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CHAPTER 1 

INTRODUCTION 

The spectra of ions in crystals have been the subject 

of extensive experimental and theoretical studies for many 

years (see,for example, Ballhausen, 1962,or the review 

article by McClure, 1959). This work has given information 

on the observed sharp lines, arising from electronic transi

tions of the impurity ions, and about the bands which often 

accompany these lines. These bands are characteristic of 

the vibrations of the lattice, and of the interaction of the 

lattice with the impurity ion. While the analysis of the 

optic absorption and emission processes in systems where the 

electronic and lattice states are strongly coupled is very 

difficult, the situation where the impurity ion electronic 

levels are strongly localized and the coupling to the lattice 

weak presents a much simpler problem. An example of this is 

the case of the rare-earth ions, where the f wave functions 

are localized and the electronic levels of these ions in 

crystals are found to be similar to those of the free ion. 

The weak interaction, in turn, gives rise to lattice vibra

tional sidebands for which it is easier to describe and 

interpret the mechanism of coupling. 

l 
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While progress has been made on the problem of the 

electronic levels in recent years, the part of the problem 

related to the lattice vibrations is less well understood. 

Coupling mechanisms have been discussed and calculations on 

simplified models of the lattice have been made; however, no 

detailed calculations on realistic models exist. Thus, a 

choice of the mechanism responsible for the electron-lattice 

coupling cannot be made. 

In this thesis, such a calculation for a vibrational 

sideband is made. The system considered is that of a divalent 

rare-earth ion replacing an alkali ion in an alkali-halide 

lattice. This system is especially suitable for the study of 

vibrational sidebands of electronic transitions for several 

reasons. First, there is a considerable background of work 

on the electronic levels of this system (Kaplyanskii and 

Feofilov 1964, Bron and Heller 1964, Fong and Wong 1967). 

secondly, the vibrational modes of the pure lattice have 

been measured by inelastic neutron scattering, and a fairly 

reliable model is available for interpolation between the 

neutron measurements. 

Kaplyanskii and Feofilov (1964) first studied the 

absorption and fluorescence of various divalent sarnariurn

alkali halide systems at liquid helium temperatures. In 

absorption they observed a series of intense vibrational 
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bands which they associated with the allowed transitions of 

the Sm++ ion from 4f6 to 4f5Sd levels. In luminescence, 

however, the transitions giving rise to the sharp electronic 

lines observed appeared to be the forbidden transitions be

tween the levels of the 4f6 configuration. Similar vibra

tional frequencies were observed in both absorption and 

emission spectra, with the exception of the sideband on the 

long wavelength side of the 5o0~7F0 transition line. This 

sideband is not dominated by a single frequency, but instead 

has a structured continuum extending over the range of the 

one-phonon lattice spectrum. 

This sideband has also been studied by Bron (1965) and 

he has suggested a mechanism for the coupling between lattice 

modes and the rare-earth ion. This mechanism will be dis-

cussed in Appendix C. His mechanism depends on there being 

a strong field at the Sm++ site due to the presence of a K+ 

vacancy (to compensate for the double charge of the impurity 

ion) at the second neighbour site (~ 1 ~ 1 0) • This assumption 

is based on the work of Bron and Heller (1964). They attemp-

ted to show that the emission lines were associated with 

transitions from the 5o0 level to the 7FJ levels, allowed by 

a vacancy in this position, by calculating the crystal field 

splittings of the levels pn a point charge model. Fairly 

good agreement with the measured splittings was found. 
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However, more recently, Fong and Wong (1967) studied 

the system again, pointing out that in the fluorescence 

spectrum identified by Bron and Heller as Stark splitting 

of the 7F1 and 7F2 levels, the splittin~ is equal and so 

appears more like vibronic lines than Stark components; and 

also that Bron and Heller considered only one c 2v site for 

the vacancy. Fong and Wong then studied the emission spec-

trum using the Zeeman effect, and they concluded, by com

parison withcalculated Zeeman patterns, that there were four 

different kinds of Sm++:K+-vacancy pairs with c 4v symmetry, 

probably corresponding to different distances of separation 

between rare-earth ion and compensating vacancy; and, from 

their study of the 7F5 lines which did indicate c2v symmetry, 

they concluded that the K+ vacancy was sufficiently far from 

the rare-earth ion that the immediate environment of the Sm++ 

was still cubic. 

Thus, Bron's assumption of a strong vacancy field may 

not be good, and the symmetry of the defect site may be higher 

than c2v. 

The aim of the work presented in this thesis was to 

study further the sidebands of the 5o0~
7F 0 luminescence 

with higher resolution to reveal Van Hove singularities in 

the phonon spectra and to verify a model of the interaction 

of the host lattice with the rare-earth impurity ion by 

numerical calculations, making use of the extensive measure-
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ments of phonon dispersion curves for alkali halides by 

neutron diffraction and calculations of phonon densities of 

states by various authors. 

In Chapter 2, the experimental methods are discussed 

and high resolution spectra taken at 7°K of the phonon side

bands of the 5o0~7F 0 transition in luminescence are pre-

++ ++ sented for KBr:Sm and KCl:Sm ; luminescence spectra of 
0 

the phonon sidebands above 4105 A for europium-doped KBr and 

KCl are also given. Chapter 3 introduces the notation used 

and reviews the background theory. In Chapter 4 a theoretical 

mechanism for the samarium sidebands is presented, and the 

results of numerical calculations are given and compared 

with experimental curves. In Chapter 5, a discussion of 

similar sidebands such as europium-doped KBr and KCl or 

++ CaF2 :sm sidebands is given • 



CHAPTER 2 

EXPERIMENTAL WORK 

A. Experimental methods 

The crystals were grown by the Kyropoulos method in 

an airtight Vycor chamber. Glazed porcelain crucibles were 

used. Metal parts of the apparatus were made of Inconel, which 

proved to be unattacked by the hot salt. The chamber was evac

uable, with provision for the admittance of inert or reducing 

atmospheres. 

Reagent grade alkali halides from Fisher Scientific 

were used, with an additive doping of less than 0.1 at.% of an

hydrous Smc13 supplied by American Potash. 

The mixture was dried under vacuum for two hours at a 

temperature of 90°C. High purity hydrogen was then admitted. 

Throughout the rest of the growing procedure, an atmosphere 

of hydrogen at slightly above atmospheric pressure was main

tained in the chamber; a slow flow was permitted to ca~ry 

off impurities and vapourized salt. The mixture was raised 

to the melting point and held there for two hours to reduce 

the samarium dopant to the divalent state. Any remaining 

undissolved impurities were then lifted out of the melt with 

a pyrex "foot". By this stage, the melt had changed from 

6 
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being colourless to a deep red. 

A boule of about 1-1/4" diameter and up to 2" in length 

was then pulled from the melt over a four hour period. More 

rapid growth resulted in heavily strained and distorted crys

tals. The resultant boules were purple in colour. Sample 

crystals of about 5/8"x3/8"xl/8" were cleaved from these boules. 

Analysis by wet chemistry showed the samples to contain less 

than .01 at.% samarium. 

SmBr
3 

was also used as a dopant for KBr. This was ob

tained from the Smc13 by adding an excess of anunonium carbon

nate to Smc1 3 dissolved in water, and then treating the resul

tant precipitate with hydrobromic acid. This solution was 

then dried slowly below 100°C, and the resulting dark-brown 

crystals used as dopant. 

Europium-doped crystals of KBr and KCl were grown in 

the same way using Euc13 from the same source; again, KBr 

crystals were also doped with EuBr 3 • 

Samples were quenched from 25° below the melting point 

inunediately before use to dissolve rare-earth aggregates 

(Bron and Heller 1964), by dropping into oil. 

taken of both quenched an~ unquenched samples. 

Spectra were 

The samples were mounted in a metal helium dewar, such 

that the fluorescence could be detected at right angles to 

the exciting light. The temperature of the sample could be 
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determined with a germanium resistance thermometer mounted on 

the sample-holder and a gold-.02% iron vs. copper differential 

thermocouple from the resistance thermometer to the sample 

itself. 

The luminescence was excited with an Osram HBO 500W 

high pressure mercury lamp. A saturated cuso4 solution was 

used as a filter in the exciting beam and a red filter with 
0 

a cutoff at 6500 A in the output fluorescence beam. With 

this combination of filters no detectable light from the lamp 

reached the spectrometer. 

A Spex 3/4 meter Czerny-Turner spectrometer with 2" 

curved slits was used. It was fitted with a 10 cm grating 
0 

blazed for 5000 A, with 1200 i/mm. The resolution of the 

spectrometer was 0.2 cm-l as determined from the half-width 
0 

of the 3131 A mercury doublet, with slit height 10 mm and 

width 12 µ. This slit width and height were typical of 

those used. Aspheric lenses were used to image on the crystal 

and the slit. 

A red sensitive photomultiplier (R-136) supplied by 

the Hamamatsu TV Company was used for detecting the luminescence. 

The response of the system of red filter, spectrometer, and 

photomultiplier was determined using a standard tungsten 

light source. The response throughout the range is shown 

in figure 1. 

http:gold-.02


Figure 1. The relative response of the system of photo-

multiplier spectrometer, and red filter, in 
0 0 

the region from 6850 A to 7050 A, normalized 
0 

to unity at 6850 A. The units are photons/unit 

wavelength. The one-phonon regions for 

KBr:Sm++ and KCl:Sm++ are indicated. 
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For the fluorescence spectra of Eu++ in alkali halides, 

a Corning i584 glass filter was used in the input beam, as 

well as a diluted Cuso4 solution. No filter was used in the 

output beam; however, no detectable radiation from the lamp 
0 0 

was observed in the region from 4000 A to 4350 A. 
0 

Typical scanning speed was 2 A/min. The output of 

the photomultiplier was fed directly to the pen recorder. 

B. Experimental results 

The fluorescence sidebands of Sm++ in KBr and KCl at 

7°K are presented in figures 2 and 3. The origin of the 

frequency scale in each case is the electronic transition 

(zero-phonon line) which occurs at 6890.4 A for Sm++:KBr 

and at 6892.0 A for Sm++:KCl (Kaplyanskii and Feofilov 1964). 

This line is broadened or split, depending on the concentra

tion of impurities and the quenching of the crystal; the 

sidebands, however, are unchanged from sample to sample. 

The line width of the zero-phonon line in KBr:Sm++ is 

0.7 cm-1 • The sideband is observed on the long wavelength 

side of this line, extending for 167 cm-1 in the case of KBr: 
++ -1 . ++ Sm and for 215 cm in the case of KCl:Sm • Beyond these 

frequencies there is a very low intensity continuwn in the 

two-phonon region. The sharpest features of these sidebands 

can be measured to within 0.2 cm-1 • 

The curves are dirsct recorder traces; and so no cor-



Figure 2. The sideband on the long-wavelength side of 

the 6890 A transition of Sm++ in KBr at 7°K. 

