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ABSTRACT 

Understanding the chemical and physical properties of molecules and materials at 

a fundamental level often requires quantum-mechanical models for these substance's 

electronic structure. This type of many body quantum mechanics calculation is 

computationally demanding, hindering its application to substances with more than a few 

hundreds atoms. The supreme goal of many researches in quantum chemistry-and the 

topic of this dissertation-is to develop more efficient computational algorithms for 

electronic structure calculations. In particular, this dissertation develops two new 

numerical integration techniques for computing molecular and atomic properties within 

conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic 

structure. 

The first of these grid-based techniques is based on the transformed sparse grid 

construction. In this construction, a sparse grid is generated in the unit cube and then 

mapped to real space according to the pro-molecular density using the conditional 

distribution transformation. The transformed sparse grid was implemented in program 

deMon2k, where it is used as the numerical integrator for the exchange-correlation 

energy and potential in the KS-DFT procedure. We tested our grid by computing ground 

state energies, equilibrium geometries, and atomization energies. The accuracy on these 

test calculations shows that our grid is more efficient than some previous integration 

methods: our grids use fewer points to obtain the same accuracy. The transformed sparse 

grids were also tested for integrating, interpolating and differentiating in different 

dimensions (n = 1, 2, 3, 6). 
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The second technique is a grid-based method for computing atomic properties 

within QT AIM. It was also implemented in deMon2k. The performance of the method 

was tested by computing QT AIM atomic energies, charges, dipole moments, and 

quadrupole moments. For medium accuracy, our method is the fastest one we know of. 
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"Segun Dem6crito, el antiguo fil6sofo griego, "lo duke y lo amargo, Io caliente y lo mo, 

lo amarillo y lo verde, etc., no son masque opiniones; s6Io los atomos y el vacio son verdaderos." Para 


Dem6crito, opini6n era un conocimiento oscuro, sin la menor garantia de realidad ... 


Preciso es que tomemos posici6n, como dicen los fil6sofos; posici6n defensiva, digo yo, 

de gatos panza arriba ante esta vieja concepci6n del gran fil6sofo de Tracia. El escepticismo, que, 


lejos de ser, como muchos creen, un afan de negarlo todo, es, por el contrario, 

el t'inico medio de defender algunas cosas, vendra en nuestro auxilio. 


Vamos a empezar dudando de Ia existencia de los atomos. 

V amos, despues, a aceptarla; pero con ciertas restricciones ...." 


Juan de Mairena 

A. Machado, 
Juan de Mairena, sentencias, donaires, apuntes y recuerdos de un profesor ap6crifo. 

Chapter 1 

BACKGROUND 
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1.1 Introduction 

The vast majority of the "ordinary stable matter" in the universe consists of 

protons, neutrons, and electrons. At terrestrial temperatures and material densities the 

protons and neutrons clump together to form positively charged atomic nuclei, which 

bind negatively charged electrons to them. Under ordinary conditions, the discrete atomic 

nuclei are inert, but the cloud of electrons that surrounds the nuclei is malleable. When 

atoms combine to form molecules, and when atoms and/or molecules come together to 

form liquids and solids, the identity and properties of the atomic nuclei do not change 

significantly. However, the electron clouds deform dramatically: electrons from different 

clouds join and pair to form chemical bonds; electron clouds polarize to adapt to 

electronic interactions; electrons move from less electronegative to more electronegative 

regions; electrons in distant clouds engage in a correlated dance of avoidance giving rise 

to dispersion forces. 1-
5 For this reason, almost all of the scientific problems and 

phenomena in biology, chemistry, materials science, an4 physics are, at the fundamental 

level, electronic structure problems. That is, our ability to design molecules and materials 

with desirable properties hinges on our ability to model and understand their electronic 

structure. For example, electronics --everything from cellular phones to 

supercomputers- relies on the electronic properties of solid-state materials (chiefly 

doped semiconductors). Many different areas of chemistry use insight into molecular 

electronic structure (chemical bonds and how they break and form) to design more 
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economical and/or environmentally friendly catalysts (industrial chemistry) or small 

molecules that inhibit or induce biological responses (medicinal chemistry). The rational 

design of new materials with special features (strength, ductility, spectral features, etc.) 

also relies on models for the electronic structure of materials like metal alloys. l-s The 

primary purpose of this thesis is to develop new auxiliary tools for the computational 

modeling and conceptual understanding of electronic structure of molecules and 

materials. 

In quantum chemistry and solid state physics, solving the electronic structure 

problem requires the solution of the Schrodinger's equation for a system of electrons 

moving in the field produced by the atomic nuclei. Specifically, for a system of N 

electrons bound by their electronic attraction to M nuclei, the electronic Schrodinger 

equation can be written as 

(1.1.1) 

(1.1.2) 


H 
A 

is the molecular Hamiltonian for the electrons within the Born-Oppenheimer 

approximation.1
'
6
-
7 X; and RA represent the positions of the electrons and nuclei, 

respectively. ZA is the atomic number of the nucleus A. 'I' is the electronic wave-

function. 

3 
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In Eq. (1.1.2), and throughout the remainder of the thesis, we use atomic units, 

where Planck's constant, h, is equal to 27r (so h =1 ), the mass of electron is one 

(me =I), and the charge of the electron is 2~, (so e2 I 47re0 =I). The atomic unit of 

energy is the Hartree. (1Hartree=27.2eV=2.20xl05cm-1=6.58x1015Hz=2.63x103kJ/mol) 

The atomic unit oflength is the Bohr. (lBohr =0.529A= 5.29x10-11 m).6 

After the Schrodinger equation, Eq. (1.1.1 ), has been solved, any measurable 

property of the electronic system can be evaluated by taking the expectation value of the 

appropriate operator ( si represents the spin variable of electron i), 

P =L JJ... J'I'* (ii, s" Fi' S2 ' ... ,rN, s N )fa¥(Fi, s"Fz' s2' ... JN, s N )d/idFi ...drN · (1.1.4) 
spin 

In the Born-Oppenheimer picture, the chemical properties of electronic matter are 

governed by the potential-energy surface on which the atomic nuclei vibrate and move. 

This potential-energy surface is just the sum of the electronic energy and the classical 

electrostatic repulsion between the nuclei, 

(l.1.5) 

Notice that the electronic energy depends on the nuclear positions because the electronic 

Hamiltonian, Eq. (1.1.2), depends on the nuclearpositions.8 

Analytic, closed-form, solutions of the electronic Schrodinger equation (Eq. 1.1.1) 

are only available for one-electron systems. The difficulty of even finding accurate 

4 
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approximate solutions grows rapidly as the number of electrons increases. For example, 

the Schrodinger equation for benzene is a partial differential equation with 126 variables! 

Modeling the electronic structure of atoms and molecules with more than a few (about 

ten) electrons requires that one approximate the wave-function or, equivalently, the 

Schrodinger equation. 

There are two main families of approximations that are in everyday use: wave

6 7 9 15function methods1
' - and density functional theory (DFT) methods. 1' - One of the 

simplest wave-function approaches is the Hartree-Fock method described in Section 

1.1.2. The Kohn-Sham-DFT approach is described in Section 1.1.3. A more thorough 

overview ofDFT may be found in Section 1.2. 

1.1.2 Wave-function methods: The Hartree-Fock equations 

In wave-function methods, an approximation to the wave-function is constructed 

and used as the fundamental descriptor. Properties or the electronic system are then 

evaluated using Eq. (1.1.4). 

The restricted Hartree-Fock (HF) method is one of the simplest wave-function 

methods; we will use it to present the wave-function-based approach. The HF method is 

derived from the variational principle: The ground-state wave-function, 'l'g.s., is obtained 

by minimizing the energy subject to the normalization constraint that ('I'j'I') =1. That is, 

5 
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Eg.s. =/'J'g.s· IHl'Pg.s.) = min ('PIHl'P) · (l.1.5)
\ {'Pl('Pl'P}=I} 

To use the variational principle, we need to choose a (simple!) approximate form 

for the wave-function. In the restricted HF method for the ground state of closed-shell 

systems, the wave-function is approximated by a Slater determinant of one-electron 

~ • 5-6wave-1unctions, 

¢1(ii)a(l) ¢10DP(l) ¢N120DPO) 
'¥ =_1_ ¢1 (Fz )a(2) 

JNi. : 
</J1(Fz)P(2) ¢N12(fi)p(2) 

(l.1.6) 

¢1CiN)a(N) r/JiCfN)p(N) 

The one-electron wave-functions, ¢;(f), are normalized and orthogonal to each other. 

They are called orbitals; much of our current understanding is based on the "molecular 

orbital theory" built upon these orbitals. a(i) and p(i) denote the two choices (up-spin 

and down-spin) for the spin of electron i. Notice that the Slater determinant wave-

function in Eq. (1.1.6) is a) normalized and b) antisymmetric with respect to the 

exchange of the spatial- and spin-coordinates of any two electrons (Pauli antisymmetry 

principle), and c) zero if two electrons with the same spin are in the same space orbital 

(Pauli exclusion principle). 

Substituting the Slater determinant, Eq. (1.1.6), into the variational principle, Eq. 

6(1.1.5), yields the Hartree-Fock equations,5


6 
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(1.1.7) 

The Coulomb operator, }(r), and the exchange operator, K(r), are defined by the 

formulas, 

(l. l.8a) 

(l. l.8b) 

Solving the HF equations gives the HF orbitals, tA (f) , and orbital energies, &; • The 

orbital energies can be interpreted as approximate electron removal energies.17 

Some salient features ofthe HF method are: 

I. 	 The HF equations, Eq. (1.1.7), comprise a system of one-electron equations 

that are coupled together by the Coulomb and exchange operators, Eq. (1.1.8). 

Hartree-Fock is considered to be an "independent electron" or "mean field" 

model because the electrons interact with each other only in the "average" 

way defined by }(r) and K(r). 
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II. 	 The HF equations are solved using the self-consistent field method. Starting 

:from an initial guess of the HF orbitals, Jen and K(r) are computed. Eqs. 

(1.1.7) are solved, generating a new set of orbitals. If the new orbitals are 

sufficiently close to the starting orbitals, the equations are considered solved. 

Otherwise, Jen and k(n are constructed from the "new" orbitals, and Eqs. 

(1.1.7) are solved again, and again, until the "input orbitals" used to construct 

J(r) and K(F), and the "output orbitals" obtained from Eqs. (1.1.7) are 

sufficiently similar. At that point the orbitals in the HF equations are "self

consistent" and the equations are considered solved. It should be noted that 

this simple self-consistent field algorithm often converges very slowly or does 

not converge at all. 19 In practice, more efficient, but also more complicated, 

algorithms are used.20
-
21 

Recall that the HF method is obtained by restricting the search domain in the 

variational principle, Eq. (1.1.5), to simple Slater determinant wave-functions. The HF 

energy is thus above the true ground-state energy. The difference between the exact 

ground-state energy, Eg_s_, and the HF energy is called the correlation energy,6 

(1.1.9) 


8 
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The correlation energy is small on an absolute scale (~0.04 Hartree per electron pair) but 

large on a chemical scale (~100 kJ/mol per electron pair). For this reason, HF is not very 

reliable for describing chemical processes in which chemical bonds break and/or form. 

However, Hartree-Fock is usually reliable for predicting the equilibrium positions of 

atomic nuclei22 and, with the appropriate scaling corrections, vibrational spectra.23 

There are two main drawbacks to the HF method. The first is inherent to the 

approach, the second drawback is practical. 

I. 	 There are systems where the exact wave-function is very different from a 

Slater determinant, and so HF gives qualitatively incorrect results. Examples 

include the carbon dimer (C2),
24"25 the chromium dimer (Cr2),26 and Cu202.21· 

29 

II. 	 HF calculation can only be applied to small- and medium-sized systems 

(fewer than 100 atoms) because the computational cost of the HF algorithm is 

O(N4
). I.e., the computation cost grows as the fourth power of the number of 

electrons. In practice, however, the computational cost can be reduced to 

O(N3
) (or even O(N2

)) for large molecules using clever integral evaluation 

algorithms. For very large molecules, it is even possible to obtain linear 

( O(N) ).30 

The first problem can be overcome by adding corrections to the HF wave-function 

to model the effect of electron correlation. Many of the characteristic acronyms of 
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molecular electronic structure theory, also called quantum chemistry, refer to methods of 

30 31this type.6
' - For example, HF can be corrected by a) treating electron correlation as a 

correction using perturbation theory (MP2, MP3, MP4, etc.), b) using a more complicated 

form for the wave-function in the variational principle (CISD, CISDT, CISDTQ), or c) 

combining between the perturbative and variational approaches (CIS(D), CCSD(T)), 

etc.). Unfortunately these methods are even more expensive than HF, with computational 

scalings that range from O(N5 
) to O(N!). The fastest of these methods, MP2, is 

nowadays applicable to molecules with up to about 100 atoms. 

Theoretica] 
Method 

FCI 

Current computational 
dependence on 

molecular size, N 
N! 

Estimate of maximum 
feasible molecular 

size in 1996 
2 atoms 

Current estimate of 
maximum feasible 

molecular size 
3 atoms 

CCSD(T) N 8-12 atoms 20 atoms 

CCSD 10-15 atoms 30 atoms 

MP2 N 25-50 atoms 75-100 atoms 

HF, KS-DFT N-N 50-200 atoms 300-500 atoms 

Figure 1.1 Computational scaling of the standard electronic structure methods. The data 
in the three first columns was taken from Ref. (30). The data in the fourth column is our 
estimate. 

1.1.3 DFT methods 

DFT methods are based on an entirely different philosophy: in DFT one tries to 

approximate the electron density. The wave-function, to the extent that it enters the 

10 
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theory at all, only plays an incidental role as a computational facilitator. DFT overcomes 

the main limitation of HF theory: it includes correlation; but has similar computational 

cost. In theory, DFT, which scales as O(N3
), is a bit cheaper than HF. In practice, HF is 

often cheaper for small molecules, while DFT tends to be cheaper for large molecules 

and condensed matter. Because of this, DFT, or more specifically, Kohn-Sharn-DFT, is 

15the most popular computational method in modern electronic structure theory.9
- The 

next section will provide some technical details about the Kohn-Sharn-DFT (KS-DFT) 

method. The remainder of this section will provide a broad overview of KS-DFT, with a 

view towards providing context and motivation for the material of this thesis. 

The applicability of DFT is limited in two ways: (1) theO(N3 
) scaling of most 

computational implementations (2) the inherent error associated with the approximate 

density functionals used to model electron correlation and the Pauli exclusion principle 

(electron exchange). This thesis is focused on the first difficulty. 

Because of its O(N3
) scaling, standard implementations of DFT are not 

applicable to the large molecules of interest in such fields as medicinal chemistry and 

biophysics. Table 1.1 shows some computational timings of popular DFT software 

packages for determining the optimum geometry of different molecules. Notice that for 

the larger molecules, Au212 and hemoglobin, the DFT methods become computationally 

impractical. In practice, DFT calculations are impractical for molecules with more than a 

few hundred atoms. 11
•
15 

11 
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DFT is still far from being applicable to systems containing thousands of atoms. 

Current research on extending DFT to larger systems is focused two directions: 

I. Improving the numerical algorithms used by conventional OFT 

computations15'32-34 

II. Developing new "linear scaling" DFT algorithms.1 , 15 , 35-36 

The research in this thesis falls into the first category, although it is also relevant to 

linear scaling OFT because the best computational approaches will combine aspects of 

both approaches. 

Molecule Method xc-functional Basis-set Software Time 

H20 DFT-KS B3LYP 6-31G* Gaussian 28.5sec 

H20 OFT-KS B3LYP DZVP deMon2k 10.18sec 

C6H6 DFT-KS B3LYP 6-31G* Gaussian 6min48sec 

Fe(C5H5)2 DFT-KS LDA OZVP deMon2k 4min21sec 

C15H26N204 
(Tamiflu) OFT-KS B3LYP 6-31G* Gaussian 5hrs13min 

Au212 DFT-KS LDA DZVP SIESTA -3months 

Hemoglobin 
(9272atoms) DFT-KS LOA DZVP SIESTA -7years 

Table 1.1 CPU time for optimizing the geometry of some representative molecules [all 
calculations were performed by the author except for hemoglobin for which the time was 
estimated). Only the nearest local minimum is found. For the larger molecules, finding 
the globally optimum geometry is much more difficult than these timings would suggest. 
DZVP denotes the double zeta-polarization basis set defined in reference (82). 

12 
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Specifically, this thesis is devoted to the development and implementation of new 

numerical integration methods, with emphasis on DFT. The particular aspects of the DFT 

integration problem that are of relevance to this thesis include: 

I) 	 A key step in a Kohn-Sham DFT calculation is to integrate the exchange

correlation potential and energy. These functionals are impossible to integrate 

analytically so a numerical integration method is used.3745 Explicit expressions 

for these integrals can be found in the next section. 

II) 	 In quantum mechanics, properties are evaluated as expectation values of the 

corresponding operator. These integrals are often very complicated functions that 

cannot be integrated analytically. There are also cases where, even though the 

integrand is analytically integrable, the integration region is too complicated to 

allow facile analytical integration. An example of the latter case appears when 

integrating over the atomic basins in the quantum theory of atoms in molecules 

(QTAIM).45-52 

III) Efficient integration grids provide the foundation for basis-set-free approaches to 

the electronic structure problem. The basis-set-free approach is critically 

dependant on the quality of the grid because all of the mathematical operations 

on the fundamental electronic structure descriptor (e.g., the wave-function, the 

density matrix, and the electron density) must be performed on that grid. 53-56 
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Intelligent distribution of the grid points in the integration region provides a more 

accurate representation for the key mathematical operations, leading to more 

accurate and less expensive predictions ofphysicochemical phenomena. 

These three areas of application demonstrate the importance of developing grids 

that are efficient for integrating the electron density and density-like functions. This 

dissertation makes a direct contribution to the first two problems and lays the 

groundwork for an attack on the third (and most challenging) problem. 

The rest of this introductory chapter is organized as follows. In Section 1.2 we 

introduce DFT in more detail. In Section 1.3, the basic concepts of the quantum theory of 

atoms in molecules are introduced. Section 1.4 shows the mathematics of the transformed 

sparse integration grids. Finally, in Section 1.5 provides an overview of the remainder of 

the thesis. 

1.2 Density Functional Theory 

1.2.1 Introduction 

The idea of using the electron density as the basic descriptor for electronic 

structure problems has its origins in 1927 with the theories of Thomas16 and Fermi. 17 

However, it was not until 1964 that Hohenberg and Kohn provided the mathematical 

basics for using the electron density to replace the wave-function as the basic descriptor 

for a system of electrons.9 Their key results are enunciated as two theorems that are the 

foundation of DFT, and for which Walter Kohn won the Nobel Prize in 1998.11 The 

14 
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Hohenberg-Kohn theorems are analogous to results from wave-function theory, but with 

the electronic density, p(r), playing the principal role instead of the wave function. 

1st Theorem. The ground state's electron density detennines all the properties of an 

electronic system. 

2nd Theorem. The energy of the system is a functional of the electronic density, 

E =E[p], and the N-electron ground state energy, Eg.s.> and ground state density, 

pg.s. (r), are obtained by minimizing the energy with respect to all N-electron densities, 

Eg.s. =E[pg_s.l=~E[p]. (1.2.1) 
p 

Just like wave-function methods, one uses the variational principle, Eq. (1.2.1), to find 

Pg.s_(r). The ground-state energy and other chemical properties then follow. 

Essentially, DFT changes the independent variable from lj/ to p. This is useful 

because the electronic density,12 

(1.2.2) 


only depends on three variables, while the N-electron wave function depends on 3N 

variables (plus spin). Thus the domain of the functions used to solve the electronic 

structure problem has been reduced from a space of 3N dimensions (plus spin) to a space 

of 3 dimensions. A problem remains, however. The first Hohenberg-Kohn theorem is one 
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of existence: it provides no guidance on how to determine the energy functional that is 

required to implement the variational principle. Hohenberg and Kohn showed, however, 

that the energy functional can be split into two parts,9 

E[p] = F[p] + Jp(r)vexi (r)ar ; (1.2.3) 

The second term in this expression represents the potential energy of interaction between 

the electrons and the external, non-electronic, potential that binds them to the system. For 

an isolated molecule, this external potential is exactly the same electron-nuclear attraction 

potential, 

vext(-)r ~ _ ZA (1.2.4)= - ,L. _ ,-, 
A=I r -RA1 

that enters into the Hartree-Fock equations. (See Eq. l. l.7). 

The first term in Eq. (1.2.3),F[p], is usually called the Hohenberg-Kohn density 

functional. F[p] represents the electronic contribution.s (kinetic energy and electron-

electron potential energy) to the energy and, unlike v.,..1(r) , F[p] is universal. That is, 

the same functional applies to every electronic system; F[p] is not system dependent. 

Thus the problem of approximating 3N-dimentional wave-functions has been exchanged 

for the problem of approximating F[p] . 

16 
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1.2.2 The Kohn-Sham equations 

Most modem DFT calculations use the approximation to F[p] that was proposed 

by Kohn and Sham in 1965. 10 Specifically, 

F[p] =1Jp]+ J[p]+ ExcCPl. (l.2.4) 

I',; [p] is the kinetic energy of a system of non-interacting electrons with electron density 

p(r). J[p] is the classical electrostatic repulsion between the electron density and itself, 

J[ 1=_!_ JJp(r)p(r1arar' (l.2.5)
P 2 · lr-r'I 

The exchange-correlation energy functional, ExJp], contains all of the other 

contributions to F[p] , including 

a) the reduction of the electron-electron repulsion potential energy between electrons 

of the same spin due to the Pauli principle (exchange energy), 

b) the correction to the kinetic energy and the electron-electron potential energy 

because electrons are not independent, but instead move in a correlated way 

(correlation energy). 

In Kohn-Sham-DFT, only the exchange-correlation energy component of ExJp]has to 

be approximated. 

The density of a system of independent electrons is given by the formula: 

17 
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N 

p(r) = ~]vr; (r)j2 , (1.2.6) 
i=l 

where VF;(r) are one electron orbitals. Using the Kohn-Sham expression for F[p] (Eq. 

1.2.4), in the energy functional (Eq. 1.2.1) leads to the Kohn-Sham equations, 10 

(1.2.7) 

The Kohn-Sham (KS) equations are similar in form to the Hartree-Fock equations, Eq. 

(1.1.7). The Coulomb function operator, 

J[ r] = fp(r ')dr •= ~ Jlvri (r ')!
2 

ar · 
p, 1-r-r-·1 ~ 1-r -r-·1 ' i=I 

has exactly the same form as in Hartree-Fock. (compare Eq. (l.l.8a)). The exchange-

correlation potential, which includes effects of both exchange and correlation, is the 

variational derivative of the exchange-correlation energy, 

(l.2.8a) 

Kohn and Sham expressed the exchange-correlation energy m terms of the 

exchange-correlation energy density, per electron, at the point r' cxc[p,r]: 

(l.2.8b) 

Then they simplified this expression by assuming that cxc[p,r] is a/unction of p(r), 

cxcCp(r)). This is called the local density approximation. Finally, they approximated 
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exc(p(r)) with the exchange energy density, per electron, of the uniform electron gas 

with density p(r) . 10 

It is important to note that the KS equations are not restricted to the local density 

approximation; better approximations for ExJP] are usually used. Finding better 

approximations for ExJP] is a flourishing research field. 1'
57

-
58 Notice that if the exact 

ExJP] were used in the KS equations, then KS-DFT would reproduce the ground state 

energy and ground state density exactly. 

Although the KS equations (Eq. 1.2.7) look very similar to the HF equations (Eq. 

1.1.7), the KS approach has several advantages. Among them, 

I) The KS equations include electron correlation. 

II) 	 vxc (r) is a multiplicative operator function, and not a non local operator as 

in HF. This makes it easier to solve KS equations. 

These advantages have made KS-DFT the most widely used method for modeling the 

13 14electronic structure of molecules and materials. 11 
, 

1.2.3 The Kohn-Sham-Roothaan equations 

The computational methods used to solve the KS equations are similar to those 

used to solve the HF equations. In both cases one solves the equations by the self

19 
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consisted field method (SCF), and in both cases the equations are usually converted from 

partial differential equations into a linear algebra problem by expanding the orbitals as a 

linear combinations of the functions in a basis set {¢ µ (r)}, 

If/; (r) = L
K 

ev/Pv (r) . (1.2.9a) 
v 

For simplicity, we will only consider the case of closed-shell systems, so that all 

of the KS orbitals are either doubly occupied or unoccupied. The representation of the 

electron density (Eq. 1.2.2) in the basis set is thus 

N/2 K K 

p(r) =2I:LI:eµ0 e:0 ¢µ(r)¢:(r). (1.2.9b) 
a=I µ=I v=I 

The KS equations (Eq. 1.2.7) take the form 

K K 

Levi f¢;(r)fIKs¢v(r)dr =&;Levi f9';(rXov(r)ar ; i=l,2, ...,K. (1.2.10) 
v v 

Here, fJKs is the Kohn-Sham Hamiltonian operator, 

AKS =-..!_n2 ext(-) fp(r')dr' vxc[ '(-)·-]H - v +v r + I I + pr ,r . (1.2.11)
2 r-r- -· 

Equations (l.2.10) can be expressed in matrix form,6 

(l.2.12) 

Here HKs is the matrix representation of KS operator in the basis set {¢µ}, 

20 




Ph.D. Thesis - J.l. Rodriguez 

(~IJ[Ksl~) (~IJ[Ksl¢2) 

(¢2 IHKs1~) (¢2 lftKSj¢2)
HKS = 

and S is the overlap matrix, 

S= 

Cand & are given by 

(¢1!~) (~ 1¢2) 
(rA I~) (¢2 l¢2) 

(¢KI~) (¢K !¢2) 

ell C12 

C= C21 c22 

CKI CK2 

(~IJ[Ksl¢K) 

(¢2 IJ[Ks1¢K) 

(¢1 l¢K) 
(¢2 l¢K) 

(¢K 1¢K) 

CIK 


CIK 


CIK 
 ' 


McMaster - Chemistry 

(1.2.13) 

(1.2.14) 

(1.2.15) 

(1.2.16) 
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It is important to notice that: 

I) Eq. (1.2.12) represents a system of nonlinear algebraic equations. These are 

called the Kohn-Sham-Roothaan equations.59 

II) In general, the basis functions {¢ µ(r)} are not orthogonal. So Sis not always the 

identity matrix. 

