur-convex function of l 

(2.33) 


According to (2. 17), the stream with the maximum MSE i the one with t he minimum 

SINR. Hence, this objective is equivalent to maximization of the minimum SI R. 

2.5.3.4-	 Minimization of p-norm of MSEs 

In this case, the objective is to minimize 

(2.34) 
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This design criteria includes the minimization of total MSE, p = 1, and the mini­

mization of the maximum MSE, p = oo, among several other norms of the vector of 

MSEs of each data stream. 

2.5.3.5 Maximization of the harmonic mean of SINRs 

In this case, the objective is to minimize 

( l) "K l "K l (2.35)g e = L..ti=l SINRk = L..ti=l e-1;_1, 

2.5.3.6 Maximization of product of SINRs 

Maximization of the product of the SINRs (or the geometric mean of the SINRs) can 

be expressed as the minimization of 

(2.36) 

2.5.3.7 Minimization of average BER 

Assuming that each each data stream employs the same constellation, the average 

BER is given by 

(2.37) 

where BER(·) is the bit error rate of the chosen constellation as function of the SINR. 

For many constellations, such as M-ary QAM, the bit error rate function BER(SINR) 

can be closely approximated by [33, eq. 18], [34, eq. 13]: 

BER(SINR) = c2 Q(Jc1 SINR), (2.38) 

where c1 and c2 are constants that depend on the size of constellation M, and Q(x) = 

~ J:~ e-z2
12 dz. For BPSK and QPSK, we have c1 = c2 = 1 and the approximation 
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becomes exact. In Appendix A we show that the objective in (2.38) is a Schur-convex 

function of l for BPSK and fl.1-ary QAM up to M = 16, and that for higher-order 

QAM it is Schur-convex under the mild constraint that the SINR is above a small 

threshold. (The design of DFE-based systems with an average BER objective was 

considered in [7].) 

2.6 	 Optimal Precoding Matrix: Schur-concave ob­

jectives 

2.6.1 	 Optimal Precoding Matrix 

If g(el) is a Schur-concave function of l, then from (2.24) we have g(em) :::; g(ez), and 

the optimal value is obtained when 

(2.39) 

According to Lemma 2.1, this equality holds when L is normal matrix. Since L is 

a lower triangular matrix, in order to be normal it must be a diagonal matrix [22]. 

The optimal C in that case is I, and hence the optimal feedback matrix is B = 0. 

That is, in the case of Schur-concave functions of l, the optimal DFE design results 

in linear equalization and optimal THP design results in linear precoding. 

This result shows that for Schur-concave objectives the design problem reduces 

to that for the special subclass of linear transceivers; e.g., [5, 6]. What remains is to 

compare the direct linear designs with those that we have derived from the optimiza­

tion of DFE and THP transceivers with Schur-concave objectives of the logarithm 

of the individual MSEs, g(ei). Using the composition properties of Schur-concave 

functions [29) the following counterpart to Lemma 2.2 can be established. 
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Lemma 2.3. Let y =el. If g(el) is Schur-concave in l, then g(y) is Schur-concave 

in y. 

A consequence of this result is that the optimal DFE or THP transceiver design 

for an objective that is Schur-concave in the logarithm of the individual MSEs is 

the optimal linear transceiver for the corresponding Schur-concave function of the 

individual MSEs themselves. As shown in [6], that optimal precoder will depend on 

the objective. This is in contrast to the Schur-convex designs, which are independent 

of the objective; see Section 2.5. 

2.6.2 Examples of Schur-concave objectives 

We now briefly present some examples of desig11 objectives that are Schur-concave 

functions of l. (Sketches of the proofs are provided in Appendix B.) 

2.6.2.1 Minimization of harmonic mean of MSEs 

This objective corresponds to the minimization of 

(2.40) 


2.6.2.2 Maximization of p-norm of SINRs 

In this case, the objective is to minimize 

(2.41) 


2.6.2.3 Minimization of a subclass of weighted products of MSEs 

(weighted geometric mean of MSEs) 

The minimization of the weighted product of MSEs is equivalent to minimization of 

( l) 1 n]{ ( l ·) a; "\'K lg e = og i=l e • = L..ii=l ai i' (2.42) 
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where, without loss of generality, we may assume that the MSEs are arranged in 

a decreasing order; i.e. Li ~ · · · , ~ lK. For this ordering, g(el) is Schur-concave 

whenever the weights are in ascending order. 

2. 7 Simulation Studies 

In this section, we provide some simulation results for systems designed using the 

proposed framework. We consider systems that transmit vectors of 16-QAM symbols 

over an independent Rayleigh fading channel (with perfect channel state information 

at both the receiver and transmitter). The same constellation is used for each data 

stream because the optimal transceiver design for the class of Schur-convex objec­

tives results in equal SINR on each data stream; cf. Section 2.5.2.2. The coefficients 

of the Nr x Nt channel matrix H are modelled as being independent rotationally­

symmetric complex Gaussian random variables with zero mean and unit variance, 

and the elements of the additive noise vector n are modelled as being independent 

rotationally-symmetric complex Gaussian random variables with zero mean and equal 

variance. For each design we will plot the average bit error rate (BER) of the K data 

streams against the signal-to-noise ratio (SNR), which is defined as the ratio of the 

total average transmitted power, E{xHx}, to the total receiver noise power, E{nHn}. 

2.7.1 Validation of the design assumptions 

In this section, we validate the assumptions that we made in the development of 

the proposed designs. For DFE systems we made the standard assumption that the 

previously detected symbols were correctly detected, and for THP systems we made 

the assumption of no precoding loss; see Section 2.2. To validate these assumptions, 

we consider the case of systems optimized for Schur-convex objectives. These designs 
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minimize the total MSE, as well as minimizing the average BER and maximizing 

the Gaussian mutual information. In Fig. 2.3 we compare the actual performance 

of the proposed designs to the performance that would have been achieved if the 

assumptions held precisely, in the case of a system with Nt = Nr = K = 4. In 

Fig. 2.3 the practical performance of the proposed jointly optimal THP transceiver is 

very close to that of a system that assumes no precoding loss, and the impact of the 

standard assumption of correct decisions in a DFE system is quite mild, especially 

at high SNR.<;. Indeed, the four curves coalesce at high SNRs. The slight advantage 

of the THP transceiver in Fig. 2.3 over the DFE transceiver can be attributed to 

the fact that interference subtraction at the transmitter is, inherently, free from error 

propagation. 

2. 7 .2 Comparisons with linear transceivers 

In this section, we compare the performance of the proposed (jointly optimal) DFE 

and THP transceiver designs to that of (jointly-optimized) linear transceivers. We 

compare the performance of the optimal Schur-convex design for the DFE and THP 

transceivers, which simultaneously mininiizes the total MSE, minimizes the average 

BER and maximizes the Gaussian mutual information, with that of the (different) 

optimal linear transceivers that: minimize the total MSE, e.g., [5]; minimize the av­

erage BER [6, 35]; and maximize the Gaussian mutual information, e.g., [6, 30]. For 

reference, we also provide performance comparisons with a transceiver that imple­

ments maximum likelihood (ML) detection at the receiver and employs the precoder 

in (2.28) at the transmitter. (That precoder is the optimal Schur-convex design 

for the DFE receiver.) \Ve compare the perfonnance of these five methods in an 

Nt = Nr = K = 4 scenario in Fig. 2.4. By comparing the curves for the DFE and 

THP transceivers with that of the minimum BER linear transceiver, one can quantify 
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Figure 2.3: BERs of the optimal Schur-convex design of a DFE transceiver (DFE­


SConvex) , and a THP transceiver (THP-SConvex) for a system with Nt = Nr = ]( = 


4. Also plotted is the BER of the optimal Schur-Convex DFE design in the absence 

of error propagation (DFE-SConvex- o Error Propag.) , and the BER of the optimal 

Schur-Convex THP design with no precoding loss (THP-SConvex- o Preceding Loss). 
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Figure 2.4: BERs of the opt imal Schur-convex designs of DFE (DFE-SConvex) 

and THP (THP-SConvex), the optimal linear transceivers: minimum MSE (Linear­

MMSE) e.g. , [5], minimum average BER (Linear-Minimum BER) [6, 35], and maxi­

mum mutual information (Linear-Det(E)) e.g. , [6,30], and the transceiver that imple­

ments maximum likelihood (ML) detect ion at the receiver and employs the precoder 

in (2.28) at the transmitter, for a system with Nt = Nr = K = 4. 

the statement in Proposition 1 that for Schur-convex design objectives, the DFE and 

THP t ransceivers provide provably better performance than the corresponding linear 

transceiver. 

2. 7 .3 	 Comparisons with other designs for interference 

(pre)subtraction transceivers 

In this section, we compare the performance of the proposed jointly optimal DFE and 

THP transceiver designs to that of some existing suboptimal designs for systems that 
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employ MMSE interference (pre-)subtraction. In particular, we will provide compar­

isons to systems with an identity precoder at the transmitter and an MMSE-DFE 

receiver with the 'BLAST' [36] detection ordering [10, 37] , or an unordered MMSE­

DFE receiver. We will also provide comparisons with the performance of the MMSE­

THP transceiver design in [10] , with both BLAST ordering and the natural ordering, 

and for reference we will also provide performance comparisons with a transceiver 

that implements maximum likelihood (ML) detection at the receiver and employs the 

precoder in (2.2 ) at the transmitter. We compare the performance of these seven 

methods in an Nt = Nr =I<= 4 scenario in Fig. 2.5 , and in an Nt =I<= 4 N r = 5 

scenario in Fig. 2.6. These comparisons ar appropriate because the MMSE-DFE 

approach in [10 ,37] and the MMSE-THP design in [10] can be represented by special 

cases of our system model in which the precoder P is restricted to be a permutation 

matrix. The significantly lower BERs of the proposed designs demonstrate that the 

exploitation of all the available degrees of design freedom in the proposed approach 

can have a substantial impact on performance. (In fa.ct , the performance of the opti­

mized DFE transceiver is close to that of the transceiver with ML detection and the 

optimized precoding matrix.) Moreover, the permutation-based approaches in [10,37] 

result in data streams with different MSEs (and SINRs) , and hence different ordering 

algorithms are required for different performance objectives. For example, for error 

performance criteria the BLAST ordering [36] is appropriate , as it attempts to max­

imize the SINR of the weakest data stream, but maximizing the Gaussian mutual 

information requires a different ordering [38]. In contrast to these permutation-based 

approaches, the proposed approach exploits all the degrees of design freedom in the 

system and results in data streams with equal SI Rs , and hence no ordering algorithm 

is necessary. It is worth pointing out that while precoding generalizes ordering for 

point-to-point DFE or THP models, in the corresponding multi-user models ordering 
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Figure 2.5: BERs of the optimal Schur-convex designs for DFE (DFE-SConvex) and 

THP (THP-SConvex) transceivers, other interference (pre-)subtraction approaches: 

MMSE DFE with BLAST ordering [10,37], and MMSE DFE with no ordering, THP 

transceiver MMSE design in [10] with BLAST ordering and with no ordering, and the 

transceiver that implements ma.-x:imum likelihood (NIL) detection at the receiver and 

employs the precoder in (2.28) at the transmitter, for a system with Nt = Nr = K = 4. 

must be considered in conjunction with precoder design because on the uplink the 

transmitters cannot cooperate, and on the downlink the receivers cannot cooperate; 

cf. [19]. 

2.8 Conclusion 

In this chapter, a unified framework was developed for joint transceiver design for 

interference (pre-)subtraction schemes for communication over generic point-to-point 

MIMO channels, and we have obtained optimal designs for two broad classes of 
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Figure 2.6: BERs of the optimal Schur-convex designs for DFE (DFE-SConvex) and 

THP (THP-SConvex) tran ceivers other interference (pre-)subtraction approaches: 

M lfSE DFE with BLAST ordering [10, 37] and l\II ISE DFE with no ordering, THP 

transceiver MMSE design in [10] with BLAST ordering and with no ordering, and the 

transceiver that implements maximum lik lihood (ML) detection at the receiver and 

employs the precoder in (2.28) at the transmitter, for a system with Nt = K = 4, 

Nr =5. 
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communication objectives, namely those that are Schur-convex and Schur-concave 

functions of the logarithms of the (individual) MSEs of each data stream. For Schur­

mnvex objectives, the optimal transceiver results in equal individual MSEs, and si­

multaneously minimizes the total MSE, minimizes the average bit error rate, and 

maximizes the Gaussian mutual information. Furthermore, that design yields ob­

jective values that are superior to the corresponding optimal objective value for a 

linear transceiver. For the class Schur-concave objectives, the optimal DFE design 

results in linear equalization and the optimal THP design results in linear precoding. 

The developed framework will be extended to communication scenarios with limited 

channel state information at the transmitter in the next chapter. 
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Chapter 3 

Design Framework for Limited 

Feedback MIMO Systems with 

Zero-Forcing DFE 

The previous chapter presented a unifying design framework for non-linear MIMO 

transceivers that implement interference (pre-)subtraction. The framework provided 

optimal transceiver designs for a wide range of design objectives. These designs were 

obtained for communication scenarios that assume perfect channel state information 

( CSI) at both the transmitter and the receiver. In this chapter we will generalize 

that framework to scenarios with limited CSI at the transmitter. We will consider 

the design of multiple-input multiple-output communication systems with a linear 

precoder at the transmitter, zero-forcing decision feedback equalization (ZF-DFE) at 

the receiver, and a low-rate feedback channel that enables communication from the 

receiver to the transmitter. The channel state information available at the receiver is 

assumed to be perfect , and based on this information the receiver selects a suitable 
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precoder from a codebook and feeds back the index of this precoder to the transmit­

ter. Our approach to the design of the components of this limited feedback scheme is 

based on the development, herein, of a unified framework for the joint design of the 

precoder and the ZF-DFE under the assumption that perfect CSI is available at both 

the transmitter and the receiver. The framework is the zero-forcing counterpart of 

the one developed in Chapter 2, and it enables us to characterize the statistical distri­

bution of the optimal precoder in a standard Rayleigh fading environment. Using this 

distribution, it will be shown that codebooks constructed from Grassmann packings 

minimize an upper bound on an average distortion measure, and hence are natural 

candidates for the codebook in limited feedback systems. Our simulation studies 

show that the proposed limited feedback scheme can provide significantly better per­

formance at a lower feedback rate than existing schemes in which the detection order 

is fed back to the transmitter. 

3.1 Introduction 

In many cmnmunication schemes, such as frequency division duplex systems, obtain­

ing accurate CSI at the transmitter may require a considerable amount of feedback to 

the transmitter. An approach that allows the designer to limit the required amount 

of the feedback is to quantize the transmitter design. In these limited feedback 

schemes [39], the receiver uses its CSI to choose the best transmitter design from 

a codebook of available designs, and then feeds back the index of this precoder 

to the transmitter. This strategy has been considered for beamforming schemes 

(e.g., [40-46]), diagonal precoding [47], unitary precoding with linear equalization 

(e.g., [48]), and unitary precoding for orthogonal space time block codes [49,50]. For 

zero-forcing DFE schemes, a limited feedback scheme in which the receiver feeds back 
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the order of interference cancellation was proposed in [51 52]. 

In this chapter, we consider the design of a limited feedback scheme for systems 

with a (general) linear precoder at the transmitter and zero-forcing DFE at the re­

ceiver. Our designs are based on a unified framework, developed herein, for the joint 

design of the precoder and the ZF-DFE in the presence of perfect CSL Similar to 

the framework that is obtained in absence of the zero-forcing criteria, it embraces a 

wide range of design criteria that can be expressed as Schur-convex or Schur-concave 

functions of the logarithm of the mea.n square error (MSE) of each data stream. In 

particular, it will be shown that the optimal precoder for the rich class of Schur­

convex objectives is a scaled unitary matrix that is isotropically distributed (over 

the Stiefel manifold of unitary matrices). Using this distribution, it will be shown 

that codebooks constructed from Grassmann subspace packings minimize an upper 

bound on an average distortion measure, and hence are excellent candidate for the 

codebook in limited feedback schemes for systems with zero-forcing DFE. In contrast, 

the application of Grassmann codebooks in limited feedback schemes with linear re­

ceivers (e.g. , [48]) involves an inherent compromise, because the optimal precoder in 

the presence of perfect CSI and a total power constraint is not unitary. Since the 

scheme that we propose involves the construction of codebooks for isotropically dis­

tributed unitary matrices, our scheme subsumes that in [51,52], in which the precoder 

is , by construction, a permutation matrix. Our simulation studies suggest that the 

additional degrees of freedom available in our approach enable our scheme to provide 

significantly better performance than that in [51 , 52] while using a lower feedback 

rate. 
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3.2 Zero-forcing DFE with Limited Feedback 

\Ve consider a point-to-point communication system with Nt transmit antennas and 

Nr receive antennas that transmits K data streams simultaneously, where K is no 

greater than the rank of the channel matrix H. \Ve adopt a narrow band block fading 

channel model, and we consider MIMO communications systems that use (general­

ized) zero-forcing decision feedback equalization, e.g., [7, 11], for spatial equalization. 

Similar to the DFE system model in Section 2.2.1, the input data vector at the trans­

mitter, s, is linearly precoded using P to generate the transmitted data vector x, 

x=Ps. (3.1) 

Without loss of generality, we will assume that E{ssH} = I, and hence the total 

transmitter power mnstraint can be written as E{xHx} = tr(PHP) ~ Ptotal· 

The vector of received signals is given by 

y=HPs+n, (3.2) 

where H is the channel matrix and n is the vector of additive noise which is assumed 

to have zero-mean and a covariance matrix E{ nnH} = 0";1. As illustrated in Fig. 3.1, 

following linear processing using the feedforward matrix G, the receiver makes succes­

sive decisions on each symbol by subtracting the effect of previously decided symbols. 

Hence, the feedback matrix B is strictly lower triangular. This system model em­

braces linear precoding and equalization as a special case when B = 0. Assuming 

correct previous decisions, the vector of inputs to the quantizer is given by 

s= (GHP-B)s+Gn. (3.3) 
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Figure 3.1: MIMO transceiver with DFE using limited feedback. 

Using the en-or signal e = s - s, the mean square error matrix can be written as 

E = E{eeH} = ccH- CPHH HG H - GHPCH + GHPPHH HG H + (j~GGH, 

(3.4) 

where C = I + B is a unit diagonal lower triangular matrix. 

\Ve will consider communication schemes in which perfect CSI is available only at 

the receiver. Based on its channel knowledge, the receiver selects a suitable precoding 

matrix from a codebook of precoders P of size JP J and feeds that index back to the 

transmitter using log2 JPJ information bits; see Fig 3.1. In order to develop effective 

methods for quantizing the precoding matrix, we first need to characterize the optimal 

precoding matrix for different design criteria in the presence of perfect CSL We will 

then use the statistical distribution of thi optimal precoder to define the distort ion 

measures that are required to design the codebook for the limited feedback scheme. 

3.3 Unified Framework for Zero-Forcing DFE 

In this section we develop a general framework for the joint design of the transceiver 

matrices G , C = I + B , and P in the presence of perfect CSI and a zero-forcing crite­

rion. The proposed framework embraces a wide range of design objectives that can be 

expressed as functions of the (logarithm of t he) MSE of the individual data streams 
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Eii It includes objectives for which the optimal designs of ZF-DFE transceivers are 

already available (e.g., the total MSE, [7]), and several other objectives for which the 

optimal transceiver design has remained an open problem. 

3.3.1 ZF-DFE Receiver Design 

The zero-forcing design criterion implies 

GHP-B =I. (3.5) 

Given the assumption that K ::; rank(H), the condition in (3.5) can be achieved so 

long as P is chosen such that rank(HP) = K. In that case, the feedforward matrix 

G is given by 

G = C(HP)t. (3.6) 

Since HP has full column rank, the pseudo-inverse in (3.6) can be written as 

(3.7) 


Using the expression for G in (3.6), the MSE matrix in (3.4) reduces to 

E= CNCH, (3.8) 

where N = a;(PHHHHP)-1 is a positive definite Hermitian matrix. Using the 

derivation in Section 2.3.2, the optimal matrix C, that minimizes the MSE of each 

individual data stream, subject to being unit diagonal and lower triangular, is given 

by 

(3.9) 


where N = LLH is the Cholesky factorization of N, and L is a lower triangular matrix 

with strictly positive diagonal entries. Using this optimal C, the MSE matrix can be 

rewritten as 

E = Diag (Li1 , ... ,L~K), (3.10) 
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where Lii is the ith diagonal element of L . Hence, the SNR of each data stream is 

1 1 
SINRk = -E = L 2 . (3.11) 

kk kk 

3.3.2 Transmitter Design 

Given the optimal G and C , our next step is to design a precoding matrix P so as 

to optimize design criteria that are expressed as functions of the (logarithm of the) 

MSE of each individual stream, 

(3. 12) 

The following lemma provides two main inequalities that include the logarithm of 

the MSEs,l , and can be proved using similar arguments to those used in deriving the 

inequalities in (2.24) and (2.25). 

Lem m a 3.1. For the Chole sky fa ctorization N = LLH, the fallowing inequalities 

hold: 
lndet(N ) 

K (1, ... , 1)-< l -< (h1.A1(N ), .. . , ln.AK(N )), 

where .Ak(N ) is the kth largest eigen value of N . D 

Let H HH = U ttAttUii be the eigenvalue decomposition of H HH such that the 

entries of the diagonal matrix AH are squared singular values of H , O"k(H), in descend­

ing order. Let Utt,1 and Att,1 be the first K columns of U tt and Att , respectively. 

The optimal precoders for the two classes of Schur-convex and Schur-concave design 

criteria are given by the following theorem. 

Theorem 3.1. The optimal precoder for the class of objectives fo r which g(el ) is a 

Schur-convex function of the logarithm of the MSEs is independent of the actual form 

of g( ·) and is given by: 

(3.13) 
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where V(AH,1) is a unitary matrix that results in the QR decomposition of 

A;i~12V(AH,1) =QR having an R factor with equal diagonal elements. 

For the class of objectives for which g(el) is a Schur-concave function of the logarithm 

of the MSEs, the optimal solution results in B = 0, and hence the optimal zero-forcing 

linear transceiver is an optimal transceiver for a system with a zero-forcing DFE. 

Proof. See Appendix C. D 

As we mentioned in Chapter 2, algorithms for obtaining a matrix '1! such that the 

R-factor of the QR decomposition of A '1! has equal diagonal elements were introduced 

in [14,53], and Vin (3.13) can be obtained by applying the algorithms therein to the 

. A-1/2matnx H.l . 

For design objectives that are expressed as functions of the vector of MSE of 

each data stream, el, the Schur-convexity and Schur-concavity classification of these 

objectives with respect to l are the same as their classification in Sections 2.5.3 and 

2.6.2 in absence of the zero-forcing design criteria. However, for the design objectives 

that are expressed as functions of the vector of the SINR of each data stream, e-l, 

and hence the bit error rate of each stream, the classification may be different from 

their classification in Sections 2.5.3 and 2.6.2, in which the absence of the zero-forcing 

criteria means that SINR = e-l - 1. For example, maximization of the product of 

the SINRs is now a Schur-convex and Schur-concave objective of l, while in absence 

of the zero-forcing constraint it is only a Schur-convex objective. Also, maximization 

of the Gaussian mutual information is now strictly Schur-convex, while in absence of 

the zero-forcing constraint it is both Schur-convex and Schur-concave. The following 

examples provides the Schur-convexity /Schur-concavity classification of some design 

objectives that are embraced by the design framework. 

• Minimization of the sum of the individual AfSEs: In this case the objective is 
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to minimize 

(3.14) 

which is Schur-convex function of l . 

• 	 Minimization of the maximum MSE / Maximization of minimum SNR: In this 

case the objective is to minimize 

(3.15) 

which is Schur-convex function of l . 

• 	 Minimization of the average Bit Error Rate: This corresponds to the minimiza­

tion of the objective 

K 	 K 

g(el) = ;( L BER(SNRk) = L BER(e-Lk ), (3.16) 
k=l 	 k=l 

where the BER expression will depend on the constellation used, and we have 

assumed that the same constellation is used for each element of sin (3.1). Sim­

ilar to the proof in Appendix A, It can be verified that under a mild constraint 

on the SNR the BER expressions for BPSK and M-QAM constellations are 

convex functions of lA·· Hence, g(el) is a Schur-convex function of l . 

• Maximization of Gaussian mutual information This corresponds to the mini­

mization of 

g(el) = L
]( 

- log(l + e-lk) (3.17) 
k=l 

which takes the form L~=l h(l k) for the convex function h(l k) = - log(l +e-Lk ), 

and hence it is a Schur-convex function of l . 

• 	 Minimization of the product of MSEs: Minimization of the product of the in­

dividual MSEs (or equivalently, the geometric mean of the MSEs) corresponds 
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to the minimization of 

g(el) =log II
K 

elk = L
K 

lk, 	 (3.18) 
k=l 	 k=1 

which is both Schur-convex and Schur-concave. Furthermore, since 'l:~=I lk = 

-E:=1 log(SNR), at high SNR the minimization of the product of the MSEs 

corresponds to the maximization of the Gaussian mutual information. 

As demonstrated by Theorem 3.1 and the above examples, the optimal precoder 

for a system with zero-forcing DFE and a design objective from the Schur-convex class 

simultaneously optimizes the total :MSE, the average bit error rate, and the Gaussian 

mutual information. MIMO systems with linear precoding and equalization do not 

achieve this simultaneous optimality, and in the general case each of these objectives 

results in a different optimal precoder [6]. For design criteria that can be expressed as 

the minimization of objectives that are both Schur-convex and Schur-concave, both 

the optima.I Schur-convex design in (3.13) and the optimal linear transceiver will 

yield the same objective value. In the following sections, we will consider the efficient 

design of codebooks for limited feedback systems with Schur-convex objectives. Our 

first step will be to obtain the statistical distribution of the optimal precoder. 

3.4 	 Statistical Distribution of Optimal Precoder 

for Schur-Convex Objectives 

The optimal precoder for the Schur-convex class of objectives can be written as 

p = JP::::; p 	 (3.19)VI<, 

where the matrix P = UH.IV(AH,i) belongs to the Stiefel manifold S(Nt, K) of 

complex N1 x K matrices with orthonormal columns. The statistical distribution of 
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P in (3.19) plays a key role in the design of the codebooks, and is establish d in 

Theorem 2 below. First , we establish an intermediate result. 


Lemma 3.2. For an i.i. d. Rayleigh fading channel matrix H , the matrices UH,l and 


V (AH,1) are statistically independent. Furthermore, UH,l is isotropically distributed 


over the manifold S (Nt , K). 


Proof. The proof follows directly from the isotropic distribution of t he eigen vectors 

of the Wishart distributed matrix H HH and its independence of the eigenvalue . D 

Theorem 3.2. For an i .i.d. Rayleigh fading channel matrix H , the normalized opti­

mal precoder matrix P is isotropically distributed over the Stiefel manifold S (Nt , K ). 

Proof. Vve first observe from Lemma 3.2 that UH,l is isotropically distributed over 

the manifold S (Nt , K ). Hence, its probability distribution p(UH,1) is unaffected by 

post-multiplication by any deterministic unitary matrix Z; i.e., p(UH,1) = p(UH,iZ). 

