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Abstract

The main idea of this thesis is to define and formulate the role of cognitive control

in cognitive dynamic systems and complex networks in order to control the directed

flow of information. A cognitive dynamic system is based on Fuster’s principles of

cognition, the most basic of which is the so-called global perception-action cycle, that

the other three build on. Cognitive control, by definition, completes the executive

part of this important cycle. In this thesis, we first provide the rationales for defin-

ing cognitive control in a way that it suits engineering requirements. To this end,

the novel idea of entropic state and thereby the two-state model is first described.

Next, on the sole basis of entropic state and the concept of directed information

flow, we formulate the learning algorithm as the first process of cognitive control.

Most importantly, we show that the derived algorithm is indeed a special case of the

celebrated Bellman’s dynamic programming. Another significant key point is that

cognitive control intrinsically differs from the generic dynamic programming and its

approximations (commonly known as reinforcement learning) in that it is stateless by

definition. As a result, the main two desired characteristics of the derived algorithm

are described as follows: a) it is convergent to optimal policy, and b) it is free of curse

of dimensionality.
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Next, the predictive planning is described as the second process of cognitive con-

trol. The planning process is on the basis of shunt cycles (called mutually composite

cycles herein) to bypass the environment and facilitate the prediction of future global

perception-action cycles. Our results demonstrate predictive planning to have a very

significant improvement to the functionality of cognitive control. We also deploy the

explore/exploit strategy in order to apply a simplistic form of executive attention.

The thesis is then expanded by applying cognitive control into two different appli-

cations of practical importance. The first one involves cognitive tracking radar, which

is based on a benchmark example and provides the means for testing the theory. In

order to have a frame of reference, the results are compared to other cognitive con-

trollers, which use traditional Q-learning and the method of dynamic optimization.

In both cases, the new algorithm demonstrates considerable improvement with less

computational load.

For the second application, the problem of observability in stochastic complex

networks has been picked due to its importance in many practical situations. Having

known cognitive control theory and its significant performance, the idea here is to view

the network as the environment of a cognitive dynamic system; thereby, cognitive dy-

namic system with the cognitive controller plays a supervisory role over the network.

The proposed methodology differs from the state-of-the-art in the literature in two

accounts: 1) stochasticity both in modelling as well as monitoring processes, and 2)

complexity in terms of edge density. We present several examples to demonstrate the

information processing power of cognitive control in this context too.

The thesis will finish by drawing line for future research in three main directions.
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Chapter 1

Introduction

1.1 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disser-

tation has been assembled into a sandwich thesis format comprised of three journal

articles. These articles represent the independent work of the author of this disserta-

tion, Seyed Mehdi Fatemi Booshehri, henceforth referred to as “the author.”

The articles in the dissertation follow a cohesive theme with a nice flow aimed at

defining and expanding upon the current knowledge of cognitive control in cognitive

dynamic systems and its practical applications. The general theme is based on the

following:

i) To provide an overview and critical review of the related literature (Paper I).

ii) To introduce basic concepts and a rationale definition, which matches practical

needs (Paper I and Paper II).

iii) To mathematically formulate the algorithmic processes of cognitive control with
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desirable practical properties (Paper II).

iv) To computationally implement the formalized method in a challenging example

pertaining to cognitive radar systems (Paper II).

v) To expand on the introduced paradigm of cognitive control and implement it as

the information supervisor over stochastic complex networks, which is a com-

pletely different application of practical importance (Paper III).

In addition to the comprehensive literature review presented in Paper I, explana-

tion of basic concepts with proper citations from related literature are also provided

throughout the three papers. The published works contained in this dissertation in-

variably contain some overlap with regards to their coverage of relevant literature as

well some aspects related to cognitive control itself. To address this overlap all the

references are collected in a unified manner at the end of this thesis. Additionally,

Section 1.3 is also dedicated to provide a cohesive overview of the entire thesis.

1.2 Summary of Enclosed Articles

The papers enclosed in this thesis are listed as follows:

1.2.1 Paper I (Chapter II)

Haykin, S., Fatemi M., Setoodeh, P., and Xu, Y.

Cognitive Control, Proc. IEEE, 100(12), 3156–3169, December 2012.

Preface: This paper includes a comprehensive literature review of related fields to

the new area of cognitive control. Most importantly, the concept of entropic state and

3
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the engineering definition for cognitive control are discussed in this paper. The paper

also includes a first-stage computational experiment involving the use of reinforcement

learning in cognitive control, which makes the basis for the second paper.

1.2.2 Paper II (Chapter III)

Fatemi M., Haykin, S.

Cognitive Control: Theory and Application, IEEE Access, 2, 698–710, June 2014.

Preface: After the literature review and conceptual definition of cognitive control

in the first paper, this second paper mathematically formulates cognitive control for

the first time. The formalism is on the basis of two basic concepts: the two-state

model, and the entropic state of the perceptor, both of which are defined in Paper I.

It is then proven in Paper II that the newly derived executive learning algorithm for

cognitive control is indeed a special case of Bellman’s dynamic programming; hence,

the inheritance of dynamic programming’s basic properties including convergence to

optimal value. More importantly, the presented algorithm for cognitive control is

stateless as opposed to both dynamic programming and the traditional reinforcement

learning. The end result of this proposition is that the cognitive control learning

algorithm becomes free of the so-called curse of dimensionality. Equally importantly,

this paper discusses predictive planning as the second process of cognitive control as

well as the explore/exploit tradeoff to improve the efficiency. The paper finishes with

a benchmark computational experiment, which is built on the experiment presented in

Paper I as well as the Q-learning and dynamic optimization methods for comparison.
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1.2.3 Paper III (Chapter IV)

Fatemi M., Setoodeh, P., and Haykin, S.

Improving Observability of Stochastic Complex Networks under the Supervision of

Cognitive Dynamic Systems, IEEE Transactions on Network Science and Engineer-

ing, paper submitted, October 25, 2014.

Preface: This paper expands on the results of the first two papers and provide a

generic paradigm for improving observability in stochastic complex networks. Paper

III first discusses the state-of-the-art for addressing the observability problem. In

particular, it provides a discussion on the shortcomings of the state-of-the-art regard-

ing stochasticity and complexity in terms of edge density. Next, it proposes to use

the cognitive dynamic system paradigm, embodying Bayesian filtering and cognitive

control, as the supervisor over complex stochastic networks. The results demonstrate

the fact that the proposed paradigm provides a consistent and flexible technique

for addressing the observability of stochastic complex networks under any desirable

constraints, including restrictions on monitor nodes.

1.3 Background and Coverage

In this section, a brief introductory account is provided on the materials that are

covered in the next chapters involving the three papers. Because comprehensive

literature reviews are presented within the scholarly journal articles, specifically in

Paper I, this section is only intended to serve as a cohesive overview of relevant topics

covered by this dissertation.

5
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1.3.1 Cognitive Dynamic Systems

The idea of cognitive dynamic systems, first described in Haykin (2006a) and then

expanded in more detail in Haykin (2012b), is inspired by the brain. Cognitive

dynamic systems are engineered dynamic systems on the basis of Fuster’s principles

of cognition Fuster (2003), namely perception-action cycle, memory, attention, and

intelligence. However, in this thesis, the centre of focus is to complete the perception-

action cycle by introducing cognitive control, which is responsible for selecting best

cognitive actions in each of the perception-action cycles.

In a generic sense, any cognitive dynamic system deals with an environment of

interest, which contains a number of hidden states. The perception-action cycle begins

with the perceptor processing the incoming environmental observables, followed by

feedback information about the environment sent to the controller by the perceptor

to set the stage for the controller to act on the environment. The action selected

by the controller, which is called cognitive action, naturally produces changes in the

amount of information that the environmental observables contain, which in turn,

sets the stage for a second perception-action cycle, and so it goes on. This distinctive

cyclic behaviour of cognitive dynamic systems is continued until we reach a point

where further information gain about the environment is too small to be of practical

value, assuming that the environment is stationary. The perception-action cycle, just

described, is said to be of a global kind, in that it embodies the environment within

itself. Furthermore, the controller is said to be cognitive controller in that it controls

the directed information flow throughout the entire system. The following points are

also noteworthy:

6
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• Closed-loop feedback system: From systems control perspective, the so-

called perception-action cycle results in a closed-loop feedback system, where

the cognitive controller sees the environment indirectly via the eyes of perceptor.

• Dynamic system: The entire system as a whole is dynamic in that it contains

“change” of the environment from each global cycle of perception-action to the

next.

• Stochasticity: The ever presence of uncertainty is unavoidable both as part

of observables as well as in the mathematical modelling of the environment.

Hence, the study of cognitive dynamic systems always involves dealing with

probabilistic properties and formulations.

1.3.2 Relevant Information about the Environment: The State

Space Model

In traditional sense, an environment contains a number of “targets” of interest, the

quantified conditions of which result in a number of hidden “states.” In actual fact, if

the states are given precisely, they provide sufficient information about the environ-

ment; hence, the states are the minimal relevant information about the environment.

In reality, unfortunately, the states are not normally available to us; rather, a number

of observables are given, which are being updated in a cyclic manner. As a result, an

important part of any cognitive dynamic system is its preceptor ; its ultimate role is

to reconstruct the states from the observables. Hence, the end result of the perceptor

is the state posterior, which is the probability distribution of states conditioned on

observables.

7
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1.3.3 Entropic State of Perceptor: The Two-state Model

Clearly, posterior’s shape is of the essence because it measures how much informative

the posterior is. Posterior shape is indeed a “qualitative” measure for the overall

performance of the perceptor itself in addition to the amount relevant information in

the observables. In many practical situations, one or more of the following issues are

involved:

• observables may not be informative enough, and/or

• sensory structure may add unwanted noise to the observables, and/or

• mathematical modelling of the environment may be imperfect.

Any of these issues will cause the posterior to become less informative. Therefore,

a “quantitative” measure of lack of information in the posterior is required, which

is defined as the entropic state of the perceptor. In many practical cases, Shannon

entropy (Shannon (1948)) corresponding to the posterior is the best choice for the

entropic state. Defining the entropic state results in having a two-state model, which

embodies two (sets of) states:

• The first one is the traditional target or physical state, pertaining to a target of

interest in the environment.

• The second one is the entropic state of the perceptor, discussed in this section.

In the next section, we define cognitive control as the paradigm for controlling the

second state.

8
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1.3.4 Why Cognitive Control?

The two-state model is an essential element in the definition of cognitive control.

Because there are two separate states (each of which may be a scalar or a vector of

real values), one can define two separate control processes, which may exist hand in

hand: (i) state control and (ii) cognitive control. In a related manner, the following

two points are worth mentioning:

• The realm of control theory, as we know it today and for ever more, is about

controlling the state of environment, which naturally embodies estimation the-

ory as an integrated part of the system. Broadly speaking, the literature of

control includes adaptive control, stochastic control, fuzzy control, intelligent

control, and others, each of which has established a legacy of its own in the lit-

erature. Returning to the two-state model, the traditional control is therefore

to control the first state in the two-state model.

• On the other hand, cognitive control in cognitive dynamic systems is about

controlling the entropic state. In a related manner in words, the function of

cognitive control is to control the directed information flow in the system on

a global cyclic basis. Cognitive control is therefore a new contribution to the

literature. It is also noteworthy that in practice, both state control and cognitive

control may exist side by side, specially so when we mimic the brain.

9
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1.3.5 Two Applications of Practical Importance

Cognitive Radar Systems

As our first testbed, we will look into cognitive tracking radar systems. This appli-

cation is based on a benchmark example, which was previously introduced in Haykin

et al. (2011), then elaborated in Haykin et al. (2012c). The significance and impor-

tance of this application is due to the fact that it can be generalized to any problem,

in which sensor properties are adjustable from one cycle of perception-action to the

next. Having the sensory adjustments as the cognitive actions of such problems, the

cognitive control theory can then be utilized to maximize the relevant information

that is available to the perceptor through sensory measurements.

Observability of Stochastic Complex Networks under Practical Constraints

Study of complex networks, called network science, has been accelerated recently

mostly due the impact that connected networks have had on different aspects of to-

day’s life. One problem of practical importance is the so-called observability problem,

which is how to reconstruct the state of a network on the sole basis of observing a

minimal number of its nodes. The problem becomes even more critical when the

network is very large and relatively dense. Additionally, in reality, the ever presence

of uncertainty and modelling imperfection cause much more difficulties in finding a

practical solution to the observability problem.

In this thesis, knowing that we have solved the cognitive control problem and it

is now available to us as a practical tool, we will go another step forward to tackle

the observability of stochastic complex networks. To this end, the network will play

the role of environment for the cognitive dynamic system; in return, the cognitive

10
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dynamic system is the information supervisor over the network. This novel way

of thinking will help us to find the best set of monitor nodes on a cyclic basis. An

important point to note here is that working on the observability of complex networks

is a very recent problem (although observability is not a new issue in systems and

control theory). As a result, even the recent prominent work reported in Liu et al.

(2013) is rather simplistic, dealing with only deterministic and sparse networks. In

a generic sense, Paper III will therefore pave the way to overcome shortcomings of

the state-of-the-art in the literature, and it provides a systematic and flexible way to

address the observability problem.

1.4 Scope of Research

Along the same line as the four annual reports to the committee and the research

proposal of the author of this thesis, the research reported in this thesis is meant for

defining, formulating, and implementing the new paradigm of cognitive control, as

a new way of thinking. All the mathematical formulations, algorithmic design, and

computational experiments are presented in the thesis. Thinking of cognition, the

cognitive control paradigm is an intrinsic part of a perception-action cycle. However,

the inclusion of other elements of cognition are outside the scope of this thesis and

left for future work. More will be said on the future work in the final chapter of this

thesis, specifically pertaining to Haykin et al. (2014), which involves the continuum

of this thesis in the Cognitive Systems Laboratory at McMaster University.
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The following chapter is a reproduction of an IEEE copyrighted, published paper*:

Haykin, S., Fatemi M., Setoodeh, P., and Xu, Y.

Cognitive Control, Proc. IEEE, 100(12), 3156–3169, December 2012.

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of McMaster University’s products or

services. Internal or personal use of this material is permitted. If interested in

reprinting republishing IEEE copyrighted material for advertising or promotional
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Chapter 2

Cognitive Control

2.1 Abstract

This paper, entitled Cognitive Control, is inspired by how this same function manifests

itself in the human brain and does so in a remarkable way.

After the Introduction, the paper addresses the many facets involved in the con-

trol of directed information flow in a dynamic system, culminating in the notion of

information gap, defined as the difference between relevant information (useful part

of what is extracted from the incoming measurements) and sufficient information

representing the information needed for achieving minimal risk. The notion of in-

formation gap leads naturally to how cognitive control can itself be defined. Then,

another important idea is described, namely the two-state model, in which one is the

system’s state and the other is the entropic state that provides an essential metric

for quantifying the information gap. The entropic state is computed in the percep-

tual part ( i.e., perceptor) of the dynamic system and sent to the controller directly

as feedback information. This feedback information provides the cognitive controller
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the information needed about the environment and the system to bring reinforcement

leaning into play; reinforcement learning, incorporating planning as an integral part,

is at the very heart of cognitive control. The stage is now set for a computational

experiment, involving cognitive radar wherein the cognitive controller is enabled to

control the receiver via the environment. The experiment demonstrates how rein-

forcement learning provides the mechanism for improved utilization of computational

resources, and yet be able to deliver good performance through the use of planning.

The paper finishes with concluding remarks.

2.2 Introduction

Much has been written on cognitive control in the neuroscience and psychology lit-

erature (see for example Mars et al. (2012) and Gardner et al. (1959)). In contrast,

from an engineering perspective, cognitive control is in its very early stage of develop-

ment. Looking back to the history of the field of control engineering in the twentieth

century, we see a trend in the evolution of controllers from simple structures such as

open-loop and proportional-integral-derivative (PID) controllers to much more sophis-

ticated ones with features such as optimality, adaptivity, robustness, and intelligence

to some extent.

Control systems are usually designed, based on a trade-off between optimality

and robustness. In addition, it is desirable that the controller has the ability to

change its behavior in accordance with new circumstances. Adaptive controllers and

neurocontrollers have been proposed in the literature to address this issue. In adaptive

control, the control problem is formulated in a way that the controller has some

adjustable parameters. The controller is also equipped with an adaptation mechanism
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for updating the parameters according to variations in dynamics of the system with

which it interacts as well as the nature of disturbances. Adaptive control systems

are inherently nonlinear due to the adaptation mechanism Aström and Wittenmark

(1995); Landau et al. (2011); Sastry and Bodson (1989); Ioannou and Sun (1995).

While adaptive control is mainly based on parameterized mechanistic modeling,

neurocontrollers are based on black-box modeling. Hybrid models (i.e. combination

of mechanistic modeling and black-box modeling) can also be used, when finding

mechanistic models is straight forward for some parts of the system and difficult for

other parts. Control systems can benefit from neural networks in two different ways.

One way is to implement the controller using a neural network. In this approach, the

controller itself is a neural network; alternatively, the controller may not be a neural

network but uses a neural network-based model of the system under study Nørgaard

et al. (2000); Hrycej (1997); Lewis et al. (1998); Puskorius and Feldkamp (2001).

Typically, these controllers function well in structured environments and pre-

specified conditions, for which they are designed. However, they will not function

properly if the system of interest has unmodeled dynamics. In unstructured and/or

highly uncertain environments, the presence of a human operator in the control loop

is indispensable. In such environments, the controller often reaches points of surprise,

for which it has not been programmed. This issue normally arises because the con-

troller is unable to collect the sufficient information it requires to achieve its goals in

a self-organized manner. Based on what is known in psychology and neuroscience, it

appears that cognition is the needed functionality that should be built into control

systems in order to reduce human intervention in the control loop. The article by

Buss et al. is an endeavor to motivate the need for cognitive control in order to elevate
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the use of automation to the next level Buss et al. (2011).

Cognitive control can be viewed as part of a more general framework, called cogni-

tive dynamic systems (CDS) Haykin (2012a,b). The CDS theory is built on Fuster’s

paradigm of cognition, which states that a cognitive system, in its most general form,

has five building blocks, namely the perception-action cycle, memory, attention, in-

telligence, and language Fuster (2003). The perception-action cycle is the backbone

of any closed-loop feedback control system. It can be argued that an adaptive con-

trol system may well embody attention and intelligence as well, but lacks memory.

Language is more relevant in the context of a network of cognitive agents.

A large percentage of the information processing in the brain is performed in

the cortex and it plays a key role in processes attributed to cognition. Regarding

the uniform appearance of the cortex, Mountcastle proposed that all regions of the

cortex may use a basic information-processing algorithm to accomplish their tasks,

regardless of the nature of the information-bearing sensory input. In other words, all

kinds of sensory inputs (i.e. visual, auditory, etc) are coded in a standard form and

fed to this basic processing algorithm Mountcastle (1998). Building on Mountcastle’s

theory, Fuster proposed the concept of cognit for knowledge representation in the

cerebral cortex Fuster (2003).

The flow of information in our nervous system plays a critical role in sustaining our

vital activities, performing our daily tasks and, even to some extent, determines who

we are, especially so when it comes to memory formation. By the same token, the flow

of information in man-made machines is of critical importance, regarding performance

and robustness of the system. Therefore, controlling the flow of information deserves

special attention in the study of cognitive control. Building on achievements of the
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engineering and neuroscience communities for more than six decades, this paper is

aimed at a new generation of control systems that are inspired by the human brain,

hence the title: cognitive control.

The paper is organized as follows: Section II presents the tale of endeavors on

directed information flow in control systems, which has led to the important con-

cept of information gap. It is, in turn, related to the risk associated with an action

or decision policy. Having the aim of reducing the information gap, Section III pro-

poses a definition for cognitive control from an engineering perspective, with guidance

from neuroscience. Another important notion, namely the two-state model, is then

introduced in Section IV to take account of a quantitative measure of the informa-

tion gap. Section V describes the reinforcement learning paradigm and its existence

in mammalian brains in order to provide the background for Section VI, where the

compositional structure of cognitive control is discussed. Section VII includes two

computational experiments on cognitive control in a tracking radar system with em-

phasis on reinforcement learning and planning. Finally, Section VIII concludes the

paper.