III) Eq. (l.2.12) represents a generalized eigenvalue problem. The matrices C and &. 

represent the eigenvectors and eigenvalues, respectively. 

IV) The matrix elements of n;; can be split into the one-electron term, n;;-core, 

the Coulomb term, n::-J ,and the exchange-correlation term, n:;-xc, 

HKS =HKS-core +HKS-J +HKS-xc (l.2.l 7a)µv µv µv µv ' 

(l.2.l 7b) 

(l.2.l 7c) 

(l.2.l 7d) 

22 
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The KS-Roothaan equations are solved by transforming Eq. (1.2.12) into a 

standard eigenvalue, problem solving the transformed equations, and transforming the 

solutions back to the original form. The first step is accomplished by finding the matrix, 

D , that diagonalizes the overlap matrix S, 

(1.2.18) 

Define the matrix C ' as 

(1.2.19) 

The matrix representation of the KS equations, Eq. (1.2.7), can now be rewritten in the 

form of a standard eigenvalue problem, 

H'KS C'=C'&. (1.2.20) 

Here H iKS =n-1HD. 

Because H •Ks depends on the electron density, it depends on the coefficients C ' . So, 

as in HF, Eq. (1.2.20) is solved by a self-consistent field- (SCF) approach:6 

I) Specify the molecule geometry. (l.e, specify the nuclear charges ZA and 

coordinates RA . ) Choose a basis set, { t/J µ (r)} . 

II) Calculate all the integrals that do not depend on the coefficients C: 
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III) Diagonalize S to obtain the matrix D. (See Eq. (1.2.18).) 

IV) Guess the electron density p(F). (One common choice is to assume that the_ 

V) 

molecular density is close to the sum of atomic densities.~ 

Calculate the H:;-J and H:;-xc (Eq. l.2. l 7c and l.2. l 7d) using the current 

approximation to the electron density. Calculate H:; (Eq. l.2.17a) using the 

integrals computed in (II) and H:;-xc. 

VI) Calculate the transformed Kohn-Sham matrix H 'KS =D-1HD 

VII) Solve Eq. (1.2.20) by diagonalizing H '!~ to obtain C' and c . 

VIII) 	 Calculate C =DC'. 

IX) 	 Construct the electron density, p(F), from C using Eq. (l.2.9b). 

X) 	 Determine whether the procedure has converged. I.e., determine whether the 

new density of step (IX) is similar enough to the density that was used to 

construct H:;. If the procedure has not conyerged, return to step (V) using 

the new electron density. 

XI) If the procedure has converged, then use the solution ( C, & , s:;, etc.) to 

calculate molecular and atomic properties. 

Notice that the integrals in step (II) are only computed once at the beginning of 

the SCF procedure. But, in step (V), one uses the integrals computed in step (II) and adds 
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the Coulomb term (Eq. l.2.17c) and the exchange-correlation term (Eq. l.2.l 7d). The 

latter integral is difficult to compute and has to be calculated in every cycle in the SCF 

procedure. Hence step (V) is one of the most time consuming steps within the SCF 

procedure. 

Among the molecular properties that can be computed with DFT, the one that is 

most important for chemical properties is the electronic energy, since this is the key 

ingredient in the potential energy surface, Eq. (1.1.3). Using Eqs. (1.2.3)-(1.2.4) we can 

write an expression for the KS energy in terms ofthe KS molecular orbitals, 

(1.2.21) 

It is also possible to derive the expression of the energy in terms of the KS orbital 

energies: 

(1.2.22) 

To derive Eq. (1.2.22) from Eq. (1.1.6), we used the fact that the KS orbitals, {If/ ;(r)}, 

form an orthonormal set, even though the basis set {9µ(f)}might not be orthonormal. 

As previously noted, the integrals associated with the exchange-correlation 

potential and energy, 
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N K K 

Exe= Jcxc[p;r]p(r)dr =LLLCµ;c:; Jcxc(p)¢µ(r)¢:(r)dr, 
i µ v 

can not be performed analytically. Efficient integration grids are needed to perform these 

integrations.3745 To give the reader an idea of the complexity of these integrals, the 

expression of these integrals in a simple local density approximation (LDA) is now given. 

Dirac's exchange energy functional gives the exact exchange energy for the 

uniform electron gas:61 

E;>irac = Jp(r)&~irac (p(r))dr, (l.2.23a) 

1/3 

&~irac (p) =_! ! p(r)l/3 , (l.2.23b)
( ) 

1/3 

~Dirac (F) =_ ! p(F)l/3 . (1.2.23c)
( ) 

The correlation energy of the uniform electron gas can not be computed exactly, but it is 

accurately modeled by the correlation energy functional of Vosko-Wilkes-Nusair 

(VWN),62 
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E~ = Jp(r)t:~ (p(r))ar, (1.2.24a) 

VWN c 3 1 x 21 
Ee (p;rs)=-2[(1+x )p(l+ )+ 2 -x -3] 

_rs !{_{Ae
2c1ncLl+ 2b tan-1c Q ) (I.2.24b) 

3 drs 2 Y(y) Q 2y+b 

_ by0 [ln[(y-y0)2 ]+ 2(b+2y0 ) tan-'( Q )]} 
Y(y0 ) Y(y) Q 2y+b 

~VWN(r)=t:~(p)-1 ei c(y-yo)2-byoy (l.2.24c) 
3 2 2(y:-y0 )(y +by+c) 

Here: 

1 3 

3 ) 'X=rs/21; rs= ( 47rp 

y =.fr:, 
Y(y) = y2 +by+c, 

Q=(4c-b2)112' 

Yo =-0.104, 

b =3.72744, 

c =12.935, 

A=0.062. 

In Chapter II, we develop and test a new method for integrating expressions like these. 
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1.3 The Quantum Theory of Atoms in Molecules 

1.3.1 Introduction 

As discussed in the last section, the Hohenberg-Kohn theorems established that 

the electron density can be used as the basic descriptor of electronic systems. This 

provides the foundation for DFT. DFT is primarily a quantitative theory of electronic 

structure. As such, DFT does not provide definitions for important qualitative chemical 

concepts like the chemical bond or the properties of atoms in molecules like atomic 

charges and energies. 

The quantum theory of atoms in molecules (QTAIM) provides a way to fill the 

"concept gap" of DFT. QTAIM provides a formal definition for the concept of an atom 

within a molecule and a method for defining atomic properties based on quantum 

63 67mechanical principles.46
' - In addition, QTAIM provides precise mathematical 

definitions for important chemical concepts like the chemical bond, molecular structure, 

and atomic charges. QT AIM is a powerful and beautiful theory because of all these 

concepts are derived from the empirically observable molecular electron density.46 Thus; 

QTAIM can be considered as a complementary theory to DFT. 

1.3.2 The basics concepts 

In QT AIM, chemical concepts like bonds and properties of atoms in molecules 

63 67are defined using the topology, or shape, of the electron density. 46
• 
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The electron density, as any scalar field, generates a vector field through its 

gradient, V p(r). The density's critical points (i.e., points at which the gradient vanishes) 

vp(T;,) = 0, (1.3.1) 

have special physicochemical significance. For example, nuclei are associated with local 

maxima of the electron density. Sometimes there are also maxima that are not associated 

with the nuclei. These maxima are called non-nuclear attractors and only occur in special 

molecules at special geometries. Sodium and Lithium clusters are examples of molecules 

that exhibit non-nuclear attractors. Other critical points are also significant. For example, 

bond critical points are saddle points located in the "mountain pass" between two 

maxima in the electron density. Properties of the electron density (and/or other quantities) 

at a bond critical point can be used to characterize the nature of that chemical bond. 

In QTAIM, atoms in molecules are defined by partitioning real space into non-

overlapping regions called atomic basins. The boundary, S0 ,, of an atomic basin, Q;, is 

a surface that satisfies the zero-flux condition, 

(1.3.2) 


where nr. is the unit vector normal to the surface at the point~. From the definition of. 
the atomic basin and the divergence theorem, 68 it follows that the integral of the 

Laplacian of the electron density over any atomic basin is zero, 

Jv2p(r)ar = o. (1.3.3) 
n, 
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Figure 1.2 shows some results from a QTAIM partitioning of the BF3 molecule. The left-

hand side of Figure l .2a shows level curves of the electron density in the plane 

containing the atomic nuclei. The right-hand side of Figure 1.2a plots the vector field 

from the gradient of the density. In accord with Eq. (1.3.2), on the surface of the atomic 

basins, V p(f) is either parallel to the surface or V p(F) =0 (at a critical point). Note that 

all of the gradient paths in a given atomic basin terminate at a maximum in the electron 

density that is associated with an atomic nucleus (or sometimes a non-nuclear attractor). 

(a) (b) 

Figure 1.2 QT AIM analysis of BF3. (a) The main topological features of the electron 
density. (b) Three-dimensional pictures of the atomic basins. [Figure reproduced from 
Reference (66) with the permission from authors and publisher.] 
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All of the other critical points lie on the boundary between two atoms (bond critical 

points) or more than two atoms (so called "ring" and "cage" critical points). Figure 2b is 

a representation of the atomic volumes. Notice that each atomic volume contains exactly 

one atomic nucleus and that the bond critical points occur on the boundary surfaces 

between two atoms. 

1.3.3 Atomic and molecular properties 

In QTAIM, the value of a property, P, for an atom in a molecule is defined by 

the expectation value of an effective single-particle property density, p(r), over the 

46 63 7atom's basin, Q; , ' -6

P(Q) = Jp(r)ar . (1.3.4) 
O; 

Because the atomic basins fill space, 

(1.3.5) 


the value of a molecular property, pmolecuJe, is equal to the sum of the corresponding 

atomic properties, 

pMotecute = Jp(r'jlr =L Jp(r)ar =L P(Q;). (1.3.6) 
RJ iQ; i 

As examples of atomic properties and property densities, we consider two 

different definitions for the atomic kinetic energy, 46 

31 




Ph.D. Thesis - J.J. Rodriguez McMaster - Chemistry 

tp is the N-electron wave-function. It follows from Green's first identity and the zero flux 

condition, Eq. (1.3.3), that these two expressions for the kinetic energy of an atom in a 

molecule give the same result: 

L(O)=K(Q)-G(O)= fCk(F)-g(f)]df=-_.!.. fv 2p(r)df=O. (l.3.9) 
Q 4Q 

The electronic energy of an atom in a molecule (AIM) can then be defined using 

the local virial theorem, 

=-K(Q) = -G(Q). (1.3.10)E0 

The total electronic energy is then computed as the sum of the atomic energies, 

(l.3.11) 

The other important properties that will be considered in this thesis are the electrostatic 

moments of the AIM,46 

Jxjykz1p(r)df . (1.3.12) 
fl; 

The j = k = l = 0 moment represents the number ofelectrons in the AIM. 
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Notice that evaluating atomic properties typically requires numerical integration 

over regions with complicated shapes.4
6-

52 Although many numerical methods for 

computing atomic properties have been proposed, none of these methods is practical for 

large molecules. Even for small molecules, the time required to compute atomic 

properties is often one or two orders of magnitude greater than the time required to 

compute the electron density with Kohn-Sham DFT.46
-
52 For example, it takes 30 minutes 

to perform a QTAIM atomic property analysis on the water molecule,49 but only 30 

seconds to compute the density with KS-DFT. 

The most time-consuming and the most numerically ill-conditioned portion of 

traditional QTAIM algorithms is the explicit construction of the zero-flux surfaces. In 

Chapter 4, a grid-based method for computing atomic properties that does not require 

explicitly computing the zero-flux surfaces is presented. The resulting method appears to 

be one to two orders of magnitude faster than previous approaches.47
-
52 

1.4 Integration Grids 

1.4.1 Introduction 

In the previous sections, we have learned that efficient numerical integration 

techniques are essential in both KS-DFT (Section 1.2) and QTAIM (Section 1.3). 

Numerical integration techniques for molecular problems are the unifying theme of this 

thesis. The purpose of this section is to provide the essential background for the 
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numerical integration methods considered here. Sections 1.4.2 provides a very brief 

overview of one-dimensional integration, with emphasis on the vocabulary of numerical 

integration methods. Section 1.4.3 and 1.4.4 introduce three-dimensional formulae for the 

unit cube. Section 1.4.5 discusses how one can transform integration formulae from the 

unit cube to other regions. Section 1.4.6 presents an entirely different approach based on 

the direct construction of atomic numerical integration formulas. Further mathematical 

details are deferred to later chapters, where they are presented in their chemical context. 

1.4.2 One-dimensional numerical integration grids 

Approximate numerical integration methods in one dimension are called 

71quadrature formulae or simply one-dimensional integration grids.69
- Quadrature 

formulae have the same form as the Riemann sum approximation to the integral 

b

Jf(x)p(x)dx = L
m 

wi f(x;). (1.4.1) 
a 

The points, x; e IR. , where the function is evaluated are sometimes referred to as 

nodes or abscissas. The grid points x; are usually, but not always, located in the 

integration interval [ a,b]. The grid points are usually not equally spaced. The numbers 

w; E IR. are called the integration weights. The W; are usually, but not always, positive real 

numbers. The integration weights are usually not all equal. The nonnegative and 

71integrable function p(x) is called the weight function for the integration formula.69
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The weights and nodes in a quadrature formula are usually chosen so that the 

integral, Eq. (1.4.1), is exact when f(x) is a polynomial of degree D orless, 

D 

f(x)= Lanxn. (1.4.2) 
n=O 

Sometimes, however, one considers trigonometric quadratures formulae, which are exact 

when f(x) can be expanded as a Fourier series truncated at order D, 

~ 2~n . 2~n
f(x) =a0 +~an cos(--)+bn sm(--). (1.4.3) 

n=I b-a b-a 

If the weights and nodes are chosen so that the degree of the quadrature formula is 

maximized, then they constitute a Gaussian quadrature formula. Gaussian quadrature 

formulae are important because the expansion of well-behaved functions in terms of 

polynomials (Eq. 1.4.2) or Fourier series (Eq. 1.4.3) is rapidly convergent. However, 

sometimes is useful to consider quadrature formulae that do not achieve the maximum 

possible degree of accuracy. For example, it is often convenient to choose the nodes so 

that they are nested (e.g., so that the points in the m-pol.nt quadrature formula are reused 

by the 2m-point formula), even though nested quadrature formulae have lower degree 

71than Gaussian quadrature formulae.10


In this dissertation, the most important quadrature formulae are the rectangle-rule 

73formula69
-
70 and the Clenshaw-Curtis formula.12

- Both formulae are nested, and both 

formulae are commonly defined for integrals over [-1,1] with weight function, p(x) = 1. 

Clenshaw-Curtis is a "polynomial-based" quadrature formula, while the rectangle-rule is 
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a "trigonometric" quadrature formula. If f (-1) = /(1) =0, the rectangle-rule is identical 

to the composite trapezoidal rule, 69 in which the trapezoidal rule is applied to each 

xJ f(x)dx = (f(x;)+ f(x~+1))(x;+1-x;). (1.4.4) 
X; 

Because we are primarily interested in integrating functions that, like the wave-

function, vanish at the endpoints of integration, the contribution to expression (1.4.1) 

from nodes at the endpoints of the interval is zero. So these nodes are omitted. 

The points and weights in them-point rectangle-rule quadrature are given by, 

X; =-1 +ih; i =1, ...,m (l.4.5a) 

W; =h; i =1, ... , m (l.4.5b) 

h=-2-. (1.4.Sc)
m+I 

73The points and weights in them-point Clenshaw-Curtis quadrature are given by,72


;r(i-1)
x =-cos( )· i =2, ...,m-1 (1.4.6a)
' m-I ' 

____2_[l- cos(;r(i-1)) (m- > 1 2;rk(i-l)
W. 2 L

3 12 

cos( )]; i=2, ...,m-1. (l.4.6b)
' m-1 m(m-2) k=I 4k2 -1 m-1 

I 

36 




Ph.D. Thesis - J./. Rodriguez McMaster - Chemistry 

The rectangle-rule and Clenshaw-Curtis quadrature formulae are nested if the number of 

points is chosen according to the rule m1 =21 -1, where l =1,2, .... We will often use the 

number as an index defining the "effort" associated with a given quadrature formulae. 

The nodes and weights for the m1 -point formula are then denoted as 

(l.4.7a) 

(1.4.7b) 

1.4.3 Three-dimensional numerical integration grid: the simple product 

grid 

Higher dimensional quadrature formulae, which are often called cubature 

formulae, can be constructed from the tensor product of a quadrature formula associated 

with each dimension. For example, one can use the one-dimensional quadrature formulae 

defined in the previous section (Eq. (1.4.5)-(1.4.6)) to construct numerical integration 

rules for [-1, 1]3: 

This family of numerical integration formulae is called the full-tensor product or, 

alternatively, the simple product grid.70 The number ofnodes in the simple product grid is 

the product of the number ofnodes in each one-dimensional grid. 
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(1.4.9) 


Simple product grids can obviously be constructed for any number of dimensions. 

However, the number of grid points grows very rapidly (exponentially fast!) with 

increasing dimension. For example, one might commonly need a grid with ~70 points to 

evaluate a one-dimensional integral sufficiently accurately. Obtaining results of 

comparable accuracy for a three-dimensional integral using a simple product grid would 

require 703 =343, 000 points! Fortunately, there are "sparse" tensor product 

formulae70
,
74

-
75 that are more efficient than the simple product formula, Eq. (1.4.8). Such 

formulae are the topic of the next section. 

1.4.4 Three-dimensional numerical integration grid: the sparse grid 

Sparse tensor product formulae for the numerical integration of well-behaved 

multivariate functions contain only a small subset of the points in a simple product 

formula but achieve similar accuracy. The Smolyak cubature formula is the only sparse 

tensor product formula that we consider in detail in this thesis.74
-
75 Like one-dimensional 

quadrature formulae, the Smolyak cubature formula is designed to ensure that all 

multivariate polynomials (or, alternatively, all multivariate Fourier series) up to certain 

degree are correctly integrated. 

In n dimensions, the Smolyak cubature formula for integration over the hypercube 

[-1,Ir can be written in the form 
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(1.4.10) 

which has the standard form of a cubature formula in [-1,1r, 

MLJ f(i)di = L wf f(i;L). (1.4.11) 
(-1,J]" 

In Eq. (1.4.10), I; denotes the order of the one-dimensional quadrature formula for the i1 
h 

dimension and L = 1, 2, ... denotes the order of the Smolyak formula. k e I~t and I 11 

denotes the norm, 

(1.4.12) 


(m) = m ! is the conventional combinatorial symbol. The number of points in 
p p!(m-p)! 

11the Smolyak cubature formula is O(m1zn-1
) , -

72 which is much smaller than the number 

of points in the comparable simple product formula, (m1)d (see Eq. 1.4.9). For example, 

a three-dimensional simple product of rectangular-rule grids (Eq. 1.4.8) with L = 7 

contains (27 -1)3 =2,048,383 points, but the L=1 Smolyak cubature contains only 

6,223 points. Further information about Smolyak cubature can be found in Chapters 2 

and 3, where the method is applied to DFT calculations. 
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The Smolyak formula, Eq. {l.4.10), can be used to construct a n-dimensional 

cubature formula from any type of one-dimensional quadrature formula However, the 

number of points in the Smolyak cubature is much smaller if nested grids are used. 

1.4.5 A universal transformation for cubature grids 

The domain of interest in most of physical and chemical problems is not the 

hypercube [-1,lr. For example, in fluid dynamics, engineering design,76 and QTAIM,46 

the domain of integration usually has a very complicated shape. In molecular electronic 

structure theory, the domain of integration is usually unbound, !Rn. So we need a way to 

transform grids defined on [-1,1r to other integration domains. 

We use the conditioned distribution method74 to perform the transformation. The , 

conditional distribution method is a mapping between points in the hypercube, t 
e [-1,1r , and points in real space, x e !Rn. The specific form of the mapping depends 

on a non-negative integrable function, P(r), through the expressions: 

X1 CO oo

J J ... JP{t1,f2 , ••• ,tn)dt1dt2 ...dtn 

(x1) = -1+2-;--~:-;--------; 1 

JJ... JP{t1,f2 , ••• ,tn)dt1d!2 •••dtn 
-00-00 -00 

40 




Ph.D. Thesis - J./. Rodriguez McMaster - Chemistry 

X2 coJ... JP(x1,t2 , ...,()dt2 •••dtn 

¢"2(Xp X2) =-1+2-:~......::;:__------ (1.4.13)

J... JP(xpf2 , ... ,tn)dt2 •••dtn 

x.

JP(XpX2 , ... ,fn)dtn 
¢°n (Xp X , •• ., Xn) =-1+2-':;:_______


2 

JP(XpX2 ,.•• ,fn)dtn 


For the sake of simplicity and correctness, we will henceforth consider only the three-

dimensional case of this transformation with x. =x; x2 =y, x3 =z . In three dimensions, 

the Jacobian matrix of the transformation is 

0¢"1 0 0 
Ox 

J= 
0¢"2 
Ox 

o~2 
i)y 

0 (1.4.14) 

0~3 a~3 a;3 
Ox i)y az 

The determinant of the Jacobian matrix follows from the form of the transformation, Eq. 

(l.4.13), and the fundamental theorem ofcalculus,68 
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IJ, _ = aq, oq2 ar;3 = K P(r) (l.4.15)
Ir 8x 8y oz _ P ' 

r 

explicitly map points in real space to the cube. Our purpose, however, is to map the 

integration points in [-1,1]3 to integration points in real space. This requires the inverse 

mapping r(!) =t-1(r). Suppose that one is given a point (~<P>,r;?>,r;?» in the unit 

cube. The inverse mapping is constructed, one coordinate at a time, from Eq. (l.4.13). 

Specifically, one first solves for x using the first equation, r;1<P) = q1(x<P», in Eq. 

-
(1.4.13). Then using this value of x<P), one solves for y using the second equation, 

the third equation ,;ip) =~3 (x<P>, /P>, zCP)). Each step is this procedure requires solving a 

univariate nonlinear equation; we used the bisection .method. 75 As long as P(r) is 

positive, it follows from Eq. (1.4.15) that the mapping is one-to-one and invertible. So the 

nonlinear equations have a unique solution. 

Using the transformation in Eq. (1.4.13) and the Jacobian determinant, Eq. 

(1.4.15), we can rewrite integrals in real space as integrals in [-1,1]3 using the change of 

variables theorem,68 
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JtCx)di = J1c~-1 (x))IJr
1 

d~1d~2d~3. (1.4.16a) 
JR3 (-1,lf 

We can then perform integrations in JR3 with respect to the weight function, P(r), using 

the expression, 

ML

Jf(x)di =IW:- IJl~:xf> tc~-1 (i;L)). (l.4.16b) 
IR3 i=I 

Here wf, ~L and ML denote the weights, points, and total number of points in the 

cubature grid on [-1, 1]3 . 

Equation (1.4.16b) is the key to applying the Smolyak-based cubature formula on 

JR3 
• Integrals over domains with complicated shapes can be performed by choosing P(r) 

so that it is zero outside the domain of integration. Because the boundary points are 

omitted in Eqs. (1.4.5) and (1.4.6), it is essential that P(r) be chosen so that f(r) I P(r) 

decays to zero asymptotically. 

In chapters 2 and 3, we will use Eq. (1.4.16) and the Smolyak formula to integrate 

expressions that arise in DFT. What is the correct choice for the weight function P(r) for 

applications to DFT? Perez-Jorda, Becke and San-Fabian40 noted that, how well a grid 
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performs for evaluating exchange-correlation energies, (cf. Eq. l .2.8b) is correlated with 

how well it performs for integrating the electron density, 

N = fp(r)df. (1.4.17) 

If we choose the weight function, P(F), to resemble the electron density, then the 

function in the right side of Eq. (1.4.16b) will be nearly constant and the cubature 

formula will be very accurate. Choosing P(r) to simply be the electron density is 

problematic because: 

a) we do not know the electron density until the DFT calculation is completed, 

b) even if we know the electron density, it is unlikely to be provided in a form 

conducive to rapid evaluation of the coordinate transformation, Eq. (1.4.13). 

To address the first issue, we approximate the molecular density as the sum of atomic 

densities, pA(r), each centered at the location of corresponding atomic nucleus, RA. The 

resulting approximation is called the promolecular density, 79 

P(r) =Ppro(r) =LPA(r -RA). (1.4.18a) 
A 

We then approximate the atomic densities as the sum ofGaussian-type functions, 
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(1.4.18b) 

The coefficients and exponents in this equation are taken from the work of Constans and 

Carbo.80 The Constans-Carb6 fits are quite accurate, so the biggest approximation is Eq. 

(l.4.18a). 

Figure 1.3 shows the results of the promolecular transformation Eq. (1.4.18a). In the 

simple product grid using the rectangle-rule (first row of Figure 1.3), the points are 

uniformly distributed in [-1,1]3 
• In lR3 

, the form of the transformation indicates that the 

probability distribution function for the grid points is proportional to the promolecular 

density. The second and third rows in Figure 1.3 show the results for the Smolyak 

cubature using the rectangle-rule and the Clensbaw-Curtis quadrature formulae, 

respectively. These formulae contain roughly the same number of points as the simple 

product rule in the first row, but their order of accuracy, L, is much higher. Notice that, 

once again, the transformation concentrates points where the promolecular density is 

large (near the nuclei and in the bonding regions between them). 