Hence, 

p(P) j p(P IV ) p(V ) dV (3.20) 

Jp(UH,1) p(V ) dV = p(UH,1 ) , (3.21) 

Since UH,J is isotropically distributed, then so is P . D 

It is worth noting that for MIMO systems with linear precoding and equalization, 

the optimal precoder will not be isotropically distributed. That is true for a wide range 

of objectives under a total power constraint (e.g. , [6] and the references therein) , and 

holds for both zero-forcing and MMSE linear receivers. That said, some quantization 

methods for linear transceivers have been based on a suboptimal underlying scheme 

that selects the be t unitary precoding matrix; e.g. , [48]. In that case the distribution 

of the unquantized precoder is isotropic. In the case of systems with a zero-forcing 

DFE, we have shown that selection of the best unitary precoding matrix is optimal. 
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3.5 Precoder Selection and Codebook design 

In order to study the codebook design problem, we will first consider the selection 

method for choosing the best precoding matrix from a given codebook P. 

3.5.1 Precoding Matrix Selection 

Given a codebook for quantizing the normalized optimal precoding matrix P, P = 

{Pj,j = 1, ... , IPI}, and a cost function g(·) associated with the design criterion, the 

receiver will select a normalized precoding matrix from the codebook that yields the 

minimum value for the cost function; i.e., the receiver will select the index 

arg min g(e1i), (3.22)
J=l,. .. ,IPI 

where [i is the vector containing the logarithm of the diagonal elements of Li, the 

Cholesky factor of Ni =a;( nK pj HHHHPj)-1 
. The quality of a given codebook 

rtotal 

can be measured in terms of the average degradation in the value of the objective that 

is incurred by using a precoder from the codebook rather than the optimal precoder 

in Theorem 1. Borrowing terminology from the source coding literature, we will 

refer to this degradation, and various bounds thereon, as distortion measures for the 

quantization scheme. 

3.5.2 Grassmann Packing and Codebook Design 

In the following section we will consider the design of codebooks to minimize distor­

tion measures for the broad class of objectives g(e1
) that are Schur-convex in l. As 

shown in the previous section, for these objectives the optimal normalized precoder is 

uniformly distributed over the Stiefel manifold S(Nt, K). We observe that the range 
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of the columns of any normalized precoding matrix P represents a K dimensional sub­

space, Rp, of CNt. Hence, the desired codebook 'P = {PJ,j = 1, ... , l'PI} represents a 

set of subspaces 'R = {Rpi ,j = 1, ... , l'PI}, and each of these subspaces can be repre­

sented as a point in the associated quotient space, namely the Grassmann Manifold; 

e.g., [54,55). In the next section, we will relate the problem of designing codebooks 

that minimize suitable distortion measures to the Grassmann packing problem that 

selects a set of subspaces such that the minimum pairwise distance between any two 

subspaces in the packing is maximized. The distances between two subspaces Rp1 

and Rp2 can be defined in different ways [56). For example, the projection 2-norm is 

defined as 

distproj2(P1, P2) = llpl pl H­ p2 p2 Hll2' (3.23) 

while the Fubini-Study distance is defined as 

-1 -2 I -lH-21distps(P , P ) = arccos det(P P ) . (3.24) 

For a given set or a packing of subspaces and a given distance measure, we will denote 

the minimum pairwise distance between any two subspaces in the packing by 

(3.25) 


In addition to the minimum distance of the packing d, we will also be interested in its 

density D; e.g., [56). In our context, the density is the probability that the range space 

of an isotropically distributed unitary matrix falls within a distance d/2 of any of the 

subspaces of the packing, and is function of d, l'PI and the volume of the manifold; 

see [56). In the following two sections, we will show that codebooks from certain 

optimized Grassmann packings minimize distortion measures that are appropriate 

for two subclasses of the Schur-convex objectives: the strict Schur-convex objectives, 

and the objectives that are both Schur-convex and Schur-concave functions of l. 
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3.5.3 	 Codebook Design Criteria for Strictly Schur-convex 

Objectives 

In this section we will present suitable distortion measures for objectives g(el) that are 

Schur-convex functions of l and are not Schur-concave; e.g., the sum of the MSEs, the 

maximum MSE and the BER. From the first principles, we can obtain the following 

bounds on the these objectives: 

• Minimization of the sum of MSE: 

(3.26) 

• Minimization of the maximum MSE / Maximization of minimum SNR: 

(3.27) 


• AJinimization of the average Bit Error Rate: 

K 

g(et) = LBER(e-tk)::; K BER(m~ne-lk). (3.28) 
k=l 

We observe that each of these bounds is expressed in terms of the minimum SNR 

over the K data streams, SNRmin =mink e-lk. 

Since each of these terms is bounded by the minimum SNR, a natural choice for 

the distortion measure for a given codebook is the average loss in the minimum SNR 

that one incurs by using a normalized precoder ¥1uant chosen from the codebook P 

instead of using the optimal normalized precoder P°pt. That is, 
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where (3.29) follows by observing that the optimal P results in lk = Ind~(N) for every 

k. Consider the second term in the distortion measure in equation (3.29). From the 

definition of the majorization relation a -< b, we have ar1J :::;: b[i] · Hence, from 

Lemma 1 we have 

max lk:::;: lnA1(N) = 
1$k$K 

ln( 2 ~~P))'(]'min 
(3.30) 

from which it follows that 

(3.31) 

Hence, the distortion measure in (3.29) is upper bounded by 

£:::;:EH{ 1{,/detAH,1} _EH{ max a!in(HPi) }· (3.32)a; 1$i$l'PI a~ 

When codebooks are designed from a Grassmann packing using the projection 2-norm 

distance in (3.23), the expectation on the right hand side of (3.31) satisfies [48], 

2 j } 2 ( ~roj2 )EH { max O"min(HP) ~ EH{aK(H)}Dproj2 1- -4- ' (3.33) 
1$i$l'PI 

where dproj2 is the minimum pairwise distance of the packing (cf. (3.25)) for the 

projection 2-norm distance, and Dproj2 is the corresponding packing density; cf. [56]. 

In addition, for a given IPI the right hand side of (3.33) is an increasing function of 

the packing distance dproj2. Using the inequality in (3.32), we obtain the following 

upper bound on the distortion: 

£ < EH{ 1{,/det AH,1} _ EH{a,k(H)} D . (l _~roj2) (3.34)- 2 2 proJ2 4 ' 
(]'n (]'n 

which, for a given IPI, is a decreasing function of the packing distance dproj2· The 

bound on the right hand side of (3.34) can be minimized by choosing the codebook 

from a Grassmann packing that is designed to maximize the packing distance d in 

(3.25) with projection 2-norm as the distance metric. Such designs correspond to 

minimizing the bound on the distortion. 
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Since permutation matrices are special cases of unitary matrices, the limited feed­

back approach in (51, 52], in which the precoder is chosen from a codebook of per­

mutation matrices, is a special case of the codebooks that we consider. However, the 

resulting codebooks do not necessarily have the maximum packing distance. Further­

more, the size of the c,odebook in the approaches in (51, 52] is fixed for a given Nt 

and K, while the Grassmann packings can be constructed for an arbitrary number of 

c,odewords. 

3.5.4 	 Codebook Design Criteria for Objectives that are Both 

Schur-convex and Schur-concave 

For communication objectives g(e1
) that are both Schur-convex and Schur-concave 

functions of l, such as the minimization of product of the 11v1SEs, we observe that 

the design problem corresponds to maximization of det(PHHHHP)/a;. Hence, a 

suitable distortion measure for the codebook is 

£=EH{det(P°ptHHHHJ>°pt) _ det(¥1uantHHHH¥1uant)}/a~ (3.35) 

= EH{detAH1}/a~ -EH{ max: det(PjHHHHPj)}/a~ 
, IS:i:Sl'PI 

::;; EH{ det AH i}I a?i - EH{ det AH.1} EH { max det(Pj HUH 1u"1Pj) }1a~. 
' 	 . lS:J:'SIPI '. ' 

(3.36) 

Here, (3.36) follows from the independence of UH and AH· \Vhen codebooks are 

designed from a Grassmann packing using the Fubini-Study distance in (3.24), the 

last expectation on the right hand side of (3.36) satisfies the following inequality [48]: 

-jH H -j } 2EH { max det(P UH.lUH 1P ) 2: DFs cos (dFs/2). (3.37) 
lS:iS:IPI . ' 

Hence, we obtain the following upper bound on the distortion: 

(3.38) 
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which, for a given l'PI, is a decreasing function of the packing distance dFS. A similar 

upper bound was proposed for designing codebooks for MIMO systems with linear 

receivers (48]. 

3.5.5 Comparison with ZF-Linear Schemes 

In this section, we will show that for a given codebook, the performance of the zero­

forcing DFE with limited feedback provides an upper bound on the performance of 

its linear zero-forcing counterpart for any Schur-convex performance objective g(e'). 

As stated in the following lemma, this is true for any codebook, including those 

codebooks constructed from non-unitary matrices. 

Lemma 3.3. Consider a codebook of precoding matrices, 'P, and a Schur-convex 

performance g(e'). For any given channel H, let LbFE denote the vector l in {3.12) 

when the precoder pj is used, and let the lLn denote the corresponding vector for the 

case of linear equalization. Then 

. min g(e'hFE) ~ . min g(e'Ln ). 
1=1,... ,l'PI 1=1,... ,l'PI 

Proof. Consider a given channel Hand any precoding matrix pi E 'P. For the linear 

zero-forcing receiver we have C = I. It follows from (3.9) that the corresponding 

matrix Nj and its Cholesky factor V are diagonal. Hence, (Lfi)2 = >.i(Nj), or, 

equivalently, 

On the other hand, for the DFE receiver we have 
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From Lemma 3.1, we have lfwE-< lLn, hence g(elbFE) s g(elLn) and 

. min g(elbFE) s . min g(elL"). 
J=l •...JPI J=l,... ,IPI 

D 

3.6 Simulation Studies 

In this section, we simulate the performance of the proposed limited feedback MIMO 

schemes over a standard i.i.d. Rayleigh block fading channel model. 1 For the error 

rate performance comparisons, we use 16-QAM signaling and we plot the average bit 

error rate (BER) of the ]{ data streams against the signal-to-noise-ratio, which is 

defined as the ratio of the total average transmitted power Ptotal to the total receiver 

noise power E{ nHn}. \Ve compare the performance of the proposed codebook de­

signs for systems with zero-forcing DFE with that of the optimal zero-forcing DFE 

transceiver for the case of perfect CSI that wa'l presented in Section 3.3. For the 

proposed limited-feedback schemes, the Grassmann codebooks are constructed us­

ing the design approach in [57]; see also [48]. ( Grassmann codebooks could also be 

constructed using the optimization algorithms in [54,55]). \Ve also provide simulation­

based comparisons with the two limited feedback schemes for zero-forcing DFE sys­

tems in [52]. In addition, we provide performance comparisons with limited feedback 

schemes for linear zero-forcing transceivers that use Gra'3smann codebooks [48], and 

with the optimal zero-forcing linear transceiver designs for the case of perfect CSI for 

minimum MSE and minimum bit error rate design criteria [58]. 

1The cnefficients of the channel matrix H are modelled as independent circularly symmetric 
complex Gaussian random variables with zero mean and unit variance. 
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3.6.1 	 Comparisons with Limited Feedback Zero-forcing DFE 

Schemes 

In Fig 3.2, we consider a MIMO system with Nt = 6 transmit antennas and Nr = 3 

receive antennas that transmits K = 3 independent data streams. We compare the 

performance of the proposed schemes with Grassmann codebook designs and precoder 

selection based on the minimization of the sum of the MSEs (Grassmann-6 bits- Sum 

MSE), minimization of the average BER (Grassmann-6 bits- Min BER), and the 

minimization of the maximum MSE ( Grassmann-6 bits- Max MSE) which is equiv­

alent to the maximization of minimum SINR. The codebooks consist of 64 unitary 

matrices, and hence 6 bits of feedback are used per block. We also make comparisons 

with the limited feedback schemes in [52] (Ordering Feedback ZF-DFE and Ordering 

Feedback2 ZF-DFE) in which the receiver feeds back the index of the selected permu­

tation of the columns of H from the set of possible Pf:' = Nt!/(Nt - K)! permutation 

matrices. For the system under consideration, the number of possible permutations 

matrices is 120, almost twice the size of the Grassmann codebook. In the scheme 

denoted Ordering Feedback ZF-DFE the permutation matrix is selected based on the 

norms of the columns of H while the scheme denoted Ordering Feedback2 ZF-DFE 

the permutation is selected based on a greedy ordering of the QR decomposition of 

the channel matrix H. In Fig. 3.2, we observe the close performance of the proposed 

codebooks with different Schur-convex selection criteria. This is to be expected, be­

cause in the limit of infinite feedback (i.e. , perfect CSI) , all these objectives result 

in the sam optimal precoder design. We also observe that the Grassmann code­

books provide significantly better performance than the schemes that are based on 

precoding with permutation matrices, even though they employ fewer feedback bits. 

This is because codebooks constructed from permutation matrices are special cases 
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Figure 3.2: BER performance of various MHv10 transmission schemes with zero­

forcing DFE for a system with N 1 = 6, Nr = 3, and I< = 3 simultaneously transmitted 

16-QAM data streams. The schemes considered are: the proposed codebook designs 

for the objectives of minimization of the sum of MSEs (Grassmann-6 bits- Sum MSE), 

minimization of the average BER (Grassmann-6 bits- Min BER) ; the optimal zero­

forcing design for any Schur-convex design objective with perfect CSI (ZF DFE ­

Perfect CSI); and the limited feedback schemes in [52], which are based on feeding 

back the detection ordering (Ordering Feedback- ZF DFE) and (Ordering Feedback2 ­

ZF DFE). The lower curve for each method represents the BER performance obtained 

under the assumption of correct previous decisions. 
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Figure 3.3: BER performance of various MIMO transmission schemes with zero­

forcing DFE for a system with Nt = 5, Nr = 4, and K = 4 simultaneously transmitted 

16-QAM data streams. The schemes considered are: the proposed codebook designs 

for the objectives of minimization of the sum of MSEs (Grassmann-6 bits- Sum MSE) , 

minimization of the average BER (Grassmann-6 bits- Min BER) ; the optimal zero­

forcing design for any Schur-convex design objective with perfect CSI (ZF DFE ­

Perfect CSI); and the limited feedback schemes in [52], which are based on feeding 

back the detection ordering (Ordering Feedback - ZF DFE) and (Ordering F edback2 

- ZF DFE). 
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Figure 3.4: Average of Gaussian mutual information in (3.17) for various MIMO 

transmission schemes with zero-forcing DFE for a system with Nt = 5, Nr = 4, and 

J( = 4. The schemes considered are: the proposed codebook designs for Gaussian 

mutual information objective (Grassmann-6 bits- Mutual info); the optimal zero­

forcing design for any Schur-convex design objective with perfect CSI (ZF DFE ­

Perfect CSI); and the limited feedback schemes in [52] , which are based on feeding 

back the detection ordering (Ordering Feedback - ZF DFE) and (Ordering Feedback2 

- ZF DFE). 
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of those constructed from unitary matrices, and they do not necessarily minimize 

the distortion measures. ote that for all error performance figures in this paper, 

the simulation results of all ZF-DFE methods include the effect of error propagation. 

For reference, in Fig 3.2 we also provide the performance under the assumption of 

correct previous decisions; i.e. , no error propagation. We observe that at high SNR.s, 

the practical performance of the optimal zero-forcing DFE transceiver for the case 

of perfect CSI and the proposed designs based on Grassmann codebooks are close to 

their corresponding performance in absence of error propagation. This also holds for 

the permutation feedback scheme (Ordering Feedback2 ZF-DFE). 

Analogous performance advantages to those in Fig 3.2 are observed in Fig 3.3, 

which show the performance for a MIMO system with Nt = 5 transmit antennas 

and Nr = 4 receive antennas that transmits K = 4 data streams. The size of 

each permutation-based codebook is 120 matrices, while the size of each Grassmann 

codebook is 64 matrices. 

In Fig 3.4 we compare several different methods in terms of the Gaussian mutual 

information that they achieve. We consider a system with Nt = 5, Nr = 4, and J( = 4, 

and we plot the average, over 1000 channel realizations , of the Gaussian mutual 

information achieved by the ZF-DFE tran ceiver with the quantized precoder; i.e. , the 

average of the values of (3.17) achieved by the quantized precoder. For the proposed 

scheme we consider a Grassmann codebook design and precoder selection based on 

the maximization of the Gaus ian mutual information (Grassmann-6 bits- Mutual 

info.) , and a codebook that consist of 64 unitary matrices. We make comparisons 

with the limited feedback schemes in [52] (Ordering Feedback ZF-DFE and Ordering 

Feedback2 ZF-DFE) , whose permutation-based codebooks contain 120 matrices. Vve 

observe that the proposed Grassmann codebook with precoder selection based on the 

maximization of the Gaussian mutual information provides the closest performance 
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to the optimal ZF-DFE design for the case of perfect CSI, which was presented in 

Section 3.3. 

3.6.2 	 Comparisons with Limited Feedback Linear Zero­

forcing Schemes 

In Fig 3.5, we consider a MIMO system with Nt = 5 transmit antennas and Nr = 4 

receive antennas that transmits K = 4 independent data streams. \Ve compare the 

performance of the proposed ZF-DFE schemes that use Grassmann codebooks with 

that of the corresponding linear zero-forcing schemes that use Grassmann codebooks 

with the same feedback rate [48]. We consider linear limited feedback schemes with 

different precoder selection criteria. namely minimization of the total MSE (LinZF­

Grassmann-6 bits Sum MSE), and maximization of the minimum eigen value of the 

overall channel HP (LinZF-Grassmann-6 bits Max MSE), which corresponds to min­

imization of the maximum .MSE [48]. We also provide performance comparisons with 

the zero-forcing DFE transceiver design for perfect CSI that simultaneously optimizes 

any Schur-Convex design criteria, and with the corresponding optimal zero-forcing lin­

ear transceiver designs for perfect CSI that minimize the total MSE or the average 

BER. Unlike the DFE case, these two design criteria result in different precoder de­

signs [58]. In Fig. 3.5, we observe that the proposed zero-forcing DFE systems with 

limited feedback perform better than the corresponding linear schemes; as is to be 

expected, c.f. Lenuna 3.3. Similar performance advantages are observed in Fig 3.6 

for a MIMO system with Nt = 4 transmit antennas and Nr = 3 receive antennas that 

transmits K = 3 independent data streams. 
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Figure 3.5: BER performance of variou MIMO transmission schemes with zero­

forcing linear and DFE systems with Nt = 5 Nr = 4, and K = 4 simultaneously 

trru1smitted 16-QAM data streams. The schemes considered are: the proposed code­

book desig11s for the objectives of minimization of the sum of MSEs (Grassmann-6 

bits- Sum MSE), minimization of the average BER (Grassmann-6 bits- Min BER) ; 

the optimal zero-forcing design for any Schur-convex design objective with perfect 

CSI (ZF DFE - Perfect CSI); the optimal linear zero-forcing design for minimum 

MSE (LinZF Min-:MSE Perfect CSI) and minimum average BER (LinZF Min-BER 

Perfect CSI) [58]; and the linear zero-forcing limited feedback schemes in [48] for 

minimum total MSE (LinZF-Grassmann-6 bits Sum MSE) and minimum maximum 

MSE (LinZF-Grassmann-6 bits Max MSE). 
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Figure 3.6: BER performance of various MIMO transmission schemes with zero­

forcing linear and DFE systems with Nt = 4, Nr = 3, and K = 3 simultaneously 

transmitted 16-QAM data streams. The schemes considered are: the proposed code­

book designs for the objectives of minimization of the sum of MSEs (Grassmann-6 

bits- Sum MSE) , minimization of the average BER (Grassmann-6 bits- Min BER) ; 

the optimal zero-forcing design for any Schur-convex design objective with perfect 

CSI (ZF DFE - Perfect CSI); the optimal linear zero-forcing design for minimum 

MSE (LinZF Min-MSE Perfect CSI) and minimum average BER (LinZF Min-BER 

Perfect CSI) [58]; and the linear zero-forcing limited feedback schemes in [48] for 

minimum total MSE (LinZF-Grassmann-6 bits Sum MSE) and minimum maximum 

MSE (LinZF-Grassmann-6 bits Max MSE). 
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3. 7 Conclusion 

In this chapter , we considered the design of multiple-input multiple-output commu­

nication systems with zero-forcing decision feedback equalization (DFE) when only 

limited rate feedback from the receiver to the transmitter is available. We consid­

ered schemes in which the receiver uses its CSI to select the best available precoder 

from a codebook of precoders and then feeds back the index of this precoder to the 

transmitter using a small number of bits. To facilitate the development of the limited 

feedback scheme a unified design framework was developed for the joint design of the 

precoder and the zero-forcing DFE receiver when perfect channel state information is 

available at both the transmitter and the receiver. We then characterized the statis­

tical di tribution of the optimal precoder in a standard Rayleigh fading environment , 

and showed that codebooks constructed from Grassmann packings minimize an up­

per bound on an average distortion measure. Our simulation studies showed that the 

proposed limited feedback scheme can provide significantly better performance with 

a lower feedback rate than the existing schemes in which the detection order is fed 

back to the transmitter. 

75 




Part II 


Multi-user Systems 
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Chapter 4 

Robust Linear. Broadcasting with 

QoS Constraints: SINR 

Formulations 

In the first part of the thesis, we considered single-user MIMO systems, and we 

proposed novel design frameworks for non-linear MIMO transceivers that employ 

interference (pre-)subtraction. These design frameworks were developed for commu­

nication scenarios that assume the availability of perfect channel state information 

(CSI) at both the transmitter and the receiver, and scenarios with limited feedback 

that assume perfect CSI at the receiver only and a low-rate feedback channel between 

the receiver and the transmitter. However, as we pointed out in Chapter 1, the perfor­

mance of multi-user systems is more dependent on the availability (and the quality) 

of the users' channel state information, and hence the focus of the second part of this 

thesis will be on the design of robust multi-user transceivers that explicitly take into 

account channel uncertainty in their design formulations. 

In this chapter, we consider the design of linear precoders (beamformers) for 
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broadcast channels with Quality of Service (QoS) constraints for each user, in sce­

narios with uncertain channel state information at the transmitter. We consider a 

deterministically-bounded model for the channel uncertainty of each user, and the goal 

is to design a robust precoder that minimizes the total transmission power required 

to satisfy the users' QoS constraints for all channels within a specified uncertainty 

region around the transmitter's estimate of each user's channel. Since this problem is 

not known to be computationally tractable, we will derive three conservative design 

approaches that yield convex and computationally-efficient restrictions of the original 

design problem. The three approaches yield semidefinite program (SDP) formula­

tions that offer different trade-offs between the degree of conservatism and the size 

of the SDP. \Ve will also show how these conservative approaches can be used to 

derive efficiently-solvable quasi-convex restrictions of some related design problems, 

including the robust counterpart to the problem of maximizing the minimum signal­

to-interference-plus-noise-ratio (SINR) subject to a given power constraint. Our sim­

ulation results indicate that in the presence of uncertain CSI the proposed approaches 

can satisfy the users' QoS requirements for a significantly larger set of uncertainties 

than existing methods, and require less transmission power to do so. 

4.1 Introduction 

The design of wireless broadcasting schemes that satisfy the quality of service (QoS) 

requirements of the intended receivers (users) is of growing interest in interactive com­

munication applications and in the downlink of cellular systems with differentiated 

services. Employing multiple antennas at the transmitter (base station) of a wireless 

downlink offers the potential for a substantial improvement in the quality of service 
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(QoS) that the base station can offer to the assigned users. This potential can be real­

ized by precoding the data symbols intended for each user in a manner that mitigates 

the multiuser interference at the (non-cooperating) receivers and hence improves the 

fidelity of the received signals. The transmitter 's ability to mitigate interference at 

the receivers is dependent on the availability of (accurate) channel state information 

(CSI) for all the users ' channels. For scenarios in which one can assume perfect CSI 

is available at the transmitter , the problem of designing a linear precoder1 that min­

imizes the transmitted power required to satisfy a set of QoS constraints specified by 

the users has been considered in [59- 64], and in [28, 65- 68] for the case of non-linear 

precoding. 

In practice the CSI that is available at the transmitter is subject to uncertainties 

that arise from a variety of sources, such as estimation error, channel quantization 

and short channel coherence time, and downlink precoder design methods that as­

sume perfect CSI are particularly sensitive to these uncertainties; e.g. , [8 , 9]. This 

suggests that one ought to incorporate robustness to channel uncertainty into the 

formulation of the precoder desig11 problem. One approach to doing so is to consider 

a bounded model for the errors in the transmitter's estimate of the (deterministic) au­

tocorrelation matrices of the channel [61 ,69]. This uncertainty model may be suitable 

for systems with uplink-downlink reciprocity in which the transmitter can estimate 

the users ' channels. We will adopt an alternative approach in which we consider 

a bounded model for the error in the transmitter 's estimate of the channels. This 

uncertainty model is particularly useful for systems in which users feed back quan­

tized channel measurements to the transmitter , as knowledge of the quantization 

codebooks can be used to bound the quantization error. For this bounded channel 

uncertainty model , we consider the design of a linear precoder that minimizes the 

1Since we will focus on scenarios in which each user has a single antenna, linear precoding is 
analogous to downlink beamforming. 
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transmitted power required to ensure that each user 's QoS requirement is satisfied 

for all channels within the specified uncertainty region. This problem is not known 

to be computationally tractable [70], and in order to obtain design methods that are 

known to be tractable we will obtain three conservative design approaches that yield 

convex and computationally-efficient restrictions of the original design problem. 2 The 

three approaches yield semidefini te program (SDP) formulations that offer different 

trade-offs between the degree of conservatism and the size of resulting SDP. 

\Ve will also show how these conservative design approaches can be used to obtain 

efficiently-solvable quasi-convex formulations of certain restrictions of related design 

problems. In particular, we consider the problem of determining the largest uncer­

tainty region for which t he QoS requirements can be satisfied for all channels within 

the region using fini te transmission power. This problem is of considerable interest 

in scenarios in which the channel uncertainty is dominated by the quantization error 

incurred in a quantized feedback scheme. In that case, one might wish to choose the 

rate of the chrumel quantization scheme to be large enough (and the quru1tization cells 

small enough) for it to be possible to design a robust precoder with finite power. We 

provide quasi-convex formulations of conservative approaches to this problem that 

can be efficient ly solved using a one-dimensional bisection search. We also consider 

the robust counterpart of the problem of maximizing the weakest user 's signal-to­

interference-plus-noise-ratio subject to a given power constraint on the transmitter 

(e.g., [63, 64]) , and we provide quasi-convex formulations of conservative approaches 

to that design problem, too. Our numerical experiments will illustrate the impact 

that our proposed design s can have on a number of performance metrics. In particu­

lar , these experiments indicate that proposed approaches cru1 satisfy the users ' QoS 

2Since these problems are restrictions of the original problem the transmission power of the 
designed precoder is larger t han (or equal to) the power that would be required if a tractable 
method for solving the original problem was available. 
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requirements for a significantly larger set of uncertainties than existing methods and 

require less transmission power to do so. 