2.3 Control of Directed Information Flow

This section describes the endeavor of the engineering community to design systems

with increased level of sophistication by looking into nature as the main source of

inspiration. It is the story of evolution of ideas for more than half a century. It is the

tale of standing on the shoulders of giants by building on well-established theories,

modifying them to extend their applicability to new domains, revisiting them from

new perspectives, and integrating them to form more general theoretical frameworks.
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Adopting an interdisciplinary approach, after World War II, Wiener had come to

the conclusion that the fields of control and communications are both centered around

the notion of information, where feedback plays a key role in information manipula-

tion and decision making Wiener (1965, 1950). To this end, he came up with the idea

of inseparability of these two fields and tried to gather his own work on control and

statistical signal processing Wiener (1964), Shannon’s information theory Shannon

(1948); Shannon and Weaver (1949), and Kolmogorov’s work on prediction theory

Shiryayev (1992a,b) under a unified umbrella. Wiener called this unifying framework

cybernetics, which is rooted in the Greek word for steersman. As a result of Wiener’s

close collaboration with the engineer Bigelow and neurophysiologist Rosenblueth, the

theory of cybernetics was based on the hypothesis that despite functional differences,

machines and living organisms have similar behavioral mechanisms Wiener (1965);

Seising (2008). Wiener also wished to highlight and draw attention to the similari-

ties between the human nervous system on the one hand, and the computation and

control in machines, on the other hand, to reach a new interpretation of man, man’s

knowledge of the universe, and society Wiener (1965). In light of these pioneering

contributions of Wiener, Dupuy has justifiably argued that cognitive science has its

roots in cybernetics Dupuy (2009).

Wiener learned much from the experience gained through working on anti-aircraft

guns during World War II. In the beginning, human operators were responsible

for gun-pointing, based on line-of-sight tracking of aircraft. Later on, this human-

centered gun-pointing system was replaced with an automatic one by directly coupling

a radar to the anti-aircraft gun. However, it would still not seem to be practical to

completely remove the human operator from the control loop, especially when the
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behavior of another human being (i.e. the enemy) needed to be counteracted. By

increasing the speed and maneuverability of an aircraft, providing a degree of auton-

omy for directing the fire was indispensable. However, the system needed to predict

the trajectory of the aircraft to make sure that the missile would hit the target at

some point of time in the future. Wiener and Bigelow knew that both pilots and

gunners would learn their opponent’s pattern of behavior and, based on that behav-

ior, improve their own performance over the course of time. To this end, they needed

to understand how pilots and gunners were thinking, so as to design a system that

would be able to somehow mimic human behavior Wiener (1965); Seising (2008).

Since feedback acts like a double-edged sword, Wiener and Bigelow noticed that

as they were pushing for improving the performance of the system, it was possible

for the system to become unstable and show oscillatory behavior. They wondered

if a similar phenomenon had been observed regarding the nervous system of human

beings. In other words, they wondered if there was any nervous-system disorder in

which there was no sign of tremor at rest but during an action, the patient was starting

to shake more and more severely till he/she could not perform the task. Rosenblueth’s

answer to this question was intention tremors associated with the cerebellum, which

is responsible for controlling organized muscular activities. From this pathological

resemblance, Wiener, Bigelow, and Rosenblueth concluded that intentional actions

in both machines and living organisms can be explained with feedback. They also

proposed a behavioral approach for studying systems. This approach is based on an

abstract model of the system of interest, which determines the relationship between

its input and output. In this abstract model, the output of the system represents any

change it causes to the surrounding environment and its input represents the effect
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of the external events on the system. In this context, feedback provides the means

for information manipulation Wiener (1965); Seising (2008).

As mentioned before, Shannon’s information theory is one of the pillars of cy-

bernetics. Shannon’s information theory was originally developed to mathematically

formalize the transmission of signals through a communication channel. The theory

provides a quantitative measure of the amount of information, which depends only on

the probabilistic structure of the communication channel under study. Information

theory has found diverse applications beyond just transmission and compression of

data.

Howard emphasized that from a control or decision-making point-of-view, the

probabilistic nature of uncertainties as well as their (economic) impacts on the decision-

maker must be taken into account and a theory that only deals with probabilities of

outcomes may not completely describe the importance of uncertainty to the decision-

maker. When it comes to allocation of computational resources for information pro-

cessing, the value of information is of critical importance Howard (1966).

As Corning stated Corning (2001), “Shannon’s information is blind to the func-

tional properties of the information.” According to Corning, the lack of a functional

definition of information is the main cause that the full potential of Wiener’s cyber-

netics paradigm Wiener (1965, 1950) has not been realized. Corning suggested the

notion of control information, which is defined in Corning (2001) as follows:

“Control information is not a thing but an attribute of the relationships

between things. It is the capacity (know-how) to control the acquisition,

disposition, and utilization of matter/energy in purposive (cybernetic)

processes.”
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Building on this line of thinking, information is the useful or relevant portion

of the data. Here, usefulness or relevance finds a meaning only in the context of a

perceptual task aimed for performing decision-making or control Soatto (2009). Also,

the notion of relevance plays a key role in feature extraction, dimension reduction,

and learning. It can be quantified using the concept of sufficient statistics, which was

proposed by Fisher Fisher (1922) for parametric distributions. To be more precise,

if all the information about the parameters of such distributions can be captured by

some functions of a statistical sample, those functions will be considered as sufficient

statistics Shamir et al. (2010). In this context, the coarsest sufficient partition of ran-

dom variables, which is drawn from the corresponding distributions, is called minimal

sufficient statistic Lehmann and Casella (1998). The sufficiency of a statistic for a

particular task is specified by the risk associated with a control or decision policy. In

statistical decision theory, risk is usually defined as the expected loss (or cost) Berger

(1985).

Hence, the value of data must be related to its complexity after cancelling the

effect of nuisance factors. Nuisance factors, such as clutter, are the cause of much

of the complexity in data. This leads us to the notion of information representation,

which is associated with the concept of Kolmogorov complexity. Kolmogorov’s theory

states that the length of an optimal (non-redundant) statement (code) that defines a

category is a measure of its complexity Li and Vitanyi (2008). Kolmogorov complex-

ity is closely related to the intuitive notion of conceptual difficulty Feldman (2000),

Sigman (2004).

Gibson was also one of Shannon’s critics; he had a different view on informa-

tion. Gibson’s notion is that information consists of invariants underlying change
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Information Gap

Available Information

Sufficient Information

Measurements

Figure 2.1: Schematic illustration of the information gap: (a) In this graph, the
dashed-line square on the top indicates the noisy measurements, from which the
available information is extracted. Dashed-line is used to emphasize the fact that
measurements may not be in the same space as available information is. In other
words, available information is extracted from the measurements by the perception
process, and the relationship between them is not necessarily set-inclusion. The
square at the other corner of the graph demonstrates the sufficient information, which
has an overlap with available information. That part is the relevant information,
shaded in yellow. The rest of available information, shaded in pink, is therefore
redundant information, since it is not relevant to the task at hand. Finally, part of
sufficient information, which is left out of available information and shaded in blue,
is the information gap. (b) This diagram illustrates the explained concepts in a tree
format. The arrows indicate extraction at the top level, inclusion at the middle level,
and subtraction at the bottom level.
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Gibson (1976). Extraction of invariants relates to the explanation of how an ob-

server perceives a true phenomenon of interest, despite uncertain sensory inputs on

which the perceptions rely Gibson (1986). Inspired by Gibson’s work, Soatto called

an operational notion of information, actionable information Soatto (2009). Since

the question of representation is not quite valid without bringing the task into the

equation, he addressed the issue of representation, taking account of decision-making

and control. Hence, actionable information is a measure for the portion of data that

is relevant to the task after removing complexity in the data due to nuisances. In

other words, actionable information is defined as the complexity (coding length) of a

maximal statistic that is invariant to the nuisances associated with a given task. A

statistic (or feature) is invariant if its value does not depend on the nuisance. Maxi-

mal invariant is the largest among all invariant statistics in the sense of inclusion of

σ-algebras generated by the statistics 1.

The two attributes of relevance and complexity bring us to the concept of in-

formation bottleneck, which is closely related to Soatto’s approach Tishby (1999).

Information Bottleneck is aimed at finding a compressed, non-parametric, and model-

independent representation T of a random variable Y that is as relevant and infor-

mative as possible to another random variable X. In this framework, the mutual

information2 between T and Y , I(Y ;T ), is a measure of complexity, which should be

minimized and the mutual information between T and X, denoted by I(X;T ), is a

measure of informativeness, which should be maximized. Hence, finding the desired

representation T can be formulated as an optimization problem in which the trade-off

1A nonempty subset of the power set of a nonempty set is a σ-algebra if it includes the empty
set and it is closed under complementation and countable unions Shreve (2004).

2Mutual information between two random variables is a measure of the amount of information
that one contains about the other. It can also be interpreted as the reduction in the uncertainty
about one random variable due to knowledge about the other one Cover and Thomas (2006).
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between complexity and informativeness can be controlled by a lagrange multiplier.

For parametric distributions, minimal sufficient statistics minimize the mutual in-

formation I(Y ;T ) Cover and Thomas (2006). We may therefore view information

bottleneck as a generalization of the classic notion of minimal sufficient statistics

Shamir et al. (2010).

In general, invariant and sufficient statistics may form two different sets; the dif-

ference between these two sets leads us to the concept of information gap. In order to

be able to bridge the information gap, the system must be able to control the percep-

tion process Soatto (2009). Thus, perception and control are quite intertwined with

the emphasis on dependence of perception as a thoughtful activity on the capacity for

action. Soatto’s approach is tailored for active vision, which deals with a specific type

of sensors; the approach is an important step towards a general theory of controlled

sensing Soatto (2009).

The concept of controlled sensing is well described by Noë in his book on “Action

in Perception” Noë (2004):

“What we perceive is determined by what we do (or what we know how

to do); it is determined by what we are ready to do. ... [To be] precise, we

enact our perceptual experience, we act it out.”

Regarding the critical role of information, complex systems can significantly ben-

efit from a mechanism that controls the directed flow of information in a way to

decrease a properly-defined task-specific information gap. Decreasing the informa-

tion gap will reduce the risk involved in achieving a satisfactory level of performance.

In order to find an appropriate name for such a control mechanism, we may look to

the neuroscience literature, in the context of which the term cognitive control sounds
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appealing.

Building on the terminology presented so far, Fig. 2.1 summarizes the concept of

the information gap in a way that is relevant to our context. As illustrated,

• available information is extracted from noisy measurements, which also includes

mapping from measurement space to information space.

• Regarding the task at hand, available information can be partitioned into rele-

vant and redundant information.

• We define sufficient information as the required information for performing the

task at hand with minimal risk. The mentioned relevant information is therefore

the intersection between available information and sufficient information.

• Finally, the difference between sufficient information and available information

forms the information gap.

In the following sections, we first look at psychology and neuroscience to pave the

way how cognitive control can be defined and then, we present a systematic way of

implementing cognitive control for managing the information gap.

2.4 How Do We Define Cognitive Control?

The term cognitive control was first used by psychologists and neuropsychologists.

For example, Gardner et al. Gardner et al. (1959) explain six control principles

(levelling-sharpening, tolerance for unrealistic experiences, equivalence range, focus-

ing, constricted-flexible control, and field dependence-independence) and 14 experi-

mental tasks to measure them.

25



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

Then, Hammond and Summers proposed that Hammond and Summers (1972):

“Performance in cognitive tasks involves two distinct processes: acquisi-

tion of knowledge and cognitive control over knowledge already acquired.”

They asserted that acquisition and application of knowledge are independent com-

ponents of learning in cognitive tasks as well as psychomotor tasks, and then tried

to introduce the concept of cognitive control theoretically, and illustrate its empiri-

cal significance in studies of human learning, judgment, and interpersonal behavior

Hammond and Summers (1972). They also emphasized the role of task-related feed-

back as opposed to response-oriented feedback and tried to develop a multiple-cue

probability learning theory. Some years later, the following definition was proposed

in Brass et al. (2005):

“Cognitive control processes refer to our ability to coordinate thoughts

and actions in accordance with internal goals.”

A similar definition can be found in Kouneiher et al. (2009) as well. Yet, another

relevant definition presented in Alexander and Brown (2011) is as follows:

“Cognitive control at the neural level is seen as a result of evaluating the

probable and actual outcomes of one’s actions.”

The work done by Feldman and Friston Feldman and Friston (2010) directly re-

lates the neuropsychological ideas to the probabilistic view of an environment. For

example, they explain that through attention, the brain optimizes its probabilistic

representation of the environment. In information theory’s terminology, that might

be understood to mean a probabilistic representation with minimum entropy due to
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the fact that entropy is a measure of uncertainty about a random variable Shannon

(1948); Cover and Thomas (2006).

Both in the human brain Rao and Ballard (1997, 1999) and in cognitive dynamic

systems Haykin (2012a,b), a perception process is performed on sensory measure-

ments. The role of perception is to extract the available information out of noisy

sensory measurements. In response to information extracted through the perceptor,

the human brain performs actions in order to continually enhance this information in

subsequent cycles. These actions could be called cognitive actions.

For example, say you are in an almost dark room. You might not recognize all

the objects clearly. So, the brain will enlarge the pupil size to increase the light

entering into the eyes (i.e., to increase information). Suppose the room is too dark so

that changing the pupil size does not help. In such a situation, you may perform an

external action such as turning on the light. These actions are not being applied to

change the state of the environment (for example, the place of objects in the room),

but to mitigate the level of uncertainty.

Cognitive Control from an Engineering Perspective

Thus far, the definitions of cognitive control that we have cited, have been drawn

from psychology, neuropsychology, and neuroscience. In this paper, we borrow the

term cognitive control from neuroscience, and propose the following definition from an

engineering perspective with emphasis on controlling the directed flow of information:

“Given a probabilistic dynamic system that at least has the perception-

action cycle, and ideally mimics the human brain, the function of cognitive

control is to adapt the directed flow of information from the perceptual

27



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

part of the system to its executive part so as to reduce the information

gap, which is equivalent to reducing the properly defined risk functional

for the task at hand, the reduction being with a probability close to one.”

As mentioned before, risk is defined as the expected loss associated with a decision

Berger (1985). As a result, there is a requirement for a metric to quantify the in-

formation gap. This necessity leads us to the notion of a new type of state to be

controlled. This idea is explained in the following section.

2.5 The Two-state Model

At a specific point in time, the state of a dynamic system represents the minimal

information that defines the actual condition of the system at that time. By the same

token, any change in the state over time (state trajectory) represents the behavior of

the system. However, the state is accessible only through noisy measurements, which,

in turn, calls for a perception process to provide a posterior distribution. As explained

in Section 2.3, the difference between the maximal useful information available in the

posterior and the sufficient statistics for the given task results in the information gap.

This new quantity is thereby defined as the entropic state. The rationale behind

choosing this name is that a first-hand candidate for this metric is Shannon’s entropy

of the posterior due to the fact that entropy can be considered as a global measure of

the behavior of the corresponding probability distribution function. This discussion

can be summarized in the following two notions of state:

• system’s state, which is invariant with respect to the measurement process, and

• entropic state, which is a metric for quantifying the information gap.
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Due to uncertainties both in modelling and in measurements, we have to model

the state of the system by random variables, and the result of perception will be the

posterior distribution, as explained before. The notion of the two mentioned states

naturally results in thinking in terms of a two-state model of a cognitive control

system, composed as follows:

• State-space model, which includes the corresponding mappings from input to

state and from state to output. This model also describes evolution of the

system’s state over time.

• Entropic-state model for quantifying the information gap, given the posterior

computed by the perception, which depends on environmental uncertainties and

disturbances in addition to the sensors’ own limitations and modeling errors, as

well as the sufficient statistics, which depend on the problem under considera-

tion.

Both models may vary from one cycle of the perception-action process to the next

in accordance with statistical variations of the environment. Moreover, the feedback

information passed on to the cognitive controller is simply the entropic state. As a

result, in practice, cognitive control is the paradigm of reducing the entropic state. In

the following section, we first present a short review of reinforcement learning (RL)

and the fact that it is practiced in mammalian brains, then we explain that RL is

naturally the tool for cognitive control.
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2.6 Reinforcement Learning

Reinforcement learning (RL) is the mathematical paradigm of learning the best pos-

sible action on the sole basis of environmental rewards and punishments (positive and

negative rewards). In RL, the goal is to maximize some form of rewards accumulated

over the course of time, which are the consequences of a selected action at the current

time instance. In neuroscience and computational neuroscience, there are now evi-

dences that support the existence of RL in mammalian brains. This belief has been

strongly supported through electrophysiological recordings in behaving animals and

functional imaging (fMRI) of human decision-making process Niv (2009); Dayan and

Niv (2008).

The history of the existence of RL in mammalian brains starts with behavioral

studies and goes way back to Pavlovian (classical) conditioning, which involves con-

ditionally learned predictions Yerkes and Morgulis (1909). Pavlov observed that dogs

can be conditioned to predict serving food by a non-relevant stimulus (conditioning

stimulus) such as ringing a bell before they really get served. The dogs then salivate

to the ringing of the bell even if there would be no food at all. After the classical con-

ditioning comes the instrumental conditioning, which is learning actions that increase

the probability of rewarding events and decrease the probability of adverse events. In

other words, instrumental conditioning is a form of learning, in which the behavior

is modified by the consequences of actions that result in the behavior. As Y. Niv

asserts Niv (2009):

“The study of instrumental conditioning is an inquiry into perhaps

the most fundamental form of rational decision-making. This capacity to

select actions that influence the environment to one’s subjective benefit is
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the mark of intelligent organisms. [Choosing actions] that will maximize

rewards and minimize punishments in an uncertain, often changing, and

computationally complex world is by no means a trivial task.”

In addition to those behavioral research efforts and perhaps above them, more

recent studies have revealed strong neuro-cellular/molecular evidences of RL. The

dopaminergic neurons in the midbrain are now evidently known as the means of

performing RL in the brain Schultz (1998); Niv et al. (2005); Niv (2009); Dayan and

Niv (2008); Surmeier et al. (2009). Along the same line of thinking, one of the most

important findings, which proves the existence of RL in mammalian brains, is the

discovery of a key RL signal in the brain that is understood as the temporal-difference

reward-prediction error Montague et al. (1993); Barto (1995); Montague et al. (1995,

1996). Additionally, using linear regression, it has been shown that the previously

experienced rewards has a part to the dopaminergic response to the current reward,

which is exactly according to an exponentially-weighted average of past experience,

as is implied by the TD learning rule Bayer and Glimcher (2005); Bayer et al. (2007);

Niv (2009).

Computationally, RL theory has been formalized in two parallel but distinct lines

of research. In the first line, inspired by Pavlovian (classical) and instrumental con-

ditioning and with the aim of artificial intelligence and agent-based learning, Sutton

and Barto shaped the core concepts and algorithms of what is now extensively known

as the theory of reinforcement learning Sutton (1978); Barto et al. (1983); Sutton

(1984); Sutton and Barto (1990, 1998). In the second line, based on optimal con-

trol and Bellman’s dynamic programming Bellman (1956, 1957, 1966), Bertsekas and

Tsitsiklis developed a group of stochastic approximations, which have been known
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as neuro-dynamic programming and approximate dynamic programming Bertsekas

(2005); Bertsekas and Tsitsiklis (1996). However, it should be noted that, aside form

the notations, the difference is mostly due to the definition of reward (in Sutton and

Barto’s paradigm) and cost (in Bertsekas and Tsitsiklis’ paradigm); the former should

be maximized, while the latter should be minimized.

There are, on the other hand, several occasions that these (mostly) mathematical

theories in the machine-learning literature give insight to computational neuroscien-

tists. For example, inspired by artificial neural-networks, Barto and his associates

showed that the credit assignment problem3 can be effectively solved by a learning

system, which consists of two neuron-like blocks Barto et al. (1983). One block, called

the “adaptive critic element (ACE),” evaluates different states of the environment,

using a temporal-difference-like learning rule (from which the TD learning rule was

later developed Niv (2009)). The other block, called the “associative-search element

(ASE),” then learns to select the best action by means of a trial-and-error process,

using the evaluation provided by the first block. Notably Niv (2009); Dayan and Niv

(2008):

“These two blocks are the precursors of the modern-day Actor/Critic

framework for model-free action selection which has been closely asso-

ciated with reinforcement learning and action selection in the brain.”