1.4.6 Atomic-center grids 

To evaluate the accuracy of the transformed Smolyak grids discussed in previous 

sections, we implemented these grids in the Kohn-Sham-DFT program deMon2k81 and 

compared the results to those obtained using the default integration method in that 

45 


http:Carbo.80


Ph.D. Thesis - J.l Rodriguez McMaster - Chemistry 

program. We also used the default grids in deMon2k to evaluate atomic properties in 

QTAIM. 

The purpose of this section is to present the ideas behind the integration method in 

deMon2k, which are based on Axel Becke's atomic center decomposition.45 Becke-type 

atomic-center grids are easily the most popular integration method in DFT, and are also 

used in many other electronic structure programs.3745 There are many minor variations of 

Becke's approach; here we will discuss one of the simplest versions. 

Atomic-centered grids are based on partitioning integrals into atomic contributions,_ 

which can then be integrated using standard techniques. First, one constructs a partition 

ofunity into atomic contributions, 

M 

:~::>}A (r) =1. (l.4.19) 
A=I 

(1.4.20) 


46 


http:decomposition.45


•• 

•• 

Ph.D. Thesis - J.1. Rodriguez McMaster - Chemistry 

.................
················· .................
................. 
.................
················· .............. ... .................
················· ................. 
.................
················· .................
................. 
················· ················· ..................
················· .................
················· ................. 

0 :..................: : : : : : : : : : : : : : : : 
.................
..................
................. 
..................
················· ..................
················· .................
.................
.................
.................
.................
.................
.................
.................
.................
.................
................. 
················· 
1 r-·-:··-·--r·-··;- --·--=-····-r ··--:-··· ·--·:-T·-·=--·- ··-·-----------···-·· 

.. : . : . . . . : . : . . . ... : . . . . .. : ... 
........ ~....... ···:·· -~·· ..... .....··i..............i···:··· ! 
... : ...... : ...... : ...... : .. .

: . : : : 
............... : . : ...... :i .. · 1 

·······=······· ·······=······· ·······=······· ·······=·······! ... ! .... : . ! ...... ! ...... i .. . 
: : : : . 

. : : 
.:.:.:r.:.:..:.:.:r.:.:..:.:.:.~.:.:.:..:.:.:r.:.:.1 
. . . ! . . . . : . ! . . . . . . ! . . . . : . ! . : . ~ 

: : . : : 

. . . . .. ... . : .; . . . . .. . .. . .. ;:. ...~ 

·······:······· ·······:······· ·······:······· ·······:······· ... ~ ... .:. ~ ... .:. ~ ... ...i.:. ! 
-1+----~~---__,_----~---~ 

·1 

..u .· ·. 

02 

.._. 
·1 

·. .· ...·U ······· 
.u~-------------------< 

~ ~ ~ -0.5 M 1 1.5 

2.5 

.. 
M 

• 
.... 

-1 

_,. 
-2 

·2.5 

.. .. -2 ..·2.5 ·1.5 .0.5 25 

: 

.....!..............................!..... 

.................... 
i 

-1 

5.5 

4.5 

... 
3 

2.5 

1.5 

1 ... 
•.... 

·1 .... 
-2 

-2.5 .. 

Figure 1.3. Grids in the unit cube (left column) and real space (right column) for N2 at its 
equilibrium geometry. Only points in the x-y plane are shown. The first row shows simple product 
grids using the rectangle-rule. The Smolyak grids obtained using the rectangle-rule and the 
Clenshaw-Curtis formulae are in the second and third rows, respectively. Units are Angstroms. 
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Each atomic weight function, @A(r), is equal to one close to the atomic nucleus A and 

equal to zero near other atomic nuclei and far away from nucleus A . Becke accomplished 

this using fuzzy Voronoi Polyhedra.45 The Voronoi Polyhedron corresponding to atom A 

consist of all points in space that are closer to nucleus A than any other nucleus. (In solid 

state physics, the Voronoi polyhedron is called the Wigner-Seitz cell.) It is difficult to 

perform an integral over an irregular shaped atomic Voronoi polyhedron, so the 

boundaries of the polyhedron are blurred by choosing @A (f) so that it changes smoothly 

from a value of one in the interior of the polyhedron to a value of zero outside of it. The 

atomic volumes defined by @A(r) are called fuzzy Voronoi Polyhedra. More information 

about how to construct the atomic weight functions may be found in references ( 40) and 

(43). 

Using the atomic partition of unity in Eq. (1.4.19), any function can be divided 

into atomic contributions, 

M 

f(r) = LfA(r), (1.4.21) 
A=I 

(l.4.22) 

The integral of f (r) can then be obtained by adding together the integrals of the atomic 

contributions, 

M M M 

I= ff(f)df = fL~(r)df =2: f!A(r)dr =LIA. (1.4.23) 
A=I A=I A=I 
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The atomic integrations can be performed using a spherical quadrature formula. In 

spherical coordinates, the atomic integrals are written as 

(1.4.24) 


This type of integral is evaluated using a tensor product between a radial integration 

formula (for the outer integral) and angular cubature formula (for the integration over 

solid angle). The angular cubature exactly integrates all spherical harmonics up to a 

specific order, /. deMon2k uses Lebedev cubature formulae of various orders (up to 

I= 59) for the angular integration.42 The radial quadrature is usually constructed by 

taking a standard quadrature formula on [-1,l] and transforming it to (0,oo). deMon2k 

-uses a Gauss-Chebyshev and the logarithmic transformation,42 

(1.4.25) 


for this purpose. Performance benchmarks for the integration method in deMon2k can be 

found in references (41) and (42). 

1.5 Overview 

The rest of this thesis is organized as follows. 

In Chapter 2, we present the results from testing the Smolyak transformed grids 

introduced in Section 1.4. In order to test these grids we implemented them as the 
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numerical integrator for the exchange-correlation energy and potential (see Eqs. (1.2.17), 

(1.2.23), and (1.2.24)) in a modified version of deMon2k.81 Then we evaluated the grids' 

ability to reproduce ground-state energies, equilibrium geometries, and atomization 

energies for a set of representative molecules. This chapter is an article accepted for 

publication in the Journal ofChemical Physics. 

In Chapter 3, we extend the transformed Smolyak procedure to different 

dimensions and present results for n =1 , n =2, n =3, and n =6. For the three

dimensional case, the grids are applied to compute atomic interactions within the 

Gordon-Kim model. The six-dimensional integrals are based on the exchange energy 

model of Lee and Parr. 12 This chapter in an article submitted (on 03/28/08) to the Journal 

ofPhysics A. 

Chapter 4 shows the generalization of the Smolyak construction for interpolating 

and differentiating multivariate functions. We discuss these schemes' potential 

application in both basis-set-based and basis-set-free calculations within the electronic 

structure theory problem. We published these results as a book chapter in Quantum 

Chemistry Research Trends; Mikas P. Kaisas (Editor) (Nova Science Publisher: New 

York, 2007). 

Chapter 5 describes a novel grid-based method for computing atomic properties 

within QTAIM. We also implemented this method in deMon2k. We tested the 
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performance of our method by computing QT AIM energies, charges, dipole moments, 

and quadrupole moments for a set of representative molecules. This chapter is art article 

submitted (on 02/19/2008) to the Journal ofComputational Chemistry. 

Finally, in Chapter 6, we state our conclusions and discuss prospects for future 

work. 
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" ... Nor have I ever observed that, through the method ofdisputations practiced in the schools, any truth has 
been discovered that had until then been unknown. For, so long as each person in the dispute aims at 

winning, he is more concerned with making much out ofprobability than with weighing the arguments on 
each side; and those who have long been good advocates are not, on that account, afterward better judges." 

R. Descartes, "Discourse on Method" (1637). 

Chapter 2 

NUMERICAL INTEGRATION OF EXCHANGE
CORRELATION ENERGIES AND POTENTIALS 

USING TRANSFORMED SPARSE GRIDS* 

•The content of this chapter was accepted (24/03/08) as an article in the Journal ofChemical Physics. 
(Authors: Juan I. Rodriguez, David C. Thompson, Paul W. Ayers, and Andreas M. Koster.) 

59 




Ph.D. Thesis - J.l Rodriguez McMaster - Chemistry 

2.1 Statement of the problem 

To test the utility of the integration scheme introduced in Section 1.3, we 

implemented the transformed Smolyak grids in a development version of the deMon2k 

density-functional theory program, where it is used to evaluate integrals of the exchange

correlation energy density and the exchange-correlation potential. In this chapter we 

present our "proof of principle" results: ground state energies, atomization energies and 

molecular geometries are accurately computed. Our results show that the transformed 

Smolyak grids are suitable as the numerical integrator in basis-set-set programs like 

deMon2k. The biggest advantages of the grid are its flexibility (it is easy to change the 

number and distribution of grid points) and its ''whole molecule:' nature. The latter 

feature is potentially helpful for basis-set-free computational algorithms. 

2.2 Introduction 

Computational evaluation of expectation values in quantum mechanics requires 

numerical integration techniques. This motivates studies like the present paper, which 

focuses on new approaches to numerical integration. In particular, we are interested iri 

2density-functional theory (DFT) methods for molecular electronic structure. 1'

In conventional wavefunction-based electronic structure methods, one can avoid 

numerical integration by expanding the wavefunction in terms of intelligently chosen 

basis functions (e.g., Gaussians).3
-
5 This is not true in DFT, however, because some of the 
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functionals that need to be evaluated are very nonlinear. In particular, the integrals 

associated with the exchange-correlation energy, 

(2.2.1) 


and the exchange-correlation potential, 
8Exc[P]

(pvxc) = Jp(r)vxc [,o;r}tr= Ip(r) ( ) dr (2.2.2) 
. 8p r 

usually cannot be evaluated analytically. 

One is tempted, perhaps, to evaluate the integrals that arise using standard off-the

shelf subroutines. This is satisfactory for very small systems. However, DFT is primarily 

applied to molecules that are too large for wavefunction-based electronic structure 

methods. Evaluating Eqs. (2.2.1) and (2.2.2) for systems containing tens, hundreds, or ~ 

even thousands of atoms requires efficient numerical integration techniques that are 

custom-built for DFT problems. 

Many of the most efficient DFT integration grids are based on the techniques 

pioneered by Axel Becke.6 He started by decomposing real space into (slightly

overlapping) atomic regions-typically fuzzy Voronoi polyhedra. Then, the atomic 

contributions to the molecular integral are individually approximated using numerical 

integration grids. The atomic grids are a tensor-product between a radial quadrature 

formula (Gauss-Chebyshev, Gauss-Legendre, Euler-McLaurin, multi-exponential, 7 etc.) 

12and an angular quadrature formula (usually one of the Lebedev formulae8
• ). 
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Most molecular DFT programs use some variant of the Becke integration scheme. 

Among the most important variants are those that "prune" away some of the grid points, 

so that the number of angular points varies between radial shells.7
•
13

-
22 Pruning generates 

optimized sparse-tensor product grids, which give much better accuracy for a given 

computational cost. However, like basis-set-driven integration methods (and unlike the 

original Becke method), it is not easy to systematically adjust the accuracy of these grids. 

This can be overcome by adaptively choosing the number of angular points to achieve a 

user-specified accuracy. 15
'
23

,2
4 Extremely high accuracy can be obtained by suitably 

tuning the number of radial and angular points, although the infinite accuracy limit 

cannot be obtained because the conventional Lebedev angular grids are not known to 

arbitrarily high orders. In practice this is not a problem, and the 59th-order formula 

implemented in most programs is sufficient for all purposes. io,u Even if it were not, a 

131st order formula is known and could be used, if needed. 12 Usually, much lower orders 

suffice. 

Although grids based on atomic-center decomposition have excellent 

computational accuracy/computational cost for integration, they are sometimes 

inconvenient. Some fast numerical methods are most efficient for grids of regular points, 

because finite-difference formulae and fast-Fourier transformation are simplest on those 

grids. This has motivated attempts to adapt atom-decomposed grids to numerical 
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methods, either direct1y25-3oor by interpolating the irregular point pattern from the atomic 

2grids onto an underlying regular grid.31
,3

Alternatively, one can use whole-molecule grids. Most whole-molecule grids are 

36 55built from uniform grids33- or hierarchically refined uniform grids.37- However, 

because the physically important portion of the molecular electron density typically 

ranges over six orders of magnitude (even more, for molecules containing heavy atoms), 

hierarchical refinement is rarely efficient unless pseudopotentials are used to excise the 

core electrons. Wavelet-based approaches are similar to the other hierarchical refinement 

techniques; practical calculations using wavelets typically employ pseudopotentials 

also.56-58 

The other approach to whole-molecule grids uses a transformation of coordinates 

to deform a regular grid so that the grid points are concentrated in regions where the 

electron density is high and depleted in regions where the electron density is low. This 

paper makes a contribution in this area, which was pioneered by Gygi and Perez-Jorda. 59· 

64 In fact, our approach can be viewed as a generalization of what Perez-Jorda proposed 

in the following senses: (a) our transformation of coordinates is more general and (b) our 

underlying grid has fewer points than an ordinary regular grid. One advantage of our 

more general transformation is that it facilitates non-pseudopotential calculations. 
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2.3 Description of the method 

2.3.1 Overview 

There are many approaches for constructing very efficient integration grids on the 

65 67unit cube, [0,1]3
• (See, for example, references " .) However, many of these 

approaches are not easily extended to high-accuracy grids, and most of them give grids 

that are not nested. These difficulties are not present in Smolyak's method for 

constructing cubature grids, which is the focus of this paper.68 The Smolyak approach can 

be used to produce nested grids, which can be systematically refined to arbitrarily high 

order. Smolyak grids can be constructed from the simple product grids employed by Gygi 

and Perez-Jorda by pruning away most of the grid points and reweighting the few that 

remain. Although the Smolyak grids have many fewer points than the corresponding 

simple product grids, for sufficiently smooth integrands, the order of accuracy is the 

same.69
•
73 The Smolyak method is introduced in the next section, H.B. 

Given an efficient grid on the unit cube, we need to transform the grid to real 

space. We do this using the conditional distribution method commonly employed in the 

Monte Carlo literature; 74 this is the same mathematical idea Perez-Jorda used in his 

work.63
'
75 This allows us to transform an integration rule on the unit cube [0,1]3 to an 

integration rule in real space with respect to an arbitrary positive-definite weight 
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function, (-00,00X(r)· The details of our transformation procedure will be reviewed in 

II.C. 

Having constructed grids that extend over the appropriate domain, we 

subsequently tested them as the numerical integrator in a modified version of deMon2k, a 

basis-set-based DFT package.76 We evaluated the grids' ability to reproduce ground-state 

energies, molecular geometries and exchange-correlation energies. Results of these tests 

are presented in section III. 

For our calculations in deMon2k, we used the DZVP Gaussian basis set17 and the 

local-spin density approximation with the exchange functional of Dirac and the 

correlation functional of Vosko, Wilk, and Nusair.78-8° Unless stated otherwise, we used 

the default settings for the electronic energy calculations. The grid generation, energy 

optimization, and geometry optimization were all performed without exploiting 

82molecular symmetry. We did not use density-fitting to simplify integral evaluations.81
• 

Geometry optimizations were performed using a quasi-Newton algorithm and were 

considered to be converged when the root-mean-square force on the atoms was less than 

830.0003 a.u .. 

2.3.2 Grids on the unit cube 

A. Theory of Multi-Dimensional Integration 

We can approximate a function, /(r)= f(x,y,z), whose domain is the unit cube 

[O, 1]3
, by expanding the function in terms of orthogonal polynomials, 
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00 00 00 

f(x,y,z}= LLLaklmPk(x)Pi(y)Pm(z), (2.3.1) 
k=O 1=0 m=O 

or using a (half-range) Fourier series, 

00 00 00 

f(x,y,z)=LLL cklm cos(klrx)cos(bry )cos(m.7rz ). (2.3.2) 
k=O 1=0 m=O 

The asymptotic convergence of the coefficients in these expansions is determined by the 

85smoothness of the function being expanded.84
' For functions that are r-times 

differentiable, 

(fxflY ffz f (X, y, Z) 
·-------·< 00&nx Oyny azn, 

the asymptotic decay of the expansion coefficients is 

(2.3.4) 


The decay rate is much faster if the rth-order mixed derivatives are also bounded: 

(2.3.6) 


For functions whose differentiability supersedes even this, the coefficients in the 

86expansion converge even faster.84
"

The integrands associated with molecular quantum mechanics and density-

functional theory have bounded mixed derivatives. 87 So the best integration formulae for 
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our applications will integrate correctly all polynomials through a certain degree, D = 

k+l+m. I.e., the integration weights, {w; }7=~ and points, {(x;,y;,z;)J:~, should be chosen 

so that 

l ££Pk (x)Pi(y)Pm (z)dxdydz = ~w/~,(x;)Pi(y;)Pm (z;) (2.3.7)
i=l ' 

for all lk +I+ ml ~ D. 

Such a formula is said to be polynomially exact through degree D. In analogy to the one-

dimensional case, an integration formula that is exact for polynomials of degree Dor less 

and contains the fewest possible points is called a Gaussian cubature formula. 88
•
89 The 

number of points in 3-dimensional Gaussian cubature formulae is less than 

D+3J (D+3)! (LD/2 j+3J 89= but greater than or equal to .( 3 3!D! 3 

89Unfortunately, it is very difficult to construct Gaussian cubature formulae.88
• 

Currently, the only people in the electronic structure theory community who appear to be 

working on this problem are Hall and Rees.90
-
96 Our goal is less ambitious: we are willing 

to consider a formula with more points than the Gaussian cubature formula if it is 

reasonably efficient and can be simply constructed up to any desired degree of 

polynomial exactness. The construction originally proposed by Smolyak,68 and later 

73 97 98developed by many others,69
- • • achieves this goal: the number of points in the 
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Smolyak integration formula is not too dissimilar to the optimal integration formula 

(when it is known) and represents a pragmatic alternative. 

B. One-Dimensional Integration 

The Smolyak procedure exploits the fact that it is easy to construct efficient 

quadrature rules on the unit interval, [0,1]. In this paper, we are primarily interested in the 

Clenshaw-Curtis formula99
•
100 

(2.3.8) 


l = 1,2,K 

j =0,1,K n, 

and the rectangle rule, 

e) I 
W. =

1 n, 

n=m=2' (2.3.9)
I I 

l =1,2,K 


j = O,K ,n I
1 
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In Eqs. (2.3.8) and (2.3.9), denotes the number of points in the one-dimensional m1 

quadrature formula. 

For reasons that will be clear later, multi-dimensional grids generated by the 

Smolyak method are most efficient when the points in the lower order formula are reused 

by the higher-order formula; such quadrature formulae are said to be nested. The choice 

of n =21 ensures that this is true for both the Clenshaw-Curtis and rectangle formulae. 

Following the work of Novak and Ritter, we have defined the I-point (l =1) Clenshaw-

Curtis formula as x~) =t , w~) =1.72 We did not attempt to define a I -point rectangle 

rule, which is why the rectangle rule has more points than the Clenshaw-Curtis rule for 

any given value of/. 

For periodic functions (i.e., f (o)= f (1)), the rectangle rule is identical to the 

composite trapezoidal rule. Researchers in DFT often refer to the composite trapezoidal 

rule as the Euler-MacLaurin rule, even though the derivative-containing terms in the 

Euler-MacLaurin formula are almost never used.18 The rectangle rule can be considered a 

trigonometric Gaussian quadrature for the Fourier expansion of a one-dimensional 

function. The Clenshaw-Curtis rule is not a Gaussian quadrature method, but the error in 

the Clenshaw-Curtis formula mimics that of Gaussian quadrature until the number of 

points is quite large.101
•
102 For this reason, the Clenshaw-Curtis formulae are probably 

better for our application than other nested quadrature rules (like the Gauss-Patterson 

69 




Ph.D. Thesis - JI. Rodriguez McMaster - Chemis!JY_ 

schemes103
), which have similar accuracy but more points. Based on these arguments, we 

believe that the Clenshaw-Curtis and rectangle rules are near-optimal choices for one-

dimensional integration. If these formulae were true Gaussian quadrature formulae, 

instead of just near-Gaussian quadrature formulae, the order of the formulae would 

be D1 =2m1 -1, where m, is the number of grid points. 

C. Tensor Product Integration Formulae 

A three-dimensional integration formula is commonly constructed from the tensor 

product of one-dimensional formulae. Denoting the one-dimensional formulae as 

u<') [/]=I w}')!(xY)) ~ £f(x)dx, (2.3.10) 
i=l 

the three-dimensional tensor product formula is 

1 11f'» ® u(',) ® u(i,) [f] ~~~t. w!'· w~' wf.lf (xf'·1,yj',),zf·1) 

(2.3.11)
I I I 

~ J J ff(x,y,z)dxdydz 
0 0 0 

The tensor product formula with I = I =I = l is optimal when mixed derivatives off 
x y z 

are not bounded, as in Eqs. (2.3.3) and (2.3.4). Notice the similarity between (a) the 

number of polynomials that must be correctly integrated to achieve a given order of 

accuracy (~Di ) and (b) the number of points in the tensor product formula (mi). Notice 

also that the number of grid points grows exponentially with increasing dimensionality. · 
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Figure 2.1 a shows the tensor-product rectangle rule for L = 6. This grid contains 

250,047 points. 

D. Sparse Tensor Products 

When bounded mixed derivatives also exist (cf. Eqs. (2.3.5) and (2.3.6)), the function is 

smoother and so the space of polynomials that needs to be integrated correctly is much 

(D, +3Jsmaller ( - ). The Smolyak procedure integrates correctly all of the polynomials 
3 

in this space using a sparse tensor product. The basic idea behind the sparse tensor 

product is that if one considers a larger number of points in the x direction (large Ix ; high 

degree polynomial in x), then the number of points required in they and z directions will 

be much smaller (small IY and lz; low-degree polynomials in y and z). The specific 

69formula Smolyak introduced to achieve this can be written68
, 

2u(L)[f]= L (-l)L-1'~( \,(1%)®u('y)®u(',)[f] 
{L-2sj1j

1
sL} L-1111[ (2.3.12) 

1•11 =Ix +/y +/z 

The number of points in Smolyak quadrature rules is similar, in the asymptotic limit of 

high accuracy, to the number of points in many-dimensional Gaussian quadrature 

formulae. 
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Figures 2.1 b and 2.1 c show the L = 6 Smolyak grid built using the rectangle rule 

(1,023 points) and the Clenshaw-Curtis rule (271 points), respectively. Even though these 

grids have many fewer points than the full tensor-product grid in Figure 2.la, all three 

grids have the same order of accuracy. 

Recall that many of the pruned atom-centered grids commonly used in DFT calculations 

can be written as the sparse-tensor product between a radial grid and the Lebedev angular 

grids.7
•
13

-
24 In those cases, the order of the angular grids associated with different radia~ 

shells is chosen based on empirical or numerical criteria, in a way designed to give 

optimal accuracy with the minimal number of points. Our sparse tensors are derived from 

formal mathematical considerations, and are not tuned to the specific system of interest. 

This is both a strength of our approach (our approach is more universal) and a weakness 

(our grids are not explicitly optimized). 
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Figure 2.1 Grids on the unit cube [0,1]3 and molecular grids in real space for Ni at its equilibrium bond 
length. Only the grid points that lie in the zy-plane are shown. (a) Tensor-product rectangle rule with L = 6. 
This grid has 250,047 points. (b) Smolyak sparse-tensor product rectangle rule with L = 6. This grid has 
1,023 points. ( c) Smolyak sparse-tensor product Clenshaw-Curtis rule with L = 6. This grid has 151 points. 
(d) Transformed full-tensor product grid, in units of Angstroms, for the Ni molecule. (e) Transformed 
Smolyak rectangle rule grid. (f) Transformed Smolyak Clenshaw-Curtis grid. 
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2.3.3 Transformation of coordinates 

A. The Conditional Distribution Transformation Method 

Using the methods from the previous section, we can obtain a grid on the unit 

cube, [O, 1 ]3
• The integration region of interest in the theory of molecular electronic 

structure is real space. We can transform our integration formula on the unit cube, 

I I I ML 

J J Jt(x,y,z}Jxdydz ~ L wJ(x;,Y;,z) (2.3.13) 
0 0 0 i=l 

into an integration formula in real space, 

00 00 00

J J fg(X,Y,z)(x,Y,Z}fxdYdZ 
--00 --00 --00 

(2.3.14)
(ML ~ oo oo oo 

~l~wig(Xi,}~,zi)J x 111P(X,Y,Z)txdYdZ 

using a coordinate transformation based on the conditional distribution method. 74 Here 

P(X,Y,Z) is any positive integrable function. The distribution of the grid points in real 

space is obtained by solving the equations, 
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X; co oo

ff f P(X,Y,Z)txdYdZ 
X. (X )= _-«>-«>_-«>___ 

I I UlCOCO

ff f P(x,Y,Z)txdYdZ 

(2.3.15) 


z;

fP(x;,Y;,z)txdYdZ 

z; (x;,~,Z)= --:-------
fP(X;,~,Z )ixdYdZ 

Equation (2.3.14) is derived by noting that the Jacobian determinant for this 

transformation is just 

IJI = "' ''"" P(x,Y,z) (2.3.16) 

ff f P(X,Y,Z)txdYdZ 

The grid points in real space are concentrated in regions where P(X,Y,Z) is relatively 

large and depleted in regions where P ( X, Y, Z) is relatively small. If the distribution of 

grid points on the unit cube were uniform, then the probability distribution function of 

grid points in real space would be proportional to P(x,Y,z). The transformation used by 

Perez-Jorda is a special case of this general formalism. 63 We have also used this 

transformation in some ofour previous work. 104 
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Notice that points on the surface of the unit cube are mapped to infinity by this 

transformation. We will neglect all the points that are mapped to infinity in our grids. 

This means that our grids are only appropriate for integrals with the form ofEq. (2.3.14) 

if g(x",Y,Z) decays to zero at the boundary of the interval. This constrains the choice of 

P(X,Y,Z) somewhat. 

