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Abstract

In recent years, screening approaches known as two-step methods have been proposed

to detect gene-environment interactions for genome-wide association studies (GWAS).

Genetic and environmental factors are believed to affect disease outcome as well as

various quantitative traits such as height and blood pressure. The performance of the

two-step methods has not been demonstrated in the quantitative trait setting. This

thesis examines the method proposed by Wang and Abbott (2008) for generating

genotyped markers in linkage disequilibrium (LD) and takes this approach in sim-

ulating data pertaining to a quantitative trait. The simulation results demonstrate

that the two-step methods maintain type I error and have power to detect the quanti-

tative trait locus. In this setting, the EG method (Murcray et al., 2009) is influenced

by the strength and structure of the gene-environment dependency, the sample type,

and the disease model. As such, the power of the EG method can fluctuate depending

on the type of data while the DG method (Kooperberg and LeBlanc, 2008) remains

fairly robust across a wide range of scenarios. The performance of the combined

two-step approaches (EDGE (Gauderman et al., 2013) and H2 (Murcray et al., 2011)

methods) tends to favour the more powerful underlying method. The power of the

EDGE method can be improved if DG and EG demonstrates similar power while the

H2 method can be made more powerful by choosing the appropriate parameters.
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Notation and abbreviations

BMA Bayesian model averaging

CC Case-control

CO Case-only

DSL Disease susceptibility locus

EB Empirical Bayes

G x E Gene-environment interaction

G-E Gene-environment

GWAS Genome-wide association study

HW Hardy-Weinberg

LD Linkage disequilibrium

LE Linkage equilibrium

MAF Minor allele frequency

QTL Quantitative trait locus

SNP(s) Single-nucleotide polymorphism(s)
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Chapter 1

Introduction

1.1 GWAS Challenges and the Post-GWAS Era

The completion of the Human Genome Project in 2003 (International Human Genome

Sequencing Consortium, 2001, 2004) and the International HapMap Project in 2005

(The International HapMap Consortium, 2005) gave scientists a reference of the hu-

man genome sequence and a road map of the genetic variations in several ethnic

populations. This new knowledge, coupled with the technological advances in high

throughput genotyping technology, made identifying and analyzing a vast amount of

DNA data possible. As genotyping technology improved, driving down the cost of

obtaining DNA data, genome-wide association studies (GWAS) became an integral

research area of genomics in the new millennium.

The era of GWAS was kicked off by a landmark study on age-related macular

degeneration which identified two single-nucleotide polymorphisms (SNPs) that are

associated with the disease (Klein et al., 2005). This prompted the largest GWAS of

its time, the Wellcome Trust Case Control Consortium (WTCCC), which examined
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14,000 cases of seven common diseases (coronary heart disease, type 1 diabetes, type

2 diabetes, rheumatoid arthritis, Crohn’s disease, bipolar disorder, and hypertension)

with 3,000 shared controls (Wellcome Trust Case Control Consortium, 2007). The

WTCCC identified 24 independent association signals and motivated further collab-

orative GWAS work with large sample sizes as well as large scale sequencing projects

such as the 1000 Genomes Project (The 1000 Genomes Project Consortium, 2010).

As of January 2nd, 2015, according to the NHGRI GWAS Catalog (Hindorff et al.,

2015), the scientific community has conducted 2,021 genome-wide association studies

and identified more than 4,400 SNPs that show a significant1 association with 633

diseases and traits.

GWAS is founded on the common disease-common variant hypothesis, where a

common variant is typically defined as having minor allele frequency (MAF) greater

than 1%. This hypothesis predicts that common diseases, such as cancer or dia-

betes, are caused by commonly occurring genetic variants in the human population

(Lander, 1996; Reich and Lander, 2001). The basic idea of a GWAS is to identify

commonly occurring SNPs that are associated with a phenotype of interest. In a

typical case-control study, hundreds of thousands of SNPs are genotyped for a sam-

ple of population with the disease and for a similar sample without the disease. A

logistic model is fitted for every SNP with the disease status as the response and a

test is conducted to determine the significance of the SNP (Balding, 2006; Pearson

and Manolio, 2008). For quantitative traits such as height or blood pressure, a similar

approach using linear regression can be used to detect significant associations.

While GWAS has been largely successful (Visscher et al., 2012), it does face many

challenges. One of which is the small effect sizes of the identified SNPs, often with

1Based on the genome-wide significance threshold of 5× 10−8

2
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odds ratios less than 1.5 (Hindorff et al., 2009; Manolio, 2013; Manolio et al., 2009).

As such, findings from GWAS can only explain a small proportion of the genetic

contribution to a disease or a trait. This leads to limited predictive power and raises

the issue of the missing heritability (Manolio et al., 2009; Visscher et al., 2008).

Another limitation of GWAS is the lack of biological significance of the identified

SNPs. A notable proportion of the discoveries reside in the non-coding regions of DNA

(Hindorff et al., 2009). These regions do not explicitly contribute to gene function

and cannot be assigned to specific biological pathways. Due to these challenges,

the clinical applications of GWAS results have been limited despite the volume of

discoveries (Manolio, 2013).

Researchers have faced methodological challenges as well, such as small sample

sizes, lack of power of tests, multiple testing burden, model misspecification, and com-

putational time of proposed methods (Balding, 2006; Pearson and Manolio, 2008). It

should be noted that a typical GWAS utilizes a simplistic model of disease association,

e.g. logistic regression with one main effect. As such, complex genetic phenomena

such as pleiotropy, epistasis, or gene-environment interactions (G x E) cannot be

readily measured using standard GWAS analysis techniques. These biological and

methodological challenges have prompted further research beyond the scope of the

basic GWAS.

Moving to the post-GWAS era of research, the scientific community has shifted

attention away from simple SNP analysis to modelling more complex disease-gene re-

lationships. One promising area of research is the identification of gene-environment

interactions. It has been hypothesized that genetic effects can be altered by envi-

ronmental conditions and certain subpopulations experiencing exposure may exhibit

3
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phenotypic traits that are different from unexposed populations (Aschard et al., 2012;

Dempfle et al., 2008; Eichler et al., 2010). If these subpopulations could be identified

by their environmental exposure, which elevates their genetic risk to disease, then tar-

geted treatment or personalized medicine can be applied to those who are classified

as high risk due to their genetic and environmental dispositions (Thomas, 2010).

G x E analysis can also aid in the identification of new disease associated SNPs.

It has been hypothesized that some SNPs may show no marginal association with

disease, instead demonstrating an effect only through its interaction with the envi-

ronment (Kraft et al., 2007). Finding these G x E effects can help to identify such

SNPs and broaden the understanding of disease etiology. As such, G x E analysis has

been identified as one possible explanation to the problem of the missing heritability

(Aschard et al., 2012; Eichler et al., 2010; Manolio et al., 2009).

1.2 G x E Analysis Literature Review

In cross-sectional, case-control studies of a disease status, the most common analysis

of gene-environment interaction is to use logistic regression to model the genetic and

environmental effects on the disease. Let D denote the disease status (D = {0, 1}),

let G denote the genetic marker coded under some genetic model (i.e. additive or

dominant), and let E denote the environmental factor. The traditional case-control

(CC) model used in G x E analysis is:

logit(P (D = 1|G,E)) = β0 + βgG+ βeE + βgeG× E (1.1)

4
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where logit(p) = log( p
1−p) is the logit function. To assess interaction, the parame-

ter βge is tested under the null hypothesis of no interaction using an one degree of

freedom Wald test. The maximum likelihood estimators of the parameters are asymp-

totically consistent (Gourieroux and Monfort, 1981) using the traditional case-control

approach. This typically results in well maintained type I error rates. However, the

method quickly runs into the multiple testing burden as the number of SNPs tested

increases. As such, the case-control analysis suffers from limited power (Gauderman

et al., 2013; Kooperberg and LeBlanc, 2008; Murcray et al., 2009). For the evaluation

of quantitative or categorical traits, linear regression or multinomial regression of a

similar form can be used. Note that the environment factor is often coded as a binary

variable to represent exposed and unexposed individuals.

An alternative to the case-control analysis is the case-only (CO) analysis proposed

by Piegorsch et al. (1994). The authors demonstrated that, for a rare disease under

the assumption of gene-environment (G-E) independence, it is possible to obtain an

efficient estimate of the G x E effect without studying the controls. The case-only

analysis uses logistic regression to model the effect of a SNP, G, on the environment

as follows:

logit(P (E = 1|G,D = 1)) = θ0 + θgeG (1.2)

It has been shown that testing the parameter θge is equivalent to testing the parameter

βge in Model (1.1) (Murcray et al., 2009; Piegorsch et al., 1994). The case-only

approach has also been shown to be the most efficient analysis under the model

assumptions (Albert et al., 2001; Mukherjee et al., 2012b; Murcray et al., 2009).

However, it is extremely sensitive to the gene-environment independence assumption.

Even a small degree of G-E association can produce inflated type I errors (Albert et al.,

5
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2001; Li and Conti, 2009). Attempts to assess the G-E independence assumption

before applying a case-only approach has been shown to increase the type I error

rate as well (Albert et al., 2001). Lastly, it should also be noted that due to the

construction of Model (1.2), the marginal genetic effect on disease cannot be readily

measured in the case-only analysis of G x E effects.

To strike a balance between the case-control approach and the case-only approach,

two notable Bayesian methods have been proposed. Mukherjee and Chatterjee (2008)

introduced an empirical Bayes (EB) method which corresponds to a weighted average

of the case-only and the case-control estimates of G x E effect. The proposed EB

estimate of the interaction parameter is defined as:

β̂EB =
σ̂2
CC

τ̂ 2 + σ̂2
CC

θ̂ge +
τ̂ 2

τ̂ 2 + σ̂2
CC

β̂ge (1.3)

where σ̂2
CC is the estimated asymptotic variance of the case-control estimate β̂ge, and

τ̂ 2 is a conservative estimate of the uncertainty in the G-E independence assumption.

The parameter τ̂ 2 is calculated as the maximum likelihood estimate of the odds ratio

of the G-E association among the controls (Mukherjee and Chatterjee, 2008):

τ̂ 2 = log

(
r000r011
r001r010

)

where rdge represents the sample data tabulated in the form of Table 1.1.

The EB approach uses the information obtained from the sample data to balance

the efficiency of the case-only estimator and the consistency of the case-control esti-

mator. The EB method is robust against G-E dependence and demonstrates better

power than the case-control analysis alone (Gauderman et al., 2013; Mukherjee and

6
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G = 0 G = 1
E = 0 E = 1 E = 0 E = 1 Total

D = 0 r000 r001 r010 r011 n0

D = 1 r100 r101 r110 r111 n1

Table 1.1: Sample data for case-control study of a disease status with binary genetic
and environmental factors where rdge is the number of observations for D = d, G = g,
and E = e.

Chatterjee, 2008).

The second Bayesian approach for G x E analysis, proposed by Li and Conti

(2009), is the Bayesian model averaging (BMA) method. This approach uses a weight-

ing scheme between the CC and the CO models. The weighting scheme is a function

of the data and the prior beliefs on the G-E independence assumption. Given the

observed data, the posterior probability of the interaction effect is defined as:

P (φ|D) = P (φ1|D,M1)P (M1|D) + P (φ2|D,M2)P (M2|D)

Where φ1 = βge from the CC model, φ2 = θge from the CO model, and φ denotes

the interaction parameter from the Bayesian model averaging approach. P (Mk|D) for

k = 1, 2 is the posterior probability of each model, with P (Mk|D) ∝ P (D|Mk)P (Mk).

The prior probability, P (Mk) for k = 1, 2, is assigned to each model (k = 1 for CC

model and k = 2 for CO model). A relative weight function, or the prior odds, is

defined as: W = P (M1)/P (M2). This quantity is chosen based on the prior beliefs

of G-E independence. For example, if there is a strong prior belief that gene and

environment factors are independent then the weight function W would be small

(< 1) to favour the case-only model.

7
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To test the null hypothesis of no interaction, a Wald test can be used by assuming

that the interaction estimate is normally distributed. Let σ̂k denote the estimated

interaction effect from model k, then the expected interaction effect in this Bayesian

setting is defined as:

E(φ|D) = φ̂1P (M1|D) + φ̂2P (M2|D)

= β̂geP (M1|D) + θ̂geP (M2|D)

This quantity, along with the variance of the interaction effect, is used to create the

test statistic. Similar to the EB method, the expected interaction effect obtained from

the BMA method also corresponds to a weighted average of the interaction estimates

from the CC and the CO model. It has been demonstrated that this approach is

robust to deviations away from the G-E independence assumption and is typically

more powerful than the case-control analysis alone. However, if the prior belief is

weighted highly in favour of the CO model (i.e. W = 0.001), then type I errors can

be inflated if gene and environment factors are not independent (Li and Conti, 2009).

While both Bayesian methods cannot achieve the power of the case-only approach

under G-E independence, they strike a balance between bias and efficiency by com-

bining the CC and the CO approaches. The performance of the BMA method is

comparable to the EB method (Li and Conti, 2009). Due to the construction of the

two Bayesian methods, the resulting estimates can show modest bias when the G-E

independence assumption is violated. This means type I error rates can be inflated

and the coverage of the associated confidence intervals may be less than nominal

(Mukherjee and Chatterjee, 2008; Mukherjee et al., 2012b). It should also be noted

that the implementation of the Bayesian methods is not as straightforward as the

8
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case-control or case-only analysis.

The previously mentioned methods look for G-E interactions by testing every SNP

in the sample. As such, these approaches are exhaustive searches for G x E effects.

Due to the multiple testing burden, exhaustive searches have low power to detect

small to moderate effects. To address this issue, a class of screening methods have

been proposed in recent years. In the literature, this class of G x E analysis is known

as the two-step methods. The basic idea is to first evaluate all the SNPs using a

screening test and some defined threshold, then formally test the SNPs that pass the

first stage for presence of G x E effects. The multiple testing burden is reduced in

the second step by considering a much smaller set of markers, thereby increasing the

power to detect interactions. However, this method is only valid if the test statistics

of the first and second stages are independent. The independence condition is met

for quantitative traits (i.e. using linear regression models) (Kooperberg and LeBlanc,

2008). For logistic regression, Dai et al. (2012) demonstrated the general conditions

that achieves asymptotic independence of the two test statistics. Simulations under

finite samples have shown that the correlation between the two test statistics are

small enough to be ignored (Kooperberg and LeBlanc, 2008; Murcray et al., 2009).

The first screening procedure was proposed by Kooperberg and LeBlanc (2008).

In their method, SNPs that demonstrate a certain level of marginal genetic effect

on disease status are passed onto the second step for formal G x E testing. The

method assumes SNPs that interact with the environment will also demonstrate some

marginal effect on the disease. The screening model:

logit(P (D = 1|G)) = β0 + βgG (1.4)

9
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is used to filter out the irrelevant SNPs by testing the null hypothesis H0 : βg = 0.

The SNPs that pass, based on some step 1 threshold α1, are then tested for G x E

effects using Model (1.1) or a Bayesian approach. This is known in the literature as the

Disease-Gene (DG) method. The number of SNPs passed in the first step is controlled

by the threshold α1. As α1 decreases the number of SNPs passed onto the second step

also decreases. This can increase the power as the multiple testing burden is reduced.