In fact, the one central idea in the RL literature is temporal-difference (TD) learn-

ing, which is the combination of Monte-Carlo methods and dynamic programming

ideas Sutton and Barto (1998). Although TD learning has its early roots in animal

3The credit assignment problem is the problem of assigning credit or blame for overal outcomes
to each of the internal decisions made by the hidden computational units of the distributed learning
system Haykin (2009).
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psychology and artificial intelligence Samuel (1959); Klopf (1972), the first algorithm,

called TD(0), and the famous example of random walk was created by Sutton Sut-

ton (1988) (likewise the term temporal-difference). Since then, the machine-learning

literature has proposed various versions and complementary ideas of the TD learn-

ing signal, associated with slightly different model-free RL methods Dayan and Niv

(2008); Sutton and Barto (1998). The two important ideas among them are Q-

learning and Sarsa (State-Action-Reward-State-Action). Q-learning is an off-policy4

control algorithm, which was first introduced by Watkins in his Ph.D. dissertation

Watkins (1989), and the convergence proof was later made rigorous by Watkins and

Dayan Watkins and Dayan (1992). On the other hand, the Sarsa algorithm, which

is an on-policy algorithm, was first explored by Rummery and Niranjan Rummery

and Niranjan (1994), although they called it modified Q-learning, and the name Sarsa

was latter introduced by Sutton Sutton (1996). Recent evidence looking primarily at

one dopaminergic nucleus seems to support Sarsa Morris et al. (2006), whereas evi-

dence from a rodent study of the other major dopaminergic nucleus favors Q-learning

Roesch et al. (2007), Dayan and Niv (2008). Whether Q-learning is performed in

the brain or Sarsa (or a combination of them), the fact is that the TD idea is now

accepted to be a part of brain’s mechanism for selecting the best action.

In what follows, reinforcement learning and planning will be discussed form a more

formal point of view. We will also explain how RL is rationally an intrinsic part of

cognitive control and briefly review its attributes. A mathematical treatment of RL

in cognitive control has been presented in Fatemi and Haykin (2013).

4In off-policy algorithms, the policy used for learning is different form the one used for selecting
control actions, whereas, in on-policy algorithms, both learning and control share the same policy.
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Figure 2.2: Schematic structure of a cognitive control system integrated inside a
perception-action cycle of a CDS, and next to a state controller. It is worth noting that
in real-world applications, not all the cognitive action links, shown in the diagram,
might necessarily exist. Similarly, in case that the CDS acts as an observer (e.g.
cognitive radar systems), the state controller will not be included.
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2.7 Compositional Structure of Cognitive Control

In this section, we take a closer look at cognitive control in order to provide formal

tools for its engineering design. Having the goal of decreasing the information gap and

the fact that entropic-state, by definition, quantifies the information gap, cognitive

control addresses two sub-problems:

1. optimal estimation of entropic state, and

2. optimal control of entropic state.

In so doing, the perception process is carried out on the sensory measurements, which

results in the posterior of the system’s state. Then, the entropic state is to be cal-

culated from the posterior, and finally it should be controlled in an optimal (or

sub-optimal) manner. For example, the perception process might be performed by

a Bayesian estimator Ho and Lee (1964), which calculates the posterior of the sys-

tem’s state in each perception-action cycle. When the environment is linear with

additive white Gaussian noise, the Bayesian filter simplifies to the Kalman filter as a

special case Kalman (1960). However, when the environment is nonlinear and/or non-

Gaussian, the usual procedure is to seek some form of approximation to the Bayesian

filter; this approximation may take the form of an extended Kalman filter Bar-Shalom

et al. (2001), unscented Kalman filter Julier et al. (2000), or Cubature Kalman Fil-

ter Arasaratnam and Haykin (2009) for nonlinear but Gaussian environments, or a

particle filter Ristic et al. (2004); Gordon et al. (1993) for general nonlinear and non-

Gaussian cases. Then, the entropic state is logically Shannon’s entropy Cover and

Thomas (2006) of the resulting posterior. Before going further and explaining the

configuration of the cognitive controller as an RL agent, let us first take a look at the
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entire structure of a cognitive dynamic system (CDS).

2.7.1 Cognitive Control Integrated Inside CDS

Building on Fuster’s paradigm, Fig. 2.2 describes the functional block diagram of a

cognitive dynamic system integrating within it, the cognitive controller. In this figure,

we readily see that the perception-action cycle and memory occupy physical spaces

of their own. On the other hand, attention and intelligence manifest themselves in

the form of algorithmic mechanisms, distributed throughout the system.

1. The Perception-action cycle (PAC): Following the terminology of neuroscience,

the perceptual part of the CDS resides in the right-hand side of the figure,

whereas its executive counterpart resides in the left-hand side. In effect, the

perceptual part of the system, called the perceptor, observes the system and the

environment directly, whereas the executive part, called the controller, observes

them indirectly through the “eyes” of the perceptor. This indirect observation

of the system and the environment is made feasible by virtue of the feedback

link that connects the perceptor to the controller.

2. Memory : It builds on the perception-action cycle, as depicted in Fig. 2.2.

Specifically, we have:

• Perceptual memory, which is desirably of a hierarchical structure that con-

sists of multiple layers of information processing. The motivation of this

hierarchical structure is that of perceptual abstraction of the incoming mea-

surements.
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• Executive memory, which performs a dual function to the perceptual mem-

ory, as shown in Fig. 2.2; the executive memory has a hierarchical structure

of its own.

• Working memory, the function of which is to reciprocally couple the per-

ceptor and controller together, thereby constituting an integrated memory

system. This reciprocal coupling makes the cognitive controller operate in

a synchronous fashion from one PAC to the next.

3. Attention: It manifests itself in an algorithmic manner as perceptual attention

in the perceptor and as executive attention in the controller. While perceptual

attention deals with the information overflow problem, executive attention im-

plements a version of the principle of minimum disturbance Widrow and Lehr

(1990); Haykin (2001).

4. Intelligence: It builds on the PAC, memory, and attention, an integrated com-

bination that makes intelligence the most powerful of all the cognitive processes

and the most difficult one to define. Similar to attention, intelligence does

not occupy a physical place within the CDS, rather its influence is distributed

throughout the whole system, and thereby it derives its information-processing

power by exploiting all the feedback loops within the CDS, be they global and

therefore embodying the environment, or local being confined within the CDS.

In short, we may say that the global and local feedbacks are the facilitator of

computational intelligence in a CDS.

As illustrated in Fig. 2, cognitive actions can influence different parts of the CDS:

• Cognitive actions might be applied to the environment in order to indirectly
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affect the perception process. An example of this type is turning on the light

in a dark room. Here, the physical state includes the position of objects, which

is not affected by the light.

• Cognitive actions might also be applied to the system itself in order to reconfig-

ure the sensors and/or actuators, an example of which is changing the pupil size

of our eyes according to different light intensities. Another example is changing

the transmitted waveforms of a cognitive radar system.

• Additionally, cognitive actions might also be applied as a part of state-control

actions (physical actions). In such a case, a physical action is applied to the

system, but with the goal of decreasing the information gap (with or without

other goals). For instance, consider a quadratic optimal controller with a cost

function of the form

J = (x− xd)
TQ(x− xd) + uTRu (2.1)

to be minimized, where x and xd are the system’s state and its corresponding

desired-value vectors, u is the physical control vector, the matrices Q and R

apply the desired weights for system’s state and control respectively, and the

superscript T denotes matrix transposition. To include a cognitive goal, we

may add another term to (2.1) to take care of the information gap as well. The

resulting cost function may now be formulated as

J = (x− xd)
TQ(x− xd) + uTRu + βH, (2.2)
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where H is the entropic state and the scalar β is an importance factor (Q, R,

and β are design parameters).

Nevertheless, all these different types of cognitive actions do not necessarily exist

in a given problem. In actual fact, a real-world problem might include only one

of the above mentioned types of cognitive actions, even without the system’s state

controller. An example is a cognitive radar system, which only estimates the state of

the target without being able to physically control it. In this paper, we mostly focus

on cognitive actions, which are directly applied to the system (or to the environment).

Such actions call for the implementation of RL and planning in the cognitive control

agent, as discussed next.

2.7.2 RL in Cognitive Control

Let us denote the entropic state by Hk|k
5, when it reaches the cognitive controller in

Fig. 2 at cycle k, after it perceived (estimated) given all the information up to and

including cycle k. For optimal control of the entropic state, note that Hk|k cannot be

controlled directly, even if it gets estimated optimally. Therefore, the primary goal of

decreasing Hk|k cannot be achieved via direct-goal-oriented control techniques, such as

full-state feedback control techniques. Additionally, and perhaps more importantly,

entropic state is required to be minimized, not just for the next cycle but rather over

some lookahead time horizon. In more formal terms, the cognitive-control action at

cycle k should optimally minimize the entropic state at cycle k+ 1 and all the cycles

thereafter, based upon knowledge of the environment at cycle k. These two issues

5Here, Xm|n denotes the value of X at time (or at cycle) m, given the information up to and
including time (or cycle) n.
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naturally form the cognitive-control paradigm as a reinforcement-learning problem.

Indeed, RL is at the very heart of a cognitive controller.

In RL, the most basic concept is that of finding a policy is facilitated “only” by

rewards, which are provided by the environment. Based on the Markov assumption,

in RL we refer to a model by knowing Pass′ and Ra
ss′ , defined as follows, respectively:

Pass′ = P [sk+1 = s′|sk = s, ak = a], and (2.3)

Ra
ss′ = E[rk|sk+1 = s′, sk = s, ak = a], (2.4)

where, s is the state supposed to be controlled and a is the action that the control

agent can apply to the environment in order to control s. Note that s is not necessarily

the physical state of the system. Indeed, in cognitive control, it is the entropic state.

Pass′ can be found directly from the (stochastic) model that defines the evolution of s

over time; however, to find Ra
ss′ , we need to introduce another equation to model the

behavior of the reward function at cycle k (i.e., rk).

In cognitive control, because the cognitive controller’s aim is to decrease the en-

tropic state, a rational reward should include the entropic-state decrement between

two subsequent cycles. It is therefore called the entropic reward :

rk = gk(Hk−1|k−1 −Hk|k) (2.5)

where, gk(.) is, in general, an arbitrary function6. Then, the RL framework ensures

decreasing the entropic state not only in the immediate cycle but in the look ahead

horizon.

6However, g(.) should be invertible, as discussed in Fatemi and Haykin (2013).
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To calculate the entropic reward, assuming that the noise distributions in the

state-space model can be predicted (or if they are given), then the entropic state can

be predicted using a Bayesian filter. Therefore, we might benefit from the prediction

of future rewards for planning.

In RL, there are two distinct but similar concepts as follows Sutton and Barto

(1998):

• Learning uses actual values of the reward.

• Planning uses predicted values of the reward.

Planning requires a model of the environment to simulate future rewards; however,

both learning and planning can use the same algorithm, since they conceptually per-

form the same task Sutton and Barto (1998). The important point to note here is

that learning can be done only once in each perception-action cycle and only for the

selected action (since it is based on the actual reward), whereas, in each cycle, plan-

ning can be performed for any number of simulated future cycles and any number

of actions. Planning and learning can be integrated to achieve the best result. To

this end, Sutton and Barto suggest a simple structure called Dyna Sutton and Barto

(1998). This paradigm can be extended to include the cognitive-control concepts in-

side the perception-action cycle. Details of implementation of reinforcement learning

and planning in cognitive control, however, are beyond the scope of this paper; see

Fatemi and Haykin (2013).
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2.8 Computational Experiment on Cognitive Con-

trol

In this section, a target-tracking example is presented to demonstrate cognitive con-

trol. We consider the tracking of a falling object with a radar with ten measurements

per second, based on the benchmark example presented in Haykin et al. (2011). Here,

the cognitive actions are “changing” the radar transmitter’s waveform-parameters in

order to mitigate the uncertainty (recall the darkroom example). The target state

(i.e., system’s state) is x = [x1 x2 x3]
T , where x1, x2 and x3 are the altitude, veloc-

ity and ballistic coefficient that depends on the targets mass, shape, cross-sectional

area, and air density, respectively. In the perceptor, a cubature Kalman filter (CKF)

Arasaratnam and Haykin (2009) has been used, which provides the estimated state

covariance matrix Pk|k at cycle k. Having assumed that the true value of the tar-

get’s state is required, the information gap will then be a measure that shows how

inaccurate the CKF is at each cycle. The entropic state is defined as the Shannon

entropy corresponding to the CKF output, and calculated by Hk|k = det{Pk|k}. For

the entropic-reward function, we used the following:

rk = | log(|Hk−1|k−1 −Hk|k|)|.sgn(Hk−1|k−1 −Hk|k) (2.6)

where sgn(.) shows the standard signum function. We have used the logarithm to

decrease the intensity of large differences; however, it should be noted that (as it can

be seen in the results of the next experiment) the difference |Hk−1|k−1−Hk|k| is never

close to zero, so that we have incorrect rewards. In any case, if such events can occur,

then |Hk−1|k−1 −Hk|k| should be used instead. This entropic reward also includes a
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proper sign, which is needed to guide the controller correctly. In the controller side

(which is the radar transmitter in this example), there is the possibility of changing the

waveform properties in each cycle, which results in 764 cognitive-control actions (i.e.,

764 different combinations for the waveform). Applying each action will affect the

measurement noise covariance matrix. Finally, Q-Learning Sutton and Barto (1998)

was chosen as the method of RL for both learning and planning. The emphasis here

is on the use of RL and the integration of learning and planning. Therefore, it is

assumed that system noise covariance matrix is given and there exists a model for

the measurement covariance matrix as a function of control actions Haykin et al.

(2011) (i.e., we do not have entropic-state estimation in this example); details of the

implementation have been presented in Fatemi and Haykin (2013). All the simulations

are performed over 250 Monte Carlo runs to mitigate the effect of randomness. The

experiment takes five seconds, therefore, we have 50 perception-action cycles.

2.8.1 Experiment 1: Sub-optimality for reduced computa-

tional complexity

In this case study, the functionality of three different radars is compared in terms

of their root mean-squared error (RMSE). We used the actual value of target state

in order to compute RMSE, and be able to have the comparison between three dif-

ferent radar configurations. Figure 2.3-(a), (b), and (c) illustrate the RMSE of the

three target state variables, namely altitude, velocity and ballistic coefficient, respec-

tively, all of which are plotted versus time. The method of dynamic optimization

Haykin et al. (2011, 2012b) has been used as a frame of reference, although it may

not be used in real-time due to its heavy computational load. Additionally, dynamic
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Figure 2.3: Results of computational experiment of Case Study 1. Figures (a), (b),
and (c) illustrate the RMSE for the three state variables correspondingly.
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optimization does not include infinite look-ahead horizon in the sense of Bellman

equation Bertsekas (2005); Sutton and Barto (1998). For the cognitive control, here

we have Q-learning plus 10 actions selected randomly for planning at each PAC. The

red bulleted line on the top of the graphs is the radar with no controller (only CKF).

The green circled line and blue diamond lines are RL with 10 planning and dynamic

optimization methods, respectively. The RL method (with 10 actions used for plan-

ning in each cycle) is almost two orders of magnitude faster than the method using

dynamic optimization; hence, RL significantly improves computational complexity at

the expense of optimality.

2.8.2 Experiment 2: Information-processing power of plan-

ning

In Figure 2.4, we have illustrated the entropic-state decrement over an increasing

number of perception-action cycles. The dot magenta line on the top (which almost

sticks to the squared-line beneath it) is the fixed-waveform radar, where there are no

cognitive control actions at all. Nevertheless, because CKF is used in the perceptor,

the entropic-state still decreases (almost two orders of magnitude over the entire 50

perception-action cycles). Following that, the blue squared line is for cognitive control

only with learning. Since the total number of perception-action cycles is far less than

the entire number of possible actions (50 vs. 764), this method performs on average,

no better than the fixed-waveform method (because Q-learning could not converge

to any meaningful policy). Then, we retain RL but this time, we have also added

planning. This method is repeated for three different number of random actions,

which are selected for planning at each cycle: (a) only one random action (red circled
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Figure 2.4: Decreasing the entropic-state in a target tracking example using cognitive
control. Note that “Fixed waveform” and “RL no planning” lines almost coincide on
each other on the top of the graph.

line), (b) 10 random actions (stared blue line), and (c) 50 random actions (asterisk

green line). In the first case that only one action is selected for planning, although

one planning is still much less than the entire number of actions, yet it is enough to

demonstrate an obvious improvement. As for the other two cases, they both show

more than four orders of magnitude improvement in the entropic-state reduction.
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2.9 Concluding Remarks

2.9.1 Summarizing Highlights of the Paper

1. Control of directed information flow in CDS is summed up in the information

gap, which is defined as the difference between relevant information (useful part

of what is extracted from the measurements) and sufficient information (i.e., the

information needed to perform a task of interest with minimal risk).

2. Cognitive control is itself defined as the process of adapting the directed flow

of information form the perceptual part of a dynamic system to its executive

part, such that the information gap is reduced by an amount equivalent to a

reduction in the properly defined risk functional, with a probability close to

one.

3. Two-state model, one being the system’s state and the other being the entropic

state that quantifies the information gap.

4. Reinforcement learning, exemplified by Q-learning, the employment of which in

a cognitive controller is assured by means of the entropic state being computed

in the perceptor and passed directly to the controller as feedback information.

5. Planning, an integral part of reinforcement learning, requires a model of the

environment to simulate future rewards.

6. Lessons learned from the computational experiment:

• The use of reinforcement learning in a cognitive controller results in a sig-

nificant reduction in computational resources in exchange for a suboptimal
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performance.

• The incorporation of planning into reinforcement learning enhances the

information-processing power of a cognitive controller.

2.9.2 Comparison of Cognitive Control versus Adaptive Con-

trol and Neurocontrol

1. Cognitive Control versus Adaptive Control : Adaptation is an integral part of

cognition. We therefore expect that whatever task is performed by an adaptive

controller, the cognitive controller does it better. To elaborate, it can be ar-

gued that an adaptive controller could accommodate three of the basic functions

of cognition, namely the perception-action cycle (PAC), attention, and intelli-

gence. In other words, an adaptive controller lacks memory, whereas memory

(and therefore learning) is an integral part of a cognitive controller, hence the

ability to outperform an adaptive controller at the expense of increased system

complexity.

2. Cognitive Control versus Neurocontrol : For a neurocontroller, to acquire ar-

tificial intelligence and therefore be able to learn from its environment, the

traditional approach is to build a neural network into its design. In direct

contrast, a cognitive controller looks to neuroscience for guidance. In specific

terms, the PAC, memory, and attention are built into the cognitive controller’s

design; thereby, the controller acquires intelligence, which is the most powerful

among all the functions that define cognition. Moreover, the intelligence is dis-

tributed throughout the dynamic system via local and global loops. While the
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neurocontroller works as a whole or it does not work at all Hrycej (1997), cogni-

tive processes (i.e., PAC, memory, attention, and intelligence) can be built into

the system in an orderly fashion. We therefore expect a cognitive controller to

outperform a neurocontroller for a given task, again at the expense of increased

complexity.

Most importantly, it should also be emphasized that cognitive control has an

intrinsic difference compared to adaptive control and neurocontrol in that the goal

of cognitive control is to reduce the information gap. Indeed, as illustrated in Fig. 2,

a cognitive control agent may exist next to or be independent of any other physical

controller. In other words, cognitive control is not a replacement, but is an addition

to a system design paradigm.

To sum up, cognitive control is a new way of thinking about control inspired by the

human brain. Over and above the improved utilization of computational resources,

yet be able to deliver a good performance through the incorporation of planning in

reinforcement learning, it is in risk management, where cognitive control will make

its biggest difference to the control literature.
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Chapter 3

Cognitive Control: Theory and

Application

3.1 Abstract

From an engineering point-of-view, cognitive control is inspired by the prefrontal

cortex of the human brain; cognitive control may therefore be viewed as the overar-

ching function of a cognitive dynamic system. In this paper, we describe a new way

of thinking about cognitive control that embodies two basic components: learning

and planning, both of which are based on two notions: 1) two-state model of the

environment and the perceptor, and 2) perception-action cycle, which is a distinc-

tive characteristic of the cognitive dynamic system. Most importantly, it is shown

that the cognitive control learning algorithm is a special form of Bellman’s dynamic

programming. Distinctive properties of the new algorithm include the following: a)

Optimality of performance, b) algorithmic convergence to optimal policy, and c) linear

law of complexity measured in terms of the number of actions taken by the cognitive
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controller on the environment.