4.2 System Model 

We consider a broadcast scenario with Nt antennas at the transmitter which are used 

to send independent messages to K receivers , each of which has a single antenna. Let 

s E CK be the vector of data symbols intended for each receiver. The transmitter 

generates a vector of transmitted signals, x E (['. Ni, by linearly precoding the vectors 

/ ( 

x = P s = LPJSJ (4.1) 
j=l 

where P J is the lh column of the precoding matrix P , and SJ is the lh element of 

s . Without loss of generality we will assume that E{ ssH} = I, and hence, the total 

transmitted power i given by 

tr(P HP ) = 

K

L l/ Pkll 2 
- (4.2) 

k=l 

At the kth receiver , the received signal Yk is given by 

(4.3) 

where h k E cixNi is a row vector3 representing the channel gains from the trans­

mitting antennas to the kth receiver , and nk represents the zero-mean additive white 

noise at the kth receiver, whose variance is a~k. We will find it convenient to use the 

vector notat ion: 

y= Hx+ n , (4.4) 

3Although treating h k as a row vector is a mild abuse of notation, it is standard practice. 
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where His the broadcast channel matrix whose kth row is hk, and the noise vector n 

has covariance matrix E{nnH} = Diag((}~ , ••• , (J~K).1 
We consider broadcast scenarios in which ead1 receiver has a quality of service 

requirement that is specified in terms of a lower bound on its signal-to-interference­

plus-noise-ratio 

(4.5) 


This SINR constraint represents a rather general constraint on the minimum quality 

of service received by the kth user. Indeed, the SINR constraint can be translated 

into an equivalent constraint on the symbol error rate or the achievable data rate; 

e.g., [71]. 

4.2.1 Precoding with QoS Constraints: Perfect CSI Case 

Given perfect CSI at the transmitter, the design of a precoder that minimizes the 

total transmitted power required to satisfy the users' QoS constraints can be stated 

as: 

~n L 
/{ 

!!Pki! 2 (4.6a) 
k=l 

\hkPk\ 2 

subject to --------- 2: '"" (4.6b)'°'K !h 12 2L..Jj=I,jfck kPj + (Jnk 

This is a convex optimization problem in the precoding matrix P, and can be effi­

ciently solved [59-64]. Indeed, if we make the following definitions, 

[ Re{hk} Im{hk} J , (4.7) 

Re{P} Im{P} ] 
(4.8) 

[ - Im{P} Re{P} 

Re{pk} ] (4.9)
[ 

1 

-Im{pk} 
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we can formulate ( 4.6) as the following second order cone program (SOCP) with real 

variables4 [64]: 

min 
p_, t 

t (4. lOa) 

subject to l/vec([_e
1 

, . . . PKl) II :S t, (4.lOb) 

II [!!kP O"nk] II :S fhhk~ ' 1 :S k :S K , (4.lOc) 

where f3k = J1+1/!k. 

The primary goal of this chapter is to obtain robust counterparts to (4.10) that 

mitigate the impact of imperfect CSL Before we derive those counterparts, we would 

like to point out that when H has full row rank (which requires that J( ::; N t ) , the 

perfect CSI problem (with finite SINR requirements) is always feasible. (The ro­

bust counterparts will not share this property.) Indeed, one feasible solution is to 

chose P to be the product of the right inverse of H and a diagonal power loading 

matrix with sufficiently large loadings . In practice, however, one may wish to con­

strain the transmission power in variou ways , such as constraining the average power 

transmitted by each individual antenna (e.g. , [72]) , E{/xn/ 2} ::; Pi1 , 1 ::; n::; Nt . An­

other useful power con traint arises from the imposit ion of a spatially-shaped bound 

(e.g. , [73], [74]) on the transmitted power, E{xHQ(O)x} :S Pshape(O) for all 8 E 8 , 

where Q (O) = v (B)vH (B) with v (B) being the "steering vector' (e.g., [75]) of the 

transmitter's antenna array in the direction e, Pshape(B) is the maximum allowable 

power in the direction of e, and 8 is the set of angles of interest . The later case 

is of particular interest in cellular systems in which interference to neighboring cells 

needs to be controlled; e.g., [3 76]. Although we will focus on robust versions of the 

formulation in ( 4.10) in the presence of channel uncertainty, in Appendix D we will 

4In this chapter and the following one, we have preferred to use formulations with real variables in 
order to facilitate computational cost comparisons of different proposed approaches; See Tables 4.1 
and 5.1. 
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show how these two types of power constraints can be easily incorporated into our 

robust formulations. 

4.2.2 Bounded Channel Uncertainty Model 

We will model the channel uncertainty using a deterministically-bounded additive 

uncertainty set. More specifically, we will model the kth user 's channel as: 

(4. 11) 

where hk is the transmitter's estimate of the k th user 's channel, and ek is the corre­

sponding estimation error. In order to avoid making any assumptions on the statistics 

of ek, we will merely assume that it lies in the ball l/ekll :S <5k , for some given <5k. This 

model is a convenient one for systems in which the channel state informat ion is quan­

tized at the receivers and fed back to t he transmitter; e.g., [8]. In particular, if the 

quantizer is (almost) uniform, then the quantization cells in the interior of the quan­

tization region can be ' covered" by balls of size <5k. A similar bounded uncertainty 

model has been used in the context of generic beamforming systems [77- 79], where 

it is the error in the estimate of the steering vector that is being bounded, and in 

CDMA systems [80]. 

By using the vector ~k = [Re{ek} , Im { ek} ], the uncertainty set of each channel 

can be described by the following (spherical) region: 

(4.12) 
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4.3 	 Precoding with QoS Constraints: Uncertain 

CSI Case 

Given the model for the channel uncertainty in (4.12), our goal is to design a robust 

precoding matrix that rninirnizes the transmitted power required to ensure that the 

users' QoS requirements are satisfied for all channels hk within the uncertainty region 

Uk(bk). Using the SOCP formulation in (4.10), this design problem can be formulated 

as the following semi-infinite SOCP5 : 

min t (4.13a) 
~.t 

s. t. llvec([£1 , ... , £Kl) II :::; t, (4.13b) 

ll[I!kP, anklll:::; f3kfu~, 

For later convenience, any precoder of finite power that satisfies ( 4.13c) will be said 

to provide a robust QoS guarantee. 

Since hk is present on both the left and right hand sides of each SOC constraint 

in (4.13c), the left and right hand sides of (4.13c) vary together and share the same 

ellipsoidal uncertainty region. That joint variation appears to make this problem 

difficult to solve, but the formal treatment of the computational tractability of this 

problem remains an open problem [70, 81]. Some insight can be obtained by using 

a standard transformation (via the Schur Complement Theorem [22]) to write the 

SOC constraint II [hkP, O"nkJll :::; f3kfu~ as an equivalent linear matrix inequality 

(LMI) [82] 

(4.13c) 

(4.14) 


5 0bserve that (4.13c) contains an infinite number of second-order cone constraints, one for each 
.hk E Uk(8k)· 
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By substituting h~~ = h k + ~kin (4.14), the inequality Fk(P ,h k) 2: 0 takes the form: 

(4.15) 

where the matrices Mk and R k(P , ,Bk) are: 

(4.16) 

( 4.17) 

From (4.16), we observe that the uncertainty matrix M k belongs to a subspace M of 

block diagonal matrices with equal blocks . Specifically, 

2M = {M IM= l (2K+2) 0 ~' ~ E lR1 
x Nt}. ( 4.18) 

Hence, the spectral norm of M k is II M k II= ll~kll:::; Ok· Using (4.14)- (4.18), the robust 

QoS design problem in (4. 13) can also be formulated as the following semi-infinite 

robust semidefinite program (SDP): 

min t (4. 19a)
£ . t 

(4. 19b) 

(4.19c) 

A general instance of (4.19) is NP-hard for a general subspace M , [83]; see 

also [81, 84]. This result and the undetermined tractability of the robust SOCP in 

(4. 13) suggest that in order to obtain a robust design technique that is guaranteed 

to be computationally tractable, we will need to modify the formulation of (4.13) or 

(4.19). In the following section, we will present three conservative design approaches 

that yield convex and efficient ly-solvable restrictions of (4.13) and (4. 19). These ap­

proaches are conservative in the sense that they guarantee that the SINR constraints 
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are satisfied for a larger set of channel uncertainties than that described in (4.12) , and 

hence the resulting transmission power is larger than (or equal to) that of an optimal 

solution to (4.13), if such a solution could be found. The three approaches yield SDP 

formulations that offer different trade-offs between the degree of conservatism and 

the size of the resulting SDP (and hence its computational cost). 

4.4 	 Conservative Approaches to Robust Preco der 

Design with QoS Constraints 

4 .4 .1 	 Robust SOCP with Independent Uncertainty 

In this section, we will work directly with the robust SOCP formulation in (4. 13). 

The presence of hk on both the left and right hand sides of each SOC constraint in 

(4. 13c) means that these terms vary together and share the same ellipsoidal uncer­

tainty region. Vve will obtain a conservative robust design by assuming independent 

uncertainties for hk on the left and right hand sides of ( 4.13c). Relaxing the com­

mon uncertainty structure in this way will result in a tractable restriction of ( 4.13) 

that can be formulated as an SDP. To obtain that SDP, we will use the following 

lemma [81]: 

Lemma 4 .1. Consider the robust SOCP: 

min c T x 
x 

s.t. ll Ax+ bJll:S frx +g VA EY,f EW 

where the ellipsoidal uncertainty regions Y = {A I A = A 0 + 2=]=1 ()i A i , II 0 II :S 1} 

and W = { f I f = f 0 + 2=;=1 ¢i f i, ll<Pll :S 1} are independent. This robust SOCP is 
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equivalent to the following SDP: 

min CTX 
x,µ,,>. 

>. - µ 0 (A 0x+ b f 

s. t. 0 µI [A 1x . .. A Yx ]T 2 0, 

A0x + b [A 1x ... A Yx] >.I 

[ f"TX + g - ,\ [f 11'x .. f"Tx] ] 
2 0. 

[f lT X ... f wT x( (foTx + g - >.)I 

D 

By writing hk = hk+~ = fu +6ku, llull :S 1, and invoking Lemma 4.1 , we obtain 

the following SDP formulation of a conservative version of ( 4. 13): 

min t (4.22a) 
~.µ, , .>.. , t 

( 4.22b) s. t. JJvec([£ 1 

0 

2 0, l<k<K- - ' 

(4.22c) 

1 :S k :SK. 

(4.22d) 

This problem can be efficiently solved using general purpose implementations of in­

terior point methods; e.g., SeDuMi [85]. 
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4.4.2 Robust SDP with Unstructured Uncertainty 

In this section and the following one, we will obtain two conservative robust designs 

from the SDP formulation in (4.19) of the original design problem. The difficulty of 

solving (4.19) arises from the particular structure that the matrix M k must possess. 

In this section we will show that if we restrict the robust design o that the SINR 

targets are to be satisfied for all llMkll :S 6k rather than just those M k E M that 

satisfy llMkll :S 6k, then one can obtain an efficiently-solvable problem. That is, we 

will show that by replacing ( 4.19c) by 

(4.23) 

one can obtain a restriction of ( 4.19) that can be efficiently solved. 

Although (4.23) is simpler than (4. 19c) , it still represents an infinite set of LMis, 

one for each M k that satisfies llMkll :S 6k. However, by using the following lemma, 

which is a special case of a more general result in [84] this semi-infinite LMI constraint 

can be precisely transformed into a single LMI. 

Lemma 4.2. Let F (x) be a symmetric matrix, and let F(x) and R (x) be affine 

functions of x. Then 

F(x , M) = F(x) + MR (x) + R T(x )M T ~ 0, \:/ llMll :S 6 (4.24) 

if and only if there exists a scalar T such that 

D 

By applying the result of Lemma 4.2 to the LMis in (4.23), we obtain the fol­

lowing efficiently-solvable SDP formulation for a conservative approach to the robust 

89 




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

precoder design problem: 

min t (4.25a)
£_,t,T1 , .•. ,TJ( 

s. t. llvec([E_
1

, ... , E,K]) /I :::; t, (4.25b) 

Fk(P,hk) - rk Ic2K+2> 
1:::; k:::; I<, (4.25c)

[ R(P, J1k) 

where Fk(P,hk) and R(P,/1k) were defined in (4.14) and (4.17), respectively, and 

q = 4Nt(I< + 1). 

4.4.3 Robust SDP with Structured Uncertainty 

The efficiently-solvable conservative formulation in (4.25) was obtained by relaxing 

the stmctural constraint Mk E M in ( 4.19). In this section we will obtain a less 

conservative formulation of ( 4.19) that results in an SDP that retains this structural 

constraint. 

\Ve begin with a definition. Given an arbitrary subspace of matrices M, let B.!\/t 

denote the following set of matrices associated with M: 

B.1\:1 = {(S, T, G)I SM= MT. GM= -MrGr, \f M E M}. (4.26) 

For the subspace M in ( 4.18), applying ( 4.26) yields: 

G=O, (4.27) 


where S E JRC2K+2)x(2K+2>. Although the construction of BM may appear to be 

arbitrary, it enables us to develop an SDP formulation of a conservative design that 

retains the structure M,. E M. To do so, we will use the following result, which is a 

special case of a more general result in [84]. 
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Lemma 4 .3. Consider the following robust SDP problem: 

x 

s. t. F (x ,M ) = F (x) + MR(x) + R T(x )M T 2: 0, VM E M , ll M ll '.So, 

where F (x) and R (x) are affine functions of x , and the subspace M is arbitrary. Let 

BM denote the set of matrices in (4.26) associated with M. An upper bound on the 

optimal value of this robust SDP and a corresponding solution x can be obtained by 

solving the following SDP: 

mm 	 CTX 
x ,S ,T ,G 

s. 	 t. (S, T G ) E BM 

s 2: 0 , 

F (x) - S 

[ R (x)- G 

By applying Lemma 4.3 to (4.19) , using the characterization of BM in (4.27) , it 

can be shown that the solution of the following SDP generates a conservative solution 

to the original design problem: 

nun t 	 (4.30a)
£.,l 

Sk=S'f , l~J~c:; I< 

( 4.30b) 

1:::; k:::; K , (4.30c) 

where Fk(P ,h 1J and R (P ,,6k) are as defined in the previous section, and we have 

exploited the fact that (4.30c) implies that Sk® I 2: 0 and hence that Sk 2: 0 , which 
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eliminates the constraints that would have been generated by the constraint S ~ 0 in 

Lemma 4.3. We would like to point out that the SDP in ( 4.25) is the special case of 

the SDP in ( 4.30) that is obtained when sk = Tk l . Therefore, the solution of ( 4.30) 

yields a tighter upper bound on the minimum power required to solve the original 

problem than the solution of (4.25) . 

4.4 .4 Some Comparisons 

As we have just pointed out, the structured robust SDP in ( 4.30) yields a tighter 

upper bound on the minimum transmission power than the unstructured SDP in 

(4.25). Furthermore, our numerical experiments suggest that the unstructured SDP in 

(4.25) provides a t ighter upper bound than that obtained from the robust SOCP with 

independent uncertainties in ( 4.22). Given this performance hierarchy, it is of interest 

to examine the relative size and structure of each of the proposed formulations , and 

that of the design problem for the case of perfect CSI; c.f. (4.10). We have collected 

this information in Table 4.1 , where the "core" design variables are the 2NtK unique 

elements of P and the scalar t. In the robust SOCP formulation, each (unique) 

element of P enters all of the LMis in (4.22c) and one of the LMis in (4.22d), and in 

the robust SDP formulations , each element of P enters all the LMis. The additional 

variables in the robust SOCP formulation are the 2K scalars , Ak and µk . Each Ak is 

involved in 2 LMis (one from the set in (4.22c) and one from the set in (4.22d)) and 

each µk is involved in only one. The additional variables in the unstructured robust 

SDP formulat ion are the K scalars Tk, and each one is involved in only one LMI. In 

the structured robust SDP formulation , the additional variables take the form of the 

K symmetric matrices Sk, each of which is of size (2K +2) x (2K +2) and is involved 

in only one LMI. In addition to the structure of the additional variables, Table 4.1 also 

emphasizes the fact that the constraints in the two robust SDP approaches have the 
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same structure, while that of the robust SOCP approach is somewhat simpler. These 

observations show that the improved bounds provided by the robust SDP approaches 

do incur an increase of the size of the SDP. However, our numerical experiments in 

Section 4.6 suggest that in some applications the improved performance will justify 

this increase in size. 
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Table 4.1: A comparison of the size and structure of various design methods 

Method Number of Variables Number of Constraints 

Core Additional soc LMI 

mun; size num; size 

Perfect CSI (4.10) 2Ntl< +I 1; 2N1I< +I 

co 
*"" 

ICK+2 

J( lin. equalities 

Robust SOCP (4.22) 2N1I< + 1 21( 1; 2Ntl< +I K; 2Nt + 2I< + 2 

I<; 2N1 +I 

Robust SDP. Unst. (4.25) 2N1K + 1 J( 1; 2Ntl< + 1 I<; 2(1( + l)(2Nt + 1) 

Robust SDP, Struct. ( 4.30) 2N1I< +I K(K + 1)(2K + 3) 1; 2NtK + 1 K; 2(K + l)(2Nt + 1) 
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4.4.5 Maximum Allowable Uncertainty Size 

Up until this point , we have focused on problems in which the goal has been to 

minimize the transmission power required to guarantee that the SINR of each user 

exceeds the required value for every channel uncertainty in the bounded set in ( 4.12). 

As mentioned in Section 4.2, for the class of systems with full row rank channel 

matrices, H , the QoS requirements can always be satisfied in the absence of channel 

uncertainty, but this is not the case when the transmitter 's model for the channel 

is inaccurate. This fact raises the question of whether one can determine, for a 

given set of channel estimates, the largest uncertainty set for which the robust QoS 

guarantee can be made. That is, find the largest value of 6, namely 6max uch that 

(4.13) (or (4.19)) has a finite solution. This problem is of interest in the design of 

quantization codebooks for feeding back estimates of the channel to the transmitter. 

In particular, one may wish to choose the rate of the codebooks to be large enough 

(and the quantizat ion cells small enough) so that it is possible to design a robust 

precoder with finite power. As we will point out below, we can obtain efficiently 

solvable formulations for lower bound on 6max by using the conservative approaches 

to the robust QoS design problem. 

Using the first conservative approach in Section 4.4.1 , it can be shown that the 

optimal value of the following problem is a lower bound on 6max : 

max 
£.,µ ,>..,p 

p (4.31a) 

s. t. A k( P , .Ak µk p) 2: 0 1 :S k :'.SK, (4.31b) 

B k( P , Ak , p, ,6k) 2: 0 , 1 :S k :S K . (4.31c) 

where A k(P Ak ,µk , p) and B k(P , .Ak , p,,6k) are as defined in (4.22c) and (4.22d) , re­

spectively. Although similar to (4.22) , the above problem is not jointly convex in P 

and p, since the constraints (4.31b) and (4.31c) are not jointly affine. However, this 
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problem is quasi-convex (c.f. [82]), and an optimal solution can be efficiently found 

using a one-dimensional bisection search on p in which the problem solved at each 

step is the convex feasibility problem corresponding to ( 4.31) with a fixed value for 

p. 

Using the structured robust SDP approach in Section 4.4.3, it can be shown that 

Oma.x 2: (a*)-1! 2 
, where a:* is the optimal value of the following quasi-convex opti­

mization problem 

min a ( 4.32a) 
~,a 

sFsf, 1-s_k~K 

Fk(P,h~J - Sk 
1 ::; k ::; K. (4.32b)s. t. 

[ R(P,J'.h.) 

(The unstructured robust SDP approach leads to the special case in which Sk = Tkl.) 

This problem can be solved using bisection search on a. Furthermore, by observing 

that the constraints in ( 4.32b) can be written as 

one can show that (4.32) is equivalent to minimizing the largest generalized eigen 

value of a pair of (block diagonal) symmetric matrices that depend affinely on the 

decision variables [84, 86]. Identifying (4.32) as lying within this class of problems is 

of interest because efficient algorithm'> that exploit the structure of the constituent 

matrices in ( 4.33) are available for such problems; c.f. [86, 87]. 

4.5 Fair SINR Maximization 

In the previous section, we considered problems that required each user to be provided 

with an SINR that is at least as large as a given SINR requirement, even in the 
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presence of uncertainty. In this section, we consider the related problem of maximizing 

the SINR of the "weakest ' user subject to a transmitted power constraint, in scenarios 

with uncertain CSL Problems of this form are sometimes called max-min fair SINR 

problems· e.g. , [63 64]. While most formulations of max-min fair SINR problems have 

focussed on the case of perfect CSI, under the bounded uncertainty model in ( 4.12) 

the robust max:-min fair SINR problem can be stated as6 

max 	 'Yo ( 4.34a) 
£ ,10 

s. 	 t. SI Rk 2: 'Yo , vh k E Uk(ok) , 1 :::; k :::; K ( 4.34b) 

1 T
2tr(PP ) :S ?total. 	 (4.34c) 

By defining {30 = Jl + 1/'Yo and using the SOC characterization of the QoS con­

straints in (4. lOc) , this problem can be cast as the following (semi-infinite) quasi­

convex optimization problem (see [64] for a related formulation for the case of perfect 

CSI) 

min 
£ ,/Jo 

{30 ( 4.35a) 

s. t. II [h kP , O"nk ] II :S f3o.hk_ek V.hk E Uk(ok) , 1 :S k :S K , ( 4.35b) 

II vec ([_e1 , ... , _eK]) II :S P total. (4.35c) 

6Although we will not discuss them here, the "per-antenna" and "shaping" power constraints 
discussed in Appendix D can be easily incorporated into the proposed framework. 
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Efficient formulations for precoders that minimize upper bounds on {30 (and hence 

maximize lower bounds on /'o) can be obtained by applying the conservative ap­

proaches of Section 4.4 to (4.35). In particular, by applying the robust SOCP ap­

proach in Section 4.4.1, one obtains the following quasi-convex problem: 

min 	 /Jo (4.36a)
p_,µ.>.,f3o 

s. 	 t. Ak(P,>.k,µk,Sk) 2:: 0, 1 ~ k ~ K, (4.36b) 

B,.,(P,.\k,r5k,f3o) 2:: 0, 1 ~ k ~ K, (4.36c) 

II vec ( [_e_1, ... , PK l) 11 ~ Ptotal, ( 4.36d) 

spectively. This problem can be efficiently solved by using a bisection search on f3o 

in which problem solved at each step is the convex feasibility problem generated by 

(4.36) with a fixed value of f3o. Similarly, the structured robust SDP approach of 

Section 4.4.3 yields the following quasi-convex problem that can also be efficiently 

solved using a bisection search on /3o: 

(4.37a) 

Fk(PJlk) - Sk RT(P,f3o) ] 
s. t. 	 2:: 0, 1 ~ k ~ ]{, (4.37b)

[ R(P, /3o) r5;2
sk 0 I2Nt 

llvec([E1 , ... , EK]) II ~?total· (4.37c) 

4.6 Numerical Results 

In this section we will compare the performance of the three proposed approaches to 

robust QoS precoding, namely the robust SOCP design (RSOCP) with independent 

uncertainty in Section 4.4.1, the unstructured robust SDP (RSDP-Unstruct.) in 
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Section 4.4.2, and the robust SDP that preserves structure (RSDP-Struct .) in Section 

4.4.3. We will also provide performance comparisons with some existing approaches, 

namely the robust autocorrelation matrix approach in [61 ,62] (Robust Correl. Appr. ), 

and the robust downlink power loading approach in [69]. The approach in [69] requires 

t he beamforming vectors to be specified, and we will consider two choices: the columns 

of t he pseudo-inverse of H (Robust Power Load. 1); and the beamforming vectors 

obtained by assuming t hat H is the actual channel and using the existing methods 

for QoS precoding with perfect CSI [59- 64] (Robust Power Load. 2). The approaches 

in [61,62] and [69] are based on uncertainty models that are different from the one in 

(4. 12), and from each other. The approach in [61 ,62] considers a model in which the 

spectral norm of the error in the (deterministic) autocorrelation matrix C k = h f h k 

is bounded and in the approach in [69] the Frobenius norm of the error in C k is 

bounded. However , by bounding these norms of C k in terms of the norm of ek, a 

comparable uncertainty set can be generated. 7 We will compare these schemes in an 

environment with t = 3 transmit antennas and K = 3 users. In our experiments, 

we will evaluate performance statistics for the standard case of independent Rayleigh 

fading channels in which the coefficients of the fading channels are modeled as being 

independent proper complex Gaussian random variables with zero-mean and uni t 

variance, and the receivers ' noise sources are modeled as zero-mean, additive, white, 

and Gaussian ·with uni t variance. 

In our first experiment , we randomly generated 2000 realizations of the set of 

channel estimates {hk}{':-:1 and examined the performance of each method in the 

7 A bound on the spectral norm of the error in the matrix C k can be obtained as follows: II (hk + 
H ' H ' H H ' H ' H H ' H ' 

ek) (hk+ek)-hk hkll = llhk e1r+e,... h k+ek ekll:::; llh1r ekll+llek hkll+llek ekll = 2llhkll llekll+ llekll 2 · 
The same bound also holds for the Frobenius norm, since the matrices on t he immediate right hand 
side of the inequality are all rank one. Furthermore, the uncertainty e1,; = okhk/ llh1rll achieves this 
upper bound with equality for both norms. (See also [88].) That said, the uncertainty models 
in [61, 62. 69] accommodate matrices that are not positive semidefini te, whereas the model proposed 
in Section 4.2.2 always results in a posit ive semidefinite autocorrelation . 
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presence of equal uncertainty, Ok = o, Vk. The QoS requirement of each user is that 

the SINR is at least 10 dB. For eacli set of channel estimates and for each value of o 
we determined whether each design method is able to generate a precoder (of finite 

power) that guarantees that the SINR constraints are satisfied in the presence of the 

modeled uncertainty. In Fig. 4.1 we provide the percentage of the 2000 channel real­

izations for which each method generated a precoder with finite power, as a function 

of the size of the uncertainty. From this figure, it is clear that the RSDP approach 

that preserves the structure of the uncertainty is able to provide robust QoS guaran­

tees for a significantly larger percentage of the channels and for significantly larger 

uncertainty sets than the other methods. The unstructured SDP approach provides a 

reasonable degree of robustness to channel uncertainty compared to that provided by 

the RSOCP approach, the robust autocorrelation approach in [61,62], and the robust 

power loading approach in [69]. 

In our second experiment, we selected those sets of channel estimates from the 

2000 sets used in the first experiment for which all design methods were able to pro­

vide robust QoS guarantees for all uncertainties with os:; 0.015. We calculated the 

average, over the 609 such channel environments, of the transmitted power required 

to achieve these robust QoS guarantees and we have plotted the results for different 

values of oin Fig. 4.2(a). The average transmitted power approaches infinity for a 

certain value of owhen for one (or more) of the channel estimates the method un­

der consideration cannot provide the robust QoS guarantee with finite power. The 

excellent performance of the structured RSDP method and the good performance 

of the unstructured RSDP method that were apparent in Fig. 4.1 are also apparent 

in Fig. 4.2(a). In Fig. 4.2(b), we provide a detail of Fig. 4.2(a) in order to demon­

strate the relative difference in the performance of the RSOCP approach, the robust 

autocorrelation approach in [61, 62], and the robust power loading approach in [69]. 
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Figure 4.1: Percentage of channel realizations for which the robust QoS guarantee 

can be made against the uncertainty size fJ , for a system with Nt = 3 and K = 3. 