However, stringent values of α1 could lead to false negative results as relevant SNPs

are screened out at the first step. Kooperberg and LeBlanc (2008) demonstrated

that their proposed method maintained type I error rates and achieved higher power

than the traditional case-control approach under most simulation settings. It should

be noted that the CC model showed higher power for large interaction effects in the

opposite direction to the main effect. It has also been shown that if there are zero or

small marginal genetics effect on disease, this method lacks power in comparison to

other two-step methods (Gauderman et al., 2013).

Borrowing ideas from the case-only analysis, Murcray et al. (2009) proposed a

screening step which evaluates SNPs based on their G-E association. The screening

step uses a G-E association model similar to the case-only Model (1.2), but considers

the whole sample of cases and controls. It has been shown that in the presence of a G

x E effect, a correlation between the causal SNP and environment factor is induced by

the ascertainment of cases at a higher rate than the disease prevalence level (Murcray

et al., 2009). Hence the induced correlation can be leveraged as a way to filter out the

irrelevant SNPs. The whole sample is used to ensure that the first and second step

test statistics remain independent. Similar to the DG method, the screened SNPs

are then formally tested for G x E effects in the second step using the case-control
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Model (1.1). Note that using a Bayesian approach in the second step would violate

the independence requirement between the first and second stage test statistics. This

is because the CO test statistic is correlated with the step 1 test statistics of the EG

method. As such, the Bayesian test statistic, which is derived from both CC and CO

methods, will also be correlated with the step 1 test statistic of the EG method. This

approach is known in the literature as the Environment-Gene (EG) method. The

EG method maintains type I error rates and has been shown to be more powerful

than the case-control analysis. The method is also robust against G-E dependence

(Murcray et al., 2009). It has been shown that the EG method performs better than

the DG method when there are zero to small marginal genetic effects. However, as

the marginal genetic effect of the causal SNP increases, the power of DG method can

overtake the power of the EG method (Gauderman et al., 2013).

Building on the DG and EG screening tests, a number of combined two-step

approaches utilizing various configurations of the DG and the EG methods have also

been proposed. The hybrid (H2) method, proposed by Murcray et al. (2011), uses

both screening tests on all the genotyped markers. Any SNP that demonstrates a

G-E association or a marginal genetic effect will be formally tested for G x E effects

in the second phase using Model (1.1). The procedure of the H2 method is as follows:

1. Test all SNPs for gene-environment association using the EG screening model

and threshold α1a

(a) SNPs that pass are formally tested for G x E effects using Model (1.1) and

significance level α∗ = pα/sa

2. Test all SNPs for disease-gene association using the DG screening model and

threshold α1m

11
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(a) SNPs that pass are formally tested for G x E effects using Model (1.1) and

significance level α∗ = (1− p)α/sm

3. SNPs that pass both DG and EG tests are formally tested for G x E effects using

Model (1.1) and the more liberal significance level α∗ = max(pα/sa, (1−p)α/sm)

Where sm is the number of SNPs that passed the DG screening test, sa is the number

of SNPs that passed the EG screening test, and p is a value chosen to be between 0

and 1 for the allocation of type I error rate. It has been shown that the H2 method

maintains type I error and is robust against G-E dependence. The H2 method has

also been shown to be more powerful than the DG and the EG method alone for some

choices of p (Murcray et al., 2011). The H2 method tries to balance the performance

of the DG method and the EG method. If there are small marginal genetic effects,

the H2 method is more powerful than the DG method, but less powerful than the

EG method. Alternatively, if there are large marginal genetic effects, the H2 method

becomes more powerful than the EG method, but less powerful than the DG method

(Gauderman et al., 2013).

Lastly, Gauderman et al. (2013) proposed the EDGE method by combining the

DG and the EG step 1 test statistic into one screening statistic SEDGE = SEG +SDG,

where SEG is the test statistic of the EG screening step and SDG is the test statistic

of the DG screening step. The two test statistics, SEG and SDG are independent and

each follows a χ2-distribution with one degree of freedom under the null hypothesis

(Dai et al., 2012). Therefore, the resulting sum, SEDGE, follows a χ2-distribution

with two degrees of freedom under the null hypothesis. Since both SDG and SEG are

independent of the CC model test statistic, it follows that SEDGE is also indepen-

dent of the CC model test statistic. In simulations, the EDGE method maintained
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type I error and demonstrated greater power than the previous two-step methods for

moderate genetic effects (i.e. odds ratio between 1.1 and 1.25) (Gauderman et al.,

2013).

It should be noted that other two-step approaches have been proposed by Hsu

et al. (2012) named the Cocktail methods. These approaches utilize both the DG

and the EG screening tests in the first step. Based on the results of the first step,

all of the SNPs are tested for G x E effects in the second step using either the CC

approach or a Bayesian approach. This method is not examined by this thesis in the

quantitative trait setting.

Outside of exhaustive searches and two-step methods, there have been a number

of other notable G x E analyses proposed. Kraft et al. (2007) introduced the use of a

joint test of both marginal and interaction effect to detect genetic associations. The

authors used Model (1.1) to test the hypothesis: H0 : βg = βge = 0. Under the null

hypothesis, the resulting test statistic follows a χ2-distribution with two degrees of

freedom. Simulations have shown that this joint test of marginal genetic and G x E

effects attains good power in a wide range of scenarios. It is generally more powerful

than a simple marginal test in detecting associated SNPs and more powerful than the

standard case-control approach in detecting interactions (Kraft et al., 2007). Other

approaches to finding G x E effects have been proposed by Aschard et al. (2013) and

Paré et al. (2010) that utilize nonparametric methods.

1.3 Challenges of G x E Analysis

G x E analysis is not without challenges and limitations. It faces the same method-

ological issues as GWAS in terms of sample sizes and power to detect. These problems
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are exacerbated in G x E analysis since larger sample sizes are needed to reliably

detect a modest interaction (Aschard et al., 2012; Thomas, 2010). Outside of the

methodological problems, one particular criticism is the lack of biology explained by

the identified interactions. This goes back to a hotly debated subject matter on the

philosophical differences between statistical interactions and biological interactions

(Dempfle et al., 2008; Greenland, 2009; Rothman et al., 1980). Statistical interac-

tion, often defined as a multiplicative departure from an additive model, does not

always imply a biological phenomenon.

The biggest challenge is the effect of the environment is often time dependent and

measuring it at a single point in time can result in a substantial loss of information

(Aschard et al., 2012; Khoury and Wacholder, 2009). It has been hypothesized by

scientists that the environment can play a crucial role in the etiology of disease during

key development phases such as gestation, infancy, or puberty (NIH G x E Interplay

Workshop, 2011). The majority of current G x E research has been focused on

retrospective, cross-sectional data such as case-control studies. It is easy to see that

time dependent information is lost in this approach such as length of exposure and

time of initial exposure. G x E analysis can be more powerful and provide a better

understanding of disease etiology in a longitudinal setting. Currently, there is a lack of

research extending G x E analysis to longitudinal, cohort data. The current proposed

methods have been criticized for using simple approaches in averaging the responses

across time periods where the collapsing of information can decrease power (Fan et al.,

2012). The applications of the current longitudinal G x E analysis methods are also

tailored for genes identified a priori, thus it is unclear how these approaches fare in a

genome-wide setting with a large volume SNPs.
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For the two-step methods specifically, the application of these approaches in de-

tecting G x E effects has not been applied to other response types such as quantitative

traits. It is unclear how the two-step methods will perform in the quantitative trait

setting. This is especially true for the EG method since the basis of this approach

relies on the oversampling of cases in examining a disease status. The performance

of the EG method in the quantitative trait setting subsequently impacts the perfor-

mance of the combined two-step approaches. It should also be noted that simulation

studies used to demonstrate the performance of the two-step methods often assume

that the genotyped markers are independent. However, in practice, these markers can

exhibit some degree of linkage disequilibrium (LD). The impact of correlation among

the SNPs on the performance of two-step methods is also unclear.

1.4 Organization of Thesis

This thesis focuses on the application of the two-step methods in quantitative trait

analysis. Two types of sample data are examined. The first type is a random sample

where the quantitative trait of interest is measured on the selected individuals. The

second type is a case-control sample, such as those used in GWAS, where a quan-

titative trait is also measured along with the genotyped markers. This thesis also

examines the generation of SNPs in linkage disequilibrium. Simulation studies exam-

ining the performance of two-step methods for a quantitative trait will consider some

degree of correlation among the SNPs.

The second chapter is a detailed analysis on a method of generating SNPs in LD

first proposed by Wang and Abbott (2008). This method uses correlated multivariate

normal variables to generate correlated binomial variables. Simulation studies are
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used to assess the LD measures of the generated SNPs in terms of r2 and D′ based

on the input correlation of the normal variables and MAF. Regression analysis is

performed to quantify the relationship between the input correlation of the normals

and the output correlation of the binomials. Results from the regression analysis

provide a general guideline on the selection of input correlations of the multivariate

normal variables.

The third chapter utilizes the method of generating SNPs in LD described in

Chapter 2 to simulate datasets containing correlated markers. The two types of

sample data for a quantitative traits are considered under various settings of marginal

genetic and G x E effects. The two-step methods are applied to the simulated datasets

to examine their performance in the quantitative trait setting.

A detailed look at the EG method and the various factors that can impact its per-

formance is described in Chapter 4. Lastly, Chapter 5 presents a sensitivity analysis

on the step 1 parameters of the two-step methods in the quantitative trait setting.
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Chapter 2

Generating SNPs in Linkage

Disequilibrium

Simulation studies examining methods used to analyze GWAS data often involve

generating markers representing bi-allelic SNPs. A marker, denoted as G, is typically

coded numerically to represent the number of copies of the minor allele at a locus. If

Hardy-Weinberg (HW) equilibrium is assumed, then G can be generated as a binomial

random variable. For large datasets such as the genetic data captured in a GWAS, the

SNPs can be separately generated as binomial variables. By generating SNPs in this

fashion, the simulation study assumes that the markers are in linkage equilibrium

(LE). While the genotyped markers are typically selected to reduce redundancies

caused by LD, the resulting SNPs can still exhibit some degree of correlation with

one another. To represent the LD seen in GWAS markers, simulation studies should

consider generating correlated binomial variables.

Wang and Abbott (2008) introduced a fast and simple method to generate corre-

lated binomial variables using correlated multivariate normal variables which can be
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generated very easily. This method has also been used by Guo et al. (2013) in their

analysis of multiple traits. The basic premise of this method converts the marginal

normal variables into binomial variables based on cutoff values calculated from the

MAF using the Hardy-Weinberg equilibrium principle. It has been noted that the

resulting binomial variables do not have the same correlation as the original normal

variables. However, the change in correlation has not been quantified in the current

literature. This chapter examines the effect of this method on the sample Pearson’s

correlation coefficient and the LD measures of the generated binomial variables. The

LD measures considered are r2 (Hill and Robertson, 1968) and D′ (Lewontin, 1964).

2.1 Methods

Let X be a normally distributed random variable. For a given MAF, p, a binomial

random variable representing the genotypes can be obtained by converting X using

cutoff(s) chosen based on the pre-specified probabilities of the homozygous and het-

erozygous genotypes under the HW equilibrium assumption and the genetic coding.

For example, using the coding G = {0, 1, 2}, where G represents the number of copies

of the minor allele, the cutoffs c1 and c2 are chosen such that:

P (G = 0) = (1− p)2 = P (X ≤ c1)

P (G = 1) = 2p(1− p) = P (c1 ≤ X ≤ c2)

P (G = 2) = p2 = P (X ≥ c2)

For n observations of the normal variable X, a binomial variable can be obtained by

comparing each component of X to the cutoff values. If xi ≤ c1, a value of 0 will be
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assigned; if c1 ≤ xi ≤ c2, a value of 1 will be assigned; and if xi ≥ c2, a value of 2 will

be assigned, for i = 1, ..., n.

To generate a set of correlated binomial variables, let X have a multivariate nor-

mal distribution with mean vector 0 and some variance-covariance matrix, Σ. The

marginal distributions of X are normal, thus binomial variables can be generated

using the above procedure with the appropriate cutoff values. If Σ is not a diagonal

matrix, then the resulting set of binomial variables will be correlated. In the software

program R (R Core Team, 2014), this procedure can be easily implemented using the

mvrnorm function from the MASS library (Venables and Ripley, 2002) to generate the

multivariate normal variables and using the qnorm function to obtain the appropriate

cutoff values for converting the normal variables to binomial variables.

2.2 Simulation Study and Results

To examine the correlation of the generated binomial variables using the procedure

proposed by Wang and Abbott (2008) under various scenarios, two simulation stud-

ies are conducted. For simplicity, the simulation studies consider generating a pair

of correlated binomial variables with genotypes G = {0, 1, 2} from a bivariate nor-

mal variable. The mean vector is set to zero and the two variances are set to one.

As such, the resulting variance-covariance matrix represents the correlation between

the marginal normal variables. Both simulation studies varied the correlations of the

bivariate normal variables from 0 to 1 by increments of 0.01. The number of obser-

vations and the simulation replicates are each set to 1,000 in all of these simulations.

The simulation studies consider the effect of the value of MAF if both SNPs have

the same MAF and the effect of differing values of the MAFs. At each replicate of
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the simulation, the sample Pearson’s correlation coefficient, LD measure r2, and LD

measure D′ are calculated for the generated binomial variables. The estimates of r2

and D′ are obtained using the LD function from the genetics library (Warnes et al.,

2013) in R which uses maximum likelihood to estimate the haplotypes from the given

genotypes. The specific simulation settings for each study are detailed next. This

thesis uses the terminology input correlation to indicate the Pearson’s correlation of

the bivariate normal variables and output correlation to indicate the correlation mea-

sures (sample Pearson’s correlation coefficient, r2, or D′) of the generated binomial

variables. From here on, the sample Pearson’s correlation coefficient pertaining to

the generated binomials will be denoted as Pearson’s r and the input correlation used

to generate the normal variables will be denoted as ρ.

2.2.1 Effect of the Value of MAFs

In this simulation, the effect of the MAF value on the output correlations of the

binomial variables is examined. For simplicity, the MAFs of the two SNPs are assumed

to be the same. The MAF values considered are: {0.01, 0.05, 0.10, 0.15, 0.20, 0.25,

0.30, 0.35, 0.40, 0.45, 0.50}. The associated cutoff values given an additive genetic

coding are shown in Table A.1 in Appendix A.

The output correlations (Pearson’s r, observed LD measure r, or observed LD

measure D′) obtained at each simulation replicate are averaged to produce an empir-

ical estimate. A subset of the results is shown in Figure 2.1. The left panel shows the

Pearson’s r of the generated binomials across the range of input correlations by MAF

values: {0.01, 0.1, 0.2, 0.3, 0.4, 0.5}. For very small MAF values, such as 0.01, the

curve indicates that larger values of the input correlation are needed to achieve the
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Figure 2.1: Effect of MAF values on the output correlation of generated binomials
variables for a pair of SNPs with same MAF value. Left panel shows Pearson’s r,
middle panel shows observed LD measure r, and right panel shows observed LD
measure D′.

desired output correlation. The relationship between input and output correlation is

not linear for small values of MAF. However, as the MAF increases, the relationship

becomes more linear where roughly the same input correlation can be used to produce

the desired output correlation. In general, the nonlinear relationship between input

and output correlation is exaggerated for small values of MAF and diminishes for

MAF values greater than 0.2.