The curve is a direct recorder trace. To obtain 

the luminescence in units of relative number of 

photons/unit wavelength, the curve must be 

divided by the photomultiplier response of 

figure 1. 
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Figure 3. The sideband on the long-wavelength side of 

the 6892 A transition of Sm++ in KCl. The 

-1 peaks below 15 cm vary from sample to 

sample, but the sideband does not. The curve 

is a direct recorder trace taken at 7°K. The 

ordinate scale is the same as figure 2 apart 

from a constant factor. 
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rection has been made for photomultiplier sensitivity. As can 

be seen from the curves presented in section A for the res-

ponse of the system, this correction amounts to about 25% 

across the one-phonon spectrum, and the higher frequencies 

should be enhanced by this factor over the lower ones. How-

ever since it is the structure and position of the various 

sharp features that are of primary interest here, this cor-

rection has not been made in the experimental curves. 

The KBr:Sm++ curve is particularly striking; the 

spectrum is broken into two branches separated by a gap in fre-

quency. In the acoustic branch, the spectrum rises to a 

distinctive "hook" at 40.5 cm-1 • This feature will be referred 

to as peak A. Beyond this, the acoustic spectrum has two sharp 

-1 -1 peaks at 74.7 cm (B) and 85.7 cm {C). These peaks are 

extremely sharp and are asymmetric. Above the gap, in the 

optic branch, there are two more peaks at 111 cm-l (D) and 

119 cm-l (E). These peaks are somewhat more rounded in appea-

ranee than the two sharp peaks in the acoustic branch. Beyond 

this, a minimum is observed at 128 cm-l followed by a smoothly 

rounded peak at 147 cm-l {F). The 167 cm-l range of frequen-

cies observed for phonons in pure KBr by neutron measurements 

corresponds closely with that observed here, as does the gap 

from 95 to 100 cm-1 • 

The peak at 93 cm-l at the beginning of the gap in the 

KBr:Sm++ curves is always present, with a "shoulder" on the 
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falling side. The possibility that this mode was due to 

chlorine as an impurity was investigated, since KBr:Cl 

crystals exhibit a local mode at 95 cm-l (Klein 1968). Side-

band spectra were compared for three samples: KBr:SmBr 3 , 

KBr:SmC1
3 

(0.5 at.% Cl-), and KBr:SmC1
3

+KCl (5 at.% Cl-). 

No change in the intensity or sharpness of the peak was ob-

served. 

An attempt was also made to ascertain whether or not 

this peak was a local mode due to Sm++, with the peak and 

shoulder caused by the spread in naturally occurring isotopes. 

A crystal was prepared doped with isotopically enriched 

sm154c1
3 

supplied by Oak Ridge National Laboratories; this 

sample was expected to exhibit a decreased intensity of the 

"shoulder" with respect to the main peak if the mode was 

due to samarium. No such decrease was observed. 

++ For KCl:Sm the sideband appears somewhat different; 

no gap is observed. Some of the features however are similar 

to those observed in the KBr:Sm++ sideband. A smoothly rounded 

peak at 53 cm-l (A) is observed, followed by two sharp and 

distinctive features: a 

shaped peak with a very 

double peak is observed 

strong peak at 155 cm-l 

"step" at 100 cm-l (B) and a strikingly 

-1 
sharp angle at 118.4 cm (C). A 

at about 140 cm -1 (D,E), a sharp 

(F) and a somewhat less sharp peak 

at 168 cm -1 (G) • The spectrum ends abruptly at 215 cm -1 with 
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only a very low intensity continuum beyond this point. 

Several less obvious features in these sidebands 

are also to be noted. These features are completely repro-

ducible, but do not show up very clearly on all traces be-

cause of lamp intensity fluctuations. The recorder trace in 

figure 4 shows a high resolution scan of the KBr:Sm++ side-

b d · th · b t b t 68 cm-l d 90 -l Th an in e region e ween a ou an cm ere 

-1 
is a slight but abrupt change of slope 1.5 cm below peak 

-1 
B, and a similar change of slope 3,9 cm above peak C. These 

two pairs of features immediately call to mind the usual 

sketches of the contribution to the density of states of a 

pair of saddle point Van Hove singularities. In addition, 

-1 there is a weak slope change 6.4 cm below peak B and again 

2.7 cm-l below peak c. Their positions are indicated by 

arrows. Some of these features appear to be identifiable 

with features predicted by the shell model; these are also 

indicated in figure 5 by arrows, on a sketch of the KBr density 

of states. 

The KCl:Sm++ spectrum exhibits several discontinuities 

in slope also, as shown in figure 6. Their positions are 

-1 indicated by arrows. The discontinuity 1.9 cm below the 

-1 peak at 118.4 cm and the peak itself are again reminiscent 

of a pair of saddle points, and the step B with discontinui

ties at 100 cm-l and 101.5 cm-l is also a striking feature. 

There is also a discontinuity at 61.2 cm-1 , after the rounded 



Figure 4. Detail of the KBr:Sm++ sideband in the region 

from about 68 cm-l to 90 cm-1 • The curve is a 

recorder trace taken at 7°K. Peaks B and c 

are labelled; four other singularities are 

indicated by arrows or by dashed continuations 

of the slopes. There is a discontinuity of 

slope 1.5 cm-l below peak B, and one 3.9 cm-l 

above peak C. There are also very weak repro

-1 ducible features 6.4 cm below peak Band 2.7 

cm-l below peak c. The frequencies of these 

-1 -J. four features are 68.3 cm , 73.2 cm , 83.0 

cm-l and 89.6 cm-l 

1 
I 

I 
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Figure 5. The total density of states for KBr, after 

Cowley and Cowley (1966). The positions of 

five of the singularities in figure 4 are 

indicated by the solid arrows. The open 

arrows indicate their positions shifted so 

that the strong peaks B and C correspond to 

their predicted positions. The observed dis

continuities correspond closely to the pre

dicted discontinuities, measured with respect 

to the strong peaks. 
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Figure 6. Detail of the KCl:Sm++ sideband in the region 

from about 70 cm-l to 125 cm-l The curve is 

a recorder trace taken at 7°K. The peaks B and 

C are labelled. The positions of several dis-

continuities of slope are indicated by arrows. 

-1 -1 -1 They occur at 101.5 cm , 107.2 cm , 108.4 cm , 

and 116.5 cm-1 • 
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-1 
peak at 53 cm this is clearly visible in figure 3. The 

KCl density of states is less well known than that for KBr, 

and it is hard to correlate these features with predicted 

singularities. 

These high resolution measurements show that 

several of the sideband features have shapes characteristic 

of the phonon density of states which can be assigned to Van 

Hove singularities. 

Vibrational modes are also observed accompanying the 

5o ~7F lines, but because of the complication of the three 0 1 

intense lines observed in this region, analysis and identi-

fication of vibrational frequencies is difficult. 

In the case of these Sm++ doped samples, no difference 

between the sidebands of quenched and unquenched crystals 

was observed, although the zero-phonon line in unquenched 

samples showed several weak satellites within 15 cm-l of it-

self. 

Recorder traces are also presented of the one-phonon 

++ ++ regions of the sideband spectra of KBr:Eu and KCl:Eu at 

7°K (figures 7 and 8 respectively). Here, the zero-phonon 
0 0 

lines fall at approximately 4107 A for KBr and 4105 A for KCl. 

These spectra are strikingly different in overall appearance 

from those of the samarium doped samples. Here many-phonon 

-1 
spectra are observed, extending for over 1200 cm for both 

++ ++ KBr:Eu and KCl:Eu • The strongest features, corresponding 



Figure 7. The one-phonon region of the sideband on the 
0 

long-wavelength side of the 4107 A transition 

of Eu++ in KBr at 7°K. The curve is a direct 

recorder trace. The labelled arrows indicate 

th k . t. b d . s ++ e pea posi ions o serve in KBr: m • 
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Figure 8. The one-phonon region of the sideband on 
0 

the long-wavelength side of the 4105 A transi-

tion of Eu++ in KCl at 7°K. The curve is a 

recorder trace. The labelled arrows indicate 

h k . . b d . 1 ++ t e pea positions o serve in KC :Sm • 
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-1 -1 
to vibrational frequencies of 106 cm and 119 cm for 

KBr:Eu++ and 197 cm-l for KCl:Eu++, can be detected up 

to the five-phonon region for KBr and the four-phonon 

region for KCl. 

In the one-phonon region in particular, both sidebands 

exhibit other features with much lower intensity than these 

sharp features. These show some similarities to the spectra 

of samarium-doped crystals, in peak position and shape. The 

arrows in figures 7 and 8 indicate the peak position observed 

in the samarium spectra. 

Note in particular that the pair of peaks D and E in 

++ 
the optical branch of the KBr:Sm spectrum, while similar 

in appearance to the very sharp strong peaks in the KBr:Eu++ 

spectrum, do not agree in separation with them; and that 

the peaks F and G in the KC::sm++ spectrum do not appear at 

all in the KCl:Eu++ spectrum, which has instead a broad peak 

with maximum intensity at about 197 -1 cm 

Thus, the major differences in peak position between 

the crystals with the two dopants occurs for the strongest fea--

tures of the spectra of the europium-doped samples. 

The peak at 102 cm-l in the KCl:Eu++ sideband is 

strongly concentration dependent, and thus appears to be due 

to pairs of europium ions. It is present in both quenched and 

unquenched c~ystals. ++ Asiae from this peak, the KCl:Eu spec-
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trum for quenched crystals is somewhat simpler than that for 

++ unquenched crystals, as is the spectrum for KBr:Eu ; several 

very weak peaks are seen in the spectra of unquenched crystals 

that are not seen in the quenched crystals. 



CHAPTER 3 

NOTATION AND BASIC FORMALISM 

The system consists of a divalent ion present as a 

substitutional impurity in a cubic ionic lattice. The elec-

tronic levels of the rare-earth ion are perturbed by the 

presence of phonons in the lattice; at the same time, how-

ever, the motions of the lattice ions are perturbed by the 

foreign ion which replaces one of the potassium ions of the 

lattice. 

It will be convenient to begin by defining the unper-

turbed systems and to review the unperturbed and perturbed 

lattice dynamics problems. 

A. Zero order wave functions of the system 

The total unperturbed wavefunctions of the system 

will be written 'i'~(~ 1 R). Here~ and B represent the time

dependent positions of the rare-earth ion electrons and the 

lattice ions respectively; n labels the electronic states 

and n the vibronic states of the lattice. It is assumed 

that the adiabatic approximation can be made so that 'i' can 

be separated into an electronic part <P and a lattice part 

x: 

'i' n (r R) - A. (r R) xn (R) • n _,_ - 'l'n - 1 - n - ' (1) 

24 
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and, further, that 

(2) 

where R0 represents the equilibrium positions of the lattice 

ions. This second approximation is good for wave functions 

strongly localized in space about the impurity ion; it is 

probably generally good for the wave functions of a rare-

earth ion in an alkali halide such as KBr or KCl since the 

ionic radius of divalent samarium, for example, is consider-

ably smaller than that of potassium; in particular, it is a 

good approximation for the wave functions of the 4f6 (inner 

shell) configuration. 