In t he third experiment, we used the 2000 randomly generated realizations of 

the estimates of the channel environments from the first experiment , and for each 

scenario we used the methods in Section 4.4.5 to find lower bounds on the value of 

the uncertainty, 5max, above which each design method is unable guarantee the SINR 

requirements in the presence of the modeled uncertainty. In these experiments the size 

of uncertainty was the same for each user (i.e. , fJk = fJ , Vk) , and the minimum SINR 

requirement of each user was 10 dB. In Fig. 4.3 we plot the cumulative distribution 

function (CDF) of the lower bound on 5max for each method. From this figure, it is 

clear that the relative performance of each method under this performance metric is 

similar to that established from the first two experiments . 

In the fourth experiment we examine the performance of the 2000 randomly 

generat d realizations of the set of channel estimates {hk} f=1 in the presence of equal 

uncertainty, fJk = fJ = 0.05, Vk. The SINR requirements of the three users are equal 
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Figure 4.2: Average of the transmitted power tr(PHP), on a linear scale, versus 

uncertainty size b for a system with Nt = 3 and J{ = 3. Part (b) is a detail of 

part (a). 
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Figure 4.3: The (empirical) cumulative distribution function (CDF) of lower bounds 

on 6max for a system with t = 3 and K = 3. 

and varied from 0 to 25 dB. For each set of channel estimates and for each value of 

the required SI IR we determined whether each design method is able to generate a 

precoder (of finite power) that guarantees the required SI Rs. In Fig. 4.4 we provide 

a histogram of the fraction of the 2000 channel realizations for which each method 

generated a precoder with finite power. From this figure , it is clear that both robust 

SDP approaches are able to provid robust QoS guarantees for a wider range of 

required SI TRs than the other methods , with the structured SDP approach having a 

significant advantage. 

In the fifth experiment, we elected all the sets of channel estimates from the 2000 

sets used in the previous experiment for which all design methods were able to provide 

robust QoS guarantees for all SINRs less than or equal to 6dB. We calculated the 

average, over the 264 such channel environments of the transmitted power required 

to achieve these robust QoS guarantees. We have plotted the equal SI R requirement 
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Figure 4.4: Percentage of channel realizations for which the robust QoS guarantee 

can be made against the required SINRs, for a system with Nt = 3 and K = 3. 

of each user versus the average transmitted power in Fig. 4.5. In order to assess the 

additional power required to achieve robustness , we have included the corresponding 

curve for the case of perfect CSI at the transmitter; c.f. [59- 64] and (4.10). This figure 

illustrates the saturation effect that channel uncertainty imposes on the growth of the 

SI R of each user with the transmitted power. This effect was observed in [8] for 

non-robust linear precoding on the MISO downlink with quantized CSL Fig. 4.5 also 

illustrates the role that robust precoding can play in extending the SINR interval over 

which linear growth with the transmitted power can be achieved. This is particularly 

evident for the robust SDP approaches. 

In the sixth experiment, we examine the performance of the 2000 randomly gen­

erated realizations of the set of channel estimates {hk}l~ 1 in the presence of equal 

uncertainty, 6k = 6 = 0.05 , Vk. The SINR requirements of the three users are equal 

and varied from 0 to 25 dB. For each set of channel estimates , we determine the 
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Figure 4.5: Maximum achievable (equal) SINRs against t he average transmitted 

power, for a system with Nt = 3 and K = 3. 

maximum value of the SI R, SI Rmax, above which each design method is unable 

to guarantee the SI R requirements. In Fig. 4.6 we plot the CDF of SINRmax for 

each method. From this figure, it is clear that the three proposed approaches are able 

to provide SINR guarantees for significantly larger values of SINR than th robust 

power loading approaches in [69] and the robust autocorrelation approach in [61 ,62]. 

In the last experiment , we assess the degree of conservatism of each method by 

studying the statistics of the actual received SIN Rs for channel realizations within 

a given uncertainty bound. Scenarios in which the actual SINRs are likely to be 

significantly higher than the requested SIN Rs indicate that the transmitter adopts 

a more conservative approach that requires higher transmitted power. Ideally, when 

perfect CSI is available at the transmitter, t he actual received SINRs are equal to 

the requested ones, i.e. , all QoS constraints are achieved with equality [59- 64] . In 

this experiment , we selected the sets of channel estimates from the 2000 sets used in 
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Figure 4.6: The (empirical) cumulative distribution function (CDF) of SINRmax for 

a system with Nt = 3 and K = 3. 

the first experiment for which all design methods were able to provide robust QoS 

guarantees of 10 dB for all users for the uncertainty bound t5 = 0.015. For each of 

the 609 such channel environments, we randomly generated 100 channel uncertainties 

that were uniformly distributed in direction and whose norms were equal to 0.01. 

In Fig. 4. 7 we plot the CDF of the actual received SINRs for each design method. 

To help interpret this figure, in Tab. 4.2 we have provided the average transmission 

powers of each design method. It is apparent from Fig. 4. 7 and Tab. 4.2 that the 

proposed approaches are able to save transmission power by reducing the likelihood 

that a user's SINR requirement is substantially over-satisfied. 
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Figure 4.7: The (empirical) cumulative distribution function (CDF) of the actual 

received SINRs for a ystem with N1 = 3 and I< = 3 and a target SINR of 10 dB. 

Table 4.2: Transmission powers for Fig. 4. 7 

Approach Transmission Power, tr(P HP ) 

Robu t Power Load. 1 44. 70 

Robust Power Load. 2 42.64 

Robust Autocorr. 42.60 

RSOCP 39.19 

RSDP-Unstruct 27.31 

RSDP-Struct 22.49 
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4.7 Conclusion 

In this chapter, we have considered linear precoding (beamforming) for broadcast 

channels with QoS constraints in the presence of uncertain CSI at the transmitter. 

We studied the design of a robust linear precoder that minimizes the total transmitted 

power while satisfying the users' QoS constraints for all channel realizations within 

a bounded uncertainty region around the transmitter's estimate of each user's chan­

nel. Since that problem is not known to be computationally tractable, we presented 

three conservative design approaches that yield convex and computationally-efficient 

restrictions of the original design problem. We also showed how the conservative 

design approach could be used to obtain efficiently-solvable quasi-convex restrictions 

of some related problems, including the robust counterpart of the problem of maxi­

mizing the minimum SINR subject to a given power constraint. As illustrated by the 

simulations, the proposed approaches can satisfy the users' QoS requirements for a 

significantly larger set of uncertainties than existing methods, and require less trans­

mission power to do so. In the following chapter, we present a different approach to 

the design of robust broadcast diannels with QoS requirements in which each user's 

QoS requirement is formulated as a constraint on the mean square error in its signal. 

This approach can be applied to both linear and non-linear transceivers, and robust 

design formulations can be obtained for a more general class of bounded uncertainties 

than those in treated by the approaches presented in this chapter. 
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Chapter 5 

Robust Non-Linear and Linear 

Broadcasting with QoS 

Constraints: MSE Formulations 

In the previous chapter, we developed robust linear precoding designs for broadcast 

channels with users' QoS requirements in the presence of bounded uncertainty at the 

transmitter. The QoS requirements were formulated as constraints on the SINR of 

each user's received signal. In this chapter, we adopt a different approach to the design 

of robust transceivers for broadcast channels with bounded uncertainty. We formulate 

each user's QoS requirement as a constraint on the mean square error (MSE) in its 

received signal, and we show that these MSE constraints imply constraints on the re­

ceived signal-to-interference-plus-noise-ratio (SINR). Using the MSE constraints, we 

present a unified approach to the design of linear and non-linear transceivers ·with QoS 

requirements that must be satisfied in the presence of bounded channel uncertainty. 

The proposed designs overcome the limitations of the approaches of Chapter 4 that 

provide conservative designs or are only applicable to the case of linear precoding. 
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Furthermore, we provide computationally-efficient design formulations for a rather 

general model of bounded channel uncertainty that subsumes many natural choices 

for the uncertainty region. We also consider the problem of the robust counterpart 

to precoding schemes that maximize the fidelity of the weakest user's signal subject 

to a power constraint. For this problem, we provide quasi-convex formulations, for 

both linear and non-linear transceivers, that can be efficiently solved using a one­

dimensional bisection search. Our numerical results demonstrate that in the presence 

of bounded uncertainty in the transmitter's knowledge of users' channels, the pro­

posed designs provide guarantees for a larger range of QoS requirements than other 

approaches that consider bounded channel uncertainty models, and require less trans­

mission power in providing these guarantees. 

5.1 Introduction 

For the downlink of cellular systems in which each receiver has a single antenna and 

the QoS requirements were formulated as constraints on the signal-to-interference­

plus-noise (SINR) of each user. the design of a linear precoder that minimizes the 

transmitter power required to guarantee that each user's QoS requirement is satis­

fied for all admissible channels was considered in Chapter 4. While the methods 

proposed in Chapter 4 provide tractable design formulations and sig11ificant improve­

ments in performance over previous existing designs, those approaches have two limi­

tations. First, they are not directly applicable to non-linear precoding schemes, such 

as Tomlinson-Harashima precoding (THP). Second, when QoS is quantified in an 

SINR sense. the robust linear QoS problem resulted in designs whose tractability 

is an open problem; see also [70]. In order to obtain tractable designs, a conserva­

tive design approach was taken, and that approach requires the SINR constraints 
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to be satisfied for a superset of channels that subsumes the original bounded set of 

admissible channels. 

In this chapter , we address both these limitations by providing tractable formu­

lations (in the form of semidefinite programs) of both linear and non-linear downlink 

precoding schemes that minimize the transmitted power required to ensure tha each 

user 's QoS requirement is satisfied for all admissible channels, without expanding 

the admissible set. We formulate each user 's QoS requirement as a constraint on 

the mean square error (MSE) in each user 's received signal, and we show these MSE 

constraints imply constraints on the received SINR of each user. Since the QoS is 

measured in terms of MSE, our approach is immediately applicable to non-linear 

Tomlinson-Harashima precoding, and the resulting desig11s include those for linear 

precoding as a special case. Furthermore, the proposed designs (for the linear case) 

are obtained with lower computational cost than those based on SI R formulations 

of the QoS requirements in Chapter 4. 

We will pre ent a unified treatment of a rather general bounded model for the 

channel uncertainty that can represent uncertainty regions resulting from a variety of 

sources of imperfection including channel quantization errors. The model naturally 

includes channel uncertainty regions that am described using intersection of multiple 

uncertainty sets . e.g., t he interval constraints on the entries of each user 's channel 

that would arise from scalar quantization. While we will provide exact robust de­

sign formulations for these types of uncertainties , we will also provide conservative 

formulations that reduce the computational complexity of the design for these cases. 

Analogous to Sections 4.4.5 and 4.5 the proposed design approaches of this chap­

ter can be extended to obtain efficiently-solvable quasi-convex formulations of some 

related design problems. In particular , we consider the robust counterpart of the 

problem of maximizing the fidelity of t he weakest user 's signal (minimizing the largest 
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MSE among the users). For precoding schemes that assume perfect CSI at the trans­

mitter, this problem was studied for the case of linear precoding schemes in [63, 64]. 

For the bounded channel uncertainty model, tractable conservative approaches to the 

robust counterpart of this problem for linear precoders were provided in Section 4.5 

(for the case of SINR constraints), but the problem has remained open for the case of 

non-linear precoding. We provide quasi-convex formulations of this robust minimax 

problem (for MSE constraints), for both non-linear and linear pre coding schemes. 

These formulations can be efficiently solved using a one-dimensional bisection search, 

or by formulating the problem as a generalized eigenvalue problem; e.g., [86]. 

\Ve also consider the problem of determining the largest uncertainty region for 

which the QoS requirements can be satisfied for all admissible channels using finite 

transmission power. This problem is of considerable interest in the design of quan­

tization codebooks for quantized channel feedback schemes. In that case, one might 

wish to choose the rate of the channel quantization scheme to be large enough (and 

the quantization cells small enough) for it to be possible to design a robust precoder 

with finite power. We provide quasi-convex formulations of this problem, too. 

Our numerical results demonstrate the effectiveness of the proposed approach. 

In particular, the proposed designs provide guaranteed satisfaction of a larger set of 

QoS requirements than other approaches that consider bounded channel uncertainty 

models, even when the QoS requirements are specified in terms of SINRs, and that 

they expend less transmission power in satisfying these requirements. 

5.2 System Model 

We consider the downlink of a multiuser cellular communication system with Nt 

antennas at the transmitter and K users, each with one receive antenna. We consider 
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systems in which Tomlinson-Harashima precoding (THP) is used at the transmitter 

for multi-user interference pre-subtractioD" e.g., [10, 16]. As shown in Fig. 5.1 , TH 

precoding can be modelled using a feedback matrix B E c1<xK and a feedforward 

precoding matrix P E CNt x K. Since linear precoding is the special case of the THP 

model in which B = 0 , we will focus our development on the THP case and will 

extract the special case results for linear precoding as they are needed. 

The vector s E CK in Fig. 5.1 contains the data symbol destined for each user, 

and we assume that sk is chosen from a square QAM constellation S with cardinality 

Mand that E{ssH} = I . The Voronoi region of the constellation V is a square whose 

side length is D .1 In absence of the modulo operation, the output symbols of the 

feedback loop in Fig. 5. 1, vk , would be generated successively according to vk = sk ­

l:~:i B k ,jVj ,, where only the previously precoded symbols v1 , .. , Vk-l are subtracted. 

Hence, B is a strictly lower triangular matrix. The role of the transmitter 's modulo 

operation is to ensure that vk remains within the boundaries of V, and its effect is 

equivalent to the addit ion of the complex quantity ik = i%e D + j i~1-rwg D to vk, 

where ike, i~nag E Z and j = v'-1 . Using this observation, we obtain the standard 

linearized model of the transmitter that does not involve a modulo operation as 

shown in Fig. 5.2· e.g. [10]. For that model , 

(5. 1) 

where u = i + s is the modified data ymbol. As a result of the modulo operation, 

the elements of v are almost uncorrelated and uniformly distributed over the Voronoi 

region V [10 , Th. 3.1]. Therefore, the symbols of v will have slightly higher average 

energy than the input symbols s . (This slight increase in the average energy is termed 

precoding loss [10].) For example, for square M -ary QAM we have (]";= E{lvkl 2 } = 

1The length of the side of the constellation D is equal to .JMd, where d is the distance between 
two successive constellation points along either of the basis directions. 
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Tomlinson-Harashima Transmitter Decentralized Receiven 

Figure 5.1: Broadcast channel with Tomlinson-Harashima precoding at the transmit­

ter. 

i 
xs + u v p 
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Figure 5.2: Equivalent linear model for the transmitter. 

M~ E{lskl2 } for all k except the first one [10). For moderate to large values of A1 this1 
power increase can be neglected and E{vvH} =I is often used; e.g., [10,13,16]. Hence, 

the average transmitted power constraint can be written as Ev{xHx} = tr(PHP). 

The sig11als received at each user, yk, can be written as 

(5.2) 


where hk E <ClxNt is a row vector representing the channel gains from the transmitting 

antennas to the kth receiver, and nk represents the zero-mean additive white noise at 

the kth receiver, whose variance is O";k. At each receiver, the equalizing gain 9k is used 

to obtain an estimate Uk= gkhkP(I +B)-1u +gknk of the modified data symbol uk. 

Following this linear receive processing step, the modulo operation is used to obtain 
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s. In terms of the modified data symbols we cru1 define the error signal 

(5 .3) 

where m k and b k are the kth rows of the matrices I and B , respectively. The error 

signal in (5.3) is equivalent to sk - Bk when the integer ik is eliminated by the modulo 

operation at the receiver, which occurs with high probability even at reasonably low 

SI Rs. Using this error signal, the Mean Square Error (MSE) of the kth user is given 

by 

E{luk - ukl 
2 

} = llgkhkP - m k ­ bkll 
2 + l9kl 2 0-~k 

2 

II [gk h kP - m k· ­ b k 9kO"k] 11 . (5.4) 

5.3 	 Transceiver Design with MSE Constraints: 

Perfect CSI case 

In this chapter, we will consider downlink scenarios in which each user has a quality 

of service constraint that is expressed in the form of an upper bound on it mean 

square error, MSEk. The formulation of QoS design problem in terms of the MSEs is 

motivated by t he following result. 

Lemma 5.1. For any given set of user's channels {hk}£~1 , if there exists a transceiver 

design P , B , 9k that guarantees that J\![SE1.; ~ (k , then that design also guarantees that 

Proof. 	 See Appendix E. 0 

As we will point out below, in the ca e in which accurate CSI is available at the 

transmitter a stronger result holds , nan1ely that SINRk = (1/(k) - 1. The statement 
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in Lemma 5.1 implies that if we guarantee that the .MSE is below a certain threshold 

for all channels in a given set, then this implies a guarantee on the SINR for all 

channels in the same set. This implication enables us to develop robust QoS designs 

based on l\,fSE constraints. As we will show in the remaining sections of the chapter, 

doing so leads to designs with better performance, lower complexity and broader 

applicability than existing designs in [62, 69] and in Chapter 4, that are based on 

SINR constraints, even though the QoS constraints are specified in terms of SINR. 

In order to facilitate our development of robust precoding schemes with QoS con­

straints, we will briefly consider the design problem for the case in which the trans­

mitter has accurate knowledge of the users' channels. Iterative design approaches 

for the perfect CSI case have been considered in [28, 66, 68], and the design problem 

wa'l considered under zero-forcing criteria in [65, 67]. Our approach to the perfect 

CSI case includes deriving a convex conic formulation of the Tomlinson-Harashima 

transceiver with QoS constraints. This formulation will enable us to develop robust 

counterparts for the case of bounded channel uncertainty, and will allow the incorpo­

ration of different power constraints on the transmitter. In the case of perfect CSI, 

the design of the downlink transceiver components P, B and 9k so as to minimize 

the total transmitted power subject to satisfying the users' MSE requirements can be 

formulated as 

min 
P,B,gk 

llvec(P) 11 
2 (5.5a) 

2 

subject to II [gkhkP - mk ­ bki 9kO"k] 11 ::; (k· (5.5b) 

In the following lemma, we will show that 9k can be chosen to be real without loss 

of generality. 

Lemma 5.2. Consider the design problem in (5.5). If {lgk/ ei0k}, P, and Bare the 

optimal equalization gains, precoding matrix and feedback matrix. respectively, then 
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{l9kl}, P Diag(eJ81 , ... ,eJ8K), Diag(e-J81 , ... ,e-J81<) B Diag(eJ81 , . .. ,eJ8K) are also 

optimal. 

Proof. Consider the transceiver whose parameters are {l9kl} , P Diag(eJ81 , ... , eJ81<), 

Diag(e-J81 , ... , e-J81<) B Diag(eJ81 ... , eJ8K). Then, the left hand side of the MSE 

constraint of the kth user in (5.5b) can be written as 

T 

eJC9
1c-i-

9kl (l9kl h kPk- 1eJ9
1c - bk.k-1) 

(l9klhk p keJ8k - 1) 
ej(01c+i -Ok) (l9klhkPk+ieJ0k) 

e(jOK-llk) 	 (l9klhk p KeJ0k) 

l9k I<7k 

where p j is the jth column of P . By 

T 

(l9k ieJ8khkPk-l - bk.k-1) 

(l9kl eJ8k·h kPk - 1) 

(l9kleJ8kh kPk+i) 

(l9klej8kh kPK) 

l9kl eJOk <7k 

(5.6) 

extracting the unitary factor 

Diag(ej(Oi-0kl .... ,ej(01<-0k) e-J81c) right hand side of (5.6) and exploiting the unitary 

invariance of the 2-norm we obtain the equality in (5 .6) . The right hand side of (5.6) 

is the MSE of kth user for the transceiver whose parameters are { l9k I eJ81c} , P , and 

B . Furthermore, both transceivers have the same total transmitted power. D 

Using the result of Lemma 5.2, the definitions in (4.7-4.9), and the following 

definitions 

[ Re{b k}/gk hn{b k}/gk] , (5.7) 

[ Re{m k} Im{m k} J , (5 .8) 

1/gk , (5.9) 
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where, by definition, Im{mk} = 0, the design problem in (5.5) can be formulated as 

a convex Second Order Cone Program (SOCP) 

mm 
~. _!!. fk, t 

t (5.lOa) 

subject to !lvec(P) II ~ t, (5.lOb) 

i![!!JcP- fkmk - 12,.,, O"nkJll ~ ~fk 1 ~ k ~ K. (5.lOc) 

This problem can be efficiently solved using general purpose implementations of inte­

rior point methods [89,90]; e.g., SeDuiv1i [85]. It can be shown using a contradiction 

argument that the solution to (5.10) results in IvISEk = (k for all k. This equality 

enables a stronger conclusion than that Lemma 5.1, namely that in the case of per-

feet CSL SINR1t· = l/MSEk - 1, e.g., [28]. Another advantage of the convex conic 

formulation in (5.10) is the possibility to include shaping constraints (e.g., [73, 91]) 

on the power transmitted from the antennas; See Appendix D. These constraints 

are expressed as either second order cone or positive semidefiniteness constraints on 

the precoding matri.x P. The SOCP formulation can also incorporate multi-cell de­

signs with per-cell power constraints on sets of antennas that belong to the same 

cell. These per-cell power constraints can also be formulated as second order cone 

constraints on P; See [92,93]. More importantly, however, the convex formulation in 

(5.10) enables us to derive robust counterparts of the original design problem in (5.5) 

for the uncertainty models presented in the following section. 
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5.4 General Class of Bounded Channel Uncer­

tainty Models 

We will consider an additive uncertainty model of the form: 

Uk(6k, «Pk, Qk) = {hk Ihk = hk + gk = fu + L
J 

wP) <t>P), wfQ kw k ~ 6D, (5.11) 
j=l 

where hk i the transmitter 's estimate of the kth user 's channel, and e k is the cor­

responding error. The above model enables us to treat several different uncertainty 

regions in a unified way. For example, it can model the following uncertainty sets: 

• 	 Ellipsoidal and Spherical Uncertainty Sets: By choosing Qk =I the uncertainty 

set in (5. 11 ) describes an ellipsoidal uncertainty region around the channel es­

timate hk. The spherical uncertainty set in ( 4.12) wit h center hk and radius 

bk is the special case that arises when «Pk, the mat rix whose rows are ¢~), is 

selected to be I 2Ni . 

• 	 Interval Uncertainty Sets: Interval const raints on each element of hk can also 

b modeled as uncertainty sets of the form in (5. 11). By taking «Pk to be 12N1 

and Qk to be the matrix whose only non-zero element is Qii = 1, then the 

uncertainty set in (5. 11) models an interval constraint on the ith entry of the 

error hk· Interval constraints on multiple entries of hk can be represented as 

the intersection of uncertainty sets on the form (5.11)· see Section 5.5.l. 

The addit ive uncertainty model in (5. 11) is useful for systems in which the chan­

nel state information is quantized at the receivers and fed back to the transmitter 

e.g. , [8, 9, 79,94,95]. If a vector quantizer is employed at the receivers, then the quan­

tization cells in the interior of the quantization region can be often approximated by 
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ellipsoids [96]. This ellipsoidal approximation can be substantially better than spher­

ical approximation when the channel coefficients are correlated, e.g., [97, 98). On the 

other hand, if a simple scalar quantizer is employed, the quantization regions can be 

modeled using a set of interval constraints. 

5.5 	 Transceiver Design with MSE Constraints: 

Uncertain CSI Case 

In this section, we will desig11 a robust transceiver that minimizes the total trans­

mitted power necessary to guarantee that the users' MSE requirements are satisfied 

for all admissible channels fu: in the uncertainty region Uk(bk) in (5.11). Using the 

formulation in (5.10), this robust problem can be stated as 

min 
~.!!, fk· t 

t (5.12a) 

s. t. l/vec(P) I/ :::; t, (5.12b) 

11 [hkP ­ fkrlli - bk, ankl II :::; VGcfk Vhk E Uk(bk), 1 :::; k:::; K. 

(5.12c) 

This is a semi-infinite conic programming problem. In particular, the constraint 

(5.12c) represents J{ infinite sets of second order cone (SOC) constraints, one for 

each hk E Uk(bk). However, we can precisely characterize each of these infinite sets 

of SOC constraints using a single Linear Matrix Inequality (LMI), as stated in the 

following formulation. (A derivation of this formulation is provided in Appendix F.) 

Design Formulation 1. The robust transceiver design problem in (5.12) is equivalent 
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to the following semidefinite program (SDP) 

rmn t (5.13a) 
µ , t 

£..!!.fk 

s. 	 t. llvec(P)ll :St , (5. 13b) 

A k((k, bk) = 

V(;fk - µk 0 [hkP - m kfk - ~ O"nk,J 

0 µk Qk 8k[<I> kP , OJ ~ 0, 
~ 

[hkP - fk m k ­
T 

Qk, O"nkJ 8k[<I> kP 
T

OJ V(;fkl 

1 :S k :SK. 	 (5.13c) 

This result shows that the original design problem in (5.12) with an infinite set 

of constraints is equivalent to the convex SDP in (5.13) that can be efficiently solved 

using interior point methods e.g. [85J. Such equivalence is an advantage of the struc­

ture of the uncertain parameter of the SOC repre entation, in (5 .12c). In the e SOC 

constraints the channels hk, and consequently the uncertain parameters, exist only 

on one side of the SOC. Hence, exact characterization of these SOC with uncertain 

parameter can be obtained. In contrast , when the QoS requirements are of the form 

of bounds on the SI R then even in the case of linear precoding, both side of the 

SOC constraints that enforce the QoS requirement depend on hk, and the resulting 

design problem is not known to be tractable [70 pp. 7J. In Chapter 4 this unknown 

tractability was addressed by taking a conservative approach to the robust design 

problem. As demonstrated by (5.13) for th case of MSE constraints the robust QoS 

design problem can be efficiently solved without introducing conservatism. 
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5.5.1 Case of Intersecting Uncertainty Sets for each hk 

The formulation of the design problem in (5.12) extends naturally to the case in which 

the uncertainty region for each hk is described as the intersection of more than one 

uncertainty set Uf of the form (5.11); that is, the uncertainty set is of the form 

(5.14) 


Note that there is no restriction in assuming that each Uf has the same uncertainty 

parameters JJ.: and <Pk, since Qf in (5.11) can be chosen to accommodate different sizes 

and geometrical regions. Examples of constraint sets of the form in (5.14) include 

the interval constraints on each entry of lli: that arise when scalar quantization is 

employed. 

Although the design formulation involving uncertainty sets of the form (5.14) is 

natural extension of that in (5.12), it can be shown, based on [99], that the resulting 

problem is NP-hard. In particular, the transformations that lead to the efficiently­

solvable formulations of (5.12) [cf. (5.13)] do not extend to this case. However, by 

adopting a conservative approach one can obtain an efficiently-solvable approxima­

tion to the problem with the uncertainty set in (5.14). This conservative approach 

involves enveloping (5.14) in a superset that can be described more efficiently, and 

then requiring the MSE constraints to be satisfied for all channels in this superset. 