The middle and right panels of Figure 2.1 show the observed LD measures r and

D′ values of the generated binomial variables. The results demonstrate similar effects

of the MAF value on the LD measures as seen in the right panel for Pearson’s r. It

should be noted that the observed D′ values are inflated for small input correlation

values given small MAF values. Table A.2 in Appendix A lists the Pearson’s r, LD

measure r, and D′ of the generated binomial variables using input correlation of 0.50

for the bivariate normal variable. It should be noted that the Pearson’s r is a close

approximation to the LD measure r.
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Figure 2.2: Effect of differing MAF values on the output correlation of generated
binomial variables for a pair of SNPs by MAF ratio. Left panel shows the observed
LD measure r and right panel shows the observed LD measure D′.

2.2.2 Effect of Differing MAF Values

In this simulation, the effect of non-homogeneous MAF values on the output correla-

tion measures is examined. The MAF of the first SNP is held constant at 0.2 while

the MAF of the second SNP is varied between 0.2 to 0.4 by increments of 0.02. As

such, the MAF of the second SNP is a multiple of the MAF of the first SNP. The

multiplicative factor ranges from 1 to 2 by increments of 0.1. This thesis uses the

term MAF ratio to represent the multiplicative factors. The observed LD measures

from each replicate are averaged to produce the empirical estimates of r and D′ in

the same fashion as in the previous simulation study.

A subset of the results is presented in Figure 2.2. The left panel shows the effect

of differing MAF values on the observed LD measure r across the range of input cor-

relations. Different MAF values do not have a large impact on the output correlation
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for input correlation ρ ≤ 0.6. The impact of differing MAF values are more apparent

as the differences between the two MAFs increase for larger input correlation values.

As expected, the maximal r achieved by using perfectly correlated normal variables

decreases as the difference between the MAF values increases. The right panel shows

the effect of differing MAF values on the observed LD measure D′. The impact of

differing MAF values on D′ is less significant for small input correlation measures,

i.e. ρ ≤ 0.2. As the input correlation increases, the spread of the D′ curves increase.

The D′ values for SNPs with the largest difference in MAF values are always higher

than those for SNPs with smaller differences in MAF values. However, using perfectly

correlated normal variables results in all the D′ values converging at 1.

2.3 Regression Analysis

Given the above simulation results, it is clear that the MAF value impacts the rela-

tionship between the input and the output correlations. It would be ideal to quantify

this relationship for a given MAF value and provide a general guideline for researchers

utilizing the method proposed by Wang and Abbott (2008) in generating SNPs in LD.

Having a guideline can help researchers choose the appropriate input correlation, ρ,

to achieve the desired output correlation based on the MAF value.

One approach to quantify the relationship between the input and the output

correlations is to use linear regression models. In this case, the previous simulation

results can be used where ρ is designated as the response and the observed LD measure

r is designated as the covariate. Then to obtain a certain level of correlation between

SNPs, i.e. desired r2, the estimated coefficients based on the simulation results can

be used to calculate the required input correlation. In this section, various linear
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regression models are considered using ρ and the observed LD measure r from the

simulation results of Section 2.2.1. Note that in these results, it is assumed that both

SNPs have the same MAF.

2.3.1 Model Development

From Section 2.2.1, it is concluded that the relationship between input correlation

and the observed LD measure r is not linear. The nonlinearity is exaggerated for

small MAF values. As such, it may be naive to directly use the terms ρ and r in a

linear model. Alternatively, the Fisher Transformation1 can be applied to overcome

this nonlinear relationship. Figure 2.3 shows a plotted comparison of the relationship

between ρ and r, with and without the Fisher Transformation, for a subset of MAF

values. Note the data used for Figure 2.3 are the simulated values from Section 2.2.1.

By applying the Fisher transformation to the input and the output correlations,

their relationship appears more linear. However, the relationship remains nonlinear

for small MAF values, especially for small input and output correlations. As such,

a separate linear model is fitted for each MAF value. Three general classes of linear

models are considered: the Naive Model, Fisher Model 1, and Fisher Model 2. The

naive model regresses ρ on r and r2 for each MAF value. Fisher Model 1 regresses the

Fisher transformed ρ on the Fisher transformed r for each MAF value. Fisher Model

2 is the same as Fisher Model 1 with an additional squared Fisher transformed r term

as a covariate. See Table 2.1 for the classes of linear models considered. Each class of

linear models thus consists of 11 separate models for the set of MAF values considered.

The MAF values are the same as those considered in the previous simulations.

1For a given correlation coefficient ρ, the Fisher transformation is defined as z = 1
2 log

(
1+ρ
1−ρ

)
=

arctanh(ρ)
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Figure 2.3: Relationship between input correlation, ρ, and output correlation, r of
generated binomial variables, with and without Fisher Transformation

Model Name Linear Models
Naive Model: ρi = β0i + β1iri + β2ir

2
i + εi

Fisher Model 1: fz(ρi) = β0i + β1ifz(ri) + εi
Fisher Model 2: fz(ρi) = β0i + β1ifz(ri) + β2ifz(ri)

2 + εi

Table 2.1: Linear regression models for input and output correlations of generated
binomial variables for a pair of SNPs with same MAF. Note that i = 1, ..., 11 indicates
the MAF values considered: {0.01, 0.05, 0.10,..., 0.50}, fz indicates the Fisher trans-
formation fz(x) = arctanh(x), and εi is some normally distributed random noise.
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MAF β̂0 (Std. Error) β̂1 (Std. Error) β̂2 (Std. Error)
0.01 0.1789 (0.0014) 2.2313 (0.0072) -0.4666 (0.0064)
0.05 0.0587 (0.0009) 1.8746 (0.0040) -0.1196 (0.0034)
0.10 0.0263 (0.0007) 1.6414 (0.0030) 0.0334 (0.0024)
0.15 0.0146 (0.0006) 1.4974 (0.0025) 0.1170 (0.0020)
0.20 0.0064 (0.0006) 1.4187 (0.0023) 0.1541 (0.0018)
0.25 0.0023 (0.0006) 1.3578 (0.0021) 0.1821 (0.0016)
0.30 -0.0015 (0.0005) 1.3194 (0.0020) 0.1967 (0.0015)
0.35 -0.0035 (0.0005) 1.2905 (0.0019) 0.2101 (0.0014)
0.40 -0.0040 (0.0005) 1.2685 (0.0019) 0.2178 (0.0014)
0.45 -0.0052 (0.0005) 1.2606 (0.0019) 0.2207 (0.0014)
0.50 -0.0034 (0.0005) 1.2480 (0.0019) 0.2286 (0.0014)

Table 2.2: Estimated Coefficients of Fisher Model 2 by MAF Value

The simulation results from Section 2.2.1 are used as the data to fit the linear

models shown in Table 2.1. The estimated coefficients for Fisher Model 2 are shown

in Table 2.2. For the estimated coefficients of the Naive Model and Fisher Model 1,

see Table A.3 and Table A.4, respectively, in Appendix A.

Note that the standard errors of the estimated coefficients of Fisher model 2 are

fairly constant for MAF ≥ 0.25. This suggests that a linear model including the MAF

as a covariate term (as a main effect or as an interaction effect) may be sufficient in

capturing the differences attributed to the MAF value. This corresponds to earlier

simulation results which indicated a somewhat linear relationship between ρ and LD

measure r for MAF > 0.2. This also results in almost parallel lines seen in the Fisher

transformed relationships between ρ and r for MAF > 0.2 (Figure 2.3). For small

MAF values (MAF < 0.2), the standard errors of the estimated coefficients are no

longer constant, which reinforces that separate linear models based on MAF are more

appropriate.
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2.3.2 Simulation Study and Results

A simulation study is conducted to evaluate the accuracy of the input correlation,

estimated from each class of models, in generating the desired output correlation r2

for a pair of SNPs with genotypes G = {0, 1, 2}. The range of desired r2 values

considered are 0.1 to 0.9 by intervals of 0.1 and MAF values considered are {0.01,

0.05, 0.01, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.

For a desired r2 value, the estimated input correlation, ρ̂, is calculated based the

estimated coefficients from each class of linear models for all MAF values considered.

The set of ρ̂ obtained is then used as the input correlations to generate the binomial

variables following the procedure by Wang and Abbott (2008). This process is re-

peated 1,000 times. At each replicate, an r2 value for each MAF is estimated based

on the generate binomial variables. A small set of the simulation results is displayed

in Figure 2.4. The plots show the observed r2 values by MAF obtained from each

model’s estimated ρ̂ for desired r2 values: 0.2, 0.5, and 0.8. Table 2.3 show the ρ̂

values obtained from each model by MAF value for the desired r2 of 0.5. For the

simulation results across the range of desired r2 values considered, see Tables A.6,

A.7, and A.8 in Appendix A for the observed median values of r2 produced from the ρ̂

values of the Naive Model, the Fisher Model 1, and the Fisher Model 2, respectively.

From the simulation results, it is evident that while the Naive model is reliable for

smaller desired r2 values, it fails as the desired r2 increases past 0.7. For the desired

r2 value of 0.8, the Naive Model indicates that an input correlation ρ̂ = 1 should be

used for MAF values 0.15 or higher. This results in an overestimate of r2 for large

MAF values and an underestimate for small MAF values. The Fisher Models, on the

other hand, are more consistent over the entire range of desired r2 considered. Fisher
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Figure 2.4: Observed r2 values by linear models and MAF for the desired r2 values
of 0.2, 0.5, and 0.8. The observed r2 values are estimated from a pair of generated
binomial variables using each model’s estimate ρ̂i for some MAF value i. Top panels
are results for desired r2 = 0.2. Middle panels are results for desired r2 = 0.5. Bottom
panels are results for desired r2 = 0.8.
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MAF Naive Model ρ̂ Fisher Model 1 ρ̂ Fisher Model 2 ρ̂
0.01 0.9442 0.9444 0.9450
0.05 0.9237 0.9239 0.9243
0.10 0.9012 0.9053 0.9050
0.15 0.8841 0.8922 0.8907
0.20 0.8718 0.8827 0.8802
0.25 0.8620 0.8753 0.8718
0.30 0.8547 0.8696 0.8653
0.35 0.8497 0.8658 0.8610
0.40 0.8456 0.8627 0.8573
0.45 0.8438 0.8613 0.8558
0.50 0.8429 0.8607 0.8549

Table 2.3: Estimated input correlation, ρ̂, for desired r2 = 0.5 (r = 0.7071), by class
of linear models and MAF values.

Model 1 shows a slightly inflated median observed r2 than Fisher Model 2 for desired

r2 = 0.2, but it is comparable to the performance of Fisher Model 2 for desired r2 =

0.5. For desired r2 = 0.8, Fisher Model 1 shows a slightly deflated median observed r2

than Fisher Model 2. Overall, the observed r2 derived from Fisher Model 2 show the

most consistent median value over the range of desired r2 and MAF values considered.

It should be noted that none of the models demonstrate a consistent ability to

produce the desired r2 when the MAF is at 0.01 or 0.05. All three classes of linear

models tend to underestimate the required input correlation value needed to achieve

the desired r2 in these two cases. This is due to small MAFs exaggerating the non-

linear relationship between input and output correlations. This nonlinearity is not

captured accurately in any of the models considered.

Let r̃2 represent the estimator of the desired output r2 value. Then r̃2m, for m =

1, 2, 3, represents the estimator of r2 for the three classes of linear models considered.

Each class of linear models produces an estimated input correlation, ρ̂i, for a given

r2 and MAF value i. This is then used to generated a pair of correlated binomial
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var(r̃2) bias(r̃2) MSE(r̃2)
Naive Model 0.0123 0.0055 0.0124
Fisher Model 1 0.0018 -0.0063 0.0018
Fisher Model 2 0.0021 -0.0076 0.0021

Table 2.4: Variance, Bias, and MSE of Estimator r̃2 by Linear Model

variables with the same MAF as described in the above simulation. Let r̂2m denote

the observed r2 values of the generated binomials by each class of model for all MAFs

considered. Then, r̂2m can be viewed as observations of the random variable r̃2m for

m = 1, 2, 3, the three classes of linear models. Thus, the performance of the three

classes of models can also be evaluated using the variance, bias, and mean squared

error (MSE) of the estimator r̃2m. The statistics are estimated as follows:

var(r̃2) ≈ 1

NQR

N∑
i=1

Q∑
j=1

R∑
k=1

(
r̂2ijk − r̄2ijk

)2
bias(r̃2) ≈ 1

NQR

N∑
i=1

Q∑
j=1

R∑
k=1

(
r̂2ijk − r2i

)
MSE(r̃2) ≈ var(r̃2) + bias2(r̃2)

where N = 9, is the number of desired r2 values considered2; Q = 11, is the number

of MAF values considered3; R = 1,000 is the number of replicates in the simulation

study; r̂2ijk is the observed r2 value at the k-th replicate derived from ρ̂ij given the

i-th desired r2 and j-th MAF value; and r2i is the i-th desired r2 value.

Table 2.4 shows the estimated variance, bias, and mean squared error of each

model’s estimator r̃2m. The variance of Fisher Model 1 and Fisher Model 2 are both

lower than the Naive Model as expected. Overall, Fisher Model 1 and Fisher Model 2

2Desired r2 values considered are: {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
3MAF values considered are: {0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50}
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have lower MSE than the Naive model. Based on the MSE and the above simulation

results, it is recommended that Fisher Model 2 be used to estimate the required input

correlation given a desired output correlation r2 for a certain MAF value.

It should be noted that although the Fisher transformed models appear to satisfy

the assumptions of linear regression better than the Naive model, the residuals of

the Fisher transformed models are not normally distributed. This is a result of the

nonlinear relationship between input and output correlations that is still significant

near the boundaries of no correlation and perfect correlation, especially in the case of

small MAF values. As such, this nonlinearity is not accurately captured by a linear

nor a quadratic term in any of the models considered. However, the Fisher Models

are still better overall fits based on the simulation results. This is also reflected in

the R2 value of the Fisher Models, see Table A.5 in Appendix A.

2.4 Discussion

A further step to consider in the regression analysis is to examine the behaviour

of the linear models given different MAF values for the two SNPs. Based on the

simulation results on the effect of the differences in MAF value, it is predicted that

for small desired r2 values, the differences in MAF will not result in significant changes

in the required input correlation value. However, as the desired r2 value increases,

the differences in the MAF become more important in determining the required input

correlation as large differences set a limit on the maximum r2 achievable. As such, the

models considered in this chapter require modifications in order to produce reliable

estimates of the input correlation, ρ, when the MAF values differ for large values of

desired r2.
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It should be noted that the simulation studies of this chapter only consider the

special case of generating a pair of correlated SNPs. In this simple setting, the

LD structure of the two SNPs is represented by a single parameter. However, one

challenge in implementing this procedure is constructing LD patterns for multiple

SNPs. In practice, a group of SNPs will likely be in LD with each other and possibly

demonstrate cross correlation with other groups of SNPs. The number of SNPs in

LD and their strength of LD will depend on the type of data to be analyzed. Another

challenge when considering multiple SNPs in LD is ensuring that the input variance-

covariance matrix for the multivariate normal variables is positive definite in order to

utilize the method proposed by Wang and Abbott (2008).
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Chapter 3

Two-Step G x E Methods for a

Quantitative Trait

The current two-step methods for G x E analysis were developed and illustrated in

the GWAS setting which typically considers case-control data pertaining to a disease

status. This chapter examines the performance of the two-step methods in detecting

G x E effects given a continuous quantitative trait and the presence of LD in the

genotyped markers. It is assumed that there exist genetic effects (i.e. marginal

genetic association or G-E interactions) that impact quantitative phenotypes. Some

common examples of quantitative traits that can be affected by genetics as well as

the environment are blood pressure, height, and body mass index.