The wave functions ~ are taken to satisfy the 

Schrodinger equation: 

here, H 1 <•> is the Hamiltonian describing the free divalent e • 

samarium ion; Hc.f. (~,R0 ) the perturbation resulting from the 

cubic crystal field; and En the energy of the state ~n· The 

wave functions $ transform as the representations of the 

cubic group. 

B. Unperturbed lattice 

The solutions of the unperturbed lattice problem - for 

the perfect lattice with no rare-earth impurity present - are 
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fairly well established for alkali halide lattices; these are 

given by shell model calculations (Cowley et al. 1963) 

based on neutron diffraction measurements of the phonon fre-

quencies. These solutions consist of a set of eigenvectors 

~(K9j) and eigenfrequencies w ., for the 6 branches numbered 
9J 

by j and a set of ~·s in the Brillouin zone. These eigen-

vectors and eigenvalues are the solutions of the equation 

E W a (LL';KK')uL' , 0 (t). 
L'K'f3 aµ K µ 

(4) 

Here uLKa(t) is the time-dependent displacement in the direc

tion a, for the ion of type K and mass M in the unit cell L; 
K 

K takes on two values: + K=l for K and K=2 for the halide 

ion. 

The quantity Waf3 is defined: 

w (LL • · K K • > - r:~_a_2-=------
a a I - LauLKa auL'K'f3 (5) 

W(S) is the total potential of the crystal, composed of a 

repulsive part WR and a Coulomb part WC; the subscript R
0 

means that the derivative is to be evaluated at the equili-

brium positions of the ions. 

The time dependence of equation (4) is removed by 

making the substitution 
u 

= ~ exp(-iwt) 
m-

K 

(6) 



Equation (4) then becomes 

where 

0 

1: LL L' IQ UL'K' Q = 0 L ' K ' f3 Ka ' K µ µ 

0 

LLKa,L'K'f3 = 
q> (LL I • K K ' ) aB ' 
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(7) 

( 8) 

Equation (7) can be diagonalized by a unitary trans-

formation using the matrix ~ where 

(9a) 

The eigenvectors ~(K~j) are real for this lattice, and the 

elements of D-l are 

D . L 
~] 1 Ka (9b) 

The vector .Bi,K gives the equilibrium position of the ion lab

elled by (L,K); N is the number of ions in the lattice. 

Then, in the {qj} space, L0 is a diagonal matrix with 
elements 

0 

L . 
q J = Cw 2

. - w2 )o ,o .. ,; 
9J CJ.CI JJ 9_' j I 

and the set of equations 

2 
(w • 

CjJ 

given by (7) becomes a set 
2 

- w ) Qqj = 0 

(10) 

(11) 

for each mode (qj). The set {Q~j} are the normal mode coor

dinates. 



Since 

E 
LKa 

D U = 0 
~j,LKa LKa ~j , 

the displacement µLKa(t) can be written: 

µLKa(t) = 
-iwt e 

./ MK 
E DL . 0 . Ka,q] q] 
~j 
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(12) 

The wave functions x(R) satisfy the set of Schrodinger 

equations: 

(14) 

where n gives the number of phonons of type (~j) in the state. 

These x's are harmonic oscillator wave functions and have the 

following properties: 

<xnffi) lxn<B>> = o , nn 

<x
1 

<.B> loqj I x0 <g> > = I 2~ . 
- qJ 

(15) 

here, x°CB> represents a.lattice state with no phonons present; 

x
1

Cg) is the wave function of the state with one phonon of 

the type (~j) excited. These matrix elements will be the 

only ones needed for this problem. 

The assumption that the phonon wave functions do not 
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depend on the electronic quantum number n is central to 

the mechanism that will be considered here. The assumption 

that x~ depends on n leads to a different frequency depen

dence for the sideband from that observed, and to a stronger 

two-phonon sideband than is observed; this will be shown in 

Appendix c. 

c. Perturbed lattice 

It will be convenient to define the Green's function 

of the unperturbed· lattice, 

In the {~j} space, ~0 can be directly written: 

0 

G . (w} = q) 
1 

2 2 w .-w qJ 

. , 

and thus, in the real (LKa} space, 

= 1 E 
N . 

~J 

Note that 

1T 
- o(w .-w) 2w . qJ 

9_) ~ 

(16) 

(17) 

(18} 

(19} 
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and that the exponential in equation (18) gives a completely 

real contribution, so that 

Im G
0 

(w+iO+) = I: DL . {Im G0 • (w+iO+)} (20) LKa,L'K'a Ka q] q) 
~j ,_ 

The perturbed lattice satisfies an equation of motion similar 

to equation 7, with L 0 (w) replaced by !i(w) and Q giving the 

displacement of the ions in perturbed lattice. The matrix 

~(w) is related to g0 (w) by 

~ (w) = L 0 (w) + I:, (w) , (21) 

where r<w> is a matrix giving the changes from the perfect 

lattice. 

A perturbed Green's function G can then be defined, 

by 

and ~ can be solved for in terms of ~0 and r; for 

~ c~0 + r) = r_ 

so g + ~rq_o = Go 
or ~ = G0 [I + rqo]-1 

Equation (23) can also be written, defining 

~ = re~+ G0 r1-l 

as 

(22) 

(23) 

(24) 

(25) 

Tis the "scattering matrix" as defined by Klein (1963). 
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In applications where all elements of ~ are needed, equation 

{25) is a more useful form than equation {23). 

Since r usually has only a few non-zero elements in a 

small subspace about the impurity ion, (! + @. 0 £] can be in-

verted, making use of theorems on the partition of matrices. 

Then ~ also has non-zero elements only in the small sub-

space. 

D. Simplifications as a result of symmetry 

The most reasonable first approximation is the assump-

tion of cubic symmetry for the unperturbed electronic problem. 

Fong and Wong (1967) found many inequivalent sites for the 

charge compensating defect, including some at large distances 

from the rare-earth ion, so this assumption is not unreasonable, 

and it would be unrealistic to base one's calculations on the 

the vacancy being at (~ 1 ~ 1 0) as did Bron and co-workers. 

The assumption of cubic symmetry also has the aspect of sim-

plifying·greatly the solution of the problem; for the summa

tions over all ions that are implied by the long-range Coulomb 

nature of the coupling between the lattice ions and the rare

earth ion can be made straightforwardly, as will be seen in 

the next chapter; while the perturbed lattice problem is 

greatly simplified by the assumption that r does not lower 

the symmetry from cubic. 
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Note that the assumption of cubic symmetry enters in 

two places: for the symmetry of the zero-order electronic 

wave functions, and for the perturbation of the lattice. 

While it might be reasonable to use non-cubic wave functions 

and a cubic£, the use of cubic wave functions and a non

cubic r would not be reasonable, since ~ represents changes 

very close to the impurity. Problems arising from the assump-

tion of non-cubic wave functions will be mentioned further 

in Chapter 5. 

If £ has cubic symmetry, the lattice problem can be 

treated most easily by transforming from the real (LKa) 

space to a space spanned by motions corresponding to the 

representations of the cubic group; for in this space both 

G0 and r become block diagonal since the rows of the cubic = = 

representations do not couple. In this space the matrix 

[~ + G0 r] can be inverted easily since the various blocks 

do not affect each other. The transformations to this 'cubic' 

space are given in Appendix A. 



CHAPTER 4 

SIDEBAND OF THE 5o0+
7F

0 
TRANSITION 

OF SAMARIUM IN ALKALI HALIDES 

A. Perturbation Hamiltonian and transition probability 

The 5o0+
7F0 transition giving rise to the line obser

ved in the low temperature luminescence of KBr and KC! crys-

tals containing divalent samarium is between two levels of 

even parity. In a cubic environment, both levels have Alg 

symmetry. The transition, therefore, is strictly forbidden. 

The presence of other defects or of phonons in the host crys-

tal, however, lowers the site symmetry of the samarium ion and 

allows the transition by mixing the odd-parity states. It is 

assumed in this thesis that these defects and phonons are 

coupled to the rare-earth ion by the Coulomb field they cause 

at the samarium site. Positive ion vacancies, which are 

necessarily present in the monovalent crystal to compensate 

for the double charge of the rare-earth ion, will cause a 

static field at the Sm++ site and give rise to the zero-phonon 

line; while phonons in the ionic lattice cause a time 

dependent field and give rise to a sideband extending over 

the range of phonon frequencies. 

33 
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The interaction Hamiltonian, H1 , has thus been assumed 

to be of the form 

(1) 

here ~ represents the interaction of the Sm++ electrons with 

the photon field, HS their interaction with charge-compensating 

vacancies, and HQ their interaction with the phonons of the 

lattice. HQ can be written 

H = E H 
Q <l s. 

(2) 

since the phonons are independent of each other in the har-

manic approximation. 

The transition is forbidden in first order but is 

allowed in second order if the intermediate state is of the 

appropriate symmetry; one can write the transition probability 

per unit time, W , directly, using second order time depen
e+g 

dent perturbation theory (Schiff 1955) 

Here '¥ e' ljl • , 
l. 

intermediate 

and 

and 

r 
final 
states 

ljl are g 

ground 

x o{E - E ) g e . 
the wave functions of 

states, respectively, 

2 

(3) 

the excited 

and E e' E.' l. 

and E their energies. The'¥ 's are of the form discussed g 

in Chapter 3. The summation on i extends over all inter-

mediate stat!'."·:..; . 
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The phonon sideband corresponds to the creation of a 

photon of energy ~w with a phonon of energy-tiw , where R q 

to 

.flw + Kw = E P q e - E: 
g (4) 

satisfy the a-function in equation (3); Ee and Eg 

are the energies of the unperturbed electronic states as de-

fined in Chapter 3. 

Thus the expression for the sideband transition proba-

bility becomes 

w 
e+g 

x o ( E + -1iw + 1'lw - E ) 
g q P e . (5) 

where the set {p,g} are related by equation (4), and they 

define the possible final states since ¢ is non-degenerate. 
g 

The largest contribution to the sideband arises from 

electric dipole terms; for these, H =e E •r where E is the 
J? 

electric field of the photons. Thus, for a final state with 

photons polarized along the x direction, H transforms like 
;p x 

T. . Then, writing the electronic part of the matrix el.Lu 

ements that appear in equation (5) with the sy~metry in r 

explicit one has; 

<¢(A. )jH (i:·~ .• x)J¢"(ri)><¢.(ri)jH (fj)j¢ (Al)>, {6) g J.g p ...... u. _ i g e g 
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which is zero unless ri = f j = T x 
lu Thus, the part of Hq 

which enters must have Tlux symmetry in !i as must the 

intermediate states¢ .• 
l. 