It is ideal, in fact, for both g(X,Y,z) and all of the derivatives of g(X,Y,z) to 

be zero asymptotically, e.g., g(X,Y,z) could decay exponentially. In that case, the 

correction terms in the Euler-McLaurin expression that depend on derivatives of the 

function at the boundary of the interval will always vanish. In such cases, the rectangle 

rule integration method is expected to be highly accurate. 

B. The Promolecular Density 

What is the best choice of P(X,Y,Z)? In general, one should choose P(X,Y,z) 

to resemble the integrand of interest. In that case, the function g(X,Y,z) in Eq. (2.3.14) 

will be nearly constant or, failing that, at least readily approximated by a low-order 

polynomial. In such cases, accurately approximating the integral in Eq. (2.3.14) does not 

require a large integration grid. 
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The integrands that are considered in DFT calculations are "density-like," and are 

often naturally decomposed as the product of the electron density and another function. 

For this reason, it seems reasonable to guess that the best choice for P(X,Y,z) is the 

molecular electron density. Of course, the molecular electron density is not known until 

after the computation is performed. However, the promolecular density, 

N..,,ms 

p fR)= JO fR)= "'°' €solated){R- R )~ fR) (2.3.17)
\.: P \.: L...i Pa \.: a Pmolecule \.: ' 

a=l 

is a reasonably accurate approximation to the true molecular density for most molecules. 

The promolecular density is defined as the sum of the densities of the isolated atoms, 

with each atomic density centered at the location of the corresponding atomic nucleus, 

Ra .105 In our work, the atomic densities are approximated using the s-type Gaussian fits 

of Constans and Carbo, 

p~isolated)(R)= fN 

Ciae-P;aR2. (2.3.18) 
i=l 

The coefficients and exponents in the Constans-Carb6 fits are obtained by fitting atomic 

densities obtained at the HF/6-311 G level.106 These fits are very convenient for our 

purposes because it is easy to perform the indefinite integrals that arise in Eq. (2.3.15) 

when P(X,Y,Z) is expressed as a sum ofs-type Gaussian functions. 
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Figure 2.ld shows the transformed full-tensor grid (from Figure 2.la) for the N2 

molecule at its equilibrium geometry. Figures 2. le and 2. lf show the corresponding 

Smolyak grids (from Figures 2.lb and 2.lc). The points are concentrated near the atomic 

nuclei because this is where the promolecular density is the highest. 

When a geometry optimization is performed, the promolecular density changes at 

each iteration (because the atomic nuclei move) and thus the grid changes. (The same is 

true in atom-centered grids, because the fuzzy Voronoi polyhedra are altered by changes 

in molecular geometry.) As is common in DFT implementations, the Pulay-type forces 

associated with the change in the grids induced by changes in molecular geometry are 

neglected; this omission is always acceptable if the grid is accurate enough. One can have 

convergence difficulties if the grid is not accurate enough, however, so geometry 

optimization provides a good test for the accuracy ofan integration grid. 

2.3.4 Interpretation 

There are two equivalent ways to interpret the integration method here proposed. 

One way-perhaps the simplest-is to think of this approach as a "coordinate 

transformation" approach, in which a real-space integral is transformed to [O, I ]3
, and 

integrated over that region. The other approach is to interpret this as a real-space 

integration method. This is the way that the authors usually think of matters, since it is 

easier for us to imagine electrons moving in real space. In fact, we initially attempted to 
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construct the Gaussian cubature grid associated with the orthogonal polynomials built 

with respect to the inner product, 

(111Pi) = [ [ [[11(x,Y,z)J(x,Y,Z)} tf00 (x,Y,Z)1xdYdZ. (2.3.19) 

The advantage of this approach is that it would yield well-defined expressions for the 

error in the integration grids in terms of the "implicit" basis set underlying the grids, as 

described in section II.B.1.. While such a grid would be ideal for our purposes, it seems 

very hard to construct. The approach presented here is a pragmatic alternative. The basis 

functions that are "implicit" in the current construction of the grids are not polynomials, 

but instead the coordinate-transformed polynomials from the unit cube, 

where the coordinate 

transformation is defined as in Eq. (2.3 .15). While we find this interpretation 

conceptually useful (perhaps because we tend to favor basis-set-based reasoning), it does 

not seem mathematically useful for understanding the accuracy of these integration 

formulae. For that, it seems, one needs to consider this method as "transforming the 

problem to the unit cube, where efficient grids are known" rather than "transforming 

efficient grids from the unit cube to real space." 
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2.4 Results and discussion 

The grids generated by the preceding procedure were incorporated into an in

house version of the deMon2k program76 and used to evaluate the exchange-correlation 

energy (Eq. (2.2.l )) and exchange-correlation potential (Eq. (2.2.2)) integrals. We 

compared the results to the deMon2k reference grid, which is a highly accurate atom

centered grid using 200 radial shells, each of which carries the Lebedev angular grid with 

1202 angular points.24 

To establish the superiority of the Smolyak procedure over conventional tensor products, 

we performed a thorough comparison of the two techniques. Figure 2.2 shows the results 

for the H2 molecule. Notice that the Smolyak grids are orders ofmagnitude more efficient 

than the full-tensor grids: the Smolyak grids achieve much higher accuracy in both the 

exchange-correlation energy and the total SCF energy for a given number of grid points. 

Both grids achieve better relative error for the exchange-correlation energy than the SCF 

energy; this probably indicates that the grids are better suited to integrating the exchange

correlation energy than they are to integrating the exchange-correlation potential. This is 

not that surprising, since the exchange-correlation potential is often more strongly peaked 

near the nucleus than the local exchange- correlation energy. (As an extreme example of 

this phenomenon, consider that the exchange-correlation potential diverges at the nucleus 

for GGA-type functionals.) 
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To determine whether it was better to choose the Clenshaw-Curtis or the rectangle 

rule to construct the Smolyak grid, we considered a set of five representative molecules: 

H2, N1, H20, CRi, and C02. Figure 2.3 presents the dependence of the average absolute 

error in the computed exchange-correlation energies for these molecules on the number 

of grid points per atom. The full tensor grid is significantly less efficient than either of the 

Smolyak-type grids, and the rectangle rule grids converge significantly faster than the 

Clenshaw-Curtis grids. As discussed above, the rectangle (a.k.a. Euler-MacLaurin) rule 

-2 

-3 

-5 

-6 

-7-r-~~.....-~~~~~-.,...~~-..~~---.~~~..-~~-r--~~...,..-~~~ 

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 

Log[number grid points per atom] 

_Figure 2.2 Logarithm (base-10) of the relative error in the exchange-correlation energy 
(closed symbols) and the total electronic energy (open symbols) versus log10(number of 
grid points per atom) for the Hydrogen molecule at its equilibrium geometry. Notice that 
the full-tensor grid (triangles) is much less accurate than the Smolyak grid (circles) for a 
given number of points. 
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will be very accurate when the derivatives of the functio~ g(R), in Eq. (2.3.14) are 

asymptotically uniform. In the case of the exchange-correlation energy, 

g (R)= cxc (R)/pPro (R) decays exponentially as R~ oo , and so all of the derivatives of 

g(R) are zero (and thus match) at the endpoints of the integration interval. This is the 

best possible case for the rectangle rule. Note, however, that there could be problems 

when the specific Gaussians used in the promolecular fits decay more quickly than those 

used in the basis set expansion of the Kohn-Sham orbitals. Although this is not a 

problem for any of the molecules considered in the present study, we observed that our 

results are less accurate for molecules in which the asymptotic decay of g(R) is slower. 
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Figure 2.3 The average absolute error in the exchange-correlation energy for a set of five 
representative molecules (H2, N1, H20, C02, CH4) versus log10(average number of grid 
points per atom). Data is presented for the tensor product grid(-~-), the Smolyak grid 

built from the Clenshaw-Curtis formula (--o-), and the Smolyak grid built from the 

rectangle-rule formula (-o-). The units ofenergy are Hartree. 

Having identified the sparse rectangle rule as the most promising integration 

formula for our purposes, we computed the atomization energy and exchange-correlation 

energies for the larger set of molecules given in Table 1. The convergence of these 

energies towards the reference value is satisfactory, as is shown in Figure 2.4. 
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_Figure 2.4 The average absolute error in the exchange-correlation energy (-o---) and 
the atomization energy(-•-) versus log10(average number of grid points per atom) for 
the molecules in Table I. The units of energy are Hartree. 

Table 2.1 contains the results of our tests of the Smolyak grids for geometry 

optimizations. Both bond length and angles obtained using sparse grids are in good 

agreement with the accurate deMon2k reference grid. Except for LiH and Cu2, 

equilibrium bond lengths obtained using the Smolyak grid differ from the reference 

values by at most 0.002 Angstroms. It may be significant that Lithium and Copper are the 

two atoms for which the asymptotic condition on the integrals are most nearly violated. 
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More probably, the error in Cu2 is indicative of a general problem that occurs for 

molecules containing heavy atoms: in these cases it is probably unwise to choose the 

promolecular density to distribute the grid points, because this leads to an extreme 

concentration of grid points in the (chemically unimportant) core regions and substantial 

depletion of grid points in the chemically relevant valence regions. 

The error in LiH may arise from the fact that the hydrogen atom in LiH has a 

much higher density than predicted by the promolecular approximation; thus there are not 

enough grid points in the vicinity of the hydrogen atom in our grids for LiH. 

The Smolyak grids reproduce bond angles very well. The largest difference from 

the reference grid is 0.2 degrees (for formaldehyde); the error is an order of magnitude 

smaller for all other molecules. 

Comparing the computed results to the experimental geometries reaffirms the 

well-known fact that the local density approximation gives remarkably accurate 

107 108 It · ' · · · that th Smo y .ds h . .fi l ewergeome nes. t 1s mterestmg to note e l ak gn ave s1gn1 1cant y fi 

points than the deMon2k reference grids, but still give excellent results. 
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Table 2.1 Geometries obtained using the rectangle-rule Smolyak grids and the deMon2k 
reference grids with 200 radial shells with 1202 angular points apiece. Bond lengths are given in 
Angstroms and Bond angles are given in degrees. The first row for each molecule reports the 
number of grid points, per atom, in each type of grid. 

Molecule Sparse grid Reference Exp. 
Parameter 

H2 57344 184860 
r(HH) 0.774 0.774 0.741 8 

) 

N2 57344 186179 
r(NN) 1.113 1.115 1.0988 

) 

Cu2 57344 176745 
r(CuCu) 2.181 2.208 2.2198 

) 

UH 57344 185916 
r(LiH) 1.599 1.602 1.5958 

) 

LiF 57344 187305 
r(LiF) 1.556 1.550 1.5648 

) 

co 57344 186700 
r(CO) 1.143 1.146 1.1288 

) 

C02 38229 185275 
r(CO) 1.175 1.175 1.160b) 

H20 38229 183310 
r(OH) 0.974 0.975 0.957b) 

;:((HOH) 105.327 105.334 104.51b) 

NH3 28672 180811 
r(NH) 1.025 1.026 1.012b) 

;:( (HNH) 107.345 107.375 106.68b) 

CH20 28672 182291 
r(CO) 1.212 1.213 1.206c) 

r(CH) 1.123 1.124 1.108c) 

;:((OCH) 121.923 121.726 121.?c) 
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Table 2.1 {Continued} 
Molecule 

Parameter Sparse grid Reference Exp. 

CH4 
r(CH) 

22937 
1.101 

179091 
1.102 1.086d) 

C2H4 . 
r(CC) 
r(CH) 

A. (CCH) 

19115 
1.334 
1.098 

121.538 

179382 
1.334 
1.099 

121.506 

1.339b) 
1.085b) 
121.1b) 

a)Ref.114; b~ef. 115; c)Ref. 116; d~ef. 117 

2.5 Conclusions 

We have introduced a new approach to evaluating integrals in density-functional 

theory based on sparse-tensor grids and the conditional distribution transformation with 

respect to a preselected weight function. In this work, we have used the promolecular 

density as the weight function, which causes grid points to concentrate in regions where 

the electron density is large (atomic cores, heavy atoms, etc.) and causes the grid points 

to become depleted where the electron density is small (light atoms (especially hydrogen) 

and valence regions). While this works satisfactorily it was, in retrospect, rather naive. It 

is particularly problematic in the vicinity of hydrogen atoms (where there are not enough 

grid points) and for heavy atoms (where there are not enough grid points in the valence 

regions to achieve the desired accuracy). 
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This paper is one of the first steps towards a much larger long-term goal-to 

develop a systematic procedure for developing molecular quadrature grids of arbitrary 

accuracy, with applications to density-functional theory and, eventually, ab initio 

quantum chemistry. Here we have focused on the mathematical framework and some 

"proof of principle" calculations of exchange-correlation energies, atomization energies, 

and molecular geometries. The advantages we see in our approach are: 

(a) 	 Our construction is completely general. It can be used for any integral of 

interest, including those of interest to density-functional theorists, but also 

those of interest to other branches of quantum chemistry and, more 

generally, mathematical modeling. Given a "good guess" for an integrand. 

(P(X,Y,Z)), we can fit that guess to a sum of Gaussians (or any other 

function for which the integrals in Eq. (2.3.15) can be performed). The 

integrals can then be evaluated using any of the many highly efficient 

formulae on the unit cube. The Smolyak approach is a relatively easy and 

systematic approach for constructing highly efficient formulae on the unit 

cube. The entire procedure we have sketched here is easily generalized to 

arbitrary dimensions by constructing Smolyak grids on appropriately 

dimensioned hypercubes, and then transforming the grids to real space using 

the conditional distribution transformation technique. 

. 
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(b) 	 The grids have a "whole molecule" nature and are not atom-centered. This 

is essential in systems (e.g., electrons confined in regions of various shapes 

and electrons bound by non-Coulomb potentials) where atom-centered grids 

are not applicable. It is also very helpful for basis-set-free calculations, 

because it facilitates the development of derivatives and other linear 

operators on the grid. (In fact, the Smolyak "trick" can be used to develop 

grid-based expressions for any linear operator, not just integration, and this 

is one reason we have favored Smolyak grids in this work.) Basis-set-free 

calculations performed using these grids are equivalent to basis-set-based 

calculations using a basis set of transformed orthogonal polynomials, 

~~(x)Yi{y(x,Y))Pm~(x,Y,z))Jpira(x,Y,Z). (Cf. section 11.D.) 

These basis functions have the same atomic cusps, asymptotic decay, and 

general nodal structure as Kohn-Sham orbitals, which bodes well for the 

accuracy of such an approach. The ability to relate grid-based calculations to 

basis-set-based calculations is a strength of "whole molecule" grids; it is 

more difficult (but not impossible) to explicitly construct the implicit basis 

set for atom-centered integration grids. 

Before fully basis-set-free calculations are really possible, however, we need to 

answer some of the questions raised in this study. These are topics for future work. 
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1. 	 We saw that the accuracy of the integration formula requires that the weight 

function-here, the promolecular density--decay much more slowly than the 

integrand of interest. (See, for example, the discussion at the end of section 

II.C. l .) Clearly this can be a problem when one uses Gaussian functions, e-ar 
2 

, to 

expand the promolecular density, and it would be an even bigger problem in 

basis-set-free calculations: the electron density and density matrix both decay 

exponentially. 109
-
112 (Thus, they decay exponentially slower than any Gaussian.) 

The indefinite integrals needed for Eq. (2.3.15) can be evaluated analytically for 

the Lorentzian power functions ( ~2 + a2 rn) usi~g partial fractions, and so we 

are currently exploring whether fitting the promolecular density to a mixed sum of 

Gaussians and powers of Lorentzians is a viable alternative to the Gaussian-only 

approach used in this paper. 

2. 	 As stated above, choosing the promolecular density as the weight function was, in 

retrospect, naive. One reason why basis-set-based calculations are so efficient is 

that they exploit the fact that chemistry is dominated by "valence electron" effects 

because (a) atomic cores are transferable and (b) errors in description of the 

atomic cores do not contribute very much to the energy differences associated 

with molecular rearrangements and reactions. We are currently developing some 

approaches that, we hope, will allow us to exploit the transferability of atomic 

cores in molecular cubature grids. If successful, this would allow us to drastically 
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reduce the number of points in the core regions of the molecule, and lead us to 

weight functions with more points in the ''valence regions" of atoms. 

3. 	 It is not clear that the Smolyak grids are truly the best grids for this purpose. 

Recent work in the applied mathematics community has suggested that one might 

be able to use even fewer points. Some of these approaches are based on the 

Smolyak grids, but choose the grid points in a different way. For example, the 

following grids with /=15 are predicted by theory to all have the same order of 

accuracy. 

(a) 	 A full-tensor grid, with 3.51·1013 points. 

(b) 	 A conventional Smolyak grid, with 3,473,407 points. Notice that this is 

ten million times fewer points than the conventional full-tensor grid. 

(c) 	 A Bungartz-Griebel grid with 452,607 points. The Bungartz-Griebel 

grids are related to the Smolyak grids, but are based on minimization of 

a different norm for the error. 113 

(d) 	 A Griebel-Knapek grid with 350,719 points. The Griebel-Knapek grids 

are a family of grids that range from the tensor product grids ( T = -oo) 

through the Smolyak grids ( T = 0 ), to a very sparse grid T =.9 , 

depending on a parameter, T, which reflects how smooth the integrand 

is.86 The number ofpoints listed above is for T =.5. 
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(e) 	 A Petras-style "delayed" Smolyak grid with 1135 points. The Petras

style grids are similar to the Smolyak grids, but some of the one

dimensional quadrature formulae are "reused" for several different 

levels of the many-dimensional grid.97 The number of points in the 

Petras-style grids begins to approach the accuracy/efficiency of a true 

Gaussian cubature formula, which would have between 560 and 816 

points. 

Generating the hypothetically more efficient formulae based on methods ( c )-( e ), 

however, requires writing a different computer program, since these formulae cannot be 

expressed in a form as simple as Eq. (2.3.12). Work along these lines is underway, and 

based on the results listed above, it is reasonable to suspect that such a method might be 

one or two orders ofmagnitude more efficient than the approach used here. 

We should reiterate, however, that the method presented here is already useful. It 

suffices to compute accurate molecular exchange-correlation energies and molecular 

geometries. The method also performs well for geometry optimizations. The biggest 

strengths of the current method, however, are its simplicity and flexibility. The "whole 

molecule" grids constructed here are promising tools for basis-set-free calculations not 

only in density-functional theory, but also in ab initio quantum chemistry (where higher

dimensional grids would be needed). In addition, the accuracy of the grids is 

systematically improved by simply increasing the order of the integration formula on the 
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unit cube. Other-less systematic, but still straightforward-modifications (e.g., 

modifying the weight function and considering alternative sparse grids) should improve 

the accuracy and efficiency of the grids further still. 
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"... But, in addition to this search for new concepts, 


there is a constant effort directed toward the deepening and broadening of 


our knowledge ofphenomena which , we believe, 


can be understood on the basis ofexisting concept and theories." 


E. P. Wigner, Scientific Monthly, Jan. 1936. 

Chapter 3 

A PHYSICALLY MOTIVATED PSEUDO-GAUSSIAN 
CUBATURE SCHEME WITH APPLICATIONS TO 

MOLECULAR DENSITY-FUNCTIONAL THEORY* 

• The content of this chapter was submitted (on 03/27/08) as an article to the Journal of Physics A. 
(Authors: Juan I. Rodriguez, David C. Thompson, James S. M. Anderson, Jordan Thomson, and Paul W. 
Ayers) 
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3.1 	 Statement of the problem 

In this Chapter, the n-dimensional transformed Smolyak: formula is tested. The 

transformed Smolyak grid is tested on integrals in one, two, three, and six dimensions. 

The three-dimensional integration formulae are used to evaluate atomic interaction 

energies via the Gordon-Kim model. The six-dimensional integration formulae are tested 

in conjunction with the nonlocal exchange-correlation energy functional proposed by Lee 

and Parr. We contemplate applications of these grids to diverse fields: frozen-density 

embedding, next-generation molecular mechanics force fields, "kernel type" exchange

correlation energy functionals, and pair-density functional theory. 

3.2 	 Introduction 

One of the most pervasive tasks in modem computational simulation is numerical 

integration. This is especially true in many-body quantum mechanics, where the integrals 

that need to be performed often have high dimensionality and where the integrands are 

often strongly inhomogeneous. Consider, for example, that in order to attain so-called 

"chemical accuracy" for a molecular system (i.e., enough accuracy in an energy 

calculation to predict the rate of a chemical reaction to within an order ofmagnitude), one 

often has to integrate strongly peaked functions very accurately, with relative errors of 

less than .001 %. (For moderate-sized molecules, the "chemically relevant" portion of the 

electron density spans five to seven orders of magnitude.) Such daunting integration tasks 
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would be manifestly impossible were it not for the ability of physicists and chemists to 

"guess" the structure of the integrand based on mathematical conditions and 

physicochemical insight. The goal of this paper is to introduce a general approach that 

leverages prior knowledge about the integrands to design an efficient numerical 

integration method. 

In particular, we will introduce a universally applicable method for performing d-

dimensional integrals, 

(3.2.1) 


where P<!')> 0 is any nonnegative integrable "weight function." This form of 

integration allows one to leverage most of one's knowledge about the integrand of 

interest. In particular, one can ensure that f(r) is smooth by ensuring that the 

analytically-defined P<!') correctly models all of the singularities and 

nondifferentiability of the integrand. (In molecular-electronic structure calculations, for 

example, P<!') should model the electron-nuclear cusps in the electron 

7density/wavefunction.1
- ) Ideally P<!') should be chosen so that J<!') is slowly varying. 

To the extent that this cannot be achieved, then P<!') should be largest in the regions 
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where f (r) varies most strongly. In this way, knowledge of the structure of the 

integrand allows us to construct more efficient quadrature methods. 

But what numerical methods should we use to perform these integrals? In one 

dimension, the answer is clear: Gaussian quadrature formulae with respect to the weight 

function, P(x), will be the optimal integration method. s-u Similarly, Gaussian cubature 

would be optimal in higher dimensions. However, constructing even low-order Gaussian 

cubature formulae is very difficult and time-consuming; such methods are clearly 

inappropriate given the large (usually hundreds; sometimes millions) of integrals required 

in molecular electronic structure theory calculations, which is the application of greatest 

interest to us. (Hall and Rees have done work on Gaussian cubature formulae for atoms12 

and homonuclear diatomic molecules13 
, but their approach seems daunting even for these 

systems, and it is not clear how it can be extended to large molecules. Moreover, it does 

not seem easy to apply their method to arbitrary choices for P(r).) 

While Gaussian cubature formulae are not known for arbitrary choices of P(r), 

Gaussian cubature formulae are known for certain special integration regions and certain 

special weight functions, e.g., the uniformly weighted unit cube. Even when Gaussian 

14 16cubature formulae are not known for a region, other efficient formulae are. - The 

approach we will take uses one of these "almost as good" cubature formulae for the unit 

cube, due to Smolyak. 17 After that cubature formula has been defined on the unit cube, 
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we will transform it to real space using a transformation whose Jacobian determinant is 

P(r), thereby obtaining an efficient cubature formula for integrals with the form of Eq. 

(3.2.1). The mathematical details of the procedure are presented in the next section, 

followed by the results of our numerical tests. We conclude with a short summary of our 

findings and a brief prospectus for future work. 

3.3 Method 

3.3.1 One-Dimensional Quadrature Grids on [0,1] 

It is commonly asserted that, for smooth functions in one dimension, the best 

numerical integration formulae are the Gaussian quadrature formulae. There are many 

different ways to explain why the Gaussian quadrature formulae are "best," but one of the 

most useful is through a discussion of their computational complexity. The computational 

18 19complexity, c(e), is the computational cost required to achieve accuracy e . • The 

integration error when an n-point Gaussian quadrature formula is applied to an r-times 

differentiable function is 

(3.3.1) 

The computational cost is proportional to the number of times the function has to be 

evaluated, n. So 
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(3.3.2) 


These formulae may be derived from the asymptotic decay of the coefficients of the 

orthogonal polynomials that underlie the Gaussian quadrature formulae. It is important to 

remember that these results are asymptotic: they only hold in the high accuracy (l.arge n, 

small e) limit. When lower accuracy suffices, alternative numerical integration 

techniques may be preferable. 

Gaussian quadrature is "optimal" because the results in Eqs. (3 .3 .1) and (3 .3 .2) 

are optimal. Other common formulae are less efficient. For comparison, the 

computational complexity of Monte-Carlo integration, the trapezoidal rule, and 

Simpson's rule are CMc (s): &-2
, CTr (s): &-X, and Csi (s): &-X, respectively. There are 

other one-dimensional quadrature formulae that approach the utility of the Gauss 

21formulae; the Clenshaw-Curtis formula is competitive with Gaussian quadrature.20
• For 

periodic integrands, the trapezoidal rule is a "trigonometric" Gaussian quadrature 

formula; in that context the trapezoidal rule is usually referred to as the rectangle rule. In 

the quantum chemistry community, the rectangle rule is usually referred to as the Euler

MacLaurin formula.22 

In this paper we are primarily interested in quadrature formulae on the unit 

interval, 
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(3.3.3) 


Here, l denotes the order of the quadrature formula, m
1 

denotes the number of points in 

the formula, x; are the grid points in the formula, and w; are the weights. 

3.3.2 Multi-dimensional Grids on (0,1 t 
Numerical integration in many dimensions is intrinsically more difficult than one-

dimensional integration. The error and computational complexity for integrating an r-

times differentiable d-dimensional function is 

(3.3.4)-d/ 
& /r. 

The complexity of numerical integration grows exponentially with increasing dimension; 

this is often referred to as the "curse of dimension." 

It is possible to break the curse of dimension when the function is more than 

"just" differentiable. For example, suppose the integrand has mixed derivatives of order 

r, 

r1i,fli, ...,nd :$ r. (3.3.5) 

This function is more than "just r-times differentiable" because certain special higher-

order derivatives exist, so long as none of the variables is differentiated with respect to 
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more than r times. The integration error and computational complexity for functions with 

bounded mixed derivatives of order r no longer depends on the dimension. In fact, the 

computational complexity is now the same as one-dimensional Gaussian quadrature, 

(3.3.6) 


This optimal computational complexity is achieved by Gaussian cubature formulae. 