Using the derivation in Appendix F, one obtains the following conservative design 

formulation that has the same number of LMis a.5 that in (5.13). 

Design Formulation 2. The solution of robust transceiver design problem in (5.12) 

for the intersection of uncertainty sets in (5.14) is upper-bounded by the solution of 
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the following SDP 

mm t (5.15a) 
µ , t 

~.!! .fk 

s. 	 t. II vec(P ) II :S t , (5.15b) 

B k((k , c5k) = 

v'0cfk - 'Lf=l µi 0 [hkP - f km k - Qk, O"nk] 

0 'Lf=1 µ1Qf c5k[<PkP , OJ 2: 0, 

[hkP - f km k - Qk, O"nk-( c5k[ <I>kP of' V(kfkl 

1 :S k 	:S K . (5. 15c) 

D 

5.5.2 Largest Feasible Uncertainty Size 

In this section we consider the related desig11 problem of finding the largest value of 

the uncertainty size c5 , namely Omax , for which there exists a robust transceiver of finite 

power that satisfies the MSE constraints for all admissible channels in the uncertainty 

region of size Omax · As demonstrated in Section 4.4.5 this problem is connected 

to the problem of designing codebooks for the quantization of the users' channels. 

The codebook design needs to yield quantization regions that can be "covered" by 

uncertainty ets of size c5ma.x in order for the robust t ransceiver de ign problem to 

be feasible. Using the problem formulation in (5.13) , finding the value of Omax is 

equivalent to solving 

max p 	 (5.16a) 
~. !!. fk , µ , p 

(5. 16b) 
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where Ak((k,p) is defined in (5.13c). Since pis an optimization variable rather than 

a design parameter, the bilinear terms in Ak((k, p) mean that the design problem in 

(5.16) is not jointly convex in the design variables p and P. However, the problem 

is quasi-convex ( c.f. [82]), and an optimal solution can be efficiently found using a 

one-dimensional bisection search on pin which the problem solved at each step is the 

convex feasibility problem corresponding to (5.16) with a fixed value for p. For the 

case of the intersection of uncertainty regions in (5.14), the conservative constraint 

Bk((k,p) in (5.15c) may be used in place of (5.16b). In that case, the optimal value 

of the design problem becomes a lower bound on b'max· It is worth observing that 

largest uncertainty size for the special case of linear precoding is less than that of its 

THP counterpart. This follows by observing that finding b'max in the linear precoding 

case solves a restriction of the problem (5.16) in which B is set to 0. 

5.5.3 	 Robust Broadcasting with QoS requirements: MSE 

versus SINR constraints 

In Section 5.5 we presented design formulations for non-linear and linear broadcasting 

transceivers with QoS requirements under bounded channel uncertainty. These QoS 

requirements are formulated as MSE constraints. This design approach provides some 

attractive features compared to conservative design approaches in Chapter 4 in which 

the QoS requirements were formulated as constraints on the SINR. With that formu­

lation of QoS constraints, the work in Chapter 4 was restricted to linear precoders 

and to uncertainty models consisting of a single spherical uncertainty region for each 

channel. Furthermore, in order to ensure tractability, a conservative design approach 

was taken in the design. Beside being applicable to non-linear Tomlinson-Harashima 
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precoding schemes, the design approach of Section 5.5 provides exact design formula­

tions for a class of uncertainty models that encompasses many common uncertainty 

regions. Furthermore it enables generalization to the case in which the uncertainty 

is described by mult iple, and possibly different , intersecting regions. Finally, the de­

sign approach proposed in Section 5.5 requires substantially less computational effort 

than the approach in Chapter 4. In Table 5.1 , we provide comparisons of the sizes 

of the SDPs associated with Design Formulation 1, for both linear and non-linear 

transceivers and for that of the best conservative approach, namely the "Structured 

SDP" approach in Section 4.4 .3. For the sake of comparison, we would like to point 

out that the dimension of the uncertainty ellipsoid, J , is less than or equal the dimen­

sion of ~k which is 2Nt. For spherical uncertainty regions J = 2Nt. It can be seen 

from this table that t he proposed approaches requires O(K 3 ) fewer variables than the 

"Structured SDP'' approach for linear precoding in Section 4.4.3 and that the size 

of the linear matrix inequalities (LMI) is also reduced from O (K Nt) to O(K + Nt)· 
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Table 5.1: A comparison of the sizes of Design Formulation 1 and that of the Structured SDP approach in Sec­

tion 4.4.3 
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5.6 	 Robust Counterpart of Fair Minimax 

'Transceiver Design 

In the previous section, the focus was on the robust counterpart of the transceiver 

design problem that minimizes the total transmitted power subject to the satisfac­

t ion of the users' MSE constraints. In this section, we consider the related problem 

of minimizing t he maximum MSE among all users subject to a transmitted power 

constraint, in scenarios with uncertain CSL This design problem provides a notion 

of fairness amongst the users based on the value of their MSEs. The problem was 

addressed in Section 4.5 for a notion of fairness that is based on the SI R of the 

users ' signals. We can formulate the robust counterpart of the design problem of 

minimizing the maximum MSE among all users under the channel uncertainty model 

in (5. 11) as the following semi-infinite quasi-convex optimization problem 

mm 	 j(o (5. 17a) 
£_, !!. fk, Ko 

Vh k E Uk(61J, 1 ::; k::; I<, 

(5. 17b) 

1 	 T
2tr(PP 	) ::=; ?total. (5 .17c) 

Using the characterization in (5 .13c) of the infinite set of SOC constraints in (5. 17b), 

this design problem can be formulated as the following quasi-convex optimization 

problem 

(5.18a) 

s. t. A k((o, bk) ~ 0, 1 ::; k ::; K , (5. 18b) 

!ivec (P ) II ::; J2 ?total · (5 .18c) 
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This problem can be efficiently solved by using a bisection search on J(o in which 

problem solved at each step is the convex feasibility problem generated by (5.18) with 

a fixed value of .J(o. Alternatively, we can observe that each constraint in (5.18b) 

can be written as 

f k 0 0 

y(o 0 0 0 

0 0 fl.~I 

µk 	 0 -[_fu,P - f,,.!!!k - ~' ank] 

Ilk Qk -bk[cI>kP, OJ 2: 0. 
A T 	 T

-[hkP - fk!!!k - bk, crn,,J 	 -bk[cI>kP, OJ 0 

(5.19) 

Hence, (5.17) is equivalent to minimizing the largest generalized eigenvalue of a pair 

of (block diagonal) symmetric matrices that depend affinely on the decision variables 

[84, 86] - a problem that takes the form 

min a (5.20a) 
x.a 

s. t. o:A1(x) - A 2 (x) 2: 0, (5.20b) 

A 1(x) 2: 0. (5.20c) 

B(x) 2: 0. (5.20d) 

This observation allows us to employ more efficient algorithms, e.g., [86, 87], that 

exploit the structure of the constituent matrices in (5.19). 
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5. 7 Numerical Studies 

In this section, we demonstrate the performance of the proposed robust QoS designs 

for non-linear Tomlinson-Harashima precoding (RTHP-order 1 2) ru1d linear precod­

ing (RLin) that were presented in Section 5.5, provides comparisons with other ex­

isting approaches that assume bounded channel uncertainty models. For Tomlinson­

Harashima precoding ordering of the users' channels is necessary prior to precoding. 

Finding the optimal ordering requires an exhaustive search over all possible permu­

tations of the transmitter s estimate of the users' channels hk, and instead of that 

we have implemented two subopt imal ordering methods. The first method applies 

the BLAST ordering in [36] to the transmitter 's estimate of the users ' channels. The 

second method is a generalization of the ordering method in [38] that selects a chan­

nel ordering that minimizes the reciprocals of the received SI Rs when the precoder 

matrix P is an identity matrix . In our generalization, the ordering selection criterion 

is minimizing the sum of each user s SINR requirements divided by its received SINR 

(when P = I), a quantity that is proportional to the power necessary for each user 

to achieve its SINR requirement. 

In our numerical studies we consider a spherical uncertainty region of radius 6k for 

each user. This model will facilitate the comparisons with other existing approaches 

for the linear precoding model, namely the robust autocorrelation matrix approach 

in [61 , 62] (Robust Correl. Appr. ), the robust power loading approach (RLin-PLl) 

using SINR constraints in [69], ru1d t he robust power loading approach (RLin-PL2) 

using MSE constraints in [79]. We will also provide comparisons with the conservative 

approach to robust linear precoding with SINR constraints in Chapter 4. The work 

in Chapter 4 presented three conservative approaches and we are comparing with the 

best conservative approach , namely the 'Structured SDP" approach in Section 4.4.3. 
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As we make the comparisons, we would like to point out that these approaches to ro­

bust linear QoS precoding do not extend to Tomlinson-Harashima precoding, but the 

approaches proposed herein are inherently applicable to both linear and Tomlinson­

Harashima precoders. 

In order to totally specify the schemes used in our comparisons, we point out 

that the approaches in [69] and [79] require the beamforming vectors (normalized 

c,olumns of P) to be specified. \Ve will use the zero-forcing beamforming vectors (the 

columns of the pseudo-inverse of H). In addition, the approaches in [61, 62] and [69] 

are based on uncertainty models that are different from the one in ( 5 .11), and from 

each other. The approach in [61,62] considers a model in which the spectral norm of 

the error in the (deterministic) autocorrelation matrix Ck = hfhk is bounded, and 

in the approach in [69] the Frobenius norm of the error in Ck is bounded. However, 

by bounding these norms of C1... in terms of the norm of ek, we can obtain the smallest 

uncertainty set for Ck that contains all the channels in the set specified by JlekJI s; 
bk. Furthermore, the uncertainty ek = 6d1k//lhkl/ lies on the boundaries of the 

uncertainty sets for Ck in [61, 62] and [69]. 2 We will compare these schemes in an 

environment with Nt = 3 transmit antennas and J( = 3 users. In our experiments, 

we will evaluate performance statistics for the standard case of independent Rayleigh 

fading channels in which the coefficients of the fading channels are modeled as being 

independent circular complex Gaussian random variables with zero-mean and unit 

variance, and the receivers' noise sources are modeled by zero-mean, additive, white, 

2As mentioned in Chapter 4. a bound on the spectral norm of the error in the matrix Ck can 
• A AH H AH H' H AH

be obtamed as follows: l/(hk + ek) (hk + ek) - hk hkJI = Jlhk ek + ek h1;; + ek ekl/ ::; llhk ekJI + 
JlefhA,JI + Jle{!ekll = 2Jlhkl/lle1;,ji + l/e1>!1 2 . The same bound also holds for the Frobenius norm, since 
the matrices on the immediate right hand side of the inequality ai-e all rank one. F\1rthermore, the 
uncertainty ek = Jkhk/!lhk// achieves this upper bound with equality for both norms. Therefore, 
the chosen bound on Ck is the smallest (achievable) bound such that all the channels in the set 
specified by llek// ::; bk lie in the uncertainty sets of the methods in [6L 62, 69], and the admissible 
uncertainty ek = bkhh:/l/hkll lie on the boundaries of these sets. (See also [88].) 
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and circular Gaussians with unit variance. 

5. 7.1 Performance Comparisons against SINR Requirements 

In this comparison, we randomly generated 2000 realizations of the set of channel 

estimates {hk}f and examined the performance of each method in the presence =1 

of uncertainties of equal sizes, <5k = <5 = 0.05, Vk. The SI R requirements of the 

three users are also equal. For each set of channel estimates and for each value of 

the required SINR we determined whether each design method is able to generate 

a precoder (of finite power) that guarantees the required SI Rs. In Fig. 5.3 we 

plot the fraction of the 2000 channel realizations for which each method generated 

a precoder with finite power against the (equal) SINR requirements of the users. 

From this figure , it clear that the proposed robust designs for linear (RLin) and 

non-linear (RTHP-order 1, 2) precoding satisfy the SI R requirements for larger 

percentages of channels. The robust conservative approach for linear precoding (RLin­

Conservative) in Section 4.4.3 and the power loading method in [79] achieve the QoS 

requirements for a percentage of channels that is quite close to that of the proposed 

linear approach (RLin). However, the proposed approach (RLin) has a significantly 

lower computational cost than the conservative approach (RLin-Conservative); see 

Table 5.1. Furthermore, this approach is also applicable to non-linear Tomlinson­

Harashima precoding (RTHP-order 1, 2) with a slight increase in the computational 

cost. 

For the robust linear power loading approach (RLin-PL2) in [79] the QoS design 

problem in terms of MSE constraints was justified as a heuristic measure for the 

SINR requirements. However, using Lemma 5.1 we showed that the MSE constraint 

of each user implies a minimum achieved SINR. Furthermore, there does not appear 

to be a direct eJ\.'tension of the power loading approach in [79] (nor that in [69]) to 
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Figure 5.3: Percentage of the 2000 channel realizations for which the robust QoS 

guarantee can be made against the required SINRs, for a system with t = 3 and 

[{ = 3. 

TH precoding. 

For the comparison in Fig. 5.4(a), we selected all the sets of channel estimates 

from the 2000 sets used in the previous experiment for which all design methods were 

able to provide robust QoS guarantees for all SINRs less than or equal to 6dB, and we 

calculated the average, over the 274 such channel environments, of the transmitted 

power required to achieve these robust QoS guarantees. We have plotted the average 

transmitted power versus the equal SINR requirement of each user in Fig. 5.4(a). 

This figure demonstrates the saturation effect that channel uncertainty imposes on 

the growth of the SINR of each user with the transmitted power for both of linear and 

non-linear precoding. The SINR saturates at the value of SINR for which the method 

under consideration cannot provide the robust QoS guarantee with finite power for 
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one (or more) of the channel estimates. A related effect was observed in [8] for non­

robust linear precoding on the MISO downlink with quantized CSL Fig. 5.4(a) also 

illustrates the role that robust precoding can play in extending the SINR interval over 

which linear gTowth with the transmitted power can be achieved. This is particularly 

evident for the robust non-linear approaches (RTHP-order 1, 2) and the robust linear 

approach (RLin). We also observe that the second ordering method for Tomlinson­

Harashima precoding provides better performance than the first one, since it selects 

the channel ordering in a way that attempts to minimize the sum of powers necessary 

to achieve ach SI R requirement. Since the previous experiments consider cenarios 

with equal SINR requirements for all users, the performance comparison curves can 

also be interpreted as comparisons of different approaches for the robust fair broad­

casting problem simply by transposing the axes. For example, in Fig. 5.4(b) we have 

computed the solution to the robust fair design in Section 5.6 for the communications 

scenario of the second experiment and it can be seen it is the transposed version of 

Fig. 5.4(a). 

5. 7.2 P erformance Comparisons against Uncertainty Size 

In t his comparison, we used the 2000 randomly generated realizations of the set 

of channel estimates {hk}{~ 1 to examine the performance of each method in the 

presence of equal uncertainty, 8k = 8, Vk. The QoS requirement of each user is 

such that the SI R is at least 10 dB. In Fig. 5.5 we provide the percentage of t he 

2000 channel realizations for which each method generated a precoder with finite 

power as a function of the size of the uncertainty. From this figure, it is clear that 

for a large range of uncertainty sizes, the proposed non-linear approaches (RTHP­

Order 1 2) satisfy the SI R requirements for many more channel realizations than 

other approaches. This is due to the fact that the proposed linear approach is a 
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QoS design problem and the robust fair problem for a system with Nt = 3 and K = 3. 
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guarantee can be made against the uncertainty size 6, for a system with Nt = 3, and 

J( = 3. 

special ca e of the proposed THP design, and the other existing linear approaches 

are either conservative or restricted to the optimization of powers for given transmit 

directions. While the performance of the conservative linear precoding approach 

(RLin-conservative) in Section 4.4.3 and the robust linear power loading approaches 

(RLin-PL2) in [79] is quite close to that of the proposed linear design (RLin) in 

terms of number of channel realizations for which t he method satisfies the robust 

(SINR-based) QoS requirements, they use more power in order to achieve the QoS 

requirements, as shown in Fig 5.6. 

In Fig 5.6 we selected those sets of channel estimates from the 2000 sets used in 

the previous experiment for which all design methods were able to provide robust QoS 

guarantees for all uncertainties with 6 :=:; 0.015. We calculated the average, over the 

614 such channel enviromnents, of the transmitted power required to achieve these 
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Figure 5.6: Average of the transmitted power tr(P HP ), on a linear scale, versus 

uncertainty size 6 for a system with Nt = 3 and K = 3. 

robust QoS guarantees and we have plotted the results for different values of 5 in 

Fig. 5.6. The average transmitted power approaches infinity for a certain value of 

6 when for one (or more) of the channel estimates the method under consideration 

cannot provide the robust QoS guarantee with finite power. It is clear from Fig. 5.6 

that the proposed robust Tomlinson-Harashima designs a.re capable of (robustly) 

satisfying the SINR requirements for larger values of uncertainty sizes than the other 

approaches. It is also apparent that they expend less power in doing so. 

5.8 Conclusion 

In this chapter, we have presented a unified approach to the design of robust lin­

ear and non-linear transceivers with user-specified QoS requirements subject to 

deterministically-bounded channel uncertainty model. The proposed approach for­

mulated the QoS requirements in terms of MSE constraints and showed that these 
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constraints imply corresponding constraints on the achieved SINR of each user. Our 

approach provided (convex) semidefinite program formulations of the design problem 

that can be efficiently solved. Furthermore, these design formulations were obtained 

for a rather general model of bounded channel uncertainty that include many uncer­

tainty regions. We also showed how these designs can be used to provide quasi-convex 

formulations for the robust counterpart of the problem of fair transceiver design that 

maximizes t he signal quality of the user with the weakest signal. Numerical results 

demonstrated that under bounded uncertainty conditions, the proposed designs pro­

vided guaranteed satisfaction of a larger set of QoS requirements than the existing 

approaches that considered bounded uncertainty models, and that they require less 

transmission power in order to satisfy these requirements. 

While Chapters 4 and 5 studied the design of robust designs of broadcast channels 

with QoS requirements for each user in the following two chapters we will consider 

the complementary problem of optimizing the fidelity of t he users ' signals subject 

to a power constraint at the transmitter. In particular, we will study robust ifSE 

designs for linear and non-linear multi-user transceivers subject to a transmission 

power constraint. These robust designs will be developed for both broadcast channels 

and multiple access channels under two diff rent models for users' channel uncertainty: 

a stochastic model, and a deterministically-bounded model that is similar to the one 

considered in this chapter and Chapter 4. 
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Chapter 6 

Robust Linear Thansceivers for 

Multi-user Systems 

In Chapters 4 and 5, we considered robust designs for linear and non-linear broadcast 

channels with quality of service constraints and uncertain channel state information 

( CSI) at the transmitter. In this diapteL we consider the complementary problem of 

optimizing the fidelity of the users' signals, measured in terms of the mean-square­

error (MSE), subject to a power constraint at the transmitter. In particular, we study 

robust minimum MSE designs for linear multi-user transceivers, with an emphasis on 

downlink, that explicitly take into account the nature of channel uncertainty that 

arise in communication systems. For systems with uplink-downlink reciprocity, we 

consider a stochastic model for the channel uncertainty, and we propose an efficient 

algorithm for the joint design of the linear precoding matrix at the base station and 

the equalizing gains at the receivers so as to minimize the average mean-square­

error (MSE) over the cham1el uncertainty. The design is based on a generalization, 

derived herein, of the l\:ISE duality between the broadcast and multiple access channels 

(MAC) to scenarios with uncertain CSI, and on a convex formulation for the design 
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of robust transceivers for the dual MAC. For systems in which quantized cham1el 

feedback is employed, we consider a deterministically-bounded model for the channel 

uncertainty, and we study the design of robust downlink transceivers that minimize 

the worst-case MSE over all admissible channels. While we show t hat the design 

problem is non-convex, we also propose an iterative local optimization algorithm that 

is based on efficient ly-solvable convex conic formulations. Our framework is quite 

flexible , and can incorporate a variety of power constraints. It can also be generalized 

to scenarios in which channel uncertainty is described as intersection of more than 

one bounded uncertainty region. In particular, we study a "system-wide" uncertainty 

model, and although the result ing design problem is still non-convex it does result in 

a significantly simpler iterative local design algorit hm than the 'per-user" uncertainty 

model. Our approaches to the minimax design for the downlink can be extended to 

the uplink, and we provide explicit formulations for the resulting uplink designs. 

Simulation results indicate that the proposed approaches to robust linear transceiver 

design can significantly reduce the sensitivity of the downlink to uncertain CSI, and 

can provide improved performance over that of existing robust designs. 

6.1 Introduction 

As discussed in Chapter 1 and Chapters 4 and 5, the provision of multiple antennas at 

the base station facilitates the transmission of independent messages to different users 

on the downlink of a multiuser system; e.g. , [62]. For these broadcast channels, the 

availability of accurate channel state information ( CSI) at the transmitter is required 

in order to spatially multiplex the messages for different users by precoding them in 

a way that mitigates the effects of multiuser interference. Assuming that perfect CSI 

is available, several precoding techniques have been proposed, including the class of 
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schemes that apply linear precoding at the transmitter jointly with linear equaliza­

tion at each receiver. Those schemes offer a desirable trade-off between performance 

and transmitter complexity, and examples include zero-forcing techniques for chan­

nel inversion [100, 101], regularized channel inversion [102], minimum mean square 

error (MMSE) techniques [103, 104], and beamforming with a prespecified signal to 

interference plus noise ratio (SINR) at the receivers [62, 63]. 

Many precoding schemes assume that the transmitter has perfect channel knowl­

edge of all the users' channels, but in practice the CSI at the transmitter suffers 

from inaccuracies caused by errors in channel estimation and/or limited, delayed or 

erroneous feedback, and as we mentioned in Section 4.1 the performance of downlink 

linear precoding systems is rather sensitive to these channel uncertainties. For exam­

ple, it was shown [8] that imperfect diannel knowledge at the transmitter can result 

in the downlink becoming interference limited; i.e., the growth of SINR of each user 

with the transmitted power saturates. 

Due to the inevitability of imperfect channel information, robust communication 

schemes that take into account the channel uncertainty are of interest in practice; 

e.g., [40, 105]. The goal of the work herein is to propose robust linear transceivers for 

the downlink that explicitly take into account the uncertainties in the channel model, 

with an emphasis on systems with a single antenna at each receiver. In systems with 

reciprocity between the uplink and the downlink (e.g., time division duplex systems), 

the base station can estimate the channel and the chrumel uncertainty is mainly due 

to channel estimation errors. In that case, a stochastic model for the uncertainty 

in the channel model is appropriate, and possible design approaches include those 

based on average performance measures, and those based on notions of outage. For 

these systems, we consider the joint design of the linear precoder matrix and the 

users' equalizing gains so as to minimize the average, over the channel uncertainty, 
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of the sum of the MSEs of each user. Since this design objective is not a jointly 

convex function of the precoding matrix and the equalizing gains, previous robust 

approaches considered a simpler design problem that restricts the equalizing gains to 

be equal (e.g., [106] [107]), or used a simpler detection model [108,109]. The proposed 

approach for solving the general design problem (without restricting the equalizing 

gains) involves the generalization of the MSE duality between the broadcast chan­

nel and multiuser access channel (MAC) [110, 111] to scenarios with uncertain CSL 

Using this duality, we obtain a closed-form expression that relates the desired ro­

bust broadcast transceivers to the corresponding transceivers that optimize the same 

performance metric for the dual MAC. The solut ion to the robust transceiver design 

problem for the dual MAC results in a closed-form expression for t he optimal equal­

izer, and a convex conic formulation for the dual MAC optimal transmitters. Hence, 

by exploiting the MSE duality between BC and MAC in scenarios with uncertain CSI, 

we are able to transform the non-convex design problem for the BC into a convex 

and efficiently-solvable equivalent design problem. 

For systems in which the channel is estimated and quantized at the receiver and 

then fed back to the transmitter (e.g. , [8 ,9,94,95]) , one has a bound on the (quantiza­

tion) error and hence an appropriate approach to robust design would be to opt imize 

the worst-case performance over errors of that size. For these systems, we study 

the design of robust downlink transceivers that minimize the worst-case MSE over 

a bounded uncertainty model of each user 's channel. While we show that that de­

sign problem is non-convex, we propose an iterative local optimization algorithm 

that is based on efficiently-solvable convex conic formulations. The problem formula­

tion and proposed algorithms can incorporate different bounded uncertainty models , 

and they can be applied to systems with per-antenna per cell, and spatial-shaping 

power constraints, as well as the standard constraint on the total transmitted power. 
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In particular, we study a "system-wide" uncertainty model as an alternative to the 

"per-user'' model that is suitable for large cells and for multi-cell designs. While the 

resulting design problem is still non-convex, it results in a significantly simpler iter­

ative local design algorithm than the "per-user" uncertainty model. Our approaches 

to the minimax design for the downlink can be extended to the uplink, and we pro­

vide explicit formulations for the resulting uplink designs. Our simulation results 

demonstrate that the proposed approaches to robust linear transceiver design can 

significantly reduce the sensitivity of the downlink to uncertain CSI, and can provide 

improved performance over that of existing robust designs. 

6.2 Broadcast Channel with Linear Transceivers 

Similar to Section 4.2, we consider broadcast channels with Nt antennas at the trans­

mitter and]{ receivers, each with a single antenna. Lets ECK be the vector of data 

symbols intended for the receivers. The transmitter linearly precodes the vector s to 

form x E CNt, 
K 

x = Ps = LPiSj, (6.1) 
j=l 

where Pi is the / 11 column of the precoding matrix P; i.e., the beamforming weights for 

the l 11 user. \i\lithout loss of generality, we will assume that E{ssH} =I, and hence, 

the total transmitted power constraint E{xHx} :S .Rota! reduces to tr{PHP} :S ?total· 

The signal Yk received by the kth user is given by 

(6.2) 

where hk E ClxNt is a row vectorrepresenting the channel gains from the transmitting 

antennas to the kth receiver, and nk is the additive zero-mean white noise at the kth 

receiver whose variance is CT;. Collecting the received signals in the vector y, we will 
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find it convenient to use the vector notation y = Hx + n , where H is the broadcast 

channel matrix whose kth row is hk and the covariance matrix of the noise vector n 

is E{ nnH} = O"~l . Due to the decentralized nature of the receivers, joint processing 

of the received vector y is not possible. Instead, each receiver will process its received 

signal Yk independently using a single equalizing gain 9k to obtain an estimate of its 

intended symbol 

(6.3) 

Using (6.3) the mean square error MSEk associated with the kth symbol can be 

written as: 
}( 

MSEk = E{lsk - skl 2} = :L l9kl 2Pf (h~ hk)Pj + (J"~l9kl 2 - gkhkPk - gf:p f: h f: + 1 
j=l 

JlgkhkP - m kll 
2 + O"~lgkJ 2 , (6.4) 

where m k is the ith row of I . Similarly, the total MSE can be written as: 

1SE = E{lls - sll 2 } = L
}( 

MSEk = tr{(GHP - I )H (GHP - I )}+ O"~llgll 2 , (6.5) 
k=l 

where g = (g1 , ... ,gI<) and G = Diag(g). 