Equation (5) can be simplified further by making the 
approximations 

+ -Hw -e: . - e:e = e: . - e:e l. ~ l. 

and e: . + -tiw - e: = e: . - -fiw - e: =e:. -e: gi (7) l. g e l. ~ g l. 

for the energies of the necessary Tlux-symmetry levels are 

not near those of ~g or ~e'as they belong to the 4f5Sd con-
figuration. x At worst, a level of Tlu synunetry nearby would 

cause a smooth and monotonically varying w-dependent factor, 

strengthening the low frequency contribution to the calculated 

sideband with respect to the high frequency contribution. 

Assuming that the ions of the lattice may be treated as 

point charges for the purpose of finding their Coulomb field 

at the position of the samarium electrons, and that the 

electronic states of the Sm++ ion are so strongly localized 

that overlap with other ions may be neglected (justifiable as 

the transition is between inner-shell levels), the Hamiltonian 

a0 may be written: 

e 2 z 
K 

+ u --LK 

where ZK is the charge of the ion at BLK" The equilibrium 

position of the samarium ion has been taken as the origin 
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of the lattice (~01 = 0), and~ is the displacement of the 

samarium electrons from the nucleus at g
01

• The terms 

e 2 Z 

ISz,K-~f are subtracted as these were included in the crystal 

field Hamiltonian H f ; the wave functions $ are assumed c. • n 
to have been solved for including these terms. 

Equation (8) can now be expanded in a MacLaurin series 

in£; the lowest order terms of Tlux symmetry in rare 

e 2 z 
K 
{~KX + ULKX - UOlx) 

l~K + YLK - Yo11
3 

This may be further expanded, since jgLK - Y
01

1<<1BLKI: 

Hl = 
0 

to terms linear in (yLK-~01 ). Note that 

L { UOlx -
3~Kx<Bt.K"Yo1>} = 0 

LK~Ol· ISr,K 1
3 

IBr,K 15 

in cubic synunetry (Kittel 1956) and that 

2 ULKX J~KX(~K•yLK} E e ZK { 3 5 } LK~Ol 

'~"' '~"' . 

2 0 - 3R R 
E 2 

ZK {Sr,K ax LKX LKa }u = e 
LK~Ol l~KIS LKa 

(10) 

(11) 



= !: 
LK~Ol 

R -LK 
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!: ZK WC (OL,lK}uL 
= LKa xa Ka (12) 

In the last line of equation (12) the restriction on the 

summation has been removed, using 

c 
~ae coo,11) 

for cubic symmetry. 

H~ can be written 

Hl = 
Q 

1 

v'N 

lK 
C(xa) 

~ 
(13) 

lK 
using ~·Ka as given in Chapter 3. Here the factors C (xa) 

are fourier transforms of wc(OL;lK): ~ 
xa 

lK C 
C(xa) = L w (OL;lK) exp(i~·g_K); (14) 

~ L xa =L 

they have been evaluated by the Ewald method (Kellerman 1940) • 

Equation (13) gives the Hamiltonian HQ explicitly split into 

a sum on normal modes as in equation (2). 

The transition probability of equation (5) can now be 

written, under the assumption that ~(~ 1 S) = ~({,s0 >, and 

using the expressions for the x matrix elements. For x-

polarized photons between wp and wp+~w, observed in solid 



angle ~n, the transition rate is: 

IE <¢ Ir !¢.><¢.Ir 1¢ > i g x i i x e 
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(15) 

where the initial factor gives the density of final states 

in a standard way ( Davydov 1966), with the approximation 

The factor 

W(w) Tr = J'l: 

Here, w is 

W (w) is 

, 
.L. E {E 
N qj KO. 

defined 

£ -e: 
e g 

-1'1 

given 

- w q 

by 

= 
£ -e: 

e g = 
S' w • 

0 

lK t:a. (Kgj) 
/~} z C (xa.) K 

~ v 2w q K gj 

by 

11w = e: - e: - -l'iw / 
e g P 

(16) 

2 
6 (w . -w) q] • (17) 

and is the phonon frequency measured with respect to the zero 

phonon line in the direction of decreasing energy. This ex-

pression was used by Timusk and Buchanan (1967) to calculate 

th "d b d f KB r ++ e si e an or r:~m . 

B. Formulation in terms of Green's functions 

Equation (16) can be rewritten by identifying 

TI 6 (w .-w) 
2wqj qJ 
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as the imaginary part of the Green's function in·{~j} space, 

Im G0 .(w+iO+). Then, 
q] 

W(w) = Im ! r r N . 
q) K a 

K I (3 

lie 
Z C (xa} 

K 
q 

K 1 l 
~S(K'qj) C(a. x) ZK, 

= Im r 
L K a 
L'K'f3 

x 

z 
K 

x 

./MK, 

~~a(OL;lK) 

~ 

~C (L'O·K'l) 
(3x ' 

~· 

GL0 L' •a (w + iO+) Ka, K µ 

(18) 

since the factors ~' f, and ~C are all real numbers for 

this lattice. 

Equation 18 is a convenient form for the treatment of 

the prob·lem including the perturbation of the lattice by the 

samarium ion. For the perturbed problem, ~0 must be replaced 

by ~' which describes the displacements of all ions and the 

frequencies of all modes for the lattice containing the defect. 

However, this is the only factor which changes; for the quan

tity ~~a(OL;lK) is dependent only on the symmetry of the 

lattice and on the equ'ilibriurn positions of all ions, which 

will be assumed to be unchanged; while Z /~ is only 
K K 
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changed for the origin term (L = O, K = 1), and this term 

does not contribute since ~~B(00,11} = O for cubic synnnetry. 

Thus, for the perturbed lattice, 

W(w) = Im I: 
L K a 
L'K'B 

z 
K 

~ C(OL;lK) xa 
GL L' 'B (w + iO+) KCX 1 K 

x 

with G given by 

C. Choice of r 

~C {L'O·K'l) ax I 

m-, 
K 

z I I 
K (19) 

It is assumed that£., the matrix of mass and force con

stant changes for the lattice due to the presence of the 

samarium ion, can be described by a small number of changes 

localized about the impurity site. Thus, it has been assumed 

that the effect of the double charge on the samarium ion can 

be neglected after a few neighbours; it is certainly true, 

at least, that its effect on distant ions is screened by the 

presence of charge compensating defects. 

An attempt has been made to approximate the true sit-

uation by changes in a very localized region about the defect 

ion. The mass at the origin is changed from M
1 

to M'; the 

force constants connecting this ion to its first neighbours 
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and the force constants connecting the first neighbours to 

their nearest neighbours (the fourth neighbours of the impur

ity ion) are changed. 

This model for r is chosen because the increased 

Coulomb field due to the double charge of the samarium ion 

will tend to shift the equilibrium position of the nearest 

neighbours towards the samarium ion. The force constant, f, 

connecting the origin ion to its first neighbour is in

creased as a result of the smaller separation by an amount ~f. 

A second result of this shift will be a decrease in the force 

constant g, which connects first neighbours to fourth 

neighbours, by an amount l~gl. No change of transverse force 

constant is allowed for in this model; its effect is expec

ted to be small, as the transverse force constant is only 

about 10% of the longitudinal. The largest shifts of equilibrium 

position will be those of the six first neighbours of the 

samarium ion; these are the only ones taken into account in 

this model for deformation, and the shifts are all assumed 

to be the same. Note, however, that shifts in equilibrium 

position which are negligible from the point of view of lattice 

symmetry, can cause non-negligible changes in force constants 

because of the strong dependence of the inter-ionic forces 

on interionic separation. Thus, it will not be inconsistent 

to assume that the equilibrium positions may be approximated 

as being unshifted, but the force constants changed. 
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As was discussed in Chapter 3, no attempt has been 

made to include the effect of the vacancy. As a first approx-

imation, this neglect of the vacancy is probably a good approx-

imation. For, provided the vacancy is several neighbours 

away from the samarium ion, and that its effect on the lattice 

around it is a short-range distortion (similar to that dis

cussed here for the samarium), the samarium will see the 

disturbed vacancy region but a larger unperturbed region be-

cause of the long range nature of the coupling. 

Under the above assumptions, L is vastly simplified, 

and is block diagonal with Ixx = ryy = Izz' and Ias = o 
for a.#B· 

The matrix r , in the subspace where it has non-zero 
=XX 

elements, is: 

~ -~ 
Ml M 0 0 0 

-~ Lif+Li2 
M M2 

Lif 0 -M 0 

.Ixx 0 Lif 
= -M 

2Lif 
- Aw 

2 - Lif 
Ml M 

0 (20) 

0 0 Lif Lif +!12 
-M M2 

~ 
M 

0 0 0 -~ 
M 
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Here, M = IM1M2 and A = (M' - M1 }/M
1

• The rows and columns 

of this matrix are labelled in the defect space, along the 

x-direction. The central index refers to the Sm++ ion 

(ELK = 0, K = 1) ; the indices flanking this to the first 

" neighbours along the x axis (~K = ±(a/2 );!,,, K = 2) ; and the 

" outer indices to the fourth neighbours (ELK =±ai, K = 1) • The 

row and column labels in this space will be abbreviated as 

2x, Ix, Ox, lx, 2x; and the subscripts (ika) or (i'k'b) will 

be used to label elements in the 15 x 15 defect space. 

D. Calculation of the sideband spectrum 

The spectrum is give~ by equation 19. This can be 

written, and most easily calculated, in two parts: 

W(w) = W0 (~) - w1 (w) (21) 

where W0 (w) is the unperturbed transition probability and 

W' (w) is a correction term giving the effect of the lattice 

perturbation. 

Wq(w)=Im 

== 

W0 (w) is given by 

¢C" (OL;lK) 
"' x,,, Go ( ' 
L.. ------ ·-~ i(C( -.- l .r I 5 WJ 

L K a .w ''-' " ' 
1/M"" 

L 1 K'S K 

16 E I o:: N qj Ket 

s 

lK 
C (Sa) E,a (Kqj) 

2 

q } 
(M 

K 

¢~x(L'0;K'l) 

IM-, 
K 

cS ( w . -w) , ( 2 2) 
qJ 
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where E' means the sum is restricted to the irreducible l/48th 
qj 

of the-Brillouin zone. 

W' (w) can be written 

W' (w) =Im E V.tka (w) T.R.ka,t'k'b (w) V.t'k'b (w) , (23) 
£ k a 
,Q,'k'b 

where the summation runs over the elements of the defect space 

as given in the previous section. 

defined as 

v (w) = .Q.ka 

= .!_ E 
N 

lK 
C (xa:) 

q 

Ka 
~j 

= 16 <:'' <:' NL. L.. 

qj Ka 
~ 

lK 
c (Sa) 

q 

c 
1 

¢ (OL;lK) 
E xa. 