3.1 Methods

The two-step methods examined in the quantitative trait setting are the Disease-Gene

(DG) method proposed by Kooperberg and LeBlanc (2008), the Environment-Gene
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(EG) method proposed by Murcray et al. (2009), the Hybrid (H2) method proposed

by Murcray et al. (2011), and the EDGE method proposed by Gauderman et al.

(2013). The application of the two-step methods as well as the exhaustive search

method in the quantitative trait setting is described next.

3.1.1 Exhaustive Search for G x E

Let y denote a continuous quantitative trait, G denote the quantitative trait locus

(QTL), E denote an environment factor, and D denote the disease status. It is

assumed that the disease is associated with the quantitative trait. Then the effects

of gene, environment, disease, and G-E interaction on the quantitative trait can be

modelled as:

y = β0 + βgG+ βeE + βdD + βgeG× E + ε (3.1)

where ε ∼ N(0, σ) is some random noise independent of the covariates. To detect a

G x E effect, the null hypothesis H0 : βge = 0 is tested. Model (3.1) is the linear

equivalent of the CC Model (1.1) described in Chapter 1. It should be noted that

there does not exist a linear model that is equivalent to the CO Model (1.1) described

in Chapter 1. As such, the Bayesian approaches also not do apply in the quantitative

trait setting.

The exhaustive search method fits Model (3.1) for every SNP in the sample.

Then presence of the G x E effects are determined based on some significance level

α corrected for multiple testing. The ordinary least squares estimates from Model

(3.1) are unbiased and consistent. As such, the exhaustive search method is typically

expected to maintain the type I error rate. However, the power of this approach

decreases as the number of tests increase. Consequently, the exhaustive search method
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has poor power in detecting small to moderate G x E effects given a large number of

SNPs.

3.1.2 Disease-Gene Two-Step Method

The DG method is based on the hypothesis that a SNP with a G x E effect will likely

also demonstrate a marginal genetic effect on the response. As such, filtering based

on marginal genetic effect is a justified approach to eliminate irrelevant SNPs. For

the DG method in the quantitative trait setting, the screening step fits the model:

y = β∗0 + β∗gGi + ε∗i (3.2)

for i = 1, ...,M , where M is the total number of SNPs genotyped in the sample

and ε∗i is some normally distributed random noise. Note that ε∗i ∼ N(0, σ∗i ) and the

parameters β∗0 , β∗g , and σ∗i are different than those in Model (3.1). Model (3.2) is the

linear equivalent of Model (1.4), which is the logistic regression model used in the

screening step for the DG method in the GWAS setting as described in Chapter 1.

In the quantitative trait setting, the null hypothesis: H0 : β∗g = 0 is tested for

each SNP. A SNP is passed onto the second step if the p-value of its test statistic is

less than some step 1 threshold α1. The full linear model, Model (3.1), is then used

to test for the presence of G x E effects at the second step.

3.1.3 Environment-Gene Two-Step Method

In a case-control panel, the oversampling of cases induces a correlation between the

environment factor and the disease susceptibility locus (DSL) if a G x E effect exists.
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If the QTL and the DSL is the same SNP, then screening SNPs based on any gene-

environment associations is justified in the quantitative trait setting given a case-

control sample. For binary E, the screening step of the EG method uses the following

model:

logit(P (E = 1|G)) = δ0 + δgGi (3.3)

for i = 1, ...,M , where M is the total number of SNPs genotyped in the study. For

each SNP, the null hypothesis: H0 : δg = 0 is tested. The SNP is passed onto the

second step if the p-value of its test statistic is less than some step 1 threshold α1.

At second step, Model (3.1) is used to detect the presence of any G x E effects.

3.1.4 EDGE Two-Step Method

For the EDGE method, the test statistic is defined as SEDGE = SEG+SDG, where SEG

is the test statistic from step 1 of the EG method for null hypothesis: H0 : δg = 0

and SDG is the test statistic from step 1 of the DG method for null hypothesis:

H0 : β∗g = 0. Thus the null hypothesis for the EDGE method is: H0 : β∗g = δg = 0.

The test statistics, SEG and SDG, are asymptotically χ2-distributed with one degree

of freedom1. As such SEDGE is asymptotically χ2-distributed with two degrees of

freedom.

For each SNP in the sample, the test statistic SEDGE is calculated and if its p-

value is less than some step 1 threshold α1 the SNP is passed onto the second step for

formal G x E testing using Model (3.1). The EDGE method is a combined two-step

1Note that the usual test statistic for the DG screening test has a student’s t-distribution. How-
ever, in the case of large samples, the distribution is approximately standard normal and thus can
be squared to obtain a χ2

1-distribution. This also applies for the EG screening test statistic if the
environment is a continuous variable.
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approach using both DG and EG screening criteria to filter out irrelevant SNPs.

3.1.5 Hybrid Two-Step Method

The original H2 method proposed by (Murcray et al., 2011) runs both the DG screen-

ing step and the EG screening step to screen for relevant SNPs. In the quantitative

trait setting, the H2 algorithm applies without any additional changes than those

already specified under the DG and EG methods. For full description of the H2 pro-

cedure, see Chapter 1. It should be noted that the H2 method is also a combined

two-step approach utilizing both the DG and the EG methods.

3.1.6 Additional Notes

It should be noted that all of the two-step methods considered in this chapter uses

Model (3.1) in the second step to test for G x E effects. As such, the power of the two-

step methods considered will rely on their ability pass the QTL onto the second step.

The validity of the two-step methods relies on the independence of the step 1 test

statistic and the step 2 test statistic. In the linear regression setting, the parameter

estimate β̂∗g of Model (3.2) is independent of the parameter estimate β̂ge of Model

(3.1), thus their test statistics are also independent (Kooperberg and LeBlanc, 2008)

and the independence condition is satisfied for the DG method. For the EG method,

simulation results from this thesis show that the sample covariances of the step 1 and

step 2 test statistics for binary environment are negligible and independence of the

two statistics can be assumed. See Figure B.1 in Appendix B for a comparison of the

step 1 test statistics of the DG and the EG method against the test statistic used in

the second step. For the EDGE method, since the DG screening test statistic and
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the EG screening test statistic are both independent of the step 2 test statistic, it

follows that the sum of the DG and EG screening test statistic is also independent of

the step 2 test statistic (Gauderman et al., 2013).

It should also be noted that the Cocktail methods (Hsu et al., 2012) are not

considered by this thesis. This is because these methods do not exclude any SNPs

from formal G x E testing. Instead, the Cocktail methods utilize the empirical Bayes

method2 (Mukherjee and Chatterjee, 2008) and the CC method3 in the second step

along with weighted hypothesis testing to gain power. Since only the full linear model,

Model (3.1), is used in the second step for a quantitative trait, the Cocktail method

becomes an exhaustive search as every SNP is tested at the second stage for the

presence of G x E effects.

3.2 Simulation Study

A simulation study is used to evaluate the performance of the two-step methods in

detecting G x E effects in the quantitative trait setting. This study considers two

ways a sample with a continuous quantitative trait can be obtained. The first is by

taking a random sample of the population and measuring the quantitative trait. The

second is by using a continuous covariate captured by a case-control study as the

quantitative trait. This thesis will use the terms random sample and case-control

sample, respectively, to denote the type of data obtained.

2See Equation (1.3) from Chapter 1
3See Model (1.1) from Chapter 1

38



M.Sc. Thesis - Qianmin Yang McMaster - Mathematics & Statistics

3.2.1 Generation of SNPs

For the simulation study, a total of 1,000 SNPs are generated to represent the genetic

data. In a typical GWAS, the number of markers genotyped can range from 10,000

to 1 million SNPS. However, in the interest of time, this thesis has only considered a

small subset of the typical volume of markers seen in a GWAS setting.

Out of the 1,000 SNPs considered for the simulation, 25 are generated in linkage

disequilibrium based on the procedure by Wang and Abbott (2008) as described in

Chapter 2. The 25 SNPs are divided into five equally sized LD blocks with the

QTL located in the first block. Each of the five SNPs within a LD block share a

high degree of correlation with each other. The r2 of the SNPs within each LD

block is approximately 0.66. Each of the LD blocks also have some degree of cross

correlation. SNPs in adjacent blocks share a moderate level of cross correlation with

an approximate r2 of 0.38. The SNPs that are two blocks apart share a moderately

weak level of LD with an approximate r2 of 0.18. The SNPS that are three blocks

apart share a weak level of LD with an approximate r2 of 0.08. Lastly, SNPs in

block 1 and block 5 are in very weak LD with an approximate r2 of 0.02. Figure 3.1

illustrates the block structure and the LD between the SNPs by block.

The MAF of the QTL is set at 0.134, which approximately gives P (G = 1) = 0.25

under a dominant genetic model. For the SNPs in LD with the QTL, their MAFs are

selected in a manner that produces the desired LD structure as shown in Figure 3.1.

See Appendix D for the details on generating the MAFs of the SNPs in LD with the

QTL. The input correlations for the multivariate normal variables are: 0.96 for within

block correlation; and 0.85, 0.65, 0.45, 0.25 for the respective cross block correlations.

The remaining SNPs in this simulation study are generated as independent binomial
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Figure 3.1: Approximate r2 of SNPs in LD by block. Each block contains 5 SNPs
that are in strong LD with each other. The SNPs within each block are also in LD
with the SNPs from other blocks with r2 as specified.
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variables with MAFs randomly selected from a uniform distribution between 0.05

and 0.4. 1,000 SNPs are generated for a population of 500,000 individuals based on

dominant genetic coding. This means a single cutoff value is used to generated the

SNPs in LD. For the QTL, the cutoff c1 = 0.6745 is used to convert the normal

variables into binomial variables.

3.2.2 Data Generating Models

To allow for the comparison between random and case-control samples, population

data for 500,000 individuals is generated using a G-E association model, a disease

model, and a quantitative trait model. The disease and quantitative trait models

both assume there exists a single G x E effect. It is assumed that the disease status

affects the quantitative trait and not vice versa. As such, the disease status for the

population is generated before the quantitative trait.

In this simulation, the environment factor, E, is coded as a binary variable. This

is a common practice described in the current literature to represent exposed and

unexposed individuals. To simulate a small degree of G-E dependency, 10 SNPs inde-

pendent of the QTL are randomly selected to have a G-E association. The following

model is used to generate the binary environmental variable:

logit(P (E = 1|G)) = θ0 +
∑
i∈A

θgeGi

where A is the set of SNPs with a G-E association. The parameter θ0 = logit(0.2),

where 0.2 is the underlying exposure rate, the parameter θge = 0.4 indicates moder-

ate association between the gene and the environment, and G are the 10 randomly
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selected SNPs in set A. Overall, this model results in a population exposure rate of

approximately 59%.

Next, the disease status is generated using the genotypes and the environment

variable. The disease model is defined as:

logit(P (D = 1|G,E)) = γ0 + γgGD + γeE + γgeGD × E (3.4)

where GD is the DSL, γ0 = −3, indicating an underlying disease prevalence rate

of approximately 4.7%, and γg = γe = γge = log(1.3) representing relatively weak

associations of the gene, the environment and the G x E effect with the disease. These

parameters result in an overall disease prevalence rate of approximately 6.2%. This

rate is comparable to the 2011 prevalence of Type 2 diabetes in Canada (Government

of Canada, Public Health Agency of Canada, 2011). It should be noted that the third

SNP is designated as the DSL which has an r2 = 0.66 with the QTL. The MAF of

the DSL is approximately 0.116 which gives P (GD = 1) ≈ 0.22. All parameters of

the disease model are held fixed throughout the simulation study.

Lastly, the quantitative trait is generated using the genotypes, the environment

variable, and the disease status. The quantitative trait model used to generate the

data is the same as Model 3.1:

y = β0 + βgG+ βeE + βdD + βgeG× E + ε

where G, the first SNP, is designated as the QTL, β0 = 0, βe = βd = 0.4 indicating

moderate influences of the environment and the disease status on the quantitative

trait, and ε ∼ N(0, 1). The values for βg considered for the simulation study are: {0,
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0.2, 0.4}. This represents zero, weak, and moderate marginal genetic associations with

the quantitative trait. To evaluate the power of the two-step methods in detecting

G x E effects, the parameter βge is varied between -0.4 and 0.4 by increments of 0.1.

Varying the βg and βge parameters produces a total of 27 scenarios. The quantitative

trait variable, y, is generated for each of the 27 scenarios for a population of 500,000.

For each of the 27 scenarios, the same set of genotypes, exposure status, and disease

status (generated earlier) is used.

It should be noted that the QTL in the quantitative trait model is not the same

SNP as the DSL in the disease model. However, the DSL is within the same LD

block as the QTL. Since these two causal SNPs are highly correlated, the EG method

remains valid for case-control samples. See Appendix D for complete details on gen-

erating the population data used for the simulation study.

For each of 27 scenarios considered, a total of 1,000 simulation replicates are

performed. At each simulation replicate, a sample of 1,000 individuals is selected from

the population data. Random samples are constructed by simple random sampling

where each individual has an equal probability of being selected. Case-control samples

are constructed by randomly selecting 500 cases and 500 controls based on the disease

status. The two-step methods are then applied to the sample data to look for the

presence of G x E effects.

The step 1 threshold, α1, for all two-step methods is set at 0.05. This allows

approximately 50 SNPs to be passed onto the second step. The step 1 threshold was

chosen based on the literature which suggests an α1 level that passes between 10 to

100 SNPs (Gauderman et al., 2013). For the H2 method, the step 1 thresholds are

set at α1m = α1a = α1 and p = 0.5 to favour neither the DG nor the EG method.
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3.3 Results

3.3.1 Family-Wise Error Rate

The family-wise type I error rate, α = 0.05, is used to control false positives. The

Bonferroni correction is used for multiple testing. The type I error rate is calculated

as the proportion of null SNPs declared significant at α level 0.05 out of the total

number of SNPs tested across all replicates for a given scenario. It should be noted

that the type I error rate is calculated based on the 975 independent SNPs when

βge 6= 0 and all 1,000 SNPs when βge = 0.

The type I error rates are shown in Figure 3.2. Panels in left column are the type

I error rates of the two-step methods for random samples and panels in the right

column are the type I error rates for case-control samples. The top, middle, and

bottom panels of Figure 3.2 indicate the cases of zero, weak, and moderate marginal

genetic effects, respectively. Overall, the type I error rate is well maintained for

all two-step methods for varying degrees of marginal genetic association and G x E

effects across sample types. The type I error rate appears to be slightly more varied

in case-control samples compared to random samples. The numeric results of the

type I error rate are shown in Table A.9 and Table A.10 in Appendix A.