The purpose of this chapter is to determine efficient algorithms for the joint design 

of P and g with the goal of minimizing the MSE in the presence of channel uncer­

tainty. We will adopt the common implementation (e.g. [102, 106, 107, 109- 111]) in 

which P and g are jointly designed at the basestation ( u ing the available CSI), and 

the basestation informs each receiver of the equalizing gain, gk, that it is to use. 

Actually from (6.4) and (7.5) it can be seen that the phase component of each gk 

can be absorbed into Pk without affecting either MSEk or MSE, and hence only the 

magnitude of gk needs to be sent to the receiver k; e.g. , [110, 111 ]. \Ve will point out 

below that this observation also applies to robust transceiver designs for scenarios 

with uncertain CSI that we will consider herein. 
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6.3 Channel Uncertainty Models 

We consider additive uncertainty models for the CSI available at the transmitter: 

(6.6) 

where hk is the transmitter's estimate of hk, and ek is the corresponding error. This 

can be equivalently written as H = H + E, where ek is the kth row of E. We will 

develop design formulations for robust transceivers under two broad models for the 

channel uncertainty. 

6.3.1 Stochastic uncertainty model 

The first model is suitable for communication schemes with reciprocity between the 

uplink and the downlink, which allows the transmitter to estimate the users' channels 

on the uplink. \Ve will adopt a model in which the estimation errors are modelled 

by zero-mean random variables with covariances E{e{!ek} = a;k I, where a;k depends 

on the uplink SNR of user k. This model is appropriate for scenarios in which the 

elements of hk have zero mean and are uncorrelated with each other and those of 

other users, and linear minimum mean-square error estimation is used to estimate the 

channels on the uplink. 1 For this stochastic uncertainty model, robust transceivers 

based on the average MSE will be presented in Section 6.4. 

6.3.2 Bounded uncertainty model 

In the second model, the error e1., is assumed to be deterministically bounded. \Ve 

will use the general bounded uncertainty model in Section 5.4. In this model, the 

1All our derivations extend directly to the case in which E{ ef. ek} is an arbitrary symmetric 
positive definite matrix, but for simplicity we will focus on the stated model. 
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uncertainty set of each user channel is given by: 

Uk(ok, '1> k, Qk) = {h k Ih k = b.k + ek = b.k + L
J 

w~) <P~) ' w I Qkw k :Soi}. (6.7) 
j=l 

While Chapters4 and 5 adopted an equivalent real formulation to (6.7) , cf. (5.11) 

in order to facilitate computational cost comparisons of different transceiver designs 

with QoS, it is now more convenient to adopt the above compact complex formulation 

of the uncertainty model. As we mentioned in Section 5.4, the above model allows 

the treatment of several different uncertainty regions in a unified way. For different 

choices of '1> and Q it can model elliptical or spherical uncertainty sets, such as 

those resulting from using vector quantization at each user. For some other choices 

of '1> and Q, It can model an interval constraint on one entry of hk ; See Section 5.4. 

Furthermore, we can extend this model to the case in which the uncertainty region 

for each hk is described as the intersection of more than one uncertainty set Uf: of the 

form ( 6. 7). In that case the uncertainty set is of the form 

(6.8) 


This is particularly useful to model interval or box constraints on each entr) of hk 

such as those resulting from using scalar quantizer at each user; See Section 5.4. For 

this "per-user" bounded uncertainty model , minimax robust downlink transceivers 

based on the worst-case MSE will be presented in Section 6.5, for the uncertainty 

region in (6. 7) as well as other regions. 

As an alternative to this "per-user" uncertainty model the transmitter can con­

sider a bounded model for the error matrix llEll :S Li , where an estimate of !!Ell 
IS 

I< 

l!Ell :S L !lekjj 2 . (6.9) 
k=l 
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For this "system-wide" uncertainty model, the channel uncertainty set can be de­

scribed by 

U(D.) = {HI H = H + E, llEll :::; D.}, (6.10) 

and a minimax robust downlink transceiver will be presented in Section 6.6. 

6.4 	 Statistically Robust design Via BC-MAC du­

ality 

For the stochastic uncertainty model, our objective is to jointly design the precoding 

matrix P and the receivers' equalizing gains 9k so as to minimize the average, over 

the channel estimation error, of the total l'vfSE: 

K 

MSE= 	LMSEk, (6.11) 
k=l 

where each MSEk is given by: 

K 
-,-	 ~ 2 H AH A 2 2 2 AH HA

MSE"' = 	6 JgkJ Pi (hk: hk + aekl)pi + anl9kl - gkhkPk - gkhk Pk + 1. (6.12) 
j=l 

It can be seen from (6.12), that each MSEk is not a jointly convex function of P 

and 9k·2 To overcome this problem, previous approaches to the design of robust 

BC transceivers have considered simplifying the design by restricting all 9k to be 

equal [106, 107], or by using a simpler detection model [108]. In our approach, we 

will obtain a computationally efficient solution for the P and 9k that jointly minimize 

(6.11) by exploiting the duality between the broadcast channel (BC) and the multiple 

access channel (MAC). \Ve will start by briefly reviewing (e.g., [60,110-115]) the dual 

MAC for the BC presented in Section 6.2. 

2It can also be seen from (6.12) that the phase component of 9k can be absorbed in Pk without 
changing MSEk, and hence that the basestation need only send l9kl to receiver k. This can be 
considered as the stochastic-model counterpart of Lemma 5.2. 
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6.4.1 	 Dual Multiple Access Channel with Linear 

Transceivers 

By switching the roles of the transmitter and the receiver in the broadcast channel , 

we obtain the dual MAC that consists of K transmitters , each with a single antenna, 

and a receiver with Nt antennas. The channel matrix for the dual MAC is H H. 

Similar to t he MSE expressions obtained for the BC in (6.12) , we will be interested in 

obtaining corresponding expressions of individual MSEs in the dual MAC with linear 

precoding and linear multiuser reception. Because the transmitters in the dual MAC 

are decentralized and each have only one transmit antenna, linear precoding reduces 

to power loading: 

MAC _ pMAC MAC
X k - k 8 k ' (6.13) 

where s~Ac and x~Ac are t he data symbol and the transmitted signal of the kth t rans­

mitter. Without loss of generality, we will assume that E{ sMACsMAcH} = I . Hence, a 

total power constraint on all the transmitters can be written as L {;= 1 lvt1Acl 2 ~ P total · 

The vector of received signals yMAC is given by 

(6. 14) 

where nMAC is the zero-mean receiver noise vector whose covariance matrix is 

E{n MACnMAcH} = a~I . Using a linear multiuser receiver, g~1Ac E ci xNt, the 

base station obtains an estimate of the symbol transmitted by the kth user st1Ac = 

g~ACyMAC. 

Using the stochastic channel uncertainty model, the average over the channel 

estimation errors of the MSE associated with the estimation of st1Ac can be written 
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as 

MSE~1AC LK 

IP~1Acl2gt1Ac(hfhj + a;})g~1AcH_ 
j=l 

+ ,.,.2gMACgMACH -
Vn k k 

p.MACHhA .gMACH -
k k k 

PMACgMAChAH + 1 
k k k • 

(6.15) 

6.4.2 	 BC-MAC Duality with Stochastic Uncertainty and Lin­

ear Transceivers 

In this section, we will present the MSE duality result for the BC and MAC channels 

under the stochastic channel uncertainty model described in Section 6.3. This duality 

result generalizes the MSE duality between the BC and MAC channels for the perfect 

channel knowledge case [60, 110-114] to scenarios with uncertain CSl.3 The duality 

relation will be useful in obtaining a robust BC transceiver that minimizes the average 

MSE in terms of the corresponding transceiver of the dual MAC that minimizes the 

same objective. 

Theorem 6.1. Under the same total transmitted power constraint, the sets of indi­

vidual average MSEs for the BC, {MSEk}, and for the dual MAC, {MS(1Ac}, are 

equal when one uses the following transceiver designs: 

_ W-IpMACH 
g 	 (6.16)k - k 	 k ' 

where the vector of positive constants w = (w1 , ... , WK) is given by: 

(6.17) 


3 Note that SINR duality does not extend to the statistical model of uncertain CSI [116]. 
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and the matrix M is given by: 

I MA C, 2 	 HA AK
'"" · Pi gMAC(h!fh -+ (J2 I )g MAC +
Di#k ---ar- k i e; k1 

[M]k,J = 

k #j. 
(6.18) 

A sketch of the proof of this result is provided in Appendix G. It is a generalization 

of the proof in [111] to scenarios with channel uncertainty. 4 Using Theorem 6.1 , the 

broadcast precoder P and receiver gains 9k that jointly minimize a general function 

of the users ' average MSEs under a total power constraint can be obtained by first 

obtaining the MAC transceiver that jointly minimizes the same objective and then 

applying the transformation in (6.17) to obtain the optimal BC transceiver. In the 

following section we will consider the sum of the average MSEs as an exampl and 

we will obtain an efficiently solvable formulation for the jointly optimal tran ceivers 

for the dual MAC that minimize that objective. 

6.4.3 	 Statistically Robust Transceiver Design for the Dual 

MAC 

Our objective here is to find the dual MAC transmitters Ptl[AC and receivers g~Ac that 

.. tl . . . th 11 '1SE MSEMAC '"" ]( MSEM.AC F" ·11 b .JOm y rmrum1ze e average iv. , = Dk=l k . IIst, we w1 o tam 

an analytic expression for the optimal receiver g;:1Ac for a given set of transmitters 

p~Ac. Using these expressions we will then obtain a convex formulation for the 

optimal p~IAC under a total power constraint. 

4In fact, the MSE duality result for the stochastic uncertainty model extends directly to the case 
of multiple antennas at the receivers and multiple data streams per user, analogous to the case of 
perfect channel knowledge in [111J. 
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To design the g~Ac, we observe from ( 6.15) that each MSE~IAC is a convex function 

of g~IAC and is independent of the other g~IAC, j =I- k, and hence that it can be 

minimized independently. Setting the derivative of MSE~Ac with respect to g~IAC to 

zero, we obtain the following expression for the optimal g~IAC: 

gMAC = PMAcHh.("-'.1 /p~1AC/2(:hH:h. + 0"2 I)+ a2I)-1 (6.19)k k k L ..ii=l 1. z 1 e; n · 

Using this optimal value, the average total MSE reduces to 

(6.20) 

A A 

where <I>="·
J( 

/pMAC/ 2(hHh· + a 2I)+ a 2IL....i=l 1 1 i e; n · 

The next step is to design the p~IAC that minimize (6.20) subject to a total trans­

mitted power constraint L~i /p~-IAC/ 2 ~ ?total· By defining Qk = /p~IAC/ 2 , that prob­

lem can be formulated as: 

min (6.21a) 
q; 

(6.2lb)s. t. Qi 2: 0, i = l, .. ,K, 

Using techniques similar to those in [117], this problem can be transformed into the 

following (convex) Semidefinite Program (SDP): 

(6.22a) 

(6.22b) 

(6.22c)Qi 2: 0, i = 1, .. , K, 

This SDP can be efficiently solved using self-dual interior point methods; e.g., [85] .5 

5Without loss of generality, we can choose each p~rAc to be the positive square root of Qk, then 
since wk in (6.16) is real, each optimal gk will be real. 
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6.5 	 Downlink Minimax Robust Design with Indi­

vidual Channel Uncertainties 

In this section we present a robust transceiver design that does not rely on a statistical 

model of channel uncertainty, but merely assumes that the each user's channel lies 

within a given uncertainty set Uk(8k, <I>k, Qk) · c.f. (6.7). As mentioned in Section 6.3, 

this uncertainty model is a convenient one for systems in which a channel estimate is 

quantized at the receiver and fed back to th transmitter. For this type of channel 

uncertainty, our goal is to jointly design the precoder P and equalization gains 9k so 

as to minimize the worst-case MSE over all admissible channels hk E Uk(8k), subject 

to a total power constraint. That is, 

mm 
P , g 

(6.23a) 

2s. t. llvec(P ) 11 ::; P total · 	 (6.23b) 

By introducing the auxiliary variables tk , 0 ::; k ::; K , this minimax problem can be 

written as the following minimization problem: 

rrun (6.24a)
P , g ,t 

s.t. llgkhkP - m kll ::; tk 

O'n ll g ll ::; to, 	 (6 .24c) 

along with (6.23b).6 The constraint in (6.24b) represents K infinite sets of second 

order cone (SOC) constraints (e.g., [82, 118]) with one constraint for each hk E 

Uk(8k)· However, these infinite sets of constraints can be precisely characterized by 

6As was the case in the previous section, the formulation in (6.24) show · that phase component 
of 9k can be absorbed into Pk· Indeed, if { l9kl eJ 6k} and P are an optimal solution of (6.24) , then 
{l9kl} and P Diag(eJ61 ... , ei6K) are also optimal. 

(6.24b) 
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the following set of K inequalities [81]: 

tk - µk 0 (gkhkP - mk) 

0 2: 0, 1 ::; k ::; K, (6.25)µkQ 6k(9kcpP) 
A H 

(gkhkP - mk) 6k(9kcpp)H tkl 

where cp is the matrix whose rows are <Pi Using the characterization in (6.25), the 

robust transceiver design can be formulated as: 

min a (6.26a)
P,g, .>.,µ,a 

s.t. I/ [a:g J1/ 
2 

::; a, (6.26b) 

tk - p,k 0 (gkhkP - mk) 

0 µkQ 6k(g,,cpP) 2: 0 1 ::; k::; K, 
A H 

(gkhkP - mk) <5k(9A~cpp)H tkl 

(6.26c) 

llvec(P) 11 
2 

::; PtotaJ, (6.26d) 

where we have used the fact that the optimal value for t0 is O"nlJgll· The constraint in 

(6.26c) represents a set of K bilinear matrix inequalities and hence the optimization 

problem in (6.26) is non-convex. (In the general case, optimization problems with 

bilinear matrix inequalities are NP hard [119].) However, given initial values for P 

and g, one can find a locally optimal solution by iteratively optimizing over P for 

fixed g, and over g for fixed P. Each of those problems is implicit in (6.26) and is a 

convex conic program that can be efficiently solved; e.g., [85]. One natural choice of 

the starting point for this iterative design would be the transceiver designed for the 

case in which the estimates hk are assumed to be the actual channels; e.g., [102, 110]. 

The formulation in (6.23) employs a simple constraint on the transmitted power. 

However, other types of power constraints can be incorporated into the design without 
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compromising the convex conic nature of the steps in the proposed iterative algorithm. 

In particular, one can incorporate per-antem1a power constraints, per-cell power con­

straints , and spatial masking constraints as second order cone (SOC) constraints or 

linear matrix inequality constraints on P ; See Appendix D. 

6.5.1 Multiple Intersecting Uncertainties for Each User 

The problem formulation in (6.23) can be generalized to the case in which the un­

certainty region Uk for each hk is described as the intersection of more than one 

uncertainty set of the form (6.7); cf. (6.8). In that case, the problem is at least as 

hard as the case of a single uncertainty set (the special case of (6.8) when L = 1). 

In particular, in the general case when Uk is replaced by Uk it is not possible to 

characterize the infinite set of constraints of the form in (6.24b) by a polynomial 

(in Nt) number of constraints [99]. Therefore, the number of constraints in the sub­

problems in an iterative local optimization algorithm analogous to to that described 

above for the problem in (6.26) grows faster than any polynomial in Nt . As a result , 

each of these subproblems is NP-hard even though they remain convex. However, 

by adopting a conservative approach one can obtain an efficiently-solvable approxi­

mation to the problem with the uncertainty set in (6.8). This conservative approach 

involves enveloping (6.8) in a super et that can be described more efficiently, and 

then minimizing the maximum MSE in this superset. Using the superset character­

izat ion in [99] of sets of the form (6.8), it can be shown that the solution of robust 

transceiver design problem in (6.23) for the intersection of uncertainty sets in (6.8) is 
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upper-bounded by the solution of the following optimization problem 

min a (6.27a)
P,g, 

t,µk,°' 

s.t. IW'igJll 2 
::; a, 	 (6.27b) 

tk - l:e t4 0 (gkhkP - mk) 

0 Le µf Q1 Jk(gk.PkP) 2: 0, (6.27c) 

~ H H
(gkhkP -	 mk) Jk(gk.PkP) tkl 

/lvec(P)/1 2 
::; Ptotal· 	 (6.27d) 

Similar to (6.26), a local optimal solution can be found by employing an alternative 

optimization algorithm that optimizes over P and B for fixed g, and over g and B 

for fixed P. In this conservative approach, those (convex) problems can be efficiently 

solved. 

6.6 	 Downlink Minimax Robust Design with Over­

all Channel Uncertainty 

The robust minimax design in (6.26) for the "per-user" channel uncertainty model 

contains K bilinear matrix inequalities, one for each user. In this section, we consider 

the alternative "system-wide" channel uncertainty model in (6.10), namely I/El/ ::; Li, 

and we will show that the resulting robust minimax design involves only one nonlinear 

matrix inequality. Therefore, the computational cost of the conic programs used in the 

iterative algorithm is reduced. This approach may be suitable for downlink systems 

involving cells with large number of users or for multi-cell designs. 

As in the previous section, our goal is to jointly design the precoder P and the 
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equalization gains 9k so as to minimize the worst-case MSE over all admissible chan­

nels, subject to a total power constraint. The design problem can be formally stated 

as: 

mm max tr{ (I - GHP)H (I - GHP)} + <J~ll g ll 2 (6.28a) 
P , G =Diag(g ) llEll ~Ll 

s. t. llvec(P ) 11 
2 ::S Ptotali 	 (6 .28b) 

and using the auxiliary variables w0 and w1 , that minimax problem can be precisely 

transformed into the following minimization problem: 

min Wo + W1 	 (6.29a)
P , G =Diag(g) ,wo ,w1 

s.t. 	 tr(I - G (H + E )P )H (I - G (H + E )P ) ::S w1 V ll E ll ::S fl , 

(6.29b) 

<J~ll g ll 2 ::S Wo , 	 (6.29c) 

llvec(P ) 11 
2 ::S Ptotal· 	 (6.29d) 

Like (6.24) this problem has an infinite set of constraints, namely (6.29b). (Fur­

thermore , we can also choose g to be a real vector without loss of generality.) The 

first step in the transformation of (6 .29b) into a single constraint is the application 

of the following lemma. 

Lemma 6.1 ( [120]) . Let M E C/< xK be a Hermitian matrix. Then there exists a 

scalar s and a matrix Z 2: 0 such that the constraint tr(M) :::; t is equivalent to the 

following representation: 

t- Ks - tr(Z ) 2: 0, 	 (6.30) 

M ::S Z + sl. 	 (6 .31) 

While Lemma 6.1 considers a single matrix M , it can be directly extended to a 

set of matrices by applying the lemma to an element of that set of matrices ·wi th the 
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largest trace. Applying that extension to (6.29b) yields a single constraint of the form 

in (6.30) and the set of constraints (I - G(H + E)P)H (I - G(H + E)P) ::; Z + sl, 

V llEll ::; A. Using the Schur Complement Theorem [22), that set of quadratic matrix 

inequalities can be transformed into the following set of bilinear matrix inequalities: 

Z + sl (I - G(H + E)P)H ] 
A ~ 0 VllEll::; A. (6.32)

[ (I-G(H+E)P) I 

By moving terms containing E to the right-hand side of the inequality, we can re-write 

(6.32) as: 

[~::HP) (I - GHJ>): ] > [ : o ] + [ :H ] EH [ o GH ]] E [ p 

VllEll ::; A. (6.33) 

To cast (6.33) as a single matrix inequality we use the following lemma: 

Lemma 6.2 ( [121]). Let A be a Hermitian matrix. Then A ~ CHXHB + BHXC 

for all JIXll ::; A if and only if there exists a,\~ 0 such that 

Applying Lemma 6.2 with B = [P OJ, and C = [O GH], the robust minimax 
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design in (6.28) can be formulated as 

mm Wo +w1 (6.34a) 
P ,G=Diag(g) ,Z , 

s, .X ,wo ,w1 

z +sl (I - GHP)H -~PH 

s. t. 2: 0 (6.34b)(I - GHP) I - ,\GGH 0 

-~P 0 ,\I 

w1 - Ks ­ tr(Z) 2: 0, (6.34c) 

s 2: 0, (6.34d) 

o-~llgll 2 :::; Wo , (6.34e) 

Jlvec(P ) 11 
2 :=:; Ptotal· (6.34f) 

Although this problem has a finite number of inequalities, like (6.26) , the presence of 

the non-linear matrix inequality in (6.34b) renders (6.34) a non-convex optimization 

problem. However, one can use an iterative algorithm to obtain a locally optimal 

solution. For the iterations with fixed g , the problem in (6.34) represents a convex 

conic optimization problem that can be solved more efficiently than the corresponding 

problem in the case of "per-user" channel uncertainty model, c.f. , (6.26). For the 

iterations with fixed P , one can interchange the choices of B and C in the application 

of Lemma 6.2 to obtain an equivalent inequality to (6.34b) that is linear in g. The 

resulting problem is also an efficiently-solvable convex conic optimization problem. 

As was the case with the results in Section 6.4.2, the results in this section extend 

directly to the case of multiple antennas at the receivers and multiple data trean1s 

per user. For such scenarios, G is a block diagonal matrix (with rectangular blocks). 
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6.7 Uplink Minimax Robust Designs 

The proposed design framework for minimax robust transceivers for the downlink is 

quite general and can be applied to uplink systems as well. In this section we will 

provide explicit formulations of the minimax robust designs for the dual MAC. As 

mentioned in Section 6.4, the channel matrix for the dual MAC is HH, and we will 

define pMAC = (pt1Ac, ... ,p1)1AC) and GMAC to be the matrix whose rows are g~Ac. 

To derive the robust "per-user" minimax design, we first observe that MSE ex­

pression for the kth user in the uplink is function is function of all channels, not just 

its own. While these multiple sources of uncertainty can complicate the design, one 

can write the total MSE as 

MSEMAC = L
[( 

IJGMACh~p~tAc _ mf1J2 + a-~tr((GMAC)HGMAc), (6.35) 
k=l 

where each term of the summation is subject to uncertainty from one source only. 

Using (6.35) and the analysis in Section 6.5, the uplink robust minimax design with 

the "per-user'' uncertainty model can be formulated as 

min /3 (6.36a)
QMAC,pMAC 

>..,µ,/3 
2 

s.t. II [ crnvec(~MAC)] 11 ~ /3 (6.36b) 

0 (GMAChfp~1AC _ mnH 

0 bk(GMACPtIAC)H ~ 0, 

1 ~ k ~ K, (6.36c) 

IJpMAC IJ 2 ~ Ptotal· (6.36d) 
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Similarly, the uplink robust minimax design with the "system-wide" model of uncer­

tainty can be formulated as 

mm wo +w1 (6.37a) 
G MAC ,Z ,s,>. ,wo ,w1 , 
p MAC=Diag(pMAC) 

z + sl (I _ G MACiJHp MAC)H -D.(P MAC )H 

s.t. (I _ G MACiJHp MAc) 1 _ ,X G MAC(G MAC)H 0 2: o 
-b.P MAC 0 .XI 

(6.37b) 

s ~ 0, (6.37c) 

(l~llvec(GMAC) 11 
2 

:::; Wo , (6.37d) 

ll PMACll 2 :S Ptotal· (6.37e) 

As with the case with the downlink, these optimization problems are non-convex, but 

one can employ a local iterative algorithm in which a convex conic program is solved 

at each iteration. 

6.8 Simulation Studies 

In order to compare the performance of the proposed robust designs with existing 

approaches we have simulated these methods for the cases of uncoded QPSK and 16­

QAM transmission over independent block fading Rayleigh channels (without shad­

owing). We considered downlink scenarios with Nt = 4 and 5 antennas, and I< = 4 

users, at different distances from the base station. The first two users are a5sumed to 

be far from the base station and their channels coefficients are modeled as being in­

dependent circularly symmetric complex Gaussian random variables with zero mean 

and unit variance. The other two users are assumed to be closer to the base station 
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and their channel coefficients are generated using the above model but with variances 

equal to 10.7 We will plot the average bit error rate (BER) over all users against the 

signal-to-noise-ratio, which is defined as SNR = Ptotai/(KCJ~). We will also plot the 

average BER over each pair of near and far users. The BERs are averaged over 500 

channel realizations, H. For each realization, we construct 100 channel estimates, H, 

using (6.6). For each estimate, we compute the robust precoder and the equalizing 

gains, inform each receiver of the equalizing gain 9k that it is to use, and transmit a 

packet of 200 uncoded symbols. 

6.8.1 Statistically robust transceiver design 

The channel estimation error ek = hk - h,., was modelled by generating ek from a 

zero-mean Gaussian distribution with E{ efek} = CJ;k1, where we will use the same 

CJ;k for all users. This model is appropriate for a scenario in which the uplink power 

is controlled so that the received SNR-; on the uplink are equal and independent from 

the downlink SNR. For convenience, we define E2 = E{ekef} = NtCJ;k. 

In Fig. 6.1 we compare the performance of the statistically robust transceiver 

proposed in Section 6.4 with that of the regularized channel inversion approach in 

[102, 122), and that of the channel inversion approach in [100, 101], for a system with 

4 transmit antennas, 4 users, QPSK signalling, and E2 = 0.01. It can be seen that the 

performance of a linear transceiver in the broadcast channel is rather sensitive to the 

mismatch between the actual CSI and the transmitter's estimate of CSI; see also [8]. 

It can be also seen that while the effect of noise is dominant at low SNR, the channel 

uncertainty dominates at high SNR, where the proposed robust transceiver design 

performs significantly better than the other two approaches. Fig. 6.1 also shows that 

7In practice, a scheduler may select the users to which data is transmitted, but in order to focus 
on the impact of the proposed designs, no scheduling will be considered in the simulations. 
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Figure 6.1: Comparison between the performance of the proposed statistically robust 

transceiver, the channel inversion approach in [100, 101], and regularized channel 

inversion [102, 122] for values of channel uncertainty c2 = 0.01 for a ystem with 

Nt = 4 and K = 4 using QPSK signalling. The curves with (+) markers and no 

markers represent the average BER of the two near and the two far users, respectively. 

in the presence of channel uncertainty, both the regularized channel inversion and 

channel inver ion designs have the same performance limit at high SNR. This is due 

to the fact that the regularized method involves the addition of a regularization term 

whose value is inversely proportional to Ptotai/ (K <J~); see [102]. 

In Fig. 6.2 we compare the performance of the statistically robust transceiver with 

that of channel inversion approach in [100,101], and regularized channel inver ion ap­

proach in [102,122], for a system with 5 transmit antennas , 4 users, QPSK signalling, 
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Figure 6.2: Comparison between the performance of the transceivers considered in 

Figure 6.1 for a system with Nt = 5 and c2 = 0.1. The legend is the same as that in 

Figure 6.1. 

and uncertainty value c2 = 0.1. The impact of the robust design is apparent in the av­

erage performance of the two near users for the whole SNR range, and in the average 

performance of all users at high SNRs. 