N LKa. IM"" K 

~ (Kqj) ~ (kqj) a -- a -

Here V.Q.ka(w) has been 

G 0 (w) 
LKa.,.tka 

COS (g_•:R:n 1) G 0
• (w) O 0 • 

A.h CIJ a._, 

In writing the final lines of both equation 22 and equation 

24 use has been made of the symmetry of the equation for the 

whole Brillo~in zone. 

In the defect space as defined for r in section C, 

( \h 'I. x V.Q.ka w, as ·1u symmetry. It is thus convertient to trans-

form partly to the "cubic sy:mmetry space" as mentioned in 

Chapter 3. The transformation V, 1 given ~n Appendix A, 
.·-.l. 

separates _I' and G0 into even and odd parity blocks; in this 

(2 4) 
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basis, y has only 3 non-zero elements corresponding to the 

3 possible Tlux motions of the ions in the defect space: 

1 
v2 = 2 (V2x + v2x) 

1 
vl = 2 (Vlx + vyx> 

The Tlux block of r is of the form 

Ag/Ml -Ag/M 0 

-Ag/M (Af+A~) -./Ztif/M . 'M 
2 

0 12°Af/M 
2Af AW

2 
Ml -

while that of G0 is 

with 
~x 2 (l<!j) = 16 l:' 

~ 2(1 ') 
1 1: 

a. ~J 
900 = N . 2 2 - 'N . 2 2 

qJ w .-w CIJ w .-w 
qJ a. qJ 

= £ 1: 
N . qJ 

~ 2 (2qj)cos2 Cq a/2) x - x 
2 2 w . - w qJ 

(25) 

(26) 

I 
(27) 



= ~ I: 
N • 

CIJ 

= /2 I: 
N 9j 

2 
= - I: N . 

9;J 

= /2 I: 
N . 

9J 

~x {l~j) ~x {2qj) cos {q.xa/2) cos (qxa) 
2 w . -w 

CJJ 
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(28) 

x 
The Tlu part of the matrix X can be found from these two 

matrices. 

The imaginary parts of V can be found using the usual 

method of sorting into "bins" in frequency, and their real 

parts by integration as described by Timusk and Klein (1966), 

using the fact that 
00 

Re V(w) 2 

I 
Im V(s) s ds; {29) = - 2 2 'If s - w 

T(w) can be found using the elements of G._0 as found in this 

manner. 

The calculations were carried out by constructing a 

histogram with 100 bins in frequency over the range of phonon 

frequencies. Shell Model VI phonons {Cowley et al. 1963) 

for 1686 values of q in l/48th of the Brillouin zone were 



48 

used; for KBr, the shell model parameters of Cowley et al. 

(1963}, were used, and for KCl those of Copley et al., (to be 

published). The values of af and Ag were varied between -f 

and +f and -g and +g, respectively, to find the best fit to 

experiment. 

E. Comparison with experiment and discussion 

Figure 9 shows the calculation W0 (w) compared with a 

sketch of the experimental sideband for KBr. The relative 

scales of the two curves are chosen arbitrarily. This 

unperturbed calculation agrees well with the experimental 

curve in the relative strengths of the accoustical and 

optical branches, and all the major peaks in the experimental 

curve are represented and agree quite closely in shape. A 

sharp and strong phonon peak at 132 cm-l in the density of 

states calculated from the shell model is missing in the 

calculated sideband, as in the experiment. 

There are, however, several discrepancies between the 

calculation W0 (w) and the experiment. The sharp peak at 

93 cm-l does not appear in the calculation, nor does the "hook" 

at 40.S cm-l The agreement in the lower part of the optic 

branch is not good since there is basically only a single 

peak in the calculation, while the experiment shows a double 

peak. 

Figure 10 shows the perturbed calculation, 



Figure 9. The unperturbed calculation (W
0

(w)) for the 

sideband of KBr:Sm++ compared with the ex-

perimental sideband. The relative scale of 

the two curves has been chosen arbitrarily. 

A smooth curve has been drawn through the 

centre of the histogram contributions for 

the theoretical curve. The arrows indicate 

the frequencies o~served accompanying 

4f6+4f5Sd transitions. 
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Figure 10. The perturbed sideband {W{w)) for Sm++ in 

KBr, for the lattice deformation discussed 

with af = +14500 dynes/cm and ag =-1500 dynes/ 

cm, compared with the experimental sideband. 

The relative scale of the curves has been 

chosen arbitrarily. 
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W (w) = W0 (w l - W' (w) , 

for KBr:Sm++ for 6f = 14500 dynes/cm and 6g = -1500 dynes/cm. 

The relative scale of the experimental and theoretical plots 

was again chosen arbitrarily, but is very closely the same 

as for figure 9 • 

This curve shows improved agreement in two of the 

regions of poor agreement for the unperturbed calculation. 

Change of the mass at the origin gives rise to the "hook" at 
-1 41 cm ; its position and shape are independent of the 

force constant changes. The changes 6f and 6g in the force 

constants can be picked to give a double peak in the trans-

verse optic region. 
-1 The lowered intensity for the peaks at 70 cm and 83 

-1 cm is probably not significant, as these peaks are known 

from calculations of density of states with a larger sampling 

of points (Cowley and Cowley 1966) to be stronger and sharper 

than represented by the smaller sample of ~·s used here. 

The fit in the longitudinal optic region is uniformly 

poor with this model of r, for all force constant changes. 

The peak at 129 cm-l occurs where the fifth and sixth phonon 

branches overlap in frequency. Thus, it is not clear whether 

the poor fit is an indication that the phonons used are not 

sufficiently accurate for a calculation such as this which 

depends strongly on the eigenvectors, or is due to the sim-
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plicity of the model used for the lattice perturbation. It 

should be mentioned, however, that the agreement in the optic 

region is very much poorer if only the mass change is made 

(ftf = ftg = 0) I or if only the mass change and the force 

constant change af are allowed for. In these cases, although 

the acoustic branch remains similar, the optic branch shows 

very low intensity in the transverse 
-1 to 125 cm ), and a very strong peak 

-1 optic region (100 cm 

at 129 cm-1 • The fact 

that the more extensive r with two force constant changes 

gives so much better agreement than these cases would appear 

to be a suggestion that the deformation of the lattice about 

the samarium ion may be more extensive than has been allowed 

for here, and that improved agreement could be obtained with 

a yet more extensive £• 

The apparently good agreement of the unperturbed 

sideband calculation, W0 (w),seems to be somewhat fortuitous. 

The discrepancies are small, and occur where they are some
-1 what masked by other features: the "hook" at 40.5 cm is not 

particularly pronounced, and occurs approximately at the fre

quency of the Van Hove singularity in the calculated curve, 

while the double peak in the transverse optic region seems 

to be at least indicated in the calculation. However , it 

appears from studies of other sidebands in both absorption 

and fluorescence for KBr systems containing Sm++ that both 

these regions in frequency are affected by the local defor-
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mation (Wagner and Bron 1965} . 

Figures 11 and 12 show the unperturbed and perturbed 

calculations, respectively, for KCl:Sm++, compared with a 

sketch of the experimental curve. The relative scale is 

again chosen arbitrarily, and is the same in both curves. The 

perturbed calculation has been made with ~f = +14500 dynes/cm 

and ~g = -1500 dynes/cm. For this host lattice, the agree-

ment of the unperturbed calculation with experiment is less 

good; the rounded peak at 53 cm-l is absent in the calcula

tion, and the rest of the features, with the exception of the 

sharp peak at 155 cm-1 , are not in good agreement, being 

shifted in frequency and different in shape and intensity. 

For KCl, the perturbed calculation shows marked 

improvement over the unperturbed calculation; it brings in the 

rounded peak at 53 cm-l and changes the relative intensities 

of the peaks. The peak centering around 117 cm-l is much 

weaker than observed, but agrees more closely in shape in 

the perturbed sideband calculation. The last experimental 

peak, at 168 cm- 1 ,does not appear in either calculation, while 

the peak at 155 cm-l is, in this calculation, much too strong: 

its maximum strength is about 1.5 times that of the experi

mental peak on the scales plotted. Some of this discrepancy 

is, however, due to the neglect of the photomultiplier and 

spectrometer response correction~ which would raise the in-



Figure 11. The unperturbed calculation (W
0

(w)) for KCl:Sm++ 

compared with the experimental sideband. The 

relative scale of the two curves has been 

chosen arbitrarily. 
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Figure 12. The perturbed sideband calculation (W(w)) for 

KCl:Sm++ for the lattice deformation dis-

cussed with af = +14500 dynes/cm and ag = -1500 

dynes/cm, compared with the experimental 
-1 

sideband. The peak at 155 cm is asynunetric 

as in the unperturbed calculation; its 

strength is 1.5 times that of the experimental 

peak on the plotted scale. The curves are 

plotted on the same scales as those of figure 

11. 
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-1 tensity of the 155 cm peak by 20%, as compared with the 

rounded peak at 53 cm-1 • 

In the KCl perturbed calculation, the rounded peak 

at 53 cm-l is again the result of the changed mass at the 

origin and is independent of the force constant changes made. 

The peak at 155 cm-l is a resonance; its position,intensity, 

and width are dependent on the size of 6f and 6g. While it is 

not as sensitive to changes in 6f and 6g as are the peaks 

in the transverse optic region for KBr, the best fit in fre

quency is found for force constant changes about the same as 

for KBr. 

Some of the other discrepancies between the calculated 

curves and the experimental curves can be understood in terms 

of limitations of the shell model phonons. The "step" at 106 

cm-1 in the calculation for KCl is seen in the experiment at 
-1 100 cm ; this 6% discrepancy should be compared to the dis-

crepancy between the analogous peaks (at 70 cm-land 74.7 cm-l 

respectively) in the calculations and experiments for KBr. 

In both cases these features correspond to a saddle point in 

the second accoustical branch. The saddle point arises from 

a region in the Brillouin zone not measured by neutron dif

fraction, in the (110) plane; for~ from approximately ~(.S,.S,O) 

to. 2~ (S,.S,.S) the frequency is almost constant, and 
a 

slightly below the maximum frequency of that branch. Along 
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this line.the eigenvectors are normal to the plane, and the 

light ion is almost motionless for KBr; for KCl the lighter 

ion also moves somewhat. This saddle point does not seem t0 

be particularly well represented in Shell Model VI; the 

phonons actually measured by neutron diffraction near this 

region fall at lower frequencies than those predicted for KCl; 

while for KBr they seem to fall at higher frequencies. In 

both cases this is in better agreement with the Sm++ sideband 

experimental results. 

It should also be pointed out that a completely similar 

saddle point exists in the optic branch: it arises from the 

same range of ~, and for KBr at least corresponds to the 

heavy ions being motionless and eigenvectors normal to the 

(110) plane. This region gives rise to the lower saddle 

point in the fourth branch. The maximum intensity in the 

density of states of the fourth phonon branch occurs at about 

140 cm-l for KCl and at 111 cm-l for KBr. Peaks are observed 

experimentally at these frequencies in KCl and KBr respec

tively, but no peak shows up in either the calculations or 

the density of states used. It is thus a possibility that 

the shell model is not giving the correct solutions in this 

region, as well as in the similar region of the accoustic 

branch. 