Unfortunately, Gaussian cubature formulae are very difficult to construct. Indeed, 

one has replaced one very difficult problem (integration in higher dimensions) with 

another one (determining optimal integration formulae).23 Instead, one usually constructs 

higher-dimensional formulae as the tensor product of the one-dimensional Gaussirui 

quadrature formulae, 

(3.3.7) 

The very commonly used simple product cubature formula, QJ;·d) [/] =Q~:?2 = ..=td=L [/], 

occurs when one integrates in each dimension using the same one-dimensional formula. 

The complexity of the simple-product formula is 

-d/ 
E /r. (3.3.8) 

The simple product rule is optimal for functions that are merely differentiable, but is 

exponentially suboptimal for functions with bounded mixed derivatives. 
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One can do much better than the simple product rule by considering a linear 

combination of simple-product formulae with different orders. In this paper we will focus 

on the Smolyak rule, 17 

QJ~·d) [tl = :L (-1)1-~11 (d-1 JQ~~) __,d [tl 
L-d+lsjti ,;;L q -1•11 (3.3.9)

1

l•I. =I. +12 + ...+Id. 

The Smolyak rule is within a logarithmic factor of the optimal computational complexity 

for both differentiable functions (Eq. (3.3.4)) and for mixed-differentiable functions (Eq. 

(3.3.6)).24
•
25 The Smolyak rule is not optimal, but more efficient formulae are 

significantly more difficult to understand and implement. 26
).

7 There has been some formal 

mathematical work28
"
30 and proof-of-principle applications of the Smolyak method to the 

quantum theory ofelectronic structure.31
•
32

•
33 

Most of the previous work on Smolyak rule has focused on integration over 

hypercubes, 

l l l Mi

J--· f ff(x1'x2,...,xd)dx,dx2... .dxd ~Q~~,d)[f]= 2:wJ(x;). (3.3.10) 
0 0 0 i=l 

The Smolyak rule for hypercubes can be constructed from any one-dimensional 

quadrature formula on [0,1]. Our work was guided by that ofNovak and Ritter, who have 

implemented and tested the Smolyak rule built from the one-dimensional Clenshaw-

Curtis formula34 and the one-dimensional rectangle rule35
. Figure 3.1 shows the 

distribution of points m the 2-dimensional Smolyak-rectangle rule (Fig. 3.la) and 
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Smolyak-Clenshaw-Curtis rule (Fig. 3.1b ). Notice that the Smolyak grids are just simple 

product grids in which most of the points have been pruned away, with the points that 

remain reweighted accordingly. This can be done because for functions with bounded 

mixed derivatives, knowing the detailed behavior of the function in certain regions (e.g., 

along the central lines in the grid) is sufficient to determine the behavior nearby. 

Table 3.1 lists the number of grid points in the Smolyak-rectangle rule and 

Smolyak-Clenshaw-Curtis rule for different dimensions. The number of grid points in the 

simple-product rectangle rule is listed for comparison. Even though the Smolyak 

cubatures have many fewer points than the simple product cubatures, the accuracy of the 

two approaches is similar. 
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Figure 3.1 The location of the points in the 11th order two-dimensional Smolyak grids for 
(a) the rectangle rule and (b) the Clenshaw-Curtis rule. 
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Table 3.1 The number of points, ML, in the Smolyak integration grid of order L built 
from the one-dimensional rectangle rule (RR) and Clenshaw-Curtis rule (CC). For 
comparison, the number of points in a simple product grid (SP) based on the rectangle 
rule is also included. Points on the boundary of the hypercube are not counted in this 
tabulation because they are mapped to infinity by the conditional distribution 
transformation, Eq. (3.3.12). 

1 dimension 2 dimensions J dimensions 6-dimensions 
l RR cc RR cc SP RR cc SP RR cc SP 
J l 1 ( 1 I l l I I 1 I 
2 J I 5 l 9 7 1 27 13 l 729 
J 7 3 17 5 49 31 7 343 97 13 117.649 
4 15 7 49 13 225 111 19 3375 545 37 UxlO' 
5 31 15 129 33 961 351 55 29.1_791 2561 145 8.9xt08 
6 63 JI 321 81 3969 1023 151 2.Sxt!t 1~625 481 6.JxtO"' 
7 127 63 769 193 J6,J29 2815 399 2.ox)Jt 40,193 J5S3 4.2Xl012 

8 2.<;5 127 1793 449 65.025 7423 1023 1.7xl()7 l . .ixl05 4817 2.7xl0-.,.

9 511 255 4097 1025 2.6x!!f: 18,943 2559 J.JXJ011 4.7xl05 14,465 l.8Xl0111 

JO 1023 5JI 9217 2305 1.oxut_ 47,103 6271 1.lxl09 l.5xl0° 42.241 1.1x1ow 

3.3.3 	 The Conditional Distribution Transformation to (-00,00)d 

The Smolyak rule provides an accurate integration grid for the cube, [0,1] d . 

However, we are primarily interested in weighted integrals over all space, Eq. (3.2.1). We 

will use the conditional distribution method36
-
39 to define an appropriate transformation 

of coordinates. Specifically, we define a coordinate transformation 

(3.3.11) 
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with 

Rt 00 00

JJ. .. JP(r.,r2 , ••• ,rd )drd ... dr2d1j 
x ( 1} ) =_;.;;.-oo__;_-oo_-oo....;_______ 

1 ..l'i 00 00 00 

JJ... JP(r.,r2 ,.•• ,rd)drd ... dr2d1j 

oo ooR2JJ... JP(R1,r2 ,r3 , ••• ,rd)drd ... dr3dr2 

.X2 ( R., R2 ) =-:'--:-'----00---------
00 (3.3.12)I J. .. JP(R1,r2 ,r3 , ••• ,rd)drd ... dr3dr2 

R4 

JP(R1,R2 , ••• ,Rd-i'rd )drd 

xd ( R1, Ri•···· Rd)=-:"--------

JP( R1,R2 , ..., Rd_., rd )drd 

The Jacobian determinant for this transformation is 

IJI = 00 p~R) (3.3.13)00 

JJ. .. JP(r)dr 

and so the cubature rule on the unit cube, Eq. (3.3.10), can be rewritten as a rule for 

weighted integrals in real space 

00 DO DO 

JJ... Jg(R)P(R)dr 
-«> -«> -«> (3.3.14) 

~(tw,g(R(x,)))x11··-lP(R)dR 

114 




Ph.D. Thesis - J.l Rodriguez 	 McMaster - Chemistry 

The points in the real-space grid, R(xJ, are determined using the inverse of the 

coordinate transformation in Eq. (3.3.12). 

Notice that this transformation can be used for any integration grid on [O,It. In 

this paper, we will use the transformation for the Smolyak rule, but if better choices were 

available, one could use those grids also. For example, Gaussian cubature formulae for 

the three-dimensional cube are known when the number of points is small, and would be 

16a good choice when a small number of grid points will suffice. 14
- Perez-Jorda 

previously applied the conditional-distribution transformation to the simple-product grid, 

~~).40 

A few of the noteworthy features of this transformation follow. 

I. 	 The transformed grid points are concentrated in regions where P(R) is large 

and depleted in regions where P(R) is small. In fact, for uniformly 

distributed points, the probability of observing a point at R is precisely 

P(R). This property is exploited in some other applications, where the 

conditional-distribution transformation is used for random-number generation 

with respect to the distribution P(R).36 

2. 	 Points on the boundaries of the cube are transformed to ±oo. For this reason, it 

is important to ensure that the integrand in Eq. (3.3.14) decays faster than 
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P(R) asymptotically. (I.e., g(R) needs to decay to zero asymptotically.) 

This is inconvenient because it requires careful selection of the weight · 

function, but it is advantageous because neglecting the boundary points 

reduces the number of grid points. Both the rectangle rule and the Clenshaw-

Curtis rule have points on the boundary of the interval. Those points are not 

counted in the tabulation ofpoints in Table 3.1. 

3. 	 The transformation of coordinates can be performed rapidly if the partial 

indefinite integrals of P(R) in Eq. (3.3.12) can be performed analytically. In 

our work, we use fits ofP(R) to Gaussian-type functions, 

P(R)= I:~:Caie-aa1IR-Ral2 	 (3.3.15) 
a i 

This choice is motivated by the prevalence of Gaussian-type functions in 

3computational models ofmolecular electronic structure.41
-4

The selection of an appropriate P(R) will differ from application to application. 

We are primarily interested in applications to molecular electronic structure; in this field 

the integrands tend to be largest in regions where the probability of observing an electron 

is the greatest (because these regions contribute the largest amount to molecular 

properties). This suggests that it will often be fruitful to choose P(R) to be the electron 

density of the molecule of interest. In general, the electron density is not known until 
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after the calculation is complete, however, so one needs to approximate it. For this 

purpose we will choose the promolecular density:44 the sum of the densities of the atoms 

the molecule comprises, centered at the positions of the associated atomic nucleus, 

N..,ms 

P(R)=Ppro(R)= L Pa(R-Ra) 
a=I (3.3.16) 

~p(R) 

Notice that the promolecular electron density will take the convenient form in Eq: 

(3.3.15) if each atomic density is expressed as a sum of Gaussian-type functions. 

Constans and Carbo have fit the atomic densities from accurate Hartree-Fock calculations 

to Gaussians; we will use their fits in this paper.43 

For the purpose of illustration, consider the two-dimensional H4 molecule, with 

four pseudo-Hydrogen atoms with densities pH (xl'x )= ~e-i~x~+xi centered at (±1, ±1, 
2 

0). (Distances are measured in atomic units.) The points in the transformed Smolyak 

grids corresponding to this "molecule" are shown in Figures 3.2a (rectangle rule) and 2b 

(Clenshaw-Curtis rule). Notice that the points are concentrated in the regions where the 

atomic density is largest (near the atoms) and depleted in regions where the electron 

density is small. 
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Figure 3.2 The location of the points in the transformed 11th order Smolyak grid for the 
two-dimensional "pseudo-Hi" molecule with atoms located at (±1, ±1). (a) The 
transformed Smolyak-rectangle rule from Figure 3.la. (b) The transformed Smolyak
Clenshaw-Curtis rule from Figure 3.lb. 

118 




Ph.D. Thesis - JI. Rodriguez McMaster - Chemistry 

0 2 3 4 5 

log(# of points) 

Figure 3.3 The convergence of the Smolyak formulae for the integral of a 2-dimensional 
Gaussian, Eq. (3.3.17) using the pseudo-Hi grid shown in Figure 3.2. The log1o(relative 
error) rapidly decreases as logw(number of grid points) increases. Results for the 
rectangle rule are reported using closed symbols (-£.-) and results for the Clenshaw
Curtis rule are reported using open symbols (-.6.-). 

When the integrand does not resemble P (r), this provides a stringent test for the 

quality of the grids. Figure 3.3 shows the results obtained by using the pseudo-Hi grid to 

integrate a simple Gaussian function, 

(3.3.17) 
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As the number of points in the Smolyak grids increases, the results of the integration 

rapidly converge to the correct value. 

0 2 3 4 5 6 


log(# of points) 

Figure 3.4 The convergence of the Smolyak formulae for integrating the Gaussian in Eq. 
(3.4.1) using the weight function given in Eq. (3.4.2). The plot shows log1o(relative 
error)) versus log10(number of grid points). The rectangle rule results are denoted by: 1

dimension (-•-); 2-dimensions (-A-); 3-dimensions (-•-); 6-dimensions (
+-). The results for the Clenshaw-Curtis rule are denoted with the analogous open 
symbols. 
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3.4 Results 

3.4.1 Gaussian Function 

To provide a more realistic test of the convergence of the Smolyak formulae, 

Figure 3 .4 presents the results for the convergence for an integrand that is a Gaussian, 

f (x1, x2,... , xd) =fl
d 

exp ( -(d - i +1) xi2) 
i=l (3.4.1) 

=exp(-x; - 2x;_1- 3x;_2- ...) 

with respect to a weight that is also a Gaussian, 

. d 

P(X1,X2,···•xd) =TI exp(-txn. (3.4.2) 
i=l 

Notice that the Gaussian weight decays significantly more slowly than the integrand; this 

is required because we are ignoring boundary points. 

Referring to Figure 3.4, the rectangle rule seems to be much better than 

Clenshaw-Curtis. This may be explained by the tendency for the Clenshaw-Curtis rule t~ 

"bunch up points" near the edges of the integration interval (see Figure 3.lb). This is 

advantageous when the function does not behave well near the boundary of the interval, 

but the function we are integrating here decays exponentially quickly asymptotically. The 

rectangle rule, which has a higher concentration of points in the center of the interval, 

performs much better for this sort of integral. We also observed that the rectangle rule 

formulae seems less prone to round-off error than the Clenshaw-Curtis formulae. 
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3.4.2 The Gordon-Kim Model 

Heartened by the results obtained from this simple test, we decided to explore the 

efficiency of the transformed Smolyak integration grids for the types of integrals that 

appear in density-functional theory. Our first test uses the simple density functional 

theory model ofmolecular interactions proposed by Gordon and Kim. 45 In this model, the 

interaction potential between two atoms, one of which (denoted a ) is centered at the 

origin and the other of which (denoted p) is centered R atomic units away, is 

approximated as 

(3.4.3) 

In this equation, the electron density for atom a, Pa (r), is centered on the origin; the 

electron density for atom p is centered on the z-axis, R units away. The first fotir terms 

in Eq. (3.4.3) are just the electrostatic interactions between the nuclei, between the 

electron densities of the isolated atoms, and between the electron densities of each atom 

with the other nucleus. These terms capture the electrostatic contribution to binding in the 

"frozen density approximation." The frozen density approximation is accurate when the 

atoms are so far apart that their electron densities are not significantly polarized. 
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The last three terms in Eq. (3.4.3) are the non-additive contributions to the kinetic 

energy, the exchange energy, and the correlation energy, respectively; these are defined 

by subtracting the value of the function for the molecule from the value of the functional 

for the atoms, 

(3.4.4) 

The non-additive contributions are usually evaluated using explicit Thomas-Fermi-like 

functionals. Here we have elected to use the Thomas-Fermi kinetic energy functional46 
,4 

7 

(3.4.5) 


the Mc Weeny reparameterization48 of the Wigner correlation functional49 

E;"'[P] ~- f i'3 (r) , dr, (3.4.6) 
2.946 + 9.652~ (r) 

52 54and the Dirac exchange functional50
- with the Rae53

' seif-interaction correction55 

factor, 

(3.4.7) 

N denotes the number of electrons. Rae's correction factor is obtained by solving the 

equation53
•
54 

(3.4.8) 
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and then computing 

K{N)= l-~8+282 -183 
• (3.4.9) 

To evaluate the Gordon-Kim expression for the interaction energy, we need an 

accurate expression for the ground-state electron densities of the isolated atoms. We have 

again used the Gaussian _atomic density fits of Constans and Carbo,43 

(3.4.10) 


One advantage of this form is that the electrostatic contributions to the energy can be 

evaluated analytically, so only the non-additive terms in Eq. (3.4.3) require numerical 

integration. While the Constans-Carb6 fits are not accurate enough for truly quantitative 

results, they are certainly sufficient for testing our integration techniques. 

The last three terms in Eq. (3.4.3) need to be evaluated numerically. To do this, 

we construct the promolecular density (cf. Eq. (3.3.16)) from the Constans-Carb6 

densities and, as described in section II.C, use this as the weight function for the 

conditional distribution transformation. Since the promolecular density depends on the 

position of the atoms, the transformed-Smolyak grids adapt to changes in the internuclear 

distance by placing more points in regions where the density is the highest (near the 

atomic nuclei) and fewer points far from the atomic nuclei. 
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Figure 3.5 Smolyak formulae of various orders, L, are used to construct the potential 
energy of interaction for the H2 molecule from applying Thomas-Fermi-Dirac-Mc Weeny 
Gordon-Kim model to the Constans-Carbo atomic density fits. (a) Rectangle rules. (b) 
Clenshaw-Curtis rules. The reference data was obtained using third-party software. 
(Mathcad). 
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In Figure 3.5 we compare our results for the H2 molecule to the values we 

obtained using third-party software (Mathcad, with integration tolerance TOL=l0-8 and 

the default Romberg integration algorithm). As the order of integration increases, our 

integration method converges rapidly. It should be noted that the Gordon-Kim model 

fails to describe the substantial electron-density rearrangement that accompanies 

chemical binding in H2, and so this interaction energy curve is not qualitatively correct. 

Our interest in this model is based primarily on its relevance for developing next-

generation molecular mechanics force fields, where models similar to Gordon-Kim can 

be used to model the "repulsive wall" on the potential energy curve that prevents atoms 

59from coming too close together. 56


To evaluate the convergence of our methods in greater detail, we engaged in a 

detailed study of the interaction energy expression for the Neon dimer, Ne2. Some of the 

results from that study are shown in Figure 3.6, where the convergence of the total 

interaction energy and each of its non-additive components are plotted. In Figure 3.6, we 

plot the approximate "number of digits of accuracy" in the formula, which we define 

through 

(3.4.11) 


Here QL denotes the result from the integration formulae of order Land Q,, denotes the 

infinite-order limit. Since Q.., cannot be computed explicitly, we replaced this value with 
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the result from the highest-order calculation we performed, QL . Especially at low 
max 

orders, the resulting plots provide a faithful representation of the rate ofconvergence with 

increasing number of points in the integration grid. Examining Figure 3.6 in more detail, 

one observes that the rectangle rule typically performs better than the Clenshaw-Curtis 

rule, although the difference in performance is usually not as dramatic as it was for the 

simple Gaussian test function. The rectangle rule converges more rapidly for the 

exchange energy than it does for the kinetic energy, which is not surprising since ~ (r) 

resembles the promolecular density used to construct the grid more closely than ~ {r). 

The correlation energy component converges most slowly, which indicates that its 

relatively complicated functional -form does not mimic the promolecular density very 

strongly. All of these results reinforce the expectation that our integration technique will 

be most accurate when the weight function, P(R), used to transform the grid strongly 

resembles the integrand of interest. 

The largest component of the total interaction energy expression is the kinetic 

energy component. Thus it is unsurprising that the error in the total interaction energy is 

dominated by the error in the non-additive kinetic energy. 

It should be stressed that the Gordon-Kim model represents a very strenuous test 

of our grids. For example, the non-additive contribution to the kinetic energy is 400 times 

smaller than the kinetic energy of the promolecule. In practice, this means that obtaining 
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four digits of accuracy in the molecular interaction energy requires at least seven digits of 

accuracy in the integrals. 

o~::::::::~:::::::::::::_~~~-~~-~~~-~-_.; a) 
2 	 2.5 3.5 4 4.5 5.5 6 6.5 


log(number of points) 


b) 
2.5 3.5 4 4.5 5.5 6 6.5 

log(numbw of points) 

Figure 3.6 The number of digits of accuracy when Smolyak grids of various orders are 
used to evaluate the Thomas-Fermi-Dirac-McWeeny Gordon-Kim model of the Ne2 
interaction potential using the Constans-Carbo atomic density fits. The number of digits 
of accuracy (see Eq. (3.4.11) and the surrounding discussion) is plotted versus 
log1o(number of grid points). Results for both the rectangle rule (closed symbols) and the 
Clenshaw-Curtis formula (open symbols) are reported. (a) Results for total interaction 

potential (-•-) and the non-additive kinetic energy (---+---). (b) Results for the non
additive exchange energy (-•-)and the non-additive correlation energy (---.A---). 
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3.4.3 The Gaussian Model for the Exchange Energy 

The favorable results for molecular interaction energies suggests that transformed 

Smolyak grids are more generally applicable, particularly in the context of density

functional theory. Here we will consider an application to a six-dimensional "kernel

type" approximation to the exchange energy density functional. 

Kernel-type density functionals allow us to write the exchange-correlation energy 

in terms of the exchange-correlation hole, and thus facilitate the direct probabilistic 

interpretation of exchange and correlation effects. Such functionals have a long and 

distinguished history, dating back to the weighted density approximation. 60 
-6 

6 Progress 

has been impeded by the computational cost of performing six-dimensional integrals but, 

despite the cost, there has been a recent resurgence of interest in kernel-type functionals. 

Part of that interest is based on the explicit nonlocality of kernel-type functionals, which 

make it possible to model systems where the exchange-correlation hole is spatially 

68delocalized.67
' This seems to be particularly important for describing dispersion 

73forces.69
- There is also interest stemming from the closely-related pair-density 

functional theory, in which the exchange-correlation hole and the electron density are the 

79fundamental variational parameters. 74


It is difficult to test whether the transformed Smolyak grids can be applied to this 

problem because of the absence of accurate numerical data to compare to. However, the 

6-dimensional Gaussian-kernel model of Lee and Parr is equivalent to a three
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dimensional model.80 Therefore we can ascertain the accuracy of our numerical 

integration procedure by comparing the results we obtain from, 

-1 ( nlr- r'l 2 l 1
E;P[P]=-Jfp2 (r;r')expl- X -% Jxl ldrdr', (3.4.12)

2 2 3 P 3 (r;r·) r - r' 

to the results of the Dirac-type exchange energy functional, 

(3.4.13) 


The values of the three dimensional integral, (3.4.13), may be inferred from the results 

obtained from the Gordon-Kim model. (Compare Eqs. (3.4.7) and (3.4.13).) To evaluate 

the six-dimensional integral, (3.4.12), we choose the weight to be the product of the 

promolecular densities, P(r,r')= ppro (r)Ppro (r'). A disadvantage of this symmetric form 

is that points where r = r' occur in our integration grid; this causes problems because the 

integrand in Eq. (3.4.12) is singular at these points. This can be circumvented by 

decomposing the functional into short-range and long-range pieces, 

(3.4.14) 


The short-range and long-range pieces are defined using the complementary error 

function and the error function, respectively: 

nlr - r'l
2 lJ erfc(ulr - r'I) d , 

2/ 2/ I drr.x 
213 p-/3 (r;r') Ir- r' 

(3.4.15) 
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(3.4.16) 

A three-dimensional density-functional model for the singular "short-range" functional 

83using the time-honored, but tedious and difficult, approach.81
- The integrand of the 

"long-range" functional is not singular and it can be evaluated numerically. Figure 3.7 

shows results for the Neon dimer obtained using the Smolyak-rectangle rule of various 

orders, L. Notice that as µ increases, the value of the integrand approaches the accurate 

value computed from Eq. (3.4.13). For the higher values of µ considered here, th~ 

integrand is very strongly peaked where r ~ r' ; this is why the order of integration 

needed to obtained converged results increases rapidly as µ increases. Fortunately, it is 

possible to develop very good short-range functionals, so the value ofµ can remain quite 

small. 
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Figure 3.7 The long-range contribution to the exchange energy, Eq. (3.4.16), for the 
Neon dimer with internuclear separation 2.5 a.u. is computed using the Smolyak
rectangle rule integration of various orders, L, for different values of the range separation 
parameter, µ. Atomic units are used. 
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3.5 Summary 

We have developed an efficient method for general multi-dimensional integrals 

with respect to arbitrary weight functions (i.e., integrals with the form ofEq. (3.2.1 )). Our 

approach uses the Smolyak method to first construct cubature grids on the cube, [O,l]d 

(cf. Eq. (3.3.9)) and then uses the conditional distribution transformation to generate 

integration grids in real space with respect to any given weight function (cf. Eq. (3.3.12)). 

The integration grids converge rapidly to the correct answer. We applied the grids to the 

Gordon-Kim model for atomic interactions45 and the Lee-Parr Gaussian model for the 

exchange energy.80 

These calculations can be seen as "proof of principle" studies for two areas where 

we see this method having broad applicability. The Gordon-Kim calculations are directly 

relevant to the field of frozen-density embedding, where "improved" Gordon-Kim 

models are used to model non-covalent interactions between solutes and solvents, metals 

84 88and ligands, etc .. - More generally, the quality of our results for the Gordon-Kim 

model indicates that this method will be generally useful for the evaluation of density 

functionals. It would certainly be interesting, for example, to study more sophisticated 

kinetic-energy functionals. It is of greater direct interest, however, to consider using the 

transformed Smolyak grids as the default integration method for evaluating the exchange

correlation energies and exchange-correlation potentials in Kohn-Sham density
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functional theory. We performed such studies and obtained excellent results; those 

findings will be reported separately.33 

The application to nonlocal, kernel-type, exchange-correlation functionals shows 

that this integration method may be profitably used for six-dimensional integrals. While 

nonlocal exchange-correlation functionals are indubitably of great current interest, 60
-
66 the 

same methods are relevant to "generalized" density-functional theories, 89
'
90 most notably 

the pair-density functional theory74
-
79 and the first-order density matrix functional 

93theory.91
- We are currently working on applications in both nonlocal exchange

correlation density functionals and pair-densi~ functional theory. 

At the mathematical level, we are examining methods for improving the 

efficiency of our numerical integration grids. For example, would it be helpful use the 

"promolecular" exchange-correlation energy density (instead of the promolecular 

electron density) as the weight function for the transformation? How well do other 

sparse-grid methods work? Are there better one-dimensional formulae than Clenshaw

Curtis and the rectangle rule? Answering these questions will help us advance toward an 

"optimal" numerical integration method for electronic structure modeling. 
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" ... neither of us probably know anything that is really good, but he thinks that he has knowledge, when 
he has not, while I, having no knowledge, do not think that I have. I seem, at any rate, to be a little 

wiser than he is on this point: I do not think that I know what I do not know" 
Socrates. 

Socrates' Apology, Plato. 