For Fig. 6.3 we consider a system with 16-QAM signalling, 5 transmit antennas 

and 4 users, and we compare the performance of the proposed statistically robust 

transceiver with that of the robust regularized channel inversion approach in [107], 

which restricts all the receiver gains 9k to be equal. It can be seen from Fig. 6.3 that 

significant improvement in the performance of the near users can be achieved by the 

proposed robust design, as it offers more degrees of freedom in the choice of the gains 
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Figure 6.3: Comparison between the performance of the proposed statistically robust 

t ransceiver and the robust regularized channel inversion approach in [107] for values 

of channel uncertainty c2 = 0.03 for a system with Nt = 5 and K = 4 using 16-QAM 

signalling. The curves with ( +) markers and no markers represent the average BER 

of the two near and t he two far users , respectively. 
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6.8.2 Robust minimax transceiver designs 

In systems that use feedback to provide the transmitter with quantized version of 

the CSI, the information available to the transmitter will include the designed quan­

tization codebooks and the statistics of the error resulting from the use of these 

codebooks; e.g., E{ (bk -hk)(hk -hk)H} = E
2 

. Since we assume each user's channel is 

independent from the others, the transmitter can model the error matrix E as being 

zero mean with independent rows and second order statistics given by E{EEH} = E21. 

Thus, we have llE{EEH}I/ = E
2

. To simulate quantization errors, we will generate 

matrices E such that the real and imaginary parts of each element Eij are drawn inde­

pendently from uniform distribution U(-j;fE, j;fE), and hence E{EEH} = E21. 

Given that the transmitter will have access to E, and since ~2 = l/EHEJJ, an appro­

priate choice for~' for the "system-wide" uncertainty model, is E. For the "per-user'' 

uncertainty model, when all users are using the same codebooks, all r5k are equal and 

one can use equation (6.9) to set bk= E/VK. 
In Fig. 6.4 the performance of the proposed robust minimax approaches with "per­

user" and "system-wide" uncertainty models is compared to that of the regularized 

channel inversion approach in [102, 122] in the presence of uniformly distributed quan­

tization errors with f 2 = 0.03 for a system with Nt = 5, K = 4 and 16-QAM signalling. 

It can be seen that performance of the minimax approach with the "system-wide" 

uncertainty model is reasonably close to the minimax approach with "per-user" un­

certainty, especially in terms of the average performance of all users. Both approaches 

provide improved performance over the non-robust approach in terms of the average 

BER and significantly improved performance in terms of the BER of the near users. 

In Fig. 6.5, a comparison is made with the non-robust of channel inversion approach 

in [100, 101], for a similar system with E
2 = 0.05, and similar performance advantages 

are observed. 
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Figure 6.4: Comparison between the performance of the proposed robust minimax 

approaches with "per-user ' and "system-wide'· uncertainty models , and the regular­

ized channel inversion approach in [102, 122] in the presence of uniformly distributed 

quai1tization errors with e2 = 0.03 for a system with Nt = 5 and J( = 4 using 16-QAM 

signalling. The curves with ( +) markers and no markers represent the average BER 

of the two near and the two far users, respectively. 
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Figure 6.5: Comparison between the performance of the proposed robust minimax 

approaches with "per-user" and "system-,vide" uncertainty models, and the chrumel 

inversion approach in [100,101] in the presence of uniformly distributed quantization 

errors with e: 2 = 0.05 for a system with Nt = 5 and K = 4 using 16-QAM signalling. 

The curves with ( +) markers and no markers represent the average BER of the two 

near and the two far users , respectively. 
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6.9 Conclusion 


In this chapter, we considered statistical and minimax robust joint designs for linear 

transceivers for multiuser communication systems. For the statistical approach, we 

have presented a robust design for the broadcast channel transceivers that jointly 

minimize the average, over the channel estimation errors, of the sum of the MSEs 

of each user. By generalizing the MSE duality between the broadcast channel (BC) 

and multiple access channel (MAC) to schemes with channel estimation errors we 

have shown that the robust design for the broadcast channel can be obtained from 

an efficiently-solvable conic programming formulation for the robust transceivers for 

the dual MAC. For the minimax approach we have provided a formulation for the 

robust downlink transceivers that maximize the worst-case performance for "per-user" 

and "system-wide" channel uncertainty models. We also proposed computationally­

tractable iterative algorithms for obtaining locally optimal solutions to these two 

design problems. The problem formulation and proposed algorithms can be applied 

to systems with per-antenna, per-cell and spatial-shaping power constraints, as well 

as a constraint on the total transmitted power. We showed that proposed minimax 

downlink transceiver design can be applied to the design of uplink transceivers as 

well. Our simulation results demonstrated that the proposed approaches to the robust 

linear transceiver design can significantly reduce the sensitivity of the downlink to 

uncertain CSI, and can provide improved performance over that of existing robust 

designs. In the next chapter, we will demonstrate how these robust designs can be 

generalized to non-linear transceivers. 
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Chapter 7 

Robust Non-Linear Transceivers 

for Multi-user Systems 

In Chapter 6, we studied the design of linear multi-user transceivers that are ro­

bust to uncertainty in the users' channel state information (CSI). In this chapter, we 

generalize those robust design approaches to non-linear transceivers under stochas­

tic and deterministically-bounded models of channel uncertainty. For the stod1astic 

model, we study the joint design of a Tomlinson-Harashima precoder (THP) at the 

base station and the equalizing gains at the receivers so as to minimize the average, 

over channel uncertainty, of the total mean-square-error (MSE). By generalizing the 

MSE duality between the broadcast channel (BC) with THP and the multiple access 

channel (MAC) with decision feedback equalization (DFE) to scenarios with uncer­

tain CSI, we obtain a relation between the desired robust broadcast transceivers and 

the corresponding transceivers that optimize the same performance metric for the 

dual multiple access channel. For the deterministically-bounded model of the chan­

nel uncertainty, we study the robust design of THP transceivers for the BC that 

minimize the maximum MSE over all set admissible channels. Similar to the case of 
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linear transceiver, we show that the design problem is non-convex and we propose 

an iterative local optimization algorithm that is based on efficiently-solvable convex 

subproblems. The robust minimax framework is also generalized to multiple access 

channels with DFE and bounded channel uncertainty. Simulation results show the 

proposed robust approaches can result in significant reduction of the sensitivity of 

THP transceivers to channel uncertainty. 

7 .1 Introduction 

A fundamental assumption of Tomlinson-Harashima Precoding (THP) is the avail­

ability of perfect Channel State Information (CSI) at the transmitter. Perfect CSI 

enables the transmitter to precisely pre-subtract the terms that would interfere at 

the receivers. Based on the assumption of perfect CSI at the transmitter, several 

different approaches for designing THP for broadcast channels have been proposed 

including zero-forcing designs [16, 123- 125], and minimum mean square error (MMSE) 

designs [126, 127]. 

In practical downlink scenarios, the CSI available at the transmitter is generally 

inaccurate; see Sections 4.1 and 6.1. Furthermore the performance of THP is partic­

ularly sensitive to inaccuracies in CSI, e.g. , [128]. Motivated by the sensitivity of both 

broadcast channels and THP to channel uncertainty we design, herein, robust THP 

transceivers under two different models of the uncertainty in the CSI: a stochastic 

model, and a deterministically bounded model. 

As mentioned in Section 6.3.1 the stochastic model of channel uncertainty is 

particularly suitable for systems in which the uncertainty is dominated by the ef­

fects of channel estimation errors, such as time division duplex systems with short 
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"ping-pong" time. For these systems, we consider the joint design of a Tomlinson­

Harashima precoder and the users' equalizing gains to minimize the average, over the 

channel uncertainty, of the total MSE. Previous attempts to solve this problem have 

considered a simpler design problem by restricting all the users' equalizing gains to be 

equal [106, 129], or by using a simpler detection model [109]. In our approach we will 

preserve all the degrees of freedom, and will exploit the duality, derived herein, be­

tween the broadcast with THP and the multiple access channel (MAC) with decision 

feedback equalization (DFE), under a statistical model of CSL More generally, the 

duality result that we will derive will enable us to obtain robust designs for broadcast 

channels with THP that optimize objective functions of the the average MSEs, by 

solving the same design problem for a dual MAC with a DFE. By doing so, we extend 

to the case of imperfect CSI earlier work on the duality, in the MSE sense, of the BC 

with THP and l'vfAC with a DFE assuming perfect CSI [127, 130]. 

The bounded model of channel uncertainty, cf. Section 6.3.2, can be suitable for 

systems in which each user quantizes its channel information and feeds it back to the 

transmitter using a limited feedback channel. Using the general bounded uncertainty 

model in Section 6.3.2, we consider the design of robust THP transceivers for the 

downlink that minimize the maximum MSE over all admissible channels. We show 

that the design problem is non-convex and we propose an iterative local optimization 

algorithm that is based on efficiently-solvable convex subproblems. We also general­

ize the robust minimax designs to multiple access channels with DFE and bounded 

channel uncertainty. Simulation results show the proposed robust approaches can 

result in significant reduction of the sensitivity of THP-based transceivers to chan­

nel uncertainty, and can provide improved performance over that of existing robust 

designs. 
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7.2 System Model 

We consider broadcast channels (BC) with Nt antennas at the ba e station and 

K users , each with one antennas. The focus of this chapter will be on BC 

transceivers that employ Tomlinson-Harashima precoding (THP) at the transmit­

ter. As mentioned in Section 5.2, multi-user interference pre-subtraction and spatial 

pre-equalization are implemented using feedback and feed forward processing, respec­

tively, as shown in in Fig. 7.1. The elements of the vector output , v , of t he feedback 

loop in Fig. 7.1 are generated equentially by computing Vk = Bk - L~:,;:: B kjVj where 

Bk is the symbol intended for the kth user, which is chosen from a constellation whose 

Voronoi region is V; and B E C/<xK is a strictly lower triangular feedback matrix. 

To prevent Vk from growing outside V , the modulo operation is then applied to each 

Vk· The vector v is subsequently linearly precoded using the feed forward matrix 

P E c_Nt xK to generate the transmitted vector x , 

x = Pv. (7.1 ) 

As mentioned in Chapters 2 and 5 when the elements of s are chosen from a square 

QAM constellation with cardinality M , the Voronoi region V is a square of length 

D , and the modulo operation with respect to V corresponds to performing separate 

modulo-D operations on the real and imaginary parts of vk . This is equivalent to the 

addit ion of the complex quantity ik = i1ke D + j i~mag D to Vk, where i1ke, i~mag E Z , 

and j = J=I, and using this observation leads the standard linearized model of the 

transmitter as shown in Fig. 7.2; e.g., [10]. For this equivalent model , the vector v 

is a linear function of the modified data vector u = s + i 

(7.2) 

As a result of the modulo operation at the transmitter, the elements of v are almost 

uncorrelated and uniformly distributed over V , [10, Th. 3.1], and hence they will have 
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Figure 7.1: BC with Tomlinson-Harashima precoding. 
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Figure 7.2: Equivalent linear model for the transmitter. 

slightly higher average energy than the input symbols of s; something that is often 

called precoding loss [10]. For example, for square M-ary QAM we have E{/vk/ 2 
} = 

N;~ E{/sk/ 2 } fork= 2, ... , K, and E{lv1 /2} = E{/s1/ 2}, [10]. For moderate to large1 
values of M this power increase can be neglected and the approximation E{ vvH} =I 

is often used; e.g .. [13, 16]. Under the assumption of negligible precoding loss. the 

average transmitted power constraint becomes Ev{xHx} = tr(PHP) ::::; Ptotal· 

The signal received by the kth user, y,.,, can be written as 

(7.3) 

where hk E cixNt is a row vector representing the channel gains from the transmitting 

antennas to the kth receiver, and n,., is the additive zero-mean white noise at the kth 

receiver whose variance is CT~. The K equations on the form (7.3) can be written as 

y = Hx+n, 
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where h k is kth row of the broadcast channel matrix, H , and the noise vector n 

has zero-mean and covariance matrix is E{nnH} = a-~I. Since the receivers operate 

independently, each receiver processes its received signal Yk using a single equalizing 

gain 9k to obtain the estimate, uk = 9kYk , followed by a modulo operation to obtain 

§k · Assuming negligible precoding loss and that the vector i is eliminated by the 

receivers ' modulo operation, the error signal Uk - Uk is equivalent to Sk - s, and can 

be used to define t he mean square error , 

MSEk = Ev{luk - ukl 2
} = L:~~1 l9kl 2Pf (hf h k) Pi + a-~l9kl 2 

- 9kh kPk - pf hf gf! 
k-l k-l k- l 

- L pf hf gfBkj - L B~gkhkpj + L IB kj 1
2 + 1 

j=l 	 j=l j=l 

(7.4) 

where m k and b k are the ith row of I and B , respectively. Similarly, the total MSE 

can be written as: 

K 

MSE = 	 L MSEk = tr{(GHP - I - B )H(GHP - I - B )} + a-~llgll 2 , (7.5) 
k=l 

where g = (91 , . . . , 9K) and G = Diag(g). 

7.3 	 Statistically Robust design Via BC-MAC du­

ality 

For the statistical uncertainty model in Section 6.3.1 , our objective is to jointly design 

the feedback and precoding matrices B and P , and the receivers' equalizing gains 

gk , so as to minimize the average over the channel estimation error, of the total MSE: 

(7.6) 

173 




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

where each MSEk is given by (cf. (7.4)) 

MSEk . 	E~1 l9kl 2Pf(hfhk + (j;kI)pj + (j~l9kl 2 
- gkhkPk - pf!hf!gf! 

k-1 	 k-1 k-1 
~ HAH H ~ H A ~ 2 - L P1 	hk g,.. B1.:1 - L Bkig,,,hkPi + L IBk1I + 1. (7.7) 
j=l 	 j=l j=l 

Previous attempts to this design problem have involved the restriction that all 9k be 

equal [106, 129], or have employed a simpler detection model [109). In our approach 

we will preserve all the degrees of freedom, and will exploit the duality, derived herein, 

between the broadcast channel with TH precoding and the multiple access channels 

with DFE, under a statistical model of the error of the CSL Using this duality, we 

will jointly design the transceiver parameters B, P. and 9k so as to minimize (7.6). 

Our duality result also enable us to obtain robust designs of broadcast channels with 

TH precoding that optimize objectives that are functions of the the average MSEs, 

not just the sum, by solving the same design problem for a dual MAC with a DFE. 

7.3.1 	 Dual Multiple Access Channel with Non-Linear 

Transceivers 

By reversing the direction of the c01m1mnication in the broadcast channel (BC) with 

Tomlinson-Harashima precoding in Fig. 7.1, we obtain a dual multiple access channel 

(l'vfAC) in which J( transmitters, each with a single antenna, communicate to a a base 

station with Nt antennas that employ successive interference cancelation detector 

based on decision feedback equalization (DFE); see Fig 7.3. To obtain duality, the 

users are detected using the reverse order of the BC precoding order; i.e., detection 

starts with the Kth user. Because the transmitters in the dual MAC are decentralized 

and each has only one transmit antenna, linear precoding reduces to power loading: 

MAC _ pMAC MAC
X k -	 k 8k ' (7.8) 
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Figure 7.3: The Dual MAC with decision feedback equalization. 

where s~1Ac and xt1Ac are the data symbol and the transmitted signal of the kth trans­

mitter. Without loss of generality, we will assume that E{s MACs MAcH} = I. Hence a 

total power constraint on all the transmitters can be written as L~=l 1Pt1Acl 2 ::S Ptotal· 

The channels between the transmitters and the receiver of the dual MAC can be 

represented by H H (e.g., [115]) and hence the vector of received signals y MAC is given 

by 

Y MAC = H H X MAC + n MAC (7.9) 

where n MAC is the zero-mean receiver noise vector with E{ n l\1ACn MAcH} = a~I . As 

shown in Fig. 7.3 the operation of the DFE can be represented by a feedforward 

matrix G MAC E c_K x Nr and a strictly upper triangular feedback matrix B MAC E 

c_K x K. Assuming correct previous deci ions, the input to the quantizer, §MAC, can 

be written a 

(7.10) 

where p l\iAC = Diag(pt1Ac , ... , p~Ac). Using the stochastic channel uncertainty 
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model in Section 6.3.1, the average over channel estimation errors of the MSE as­

sociated with the estimate st1AC is 

K 

:LvISE!1Ac = L IP~1Acl2gt1Ac(hfhi + a-;))g~1AcH + a-~g~1Acg~1AcH _ PtIAcHhkg~IAcH 
j=l 

K 

_ gMAchAHPMAC _ '°"" (pMAcHhA ·gMAcHB-r.~Ac + Brv~AcHgMAChAHp~Ac)
k k 	 k ~ J J k kJ kJ k J J 

j=k+I 

K 

+ '""" IBJ!..~AC,2 + 1 	 (7.11)
~ kJ ' 

j=k+l 

where gt1Ac is the kth row of GMAC. 

7.3.2 	 BC-MAC Duality with Stochastic Uncertainty and 

Non-Linear Transceivers 

In this section, we will present the MSE duality result between the broadcast channel 

with TH precoding and the multiple access channel with DFE under the stochastic 

channel uncertainty model described in Section 6.3.1. This duality result generalizes 

the MSE duality between the BC with TH precoding and the MAC with DFE for the 

perfect channel knowledge case [127, 130] to scenarios with uncertain CSL It is also a 

generalization of the duality results for linear transceivers in [92, 93]. 

Theorem 7.1. Assume that there is no precoding loss in the THP in the BC and no 

error propagation in DFE in the dual MAC. Then, under the same constraint on the 

total transmitted power, the sets of individual average MSEs for the BC, {MSEk}, 

and for the dual MAC, {MS~!AC}, are the same for the following transceiver design 

(7.12) 

where the vector of positive constants w = (w1 , ... , wx) is given by: 


w2 = M-1 [ jpf1Acl2, ... 'IP~Acl2 JT' (7.13) 
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and the elements of the matrix M are given by: 

k<i 

k = i. 

(7.14) 

The proof is similar to that presented in Appendix G. Using Theorem 7. 1, an 

optimal design of the BC transceiver that jointly minimizes the sum of the average 

MSEs, MSE, under a total power constraint can be obtained by first obtaining the 

optimal MAC transceiver that jointly minimizes 1SEMAC, and then applying the 

transformation (7.13) to obtain the optimal BC transceiver. Although, this duality 

extends to arbitrary functions of the set of average MSEs {MSEk} , and is not re­

stricted to the sum for reasons of simplicity we will focus on the case of the sum in 

the next section. 

7.3.3 	 Statistically Robust Transceiver Design for the Dual 

MAC 

In this section, we will obtain a statistically robust design of the dual MAC transceiver 

· · 1 · · · MSEMAC '\' K MSEMAC n r '11 fi b · al · that JOmt y mmmuzes = L..k=l k . vve w1 rst o tam an an yt1c 

expression for the optimal receiver , B MAC and g~Ac , for a given set of transmitters 

p~fAC , and then we will then obtain an optimization formulation for the optimal p~Ac 

under a total power constraint. 

From equation (7.11), we observe that each MSE~IAC is a smooth convex function 

177 




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

of the kth row of BMAC and is independent of the other rows. Hence, MSE~Ac can 

be minimized independently. Indeed, by setting the stationary point MSE~Ac with 

respect to kth row of BMAC to zero, we obtain the optimal values of the elements of 

BMAC 

B l\.'IAC = gMAChAH.p~1AC
kJ 	 k· k J . (7.15) 

Substituting the resulting expression for the optimal BMAC in (7.11), we find that 

each resulting MSE~IAC is a convex function of gtIAC and is independent of gJ1Ac for 

• _j_ k H l 1\1SEMAC . . . d b .J r ~-	 ence, eac 1 n k IS optmuze y settmg 

(7.16) 


where 
k 

sk = Cl: /p~fAC/ 2 (hfhi+ a;J) +a;1r1 	
(7.17) 

i=l 

Using the optimal receiver parameters in (7.15) and (7.16), the sum of the average 

MSEs can be expressed as 

K 

MSEMAC =I< - I: /p~1AC/ 2hkSkhf. 	 (7.18) 
k=l 

Similar to scenarios in which channel state information is available [130], the ex­

pression in (7.18) is differentiable function of /p~IAC/ 2 , and hence a (locally) optimal 

solution to the minimization of (7.18) under a total power constraint can be found 

by applying a standard iterative algorithm. 

7.4 	 Robust Design with Bounded Channel Uncer­

tainties 

In this section we present a robust transceiver design for the second uncertainty region, 

which does not rely on a statistical model of channel uncertainty, and merely assumes 
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that the each user 's channel lies within a given uncertainty set Uk(ok, cI> k, Q k) in (6. 7). 

For this type of channel uncertainty, our goal is to jointly design the transmitter (i.e., 

B and P ), and the equalizing gains of the receivers, gk , so as to minimize the worst­

case MSE over all admissible channels h k E Uk(ok , cI>k, Q k), subject to a total power 

constraint , and B being a strictly lower triangular matrix. That is , 

min 
B , P , g 

(7. 19a) 

s. 	 t. Bij = 0 1:::; i:::; j:::; K , (7.19b) 

llvec(P ) 11 
2 ::S: Ptotal· (7.19c) 

This minimax problem can be simplified by rewriting it as the following minimization 

problem 

min (7.20a)
B , P.g,t 

s.t. 	 llgkhkP - m k - b kll :::; tk \71 ::S: k ::S: K, h k E Uk(oki cI> k, Q k), (7.20b) 

O"nllgll ::S: lo , (7.20c) 

Bij = 0 1 :::; i :::; j :::; K , (7.20d) 

2llvec(P ) 11 ::S: Ptotal· 	 (7.20e) 
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Using the finite characterization of infinite second order cone (SOC), cf. (6.25), the 

robust transceiver design can be formulated as: 

min a (7.21a)
B,P,g,t,µ,a 

(7.21b) 

(7.21c)0 

Bij = 0 1 :S i :S j :S K, (7.21d) 

l!vec(P) 11 
2 :S Ptotah (7.21e) 

where ak is a placeholder for (g1J1kP - mk - bk), and we have used the fact that 

the optimal value for t0 is O"nllgll- Similar to the linear transceiver case in Chapter 6, 

the constraint in (7.21c) represents a set of K bilinear matrix inequalities and hence 

the optimization problem in (7.21) is non-convex. (In the general case, optirnization 

problems with bilinear matrix inequalities are NP hard [119].) However, given initial 

values for P, Band g, one can find a locally optimal solution by iteratively optimizing 

over P and B for fixed g, and over g and B for fixed P. Each of those problems is 

implicit in (7.21) and is a convex conic program that can be efficiently solved. The 

choice of the initial point for this iterative design can be the transceiver designed for 

the case in which the estimates hk are assumed to be the actual channels; e.g., [127]. 

Similarly, for the case of uncertainty regions Uk in ( 6 .8) that are described as the 

intersection of more than one uncertainty set of the form ( 6. 7), it can be shown that 

a conservative robust design can be formulated as: 
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min a (7.22a)
B , P ,g, 
t , µ.t, a: 

s.t. IW7tg l11 2 :::; a, (7.22b) 

tk - l::e µ~ 0 ak 

0 L:e µ~ Q~ 8k(gk -PkP ) 2: 0 :S k :S K , (7.22c) 

Hak 8k(gk-PkP )H tkl 

B iJ = 0 1 :S i :S j :S K , (7.22d) 

llvec(P )ll 2 :S P total· (7.22e) 

Similar to (7.21) , a local optimal solution can be found by employing an alternative 

optimization algorithm that optimizes over P and B for fixed g, and over g and B 

for fixed P . 

7.5 Uplink Minimax Robust Designs 

In this section we will provide explicit formulations of the minimax robust designs for 

the dual MAC. 

To derive the robust minimax design we first observe that the MSE expression 

for the kth user in the uplink is function is a function of all channels, not just its own. 

While these multiple sources of uncertainty can complicate the design one can write 

the total MSE as 

MSEMAC = 
K2: ll GMAch:p~AC _ m: _(b~AC)Hll2 + O"~tr{(GMAC)HGMAc}, 

k= l 

(7.23) 

where each term of the summation is subject to uncertainty from one source only. 

Using (7.23) and the analysis in Section 7.4, the uplink robust minimax design can 
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be formulated as 

min f3 (7.24a)
BMAC,GMAC, 


PMAC,t,µ, f3 


subject to (7.24b) 

(7.24c) 

(a~IAC)H 

6k(p~1AC-J>kG!vIAC) 2:: 0, S k S K, (7.24d)0 

a MAC 
k 

Bii = 0 1 s j s i s K, (7.24e) 

llPMAC112 < _ Rtotal,. (7.24f) 

where at1Ab is a placeholder for GMAChfp~lAC - mf - (bt1Ac) 8 . Similarly, con­

servative formulations can be obtained for the robust uplink designs with multiple 

intersecting uncertainty sets for each channel. As was the case with the downlink, 

both problems are non-convex, but one can employ a local iterative algorithm in 

which a convex conic program is solved at each iteration. In the formulation in 

(7.24), the power constraint is a constraint on the total power transmitted by the 

users; cf. (7.24f). This constraint can be replaced by individual power constraints of 

the form Jpt1Acj2 ::;; HotaI-k without disturbing the convex structure of the problem. 

7.6 Simulation Studies 

In order to compare the performance of the proposed robust design with the ex­

isting approaches, we have simulated these methods for the cases of QPSK trans­

mission over independent Rayleigh fading channels. We will plot the average bit 

error rate (BER) over all users against the signal-to-noise-ratio, which is defined as 
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SNR = Ptotad(K CJ~) . In our simulations, the coefficients of the channel matrix H 

are modeled as being independent circularly symmetric complex Gaussian random 

variables with zero mean. All THP transceivers assume a given ordering of the users. 

Since finding an optimal ordering will involve an exhaustive search over K! possi­

ble arrangements, a suboptimal ordering is usually employed. We will choose the 

suboptimal ordering proposed for MMSE Tomlinson-Harashima transceiver design 

in [126] , using the transmitter's channel estimate H. This ordering will be used for 

all methods, including the proposed robust transceiver. 

7.6.1 Statistically Robust Designs 

To model the error ek between the actual channel h k and the estimated channel 

at the transmitter h k ek is generated from a zero-mean Gaussian distribution with 

E{efek} = CJ;k 1. In our simulation, we will use the same CJ;k for all users. This 

model is appropriate for a scenario in which the uplink power is controlled so that 

the received S Rs on the uplink are equal and independent from the downlink S R. 

For convenience we define c: 2 = E{eke{[} = NtCJ;k. 

In Fig. 7.4 we compare the performance of the statistically robust Tomlinson­

Harashima transceiver proposed in Section 7.3 with that of the zero-forcing 

Tomlinson-Hara hima transceiver design (ZF-THP) in [124 125], and the MMSE 

Tomlinson-Harashima transceiver design (MMSE-THP) in [126] for a system with 

4 transmit antennas, 4 users, and QPSK ignalling. In Fig. 7.4, the performance of 

each method is plotted for values of c: 2 = 0.05, 0.1. It can be seen that the perfor­

mance of Tomlinson-Harashima precoding in the broadcast channel is rather sensitive 

to the mismatch between the actual CSI and the transmitter's estimate of CSL It can 

be also seen that while the effect of noise is dominant at low SNR, the channel uncer­

tainty dominates at high SNR, where the proposed robust transceiver design performs 
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Figure 7.4: Comparison between the performance of the proposed statistically robust 

Tomlinson-Harashima transceiver, zero-forcing Tomlinson-Harashima transceiver de­

sign (ZF-THP) in [124, 125], and the MMSE Tomlinson-Harashima transceiver design 

(MMSE-THP) in [126] for values of channel uncertainty «: 2 = 0.05, 0.1 for a system 

with Nt = 4 and J( = 4 using QPSK signalling. The upper performance curve of 

each method corresponds to channel uncertainty «:2 = 0.1 

significantly better than the other two approaches. Fig. 7.4 also shows that in the 

presence of channel uncertainty, both the ZF-THP and MMSE-THP designs have the 

same performance limit at high SNR. This is due to the fact that the MMSE method 

involves the addition of a regularization term whose value is inversely proportional to 

H ota1/(K O'~) ; see [126]. 