3.3.2 Power

Two types of power are examined by this thesis. The first, is the power to detect a

true G x E effect involving the QTL. This is termed power to detect the QTL. The

second, is the power to detect G x E effects for any SNPs in LD with the QTL. In

this case, it is assumed that the QTL is not in the sample but SNPs in LD with the
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Figure 3.2: Family-wise error rate for all methods in random and case-control samples.
Top panels, zero marginal genetic effect (βg = 0). Middle panels, weak marginal
genetic effect (βg = 0.2). Bottom panels, moderate marginal genetic effect (βg = 0.4).
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QTL are genotyped. This is termed power to detect the QTL region. The two types

of power are considered since in a typical GWAS, it is unlikely that the true causal

SNP is genotyped. However, the basis of GWAS relies on linkage disequilibrium, thus

the power to detect SNPs that are in LD with the causal SNP is important.

The power to detect the QTL is defined as the proportion of replicates that declare

the QTL significant based on the Bonferroni corrected thresholds for each method.

The power to detect the QTL region is defined as the proportion of replicates that

declare at least one SNP in LD with the QTL significant based on the Bonferroni

corrected thresholds for each method without the QTL in the sample.

The power to detect the QTL is shown in Figure 3.3. The left column show the

results pertaining to random samples and the right column show the results pertaining

to case-control samples. The top, middle, and bottom panels indicate the cases of

zero, weak, and moderate marginal genetic associations, respectively. Overall, the

DG and the EDGE methods have comparably the highest power to detect the G x

E effect across most scenarios in both sample types. The H2 method demonstrates

higher power than both the exhaustive search and the EG method. However, the H2

method typically has lower power than the DG and the EDGE methods. The power

of the two-step methods are similar across the two types of samples with case-control

samples resulting in a slight increase in power for all methods considered.

It should be noted that in the case when the marginal genetic effect is weak

(βg = 0.2) and the G x E effect is in an opposing direction, the power of all two-

step methods is lower than the exhaustive search method. However, for the case of

βg = 0.4, the power of the two-step methods, with the exception of the EG method,

rebounds and is higher than the exhaustive search method.
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Figure 3.3: Power to detect the QTL for all methods in random and case-control
samples. Top panels, zero marginal genetic effect (βg = 0). Middle panels, weak
marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal genetic effect
(βg = 0.4).
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The power to detect the QTL region is shown in Figure B.2 in Appendix B. In

general, the power of the two-step methods to detect the QTL region is similar to the

power to detect the QTL across all scenarios and sample types. In some cases, the

power to detect the QTL region is slightly higher than the power to detect the QTL.

Again, the opposing effects of marginal genetic association and G x E effect results in

low power for βg = 0.2 in all samples. Similar to the results for power to detect QTL,

case-control samples typically result in higher power to detect, especially in the case

where the marginal genetic association and the G x E effect are in the same direction.

3.4 Discussion

The simulation study shows that the family-wise type I error rates are maintained by

the two-step methods in the quantitative trait setting. All of the two-step methods,

except for the EG method, generally outperformed the exhaustive search. The DG,

the EDGE, and the H2 methods all demonstrated good power in detecting the QTL

and the QTL region under a wide range of scenarios. The power to detect the QTL

and the QTL region is slightly higher in the case-control setting.

It is interesting to note that the EG method performs poorly across all scenarios

in both random and case-control samples. It is expected that the EG method should

perform poorly in the random samples as cases are not oversampled. As such, the

induced correlation between the environment and QTL will not be present in the

random sample and the QTL is not frequently passed onto the second step for formal

G x E testing. However, the EG method’s lack of power in the case-control samples

is unexpected. The factors influencing the EG method’s power are examined in more

detail in Chapter 4.
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Chapter 4

Examining the EG Method

From the simulation results of Chapter 3, it is evident the EG method lacks power

in detecting G x E effects across most of the simulation scenarios. As a result, the

combined two-step approaches, EDGE and H2 methods, fared closer in performance

to the DG method but generally exhibited lower power. The expected power gains

from utilizing both methods simultaneously are not realized in this case. However,

the settings used in chapter 3 are only a few possible ways to generate quantitative

trait data. This chapter examines the various factors that impact the power of the

EG method and considers alternative G-E association models for a quantitative trait.

4.1 Comparison of Pass Rates

All of the two-step methods considered use the full linear model (see Model 3.1) in the

second step. As such, the power of each method is based on its ability to pass the QTL

into the second stage for formal G x E testing. The pass rate, defined as the frequency

in which a method passes the QTL onto the second step, is thus an indication of the
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Figure 4.1: Pass rate for DG and EG methods in random and case-control samples
from simulation results of Chapter 3. Left panel, zero marginal genetic effect (βg =
0). Middle panel, weak marginal genetic effect (βg = 0.2). Right panel, moderate
marginal genetic effect (βg = 0.4).

method’s power. The pass rate of the DG and the EG methods from the simulation

study in Chapter 3 are shown in Figure 4.1. From this information alone, it is clear the

EG method fared poorly in both random and case-control samples across all levels of

genetic and G x E effects. Since the performance of the EG screening test depends on

correlation between the QTL and the environment, factors affecting this correlation

directly impact the pass rate and hence the power. These factors are examined next.

4.2 Factors Affecting Power

4.2.1 Gene-Environment Dependency

A major influence on the EG method is the underlying gene-environment dependency.

More specifically, the LD structure of the SNPs associated with the environment and

the magnitude of the G-E association both affect the correlation between the QTL
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and the environment. As the simulation results from Chapter 3 have shown, even with

moderate G-E associations of θge = 0.4, the EG method does not perform well. This

is because the SNPs that are associated with the environment factor are independent

of the QTL. As such, the QTL is not correlated with the environment in random

samples and only weakly correlated with the environment in case-control samples.

However, if there are some G-E associations with SNPs in LD with the QTL, then

it is expected that the QTL will be passed into the second step more frequently by

leveraging LD. In this case, as the strength of the G-E association increases, the power

of the EG method is expected to increase as well.

4.2.2 Sample Type

The original premise of the EG method is based on the oversampling of cases. If there

exists any G x E effects, then the oversampling would induce a correlation between the

causal SNPs and the environment factor. However, in the case of quantitative traits,

the two ways to obtain a sample as described in Chapter 3 can impact the power of

the EG method. The results from Chapter 3 demonstrated that the EG method did

poorly in random samples, while its power improved slightly in case-control samples.

It should be noted that the sample type would exert less influence on power if there

are moderate to strong G-E associations that included SNPs in LD with the QTL.

4.2.3 LD of DSL and QTL

The induced correlation from oversampling cases is associated with the DSL if cases

are defined based on the disease status. If the QTL is not the same SNP as the

DSL, then the induced correlation from oversampling of cases may not carry over for
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the QTL and the environment factor. The LD between the DSL and the QTL is an

indication of the strength of the correlation between the QTL and the environment

induced from oversampling cases. As LD decreases between the two causal SNPs, the

induced correlation between the QTL and the environment also decreases. If the QTL

and the DSL are independent SNPs, then the induced correlation from oversampling

cases will not be present in the QTL and the environment factor.

4.2.4 G x E Effect in Disease Model

Lastly, the strength of the G x E effect in the disease model (γge from Model (3.4))

influences the strength of the induced correlation from oversampling of cases for case-

control samples. Stronger G x E effects in the disease model translates to stronger

induced correlations between the DSL and the environment. If the QTL is in LD

with the DSL, then induced correlation between the QTL and the environment will

increase as a result of the stronger G x E effect in the disease model.

4.3 Demonstrating the Effect of the Various Fac-

tors

To demonstrate how the various factors affect the performance of the EG method,

a small simulation study is conducted to measure the observed correlation between

the QTL and the environment by varying the type of G-E association, the strength

of LD between DSL and QTL, and the strength of the G x E effect in the disease

model, Model (3.4), for random and case-control samples. Three main scenarios of

G-E association are considered: a) G-E dependency in independent SNPs only with
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Figure 4.2: Observed median correlation of the QTL and the environment factor by
γge and strength of LD between DSL and QTL for random samples. Panel A), G-E
dependency in independent SNPs only, θge = 0.4. Panel B), G-E dependency also in
3 SNPs in LD with QTL, θge = 0.2. Panel C), G-E dependency also in 3 SNPs in LD
with QTL, θge = 0.4.
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Figure 4.3: Observed median correlation of the QTL and the environment factor by
γge and strength of LD between DSL and QTL for case-control samples. Panel A),
G-E dependency in independent SNPs only, θge = 0.4. Panel B), G-E dependency
also in 3 SNPs in LD with QTL, θge = 0.2. Panel C), G-E dependency also in 3 SNPs
in LD with QTL, θge = 0.4.
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G-E association θge = 0.4; b) G-E dependency that include SNPs in LD with the

QTL with G-E association θge = 0.2; and c) G-E dependency that include SNPs in

LD with the QTL with G-E association θge = 0.4.

A total of 10 SNPs are selected to have a G-E association. For the cases b) and

c) above, three SNPs in LD with the QTL are chosen to have a G-E association. The

remaining seven SNPs are independent of the QTL are randomly selected. In the

simulation study, SNPs 13, 20, and 23 from blocks 3, 4, and 5 are chosen to have an

association with the environment factor. These SNPs have r2 of 0.18, 0.08, and 0.02,

with the QTL respectively. The data generating models from Chapter 3 are used to

generate the population data under the three main scenarios considered.

The first SNP in the first LD block structure1 is set as the QTL. Seven different

SNPs are selected to represent the DSL (SNPs 1, 3, 6, 11, 16, 21, and 26). These

seven choices represent the varying degrees of LD between the DSL and the QTL

from r2 = 1 to r2 = 0. The odds ratio of the G x E effect in the disease model, γge

from Model (3.4), is varied from 1 to 2 by increments of 0.1. This results in 11 values

of the G x E effect, γge, considered for the simulation. By varying the γge variable

and the location of the DSL, a total of 77 cases are created for each of the three main

scenarios of G-E association.

For each case, a random sample and a balanced case-control sample of 1,000

observations are selected from the population data and the correlation between the

QTL and the environment factor is measured. This was repeated for 5,000 replicates.

Figure 4.2 and Figure 4.3 display the median observed correlation of the QTL and

the environment factor for random and case-control samples, respectively.

From the results, it is evident that if there exists some G-E association with SNPs

1See Section 3.2.1
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that are in LD with the QTL, then the baseline correlation between the QTL and

the environment increases as θge increases for both sample types. The effects of the

LD between the DSL and the QTL as well as the G x E effect in the disease model

do not impact the observed correlation in random samples. However, these effects on

the observed correlation are more prominent in case-control samples.

It should be noted that the observed median correlation between the QTL and

the environment factor in G-E association scenarios b) and c) are generally higher

that those seen from the simulation results of Chapter 3. Hence, it is expected that

the pass rate of the EG method will improve due to increased correlation between

the QTL and the environment factor. Figure 4.4 and Figure 4.5 display the pass rate

of the EG method for the various cases considered in this simulation for random and

case-control samples, respectively.

For random samples, the pass rate only improves by constructing G-E associations

in some SNPs that are in LD with the QTL. For case-control samples, when the G-E

dependency only exists in the independent SNPs, the pass rate is heavily influenced

by the strength of the G x E effect in the disease model and the LD of the DSL and

the QTL (γge and r2, respectively). However, when G-E dependency exists in some

of the SNPs in LD with the QTL, the effects of γge and r2 are less pronounced on

the pass rate of the EG method. In the case of moderate G-E dependency in some

of the SNPs in LD with the QTL, θge = 0.4, the lowest pass rate hovers around 50%

compared to 5% in the case where G-E dependency exist in independent SNPs only.

From these results, it is clear that the EG method can perform well in both random

and case-control samples depending on the settings of the influential factors.
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Figure 4.4: Pass rate of the EG method by G x E effect γge and strength of LD between
DSL and QTL for random samples. Panel A), G-E dependency in independent SNPs
only, θge = 0.2. Panel B), G-E dependency also in 3 SNPs in LD with QTL, θge = 0.2.
Panel C), G-E dependency also in 3 SNPs in LD with QTL, θge = 0.4.
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Figure 4.5: Pass rate of the EG method by G x E effect γge and strength of LD between
DSL and QTL for case-control samples. Panel A), G-E dependency in independent
SNPs only, θge = 0.2. Panel B), G-E dependency also in 3 SNPs in LD with QTL,
θge = 0.2. Panel C), G-E dependency also in 3 SNPs in LD with QTL, θge = 0.4.

56



M.Sc. Thesis - Qianmin Yang McMaster - Mathematics & Statistics

4.4 Simulation Using Alternate Environment Gen-

erating Models

A simulation study is conducted to demonstrate that if some SNPs in weak LD with

the QTL have a G-E association then the power of the EG method is improved. For

this simulation, alternate environment generating models are used to simulate the

environment variable. Two levels of G-E association scenarios are considered: weak

G-E association θge = 0.2 and moderate G-E association θge = 0.4. A total of 10

SNPs are selected to have an association with the environment factor including three

SNPs in LD with the QTL. The same 10 SNPs in scenarios b) and c) from Section 4.3

are used in this simulation study. All other parameters of the disease model and the

quantitative trait model are held the same as the simulation study in Chapter 3. The

levels of the marginal genetic effect, βg, and the G x E effect, βge, of the quantitative

trait model are same as those used in simulation study in Chapter 3. A total of 1,000

replicates are simulated. The family-wise error rate and power are calculated based

on the simulation replicates. For description of the calculations, see Section 3.3 from

Chapter 3.

4.4.1 Family-Wise Error Rate

Figure 4.6 and Figure 4.7 show the family-wise type I error rates for the two G-E

association levels, θge = 0.2 and θge = 0.4, respectively. The type I error rate is well

maintained by all the methods for θge = 0.4. However, there appears to be some slight

systematic inflation of type I error when θge = 0.2 in random samples given some weak

marginal genetic effect. This thesis is limited by time to fully explore the underlying
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Figure 4.6: Family-wise error rate for all methods in random and case-control samples.
G-E association parameter is θge = 0.2, including 3 SNPs in LD with QTL. Top panels,
zero marginal genetic effect (βg = 0). Middle panels, weak marginal genetic effect
(βg = 0.2). Bottom panels, moderate marginal genetic effect (βg = 0.4).
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Figure 4.7: Family-wise error rate for all methods in random and case-control samples.
G-E association parameter is θge = 0.4, including 3 SNPs in LD with QTL. Top panels,
zero marginal genetic effect (βg = 0). Middle panels, weak marginal genetic effect
(βg = 0.2). Bottom panels, moderate marginal genetic effect (βg = 0.4).
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causes of this inflation. Some causes such as the random data generation process,

and inclusion of SNPs with G-E association in the type I error rate calculations have

been ruled out. It should be noted that the slight inflation of the type I error rate

does not appear in case-control samples nor in the case of θge = 0.4.

4.4.2 Power

Figure 4.8 and Figure 4.9 show the power of the two-step methods for the cases

θge = 0.2 and θge = 0.4, respectively. In the case of θge = 0.2, the EG method

still performs poorly in random samples, faring about the same or worse than the

exhaustive search method. The performance of the EG method improves in case-

control samples, doing better than the exhaustive search method. However, the EG

method still remains under-powered compared to the other two-step methods in case-

controls samples. The notable exceptions is in the case of negative interaction effects

given a weak marginal genetic effect of βg = 0.2. In this case, the EG method performs

well and boosts the power of the EDGE and the H2 methods as a result. It should

be noted that in the case of θge = 0.2, the DG method is generally the most powerful

method across most simulation scenarios.