To validate these intrinsic properties of the algorithm, a computational experiment

is presented, which involves a cognitive tracking radar that is known to closely mimic

the visual brain. The experiment illustrates two different scenarios: a) the impact

of planning on learning curves of the new cognitive controller, and b) comparison

of the learning curves of three different controllers, based on dynamic optimization,

traditional Q-learning, and the new algorithm. The latter two algorithms are based

on the two-state model, and they both involve the use of planning.

3.2 Introduction

Cognition is a distinctive characteristic of the human brain, which distinguishes itself

from all other mammalian species. It is therefore not surprising that when we speak

of cognitive control, we naturally think of cognitive control in the brain Miller and

Cohen (2001). Most importantly, cognitive control resides in the executive part of

the brain, reciprocally coupled to its perceptual part via the working memory Fuster

(2003). The net result of this three-fold combination is the perception-action cycle

that embodies the environment, thereby constituting a closed-loop feedback system

of a global kind.

In a point-of-view article published in the Proceedings of the IEEE on the inte-

grative field of Cognitive Dynamic Systems viewed from an engineering perspective,

it was first described in the literature Haykin (2006a). This new way of thinking was

motivated by two classic papers: “Cognitive Radio: Brain-empowered Wireless Com-

munications” Haykin (2005), and “Cognitive Radar: A Way of the Future” Haykin

(2006b). However, it was a few years later that the second author became aware of
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Fuster’s basic principles of cognition, namely, perception-action cycle, memory, atten-

tion, and intelligence. It was that particular awareness that prompted the engineering

need for bringing cognitive control into the specific formalism of cognitive dynamic

systems.

During the past few years, cognitive control viewed from an engineering perspec-

tive, has featured in two journal papers, as summarized here:

1. In Haykin et al. (2011), a control-theoretic approach was described using dy-

namic optimization, representing a simplified version of Bellman’s dynamic pro-

gramming. It was in this paper that for the first time, we faced the imperfect

state information problem, so called due to the fact that the controller does not

have the provision to sense the environment in a direct manner. Although it

is feasible to mitigate this problem algorithmically as formulated in Bertsekas

(2005), the incurred cost of computational complexity is so expensive that we

had to limit the dynamic programming algorithm with no provision in looking

into the future; thereby the name dynamic optimization.

2. The two-state model, proposed in Haykin (2012c), provides the most effective

notion to bypass the imperfect state information problem; more will be said on

this notion later in the paper. For the present, it suffices to say that practical

validity of this new way of thinking about cognitive control was demonstrated

in Haykin et al. (2012a) through the use of Q-learning that represents an ap-

proximate form of dynamic programming.

It was these two early contributions to cognitive control that set the stage for

a novel cognitive controller presented in the current paper. Unlike the two previous

procedures for implementing cognitive control, the new cognitive controller is optimal,
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in that it is well and truly a special case of Bellman’s dynamic programming. Most

importantly, unlike dynamic programming, the new cognitive controller follows a

linear law of computational complexity measured in terms of actions taken on the

environment. The other desirable attribute of this cognitive controller is the use of

planning.

The rest of the paper is organized as follows:

• With cognitive control being the primary objective of the paper, Section II

discusses two underpinnings of cognitive control, namely, learning and planning,

each of which is based on two notions:

1. The two-state model, which embodies target state of the environment and

entropic state of the perceptor.

2. The cyclic directed information flow, which follows from the global perception-

action cycle: the first principle of cognition.

• Next, mathematical formalism of the learning process in cognitive control is

presented in Section III, resulting in a state-free cognitive control learning al-

gorithm, where computational complexity follows the linear law.

• Section IV goes one step further: the cognitive control learning algorithm is

shown to be a special case of the celebrated Bellman’s dynamic programming;

hence, convergence and optimality of the new algorithm.

• Section V briefly discusses how to balance optimality of the learning process

versus the convergence rate of the cognitive control learning algorithm, thereby

setting the stage for both planning and the explore/exploit tradeoff, which are

discussed in Sections VI and VII, respectively.
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• At this point in the paper, we are ready to address structural composition of

the cognitive controller in Section VIII.

• Then, Section IX validates an engineering application of the cognitive controller

by presenting a computational experiment involving a cognitive tracking radar.

• Finally, Section X concludes the paper.

3.3 Cognitive Control

From a cognitive neuroscience perspective, cognitive control plays a key role in the

prefrontal cortex in the brain; most importantly, cognitive control involves two impor-

tant processes: learning, and planning. And, so it is in a cognitive dynamic system,

inspired by the brain. The learning process is discussed in Section 3.4, followed by

the planning process, which is discussed in Section 3.7. Both processes are depen-

dant on the two-state model as well as the cyclic directed information flow, which are

discussed in what follows.

3.3.1 The Two-state Model

As mentioned in the introduction, the two-state model is an essential element in de-

riving the cognitive control algorithm. By definition, the two-state model embodies

two distinct states, one of which is called the target state, pertaining to a target of

interest in the environment. The second one is called the entropic state of the per-

ceptor1, the source of which is attributed to the unavoidable presence of uncertainties

in the environment as well as imperfections in the perceptor itself.

1The terms cognitive perceptor and perceptor are used interchangeably in the paper.
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Insofar as cognitive control is concerned, the two-state model is described in two

steps as follows:

1. State-space model of the environment, which embodies the following pair of

equations:

 Process equation: xk+1 = f(xk) + vk

Measurement equation: zk = h(xk) + wk

(3.1)

where xk ∈ Rn, zk ∈ Rm are the state and measurement (observable) vectors at

cycle k, respectively; f is a vector-valued transition function, and h is another

vector-valued function that maps the target state-space to the measurement

space2; vk denotes an additive process noise that acts as the driving force,

evolving state xk at cycle k to the updated state xk+1 at cycle k+ 1; finally wk

is the additive measurement noise.

2. Entropic state model of the perceptor, which is formally defined by the following

equation:

Entropic-state equation: Hk = φ(p(xk|zk)) (3.2)

The Hk is the entropic state at cycle k in accordance with the state posterior

p(xk|zk) in the Bayesian sense, which is computed in the perceptor3. As such, Hk

is the state of the perceptor, and φ is a quantitative measure such as Shannon’s

2In order to guarantee the existence and uniqueness of the solution to (4.1), both f(·) and h(·) are
assumed to be Lipschitz continuous Rudin (1976); i.e., there exists λ > 0 such that ||f(x2)−f(x1)|| ≤
λ||x2 − x1||, for all x1 and x2, with ||.|| denoting the Euclidian norm and likewise for h(·).

3To emphasize the cycles, in which the state and the measurement are taken, in this paper, we
may also use the notation Hk|k, in accordance with the subscripts in the posterior, p(xk|zk).
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entropy4.

It is important to note here that, in general, Shannon’s entropy could assume the

value zero; however, in cognitive control, the entropic state Hk will always have a non-

zero, positive value due to the fact that the environment always involves uncertainty

and we can never reach perfect target-state reconstruction with 100% accuracy.

By definition Haykin et al. (2012a), the function of cognitive control is defined as

follows:

To control the entropic state (i.e., state of the perceptor), such that the

target’s estimated state continues to be reliable across time.

Cognitive control therefore requires the entropic state, which is computed in the

perceptor and then passed to the cognitive controller as feedback information.

3.3.2 Cyclic Directed Information Flow

The global perception-action cycle, depicted in Fig. 4.1, plays a key role in a cognitive

dynamic system; it is said to be global, in that it embodies the perceptor in the right-

hand side of the figure, the cognitive controller in the left-hand side of the figure, and

the surrounding environment, thereby constituting a closed-loop feedback system.

In descriptive terms, the global perception-action cycle operates on the observables

4Shannon’s entropy for a random variable X, having the probability density function pX(x) in
the sample space Ω, it is defined asCover and Thomas (2006):

H =

∫
Ω

pX(x) log
1

pX(x)
dx

Correspondingly, Shannon’s entropy of target state xk with the posterior p(xk|zk) is defined as:

Hk =

∫
Rn

p(xk|zk) log
1

p(xk|zk)
dxk.

57



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

Cognitive Actions Sensory Measurement

(Observables)

Cognitive

Perceptor

Environment

Feedback

Information

Global Cycle

Cognitive

Controller

Figure 3.1: Block diagram of the global perception-action cycle in a cognitive dynamic
system.

(measurements) of the environment, so as to separate relevant information about the

environment from irrelevant information that is not needed. The lack of sufficient

relevant information extracted from the observables is attributed to the unavoidable

uncertainties in the environment as well as design imperfections in the perceptor.

The entropic state introduced in sub-section A is indeed a measure of the lack of

sufficient information. The entropic state supplies the feedback information, which

is sent to the cognitive controller by the perceptor. With this feedback information

at hand, the cognitive controller acts on the environment, producing a change in the

observables. Correspondingly, this change affects the amount of relevant information

about the environment, which is extracted from the new observables. A change is

thereby produced in the feedback information and with it, a new action is taken on

the environment by the cognitive controller in the next perception-action cycle. Con-

tinuing in this manner from one cycle of perception-action to the next, the cognitive

dynamic system experiences a cyclic directed information flow, as illustrated in Fig.

4.1.

In addition to feedback information directed from the perceptor to the cognitive
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controller, there is also a feedforward information link from the cognitive controller

to the perceptor. In other words, the perceptor and the cognitive controller are

reciprocally coupled. This important link is illustrated in Fig. 3.3, and will be

discussed later in Section 3.7.

3.4 Formalism of The Learning Process in Cogni-

tive Control

Previously in Section 3.3, we introduced learning and planning as the two important

processes in the execution of cognitive control. In actual fact, the aims of both

learning and planning processes are to improve an entity called cognitive policy. By

definition, cognitive policy is the probability distribution of cognitive actions at the

perception-action cycle k, which includes the influence of action taken in the preceding

cycle, k − 1. Let πk(c, c
′) denote the cognitive policy at cycle k, defined as follows:

πk(c, c
′) = P[ck+1 = c′|ck = c]; with c, c′ ∈ C,

where C is the cognitive action-space, c and c′ are two cognitive actions, and P is a

probability measure.

The cognitive policy should pertain to the long-term value of cognitive actions. In

order to formalize a long-term value for each cognitive action, an immediate reward

has to be defined. To this end, the incremental deviation in the entropic state from
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one cycle to the next, denoted by ∆1Hk, is defined by

∆1Hk = Hk−1 −Hk. (3.3)

where Hk−1 and Hk are the entropic states at the preceding and current cycles k − 1

and k, respectively. Note that ∆1Hk could assume a positive or negative value, de-

pending on conditional changes in the environment. The entropic reward for cognitive

control at cycle k, denoted by rk, is now defined as an arbitrary function of two enti-

ties: the entropic-state’s value, Hk|k, and the incremental deviation ∆1Hk, as shown

by:

rk = gk(Hk,∆1Hk) (3.4)

where, gk is an arbitrary scalar-valued operator. For example, the entropic reward in

(3.4) may take the following form:

rk =
∆1Hk

Hk

(3.5)

where the entropic states Hk always assumes a positive value.

Remark 1. Computation of the entropic reward rk requires knowledge of the incre-

mental deviation ∆1H, defined in (3.3). To satisfy (3.4), it follows therefore that we

need a short-term memory that accounts for the preceding entropic-state Hk−1.

As a result, after taking a cognitive action, a positive rk+1 indicates a decreas-

ing deviation that can be considered as an immediate reward for the taken action.

Conversely, a negative rk+1 demonstrates a cost against the selected action.
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We may now define the following value-to-go function for the cognitive controller:

J(c) = Eπ[rk+1 + γrk+2 + γ2rk+3 + ... | ck = c] (3.6)

where γ ∈ [0, 1) denotes a discount factor that decreases the effect of future actions,

and E denotes the expected value operator for which the expected value is calculated

using the policy distribution πk.

Lemma 1. J(c) satisfies the following recursion:

J(c) = R(c) + γΣc′πk(c, c
′)J(c′) (3.7)

where R(c) = Eπ[rk+1|ck = c] denotes the expected immediate reward at cycle k + 1

of the currently selected action c at cycle k.

Proof. Using the linear property of the expected value operator Bertsekas and Tsit-

siklis (2008), we may expand (3.6) as follows:

J(c) = Eπ[rk+1 + γrk+2 + γ2rk+3 + ... | ck = c]

= Eπ[rk+1|ck = c] + γEπ[Σ∞j=0γ
jrk+j+2|ck = c]

In the second line of the equation, the first term is the expected immediate reward

R(c). The second term lacks ck+1 in the condition to be the action-value of one-step

61



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

future action. Therefore, using the total probability theorem5, we may write:

J(c) = R(c) + γEπ[Σ∞j=0γ
jrk+j+2|ck = c]

= R(c) + γΣa′P[ck+1 = c′|ck = c]× Eπ[Σ∞j=0γ
jrk+j+2|ck = c, ck+1 = c′]

= R(c) + γΣc′πk(c, c
′)J(c′)

It is noteworthy that (3.7) has the flavor of Bellman’s equation for dynamic pro-

gramming, on which more will be said in the next section. In order to have a recursive

algorithm, we may express the recursion in the following form:

J(c)← R(c) + γΣc′πk(c, c
′)J(c′) (3.8)

With recursion in mind and for the sake of flexibility, on every cycle of the recursion,

(3.8) becomes more of practical value in an algorithmic sense by having J(c) plus a

weighted incremental update, as shown by

J(c)← J(c) + α[R(c) + γΣc′πk(c, c
′)J(c′)− J(c)] (3.9)

where α > 0 is a learning parameter. On the basis of the recursion described in (3.9),

we may formulate Algorithm 1, which updates the value-to-go function from one cycle

5For random variables X, Y and Z defined in ΩX , ΩY , and ΩZ , respectively, the total probability
theorem Bertsekas and Tsitsiklis (2008) says:

E[X|Y = y] =
∑
z∈ΩZ

P[Z = z|Y = y]E[X|Y = y, Z = z]
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Algorithm 1: A value-to-go updating algorithm under Lemma 1.

1 Varables:
2 J := value-to-go function
3 γ := discount factor, γ ∈ [0, 1)
4 α := learning parameter, α > 0
5 Inputs:
6 R(c) := expected reward of action c
7 π := learning policy
8 Updating:
9 for all cognitive actions c ∈ C do

10 J(c)← J(c) + α[R(c) + γΣc′∈Cπk(c, c
′)J(c′)− J(c)]

11 end

of perception-action to the next.

From an implementation perspective, the term Σc′∈Cπk(c, c
′)J(c′) in line 10 of

Algorithm 1 may be substituted by mean{J(c)}, simply by considering πk(c, c
′) to

be a uniform distribution here6. This method is called off-policy and is known also

to be convergent to the optimal policy Sutton and Barto (1998).

Hereafter, the recursive algorithm based on (3.9) is referred to as the cognitive

control learning algorithm. This algorithm has been derived by exploiting the cyclic

information flow that is a characteristic of the global perception-action cycle. With

mean{J(c)} substituted in line 10, examination of Algorithm 1 immediately reveals

that this algorithm follows a linear law of computational complexity with respect to

the number of actions taken by the cognitive controller, which is the cardinality of

the cognitive action-space C.
6With mean{J} substituted in (3.9), the learning rule becomes similar to the traditional Q-

learning algorithm Watkins (1989); Watkins and Dayan (1992), yet it differs from it in two basic
fronts: First, Q-learning uses max{J} as an approximation, and second, (3.9) is calculated for all
the cognitive actions, whereas in Q-learning, the update is only for the current state and action.
In Section IX, we have chosen traditional Q-learning as a frame of reference for comparison in our
computational experiment.
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From a practical perspective, linearity of the algorithm by itself is not adequate.

To be more precise, convergence as well as optimality of the algorithm would have to

be justified theoretically. With this objective in mind, we propose to shift gear from

the cognitive perspective and appeal to Bellman’s dynamic programming, which is

known to be both convergent and optimal Bellman (1957, 1961).

3.5 Cognitive Control Learning Algorithm Viewed

as a Special Case of Bellman’s Dynamic Pro-

gramming

Bellman’s celebrated dynamic programming algorithm Bellman (1957, 1961) was first

described in the literature about fifty five years ago; yet it remains to occupy an im-

portant place in the study of optimal control. The optimality manifests itself in terms

of maximizing a long-term value-to-go function; it is formally defined over time by

means of immediate rewards. In its basic form, Bellman’s dynamic programming

deals with finite-horizon problems. However, from an analytic perspective, the pre-

ferred mathematical approach is to deal with infinite-horizon problems, where the

rewards are considered over an infinite number of cycles.

In dynamic programming, a system is defined by its set of states S and set of

actions A. On a cycle-by-cycle basis, the system has a transition from state s ∈ S at

cycle k to s′ ∈ S at cycle k + 1 as a result of action a ∈ A. This transition results in

an immediate reward rk+1 ∈ R. The state-action-based value-to-go function is then
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defined by the formula:

J̃(s, a) = Eπ̃[rk+1 + γrk+2 + γ2rk+3 + ...|sk = s, ak = a],

for which, π̃k(s, a) = P[ak+1 = a|sk = s] is the state-based policy when the system is in

state s; the tilde in π̃k(s, a) is intended to differentiate it from the policy π(c, c′) used

in the previous section. As mentioned previously, P denotes a probability measure and

Eπ̃ denotes the expected value operator with respect to the policy π̃. In Appendix

A, it is shown that J̃(s, a) obeys Bellman’s equation for dynamic programming as

follows:

J̃(s, a) =
∑
s′∈S

T ass′ [R
a
ss′ + γ

∑
a′∈A

π̃k(s, a
′) J̃(s′, a′)] (3.10)

where the transition probability T ass′ and the immediate expected reward Ra
ss′ are

respectively defined by the following pair of equations:

 T ass′ = P[sk+1 = s′|sk = s, ak = a],

Ra
ss′ = Eπ̃[rk+1|sk+1 = s′, sk = s, ak = a]

(3.11)

The optimal value-to-go function, denoted by J̃∗, is obtained by maximizing the

sum of all the terms in (3.10) with respect to action a. Unfortunately, the end result

of this maximization is an exponential growth in computational complexity, known

as the curse of dimensionality Bellman (1961). Nevertheless, the algorithm is known

to be convergent as well as optimal Sutton and Barto (1998). Algorithm 2 describes

a dynamic programming algorithm corresponding to (3.10). Inclusion of the two

nested for-loops in Algorithm 2 (lines 10 and 11) is indeed the root of the curse of
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Algorithm 2: A value-to-go updating algorithm for a generic dynamic pro-
gramming.

1 Varables:

2 J̃ := value-to-go function
3 γ := discount factor, γ ∈ [0, 1)
4 α := learning parameter, α > 0
5 Inputs:
6 T ass′ := transition probability
7 Ra

ss′ := expected reward
8 π̃ := learning policy
9 Updating:

10 for all states s ∈ S do
11 for all actions a ∈ A do

12 J̃(s, a)← J̃(s, a) + α[
∑

s′∈S T
a
ss′ [R

a
ss′ + γ

∑
a′∈A π̃k(s, a

′) J̃ − J̃(s, a)]
13 end

14 end

dimensionality problem.

The cognitive control learning algorithm, described in Section 3.4, is indeed state-

free. On the other hand, in light of the fact that Bellman’s dynamic programming is

state-dependant, the question to be addressed is:

How do we make Bellman’s dynamic programming to be on par with the

cognitive control learning algorithm, such that both of them are state-free?

To this end, consider the two models depicted graphically in Fig. 3.2. In a generic

sense, part (a) of the figure illustrates the transition from state sk = s at time k

to a new state sk+1 = s′ at time k + 1 under the influence of action ak = a ∈ A,

as it would be in Bellman’s dynamic programming. On the other hand, part (b) of

the figure depicts a “special” transition that involves a single state s and therefore a

graphical representation of the following model:
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ss s'

(a) (b)

Figure 3.2: Graphical illustration of state transition in dynamic programming: (a)
generic model, and (b) special case of Model 1.