Chapter 4 

A NOVEL GRID -BASED APPROACH TO THE 
ELECTRONIC STRUCTURE PROBLEM: 

INTERPOLANTS AND DERIVATIVES* 

• The content of this chapter .was already published: J. S. M. Anderson, J. I. Rodriguez, D. C. 
Thompson, and P. W. Ayers in Quantum Chemistry Research Trends. Mikas P. Kaisas (Editor). New 
York: Nova Science Publisher, 2007 (see next page). 
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4.1 Statement of the problem 

The preceding chapters demonstrate that the transformed Smolyak grid is 

effective for numerical integration of types of functions that arise in molecular 

electronic structure theory. In this chapter we develop methods for interpolation and 

differentiation, which are the other fundamental operations required for fully-

numerical solutions of the electronic structure problem. We shall investigate the 

performance of our method across a wide range of relevant functions as a function of 

spatial dimension and the number of grid points. These results provide the essential 

methodology for basis-set-free approaches to the electronic structure problem. 

4.2 Introduction 

The fundamental problem of molecular electronic structure determination, or 

the solution of the underlying equations governing the behavior of electrons, 

traditionally involves computing accurate approximations to the ground state 

electronic wavefuction 'I'(xw..,xN). Here, X; represents the spin-resolved spatial 

coordinate, X; =r;s; . Once determined, all observable quantities are accessible from 

the wave function via direct integration: 

Q['I'] =L JJ... J['I'*(xP ... ,xN)Q'I'(xw··•xN) ]dr1 ••• drN, (4.2.1) 
s, 

with the quantum-classical correspondence principle providing a link between the 

property Q and its Hermitian operator. The Hamiltonian operator is of great 
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importance, allowing us to detennine the energy spectrum of the system. For a system 

of N electrons and M nuclei, in atomic units, and within the Born-Oppenheimer 

approximation, this operator is written as: 

(4.2.2) 

One can then obtain the total energy ofthe system through 

(4.2.3) 


M-l M Z Z 
= L L p +('I'IHl'I').a 

a=l P=a+l IRa -RP I 

To determine 'I' a variational construct is employed: we know that no ''trial" wave 

function, 'I', has a lower energy than the exact ground state, 'I'gs : 

(4.2.4) 


Thus, minimization of E.1.J'I'], with respect to 'I' , such that 'I' is constrained to be 

normalized and anti-symmetric with respect to exchange of spatial and spin 

coordinates, yields the exact ground state energy. 

Unfortunately, application of the Hamiltonian operator to the electronic wave 

function results in a second-order partial differential equation in 3 N real-valued 

coordinates and N dichotomic spin coordinates. The ground state is thus inaccessible 

except for small or model systems.1
-6 Moreover, the scaling of the computational cost 

is exponential with respect to N . Given this limitation, most chemically relevant 
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processes of biological activity are outside the scope of this traditional wave function 

based methodology. Clearly the root of this problem lies in the high dimensionality of 

the wave function. Should a molecular system, and its properties, be accessible 

through a function (or functional) with fewer coordinates, then some of these 

problems encountered when determining the electronic structure of large systems 

could be circumvented. It is in this light that we now tum to density-functional theory 

(DFf), wherein the key descriptor of the system is the ground state electronic density. 

4.2.1 Density-Functional Theory 

In the encompassing theorem of Hohenberg and Kohn it is demonstrated that, 

like the wave function, the ground state's electron density determines all of the 

properties of an electronic system in its ground state.7 This remarkable result is 

achieved as follows: we recall that the number of electrons is determined directly 

from the electron density: 

N[p] =Jp(r)dr. (4.2.5) 

Next, it is demonstrated that the external potential, v(r), is determined directly from 

p(r). With N and v(r) one can determine the electronic Hamiltonian and solve 

Schrodinger's equation for the wave function; all observable properties are then easily 

obtained through Eqn. (4.2.1). Within density-functional theory the independent 

variable has changed from 'l'(xw..,xN) to p(r). We have reduced the space of the 

solution to three spatial variables (from 3 N spatial and N dichotomic in the wave 
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function formulation). However, the following problem remains: the Hohenberg-

Kohn theorem is one of existence and it gives no clue as to how to determine the 

unique ground state electronic density. Indeed, the key result of the so-called 'second' 

theorem of Hohenberg and Kohn, and the foundation of all practical approaches, is 

suitably vague: 

Egs =EJpgs]= ~ E.[p]. (4.2.6) 
all N -electronp(r) 

So the problem of dealing with the 3 N spatial and N dichotomic variables is 

transferred into the lack of knowledge of the energy functional. The core problem thus 

becomes finding suitable approximations to the Hohenberg-Kohn functional, F[p]: 

F[p]= E[p]-Jp(r)v[p;~]dr. (4.2.7) 

A practical solution was presented by Kohn and Sham in Ref (8). One 

constructs the electron density from one-particle orbitals: 

N 

p(r) =LI ¢;(r) 12. (4.2.8) 
i=i 

Applying the variational principle, Eqn. (4.2.6), to the resulting Euler-Lagrange 

equations yields: 

(-.!.v
2 +v(r)+ Jp(r'~ dr' + µxc(P))¢;(r) =&//J;(r). (4.2.9)

2 lr-r I 

These are the so-called Kohn-Sham equations. Here, µxc is the exchange-correlation 

potential, the functional derivative of the exchange-correlation energy functional with 
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respect to the density: µxc = ~EZpJ • The total energy is then: 

(4.2.10) 

The Kohn-Sham equations defined through Eqn. (4.2.9), are to be solved self-

consistently. The difficulty in determining the exact ground state density from this 

formulation has been.recast into the unknown form of the exact exchange-correlation 

energy functional Exe. Progress has been made, and the functional 'zoo' containing 

functionals of varying sophistication, continues to grow.9
-
13 The Kohn-Sham 

formalism has been successfully applied to a wide variety of problems in solid state 

physics, chemistry, biochemistry, and within the field of drug discovery. 1
4-

20 A fuller 

description of DFT, its theoretical development, and its usage within quantum 

chemistry can be found in Re( (21 ). 

A naive implementation of the Kohn-Sham method would result in an O(N3 
} 

scaling tool, and in such cases DFT may only be successfully applied to systems of 

around a few hundred atoms; clearly this limits its applicability as a method for use in 

medicinal chemistry, or biophysics, where the number of particles to treat can be 

orders ofmagnitude greater. A successful treatment of these systems requires methods 

which scale linearly in particle size (and with early onset and a small prefactor). To 

date, research in this area has focused on avoiding explicitly constructing the Kohn-

Sham orbitals, <A, and directly constructing the density instead.15
.22

-
26 Our own 

research is related to the field of linear-scaling DFT calculations and this forms the 
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content of the rest of this chapter. In the following section we discuss the plane wave 

and basis-set approaches for solving the Kohn-Sham equations of DFT; these are two 

commonly used methods for representing orbitals within the Kohn-Sham formalism. 

Basic background on each method will be presented and we shall focus on the relative 

strengths and weaknesses of each approach whilst not discussing the merits/demerits 

of any specific implementation. In section 3 we introduce real space methods, 

specifically adaptive coordinate approaches. In section 4 we present an overview of 

our own method for incorporating coordinate adaptability into a real space formalism 

and then in section 5 we show how this efficiently adapted real space grid can be used 

to perform all of the fundamental numerical operations necessary for performing an 

electronic structure calculation; we concentrate our discussion on the operations 

interpolation and differentiation. In section 6 we present results and discussion and in 

the final section our concluding remarks. 

4.3 Plane wave and basis-set methods 

In the plane wave approach orbitals are expanded in a non-local plane wave 

basis. Core states are modeled using pseudopotentials and allow for a reasonable 

number of plane waves to represent most of the chemical elements found in a 

materials simulation.27 The use of Fast Fourier transform (FFT) techniques when 

dealing with the orbitals and the electrostatic potential is efficacious, and there is no 

dependence of the basis on atom positions. Also, subsequent algorithmic 
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improvements have led to a reduction in the number of steps required to attain self 

consistency.2
8-

29 Rigorous control of the numerical convergence is attained through a 

few parameters, principally the wave vector of the highest frequency Fourier mode, 

k . However, there are a number of drawbacks to the approach. Even with advances in 

pseudopotential methods, strong variations in the potential occur within the core 

region; these are difficult to resolve with a plane wave representation. Moreover, such 

a representation would extend over the whole domain, into areas where such 

resolution would most certainly not be necessary. This is particularly troublesome for 

localized, highly inhomogeneous, systems like clusters, molecules, or surfaces. Here a 

huge amount of effort is expended in modeling the vacuum accurately. The correct 

description of charged systems is also somewhat involved, as a uniform neutralizing 

background needs to be correctly added in order to correctly compute total energies. 

Finally, without a localized orbital representation, the orthogonalization step is seen to 

scale as N 3
• 

In contrast to the use of non-local plane wave methods, one can use a localized 

basis-set representation, typically with either Slater or Gaussian basis functions.30 

Here molecular orbitals are constructed from a linear combination of atomic orbitals 

(the LCAO approximation) and - 30 Gaussians can provide a very accurate 

representation ofa typical first row chemical element. The use of the localized basis is 

somewhat more chemically intuitive than the plane wave approach, which heralds 

from condensed matter physics. 

149 


http:functions.30


Ph.D. Thesis -J.l Rodriguez McMaster - Chemistry 

Both choices of localized function have their strengths and weaknesses:31 

Slater functions have an improved form both close to, and far from, the nuclei; they 

are also more sharply peaked than Gaussian functions. The use of Slater orbitals 

avoids the cumbersome use of contractions of Gaussian functions. Unfortunately, 

most integrals involving Slater functions have to be done numerically, while most 

integrals involving a Gaussian basis are analytically tractable. Gaussian functions also 

have the attractive property that they can be easily differentiated any number of times, 

whilst Slater functions have the complication that this repeated differentiation leads to 

the introduction of factors of 1/r . Irrespective of which function is used, algorithmic 

advances have led to significant advances in the acceleration of the convergence 

34behavior of basis-set self-consistent methods.32
- However, for basis-set methods in 

general, care must be taken to account for basis-set superposition error (BSSE). This 

arises through the overlap of non-orthogonal atom centered functions of composite 

systems. Finally, we note that scaling in basis-set methods can vary but, with recent 

developments, linear scaling for large systems is accessible. 

There also exist hybrid methods, combining the strengths of both the basis-set, 

and plane wave approaches. In the Gaussian/Plane wave method (GPW) the wave 

function is described using an atom centered Gaussian basis, but an auxiliary plane 

wave basis is used to describe the density.35
-
36 This description of the density allows 

for the use of FFT methods to solve the Poisson equation and to obtain the Hartree 

energy in a linear scaling fashion. Whilst the GPW method requires a pseudopotential 
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representation of the core region, the subsequent Gaussian and augmented plane wave 

(GAPW) method allows for all electron calculations. 37 

4.4 Real space methods 

There are a number of key advantages to a real space representation of an 

atomic or molecular. problem, as opposed to either the plane wave or basis-set 

representations described in the preceding section. Firstly, the potential term is 

diagonal in coordinate space, whilst the kinetic term, the Laplacian, is nearly local. 

The near-locality is ideal for linear scaling algorithms and facilitates parallelization. 

Within the real space formalism it is trivial to deal with both finite or charged 

systems. In strict contrast to the basis-set, or plane wave methods, the real space 

approach produces structured highly banded matrices which are efficiently solved 

using multiscale approaches.38
-
39 For an excellent introduction to real space methods 

and electronic structure calculations we refer the interested reader to Ref. ( 40). 

Real space methods are perhaps closest in structure to the plane wave 

approach: both are fully 'numerical' with a few parameters controlling convergence 

(the grid spacing, h, and the wave vector, k, described above). Indeed, the problem 

of resolution within plane wave methods (the difficulty of representing inhomogenous 

systems, or the vacuum) is also found within the real space method and is referred to 

as the adaptability of the grid. For a highly efficient description of an inhomogenous 

system it is beneficial to allow the resolution of the grid to match the requirements of 
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the physical system. This is achieved by an increase in resolution in the grid near the 

nuclei (moving the points in the grid to where the density, or some other such 

representative function, is large). Within the literature there are two strategies that 

have been used thus far: that of 'local refinement' or that of 'grid curving'. The local 

refinement approach has been performed within the context of wavelets,4142 finite 

elements4344 and multigrid methods.4546 As our method is conceptually related to the 

grid curving approach we shall discuss this in somewhat more detail. 

In the ACRES method of Modine et al. 47 standard Cartesian coordinates r are 

related to curvilinear coordinates through a coordinate transformation r(q). The 

change of coordinates maps the regular grid in curvilinear coordinates to an adaptive 

mesh in Cartesian coordinates with a finer resolution where it is needed. This 

transformation of coordinates is different from the more 'classical' coordinate 

transformations (e.g. logx-spherical) in a number of key ways. Firstly, the grid is 

adapted to an arbitrary arrangement of atoms through a linear superposition of the 

grid displacements of each atom. Secondly, the transformation is smooth and 

continuous everywhere. The method implemented in the ACRES program was 

extended into the HARES program although the form of the grid curving remains the 

48 same. We note that this form of grid curving was initially implemented by Gygi49 

using a plane wave basis and within this context has been extended by a number of 

groups.50
•
53 Gygi and Gallo have also recently studied real space approaches using 

curvilinear coordinates and pseudopotentials.54 
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4.5 Grid curving and the Smolyak construct 

We shall now briefly summarize our recent research on grid curving methods 

in electronic structure theory. We shall follow the formalism of Ref. (55) and 

introduce our methodology in terms of multi-dimensional numerical integration, or 

cubature. 

In one dimension, Gaussian quadrature is the best possible integration method 

for integrals of the form: 

JJ(x)w(x)dx, (4.5.1) 

where f(x) has any of the following properties: it is analytic; it is smooth 

(derivatives of all orders exist); it is a polynomial (or is well approximated by 

polynomials), or it has derivatives up to some order, n, with n;;:::: 0. For the first three 

cases, or when n > 0, no other method is comparable. There are numerous closed 

form Gaussian quadrature formulae in one-dimension, however, whilst special cases 

are known of formulae in many dimensions, in general the problem is regarded as one 

ofimmeasurable complexity.56 Notable exceptions to this rule are rules for integration 

on the unit sphere and unit hypercube, with the Smolyak construction being an 

example of the latter; the recent work ofRees and Hall represents another special case 

with an 'atom-like' spherical grid.57 

Before discussing the Smolyak construction in detail, let us recap. The 

problem of numerical integration is such that we seek good approximations to the 
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functional {1 where 

QA/)= Io.it f(x)dx. (4.5.2) 

A near optimal choice was suggested by Smolyak58 and we quote without proof the 

following formulae, henceforth referred to as the Smolyak construction: 

(4.5.3) 

In the above expression d is the dimension of the problem and q, the effort, can be 

thought of as a parameter akin to the grid spacing. Here U; refers to the one 

dimensional quadrature formulae: 

m, 

U;(f) =Lf(x~).a~ (4.5.4) 
j~I 

such that m; E N is known. The a~ and x~ are the weights and nodes of our 

integration scheme. Thus, the Smolyak construction allows us to define an efficacious 

grid for Gaussian cubature on the unit hypercube. Our underlying quadrature formulae 

(the U; 's) will determine the distribution of points throughout the cube, and will be a 

uniform distribution and certainly not adapted for electronic structure calculations 

where the region of interest is now (-oo, oo)a and most of our nodes should be placed 

near the nuclei. However, such a transformation can be constructed in the following 

way. For ease, we begin with the simplest one dimensional example. We define the 

coordinate transformation: 
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Lw(x)dt 
0(x)= . (4.5.5) 

( w(x)dt 

Then, 

f' [.bf(0)d0 = d0f (x)-a;dt (4.5.6) 

= ( f (x)w(x)dt. 

It is noted that the weight transformation function, w(x), simply takes the points from 

[0,1] and distributes them on (-00,00) such that there are many points where w(x) is 

large and few where it is small. This is readily extended to d > 1.59 For instance, for 

d =3, Eqn. (4.5.4) becomes: 

(4.5.7) 


For the purposes of a molecular or atomic electronic structure calculation, a 

suitable weight transformation might be something that looks like a molecular, or 

atomic, density. Consider such a 'molecular' density, 
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N 

w(x)=Pmol(x)= LPa(x-Ra), (4.5.8) 
a=i 

consisting of N atoms with the ath atom at Ra . To simplify this transformation we 

consider atomic densities that have been fit to s -type Gaussian functions 

Pa(x) = L cai exp(-Pai(x-Ra}2)· (4.5.9) 
I 

We use the cai and Pai as generated by Constans and Carbo. (They have generated 

tables of coefficients and exponents fitted variationally using s-function Gaussians to 

1atomic densities from H to Kr at the HF/6-311 G level of theory.60 
-6 ) This weight 

function has the additional advantage that the Jacobian elements are easily computed, 

are lower diagonal, and are trivially related to the weight. 

The transformation we have introduced above is actually the reverse of the one 

we are interested in: it maps points such that ~d ~ [O,I]". To achieve the reverse, we 

couple the transformation with a non-linear equation solver and treat the problem as a 

system of equations. We solve consecutively from 0 1 to 0 d and as the finding of 

each X; is a one dimensional problem, the bisection method is effective. To illustrate 

the adaptive properties of this transformation, in Fig. 4.1 we show the uniform 2 

dimensional grid corresponding to the use of the rectangle rule within Eqn. (4.5.4). 

This grid has an effort ( q) of 9 and is composed of 4,097 points. We define a 

pseudomolecular 2 dimensional CO 2 molecule using Eqn. ( 4.5.9) and perform the 

transformation, and subsequently solve for x, and x2 • Within our weight function we 
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Figure 4.1 A 2 dimensional grid derived from the rectangle rule. The grid 
corresponds to an effort, q, of9 and is composed of 4,097 points. 

have used a carbon atom at (0,0) and two oxygen atoms at (±2,0) respectively. This 

results in Fig. 4.2. It is clear that the points on the uniform grid have been moved 

towards the atomic nuclei, and the grid has been markedly changed. We have shown 

in an earlier publication that these grids are suitable for the kinds of cubature 

necessary for electronic structure calculations.55 In this chapter we extend ·the 

usefulness of this result to encompass the other fundamental numerical operations: 

interpolation, and differentiation. 
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Figure 4.2 The grid in Fig. 4.1 transformed using a 2 dimensional CO 2 pseudo

molecular weight function. The carbon and oxygen atoms are at (0,0) and ( ± 2,0) 
respectively. We observe a higher concentration of points where the weight 
transformation function is large corresponding to the positions of the carbon and 
oxygen nuclei. 

4.6 Grid curving: Interpolation and differentiation 

We begin by noting that any linear operator on a function can be written as: 

n(q)-1 

L[f(x)] ~ L wJ(x;), (4.6.l) 
i=O 

essentially the form shown in Eqn. (4.5.4). Here the effort ( q ), or grid spacing, is 
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subsumed into the function n(q)-1. Now for periodic functions the Fourier series is a 

well known function for interpolation: 

M 
00f (x) ~ +2: ai cos(2njx) +bi sin(2njx). (4.6.2)
2 j=I 

We wish to express this in the language ofEqn. (4.5.4) such that we can approximate 

our function as a sum of weights multiplied by function evaluations at X;. To achieve 

this we will use a discrete Fourier transform to find the coefficients in terms of f(x;). 

In doing so we require that the number of points, X; , is a simple power of two. Thus 

n(q)-1 above becomes 2q -1. We find that our Fourier coefficients are thus: 

(4.6.3) 


2 n-t (2njk)
a0<i<n12 =-L,J(xk)cos -

n k=O n 

2 ~ f( ) . ( 2njk)bi = - L.J X1c sm -
n k=O n 

Note that 

(4.6.4) 
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and 

k 
xk =-. (4.6.5) 

n 

We now have n points with n coefficients that can be solved for. Hence, M in the 

above expression becomes n/2. Substitution of Eqn. (4.6.4) into Eqn. (4.6.2) and 

applying the trigonometric identity 

cos(A - B) =cos(A) cos(B)- sin(A) sin(B) (4.6.6) 

one easily obtains the expression: 

(4.6.7) 

The term in the square bracket is the weight for interpolation, wk, and the 

portion outside is simply the value of the function at the point xk. Having this result it 

is trivial to generate expressions for differentiation. Indeed, the mlh derivative of the 

Fourier series converges pointwise to the mlh derivative of the function if that 

function is at least m times differentiable. 

(4.6.8) 

and 

(4.6.9) 

provide the weights of the first and second derivatives respectively. Integration of 

Eqn. ( 4.6. 7) results in 
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n-1 1£f(x)dx t::J :L- f(xk). (4.6.10) 
k=<> n 

This is just the rectangle rule. 

These results correspond to a function on [0,1], and in order to differentiate a 

function using our coordinate transfonnation we must apply the chain rule. In three 

dimensions, a derivative evaluated on our transfonned grid becomes: 

(4.6.11) 


with the second derivative being 

. (4.6.12) 

The tenns ! and C:~ are computed using the unit cube grid, and the tenns ';:1 

J le J • 

and :J are determined analytically from the fonn of the transformation. 

4.7 Results 

To recap, our method takes the regular Smolyak grid of points, as defined through 

Eqn. (4.5.3), and transfonns it using the d dimensional extension ofEqn. (4.5.5). The 

resulting grid points are now inhomogenously distributed throughout Rd, with 

localization occurring where the transfonnation w(x) is large. To illustrate the utility 

of this approach we have computed interpolants, and both 1 st and 2 od derivatives, of 

a range of functions ofvarying dimension. 
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In Fig. 4.3 we see how the effort, q, of Eqn. ( 4.5.13) affects the log of the 

number of unique points for different dimensionalities. Fig. 4.4 illustrates the 

convergence of the 1st and 2nd derivatives as a function of the number of grid points 

used for the 6 dimensional Gaussian 

/(x) =exp(-3x2 
). (4.7. l) 

6 


9
rn6 


1 


0'----''---'-~.......__~...._~..L.---JL---"~-'-~-'-~-'-~..._--J..____.~__.._~~ 


1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Effort (q) 


Figure 4.3 An illustration as to the rate of growth of the logarithm of the number of 
points as a function of effort, for a range ofdifferent dimensions. 
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Here, 

(4.7.2) 


represents the radius of a d dimensional hypersphere. In this example, the 

differentiation is performed on the untransformed Smolyak grid, with respect to x1 , at 

the point: 

x' =(0.4, 0.2, -0.3, 0.5, 0.01, -0.8). (4.7.3) 

Throughout this article, as a measure of our accuracy, we compute the 

logarithm of the absolute error: 

log( Abs. Error) =log(! JJ!, (x') - fg~1£11 (x') I). (4.7.4) 

For, n = 0,1 or 2 corresponding to interpolation, 1st, and 2nd derivatives respectively. 

We see a systematic improvement in the accuracy of both derivatives with increasing 

number of grid points. We also see that the 1st derivative is computed to a higher 

accuracy than the 2nd, at all numbers ofgrid points. 

How does our method do for a non-trivial function? Consider the 6 

dimensional function: 

g(x) =exp(-3x2
)(x1 +1 +sin(x2)-cos(X;i)+(x4 -3)2 +x;] (4.7.5) 

and its 1 st and 2nd derivatives as computed at x on the untransformed Smolyak grid. 
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0 l st Derivative 

D 2
00 
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-8L----'~--'-~--'-~-'----'-'-~~~....___..____.~_.._~_._~_._~_.____, 

0 1 2 3 4 5 6 
log(No. ofpoints) 

Figure 4.4 Convergence, with respect to the number of grid points, of the l '1 and 2nd 
derivatives of a 6 dimensional function, f(x) (Eqn. 4.7.l), with respect to x1 • The 

derivatives are evaluated at x' =(0.4,0.2,-0.3,0.5,0.0l,-0.8) and are performed on 
an untransformed Smolyak grid. 

Pleasingly, Fig. 4.5 shows much the same behavior with respect to accuracy, as Fig. 

4.4. Again, we observe a systematic increase in accuracy with respect to the number 

ofgrid points. 
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Figure 4.5 Convergence, with respect to the number of grid points, of the 1 •1 and 2nd 
derivatives of a 6 dimensional function, g(x) (Eqn. 4.7.5), with respect to x1 • The 

derivatives are evaluated at xr =(0.4,0.2,-0.3,0.5,0.01,-0.8) and are performed on 
an untransformed Smolyak grid. 
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-3 

0 Ist Derivative 
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Figure 4.6 Convergence, with respect to the number of grid points, of the 1st and 2nd 
derivatives of a 9 dimensional function, h(x) (Eqn. 4.7.6), with respect to x,. The 

derivatives are evaluated at 

x' =(0.1874, 0.003, 0.425, -0.68636, -0.23496, -0.095905, 0.198655, 0.409012, 0.6114) 
and are performed on an untransformed grid. 

In Fig. 4.6 we consider the I st and 2nd derivatives, with respect of x1 , of a 9 

dimensional function 

h(x) =exp(-3x2
) (4.7.6) 

x' =(0.1874,0.003,0.425,-0.68636,-0.23496,-0.095905,0.198655,0.40912,0.6114) 

... (4.7.7) 
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on the untransformed Smolyak grid. In general, as the dimensionality increases, more 

grid points are required to achieve a given level of accuracy. Thus far we have shown 

that our underlying Smolyak grids are well suited to compute derivatives (both 1 st 

and 2nd) of a range of functions, and for very large dimensions. In all cases we have 

examined, the 1 81 derivative is computed to a greater accuracy than the second 

however, in both cases systematic improvements are seen upon increasing the effort, 

q. 

2 

0 1st Derivative 
0 00D 2 Derivative-~ -2a. 