In the case of θge = 0.4, the power of the EG method is improved as a result of

the stronger correlation between the QTL and the environment. In both random and

case-control samples, the power of the EG method is higher than the exhaustive search

method, but is still generally lower than the other two-step methods. The exception

again, is in the case of negative interactions with βg = 0.2. It should be noted that in

some scenarios where both the DG and the EG methods have comparable power, the

EDGE method can achieve higher power than the DG method. Overall, the power of
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Figure 4.8: Power to detect the QTL for all methods in random and case-control
samples. G-E association parameter is θge = 0.2, including 3 SNPs in LD with QTL.
Top panels, zero marginal genetic effect (βg = 0). Middle panels, weak marginal
genetic effect (βg = 0.2). Bottom panels, moderate marginal genetic effect (βg = 0.4).
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Figure 4.9: Power to detect the QTL for all methods in random and case-control
samples. G-E association parameter is θge = 0.4, including 3 SNPs in LD with QTL.
Top panels, zero marginal genetic effect (βg = 0). Middle panels, weak marginal
genetic effect (βg = 0.2). Bottom panels, moderate marginal genetic effect (βg = 0.4).
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the EG method is improved by considering moderate G-E associations in a few SNPs

that are in weak LD with the QTL while all other factors held constant.

It should be noted that the test statistic of the EG screening test is also indepen-

dent of the test statistic of the null hypothesis: H0 : βg = βge = 0 for the parameters

of Model (3.1). As such, a joint χ2 two degrees of freedom test (Kraft et al., 2007)

can be used in the second step for formal G x E testing. Using the joint test in

the second step can improve the power of the EG method, see Figure 4.10 and 4.11

for the power of the EG method using the joint test in the cases of G-E associa-

tion θge = 0.2 and θge = 0.4, respectively. However, the test statistic of the null

hypothesis: H0 : βg = βge = 0 will not be independent of the DG method’s screening

test statistic. As such, the joint test is not applicable to the DG method or to the

combined two-step approaches.

4.5 Discussion

In the GWAS setting, the EG method has been shown to have good power in detecting

the DSL under a wide range of scenarios (Gauderman et al., 2013; Murcray et al.,

2009). However, the mechanisms that allowed the EG method to perform well may

not readily carry over to the quantitative trait setting. Based on the data generating

models proposed by this thesis, the EG method can suffer from low power impacted

by G-E dependency, sample type, LD of the DSL and the QTL, and the strength of

the G x E effect in the disease model. It is easy to construct data that allow the

EG method to perform quite well and just as easy to construct data that causes the

EG method to fail in the quantitative trait setting. The EG method’s performance

is heavily dependent on the underlying mechanisms that generate the data.
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Figure 4.10: Comparison of power to detect the QTL for the EG method in random
and case-control samples by two hypothesis tests in the second step. G-E association
parameter is θge = 0.2, including 3 SNPs in LD with QTL. Top panels, zero marginal
genetic effect (βg = 0). Middle panels, weak marginal genetic effect (βg = 0.2).
Bottom panels, moderate marginal genetic effect (βg = 0.4).
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Figure 4.11: Comparison of power to detect the QTL for the EG method in random
and case-control samples by two hypothesis tests in the second step. G-E association
parameter is θge = 0.4, including 3 SNPs in LD with QTL. Top panels, zero marginal
genetic effect (βg = 0). Middle panels, weak marginal genetic effect (βg = 0.2).
Bottom panels, moderate marginal genetic effect (βg = 0.4).
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On the other hand, the DG method seems to translate well to the quantitative

trait setting. This is because the DG screening test considers the relationship between

the quantitative trait and any given SNP. If the QTL also exhibits a marginal genetic

effect on the quantitative trait, then the power of the DG method is improved. Other

factors such as G-E dependency, sample type, and the G x E effect in the disease

model have little to no effect on the DG screening step. As a result, the DG method

is more robust against a wide range of scenarios compared to the EG method.

Since the EG screening model utilizes the environment directly, changes to the

variable, such as dichotomization, can also affect the method’s performance. For

continuous or count data environment variables, dichotomization can be done as a way

to reduce type I error (Cornelis et al., 2012; Tchetgen Tchetgen and Kraft, 2011) or for

simplicity and ease of interpretation (Mukherjee et al., 2012b). The dichotomization

of the environment variable is common in practice and is expected to affect the

performance of the EG method more so than the DG method. Some preliminary

work examining normally distributed, Poisson distributed, and zero-inflated Poisson

distributed environment variables show that dichotomization can drastically reduce

the power of the EG method (see Appendix C). However, these results will likely

change based on different cutoff points used for dichotomization. Additional work is

needed to fully understand the impact of dichotomizing the environment variable on

the EG method.
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Chapter 5

Sensitivity Analysis

5.1 Sensitivity to Step 1 Thresholds

The two-step methods considered rely on some chosen step 1 threshold level, α1,

to determine which SNPs will be passed onto the second step for formal G x E

testing. Previous literature has shown that the choice of α1 can impact the power of

the method. Typically, more conservative choices of α1 result in higher power than

liberal choices (Gauderman et al., 2013; Kooperberg and LeBlanc, 2008; Murcray

et al., 2009).

This section examines the impact of the step 1 thresholds on the power of the two-

step methods in the quantitative trait setting. The simulation results from Chapter

3 are examined with various α1 levels used to control the number of SNPs tested

at the second step. The values of α1 considered are: {0.005, 0.01, 0.05, 0.1, 0.5},

representing thresholds that range from conservative to moderate to liberal.

The effect of α1 on the power of the DG and the EG methods are shown in Figure

5.1 and Figure 5.2, respectively. For the DG method, more conservative choices of
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Figure 5.1: Impact of α1 thresholds on the power of the DG method for random
and case-control samples. Top panels, zero marginal genetic effect (βg = 0). Middle
panels, weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal
genetic effect (βg = 0.4).
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α1 results in higher power in most scenarios. There are some cases where the step 1

threshold suffers from being too conservative and results in lower power compared to

a more liberal choice of α1. Specifically, conservative α1 choices in the case of negative

interactions given βg = 0.2 tend to decrease the power of the DG method compared

to using a more liberal threshold.

Contrary to the DG method, the power of the EG method improves with more

liberal α1 choices using the simulation results from Chapter 3. This is due to the poor

performance of the EG method under those simulation settings. Given a more liberal

step 1 threshold, the pass rate of the EG method improves and the QTL is detected

more often in the second step as a result. However, the improvement in power from

a more liberal α1 choice alone does not make the EG method competitive with the

other two-step methods. The EG method still suffers from low power despite liberal

choices of the step 1 threshold. Using the simulation results from Chapter 4 for the

case of moderate G-E association (θge = 0.4) including 3 SNPs in weak LD with the

QTL, the power of the EG method appears to be less sensitive to the step 1 threshold.

See Figure 5.3 for plotted results. In this scenario, moderate choices of α1 seem to

improve the power of the EG method while conservative and liberal choices slightly

reduce the power.

The effect of α1 choices on the power of the H2 method and the EDGE method

are shown in Figures B.4 and B.3 in Appendix B, respectively. The power of the H2

method and the EDGE method demonstrate similar responses to the choice of the

α1 as seen in the DG method. Note that for the H2 method, the parameters α1a and

α1m are kept equal in this analysis.
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Figure 5.2: Impact of α1 thresholds on the power of the EG method for random
and case-control samples. Top panels, zero marginal genetic effect (βg = 0). Middle
panels, weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal
genetic effect (βg = 0.4).
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Figure 5.3: Impact of α1 thresholds on the power of the EG method for random and
case-control samples. Population data generated with G-E associations including 3
SNPs in LD with the QTL. Top panels, no marginal genetic effect (βg = 0). Middle
panels, weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal
genetic effect (βg = 0.4).
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5.2 Parameters of the H2 Method

Unlike the other two-step methods, the H2 approach uses two separate choices for the

step 1 threshold as it utilizes both the DG and EG screening tests. The method also

uses a weighting parameter, p, in the second step to allocate the Bonferroni corrected

significance level appropriately based on the number of SNPs passed by each screening

test. In this analysis, the choice of the parameter p is varied to examine its effect

on the power of the H2 method. Based on the H2 procedure described in Chapter

1, larger values of p favours the EG method and smaller values of p favours the DG

method. The values for the parameter p considered are: {0.01, 0.1, 0.25, 0.5, 0.75,

0.9, 0.99}. The step 1 cutoffs are chosen to maximize the power for each screening

test respectively. For the EG screening tests, the liberal choice of α1a = 0.5 is used

and for the DG screening tests, the conservative choice of α1m = 0.005 is used. Note,

the simulation results from Chapter 3 are used in this analysis.

The effect of the parameter p on the power of the H2 method is shown in Figure

5.4. Based on the performance of the DG and the EG method from Chapter 3, it is

expected that favouring of the DG method will improve the power of the H2 method.

This is reflected in choices of p < 0.5 with smaller values resulting in slight increases in

power. However, in the presence of qualitative interactions, the DG method performs

poorly, and larger choices of p increase the power of the H2 method. By fine tuning

the parameters of the H2 method, it is possible for the H2 method to achieve higher

power than the other two-step methods. However, in practice, the parameters of the

H2 method should be chosen ahead of time based on prior beliefs on the performance

of the DG and the EG methods.
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Figure 5.4: Impact of parameter p on the power of the H2 method for random and
case-control samples. Top panels, zero marginal genetic effect (βg = 0). Middle
panels, weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal
genetic effect (βg = 0.4).
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Chapter 6

Discussion and Future Directions

6.1 Discussion

Using simulation studies, this thesis demonstrates that the two-step methods can

be successfully applied in the quantitative trait setting for random and case-control

samples. The power to detect the QTL is generally higher in case-control samples.

The main finding of the simulation studies is that the performance of the EG method

is highly reliant on the disease model, the sample type, and the structure of the G-E

dependency. The EG method can also be affected by the form of the environment vari-

able and whether it is dichotomized in the sample. In comparison, the DG method’s

power is consistent across a wide range of scenarios and therefore more robust than

the EG method in the quantitative trait setting.

Both the EDGE and the H2 methods utilize a combination of the DG and the EG

methods in their screening steps. As such, the characteristics of the EG method are

inherited by the combined two-step approaches. Under the quantitative trait setting,

they cannot perform well if the EG method lacks power. In many cases, when the EG
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method has low power, the combined two-step approaches demonstrate similar power

as the DG method. The EDGE method appears to perform best when both the DG

and the EG methods have comparable power. In this scenario, the EDGE method can

outperform both the DG and the EG methods. However, in cases where one method

is more powerful than the other, the power of the EDGE method leans towards the

more powerful method but generally fares worse. The same characteristics apply to

the H2 method, but this combined approach is generally less powerful than the EDGE

method at neutral settings of the H2 parameters.

It should be noted that the H2 method can achieve high power and outperform

the other two-step methods if its parameters are chosen to reflect the performances

of the DG and the EG methods relative to one another. For example, if it is known a

priori that there are marginal genetic effects and G-E independence then it is expected

that the DG method would be more powerful than the EG method. Then choosing

parameters that favour the DG method can improve the power of the H2 method

substantially. However, the extent of a priori knowledge regarding the sample data

may be limited in practice.

6.2 Future Directions

Throughout the simulation studies conducted in this thesis, it has been assumed that

there is only one environment variable of interest. However, this assumption may not

be realistic in practice as there can easily be multiple environmental factors that im-

pact a particular disease or quantitative trait. The treatment of multiple environment

factors in two-step methods has not been explored in detail in the current literature.

It is easy to see that multiple environment factors can have a big impact on the EG
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method and subsequently the combined two-step approaches. Multiple environment

factors can also present additional modelling issues such as the presence of correlation

between the environment variables. It should also be noted that in recent years there

has been more focus on cataloging all the possible exposures associated with a disease

or trait (Aschard et al., 2012; Thomas et al., 2012) and it is possible that the volume

of environment variables in the sample data can grow quite large. This may require

a screening approach to not only filter out the irrelevant SNPs but to also screen for

the appropriate exposures before formal G x E testing. It would be interesting to

examine the various ways multiple environment factors can affected the screening and

testing step of the two-step methods in the GWAS and the quantitative trait setting.

It should be noted that in this thesis, all of the two-step methods utilized the

same model in the second step for formal G x E testing. This was the full linear

model including all marginal effects and a single two-way interaction term. However,

this linear model is often misspecified in practice. In addition with the considerations

of multiple environment factors, higher-order interactions may be present and could

exacerbate the model misspecification problem. To gain power in the second step, the

model used to test for G x E effects should be able to hedge against a certain degree

of model misspecification. To account for these nuances, nonparametric data mining

methods can be utilized. This area of research has not been explored in detail in the

two-step approaches to finding G x E effects. Nonparametric methods may be more

applicable in the two-step framework as the volume of data to be explored is pared

down by the screening step. As such, some of the computational and dimensionality

issues typically experienced by nonparametric methods may be reduced.

Lastly, as many researchers have highlighted (Aschard et al., 2012; Ko et al., 2013;
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Mukherjee et al., 2012a), longitudinal analysis of G x E effects is the next step to

understanding the role of G x E effects on disease etiology. The duration and onset

of environment exposures may play a critical role in the development of diseases

and affect the associated quantitative traits. While there has been some preliminary

work on finding G x E effects in longitudinal analysis (Ko et al., 2013; Mukherjee

et al., 2012a), it is unclear if the two-step framework can be applied to this type

of data. To be successful, the screening step should identify the important genetic

and environment factors and the testing step should account for the time dependent

structure of the data. Additionally, it would be interesting to explore whether the

screening step needs to account for the time structure or can perform well by simply

using averages across the time periods.
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Supplementary Tables
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MAF Cutoff c1 Cutoff c2
0.01 2.0558 3.7190
0.05 1.2959 2.8070
0.10 0.8779 2.3263
0.15 0.5903 2.0047
0.20 0.3585 1.7507
0.25 0.1573 1.5341
0.30 -0.0251 1.3408
0.35 -0.1955 1.1626
0.40 -0.3585 0.9945
0.45 -0.5172 0.8327
0.50 -0.6745 0.6745

Table A.1: Cutoff values for converting normal random variables to binomial random
variables by MAF for genotypes G = {0, 1, 2}.