Model 1:

• State-space contains only one state, that is

S = {s},

• There exists a self-loop for s, including all the actions in the action

space, i.e.,

P[sk+1 = s|sk = s, ak = a] = 1, ∀a ∈ A.

Model 1 is a valid model that lends itself to the application of Bellman’s dynamic

programming; moreover, the application of dynamic programming to Model 1 will

not affect the properties of optimality and convergence, which are basic to dynamic

programming Bertsekas (2005). The idea behind using Model 1 is to remove depen-

dence of the dynamic programming algorithm on the states, as it would be in the

cognitive control learning algorithm.

We next show that the following lemma holds:

Lemma 2. Dynamic programming of Model 1 is equivalent to the cognitive control

learning algorithm.

Proof. It suffices to show that Bellman’s equation for Model 1 is identical to the

recursion equation in Lemma 1. Assume that the action-space of Model 1 is the same
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as the cognitive action-space in the previous section, that is, A = C. Because Model

1 has only one state, the outer summation in Bellman’s equation (3.10) has only one

term with the transition probability T ass′ being one (due to the second property of

Model 1). Additionally, the current and next states sk and sk+1 in the condition of

Ra
ss′ are always equal to s; hence, they add no additional information to Ra

ss′ , and

they are therefore redundant in Ra
ss′ . We may thus formally write:

Ra
ss′ = E[rk+1|sk+1 = s, sk = s, ak = a]

= E[rk+1|ak = a]

= R(a)

Similarly, since in Bellman’s dynamic programming, current actions are independent

of previous actions, we may express the corresponding policy:

π̃k(s, a
′) = P[ak+1 = a′|sk = s]

= P[ak+1 = a′|sk = s, ak = a]

= P[ak+1 = a′|ak = a]

= πk(a, a
′)

Substituting Ra
ss′ and π̃k in (3.10) will then prove the lemma.

On the basis of Lemma 2, we may now state that the cognitive control learn-

ing algorithm is indeed a special case of of dynamic programming. Accordingly, the

cognitive control learning algorithm inherits the basic properties of dynamic program-

ming, namely, convergence and optimality. We may now conclude the section with
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the following statement:

The cognitive control learning algorithm is not only linear, but also con-

vergent to the optimal policy.

3.6 Optimality vs. Convergence-rate in Online Im-

plementation

Thus far, we have addressed optimality and convergence of the cognitive control

learning algorithm. However, there are two other practical issues relating to the

convergence rate of the learning process, which are described as follows:

1. To implement the for-loop in Algorithm 1, the expected immediate rewards

should be known for all the actions in the action space C. In reality, the im-

mediate reward is available only for the currently selected action, which can

replace its expected value. Hence, there would be M = |C| perception-action

cycles required to collect information about all the actions. To overcome this

first issue we propose to use planning, which is to be described in Section 3.7.

2. If we were to explore all the M cognitive actions in the action space C, we

would end up with a cognitive controller of poor performance in the exploration

period. To overcome this second issue, we propose to use the ε-greedy strategy,

which is to be discussed in Section 3.8.

Thus, through the use of planning and ε-greedy strategy, an efficient convergence rate

with optimal performance for on-line applications is assured.
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3.7 Formalism of the Planning Process in Cogni-

tive Control

Planning is defined as the process of using predicted future rewards in order to improve

our knowledge of the value-to-go function J(c). Hence, the planning process plays a

key role in speeding up the convergence rate of the cognitive controller. To this end,

predicted values of entropic rewards are therefore required.

Referring to (4.1), pertaining to the state-space model of the environment, we

may infer the following points:

1. If the probability density function of the noise terms in (4.1) is known, then the

entropic state can be predicted one cycle into the future by using the Bayesian

filtering framework of the perceptor.

2. The predicted entropic reward in the cognitive controller is then computed for

the next hypothesized cycle.

In what follows next, this two-step procedure is illustrated in an example involv-

ing a Gaussian environment. This example will then be used in our computational

experiment.

Predicting the Entropic Reward in a Gaussian Environment:

Consider a target with arbitrary dynamics in a Gaussian environment, with the state

and measurement vectors denoted by x and z, respectively. Since the noise terms in

(4.1) are both Gaussian, the posterior p(xk|zk) at each cycle is simply reduced to its

mean value and covariance matrix. Let the entropic state be expressed by Shannon’s
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entropy of the Gaussian posterior Cover and Thomas (2006), namely:

Hk|k =
1

2
log(det{(2πe)Pk|k}) (3.12)

where det{.} denotes the determinant operator, and the matrix Pk|k is the covariance

matrix of the posterior at cycle k, given the measurement also at cycle k. Since the

logarithm is a monotonic function, (3.12) may be simplified to express the entropic

state as follows:

Hk|k = det{Pk|k} (3.13)

Based on this definition, a one-step predicted entropic state Hk+1|k = det(Pk+1|k)

is found if we know the predicted covariance Pk+1|k. To that end, the Kalman filter7,

operating as the perceptor, provides Pk+1|k simply by knowing the system noise co-

variance matrix Qk and measurement noise covariance matrix Rk+1 Bar-Shalom et al.

(2001). Assuming that these two covariance matrices are given, we may compute the

predicted entropic state of the perceptor. This process may be repeated to achieve

further stages of prediction into the future, namely Hk+j|k, j = 1, ..., l, for l-step look-

ahead horizon in time. Having all the Hk+j|k, predicted future rewards can then be

calculated using equation (3.4), and we may therefore benefit from a planning process

as well.

�

7In this context, if the process and/or measurement dynamics are nonlinear, then the Kalman
filter may be replaced by a nonlinear version such as the extended Kalman filter (EKF), unscented
Kalman filter (UKF), or cubature Kalman filter (CKF); the CKF will be employed in our compu-
tational experiment in Section IX.
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Figure 3.3: Block-diagram illustrating the combined presence of feedback information
as well as feedforward information links.

The issue that emphasizes the need for planning is the time required for having

actual rewards. In a cognitive dynamic system, we need to wait for one cycle to the

next in order to access new rewards, and thereby proceed with the cognitive control

learning algorithm, cycle by cycle. Unfortunately, Fig 4.1 lacks a feedforward link from

the controller to the perceptor. In such a scenario with an action library involving M

possible actions (i.e., |C| = M), there would have to be M global perception-action

cycles for exploring the complete action library. If the time T seconds are taken

for each global perception-action cycle, then there would have to be MT seconds

needed to cover the entire action library. In order to mitigate such a long-windowed

exploration phase, we propose to introduce a feedforward link, which connects the

controller to the perceptor, as depicted in Fig. 3.3. The feedforward information is a

hypothesized future action, which is to be selected for a planning stage. In so doing, a

new so-called internally composite cycle Haykin and Fuster (2014) is therefore created,

which completely bypasses the environment. Accordingly, the duration τ taken by
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such a cycle will be small compared to that of the global perception-action cycle, T .

The practical benefit of introducing the internally composite cycle in Fig. 3.3 is the

fact that the perceptor and the cognitive controller are now reciprocally coupled with

each other, resulting in an exploration phase that is considerably shorter than in Fig.

4.1 by the factor T/τ .

Building on the scenario illustrated in Fig. 3.3, the two distinct but similar phases

of learning and planning may now be implemented together, as follows:

1. Learning, which is based on actual values of the pair of entropic rewards at

cycles k and k − 1 as in (3.3) and (3.4), reproduced here for convenience of

presentation:

g(|Hk|k|,∆1H), ∆1H = Hk−1|k−1 −Hk|k

2. Planning, which is based on predicted values of the entropic reward; for ex-

ample, at cycle k+ 1 and the actual reward at the current cycle k, we have the

predicted reward defined by:

g(|Hk+1|k|,∆2H), ∆2H = Hk|k −Hk+1|k

Recall that learning is based on Lemma 1; equally, this lemma also applies to

planning because conceptually speaking, both learning and planning perform the

same required task. Note, however, learning is processed only once in each global

perception-action cycle, which involves a single selected cognitive action; that is be-

cause learning is based on actual reward. On the other hand, in Fig. 3.3, planning is

performed for any number of internally composite cycles and any number of hypoth-

esized future actions in each of such cycles. Hence, specially in problems with very
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large number of possible actions (compared to the number of global perception-action

cycles), a cognitive controller with learning only and therefore no planning may not

perform on average much better than random action-selection. It follows therefore

that planning is an essential requirement for policy convergence.

3.8 Explore/exploit Tradeoff for Cognitive Con-

trol

As discussed previously in Section 3.6, in order to collect information about all the

cognitive actions, the cognitive controller has to invest several global cycles, especially

at the beginning of the experiment. During this phase, which is complete exploration

of the cognitive action-space, the selected cognitive action in each cycle may result in

completely poor performance. In particular, for problems with large set of cognitive

actions, the resulting efficiency of the learning algorithm may remain unacceptable for

a long period of time. Planning helps to mitigate this issue considerably, yet there is

another auxiliary approach to smoothen the exploration process as much as possible,

as discussed next.

In the cognitive control learning algorithm, and generally in dynamic program-

ming, two different steps exist:

1. Updating the value-to-go function, J ,

2. Updating the policy, π.

Note that updating J requires the knowledge of π, and vice versa. Hence, different

approaches may be taken to update J and π, one after the other. When designing an
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algorithm to shape the cognitive policy on a cyclic basis, the following two extreme

approaches may then be taken:

• In the first approach, the cognitive controller will explore the entire action-space

uniformly without regard to the value-to-go function as guidance. This strategy

is called pure explore.

• In direct contrast, at each cycle, the cognitive controller may select an action

that maximizes the value-to-go function J . This strategy is called pure exploit.

These two pure strategies are both extreme and clearly in conflict with each other. In

reality, a mixed strategy is therefore desirable; namely, it is most of the time optimal in

terms of value-to-go maximization, while at the same time, the strategy also involves

exploration of other actions.

A commonly used mixed strategy as a compromise between the two mentioned

pure strategies is called ε-greedy strategy Powell (2011), as follows:

• With the probability of ε (e.g., 5%), the cognitive controller selects action ran-

domly (pure explore),

• With the probability of 1− ε (e.g., 95%), the cognitive controller selects action

based on the maximum value criterion (pure exploit). In this case, the action

selection is completely aligned with the value-to-go function, hence the term

greedy.

Furthermore, in cognitive control, the explore/exploit tradeoff may be performed

separately in two stages:
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1. For the cognitive policy, we use an ε-greedy strategy, in which all the cognitive

actions have the chance of being selected at least with a small but nonzero

probability ε; this means most of the time, the policy is greedy but not always.

2. In the planning phase, instead of selecting m (out of M = |C|) “random” cog-

nitive actions, which is complete exploration, we may select the m cognitive

actions based on some prior knowledge. In such a case, the selection of m cog-

nitive actions is driven by some selection prior probability distribution based

on the policy.

Deployment of the explore/exploit tradeoff in cognitive control may be viewed

as a facilitator of attention as one of the basic principles of cognition. Therefore,

a cognitive controller empowered with the explore/exploit tradeoff tries to allocate

computational resources in such a way that it remains focused on the knowledge

gained about the environment, but the controller does not fall into local optimal

actions and thereby miss the big picture.

3.9 Structural Composition of the Cognitive Con-

troller

Having the three constituents of perception, feedback information, and control, we

may incorporate all three of them to propose a framework for cognitive control in a

state-space modelled environment, as described next.
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(a) Graphical composition of the cyclic directed information flow in the cognitive dynamic system.
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Figure 3.4: Block diagrammatic description of cognitive control: (a) cyclic directed
information flow, and (b) illustration of algorithmic process in the cognitive controller.
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Structure

To incorporate planning and learning, a basic and simple structure is suggested by

Sutton and Barto, called Dyna Sutton and Barto (1998). However, Dyna lacks state-

space modelling and the inclusion of Bayesian perception with cyclic directed informa-

tion flow, required in cognitive control. Thus, inspired by Dyna and having cognitive

control in mind, we propose a new structure depicted in Fig. 3.4. This structure con-

sists of two parts: (a) and (b) for ease of understanding. A global perception-action

cycle is initiated in the perceptor at the right-hand side of Fig. 3.4-a, where Bayesian

perception is performed. The feedback information to be controlled will then be the

entropic-state Hk|k, which is passed to the cognitive controller at the left-hand side

of Fig. 3.4-a. At the same time, as explained in Remark 1, Hk|k is also preserved in

a short-term memory for the next cycle; it is short-term because in each cycle, the

previous value will be overwritten. Then, in the cognitive controller, learning and

planning are performed in the manner depicted in Fig. 3.4-b. It is noteworthy that in

Fig. 3.4-b, the processes of learning and planning are performed in a serial manner8.

To be specific, learning is performed, the result of which is an updated value-to-go

function J(c) for the preceding action. Then, we have a number of planning stages,

each of which gives rise to a particular value-to-go update. In practice, the number

of planning stages is dependant on the application of interest.

The explore/exploit tradeoff, explained in Section 3.8, is carried out in two dif-

ferent places: one place pertains to planning, and the other one pertains to policy-

making. At the end, a cognitive action is selected from the derived policy and applied

8In the human brain, we have a similar scenario to that described in Fig. 3.4-b. Learning and
planning use the same resources in the prefrontal cortex; where both learning and planning require
organization in the time domain, with learning being current and planning being predictive Fuster
and Haykin (2014).
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to the environment; and with it, the next global perception-action cycle is initiated.

This framework is indeed the underlying structure for implementing cognitive control.

Complete Algorithm

Algorithm 3 defines implementation of the cognitive controller, as described above,

under Structure. “Updates” in lines 22 and 32 of the algorithm refer to the implemen-

tation of equation (3.7) for the currently selected cognitive action in learning and the

hypothesized predictive action in planning, respectively. Also, line 30 in Algorithm 3

is implemented using the state-space model, as explained previously in Section II-A.

Finally, the explore/exploit tradeoff is applied both in line 26 of the algorithm, where

attention is deployed over some specific cognitive actions, namely the set C1, and the

point where the cognitive policy π is shaped as ε-greedy in line 36 of the algorithm.

3.10 Computational Experiment: Cognitive Track-

ing Radar

In what follows, we will demonstrate the information-processing power of the cognitive

controller applied to a cognitive radar system, where the emphasis is on tracking

performance. To be specific, we consider the tracking of a falling object is space,

using a radar with 10 measurements per second, based on the benchmark example

presented in Haykin et al. (2011) and Haykin et al. (2012c). Here, the cognitive

actions “change” the radar transmitter’s waveform parameters on a cycle-by-cycle

basis in order to correspondingly control noise in the receiver via the environment.

The target state is x = [x1, x2, x3]
T , where x1, x2 and x3 denote the altitude,
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velocity and ballistic coefficient, respectively; the ballistic coefficient depends on the

target’s mass, shape, cross-sectional area, and air density. The measurement vector

z = [r, ṙ]T , consists of radar’s range and range-rate. The extended state-space model

is then defined by the following set of equations, involving both the state-space model

as well as the entropic-state model:


xk = f(xk−1) + vk

zk = h(xk) + wk(θk−1)

Hk = det{Pk|k}

where the vector θk−1 refers to the waveform transmitted at the previous cycle, k−1.

For details of the functions f(.) and h(.), the reader is referred to Haykin et al. (2011).

Both noise terms, vk and wk, are assumed to be white and zero-mean Gaussian. The

system noise has the following covariance matrix Haykin et al. (2011):

Q =


q1

δ3

3
q1

δ2

2
0

q1
δ2

2
q1δ 0

0 0 q2δ


where q1 = 0.01, q2 = 0.01, and δ = 1. To model the measurement noise covariance

matrix R as a function of waveform parameters, we use the model developed by

Kershaw and Evans Kershaw and Evans (1994). There, it is shown that for the

transmit waveform, combining linear frequency modulation with Gaussian amplitude
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modulation, the measurement noise covariance matrix is defined by

R(θk−1) =

 c2λ2

2η
− c2bλ2

2πfcη

− c2bλ2

2πfcη
c2

(2πfc)2η
( 1
2λ2

+ 2b2λ2)


where, the constants fc and η are the carrier frequency and the received signal-to-noise

ratio (SNR), respectively, and c = 2.9979 × 108 m/s is the speed of light. Finally,

θ = [λ, b]T is the waveform-parameter vector, which is adjustable by the cognitive

controller for matching the transmitted waveform to the environment as closely as

possible.

For the Bayesian filter in the perceptor, a cubature Kalman filter (CKF) Arasarat-

nam and Haykin (2009) has been used, which provides the estimated state covariance

matrix Pk|k at cycle k. The entropic-state is then determined by Hk|k = det{Pk|k},

as in (13). For the entropic reward function, rk = | log(|∆H|)|.sgn(∆H), with

∆H = Hk−1|k−1−Hk|k has been used, where sgn(·) denotes the standard signum func-

tion. This entropic reward also includes the right algebraic sign, which is required to

guide the controller correctly. In the cognitive controller (i.e., radar transmitter), θ is

changed at each perception-action cycle, which gives rise to 382 possible cognitive ac-

tions (382 is the number of different combinations for the transmit-waveform library).

On each cycle, the cognitive action taken by the cognitive controller will affect the

measurement noise covariance matrix. The time allowed for the experiment is five

seconds for scenario 1 and 25 seconds for scenario 2; we therefore have to consider 50

and 250 perception-action cycles, respectively. All the simulations are performed over

1000 Monte Carlo runs to minimize the effect of randomness. It is also noteworthy

that Algorithm 3, just like any other learning algorithm, is sensitive to the design
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parameters; as such, it is important to fine-tune the parameters for a given problem

of interest.

In what follows, we describe two different experimental scenarios, one dealing with

planning and the other comparing three different controllers.

Scenario 1: The Impact of Planning on Cognitive Control

In this experiment, we conduct three distinct case-studies:

1. Absence of cognitive control, that is, there is no feedback information form the

receiver to the transmitter. In effect, in so far as the receiver is concerned, the

CKF acts entirely on its own. As illustrated in Fig. 3.5, the green diamond-line

at the top of the figure refers to the fixed-waveform radar, where there is no

cognitive action at all. Nevertheless, because the CKF is an integral part of the

perceptor, the learning curve decreases almost two orders of magnitude in the

course of 50 cycles.

2. Cognitive learning with no planning, in which the recursive algorithm of (9)

operates on its own in the cognitive controller. As explained in Section 3.7,

since the total number of cycles is far less than the entire number of possible

cognitive actions (50 vs. 382), the red bar-line in Fig. 3.5 is not that much

better than the case study involving the fixed transmit waveform.

3. Cognitive learning with planning, for which we retain learning, but this time we

also add planning. Implementing explore-only in the planning phase (see Section

3.8), this third case-study is repeated for three different choices of |C1| (see line

26 of Algorithm 1): (i) only one random cognitive action (blue triangle-line),
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(ii) two random cognitive actions (black circle-line), and (iii) three random

cognitive actions (cyan square-line). In the case of |C1| = 1, although one

planning is still much less than the entire number of cognitive actions, it is

enough to demonstrate a considerable improvement compared to the case with

learning only. As for the other two cases, they both show more than four

orders of magnitude improvement in the entropic-state reduction compared to

the radar with fixed waveform.

Scenario 2: Comparison of Learning Curves of Three Different

Cognitive Controllers

We refer back to the two different cognitive controller described in the Introduction,

and compare them experimentally with the new cognitive controller described in this

paper. Thus, the study involves the following three different configurations with the

same cubature Kalman filter for the cognitive radar receiver (perceptor):

1. Cognitive controller using dynamic optimization: This optimization algorithm

is a simplified version of Bellman’s dynamic programming Haykin et al. (2011),

in that it does not account for the future impact of the currently selected action.

The reason is that at each perception-action cycle, we must compute the change

in the entropic state for all the actions in the action-space. Therefore, from a

practical perspective, the computational throughput of dynamic optimization is

extremely high. To account for this practical difficulty, the depth of horizon is

reduced to unity; in other words, there is no provision in looking into the future.

Even so, the computational throughput is too heavy and therefore of limited
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practical applications9. The learning curve of this first cognitive controller is

depicted by the blue line in Fig. 3.6.