Finally, it should be mentioned that the shell model 
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phonons used were for a temperature of 90°K, while the ex

periments were done at 7°K. As was shown by Woods et al-(1963), 

the shift in frequencies as a result of the temperature may 

amount to a decrease of as much as 8% between 400°K and 90°K; 

so one might expect that there exists a possible 2% error in 

some of the phonon frequencies used. 

Some of the remaining discrepancies betweeu the 

calculated siaebands and the experimental sidebands that can

not be assigned to the shell model predictions must be assumed 

to arise as a result of the simplicity of the lattice pertur

bation model used. The assumption of cubic site symmetry for 

the samarium ion, while good as a first approximation, may 

not give all the features of the sideband, and may be 

responsible for the poor agreement obtained in the optical 

br.anch of the KBr:Sm++ curve. The deformation probably ex

tends further than the first neighbours of the impurity, and 

the approximation of unchanged equilibrium positions may not 

be good. However the fact that this model gives fairly good 

overall agreement indicates that all the assumptions made 

in performing this calculation are fairly good, although more 

complicated models for r allowing for more force constant 

changes, or models allowing for a non-cubic environment 

might well be expected to give better agreement. 
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F. Other work supporting the model for the samarium sideband 

The results of some other calculations can be mentioned 

to give further support to both the mechanism chosen for the 

coupling and the model for r used. 

On this mechanism for the coupling, the intensity of 

the zero-phonon line can be calculated and compared with the 

one phonon intensity, for various positions of the vacancy. 

The transition rate for the zero phonon line is given by 

<x 0
<:P !H ix0¢.><x0¢. !H lx0 <P > 

we~g(O) = ~ jL:{ g P i i s e 
·n . £, - E 

i J... e 

<x
0

<P IH ix
0

<P-><xO¢. JH ix
0

<P > 12 + g s i i p e } 
E:. - E 

· i e 

X 8(e: + ~W - E ) 
g P e (30) 

e 2 IL:<¢ jr 1¢.><¢.jr l<P > g X' l l X e i 

2. -e: E -i::. I 2 -i'l 
x { 1 g + _e_~} =--w(O) 

e:.-e: e:.-e: I 'IT 
i e i g 

{ 31) 

for electric dipole radiation. 'I'hese equations can be compared 

with equations 5 and 15. In writing equation 31, Hs has been 

written 

H s 

2 R •r 
= ~ {l - ~ + •.•.• } 

iRvl R 
(32) 

v 

http:1�.><�.jr


and the term linear in r kept. 

vacancy. Thus, 

w (0) 
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R is the position of the -v 

(33) 

an average has been taken over photon polarizations. 

The intensity predicted for the zero phonon line, 

I
0 

= J W(O) dw can then be directly compared with that pre

dicted for the one-phonon sideband, I 1 = J W(w) dw, from 

equation 16. Experimentally, the ratio r 1/I 0 has been de-

++ termined to be 0.40 for KBr:Sm . For a vacancy at (a/2,a/2,0), 

the calculated ratio is 0.06, only 15% of the observed ratio. 

A vacancy further away gives better agreement, for that would 

decrease the predicted I 0 . This comparison then supports the 

assumption of a relatively distant vacancy. Note, however, 

that this is only a rough estimate of I 0 since the relaxation 

of the lattice has not been allowed for. 

The low frequency w-dependence can also be compared 

with that observed. For the calculated sideband, 

6 (w . -w) 
W(w)a: l: [ l: ¢c (OL;lK) s (Kqj) exp{iq•BLK)] 2 ~] 

xa a -
qj LKa. 

= L: 
qj 

5 (w .-w) 
(OL;lK) sa(Kqj) (cos(q•RLK)-1)] 2 ~J , (34) 

since~ ¢~a(OL;lK) = 0. 
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At low w, only the acoustic branches enter, .and w . = v. q; 
qJ J 

thus, {cos{~·Br,J-1} is proportional to w2 for low w. The 

number of terms contributing in this region is proportional 

to the density of states, which is proportional to w2 at low w. 

Thus, W{w) ~ w5 in the low frequency region*. This discussion 

of frequency dependence will apply equally well for the per-

turbed lattice if no resonant modes are introduced in the 

low frequency region. 

This predicted frequency dependence agrees with that 
++ ++ . observed for both KBr:Sm and KCl:Sm as shown by figure 

13. 

Finally, this model for L has been used in the calcu
++ lation of the infrared absorption of KBr:Sm crystals, as 

done by Woll et al. (1968).The calculated infrared absorption, 

using the same force constants as used for the sideband, is 

compared with experiment in figure 14. The peaks B and C 

are shifted from their predicted positions by the same amounts 

as observed in fluorescence, but good overall agreement is 

seen between experiment and theory. 

* This frequency dependence, and that for sidebands of even~ 
odd transitions as discussed in Chapter S, appears to have 
been first pointed out by Louden: see the paper of Hobden, 
1965. 



F~gure 13. The low frequency w-dependence for both 

KBr:Sm++ and KCl:Sm++ sidebands. The 

theoretical w-dependence would give a slope 

of 5; the dashed lines, extending the 

straight-line portion of the experimental 
++ curve show a slope of 4.9 for KBr:Sm and of 

++ 4.8 for KCl:Sm • The experimental curves 

deviate from these lines at the high fre-

quency end because the dispersion curves 

have ceased to be linear with w; and at the 

low frequency end because of the tail of the 

zero-phonon line. 
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Figure 14. The far infrared absorption of KBr:Sm++ 

(.01 at.%),: compared with the theoretical 

calculation of the infrared absorption. The 

calculation was made with the same model of 

the lattice perturbation as used for the side

band shown in figure 10 (8f = 14500 dynes/cm, 

8g = -1500 dynes/cm) , and is plotted on an 

arbitrarily chosen scale. The peaks B and 

C observed in the sideband are labelled; the 

same shift in frequency from the calculated 

peaks is observed here. The resolution for 
-1 the experimental curve is .11 cm • The peak 

at 95 cm-l is due to Cl-. The experimental 

curve was taken by R. W. Ward. 
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CHAPTER 5 

SIDEBANDS OF ALLOWED TRANSITI.ONS 

The transition between two states of even parity, 

that is involved for the sidebands discussed in the preceding 

chapters, is a special case. For many other systems, the 

electronic transition is one between levels of opposite pari-

++ ++ . ty. Examples of this are the systems of Sm or Eu in CaF2 
++ (Runciman and Stager 196211963), or Eu in alkali halides 

(Wagner and Bron 1965). The transition probability for these 

sidebands can be written under the same assumptions as made 

for the problem of samarium in alkali halides. 

The discussion will be carried out from the point of 

. f ++ ++ . h h t . t. 11 view o Sm or Eu in CaF2 , w ere t e symme ry is s i 

cubic. 

For such a sideband the terms in HQ of interest are 

those in even powers of ~1 for the sideband transition 

probability, 

64 



= 2ir r r 
~ final i 

states, 
{p,q} 

+ 

x o ( e: + -1'lw + ..fiw - e: ) 
g q_ .I? e ' 

2 

(1) 

involves, in this case, the following electronic matrix 

elements: 

<¢ (even) I H (odd) I qi. (odd)><¢. (odd) I H (even) I <P (odd)> (2) g p i i q e 
and 
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«/> (even) I H (even) I <P. (even) ><cp. (even) I H (odd) I <I> (odd)>. (3) g q i i P e 

Here the parities of the possible intermediate states and 

of the possible terms in Hq have been written explicitly 

assuming again that the important contribution comes from 

the electric dipole terms, where H =eE r 
p x x 

r. + T x 
\l • e. o... lu 

symmetry). The excited state has been assumed to be odd and 

the ground state even. 

The most important terms in the swn over intermediate 

states are those for which, in (2), qi. is cp , and, in (3), 
i e 

<P • 
.1. 

is ct> g i for then the energy denominator of the first 
e:. + .f1w - e: e' becomes ju.st -!fw , while that of the second, .1. 'l a ...... 
e: . + -hw - e:e = e: . - .llw - e: g' becomes - .-i'iw . l. J? l. s: g_ 



Then equation * (l} becomes 

211' 
we+g(w) T L 

final 
states, 
{p,q} 

<cf> IH l<I> > 1 0 
g ;& e . {<I> eX I Hq I <I> eX > 

9. 

x cS (w - w) • 
<I 
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(4) 

To see explicitly what the phonon dependence is, it is con

venient to regroup the terms of HQ into terms with the elec

tronic coordinate transforming according to the representations 

of the cubic group: 

where 

HO E 
2 1 = e z 1~ Q 1#0 -1 

Hl e2 
R •r 

= E z 1 
-1 -

Q 1;'0 3 
1~1 I 

(6) 

H2 E 2 z 1 
1 { 3 (B.e, ·~) 2 2 R2} = e 

21s1 1
5 - ~ 

Q R.#0 
-1 

e 2 z 
[3 (x2 - y2) (X~ - Y2) E 

R, 
= 

2IBR.1
5 

1#0 
2 R, 

+ 1(2z2 2 - y2J ('2Z2 - x2 - Y2) - x 2 R, R, R, 

+ 6 (xyX R. Y .e, + yzY1z1+ uz1x 1>] . 
* . These terms for the even-phonon sideband may also be obtained 
by the configurational coordinate approach, as done by Bron 
(1965) • 
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In these expressions, ~t represents RLK + gLK - y 01 , and 

A A A 

Et = Xt! + Ytj + Zt~' 
A A A 

r = x ! + y j + z k 

A A A 

with (i 1 j,~) a set of Cartesian unit vectors. 

As was 1 done for HQ in Chapter 4, the terms of HQ can 

be expanded, keeping terms linear in yLK - Yo1 • These terms 

in the expansion of H~ can be identified with the third deriva-

tives of ~c. 2 2 Thus, for example, the coefficient of (x -y ) 

becomes 

E (~x;a(OOL;llK) - ~y~a(OOL;llK)) (yLKa - ~Ola) 
LK101 .s 

a 

1 
= v'N' 

the terms 

odd in at 

Here, 

E E {E (~ C (OOL;llK) - ~ C (OOL; llK)) 
qj Ka L xxa yya 

x exp (i~·gLK)} 
~a (i<:~j) 

Q~j; 
{MK 

in :!:!01 do not enter as the third derivatives 

least one Cartesian coordinate and thus 

E 
L' 

~c (LLL';KKK') = O for any a,a,y. 
a By 

are 

i (8) 
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the subscript g
0 

again indicates that the derivative is to 

be evaluated at the equilibrium positions. 