E 
0 
u -4...!,. 
g 

&S 
-6 

~ -
-8 

-10~~.__~.____.~__.~__._~_,_~_._~__._~__._~_._~_._~_._~_._~~ 

0 1 2 3 4 5 6 
log(No. ofpoints) 

Figure 4. 7 Convergence, with respect to the number of grid points, of the 1 st and 2nd 

derivatives of a 3 dimensional function, F(x) (Eqn. 4.7.8), with respect to x1 • The 

derivatives are evaluated at x =0 and are performed on a transformed Smolyak grid. 
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We now investigate our method of computing interpolants and derivatives on 

a transformed grid in Rd . Plotted in Fig. 4. 7 are the logarithm of the absolute errors 

of the computed 1 st and 2 ru1 derivatives of the function 

F(x) = exp(-6[(x1 -0.01)2 +(x2 -0.02)2 +(x3 -0.03)2]) (4.7.8) 

+2exp(-6[(Xi. +0.01)2 +(x2 +0.02)2 +(x3 -0.03)2 
]) 

at the point x = 0, and with respect to x1 • This function is a sum of two 3 dimensional 

Gaussians offset slightly from the origin. The transformation used to map the grid 

from [0,1]3 ~~3 is a single Gaussian, with unit exponent, placed at the origin. The 

subsequent decrease in accuracy, with increasing effort, is attributed to the resulting 

expression involving differences between nearly equal numbers; this function presents 

a particularly challenging numerical example. 

Finally, in Fig. 4.8, for the function F(x), we compute the interpolant and 

both I st and 2nd derivatives as a function of x' where x' =(x1,0.003,-0.523) and 

x1 =0, ... ,1.5 in steps of 0.1. As already seen previously, 

Errorrnte""'iation < Errorst . . < Error nd . . and may be a reflection of the 
·r~ I denvallve 2 denvattve 

cumulative errors arising from subsequent applications of the Fourier approximation. 
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0 Interpolant 

D 1st Derivative 

8 2nd Derivative 

Figure 4.8 The interpolant, 1 st , and 2nd derivatives of a 3 dimensional function, 

F(x) (Eqn. 4.7.8), as a function of x1 • Here x' = (x1,0.003,-0.523) with x1 =0, ... ,1.5 

in steps of 0.1 on a transformed Smolyak grid. 

4.8 Conclusion 

By coupling the Smolyak construction with a novel non-linear transformation 

ofcoordinates, we have shown that the resulting grid can be efficiently utilized for the 

purposes of integration, interpolation, and differentiation. The transformation of 

coordinates has been formulated such that points are moved to where the transforming 

weight function is largest and, one would hope, most relevant. This method joins the 
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collection of adaptive coordinate real space methods; we have demonstrated that 

Smolyak derived grids are thus amply suited to solving problems within molecular 

electronic structure theory where the electronic density is a spatially heterogeneous 

function. 

The numerical results presented here are encouraging. We observe good 

convergence in the accuracy of computed interpolants and derivatives at points both 

on and off of the grid. This convergence is, in general, smooth and concomitant with 

an increase in "effort;" this parameter is analogous to the wave vector in a plane wave 

basis, or the grid spacing in other real space methods. We have shown application of 

this method to a number of functions, of varying difficulty, and of varying 

dimensionality. 

Work continues within our group to improve the utility of these algorithms; 

non-locality is a bane for numerical differentiation and efforts to improve the near 

sightedness of this method are ongoing. 
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"Toda incomprension es fecunda, como os he dicho muchas veces, siempre que vaya acompafiada de un 

deseo de comprender. Por que en el camino de lo incomprendido comprendemos siempre algo importante, 


aunque solo sea que inconprendiamos profundamente otra cosa que creiamos comprender. Meditando sobre 

la cuarta dimension del espacio, llegue yo a dudar de las otras tres, a descubrir que el espacio en que yo 


pensaba, un gran vacio de toda materia, la nada primigenia anterior a todo cuerpo y a toda forma 

geometrica imaginable, no podia tener ninguna dimension. 


El dia que comprenda (pensaba yo) que ese espacio pueda tener tres dimensiones, 

l,por que no comprender que tenga cuatro?" 


Juan De Mairena 

A. Machado, Juan de Mairena, sentencias, donaires, apuntes y recuerdos de un profesor ap6crifo. 

Chapter 5 

AN EFFICIENT GRID-BASED SCHEME TO COMPUTE 
QTAIM PROPERTIES WITHOUT EXPLICIT 

CALCULATION OF ZERO-FLUX SURFACES* 

• The content of this chapter was submitted (on 02/19/08) as an article to the Journal ofComputational 
Chemistry. (Authors: Juan I. Rodriguez, Andreas M. Koster, Paul W. Ayers, Ana Santos-Valle, Alberto 
Vela, and Gabriel Merino.) 
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5.1 Statement of the problem 

As discussed previously, the main goal of this dissertation is to construct efficient 

grid-based methods for DFT electronic structure calculations. These methods are 

primarily used as the numerical integrators for computing molecular and atomic 

properties. In the precedent chapters, the application of our grids focused entirely on 

computing molecular properties (ground state energies, exchange-correlation and 

atomization energies, etc.) and nothing was said about atomic properties. Computing 

atomic properties is an important step in interpreting the results from any electronic 

structure computer program. The chemistry of a molecule (or material) can be understood 

from the properties of atoms therein, e.g., in terms of atomic charges, electrostatic 

moments, polarizabilities, etc.. In this chapter, we introduce a novel grid-based method 

for computing atomic properties within QT AIM. It was implemented in a modified 

version ofdeMon2k. For medium accuracy, our method is the fastest one we know of. 

5.2 	Introduction 

The quantum theory of atoms in molecules (QT AIM), proposed and developed by 

Bader and coworkers, 1•
3 is useful because it provides a formal definition for the concept 

of an atom within a molecule and a method for defining atomic properties based on 
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quantum mechanical principles. In addition, QT AIM provides precise mathematical 

definitions for important chemical concepts like the chemical bond, molecular structure 

and atomic charges. QT AIM is a powerful and beautiful theory because all of these 

concepts are derived from the empirically observable molecular electron density. This 

makes QTAIM more broadly applicable than molecular orbital methods, because QTAIM 

can be used even when electron correlation is very important. Currently QTAIM is being 

used by both theoreticians and experimentalists in fields ranging from solid state physics 

and X-ray crystallography4
-
5 to drug design5 and biochemistry.5

-6 

In QTAIM, a property P(Q) of an atom in a molecule is defined as the 

expectation value of an effective single-particle property density p(r) over its so-called 

atomic basin Q 1
-
2

•
8 

' 

P(Q) = fp(f)ar . (5.2.1) 
n 

The boundaries of the atomic basin are surfaces that satisfy the "zero flux condition" 

vp(f). n =0' where n is the unit vector normal to the surface and p(r) is the electron 

density. The atomic basins often have very irregular shapes, which makes the basin 

integration in Eq. (5.2.1) difficult. 

As examples of atomic properties and property densities, we consider two 

8different definitions for the atomic kinetic energy, 1•

177 




Ph.D. Thesis - J.I. Rodriguez McMaster - Chemistry 

K(Q)=- N 
2Q 
ff...J'P•(i:,Fi, ...,fN)V12'P(r,Yi, ...,fN)d0_ ...dfNdf, (5.2.2a) 

G(Q) = N JJ... fY1'P* (r ,Yi, ...,fN) • V'P(r,Yi, ...,rN )cf0. ...dfNdf. (5.2.2h)
2n 

An important consequence of the zero-flux atomic partitioning is that these two 

forms of the atomic kinetic energy give the same result. This is because the expectation 

value of their difference, L(Q), is zero in any region bounded by zero-flux surfaces, 

L(Q) ~ K(Q)-G(Q) =__!_ JV7 2p(f)df =0 . (5.2.2c)
4Q 

We will test our approach for the basin integration in Eq. (5.2.1) using Eq. 

(5.2.2c). We will also verify that the sum of the atomic property values recovers the 

8corresponding molecular property. 1•

The reader will notice that QT AIM exploits the topology of the electron density. 

(In fact, QTAIM is sometimes referred to as "Quantum Chemical Topology."9
) Key 

concepts for QTAIM include the zero-flux surface that bounds the atomic basins and the 

critical points in the electron density (where V7 p(f) =0 ). The critical points associated 

with maxima in the density are called attractors. Attractors can be categorized as either 

atomic nuclei or non-nuclear attractors (which only occur in special molecules at special 

geometries10
-
12

). Every atomic basin is filled by a web of gradient ascent paths that 

3terminate at a density maximum or attractor.1
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13The standard approaches to evaluate Eq. (5.2.1) use a 3-step procedure.8
' •

16 (I) 

All of the electron density's critical points are determined. (II) The atomic zero-flux 

surfaces are constructed. (III) Integration over the atomic basin is carried out. 

Determining the zero-flux surfaces is the most time consuming step in these algorithms. 

One of the original methods to determine the zero-flux surface (implemented in the 

program PROAIM8
) finds points on the zero-flux surface by tracing back trajectories 

from a so-called bond critical point. 1'
8 Other points on the zero-flux surface are obtained 

by interpolation so that the zero-flux surface is obtained as a function of two angular 

polar coordinates centered at the nucleus in _question. 8 Cioslowski and Stefanov 

introduced a variational method in which, for every pair of bonded atoms, a function of 

prolate spheroidal coordinates that represents a zero-flux sheet between the pair of atoms 

is determined by minimizing a functional of the zero-flux sheet and the gradient 

electronic density itself. The boundary of the atomic basins is then obtained by joining 

the zero-flux sheets that surround each atom.13
-
14 In an approach introduced by Popelier,15 

the zero-flux surface is obtained by fitting an analytical function to a set of points on the 

surface. 

All these methods produce a representation of the zero flux surface as a function 

of two curvilinear coordinates, /(17,q). The actual integration over the atomic basin is 

then carried out using spherical coordinates centered at the nucleus into consideration. 

For a given grid for the angular coordinates, the radial integration interval, r(B, <p) , starts 
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at the attractor and ends where the ray in the direction (B,rp) intersects the zero-flux 

13 13surface.8
' -

15 Although these methods achieve outstanding accuracy,8
' -

15 it is not always. 

feasible to apply them to molecules with dozens of atoms. In particular, generating the 

zero-flux surface is prone to error when either: a) the grid points are too few, or too 

poorly distributed, for accurate interpolation/fitting8
' 
15 or b) the function guess in 

Cioslowski-Stefanov method13
-
14 is not good enough. Thus the important question is 

"How can the inherent problems in computing the zero-flux surfaces be avoided?" The 

answer we give in this article is: "not compute them at all!" 

Recently Henkelman et al. 17 and Sanville et al. 18 introduced a method to compute 

atomic charges based on a entirely new philosophy. They partitioned the space into little 

cubes centered at every point in a regular grid. Then, they ascend along the gradient path 

that passes through each grid point until the path terminates at a maximum in the electron 

density. Based on the terminus of the path, they associate each little cube to an atomic 

basin. 17
-
18 This approach is faster and simpler than the standard methods described above. 

However, it still has some problems: For example, there are memory and accuracy 

problems associated with the use of huge regular grids. Also, the Euler method that is 

used to construct the steepest ascent path is quite sensitive to small variations in the step 

size. 19 

In this article we present a grid-based scheme that follows the basic philosophy of 

the works of Henkelman et al. 17 and Sanville et al.. 18 Like them we do not explicitly 
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construct the zero-flux surfaces. Like them, the only input to our program is the system's 

density and geometry. Unlike them, we do not use regular grids. Instead, we apply 

efficient cellular grids as they are used in SCF-Kohn-Sham methods;20
-
21 this avoids any 

extra grid construction and the use of large regular grids. We have implemented our 

approach using both the adaptive21 and fixed grids implemented in the deMon2k density 

functional theory package.22 All grids are based on Becke's atom centered construction,23 

which uses the product of a Lebedev grid for the angular part and a one-dimensional 

quadrature for the radial part. We tested our algorithm with different sizes of fixed and 

adaptive grids. The smallest fixed grid was a grid with 50 radial shells each carrying a 

Lebedev grid with 194 points; this grid is denoted (50,194). We also used (75,302) and 

(99,590) grids. For the adaptive grids, we used grids with error tolerances of 10-5 and 

10-6 in the numerical integration of the exchange and correlation energies and 

potentials.21 

In addition to the use of cellular grids that are especially efficient for integrating 

the density and density-like properties, our method has two other innovations. First of all, 

we define "atomic trust spheres" inside each atomic basin. Points inside these spheres can 

be reliably assigned to the appropriate atomic attractor without further calculation. 

Second, we prune away grid points that are so far from the molecule that they make no 

significant contribution to the atomic properties. These developments, and their 
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application for computing properties of atoms and non-nuclear attractors, are described in 

the subsequent sections. 

5.3 A Grid-Based Algorithm 

5.3.1 Algorithm 

Let fo be a grid point that is not on the zero-flux surface. We will determine 

which atomic basin this point belongs to by tracing the steepest-density-ascent path from 

fo to an attractor. We considered 3 algorithms for constructing the path: the Euler (EU) 

25method, 2°d -0rder Runge-Kutta (RK2), and 4th order Runge-Kutta (RK4).24
- The Euler 

method requires evaluating the gradient of the density once per step. RK2 and RK4 

require two and four gradient evaluations, respectively.24
-
25 Although the steepest ascent 

path starts from a grid point, it moves freely in space after the first step. (I.e., the path is 

not restricted to move through the grid.) It is worth mentioning that an early version of 

this algorithm to calculate atomic charges was presented in reference (26). 

To control the accuracy of the gradient path, in any step where the density 

decreased, the step size was reduced by 25%. The step was then repeated until an 

increase in the density was achieved. The steepest ascent path is terminated once it enters 

an "atomic trust sphere" that allows us to unambiguously assign fo to a particular 

attractor. 
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5.3.2 Atomic Trust Sphere 

Notice that the algorithm will be faster if the atomic trust sphere is larger. We 

determine the atomic trust sphere radius using the spherical Lebedev grids. For each 

point, Po , of the Lebedev grid at a given radial shell, we evaluate the gradient of the 

density V p(fo) . If the gradient points towards the central atom of the Lebedev grid, it can 

be assigned to this atom. If this is true for every point of the Lebedev grid at a given 

radial shell, then obviously all points inside that radial shell will be also assigned to that 

atom. Thus the biggest radial shell that satisfies this condition will be the trust sphere for 

an atom. The specific algorithm we used to determine the radius of the trust sphere is as 

follows. 

1) 	 For the attractor at XA, we start by considering a Lebedev grid on a radial shell 

very close (1 a.u.) to the attractor. Let ~ be a point of the Lebedev grid and Bk 

be the angle between the vector XA - ~ and V p(~) . 

2) If Bk < B0 ( B0 is a threshold angle) for every ~of the Lebedev grid, then go to 3. 

Ifnot, then go to 4. 

3) Consider the next Lebedev grid on the next radial shell further outside. Go to 2. 

4) Assign the trust radius of the attractor to the radial shell of the previous step. Stop. 
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We established that an angle of 80 = 45° suffices by ensuring that atomic properties 

obtained with and without the trust sphere method were the same for a family of 

molecules. This choice of the atomic trust sphere reduces the CPU time by more than 

25% (see Table 5.2 and Figure 5.3). Note also that the atomic trust sphere has aii 

interesting chemical meaning: it defines the "almost spherical" (and thus "almost 

transferable") region around each atom in the molecule. 

5.3.3 Screening 

The electron density and density gradient is very small at grid points that are far 

away from any nucleus. This makes it difficult to assign these points to an atomic basin, 

which slows down the algorithm. Because the product of the density at these points and 

the corresponding integration weight is of the order 10-10
, these points do not contribute 

significantly to the atomic quadrature sum. This motivates our screening procedure: if 

Wip(f;) < 10-8 and 'Vp(f;) < 10-8 
( W; is the integration weight corresponding to f;) are 

satisfied for a given grid point, then this point is neglected in the integration of the atomic 

properties. Our tests indicate that omitting these points causes only very small differences 

(< 10-7 a.u.) in the computed values of the atomic properties. 
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5.3.4 Non nuclear attractors 

As already mentioned, our algorithm does not require any input except for the 

density and the locations of the atomic nuclei. To identify non-nuclear attractors (NNA) 

in the electron density we find all the points in space that satisfy: 

1) p(fo) > 0.001 a.u. 

2) V p(fo) is almost zero ( < 10-s a.u.) 

3) The density's Hessian at fo has three negative eigenvalues 

fo must satisfy all three conditions in order to be considered as a non-nuclear attractor. 

These conditions are applied in sequence. Points that are far from the atomic nuclei will 

violate the first condition; this reduces the number of points where the (expensive!) third 

condition must be tested. We successfully applied this algorithm to some molecules with 

non-nuclear attractors. An example (Lh) is presented in Table 5.6. 

5.3.5 The overall algorithm 

The overall algorithm is summarized by the flow chart in Figure 5.1. In more detail, 

1. Generate the atomic trust sphere for every atom in the system. 

2. Pick up a new grid point r;o). 
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3. 	 Is ~coi far enough from the nuclei to satisfy the screening conditions? If so go to 

2; ifnot, set ~(k) =~coJ and go to 4. 

4. 	 Is ~(kl inside of an atomic trust sphere? If so go to 8; if not, go to 5. 

5. 	 Is ~(kl anewNNA? Ifso go to 6; if not, go to 7. 

6. 	 Add ~(o) to the attractor list and assign a trust sphere with an appropriate radius to 

it. Go to 2. 

7. 	 Construct the next step in the steepest ascent path: ~(k+IJ =F;(k) + ll"f;(k). Go to 4. 

8. 	 Add the grid point ~(OJ, i.e., the initial point in the steepest ascent path, to the 

corresponding atomic basin property quadrature. Go to 2. 

This algorithm stops after all non-screened points in the grid are assigned to an 

atomic basin. 

5.4 Computational Methods 

All calculations were performed with a modified version of deMon2k22 at the 

local spin density approximation level using a DZVP basis.27 The exchange-correlatio~ 

functional employed was the Dirac exchange28 and the Vosko-Wilk-Nusair correlation 

functional.29 Unless not otherwise stated, the deMon2k default settings for the SCF and 
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optimization procedures were used. Molecular symmetry was exploited in the structure 

optimization and in the building of the integration grids. Molecular symmetry, however, 

was not exploited while applying the present algorithm to compute atomic properties. 

The ATS for each atom is generated 

Pick up a new GP as initial point in the 

steepest ascent path 


Yes 
Does the GP satisfy screening conditions? 

Yes Is the APP inside of any ATS? Or, is it a new ---------. 
NNA? i.e., converged? 

No 

Go a step forward in the steepest ascent path 

Figure 5.1. Flow chart of the overall algorithm. Abbreviations: ATS=atomic trust 
sphere; GP=grid point; APP=actual point in the path; NNA=non-nuclear attractor; 
ABP=atomic basin property. 
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5.5 Results and Discussion 

To compute atomic properties we first optimized the molecular geometry. A 

single-point SCF calculation at the optimized geometry was used to generate the electron 

density for our atomic property calculations. We computed the electrostatic multipole 

moments of each atom using the spherical tensor formulation. Our notation for the 

multipole moments follows Popelier, 15 except that we chose to define Q00 as the total 

atomic charge, including the contribution from the nucleus, Zn , 

Qoo(Q) =Zn  fp(r)ar 
n 

(5.5.1) 

Q10 (0)=-fzp(r)ar 
n 

(5.5.2) 

Q11c (0) = - Jxp(r)ar 
n 

(5.5.3) 

Qus(O) = - Jyp(r)ar 
n 

(5.5.4) 

Q20(Q) = - J.!.(3z2 -r2)p(r)ar 
n2 

(5.5.5). 

Q11c(Q) =-f.J3xzp(r)ar (5.5.6) 
n 

Q21s(O) = - f.J3yzp(r)ar (5.5.7) 
n 

(5.5.8) 
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Q12s(Q)=-fJ3xyp(r)df. (5.5.9) 
n 

Table 5.1 compares the values of atomic properties of formaldehyde obtained 

using the three different methods for constructing the steepest ascent path. All our results 

are reported in atomic units unless otherwise stated. Notice that the number of function 

calls is directly related to the number of steps during the path. Notice also that L(Q) is 

close to the correct value of zero; this confirms the accuracy of our integration method. 

While the values of the atomic properties are reasonable, it seems that the Euler method 

for propagating the gradient path is quite sensitive to the step size. We believe this is 

because the approximate gradient paths cross when the step size is too large. By contrast, 

RK2 and RK.4 are very stable in this respect, and basically give the same numbers. This 

can be also inferred from Table 5.2. 
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Table 5.1 Atomic properties for formaldehydea for different integration methods. An 
adaptive grid with tolerance 10-5 was used. The first row shows the step size (.6.s), the 

CPU timeb, the number of steps in the longest path during the partition, Nmax, and the 
average number of steps for all paths in the whole partition algorithm, Nave· 

Atom Property EU RK2 RK4 

.6,s 0.025 0.15 0.3 
Timeb 285.5 101.0 109.5 
Nmax 378 63 32 
Nave 85 15 7 

0 Ooo -1.038 -1.038 -1.038 

010 0.476 0.476 0.476 

020 -0.325 -0.325 -0.325 

022c -0.122 -0.122 -0.122 

K 74.795 74.795 74.795 

G 74.799 74.799 74.799 

L -3.7xl0-3 -3.7xl0-3 -3.7xl0-3 

c Ooo 0.849 0.850 0.850 

010 0.993 0.992 0.992 

020 -0.784 -0.778 -0.778 

022c 0.328 0.328 0.328 

K 36.809 36.809 36.809 

G 36.802 36.801 36.801 

L 7.0xl0-3 8.4xl0-3 8.4x10-3 

H Ooo 0.095 0.094 0.094 

010 0.097 0.097 0.097 

011s(-) -0.129 -0.129 -0.129 

020 0.002 0.001 0.001 

021s(-) 0.132 0.133 0.133 

022c 0.142 0.144 0.144 

K 0.555 0.554 0.554 

G 0.557 0.557 0.557 

L -2.3xl0-3 -3.0xl0-3 -3.0xl0-3 
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Table 5.1 {Continued} 

Property EU RK2 RK4 

Total Ooo 0.000 0.000 0.000 

010 1.664 1.662 1.662 

011s 0.000 0.000 0.000 

020 -1.106 -1.102 -1.102 

021s 0.000 0.000 0.000 

022c 0.489 0.494 0.494 

K 112.713 112,713 112.713 

G 112.714 112.714 112.714 

L -1.3xl0-3 -1.3xl0-3 -1.3xl0-3 

a Only non vanishing moments are shown. The properties of the H atoms are the same except for certain 

entries [denoted(-)] where symmetry introduces a factor of-1. 

b On one processor Intel(R)-Xeon(TM) 2.4GHz. 


Table 5.2 Parameters in the calculations of the atomic properties for formaldehyde. An 
adaptive grid with tolerance 10-5 was used. Values of the CPU time8 

, Nmax and Nave (see 
Table 5.1 for definitions of these numbers) using atomic trust spheres (ATS) and without 
using them (NO-ATS) for different values of the step size As (in a.u.) are shown. 

As Time8 
Nmax Nave 

EU 0.015 
0.020 
0.025 

NO-ATS 

631.4 
479.1 
377.0 

ATS 

474.0 
362.4 
285.1 

NO-ATS 

666 
500 
400 

ATS 

630 
472 
378 

NO-ATS 

188 
141 
113 

ATS 

141 
106 
85 

RK2 0.10 
0.15 
0.20 

195.7 
131.1 
100.8 

148.4 
101.1 
76.0 

100 
67 
50 

95 
63 
48 

29 
19 
15 

22 
15 
11 

RK4 0.10 
0.20 
0.30 

383.4 
194.8 
132.9 

288.4 
147.6 
102.1 

100 
50 
34 

95 
48 
32 

29 
15 
10 

22 
11 
8 

a On one processor Intel(R)-Xeon(TM) 2.4GHz. 
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For a given method, varying L\ in the range shown in Table 5.2 does not change 

the atomic property values. Obviously, the CPU time decreases as the step size increases. 

Thus, the biggest step size that ensures no path crossings gives the best performance. 

From Table 5.2 we can also see that the use of the atomic trust spheres makes the 

algorithm 25% faster (see also Figure 5.3). 

Table 5.3 compares the values of atomic properties for formaldehyde using 

adaptive and fixed grids. We can see that there is a small variation in the atomic 

properties with respect to the number of grid points. If we compare the results of the 

largest adaptive and fixed grids with each other we find only small differences. In 

particular, the total -i.e. molecular- quantities are almost identical for these two grids. 

Therefore, the total quantities can be used as an indicator for the grid accuracy. The 

differences in the individual atomic quantities are usually larger than in the summed total 

quantities. This indicates that the grid accuracy is not the only factor that determines the 

quality of the basin integration. For this reason, a medium sized grid is sufficient for the 

basin integration if errors of around I 0-3 a.u. are acceptable. 
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Table 5.3 Atomic properties for formaldehydea for different integration grids using RK.4 
as integration method with !is= 0.3 a.u.. The first row shows the total number of grid 
points (NGP), the CPU timeb, and the values of Nmax and Nave (see Table 5.1 for 
definitions of these numbers). 