2. Cognitive controller, using Q-learning as well as planning: To be specific, the

learning process in the cognitive controller is performed using the traditional Q-

learning algorithm Watkins (1989); Watkins and Dayan (1992), which is made

possible by exploiting the two-state model described in Section II-A. Moreover,

the controller embodies planning with cardinality |C1| = 3. The learning curve

of this second cognitive controller is depicted in Fig. 3.6 by the green line.

3. The new cognitive controller, which follows Algorithm 3. Specifically, it com-

bines the use of the cognitive control learning algorithm as well as planning.

The third and final learning curve (red line) in Fig. 3.6 accounts for the new

cognitive controller. The planning part of this cognitive controller is also set to

|C1| = 3. What is truly remarkable is the fact that the learning curve for the

cognitive controller based on Algorithm 3 outperforms those of both Q-learning

and dynamic optimization.

In this second scenario, the number of perception-action cycles has been set to 250

for the simple reason to allow for convergence to optimality.

It is important to note here that the numbers of floating-point operations (FLOPS)

required for Algorithm 3 and Q-learning (both equipped with planning of |C1| = 3)

are almost two orders of magnitude less than that of the method of dynamic op-

timization. Moreover, in the method of dynamic optimization, the computational

load is unchangeable. In direct contrast, through the use of planning in Algorithm

9Appendix B shows that the method of dynamic optimization may indeed be derived as a special
case of the proposed algorithm in this paper.
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3 (involving the selection of the planning set C1), we have complete design flexi-

bility. Specifically, we may move anywhere from learning-only (least optimal, most

computationally efficient), to any desirable number of planning stages that remains

computationally efficient. This significant practical property of the new cognitive

controller provides an information processing power to match the engineering design

of the cognitive controller to any problem of interest, where levels of optimality and

available computational resources are both specified.

3.11 Conclusion

3.11.1 Cognitive Processing of Information

The new cognitive controller in a cognitive dynamic system is inspired by the brain

on two fundamental accounts: learning and planning:

A.1 The learning process in cognitive control is based on two basic ideas:

• The entropic state of the perceptor, which makes it possible to bypass the

imperfect-state information problem that arises in the brain and other cognitive

dynamic systems, such as the cognitive radar Haykin et al. (2012c); Haykin and

Fuster (2014).

• The cyclic directed information flow, which is attributed to the global perception-

action cycle that defines the first principle of cognition Fuster (2003); Haykin

(2012a).

A.2 The planning process in cognitive control : This second process is inspired by
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the prefrontal cortex in the brain Fuster (2014); Haykin and Fuster (2014). Specif-

ically, the cognitive controller in one side of the system is reciprocally coupled to

the cognitive preceptor in the other side of the system. This reciprocal coupling,

attributed to the combined use of feedback information from the perceptor to the

controller as well as feedforward information from the controller to the perceptor,

is the essence of the shunt form of perception-action cycle that completely bypasses

the environment. In this paper we refer to this cycle as the internally composite

cycle Haykin and Fuster (2014); most importantly, it is this particular form of the

perception-action cycle that accommodates the use of planning in the cognitive con-

troller.

3.11.2 Linearity, Convergence, and Optimality

These three intrinsic properties of the cognitive control learning algorithm are ac-

counted for as follows:

• The linear law of computational complexity, measured in terms of actions taken

on the environment, follows directly from the learning algorithm.

• Convergence and optimality of the learning algorithm follow from the proof

that this algorithm is indeed a special case of the classic Bellman’s dynamic

programming.
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Figure 3.5: The impact of planning on cognitive control in Scenario 1.

3.11.3 Engineering Application

Practical validity of the new cognitive controller has been demonstrated experimen-

tally in a cognitive tracking radar benchmark example. Specifically, the new cogni-

tive controller has been compared against two other different sub-optimal cognitive

controllers: One controller involves dynamic optimization that is computationally

expensive; the other controller involves the use of traditional Q-learning that is com-

putationally tractable, but inefficient in performance.
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3.12 Appendix A

In this appendix, we derive Bellman’s equation (3.10). The proof is along the same

line as the proof of Lemma 1.

Using the linear property of the expected value operator as well as the total

probability theorem Bertsekas and Tsitsiklis (2008), we may expand J̃ as follows:

J̃(s, a) = Eπ[rk+1 + γrk+2 + γ2rk+3 + ... | sk = s, ak = a]

= Eπ[Σ∞j=0γ
jrk+j+1 | sk = s, ak = a]

=
∑
s′∈S

P[sk+1 = s′|sk = s, ak = a]× Eπ[Σ∞j=0γ
jrk+j+1|sk = s, ak = a, sk+1 = s′]

=
∑
s′∈S

T ass′ × Eπ[Σ∞j=0γ
jrk+j+1|sk = s, ak = a, sk+1 = s′]

=
∑
s′∈S

T ass′ × {Eπ[rk+1|sk = s, ak = a, sk+1 = s′]+

γEπ[Σ∞j=0γ
jrk+j+2|sk = s, ak = a, sk+1 = s′]}

=
∑
s′∈S

T ass′{Ra
ss′ + γEπ[Σ∞j=0γ

jrk+j+2|sk = s, ak = a, sk+1 = s′]}

=
∑
s′∈S

T ass′{Ra
ss′ + γ

∑
a′∈A

P[ak+1 = a′|sk = s, ak = a, sk+1 = s′]×

Eπ[Σ∞j=0γ
jrk+j+2|sk = s, ak = a, sk+1 = s′, ak+1 = a′]}

=
∑
s′∈S

T ass′{Ra
ss′ + γ

∑
a′∈A

π̃k(s, a
′)J̃(s′, a′)}

�

89



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

3.13 Appendix B

In this appendix, we show that dynamic optimization used in the cognitive radar

Haykin et al. (2011), it may be considered as a special case of the cognitive control

learning algorithm, introduced in this paper.

At each perception-action cycle, the cost-function in the dynamic optimization

algorithm is equivalent to the entropic state in this paper, and it is predicted for all

the actions in the action library, using the Kershaw and Evans model Kershaw and

Evans (1994). The action that has the minimum cost is then selected as the optimal

action.

Turning back to cognitive control, recall the learning update in Algorithm 1 (line

11):

J(c)← J(c) + α[R(c) + γΣc′∈Cπk(c, c
′)J(c′)− J(c)]

Substituting α = 1 and γ = 0 yields the following:

J(c)← R(c) (3.14)

which implies that under the assumptions of α = 1 and γ = 0, the value-to-go function

in cognitive control turns into the immediate reward.

Next, consider the substitution of C1 ← C, in algorithm 3 (line 26). This case

is equivalent to having complete planning at each perception-action cycle, which is

clearly a possible choice.

Combining the learning and planning processes, discussed above, we have then

exactly the same algorithm as dynamic optimization. To be more specific, in the
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case of having complete planning with unitary learning factor and no future inclusion

(zero-discount), the new cognitive controller is reduced to dynamic optimization, and

therefore the new cognitive controller embodies features that do not exist in dynamic

optimization. Hence, it is not surprising that in Scenario 2 of Section IX, the learning

curve for dynamic optimization deviates from that of the new cognitive controller.
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Algorithm 3: A complete algorithm to implement Lemma 2, which embodies
both learning and planning.

1 Varables:
2 C := set of all cognitive actions
3 C1 := set of selected cognitive actions for planning
4 J := value-to-go function
5 π := control policy
6 memLearning := short-term memory for learning
7 memPlanning := short-term memory for planning
8 c := selected cognitive action
9 r := computed reward

10 k := time step
11 Initialization:
12 k ← 0;
13 memLearning ← H0;
14 c← a random cognitive action;
15 Apply c to the environment;
16 repeat
17 k ← k + 1;
18 Hk|k ← Input(entropic state) from Perceptor;

19

20 Learning:
21 r ← gk(Hk|k, (memLearning −Hk|k));

22 Update J ;
23 memLearning ← Hk|k;

24

25 Planning:
26 Select C1 ⊆ C;
27 for all cognitive actions c ∈ C1 do
28 for i=1 to num prediction steps do
29 memPlanning ← Hk+i−1|k;

30 compute Hk+i|k using c;

31 r ← gk(Hk+i|k, (memPlanning −Hk+i|k));

32 Update J ;

33 end

34 end
35

36 Update π by J ;
37 Select c based on π;
38 Apply c to the environment;

39 until perception-action cycles are finished ;
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Chapter 4

Improving Observability of

Stochastic Complex Networks

under the Supervision of Cognitive

Dynamic Systems

4.1 Abstract

Much has been said about observability in system theory and control; however, it

has been recently that observability in complex networks has seriously attracted the

attention of researchers. This paper examines the state-of-the-art and discusses some

issues raised due to “complexity” and “stochasticity”. These unresolved issues call

for a new practical methodology. For stochastic systems, a degree of observability

may be defined and the observability problem is not a binary (i.e., yes-no) question
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anymore. Here, we propose to employ a goal-seeking system to play a supervisory

role in the network. Hence, improving the degree of observability would be a valid

objective for the supervisory system. Towards this goal, the supervisor dynamically

optimizes the observation process by reconfiguring the sensory parts in the network. A

cognitive dynamic system is suggested as a proper choice for the supervisory system.

In this framework, the network itself is viewed as the environment with which the

cognitive dynamic system interacts. Computer experiments confirm the potential of

the proposed approach for addressing some of the issues raised in networks due to

complexity and stochasticity.

4.2 Introduction

In 1977, Herbert Simon wrote Simon (1977), p. 258:

“To a Platonic mind, everything in the world is connected to everything

else—and perhaps it is. Everything is connected but some things are more

connected than others.”

The point he is emphasizing is connectivity, which is at the heart of complex networks.

Indeed, the complexity of networks manifests itself in how dense and with what kind

of structure, the edges are distributed in a network with arbitrary large number of

nodes.

In the realm of network science, an extremely important issue to be addressed

in many of real-world applications is how to acquire sufficient information about a

network with minimal computational effort. In other words, the problem of interest

is to understand why a complex network with high connectivity behaves in a certain
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way by accessing only a small subset of nodes. This problem is subsumed under

the broader problem of network observability. Knowing whether or not a network

is observable would be critical because in large networks, it is often impractical or

even impossible to monitor all nodes’ states. On the other hand, in many real-

world applications, all the states are not necessarily accessible to the outside world.

Therefore, there is a need to reconstruct (i.e., estimate) those states on the sole basis

of observing other variables, which are related to those states as well as accessible for

measurements.

Although it is a classic and well-known problem in system theory and control,

observability in network science is relatively new, mostly started with the prominent

work reported in Liu et al. (2013). For deterministic networks, the proposed algorithm

in Liu et al. (2013) yields the minimum number of nodes in the network that should

be monitored in order to satisfy the requirement for observability. It also provides

subsets of nodes from which the monitor nodes should be selected. However, extend-

ing the results to stochastic networks aiming at estimating the state of the network

does not seem to be that straightforward. As a matter of fact, having the proposed

framework of Liu et al. (2013) in mind, some of the simulation results obtained for

complex stochastic networks (especially those with dense structures) may seem coun-

terintuitive. Hence, for estimating a network’s state in face of model uncertainties

and imperfect measurements, additional steps must be taken. We distinguish our

paper from Liu et al. (2013) in two accounts: a) complexity in terms of edge density,

and b) stochasticity.

Here, we propose to implement a controlled-sensing mechanism in the network. By

taking this approach, a supervisory system would be responsible for reconfiguration

96



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

of the sensory parts in the network in order to dynamically optimize the observation

process. A cognitive dynamic system (CDS) in the sense described in Haykin (2012a)

will be able to perfectly play the role of the supervisory system, where the stochastic

network of interest is viewed as the environment with which the CDS interacts. A CDS

is built on Fuster’s paradigm of cognition, which suggests five pillars for a cognitive

system: perception-action cycle, memory, attention, intelligence, and language Fuster

(2003). Perceptual and executive parts of the perception-action cycle as well as

memory are physical entities, attention is algorithmic, and intelligence emerges due

to the interactions among the former three pillars. Language will play a key role,

when we have a network of cognitive systems.

Following this new way of thinking, the CDS, which acts as a supervisor over a

given network of interest, tries to reconstruct the hidden states of the network based

on the information it gathers from monitor nodes (i.e., a selected subset of nodes

whose outputs are accessible to the CDS). The perceptual part of the CDS employs

Bayesian filtering for reconstruction of entire state of the network. Furthermore,

through the use of cognitive control Haykin et al. (2012a); Fatemi and Haykin (2014),

the executive part of the CDS tries to improve accuracy of the reconstructed state

from each global cycle of perception-action to the next. To this end, a quantitative

measure for the lack of information in the state posterior is also computed in the

cognitive perceptor, which is passed on to the cognitive controller as the feedback

information. The cognitive controller will then use this information to reconfigure

the sensory parts of the network by rearranging the monitor nodes in such a way that

the available information to the perceptor is maximized in the following cycles. In

addition to rearrangement of monitors, the CDS may also have to increase the number
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of monitor nodes or remove redundant ones (i.e., nodes with minimal contribution in

acquiring information).

In the proposed approach, learning and planning stages involved in cognitive con-

trol provide enough flexibility to handle different situations that may occur in the

network of interest. In this regard, a few points are worth mentioning:

• Cognitive control can directly incorporate any practical constraints such as lim-

itation on the number of nodes that can be monitored (i.e., number of deployed

sensors).

• Due to design parameters such as learning and discount factors as well as size

and depth of the planning stage, the methodology can be adapted for different

practical applications.

• The required computations for implementing the proposed methodology can be

performed either online or partially offline:

i) In the online implementation, cognitive controller and Bayesian filter find

the best set of monitor nodes taking some prescribed constraints into ac-

count. Moreover, the selection process happens in a cyclic manner from

each global cycle of perception-action to the next.

ii) In the partially offline implementation, the proposed methodology is used

as the basis for Monte Carlo simulations, which provide clues about the

best set of monitor nodes considering the practical constrains. Here, the

preferred sets of monitor nodes for different working conditions are found

and stored beforehand. This way, an appropriate set of monitor nodes for

current operational conditions will be recalled from the stored data and
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therefore the amount of computation that must be performed on the fly

will significantly decrease.

The rest of the paper is organized as follows: Section 4.3 reviews some basic

concepts from network science as the required background for the following sections.

Next, in Section 4.4, the problem of stochastic observability is discussed in detail

with emphasis on network observability. Section 4.5 explains how complex networks

can be viewed as the environment with which a cognitive dynamic system interacts.

This way, the CDS plays the role of a supervisor that is responsible for improving

network observability. Advantages of the proposed approach are shown through a set

of computationl experiments in Section 4.6 for both linear and nonlinear case studies.

Finally, Section 4.7 concludes the paper by highlighting the key results and drawing

lines for future research.

4.3 Brief Account on Network Science

Regarding the critical role that networks play in shaping and sustaining our modern

societies, the study of complex networks has been expanding across diverse scientific

disciplines over the last two decades Cohen and Havlin (2010). This relatively new

branch of science has began to be referred to as network science.

4.3.1 Networks with Stochastic Dynamics

A number of entities that have interactions with each other (i.e., linked in a physical

and/or mathematical sense) form a network. The underlaying topology of a network

is mathematically described by a graph, where each node represents one entity and
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edges show the interactions between the nodes they connect. Moreover, each entity

in the network (i.e., each node in the graph) attributes to a state. In reality, each

state is a realization of a physical quantity, such as the electrical load on a power

station, the density of a chemical compound in a biomedical receiver, or the amount

of an item in a warehouse.

In order to be mathematically precise, the following set of definitions are recalled

from graph theory Cohen and Havlin (2010):

Definition (digraph). A digraph (directed graph) G(N,L) is determined by a pair

of sets:

1. A set of nodes, N with |N | = n, where n is called the graph size.

2. A set of directed edges:

L = {(i, j) iff there exists an edge from i to j for i, j ∈ N}.

Definition (incident matrix). The weighted incident matrix (or simply incident

matrix) of digraph G(N,L) is a square matrix, A ∈ Rn×n, which has a row and a

column for each node. If there is a link from node i to node j in the digraph, the

corresponding element of the incident matrix Aij, which represents the dependency

weight of node j on i, will be nonzero. Otherwise, the entry Aij will be zero. Hence,

in general, the incident matrix of a digraph is asymmetric. If there are edges in the

network that connect some nodes to themselves (i.e., if self-loops exist in the digraph),

the corresponding diagonal elements of A will be nonzero.

A network may represent a linear stochastic system that satisfies the Markovian

assumption. In this case, the following pair of process and monitor equations provide
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a dynamic model for the network:

 Process equation: xk+1 = AT
k xk + vk

Monitor equation: zk = Ckxk + wk

(4.1)

where Ak is the incident matrix of the corresponding digraph G at cycle k that may

vary in the course of time and T denotes the transpositional operator. In this model,

state vectors of the digraph’s nodes, x
(i)
k , are concatenated to form the augmented

vector xk = {x(i)
k }ni=1 that represents the whole network state. The evolution of the

network state in the course of time is governed by the above process equation in

which the process noise, vk, takes account of model uncertainties. It is assumed that

a subset of nodes, M ⊆ N with |M | = m ≤ n, is available for monitoring, from

which q ≤ m nodes are chosen as monitor nodes. Therefore, there are
(
m
q

)
= m!

q!(m−q)!

different options for choosing q monitor nodes from m accessible nodes. Similarly,

the observed outputs of the monitored nodes, z
(j)
k , are concatenated to form the aug-

mented measurement vector zk = {z(j)
k }

q
j=1. The above monitor equation 1 describes

the relationship between the state and measurement vectors, where the measurement

noise, wk, takes account of measurement uncertainties. Matrix Ck, has a row associ-

ated with every output of every monitor node at cycle k.

For the sake of brevity, in this paper, we assume that the random processes v and

w are both zero-mean, white and mutually independent. Also, we solely focus on

Gaussian environments, i.e., vk ∼ N (0,Qk) and wk ∼ N (0,Rk), where Qk and Rk

denote the covariance matrices of process and monitor noises, respectively. However,

1In the control literature, the second equation in (4.1) is called measurement or output equation.
In the network context, the measurements (i.e. observables) are provided by nodes that are chosen
to be monitored (i.e. monitor nodes). Hence, the term monitor equation was adopted.
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the application of cognitive control is not limited to Gaussian models.

The same modelling philosophy can be equally applied to stochastic nonlinear

systems regarding the fact that for a nonlinear system, as discussed in Liu et al.

(2013), there exists a unique inference diagram (i.e., a digraph). In such cases, the

network, which is mathematically described by the corresponding inference graph,

represents the stochastic nonlinear system under study. The state-space model will

then take the following form:

 Process equation: xk+1 = fk(xk) + vk

Monitor equation: zk = gk(xk) + wk

(4.2)

If we have direct access to the states of nodes that are monitored, the above nonlinear

monitor equation will be reduced to a linear one.

The linear and nonlinear state equations in (4.1) and (4.2) are discrete-time mod-

els. The developed framework can be equally applied for continuous-time processes.

However, in such cases, a hybrid (i.e., continuous-discrete) version of the Bayesian

filter would be required for network state reconstruction.

Now that we have covered the relationship between state-space models, digraphs,

and networks, we need to know how edge distribution as well as edge density affect the

observability of complex networks if the number of nodes does not change. Answers to

these questions will help for better sensor design in real-world applications. In order

to set the stage for answering these key questions, we take a look at some well-known

network topologies.
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4.3.2 Two Basic Network Topologies of Practical Importance:

Among different classes of networks, we consider Erdős-Rényi and scale-free random

networks for their importance in modelling real-world networks Jackson (2008):

Erdős-Rényi (ER) Networks

Named after P. Erdős and A. Rényi Erdős and Rényi (1960), in the growing process of

this class of networks, a connection (an edge in the graph) may be produced between

each pair of nodes with equal probability p, independent of the other edges. In their

seminal paper, Erdős and Rényi provided a detailed behavioural analysis for such

networks for different values of p. As a result, ER networks have become the most

basic class in complex-network studies.