Thus a2 can be rewritten 
0 

·{ 2 2 I 2 2 2 1 2 3 L A . (x -y) +A .(2z -x -y) + B . (xy)+B .(yz)+B . (zx)}O ,, 
qj ~] ~] ~] ~] ~J gJ 

(9) 

where A . 
q] 

is given by equation 7, and the other coefficients 
I 1 -

A . , B . , 
~] ~] 

and so on, are defined similarly. 
I 

A . and A . 
~J <iJ 

transform under operations on R like the rows of the E g 

representation, while B1 B2 B3 transform like the rows qj' qj' ~j 

of the T2g representation. 

The problem is now greatly simplified; for equation 

4 gives: 

x 

where 

IA .a 
~J 

= 2ir E 
h final 

states 
{p,q} 

I Bl .bl +A .a' + 
q] q] 

constants have been 

a= <~ lx2 - Y21~ > e e 

(10) 

+ B2 .b~ + B3.b312 a (w • - w) ' q] ~] ~] 

defined: 

- <~ lx2 - Y2 1~g>' etc. 
g 

The phonon-dependent factor 

proportional to E (A .
2 

+ 
qj ~J 

in Equation 10 is however, just 

c B . 2 ), where c is a new constant, 
gJ 

since 



2 
A . 

qJ 
A l 2 1 2 

and r. B . 
qj g_J SJ 

= 1: 
g;j 

2 2 
B . 
~J 

= 1: 
~j 

2 B . 
q_J 
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1 while r A . A'., r A . B ., etc., are all zero as the two 
~j SJ ~J qj ~J gJ 

factors belong to different rows of the cubic representations. 

Similarly, of course, the perturbed lattice problem com-

plately uncouples for cubic synunetry, and one finds that the 

vectors 

E , EI, 
g g 

V~ka analogous to 

l 
T 2g etc. synunetry 

those of the samarium problem have 

in (~ka) , and in the space where ! 

is block diagonal, will couple only to one block of I· 
Note that under the assumptions made for the.,.s.amarium 

0 problem, the Alg symmetry term, H
0

, does not enter; for its 

contribution is proportional to l<¢gl¢g> - <¢el¢e>I = O. 

++ Also, for a perturbation model as taken for Sm , the T2g 

modes are not perturbed; the unperturbed terms alone enter. 

Thus, as the coupling is much more short range than that for 

the samarium problem, one would expect that the sideband 

would be dominated by the perturbed Eg motions of the first 

neighbours of the impurity. 

The low frequency w-dependence predicted by this 

transition probability can be found as for the samarium problem. 

Here, for E terms, g 

W (w) 1 o::-
(J.)2 

r 
qj 

{ l: 
LKa 

(¢ c (OL;lK) - ¢ c (OL;lK)}exp{iq•RL) xxa yya - - K 
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. 2 .o (.wgj - w) 
X ~ (Kqj)} --a. - w 

2 
cS (w . -w) 

X ~ (Kqj)} q] 
Cl - w 

ex W. (11) 

Here the first factor (l/w2) comes from the energy denominator 

in the transition probability, while at low w, w . = v. q 
q] J 

and the density of states is proportional to w2
.-

This low frequency behaviour corresponds exactly to 

++ ++ that observed for both CaF2 :Eu (Hobden 1965) and CaF2 :sm 

(Kaiser et al. 1961); the sideband rises linearly with w 

for about 150 cm-1 (see figure 15). 

In general, however, the calculation of sidebands of 

allowed transitions is much more complicated than that of 

sidebands of forbidden transitions: for many more terms enter, 

forcing one to fit arbitrary constants to experiment; while 

the shorter range nature of the coupling makes the choice of 

r much more critical. 

may enter, as well as 

Even for a cubic environment, A1g terms 

E and T2 , if the approximation g g 

~(~ 1 S) =~(~,Bo> is not good. In this case one would have 

to calculate the Alg contribution due to shells of neighbours 

and fit with arbitrary constants. 



Figure 15. The sideband on the long-wavelength side of 

the 7082 A transition (4f55d+4f
6

) transi-

. f s ++ . c tion o m in aF 2 • The correction for the 

photomultiplier response is not made. The 

sideband, corrected for the response of the 

photomultiplier, rises linearly up to about 

150 cm- 1 • 
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++ For the problem of Eu -doped alkali halides, the 

charge compensating vacancy may bring in terms of Tlu symmetry 

by mixing in electronic states of opposite parity. These T1u

symmetry terms may not be negligible, since the long-range 
1 nature of the coupling makes HQ large. One is thus faced with 

tne problem of a calculation involving a large number of un-

known constants, corresponding to the ratios of the various 

contributions of different symmetry, as well as the force

constant changes. 

Inspection of the KBr :Eu++ and KCl :Eu++ sideband spectra 

(figures 7 and 8) reveals several weak features characteris-

tic of the perfect lattice. The peaks B and c of the KBr:Sm++ 

spectrum agree in frequency with similarly shaped features 

in the KBr:Eu++ curve. The rounded peak at 39 cm-l (A') and 

the peak at 106 cm-l (D') differ in frequency from peaks A 

and D, and are thus probably due to perturbed modes. The 

strong peak at 119 cm-l agrees in frequency with the KBr:Sm++ 

peak to the accuracy of these measurements, but may also be 

a perturbed mode. The rounded feature at the frequency of 

the peak F in KBr:Sm++ is probably basically a two-phonon 

peak, corresponding to A' + D' • 
++ observed at the same f requen-For KCl:Eu , peaks are 

cies as peaks B, C and D of the KCl:Sm++ spectrum. The 

peak at 46 cm -1 and that at 197 -1 at completely dif-cm are 
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f ++ erent frequencies from peaks observed in KCl:Sm , and are 

again expected to arise from perturbed modes. 

In both cases, the peaks assigned to perturbed modes 

in the spectra of samarium-doped crystals do not appear, but 

are replaced by strong features at different frequencies, 

while the peaks assigned in the spectra of samarium-doped 

crystals to features in the density of states for the perfect 

crystal again_ appear but as. very weak features. 

A calculation was made of the perturbed Eg motions of 

the first neighbours on the model for r discussed for Sm++. 

This did not give the correct resonance frequencies for either 

KCl or KBr. It thus appears that..the model for r is not a 
t 

sufficiently accurate description of the local environment 

for the calculation of these sidebands with more short range 

coupling. The weak features characteristic of the pure crystal 

may arise from an admixture of odd modes as a result of the 

charge compensating vacancy, or may in part be due to the 

effect of more distant ions in the transition probability 

for even modes. 

The low frequency w-dependence is much more difficult 

to determine for these sidebands than for CaF2 , where the 

dispersion curves are linear for more than 100 cm-1 (Cribier 

1962) or for the samarium-doped crystals, where the zero-

phonon line is quite narrow. Here, the zero-phonon line has 
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-1 a half-width of more than 5 cm , and the first peak occurs 

at quite low frequency. It appears possible, however, that 

the curves are initially rising linearly with w as expected 

for even-phonon sidebands. 



CHAPTER 6 

CONCLUSIONS 

A combination of detailed experimental work and 

numerical calculations has shown that the sidebands observed 

in emission on the long-wavelength side of the 5o0~7F0 
transition of samarium in KBr and KCl reflect mainly the 

phonons of the perfect crystal. Singular points characteris

tic of the density of states are observed in the sideband 

spectra, and some regions are modified by resonances arising 

from the perturbation of the lattice by the impurity ion. 

The sideband has been shown to arise as a result of a Coulomb 

coupling between lattice and impurity. The small discrepan

cies between the experimental and the predicted sidebands 

have been assigned to the simplicity of the model for the 

perturbation of the lattice or to the shell model data used 

for the calculations. In particular, the frequencies of 

several Van Hove singularities which were directly observed 

were found to differ from those predicted by the shell 

model by as much as 6%. 
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APPENDIX A 

TRANSFORMATION TO CUBIC DEFECT SPACE 

The perturbed lattice problem is most simply treated 

by performing a transformation of coordinates from the space 

spanned by the displacements of the ions in the "defect 

space" to a space spanned by combinations of these displace-

ments which transform according to the representations of the 

cubic group. This transformation will be written V. In this 

"cubic" defect space, the matrix l as well as the matrix g,0 

becomes block diagonal; for the elements of these matrices 

are scalars and hence have Alg symmetry; and in the cubic 

space they become 

(1) 

writing explicitly the symmetries of the transformation matrices 

V and-of ·;the matr..ix ··element M;- V (r~) transforms according to 
J 

the ith row of the representation r .. This matrix element 
J 

will be zero unless j = j' and i = i'. 
The r matrix discussed in Chapter 4 has the block 

= 

form: 
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!(Tlux) 0 0 0 0 0 

0 y(Tluy) 0 0 0 0 

0 0 
z 

'.Y (Tlu ) 0 0 0 

0 0 0 b(Alg) 0 0 (2) 

0 0 0 0 y (E ) 
= g 0 

0 0 0 0 0 r <Eg, > 

in this space, where r<T1~) is a Jx3 matrix, the same for all 

a, and y(A1 ) and y(E) = y(E ') are 2x2 matrices. 
= g - g = g 

The transformation R that puts L and ~0 in block dia-

gonal form is most easily written by considering its effect 

on the vector{utka},whose elements span the defect space. 

These elements will be written u 2x, ulx' uOx' ulx' etc., as 

was done for the vector {V tkal in Chapter 4. The set then is 

{una} with n = 2, 1, 0, I, 2; and a = x, y, z. 

It is most convenient to define £ in two parts: 

~l 0 0 u -nx 

l21 u = 0 ~l 0 u (3) -ny 

0 0 ~l Y-nz 

where n = 2,1,0,I,2, and where ~l is a sxs matrix: 
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1/191 0 0 ·o 1//2 

0 1/1'2" 0 1/12 0 

~l = 0 0 1 0 0 ; (4) 

0 1/12 0 -1/1'1 0 

1/12 0 0 0 -1/./2 

and 

(u2x + u2x)//7 
0 

u2x 

(ulx + urx> /l'I. u 0 
lx 

~l u uox = 
0 (5) = uox I 

-nx 

(ulx - u- )/./'I lx . . 
u e 
lx 

(u2x - u- )/./'I 
e 

2x u2x 

0 0 0 where the first three elements, u 2x' ulx' u0x have odd parity 

and are of Tlux symmetry, and the last two u1:, u 2: have 

even parity. 

The matrix ~2 is defined such that 

I 0 0 0 0 
0 u 

= -nx 

0 ! 0 0 0 
0 

\.J.ny 

£2 <£1~> 0 0 I 0 0 
0 (6) = u I -nz 

0 0 0 g2 0 
e 

l}l 

0 0 0 0 Q2 
e 

Y.2 

where each submatrix is 3x3 I the elements of <Q1 l}) have 

been re-ordered for convenience and 
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-
1/13 1/13 1/13 

e 
ulx 

~2 Y1 
e l/'2 -1/12 0 

e 
= uly 

l/l'b 1/16 -2/./b 
e 

ulz 

= • (7) 

Here the first element of (92 y1~) has Alg symmetry, the 

' second Eg symmetry, and the third Eg symmetry. 