MAF Pearson’s r LD Measure r LD Measure D′

0.01 0.1559 0.1756 0.1814
0.05 0.2575 0.2562 0.2656
0.10 0.3120 0.3057 0.3144
0.15 0.3437 0.3343 0.3426
0.20 0.3661 0.3549 0.3627
0.25 0.3815 0.3687 0.3763
0.30 0.3912 0.3775 0.3847
0.35 0.4007 0.3861 0.3932
0.40 0.4046 0.3896 0.3967
0.45 0.4074 0.3922 0.3991
0.50 0.4083 0.3930 0.3999

Table A.2: Output correlations of binomials variables generate using Wang and Ab-
bott (2008)’s method for a pair of SNPs with same MAF value for input correlation
ρ = 0.5.
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MAF β̂0 (Std. Error) β̂1 (Std. Error) β̂2 (Std. Error)
0.01 0.1746 (0.001) 2.0280 (0.0074) -1.3288 (0.0101)
0.05 0.0500 (0.006) 2.0106 (0.0040) -1.0960 (0.0050)
0.10 0.0142 (0.005) 1.8456 (0.0031) -0.8361 (0.0037)
0.15 0.0013 (0.005) 1.7194 (0.0027) -0.6660 (0.0031)
0.20 -0.0073 (0.005) 1.6433 (0.0025) -0.5659 (0.0029)
0.25 -0.0113 (0.004) 1.5799 (0.0024) -0.4876 (0.0027)
0.30 -0.0143 (0.004) 1.5348 (0.0023) -0.4326 (0.0026)
0.35 -0.0165 (0.004) 1.5057 (0.0023) -0.3968 (0.0025)
0.40 -0.0167 (0.004) 1.4798 (0.0022) -0.3680 (0.0025)
0.45 -0.0181 (0.004) 1.4723 (0.0022) -0.3583 (0.0025)
0.50 -0.0171 (0.004) 1.4634 (0.0022) -0.3498 (0.0025)

Table A.3: Estimated Coefficients of Naive Model by MAF Value

MAF β̂0 (Std. Error) β̂1 (Std. Error)
0.01 0.2316 (0.0012) 1.7533 (0.0031)
0.05 0.0783 (0.0007) 1.7436 (0.0014)
0.10 0.0198 (0.0005) 1.6801 (0.0010)
0.15 -0.0108 (0.0005) 1.6376 (0.0009)
0.20 -0.0295 (0.0005) 1.6080 (0.0008)
0.25 -0.0423 (0.0005) 1.5855 (0.0008)
0.30 -0.0514 (0.0005) 1.5689 (0.0008)
0.35 -0.0581 (0.0005) 1.5592 (0.0008)
0.40 -0.0615 (0.0005) 1.5491 (0.0008)
0.45 -0.0640 (0.0005) 1.5458 (0.0008)
0.50 -0.0643 (0.0005) 1.5433 (0.0008)

Table A.4: Estimated Coefficients of Fisher Model 1 by MAF Value
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MAF Naive Model Fisher Model 1 Fisher Model 2
0.01 0.8203 0.8635 0.8765
0.05 0.9541 0.9670 0.9678
0.10 0.9741 0.9816 0.9816
0.15 0.9804 0.9855 0.9864
0.20 0.9831 0.9869 0.9887
0.25 0.9848 0.9874 0.9899
0.30 0.9859 0.9878 0.9910
0.35 0.9865 0.9879 0.9916
0.40 0.9870 0.9879 0.9920
0.45 0.9871 0.9878 0.9920
0.50 0.9873 0.9876 0.9921

Table A.5: R2 of Linear Models by MAF Value

Desired r2

MAF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01 0.0795 0.1833 0.2984 0.4005 0.4644 0.4836 0.4592 0.3952 0.3326
0.05 0.0954 0.1947 0.3007 0.4028 0.4941 0.5759 0.6373 0.6720 0.6671
0.10 0.0986 0.1948 0.2937 0.3880 0.4904 0.5949 0.7149 0.8864 0.9984
0.15 0.1011 0.1942 0.2899 0.3847 0.4848 0.5963 0.7367 0.9989 0.9989
0.20 0.1015 0.1963 0.2891 0.3812 0.4808 0.5936 0.7402 0.9994 0.9994
0.25 0.1022 0.1971 0.2865 0.3811 0.4798 0.5931 0.7402 0.9993 0.9993
0.30 0.1034 0.1982 0.2877 0.3786 0.4780 0.5905 0.7376 0.9996 0.9996
0.35 0.1052 0.1969 0.2890 0.3795 0.4796 0.5894 0.7379 0.9995 0.9995
0.40 0.1055 0.1980 0.2868 0.3791 0.4787 0.5886 0.7334 0.9994 0.9994
0.45 0.1041 0.1986 0.2897 0.3798 0.4768 0.5886 0.7327 0.9994 0.9994
0.50 0.1068 0.1999 0.2881 0.3805 0.4778 0.5879 0.7317 0.9996 0.9996

Table A.6: Observed median LD measure r2 by MAF for Naive Model across desired
r2 values, simulation results.

Desired r2

MAF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01 0.0725 0.1609 0.2567 0.3517 0.4576 0.5580 0.6708 0.7749 0.8791
0.05 0.0919 0.1932 0.2927 0.4006 0.4934 0.5940 0.6904 0.7892 0.8871
0.10 0.0987 0.2002 0.3013 0.4015 0.4991 0.5923 0.6871 0.7858 0.8805
0.15 0.1025 0.2058 0.3040 0.4054 0.5019 0.5938 0.6854 0.7808 0.8791
0.20 0.1043 0.2089 0.3080 0.4057 0.5011 0.5937 0.6851 0.7784 0.8766
0.25 0.1058 0.2111 0.3120 0.4078 0.5028 0.5951 0.6851 0.7767 0.8740
0.30 0.1067 0.2137 0.3146 0.4099 0.5020 0.5949 0.6841 0.7756 0.8745
0.35 0.1061 0.2146 0.3151 0.4123 0.5034 0.5949 0.6854 0.7765 0.8734
0.40 0.1063 0.2141 0.3159 0.4103 0.5054 0.5934 0.6856 0.7759 0.8720
0.45 0.1075 0.2153 0.3175 0.4120 0.5044 0.5938 0.6859 0.7750 0.8730
0.50 0.1080 0.2159 0.3153 0.4122 0.5028 0.5953 0.6853 0.7749 0.8705

Table A.7: Observed median LD measure r2 by MAF for Fisher Model 1 across
desired r2 values, simulation results.
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Desired r2

MAF 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01 0.0881 0.1891 0.2823 0.3781 0.4679 0.5478 0.6163 0.6986 0.7551
0.05 0.0949 0.1970 0.3004 0.3997 0.4987 0.5899 0.6848 0.7704 0.8670
0.10 0.0969 0.1984 0.3010 0.3995 0.4972 0.5924 0.6913 0.7870 0.8882
0.15 0.0998 0.2004 0.2978 0.3976 0.4963 0.5938 0.6956 0.7921 0.8962
0.20 0.1003 0.2007 0.2979 0.3983 0.4963 0.5948 0.6945 0.7970 0.8980
0.25 0.1018 0.2016 0.2999 0.3984 0.4944 0.5946 0.6945 0.7980 0.9005
0.30 0.1016 0.2011 0.2989 0.3975 0.4975 0.5940 0.6972 0.7969 0.9009
0.35 0.1024 0.2038 0.2986 0.3998 0.4949 0.5953 0.6960 0.7979 0.9021
0.40 0.1024 0.2018 0.2981 0.3975 0.4961 0.5945 0.6955 0.7980 0.9018
0.45 0.1027 0.2025 0.2995 0.3970 0.4959 0.5951 0.6953 0.7977 0.9022
0.50 0.1014 0.2016 0.3007 0.3986 0.4944 0.5967 0.6937 0.7980 0.9031

Table A.8: Observed median LD measure r2 by MAF for Fisher Model 2 across
desired r2 values, simulation results.
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βg βge DG EG EDGE H2 Exhaustive
0 -0.4 0.0484 0.0500 0.0508 0.0492 0.0493

-0.3 0.0515 0.0493 0.0506 0.0504 0.0500
-0.2 0.0498 0.0508 0.0505 0.0504 0.0500
-0.1 0.0503 0.0500 0.0505 0.0503 0.0504
0.0 0.0495 0.0485 0.0499 0.0488 0.0495
0.1 0.0478 0.0492 0.0492 0.0487 0.0497
0.2 0.0503 0.0497 0.0498 0.0498 0.0496
0.3 0.0485 0.0507 0.0503 0.0497 0.0502
0.4 0.0504 0.0468 0.0487 0.0485 0.0492

0.2 -0.4 0.0514 0.0513 0.0511 0.0512 0.0501
-0.3 0.0488 0.0494 0.0497 0.0491 0.0499
-0.2 0.0499 0.0504 0.0504 0.0499 0.0501
-0.1 0.0483 0.0493 0.0482 0.0489 0.0498
0.0 0.0491 0.0503 0.0494 0.0499 0.0503
0.1 0.0492 0.0495 0.0493 0.0494 0.0499
0.2 0.0500 0.0500 0.0509 0.0500 0.0493
0.3 0.0506 0.0492 0.0498 0.0501 0.0490
0.4 0.0493 0.0490 0.0484 0.0491 0.0486

0.4 -0.4 0.0494 0.0505 0.0514 0.0501 0.0508
-0.3 0.0496 0.0499 0.0481 0.0498 0.0506
-0.2 0.0518 0.0497 0.0504 0.0507 0.0507
-0.1 0.0497 0.0502 0.0497 0.0502 0.0500
0.0 0.0493 0.0489 0.0484 0.0492 0.0504
0.1 0.0494 0.0490 0.0489 0.0493 0.0500
0.2 0.0505 0.0490 0.0487 0.0495 0.0489
0.3 0.0515 0.0495 0.0499 0.0505 0.0487
0.4 0.0487 0.0479 0.0480 0.0485 0.0480

Table A.9: Type I Error Rate by Two-Step Methods, Random Samples
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βg βge DG EG EDGE H2 Exhaustive
0.0 -0.4 0.0480 0.0481 0.0480 0.0480 0.0489

-0.3 0.0482 0.0520 0.0490 0.0500 0.0498
-0.2 0.0480 0.0487 0.0488 0.0483 0.0497
-0.1 0.0493 0.0486 0.0489 0.0489 0.0498
0.0 0.0505 0.0498 0.0503 0.0502 0.0498
0.1 0.0491 0.0499 0.0506 0.0497 0.0500
0.2 0.0503 0.0503 0.0502 0.0503 0.0495
0.3 0.0476 0.0502 0.0497 0.0491 0.0493
0.4 0.0495 0.0509 0.0502 0.0503 0.0494

0.2 -0.4 0.0486 0.0489 0.0496 0.0487 0.0496
-0.3 0.0489 0.0507 0.0503 0.0500 0.0503
-0.2 0.0495 0.0508 0.0502 0.0503 0.0500
-0.1 0.0500 0.0515 0.0517 0.0509 0.0508
0.0 0.0487 0.0512 0.0497 0.0499 0.0498
0.1 0.0493 0.0498 0.0505 0.0496 0.0496
0.2 0.0484 0.0499 0.0497 0.0492 0.0490
0.3 0.0510 0.0483 0.0487 0.0496 0.0492
0.4 0.0495 0.0478 0.0476 0.0487 0.0484

0.4 -0.4 0.0518 0.0508 0.0509 0.0512 0.0507
-0.3 0.0506 0.0505 0.0506 0.0506 0.0508
-0.2 0.0518 0.0508 0.0526 0.0511 0.0509
-0.1 0.0515 0.0497 0.0498 0.0504 0.0506
0.0 0.0478 0.0484 0.0476 0.0482 0.0501
0.1 0.0484 0.0485 0.0477 0.0484 0.0496
0.2 0.0497 0.0495 0.0491 0.0495 0.0490
0.3 0.0487 0.0483 0.0484 0.0486 0.0484
0.4 0.0512 0.0469 0.0499 0.0489 0.0472

Table A.10: Type I Error Rate by Two-Step Methods, Case-Control Samples
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Supplementary Figures
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Figure B.1: Comparison of the step 1 test statistics of the DG and the EG methods
with the test statistics of H0 : βge = 0 for random and case-control samples. Note
that βg = βge = 0.4. Top panels show the comparison for the DG step 1 test statistics
and bottom panels show the comparison for the EG step 1 test statistics.
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Figure B.2: Power to detect the QTL region for all methods in random and case-
control samples given that the QTL is not genotyped. Top panels, zero marginal
genetic effect (βg = 0). Middle panels, weak marginal genetic effect (βg = 0.2).
Bottom panels, moderate marginal genetic effect (βg = 0.4).
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Figure B.3: Impact of α1 thresholds on the power of the EDGE method for random
and case-control samples. Top panels, no marginal genetic effect (βg = 0). Middle
panels, weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal
genetic effect (βg = 0.4).
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Figure B.4: Impact of α1 thresholds on the power of the H2 method for random and
case-control samples. Top panels, no marginal genetic effect (βg = 0). Middle panels,
weak marginal genetic effect (βg = 0.2). Bottom panels, moderate marginal genetic
effect (βg = 0.4).
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Appendix C

Preliminary Work on

Dichotomizing the Environment

Variable

A simulation study is conducted to examine the effect of dichotomizing the environ-

ment variable on the power of the EG method. Three types of environment variables

are considered. The first, is a normally distributed environment variable that is then

dichotomized about the median. The second, is a Poisson distributed variable that is

then dichotomized by zero and non-zero values. The third, is a zero-inflated Poisson

(ZIP) distributed variable that is also dichotomized by zero and non-zero values. The

appropriate models are used in the screening step of the EG method based on the

form of the environment variable. Linear regression is used for normally distributed

environment, log-linear regression is used for Poisson and ZIP distributed environ-

ment, and logistic regression is used for the dichotomized environment variables in

the screening step.
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C.1 Simulation Study

For this simulation, it is assumed that G-E dependency exists among 10 SNPs, 3 of

which are in LD with the QTL. The G-E association is set at θge = 0.4 to indicate

a moderate level of dependency. SNPs 14, 21, and 23 from LD blocks 3 and 5 are

selected to have a G-E association. These SNPs have r2 of 0.18 and 0.02 with the QTL

respectively. The three environment variables are generated using the linear predictor

of Model (3.2.2) from Chapter 3, where θ0 = logit(0.2) ≈ −1.39 and θge = 0.4. These

two parameters are chosen to be the same as those used in the simulation study from

Chapter 3. It should be noted that in generating the ZIP environment variables, 50%

of the Poisson variables are randomly selected to be coded zero.

Each environment variable is then used to generated the disease data as well as

the quantitative trait data. This results in three separate population data frames

for a quantitative trait, each obtained from using a different environment variable.

The data generating models from Chapter 3 are used in this simulation study with

all other parameters held the same. Due to the constraints of time, the marginal

genetic effect is fixed at zero and the G x E parameter, βge is varied from 0 to 0.5

by increments of 0.1. A total of 1,000 replicates are simulated. At each replicate a

random sample and a balanced case-control sample of 1,000 observation are selected

from the respective populations. The environment variable from the sample is then

dichotomized to produce a binary environment variable for each of the three types of

environment. For comparison purposes, the DG, the EG, and the exhaustive search

methods are performed using the original and dichotomized environment variables.

It should be noted that the dichotomized exposure rates are not the same for the

three types of environment variables considered. In random samples, the dichotomized
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exposure rates are approximately: 50% for normally distributed environment, 60%

for Poisson distributed environment, and 30% for ZIP distributed environment. In

case-control samples, the dichotomized exposure rates are approximately: 50% for

normally distributed environment, 67% for Poisson distributed environment, and 37%

for ZIP distributed environment. Since each of the three environment variables are

generated separately and independently, performance of the methods cannot be read-

ily compared across the three types of environment.

C.2 Results

The family-wise type I error rates are displayed in Table C.11 and Table C.12 for

random and case-control samples, respectively. The type I error rate is calculated

as the proportion of SNPs declared significant given α = 0.05 out of all 1,000 SNPs

tested at βge = 0 for all simulation replicates. The family-wise type I error rate is

mostly maintained in the random and case-control samples using the original environ-

ment variables. In random samples, using the dichotomized Poisson and zero-inflated

Poisson environment variables results in slightly inflated type I error rates. In case-

control samples, this inflation in type I error rate for the dichotomized environment

variables is higher than seen in random samples.