Scale-free Networks

A scale-free network is a network whose degree distribution follows a power law, at

least asymptotically. To be more precise, let the fraction of nodes in the network that

have k connections to other nodes be denoted by P (k). Then, for large values of k we

will have P (k) ∼ k−γ, where γ is a parameter whose value is typically in the range

γ ∈ (2, 3), although occasionally it may lie outside of this interval Barabási and Albert

(1999); Choromański et al. (2013). Many of the real-world networks are thought to

be somehow scale-free. Examples include social and collaborative networks, internet

networks including the World Wide Web, some financial networks, protein-protein

interaction networks, and airline networks.

Next section provides a formal definition of observability in the context of stochas-

tic networks and suggests a way for improving the observability.
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4.4 Observability of Stochastic Complex Networks

Talking about complexity, it is noteworthy to distinguish between three stages of

system structure: simple, complicated, and complex Cotsaftis (2009). Simple systems

are the building blocks for both complicated and complex systems Milo et al. (2002).

The difference between complicated and complex systems is due to the fact that

in the latter, interactions between system components are fairly strong and some-

how overshadow the component features. As a result, while a reductionist approach

may work for analyzing complicated systems, for complex systems, taking a holistic

approach is a must Cotsaftis (2009). In networks, moving from a sparse structure

towards a dense structure can be interpreted as passing from a complicated network

to a complex network.

When it comes to networks, in different branches of science and engineering, it is

common to deal with sequential data gathered from the network. A large portion of

our knowledge about a network, especially when it is large-scale and complex, cannot

be presented in terms of quantities that can be measured directly. In such cases,

building a model would be the logical basis for explaining the cause behind what

we observe via the measurement process. This leads us to the notions of state and

state-space model of a dynamic network, where the term “dynamic” may refer to time

evolution of node state Liu et al. (2011a), edge state Nepusz and Vicsek (2012), a

combination of both, or even size and topology of the network Setoodeh and Haykin

(2009).

To investigate reconstructing (i.e. estimating) the state of dynamic networks

from measuring the outputs of its monitor nodes, a key question is whether or not it

is possible to do so using a given model of the dynamic network under study. This
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critical question that must be answered before choosing a proper estimation algorithm

among different candidates, leads us to the concept of observability Muske and Edgar

(1997). For deterministic networks, observability implies that an observer would be

able to distinguish between different initial states based on measurements. In other

words, an observer would be able to uniquely determine observable initial states from

measurements Kailath (1980).

For defining observability in the context of networks, we may need a paradigm

shift from the classic state trajectories to more abstract trajectory manifolds Cotsaftis

(2009). To be more precise, in estimating the state, we may settle for finding a

restricted initial subspace of the original state space instead of an individual initial

stateLiu et al. (2011b).

In Liu et al. (2013), Liu, Slotine, and Barabasi proposed an intuitive method,

which provides possible sets of necessary monitor nodes in a “deterministic” network,

according to the Jacobian-based definition of observability. Additionally, they men-

tioned that any of the given sets may be sufficient in some specific cases. The method,

which is called LSB hereafter, is based on a graph theory concept, known as strongly

connected component (SCC). An SCC is a subgraph, in which there exists a directed

path from each node to every other nodes. Although it is easy to implement the LSB

algorithm, here are a few points that are worth thinking about:

• LSB results in a number of sets (called root SCCs), from each of which a node

should be selected as one of the monitor nodes. However, LSB does not provide

any further information about which of the nodes in each root SCC would be a

better monitor node.
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• For most of dense and almost uniformly edge-distributed networks (e.g., Erdős-

Rényi networks), which simply has one or a few SCCs, the LSB method hardly

provides any practical clue about the monitor nodes. Table 4.1 elaborates on

this critical problem.

• LSB is meant for deterministic networks, where the network model is completely

known and the observation of monitor nodes is assumed to be perfect. It is

mentioned in Liu et al. (2013) under the suggested future research topics that

both assumptions may be violated in practice, where model uncertainties and

measurement imperfections are involved. Indeed, our experiments demonstrate

that for problems with modelling and measurement uncertainties, the practical

monitor nodes may be different from what are suggested by LSB.

More importantly, in many practical cases, we are limited in the number of monitor

nodes due to different reasons including limited computational resources. In a prob-

lem with limited number of monitor nodes, LSB provides no preference among the

suggested monitor nodes and may therefore be used only as a clue for the selection

of the monitor nodes.

Going one step further to address real-world problems, the issue of stochasticity

deserves special attention. In different applications, it is often desirable to predict

next states based on collected data up to a certain time instant. Since the future is

always uncertain, it is also preferred to have a measure that shows our confidence

about the predictions; a probability distribution over possible future outcomes will

do the job Murphy (2002).

For stochastic systems, there is not a unique definition of observability. However,

most of the proposed definitions for observability of stochastic systems have roots
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Table 4.1: Number of monitor nodes based on the Liu-Slotine-Barabasi (LSB) method
are compared for two basic network topologies of the same size, namely, scale-free and
Erdős-Rényi (ER) random networks. Each row has roughly the same number of edges
and the number of monitors are averaged over 1000 realizations and rounded up. For
the scale-free networks, α, β, and γ are respectively the probabilities of adding a
new node connected to an existing node chosen randomly according to the in-degree
distribution, adding an edge between two existing nodes (one existing node is chosen
randomly according to the in-degree distribution and the other is chosen randomly
according to the out-degree distribution), and adding a new node connected to an
existing node chosen randomly according to the out-degree distribution. Clearly,
with the same number of nodes, the more dense the network is, the less number of
monitor nodes is suggested by LSB. Similarly, LSB suggests considerably less number
of necessary monitors for more uniformly-distributed networks. It is also noteworthy
that for ER random networks, which are more dense than 5%, LSB provides almost no
information about the monitor nodes. A similar problem happens for dense scale-free
networks as well.

Scale-free ER Random

Number
of

nodes

Average
number

of
edges

Parameters
Avg. LSB
monitors

(±1)

Probability for
edge creation

(∈ [0, 1])

Avg. LSB
monitors

(±1)

100 210
α = 0.41
β = 0.54
γ = 0.05

74 0.021 12

100 370
α = 0.21
β = 0.74
γ = 0.05

67 0.037 3

100 600
α = 0.41
β = 0.54
γ = 0.05

56 0.060 1

100 1620
α = 0.05
β = 0.94
γ = 0.01

1 0.162 1
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in information theory. For instance, in Liu and Bitmead (2011), observability was

defined on the basis of the concept of mutual information:

I(X; Y) = H(X)−H(X|Y). (4.3)

where H(X) denotes entropy of X and H(X|Y) is defined as the entropy of random

variable X (i.e. state vector) conditional on the knowledge of random variable Y

(i.e. measurement vector), hence the term conditional entropy. According to Liu and

Bitmead (2011), state X is unobservable from measurement Y, if they are independent

or equivalently I(X; Y) = 0; otherwise, X is observable from Y. Since mutual

information is nonnegative, equation (4.3) leads to the following conclusion: if either

H(X) = 0 or H(X|Y) < H(X), then X is observable. A deterministic system is

either observable or unobservable but for stochastic systems, a degree of observability

can be defined, which varies between 0 and 1 Kam et al. (1987).

Referring back to networks, in general, two sets of states can be considered for a

network: physical states and information states, which are associated to physical dy-

namics and information dynamics, respectively Hero and Cochran (2011). In Haykin

et al. (2012a), the notion of cognitive controller was proposed for controlling the infor-

mation state as a counterpart to physical controller that controls the physical state.

In the proposed framework, cognitive and physical controllers play complementary

roles.

This paper proposes a systematic method for improving observability and therefore

the quality of physical-state estimates in stochastic networks, based on the previously

mentioned notion of stochastic observability. Cognitive controller will be able to

increase the degree of observability, if
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• the measure of information, which is chosen as the information state, is the

entropy of the physical state (i.e. the entropic state), and

• the role of cognitive controller is defined to minimize this entropy.

In this setup, a cognitive perceptor computes the mentioned entropic state and

thereby sets the stage for cognitive control. As a result, the cognitive controller

operates as the information supervisor of the network to address the previously men-

tioned issues of concern in a cycle-by-cycle manner. To be more precise, the cognitive

controller algorithmically chooses the best set of monitor nodes from one cycle of

perception-action to the next in a way to reduce the conditional entropy. In case

of complete observability, the entropic state will approach zero Fatemi and Haykin

(2014); however, this is not the case in practice due to the ever presence of uncertainty

and modelling imperfections.

4.5 Complex Networks Viewed as the Environment

of Cognitive Dynamic Systems

Much has been written about the relationship between neuroscience and engineer-

ing. However, when it comes to cognitive neuroscience with emphasis on cognition,

the Cognitive Dynamic System (CDS) first described in Haykin (2006a) and later

expanded in Haykin (2012b), is the closest description of such a system viewed from

the perspective of Fuster’s principles of cognition Fuster (2003). Fuster’s principles

are discussed in the Introduction; however, from the perspective of this article, it is

the perception-action cycle that is the center of focus.
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Cognitive Action
(monitor set)
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Cognitive
Controller

Cognitive
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Feedforward
Information

Feedback
Information

Internaly
Composite

Cycle
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The Network

Sensors

Monitor nodes

Non-monitor nodes

Figure 4.1: Block diagram of the global perception-action cycle over a network, where
a cognitive dynamic system acts as a supervisor. The nodes in blue are the monitor
nodes and the diamonds are the observables.

In the context of CDS, the environment is generic in terms of being an entity

with any number of hidden states, which is seen only though the observables. As

a result, it is quite natural to consider networks as the environment of a CDS with

observables being the outputs of monitor nodes. In the structure depicted in Fig.

4.1, the illustrated cognitive dynamic system indeed acts as a supervisor over a given

network of interest in that it reconstructs the hidden state of the network on the

sole basis of observing the monitor nodes. Furthermore, through the use of cognitive

control, the cognitive dynamic system guarantees the accuracy of reconstructed state

from each global cycle of perception-action to the next. In the following subsection,

we first describe Bayesian perception of the network, which directly results in the

definition of the so-called entropic state that accounts for the mentioned information
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state. Then, the next two subsections discuss the cyclic directed information flow,

which and the algorithmic processes involved in cognitive control.

4.5.1 Bayesian Perception of Networks: The Two-state Model

We begin the global perception-action cycle by focusing on the perceptor on the

right-hand side of Fig. 4.1. The function of the perceptor is to monitor the network

separately from the controller, and reconstruct the network state on the sole basis

of extracting information from the observables. To be more specific, we may look to

Bayesian filtering Ho and Lee (1964) for estimating the hidden state of the network;

using a state-space model (4.1) or (4.2) that consists of a pair of equations: (a) process

equation that describes evolution of the state over time, which is contaminated by

system noise, and (b) monitor equation, which describes dependence of the incoming

observables on the state of monitor nodes, corrupted by measurement noise. Optimal

solution of the state estimation problem is given by the well-known Bayesian filter Ho

and Lee (1964), at least in conceptual terms, which includes the special but important

case of Kalman filter and its nonlinear versions Kalman (1960); Bar-Shalom et al.

(2001); Crisan and Rozovskii (2011). In a more general fashion, also for non-Gaussian

environments, particle filters might be preferred to approximate the optimal Bayesian

filter Gordon et al. (1993); Ristic et al. (2004); Robert and Casella (2005). If we have

a continuous-time process, then the Bayesian perceptor will take the form of a hybrid

filter due to the fact that the observation process is still discrete in time.

As discussed in Fatemi and Haykin (2014), the two-state model is an essential

element in deriving the cognitive control algorithm. By definition, the two-state

model embodies two distinct states, one of which is called the network state, that is
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the vector of all the states attributed to the nodes (or edges or both) of the network.

The second one is called the entropic state of the perceptor, the source of which is

attributed to the unavoidable presence of uncertainties in the environment as well

as imperfections in the perceptor itself. These two states exactly corresponds to

the “physical” and “information” states, which were previously discussed. Insofar

as cognitive control is concerned, the two-state model is described in two steps as

follows:

1. State-space model of the network, which is described by (4.1) or (4.2).

2. Entropic state model of the perceptor, which is formally defined by the following

equation:

Entropic-state equation: Hk = φ(p(xk|zk)) (4.4)

The Hk is the entropic state at cycle k in accordance with the state posterior

p(xk|zk) in the Bayesian sense, which is computed in the perceptor2. As such, Hk

is the state of the perceptor and φ is a quantitative measure such as Shannon’s

entropy3.

2To emphasize the cycles, in which the state and the measurement are taken, in this paper, we
may also use the notation Hk|k, in accordance with the subscripts in the posterior, p(xk|zk).

3Shannon’s entropy for a random variable X, having the probability density function pX(x) in
the sample space Ω is defined asCover and Thomas (2006):

H =

∫
Ω

pX(x) log
1

pX(x)
dx

Correspondingly, Shannon’s entropy of network state xk with the posterior p(xk|zk) is defined as:

Hk =

∫
Rn

p(xk|zk) log
1

p(xk|zk)
dxk

This entropy can be viewed as the perceptor state.
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It is important to note that in general, Shannon’s entropy could assume the value

zero; however, in cognitive control, the entropic state Hk will always have a non-zero,

positive value due to the fact that the environment always involves uncertainty and

we can never reach perfect target-state reconstruction with 100% accuracy.

By definition, the function of cognitive control is to minimize the entropic state

(i.e., state of the perceptor) on a cycle-by-cycle manner Haykin et al. (2012a). Cogni-

tive control therefore requires the entropic state, which is computed in the perceptor

and then passed to the cognitive controller as feedback information. Needless to say,

this original definition of cognitive control matches the requirement of stochastic ob-

servability, as discussed previously.

The following subsection discusses the cyclic information flow and defines the

cognitive controller as an optimal supervisor for the state reconstruction process by

the perceptor.

4.5.2 Cyclic Directed Information Flow

The global perception-action cycle, depicted in Fig. 4.1, plays a key role in a cognitive

dynamic system; it is said to be global, in that it embodies the perceptor in the

right-hand side of the figure, the cognitive controller in the left-hand side of the

figure, and the monitored network, thereby constituting a closed-loop feedback system

that includes the environment (i.e., the network in this context). The entropic state

introduced in Subsection 4.5.1 is indeed a measure of the lack of sufficient information

for state-reconstruction in the perceptor. Next, the entropic state supplies the feedback

information, which is sent to the cognitive controller by the perceptor. With this

feedback information at hand, the cognitive controller acts on the network, producing
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a change in the monitor nodes. Correspondingly, this change affects the amount of

relevant information about the network, which is extracted from the new configuration

of monitor nodes. A change is thereby produced in the feedback information and

with it, a new action is taken on the network by the cognitive controller in the next

perception-action cycle. These actions are called “cognitive actions” due to their role

in controlling the directed information flow. To summarize, we may therefore define

each cognitive action to be the selection of a possible set of monitor nodes. Continuing

in this manner from one cycle of perception-action to the next, the cognitive dynamic

system experiences a cyclic directed information flow, as illustrated in Fig. 4.1.

In addition to feedback information directed from the perceptor to the cognitive

controller, there is also a feedforward information link from the cognitive controller

to the perceptor. In other words, the perceptor and the cognitive controller are recip-

rocally coupled. This important link provides the means for bypassing the network in

order to “predict” the future global cycles for a hypothesized action. This feedforward

link is the facilitator of predictive planning.

4.5.3 Summary of Cognitive Control

The algorithmic steps involved in cognitive control from each cycle of perception-

action to the next are summarized as follows (for further information, the reader is

referred to Fatemi and Haykin (2014)):

A) Initialization:

i) Action Library: As described in Section 4.3.1, for a network with m accessible

nodes and prescribed q monitor nodes at each perception-action cycle,
(
m
q

)
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sets of monitor nodes will be available in total, the selection of which are

considered to be cognitive actions in the action library of the CDS.

ii) Value-to-go: To each cognitive action (set of monitor nodes), a value-to-go

is allocated, which is initialized to zero.

iii) Initial Action: One of the sets in the cognitive action library is then selected

randomly at the very first cycle.

B) Cyclic Process:

i) Given the observables, reconstruct the network state using Bayesian filtering

and compute the state posterior through the well-known time-update and

measurement update stages of filtering.

ii) Compute the corresponding entropic state as the feedback information for

cognitive control.

iii) Compute the entropic reward and update the value-to-go function.

iv) Compute the predictive planning updates using the internally composite cy-

cle.

v) Repeat step “iv” for all hypothesized cognitive actions and lookahead pre-

dictions, as computationally permitted.

vi) Using the resulting policy, select the best set of monitor nodes for the next

cycle.

A direct consequence of using cognitive control is not only that it allows for the

network structure to be dynamic, but it also results in finding an exact monitor set
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in each cycle as opposed to methods such as LSB, which only provide a collection of

possible choices but not any exact choice.

Moreover, applying different constraints to monitor nodes are also permitted sim-

ply by defining the cognitive actions to be in accordance with the given constraints.

This is another desirable feature of deploying cognitive control. The reason for this

distinctive capability is that the cognitive controller finds the best cognitive action

in the cognitive-action-space regardless of how this action-space has been defined.

Therefore, we can define the cognitive-action-space in one form or another that best

fits the design specifications of the problem at hand. For example, cognitive actions

may be defined as sets of monitor nodes with prescribed cardinality or with inclu-

sion/exclusion of a number of prescribed nodes. In the latter case, we may exclude

some of network’s nodes from being monitor nodes because they are inaccessible. On

the other hand, we may force the set of monitor nodes to include some prescribed

nodes by simply defining the cognitive actions to be so.

Next section provides computer experiments in order to confirm the advantages

of the proposed method and validate the claims made in the previous sections. For

the sake of demonstrating the power of cognitive control, we explicitly restrict the

cardinality of monitor sets to some prescribed values.

4.6 Computational Experiments

In this section, we provide different examples to demonstrate the methodology just

discussed. Our approach follows the one elaborated in Fatemi and Haykin (2014). The

first two sets of experiments pertain to the observability of linear networks. The third

experiment will then examine the observability of a nonlinear benchmark process.
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Figure 4.2: Graphical illustration of the network in example 1. The numbered circles
depict the seven nodes of the network. Dashed-line circles demonstrate strongly-
connected components (SCC), where the shaded ones are the root SCC’s that contain
no inward edges. The nodes in blue (5 and 7) are the suggested monitor nodes by
the LSB method.

Example 1: A Small Linear Network

Consider a network of size n (with n number of nodes) with the adjacency ma-

trix A. Assume that all the nodes are accessible (i.e., m = n) but only q << n

nodes are permitted to be monitored at each perception-action cycle. The main

reason for this setup is that full monitoring of a complex network is not practi-

cally/computationally tractable. We demonstrate that a cognitive controller that

minimizes the entropic state, is able to successfully select monitor nodes that mini-

mize the state-reconstruction error of the network.

For the sake of demonstration of basic concepts, in this first example, we use a

network of size n = 7, with only one monitor node (i.e., q = 1), and the following
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adjacency matrix:

A =



0 0 −0.3 0.9 0 0.4 0

1.2 1.2 0 0 0 0 0

0 0.4 0 0 0 0 0

0 0 0 0 −0.5 0 0

0 0 0 0 0 0 0

0 −0.6 0 0 0 0 1.7

0 0 0 0 0 0 0


As illustrated in Fig. 4.2, the LSB method suggests nodes 5 and 7 as necessary

monitors. Uncertainty in both state and monitor equations are modelled by additive

zero-mean white Gaussian random processes. Under the Markovian assumption for

state evolution, this problem therefore gives rise to the following state-space model:

{
xk+1 = ATxk + vkzk = ejxk + wk ,

where, xk ∈ R7 and zk ∈ R are network’s state and observation, respectively. Specif-

ically, vk ∼ N (0,Q) and wk ∼ N (0, σ2
w) are zero-mean, white Gaussian random

processes with covariance matrix Q for vk and variance σ2
w for wk. Selection vector

ej ∈ B7, B = {0, 1}, is a row-vector with all of its elements equal to zero except for

the j-th element, which is one. Hence, the l-th node of the network will be selected

to be the monitor node if and only if j = l. The initial state has been set to 1.00 for

all the states. Moreover, Q has been selected as the diagonal matrix with diagonal

elements of 10−6, and σ2
w = 0.005. For Gaussian processes similar to those involved

in this problem, Shannon’s entorpy can be shown to be Hk = 1
2

log(det{(2πe)Pk|k}),
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with Pk|k denoting the covariance of state reconstruction error vector at cycle k given

observation also at cycle k. We use Hk = trace{Pk|k} as the entropic state, where

the trace operator is sum of eigenvalues as opposed to determinant, which is mul-

tiplication of eigenvalues. The reason is that trace operator gives rise to the same

result as Shanon’s entropy due to the fact that eigenvalues of the positive-definite

matrix Pk|k are all positive values and logarithm is a monotonic function. However,

trace results in larger values for the entropic state, which is preferred for the sake

of demonstration. The experiment run-time is 10 seconds with 10 observations per

second.