The transformations for more extensive defect spaces 

can be found straightforwardly by forming the appropriate 

linear combinations of the set u Jl,ka. 



APPENDIX B 

EVALUATION OF V AND G0 USING SOLUTIONS IN 

l/48th OF THE BRILLOUIN ZONE 
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The set of normal mode solutions to the unperturbed 

lattice problem are usually given only for the "irreducible 

l/48th .. of the Brillouin zone, since the solutions for the 

rest of the Brillouin zone may be found from them by operating 

with all 48 symmetry operations of the cubic group. Thus, 

the sums over {qj} involved in the evaluation of the Q0
's 

and Y's must be performed in two parts: the sum over all q's 

that are equivalent by symmetry must be done explicitly, 

followed by the summation ~· over the solutions in the irreducible 
q 

The resultant function will have full cubic symmetry: 

it will be even in qx' qy' and qz' and the three coordinates 

will appear in a completely symmetric way. 

To apply this, one must know how the various func-

tions of ~ and B behave under all rotations and reflections 

consistent with cubic symmetry. The eigenvectors ~(Kgj) are 

taken to transform as the vector ~ does. (One may assume 

either~(~) = + f(-~) or ~(q) = - ~(-g); the second is taken, 

as being more physical) . 

This is most easily illustrated by a diagram: 



' ' ' ' ' ' ' ' ' 
q=(-a,b,c) - . . ' ' 

1 1 // 

' ' 

q={b,a,c) / 
- / 

/ / g =. {a,b~c) 

. .. 

/ 
/ 

/ 

' . . / 
q = (-o,-b,c) / ' '" - / ...... 

q=(a,-b,c) 

/ ' 
/ ' /// I I ',, 

/ ' 
/ ' 

/ ' 
/ ', 
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The diagram represents the plane q = c through the Brillouin z 

zone. The points indicated on it represent a set of ~ values 

related to each other by cubic symmetry operations. The solid 

and dashed lines are mirror planes. The arrows represent 

components of the eigenvectors ~(qx' qy' qz) that are equal 

to each other as a result of the symmetry. Thus, 

t (a,b,c) = t (b,a,c) x y 
( 1) 

while 

E,;x (a,b,c) = t (a,-b,c) x 

= -E,;x(-a,b,c) ( 2) 

= -E;x (-a,-b,c), etc. 
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Similarly, the force constants ~ae(LL';K K') trans

form like the dyadic sg, where g = .Br.K - ~'K'" Again the 

/ 

---- / / 
B = (-A,-8,C) // 

/ 

/ 
/ 

/ 

/ 

// 
/ 

' / ' ' ' 

R = (A,8,C) - ...,_.... 

', B = (A,-8,C) 

' ' ' ' ' ' ' ' ' diagram represents the R = c plane, and the points reprez 
sent ions at R = (R ,R ,R ), whose positions are related by - x y z 
symmetry operations. The arrows from these points represent 

the magnitude and direction of the forces on these ions when 

the ion at the origin is displaced by y
0

• The size and sign 

of these vectors is then proportional to the force constant 

~xy(_B.). Thus, 

~ (A,B,C) = -~ (A -B C) 
xy Xy I I 

= -~ (-A B C) Xy I I 
(3) 

= ~xy(-A,-B,C), etc. 
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and 

4> (A , B , C } = 4> (B , A , C } ; etc • xy xy 
( 4) 

The following diagram represents the relationship between the 

two force constants 4>xy(A,B,C), corresponding to the solid 

line vectors, and 4> (B,A,C), corresponding to the dashed yx 

t / . / 

B = (8,A,C) / / 
/ 

/ 

, 
/ 

/ 
/ 

/ 

R=(A,8,C) - .,__ 

' 

Obviously, 4> {A,B,C) = 4> (B,A,C); xy yx 

and it follows, from similar diagrams,that: 

4> {A,B,C} = 4> (A,C,B) xy xz 

{5) 

{6) 

and so on. Also, comparing equations (4) and (5), one has 

4> xy {A, B , C ) = 4> yx (A, B , C ) • (7) 
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It follows from these results that the Coulomb co-

efficients transform like the dyadic ~<.!· 
KK 1 

c <a.a ) as ca.a (q) ' then 

.9 
cxy(a,b,c) = cxz(a,c,b). 

For consider 
Cxy(~) = r ~xy(R) exp(i~·B) 

R 

For example, writing 

( 8) 

for q = (a,b,c). Writing the two terms in this sum which cor-

respond to g
1 

= (A,B,C) and ~2 = (A,C,B) gives 

~xy(A,B,C) exp(i(aA+bB+cC))+ ~xy(A,C,B) exp(i(aA+bC+cB)) 

=~xz(A,C,B) exp(i(aA+bB+cC))+ ~xz(A,B,C) exp(i(aA+bC+cB)); (9) 

but these are the terms corresponding to .Biand Bi_in the 

expansion of C (a,c,b). xz 
Using these results one can write down explicitly 

the expressions for G0 and V in terms of their values in the 
= --

irreducible l/48th. For example, the element of G0 corres-= 

"' ponding to the ion of type 2 at Bi,K = (a/2)~, moving in the 

x direction (LKa.=lx), and that of type 1 at ~'K'= ai moving 

in the x direction (L'K'a= 2x) is: 

G\x,2x (w) = 1 r 
N . 

<J.J 

= 1 r 
N . 

~J 

~x (l~j) ~x (2<Jj) 
2 2 w . - w 

~J 

"' "' exp { ig • ( (a/2 Lt-a.!) } 

~x(l~j) ~x(2~j) 

2 2 
wqj - w 
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= Na r• [c~ (lqj) ~ (2qj) (exp(-iq a/2) + exp(+iq a/2) 
. x- x- x x 

~J 

( 10) 

1 
2 2 w . -w 

qJ 

where ~ now runs over only l/48th : forty-eight terms have been 

written explicitly. Here, the first eight terms, 

[B~x(l) ~x(2) exp(-iqxa/2)], correspond to the sets 

{qx' ±qy' ±qz} and {qx' ±qz' ±qy} in the full zone; the 

second eight terms, to the sets {-q , ±q , ±q } and x y z 

{-qx' ±qz' ±qy}; the third, to {qy' ±qz' ±qx} and 

{qy' ±qx' ±qz}; and so on. Equation (10) in simplest form is 

Gix,2x (w) = 16 r• ~a(l~j) ~a(2~j) cos (qaa/ 2) • (.11) 
N . 

qJ 
a 

"' 
Similarly vtka for k = 2, B.e,k = (a/2) i is: 

1 E 
lK 

vlx = E C{xa) ~a(K~j) ~x <2<lj) exp(-iqxa/2) 
N . 

~p Ka ~ 

! E 
lK 

= l: C (xa) ~a (K~j) ~x(2~j) cos(q a/2) 
N . x 

SJ Ka <1 

(making the function even in x) 

16 1 lK = W- E. l: C(aa) ~a(K9j) ~a(2qj) cos(qaa/2) (12) 
qJ Ka q 
B" 
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(summing over the 48 symmetry-related ~' s) • For k=2, 

" 
B.e.k = (a/2)j_ ' VR.ka is: 

1 I: 
lK 

vly = I: C(xa) ~a(K~j) ~y (2~j} exp(-i~a/2) N . 
~J Ka ~ 

1 I: 
lK 

= I: C(xa) ~a(K~j) ~y (2'1_j) sin {q a/2)· ( 13) 
N . y 

~J Ka q 

This function is even in a and y, but is odd in x; therefore 

performing the sum over all symmetry related q's, the terms 

with the qx = +a and those with qx = -a cancel; so 

v v = 0 ly = lz 
(14) 
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APPENDIX C 

MECH~ISM FOR COUPLING TO THE LATTICE OF BRON 

The coupling mechanism proposed by Bron (1965) de-

pends on there being a strong field from the vacancy, so 

that odd parity electronic states are mixed in by this field 

rather than the odd parity phonon field. Secondly, he does 

not neglect the dependence of the lattice state x~ on the 

electronic wave function, but handles these matrix elements 

by the "conf igurational coordinate" approach. In addition, 

all Bron's discussions are carried out assuming a vacancy at 

(~1 ~1 0), which may not be a good approximation, as has been 

discussed. 

In his approach, the transition probability for the 

sideband is proportional to the square of the matrix element 

where the set {QK} are the nuclear normal modes and a~e is 

the change in the equilibrium position of the normal mode 

between the states g and e: 

(2) 

Here, HQ has been written 
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(3} 

Also, 

(4) 

Thus, for ~ and ~ states of opposite parity, even phonons g e 

enter and this transition probability gives identical terms 

to those obtained in Chapter 5. 

For a transition between states of the same parity, 

Bron writes 
<cp.jHjcjl> 

~n = cp _ I i s n 
an n . e:.-e: 

i i n 
cp . ; 

1 
(5) 

Hs is the vacancy Hamiltonian, and· the state cpi is of opposite 

parity from cp • 
n Equation 2 then gives 

= ag
2 

<ct> ju let> > - a 2<cp ju let> > g K g e e K e 

<cp. IH let> ><ct> lo let>.> _ a I 1 s g g K i 

g e:. - e: . 
i 1 g 

«p. jH jcp ><cjl IU jcp.> 
_a· I 1 s e e . K i • (G) 

& • e:. - E 
1 i e 

Since cp and cp are of even parity, and¢. of odd parity, 
g e 1 

the first two terms on the right hand side of equation 6 

give a coupling to even phonons, and the last two a coupling 

to odd phonons. For 5o0 and 7F0 states, the only even terms 

that could enter are those of Alg symmetry since the wave 

functions have Alg symmetry; but these terms, as discussed 

in Chapter 5, are zero in this approximation. 
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The terms corresponding to odd-parity phonons give the 

same projection as does the calculation of W0 (w), but with an 

additional l/w2 factor. The sideband predicted by this mechanism, 

then,has a different frequency dependence for low w from that 

observed experimentally, as well as predicting much lower 

intensity in the optical branch. 

In addition, the configurational coordinate picture 

predicts a definite ratio for I 0 : I 1 : I 2 , where I 2 is the 

total intensity of the two-phonon sideband. For, writing 
w a 2 

K K 
2h as s, 

2 
IO : I 1 : I 2 = 1 : s : s /2. (7) 

The ratio I 1/I0 has been determined to 0.4, and the low 

continuum beyond the qne-phonon sideband permits one to put 

an upper limit on the two-phonon intensity. It appears that 

I 2 is much smaller,by a factor of ten,than that predicted by 

this mechanism. 

It seems, then, that the mechanism of Bron does not 

explain the experimental results and must be less important 

than the terms used in this thesis. 
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