For Fig. 7.5 we consider a system with Nt = 4 antennas and K = 4 users. In 

addition to the previous two designs, ZF-THP [124, 125] and MMSE-THP [126], that 
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Figure 7.5: Comparison between the performance of the proposed statistically robust 

THP transceiver, zero-forcing THP transceiver design (ZF-THP) in [124, 125], and 

the MMSE THP transceiver design (MMSE-THP) in [126], robust zero-forcing THP 

(Robust ZF-THP) approach introduced in [106], and the robust MMSE Tomlinson­

Harashima (Robust MMSE-THP ) approach introduced in [129], for values of channel 

uncertainty c2 = 0.05 for a system with Nt = 4 and K = 4 using QPSK signalling. 

assume precise CSI, we will also compare the performance of t he statistically robust 

transceiver proposed in Section 7.3 with that of the robust zero-forcing Tomlinson­

Harashima (Robust ZF-THP) approach introduced in [106], and the robust 1MSE 

Tomlinson-Harashima (Robust MMSE-THP) approach introduced in [129]. These 

two approaches restrict the all gains 9k to be equal. It can be seen from Fig. 7.5 that 

improvement in the performance can be achieved by the proposed robust design as it 

offers more degrees of freedom in the choice of the gains 9k· 
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7.6.2 Minimax Robust Designs 

We considered systems that use feedback to provide the transmitter with quantized 

version of the CSI, and we assumed that all K users employ the same vector quanti­

zation codebooks. In these feedback systems, the information available to the trans­

mitter will include the users' codebooks and the statistics of the error resulting from 

the use of these codebooks. Since we assume that each user's channel is independent 

from the others, the transmitter can model the error matrix E as being zero mean 

with independent rows ek and second order statistics given by E{EEH} = c21. Thus, 

we have l/E{EEH}ll = E
2

• To simulate quantization errors, we will generate matri­

ces E such that the elements are independent and uniformly distributed such that 

E{EEH} = c21. We will consider vector quantization schemes in which the transmit­

ter employs a robust THP transceiver designed using spherical uncertainty regions 

l/ekl/ ::; bk. To estimate bk, we observe that an appropriate estimate of I/El/ can be E, 

and since llEI/ ::; J"Lk ek, one can choose b"' = c/./R. 

In the third experiment, we compare the performance of the robust minimax 

Tomlinson-Harashima transceiver proposed in Section 7.4 with that of the zero-forcing 

Tomlinson-Harashima transceiver design (ZF-THP) in [124, 125], and the MMSE 

Tomlinson-Harashima transceiver design (MMSE-THP) in [126]. In Fig. 7.6, the per­

formance of each method is plotted for values of E2 = 0.03, 0.05. It can be seen that 

the performance of the downlink with interference pre-subtraction is rather sensitive 

to the mismatch between the actual CSI and the transmitter's estimate of CSL It can 

be also seen that while the effect of noise is dominant at low SNR, the channel uncer­

tainty dominates at high SNR. where the proposed robust transceiver design performs 

significantly better than the other two approaches. Fig. 7 .6 also shows that in the 

presence of channel uncertainty, both the ZF-THP and MMSE-THP designs have the 

same performance limit at high SNR. This is due to the fact that the MMSE method 
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Figure 7.6: Comparison between the performance of the proposed robust minimax 

Tomlinson-Harashima transceiver zero-forcing Tomlinson-Harashima transceiver de­

sign (ZF-THP) in [124 125], and the MMSE Tomlinson-Harashima transceiver design 

(MMSE-THP) in [126] for values of channel uncertainty c2 = 0.03, 0.05 for a ystem 

with Nt = 4 and I< = 4 using QPSK signalling. The upper performance curve of 

each method corresponds to channel uncertainty c2 = 0.05 

involves the addition of a regularization term whose value is inversely proportional to 

Ptata1/(J<O"~); see [126]. 

In the fourth experiment, we simulate a scenario with two different sets of users 

locations from the base station. The first two users are assumed to be close to the 

base station and their channel coefficients are generated using the abov model but 

with variances equal to 10. The other two users are assumed to be farther from the 

base stations and their channel coefficients are generated using unit variance. We 
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plot the average BER of all users in addition to the average BER of the two near 

users and the far users for value of E
2 = 0.1. It can be seen from Fig. 7.7 that the 

advantage offered by using a robust design is even more significant in the case of the 

near users. 

7.7 Conclusion 

In this chapter, we studied the design for robust non-linear transceivers with sequen­

tial interference subtraction that explicitly take into account the nature of channel 

uncertainty. For the stochastic uncertainty model, we presented an optimal robust 

design for THP transceivers for broadcast channels that jointly minimizes the average, 

over channel estimation errors, of the sum of the MSEs of each user. By generalizing 

the MSE duality between the broadcast channel with Tomlinson-Harashima precoding 

and the multiple access channel with decision feedback equalization to schemes with 

channel estimation errors, we have obtained the desired robust broadcast transceivers 

in terms of the robust transceivers that optimize the same performance metric for 

the dual multiple access channel. This approach allowed the derivation of an op­

timal statistically robust design that preserves all the available degrees of freedom. 

For the bounded uncertainty model, we presented a minimax robust design of THP 

transceivers that maximizes the worst-case performance. The proposed uncertainty 

model is general and encompasses many bounded uncertainty regions. We also gen­

eralize the robust designs to the case in which the channel uncertainty is described 

by multiple intersecting bounded regions, and to multiple access channels with DFE 

transceivers and bounded channel uncertainty. Simulation studies demonstrated that 

the proposed approad1es can significantly reduce the sensitivity of the downlink to 

uncertainty in the CSI, and can provide improved performance over that of existing 
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Figure 7.7: Comparison between the performance of the proposed robust minimax 

Tomlinson-Harashirna transceiver zero-forcing Tomlinson-Harashima transceiver de­

sign (ZF-THP) in [124,125] and t he MMSE Tornlinson-Harashima transceiver design 

(MMSE-THP) in [126] for values of channel uncertainty c2 = 0.1 for a system with 

Nt = 4 and I< = 4 using QPSK signalling. The curves with (+) markers and no 

markers represent the average BER of the two near and t he two far users, respec­

tively. 
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robust designs. 
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Chapter 8 

Summary and Future Directions 

This chapter summarizes the contributions of this thesis , and proposes some future 

research directions. 

8.1 Summary 

The thesis studied the joint design of the transmitter and the receiver for single­

user and multi-user MIMO systems. These transceiver designs are developed under 

different assumptions of the available channel knowledge. 

In the single-user pru·t of the the is , a novel design framework was developed 

for non-linear MIMO transceivers with interference (pre-) subtraction that assume 

perfect channel state information ( CSI) at both the transmitter and the receiver. 

The framework unifies the desig11 of t"\\o dual non-linear MIMO systems: transceivers 

with Tomlinson-Harashima precoding (THP) , and transceivers with decision feedback 

equalization (DFE). It provides optimal transceiver designs for many design objec­

tives that have been open problems. Using concepts from majorization and convex 

optimization theorie , the framework generates closed-form optimal designs for two 
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broad classes of communication objectives, namely those that are Schur-convex and 

Schur-concave functions of the logarithms of the MSEs of each data stream. For the 

class of Schur-convex objectives, the optimal transceiver results in equal individual 

MSEs, and simultaneously minimizes the total MSE, minimizes the average bit error 

rate, and maximizes the Gaussian mutual information, among many other objectives. 

This property cannot be achieved by any linear transceiver. Furthermore, that op­

timal design yields objective values that are superior to the corresponding optimal 

objective value for a linear transceiver. For the class Schur-concave objectives, the op­

timal non-linear transceiver reduces to the optimal linear transceiver. The derivation 

of this framework resulted in a more developed understanding of non-linear MIMO 

transceivers that is comparable to that of the linear transceivers. 

The single-user part of the thesis also presented a generalization of the framework 

to communications schemes operating in a limited feedback regime and employing 

zero-forcing decision feedback equalization. In that regime, only the receiver has CSI, 

and it uses that CSI to select the best available precoder from a codebook of precoders 

and then feeds back the index of this precoder to the transmitter over a limited rate 

feedback channel. For these communication schemes, the statistical distribution of the 

optimal precoder matrix was derived, and it was showed that codebooks constmcted 

from Grassmann packings minimize an upper bound on average distortion measures 

for many design objectives. 

The multi-user part of the thesis studied the design of robust multi-user 

transceivers that explicitly include the channel uncertainty in the design formula­

tions. 

The first component of the multi-user part developed robust broadcasting 

transceivers that are designed to satisfy each user's quality of service (QoS) re­

quirements subject to bounded channel uncertainty at the transmitter. The QoS 
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requirements were formulated as either constraints on the signal-to-interference-plus­

noise-ratio (SINR) of each user or as constraints on the mean square error (MSE) each 

user's received signal. Using the theories of robust and convex optimization, efficiently 

solvable convex design approaches were developed for both QoS formulations. These 

design approaches were then employed to generate tractable quasi-convex design for­

mulations for other problems such as the robust fair broadcasting problem. It was 

also shown that the MSE formulation of the QoS requirements can yield designs with 

lower computational costs, and they can be obtained for a wider class of bounded 

models of channel uncertainty. 

The second component of the multi-user part developed robust multiuser 

transceivers robust transceivers based on mean-square error (MSE) performance cri­

teria subject to a transmission power constraint. The transceivers were designed for 

both broadcast channels (BC) and multiple access channels (MAC) , and they include 

both linear and non-linear designs. The designs were obtained for two main chan­

nel uncertainty models. The first model is the stochastic uncertainty model that 

suits multi-user systems with uplink-do-wnlink reciprocity. The robust transceivers 

for this uncertainty model were designed so as to minimize the average, over channel 

uncertainly, of functions of the MSEs and they were obtained based on a derived 

generalization of the mean square error (MSE) duality between the broadcast chan­

nels and multiple access channels to cenarios with uncertain channels. This duality 

also showed that the optimal robust BC transceiver can be generated, using a lin­

ear transformation, from the corresponding MAC transceiver for the same objective, 

thus allowing robust BC design problems to be obtained by solving the more tractable 

MAC designs. The second channel uncertainty model is a deterministically-bounded 

one that uits systems with quantized channel feedback from the users. The robust 

transceivers for this uncertainty model were designed so as minimize the worst-case 
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value of the total MSE, over all admissible channels. The results for this uncertainty 

model included a proof of NP-hardness of the design problem, and computationally­

tractable iterative approaches that are based on convex formulation of each iteration. 

The presented approach incorporated a wide range bounded uncertainty models as 

well as a variety of power constraints. 

8.2 Future Directions 

The results presented in the thesis can be the basis for the pursuit of other related 

future research directions. The following points are examples of these directions. 

• 	 It will be interesting to study the existence of a unifying design framework, 

similar to the one developed in Chapter 2, for MIMO transceiver with maximum 

likelihood (ML) receivers. Since MIMO transceivers with lattice-based detection 

or with (vector) lattice precoding can be thought as generalizations of MIMO 

transceivers with DFE or THP, respectively, it would also be worth studying 

the development of a design framework for these two dual MIMO transceivers. 

• 	 The limited feedback scheme presented in Chapter 3 could be combined with 

adaptive bit and/or power loading in order to bridge the gap between its perfor­

mance and that the corresponding system with perfect CSI at the transmitter. 

• 	 The proposed robust multi-user transceivers can be combined with multi-user 

scheduling and selection algorithm that that would explicitly take into account 

the nature of the channel uncertainty. 

• 	 Unifying design frameworks were developed for linear single-user MIMO 

transceivers in [6] and for non-linear transceiver in Chapter 3, and those frame­

work unified the design for a wide range of design objectives. On the other 
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hand, no such generalizing framework exists for multi-user transceivers, either 

linear or non-linear. The lack of such frameworks is a significant hindrance 

to the design of optimal transceivers for an arbitrary design objective in the 

multi-user case. Possible future directions can explore the existence of such 

framework in the multi-user case for both the broadcast channel and multiple 

access channels. 

These research directions, among other ones, are being considered by the author 

of this thesis. 
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Appendix A 

Proofs of Schur-convex objectives 

Minimization of total MSE The objective here is to minimize g(el) = E:1 el;, 

which has the form of g(el) = E{~ f(li) for the strictly convex function f(xi) =ex;.1 
Hence, g(el) is a strictly Schur-convex function of l, [29, p. 64]. 

Minimization of product of MSEs This objective can be written as: minimize 

g(el) = E{~ li· Since this is the sum of each li, it is both a Schur-convex and a 1 
Schur-concave function of l, [29]. 

Minimization of p-norm of MSEs In this case, the objective is to minimize 

g(el) = (E:1(eli)P) 11P. p 2 1, which has the form g(el) = h(f(l1), ... ,f(lK)), 

where h(x1, ... , XK) = ( E:1 Jxi JP) l/p is Schur-convex and is an increasing function 

of each argument, and f(x) = ex is a convex function. If follows from the composi­

tion properties of Schur-convex functions [29] that g(el) is a Schur-convex function. 

Although minimization of the total ivISE is a special case of the p-norm minimization 

for p = 1, the proof used for the total MSE case provides the stronger result of strict 

Schur-convexity. 
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Maximization of product of SINRs This objective can be written as: minimize 

g(el) = - 2=! 1 log(e-l; - 1). Since -g(el) is the sum of t he concave function f (x) = 

log(e-x -1) applied to each li, - g(el) is a Schur-concave function of l [29, p. 64], and 

it follows that g(el) is Schur-convex. 

Maximization of harmonic mean of SINRs In this case the objective is to 

minimize g(el) = I:{:1 sr~R; = I:{:1 e-1!_1 , l i < 0. Since each MSE satisfie 0 :S 

el; < 1, we will restrict our proof to the case of li < 0. We observe that g(el) is a 

sum of the strictly convex function f (x) = 1 / ( e-x - 1) , for x < 0, applied to each li . 

Hence, g(el) is a strictly Schur-convex function. 

Minimization of average BER Assuming that each each data stream employs the 

same constellation, the average BER is g(el) = k I:{:1 BER(SINR) where BER(·) is 

the bit error rate of the chosen constellation as a function of the SINR, and SINR = 

e-l; - 1. As pointed out in Section 2.5.3, for many constellations the bit error rate 

function BER(SINR) can be closely approximated by 

BER(SINR) = c2 Q( Vc1 SINR), (A.1) 

where c1 and c2 are constants that depend on the constellation. If each 

BERBER(e- L; - 1) is a (strictly) convex function of l i, it follows that their sum 

g(el) is (strictly) Schur-convex. To show the convexity of BER(e-l; - 1), we obtain 

the second derivat ive of (A.I ) with respect to k 

d2 BER i / 2 -~(y- 1-1) 
C2 C1 e 2 (2 2 1) ) (A.2)d lf = 4./27iy3/2 (1-y)3/2 y - (c1 + y +c1 ' 

where y = el;. Since the first term is non-negative for all values of the MSE, the sign 

of the second derivative is determined by the quadratic term (2y2 - ( c1 + 1)y + c1 ) . 

To check the sign of t his term, we have to consider two cases: 

197 




Ph.D. Thesis - Michael Botros Shenouda McMaster - Electrical & Computer Engineering 

• 	 For values of the constellation constant c1 such that the discriminant of the 

quadratic equation is negative, the second derivative is non-negative for all the 

range of the MSE. Hence, the expression for BER in (A.l) is convex function 

of li. This case includes BPSK and M-ary QAM with M::; 16. 

• 	 For values of the constellation constant c1 such that discriminant of the 

quadratic equation is non-negative, the second derivative is non-negative for 

the range of MSE y::; Yr, where Yr= (c1 + 1 - Jci - 6c1+1)/4 is a root of 

the quadratic equation. In this case, which applies to A1-ary constellations with 

lvl 2: 16, the BER expression in (A.l) will be convex for all SINRs above the 

small threshold 1 /Yr - 1. 
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Appendix B 

Proofs of Schur-concave objectives 


Minimization of harmonic mean of MSEs This corresponds to the minimiza­

tion of g(el) = L~~ e-i;, , where the denominator is the sum of a convex function 

f(x) = e-x applied to each k Hence, the denominator is a Schur-convex func­

tion [29, p. 64]. Since g(et) is a decreasing function of a Schur-convex function , it 

follows that g(et) is Schur-concave [29, p. 61]. 

Maximization of p-norm of SINRs In this case, the objective is to minimize: 

g(el) = -( 1=~ (e-L; - l)P) l/p, p 2 1. We observe that -g(el) has the form g(el) =1 
h(f(li) , ... f( l1<)) , where h(x1 , ... , x1<) = ( 1={~1 lxi!P )11 

P is Schur-convex and is 

an increasing function of each argument [29], and that f( x) = e-x - 1 is a convex 

function. It follows from composition rules of Schur-convex functions [29 , p. 63] that 

-g(el) is a Schur-convex function. Hence g(el) is Schur-concave. 

Minimization of a subclass of weighted product of MSEs Minimizat ion of 

the weighted product of the individual MSEs (or, equivalently, the weighted geo­

metric mean of the MSEs) corresponds to minimization of the objective g(et) = 

log f1~ (eL; r; = 1={~ ail i· As uming that l i are in decreasing order, then g(et) is a1 1 
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Schur-concave function when the weights ai are in ascending order [6, 29]. A special 

case of this objective is the unweighted product, for which all ak = 1. That function 

is both Schur-concave and Schur-convex; see Appendix A. 

200 




Appendix C 

Proof of Theorem 3.1 

C.1 Optimal Precoder for Schur-convex Functions 

If g(el) is a Schur convex function of l , then from Lemma 3.1 we have that 

(C.l) 

and the optimal value is obtained when all li are equal to 

1 
li = ]{ ln det(N). (C.2) 

Hence, all MSEs are equal to E ii = L~i = tfdet(N). Since the objective is an in­

creasing function of the individual MSEs, the design goal reduces to minimizing det N 

subject to the power constraint on the precoder and to the constraint that diagonal 

elements of the Cholesky factor of N are all equal. We will start by characterizing 

the family of precoders that minimize det(N) subject to the power constraint, then 

we will show that there is a member of this fan1ily that yields a Cholesky factor 

of N with equal diagonal elements. Minimizing det(N ) is equivalent to maximiz­

ing det(P HH HHP ), and the family of optimal precoders to maximize this objective 

subject to a power constraint is given by the following lemma. 
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Lemma C.1. The family of optimal precoders that maximizes det(PHHHHP) subject 

to a power constraint tr(PHP) ::; Ptotal is given by: 

P = [P;;;;;u
H,l.

v. (C.3)VK 

where VH,I E CNtxK contains the eigen vectors of HHH corresponding to the K 

largest eigen values, and VE cKxK is a unitary matrix degree of freedom. 

Proof. Let HHH = UHAHu" be the eigenvector decomposition of the HHH such 

that eigenvalues are in descending order. Let the singular value decomposition of the 

precoding matrix be given by: 

P =Up [ : ] V = UP,1 ~V. (C.4) 

Now, the objective of the maximization can written as: 

(C.5) 

where W 1 = U"Up,1 is a matrix with orthonormal columns (WfW1 =I). Using 

Hadamard inequality, the first term in Eq. (C.5) is maximized when W 1 mnsists of 

first K columns of I. Accordingly, Up,1 is the first K columns of UH. 

Next, we choose cI> = Diag(<l>u, ... , <l>KK) to maximize det(<I>2 ) subject to 

K 2 K 
I:i=l <I>ii = .Rota!. We observe that ln <let(<1> 2 ) = L:i=I ln(<I>7i) is a Schur-concave 

function of <I>7i and is maximized when all <I>7i are equal to Ptf!a1 [29]. D 

To complete the design of P, we need to select V such that the Cholesky decom­

position of N = LLH yields an L factor with equal diagonal elements. Using (C.3) 

we have that 

N Ka~ (vHA-1/2) (A-1/2y) 
R H,l H,l

total 

LLH = RHR = (QR)H(QR), (C.6) 
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where Att,1 is the diagonal matrix containing the largest K eigen values of H HH , 

and Q is a matrix with orthonormal columns. Therefore, finding V is equivalent to 

finding a V such that QR decomposition of (A8~{2V) has an R-factor with equal 

diagonal. Thi problem was solved in [14,53], and V can be obtained by applying the 

algorithms therein to the matrix A8~{2 . 

C.2 	 Optimal Precoder for Schur-concave Fune­

tions 

If g(el ) is a Schur-concave function of l then from Lemma 3.1 we have that g(el ) is 

minimized when L7i = Ai(N ) and that this equali ty holds when Lis normal matrix. 

Since L is a lower triangular matrix, in order for it to be normal it must be a diagonal 

matrix [22]. The optimal C in that case is I, and hence B = 0. That is, in the case 

of Schur-concave functions of l , the optimal ZF-DFE design results in zero-forcing 

linear equalization. 
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Appendix D 

Incorporating different power 

constrains 

In this appendix we show how different power constraints can be incorporated in our 

formulations. Consider a set of per-antenna power constraints, E{lxnl 2
} ~ Pn, one 

for each 1 ~ n ~ Nt, where Pn is the bound on the power transmitted from the n/h 

antenna. Each of these constraints can be written as 

K 

L)£k]~ + [~]~+Nt ~ Pn, (D.l) 
k=l 

where [ · ]n denotes the nth element of a vector. This is a convex quadratic constraint 

on the elements of~' and can formulated as a second order cone constraint and 

directly accommodated in (4.10) and all the subsequent robust counterparts. 

The shaping constraint E{xHQ(O)x} ~ Pshapc(O) can be written as 

K 

L~TQ(O) £k ~ Pshape(O), V () E 8, (D.2) 
k=l 

where Q(O) is defined analogously to (4.8). A convenient way in which this constraint 
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can be incorporated into (4.10) is to write 

V () E 8. (D.3) 

Whenever the set 8 is discrete and finite, this set of SOCs constraints can be easily 

incorporated in (4.10) without compromising our approach. Integral constraints of 

the form 

(D.4) 

can be accommodated in a similar way. 

The power constraints considered above all have the SOCP formulations, but they 

all fall into the more general class of shaping constraints 

(D.5) 

for given Q > 0 and Cshape, that have been previously studied for the single user 

case [71]. Using the Schur Complement Theorem [22], this constraint is equivalent to 

the LMI 

C(P) = [ Cshape pT ] 2: 0, (D.6) 
p Q-1 

and hence constraints of the form in (D.5) can be easily incorporated into our ap­

proach. 
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Appendix E 

Proof of Lemma 5.1 

Consider the quantity (uk - uk) in equation (5.3). Assuming correct removal of ik, 

we have 

(E.l) 

or equivalently, 

Bk = aksk + L aisi + aonk, (E.2) 
iEik 

where Ik is the set of interfering symbols with sk. Using (E.2), we can write1 

2 2 2- Iak/ + L /ai/ + /ao/O"k, (E.3) 
iEik 

/ak - 1/2 + L /ai/ 2 + /ao/az, (E.4) 
iEik 

E{/sk/ 2
} + 1 - 2 Re{ak}, (E.5) 

1 + l/SINRk E{/sk/ 2}//ak/2 
. (E.6) 

1\Ve assume that the interfering symbols from the other users, { s;} iEI,, are independent from 
each other, from sk, and from the additive noise. 
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Consider the MSE constraint E{l sk - skl 2 = E{l skl 2 } + 1- 2 Re{ak}} ~ ( k ~ 1. This 

can can be written as 

E{ lskl 2}(1 - (k) < 	 2Re{ak} (l - (k) - (1- (k) 2 (E.7) 

Re2{ak} - (Re{ak}} - (1 - (k) )
2 ~ lakJ 2 

. (E.8) 

The latter inequality is equivalent to 1 + 1/ SINRk ~ 1/(1 - (k) , or equivalently 

SINRk 2: (1/(k) - 1. 
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Appendix F 

Derivation of Design 


Formulations 1 and 2 


The derivations are based on the following lemma which is a concatenation of two 

results in [99]: 

Lemma F.1. Consider the SOC constraint JJAx + bJI Sy for every [A, bJ in the 

uncertainty region given by 

J 

u {fA, b] I [A. b] = [A0
, b0

] + L:ej [Aj, bj], 8 Ev} 
j=l 

v - {o Ior Qt os 1, t = 1, ... ,L}, (F.l) 

where Qt ~ 0. Then the set S1 of pairs (x, y) satisfying JJAx + hjj S y for every 

[A, b) E U is subset of the set S2 of pairs (x, y) such that there exist non-negative 

scalars µ 1
, ... , µL satisfying 

'°"L eQe > 0.
L...-f=I µ 

A0x+ b0 [A1x + b1 
... A 1 x + b1

] yl 

(F.2) 
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D 

To derive Design Formulation 1, we use the channel uncertainty model in (5.11) 

to write the left hand side of each MSE constraint in (5.12c) as follows 

OJ, 
j=l 

(F.3) 

where e~l = w?)/6k , hence OI Qfh ::; 1. By comparing (F .3) to (F.l), we can invoke 

Lemma F.1 with L = 1 to show the equivalence between the SOC constraints in 

(5.12c) and the corresponding LMis in (5. 13c) . The non-negativity constraints on 

each µ k is implied by positive semidefiniteness of the diagonal blocks of the matrices 

in (5. 12c). The derivation of Design Formulation 2 is similar, but when L ;:::: 2 the 

application of Lemma F.l results in a conservative design formulation, and hence an 

upper bound on the required transmission power. 

209 




Appendix G 

Proof of Theorem 6.1 

We start by considering linearly related transceivers for BC and dual MAC: 

(G.l) 

and we find the necessary conditions for wk and Xk such that set of MSEs in BC and 

dual MSE are equal. By setting MSEk = MSE~IAC and substituting the values Pk and 

9k from (G.l), we obtain a set of K equations. From the equality of coefficients the 

term in p~IACg~1Acfii! (or p~IAcHhkg~1AcH) on both sides we have Xk =I/wk. Using 

this relation, the set of K equations reduces to the following linear system in w2
: 

M w2 = [ /P1.rnc12 /pMAc/2 JT (G.2)1 , ... , K ' 

where M was defined in (6.18). We observe that M has strictly dominant diagonal 

elements and negative off-diagonal elements, hence it is non-singular and the elements 

of M-1 are non-negative. Adding all equations in the linear system in (G.2) results 

. "'"'K 2 MAC MACH "'"'K l..,.lvlAC/2 . t t 1t "tt d . BC d d 1m L..Jk=l wkgk gk = L..Jk=l 1-'k , i.e., o a ransm1 .e power m an ua 

MAC are the same. 
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