Atom Property 10-sc 
Adaptive 

10-6c (50,194) 
Fixed 
(75,302} (99,590} 

NGP 21611 39413 10093 26257 73934 
Timeb 101.2 198.6 30.8 77.2 203.8 
Nmax 63 62 60 60 61 
Nave 15 16 9 8 7 

0 Ooo -1.038 -1.033 -1.033 -1.043 -1.032 
010 0.476 0.468 0.467 0.483 0.466 
020 -0.325 -0.340 -0.342 -0.319 -0.332 
022c -0.122 -0.116 -0.143 -0.102 -0.113 
K 74.795 74.789 74.785 74.802 74.793 
G 74.799 74.793 74.795 74.805 74.793 

L -3.7xl0-3 -4.6x10-3 -1.0xl0-3 -2.9xl0-3 -2.1 xl0-4 

c 022 0.850 0.846 0.851 0.855 0.842 
010 0.992 0.988 0.994 0.996 0.989 
020 -0.778 -0.775 -0.741 -0.768 -0.783 
022c 0.328 0.326 0.363 0.304 0.315 
K 36.809 36.811 36.815 36.801 36.810 
G 36.801 36.809 36.803 36.796 36.809 

L 8.4xl0-3 2.4xl0-3 1.1 xl0-2 5.2xl0-3 5.8xl0-4 

H Ooo 0.094 0.093 0.091 0.094 0.095 
010 0.097 0.096 0.091 0.096 0.097 
011s{-} -0.129 -0.128 -0.130 -0.129 -0.129 
020 0.001 0.000 0.000 -0.001 0.000 
021sH 0.133 0.129 0.125 0.129 0.128 
022c 0.144 0.140 0.147 0.146 0.142 
K 0.554 0.557 0.558 0.556 0.556 
G 0.557 0.556 0.558 0.557 0.556 

L -3.0xl0-3 1.1 xl0-3 -4.7xl0-4 -1.2xl0-3 -1.8xl0-4 
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Table 5.3 (Continued) 
Adaptive Fixed 

10-sc 10-6c (50,194) (75,302) (99,590) 

Total Ooo 0.000 0.000 0.000 0.000 0.000 
010 1.662 1.649 1.642 1.671 1.649 
011s 0.000 0.000 0.000 0.000 0.000 
020 -1.102 -1.116 -1.083 -1.089 -1.115 
021s 0.000 0.000 0.000 0.000 0.000 

022c 0.494 0.489 0.514 0.494 0.486 
K 112.713 112.714 112.714 112.715 112.715 
G 112.714 112.714 112. 714 112.715 112.715 

L -1.3xl0-3 1.8xl0-5 -7.2xl0-5 -1.2xl0-5 3.4x 10--6 
a Only non vanishing moments are shown. 6 On one processor Intel(R)-Xeon(TM) 2.4GHz. 
c Tolerance in integrating the exchange-correlation potential and energy in the SCF calculation. 

Table 5.4 Total CPU time (in sec.) for atomic property calculations. 

Molecule Popelier15 
·a Sanville et al. 18 

,b Stefanov et a/.14 
·c This workd 

H20 2400.0 354.2 25.7 
N2 1320 21.6 

CH4 4020.0 707.9 81.4 
NH3 449.2 43.0 

CH20 652.8 75.8 
C2H4 913.1 252.5 

Li2 147.3 60.9 
co 20.3 
C02 80.0 
CS2 130.0 
H202 65.8 

CH30H 226.7 
C2H50H 518.5 

C4H8 1097.5 
CsHs 1471.0 

Fe(CsHsh 7155.3 
a On a DEC- a AXP 300LX workstation. Popelier reports timings only for the heavy atoms. The timings 

reported here are estimated from his data. 

b On a 2.5GHz PowerPC GS processor. 

c On one processor of a Cray-YMP4/32 supercomputer. 

d On one processor Intel(R)-Xeon(TM) 2.4GHz. 
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Table 5.4 compares the CPU time for atomic property calculations with previous 

calculations reported in the literature. Our method is about one order of magnitude faster 

than the methods of Sanville et al. 18 and Stefanov et al .. 14 Our method is as much as 2 

orders of magnitude faster than Popelier's method. 15 Based on Table 5.4, we believe that 

our method is one of the most efficient implementations for QT AIM atomic property 

calculations. 

In Figure 5.2 the partition of the integration grid into the atomic basins for 

formaldehyde is depicted. In part (a) we can see how the grid points nicely outline the 

interatomic surfaces. The more points in the grid, the smoother and more precise these 

"imaginary" surfaces will be. In (b) the atomic basin for carbon in formaldehyde is 

shown. The shape and size of the atomic basins are in good agreement with previous 

calculations. 1 

In Table 5.5 we list atomic properties for a set of representative molecules. Due to 

local differences in the molecular density and geometry from one system to another, the 

atomic trust sphere radius is system dependent. The last row in Table 5.5 shows the total 

value of each property. Notice that there is a difference between the SCF energy and the 

molecular energy as sum of atomic energies. Although there is a (small) numerical 

integration error, this difference is caused by the fact that we did not introduce the local 

virial correction for the atomic energies reported in this work. 1•
30 The "error" in the virial 

theorem is, in turn, primarily due to the fact E *~ in density functional theory. 31 We 
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are currently exploring how our method responds to different basis sets and exchange-

correlation functionals. 
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Figure 5.2. (a) Atomic basins for formaldehyde. Grid points are dots in the two 
hydrogen basins, triangles in oxygen's basin, and crosses in the carbon's basin. (b) 
Expanded view of the carbon atomic basin in formaldehyde. Only grid points in the plane 
of the molecule are shown. Lengths are in a.u. (Bohr). 
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Table 5.5 Atomic properties. Atomic trust sphere radius (ATSR) are also shown. The 

SCF energy is shown in the last column. Calculations were performed with RK.4 and a 

step size /J.

3 
=0.3 a.u.. 

Molecule Charge Energy L ATSR SCF Energy 

co 
c 
0 

Total 

1.131 

-1.131 

0.000 

-36.512 

-75.047 

-111.558 

9.9xl0-4 

-1.0xl0-3 

-1.5xl0-5 

0.650 

1.355 

-112.444 

Nz 

N 

N 

Total 

0.000 

0.000 

0.000 

-53.883 

-53.883 

-107.766 

-8.0xl0-6 

-8.0xl0-6 

-1.6xl0-5 

0.744 

0.744 

-108.662 

C02 

0 

c 
0 

Total 

-1.037 

2.074 

-1.037 

0.000 

-74.824 

-36.148 

-74.824 

-185.795 

2.3xl0-3 

-4.7xl0-3 

2.3x10-3 

-7.5xl0-3 

1.355 

0.723 

1.355 

-187.232 

HzO 

0 

H 

H 

Total 

-1.122 

0.561 

0.561 

0.000 

-74.610 

-0.381 

-0.381 

-75.372 

8.0xl0-4 

-3.9xl0-4 

-3.9xl0-4 

2.1 xl0-5 

1.219 

0.240 

0.240 

-75.898 

CS2 

s 
c 
s 

Total 

0.536 

-1.072 

0.536 

0.000 

-395.402 

-37.937 

-395.402 

-828.741 

-9.8xl0-4 

1.2xl0-3 

-9.7xl0-4 

-7.6xl0-4 

1.077 

1.228 

1.077 

-831.367 
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Table 5.5 (Continued) 

Molecule Charge Energy l ATSR SCF Energy 

NH3 
N 

H 

H 

H 
Total 

-1.115 

0.372 

0.372 

0.372 

0.000 

-54.238 

-0.461 

-0.461 

-0.461 

-55.620 

4.3xl0-3 

-1.4xl0-3 

-1.4xl0-3 

-1.4xl0-3 

4.5xl0-5 

1.260 

0.381 

0.381 

0.381 

-56.103 

c 
0 

H 

H 

Total 

0.856 

-1.044 

0.094 

0.094 

0.000 

-36.801 

-74.802 

-0.556 

-0.556 

-112.715 

6.5x10-3 

-4.2x10-3 

-1.7xl0-3 

-1.2xl0-3 

-1.2x 10-3 

0.723 

1.355 

0.529 

0.529 

-113.626 

H202 

0 

0 

H 

H 

Total 

-0.565 

-0.565 

0.565 

0.565 

0.000 

-74.401 

-74.401 

-0.386 

-0.386 

-149.574 

8.8xl0-4 

8.8xl0-4 

-8.8xl0-4 

-8.8xl0-4 

4.4xl0-6 

1.219 

1.219 

0.270 

0.270 

-150.525 

CH4 

c 
H 

H 

H 

H 

Total 

-0.289 

0.072 

0.072 

0.072 

0.072 

0.000 

-37.440 

-0.560 

-0.560 

-0.560 

-0.560 

-39.678 

-2.6xl0-3 

5.7xl0-4 

5.7xl0-4 

5.7xl0-4 

5.7xl0-4 

-2.7xl0-4 

0.9949 

0.5289 

0.5289 

0.5289 

0.5289 

-40.123 

198 




Ph.D. Thesis - J./. Rodrigy_ez McMaster - Chemist"!J!_ 

Table 5.5 (Continued) 

Molecule Charge Energy L ATSR SCF Energy 

CH30H 

c 
0 

H 

H 

H 

H (alcohol) 

Total 

0.326 

-1.070 

0.088 

0.053 

0.053 

0.550 

0.000 

-37.123 

-74.687 

-0.564 

-0.576 

-0.576 

-0.393 

-113.920 

-2.8x10-3 

1.8x10-3 

-1.6xl0-3 

1.3xl0-3 

1.3xl0-3 

2.3xl0-4 

1.3xl0-4 

0.805 

1.219 

0.529 

0.529 

0.529 

0.270 

-114.835 

C2H4 

c 
c 
H 

H 

H 

H 

Total 

-0.178 

-0.178 

0.089 

0.089 

0.089 

0.089 

0.000 

-37.409 

-37.409 

-0.559 

-0.559 

-0.559 

-0.559 

-77.052 

1.8xl0-4 

1.8xl0-4 

-1.1 xl0-4 

-1.1xl0-4 

-1.1 xl0-4 

-1.1 xl0-4 

-9. x10-s 

0.805 

0.805 

0.529 

0.529 

0.529 

0.529 

-77.855 

C2HsOH 

c 
C (alcohol) 

H 

H 

H 

0 

H (alcohol) 

H (C-alcohol) 

H (C-alcohol) 

Total 

-0.163 

0.404 

0.055 

0.069 

0.069 

-1.070 

0.548 

0.044 

0.044 

0.000 

-37.441 

-37.101 

-0.568 

-0.566 

-0.566 

-74.689 

-0.393 

-0.584 

-0.584 

-152.491 

1.9xl0-3 

5.1 xl0-3 

-1.7xl0-3 

6. xl0-4 

6. xl0-3 

-5. x10-3 

-1.0xl0-4 

-2.9xl0-4 

-2.9x10-3 

-8.3xlo-s 

0.995 

0.895 

0.529 

0.529 

0.529 

1.219 

0.270 

0.529 

0.529 

-153.797 
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Table 5.5 (Continued) 

Molecule Charge Energy l ATSR SCF Energy 

C4Ha 

c -0.097 -37.403 1.4x10-3 
0.995 


c -0.097 -37.403 1.4xl0-3 
0.995 


c -0.097 -37.403 1.4x 10-3 
0.995 


c -0.097 -37.403 1.4xl0-3 
0.995 


H 0.050 -0.576 -1.9xl0-3 
0.529 


H 0.050 -0.576 -1.9xl0-3 
0.529 


H 0.050 -0.576 -1.9x 10-3 
0.529 


H 0.050 -0.576 -1.9xl0-3 
0.529 


H 0.047 -0.577 5.6xl0-3 
0.529 


H 0.047 -0.577 5.6xl0-3 
0.529 


H 0.047 -0.577 5.6xl0-3 
0.529 


H 0.047 -0.577 5.6xl0-3 
0.529 


Total 0.000 -154.223 1.6xl0-4 -155.780 

CsHs 

c -0.087 -37.427 2.0xl0-3 
0.895 


c -0.087 -37.427 2.0xl0-3 
0.895 


c -0.087 -37.427 2.0xl0-3 
0.895 


c -0.087 -37.427 2.0xl0-3 
0.895 


c -0.087 -37.427 2.0xl0-3 
0.895 


c -0.087 -37.427 2.0xl0-3 
0.895 


H 0.087 -0.562 -2.0xl0-3 
0.529 


H 0.087 -0.562 -2.ox10-3 
0.529 


H 0.087 -0.562 -2.ox10-3 
0.529 


H 0.087 -0.562 -2.0xl0-3 
0.529 


H 0.087 -0.562 -2.0xl0-3 
0.529 

H 0.087 -0.562 -2.0xl0-3 
0.529 

Total 0.000 -227.929 -230.1661.4xl0-4 

200 




PhD. Thesis - J.L Rodriguez McMaster - Chemistry 

Table 5.5 

Molecule 

(Continued) 

Charge Energy L ATSR SCF Energy 

Fe(CsHsh 

Fe 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

Total 

0.798 

-0.175 

-0.183 

-0.178 

-0.177 

-0.182 

-0.175 

-0.182 

-0.174 

-0.181 

-0.179 

0.099 

0.099 

0.099 

0.099 

0.099 

0.099 

0.099 

0.099 

0.099 

0.099 

0.000 

-1259.610 

-37.487 

-37.489 

-37.488 

-37.488 

-37.489 

-37.487 

-37.489 

-37.487 

-37.489 

-37.486 

-0.554 

-0.554 

-0.554 

-0.554 

-0.554 

-0.554 

-0.554 

-0.554 

-0.554 

-0.557 

-1640.040 

5.4x10-1 

3.3xl0-3 

-2.2xl0-3 

1.1 xl0-3 

2.1 xl0-3 

-1.4xl0-3 

3.3x10-3 

-1.2xl0-3 

3.7xl0-3 

-5.3xl0-4 

-1.8xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1. xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1.8xl0-3 

-1.1 xl0-3 

5.3x10-3 

1.736 

0.995 

0.995 

0.995 

0.995 

0.995 

0.995 

0.995 

0.995 

0.995 

0.995 

0.529 

0.529 

0.529 

0.529 

0.529 

0.529 

0.529 

0.529 

0.529 

0.529 

-1644.838 
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In Table 5.6 the atomic properties for Lii are shown. The algorithm located the 

non-nuclear attractor at the middle of the Li-Li bond as it is predicted.10
-
12 The properties 

of non-nuclear attractors can be easily computed with our method. 

Finally Figure 5.3 shows how the computational performance is improved by 

using atomic trust spheres. Figure 5.3 was obtained from calculations ofTable 5.3. When 

atomic trust spheres were not used, a sphere with a radius of 0.15 Bohr was considered 

around each atom. Notice that the CPU time saving per atom is proportional to molecule 

size. This fact is important since one of the goals of the algorithm is to facilitate QT AIM 

studies of big systems. 

Table 5.6 Atomic properties for Liia. The atomic properties of the non-nuclear attractor 
(NNA) are also reported. 

IProeertv Li Li NNA Tota~ 
Ooo 0.392 0.392 -0.784 0.000 
010 0.255 -0.255 0.000 0.000 
020 -1.538 -1.538 -4.480 -7.555 
K 7.234 7.234 0.056 14.525 
G 7.234 7.234 0.057 14.525 

L -1.2xl0-5 -1.2xl0-5 -1.7xl0-4 -2.0xl0-4 
a Only non-vanishing moments are shown. 
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Figure 5.3. CPU time saved per atom when using the atomic trust spheres for the 
molecules of Table 5.5. An average time was considered when there was more than one 
molecule with the same number of atoms. 
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5.6 Conclusion 

A new grid-based algorithm to compute QTAIM atomic properties was introduced. It 

partitions a predefined integration grid into the subsets of points that lie inside each 

atomic basin. Then, atomic properties are obtained by quadrature over those subsets. 

Notice that this approach does not require generating the zero-flux surfaces. 

Our approach is designed for applications where computational efficiency is critical 

and moderate accuracy is sufficient. This is because our integration grids make implicit 

assumptions about the smoothness of the integral that are not strictly valid. This is 

avoided in methods that construct the zero-flux surfaces directly and could be mitigated 

in our method by choosing very many radial and angular points in the vicinity of the 

atomic surfaces. The use of optimal adaptive grids in our algorithm makes it possible to 

use many fewer grid points, but this compromises the accuracy of the atomic integrations 

because the zero-flux surfaces are not always precisely located. For moderately accuracy, 

however, our approach is the fastest method we know of. 

To test our program, we computed atomic properties of a set of representative 

13 18molecules. Our results were consistent with previous calculations.8
' 
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"... Me preocupa mas el metablema o trayecto. El camino y no la meta. 
En una obra de arte, y hasta de ciencia o filosofia, me paseo y no voy a la meta. 

Y es que no hay sino el camino" 

Miguel de Unamuno, Correspondencias. 

Chapter 6 

CONCLUSIONS 
AND PROSPECTS FOR FUTURE WORK 
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6.1 Conclusions 

This dissertation introduced two new numerical integration methods for 

computing molecular and atomic properties.14 Both techniques are designed to be used 

within the standard Kohn-Sham-DPT formalism of electronic structure theory, but the 

general principles involved are more generally applicable. The techniques were 

implemented in a modified version of the deMon2k package and showed a remarkable 

improvement over previous approaches. 

The first technique, introduced in Chapters 2-4, is based on a transformed sparse 

grid designed for integrating, interpolating, and differentiating the electron density and 

other density-like quantities. 1-
3 In Chapter 2, this technique was used as the numerical 

integration scheme for the exchange-correlation energy and potential in the Kohn-Sham

DFT program deMon2k. The performance and accuracy of the resulting program was 

tested by computing ground state energies, equilibrium geometries, and atomization 

energies. The accuracy of the new approach is comparable to existing schemes, but our 

grids use significantly fewer points than the deMon2k reference grids but still give 

excellent results. 1 

In Chapter 2, the functions of interest are the electronic density and density-like 

functions, which are defined in 3-dimensional real space. However, the mathematical 

formalism developed (see Section 1.3) is valid for any number of dimensions. The 

extension of the transformed Smolyak integration technique to arbitrary dimensions is 
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established in Chapter 3. Of particular interest are the 3-dimensional application to the 

Gordon-Kim model for molecular interactions and the 6-dimensional application to non

local exchange-correlation functionals. The first application has particular relevance for 

the popular "frozen density embedding" approach for the non-covalent interactions. It is 

also relevant for next-generation molecular-mechanics force-fields. The second 

application is important because our approach removes the computational roadblock that 

has impeded the theoretical development and practical application of non-local "kemel

type" exchange-correlation functionals. The 6-dimensional integration is also relevant to 

the density-matrix approach to linear-scaling Kohn-Sham DFT and the first-order density 

matrix functional theory. 

In Chapter 4, we develop numerical interpolation and differentiation methods for 

functions defined on the transformed Smolyak grids. We tested these methods by 

interpolating and differentiating a wide variety of functions in different dimensions (n = 

2, 3, and 6). Our method gives good accuracy for interpolants and derivatives.3 These 

results are particularly important because accurate grid-based derivatives and interpolants 

are an essential component ofbasis-set-free electronic structure calculations. 

The biggest advantages of the transformed Smolyak grids are: 

I. 	 Efficiency for integrating functions in n-dimensions. Transformed Smolyak 

grids achieve acceptable accuracy with fewer points than conventional 

approaches. This effect is particularly apparent in higher dimensions. 
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II. 	 "Whole molecule" nature of the grid. In particular, using the conditional 

distribution transformation we can go back and forth between the unit cube 

and real space. This facilitates applying important numerical methods, like the 

fast Fourier transform, that are traditionally formulated for regular grids on the 

cube. This is an important advantage over the atomic center grids, which do 

not have any simple connection to a regular grid. 

III. 	 Generality. Using the conditional distribution method, grid points can be 

distributed in space according to any predefined weight function. This weight 

function 1s chosen based on the function that 1s being 

integrated/differentiated/interpolated. Therefore, the transformed Smolyak 

grids can be used in many areas outside quantum chemistry. 

In Chapter V, we introduce an efficient grid-based method for computing atomic 

properties within QTAIM.4 The performance of the method was tested by computing 

QT AIM atomic energies, charges, dipole moments, and quadrupole moments. Our 

approach is designed for applications where computational efficiency is critical and 

moderate accuracy is sufficient. Our method is one to two orders of magnitude faster than 

previous approaches. This improvement makes it possible to study large systems for 

which QT AIM calculations were previously impracticable. 
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6.2 Prospects for future work on transformed sparse grids 

The new numerical integration method for computing molecular properties 

introduced in this dissertation is more efficient than the deMon2k reference grids. 

However, there is still room for improvement. In the following paragraphs, we will 

describe some of the problems we discovered while developing and applying the 

transformed Smolyak grids. Then we will discuss some ideas on how to fix these 

problems. 

6.2.1 Improving the efficiency of our grids 

Our detailed investigations have shown that the grids introduced here are not as 

efficient for integrating the density, 

N = fp(r)df, (6.2.1) 

as they are for integrating exchange-correlation energies. This is because the way we 

have distributed points in real space is not optimal. Recall that our grids are mapped 

according to the promolecular density; this concentrates points in the core regions and 

depletes them in the valence regions. While the promolecule-weighted grids are more 

efficient than regular cubature grids, the promolecular weighting is not ideal. 

Unfortunately, there is no practical way to determine the optimal distribution of grid 

points. 
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Figure 6.1 Transformed Smolyak grid for formaldehyde. Only points on the plane of the 
molecule are shown. Atomic units (Bohr) are used. 

Some previous approaches to numerical integration in DFT determine the 

distribution of grid points empirically. For example, some points in the atomic-center grid 

approach are pruned away so that the number of angular points varies between the radial 

12-14s-ll 0 h h I th bl . . . . IsheIIs. t er approac es so ve e pro em usmg automatic mtegrat10n. n 

automatic integration, the number of points in each direction is optimized before taking 

the tensor product to construct the 3-dimensional grid. Usually the optimization is 

performed by requiring that the integral of a predefined function achieves a desired level 

12 14ofaccuracy. 
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In our Smolyak grid method the "pruning process" is carried out in the unit 

cube. 15
-
16 Thus, there is no way to selectively prune away points near a specific nucleus. 

This makes it difficult to fix the problem of having a huge imbalance in the concentration 

of points around hydrogen and heavy atoms. In Figure 6.1, this imbalance is illustrated 

for formaldehyde. Note the large difference between the concentration of points around 

oxygen and carbon compared to the hydrogen atoms. (Compare this distribution to 

deMon2k's atomic-center grids in the Figure 5.2a). We plan to address this problem in 

two different ways: 

I. 	 New approaches to atomic density fitting. We can fit the atomic densities with 

functions that decay slower than Gaussians (e.g., Lorentzians). Tue resulting 

promolecular densities will decay more slowly and so there will be more grid 

points far away from the nuclei. This also will help to solve the "boundary 

problem" for integrands that do not decay rapidly enough. 

II. 	 Core-Valence Splitting of the promolecular weighting. We can split the 

promolecular density into core and valence contributions using an adjustable 

parameter, A, : 

(6.2.1) 


In a procedure analogous to automatic integration, the value of A can be 

chosen to achieve specified accuracy for integrating a predefined function. 

Notice that adjusting A, allows one to increase the concentration of points 
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close to the nuclei (A. < I ) or in the valence region (A. > I ). We are currently 

working to implement these two methods. 

6.2.2 Basis-set-free DFT 

A more general direction for future work is basis-set free electronic structure 

theory. The work in this thesis provides the fundamental numerical tools- interpolation, 

differentiation, and integration-needed for both wave-function-based and DFT-based 

programs. 

I. The simplest approach would be to take an existing program23 
-
26 and replace 

its interpolation, differentiation, and integration subroutines with the ones 

developed in this thesis. 

II. 	 A better, but more ambitious, approach would be to create a new algorithm 

designed to exploit the strengths and mitigate the weaknesses associated with 

the transformed Smolyak grids. For example, one needs to decide between 

26using finite-difference methods23
- (as in Chapter 4) and fast Fourier 

transform27 techniques to evaluate derivatives. It is also important to note that 

the conditional distribution transformation can also be applied to simple

product grids. This may be helpful because techniques for differentiation, 

interpolation, and Fourier transform are simpler and better- established for this 

type of grids. The choice between simple-product grids and Smolyak grids 
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may come down to the accuracy required for integration (where Smolyak 

approach is much more efficient) versus differentiation (where simple-product 

grids might be preferable). One consideration is that finite-difference methods 

on simple product grids give sparse matrices, but the Smolyak-differentiation 

method in Chapter 4 gives dense matrices. A "sparse" approach to 

differentiation on Smolyak grids should be pursued. 

Whether we use simple-product grids, Smolyak grids, are something else entirely, 

we still need to pay attention to the asymptotic decay of the weight function, P(f), in the 

conditional distribution mapping of the unit cube onto real space. The divergences could 

be particularly troublesome when solving Poisson equation, 

(6.2.2) 


Consider the solution of Poisson equation in the integral form, 

V(i) = Jp(i ~di 
I

I (6.2.3) 
r-r 

If the weight function P(i) decays faster than p(i) Ir , then the cubature will be 

divergent. This can be a problem, then, when a sum of Gaussians is used as a weight 

function. It is important to note that the suggestions in 6.2.1 for controlling the 

distribution of points could solve the divergence issue. 

- -·1 
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6.3 Prospects for future work on the Quantum Theory of 

Atoms in Molecules (QTAIM) 

As already mentioned, our grid-based method for computing atomic properties is 

the fastest one we know of for medium accuracy calculations. 4 A voiding the construction 

of the zero-flux surfaces makes our method faster than traditional methods because 

constructing the zero-flux surfaces is the most time consuming step in the traditional 

methods.17
-
22 

6.3.1 Increasing the speed and accuracy of our QTAIM method 

The most time consuming step in our method is the construction of the gradient 

path for assigning each grid point to an attractor. In the following paragraphs we 

introduce some ideas for improving this assigning process. 

I. 	 Parallelization. The method is highly suitable for parallelization since the 

attractor assignation for each grid point is independent of the others.4 

Parallelization will make the code applicable to studies of larger molecules. 

II. 	 Faster attractor assignation. As mentioned, the slowest part of the current 

program is the gradient-trajectory tracing method for assigning each point to 

the correct attractor. One way to increase the speed of this step is to develop 
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an "attractor function," fA , for each atomic attractor. The attractor function 

would depend on the location of the grid point, f;P, the location of the 

attractor, RA, the density gradient at the grid point, Vp(f;P), the relative 

distance of the attractor A to the other attractors, and possibly other 

information. The grid point would then be assigned to the attractor with the 

largest value offA(f;P,RA, Vp(f;P)). Gradient tracing would be only required 

if there were a "tie" (or near tie) between two attractor functions. 

6.3.2 Study on the dependence on QTAIM properties on other 

important quantities 

Our QT AIM method is based on construction of density gradient trajectories. In 

an electronic structure calculation, the quality of the molecular density depends on the 

quality/size of the basis set, and the quality of the exchange-correlation energy functional 

used in the calculation. Performing a thorough study of these dependences would lead to 

a set of "best principles" for trustworthy QTAIM calculations. With the speed of our 

method, a thorough study ofthis type becomes feasible for the first time. 
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