The goal here is to find the best state to be monitored in each cycle using cognitive

control. Using deterministic observability test, it is easy to show that deterministic

version of this network (i.e., without noise terms) is not fully observable having a single

monitor node. However, we may be able to minimize the entropic state by monitoring

a “proper” node at each cycle with some minimum sample rate. In so doing, we

produce a perception-action cycle by adopting a Kalman filter as the perceptor and

the cognitive control algorithm as the controller to pick a proper monitor at each

cycle. Fig. 4.3 illustrates the problem without cognitive controller. As expected, due

to lack of observability, no correct estimation exists and both the entropic state and

estimation error merely fluctuates with no actual convergence.

In Fig. 4.4, cognitive control has been deployed with 30 actions for planning in

each global cycle and two predictive lookahead cycles for each of the hypothesized

actions for planning. As illustrated, both the entropic state and the state reconstruc-

tion error have been minimized and stay close to zero. An interesting outcome is that

the cognitive controller’s action almost settles for choosing a specific node after the
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fourth second, and then completely stops switching after the seventh second.

Next, we plot the histogram for monitor-node selection over the run time, which

is averaged over 50 Monte Carlo realizations. The histogram, illustrated in Fig. 4.5-

a, provides clue about which node proving itself to be more important in terms of

network observability. Finally, we repeat the same experiment, this time with two

monitor nodes, i.e., q = 2. The resulting histogram of this experiment is depicted in

Fig. 4.5-b, which nicely confirms the previous histogram.

Example 2: The Impact of Network’s Topology on Observ-

ability of Complex Networks

In the previous example, we discussed how cognitive control in a dynamic fashion

picks the best monitor nodes, when the number of monitor nodes is limited. In this

example, we expand on the methodology that explained in detail in Example 1, and

implement cognitive control for two basic classes of complex networks, namely, Erdős-

Rényi (ER) and scale-free random networks. Each class is examined with a number

of different case-studies from sparse to dense networks. All the experiments involve

uncertainty both in modelling as well as monitoring.

The results, illustrated in Fig. 4.6, suggest that only one monitor node may

still be sufficient to rapidly reach bounded and relatively small state-reconstruction

error, provided that the monitor node changes dynamically over time (for a single

static monitor, the Bayesian filter always crashes due to overflow of error covariance

matrix). More importantly, the key result here is that in ER networks, which are

uniform in terms of edge distribution, the state-reconstruction error is noticeably

less (and more well-behaved) than their scale-free counterparts. This suggests that
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becoming more complex in terms of distance from a uniform structure may imply the

need for more monitor nodes.

Dense vs. Sparse Networks: A basic question to be addressed is how edge

density and distribution affects the observability property of a network. Supported

by Monte Carlo simulations depicted in Fig. 4.6, our next key result is that as the

network becomes more complex, both the entropic state and state-reconstruction

error increase even in the presence of the cognitive controller. It implies the need

for more monitor nodes as the network becomes more dense in terms of number of

edges with fixed number of nodes. This result is clearly counterintuitive considering

the hypothesis from LSB that the number of monitor nodes decreases as the network

becomes denser and has less SCCs (see Table 4.1). Simply put, although the number of

necessary monitor nodes suggested by LSB decreases, the actual number of sufficient

monitor nodes will increase.

Example 3: A Benchmark Nonlinear Process

In this last example, we follow a different approach: the role of cognitive control here

is to dismiss the most redundant monitor(s) in each global cycle. In other words, we

start with complete monitoring of all network nodes and we remove the node that is

least informative in long-term (in dynamic programming sense). We then draw the

histogram of the selected monitor nodes, which is not only over the entire run-time,

but is also averaged over a large number of different realizations of the experiment.

This approach provides a Monte Carlo based technique to find the best monitor nodes

before the actual sensors are used in a lab setting, and may be very useful for practical

sensor selection.
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For this example, we look into a benchmark nonlinear process, which is presented

in Liu et al. (2013), pertaining to a chemical reaction system with 11 species (A, B,

C, ..., J , K) as depicted in Fig. 4.7. All the species are involved in the following four

reactions:

A+B + C → D + F + J

D ↔ E

H + I ↔ G

J +K → G+H

Because two of the reactions are reversible, we have six elementary reactions. Balance

equations of the chemical reaction system are derived using the mass-action kinetics

as the following Liu et al. (2013):

ẋ1 = −k1x1x2x3

ẋ2 = −k1x1x2x3

ẋ3 = −k1x1x2x3

ẋ4 = +k1x1x2x3 − k2x4 + k3x5

ẋ5 = +k2x4 − k3x5

ẋ6 = +k1x1x2x3

ẋ7 = +k4x8x9 − k5x7 + k6x10x11

ẋ8 = −k4x8x9 + k5x7 + k6x10x11

ẋ9 = −k4x8x9 + k5x7
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ẋ10 = +k1x1x2x3 − k6x10x11

ẋ11 = −k6x10x11

where x1, x2, ..., x11 denote concentrations of the 11 species, and rate constants of the

six elementary reactions are given by k1, k2, ..., k6, respectively. Based on the LSB

method, the original deterministic system is suggested to have at least three monitor

nodes Liu et al. (2013): x6, one from {x4, x5}, and one from {x7, x8, x9}.

We consider 1% of uncertainty in both state and monitoring equations, presented

by two white Gaussian random processes, respectively, which are mutually indepen-

dent. Because the process equations are continuous-time and the monitoring process

occurs in the form of digital sampling, which is discrete-time, we have to employ a hy-

brid Bayesian filter Bar-Shalom et al. (2001). Note also that the first derivatives with

respect to most variables, the second derivatives with respect to all variables, and all

the higher order derivatives with respect to cross variables are all zero. Therefore,

a hybrid extended Kalman filter (HEKF) will be the best choice Bar-Shalom et al.

(2001), since it will be very close to optimal. Nevertheless, it is important to say that

because HEKF involves the use of a Range-Kutta ODE solver, its implementation

involves additional approximations. Therefore, the result will not be on par with the

linear discrete-time Kalman filter in the previous two examples. The experiment runs

for 20 seconds with four sampling per second.

Using fixed monitors based on the LSB method, our simulations show that in 1000

Monte Carlo realizations of the experiment ALL have been crashed due to overflow

of the estimation error covariance matrix. This fact implies that the information

obtained from the monitor nodes suggested by the LSB method is considerably below
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sufficiency.

Next, we deploy cognitive control to dynamically rank the best candidates to be

monitored. To this end, we implement cognitive control in a way that it finds the

worst monitor node in each global cycle. The cognitive controller uses 20 hypothesized

action for planning in each global cycle and one predictive cycle for each of them.

Fig. 4.8 illustrates the resulting histogram. In the case that only one monitor node is

considered as redundant, the histogram suggests that x9 and x11 are respectively the

worst monitors with highest probability. It also shows that x6 is the most important

one to be monitored, followed by x7 and x10 with highest probability. The result

is in partial agreement with the case of deterministic systems. We then repeat the

experiment, but this time with dismissing the two most redundant monitor nodes. In

this case, the histogram suggests that the tuples that contain the nodes x9, x11, x5,

and x3 respectively, are the worst monitor sets with highest probability, which is in

total agreement with the case of only one redundant monitor node.

4.7 Summary and Discussion

In this paper, we studied the problem of observability in complex stochastic net-

works. The reported results demonstrated the fact that extending a good determinis-

tic approach such as the LSB algorithm to stochastic networks is not straightforward

because it may suggest an improper set of monitor nodes. Hence, we suggested to

implement a cognitive dynamic system over the network of interest, for which the

environment is the given network. Having the CDS, we will then be able to deploy

cognitive control, which provides the best set of monitor nodes in a dynamic manner.

Regarding the proposed framework, the following points are noteworthy:
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• A practical feature of deploying cognitive control is that in addition to optimiz-

ing design parameters such as the number of planning actions, ad hoc solutions

can also be incorporated within the presented methodology in this paper so as

to better match the dynamic monitoring process to the problem at hand. For

example, the learning parameters for both learning and planning processes can

be adaptively varied in the course of time. More interestingly, switching con-

straints may also be applied, if need be, to decrease switching between different

monitor sets.

• The proposed methodology may also be used offline using the Monte Carlo

method. This way, the resulting histogram (similar to those presented in Ex-

ample 3), can be used to provide realistic information about the best monitor

nodes for the network of interest. This information may be very helpful for

some real-world problems.

• Our next key result based on the experiments is that as the network becomes

more complex in terms of both edge density as well as distribution, the required

number of monitor nodes increases, which is intuitively satisfying. This con-

clusive statement seems counterintuitive regarding the hypothesis favoured by

the LSB method that decreasing the number of SCCs results in decreasing the

number of necessary monitor nodes.

• Regarding the potentials of CDS, it will be logically sound to claim that CDS

may play a key role in the design of next generation of systems in future. The

reasons include:

– Many, if not all, complex networks in real world involve uncertainty both in
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the modelling as well as in the monitoring stages. The CDS is by definition

the paradigm that deals with uncertainty through perception and control

of the directed flow of information in the best manner possible.

– By means of cognitive control, information supervision is an intrinsic part

of the CDS paradigm, which guarantees entropy reduction in the percep-

tion process in an optimal (or sub-optimal) manner.

– The proposed methodology of this paper will benefit from future advance-

ments of the CDS paradigm. Two possible ways to enrich this methodol-

ogy are suggested as future research topics. An active perceptual memory

can be incorporated to enhance the Bayesian estimation by feeding the

filter with modelling parameters. Moreover, inclusion of the so-called pre-

adaptive mechanism Haykin and Fuster (2014) in the control side may help

to cope with disturbances and intermittencies in the monitoring process.
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Figure 4.3: Stochastic network observability without cognitive control (example 1):
Out of seven states, only one state has been randomly selected to be monitored. Solid
lines show the true states, dashed blue lines illustrate the estimated states resulting
from the Kalman filter, and the red dots are noisy measurements, all coming from one
randomly selected state (x3 in this illustration). The entropic state only fluctuates
over time with no convergence.
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Figure 4.4: Stochastic network observability with cognitive control for the same prob-
lem as in Fig. 4.3 (example 1): As it can be seen, the entropic state becomes almost
zero even only before the very first second of the experiment. It is noteworthy that
the cognitive controller completely converges to a specific monitor node (x2 in this
case), which is different from the nodes suggested by the LSB method (x5 and x7).
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Figure 4.5: Histogram of the selected nodes in example 1, using cognitive control
with 30 random actions used for planning, each of which with two cycles of lookahead
prediction into the future. Simulation results are averaged over 50 realizations. (a)
Only one monitor node: It suggests x2, x1 and x6 as the best monitors with the
highest probabilities. (b) The number of monitor nodes is selected to be two: The
histogram suggests the tuples (x1, x2), (x1, x6), and (x2, x6) as the best monitor sets
with the highest probabilities. This is consistent with the case of only one monitor
node.
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Figure 4.6: Stochastic network observability in various configurations of Erdős-Rényi
(ER) and scale-free networks. All the networks have 100 nodes and they are limited
to have only one monitor. The parameters p and < e > denote probability for edge
creation and average number of edges, respectively. For both types of networks, in
addition to the entropic state, the state-reconstruction mean-squared error is also
plotted to provide a measure for performance. In each global cycle, we use 150
hypothesized actions for planning and two predictive hypothesized cycles for each
planning action. All the simulations are averaged over 50 realizations. For the sake
of demonstration, close-ups of the confidence areas are also shown. For comparison,
see also Table 4.1.
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Figure 4.7: Graphical illustration of the network in example 3. The numbered circles
depict the nodes of the network. Dashed-line circles demonstrate strongly-connected
components (SCC), where the shaded ones are the root SCC’s that contain no inward
edges. The ones in blue are the suggested monitor nodes by the LSB method.
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Figure 4.8: Histogram of the redundant nodes in example 3, using cognitive control
with 20 random actions used for planning, each of which with one cycle of lookahead
prediction into the future. The simulations are averaged over 200 realizations. (a)
Only one monitor node is considered as redundant: It suggests that x9 and x11 are
the worst monitors with the highest probabilities. It also shows that x6 is the most
important one to be monitored, followed by x7 and x10 with the highest probabilities.
The result is in partial agreement with the case of deterministic systems, (b) The
number of redundant monitor nodes is selected to be two: The histogram suggests
that the tuples that contain the nodes x9, x11, x5, and x3 are the worst monitor sets
with the highest probabilities, which is in total agreement with the case of only one
monitor node.

132



Chapter 5

Conclusion

5.1 Research Summary

5.1.1 List of contributions

The contributions of this thesis are listed as follows:

1. Introducing the novel concept of entropic state of perceptor, and thereby the

notion of a two-state model.

2. Developing the definition of cognitive control for engineering systems for the

first time.

3. Mathematically formulating the learning algorithm of cognitive control on the

basis of cyclic directed information flow as well as the entropic state. The nov-

elty of this algorithm is also due to the stateless nature of it, which intrinsically

differs cognitive control from both Bellman’s dynamic programming and the

traditional reinforcement learning. Most importantly, this stateless nature, as
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shown in the thesis, alleviates the so-called curse of dimensionality, which is

another key result.

4. Presenting mathematical proof of convergence to optimal policy for the learning

algorithm.

5. Applying planning as the second important process in cognitive control.

6. Integrating explore/exploit tradeoff into cognitive control to improve the effi-

ciency.

7. Developing two different object-oriented software testbeds for cognitive control,

both of which are completely reusable.

8. Application of cognitive control in tracking radar, resulting in a new generation

of cognitive radars.

9. Application of cognitive control to the information supervisory of stochastic

complex networks : The networks are complex in terms of edge density, and

they are stochastic in that they involve uncertainty in both of modelling and

monitoring processes. This last contribution is not only important from the

cognitive control point-of-view as a novel application, but it may also be rather

influential to the network science literature.

5.1.2 Significance of the Research

In the course of the past four years, a novel paradigm has been introduced to con-

trol the directed flow of information in complex dynamic systems and networks. The
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paradigm, which is called cognitive control, has been established conceptually in Pa-

per I (see Chapter 2). Regarding the significance and novelty of the introduced

paradigm, it is also noteworthy to mention that Paper I featured as a cover story for

the Proceedings of the IEEE.

Next in Paper II (see Chapter 3), the mathematical framework with the proof of

desired characteristics has been presented, which provides the algorithm to implement

cognitive control. Furthermore, the theory has been illustrated though computational

experiment involving the use of a cognitive tracking radar. For the first time ever, we

have been able to achieve error reduction even more than the benchmark “dynamic

optimization” method in less time and with considerably less computational load.

The significance and novelty of Paper II has been commended by the two reviewers

of IEEE Access journal, including the following quote:

“The paper presents the study that opens the novel scientific direction in

the research of cognition activity. The described results can be recognized

as theoretical innovations in the cognitive control.”

Moreover, the paper has been top-listed at the IEEE Access journal since July 2014.

In our third publication, Paper III herein (see Chapter 4), a novel application

for cognitive control has been proposed pertaining to the observability of complex

stochastic networks. This new way of thinking overcomes the shortcomings of the

state-of-the-art in a practical and flexible manner. Paper III has “submitted” status

at the time of writing this dissertation. The significance of Paper III is mostly due

to the fact that the observability of complex networks, despite its importance, is

rather new, and the involving issues in many aspects of it are still remained unsolved.

Even the recently introduced LSB method (see Chapter 4) is rather simplistic. Paper
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III paves the way for addressing the problem of observability in stochastic complex

networks and is therefore a reasonable start-point for future research.

5.2 Future Research

In this final part of the thesis, we propose three directions for future research based

on the achieved contributions. While all the three of them have the importance and

impact of their own, the first highlighted future research directly impact the stance of

cognitive control theory itself. The second one then involves the impact of cognitive

control on risk control in the face of severe disturbances. Finally, the third future

research, will more so impact the literature of network science and engineering.

5.2.1 Topic I: Hierarchical Structures

Looking to the cognitive neuroscience for inspiration, a first rationale expansion to

the presented theory of cognitive control is to include a hierarchical structure. For

example, the hierarchy may well be thought in terms of labeling a number of more

primary cognitive actions to become one higher-level action at a higher level of hi-

erarchy. As a result, the controller may have the capability of thinking and learning

in different levels of abstraction. To elaborate, let us refer back to the human brain

again. We, human beings, like other animals do not think of our primary actions once

we focus on higher-level actions (higher-level in terms of a desired goal of interest).

For example, when we intend to move a glass from one location on the table to some-

where else, we do not seemingly think of how to pick up the glass, or which muscles

we should use and so forth. They all being done automatically, may be because they
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are in a lower level of hierarchy in the control part of our brain, the end result of

which is to make us capable of thinking more efficiently without concentrating on

small details. Similar process may be adopted in cognitive control if need be, specifi-

cally in problems involving huge cognitive action libraries, where many of the actions

are indeed too detailed for regular purposes.

5.2.2 Topic II: The Impact of Cognitive Control on Risk Con-

trol

This line of research has already been started in the Cognitive Systems Laboratory

of McMaster University. The problem involves implementation of the so-called pre-

adaptation mechanism Haykin and Fuster (2014) next to the cognitive controller

(encompassing the executive memory) in addition to the deployment of perceptual

memory. Presented in Haykin et al. (2014), our primary results involving severe

disturbances have demonstrated considerable improvement of performance over the

CDS without those new elements. Additionally, the results highlight the potential

of this research for becoming the solution to the problem of risk control in face of

severe and unforeseen disturbances. This problem is extremely important in real-

world applications and may reasonably lead us to practically prevent catastrophic

events such as the 2003 blackout.
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5.2.3 Topic III: Information Supervisory of Real-world Com-

plex Networks

As discussed in Section 5.1.2, the problem of information management in stochastic

complex networks is still very recent. Moreover, many of the practical issues are

still completely unattended due to lack of research. On the other hand, with the ever

expansion of connections across many diverse entities in the real-life, the currently ex-

isting networks are becoming not only larger in size, but also more dense and thereby

more complex. Needless to say, the ever presence of uncertainty is also inevitable;

hence, we face stochasticity more than ever with networks becoming larger and more

complex. Consequently, the research presented in Paper III (Chapter 4), may rea-

sonably be continued in two fronts: a) by applying the introduced methodologies

to real-world networks, and b) by incorporating the advancements of the cognitive

dynamic systems theory, as just discussed under Topics I and II.
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Choromański, K., Matuszak, M., and MiȩKisz, J. (2013). Scale-free graph with pref-

erential attachment and evolving internal vertex structure. Journal of Statistical

Physics, 151(6), 1175–1183.

Cohen, R. and Havlin, S. (2010). Complex Networks: Structure, Robustness, and

Function. Cambridge University Press.

Corning, P. (2001). Control information: The missing element in Norbert Wiener’s

cybernetic paradigm. Kybernetics, 30(9-10), 1272–1288.

Cotsaftis, M. (2009). A passage to complex systems. in Complex Systems and Self-

organization Modelling, C. Bertelle, G. H. E. Duchamp, H. Kadri-Dahmani, Edi-

tors, Springer, pages 3–19.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edition.

John Wiley & Sons, Inc.

Crisan, D. and Rozovskii, B., editors (2011). The Oxford Handbook of Nonlinear

Filtering. Oxford Handbooks in Mathematics. Oxford University Press.

Dayan, P. and Niv, Y. (2008). Reinforcement learning: The good, the bad and the

ugly. Current Opinion in Neurobiology, 18(2), 185–196.

141



Ph.D. Thesis - M. Fatemi McMaster - Computational Science and Engineering

Dupuy, J. P. (2009). On the Origins of Cognitive Science: The Mechanization of the

Mind. MIT Press.
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