The power of the EG method for each type of environment variable is shown

in Figure C.5. In general, the power to detect the QTL is lower when using the

dichotomized environment variable for all three types of environment variables con-

sidered. It should be noted that although it appears that the power is higher when

using the dichotomized ZIP variables in case-control samples, this is attributed to

the inflated type I error rate in this case. The dichotomization of the environment
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Environment DG Method EG Method Exhaustive
Normal 0.0489 0.0488 0.0492
Dichotomized Normal 0.0497 0.0510 0.0501
Poisson 0.0503 0.0512 0.0502
Dichotomized Poisson 0.0605 0.0592 0.0465
ZIP 0.0497 0.0500 0.0497
Dichotomized ZIP 0.0739 0.0694 0.0622

Table C.11: Family-wise error rate of DG, EG, and exhaustive search methods for
three types of environment variable and their dichotomized counterpart in random
samples. Normally distributed environment variables were dichotomized about the
median. Poisson and zero-inflated Poisson distributed environment variables were
dichotomized by zero and non-zero observations.

Environment DG Method EG Method Exhaustive
Normal 0.0496 0.0498 0.0505
Dichotomized Normal 0.0523 0.0490 0.0502
Poisson 0.0481 0.0474 0.0474
Dichotomized Poisson 0.0796 0.0669 0.0379
ZIP 0.0506 0.0513 0.0510
Dichotomized ZIP 0.1150 0.0962 0.0648

Table C.12: Family-wise error rate of DG, EG, and exhaustive search methods for
three types of environment variable and their dichotomized counterpart in case-control
samples. Normally distributed environment variables were dichotomized about the
median. Poisson and zero-inflated Poisson distributed environment variables were
dichotomized by zero and non-zero observations.

variables has a drastic effect on the EG method as expected. The difference in power

is especially pronounced for Poisson and zero-inflated Poisson environment variables

in random samples. It should be noted that the drop in power associated with di-

chotomizing these two types of environment variables is affected by the choice of the

cutoff. For example, power may be improved if the variables are dichotomized about

the median as opposed to by zero and non-zero observations.
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Figure C.5: Impact of dichotomizing environment factor on the power of the EG
method to detect the QTL for various environment variables in random and case-
control samples. Top panels, environment is normally distributed. Middle panels, en-
vironment is Poisson distributed, Bottom panels, environment is zero-inflated Poisson
distributed.
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Appendix D

Partial R Code

D.1 Functions to Generate SNPs in LD

## function to generate variance-covariance matrix for

## multivariate normals, assume all variance = 1 and

## thus correlation = covariance in the off-diagonals

## assume SNPs are in two LD blocks with some degree

## of cross group correlation and assume the given

## correlation vector will specify the LD structure

## as follows: correlation in first group,

## correlation in second group, correlation across groups

generate.sigma.matrix <-

function(m, m.block1, correlation, variance = 1)

{

## create matrices to stop each LD block

group1 <- matrix( NA, ncol = m.block1, nrow = m.block1 )

group2 <- matrix( NA, ncol = (m - m.block1),

nrow = (m - m.block1) )

## input variance into diagonal of matrices

diag(group1) <- variance

diag(group2) <- variance

## fill off-diagonal elements with given correlations
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if(length(group1) == 1)

{

group1 <- group1

}else

{

group1 <- offdiag(group1, correlation[1])

}

if(length(group2) == 1)

{

group2 <- group2

}else

{

group2 <- offdiag(group1, correlation[2])

}

cross.group <- matrix(correlation[3],

ncol = (m - m.block1),

nrow = m.block1)

## build sigma matrix

sigma <- rbind(cbind( group1, cross.group ),

cbind( t( cross.group ), group2 ))

return(sigma)

}

## function to fill the off diagonal elements in a matrix

offdiag <- function(mat, value)

{

## fill up triangle

mat[lower.tri(mat)] <- value

## fill lower triangle

mat[upper.tri(mat)] <- value

return(mat)

}

## function to generate binomial(2) r.v.s from normal r.v.s

## based on the given MAF
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generate.binomial <- function(normal.rvs, maf, coding)

{

## if dominant coding

if(coding == 1)

{

q <- maf^2 + 2*maf*(1-maf)

c <- qnorm ( (1-q) ) ## P(x > c) = q^2+2*q*(1-q)

## create vector to store binomial variables

binomial.rvs <- numeric( length( normal.rvs ) )

## parse through the normal r.v.s and assign values 0, 1, 2

## based on the cut offs c1 and c2

for( i in 1 : length( normal.rvs ))

{

if( normal.rvs[i] > c )

{

binomial.rvs[i] <- 1

}

} ## end of for loop for parsing through normal r.v.s

}

## if additive coding

if(coding == 2)

{

## obtain cut off values

c1 <- qnorm( ( 1 - maf )^2 ) ## P(x < c1) = p^2

c2 <- qnorm( 1 - maf^2 ) ## P(x > c2) = q^2

## create vector to store binomial variables

binomial.rvs <- numeric( length( normal.rvs ) )

## parse through the normal r.v.s and assign values 0, 1, 2

## based on the cut offs c1 and c2

for( i in 1 : length( normal.rvs ))

{

if( normal.rvs[i] >= c2 )

{

binomial.rvs[i] <- 2

}

97



M.Sc. Thesis - Qianmin Yang McMaster - Mathematics & Statistics

if( c1 < normal.rvs[i] && normal.rvs[i] < c2 )

{

binomial.rvs[i] <- 1

}

} ## end of for loop for parsing through normal r.v.s

}

return(binomial.rvs)

}

D.2 Functions to Generate Quantitative Trait Data

## function to generated SNPs

## input requires the number of observations, MAF of the DSL,

## and genetic model (additive (2) or dominant (1))

generate.snps <- function(n, dsl.maf, coding, returnmaf = TRUE)

{

## generate mvn variables

## create variance covariance matrix

sigma <- generate.sigma.matrix()

mu <- numeric( 25 )

## generate mvn variables using mvrnorm function

x <- MASS::mvrnorm( n, mu, sigma )

## convert mvns to binomials

## create blank matrix to store binomials G

G <- matrix(NA, nrow = n, ncol = 25)

## set starting value of MAFs based on DSL and coding

signs <- sample(c(1,2), 4, replace = TRUE)

init.mafs <- c(dsl.maf,

if(signs[1] == 1){dsl.maf*1.3}else{dsl.maf/1.3},

if(signs[2] == 1){dsl.maf*1.5}else{dsl.maf/1.5},

if(signs[3] == 1){dsl.maf*1.7}else{dsl.maf/1.7},

if(signs[4] == 1){dsl.maf*1.9}else{dsl.maf/1.9})

maf <- c(runif(4, init.mafs[1]/1.2, init.mafs[1]*1.2),

runif(5, init.mafs[2]/1.2, init.mafs[2]*1.2),

runif(5, init.mafs[3]/1.2, init.mafs[3]*1.2),

runif(5, init.mafs[4]/1.2, init.mafs[4]*1.2),
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runif(5, init.mafs[5]/1.2, init.mafs[5]*1.2))

maf <- c(dsl.maf, maf)

## use marginal normals to generate binomials

## store results into matrix G

for(i in 1:ncol(x))

{

G[, i] <- generate.binomial(x[,i], maf[i], coding)

} ## end of for loop

if(returnmaf == FALSE)

{

return(G)

}else

{

return(list(G = G, maf = maf))

}

}

## function to create the variance covariance matrix of the

## multivariate normals, note that this function is built

## specific to the simulation settings considered

## correlation values, number of marginals, and block size

## are set as defaults

generate.sigma.matrix <- function(M = 25, block.size = 5,

variance = 1,

corr = c(0.96, 0.85,

0.65, 0.45, 0.25))

{

## create main diagonal blocks

g1 <- matrix(NA, nrow = block.size, ncol = block.size)

diag(g1) <- variance

## fill in the off-diagonals of the main diagonal blocks

g1[lower.tri(g1)] <- corr[1]

g1[upper.tri(g1)] <- corr[1]

## generate the remaining blocks

g2 <- matrix(corr[2], nrow = block.size, ncol = block.size)

g3 <- matrix(corr[3], nrow = block.size, ncol = block.size)
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g4 <- matrix(corr[4], nrow = block.size, ncol = block.size)

g5 <- matrix(corr[5], nrow = block.size, ncol = block.size)

## build sigma matrix

sigma <- rbind( cbind(g1, g2, g3, g4, g5),

cbind(g2, g1, g2, g3, g4),

cbind(g3, g2, g1, g2, g3),

cbind(g4, g3, g2, g1, g2),

cbind(g5, g4, g3, g2, g1))

return(sigma)

}

## function to generate binomial r.v.s from normal r.v.s

## based on the given MAF and genetic model (additive or dominant)

generate.binomial <- function(normal.rvs, maf, coding)

{

## if dominant coding

if(coding == 1)

{

## calculate P(G=1) and cutoff value for normals

g.freq <- maf^2 + 2*maf*(1-maf) ## P(G = 1)

c <- qnorm ( (1-g.freq) ) ## P(x > c) = q^2 + 2*q*(1-q)

## create vector to store binomial variables

binomial.rvs <- numeric( length( normal.rvs ) )

## parse through the normal r.v.s and assign appropriate values

## based on the genetic model and cutoffs

for( i in 1 : length( normal.rvs ))

{

if( normal.rvs[i] > c )

{

binomial.rvs[i] <- 1

}

} ## end of for loop for parsing through normal r.v.s

}

## if additive coding
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if(coding == 2)

{

## obtain cut off values

c1 <- qnorm( ( 1 - maf )^2 ) ## P(x < c1) = p^2 = P( G = 0)

c2 <- qnorm( 1 - maf^2 ) ## P(x > c2) = q^2 = P( G = 2)

## create vector to store binomial variables

binomial.rvs <- numeric( length( normal.rvs ) )

## parse through the normal r.v.s and assign values 0, 1, 2

## based on the cut offs c1 and c2

for( i in 1 : length( normal.rvs ))

{

if( normal.rvs[i] >= c2 )

{

binomial.rvs[i] <- 2

}

if( c1 < normal.rvs[i] && normal.rvs[i] < c2 )

{

binomial.rvs[i] <- 1

}

} ## end of for loop for parsing through normal r.v.s

}

return(binomial.rvs)

}

## function to generate linear predictor based on parameters,

## variables, and model type

## model.type = 1: single DSL with GxE interaction

## model.type = 2: two associated Gs, single DSL with GxE interaction,

## G1 indep of G2 (LE)

## model.type = 3: two associated G, single DSL with GxE interaction,

## G1 dep of G2 (LD, moderate)

generate.linear.predictor <-

function(G, E, dsl.g, beta.0, beta.g, beta.e, beta.ge, model.type)

{

## G x E DSL is also stored in the first column of G matrix

DSL <- G[, dsl.g]

## check model types
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## model 1: single DSL with non-zero GxE interaction

if(model.type == 1)

{

LP <- beta.0 + beta.g*DSL + beta.e*E + beta.ge*DSL*E

g <- NA

}else if(model.type == 2)

## model 2: five associated Gs, single DSL, all Gs in LE

{

g <- sample(26:100, 4)

b <- matrix(beta.g, nrow = 4, ncol = 1)

LP <- beta.0 + beta.g*DSL + G[,g]%*%b + beta.e*E + beta.ge*DSL*E

}else if(model.type == 3)

## model 3: 5 associated Gs, single DSL, two Gs in moderate/weak LD

{

g <- c(sample(16:25, 2), sample(26:100, 2))

b <- matrix(beta.g, nrow = 4, ncol = 1)

LP <- beta.0 + beta.g*DSL + G[,g]%*%b + beta.e*E + beta.ge*DSL*E

}else

{

warning("Invalid Model Type")

LP <- NA

g <- NA

}

## returns the linear predictor and

## the second associated G (if there is one)

return(list(LP=LP, g=g))

}

## function to generate the case control population data based

## on disease model parameters, this function does not generate

## the quantitative trait population data

generate.cc.pop <-

function(N, gamma.0, gamma.g, gamma.e, gamma.ge,

dsl.d, model.type.d,

dsl.maf, p.e, theta.ge, coding)

{

library(boot)

##### generate G at population size N #####
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snps <- generate.snps(N, dsl.maf, coding)

maf1 <- snps$maf

G1 <- snps$G ## generate the SNPs in LD

total.g <- 100

length.ld <- 25

length.le <- total.g - length.ld

## generate second set of SNPs

G2 <- matrix(NA, ncol = length.le, nrow = N) in LE

## fill matrix of the second set of SNPs based

## on random MAF and coding

maf2 <- runif(length.le, 0.05, 0.4)

if(coding == 1)

{

for(i in 1:length.le)

{

g.freq <- maf2[i]^2 + 2*maf2[i]*(1-maf2[i])

G2[, i] <- rbinom(N, coding, g.freq)

}## end for loop

}else

{

for(i in 1:length.le)

{

G2[, i] <- rbinom(N, coding, maf2[i]^2)

}## end for loop

}

maf <- c(maf1, maf2)

## combine first and second set of SNPs = 50 SNPs in total

G <- cbind(G1, G2)

##### end of generating SNPs #####

##### generate E (based on multiple Gs) #####

## baseline probability of environment exposure

theta.0 <- logit(p.e)
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## randomly sample 10 SNPs from the

## set of 75 LE SNPs to have an association with E

n <- 0.01*1000 ## 1% of SNPs have true G-E association

g <- sample(26:total.g, n)

## generate linear predictor based on sampled Gs

theta.ge.vec <- rep(theta.ge, n)

lp <- theta.0 + G[, g]%*%theta.ge.vec

## calculate probability of E based on linear predictor

prob.e <- inv.logit(lp)

## generate E vector

E <- rbinom(N, 1, prob.e)

#### end of generating exposure status #####

##### generate probability of disease #####

d.linear.pred <-

generate.linear.predictor(G, E, dsl.d,

gamma.0, gamma.g, gamma.e, gamma.ge,

model.type.d)

prob.disease <- inv.logit(d.linear.pred$LP)

D <- rbinom(N, 1, prob.disease)

d.g <- d.linear.pred$g

#### end of generating disease status #####

## create data frame to store cc population

cc.population <- data.frame(G, E, D)

## create cases and controls indices

case.index <- which(cc.population$D == 1)

control.index <- which(cc.population$D == 0)

return(list(population = cc.population,

cases = case.index, controls = control.index,

maf = maf, GE.g = g, D.g = d.g))

}
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## function to generate the case-control population data

## based on disease model parameters

## this function does not generate the quantitative trait

## population data

generate.quant.pop <-

function(cc.population, beta.0, beta.g, beta.e,

beta.ge, beta.d, model.type.y, N)

{

## extract G, E, and D from case control population

G <- cc.population[, 1:100]

E <- cc.population$E

D <- cc.population$D

##### generate quantitative trait y #####

y.linear.pred <-

generate.linear.predictor(G, E, dsl.g = 1,

beta.0, beta.g, beta.e, beta.ge,

model.type.y)

y <- y.linear.pred$LP + beta.d * D + rnorm(N)

y.g <- y.linear.pred$g

#### end of generating quantitative trait y #####

## population data frame

quant.population <- data.frame(G, E, D, y)

## generate case index vector and control index vector

case.index <- which(quant.population$D == 1)

control.index <- which(quant.population$D == 0)

## return results pertaining to the population sample

## which G is also associated with y along with DSL

return(list(population = quant.population,

cases = case.index,

controls = control.index, Y.g = y.g))

}
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## end of functions

######################################################################

######################################################################
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